
Systems Reference Library

IBM System/360 Operating System:

Job Control Language Reference

as Release 21.7

The job control language is used with all
System/360 Operating System control programs.
Every job submitted for execution by the
operating system must include job control
language statements. These statements contain
information required by the operating system to
initiate and control the processing of jobs.

This publication describes the facilities
provided with the job control language and
contains the information necessary to code job
control language ·statements.

File No. 5360-36
Order No. GC28-6704-3 OS

',.-.

I

Fourth Edition (April 1973)

This is a major revision of and obsoletes GC28-6704-2.
Changes or additions to the text and illustrations are
indicated by a vertical line to the left of the change.

This edition applies to release 21.7 of IBM System/360
Operating System and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein1
before using this publication in connection with the
operation of IBM systems, consult the latest IBM Sfstem/360
and System/370 Bibliography, GA22-6822, for the ed1tions
that are app11cable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y.
12602. Comments become the property of IBM.

C Copyright International Business Machines Corporation 1970,1971,1972,1973

Preface

This publication describes the facilities provided with the job control
language and contains the information necessary to code job control
language statements. It is intended for use by both the experienced and
inexperienced JCL user.

This publication is the result of merging the Job Control Language
User's Guide, GC28-6703, into the Job Control Language Reference,
GC28-6704. It is a reference book with some introductory material for
programmers inexperienced with JCL. All information in this book
applies to MFT and MVT configurations of the control program, unless
otherwise noted.

This publication consists of five parts preceded by a general
introduction:

1. programming notes, which contain coding conventions used in coding
job control language statements.

2. Job control language statements, which describe the format of each
statement and the format of the parameters associated with the
statement. There is a separate section for each statement .•

3. Appendixes, which include additional information on the job control
language facilities, such as how to write and use cataloged
procedures, and what default values are provided when certain
pararr..eters are not coded.

4. Glossary, which contains definitions of many of the terms used in
this publication.

5. Foldout charts, which show the format of JOB, EXEC, and DD statement
parameters. The foldout charts appear after the index.

Before you read this publication, you should understand the concepts
and terminology introduced in the prerequisite publication mentioned
below. In addition, the text refers you to other publications for
detailed discussions beyond the scope of this publication.

PREREQUISITE PUBLICATION

IBM System/360 Operating system: Introduction, GC28-6534

PUBLICATIONS TO WHICH THE TEXT REFERS

IBM system/360 operating system:

I

Data Management for System Programmers, GC28-6550
Utilities, GC28-6586

. operator's Reference, GC28-6691
Operator's Procedures~ GC28-6692
S,upervl.sor Servl.ces and Macro Instructions, GC26- 6646
Data Manaqement l>1acro Instructions, GC26-3794
MVT Guide, GC28-6720
storage Estimates, GC28-6551
Tape Labels, GC28-6680
Advanced Checkpoint/Restart, GC28-6708
Prog rammer's Guide to Debugging, GC 28- 6670

Preface 3

4 JCL Reference (Release 21.7)

Programming Notes

Contents Directory

..
JOB Statement ----------------------I~~

EXEC Statement

DD Statement -----------------------~~

Command Statement ---------------------~~

Comment Statement -----------------------I.~

Delimiter Statement

Null Statement -----------------------~~

PEND Statement

PROC Statement

Appendixes

Glossary

Index

Foldout Charts

Notes

JOB

EXEC

Cornman

Comment

Delimiter

Null

PEND

PROC

Appendixes

Glossary

Index

Charts

6 JCL Reference (Release 21.7>

SUMMARY OF AMENDMENTS -- Release 21.7 • 13
Release 21 • . . • • • • • 14
Release 20.1 •.
Release 20 .

• • • • 15
• • • • • 16

THE FORMAT OF THIS PUBLICATION . • • • • 19

INTRODUCTION TO THE JOB
CONTROL LANGUAGE • • • . • • • • • • • • 21
The IBM System/360 Operating System. . . 21

Processing Programs and JCL. . • • • • 21
The Control Program and JCL. • • . • • 23

Control Program Configurations . 24
Job Control Language Statements. • 24

Job Statement . • • • . • 25
EXEC Statement • . . • . . •. •• 26
DD Statement . • . • • •• 26
Delimiter and Null Statements. 27
PROC and PEND Statements • 27
Comment Statement. • . ..• . • • 27
Command Statement. • • • . 27

Defining Your Job. • • . • • 29
Cataloged and In-Stream Procedures • 31
Processing Your Job. • 31
Capabilities· of the Job Control
Language • . . • . . . • . . • • • 32

SECTION I: PROGRAMMING NOTES .•
Fields in Control Statements . .
Parameters in the Operand Field.
Continuing Control Statements .•
Backward Reference
Concatenating Data Sets.
Character Sets . . • • . .
Using Special Characters .
Coding Form.

• • 35
.36
• 37

38
· • 40
· • 40
· • 41
· • 42

• 43

SECTION II: THE JOB STATEMENT. . 45
Job Statement Format . . • . •. • • 45
Rules for Coding • • . 45
Positional and Keyword Parameter • 46
Sample JOB Statements. . • 47
Assigning a Jobname. • • • 48
Examples of Valid Jobnames . • . . 48
Accounting Information Parameter • • 49
Rules for Coding . . . • . • .• .. 49
Supplying Information Parameters .• 49
Examples of the Accounting Information
Parameter. . . • . . • • . • . . 50
Programmer's Name Parameter •.....• 51
Rules for Coding . • •. 51
When to Code the Programmer's Name
Parameter ...•.....• · 51
Examples of the Programmer's Name
Parameter. . . • . . .
The CLASS Parameter. .•
Rules for Coding• .

• • 51
52
52

Assigning a Job Class to Your Job. • .
The CLASS Parameter and Time-Slicing

Examples of the CLASS Parameter.
The COND Parameter . . • • • . . • . •

· 52
· 52

52
.. 53

Contents

Rules for Coding •••••••••
Using the COND Parameter ••••
Examples of the COND Parameter.
The MSGCLASS Parameter. • • • • •
Rules for Coding ••••.••••
Assigning an Output Class to System

• 53
• • 53

55
• 56
• 56

Messages •••••••••••••••• 56
Examples of the MSGCLASS Parameter • • 56
The MSGLEVEL Parameter. • • • •• • 57
Rules for Coding •••••••••••• 57
Requesting Output of Job Control
Statements and Certain Messages. • . • 57
Examples of the MSGLEVEL Parameter ••• 58
The NOTIFY Parameter (For MVT with TSO) 59
Rules for Coding. • • • • • • • •• 59
What the NOTIFY Parameter Does. • 59

What is Time Sharing. • • • • 59
Example of the NOTIFY Parameter • • 59
The PRTY Parameter. • • • • • • . 60
Rules for Coding. • . • • . • •• • 60
What the PRTY Parameter Does • 60

The PRTY Parameter and Time-Slicing • 60
Examples of the PRTY Parameter. 60
The RD Parameter. • • • . • • . 61
Rules for Coding. • • . • • • •• . 61
Using the Restart Facilities. . . • 61

Defining Restart. • • • • • . • 62
Examples of the RD Parameter. • •• 63
The REGION Parameter - without Main
Storage Hierarchy Support (For MVT) • • 64
Rules for Coding .••.•••••••• 64
Requesting Main Storage • . . • • • • • 64

Acquiring Additional Main Storage • • 64
Examples of the REGION Parameter.. 64
The REGION Parameter - with Main
Storage Hierarchy Support (For MVT,
Excluding M65MP) •••••.•.•••• 65
Rules for Coding •.••.••••••• 65
Requesting Main Storage in One or Two
Hierarchies • . • • • . • • • . •• • 65

Acquiring Additional Main Storage • • 66
Examples of the REGION Parameter. • •• 66
The RESTART Parameter • . . • • • • . • 67
Rules for Coding. . • • • . • • •• 67
When to Code the RESTART Parameter. • . 67

Rules for Referencing Generation
Data Sets and Using Backward
References ••.•••••••••.

Examples of the RESTART Parameter •
The ROLL Parameter (For MVT) •••
Rules for Coding. • • . • • .' • .

· 68
68

• 70
· 70

70 When to Code the ROLL Parameter
Examples of the ROLL Parameter. .
The TIME Parameter •••

• • • 70
• • • 71

Rules for Coding •.•••.•.•
Specifying a Time Limit for the Job •

• 71
· 71
• 71 Time Limit for Wait States •.•

How to Eliminate Timing • • • •
Examples of the TIME Parameter.

· . 72

The TYPRUN Parameter (For MFT, MVT)
Holding a Job •

• 72
73

· • 73

Contents_ 7

Example of the TYPRUN Parameter. 73

SECTION III: THE EXEC STATEMENT.
EXEC Statement Format.
Rules for Coding • • • .
positional and Keyword Parameter .
Sample EXEC Statements
Assigning a Stepname .
Examples of Valid Stepnames

. . . 75
. 75

. . . 75
76
76
77
77

The PGM Parameter•......
Identifying the Program to be Executed .

78
78
78
79

Temporary Library.••
System Library
Private Library. . . • .
The IEFBR14 Program. . . .

Examples of the PGM Parameter.
The PROC Parameter • .

.. . 79
79
79
81

Identifying the Cataloged or In-Stream
Procedure to be Called . . . _. . . • . . 81
Examples of the PROC Parameter • 81
The ACCT Parameter. • • • oo. . 82
Rules for Coding • • • • • • • • 82
Providing Accounting Information for a
Job step or Procedure step • • • 82
Examples of the ACCT Parameter • 82
The COND Parameter • • • 83
Rules for coding • • • 0 • • 83
Using the COND Parameter • • 84

Bypassing a Job step G • • 84
Executing a Job step • • 84
When You Call a Cataloged Procedure • 85

Examples of the COND Parameter .. 85
The DPRTY Parameter (For MVT) 87
Rules for Coding. • • • • • • • 87
Assigning a Dispatching Priority 87

The DPRTY Parameter and Time-slicing • 88
When You call a Cataloged Procedure • 88

Examples of the DPRTY Parameter 88
The PARM Parameter • • • • • • 89
Rules for Coding • • • • •• • 89
Providing a Processing Program With
Information at Execution Time

When You Call a Cataloged or
In-Stream Procedure ...oo 0

Examples of the PARM Parameter •
The RD Parameter • • • '. • • •
Rules for Coding • • • • • • • •
Using the Restart Facilities ••

Defining Restart • •• • • • •
When You Call a Cataloged Procedure

Examples of the RD Parameter •
The REGION Parameter - Without Main
storage Hierarchy Support (For MVT)
Rules for Coding. • • • • • •
Requesting Main Storage

Acquiring Additional Main Storage
When You Call a Cataloged Procedure

Examples of the REGION Parameter ••
The REGION Parameter - With Main
Storage Hierarchy Support (For MVT,
Excluding M65MP) • • • .. •
Rules for Coding • .. • • • • •

89

89
90
91
91
91
92

• 92
93

94
94
94
94

• 94
95

96
96

Requesting Main Storage in One or Two
Hierarchies • • .. • • • • • • • • 0 • • 96

Acquiring Additional Main Storage 97
When You Call a Cataloged Procedure • 97

Examples of the REGION Parameter • • • • 97

8 JCL Reference (Release 21.7)

The ROLL Parameter (For MVT) 98
Rules for Coding • • • '. • • 98
When to Code ROLL Parameter 98

When You Call a Cataloged Procedure • 98
Examples of the ROLL Parameter • .. • • • 99
The TIME Parameter • • • • • '. • • • • .100
Rules for Coding •• •• • • • • • • • .100
Specifying a Time Limit for a Job step .100

Time Limit for Wait States. • • .100
How to Eliminate Timing • • • • • .101

How the Job Time Limit Affects the
step Time Limit • • • • • • • • .101
When You Call a Cataloged Procedure .101

Examples of the TIME Parameter ••••• 101

SECTION IV: THE DD STATEMENT
DD Statement Format • • • • • •
Rules for Coding • • • • • • • •
Positional and Keyword Parameters
Sample DD statements •
Assigning a Ddname ••

• • 103
• • 103
• • 103

• • • 104
• • 105

• 106
When Adding or Overriding
Information in a Cataloged Procedure
step • • • '. • '. • • • • • '. .. • 106

Examples of Valid Ddnames
Special Ddnames

• • • • 107
• 108

JOBLIB '.. • • • ,. • 108
Rules for coding the JOBLIB DD
Statement •• • • • • • 108

The DISP Parameter '. 0 • •• • 109
When the Library Is Cataloged ••• 109
When the Library Is Not cataloged .109
Concatenating Libraries 110
When the Job Includes a STEPLIB DD
Statement .oo • • • • • • • • . . • 110

Examples of the JOBLIB DD Statement •• 110
STEPLIB • • • • • ••• '. • .. • III

Rules for Coding the STEPLIB DD
statement • • • • • '. • • '. • '. • • • III

When the Library Is Cataloged ••• 112
When the Library Is Nc~ Cataloged
or Passed • • • • '. • • 112
When the Library Is Passed By a
Previous Step • • •• • '. • • • • • 112
Concatenating Libraries ••• 113
When the Job Includes a JOBLIB DD
statement •• • • • • • '. •• • • • 113

Examples of the STEPLIB DD Statement •• 113
SYSABEND and SYSUDUMP •••••• 114

Writing the Dump to a Unit Record
Device '. ,. '. • • • • • ••• • • • 114
Storing the Dump •• • '.. '. • • • 114

Examples of the SYSABEND and SYSUDUMP
DD statement • • • '. • • 115
SYSCHK • .. • • .. • • • .. • • • • .116

Rules for Coding the SYSCHK DD
statement '. • '. • • • • • • • • .116

When the Checkpoint Data Set Is
Cataloged • • .. • • ••
When the Checkpoint Data set Is
Not Cataloged

Examples of the SYSCHK DD statement
The * Parameter • • .. •
,Rule s f or Coding '. • • •
Defining Data in the Input Stream

• • 116

... 117
.117
.118

• • .118
.... 118

The DCB Subparameters BLKSIZE,
BUFNO, and DIAGNS .119

Examples of the * Parameter
The DATA Parameter •
Rules for Coding • • • •• •
Defining Data in the Input stream

• .119
•••• 121
• ••• 121
••• 121

The DCB Subparameters BLKSIZE,
BUFNO, and DIAGNS ••••••••• 122

Examples of the DATA Parameter. • .122
The DUMMY Parameter • •• • • .124
Rules for Coding. • • • • • • • • .124
What the DUMMY Parameter Does • • • • .124
Coding the DUMMY Parameter. • • .124
Examples of the DUMMY Parameter .125
The DYNAM Parameter. 126
Rules for Coding. • • • • • • • • • • .126
What the DYNAM Parameter Does .126
Coding the DYNAM Parameter. • • .126
Example of the DYNAM Parameter ••• 126
The AFF Parameter • • • • • .127
Rules for Coding • • • • • • • • • • • .127

Optimizing Channel Usage. • • • .127
Requesting Channel separation •• 127
Example of the AFF Parameter. • • .128
The DCB Parameter • • • • • • • • .129
Rules for Coding. • • • • • • • • .129
Completing the Data Control Block .129

DCB Macro Instruction •• 130
DCB Parameter. • • • • • • • • • .131
Data set Label • • • • • • • • • • .131

specifying DCB Information on the DD
statement • • • • • • • • • • • • • • .131

Supplying DCB Keyword Subparameters .131
Copying DCB Information From a Data
Set Label • • • • • • • • • • .131
Copying DCB Information From an
Earlier DD statement • • • • •

Glossary of DCB Subparameters
Examples of the DCB Parameter
The DDNAME Parameter • • • • • •
Rules for Coding • • • • • • • •
What the DDNAME Parameter Does •
When You Code the DDNAMB Parameter •

The DCB Subparameters BLKSIZE,
BUFNO, and DIAGNS • • • • • •

Examples of the DDNAME Parameter • •
The DISP Parameter • • • • • • •
Rules for Coding •• • • .• • • •

What the DISP Parameter Does •
Specifying the Data Set's status

When you Specify NEW as the Data

• .132
• .132
• .149
• .162
• .162
• .162
• .162

• .164
• .164
• .166
• .167
• .167
• .167

Set's Status •• • • • • • • • .168
When You Specify OLD as the Data
Set's Status. • • ••••••• 168
When You Specify SHR as the Data
Set's Status •• • • •• • • • .168
When You Specify MOD as the Data
Set's Status ••

Specifying a Disposition for the Data
• .169

Set ••••• • • • • .170
When You specify
Disposition
When You Specify
Disposition
When You Specify
Disposition

DELETE as the

KEEP as the

PASS as the

• .171

• .171

• .171

When You Spec1fy CATLG as the
Disposition • • • • • • • •
When You Specify UNCATLG as the
Disposition • • • • • •

Specifying a Conditional Disposition
for the Data set • • • • • • •

When You specify DELETE as the
Conditional Disposition
When You Specify KEEP ~s the
Conditional Disposition
When You Specify CATLG as the
Conditional Disposition • • .••
When You specify UNCATLG as the
Conditional Disposition

Examples of the DISP Parameter •
The DLM Parameter
Rules for Coding . . . • • . • .

• • 172

• • 173

• • 173

• • 173

• • 174

• • 174

• • 174
• • 176
· . 177
· . 177

What the DLM Parameter Does. . . . 177
Examples of the DLM Parameter •.
The OSNAME Parameter •
Rules for Coding • • • • 0 • • •

Identifying the Data Set •• •
Creating or Retrieving a Nontemporary

· . 177
• • 179
• • 179
• • 180

Data Set • • • • • • • • • • 180
Nontemporary Data set ••••••• 180
Members of a Partitioned Data set .181
Generations of a Generation Data
Set 181
Areas of an Indexed Sequential
Data Set • • • •. • • • .• • • • • • • 182

Creating or Retrieving a Temporary
Data Set • • • • • • • • • • • 0 • • • • 182

Temporary Data sets. • • • • • • •. 182
Members of a Temporary Partitioned
Data Set • • •.• • • •
Areas of a Temporary Indexed

• 183

Sequential Data Set •••• • • 183
Using a Dedicated Data Set • • • • • 184

Copying the Data Set Name From an
Earlier DD Statement • • • • • • • • • • 184
Specifying the DSNAME Parameter in
Apostrophes • • • •• • • • • • • 184
Examples of the DSNAME Parameter • • • • 185
The FCB Parameter. • • • • ••• 186
Rules for Coding • • • • G. • • • • 186
Image Identifier • • • • • • • • • • • • 186

Requesting Alignment of Forms • • 186
Requesting Operator Verification ••• 186

Examples of the FCB Parameter • • • • .187
The LABEL Parameter • 188
Rules for Coding. • • • • • • • • • • • 189

Data Set Labels ••••••••••• 189
When to Code the LABEL Parameter. • • • 190

The Data Set Sequence Number
Subparameter • .. • • .• • • • • • • • • 190
The Label Type Subparameter •• 191
The PASSWORD and NOPWREAD
Subparameters •••• 192
The IN and OUT Subparameters • • • • .193
The RETPD and EXPDT Subparameters •• 193

Examples of the LABEL Parameter •••• 194
The OUTLIM Parameter. • • • • • • .195
Rules for Coding • • • • • • • • • • • • 195
What the OUTLIM Parameter Does ••••• 195
Determining the Output Limit.. • • • 195
Example of the OUTLIM Parameter .195

Contents 9

The QNAME Parameter -- MFT and MVT
wi th TCAM • • • • •• •• • • • 19 6
Rules for Coding. • • • .196
What the QNAME Parameter Does. . .196
Example of the QNAME Parameter. . .196
The SEP Parameter. • . . • • . • 197
Rules for Coding . • • . . . • • 197
Requesting Channel Separation. • .. 197
Example of the SEP Parameter . . • 198
The SPACE. Parameter. • . • .• .•. 199
Rules for Coding • . -. . • . . . • . • . 200

Requesting Space for a Data Set. • . • 200
Specifying the SPACE Parameter • . • .201

Letting the System Assign Specific
Tracks • • . • . . • • • • . . • 201

Specifying the Unit of Measurement • • 201
Specifying a Primary Quantity.. .202
Secondary Quantity . . • • . . • . . • 203
Requesting Space for a Directory or
Index. • • . • • . • • . • • • • . • . 204
Releasing Unused Space -- RLSE • • . • 204
Specifying the Format of Allocated
Space -- CONTIG, MXIG, or ALX. • . . • 205
Allocating Whole Cylinders -- ROUND .. 205

Assigning Specific Tracks.205
Examples of the SPACE Parameter •...• 206
The SPLIT Parameter • . 209
Rules for Coding • • . • . . • . . . • . 209

Requesting Space for a Data Set. . •• 210
Specifying the SPLIT Parameter • 210

Requesting Space in units of
Cylinders ••.•••...••..•. 210
Requesting Space in Units of
Blo'cks • • • . • • • • . • • • • • • • 211

Examples of the SPLIT Parameter • • 211
The SUBALLOC Parameter • • • • • • • 213
Rules for Coding • • • • • • • • • • 213

Requesting Space for a Data Set • • • 214
Specifying the SUBALLOC Parameter ••• 214

Specifying the unit of Measurement • • 215
Specifying a Primary Quantity •• 215
Identifying the Original Data Set •• 215
Specifying a Secondary Quantity .215
Requesting Space for a Directory • • • 216

Examples of the SUBALLOC Parameter ••• 216
The SYSOUT Parameter' •••• • • 218
Rules for Coding •• • • • • • • • • 218
Advantages to Coding the SYSOUT
Parameter •• • •

The Class name • • • • • • '. •
The Program Name • • • • • • • • •
The Form Number • • • • •
Coding other Parameters With the
SYSOUT Parameter • • • •• • •
Job separators • • • • • • •

Examples of the SYSOUT Parameter • •
The TERM Parameter -- MVT and TSO
Rules for Coding • '. • • • • • •
What the TERM Parameter Does • •

• • 218
• • 219
• • 219
• • 219

• • 219
• • 220
• • 220

• 222
• • 222
• • 222

Example of the TERM Parameter •.
The UCS Parameter

. • • • 222

Rules for Coding • • • • • • • •
Special Character Sets • • • • •

Identifying the Character Set
Requesting Fold Mode • • • • •
Requesting Operator Verification •

Examples of the UCS Parameter

10 JCL Reference (Release 21.7)

• • 223
• • 223
• • 223
• • 224

.225
• • 225
• • 225

The UNIT Parameter • • • • •
Rules for Coding • • • • •

• .226
• .226

Providing Unit Information • • • • • • .227
Identifying the Device •

Unit Address
Device Type
Group Name ••

Unit Count • • • •
Parallel Mounting
Deferred Mounting
Unit separation

Unit Affinity • • • •
Examples of the UNIT Parameter •
The VOLUME Parameter • • • •
Rules for Coding • • • • • •
Providing Volume Information

Specific Volume Request
Nonspecific Volume Request •

The PRIVATE Subparameter •••
When PRIVATE Is Not Coded

The RETAIN Subparameter
The Volume sequence Number

• .228
• • 228
• • 228
• • 231
• • 232
• • 232
• • 233
• • 233
• • 234
• • 234
• • 236
• • 237
• • 237

237
238

• • 238
• • 238
• • 239

subparameter .'. • •• • • • • 239
The Volume Count Subparameter •• 240
Supplying Volume Serial Numbers (SER) 240
Referring the System to an Earlier
Specific Volume Request (REF) • • 241

Volume Affinity • • • • • • • • • • 242
Volume States ••••••••• • • 243

The Mount and Use Attributes • • 243
Nonsharable Attribute • • • • • • •• 247
Satisfying Specific Volume Requests • 247
Satisfying Nonspecific Volume
Requests • • '. • • • • • • • ••• 247

Examples of the VOLUME Parameter • • • • 248

SECTION V: THE COMMAND STATEMENT ••• 265
The Command Statement Format • • • 265
Rules for Coding • • • •• • 265
Commands That Can Be Entered Through
the Input Stream • • • • • • 266

MFT • • • • 266
MVT • • • • • ••• 267

Example of the Command Statement • • • • 268

SECTION VI: THE COMMENT STATEMENT ••• 269
The Comment Statement Format • • 269
Rules for coding • • • • •• '. • • 269

Output Listings • • • • • • • • • 269
Example of the Comment Statement •••• 269

SECTION VII: THE DELIMITER STATEMENT • 271
The Delimiter Statement Format •• • 271
Rules for coding •••••••••••• 271
Example of the Delimiter Statement • • • 271

SECTION VIII: THE NULL STATEMENT
The Null Statement Format
Example of the Null Statement

• • • 273
• • 273

• • • 273

SECTION IX: THE PEND STATEMENT. • • ' •.• 275
The PEND Statement Format • • • • 275
Rules For Coding • • • • • • • • • • •• 275
Examples of the PEND Statement • • • 276

SECTION X: THE PROC STATEMENT. • • 277
The PROC Statement Format • • • • 277

Rules for Coding • .. • • • • • • • • • • 277
Assigning a Value on a PROC statement
to a Symbolic Parameter • • • 278
Example of the PROC Statement • • • 279

SECTION XI: APPENDIXES • • • 281

APPENDIX A: CATALOGED AND IN-STREAM
PROCEDURES • • • 283

USING CATALOGED AND IN-STREAM
PROCEDURES. • • • • '. • • • • • • • 284
How To Call a Cataloged Procedure ••• 284
How to Call An In-stream Procedure • • • 284
Assigning Values to Symbolic Parameters 285

Nullifying a Symbolic Parameter • 287
Example of Assigning Values to
Symbolic Parameters • • 287
Overriding, Adding, and Nullifying
Parameters on an EXEC Statement • • 289

overriding EXEC STATEMENT Parameters • 289
Adding EXEC STATEMENT Parameter' • 291
Nullifying EXEC STATEMENT Parameters .• 291

Examples of Overriding, Adding, and
Nullifying Parameters on an EXEC
Sta temerit • • • •• • • • • • • • • • • 292
OVerriding, Adding, and Nullifying
Parameters on a DD Statement • • • • • • 293

Overriding DD STATEMENT Parameters • • 293
Adding DD statement Parameters • • • • 295
Nullifying DD STATEMENT Parameters • • 295

Examples of overriding, Adding, and
Nullifying Parameters on a DD statement 296
OVerriding DD Statements That Define
Concatenated Data Sets •• • • •• • • • 298
Adding DD Statements to a Procedure •• 298
Examples of Adding DD Statements to a
Procedure •• • • '. • • • • • •• • 299

WRITING PROCEDURES: CATALOGED AND
IN-STREAM • • • • .. • • • • • • • •
Why Catalog Job Control Statements •
Why Use In-Stream Procedures •.•

The Contents of Cataloged And
In-stream Procedures • • • .. •
Using Symbolic Parameters in a
Procedure ... • '. • ... • • •
Adding and Modifying Cataloged
Procedures •• .• .. • • • • • •

APPENDIX.B: USING THE RESTART
FACILITIES • •• • • • • •
Restarts • • • • .. • • • .. • • ..

Automatic Step Restart • • • •
Automatic Checkpoint Restart .•
Deferred Step Restart .. • • •
Deferred Checkpoint Restart

Examples of Using the Restart
Facilities • •• • • • • • •

APPENDIX C: CREATING AND RETRIEVING

• • 301
• • 301
• • 301

•• 301

• • 302

• .• 304

• • 305
• • 305
• • 305
• • 305
• • 305
• • 306

• • 308

INDEXED SEQUENTIAL DAT~ SETS • • • • • • 311

Creating an Indexed Sequential Data Set 311
The DSNAME Parameter •• 312
The UNIT Parameter. .312
The VOLUME Parameter •• 312
The LABEL Parameter • 313
The DCB Parameter .313
The DISP Parameter. • • • • • • .313
The SPACE Parameter •• 313

Nonspecific Allocation Technique •• 313
Absolute Track Technique. • .314

The SEP or AFF Parameter. • • .314
Area Arrangement of an Indexed
Sequential Data set ••••••
Retrieving an Indexed sequential Data

• • 315

Set .. '. • • • • • '. • • • 317
The DSNAME Parameter • • • • 317
The UNIT Parameter. • .317
The VOLUME Parameter •••• 317
The DCB Parameter ••• 317
The DISP Parameter. • .318

Example of Creating and Retrieving an
Indexed sequential Data Set ••• 318

APPENDIX D: CREATING AND RETRIEVING
GENERATION DATA SETS. • • • • • • • • • 319
Before You Define the First Generation
Data Set • • • • • • • • • • • • • • • • 319

Creating a Model Data Set Label
Referring the System to a
Cataloged Data Set • ..

• • 319

• • 320
Creating a Generation Data set •

The DSNAME Parameter
The DISP Parameter .. • •
The UNIT Parameter •
The VOLUME Parameter
The SPACE Parameter
The LABEL Parameter
The DCB Parameter

• • 320
• • 320
• • 321

• 321
• • • • 321

• • • 321
• • 321

• • • • 321
Retrieving a Generation Data

The DSNAME Parameter
Set.. • 322

The DISP Parameter •
The UNIT Parameter • • • • ••
The LABEL Parameter
The DCB Parameter

• • 322
• • 322

• • • • 322
• • • • 323

• 323
Resubmitting a Job for Restart •
Examples of Creating and Retrieving
Generation Data Sets • • • • •

• • 323

• • 323

APPENDIX E: DEFAULT PARAMEl'ER VALUES
SUPPLIED IN THE INPUT READER PROCEDURE .325
How To Keep Track of the Default
Values and Restrictions •••••••• 325

APPENDIX F: A CHECKLIST • .327
Examples • .329

SECTION XII: GLOSSARY • .333

INDEX • ••• 343

SECTION XIII: CONTROL STATEMENT
FOLDOUT CHARTS • ••• 357

Contents 11

Figures

Figure 1. Processing Programs. • 22
Figure 2. Job Management • • • • 23
Figure 3. Defining Job Boundaries • • 26
Figure 4. Defining Job Step
Boundaries ••••• • • • • 28
Figure 5. Your Job • • • • 30
Figure 6. Control Statement Fields 36
Figure 7. Character Sets • • • • 41
Figure 8. Coding Form for Coding
Control Statements •• • • • • • • 43
Figure 9. How the Data Control Block
is Filled • • • • . • • • 130
Figure 10. DCB Subparameters for Card
Punch • • • • • • • • . • • • 151
Figure 11. DCB Subparameters for
Printer •• •••••• • • 152
Figure 12. DCB Subparameters for
Creating a Data Set on Magnetic Tape • 153
Figure 13. DCB Subparameters for
Creating a Sequential Data Set on
Direct Access Devices • • •• •• • 154
Figure 14. DCB Subparameters for
Creating a Direct Data Set • 155
Figure 15. DCB Subparameters for
Creating a Partitioned Data Set • • 156
Figure 16. DCB Subparameters for
Card Reader • • • . • • . . • . 157
Figure 17. DCB Subparameters for
Paper Tape Reader • • • •.• . 158
Figure 18. DCB Subparameters for
Retrieving a Data Set on Magnetic
Tape • • • • • • • • • • • • • • • • • 159
Figure 19. DCB Subparameters for
Retrieving a Sequential Data Set on
Direct Access Device • • •• ••• 160
Figure 20. DCB Subparameters for
Retrieving a Direct Data Set • • 161
Figure 21. DCB Subparameters for
Retrieving a Partitioned Data Set • • • 161
Figure 22. Disposition Processing
Chart • • • • • . • • • • • . • • • • • 175
Figure 23. Direct Access Capacities •• 207
Figure 24. Track Capacities • 208
Figure 25. Combinations of Mount and
Use Attributes • • • • • . • •• • 246

12 JCL Reference (Release 21.7)

Figure 26. Parameters for Creating a
Data Set • • • • • • • • • • • • • • • 250
Figure 27. Creating a Data Set on a
Unit Record Device (Card punch or
Printer). • • • • • • • • • • ••• 252
Figure 28. Creating a Data Set on a
System Output Device • 252
Figure 29. Creating a Data Set on a
Magnetic Tape (Part 1 of 2) 253
Figure 30 Creating a Data Set on
Direct Access Devices (Part 1 of 3) 255
Figure 31. Retrieving an Existing
Data Set from a Unit Record Device
(Card Reader or Paper Tape Reader) 258
Figure 32. Retrieving a Data Set
from th~ Input Stream • • • • • • • 258
Figure 33. Retrieving a Passed Data
Set (Magnetic Tape or Direct Access) 259
Figure 34. Retrieving a Cataloged
Data Set (Magnetic Tape or Direct
Access) • . • . . • . • . . 260
Figure 35. Retrieving a Kept Data
Set (Magnetic Tape or Direct Access) 261
Figure 36. Extending a Passed Data
Set (Magnetic Tape or Direct Access) 262
Figure 37. Extending a Cataloged
Data Set (Magnetic Tape or Direct
Access) • • • • • • • • • • • • • 263
Figure 38. Extending a Kept Data Set
(Magnetic Tape or Direct Access).. 264
Figure 39. postponing Definition of a
Data Set • • • • • • • • • • • 264
Figure 40. Area Arrangement of
Indexed Sequential Data Sets 316
Figure 41. Default Values and
Restrictions Supplied in the Input
Reader Procedures • • • • • • • 326
Fiqure 42. A Checklist (Part 1 of 3) • 327
Figure 43. Job Statement Chart
(Foldout) • • • • • • • . • • • • • • • 357
Figure 44. Execute Statement Chart
(Foldout) • • • • • • • • . • • • • • • 359
Figure 45. Data Definition Statement
Chart (Foldout) •••.•••••••• 361

Summary of Amendments
for GC28-6704-3
OS Release 21.7

ISAM Data sets
• Volume specifications

for duplicate DSNAME.

symbolic Parameters
• Quotes in the PARM field.
• Length cannot exceed 120

characters.

* Parameter
• Addition to rule 4 for

syn tax checking.
• Use of keywords D LM

and DIAGNS.

COND Parameter
• Caution for use of ONLY.

DCB Parameter
• AL and AUL headings

assume DCB=OPTCD=Q.
• DEN=O on 7-track 3240

will result in 556 bpi
recording density.

• ASB reader cannot pro
cess the DDNAME parameter
for instream procedures.

• When specifying PASS 1

code the DCB parameter or
a backward reference to
the DCB information.

• DCB=dsname only permitted
when DISP-= OLD.

DISP Parameter
• specifying MOD.
• Exc Ius i ve c ont rol of

data. set name.
.. specifying CATLG.
o Uncataloging of tape

generation data sets
that were never opened.

• Reference to Appendix C.

• specifying MOD.

Summary of Amendments

SPACE, VOLUME, and UNIT
Parameters

• Allocation of space.
• Retain subparameter

(volume remains mounted
until end of job,
excep t for ta pe) •

• Processing multivolume
data sets.

• Volume reference for a
backward reference on a
DO statement.

• specifying primary and
secondary quantities.

• Cataloged dat a sets.
• Extending a data set

(UNIT parameter).
• Unit affinity and

separ a tion.
• Releasing unused space.
• Extending dat a sets.
• other minor changes.

Appendix A
• Additional examples.
• Mutually exclusive key

words are allowed during
override.

Appendix B
• Retrieving a generation

data set.

Appendix C
• How s pace for index: area

of an ISAM file is
occupied.

Appendix D
• Creating a generation

data set.
• The DSNAME parameter.
• Relative generation

numbers.

Summary of Amendments 13

Summary of Amendments
for GC28-6704-2
OS Release 21

The Release 21 changes listed below are described in this manual. They
are indicated in the text by a vertical line to the left of the charige.

DOS Emulator Scheduler Support

New programming Feature: The DLM parameter is now available on the DD *
or DD DPd'A statement. If the DLM parameter is coded, the delimiter
terminating the group of data is the value assigned in the DLM parameter.

DOS/OS Interchange Environment

New Programming Feature: The LTM subparameter of the LABEL parameter
allows use of Disc operating System (DOS) unlabeled tapes with the
System/360 operating System without modifying the tape.

specification Change: The value "H" coded with the OPTCD parameter under
DOS requests the system to check for and bypass any DOS checkpoint
records on the tape.

OPEN/CLOSE/EOV Trace Feature

New Prograrr~ng Feature: The DCB subparameter DIAGNS requests the
OPEN/CLOSE/EOV trace option. The trace option gives a module-by-module
trace of the OPEN/CLOSE/EOV routines' workarea and the user's DBC.

3505/3525 card Reader/Punch

New Programming Feature: The FUNC subparameter of the DCB parameter
specifies the type of data set to be opened for the 3505/3525 card
Read/Punch. The punch unit also interprets the cards punched.

Specification Change: The MODE subparameter of the DCB parameter has
been extended to include the 3505/3525 card read/punch.

Re organi zati on of Publicat ion

This is a combination of topics previously covered in the JCL User's
Guide, GC28-6703, and the JCL Reference, GC28-6704, prior to Release 21.

Miscellaneous Changes

New sections: The "Introduction", the DCB subparameter tables., and the
"Summary of the DD statement" are all new additions to the manual.

Rewritten sections: The discussion of the COND parameter on the JOB card
has been rewritten for increased clarity.

New Devices Included: The following devices are new for Release 21; the
3420/3803 Magnetic Tape Subsystem, the 3410 Magnetic Tape Device, the
3505 Card Reader, the 3525 Card Punch, the 3277 Display Station, the
3284 Printer, and the 3286 Printer.

Glossary: SOme additions and amendments have been made to refleCt. the
new and changed material in the publication.

14 JCL Reference (Release 21.7)

Summary of Amendments
for GC28-6704-1
OS Release 20.1

The Release 20.1 changes listed below are described in this manual.

r-~-------------------T--,
1 Item 1 Description 1
~---------------------+--1
ISupport for 1 The 2305-1" 2305-2, 2319, and 3330 direct I
12305-1, 2305-21 I access devices have been added to the section I
12319 1 and 3330 Ion the UNIT parameter. Z, a character coded in I
1 Ithe subparameter OPTCD of the DCB parameter, hasl
1 Ian additional meaning when referring to input I
1 I from a direct access storage device. I
~---------------------+--~
1 Support for 3211 1 The 3211 printer has been added to the section I
1 Ion the UNIT parameter. FCB, a new parameter to I
1 Ibe coded on the DD statement 1 allows you to I

I I specify forms control information. The UCS I
I parameter can also be coded for the 3211; I

1 Icharacter set codes to be specified in the UCS I
1 Iparameter for the 3211 printer have also been I
I I added. I
~---------------------+--1
IRemoval of PCP IAII references to the Primary Control Program I
1 information Ihave been removed. All information in this I
I· Imanual now applies to systems with MFT or MVT, I
I I unless restrictions are specifically noted. I L _____________________ ~ ___ J

Summary of Amendments 15

Summary of Amendments
for GC28-6704-0
as updated by GN28-2451
OS Release 20

r---------------------T--,
I Item I Description I
~---------------------+--f
ASCII Support All references to USASCII have been changed to I

ASCII (American Standard Code for Information I
Interchange). In the DCB subparameter BLKSIZE, I
you can specify the minimum and maximum lengths I
for blocks of ASCII records on magnetic tape. D
and DB can be specified as values for the RECFM
subparameter of the DCB parameter; D means that
the ASCII records are of variable length and DB
means that the ASCII records 'are of variable
length and that they are blocked. A new DCB
subparameter BUFOFF allows you to specify a
buffer offset for a block of one or more ASCII
records on magnetic tape. Q can be specified as
a value for the DCB subparameter OPTCD; Q
specifies that translation from ASCII input to
EBCDIC is required or that translation from
EBCDIC to ASCII output is requiredo AL and AUL
are new values for the LABEL parameter; AL
specifies that the data set has American
National Standard labels and AUL specifies that
the data set has both American National Standard
labels and American National Standard user
labels.

f---------------------+--~
IDynamic·Allocation IDYNAM, a new DD statement parameter, allows you I
ISupport for TSO Ito defer definition of a data set until you I
I I require it. I
~---------------------+--~
INOTIFY Parameter INOTIFY, a new JOB statement parameter, indicates I
I Ito the system that you are requesting that a I
I Imessage be sent to your time sharing terminal I
I I when your background job completes. I
f---------------------+--~
INOPWREAD subparameterlNOPWREAD, a new subparameter of the LABEL I
I Iparameter, specifies that a data set can be readl
I Iwithout a password, but that the operator must I
I Igive the password before the data set can be I
I Iwritten in or deleted. I
f---------------------+--~
ITERM Parameter 1 TERM, a new DD statement parameter, allows you I
I Ito identify a job as a time-sharing task. I
~---------------------+--~
1155/165 13210 and 3215 printer-keyboards have been added I
I Model Dependency I to the section on the UNIT parameter. I L _____________________ ~-________________________________ --_____________ J

(Continued)

16 JCL Reference (Release 21.7)

OS Release 20 (Continued)

.--------------------,--.
IChanges to Support IQNAME, a new parameter for the DD statement, I
ITCAM (Telecommuni~ lallows you to access messages received by means I
Ications Access lof TCAM for processing by an application I
I Method) I program. Seven new subparameters have been I
I ladded to the DCB parameter: BUFIN, BUFOUT, I
I I BUFMAX, BUFSIZE, PCI, RESERVE, THRESH. In I
I I addition, five other sub parameters of the DCB I
I Iparameter may also be used with TCAM: BLKSIZE, I
I I BUFL, LRECL, OPTCD, RECFM. I
t---------------------+--~
I Input/Output IThe command SWAP has been deleted from the list I
IRecovery Management lof commands that can be coded on the command I
I support I statement. I L _____________________ ~ __ J

Summary of Amendments 17

18 JCL Reference (Releas e 21.7)

The Format Of This Publication

This publication is designed for easy reference. The Introduction to
this publication contains information that is common to all job control
language statements; for instance, one of the topics in this section is
how to continue a field onto another control statement. You may want to
review the Introduction from time to time.

section I contains programming notes. This section includes a
discussion of format conventions used in this book to describe job
control language parameters.

Sections II through X contain descriptions and examples of the
different control statements. The job control statements are described
in the following order:

II. The JOB sta temen t.

III. The EXEC statement.

IV. The DD statement.

V. The command statement.

VI. The comment statement.

VII. The delimiter statement.

VIII. The null statement.

IX. The PEND statement.

X. The PROC statement.

Each statement description includes the purpose and rules for coding a
statement. The JOB, EXEC, and DD statements are described first, in the
order in which they normally appear in the input stream. The remaining
statements are described in alphabetical order.

The statement description for the JOB, EXEC, and DD statements is
followed by a chapter on assigning a name in the name field of the
statement and a chapter for each positional and keyw~d parameter that
can be coded on the statement. The chapters on positional parameters
appear before the chapters on keyword parameters. Both positional and
keyword parameters are described in alphabetical order.

The format of the positional or keyword parameter appears at the
beginning of the chapter. Each subparameter is then described briefly.
The text following the format description of the parameter describes the
purpose of the parameter and each subparameter. Each chapter ends with
examples ·of the use of the parameter and its subparameters.

Section XI consists of Appendixes A through F. These appendixes
include:

1. Appendix A: Cataloged and In-stream Procedures

2. Appendix B: using the Restart Facilities

3. Appendix C: Creating and Retrieving Indexed sequential Data Sets

The Format of This Publication 19

4. Appendix D: Creating and Retrieving Generation Data sets

5. Appendix E: Default Parameter Values supplied in the Input Reader
Procedure

6. Appendix F: A Checklist

section XII is a glossary of terms used in this publication.

section XIII, which follows the index, is a set of foldout charts.
These charts summarize syntax of JOB, EXEC, and DD statement parameters.

20 JCL Reference (Release 21.7)

Introduction to the Job Control Language

The IBM System/360 Operating System was designed to meet the many
jiverse needs of the computer user. Data processing needs differ greatly
from one installation to another and between individual users within an
installation. The purpose of the operating system is to aid you in
getting your work done. It achieves its purpose by managing all
available resources, including the central processing unit, main
storage, input/output devices, and any programs that are a part of the
system. ~o use the operating system, you must describe to the system the
work you want done and the resources you will need. You provide the
operating system with this information through use of the job control
language.

The jOb control language, commonly referred to as JCL, consists of
nine control statements. On these control statements, you code
information to be used by the operating system to direct the execution
of the programs you have written. The programs you write are called
source programs (or source modules). Your source program and the JCL
statements needed to describe what the operating system is to do for
you, together with whatever related data you may have, constitute a job.
Every job submitted for execution by the operating system must include
JCL statements. The design and coding of the JCL portion of your job can
require a considerable amount of time.

The job control language is a very fl exible language and with this
flexibility come many optional features. You should become familiar
enough with the language to be able to decide what information the
operating system will need to process your job and which features of the
language will aid you in getting your job done most efficiently.

The IBM System/360 Operating System
An IBM System/360 Operating system consists of a control program
together with a number of optional processing programs such as language
translators, utility programs, and a sort/merge program. The purpose of
the control program is to efficiently schedule, initiate, and supervise
the work performed by the computing system. The processing programs (see
figure 1) are designed to help you program solutions to problems and
design new applications. They do this by giving you a combination of
programming aids, services, and precoded routines that you can use with
whatever programming language you choose.

PROCESSING PROGRAMS AND JCL

You can use the processing programs provided by IBM singly or in
combination to process your job. The IBM processing programs available
f or your use can be supplemented with programs written by you or others
at your installation. The IBM processing programs are classified as
either language translators or service programs (see figure 1).

The language translators enable you to write a problem solution or an
application in a language that can be more readily learned and more
easily used than the strictly numerical machine language of the
computing system. IBM provides six language translators (see Figure 1).
The language translators create machine language programs based upon
computer programs written in higher-level languages. All higer-Ievel
language trans lators are called compilers. The assanbler is a low-level
language translator. That is, each assembler statement translates into

Introduction to the Job Control Language 21

one machine instruction. A compiler generates one or more machine
instructions for each higher-level language statement. This process is
known as compilation (or assembly in the case of the assembler). The
machine language program that is produced from a source program is
called an object module.

r--, I Processing Programs I
~---------------------------------_r-----------------------------------~
I Language Translators I Service Programs I
~----------------------------------+-----------------------------------i
I ALGOL I Linkage Editor I
I Assembler I Loader I
I COBOL I Sort/Merge I
I FORTRAN I TESTRAN I
I PL/I I Data set utilities I
I RPG I System util ities I
I I Independent utilities I L __________________________________ ~ ___________________________________ J

Figure 1. Processing Programs

The linkage editor is one of the service programs. It combines
object modules that have been individually compiled or assembled. The
result is a load module. A load module is one ready to be loaded into
main storage and executed. Another service program you can use to
accomplish link editing is the loader. It combines linkage editing and
execution by loading object modules produced by the language translators
and load mcrlules produced by the linkage editor into main storage for
execution. other service programs supplied to aid in processing jobs
are the sort/merge program and the utility programs. The sort/merge
program is a generalized program that can be used to sort or merge
fixed- or variable-length records in ascending or descending order. The
utili ty prograrrs are divided into three subsets: data set, system, and
independent utilities. Data set utilities are designed to help you in
the manipulation of data. They aid you in doing such things as
transferring, copying, or merging sets of data from one I/O device onto
another. The system utilities are used to change or extend the indexing
structure of the system library catalog am to print an inventory of the
:lata and programs that are cataloged in the system library. Independent
utilities are used chiefly by the system programmer to prepare direct
access storage for use under the operating system.

In order to use the processing programs you simply request the
particular program you want by coding the name of the program on a job
control language statement. For example, you may write a program in
COBOL to process insurance premium payments. Your program nust be
compiled (translated into machine language) and linkage edited before it
can be executed. This means that your job will be organized into three
parts. The parts of a job are known as job steps and, in this case, you
would have three job step:>.

In the first step, you code the name of the COBOL compiler you are
requesti ng on a JCL statement. In this step, you also include JCL
statements to describe any data sets that the compiler requires. The
COBOL compiler will translate your source program into machine
instructions and produce an object module. In the next step, you use a
JCL statement to request the linkage editor. Again you inqlude JCL
statenents to describe any data sets that may be required by the linkage
editor. 'Ihe linkage editor uses the object module as its inplt data and
prcrluces a load module. A load module is the executable form of a
program. In the last step, you request that your program (the load

22 JCL Reference (Release 21.7)

module form) be executed. You will have to describe any data sets that
will be used by yrur program (such as the actual insurance premiums and
the master file) and where the output of the job step is to go.

THE CONTROL PROGRAM AND JCL

The control program must perform three functions: job management, task
management, and data management.

• Job rnanagenent involves reading and interpreting job control
language statements, scheduling jobs, initiating and terminating
jobs and job steps, and recording job output data.

• Task management monitors and controls the entire operating system,
and is used throughout the operation of both the control program and
processing programs.

• Data management's purpose is to simplify storage, retrieval, and
mai ntenance of all dat a, regardless of the way it is organized.

Through the use of job control language (JCL), you communicate with
the job management area of the control program and specifically with the
job scheduler. Figure 2 gives you a brief summary of the components of
job management and a synopsis of what each component does. JCL
statements indicate to the job scheduler the work you want done. With
JCL statements, you tell the job scheduler at what point your job
begins, the nane of yrur job, heM you organized your job, where your
data is, the programs you want executed, and the main storage
requirements of these programs.

r---------------------------------r-----------------------------------,
I MASTER SCHEDULER I JOB SCHEDULER I
r----------------------------------+-----------------------------------~

• Relays messages to and from I Reader/Interpreter
the system to or from the I
operator. I • Reads and analyzes job control

• Executes operator commands.

• Responds to replies from the
operator.

• starts and stops the
reader/interpreter,
initiator/terminator, and
the output writer tasks.

I Statements from the input
I stream.
I
I • Places information contained
I in the job control statements
I into a series of tables.

Initiator/Terminator

• Allocates resources required
to perform a step of the job.

• Loads and transfers control to
the program that is to be
executed to perform the job
step.

• Terminates the job step when
execution of the program is
completed.

• Selects a job from the input
work queue.

Output Writer

• Controls the writing of job
output data. __________________________________ ~ ___________________________________ J

Figure 2. Job Management

Introduction to the Job Control Language 23

The job scheduler consists of three areas: the reader/interpreter,
the initiator/terminator, and the output writer. The reader/interpreter
reads and analyzes your job control statements. It checks to make sure
that you have not made errOrS in coding your statements. The
reader/interpreter places the information contained in the job control
statements into a series of tables for system use. The
initiator/terminator assigns to each step of your job the resources that
you have requested, notifying the operator of any tapes or disk packs
that have to be mounted. A job step is a logical division of your job.
Each step is associated with one processing program or procedure, and
related data. A job consists of one or more job steps.

After the initiator/terminator has assigned the requested resources
to a job step, it requests the supervisor program, a part of task
management, to initiate the execution of the program you have specified
in your job step. When the program is completed, the
initiator/terminator terminates the job step, releasing the resources
assigned to the step and, thereby, making them available for use by
other JOD steps. After the execution of the last step in your job, the
output writer records the output of your job. Your output is directed to
the device you have specified in your JCL.

Control Prog-ram Configurations

There are two configurations of the control program:

• MFT multiprogramming with a fixed number of tasks.

• MVT multiprogramming with a variable number of tasks.

The MFT control program reads jobs in sequential order from up to
three input streams concurrently. Up to 15 job steps, from 15 different
jobs, can oe performed simultaneously. The MFl' control program can also
concurrently record as many as 36 streams of job output.

The NV'I' control program reads one or more input streams of jobs and
schedules the jobs in order of priority (you assign priority). Up to 15
independent jobs can be performed concurrently. Job steps within a
single JOD are performed in sequential order because one step may depend
on the completion of another. Within a job step, any number and type of
data processing tasks can be initiated. The ~WT control program can
concurrently record job system output on as many as 36 devices.

'rhe jon control language statements are basically the same for the
two configurations, but some parameters coded on the statements are not
meaningful for both. For example, in both MFT and MVT, you can use a
parameter to assign a dispatching priority to a job. In MVT, you can
also use a parameter to assign a dispatching priority to a job step.
This parameter, hONever, has no meaning in MFT. All the parameters in
this book apply to systems with MFT and MVT unless otherwise noted.

Job Control Language Statements
The nine JOD control language statemf'.nts used to describe a job to the
system are:

1. Job (JOB) statement.

2 • Execute (EXEC) statement.

3. Data definition (DO) statement.

24 JCL Reference (Releas e 21.7)

4. Delimiter statement.

5. Null statenent.

6. Procedure (PROC) statement.

7. Procedure end (PEND) statement.

8. Comment statement.

9. Command statement.

A job control statement consists of one or more 80-byte records.
Most jobs are submitted to the operating system for execution in the
form of 80-column punched cards or as card images off direct access
devices. The operating system is able to distinguish a job control
statenent from data included in the input stream. In columns 1 and 2 of
all the statements except the delimiter statement, you code //. For the
delimiter statement, you code /* in columns 1 and 2 and this notifies
the operating system that the statement is a delimiter statement. For a
cornnent statement, you code / /* in columns 1, 2, and 3 respectively.

Parameters coded on these JCL statenents help the job scheduler to
regulate the execution of jobs and job steps, retrieve and dispose of
data, allocate I/O resources, and communicate with the operator.

'JOB STATEMENT

The job statement (or JOB statement) indicates to the system at what
point a job begins (see figure 3). On the JOB statement, you code the
name of your job. This name is used to identify messages to the operator
and to identify YOlr program output. By using the parameters allowed on
the JOB statement, you can provide accounting information for your
installation's accounting routines, specify conditions for early
termination of your job, assign job priority, request a specific class
for job scheduler messages, hold a job for later execution, and limit
the maximum amount of time the job may use the central process ing unit
(CPU). with MVT, you can also specify the amount of main storage to be
allocated to the job.

Introduction to the Job Control Language 25

Input
Stream

~---(
~ ~DD

,..-__&.._---, Statements

Statements

Figure 3. Defining Job Boundaries

EXEC STAT EMENI'

~~
~ ~&DD

---.....&..---, Statements

JOB Statement

The EXEC statement marks the beginning of a job step and the end of the
preceding step (see figure 4). On the EXEC statement, you identify the
program to be executed or the cataloged procedure or in-stream procedure
to be called. A cataloged procedure is a set of job control language
statements that has been assigned a name and placed in a partitioned
jata set known as the procedure library.

The EXEC statement can also be used to provide job step accounting
informa.tion, to give conditions for bypassing or executing a job step,
to assign a limit on the CPU time used by a job step, and to pass
informa.tion to a processing program such as the linkage editor. All this
information is communicated to the system by the parameters that you can
code on the EXEC statement. In systems with MVT, you can use a parameter
to specify the amaInt of main storage to be allocated to the job step.

DD ST AT EMENl'

A DD statement identifies a data set and describes its attributes.
There must be a DD statement for each data set used or created in a job
step. The DD statements are placed after the EXEC statement for the
step. The parameters of the DD statement provide the system with such
information as the name of the data set, the name of the volume on which
it resides, the type of I/O device that holds the data set, the forne t
of the records in the data set, whether a data set is old or new, the
size of newly created data sets, and the method that will be used to
create or access the dataset. The name of the DD statement provides a
symbolic link between a data set (on data file) named in your program
and the actual name and location of the corresponding data set. This
symbolic link allONs you to relate the data set in your program to
different data sets on different occasions.

26 JCL Reference (Release 21.7)

DELIMITER AND NULL STATEMENTS

The delimiter statement (or /* statement) and null statement (or //
statement) are markers in an input stream. The delimiter statement is
used to separate data placed in the input stream from any JCL statement
that may follow the data. The null statement can be used to mark the end
of the JCL statements and data for a job.

PROC AND PEND STATEMENTS

The PROC statement may appear as the first JCL statement in a cataloged
or in-stream procedure. For cataloged procedures or in-stream
procedures, the PROC statement is used to assign default values to
parameters defined in a procedure. An in-stream procedure is a set of
job control language statements that appear in the input stream. The
PROC statement is used to mark the beginning of an in-stream procedure.
The PEND statement is used to mark the end of an in-stream procedure.

C OMMENI' STATEMENT

The comment statement can be inserted before or after any JCL statement
that follows the JOB statement and can contain any information you think
would be helpful to you or anyone interested in your program.

COMMAND STATEMENT

The command statement is used to enter commands through the input
stream. commands can activate and deactivate system input and output
units, request printouts and displays, and perform a number of other
operator functions.

Introduction to the Job Control Language 27

Input Stream

Figure 4. Defining Job Step Boundaries

28 JCL Reference (Release 21.7)

Defining Your Job

Now that you have been introduced to the nine JCL statements, let us use
these statements to define a job. Basically, the statements with which
you will be most concerned are the JOB, EXEC, the DD statements. The
:Ie limi ter and null stat ements may be us ed but they are usually
unnecessary. That is, the system will provide delimiters by default at
the end of the data set.

Assume you have coded and punched (transcribed onto cards) a program
to process payroll records. The program is coded in PL/I and, like the
insurance premium program discussed earlier, it must be compiled and
link-edited (or linkage edited) before it can be executed. Therefore,
your job will have three steps: compilation, link-editing, and execution.

First, you must code a JOB statement to mark the beginning of your
job. On this statement, you must assign a name to your job so that both
the system and the operator will be able to identify it. For example,
you could code:

//PAYROLL

Name of
the job

JOB (D58706,GROUPl),WOODEN

Accounting
in forma tion

Programmer's
name

After the JOB statement, you code an EXEC statement to mark the
beginning of the first step. On this staterrent, you code the name of
the PL/I compiler you are requesting to translate your source program
into machine language. For example, you would code:

//COMPILE EXEC

Name of
the job step

PGM=IEMAA, PARM= 'LOAD, NODECK'

Name of the
PL/ I compil er
requested

Information being
passed to the compiler

Following the EXEC statement, you code a DO (data definition)
statement for each data set the PL/I compiler requires. One of these DD
statements must tell the compiler that you are placing your source
program in the input stream. Another OD staterrent must be used to tell
the compiler where to place the machine language translation of your
program (the object module). The other DD statements should be used to
:Iefine work areas, for printing messages, and for listings. (A listing
is a printout of the source language statements of a program.) After you
code all the DD statements needed by the PL/I compiler, you code a
:Ielimiter statement to separate your source program from the JCL
statements of the next step. Your source program will be placed in the
input stream irr~diately following a //SYSIN OD * statement and before
the delimiter statement.

The next step begins with an EXEC statement. On this statement, you
request execution of the linkage editor. The linkage editor, like the
PL/I compiler, will require certain data sets. Each data set required by
this step must have a DD statement coded to describe it. In this step,
you must include a DD statement telling the linkage editor where the
PL/I compiler placed the object module. You must also include a DD
statement telling the linkage editor where it is to place the load
module it produces. The .load module is the executable form of your
program. Once it is loaded into main storage, it can be executed by the
central processing unit. other DD statements should be included for work
areas, for printing messages, and for listings.

Introduction to the Job Control Language 29

'!he third step calls for the actual execution of your program. The
EXEC statement for this step requests that your program (the load module
produced by the previous step) be executed. You will need to code DD
statements to tell your program where the payroll records are tha t you
intend to process. Following the DD staterrents for this step, you can
include the payroll records (if they are in card form). Otherwise you
indicate to your program that the payroll records are on magnetic tape
or direct access. The last DD statement for the step should indicate
to the system that the data following it is to be used by your program.
You will need DD statements to tell your program where the master file
is and where you want the output of your program to go, and to define
any work areas or dther data required by your program. You can code a
null statement to be placed at the end of your deck. The null statement
will indicate to the system that this is the end of your job. Once your
entire job (the JCL, the payroll records, and your source program) is
either properly identified by JCL control cards or included in the input
stream (see figure 3), it is ready to be submitted for processing.

Another way of defining your job is through the use of a cataloged
procedure. IBM supplies a catalog procedure which defines the steps
needed for compilation, link-editing, and executing your program, or you
can write your own. The procedure described in the previous discussion
might be cataloged for this purpose.

Figure 5. your Job

30 JCL Reference (Release 21.7)

Cataloged and In-Stream PrOCedures
often the same set of job control statements is used repeatedly with
little or no change (for example, to specify compilation, link-editing,
and execution of programs). To save programming time and to reduce the
possibility of error, standard job step definitions can be prepared and
placed (or cataloged) in a partitioned data set known as the procedure
library. The procedure library (SYSl. PROCLIB) is a system data set
maintai ned on direct access storage by the control program. A set of job
control language statements placed in the procedure library is called a
cataloged procedure. A cataloged procedure consists of EXEC and DD
statements.

By simply using a JOB statement and an EXEC statement, you can
retrieve a specific catalog procedure. You specify on the EXEC statement
the name of the procedure you want. This directs the job scheduler to
use the job step definition from the procedure library. The effect is
the same as if the job control statements of the cataloged procedure
appeared in the inl;Ut stream in the place of the EXEC statement tha t
calls the procedure. If necessary, you can modify the cataloged
procedure by a process known as overriding.

Before putting a procedure into the procedure library, you may want
to test it. This can be done by converting the procedure to an in-stream
procedure. An in-stream procedure is a set of JCL statements placed in
the input stream that can be used any number of times during a job by
naming that procedure in an exe'cute (EXEC) statement. Another advantage
to in-stream procedures is that they can give you the facility of a
cataloged procedure without being placed on the procedure library. After
testing the procedure, you may keep it in card form and s imply ins ert it
in the input stream whenever you want to use it.

Processing Your .Job
To have a job processed, you must submit the JCL statements and any
related input data to the operating system through an input/output (I/O)
device chosen by the operator. The input unit can be a card reader, a
magnetic tape, a telecommunications line, or a direct access device.
The sequence of JCL statements and input data for all the jobs being
submitted through an input unit is called the input stream.

Assume you submit a PL/ I payroll job to be processed by a system with
MFT. The program is in the form of punched cards, called a deck. The
operator places yoor deck in the card reader (input unit) together with
decks for other jobs to be processed. In this case, the card decks for
all these jobs constitute the input stream (see figure 4).

The operator starts the system reader; that is, he instructs the
operating system (job management) to start reading the input stream. Job
management stores the job control statements in the job queue data set
(SYS1. SYSJOBQE) until they are used. Then it examines the first step and
determines its needs. The first step of your job requests the PL/I
compiler and defines several data sets. The operating system (data
management) determines whether there is any space available on the
devices you requested for the data sets the PLII compiler will create
during this step (for example, the object module) and whether the data
sets required by the compiler are available (for example, your source
program) •

I£ all data set requirements are met, the PL/I compiler is brought
into main storage and given control. After your program is compiled, the

operating system reads and determines the requirements of the second
step which requests the linkage editor. The operating system performs
the same operations for the data sets required by the linkage editor and

Introduction to the Job Control Language 31

then brings the linkage editor into main storage and gives it control.
After the linkage editor produces the load module, the operating system
reads and processes the next step. Its requirements are determined, and
your program is brought into main storage and given control.

While this job is being executed, the system can also execute up to
15 other jobs from up to 3 inp!t streams.

Capabilities of the Job Control Language
The jOb control language provides you with many capabilities to help in
efficiently getting your job coded and processed. The language allows
you to:

• specify the device requirements of a program at the time it is
executed rather than when it is assembled or compiled. You do this
by writing a program in such a way that it is not directly tied to a
particular I/O device. A device-independent program could, for
example, accept an input data set from any magnetic tape or direct
access device, or from any card reader; output could be recorded on
any appropriate I/O device. At the time you submit the program for
execution, you code in your JCL the type of device required.

• Copy existing data set names, control statements, and control blocks
with a backward reference facility to reduce recoding. When coding a
DD statement, you simply use this facility to refer the system to an
earlier DD statement that contains certain information you want
copied.

• Pass data sets used by more than one step from one step to another,
to reduce mounting and retrieval time.

• Retrieve a data set by name using the system catalog, eliminating
the need to know its exact location.

• Optimize use of channels, units, volures, and direct access space .•
For example, when two or more data sets are to be used in a job
step, processing time may be shortened by requesting that the system
transmit data over separate channels (A channel is a hardware device
that connects a CPU and main storage with input/output control
uni ts). It would be faster to have your input data set and your
output data set on separate channels than to have them on the same
channel. A JCL parameter allows you to request channel separation
for data sets in each job step.

• Specify that data sets are to be shared by two or more job steps
that are operating independently.

• Classify jobs according to their characteristics and importance so
that the system may balance the mix of jobs for more efficient
operation. The characteristics of the job will determine its class
and the turnaround time required by a job will determine its
priority. For example, an installation may assign jobs that use a
large amount of main storage to one class, jobs that run for a long
time to another, and teleprocessing jobs to another class. Within
each class you may assign priorities to determine the order of
execution. In the class of "jobs that run for a long time", you may
wish to assign a higher priority to the weekly payroll program than
to the monthly analysis program. Each job is executed one step at a
time and steps of different jobs can be interleaved. For example,
if, while the system is executing a job that runs for a long time,
enough resources are available to process teleprocessing jots,
several teleprocessing jots can also run.

32 JCL Reference (Release 21.7)

Once you iearn the bas ics of the job control language, you should
become familiar with these and other capabilities of the language that
have been designed to make the most efficient use of the operating
system. Part II of this publication will introduce you to the various
parameters that can be coded on the JCL statements. The facilities that
have been briefly explained here are discussed in greater detail with
examples of their use.

Introduction to the Job Control Language 33

34 JCL Reference (Release 21.7)

Section I: Programming Notes

The formats of the parameters described in this publication for the JOB,
EXEC, and DD statements appear at the beginning of the chapter on the
corresponding parameter. Notations used in the fOIffiat descriptions are
described below.

1. Uppercase letters and words are coded on the control statement
exactly as they appear in the fornat description, as are the
following characters.

ampersand &
asterisk * comma ,
equal sign =
parentheses ()

period

2 • Lowercas e letters, words, and symbols appear ing in the forma t
description represent variables for which specific information is
substituted when the parameter is coded.

For example, PRTY=priority is the fornat description for the PRTY
parameter. When yOl code the PRTY parameter on a JOB statement, you
substitute a number for the word "priority."

3. Braces { } are a special notation and are never coded on a control
statement. Braces are used to group related items; they indicate
that you must code one of the items.

For example,

{
TRK }

~~Ck size

is part of the format description

for the SPACE parameter. When you code the SPACE parameter, you must
code either TRK, CYL, or a substitute for "block size," which would
be a number.

4. Brackets [1 are a special notation and are never coded on a control
statement. Brackets indicate that the enclosed item or items are
opti anal and you can code one or none of the ite~.

For example, [,DEFER] is part of the format description for the UNIT
parameter. When you code the UNIT parameter, you can include ,DEFER
in the UNIT parameter or omit it.

An example of more than one item enclosed in brackets is

[
EXPD T=YYdddJ
REI' P D=nnnn

, which is part of the format description for the

LABEL parameter. When you code the LABEL parameter, you can include
either EXPOT=yyddd or RETPD=nnnn in the LABEL parameter or omit both.

Sometimes, one of a group of items enclosed in brackets is a comma.
you code the comma when none of the other items in the group is used
and a follOfling part of the parameter is still to be coded.

section I: Programming Notes 35

Notes

The comma indicates to the system that you have not selected to
code any of the items enclosed in the brackets.

For example, [;progname] [,form number]) is part of the format

description for the SYSOUT parameter. When you code the SYSOUT
parameter, you have the option of coding both" ,progname" and ",form
number", omitting both, or coding only one. The comma enclosed in
brackets with ",progname" must be coded when ",progname" is not
coded but ",form number" is coded; that is, you would code: "form
number) •

5. An ellipsis ••• Cthree consecutive periods) is a special notation
and is never coded on a control statement. An ellipsis is used to
indicate that the preceding item can be coded more than once in
succession.

For example, COND=CCcode,operator), •••) is the format description
for the COND parameter on the JOB statement. The ellipsis indicates
that Ccode,operator) can be repeated.

Fields in Control Statements
Every control statement is logically divided into different fields.
There are four fields -- name field, operation field, operand field,
comnents field -- but not all of the control statements can contain all
of these fields. Figure 6 shows the fields for each statement.

r---------------T-------------r--,
I I Columns I I
I statement I 1 and 2 I Fields I
r---------------+-------------+--~
I Job I // Iname operationCJOB) operand1 comments1 I
I Execute I / / I name1 operation CEXEC) operand comments 1 I
IData Definition I // Iname1 operationCDD) operand comments1 I
IPROCCCataloged) 1 // Iname1 operationCPROC) operand comments1 I
IPROCCin-stream) I // Iname operation CPROC) operand1 comments 2 I
IProcedure end I // Iname 1 operationCPEND) cornments1 I
I Command I // 10perationCcommand) operand comments1 I
I Delimiter I /* Icomments1 I
I Null I // I I
~---------------+-------------+--~
1 statement Icolumns 1,2,31 Field I
r---------------+-------------+--~
1 Comment I //* I comments I
~---------------L-------------~-------------------------_______________ ~
110ptional I
12 0ptional -- If operandCs) are not coded, comments cannot be coded. Ifl
1 operandCs) are coded, comments are optional. I L __ J

Figure 6. Control Statement Fields

The name field identifies the control statement so that other
statements and system control blocks can refer to it. The name field is
1 to 8 alphameric and national (#, @, $) characters; the first character
must be alphabetic or national. The name field must begin in column 3.

36 JCL Reference (Release 21.7)

The operation field specifies the type of control statement, or, in
the case of the command statement, the command. The operation field must
follow the name field and must be preceded and followed by at least one
blank. .

'Itle operand field contains parameters separated by commas. The
operand field must follow the operation field and must be preceded and
followed by at least one blank. The operand field is described in more
1etail in the next chapter "Parameters in the Operand Field."

The comments field contains any information deaned helpful by the
person who codes the control statement. The comments field must follow
the operand field and must be preceded by at least one blank.

Control statement fields -- except the name field, which must begin
in column 3 -- can be coded in free form. Free form means that the
fields need not begin in a particular column. Separate each field with a
blank; the blank serves as a delimiter between fields.

Except for the comment statement, which can be coded through column
80, fields cannot be coded past column 71. If the total length of the
fields will exceed 71 columns, you must continue the fields onto one or
more succeeding statements. BON to continue fields is described in the
chapter "Continuing Control statements."

Some examples of how the different fields appear on control
statements are:

Columns:

123
Name Operation Operand Comments

/ / JOB8 JOB MSGLEVEL=(1,1) THE FIRST STATEMENT IN JOB

/ / STP1 EXEC PGM=PROG4,REGION=80K EXECUTES PROGRAM NAMED PROG4

/ / WORK DD UNIT=2400 DEFINES A TEMPORARY DATA SET

Parameters in the Operand Field
The operand field is made up of two types of parameters: one type is
characterized by its position in the operand field in relation to other
parameters (a positional parameter); the other type is pes itionally
independent with res pect to others of its type, and is characteri zed by
a keyword followed by an equal sign and variable information (a keyword
parameter). Both positional parameters and the variable information
associated with keyword parameters can assume the form of a list of
se ve ra I i terns (subparamet ers) of in form at ion.

All positional and keyword parameters and subparameters coded in the
operand field must be separated from one another by commas.

positional parameters must be coded first in the operand field in a
specific order. The absence of a positional parameter is indicated by a
comma coded in its place. HCMever, if the absent parameter is the last
one, or if all later positional parameters are also absent, you need not
code replacing commas. If all positional parameters are absent from the
operand field, you need not code any replacing commas.

Keyword parameters can be used anywhere in the operand field with
respect to one another. Because of this positional independence, you
need not indicate the absence of a keyword parameter.

section I: Programming Notes 37

Notes

A positional parameter or the variable information in a keyword
parameter sometimes assumes the form of a list of subparameters. Such a
list nay be compcsed of both positional and keyword subparameters that
follow the same rules and restrictions as positional and keyword
parameters. You Il1lst enclose a subparameter I ist in parentheses, unless
the list reduces to a single subparameter.

'!he EXEC statements and DD statements in cataloged procedures can
contain one other type of parameter -- a symbolic parameter .• A symbolic
parameter is characterized by a name preceded by an ampersand (&); a
symbolic parameter stands as a symbol for a parameter" a subparameter,
or a value. Symbolic parameters allow you to nake any information in the
operand field of a procedure EXEC statement or DD statement variable. A
value to be assumed by a" symbolic parameter may be coded on the EXEC
statement that calls the procedure. This value is in effect only while
the procedure is being executed. For a detailed discussion on how to
assign values to symbolic parameters, refer to the chapter "Assigning
Values to Symbolic Parameters" in Appendix A; for a detailed discussion
on how to use symbolic parameters in a set of control statements that
you plan to catalog as a procedure, refer to the chapter "Using Symbolic
Parameters in a Procedure" in Appendix A.

Continuing Control Statements

When the total length of the fields on a control statement will exceed
71 columns, you Il1lst continue the fields onto one or more succeeding
statements.

The connnand, comment", delimiter, and null statements cannot be
continued.

You can continue the operand field or the comments field. To
continue either of these fields, you must follow the continuation
C onve nti ons.

TO conti nue the operand fi eld:

1. Interrupt the field after a complete paraneter or subparameter,
including the comma that follows it, at or before column 71.

2. Comments can be inc I uded by following the interrupted field with at
least one blank.

3 • Optionally, code any nonblank character in column 72. (The nonblank
character in column 72 is required only when you are continuing a
comments field.) If you do not code a character in column 72 when
continuing the operand field, the system treats the next statement
as a continuation statement as long as you follow the conventions
outlined in items 4 and 5.

38 JCL Reference (Releas e 21.7)

4. code the identifying characters // in columns 1 and 2 of the
following statement.

5. continue the interrupted operand beginning in any column from 4
through 16. If you leave the statement bl ank after col mnn 2 or if
you begin coding. after column 16, the system assumes that no other
operands are present and treats any characters you code as a conunent
field .•

TO continue the comments field:

1. Interrupt the conunent at a convenient place before column 72.

2. Code a nonblank character in column 72.

3. Code the identifying . characters // in columns 1 and 2 of the
following statement.

4. Continue the comments field beginning in any column after column 3.

Any control statements in the input stream, other than a conunent
statement, that the system considers to contain only comments have / /*

section I: Programming Notes 39

Notes

in columns 1 through 3 on an output listing. Any control statements in a
cataloged procedure, other than a comment statement., that the system
considers to contain only comments have xx* in columns 1 through 3 on an
output listing. For an in-stream procedure ++* appears in columns 1-3.
In both cases for a comment statement, *** appears in columns 1 through
3 on an output listing.

Backward References
A facility of the job control language allows you to refer the system to
an earlier DD statement in the job for certain information. A backward
refer.ence is of the following form:

• parameter-=*.ddname -- use this form when the earlier DD statement is
contained in the same job step.

• parameter=*.stepname.ddname -- use this form when the earlier DD
statement is contained in an earlier job step.

• parameter=*.stepname.procstepname.ddname -- use this form when the
earlier DD statement is contained in a cataloged procedure called by
an earlier job step. ("stepname" is the name of the step that calls
the procedure.) .

You can use the backward reference facility only with certain
parameters. These parameters and the information the system obtains when
the backward reference facility is used are:

• PGM -- the data set that contains the program to be executed in this
job step.

• DCB -- all DCB subparameters coded on the earlier DD statement. (If
you code any DCB keyword subpararneters following the backward
reference, these subparameters overrid.e any of the corresponding
subparameters coded on the earlier DD statement. If a DD statement
defines an existing data set and contains a backward reference in
the DCB parameter, the system copies only those subparameters from
the earlier DD statement that were not previously specified for the
existing data set.)

• DSNAME -- the name of the data set being defined on this DD
statement.

• VOLUME-REF -- the volume serial number(s) on which the data set
resides or will reside; unit information is also obtained by the
system.

Concatenating Data Sets
Up to 255 sequential or up to 16 partitioned input data sets, each of
which may reside on a different volume, can be logically connnected for
the durati on of a job step. To concatenate data sets, simply omit the
ddnames from all. the DD statements except the first in the sequence.
When this ddname is encruntered in a data control block in the
processing program., each data set is automatically processed, in the
sane sequence as the DD statements defining them.

If concatenated data sets have unlike characteristics, e.g., the
device types, block lengths, or record formats differ" the DCBOFLGS
field of the data control block must be modified while the program is
executing. FOr details, refer to the topic "Concatenating sequential and
Partitioned Data sets" in the Data Management services publica tion.

40 JCL Reference (Releas e 21.7)

If you make a backward reference to a concatenation (using an
asterisk), the system obtains information only from the first data set
defined in the sequence .•

If you make a forward reference to a concatenation (using the DDNAME
parameter), the system only obtains information from.the first data set
defined in the sequence.

You should not concatenate other data sets to a data set you have
defined using the DUMMY parameter. When the processing program asks to
read a dummy data set, an end-of-data-set exit is taken immediately and
any concatenated data set is ignored.

The following example illustrates a group of DO statements defining
concatenated data sets, including a data set in the input stream.

//INPUT DD
// OD
// DD
// OD

data

/*

Character Sets

DSNAME=A.B.C,DISP=(OLD,DELETE)
DSNAME=X.Y.Z,DISP=OLD,LABEL=(,NL)
DSNAME=ALPHA,UNIT=2311,VOLUME=SER=P12,DISP=(OLD,DELETE)

*

Job control statements are coded using a combination of the characters
from three different character sets. The contents of each of the
character sets are described in figure 7.

r-----------------------T---------------------~------------------------,
I Character set I Contents I
~-----------------------+-------------------------T--------------------~
I Alphameric I Alphabetic I A through Z I
I I Numeric I 0 through 9 I
~-----------------------+-------------------------+--------------------~
I I "At" sign I Q) I
I National I Dollar sign I $ I
I I Pound sign I # I
~-----------------------+-------------~-----------+--------------------~

Comma ,
Period
Slash /

Special Apostrophe
Left parenthesis (

Right parenthesis)

Asterisk * Ampersand &
Plus sign +
Hyphen
Equal sign =
Blank _______________________ .1. _____ ••. ___________________ .1. ___________________ J

Figure 7. Character Sets

When you code any special characters, certain rules must be followed.
These rules and the use of special characters are described next.

Section I: Programming Notes 41

Notes

Using Special Characters
Special characters are used in the job control language to:

1. Delimit parameters (the comma).

2. Delimit fields (the blank).

3. Perform syntactical functions. (For example, the appearance of && as
the first two characters following DSNAME= tells the system that a
temporary data set name follows. The appearance of / in. the UNIT
parameter, UNIT=293/5, tells the system that a specific 2321 bin is
desired.)

sometimes you can code a special character that does not satisfy one
of the three uses of special characters. In most of these cases, you
must indicate that special characters are being used by enclosing the
item that contains the special characters in apostrophes (5-8 punch),
e.g., ACCT='123+456'. If one of the special characters is an apostrophe,
you must code two consecutive apostrophes (two 5-8 punches) in its
place, e.g., 'O'NEILL' •

'!be following list contains those parameters that can have special
characters as part of their variable information, and indicates when the
apostrophes are not required.

1. The accountiDJ information on the JOB statement. The account number
and additional accounting information can contain hyphens without
being enclcsed in apcstrophes.

2. The programmer's name on the JOB statement. The programmer's name
can contain periods without being enclosed in apostrophes.

3. The checkid field in the RESTART parameter on the JOB statement.

4. The ACCl' parameter on the EXEC statement .•. The ACCT parameter can
contain hyphens without being enclosed in apostrophes.

5. The PARM parameter on the EXEC stat anent •

6. The IENAME parameter on the DO statement .• The OSNAME parameter can
contain hyphens without being enclosed in apostrophes. If the DSNAME
parameter contains a qualified name, it can contain periods wi thout
being enclosed in apostrophes.. If the DD statement identifies a
generation of a generation data group, the generation number in the
DSNAME parameter can contain a plus or minus (hyphen) sign without
being enclcsed in apcstrophes. If the 00 statanent defines a
temporary data set, the DSNAME parameter can contain, as the first
two characters, ampersands without being enclosed in apostrophes. If
the 00 statement defines a. member of a partitioned data set, a
generation of a generation data group, or an area of an indexed
sequential data set, the DSNAME parameter contains parentheses that
enclose the member name, generation number, or area name; these
parentheses are ndt enclosed in apostrophes.

7. The volume serial number in the VOLUME parameter on the DO
statement. The volume s erial number can contain hyphens without
being enclosed in apostrophes.

8 • The DLM parameter on the OD statement.

42 JCL Reference (Release 21.7)

Coding Fonn
For your convenience in coding control statements, you can use Form
N74167, a punch card containing formatted lines, each representing a
different type of statement. (See figure 8.) Some of the lines can be
used for concatenations, overrides, and continuation statements.

/1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 18 19 20 21 222324 25 26 21 28 29 30 31 3233 34 35 36 31 38 39 40 41 42 4344 45 46 41484950 51 5253 54 55 56 51 58 5960 61 62 6364 6566 6168 69 10 11 12 13 14 15 16 11 1819 80 ""'"

/ I I' Job.oml-V.,. lUI 1'2 141 1'6 JOB Statement Operands • ID/SEQ 0
//11111111 JIOIBII : 7

3 S"p •• ml-V." 11'211'7 EXEC Statement Operands .:. 00000000 3
// I I I I I I I EiXIEICI ~ 6

4 .1 r9 EXEC Statement Operands ... < ••••.••• ,_...... • 0
or // EIXIEICI .• ;;>.' "":'<>. ~ 00000 I 00

// 3 t;·~I;~··1 I TI~IOI1'5 DO Statement Operands Z r." /\ //~ ""~;';~:\ ~ 0000020 0 ~
or // D,Or I Fa. Co.c." •• I,on.1 DO Statement Operands A:/ ~t;;;Cl\''<~.:l /;,:;/ \;\ ~ 0000 0 300 C

or // 3 ~"IP.;m; ·ldd;.~II-V;'1 I I I I I I 110101124
DO Statement Operands (This statement f;!tnat1e~,~ra~~.d.~:.~,:.~.ur~fr~rtl:.or a~tionS) ~ 0000040 0 ~

// 3PR7·;m;·7·7'~llp,R,o,cl r PROC Statement Operands !.!: "<L"::,:,;>;.,;J. 1".·} k;;>Ji ~ 0000050 0 ~
4 Delimiter Statement Comments \\---:;;-.:; •. ~ .\ l<.",. H 0

1----+/-.--1-+.-,----.,..,.-,-"...-.-=-----------=-----;-..".,.,,.,..,-::-:-:-'"""'":-:-:-=,,-----....:.;:. \\,--'£L_L";.,~,;;>·~--" .. ,'{"''''''''''''''' /t' 0 0 0 0 0 6 0 0 L
/ / 4 Comm •• d '"b-V.' 1113 Command Stotement Operonds \Ii;!., ;J;~>~'; ,.""(';4"",/ 0 0 00 0 1 0 0 f
1/

3 (Flxedl Blank Null Statement ·'(::i:t;.",".~< V '>} ,&:;(;''' 0 0 0 0 0 8 0 0 ~

4 Comment Statement Commen's·, ""'. 0 0 0 0 0 9 0 0 ME
//11

3 Continuation Statements (For all above except Delimiter,Command, Null, Comment Statements) ~ 0 0 00 I 0 0 0 ~
I ItT

3 4 Continued Operands From Precedino Statement, Startlno Before Column 11 I~s 0 0 00 I I 0 0 S
~ // ! 123456189Wll11~~~~I1~~w~nn~~~vn~ro~nn~n~n~~w~~u«~%~U«~~~~M~~u~~~~~~M~~~~~rol112n14n~11n~w
~Varlable Fields Shorter Than Maximum as Shown, Allow Left Justification of Fields That Follow. IIMN74167

Figure 8. Coding Form for Coding Control Statements

section I: Programming Notes 43

Notes

44 JCL Reference (Release 21.7)

Section II: The JOB Statement

The JOB statement marks the beginning of a job and, when jobs are
stacked in the inplt stream, marks the end of the control statements for
the preceding job. The JOB statement must contain a valid jobname in its
name field. All parameters in its operand field are optional, unless
your installation has established that the account nunber and the
programmer's name parameters must be coded. If no parameters are coded
in the operand field of the JOB statement, no comments can be coded on
the statement.

JOB Statement Format

(//jobname JOB operands comments

The JOB statement consists of the characters //, in columns 1 and 2, and
four fields -- the name, operation (JOB), operand, and comments fields.

Rules for Coding
Follow the order listed below when coding the JOB statement:

1 • code the charact e:rs / / in columns 1 and 2.

2. select a name for the job; code that name'l starting in column 3.

3. Follow the jobname with at least one blank.

4. Code JOB.

5. Follow JOB with at least one blank.

6. Code any desired positional parameters. Separate each parameter with
a comma.

Section II: The JOB Statement 45

7. Code any desired keyword parameters. separate each parameter with a
comma.

8. Code at least one blank •.

9. Code any desired comments.

Positional and Keyword Parameters
There are two types of parameters that can be coded on the JOB statement:

I. positional parameters, which, when used, must precede any keyword
parameters and must be coded in the following order:

accounting information
programmer's name

These positional parameters are described in the following pages in the,
order listed above.

Keyword parameters, which may be coded in any order after the positional
parameters. Any of the following keyword parameters can be coded on the
JOB statement:

CLASS
COND
MSGCLASS
MSGLEVEL
NOTIFY (MVT with TSO)
PRl'Y
RD
REGION (MVT only)
RESTART
ROLL (MVT only)
TIME
TYPRUN

These keyword parameters are described, after the positional parameters,

in the order listed above.

46 JCL Reference (Release 21.7)

Sample JOB Statements
1. //ALPHA JOB 843,LINEE,CLASS=F,MSGLEVEL=(1,1)

2. //LOS JOB BROWNLY,REGION=90K,TIME=(4,30>,MSGLEVEL=(2,O)

3. //MARI'

4. //TRY8

JOB 1863,RESTART=STEP4

JOB

section II: The JOB statement 47

Assigning a Jobname

(/ /j obname JOB

you must assign a .name to every job submitted for execution. The jobname
must begin in column 3 of the JOB statement and must consist of 1
through 8 alphameric and national (#,. a, $) characters. The first
character must be an alphabetic or national character.

No two jobs in a multiprogramming environnent should have the same
jobname.

The following.names and characters should not be used as jobnames,
because they are keywords of the DISPLAY command:

CONSOLES
DSNAME
JOBNAMES
SPACE
STATUS

A
N
Q
R
T

u

If you must assign one of these keywords as a jobname, notify the
operator, so he will be sure to enclose th~ jobname in parentheses when
he uses it with the DISPLAY command~ For example, if you have assigned
the jobname SPACE to a job and the system operator wishes to display the
status of the job. he must issue a command stating DISPLAY (SPACE). If
the parentheses were omitted, the operator would get the amount of
available space on a particular direct access volume resulting from a
DISPLAY SPACE command.

Examples of Valid Jobnames
//RERUN4 JOB

//#123A JOB

//JOBD58 JOB

48 JCL Reference (Release 21.7)

I

Accounting Information Parameter

([account number] [,additional accounting information, •••])

account number
the account number to which this job is to be charged.

additional accounting information
any other accounting information required by an installation's
accounting routines. When additional accounting information consists
of more than one item, each must be separated by a comma..

Rules for Coding
1. When accounting information is supplied" it must be coded before any

other parameter on the JOB statement.

2. The account number and each item of additional accounting
inf ormation are considered subparameters and each must be separated
by a comma.

3. When accounting information consists of more than one subparameter"
you must enclose the information in either parentheses or
apostrophes (5-8 punch), e. g., '5438,. GROUP6' . or (5438" GROUP6). If
apostrophes are used, all accounting information enclosed in the
apostrophes is considered as one field.

4. If the accounting information must be continued on another
statement, enclose the accounting ~nformation in parentheses. You
may not continue on another statement any accounting information
enclosed in apostrophes.

5. The account number and other accounting information cannot exceed
142 characters, including the commas that separate the subparameters.

6. If any of the subparameters contain special characters (except
hyphens), either: (1) enclose the accounting information in
apostrophes, or (2) enclose the subparaneter in apostrophes and the
accounting information in parentheses" e,.g., '5438,10/08/66' or
(5438, '10/08/66'). (The enclosing apostro{tles are not considered
part of the inf ormation.) If one of the special characters is an
apostrophe, code two consecutive apostrophes in its place" e .• g,.,
(5438,'O"NEILL'). If one of the special characters is an ampersand

7.

and you are not defining a symbolic parameter, code two consecutive
ampersands in its place, e.g., '34&&8241'.

If you do not supply accounting information but do code the
programmer's name, you must code a comma preceding the programmer's
name to indicate that the accounting information parameter, which is
a positional parameter, has been omitted. (Note: This may vary from
one installation to another. Check whether you need to code a comma
at your installation.)

Supplying Information Parameters
Accounting information is optional unless the installation establishes
it as a requirement in a PARM field parameter of the cataloged procedure
for the input reader.

section II: The JOB Statement -- Accounting Information Parameter 49

Routines that process accounting information must be supplied by the
installation. Fbr information on how to add accounting facilities, refer
to "Handli ng Accounting Information" in the Data Management for SYstem
Programmers publication.

Examples of the Accounting Information Parameter
1. //JO~43 JOB. D548-868

Account number only; no parentheses are required.

2. //JOB44 JOB (D548-868,'12/8/69',WILSON)

Account number plus additional accounting information; parentheses
are required.

3. //JOB45 JOB (,F1659,GROUP12) ,GREGORY

only additional accounting information; parentheses are required.

50 JCL Reference (Release 21.1)

Programmer's Name Parameter

programmer's name

programmer's name
the name or identification of the person responsible for the job.

Rules for Coding
1. If the programmer's name parameter is coded, it must follow the

accounting information parameter, or the comma that indicates its
absence, and RUst precede all keyword parameters. (Note: This may
vary from one installation to another. Check whether you need to
code a comma at yoor installation.)

2. The name cannot exceed 20 characters, including all special
characters.

3. If the name contains special characters, other than periods, enclose
the nane in apostrophes. If the special characters include
apostrophes, each must be shown as two consecutive apostrophes.

4. If you are not required to specify a nane, you need not code a comma
to indicate its amence.

When to Code the Programmer's Name Parameter
The programmers' name parameter is optional unless the installation
establishes it as a requirement in a PARM field parameter of the
cataloged procedure for the input reader.

Examples of the Programmer's Name Parameter
11. / /APP JOB C. L. BROWN

Programmer's name, without accounting information supplied.

I 2. //DELTA JOB 'T.O"NEILL'

Programmer's name containing special characters, without accounting
information supplied. (The leading comma is optional.)

3. //#308 JOB (846349,GROUP12),GREGORY

Account number plus additional accounting information and
programmer's name.

section II: The JOB statement -- programmer's Name Parameter 51

JOB

The CLASS Parameter

CLASS=jobclass

jobclass
assigns a job class to your job. Code any alphabetic character from
A through 0, depending on the characteristics of your job and the
installation' s rules for assigning a job c.lass.

Rules for Coding

1. The jobclass is an alphabetic character from A through O.

Assigning a Job Class to Your Job

The CL~SS keyword parameter provides a way of establishing a good
mi"xture of jobs requiring different system resources. A . good mixture
can be established since the job class determines where a job will be
placed on the input work queue and jobs with common characteristics are
assigned to the same job class. Jobs within a job class are assigned a
priority, either in the PRTY parameter or by default. This allows jobs
within a class to be selected for processing based on their priorities.

If you do not specify the CLASS parameter, the default job class of A
is assigned to the job.

THE CL~SS P~RArv.!ETER AND TIME-SLICING

If your installation provides time-slicing facilities with MFT, the
CLASS parameter can be used to make a job part of a group of jobs to be
time-sliced. At system generation, a group of contiguous partitions are
selected to be used for time-slicing, and each partition is assigned at
least one job class. TO make your job part of a group of jobs to be
time-sliced, specify a class that was assigned only to the partitions
selected for time-slicing. (With MVT, you use the PRTY parameter and the
DPRTY parameter to make, respectively, a job or job step part of a group
of jobs and job step:; to be time-sliced.)

Examples of the CLASS Parameter
1. / /SETUP JOB CLASS=C

Assign a job to job class C.

2. //JAN JOB CLASS=M,PRTY=10

Assigning a job to job class M with a priority of 10.

52 JCL Keference (Releas e 21.7)

The COND Parameter

code

COND=((code,operator), •••)

a decimal number from 0 through 4095. This number is compared with
the return code issued by each job step.

operator
the type of comparison to be made with the return code. Relational
operators and their meanings are:

GT ••• greater than
GE ••• greater than or equal to
EQ ••• equal to
LT ••• less than
LE ••• less than or equal to
NE ••• not equal to

Rules for Coding

1. Code from one through eight different return code tests.

2. When making only one return code test, you need not code the outer
parentheses.

Using the COND Parameter

The COND keyword parameter can be used to elind.nate unnecessary use of
computing tirre by basing the continuation of a job on the completion of
one or more of its job steps.

The operating system determines whether a job is to be discontinued
after a given job step by comparing the return code produced by that job
step to the conditions specified with the COND parameters. A return code
is a number determined by the operating system or by the processing
program which indicates the relative "success" of the job step. The
return codes of the operating system and IBM-supplied processing
programs are fixed numbers with specific meanings. They are listed in
the publication IBM System/360 operating system: Messages and codes and
in the publications associated with each processing program.

Only those user processing programs written in the assembler
la11CJuage, ANS COBOL, FORTRAN, or PL/I can set return codes for testing.
The user return codes are usually standardized in each installation.
For example, each step in your installation's payroll program may have
its own set of return codes. One return code for a given job step may
indicate that all payroll records were successfully processed while
a nother may indicate that there were faulty input records. You can set
up the COND parameter so that the job is discontinued if the return code
that indicates faulty records is produced by that job step.

Not all return codes indicate either success or failure. For
example, in the case of a compiler one return code can indicate no
errors during compilation, a second code can indicate that the minor
errors encountered are not likely to prevent link .editing and execution
of the compiled program, a third code can indicate that·the major errors
encountered will probably cause further processing of the compiled
program to fail, and a fourth code can indicate that the compilation
process has terminated abnormally. The COND parameter allows you to
discontinue the job if any of these return codes are produced. You way

section II: The JOB statement -- COND Parameter 53

choose to continue processing only if no errors are found or, for
debugging purposes, you may choose to continue processing even if major
errors are found.

Note: If any job step is abnormally terminated (ABEND), all subsequent
steps are bypassed unless the COND parameter of the EXEC statement is
used to prevent it. (See the section on "The EXEC statement.") If you
want to restart the same step that terminated abnormally you can use the
restart facilities of the operating system.

If you coded COND=«50,GE),(60,LT», it would read "if 50 is gr~ater
than or equal to a return code, or 60 is less than a return code, I want
the remaining job steps bypassed." In other words, the job continues as
long as return codes range from 51 through 60. If you want to make only
one return code test, you need not code the outer parentheses. For
example, COND=(8,NE). A maximum of eight conditions can be established.

For example, if you code: COND=«5,GT),(8,EQ),(17,EQ), (19,EQ), (21,EQ),
(23,LE» your job will continue only if the return codes are:
5,6,7,9,10,11,12,13,14,15,16,18,20, or 22.

The tests you specify with the CONDpararneter are made to the return
code, if any, produced by each step in your job. You can best take
advantage of this parameter when the return codes of each job step have
compatible meanings. For example, a return code of 4 from the ALGOL
compiler indicates that the source program was compiled and some minor
errors were found; the same return code of 4 from the linkage editor
indicates that a load module was produced, but an error which may cause
failure at execution time has been found. If you want to take a chance
and continue processing even if small errors are found., you should code
COND=(4,DT), that is, the job will terminate if the return code of any
step is greater than 4. If you only want to continue processing if no
errors are found, you should code COND=(4,LE), that is, the job will
terminate if the return code of any step is greater than or equal to 4.
(All codes greater than 4 indicate major errors for both the ALGOL
compiler and the linkage editor.)

If the same return code has different meanings in different job
steps, or if you want to take different actions according to which job
step produced the return code, you should use the COND parameter of the
EXEC staterr.ent to set up conditions for individual job steps.

If you omit the COND parameter from the JOB statement, no return code
tests are performed throughout the job. If you want return codes tested
for a given job step, use the COND parameter of the EXEC statement for
that job step. If the COND parameter is not used in either the JOB or
the EXEC statements, no return code tests are performed and the system
will try to execute each step in the job.

If you code the COND parameter on the JOB statement and on one or
more of the job' s EXEC sta tements, the return code tests requested on
the JOB statement have precedence over those requested on the EXEC
statements. Therefore, any return code test requested on the JOB
statement that is satisfied causes termination of the job, even if the
return code test is not satisfied for a particular step.

Note: The COND parameter of the EXEC statement is slightly different
from the COND parameter of the JOB statement. See the section on "The
EXEC statement". Examples of using the COND parameter in both the JOB
and EXEC statements are also shown in that section.

54 JCL Reference (Releas e 21.7)

Examples of the COND Parameter
1. //TYPE JOB COND=(1,LT)

If 1 is less than the return code, the job is terminated. (Any
return code less than or equal to 1 allows the job to continue.)

2. //TEST JOB COND=«20,GE),(30,LT»

IF 20 is greater than or equal to the return code, or 30 is less
than the return code, the job is terminated. (Any return code of 21
through 30 allows the job to continue.)

section II: The JOB statement -- COND Parameter 55

The MSGCLASS Parameter

MSGCLASS=output class

output class
the output class to which system messages for your job are to be
routed by the system. Code an alphabetic (A-Z) or numeric (0-9)
character depending on your installation's rules for assigning an
output c lass for system messages.

Rules for Coding

1. The output class is an alphabetic (A-Z) or numeric (0-9) character.

Assigning an Output Class to System Messages

If the MSGCLASS parameter is not coded, system messages associated with
your job are routed to the default output class specified in the PARM
field of the input reader procedure. The default for the MSGCLASS
parameter is A unless changed by your installation. (Default values and
restrictions supplied by IBM in the input reader procedure are listed in
Appendix E. For more information on the input reader procedure, consult
Data Management for system programmers.) your installation may require
that you specify a different output class other than the default value
in order to separate different types of output or to distribute the
workload of the output writers. One or more output classes is associated
with each output writer; each output writer is associated with a
specific output device.

You can route a job's system messages and output data sets to the
same output class. You do this by coding the same output class in both
the MSGCLASS parameter on the JOB statement and the SYSOUT parameter on
the DD statements for the data sets.

Examples of the MSGCLASS Parameter
1. //IN JOB 1'1SGCLASS=F

specifying an output class.

2. //BO~LE JOB

3.

Specifying no output class. In this case, the output class will
default to the MSGCLASS value specified in the PARM field of the
input reader procedure. The default is ~ unless changed by your
installation.

//A1430
//STEPl
/ /OU'TPUT

JOB MSGCIASS=L
EXEC PGM=PR,INT
DD SYSOUT=L

Specifying that a job's system messages (MSGCLASS parameter) and
output data set (SYSOUT parameter) are to be routed to the same
out put class.

56 JCL Reference (Release 21.7)

The MSGLEVEL Parameter

MSGLEVEL=(statements,messages)

statements
specifies which jet> control statements are to be written as output
from your job. Code:

o - when only the JOB statement is to be written.

1 - when all input job control statements, cataloged procedure
statements, and the internal representation of procedure
statement parameters after symbolic parameter substitution are
to be written.

2 - when only inPJ,t job control statanents are to be written.

messages
specifies what allocation/termination messages (consisting of
allocation, disposition, and allocation recovery messages) are to be
written as output from your job. Code:

o - when no allocation/termination messages are to be written,
unless the job abnorma.lly terminates. If this occurs, these
'messages are to be written as output.

1 - when all allocation/termination messages are to be written.

Rules for Coding
1. If the first subparameter of the MSGLEVEL parameter is omitted" you

must code a comma to indicate its absence, e. g. " MSGLEVEL= C"l) '.

2. If the second subparameter of the MSGLEVEL parameter is omitted, you
need not code the parentheses, e.g., MSGLEVEL=2.

Requesting Output of Job Control Statements and Certain Messages
The MSGLEVEL keyword parameter is used to tell the job scheduler what
output from your job is to be written as part of the output listing.
you can request the following output:

• '!he JOB statement.

• All input job control statements.

• All cataloged procedure statements for procedures called by any of
the job's step:; and the internal representation of procedure
statement parameters after symbolic parameter substitution.

• Allocation, disposition, and allocation recovery messages
(allocation/termina tion messages) '.

You need to code the MSGLEVEL parameter only when the established
default will not provide you with the desired output. The default is
established as a PARM parameter field in the cataloged procedure for the
input reader. The established default is assumed when MSGLEVEL is not
coded or when one of the subparameters is not coded. For system tasks"
the system assumes a message level of (1,0).

section II: The JOB statement -- MSGLEVEL Parameter 57

Examples of the MSGLEVEL Parameter
1. //GD40 JOB MSGLEVEL= (2, 1)

Requesting that only input statements and all allocation/termination
messages be written.

2. //STEP JOB MSGLEVEL= (0,1)

Requesting that only the job statement and all
allocation/ternd.nation messages be written.

3. //SYM JOB MSGLEVEL=(l,O)

Requesting that all input control statenents, procedure statements,
the internal representation of procedure statements after symbloic
parameter substitution, and no allocation/terminati.on mess ages be
written.

58 JCL Reference (Release 21.7)

The NOTIFY Parameter (For MVT with TSO)

NOTIFY=user identification

user identification
specifies the identification that is to be used to notify you when
your background job is complete. Code a 1 to 7 character alphameric
identification. The first character must be an alphabetic character.

Rules for Coding

1. If the NOTIFY parameter is coded for MFT, or MVT without the Time
Sharing Option (TSO>, the parameter is not used" but is checked for
syntax.

2. The user identification must be the same as the one you specify when
you start the terminal session (LOGON).

What the NOTIFY Parameter Does

The NorIFY keyword parameter indicates to the system that you are
requesting that a message be sent to your time sharing terminal when
your background job completes. Under TSO, a background job is one tha t
is entered through the SUBMIT command or through the input stream
(SYSIN) •

WHAT IS TIME SHARING

Time sharing is a method of using a computing system that allows a
number of users to execute programs concurrently and to interact with
them during execution. The Time Sharing Option (TSO) is an option of the
operating system providing conversational time sharing from remote
terminals. That is the user "converses" with the system through the use
of the terminal.

Reference:

1. For a detailed discussion of the Time Sharing Option" refer to IBM
system/360 operating System: Time Sharing Option Guide.

Example of the NOTIFY Parameter

1. //SIGN JOB NOTIFY=POK1

When the job "SIGN" is complete, a message will be sent to the user
" POKl n i nf ormi ng him that . his job has been compl eted •

section II: The JOB statement -- NOTIFY Parameter 59

The PRTY Parameter

PRTY=priority

priority
assigns a priority of 0 through 13 to your job. (The highest
priority is 13.)

Rules for Coding
1. Avoid using priority 13 since this priority is used by the sysbem to

expedite processing of jobs in which certain errors were diagnosed.

2. In MVT, if you want a job step to have a different dispatching
priority than the job's, code the DPRTY parameter on the EXEC
statement associated with that job step.

What the PRTY Parameter Does
The PRTY keyword parameter determines the job's initiation priority
within its job class. (The job class is assigned in the CLASS parameter
on the JOB statement.) When the job is initiated, the system converts
the job's priority into a dispatching priority so that the job's tasks
can compete with other tasks for use of main storage and CPU resources.

If you do not specify the PRTY parameter, a default priority is
assumed. The default is specified as a PARM parameter field in the
cataloged procedure for the input reader.

The PRTY Parameter and Time-Slicing

If your installation provides time-slicing facilities in MVT, the PRTY
parameter can be used to make a job part of a group of jobs and job
steps to be time-sliced. The priorities of the time-sliced groups are
selected at system generation. To make your job part of a group of jobs
to be time-sliced, specify a priority number selected for time-slicing.
(TO make one of the job's steps part of a group of jobs and job steps to
be tine-sliced, code the DPRTY parameter on the associated EXEC
statemen-t.)

Examples of the PRTY Parameter
1. //#1930 JOB PRTY=8,CLASS=C

The job will have an initiation priority of 8 in the job class C.

2. //RING JOB PRTY=4

The job will have an initiation priority of 4 in the job class A.
(Since the CLASS parameter is not specified, the job is assigned to
the default job class A.)

60 JCL Reference (Release 21.7)

The RD Parameter

R

RNC

NC

NR

specifies that automatic step restart is permitted.

specifies that automatic step restart is permitted and automatic
checkpoint restart is not permitted and no checkpoints can be
e stabli shed,.

specifies that neither automatic step restart nor automatic
checkpoint restart is permitted and no checkpoints can be
established.

specifies that neither automatic step restart nor automatic
checkpoint restart is permitted, but the CHKPT macro instruction can
establish a checkpoint.

Rules for Coding
1. Be sure to code MSGLEVEL= (1 ,0), MSGLEVEIF (1"1),, or MSGLEVEL=l when

RD=R or RD=RNC is specified.

2. If you are permitting automatic step restart" assign each step a
unique step name.

3. Code the RD parameter on EXEC statenents" instead of the JOB
statement, when yOl want to make different restart requests for each
job step. (If the RD parameter is coded on the JOB statement, RD
parameters coded on the job's EXEC statements are ignored.)

Using the Restart Facilities
The RD (restart definition) keyword parameter is coded when you want to
make use of the step restart facilities" to suppress the action of the
CHKPl' macro instruction, or to suppress automatic restarts. The step
restart facilities permit execution of a job to be automatically
restarted at a job step after the job abnormally terminates or after a
system failure occurs. Through the RD parameter, you can specify that
executi on of a job is to be automatically restarted at the beginning of
a job step that abnormally terminates (step restart).

Execution of a job can also be automatically restarted within a job
step that abnormally terminates (checkpoint restart). In order for
checkpoint restart to OCcur, the CHKPT macro instruction must have been
executed in the processing program before abnormal termination. When YOt
use the RD parameter to request suppression of CHKPT macro instruction
action, automatic checkpoint restart cannot occur.

If the RD parameter is not coded, step restart cannot occur. If the
RD parameter is not coded and the processing programs contain CHKPl'
macro instructions, checkpoint restart can occur.

section II: The JOB statement -- RD Parameter 61

'!he following three conditions must be net before automatic step or
checkpoint restart can occur: (1) the completion code returned during
abnormal termination indicates that the step is eligible for restart,
(2) the operator authorizes restart, and (3) MSGLEVEL=(l, 0),

MSGLEVEL=(l,l), or MSGLEVEL=l must be coded on the JOB statement. If
these conditions are satisfied, special disposition processing is
performed before restart. If automatic step restart is to occur, all
data sets in the restart step with a status of OLD or MOD, and all data
sets being passed to steps ,following the restart step, are kept. All
data sets in the restart step with a status of NEW are deleted. If
automatic checkpoint restart is to occur, all data sets currently in use
by the job are kept.

DEFINING RESTART

you define the type of restart that can occur by coding one of the
subparameters of the RD parameter: R, RNC, NC, or NR. Each of these
subparameters is described in detail in the following paragraphs.

RD=R: R indicates that automatic step restart is permitted. If the job's
processi DJ prograns do not include any CHKPI' macro instructions" coding
RD=R permits execution to be resumed at the beginning of any step that
abnormally terminates. If any program does include a CHKPT macro
instruction, coding RD=R permits step restart to occur only if the step
abnormally terminates before execution of the CHKPT macro instruction;
thereafter, only checkpoint restart can occur. If you cancel the effects
of the CHKPT macro instruction before a checkpoint restart is performed,
the request for automatic step restart is agam in effect.

RD=RNC: RNC indicates that automatic step restart is permitted and
automatic checkpoint restart is not permitted. RD=RNC should be
specified when you want to suppress the action of all CHKPT macro
instructions included in the job's processing programs and to permit
automatic step restart.

RD=NC: NC indicates that neither automatic step restart nor automa tic
checkpoint restart is permitted. RD=NC should be specified when you want
to suppress the action of all CHKPT nacro instructions included in the
job's processing prograns and not to permit automatic step restart.
RD=NC has no effect on processing if CHKPT macro instructions are not
inc luded in the prog rans •

RD=NR: NR indicates that a CHKPT macro instruction can establish a
checkpoint, but neither automatic step restart nor automatic checkpoint
restart is permi. tted. Coding RD=NR allows you to resubmit the job at a
I ater time and specify in the RESTART parameter the checkpoint a t which
execution is to be resumed. (The RESTARl' pararreter is coded on the JOB
statement of the resubmitted job.) RD=NR has no effect on processing if
CHKPT macro instructions are not included in the job's processing
programs.

References

1. For detailed information on the checkpoint/restart facilities, refer
to the publication Advanced Checkpoint/Restart Planning Guide, Form
C28-6708, the topic "Checkpoint and Restart" in the publication
supervisor Services, and "Using the Restart Facilities" in Appendix
B of this publication.

2. For in formation on how to code the CHKPT macro instruction, refer to
the publication Supervisor service and Macro Instructions.

62 JCL Reference (Release 21.1)

Examples of the RD Parameter
1. //MAY JOB RD=R"MSGLEVEL=(1,0)

permits execution to be automatically restarted with the step that
abnormally terminates.

2. //TRY56 JOB RD=RNc',MSGLEVEL=l

Permits execution to be automatically restarted beginning with the
step that abnormally terminates and suppresses the action of CHKPT
macro instructions.

3. //PASS JOB RD=NR,MsGLEVEL=(l,l)

Neither automatic step nor checkpoint restart can occur, but CHKPT
macro instructions can establish checkpoints.

section II: The JOB statement -- RD Parameter 63

The REGION Parameter .. Without Main Storage Hierarchy Support (For MVT)

REGION=valueK

valueK
"value" specifies the number of contiguous 1024-byte areas of main
storage to be allocated to each job step. The number can range from
one to five digits but may not exceed 16383.

Rules for Coding
1 • Code an even number followed by a -"K". (If you code an odd number,

the system treats it as the next highest even number. When the value
16383K is coded, the system treats it as 16384K. However, the value
16384K must not be coded on the JOB statement.)

2. Code the REGION parameter on EXEC statements, instead of the JOB
statement, when yoo want to specify a different region size for each
job step. (If the REGION parameter is coded on the JOB statement"
REGION parameters coded on the job's EXEC statements are ignored.)

3. If the REGION parameter is coded for MFT, the parameter is not used,
but is checked f or syntax.

Requesting Main Storage
The REGION keyword parameter is used to specify how much main storage,
in contiguous bytes, is to be allocated to each job step •. Code the
region parameter when you want more storage or less storage than would
be allocated if the default region size was used; the default value is
used if you do not code the REGION parameter on either the JOB or EXEC
statement. The default region size is established as a PARM parameter
field in the cataloged procedure for the input reader. You can consult
the storage Estimates publication to help you determine how much main
storage is required to process your job.

AQUIRING ADDITIONAL MAIN STORAGE

If any of the job's steps may require use of more storage than has been
allocated, you can code the ROLL parameter and request that the system
try to. provide you with additional main storage. The ROLL parameter is
described in the chapters "The ROLL Parameter" later in this section and
in Section III.

Examples of the REGION Parameter
1. //COLE JOB REGION=112K

specifies that 112 contiguous 1024-byte areas of main storage are to
be allocated to each job step.

2. //J34 JOB REGION=10K,ROLL=(YES,YES>

'!he REGION parameter specifies that 10 contiguous 1024-byte areas of
mai n storage are to be allocated to each job step. In the ROLL
parameter I the first subparameter tells the system that any of the
job' s steps may be rolled out if additional storage is required by
another job; the second subparameter tells the system that it .
should try to provide you with main storage if it is required.

64 JCL Reference (Releas e 21.1)

The REGION Parameter - With Main Storage Hierarchy Support
(For MVT, Excluding M65MP)

REGION=(valueK,value~K)

valueK
specifies the number of contiguous 1024-byte areas in hierarchy 0 to
be allocated to each job step. If IBM 2361 Core Storage is present,
the number cannot exceed 16383.

value~K
specifies the number of contiguous 1024-byte areas in hierarchy 1 to
be allocated to each job step. If IBM 2361 Core storage is present,
the number cannot exceed 1024 (for each Modell) or 2048 (for each
Model 2).

Rules for Coding

1. When processor storage includes hierarchies 0 and 1, the sum of
value and value~ cannot exceed 16383.

2. code even numbers,. (If you code an odd number, the system treats it
as the next highest even number. When 16383K is coded, the system
treats it as 16384K. However, a sum of 16384K must not be coded on
the JOB statement.)

3. When you are requesting storage only in hierarchy 1, precede value~
with a comma, to indicate the absence of "value".

4. When you are requesting storage only in hierarchy 0, you need not
code the parentheses.

5. Code the REGION parameter on EXEC statements" instead of the JOB
statement, when yoo want to specify a different region size for each
job step. (If the REGION parameter is coded on the JOB statement,.
REGION parameters coded on the job's EXEC statanents are ignored.)

6. If the REGION parameter is coded for MFT, the parameter is not used,
but is checked for syntax.

Requesting Main Storage in One or Two Hierarchies

The REGION keyword parameter is used to specify how much main storage is
to be allocated to each job step, and, when main storage hierarchy
support has been specified at system generation, in which hierarchy or
hierarchies main storage is to be allocated. With main storage hierarchy
support, storage hierarchies 0 and 1 are provided. If IBM 2361 Core
Storage, Model 1 or 2, is present in the system, processor storage is
referred to as hierarchy 0 and 2361 Core Storage is referred to as
hierarchy 1. If 2361 Core Storage is not present, a two-part region is
established in processor storage when regions are requested in two
hierarchies. The two parts are not necessarily contiguous.

Code the REGION parameter to specify how much storage is to be
allocated in each hierarchy, or that all storage for the job is to be
allocated in a particular hierarchy. (If you do not code the REGION
parameter on either the JOB or EXEC statement, the default region size"
which is a PARM parameter field in the cataloged procedure for the input
reader, is used and is always allocated in hierarchy o. If you code the
REGION parameter and. request storage only from hierarchy 1, no hierarchy
o segment will be allocated. You can consult the Storage Estimates
publication to help you determine how much main storage is required to

Section II: The JOB Statement -- REGION Parameter 65

process your job. Then" depending on your reasons for using hierarchi'es l,

determine how nuch storage is required in each. '

If main storage hierarchy support was not specified at system
generation and regions are requested in both hierarchies, the region
sizes are combined and an attempt is made to allocate a single region
from processor storage. If a region is requested entirely from hierarchy
1, an attempt is made to allocate the region from processor storage.

ACQUIRING ADDITIONAL MAIN STORAGE

If your job may require use of more main storage than has been allocated
in a particular hierarchy,. you can code the ROLL parameter and request
that the system try to provide you wi. th additional main storage in that
hierarchy. The ROLL parameter is described in the chapters "The ROLL
Parameter" later in this section and in section III.

Examples of the REGION Parameter
1. //MAIN JOB REGION=(80K,30K)

specifies that the system is to allocate 80 contigoous 1024-byte
areas of storage in hierarchy 0 and 30 contiguous 1024-byte areas of
storage in hierarchy 1,. If main storage hierarchy support is not
included in the system, the system will try to obtain 110 contiguous
1024-byte areas in processor storage.

2. //WEEK JOB REGION=(,98K)

specifies that the system is to allocate 98 contigoous 1024-byte
areas of storage in hierarchy 1.

3. //JWC JOB REGION=98K

specifies that the system is to allocate 98 contigoous 1024-byte
areas of storage in hierarchy o.

4. //TEST12 JOB REGION=(100K,50K)"ROLL=(YES,YES)

The REGION parameter specifies that the system is to allocate 100
contiguous 1024-byte areas of storage in hierarchy 0 to 50
contiguous 1024-byte areas of storage in hierarchy 1. In the ROLL
parameter, the first subparameter tells the system that any of the
job's steps may' be rolled out if additional storage is required by
another job; the second subparameter tells the system that it
should try to provi'de you with additional main storage if it is
required.

66 JCL Reference (Release 21.7)

The REST ART Parameter

*

RESTART=({* }
stepname
stepname.procstepname

[, checkidl)

indicates that execution is to be restarted at or within the first
job step.

stepname
specifies that execution is to be restarted at or within the named
job step.

stepname.procstepname
specifies that execution is to be restarted at or within a cataloged
procedure step. stepname is the name of the job step that calls the
cataloged procedure, and procstepname is the name of the procedure
step. You can code * in place of stepname.procstepname if the first
job step calls a cataloged procedure and you want execution to be
restarted at or within the first procedure step.

checkid
is the name of the checkpoint at which execution is to be restarted.
When checkid is coded, execution is restarted within the specified
job step at the named checkpoint. If checkid is not coded, execution
is restarted at the specified job step.

Rules for Coding

1. you need not code the parentheses if execution is to be restarted at
a job step, i.e., if you do not code the checkid subparameter.

2. If the checkpoint name contains special characters, the name must be
enclosed in apootrophes. If one of the special characters is an
apostrophe, identify it by coding two consecutive apostrophes in its
place.

3. Be sure to include the,SYSCHK DO statement when execution is to be
restarted within a job step. (The SYSCHK DO statement is described
in the section titled "SYSCHK" in the chapter "ASSigning a Odname"
in Section IV of this publication.)

When to Code the REST ART Parameter
The RESTART keyword parameter is coded when you are resubmitting a job
f or execution and you want to make use of the restart facilities. The
restart facilities·allow a job that is resubmitted for execution to be
restarted at or within a particular job step. This reduces the time
required to execute the job since execution is resumed, not repeated.
If the RES~RT parameter is not coded, execution of the entire job is
repeated.

Through the RESTART parameter., you can specify where execution is to
be restarted. Execution of a resubmitted job can be restarted at the
beginning of a step (step restart) or within a step (checkpoint
restart). In order for checkpoint restart to occur, the CHKPT macro
instruction must have been executed in the processing program during the
original execution of the job. If execution is to be restarted at a
checkpoint, the resubmitted job must include an additional DO statement.
This OD statement defines the checkpoint data set and has the ddname
SYSCHK. (For additional information on the SYSCHK 00 statement, see the

section II: The JOB Statement -- RESTART Parameter 67

section titled "SYSCHK" in the chapter "Assigning a Ddname" in Section
IV of this publication.)

RULES FOR REFERENCING GENERATION DATA SETS AND USING BACKWARD REFERENCES

Because the resubmitted job has been previously executed and because you
may not be restarting with the first job step, there are certain rules
that apply to referencing generation data sets and using backward
references. They are:

1. If step restart is performed, generation data sets that were created
and cataloged in steps preceding the restart step must not be
referred to in the restart step or in steps following the restart
step by means of the same'relative generation numbers that were used
to create them. Instead, you must refer to a generation da ta set by
means of its present relative generation number. For example., if the
last generation data set created and cataloged was assigned a ,,'
generation number of +2, it would be referred to as 0 in the restart
step and in step:> following the restart step. In this case" the
generation data set assigned a generation number of +1 would be
referred to as -1. If generation data sets created in the restart
step were kept instead of cataloged (i.e •• DISP= (NEW, CATLG,KEEP) was
coded). you can during checkpoint restart refer to these data sets
and generation data sets created and cataloged in steps preceding
the restart step by the same relative generation numbers used to
crea te them.

2. Before resubmitting a job, check all backward references to steps
that precede the restart step. Eliminate all backward references for
the following keywords: PGM and COND, on the EXEC statements, and,
SUBALLOC and VOLUME=REF=reference, on the DD statements. (A backward
reference of VOLUME=REF=reference is allowed if the referenced
statement includes VOLUME=SER=(serial number, •••).)

Reference

1. For detailed information on the checkpoint/restart facilities. refer
to the publication Advanced Checkpoint/Restart Planning Guide, the
topic "checkpoint and Restart" in the publication Supervisor
services and "Using the Restart Facilities" in Appendix B of this
publ ication.

Examples of the RESTART'Parameter
1. //LINES JOB RESTART=COUNT

specifies that execution is to be restarted at the job step named
COUNT.

2. //QlLOCS JOB RESTART=(PROCESS,CHKPT3)

Specifies that execution is to be restarted within the job step
named PROCESS at the checkpoint named CHKPr3. This JOB statement
must be followed by a DD statement named SYSCHK, which defines the
data set or which an entry for the checkpoint named CBKPT3 was
written.

3. //WORK JOB RESTART=(*,CKPT2)

Specifies that execution is to be restarted at the checkpoint named
CKPT2 in the first job step.

68 JCL Reference (Release 21.7)

4. //CLIPS JOB RESTART=(PAY.WEEKLY,CHECK8)

Specifies that execution is to be restarted within the procedure
step named WEEKLY at the checkpoint named CHECK8. PAY is the name
of the job step that calls the cataloged procedure that contains the
procedure step named WEEKLY. This JOB statement must be followed by
a DD statement named SYSCHK, which defines the data set on which an
entry for the checkpoint named CHECKS was written.

section II: The JOB Statement -- RESTART Parameter 69

The ROLL Parameter (For MVT)

x

y

ROLL= (x,y)

declares whether the steps of the job may be rolled out. Code YES if
the job's steps can be rolled out; code NO if the job's steps cannot
be rolled out.

declares whether the steps of the job may cause rollout of another
job step. Code YES if the job's steps can cause rollout of another
job step; code NO if the job's steps cannot cause rollout of another
job step. YES must be coded if you want additional main storage
allocated to the job's steps when additional main storage is
required.

Rules for Coding
1. If you code the ROLL parameter, both subparameters must be specified.

2. Code the ROLL parameter on EXEC statenents, instead of the JOB
statement, when yoo want to make different requests for each job
step. (If the ROLL parameter is coded on the JOB statement, ROLL
parameters coded on the job's EXEC statements are ignored.)

3. Code ROLlF(NO,YES) or ROLL=(NO,NO) if this job is a teleprocessing
job that uses the Auto Poll option. If you allow the job's steps to
be rolled out, the job cannot be restarted properly.

4. If the ROLL parameter is coded for MFT, the parameter is not used,
but is checked for syntax.

When to Code the ROLL Parameter

The ROLL keyword parameter should be coded if any of the job's steps may
require more main storage than was requested in the REGION parameter.
When you specify in the ROLL parameter that this job can cause rollout
of other job step:;, an attempt is made to allocate additional storage if
a job step requires it. In order to allocate this additional space to a
job step, another job step with a lower priority may have to be rolled
out, i,.e., temporarily transferred to secondary storage.

The ROLL parameter should also be coded when you want control over
whether the job's steps can be rolled out because of another step's need
for additional main storage. If the ROLL parameter is not coded, the
default established in the PARM parameter field in the cataloged
procedure for the input reader is used.

Examples of the ROLL Parameter
1. //DINl'ER JOB ROLL=(YFS,YES),REGION=lOOK

Specifies that the job's steps can be rolled out and can cause
rollout of another job step if a step requires more than lOOK of
main storage.

2. //TEST332 JOB ROLL=(NO,YES)

specifies that the job's steps cannot be rolled out but can ca use
rollout of another job step.

70 JCL Reference (Release 21.7)

The TIME Parameter

TIME:
{

(minutes, seconds>}
1440

minutes
specifies the maximum number of minutes the job can use the cpu.
'!be number of minutes Imlst be less than 1440 (24 hours).

seconds

1440

specifies the maximum number of seconds beyond the specified number
of minutes the job can use the CPU, or, if no minutes are specified,
the maximum number of seconds the job can use the CPU. The number
of seconds must be less than 60.

specifies that the jOb is not to be timed. Code 1440 if the job may
require use of the CPU for 24 hours or more or if any of the job's
steps should be allCltled to remain in a wait state for more than the
established time limit.

Rules for Coding

1. If the CPU time limit is given in minutes only, you need not code
the parentheses.

2. If the CPU time limit is given in seconds only, you must code a
comma preceding.the seconds to indicate the absence of minutes.

3. You can also code the TIME parameter on EXEC statements to indica te
how long each step can use the CPU.

Specifying a Time Limit for the Job
The TIME keyword parameter can be used to specify the maximum amount of

I time a job may use the CPU. (CPU time will appear on the output listing
if system management facilities (SMF) or users accounting routines
supply this information to the output data set.) By coding the TIME
parameter, you can limit the CPU time wasted by a step that goes into a
loop. Normally, a job that exceeds the specified time limit is
terminated. However, if the system Management Facilities option is
included in the system and a user exit routine is provided, this routine
can extend the time limit so that processing can continue. When the TIME
parameter is not coded on the JOB statement, there is no CPU time limit
assigned to the job; however, each job step is still timed.

TIME LIMIT FOR WAIT STATES

Since a job step can go into an extreme ly long wait state, the time a
job step may remain in a wait state is limited. If the system Management
Facilities option is included in the system, the installation determines
this time limit. In this case, a job step renaining in a wait state for
more than the established time limit causes termination of the job
unless a user-provided exit routine extends the wait-.state time limit
for that step. If the System Management Facilities option is not
included, the system automatically provides a 30-minute time limit for
wait states; a job step remaining in a wait state for more than 30
c onsecuti ve mi nutes caus es termination 0 f the job.

section II: The JOB statement -- TIME Parameter 71

How to Eliminate Timing
certain applications require that a job use the CPU for 24 hours or
more. In these cases you must eliminate job and step timing by coding
TIME=1440. You should also code TIME=1440 when any of the job's steps
should be allowed to remain in a wait state for more than the
established time limit.

If your system includes the System Management Facilities (SMF)
feature and you code TIME=1440, SMF termination messages will indicate
that no CPU time was used; messages indicating the time the job started
and stopped wi 11 not" hONever, be affected.

Reference

1. A discussion of the system Managanent Facilities option is contained
in the Introduction. Information on user exit routines to be used
with the System Management Facilities option is contained in the
System Management Facilities Guide.

Examples of the TIME Parameter
11. / /SEED JOB TIME= (12 ,10)

Specifies that the maximum amount of time the job can use the CPU is
12 minutes 10 seconds.

2. //TYPE41 JOB TIME=(,30>

Specifies that the maximum amount of time the job can use the CPU is
30 seconds,.

3. //FORMS JOB TIME=5

Specifies that the maximum amount of time the job can use the CPU is
5 minutes.

4. //RAINCK JOB TIME=1440

specifies that the job is not to be timed. Therefore, the job may
use the CPU and may remain in a wait state for an unspecified period
of time.

72 JCL Reference (Release 21.7)

The TYPRUN Parameter (For MFT, MVT)

HOLD

TYPRUN=HOLD

specifies that the job is to be held in the job queue until the
operator issues a RELEASE command.

Holding a Job
Code TYPRUN=HOLD when the job should be held for execution until some
event has occurred. The operator must be informed of what it is you are
waiting for. When the event has occurred l the operator issues a RELEASE
command, th~reby allowing the job to be selected for processing.

Example of the TYPRUN Parameter
Jobs UPDATE and LIST are to be submitted for execution. The job UPDATE
uses a program that adds and deletes members of a library; . the job LIST
uses a program that lists the members of a library. In order to get an
up-to-date listing of the library, UPDATE must be executed before LIST.
This is accomplished by coding TYFRUN=HOLD on the JOB statement for the
job named LIST. If a DISPLAY JOBNAMES command is issued by you or the
operator, the operator is notified on the console when UPDATE has
completed processing; he issues a RELEASE command for LIST. The job LIST
can then be selected for execution.

section II: The JOB Statanent -- TYPRUN Parameter 73

74 JCL Reference (Release 21.7)

Section III: The EXEC Statement

The EXEC statement is the first statement of each job step and cataloged
procedure step. The EXEC statement is followed by DD statements and data
that pertain to the step. The principal function of the EXEC statement
is to identify the program to be executed or the cataloged procedure to
be called. All other parameters in the operand field are optional. A job
cannot contain more than 255 job steps and procedure steps.

EXEC Statement Format

(//stepname EXEC operands comments

The EXEC statement consists of the characters / /, in columns 1 and 2,
and four fields -- the name, operation (EXEC), operand, and comments
fields.

Rules for Coding

Follow the order listed below when coding the EXEC statement:

1 • Code the characters / / in columns 1 and 2.

2. optionally, yoo may assign a name to the job step; if you do, code
the stepname starting in column 3.

3. Follow the stepname or // with at least one blank.

4. Code EXEC.

5. Follow EXEC with at least one blank.

6. Identify the program.to be executed (PGM), or the cataloged
procedure to be called (PROC). (When you are calling a procedure,
you may omit PROC=.)

Section III: The EXEC Statement 75

EXEC

7. Code any desired keyword parameters. separate each parameter with a
comma.

8. Code at least one blank.

9. Code any desired comments.

Positional and Keyword Parameters
There are two types of parameters that can be coded on the EXEC
statement:

Positional parameters must precede any keyword parameters .• One of the
following two parameters is coded:

PGM
PRoe

These positional parameters are described in the following pages.

Keyword parameters may be coded in any order after the first parameter.
Any of the following keyword parameters can be coded on the EXEC
statement:

ACCT
COND
DPRTY (MVT only)
PARM
RD
REGION (MVT only)
ROLL (MVT only)
TIME

These keyword parameters are described, after the positional parameters,
alphabetically.

Sample EXEC Statements
1. //STEP4

2. //

3. //FOR

4. //PIC4

EXEC PGM=DRBC, PARM=' 3018 , NO'

EXEC PGM=ENTRY,REGION=80K,TIME=(2,30),DPRTY=(11,11)

EXEC PROC=PE489,TIME=4

EXEC SAL83,ACCT.STEP1=123019

76 JCL Reference (Release 21.7>

Assigning a Stepname

(//stepname EXEC

The stepname identifies a job step within a job. The stepname is
optional. You must assign a stepname if you wish to do any of the
following:

1,. Make backward references to the step.

2. Override parameters on an EXEC statement or DD statement in a
cataloged procedure step, and add DD statements to a cataloged
pro c edur e step.

3. Perform a step or checkpoint restart at or within the step.

The stepname must begin in column 3 of the EXEC statement and must
consist of 1 through 8 alphameric and national (M, #, $) characters.
The first character must be an alphabetic or national character. Each
stepname within a job or a. cataloged procedure must be unique,.

Examples of Valid Stepnames
1. //STEP4 EXEC

2. //MLOC EXEC

3. //PRINT EXEC

section III: The EXEC statement -- Assigning a Stepname 77

EXEC

The fGM Parameter

PGM={program name J
*.stepname.ddname
*.stepname.procstepname.ddname

program name
is the member name or alias of the program to be executed. The
program must be a member of a partitioned data set that resides in a
~emporary, system, or private library.

*.stepname.ddname
is a backward reference to a DD statement that defines, as a member
of a partitioned data set, the program to be executed; stepname is
the name of the step in which the DD statement appears. Usually,
this form is used when a previous job step creates a temporary
partitioned riata set to store one program until the program is
required.

*.stepname.procstepname.ddname
is a backward reference to a DD statement within a cataloged
procedure step that defines, as a member of a partitioned da ta set,
the program to be executed. stepname is the name of the step that
calls the procedure, and procstepname is the name of the procedure
step that contains the DD statement. Usually, this form is used
when a cataloged procedure step, called by an earlier job step in
the job, creates a temporary partitioned data set to store a program
unti 1 the prog-ram is required.

Note: The stepname must begin in column 3 of the EXEC statement and must
consist of 1 through 8 alphameric or national (@, #, $) characters. The
first character must be an alphabetic or national character. Each
stepname within a job or a cataloged procedure must be unique.

Identifying the Program to be Executed

All programs that can be executed are members of partitioned data sets
(libraries). The library that contains the program may be a temporary
library, the system library, or a private library. In order to execute
a program contained in any of these libraries, you must code the PGM
parameter as the first parameter on the EXEC statement.

TEMPORARY LIBRARY

If in a job you want to assemble, linkage edit, and then execute a
program, you must make the output of the linkage editor a member of a
partitioned data set. This is accomplished by creating a temporary
library. A temporary library is a partitioned data· set created in the
job to store a program, as a member of the data set, until it is
executed in a following job step. When the program is required, you may
refer back to the DO statement that defines the temporary library and
the member by coding PGt1=*.stepname. ddname or
PGM=*.stepname.procstepname.ddname. You may also request use of a
program that is a member of a temporary library by coding PGM=program
name and including a DD statement named JOBLIB or STEPLIB that defines
the temporary library. (Information on the JOBLIB and STEPLIB DD
statements can be found in the chapter "Assigning a Ddname" in Section
IV of this pub licati on.)

If you want to keep this program available for use by other jobs,
you must make the program a member of the system library or a private
library.

78 JCL Reference (Release 21.7)

SYSTEM LIBRARY

The system library is a partitioned data set named SYS1.LINKLIB and it
contains frequently used programs, as well as programs used by the
system. You request the us e of a program that is a member of the system
library simply by coding PGM=program name. The system automatically
looks in SYS1. LINKLIB for a member with the corresponding name.

A program that resides in the system library may also be executed by
coding PGM=*.stepname.ddname or PGM=*.stepname.procstepname.ddname.
This can be done only when the named DD statement defines the program as
a member of the system library.

PRIVATE LIBRARY

A private library is a partitioned data set that contains programs not
used frequently enough to warrant their inclusion in the system library.
You request use of a program that is a member of a private library by
coding PGM=program name and including a DD statement named JOBLIB or
STEPLIB that defines the private library. The system automatically
looks in the private library and, if the program is not· found there, in
SYS1. LINKLIB for a member with the corresponding name. (Information on
the JOBLIB and STEPLIB DD statements can be found in the sections titled
"JOBLIB" and "STEPLIB" in the chapter" Assigning a Ddname" in section IV
of this publ ication •)

A program that resides in the private I ibrary may also be executed by
coding PGM=* .stepname.ddname or PGM=*.stepname. procstepname .• ddname.
This can be done only when the named DD statement defines the program as
a member of a priVate library·.

THE IEFBR14 PROGRAM

This is a small program which, when called, gives a return code of 0 and
returns to the calling routine. Its purpose is for either checking the
syntax 0 f the control statements or for a llocating or unallocating data
sets prior to executing your program. To use this program, substitute
IEFBR14 for your program's name. (If you created a data set when using
this program, the data set 1 s status will be old when you execute your
own program.)

Examples of the PGM Parameter

1. //STEPl EXEC PGM=TABUIATE

I 2 .•

Specifies that the program named TABULATE is a member of
SYS1. LINKLIB.

//JOB8
//JOBLIB
//STEPl

JOB MSGLEVEL= (2,0)
DD DSNAME=DEPT12~LIB4,DISP=(OLD,PASS)
EXEC PGM=USCAN

Specifies that the system is to look for a program named USCAN in a
pri vate library named DEPT12.LIB4, and, if not found there, .the
system is to look in the system library.

Section III: The EXEC Statement -- PGM Parameter 79

EXEC

3. //STEP2
//DDA
//STEP3

EXEC PGM=UPDT
DD DSNAME=SYS1.LINKLIB(P40),DISP=OLD
EXEC PGM=* '. STEP 2. DDA

Use of backward reference to a DD statement that defines the system
library. The program named P 40 is stored as a member of
SYS1.LINKLIB and is executed in the step named STEP3.

4. //CHECK EXEC PGM=IEFBR14

Executing the program named IEFBR14 allows you to satisfy space
allocation and disposition processing requests prior to executing
your program. The remaining job control statements in the job are
also checked for syntax.

80 JCL Reference (Release 21.7)

The PROC Parameter

procedur e name

{
PRoc=procedure name}
procedu re name

the member name (or alias> of the cataloged procedure or the name of
the in-stream procedure to be called.

Identifying the Cataloged or In-Stream Procedure to be Called
A cataloged procedure is a set of job control statanents that has been
placed in a special partitioned data set referred to as the procedure
library. (The IBM-supplied procedure library is named SYS1.PROCLIB; at
particular installations, there may be additional procedure libraries.
which would have different names.) Each cataloged procedure is a member
of this data set. An in-stream procedure is a set of job control
statements, beginning with a PROC statement and ending with a PEND
statement, that have been placed in the input stream. An in-stream
procedure can be executed any number of times during the job in which it
appears. Both cataloged and in-stream procedures consist of one or more
procedure steps; each procedure step consists of an EXEC statement,
which identifies the program to be executed, and DD statements, which
define the data set requirements of the step.

In order to use a cataloged or in-stream procedure" you must code the
PROC staterrent as the first parameter on the EXEC statement, instead of
the PGM parameter, and give the name of the cataloged procedure. You
can, instead. code only the cataloged or in-stream procedure name; the
job scheduler will recognize that it is a procedure name since it must
appear first in the operand field.

When the EXEC statement specifies that a cataloged or in-stream
procedure is to be called, subsequent parameters in the operand field
can be used to override EXEC statement parameters in the procedure.
Also, any DD statements that follow the EXEC statanent are either
overriding DD statement or DD statements that are to be added to the
cataloged or in-stream procedure for the duration of the job step.
overriding or adding to cataloged procedures is discussed in the chapter
"Using Cataloged and In-stream Procedures" in Appendix A of this
publ ication.

Examples of the PROC Parameter
1. //SP3 EXEC PROC= PA YWKRS

Specifies that the cataloged or in-stream procedure named PAYWKRS is
to be called.

2. //BK3 EXEC OPERATE

specifies that the cataloged or in-stream procedure named OPERATE is
to be called. This specification has the same effect as coding
PROC=OPERATE •

section III: The EXEC Statement -- PROC Parameter 81

EXEC

The ACCT Parameter

ACCT= (accounting information, •• ,.)

acc ounti ng i nf ormati on
includes one or more subparameters of accounting information to be
passed to the installation's accounting routines by the system.

Rules for Coding
1. If the accounting information includes several subparameters, each

must be separated by a comma.

2. If the accounting information consists of only one subparameter. you
need not c ode the parent hes es •

3 • The maxinum number of characters of accounting in forma tion, pI us the
commas that separate the subparameters, is 142.

4. If a subparameter contains special characters (other than a hyphen),
enclose the subparameter in apostrophes. The apostrophes are not
considered part of the information. If one of the special characters
is an apostrophe, code two consecutive apostrophes in its place. The
same is true for the special character &. In order to include &
within the ap03trophes, code &&.

Providing Accounting Information for a Job Step or Procedure Step

Code the ACCT keyword parameter when you want to provide accounting
information for a step. If the job step calls a cataloged procedure, the
ACCT parameter overrides any ACCT parameters coded in the procedure
steps and pertains to all the procedure steps. If different steps in the
procedure require different accounting informati on, code
ACCT.procstepname=(accounting information, •••) for each step that
requires accounting information. Accounting information will then
pertain only to the named procedure step.

Examples of the ACCT Parameter

1. //STEP1 EXEC PGM=JP5,ACCT=(LOCATION8,'CHGE+3')

Specifies that this accounting information pertains to this job step.

2. //STP3 EXEC LOOKUP,ACCT=('/83468')

Specifies that this information pertains to this job step. Since
this step calls a cataloged procedure" the accounting information
pertains to all the steps in the procedure.

3. //STP4
//

EXEC BILLING,ACCT.PAID=56370,ACCT.LATE=56470,
ACCT.BILL='121+366'

specifies that different accounting information pertains to each of
the naned procedure steps (PAID, LATE, and BILL).

82 JCL Reference (Release 21.7)

The COND Parameter

COND= (

[
(code, operator) J
(code,operator,stepname)
(c ode, operat or, st epnam e. pro cstepn am e)

, • • • [,EVEN]}
,ONLY

code
a decimal number from 0 through 4095. This number is compared with
the return code issued by all previous steps or a specific step.

operator
the type of comparison to be made with the return code. Relational
operators and their meanings are:

GT ••• greater than
GE ••• greater than or equal to
EQ ••• equal to
LT ••• less than
LE ••• less than or equal to
NE ••• not equal to

stepname
the name of a preceding job step that issued the return code to be
tested.

stepname.procstepname

EVEN

ONLY

the name of a procedure step nprocstepnamen that issued the return
code to be tested; the procedure step is part of a procedure that
was called by an earlier job step named "stepname."

specifies that the job step is to be executed even if one or more of
the preceding job steps have abnormally terminated. If the current
job step specifies that return code tests are to be made and if any
of the tests are satisfied, this job step is bypassed. Do not code
EVEN when ONLY is coded.

specifies that the job step is to be executed only if one or more of
the preceding job steps have abnormally terminated. If the current
job step specifies that return code tests are to be made and if any
of the tests are satisfied, this job step is bypassed. Do not code
ONLY when EVEN is coded.

Rules for Coding
1. When neither EVEN nor ONLY is coded, you can make as many as eight

tests on return codes issued by preceding job steps or cataloged
procedure steps, which completed normally. When either EVEN or ONLY
is coded, you can make as many as seven tests on return codes.

2. If you want only one test made, you need not code the outer
parentheses.

3. If you code only EVEN or ONLY, you need not enclose it in
parentheses.

4. If you want each return code test to be made on the return code
issued by every preceding step, do not code a stepname.

Section III: The EXEC Statement -- COND Parameter 83

EXEC

5. The EVEN or ONLY subpararneter can appear before, between, or after
return code tests.

Using the COND Parameter
The COND keyword parameter can be used to eliminate unnecessary use of
computing time by basing the execution of a job step on the successful
completion of one or more preceding job steps. When the COND parameter
is coded on the JOB statement, any return code test that is satisfied
causes all remaining job steps to be bypassed. If, instead, you want a
particular job step to be bypassed when a return code test is satisfied,
c ode the COND parameter on the EXEC statement. Besides allowing you to
specify the conditions for bypassing a job step, the COND parameter
allows you to specify the condition for executing a job step.

The compiler, assembler, and linkage editor programs issue return
codes. You may want to use the COND parameter to test these return
codes. If you write your processing programs in assembler language, ANS
COBOL, FORl'RAN, or PL/I, you can use the COND parameter to test return
codes issued by your programs.

BYPASSING A JOB STEP

The return code tests specified in the COND parameter determine whether
a job step is to be bypa ssed. Each return code test cons ists of a code,
an operator, and, optionally, a stepname. The operator indicates the
mathematical relationship between the code specified on the EXEC
statement and the code returned by ~ completed job step. The opera tor or
operator.3 are compared with the return code or codes and if any of the
relationships are true, the job step is bypassed.

If the return code test includes a stepname, the test is made using
the return code issued by the named step. If the named step was not
executed, the request for a test is ignored. If the return code test
10es not include a stepnarne, the test is made using the return code
issued by every preceding job step that completed normally. To test in a
later job step the return code issued by a cataloged procedure step,
specify both the name of the job step that called the procedure and the
procedure stepnarne, i.e., stepname.procstepnarne.

EXECUTING A JOB STEP

Abnormal termination of a job step normally causes subsequent steps to
be bypassed and the job to be terminated. By means of the COND
parameter, you can specify the condition for executing a job step after
one or more of the preceding job steps have abnormally terminated. For
the COND parameter, a job step is considered to abnormally terminate if
a failure occurs within the user's program once it has received control.
(If, during scheduling, a job step is not scheduled for execution
because of failures such as job control language errors or inability to
allocate space, the remainder of the job steps are bypassed, whether or
not a condition for executing a later job step was specified.)

'Ihe condition for executing a job step after one or more of the
preceding job steps have abnormally 'terminated is either EVEN or ONLY.
EVEN causes the step to be executed even if one or more of the preceding
job steps have abnormally terminated; ONLY causes the step to be
executed only if one or more of the preceding job steps have abnormally
terminated. When a job step abnormally terminates, the COND parameter on
the EXEC statement of the next step is scanned for the EVEN or ONLY
subpararneter. If neither is specified, the next job step is bypassed and
the EXEC statement of the follGNing step is scanned for EVEN or ONLY. If

84 JCL Reference (Release 21.7)

EVEN or ONLY is specified, return code tests" if any, are made on all
previous steps specified that did not abnormally terminate. The step is
bypassed if anyone of these tests is satisfied" or if one of the
previous job steps abended because it exceeded the time limit for the
job. Otherwise, the job step is executed.

Ca uti on: When a job step t hat contains the EVEN or ONLY subparameter
refers to a data set that was to be created or cataloged in a preceding
step, the data set (1) will not exist if the step creating it was
bypassed, or (2) may be incomplete if the step creating it abnormally
terminated. Also, if the job step refers the system to an earlier job
step for volume and unit information, this information is not available
if the earlier job step was bypassed. If ONLY is specified on the first
job step and a JOBLIB is being used, the unit and volume information are
not passed to the succeeding step and the catalog will be searched for
the JOBLIB data set.

WHEN YOU CALL A CATALOGED PROCEDURE

The COND parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all COND parameters in the procedure or only certain
COND parameters. To override all COND parameters, code the COND
parameter on the EXEC statement that calls the procedure. This
establishes one set of return code tests and the EVEN or ONLY
subparameter for all steps in the procedure. To override only certain
COND parameters, code, on the EXEC statement that calls the procedure,
COND .• procstepname for each procedure step that you want to override.
Return code tests and the EVEN or ONLY subparameter will then pertain
only to the named procedure step. When the condition parameter appears
on both JOB and EXEC statements, the conditions on the JOB card override
those on the EXEC.

Examples of the COND Parameter

11. //STEP6 EXEC PGM=BAB,COND= (4 ,GT,STEP3)

If 4 is greater than the return code issued by STEP3, this step is
bypassed. (A return code of 4 or greater from STEP3 allows this
step (STEP6) to be executed.) If STEP3 was not executed, havever"
the request for a test is ignored. Since neither EVEN nor ONLY is
specified" this job step is automatically bypassed if a preceding
step abnormally terminates.

2. //TEST2 EXEC PGM=BACK"COND= «16"GE) , (90 ,LE,STEP1) ,ONLY)

If 16 is greater than or equal to the return code issued by any of
the preceding job steps or if 90 is less than or equal to the return
code issued by STEP1, this step is bypassed. If none of the tests
are satisfied and a preceding job step has abnormally terminated,
this step is executed because ONLY is coded.

3. //PRCH EXEC PGM=SPE,COND= (12,EQ,STEP4.LOOKUP)

If 12 is equal to the return code issued by the procedure step named
LOOKUP, the job step is b¥passed. since neither EVEN nor ONLY is
specified, this job step would be automatically bypassed if a
preceding step abnormally terminated.

Section III: The EXEC statement -- COND Parameter 85

EXEC

4. //STP4 EXEC BILLING,COND.PAID=(EVEN,(20,LT», X
// COND .!ATE= (60 ,GT ,FIND) ,COND. BILL= «20" GE) I, (30" LT" CHGE»

Specifies that different return code tests pertain to each of the
named cataloged or in-stream procedure steps (PAID, LATE, and BILL).
If the return code test specified for the procedure step named PAID
is not satisfied, the step is executed even if a preceding step
abnormally terminated.

86 JCL Reference (Releas e 21.7)

The DPRTY Parameter (For MVT)

DPRTY=(value1,value2)

va lue 1
a number from 0 through 15. If you do not assign a number, a value
of 0 is assumed.

value2
a number from 0 through 15. If you do not assign a number., a value
of 11 is assumed.

Rules for Coding
1. Avoid assigning a number of 15 to value1. This number is used for

certain system tasks.

2. If you ondt value2, you need not code the parentheses.

3 • If you omit value1, you must code a comma preceding value2 to
indicate the absence of value1.

4. If the DPRTY parameter is coded for MFT, the parameter is not used,
but is cheCked for syntax.

Assigning a Dispatc~ Priority

The DPRTY parameter is used to assign a dispatching priority to a job
step. Dispatching priority determines in what order tasks will use main
storage and CPU resources. If you do not code the DPRTY parameter, the
job step is assigned the priority assigned to the job either on the JOB
statement (the PRTY parameter) or ~ default.

Value1 of the DPRTY parameter has the same meaning as the value you
assign in the PRTY parameter on the JOB statenent. That is, if you code
PRTY=10 on the JOB statement and DPRTY=10 on the EXEC statement, the job
and step priority are the same. Also, in this case the job and step have
the same dispatching priority. This is because the system converts the
number 10 to an internal priority and then adds 11 to the internal
priori ty to form the dispatching priority (11 is always the number added
to the job's internal priority; 11 is the number added to the job step's
internal priority when value2 of the DPRrY parameter is omitted).

If you code value2 of the DPRTY parameter, the system adds that value
to the internal priority to form the dispatching priority. (The internal
priority is formed by the system h¥ converting the value assigned to
value1 in the DPRTY parameter.)

When you want the job step to have a different dispatching priority
than the job, you code the DPRTY parameter and either raise or lower the
values, depending on whether the step is to have a higher or lower
priority than the job.

If the DPRTY parameter specifies a dispatching priority greater than
the initiator's, the initiator's priority will be used.

Section III: The EXEC statement -- DPRTY Parameter 87

EXEC

THE DPRTY PARAMETER AND TIME-SLICING

If your installation provides time-slicing facilities in a system with
MVT, the DPRTY parameter can be used to make a job step part of a group
of jobs and job steps to be time-sliced. (To make an entire job part of
a group of jobs and job st ep:; to be time- sl iced, code the PRTY parameter
on the JOB statement.) At system generation, the priorities of the
tine-sliced group3 are selected. If the number assigned to "valuel"
corresponds to a priority number selected for time-slicing and "value2"
is either omitted or assigned a value of 11, then the job step's tasks
will be time-sliced.

WHEN YOU CALL A CATALOGED PROCEDURE

The DPRl'Y parameter may be coded on the EXEC stat an en t of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all DPRTY parameters in the procedure or only certain
DPRTY parameters. TO override all DPRTY parameters, code the DPRTY
parameter on the EXEC statement that calls the procedure. This
estaplishes one dispatching priority for all the steps in the procedure.
TO override only certain DPRTY parameters, code, on the EXEC sta tement
that calls the procedure, DPRTY.procstepnane for each procedure step
that you want to override. The dispatching priority will then pertain
only to the named procedure step.

Examples of the DPRTY Parameter

1. //BP2 EXEC PGM=FOUR,DPRTY=(13,9)

The system uses these numbers to form a dispatching priority for
this step. Since the numbers are high, the dispatching priority
will be high.

2. //STEP3 EXEC PGM=BROWN31,DPRTY=(,12)

The system first assigns a value of 0 to the absent subparameter and
then forms a dispatching priority. In this case, the dispatching
priority will be very low.

3. //ST2 EXEC COMP,DPRTY=4

The system assigns a dispatching priority of 4 to all steps in the
procedure named OOMP.

88 JCL Reference (Releas e 21.7)

The P ARM Parameter

PARM=value

value
consists of up to 100 characters of information or options that the
system is to pass to the processing program.

Rules for Coding
1. If the value contains more than one expression separated by commas,

the value must be enclosed in apostrophes or parentheses, e.g.,
PARM='Pl,123,MTS' or PARM=(P1,123,MTS). (Enclosing apostrophes and
parentheses are not passed to the processing program; commas within
apostrophes and parentheses are passed as part of the value.)

2. If any expression contains special characters, either (1) enclose
the va lue in apcstrophes, or (2) enclose the express ion in
apostrophes and the value in parentheses, e.g., PARM='PSO,12+80' or
PARM=(PSO, '12+80'). (The enclosing apostrophes and parentheses are
not considered part. of the value.) If one of the special characters
is an apostrophe. code two consecutive apostrophes in its place,
e.g., PARM='CONTROL INFORM"N'. If one of the special characters is
an ampersand and you are not defining a symbolic parameter, code two
consecutive ampersands in its place, e.g., PARM='3462&&S'. (When two
apostrophes or two ampersands are coded, only one is passed to the
processing program.)

3. If the value must be continued on another statement, enclose the
value in parentheses. The continuation comma is considered part of
the value field and counts towards the maximum of 100 characters of
data. You may not continue on another statement any value enclosed
in apostrophes.

Providing a Processing Program With Information at Execution Time
some information required by a program may vary from application to

application, such as module attributes and options required by
compiler, assembler, and linkage editor programs. In order to
provide this information to the program at the time it is executed,
you can code the PARM keyword parameter. The program must include
instructions that can retrieve this information. (The exact location
and format of the information passed to a processing program are
described in Supervisor Services and Macro Instructions.

WHEN YOU CALL A CATALOGED OR IN-STREAM PROCEDURE

The PARM parameter may be coded on the EXEC statement of a cataloged or
in-stream procedure ·step. If the job step calls a cataloged or
in-stream procedure, you can pass information to the first procedure
step and nullify all other PARM parameters in the procedure or
override some of the PARM parameters contained in the procedure. To
accomplish the first, code the PARM parameter on the EXEC statement
that calls the procedure. The information contained in the PARM
parameter is passed to the first procedure step and PARM parameters
in all other procedure steps are nullified. To override some of the

~~=~e~~~~~:~sc~~~;a!~:dp~~c~~r~~~~~~~:o~~~:~n~~et~~r~!:~h
procedure step that you want .to override. Information provided is
passed only to the named procedure step.

Section III: The EXEC Statement -- PARM Parameter 89

EXEC

Examples of the P ARM Parameter
1. //RUN3 EXEC PGM=APG22,PARM=(Pl,123,'P2=S')

The system passes the information in the PARM parameter, except the
apostrophes, to the processing program named APG22.

2. // E}{BC PROC 81, PARM= Ml' S

The system passes this information to the first step of the
procedure named PROC81. If any of the other procedure steps contain
the PARM parameter, these parameters are nullified.

3. //STP6 EXEC ASMFCLG,PARM.LKED=(MAP,LET)

The system passes this information to the procedure step named LKED.
If any of the other procedure steps contain the PARM parameter,
these parameters are still in effect.

90 JCL Reference (Release 21.7)

The RD Parameter

R

RNC

NC

NR

RD= {R } RNC
NC .
NR

specifies that automatic step restart is permitted.

specifies that automatic step restart is permitted and automatic
checkpoint restart is not permitted and no checkpoints can be
establ is hed.

specifies that neither automatic step restart nor automatic
checkpoint restart is permitted and no checkpoints can be
establis hed.

specifies that neither automatic step restart nor automatic
checkpoint restart is permitted, but the CHKPI' macro instruction can
establish a checkpoint.

Rules for Coding

1. Be sure to code MSGLEVEL= (1,1), MSGLEVEL= (1,0)., or MSGLEVEL=1 when
RD=R or RD=RNC is specified.

2. If you are permitting automatic step restart, assign the step a
unique step name.

3. If you have coded the RD parameter on the JOB statement, RD
parameters on the job' s EXEC statements are ignored.

Using the Restart Facilities

The RD (restart definition) keyword parameter is coded when you want to
make use of the step restart facilities, to suppress the action of the
CHKPT macro instruction, or to suppress automatic restarts. The step
restart facilities permit execution of a job to be automatically
restarted at a job step after the job abnormally terminates or after a
system failure occurs. Through the RD parameter, you can specify that
execution of a job step is to be automatically restarted at the
beginning of the step if it abnormally terminates (step restart).

Execution of a job step can also be automatically restarted within
the step if it abnormally terminates (checkpoint restart). In order for
checkpoint restart to occur, the CHKPT macro instruction must have been
executed in the processing program before abnormal termination. When you
use the RD parameter to request suppression of the CHKPT macro
instruction action, automatic checkpoint restart cannot occur.

If the RD parameter is not coded, step restart cannot occur. If the
RD parameter is not coded and the processing program contains CHKPT
macro instructions, checkpoint restart can occur.

The following three conditions must be met before automatic step or
checkpoint restart can occur: (1) the completion code returned during
abnormal termination indicates that the step is eligible for restart,
(2) the operator authorizes restart, and (3) MSGLEVEL= (1.,0),

Section III: The' EXEC statenent -- RD Parameter 91

EXEC

MSGLEVEL= (1,,1), or MSGLEVEL=1 must be coded on the JOB statement. If
these conditions are satisfied, special disposition processing is
perf ormed before restart. If automatic step restart is to occur, all
data sets in the restart step with a status of OLD or MOD, and all data
sets being passed to step:; following the restart step, are kept. All
data sets in the restart step with a status of NEW are deleted. If
a utomatic checkpoint restart is to occur, all data s'ets currently in use
by the job are kept.

DEFINING RESTART

You defi nethe type of restart that can occur by coding one of the
subparameters of the RD parameter: R, RNC, NC, or NR. Each of these
subparameters is described in detail in the following paragraphs.

RD=R: R indicates that automatic step restart is permitted. If the
processing program used by the job step does not include any CHKPI' macro
instructions, coding RD=R allows execution to be resumed at the
beginning of this step if it abnormally terminates. If the program does
include a CHKPT macro instruction" coding RD=R permits automatic step
restart to occur only if the step abnormally terminates before execution
of the CHKPT macro instruction; thereafter, only checkpoint restart can
occur. If you cancel the effects of the CHKPT macro instruction before a
checkpoint restart is performed, the request for automatic step restart
is again in effect.

RD=RNC: RNC indicates that automatic step restart is permitted and
automatic checkpoint restart is not permitted. RD=RNC should be
specified when you want to suppress the action of all CHKPT macro
instructions included in the processing program and to permit automatic
step restart.

SD=NC: NC indicates that neither automatic step restart nor automa tic
checkpoint restart is permitted. RD=NC should be specified when you want
to suppress the action of all CHKPI' macro instructions included in the
processing program and not to permit automatic step restart. RD=NC has
no effect on processing if CHKPT macro instructions are not included in
the program.

RD=NR: NR indicates that a CHKPT macro instruction can establish a
checkpoint, but neither automatic step restart nor automatic checkpoint
restart is permitted. Coding RD=NR allows you to resubmit the job at a
later time and specify in the RESTART parameter the checkpoint at which
execution is to be resumed. (The RESTARI' paraneter is coded on the JOB
statement of the resubmitted job.) RD=NR has no effect on processing if
CHKPT macro instructions are not included in the program.

WHEN YOU CALL A CATALOGED PROCEDURE

The RD parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure" you may
want to override all RD parameters in the procedure or only certain RD
parameters. TO override all RD parameters, code the RD parameter on the
EXEC statement that calls the procedure. This establishes one restart
request for all the steps in the procedure. To override only certain RD
parameters, code, on the EXEC statement that calls the procedure,
RD.procstepname for each procedure step that you want to override. The
restart request will then pertain only to the named procedure step.

92 JCL Reference (Release 21.7)

References

1. For detailed information on the checkpoint/restart facilities, refer
to the publication Advanced Checkpoint/Restart Planning Guide, the
topic "checkpoint and Restart" in the publication Supervisor
services and Macro Instructions, and "Using the Restart Facili ties"
in Appendix B of this publication.

2. For information on how to code the CHKPT macro instruction, refer to
the publication supervisor services and Macro Instructions.

Examples of the RD Parameter

1. //STEPl EXEC PGM=GIIM,RD=R

Permits exe~ution to be automatically restarted with this step if it
abnormally terminates.

2. //NEST EXEC PGM=T18,RD=RNC

Permits execution to be automatically restarted with this step if it
abnormally terminates; suppresses the action of CHKPT macro
instructions issued in the program this job step uses.

3. //CARD EXEC PGM=WTR ,RD=NR

Neither automatic step restart nor automatic checkpoint restart can
occur, but CHKPT macro instructions issued in the program tha t this
job step executes can establish checkpoints.

4. //STP4 EXEC BILLrNG,RD.PAID=NO,RD.BILL=NR

Specifies that different restart requests pertain to each of the
named procedure steps (PAID and BILL).

section III: The EXEC statanent -- RD Parameter 93

EXEC

The REGION Parameter - Without Main Storage Hierarchy Support (For MVT)

REGION=va lueK

valueK
specifies the number of contiguous 1024-byte areas of main storage
to be allocated t·o the job step. The number can range from one to
five digits but may not exceed 16383.

Rules for Coding
1. Code an even number. (If you code an odd number, the system treats

it as the next highest even number~ When the value 16383K is coded,
the system treats it as 16384K. However, the value 16384K must not
be coded on the EXEC statement.)

2. If you have coded the REGION parameter on the JOB statement" REGION
parameters on the job's EXEC statements are ignored.

3 • If the REGION paramet er is coded for MF!'" the parameter is not used,
but is checked for syntax.

Requesting Main Storage
The REGION keyword parameter is used to specify how much main storage.,
in contiguous bytes, is to be allocated to the job step. Code the REGION
parameter when you want more storage or I ess storage than would be
allocated if the default region size was used. The default region size
is established as a PARM parameter field in the cataloged procedure for
the input reader. you can consult the Storage Estimates publication to
help you determine how much main storage is required to process your job.

ACQUIRING ADDITIONAL MAIN STORAGE

If the step may require use of more main storage than has been
allocated, you can code the ROLL parameter on either the JOB statement
or EXEC statement and request that the system try to provide you with
additional main storage. The ROLL parameter is described in the chapters
"The ROLL Parameter" later in this section and in section II.

WHEN YOU CALL A CATALOGED PROCEDURE

The REGION parameter nay be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure" you may
want to override all REGION parameters in the procedure or only certain
REGION parameters. TO override all REGION parameters" code the REGION
parameter on the EXEC stateme!.lt that calls the procedure. Each procedure
step will be allocated the same amount of storage. To override only
certain REGION parameters, code, on the EXEC statement that calls the
procedure, REGION.procstepname for each procedure step that you want to
override. The requested region size will then be allocated only to the
named procedure step.

94 JCL Reference (Release 21.7)

Examples of the REGION Parameter
1. //JUNE EXEC PGM=A1403,REGION=112K

Specifies that 112 contiguous 1024-byte areas of main storage are to
be allocated to the job step,.

2. //STP2 EXEC PGM=RATL,REGION=70K,ROLL=(YES,YES)

The REGION parameter specifies that 70 contiguous 1024-byte areas of
main storage are to be allocated to the job step. In the ROLL
parameter, the fil:St subparameter tells the system that this step
may be rolled out if additional storage is required by another job;
the second subparameter tells the system that it should try to
provide this step with additional main storage if it is required.

3. //STP4 EXEC BILLrNG,REGION.LAXE=80K,REGION.BILL=108K

Specifies that different region sizes are to be allocated to the
named procedure steps (LATE and BILL).

section III: The EXEC Statenent -- REGION Parameter 95

EXEC

The REGION Parameter - With Main Storage Hierarchy Support
(For MVf, Excluding M65MP)

REGION=(valueK,value~K)

valueK
specifies the number of contiguous 1024-byte areas in hierarchy 0 to
be allocated to the job step. If IBM 2361 Core Storage is present,
the number cannot exceed 16383.

valuej.K
specifies the number of contiguous 1024-byte areas in hierarchy 1 to
be allocated to the job step. If IBM 2361 Core Storage is present,
the number cannot exceed 1024 (for each Modell) or 2048 (for each
Model 2).

Rules for Coding

1. When processor storage includes hierarchies 0 and 1, the sum of
value and value!. cannot exceed 16383.

2 • Code even numbers. (If you code an odd number, the system trea ts it
as the next highest even number. When 16383K is coded the system
treats it as 16384K. However, a sum of 16384K must not be coded on
the EXEC statement.)

3. When you are requesting storage only in hierarchy 1, precede valuej",
with a comma, to indicate the absence of value.

4. When you are requesting storage only in hierarchy 0, you need not
code the parentheses.

5. If you have coded the REGION parameter on the JOB statement, REGION
parameters on the job's EXEC statements are ignored.

6. If the REGION parameter is coded for MFT, the parameter is not used,
but is checked for syntax.

Requesting Main Storage in One or Two Hierarchies

The REGION keyword parameter is used to specify how much main storage is
to be allocated to each job step, and, when main storage hierarchy
support has been specified at system generation, in which hierarchy or
hierarchies to allocate main storage. With main storage hierarchy
support, storage hierarchies 0 and 1 are provided. If IBM 2361 Core
Storage, Model 1 or 2, is present in the system, processor storage is
referred to as hierarchy 0 and 2361 Core Storage is referred to as
hierarchy 1. If 2361 COre Storage is not present" a two-part region is
established in processor storage when regions are requested in two
hierarchies. The two parts are not necessarily contiguous in processor
storage.

Code the REGION parameter to specify how much storage is to be
allocated in each hierarchy, or that all storage for the job step is to
be allocated in a particular hierarchy. (If you do not code the REGION
parameter on either the JOB or EXEC statement, the default region size,
which is a PARM parameter field in the cataloged procedure for the input
reader, is used and is always allocated in hierarchy O. If you code the
REGION parameter and request storage only from hierarchy 1, no hierarchy
o segment will be allocated.) You can consult the Storage Estimates
publication to help yoo determine how much main storage is required to
process the job step. Then, depending on your reasons for using
hierarchies, determine how much storage is required in each.

96 JCL Reference (Releas e 21.7)

If main storage hierarchy support was not specified at system
generation and regions are requested in both hierarchies, the region
sizes are combined and an attempt is made to allocate a single region
from processor storage. If a region is requested entirely from hierarchy
1, an attempt is made to allocate the region from processor storage.

ACQUIRING ADDITIONIAL MAIN STORAGE

If the job step may require more main storage than has been allocated,
you can code the ROLL parameter and request that the system try to
provide you with additional main storage in that hierarchy. The ROLL
parameter is described in the chapters "The ROLL Parameter n la ter in
this section and in Section II.

WHEN YOU CALL A CATALOGED PROCEDURE

REGION parameter may be coded on the EXEC statement of a cataloged or
in-stream procedure step. If the job step calls a cataloged procedure,
you may want to override all REGION parameters in the procedure or only
certain REGION parameters. TO override all REGION parameters, code the
REGION parameter on the EXEC statement that calls the procedure. Each
procedure step will be allocated the same amount of storage in the
specified hierarchies. To override only certain REGION parameters, code,
on the EXEC statement that calls the procedure, REGION.procstepname for
each procedure step yru want to override. The requested region size will
then be allocated in the specified hierarchies only to the named
procedure step.

Examples of the REGION Parameter
1. //MART EXEC PGM=TYP ,REGION= (80K,30K)

Specifies that the system is to allocate 80 contiguous t024-byte
areas of storage in hierarchy 0 and 30 contiguous 1024-byte areas of
storage in hierarchy 1. If main storage hierarchy support is not
included in the system, the system will try to obtain 110 contiguous
1024-byte areas in processor storage.

2. // EXEC. PGM=U1489" REGION: (98K)

Specifies that the system is to allocate 98 contiglX>us 1024-byte
areas of storage in hierarchy 0,.

3. //RAND EXEC PGM=SSYS,REGION=(100K,50K),ROLL=(YES,YES>

The REGION parameter specifies that the system is to allocate 100
contiguous 1024-byte areas of storage in hierarchy 0 and 50
contiguous 1024~byte areas of storage in hierarchy 1. In the ROLL
parameter. the first subparameter tells the system that this step
may be rolled out if additional storage is required by another job;
the second subparameter tells the system that it should try to
provide this step with additional main storage if it is required.

4. //STP4 EXEC BILLING,REGION.PAID=(28K,10K),REGION.LATE=(44K,8K)

named procedure steps (PAID and LATE).

Specifies that different region sizes are to be allocated to the
named proceudre steps (PAID and LATE).

Section III: The EXEC Statement -- REGION Parameter 97

EXEC

The ROLL Parameter (For MVT)

x

y

ROLL= (x,y)

declares whether the job step nay be rolled out. Code YES if the
step may be rolled out; code NO if the step may not be rolled out.

declares whether the job step may cause rollout of another job step.
Code YES if the step may cause rollout of another job step; code NO
if the step may not caus e rollout of another job step. YES must be
coded if you want additional nain storage allocated to the step when
addi ti onal main storage is required.

Rules for Coding

1. If you code the ROLL parameter, both subparameters must be specified,.

2. If you have coded the ROLL parameter on the JOB statement, ROLL
parameters coded on the job's EXEC statements are ignored.

3. Code ROLL=(NO,YES) or ROLL=(NO,NO) if this step is part of a'
teleprocessing job that uses the Auto poll option. If you allow the
step to be rolled out, the step cannot be restarted properly.

4. If the ROLL parameter is coded for MET, the parameter is not usedll

but is checked for syntax.

When to Code the ROLL Parameter
The ROLL keyword parameter should be coded if the job step may require
more main storage than was requested in the REGION parameter. When you
specify in the ROLL parameter that this job step may cause rollout of
another job step, an attempt is nade to allocate additional storage if
the step requires it. In order to allocate this additional space to a
jOb step, another job step with a lower priority may have to be rolled
out, i.e., temporarily transferred to secondary storage.

'!he ROLL parameter should also be coded when you want control over
whether the job step can be rolled out because of another step's need
for additional main storage. If the ROLL parameter is' not codecl, the
specification made in the PARM parameter field in the cataloged
procedure for the input reader is used.

WHEN YOU CALL A CATALOGED PROCEDURE

The ROLL parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all ROLL parameters in the procedure or only certain
ROLL parameters. To override all ROLL parameters, code the ROLL
parameter on the EXEC statement that calls the procedure. This
establishes one rollout~rollin request for all the steps in the
procedure .• TO override only certain ROLL parameters" code, on the EXEC
statement that calls the procedure, ROLL .• procstepname for each procedure
step that you want to override. The rollout/rollin request will then
pertain only to the named procedure step.

98 JCL Reference (Release 21.7)

Examples of the ROLL Parameter
1. //FILL EXEC PGM=PLUS,ROLL=(YES,YES),REGION=100K

Specifies that this step may be rolled out and may cause rollout of
another job step if this step requires more than lOOK of main
storage.

2. //UP EXEC PGM=2165,ROLL=(NO, YES)

Specifies that this step may not be rolled out but may cause rollout
of another job step,.

3. //STP4 EXEC BILLING" ROLL.LATE=(YES, NO) , ROLL.BILL= (NO,NO)

Specifies that different rollout/roll in requests pertain to each of
the named procedure steps (LATE and BILL).

Section III: The EXEC Statement -- ROLL Parameter 99

EXEC

The TIME Parameter

TlME=
{

(minutes., SeCOnds)}
1440

minutes
specifies the maximum number of minutes the job step can use the
CPU. The number of minutes must be less than 1440 (24 hours).

seconds

1440

specifies the maximum number of seconds beyond the specified number
of minutes the job step can use the CPU, or" if no minutes are
specified" the maximum number of seconds the job step can use the
CPU. The number of seconds must be less than 60.

specifies that the job step is not to be timed. Code 1440 if the
step may require us e of the CPU for 24 hours or more or if the step
should be allowed to remain in a wait state for more than the
established time limit.

Rules for Coding
1 • If the CPU time limit is given in minutes only, you need not code

the parentheses.

2 .If the CPU time limit is given in seconds only, you must code a
comma preceding the seconds to indicate the absence of minutes.

3. YOU must not code TlME=O on an EXEC statenent.

Specifying a Time Limit for a Job Step

The TIME keyword parameter can be used to specify the maximum amount of

I time the job step may use the CPU. (CPU time will appear on the output
listing if system management facilities (SMF) or users accounting
routines supply this information to the output data set.) By coding the
TIME parameter, you can limit the CPU time wasted by a step that goes
into a loop. Nornally, a step that exceeds the specified time limit
causes termination of the job. However, if the System Management ,
Facilities option is included in the system and a user exit routine is
provided, this routine can ,extend the time limit so that processing can
continue. When the TIME parameter is not coded, a default time limit is
assumed. The defaul t is specified as a PARM parameter field in the
catalCXJed procedure for the input reader.

TIME LIMIT FOR WAIT STATES

Since the job step can go into an extremely long wait state, the time a
job step may remain in a wait state is limited. If the System Management
Facilities option is included in the system, the inst'allation determines
this time limit. In this case, if the job step remains in a wait state
for more than the established time limit, the job is terminated unless a
user-provided exit routine extends the wait-state time limit for the
step. If the System Management Facilities option is not included, the
system automatically provides a 30-minute time limit for wait states; if
the job step remains in a wait state for more than 30 consecutive
minutes, the job is terminated.

100 JCL Reference (Release 21.7)

How to Eliminate Timing

Certain applications require that a job use the CPU for 24 hours or
more. In these cases you must eliminate job and step timing by coding
TIME=1440. YOU should also code TIME=1440 if any of the job's steps
should be allowed to remain in a wait state for more than the
established time limit.

If your system includes the System Management Facilities (SMF)
feature and you code TIME=1440, SMF termination messages will indicate
that no CPU time was used; messages indicating the time the job step
started and stopped will not, however, be affected.

HOW THE JOB TIME LIMIT AFFECTS THE STEP TIME LIMIT

The remaining job time may affect the amount of time the step can use
the CPU. If the remaining CPU time for the job is less than the CPU time
limit specified on the EXEC statement, the step can use the CPU only for
the job's remaining CPU time. For example, if the job's remaining CPU
time is 5 minutes and the step specifies a CPU time limit of 10 minutes,
the step can only use the CPU for 5 minutes.

WHEN YOU CALL A CATALOGED PROCEDURE

The TIME parameter may be coded on the EXEC statement of a cataloged (or
an in-stream) procedure step. If the job step calls a cataloged
procedure, you may want to override all TIME parameters in the procedure
or only certain TIME parameters. To override all TIME parameters, code
the TIME parameter on the EXEC statement that calls the procedure. This
applies a CPU time limit for the entire procedure, and nullifies any
TIME parameters that appear on EXEC staternents in the procedure. To
override only certain TIME parameters, code, on the EXEC statement that
calls the procedure, TlME.procstepname for each procedure step that you
want to override. The CPU time limit will then pertain only to the named
procedur e step.

Reference

1. A discussion of the system Management Facilities option is contained
in the Introduction publication. Information on user exit routines
to be used with the System Management Facilities option is contained
in the System Management Facilities Guide.

Examples of the TIME Parameter
1. //STEPl EXEC' PGM=GRYS,TlME=(12,10)

specifies that the maximum amount of time the step can use the CPU
is 12 minutes 10 seconds.

2. //FOUR EXEC PGM=JPLUS,TlME=(,30)

specifies that the maximum amount of time the step can use the CPU
is 30 seconds.

3. //INT EXEC PGM=CALC, TIJv1..E=5

specifies that the maximum amount of time the step can use the CPU
is 5 minutes.

section III: The EXEC Staternent -- TIME Parameter 101

EXEC

I 4. //LONG EXEC PGM=INVANL,TIME=1440

specifies that the job step is not to be timed. Therefore, the step
may use the CPU and may remain in a wait state for an unspecified
period of time.

5. //STP4 EXEC BILLING,TIME.PAID=(45" 30) ,.TIME.BILL=(112, 59)

specifies that different time limits pertain to each of the named
procedure steIS.

102 JCL Reference (Release 21.7)

Section IV: The DD Statement

The DD (data definition) statement describes a data set that is to be
used in a job step and specifies the input and output facilities
required for use of the data set. Each data set to be used in a step
requires a DD statement; all DD statements for a step follow that step's
EXEC statement. Although all DD statement parametexs are optional" a
blank operand field is invalid, except when you are overriding DD
statements that define concatenated data sets. (See "Overriding DD
statements that Define concatenated Data Sets" in Appendix A of this
publication.) YOU can include a maximum of 255 DD statements per job
step.

DD Statement Format
(/ /ddname DD operands conunents

The DD statement consists of the characters //, in columns 1 and 2, and
four fields - the name, operation (DD), operand, and conunents field.

Rules for Coding
Follow the order listed below when coding the DD statement:

1. Code the characters / / in columns 1 and 2.

2. Code a ddname, starting in column 3. (A ddname is not coded in two
cases. These cases are described in the chapter "Assigning a
Ddname. ft)

3. Follow the ddname., or // if a ddname is not coded, with at least one
blank.

4. Code DD.

5. Follow DD with at least one blank.

6. Code any desired positional parameter.

Section IV: rrbe DD Statement 103

7. Code any desired keyword parameters. separate each parameter with a
comma.

, , " I ' , , , I , " , I ' , , ,I, " 'I' , ,

8. Code at least one blank.

9. Code any desired comments.

Positional and Keyword Parameters
There are two types of parameters that can be coded on the DD statement:

Positional parameters, which must precede any keyword parameters. One of
the following positional parameters may be coded on a DD statement:

*
DATA

DUMMY

DYNAM

These positional parameters are described in the following pages in the
order listed above.

Keyword parameters, which may be coded in any order,. The following
keyword parameters can be coded on a DD statement:

AFF

DCB

DDNAME

DISP

DLM

DSN (see DSNAME)

DSNAME

FCB

LABEL

OUT LIM

QNAME - MFT and MVT with TCAM

SEP

SPACE

104 JCL Reference (Release 21.7)

SPLIT

SUBALLOC

SYSOUT

TERM - MVT with TSO

UCS

UNIT

VOL (see VOLUME)

VOLUME

These keyword parameters are described, after the positional parameters,
in the order listed above.

Sample DD Statements
1. //DDA

2. //PRINT

3. //IN
//

4. //DWN

DD DSNAME= & &TEMP, UNIT=2400, DISP=(NEW"PASS)

DD SYSOUT=F

DD

DD

DSNAME=ALLOC ,DISP= (" KEEP ,DELEl'E)" UNIT=2311,
VOLUME=SER=541382, SPACE=(CYL., (12,1»

*

section IV: The DD statement 105

x

Assigning a Ddname
(/ /ddname DD

The ddname identifies a DD statement so that subsequent control
statements and the data control block in the processing program can
refer to it. The ddname must begin in column 3 and consist of 1 through
8 alphameric or national (a, #, $) characters. The first character must
be an alphabetic or national character.

Each ddname within a job step should be unique. If duplicate ddnames·
exist between successive EXEC statements within one job, allocation of
devices and space and disposition processing are done for both DD
statements; however, all references are·directed to the first such DD
statement in the step.

There are several special ddnames that tell the system that you want
to make use of particular facilities. Except for the ddname SYSCHK, do
not use the special ddnames unless you want these facilities. These
special ddnames are individually discussed following "Examples of Valid
Ddnames" in the section titled "Special Ddnames".

Apart from the restricted use of certain special ddnames, there are
two instances when yru should not code a ddname at all:

1. If a DD statement is to define a data set that is concatenated with
a data set defined by a preceding DO statement.

2. If the DD statement is the second or third consecutive DD statement
that defines an indexed sequential data set. (Defining an indexed
sequential data set on more than one DD statement is discussed in
"Appendix C: Creating and RetrieVing Indexed sequential Data Sets.")

WHEN ADDING OR OVERRIDING INFORMATION IN A CATALOGED PROCEDURE STEP

If the job step uses a cataloged or a in-stream procedure, DD statements
that follow the EXEC statement are used (1) to override parameters on
the various DO statements in the procedure, and (2) to add new DD
statements to the procedure. These modifications exist only for the
duration of the job step; they do not change the procedure permanently.

To make one of these modifications, each ddname must be qualified by
a procedure step name, i.e., procstepname.ddname,as follows:

1.

2.

I 3.

4.

To override parameters on a DD statement, code the name of the
procedure step in which the DD statement appears, followed by a
period, followed by the name of the DD statement that you want to
override.

To add DD statements to a procedure step, code the name of the
procedure step in which you want to add the statement., followed by a
period, followed by a ddname of your choosing.

To supply a procedure step with data in the input stream, code the
name of the procedure step that is to use the data, followed by a
ddname. This ddname rna y be predefined in the procedure step by means
of the DDNAME parameter. In this case, the ddname that follows the
procedure step name is the name coded in the DDNAME parameter.
otherwise., yru code a ddname of your choosing.

To define data sets that are to be concatenated and added to the
procedure step, identify the procedure step in which you want to add
the statements, follOW with a ddname of your choosing on the first
OD statement, and omit the ddname on the second DD statement .•

106 JCL Reference (Release 21.7)

I

Examples of Valid Ddnames
1. //DD1 DD

2. //#5863 DD

3. / /INPUT DD
// DD

Because the ddname is missing from the second DD statement" the data
sets defined in these statements are concatenated.

4. //PAYROLL.DAY DD

If the procedure step named PAYROLL includes a DD statement named
DAY, this statement overrides parameters on the statement named DAY.
If the step does not include a DD statement named DAY, this

statement is added to the procedure step for the duration of the job
step.

5. //STEPSIX.DD4 DD
// DD

By identifying the procedure step in which you want to add
statements (STEPS IX) , follOtled by a ddname of your choosing (DD4),
you can define data sets that are to be'concatentated and added to
the procedure step.

section IV: The DD statement -- Assigning a Ddname 107

Special Ddnames
There are five special ddnames that tell the system you want to make use
of a particular facility. The five ddnames and their functions are:

• JOBLIB -

• STEPLIB -

• SYSABEND -

• SYSUDUMP -

• SYSCHK -

JOBLIB

this DD statement defines a. private library that the
system makes available for use by the job.

this DO statement defines a private library that the
system makes available for use by a job step.

this DD statement defines a data set on which a dump
can be written if the step abnormally terminates.
The dump provided would include the system nucleus l,

the processing program storage area" and, possibly, a
trace table.

this DD statement defines a data set on which a dump
can be written if the step abnormally terminates.
The dump provided would include only the processing
program storage area.

this DO statement defines the checkpoint data set and
is included when a deferred checkpoint restart is to
occur.

unless the system is told that the program you request on the EXEC
statement resides in a private or temporary library, the system expects
to find it in the system library (SYS1.LINKLIB). One way to tell the
system that a program resides in a private library is to follow the JOB
statement with a DO statement named JOBLIB. (The other way to tel.! the
system that a program resides in a private library is to include, as one
of the DD statements for a job step, a DO statement named STEPLIB. The
STEPLIB DD statement is described under the next topic" "STEPLIB.") If
you include a JOBLIB DO statement, each tine you request a program the
system first looks in the private library; if the system does not find
the program there, the system looks for it in the system library.

The parameters you code on the JOBLIB OD statement are determined by
whether the library is cataloged. The parameters that must be coded when
the library is cataloged and when the library is not cataloged are
described under "When the Library Is Cataloged" and "When the Library Is
Not Cataloged," respectively. In either case, how you code the OISP
parameter is the same and is described in the topic "The DISP Parameter."

RULES FOR COOING THE JOBLIB DD STATEMENT

1. '!he ddname must be JOBLIB. Never use the ddname JOBLIB except when
you are defining a private library.

2. The JOBLIB DD statement must appear immediately after the JOB
statement to which it pertains.

3. A JOBLIB DD statement cannot appear in a cataloged procedure.

108 JCL Reference (Release 21.7)

The DISP Parameter

TO make the private library available throughout the job" you must code
the DISP parameter to specify the library's status and disposition. One
of the following may be coded:

1. DISP=(OLD,PASS)

The library already exists and is kept at the end of the job.'If you
code DISP=OLD, the system assumes DISP=(OLD,PASS).

2. DISP=(SHR,PASS)

The library already exists and is kept at the end of the job. The
library may be us ed by other jobs that are currently being executed,
as long as all references to the library within the job also specify
SHR. If you code DISP=SHR, the system assumes DISP=(SHR,PASS).

3. DISP=(NEW,PASS)

The library is created and used in the job, and is deleted at the
end of the job.

4. DISP=(NEW,CATLG)

The library is created, cataloged, and used in the job" and is kept
at the end of the job.

When the Library Is Cataloged

If the private library is cataloged, you must always code the DSNAME and
DISP parameters.

• The DSNAME parameter specifies the name of the private library.

• The DISP parameter is either DISP=(OLD,PASS) or DISP=(SHR,PASS).

The other parameter you might code is DCB.

• Code the DCB parameter if complete data control block information is
not contained in the data set label.

If you wish to refer to the private library in a later DD statemen~,
code DSNAME= *. JOBLIB and the DISP parameter, DISP= (OLD, disposition) •
(Do not assign a disposition of DELETE, because the library would then
be deleted at the end of the job step and be unavailable for use during
the remainder of the job.) If a later DD ·stat em en t defines a dataset
that is to be placed on the same volume as the private library, you can
code VOLUME=REE=*.JOBLIB to obtain volume and unit information.

When the Library is Not Cataloged

If the private library is not cataloged, you must always code the DISP
and UNIT parameters.

• The DISP parameter is

DISP= (OLD, PASS) , DISP=(SHR"PASS), DISP=(NEW,PASS), or
DISP=(NEW,CATLG).

• The UNIT parameter specifies the device to be allocated to the
library.

Section IV: The DD Statement -- Special Ddnames 109

You must always code the VOLUME parameter unless the status of the data
set is NEW. The DSNAME parameter is required unless the data set has
been assigned a dispC13ition of (NEW, PASS). If the status of the data set
is NEW, the SPACE parameter is required.

• The VOLUME parameter identifies the volume serial number.

• The DSNAME parameter specifies the name of the private library.

• The SPACE parameter allocates space for the library on the
designated volume.

The other parameter yoo might code is DCB.

• Code the DCB parameter if complete data control block information is
not contained in the data set label.

If you wish to refer to the private library in a later DD statement,
code DSNAME=*.JOBLIB, VOLUME=REF=*.JOBLIB (or VOLUME=SER=serial number,
UNIT=unit information), and the DISP parameter, DISP=(OLD,disposition).
(Do not assign a disposition of DELETE, because the library would then
be deleted at the end of the job step and be unavailable for use during
the remainder of the job). If a later DD statanen t defines a dataset
that is to be placed on the same volume as the private library, you can
code VOLUME=REF-=*.JOBLIB to obtain volume and unit information.

Concatenating Libraries

You can arrange a sequence of DD statements that define different
libraries. The libraries are searched in the order in which the DD
statements appear. If the system library is not defined on one of these
DD statements, it is searched last.

To concatenate libraries, omit the ddname from all the DD statements
defining the I ibraries except the first DD statement. The first DD
statement must specify a ddname' of JOBLIB, and the entire group must
appear immediately after the JOB statement.

When the Job Includes a STEPLIB DD Statement

If . both JOBLIB and STEPLIB DD statements appear in a job. the STEPLIB
definition has precedence, i.e., the private library defined by the
JOBLIB DD statement is not searched for any step that contains the
STEPLIB definition. If you want the JOBLIB definition ignored but the
step does not require use of another private library,. define the system
library on the STEPLIB DD statement:

I / /STEPLIB DD DSNAME=SYS1.LINKLIB.DISP=SHR

Examples of the JOBLIB DD Statement

1. //PAYROLL JOB
//JOBLIB DD DSNAME=PRIVATE.LI~,DISP=(OLD,PASS)
/ /ST EP1 EXEC PGM=SCAN
//STEP2 EXEC PGM=UPDATE
//DD1 DD DSNAME=*.JOBLIB,DISP=(OLD,PASS)

The private library defined on the JOBLIB DD statement is cataloged.
The statement named DD1 refers to the private library defined in the
JOBLIB DD statement .•

110 -JCL Reference (Release 21 .• 7)

2.

3.

4.

IIPAYROLL
IIJOBLIB
II
IISTEPl
II STEP 2
IIDDl

JOB REGION=86K
DD DSNAME=PRIV. DEPT58, DISP=(OLD,PASS):, UNIT=2311,

VOLUME=SER=D58PVL
EXEC PGM= DAY
EXEC PGM=BENEFITS
DD DSNAME=*.JOBLIB, VOLUME=REF=* .JOBLIB,DISP= (OID., PASS)

The private library defined on the JOBLIB DD statement is not
cataloged. The statement named DDl refers to the private library
defined in the JOBLIB DD statement.

IITYPE
IIJOBLIB
II
IISTEPl
IIDDA
II
IISTEP2

JOB MSGLEVEL=(l,l)
DD DSNAME=GROUP8.LEVEL5,DISP=(NEW,CATLG),UNIT=2311,

VOLUME=SER=148562, SPACE= (CYL, (50,,3,4»
EXEC PGM=DISC
DD DSNAME=GROUP8.LEVEL5(RATE),DISP=OLD,

VOL=REF= *. JOBLI B
EXEC PGM=RATE

x

X

X

The private library defined on the JOBLIB DD statement does not
exist yet; therefore, all the parameters required to define the
private library are included on the JOBLIB DD statement. The library
is not created until STEPl when a new manber is defined for the
library. The system . looks for the program named DISc in the system
library; the system looks for the program named RATE first in the
private library.

IIPA mOLL JOB
IIJOBLIB DD
II DD
II DD
II

DSNAME=KRG.LIB12,DISP=(OLD,PASS)
DSNAME=GROUP31.TEST, DISP= (OLD, PASS)
DSNAME=P~lSLIB,UNIT=2311,
DISP=(OLD,PASS),VOLUME=SER=34568

X

Several private libraries are concatenated. The system searches for
each program in ·this order: KRG.LIB12, GROUP31.TEST, PGMSLIB, before
searching SYS1.LINKLIB.

STEPLIB
Unless the system is told that the program requested on the EXEC
statement resides in a private or temporary library" the system expects
to find the program in the system library (SYS1.LINKLIB). One way to
tell the system that the program the job step needs resides in a private
library is to include, as one of the DD statements for that step" a DD
statement named STEPLIB. (The other way to te 11 the system that a
program resides in a private library is to follow the JOB statement with
a DD statement named JOBLIB. The JOBLIB DD statement is described in the
previous topic, "JOBLIB.") If you include a STEPLIB DD statement, each
time a program is requested the system first looks in the private
library for the program the job step uses; if the system does not find
the program there, it looks for the program in the system library.

RULES FOR CODIN3 THE STEPLIB DD STATEMENl'

1. The ddname must be STEPLIB. Never use the ddname STEPLIB except when
you are defining a private library.

2. A STEPLIB DD statement can appear in any position among the DD
statements for the step.

3. The liorary defined on a STEPLIB DD statement can be referred to by
or passed to later job steps in the same job.

Section IV: The DD statement -- Special Ddnames 111

4. A STEPLIB DD statement can appear in a cataloged procedure,.

5. The parameters you code on the STEPLIB DD statement are determined
by whether the library is cataloged" not cataloged, or passed by a
previous job step.

When the Library is Cataloged

If the private library is cataloged, you must always code the DSNAME and
DISP parameters,.

• '!he DSNAME parameter specifies the name of the private library.

• The DISP parameter specifies the library's status, either OLD or
SHR, and its disposition. The disposition would be KEEP, UN CAT LG,
DELEl'E, or PMS, depending on how you want the library treated after
its use in the job step.

The other parameter yru might code is DCB.

• Code the DCB parameter if complete data control block information is
not contained in the data set label.

When the Library Is Not Cataloged or Passed

If the private library is not cataloged or passed, you must always code
the DSNAME, DISP, VOLUME, and UNIT parameters.

o The DSNA~m parameter specifies the name of the private library.

• '!he DISP parameter specifies the library's status" either OLD or
SHR, and its disposition. The disposition would be KEEP, CATLG,
DELETE, or PASS, depending on how you want the library treated after
its use in the job step.

• The VOLUME parameter identifies the volume serial number.

• '!he UNIT parameter specifies the device to be allocated to the
library •.

The other parameter you might code is DCB.

• Code the DCB parameter if complete data control block information is
not contained in the data set label.

When the Library Is Passed By a Previous Step

If a private library has been assigned a disposition of PASS, a later
job step can use the library when you code the DSNAME and DISP
parameters on a STEPLIB DD statement.

• The DSNAME parameter specifies either the name of the private
library or a backward reference of the form *.stepname.STEPLIB. If
the STEPLIB DD statement that assigned a disposition of PASS occurs
in a cataloged procedure, the backward reference must include the
procedure step name, i.e., *.stepname.procstepname.STEPLIB.

• The DISP parameter specifies a status of OLD and a disposition. The
disposition would be KEEP, CATLG, UNCATLG, DELErE, or PASS,
depending on how you want the library treated after its use in the
job step.

11? JCL Reference (Release 21.7)

concatenating Libraries

You can arrange a sequence of DD statements that define different
libraries. The libraries are searched in the order in which the DD
statements appear. If the system library is not defined on one of these
statements, it will be searched last for the program the job step uses.

TO concatenate libraries, omit the ddname from all the DD statements
defining the libraries except the first DD statement. The first DD
statement must specify a ddname of STEPLIB, and the entire group appears
as part of the DD statements for a particular step.

When the Job Includes a JOBLIB DD statement

If both JOBLIB and STEPLIB DD statements appear in a job, the STEPLIB
defini ti on has precedence, i. e., the private I ibrary defined by the
JOBLIB DO statement is not searched for any step that contains the
STEPLIB definition. If you want the JOBLIB definition ignored but the
step does not require use of another private library, define the system
library on the STEPLIB DD statement:

//STEPLIB DD OSNAME=SYS1.LINKLIB,DISP=OLD

Examples of the STEPLIB DD ·Statement
1. / /PA mOLL JOB

//STEP1 EXEC LAB14

2.

/ /STEP 2 EXEC PGM=SPKCH
//STEPLIB DD DSNAME=PRIV.LIB5,DISP=(OLD,KEEP)
//STEP3 EXEC PGM=TIL80
//STEPLlB DD DSNAME=PRIV.LIB13,DISP=(OLD,KEEP)

The private libraries defined in STEP2 and STEP3 are cataloged.

//PAYROLL
//JOBLIB
//STEP1
//STEP2
//STEPLIB
//
//STEP3
//STEP4
//STEPLIB
//

JOB
OD DSNAME=LIB5.GROUP4,DISP=(OLD,PASS)
EXEC PROC=SNZ12
EXEC PGM=SNAP10
DD DSNAME=LIBRARYP,DISP= (OLD, PASS) ,

UNIT=2311,VOLUME=SER=55566
EXEC PGM=A1530
EXEC PGM=SNAP11
DD DSNAME=*.STEP2.STEPLIB,

DISP= (OLD,KEEP)

x

x

The private library defined in STEP2 is not cataloged. The STEPLIB DD
statement in STEP4 refers to the library defined in STEP2. Since a
JOBLIB DD statement is included, STEP1 and STEP3 could execute
programs from LIB5.GROUP4 or, if not found there, from SYS1.LINKLIB.

STEP2 and STEP4 could execute programs from LIBRARYP or
SYS1.LINKLIB.

3,. / /PAYROLL JOB
//JOBLIB DD DSNAME=LIB5.GROUP4,DISP=(OLD,PASS)
//STEPl EXEC PGM=SUM
//STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD
/ /ST EP2 EXEC PGM=VARY
//STEP3 EXEC PGM=CALC
//STEPLIB DD DSNAME=PRIV.WORK,DISP=(OLD,PASS)
// DD DSNAME=LIBRARYA,DISP=(OLD,KEEP),
// UNIT=2311,VOLUME=SER=44455
// DD DSNAME=LIB.DEPT88,DISP=(OLD,KEEP)
//STEP4 EXEC PGM=SHORE

section IV: The DD Statement -- special Ddnames 113

x

STEP 2 and STEP4 can use programs contained in the private library
named LIBS. GROuP 4 , which is defined in the JOBLIB DD statement.
STEP1 can use a program only from the system library, since the
library defined on the STEPLIB DO statement is the system library
and the JOBLIB definition is ignored. A concatenation of private
libraries is defined in STEP3. The system searches for the program
named CALC in this order: PRIV.WORK, LIBRARYA, LIB.DEPT88,
SYS1.LINKLIB. If a later job step refers to the STEPLIB DD statement
in STEP3, the system will search for the program in the private
library named PRIV.WORK, and if not found there" in SYS1.LINKLIS,.

SYSABEND and SYSUDUMP
Each job step may contain one DD statement with a ddname of either
SYSABEND or SYSUDUMP; if both are included, the last statement is used.
These DD statements define a data set in which an abnormal termination
dump can be written if the job step abnormally terminates. (Never use
the ddname SYSABEND or SYSUDUMP unless you are defining a data set in
which a dump can be written.) The dump provided when the SYSABEND DD
statement is used includes the system nucleus, the processing program
storage area, and a trace table, if the trace table option (MFT only)
was requested at system generation. '!he SYSUDUMP DD statement provides
only a dump of the processing program storage area.

The parameters you code on one of these statements are determined by
whether you want the dump written to a unit record device or stored and
written at a later time.

WRITING THE DUMP TO A UNIT RECORD DEVICE

If you want the dump written to a unit record device" you code either
the UNIT or SYSOUT parameter.

• The UNIT parameter specifies the unit record device to which you
want to write the dump, e.g., UNIT=1403.

• The SYSOUT parameter specifies the output class through which you
want the data set routed" e.g., SYSOUT=A.

If the SYSOUT parameter is coded, the dump is not routed directly to
a system output device. Instead, the dump is stored on a direct access
device and later written on a system output device. If you want control
over which direct access device the dump is stored on, you can include
the UNIT parameter. yoU can also control the amount of space allocated
to the dump by including the SPACE parameter. Otherwise" the system
assigns a direct access device and space for a dump. (The device and
space that the system assigns are specified as PARM parameter fields in
the cataloged procedure for the input reader.) If you require a great
deal of space for dumping, you should request enough space with the
SPACE parameter rather than using the default; if there is not enough
space, the system will not write the dump and will not issue a
diagnostic message.

STORING THE DUMP

If you want to store the dump and write it at a later time, the OD
statement must include the DSNAME, UNIT, VOLUME, and DISP parameters.

• 1be DSNAME parameter specifies the name of the data set.

• The UNIT parameter specifies the device to allocate to the da ta set.

114 JCL Reference (Release 21.7)

• The VOLUME parameter identifies the volume serial number.

• The DISP parameter specifies the data set's status and disposition.
since you want to store the data set" the data set's disposition
must be either KEEP, CATLG, or PASS.

I f the dump is to be stored on a direct access device,. you must code
ei ther the SPACE, SPLIT, or SUBALLOC parameter,.

• The SPACE, SPLIT, or SUBALLOC parameter specifies the amount of
space you want allocated to the data set. (Note: Excluding the
requiranents of the BSAM modules, the control program requires 2784
bytes of main storage within the partition of the failing task to
provide dum~. Of the 2784 bytes 1344 are required for EOV
processing should the initial space specifications for a direct
access device be exceeded. This should be taken into consideration
when making the specification on the SYSABEND or SYSUDUMP DD
statements.)

Reference:

I Re.fer to the Programmer's Guide to Debugging for information on how to
interpret dumps.

Examples of the SYSABEND and SYSUDUMP DD Statements
1. //STEP2

//SYSABEND
EXEC PGM=A
DD SYSOUT=A

The SYSABEND DD statement specifies that you want the dump routed
through the standard output class A.

2. //STEP3
//SYSUWMP

EXEC PGM=B
DD SYSOUT=F,SPACE=(TRK,(O,50»,UNIT=(2311,3)

The SYSUOUMP DD statement specifies that you want the dump routed
through the output class F. The dump is tanporarily stored on the
specified device. If the UN IT and SPACE parameters were not coded"
the system would assign a direct access device and an estimate of
space required for the dump. In the SPACE parameter, zero tracks are
requested for the primary quantity; therefore, no space is allocated
unless the step abnormally terminates. If the step abnormally
terminates" space for a dump is allocated using the secondary
quantity. Requesting multiple units increases the likelihood that
one of the volumes mounted on these devices contains enough space to
allocate the secondary quantity.

3.. //STEP1
//SYSABEND
//
//STEP2
//SYSABEND

EXEC PGM=PROGRAM1
DO DS NAME=DUMP, UNIT=2311, DISP= (" PASS" KEEP) , X

VOLUME=SER=1234,SPACE=(TRK,(110,10»
EXEC PG M=PROO RAM2
DD DSNAME=*.STEPl.SYSABEND,DISP=(OLD,DELETE,KEEP)

The SYSABEND DO statements specify that you want the dump stored.
The space request in STEPl is large (110 tracks) so that the dumping
operation is not inhibited due to insufficient space; if STEPl does
not abnormally terminate but STEP2 does, the dunp will be written
using the space alloca ted in STEPl. In both steIB:. a conditional
disposition of KEEP is specified. This allows storing of the dump if
either of the steps abnormally terminates. If both of the steps are
successfully executed, the second term of the DISP parameter
(DELETE) in STEP2 causes the data set to be deleted and the space
acquired for dumping to be freed.

Secti on IV: The DD Statement -- Special Ddnames 115

4. //STEP1
//SYSUIlJMP
//
//STEP2
//IN
//

EXEC PGM=WWK
DD DSNAME=DUMP,UNIT=2311,DISP=C,DELETE,

REEP) ,VOLUME=SER=54366"SPACE= (TRK, (80; 10»
EXEC PGM=PRINT, COND=QNLY
DO OSNAME=*.STEPl.SYSUDUMP,DISP=(OLD,DELETE),

VOLUME=REF=*.STEP1.SYSUDUMP

x

x

STEPl specifies that the dump is to be stored if the step abnor.mally
terminates. Becaus e COND=ONLY is specified in STEP2" the step is
executed only if STEP1 abnormally terminates.. STEP2 uses a program
tha t pri nts the dump.

SYSCHK
I.f CHKPr macro instructions w'ere executed during the original execution
of your processing program, checkpoint entries were written on a
checkpoi nt data set. If you plan to resubmit your job for restart and
execution is to be restarted at a particular checkpoint, you must
include a nn statement named SYSCHK when you resubmit the job. The
SYSCHK DD statement defines the data set on which the checkpoint entry
was written.

RULES FOR CODING THE SYSCHK DD STATEMENT

1. The ddname must be SYSCHK. SYSCHK can be used as the ddname of other
DD statements in jom.

2. The SYSCHK DD statement must immediately precede the first EXEC
statement of the resubmitted job when restart is to begin at a
checkpoint. (If the first EXEC statement is preceded by a DD
statement named SYSCHK arid restart is to begin at a step, the SYSCHK
OD statement is ignored.)

3. If a JOBLIB DD statement is included, the SYSCHK DD statement must
follow it.

4. The RESTART parameter must be coded on the JOB statement; otherwise"
the SYSCHK DD statement is ignored.

5. The parameters you code on the SYSCHK DD statement are determined by
whether the checkpoint data set is cataloged.

When the Checkpoint Data Set Is Cataloged

If the checkpoint dataset is cataloged, you nust always code the OONAME
a nd DIS P parameters.

• The DSNAME parameter specifies the nane of the checkpoint data set.

• The DISP parameter must specify or imply a status OLD and a
disposition of KEEP.

Other parameters you might code are VOLUME, UNIT, LABEL, and DCB.

• If the checkpoint entry exists on a tape volume other than the first
volume of the checkpoint data set, you must indicate this by coding
the volume serial number or volume sequence number in the VOLUME
parameter. (The serial number of the volume on which a checkpoint
entry was written is contained in the console message printed after
the checkpoint entry is written.) If you code the volume serial
number, you must also code the UNIT parameter, since the system will
not look in the catalog for unit information.

116 JCL Reference (Release 2~. 7)

• Code the LABEL parameter if the checkpoint data set does not have
s ta nda rd labels.

• Code DCB=TRTCB=C if the checkpoint data set is on 7-track magnetic
tape with nonstandard labels or no labels.

When the Checkpoint Data Set Is Not Cataloged

If the checkpoint data set is not cataloged" you must always code the
DSNAME, DISP, VOLUME, and UNIT parameters.

• The DSNAME parameter specifies the nane of the checkpoint data set,.
If the checkpoint data set is partitioned, do not include a member
name in the OONAME parameter.

• '!he DISP parameter must specify or imply a status of OLD and
disposition of KEEP.

• The VOLUME parameter specifies the volume serial number of the
volume on which the checkpoint entry resides. (The serial number of
the volume on which a checkpoint entry was written is contained in
the console message printed after the checkpoint entry is written.)

• '!he UNIT parameter specifies the device to be allocated to the data
set.

Other parameters you might code are LABEL and DCB.

• Code the LABEL parameter if the checkpoint data set does not have
standard labels.

• Code DCB=TRTCH=C if the checkpoint data set is on 7-track magnetic
tape with nonstandard or no labels.

Examples of the SYSCHK DD Statement
1.

2.

3.

//JOBl
//SYSCHK
//
//STEPl

JOB RESTART= (STEP 3, CK 3)
DD OSNAME=CHLIB,UNIT=2311,

DISP=OLD,VOLUME=SER=456189
EXEC

The checkpoint data set defined on the SYSCHK DO statement is not
cataloged.

//JOB2
//JOBLIB
//SYSCHK
//
//STEP1

JOB
DD
DD

EXEC

RESTART=(STEP2,NOTE2)
DSNAME=PRIV.LIB3,DISP=COLD,PASS)
DSNAME=CHECKPTS ,DISP= COLD,KEEP)"
UNIT=2400,VOLUME=SER=438291

The checkpoint data set defined on the SYSCHK DD statement is not
cataloged. Note that the SYSCHK DD statement follows the JOBLIB DD
statement.

//JOB3
//SYSCHK
//
//STEPl

JOB RESTART=(*,CHECK4)
DD OSNAME=CHKPTLIB,DISP=OLD,

LABEL=C,NSL),DCB=(TRTCH=C)
EXEC

The checkpoint data set defined on the SYSCHK DO statement is
cataloged and has nonstandard labels.

Section IV: The nn statement -- Special Ddnames 117

x

x

x

The * Parameter.

*

(//ddname DD *

specifies that the data following this statement is to be entered
through the inplt stream for use by a processing program.

Rules for Coding

1.

2.

3.

5.

6.

You may code more than one DD * statement per job step.

When you call a cataloged or in-stream procedure, you may add more
than one DD * statement to a procedure step.

If the data is preceded by a DO * statement, a delimiter statement
following the data is optional.

Only the keywords DLM and DIAGNS and the DCB subparameters BLKSIZE
and BUFNO can be coded on the OD * statement. Any other parameters
coded on a DD * statement are flagged as errors and the job fails,.

A cataloged or in-stream procedure cannot contain a OD * statement,.

Code the DATA parameter instead of the * parameter when the data
c ontai ns job c ont rol stat ements •

Defining Data in the Input Stream

The input stream can be on a card reader, a magnetic tape, or a direct
access device.

If the EXEC statement for the job step specifies a program name, you
can include the data for the job step in the input stream,. If the EXEC
statement for the job step calls a cataloged or in-stream procedure, you
can include the data for each procedure step in the input stream.

If the processing program does not read all the data in an input
stream, the remaining data is flushed without causing abnormal
termination of the job.

You can include several distinct groups of data in the input stream
for a job step or procedure step. The system will recognize each group
of d~ta if you precede each group with a DD * statement, or follow each
group with a delimiter statement, or both. If you code the DLM parameter
on the DD * statement, you must terminate the data with the value
assigned in the DLM parameter. If you do not code the OLM parameter" the
delimiter is /* and is not required. If you leave out the DD * statement
f or a group of data, the system provides a DD * statement having SYSIN
as its ddname.

'!he following rules apply when data is entered through an input
stream:

• The input stream can be on any device supported by QSAM.

• '!he characters in the records must be coded in BCD or EBCDIC.

I I f you require some other mode Of. processing., such as column binary mode
(DCB=MODE=C>, arrange with your installation to provide your program

118 JCL Reference (Release 21.7)

I
with a card reader at the time your job step executes. Then request the
use of the card reader by a DD statement specifying UNIT and DCB
information and provide the operators with the cards to be read under
the special processing mode.

Note: When the automatic SYSIN batching reader is used to read the input
stream, a DD * statement does not appear in the output listing.
Instead, an identically named DD statement describing the temporary data
set created from the input data appears.

The DCB subparameters BLKSIZE, BUFNO, and DIAGNS

The input reader procedure causes data in the input stream to be written
onto a direct access device so that the data can be retrieved rapidly
when it is required by a processing program. As the data is written,onto
the direct access device, the data may be blocked. The block size and
number of buffers used for blocking the data is established in the input
reader procedure assigned to read the input stream. If you want shorter
blocks than would be the case if the block size in the input reader
procedure were assumed, you can specifY the desired block size. (You
cannot request larger blocks.)

To specify the desired block size, code DCB=BLKSIZE=blocksize on the
DD * statement. To decrease the number of buffers, include the DCB
subparameter BUFNO, e.g., DCB= (BLKSIZE=80 ,BUFNO=l). (When a job is
subnitted via remote job entry and the DCB subparameter BUFNO is coded
on a DD * statement, BUFNO is ignored.)

BLKSIZE, BUFNO, and DIAGNS may be coded on a DD statement tha t
contains the DDNAME parameter, which refers to another DD statement.
(You cannot use a backward reference to a previously-defined DD
statement to obtain these DCB subparameters; they must be coded
explici tly on the DD statement that contains the DDNAME parameter.) If,
in turn, the referenced DD statement defines data in the input stream,
the BLKSIZE and BUFNO DCB subparameters are used to block the data.
However, if the referenced DD statement contains its own DCB
subparameters BLKSIZE and BUFNO, these values override those on the DD
statement that contains the DDNAME parameter.

Examples of the * Parameter

1. //INPUT1 DD *

data

/*
//INPUT2 DD *',DLM=HD

data

HD

The DLM parameter on the DD statement named INPUT2 defines a
delimiter ED. This delimiter is used in place of /* to terminate
the data defined in the input stream by INPUT2.

Section IV: The DD statement -- * Parameter 119

2. / /STEP 2 EXEC
//SETUP.WORK DD
//SETUP.INPUTl DD

data

/*
/ /PRINI'. FRM
//PRINT.INP

data

/*

DD
DD

PROC=FRESH
UNIT=2400, IABEL=t, NSL)

*

UNIT=l80
*.

'!be input data defined by the DD statement named SEl'UP. INPUTl is for
use by the cataloged procedure step named SETUP; the input defined
by the DD statement named PRINT.INP is for use by the cataloged
procedure step named PRINT.

3. //INPUT2 DD * ,DCB= (BLKSI ZE=l600, BUFN0=2, DIAGNS=TRACE)

data

/*

The DCB subparameters BLRSIZE and BUFNO override those specified in
the input reader procedure. The DCB sub parameter DIAGNS requests
the OPEN/CLOSE/EOV trace option.

120 JCL Reference (Release 21.7)

The DATA Parameter

(/ / ddname DD DATA

DATA
specifies that the data following this statement is to be entered
through the input stream for use by a processing program. This da ta
contains job control statements (i.e •• these statements have the
characters / / in columns 1 and 2.)

Rules for Coding
1.

2.

3.

4.

6.

7.

The data cannot contain statements with /* (or the delimiter you
assigned in the DLM parameter) in columns 1 and 2.

You may code more than one DD DATA statement per job step.

When you call a cataloged or in-stream procedure. you may add more
than one DD DATA statement to a procedure step.

Each group of data must be preceded by a DD DATA statement and
followed by a delimiter statement (/*).

Only the keywords DLM and DIAGNS and the DCB subparameters BLKSIZE
and BUFNO can be coded on the DD DATA statement. Any other
parameters coded on a DD DATA statement are f lagged as errors and
the job fails.

A cataloged or in-stream procedure cannot contain a DD DATA
sta tement .•

The * parameter may be coded instead of the DA~ parameter when the
data does not contain job control statanents.

Defining Data in the Input Stream
The input stream can be on a card reader. a magnetic tape, or a direct
access device.

If the EXEC statement for the job step specifies a program name, you
can include the data for the job step in the input stream. If the EXEC
statement for the job step calls a cataloged or in-stream procedure. you
can include the data for each procedure step in the input stream.

If the processing program does not read all the data in an input
stream. the remaining data is flushed without causing abnormal
termination of the job.

You can include several distinct groups of data in the input stream
for a job step or procedure step. The system will recognize each group
of data if you precede each group with a DD DATA statement and follow
each group with a delimiter statement. If you code the DLM parameter on
the DD DATA statement. the delimiter terminating the group of data is
the value assigned in the DLM parameter. otherwise. the delimiter is /*.

'!he following rules apply when data is entered through an input
stream:

• The input stream can be on any device supported by QSAM.

• '!he characters in the records must be coded in BCD or EBCDIC.

section IV: The DD Statement -- DATA Parameter 121

If you require some other mode of processing, such as column binary mode
(DCB=MODE=C), arrange with your installation to provide your program
with a card reader at the time your job step executes. Then request the
use of the card reader by a DD statement specifying UNIT and DCB
information:

//name DD UNIT=2540-R,DCB=(MODE=C,BLKSIZE=160)

and provide the operations staff with the deck of cards to be read under
the special processing mode.

Note: When the automatic SYSIN batching reader is used to read the input
stream, a DD DATA statement does not appear in the output listing. •
Instead, an identically named DD statement describing the temporary data
set created from the inplt data. appears .•

The DCB Subparameters BLKSIZE, BUFNO, and DIAGNS

The input reader procedure causes data in the input stream to be,written
onto a direct access device so that the data can be retrieved rapidly
when it is required by a processing program. As the data is written onto
the direct access device, the data may be blocked. The block size and
number of buffers used for blocking the data is established in the input
reader procedure assigned to read the input stream. If you want shorter
blocks than would be the case if the block size in the input reader
procedure were assumed, you can specify the desired block size. (You
cannot request larger blocks.)

To specify the desired block size, code DCB=BLKSIZE=blocksize on the
DD DATA statement. To decrease the number of buffers., include the DCB
subparameter BUFNO, e.g., DCB= (BLKSIZE=80 ;BUFN0=1). (When a job is
sulmitted via remote job entry and the DCB subparameter BUFNO is coded
on a DD DA~ statement, BUFNO is igno!ed.)

BLKSIZE, BUFNO, and DIAGNS may be coded on a DD statement tha t
contains the DDNAME parameter, which refers to another DD statement .• If" in turn, the referenced DD statement defines data in the input stream,
the BLKSIZE and BUFNO DCB sUbparameters are used to block the data.
However, if the referenced DD statement contains its own DCB
subparameters BLKSIZE and BUFNO, these values override those on the DD
statement that contains the DDNAME parameter.

The ASB reader can ndt process the DDNAME parameter for in-stream
procedures. For ASB in-stream procedures, code your DCB subparameter on
the DD * or DD DATA card if you want shorter blocks than the assured
blocksize in the ASB procedure.

Examples of the DATA Parameter
1 • / /INPUT1 DD DAXA,DLM=AD,DCB=DIAGNS=TRACE

data

AD

Defining data in the input stream. The DLM parameter defines a
delimiter., AD. This delimiter is used in place of /* to terminate
the data defined in the input stream. The DCB subparameter DIAGNS
requests the OPEN/CLOSE/EOV trace option.

122 JCL Reference (Release 21.7)

2. //STEP2
//PREP.DD4
//
//PREP.INPUT

/*
//ADD.DD6
//ADD.IN

/*

EXEC PROC=UPDATE
DD DSNAME=A.B.C, VOIDME=SER=D88, UNIT=2311,

SPACE=(TRK,(10,S»,DISP=(,CATLG,DELETE)
DD DATA

data

DD
DD

data

SPACE=(TRK,(S,l»

*

X

Defining data in the input stream. The input defined by the DD
statement named PREP. INPUT is for use h¥ the cataloged procedure
step named PREP. This data contains job control statements. The
input defined by the DD statement named ADD.IN is for use by the
cataloged procedure step named ADD. Since this data is defined by a
DD * statement, it must not contain job control statements.

3. //INPUT2 DD DATA, DCB=(BLKSIZE=400, BUFNO=l)

data

/*
//INPUT3 DD DATA

data

/*

Defining several groups of data in the input stream. The DCB
subparameters coded on the DD statement named INPUT2 are used to
block the data that follows that statement.

Section IV: The DD Statement -- DATA Parameter 123

The DUMMY Parameter

(//ddname DD DUMMY

DUMMY
specifies that no device or external storage space is to be
allocated to the data set, no disposition processing is to be
performed on the data set, and, for BSAM and QSAM, specifies that no
input or output operations are to be performed on the data set.

Rules for Coding
1. You can code the DUMMY parameter by itself or follow it with all of

the parameters, except the DDNAME parameter, necessary to define a
data set. DUMMY and DDNAME are mutually exclusive.

2. If the DUMMY parameter is coded and an access method other than the
basic sequential access method (BSAM) or queued sequential access
method (QSAM) is requested to read or write the data set, or if the
DUMMY parameter is coded and the access method of BDAM load mode
(BSAM with DCB MACRF=WL) is requested, a programming error occurs.

3. Data sets concatenated to a DUMMY data set will also be treated as
DUMMY data sets by the system.

What the DUMMY Parameter Does
When you use either the basic sequential or queued sequential access
method, the ruMMY parameter allows your processing program to execute
without performing input or output operations on a data set. When the
processing program asks to write a dummy data set, the write request is
recognized, but no data is transmitted. When the processing program asks
to read a dummy data set, an end-of-data-set exit is taken immediately.

Besides bypassing input or output operations on a data set, the
DUMMY parameter causes the UNIT, VOLUME, SPACE, and DISP parameters,
when coded on the DD DUMMY statement, to be ignored (if coded, these
parameters are checked for syntax). Therefore, no devices or external
storage space is allocated to the data set and no disposition processing
is performed on the data set.

If you know that certain parts of a program "work" and need not be
processed each time the job is submitted for testing, the DUMMY
parameter can help s ave time. The DUMMY parameter can also be used to
suppress the writing of data sets, such as output listings, that you do
not need.

Coding the DUMMY Parameter
You can COde the DUMMY parameter by itself or follow it with all the
parameters you would normally code when defining a data set. However, in
one case you must code another parameter after the DUMMY parameter: when
certain :CCB information, not supplied in the DCB macro instruction, is
required for the processing program to execute successfully. For
example, when an OPEN routine requires a BLKSIZE specification to obtain
buffers, and BLKSIZE is not specified in the DCB macro instruction, you
should supply this information b¥ coding the DCB parameter after the
DUMMY parameter. When a DD statement that overrides a procedure DD
statement contains the DUMMY parameter, the system will ignore all the
parameters coded on the procedure DD statement except for the DCB
parameter.

124 JCL Reference (Release 21.1)

When you want input or output operations performed on the data set,
replace the DD statement that contains the DUMMY parameter with a DD
statement that contains all of the parameters required to define this
data set. When a procedure DD statement contains the DUMMY parameter,
you can nullify it by coding the DSNAME parameter on the overriding DD
statement. However, be sure the data set nane is not NULLFn..E.
Assigning the name NULLFILE in the DSNAME parameter has the same effect
as coding DUMMY.

If you code DUMMY on a DD statement and a later DD statement in the
same job refers to this DD statement when requesting .lDlit affinity
(UNIT=AFF=ddnane) or volume affinity (VOLUME=REF=*.stepname.ddname), the
data set defined on the later DD statement is assigned a dummy status.

Examples of the DUMMY Parameter
1. //OUTPUT3

//
DD DUMMY,DSNAME=X.Y.Z,UNIT=2311,

SPACE= (TRK, (10,2» ,DISP= (, CATLG)

'!his DD statement defines a dummy data set. The parameters coded
with the DUMMY parameter are not used.

2. //IN DD DUMMY, DCB= (BLKSIZE=800 ;LRECL=400"RECEM=FB)

'!his DD statement defines a dummy data set. The DCB parameter is
coded to supply information for the data control block that was not
supplied in the DCB macro instruction.

x

3. If you are calling a cataloged procedure that contains the following
DD statement in STEP4

//IN DD DUMMY, DSNAME=ELLN, DISP=QLD, VOL=SER=1125 7" UNIT=2314

you can nullify the effects of the DUMMY parameter by coding:

//STEP4.IN DD DSNAME=ELLN

4. If you are calling a cataloged procedure that contains the following
DD statement in STEPl

/ /TAB DD DSNAME=APP. LEV12, DISP=OLD

you can make this DD statement define a dummy data set by coding:

//STEP1.TAB DD DUMMY

5. If you are calling a cataloged procedure that contains the following
DD statement in a procedure step named LOCK

/ /MSGS DD SYSOUT=A

you can make this DD statement define a dummy data set by coding:

//LOCK.MSGS DD DUMMY

section IV: The DD Statement -- DUMMY Parameter 125

The DYNAM Parameter

(//ddname' DD DYNAM

DYNAM
used in the TSO LOGON procedure to specify that dynamic allocation
of data sets is to be-used. This allows you to defer definition of a
data set until yen require it,. If DYNAM is used in the background
(batch environment), it means the same as DUMMY.

Rules for Coding
1. The dynamic allocation meaning of DYNAM is only effective for

foreground jobs using an MVT system with TSO. For MFT, or MVT
without TSO, DYNAM has the same meaning as coding. DUMMY. Like DUMMY,
DYNAM is a pooitional parameter.

2 • No other parameters may be coded with the DYNAM parameter.

3. The DDNAME parameter cannot be used to refer to a DYNAM DD statement,.

-What the DYNAM Parameter Does
Dl1ring LOGON processing for TSO, no devices or external storage are
allocated to a data set defined by a DD DYNAM statement. The DYNAM
parameter reserves space in internal tables so that data set
requirements that arise during the terminal session may be satisfied.
When you require a data set, the actual device and external storage for
the data set can then be allocated.

When DYNAM is used in the background (batch environment) or in the
foreground before allocation, it has the same effect as coding DUMMY.
Refer to the section on the DUMMY parameter in this book for more
i nf orma. ti on.

Coding the DYNAM Parameter
DYNAM is a positional parameter,. However l• no other parameters may be
c oded wi th DYNAM.

To nullify the DYNAM parameter in a cataloged procedure, code the
SYSOUT or DSNAME parameter in the overriding DD statement,. but do not
use the ISNAME of NULLFILE.

Exampl~ of the DYNAM Parameter
1. //INPUT DD DYNAM

For '!'SO, this statement specifies dynandc allocation may be
requested. For backgrcund jobs, DYNAM has the same meaning a s DUMMY.

126 JCL Reference (Release 21.7)

The AFF Parameter

AFF=ddname

ddname
the name of an earlier DO statement in the same job step that
requests processing of a data set on a separate channel from the one
on which certain other data sets are being processed.

Rules for Coding
1. '!be OD statement that the AFF parameter refers to RUst contain the

SEP parameter.

2. If channel separation is critical" use the UNIT parameter to specify
a particular channel" us ing an absolute unit address or group name.
(How to specify a particular channel is described in the chapter
"The UNIT Parameter.")

3. The AFF, SEP, DDNAME, and SYSOUT parameters are mutually exclusive
parameters; therefore, when SEP, OONAME. or SYSOUT is coded, do not
code the AFF parameter.

OPl'IMIZING CHANNEL USAGE

The devices that the system allocates for data sets used in a job step
are attached to channels. These channels transmit the data in the data
sets from the device to the cpu. When two or more data sets are to be
used in a job step, processing time may be shortened if the system
transmits data over separate channels,.

Requesting Channel Separation
The SEP and AFF parameters can be used to request channel separation.
You list in the SEP parameter the names of up to eight earlier DO
statements that define data sets from which channel separation is
desired. (The SEP parameter is described in the chapter "The SEP
parameter" which appears later in this section.) Coding the AFF
parameter is a shortcut method of requesting channel separation, since
you list only one ddname and that ddname refers to an earlier DO
statement in the same job step that contains the SEP parameter. The AFF
parameter tells the system that you want the data set defined on this DO
statement to have the same channel separation as the data set defined on
the named DO statement,. The AFF parameter does not tell the system that
these two data sets are to be assigned to the same channel -- the system
will decide that based on what devices are available for allocation.

If the system finds it impossible in the current· environment to
satisfy the channel separation request, the system may try to alter the
current environment through some operator action. The operator is given
the option of bringing a device online, cancelling the channel
separation request, or cancelling the job. In certain environments, the
operator may also be able to tell the system to wait for devices to
become free. If you make a nonspecific request for a direct access
volume and request channel separation, your request for separa tion nay
be ignored. This happens when the algorithm used to allocate data sets
to devices is not able to select the device that would permit the
desired channel separation.

secti on IV: The OD Statement -- AFF Parameter 121

Requests for channel separation are ignored for any data sets that
have been allocated devices by the automatic volume recognition (AVR)
option.

If it is essential that data be transmitted via a particular
channel, you can specify an absolute unit address or group name (if the
group of devices is associated with one channel) in the UNIT parameter.

If neither the SEP nor AFF parameter is coded, any available
channel, consistent with the UNIT parameter requirement, is assigned by
the system.

Example of the AFF Parameter
1. //STEPl

//INPUTl
//INPUT2
//
//BUF
//OUTPUT

EXEC PGM=CONVERT
DO DSNAME=A.B.C,DISP=OLD
DD DSNAME=FILE,DISP=QLD,UNIT=2400,

VOLUME=SER=54333
DD UNIT=2400,SEP=(INPUT1,INPUT2)
DD DSNAME=ALPHA,UNIT=TAPE,DISP=(,KEEP),AFF=BUF

'!be system attempts to assign the data sets defined by the DD
statements BUF and OUTPUT to a channe I other than the ones assigned
to the data sets defined by the DD statements INPUT1 and INPUT2.

x

The data sets defined by the DD statements BUF and OUTPUT mayor may
not be assigned to the same channel. The parameter
SEP= (INPUT1, INPUT2) could have been coded instead of AFF=BUF.

128 JCL Reference (Release 21.7)

The DCB Parameter

{

DeB: (list of attributes)

DeB=({dSname } *.ddname
*.stepname.ddname
*.stepname.procstepname.ddname

list of attributes

[,list of attributes]) }

those DeB keyword subparameters that describe the data set and are
needed to complete the data control block. DeB keyword subparameters
are listed in this chapter under "Glossary of DeB Subparameters."

dsname
specifies that the system is to copy DeB information from the data
set label of a cataloged data set named "dsname." The cataloged data
set must reside on a direct access volume and the volume must be
mounted before execution of the job step. Specifying DCB=dsname is
permitted only when DISP=OLD.

* .ddname
specifies that the system is to copy DeB information from an earlier
DD statement in the same job step named "ddname."

*.stepname.ddname
specifies that the system is to copy DeB information from a DD
statement named "ddname," which appears in an earlier job step named
"stepnarne. "

*.stepname.procstepname.ddname
specifies that the system is to copy DeB information from a DD
statement named "ddname," which appears in a procedure step named
"procstepname"i the procedure step is part of a cataloged or
in-stream procedure that was called by an earlier jobstep named
"stepname."

Rules for Coding

1. Separate each DeB keyword subparameter with a comma.

2. If the DeB parameter value consists of only one keyword
subparameter, a data set name, or a backward reference, you need not
enclose it in parentheses.

3. Only the DeB subparameters BLRSIZE, BUFNO and DIAGNS have meaning
when coded with the DDNAME parameter. Do not code other DeB
subparameters with the DDNAME parameter.

Completing the Data Control Block
Each data set that is to be read or written must have a data control
block associated with it. The data control block is originally
constructed in the processing program by a DeB macro instruction. This
data control block can be completed when the DeB macro instruction is
coded or at execution, time through the DeB parameter on the DD statement
and the data set label, if one exists.

section IV: The nn Statement -- DeB Parameter 129

When more than one source is used to complete the data control
block, a merging process takes place (see Figure 9): first, information
coded with the DCB macro instruction is placed in the data control
block; then, information coded on the DD statement is placed in unfilled
sections of the data control block; and, finally, information in the
data set label, if one exists, is placed in still unfilled sections of
the data control block. (DCB information may also be provided by default
options assumed in the OPEN macro instruction and by your program,
either before the data set is opened, by using the DCBD macro
instruction, or in the DCB exit routine. Refer to the Data Management
Macro Instructions publication.)

DCB Macro

DD Statement

B

Data Set Label

D

C

DD Statement
Fills Field

Label Completes
DCB Area

Figure 9. How the Data Control Block Is Filled

DCB Macro Instruction

Step 1

DCB'Area

A Step 2

DCB Area

A Step 3

The DCB macro instruction includes information about the data that is
unlikely to change each time the processing program is executed. Also,
it includes any information that is not related to the DCB parameter and
the data set label (e.g., MACRF, DDNAME, EXIST).

130 JCL Reference (Release 21.7)

DCB Parameter

The DCB parameter is coded on the DD stat anent and includes all the
information that is not specified by any other source. How to specify
DCB information on the DD statement is described in "Specifying DCB
Information on the DD Statement."

Data set Label

If the data set already exists and has standard labels" certain
information is contained in the label that can be used to complete the
data control block. For tape, the data set label can contain the data
set's record format, block size, logical record length" tape recording
density, and, for seven-track tape, tape recording technique. For direct
access, the data set label can contain the data set's organization,
record format, block size, logical record length, and if the data
contains keys, the key length and relative key position.

Specifying DCB Information on the DD Statement
The DCB parameter must be coded on the DD statement unless the da ta
control block is completed by other sources. There are several ways of
specifyi ng DCB information on the DD stat anent. You can:

• Supply all pertinent DCB keyword subparameters on the DD statement.

• Tell the system to copy DCB information from the data set label of
an existing cataloged data set.

• Tell the system to copy DCB information from an earlier DD statement
in the same job.

(Note: If a data set is old and data attributes are now specified which
are variations of the first attributes, the old attributes will be
ignored. You can override DeB attributes only on a DD statement
contained in a cataloged or in-stream procedure, as discussed in
Appendix A: Cataloged and In-stream Procedures.)

SUPPLYING DCB KEYWORD SUBPARAMETERS

The DCB information required to complete the data control block can be
listed as keyword subparameters in the DCB parameter; subparameters are
separated by commas. If the processing program and the DCB parameter
supply the same subparameter, the subparameter on the DD statement is
ignored. Valid DCB keyword subparameters and the values that can be
assigned to them are listed in this chapter under "Glossary of DCB
Subparameters. "

COPYING DeB INFORMATION FROM A DATA SET LABEL

To save time in coding the DCB parameter, you can tell the system to
copy the DCB information from the data set label of a cataloged data set
on a currently mounted direct access volume. The data set must have
standard labels. A permanently resident volume is the most likely place
from which to copy such information because it is always mounted. Code
in the DCB parameter the data set name of the cataloged data set. '!he
name you code cannot contain special characters" except for periods used
in a qualified name.

The following DCB keyword subparameters can be copied from the data
set label: DSORG, RECFM, OPTCD, BLKSIZE, LRECL, KEYLEN, and RKP. The
volume sequence number and expiration date of the cataloged data set are
also copied unless you specify these in the DD statement. If you code

Section IV: The DD Statement -- DCB Parameter 131

any DCB keyword subparameters following the name of the cataloged data
set, these subparameters override any of the corresponding subparameters
that were copied .• Valid DCB keyword subparameters and the values that
can be assigned to them are listed in this chapter under "Glossary of
DCB subparameters."

COPYING DCB INFOR~TION FROM AN EARLIER DD STATEMENT

Another way to save time in coding the DCB parameter is to tell the
system to copy the DCB information from an earlier DD statement in the
sane job. The earlier DD statement can be contained in the same job
step, an earlier job step or cataloged procedure step. If you code any
DCB keyword subparameters following the reference to the DO statement"
these subparameters override any of the corresponding subparameters that
were copied. If the DD statement defines an existing data set and
contains the DCB parameter, the system copies those subparameters from
the earlier DD statement· that were not previously specified for the
existing data set. valid DCB keyword subparameters and the values that
can be assigned to them are listed below.

Glossary of DCB Subparameters

This glossary lists the keyword subparameters that you can code in the
DCB parameter on a DD statement, their definitions l, and the values that
can be assigned to them. Across from each subparameter is a list of the
access methods that use the subparameter.

Certain required subparameters cannot be coded in the DCB parameter,
but must be coded in the DCB instruction. These subparameter s are
described in the Data Management Macro Instructions publication.

BFALN= Can be used wi th BDAM1, BISAM,
BPAM, BSAM, EXCP, QISAM, QSAM

Specifies the boundary alignment of each buffer as follows:

F -- each buffer starts on a fullword boundary that is not also a
doubleword boundary.

D -- each buffer starts on a doubleword boundary.

If not s pecifed by any source, doubl €Word boundary alignment (D) is
assumed. (Specifying BFALN=F in a DD statement causes fragmentation
of main storage if the DCB is closed before releasing buffers.)

Note for QISAM: Buffer alignment information must be supplied from
the same source as the type of buffering (BFTEK) information or both
must be omitted.

B~EK= HI Can be used with EXCP" QSAM, BTAM

132 JCL Reference (Release 21.7)

specifies the type of buffering to be used by the control program as
follows:

For EXCP:

S simple buffering.

E exchange buffering.

For QSAM:

S simple buffering.

E exchange buffering (track overflow cannot be specified in the
RECFM subparameter). Exchange buffering cannot be used with
variable-length blocked or spanned records.

A -- record area buffering. In the locate mode with variable-length
s panned records, the control program reads and wr ites entire
logical records rather than segments.

If neither is specified by any source, simple buffering (S) is
assumed.

Note for QSAM: The type of buffering information must be supplied
from the same source as the boundary alignment (BFALN) information
or both must be omi tted.

For Bl'AM:

D -- dynamic buffering. If dynamic buffering is specified, a buffer
pool must be defined.

For EDAM or BSAM:

R -- record buff ering. For writing records in the create BDAM mode"
this specification allows a logical record to span one or more
tracks. For reading a data set, segments without keys are
offset in the hIffer by the key length. This means that the
actual data starts in the same place in the buffer by the key
length. This means that the actual data starts in the same
place in the buffer for each read.

BLKSIZE=block size Can be used with BDAM, BPAM,
BSAM, QISAM (output only),
QSAM, TCAN

For BDAM, BPAM, BSAM, QISAM, QSAM:

Specifies the maximum length l in bytes, of a block. The maximum
length that can be specified is 32, 760. For blocks of ASCII records
on magnetic tape" the maximum length is 2048 and the minimum length
is 18.

• If RECFM=F" then BLKSIZE must be ~ logical record length.

• If RECFM=FB, then BLKSIZE must be an integral multiple of the
logical record length.

• If RECFM=V, then BLKSIZE must be ~ (logical record length + 4).

• If RECFM=VB, then BLKSIZE must be (n times logical record
length) + 4; where n is the .average number of logical records
in the block rounded to the next highest number.

Section IV: The DD Statement -- DCB Parameter 133

• If RECFM=D or DB, then BLKSIZE must be ~ (maximum record length
+ block prefix length).

Note for QISAM: The block size that is specified must be at least 10
bytes less than the number of data bytes available on one track of
the allocated direct access device. Key length can be included in
the block size" but only as a part of the record length (LRECL). Do
not separately add the key length to the block size. Block size
information is necessary when creating a data set.

Note for BDAM, BPAM, BSAM, QSAM: If you code the BLKSIZE
subparameter in the DCB macro instruction or on a DD statement that
defines an existing data set and the data set has standard labels,
the subparameter overrides the block size specified in the label.

Note for BDAM, BPAM, BSAM with keys: If direct-access device keys
are used, do not include the key length in the block size. specify
key length in the KEYLEN subparameter of the DCB parameter.

Note for BSAM and QSAM with RECFM=FB: If the BLKSIZE subparameter on
a DD statement for a SYSOUT data set (an output data set being
routed through the output stream) is not an integral multiple of and
larger than the logical record length (LRECL) " the block size will
be adjusted to the nearest lower multiple of the logical record
length (LRECL).

Note for TCAM: TCAM specifies the length in bytes of the application
program's work area into which TCAM will move message units to be
processed. The number specified should be at least equal to the
record length as specified by the LRECL operand and must not exceed
32,760. If OPTCD=W is speCified, eight bytes must be included for
the source of the message. If OPTCD=C is specified, one byte must be
included to indicate the message segment. For variable length
records, four bytes must be included for unblocked records or eight
bytes for blocked records.

BUFIN=number of buffers Can be used with TCAM

Specifies the number of bUffers to be assigned initially for
receiving operations for each line in the 1 ine group. The number
specified must be less than the number of buffers in the buffer pool
f or this line groo.p and may not exceed 15. The number of buffers
specified in the combined BUFIN and BUFoUT operands must be no
greater than the rumber of buffers in the buffer pool for this line
group (not including those for disk activity only). If This operand
is omitted, 1 is assumed.

BUFL=buffer length Can be used with BDAM, BISAM,
BPAM, BSAM., EXCP, QISAM" QSAM, TCAM

For BDAM, BIS1\M, BPAM, BSAM, EXCP, QISAM, QSAM:

specifies the length, in bytes, of each buffer in the buffer pool.
The maximum length is 32,760 bytes. Requirements for supplying
buffer length information vary with the d~fferent data organization
and access methods as follows:

BDAM -- required only if dynamic buffering is specified in the MACRF
subparameter of the DCB macro instruction.

BPAM, IEAM, and QSAM -- optional. If omitted and the control
program acquires buffers automatically, the sum of the block size
(BLKSIZE) and key length (KEYLEN) is used to establish buffer
length. If card image is specified (MODE=C) " BUFL=160 must be
specified .•

134 JCL Reference (Release 21.7)

BISAM and QISAM -- not required if the control program acquires
buffers automatically or if dynamic buffering is specified. (For
BISAM, dynamic buffering is specified in the MACRF subparameter of
the DCB macro instruction).

Note: TCAM specifies the length in bytes of each of the Message
Control Program buffers that handle messages received and sent by an
application program. The length must be at least 31 bytes but may
not exceed 65,535 bytes.

BUFMAX=number of buffers can be used with TCAM

specifies the maximum number of buffers to be allocated to a line at
one time. The number specified must be greater than 1 but may not
exceed 15 and must be at least equal to the larger of the numbers
specified by BUFIN and BUFQUT. If this operand is omitted, 2 is
assumed.

BUFNO=number of buffers Can be used with BDAM, BISAM,
BPAM, BSAM~ BTAM, EXCP, QISAM,
QSAM

Specifies the number of buffers to be assigned to the data control
block; the maximum number is 255, but the actual number allowed may
be less than 255 because of limits established when the system WiS

generated. Requirements for coding the BUFNO subparameter are as
follows:

Method of Obtaining the
Buffer Pool

BUILD macro instruction (BDAM,
BISAM, BPAM, QISAM, QSAM)
GEl'POOL macro instruction (BDAM,
BISAM, BPAM, BSAM, QISAM, QSAM)

Automatically (BPAM and BSAM)

Automatically (QISAM and QSAM)

Dynamic buffering (BDAM and BISAM)

Requirement for Indicating
Number of Buffers

Must be specified .•

Control program uses the
number specified in the
GETPOOL macroinstruction.

Must be specified .•

Optional; if not specified,
two buffers are obtained.

Optional; if not specified,
two buffers are obtained.

BUFOFF= {:} Can be us ed with BSAM, QSAM

Specifies the buffer offset. The buffer offset is the length of an
optional block prefix that may precede a block of one or more ASCII
records on magnetic tape.

n -- the length of the block prefix.. For input, n may be any
unsigned decimal number from 0 through 99. For output I, n can
only be o.

L -- the block prefix field is four bytes long and contains the
block length. L may be specified only when record format
(RECFM) is D.

Section IV: The DD Statement -- DCB Parameter 135

BUFOUT=number of buffers can be used wi th '.K:!AM

specifies the number of buffers to be assigned initially for sending
operations for each line in the line group .. The number specified
must be less than the number of buffers in the buffer pool for this
line group and may not exceed 15. The number of buffers specifieq in
the combined BUFIN and BUFOUT operands must be no greater than the
number of buffers in the bIffer pool for this line group (not
including those for disk activity only). If this operand is omitted,
2 is assumed.

BUFRQ=number of buffers Can be used with QTAM

Specifies the number of buffers to be requested in advance for the
GEl' macro instruction. The maximum number is 255. If not specified
by any source or if a value of less than 2 is specified, 2 is
assumed. For infonnation on calculating BUFRQ, refer to the
publication IBM System/360 operating System:
Telecommunications Access Method Message Control, GC30-2005.

BUFSIZE=number Can be used with T CAM

Specifies the length in bytes of each of the buffers to be used for
all lines in a particular line group.. This length must be at least
31 bytes, but may not exceed 65,535. The buffer size should be an
even multiple of the buffer-unit si ze as specified in the INl'RO
macro; the maximum number of ruffer-units per buffer is 255.

CODE= A
B
C
F
I
N
T

Can be used with B SAM" EXCP" QSAM

Specifies the paper tape code in which the data is punched.

A USASCII (8 track).
B Burroughs (7 track).
C National Cash Register (8 track).
F Friden (8 track).
I IBM BCD perforated tape and transmission code (8 track).
N No conversion required.
T Teletype (5 track).

If not specified by any source., I is assured. The subparameters
CODE, KEYLEN, MODE, PRTSP, STACK, and TRTCH are mutually

exclusive subparameters. Therefore" if CODE is coded., do not code any of
these other subparameters.

CPR!= Can be us ed with QTAM

specifies the relative priority to be given to sending and receiving
ope rati ons, as f ollCMS :

R -- rece1v~g has priority over sending. An output message is sent
on a given line only during a polling interval.

E -- receiving and sending have equal priority. After each full
polling sequence on a given line, all output messages queued
for that line are transmitted.

136 JCL Reference (Release 21.7)

S -- sending has priority over rece1v~g. For nonswitched lines
after QTAM polls a terminal on a line, the line is made
available for outgoing messages, and the next terminal is
polled only when there are no output messages in the queue for
the line. For Auto Poll lines, the line is made available for
outgoing messages after a message ending in EOT is received by
a terminal on the line, or when the end of the polling list is
reached. S must be specified for IBM 2740 Communications
Terminals Types I and VI, and if the line group includes IBM
2740 Model 2 terminals.

If this subparameter is not specified by any source, CPRI=S is
assumed.

This subparameter must be omitted if this line group consists of
swi tched lines.

For WTTA Lines:

R or E -- output messages are sent when there is no traffic over the
line, after an EOT character has been received, or after a time-out
has occurred.

S -- output messages are sent when there is no traffic over the
line, after an EOT or EOM character has been received" or after a
time-out has occurred.

CYLOFL=number Can be used with QISAM (output only)

specifies the number of tracks on each cylinder to hold the records
that overf ION from other tracks on that cyl inder. The maximum number
is 99.

DEN= Can be used with BSAM, EXCP, QSAM

specifies the magnetic tape density in number of bits-per-inch used
to write a data set, as follONS:

DEN 7-Track 9-Track 9-Track Tape
Tape Tape (Phase Encoded)

0 200
1 556
2 800. 800
3 1600

NRZI is for non-return-to-zero-inverse mode.
PE is for phase encoded mode.

9-Track Tape
Dual Density

800(NRZI)
1600 (PE)

Note: Specifying DEN=O for a 7-track 3420 will result in a 556
bits-per-inch recording density, but corresponding messages and tape
labels will indicate a 200 bits-per-inch recording density.

If not specified by any source, 800 bits-per-inch is assumed for
7-track tape, 800 bits-per-inch for 9-track without dual density,
and 1600 bits-per-inch for 9-track with dual density or
phase-encoded drives .•

For 7-track tape, all information on the reel must be written in the
same density (i. e., labels, data, tapemarks). 1l:> not specify DEN for
a SYSOUT data set.

Section IV: The DD Statement -- neB Parameter 137

DIAGNS=T R:ACE Can be used with BDAM, BISAM" BPAM, BSAM,
BTAM, EXCP, GAM" OOAM, QISAM" QTAM

Requests the Open, CloselEOV trace option which gives a module by
module trace of Open/Close/EQV's workarea and the user's DCB.

If the subparameter is not specified on the DD card, the option is
not implemented. The Generalized Trace Facility must be active in
the system while the job that requested the trace is running.

DSORG=data set organization Can be used with BDAM, BISAM, BPAM, BSAM.,
BTAM, EXCP, GAM, QI SAM, QSAM, Q'l'AM

specifies the organization of the data.set and whether the data set
c ontai ns any loc ati on- dependent information that would make the da ta
set unmovable (U> '. The values that can be used are as follows:

DA --

DAU --

CQ --

CX

GS

IS

ISU --

MQ --

PO --

POU --

PS --

PSU

Direct access

Direct access unmovable

Direct access message queue or the checkpoint for a
message control program. If this subparameter is not
specified by any source, the telecommunications job" when
executed, is terminated.

communications line group

Graphic data control block

Indexed sequential

Indexed sequential unmovable

Data control block governing message transfer to or from a
telecommunications message processing queue. If this
subparameter is not specified by any source" the
teleconnnunications job., when executed, is terminated.

Partitioned organization

Partitioned organization unmovable

Physical sequential

Physical sequential unmovable

The values used with each access method are listed below.

DSORG must always be coded in the DCB macro instruction" and, with
certain access methods, rust be coded on the DD statement.

BDAM -- DA or DAU iPS or PSU when creating the data set). The
DSORG subparameter must be coded on the DD statement that
defines the data set. When creating the data set, the
DSORG subparameter must be coded as DA or DAU on the DD
statement that defines the data set and PS or PSU in the
DeB'macro instruction.

BISAM -- IS; must be coded on the DD statement.

BPAM PO or POU

BSAM PS or PSU

BTAM CX

138 JCL Reference (Release 21.7)

EXCP -- PSI' POI' DA, or IS

GAM -- GS

QISAM -- IS or ISU (ISU can be specified only when creating the
data set). The DSORG subparameter must be coded on the DD
statement that defines the data set.

QSAM PS or PSU

QTAM MQ., CQ, or CX

EROPT=

{ ~~} ABE

Can be used with QSAM

Specifies the option to be executed if an error occurs in writing or
reading a record, as follows:

ACC Accept the block caus ing the error.

SKP Skip the block causing the error (implies RELSE).

ABE Cause abnormal end of task.

If the subparameter is not specified by any source, ABE is assumed.

FUNc=function Can be us ed with BSAM, QSAM

Specifies the type of data set to be opened for the 3525 Card
Read-Punch-Print" as follows:

I - interpret punch data set
R - read
P - punch
W - print
D - data protection for a punch data set
X - printer
T - two-line printer

The only valid combinations of these values

I WT RWX PWXT
R WXT RWT RPW
P RP RWXT RPWX
W RPD PW RPWXT
WX RW PWX RPWD

If this infornation is not supplied by any
assumes P.

are:

source" the system

Note that D., X, and T cannot be coded alone. If you specify D, the
data protection image (DCI) must be stored in SYS1.IMAGELIB and you
must code the image-identifier for the data protection image in the
FCB parameter. For more detailed information, see the publication
OS Data Management Services, GC26-3746.

Section IV: The DD Statement -- DeB Parameter 139

GNCP=number Can be used with GAM

Specifies the maximum number of input/output macro instructions that
will be issued before a WAIT macro instruction. The value of GNCP
must be from 1 to 99 at execution time,. If the value of GNCP is not
specified by any source, a value of 1 is assumed. The subparameters
GNCP, BFTEK, BFALN, and HIARCHY are mutually exclusive
subparameters • Therefore, if GNCP is coded, do not code any of these
other subparameters. For additional information on the GNCP
subparameter, refer to the publication mM System/360 Operating
System: Graphic Programming ' Services for IBM 2250 Display Unit,
GC27-6909.

HIARCHY= {~} Can be us ed with BDAM, BISAM,
BPAM, BSAM, EXCP, QlSAM, QSAM

specifies the storage hierarchy in which the buffer pool is to be
formed as follows:

o forms the pool from available space in processor storage.
1 forns the pool from available space in IBM 2361 Core Storage.

If the HIARCHY subparameter is not specified by any source, and if a
hierarchy designation is not supplied by the GETPOOL macro
instruction, hierarchy 0 is assumed.

The buffer pool is formed in the user partition or region within the
indicated hierarchy. If space is unavailable within the hierarchy
specified, the task is abnormally terminated.

INTVL=number Can be used wi th QTAM

Specifies the polling interval (i.e., the number of seconds of
intentional delay between passes through a polling list) for the
lines in this line group. After all the terminals in a polling list
for a given line have been polled (beginning to end)" a delay equal
to the number of seconds specified in this subparameter occurs
before polling is restarted at the beginning of the list. The
number specified must not be greater than 255.

If this subparameter is not specified by any seurce, INTVL=O is
assumed. This subparameter must be omitted if the line group
consists of switched lines, WTTA lines, or if the Auto Poll feature
is used.

KEYLEN=number Can be used with BDAM, BPAM,
BSAM, EXCP, QISAM (output only)

Specifies the length, in bytes, of the keys used in the data set.
Except for QISAM" the keys are associated with blocks on direct
access devices; the keys for indexed sequential data sets are
associated with records,. The maximum key length is always 255 bytes.

'The subparameters KEYLEN" CODE, MODE, PRl'SP, STACK, and TRTCH are
mutually exclusive subparameters,. Therefore" if KEYLEN is coded, do
not code any of thes e other subparameters.

Note for BDAM: If standard labels are used, the key length
information can be supplied from the data set label for an existing
data set. If a key length is not suppl ied by any source, no input or
output requests that'require a key may be issued.

Note for BPAM and BSAM: If standard labels are used" the key length
information can be supplied from the data set label for an existing
data set. If a key length is not SUpplied by any source before the

140 JCL Reference (Release 21.7)

Macro instruction is issued, a length of zero (no keys) is assumed.

Note for QISAM: For an existing data set with standard labels, the
key length can only be supplied from the data set label.

LIMCT=number Can be used with BDAM

Specifies the number of blocks, if relative block addressing is
used, or the number of tracks, if relative track addressing is used,
that are to be searched for a block or available space when the
extended search option (OPTCD=E) is specified. The number may equal
or exceed the number of blocks or tracks in the data set., in which
case the entire data set is searched.

If the extended search option is not specified, the LIMCT
subparameter is ignored.

LRECL=n umber Can be used with BPAM, BSAM,
QISAM (output only), QSAM" TCAM

Specifies the actual or maximum length, in bytes, of a logical
record. The record length is required for fixed-length and
variable-length records; for variable-length records, the maximum
record length should be specified. The length cannot exceed the
block size (BLKSIZE) value except for variable-length spanned
records.

• If RECFM=V or VB, then LRECL must be equal to the maximum
record length +4.

• If RECFM=F or FB, then LRECL must be equal to the logical
record length.

• If RECFM=U, then LRECL should be omitted.
• If RECFM=D or DB, then LRECL must be equal to the maximum

record length +4.

Note for BPAM: The record length is required for fixed-length
rec ords only.

Note for BSAM: The record length can be omitted from all sources., in
which case the block size specification (BLKSIZE) is used. For
variable-length spanned records (VS or VBS) processed under BSAM, if
logical record exceeds 32,756, specify LRECL=X. For ASCII records on
magnetic tape, the maximum record length is 2048 bytes and the
minimum record length is 18 h¥tes.

Note for QISAM: For unblocked records, with a relative key position
(RKP) of zero, the record length includes only the data portion of
the record. The record length can be specified only when creating
the data set.

Note for QSAM: For variable-length spanned records (VS or VBS)
processed under QSAM (locate mode), if logical record exceeds
32,756, specify LRECL=X. For ASCII records on magnetic tape, the
maximum record length is 2048 bytes and the minimum record length is
18 bytes.

Note for TCAM: The record length should include the source and
control bytes if these are specified by the OPl'CD suboperands. The
record length is required for fixed-length records only.

MODE=

{
c [~J}
E [~J

Can be used with BSAM, EXCP" QSAM

Section IV: The DO Statement -- DCB Parameter 141

Specifies the mode of operation to be used with a card reader, a
card punch, a card read-punch" or a card read-punch-print" as
follows:

C - card image (column binary) mode
E - EBCDIC mode
o - optical mark read mode
R - read column eliminat e mode

Note: Do not code the MODE subparameter for data entered through the
input stream.

If this information is not supplied by any source, the system
assumes E.

If you specify 0 or R, the system assumes that the first card of the
data set is the format descriptor. For more information on the
format descriptor, refer to the publication OS Data
Management Services" GC26-3746.

The DCB subparameters MODE" CODE, KEYLEN" PRTSP, and TRTCH are
mutually exclusive. Therefore, if you code MODE, do not code any of
these other subparameters.

NCP=number Can be used with BISAM, BPAM, BSAM

Specifies the maxinum number of READ or WRITE macro instructions
issued before a CHECK macro instruction is issued .• The maximum
number a 1lONed is bas ed on limits establ ished when the system wa s
generated. If chained scheduling is used, NCP must-be specified as
more than 1.

If not specified by any source, 1 is assumed.

NTM=number Can be used with QISAM

specifies the number of tracks to be used for a cylinder index.
When the specified number of tracks has been filled, a master index
is created. This information is required only when the master index
option (OPTCD=M) is selected.

If not specified by any source and OPTCD=M is specified, the master
index option is ignored.

OPTCD= A
B
C
E
F
H
I
L
M
o
Q
R
T
U
W
y

Z

Can be used with BDAM" BPAM,

BSAM, EXCP" QISAM (output only),
QSAM, TCAM

Specifies the optional services to be performed by the control
program. All optional services must be requested by the same source.
The characters may be coded in any order and, when used in
combination, no -commas are permitted between characters,.

142 JCL Reference (Release 21.7)

A -- Actual device addresses are to be presented ("block address"
operand) in READ and WRITE macro instructions. For BDAM, R
requests the same option as A, and either can be coded.

B -- Requests that end-of-file recognition be disregarded for tapes.
This is to prevent premature end-of- file indication for
mol ti-volume input data sets on tape when such tapes have
end-of-file labels on volumes before the last volume.

C -- For BPAM,BSAM,QSAM: requests that chained scheduling be used.

For TCAM: specifies that one byte of the 'work area be used to
indicate if a segment of a message is the first, intermediate,
or last segment.

E -- An extended search (more than one track) is to be performed for
a block or available space. (The LIMCT subparameter must also
be specified; otherwise, this option is ignored.)

F -- Feedback may be requested in READ and WRITE macro instructions
and the device address returned is to be of the form presented
to the control program.

H -- For Optical Readers (BSAM): requests hopper empty exit.

For DOS Tape Input Files (BSAM and QSAM): requests the system
to check for and bypass any DOS checkpoint records found on the
tape.

I -- Requests that the control program use the independent overflow
areas for overflow records.

L -- Requests that the control program de lete records that have a
first byte of all ones; records so marked may be deleted when
space is required for new records. Do not specify this option
for blocked records if RKP=O.

M -- Requests that master indexes be created as required, according
to the information in the NTM subparameter. This option is
ignored if the subpararneter NTM=number is not specified.

o Requests online correction for Optical Readers (QSAM).

Q specifies that translation from ASCII input to EBCDIC is
required or that translation from EBCDIC to ASCII output is
required. If the subpararneter AL or AUL is coded in the LABEL
parameter of the DD statement, the OPTCD subparameter will be
treated as if Q was specified.

R -- For BDAM, actual device addresses are to be presented ("block
address" operand) in READ and WRITE macro instructions.

For QISAM, requests the control program to place reorganization
criteria information in the RORG1, RORG2, and RORG3 fields of
the data control block. This option is provided whenever the
OPTCD subpararneter is omitted from all sources.

T Requests user totaling facility.

U -- For BSAM,QSAM: Only for 1403 printers with the Universal
Character Set feature. Unblocks data checks and allows analysis
by an appropriate error analysis (SYNAD) routine. If U is
omitted, data checks are blocked (not recognized as errors).

Section IV: The DD Statement -- DCB Parameter 143

I

I

When coding OPTCD=U, specify a printer in your program. Do not
use the SYSOUT parameter unless the operator specifies a direct
system oo.tput (OSO) writer.

For ISAM: specifies the full track index write feature.

For TCAM: specifies that the work unit to be handled is a
message. If U is omitted, the work unit is assumed to be a
record.

W -- For BDAM,BPAM,BSAM,QSAM: Requests a validity check for write
operations on direct access devices. If the device is a 2321
data cell, validity checking is always performed whether
r BIuested or not.

For TCAM: specifies that the name of each message source is to
be placed in an eight-byte field in the work area.

Y -- Requests that the control program use the cylinder overflow
areas for overflow records.

Z -- For input from a magnetic tape: Requests the control program to
shorten its normal error recovery procedure. When Z is
specified, a data check is considered permanent after five
unsuccessful attempts to read a record. This option is
available only if s elected at system generation. It should be
used only when a tape is known to be faulty and there is no
need to process every record. The error analysis (SYNAD)
routine should keep a count of the number of permanent errors"
and should terminate processing if the number becomes excessive.

For input from a direct access storage device (DASD): Specifies
search direct (SO) for sequential data sets.

Only certain options can be selected with each access method" as
follows:

For BOAM:

A or R E F W

For BPAM:

C W we

For 00 AM and QSAM:

B C H Q T U W Z UC WC ZC

For EXCP:

Z

For QISAM:

I L M R U W Y

For BISAM:

L

For QSAM only:

0

144 JCL Reference (Release 21.7)

I For BSAM only:

H

For TCAM:

C U W

PCI=([:] [::]) Can be used with TCAM

specifies if and how a program-controlled interruption (PCI) is to
be used to control the allocating and freeing of buffers. The
suboperands apply to receiving and sending operations respectively.

N -- specifies that no PCls are taken during filling (on receiving
operations) or emptying (on sending operations) of buffers.
Buffers are freed at the end of transmission.

R -- specifies that after the first buffer is filled (on receiving
operations) or emptied (on sending operations), a PCI occurs
during the filling or emptying of each succeeding buffer. The
completed buffer is freed, but no new buffer is allocated to
take its place.

A -- specifies that after the first buffer is filled (on rece1v1ng
operations) or emptied (on sending operations), a PCI occurs
during the filling or emptying of the next buffer. The first
buffer is freed,. A buffer is allocated in place of the freed
buffer.

If this operand is not specified h¥ any source, PCI=(A,A) is assumed.

PRTSP=
Can be used with BSAM" EXCP"
QSAM

specifies the line spacing on a printer as 0, 1, 2, or 3 lines
between printout. This subparameter is valid only if control
characters are not present (A or M is not specified in the RECFM
subparameter) •

If not supplied by any source, 1 is assumed.

The subparameters PRTSP, CODE, KEYLEN, MODE, S~CK, and TRTCH are
mutually exclusive subparameters. Therefore, if PRTSP is coded, do
not code any of thes e other subparameters.

RECFM=type Can be used with BDAM, BPAM, BSAM,
EXCP, QISAM (output only), QSAM, TCAM

Specifies the format and characteristics of the records in the data
set. The format and characteristics must be completely described by
one source.

If this subparameter is omitted, an undefined-length record is
assumed with no optional features provided, except for QISAM where
variable-length records are assumed, and QTAM where a message
segment is assumed.

Section IV: The DD Statement -- DCB Parameter 145

I

Both the record format and characteristics are specified using the
characters defined below. The allowable combinations of characters
are indicated for the associated access methods; for increased
efficiency, the characters should be coded in the order shown.
However. alphabetical order is not required.

character Definitions

A The record contains ASA printer control characters.

B The records are blocked.

D The ASCII records are of variable length. Each record on
magnetic tape has a four-byte record descriptor field
giving the record length in decimal.

F The records are of fixed length.

G The message data provided in the work unit is a complete
message.

M The records contain machine code control characters.

R The messag~ data provided in the work unit is a complete
record.

S For fixed-length records, the records are written as
standard blocks, i.e., no truncated blocks or unfilled
tracks within the data set, with the exception of the last
block or track.

For variable-length records, a record may span more than
one block. Exchange buffering (BFTEK=E) cannot be
specified.

For Q~AM, the message data provided in the work unit is a
message segment.

T The records may be written onto overflow tracks if
required. Exchange buffering (BET EK= E) or chained
scheduling (OPTCD=C) should not be used because they will
be ignored.

U The records are of undefined length.

V The records are of variable length. (Variable length
records cannot be in ASCII.)

only certain characters and combinations of characters can be
selected with each access method. The allowable combinations of
characters are indicated for the associated access methods; for
increased efficiency, the characters should be coded in the order
shown.

146 JCL Reference (Release 21.7)

For BDAM:

{: [TJ
For BPAM:

U [T] [~J

v [tJ [~J

F [~T] [~J
For OOAM am QSAM:

U [T] [~J
B
S
T

V BS
BT
ST [~J BST

B
S
T

F BS
BT
ST [~J BST

For ~AM and QSAM using ASCII data sets on tape:

[B) [A]l
[A]

[A] [B]

Note: A or M cannot be specified if the PRTSP subparameter is
specified .•

For QISAM:

[B) }

[B)

For QTAM:

Section IV: The DD Statement -- DeB Parameter 147

For TCAM:

RESERVE= (numberl ,number2) Can be used with TCAM

specifies the number of bytes (from 0 to 255) to be reserved in a
buffer for insertion of data by the DATETIME and SEQUENCE macros.
numberl indicates that space is to be reserved in the first buffer
of each incoming message; number2, that space is to be reserved in
all buffers except the first. If RESERVE is not coded, no space is
reserved.

RKP=number Can be used with QISAM (output only)

Specifies the position of the first byte of the record key, relative
to the beginning of each record. (The beginning byte of a record is
addressed as 0.)

If RKP=O is specified for blocked fixed-length records, the key
begins in the first byte of each record, and the delete option
(OPTCD=L) must not be specified. If RKP=O is specified for unblocked
fixed-length records, the key is not written in the data field; the
delete option can be specified.

For variable-length records, the relative key position must be 4 or
greater, when the delete option (OPTCD=L) is not specified. The
relative key position must be 5 or greater if the delete option is
specified.

If this information is not specified by any source, a relative key
position of zero is assumed.

SOWA=number Can be used with QTAM

Specifies the size, in bytes" of the user-provided input work areas.
The value must be less than 32,768 and must include the 4-byte user
prefix.

If this subparameter is not specified by any source, the
telecommunications job, when executed" is terminated.

STACK= Can be used with BSAM, EXCP, QSAM

specifies the stacker bin to receive the card, and is either lor 2.

If not specified by any source, 1 is assumed.

The subparameters STACK, CODE, KEYLEN" PRl'SP, and TRTCH are mutually
exclusive subparameters. Therefore, if STACK is coded" do not code
any 0 f these other subparameters.

THRESH=number Can be used with TCAM

specifies the percentage of the nonreusable disk message queue
records to be used before a flush closedown occurs. If this operand
is omitted, closedown occurs when 95% of the records have been used.

148 JCL Reference (Release 21.7)

TRTCH= Can be used with BSAM, EXCP, QSAM

Specifies the recording technique for seven-track tape.
parameter is only to be used with seven track tape.)

(This

C Data conversion feature is to be used, with odd parity and no
translation.

E Even parity, with no translation and no conversion.

T Odd parity and no conversion, and BCD to EBCDIC translation is
required when reading; EBCDIC to BCD translation when writing.

ET Even parity and no conversion, and BCD to EBCDIC translation is
required when reading; EBCDIC to BCD translation when writing.

If this subparameter is not specified by any source" odd parity and
no translation or data conversion is assumed.

The subpararneters TRTCH, CODE, KEYLEN, MODE, PRTSP, and STACK are
mutually exclusive subpararneters. Therefore, if TRTCH is code~, do
not code any of these other subparameters.

Examples of the DCB Parameter

1. //DDl
//
//

DD DSNAME=ALP,DISP=(,KEEP),VOLUME=SER=44321,
UNIT=2400,DCB=(RECFM=FB,LRECL=240,BLKSIZE=960,
DEN= 1, TRTCH=C)

This DD statement defines a new data set and contains the
information necessary to complete the data control block.

2. / /DD2
//
//DD3

DD

DD

DSNAME=BAL,DISP=OLD,DCB=(RECFM=F,LRECL=80,
BLKS IZ E=8 0)
DSNAME=CNANN, DISP= (, CATLG, DELETE) " UNIT= 2400,
LABEL=(,NL),VOLUME=SER=663488,DCB=*.DD2

The statement named DD3 defines a new data set and requests the
system to copy the DCB subparameters from the DD statement named
DD2, which is in the same job step.

3. //DD4
//

DD DSNAME=JST,DISP=(NEW,KEEP) ,UNIT=2311,
SPACE=(CYL,(12,2»,DCB=(A.B.C,KEYLEN=8)

x
x

x

x

x

This DD statement defines a new data set and requests the system to
copy DCB information from the 'data set label of the cataloged data
set named A. B. C. If the dat a set label contains a key length
specification, it is overridden since KEYLEN is coded on the DD
statement.

Section IV: The DD Statement -- DeB Parameter 149

4. //DD5
//

DD DSNAME=SAME,DISP=OLD,UNIT=23ll,
DCB= (*. STEFl. PROCSTP5. DD8 " WFNo=5)

x

This DD statement defines an existing data set and requests the
system to copy the DCB subparameters from the DD statement named
DD8, which is contained in the procedure step named PROCSTP5. The
cataloged procedure was called by the job step named STEP1. If any
of the DCB subparameters coded on the procedure DD statement have
been previously defined for this data set, they are ignored. If the
BUFNO subparameter has not been previously specified for the data
set, then five buffers are assigned to the data control block.

150 JCL Reference (Release 21.7)

Ul
CD
n
rt
1-'.
o
~

H
<:

8
::r
CD

o o
Ul
rt
PJ
rt
CD

ffi
~
rt

o
(l
ttl

tU
PJ
Ii
PJ

ffi
rt
CD
Ii

......
111
......

DCB ALGOL Assembler COBOL E COBOL F
Subparameter

BFALN= For D ~

S or E ~
BFTEK= (QSAM only)

BLKSIZE= number af bytes number of bytes ~ number of bytes ~

BUFL= number of bytes ~

BUFNO= number of buffers ~ number of buffJ;: number of buffe~

DIAGNS= TRACE TRACE TRACE TRACE

EROPT= ABE
l.!-

ABE ABE

FUNC= any of possible
~

any of possible ~ any of possible ~
combinations combinations combinations

HIARCHY= o or 1
~

LRECL= number of bytes number of bytes l!..

MODE= c[R] or E[R]
~

C [R] or E [R] C [R] or E [R]

NCP= number of channel
~

programs (BSAM only)

OPTCD= [C]
l.!..

[C] [C]

RECFM= E[B][A] U[~]or
~

v[t][~] or

F [t][~J
L!.

STACK= lor 2 lor 2 lor 2

1 This function can be specified in your program rather than in the DD statement.

2For QSAM, you must specify both BFAlNand BFTEK on the DD statement, or omit both.

3 American National Standard COBOL.

4 See the description of the FUNC subparameter in the Glossary of DCB Subparometers for a list
of possible combinations •

Figure 10. DCB Subparameters for card Punch

ANS COBOL ~ FORTRAN E FORTRAN G &H PI/I F

number of bytes~ number of bytes number of bytes number of bytes ~

number of buffers~ 11
10r1- 10r1- number of buffers

TRACE TRACE TRACE TRACE

M.f

any of Possib"le ~ any of possible ~ any of possible ~ any of possible l!..J
combinations combinations combinations combinations

number of bytes number of bytes number of bytes lL

C [R] or E[R] C [R] or E[R] C [R] or E [R] C[R] or E[R]

[C] [C] [C] [C]

~[AJ or ~[~J or ~[~ or

F[BJ[~] F[Bl~J v[iJ[~] or

F[iJ[~J
lor 2 lor 2 10r2 lor 2

I-'
U1
N

C,.j
()
t"i

~
Hl
CD
11
CD
::::1
()
CD

-~
CD
I-'
CD
~
til
CD

N
I-'

~

DCB Subparameter ALGOL Assembler COBOL E COBOL F ANS COBOL ~
BFALN= For D ~
BFTEK= S or E (QSAM only) ~

BLKSIZE= number of bytes number of bytes l!... number of bytesl!... number of bytes ~

BUFL= number of bytes ~

BUFNO= number of buffers
l!... ~ -~ ~

number of buffers number of buffers number of buffers

DIAGNS= TRACE TRACE TRACE TRACE TRACE

EROPT= ACCor ABE ~ ACC or ABE ACC or ABE ACC or ABE

any of ~ any of ~ any of ~ any of ~
FUNC= possible possible possible possible

combinations combinations com bi nations combinations

HIARCHY= Oor 1 l!...
lRECl= number of bytes number of bytes ~
MODE= C[~or E[R] C [R]or E [RJ C [R]or E[R] C [R]or E[R] C[RJor E[R]

~
number of channe I NCP=
programs (BSAM only)

OPTCD= [C] [UJ ~ [C] [C] [C]

PRTSP= 0,1,2,or3 ~ 0,1,2, or 3 ~ 0,1,2,or3~ O,I,2,or3 ~

RECFM= E [:s] [AJ U [~] or
~

V [tJ [~] .,
F [t][~]

1 This' function can be specified in your program rather than in the DD statement.

2 For QSAM, you must specify bath BFALN and BFTEK on the DD statement, or omit bath.

3Do nat use if A or M is specified in the RECFM.

4 American National Standard COBOL.

5See the description of the FUNCsubparameter in the Glossary of DCB Subparameters for a list of possible combinations.

Figure 11. DCB SUbparameters for Printer

FORTRAN E FORTRAN G & H PL/I F

number of bytes number of bytes number of bytes ~

10rl lor .1 ~
number of buffers

TRACE TRACE TRACE

any of ~ any of ~ any of ~
possible possible possible
combinations combinations combinations

number of bytes number of bytes number of bytes ~

C[R)or E[R] C[R]or E[R] C [R]or E [R]

number of ~
channel programs
(BSAM only)

[C] [CJ [C] [U]

Q, 1, 2, or 3 ~ Q,1,2,or3~ 0, 1,2, or 3 ~

Formatted: Formatted: ~
!J [A] or

1! [~J or U [~J or

F [BJ [~J F [B] [~]
V [n~].'

Unformatted: Unformatted:

[t][~J VS[B][~J VS [B] [~J
F

Cfl
CD
o
rt ,...-
o
~

H
<:

8
::T
CD

o
o
Cfl
rt
Pl
rt
CD

= CD
~
rt

o
()
ttl

I'd
Pl
Ii
Pl = CD
rt
CD
Ii

I-'
U1
W

DCB ALGOL Assembler COBOL E COBOL F ANS COBOL ~ FORTRAN E FORTRAN G & H
Subparameter

BFALN= For D ~

S, E, or A ~
BFTEK=

(OSAM only)

BLKSIZE= number of bytes number of bytes
~

number of byte!;- number of bytes~ number of bytes number of bytes

BUFL= number of bytes ~

BUFNO= number of buffers ~ number of buffe~ number of buffer'f-
L.!...

number of buffers lor £ lor £

~
BUFOFF= nor L nor L nor L nor L nor L nor L

DEN= 0,1,2, or 3 ~ 0,1, or 2 ~ 0,1,2, or 3 l!. 0,1,2, or 3 l=.. 0,1,2, or 3 l:.. 0,1,2, or 3 l!.

DIAGNS= TRACE TRACE TRACE TRACE TRACE TRACE TRACE

EROPT= ABE ~ ABE ABE ABE

HIARCHY= a or 1
l...!...

LRECL= number of bytes number of bytes
~

number of bytes number of bytes

NCP= number of channel ~
programs (BSM.\ only)

[C][T] ~ [C] [C] [CJ [CJ [C]
CPTCD= [0] (ASCII) [0] (ASCII) [0] (ASCII) [0] (ASCII)

~ Formatted:

~t~r:~: ~[:SJ [A] [D] U [~J or D 1l[A]
RECFM=

V[B] [AJor

V~s][~ or
F [B] [~J V[Bl~] or

F ~sJ[~J or

D[BJ [A] F [B][~
Unformatted : D [B][A]

VS [B] [~ Unformatted:
D [B1 [AJ

VS [B]~]

TRTCH= c, E, ET, or T L.!... C,E,ET,orT C, E, ET, or T C, E, ET, or T C,E,ET,orT C,E,ET,orT

, This function can be specified in your program rather than in the DD statement.

2 For OSAM, you must specify both BFALN and BFTEK on the DD statement or omit both.

3 If DEN is omitted, see chart on page 137 for assumed values.

4 American National Standard COBOL.

5 This parameter is specified only for ASCII data sets on magnetic tope.

Figure 12. DCB Subparameters for Creating a Data set on Magnetic Tape

PL/I F

number of bytes ~

number of buffer~

nor L

0,1,2, or 3 l!.

TRACE

number of by tel-!-

L.:..
number of chonnel
programs
(BSAM only)

[C] ~
[0] (ASCII)

~
U[~J or

V ~sJ[~ Jor

F ~sJ[~Jr
D [B1

C, E, ET, or T

......
U1
,.j:::o.

~
()
t-t

::u
CD
t-h
CD
Ii
CD
::s
o
CD

::u
CD
......
CD
PJ
m
CD

N
......
...,J

DCB
Assembler COBOL E COBOL F ANS COBOL ~ PI/I F Subparameter ALGOL FORTRAN E FORTRAN G &H

BFALN= Far 0 ~

BFTEK=
5, E, or A ~
(QS~M only)

BLKSIZE= number of bytes number of bytes ~ number of bytes l..L number of bytes~ number of bytes number of bytes number af bytes ~

BUFL= number of bytes ~

BUFNO= number of buffers ~ number of buffersl...!... number of buffers!.!.. number of buffersL2- lor Z lor 2- number af buffersl..!..

DIAGNS= TRACE TRACE TRACE TRACE TRACE TRACE TRACE TRACE

DSORG= PS or PSU ~

EROPT= ABE ~ ABE ABE ABE

HIARCHY= o or 1 ~

KEYLEN= number of bytes ~ number of byte~

LRECL= number of bytes number· of bytes ~ number of bytes number of bytes number of byte~

NCP= number of channel ~ number of ~
programs (BSAM only) channel programs

(BSAM only)

OPTeD=
[W] [C] [T]

L.!.. &v] [e] [W] [e] IW] ~] [C] [C] [~ E=J

Formatted: Formatted: ~

RECFM= f[:sJAJ[TJ U[TJ~] or ~[A][T] or \J[~][T] or u~J or
V[B][AJ[TJ or

V!i l[A].'
F [B][~J[TJ V[B][~J[T] or V~s]~J or
Unformatted: F~J[~][TJ

{t][~] VS[BJ[~J[TJ ST [M] Unformatted:
BST

VS[BJ[~J[TJ

F[!~]tl
BST

, This function can be specified in your program rather than in the DO statement.

2 For QSAM, you must specify both BFALN and BFTEK on th~ DO ·statement or omit both.

3·American National Standard COBOL.
-

Figure 13. DCB Subpararneters for Creating a sequential Data set on Direct Access Devices

en
CD
o
rt
tJ·
o ::s
H
<:

t-3
::s
CD

t::I
t::I

en
rt
SlJ
rT
CD
S
CD
::s
rt

t::I
()
IJj

to
PJ
Ii
PJ

ffi
rt
CD
Ii

I-'
Ul
Ul

DCB
Assembler COBOL E COBOL F ANS COBOL l.!

Sub parameter

BFAlN= For 0 l..!.-

~
BFTEK= R

BlKSIZE= number of bytes
~

BUFl= number of bytes l..!.-

BUFNO= number of buffers l..!.-

DIAGNS= TRACE TRACE TRACE TRACE

DSORG= DA or DAU
~

DA DA

HIARCHY= Oar 1
L:.

KEYlEN= number of bytes
l~

lIMCT= number of tracks
~ number of track~

or blocks or blocks

OPTCD= [W] [E][F] [1] l!.. [w] [v{] [w] [E]

RECFt:A= u,v, or F[T] l..!.-

1 This function can be specified in your program rather than in the DO statement.

2 American National Standard COBOL.

Figure 14. DCB Subparameters for Creating a Direct Data Set

FORTRAN E FORTRAN G & H Pl/I F

number of bytesE

lor l 1 or Z.

TRACE TRACE TRACE
!

DA DA DA i

I

number of bytes I

number of tracks
or blocks

[w]

u,v, or F[T] ~ -

t-'
111
m

~
()
t"'

~
C'D
t-h
C'D
Ii
C'D
::s
()
C'D

~
t-'
C'D
PJ
[Jl

C'D

N
t-'

.....:J

DCB l!..l Subparameter Assembler

~
BFALN= For D

~
BLKSIZE= number of bytes

BUFL= number of bytes
~

BUFNO= number of buffers LW
I

DIAGNS= TRACE

HIARCHY= o or 1 ~
KEYLEN= number of bytes ~

I

LRECL= number of bytes ~
I

l1 NCP= number of channe I
programs I

OPTCD= [vY1 [g l!..

RECFM= U[TJ[~] or
~

I

VUTJ~Jo, I

I

F~TJ[~J
1 This function can be specified in your program r(lther than in

the DD statement.

Figure 15. DCB SUbparameters for Creating a Partitioned Data set

C/l
CD
()
rt
o
~

H
<:

8
::r
CD

o
o
C/l
rt
PJ
rf
CD
S
CD
~
rt

o
('l
to
I"tj
PJ
Ii
PJ
S
CD
rt
CD
Ii

I-'
U1
'-I

DCB
ALGOL Assembler COBOlE COBOlF

Subparameter

~
BFAlN= For D

BFTEK=
5 or E ~

(QSAM only)

BlKSIZE= number of bytes number of bytes ~ number of bytes~

BUFl= number of bytes ~

BUFNO= number of buffers ~ number of buffe~ number of buffers

DIAGNS= TRACE TRACE TRACE TRACE

EROPT= ABE ~ ABE ABE

FUNC= any of possible ~ any of possible ~ any of possible ~
combinations combinations combinations

HIARCHY= o or I ~

lRECl= number of bytes number of bytes ~

MODE= c[~J or E [~J ~
C [~J or E [~J C[~Jor E [~J

NCP= number of channel ~
programs
(BSAM only)

OPTCD= [C] ~ [C] [C]

RECFM= f[B][A] u[~J or
~

v[!J[~J or

F[tJ[~J
STACK= lor 2

~
lor 2 lor2

1 This function can be specified in your program rather than in the DD statement.

2 For QSAM, you must specify both BFAlN and BFTEK on the DD statement, or omit both.

3 American National Standard COBOL.

4 See the description of the FUNC subparameter in the Glossary of DCB Subparameters for a list
of possible combinations.

Figure 16. DCB Subparameters for Card Reader

ANS COBOL ~ FORTRAN E FORTRAN G & H Pl/I F

number of bytes ~ number of bytes number of bytes number of bytes ~

number of buffers lor 2 lor 2 number of buffers~

TRACE TRACE TRACE TRACE

ABE
I

any of possible ~ any of possible ~ any of possible ~ any of possible ~
combinations combinations combinations combinatior,

number of bytes number of bytes number of bytes l!...

C[~Jor E[~] C [~J or E [~J C[~Jor E[~J C [~J or E [~J~
~

number of channel
programs
(BSAM only)

[C] [C] [C] [C]
I

U[A] or U[~J or U[~J or ~
F[B][~J

F[B][~J v[!J[~J or

I

I

{tl~J
lor 2 ! or 2 lor 2 ! or 2

i

i

......
U1
ex>

c....
n
t"f

~
CD
Hl
CD
Ii
CD
::s
()
CD

~
CD
......
CD
PI
(J)

CD

t\J
......

'-l

DCB
ALGOL Assembler COBOL E COBOL F ANS COBOl L.:..

Subparameter

I!!!
BFAlN= For D

S or E ~
BFTEK= (QSAM only)

BlKSIZE= number of bytes number of bytes l2- number of bytesl!.. number of bytes~

BUFL= number of bytes ~

BUFNO= number of buffers l!.. number of buffersL!.. number of buffers number of buffers

CODE= I,F,B,C,A,T, or N ~

DIAGNS= TRACE TRACE TRACE TRACE TRACE

EROPT= ABE l!.. ABE ABE ABE

HIARCHY= o or 1 l2-

LRECl= number of bytes number of bytes l!..

NCP= number of channel .l.!...
programs (BSAM only)

OPTCD= [C] ~ [C] [C] [C]

RECFM= E[B] [A] U[~] or
l2-

{t][~Jor
F[t][~J

I This function can be specified in your program rather than in the DD statement.

Z For QSAM, you must specify both BFAlN and BFTEK on the DD statement, or omit both.

3 American Notional Standard COBOL.

Figure 17. DCB SUbparameters for Paper Tape Reader

FORTRAN E FORTRAN G & H PI/I F

number of bytes number of bytes number of bytes l!..

lor 2 10rZ number of buffersl...!..

l!..
I,F,B,C,A,TorN

TRACE TRACE TRACE

number of bytes number of bytes number of bytes ~

[C] [C] [C]

l1[A] or 11[~ or U or F ~

V[aJ[AJ or

F~J~J V[BJ[~J or

F~J~J

(J)

CD
()

rt
1-'.
o
~

H
<:

1-:3
::r
CD

t:l
t:l

(J)

rt
III
rt
CD
S
CD
::s
rt

t:l
(')
Il1

"t1
III
Ii

~
CD
rt
CD
Ii

I-'
U1
\.0

DCB
Assembler L.:.

Subparameter ALGOL COBOlE COBOL F ANS COBOL

.~

BFAlN= For D

S, E, or A ~
BFTEK=

(QSAM only)

BUFL= number of bytes
-0::

BUFNO= number of buffers
~ ~

number of buffers number of buffe~ number of buffers~
.. ----

BUFOFF
~

nor l nor L nor l nor L

DIAGNS= TRACE TRACE TRACE TRACE TRACE

EROPT= ABE ,ACC, or SKP E ABE,ACC, or SKP ABE,ACC, or SKP ABE,ACC, or SKP

HIARCHY= o or 1
~

NCP= number of channel l!..
programs (BSAM only)

[c] [Z] [B]
l!.. [c1 [C] [C]

OPTCD=
[QJ (ASCII) [Q] (ASCII) [QJ (ASCII)

1 This function can be specified in your program rather than in the DD statement.

2 For QSAM, you must specify both BFALN, and BFTEK on the DD statement, or omit both.

3 American National Standard COBOL.

4This parameter is specified only for ASCII data sets on magnetic tape.

Figure 18. DCB Subarameters for Retrieving a Data Set on Magnetic Tape

FORTRAN E FORTRAN G & H PL/I F

1 or ~ lor 1 number of buffer~

nor L nor L nor L

TRACE TRACE TRACE

U
number of channel
programs
(BSAM only)

[C] [C] [C] or [Z]

[0] (ASCII) raJ (ASCII)

--- ----

!---J
0'\
o

Co!
(')
t"i

:::0
CD
Hl
CD
Ii
CD
~
n
CD

:::0
CD
!---J
CD
III
til
CD

N
!---J

-....J

DCB
ALGOL Assembler COBOL E COBOL F ANS COBOL t..=- FORTRAN E FORTRAN G & H PL/I F Subparameter

~
BFALN= For D

BFTEK= S, E, or A ~
(QSAM only)

BUFL= number of bytes ~

BUFNO= number of buffers ~ number of buffer~ number of buffe~ number of buffers~ 1 or .f 1 or £ number of buffersL.!....

D1AGNS= TRACE TRACE TRACE TRACE TRACE TRACE TRACE TRACE

EROPT= ABE,ACC, or SKP
~

ABE,ACC, or SKP ABE,ACC, or SKP

HIARCHY= o or 1
~

NCP= number of channel ~
programs (BSAM only)

1 This parameter can be specified in your program rather than in the DD statement.

2 For QSAM, you must specify both BFALN and BFTEK on the DD statement, or omit both.

3 American National Standard COBOL.

- --

Figure 19. DeB Subparameters for Retrieving a sequential Data Set on Direct Access Device

Ul
co
o
rt-
1-'-
o
::s
H
<:

1-3
~
CO

o
o
Ul
rt
OJ
n
CO
S
CO
::s
rt-

o
(')
tp

'1j
OJ
Ii
OJ
S
CO
rt
CO
Ii

I-'
0'\
I-'

DCB
ANS COBOL ~ Subparameter Assembler COBOL E COBOL F FORTRAN E FORTRAN G

l..!..
BFALN= For D

BFTEK= R
l..!..

BUFL= number of bytes
l..!..

BUFNO= number of buffers
l..!..

10r2 10r2

DIAGNS= TRACE TRACE TRACE TRACE TRACE TRACE

HIARCHY= o or 1 l...!..

LlMCT= number of tracks l...!..
or blocks

OPTCD= [E][F][1]
l...!..

t This function can be specified in your program rather than in the DD statement.

2 American Nationol Standard COBOL.

Figure 20. DCB Subparameters for Retrieving a Direct Data Set

DCB
Subparometer Assembler

BFALN= For D
~

BUFL= number of bytes
~

BUFNO= number of buffers
~

DIAGNS= TRACE

HIARCHY= o or 1
~

NCP= number of channel ~
programs

OpreD= [C]
~

t This parameter can be specified in your program rather
than in the DD statement.

-

Figure 21. DCB Subparameters for Retrieving a Partitioned Data Set

PI/I F

number of buffers

TRACE

number of tracks
or blocks

The DDNAME Parameter

DDNAME=ddname

ddname
the nane of a following DD statement in the same job step tha t
defines this data set.

Rules for Coding

1. The only parameters that can be coded with the DDNAME parameter are
the DCB subparameters BLKSIZE, BUFNO and DIAGNS.

2. The DDNAME parameter cannot appear on a DD statement named JOBLIB.

3. you can code the DDNAME parameter up to five times in a job step or
procedure step. However, each time the DDNAME parameter is coded, it
must refer to a different ddname.

4. If the data set, which will be defined later in the job step, is to
be concatenated with other data sets, the DO statements that define
these other data sets must immediately follow the DD statement that
incl udes the DDNAME parameter.

5. The DDNAME parameter must not be used to refer to a DD statement
that has DYNAM coded on it.

6. A DO statement to which a DDNAME parameter refers cannot contain any
reference to a OD statement that follows the one with the DDNAME
parameter.

17 . Do not code DSNAME and ODNAME parameters on the same DD statement.

What the DDNAME Parameter Does
The DONAME parameter allows you to postpone defining a data set until
later in the same job step. In the case of cataloged or in-stream
procedures, this parameter allows you to postpone defining a data set in
the procedure until the procedure is called by a job step.

The DDNAME parameter is most often used in cataloged procedures and
in job steps that call procedures. It is used in cataloged or in-stream
procedures to postpone defining data in the input stream until a job
step calls the procedure. (Procedures cannot contain DD statements that
define data in the input stream, i.e., DD * or DD DATA statements). It
is used in job steps that call procedures to postpone defining data in
the input stream on an overriding DD statement until the last overriding
DD statement for a procedure step. (overriding DD statements must appear
in the same order as the corresponding DD statements in the procedure.)

When You Code the DDNAME Parameter
When the system encounters a DD statement that contains the DDNAME
parameter, it saves the ddname of that statement. The system also
temporarily saves the name specified in the DDNAME parameter so that it
can relate that name to the ddname of a later DD statement. Once a DD
statement with that corresponding name is encountered, the name is no
longer saved. For example, if the system encounters this statement

//XYZ DD DDNAME=PHOB

162 JCL Reference (Release 21.7)

the system saves XYZ and, temporarily, PHOB. Until the ddname PROB is
encountered in the input stream, the data set is a dummy data set.

When the system encounters a statement whose ddname has been
temporarily saved, it does two things. It uses the information contained
on this statement to define the data set; it associates this information
wi th the name of the statement that contained the DDNAME parameter. The
value that appeared in the DDNAME parameter is no longer saved by the
system. To continue the above example, if the system encounters this
statement

//PHOB DD DSNAME=NIN,DISP=(NEW,KEEP),UNIT=2400

the system uses the data set name and the disposition and unit
information to define the data set; it also associates the ddname of the
statement that contained the DDNAME parameter with this information. In
this example, the ddname used is XYZ; the ddname PHOB is no longer
saved. The data set is now defined, just as it would be if you had coded

/ /XYZ DD DSNAME=NIN, DISP= (NEW, KEEP)., UNIT=2400

The system associates the ddname of the statement that contains the
DDNAME parameter with the data set definition information. It does not
use the ddname of the later statement that defines the data set.
Therefore, any references to the data set, before or after the data set
is defined, must refer to the DD statement that contains the DDNAME
parameter, not the DD statement that defines the data set. The following
sequence of control statements illustrates this:

//DDl

//LATER
//

//DD12
//

DD

DD

DD

DDNAME=IATER

DSN=SET12,DISP=(NEW,KEEP),UNIT=23ll,
VOLUME=SER=4623l,SPACE=(TRK, (20,5»

o SN=SETl 3 ,DI SP= (NEW" KEEP) " VOLUME=REF-= *. DD1"
SPACE=(TRK,(40,S»

x

x

When you want to concatenate data sets" the unnamed DD statements
must follow the DD statement that contains the DDNAME parameter" not the
DD statement that defines the data set. The following sequence of
control statements illustrates this:

//DDA
//
//

//OEFINE

/*

DD DDNAME=DEFINE
DD DSN=A.B.C,DISP=OLD
DD DSN=SEVC,DISP=OLD,UNIT=231l,VOL=SER=S2226

DO *
data

You can use the DDNAME parameter up to five times in a job step or
procedure step. However" each time the DDNAME parameter is coded, it
must refer to a different"ddname.

Section IV: The DD Statement -- DDNAME Parameter 163

THE DCB SUBPARAMETERS BLRSIZE. BUFNO, AND DIAGNS

The DCB subparameters BLKSIZE, BUFNO, and DIAGNS can be coded with the
DDNAME parameter. This allows you to assign these DCB characteristics to
the data set defined in the referenced DD statement. When the DCB
subparameters BLKSIZE" BUFNO, and DIAGNS are coded both on the DD
statement that contains the DDNAME parameter and on the referenced DD
statement, the subparameters coded on the former are ignored.

These subparameters would most often be coded with the DDNAME
parameter when the referenced DD statement defines data in the input
stream. Data in the input stream is written onto a direct access device"
and the records are blocked as they are written. The input reader
procedure normally assigns a block size and number of buffers for
blocking. Coding the BLKSIZE subparameter allows you to specify that you
want shorter blocks. coding the BUFNO subparaneter allows you to specify
that you want fewer buffers. You cannot specify that you want larger
blocks or more buffers than would be assigned by the input reader
procedure. (When a job is submitted via remote job entry and the BUFNO
subparameter is coded, the BUFNO subparameter is ignored.)

Examples of the DDNAME Parameter
1. //STEPl

//DDl
//DD2

EXEC PGM=PROGRAM8
DD DDNAME= INPUT
DD DSNAME=WELL,DISP=OLD

2.

3.

The above statements make up the statements for a procedure step
named STEP1" which is the first step of a procedure named MENT. The
following statements illustrate how you would define DDl as a data
set in the input stream:

//STPA EXEC PROC=MENT
//STEP1.INPUT DD *

/*

//ST4
//DDl
//DD2
//DD3
//DD4
//DDS
//STS
//DD6

data

EXEC
DD
DD
DD
DD
DD
EXEC
DD

PGM=FIFTY
DDNAME=DDS
UNIT=2400
UNIT=2400
SYSOUT=B
DSNAME=ADDN,DISP=(,PASS),UNIT=2400
PGM=FINE
DSNAME=*.ST4.DD1,DISP=(OLD,KEEP)

The DD statement named DDS defines the data set for the statement
named DD1. The DD st at ement of the second job step wants the system
to obtain the dataset name, unit and volume information of this
data set. This is done by referring to the DD statement that
contains the DDNAME parameter.

//STEP8
//DDl
//
//
//SKIP

EXEC
DD
DD
DD
DD

PGM=BLOCK
DDNAME=SKIP
DSNAME=A.B.C,DISP=OLD
DSNAME=LEV.FlVE,DISP=OLD
DSNAME=SEF"DISP=OLD,UNIT=2311, VOLUME=SER=llllll

164 JCL Reference (Release 21.7)

4.

'Ibe DD statement named SKIP defines the data set for the statement
named DD1. The two data sets, A .• B.C. and LEV.FIVE, are concatenated
with the data set named SEF.

//STEPX
//DDl
//DD2
//DD3
//LATER

/*

EXEC
DD
DO
DD
DO

data

PGM=PROG12
DDNAME=LATER., DCB= (BLKSIZE=1600 ,BUFNO=2)
UNIT=2400
SYSOUT=F
*

The DD statement named LATER defines the data set for the statement
named 001. The DCB subparameters coded with the DDNAME parameter are
used to block the inplt data.

5. //STEPX
//DDA
//DDB

EXEC PGM=B403
DO DSNAME=SEL,DISP=OLD,VOLUME=SER=X3220,UNIT=2400
DO SYSOUT=B

The above statements make up the statements for a procedure step
named STEPX, which is the first step of a procedure named TYPE. The
following statements illustrate how you would use the DDNAME
parameter when overriding both of the DD statements and the first
overriding OD statement is to define data in the input stream:

//CALL
/ /STEP X. DDA
/ /ST EPX. DDB
//STEPX. IN

/*

6. //MAR
//CAROl
//CAR02
//CARD3
//COGH

EXEC PROC=TYPE
DD DONAME=I N
OD SYSOUT=G
DO *

data

EXEC PGM=OEPT12
DO DONAME=CARD4
DD UNIT=2400
DO OS NAME=NI NE.S CR, OISP= OLD
EXEC PGM=DEPT13

The DD statement named CARDl contains the DDNAME parameter.. This
statement defines a dummy data set since there is no DD statement
named CARD4 in the step.

Section IV: The DD Statement -- DDNAME Parameter 165

The DISP Parameter

NEW

OLD

SHR

MOD

DISP= (

[NEW~ OLD
SHR
MOD

, DELETE
,KEEP
,PASS
,CATLG
, UNCATffi

[

DELETEJ)
,KEEP
, CATLG
, UNCATLG

specifies that the data set is to be created in this job step.

specifies that the data set existed before this job step.

specifies that the data set existed before this job step and can be
used simultaneously (shared) by another job, since it will only be
read.

specifies that the read/write mechanism is to be positioned after
the last record in the data set, and, if the system cannot find
volume information for the data set" specifies that the data set is
to be created.

,DELETE
specifies that the data set is no longer needed and its space on the
volume is to be released at the end of this job step for use by
other data sets.

, KEEP
specifies that the data set is to be kept on the volume at the end
of this job step.

,PASS
specifies that the data set is to be passed for use by a subsequent
job step in the same job.

,CATLG ,
specifies that the data set is to be kept at the end of this job
step and an entry pointing to the data set is to be placed in the
systan catalog.

, UNCATLG

,

specifies that the data set is to be kept at the end of this job
step but the entry pointing to the data set in the system catalog is
to be removed.

specifies that a disposition is not explicitly specified for the
data set, but a conditional disposition follows. A new data set is
to be deleted and a data set that existed before execution of the
job is to be kept at the end of this job step.

,DELETE
specifies that the data set is no longer needed and its space on the
volume is to be released for use by other data sets if this step
abnormally terminates.

,KEEP
specifies that the data set is to be kept on the volume if this step
abnormally terminates .•

166 JCL Reference (Release 21.7)

,CATLG
specifies that an entry pointing to the data set is to be placed in
the system catalog if this step abnormally terminates.

, UNCATLG
specifies that the entry pointing to the data set in the system
catalog is to be removed if this step abnormally terminates.

Rules for Coding
1. If only the first subparameter is coded, you need not enclose it in

parentheses.

2. If the data set is new, you can omit the subparameter NEW. However,
if you specify a disposition or conditional disposition, you must
code a comma to indicate the absence of NEW.

3. You can omit the DISP parameter if a data set is created and deleted
during a job step.

4. If you do not want to change the automatic disposition processing
performed by the system, you need not code the second subparameter.
(When the second subparameter is not coded, the system automatically

keeps data sets that did exist before the job and automatically
deletes data sets that did not exist before the job.) If you omit
the second subparameter and code a conditional disposition, you must
code a comma to indicate the absence of the second subparameter.

5. '!he DISP, SYSOUT, and DDNAME parameters are mutually exclusive
parameters; therefore, when SYSOUT or DDNAME is coded, do not code
the DISP parameter.

6. You must specify a disposition of PASS or DELETE for a data set with
a system-generated name: i.e., when DSNAME=dsname is omitted from
the DD statement. Any other disposition will be overridden by the
system with PASS.

WHAT THE DISP PARAMETER DOES

The DISP parameter describes to the system the status of a data set and
indicates what is to be done with the data set after termination of the
job step that processes it or at the end of the job. You can indicate in
the DISP parameter one disposition to apply if the step terminates
normally after execution and another to apply if the step terminates
abnormally (conditional disposition).

Specifying the Data Set's Status
A data set is either a new data set or an existing data set. What you
plan to do with the data set determines which status you code as the
first subparameter of the DISP parameter. There are four different
subparameters that can be coded. These subparameters allow you to tell
the system:

• The data set is to be created in the job step -- NEW.
• The data set existed before this job step -- OLD.
• The data set can be used by other concurrently executing jom -- SHR.
• The data set is to be lengthened with additional output -- MOD.

Section IV: The DD Statement -- DISP Parameter 167

At the begining of each job, the system determines by the status you
specify in the DlSP parameter whether a job is to have exclusive control
of a data set. By specifying OLD, NEW, or MOD, you are requesting
exclusive control of a data set for the duration of your job. In order
to modify an existing data set, you should have exclusive control. If
you plan for your job step or job to only read a data set and not to
modify it, then you can request shared control of the data set.

The status of a data set that is defined and used in more than one
step of a job is determined by the most restrictive status specified.
The status that the system assigns to a data set from the information on
the DD statement is not:. for the duration of the step but for the
duration of the job. Therefore, in a. three step job, if OLD is specified
as the status in one step and SHR as the status in the other two steps,
the status of the data set for all three steps would be OLD.. OLD is a
more restrictive status than SHR. This means that if exclusive control
of a data set is requested anywhere in a job the data set cannot be
shared. In order to share a· data set, SHR must be specified every time
the data set is defined in the job.

When you specify NEW as the Data Set's Status

Specifying NEW as the first subparameter of the DISP parameter tells the
system that the data set is to be created in the job step and may be
used by the processing program to contain output data. If you omit the
subparameter NEW, the syst em assumes the data set is to be created in
the job step. (If you omit the subparameter NEW and specify a
disposition or conditional disposition, you must code a comma to
indicate the absence of NEW.) When the status of a data set is NEW, you
must code on the DD statement all of the parameters necessary to define
the data set.

Coding NEW guarantees exclusive control of the nontemporary data set
name specified in the DSNAME parameter for the data set. Exclusive
control of the data set name means that no other job that requests the
data set, by that name l, can be processed until the job with excl usi ve
control terminates. This also means that the data set name itself is
being exclusively controlled. If a request is made for the same data set
name, the request will not be processed -- even though the request may
refer to an entirely different physical data set.

When you Specify OLD as the Data Set's Status

Specifying OLD as the first subparameter of the DISP parameter tells the
system that the data set existed before this job step.

Coding OLD quarantees exclusive control of the nontemporary data set
name specified in the DSNAME parameter for the data set. Exclusive
control of the data set name means that no other job that requests the
data set, by that name" can be processed until the job with excl usi ve
control terminates. This also means that the data set name itself is
being exclusively controlled. If a request is made for the same data set
name, the request will not be processed -- even though the request may
refer to an entirely different physical data set.

When you Specify SHR as the Data Set's Status

specifying SHR as the first subparameter of the DISP parameter tells the

I system that the data set resides on a direct access volume or tape
. volume and other jobs that are executing concurrently with this job step
may simultaneously use (share) the data set. When SHR is specified, any
job step that uses the data set should only read the data set.

168 JCL Reference (Release 21.7)

You should have exclusive control of a data set in order to add or
update records,. If you plan to modify a data set, you should specify OLD
or MOD in the DISP parameter. To protect other users of a shared data
set, care should be exercised when specifying SHR if you plan to modify
the data set. several users can share a data set and write into it if
exclusive control of the data set is acquired. For more information on
sharing a data set and on gaining exclusive control of a data set when
you have specified SHR, refer to the OS Data Management services
publication.

Caution should be obs erved when specifying SHR for IBM processor
output data sets since no provision is made for acquiring exclusive
control of the data sets prior to writing (e.g. SYSGO for the Assembler).

If you code DISP= (SHR, DELETE) the system assumes OLD instead of SHR.
once you specify SHR for a data set, every reference to that data set

within the job must specify SHR or the data set can no longer be used by
concurrently executing jobs.

When You Specify MOD as the Data Set' s Status

specifying MOD as the first subparameter of the DISP parameter tells the
system that when the data set is opened for output, the read/write
mechanism is to be positioned after the last record in the data set.
MOD is specified when you want to add records to a data set with
sequential, indexed sequential, or partitioned organization. MOD should
not be specified for data sets with direct organization. When MOD is
specified and the number of volumes required to lengthen the data set
may exceed the number of units requested, specify a volume count in the
VOLUME parameter. This ensures that the data set can be extended to new
volumes.

When extending an old data set which at creation specified UNIT=group
name, the additional units allocated for extending will not necessarily
be of that same group. The same device type will be allocated.

When MOD is specified, the system first assumes the data set exists.
If the volume information for the data set is supplied on the DO

statement, in the system catalog, or passed with the data set from a
previous step and the data set is not there, the system will issue an
appropriate error message. specifying MOD for a new sequential data set
causes the read/write mechanism to be positioned after the last record
in the data set each time it is opened for output.

Specifying MOD quarantees exclusive control of the nontemporary data
set name specified in the DSNAME parameter for the data set. Exclusive

J
control means that no other job that requests the data set" by that
name, can be processed until the job with control terminates. This also
means that the data set name itself is being exclusively controlled. If
a request is made for the same data set name, the request will not be
processed -- even though the request may refer to an entirely different
physical data set.

If MOD is specified and the volume information exists for a
multivolume data set, the first volumes will be mounted on the units
allocated. However" if the data set is opened for output with a
disposition of MOD, OPEN will start with the last volume" requiring
·demounting of the first volumes if more volume serial numbers were
specified than units allocated. To avoid this inefficiecy, specify DEFER
in the UNIT parameter, VOL=REF (for tape data sets only), or an explicit
volume sequence number in the VOLUME parameter.

If the data set is opened for OUTPUT or OUTIN, the system will mount
the last volume to search for EOF, unless a volume sequence number is
specified on the DO statement. In that case, the volume sequence number
is used to determine the volume to be mounted.

Section IV: The DO Statement -- DISP Parameter 169

When you lengthen a data set that has standard labels, DCB
information in the data control block must agree with the DCB
information contained in the data set label. Conflicting DCB
information, specifically conflicting block sizes, may make the data set
unusable by later jobs. Therefore, do not code the DCB information
contained in the data set label on the DD statement. If this DCB
information is coded in the DCB macro instruction, be sure it agrees
with the information contained in the data set label.

If you extend a data set that has fixed block standard (FBS) records
and the last block was a truncated one, an end-of-data set condition
occurs when the truncated block is encountered. If an attempt is made to
read the data set backward on magnetic tape, processing is terminated
immediately (with an end-of-data set condition> upon reading the
truncated block.

Specifying a Disposition for the Data Set
The second subparameter of the DISP parameter tells the system wha t is
to be done with the data set at the end of the job step. If you want the
da ta set to assume the s arne attributes it had before the job, you need
not code the second subparameter of the DISP parameter. However" if a
conditional dispostion is specified, you must code a comma to indicate
the absence of the second subparameter. When the second subparameter is
not coded, data sets that existed before the job continue to exist and
data sets that were created in the job step are deleted. If you create a
nontemporary data set in the job and assign a disposition of PASS to it,
the data set is deleted at termination of the job step that receives the
passed data set and does not assign a disposition to it. (The passed
nontemporary data set is deleted at job termination if the data set is
never received by a later job step.)

The system ignores the disposition you have coded and automatically
keeps existing data sets and deletes new data sets when the step is
abnormally terminated before the step begins execution" e. g., primary
direct access space cannot be obtained.

Sometimes the system does not perform disposition processing. The
system does no disposition processing of data sets when:

• The job step is bypassed because of an error that is found during
interpretation of control statements, e.g., a control statement
containing errors is read.

• The job step is bypass ed becaus e a return code test is satisfied .•

• The job step makes a nonspecific request for a tape volume and the
data set is never opened. There is one exception: If you make a
nonspecific request for a tape volume for a new generation data set
and the data set is never opened, the system catalogs the data set
with a volume serial number of blanks. Tape generation data sets
that were never opened and that were cataloged may only be
uncataloged by specifying the data set name parameter in the format
of generation data group name and the relative generation number, or
by using the IEHPROGM utility program.

• The job step requests that the mounting of a direct access volume be
deferred and the data set is never opened.

Except for the cases mentioned above, the specified disposition is
in effect for the data set if the job step terminates normally or
abnormally and you have not specified a conditional disposition as the
third subparameter of the DISP parameter.

170 JCL Reference (Release 21.7)

There are five dispositions that can be specified for a data set.
These dispositions allow you to:

• Delete a data set -- DELETE.
• Keep a data set -- KEEP.
• Pass a data set to a later job step -- PASS.
• Catalog a data set -- CATIG.
• Uncatalog a data set -- UNCATLG.

When you specify DELETE as the Disposition

Specifying DELETE as the second subparameter of the DISP parameter tells
the s ys tern that yoo want the dat a set's space on the vol ume re lea sed at
the end of the job step. If the catalogued data set is a qualified data
set, e.g., A.B.C., the system will aut-omatically delete any index levels
which become superfl uous except the highest index level. If the data set
resides on a tape volume, the tape is rewound and the volume is
available for use by other data sets at the end of the job step. If the
jata set resides on a direct access volume, the system removes the
volume table of contents entry associated with the data set and the data
set's space is available for use by other data sets at the end of the
job step. However, if the direct access data set's expiration date or
retenti on period has not expired, the system does not delete the data
set. You can use the IEHPROGM utility program to remove the volume table
of contents entry.

If you are deleting a cataloged data set, the entry for the data set
in the system catalog is also removed, provided the system obtained
volume information for the data set from the catalog, i.e., the volume's
serial number was not coded on the DD statement. If the system did not
obtain volume information from the catalog, the data set is still
deleted but its entry in the catalog rerrains,. If an error is encountered
while attempting to delete a data set, its entry in the catalog will not
be removed. yOU may use the IEHPROOM utility program to delete an entry
from the catalcq.

If the catalogued data set is a qualified data set, e. g .• , A.B.C.,
the system will automatically delete any index levels which become
superfluous except the highest index level.

When you Specify KEEP as the Disposition

Specifying KEEP as the second subparameter of the DISP parameter tells
the system that you want the data set kept intact until a subsequent job
step or job requests that the data set be deleted or until the
expiration date is passed. (You can specify a retention period or
expiration date in the !ABEL parameter when the data set is created. If
nei ther is coded in the LABEL parameter, a retention period of zero days
is assumed by the system.)

When you specify PASS as the Disposition

Specifying PASS as the second subparameter of the DISP parameter tells
the system that the data set is to be passed after it is used in a job
step. The system retains unit and volume information for a passed data
set; when you refer to' the data set in a DD statement of a subsequent
job step, do not code the VOLUME parameter. A passed data set may be
referred to in a later job step. You continue to code PASS each time the
data set is referred to until the last time it is used in the job. At
this time, you assign it a final disposition. If you do not assign the
data set a final disposition, the system deletes the data set if it was
created in the job and keeps the data set if it existed before the job.
(see Appendix C for special consideration when passing ISAM data sets.)

Section IV: The DD Statement -- DISP Parameter 171

When the data set is not in use, the volume that contains the passed
data set ranains mounted; therefore" you need not code RETAIN in the
VOLUME parameter of a DD statement that specifies a disposition of PASS.
If the system nnst remove the volume that contains the passed da ta set,

it ensures through messages to the operator that the volume is remounted
before the data set is used again.

When a subsequent job step wants to use the passed data set, you
must include a DD statement for the step. On this DD statement" you must
always code the DSNAME and DISP parameters.

• The DSNAME parameter identifies the data set. Either code the data
set's name or make a backward reference to an earlier DD sta tement
in the job that defines the data set.

• '!he DISP parameter specifies the data set's status and disposition.
(If a later job step is to use this data set, specify a disposition
of PASS; if this is the last job step that uses this data set,
specify the data set's final disposition.)

The other parameters you might code are UNIT., LABEL, and DCB.

•

•

Code the UNIT parameter if you want more than one device allocated
to the data set.

Code the LABEL parameter if you want to override the processing
method specified in the OPEN macro instruction. See the IN and OUT
subparameters of the LABEL parameter. (If you are processing a DOS
unlabeled tape, code LABEL=(,LTM) if you want the system to test for
and bypass a leading tapemark if it is encountered.)

Code the DCB parameter or a backward reference to the DCB if the DCB
information is not supplied by any other source.

If several data sets used in the job have the same name, you can
only pass one of these data sets at a time. A job step must'refer to a
passed data set and assign a disposition of other than PASS to the data
set before another data set with the same name can be passed. Only one
reference to the data set name of a passed data set should be made
within a single job step.

When you specify CATLG as the Disposition

specifying CATLG as the second subparameter of the DISP parameter tells
the system to create a data set entry in the system catalog that points
to this data set. The disposition CATLG also implies a disposition of
KEEP. Once the data set is cataloged, you can retrieve the data set in
1 ater job steps and jobs by coding the DSNAME parameter and a status of
other than NEW in the DISP parameter.

You can specify a disposition of CATLG for an already cataloged data
set. '!hi s should be done when you are lengthening the data set with
additional output (a status of MOD is coded) and the data set may exceed
one volume. If the system obtained volume information for the data set
from the catalog and you code DISP=(MOD,CATLG), the system updates the
entry to include the volume serial numbers of any additional volumes.

I If there is more than one DD card within the same step reference which
extends the same data set, lost data and an incorrect catalog entry may
result.

If the data set's name is enclosed in apostrophes, the data set must
not be assigned a disposition of CATLG. If the data set you want to
catalog has a qualified name, e.g., A.B .• C., the system will
automatically create all the necessary index levels.

172 JCL Reference (Release 21.7)

When you specify UNCATLG as the Disposition

specifying UNCATLG as the second subparameter of the DISP parameter
tells the system that you want the data set;'s entry in the system
catalog removed at the end of the job step; UNCATLG does not tell the
system to delete the data set. Later jobs that use this data set must
provide on the DD statement all of the parameters necessary to define
the data set. If the data set you want to UNCATLG is a qualified data
set, e.g., A.B,.C., the system will automatically delete any index except
the highest level index that becomes superfluous when the data set is
removed from the catalog.

Specifying a Conditional Disposition for the Data Set

The third subparameter of the DISP parameter tells the system what is to
be done with the data set if the step abnormally term ina tes. If you do
not specify a conditional disposition and the step abnormally
terminates, the system uses the disposition specified as the second
subparameter of the DISP parameter to determine what is to be done with
the data set. (There are a few exceptions and they are noted under
"Specifying a Disposition for the Data set.") If a passed data set has
not been received and a job step abnormally terminates, the passed data
set assumes the conditional disposition specified the last time it was
passed. In this case, conditional disposition processing is done at job
termination, not at step termination.

'Ihere are four conditional dispositions. When a job step abnormally
terminates, these conditional dispositions alloW you to:

• Delete a data set -- DELETE.
• Keep a data set -- KEEP.
• Catalog a data set -- CATLG.
• Uncatalog a data set -- UNCATLG.

When you Specify DELETE as the Conditional Disposition

specifying DELErE as the third subparameter of the DISP parameter tells
the system that if the step abnormally terminates you want the data
set's space on the volume released. DELETE is the only valid conditional
disposition that can be specified for a data set assigned a temporary
name or no name. If the data set resides on a tape volume, the tape is
rewound and the volume becomes available for use by other data sets at
the end of the job step. If the data set resides on a direct access
volume, the system removes the volume table of contents entry associated
with the data set and the data set's space is available for use by other
data sets at the end of the job step. However" if the direct access data
set'.5 expirati on date or retention period has not expired, the system
does not delete the data set. You can use the IEHPROGM utility program
to remove the volume table of contents entry,.

If the data set is cataloged" its entry in the system catalog is
also removed, prCNided the system obtained volume information for the
data set from the catalog, i.e., the volume's serial number was not
coded on the DD statement. If the catalogued data set is a qualified
data set, e.g., A.B.C., the system will automatically delete any index
levels which become superfluous except the highest index level. If the
system did not obtain volume information from the catalog" the data set
is still deleted but its entry in the catalog remains. In this case, you
may use the IEHPR(x;M utility program to delete the entry.

Section IV: The 00 Statement -- OISP Parameter 173

When you specify KEEP as the Conditional Disposition

Specifying KEEP as the third subparameter of the DISP parameter tells
the system tha:t if the step abnornally terminates you want the data set
kept intact until a subsequent job requests that the data set be deleted
or until the expiration date has passed. (You can specify a retention
period or expiration date in the LABEL parameter when the data set is
created. If neither is coded in the LABEL parameter, a retention period
of zero days is assumed by the system.)

Bote: A scratch volume will be rewound, unloaded" and a I<EEP message
issued to the operator during abnormal termination of a job step when:
(1) a temporary data set written on the scratch volume has been assigned
a nontemporary name, and (2) a conditional disposition of KEEP has been
assigned to the data set.

When you specify CATLG as the Conditional Disposition

Specifying CATIG as the third subparameter of the DISP parameter tells
the system that if the step abnormally terminates you want the system to
create an en try in the system catalog that points to this data set. The
conditional disposition of CATLG also implies a conditional disposition
of KEEP. Once the data set is cataloged" you can retrieve the data set
in later job stelE and jobs by coding the DSNAME parameter and a status
of other than NEW in the DISP parameter.

If the data set's name is enclosed in apostrophes" the data set must
not be assigned a conditional disposition of CATLG. If the data set has
a' qualified name" e.g,., A,.B.C., the system will automatically create all
the necessary index levels.

When you Specify UNCATLG as the Conditional Disposition

Specifying UNCATLG as the third subparameter of the DISP parameter te lIs
the system that if the step abnormally terminates you want the data
set's entry in the system catalog removed, UNCATLG does not tell the
system to delete the data set. Later jobs that use this data set must
provide on the DD statement all of the parameters necessary to define
the data set. if the data set has a qualified name, e.g." A.B.C., the
system will automatically delete any index except the highest level
index that becomes superfluous when the data set is removed from the
catalog.

The system perf oms dis pas it ion process in g of data sets at step
termination. This processing is based on whether the step terminated
nornally or abnormally" the data set's status, the requested
disposition, and the conditional disposition. Figure 23 shows the
disposition processing performed by the system based on these factors.

174 JCL Reference (Release 21.7)

00
CD
Cl
rt
1-'.
o
::s
H
<:

1-3
::Y
CD

o
o
00
rt
Pl
rt
CD
El
CD
::s
rt

o
H
00
'"d

'"d
Pl
11
Pl
El
CD
rt
CD
11

I--'
-....J
U1

Action Taken
Status Requested Disposition Conditional Disposition at Normal

End of Stepl

none none deleted

KEEP none kept

DELETE none deleted

CATLG none cataloged

PASS none passed

NEW or MOD
2 PASS

~n~~;~~~3 passed
any except requested
PASS KEEP disposition
any except requested
PASS DELETE disposition
any except requested
PASS CATLG disposition

none none kept
KEEP none kept

DELETE none deleted

CATLG none cataloged

UNCATLG none uncata loged

PASS none passed
OLD or MOD PASS any passed

or SHR

any except requested
PASS KEEP disposition
any except requested
PASS DELETE disposition
any except requested
PASS CATLG disposition
any except requested
PASS UNCATLG disposition

Footnotes:

1 See list of exceptions in right-hand column.

2 For MOD, a data set is considered to be a new data set if volume information is not
available to the system.

3 A conditional disposition other than DELETE is invalid for a d~ta set that is assigned a
temporary name or no name. The system assumes DELETE.

- -- ---

Figure 22. Dispooition Processing Chart

Action Taken at Abnormal End of Step 1, when Step Fails Due to:
Action Taken at

Job Cancelled After After Data Set Allocation, End of Job
No Allocation Performed Data Set Allocation Another Allocation

or Program Check Cannot be Performed

deleted deleted deleted

deleted kept deleted

deleted deleted deleted

deleted cataloged deleted

deleted passed passed deleted
conditional

deleted passed passed disposition

deleted k€j>t kept

deleted deleted deleted

deleted cataloged cataloged

kepJ kept kept
kept kept kept

kept deleted kept

kept cataloged kept

kept uncataloged kept

kept passed ~assed kept
kept passed passed conditional

disposition

kept kept kept

kept deleted deleted

kept cataloged cataloged

kept uncataloged uncata loged

Li st of Excf'ptions :

I. When a nontemporary data set is passed and the receiving step does not assign it a disposition,
the system will, upon termination of this step, do one of two things. If the data set was new
when it was initially passed, it will be deleted. If the data set was old when initially

I passed, it will be kept. Temporary data sets are deleted.
2. If a job step makes a nonspecific request for a tape volume with the disposition of PASS and

the data set is not opened in the step in which it is created, the job will ABEND.
3. If a job step requests that the mounting of a direct access volume be deferred and the data set

is never opened, no cjisposition processing is performed.
4. If outomatic step restart is to occur, 011 data sets in the restart step with a status of OLD or

MOD, and all data sets being passed to steps following the restart step, are kept. All data
sets in the restart step with a status of NEW are deleted.

5. If automatic checkpoint restart is to occur, all data sets currently in use by the job are kept.
6. When dedicated data sets are used in a job step, any disposition assigned to them is internally

changed to PASS or KEEP to prevent deletion of the dedicated data sets.

Examples of the DISP Parameter

1. //DD
//

DD DSNAME=D99.GROUP.SIX,UNIT=2311,VOLUME=SER=111111, x
DISP=(NEW,CATLG,DELETE),SPACE=(TRK,(5,l»

This DD statement defines a new data set and requests the system to
create an index entry in the system catalog that points to this data
set if the step terminates normally. It also requests the system to
delete the data set, instead of cataloging it, if the step
abnormally terminates. The system will automatically create the
indexes in the catalog for D99 and GROUP.

2. //DD2
//

DD DSNAME=FIX,UNIT=2400-1,VOLUME=SER=44889,
DISP=(OLD"DELETE)

x

This DD statement defines an existing data set and implies that the
data set is to be kept if the step terminates normally. (For an
existing data set, the system assumes it is to keep the data set if
no disposition is specified.), The statement requests the system to
delete the data set if the step abnormally terminates.

3. //STEP1
//DDl
//
//STEP2
//DD2
//DD3
//STEP3
//DD4

EX EC PGM=FILL
DD DSNAME=SWITCH.LEVEL18.GROUP12,UNIT=2311, X

VOLUME=SER=LOCAT3, SPACE=(TRK, (80,,15)),DISP= (, PASS)
EXEC PGM=CHAR
DD DSNAME=XTRA,DISP=QLD
DD DSNAME=* .STEP1.DDl ,DISP= (OLDr,PASS" DELETE)
EXEC PGM=TERM
DD DSNAME=* .STEP2 .DD3 ,DISP:' (OLD, CATLG. DELETE)

The DD statement named DDl in STEP1 defines a new data set and
requests that the data set be passed. If STEPl abnormally
terminates, the data set is deleted since it is a new data set and a
conditional disposition was not specified. The DD statement named
DD3 in STEP2 receives the passed data set and requests that the data
set be passed. If STEP2 abnormally terminates, the data set is
deleted because of the conditional disposition of DELETE. The DD
statement named DD4 in STEP3 receives the passed data set and
requests that the data set be cataloged at the end of the step. If
STEP3 abnormally terminates, the data set is deleted because of the
conditional disposition of DELETE.

176 JCL Reference (Release 21.7)

The DLM Parameter

DLM=delimiter

delimiter
the characters that will indicate the end of a group of data in the
input stream.

Rules for Coding
1. The delimiter can be any combination of two characters.

2. If the delimiter contains any special characters, you must enclose
the delimiter in apootrophes (5-8 punch).

3 • If you inc lude an ampers and or an apostrophe in the delirni ter, you
must code each ampersand or apostrophe as two consecutive ampersands
or apostrophes.

4. The DLM parameter has meaning only on statements defining data in
the input stream (DD * and DD DATA statanents).

5 • If you do code the DLM parameter on a DO * or DO DATA statement, the
characters you assign as delimiter override the /* delimiter on the
DD * or DD DATA statements. You can then terminate the data with
the characters assigned in the DLM parameter.

WHAT THE DLM PARAMETER DOES

The DLM parameter allCMs you to use a delimiter other than /* to
terminate a group of data defined in the input stream. By assigning a
different de limiter in the DLM parameter" you can include a delimiter
statement with the delimiter /* as data in the input stream.

You code the DLM parameter on a DD * or DD DATA statement. The
system recognizes the character you assign in the DLM parameter as the
delimiter for the data in the input stream. The new delimiter has
meaning only for that group of data defined by the OD statement
containing the DLM parameter. If the system encounters an error on the
DD statement bef ore the DLM parameter, it will not recognize the value
assigned as a delimiter.

The delimiter you assign is coded on the delimiter statement in the
same way /* is coded. FOr detailed information, see the section on the
delimi ter statement.

Examples of the DLM Parameter

1. //DD1

Data
AA

DD * ,DLM=AA

The DLM parameter assigns the characters AA as the valid delimiter
for the data defined in the input stream by OD1.

Section IV: The on Statement-- OLM Parameter 177

2. //DD2

data
&&

DD DATA,OCB=BUFN0=2,DLM='&&&&'

The DLM parameter assigns the characters && as the valid delimiter
for the data defined in the input stream by D02. Since an ampersand
is a special character, it must be enclosed in apostrophes in the
DLM parameter. Each ampersand must also be written as two
consecutive ampersands in the OLM parameter.

178 JCL Reference (Release 21.7)

The DSNAME Parameter

{DSNAME}
DSN

=

dsname

dsname
dsname(member name)
dsname(generation number)
dsname(area name)
&&dsname
&&dsname(member name)
&&dsname(area name)
*.ddname
*.stepname.ddname
* • stepname. proc stepname .• ddname

identifies a data set name.

dsname(merober name)
identifies a nontemporary partitioned data set name and the name of
a member within that data set.

dsname (generation number)
identifies a generation data group by its name and a generation data
set by its generation number (a zero or signed integer.)

dsname(area name)
identifies a nontemporary indexed sequential data set name and an
area of that data set (INDEX, PRIME, or OVFLOW.)

&&dsname
specifies the name you want assigned to a temporary data set.

&&dsname(member name)
specifies the name you want assigned to a temporary partitioned data
set and to a member within that data set.

&&dsname(area name)
specifies the name you want assigned to a temporary indexed
sequential data set and identifies an area of that data set (INDEX,
PRIME, or OVFLOW.)

* .ddname
specifies that the data set name is to be copied from the named DD
statement, which is an earlier DO statement in the job step.

*.stepname.ddname
specifies that the data set name is to be copied from an earlier DO
statement named ddname, which appears in an earlier step named
stepname in the same job.

*.stepname.procstepname.ddname
specifies that the data set name is to be popied from an earlier DO
statement in a cataloged procedure. Stepname is the name of the job
step that calls the procedure., procstepname is the name of the
procedure step that includes the named OD statement, and ddname is
the name of the DD statement that contains the data set name.

Rules for Coding

1. . An unqualified data set name may consist of 1 to 8 characters. The
first character must be an alphabetic or national (@,$,#) character:
the remaining characters can be any alphameric or national
characters, a hyphen, or a plus zero (12-0 punch). A temporary data
set name can consist of 1 through 8 characters, preceded by two

section IV: The 00 Statement -- OSNAME Parameter 179

I

ampersands; the first character following the ampersands must be an
alphabetic or national character.

2. A qualified name may consist of up to 44 characters including
periods. For each eight characters or less there must be a period.,
and the character following a period must be an alphabetic or
national (@,$,#) character.

3. You need not code the DSNAME parameter if the data set is crea ted and
del eted in the joh, i. e. " if the data set is temporary.

4. '!be DSNAME and DDNAME parameters are mutually exclus ive parameters;
therefore" when the DDNAME parameter is coded, do not code the DSNAME
parameter. The statement to which the DDNAME parameter refers can
contain the DSNAME pa.rameter.

IDENrIFYING THE DATA SEr

When you create a data set, you use the DSNAME parameter to assign a
nane to the data set. The data set name is part of the information
stored with the data set on a volume. Later, when another job step or
job wants to use the data set" it identifies the data set name in the
DSNAME parameter; the system uses the data set name to locate the data
set on the volume.

HOW you code the DSNAME parameter depends on the type of data set and
whether the data set is nontemporary or temporary.

Creating or Retrieving a Nontemporary Data Set
If the data set is nontemporary, you can identify:

J. A nontemporary data set by coding DSNAME=dsname.

• A member of a nontemporary partitioned data set by coding
DSNAME=dsname(member name).

• A generation of a nontemporary generation data group by coding
DSNAME=dsname (n,umber) •

• An area of a nontemporary indexed sequential data set by coding
DSNAME=dsnameCarea name).

NON TEMPORARY DATA SET

When a nontemporary dataset is created" it is assigned a name in
the DSNAME parameter and is assigned a disposition of KEEP or CATLG. (A
data set assigned a disposition of KEEP may be assigned a disposition of
CATLG by a later job step or job.) The name you assign to a nontemporary
data set must be specified in the DSNAME paraneter by all other steps
and jobs that want to use the data set.

A nontemporary data set name can be either an unqualified or
qualified nane. An unqualified data set name consists of 1 through 8
characters. The first character must be an alphabetic or national
(@, #, $) character; the remaining characters can be any alphameric or'
national characters, a hyphen, or a plus zero (12- 0 punch).

A qualified data set name consists of 1 through 44 characters
(including periods), except when the qUalified name identifies a
generation data group.. In this case, the data set name may consist of
only 1 through 35 characters (including periods). For each eight

180 JCL Reference (Release 2l.7)

characters or less there must be a period, and the first character of
the name and the character following a period must be an alphabetic or
national (~,#,$) character.

If you assign a qualified name to a data set that is to be
cataloged, the system will generate all the nesessary index levels in
the catalog.

When you request a data set that is cataloged on a control volume
other than the system catalog, the system attempts to mount this control
volume if it is not already mounted. After the system obtains the
pointer to this data set, the control volume may then be demounted by
the system if the unit on which it was mounted is required by another
volume. If you plan to delete, uncatalog, or recatalog the data set, the
volume must be mounted during disposition processing (at the end of the
job step) in order for the pointer to be deleted or revised. You can
ensure that the volume remains mounted by requesting the operator to
issue a MOUNT command for this volume before the job step is initiated.
If you do not use the MOUNT command to mount the volume and if the
volume is not mounted during disposition processing, then, after the job
has terminated, use the IEHPRCGM utility program to delete or revise the
pointer in the control volume. (In order for the system to mount a
control volume, the control volume must be logically connected to the
system catalog. This is done using the CONNECT function of the IEHPROGM
utility program, which is described in the utilities publication.)

M~MBERS OF A PARTITIONED DATA SET

A partitioned data set consists of independent grou{:S of sequential
records, each identified by a member name in a directory. When you want
to add a member to a partitioned data set or retrieve a member, you
specify the partitioned data set name and follow it with the member
name. The member name is enclosed in parentheses and consists of 1 to 8
characters. The first character must be an alphabetic or national
(~,$,#) character; the remaining characters can be any alphameric or
na ti ona I characters.

GENERATIONS OF A GENERATION DATA SET

A generation data group is a collection of chronologically related data
sets that can be referred to by the same data set name. When you want to
add a generation to a generation data group or retrieve a generation,
you specify the generation data group name and follow it with the
generation number. The generation number is enclosed in parentheses and
the number is a zero or a signed integer. A zero represents the highest
generation number present in the catalog at the time the current job was
started; a negative integer (e.g.,-I) represents an older generation of
the group; a positive integer (e.g.,+I) represents a new generation that
is to be or has been created in this job and was not present in the
catalog at job initiation.

To retrieve all generations of a generation data group (up to 255
generations), code orily the group name in the DSNAME parameter and the
DISP parameter.

A complete discussion of creating and retrieving generation data
sets is contained in "Appendix D: Creating and Retrieving Genera tion
Data sets" in this publication.

section IV: The DD Statement -- DSNAME Parameter 181

AREAS OF AN INDEXED S:w;2UENTIAL DATA SET

The areas used for an indexed sequential data set are the index, prime,
and overflow areas. when you are creating the data set and define any of
these areas on a DD statement, you must identify the data set name and
follow it with the area name you are defining. The area name is enclosed
in parentheses and is either PRIME, INDEX, or OVFLOW. If you are using
only one DD statement to define the entire data set, code DSNAME=dsname
or DSNAME=dsname (PRIME). When you retrieve a data set, the term PRIME,
INDEX, or OVFLOW is optional. For detailed information on how to create
and retrieve iIrlexed sequential data sets, refer to "Appendix C:
Creating and Retrieving Indexed sequential Data Sets" in this
publication.

Creating or Retrieving a Temporary Data Set
If the data set is temporary" you can identify:

• A temporary data set by coding DSNAME=&&dsname.

• A member of a temporary partitioned data set by coding
DSNAME=& &ds name (member name).

• An area of a temporary indexed sequential data set by coding
DSNAME=&&dsname(area name).

TEMPORARY DATA SETS

Any data set that is created and deleted within the same job is a
temporary data set. A DD statement that defines a temporary data set
need not include the DSNAME parameter; the system generates one for you.

If you do include the DSNAME parameter, the temporary data set name
can consist of 1 through 8 characters and is preceded by two ampersands
(&&). The character follOWing the ampersands must be an alphabetic or
national (@,#,$) character; the remaining characters can be any
a lphameric or national characters. (A tanporary data set name tha t is
preceded by only one ampersand is treated as a temporary data set name
as lorg as no value is assigned to it either on the EXEC statement for
this job step when 'it calls a procedure, or on a PROC statement within
the procedure. If a value is assigned to it by one of these means, it is
treated as a symbolic parameter. Symbolic parameters are discussed in
Appendix A.)

The system generates a qualified name for the temporary data set
wi th the f ollowi ng f onnat :

SYsyyddd.Tttttttt.xyzzz.jobname.
{ &name }
unique no.

The characters are identified as follows:

SYSyyddd

Tttttttt

SYS - a constant followed by the date
yy - the two-digit year
ddd - the three-digit day

T - a constant followed by a time stamp
ttttttt - seven-digit time stamp

182 JCL Reference (Release 21.7)

xyzzz

jobname

&name if
specified by
user or a
unique no.

x - indicates the type of data set:
R - sysin
S - sysout
I - pre-spooled sysin

y - indicates the system configuration:
F - MFT
V - MVT

zzz - three numeric characters assigned to
make the name of the data set unique.

the name of the job for which the data set
was created

the name you assign to the data set in the
DSNAME parameter

a character string beginning with R or S
and ending with a seven-digit unique
number:
R - sysout and user-defined temporary

data sets
S - sysin and pre-spooled sysin data sets

The date and time are constants established for the specific reader
creating the temporary data set name. They are initialized when the
reader is started. Every temporary data set name created by a specific
reader during its operation will have the same date and time.

If you attempt to keep or catalog a temporary data set (you specify
a disposition of REEP or CATIG in the DISP parameter)" the system
changes the disposition to PASS and the data set is deleted at job
termination. However, this change is not made for a data set on a tape
volume when the following conditions exist: (1) the data set is new; (2)
the data set is not assigned a name; and (3) DEFER is specified in the
UNIT parameter. The data set is deleted at job termination, but the
system tells the operator to keep the volume on which the data set
resided during the job.

MEMBERS OF A_ TEMPORARY PARTITIONED DATA SET

When you want to add a member to a temporary partitioned data set or
retrieve a member during the job, you specify the partitioned data set's
temporary name and follow it with the member name. The member name is
enclosed in parentheses and consists of 1 to 8 characters. The first
character must be an alphabetic or national (0).,$,#) character; the
remaining characters can be any alphameric or national characters.

AREAS OF A TEMPORARY INDEXED SEQUENrIAL DATA SEl'

The areas used for an indexed se que ntia 1 data set are the index, prime,
and overflow areas. When you are creating a temporary indexed sequentia l'
data set and define any of these areas on a DD statement, you must
identify the data set's temporary name and follow it with the area name
you are defining. The area name is enclosed in parentheses and is either
PRIME, INDEX, or OVFLOW. If you are using only one DD statement to
define the entire temporary data set, code DSNAME=&&dsname or
DSNAME=&&dsnarne (PRIME). If you want to retrieve a data set,the term
PRIME, INDEX or OVFLOW is optional. For information on how to create
and retrieve indexed sequential data. sets, refer to "Appendix C:
Creating and Retrieving Indexed Sequential Data Sets" in this
publication.

Section IV: The nn Statement -- nSNAME Parameter 183

USING A DEDICATED DATA SET

If your installation provides dedicated data sets in a system with MVT"
you can use these data sets to contain your data instead of creating
your own temporary data sets. The use of dedicated data sets eliminates
some of the tine required to schedule a job step since the data sets are
already allocated.

To use a dedicated data set, code DSNAME=&&name or DSNAME=&name on a
00 statement, along with all other parameters required to define your
temporary data set, e.g., UNIT, SPACE, DCB. Replace the term "name" with
the ddname of the DD statement in the initiator cataloged procedure that
defines the dedicated data set you want to use. If the system cannot
assign you this dedicated data set, the parameters coded on your OD
statement are used to create a temporary data set. (For detailed
information on dedicated data sets, refer to the MVT Guide.)

Copying the Data Set Name From an Earlier DD Statement
The name of a data set tha t is used several times in a job, whether
specified in the DSNAME parameter or assigned by the system" can be
copied after its first use in the job. This allows you to easily change
data sets from job to job and eliminates your having to assign names to
temporary data sets. TO copy a data set nane, refer to an earlier DO
statement that identifies the data set. When the earlier DD statement is
contained in an earlier job step., you code DSNAME=*.stepname.ddnamei
when the earlier DD statement is contained in the same job step" you·
code DSNAME=*.ddnamei when the earlier DD statement is contained in a
cataloged procedure step called by an earlier job step, you code
OSNAME=*.stepname.procstepname.ddname.

Note: If you copy the name for a new data set from an earlier data set
that was assigned a disposition of DELErE, the new data set will be
temporary. You should assign a disposition of PASS to the new data set.
If you do not specify a disposition., or specify a disposition other than
PASS, the system assumes PASS.

Specifying the DSNAME Parameter in Apostrophes
sometimes, it may be necessary or desirable to specify a data set name
that contains special characters. If the nane contains special
characters, you must enclose the name in apostrophes (5-8 punch), e.g.,
OSNAME='DAT+5'. If one of the special characters is an apostrophe, you
must identify it by coding two consecutive apostrophes (two 5-8 punches)
in its place, e. g., DSNAME=' DAY' , SEND'. A data set name enclos ed in
apostrophes can consist of 1 through 44 characters.

There are cases when your data set nane must contain required
special characters, which tell the systan something about the data set
(e.g., && in OSNAME=&&name are required special characters that tell the
system that this is a temporary data set). In these cases" the data set
name must not be enclosed in apostrophes because the system will not
recognize the required special characters as having any special
significance. The following data set names contain special characters
that tell the system something about the data set and, therefore, cannot
be enclosed in apostrophes:

• DSNAME=name(member name)
• DSNAME=name(area name)
• DSNAME=name(generation number)
• DSNAME=&&name
• DSNAME=*.stepname.ddname

184 JCL Reference (Release 21.7)

)

Keep the following rules in mind:

1.

2.

3.

4.

If the data set is to be cataloged:, the data set name cannot be
enclosed in apostrophes.

If the data set name begins with a blank character" the data set is
assigned a temporary data set name by the system.

If the data set name ends with a blank character" the blank is
ignored .•

If the only special character is a period or a hyphen" you need not
enclose the data set name in apostrophes.

If retreiving a data set, unit and volure information should be
supplied in the DD statement or should be received as a passed data
set.

Examples of the DSNAME Parameter
1. / /DD1

//
DD OSNAME=ALPHA"DISP= (,KEEP) I,

UNIT=2400,VOLUME=SER=389984
x

This DD statement defines a new data set whose name is ALPHA. Later
job steps or jobs may retrieve this data set by supplying the data
set name in the DSNAME parameter, unit information in the UNIT
parameter, and volume information in the VOLUME parameter.

2. //DD2
//

DO DSNAME=PDS (PR(x;12), DISP=(OLD"KEEP):. UNIT=2311,
VOLUME=SER=882234

x

'!his DD statement retrieves a member of a partitioned data set named
pm.

3. //DD3 DD DSNAME=&&WORK.UNIT=2400

This DD statement defines a temporary data set. Since the data set
- is deleted at the end of the job step, the DSNAME parameter could be
omitted.

4. //STEP1
//DD4
//
//STEP2
//D05

EXEC PGM=CREATE
DD DSNAME=&&ISDATA(PRIME) ,DISP=(,PASS), UNIT=(2311,2). X

SPACE= (CYL', (10.,2) ", CONl'IG) ,VOLUME=SER= (33489,33490)
EXEC PGM=OPER
DO OSNAME=*. STEP1. DD4 , DIS P= (OLD" DELETE)

The DD statement named DD4 in STEFl defines a temporary indexed
sequential data set whose name is ISDATA. This DO statement is used
to define all of the areas of an indexed sequential data set. The DO
statement named 005 in STEP2 retrieves the data set by referring to
the earlier DO statement that.defines the data set. Since the
temporary data set is passed when it is defined in STEP1, STEP2 can
retrieve the data set.

Section IV: The DO Statement -- OSNAME Parameter 185

The FCB Parameter

image-id

FCB=(image-id [,ALIGN])
, VERIFY

the code that identifies the image to be loaded into the forms
control

, ALIGN
requests the operator to check the alignment of the printer forms
before the data set is printed.

, VERIFY
requests the operator to visually verify the image displayed on the
printer as the desired one. The operator is also given an
opportunity to align the printer forms.

Rules for Coding
1. The image-id can be 1 to 4 characters in length.

2. The FCB parameter is ignored if the data set is not'written to a
3211 printer.

3. The FCB and DDNAME parameters and the DCB sub parameters RKP, CYLOFL,
and INTVL are mutually exclusive parameters; therefore, if you code
the DDNAME parameter or one of the DCB subparameters RKP, CYLOFL, or
INTVL, do not code the FCB parameter.

4. If you do not code ALIGN or VERIFY, you need not enclose the
image-id in parentheses.

Image Identifier
The image-id is the code that identifies the image to be loaded into the
forms control buffer (FCB). It is retrieved from SYS1.IMAGELIB or
defined in the user's program through the exit list facility of the DCB
macro instruction. IBM provides two standard FCB images, STD1 and STD2.

STD1 specifies that 6 lines per inch are to be printed on an 8.5
inch form. STD2 specifies that 6 lines per inch are to be printed on an
11 inch form,. The installation can provide additional user-designed
images.

If you omit the FCB parameter and the data set is wr itten to a 3211
printer, the default image is used if it is currently in the buffer.
Otherwise, the operator will be requested to specify an image.

REQUESTING ALIGNMENT OF FORMS

If you want to request that the operator check the alignment of the
printer forms before the data set is printed, code ALIGN as the second
subparameter of the FCB parameter.

REQUESTING OPERATOR VERIFICATION

By specifying VERIFY, you can request that the operator visually verify
that the image displayed on the printer is the desired one. specifying
VERIFY also gives the operator an opportunity to align the forms.

186 JCL Reference (Release 21.7)

(

\

Examples of the FeB Parameter
1. //DD1 DD UNIT=3211,FCB=(IMG1,VERIFY)

This OD statement defines the output data set that is to be written
to a 3211 printer. The FCB parameter requests that the data set be
written us:ing the control information corresponding to the forms
control image with the code IM71. Since VERIFY is coded, the forms
control image is displayed on the printer before the data set is
printed and the operator is asked to align the printer forms.

2. //DD2 DD SYSOUT=A,FCB=IMG2

This OD statement defines an output data set that is to be written
to the device that corresponds with class A. The FCB parameter is
ignored if the device is not a 3211 printer.

Section IV: The OD Statement -- FCB Parameter 187

The LABEL Parameter
-,

LABEL=([data set sequence number] , SL ['PASSWORD] [,IN 1 ~,])
, SUL , NOPWREAD , OU~ --'

rEXPDT=yyddd >l
LRETPD=nnnn J

,AL I~\
, AUL L. _.l '

,NSL
, NL
,BLP
,LTM
,

data set sequence number
specifies the relative position of a data set on a tape volume.

,SL
specifies that the data set has IBM standard labels.

I SUL
specifies that the data set has both IBM standard and user labels.

,AL
specifies that the data set has American National standard labels. 1

,AUL
specifies that the data set has both American National Standard
labels and American National standard user labels. 1

,NSL

,NL

,BLP

specifies that the tape data set has nonstandard labels.

specifies that the tape data set has no labels.

specifies that the system is not to perform label processing for the
tape data set.

, LTM

/\

t. '\ -~

specifies that the system is to check for and bypass a leading
tapemark on a DOS unlabeled tape.

specifies that the data set has standard labels and another
subparameter follows.

,PASSWORD
specifies that the new data set cannot be used by another job step
or job unless the operator can supply the system with the correct
password, i.e., the data set cannot be read, changed, extended, or
deleted.

, NOPWREAD
specifies that the data set can be read without the password" but
the operator IIUst give the password before the data set can be
chan ged, extended., or de leted.

1The .DCB subparameter OPTCD will be treated as if DCB=OPTCD=Q was
specified on the DD statement. If you specify an OPTCD on the DD
statement, it will be treated as if Q was specified in addition to any
other characters you code.

188 JCL Reference (Release 21.7)

I

,IN

specifies that another subparameter follows and, for a data set, the
data set is not to be password protected.

specifies that the data set is to be processed for input only.

,OUT
specifies that the data set is to be processed for output only.

specifies that either the RETPD or EXPDT subparameter follows and
one or more subparameters precede it.

EXPDT=yyddd
specifies the date when the data set can be deleted or overwritten
by another data set. Assign a 2- digit year number and a 3-digit day
number.

RETPD=nnnn
specifies the length of time in days that the data set must be kept.
Assign the number of days that must pass before the data set can be
deleted or overwritten by another data set.

Rules for Coding

1 • All the subparameters except' the last subparameter in the lABEL
parameter are positional subparameters. Therefore, if you want to
omit a subparameter, you must indicate its absence with a comma.

2. If the only subparameter you want 'to specify is the data set
sequence number, RETPD or EXPDl'" you can omit the parentheses and
commas and code LABEL=data set sequence number, LABEL=RETPD=nnnn, or
LABEL=EXPDT=yyddd.

3. If the data set has IBM standard labels, you can omit the
subparameter SL.

4. When you are defining a data set that resides or will reside on a
direct access volume, only SUL or SL can be specified as the second
subparameter.

5. If you are processing ASCII data on unlabeled (NL) tapes, you must
code OPTCD=Q in your DCB macro instruction or in the DCB parameter
on the DO statement.

6. Do not code LTM for magnetic tapes with labels,. If you do code LTM
for a labeled tape, the system will reject the tape.

7. The LABEL, DDNAME, and SYSOUT parameters are mutually excl usi ve
parameters; therefore,. if DDNAME or SYSOUT is coded, do not code the
LABEL parameter.

DATA SEl' LABELS

Labels are used by the operating system to identify volumes and the data
sets they contain, and to store data set attributes. Data sets residing
on magnetic tape volumes usually have data set labels. If data set
labels are present, they precede each data set on the volume. Data sets
residing on direct access volumes always have data set labels .• These
data set labels are contained in the volume table of contents at the
beginning of the direct access volume.

Section IV: The DO Statement -- LABEL Parameter 189

A data set label may be a standard or nonstandard label. Standard
labels can be processed by the system; nonstandard labels must be
processed by nonstandard label processing routines/ which the
installation includes in the system. Data sets on direct access volumes
must have standard labels. Data sets on tape volumes usually have
standard labels, but can have nonstandard labels or no labels.

Tape label definitions and associated tape label processing are
included in the Tape Labels publication. Direct access label definitions
and associated direct access label processing are described in "Appendix
A: Direct Access Labels" in the Data Management Services publication .•

When to Code the LABEL Parameter
The LABEL parameter must be coded if:

• You are processing a tape data set that is not the first data set on
the reel; in this case, you must indicate the data set sequence
number.

• The data set labels are not IBM standard labels; you must indicate
the label type.

• You want to specify what type of labels a data set is to have when
it is written on a scratch volume; you must indicate the label type.

• The data set is to be password protected; you must specifY PASSWORD
when you create the data set.

• The data set is to be processed only for input or output and this
conflicts with the processing method indicated in the OPEN macro
instruction; you must specify IN, for input., or OUT, for output.

• The data set is to be kept for some period of time; you nnst
indicate a retention period (RETPD) or expiration date (EXPDT).

• You are processing a DOS unlabeled tape and want the system to check
for and bypass a leading tap em ark on the tape.

THE DATA SET SEQUENCE NUMBER SUBP~ER

When you want to ·place a data set on a tape volume that already contains
one or more data sets, you must specify where the data set is to be
placed, i. e., the data set is to be the second, third" fourth, etc.,
data set on the volume. The data set sequence number causes the tape to
be positioned properly so that the data set can be written on the tape
or retri eved.

The data set sequence number subparameter is a positional
subparameter and is the first subparameter that can be coded. The data
set sequence number is a 1- to 4-digit number. The system assumes 1,
i.e., this is the first data set on the reel, if you omit this
subparameter or if you code 0, unless the data set is a passed or
cataloged data set. If a data set is cataloged, the system obtains the
data set sequence number from the catalog; for a passed data set., the
data set sequence number is obtained from the passing step.

190 JCL Reference (Release 21.7)

!

\

When you request the system to bypass label processing (BLP is coded
as the label type in the LABEL parameter) and the tape volume contains
labels, the system treats anything between tapemarks as a data set.
Therefore, in order for the tape with labels to be positioned properly,
the data set sequence number must reflect all labels and data sets that
precede the desired set. section I of the Tape Labels publication
illustrates where tapemarks appear.

THE LABEL TYPE SUBPARAMETER

The label type subparameter tells the system what type of label is
associated with the data set. The label type subparameter is a
positional subparam~ter and must be coded second., after the data set
sequence number subparameter .• You can omit this subparameter if the data
set has IBM standard labels.

•
•

•
•
•
•

~e label type subparameter is specified as:

SL -- if the data set has IBM standard labels.
SUL -- if the data set has both IBM standard and user labels.
AL -- if the data set has American National Standard labels.'
AUL -- if the data set has American National standard labels and
American National standard user.'-
NSL -- if the data set has nonstandard labels.
NL -- if the data set has no labels.
BLP -- if you want label processing bypassed.
LTM -- if you want the system to check for and bypass a leading
tapemark.

SL or SUL is the only label type that can be specified for data sets
that reside on direct access volumes.

When SL or SUL is specified, or the label type subparameter is
omitted and the data set has IBM standard labels, the system can ensure
that the correct tape or direct access volume is mounted. When you
specify NSL, installation-provided nonstandard label processing routines
must ensure that the correct tape volume is moonted.. When you specify
NL, BLP or LTM, the operator must ensure that the correct tape volume is
mounted. If you specify NL. the data set must not have standard labels .•
If you specify LTM, the tape must not have labels. When you specify AL
or AUL. the system ensures that the correct Anerican National Standard
labeled tape is moonted. '

For cataloged data sets., label type information is not kept .•
Therefore, any time yoo refer to a cataloged data set that has other
than standard labels, you must code the LABEL parameter and specify the
label type.

BLP is not a label type, but a request to the system. to bypass label
processing. This specification allows you to use a blank tape or
overwri te a seven-track tape that differs from your current parity or
density specifications. Bypass label processing is an option of the
operating system, specified as a PARM field value in the reader
cataloged procedure. If the option is not selected and you have coded
BLP, the system assumes NL. .

'-The DCB subparameter OPTCD will be treated as if DCB=OPTCD=Q was
specified on the DD statement. If you specify an OPTCD on the DD
statement, it will be treated as if Q was specified in addition to any
other characters you code.

Section IV: The DD Statement -- LABEL Parameter 191

Note for BLP: When you request the system to bypass label processing and
the tape volume has labels, the systen treats anything between tapemarks
as- a data set. Therefore" in order for a tape wi th labels to be
positioned properly, the data set sequence number subparameter of the
LABEL parameter IlUst be coded and the subparameter must reflect all
labels and data sets that precede the desired data set. In order to
process a inulti-volume data set using bypass label processing, it is
necessary to treat each volume as a separate data set and concatenate
them. In addition, if you change the label attributes in a subsequent
step or job, you must ensure that the system demounts the tape before
use. section I of the Tape Labels publication illustrates where
tapemarks appear.

L1M is not a label type but a request to the system to check for and
bypass a leading tapemark on the tape. In some instances .• a tapemark
will precede the first data set on unlabeled tapes created by the Disk
Operating system (OOS). Unlabeled tapes created by the system/360
Operating System do not contain leading tapemarks. The LTM subparameter
allows. you to use OOS unlabeled tapes with the System/360 Operating
system without making modifications. You can also specify LTM for a
multi volume data set on OOS tapes; the systan will check for and bypass
a leading tapemark on each volume. Do not code LTM with labeled tapes;
if you specify LTM for a tape with labels, the system will reject the
tape.

'!he labe 1 type subparameter can also be specified when you make a
nonspecific volume request for a tape Volume (i.e., no volume serial
numbers are specified on the DD statement) and you want the data set to
have a certain type of labels. If the volume that is mounted does not
have the corresponding label type you desire, you may be able to change
the label type.

When you specify NL or NSL and the operator mounts a tape volume
that contains standard labels" you nay use the volume provided: (1) the
expiration date of the existing data set on the volume has passed; (2)
the existing data set on the volume is not password protected; (3) you
make a nonspecific volume request; and (4) the file sequence number is
less than two. All of these conditions must be met. If they are not, the
system requests the operator to mount another tape volume.

If you specify SL and make a nonspecific volume request, but the
operator mounts a tape volume that contains other than IBM standard
labels, the system requests the operator to identify the volume serial
nuniber and the volume's new CMner before the IBM standard labels are
written. If the tape volume has American National Standard labels" the
system asks the operator for permission to destroy the label. If you
specify SL and make a specific volume request, but the volume that is
mounted does not contain IBM standard labels, the system rejects the
tape and requests the operator to mount the tape volume specified.

THE PASSWORD AND NOPWREAD SUBPARAMETERS

The PASSWORD and NOPWREAD subparameters tell the system that you want
the data set to be password protected. If you specify PASSWORD, the data
set cannot be read from, written into, or deleted by another job step or
job unless the operator can supply the system with the correct password.
If you specify NOPWREAD (no password read), the data set can be read
without the operator supplying the password, but the password is still
required for writing or deleting data sets.

192 JCL Reference (Release 21.7)

The PASSWORD and NOPWREAD subparameters are positional subparameters
and must be coded third, after the data set sequence number subparameter
and the label type subparameter or the commas that indicate their
absence. If you want the data set password protected, specify PASSWORD
when the data set is created. Password protected data sets must have
standard labels, either IBM standard or Amer ican Na'tional Standard
labels.

THE IN AND 0 UT SUBPARAMETERS

The basic sequential access method (BSAM) permits a specification of
INOUT or OUTIN in the OPEN macro instruction as the processing method.
If you have specified either of these processing methods in the OPEN
macro instruction and want to override it, you may be able to do so by
coding either the IN or OUT subparameter. For FORTRAN users" the IN and
OUT subparameters provide a means of specifying how the dataset is to
be processed, i.e., for input or output.

When INOUT is specified in the OPEN macro instruction and you want
the data set processed for input only, you can specify the IN
subparameter. When the IN sUbparameter is coded, any attempt by the
processing program to process the data set for output is treated a s an
error.

When OUTIN is specified in the OPEN macro instruction and you want
the data set processed for output only, ¥ou can specify the OUT
subparameter. When the OUT subparameter ~s coded, any attempt by the
processing program to process the data set for input is treated as an
error.

The IN and OUT subparameters are positional subparameters. If either
is coded, it must appear as the fourth sUbparameter, after the data set
sequence number subparameter, the label type subparameter, and the
PASSWORD subparameter, or the commas that indicate their absence.

THE RETPD AND EXPDT SUBPARAMETERS

When it is necessary that a data set be kept for some period of time,
you can tell the system how long it is to be kept when you create the
data set. As long as the time period has not expired, a data set that
resides on a direct access volume cannot be deleted by or overwri tten by
another job step or job. (If it is necessary to delete such a data set,
you can use the IEHPROGM utility program to delete the data set. The
IEHPROGM utility program is described in the utilities publication.)

There are two different ways to specify a time period: (1) tell the
system how many days you want the data set kept, the RETPD subparameter,
or (2) tell the system the exact date' after which the data set need no
longer be kept, the EXPDT subparameter.

If you code the RETPD subparameter, you specify a 1- to 4-digit
number, which represents the number of days the data set is to be kept.
(Leap year is not considered when determining the retention period.) If
you code the EXPDT subparameter, you specify a 2-digit year number and a
3-digit day number (e.g., January 1 would be DOl. July 1 would be 182),
which represents the date after which the data set need no longer be
kept. When neither the RETPD or EXPDT subparameter is specified for a
new data set. the system assumes a retention period of zero days.

To make sure that a temporary data set is deleted at the end of the
job. you should not specify a retention period or expiration date,
either directly on the LABEL parameter Or indirectly by coding
DCB=dsname to copy information from the label of a cataloged data set.
If you do specify a retention period or expiration date for a temporary

Section IV: The DD Statement -- LABEL Parameter 193

data set, the system will not delete the data set until the time period
has expired.

The RETPD or EKPDT subparameter must follow all other sUbparameters
of the LABEL parameter. If no other subparameters are coded, you can
code LABElFREl'PD=nnnn or LABEL=EXPDT=yyddd.

Examples of the LABEL Parameter
1. / /DDl DD OONAME=HERBI, DISP= (NEW, KEEP), UNIT=TAPE, x

/ / VOLUME=SER=T2, LABEIF (3 ,NSL" RETPD=188)

This DO statement defines a new data set. The LABEL parameter tells
the system: (1) this data set is to be the third data set on the
tape volume; (2) this data set has nonstandard labels; and (3) this
data set is to be kept for 188 days.

2. //0020D DSNAME=A.B.C"DISP= (,CATLG,DELETE) ,UNIT=2400-2, x
/ / IABEL= (, NL)

This DD statement defines a new data set and requests the system to
catalog it,. The catalog entry for this data set will not indicate
that the data set has no labels. Therefore, each time this data set
is referred to by a DD statement, the statement must· include
LABEL= (, NL) •

3. //DD3 OD DSNAME=SPECS,UNIT=2400,VOLUME=SER=10222" x
// DISP=OLD,LABEL=4

This DD statement defines an existing data set. The LABEL parameter
indicates that the data set is the fourth data set on the tape
volume.

4. //STEPl
//OOX
//
//STEP2
//DDY

EXEC PGM=FIV
DD DSNAME=CLEAR, DISP=(OLD,PASS) ,UNIT=2400-4

VOLUME=SER=1257, LABEL=C, NSL)
EXEC PGM=BOS
DD DSNAME=*. STEP 1. DDX, DISP=OLD,IABEL=(,NSL)

x

The OD statement. named DDX in STEPl defines an existing data set
that has nonstandard labels and requests the system to pass the data
set.;. The DD statement named DDY in STEP2 receives the passed data'
set. Unit and volume information is not specified since this
information is available to the system; the label type is not
avai lable to the system and must be coded.

194 JCL Reference (Release 21.7)

The OUTLIM Parameter

OUTLIM= number

number
the limit for the number of logical records you want included in the
output data set being routed through the output stream. The maximum
number that can be specified is.16111215.

Rules for Coding
1.

2.

3.

4.

I 5.

The OUTLIM parameter has meaning only if the system Management
facilities option with system, job, and step data collection was
selected at system generation.

The OUTLIM parameter is ignored unless SYSOUT is coded in the operand
fiel d of the same DD statement.

The value specified for OUTLIM can be any number from 1 through
16111215.

If OUTLIM is not specified or if OUTLIM=O is specified, no output
lirni ti ng is done.

The OUTLIM and DDNAME parameters are mutually exclusive and should
not be coded together.

What the OUTLIM Parameter Does
The OUTLIM parameter allows you to specify a limit for the number of
logical records you want included in the output data set being routed
through the output stream. When the number specified is reached, an exit
provided by the system Management Facilities option is taken to a user
supplied routine that determines whether to cancel the job or increase
the limit. If the exit routine is not supplied, the job is cancelled.

Determining the Output Limit
The limit for the number of logical records you want as output must
include a system overhead factor. Generally, the value you add to the
limit is eight times the blocking factor for your data,. (For those
programmers who need a more precise value, the system overhead is the
number of EXCPs issued each time the OPEN or CLOSE macro instruction is
issued f or the data set.)

References:

1. For information on coding the SYSOUT parameter on the DD statement,
refer to the section "The SYSOUT PARAMETER -- MFT1, MVT" in this
publication.

2. A discussion of the System Management Facilities Option is contained
in the Introduction publication. Information on user exit routines
to be used with the System Management Facilities Option is contained
in the publication System Management Facilities Guide.

Example of the OUTLIM Parameter
1. //OUTPUT DO SYSOUT=F,OUTLIM=1000

The limit for the number of logical records is 1000.

Section IV: The DD Statement -- OUTLIM Parameter 195

The QNAME Parameter -- MFf and MVT with TCAM

QNAME=process name

process name
specifies the name of a TPROCESS macro which defines a destination
queue for messages that are to be processed by an application
program and creates a process entry for the queue in the Terminal
Table.

Rules for Coding
1. The process name nust consist of 1 through 8 alphameric and national

(#,$,@) characters. The first character must be an alphabetic or
na ti ona 1 charact er.

2. The process name is identical to the symbolic name on the TPROCESS
macro.

3. The DCB parameter is the only parameter that can be coded on a DD
statement with the QNAME parameter. BLKSIZE, BUFL,. LRECL,. OPTCD, and
RECFM are the only operands that may be specified as subparameters.
QNAME is mutually exclusive with DDNAME,. !ENAME. and SYSOUT
keywords. These subparameters are defined in the Glossary of DCB
subparameters in the section on the DCB parameter.

What the QNAME Parameter Does
The text portion of messages received from stations by means of the
Telecommunications Access Method (TCAM) may be processed by an
application program. The QNAME parameter is used to access these
messages for the application program. Like the DUMMY parameter used with
sequential access methods" the QNAME parameter does not perform input or
output operations on a data set. The process name specified by the QNAME
parameter names a TPROCESS macro which serves as the link between the
Message Control Program (MCP) and an application program.

An application program exists as a separate system task or subtask in
the same computer as the MCP. Messages that are to be processed are
placed in a destination queue by the Message Handler of the MCP.. The
TPROCESS macro defines the destination queue and creates an entry for
the queue (a process entry) in the Terminal Table. The user can indicate
at execution time which destination queue is to be used by specifying a
particular TPROCESS macro in the QNAME parameter on the DD statement.

Example of the QNAME Parameter

/ /DDY DD QNAME=FIRST" DCB=(RECFM=F, LRECL=80. BLKSIZE=320)

This DD statement is used in an application program to define da ta that
is to be accessed by TCAM. "FIRST" is the name of the TPROCESS macro
that specifies the destination queue through which messages that must be
processed by the application program are routed. The DCB parameter is
coded to supply information for the data control block that was not
supplied in the DCB macro instruction.

196 JCL Reference (Release 21.7)

The SEP Parameter

SEP= (ddname, •••)

ddname
the names of up to eight earlier DD staterrents in the same job step.

Rules for Coding
1. Each ddname must be separated by a comma,.

2. If only one ddname is coded, you need not enclose it in parentheses.

3. If channel separation is critical, use the UNIT parameter to specify
a particular channel, using an absolute address or group name. (How
to specify a particular channel is described under "Unit Address" in
the chapter "The UNIT Parameter.")

4. '!be SEP, AFF, DDNAME, and SYSOUT parameters are mutually exclusive
parameters; therefore, when AFF, DDNAME, or SYSOUT is coded" do not
code the SEP parameter.

The devices that the system allocates for data sets used in a job step
are attached to channels. These channels transmit the data in the data
sets from the device to the CPU. When two or more data sets are to be
used in a job step, processing time may be shortened if the system
transmi. ts data over separate channels.

Requesting Channel Separation
The SEP and AFF parameters can be used to request channel separation.
You list in the SEP parameter the names of up to eight earlier DD
statements in the job step that define data sets from which channel
separation is desired. coding the AFF parameter is a shortcut method of
requesting channel separation, since you refer to an earlier DD
statement in the same job step that contains the SEP parameter,. (The AFF
parameter is described in the chapter "The AFF Parameter. ")

If the system finds it impossible in the current environment to
satisfy the channel separa tion request, the system may try to alter the
current environment through some operator action. The operator is given
the option of bringing a device online, cancelling the channel
separation request, or cancelling the job. In certain environments, the
operator may also be able to tell the system to wait for devices to
become free. If you make a nonspecific request for a direct access
volume and request channel separation., your request for separation may
be ignored. This happens when the algorittm used to allocate data sets
to devices is not able to select the device that would permit the
:lesired channel separation.

Requests for channel separation are ignored for any data sets that
have been allocated devices by the automatic volume recognition (AVR)
option.

If it is essential that data be transmitted via a particular
channel, you can specify an absolute unit address or group name (if the
group of devices is associated with one channel) in the UNIT parameter.

Section IV: The nn Statement -- SEP Parameter 197

If n ei ther the SEP nor AFF parameter is c oded., any available
channel, consistent with the UNIT parameter requiranent, is assigned by
the system.

Example of the SEP Parameter

1. //STEP1
//DDl
//DD2
//
//DD3
//DD4
//

EXEC
DD
DO

DD
DD

PGM=STARTS
DSNAME=X.Y.Z,DISP=OLD
OSNAME=&&WORK,DISP=(,PASS),UNIT=2311,
SPACE=(CYL,(3,l»
DSNAME=NABS,DISP=OLD,VOLUME=SER=7110,UNIT=2311
DSNAME=PARE,DISP=QLD,VOLUME=SER=E59,
UNIT=2311,SEP=(DD2,DD3)

x

x

The system attempts to assign the data set defined by the DD
statement named DD4 to a channel other than the ones assigned to the
data sets defined by the DO statements D02 and DD3. Since the SEP
parameter did not include the ddname DD1, the data set defined by
DDl and the data set defined by DD4 mayor may not be assigned to
the same channel.

198 JCL Reference (Release 2l.7)

The SPACE Parameter

SPACE =(\ TRK ! ' (primary qUantity[~secondary qUantity] [,~irectory J)[, RLSE] [, CONTIG] [, ROUND])
CYL '..:. ' Index ';\ , MXIG
blocklength L \... ,ALX

r,j
L_.

SPACE=(ABSTR,(primary quantity, address [,~irectorYJ))
, Index

TRK
specifies that space is to be allocated by track.

CYL
specifies that space is to be allocated by cylinder.

block length
specifies the average block length of the data. The system computes
how many tracks to allocate.

primary quantity
specifies how many tracks or cylinders are to be allocated" or how
many blocks of data are to be contained in the data set. If you
also specify a number of tracks or cylinders to be used as a
directory or index l, the primary quantity will be the total number of
tracks or cylinders assigned. (Example: if SPACE=(CYL,(10,1» is
specified, 10 cylinders will be assigned.)

,secondary quantity

1\

i.!..\

specifies how many more tracks or cylinders are to be allocated if
additional space is required, or how many more blocks of data may be
included if additional space is required.

specifies that the system is not to allocate additional space if it
is required, and either a. directory space requirement or index space
requirement follows.

, directory
specifies the number of 256-b¥te records that are to be contained in
the directory of a partitioned data set.

,index
specifies the number of cylinders that are required for the index of
an indexed sequential data set.

, RISE
specifies that s pace allocated to the data set that is not used is
to be released.

specifies that space allocated to the data set that is not used is
not to be released and another subparameter follows.

,CONTIG
specifies that space allocated to the data set must be contiguous.

, MXIG
specifies that the space allocated to the data set must be the
largest area of contiguous space on the volume and the space must be
equal to or greater than the space requested. This subparameter
applies only to the primary space allocation.

Section IV: The DD Statement -- SPACE Parameter 199

,ALX
specifies that up to five different contiguous areas of space are to
be allocated to the data set and each area must be equal to or
greater than the s p:lce reque ste d.

r-'
I ' I
~_J specifi~s that CONTIG, MXIG, or ALX is not specified and the ROUND

subparameter follows.

,ROUND
specifies that space is requested by specfying the average block
length of the data and the space allocated ,to the data set must be
equal to one or more cylinders.

ABSTR
specifies that the data set is to be placed at a specific location
on the vol ume •

primary quantity
specifies the number of tracks to be allocated to the data set.

address
specifies the track number of the first track to be allocated.

,directory
specifies the number of 256-byte records that are to be contained in
the directory of a partitioned data set,.

, index
specifies the number of tracks that are required for the index of an
indexed sequential data set. The number of tracks must be equal to
one or more cy Ii nders .•

Rules for Coding
1. The SPACE parameter has no meaning for tape volumes; however, if a

data set is assigned to a device class that contains both direct
access devices and tape devices, e.g., UNIT=SYSSQ, the SPACE
parameter should be coded.

2. If you do not code s econdary'l directory" or index quantities, you
need not enclose the primary quantity in parentheses.

3. Code the second format of the SPACE parameter when you want a data
set placed in a specific position on a direct access device.

4. The SPACE, SPLIT, SUBALLOC r, and DDNAME parameters are mutually
exclusive parameters; therefore, if SPLIT" SUBALLOC, or DDNAME is
coded, do not code the SPACE parameter.

REQUESTING SPACE FOR A DATA SET

Every data set that is to be written on a direct access volume must be
allocated space on the volume before the data set can be written. There
are three different parameters that can be used to request space -
SPACE, SPLIT, SUBALLOC -- and they are mutually exclusive. The SPLIT and
SUBALLOC parameters are discussed in the chapters "The SPLIT Parameter"
and "The SUBALLOC Parameter," respectively.

200 JCL Reference (Release 21.7)

)

SPECIFYING THE SPACE PARAMETER

Space for data sets is allocated before the job step is executed. If a
request for space cannot be satisfied, the job is terminated.

'Ihere are two different ways to code the SPACE parameter. One way
tells the system how much space you want and lets the system assign
specific tracks. The other way tells the system the specific tracks you
want.

Letting the System Assign Sp,ecific Tracks

When you want the system to assign specific tracks" you must specify in
the SPACE parameter:

• The unit of measurement the system should use for allocating space;
specify TRK, for tracks, CYL, for cylinders, or the average block
length of the data, for blocks.

• The amount of s pace to be allocated; specify the primary quantity as
a number of tracks, cylinder, or blocks.

Optionally, you can specify in the SPACE parameter:

• That additional space is to be allocated to the data set if it is
required; specify a secondary quantity of tracks" cylinders, or
blocks.

• The size of a directory or index area; specify the number of records
required for a directory or the number of cylinders required for an
index.

• That unused space is to be released; specify the RLSE subparameter.

• The format of the space allocated to the data set; specify the
CONTIG, MXIG, or ALX subparameter.

• That space is to begin with a cylinder; specify the ROUND
subparameter •

When a dis k operating system (DOO) volume is mOWlted for use in an
IBM System/360 Operating System, you can let the system assign specific
tracks on the DOS volume for a new data set. (There are restrictions on
the use of an existing DOS data set in an IBM System/360 Opera ting
System; these restrictions are described in the Data Management for
System Programmers volume.

SPECIFYING THE UNIT OF MEASUREMENT

The first sUbparameter of the SPACE parameter identifies the unit of
measurement to be used in allocating the data set and can be specified
as:

• TRK if you want s pace allocated by track.

• CYL if you want s pace allocated by cyl inder. CYL must be
specified if you are creating an indexed sequential data set.

• a number of bytes which represents the average block length of the
data -- if you want the system to compute and allocate the least
number of tracks required to contain the blocks.

Section IV: The DD Statement -- SPACE Parameter 201

since the next subparameter (primary quantity) tells the system how
many of these units you require" specify the unit that makes it most
convenient for ycu to express your space requirement. A request for
cylinders (CYL) provides the most efficient performance.

When you reque9t space in units of blocks, the average block length
cannot exceed 65,535. If the blocks have keys, code the DCB sUbparameter
KEYLEN on the DD statement and specify the key length, i.e."
DCB=KEYLEN=key length.

SPECIFYING A PRIMARY QUANTITY

The primary quantity tells the system how rrany tracks or cylinders are
to be allocated to the data set or how many blocks of data will be
written. (Note: You must consider track overflow when computing track
requirements.) when the first subparameter of the SPACE parameter
specifies the average block length, the system computes the number of
tracks (or cylinders if the ROUND subparameter is coded) required based
on the number of blocks specified as the primary quantity,.

There must be enough available space on one volume to satisfy the
primary quantity,. If you make a specific request for a single volume and
there is not enough space on that volume to satisfy the space request r,

the job step is abnornally terminated. If you specify multiple vO.l ume
serial numbersi' the system will search each volume until it finds a
volune with sufficient s pace or until it determines that none of the
volumes specified contain enough space.. If none of the volumes contains
enough space to satisfy the request, the job step will be terminated.
If you make a nonspecific volume request, i.e. " no volume serial numbers
are specified on the DD statement; the system selects a mounted volume
or causes a volume to be mounted and then determines if there is enough
space avai lable on the volume to satisfy the request for' space. If there
is not enough space available, the system se lects another volume .•
Allocation may wait for space to become available on specific and
nonspecific requests if other tasks have data sets allocated on the
eligible volumes. Care should be taken in requesting a primary quantity"
since an invalid request (e .• g." a quantity greater than physical device
limi ts) wi 11 cause the system to attanpt to find space on all eligible
units. This can cause unnecessary mounting of volumes or a wait for
space that cannot be satis fied. In the latter case it is necessary to
cancel the job.

The system attempts to allocate the primary quantity in contiguous
tracks or cylinders. If contiguous space is not available., the system
satisfies the space request with up to five noncontiguous blocks
(extents) of space. If a user label is requested, the system allocates
up to four noncontiguous blocks of space. You can override these system
actions by coding the CONTIG, MXIG, or ALX subparameter; these
subparameters are discussed later.

If the system assigns a temporary data set to a dedicated data set"
the primary quantity specified for the temporary data set is ignored.
The. system allocates the primary quantity requested on the DD statement
defining the dedicated data set. A secondary quantity specified for the
temporary data set will, however" override any secondary quantity
specified on the DD statement defining the dedicated data set •. (For
detailed information on dedicated data sets, refer to the chapter
n system Reader, Initiator and Writer Catalogs Procedures" in the
publication Data Management for System Programmers.)

202 JCL Reference (Release 21.7)

SECONDARY QUANTITY

The secondary quantity (incremental quantity) tells the system that you
want additional space allocated to the data set if it is required. You
specify as the secondary quantity how many more tracks or cylinders you
want allocated or how many more blocks of data may be written.. (When you
request space in units of blocks" the system computes the number of
tracks required for the primary quantity based on the average block
length that you specified in the SPACE parameter. The system computes
the number of tracks required for the secondary quantity based on what
is specified in the DCB subparameter BLKSIZE. Therefore, include the DCB
subparameter BLKSIZE on the DO statement, i.e., DCB=BLKSIZE=maximum
block length.) specifying a secondary quantity is optional.

If you do specify a secondary quantity and the data set requires
additional space, the system allocates this space based on the quantity
you specified. The system attempts to allocate the secondary quantity in
contiguous tracks or cylinders. If contiguous space is not available,
the system attempts to allocate the secondary quantity in up to five
noncontiguous blocks (extents) of space.

Each time the data set requires more space, the system allocates the
secondary quantity. This space is allocated on the same volume on which
the primary quantity was aliocated.until: (1) there is not enough space
available on the volume to allocate the secondary quantity, or (2) a
total of 16 extents have been allocated to the data set. 'If either of
these conditions is satisfied, the system must allocate the secondary
quantity on another volume. You can specify this in one of two ways:

• For a specific volume request, specify more than one volume in the
VOLUME parameter and request more volumes than devices.

• For a non-specific volume request, code PRIVATE and specify more
than one volume in the VOLUME parameter.

If there is no more space available on the volumes that you requested"
and if at least one volume is demountable, the system will request
scratch volumes to be mounted until either the data set is complete or
until all entr ies in the JFCB are filled •. If the entries in the JFCB are
already filled or if there is no demountable volume, the job step will
abnormally terminate,.

If a data set has us ed all the primary space allocated to it" a
later job step can lengthen the data set with additional output by
requesting a secondary quantity. You can specify a secondary quantity
for an old data set whether or not you specified a secondary quantity
when the data set was created,. If you did specify a secondary quantity
when you created the data set, you can override that quantity by
specifying a different secondary quantity when you extend the data set.
The secondary quantity you specify when you extend the data set is in
effect only for the duration of the job step..

For indexed sequential data sets, a secoridary quantity cannot be
requested. If you request a secondary quantity for a checkpoint data
set, the space cannot be used fOr a successful completion of the
checkpoint entry. To determine how the space is used, refer to the
chapter "Checkpoint and Restart" in the supervisor
and Macro Services Instructions,publication.

l'
The secondary quantity is a positional subparameter. If you specify

a secondary quantity, the quantity must follow the primary quantity. If '
you do not specify a secondary quantity and specify the size of an index
or directory as the next subparameter, you must code a comma to indicate
the absence of a secondary quantity.

Section IV: . The DD Statement -- SPACE Parameter 203

REQUESTING SPACE FOR A DIRECTORY OR INDEX

If the data set you are creating is a partitioned data set, you must
request the system to allocate space for a directory,. A directory
consists of 256-byte records, and you specify, in the SPACE parameter r,

how many of these records the directory is to contain. These records
contain entries for the members of the partitioned data set. You can
determine how many records you should request for the directory by
referring to the Chapter "Processing a Partitioned Data Set" in the
Data Management Services publication.

I f the data set you are creating is an indexed sequential da ta set,
you can tell the system, •. in the SPACE parameter" how many cylinders to
allocate for the index. (The alternate way to request space for the
index is to include. as one of the DD statements used to define an
indexed sequential data set, a DD statement that defines the index and
specifies the number of cylinders required for the index as the primary
quantity.)

The system can differentiate between a specification of the number
of records for a directory and the number of cylinders for an index by
examining the DCB parameter on the DD statement. Any DD statement that
defines an indexed sequential data set must include the DCB subparameter
DSORG=IS or DSORG=ISU. When neither is specified, the system assumes you
are requesting space for a directory.

RELEASING UNUSED SPACE -- RLSE

The RLSE subparameter allows you to request the system to delete unused
space when the data set is closed. The space is released according to
the uni ts of space specified on the current DD statement for the data
set. If you requested space in units of tracks, any unused tracks are

,released. If you requested space in units of cylinder.s~ any unused
cylinders are released. If you requested space in units of blocks, any
unused tracks or cylinders (if ROUND was specified) are released. Note
that the current DD statement's units of space can differ from the units
specified during the initial allocation of the data set.

If you code the SPACE parameter on the DD statement that defines an
output data set and includes the RLSE subparameter, the data set's
unused space is released. Closing an output data set will not release
space unless RLSE is specified on the current DD statement for the data
set even if RLSE was specified when the data set was initially allocated.

If you code the SPACE parameter on a DD statement that defines an
existing data set and include the RLSE subparameter" the data set's
unused s pace is releas ed.

If you have specified RLSE and the job step abnormally terminates"
unused space is ndt released.

The RLSE subparameter is a positional subparameter .• If you omit the
RLSE subparameter and another subparameter follows, indicate the absence
of the RLSE subparameter with a comma.

The RLSE subparameter is ignored when the TYPE=T option is coded in
the CLOSE macro instruction.

204 JCL Reference (Release 21.7)

SPECIFYING THE FORMAT OF ALLOCATED SPACE -- CONTIG, MXIG, OR ALX

The system attempts to allocate space in contiguous tracks or cylinders.
If contiguous space is not available, the system satisfies the space

request wi th up to five noncontiguous blocks of space. If a user label
is requested, the system allocates up to four noncontiguous blocks of
space. you can override these system actions by coding the CONTIG, MXIG,.
or ALX subparameter.

The CONTIG (contiguous) subparameter tells the system that the space
it allocates to a data set must be contiguous. If the request cannot be
satisfied, the job is terminated,. If secondary space is allocated to the
data set, it-may not be contiguous to the original space allocated to
the data f? et •

The MXIG (maximum contiguous) subparameter tells the system to
allocate the largest area of contiguous space available on the volume.
The area must be at least as large as the primary quantity requested.
The MXIG subparameter cannot be specified for an indexed sequential data
set,.

The ALX (all extents> subparameter tells the system to allocate up
to five different areas of contiguous space. If a user label is
requested, the system allocates up to four different areas of contiguous
space. Each area is to be at least as large as the primary quanti ty you
requested. The system allocates as many areas" up to the maximum, as are
available. The ALX subparameter cannot be specified for an indexed
sequential data set,.

Whichever of these subparameters you choose must follow either the
RLSE subparameter or the comma that indicates its absence. .If you do not
specify one of these subparameters and the ROUND subparameter follows,
indicate the absence of the CONTIG, MXIG, and ALX subparameters wi th a
comma.

ALLOCATING WHOLE CYLI NDERS -- ROUND

When you request space in units of blocks, you can request that the
allocated space be equal to one or more cylinders. To request . this" code
ROUND as the last subparameter in the SPACE parameter. The system
computes the number of tracks required to hold the blocks " and ensures
that the space begins on the first track of a cylinder and ends on the
last track of a cylinder.

Assigning Specific Tracks
you can place a data set in a specific position on a direct access
volume by specifying in the SPACE parameter:

• ABSTR as the first subparameter.

• How many tracks you want allocated.

• The re lati ve track number of the beginning track on which you want
the data set placed.

If the data set is a partitioned dat! set, you must also specify how
many records you want allocated for a directory. If the data set is an
indexed sequential data set, you can also indicate how many tracks are
required for the index. (The number of tracks you specify must be equal
to one or more cylinders" and any other DD statement used to define the
indexed sequential data set must specify ABSTR in the SPACE parameter.
If either of these conditions is not met, the job is terminated.>

Section IV: The DD Statement -- SPACE Parameter 205

TO determine the relative track number, count the first track of the
first cylinder on the volume as 0; and count through the tracks on each
cylinder until yru reach the track on which you want your data set to
start. (Track 0 cannot be requested.) The system automatically converts
the relative track number to an address; this address varies with
different devices. For indexed sequential data sets" the relative track
number must correspond to the first track on a cylinder. Capacities of
a number of direct access devices are listed in "Data Set Disposition
and Space Allocation" in the Data Managanent Services publication.

If the tracks you request have already been allocated to another
data set, the job is terminated.

Examples of the SPACE Parameter
1. / /DD1 DD DSNAME=&&TEMP,UNIT=MIXED,SPACE= (CYL,10)

2.

'Ibis DD statement defines a temporary data set and requests the
system to assign any available tape or direct access volume
(UNIT=MIXED specifies a group name of units that consists of tape
and direct access devices). If a tape volume is assigned, the SPACE
parameter is ignored; if a direct access volume is assigned, the
SPACE parameter is used to allocate space to the data set. The SPACE
parameter includes only the required subparameters (i.e., the type
of units and a primary quantity) " and requests the system to
allocate 10 cylinders.

//DD2 DD
//
//

OONAME=ELLN, DISP= (,KEEP), UNIT=2314,
VOLUME=SER=11257 ,SPACE=(1024, (100 :25):: ': ROUND},
DCB=BLKSIZ E= 20 48

x
X

This DD statement defines a new data set that is to be written on a
direct access volume. The SPACE parameter requests the system to
compute the space required for the primary quantity; the system
computes the space required based on an average block length of 1024
bytes, and up to 100 blocks of data will be written. If more space
is required, the system is to. compute how much additional space to
allocate; the system computes the space required based on a maximum
block length of 2048 bytes (specified in the BLKSIZE subparameter) "
and up to 25 blocks of data will be written. Since the ROUND
subparameter is coded., the system ensures that the allocated space
begins on the first track of a cylinder and ends on the last track
of a cylinder.

3. //DD3 DD OONAME=PDS12,DISP=(,KEEP),UNIT=2311, X

4.

/ / VOLUME=SER=26143, SPACE=(TRK, (200" ,10)" CONTIG)

This DD statement defines a new partitioned data set. The system
allocates tracks to the data set and 10 256-byte records for a
directory. since the CONTIG subparameter is coded, the system
allocates 200 contiguous tracks on the volume.

//DD4 on
//

DSNAME=INDSEQ(INDEX), UNIT=2314, DCB=I:SORG=IS,
DISP= (,KEEP) .,SPACE= (ABS'lR, (20,40»

X

This DD statement defines the index area for a new indexed
sequential data set. The SPACE parameter allocates 20 tracks (for a
2314, 20 tracks equal 1 cylinder), beginning with the fortieth track
on the volume (the fortieth track on the volume is the beginning of
the thir d cyl inder).

206 JCL Reference (Release 21.7)

til
CD
()

rt
.... '
o
~

H
<: ..
t-3
=r
CD

t1
t1

til
rt
AI
rt
CD
:3
CD
~
rt

til
'"0
:t::'
()
t:r:l

'"0
AI
Ii

~
CD
rt
CD
Ii

t\)

o

Device
Storage
Medium Cylinders

2301 Drum 25*

2302 Disk Model 3: 492
Model 4: 984

2303 Drum 80

2311 Disk 200

2314/2319 Disk 200
{each volume}

2321 Strip of Tape 980**

*There are 25 logical cylinders in a 2301 Drum.
**A volume is equal to one bin in a 2321 Data Cell.

....,J Figure 23. Direct Access Capacities

Tracks Per
Bytes Per

Cylinder Track Cylinder Device {in millions}

8 20,483 4.09 {million} 4.09

46 4,984 229,264 Model3: 112.79
Mode I 4: 225.59

10 4,892 48,920 3.9

10 3,625 36,250 7.25

20 7,294 145,880 29.17

20 2,000 40,000 39.2

N
o
CO

~
()
t"'i

!:d
CD
HI
CD
ti
CD
::s
()
CD

!:d
CD
I--'
CD
IlJ
(/l

CD

N
I--'

-...J

Maximum Bytes per Record Formatted without Keys

2311 % 2319 2302 2303 2301 2321 2305-1 2305-2

3625 7294 4984 4892 20483 2000 14136 14660
1740 3520 2403 2392 10175 935 6852 7231
1131 2298 1570 1558 6739 592 4424 4754
830 1693 1158 1142 5021 422 3210 3516
651 1332 912 892 3990 320 2480 2773

532 1092 749 725 3303 253 1996 2278
447 921 634 606 2812 205 1648 1924
384 793 546 517 2444 169 1388 1659
334 694 479 447 2157 142 1186 1452
295 615 425 392 1928 119 1024 1287

263 550 381 346 1741 101 892 1152
236 496 344 308 1585 86 782 1040
213 450 313 276 1452 73 688 944
193 411 286 249 1339 62 608 863
177 377 264 225 1241 53 538 792

162 347 244 204 1155 44 478 730
149 321 225 186 1079 37 424 676
138 298 209 169 1012 30 376 627
127 276 196 155 952 24 334 584
118 258 183 142 897 20 296 544

109 241 171 130 848 15 260 509
102 226 161 119 804 10 230 477
95 211 151 109 763 6 200 448
88 199 143 100 726 174 421
82 187 135 92 691 150 396

77 176 127 84 659 128 373
72 166 121 77 630 106 352
67 157 114 70 603 88 332
63 148 108 64 577 70 314
59 139 102 58 554 52 297

Figure 24. Track Capacities

3330

13030
6447
4253
3156
2498

2059
1745
1510
1327
1181

1061
962
877
805
742

687
639
596
557
523

491
463
437
413
391

371
352
335
318
303

Records Maximum Bytes per Record Formatted with Keys
per

% Track 2311 2319 2302 2303 2301 2321 2305-1 2305-2 3330

1 3605 7249 4964 4854 20430 1984 13934~J 14569 12974
2 1720 3476 2383 2354 10122 920 6650 7140 6391
3 1111 2254 1550 1520 6686 576 4222 4663 4197
4 811 1649 1139 1104 4968 406 3008 3425 3100
5 632 1288 893 854 3937 305 2278 2682 2442

6 512 1049 730 687 3250 238 1794 2187 2003
7 428 877 614 568 2759 190 1446 1833 1689
8 364 750 527 479 2391 154 1186 1568 1454
9 315 650 460 409 2104 126 984 1361 1271

10 275 571 406 354 1875 103 822 1196 1125

11 244 506 362 308 1688 85 690 1061 1005
12 217 452 325 270 1532 70 580 949 906
13 194 407 294 238 1399 58 486 853 821
14 174 368 267 211 1286 47 406 772 749
15 158 333 245 187 1188 38 336 701 686

16 143 304 224 166 1102 29 276 639 631
17 130 277 206 148 1026 21 222 585 583
18 119 254 190 131 959 15 174 536 540
19 108 233 176 117 899 9 132 493 501
20 99 215 163 104 844 94 453 467

21 90 198 152 92 795 58 418 435
22 82 183 142 81 751 386 407
23 76 168 132 71 710 357 381
24 69 156 123 62 673 330 357
25 63 144 116 54 638 305 335

26 58 133 108 46 606 282 315
27 53 123 102 39 577 261 296
28 48 114 95 32 550 241 279
29 44 105 89 26 524 223 262
30 40 96 83 20 501 206 247

The SPLIT Parameter

SPLIT=

{

(n,CYL, (primary quantity[,secondary quantity]» }

n

CYL

~percent,block lengt~,(primary quantity [, secondary quantit;]»
percent

specifies the number of tracks per cylinder you want allocated to
the first data set.

specifies that s pace is to be allocated by cylinder .•

primary quantity
specifies heM many cylinders are to be allocated for use by all the
associated data sets.

,secondary quantity

n

specifies row many more cylinders are to be allocated to a data set
if additional s pace is required.

the number of tracks per cylinder you want allocated to the data set
defined on the 00 statement.

percent
the percentage of tracks per cylinder you want allocated to the
first data set, a number from 1 through 99.

block 1 ength
specifies the average block length of the data. The system computes
how many cylinders to allocate.

primary quantity
specifies the total number of blocks to be allocated for use by all
the associated data sets.

,secondary quantity
specifies how many more blocks are to be allocated to a data set if
additional space is required.

percent
the percentage of tracks per cylinder you want allocated to the data
set defi ned on the 00 st atement •

Rules for Coding
1. The first 00 statement that contains the SPLIT parameter must

contain volume and lIDi t information. You need not code volume and
unit information on the following DD statements that contain the
SPLIT parameter.

2. If a secondary quantity is not specified, you need not enclose the
primary quantity in parentheses.

3. The SPLIT, SPACE, SUBALLOC, DDNAME., and SYSOUT parameters are
mutually exclusive parameters; therefore, if SPACE, SUBALLOC,
DDNAME, or SYSOUT'is coded, do not code the SPLIT parameter.

Section IV: The 00 Statement -- SPLIT Parameter 209

REQUESTING SPACE FOR A DATA SET

Every data set that is to be written on a direct access volume must be
allocated space on the volume before the data set can be written. There
are three different parameters that can be used to request space -
SPLIT, SPACE, SUBALLOC -- and they are mutually exclusive. The SPACE and
SUBALLOC parameters are discussed in the chapters "The SPACE Parameter"
and "'lhe SUBALLOC parameter," respectively.

Specifying the SPLIT Parameter
The SPLIT parameter is specified when data sets defined in a job step
£e~ei£e 9~aee eft 'Nle sa:me TJOleme, ana yee \faRi:: toe minimi5!le aooess arm
movement by having the data sets share cylinders. The device on which
the volume is mounted is said to be operating in a split cylinder mode
when the SPLIT parameter is specified. In this mode, two or more data
sets are stored so that portions of each data set occupy tracks within
every allocated cylinder.

The cylinders allocated to the data sets must be on one volume. If
there are not enough cylinders available on the volume to satisfy the
request, the job is terminated. The SPLIT parameter cannot be used to
allocate space for direct, partitioned, and indexed sequential data
sets. If the SPLIT parameter is used to allocate space for data sets
that are to reside on a drum storage volume" space is allocated for the
:lata sets, but the data sets are not stored using the split cylinder
mode. The space occupied by a data set residing on a cylinder that has
been split is not available for reallocation until all data sets sharing
the cyl inder have been deleted,.

'lh.e data sets that are to share cylinders are defined by a sequence
of DD statanents,. The first DD statement in the sequence specifies the
total amount of space required for all the data sets and the portion of
that space required by this data set. Each succeeding DD statement in
the sequence requests a portion of the total space.

In the SPLIT parameter, there are two ways to request the total
amount of space for data sets that are to share cylinders. You can
request the space in units of cylinders or in units of blocks.

REQUESTING SPACE IN UNITS OF CYLINDERS

When you request space in units of cylinders, the first DD sta tement of
the sequence specifies in the SPLIT parameter:

• 'lhe number of tracks per cylinder to be allocated to this data set;
specify a number.

• Space is to be allocated in units of cylinders; specify CYL.

• How many cylinders are to be allocated for use by all the data sets;
specify the primary quantity as a number of cylinders.

Optionally, you can specify:

• That additional cylinders are to be allocated to a data set if
additional space is required; specify the secondary quantity as a
number of cylinders.

Each succeeding DD statement in the sequence specifies a number of
tracks per cylinder or number of tracks per cyl inder depending upon the
preceding DD statement in the sequence, to be allocated to the data set.

210 JCL Reference (Release 2l.7)

If a secondary quantity (incremental quantity) is specified in the
SPLIT paraneter on the first DD statement in the sequence, any da ta set
that exceeds its allocated space is allocated additional space in the
amount of the secondary quantity. This additional space is allocated
only to the data set that requires it and the space is not split with
the other data sets. If a secondary quantity is not specified and a data
set exceeds its allocated space, the job step is terminated.

REQUESTING SPACE IN UNITS OF BLOCKS

When you request space in units of blocks, the first DD statement of the
sequence specifies in the SPLIT parameter:

• 1:be percentage of tracks per cylinder to be allocated to this data
set; specify a number from 1 to 99.

• The average block length of the data in the data sets; specify the
average block length in bytes.

• How many blocks are to be allocated for use by all the data sets;
specify the primary quantity as a number of blocks.

Optionally, you can specify:

• That additional blocks are to be allocated to a data set if
addi ti onal s pace is required; specify the secondary quantity as a
number 0 f blocks.

Each succeeding DD sta tement in the sequence specifies a percentage
of tracks per cylinder or number of tracks per cylinder depending upon
the preceding DD statement in the sequence, to be allocated to the data
set.

When a percentage of tracks per cylinder is requested, the system
rounds down to the next full track when calculating the actual number of
tracks to be allocated. If the percentage is less than 1 track, it will
cause a JCL error.

When you request space in units of blocks, the system computes for
you how many cylinders are required. The average block length cannot
exceed 65,535 bytes. If the blocks have keys, code the DCB subparameter
KEYLEN on the DD statement and specify the key length, i.e.,
DCB=KEYLEN=key length.

If a secondary quantity (incremental quantity) is specified in the
SPLIT paraneter on the first DD statement in the sequence, any data set
that exceeds its allocated space is allocated additional space. The
secondary quantity is specified as a number of blocks, and the system
computes how many cylinders to allocate based on this number. This
additional space is allocated only to the data set that requires it and
the space is not split with the other data sets. If a secondary quantity
is not specified and a data set exceeds its allocated space, the job
step is terminated.

Examples of the SPLIT Parameter
1. //STEPl

//DD1
//
//DD2
//DD3

EXEC PGM= CREATE
DD DSNAME=QUEST,DISP=(,KEEP),UNIT=2311,

VOLUME=SER=757500, SPLIT=(3,CYL, (30,,1»
DD DSNAME=APP,DISP=(,KEEP),SPLIT=4
DD DSNAME=SET,DISP=(,KEEP),SPLIT=3

x

This job step contains a sequence of DD statements that define new
data sets and request that these data sets share the same cylinders.

Section IV: The DD Statement -- SPLIT Parameter 211

'!he first DD statement of the sequence" named DD1~ specifies: (1)
three tracks per cylinder are to be allocated to this data set; (2)
space is to be allocated in units of cylinders; (3) thirty cylinders
are to be allocated for use by all the data sets; and (4) any data
set that exceeds the space allocated to it should be allocated
another cylinder. The DD statement named DD2 requests that the
system allocate 4 tracks per cylinder to this data set. The DD
statement named DD3 requests that the system allocate 3 tracks per
cylinder to this data set,.

2. //STEP2
//DDX
// -

//DDY
//DDZ

EXEC PGM=PAGE
DD DSNAME=ISSA,DISP= (',KEEP), UNIT=2314,

VOLUME=SER=49463 ,SPLIT= (18,1024" (700»
DD DSNAME=SEL12, DISP=(, KEEP) " SPLIT=48
DD DSNAME=SEVE.,DISP= (,KEEP) ,.SPLIT=34

x

This job step contains a sequence of DD statements that define new
data sets and request that these data sets share the same cylinders.
The first DD statement of the sequence" named DDX" specifies in the
SPLIT parameter: (1) 18 per cent of the tracks per cylinder are to
be allocated to this data set; (2) the system is to compute how many
cylinders are to be allocated for use by all the data sets based on
an average block length of 1024 bytes and 700 blocks are required.
The DD statement named DDY requests that the system allocate 48 per
cent of the tracks per cylinder to this data set. The DD statement
named DDZ requests that the system allocate 34 per 'cent of the track
per cylinder to this data set. Since the first DD statement in the
sequence does not specify a. secondary quantity" the job is
abnormally terminated when any of the data sets exceeds its
allocated space.

212 JCL Reference (Release 21.7)

The SUBALLOC Parameter

SUBALLOC=(I TRK ! ,(primary quantity [,secOndary qUantity] [,directory]) I,ddname !)
CYL , ,stepname .ddname
blocklength , stepname .procstepname .ddname

TRK
speciifes that space is to be allocated by track.

CYL
specifies that space is to be allocated by cylinder.

block length
specifies the average block length of the data. The system computes
how many tracks to allocate.

primary quantity
specifies how many tracks or cylinders are to be allocated" or how
many blocks of data are to be contained in the data set.

,secondary quantity

,

specifies how many more tracks or cylinders are to be allocated if
the addi ti onal s pace is required, or how many more blocks of data
may be included if additional space is required.

specifies that the system is not to allocate additional space if it
is required, and a directory space requiranent follows.

, directory
specifies the number of 256-byte records that are to be contained in
the directory of a partitioned data set.

,ddname
specifies that the system must allocate space from the data set
defined on the earlier DD statement named "ddname" that appears in
the same job step.

,stepname.ddnaroe
specifies that the system must allocate space from the data set
defined on the DD statement named" ddname", which is contained in an
earlier job step named "stepname" that is part of the same job.

,stepname.procstepname.ddname
specifies that the system must allocate space from the data set
defined on the DD statement" ddname," which is contained in an
earlier procedure step named "procstepname"; the procedure step is
part of a cataloged or in-stream procedure called by an earlier job
step named "stepname" that is part of the same job.

Rules for Coding
1. Before you can use the SUBALLOC parameter, you must define a new

data set and request enough contiguous space in the SPACE parameter
to contain all of the data sets.

2. When you code the SUBALLOC parameter, omit the VOLUME and UNIT
parameters.

section IV: The DD Statement -- SUBALLOC Parameter 213

3. The SUBALLOC, SPACE, SPLIT, DDNAME, and SYSOUT parameters are
mutually exclusive parameters; therefore, when SPACE, SPLIT, DDNAME,
or $YSOUT is coded, do not code the SUBALLOC parameter. .

REQUESTING SPACE FOR A DATA SET

Every data set that is to be written on a direct access volume must be
allocated space on the volume before the data set can be written. There
are three different parameters that can be used to request space -
SUBALLOC, SPACE, SPLIT -- and they are mutually exclusive. The SPACE and
SPLIT parameters are discussed in the chapters "The SPACE Parameter" and
"The SPLIT Parameter," respectively.

Specifying the SUBALLOC Parameter

The SUBALLOCparameter allows you to place a series of data sets on one
volume and in a certain sequence, in a contiguous area of space. This
area of space is first allocated to one data set" then later DD
statements defining new data sets in the same job may request parts of
this space. This is called suballocation. Suballocation is used to
minimize access-arm movement when data sets are processed serially. The
SUBALLOC . parameter cannot be used to allocate space for an indexed
sequential data set.

To use suballocation, you must first define a data set on a DD
statement and use the SPACE parameter to request space. This data set
must be used only for suballocation purposes, i.e., the data set should
contain no data. The space you request must be lazge enough to contain
all of the data sets and the space must be contiguous,. On this same DD
statement, you can request more than one device in the UNIT parameter or
more than one volume in the VOLUME parameter. This allows a suballocated
data set "for which a secondary quantity was requested in the SUBALLOC
parameter to be continued on another volume if the data set exceeds its
primary quantity.

Once this data set has been defined, other data sets defined in the
job can use the previously allocated space by specifying the SUBALLOC
parameter. Each DD statement that specifies the SUBALLOC parameter
causes the new data set to be assigned to the next area of unused space
from the original data set.

You must specify in the SUBALLOC parameter:

• The unit of measurement the system should use for allocating space;
specify TRK, for tracks, CYL, for cylinders, or the average block
length of the data, for blocks.

• The amount of space to be allocated; specify the primary quantity as
a nUmQer of cylinders, trackS, or blocks.

• Where in the job the original data set is defined; specify the name
of the DD statement that defines the data set and the name of the
job step in which the DD statement appears.

Optionally, you can specify in the SUBALLOC parameter:

• That additional space is to be allocated to the data set if it is
required; specify a secondary quantity of tracks" cylinders, or
blocks.

• '!he size of a directory; specify the number of records required for
a directory.

214 JCL Reference (Release 21.7)

SPECIFYING THE UNIT OF MEASUREMENr

The first subparameter of the SUBALLOC parameter identifies to the
system the unit of measurement to be used in suballocating space for the
data set and can be specified as:

• TRK if you want space suballocated by track.

• CYL if you want space suballocated by cylinder,.

• a number of bytes, which represents the average block length of the
data -- if you want the system to compute and allocate the least
number of tracks required to contain the blocks.

Since the next subparameter tells the system how many of these units
you require, specify the unit that makes it most convenient for you to
express your space requirement. A request for cylinders <CYL) provides
the most efficient performance. Since suballocation works with
contiguous tracks or cylinders, when a data set suballocates space from
another data set, the space suballocated starts at the first track
available. If this track is 'not on a cylinder boundary, the data set
will be allocated in tracks equivalent to the number of cylinders
specified.

When you request space in units of blocks" the average block length
cannot exceed 65,535 bytes. If the blocks have keys" you must specify
the key lengt~ in the DCB subparameter KEYLEN=n.

SPECIFYING A PRLMARY QUANTITY

The primary quantity tells the system how nany tracks or cylinders are
to be suballocated for the data set or how many blocks of data will be
written. If there is not enough space available in the original data ·set
to satisfy the primary quantity request, the job is terminated. When
the first subparameter of the SUBALLOC parameter specifies the average
block length, the system computes the number of tracks required based on
the number of blocks specified as the prinary quantity.

IDENTIFYING THE ORIGINAL DATA SET

In the SUBALLOC parameter, you must identify the master data set from
which space is to be suballocated. Space can be suballocated from an
existing master data set -- i.e., the master data set need not be
created in the same job as you create a data set to be suballocated.
However, the job nust include a DD statement defining the master data
set. Refer to this DD statement in the SUBALLOC parameter by coding:

• ddname if the DD statement defining the master data set appears
in the same job step.

• stepname.ddname -- if the DD statement ap~ars in an earlier job
step.

• stepname.procstepname.ddname -- if the OD statement appears in a
procedure step that is part of a cataloged or in-stream procedure
called by an earlier job step.

SPECIFYING A SECONDARY QUANTITY

The secondary quantity <incremental quantity) tells the system that you
want additional space allocated to the data set if it is required. You
specifY as the secondary quantity how many more tracks or cylinders you
want allocated or how many more blocks of data may be written. (When you

section IV: The 00 Statement -- SUBALLOC Parameter 215

request space in units of blocks, the system computes the number of
tracks required for the primary quantity based on the average block
length that you specified in the SPACE parameter. The system computes
the number of tracks required for the secondary quantity based on what
is specified in the DCB subparameter BLKSIZE. Therefore, include the DCB
subparameter BLKSIZE on the DD statement, i.e., DCB=BLRSIZE=maximmn
block length.) specifying a secondary quantity is optional.

If you specify a secondary quantity and the data set requires
additional space, the system allocates this space based on the quantity
you specified. This additional space is allocated from available space
on the volume, not from the space in the original data set from which
the system suballocated space for this data set. If more than one device
or volume was requested on the same DD statement that requested space
for suballocation, the data set can be continued onto another volume.

A data set may use all the space allocated to it and a later job
step or job may then try to lengthen the data set with additional
output. In this case, the data set can be lengthened only if a secondary
quantity was specified when the data set was created and only if there
is enough space available on the volume. If a later job step or job is
lengthening a data set and specifies a secondary quantity" this quantity
overrides, for the duration of the step" any secondary quantity
specified when the data set was created.

The secondary quantity is a positional subparameter. If you specify
a secondary quantity, the quantity must follOW the prinary quantity. If
you do not specify a secondary quantity and specify the size of a
directory as the next subparameter, you must'code a comma to indicate
the absence of a secondary quantity.

REQUESTING SPACE FOR A DIRECTORY

If the data set you are creating~is a partitioned data set, you must
request that the system allocate space for a directory. A directory
consists of 256-byte records and you specify how many of these records
the' directory is to contain,. These records contain entries for the
members of the partitioned data set. You can determine how many records
you should request for the directory by referring to the chapter
n processing a Partitioned Data Set" in the Data Management Services
pub Ii ca ti on.

If you request space for a directory in the SUBALLOC parameter, the
request must follow the secondary quantity or the comma that indicates
its absence. .

Examples of the SUBALLOC Parameter

EXECPGM=PREP
DO DSNAME=OUM,OISP= (,KEEP) "UNIT=2302.

VOLUME=SER=ALLDS,SPACE=(CYL,50"CONTIG)
EXEC PGM=BSPED

x
1. //STEPl

//DDl
//
//STEP2
//DD2
//
//DD3

DD DSNAME=SPEC50, DISP=(,KEEP),
SUBALLOC= (CYL, (20 ,If,STEP1. DDl)

DD DSNAME=SPEC5l,DISP=(,KEEP),
SUBALLOC= (TRK., (44,1) "STEP1. DD1)

DD DSNAME=SPEC52,DISP=(,KEEP),
SUBALLOC= (CYL,25 ,STEP1,. DD1)

x

//
//DD4
//

216 JCL Reference (Release 21.7)

x

x

2 •

The data set from which space is to be allocated is defined on the DD
statement named DDl in STEP1. Fifty cylinders are allocated to the
data set and the cylinders are contiguous. The DD statements named
DD2, DD3, and D04 in STEP2 request a portion of this space in the
SUBALLOC parameter by referring the system to the data set defined
on the DO statement named ODl in STEP1. The order of the datq sets
on the volume, because of the request for suballocation, will be
DUM, SPECSO, SPECS1, and SPECS2.

//STEPX EXEC PGM=GARV
//005 DO OSNAME=SIMP,DISP= (,KEEP) ,UNIT=23ll,. X
// VOLUME=SER=31S046,SPACE=(CYL,100"CONTIG)
//D06 DO OSNAME=FIEID. DIS P= (" KEEP) , X
// SU BALLO c= (1024, (800,60),DDS)
//STEPY EXEC PGM=BERSS
//D07 DD DSNAME=PDS.OISP=(,KEEP), X
// SUDALLOC= (CYL, (75, ,.8) ,STEPX. DDS)

The data set from which space is to be suballocated is defined on
the DD statement named DDS in STEPX. One hundred cylinders are
allocated to the data set and the cyl inders are contiguous. The DO
statanent named DD6 requests a portion of this space in units of
blocks. The system computes how many tracks or cylinders are
required for the data set. The OD statement named 007 in STEPY also
requests a portion of the space allocated to the data set defined on
the DO statement named DDS in STEPX. The DO statement named 007
defines a partitioned data set and requests the system to allocate 8
2S6-byte records for a directory.

Section IV: The DD Statement -- SUBALLOC Parameter 217

The SYSOUT Parameter

SYSOUT= (classname ~ program name] [.form number])

classname
the class associated with the output device to which you want your
output data set written.

, prog ra m name
the member name of a program in the system library that is to write
your output data set, instead of the system output writer, to a unit
record device.

specifies that the system output writer is to write your output data
set to a unit record device, and a form number follows.

, form number
specifies that the output data set .. should be printed or punched on a
special output form.

Rules for Coding
1. The classname can be any alphameric character (A-Z, 0-9).

2. The form number is 1 to 4 alphameric and national (0),$,#) characters.

3 • If a program name and form number are omitted, you need not enclose
the classname in parentheses.

4. The UNIT, SPACE, OUTLIM, UCS, FCB, and DCB parameters can be coded
with the SYSOUT parameter. Besides the mutually exclusive parameters
listed below, other parameters coded with the SYSOUT parameter are
ignored.

,
5. The DISP, DDNAME, AFF, SEP, VOLUME, LABEL, SPLIT, and SUBALLOC

parameters and the SYSOUT parameter are mutually exclusive
parameters; therefore, if any of these parameters are coded, do not
code the SYSOUT p:3.rameter.

Advantages to Coding the SYSOUT Parameter

When you want a data set printed on an output listing or in the form of
punched cards, you can code the UNIT parameter and identify the unit
record device you want, or code the SYSOUT parameter and specify the
class that corresponds to the type of unit record device you want.
There are advantages to coding the SYSOUT parameter:

1. You can write your output data set to a direct access device and a
system output writer writes the data set to a unit record device at
a later time. This allows greater flexibility in scheduling print
and punch operations, and improves operating system efficiency. You
can also write your output data set directly to a unit record or
magnetic tape device. .

2. The output data set and system messages r esul ting from the job can
be assigned to the same type of unit record device. This is
accomplished by specifying the same class name in the SYSOUT and
MSGCLASS parameters. (The MSGCLASS parameter is coded on the JOB
sta temen t.)

218 JCL Reference (Release 21.7)

3. When you want the output data set printed or punched on a special
output form, you can specify the form number in the SYSOUT parameter
and let the system inform the operator at the time the data set is
to be written what form is to be used.

THE CLl\SSNAME

When you code the SYSOUT parameter, you indicate a classname. A
classnarne is an alphameric character (A-Z, 0-9) that corresponds to a
type of unit record deVice. Each installation specifies what class names
correspond to what unit record devices. Therefore, when you specify a
classnarne, the operator knows what type of unit record device you want
and he ensures that a system output writer is available to write your
output data set to the desired unit record device.

'!he system determines where system messages resulting from a job are
to be written based on what is coded in the MSGCLASS parameter on the
JOB statement. If the MSGCLASS parameter is not coded" system messages
associated with YOlr job are routed to the defaul t output class
specified in the PARM field of the input reader procedure. The default
for the MSGCLASS parameter is A unless changed by your installation.
Class A corresponds to a printer. If you want your output data set and
the system messages result ing from the job wr itten to the same uni t
record device, you simply code the same classname in both the MSGCLASS
and SYSOUT parameters, or omit the MSGClASS parameter and code your
installation • s default output class in the SYSOUT parameter,.

THE PROGRAM NAME

The system provides system output writers, which transfer your output
data set from a direct access volume to the desired unit record device.
If there is a special installation program to handle this transfer, you
can use this program, instead of a system output writer, by specifying
the prog ram's name as the second subparameter in the SYSOUT parameter,.
The program must be a member of the system library (SYS1 .• LINKLIB) •

If you do not code a program name and code a form nUmber as the last
subpararneter in the SYSOUT parameter, you must code a comma to indicate
the absence of a program name.

THE FORM NUMBER

Each installation provides standard forms to contain printed or punched
output. If there is a special output form you want to use" you can
specify the form number as the last subparameter in the SYSOUT
parameter. The system issues a message to the operator at the time the
data set is to be printed or punched, which informs him of the form to
be used. If you do not want system messages resulting from the job to
appear on the special form, assign a classname in the MSGCLASS parameter
on the JOB statement that is different from the classname assigned in
the SYSOUT parameter.

CODING orHER PARAMETERS WITH THE SYSOUT PARAMETER

The UNIT, SPACE, OUTLIM and DCB parameters can be coded with the SYSOUT
I parameter. The DDNAME, DISP, AFF, SEP, VOLUME, LABEL, SPLIT, UCS, and

SUBALLOC parameters are mutually exclusive with the SYSOUT parameter;
any other parameters that you code with the SYSOUT parameter are ignored.

Section IV: The DD Statement -- SYSOUT Parameter 219

You can write output data sets destined for unit records devices to
a direct access device instead of immediately writing the data set to
the desired unit record device. Later, a system output writer writes the
data set to the desired unit record device. In the UNIT parameter, you
can request what type of direct access device you want for writing the
output data set, how many devices you want (up to a maxinum of five)"
and unit separation from other data sets defined in the job step. In the
SPACE parameter, you can specify how much space should be allocated to
the data set and that unus ed space is to be released. If you omit the
UNIT parameter, the system assigns a device; if you omit the SPACE
parameter, the system assigns the amount of space to be allocated.
These values are part of the PARM parameter fie 1d in the input reader
procedure used to read the input stream.

You can also write an output data set directly to the desired unit
record or magnetic tape device. When direct system output is desired"
the operator selects a unit record or magnetic tape device for a class
by issuing a S~T DSO (direct system output) command. In addition to
the SYSOUT parameter, the DCB and UCS parameters can be coded. If the
SYSOUT subparameters other than classname are coded, the specified
information is ignored. The UNIT and SPACE parameters are also ignored
if direct system output processing is used. Since the type of processing
to be used may not always be known, it is advisable to code these
parameters in case an intermediate direct access device is used.

'!he DCB parameter can be coded with the SYSOUT parameter to complete
the data control block associated with the output data set. The
information contained in this data control block is used when the data
set is written to the direct access device and read by the system output
Writer. However, the output writer's own DCB attributes are used when
the data set is written to the desired unit record device.

The OUTLIM parameter allows you to specify a limit for the number of
logical records you want included in the output data set being routed
through the output stream. The OUTLIM parameter has meaning only in
systems with the System Management Facilities option with system, job,
and step data collection.. Unless the SYSOUT parameter is coded in the
operand field of the same DD statement:. the OUTLIM parameter is ignored.

JOB SEPARA'IORS

Your output data is preceded by a job separator if your installation
incorporated routines to write job separators. A job separator is a
series of three listing pages or three punched cards that separates the
output data sets of different jobs. '!be output data sets from thes e jobs
were written to the same unit. Each page or card contains the name of
the job whose data follows" and identifies the output class. Job
separators make it easier for the operator to separate the data produced
by your job from the data of other jobs.

Examples of the SYSOUT Parameter
1. //D01 00 SYSOUT=P

This OD statement specifies that the data set is to be written to
the unit record device corresponding to class P. Since the UNIT and
SPACE parameters are not coded, the system obtains device and space
allocation information from the input reader procedure.

2. //JOB50
//STEP1
//DDX

JOB ,,'R.J. WALKER',MSGCLASS=C
EXEC PGM=SET
DO SYSOUT=C,DCB=(BUFNO=4,OPTCO=W)

220 JCL Reference (Release 21.7)

'!he 00 statement named OOX specifies that the data set is to be
written to the unit record device corresponding to class C. The OCB
parameter is coded to complete the data control block associated
with this data set. since the classnames in the SYSOUT parameter and
the NSGCIASS parameter, on the JOB statement, are the same" the
system messages resulting from this job and the output data set are
written to the same unit record device.

3. //005 00 SYSOUT=A,UNIT=2314,SPACE=(CYL, (12,1),RLSE)

This OD statement specifies that the data set is to be written to
the unit record device corresponding to the standard output class

The system assigns a 2314 unit and allocates 12 cylinders to the
data set, rather than obtaining device and space allocation
information from the input reader procedure,. Since the RLSE
subparameter is coded in the SPACE parameter" any unused space is
released.

4. //006 00 SYSOUT= (F" , 7 402)

A.

This 00 statement specifies that the data set is to be written to
the unit record device corresponding to class F and the output data
set is to be printed on a special form. The form number is 7402.

5. //007 DO OUMMY,SYSOUT=A,OCB=(BLRSIZE=800,LRECL=400,RECFM=FB)

\

This OD statement specifies that no writing or allocation is to be
done for the data set, but the specified information is to placed in
the appropriate system control blocks.

Section IV: The DD Statement -- SYSOUT Parameter 221

The TERM Parameter -- MVT and TSO

TS

TERM=TS

indicates to the system that the input or output data being defined
is coming from or going to a time sharing terminal.

Rules for Coding

1. TERM=TS is effective only under the operating system with MVT and
the Time sharing Option (TSO). The TERM parameter is ignored in
batch processing" in an MFT operating system, or in a system without
TSO.

2. TS is the only value that can be specified by the TERM parameter.
If any other value is used, a JCL error message is produced.

3. A DD staterrent with TERM=TS can only be concatenated if it is the
last DD statement·.

4. Except for the DCB parameter, all other parameters (including DmMY,
DYNAM and DSNAME=NULLFILE) coded on a DD statement with TERM are
ignored.

5. If the TERM parameter is coded for batch pro,cessing, the parameter
is not used, but is checked for syntax.

6. The TERM and DDNAME parameters are mutually excl usive; the TEru·1 and
DYNAM parameters are mutually exclusive. These combinations should
not be coded.

What the TERM Parameter Does
The TERM parameter notifies the operating system that the data set
(represented by the DD statement that contains the TERM parameter) is
coming from or going to a time sharing terminal. TERM allows your time
sharing job to conmunicate with a terminal device. For example, your
program can put out messages to a terminal user requesting data input
records. Your program can then read in the data input records supplied
by the terminal user, perform operations with this data" and then put
out the results to the terminal.

Example of the TERM Parameter
1. //DD1

or
//DD2

DD

DD

TERM=TS

UNIT=2400.,DISP= (MOD.,PASS) "TERM=TS

The above two DO statements are equivalent in effect. In the time
sharing environment, all the parameters coded on the second DD
statement are ignored except the TERM parameter. In a batch
processing environment, the UNIT and DISP parameters are used but
TERM is ignored.

2. //DD3 DD UNIT=2400, DISP= (MOD, PASS) " DCB: (LRECL=8 0, BLKSIZE=80),
TERM=TS,LABEL=(,NL)

In a time sharing environment, all the parameters in the above
example except TERM and DCB are ignored.

222 JCL Reference (Release 21.7)

The UCS Parameter

UCS~<Character set code [:FOLDJ

character set code

[, VERIFY])

identifies the special character set you want for printing the data
set.

,FOLD
specifies that you want the chain or train corresponding to the
desired character set loaded in the fold mode.

specifies that the chain or train is not to be loaded in the fold
mode and the VERIFY subparameter follows.

,VERIFY
specifies that the operator is to verify that the correct chain or
train is mounted before the data set is printed.

Rules for Coding
1. The character set code can be 1 through 4 characters.

2. If the FOLD and VERIFY subparameters are omitted, you need not
enclose the character set code in parent~eses.

3. If the UCS parameter is coded and the data set is not written to a
printer with the universal character set (UCS) feature, the UCS
parameter is ignored.

4. '!he UCS and DDNAME parameters and the DCB subparameters RKP, CYLOFL,
and IN£VL are mutually exclusive paraneters; therefore, if the
DDNAME parameter or one of the DCB subparameters RKP, CYLOFL, or
INl'VL is coded, do not code the UCS parameter.

5. If the SYSOUT parameter is coded and an asynchronous writer is used,
the UCS parameter is only recognized for the 3211 printer.

Special Character Sets

\

The Universal Character set (UCS) feature allows you to alternately use
different sets of print characters. It is available as a special feature
on the 1403 printer and as a standard feature on the 3211 printer.

In the UCS parameter you specify what character set you want to use;
the operator ensures that the corresponding chain or train is mounted on
the printer. In order to use a particular special character set, an
image of the character set must be contained in SYS1.IMAGELIB and the
chain or train corresponding to the character set must be available for
use. IBM provides standard special character sets and the installation
may provide user-designed special character sets. How to include the
images for these special character sets in SYSl.IMAGELIB is discussed in
Data Management for System Programmers.

If you omit the ues parameter and the data set is written to a
printer with the ues feature, a default character set is used. If the
chain or train mounted on the printer does not correspond to a default
character set, the operator is requested to identify a default character
set and mount the corresponding chain or train.

Section IV: The DD Statement -- ues Parameter 223

Note: When the uc:s parameter is coded with the SYSOUT parameter and the
data set is first written to a direct access device, the UCS
specification is not kept. In this case, the operator must either
specify the UCS parameter in the START WfR command or add the UCS
parameter to the user-designed output writer procedure, if the data set
is to be printed with the des ired character set.

The first subparameter of the UCS parameter identifies the character set
you want for printing yoor data set. Each character set has a unique 1-
through 4-byte code.

IDENl'IFYING THE OIARAcrER SET

'!he codes for the IBM standard special character sets are:

Codes for 1403

AN

HN

PCAN

PCHN

PN

QN

QNC

RN

SN

TN

XN

YN

codes for 3211 Characteristics

All Arrangement A, standard ECBDIC
character set. 48 characters.

Hll Arrangement H, EBCDIC character set
for FORTRAN and COBOL, 48 characters.

Gl1

P11

T11

ASciI character set.

Preferred alphameric character set,
arrangenent A.

Preferred alphameric character set"
arrangement H.

PL/1 alphameric character set.

PLl1 preferred alphameric character
set for scientific applications .•

PL/1 preferred alphameric character
set for commercial applications.

Preferred character set for commercial
applications of FORTRAN and CDBOL.

Preferred character set for text
printing.

Character set for text printing, 120
characters.

High-speed alphameric character set
for 1403, Model 2..

High-speed preferred alphameric
character set for 1403, Model 3 or N1.

For each user-designed special character set, the installation
assigns a unique code. If you want to use one of these, specify the
corresponding code in the UCS parameter.

224 JCL Reference (Release 21.7)

REQUESTING FOLD MODE

FOLD can be coded as the second subparameter of the ues parameter and
requests the fold mode. The fold mode is described in the publication
IBM 2821 Control Unit, GA24-3112. The fold merle is most often requested
when uppercase and lCMercase data is to be printed only in uppercase.

The FOLD subparameter is a positional subparameter. If you omit the
FOLD subparameter and code the VERIFY subparameter, you must code a
comma to indicate the am ence of FOLD.

REQUESTING OPERATOR VERIFICATION

VERIFY can be coded as the last subparameter of the ues parmeter and
requests that the operator visually verify that the character set image
corresponds to the graphics of the chain or train that was mounted.
When VERIFY is coded, the character set image is displayed on the
printer so that the operator can make the verification before the data
set is printed.

Examples of the ues Parameter
1. //DD1 DD UNIT=1403,ueS=(YN"VERIFY)

This DD statement defines an ou~put data set that is to be written
to a 1403 printer. The UCS parameter requests that the data set be
written using the chain or train corresponding to the special
character set with the code YN. Since VERIFY is coded" the character
set image is displayed on the printer before the data set is printed.

2. //DD2 DD SYSOUT=G,UCS=PCHN

This DD statement defines an output data set that is to be written
to the unit record device that corresponds with class G. If the
device is a printer with the universal character set and the writer
is a direct SYSOUT writer, the request in the UCS parameter for the
special character set with the code PCHN is recognized. otherwise,
the ues parameter is ignored.

section IV: The nn Statement -- UCS Parameter 225

The UNIT Parameter

{

UNI'l= ([um't;- addreSS] [",upnit count] [" DEFER]
devl.ce type
group name

UNIT=AFF=ddname

I,SEP=(ddname, •••)]) }

uni t address
identifies a particular unit by its address, which consists of the
channel, control unit, and unit numbers.

device type
identifies a particular type of device.

group name
identifies a particular group of devices,. The group name and the
devices that make up a group are specified during system generation.

,unit count

,P

,

indicates the number of devices you want assigned to the data set.

specifies that each volume on which the data set resides is to be
assigned a device.

specifies that only one device is required and another subparameter
follows. (If the DEFER subparameter is not coded but the SEP
parameter is coded, this comma is optional.)

,DEFER
specifies that the system should assign a device(s) to the data set
but the volurne(s) on which the data set resides should not be
mounted unti 1 the data set is opened.

,SEP=
indicates that this data set is to be assigned a different direct
access device than the devices assigned to certain other data sets;,
i.e., unit separation .•

(ddname, •••)
the names of up to eight earlier DD statements in the job step that
define data sets from which you want unit separation.

AFF=
indicates that the system should assign the data set to the same
device<s) as assigned to another data set, i.·e., unit affinity.

ddname
the name of an earlier DD statement in the job step that defines a
data set with which you want unit affinity.

Rules for Coding
1. If the only subparameter coded in the UNIT parameter is the first

sub parameter , you need not enclose it in parenthses.

2. I f the SEP subparameter is the only subparameter you are coding in
the UNIT parameter, code UNIT= (,SEP=(ddname, ••• » •

3. If the list of ddnames consists of only one ddname, you need not
enclose it in parentheses.

226 JCL Reference (Release 21.7)

4. You need not code the unit count subparameter if you want only one
device ass igned to the dataset.

5. 'Ihe UNIT and DDNAME parameters are mutually exclusive parameters;
therefore" if DDNAME is coded, do not code the UNIT parameter.

Providing Unit Information.
Before the data set can be used as input to a processing program or
written as output by a processing program" the volume on which a data
set resides or will reside must be mounted on an input/output device.
The UNIT parameter provides the system with the information it needs to
assign a device to the data set.

In order for the system to assign a device, you must provide in the
UNIT parameter:

• The specific unit you want: code the unit address, or a general
description of the device; code the device type or group name.

Optionally, you can:

• Specify how many devices you want assigned to the data set when more
than one device is required. You can code the unit count and specify
how many devices are required, or in certain cases, imply how many
devices are required by coding P.

• Request the system to assign a device to a data set and not to cause
the volume on which the data set resides to be mounted until the
da ta set is oPened.

• Request the system to assign a data set to a device other than the
devices assigned to data sets defined in the same job step; code the
keyword subparameter SEP and identify the data sets from which you
want unit separation,.

Another way to provide unit information is to request unit affinity
with another data set by coding UNIT=AFF=ddname. The system obtains unit
infornation from the named DD statement.

Except in a few cases, the UNIT parameter is always coded on a DD
statement that defines a data set that requires one or more devices,. In
the following cases, the system obtains the required unit information
from other sources. Therefore, you need not cooe the UNIT parameter:

• When the data set is cataloged. For cataloged data sets" the system
obtains unit and volume information from the catalog,. However, if
VOLUME=SER=serial number is coded on a DO statement that defines a
cataloged data set, the system does not look in the catalog. In this
case, you must code the UNIT parameter,. If the VOLUME parameter is
not coded but you request a device in the UNIT parameter, the
request is ignored.

• When the data set is passed from a previous job step. For passed
data sets, the system obtains unit and volume information from an
internal table. However" if VOLUME=SER=serial number is coded on a
DD statement that defines a passed data set" the system does not
look in the internal table. In this case" you must code the UNIT
parameter. If the VOLUME parameter is not coded but you request a
device in the UNIT parameter" the request is ignored.

Section IV: The DO Statement -- UNIT Parameter 227

• When the data set is to use the same volumes assigned to an earlier
data set, i. e .• , VOLUME=REF=reference is coded. In this case, the
system obtains unit and volume information from the earlier DD
statement that specified the volume serial number or from the
catalog. If you request a device in the UNIT parameter, the request
is ignored.

• when the data set is to share space or cylinders with an earlier
data set, i.e., SUBALLOC or SPLIT is coded. In this case" the system
obtains unit and volume information from the earlier DD statement
that specifies the total amount of space required for all the data
sets. If the VOLUME parameter is coded, it is ignored. If you
request a device in the UNIT parameter, the request is ignored.
When usiIl<J VOL=REF reference to a previous DD statement that uses
esoteric names the system will allocate to generic., rather than
esoteric, names.

In all of these cases" you can code the UNIT parameter when you want
more devices assigned.

IDENl'IFYING THE DEVICE

You must identify to the system the specific device you want or the type
of device you want. TO identify a specific device, you must specify a
unit ad4ress. when a unit address is coded, the system assigns you that
unit.

There are two ways to identify the type of device you want: specify
a device type, which corresponds to a particular set of device features,
or specify a group name, which identifies a group of devices that nay be
different models. When a device type is coded" the system assigns an
available device of that type. when a group name is coded, the system
assigns an available device that is part of that group. In all cases"
the block size specified for the data cannot exceed the maximum block
size permitted for the assigned device.

uni t Address

To identify a device by its unit address, you specify the 3-byte address
of the unit. The address is made up of the channel, control unit, and
unit numbers. For example, UNIT=180 indicates you want channell,
c o:ptrol unit 8, and unit O.

To request a specific bin on a specific 2321, you should code
UNIT=address/bin, where "bin" is a number from 0 through 9. For example,
UNIT=293/5 indicates you want channel 2, control unit 9, device 3, and
bin 5. If you code UNIT=293, you are requesting one of the available
bins on that unit.

If you identify a telecommunications device by its unit address, the
system will allocate that device on a shared basis whether or not the
device is already allocated. Offline telecommunications devices will be
allocated just as previously allocated ones will be.

You should not identify a device by its address unless it is
absolutely necessary. specifying a unit address limits unit assignment
and may result in a delay of the job if the unit is being used by
another job.

Device Type

Device types correspond to particular set of features of input/output
devices. When you code a device type" you allow the system to assign any
available device of that device type. For example, if the device type

228 JCL Reference (Release 21.7)

you want is a 2302 Disk storage Drive, you code UNIT=2302. The system
assigns an available 2302. If only one device in the system is of that
device type, the system assigns that device. If there is more than one
device in the system of that device type, there is a certain degree of
device independence.

The device types that can be coded and their descriptions are listed
below. (You can code only those device types that were defined during
system generation.)

Device Type

2400

2400-1

2400- 2

2400-3

2400-4

3400-1

3400- 2

3400- 3

3400-4

Device

2400 series Nine-Track Magnetic Tape Drive that
can be allocated to a data set written or to be
written in 800 bpi when the dual-density feature
is not installed on the drive or in 1600 bpi
when the dual-density feature is installed on
the drive.

2400 series Magnetic Tape Drive with
Seven-Track Compatibility and without Data
Conversion.

2400 series Magnetic Tape Drive with
Seven-Track Compatibility and Data Conversion.

2400 series Nine-Track Magnetic Tape Drive
that can be allocated to a data set written
or to be written in 1600 bpi density.

2400 series Nine-Track Magnetic Tape Drive
having an 800 and 1600 bpi density
capability.

3410 Magnetic Tape with Seven-track
Compatability and Data Conversion that can
be allocated to a data set written in 200,
556, or 800 bpi density.

3420 Magnetic Tape with Seven-Track
Compatibility and Data Conversion that can
be allocated to a data set written in 556
or 800 bpi density.

3410 or 3420 Nine-Track Magnetic Tape
drive that can be allocated to a data set wri tten
or to be written in 1600 bpi density.

3410 or 3420 Nine-Track Magnetic Tape
drive having an 800 and 1600 bpi density
capability.

The system may assign a tape drive from the 3400 series to satisfy a
request for a 2400-series tape. However, the system will not assign a
2400-series tape to satisfy a request for a 3400 tape drive.

Section IV: The DD Statement -- UNIT Parameter 229

DIRECT ACCESS

Device Type

2301

2302

2303

2305-1

2305-2

2311

2314

23191

2321

3330

Device

2301 Drum storage Unit.

2302 Disk Storage Drive.

2303 Drum storage Unit.

2305 Fixed Head Storage

2305 Fixed Head storage

2311 Disk Storage Drive.

2314 Storage Facility .•

Facility

Facility

2319 Disk storage Facility

Model 1

Model 2

any bin mounted on a 2321 data cell drive.

3330 Disk storage Drive

1To indicate the 2319 in the UNIT parameter, specify UNIT=2314.
However, to designate the 2319 as the particular device for your data
set, specify UNIT=unit address .•

UNIT RECORD

Device TYEe

1052

1275

1285

1287

1288

1403

1419

1442

1443

2495

2501

2520

2540

2540-2

2671

3210

Device

1052 Printer-Keyboard.

1275 Optical Reader Sorter (available through
Word Trade branch offices only)

1285 Optical Reader

1287 Optical Reader

1288 Optical Reader

1403 Printer or 1404 Printer (continuous form
only).

1419 Magnetic Character Reader

1442 Card Read Punch.

1443 Printer.

2495 Tape Cartridge Reader

2501 Card Reader.

2520 card Read Punch.

2540 Card Read Punch (read feed).

2540 Card Read Punch (punch feed).

2671 Paper Tape Reader.

3210 Printer-Keyboard

230 JCL Reference (Release 21.7)

3211 3211 Printer

3215 3215 Printer-Keyboard

3505 card Reader

3525 Card punch (read and print features)

GRAPHIC

Device TYEe Device

1053 1053 Model 4 Printer.

2250-1 2250 Display Unit, Model 1~

2250-3 2250 Display Unit" Model 3.

2260-1 2260 Model 1 Display station (Local Attachment) •

2260- 2 2260 Model 2 Display station (Local Attachment) •

2280 2280 Film Recorder..

2282 2282 Film Recorder/Scanner.

3277-1 3277 Display station (Model 1), Local Attachment

3277- 2 3277 Display Station (Model 2) , Local Attaclunent

3284-1 3284 Printer (Model 1) , Local Attachment

3284-2 3284 Printer (Model 2) , Local Attachment

3286-1 3286 Printer (Model 1) , Local Attachment

3286-2 3286 Printer (Model 2) , Local Attachment

GrouE Name

A group name is 1 through 8 alphameric characters and identifies a
device or a group of devices. The group of devices can consist of
devices of the same type or different direct access and tape device
types. Group names are established during system generation.

When you code a group name, you allow the systan .to assign any
available device that is included in the group. (If a group consists of
only one device, the system assigns that device.) For example, if all
2301 and 2303 Drum Storage Units are included in the group named DRUM
and you code UNIT=DRUM, the system assigns an available 2301 or 2303
device.

I

If extending a data set that was created using the group name
parameter, the additional units allocated will be of the same device
type. They will not necessarily be of that same group.

A group may consist of more than one device type. In this case" you
should not code this group's group name when you are defining an
existing data set, since the volume(s) on which the data set resides may
require a different device than the one assigned by the system" i.e., a
tape volume must be assigned to a tape device" not· a direct access
device.

Section IV: The DD Statement -- UNIT Parameter 231

When creating a data set which could require more than one device, a
group name which includes more than one device type should not be used.
This is necessary to prevent uultiple device types from being allocated
to the request,.

When the automatic volume recognition feature is included in the
system and you specify a group name, this feature will assign devices to
volumes already mounted" but will not request mounting of any volume
that is not mounted.

ONIT COONI'

The unit count subparameter indicates how many devices you want assigned
to a data set. If you do not code this subparameter (or code 0) and you
do not request parallel mounting ~ the system assumes you are requesting
one device. If you receive a passed data set or refer the system to a
cataloged data set or earlier DD statement for volume and unit
information (VOLOME=REF=reference), the system will also assume a unit
count of 1, even if more devices were requested in an earlier DD
statement. The system may ignore a request for a specific number of
units if the data set has volume affinity with at least one other data
set. see the description of volume affinity in the section on the
VOLUME paramet~ for specific details,.

For operating efficiency" you can request mul tiple devices for a
multivolume data set or for a data set that may require additional
volumes. When each required volume is mounted on a separate device, time
is not lost during execution of the job step while the operator demounts
and mounts volumes. The maximum number of devices that can be requested
per DD statement is 59.

In the following cases, you should always code the unit count
subparameter when the data set may be extended to a new volume:

• If the data set resides on a permanently resident or reserved
volume. In these two cases, the volume cannot be demounted in order
to mount another volume.

• If the data set is assigned space through suballocation. Code the
uni t count subparameter on the DD statanent that requests the space
to be suballocated.

~e unit count subparameter is a positional subparameter, and it
shares the same position as the subparameter P. If neither of these
subparameters is coded and the DEFER or S EP subparameter follows" code a
comma to indicate the absence of the unit count subparameter and the
subparameter P. (If the DEFER subparameter is not coded but the SEP
parameter is coded, you may omit the comma.)

PARALLEL MOUNI'ING

Requesting parallel mounting has the same effect as specifying a unit
count, i.e., more than one device is assigned to the data set. When
parallel mounting is requested, the system counts the number of volume
serial numbers specified on the DD statanent and assigns to the da ta set
as many devices as there are serial numbers,. (For cataloged data sets,
the system counts the nmnber of volume serial numbers contained in the
catalog.) You request parallel mounting by coding the letter P in place
of the unit count subparameter.

232 JCL Reference (Release 21.7)

The sUbparameter P is a positional subparameter, and it shares the
same position as the unit count subparameter. If neither of these
subparameters is coded and the DEFER or SEP subparameter follows, code a
comma to indicate the absence of the subparameter P and the unit count
subparameter. (If the DEFER subparameter is not coded but the SEP
subparameter is coded" you may omit the comma.)

DEFERRED MOUNTING

The DEFER subparameter requests the system to assign the required units
to a data set and to defer the mounting of the volume(s) on which the
data set resides until the processing program attempts to open the data
set. The DEFER subparameter should only be coded on DD statements that
define data sets residing on removable volumes. The DEFER subparameter
cannot be coded on a DD statement that defines an indexed sequential
data set or that defines a new data set that is to be written on a
direct access volume" because space cp.nnot be allocated to the data set.

I If DEFER is coded on a DD statement that defines a new direct access
data set, DEFER will be ignored. .

If you request deferred mounting of a volume and the data set on
that volume is never opened by the processing program, the volume is not
mounted during the execution of the job step. If a later job step refers
to that data set, the system may assign a different device to the data
set than was originally assigned to it.

UNIT SEPARATION

When you make nonspecific volume requests for data sets defined in a job
step, the system assigns volumes to the data sets. If the DD statements
that define these data sets request the same type of device, the system
may assign more than one data set to the same device,.

If you do not want a data set to be assigned to the same device that
is assigned to other data sets" you can request this in the SEP
subparameter. A request for unit separation has meaning only for direct
access devices.

The SEP 'subparameter appears as the last subparameter in the UNIT
parameter. TO identify the data sets that should not be assigned the
same device as this data set, follow SEP= with a list of ddnames of the
DD statements that define these data sets. The listed DD statements must
precede this statement and must be contained in the same Job step. The
list of ddnames must be enclosed in parentheses, unless there is only
one ddname. If one of the listed DD statements defines a dummy da ta set,
the system ignores the unit separation request for that data set.

lJhe nunber of separations allowed per DD statement is the number of
implied separations plus the number of specified separations to a
maximum of eight. Each time a DD name is the object of a separation
request, it assumes an implied separation from the requesting DD
statement. Thus, if a DD statement was referenced in the SEP parameter
in a following DD statement, the referenced DD statement would be
allowed to specify up to seven separations.

When you make a specific volume request for a data set and request
unit separation for that data set" the system issues a message to the
operator if the request for unit separation cannot be satisfied. The
operator decides if the system should wait for devices to become
available, or if the request for unit separation should be ignored, or
if the job should be cancelled. When you make a nonspecific volume
request for a dataset and reque st unit separati on for that data set,
the request may be ignored, depending on how many disk drives are

I available and how much space is available on those disk drives. If

Section IV: The DD Statement -- UNIT Parameter 233

there is not a sufficient number of devices to satisfy the separation
request, it will be ignored and no message will be issued. If the
separation request cannot be satisfied because of insufficient space on
a volume(s), a message will be issued giving the operator the ,option to
wait for available devices, cancel the job, or ignore unit separation.

Unit Mfinity
To conserve the rromber of devices used' in a job step" you can request
that an existing data set be assigned to the same device or devices as
assigned to a data set defined earlier in the job step. When two data
sets are assigned the same device, the data sets are said to have unit
affinity. when the data sets reside on different volumes, unit affinity
implies deferred mounting for one of the volumes, since both volumes
cannot be mounted on the s arne device ·at the same time. Unit affinity is
invalid if coded for a new direct access data seti except when an
explicit volume reference is ma'de'.When a volume which is assigned to
that device becomes private, all subsequent volumes assigned to that
device through UNIT=AFF=ddnarne also become private.

You request unit affinity by coding UNIT=AFF=ddname on a DD
statement. The ddname is the name of an earlier DD statement in the same
job step, and the system obtains unit information from this statement . .;.
The data set defined on the DD statement that requests unit affinity is
assigned the same device or devices as the data set defined on the named
DD statement. If the ddname refers to a DD statement that defines a
dummy data set, the data ,set defined on the DD statement requesting unit
affini ty is assigned a dummy status.

When unit affinity is requested for two data sets that reside on
different 2321 volumes, the data sets are assigned the same device but
may be assigned different bins. If the data sets are assigned different
bins, the implied deferred mounting is ignored.

Examples of the UNIT Parameter
1. //DD1

//
DD OSNAME=AAG3,DISP=(,KEEP),

VOLUME=SER=13230,UNIT=2400
x

This DD statement defines a new data set and requests the system to
assign any 2400 9-track tape drive to the data set. If a 2400
9-track tape drive is not available" the system will assign a 3400-4
type tape drive.

2,. //DYO DD DSNAME=AAG4,DISP=OLD" VOLUME=SER=12345, UNIT=3400-3

This DD statement defines an existing data set that resides on a
tape volume and requests the system to assign a 3400 9-track 1600
bpi tape device to the data set.

3. //OD2 DD DSNAME=X. Y. Z ,DISP=OLD" UNIT= (" 2)

This DD statement defines a cataloged data set and requests the
system to assign two devices to the data set. The device type is
obtained from the catalog.

4. //DD3
//

DD DSNAME=COLLECT, DIS P= OLD,
VOLUME=SER=1095, UNIT=(DISK.,.,DEFER)

234 JCL Reference (Release 21.7)

x

This DD statement defines an existing data set that resides on a
direct access volume and requests the system to assign any device
that is part of the group named DISK. Since DEFER is coded, the
volume is not mounted until the data set is opened .•

5. //STEP1
//DDA
//DDB
//DDC

EXEC PGM=XTRA
DD UNIT=2311,SPACE=(1024,(150,20»
DD UNIT=2311,SPACE=(1024, (100,10»
DD UNIT=(2311,SEP=(DDA,DDB»,SPACE=(2048,(300,30»

The DO statements in this job step define temporary data sets. The
DD statement named DDC requests the system to assign the data set to
a different device than is assigned to either of the data sets
defined on the DD statements named DDA and DDB.

6. / /STEP 2 EXEC PGM=POINl'
//DDX DD DSNAME=EST,DISP=MOD,VOIDME=SER=(42569"42570),, X
// UNIT=(2311,2)
//DDY DD DSNAME=ERAS,DISP=OLD,UNIT=24 00-2
/ /DOZ DD OSNAME=RECK,DISP=OLD" X
// VOLUME=SER=(40653,13262),UNIT=AFF=DDX

The DO statement named DDZ requests that the system assign the same
uni t to this data set as it assigns to the data set defined on the
statement named DDX.. Since DDX requests two devices., these two
devices are assigned to the data set defined on DDZ .•

Section IV: The DD Statement -- UNIT Parameter 235

The VOLUME Parameter

r--'
J VOLUME l =([PRIVATE] [,RETAIN] [,yolume sequenc~ number] [,volume count] : [,]:[SER=(serial number, •••) 1)
1 VOL ~ J:l I~~ .' L. __ J REF=dsname

REF=* .ddname
REF=* .stepname .ddname
REF=* .stepname .procstepname .ddname

PRIVATE
indicates that no output data set can be allocated to this volume
unless the volume is specifically requested, and the volume is to be
demounted after its last use in the job step, unless RETAIN is coded
or the data set is passed.

,RETAIN

L. _.) I I~\
indicates that this volume is not to be demounted after its last use
in the job step.

indicates that the volume need not be retained after the job step
and the volume sequence number or volume count subparameter follows.

,volume sequence number

,-,
_'J

specifies which volume of an existing multivolume data set you want
to begin processing with.

indicates that you want to begin processing of an existing
multivolume data set with the first volume, and the volume count
subparameter follows •

• volume count
specifies the maxinum number of volumes an output data set requires.

,--,
I , I
l_~ specifies that either the SER or REF subparameter follows and one or

SER=

more subparameters precede it.

indicates that the serial numbers of the volumes on which the data
set resides or will reside follow.

(serial number, •••)
the serial nmnbers of the volumes on which the data set resides or
will reside.

REF=
indicates that the serial numbers of the volumes on which the data
set resides or will reside are identified on an earlier DD statement
in the job or in the catalog.

dsname
the name of a cataloged or passed data set. The system locates the
information about the data, set and assigns your data set to the same
volumes as are assigned to the cataloged or passed data set.

* .ddname
specifies that the system must obtain the volume serial n,umbers from
an earlier DD statement named "ddname" in the same job step..

*.stepname.ddname
specifies that the system must obtain the volume serial numbers from
,a DD statement named "ddname," which was defined in an earlier job
step named "stepname."

236 JCL Reference (Release 21.7)

*.stepname.procstepname.ddname
specifies that the system must obtain the volume serial numbers from
a DD statement named nddname,n which was defined in an earlier
procedure step named nprocstepnamen ; the procedure step is part of a
procedure that was called by an earlier job step named nstepname. n

Rules for Coding
1. The volume sequence number subparameter can be 1 to 3 digits .•

2. The volume crunt· subparameter is a number from 1 through 255.

3. If the only subparameter you are coding is PRIVATE
"

you need not
enclose it in parentheses.

4. If the only subparamet er you are coding is SER or REF, code
VOLUME=SER=(serial number, •• ,.) or VOLUME=REF=reference.

5. If the list of volume serial numbers consists of only one serial
number, you need not enclose the serial number in parentheses.

6. The VOlliME, DDNAME" and SYSOUT parameters are mutually exclusive
parameters; therefore" if DDNAME or SYSOUT is coded, do not code the
VOLUME parameter ,.

7. When coding a volume reference to a direct access data set defined
in the same step, and the data set status of the referencing DD
statement is old" the referenced DD statenent must contain a
specific volume request.

Providing Volume Information
A volume can be a tape reel, a disk pack" a data cell" a drum" or part
of an IBM 2302 Disk storage device served by one access mechanism. The
VOLUME parameter provides information about the volume or volumes on
which an input data set resides or on which an output data set will
reside.

Before a data set can be read or written, the volume on which the
data set resides or will reside must be mounted. For an existing data
set, you must identify the Volume or volumes on which the data set
resides by making a specific volume request. For a new data set" you can
make a specific volume request or let the system select a volume for you
by making a nonspecific volume request.

specific Volume Regu est

A specific volume request informs the system of the volume's serial
number. Any of the following implies a specific volume request:

1. The data set is passed from an earlier step or is cataloged.

2 ~ VOLUME=SER=serial number is coded on the DD statement.

3. VOLUME=REF=reference is coded on the DD statement, referring to an
earlier specific volume request.

When you make a specific volume request, you can code the PRIVATE
subparameter or the PRIVATE and RETAIN subparameters in the VOLUME
parameter. For passed data sets, you can also code the volume count
subparameter. For cataloged data sets" you can also code the sequence
number and volume count subparameters.

Section IV: The DO Statement -- VOLUME Parameter 237

Nonspecific Volume Request

A nonspecific volume request can be made only if you are defining a new
data set. when yoo make a nonspecific volume request" the system .may
assign your data set to a volume that is already mounted or may cause a
volume to be moonted. What the system does depends on the volume state
of the volmoes that are already mounted. The volume states that mounted
volumes can assume and how they affect volume selection are described
under "Volmoe states" at the end of this chapter;.

When you make a nonspecific volume request, you can code the PRIVATE
subparameter, or the PRIVATE and RETAIN subparameters, and the vol moe
count subparameter in the VOLUME parameter. You should not code the
volume sequence rnmber subparameter when you make a nonspecific volume
request.

THE PRIVATE SUBPARAMETER

When you make a specific or nonspecific volume request, you can code
PRIVATE as the first subparameter in the VOLUME parameter.. The volume
assigned is called a private volume. This private volume cannot then be
assigned to any other data set for which a nonspecific volume request is
made. In addition, a private volume is demounted after its last use in
the job step unless RETAIN or PASS is coded or the volume is a
pernanently resident or reserved volume. (Permanently resident and
reserved volumes are described under "Volume states" at the end of this
chapter.)

If PRIVATE is the only subparameter coded in the VOLUME parameter,
you need not enclose it in parentheses.

When PRIVATE Is Not Coded

What occurs when PRIVATE is not coded depends on the type of volume
request and. whether a direct access or tape device is requested.

Specific request for a direct access volume: If PRIVATE is not coded and
you make a specific request for a direct access volume, the volume
assigned is called a public volume. A public volume remains mounted
after its last use in a step so that it can be used again without the
need to remount it.

Nonspecific request for a direct access volume: If PRIVATE is not coded
a nd you make a nons pecific request for a direct access volume and the
data set is temporary" the system assigns a volume called a public
volume. If PRIVATE is not coded and you make a nonspecific request for a
direct access volume and the data set is nontemporary" the system
assigns a volume called a storage volume. Public and storage volumes
remain mounted after their last use in a step so that they can be us ed
again without the need to remount them. If it is possible that the data
set may require more space than was requested for it" request more than
one volume in the volume count subparameter of the VOLUME parameter and
more than one device' in the unit count subparameter of the UNIT
parameter.

specific request for a tape volume: If PRIVATE is not coded and you make
a specific request for a tape volume, the system treats it as a request
for a private volume. (How this affects the volume is described in the
previous topic "The PRIVATE Subparameter.")

Nonspecific request for a tape volume: If PRIVATE is not coded and you
make a nonspecific request for a tape volume and the data set is
nontemporary" the system treats it as a request for a private volume.
(As mentioned earlier, the system always considers certain requests to

238 JCL Reference (Release 21.7)

be specific. For tape volumes" the system also considers the following
to be a specific request: a status of OLD or SHR and a disposition of
other than DELETE coded in the DISP parameter.) How a request for a
private volume affects the volume is described in the previous topic
"The PRIVATE subparameter. n

If PRIVATE is not coded and you make a nonspecific request for a
tape volume and the data set is temporary, the system assigns a volume
called a scratch volume. A scratch volume remains mounted 'after its last
use in a step so that it can be assigned again without the need to
remount it. If it is possible that the data set may exceed one volume"
request more than one volume in the volume count subparameter of the
VOLUME parameter and more than one device in the unit count subparameter
of the UNIT parameter.

When PRIVATE is not::. coded, and the volume sequence number or volume
count subparameter is coded" you must code a comma to indicate the
absence of PRIVATE.

THE RETAIN SUBPARAMETER

If you have coded PRIVATE as the first subparameter in the VOLUME
parameter, you may want to code RETAIN as the second subparameter.
RETAIN overrides the system action of danounting a private volume after
its use in a job step,. For a tape volume" the volume remains mounted
until after it is used in a subsequent step or until the end of the job,
whichever occurs first. For volumes other than tape, the volume remains
mounted until the end of the job. If the data set resides on more than
one volume and the volumes are mounted in sequential order, only the
last volume is retained.

The RErAIN subparameter need not be coded when the data set is to be
passed; the system automatically retains the volumes on which the data
set resides.

If the RETAIN subparameter is not coded and the volume sequence
number or volume count subparameter follows. code a comma to indicate
the absence of RETAI N.

THE VOLUME SEQUENCE NUMBER SUBPARAMETER

When you are reading or lengthening an existing multivolume data set"
you can begin processing with other than the first volume of the data
set by coding a volume sequence number. The sequence number must be less
than or equal to the number of volumes on which the data set exists and
can range from 1 to 4 digits. A volume sequence number is normally coded
when volume serial numbers are not specified on the DD statement (i,.e."
you are retrieving a cataloged data set or VOLUME=(", seq#,REF=reference)
is coded),. If both a volume sequence number and volume serial numbers
are coded in the VOLUME parameter, you will begin processing with the
volume that corresponds with the volume sequence number.

The volume sequence number is a positional subparameter and must
follow the PRIVATE and RETAIN subparameters or the commas that indicate
their absence. If the volume sequence number subparameter is not coded
and the volume count subparameter follows, code a comma to indicate the
absence of a sequence number.

If a volume sequence number is used with a nonspecific volume
request, the results are unpredictable.

section IV: The DD Statement -- VOLUME Parameter 239

THE VOLUME COONI' SUBPARAMETER

The volume count subparameter tells the system the maximum number of
volumes an outplt data set may require. If a volume count of 1 to 5 is
specified, the maximum number is five; if a count of 6 to 15 is
specified, the maximum IUlmber is 15. If a volume count above 15 is
specified, the actual maximum number allowed will be a multiple of 15 up
to an absolute maximum of 255. The total number for all the DD
statements in one job step cannot exceed 4095.

When you make a nonspecific volume request and the data set may
exceed one volume, request more than one volune in the volume count
subparameter and code PRIVATE or request the same number of devices as
volumes. If the volume(s) you initially specified is demountablei the
system will request scra tch volumes to be mounted until either the data
set is complete or all entries in the JFCB are filled. If the JFCB
entries are already filled, or the volumes are not demountable, the job
step will abnormally terminate. When you request a non-specific tape
volume for a data set with no labels, the system assigns the volume
serial numbers required for the data set. If a volume count greater than
99 is specified, duplicate volume serial numbers are assigned.

When you make a specific volume request and the data set may require
use of more volumes than there are serial numbers, specify in the volwre
count subparameter the total number of volumes that may be used. By
requesting multiple volumes in the volume count subparameter, you can
ensure that the data set can be written on more than one volume if it
exceeds one volume.

If you make a nonspecific volume request and the volume count
exceeds the number of direct access devices requested in the UNIT
parameter, you should code PRIVATE, e.g.,
UNIT=(2311,4) , VOLUME= (PRIVATE., , ,6). When PRIVATE is coded and all the
mounted volumes are used, the system demounts one of the volumes and
then mounts another volume in its place so that processing can continue.
When PRIVATE is not coded and all the mounted vol umes are used, the
system does not demount any of the volumes; therefore, the job step
abnormally terminates. For tape devices" the PRIVATE subparameter is
unnecessary; additional volumes are mounted as they are required.

'Ihe volune count subparatneter is a positional subparameter. If you
omit this subparameter, you code a comma to indicate its absence only if
PRIVATE, RETAIN, or the volume sequence number subparameter is coded and
the SER or REF subparameter follows.

SUPPLYING VOLUME SERIAL NUMBERS (SER)

To retrieve an existing data set, other than a cataloged or passed data
set, you must supply the system with the serial numbers of the volumes
on which the data set resides. When you are creating a data set, you can
supply the system with the serial numbers of the volumes on which the
data set will reside or let the system assign volumes to the data set.
One of the ways to supply the system with serial numbezs is to code the
serial numbers on the DD statement. You can specify a maximum of 255
volume serial numbers per DD statement and a maximum of 4095 volume
serial numbers per job step.

A volume serial number must be 1 to 6 characters in length. If
volume serial rumber is not 6 characters" it will be padded with
trailing blanks. It can contain any alphameric and national (#,$,S)
characters, and the hyphen. You must enc lose any volume serial number
that includes special characters, other than a hyphen, in apostrophes
whenever you code that number in the VOLUME parameter. When using

240 JCL Reference (Release 21.7)

various typewriter heads or printer chains, difficulties in volume
serial recognition may arise if you use other than alphameric
characters. Each volume at an installation should have a different
serial number regardless of the volume type, e.g., tape" disk; the
volume's serial number should be posted on the outside of the volume.

'!he SER subparameter appears as the last subparameter in the VOLUME
parameter. Follow SER= with the volume serial numbers. The serial
numbers must be enclosed in parentheses, unless there is only one serial
nwnber. If SER is the only subparameter you are coding, you can code
VOLUME=SER=(serial number, •• ,.) or VOLUME=SER=serial number.

SCRTCH should not be used as a volume serial number, because it is
used to notify the operator to mount a non-specific volume. For Optical
Readers, if no volume serial number is specified" VOLUME=SER=OCRmp is
assumed.

REFERRING THE SYSTEM TO AN EARLIER SPECIFIC VOLUME REQUEST (REF)

Another way to supply the system with volune serial numbers is to refer
the system to either a cataloged data set or a data set that is defined
earlier in the job. When you do this, the system obtains volume
infornation, including volume serial numbers~ the label type field, and
unit information from the source you refer it to. For Direct Access
devices the label type is obtained from the label parameter specified in
the DD statement and not from the source you refer it to. When us ing
VOL=REF reference to a previous DD statanent that uses esoteric names,
the system will allocate to generic" rather than esoteric" names .•

To refer the system to a cataloged data set or to a data set passed
earlier in the job that has not been assigned a temporary data set name"
you code REF as the last subparameter in the VOLUME parameter. Follow
REF= with the data set name of the cataloged or passed data set. The
data set name you code cannot contain special characters, except for
periods used in a qualified name .•

To refer the system to a data set defined earlier in the job that
was not passed or was passed but assigned a temporary name" you code
REF= as the last subparameter in the VOLUME parameter. Follow REF= wi th
a backward reference to the DO statement that contains the volume serial
nUmbers. This backward reference must be one of the following:

1. * .• ddname. Use this form of backward reference when the OD statement
you are referring to is contained in the same job step.

2. *.stepname.ddname. Use this form of backward reference when the DO
statement you are referring to is contained in an earlier job step.

3. * .stepname. procstepname. ddname. Use this form of backward reference
when the 00 statement you are referring to is contained in a
cataloged procedure step that is part of a procedUre called by an
earlier job step.

In any case, if the ddname refers to a DD statement that defines a dummy
data set, the 00 statement requesting use of the volumes assigned to
that data set is assigned a dummy status,.

When you refer the system to a data set that resides on more than
one tape volume, the system assigns only the last volume. When you refer
the system to a data set that resides on more than one direct access
VOlume, the system assigns all of the volumes. In either case" you can
code the volume count subparameter if additional volumes may be required.

If REF is the only subparameter you are coding, you can code
VOLUME=REF=reference.

section IV: The 00 Statement -- VOLUME Parameter 241

Volume Affinity
Two or more data sets sharing the same volume have volume affinity.
This occurs when you specify the same volume serial numbers for the data
sets, or when you use the REF subparameter of the VOLUME parameter to
indicate that volumes identified in the catalog or on an earlier DD
statement in the job are to be assigned to the data set being defined.
Volume affinity influences device allocation. The system may ignore a
request for a specific number of units if a data set has volume affinity
wi th at least one other data set. The system .will allocate devices as
follows:

situation:

allocation:

example:

situation:

allocation:

example:

situation:

allocation:

The volume or volumes requested for a data set are shared.
The device requested is not a tape uni t,.
The data sets sharing volumes do not request unit
affinity .•

The system ignores any request for a specific number of
units and allocates one device for each shared volume.

Two data sets share three volumes:

//UN
//DEUX

DO
DD

UNIT=SYSDA,DSN=ANN,VOL=SER=CAA,BB,CC)
UNIT=SYSDA,DSN=JOHN,VOL=SER=(AA,BB,CC)

Three devices are allocated to the data set defined h¥ UN.

The same three devices are allocated to the data set
defined by DEUX,.

some of the volumes requested f or a data set are shared.
The UNIT parameter requests more devices than the number
of shared volumes.

The device requested is not a tape unit.
The data sets sharing volumes do not request unit
affinity,.

The system allocates the number of units requested in the
UNIT paramet er.

Two data sets share one volume:

//TROIS DD
//QUATRE DD

UNIT=(SYSDA,3),DSN=CYNDY,VOL=SER-CAA,BB,CC)
DSN=BERT,VOL=SER=BB

The UNIT parameter of TROIS requests 3 units; only one of
the volumes requested by TROIS is shared. The system
honors the unit request and allocates 3 advices to the
data set defined by TROIS. The system allocated one
device to the data set defined by QUATRE.

Some of the volumes requested by a data set are shared.
The number of units requested for the data set is equal
to or less than the number of shared volumes (or
no request for a specific number of'units is made).

The device requested is not a tape unit.
The DD statements sharing volumes do not request unit
affinity ..

The system will allocate one device for each shared volume
plus one additional device.

242 JCL Reference (Release 21.7)

example:

situation:

allocation:

example:

TWo data sets share three volumes:

//CINQ DD DSN=ALL,UNIT=(SYSDA,3),VOL=SER=(AA,BB,
CC,DD,EE)

//SIX DD DSN=JANE,VOL=SER=(BB,DD.EE)
The system ignores the request for three devices made in
the UNIT parameter of CINQ and allocates four devices -
one for each shared volume plus one additional device.

Three devices are allocated to the data set defined by SIX.
TWO data sets share at least one volume.
The device requested is a tape unit.
One of the data sets requests unit affinity with the

other data set.

The system will assign the number of units requested in
the UNIT parameter. If no request for a specific number
of units is made, the system assumes 1.

TWo data sets share three volumes:

//SEPT DD

//HUIT DD

UNIT=(2400,2),DSN=JAN,VOL=SER=(VOL1,
VOL2. VOL 3)
UNIT=AFF=S EPr, DS N= MARrY.
VOL=SER=(VOL1,VOL2,VOL3,VOL4)

The system allocates two devices to the data set defined
by SEPT, and the same two devices to the data set defined
by HOlT.

Note: If you code duplicate serial numbers in the VOLUME parameter, the
system will treat that volume as a shared volume, and will allocate
devices to the data set according to the above considerations.

Volume States
Every mounted volume is assigned several attributes by the system. The
attributes assigned to a mounted volume define the state of the volume;
the volume state controls when a volume is demounted and controls volume
sharing. Volume sharing is the allocation of a volume to two or more
data sets defined in the same job step, or the allocation of a direct
access volume to two or more data sets defined in different job steps
that are executing concurrently.

The attributes that are assigned both to a tape or direct access
volume are the mount attribute and the use attribute. The nonsharable
attribute can also be assigned to a direct access volume. These
attributes are described in the next two topics.

THE MOUNT AND USE ATTRIBUTES

Every volume is assigned a mount and use attribute. The mount attribute
controls volume demounting. The use attribute is one of the factors that
controls allocation of mounted volumes to data sets. The mount and use
a ttributes are:

Mount Use

Permanently resident Public
Reserved Private
Removable storage

Scratch

The following lists the mount attributes and describes how this
attribute and a use attribute are assigned to a volume.

Section IV: The DD Statement -- VOLUME Parameter 243

1. Permanently resident volumes cannot be demounted. Only direct access
volumes can be permanently resident. While all direct access volumes
can be designated as permanently resident in a special member of
SYS1.PARMLIB named PRESRES, the following volumes are always
permanently resident:

• All volumes that cannot be physically demounted, such as a 2301
Drum Storage volume.

• The volume from which the system is loaded <the IPL volume).
• The volume containing the system data sets SYS1.LINKLIB,

SYS1.PROCLIB, and SYS1.SYSJOBQE.

A permanently resident volume can be assigned the use attribute of
public, private, or storage. The use attribute is assigned to the
volume in the PREsRES member in SYS1.PARMLIB, or is public by
default.

2. Reserved volumes remain mounted until an UNLOAD command is issued.
Both direct access and tape volumes can be reserved volumes. A
volume becomes reserved as a result of a MOUNT command or a PRESRES
entry. A volume is usually designated as a reserved volume to avoid
repeated mrunting and demrunting of the volume when it is to be used
by a group of related jobs.

A reserved direct access volume can be assigned the use attribute of
public, private, or storage. The use attribute is assigned to the
volume either in the PRESRES member in SYS1.PA~B or in a
parameter of the MOUNT command, depending on how the volume becomes
reserved.

A reserved tape volume is always assigned the use attribute of
pri vate.

3. Removable volumes are those volumes that are nei ther permanently
resident nor reserved. Removable volumes are demounted either after
their last use in a job step or when the unit on which the volume is
mounted is required for another volume. Which occurs depends on the
use attribute assigned to the volume.

A removable direct access volume can be assigned the use attribute
of public or privateo The use attribute of public is assigned when
the PRIVATE subparameter is not coded. The use attribute of private
is assigned when the PRIVATE subparameter is coded.

A removable tape volume can be assigned the use attribute of scratch
or private. The use attribute of scratch is assigned when the
PRIVATE subparameter is not coded, a nonspecific volume request is
made, and the data set is temporary. The use attribute of private is
assigned when the PRIVATE subparameter is coded, a specific volume
request is made, or the data set is nontemporary.

Note: If, when you make a nonspecific volume request for a tape with
IBM standard labels, the system allocates a device containing a
ready tape, the system will assume it is a scratch tape and use it.
This tape could be available for the following reasons:

244 JCL Reference (Release 21.7)

• The .tape was left mounted as a . scratch tape by another job
because the disposition specified for the data set·on that tape
was DELEl'E.

• The tape had been requested by another job, but the job
terminated before the tape became ready. As a result, no
message to demount the tape was sent to the operator. This
situation can be avoided by coding DEFER in the UNIT parameter
to defer mounting· of the .volume until the processing program
a ttempts to· open the dataset.

Section IV: The DD Statement -- VOLUME Parameter 245

Figure 25 summarizes what type of volume can be assigned when you
make a specific or nonspecific volume request for a temporary or
nontemporary data set, how these attributes are assigned, and how the
volume is demounted.

r--------------T-----------T------------T------------------1-----------,
I I Temporary I Nontemporary I I I
I I Data set I Data Set I I I
I ~-----------~------------~ I How I
I Volume State j Type of Volume Request I How Assigned I Demounted I
~--------------t-----------T------------+------------------t-----------~
I Public/ j I I I I
I Permanently I Nonspecific I Specific IPRESRES Entry or I Always I
I Resident1. I or Specific I I by default I mounted I
~--------------t-----------t------------t------------------t-----------~
I Private/ I Specific I Specific IPRESRES Entry I Always I
I permanently I I I I mounted I
I Resident1. I, I I I I
t--------------t-----------t------------t------------------+-----------~
I Storage/ INonspecificlNonspecific IPRESRES Entry I Always I
I permanently lor specificlor specific I I mounted I
I Resident1. I I I I I
~--------------t-----------+------------t------------------+-----------~
I Public/ I Nonspecific I Specific IPRESRES Entry or I UNLOAD I
I Reserved1. I or; Specific I I MOUNT command I command I
~--------------t-----------t------------+------------------t-----------~
I Pri va te/ I Specific I Specific I PRESRES Entry or I UNLOAD I
IReserved (Tape I I IMOUNT command I command I
I and direct I I I (Only MOUNT I I
laccess) I I Icommand for tape.) I I
t--------------+----------_+------------+------------------t-----------~
I Storage/ INonspecificlNonspecific IPRESRES Entry or I UNLOAD I
I Reserved1. lor Specific I or Specific IMOUNT command I command I
~--------------t-----------t------------+------------------t-----------~
I Public/ I Nonspecific I Specific IVOLUME=PRIVATE is IWhen unit I
I Removab Ie 1. lor Specific I Inot coded on the lis required I
I I I IDD statement I by another I
I I I I I volume. I
~--------------t----------_+------------+------------------+------7----~
I Private/ I Specific I Specific IVOLUME=PRIVATE is IAfter its I
I Removable I I Icoded on the DD luse, unless I
I (Tape and I I I statement I RETAIN or I
Idirect access) I I I (Specific request IPASS is I
I I I lor a nontemporary I coded, in I
I I I Idata set for tape Iwhich case, I
I j I lalso causes this I volume I
I I I lassignment.) I demounted I
I I I I I at job I
I I I I I termination I
~--------------t----------_+------------+------------------t-----------~
Iscratch (Tape INonspecificlNonspecific IAny tape data set IWhen unit I
I only) lor specificJor Specific I (Scratch volume lis required I
I I I Ibecomes private Iby another I
I I I lif VOLUME=PRIVATE I volume. I
I I I I is coded, specific I I
I I I Irequest is made, I I
I I I lor data set is I I
I I I Inontemporary.) I I
t--------------~-----------~------------~------------------~-----------f
I1.Direct access volumes only. I L __ J

Figure 25. Combinations of Mount and Use Attributes

246 JCL Reference (Release 21.7)

NON SHARABLE ATTRIBUTE

The nonsharable attribute is assigned by the system to direct access
volumes that may require demounting during execution of the step that
requested the volume. When a volume is assigned the nonsharable
attribute, the volume cannot be assigned to a data set defined in the
same step for which a nonspecific request is made or to any data set
defined in another step that is being executed concurrently.

The nonsharable attribute is never assigned to a permanently
resident or reserved volume or to a volume that was mounted to satisfy a
nonspecific request for a public volume. Except for these cases just
described, the nonsharable attribute is always assigned to a volume when
the following occurs:

1. You make a specific volume request and request more volumes than
devices.

2. You request unit affinity with an earlier data set defined in the
job step. (The data sets must reside upon different volumes.)

3. You request deferred mounting of the volume on which the data set
resides.

4. You make a nonspecific request for a private volume.

SATISFYING SPECIFIC VOLUME REQUESTS

In the following cases the system can satisfy a request for a specific
volume that is already mounted:

1. The volume is permanently resident or reserved. The use attribute of
the volume does not affect assignment of the volume and the use
attribute is not changed.

2. The direct access volume is a removable volume that has not been
assigned the non sharable attribute and is being used by a
concurrently executing step. (If your request would make the volume
nonsharable, the system waits to assign you that volume until all
other job step5 using the volume have terminated.) The volume
remains private if its use attribute is private. The volume becomes
pri vate if the use attribute is public and the request is for a
private volume. The volume remains public if its use attribute is
public and the request is for a public volume.

3. The direct access volume is a removable public volume and is not in
use. The use attribute (private or public) assigned to the volume
when it is allocated is determined by the presence or absence of the
PRIVATE subparameter.

4. The tape volume is a scratch volume and is not in use. The use
attribute of private is assigned to the volume.

SATISFYING NONSPECIFIC VOLUME REQUESTS

There are four types of nonspecific volume requests that can be made:

1. You can request a private volume for a temporary data set.

2. you can request a private volume for a nontemporary data set .•

Section IV: The DD Statement -- VOLUME Parameter 247

3. You can request a public volume for a temporary data set.

4. You can request a storage volume for a nontemporary data set.

How the system satisfies these different types of requests are described
below. Since the system satisfied the first two types of requests in the
same way, these two requests are described together.

1. When you make a nonspecific volume request for a private direct
access or tape volume, the system assigns a volume that is mounted
but not in use or requests the operator to mount a volume. The
operator should mOWlt a volume whose space is unused. This allows
you to have control over all space on the volume. Once mounted, the
volume is assigned the use attribute of private~

2. When you make a nonspecific volume request for a public direct
access volume that is to contain a temporary data set, the system
assigns a public or storage volume that is already mounted, or
requests the operator to mount a removable volume. If a mounted
volume is selected, its use attribute is not affected. If a
removable volume is mounted, it is assigned the use attribute of
public.

When you make a nonspecific volume request for a public tape volume
that is to contain a temporary data set, the system assigns a
scratch volume that is already mounted, or it requests the operator
to mount a tape volume. Once mounted, the volume is assigned the use
attribute of scratch.

3. When you make a nonspecific volume request for a public direct
access volume that is to contain a nontemporary data set, the system
assigns a storage volume if one is mounted. Otherwise~ the request
is treated as a nonspecific volume request for a private volume.

When you make a nonspecific volume request for a public tape volume
that is to contain a nontemporary data set, the request is treated
as a nonspecific volume request for a private volume.

Examples of the VOLUME Parameter
1. //DD1

//
DD DSNAME=STEP,UNIT=2311,DISP=OLD,

VOLUME=(PRIVATE",SER=548863)
x

This DD statement defines an existing data set and informs the
system that the data set resides on the volume whose serial number
is 548863. since PRIVATE is coded in the VOLUME parameter, the
system will not assign the volume to any data set for which a
nonspecific volume request is made and will cause the volume to be
demounted after its use in the job step.

2. //DDB
//

DD DSNAME=COMM,DISP=(NEW, KEEP) ,SPACE= (CYL, (30,2))"
VOLUME=(PRIVATE",2),UNIT=2311

The DD statement named DDB defines a new data set for which the
system is to assign a volume. Since only one device is requested
(UNIT=2311) and the volume count is 2, PRIVATE is coded to ensure
that the additional volume can be mounted if required.

248 JCL Reference (Release 2l.7)

x

3. //002
//

DD OSNAME=QUET,OISP=(MOD,KEEP),UNIT=(2400,2),
VOLUME=(",4,SER=(96341,96342»

x

This DO statement defines an existing data set, which resides on the
volumes whose serial numbers are 96341 and 96342, and requests that
a total of 4 volumes be used to process the data set if required.

4. //DD3 DD DSNAME=&OUT,DISP=NEW,UNIT=2400

This OD statement defines a temporary data set and" by omission of
the VOLUME parameter, requests the system to assign a suitable
volume to the data set.

Section IV: The DD Statement -- VOLUME Parameter 249

Device Parameter Type Parameter Comments

Unit location of the Data Set UNIT Required
Record
Devices Data Attributes DCB Optional

Special Processing Options UCS Optional (for a printer with the universal character set feature)

FCB Optional (for 3211 printer If forms control Information Is to be specified)

DUMMY Optional

System Location of the Data Set SYSOUT Required. Specifies the output class
Output
Devices UNIT Optional

Size of the Data Set SPACE Optional

Data Attributes DCB Optional

Special Processing Option OUTLIM Optional. Meaningful only for Systems that have the Systems
Management Foci Ilties Option

Magnetic Data Information OS NAME Required If the data set is to be cataloged or used by a later job
Tape (or DSN)

DISP Required if the data set is to be cataloged, used by a later step in this job,
or used by another job

Location of the Data Set UNIT Required unless you request (with the VOLUME parameter) the same volume
used for an earlier data set In your job

VOLUME Required If you want a specific volume. If you do not use this parameter you
(or VOL) get a scratch tape

LABEL Required if you do not want to use IBM standard labels for the data set

Data Attributes DCB Optional

Special Processing Options SEP Either parameter can be used

AFF

DUMMY Optional

Direct Data Set Information OS NAME Required if the data set is to be cataloged or used by a later job
Access (or DSN)
Devices

DISP Required if the data set is to be cataloged, used by a later step In this job,
or used by another job

Location of the Data Set UNIT Required unless you request (with the VOLUME parameter) the same volume
used for on earlier data set in your job, or unless you use the SPLIT or
SUBALLOC parameters to allocate space to this data set

VOLUME Required if you want a specific volume or multiple volumes. If you do nat use
(or VOL) this parameter your data set will be allocated on any suitable volume

LABEL Required if you want the data set to have both IBM standard and user labels

Size of the Data Set SPACE One of these parameters is required. SPLIT can only be used for BSAM or

SPLIT
QSAM data sets. SPACE must be used for ISAM data sets

SUBALLOC

Data Attributes DCB Optional. Required for BDAM and ISAM data sets

Special Processing Options SEP Either parameter can be used

AFF

DUMMY Optional

DYNAM Optional. Meaningful only for systems with MVT and TSO

Figure 26. Parameters for Creating A Data Set

250 JCL Reference (Release 21.7)

SUMMARY

The following figures summarize the· DD statement parameters required to
perform these functions:

•

•
•

•
•

•
•

•

•

•

•

•

•

Create a data set on an unit record device
(card punch or printer)

Create a data set on a system output device

Create a data set on magnetic tape

create a data set on a direct access device

Retrieve a data set from an unit record device
(card reader or paper tape reader)

Retrieve a data set from the input stream

Retrieve a passed data set
(magnetic tape or direct access)

Retrieve a cataloged data set
(magnetic tape or direct access)

Retrieve a kept data set
(magnetic tape or direct access)

Extend a passed data set
(magnetic tape or direct access)

Extend a cataloged data set
(magnetic tape or direct access)

Exte nd a kept dat a set
(magnetic tape or direct access)

Postpone definition of a data set

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

FigUre 35

Figure 36

Figure 37

Figure 38

Figure 39

\

Section IV: The DD Statement -- Summary 251

r-------------T----------T--,
I Parameter I Parameter I Format I
I Type I I. I
~------------+----------+--~
I Location of IUNIT I unit address I
I the Data set I I 1052 I
I I I 1403 I

.1 I I 1442 I
I I IUNIT 1443 I
I I I 2520 I
I I I 2540-2 I
I I I 3211 I

~-------------+~-------_i~--rou~-~~~--------------~----__________ _ _________ ~
I Data I DCB I [DCB=Uist of attributes)]1 I
I Attributes I I' I
I I. I I
I I I {*.ddname } I
I I It DCB=(*.stepname.ddname [.list of attributes]) I
I I I *.stepname.procstepname.ddname I
I I I . I
I I I. Note: See Figures 10 and 11 for attributes. I
~-------------+----------+~---~
I special I UCS I [UCS=(COde r. FOLD] [. VERIFY])J I

I proc;:essing , , ~ ,
Optl.ons

I ~---------+---~--------------~
I IFCB I rFCB=(image-id f,ALIGN])] I
I I I L L,VERIFY I
I ~---------_+--------------------------------:------------------------------~
I I DUMMY I [DUMMY] I
I I I I
I I I Note: Positional parameter I L _____________ ~ __ ~ ______ ~ __ J

Figure 27. Creatinq a Data Set on a unit Record Device
(Card Punch or Printer)

r-------------T---------~--,
I Parameter I Parameter I Format I
I Type I I I

~------------+----------+--~-------------------~
I Location of I SYSOUT I SYSOUT= (classname r. program] [. form number]) I
Ithe Data set I I l' I
I I I I
I I I Note: "Classname" is a letter (A-Z) or a number (0-9) I
I ~--------_+--i
I I UNIT I I
~----~--------+---------_+--i
I Size of the I SPACE I I
IData Set I I I
~-------------+---------_+--i
I Data I DCB I I
I Attributes I I I
~-------------+---------_+--i
I Special I OUTLIM IOUTLIM=number I
I Processing I I I
I Option I I Note: For systems with MFT or MVTthat have the System I
I I IManagement Facilities option. I L _____________ ~ _________ ~ __ J

Figure 28. creating a Data Set on a System Output Device

252 JCL Reference (Release 21.7)

r-------------T----------T--,
I Parameter IParameter I Format I
I Type I I I
r-------------f----------+--~
I Data set IDSNAME I Temporary - for the duration of the job:
Information I and I

DISP I
I DSNAME=j&&name},DISP=(NEW,PASS,DELETE)

l&name

Temporary - for duration of the job step:

DSNAME={&&name} ,DISP=(NEW,DELETE,DELETE)
&name

Nontemporary - cataloged:

DSNAME=dsname,DISP= (NEW,CATLG[,CATLG J)
,DELETE
,KEEP

Nontemporary - kept:

DSNAME=dsname,DISP= (NEW, KEEP[, KEEP J)
,DELETE
,CATLG

I~
I
I
I
I
I

Nontemporary - member generation data group I
- I

DSNAME=groupname (+number),DISP= (NEW, CATLG [, CATLG J) I
I L,DELETE I
r-------------f----------+---~
I I I uni t address I
ILocation of I UNIT I 2400 I
the Data Set I I 2400-1 [,Unitcount

J
I

I IUNIT=-(2400-2 "p [,DEFER]) I
I I 2400-3 I
I I 2400-4 I
I I group name I
I I 3400 I
r----------+------------------- ---~

VOLUME Nonspecific reguest - one scratch volume (temporary data set):

Omit

Nonspecific request - more than one scratch volumes
(temporary data set):

VOLUME=(",volcount)

Nonspecific request - private volume (temporary data set):

VOLUME=(PRIVATE[",volcount])

Nonspecific request - private volume (nontemporary data set):

VOLUME=([~RIVATE'RETAINJ ["volcount])

Specific request - private volume (request by serial number): I VOLUME- ([~RIVATEI RETAIN] [; , volcount,] SER- (seri al, •••))

L-____________ ~ ________ ~========~============~~~============================:========1

Figure 29. Creating a Data Set on a Magnetic Tape (Part 1 of 2)

Section IV: The DD Statement -- Summary 253

r-------------T---------~--,
I Parameter I Parameter I Format I
I Type I I I
~-------------+----------+--~
Location of IVOLUME ISpecific request - private volumes used by other data set): I
the Date Set I (cont.) I I
(cont.) I I I

I I I
I IVOLUME= ([PRIVATE1RETAIN] r, ,volcount,l I
I I, L' J I
I I ldsname II I I REF= *. ddname I
I I *.stepname.ddname I
I 1 *.stepname.procstepname.ddname I
~---------~+--~

: LABEL : [~j I
I 1 LABEL= ([sequence] ,NSL r. PASSWORD] [, IN] [,] [EXPD1I=YYddd]) I
1 I . • NL L' , OUT RETPD=nnnn 1
1 1 ,BLP I
1 I, I

r-------------+----------+--~
I Data I DeB I[DCB=(list of attributes)]1
I Attributes I I I
I 1 1 {*.ddname J I I I 1 DCB=(*.stepname.ddname [,list of attributes]) I
I I I *.stepname.procstepname.ddname 1
I I I I
I I I I
, I I,Note: See Figure 12 for attributes. I
r-------------+---------_+=====------------------~--------------------------------------~
I special I SEP or I [SEP= (ddname, ••• >] I
I Processing I AFF I AFF=ddname I
I Options r----------+--~
I I DUMMY I [DUMMY] I
I I I I
I I I Note : positional parameter I L _____________ ~ _________ ~ __ J

Figure 29. creating a Data set on Magnetic Tape (Part 2 of 2)

254 JCL Reference (Release 21.7)

r-------------T----------T--,
1 Parameter IParameter 1 Format 1
1 Type 1 1 1
r-------------+----------+--~
Data set DSNAME ITemporary - for the duration of the job:
Information and 1

DISP 1
1 &&name
IDSNAME= &name ,DISP=(NEW,PASS,DELETE»
1 &&name(membername)
1 &name(membername)
1
Temporary - for the duration of the job step:

&&name
DSNAME= &name

&&name(membername}
&name(membername)

Nontemporary - cataloged:

,DISP=(NEW,DELETE,DELETE}

DSNAME= dsname(membername} ,DISP=(NEW,CATLG
{

dSname }

[~]) dsname(membername} , DELE'l'E
,KEEP

Nontemporary - kept:

DSNAME.={dSname } ,DISP=(NEW,KEEP[,KEEP J)
dsname(membername) ,DELETh

,CATLG

Nontemporary - member generation data group:

I
1
1
1
1
1
1
1
1 1 DSNAME=groupname(+number), DISP=(NEW,CATLG [, CATLG J)
1 1 L,DELETE
r-------------+----------+--~
Location of UNIT unit address

2301 the Data Set

UNIT=(

2302
2303
2305-1
2305-2
2311
2314
2319
2321
3330
group name

[

, unitcountJ
:P [,SEP=(ddname, ••• }])

Note: To indicate the 2319, specify UNIT=2314. To designate
1---- the 2319 as the particular device for your data set,
1 specify UNIT=unit address.

r----------+--~
VOLUME INonspecific request - one public volume:

1 Omit
1
INonspecific request - more than one public volumes:
IVOLUMb=(",volcount}
I
INonspecific request - private volume:
\ VOLUME= (PRIVATE [;RETAIN] [, , volcount])

I
ISpecific request - public volume (request by serial number):
IVOLUME=([",volcount,]SER=(serial, ••• }} L _____________ ~ _________ ~ _____ ~ __ J

Figure 30,. Creating a rata Set on Direct Access Devices (Part 1 of 3)

section IV: The DD statement -- Summary 255

\

rp;;;;;t;;----Tp;;;;;t;;-r-----------------F~;;;t---------------------------------------1

I Type I I I
~-------------+---------_+--i
ILocation of VOLUME Ispecific request - public volume (volumes used by other

1

the Data set (cont.) Idata set):
(cont.) I

I
I dsnarne
IVOLUME=([."volcount,]REF= *.ddname
I
I
I

*.stepname.ddname
*.stepname.procstepname.ddname

Specific request - private volume (request by serial number):

VOLUME= (PRIVATE[;RETAINJ" , vol count.]SER= (serial ••.•• »

specific reguest - private volume (volumes used by other
data set):

VOLUME= (PRIVATE [: RETAIN] [. ,volcount,]

I dsname
I REF= *. ddname
I *.stepname.ddname
I *.stepname.procstepname.ddnarne
I ~----------+--i

I : LABEL II rLABEL= ([: ~~l [.PASSWORD] [,IN] [,] rEXPDT=yydddl)] I
I I I L ' J. ,OUT LRETPD=nnnn J I
~-------------+---------_+--i
size of I SPACE
the Data Set I

I
(choose one) I

I
I
I
I
I
I
I
I

The system assigns tracks:

{

TRK
SPACE=(CYL

block }
, (primary quantity [,SeCOndary qUantity]

length , ['CONTIG]
(• directory))~RLSE] ::iG (• ROUND))

Reguestinq specific tracks:

I SPACE=(ABSTR,(primary quantity, address [,directory]»
~---------_+--i
I SPLIT IUnits of cylinders:
I I
I I • First dataset
I I
I I SPLIT=(n,CYL,(primary quantity [,secondary quantity]»
I I
I I • Subsequent data sets
I I
I I SPLIT=n
I I
I I Units of blocks:
I I
I I • First data set
I I
I ISPLIT=(%,blocklength,(primary quantity[,secondary quantity]»
I I
I I • Subsequent data sets
I I
I I SPLIT=% L _____________ ~ __________ ~ ___ _

Figure 30. Creating a Data set on Direct Access Devices (Part 2 of 3)

256 JCL Reference (Release 21.7)

rp;;;;;t;;----Tp;;;;;t;;-r-----------------F~;;;t---------------------------------------1

I Type I I I
~-------------+---------_+--i
Size of SUBALLOC IReserved area:
the Data Set I {TRK }
choose one> SPACE=(CYL ,(primary quantity>"CONTIG>
(cont.> blocklength

Suballocaed data sets:

SUBALLOC= ({~~ },(primary quantity r',secondary quantityl
block length ~ J

[,directOry]>{,~~~=::me.ddname }>
stepname.procstepname.ddname

r-------------+----------+--i
I Data I DCB I [DCB=nist of attributes>] I
IAttributes I I I
I I I dsname I
I I I DCB=(*.ddname [,list of attributes]> I
I I I *.stepname.ddname I
I I I *stepname.procstepname.ddname I
I I J I
I J J I
I ! INote: See Figure 13 for attributes. I
~-------------+---------_+=====---i
I Special I SEP or I [SEP=(ddname, ••• >] I
I Processing I AFF I AFF=ddname I
I Options ~---------_+--i
I I DUMMY I [DUMMY] I
I I I I
I I I Note: positional parameter I
I r----------+--i
I I DYNAM I [DYNAM] I
I I I I
I I I Note : positional parameter I L _____________ i __________ i __ J

Figure 30. creating a Data Set on Direct Access Devices (Part 3 of 3)

Section IV: The DD Statement -- Summary 257

r-------------T---------~--,
I Parameter 'Parameter' Format ,
'Type' , I
r-------------+----------+--i
,Location of , UNIT I unit address ,
,the Data Set I ,1442 ,
, , ,UNIT= 2520 I
I , ,2540 I
, , ,2671 I
I I I group name I
r-------------+----------+------~---i
I Data I DCB '[DCB=Uist of attributes)] I
I Attributes I I I
I I I I
I I I' *.ddname I
I I I DCB=<{*.ddname.stepname }[,list of attributes]) I
I I I *.ddname.procstepname.ddname I
r-------------+----------+--~
I special , DUMMY I [DUMMY] I
I Processing I I I
I Option I , Note: Positional parameter I L _____________ ~ __________ ~ __ J

Figure 31. Retrieving an Existing Data Set From a unit Record Device
(Card Reader or Paper Tape Reader)

r-------------T----------T--,
I Parameter I Parameter I Format I
I Type I , I
r-------------+----------+--i
ILocation of , * or I{*} I
I the Data Set I DATA , DATA I
r-------------+----------+--i
I Data IDCB I [DCB=([BLKSIZE=number of bytes][,] [BUFNO=number of buffers])] I
I Attributes' I I
~-------------+----------+--1
I Special I I I
I Processing IDLM IDLM=delimiter I
I Option I I I L _____________ ~ __________ ~ __ J

Figure 32. Retrieving A Data Set From the Input Stream

258 JCL Reference (Release 21.7)

rP;;;;;t~----TP;;;;;t;;~-----------------F~;;;t---------------------------------------1

I Type I I I
r-------------+---------_+--~
Data Set IDSNAME IRetrieving by name: I
Information I I I

I I I

, \ ~~~:::(membername)1 I
I IDSNAME= &&name I
I I &&name(membername) I
I I tname I
, , &name(membername) \

I IMaking backward reference: I
I I I
I I {* .ddname } I
I IDSNAME= *.stepname.ddname I
I I *.stepname.procstepname.ddname I
r---------_+--~
DISP IPassing the data set to a subsequent step:

I
I DISP= (OLD I PASS [, DELETE])
I ,CATLG
I ,KEEP
I
ILast time a passed temporary data set is used in job:
I
IDISP=(OLD,DELETE,DELETE)
I
ILast time a passed nontemporary data set is used in job:

I DISP; (OLD [: ~~~~TE~ [: :~TEl)
I , CATLG , CATLG J
I ,

~-------------+----------+--~-------------------~
ILocation of IUNIT I [UNIT=(,unitcount)] I
Ithe Data Set I I I

I r:::::-----rI::::::l~~~Jl---l
~-------------+----------+--~
I Data IDCB I[DCB=(list of attributes) 1 I
I Attributes I I I
I J I I
I I I {*.ddname } I
I I I DCB= * .stepname.ddname I
I I I *.stepname.procstepname.ddnamel
I r I l
I I I Note: See Figures 19, 20, 21, and 22 for attribute§. I

~-- ----------t----------+-~--~
I Special I DUMMY I [DUMMY] I
I Processing I I I
I Option I I Note: Positional parameter I L _____________ ~ __________ ~ __ J

Figure 33. Retrieving a Passed Data Set (Magnetic Tape or Direct Access)

Section IV: The DO Statement -- Summary 259

r-------------T----------T--,
I Parameter I Parameter I Format I
I Type I I I
r-------------+----------t--~
IData Set IDSNAME I {dSname} I
IInformation I IDSNAME= dsname(membername) I
I I I groupname(number) I

I r----------+--i
I IDISP IDISP=({OLD}[,UNCATLG1[IUNCATLG1) I
I I I SHR I DELETE ,DELETE J I
I I I , I
r-------------t----------t--~
I LOca tion of I UNIT I Requesting units: I
the Data set I I I

I I UNIT=(,runitcount][,DEFER]) I
I I LP I
I I I
I I Unit affinity: I
I I I
I I [UNIT=AFF=ddname] I

r----------+--~
I VOLUME I VOLUME=([PRIVATE[,RETAIN1[,sequence]) I
I I , J I

1~;~~-----;-r:::::~~l[!!;}~---1
tD~t~---------tDCB-------t-DCB;(ii~t-~f-~tt;ib~t~~)-------------------------------------1

I Attributes I : [Idsname I] :
I I I *.ddname I
I I I DCB=(*.stepname,ddname [Ilist of attributes]) I
I I I *.stepname.procstepname.ddname I
I I I I

rISp~~i~i~-----t'sEP-~;---j-[N~~~~(d:~~~f~!;;;J:-!!~-!~~-!!~-:~~-~~-!~:-~::~~~~:~~~---------1' Process~ng AFF AFF=ddname
Options r--------- --____ -______ _ I , DUMMY , [DUMMY]

I I I Note: Positional parameter I L-____________ k __________ ~ ____________________________ ---------_________________________ J

Figure 34. Retrieving a Cataloged Data set (Magnatic Tape or Direct
Access)

260 JCL Reference (Release 21.7)

rp~;~;;t;;----Tp;;~;t;;-T-----------------;~;;;t---------------------------------------1

I Type I I I
~-------------+----------+--~
I Data Set I DSNAME I DSNAME={ dsname} I
IInformation I I dsname(membername) I

I ~---------_+--~
I I DISP I [,KEEP ~ [,KEEP] I
I I IDISP=({OLD} ,CATLG ICATLG) I
I I I SHR, DELETE ,DELETE I
I I I , I
~-------------+----------+--~
Location of I UNIT ,Requesting units: I
the Data Set I I

I I I
I I {Unit addresS}[,UnitcountJ I
I IUNIT=(device type,P [,DEFER]) I
I I group name I I
I I I
I I Unit a f f ini ty: I
I I I
I IUNIT=AFF=ddname I

~----------+--~
I VOLUME IVOLUME= ([PRIVATE] [,RETAINl SER=(serial, ••• » I
I I , J I

f~~~-----r-l:::::~~~:::::::~~[-~~~:]--~------------------------------------1
I I ,BLP I
I I ,LTM I

r-------------t----------+--~
I Data IDCB I ~DCB=(list of attributes)]1
I Attributes I I I

I I I 1 dsname I I I I I DCB=(*.ddname [,list of attributes]) I
I I I *.stepname. ddname I
I I J *.stepname.procstepname.ddnaroe I
, I I I
I I I Note: See Figures 19, 20, 21, and 22 for attributes. I
r-------------+----------+-----------------------------~-------------~--------~---------1
I special I SEP or I [SEP= (ddname, •••)] I
I Processing I AFF I AFF=ddname I
I Options ~----------+--~
I I DUMMY I [DUMMY] I
I I I I
I I INote: Positional parameter I L _____________ ~ _________ ~ __ J

Figure 35. Retrieving a Kept Data Set (Magnetic Tape or Direct Access)

Section IV: The DO Statement -- Summary 261

r-------------T---------~----------------------~---------------------------------------,
I Parameter IParameter I For~t I
I Type I I I
~-------------+----------+--~
IData set DSNAME IRetrieving by name:
Information I

I
I dsname
I dsname(membername)
IDSNAME= &&name
I &&name(membername)
I &name
I &name(membername)
I
IMaking a backward reference:
I r::

IDSNAME={::~~~=me.ddname }
I *.stepname.procstepname.ddname

----------+--~
DISP I Passing the data set to a subsequent step:

I
IDISP= <MOD, PASS [, DELETE])
I .CATALG
I ,KEEP
I
Ilast time a passed temporary data set is used in job:
I
IDISP=(MOD,DELETE,DELETE)
I
Ilast time a passed nontemporary data set is used in job:

I DISP= (Mon[: ~~TEJ [: ~~~~TE])
I , CATLG • CATLG
I ,

r-------------+----------+--~
I Location of I UNIT I [UNIT=([,unitcount] [,DEFERl] I
Ithe Data set I I , I
l r----------+--~

! t~~---~-[(~~~~~~~~~~~101~]~~~~--1
I I I ,BLP I
I I I ,LTM I
t-------------t----------t--------- ---~--i
I Size of the I SPACE I ~ ~ TRK} '~I
IData Set I I SPACE=(CYL (l,secondary quantity) ,RLSE) I
I I I block length ' I
r-------------t----------+--~
I Data I DCB I [DCB= (list of attributes) 1 I
I Attributes I I I
I I I I
I I I 1 * . ddname ~ I
I I I DCB= *.stepname. ddname [,list of ,attributes] I
I I I *. stepname. procstepname. ddname I
r-------------+----------+--~
I Special I DUMMY I [DUMMYl I
I Process ing I I I
I Option I INote: Positional parameter I L _____________ ~ __________ ~ _____________________________ ----------_______________________ J

Figure 36. Extending a Passed Data Set (Magnetic Tape or Direct Access)

262 JCL Reference (Release 21.7)

r-------------T----------T--,
I Parameter IParameter I Format I
I Type I I I
~-------------t----------t--i
I Data Set I DSNAME I {dSname} I
IInformation I IDSNAME= dsname(membername) I
I ~----------t--i
I I DISP I [, UNCATLGJ [, UNCATLG] I
I I IDISP=(MOD ,DELETE ,DELETE) I
I I I ,CATLG ,CATLG I
I I I , I
~------------t---------_+--i
I Location of I UNIT IRequesting units: I
the Data set I I I

I I I I I rUN1T= (• [~nitcount] [. DEFER III I
I I L J I
I IUnit affinity: I
I I I
I I [UNIT=AFF=ddname] I
~----------t--~
I VOLUME I VOLUME= ([PRIVATE [, RE'l'AINl [, sequence#] [, volcount]) I
I I , J ' I

f~EL-----rl::::::~~~~~---1
~-------------t----------+--i
I Size of the I SPACE I [~TRK ~ ~ I
IData Set I I SPACE=(CYL ,(l,secondary quantity),RLSE) I
I I I block length I
~-------------+----------+--i
I Data IDCB I DCB=(list of attributes) I
I Attributes I I I
I I I I
I I I dsname I
I I I DCB=(*.ddname [,list of attributes]) I
I I I *.stepname.ddname I
I I I * . s tepname. proc ste pname. ddnarre I
I I I I
r-------------+----------t--~
I Special I SEP or I rSEP= (ddname, •••)] I
I Processing I AFF I LAFF=ddname I
I Options ~----------+--i
I I DUMl-iY I [DUMMY] I
I I I I
I I INote: positional parameter I L _____________ ~ __________ ~ __ J

Figure 37. Extending a Cataloged Data Set (Magnetic Tape or Direct
Access)

Section IV: The DD Statement -- Summary 263

r-------------T---------~--,
I Parameter IParameter I Format I
I Type I I I

~-------------+----------+--i
IData set I DSNAME I DSNAME={dsname } I
I Information I I dsname(membername) I

I ~---------_+--~
I I DISP I [,KEEP J [,KEEP J I I I I DISP= (MOD , CATLG ,CATLG) I
I I I ,DELETE ,DELETE I
I I I , I
~-------------+----------+--i
Location of I UNIT I ReqUesting units: I
the Data Set I I I

I I I
I I {Unit addreSS} [, unitcountJ I
I IUNIT=(device type,P [,DEFER]) I
I I group name , I
I I I
I I Unit affinity: I
I I I
I IUNIT=AFF=ddname I

~----------+--~
I VOLUME IVOLUME=(PRIVATE[,RETAIN1&,VOlcount,]SER=<serial,ooo)) I

I + ' J I

f~EL-----I-[~~::~~~~:::::::~~-[I~~~-]-~----------------------------------1
I I ,LTM 'J I

~------------t----------+--~
I Size of the I SPACE I ~. {TRK} ~ I
IData Set I I SPACE=(CYL(l,secondary quantity),RLSE) I
I I I block length I

~-------------+----------+--~
I Data IDCB I DCB=(list of attributes) I
I Attributes I I I
I I I I
I I I dsname I
I I I DCB= (* oddname [, list of attributes]) I
I I I *. stepname. ddname I
I I I *.stepname.procstepname.ddname I
I I I I
~-------------+----------+--~
I special. I SEP or I rSEP= (ddname, •••)] I,
I ProcessJ..ng I AFF I LAFF=ddname I'
I Options ~----------+--~
I I DUMMY I [DUMMY] I
I I I I
I I I Note: Positional parameter I L _____________ ~ __________ ~ __ J

Figure 38. Extending a Kept Data set (Magnetic Tape or Direct Access)

r-------------T----------+--, I Parameter I Parameter I Format I
I Type I I I
~-------------+----------+--~
I special I DDNAME I DDNAME=ddname I
I Processing I I I
I option I I I
~------------+----------+--i I Data I DCB I [DCS: ([BLKSIZl!."'=number of bytes] [,] [BUFNO=number of buffers)] I
I Attributes I I I L _____________ ~ __________ ~ __ J

Figure 39. Postponing Definition of a Data Set

264 JCL Reference (Release 21.7)

Section V: The COMMAND Statement

Commands are issued to communicate with and control the system. All
commands may be issued to the system via the operator's console; some
commands may be also issued via a command statement in the input stream.

In most cases, the operator issues the commam •. If you include a
command statement as part of your job control statements, the command is
usually executed as soon as it is read. (Disposition of commands read
from an input stream is specified as a PARM parameter field in the
cataloged procedure for the input reader.) Since a command is usually
executed as soon as it is read, it is not likely that the command will
b,e synchronized with the execution of the job step to which it pertains.
Therefore, you should tell the operator which commands you want issued

and when they should be issued, and let him issue them.

A command statement may appear inunediately before a JOB statement"
an EXEC statement, a. null statement, or another command statement.

The Command Statement Format

(/ / command operand comments

The command statement consists of the characters // .in columns 1 and 2"
and three fields -- the operation (command), operand, and comments
fields.

Rules for Coding
Code the command statement in the following order:

2. Follow // with one or more blanks.

3. Code t.he command.

4. Follow the command with one or more blanks.

5. Code any required operands following the blank or blanks. Separate
each operand with a comma.

section V: The Command Statement 265

Command

6 • Follow the operands with one or more blanks.

7. code any comments following the blank or blanks.

8. The command statement cannot be continued.

Commands That Can Be Entered Through the Input Stream
The commands that can be entered through the input stream in MFT or MVT
are listed below, with a brief explanation of what each command requests
the system to do. Most command statements consist of an operation
(command) field and an operand field, which includes options associated
wi th the command. The operand field is not described here; a complete
discussion of the commands and operands is presented in the Operator's
Guide publication.

In MFT, the following commands can be entered through the input stream.

CANCEL: The CANCEL command tells the system to immediately termina te the
scheduling or execution of a job, to cancel a job on the queue, or to
stop the writing of an output data set currently being processed by an
output writer.

DISPLAY: The DISPLAY command causes a console display of certain system
status information.

HOLD: The HOLD command causes the system to temporarily prevent one job
or all jobs from being.selected for processing.

LOG: The LOG command is used to enter information into the system log.

MODIFY: The MODIFY command tells the system to change the
characteristics of a functioning output writer.

MOUNI': The MOUNT command tells the system to assign a device so a
particular volume can be mounted on it,. This device can then be assigned
by the system to any job step that requires that volume.

RELEASE: The RELEASE command tells the system to resume job selection,
which had been suspended by the HOLD command or TYPRUN=HOLD on the JOB
statement.

REPLY: The REPLY command is used to reply to messages from the system or
from a processing program that requests information.

RESET: The RESET command tells the system to change the class or
priority, or both, of a job in an input" hold, or system output queue.

SET: The SET command is used to'establish the values of certain
variables, such as the time of day and the date.

STAR!': The START command tells the system to start a particular system
process" e.g., an input reader, graphic job processor, initiator, etc,.

266 JCL Reference (Release 21.7)

STOP: The STOP command tells the system to stop a system process that
had been previously started by a START command, or to stop the console
pisplay effected by the DISPLAY command.

UNLOAD: The UNLOAD command tells the system to remove the volume
previously mounted in response to a MOUNI' command.

~ARY: The VARY command tells the system to place an I/O device or pa th
into an online or offline status.

WRITELOG: The WRITELOG command tells the system to have the system
output writer write out the contents of the system log.

MVT

In MVT, the follOtling conunands can be entered through the input stream.

CANCEL: The CANCEL command tells the system to immediately terminate the
scheduling or execution of a job, to cancel a job on the queue, or to
stop the writing of an output data set currently being processed by an
output Writer.

DISPLAY: The DISPLAY command causes a console display of certain system
status information.

HOLD: The HOLD command causes the system to temporarily prevent one job
or all jobs from being selected for processing.

LOG: The LOG command is used to enter information into the system log.

MODIFY: The MODIFY command tells the system to change the
characteristics of a functioning initiator or output writer.

MOUN!': The MOUNT command tells the system to assign a device so a
particular volume can be mounted on it. This device can then be assigned
by the system to any job step that requires that volume.

RELEASE: The RELEASE command tells the system to resume job selection,
which had been suspended by the HOLD command or TYPRUN=HOLD on the JOB
statement.

gEPLY: The REPLY command is used to reply to messages from the system or
from a processing program that requests information.

RESET: The RESET command tells the system to change the class or
priority, or both, of a job in an input, hold, or system output queue.

SET: The SET command is used to establish the values of certain
variables, such as the time of day and the date.

START: The START command tells the system to start a particular system
process, e.g., an input reader, graphic job processor" initiator, etc.

~TOP: The STOP command tells the system to stop a system process that
had been previously started by a START command or to stop the console
jisplay effected by the DISPLAY conunand.

UNLOAD: The UNLOAD command tells the system to remove the volume
previously mounted in response to a MOUNT command.

VARY: The ~RY command tells the system to place an I/O device or path
into an online or offline status. In a l'obdel 65 multiprocessing system
(M65MP), this command is used to place I/O devices, paths, CPU, channel,
and storage units in online or offline status.

section V: The Conunand Statement 267

Command

WRITELOG: The WRITELOG command tells the system to have the system
output writer write out the contents of the system log.

Example of the Command Statement
1. // STARr INIT", AB START AN INITIATOR FOR MFT

This command tells the system to start an initiator. The characters
A and B indicate that the initiator is to sel ect for execution only
jobs of job classes A and B.

268 JCL Reference (Release 21.7)

Section VI: The COMMENT Statement

The comment statement can be used to contain information that may be
he lpf ul to yourself or another person that may be running your job or
reviewing your output listing.

'!he comment statement may appear anywhere except before the JOB
statement or between continuation, cards composing a single but extended
JCL statement. A comment statement cannot be continued using
continuation conventions; however, it can be followed by one or more
comment statanents.

The Comment Statement Format
(/ /* commen ts

The comment statement consists of the characters //* in columns 1, 2,
and 3, and the comments field.

Rules for Coding
Code the comment statement in the following order:

1. Code / /* in columns 1, 2, and 3.

II,¥< , I , , , , I ' , , , I , , , , I ' , , , I , , , , I ' , , , I , , , , I ' , , , I , , , , I ' , , , I , , , , I ' , , , I , , , , I ' '. ' , I

2. Code the comments in columns 4 through 80.

3. If all of the comments cannot be included on this comment statement,
follow it with another conunent statanent.

OUTPUT LISTINGS

In the MSGLEVEL parameter, you can request an output listing of all the
control statements process ed in your job. If you do, you can identify
comment statements by the appearance of *** in columns 1, 2, and 3.

Example of the Comment Statement
1. / /*THE COMMENT STATEMENr CANNOl' BE CONl'INUED,

//*BUT IF YOU HAVE A LOT TO SAY, YOU CAN FOLLOW A
//*COMMENT STATEMENT WITH ONE OR MORE COMMENT
//*STATEMENTS.

section VI: The Comment Statement 269

-

270 JCL Reference (Release 21.7)

Section VII: The DELIMITER Statement

When you submit data through an input stream., you must indicate to the
system the beginning of the data and the end of the data. The beginning
of the data is indicated by a ,DD * or DD DATA statement •. The end of the
data is indicated by a delimiter statement. The delimiter statement"
however, is not required if the data is preceded by a DD * statement and
you do not code the DLM parameter.

The Delimiter Statement Format
(/* comrnen ts

The delimiter statement consists of the characters /* in columns 1 and 2
and the comments field. The system will recognize a delimiter other than
/* if you code the DLM parameter on the DD statement defining data in
the input stream. For more information, see the description of the DLM
parameter in the section describing the DD statement.

Rules for Coding
Code the delimiter statement in the following order:

1. Code /* (or the value assigned in the DLM parameter) in columns 1
and 2.

2. Code any desired comments.

3. The comments cannot be continued.

Example of the Delimiter Statement
1. //JOB54

//STEPA
//DD1

JOB,'C BROWN',MSGLEVEL=(2,O)
EXEC PGM=SERS
DD *

data

/* END OF DATA FOR THIS STEP

Section VII: The Delimiter Statement 271

272 JCL Reference (Release 21.7)

Section VIII: The NULL Statement

The null statement can be placed at the end of a job's control
statements and data or at the end of all the statements in an input
stream. The null statement tells the systan that the job just read
should be placed on the queue of jobs ready for processing. If there are
any control statements or data between a null statement and the next JOB
statement, these are flushed by the system.

If you do not follOrl your job's control statements and data with a
null statement, the system places your job on the queue when it
encounters another JOB statement in the input stream. If your job is the
last job in the input stream and a null statement does not follow it,
the system recognizes that this is the last job in the input stream and
it places your job on the queue.

If a null statement follows a control statement that is being
continued, the system treats the null statement as a blank comment field
and assumes that the control statement contains no other operands.

The Null Statement Format

(//
The null statement consists only of the characters / / in columns 1 and
2. The remainder of the statement must be blank.

Example of the Null Statement

1. //MYJB
//STEPl
//STEP2
//DDl
//DD2

/*
//

data

JOB
EXEC
EXEC
DD
DD

,'C DAVIS',MSGLEVEL=(l,l)
PROC::=FIEW
PGM=XTRA
UNIT=2400

*

Section VIII: The Null Statement 273

Null

274 JCL Reference (Release 21.7)

Section IX: The PEND Statement

The PEND staterrent is used to mark the end of an in-stream procedure.
The name field of the PEND statement can contain a name. If conunents are
to be used, a blank must separate the operation field from the comment
field. The PEND statement may not be continued. Do not include the PEND
statement in cataloged procedures.

The PEND Statement Format

(//name PEND comments

The PEND staterrent consists of the characters / / in column 1 and 2 and
three fields -- the name field, the operation (PEND) field, and the
comments field.

Rules for Coding
Code the PEND statement in the following order:

1. Code // in columns 1 and 2.

2. Follow // with a 1- to a-character name or one or more blanks.

3. If a name is coded,
Follow the name with one or more blanks.

4. Code PEND.

5. Follow PEND with one or more blanks.

Section IX: The PEND Statement 275

-

6. Code any desired comments following the blank or blanks.

A PEND statement cannot be continued.

Examples of the PEND Statement

1. //PROCEND1 PEND THIS STATEMENT IS REQUIRED FOR INSTREAM

This PEND statement contains a conunent.

2. // PEND

A PEND statement can contain only the coded operation field preceded by
// and one or more blanks and followed by blanks.

276 JCL Reference (Release 21.7)

Section X: The PROC Statement

The PROC statement is the first control statement in an in-stream
procedure. Optionally, the PROC statement can also be the first control
statement in a cataloged procedure. If a PROC statement is included in a
cataloged procedure, it is used to assign default values for symbolic
parameters in the procedure. In an in-stream procedure, the PROC
statement is used to mark the beginning of the procedure and can be used
to assign default values to symbolic parameters in the procedure. A
default value appearing on a PROC statement can be overridden by
assigning a value to the same symbolic parameter on the EXEC statement
that calls the procedure.

The PROC Statement Format

(//name PROC operands comments

The PROC statement consists of the characters // in columnS 1 and 2 and
four fields -- the name field, the operation (PROC> field, the operand
field, and the comments field.

Rules for Coding

Code the PROC statement in the following order:

1. Code // in columns 1 and 2.

2. Follow // with a 1- to a-character name or one or more blanks.
A name is required for in-stream procedures.

3. I f a name is coded, follow the name with one or more blanks.

4. Code PROC.

5. Follow PROC with one or more blanks.

Section X: The PRoe Statement 277

6. Code the symbolic parameters and their default values following the
blank or blanks. Separate each symbolic parameter and its default
value with a comma. In a cataloged procedure, this field is not
optional. In an in-stream procedure, this field is optional; if no
operands are included, comments may not be coded, unless they appear
on a continuation card.

7. Follow the operands with one or more blanks.

8. Code any desired comments following the blank or blanks.

9. The PROC statement can be continued onto another statement.

If PROC statement is to be included in a cataloged procedure, it
must appear as the first control statement. For an in-stream procedure,
the PROC statement is required ; it must appear as the first control
statement of the in-stream procedure.

Assigning a Value on a PROC Statement to a Symbolic Parameter
TO assign a value on a PROC statement to a symbolic parameter, code:

symbolic parameter=value

omi t the ampersand that precedes the symbolic parameter in the procedure.

You can also nullify a symbolic parameter on the PROC statement.
Code:

symbolic parameter=

omit the ampersand that precedes the syrrbolic parameter and do not
follow the equal sign with a value.

There are some things you should keep in mind as you assign values
to symbolic parameters:

1. The value you assign can be any length, but it cannot be continued
onto another statement.

278 JCL Reference (Release 21.7)

2. If the value contains special characters, enclose the value in
appostrophes (the enclosing apostrophes are not considered part of
the value). If the special characters include apostrophes, each must
be shown as two consecutive apostrophes.

3. If you assign more than one value to a symbolic parameter on the
PROC statement, the first value encountered is assigned.

4. If the symbolic parameter is concatenated with some other
information (e.g., &JOBNO.321), this information and the value you
assign to the symbolic parameter cannot exceed a combined total of
120 characters.

Example of the PROC Statement
1. //OEF

//Na.rIFY
//001
//
//002
//

PROC STATUS=OLD,LIBRARY=SYSLIB,NUMBER=777777
EXEC PGM=ACCUM
DD DSNAME=MGMT,DISP=(&STATUS,KEEP),UNIT=2400,

VOLUME=SER=888888
DD DSNAME=&LIBRARY,DlSP=(OLD,KEEP),UNIT=2311,

VOLUME=SER= &NUMBER

x

x

Three symbolic parameters are defined in this cataloged procedure:
&STATUS, &LIBRARY, and &NUMBER. Values are assigned to the symbolic
parameters on the PROC statement. These values are used when the
procedure is called and values are not assigned to the symbolic
parameters by the programmer.

2. //CARDS PROC

This PROC statement can be used to mark the beginning of an
in-stream procedure named CARDS.

Section X: The PRoe Statement 279

PRoe

280 JCL Reference (Release 21.7)

Section XI: Appendixes

Appendixes

Section XI: Appendixes 281

282 JCL Reference (Release 21.7)

Appendix A: Cataloged and In-Stream Procedures

A cataloged procedure is a set of job control statements that has been
assigned a name and placed in a partitioned data set known as the
procedure library. (The IBM-supplied procedure library is named
SYS1.PROCLIB; at your installation, there may be additional procedure
libraries, which would have different names.) An in-stream procedure is
a set of jab control statements in the form of card images that have
been placed in the input stream. An in-stream procedure can be executed
any number of times dUring the job in which it appears. Both cataloged
and in-stream procedures can consist of one or more steps; each step is
called a procedure step. Each procedure step consists of an EXEC
statement and DD statements. The EXEC statement identifies to the system
what program is to be executed. The DD statements define the data sets
to be used by the program.

You can use a cataloged procedure by coding the procedure name on an
EXEC statement. Yru can use an in-stream procedure by coding the
procedure name that is on the PROC statement on an EXEC statement. With
both cataloged and in-stream procedures, you can follow this EXEC
statement with DD statements that modify the procedure for the duration
of the job step. .

Appendix A consists of two chapters. The first chapter nUsing
Cataloged and In-stream Procedures n describes how to call a procedure,
how to assign values to symbolic parameters, how to override parameters
on the EXEC and DD statement, and how to add DD statements to a
procedure. The second chapter nWriting Procedures: Cataloged and
In-streamn describes the makeup of a procedure, how to use symbolic
parameters, how to place a set of job control statements in the
procedure library, and hCM to modify a procedure.

section A: Cataloged and In-stream Procedures 283

Appendix A

Using Cataloged and In-Stream Procedures

How to Call a Cataloged Procedure
To use a cataloged procedure, submit a JOB statement followed by an EXEC
statement. On the EXEC statement you identify the cataloged procedure in
one of two ways:

1. Code, as the first operand, the name assigned to the procedure; or

2. Code PROC= followed by the name assigned to the procedure as the
first operand.

When you call a procedure, the system finds the control statements in
the procedure library and then executes the programs identified on the
EXEC statements in the procedure.

Besides identifying the procedure on the EXEC statement" you can
assign values to symbolic parameters and override parameters that are
coded on the EXEC statements contained in the procedure. You follow the
EXEC statenent with DD statements when you want to override DD
statements in the procedure or add DD statements to the procedure.

When a cataloged procedure is written as part of the system output
listing (i.e." MSGLEVEL=(1,O), MSGLEVEL=(1,1), or MSGLEVEL=1 is coded on
the JOB statement), the procedure statements can be easily identified.
An XX appears in columns 1 and 2 of a procedure statement that you did
not override; X/ appears in columns 1 and 2 of a procedure statement
that you did override; Xx* appears in columns 1 and 2 of a procedure
statement, other than a comment statement, that the system considered to
contain only comments; and *** appears in columns 1 through 3 of a
comment statement. In addition, if the procedure contains symbolic
parameters, the output listing will show the symbolic parameters and the
values assigned to them.

How to Call an In-Stream Procedure
TO use an in-stream procedure, include the procedure" beginning with a
PROC statement and ending with a PEND statement, with the job control
1 anguage for your job. The in-stream procedure can appear immediately
following the JOB statement, the JOBLIB DD statement, or the SYSCHK DD
statement. The in-stream procedure cannot appear before the JOB
statement or after the EXEC statement that call s it. An in-stream
procedure can appear after a SYSIN DD * statenent; however, this is not
advisable because the SYSIN DD * statement causes the input reader to
obtain direct access space for a system input data set.

To call the procedure, you identify the in-stream procedure on an
EXEC statement in one of two ways:

1. Code, as the first operand, the name on the PROC statement of the
procedure; or

2. Code PROC= followed by the name on the PROC statement of the
procedure.

When you call an in-stream procedure, the system finds the control
statements that have been written on a direct access device and then
executes the programs identified on the EXEC statements of the procedure,.

284 JCL Reference (Release 21.7)

Besides identifying the procedure on the EXEC statement, you can
assign values to symbolic parameters and override parameters that are
coded on the EXEC statements contained in the procedure. You follow the
EXEC statement with DD statements when you want to override DD
statements in the procedure or add DD statements to the procedure.

When an in-stream procedure is written as part of the system output
listing (i.e., MSGLEVEL=(l, 0), MSGLEVEL= (1,1), MSGLEVEL=l, or MSGLEVEL=2
is coded on the JOB statement), the procedure statements can be easily

I identified. An ++ appears in columns 1 and 2 of a procedure statement
that you did not override; +/ appears in columns 1 and 2 of a procedure
statement that you did override; ++* appears in column 1 through 3 of a
procedure statement, other than a comment statement, tnat the system
considered to contain only comments; and *** appears in columns 1
through 3 of a comment statement. In addition, if the procedure contains
symbolic parameters and you assign values to these on the EXEC statement
that calls the procejure, the output listing will show the symbolic
parameters and the values assigned to them.

Assigning Values to Symbolic Parameters
The cataloged or in-stream procedure you call may contain symbolic
parameters. A symbolic parameter is characterized by a name preceded by
an ampersand(t) and appears in the operand field of a cataloged or
in-stream procedure statement or a DD statement used to override a DD
statement in the procedure. A symbolic paraneter stands as a symbol for
a parameter, a subparameter, or a value. Symbolic parameters are used so
that the procedure can be modified easily when it is called ~ a job
step.

The following are examples of symbolic parameters:

/ /STEP 1 EXEC PGM=COB, PARM::' P1 ,t P2, , P3 •

/ /DDl DD DSNAME=FIX, UNIT=tDEVICE,SPACE= (CYL, .(tSPACE, 10»

/ /DD2 DD DSNAME=CHAG, UNIT=2400 , DCB=BLKSIZE=tLENGrH

symbolic parameters must either be assigned values or nullified
before the procedure is executed. There are two ways that a symbolic
parameter can be assigned a value:

2.

A value can be assigned to the symbolic parameter on the EXEC
statement that calls the procedure.

The PROC statement, which can appear as the first statement in a
cataloged procedure and must appear as the first statement in an
in-stream procedure, assigns a default value to the symbolic
parameter.

Any default value assigned to a symbolic paraneter on the PROC statement
is overridden when you assign a value to the same symbolic parameter on
the EXEC statement that calls the procedure. symbolic parameters within
quotes in the PARM field are an exception. Normally literals are not
scanned for syrnbolics. Whenever an &name within quotes in the PARM field
is not defined, the ampersand is treated as if a double ampersand were
coded and handled as a literal.

If cataloged procedures contain symbolic parameters., the
installation should provide you with a list of the symbolic parameters
used, what meaning is associated with each symbolic parameter, and what
default value has been assigned to each of the symbolic parameters on
the PROC statement. (The PROC statement is optional for cataloged
procedures; therefore, there may be no default values assigned to the

Appendix A: Cataloged and In-stream Procedures -- Using Procedures 285

Appendix A

symbolic parameters used in a cataloged procedure.) You need this
information to determine what the symbolic parameter represents and to
decide whether to use the default value or to assign a value to the
symbolic parameter on the EXEC statement that calls the procedure.

To assign a value to a symbolic parameter, you code on the EXEC
statement that calls the procedure:

symbolic parameter=value

omi t the ampersand that precedes the symbolic parameter. For example, if
the symbolic parameter &NUMBER appears on a DD statement in the
procedure, code NUMBER=value on the EXEC statement that calls the
procedure. Any value you assign to a symbolic parameter is in effect
only during the current execution of the procedure.

There are some things you should keep in mind as you assign values
to symbolic parameters:

1.

2.

3.

5.

The value you assign can be any length, but it cannot be continued
onto another statement.

If the value contains special characters, enclose the value in
apostrophes (the enclosing apostrophes are not considered part of
the value). If the special characters include apostrophes" each must
be shown as two consecutive apostrophes.

If, on the EXEC statement, you assign more than one value to a
symbolic parameter" the first value encountered is used.

The total length of a value assigned to a symbolic parameter cannot
exceed 120 characters. This total includes the first through the
last parameters, subparameters, or values in the card image.

If the symbolic parameter is a positional parameter follOlied by
other parameters in the statement, it should be delimited in the
procedure by a period instead of a comma. Then, if the parameter is
nullified on the PROC statement or on an EXEC statement calling the
procedure, the statement containing the symbolic parameter will not
begin with a comma. The system recognizes the period as a delimiter;
the period does not appear in the statement when yoU nullify or
assign a value to the symbolic parameter. when you do assign a value
to a symbolic parameter that is a positional parameter, you should
follow the value with a comma; the value must then be enclosed in
apostrophes since a comma is a special character.

For example, in the follOliing DD statement contained in a cataloged
procedure named EXAMPLE, &POSPARM represents a positional parameter.

//DEFlNE DD &POSPARM.DSN=ATLAS,DISP=OLD

To replace the symbolic parameter &POSPARM with the parameter DUMMY,
you would code on the EXEC statement calling the procedure:

/ /DOTHIS EXEC EXAMPLE, POSPARM=' DUMMY,'

When the cataloged procedure named EXAMPLE is executed, the DD
statement named DEFINE appears as:

//DEFINE DD DUMMY,DSN=ATLAS,DISP=OLD

Note: Do not confuse positional parameters with positional
subparameters. For a list of the positional parameters you can code
on the DD statement, see "positional and Keyword Parameters" in the
section on the DD statement.

286 JCL Reference (Release 21.7)

• I

NULLIFYING A SYMBOLIC PARAMETER

Besides assigning values to symbolic paraneters, you can nullify a
symbolic parameter, i.e., tell the system to ignore the symbolic
parameter.

To nullify a symbolic parameter, code on the EXEC statement that
calls the procedure:

symbolic parameter:

omi t the ampersand that precedes the symbolic parameter in the procedure
and do not follow the equal sign with a value.

For example, if a DD statement in a procedure named TIMES is

//DD8 DD UNIT=1403,UCS=&UCSINFO

and you want to nullify the symbolic parameter &UCSINFO, you would code:

//CALL EXEC TIMES,UCSINFQ=

Example of Assigning Values to Symbolic Parameters

1. The following are the first four statenents of a cataloged procedure
named ASSEMBLE that contains symbolic parameters. The PROC statement
assigns a default to the symbolic parameter &OBJECT and nullifies
the symbolic parameter &LIST. Notice that the symbolic parameter
&DEPT is not assigned a value on the PROC statement; therefore, the
job step that calls this procedure must assign a value to &DEPT.

//DEF
//ASM
//
//SYSLIB
//

PROC OBJECT=NODECK,LIST=
EXEC PGM=IEUASM,PARM=('LINECNT=50',

&LIST.LIST,&OBJECT)
DD DSNAME=SYS1.MACLIB,DISP=QLD
DD DSNAME=LIBRARY.&DEPT.MACS,DISP=OLD

x

When you call this procedure, you can assign values to the symbolic
parameters by coding:

//STEP3 EXEC ASSEMBLE,DEPT=D82,OBJECT=DECK

The value aSSigned to &OBJECT in this EXEC statement overrides the value
assigned to &OBJECT in the PROC statement. Since no value is assigned to
&LIST in this EXEC statement, LIST is nullified -- because that is the
default specified in the PROC statement.

While the procedure is being executed, the first four statements of
this procedure would appear as shown below.

//DEF
//ASM
//
//SYSLIB
//

PROC OBJECT=NODECK,LIST=
EXEC PGM=IEUASM,PARM=('LINECNl'=50',

LIST,DECK)
DD DSNAME=SYS1.MACLIB,DISP=OLD
DD DSNAME=LIBRARY.D82MACS,DISP=OLD

x

The above example applies to in-stream procedures as well as cataloged
procedures. However, you must refer to the name on the PROC statement of
the in-stream procedure when calling the procedure.

Appendix A: Cataloged and In-stream Procedures -- Using Procedures 287

Appendix A

2. The following is an in-stream procedure that contains symbolic
parameters. The PROC statement marks the beginning of the in-stream
procedure and in this example assigns defaults to symbolic
parameters &D, &U, tV, and &S. The procedure is named INSTREAM.

//INSTREAM
//
//IN1
//SYSPRINT
//SYSUT1
//
//SYSLIN
//
//SYSLMOD
//
//

PROC D='(NEW,PASS)',U=2311,V='SER=66655',
S=' (TRK, (1,1,1»'

EXEC PGM= IEWL, PARM=' XREF, LIST, NCAL'
DD SYSOUT=A
DD DSNAME=UTC,DISP=OLD,UNIT=2311,

VOLUME=SER=66651
DD DSNAME=UTE,DISP=OLD,UNIT=2311,

VOLUME=SER=66652
DD DSNAME=&&LOAD,DISP=&D,UNIT=&U,

VOLUME=&V,SPACE=&S
PEND

When you call this procedure, you must c ode the name on the PROC
statement on the EXEC statement. You can assign values to the symbolic
parameters by coding:

//CALL EXEC INSTREAM,D=' (NEW,PASS)',V='SER=66653'

The values assigned to &D and &V in this EXEC statement override the
values assigned to these symbolic parameters in the PROC statement.

since no value is assigned to &U OR &S, the defaults specified on the
PROC statement are used when the procedure is executed.

While the procedure is being executed, it would appear as shown
below.

//INSTREAM
//

PROC D=' (NEW ,PASS)' , U=2311, V=' Ser=66655 ' ,
S=(TRK,(l,l,l»

//INl
//SYSPRINT
//SYSUTl
//
//SYSLIN
//
//SYSLMOD
//

EXEC
00
DD

DD

DO

PGM=IEWL, PARM=' XREF, LIST, NCAL'
SYSQUT=A
DSNAME=UTC, DISP=OLD, UNIT=2311,
VOLUME=SER=66651
DSNAME=UTE,DISP=OLD,UNIT=2311,
VOLUME=SER=66652
DSNAME=&&LOAD,DISP=(NEW,PASS),UNIT=2311,
VOLUME=SER=66653,SPACE=(TRK,(1,1,1»

The PEND statement is necessary but is not executed.

3. The following are the first four statements of a cataloged procedure
named TEST that contains symbolic parameters. The PROC statement
nullifies the symbolic parameter &DUMl and assigns a default value
to the symbolic parameter &DUM2.

//TEST
//STEP1
//DD1
,//DD2

PROC DUM1=,DUM2='DUMMY,'
EXEC PGM=IEFBR14
DD &DUM1.DSN=ABLE,DISP=OLD
DD &DUM2.DSN=BAKER,DISP=OLD

&DUMl and &DOM2 are pC5itional parameters. They are delimited by a
period so that, if they are nullified, the DD statement does not begin
wi th a corona. The system recognizes the period as a delimiter~ the
period does not appear in the statement when you nullify or assign a
value to the symbolic parameter. The value assigned to DUM2 in the PROC
statement is followed by a comma so that a comma will delimit the value
when it appears in the statement in the procedure. The value must be
enclosed in apostrophes because the comma is a special character,.

288 JCL Reference (Release 21.7)

When you call this procedure, you can reverse the default values on the
PROC statement so that the 00 statement naned DOl defines a dummy data
set and the DD statement named OD2 defines an existing data set:

//STEPUP EXEC TEST,OUM1='OUMMY,',DUM2=

The value assigned to 60UMl on the EXEC statenent overrides the
nullification of 60UMl on the PROC statement. 60UM2 is nullified on this
EXEC statement" so the value assigned to 600M2 on the PROC statement is
ignored.

While this procedure is being executed, the first four statements will
appear as shown below:

//TFST
//STEPl
//DOl
//002

PROC OUM1=,DUM2='OUMMY, ,
EXEC PGM=IEFBR14
DD DUMMY,OSN=ABLE,OISP=QLD
DD DSN=BAKER,DISP=OLD

Overriding, Adding, and Nullifying Parameters on an EXEC Statement
you can override, add, or nullify parameters coded on EXEC statements
contained in a cataloged or in-stream procedure. You make these changes
on the EXEC statement that calls the procedure. You should override
parameters only when you want to change their values. Do not override
parameters to correct syntactical errors in the procedure. You cannot
change the PGM parameter. The changes you make are in effect during the
current execution of the procedure.

OVERRIDING EXEC STATEMENT PARAMETERS

TO override an EXEC statement parameter in a procedure, identify on the
EXEC statement that calls the procedure the parameter you are
overriding, the name of the EXEC statement on which the parameter
appears, and the change to be made. The format required to override a
parameter is:

parameter.procstepname=change

For example, if one of the EXEC statements in the procedure named FILL
is:

//STEP3 EXEC PGM=DEF,REGION=lOOK

and you want to change REGION=lOOK to REGION=80K, you would code:

//CALL EXEC FILL,REGION.STEP3=80K

you can change more than one EXEC statement parameter in the
procedure. For example, if one of the EXEC statements in the procedure
name JKW is:

//STEP2 EXEC PGM=OUT,TIME=(2,30),REGION=120K

and you want to change TIME=(2,30) to TIME=4 and REGION=120K to
REGION=200K, you would code:

//STEP3 EXEC JKW,TIME.STEP2=4,REGION.STEP2=200K

Appendix A: Cataloged and In-stream Procedures -- Using Procedures 289

Appendix A

If you want to change different parameters that appear on different
EXEC statements in the procedure, you must code all overriding
parameters for one procedure step before those for the next step. For
example, if the first three EXEC statements in a procedure named DAR!'
are:

/ /STEPl EXEC PGM=JCTSB,PARM=' * 14863' .,REGION=100K
//STEP2 EXEC PGM=JCTRC,REGION=80K
//STEP3 EXEC PGM=JCTQD,COND=(8,LT),TIME=3

You want to make the following modifications:

1. override the PARM parameter on the first EXEC statement.
2. OVerride the REGION parameter on the first EXEC statement.
3. Override the REGION parameter on the second EXEC statement.
4. OVerride the TIME parameter on the third EXEC statement.

The EXEC statement that calls the procedure would appear as:

//STEPC
//
//

EXEC DART, PARM. STEFl=' *86348' ,
REGION.STEP1=120K,REGION.STEP2=100K,
TIME.STEP3= (4 ,30)

You can code an EXEC statement parameter and omit the term

X
X

n procstepname. n When you do this, the procedure is modified as follows:

• If the PARM parameter is coded, it applies only to the first
procedure step. If a PARM parameter appears in a later EXEC
statement, it is nullified.

• If the TIME parameter is coded , it applies to the total procedure.
If the TIME parameter appears on any of the EXEC statements in the
procedure, it is nullified.

• If any other parameter is coded, it applies to every step in the
procedure. If the parameter appears on an EXEC statement, it is
overridden; if the parameter does not appear on an EXEC statement,
it is added.

are:
For example, assume the EXEC. statements in a procedure named RYIN

//STEPl
//STEP2
//STEP3

EXEC PGM=SECT,PARM=140947,REGION=100K
EXEC PGM=PARA, PARM=1056 00 ,COND=E.VEN
EXEC PGM=SENT,PARM=L1644,REGION=80K

You want to make the following modifications to the procedure:

1.. Override the PARM parameter in the first procedure step, and nullify
all other PARM parameters in the procedure.

2. Assign the same region size to all steps in the procedure.

The EXEC statement that calls the procedure would appear as:

//SPAA EXEC RYIN,PARM=L1644,REGION=136K

While the procedure named RYIN is being executed, these three EXEC
statements would appear as:

//STEPl
//STEP2
//STEP3

EXEC PGM=SECT,PARM=L1644,REGION=136K
EXEC PGM=PARA,COND=EVEN,REGION=136K
EXEC PGM=SENT,REGION=136K

290 JCL Reference (Release 21.7)

ADDING EXEC STATEMENT PARAMETER

TO add a parameter to an EXEC statement in the procedure, identify on
the EXEC statement that calls the procedure the parameter you are
adding, the name of the EXEC statement to which you want to add the
parameter, and the value you are assigning to the parameter .• The fonnat
re qui red to add a paramet er is:

parameter.procstepname=value

Parameters you are adding and overriding for a step must be coded before
those parameters you are adding and overriding for the next step.

For example, if the first two EXEC statements of a procedure named
GLEAN are:

//STEP1
//STEP2

EXEC PGM=FAC, COND== (8, LT)
EXEC PGM=UP,PARM=377685

You want to make the following modifications to the procedure:

1. OVerride the COND parameter on the first EXEC statement.

2. Add the ROLL parameter to the first EXEC statement.

3. Add the REGION paramet er to the second EXEC statement.

The EXEC statement that calls the procedure would appear as:

//STPA
//

EXEC GLEAN,COND.STEP1=(12,LT),
ROLL.STEP1=(NO,NO),REGION.STEP2=88K

NULLIFYING EXEC STATEMENT PARAMETERS

x

To nullify a.parameter on an EXEC statement in the procedure, identify,
on the EXEC. statement that calls the procedure, the parameter you want
to nullify and the name of the EXEC statement on which the parameter
appears. The format required to nullify a parameter is:

parameter.procstepname=

Parameters that ycu are nullifying, overriding, and ad(-... lg to a step
must be coded before those for the next step.

For example, if the first two EXEC statements of a procedure·named
GINN are:

//STEP1
//STEP2

EXEC PGM=INV,PARM= ' 146,899 1 ,RD=R
EXEC PGM=DET,PARM=XYA34,COND=(80,GT)

you want to make the following modifications to the procedure:

1. Nullify the PARM parameter on the first EXEC statement.

2. Add the COND parameter to the first EXEC statement.

3. Override the COND parameter on the second EXEC statement.

The EXEC statement that calls the procedure would appear as:

//STEPY
//

EXEC GINN,PARM.STEP1=,COND.STEP1=(25,EQ),
COND.STEP2=(80,GE)

X

Appendix A: Cataloged and In-stream Procedures -- Using Procedures 291

Appendix A

Examples of Overriding, Adding, and Nullifying Parameters
on an EXEC' Statement
1. You want to call the follONing cataloged procedure named ESEAP:

//STEPA
//DDA
//DDB
//STEPB
//DDC
//DDD
//DDE

EXEC PGM=FLIER,PARM=7121190,ACCT=(4805,UNASGN)
DD DSNAME=LIBRARY.GROUP67,DISP=OLD
DD DSNAME=STAND.FIVE,DISP=OLD
EXEC PGM=VERSE,DPRTY=(11,13),PARM=780684,RD=R
DD UNIT=2311,SPACE=(TRK,(10,2»
DD DSNAME=COL.DISP=OLD
DD DDNAME= IN

you want to make the following modifications to the procedure:

1. Add the REGION paramet er to both EXEC statements.
2. Add the DPRTY parameter to the first EXEC statement.
3. Override the ACCT parameter on the first EXEC statement.
4. Nullify the RD parameter on the second EXEC statement.
5. Add the CONn parameter to the second EXEC statement.

The EXEC'statement that calls the procedure would appear as:

//MINC
//

EXEC ESEAP,REGION=86K,DPRTY.STEPA=(11,13), X
ACCT.STEPA=(4805,7554),RD.STEPB=,COND.STEPB=(60,LE)

The two EXEC statements in the procedure would appear as shown below
while the procedure is being executed. These modifications do not appear
on an output listing.

//STEPA
//
//STEPB

EXEC PGM=FLIER,PARM=7121190,ACCT=(4805,7554),
REGION=86K,DPRTY=(11,13)

EXEC PGM=VERSE,DPRTY=(11,13),REGION=86K,COND=(60,LE)

2. You want to call the following in-stream procedure named INLINE:

X

//INLINE
//STEPl
//DD1
//DD2
//STEP2
//DD3
//DD4

PROC
EXEC
DO
DD
EXEC
DD
DO
PEND

PGM=COMP,ACCT=(7037,2361),REGION=86K
DSNAME=INFORM,DISP=OLD,UNIT=2311,VOLUME=SER=75250
DSNAME=LCJWC,DISP=OLD,UNIT=2311,VOLUME=SER=76250
PGM=CHECKS,PARM=212334,COND=(50,LE),ACCT=(2001,0539)
DSNAME=PAY,DISP=OLD,UNIT=2311,VOLUME=SER=MEMORY
DSNAME=INCREAS,DISP=OLO,UNIT=2311,VOLUME=SER=33333'

//

you want to make the following modifications to the procedure:

1. Add DPRTY parameter to both EXEC statEments.
2. Nullify the REGION parameter on the first EXEC statement.
3. Override the ACCT parameter on the second EXEC statement.

The EXEC statement that calls the procedure would appear as:

//CALLER EXEC INLINE,DPRTY=(11,13),REGION.STEP1=, x
// ACCT.STEP2=(4710,5390)

The two EX:EC statements in the procedure would appear as shown below
while the procedure is being executed. These modifications do not appear
on an output listing.

//STEP1
//STEP2
//

EKEC PGM=COMP,ACCT=(7037,2361),DPRTY=(11,13)
EXEC PGM=CHECKS,PARM=212334,COND=(50,LE),DPRTY=(11,13)

ACCT=(4710,5390)

292 JCL Reference (Release 21.7)

)

Overriding, Adding, and Nullifying Parameters on a DD Statement
you can override, add, or nullify parameters coded on a DD statement
contained in a cataloged procedure. You make these changes at the time
the procedure is called; these changes are in effect during the current
execution of the procedure. Use one DD statement to override, add, and
nullify parameters on the same DO statement in the procedure.

OVERRIDING DD STATEMENT PARAMETERS

TO override a parameter on a DD statement in the procedure, you must
include a DD statement following the EXEC statement that calls the
procedure. The ddname of this DD statement must identify the DD
statement that contains the parameter you are overriding and the
procedure step in which the DD statement appears. Code, in the operand
field of this DD statement, the parameter you are overriding and the
change; or code a mutually exclusive parameter that is to take the place
of a parameter. Since mutually exclusive keywords are allowed during
override processing, the first reference to such a keyword nullifies all
further references, regardless of their positions on the DD statements.
The format required for a DD statement following the EXEC statement is:

//procstepname.ddname
or

//procstepname.ddname

DD

DD

parameter=change

mutually exclusive parameter=value

For example, if one of the OD statements in a procedure step name~
STEP4 is:

//DD2 DD DSNAME=ABIN,DISP=OLD,VOLUME=SER=S4896,UNIT=2400

and you want to change UNIT=2400 to UNIT=180, you would code:

//STEP4.DD2 DD UNIT=180

When you code a mutually exclusive parameter on an overriding DD
statement, the system replaces the parameter on the specified DO
statement with the mutually exclusive parameter. For example, the
parameters SYSOUT and DISP are mutually exclusive parameters. If one of
the DD statements in a procedure step named PRINT is:

/ /DD 8 DD SYSOUT=C

and you do not want the data set printed, you could code:

//PRINT.DD8 DD DISP=(NEW,DELETE)

you have replaced the SYSOUT parameter with the DISP parameter.

You can change more than one parameter that appears on a DD
statement in the procedure. For example, if one of the DD statements in
a procedure step named STEPS is:

//DDX DD DSNAME=FIES,DISP=OLD,UNIT=240o-2,VOLUME=REF=*.STEP2.DDC

and you want this DD statement to define a new data set, you would code:

/ /STEP S. DDX DD DSNAME=RVAl,DISP= (NEW ,KEEP)

If you want to change parameters that appear on different DD
statements in the same procedure step, the overriding DD statements must
be in the same order in the input stream as the corresponding DD
statements in the procedure step. For example, if the first step of a
procedure named AJG is:

Appendix A: Cataloged and In-stream Procedures -- Using Procedures 293

Appendix A

//STEPI
//DDI
//
//DD2
//DD3

EXEC PGM=MGR,REGION=80K
DD DSNAME=LONE,DISP=(NEW,DELETE),

UNIT=2400,VOLUME=SER=S68998
DD UNIT=TAPE
DD UNIT=2311,DISP=(,PASS),SPACE=(TRK,(20,2»

yOU want to make the following modifications to the procedure:

1. Change the UNIT parameter on the first DD statement.

2,. Change the VOLUME parameter on the first DD statement.

3,. Change the SPACE parameter on the third DD statement,.

The statements in the input stream would appear as:

//CATP
/ /STEP1.DDI
//STEPl.DD3

EXEC AJG
DD UNIT=2400-3,VOLUME=SER=WORKI8
DD SPACE=(CYL,(4,1»

x

If you want to change parameters that appear in different procedure
steps in the cataloged procedure you are calling, the overriding DD
statements must be in the same order as are the procedure steps.

The DCB parameter: If you want to change some of the keyword
subparameters in the DCB parameter, you need not recode the entire DCB
parameter. Instead, code only those subparameters that you are changing
and any mutually exclusive subparameters that are to replace particular
suhparameters. For example, if one of the DD statements in a procedure
step named NED is:

//DD3
//

DD DSNAME=PER,DISP=(,KEEP),UNIT=2311,SPACE=(TRK,(88,S», X
DCB: (BUFNO=I, BLI<SI ZE=8 0, RECFM=F, BUFL=8 0)

and you want to change BLKSIZE=80 to BLI<SIZE=320 and BUFL=80 to
BUFL=320, you would code:

//NED.DD3 DD DCB=(BLRSIZE=320,BUFL=320)

The DCB subparameters BUFNO and RECEM remain unchanged.

When you are overriding a procedure DD statement that contains a DCB
parameter and the overriding DD statement uses a backward reference to
copy the DCB in forma tion on an earlier DD statement" the DCB information
on the procedure DO statement overrides any of the corresponding
subparameters that are copied. For example, if one of the DD sta tements
in a step named NED of a procedure named CATROC is:

//DD5
//

DD DSNAME=PER,UNIT=2311,SPACE=(TRK,(88,S»,
OCB=(BLKSIZE=640,RECFM=FB)

and you have in your input stream:

//STPI EXEC PGM=A
//DDI DD OSN=AIR,UNIT=2311, SPACE= (TRK, (10,1»,
// OCB=(BLRSIZE=320,RECFM=FBA,BUFL=320)
//STEP2 EXEC CATROC
/ /NED. DO S DD OCB=*. STPl.DDI

X

X

The DD statement DDS in a cataloged procedure would appear as shown

I

below while the procedure is being executed. (The DCB information on the
procedure statement overrides any of the corresponding subparameters
that are copied.) This modification does not appear on output listing.

294 JCL Reference (Release 21.7)

(

//005
//

DD OS~ME=PER,UNIT=2311,SPACE=(TRK,(88,S»,
OCB=(BLKSIZE=640,RECFM=FB,BUFL=320)

x

If you want to override a DO statement that contains a dsname
positional subparameter in the OCB parameter, you must recode the dsname
subparameter, even though you do not want to change it. For example, if
one of the OD statements in a procedure step named BANK is:

//OD5
//

DD DSNAME=SAVE,DISP=CNEW,KEEP)I UNIT=2311,
SPACE=CCYL,C12,2»,DCB=CACCNT,BUFNO=S,KEYLEN=2)

and you want to change BUFNO=5 to BUFNO=3, you would code:

//BANK.DDS DD DCB= CACCNT,BUFNO=3)

Both the dsname ACCNT and KEYLEN subparameters remain unchanged. You
must code ACCNT on the overriding DD statanent.

ADDING DD STATEMENT PARAMETERS

x

TO add a parameter to a DD statement in the procedure, you must include
a DD statement following the EXEC statement that calls the procedure.
The ddname of this OD statement must identify the DD statement to which
you are adding a parameter and the procedure step in which the DD
statement appears. Code, in the operand field of this DD statement, the
parameter you are adding. The format required for a DD statement
following the EXEC statement is:

//procstepname.ddname DD parameter=value

For example, if one of the DD statements in a procedure step named
STPTWO is:

//DDM DO DSNAME=TYPE,DISP=C,KEEP),UNIT=2400

and you want to add the VOLUME parameter, you would code:

//STPTWO.DDM DD VOLUME=SER=S69433

If you want to add parameters or change parameters that appear on
different DO statements, the overriding DD statements must be in the
same order in the input stream as the corresponding DD statements in the
procedure.

NULLIFYING DD STATEMENT PARAMETERS

There may be parameters on a DD statement that you do not want to
override, but you want the system to ignore. Also, when you modify a DD
statement in a procedure by overriding certain parameters or adding
parameters, there may be some parameters remaining that no longer have
meaning for your dataset definition but would effect processing of the
data set. To temporarily remove these parameters, you can nullify them.
(If you are replacing a parameter with a mutually exclusive parameter,
do not nullify the parameter that is being replaced.)

To nullify a parameter on a DD statanent in the procedure, you must
include a DD statement following the EXEC statement that calls the
procedure. The ddname of this DD statement must identify the DD
statement that contains the parameter you are nullifying and the
procedure step in which the DD statement appears. Code in the operand
field of this DD statement the parameter you are nullifying followed by
an equal sign; do not follow the equal sign with a value. The format
required for a DD statement following the EXEC statement is:

//procstepname.ddname DD parameter=

Appendix A: Cataloged and In-stream Procedures -- Using Procedures 295

Appendix A

For example, if one of the DO statements in a procedure step named
SALLS is:

//ODP
//

DD DSNAME=STEP,OISP=OLO,UNIT=2314,
VOLUME=SER=556978

x

and you are overriding the DSNAME, OISP, and UNIT parameters, adding the
OCB parameter, and want the VOLUME parameter ignored, you would code:

/ /SALLS. OOP
//

DO DSNAME=&&TEMP, DIS P= (,PASS),UNIT=2400-2,
OCB=(DEN=2,TRTCH=ET),VOLUME=

x

TO nullify the OCB parameter, each DCB subparameter must be
nullified individually. For example, if a DO statement contains
OCB=(RECFt-l=FBA,BLKSIZE=160,LRECL=80), then DCB= (RECFM=,BLKSIZE=,LRECL=)
must be coded on the overriding DO statement in order to nullify the DCB
parameter.

To nullify a DUMMY parameter, code the DSNAME parameter on the
overriding OD statement, but do not use the data set name NULLFILE.
(Coding OSNAME=NULLFILE has the same effect as coding the DUMMY
parameter.)

Caution: When you are overriding a procedure DD statement that contains
the SPACE parameter and the overriding OD statement defines an existing
data set, be sure to nullify the SPACE parameter. When a secondary
quantity is coded on the procedure DO statement, the system uses this
value to assign additional space to the data set instead of the
secondary quantity you may have specified when the data set was created.
Also, the RLSE subparameter, when specified on the procedure statement,

causes the system to release any of the ey.i.sting data set' s unused space.

If you want to nullify, add, or override parameters that appear on
different DD statements, the overriding OD statements must be in the
same order in the input stream as the corresponding DD statements in the
procedure.

Examples of Overriding, Adding, and Nullifying Parameters
on a DD Statement
1. You want

//STP1
//0011
//OD12
//DD13
//STP2
//DD21
//D022
//
//0023

to call the follONing procedure named SALL:
EXEC PGM=GLR14
DO OSNAME=XTRA.LEVEL,OISP=OLD
OD OSNAME=CONDS,OISP=(,PASS),UNIT=2400
DO DUMMY,OSNAME=LAST,VOLUME=REF=*.0011,OISP=(,CATLG)
EXEC PGM=FAIR
DO DSNAME=*.STP1.D012,OISP=(OLD,OELETE)
00 OSNAME=JFTZ,OISP=(NEW,KEEP),UNIT=2311,

SPACE=(CYL,(2,1),RLSE)
00 SYSOUT=G

You want to modify the procedure as follows:

x

1. Change the data set name on the statement named DD12 from CONOS to
C8495.

2. Add the VOLUME parameter to the statement named 0012,.

3. Nullify the OUMMY parameter on the statement named 0013.

296 JCL Reference (Release 21.7)

4. Change the disposition on the statement named 0021 from OELETE to
KEEP.

5. Define an existing data set on the statement named OD22,.

6. Add the parameter UNIT on the statement narned 0023.

7 • Add the parameter SPACE on the statement named 0023.

The EXEC statement that calls the procedure and the overriding DD
statements that follow it would appear as:

//CALL
//STP1.0D12
/ /ST Pl. 0013
//STP2.0D21
/ /STP2 .0022
//

EXEC SAn.
DO DSNAME=C8495,VOLUME=SER=979354
DO DSNAME=SOMENAME
00 OISP=(OLO,KEEP)
00 SPACE=,OSNAME=GR1833,DISP=OLD,

VOL=SER=577632
/ /STP2 .0023 DO UNIT=2314,SPACE=(TRK,(150,15»

The cataloged procedure would appear as shown below while the
procedure is being executed. These modifications do not appear on an
output listing.

//STPl
//0011
//DD12
//
//OD13
//STP2
//DD21
//0022
//OD23

EXEC PGM=GLF14
OD DSNAME=XTRA. LEVEL, OISP =OLD
OD DSNAME=C8495,DISP=(,PASS),UNIT=2400,

VOLUME=SER=979354
OD OSNAME=LAST,VOL=REF=*. OD11,DISP= (,CATLG)
EX EC PGM= FAIR
DD DSNAME=*.STP1.DD12,DISP=(OLD,KEEP)
00 OSNAME=GR1833,OISP=QLD,UNIT=2311,VOL=SER=577632
OD SYSQUT=G,UNIT=2314,SPACE=(TRK, (150,15»

2. You want to call the following in-stream procedure named CAROS:

//CARDS
//STEPA
//OOAl
//DDA2
//
//STEPB
//OOBl
//DOB2
//DOB3
//

PROC
EXEC
00
OD

EXEC
OD
DD
OD
PEND

PGM=FIGURE
DSNAME=NUMBERS,DISP=OLD
DSNAME=PROCESS ,DISP= (" PASS) ,UNIT=2311,
SPACE= (TRK, (1, 1, 1»
PGM=RESULT
OSNAME=VSC,OISP=OLD
DSNAME=*.STEPA.DOA2,DISP=(OLD,KEEP)
SYSOUT=C

yOU want to modify the procedure as follows:

x

x

1. Change the data set name on the DOAl statement from NUMBERS to NAMES.
2. Add the VOLUME paramet er to the DDA2 stat anent •
3. Add the parameters UNIT and SPACE on the 00B3 statement.

The EXEC statement that calls the procedure and the overriding DD
statements that follow it would appear as:

//CALL
//STEPA.OOAl
//STEPA.DOA2
/ /STEPB. 00B3

EXEC CARDS
00 OSNAME=NAMES
DD VOLUME=SER=5858
DD UNIT=2311,SPACE=(TRK, (150,15»

The in-stream procedure would appear as shown below while the
procedure is being executed. These modifications do not appear on an
output listing. The PROC sta tement is processed only when it
contains symbolic parameters.

Appendix A: Cataloged and In-stream Procedures -- Using Procedures 297

Appendix

//STEPA
//DDA1
//DDA2
//
//STEPB
//DDB1
//DDB2
//DDB3

EXEC PGM=FIGURE
DD DSNAME=NAMES,DISP=OLD
DD DSNAME=PROCESS, DISP=(, PASS), UNIT=2311,'

SPACE=(TRK,(1,1,1»,VOLUME=SER=5858
EX EC PGM=RESULT
DD DSNAME=VSC,DISP=OLD
DD DSNAME=*.STEPA.DDA2,DISP=(OLD,KEEP)
DD SYSOUT=C,UNIT=2311,SPACE=(TRK, (150,15»

Overriding DD Statements that Define Concatenated Data Sets
When a concatenation of data sets is defined in a cataloged procedure
and you attempt to override the concatenation with one DD statement,
only the first (named) DD statement is overridden. To override others,
you must include an overriding DD statement for each DD statement; the
DD statements in the input stream must be in the same order as the DD
statements in the procedure. The second and subsequent overriding
statements must not be named. If you do not wish to change one of the
concatenated DD statements, leave the operand field blank on the
corresponding DD statement in the input stream. (This is the only cas e
where a blank operand field for a DO statement is valid.)

For example, suppose you are calling a procedure that includes the
following sequence of DD statements in STEPC:

//DD4
//
//
//

DD
OD
DD
DD

DSNAME=A.B.C,OISP=OLD
DSNAME=STEP,DISP=OLD,UNIT=2311,VOL=SER-X12182
DSNAME=TYPE3,DISP=OLD,UNIT=2311,VOLUME=SER=EL142
DSNAME=A.B.D,DISP=OLD

If you want to override the DD statements that define the data sets
named STEP and A.B.D, the sequence of DD statements in the input stream
would appear as:

//STEPC.DD4
//
//
//

DD
DD
DD
DD

DSNAME= INV. CLS, DISP=OLD

DSNAME=PAL8,DISP=OLD,UNIT=2311,VOL=SER=125688

Adding DD Statements to a Procedure
You can add DD statements to a procedure when you call the procedure.
These additional DO statements are in effect only while the procedure is
being executed.

To add a DD statement to a procedure step, follow the EXEC statement
that calls the procedure and any overriding DD statements for that step
with the additional DO statement. The format of a DO statement to be
added to a procedure step is:

//procstepname
or

//procstepname.ddname

DD parameters

DD parameters

You must identify the procedure step to which the data set is to be
added in the name of the DO statement. If you also assign a ddname, it
must be different from all the other ddnames in the procedure step.

If you do not assign a ddname, the data set is concatenated to the
data set defined by the preceding DO statement. If the data set is the
first to be added to the procedure step, it is concatenated to the last
data set defined in the procedure step.

298 JCL Reference (Release 21.7)

For example, the first step of a cataloged procedure named MART is:

//STEP1
//OOM
//
//ODN

EXEC PGM=OATE
DO VOLUME=BPS(MFMG),OISP=OLO,

UNIT=2311,VOLUME=SER=554982
DO UNIT=SYSQE

You want to make the following modifications to the procedure:

1. Change the UNIT parameter on the DD statement named DDM;
2. Concatenate a data set to the data set defined by DDN;
3. Add another data set with DDNAME=DDO.

The statements in the input stream would appear as:

//PROC
/ /STEP1.DDM
/ /STEP1. DDN
//
/ /STEP 1. DDO

EXEC MART
00 UNIT=180
OD
DO DSNAME=SPEC,DISP=QLD., UNIT=2311
DO UNIT=181

Examples of Adding DD Statements to a Procedure
1. YOU want to call the following procedure named D995A:

//SA
//DOAl
//DDA2
//DDA3
//SB
//ODBl
//DDB2
//OOB3
//

EXEC
OD
00
DD
EXEC
DD
DO
DD

PGM=ANALY
DSNAME=PROJ.0843,DISP=QLD
DDNAME=SYSIN
SYSOUT=B
PGM=MANM03
UNIT=2400
UNIT=2400
DSNAMEF=X54,VOLUME=SER=(36544,36545),
UNIT=(2400,2),DISP=(OLD,KEEP)

You want to modify the procedure as follows:

x

1. supply the data set definition for the DOA2 statement by adding a DD
statement.

2. Change the SYSOUT parameter on the DDA3 statement to UNIT=1403.

3. Add a DD statement to the step named SB.

The EXEC statement that calls the procedure and the overriding and
additional DD statements that follow it would appear as:

//PROCED
//SA.DDA3
//SA.SYSIN

/*
//SB. DDB4

EXEC 0995A
DD UNIT=1403,DISP=NEW
DO *

data

OD UNIT= (2400" SEP=(DDB1,DDB2»

'!he cataloged procedure would appear as shown below while the
procedure is being executed. These modifications do not appear on output
listing.

Appendix A: Cataloged and In-stream Procedures -- Using Procedures 299

Appendix A

//SA
//DDA1
//DDA2
//DDA3
//SB
//ODB1
//DDB2
//DOB3
//
//DDB4

EXEC PGM=ANALY
DO DSNAME=PROJ.0843,DISP=OLD
DO *
DO UNIT=1403,DISP=NEW
EXEC PGM=MANM03
DO UNIT=2400
DO UNIT=2400
DO DSNAME=X54,VOLUME=SER=(36544,36545),

UNIT=(2400,2),DISP=(OLD,KEEP)
DO UNIT=(2400"SEP=(DDB1,DDB2»

2. You want to call the follcwing in-stream procedure named WORK:

//wORK
//STP1
//DD1
//002
//

PROC
EXEC PGM=PROO
DO OSNAME=PROJECT,OISP=OLD
00 DDNAME=SYSIN
PEND

You want to modify the procedure by supplying the data set
definition for the 002 statement by adding a DO statement.

The EXEC statement that calls the procedure and the additional DO
sta tement that follOW's it would appear as

/ /ADD EXEC WORK
//STP1.SYSIN DD *

data

/*

The in-stream procedure would appear as shown below while the
procedure is being executed. These modifications do not appear on the
output listing.

//STP
//001
//002

EXEC PGM=PROD
DO DSNAME=PROJECT,DISP=OLD
DO *

300 JCL Reference (Release 21.7)

x

Writing Procedures: Cataloged and In-Stream

Why Catalog Job Control Statements

Applications performed at your installation on a regular basis and
applications that require many control statements can be simplified when
the control statements for these applications are cataloged. Once the
job control statements for an application are cataloged on the procedure
library, any programmer who wants to perform the application need only
submi. t a JOB and EXEC statement. On the EXEC statement, he refers the
system to the control statements required to perform the application.
If there are modifications the programmer wants to take for the duration
of the job step, he assigns values to symbolic parameters on the EXEC
statement and follOlNs the EXEC statement with overriding DD statements.

Why Use In-Stream Procedures
In-stream procedures .appear within the job stream instead of in the
procedure library. Like ca taloged procedures, they eliminate the
necessi ty of repeating the s arne set of control statements in a job. An
in-stream procedure can be executed any number of times during a job in
which it appears and fifteen uniquely named in-stream procedures can
appear in one job. In~stream procedures can be modified just as
cataloged procedures. They also provide you with a means of testing
procedures before adding them to the procedure library as cataloged
procedures. Because an in-stream procedure may exist in the form of
cards, it can be considered a "portable procedure" in that it can easily
be moved from one inplt stream to another.

THE CONl'ENl'S OF CATALOGED AND IN-STREAM PROCEDURES

Cataloged and in-stream procedures contain one or more EXEC statements,
each followed by ass ociat ed DD statements. Each EXEC statement
identifies the program to be executed" and the DD statements that follow
define the input, outplt, and work data sets to be used by the program.
Each EXEC statement and its associated DD statements are called a
procedure step.

Cataloged and in-stream procedures cannot contain:
I

1. EXEC statements that refer to other cataloged procedures,.
2. JOB, delimiter, or null statements.
3. DD statements with the ddname JOBLIB.
4. DD statements with * or DATA coded in the operand field.

A cataloged or in-stream procedure can contain a DD statement with
the ddname STEPLIB. If a procedure step requires use of a program in a
private library other than SYS1.LINKLIB, you define that library on this
DD statement. If the DD statement is not overridden when the procedure
is called, it makes the private library available to the step. (For
information on the STEPLIB DD statement, see the chapter "Special
Ddnames" in section IV of this publication.)

For ease in modifying a cataloged or in-stream procedure, you can
include symbolic parameters in the procedure. How to use symbolic
parameters is described next.

Appendix A: Cataloged and In-stream Procedures -- Writing Procedures 301

Appendix

USING SYMBOLIC PARAMETERS IN A PROCEDURE

A symbolic parameter is characteriz ed by a name preceded by an ampersand
(t) and appears in the operand field of a cataloged procedure statement .•
A symbolic parameter stands for a parameter, a subparameter, or a value.

Symbolic parameters allow a programmer who calls the procedure to e
easily modify the procedure for the duration of the job step. When the
programmer calls the procedure, he assigns values to the symbolic
parameters on the EXEC. statement. When you prepare control statements
that you plan to catalog, you can include a PROC statement and assign
default values to any of the symbolic parameters that are included.
When you prepare control statements to be used as an in-stream
procedure, you must include a PROC statement which can be used to assign
default values to any of the symbolic parameters that are included.

A symbolic parameter is one to seven alphameric and national (#,@,$)
characters preceded by a single ampersand. The first character must be
alphabetic or national. Since a single ampersand defines a symbolic
parameter, you code double ampersands when you are not defining a
symbolic parameter. For example, if you want to pass S43tLEV to a
processing program by means of the PARM parameter on an EXEC statement,
you must code PARM='S43t&LEV'. The system treats the double ampersands
as if a single ampersand has been coded, and only one ampersand appears
in the results.

The following are examples of symbolic parameters:

//STEPl EXEC PGM=COB,PARM='Pl,&P2,P3'

//DDl DD DSNAME=&&FIX,UNIT=&DEVICE,SPACE=(CYL,(tSPACE,lO»

//DD2 DD DSNAME=&&CHAG,UNIT=2400,DCB=BLKSIZE=&LENGTH

Keyword parameters that can be coded on an EXEC statement cannot be
used to define symbolic parameters. For example, &PGM and ®ION cannot
be used as symbolic parameters. The system will not recognize a symbolic
parameter if you enclose it in apostrophes, unless it is part of the
PARM parameter.

Any parameter, subparameter, or value in the procedure that may vary
each time the procedure is called is a good candidate for definition as
a symbolic parameter. For example, if different values can be passed to
a processing program by means of the PARM parameter on one of the EXEC
statements, you might define the PARM parameter field as one or more
symbolic parameters, PARM= &ALLVALS or PARM=tDECK&CODE.

If symbolic parameters are defined in the cataloged or in-stream
procedures used at your installation, the definitions should be
consistent. For example, every time the programmer is to assign his
department number to a symbolic parameter, no matter which procedure he
is calling, the symbolic parameter could be defined as &DEPT. In
different procedures you could code ACCT=(43877,&DEPT) and
DSNAME=LIBRARY.&DEPT,.MACS. The programmer would assign his department
number on the EXEC statement that calls the procedure whenever &DEPT
appears in a procedure. Of course, in order for the programmer to know
that he is to assign his department number to the symbolic parameter
&DEPT, the installation must make this information available to all the
programmers that may be using the cataloged procedures.

302 JCL Reference (Release 21.7)

You can define two or more symbolic parameters in succession without
including a comma to delimit the symbolic parameters, for example,
&P1&P2. You can also define a portion of a parameter, subparameter, or
value as a symbolic parameter. you do this by placing the symbolic
parameter before, after, or in between the information that is not
variable.

If you place a symbolic parameter after some information that does
not vary, it is not necessary to code a delimiter. The system recognizes
a symbolic parameter when it encounters the single ampersand.

If you place a symbolic parameter before some information that does
not vary, a period may be required following the symbolic parameter to
distinguish the end of the symbolic parameter and the beginning of the
infornation that does not vary. A period is required following the
symbolic parameter when:

1. '!he character f ollCMing the symbolic parameter is an alphabetic,
numeric, or national character.

2. The character following the symbolic parameter is a left parenthes is
or a period.

In these cases, the system recognizes the period as a delimiter, and the
period does not appear after a value is assigned to the symbolic
parameter. (A period will appear after a value is aSSigned to the
symbolic parameter when two consecutive periods are coded.>

'!be following examples are valid ways of combining symbolic
parameters and information that does not vary.

Placing a symbolic parameter after information that does not vary:

1 • LI BRARY (&MEMBER)

2. USERLIB. &LEVEL

Placing a symbolic parameter before information that does not vary:

1. • &OPTION+1S'

2. & PASS .A43B8

The period is required because an alphabetic character follows the
symbolic parameter.

3. &URNO. S4328

'!he period is required because a numeric character follows the
symbolic parameter.

4. & LIBRARY • (MEMG)

'!he period is required because a left parenthesis follows the
symbolic parameter.

S. &FILL •• GROUPS

A period is to appear in the results; therefore, t\«) consecutive
periods are coded.

Appendix A: Cataloged and In-stream Procedures -- Writing Procedures 303

Appendix

When a value is assigned to the symbolic parameter, this value and
the parameter, subparameter, or value that this is a portion of cannot
exceed 120 characters.

The programmer who calls a procedure assigns values to the symbolic
parameters contained in the procedure. He can also nullify symbolic
parameters. A delimiter, such as a leading comma or a trailing comma,
next to a symbolic parameter is not automatically removed when the
symbolic parameter is nullified. For example, if the operand field
contains VOLUME=SER= (111111 ,&KEY), the comma preceding &KEY is not
removed when &KEY is nullified. If the symbolic parameter that is
nullified is a positional parameter, a comma must remain to indicate its
absence. In other cases, a delimiter that is not removed when the
symbolic parameter is nullified may cause a syntax error. To help the
programmer who nullifies a symbolic parameter avoid this error
condition, define those symbolic parameters that may be nullified
wi thout the delimiter. For example, you could code
VOL UME=SER = (111111&KEY).. The delirni ter is inc luded when a value is
assigned to the symbolic parameter. For example, the programmer would
code KEY=',222222'.

A cataloged or in-stream procedure statement may utilize DINAME and
DCB parameters to define data in the input stream. such a statement
shou.ld not contain symbolic parameters when the automatic SYSIN batching
reader is used .• (Infornation on the cataloged procedure for the
automatic SYSIN batching reader is contained in the MFT and MVT Guides
publicati on.

The PROC statement. When establishing cataloged or in-stream procedures
that contain symbolic parameters it is generally good practice to assign
default values to the symbolic parameters. These default values are used
if the programmer who calls the procedure does not assign values to one
or more of the symbolic parameters.

You assign default values on a PROC statement. The PROC statement is
optional in cataloged procedures; if it is used, the PROC statement must
be the first statement in the procedure. The PROC statement is described
in Section X of this publication. The PEND statement which is used to
mark the end of an in-stream procedure is described in section IX.

ADDING AND MODIFYING CATALOGED PROCEDURES

You add procedures to the procedure library by using the IEBUPDTE
utility program. You also use this utility program to permanently modify
existing procedures. How to use this utility program for adding and
modifying cataloged procedures is described in the chapter "The IEBUPDTE
Program" in the utilities IUblication.

When you add a cataloged procedure to the procedure library, that
procedure cannot be executed before the job that adds it to the
procedure library terminates. When you modify an existing cataloged
procedure, the operator must be notified. What the operator must do
before he allows the job to be executed is described in the chapter "How
to Run Jobs That Update System Data sets" in the Operator's Reference
publication.

304 JCL Reference (Release 21.7)

Appendix B: Using the Restart Facilities

When a job step abnormally terminates, you may have to resubmit the job
for execution. This means lost computer time and a delay in obtaining
the desired results. To reduce these effects, you can use the restart
facil ities.

If a job step abnormally terminates or if a system failure occurs"
the restart facilities allow you to request that the job step be
restarted either at the beginning of the step (step restart) or within
the step (checkpoint restart). Furthermore, restart can occur
automatically after abnormal termination, or it can be deferred until
the job is resubmitted.

Restarts
For autorratic step restart to occur, the RD parameter must request it on
the JOB statement or on the EXEC statement associated with the step that
abnormally terminates. (The RD parameter on the JOB statement is
described in Section II of this publication; the RD parameter on the
EXEC statement is described in section III.) Automatic checkpoint
restart can occur only if a CHKPT macro instruction is executed in the
processing program prior to abnonnal termination.

If restart is deferred until the job is resubmitted, the RESTART
parameter must be coded on the JOB statement of the resubmitted job.
(The RESTARl' parameter is described in Section II of this publication.)
The RESTART parameter identifies the step or the step and the checkpoint
a t which execution is to be resumed. A deferred restart may be ini tia ted
regardless of how the resubmitted job was previously terminated
(normally or abnormally) and regardless of whether an automatic restart
occurred dur ing the original execution.

AUTOMATIC STEP RESTART

If an abnormally terminated step is to be automatically restarted, the
RD parameter must be coded as RD=R or RD=RNC. Execution resumes at the
beginning of the abnormally terminated step.

AUTOMATIC CHECKPOINT RESTART

After an automatic checkpoint restart, execution resumes at the
instruction immediately follOWing the last CHKPT macro instruction that
was successfully executed in the abnormally terminated step. An
a utomatic checkpoint restart cannot occur if you suppress the action of
the CHKPT macro instruction; you do this by coding RD=NC or RD=RNC.
Also, an automatic checkpoint restart cannot occur if you code RD=NR;
however, RD=NR allows the CHKPT macro instruction to establish a
checkpoint.

DEFERRED STEP RESTART

TO perform a deferred step restart, the RESTART parameter must identifY
the step at which execution is to be resumed. Steps preceding the
restart step are interpreted but are not initiated.

Appendix B: Using the Restart Facilities 305

Appendix

Since dispostion processing occurred during the original execution
of the job, you may have to modify control statements associated with
the restart step before you resubmit the job. Modifications may be
required in two cases:

1. A data set was defined as NEW during the original execution. If it
was created during the original execution, you must change the data
set' s status to OLD, define a new data set, or delete the da ta set
before resubmitting the job.

2. A data set was passed and was to be received by the restart s.tep or
a step following the restart step. If the passed data set is not
cataloged, yOU must supply, in the receiving step, volume serial
numbers, device type, data set sequence number, and label type.
(Label type cannot be retrieved from the catalog.)

To limit the number of modifications required before you resubmit
the job, you can assign conditional dispositions during the original
e xecuti on. (Data set s assigned a temporary name or no name can only be
assigned a conditional disposition of DELETE.) If deferred step restart
will be performed, conditional dispositions should be used:

• To delete all new data sets created by the restart step.

• To keep all old data sets used by the restart step, other than those
passed to the step. (If a nontemporary data set is defined as
DISP=(OLD,DELETE), it is very important that you assign a
conditional disposition of KEEP.)

• To catalog all data sets pass ed from steps preceding the restart
step to the restart step or to steps following the restart step.

Additional changes can be made to your control statements before
resubmitting the job. For example, you can vary device and voll.IDle
configurations and request step restart on an alternate system with the
same configuration as used originally. You can also make changes to your
data.

DEFERRED CHECKPOINT RESTART

TO perform a deferred checkpoint restart, the RESTART parameter must
identify the step and the checkpoint at which execution is to be
resumed. The SYSCHK DD statement, which defines the checkpoint data set,
must also be inclQded. (The SYSCHK DD statement is described in the
chapter "Special Ddnames" in Section IV.)

An internal representation of your statements is kept as control
i nf orma tion wi thin the system. Some of the control information for the
restart step or steps following the restart step may have to be modified
before execution can be resumed at a checkpoint. The following
modifications for the restart step are automatically made by the system,
using information contained in the checkpoint entry:

• '!he status of data sets used l::!Y the step is changed from NEW to OLD.
(If a new data set was assigned a nonspecific voll.IDle and had not
been opened before the checkpoint was established, this change is
not made.)

• If nonspecific volumes were requested for a data set used in the
restart step, the assigned device type and volume serial numbers are
made part of the control information.

306 JCL Reference (Release 21.7)

• For a multivolume data set, the volume being processed when the
checkpoint was established is mounted.

The only required modification that you must make to a control
statement is to supply certain infonnation about a data set that was
being passed by a step preceding the restart step to a step following
the restart step. you must supply, in the receiving step, volume serial
numbers, device type, data set sequence number, and label type. You will
not have to make these modifications if, during the original execution,
you assigned a conditional disposition of CATLG to such data sets. If
the data is cataloged, the system can retrieve this information from the
catalog. (Label type cannot be retrieved from the catalog.) You should
also use conditional dispositions to keep all data sets used by the
restart step. Data sets assigned a temporary name or no name can only be
assigned a conditional disposition of DELETE. Therefore, if you plan a
deferred checkpoint restart, you should not define your data sets as
temporary. (For any nontemporary data set that may be deleted, it is
very important that you assign a conditional disposition of KEEP.)

Before resubmitting the job for checkpoint restart, you can make
other modifications to control statements associated with the restart
step or steps following the restart step. The following items apply to
the step in which restart is to occur:

• The DD statements in the restart step can be altered, but the
statements must have the same names as used originally. You can also
include additional DD statements .•

• If a data set was open at the time a checkpoint was established and
restart is to begin at that checkpoint, OD statements in the restart
step can define the same data set. If there is no need to process a
data set after restart, you can define the data set by coding the
DUMMY parameter or DSNAME=NULLFILE on a OD statement provided that:
(1) the basic sequential access method (BSAM) or the queued
sequential access method (QSAM) was being used to process the data
set when the checkpoint was established, (2) the data set is not the
checkpoint data set that is being used to restart the job step, and
(3) the job step is not restarted from a checkpoint that was
established in an end-of-volume exit routine for the data set. The
name of the DD statement must be the same as the one used for the
data set during the original execution of your program.

• If DUMMY is not specified, the DD statements must define the same
data sets. Also, the data sets must not have been moved on the
volume or onto another volume •

• , If a data set was not open when the checkpoint was established and
is not needed during restart, you can replace the parameters us~d to
defi ne the data set with the DUMMY parameter.

• You can alter the data in the'restart step. If you omit the data, a
delimiter statement (/*) is not required, unless the data was
preceded by a DD DATA statement.

Modifications you might want to IllClke to control statements following
the restart step are: varying device and volume configurations, altering
data, and possibly, requesting checkpoint restart on an alternate system
wi th the same configuration as us ed originally. I f the parameter s PGM,
COND, SUBALLOC, and VOLUME=REF refer to steps preceding the restart
step, you must resolve these references before resubmitting the job. (A
backward reference of VOLUME=REF is allowed if the referenced statement
includes VOLUME=SER=(serial number).)

Appendix B: Using the Restart Facilities 307

Appendix B

Examples of Using the Restart Facilities
1. The following control statements illustrate the preparations that

would be made for either an automatic step or checkpoint restart
before the job is submitted for the first time.

//STMRG3
//STEP1
//INPUT
//
//OUTPUT
//
//WORKl
//WORK2
//CHKPl'
//STEP2
//MERG1
//MERG2
//

JOB
EXEC
DD

DD

DO
DO
DD
EXEC
DO
DD

//RESULTS DD
//

54321,A.USER,MSGLEVEL=(1,O),RD=R
PGM=SIMPSOPl'
DSN=SORTIN,VOL=SER=100468,UNIT=2400,
DISP=(OLD,DELETE)
DSN=INV(+l),UNIT=2311,VOL=SER=555334,
SPACE=(3200,(200,100»,DISP=(NEW,CATLG)
UNIT=2400, DISP=(NEW, DELETE)
UNIT=2400,DISP=(NEW,DELErE)
UNIT=2400,DISP=(NEW,DELETE)
PGM=MYMERGE
OSN=INV(+l),OISP=QLD
DSN=M5,VOL=SER=(092501,092502,092503),
UNIT=(2400,3),DISP=(OLD,KEEP)

DSN=M6,UNIT=2400,VOL=SER=(100101,100102,
100103),DISP=(NEW,KEEP)

x

x

x

Here, the RD parameter requests step restart for any abnormally
terminated job step. In STEPl, the OD statement CHKPT defines a
checkpoint data set. For this step, once a CHKPT macro instruction
is executed, only automatic checkpoint restart is performed. An
automatic checkpoint restart cannot occur in STEP2 since a
checkpoint data set is not defined.

2. The following control statements illustrate the preparations that
would be made for either an automatic or deferred step restart
before the job is submitted for the first time.

//STMRG3
//STEPl
//INPUT
//
//OUTPUT
//

//WORKl
//WORK2
//STEP2
//MERG2
//

JOB 54321,A. USER, MSGLEVEL= (1., 0), RD=R
EXEC PGM=SIMPSORT
DD DSN=SORTIN, VOL=SER=100468,UNIT=2400,

DISP=(OLD,DELETE,KEEP)
DD DSN=INV(+1),UNIT=2311,VOL=SER=555334,

SPACE=(3200,(200,100»,DISP=(NEW,CATLG,DELETE)

DD UNIT=2400,DISP=(NEW,DELETE)
DD UNIT=2400,DISP=(NEW,DELETE)
EXEC PGM=MYMERGE
DD DSN=M5,VOL=SER=(092501,(092502,092503),

//RESULTS DD
//

UNIT=(2400,3),DISP=(OLD,KEEP)
DSN=M6,UNIT=2400,VOL=SER=(100101,100102,
100103),DISP=(NEW,KEEP,DELETE)

x

x

x

x

If you are resubmitting this job for step restart, you must code the
RESTART parameter on the JOB statement and identify the step at
which execution is to be resumed. If execution is to be resumed with
STEP 2, the MERGl DD statement must be changed to refer to the
generation data set by means of its present relative generation
number, i.e., DSN=INV(O).

3. The following control statements illustrate the preparations that
would be made for an automatic step or checkpoint restart or a
deferred checkpoint restart before the job is submitted for the
first time.

308 JCL Reference (Release 21.7)

//STMRG3 JOB
//STEP1 EXEC
//INPUT1 DD
//
//OUTPUT DD
//
//WORK1 DD
//WORK2 DD
//CHKPl' DD
//STEP2 EXEC
//MERGl DD
//MERG2 DD
//
//RESULTS DD
//

54321,A.USER,MSGLEVEL=(1,0),RD=R
PGM=SIMPSORl'
DSN=SORTIN, VOL=SER=100468, UNIT=2400, X
DISP=(OLD,DELETE,KEEP)
DSN=INV(+l), UNIT=2311, VOL=SER=555334, X
SPACE=(3200,(200,100»,DISP=(NEW,CATLG,KEEP)
DSN=A, UNIT=2400, DISP=(NEW,DELETE,CATLG)
DSN=B,UNIT=2400,DISP=(NEW,DELETE,CATLG)
DSN=O,UNIT=2400,DISP=(NEW,DELETE,CATLG)
PGM=MYMERGE
DSN=INV(+l),DISP=OLD
DSN=M5, VOL=SER= (0925'-01,092502,092503), X
UNIT=(2400,3),DISP=(OLD,KEEP)
DSN=M6,UNIT=2400,VOL=SER=(100101,100102, X
100103),DISP=(NEW,KEEP)

Either an automatic checkpoint restart or a deferred checkpoint
restart can occur in STEfl if the step abnormally terminates. To
perform a deferred checkpoint restart, the RES~RT parameter must be
coded on the JOB statement and a SYSCHK DD statement must be
included before resubmitting the job. Only automatic step restart
can occur in STEP2. The data sets that would normally be defined as
temporary have been defined as nonternporary data sets so conditional
dispositions can be assigned to them.

Appendix B: Using the Restart Facilities 309

Appendix B

310 JCL Reference (Release 21.7)

Appendix C: Creating and Retrieving Indexed Sequential Data Sets

Indexed sequential (ISAM) data sets are created and retrieved using
special subsets of DD· statement parameters and subparameters. Each data
set can occupy up to three different areas of space:

1. Prime area -- This area contains data and related track indexes.. It
exists for all indexed sequential data sets.

2. OVerflow area This area contains overflow from the prime area
when new data is added. It is optional.

3 • Index area -- This area contains master and cylinder indexes
associated with the data set. It exists for any indexed sequential
data set that has a prime area occupying more than one cylinder.

Indexed sequential data sets must reside on direct access volumes. The
data set can reside on more than one volume and the device types of the
volumes may in some cases differ.

Creating an Indexed Sequential Data Set
One to three DD statements can be used to define a new indexed
sequential data set. When you use three DD statements to define the data
set, each DD statement defines a different area and the areas must be
defined in the following order:

1. Index area.

2. Prime area.

3. Overflow area.

When you use two DD statements to define the data set, the areas must be
defined in the following order:

Index area. 1. Prime area

or

2. Prime area. 2. Overflow area.

When you use one DD statement to define the data set, you are defining
the prime area and, o~ionally, the index area.

When more than one DD statement is used to define the data set,
assign a ddname only to the first DD statanent; the name field of the
other statanents must be blank.

The only DD statement parameters that can be coded when defining a
new indexed sequential data set are the DSNAME, UNIT. VOLUME, LABEL,
DCB, DISP, SPACE, SEP, and AFF parameters. When to code each of these
parameters and what restrictions apply are described in the following
paragraphs.

Appendix C: Creating and Retrieving Indexed Sequential Data Sets 311

THE DSNAME PARAMErER

The DSNAME parameter is required on any DD statement that defines a new
temporary or nontemporary indexed sequential data set. To identify the
area you are defining, you follow the DSNAME parameter with the area:
DSNAME=name(INDEX), DSNAME=name(PRIME), or DSNAME=name(OVFLOW). If you
are using only one DD statement to define the data set I code
DS NAME= name (PRIME) or DSNAME=name.

When reusing previously allocated space to create an ISAM data set,
the DSNAME parameter must contain the name of the old dat·a set to be
overlaid.

THE UNIT PARAMEl'ER

The UNIT parameter is required on any DD statement that defines a new
indexed sequential data set unless VOLUME=REF=reference is coded. You
must request a direct access device in the UNIT parameter and must not
request DEFER.

If there are separate DD statements defining the prime and index
areas, you must request the same number of direct access devices for the
prine area as there are volumes specified in the VOLUME parameter.. You
may request only one direct access volume for an index area and one for
an overflow area.

A DD statement for the index area or overflow area can request a
device type different than the type requested on the other statements.

Another way to request a device is to code UNIT=AFF=ddname; where
the named DD statement requests the direct access device or device type
you want. New direct access data sets imply deferred mounting. In this
case, do not code UNIT=AFF.

THE VOLUME PARAMErER

The VOLUME parameter is required only if you want an area of the data
set written on a specific volume or if the prime area requires use of
more than one volume. (If the prime area and index area are defined on
the same statement, yoo cannot request more than one volmne on the DD
statement. When a multiple volume prime area is required specific serial
numbers must be specified.) Either supply the volume serial number or
numbers in the VOLUME parameter or code VOLUME=REF=reference.

If you make a nons pecific volume request and the first volume
searched does not have enough space available, the step may abnormally
terminate, depending on the following circumstances:

• If you requested multiple volmnes, space allocation is not fulfilled
and the job step is terminated.

• If you requested a single volume and the DD statement containing the
request is the first or only DD statement defining the dataset, the
system attempts to find another volume with sufficient space
available.

• If you requested a single volume and the DD statement containing the
request is the second or third DD statement defining the data set,
space allocation is not fulfilled and the job step is terminated.

with both specific and nonspecific volume requests, you can also
request a private volume with the PRIVATE subparameter and request that

312 JCL Reference (Release 21.7)

the private volume be retained with the RETAIN subparameter. These
subparameters are discussed in detail in the chapter on the VOLUME
parameter.

Note: If a new ISAM data set is being created with a nonspecific volume
request and it's DSNAME already exists on a vOlurne(s) eligible for
allocation, the job may fail due to duplicate names on the volume.
Successful allocation, under these conditions, depends upon where the
old data set resides in relation to eligible devices. Failures of this
type can be corrected by either scratching the old data set or renaming
the new data set before resubmitting the job.

THE LABEL PARAMETER

The LABEL parameter need only be coded to specify a retention period
(EXPDT or RETPD) or password protection (PASSWORD).

THE DCB PARAMETER

The DCB parameter must be coded on every DD statement that defines an
indexed sequential dataset. At minimum, the DCB parameter Imlst contain
DSORG=IS or ORG=ISU. other DCB subparameters can be coded to complete
the data control block if it has not been completed by the processing
pr(XJram. When more than one DD statement is used to define the da ta set,
code all the DCB subparameters on the first DD statement. Code
DCB=*. ddname on the remaining statement or statanents; ddname is the
name of the DD statement that c,ontains the DCB subparameters.

When reusing previously allocated space and recreating an ISAM data
set, desired changes in the DCB parameter must be coded on the DD
statement. Although you are creating a new data set, some DCB
subparameters cannot be changed if you want to use the space that the
old data set used. The DCB subparameters , you can change are: BFALN,
BLKSIZE, CYLOFL, DSORG, HIARCHY, KEY LEN, LRECL, Nep, NTM, OPTCD, RECFM,
and RKP.

THE DISP PARA~~TER

If you are creating a new data set and not reusing preallocated space,
the DISP parameter need only be coded if you want to keep, DISP= (,KEEP) ,
catalog, DISP=(,CATLG), or pass, DISP=(,PASS), the data set. If you are
reusing previously allocated space and recreating an ISAM data set, code
DISP=OLD. The newly created data set will overlay the old one.

In order to catalog the data set when DISP= (, CATLG) is coded or pass
the data set when DISP=(,PASS) is coded, the data set must be defined on
only one DD statement. If the data set was defined on more'than one DD
statement and the volumes on which the data set now resides correspond
to the same device type, you can use the IEHPROGM utility program to
catalog the data set. Refer to the chapter "The IEHPROGM Program" in the
utilities publication for details.

THE SPACE PARAMETER

Nonspecific Allocation Technigue

The SPACE parameter is required on any DD statement that defines a new
indexed sequential data set. Use either the recommended nonspecific
allocation technique or the more restricted absolute track (ABSTR)
technique. If more than one DD statement is used to define the da ta set,
all must request space using the same technique.

Appendix C: Creating and Retrieving Indexed Sequential Data Sets 313

Appendix C

You must request the primary quantity in cylinders (CYL). When the DD
statement that defines the prime area requests more than one volume,
each volume is assigned the number of cylinders requested in the SPACE
parameter.

One of the subparameters of the SPACE parameter, the "index"
subparameter, is used to indicate how many cylinders are required for an
index. When one DD statement is used to define the prime and index areas
and you want to explicitly state the size of the index, code the "index"
subparameter.

The CONTIG subparameter can be coded in the SPACE·parameter.
However, if CONTIG is coded on one of the statements, it must be coded
on all of them.

You cannot request a secondary quantity for an indexed sequential
data set. Also, yoo cannot code the sUbparameters RLSE, MXIG, ALX, and
ROUND.

Absolute Track Technique

The number of tracks you request must be equal to one or more whole
cylinders. The address of the beginning track must correspond with the
first track of a cylinder other than the first cylinder on the volume.
whe n the DD statement that defines the pr ime area requests more than one
volume, space is allocated for the prime area beginning at the specified
address and continuing throogh the volume and onto the next volume until
the request is satisfied. (This can only be done if the volume table of
contents of the second and all succeeding volumes is contained within
the first cylinder of each volume.)

One of the subparameters of the SPACE parameter, the "index"
subparameter, is used to indicate how many tracks are required for an
index. The number of tracks specified must be equal to one or more
cylinders. When one DD statement is used to define the prime and index
areas and you want to explicitly state the size of the index, code the
"index" subparameter.

If you also specify a number of tracks or cylinders to be used as a
directory or index, the primary quantity you code will be the total
number of tracks or cylinders assigned. Example: if SPACE=(CYL, (10,1»
is specified, 10 cylinders will be assigned.)

Note: If the indexed sequential data set is to reside on more than one
volume and an error is encountered as the volumes are being allocated to
the data set, follow this procedure before resubmitting the job: use the
IEHPROGM utility program to scratch the data set labels on any of the
volumes to which the data set was sucessfully allocated. This utility
program is described in the chapter "The IEHPROGM Program" in the
Utilities publication.

THE SEP OR AFF PARAMErER

The SEP or AFF parameter is coded only if you want channel separation
from the area or areas defined on the preceding statement or statements
in the group. In order for the areas to be written using separate
channels, you nust also request devices by their actual address, e.g.,
UNIT=190.

314 JCL Reference (Release 21.7)

Area Arrangement of an Indexed Sequential Data Set
When you create an indexed sequential data set, the arrangement of the
areas is based on two crit eria:

1. The number of DD statements used to define the data set.
2. What area each DD statement defines.

An additional criterion is used when you do not include a DD statement
that defines the index area:

3. Is an index size coded in the SPACE parameter of the DD statement
that defines the prime area?

Appendix C: Creating and Retrieving Indexed Sequential Data Sets 315

Appendlx C

Figure 40 illustrates the different arrangements that can result
based on the criteria listed above. In addition, Figure 40 indicates
what restr ictions apply on the number and types of devices that can be
requested.

r-------------------------------------~-----------------T-------------,
I CRITERIA I I I
~------------T---------------~-------~ I I
I I I IRESTRICTIONS ON I RESULTING I
li.Number of 12.Area defined 13.Index IDEVICE TYPES AND IARRANGEMENT I
I DD I on a DD I size I NUMBER OF DEVICES I OF I
I statements I statement I coded? I REQUESTED. I AREAS I
~-----------+---------------+---------+-------~---------+-------------~
I I I I I I-
I 3 I INDEX I I None I Separate I
I I PRIME I I lindex, prime. I
I I OVFLOW I I I and overflow I
I I I I I areas,. I
~------------+---------------+---------+-----------------+------------~
I I I I I I
I 2 I INDEX I I None I Separa te I
I I PRIME I I I index and I
I I I I I prime I
I I I I I areas,. 1 I
~------------t_--------------+---------+-----------------+-------------~
I I I I I I
I 2 I PRIME I No I None I Separate I
I I OVFLOW I I I prime and I
I I I I I overflow I
I I I I I areas. An I
I I I I I index area is I
I I I I I at the end ofl
I I I I I the overflow I
I I I I I area • I
~------------+---------------+---------+-----------------t-------------i
I I I I I I
I 2 I PRIME I Yes IThe statement I Separate I
I I OVFLOW I I defining the I prime and I
I I I Iprime area cannotloverflow I
I I I Irequest more thanlareas. An I
I I I lone device. I index area isl
I I I I lembedded in I
I I I I I the prime I
I I I I I area. I
~------------+---------------+---------+-----------------+-------------~
I I I I I I
I 1 I PRIME I No I None I Prime area I
I I I I I with index I
I I I I larea at its I
I I I I I end,. 2 I
~------------+---------------+---------+-----------------+-------------~
I I I I I I
I 1 I PRIME I Yes I Cannot request I Prime area I
I I I I more than one I wi th embedded I
I I I I device. I index area,. I
~------------~---------------~--------~-----------------L ____________ ~
11If both areas are on volumes that correspond to the same device I
I type, an overflow area is established if one of the cylinders I
I allocated for the index area is only partially used. The overflow I
I area is established in the unused portion of that cylinder. I
12If the unused portion of the index area is less than one cylinder, I
I it is used as an overflow area. I L __ J

Figure 40. Area Arrangement of Indexed Sequential Data Sets

316 JCL Reference (Release 21.7)

Retrieving an Indexed Sequential Data Set
If all areas of an existing indexed sequential data set reside on
volumes of the same device type, you can retrieve the entire data set
with one DD statemen t. If the index or overf low resides on a volume of a
different device type, you must use two DD statements. If the index and
overflow reside on volumes of different device types., you RUst use three
DD statements to retrieve the data set. The DD statements are coded in
the following order:

1. Fi rst DD statement - defines the index area

2.. sec ond DD statement - defines the prime area

3.. Third DD statement - defines the overflow area

The only DD statement parameters that can be coded when retrieving
an indexed sequential data set are the DSNAME, UNIT, VOLUME, DCB, and
DISP parameters. When to code each of these parameters and what
restrictions apply are described in the following paragraphs.

THE DSNAME P ARAMEl'ER

The DSNAME parameter is always required. If the data set was passed
from a previous step, identify it by a backward reference.

THE UNIT PARAMEl'ER

The UNIT parameter is required unless the data set resides on one volume
and was passed or unless t he data set was cataloged. You identify in the
UNIT parameter the device type and how many of these devices are
required.

If the data set resides on more than one volume and the volumes
correspond to the same device type, you need only one DD statement to
retrieve the data set. Request one device in the UNIT parameter per
volume. If the index or overflow area of the data set resides on a
different type of volume t han the other areas, you must use two DD
statements to retrieve the data set. On one DD statement, request the
device type required to retrieve the index or overflow area. On the
other DD statement, request the device type and the number of devices
required to retrieve the prime area and the overflow area if the
overflow area resides on the same device type. If the index and the
overflow areas reside on different device types from the prime area, a
third DD statement is needed.

THE VOL liME PARAMETER

The VOLUME parameter is required unless the data set resides on one
volume and was passed or unless the data set was cataloged. Identify in
the VOLUME parameter the serial numbers of the volumes on which the data
set resides. C ode the serial Illlmbers in the same order as they were
coded on the DD statements used to create the data set.

THE DCB PARAMETER

The DCB parameter must be coded unless the data set was passed from a
previous step. The DCB parameter must always contain DSORG=IS or
DSORG=ISU. Other DCB subparameters can be coded to complete the data
control block if it has not been completed by the processing program.

Appendix C: Creating and Retrieving Indexed Sequential Data Sets 317

Appendix C

T HE DIS P PARAMETER

The DISP parameter must always be coded. The first subparameter of the
DISP parameter must be MOD or OLD. you can, optionally, assign a
disposition as the second subparameter.

Example of Creating and Retrieving an Indexed Sequential Data Set

1. The following job step includes the DD statements that co~ld be used
to create an indexed sequential data set. Each area of the indexed
sequential data set is defined on. a separate DD statement.

//OUTPUT4
//GROUP1
//
//
//
//
//
//

//
//

EXEC PGM=INCLUDE
DD DSNAME=PART86(INDEX),DISP=(,KEEP),UNIT=2314,

VOLUME=SER=538762,SPACE=(CYL,10"CONTIG),
DCB=(DSORG=IS,RECFM=F,LRECL=80,RKP=1,KEYLEN=8)

DD DSNAME=PART86(PRIME),DISP=(,KEEP),UNIT=2311,2),
VOLUME=SER=(538763,538764),
SPACE=(CYL,(25)"CONTIG),DCB=*.GROUP1

DD DSNAME=PART86(OVFLOW),DISP=(,KEEP),UNIT=2311,

VOLUME=SER=538765,SPACE=(CYL,15"CONTIG),
DCB=*.GROUPl

The following job step includes the DD statements required to
retrieve the indexed sequential data set created above.

//INPUT12
//RET4
//
//
//

EXEC PGM=ADD
DD DSNAME=PART86,DCB=DSORG=IS,UNIT=2314 1

DISP=OLD,VOLUME=SER=538762
DD DSNAME=PART86 ,DCB=DSORG=IS ,UNIT= (2311, 3),

DISP=OLD,VOLUME=SER=(S38763,S38764,83876S)

x
X

X
X

X

X

X

X

Two DD statements are required to retrieve the data set because the
index area resides on a volume of a different device type than the
volumes on which the prime and overflow areas reside.

318 JCL Reference (Release 21.7)

Appendix D: Creating and Retrieving Generation Data Sets

A generation data set is one of a collection of successive, historically
related, catalCXJed data sets known as a generation data group. The
system keeps track of each data set in a generation data group as it is
created so that new data sets can be chronologically ordered and old
ones easily retrieved.

To create or retrieve a generation data set, you identify the
generation data group name in the DSNAME parameter and follow the group
name with a relative generation number. When creating a generation data
set, the relative generation number tells the system whether this is the
first data set being added during the job, the second, the third, etc.
When retrieving a generation data set, the relative generation number
tells the system how nany data sets have been added to the group prior
to the current job.

A generation data group can consist of cataloged sequential,
partitioned, indexed sequential (if the data set is defined on one DD
statement), and direct data sets residing on tape volumes, direct access
volumes, or both. Generation data sets can have like or unlike DCB
attributes and data set organizations. If the attributes and
organizations of all generations in a group are identical, the
generations can be retrieved together as a single data set (up to 255
data sets can be retrieved in this way).

Before You Define the First Generation Data Set
Before you define the first generation data set, you must build a
generation data group index. This index provides lower-level entries for
as many generation data sets (up to 255) as you would like to have in
your generation data group. The system uses these lower-level indexes to
keep track of the chronological order of the generation data sets. The
index must reside on the system residence volume, or an alternate
control volume. You use the IEHPROGM utility program to build your
index ~ this program is described in the chapter nThe IEHPROGM Programn
in the utilities pIblication.

Another requirement of generation data groups is that a data set
I abel must exist on the same volume as the index. The system uses this
label to refer to DCB attributes when you define a new generation data
set. There are two ways to satisfy this requirement: (1) create a model
data set label before you define the first generation data set; or (2)
use the DCB parameter to refer the system to an existing cataloged data
set each time you define a new generation data set.

creating a Model Data Set Label

To create a model data set label, you must define a data set and request
that it be placed on the same volume as the generation data group index.
This ensures that there is always a data set label on the same volume

as the index to which the system can refer.

The name you assign to the data set may be the same or different
than the name assigned to the generation data group. (If you assign the
sane name for both, the data set associated with the model data set
label cannot be cataloged.) Yoo may request a space allocation of zero
tracks or cylinders. The DCB attributes you can supply are DSORG, RECFM,
OPl'CD, BLKSIZE, LRECL, KEYLEN, and RKP.

Appendix D: Creating and Retrieving Generation'Data Sets 319

Appe;ndix D

This is an example of creating a model data set label:

//DD1
//
//

DD DSNAME=PAY.WEEK,DISP=(NEW,KEEP>,UNIT=2311,
VOLUME=SER=SYSRES,SPACE=(TRK,O>,DCB=(RECFM=FB,
LRECL=24 0, BLKSIZE=96 0 >

x
X

You need not create a model data set label for every generation data
group whose indexes reside on the same volume. Instead, you may create
one model data set label to be used by any number of generation data
groups. If you create only one model, you should not supply any DCB
attributes. When you create a generation data set, you specify the name
of the model in the DCB parameter and follow the name with a list of all
the DCB subparameters required for the new generation data set, i ... e.,
DCB=(dsname,list of attributes>.

Referring the system to a Cataloged Data Set

If there is a cataloged data set that resides on the same volume as your
generation data group index and you are sure that data set will exist as
long as you are adding data sets to.your generation data group, you need
not create a model data set label. When you create a generation data
set, you specify the name of the cataloged data set in the DCB
parameter, i.e., DCB=dsname. If all the DCB attributes are not contained
in the label of the cataloged data set, or if you want to override
certain attributes, follow the data ·set name with these attributes,
i.e., DCB=(dsname,list of attributes>.

Creating a Generation Data Set
When defining a new generation data set" you always code the DSNAME,
DISP, and UNIT parameters. other parameters you might code are the
VOLUME, SPACE, LABEL, and DCB parameters.

~ote: If you make a nons pecific request for a tape vol tnne for a new
generation data set and the data set is never opened, the system will
catalcg the data set with a volume serial number of blanks. This
prevents you from retrieving an incorrect generation and thus maintains
the integrity of the generation data group.

I
Tape generation data sets that were never opened and that were

cataloged may only be uncataloged by specifying the data set name
parameter in the format of generation data group name and the rela ti ve
generation number or by using IEHPROGM.

THE DSNAME PARAMETER

In the DSNAME parameter, you code the name of the generation data group
followed by a number enclosed in parentheses. This number must be 1 or
greater. If this is the first data set you are adding to a particular
generation data group during the job, code +1 in parentheses. Each time
during the job you add a data set to the same generation data group,
increase the ntnnber by one.

Any time you refer to this data set later in the job, you use the
same relative generation number as was used earlier •. At the end of the
job, the system updates the relative generation numbers of all
generations in the groop to reflect the additions.

Note: Do not code the DSNAME parameter using index (alias) names, even
if they do exist for the highest level index.

Unpredictable results may occur if using a relative generation
number which causes the actual generation number to exceed G9999.

320 JCL Reference (Release 21.7)

THE DISP PARAMETER

New generations are assigned a status of NEW and a disposition of CATLG
in the DISP parameter, i.e., DISP=(NEW,CATLG). If you do not specify a
disposition, or specify a disposition other than CATLG, the system
assumes CATLG.

THE UNIT PARAMETER

The UNIT parameter is required on any DD statenent that defines a new
generation data set unless VOLUME=REF=reference is coded. In the UNIT
parameter, you identify the type and number of devices you want (tape or
direct access).

Another way to request a device is to code UNIT=AFF=ddname; where
the named DD statement requests the device or device type you want.

THE VOLUME P ARAMEl'ER

yOU may assign a volume in the VOLUME parameter or let the system assign
one for you. The VOLUME parameter can also be used to request "a private
volume (PRIVATE), to retain the private volume (RETAIN), and to indicate
that more volumes may be required (volume count).

THE S PACE PARAMETER

The SPACE parameter is coded only when the generation data set is to
reside on a direct access volume. The SPLIT or SUBALLOC parameter can be
coded in place of the SPACE parameter if the data set's organization
permi ts the use of thes e parameters.

THE LABEL PARAMETER

you can specify label type, password protection (PASSWORD), and a
retention period (EXPDr or RETPD) in the LABEL parameter. If the data
set will reside on a tape volume and is not the first data set on the
volume, specify a data set sequence number. The expriation date from the
model data set control block is used unless an expiration date is coded
on the DD statement.

THE DCB PARAMETER

A model data set label that has the same name as the group name may
exist. If this is so, and if the label contains all the attributes
required to define this generation, you need not code the DCB parameter,.
If all the attributes are not contained in the label, or if you want to

override certain attributes, code these attributes in the DCB parameter,
i.e., DCB=(list of attributes).

If a model data set label has a different name than the group name
and if the label contains all the attributes required to define this
generation data set, only the name of the data set associated with the
model data set label need be coded. Code the name in the DCB parameter.,
i.e., DCB=dsname. If all the attributes are not contained in the label,
or if you want to override certain attributes, follow the data set name
with these attributes, i.e., DCB=(dsname,list of attributes).

If a model data set "label does not exist, you must code the name of
a cataloged data set that resides on the same vol ume as the genera tion
data group index, i.e., DCB=dsname. If all the attributes are not
contained in the label for this data set, or if you want to override
certain attributes, follow the data set name with these attributes,
i.e., DCB=(dsname,list of attributes).

Appendix D: Creating and Retrieving Generation Data Sets 321

Appendix

Retrieving a Generation Data Set
To retrieve a generation data set, you always code the DSNAME and DISP
parameters. other parameters you might code are the UNIT, lABEL, and DCB
parameters.

THE DSNAME PARAMETERS

In the DSNAME parameter, you code the name of the generation data group
followed by a number enclosed in parentheses. The number coded is a
relative generation number with zero (0) referring to the highest
generation number present in the catalog prior to the start of the
current job. A reference to the second highest generation number
present" prior to job initiation, would be coded (-1). If you wish to
refer to a new member that was created in an earl ier step of this job
code the same positive integer that was used when it was created.

When any data set member is referenced more than once in a job the
later reference(s) will have the same relative generation number as the
first reference, even if another generation has been added during.the
job.

Note: Relative generation IUlmbers are based on the catalog, as it
existed at job initiation, plus any changes made to it by cataloging new
members of the data set during the job. If a member is lDlcataloged
during. the job the later use of that menDers" or earlier members,
relative generation number(s) will result in incorrect data set
ref erences.

If you want to retrieve all generations of a generation data group
by concatenating all existing data sets in the generation data group,
starting with the most recent and ending with the oldest, with unit
affinity to the mc:st recent data set, you specify the generation data
group name without a generation number, e.g., DSNAME=WEEKLY.PAYROLL. You
can retrieve all generations as a single data set only if the attributes
and organizations of all generations are identical.

THE DISP PARAMETER

The DISP parameter must always be coded. The first subparameter of the
DISP parameter must be OW" SHR, or MOD. You can" optionally, assign a
disposition as the second subparameter. Using the disposition
subparameter PASS can cause mishandling of a data set at job termination
because a passed GDG cannot be received.

When retrieving all generations of a generation data group as a
single data set, yru shoold avoid coding PM)S as the second
subparameter. In all such retrievals the unit and volume information for
each generation level will be obtained from the catalog and not via the
pass mechanism.

THE UNIT PARAMETER

Code the UNIT parameter when you want more than one device assigned to
the data set. Code the number of devices you want in the unit count
subparameter{, or, if the data set resides on more than one volume and
you want as many devices as there are volumes, code P in place of the
uni t count subparameter.

322 JCL Reference (Release 21.7)

THE LABEL PARAMETER

Code the LABEL parameter when the data set has other than standard
labels. The expiration date from the model data set control block is
used unless an expiration date is coded on the DD statement.

THE DCB PARAMETER

Code the DCB parameter when the dataset has other than standard labels
and DCB information is required to complete the data control block.

Resubmitting a Job for Restart
Certain rules apply when you refer to generation data sets in a job
resubmitted for restart (the RESTART parameter is coded on the JOB
statement) •

For step restart: If step restart is performed, generation data sets
that were created and cataloged in steps preceding the restart step must
not be referred to in the restart step or in steps following the restart
step by means of the same relative generation numbers that were used to
create them. Instead, you must refer to a generation data set k¥ means
of its present relative generation number. For example, if the last
generation data set created and cataloged was assigned a generation
number of +2, it would be referred to as 0 in the restart step and in
steps following the restart step. In this case, the generation data set
assigned a generation number of +1 would be referred to as -1.

For checkpoint restart: If generation data sets created in the restart
step were kept instead of cataloged (i.e., DISP=(NEW,CATLG,KEEP) was
coded), you can, during checkpoint restart, refer to these data sets and
generation data sets created and cataloged in steps preceding the
restart step by means of the same relative generation numbers that were
used to create them.

Reference:

1. Generation data sets can be created and retrieved using utility
programs. How to do this is described in "Appendix E: Generation
Data Groups" in the utilities publication. Al so described in this
appendix is how to put indexed sequential data sets in a generation
data group.

Example of Creating and Retrieving Generation Data Sets
1. The follCMing job step includes the DD statements that could be

used to add three data sets to a generation data group.

//STEPA
//DD1
//
//DD2
//
//DD3
//
// -

EXEC PGM=PROCESS
DD DSNAME=A.B.C(+1),DISP=(NEW,CATLG),UNIT=2400, X

VOL=SER=13846,LABEL= (,SUL)
DD DSNAME=A.B.C(+2),DISP=(NEW,CATLG),UNIT=2311, X

VOL=SER=10311
DD DSNAME=A.B.C(+3),DISP=(NEW,CATLG),UNIT=2301, X

VOL=SER=28929,SPACE=(480,(150,20»,DCB=LRECL-120, X
BLKSIZE=480)

The first two DD statements do not include the DCB parameter;
therefore, a model data set label must exist on the same volume as
the generation data group index and must have the same name as the
generation data groop (A.B.C). since the DCB parameter is coded on
the third DD statement, the attributes LRECL and BLKSIZE, along with
the attributes included in the model data set label, are used.

Appendix D: Creating and Retrieving Generation Data Sets 323

Appendix D

The follCTW'ing job includes the DD statements required to retrieve
the generation data sets defined above when no other data sets have
been added to the generation data group.

//JWC
//STEPl
//DDA
//DDB
//DDC

JOB
EXEC
DD
DD
DD

CLASS=B
PGM=REPORT9
DSNAME=A.B.C(-2),DISP=QLD,LABEL=(,SUL)
DSNAME=A.B.C(-l),DISP=OLD
DSNAME=A.B.C(O),DISP=OLD

324 JCL Reference (Release 21.7)

Appendix E: Default Parameter Values Supplied
in the Input Reader Procedure

\s your control statements are read and interpreted, the input reader
lssigns default values to specific parameters that are not coded and
:hecks for violations of certain restrictions. The default values for
3pecific parameters and the restrictions are specified in the cataloged
?rocedure for the input reader.

The inplt reader is controlled by a reader/interpreter cataloged
?rocedure supplied by IBM or the installation. The default parameter
~alues and restrictions will probably differ in the IBM-supplied and the
installation-supplied procedures.

How to Keep Track of the Default Values and Restrictions
Pigure 40 lists the parameters for which default values are assigned
~hen they are not coded on specific control statements. The default
~alues assigned to these parameters when an IBl-1-supplied cataloged
?rocedure is used are also listed. Space is left in the right-hand
portion of the table so you can write in the default values that will be
assigned when an installation-supplied procedure is used. Figure 40 also
li sts those restrictions that must be checked as the control statements
are read and tells which apply when an IBM-supplied procedure is used.
Space is left in the right-hand portion of the table so you can write in
~hich of these restrictions apply when a installation-supplied procedure
ls used.

The page on which Figure 41 appears may be removed from the
publication and placed in a convenient location, so that you and other
programmers can refer to it.

Appendix E: Default Parameter Values Supplied in the Input Reader Procedure 325

Appendix D

r--,
I Default Parameter Values I
.----------------T------------T-------------~-------------------------f
I I I I Installation-Supplied I
I Parameter I Statement IIBM-supplied .------------T-------------f
I I I I Name: I Name: I
.----------------+------------+-------------+------------+-------------f
I MSGCLASS I JOB IA I I I
I MSGLEVEL I JOB I (0,1) I I I
I PRTY I JOB 11 I I I
I REGION IJOB and EXECISOK I I I
I TIME I EXEC 130 minutes I I I
I ROLL I JOB and EXEC I. (YES, NO) I I I
IUNIT (note 2) IDD ISYSDA I I I
I SPACE (note 2) I DD I (TRK, (50,10» I I I
I BLKSIZE (note 3) I DD I (note 1) I I I
I BUFNO (note 3) I DD I (note 1)' I I I • _______________ ~ ____________ L _____________ L_ ___________ ~ ___ ----------f
I Restrictions I
.---------------~------------T-----------~-------------------------f
I I I I Installation-Supplied I
I Parameter or I Statement I IBM-Supplied .----------T------------f
ISubparameter I I I Name: I Name: I
.----------------+------------+-------------+------------+-------------f
I Accounting I I I I I
I Information I JOB I not required I I I
IProgrammer's I I I I I
I Name I JOB Inot required I I I
IBLP (note 4) IDD INL assumed I I I • _______________ ~ ____________ L _____________ L_ ___________ ~-------------f

I
Notes:

1. The default value differs in each of the three IBM-supplied
procedures, as follows:

r------------------T--,
I I Procedure Name I
I ~-------------T--------------T-----------~
I I RDR I RDR400 I RDR3200 I
I ~-------------+--------------+_----------~
I BLKSIZE I 80 I 400 I 3200 I
I BUFNO I 2 I 2 I 1 I L-________________ -L _____________ ~ ______________ L_ __________ J

2. The default values for the UNIT and SPACE parameters are used when I
you do not include these parameters on a DD statement that defines I
a data set being routed through an output stream (i .. e., the SYSOUT.I
parameter is coded on the DD statement). These default values I
also apply to data sets being routed through an output stream I
during any automatic restart. 1

I
3. The default values for the DCB subparameters BLKSIZE and BUFNO arel

used when you do not include these subparameters on a DD statement I
that defines data in the input stream (i.·e., DD * or DD DATA I
statement). I

I
14,. BLP is a subparameter in the LABEL parameter that requests that I
I tape label processing be bypassed. I L __ l

Figure 41. Default Values and Restrictions supplied in the Supplied in
the Input Reader Procedures

326 JCL Reference (Release 21.7)

Appendix F: A Checklist

When you create or retrieve a data set, the system requires certain
information. This information is supplied on the DD statement that
defines the data set.

This appendix can be used as a checklist: As you code your DD
statements, tind the function you are performing in the left-hand column
of Figure 42. Across from the function are two separate lists of
parameters. These parameters describe the information that you must
supply to the system and the information that you may have to supply.
you can compare yoor DD statement with what is listed to make sure all
the required information is available to the system.

Following Figure 42 are examples of the DD statements that might be
used when performing functions described in the table. Each example is
keyed by number to a particular block within the table. If you do not
understand why a parameter is listed for the function, either look at
the example that corresponds to the number within the block or refer to
the parameter description in Section IV of this publication.

r----------------------------------T-----------------------7-----------,
I I I Information I
I FUNCTION: IInformation That Is IThat May I
I Creating a Data Set IAlways Required I Be Requiredl
t----------------------------------~---------~-------------~-----------~
I Temporary Data Sets 1
~----------------------.- -----------T----------------------7-----------~
I Creating a Data set I UNIT 11 DCB 21
I on a Unit Record Device I I UCS I
r----------------------------------+-----------------------+-----------~
I Creating a Data Set on I UNIT 31 DCB 41
I a Tape Volume I I VOLUME 1
I I I LABEL I
~----------------------------------+-----------------------+-----------~
I Creating a Data Set in I SYSOUT 5,6,71 DCB 81
I the Output Stream I I UNIT 1
Ill. SPACE 1

I I I FCB I
I I I ucs I
r----------------------------------+-----------------------+-----------~ I Creating A Data Set I UNIT 91 DCB 101
I on a Direct Access I SPACE 1 VOLUME I
I Volume I I LABEL 1
r----------------------------------~-----------------------~-----------~
I Nontemporary Data Sets 1
r----------------------------------T-----------------------7-----------~
I Creating a Data Set 1 UNIT 111 LABEL 121
I on a Tape Volume I DSNAME I DCB I
I I DISP I VOLUME 1
r----------------------------------+-----------------------+-----------~
I Creating a Generation I DISP 131 DCB 141
I Data set on a Tape 1 UNIT I LABEL I
I Volume I DSNAME I VOLUME 1 L __________________________________ ~ ______________________ ~ ___________ J

Figure 42. A Checklist (Part 1 of 3)

Appendix F: A Checklist 327

Appendix D

r----------------------------------T-----------------------T-----------,
I I I Information I
I Creating a Nontemporary IInformation That Is IThat May I
I Data set (con't) IAlways Required IBe Required I
.----------------------------------+-----------------------f-----------f
I Creating a Sequential I UNIT 151 LABEL 161
I Data Set on a Direct Access I DSNAME I DCB I
I Volume (BSAM or QSAM) I DISP I VOLUME I
I I SPACE, SPLIT , orSUBALLOC I I
.----------------------------------+-----------------------+-----------f
I Creating a Data Set With I UNIT 171 LABEL 181
I Direct Organization on a I DSNAME I VOLUME I
I Direct Access Volume (BDAM) 1 DISP I I
I I SPACE or SUBALLOC I I
I I DCB I 1
.----------------------------------+-----------------------f-----------f
I creating a Partitioned I UNIT 191 LABEL 201
I Data Set on a Direct Access I DSNAME I VOLUME I
1 Volume (BPAM) I DISP I DCB 1
1 I SPACE or SUBALLOC I I
.----------------------------------+-----------------------f-----------f
I Creating a New Member I DISP 211 UNIT 221
1 for a Partitioned Data I DSNAME I VOLUME 1
I set I 1 1
.----------------------------------+-----------------------f-----------f
I Creating ·a Data set With 1 UNIT 231 VOLUME 241
1 Indexed Sequential Organi- 1 DSNAME 1 LABEL 1
1 zation on a Direct Access I DISP I 1
1 Volume (QISAM) I DCB I 1
I I SPACE I I
.----------------------------------+-----------------------f-----------f
I Creating a Generation I SPACE 251 DCB 261
I Data Set on a Direct I DISP I LABEL I
I Access Volume 1 UNIT 1 VOLUME 1
1 I DSNAME 1 1
.-------------------------------~--+-----------------------f-----------f
1 FUNCTION: I I' I
I Retrieving a Data Set I 1 I
.----------------------------------+~----------------------+-----------f
I Retrieving a Cataloged I DSNAME 271 DCB 281
I Data Set I DISP 1 LABEL 1
I I I UNIT 1
.----------------------------------t-----------------------+-----------f
I Retrieving a Noncataloged I DSNAME 29 I LABEL 30 I
I Data Set on a Tape I UNIT 1 DCB 1
I Volume I VOLUME I 1
I 1 DISP I 1
.----------------------------------+-----------------------+-----------f
I Retrieving a Noncataloged 1 UNIT 311 LABEL 321
1 sequential Data set on a 1 VOLUME I 1
I Direct Access Volume 1 DSNAME I 1
I (BSAM or QSAM) 1 DISP I 1
.----------------------------------+-----------------------f-----------f
I Retrieving a Noncataloged I UNIT 331 LABEL 341
1 Data Set with Direct I VOLUME 1 1
I Organization on a Direct I DSNAME I 1
1 Access Volume (BDAM) 1 DISP I 1
.----------------------------------+-----------------------+-----------f
I Retrieving a Member of I DISP 351 UNIT 361
1 a Partitioned Data Set I DSNAME 1 VOLUME 1
I (BPAM) I 1 1 L __________________________________ ~ _______________________ ~ ___________ J

Figure 42. A Checklist (Part 2 of 3)

328 JCL Reference (Release 21.7)

r----------------------------------T-----------------------T-----------,
I I I Inf ormation I
I I Information That Is I That May I
I Retrieving a Data set IAlways Required IBe Required I

l----------------------------------+-----------------------+-----------f
I Retrieving a Data Set I DSNAME 371 I
I With Indexed sequential I UNIT I I
I Organization on a Direct I VOLUME I I
I Access Volume (QISAM or I DCB I I
I BISAM) I DISP I I

l----------------------------------+-----------------------+-----------f
I Retrieving a Passed I DSNAME 381 LABEL 391
I Data Set I DISP I DCB I
I I I VOLUME I
I I I UNIT I
~----------------------------------+-----------------------+-----------f
I Retrieving a Generation I DSNAME 401 DCB 411
I Data Set I DISP I LABEL I
I I I UNIT I L __________________________________ ~ _______________________ i ___________ J

Figure 42. A Checklist (Part 3 of 3)

Examples

1 //DDA DD UNIT=1404

2 //DDB DD UNIT=1403, UCS=PCAN, DCB=PRTSP=2

3 //DDC DD UNIT=2400

4 //DDD DD UNIT=24 00-1., DCB=DEN=1. VOLUME=SER=14187 , LABEL=2

5 //DDE DD SYSOUT=L

6 //DDF DD SYSOUT=G" DCB=PRTSP=2

7 //DDG DD SYSOUT=(M,,7956)

8 //DDH DD SYSOUT=B.,UNIT=2301,SPACE= (1024, (75,25», X
DCB=BLKSIZE=2048

9 //DDI DD UNIT=SYSDA,SPACE=(TRK,(20,5»

10 //DDJ DD UNIT=2311" SPACE= (CYL, (2.,1)),DCB= (RECFM=S ,LRECL=X) " x
// LABEL=(" SUL)., VOLUME=SER=19 0853 Appendix D

11 //DDK DD UNIT=2400, DSNAME=OUT, DISP= (NEW,KEEP)

12 //DDL DD UNIT=2400-2, DSNAME=WLIU8:, DISP= (,KEEP) ,LABEL= (.,NL), X
// DCB=TRTCH=C,VOLUME=SER=1540

13 //DDM DD DISP= C"CATLG) , UNIT=24 00, DSNAME=WEEK. PAY (+1)

14 //DDN DD DISP=(,CATLG) ,UNIT=24 00-1. DSN=YEAR.MON (+1) ., X
// LABEL= (, SUL) " DCB=A. B. C, VOLUME=SER=GDG18

Appendix F: A Checklist 329

15 //Doo DD UNIT=2311, DSNAME=LNG., DISP= (,KEEP) ,SPACE= (TRK, (12,2»

16 //DDP DD UNIT=2314,DSNAME=CLB,DISP= <:,CATLG), X
// SPACE=(1024,(100,25»,LABEL=(,SUL"EXPDT=70180), X
// VOL=SER=S12148,DCB=(BLKSIZE=240,RECFM=FB,LRECL=60)

17 //DDQ DD UNIT=2311, DSNAME=JCD, DISP= (NEW,KEEP), X
// SPACE=(CYL,(8,1»,DCB=DSORG=DA

18 //DDR DD UNIT=2302,DSN=MT12,DISP=(,PASS), X
// SPACE=(1024,(200,10»,DCB=(DSORG=DA,BLKSIZE=200, X
// KEYLEN=4,RECFM=F),LABEL=(,SUL),VOLUME=SER=49878

19 //DDS DD UNIT=2302,DSNAME=PDS14,DISP=(NEW,KEEP), X
// SUBALLOC=CCYL, (20,1,3) ,STEP1.DD1)

20 //DDT DD UNIT=2314,DSNAME=AHTRY,DISP=(,CATLG), X
// SPACE=(CYL,(8,2,2»,LABEL=("PASSWORD), X
// VOLUME=SER=158491,DCB=(RECFM=F,LRECL=80)

21 //DDU DD DSNAME=AHTRYCSET4),DISP=OLD

22 //DDV DD UNIT=2302,VOLUME=SER=X13912,DISP=OLD, X
// DSNAME=SHTRCMEMB2)

23 //DDW DD UNIT=23l1,DSNAME=DAT(PRlME),DISP=CNEW,KEEP) , X
// DCB=DSORG=IS,SPACE=(CYL,C5,,1»

24 //DDX DD UNIT=2302,OSN=ISQ(PRIME),OISP=(,KEEP),DCB=(DSORG=IS, X
// BLKSIZE=240,CYLOFL=1,OPTCD=MYLR.,RECFM=FB,LRECL=60, X
// RKP=19,KEYLEN=10),SPACE=(CYL,2),VOL=SER=535861, X
// LABEL=EXPDT=70301
// DD UNIT=2302,OSN=ISQ(OVFLOW),DISP=(,KEEP),DCB=*.ODX, X
// SPACE=(CYL,l) ,VOL=SER=538267,LABEL=EXPDT=70301

25 //DOY DO OSNAME=PAY.WEEK(+1)6 D1SP=(,CATLG),UNIT=23l4, X
// SPACE=CTRK,(3,2»

26 //ODZ 00 DSN=INV.FORM8(+2),OISP=(,CATLG),UNIT=23l1, X
// VOLUME=SER=SA2103,LABEL=(,SUL),DCB=CMODEL2,RECFM=F, X
// LRECL=80),SPACE=CCYL,(2,l»

27 //OD1 OD DSNAME=A.B.C,OISP=OLD

28 //D02 DD DSN=KELL12,DISP=OLD,LABEL= (,NSL),UNIT= (,P), X
// OCB=(BUFNO=4,HIARCHY=1)

29 //DD3 DO DSNAME=FlLE18,UNIT=2400,OISP=OLO,VOL=SER=96977

30 //D04 OD DSNAME=MILS,UNIT=2400-2,DISP=(OLD,PASS),VOL=SER=9818, X
// LABEL=(,NSL),DCB=CBLKSIZE=1600,LRECL=80)

31 //OD5 DO DSNAME=GLOSS,DISP=OLO,UNIT=2311,VOLUME=SER=P14992

32 //DD6 DO DSNAME=LAB14, UNIT=2301"DISP=OLD, VOLUME=SER=H69568, X
// LABEL=C,SUL"IN)

330 JCL Reference (Release 21.7)

33 IIDD7 00 OSNAME=SERNOS,OISP=OLO,UNIT=2311,VOLUME=SER=X20

34 IID08 00 DSN=BOLS., DISP=OLD, VOLUME=SER=WS898, UNIT=230 2., X
II LABEL = (., SUL)

35 IIOD9 00 DSN=PGM(A81),DISP=OLD

36 110010 DO DSNAME=LIBS(PROJ6) ,UNIT=2301.,DISP=OLO,VOL=SER=D4762

37 II0Dl 00 DSNAME=IND31~ UNIT= (2311, 2) ,OISP=OLD., VOLUME=SER (C20 21, X
II C2022),DCB=OSORG=IS

38 110012 DO OSNAME=CHAN,DISP=(OLO,KEEP)

39 110013 00 OSNAME=*.STEP1.CREATE,DISP=(OLD,DELETE),LABEL=(,NL), X
II UNIT= (.,2) • VOLUME= (PRIVATE, .,4) ,OCB=*. STEP1. CREATE

40 IIOD14 00 OSNAME=PAY.WEEK(-3),OISP=OLD

41 IIOD15 00 DSN=INV.FORM8 (0) ,OISP=OLD"LABEL= (.,SUL) ,UNIT= (,P), X
II OCB= (BLKSI ZE=2 4 0, RECFM=FB., LRECL= 60)

Appendix D

Appendix F: A Checklist 331

332 Jet Reference (Release 21.7)

* parameter: ~his pararr.eter is coded as
the first parameter en a DD statement that
precedes data in the input stream.

ACCT parameter: This pararoeter is used to
supply accounting inforwatien fer a job
step to an installation accounting routine
and is coded on an EXEC statement.

AFF pararr.eter: This parameter is used to
request the same channel separation from
certain data sets as was requested earlier
in the job step. ~he AFF parameter is
coded on a DD statement.

alias: An alternate narr.e that may be used
to refer to a member of a partitioned data
set.

allocation: The process of assigning a
resource to a job step.

automatic restart: A restart of a job
after a job step abnormally terminates.
The restart takes place during the current
run, that is" without resubmitting the job.

automatic volume recognition (AVR): A
feature that allows the cperator to mount
labeled volurres on available input/output
devices before those volumes are required
by a job step.

auxiliary storage: Data storage other than
main storage; secondary storage.

background job: A job that is entered
through a time sharing terminal by means of
the SUBMIT command or through the input
stream (SYSIN).

backward reference: A facility of the job
control language that permits yeu to copy
information or refer to DD statements that
appear earlier in the job.

block prefix: An optional field that may
precede the first or only reccrd in a
block. For D-format reccrds, the block
prefix can centain the actual block length.

catalog:
1. The collection ef all data set indexes

maintained by data rranagement. Each
entry centains a data set name and
volume and unit inferroatien about the
data set.

Section XII: Glossary

2. To place an entry fer a data set in
the catalog. Tc specify this cn a
contrel staterrent, ccde
CISP=(status,CATLG) cn the CL
staterrent that defines the data set
yeu want cataloged. Yeu can retrieve
a data set using less infcrmation en
the DD card if the data set is
cata loged.

ca!~lo.ged data se!:: A data set that is
represented in an index er hierarchy ef
indexes in the systerr cataleg, the indexes
provide the rreans for lecating the aata
set.

cataloged prccedure: A set ef jot control
staterrents that has been assigned a name
and placed in a partiticned data set known
as the prccedure library. Te use a
ca taloged prccedure" ccde the procedure
name on an EXEC staterrent.

checkpoint/restart: A facility of the
operating systerr that can rrinirrize tirre
lost in reprecessing a jcb step that
abnormally terrrinated. The CHKPT rracro
instruction, the RESTART pararreter on the
JCB staterrent, and the RD pararoeter on the
JCB or EXEC staterrent are asseeiated with
this fac ility.

checkpoint restart: A restart within a jot
step. The restart may be auterratic
(depending on an eligible ccrrpletien cede
and the operater's consent) er deferred,
where deferred involves resutwitting the
job and ceding the RESTART parameter cn the
JCB staterrent ef the resubrritted jet.

CLAS§_~~rreter: This pararreter is used to
assign a jcb class te ycur jet and is coded
on a JCB staterrent. Ir. rruitiprograrrrring
systerrs, jcbs within a jcb class are
initiated acecrding tc their Friority
numbers.

command staterrent: A jeb statement tr.at is
used to issue ccrrrrands te the systerr
through the inFut strearr.

cornroent staterrent: A jcb centrol statement
used to contain inforrraticn that rray te
helpful tc ycurself or ancther person that
rna y be running your jcb er reviewing ycur
output listing.

Secticn XII: Glossary 333

concatenated data sets: A grcup of input
data sets that are treated as one data set
for the duration of a job stef.

COND parameter: This paraITeter is used to
test return codes issued by the processing
programs; any test that is satisfied causes
the job to be terminated or a job step to
be bypassed. The COND pararreter is coded
on a JOE or EXEC staterrent.

control volurre: A volume that contains one
or more indexes of the catalcg.

data control block (DCB): A ccntrol tlock
used to contain certain attributes required
by an access method to store cr retrieve a
data set. The DCB pararreter is one means
of supplying attributes.

DATA parameter: This parameter is coded as
the first parameter en a DD statement that
precedes data in the input stream when the
data contains job control statements.

data set: An organized collection of
related data in one of several prescribed
arrangements. The inforrraticn required to
store and retrieve this data is defined on'
a DD statement.

data set control block: A data set label
for a data set on a direct access volume.

data set label: A collecticn of
information that describes the attributes
of a data set. The data set label for a
data set is normally on the same volume as
the data set it describes.

DCB: See data control block.

DCB parameter: This parameter is used to
supply attributes about the data set that
are needed to complete the data control
block. The DCB pararreter is coded on a DD
statement.

D format: A data set format in which ASCII
records are variable lengths.

DD (data definition) statement: A job
control statement that defines a data set
that is being created or retrieved in a job
step. DD statements follow an EXEC
statement.

ddname (data definition name): A name
assigned to a DD staterrent. This name
corresponds to the ddnarre affearing in a
data control block.

DDNAME parameter: This pararreter is used
to postpone the definition ef a data set
until later in the same job step and is
coded on a DD statement.

334 JCL Reference (Release 21.7)

deferred restart: A restart that is
perforrre~when-a jcb is resutrritted and the
RESTART pararreter is ccded cn the JOB
sta terrent cf the resubrri tted jct.

delimiter staterrent: A jct ccntrcl
staterrent used te rrark the end of data.
The characters /* affear in columns 1 and 2
of this ccntrcl staterrent.

device~: A nurrber that ccrresfonds to
a type of input/cutput device. Ccding the
device type in the UNIT fararreter is cne
way of indicating what infut/cutput device
you want allccated to a jct step.

..Qi!:~£!:~££ess devic~: An auxiliary stcrage
device in which the access time is
effectively independent cf the locaticn of
the data set.

direct data set: A data set whcse records
are-in randcrr crder cn a direct access
volume. Each reccrd is stcred or retrieved
accordingtc its actual address or its
address relative to the beginning of the
da ta set.

dir~£!:ory: A series cf 256-tyte records at
the beginning cf a fartiticned data set
that contains an entr,y fcr each roerrter in
the data set.

DISf-E~eter: This fararreter is used to
describe the status ef the data set and
indicates what sheuld be dcne with the data
set after terrrinatien cf the jct step that
processes it, cr at the end cf the jot.
The DISP pararreter is ccded cn a rD
statement.

dis~tching Fricrity: The nurrter assigned
to a task, which in a nultitask
environroent, deterrrines the crder in which
the tasks nay use rrain stcrage and CPU
resources.

DL~~rarreter: This ~ararreter defines a
special delirriter to be used tc terrrinate a
group of data in the ir.fut strearr.

DFRTY pararreter: This fararreter is used to
assign a disfatching fricrity to a jet step
and is coded cn an EXEC staterrent.

DSN ~rarreter: This fararreter is used to
assign a narre tc a new data set or to
identify an existing data set and is c~ded
on a DD staterrent. Ccding DSN is the same
as coding DSNAME.

DSN~~E pararrete~: This ~ararreter is used
to assign a narre te a r.ew data set er te
identify an existing data set and is coded
on a DD staterrent. Ccding DSNAME is the
same as ceding rSN.

DUMMY parameter: ~his pararreter is used to
tell the system that the prccessing program
should be executed, but no infut or output
operations should be perforrred cn a
particular data set. The DU~MY farameter
is coded as the first para~eter on a DD
statement.

~NAM parameter: For TSO, this farameter
is used to specify that dynanic allocation
of data sets is to be used. This allows
you to defer d,efini tion cf data set until
you require it. If DYNAM is used in the
background (batch environrrent), it means
the same as DUMMY. The DYNAM farameter is
coded on a tD statement.

dynamic storage: That pcrtien of main
storage that is subdivided into fartitions
or regions for use by the pregrams
associated with job steps and same system
tasks.

Exclusive control of a data set: This
means that only one job at a time can
process a data set. A request for an
exclusively controlled data set will not be
processed until the job with centrol
terminates. Also a request fcr the data
set name itself will not be Frocessed
even though the name may not refer to the
same physical data set.

EXEC (execute) statenent: A job control
statement that marks the beginning of a job
step and identifies the program to be
executed or the cataloged or in-stream
procedure to be used.

extent: A contiguous area cf storage on a
direct access volume in which a data set
resides. A data set may reside in more
than one area of storage on ene or more
volumes.

F format: A data set format in which the
logical records are the same length.

FCB parameter: ~his pararoeter is used to
specify the forms control irrage you want to
use to print an output data set on a 3211
printer. The FCB parameter is coded on a
tD staten,ent.

fixed-length record: A reccrd having the
same length as all other reccrds with which
it is logically or physically associated.

foreground: ~he environnent in which
programs invoked by comrrands are ferformed.
Programs are swapped in and cut of main
storage as necessary to efficiently utilize
main storage.

foreground job: Any job executing in a
foreground region, such as a ccrnmand
processor or a terminal user's frogram.
Also called a "terminal job."

~n§!:~ti2n d~ta ~f!!E: A cellecticn cf
data sets that are keFt in chrcnolcgical
order; each data set is called a
generation. The tsNAME fararreter is used
to define the generatier. yeu are creating
or retrieving.

~neration data set: One generaticn cf a
generation data grcup.

.9!:2E1L~: A 1- to 8-character name that
identifies a device or a ccllectien of
devices. Ccding a grcup narre in the UNIT
parameter is cne way cf indicating what
type of input/cutfut device ycu want
alloca ted to a jcb steF.

index:
~:--A table in the catalcg used tc lccate

data sets.
2. A table used to lecate the recerds of

an indexed sequential data set.

inde~§d se~ential data set: A data set on
one or more direct access velumes whose
records contain a key Fcrtien, and the
location of each recerd defends on the
contents of the key pcrtien. The location
of each recerd is cerrputed through the use
of an index.

initiation: The process cf selecting a jot
step for execution and allecating
input/output devices fcr the jcb step.

inEEt job queue: A queue ef summary
inforrration cf job centrel staterrents
maintained by the job scheduler, from which
it selects the jebs and jcb step:» te te
processed.

input_str~arr: The sequence cf control
stateroents and data subnitted to the
operating systerr cn an input device
especially activated fcr this purpcse by
the operatcr.

In-strean Frecedures: A set cf job ccntrol
staterrents, beginning with a PRoe statement
and ending with a PENt statenent, that have
been placed in the input strearr. An
in-strean prccedure car. be executed any
number of tirres during the jet in which

it til appears.

i2E: .A tctal frccessir.g aFFlicatien that
consists of cne or mcre Frccessing programs
required te perforrr the afFlicatien. A jot
is identified by a JOE statenent.

JOB_.§.!aten§'..!t~: A job centrel staterrent
that rrarks the beginnir.g cf a job, and when
jobs are stacked in the inFut strearr, marks
the end of the contrcl statenents for the
preceding job.

secticn XII: Glossary 335

job class: An alphabetic character of A
through 0 that characterizes the type of
job you are submitting. Each jcb class is
defined by the installation; ycu indicate
the type of job you are subrritting in the
CLASS parameter on the JOB statement. In
multiprograrrming systerrs, jcbs within a job
class are initiated acco~ing to their
priority numbers .•

job control language: A high-level
programming language used tc code job
control statements, which describe a job to
the operating system and infcnm the system
of how the job is to be processed.

job control statement: Any cne of the
control statements in the inFut stream that
identifies a job or defines its
requirements.

job library: See private library.

job management: A general teDn that
collectively describes the functions of the
job scheduler and master scheduler.

job processing: The reading cf control
statements and data frorr an input stream,
the initiating of job steps defined in
these statements, and the writing of system
output messages ..

job scheduler: A control prcgram function
that controls input streams and system
output, obtains input/output devices for
jobs and job steps, and regulates the use
of the computing system by jcbs. The job
scheduler is made up of the
reader/interpreter, initiator/tenminator,
and output writer.

job step: The unit of wcrk associated ~ith
one processing program or one cataloged or
in-strearr procedure., and related data. A
job consists of one or mere jcb steps.

JOBLIB: A special ddnarre that when
specified on a ~D staterrent indicates to
the system that you are defining a .private
library..

jobname: The name assigned tc a JOB
statement; it identifies the job to the
system.

~: 1024 bytes ..

keyword: A symbol that identifies a
parameter or subpararreter.

keyword parameter: A parameter that
consists of a keyword follcwed by an equal
sign, followed by a single value or a list
of subparameters. Keywerd parameters must
follow positional pararreters in the operand
field of a job control staterrent, but the
keyword parameters may appear in any order.

336 JCL Reference (Release 21.7)

lABE!_pararre!~: This Fararreter is used:
(1) to describe the data set label
associated with the data set; (2) tc
describe the sequence nurrber cf a data set
tha t doe s not reside first cn a reel; .(3)
to assign a retention pericd; (4) to assign
password protection; and (5) tc override
the CPEN rracro instructicn (ESIIM cnly).
The LABEL pararreter is ccded cn a LC
sta terrent ..

li1:r~f:i:
1.. In general, a collecticn cf

inforrration associated with a
particular use, and the location of
which is identified in a directory of
some type.. In this ccntext, see link
library, private library, system
library ..

2. Any partitioned data set ..

limii-priQrity: A prierity associated with
every task in an MVT systerr, repres ent ing
the highest dispatching pricrity that the
task rray assign to itself cr tc any of its
subtasks ...

link_libra£i: A partiticned data set named
SYS1.1INKIIB.. Each'rrerrber is a processing
prograrr and is called in the PGM pararreter
on the EXEC staterrent cr in the A~TACE,
LINK, LOAD, and XCTL rracre instructions.

logical r~cerd: A reccrd that is defined
in terrrs of the inforrraticn it contains
rather than by its physical traits. You
may have tc sFecify the length of the
logical record to corrplete the data ccntrol
1:locki one way to specify this is in the
LRECl subpararreter of the CCE pararreter.

ma!Q-2tora~: All addressa1:le storage from
which instructicns can be executed or from
which data can be loaded directly into
registers ..

main stora~ hiegrchy sUFFcrt: An option
that divides rrain storage intc two blocks
known as hierarchies; hierarchy 0 is
assigned tc Frocessor stcrage and hierarchy
1 to the IBM 2361 Core Storage unit.

master scheduler: The part cf the control
prograrr that responds te eFerater corrrrands
and returns required infcrrraticn.

member: An independent, sequentially
organIzed data set identified by a unique
name in a data set directcry.

Me§§~~ontrcl_R.!f9rarr (MCP): A set of
user-defined TCAM routines that identify

, the teleprccessing netwcrk tc the IBM
System/360 Cperating Systerr, estatlisr. the
line centrcl required fcr the varieus kinds
of stations and ITodes cf ccnnecticn, and
control the handling and reuting cf

messages in accordance with the user's
requirements.

MFT (multiprogramming with a fixed number
of tasks): A control prograrr that provides
priority scheduling of a fixed number of
tasks. A priority scheduler is used in
MFT.

MSGCLASS parameter: This parameter is used
to assign an output class te the system
messages for your job and is coded on a JCB
statement.

MSGLEVEL parameter: ~his parameter is used
to indicate what job control statements and
allocation/terminatien rressages you want
displayed as output froIT your job and is
coded on a JOB staterrent.

multiprograwmin9: Executing mere than one
job step concurrently.

mutually exclusive: The terrr applied to
two parameters that cannct be coded on the
same job control staterrent.

MVT (multiprogramming with a variable
number of tasks): A contrel program that
provides priority scheduling ef a variable
number of tasks. A prierity scheduler is
used in MVT.

MVT with Model 65 wultiprocessing: An
extension of MV~. This contrel program is
used with the Model 65 rrultiprecessing
(M65MP) system.

M65MP: See MVT with Model 65
mUltiprocessing.

name: A 1- to a-character teDm, beginning
with an alphabetic or natienal (#, ~, $)
character, that identifies a data set, a
control statement, a program, er a
cataloged or in-strearr procedure.

nonspecific volume reguest: A request for
volumes that allows the system to select
suitable volumes. This type ef request can
only be made when defining an eutput data
set.

nontemporary data set: A new data set that
exists after the job that created it
terminates.

NOTIFY parameter: This pararreter indicates
to the system that a rressage is to be sent
to your time sharing terrrinal when your job
completes. The NO~IFY pararreter is coded
on the JOB statement.

null statement: A jeb ccntrcl statement
used to rrark the end of a jeb's control
statements and data.

CUT!!~~arret~.!:: This pararreter is used
to specify the rraxirrun nurrber cf legical
records you want included fer the eutput
da ta set be ing routed threugh the cut put
strean. The CUTLIM paraneter is ceded en a
DD statenent that nust alse centain the
SYSCUT pararreter.

£E!put cl~: An alphabetic er nuneric
character that characterizes the type ef
output data tc be writter. te a unit record
device. Each cutput class is defined by
the installaticn. For systerr rressages, you
indica te the type ef eutput data in tl:e
MSGC~ASS pararreter en a JOE staterrent; for
output data sets, you indicate the type of
output data in the SYSOUT pararreter on a DD
sta terrent •

ou!put listi~: A forn that is printed at
the end of ycur jeb that nay ccntain job
control statenents used by yeur job!,
diagnostic rressages abeut ycur joh, data
sets created by yeur jeb, er a durrp.

~put str~~: Diagncstic rressages and
other output data issued by the operating
systerr or the precessing prcgram en output
devices especially activated fer this
purpose by the eperatcr .•

output writer: A part cf the job scheduler
that writes cutput data sets ento a system
output device, independently ef the
prograrrs that produced the data sets. It
also writes systerr output ness ages '.

PARM-E~rrete.!:: This pararreter is us ed to.
supply a precessing prcgran with
inforIliation it requires at the tiwe tl:e
prograrr is executed and is ceded en an EXEC
sta tenent.

~~~et~.!:: A character string that is 
recognized as having neaning by the 
reader/interpreter. Fer rrcst ef thes e 
character strings, variable inforrratien is 
provided tc give a censtant value fer a 
specific prccess er purpcse. 

~!ition: In systens with MFT, a 
subdivision cf the dynarric area of rrain 
storage set aside for a jct step or a 
systen task. 

~f!ition~d dat~~~E.: A ccllectien of 
independent greups (called rrerrters) of 
sequential recerds en a direct access 
volume. Each newber has a unique nane and 
is listed in a directcry at,the beginning 
of the data set. 

PEND staterrent: A jeb statenent used to 
mark-the-end-Cf an in-strearr procedure. 

secticr. XII: Glossary 337 



PGM parameter: ~his parameter a~~ears as 
the first parameter on an EXEC statement 
when you want to execute a ~articular 
program. 

physical record: A record that is defined 
in terms of physical qualities rather than 
by the information it contains (logical 
record) • 

positional parameter: A parameter that 
must precede all keyword parameters in the 
operand field of a job centrel statement. 
Positional parameters ITust a~~ear in a 
specified order. 

primary quantity: ~he initial amount of 
space on a direct access volume that you 
request in the SPACE, SPLIT, or SUBAIICC 
parameter. 

priority: A rank assigned te each job step 
that determines the order in which job 
steps are selected for execution and 
requests for resources are satisfied. 

priority scheduler: A scheduler that 
processes complete jobs according to their 
initiation priority within jeb classes. 
Priority shcedulers can acce~t input data 
from more than one input stream. 

private: The term applied te a mounted 
volume that the syste~ cannot allocate to 
an output data set for which a nonspecific 
volume request is made. A ~rivate volume 
is demounted after its last use in a jot 
step. 

private library: A partitioned data set 
whose members are load IT.cdules not used 
often enough to warrant their inclusion in 
the link library. ~o execute a program 
that resides on a private library, you must 
define that library en a DD statement that 
ha s the ddname JOBLIB or STEPLIB .• 

PROC parameter: This parameter appears as 
the first parameter on an EXEC statement 
when you want to call a ~articular 
cataloged or in-strearr procedure. 

PROC statement: A job centrel statement 
used in cataloged or in-stream procedures. 
It can be used to assign default values for 
symbolic parameters contained in a 
procedure. For in-strean precedures, it is 
used to mark the beginning of the 
procedure. 

procedure step: That unit of work 
associated with one processing ~rogram and 
related data within a cata~eged or 
in-strearr: procedure. A cataleged or 
in-stream procedure consists ef one or more 
procedure steps. 

338 JCL Reference (Release 21.7) 

prof~§sin~cg!~~: Any ~regram ca~atle of 
operating in the systen as a ~roblerr 
progra rr d ce s • Thi s inc ludes 
IB~-distributed language precessors, 
application ~rograrrs, service and utility 
prograrrs, and user-written ~regrarrs. 

pRI'Y_E~et~: This ~araneter is used to 
indicate the jcb's initiatien ~riority 
within its jeb class and is ceded en a JOB 
sta terrent ~ 

~blic: The term a~plied tc a mounted 
volume that the systerr can allecate tc an 
output data set fer which a nenspecifie 
volume request is rrade. A ~utlic velurre 
remains nounted until the device on wtich 
it is rrounted is required by another 
volume. 

~A~~_~aneter: This ~araneter allows the 
user to access nessages received ty neans 
of TCA~ fer ~rccessing by an a~plication 
progran. It is coded en the [r statenent. 

guali!ied~~~: A data set nane that is 
composed cf nultiple narres se~arated ty 
periods (e.g., A.E.C.). Fcr a cataleged 
data set, each narre ce~res~cnds to an index 
level in the cataleg. 

RD_p~rarret~: This pararreter is used te 
define the ty~e of restart that can occur 
and is coded en a JOE er EXEC staterrent. 

reader/interFreter: A jeb scheduler 
functicn that analyzes ar. in~ut strearr of 
job control staterrents. 

~2~Q: A general terrr fer any unit cf 
data that is distinct frcn all others. 

reg!2!1: In systerrs with MV~, a sutdivision 
of the dynarric area ef nain sterage set 
aside for a jeb step cr a system task. You 
can specify in the REGICN ~arareeter on the 
JCB statenent er EXEC staterrent hew large 
this area cf rrain sterage sheuld tee 

REGICN~rarreter: This ~araneter is used 
to specify hew rruch ccntigueus main sterage 
is required tc execute a jet step and can 
be coded on a JOE or EXEC statement. If 
ma in storage hierarchy su~~ert is included 
in the systerr, the REGION ~ararreter is also 
used to identify the hierarchy or 
hierarchies in which the sterage is te te 
allocated. 

~§2~!£~: Any facility cf the ceIr~uting 
systerr or cperating systen required by a 
job or task and includes rrain storage, 
input/output devices, the CPU, data sets, 
and contrel and prccessing ~regraITs. 



restart: The process of resuming a job 
after it abnormally terrrinates. When a 
restart is performed, prccessing is 
continued either at the beginning of a job 
step that caused the abncrmal termination 
or at a checkpoint within this job step. 

RESTART parameter: ~his parameter is used 
to identify the step or the step and the 
checkpoint within the step at which 
execution of a job is to be resumed and is 
coded on the JOB staterrent of a resubmitted 
job that is to use the check~oint/restart 
facilities. 

ROLL parameter: 'Ihis parameter is used to 
specify a job step's ability to be rolled 
out or to cause rollout cf ancther job step 
and is coded on a JOB or EXEC statement. 

rollout/rollin: An opticnal MV~ control 
program feature that allcws the temporary 
assignment'\of additional main storage to a 
job step. 

scheduler: See job scheduler. 

secondary guantity: The additional amount 
of space on a direct access vclume that you 
want allocated to a data set if the primary 
quantity requested in the SPACE, SPIlT, or 
SUBALLOC parameter is nct sufficient. 

secondary storage: See auxiliary storage. 

SEP parameter: This parameter is used to 
request channel separaticn fram specific 
data sets defined earlier in the job step 
and can be coded on a DD statement. 

sequential data set: A data set whose 
records are organized on the basis of their 
successive physical positicns, such as they 
are on magnetic "tape. 

Shared control: ~his rreans that jobs that 
are executing simultaneously with a job 
step that specifies SHR for a data set can 
use that data set if they alsc specify SHR 
for that data set narre. 

SPACE parameter: This parameter is used to 
indicate how much space should be allocated 
on a direct access velurre fer a new data 
set and is coded on a DD statement. 

specific volume request: A request for 
volumes that informs the system of the 
volume serial numbers. 

SP1!~_par~ter: This pararreter is used to 
allocate space to twc cr rrcre new data sets 
tha tare tc share cy Ii r.ders. The SPL I'I 
parameter is ccded on a ro staterrent. 

station: In TCAM, either a rerrote 
termInal, cr a rerrete ccrrputer used as a 
terroinal. 

STEPII~: A special ddnarre that when 
specified cn a rD staterrent indicates to 
the systerr that ycu are defir.ing a private 
library. 

step~~: The narre assigned tc an EXEC 
statement; it identifies a jcb step within 
a job. 

step restart: A restart at the beginning 
of a job step that abncrrrally terrrinates. 
The restart rray be autcrratic (depending on 
an eligible ccrrpletien ccde and the 
operator's ccnsent) er deferred, where 
deferred invclves resubrritting the jot and 
coding the RESTARl' pararreter cn the JOB 
staterrent cf the resubrritted jcb. 

stQ~~ge velurre: The rrain function of a 
storage vclurre is te ccntain ncnterrporary 
data sets fcr which a r.cns~ecific volume 
request was rrade and PRIVATE was net coded 
in the VCIUME pararreter. A direct access 
volume beccrres a storage vclurre when so 
indicated in a MOUNT ccrrrrand cr in a rrember 
of SYS1.PARMLlE narred PRESRES. 

SUBAII~~arreter: This pararreter is used 
to place a series cf a new data sets in one 
area of contigucus space cn a direct access 
voluroe and in a certair. sequence. The 
SUBAIICC pararreter is ccded cn a rr 
staterrent. 

sUbpararreter: One ef the iterrs of variable 
inforrration that fcllcws a keyword 
pararr.eter and can be either pcsiticnal or 
keyword. 

E~ol: In the IBM Systerr/360 Operating 
Systerr, any grcup cf eight cr less 
alpharreric and national characters that 
begins with an alphabetic cr naticnal 
(# , II, $) character. 

§Y!!}holic-E~!reter: A syrrbcl preceded by 
an ampersand that appears in a cataloged 
procedure. Values are assigned to syrrtclic 
parareeters when the prccedure in which they 
appear is called. 

SYS~BEND: A special ddnarre that when 
specified cn a rD staterrent tells the 
systerr you are defining a data set cn which 
a dump can be written if the step 
abnorrrally terrrinates,. The durrp provided 
includes the systerr nucleus, the processing 
prograrr stcrage area, ar.d pcssibly a trace 
table. 

secticn XII: Glossary 339 



SYSCHK: A special ddnarre that when 
specified on a CD staterrent that precedes 
the first EXEC staterrent in the job tells 
the system you are defining a data set that 
contains checkpoint entries. ~his DD 
statement is included in a jeb that is 
being resubmitted for executien and 
execution is to begin at a particular 
checkpoint. 

SYSCTLG: The name of a system data set 
that contains the narre and lecation of 
cataloged data sets. 

SYSIN: A name conventionally used as the 
data definition name of a data set in the 
input stream. 

SYSOUT parameter: ~his pararreter is used 
to assign an output class tc an output data 
set and can be coded on a DD statement. 

system data sets: The data sets that make 
up the IBM System/360 Operating system. 

system generation: ~he process of 
producing an operating systerr made up of 
standard and optional ccrrponents. 

system input device: A device specified as 
a source of an input stream. 

system library: One of the ccllection of 
all cataloged data sets at an installation. 

system management facilities: An optional 
control program feature that provides the 
means of gathering and recording 
information that can be used to evaluate 
system usage. 

system messages: Messages issued by the 
system tha't pertain to a problem program. 
These messages appear on an cutput listing 
and may include such rressages as error 
messages , disposition rressages" and 
allocation/de-allocation messages. 

system output device: An output device, 
shared by all jobs, cnto which specified 
output data is written. 

SYSUDUMP: A special ddname that when 
specified on a DD staterr.ent tells the 
system you are defining a data set on which 
a dump can be written if the step 
abnormally terminates. The dump provided 
is the processing prograrr stcrage area. 

SYS1. LINKLIB : ~he narr.e cf a partitioned 
data set that contains IBM-supplied 
processing programs and part of the 
nonresident portion of the centrol program. 
It may also contain user-written programs. 

SYS1.PROCLIB: ~he narre ef a partitioned 
system data set that contains cataloged 
procedures. 

340 JCL Reference (Release 21.7) 

SYS!~§XSJCEQ!: A systerr data set that 
contains inferrratien abeut the input and 
output strearrs, and centains the input and 
output queues. 

task: The srrallest unit ef werk that can 
te perforrred under the centrel pregrarr. 

Telecorrrrunicatiens Access Methed (~CAM): 
The corrbinatien of an access technique and 
a given data set erganizatien in a 
teleprocessing applicatien that allows the 
prograrrrrer te transfer data tetween rrain 
storage and rerrete I/O devices. 

temporary data set: A new data set ttat is 
created and deleted in the sarre jet. 

TER~Eararreter: This r:ararreter is us ed to 
indicate tc the systerr that the input or 
output data being defined is ceming frem or 
going to a tirre sharing terrrinal. 

terminal table: An erdered eellection of 
inforrratien censisting ef a centrel field 
for the table and blocks cf inforrratien on 
each line, station, ccrrpcnent, or 
applicatien r:rograrr frerr which a ITessage 
can originate er te which a rressage can te 
sent. 

ter~inatio~: The r:rocess ef perferrring 
disposition precessing, as sr:eeified in the 
DISP pararreter, de-allecating input/output 
devices. and sur:plying centrel infermation 
for ~riting jeb eutput en a systerr output 
unit. 

TIME-E~rarrete~: This r:ararreter is used to 
assign a tirre li1l'i t on hew leng the jeb or 
a particular jeb step can use the CPU and 
is coded on a JOB er EXEC statement, er 
toth. 

time §r.ari~: A rrethed ef using a 
computing systerr that allews a nurrter ef 
users to e~ecute prograrrs cencurrently and 
to interact with the r:regrarrs during 
execution. 

Time Sharing CEtien (TSC): An eptien ef 
the operating systerr- previding 
conversatienal tirre sharing frem rerrete 
terrrinais. 

!i~~-sliciE[: The sharir.g ef the CPU ty 
certain tasks fer an equal, r:redeterrrined 
length of tirre. 

TYF~Q~~arrete~: This r:ararreter is used 
to hold a jeb fer executien until the 
operator issues a RELEASE cerrrrand and is 
coded as TYFRUN=HOLC er. a JOE staterrent. 



UCS para~eter: ~his parameter is used to 
describe the character set ycu want to use 
for printing an output data set on a 1403 
printer. The UCS pararreter is coded on a 
I:D staterrent. 

unit address: A 3-byte nurrber, made up of 
the channel, control unit, and unit 
numbers, that identifies a Farticular 
device. Coding a unit address in the U~IT 
parameter is one way of indicating what 
input/output device you want allocated to 
the job step. 

UNIT parameter: This pararoeter is used to 
describe what device and hew many devices 
you want assigned to a data set. The U~IT 
parameter can be coded en a DD statement. 

V format: A data set format in which 
logical records are ef varying length and 
include a length indicatcr; and in which V 

format logical recerds rray te tlecked, with 
each block ccntaining a l:lcck length 
indica tor. 

VCL_~rarret~~: This Fararreter is used to 
identify the vclurre(s) cn which a data set 
resides or will reside and is coded on a DC 
staterrent. Ccding VOL is the same as 
coding VCLUME. 

vol~~~: That Fertion ef an auxiliary 
storage device that is accessitle to a 
single read/write rrechanisrr. 

VObQ~E pararrete~: This Fararreter is used 
to identify the volurre(s) cn which a data 
set resides er wi 11 reside and is coded on 
a DD staterrent. Ceding VOLUME is the same 
as coding veL. 

voluroe table cf centents (VTOC): A table 
in a direct access velurre that des crites 
each data set en the vclurre. 

Sectien XII: Glossary 341 



342 JCL Reference (Release 21.7) 



Indexes to systems reference library 
manuals are consolidated in the publication 
IBM System/360 Operating system: Systems 
Reference Library Master Index, C28-6644. 
For additional infornaticn abcut any 
subject listed below, refer tc other 
publications listed for the same subject in 
the Master Index. 

Where more than one page reference is 
given, the major reference is first. 

{} 

[] 
use 35 

use 35-36 

use 36 
& 286-289,183 
&& 183 
* parameter on ~D statenent 118-120 

coding BLKSIZE subparameter 119-120 
coding BUFNO subpararreter 119-120 
examples of 119-120 
glossary 333 
read by automatic SYSIN batching reader 

119 
* subparameter in the RESTAR~ parameter 67 
*** 40,270,285 
//* 270 
++ 286 
+/ 286 
++* 286 

ABEND durops 114-115 
absolute track technique 206 

for ISAM data set 315 
ABSTR subparameter in the SPACE parameter 

206 
for ISAM data set 315 

accounting information parameter on ~CB 
statement 49-50 . 

examples of 50 
requirement for coding 49 
rules for coding 49 
special characters in 49 

ACCT parameter on EXEC statenent 82 
examples of 82 
overriding the 82 
rules for coding 82 
special characters in 82 

adding 
CD statements to cataloged procedure 

299-300 
parameters to 

CL statements in cataleged 
procedures 296 

EXEC statements in catalcged 
procedures 292 

address, unit 229 
address subparameter in the SPACE 

Index 

paraneter 208 
AFF paraneter cn LC statenent 127-128 

exarrples ef 128 
requesting channel se~aratien 
127,128,197-198 

rules fer ceding 197 
affinity 

channel (see channel se~aration) 
unit 235 -236 
volune 242-243 

AL subpararreter in the'L~EEL ~araroeter 
188,191 

alphaneric character set 41 
ALX subpararreter in the SP~CE ~ararreter 

204,205 
American Natienal standard labels 189,191 
apostrophes in data set r.ane 184-185 
appendixes 284-331 
area arrangerrent fer ISAM data set 313-314 
area nane 310-311 
areas of ISAM data set 310 
ASB reader (see autonatic SYSIN batching 
reader) 

ASCII nagnetic tape 
DCB pararreter 133,135,141,143,146 
LABEL pararreter 188-192 

AUL subpararreter in the LAEEL ~araneter 
188-192 

attributes, DeE 132-148 
autoroatic check~oint restart 61;91,304 

dispositicn ~recessing with 62,92 
autorratic restart (see alse automatic 
checkpoint restart; aut erratic stef 
restart) 

automatic ste~ restart 61,91,304 
dispositien frecessing with 62,92 

automatic SYSIN batchir.g reader 
* paraneter read by 119 
DATA paraneter read by 120 
restrictiens on use ef synbelic 
paraneters 302-303 

autorratic velu~e recognitien (AVR) 
channel sefaration requests 128,197 
specifying a greup r.ane 231 

average bleck length 
in SPACE faraneter 202 
in SPLIT fararreter 211 
in SUBALLCC faraneter 215 

AVR (see autenatic velune recegnition) 

back~ard reference 40 
to a concatenation 40-41 
in DCB ~araneter 40,131 
~ith deferred restart 68 
in DSN~~E faraneter 40,184 
in FG~ faraneter 40,78-79 
in VOLU~E fararreter 40~242 

BDAM data set 
creating 327-328 
retrieving 327 -328 

Index 343 



EFALN, ~CB subpararreter 132 
BFTEK 132-133 

EFTEK, ~CB subparameter 132-133 
BFALN 132 

BISAM data set (see indexed sequential data 
set) 

ELKSIZE, DCB subpararreter 133-134 
coded with 

* parameter 119 
DATA parameter 122 
~~NAME parameter 163-164 
SPACE parameter 202-204 
SUEALLOC parameter 215-216 

default for data in input stream 325 
block length subpararreter 

in SPACE parameter 201-204 
in SPLIT parameter 211 
in SUBALLOC parameter 214-216 

blocking data in the input stream 119,122 
default 325 

blocks, directory, in a BPAM data set 
(see directory) 

BLP subparameter in the LABEL parameter 
191 

restriction on use 325 
EPAM data set 

(see also directory; rrember name) 
creating 327-328 
retrieving 327-328 

braces 
use 35 

brackets 
use 35 

ESAM data set 
creating 327-328 
retrieving 327-328 

EUFIN, ~CB subparameter 
EUFL, ~CB subparameter 
EUFMAX. ~CB subparameter 
EUFNO" DCB subparameter 
, coded with 

* parameter 119 

134 
134-135 

135 
135 

~ATA parameter 122 
~DNAME parameter 163-164 

default for data in input stream 325 
EUFOFF, ~CB subparameter 135 
EUFOUT, ~CB subparameter 136 
EUFRQ .• ~CB subparameter 136 
EUFSIZE, DCB subpararreter 136 
bypass label processing 191 

restriction on use 325 
bypassing I/O operations on a data set 

(see DUMMY parameter) 
bypassing a job step 84-85 

cataloged data set 
creating 173 
generation data set 318-322 
providing 

data set sequence number 190 
label type inforrratien for 190-191 
unit informatien fcr 210-215 
retrieving 327-328 

cataloged procedure 282-303,31 
adding to procedure library 303 
assigning values to symbolic parameters 

284-286 

344 JCL Reference (Release 21.7) 

calling 283-284 
contents cf 300 
DD staterrent 

adding LL statenents 297-298 
adding Fararreters tc 294 
nullifying paraneters 294-295 
overriding cencatenated data s~ts 

297 
overriding paraneters en 292-294 

EXEC staterrent 
adding Fararreters te 290 
nullifying pararreters en 290 
overriding paraneters tc 288-289 
nodifying 303 
using 283 -299 
writing 300 -30 3 

CATIG subpararreter in the ~ISP pararreter 
173 

channel affinity (see channel separatien) 
channel seFaration 

requesting 127,197 
character set 

alpharreric 41 
national 41 
special 41 

character set cede, specifying 223 
checkid subFararreter ir. the RESTART 
pararreter 67 

special characters in 67,42 
checkpoint data set 116-117 

specifying a secendary quantity for 
202-204 

checkpoint restart 
autoroatic 61,94,304 
deferred 67-69,305-306 

checkpoint/restart facilities (see 
chec kpoint restart) 

checkid 67 
checkpoint data set 116-117 
deferred checkpeint restart 

67-69,305-306 
deferred steF restart 67-69,304-305 
RD pararreter on EXEC stateroent 91-93 
RD pararreter on JOE staterrent 61-€3 
RESTART Fararreter cr. JOE staterrent 

67-69 
step restart (see steF restart) 
SYSCHK ~D staterrent 116-117 

CHKPT rracre instructicn 61-63,67-69,91-93 
class 

job 51 
roessage 55 
systerr cutFut 218-221 

CLASS pararreter on JOE staterrent 52 
assigning a jeb class 52 
def'ault 52 
exarrples cf 52 
forrrat cf 52 
rules fcr ccding 52 

cIa ssnarre s 
for outFut strearrs 218-220 

CCDE, DCB subFararreter 136 
mutually exclusive with 

I<EY~EN 140-141 
l{CDE 141 
FRTSF 145 
STACK 148 
TRTCH 148 



coding form 43 
coding special characters 42 
command statement 264-267,27 

comIIiands for 
MFT 265-266 
MVT 266-267 

example of 267 
format of 264 
rules for coding 

commands, operator 
comment statement 

example of 268 
format of 268 
rules for coding 

comments field 37 

264-265 
265- 267 

268,27 

268 

continuation of 39-40 
example of 37 

concatenated data set 
overriding 297 

concatenating data sets 40-41 
example of 41 

concatenation 
of data sets 40-41 
of private libraries 110,113 

CON~ parameter on EXEC staterrent 83-86 
examples of 85-86 
format of 83 
overriding 85 
rules for coding 83-85 
use of 

bypassing a job step 84 
executing a job step 84-85 

CON~ parameter on JOB staterrent 53-55 
examples of 55 
format of 53 
rules for coding 53 
use of 53 

conditional disposition ef a data set 
173-175 

CATLG 174 
for deferred restart 305,306 
~ELETE 173 
KEEP 174 
UNCATLG 174 

CONTIG subparameter in the SPACE parameter 
204-205 

continuing control staterrents 
comIIients field 39 
operand field 38-39 

control voluIIie 181 
CPRI, ~CB subparameter 136-137 
CPU time limit 71-100 
creating data sets 

nontemporary 
to be cataloged 173 
direct organizaticn 327-328 
generation data set en direct access 

vclume 319-320 
generation data set en tape volume 

319-320 
indexed sequential organization 310 
new rr.errber for a partiticned data 
set 327-328 

partitioned data set 327-328 
sequential data set on direct aecess 

voluIIie 327-328 
on tape volume 327-328 

terrporary 
en direct access velurre 327-328 
output strearr 327-328 
en tape velurre 327-328 
on unit record device 327-328 

CYL subpararreter 
in SPACE parameter 201-202 
in SPLIT pararreter 210 
in SUBALLCC pararreter 214 

cylinders 
sharing 209 -212 

CYLCFL, DCE subpararreter 137 

aa ta contrel blcck 
corrpleting the 129-132 

data definitien staterrent 103-263 
(see alsc CL staterrent) 

data in the input strearr 
defining 118-126,163,177 

DATA pararreter en L~ staterrent 121-123 
coding ELKSIZE subpararreter 122 
coding EUFNC subpararreter 122 
coding DIAGNS pararreter 121 
exarrples ef 122-123 
forrrat cf 121 
read by auterratic SYSIN tat ching reader 

122 
rules fer cedi ng 121 

data rranagerrent 22 
da ta set 

creating a (see creating data sets) 
retrieving a (see retrieving data sets) 

data set centrel 167-169 
data set in the input strearr (see data in 
the input stream) 

aata set integrity 167-169 
da ta set labe 1 

corrpleting the data centrel blcek 
129-131 

copying attributes frerr a 129-131 
model 318 -319 

da ta set narre (see DSNAME) 
in apcstrephes 185 
copying narre frerr earlier LL staterrent 
184 

nonterrperary 180-181 
qualified 180-181 
terrporary 182-183 
unqualif ied 180 

DCB (see data centrel bleck) 
DCB attributes 132-161 
DCB rracrc instruction 

corrpleting the data centrel block 
129-132 

DCB pararreter en CL staterrent 129-161 
backward references te 132,40-41 
coded en 

JCBLIB CL staterrent 108-110 
STEPLIE CC staterrent 111-112 
SYSCHK CL staterrent 116-117 

coded when 
creating generatien data set 319 
creating ISAM data set 310 
retrieving generatien data set 321 
retrieving ISAM data set 315 
retrieving passed data set 171-172 

Index 345 

II 



coded with 
* parameter 118-120 
I:ATA parameter 121-123 
tI:NAME parameter 148-149 
tUMMY parameter 124-125 
SYSOU~ parameter 218-221 

completing the data centrel'block (see 
data control block) 

copying informaticn from 
data set label 131-132 
earlier DD staterrent 132 

examples of 161 
format of 129 
glossary of subpararreters 131-161 
nullifying subpararreters in the 295 
overriding subpararreters in the 293-294 
rules for coding 129 
subparameters., glossary cf 131-161 

tCB subparameters 131-161 
tD staterrent 103-263,26 

adding parameters to 294 
examples of 105 
fields in 103 
format of 103 
keyword parameters on 127-263,104-105 
nullifying parameters on 294-295 
overriding parameters on 292-294 
positional parameters on 118-127,104 
rules for coding 103-104 

ddname 
assigning a 106-107 

when concatenating 40-41 
when defining ISAM data set 310 

duplicate 106 
examples of 107 
qualified 106 
special 107 

I:I:NAME parameter on DD staterrent 162-165 
coded with 

BLKSIZE subparameter 
163-164,119,120,122 

BUFNO subparameter 
163-164,119,120,122 

examples of 164-165 
format of 162 
rules for coding 162 

dedicated data set 
us ing 183-184 

default for 
CLASS parameter 52 
CPU time limit 71,100,325 
data in the input stream 

BLKSIZE subpararneter 325 
BUFNO subparameter 325 

disposition 169 
DPRTY parameter 88 
MSGCLASS parameter 56 
MSGLEVEL parameter 57,325 
output class for system messages 56 
PRTY parameter 60,325 
REGION parameter 325 

with main storage hierarchy support 
65-66,96-97 

without main' storage hierarchy 
support 64,94 

346 JCL Reference (Release 21.7) 

region size 325 
with rrain storage hierarchy support 

65-66,96-97 
witheut rrain stcrage hierarchy 
sUffcrt 64,94 

ReII pararreter 70,98,325,87 
step pricrity 87 
systerr cutfut data set 

SPACE fararreter 325 
UNIT fararreter 325 

TI~E pararreter 100,325 
wait-state tirre lirrit 71,100 

DEFER subpararreter in the UNIT fararreter 
233-234 

deferred checkfcint restart 67-69,305-306 
deferred rrcunting cf vclurres 233-234 

nonsharable attribute 246 
deferred restart (see alse RES~AR~ 
pararreter) 

deferred stef restart 67-69,304-305 
defining restart 

on EXEC staterrent 91-93 
on JOB staterrent 61-63,67-69 

DELETE subfararreter in the I:ISP fararreter 
170-171,173 

delirriter staterrent 270,26 
* pararreter 119 
DATA pararreter 122 

DEN, DCB subfarameter 137 
device type 229-230 
DIAGNS, DCE subfararreter 138 
direct access devices 

list cf 229-230 
directory 

requesting sface fer 
in SFACE fararreter 204-205 
in SUBALLOC fararreter 216 

DISF pararreter en tt staterrent 166-176 
coded cn 

JCELIE tI: staterrent 109 
STEFIIE tt staterrent 112 
SYS~EENt rD staterrent 115 
SYSCHK rI: staterrent 116,117 
SYSUDUMF tI: staterrent 115 

coded when 
creating generaticn data set 319 
creating ISAM data set 312 
retrieving generatien data set 321 
retrieving ISAM data set 317 

conditicnal disfositien sutfararreter 
173-175 

dispositien subfararreter 170-173 
exarrples cf 176 
forrra t cf 167 
rules fer ceding 167 
status sUbfararreter 167-169 

dispa tching fri cri ty 87-88,60 
dispositicn cf a data set 170-173 

CATI.G 173 
conditienal dis~ositicn 173-174 
DELETE 170-171 
REEP 171 
PASS 171-172 
UNCATIG 171-172 



disposition processing 170-174 
bypassing 124 
cataloging a data set 173 
deleting a data set 170-171 
keeping a data set 171 
passing a data set 171-173 
for restart (see RD pararreter for JCB 

and EXEC staterrents) 
uncataloging a data set 173 

I r:LM parameter 177 
r:OS (r:ISC operating system) 

assigning space in 191 
r:PRTY parameter on E~EC statement 87-88 

default for 87 
examples of 88 
format of 87 
overriding 88 
rules for coding 87 
time-slicing in MV~ 87-88 

r:SN pararreter on DD state~ent (see DSNA~E 
parameter) 

r:SNAME parameter on DD staterrent 179-185 
backward references 184,40-41 
coded on 

JOELIB DD staterrent 109 
S~EPLIB r:D staterrent 112 
SYSABEND r:D stateITent 115 
SYSCHK DD staterrent 116-117 
SYSUr:UMP DD staterrent 115 

coded when 
creating generaticn data set 319 
creating lSAM data set 311 
retrieving generation data set 321 
retrieving lSAM data set 316 

copying name from earlier DD 184 
examples of 185 
format of 179 
name in apostrophes 184 
nontemporary data set na~es 180-181 
nullifying DUMMY 124 
rules for coding 179-180 
special characters in 179-180,43 
temporary data set narres 182-183 

r:SORG. r:CB subparameter 139-140 
dummy data set 124-125 

(see also NULLFILE) 
r:UMMY pararreter on DD staterrent 124-125 

backward reference to 125 
examples of 125 
format of 124 
nullifying 124-125,295 
rules for coding 124 

dump, abnormal terminatien 
storing the 114-115 
writing to unit record 114 

LYNAM parameter on DD staterrent 126,162 
example of 126 
format of 126 
nullifying 126 
rules for coding 126 

dynamic allocation 126 

ellipsis 
use 36 

ERCFT, DCB subfararreter 139 
EVEN subpararreter in the CONI: fararreter 83 

exclusive ccntrel 167~169 
EXEC staterrent 75-102,26 

adding fararreters te 290 
exarrples cf 76 
fields in 75 
forrra t ef 75 
keyword fararreters en 82-102,76 
nullifying fararreters en 290 
overriding fararreters en 288-289 
positicnal fararreters en 78-81,76 
rules fer ceding 75-78 

execute staterrent (see EXEC staterrent) 
execution 

of a catalcged frccedure 80,283 
of a precessing fregrarr 78-80 

EXPDT subpararreter in the LAEEL parameter 
193 

expiration date 193 
(see also retenticn Feried) 
effect en 

DELETE subpararreter 170-173 
BEEF subfararreter 170-173 

extending a data set (see lengthening a 
data set) 

extent 182 

FCB pararreter 186-187 
e:xarrples cf 187 
image identifier 186 
requesting alignrrent ef ferrrs 186 
rules fer ceding 186 

fields 36-37 
corrrre nts 36 -37 
exarrples ef 36-37 
narre 36-37 
operand 36 -37 
operaticn 36-37 

FCLD subpararreter in the UCS Fararreter 225 
forrr nurrber subfararreter in the SYSOU~ 
pararreter 219 

forrrat of 
corrrrand staterrent 265 
corrrrent staterrent 269 
DD staterrent 103 
delirriter staterrent 271 
EXEC staterrent 75 
aCE staterrent 45 
null staterrent 273 
FEND staterrent 275 
FRCC staterrent 277 
publicatien 19 

FUNC, DCB subfararreter 140-141 

generation data greuf 
creating 318-320 II 
index 318 • -
narre 318 

generation data set 
creating 319-320 
with deferred restart 322 
narre of 318 
retrieving 321-322 

generation nurrber, relative 318 
GNCP, DeB subfararreter 140 
graphic devices, list of 232 
group narre 232 

Index 347 



EIARCEY, DCB subpararreter 140 
hierarchy 0 65-66,96-97 
hierarchy 1 65-66,96-97 
EOLD subparameter in the TYPRUN parameter 

73 
holding a job 73 

identifying the data set (see DSNAME) 
IEFBR14 program 79 
IN subparameter in the LABEL parameter 
192-193 

incremental quantity (see seccndary 
quantity) 

index 
requesting space for 312-313,204-205 

index area 310 
indexed sequential data set 310-317 

area arrangement of 313-315 
creating 310-313 

example of 317 
name 
nontemporary 180-182 
temporary 182-183 

requesting space for index 312-313,204 
retrieving 316-317 

example of 317 
unit restrictions for 315 

initiation priority 60 
input data set 

concatenating 40-41 
identifying the data set 179-185 
IN subparameter 192-193 
providing 

unit information 227-228 
volume information 237 

specifying 
conditional dispositicn of 172-174 
disposition of 170-173 
status of 167-169 

input stream 119, 122.,177 
defining data in the 119.123 

input work queue 52 
in-stream procedures 282-303,31 

assigning values to syrobclic parameters 
284 

calling 283 
contents of 300 
:CD statement 

adding DD staterrents 
adding parameters tc 
nullifying pararreters 
overriding pararreters 

EXEC statement 

297-298 
294 

294-295 
cn 292-294 

adding parameters tc 290 
nullifying pararreters cn 290 
overriding pararreters tc 288-289 
modifying 303 
using 299 
writing 300-303 

INTVL, :CCB subparameter 140 
ISAM data set (see indexed sequential data 
set) 

job class 52 
default 52 
priority 60 

job library 108-111 
job separators 220 

348 JCL Reference (Release 21.7) 

.JOB staterrent 45-73,25 
exarrple s ef 47 
fields in 45 
forrra t cf 45 
keyword pararreters en 49-51,46 
positicnal pararreters en 52-73,46 

jobclass subpararreter in the CLASS 
pararreter 52 

JCBLIB DD staterrent 108-111,79 
(see alse STEPLIB) 
concatenating private litraries 110 
exarrples ef 110-111 
pararreters te ccde when 

cataleged 109 
net cataleged 109-111 

rules fer ceding 108 
job rranagerrent (scheduler) 23 
jobnarre 

assigning a 48 
exarrples ef 48 

REEF subpararreter in the DISP fararreter 
170-171,174 

kept data set 
retrieving 327-328 

REYLEN, DCE subpararreter 140-141 
coded with 

SFACE pararreter 202 
SFLIT pararreter 211 
SUBALLOC fararreter 215 

mutually exclusive with 
CCDE 136 
~CDE 141 
PRTSP 144 
STACR 148 
TRTCH 148 

keyword pararreters 
on DD staterrent 127-263,104-105 
on EXEC staterr.ent 82-102,76 
on .JOB staterrent 49-51,46 
rules fer ceding 37~38 

LABEL pararreter en :CD staterrent 191-194 
coded on SYSCHK :C:C staterrent 116,117 
coded when 

creating generatieL data set 320 
creating ISAM data set 312 
retrieving generatien data set 320 
retrieving passed data set 171 

data set sequence nurrber sutpararreter 
190 

e xa rrp Ie s ef 19 3 -19 4 
EXFDT subpararreter 193 
forrrat cf 188 
IN subpararreter 192-193 
label type subpararreter 189-191 
CUT subfararreter 192-193 
FASSWCRD subfararreter 192 
RETFD subpararreter 193 
rules fer ceding 189 
when te cede 190 

labels types 192 
labels 

data set 189-190 
direct access 189-190 
nonstandard (NSL) 191-192 



standard (SL) 191-192 
standard and user (SUL) 191-192 
tape 189 

lengthening a data set 
space requirements 

SPACE parameter 204 
SUEALLOC parameter 216 

specifying status 167 
volume sequence nurrber subfarameter 239 

libraries, concatenating private 108-111 
library 

private 108-111,79 
procedure 81,282 
systero 79 
temporary 78 

LIMCT, LCE subparameter 141 
OPTCL=E 142 

link library 79 
load module 22 
LRECL, LCE subparameter 141 
LTM, label subpararneter 193-194 

main storage 
acquiring additional 70,98 
REGION parameter on EXEC statement 

94-97 
REGION parameter on JOB statement 64-66 

main storage hierarchy support 65-66,96-97 
member name, assigning a 181-183 
MOL subpararoeter in the DISP farameter 169 
MOLE, LCE subparameter 141 

mutually exclusive with 
COLE 136 
KEYLEN 140-141 
PRTSP 144 
TRTCE 148 

model data set label 318-319 
mount attributes 243-244 
mounting 

deferred 233-234 
parallel 233 

MSGCLASS parameter on JOB statement 56 
assigning an output class 56 
coded with SYSOUT parameter 56,219 
default 56 
examples of 56 
format of 56 
rules for coding 56 

MSGLEVEL parameter on JOE statement 57-58 
default 58,325 
examples of 58 
format of 57 
restart in MF~, MvT 62,91 
rules for coding 57 

MXIG subparameter in the SPACE parameter 
204 

name field 36 
example of 37 

national character set 41 
NC subparameter in the RD parameter 62,92 
NCP, LCE subparameter 141 
new output data set 

creating 326-327 
NEW subpararreter in the DISP farameter 169 
NL subpararr.eter in the LABEL farameter 

191-192 
nonsharable attribute 247 

nonspecific veluroe request 238 
for direct access velurre 77,238 
satisfying a 247-248 
for tape velume 193,238 

nonstandard labels 
label tYfe sUbfararreter 191-192 
processing routines fer 191 

nonterrporary data set 
creating 326-327 

NOFWREAD subparameter in the LABEL 
pararreter 192 

NOTIFY pararreter en JOE staterrent 
exarrple of 59 
forrrat ef 59 
rules fer cedi ng 59 

NR subpararreter in the RD fararreter 62,92 
NSI subpararreter in the LAEEL fararreter 
191-192 

NTM, DCB subfarameter 141 
CPl'CD=M 142 

null staterrent 272,26 
exarrple ef 272 
forrrat ef 272 

NULIFIIE 126,295 
nullifying 

DCB subfararreters 295 
DD staterrent pararreters 294-295 
DUMMY pararreter 126,295 
EXEC staterrent fararreters 290 

CLD subpararreter in the LISP fararreter 169 
CNLY subpararreter in the CONL fararreter 

83-84 
operand field 37 

blank 297 
exarrple ef 37 
keyword pararreters 37-38 
positional fararreters 37 
subpararreters 38 

operation field 37 
exarrple of 37 

operator cerrrrands 265-267 
operator subfarameter in the CONL 
pararreter 53,83 
CPTCD~ DCB subfararreter 142-145 
CUT stibpararreter in the LA EEL fararreter 
192-193 

CUTIIM pararreter 195 
coded with SYSOUT fararreter 195 
deterrrining the outfut lirrit 195 
exarrpIe 195 
rules fer ceding 195 

output of 
allocation rressages 57 
allocation recevery rressages 57 
dispositien rressages 57 
job contrel staterrer.ts 57 • 

output class • . 
for systerr rressages 56 

output class subpararreter in the MSGCLASS 
pararreter 56 

output data set 
allecating space fer 199-217 
creating 326-327 
lengthening 169 
CUT subfararreter 192-193 
printed using UCS feature 223-225 

Index 349 



providing 
unit information 227-228 
volume information 237 

routed through output stream 218-221 
specifying 

conditional dis~osition 173-174 
disposition 170-173 
status 167-169 

output stream 
routing data sets through the 218-221 

output writer 218-221 
overflow area 310 
overriding 

concatenated data sets 297 
DCB subparameters 293- 294 
LD statement pararreters 292-294 
EXEC statement pararreters 288-289 
with rrutually exclusive ~arameters 292 
PARM parameter 289 
TIME parameter 289 

P subparameter in the UNIT ~arameter 233 
parallel mounting 233 
parentheses 

to enclose a subpararreter list 37 
inclusion in variables 38 

PARM parameter on EXEC staterrent 89-90 
examples of 90 
format of 89 
overriding the 89,289 
rules for coding 89 
special characters in 89,42 

partitioned data set 
concatenating 40-41 
creating 326-327 
exeduting programs in a 108-111,79 
lengthening 167 
name 

nontempora ry 180-181 
temporary 182-183 

retrieving a me~ber of 326-327 
space for directory 

in SPACE parameter 204 
in SUBALLOC pararreter 216 

PASS subparameter in the DISP ~arameter 
170-171 

passed data set 
providing 

data set name 171 
data set sequence number 190 
LCB information 172 
disposition 171 
label type 172,190-191 
unit information 172,227 

retrieving 326-327 
password protection 192 
PASSWORD subparameter in the LABEL 
parameter 192 

PCI, LCE subparameter 145 
PEND statement 274-275,26 
permanently resident volume 243 
PGM parameter on EXEC statement 78-80 

backward references 79,40 
examples of 79-80 
executing programs from 

private library 108-111,79 
system library 79 
temporary library 78 

350 JCL Reference (Release 21.7) 

forrrat cf 79 
positional ~ararreters 

on DD staterrent 118-127,104 
on EXEC statement 78-81,76 
on JCB staterrent 52-73,46 
rules fer cedi ng 37 

postponing definitien ef a data set 
DDNA~E fararreter 162-165 

PRESRES entry 243-244 
primary quantity 

in SPACE farameter 202,204-205 
in SPLIT fararreter 210-211 
in SUBAILCC ~ararreter 215 

prirre area 310 
priority 

initiation 60 
job 60 
job class 60 
step 87 

priority fararreter (see PRTY) 
private libraries 108-111,78 

concatenating 108-111 
executing fregrarrs frerr 108-111,79 

PRIVATE subfararreter ir. the VOLUME 
pararreter 238-239 

private velurre 238-239,243-244 
PRCC pararreter en EXEC staterrent 81,283 

exarrples ef 81 
forrrat ef 81 

PRec staterrent 277-279,26 
assigning values te syrrtelie farameters 

on 277-278 
exarrple of 218 
forrrat ef 276 
rules fer ceding 276-277 

procedure (see cataleged ~recedure; 
instrearr ~rccedure) 

procedure library 81,282 
procedure narre 81,282 
procedure stef 282 
processor stcrage 65-66,96-97 
prograrr 

calling a 78-80 
prograrr narre 78 

subpararreter in the SYSCU~ fararreter 
220 

prograrrrrer's narre ~ararreter en JOE 
staterrent 51 

exarrples ef 51 
forrrat ef 51 
requirerrent fer codir.g 325 
rules fer ceding 51 
special characters in 51,42 

I prograrrrring netes 35-43 
PRTSP, DCB subfararreter 145 

mutually exclusive with 
CCDE 136 
I<EYIEN 140-141 
~CDE 141 
STACI< 148 
TRTCH 148 

PRTY ~ararreter en JOE staterrent 60 
default 60,325 
exarrples ef 60 
forrrat ef 60 
rules fer ceding 60 
tirre-slicing in MVT 60 

public volurre 238-239,243-244 



QISAM data set 
(see ISAM data set) 

QNAME parameter on the DD statement 196 
example of 196 
format of 196 
rules for coding 196 

qualified name 
assigning a 180-181 

R subparameter in the RD parameter 62,92 
RD parameter on EXEC statement 91-93 

defining restart 92 
examples of 93 
format of 91 

,overriding the 92 
restart facilities 91-92 
rules for coding 91 

RD parameter on JOB stateIrent 61- 63 
defining restart 62 
examples of 63 
format of 61 
restart facilities 61-62 
rules for coding 61 

reader procedure 
defaults supplied in the 324-325 

RECFM, tCB subparameter 144-148 
REF s ubparameter in the VOLUME parameter 

242 
references" backward' (see backward 
references) 

REGION parameter on EXEC statement 94-97 
with rrain storage hierarchy support 

96-97 
acquiring additional rrain storage 97 
default 96-97 
examples of 97 
forrrat of 96 
overriding the 97 
rules for coding 96 

without main storage hierarchy support 
94-95 
acquiring additional main storage 94 
default 94,325 
exarr.ples of 95 
forrr.at of 94 
overriding the 94 
rules for coding 94 

REGION parameter on JOB statement 64-66 
with rrain storage hierarchy support 

65-66 
acquiring additional rrain storage 66 
default 65-66,325 
exarr.ples of 66 
forrrat of 65 
rules for coding 65 

without main storage hierarchy support 
64 
acquiring additional main storage 64 
default 64,325 
exarrples of 64 
forrrat of 64 
rules for coding 64 

relational operators in the COND parameter 
53,83 

relative generation nurrber 318 
relative track number 205 
releasing unused space (see RLSE) 

remote job entry 
restriction en use cf EUFNO sutparameter 

~ith * pararreter 119 
with DATA pararreter 122 
with DtNAME pararreter 163-164 

removable velurre 243-244 
RESERVE, DCE subpararreter 148 
reserved velurre 243-244 
restart 

types ef 304-308 
restart definition (Rt pararreter) 

on EXEC staterrent 91-93 
on JOB staterrent 61-63 

restart facilities 
exarrples ef 307-308 
RD pararreter on EXEC statement 91-93 
RD pararreter on JOE staterrent 61-63 
RESTART pararreter er. JOE statement 

67-69 
RESTART pararreter en JOE staterrent 67-69 

exarrples ef 68-69 
forrra t cf 67 
rules that apply when 

defining generaticn data set 68 
rraking backward reference 68 

rules fer ceding 67 
RETAIN subpararreter in the VOLUME 
pararreter 239 

retention peried 193 
effect en 

DELETE subpararreter 171,174 
REEP subpararreter 170,174 

RETPD subpararreter in the LAEEL parameter 
193 

retrieving data sets 326-328 
ca ta loged 327 
generation data set 321,328 
indexed sequential data set 316,328 
merrber cf partitioned data set 327 
nonca ta lcged 

data set with direct crganizaticn 
327 

sequential data set en direct access 
volurre 327 

on a tape velurre 327 
passed data set' 171-172,328 

return cede 53,83 
return cede test 53,83 

effect en dispositicn precessing 170 
RKF, DCB subpararreter 148 
RLSE subpararreter in the SPACE pararr.eter 

204 
effect en existing data set 204 

RNC subpararreter in the RD ~arameter 
62,92 

ROLL pararreter en EXEC staterrent 98-99 
default 98,325 II 
exarrples ef 99 • -
forrrat cf 98 
overriding the 98 
rules fer ceding 98 

ROIL pararreter en JOB staterrent 70 
default 70,325 
exarrples ef 70 
forrrat cf 70 
rules fer ceding 70 

rollout/rcllin 70,98 
ROUND subpararreter in the SPACE parameter 

106 

Index 351 



scratch volume 239,243-244 
secondary quantity 

in SPACE parameter 202-204 
in SPLIT parameter 211 
in SUEALLOC parameter 215 

Section I: Prograrrming Notes 35-44 
section II: The JOB StatelTe'nt 45-73 
section III: The EXEC Staterrent 75-102 
section IV: The DD statereent 103-263 
Section V: The Corr.mand statement 263-266 
Section VI: The Comrrent statement 268 
Section VII: The Delimiter statement 270 
Section VIII: The Null statement 272 
Section IX: The PEND Staterrent 274-275 
Section X: The PROC Statement 276-279 
section XI: Appendixes 280-331 
Section XII: Glossary 333-342 
section XIII: Control StatelTent Foldout 

Charts 356-351 
SEP parameter on DD staterr.ent 197-198 

examples of 198 
format of 197 
requesting channel se~aration 197 
rules for coding 197 

SEP spbpararneter in the UNIT ~arameter 234 
separation 

channel 197-19~127-128 

unit 234 
sequence number 

data set 190 
volume 239 

sequential data set 
concatenating 40-41 
creating 326-327 
lengthening 170-172 
retrieving 327-328 

SER subparameter in the VOLUME ~arameter 
240-242 

shared control 167-169 
sharing 

cylinders 209-212 
data set 169 

SHR subpararneter in the DISP ~arameter 169 
SL subparameter in the LABEL ~arameter 169 
SOWA" LCE subparameter 14'8 
SPACE parameter on DD staterrent 199-206 

(see also SPLIT; SUBALLOC) 
assigning specific tracks 205 
coded on 

SYSABEND DD statereent 115-116 
SYSULUMP DD staterrent 115-116 

coded when 
creating generation data set 319 
creating lSAM data set 310 

coded with SYSOUT parameter 219-220,325 
examples of 205-206 
format of 199 
letting system assign specific tracks 

201-205 
allocating whole cylinders 205 
releasing unused s~ace 204 
requesting space 'f er directory 204 
requesting space fer index 204 
format 199 
specifying prirrary quantity 202 
specifying seccndary quantity 

202-203 
unit of measurerrent 201-202 

352 JCL Reference (Release 21.7) 

requesting sFace 199-205 
rules fer coding 199-200 

special character set 42 
~ith UCS Farameter 223 
using 41,42 

special ddnarres 108-118 
specific velulTe request 237 

for direct access velurre 237,202 
satisfying a 247 
for taFe velume 237 

split cylinder rrcde 210 
SPLIT pararreter en tt staterrent 209-212 

(see alse SPACE; SUEALLOC) 
coded en, 

SYSAEENt tD staterrent 114-115 
SYSUDUMP tD staterrent 114-115 

e~arrples ef 211-212 
forrrat ef 208 
requesting sFace 210-211 
rules fer ceding 209 

STAC~, DCB subFararreter 148 
mutually exclusive with 

CODE 136 
~EYLEN 140-142 
PRTSF 144 
TRTCH 148 

sta tes" volurre 243-248 
status subFararreter in the tISP Farameter 
167-168 

step" job 22 
step dispatching Friority (see DPRTY) 
step restart 

autorratic 61,91,304 
deferred 67-69~304-306 

STEPLIB DD statement 111-114,78-79 
(see also JOELIE) 
concatenating Frivate litraries 113 
exarrples ef 113-114 
pararreters te cede when 

catalcged 112 
not cataleged or r.ct ~assed 112 
passed 112 

rules fer ceding 111-112 
stepnarre 

assigning a 77 
exarrples cf 77 

storage velurre 243-248 
strearr, inFut, data sets in the 
118-126,177 

strearr, cutFut, routing data sets thrcugh 
the 218-221 

SUBAIICC Fararreter cn [t staterrent 213-217 
(see alse SPACE; SPLIT) 
coded en 

SYSAEENt tt staterrent 114-115 
SYSUDUMF tt staterrent 114-115 

e~arrples ef 116-217 
forrra t cf 213 
requesting sFace 214-216 
rules fer ceding 213-214 

sutallocaticn 214 
subpararreter 

rules fer ceding 37 
SUL subpararreter in the LAEEL Fararreter 

191 
suppressing 

CH~PT rracre instructien 61,91 
autorratic restarts 61,91 



symbolic parameters 300-303,283-285 
assigning default values te 

276-279,303 
assigning values te 284-285 
defining 301 
definition of 301 
examples of 301,284 
nullifying 286 
PROC statement 276-279,301 

SYSABENL DD statement 114-116 
(see also SYSUDUMP) 
examples of 115-116 
storing the dump 114-115 
writing the dump to unit record device 

114 
SYSCHK LL statement 116-117 

with deferred restart 66-67,304-305 
examples of 117 
parameters to code when 

cataloged 116-117 
not cataloged 117 

rules for coding 116 
SYSIN as a ddname 119,29 
SYSOUT pararreter on DD staterrent 218-221 

coded on 
SYSAEEN~ ~D staterrent 114-115 
SYSU~UMP DD staterrent 114-115 

examples of 220-221 
format of 218 
rules for coding 218 
specifying clas~nawe 219 
specifying DCB pararreter 219-220 
specifying form nurrber 219 
specifying MSGCLASS paraweter 219 
specifying prograrr narre 219 
specifying SPACE pararreter 

219-220,324-325 
specifying UNI~ pararreter 219-220,325 

system library 79 
system management facilities 

with ~IME parameter 71-72,100-102 
system messages 

output class 56 
SYSUDUMP D~ staterr,ent 114-116 

(see also SYSABEND) 
examples of 115-116 
storing the dump 114-115 
writing the dump to unit record device 

114 
SYS1.LINKLIE 79 
SYS1. PROCLIE 81 

tape devices, list of 229 
tape labels, ANSI 188-192 
task managerr:ent 22 
TCAM (see ~elecommunications Access ~ethod) 
Telecorrrr.unications Access Methcd (TCA~) 
teleprocessing 

what to code in ROLL ~ararreter 70,98 
temporary data set 

creating 326-327 
temporary library 78 

TER~ pararreter cn the LL staterrent 223 
exarrples 223 
forrra t cf 223 
rules fer ceding 223 

THRESH, DCE sub~ararreter 148 
time lirrit 

CPU 72,100 
wait state 71,100 

TI~E pararreter cn EXEC staterrent 100-102 
affect cf JOE lirrit 101 
CPU tirre lirri t 

default 100,325 
with S~F 100 
withtut SMF 100 

elirrinating tirring 101 
exarrples ef 101-102 
forrra t cf 100 
overriding the 100,289 
rules fcr ceding 100 
wait-state time lirrit 

with S~F 100 
withcut SMF 100 

1440 101 
TIME pararreter cn JOE staterrent 71-72 

affect cf JOE tirre lirrit 101 
CPU tirre lirri t 

with SMF 71 
withcut SMF 71 

elirrinating tirring 72 
exarrples ef 72 
forrrat cf 71 
rules fer ceding 71 
wait-state tirr.e lirrit 

with SMF 71 
withcut SMF 71 

1440 72 
time starir,g q~:ticn (TSO) 59.,126,222 
time sharing terrrinal 59,222 
time-s lic ir,g 

in ~FT 87 -88 
in WT 60,87 -88 
for a jeb 60 
for a step 87-88 

timing 
CPU 100,71 
elirrinating 101,72 

trac'k nurrber, relative 205 
TRK sUbpararreter 

in SPACE pararreter 201-202 
in SUBALLCC ~ararreter 215 

TRTCH, DCE' sub~ararreter 148 
for checkJ;cint data set 116-117 
mutually exclusive with 

CODE 136 
KEYLEN 140-141 
~ODE 141 
PRTSF 145 
STACK 148 

TSC (see Tirre Sharing C~ticn) 
TYPRUN pararreter en JCE staterrent 73 

exarrple ef 73 
fortIa t cf 73 
rules fer ccding 73 

Index 353 



UCS pararreter on DD state~ent 223-225 
examples of 225 
format of 223 
identifying character set 223 
requesting 

fold mode 225 
operator verification 225 

rules for coding 223 
special character sets 223 

UNCATLG subparameter in the DISP parameter 
173-174 

unit address 228 
unit affinity 234-235 

nonsharable attribute 247 
unit count subparameter in the UNIT 
parameter 231 

UNIT parameter on DD statement 226-235 
coded on 

JOBLIB DD staterrent 109 
STEPLIB DD staterrent 112 
SYSAEEND DD staterrent 114-115 
SYSCHK DD staterrent 116-117 
SYSUDUMP DD staterrent 114-115 

coded when 
creating generation data set 320 
creating ISAM data set 311 
retrieving generation data set 321 
retrieving ISAM data set 316 
retrieving passed data set 171 

examples of 235 
format of 226 
identifying the device 228-233 
providing unit inforrraticn 227-235 
rules for coding 226-227 
specifying 

deferred mounting 233-234 
parallel mounting 233 
SYSOU~ parameter 219-220 
unit affinity 234-235 
unit count 233 
unit separation 234 

with suballocation 214 
unit record devices 

list of 230 
writing dumps to 115 

unit separation 234 
universal character set (see UCS) 
unqualified name, assigning 180-181 
use attributes 243-244 

VERIFY subpararreter in the UCS parameter 
225 

VOL pararreter en ~~ staterrent (see VOLUME 
pararreter) 

volume 
perrranently resident 243-245 
private 243-245,238-239 
public 243-245 
rerrovable 243-245 
reserved 243-245 
~cratch 243-244,239 
storage 243-245 

354 JCL Reference (Release 21.7) 

volurre affinity 241-243 
volurre ceunt subpararreter in the VOLUME 
pararreter 240 

VOLU~E parameter en ~~ staterrent 236-249 
backward reference 242,40 
coded en 

JOBLIE ~~ statenent 110 
STEFLIE CC statenent 112 
SYSAEENC ~D statenent 115 
SYSCHK ~L staterrent 116,117 
SYSUDUMP ~L statenent 115 

coded when 
creating generatier. data set 320 
creating ISAM data set 311 
retrieving ISAM data set 316 

exarrples ef 248-249 
forrrat cf 236 
providing velurre inferrration 237-241 
referrir~ tc specific request 241 
rules fer ceding 237 
specifying 

PRIVATE subpararreter 238-239 
RETAIN subpararreter 239 
volurre sequence nurrber subpararreter 

239 
volurre ccunt subpararreter 240 

~ith suballecaticn 214 
supplying serial nunbers 240-241 

volume sequence nurrber subpararreter in the 
VCIU~E pararreter 239 

for checkpeint entry 118 
volurre serial number 240-242 

for checkpeint entry 117-118 
special characters in 240,41-42 

volurre states 248 
VCLU~E=REF 

backward references 242,40 

wait state tirre lirrit 
~itb S~F 72,101 
~ithout SMF 72,101 

XI 283 
XX 283 
xx* 283,40 

1440 72,101 
2321 data cell drive 

unit address 228 
unit affinity 234-235 

2361 ce~e sterage 65,96 





356 JCL Reference (Release 21.7) 



/ /Name Operation 

/ /jobname JOB 

Legend: 

The JOB Statement 
Operand 

([account number] [,additional accounting information, ••• ]) 

[programmer's name] 

[C LASS=jobc lass] 

[COND=((code,operator), ••• )] 

[MSGCLASS=output class] 

[NOTIFY=user identification] 

[PRTY=priorityJ 

[
REGION=OvalueK l Gvalue1KJ)1 

~valueoK~ J 

[
RESTART=(I:tepname .1 [,checkid])l 

stepname. procstepname J 

[TIME={ ~~~~utes ,seconds)}] 

[TYPRUN=HO LD ] 

P Positional parameter. 
K Keyword parameter. 
{ } Choose one. 
[] Optional i if more than one line is enclosed, choose one or none. 

Chart 1 

Figure 43. Job Statement Chart 

P/K Comments 

P Can be made mandatory 

P Can be made mandatory 

K Assign A-O. 

K Maximum of 8 tests 

K Assign A-Z ,0-9. 

K 

K Notify user of job completion. 
For MVT with TSO. 

K Assign 0-13. 

K Restart definition-

K For MVT 

K For deferred restart 

K Rollout/rolli'n. For MVT. 

K Assigns job CPU time limit. 

K Holding a job in job queue. 

357 



//Name Operation 

/ /[stepnameJ EXEC 

Legend: 

P Positional parameter. 
K Keyword parameter. 
{ } Choose one. 

The EXEC Statement 
Operand 

{

program name } 
PGM= * .stepname.ddname 

* • stepname. procstepname .ddname 
[PROC=]procedure name 

rACCT=(accounting information, ••• ) ] 
LACCT .procstepname=(accounting information, ••• ) 

~
code ,operator) ] 

COND=( (code,operator,stepname) '00'['] EVEN) 
(code ,operator ,stepname. procstepname) [ON LY] 

~
code ,operator) J 

(OND. procstepname=( (code,operator ,stepname) , ••• [,] [EVEN]) 
(code,operator ,stepname .procstepname) ONLY 

L.. 

rDPRTY=(value1,value2) 1 
LDPRTY .procstepname=(value l,value2)J 

rp ARM=va lue ] 
LP ARM. procstepname=va I ue 

R 
RD= RNC 

NC 
NR 

R 
RD .procstep'name= RNC 

NC 
NR 

[

REGION=({VaIUeK }[,value1 K]) J 
valueoK 

REGION • procstepname=({valueK }[,va lue1 K]) 
valueoK 

[

ROLL=({YES}{, YES}) J 
NO ,NO 

ROLL.procstepname=({~~}{:~~p 

[

TIME={(minutes,seCOndS)} ] 
1440 

TIME. procstepname= {(~~~~tes, seconds)} 

[] Optional.; if more than one line is enclosed, choose one or none. 

Chart 2 

Figure 44. Execute Statement Chart 

P/K Comments 

P Identifies program or 
cataloged procedure 

K Accounting information for step 

K Maximum of 8 tests, or 7 tests 
if EVEN or ONLY is coded 

K Assign values of 0-15. For MVT. 

K Parentheses or apostrophes 
enclosing value may be required 

K Restart defi nition 

K For MVT 

K Rollout/rollin. For MVT. 

K Assigns step CPU time limit. 

359 



IIName Operation 

DD II~ddname j 
procstepnome. 

ddname 

Legend: 

P 

K 

Positional parameter. 

Keyword parameter. 

11 Choose one. 

The DD Statement (can't) 

Operand 

[{ ITRK I tCONTIG] }] 1 SPACE=( CYL ,(primaryf.,econdaryl f.?irectory])[,RLSE1,MXIG LROUND]) 
block length ~ J ~ Index 'J ,ALX 

2 SPACE=(ASSTR,(primary quantity ,address [, ?irectory])) 
, Index 

[ l
(n'CYL,(primary quantity ["ecandary quantity])) \1 

SPLlT= n 
(percent ,block length ,(primary quantity ['secondary quantity [)) 
percent 

[ I TR K I ! ,ddname I ] SUSALLOC=( CYL ,(primary f,secondary] ['directoryJ) ,slepname.ddnome ) 
blocklength ~ ,stepnome.procstepname.ddname . 

~YSOUT=(ClaSSname [program namJ [form numbe~), [OUTLIM=numbe~ ] 

[TERM=TSJ 

[UCS=(Character set code [,FOLD ]f, VERIFY]] 

[ 
~unit address] [,unit count] 1 

UNIT=( device type ,P [,DEFER][.SEP=(ddname .... )]) 
group name , 

UNIT=AFf"<ldnome 

[ [

SER=(,erial number, ... ) II 
REF"<lsname 

lVOLUME /=([PRIVATE] [,RETAIN] [,volume seq H][ ,volume count] [,1 REF=*.ddname ) 
VOL 1 " REF=* .stepname.ddname 

R EF=* • slepname. procslepname .ddname 

[] 
(J 

Enclosing subporameter, indicates that subparometer is optional; if more thon one line is enclosed, choose one or none. 

Enclosing entire parameter, indicates that parameter may be optional, depending on whet type of data set you ore defining. 

plK Comments 

1 To assign space on a direct access volume 
for a new data set 

2To assign specific trocks on a direct access 
vo I ume for a new doto set 

K To assign space on a direct access volume 
for a new data set. Data sets share cyl inders. 

K To request part of the space on a direct 
access volume assigned earlier in the job 

K To route a data set through the output 
stream. For classname, assign A-Z or 
0-9. 

K To indicate to the system that the input or output 
data being defined is coming from or going to a 
time sharing terminal. 

K To request a special character set for a 
1403 printer 

K To provide the system with unit information 

K To provide the system with volume information 

IIName Operation 

II [ddname ] 
procstepname. 

ddname 

DD 

CharI 3 

The DD Statement 

Operand 

[~ATA [,DLM="" JJ 
[DUMMY] 

[DYNAM] 

[AFF"<ldname] 

[

DCS:(list of attributes) 
dsname I .. " .... ~ . 1""''''''''.'. "' .... \ 

DCB=( : :~t:~~::e .ddname 

LDDNAME"<ldnameJ 

[ 1 [
,DELETE J NEW ,KEEP 

DISP=( OLD ,PASS 
SHR ,CAlLG 
MOD ,UNCATLG 

[

DELETE ] J 
:~~~LG ) 
,UNCATLG 

[DLM"<lelimiter] 

.- Idsname \ 
dsname(member name) 
dsname(generatian number) 
dsname{area name) 

1 
DSNAME/ &&dsnome 
DSN 1= I &&dsnome(member name) 

I &&dsname(area name) 
* .ddname 
*. stepname .ddname 
*. stepname. procstepname.ddnam~ 

~CB=(image-id [:~~~?~])] 

[OUTLIM=number] 

[QNAME=process name] 

,SL 
,SUL 
,AL 
,AUL 
,NSL 
,NL 
,BLP 
,LTM 

,NOPWREAD ,OU~ LRETPD=nnnn 
[

,PASSWORD] [,IN le,] IEXPDT=YYdddJ'] 

Figure 45. Data Definition Statement Chart 

P/K 

K 

K 

K 

K 

K 

K 

K 

Comments 

To define a data set in the input stream. 

To bypass I/o operation, on a dota set 
(BSAM and QSAM) 

To request dynamic allocation. 
For MVT with TSO. 

One way to request channel separation. 

To complele the data control block. See 
Glossary of DCB Subparameters. 

To postpone the definition of a data set. 

To assign a status, disposition, and 
conditional disposition to the data set 

Assigns a delimiter other than I' 

To assign a name to a new data set or to 
identify an existing data set. An 
unqua Ii fi eel name is 1-8 characters I 
beginning with an alphabetic or national 
character. 

To specify forms control information. The FCS 
parameter is ignored if the data set is not 
wri Iten to a 3211 pri nter. 

To supply labe I information 

To limit the number of logical records you 
want included in the output data set. 

Specifies the nome of a TPROCESS macro 
which defines a destination queue for 
messages received by means of TeAM. 

Chart 3 

361 



GC28-6704-3 

J!J]5~ 
CD 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 



(') 

S 
g 
'l1 
c: 
» o 
:I 

OQ 

r 
5' 
(I) 

IBM System/360 Operating System: 
JCL Reference 

GC28·6704·3 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality, 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

What is your occupation? _______________ -:-_________________________ _ 
Number of latest Technical Newsletter (if any) concerning this publication: ____________ _ 
Please indicate in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. Elsewhere, an 
IBM office or representative will be happy to forward your comments. 

READER'S 
COMMENT 
FORM 



GC28-6704-3 

Your comments, please ... 

This manual is part of a library that serves as a reference source for system analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

o 
S. 
g 
." o 
c: 
» 
0" 
:J 
O'Q 

r-
5' 
eD 

I 
Fold Fold 

- - --- --- - - - ---- - -----~ 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S,A. 

Postage will be paid by: 

International Business Machines Corporation 
Department D58, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

First Class 
Permit 81 
Poughkeepsie 
New York 

-----------------------~ 
Fold 

l1~OO 
(!) 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Fold 


