
Systems Reference Library

OS Utilities

Program Numbers 360S-UT-506
360S-UT -507

File Number 5360-32

Order Number GC28-6586-15 0 S

This publication discusses the capabilities of the IBM Systemj360 Operating System
utility programs and the control statements used with each program. These programs
are used by programmers responsible for organizing and maintaining operating system
data.

(-

Sixteenth Edition (April 1973)

This edition is a major revision of, and makes obsolete, IBM System/360 Operating System:
Utilities, Order Number GC28-6586-14. For a summary of the major technical and editorial
changes to this edition, see "Summary of Major Changes for Release 21. 7."

Technical changes are indicated by a vertical line to the left of the change.

This edition applies to Release 21. 7 of the IBM System/360 Operating System. It also applies to
any subsequent versions and modification levels until otherwise specified in new editions or
technical newsletters.

The information contained in this publication is subject to significant change. Any such changes
will be published in new editions or technical newsletters. Before using this publication, consult
the latest "IBM System/360 and System/370 Bibliography," GA22-6822, and the current SRL
Newsletters.

Requests for copies of IBM publications should be made to the IBM branch office that serves you.

A form for reader's comments appears at the back of this publication. Address any additional
comments concerning this publication to IBM Corporation, Programming Publications, Post Office
Box 1900, Boulder, Colorado 80302.

©Copyright International Business Machines Corporation 1965, 1966, 1967, 1968, 1969, 1970,
1971,1972, 1973

Front part
of book

IBCDASDI

.IBCDMPRS·

I BCR CVR P~Class C.·

JCAPRTBl

IEBDG'

IEBEt)IT

IEBGENEFl~ClassC

IEBPTPCH'~ClassC

Back part
of book

IEBTCRIN

IEBUPDAT ~ClassC .

IEBUPDTE

IEHATlAS

IEHM()VE·· '

How to Use This Publication 3

How to Use This Publication

Organization of
the Publication

This publication provides a full description of the use of the IBM System/360
Operating System utility programs. This publication assumes that the reader is familiar
with IBM System/360 Operating System terms and concepts.

Effective use of this publication requires an understanding of the following:

• Organization of the publication as a whole.

• Organization of each program description.

• Use of special referencing aids that help you find the right utility program and the
right example.

• Required publications.

• Related publications.

• Notational conventions used to describe the syntax (or format) of utility control
statements.

These topics are discussed below.

In addition to the preface you are now reading, a table of contents, a list of figures,
and a list of tables, this publication has these major parts:

• "Summary of Major Changes for Release 21.7," which is a summary of the major
changes in this edition.

• "Guide to Utility Program Functions," which is a table arranged in alphabetical
order of utility program' functions and the programs that perform them. This table
enables you to get to the program that can do what you need to have done. For
additional information, see "Special Referencing Aids" below.

• Illntroduction," which introduces the utility programs and provides information on
the differences among system, data set, and independent utility programs. This
chapter contains basic information about how the programs are executed and about
the utility control statements used to specify program functions. New or infrequent
users of the utility programs should give particular attention to this chapter.

• 22 individual chapters-one for each utility program. These chapters are in
alphabetical order, beginning with IBCDASDI and ending with IFHSTATR. For a
discussion of the organization of these chapters, which will help you find the
information you need about a particular program, see "Organization of Program
Descriptions" below.

• "Appendix A: Exit Routine Linkage," which provides information about linking to
and returning from optional user-supplied exit routines. You should read this
appendix if you plan to code or use an exit routine. If you are coding an exit
routine, this appendix provides linkage conventions, descriptions of parameter lists,
and return codes. If you are using an existing exit routine, you may be interested in
the meaning of return codes from the exit routine.

• "Appendix B: Invoking Utility Programs from a Problem Program," which describes
the macro instructions used to invoke a utility program from a problem program
rather than executing the utility program by job control statements or by a
procedure in the procedure library. You should read this appendix if you plan to
invoke a utility program from a problem program.

• "Appendix C: DO Statements for Defining Mountable Devices," which provides a
review of how to define mountable volumes to ensure that no one else has access
to them. For a definitive explanation of this. subject, see as Job Control Language
Reference, GC28-6704.

• "Appendix 0: Generation Data Groups," which describes generation data groups
and their indexes, and how to catalog and retrieve generation data sets. This
appendix is included because generation data groups are not fully described
elsewhere and because you need this background information if you are to
manipulate generation data groups with the utility programs. You should read this
appendix if you intend to use utility programs to create or manipulate generation
data sets.

• IIAppendix E: Processing User Labels," which describes the user-label processing
that can be performed by IEBGENER, IEBCOMPR, IEBPTPCH, IEHMOVE, IEBTCRIN,
and IEBUPDTE. You should read this appendix if you plan to use a utility program
for processing user labels.

How to Use This Publication 5

Organization of
Program Descriptions

Special Referencing Aids

Required Publications

6 Utilities (Release 21.7)

• IIlndex," which is a subject index to this publication.

Program descriptions are all organized the same way to enable you to find
information more easily. Each program is discussed according to the following pattern:

• Introduction to and description of the functions that can be performed by the
program. This description typically includes an overview of the program's use,
definitions of terms, illustrations, etc.

• Input and output (including return codes) used and produced by the program.

• Control of the program through job control statements and utility control
statements. A brief explanation of the job control statements used to execute the
program appears in a table under IIJob Control Statements." Any restrictions on
job control statements appear under a IIRestrictions" heading. The utility control
statements are introduced in a list under IIUtility Control Statements'l so that you
can determine which of the statements are required for the task to be performed.

• Examples of using the program, including the job control statements and utility
control statements.

Two special referencing aids are included in this publication to help you:

1. Locate the right utility program.

2. Locate the right example.

To locate the right utility program, refer to Table 1 in IIGuide to Utility Program
Func.tions," which immediately precedes the Illntroduction." Figure 1 shows a portion
of the table. The figure shows that you can use IEHINITT to label a magnetic tape
volume or IEHLlST to list a volume table of contents.

Label magnetic tape volumes IEHINITT

List a password entry IEHPROGM
a volume table of contents IEHLlST
partitioned directories IEHLlST

Figure 1. Locating the Right Program

To locate the right example, use the table-called an "example directory"-that
precedes each program's examples. Figure 2 shows a portion of the example directory
for IEHMOVE. The figure shows that IEHMOVE Example 1 is an example of moving a
sequential data set and that IEHMOVE Example 2 is an example of copying a
sequential data set.

MOVE Sequential

COpy Sequential

2301 Drum,
2311 Disks

2311 Disk,
2301 Drum,
2314 or
2319 Disks

Figure 2. Locating the Right Example

Source volume is demounted
after job completion.
Two mountable disks.

Three cataloged sequential
data sets are to be copied.
The 2314 or 2319 are
mountable.

The reader should be familiar with the following pUblications:

2

• as Messages & Codes, GC28-6631, which contains a complete listing and
explanation of the messages and codes issued by the utility programs and other
programs.

• as JCL Reference, GC28-6704, which contains a complete explanation of the job
control statements available for the operating system.

• as Data Management Services Guide, GC26-3746, which describes the input! output
facilities of the operating system. It contains information on record formats, data
set organization, access methods, direct access device characteristics, data set
disposition, and space allocation.

• as Supervisor Services Guide, GC28-6646, which contains information on how to
use the services of the supervisor. Among the services of the supervisor are
program management, task creation and management, main storage management,
and checkpoint and restart.

• as Supervisor and Data Management Macro Instructions, GC28-6647, which
contains a description of the WRITE SZ, LINK, and RETURN macro instructions, and
contains the format and contents of the DCB.

Related Publications

Notational Conventions

Bold Type

Italic Type

Punctuation

Brackets

Braces

Underscoring

Ellipsis

The additional publications referred to in this publication are:

• OS Data Management for System Programmers, GC28-6550, which contains
information on the PASSWORD data set and on writing optional user-supplied exit
routines.

• OS Storage Estimates, GC28-6551, which contains storage estimates.

• OS System Control Blocks, GC28-6628, which contains a complete description of
the control blocks used by the operating system.

• IBM System/360 Principles of Operation, GA22-6821, which contains a description
of system structure; of the arithmetic, logical, branching, status switching, and
input/output operations; and of the interruption system.

A uniform system of notation is used to describe the syntax (or format) of utility
control statements. This notation provides a basis for describing the structure of utility
control statements. That is, it describes which parameters are' required and which are
optional, the options available in expressing values, and the required punctuation.

In the notation, bold type (LIST, 0, etc.) is used to indicate specific values that can be
entered.

Italic type (nn, user-information, etc.) is used where a number, character string, or
keyword is to be inserted by the user. For instance, the italic letters in

MODE=mm
Tn

must be replaced by a value when coded.

The period, comma, equal sign, parentheses, and apostrophe are used for
punctuation and must be coded as shown. These punctuation marks serve to separate
the parameters of a utility control statement.

Brackets ([]) indicate that the elements and punctuation they enclose are optional.
The brackets themselves are for descriptive purposes only, and are not to be coded.
For instance

value = elementl,element2,element3[,element4]

indicates that "value = " must be followed by three required parameters (elementl,
element2, and element3) separated by commas. As indicated by the brackets,
element4 is optional and need not be coded. If element4 is coded, however, the
comma that immediately precedes it must also be coded.

When choices are available for an optional value, the choices appear in brackets, one
choice above another, as follows:

value = elementO [,elementl]
[,element2]
[,element3]

In the above example, "value = " must be followed by elementO. Optionally,
elementl, element2, or element3 can be coded.

Braces ({ }) indicate a required choice. The braces themselves are for descriptive
purposes only, and are not to be coded. For example:

value = {elementl}
{element2 }

indicates that "value = " must be followed by either elementl or element2.

Underscoring indicates a value that is assumed by the program if no value is entered
for that element. For example, given that no optional value is coded in the following:

value = [elementl]
[element2]

elementl is assumed.

Ellipsis (...) is used to indicate that one or more additional parameters or sets of
parameters, each of the same format, optionally can be added to the operand. For
example, given the following

value = elementl ,element2 ...

the ellipsis indicates that everything preceding the ellipsis and following the equal sign
can be repeated.

How to Use This Publication 7

KEYWORD = device-list

8 Utilities (Release 21.7)

The term KEYWORD is replaced by either VOL, CVOL, FROM, or TO.

The term device is replaced by either a generic name, e.g. 3330; or a substitute for a
generic name, e.g. DISK, if this substitute has been generated into your system.

For direct access devices, the term list is replaced by one or more volume serial
numbers separated by commas. When there is more than one, the entire list field must
be enclosed in parentheses.

For tape, the term list is replaced by either one or more volume serial
number-comma-data set sequence number pairs. Each pair is enclosed in braces and
separated from the next pair by a comma. When there is more than one pair, the
entire list field must be enclosed in parentheses.

Contents

Summary of Major Changes for Release 2l.7
Major Technical Changes •••••.
Major Editorial Changes . • • • • • •

Guide to Utility Program Functions

Introduction
Control ••••••••••••••.•

Job Control Statements • • • • • .
Utility Control Statements . • • • .
Continuing Utility Control Statements

Restrictions • • • • • • . •
Multiprogramming Considerations
System Utility Programs • • • . • • . .
Data Set Utility Programs ••.••.•
Independent Utility Programs. • • . . .

Executing IBCDASDI, IBCDMPRS, and IBCRCVRP
Executing ICAPRTBL • • • . • . .

IBCDASDI Program
Initializing a Direct Access Volume .
Assigning an Alternate Track

Input and Output .•••.•
Control .••••••••••

Utility Control Statements •
JOB Statement •
MSG Statement • .
DADEF Statement .
VLD Statement • .
VTOCD Statement .
IPL TXT Statement •
GETALT Statement
END Statement • .
LASTCARD Statement

IBCDASDI Examples . •

IBCDMPRS Program . . .
Input and Output •.•.•
Control ••••......

Utility Control Statements •
JOB Statement •
MSG Statement . . •
DUMP Statement .•
VORL Statement. . •
RESTORE Statement •
END Statement . . .

IBCDMPRS Examples ..•

IBCRCVRP Program - Class C
Recovering Usable Data
Replacing Bad Data. • •

Replacement Record .
Input and Output •.•...
Control •...•••.••.

Utility Control Statements •
JOB Statement • • •
MSG Statement . . .
RECOVER Statement •
REPLACE Statement •
LIST Statement . •
INSERT Statement.
END Statement

IBCRCVRP Examples.

ICAPRTBL Program
Input and Output .•
Control •••.•.•

Utility Control Statements •
JOB Statement
DFN Statement
UCS Statement
FCB Statement
END Statement

ICAPRTBL Example

'.

Contents

17
17
17

19

23
23
23
23
24
24
24
24
25
25
26
26

27
27
27
27
27
27
28
28
28
29
30
30
30
31
31
31

33
33
33
33
.33
33
33
35
35
36
36

37
37
37
37
37
37
37
38
38
38
39
40
40
41
41

43
43
43
43
43
43
43
44
44
44

9

10 Utilities (Release 21.7)

IEBCOMPR Program - Class C .
Input and Output ••..•
Control ••..•.••.•.

Job Control Statements . .
Restrictions . • . • • .

Utility Control Statements •
COMPARE Statement
EXITS Statement •
LABELS Statement

IEBCOMPR Examples

IEBCOPY Program . . .
Creating a Backup Copy
Copying Data Sets . • .
Selecting Members to be Copied
Replacing Identically Named Members .
Replacing Selected Members . . • • .
Renaming Selected Members
Excluding Members from a Copy Operation
Compressing a Data Set
Merging Data Sets • .
Recreating a Data Set

Input and Output .•.•
Control .•...•...

Job Control Statements .
Restrictions
Space Allocation

Utility Control Statements .
COpy Statement "
SELECT Statement
EXCLUDE Statement.

IEBCOPY Examples ..,

IEBDG Program
IBM-Supplied Patterns .
User-Specified Pictures.
Modification of Selected Fields

Input and Output •....
Control•..

Job Control Statements
Restrictions
PARM Information on the EXEC Statement

Utility Control Statements •
DSD Statement . .
FD Statement . . .
CREATE Statement
REPEAT Statement
END Statement

IEBDG Examples . .

IEBEDIT Program .
Input and Output ..
Control

Job Control Statements .
Restrictions

Utility Control Statement
EDIT Statement . . .

IEBEDIT Examples •

IEBGENER Program - Class C
Creating a Backup Copy ..
Producing a Partitioned Data Set from Sequential Input .
Expanding a Partitioned Data Set . • . • . .
Producing an Edited Data Set
Reblocking or Changing Logical Record Length

Input and Output •....
Control .•........

Job Control Statements .
Restrictions

Utility Control Statements .
GENERATE Statement
EXITS Statement .
LABELS Statement
MEMBER Statement
RECORD Statement

IEBGENER Examples . • .

45
46
46
46
46
47
47
47
47
48

53
53
53
54
54
55
55
55
55
55
55
55
56
56
57
57
58
58
60
61
61

81
81
82
82
82
83
83
84
84
85
85
85
89
92
92
93

· 101
· 101
• 101
· 101
· 101
· 101
· 101
· 103

· 107
· 107
· 107
· 107
· 107
· 109
· 109
· 109
.110
· 110
· 111
· 111
· 111
· 112
· 113
· 113
· 115

IEBISAM Program •
Copying an Indexed Sequential Data Set • . • . . . • . •
Creating a Sequential Backup Copy • •
Creating an Indexed Sequential Data Set from an Unloaded Data Set
Printing the Logical Records of an Indexed Sequential Data Set

Input and Output .•.......•.•..•
Control .•........•.•.......•

Job Control Statements
PARM Information on the EXEC Statement

IEBISAM Examples.

IEBPTPCH Program - Class C
Printing or Punching a Data Set . • . •
Printing or Punching Selected Members
Printing or Punching Selected Records .
Printing or Punching a Partitioned Directory
Printing or Punching an Edited Data Set

Input and Output•
Control

Job Control Statements . .
Restrictions • .

Utility Control Statements •
PRINT Statement .
PUNCH Statement .
TITLE Statement .
EXITS Statement .
MEMBER Statement
RECORD Statement
LABELS Statement

IEBPTPCH Examples .

IEBTCRIN Program ..
Error Records
Error Description Word (EDW) .

Level Status (Byte 0) . .
Type Status (Byte 1) ..
Start-of-Record (Byte 2)
End-of-Record (Byte 3) .

Sample Error Records ...
MTDI Editing Criteria

MTDI Editing Restrictions
End-ot-Cartridge

Input and Output
Control

Job Control Statements . .
Restrictions

Utility Control Statements .
TCRGEN Statement . .
EXITS Statement ...

Return Codes from IEBTCRIN
IEBTCRIN Examples .

IEBUPDAT Program .. .
Input and Output
Control

Job Control Statements .
PARM Information on the EXEC Statement

Utility Control Statements .
Header Statement. . . .
NUMBR Statement ...
DELET Statement
Logical Record Statement
ALIAS Statement .
ENDUP Statement.

IEBUPDAT Examples

IEBUPDTE Program
Creating and Updating Symbolic Libraries
Incorporating Changes
Changing Data Set Organization

Input and Output

· 123
· 123
· 123
· 124

· . 124
· 125
· 125

. .. 126
· 126
· 127

· . 129
· . 129

· 129
· 129
· 129
.130
· 130
.130
.130
· 131
· 131
· 132
.134
· 135
· 136
· 136
· 136
· 138
· 139

· 145
· 145
· 145
· 145
.146
· 146
· 146
.146
· 148
· 148
.149
.149
· 149
· 149
· 150
· 150
· 151
· 153
· 157
· 157

· 159
· 159
· 159
· 159
· 159
· 160
· 160
· 161
· 161
· 162
· 162
· 162
· 162

· 165
· 165
· 165
· 165
· 165

Contents 11

12 Utilities (Release 21.7)

Control•........
Job Control Statements

Restrictions
PARM Information on the EXEC Statement

Utility Control $tatements .
Function Statement
Detail Statement
Data Statement . .
LABEL Statement .
ALIAS Statement .
ENDUP Statement .

IEBUPDTE Examples .

IEHATLAS Program . .
Input and Output
Control

Job Control Statements .
Restrictions

Utility Control Statement
TRACK or VTOC Statement.

IEHATLAS Examples

IEHDASDR Program
Initialize-With Recording-Surface Analysis
Initialize-Without Recording-Surface Analysis .
Changing the Volume Serial Number of a Direct Access Volume
Assigning Alternate Tracks for Specified Tracks .
Creating a Backup, Transportable, or Printed Copy
Copying Dumped Data to a Direct Access Volume

Input and Output
Control

Job Control Statements
Restrictions
PARM Information on the EXEC Statement

Utility Control Statements .
ANALYZE Statement .
FORMAT Statement
LABEL Statement . .
GET AL T Statement .
DUMP Statement . .
RESTORE Statement .
IPLTXT Statement .

IEHDASDR Examples. . . .

IEHINITT Program
Placing a Standard Label Set on Magnetic Tape

Input and Output
Control

Job Control Statements
Restrictions
PARM Information on the EXEC Statement

Utility Control Statement
INITT Statement.

IEHINITT Examples

IEHIOSUP Program .
Input and Output '"
Control

Job Control Statements .
Restrictions .

IEHIOSUP Examples . . .

IEHLlST Program ..,
Listing Catalog Entries
Listing a Partitioned Data Set Directory

Edited Format
Unedited (Dump) Format .. ,

Listing a Volume Table of Contents
Edited Format
Unedited (Dump) Format

Input and Output
Control

Job Control Statements . . .
Restrictions
PARM Information on the EXEC Statement

Utility Control Statements .
LlSTCTLG Statement
LlSTPDS Statement .
LlSTVTOC Statement

IEHLlST Examples

• 166
· 166

'. · 166
· 167
· 167
· 167
· 171

.. 173
· 173
· 174
· 175
· 175

· 185
· 185
· 185
.185
· 185
· 186
· 186
· 187

· 189
· 189
· 189
.190
· 190
.190
· 191
· 191
· 192
· 192
· 193
· 193
· 194
.194
· 196
· 198
· 198
· 198
.200
.201
.202 I
.209
.209
.210
.210
.210
.210
.210
.211
.211
.212

.215
· 215
.215
· 215
· 215
· 215

.217
· 217
· 217
· 217
.218
.218
· 218
.220
.220
.220
.220

• .221
.221
· 221
.221
.222
.222
.223

IEHMOVE Program ..•..•...•
Reblocking • . • . • . • . . . • .. •.•••
Moving or Copying a Data Set . • .. • • • . •
Moving or Copying a Group of Cataloged Data Sets . •
Moving or Copying a Catalog . • . • • • . . • . •
Moving or Copying a Volume of Data Sets
Moving or Copying Direct Data Sets with Variable Spanned Records

Input and Output .•..••
Control •..••.••• ' .•.••.•••.•

Job Control Statements • • • . • . . • . • . • • . • •
Restrictions . • . . . • • . . . • . . • . . • • . .
PARM Information on the EXEC Statement • . • • •
Job Control Language for the Track Overflow Feature

Utility Control Statements • • .
MOVE DSNAME Statement •
COpy DSNAME Statement •
MOVE DSGROUP Statement
COpy DSGROUP Statement
MOVE PDS Statement . . • •
COpy PDS Statement • . •
MOVE CATALOG Statement
COpy CATALOG Statement
MOVE VOLUME Statement
COpy VOLUME Statement
INCLUDE Statement •
EXCLUDE Statement.
SELECT Statement ..
REPLACE Statement .

IEHMOVE Examples

IEHPROGM Program. . .
Scratching a Data Set or Member
Renaming a Data Set or Member
Cataloging or Uncataloging a Data Set . •
Building or Deleting an Index •
Building or Deleting an Index Alias. . .
Connecting or Releasing Two Volumes .
Building and Maintaining a Generation Index
Maintaining Data Set Passwords .

Adding Data Set Passwords •
Replacing Data Set Passwords
Deleting Data Set Passwords .
Listing Password Entries .

Input and Output
Control .•............

Job Control Statements •
Restrictions
PARM Information on the EXEC Statement

Utility Control Statements .
SCRATCH Statement
RENAME Statement
CATLG Statement
UNCATLG Statement •.•.
BLDX (Build Index) Statement
DL TX (Delete Index) Statement
BLDA (Build Index Alias) Statement
DLTA (Delete Index Alias) Statement
CONNECT Statement ..••...
RELEASE (Disconnect) Statement .
BLDG (Build Generation Index) Statement
ADD (Add a Password) Statement
REPLACE (Replace a Password) Statement
DELETEP (Delete a Password) Statement •
LIST (List Information from a Password) Statement

IEHPROGM Examples

IFHSTATR Program .. .
Input and Output
Control ..•.......

Job Control Statements .
IFHSTATR Example ...

.227
• .230
• .230

.232
• .233

• •. 233
.234
.234

• .234
• .235
• .236
• .236

.237

.237
• .238

.239

.239

.240

.241

.242

.243

.244

.245

.245

.246

.246

.247

.247
· .248

.257

.257

.257

.257

.258

.259

.259

.260

.261

.262

.262

.262

.263

.263

.263

.264

.264

.265

.265

.265

.266

.266

.267

.267

.267

.268

.268

.268

.269

.269

.269

.270

. 271

.272

.272

.277

.277

.277

.278

.278

Appendix A: Exit Routine Linkage . . 279
Linkage to an Exit Routine 279

Label Processing Routine Parameters . 279
Nonlabel Processing Routine Parameters . 280

Return from an Exit Routine 280

Contents 13

14 Utilities (Release 21.7)

Appendix B: Invoking Utility Programs from a Problem Program
LINK or ATIACH Macro Instruction
LOAD Macro Instruction . • • • ; . .
CALL Macro Instruction

Appendix C: DO Statements for Defining Mountable Devices
DO Statement Examples

Appendix 0: Generation Data Groups . . .
Absolute Generation and Version Numbers.
Relative Generation Numbers

Building a Generation Index
Creating a New Generation.

Allocating a Generation
Cataloging a Generation

Using JCL Procedures to CatCllog a Generation
Using IEHPROGM to Catalog a Generation. . .

Creating an ISAM Data Set as Part of a Generation Data Group
Retrieving a Generation
Generation Data Group Examples

Appendix E: Processing User Labels
Processing User Labels as Data Set Descriptors
Exiting to a User's Totaling Routine
Processing User Labels as Data

Index

.283
.. 283

.284
. .285

.287

.287

.289

.289

.290

.290

.291

.292

.292

.292

.292

.292

.293

.293

.297

.297

.297

.298

.299

Figures

I.
2.
3.
4.
5.
6.
7.
8.
9.

10.
II.
12.
13.
14.
15.
16.
17.
18.
19.
20.
2l.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
4l.
42.
43.
44.
45.

46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

locating the Right Program .••.•••.•..•..•••••••.•..
locating the Right Example ••.•..••..•.••••••••.••••
Partitioned Directories Whose Data Sets Can Be Compared Using IEBCOMPR
Partitioned Directories Whose Data Sets Cannot Be Compared Using IEBCOMPR
Multiple Copy Operations Within a Job Step . • • . • . • • • .

. 6

. 6
45
45
59
62
63
65
66
68
69
71
72
73
74
77
79
82
85
86
88
91
91
92
94
96
97
98

Copying a Partitioned Data Set-Full Copy • •
Copying from Three Input Partitioned Data Sets • . . . • • • •
Copy Operation with "Replace" Specified on the Data Set Level
Copying Selected Members with Reblocking and Deblocking • •
Selective Copy with "Replace" Specified on the Member Level.
Selective Copy with "Replace" Specified on the Data Set Level.
Renaming Selected Members Using IEBCOPY • • • . • . • . •
Exclusive Copy with "Replace" Specified for One Input Partitioned Data Set
Compressing a Data Set in Place . • . • • • . • • . • . . . • •
Compress-in-Place Following Full Copy with "Replace" Specified
Multiple Copy Operations/Copy Steps ••••..••.• .•
Multiple Copy Operations/Copy Steps Within a Job Step • . • . .
IEBDG Actions ...•.•.••.•••••..••.•.•.
Defining and Selecting Fields for Output Records Using IEBDG . .
Field Selected from the Input Record for Use in the Output Record
Compatible IEBDG Operations • • . • . • • . . • •
Default Placement of Fields Within an Output Record Using IEBDG
Creating Output Records with Utility Control Statements
Repetition Due to the REPEAT Statement Using IEBDG .
Output Records at Job Step Completion. . • • . . • •
Output Partitioned Member at Job Step Completion . .
Partitioned Data Set Members at Job Step Completion
Contents of Output Records at Job Step Completion •. .•
Creating a Partitioned Data Set from Sequential Input Using IEBGENER .
Expanding a Partitioned Data Set Using IEBGENER •
Editing a Sequential Data Set Using IEBGENER
An Unloaded Data Set Created Using IEBISAM
Record Heading Buffer Used by IEBISAM
Tape Cartridge Reader Data Stream
Record Construction . . . • . . • • .'.
MTDI Codes from TCR . . . • . . . • •
MTST Codes from TCR ...•..•.
MTST Codes after Translation by IEBTCRIN with TRANS = STDCL
Format of System Status Information . • • . . • . • •
Sequence Numbers and Data Statements to Be Inserted
Sequence Numbers and Seven Data Statements to Be Inserted .
Direct Access Volume Initialized Using IEHDASDR •
Format of a Direct Access Volume Dumped to a Printer Using IEHDASDR .
IBM Standard Label Group After Volume Receives Data
Printout of INITT Statement Specifications and Initial Volume Label
Information . . • . • • • .
Index Structure-Listed by IEHLlST
Sample Directory Block •
Edited Partitioned Directory Entry
Sample Partitioned Directory Listing
Sample Printout of a Volume Table of Contents
Partitioned Data Set Before and After an IEHMOVE Copy Operation.
Merging Two Data Sets Using IEHMOVE. .
Merging Three Data Sets Using IEHMOVE • . • • • . .
Cataloging a Data Set Using IEHPROGM .•....•...•
Uncataloging a Data Set Using IEHPROGM .•.•.....•
Index Structure Before and After an IEHPROGM Build Operation
Building an Index Alias Using IEHPROGM • . • • •
Connecting a Volume to a Second Volume Using IEHPROGM . •
Connecting Three Volumes Using IEHPROGM . • . . • . . • •
Building a Generation Index Using IEHPROGM . • • . •
Relationship Between the Protection Status of a Data Set and Its Passwords
Listing of a Password Entry ..•.•..•.•..•.
Index Structure After Generation Data Sets Are Cataloged •
Type 21 (ESV) Record Format • .
Sample Output from IFHSTATR .•....•..•
Typical Parameter Lists • • . • • .
Generation Index-Three Entries.
Relative Positioning-Three Entries in the Catalog.
Generation Index . . • • . . .
System Action at OPEN, EOV, or CLOSE Time . . •

. 108
.108
· 109
· 124
· 125
· 147
· 147
· 154
· 155
· 156
· 170
· 180
· 181
· 190
. 191
.209

.212
· 217
.217
· 218
.218
· 219
· 231
.232
.232
.258
.258
.259
.259
.260
.260
.260
.261
.263
.275
.277
.277
.284
.290
· 291
.291
.297

Figures 15

Tables

1. Tasks and Utility Programs. 19
1. Tasks and Utility Programs. 19
2. ICAPRTBL Wait State Codes 26
3. VTOC Entries per Track . . 30
4. IBCDASDI Example Directory . 31
5. Valid 7 -Track Tape Unit Modes in IBCDMPRS . 34
6. IBCDMPRS Example Directory 36
7. Valid 7 -Track Tape Unit Modes in IBCRCVRP 38
8. IBCRCVRP Example Directory 41
9. IEBCOMPR Job Control Statements. 46

10. IEBCOMPR Example Directory 48
11. IEBCOPY Job Control Statements. 57
12. Changing Input Record Format Using IEBCOPY 57
13. IEBCOPY Example Directory . 61
14. IBM-Supplied Patterns 81
15. IEBDG Job Control Statements 83
16. IEBDG Example Directory .. 93
17. IEBEDIT Job Control Statements . 102
18. IEBEDIT Example Directory. . . . 103
19. IEBGENER Job Control Statements . 110
20. IEBGENER Example Directory. . . . 115
21. IEBISAM Job Control Statements. . 126
22. IEBISAM Example Directory 127
23. IEBPTPCH Job Control Statements . 130
24. IEBPTPCH Example Directory . 139
25. IEBTCRIN Job Control Statements . 149
26. Special Purpose Codes 153
27. IEBTCRIN Return Codes 157
28. IEBTCRIN Example Directory 157
29. IEBUPDAT Job Control Statements . 159
30. IEBUPDAT Example Directory .. . 162
31. IEBUPDTE Job Control Statements . 166
32. NEW, MEMBER, and NAME Parameters . . 171
33. IEBUPDTE Example Directory. . . . 175
34. IEHATLAS Job Control Statements . 186
35. IEHATLAS Example Directory. . . . 187
36. IEHDASDR Job Control Statements . 192
37. IEHDASDR Example Directory .. . 202
38. IEHINITT Job Control Statements. : 210
39. IEHINITT Example Directory 212
40. IEHIOSUP Job Control Statements . 215
41. IEHIOSUP Example Directory. . . . 215
42. IEHLlST Job Control Statements . . 221
43. IEHLlST Example Directory 223
44. Move and Copy Operations-Direct Access Receiving Volume with Size

Compatible with Source Volume . 229
45. Move and Copy Operations-Direct Access Receiving Volume with Size

Incompatible with Source Volume 229
46. Move and Copy Operations-Nondirect Access Receiving Volume . 229
47. Moving and Copying Sequential and Partitioned Data Sets . 231
48. Moving and Copying a Group of Cataloged Data Sets . 233
49. Moving and Copying the Catalog 233
50. Moving and Copying a Volume of Data Sets . 234
51. IEHMOVE Job Control Statements . 235
52. IEHMOVE Example Directory 248
53. IEHPROGM Job Control Statements. . 264
54. IEHPROGM Example Directory 272
55. IFHSTATR Job Control Statements . . 278
56. Parameter Lists for Nonlabel Processing Exit Routines . . 280
57. Return Codes Issued by User Exit Routines . 281
58. Sequence of DDNMELST Entries 284

16 Utilities (Release 21. 7)

Summary of Major Changes for Release 21.7

Major Technical Changes

Major Editorial Changes

Following is a summary of major technical and editorial changes.

There are no major technical changes. Minor maintenance corrections have been
made where applicable.

Following is a summary of the major editorial changes to this publication for Release
21.7:

• The examples have been modified, where necessary, to reflect proper placement of
continuation for JCL and utility control statements.

• Various examples throughout the publication have been modified to reflect usage of
more recent device technologies.

• Additional examples have been included for IEHATLAS, IEHDASDR, and IEHMOVE.

Note: The following programs have been put into Class C Programming Maintenance
classification as of December 15, 1972, and are marked "Class C" at the start of
each of their descriptions in this publication.

IBCRCVRP
IEBCOMPR
IEBGENER

IEBISAM
IEBPTPCH
IEBUPDAT

Summary of Major Changes for Release 21.7 17

Guide to Utility Program Functions

Table 1 shows a list of tasks that the utility programs can be used to perform. The
left-hand column shows tasks that you might want to perform. The middle column
more specifically defines the tasks. The right-hand column shows the utility programs
that can be used for each task. Notice that in some cases more than one program may
be available to perform the same task.

Table 1. Tasks and Utility Programs

Operation

Add

Analyze

Assign alternate
tracks

Build

Catalog

Change

a password

tracks on direct access

to a direct access volume

a generation index
a generation
an index

a data set
a generation data set

data set organization
logical record length

Utility

IEHPROGM

IEHATLAS, IEHDASDR, IBCDASDI

IEHDASDR, IBCDASDI, IEHATLAS

IEHPROGM
IEHPROGM
IEHPROGM

IEHPROGM
IEHPROGM

volume serial number of direct access volume

IEBUPDTE
IEBGENER
IEHDASDR

Compare

Compress-in
place

Connect

Construct

Convert to
partitioned

Convert to
sequential

Copy

Create

Delete

Dump

a partitioned data set
sequential data sets

a partitioned data set

volumes

records from MTST and MTDI input

a sequential data set created as a
result of an unload
sequential data sets

a partitioned data set
an indexed sequential data set

a catalog
a direct access volume
a partitioned data set
a volume of data sets
an indexed sequential data set
cataloged data sets

IEBCOMPR
IEBCOMPR

IEBCOPY

IEHPROGM

IEBTCRIN

IEBCOPY
IEBUPDTE, IEBGENER

IEBUPDTE
IEBISAM, IEBDG

IEHMOVE
IEHDASDR, IEHMOVE, IBCDMPRS

IEBCOPY, IEHMOVE
IEHMOVE
IEBISAM

dumped data from tape to direct access
IEHMOVE

IEHDASDR, IBCDMPRS
IEBEDIT

IEBUPDAT, IEBGENER, IEBUPDTE, IEBDG
IEBCOPY, IEHMOVE

IEBGENER, IEHMOVE, IEBUPDTE
IBCDMPRS

job steps
members
selected members
sequential data sets
to tape

a library of partitioned members
a member
a sequential output data set
an index
an output job stream

a password
an index structure
records from a member
records in a partitioned data set

a direct access volume

IEBUPDTE
IEBDG
IEBDG

IEHPROGM
IEBEDIT

IEHPROGM
IEHPROGM
IEBUPDAT
IEBUPDTE

IEHDASDR, IBCDMPRS

Guide to Utility Program Functions 19

20 Utilities (Release 21.7)

Operation

Edit

Edit and convert
to partitioned

Edit and copy

Edit and list

Edit and print

Edit and punch

Enter

Exclude

Expand

Generate

Get alternate
tracks

Include

Initialize

Insert records

label

List

I load

Merge

Modify

Move

Number records

Password protect

Print

Punch

Read

Reblock

Recover

Release

Rename

MTDI input

a sequential data set

a job stream
a sequential data set

error statistics by volume (ESV) records

a sequential data set

a sequential data set

a procedure into a procedure library

a partitioned data set member from a copy operation

a partitioned data set
a sequential data set

test data

Utility

IEBTCRIN

IEBGENER, IEBUPDTE

IEBEDIT
IEBGENER, IEBUPDTE

IFHSTATR

IEBPTPCH

IEBPTPCH

IEBUPDTE

IEBCOPY, IEHMOVE

IEBCOPY
IEBGENER

IEBDG

on a direct access volume IEHDASDR, IBCDASDI, IEHATlAS

changes to members or sequential data sets IEBUPDTE
source language modifications in a symbolic library IEBUPDAT

a direct access volume
a tape

into a partitioned data set

magnetic tape volumes

a password entry
a volume table of contents

IEHDASDR, IBCDASDI
IEHINITT

IEBUPDTE

IEHINITT

IEHPROGM
IEHLlST

contents of direct access volume on system output
device

number of unused directory blocks and tracks
partitioned directories

IEHDASDR
IEBCOPY

IEHLlST
the contents of the catalog (SYSCTlG
data set)

a previously unloaded partitioned data set
an indexed sequential data set
an unloaded data set
UCS and FCB buffers of a 3211

partitioned data sets

a partitioned or sequential data set

a catalog
a volume of data sets
cataloged data sets
partitioned data sets
sequential data sets

in a new member
in a partitioned data set

add a password
delete a password
list passwords
replace a password

a sequential data set
partitioned data sets
selected records

a partitioned data set member
a sequential data set
selected records

Tape Cartridge Reader input

a partitioned data set
a sequential data set

data from defective tracks on direct access
volumes

a connected volume

a partitioned data set member
a sequential or partitioned data set
moved or copied members

IEHLlST

IEBCOPY
IEBISAM

IEHMOVE
ICAPRTBl

IEHMOVE, IEBCOPY

IEBUPDTE

IEHMOVE
IEHMOVE
IEHMOVE
IEHMOVE
IEHMOVE

IEBUPDAT,IEBUPDTE
IEBUPDTE

IEHPROGM
IEHPROGM
IEHPROGM
IEHPROGM

IEBGENER, IEBUPDTE, IEBPTPCH
IEBPTPCH
IEBPTPCH

IEBPTPCH
IEBPTPCH
IEBPTPCH

IEBTCRIN

IEBCOPY
IEBGENER,IEBUPDTE

IBCRCVRP,IEHATlAS

IEHPROGM

IEBCOPY, IEHPROGM
IEHPROGM

IEHMOVE

Operation Utility

Renumber logical records IEBUPDTE, IEBUPDAT

Replace a password IEHPROGM
bad data on a defective track IBCRCVRP
data on an alternate track IBCRCVRP, IEHATLAS
identically named members IEBCOPY
logical records IEBUPDTE
members IEBUPDAT,IEBUPDTE
records in a member IEBUPDAT, IEBUPDTE
records in a partitioned data set IEBUPDTE, IEBCOPY
selected members IEBCOPY
selected members in a move or copy operation IEHMOVE, IEBCOPY

Restore a dumped direct access volume from tape IBCDMPRS, IEHDASDR

Retrieve usable data from a defective track IBCRCVRP

Scratch a volume table of contents IEHPROGM
data sets IEHPROGM

Uncatalog data sets IEHPROGM

Unload a partitioned data set IEBCOPY, IEHMOVE
a sequential data set IEHMOVE
an indexed sequential data set IEBISAM

Update in place a partitioned data set IEBUPDTE
TTR entries in the supervisor call library IEHIOSUP

Write IPL records and a program on a direct IBCDASI,
access volume IEHDASDR

Guide to Utility Program Functions 21

Introduction

Control

Job Control Statements

Utility Control Statements

The IBM System/360 Operating System provides utility programs to assist in
organizing and maintaining data. Each utility program described in this publication falls
into one of three classes of programs. The program class into which a utility program
falls is determined by the function that the utility program performs and the manner in
which the program is controlled. The program classes are:

• System utility programs, which are used to maintain system control data at an
organizational or system level. These programs are controlled by job control
statements and utility control statements.

• Data set utility programs, which are used to reorganize, change, or compare data at
the data set and/or record level. These programs are controlled by job control
statements and utility control statements.

• Independent utility programs, which are used to prepare devices for system use
when the operating system is not available. Independent utility programs operate
outside, and in support of, IBM System/360 Operating System. These programs
are controlled by utility control statements.

The selection of a specific program is dependent on the nature of the job to be
performed. For example, renaming a data set involves modifying system control data.
Therefore, a system utility program can be used to rename the data set. In some
cases, a specific function can be performed by more than one program. Table 1 in
"Guide to Utility Program Functions," which immediately precedes this chapter, is
provided to help you find the program that performs the function you need.

System and data set utility programs are controlled by job control statements and
utility control statements. Independent utility programs are controlled by utility control
statements; because these programs are independent of the operating system, job
control statements are not required. The job control statements and utility control
statements necessary to use utility programs are provided in the major discussion of
each utility program.

A system or data set utility program can be introduced to the operating system in
different ways:

• Job control statements can be included in the input stream.

• Job control statements, placed in a procedure library or defined as an inline
procedure, can be included by means of the EXEC job control statement.

• A utility program can be invoked by a calling program.

If job control statements are placed in a procedure library, they should satisfy the
requirements for most applications of the program; a procedure, of course, can be
modified or supplemented for applications that require additional parameters, data
sets, or devices. The data set utility IEBUPDTE can be used to enter a procedure into
a procedure library; see "IEBUPDTE Program."

Independent utility programs do not require job control statements and cannot be
invoked by a calling program. For information on executing independent utility
programs, see "Independent Utility Programs" below.

Utility control statements are used to identify a particular function to be performed by
a utility program and, when required, to identify specific volumes or data sets to be
processed.

The control statements for the IBM System/360 Operating System utility programs
have the following standard format: .

..
The label symbolically identifies the control statement and, with the exception of
system utility program IEHINITT, can be omitted. When included, a name must begin in
the first position of the statement and must be followed by one or more blanks. It can
contain from one to eight alphameric characters, the first of which must be alphabetic.

The operation identifies the type of control statement. It must be preceded and
followed by one or more blanks.

The operand is made up of one or more keyword parameters separated by commas.
The operand field must be preceded and followed by one or more blanks. Commas,
parentheses, and blanks can be used only as delimiting characters.

Introduction 23

I Continuing Utility
Control Statements

Restrictions

Multiprogramming
Considerations

System Utility Programs

24 Utilities (Release 21.7)

Comments can be written in a utility statement, but they must be separated from the
last parameter of the operand field by one or more blanks.

Utility control statements are coded on cards or as card images and are contained in
columns 1 through 71. A statement that exceeds 71 characters can be continued on
one or more additional cards. The label and operation fields must appear on the first
card. The operand, however, can be interrupted after any comma; a comment can be
interrupted after any column. Comments can be placed on any card containing a
complete or partial operand. However, when a comment is placed on a card with a
partial operand, the comment cannot be continued. A non blank character must be
placed in column 72 to indicate continuation.

The continued portion of the utility control statement must begin in
column 16 of the following statement. (Job control language continuations can begin
in any column from 4 through 16, and do not require a nonblank character in column
72 for continued operand fields.) Comments can be placed on any card containing a
complete or partial statement. However, when a card is included for the sole purpose
of continuing a comment, the continuation must begin in column 16.

Note: The IEBCOPY, IBCRCVRP, IEBPTPCH, IEBGENER, IEBCOMPR, and IEBDG utility
programs permit certain exceptions to these requirements (see the applicable
program description).

The utility control statements are discussed in detail, as applicable, in the remaining
chapters.

• A substitute name that represents two or more different device types (for example,
DISK, meaning 2311 and 2314) cannot be processed by a utility program.

• Unless otherwise indicated in the description of a specific utility program, a
temporary data set can be processed by a utility program only if the user specifies
the complete name generated for the data set by the system (for example,
DSNAME = SYS68296.T000051.RPOO1.JOBTEMP.TEMPMOD).

In an MVT environment, a region size should be specified for each application of a
system or data set utility program. The region size is determined by the number of
bytes in the utility program and by the block sizes of the data sets used in the job
step). A region size can be specified as a parameter in the EXEC statement specifying
the utility program name. Refer to "Job Control Statements" under each utility
program for the minimum region size.

A job that modifies a system data set (identified by SYS1.) must be run in a single job
environment; however, a job that uses a system data set, but does not modify it, can
be run in a multiprogramming environment. The operator should be informed of all
jobs that modify system data sets.

DD statements should ensure that the volumes on which the data sets reside cannot
be shared when update activity is being performed.

System utility programs manipulate collections of data and system control information.
The system utility programs are:

• IEHATLAS, which is used to assign alternate tracks when defective tracks are
indicated.

• IEHDASDR, which is used to initialize direct access volumes or to dump or restore
data.

• IEHINITT, which is used to write standard labels on tape volumes.

• IEHIOSUP, which is used to update entries in the supervisor call library.

• IEHLlST, which is used to list system control data.

• IEHMOVE, which is used to move or copy collections of data.

• IEHPROGM, which is used to build and maintain system control data.

• IFHSTATR, which is used to select, format, and write information about tape errors
from the IFASMFDP tape or the SYS1.MAN data set.

A system utility program is executed or invoked through the use of job control
statements and utility control statements.

System utility programs can be executed as jobs or can be invoked as subroutines by
a calling program. The invocation of utility programs and the linkage conventions are
discussed in "Appendix B: Invoking Utility Programs from a Problem Program."

Data Set Utility Programs

Independent Utility
. Programs

When using system utility programs, be sure that:

• Each data set to be used by programs other than IEHPROGM, IEHMOVE, and
IEHLlST is defined on a DD statement specifying the data set name and
DISP = OLD. When updating activity is being performed by IEHPROGM, IEHMOVE,
IEHLlST, or IEHDASDR in a multiprogramming environment, other tasks should not
be allowed to access the' data set being updated. (Refer to IIAppendix C: DD
Statements for Defining Mountable Devices" for precautions to)le taken.)

• DD statements defining mountable devices specify that volumes mounted on those
devices cannot be shared.

• Mountable volumes are not made available to the system until the user is requested
by the system to mount the specified volumes.

• A reader procedure is used that will direct input and output data sets to volumes
other than those which are to be modified by a system utility program.

• When executing a SCRATCH operation, the data set or volume being scratched is
not being used by a program executing concurrently.

Data set utility programs manipulate partitioned, sequential, or indexed sequential
data sets provided as input to the programs. Data ranging from fields within a logical
record to entire data sets can be manipulated. The data set utility programs are:

• IEBCOMPR, which is used to compare records in sequential or partitioned data
sets.

• IEBCOPY, which is used to copy, compress, or merge partitioned data sets, to
select or exclude specified members in a copy operation, and to rename and/or
replace selected members of partitioned data sets.

• IEBDG, which is used to create a test data set consisting of patterned data.

• IEBEDIT, which is used to selectively copy job steps and their associated JOB
statements.

• IEBGENER, which is used to copy records from a sequential data set or to convert a
data set from sequential organization to partitioned organization.

• IEBISAM, which is used to place source data from an indexed sequential data set
into a sequential data set in a format suitable for subsequent reconstruction.

• IEBPTPCH, which is used to print or punch records that reside in a sequential or
partitioned data set.

• IEBTCRIN, which is used to construct records from the input data stream that have
been read from the IBM 2495 Tape Cartridge Reader.

• IEBUPDAT, which is used to incorporate changes to symbolic libraries.

• IEBUPDTE, which is used to incorporate changes to sequential or partitioned data
sets.

Data set utility programs can be executed as jobs or can be invoked as subroutines by
a calling program. The invocation of utility programs and the linkage conventions are
discussed in IIAppendix B: Invoking Utility Programs from a Problem Program."

Independent utility programs operate outside, and in support of, the IBM System/360
Operating System. They are not supported, however, by the 3066 console, which is
only used with the Model 165, System/370. If the 3066 is the only console available,
execute independent utilities by following step 3b IIExecuting·IBCDASDI, IBCDMPRS,
IBCRCVRP" below. The independent utility programs are:

• IBCDASDI, which is used to initialize a direct access volume and to assign alternate
tracks ..

• IBCDMPRS, which is used to dump and restore the data contents of a direct access
volume.

• IBCRCVRP, which is·used to recover usable data from a defective track, assign an
alternate track, and merge replacement data with the recovered data onto the
alternate track.

• ICAPRTBL, which is used to load the forms control and Universal Character Set
buffers of a 3211 after an unsuccessful attempt to IPL with the 3211 printer
assigned as the output portion of a composite console.

Introduction 25

Executing IBCDASDI,
IBCDMPRS, and IBCRCVRP

Executing ICAPRTBL

26 Utilities (Release 21.7)

IBCDASDI, IBCDMPRS, and IBCRCVRP are loaded as card decks or as card images on
tape. Control statements for the requested program can follow the last card or card
image of the program, or can be entered on a separate input device. To execute
IBCDASDI, IBCDMPRS, or IBCRCVRP:

1. Place the object program deck in the reader or mount the tape reel that contains
the object program.

2. Load the object program from the reader or tape drive by setting the load selector
switches and pressing the console LOAD key. When the program is loaded, the wait
state is entered and the console lights display the hexadecimal value FFFF.

3. Define the control statement input device in one of the following ways:

(a) Press the REQUEST key of the console typewriter and, in response to the
message "DEFINE INPUT DEVICE", enter "INPUT = xxxx,cuu". The xxxx is the
device type, c is the channel address, and uu is the unit address. The device
type can be 1402, 1442, 2400, 2501, or 2540.

(b) If the console typewriter is not available, enter at storage location 0110
(hexadecimal): 1cuu for a 1442 Card Read Punch; 2cuu for a 2400 9-track
tape drive; or Ocuu for a 2540 Card Read Punch, 2501 card reader, 3410 tape,
or 3420 tape. Press the console INTERRUPT key.

4. Control statements are printed on the message output device. At the end of the
job, "END OF JOB" is printed on the message output device and the program
enters the wait state.

If the job executes IBCRCVRP and the message output device is a tape, the console
lights display the hexadecimal value DDDD at a normal end of the job and EEEE at an
abnormal end of job. If a machine check occurs, 00E2 is displayed.

ICAPRTBL must be loaded from a card reader. Control statements must follow the last
card of the program. Only one printer can be initialized each time the program is
executed.

To execute ICAPRTBL:

1. Mount the correct train on the printer and ready the printer.

2. Place the object program deck and the control cards in the card reader. Ready the
reader and press the end-of-file key.

3. Load the object program from the reader by setting the load selector switches and
pressing the console LOAD key.

Wait state codes will be displayed in the address portion of the PSW for normal
termination and for input/output, system or control card errors. Code B01 is issued
for normal termination; B02 through B07 are issued for control card errors; BOA
through BOC are issued for system errors; and B11 through BID are issued for
input/output errors. Table 2 shows these codes and their meanings. For a detailed
discussion of the wait-state codes, see as Messages & Codes, GC28-6631.

Table 2. ICAPRTBL Wait-State Codes

Code Meaning Code Meaning

B01 Visually check the train image B12 Reader not ready.
printed on the 3211. B13 Reader unit check (display low

B02 Missing control card or control main storage location 3 for
card out of order. sense information).

B03 Incorrect JOB statement. B14 Reader channel error.
B04 Incorrect DFN statement. B15 No device end on reader.
B05 Incorrect UCS statement. B19 Printer not online.
B06 Incorrect FCB statement. B1A Printer not ready.
B07 Incorrect END statement. BIB Printer unit check (display low
BOA External interrupt. main storage location 2
BOB Program check interrupt. through 7 for sense information).
BOC Machine check interrupt. BIC Printer channel error.
Bl1 Reader not online. BID No device end on printer.

IBCDASDI Program

Initializing a Direct
Access Volume

Assigning an Alternate·
Track

Input and Output

Control

Utility Control Statements

IBCDASDI is an independent utility used to initialize direct access volumes for use and
to assign alternate tracks on non drum, direct access storage volumes. (See
"Introduction" for general independent utility information.) IBCDASDI jobs can be
performed continuously by stacking complete sets of control statements.

IBCDASDI is not supported on MP65 with the mode switch set to MS; the mode switch
must be set to 65.

IBCDASDI can be used to initialize a direct access volume. A volume can be initialized
with or without surface analysis, a test for defective tracks; however, a surface
analysis should be performed when a volume is initialized for the first time.

Note: A 2321 volume is automatically initialized with a surface analysis.

When a volume is initialized, IBCDASDI:

• Checks for tracks that have been previously designated as defective (flagged) and
have had alternates assigned. This test must be suppressed when a disk is
initialized with surface analysis for the first time. This test must not be suppressed
when a volume is initialized without surface analysis.

• Automatically assigns alternates, if necessary, when a volume is initialized with
surface analysis. Tracks that are available for disposition as alternates are checked
first.

• Writes a track descriptor record (record 0) and erases the remainder of each track.
When a volume is initialized with surface analysis, IBCDASDI also writes a standard
home address.

• Writes IPL records on track 0 (records 1 and 2).

• Writes volume label on track 0 (record 3) and provides space for additional
records, if requested.

• Constructs and writes a volume table of contents (VTOC).

• Writes an IPL program, if requested. When a volume is initialized with surface
analysis, the IPL program is written on track 0 for 2301, 2305, 2314, or 2319
volumes or track 1 for 2303 or 2311 volumes. When a volume is initialized without
surface analysis, the IPL program is written on track 0 for 2301, 2305, 2314,
2319, or 3330 volumes or on track 1 for 2303 or 2311 volumes.

Note: Defective tracks are flagged and alternate tracks are assigned when the 3330
storage volumes are initialized at the factory. An IBCDASDI job to initialize a 3330 will
not perform a surface analysis. The quick DASDI, which can be performed on a 3330
volume, includes: (1) reading alternate tracks and decreasing the total count of the
alternates by one when an alternate is found defective or assigned; (2) writing a
volume label and VTOC; and (3) writing IPL TXT, if requested. Note that surface
analysis is not performed and neither the home address nor record 0 is written on the
primary tracks. The BYPASS and FLAGTEST options of the DADEF statement are
ignored. (See "DADEF Statement" below.)

IBCDASDI can be used to: (1) test a track and, if necessary, assign an alternate or
(2) bypass testing and automatically assign an alternate.

If testing is performed, an alternate track is assigned for any track found defective. If
the defective track is an unassigned alternate, it is flagged to prevent its future use.
The alternate track address is made known to the operator.

If a track is tested and not found to be defective, no alternate is assigned. The
operator is notified by a message.

If testing is bypassed, an alternate track can be assigned for the specified track or its
alternate, whether it is defective or not. If the specified track is an unassigned
alternate, it is flagged to prevent its future use.

IBCDASDI uses as input a control data set, which consists of utility control statements.

IBCDASDI produces as output an initialized direct access volume and a message data
set.

IBCDASDI is controlled by utility control statements. Because IBCDASDI is an
independent utility, operating system job control statements are not used.

IBCDASDI utility control statements in the order in which they must appear are:

• JOB statement, which is used to indicate the beginning of an IBCDASDI job.

IBCDASDI Program 27

JOB Statement

MSG Statement

DADEF Statement

28 Utilities (Release 21.7)

• MSG statement, which is used to define an output device for operator messages.

• DADEF statement, which is used to define the volume to be initialized.

• VLD statement, which contains information for constructing an initial volume label
and for allocating space for additional labels.

• VTOCD statement, which contains information for controlling the location of the
volume table of contents.

• IPL TXT statement, which is used to separate utility control statements from any IPL
program text statements.

• GETALT statement, which is used to assign an alternate track on a volume.

• END statement, which is used to indicate the end of an IBCDASDI job.

• LASTCARD statement, which is used to end a series of stacked IBCDASDI jobs.

Note: An IBCDASDI job that initializes a 2321 Data Cell cannot follow one that
initializes a different device type unless IBCDASDI is reloaded.

The JOB statement indicates the beginning of an IBCDASDI job.

The format of the JOB statement is:

JOB must be preceded and followed by at least one blank.

The MSG statement defines an output device for operator messages. It follows the
JOB statement and precedes any function definition statements.

The format of the MSG statement is:

where:

TODEV = xxxx
specifies the type of output device to receive messages, for example, 1403. The
devices that can be specified are 1403, 1443, 1052, 2400, 3210, and 3211.

TOADDR = cuu
specifies the channel number, c, and unit number, UU, of the message output
device.

The DADEF statement defines the direct access volume to be initialized.

The format of the DADEF statement is:
~;;;V;\;

where:

TODEV = xxxx
specifies the type of the direct access device to be initialized, for example, 2314.
Note that the 2319 disk is functionally equivalent to the 2314 disk. To use a 2319,
specify 2314 in the TODEV parameter.

TOADDR = cuu
specifies channel number, c, and unit number, UU, of the device.

IPL = YES
specifies that an IPL program is to be written on the volume. An IPL initialization
program must be written on a device to be used for system residence. If IPL is
omitted, no IPL program is written.

VLO Statement

VOLIO =
specifies whether a volume serial number check is to be made. These values can be
coded:

serial
specifies the volume serial number of the volume to be initialized. If serial does
not match the volume serial number found on the volume to be initialized, the
operator is notified and the job is terminated.

SCRATCH
specifies that no volume serial number check is.to be made.

FLAGTEST = NO
specifies that no check is to be made for previously flagg·ed tracks on a disk
volume before surface analysis is performed. FLAGTEST = NO should be specified
when the disk recording surface is initialized for the first time. Because no che.ck is
made for previously flagged tracks on drum volumes or on 2321 volumes,' •
FLAGTEST = NO need not be coded when these devices are initialized.

PASSES = n
specifies the number of passes per track to be made in checking for defective .
tracks. PASSES is valid when surface analysis is to be performed or when a quick
DASDI is to be performed on a 3330 volume. The value n can be 0 through 255.
The 0 specification indicates that a quick DASDI is to be performed on a 3330
volume. For a 3330 volume, a value greater than 0 causes no check to be made for
defective tracks. A specification of 1 through 255 indicates the number of passes
to be made per track for volumes other than a 3330 volume. If PASSES is omitted,
one pass is made per track. This parameter does not apply to 2321 volumes.

BYPASS = YES
specifies that no check is to be made for defective tracks. If BYPASS is omitted,
tracks are checked and those found defective are automatically assigned
alternates. This parameter applies only when surface analysis is not to be
performed; it does not apply to 2321 volumes.

BIN =d
specifies the decimal number of a bin to be initialized. The value of d can be 0
through 9. This parameter applies only to 2321 volumes.

MODEL = n
specifies a decimal model number (lor 2). This parameter' corresponds to the
2305-1 and 2305-2, respectively. MODEL is required when a 2305 is to be
initialized.

The VLD statement contains information for constructing an initial volume label and
for allocating space for additional labels.

The format of the VLD statement is:

where:

NEWVOLID =: serial

[.VOLPASS= {2}
{l}}

NEWVOLID = serial
specifies a one- to six-character volume serial number.

VOLPASS =

specifies the value of the volume security bit. These values can be coded:

o

1

specifies that the volume is not security protected. If VOLPASS is omitted, 0 is
assumed.

specifies that the volume is security protected.

OWNERID = XXXXXXXXXX

specifies a one- to ten-character field that identifies the owner of the volume. If
OWNERID is omitted, no identification is given.

ADDLABEL = n
specifies the total number of additional labels for which space is to be allocated.
The value of n can be 1 through 7. If ADDLABEL is omitted, 0 is assumed.

IBCDASDI Program 29

VTOCO Statement

IPLTXT Statement

GETALT Statement

30 Utilities (Release 21.7)

The VTOCD statement contains information for controlling the location of the volume
table of contents.

The format of the VTOCD statement is:
~~!'?'~

VJ~~~[l:i,),$r~T:A~~: ~::~nrinn",
"EXTENT=nnnn: •.•.......... '."•. ::< ... '.i

,_,""_~ __ ::::...,..;-_;l.»",,,,~:k<~,,"~v~~_,,;,..,~,..;,.,......~>' ~.,.-.. -",-.-.~~.,~..<.._~...::....J

where:

STRTADR = nnnnn
specifies the one- to five-byte track address, relative to the beginning of the
volume, at which the volume table of contents is to begin. The VTOC cannot occupy
track 0 or any alternate track.

EXTENT = nnnn
specifies the length (number of tracks) of the VTOC.

Table 3 shows the number of VTOC entries per track for each device type.

Table 3. VTOC Entries per Track

Device VTOC Entries per Track

2301
2314
2319
2302
2303
2311
2321
2305-1
2305-2
3330

63
25
25
22
17
16
8
18
34
39

The IPLTXT statement separates utility control statements from IPL program text
statements. It is required only when IPL text is included.

The format of the IPL TXT statement is:

When IPL text is jncluded, END must start in column 2. See !lEND Statement" below.

The GETALT statement is used to assign an alternate track on a volume. Any number
of alternate tracks can be assigned in a single job by including a GETALT statement
for each track.

Note: A GET AL T statement that applies to a 3330 device causes an alternate track to
be assigned automatically without testing.

The format of the GETALT statement is:

where:

TODEV = xxxx
specifies the device type of the direct access device.

TOADDR = cuu
specifies the channel number, c, and unit number, UU, of the direct access device.

TRACK = cccchhhh
specifies the address of the track for which an alternate is requested, where ecce is
the cylinder number and hhhh is the head number.

VOLID = serial
specifies the volume serial number of the volume to which an alternate track is to
be assigned. If serial does not match the volume serial number found on this
volume, the operator is notified and the job is terminated.

END Statement

LASTCARD Statement

IBCDASDI Examples

IBCDASDI Example 1

FLAGTEST = NO
specifies that no check is to be made for a previously flagged track before a
surface analysis for a disk volume is performed on this track. This parameter is
used when testing before assigning an alternate.

PASSES = n
specifies the number of passes, n, to be made when performing a surface analysis
on this track. The value of n can be 1 through 255. If PASSES is omitted, one pass
is made. (If, however, the GETALT statement applies to a 3330 volume, an
alternate track is assigned without testing; the PASSES parameter is ignored.) This
parameter is used when testing before assigning an alternate.

BYPASS = YES
specifies that no check for a defective track is to be made. If BYPASS is omitted,
the program assigns an alternate only if it finds that the specified track is defective.

BIN =d
specifies the decimal number of a bin to be initialized. The value of d can be 0
through 9. This parameter applies only to 2321 volumes.

MODEL = n
specifies a decimal model number (lor 2). This parameter corresponds to the
2305-1 and 2305-2, respectively. MODEL is required when a 2305 is to be
initialized.

The GETAL T function should not be used immediately after a RESTORE operation that
did not complete successfully. Before using GETAL T in such a case, reinitialize the
volume, if possible.

The END Statement denotes the end of job. It appears after the last function definition
statement.

The format of the END statement is:

J~~.be!J,~,~g .. (~~~r~infor'!l.~~i~~J,~~~;,~~·.":i':.:;::'
END must be preceded and followed by at least one blank. When IPL text is included,
END must start in column 2.

The LASTCARD statement is required only when an IBCDASDI job or a series of
stacked IBCDASDI jobs is followed by other statements on the control statement input
device. The LASTCARD statement must follow the last END statement applying to an
IBCDASDI job.

The format of the LASTCARD statement is:

LAST CARD
* ,:·,.,o,~.'"",<'''''';;~:-<;~'<v..;...~,.:. " ,~, .<;.. « .. ,' ~ m; '"' . .,..,;, . ..;.. ,'.~~ ~~ ~',,,..,>>w oM.,.. ,...,.~;;'" '<""..w';',-.&.<~ '...:'<, ,"h > J., ~,~'>.»M: »m.",~.<w-<,-...,..,~lh «H ,. <" ."""V';"

The examples that follow illustrate some of the uses of IBCDASDI. Table 4 can be
used as a quick reference guide to IBCDASDI examples. The numbers in the
"Example" column point to examples that follow.

Table 4. IBCDASDI Example Directory

Operation

Initialize

Initialize

Initialize

Comments

A 2305 volume is to be initialized with surface analysis.

Example

1

Assign alternate
tracks

A 2305 volume is to be initialized without surface analysis.

A 3330 volume to be used as the system residence volume
is to be initialized. An IPL program is included in TXT format.

Three alternate tracks are to be assigned on a 3330 volume.

2

3

4

In this example, a 2305 volume is initialized for the first time. A surface analysis is
performed with the initialization.

The example follows:

INIT JOB 'INITIALIZE 2305'
MSG TODEV=1403,TOADDR=00E

DADEF TODEV=2305,TOADDR=140,VOLID=SCRATCH,FLAGTEST=NO
VLD NEWVOLID=llllll

VTOCD STRTADR=50,EXTENT=10
END

The control statements are discussed below:

• JOB initiates the IBCDASDI job.

• MSG defines the 1403 on channel 0, unit OE, as the output message device.

IBCDASDI Program 31

IBCDASDI Example 2

IBCDASDI Example 3

IBCDASDI Example 4

32 Utilities (Release 21.7)

• DADEF specifies that a 2305 volume on chanrlel 1, unit 40, is to be initialized.
Because the volume is being initialized for the first time, no check is to be made for
previously flagged tracks ..

• VLD specifies 11.1111 as the volume serial number of the volume to be initialized.

• VTOCD specifies the starting address and length in tracks of the volume table of
contents.

In this example, a 2305 volume is initialized for the first time. No surface analysis is
performed with the initialization.

The example follows:

INIT JOB INITIALIZE 2305
MSG TODEV=1403,TOADDR=00E

DADEF TODEV=2305,TOADDR=140,VOLID=SCRATCH,BYPASS=YES
VLD NEWVOLID=230500

VTOCD STRTADR=1,EXTENT=3
END

The control statements are discussed below:

• DADEF specifies that a 2305 volume is to be initialized and specifies the channel
and unit number. No check is to be made for the volume serial number or for
defective tracks.

• VLD specifies the volume serial number of the volume to be initialized.

• VTOCD specifies that the volume table of contents is to begin on track 1 and is to
extend over three tracks.

• END specifies the end of the IBCDASDI job.

In this example, a 3330 volume is initialized for later use as a system residence
volume. An IPL program is included in standard TXT format.

The example follows:

INIT JOB 'INITIALIZE 3330'
MSG TODEV=1403,TOADDR=00E

DADEF TODEV=3330,TOADDR=150,IPL=YES
VLD NEWVOLID=P00001,OWNERID=BROWN,ADDLABEL=2

VTOCD STRTADR=2,EXTENT=9
IPLTXT

(IPL program text statements)
END

The control statements are discussed below:

• DADEF specifies that a 3330 volume is to be initialized and specifies the channel
number and unit number. An IPL program is to be included.

• VLD specifies a volume serial number and owner identification for the volume to be
initialized. It also specifies that space is to be allocated for two additional labels.

• VTOCD specifies that the volume table of contents is to begin on track 2 and is to
extend over nine tracks.

• IPL TEXT specifies the beginning of IPL program text statements.

• END specifies the end of IPL program text statements. Because IPL text is included,
END begins in column 2.

In this example, three alternate tracks are assigned to a 3330 volume, without
reinitialization of the volume. The check for a defective track is bypassed when the
first two of the three tracks are assigned.

The example follows:

ALTRK JOB ASSIGN ALTERNATE TRACKS ON 3330
MSG TODEV=1052,TOADDR=009

STMT1 GETALT TODEV=3330,TOADDR=150,VOLID=P00002, UC
BYPASS=YES,TRACK=006F0001

STMT2 GETALT TODEV=3330,TOADDR=150,VOLID=P00002, UC
BYPASS=YES,TRACK=0091 0004

STMT3 GETALT TODEV=3330,TOADDR=150, UC
TRACK=004B0007,VOLID=P00002

END

The control statements are discussed below:

• The first and second GETALT statements bypass the check for defective tracks.

• The third GETALT statement causes the check for a defective track to be made
because BYPASS is not included.

IBCDMPRS Program

Input and Output

Control

Utility Control Statements

JOB Statement

MSG Statement

DU M P Statement

IBCDMPRS is an independent utility used to dump and restore data on direct access
volumes. (See Illntroduction" for general independent utility information.)

The data contents of a direct access volume (all data except the home address) can
be dumped to 2311, 2314, 2319, 2305, 3330, or tape volumes and restored to a
direct access volume that resides on the same type of device as the source volume.
Both the source volume and the volume to which data is to be restored must have
been initialized to IBM Systemj360 Operating System specifications. IBCDMPRS is
useful for preparing transportable copies and backup copies of direct access volumes.

IBCDMPRS is not supported on MP65 with the mode switch set to MS; the mode
switch must be set to 65.

IBCDMPRS uses as input:

• A control data set, which contains utility control statements.

• A data set to be dumped to tape or to be restored to a direct access volume.

IBCDMPRS produces as output:

• A data set dumped to tape or a data set restored to a direct access volume.

• A message data set.

IBCDMPRS is controlled by utility control statements. Because IBCDMPRS is an
independent utility, operating system job control statements are not used.

IBCDMPRS utility control statements are:

• JOB statement, which is used to begin an IBCDMPRS job.

• MSG statement, which is used to define an output device for operator messages.

• DUMP statement, which is used to identify the volume to be dumped and the
receiving volume.

• VDRL Statement, which is used to specify the upper and lower track limits of a
partial dump.

• RESTORE statement, which is used to identify the source volume whose data is to
be restored and the receiving volume.

• END statement, which is used to indicate the end of an IBCDMPRS job.

The JOB statement indicates the beginning of a job.

The format of the JOB statement is:

JOB must be preceded and followed by at least one blank.

The MSG statement defines an output device for operator messages. It follows the
JOB statement and precedes any function definition statements.

The format of the MSG statement is:

[Jabel] MSG TODEV = xxxx

. ~IQ~PP~.=:~f.'::'u
where:

TODEV = xxxx
specifies the type of the output device to receive messages, for example, 1403.
The devices that can be specified are 1403, 1443, 1052, 2400, 3210, and 3211.

TOADDR = cuu
specifies the channel number, c, and unit number, uu, of the message output
device.

The DUMP statement is used to identify both the source volume whose contents are
to be dumped and the receiving volume. The data contents of the entire source
volume are dumped, including any data on alternate tracks. If both the source and
receiving volumes reside on 2311, 2314, 2319, or 3330 volumes, the receiving
volume is an exact replica of the source volume.

IBCDMPRS Program 33

34 Utilities (Release 21.7)

The format of the DUMP statement is:
r;:~:C:'f"""'~~":'~"','"":;'""::'~"~<~'':'"'::::'''''''''':''*:''W7~'''~''' ,,,,,,:,~~y,,,,:*,,,,:»*, >:> -<;. w V7 .."~.",,,"<-.,~, '"

t'[/abeI]DUMP'FR0I'JiDEV = XX)(X
I" " ; " .:;FR()MA~DR =.ci.J~·
i
l
(,;,! :';rODEV~==xxxx
f:>;TOAbDR~'cuu .
I: [,yOL,ID.:=:ser;a/[;ser;~I]~

r.j&![lli_jEL~J~~~7 •.....
where:

FROMDEV = xxxx
specifies the type of the source device, for example, 3330.

FROMADDR = cuu
specifies channel number, c, and unit number, UU, of the source device.

TODEV = xxxx
specifies the type of the receiving device, for example, 2400. If the receiving
device is a tape drive and no MODE parameter is specified, the data is written at
the highest density supported by the device. (For 7 -track tape, the default mode is
93.)

TOADDR = cuu
specifies the channel number, c, and unit number, UU, of the receiving, device.

VOLID = seria/[,seria/] ...
specifies the volume serial numbers of the receiving volumes to which data is to be
dumped. VOLID is required when the receiving volume has been initialized to
operating system specifications. If serial does not match the volume serial number
found on the receiving volume, the operator is notified and the job is terminated. If
VOLID is not specified and the receiving volume contains a volume serial number,
the operator is notified.

MODE= mm
specifies the bit density for data written onto the receiving magnetic tape volume.
This parameter is applicable to 7-track tape drives and to 9-track tape drives with
density selections of 800 and 1600 bits per inch. Valid modes for 7 -track tape are
shown in Table 5. (Only those modes that set the data converter on are accepted.)
For 9-track tape with density selections of 800 and 1600 bits per inch, the mode
settings are CB and C3, respectively. If the receiving device is not a tape drive, the
MODE parameter is ignored. If the receiving device is a tape drive but no mode is
specified, the data is written at the highest density supported by the device.

BIN=d
specifies the decimal number of a bin to be dumped. The value of d can be 0
through 9. This parameter applies only to 2321 volumes. When a 2321 volume is to
be dumped to a 2311, 2314, 2319, or 3330 volume, d must be O.

MODEL = n
specifies a decimal model number (lor 2) for a 2305. This parameter is applicable
only when a 2305 is specified. If MODEL is omitted, 2305-1 is assumed.

Note: The 2319 disk is functionally equivalent to the 2314 disk. To use the 2319,
specify 2314.

Dump time can be minimized by selecting devices assigned to different channels. For
example:

DUMPFROMDEV=3330,FROMADDR=150,TODEV=2400,TOADDR=282

Table 5 shows valid modes for 7 -track tape that can be entered for the MODE
parameter.

Table 5. Valid 7 -Track Tape Unit Modes in IBCDMPRS

Mode Density Data
(mm) (bits-per-inch) Translator Converter Parity

13 200 Off On Odd

53 556 Off On Odd

93 800 Off On Odd

VORL Statement

RESTORE Statement

The VORL (volume dump/restore limits) statement is used to specify the upper and
lower limits of a partial dump. If a track within these limits has had an alternate
assigned to it, the data on' the alternate track is included in the dump. When the VORL
statement is used, it must be preceded by a DUMP statement and must be followed by
an END statement.

The format of the VORL statement is:
r'-[-/~b~hvDRL-BE'GIN = nnnnn .. --- , ~,,-.. .~-~---.-ryo.-~-~---"-. ~---J'

L~. __ ~»_Jl~~~~=~_'ln_'1E!~L_.~*._>~*' ___ ~ ~_~ _____ ._.;........>'-'',-"
where:

BEGIN = nnnnn
specifies a one- to five-byte relative track address that identifies the first track to
be dumped.

END = nnnnn
specifies the relative track address of the last track to be dumped. If only one track
is to be dumped, this address is the same as the beginning address. If END is
omitted, the last track of the volume, excluding those tracks reserved as alternates,
is assumed to be the upper limit.

The RESTORE statement is used to identify both the source volume whose data
contents are to be restored and the receiving volume.

Note: IBCDMPRS can be used to restore a tape created by IEHDASDR. Conversely,
IEHDASDR can be used to restore a tape created by IBCDMPRS.

The format of the RESTORE statement is:
••• _'~.".n'._ •• ".~ .•..• _ •.••• " ... "' .•• ~ __ •• ___ •• _~.~_~~·~~._.= .. _$.~~~.~

FROMDEV = xxxx
specifies the type of the source device, for example, 2400.

FROMADDR = cuu
specifies the channel number, c, and unit number, uu, of the source device.

TODEV = xxxx
specifies the type of the receiving device, for example, 3330. This device type must
be the same as the device containing the volume originally dumped.

TOADDR = cuu
specifies the channel number, c, and unit number, uu, of the receiving device.

VOLID = serial
specifies the volume serial number of the receiving volume. If serial does not match
the volume serial number found on the receiving volume, the operator is notified
and the job is terminated.

MODE=mm
specifies the bit density for data written to the receiving tape volume. This
parameter must match the mode specified when data was written to the source
volume. MODE should not be specified if the source and receiving volumes are not
tape or if MODE was not specified when data was written to the source volume.
Valid modes are shown earlier in Table 5. (Only those modes that set the data
converter on are accepted.) For 9-track tape drives with density selections of 800
and 1600 bits per inch, the mode settings are CB and C3, respectively.

BIN=d
specifies the decimal number of a bin to be restored. This parameter applies only
to 2321 volumes. The value of d can be 0 through 9. When a 2311, 2314, 2319,
2301, 2302, 2303, 2305, or 3330 volume is to be restored to a 2321 volume, d
must be o.

MODEL = n
specifies a decimal model number (1 or 2) for a 2305. If MODEL is omitted,
2305-1 is assumed.

IBCDMPRS Program 35

END Statement

IBCDMPRS Examples

IBCDMPRS Example 1

IBCDMPRS Example 2

36 Utilities (Release 21.7)

Restore time can be minimized by selecting devices assigned to different channels. For
example:

RESTORE FROMDEV = 2400,FROMADDR = 282,TODEV = 3330,TOADDR = 150

The END statement marks the end of job. It appears after the last function definition
statement.

END must be preceded and followed by at least one blank.

The examples that follow illustrate some of the uses of IBCDMPRS. Table 6 can be
used as a quick reference guide to the examples. The numbers in the IIExample"
column point to examples that follow.

Table 6. IBCDMPRS Example Directory

Operation

DUMP

RESTORE

Comments

A direct access volume is to be
dumped to a tape volume.

A data set dumped to tape is to be
restored to a direct access volume.

Example

2

In this example, a direct access volume is dumped to a tape volume.

The example follows:

. DUMP JOB DUMP 3330 ONTO TAPE

END

MSG TODEV=1052,TOADDR=009
DUMP FROMDEV=3330,FROMADDR=150,

TODEV=2400,TOADDR=280

In this example, dumped data is restored to a direct access volume.

The example follows:

RESTORE JOB RESTORE 3330 FROM TAPE
MSG TODEV=1052,TOADDR=009

END

RESTORE FROMDEV=2400,FROMADDR=280,TODEV=3330,
TOADDR=150,VOLID=PZ1111

uc

IBCRCVRP Program-Class C

Recovering Usable Data

Replacing Bad Data

Replacement Record

Input and Output

Control

Utility Control Statements

IBCRCVRP is an independent utility used to retrieve usable data from a defective
track, to assign an alternate track, and to merge the usable data with replacement
data on the alternate track. (See Ulntroduction" for general independent utility
information.) IBCRCVRP will perform the recovery function on only the following
devices: 2302, 2303, 2311, 2314, 2319, 232l.

IBCRCVRP is not supported on MP65 with the mode switch set to MS; the mode
switch must be set to 65.

Note: IEHATLAS, a system utility program, can be used to perform these operations
under control of the operating system.

IBCRCVRP can be used to retrieve data from a defective track, write this data on a
receiving tape, and list the bad records on the message output device.

IBCRCVRP can be used to merge data recovered from a defective track with
replacement data and write the result on an assigned alternate track. (Alternate tracks
must be assigned manually on drum volumes.)

A replacement record is an 80-byte card image that contains replacement data for
bad fields.

A replacement record must be supplied if a key or data field is found to be bad. The
replacement record is described by column, as follows:

• Columns 1 through 8 contain either ul/D = xxx" or 111/0 = LAST". The value of liD
must be the same as that of the RECORD parameter of the associated INSERT
statement. See IIINSERT Statement" below.

• Columns 9 and 10 are blank.

• Columns 11 through 80 contain replacement data in hexadecimal. The number of
bytes must be the same as that specified in the COUNT parameter of the INSERT
statement. See "INSERT Statement" below.

Replacement records can be continued. The continuation records must start in column
11 with the continued replacement data.

When the same device is used to read both control statements and replacement
records, a replacement record must follow the INSERT statement that describes it.

IBCRCVRP uses as input:

• A control data set, which contains utility control statements.

• A data set from which usable data on a defective track is to be recovered or a data
set on which bad data is to be replaced.

• Replacement data if bad data is to be replaced on a data set.

IBCRCVRP produces as output:

• A data set from which usable data has been recovered or a data set on which bad
data has been replaced.

• A message data set.

IBCRCVRP is controlled by utility control statements. Because IBCRCVRP is an
independent utility, operating system job control statements are not used.

IBCRCVRP utility control statements are:

• JOB statement, which is used to begin an IBCRCVRP job.

• MSG statement, which is used to define an output device for operator messages.

• RECOVER statement, which is used to identify the direct access volume that
contains the defective track, the defective track, and a receiving volume.

• LIST statement, which is used to request that the contents of the defective track be
listed.

• REPLACE statement, which is used to identify the tape device on which the volume
containing recovered data resides and the direct access volume on which
recovered data is to be merged with replacement data.

• INSERT, which identifies the device on which the replacement record volume
resides.

• END statement, which is used to indicate the end of an IBCRCVRP job.

IBCRCVRP Program-Class C 37

JOB Statement

MSG Statement

RECOVER Statement

38 Utilities (Release 21.7)

The JOB statement indicates the beginning of an IBCRCVRP job.

The format of the JOB statement is:
:;'Y; "? ',"~' ,~;""'~~t'1~~:~~~'~~~,~~ ';·:·;,,:':·'··.r~~:!~,·:·,'

I!a~{L~O~:;t~!:[Z~t£t~~~!~~l~/< ~ ;' j ,;:,\"
JOB must be p~eceded and followed by at least one blank.

The MSG statement defines an output device for operator messages. It follows the
JOB statement and precedes any function definition statements.

The format of the MSG statement is:
~~~0m'::rm1T1~~ 

TODEV= xxxx 
specifies the type of the output device to receive messages, for example, 1403. 
The devices that can be specified are 1403, 1443, 1052, and 2400. 

TOADDR = cuu 
specifies the channel number, c, and unit number, uu, of the message output 
device. 

MODE=mm 
specifies the mode in which the message output tape is to be written. This 
parameter is valid only when the message output device is 7 -track tape. Valid 
modes are shown in Table 7. If MODE is omitted, the following assumptions (6B) 
are made: density is 556 bits per inch, translator is on, data converter is off, and 
the parity is even. 

Table 7 shows the values that can be entered for the MODE parameter. 

Table 7. Valid 7 -Track Tape Unit Modes in IBCRCVRP 

Mode Density Data 
(mm) (bits per inch) Translator Converter Parity 

13 200 Off On Odd 
23 200 Off Off Even 
33 200 Off Off Odd 
28 200 On Off Even 
38 200 On Off Odd 
53 556 Off On Odd 
63 556 Off Off Even 
73 556 Off Off Odd 
68 556 On Off Even 
78 556 On Off Odd 
93 800 Off On Odd 
A3 800 Off Off Even 
83 800 Off Off Odd 
A8 800 On Off Even 
88 800 On Off Odd 

The RECOVER statement identifies: (1) the direct access volume that contains the 
defective track, (2) the defective track, and (3) a receiving tape. A RECOVER 
statement is required for each defective track from which data is to be recovered. The 
RECOVER statement must precede any associated LIST or INSERT statements when 
IBCRCVRP is used to recover data. 

The format of the RECOVER statement is: 

where: 

FROMDEV = xxxx 
specifies the type of direct access device that contains the defective track, for 
example, 2311. 



REPLACE Statement 

FROMADDR = cuu 
specifies the channel number, c, and unit number, uu, of the direct access device 
that contains the defective track. 

TODEV = xxx x 
specifies the type of the receiving tape volume. If is not specified, the data is 
written at the highest density supported by the device. 

TOADDR = cuu 
specifies the channel number, c, and unit number, uu, of the receiving tape volume. 
This tape must be different from other receiving tapes in the same job. If this 
volume has no label or a if this volume is unlabeled or non standard labeled, the 
RECOVER routine writes a tape mark preceding the data. 

VOLID = serial 
specifies the volume serial number of the direct access volume that contains the 
defective track. If serial does not match the volume serial number found on the 
specified volume, the operator is notified and the job is terminated. 

TRACK = bbbbcccchhhh 
specifies the hexadecimal bin, cylinder, and head addresses of the defective track. 
If the specified track is one for which an alternate has been assigned, data is 
recovered from the alternate, and a message identifying both tracks is issued. 

MODE=mm 
specifies the bit density for data written to the receiving tape volume. This • 
parameter is applicable to 7 -track tape drives and to 9-track tape drives with 
density selections of 800 and 1600 bits per inch. Valid 7-track modes are shown 
earlier in Table 7. (Only those modes that set the data converter on are accepted.) 
For 7 -track tape, the default mode is 93. For 9-track tape drives with 800 and 
1600 bits per inch density selections, the mode settings are CB and C3, 
respectively. If no mode is specified, the data is written at the highest density 
supported by the device. 

The REPLACE statement identifies both the tape device containing recovered data 
(recover tape) and the direct access volume on which recovered data is merged with 
new replacement data. 

The format of the REPLACE statement is: 
"',~ __ ~~~'~-0'~o/,w,,,,,~,.w,,~,~y",--,-~-~~w>;_,,~~,",,.~~wo/,*"",,~,_"'-_"~',', ',,''','','''W ~'r,,':" "" '''''', ., ",". W,"',w"" """",:, :~'''] 

, ,,[label]" REPl.ACE: FR()MDEV ~{~xx' I 
;',FROMADDR ==clJti;":'1 

I" , "TODEV= X)(x~ , 'j 
!', '"TOAD:DR= c~u" " j 
1:,':; :', YOLIO ~s:eri,d :::::>:::J 
t > :;TRACK'~bbbb~ccchhhh' " " ,,:,:::;j 

L~,_' '.--.;;;~_: ;;~"h~:~,:i1J~t~9!,=£!!:!mJ.' ,:' >'; :":;W~~~'k~~; >~',~,;;~~,_,;,""<._,.i~~~,~,:wwlidL,~,,; ;,,:;,". J 
where: 

FROMDEV = xxxx 
specifies the type of the device on which the recover tape is mounted, for example, 
2400. If MODE is not specified in this statement, it is assumed that the recover 
tape was written at maximum density. 

FROMADDR = cuu 
specifies the channel number, c, and the unit number uu of the tape device on 
which the recover tape is mounted. 

TODEV, = xxxx 
specifies the device type of the direct access device on which recovered data is to 
be merged with replacement data. 

TOADDR = cuu 
specifies the channel number, c, and unit number, uu, of the direct access device 
on which recovered data is to be merged with replacement data. 

VOLID = serial 
specifies the volume serial number of the direct access volume on which recovered 
data is to be merged with replacement data. 

TRACK = bbbbcccchhhh 
specifies the hexadecimal bin, cylinder, and head addresses of the defective 
primary track from which data was recovered. 

IBCRCVRP Program-Class C 39 



LIST Statement 

INSERT Statement 

40 Utilities (Release 21.7) 

MODE=mm 
specifies the bit density at which data was written onto the source magnetic tape 
volume. MODE should not be specified if it was not specified when data was written 
onto the source volume. Valid 7-track modes are shown earlier in Table7. (Only 
those modes that set the data converter on are accepted.) For 9-track tape drives 
with 800 and 1600 bits per inch density selections, the mode settings are CB and 
C3, respectively. 

The LIST statement specifies that the entire contents of a defective track be printed 
when data 'is being recovered; it specifies that both recovered data and replacement 
records are to be listed after they are merged when data is being replaced. If the LIST 
statement is omitted, only bad records are printed when data is being recovered; only 
replacement records are listed when data is being replaced. 

The format of the LIST statement is: 

TODEV = xxxx 
specifies the type of the list device, for example, 1403. 

TOADDR = cuu 
specifies the channel number, c, and unit number, UU, of the list device. 

MODE=mm 
specifies the mode in which the list tape is to be written when the list device is 
7 -track tape. Valid modes are shown earlier in Table 7. If MODE is not specified 
and the list device is different from the message output device, MODE = 93 is 
assumed. For 9-track tape drives with 800 and 1600 bits per inch density 
selections, the mode settings are CB and C3, respectively. 

Tape volumes must have either a standard label or a tape mark in place of a label. The 
label or tape mark must be written in the same mode as the data. 

If the list device and the message output device are the same, the list mode will be 
the same as the message mode. 

Neither the list device nor the message output device can be the same as the tape 
device containing recovered data. 

The INSERT statement identifies the device that contains each replacement record 
and describes the count field of that record. INSERT statements and corresponding 
data must be in sequence by record number (for example, if records 3 and 5 are bad, 
the INSERT statement and replacement data for record 3 must precede the INSERT 
'statement and data for record 5). 

The format of the INSERT statement is: 

FROMDEV = xxxx 
specifies the device type of the device thpt contains replacement data. FROMDEV 
may be omitted if the bad record did not contain key or data fields. 

FROMADDR = cuu 
specifies the channel number, c, and unit number, UU, of the device that contains 
replacement data. FROMADDR may be omitted if the bad record did not contain key 
or data fields. . 

RECORD = nnn 
indicates the decimal record number of the original bad record. (This number is 
obtained from message IBC3051.) 



END Statement 

IBCRCVRP Examples 

IBCRCVRP Example 1 

RECORD = LAST 
specifies that this replacement record is to be the last physical record written on 
the alternate track. Records can be added after this record if the track capacity is 
not exceeded. With this feature, records near the end of a defective track that has 
missing address markers (and, thus, could not be recovered) can still be replaced. 

COUNT = cccchhhhrrkkdddd 
specifies in hexadecimal the count field for the replacement record, where cccc is 
the cylinder number, hhhh is the head number, rr is the physical record number, kk 
is the key length, in bytes, and dddd is the data length (excluding the key length), in 
bytes. 

MODE=mm 
specifies the mode in which the input tape was written when the replacement data 
is on 7 -track tape. Valid modes are shown earlier in Table 7. This tape volume must 
have either a standard label or a tape mark in place of a label. The label or tape 
mark must be written in the same mode as the data. If MODE is omitted, 93 is 
assumed. For 9-track tape drives with 800 and 1600 bits per inch density 
selections, the mode settings are CBand C3, respectively. 

OVERFLOW = YES 
specifies that the bad record, which is being replaced, was a segment, other than 
the last segment, of an overflow record. The replacement record will be either the 
last record or the only record on the assigned alternate track. Six lines per inch are 
to be printed. Channell is assigned to line 4, channel 2 is assigned to line 10, • 
channel 3 is assigned to line 16, etc. 

The END Statement denotes the end of job. It appears after the last function definition 
statement. 

The format of the END statement is: 

[label] END [user-information] 

END must be preceded and followed by at least one blank. 

The examples that follow illustrate some uses of IBCRCVRP. Table 8 can be used as a 
quick reference guide to IBCRCVRP examples. The numbers in the IIExample" column 
point to the examples that follow. 

Table 8. IBCRCVRP Example Directory 

Operation 

RECOVER 

REPLACE 

Comments 

Data is to be recovered from defective tracks on 2314 volumes. 

Bad data on a 2314 volume is to be replaced. 

Example 

1 

2 

In this example data is recovered from defective tracks on 2314 volumes 123456 and 
222222. The entire contents of these tracks are listed on a 1403 printer-channel 0, 
unit OE. Note that column 1 is blank. 

The example follows: 

JOB 'RECOVER 2314 TRACKS' 
MSG TODEV=1403,TOADDR=OOE 
RECOVER FROMDEV=2314, FROMADDR=190, TODEV=2400, 22C 

VOLID=123456,TRACK=0000005E0008,TOADDR=280 
LIST TODEV=1403,TOADDR=OOE 
RECOVER FROMDEV=2314,FROMADDR=191,TODEV=2400, 22C 

TOADDR=281,VOLID=222222,TRACK=OOOOOOl10005 
LIST TODEV=1403,TOADDR=OOE 
END 

IBCRCVRP Program-Class C 41 



IBCRCVRP Example 2 In this example, bad data is replaced on 2314 volume 123456. Replacement records 
001 and 003 contain 32 (20 in hexadecimal) bytes and 40 bytes (including an 8-byte 
key) of replacement data, respectively. Record 003 must be continued on an 
additional card image because the replacement data exceeds 35 bytes. Note that 
column 1 is blank for all but the replacement record statements. 

JOB 
MSG 
REPLACE 

LIST 
INSERT 

I/D=001 
INSERT 

I/D=003 

END 

The example follows: 

'REPLACE 2314 TRACK' 
TODEV=1403,TOADDR=00E 
FROMDEV=2400,FROMADDR=280,TODEV=2311, C 

TOADDR=190,VOLID=123456,TRACK=0000005E0008 
TODEV=1403,TOADDR=00E 
FROMDEV=1442,FROMADDR=00C,RECORD=001, C 

COUNT=005E000801000020 
ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789 

FROMDEV=1442,FROMADDR=00C,RECORD=003, C 
COUNT=005E000803080020 

FFFFFFFFFFFFFFFFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 
DDDDDDDDDD 

42 Utilities (Release 21.7) 



ICAPRTBL Program 

Input and Output 

Control 

Utility Control Statements 

JOB Statement 

DFN Statement 

UCS Statement 

ICAPRTBL is an independent utility used to load the Universal Character Set (UCS) 
buffer and the forms control buffer (FCB) for an IBM 3211 Printer. (See 
"Introduction" for general independent utility information.) 

ICAPRTBL is used when the 3211 is assigned as the output portion of a composite 
console and an unsuccessful attempt has been made to initialize the operating system 
because the UCS and FCB buffers contain improper bit patterns. ICAPRTBL is used to 
properly load the buffers s;; !h:: ;;~~:,ating system can be initialized. 

Note: When an operable console printer-keyboard is available, the buffers are loaded 
under the control of the operating system. 

ICAPRTBL uses as input utility control statements that contain images to be loaded 
into the Universal Character Set and/or forms control buffer. ICAPRTBL produces as 
output properly loaded UCS and FCB buffers. 

ICAPRTBL is controlled by utility control statements. Because ICAPRTBL is an 
independent utility, operating system job control statements are not used. 

ICAPRTBL utility control statements are: 

• JOB statement, which is used to indicate the beginning of an ICAPRTBL job. 

• DFN statement, which is used to define the address of the 3211. 

• UCS statement, which contains an image of the characters to be loaded into the 
UCS buffer. 

• FCB statement, which defines the image to be loaded into the FCB. 

• END statement, which is used to indicate the end of an ICAPRTBL job. 

The JOB statement indicates the beginning of an ICAPRTBL job. 

The format of the JOB statement is: 

:~[/;b~ij~JOBMIU~f~i~~i~;~itionI~~=~':;-~~~'''~~-':-~~Z==~~~~'~-':¥rJ~~r:~'~" ",':'.;,~w~:~~;7 ;."",' .•. ,., .....•. , .•... j 
JOB must be preceded and followed by at least one blank. 

The DFN statement is used to define the address of the 3211 and to specify 
lowercase letters are to be printed in uppercase when the lowercase print train is not 
available. 

The format of the DFN statement is: 
r~~' DFirADD·R':~-c'iIu:~FoCD¥~~'{ yT7,~'"~:~:,'"r"m.:'~~ , 

< {NY 

where: 

ADDR = cuu 
specifies the channel number, c, and unit number, UU, of the 3211. 

FOLD = 
specifies whether lowercase letters are to be printed as uppercase letters when the 
lowercase print train is not available. These values can be coded: 

y 

N 

specifies that lowercase letters are to be printed as uppercase letters when the 
lowercase print train is not available. 

specifies that lowercase letters are not to be printed as uppercase letters. 

The UCS statement contains an image to be loaded into the UCS buffer. 

The format of the UCS statement is: 

ucsname 
is a one- to eight-character alphameric name. This name is printed on the printer 
to serve as a reference to the print train being used. 

ICAPRTBL Program 43 

• 



FCB Statement 

END Statement 

ICAPRTBL Example 

JOB 
DFN 

All UCS 

STD2 FCB 

44 Utilities (Release 21.7) 

ucs-image 
specifies characters to be loaded into the UCS buffer. The characters must be 
contained in columns 16 through 71. The first UCS statement contains the first 56 
characters; subsequent statements contain continuations of the image to be loaded 
into the UCS buffer. 

The FCB statement defines the image to be loaded into the forms control buffer. The 
FCB statement may precede or follow the UCS statement. 

The format of the FCB statement is: 

where: 

fcbname 
specifies a one- to eight-character name of the image loaded into the forms 
control buffer. The actual image loaded into the buffer is not affected by this name, 
but to serve as a meaningful reference when printed on the printer, fcbname should 
be the same as the FCB image being used. 

LPI = 
specifies the number of lines per inch that will be printed on the document. These 
values can be coded: 

6 
specifies that six lines per inch will be printed. 

8 
specifies that eight lines per inch will be printed. 

LNCH= 
specifies the channels of the FCB image. Each set of parentheses must contain the 
line number (1-280), a comma, and the channel number (1-12) to be assigned to 
that line. One or all of the 12 channels may be assigned in any order. Each set must 
be separated by commas and the entire group surrounded by parentheses. 

FORMEND = x 
specifies the number of lines (maximum 180) on the printer form. For an 11 inch 
form, spacing six lines per inch, x must be 66. 

The END statement signals the end of the ICAPRTBL job. 

The format of the END statement is: 

END must be preceded and followed by at least one blank. 

In this example, an All UCS image and an FCB image are loaded into the UCS and 
FCB buffers. 

The example follows: 

LOAD All IMAGE 
ADDR=002,FCLD=N 

1<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#0987654321<.=IHGF 
EDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#0987654321<.=IHGFEDCBA*$
RQPONMLKJ%,&ZYXWVUTS/@#0987654321<.=IHGFEDCBA*$-RQPONMLK 
J%,&ZYXWVUTS/@#0987654321<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXW 
VUTS/@#0987654321<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#0 
987654321<.=ihgfedcba*$-rqponmlkj%,&zyxwvuts/23098765432 
1<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#0987654321<.=IHGH 
EDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#098765432 

LPI=6, C 
LN CH = ( ( 4 , 1 ), ( 1 0 , 2 ) , ( 1 6 , 3 ) , ( 22 , 4 ) , ( 28 , 5 ) , ( 34 , 6 ) , ( 40 , 7 ) , C 
( 46,8 ) , ( 52, 10 ) , ( 58, 11 ), ( 64, 12 ) , ( 66,9 ) ) 
END 

The control statements are discussed below: 

• DFN specifies the channel and unit number of the 3211 and specifies that 
lowercase letters are not to be printed as uppercase letters when the lowercase 
print train is not available. 

• UCS specifies the characters to be loaded into the UCS buffer. 

• FCB specifies the values to be loaded into the forms control buffer. 



IEBCOMPR Program-Class C 

IEBCOMPR is a data set utility used to compare two sequentially organized or two 
partitioned data sets at the logical record level to verify a backup copy. Fixed, 
variable, or undefined records from blocked or unblocked data sets or members can 
be compared. (See "Introduction" for general data set utility information.) 

Two sequential data sets are considered equal, that is, are considered to be identical, 
if: 

• The data sets contain the same number of records. 

• Corresponding records and keys are identical. 

If these conditions are not met, an unequal comparison results. If records are unequal, 
the record and block numbers, the names of the DD statements that define the data 
sets, and the unequal records are listed in a message data set. Ten successive 
unequal comparisons terminate the job step unless a user routine is provided to 
handle error conditions. 

Two partitioned data sets are considered equal if: 

• Corresponding members contain the same number of records. 

• Note lists are in the same position within corresponding members. 

• Corresponding records and keys are identical. 

If these conditions are not met, an unequal comparison results. If records are unequal, 
the record and block numbers, the names of the DD statements that define the data 
sets, and the unequal records are listed in a message data set. After ten successive 
unequal comparisons, processing continues with the next member unless a user 
routine is provided to handle error conditions. 

Partitioned data sets can be compared only if all the names in one or both of the • 
directories have counterpart entries in the other directory. The comparison is made on 
members identified by these entries and corresponding user data. 

Figure 3 shows the directories of two partitioned data sets. Directory 2 contains 
corresponding entries for all the names in Directory 1; therefore, the data sets can be 
compared. 

Directory 1 
ABCDGL 

Figure 3. Partitioned Directories Whose Data Sets Can Be Compared Using 
IEBCOMPR 

Figure 4 shows the directories of two partitioned data sets. Each directory contains a 
name that has no corresponding entry in the other directory; therefore, the data sets 
cannot be compared, and the job step is terminated. 

Directory 2 
A B FiQ] H I J 

Figure 4. Partitioned Directories Whose Data Sets Cannot Be Compared Using 
IEBCOMPR 

IEBCOMPR Program-Class C 45 



Input and Output 

Control 

Job Control Statements 

Restrictions 

46 Utilities (Release 21.7) 

User exits are provided for optional user routines to process user labels, handle error 
conditions, and modify source records. See "Appendix A: Exit Routine Linkage" for a 
discussion of the linkage conventions to be followed when user routines are used. 

At the completion or termination of IEBCOMPR, the highest return code encountered 
within the program is passed to the calling program. 

IEBCOMPR uses the following input: 

• Two sequential or two partitioned data sets to be compared. 

• A control data set that contains utility control statements. This data set is required 
if the input data sets are partitioned or if user routines are used. 

IEBCOMPR produces as output a message data set that contains informational 
messages (for example, the contents of utility control statements), the results of 
comparisons, and error messages. 

IEBCOMPR provides a return code to indicate the results of program execution. The 
return codes and their meanings are: 

• 00, which indicates successful completion. 

• 08, which indicates an unequal comparison. Processing continues. 

• 12, which indicates an unrecoverable error. The job step is terminated. 

• 16, which indicates that a user routine passed a return code of 16 to IEBCOMPR. 
The job step is terminated. 

IEBCOMPR is controlled by job control statements and utility control statements. The 
job control statements are required to execute or invoke IEBCOMPR and to define the 
data sets that are used and produced by IEBCOMPR. The utility control statements are 
used to indicate the input data set organization (that is, sequential or partitioned), to 
identify any user routines that may be provided, and to indicate whether user labels 
are to be treated as data. 

Table 9 shows the job control statements necessary for using IEBCOMPR. 

Table 9. IEBCOMPR Job Control Statements 

Statement 

JOB 

EXEC 

SYSPRINT DD 

SYSUTl DD 

SYSUT2 DD 

SYSIN DD 

Use 

Initiates the job. 

Specifies the program name (PGM = IEBCOMPR) or, if the job control statements 
reside in a procedure library, the procedure name. 

Defines a sequential message data set, which can be written to a system output 
device, a tape volume, or a direct access volume. 

Defines an input data set to be compared. 

Defines an input data set to be compared. 

Defines the control data set or specifies DUMMY if the input data sets are 
sequential and no user routines are provided. The control data set normally 
resides in the input stream; however, it can be defined as a member within a 
library of partitioned members. 

The minimum region size that can be specified for IEBCOMPR is 14K + 2b, where b is 
the largest block size in the job step, rounded to the next higher 2K. 

One or both of the input data sets can be passed from a preceding job step. 

Input data sets residing on different device types can be compared. Input data sets 
with a sequential organization written at different densities can be compared. 

• The SYSPRINT DD statement must be present for each use of IEBCOMPR. 

• The SYSIN DD statement is required. 

• The logical record lengths of the input data sets must be identical; otherwise, 
unequal comparisons result. The block sizes of the input data sets can differ; 
however, block sizes must be multiples of the logical record length. 

• The block size specified in the SYSPRINT DD statement must be a multiple of 121. 
The block size specified in the SYSIN DD statement must be a multiple of 80. 

When the input; output data set has fixed length, variable length, or variable 
spanned records, the BLKSIZE, RECFM, and LRECL are required. When the data set 
has undefined length records, "only BLKSIZE is required. 



Utility Control Statements 

COMPARE Statement 

EXITS Statement 

LABELS Statement 

The utility control statements used to control IEBCOMPR are: 

• COMPARE statement, which is used to indicate the organization of a data set. 

• EXITS statement, which is used to identify user exit routines to be used. 

• LABELS statement, which is used to indicate whether user labels are to be treated 
as data by IEBCOMPR. 

The COMPARE statement is used to indicate the organization of data sets to be 
compared. 

The format of the COMPARE statement is: 

[label] COMPARE [TYPORG = {f§.} 
{PO}] 

where: 

TYPORG = 
specifies the organization of the input data sets. If TYPORG is omitted, input data 
sets are assumed to be sequentially organized. The values that can be coded are: 

PS 
specifies that the input data sets are sequential data sets. If nothing is specified, 
PS is assumed. 

PO 
specifies that the input data sets are partitioned data sets. 

The COMPARE statement, if included, must be the first utility control statement. 
COMPARE is required if the EXITS or LABELS statement is used or if the input data 
sets are partitioned data sets. 

The EXITS statement is used to identify any user exit routines to be used. 

The format of the EXITS statement is: 

[label] EXITS '[INIiDR:= r()utinename] 
[,INTLR = routinename] 
[, ERROR = routinename] 

where: 
INHDR = routinename 

specifies the symbolic name of a routine that processes user input header labels. 

INTLR = routinename 
specifies the symbolic name of a routine that processes user input trailer labels. 

ERROR = routinename 
specifies the symbolic name of a routine that is to receive control after each 
unequal comparison for error handling. If this parameter is omitted and ten 
consecutive unequal comparisons occur while IEBCOMPR is 'comparing sequential 
data sets, processing is terminated; if the input data sets are partitioned, 
processing continues with the next member. 

PRECOMP = routinename 
specifies the symbolic name of a routine that processes logical records (physical 
blocks in the case of VS or VBS records longer than 32K bytes) from either or both 
of the input data sets before they are compared. 

The EXITS statement is required if a user exit routine is to be used. If more than one 
valid EXITS statement is included, all but the last EXITS statement are ignored. For a 
discussion of the processing of user labels as data set descriptors, see "Appendix E: 
Processing User Labels." 

The LABELS statement specifies whether user labels are to be treated as data by 
IEBCOMPR. For a discussion of this option, refer to "Processing User Labels as Data" 
in "Appendix E: Processing User Labels." 

The format of the LABELS statement is: 

IEBCOMPR Program-Class C 47 



IEBCOMPR Examples 

IEBCOMPR Example 1 

48 Utilities (Release 21.7) 

where: 

DATA = 
specifies whether user labels to be treated as data The values that can be coded 
are: 

YES 
specifies that any user labels that are not rejected by a user's label processing 
routine are to be treated as data. Processing of labels as data stops in 
compliance with standard return codes. If no value is entered, YES is assumed. 

NO 
specifies that user labels are not to be treated as data. 

ALL 
specifies that user labels are to be treated as data regardless of any return 
code. A return code of 16 causes IEBCOMPR to complete processing of the 
remainder of the group of user labels and to terminate the job step. 

ONLY 
specifies that only user header labels are to be treated as data. User header 
labels are processed as data regardless of any return code. The job terminates 
upon return from the OPEN routine. 

Note: LABELS DATA = NO must be specified to make standard user label (SUL) exits 
inactive when input/output data sets with nonstandard labels (NSL) are to be 
processed. 

If more than one valid LABELS statement is included, all but the last LABELS 
statement is ignored. 

The examples that follow illustrate some of the uses of IEBCOMPR. Table 10 can be 
used as a quick reference guide to IEBCOMPR examples. The numbers in the 
"Example" column point to examples that follow. 

Table 10. IEBCOMPR Example Directory 

Data Set 
Operation Organization Devices Comments Example 

COMPARE Sequential 9-track tape No user routines. Blocked input. 1 

COMPARE Sequential 7-track tape No user routines. Blocked input. 2 

COMPARE Sequential 7-track and User routines. Blocked input. 
9-track tape Different density tapes. 3 

COMPARE Sequential Card Reader, No user routines. Blocked input. 
9-track tape 4 

COMPARE Partitioned 2314 Disk No user routines. Blocked input. 5 

COpy (using Sequential 9-track tape No user routines. Blocked input. 
IEBGENER) and Two job steps; data sets are 
COMPARE passed to second job step. 6 

COpy (using Partitioned 2311 Disk User routine. Blocked input. 
IEBCOPY) and Two job steps; data sets are 
COMPARE passed to second job step. 7 

In this example, two sequential data sets that reside on 9-track tape volumes are to 
be compared. 

The example follows: 

IITAPETAPE JOB 
II EXEC 
IISYSPRINT DD 
IISYSUT1 DD 
II 
II 
IISYSUT2 
II 
II 
IISYSIN 
1* 

DD 

DD 

09#660,SMITH 
PGM=IEBCOMPR 
SYSOUT=A 
UNIT=2400,LABEL=( ,NL), 

DCB=(RECFM=FB,LRECL=80,BtKSIZE=2000), 
DISP=(OLD,KEEP),VOLUME=SER=001234 

UNIT=2400,LABEL=( ,NL),DISP=(OLD,KEEP), 
DCB=(RECFM=FB,LRECL=80,BLKSIZE=1040), 
VOLUME=SER=001235 

DUMMY 

Because no user routines are to be used and the input data sets have a sequential 
organization, utility control statements are not used. 



IEBCOMPR Example 2 

IEBCOMPR Example 3 

The control statements are discussed below: 

• SYSUTI DD defines an input data set, which resides on an unlabeled, 9-track tape 
volume. The blocked data set was originally written at 800 bits per inch density. 

• SYSUT2 DD defines an input data set, which resides on an unlabeled, 9-track tape 
volume. The blocked data set was originally written at 800 bits per inch density. 

• SYSIN DD defines a dummy data set. 

In this example, two sequential data sets that reside on 7 -track tape volumes are to 
be compared. 

The example follows: 

IITAPETAPE JOB 
II EXEC 
IISYSPRINT DD 
IISYSUT1 DO 
II 
II 
IISYSUT2 
II 

DO 

09#660,SMITH 
PGM=IEBCOMPR 
SYSOUT=A 
DSNAME=SET1,LABEL=(2,SUL),DISP=(OLD,KEEP), 

VOL=SER=001234,DCB=(DEN=2,RECFM=FB,LRECL=80, 
BLKSIZE=2000,TRTCH=C),UNIT=2400-2 

DSNAME=SET1,LABEL=( ,SUL),DISP=(OLD,KEEP), 
VOL=SER=001235,DCB=(DEN=2,RECFM=FB,LRECL=80, 
BLKSIZE=2000,TRTCH=C),UNIT=2400-2 II 

IISYSIN DO * 
COMPARE 
LABELS 

1* 

TYPORG=PS 
DATA=ONLY 

The control statements are discussed below: 

• SYSUTI DD defines an input data set, which resides on a labeled, 7 -track tape 
volume. The blocked data set was originally written at 800 bits per inch density 
with the data converter on. 

• SYSUT2 DD defines an input data set, which is the first or only data set on a 
labeled, 7 -track tape volume. The blocked data set was originally written at 800 
bits per inch density with the data converter on. 

• SYSIN DD defines the control data set, which follows in the input stream. 

• COMPARE specifies that the input data sets are sequentially organized. 

• LABELS specifies that only user header labels are to be compared. 

In this example, two sequential data sets written at different densities on different 
device types are to be compared. 

The example follows: 

IITAPETAPE JOB 
II EXEC 
IISYSPRINT DO 
IISYSUT1 DO 
II 
II 
IISYSDT2 
II 

DO 

09#660,SMITH 
PGM=IEBCOMPR 
SYSOUT=A 
DSNAME=SET1,LABEL=( ,SUL),DISP=(OLD,KEEP), 

VOL=SER=001234,DCB=(DEN=1,RECFM=FB,LRECL=80, 
BLKSIZE=320,TRTCH=C),UNIT=2400-2 

DSNAME=SET2,LABEL=( ,SUL),DISP=(OLD,KEEP), 
DCB~(RECFM=FB,LRECL=80,BLKSIZE=640), 
VOLUME=SER=001235,UNIT=2400 II 

IISYSIN DO * 
COMPARE 
EXITS 
LABELS 

1* 

TYPORG=PS 
INHDR=HDRS,INTLR=TLRS 
DATA=NO 

The control statements are discussed below: 

• SYSUTI DD defines an input data set, which is the first or only data set on a 
labeled, 7 -track tape volume. The blocked data set was originally written at 556 
bits per inch density with the data converter on. 

• SYSUT2 DD defines an input data set, which is the first or only data set on a 
labeled, 9-track tape volume. The blocked data set was originally written at 800 
bits per inch density. 

• SYSIN DD defines the control data set, which follows in the input stream. 

• COMPARE specifies that the input data sets are sequentially organized. 

IEBCOMPR Program-Class C 49 

• 



IEBCOMPR Example 4 

IEBCOMPR Example 5 

IEBCOMPR Example 6 

50 Utilities (Release 21.7) 

• EXITS identifies the names of routines to be used to process user input header 
labels and trailer labels. 

• LABELS specifies that the user input header and trailer labels are not to be 
compared. 

In this example, two sequential data sets (card input and tape input) are to be 
compared. 

The example follows: 

IICARDTAPE JOB 
II EXEC 
IISYSPRINT DD 
IISYSIN DD 
IISYSUT2 DD 
II 
II 
IISYSUTl DD 

(input card data set) 

1* 

09#660,SMITH 
PGM=IEBCOMPR 
SYSOUT=A 
DUMMY 
UNIT=2400,VOLUME=SER=001234,LABEL=( ,NL), 

DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000), 
DISP=(OLD,KEEP) 

DATA 

The control statements are discussed below: 

• SYSIN DD defines a dummy control data set. Because no user routines are 
provided and the input data sets are sequential, utility control statements are not 
used. 

• SYSUT2 DD defines an input data set, which resides on an unlabeled, 9-track tape 
volume. The blocked data set was originally written at 800 bits per inch density. 

• SYSUT1 DD defines an input data set (card input). 

In this example, two partitioned data sets are to be compared. 

The example follows: 

IIDISKDISK JOB 
II EXEC 
IISYSPRINT DD 
IISYSUTl DD 
II 
II 
IISYSUT2 
II 
II 

DD 

IISYSIN DD 
COMPARE 

1* 

09#660,SMITH 
PGM=IEBCOMPR 
SYSOUT=A 
DSNAME=PDSSET,UNIT=2314,DISP=(OLD,KEEP), 

DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000), 
VOLUME=SER=111112 

DSNAME=PDSSET,UNIT=2314,DISP=(OLD,KEEP), 
DCB=(RECFM~FB,LRECL=80,BLKSIZE=2000), 
VOLUME=SER=111113 
* 
TYPORG=PO 

The control statements are discussed below: 

• SYSUT1 DD defines an input partitioned data set. The blocked data set. resides on a 
2314 volume. 

• SYSUT2 DD defines an input partitioned data set. The blocked data set resides on a 
2314 volume. 

• SYSIN DD defines the control data set, which follows in the input stream. The data 
set consists of one utility control statement. 

In this example, a sequential data set is to be copied and compared in two job steps. 

The example follows: 

IITAPETAPE JOB 09#660,SMITH 
IISTEPA EXEC PGM=IEBGENER 
IISYSPRINT DD SYSOUT=A 
IISYSUTl DD DSN=COPYSET,UNIT=2400,DISP=(OLD,PASS), 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=640), 
II LABEL=( ,SL),VOLUME=SER=001234 
IISYSUT2 DD DSNAME=COPYSET,DISP=( ,PASS),LABEL=( ,SL), 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=640), 
II VOLUME=SER=001235,UNIT=2400 
IISYSIN DD DUMMY 
1* 
IISTEPB 
IISYSPRINT 
IISYSUTl 
IISYSUT2 
IISYSIN 
1* 

EXEC PGM=IEBCOMPR 
DD SYSOUT=A 
DD DSNAME=*.STEPA.SYSUT1,DISP=(OLD,KEEP) 
DD DSNAME=*.STEPA.SYSUT2,DISP=(OLD,KEEP) 
DD DUMMY 



IEBCOMPR Example 7 

The first job step copies the data set and passes the original and copied data sets to 
the second job step. The second job step compares the two data sets. 

The control statements for the IEBCOMPR job step are discussed below: 

• . SYSUTI DO defines an input data set passed from the preceding job step. The data 
set resides on a labeled, 9-track tape volume. The blocked data set was originally 
written at 800 bits per inch density. 

• SYSUT2 DO defines an input data set passed from the preceding job step. The data 
set, which was created in the preceding job step, resides on a labeled, 9-track tape 
volume. The blocked data set was originally written at 800 bits per inch density. 

• SYSIN DO defines a dummy control data set. Because the input is sequential and no 
user exits are provided, no utility control statements are required. 

In this example, a partitioned data set is to be copied and compared in two job steps. 

The example follows: 

IIDISKDISK JOB 09#660,SMITH 
IISTEPA EXEC PGM=IEBCOPY 
IISYSPRINT DD SYSOUT=A 
IISYSUT1 DD DSNAME=OLDSET,UNIT=2311,DISP=(OLD,PASS), 
II VOLUME=SER=111112,DCB=(RECFM=FB,LRECL=80, 
II BLKSIZE=640) 
IISYSUT2 DD DSNAME=NEWMEMS,UNIT=2311,DISP=(,PASS), 
II VOLUME=SER=111113,SPACE=(TRK,( 10,5,5», 
II DCB=(RECFM=FB,LRECL=~0,BLKSIZE=640) 
IISYSUT3 DD UNIT=2311,SPACE=(TRK,(1» 
IISYSUT4 DD UNIT=2311,SPACE=(TRK,(1» 
IISYSIN DD * 

COpy OUTDD=SYSUT2,INDD=SYSUT1 
SELECT MEMBER=(A,B,D,E,F) 

1* 
IISTEPB EXEC PGM=IEBCOMPR 
IISYSPRINT DD SYSOUT=A 
IISYSUTl DD DSNAME=OLDSET,DISP=(OLD,KEEP) 
IISYSUT2 DD DSNAME=NEWMEMS,DISP=(OLD,KEEP) • 
IISYSIN DD * 

COMPARE TYPORG=PO 
EXITS ERROR=SEEERROR 

1* 
The first job step copies the data set and passes the original and copied data sets to 
the second job step. The second job step compares the two data sets. 

The control statements for the IEBCOMPR job step are discussed below: 

• SYSUTI DO defines a blocked input data set that is passed from the preceding job 
step. The data set resides on a 2311 volume. 

• SYSUT2 DO defines a blocked input data set that is passed from the preceding job 
step. The data set resides on a 2311 volume. 

• SYSIN DO defines the control data set, which contains a COMPARE statement and 
an EXITS statement. 

• COMPARE specifies partitioned organization. 

• EXITS specifies that a user routine, SEEERROR, is to be used. 

Because the input data set names are not identical, the data sets can be retrieved by 
their data set names. 

IEBCOMPR Program-Class C 51 





IEBCOPY Program 

Creating a Backup Copy 

Copying Data Sets 

IEBCOPY1, is a data set utility used to copy one or more partitioned data sets or to 
merge partitioned data sets. (See "Introduction" for general data set utility 
information.) Specified members of partitioned data sets can be selected for, or 
excluded from, a copy process. 

IEBCOPY can be used to: 

• Create a backup copy. 

• Copy data sets. 

• Select members, from one or more data sets, to be copied. 

• Replace identically named members on data sets. 

• Replace selected data set members. 

• Rename selected members. 

• Exclude members, from one or more data sets, from being copied. 

• Compress a data set in place. 

• Merge data sets. 

• Re-create a data set that has exhausted its primary, secondary, or directory space 
allocation. 

In addition, IEBCOPY automatically lists the number of unused directory blocks and 
the number of unused tracks available for member records in the output partitioned 
data set. The names of copied members can be listed by input partitioned data set. 

When copying members that have aliases, the following should be noted: 

• When the main member and its aliases are copied, they exist on the output 
partitioned data set in the same relationship they had on the input partitioned data 
set. 

• When one alias is copied without its main member, it becomes a main member. 

o When two or more aliases are copied without the main member, the lowest alias (in 
alphameric collating sequence) becomes the main member; any remaining aliases 
become aliases of the new main member. Note that if an old main member name is 
present in an alias entry, it remains there. ' 

The rules for replacing or renaming members apply to both aliases and members; no 
distinction is made between them. 

At the completion or termination of the program, the highest return code encountered 
within the program is passed to the calling program. 

IEBCOPY can be used to copy a partitioned data set, totally or in part, from one direct 
access volume to another. In addition, a data set can be copied to its own volume, 
provided its data set name is changed. If the data set name is not changed, the data 
set is compressed in place. 

Note: The copied members are not reordered; that is, they are copied in the order in 
which they exist on the original data set. If the members are to be collated, IEHMOVE 
can be used for the copy operation. See the chapter "IEHMOVE Program" for a 
discussion of the IEHMOVE program. 

IEBCOPY can be used to copy more than one input partitioned data set, totally or in 
part, from one or more direct access volumes to a single direct access volume. See 
"COpy Statement" below for a discussion of how to specify more than one input 
partitioned data set. The input partitioned data sets are copied in the order in which 
they are specified. 

1 This is a description of the version of IEBCOPY available on Release 21.7 of IBM System/360 
Operating System. The program is designed to accept the job and control statements written for 
the version available on releases prior to Release 20. However, it is recommended that any 
future user applications be written to the specifications discussed in this chapter. 

IEBCOPY Program 53 



Selecting Members 
to be Copied 

Replacing Identically 
Named Members 

54 Utilities (Release 21.7) 

Members can be selected from one or more input partitioned data sets. Selected 
members are searched for in a low-to-high (a to z) collating sequence, regardless of 
the order in which they are specified; however, they are copied in the same physical 
sequence in which they appear on the input partitioned data set. 

When selecting members from an input partitioned data set, remember that once a 
member is found it is not searched for on any subsequent input partitioned data set. 
Similarly, when all of the selected members are found, the copy step is terminated 
although all of the input partitioned data sets may not have been searched. For 
example, if members A and B are specified and A is found on the first of three input 
partitioned data sets, it is not searched for again; if B is found on the second input 
partitioned data set, the copy operation is successfully terminated after the second 
input partitioned data set has been processed, although both A and B may also exist 
on the third input partitioned data set. 

However, if the first member name is not found on the first input partitioned data set, 
the second selected member is searched for; if it is not found, the third is searched 
for, and so on. This process continues until there are no more members to be 
searched for in this input partitioned data set. All the members that were found on the 
input partitioned data set are then processed for copying onto the output partitioned 
data set. This process is repeated for the second input partitioned data set (except 
that the members that were found on the first input partitioned data set are not 
searched for again). 

In many copy operations, the output partitioned data set may contain members that 
have names identical to the names of the input partitioned data set members to be 
copied. When this occurs, the user may specify that the identically named members 
are to be copied from the input partitioned data set to replace existing members. The 
replace option allows an input member to override an existing member on the output 
partitioned data set with the same name. 

If the replace option is not specified, input members are not copied when they have 
the same name as a member on the output partitioned data set. 

The replace option can be specified on the data set or member level. The level is 
specified on a utility control statement. 

When replace is specified on the data set (specified on a COpy or on the INDO 
statement), the input data is copied as follows: 

• In a full copy process, all members on an input partitioned data set are copied onto 
an output partitioned data set; members whose names already exist on the output 
partitioned data set are replaced by the members copied from the input partitioned 
data set. 

• In a selective copy process, all selected members on an input partitioned data set 
are copied to an output partitioned data set; all selected members found are copied 
and members whose names already exist on the output partitioned data set are 
replaced by the found members copied from the input partitioned data set. 

• In an exclusive copy process, all nonexcluded members on input partitioned data 
sets are copied to an output partitioned data set; nonexcluded input members 
whose names already exist on the output partitioned data set replace those 
identically named members on the output partitioned data set. 

When replace is specified on the member level (specified on a SELECT statement), 
only selected members on the input partitioned data sets are copied, and identically 
named members on the output partitioned data set are replaced. 

Differences between full, selective, and exclusive copy processing should be 
remembered when specifying the replace option when multiple data sets contain 
member names common to some or all of the input partitioned data sets being copied. 
These differences are: 

• When a full copy is performed, the output partitioned data set contains the 
replacing members that were on the last input partitioned data set copied. 

• When a selective copy is performed, the output partitioned data set contains the 
selected replacing members which were found on the earliest input partitioned data 
set searched. Once a selected member is found, it is not searched for again; 
therefore, once found, a selected member is copied, and if the same member exists 
on another input partitioned data set it is not searched for, and hence, not copied. 

• When an exclusive copy is performed, the output partitioned data set contains the 
nonexcluded replacing members that were on the last input partitioned data set 
copied. 



Replacing Selected Members 

Renaming Selected Members 

Excluding Members from 
a Copy Operation 

Compressing a Data Set 

Merging Data Sets 

Re-creating a Data Set 

Input and Output 

The user may specify the replace option on either the data set or the member level 
when members are being selected for copying. . 

If the replace option is specified on the data set level, all selected members found on 
the designated input partitioned data sets replace identically named members on the 
output partitioned data set. This is limited by the fact that once a selected member is 
found it is not searched for again. 

If the replace option is specified on the member level, the specified members on the 
input partitioned data set replace identically named members on the output 
partitioned data set. Once a member is found it is not searched for again. (See 
"Replacing Identically Named Members" earlier in this chapter.) 

Selected members on input partitioned data sets can be copied and renamed on the 
output partitioned data set. However, if the new name is identical to a member name 
on the output partitioned data set, the input member is not copied unless the replace 
option is also specified. See IISELECT Statement" below for information on renaming 
selected members. 

Note: Renaming is not physically done to the input partitioned data set directory entry. 
However, after the member is copied onto the output partitioned data set, the new 
name is entered into the output partitioned data set directory. 

Members from one or more input partitioned data sets can be excluded from a copy 
operation. The excluded member is searched for on every input partitioned data set in 
the copy operation and is always omitted from the copy. 

The replace option can be specified on the data set level in an exclusive copy, in 
which case, nonexcluded members on the input partitioned data set replace identically 
named members on the output partitioned data set. See "Replacing Identically Named 
Members" earlier in this chapter for more information on the replace option. 

A compressed data set is one that does not contain embedded unused space. After 
copying one or more input partitioned data sets to a new output partitioned data set 
(by means of a selective, exclusive, or full copy that does not involve replacing 
members), the output partitioned data set contains no embedded unused space. 

To make unused space available, either the entire data set must be scratched or it 
must be compressed in place. A compressed version can be created by specifying the 
same data set for both the input and the output parameters in a full copy step. A 
backup copy of the partitioned data set to be compressed in place should be kept until 
successful completion of an in-place compression is indicated (by an end-of-job 
message and a return code of 00). 

Note: An in-place compression does not release extents assigned to the data set. 

A merged data set is one to which an additional member is copied. It is created by 
copying the additional members to an existing output partitioned data set; the merge 
operation-the ordering of the output partitioned data set's directory-is 
automatically performed by IEBCOPY. 

Note: If there is a question about whether or not enough directory blocks are allocated 
to the output partitioned data set to which an input partitioned data set is being 
merged, the output partitioned data set should be re-created prior to the merge 
operation. 

A data set can be recreated by copying it and allocating a larger amount of space 
than was allocated for the original data set. This application of IEBCOPY is especially 
useful if insufficient directory space was allocated to a data set. Space cannot be 
allocated in this manner for an existing data set into which members are being 
merged. 

IEBCOPY uses the following input: 

• An input data set, which contains the members to be copied or merged into a 
partitioned data set. 

• A control data set, which contains utility control statements. The control data set is 
required if selected members are to be copied, merged into a partitioned data set, 
or omitted from the copy or merge operation. 

If the control data set is null, a full copy is attempted from the input partitioned data 
set to the output partitioned data set. In this case, SYSUTI and SYSUT2 are required 
ddnames for the input partitioned data set and output partitioned data set, described 
under IIJob Control Statements" below, respectively. 

IEBCOPY Program 55 



Control 

Job Control Statements 

56 Utilities (Release 21.7) 

Note: When merging into or compressing libraries, do not specify DISP = SHR. The 
results of a merge into or compress of the current SYSl.LlNKLIB or SYSl.SVCLlB 
would be unpredictable. 

IEBCOPY pr9duces the following output: 

• An output data set, which contains the copied or merged data. The output data set 
is either a new data set (from a copy operation) or an old data set (from a merge 
or compress-in-place). 

• A message data set, which contains informational messages (for example, the 
names of copied l1lembers) and error messages, if applicable. 

• Spill data sets, which are temporary data sets used to provide space when not 
enough main storage is available for the input and/or output partitioned data set 
directories. These data sets are opened only when needed. 

All input, output, and utility data sets must be on direct access devices. The following 
devices may be used: 

• 2311 Disk Storage Drive 

• 2314 Direct Access Storage Facility 

• 2319 Direct Access Storage Facility 

• 2301 Disk Storage 

• 2302 Drum Storage 

• 2303 Drum Storage 

• 2305 Fixed Head Storage 

• 2321 Data Cell Drive 

• 3330 Disk Storage 

Any combination of these devices is acceptable to IEBCOPY. 

Note: Refer to OS Storage Estimates, GC28-6551, to determine when spill data sets 
are required; see "Space Allocation" below for a description of how to determine the 
amount of space to allocate.) 

IEBCOPY produces a return code to indicate the results of program execution. The 
return codes and their meanings are: 

• 00, which indicates successful completion. 

• 04, which indicates a condition from which recovery may be possible. 

• 08, which indicates an unrecoverable error. The job step is terminated. 

IEBCOPY is controlled by job control statements and utility control statements. 

Table 11 shows the job control statements necessary for using IEBCOPY. 

The minimum region size that can be specified for IEBCOPY is 28K + 2b, where b is 
the largest block size in the job step, rounded to the next higher 2K. For additional 
information, see OS Storage Estimates, GC28-6551. 

Fixed or variable records can be reblocked. Reblocking or deblocking is done if the 
block size of the input partitioned data set is not equal to the block size of the output 
partitioned data set. Reblocking or deblocking cannot be done if either the input or the 
output data set has undefined format records, keyed records, track overflow records, 
note lists, or user TTRNs, or if compress in place is specified. (Earlier versions allowed 
reblocking or deblocking with track overflow output records.) 

Table 12 shows how input record formats can be changed. In addition, any record 
format can be changed to the undefined format (in terms of its description in the 
DSCB). 

System data sets should not be compressed in place in a multiprogramming 

I environment unless the subject partitioned data set is made non-sharable. The libraries 
in which IEBCOPY resides (SYSl.LlNKLIB and SYSl.SVCLlB) must not be compressed 
by IEBCOPY unless IEBCOPY is first transferred to a JOBLIB. 

Refer to OS Data Management Services Guide, GC26-3746, for information on 
estimating space allocations. 



. Restrictions 

Space Allocation 

Table 11. IEBCOPY Job Control Statements 

Statement 

JOB 

Use 

Initiates the job. 

EXEC Specifies the program name (PGM = IEBCOPY) or, if the job control statements 
reside in the procedure library, the procedure name. 

SYSPRINT DD Defines the sequential message data set used for listing statements and 
messages. This data set can be written onto a system output device, a tape 
volume, or a direct access volume. 

anyname 1 DD Defines an input partitioned data set. The data set can be defined by a data set 
name, as a cataloged data set, or as a data set passed from a previous job step. 

anyname2 DD Defines an output partitioned data set. 

SYSUT3 DD Defines a spill data set on a direct access device. SYSUT3 is used when there is 
no space in main storage for some or all of the current input partitioned data 
set's directory entries. SYSUT3 may also be used when not enough space is 
available in main storage for retaining information during table sorting. 

SYSUT4 DD Defines a spill data set on a direct access device. SYSUT4 is used when there is 
no space in main storage for the current output partitioned data set's merged 
directory and the output partitioned data set is not new. 

SYSIN DD Defines the control data set. The control data set normally resides in the input 
stream; however, it can reside on a system input device, a tape volume, or a 
direct access volume. 

Table 12. Changing Input Record Format Using IEBCOPY 

Input 

Fixed 
Fixed Blocked 
Variable 
Variable Blocked 

Output 

Fixed Blocked 
Fixed 
Variable Blocked 
Variable 

Refer to OS Storage Estimates, GC28-6551, to determine when spill data sets are 
required; see "Space Allocation" below for a description of how to determine the 
amount of space to allocate. 

• SYSPRINT and SYSIN are mandatory DD statements. The block size for the 
SYSPRINT data set must be a multiple of 121. The block size for the SYSIN data 
set must be a multiple of 80. Any blocking factor may be specified for these data 
sets, with a maximum allowable block size of 32,767 bytes. 

• The SYSPRINT DD statement must define a data set with fixed blocked or fixed 
records. 

• At least one INPUT DD statement is required; there must be one INPUT DD 
statement for each unique part in the data set used for input in the job step. 

• Input data sets cannot be concatenated. 

• There must be an OUTPUT DD statement for each unique partitioned data set used 
for output in the job step. 

• The SYSIN DD statement must define a data set with fixed block or fixed records. 

Sometimes it is necessary to allocate space on spill data sets (SYSUT3 and SYSUT4). 
To conserve space on the direct access volume, an initial quantity and a secondary 
quantity for space allocation may be used, as shown in the following SPACE 
parameter: 

SPACE = (c,(x,y» 

The c value should be a block length of 80 for SYSUT3 and of 256 for SYSUT4. The x 
value is the number of blocks in the primary allocation, and the y value is the number 
of blocks in a secondary allocation. 

For SYSUT3, x + 15y must be equal to or greater than the number of entries in the 
largest input partitioned data set in the copy operation, multiplied by 1.05. 

For SYSUT4, x + 15y must be equal to or greater than the number of blocks allocated 
to the largest output partitioned data set directory in the IEBCOPY job step. 

IEBCOPY Program 57 



Utility Control Statements 

COpy Statement 

58 Utilities (Release 21.7) 

For example, if there are 700 members on the largest input partitioned data set, 
space could be allocated for SYSUT3 as follows: 

SPACE = (80,(60,45» 

However, the total amount of space required for SYSUT3 in the worst case is used 
only if needed. If space is allocated in this manner for SYSUT4, the user must specify 
in his SYSUT4 DO statement: 

DCB = KEYLEN = 8 

Note that IEBCOPY ignores all other DCB information specified for SYSUT3 and/or 
SYSUT4. Multivolume SYSUT3 and SYSUT4 data sets are not supported. 

IEBCOPY is controlled by the following utility control statements: 

• COpy statement, which indicates the beginning of a COpy operation. 

• SELECT statement, which specifies which members in the input data set are to be 
copied. 

• EXCLUDE statement, which specifies members in the input data set to be excluded 
from the copy step. 

In addition, when INDO, a COpy statement parameter, appears on a card other than 
the COPY statement, it is referred to as an INDO statement; it can function as a 
control statement in this context. 

Utility control statements may be continued on subsequent cards provided that all the 
data is contained in columns 2 through 71. Control statement operation and keyword 
parameters can be abbreviated to their initial letters; for example, COPY can be 
abbreviated to C. 

The COPY statement is required to initiate all IEBCOPY copy operations. Any number 
of COPY statements can appear within a single job step. 

A COPY statement must precede a SELECT or EXCLUDE statement when members are 
selected for or excluded from a copy step. In addition, if an input ddname is specified 
on a separate INDO statement, it must follow the COPY statement and precede the 
SELECT or EXCLUDE statement to which it applies. If one or more INDO statements 
are immediately followed by the I':: card or another COpy statement, a full copy is 
invoked onto the most recent output partitioned data set previously specified. 

IEBCOPY uses a copy operation/copy step concept. The unit of work starting with a 
COpy statement and continuing until another COpy statement or until the end of the 
control data set is found is called a copy operation. Within each copy operation, one 
or more copy steps are present. Any INDO statement directly following a SELECT or 
EXCLUDE statement marks the beginning of the next copy step and the end of the 
preceding copy step within the copy operation. If such an INDO statement cannot be 
found in the copy operation, then the operation consists of only one copy step. 

Figure 5 shows the copy operation/copy step concept. Two copy operations are 
shown in the figure: the first begins with the statement containing the name 
COPOPERl, and the second begins with the statement containing the name 
COPOPER2. 

There are two copy steps within the first copy operation shown in Figure 5: the first 
begins with the COpy statement and continues through the two SELECT statements; 
the second begins with the first INDO statement following the two SELECT statements 
and continues through the EXCLUDE statement preceding the second COPY 
statement. There are two copy steps within the second copy operation: the first begins 
with the COPY statement and continues through the SELECT statement; the second 
begins with the INDO statement immediately following the SELECT statement and ends 
with the same I':: (delimiter) statement that ended the copy operation. 

The format of the COPY statement is: 
0" w •• P"'~'~Y "oX ('."".,<-" { 

,[Jabel]CO~YOUTDD,= ddname "" 
':[;INDb={~dnamel[Jddname2].~:·. ,:" .": 

" : {ddnarne 1 [,Cldname2][,( ddname2, R)]..~; " 
{«ddnarnel,R)[,ddname2]..;.) , 

u",~~,.~"",","~~" ",~,;";, [, LI~I~)~ill~J~",. ' 
where: 

OUTDO = ddname 
specifies the name of the output partitioned data set. One ddname is required for 
each copy operation; the ddname used must be specified on a DO statement. 



• 
• 
• 1st COPOPERI COPY OUTDD=AA,INDD=ZZ 

Copy INDDmBB,CC 
Operation INDDzDD • INDDzEE 

SELECT MEMBER=MEMA, MEMB • SELECT MEMBER=MEMC 

• 2nd INDD=GG 
Copy INDD=HH 

• Operation EXCLUDE MEMBER=MEMD, MEMH 

3rd COPOPER2 COPY OUTDD=YY ,1= (MM, PP) ,LIST=NO 
Copy SELECT MEMBER=MEMB • Operation 

• 4th INDD=KK 
Copy INDD=LL,NN • Operation 

Figure 5. Multiple Copy Operations Within a Job Step 

INDO = 
specifies the names of the input partitioned data sets. INDO may, optionally, be 
placed on a separate card following a COpy statement containing the OUTDO 
parameter, another INDD statement, a SELECT statement, or an EXCLUDE 
statement. These values can be coded: 

ddname 

R 

specifies the ddname, which is specified on a DD statement, of an input 
partitioned data set. If more than one ddname is specified, the input data sets 
are processed in the same sequence as the ddnames. 

specifies that all members to be copied from this input partitioned data set are 
to replace any identically named members on the output partitioned data set. (In 
addition, members whose names are not on the output partitioned data set are 
copied as usual.) When this option is specified with the INDO parameter, it does 
not have to appear with the MEMBER parameter (discussed in "SELECT 
Statement" in this chapter) in a selective copy operation. When this option is 
specified, the ddname and the R parameter must be enclosed in a set of 
parentheses; if it is specified with the first ddname in INDO, the entire field, 
exclusive of the INDO parameter, must be enclosed in a second set of 
parentheses. 

LIST = NO 
specifies that the names of copied members are not to be listed on SYSPRINT at 
the end of each input data set. 

Note: The control statement operation and keyword parameters can be abbreviated to 
their initial letters; for example, COPY can be abbreviated to C and OUTDO can be 
abbreviated to O. 

Only one INDO and one OUTDO keyword may be placed on a single card. OUTDO must 
appear on the COPY statement. When INDO appears on a separate card, no other 
operands may be specified on that card. 

INDO may appear on a separate card; if this option is selected, INDO is not preceded 
by a comma. 

If there are no keywords on the COPY card, compatibility with the previous version is 
implied. In this case, comments may not be placed on this card. 

If more than one ddname is specified, the input partitioned data sets are processed in 
the same sequence as that in which the ddnames are specified. 

A full copy is invoked only by specifying different input and output ddnames; that is, 
by omitting the SELECT or EXCLUDE statement from the copy step. 

The compress-in-place function is normally invoked by specifying the same ddname 
(with the same dsname and volume serial number specified on the DD statement) for 
both the OUTDO and INDO parameters of a COpy statement. If multiple entries are 
made on the INDO statement, a compress in place will occur if one of the input 

IEBCOPY Program 59 



SELECT Statement 

60 Utilities (Release 21. 7) 

ddnames is the same as the ddname specified by the OUTDO parameter of the COpy 
statement, provided that SELECT or EXCLUDE is not specified. 

The compress-in-place operation cannot be performed for the following: 

• A data set with track overflow records. 

• A da~a set with keyed records. 

• A data set for which reblocking is specified in the DCB parameter. 

• An unmovable data set. 

When a compression is invoked by specifying the same ddname for the INDO and 
OUTDO parameters, and the DO statement specifies a block size that differs from the 
block size specified in the DSCB, the DSCB block size is overridden; however, no 
physical reblocking or deblocking is done by IEBCOPY. 

The SELECT statement specifies members to be selected from input partitioned data 
sets. This statement is also used to rename and/or replace selected members on the 
output partitioned data set. More than one SELECT statement may be used in 
succession, in which case the second and SUbsequent-statements are treated as a 
continuation of the first. 

The SELECT statement must follow either a COpy statement that includes an INDO 
parameter or one or more INDO statements. A SELECT statement cannot appear with 
an EXCLUDE statement in the same copy operation. 

When a selected member is found on an input partitioned data set, it is not searched 
for again, regardless of whether it is copied. A selected member will not replace an 
identically named member on the output partitioned data set unless the replace option 
is specified on either the data set or member level. (For a description of replacing 
identically named members see uReplacing Identically Named Data Set Members," 
and "Replacing Selected Members" in this chapter.) In addition, a renamed member 
will not replace a member on the output partitioned data set that has the same new 
name as the renamed member, unless the replace option is specified. 

The format of the SELECT statement is: 

where: 

MEMBER = 

R 

specifies the members to be selected from the input partitioned data set. The 
values that can be coded are: 

name 
specifies the name of a member that is to be selected in a copy step. Each 
member name specified within one copy step must be unique; that is, duplicate 
names cannot be specified as either old names, or new names, or both, under 
any circumstances. 

newname 
specifies a new name for a selected member. The member is copied onto the 
output partitioned data set using its new name. If the name already appears on 
the output partitioned data set, the member is not copied unless replacement 
(R) is also specified. 

specifies that the input member is to replace any identically named member that 
exists on the output partitioned data set. 

Note: The control statement operation and keyword parameter can be abbreviated to 
their initial letters; SELECT can be abbreviated to S and MEMBER can be abbreviated 
to M. 

To rename a member, the old member name is specified in the SELECT statement, 
followed by the new name and, optionally, the R parameter. When this option is 
specified, the old member name and new member name must be enclosed in a set of 

I 
parentheses. When any option within parentheses is specified anywhere in the 
MEMBER field, the entire field, exclusive of the MEMBER keyword, must be enclosed in 
a second set of parentheses. 



EXCLUDE Statement 

IEBCOPY Examples 

The EXCLUDE statement specifies members to be excluded from the copy step. Unlike 
the selective copy, an exclusive copy causes all specified members on each input 
partitioned data set to be excluded from the copy. 

More than one EXCLUDE statement may be used in succession, in which case the 
second and subsequent statements are treated as a continuation of the first. The 
EXCLUDE statement must follow either a COpy statement that includes an INDO 
parameter or one or more INDO statements. An EXCLUDE statement cannot appear 
with a SELECT statement in the same copy step; however, both may be used in a 
single copy operation. 

The format of the EXCLUDE statement is: 

l~·[/~~~~DE~E~Bj~·';J'<J;~~~[~2iti:~Trrib~fl~!~w.~.:T&·~~-: .. '.~~;w~ __ ··~~:~;S;;J 
where: 

MEMBER = [(]membernamel[,membername2] ... [)] 
specifies members on the input partitioned data sets that are not to be copied to 
the output partitioned data set. The members are not deleted from the input 
partitioned data set unless the entire data set is deleted. (This can be done by 
specifying DISP = DELETE in the operand field of the input DO job control 
statement.) Each member name specified within one copy step must be unique. 

Note: The control statement operation and keyword parameter can be abbreviated to 
their initial letters; EXCLUDE can be abbreviated to E and MEMBER can be abbreviated 
to M. 

The following examples illustrate some of the uses of IEBCOPY. Table 13 can be used 
as a quick reference guide to IEBCOPY examples. The numbers in the "Example" 
column point to examples that follow. 

Table 13. IEBCOPY Example Directory 

Operation Device Comments Example 

COpy 2314 Disk Full Copy. 1 

COpy 2311 Disk, Multiple input partitioned data sets. 
2301 Drum, Fixed-blocked and fixed record formats. 2 
2302 Disk 

COPY 2302 Disk, All members are to be copied 
2314 or 2319 Disk1 Identically named members on the 

output data set are to be replaced. 3 

COPY 2302 Disk, Selected members are to be copied. 
2314 Disk, Variable blocked data set is to be 
2311 Disk created. Record formats are variable-

blocked and variable. 4 

COpy 2302 Disk, Selected members are to be copied. 
2311 Disk One member is to replace an 

identically named member on the 
output data set. 5 

COpy 2301 Drum, Selected members are to be copied. 
2314 or 2319 Disk,1 Members found on first input data set 
2311 Disk replace identically named members on 

the output data set. 6 

COPY 2311 Disk Selected members are to be copied. 
Two members are to be renamed. One 
renamed member is to replace an 
identically named member on the 
output data set. 7 

COpy 2314 Disk Exclusive Copy. Fixed blocked and 
fixed record formats. 8 

COPY 2314 or 2319 Disk1 Compress- in -place. 9 

COPY 2311 Disk, Full copy to be followed by a. compress-
2314 Disk in-place of the output data set. Replace 

specified for one input data set. 10 

COpy 2314 or 2319 Disk Multiple copy operations. 11 

COpy 2311 Disk Multiple copy operations. 12 

1 The 2319 disk is functionally equivalent to the 2314 disk; to use the 2319, specify 2314 in the 
control statement. 

IEBCOPY Program 61 



IEBCOPY Example 1 

62 Utilities (Release 21.7) 

In this example, a partitioned data set (DATASETS) is to be copied from one disk 
volume to another. Figure 6 shows the input and output data sets before and after 
processing. 

The example follows: 

IICOPY JOB 
IIJOBSTEP EXEC 
IISYSPRINT DD 
IIINOUT4 DD 
II 
IIINOUT5 
II 
IISYSUT3 
IISYSUT4 
IISYSIN 
COPYOPER 
1* 

Output 
DATASET4 

Before 
copy 
operation 

DD 

DD 
DD 
DD 
COPY 

06#990,MCEWAN 
PGM=IEBCOPY 
SYSOUT=A 
DSNAME=DATASET4,UNIT=2314,VOL=SER=111112, 

DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2)) 
DSNAME=DATASET5,UNIT=2314,VOL=SER=111113, 

DISP=OLD 
UNIT=2314,SPACE=(TRK,(1 )) 
UNIT=2314,SPACE=(TRK,( 1)) 

* OUTDD=INOUT4,INDD=INOUT5 

DATASETS 

After 
processing 
DATASETS 

Figure 6. Copying a Partitioned Data Set-Full Copy 

The control statements are discussed below: 

• INOUT4 DO defines a partitioned data set (DATASET4). This data set is new and is 
to be kept after the copy operation. Five tracks are allocated for the data set on a 
2314 volume. Two blocks are allocated for directory entries. 

• INOUTS DO defines a partitioned data set (DATASETS), which resides on a 2314 
volume and contains two members (A and C). 

• SYSUT3 DO defines a temporary spill data set. One track is allocated on a 2314 
volume. 

• SYSUT4 DO defines a temporary spill data set. One track is allocated on a 2314 
volume. 

• SYSIN DO defines the control data set, which follows in the input stream. The data 
set contains a COpy statement. 

• COPY indicates the start of the copy operation. The absence of a SELECT or 
EXCLUDE statement causes a default to a full copy. The OUTDO parameter 
specifies INOUT4 as the 00 statement for the output data set (OATASET4); the 



IEBCOPY Example 2 

INDO parameter specifies INOUT5 as the DO statement for the input data set. After 
the copy operation is finished, the output data set (DATASET4) will contain the 
same members that are on the input data set (DATASET5); however, there will be 
no embedded unused space on DATASET4. 

The temporary spill data sets mayor may not be opened, depending on the amount of 
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DO 
statements always appear in the job stream. 

In this example, members are to be copied from three input partitioned data sets 
(DATASET!, DATASET5, and DATASET6) to an existing output partitioned data set 
(DATASET2). The seC!uence in which the control statements occur controls the 
manner and sequence in which partitioned data sets are processed. Figure 7 shows 
the input and output data sets before and after processing. 

Output 
DATASET2 

Directory 
C E 

Before 
copy 
operation 

Input 
DATASETl 

f~J 
~:v?-· 

Directory 
ABCEF 

After 
processing 
DATASETl 

Input 
DATASET6 

Directory 
ABCDEF 

After 
processing 
DATASET6 

Figure 7. Copying from Three Input Partitioned Data Sets 

Input 
DATASET5 

Directory 
ABCDEF 

C 

A 

D 

After 
processing 
DATASET5 

IEBCOPY Program 63 

• 



IEBCOPY Example 3 

64 Utilities (Release 21.7) 

The example follows: 

IICOPY JOB 
IIJOBSTEP EXEC 
IISYSPRINT DD 
IIINOUT1 DD 
II 
IIINOUT5 
II 
IIINOUT2 
II 
IIINOUT6 

DD 

DD 

DD 

06#990,MCEWAN 
PGM=IEBCOPY 
SYSOUT=A 

DSNAME=DATASET1,UNIT=2311,VOL=SER=111112, 
DISP=(OLD,KEEP) 

DSNAME=DATASET5,UNIT=2301,VOL=SER=111114, 
DISP=OLD 

DSNAME=DATASET2,UNIT=2302,VOL=SER=111115, 
DISP=(OLD,KEEP) 

DSNAME=DATASET6,UNIT=2301,VOL=SER=111117, 
DISP=(OLD,DELETE) II 

IISYSUT3 
IISYSUT4 
IISYSIN 
COPYOPER 

DD UNIT=2311,SPACE=(TRK,( 1)) 

1* 

DD UNIT=2311,SPACE=(TRK,(1)) 
DD * 
COpy OUTDD=INOUT2 

INDD=INOUT1 
INDD=INOUT6 
TNDD=INOUT5 

The control statements are discussed below: 

• INOUTI DD defines a partitioned data set (DATASETl). This data set, which 
resides on a 2311 volume, contains three members (A, 8, and F) in fixed format 
with a logical record length of 80 bytes and a block size of 80 bytes. 

• INOUT5 DD defines a partitioned data set (DATASET5), which resides on a 2301 
volume. This data set contains two members (A and C) in fixed blocked format with 
a logical record length of80 bytes and a block size of 160 bytes. 

• INOUT2 DD defines a partitioned data set (DATASET2), which resides on a 2302 
volume. This data set contains two members (C and E) in fixed blocked format. The 
members have a logical record length of 80 bytes and a block size of 240 bytes. 

• INOUT6 DD defines a partitioned data set (DATASET6), which resides on a 2301 
volume. This data set contains three members (8, C, and D) in fixed blocked format 
with a logical record length of 80 bytes and a block size of 400 bytes. This data set 
is to be deleted when processing is completed. 

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSIN DD defines the control data set, which follows in the input stream. The data 
set contains a COpy statement and three INDD statements. 

• COPY indicates the start of the copy operation. The absence of a SELECT or 
EXCLUDE statement causes a default to a full copy. The OUTDO parameter 
specifies INOUT2 as the DD statement for the output data set (DATASET2). 

• The first INDD statement specifies INOUTI as the DD statement for the first input 
data set (DATASETl) to be processed. All members (A, 8, and F) are copied to the 
output data set (DATASET2). 

• The second INDO statement specifies INOUT6 as the DD statement for the second 
input data set (DATASET6) to be processed. Processing occurs, as follows: (1) 
members 8 and C, which already exist on DATASET2, are not copied to the output 
data set (DATASET2), (2) member D is copied to the output data set (DATASET2), 
and (3) all members on DATASET6 are lost when the data set is deleted. 

• The third INDD statement specifies INOUT5 as the DD statement for the third input 
data set (DATASET5) to be processed. No members are copied to the output data 
set (DATASET2) because all of them exist on DATASET2. 

The temporary spill data sets mayor may not be opened, depending on the amount of 
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD 
statements always appear in the job stream. 

In this example, members are to be copied from an input partitioned data set 
(DATASET6) to an existing output partitioned data set (DATASET2). In addition, all 
copied members are to replace identically named members on the output partitioned 
data set. Figure 8 shows the input and output data sets before and after processing. 



Input 
DATASET6 

Output 
DATASET2 

Before 
copy 
operation 

> Members E 
>',1 

" Old·.membec"",. Un\Jsed 
C /lot pOinted, . 
at dftcr ----~ 
processing 

After 
processing 
DATASET6 

Copy replacing 
member ,e 

i : 

Figure 8. Copy Operation with "Replace" Specified on the Data Set Level 

The example follows: 

IICOPY JOB 
IIJOBSTEP EXEC 
IISYSPRINT DD 
IIINOUT2 DD 
II 
IIINOUT6 
II 
IISYSUT3 
IISYSUT4 
IISYSIN 
COPYOPER 
1* 

DD 

DD 
DD 
DD 
COPY 

06#990,MCEWAN 
PGM=IEBCOPY 
SYSOUT=A 
DSNAME=DATASET2,UNIT=2314,VOL=SER=111113, 

DISP=OLD 
DSNAME=DATASET6,UNIT=2302,VOL=SER=111117, 

DISP=(OLD,KEEP) 
UNIT=2311,SPACE=(TRK,(1 )) 
UNIT=2311,SPACE=(TRK,( 1)) 
* OUTDD=INOUT2,INDD=((INOUT6,R)) 

The control statements are discussed below: 

• INOUT2 DD defines a partitioned data set (DATASET2), which resides on a 2314 
volume. This data set contains two members (C and E). 

• INOUT6 DD defines a partitioned data set (DATASET6), which resides on a 2302 
volume. This data set contains three members (B, C, and D). 

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSUT 4 DD defines a temporary spill data set. One track is allocated on a 2311 
v·olume. 

• SYSIN DD defines the control data set, which follows in the input stream. The data 
set contains a COpy statement and an INDD statement. 

• COpy indicates the start of the copy operation. The absence of a SELECT or 
EXCLUDE statement causes a default to a full copy. The OUTDO parameter 
specifies INOUT2 as the DD statement for the output data set (DATASET2). The 
INDO parameter specifies INOUT6 as the DD statement for the input data set 
(DATASET6). Members B, C, and D are copied to the output data set (DATASET2). 
The pointer in the output data set directory is changed to point to the new (copied) 
member C; thus, the space occupied by the old member C is embedded unused 
space. Member C is copied even though the output data set already contains a 

IEBCOPY Program 65 



IEBCOPY Example 4 

66 Utilities (Release 21.7) 

member named "C" because the replace option is specified for all identically 
named members on the input data set; that is, the replace option is specified on 
the data set level. 

The temporary spill data sets mayor may· not be opened, depending on the amount of 
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DO 
statements always appear in the job stream. 

In this example, five members (A, C, 0, E, and G) are to be selected from two input 
partitioned data sets (DATASET6 and DATASET2) to be copied to a new output 
partitioned data set (DATASET4). Figure 9 shows the input and output data sets 
before and after processing. 

Before 
copy 
operation 

Input 
DATASET6 

After 
processing 
DATASET6 

Input 
DATASET2 

After 
processing 
DATASET2 

Figure 9. Copying Selected Members with Reblocking and Deblocking 

The example follows: 

IICOPY JOB 06#990,MCEWAN 
IIJOBSTEP EXEC 
IISYSPRINT DD 
IIINOUT2 DD 

PGM=IEBCOPY 
SYSOUT=A 
DSNAME=DATASET2,UNIT=2314,VOL=SER=111114, 

II 
IIINOUT6 
II 
IIINOUT4 
II 
II 
IISYSUT3 
IISYSUT4 
IISYSIN 
COPYOPER 

SELECT 
1* 

DD 

DD 

DISP=(OLD,DELETE) 
DSNAME=DATASET6,UNIT=2302,VOL=SER=111117, 

DISP=(OLD,KEEP) 
DSNAME=DATASET4,UNIT=2311,VOL=SER=111116, 

DISP=(NEW,KEEP),SPACE=(TRK,{5,,2)), 
DCB=(RECFM=VB,LRECL=96,BLKSIZE=300) 

DD UNIT=2311,SPACE=(TRK,(1)) 
DD UNIT=2311,SPACE=(TRK,(1)) 
DD * 

. COpy OUTDD=INOUT4 
INDD=INOUT6 
INDD=INOUT2 

MEMBER=C,D,E,A,G 

The control statements are discussed below: 

• INOUT2 DO defines a partitioned data set (DATASET2), which resides on a 2314 
volume. This data set contains two members (C and E) in variable blocked format 
with a logical record length of 96 bytes and a block size of 500 bytes. This data set 
is to be deleted when processing is completed. 



IEBCOPY Example 5 

• INOUT6 DD defines a partitioned data set (DATASET6), which resides on a 2302 
volume. This data set contains three members (8, C, and D) in variable format with 
a logical record length of 96 bytes and a block size of 100 bytes. 

• INOUT4 DD defines a partitioned data set (DATASET4). This data set is new and is 
to be kept after the copy operation. Five tracks are allocated for the data set on a 
2311 volume. Two blocks are allocated for directory entries. In addition, records 
are to be copied to this data set in variable blocked format with a logical record 
length of 96 bytes and a block size of 300 bytes. 

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSIN DD defines the control data set, which follows in the input stream. The data 
set contains a COpy statement, two INDD statements, and a SELECT statement. 

• COPY indicates the start of the copy operation. The presence of a SELECT 
statement causes a selective copy. The OUTDO parameter specifies INOUT4 as the 
DD statement for the output data set (DATASET4). 

• The first INDD statement specifies INOUT6 as the DD statement for the first input 
data set (DATASET6) to be processed. The members specified on the SELECT 
statement are searched for. The found members (C and D) are copied to the output 
data set (DATASET4) in the order in which they reside on the input data set, that is, 
in DR order. In this case, member D is copied first, and then member C is copied. 

• The second INDD statement specifies INOUT2 as the DD statement for the second 
input data set (DATASET2) to be processed. The members specified on the SELECT 
statement and not found on the first input data set are searched for. The found 
member (E) is copied onto the output data set (DATASET4). All members on 
DATASET2 are lost when the data set is deleted. 

• SELECT specifies the members to be selected from the input data sets (DATASET6 
and DATASET2) to be copied to the output data set (DATASET4). 

The temporary spill data sets mayor may not be opened, depending on the amount of 
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD 
statements always appear in the job stream. 

In this example, two members (A and 8) are to be selected from two input partitioned 
data sets (DATASET5 and DATASET6) to be copied to an existing output partitioned 
data set (DATASET1). Member 8 is to replace an identically named member that 
already exists on the output data set. Figure 10 shows the input and output data sets 
before and after processing. 

The example follows: 

IICOPY JOB 06#990,MCEWAN 
IIJOBSTEP EXEC 
IISYSPRINT DD 
IIINOUTl DD 

PGM=IEBCOPY 
SYSOUT=A 
DSNAME=DATASET1,UNIT=2311,VOL=SER=111112, 

II 
IIINOUT6 
II 
IIINOUT5 
II 
IISYSUT3 
IISYSUT4 
IISYSIN 
COPYOPER 

SELECT 
1* 

DD 

DD 

DISP=(OLD,KEEP) 
DSNAME=DATASET6,UNIT=2302,VOL=SER=111115, 

DISP=OLD 
DSNAME=DATASET5,UNIT=2311,VOL=SER=111116, 

DISP=(OLD,KEEP) 
DD UNIT=2311,SPACE=(TRK,( 1)) 
DD UNIT=2311,SPACE=(TRK,( 1)) 
DD * 
COpy OUTDD=INOUTl 

INDD=INOUT5,INOUT6 
MEMBER=( (I3: , R), A) 

The control statements are discussed below: 

• INOUT1 DD defines a partitioned data set (DATASET1). This data set resides on a 
2311 volume and contains three members (A, 8, and F). 

• INOUT6 DD defines a partitioned data set (DATASET6). This data set resides on a 
2302 volume and contains three members (8, C, and D). 

• INOUT5 DD defines a partitioned data set (DATASET5). This data set resides on a 
2311 volume and contains two members (A and C). 

• SYSUT3 DD defines a temporary spill data set. ·One track is allocated on a 2311 
volume. 

IEBCOPY Program 67 



IEBCOPY Example 6 

68 Utilities (Release 21.7) 

Before 
copy 
operation 

Input 
DATASET5 

After 
processing 
DATASET5 

Input 
DATASET6 

After 
processing 
DATASET6 

Figure 10. Selective Copy with uReplace" Specified on the Member Level 

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSIN DD defines the control data set, which follows in the input stream. The data 
set contains a COpy statement, an INDD statement, and a SELECT statement. 

• COPY indicates the start of the copy operation. The presence of a SELECT 
statement causes a selective copy. The OUTDO parameter specifies INOUTI as the 
DD statement for the output data set (DATASETl). 

• INDD specifies INOUT5 as the DD statement for the first input data set 
(DATASET5) to be processed and INOUT6 as the DD statement for the second 
input data set (DATASET6) to be processed. Processing occurs, as follows: (1) 
selected members are searched for on DATASET5, (2) member A is found, but is 
not copied to the output data set because it already exists on DATASET2 and the 
replace option is not specified, (3) selected members not found on DATASET5 are 
searched for on DATASET6, and (4) member B is found and copied to the output 
data set (DATASETl), even though a member named B already exists on the output 
data set, because the replace option is specified for member B on the member 
level. The pointer in the output data set directory is changed to point to the new 
(copied) member B; thus, the space occupied by the old member B is unused. 

• SELECT specifies the members to be selected from the input data sets (DATASET5 
and DATASET6) to be copied to the output data set (DATASETl). 

The temporary spill data sets mayor may not be opened, depending on the amount of 
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD 
statements always appear in the job stream. 

In this example, two members (A and B) are to be selected from two input partitioned 
data sets (DATASET5 and DATASET6) to be copied to an existing output partitioned 
data set (DATASETl). All members found on DATASET5 are to replace identically 
named members on DATASETI. Figure 11 shows the input and output data sets 
before and after processing. 



Output 
DATASET1 

Before 
copy 
operation 

Input 
DATASET5 

After 
processing 
DATASET5 

After 
processing 
DATASET6 

Figure 11. Selective Copy with "Replace" Specified on the Data Set Level 

The example follows: 

IICOPY JOB 06#990,MCEWAN 
IIJOBSTEP EXEC 
IISYSPRINT DD 
IIINOUTl DD 

PGM=IEBCOPY 
SYSOUT=A 
DSNAME=DATASET1,UNIT=2311,VOL=SER=111112, 

II 
IIINOUT5 
II 
IIINOUT6 
II 
IISYSUT3 
IISYSUT4 
IISYSIN 
COPYOPER 

SELECT 
1* 

DD 

DD 

DISP=(OLD,KEEP) 
DSNAME=DATASET5,UNIT=2314,VOL=SER=111114, 

DISP=(OLD,DELETE) 
DSNAME=DATASET6,UNIT=2301,VOL=SER=111115, 

DISP=(OLD,KEEP) 
DD UNIT=2311,SPACE=(TRK,(1)) 
DD UNIT=2311,SPACE=(TRK,(1)) 
DD * 
COPY OUTDD=INOUT1 

INDD=((INOUT5,R),INOUT6) 
MEMBER=(A,B) 

The control statements are discussed below: 

• INOUTl DD defines a partitioned data set (DATASETl). This data set resides on a 
2311 volume and contains three members (A, 8, and F). 

• INPUTS DD defines a partitioned data set (DATASET5). This data set contains two 
members (A and C) and can reside on either a 2314 or 2319 volume. This data set 
is to be deleted when processing is completed. 

• INOUT6 DD defines a partitioned data set (DATASET6). This data set contains 
three members (8, C, and D) and resides on a 2301 volume. 

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

IEBCOPY Program 69 



IEBCOPY Example 7 

70 Utilities (Release 21.7) 

• SYSIN DO defines the control data set, which follows in the input stream. The data 
set contains a COpy statement, an INDO statement, and a SELECT statement. 

• COPY indicates the start of the copy operation. The presence of a SELECT 
statement causes a selective copy. The OUTDO operand specifies INOUTI as the 
DO statement for the output data set (DATASET1). 

• INDO specifies INOUT5 as the DO statement for the first input data set 
(DATASET5) to be processed and INOUT6 as the statement for the second input 
data set (DATASET6) to be processed. Processing occurs, as follows: (1) selected 
members are searched for on DATASET5, (2) member A is found and copied to the 
output data set (DATASET1) because the replace option was specified on the data 
set level for DATASET5, (3) member 8, which was not found on DATASET5 is 
searched for and found on DATASET6, (4) member 8 is not copied because 
DATASETI already contains a member called member 8 and the replace option is 
not specified for DATASET6. The pointer in the output data set directory is changed 
to point to the new (copied) member A; thus, the space occupied by the old 
member A is unused. 

• SELECT specifies the members to be selected from the input data sets (DATASET5 
and DATASET6) to be copied to the output data set (DATASET1). 

The temporary spill data sets mayor may not be opened, depending on the amount of 
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD 
statements always appear in the job stream. 

In this example, four members (A, B, C, and D) are to be selected from an input 
partitioned data set (DATASET6) to be copied to an existing output partitioned data 
set (DATASET3). Member 8 is to be renamed H; member C is to be renamed J; and 
member 0 is to be renamed K. In addition, member C (renamed J) is to replace the 
identically named member (J) on the output partitioned data set. Figure 12 shows the 
input and output data sets before and after processing. 

The example follows: 

IICOPY JOB 
IIJOBSTEP EXEC 
IISYSPRINT DD 
IIINOUT3 DD 
II 
IIINOUT6 DD 

#990, MCEWAN 
PGM=IEBCOPY 
SYSOUT=A 
DSNAME=DATASET3,UNIT=2311,VOL=SER=111114, 

DISP=(OLD,KEEP) 
DSNAME=DATASET6,UNIT=2311,VOL=SER=111117, 

DISP=(OLD,DELETE) II 
IISYSUT3 
IISYSUT4 
IISYSIN 
COPYOPER 

DD UNIT=2311,SPACE=(TRK,( 1)) 
DD UNIT=2311,SPACE=(TRK,( 1)) 
DD * 
COpy OUTDD=INOUT3 

INDD=INOUT6 
SELECT MEMBER=((B,H),(C,J,R),A,(D,K)) 

1* 
The control statements are discussed below: 

• INOUT3 DD defines a partitioned data set (DATASET3). This data set contains four 
members (D, G, H, and J). 

• INOUT6 DD defines a partitioned data set (DATASET6). This data set contains 
three members (8, C, and D) and resides on a 2311 volume. DATASET6 is to be 
deleted when processing is completed; thus, all members on this data set are lost. 

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSUT4 DO defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSIN DD defines the control data set, which follows in the input stream. The data 
set contains a COpy statement, an INDD statement, and a SELECT statement. 

• COPY indicates the start of the copy operation. The presence of a SELECT 
statement causes a selective copy. The OUTDO parameter specifies INOUT3 as the 
DD statement for the output data set (DATASET3). 

• INDD specifies INOUT6 as the DD statement for the input data set (DATASET6). 
Processing occurs, as follows: (1) selected members are searched for on 
DATASET6, (2) member 8 is found, but is not copied to DATASET3 because its 
intended new name (H) is identical to the name of a member (H), which already 
exists on the output data set, and replace is not specified, (3) member C is found 
and copied to the output data set (DATASET3), although its new name (J) is 



IEBCOPY Example 8 

Input 

Output 
DATASET3 

Before 
copy 
operatie.n 

DATASET6 

After 
processing 
DATASET6 

Figure 12. Renaming Selected Members Using IEBCOPY 

identical to the name of a member (J), which already exists on the output data set, 
because the replace option is specified for the renamed member, and (4) member 
D is copied onto the output data set (DATASET3) because its new name (K) does 
not already exist there. 

• SELECT specifies the members to be selected from the input data set (DATASET6) 
to be copied to the output data set (DATASET3). 

The temporary spill data sets mayor may not be opened, depending on the amount of 
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DO 
statements always appear in the job stream. 

In this example, five members (A, B, C, J, and L) are to be excluded from the copy 
operation when each of the input partitioned data sets (DATASET1, DATASET3, and 
DATASET6) is processed. In addition, replace is specified for the last input partitioned 
data set (DATASET6) to be processed; thus, with the exception of the members 
specified on the EXCLUDE statement, all members on DATASET6 will replace any 
identically named members on the output partitioned data set (DATASET4). Figure 13 
shows the input and output data sets before and after processing. 

The example follows: 

IICOPY JOB 06#990,MCEWAN 
IIJOBSTEP EXEC 
IISYSPRINT DD 
IIINOUT1 DD 

PGM=IEBCOPY 
SYSOUT=A 
DSNAME=DATASET1,UNIT=2314,VOL=SER=111112, 

II 
IIINOUT3 
II 
IIINOUT4 
II 
II 
IIINOUT6 
II 
IISYSUT3 
IISYSUT4 
IISYSIN 
COPYOPER 

EXCLUDE 
1* 

DD 

DD 

DD 

DISP=(OLD,KEEP) . 
DSNAME=DATASET3,UNIT=2314,VOL=SER=111114, 

DISP=OLD 
DSNAME=DATASET4,UNIT=2314,VOL=SER=111115, 

DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2)), 
DCB=(LRECL=100,RECFM=FB,BLKSIZE=400) 

DSNAME=DATASET6,UNIT=2314,VOL=SER=111116, 
DISP=OLD 

DD UNIT=2314,SPACE=(TRK,(1)) 
DD UNIT=2314,SPACE=(TRK,(1)) 
DD * 

COpy OUTDD=INOUT4,INDD=INOUT1,INOUT3,(INOUT6,R) 
MEMBER=A,J,B,L,C 

IEBCOPY Program 71 

• 



\ 
\ 

72 Utilities (Release 21.7) 

Output 
DATASET4 

Before 
copy 
operation 

Input 
DATASETl 

After 
procesSing 
DATASETl 

Input 
DATASET3 

J'l 

After 
processing 
DATASET3 

Input 
DATASET6 

After 
processing 
DATASET6 

Figure 13. Exclusive Copy with "Replace" Specified for One Input Partitioned Data Set 

The control statements are discussed below: 

• INOUT1 DD defines a partitioned data set (DATASET1). This data set contains 
three members (A, 8, and F) and resides on a 2314 volume. The record format is 
fixed blocked with a logical record length of 100 bytes and a block size of 400 
bytes. 

• INOUT3 DD defines a partitioned data set (DATASET3), which resides on a 2314 
volume. This data set contains four members (D, G, H, and J) in fixed blocked 
format with a logical record length of 100 bytes and a block size of 600 bytes. 

• INOUT4 DD defines a new partitioned data set (DATASET4). Five tracks are 
allocated for the copied members on a 2314 volume. Two blocks are allocated for 
directory entries. In addition records are to be copied to this data set in fixed 
blocked format with a logical record length of 100 bytes and a block size of 400 
bytes. 

• INOUT6 DD defines a partitioned data set (DATASET6). This data set contains 
three members (8, C, and D) in fixed format. The records have a logical record 
length of 100 bytes and a block size of 100 bytes. This data set resides on a 2314 
volume. 

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2314 
volume. 

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2314 
volume. 

• SYSIN DD defines the control data set, which follows in the input stream. The data 
set contains a COpy statement and an EXCLUDE statement. 

• COPY indicates the start of the copy operation. The presence of an EXCLUDE 
statement causes an exclusive copy. The OUTDO parameter specifies INOUT4 as 
the DD statement for the output data set (DATASET4). The INDO parameter 
specifies INOUT1 as the DD statement for the first input data set (DATASET1) to 
be processed, INOUT3 as the DD statement for the second input data set 
(DATASET3) to be processed, and INOUT6 as the DD statement for the last input 
data set (DATASET6) to be processed. Processing occurs, as follows: (1) member 
F, which is not named on the EXCLUDE statement, is copied from DATASET1, (2) 
members D, G, and H, which are not named on the EXCLUDE statement, are copied 



IEBCOPY Example 9 

from DATASET3, and (3) member D is copied from DATASET6 because the replace 
option is specified for nonexcluded members. The pointer in the output data set 
directory is changed to point at the new (copied) member D; thus, the space 
occupied by the old member D (copied from DATASET3) is unused. 

• EXCLUDE specifies the members to be excluded from the copy operation. The 
named members are excluded from all of the input partitioned data sets specified 
in the copy operation. 

The temporary spill data sets mayor may not be opened, depending on the amount of 
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD 
statements always appear in the job stream. 

In this example, a partitioned data set (DATASET5) is to be compressed in place. 
Figure 14 shows the input and output data sets before and after processing. 

The example follows: 

IICOPY JOB 06#990,MCEWAN 
PGM=IEBCOPY IIJOBSTEP EXEC 

IISYSPRINT DD 
IIINOUT5 DD 

SYSOUT=A 
DSNAME=DATASET5,UNIT=2314,VOL=SER=111113, 

II 
IISYSUT3 
IISYSUT4 
IISYSIN 
COPYOPER 
1* 

Output 
DATASET5 

Before 
copy 
operation 

DD 
DD 
DD 
COPY 

DISP=(OLD,KEEP) 
UNIT=2311,SPACE=(TRK,( 1)) 
UNIT=2311,SPACE=(TRK,( 1)) 

* OUTDD=INOUT5,INDD=INOUT5 

Input 
DATASET5 

After 
compressing 
in place 

Figure 14. Compressing a Data Set in Place 

The control statements are discussed below: 

• INOUT5 DD defines a partitioned data set (DATASET5). This data set contains two 
members (A and C) and can reside on either a 2314 or 2319 volume. 

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

IEBCOPY Program 73 

• 



IEBCOPY Example 10 

74 Utilities (Release 21.7) 

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSIN DD defines the control data set, which follows in the input stream. The data 
set contains a COpy statement. 

• COpy indicates the start of the copy operation. The absence of a SELECT or 
EXCLUDE statement causes a default to a full copy; however, the same DD 
statement is specified for both the INDO and OUTDO parameters, causing a 
compress in place of the specified data set. The OUTDO parameter specifies 
INOUT5 as the DD statement for the output data set (DATASET5). The INDO 
parameter also specifies INOUT5 as the DD statement for the input data set 
(DATASET5). 

The temporary spill data sets mayor may not be opened, depending on the amount of 
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT 4 DD 
statements always appear in the job stream. 

In this example, two input partitioned data sets (DATASET5 and DATASET6) are to be 
copied to an existing output partitioned data set (DATASETl). In addition, all members 
on DAT ASET6 are to be copied; members on the output data set that have the same 
names as the copied members are replaced. After DATASET6 is processed, the output 
data set (DATASET!) is to be compressed in place. Figure 15 shows the input and 
output data sets before and after processing. 

Input 

Output 
DATASET1 

Before 
copy 
operatIon 

DATASET5 

After 
processing 
DATASET5 

DATASET6 

After 
Processing 
DATASET6 

DATASETl 

Directory 
ABCDF 

Members F ------
A 

B 

After 
compressing 
in place 

Figure 15. Compress-in-Place Following Full Copy with "Replace" Specified 



The example follows: 

IICOPY JOB 06#990,MCEWAN 
IIJOBSTEP EXEC 
IISYSPRINT DD 
I/INOUTl DD 

PGM=IEBCOPY 
SYSOUT=A 
DSNAME=DATASET1,UNIT=2314,VOL=SER=111112, 

II 
IIINOUT5 DD 

DISP=(OLD,KEEP) 
DSNAME=DATASET5,UNIT=2311,VOL=SER=111114, 

DISP=OLD II 
IIINOUT6 DD DSNAME=DATASET6,UNIT=2311,VOL=SER=111115, 
II 
IISYSUT3 
IISYSUT4 
IISYSIN 
COPYOPER 

DISP=(OLD,KEEP) 
DD UNIT=2311,SPACE=(TRK,( 1)) 
DD UNIT=2311,SPACE=(TRK,(l)) 
DD * 
COPY OUTDD=INOUTl 

INDD=INOUT5,(INOUT6,R),INOUTl 
1* 
The control statements are discussed below: 

• INour1 DD defines a partitioned data set (DATASET1). This data set contains 
three members (A, 8, and F) and resides on a 2314 or 2319 volume. 

• INour5 DD defines a partitioned data set (DATASET5). This data set contains two 
members (A and C) and resides on a 2311 volume. 

• INOUr6 DD defines a partitioned data set (DATASET6). This data set contains 
three members (8, C, and D) and resides on a 2311 volume. 

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSIN DD defines the control data set, which follows in the input stream. The data 
set contains a COpy statement and an INDD statement. 

• COpy indicates the start of the copy operation. The OUTDD operand specifies 
INOUT1 as the DD statement for the output data set (DATASET1). The absence of 
a SELECT or EXCLUDE statement causes a default to a full copy. 

• INDO specifies INOUT5 as the DD statement for the first input data set 
(DATASET5) to be processed. It then specifies INOUT6 as the DO statement for the. 
second input data set (DATASET6) to be processed; in addition, the replace option 
is specified for all members copied from DATASET6. Finally, it specifies INOUT1 as 
the DD statement for the last input data set (DATASET1) to be processed; this 
causes a compress in place of DATASET1 because it is also specified as the output 
data set. Processing occurs, as follows: (1) member A is not copied from 
DATASET5 onto the output data set (DATASET1) because it already exists on 
DATASET1 and the replace option was not specified for DATASET5, (2) member C 
is copied from DATASET5 to the output data set (DATASET1), occupying the first 
available space, and (3) all members are copied from DATASET6 to the output data 
set (DATASET1), immediately following the last member. Members 8 and Care 
copied even though the output data set already contains members with the same 
names because the replace option is specified on the data set level. The pointers in 
the output data set directory are changed to point to the new members 8 and C; 
thus, the space occupied by the old members 8 and C is unused. The members 
currently on DATASET1 are compressed in place, thereby eliminating embedded 
unused space. 

The temporary spill data sets mayor may not be opened, depending on the amount of 
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD 
statements always appear in the job stream. 

IEBCOPY Program 75 



IEBCOPY Example 11 

76 Utilities (Release 21.7) 

In this example, members are to be selected, excluded, and copied from input 
partitioned data sets onto an output partitioned data set. This example is designed to 
illustrate multiple copy operations. Figure 16 shows the input and output data sets 
before and after processing. 

The example follows: 

IICOPY JOB 06#990,MCEWAN 
IIJOBSTEP EXEC 
IISYSPRINT DD 
IIINOUTA DD 

PGM=IEBCOPY 
SYSOUT=A 
DSNAME=DATASETA,UNIT=2314,VOL=SER=111113, 

II 
IIINOUTB 
II 
IIINOUTC 
II 
IIINOUTD 
II 
IIINOUTE 
II 
IIINOUTX 
II 
IISYSUT3 
IISYSUT4 
IISYSIN 
COPERST1 

COpy 

COPY 

EXCLUDE 

SELECT 

1* 

DD 

DD 

DD 

DD 

DD 

DISP=OLD 
DSNAME=DATASETB,UNIT=2314,VOL=SER=111115, 

DISP=(OLD,KEEP) 
DSNAME=DATASETC,UNIT=2314,VOL=SER=111114, 

DISP=(OLD,KEEP) 
DSNAME=DATASETD,UNIT=2314,VOL=SER=111116, 

DISP=OLD 
DSNAME=DATASETE,UNIT=2314,VOL=SER=111117, 

DISP=OLD 
DSNAME=DATASETX,UNIT=2314,VOL=SER=111112, 

DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2)) 
DD UNIT=2314,SPACE=(TRK,( 1)) 
DD UNIT=2314,SPACE=(TRK,(1)) 
DD * 
COpy O=INOUTX,I=INOUTA 

OUTDD=INOUTA,INDD=INOUTA 
INDD=INOUTB 

O=INOUTA 
INDD=INOUTD 

MEMBER=MM 
INDD=INOUTC 

MEMBER((ML,MD,R)) 
INDD=INOUTE 

The control statements are discussed below: 

• INOUTA DD defines a partitioned data (DATASETA). This data set contains eight 
members (MA, MB, MC, MD, ME, MF, MG, and MH) and resides on either a 2314 or 
a 2319 volume. 

• INOUTB DD defines a partitioned data set (DATASETB). This data set resides on 
either a 2314 or a 2319 volume and contains two members (MA and MJ). 

• INOUTC DD defines a partitioned data set (DATASETC), which resides on either a 
2314 or a 2319 volume. The data set contains four members (MF, ML, MM, and 
MN). 

• INOUTD DD defines a partitioned data set (DATASETD). This data set resides on 
either a 2314 or a 2319 volume and contains two members (MM and MP). 

• INOUTE DD defines a partitioned data set (DATASETE). This data set contains four 
members (MD, ME, MF, and MT) and resides on either a 2314 or a 2319 volume. 

• INOUTX DD defines a partitioned data set (DATASETX). This data set is new and is 
to be kept after the copy operation. Five tracks are allocated for the data set on 
either a 2314 or a 2319 volume. Two blocks are allocated for directory entries. 

• SYSUT3 DD defines a temporary spill data set. One track is allocated on either a 
2314 or a 2319 volume. 

• SYSUT4 DD defines a temporary spill data set. One track is allocated on either a 
2314 or a 2319 volume. 

• SYSIN DD defines the control data set, which follows in the input stream. The data 
set contains two COpy statements, several INDD statements, a SELECT statement 
and an EXCLUDE statement. 

• The first COPY statement indicates the start of the first copy operation. This copy 
operation is done to create a back-up copy of DATASETA, which is subsequently 
compressed in place. 



iTi 
tIl 
(') 
o 
~ 
~ 
o 

OQ 

m 
3 

....... 

....... 

First copy operation 

Input 

Output 
DATASETA 

Before 
copy 
operation 

DATASET A 

After 
compressing 
in place 

I Second copy operation 

DATASETB DATASETD 

Member MP 

f-----
Unused' 

I 
I 

Member MA Member MA 

I -----MB MB 

MC MC 

MD MD 

ME ME 

MF MF 

MG 

MJ 

After Before After 
processing copy processing 
DATASETB operation DATASETD 

Figure 16. Multiple Copy Operations/Copy Steps 

• 

DATASETC 

Member MM 
~ 

ML 

MF 

MN 

After 
processing 
DATASETC 

~ 

Membef r-.;L 
is copied, renamed 
MD, an~ replaces 
~~ old,m,;mber 

\ ' 

DATASETE 

Directory 
MD ME MF MT 

MD 

MT 

MF 

ME 

After 
processing 
DATASETE 



IEBCOPY Example 12 

78 Utilities (Release 21.7) 

• The second COPY statement indicates the start of another copy operation. The 
absence of a SELECT or EXCLUDE statement causes a default to a full copy; 
however, the same DD statement, INOUTA, is specified for both the INDO and 
OUTDO parameters, causing a compress in place of the specified data set. 

• INDO specifies INOUTB as the DD statement for the input data set (DATASETB) to 
be copied. Only member MJ is copied because member MA already exists on the 
output data set. 

• The third COpy statement indicates the start of the third copy operation. The 
OUTDO parameter specifes INOUTA as the DD statement for the output data set 
(DATASETA). This copy operation contains more than one copy step. 

• The first INDD statement specifies INOUTD as the DO statement for the first input 
data set (DATASETD) to be processed. Only member MP is copied to the output 
data set (DATASETA) because member MM is specified on the EXCLUDE 
statement. 

• EXCLUDE specifies the member to be excluded from the first copy step within this 
copy operation. 

• The second INDD statement marks the beginning of the second copy step for this 
copy operation and specifies INOUTC as the DD statement for the second input 
data set (DATASETC) to be processed. Member ML is searched for, found, and 
copied to the output data set (DATASETA). Member ML is copied even though its 
new name (MD) is identical to the name of a member (MD) that already exists on 
the output data set, because the replace option is specified for the renamed 
member. 

• SELECT specifies the member to be selected from the input data set (DATASETC) 
to be copied to the output partitioned data set. . 

• The third INDD statement marks the beginning of the third copy step for this copy 
operation and specifies INOUTE as the DD statement for the last data set 
(DATASETE) to be copied. Only member MT is copied because the other members 
already exist on the output data set. Because the INDD statement is not followed 
by an EXCLUDE or SELECT statement, a full copy is performed. 

The temporary spill data sets mayor may not be opened, depending on the amount of 
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DO 
statements always appear in the job stream. 

The output data set is compressed in place first to save space because it is known 
that it contains embedded unused space. 

In this example, members are to be selected, excluded, and copied from input 
partitioned data sets to an output partitioned data set. This example is designed to 
illustrate multiple copy operati9ns. Figure 17 shows the input and output data sets 
before and after processing. . 

The example follows: 

IICOPY JOB 06#990,MCEWAN 
IIJOBSTEP EXEC 
IISYSPRINT DD 
IIINOUTA DD 

PGM=IEBCOPY 
SYSOUT=A 
DSNAME=DATASETA,UNIT=2311,VOL=SER=111113, 

II 
IIINOUTB 
II 
IIINOUTC 
II 
IIINOUTD 
II 
IIINOUTE 
II 
IISYSUT3 
IISYSUT4 
IISYSIN 

COpy 

SELECT 

EXCLUDE 
COpy 

COpy 
SELECT 

1* 

DD 

DD 

DD 

DD 

DISP=OLD 
DSNAME=DATASETB,VOL=SER=111115, 

DISP=(OLD,KEEP),UNIT=2311 
DSNAME=DATASETC,VOL=SER=111114, 

DISP=(OLD,KEEP),UNIT=2311 
DSNAME=DATASETD,VOL=SER=111116, 

DISP=OLD,UNIT=2311 
DSNAME=DATASETE,VOL=SER=111117, 

DISP=OLD,UNIT=2311 
DD UNIT=2311,SPACE=(TRK,( 1)) 
DD UNIT=2311,SPACE=(TRK,(1)) 
DD * 

OUTDD=INOUTA 
INDD=INOUTE 

MEMBER=MA,MJ 
INDD=INOUTC 

MEMBER=MM,MN 
O=INOUTB,INDD=INOUTD 

I=((INOUTC,R),INOUTB) 
O=INOUTD,I=((INOUTB,R )) 
MEMBER=MM 



iii 
m 
(") 
o 
~ 
41 o 

OQ .., 
Q) 

3 

-....J 
U) 

First copy operation 

Output 
DATASETA 

Before 
copy 
operation 

Input 
DATASETE 

After 
processing 
DATASETE 

Input 
DATASETC 

I Second copy operation 

Input 
DATASETD 

Input 
DATASETC 

Input 
DATASETB 

Directory 
MA MF MJ ML 
MM MN MP 

Member MA - MJ 

MP 

1'----
Unused '----MF 

ML 

MN 

v ~~ V 

After 
processing 
DATASETC 

DATASETB 

Before 
copy 
operation 

After 
processing 
DATASETD 

Figure 17. Multiple Copy Operations/Copy Steps Within a Job Step 

After 
processing 
DATASETC 

MA 

MJ 

MP 

MF 

ML 

MN 

MM 

After 
compressing 
in place 



80 Utilities (Release 21.7) 

The control statements are discussed below: 

• INOUTA DD defines a partitioned data set (DATASETA). This data set contains 
three members (MA, MB, and MD) and resides on a 2311 volume. 

• INOUTB Db defines a partitioned data set (DATASETB). This data set resides on a 
2311 volume and contains two members (MA and MJ). 

• INOUTC DD defines a partitioned data set (DATASETC), which resides on a 2311 
volume. This data set contains four members (MF, ML, MM, and MN). 

• INOUTD DD defines a partitioned data set (DATASETD). This data set resides on a 
2311 volume and contains two members (MM and MP). 

• INOUTE DD defines a partitioned data set (DATASETE), which resides on a 2311 
volume. This data set contains three members (MA, MJ and MK). 

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311 
volume. 

• SYSIN DD defines the control data set, which follows in the input stream. The data 
set contains three COpy statements, SELECT and EXCLUDE statements, and 
several INDD statements. 

• The first COPY statement indicates the start of a copy operation. The OUTDD 
operand specifies INOUTA as the DD statement for the output data set 
(DATASETA). 

• The first INDD statement specifies INOUTE as the DD statement for the first input 
data set (DATASETE) to be processed. Processing occurs, as follows: (1) member 
MA is searched for and found, but is not copied because the replace option is not 
specified, and (2) member MJ is searched for, found, and copied to the output data 
set. Members are not searched for again after they are found. 

• SELECT specifies the members (MA and MJ) to be selected from the input data set 
(DATASETE) to be copied. 

• The second INDD statement marks the end of the first copy step and the beginning 
of the second copy step within the first copy operation. It specifies INOUTC as the 
DD statement for the second input data set (DATASETC) to be processed. 
Members MF and ML, which are not named on the EXCLUDE statement, are copied 
because neither exists on the output data set. 

• EXCLUDE specifies the members (MM and MN) to be excluded from the second 
copy operation. 

• The second COpy statement indicates the start of another copy operation. The 
absence of a SELECT or EXCLUDE statement causes a default to a full copy. The 0 
(OUTDO) parameter specifies INOUTB as the output data set (DATASETB). The 
INDO parameter specifies INOUTD as the first input data set (DATASETD) to be 
processed. Members MP and MM are copied to the output data set. 

• INDD(I) specifies INOUTC as the DD statement for the second input data set 
(DATASETC) and INOUTB as the DD statement for the third input data set 
(DATASETB) to be processed. Members MF, ML, MM, and MN are copied from 
DATASETC. Member MM is copied, although it already exists on the output 
partitioned data sets, because the replace option is specified. Because DATASETB 
is also the data set specified in the OUTDO PARAMETER, a compress in place takes 
place. (The pointer in the output set directory is changed to point to the new 
(copied) member MM; thus the space occupied by the replaced member MM is 
embedded unused space.) 

• The third COpy statement indicates the start of another copy operation. The 0 
(OUTDO) parameter specifies INOUTD as the DD statement for the output data set 
(DATASETD). The I (INDO) parameter specifies INOUTB as the DD statement for 
the input data set (DATASETB). 

• SELECT specifies the member (MM) to be selected from the input partitioned data 
set (DATASETB) to.be copied. The replace option is specified on the data set level. 

The temporary spill data sets mayor may not be opened, depending on the amount of 
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD 
statements always appear in the job stream. 

Data sets used as input data sets in one copy operation can be used as output data 
sets in another copy operation, and vice versa. 



IEBDG Program 

IBM-Supplied Patterns 

IEBDG is a data set utility used to provide a pattern of test data to be used as a 
programming debugging aid. (See Illntroduction" for general data set utility 
information.) 

An output data set, containing records of any format, can be created through the use 
of utility control statements, with or without input data. An optional user exit is 
provided to pass control to a user routine to monitor each output record 'before it is 
written. Sequential, indexed sequential, and partitioned data sets can be used for 
input or output. 

To generate test data, the user constructs a pattern of data that he can analyze 
quickly for predictable results. Test data is generated through the use of utility control 
statements. 

When the user defines the contents of a field, he decides: 

• What type of pattern-IBM-supplied or user-supplied-he wishes to place initially 
in the defined field. 

• What action, if any, is to be performed to alter the contents of the field after it is 
selected for each output record. 

IBM supplies seven patterns: alphameric, alphabetic, zoned decimal, packed decimal, 
binary number, collating sequence, and random number. The user may choose one of 
them when he defines the contents of a field. All patterns except the binary and 
random number patterns repeat in a given field, provided that the defined field length 
is sufficient to permit repetition. For example, the alphabetic pattern is: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFG ... 

Table 14 shows the IBM-supplied patterns. 

Table 14. IBM-Supplied Patterns 

Type 

Alphameric 

Alphabetic 

Zoned Decimal 

Expressed in 
Hexadecimal 

C1 C2 ... E9 FO ... F9 

C1 C2 ... E9 

FOFO ... FOF1 

Packed Decimal 0000 ... 001C 
(Positive pattern) 
0000 ... 0010 
(Negative pattern) 

Binary Number 00 ... 01 
(Positive pattern) 
FF ... FF 
(Negative pattern) 

Expressed in 
Printable Characters 

ABC ... Z O ... 9 

ABC ... Z 

00 ... 01 

Not applicable 

Not applicable 

Collating Sequence 40 ... F9 bc.«+ 1& !$*);.,-/,% >?:#@' =" 
A ... ZO ... 9 

Random Number Random hexadecimal digits Not applicable 

Note: A packed decimal or binary number is right aligned in the defined field. 

The user can specify a starting character when defining an alphameric, alphabetic, or 
collating sequence field. For example, a ten-byte alphabetic field for which "H" is 
specified as the starting character would appear as: 

HIJKLMNOPQ 

The same ten-byte alphabetic field with no specified starting character would appear 
as: 

ABCDEFGHIJ 

The user can specify a mathematical sign when defining a packed decimal or binary 
field. If no sign is specified, the field is assumed to be positive. 

IEBDG Program 81 

• 



User-Specified Pictures 

Modification of 
Selected Fields 

Input and Output 

82 Utilities (Release 21.7) 

Instead of selecting an IBM-supplied pattern, the user can specify a picture to be 
placed in the defined field. The user can provide: 

• An EBCDIC character string. 

• A decimal number to be converted to packed decimal by IEBDG. 

• A decimal number to be converted to binary by IEBDG. 

When the user supplies a picture, he must specify a picture length that is equal to or 
less than the specified field length. An EBCDIC picture is left aligned in a defined field; 
a decimal number that is converted to packed decimal or to binary is right aligned in a 
defined field. 

The user can initially load (fill) a defined field with either an EBCDIC character or a 
hexadecimal digit. For example, the 10-byte picture "BADCFEHGJI" is to be placed in 
a 15-byte field. An EBCDIC "2" is to be used to pad the field. The result is 
BADCFEHGJI22222. (If no fill character is provided, the remaining bytes contain 
binary zeros.) Remember that the fill character, if specified, is written in each byte of 
the defined field prior to the inclusion of an IBM-supplied pattern or user-supplied 
picture. 

IEBDG can be used to change the contents of a field in a specified manner. One 
of eight actions can be selected to change a field after its inclusion in each applicable 
output record. These actions are ripple, shift left, shift right, truncate left, truncate 
right, fixed, roll, and wave. 

Figure 18 shows the effects of each of the actions on a six-byte alphabetic field. Note 
that the roll and wave actions are applicable only when a user pattern is supplied. In 
addition, the result of a ripple action depends on which type of pattern-IBM-supplied 
or user-supplied-is present. 

Ripple-user
supplied picture 

ABCDEF 

BCDEFA 

CDEFAB 

DEFABC 

EFABCD 

FABCDE 

ABCDEF 

BCDEFA 

TrUhcate left 

ABCDEF 

BCDEF 

CDEF 

DE F 

E F 

F 

ABCDEF 

BCD E F 

Ripple-IBM
supplied format 

ABCDEF 

BCDEFG 

CDEFGH 

DEFGHI 

EFGHIJ 

FGHIJK 

GHIJKL 

HIJKLM 

Truncate right 

ABCDEF 

ABCDE 

ABCD 

AB~ 

AB 

A 

ABCDEF 

ABCDE 

Figure 18. IEBDG Actions 

Shift left 

ABCDEF 

BCDEF 

CDEF 

DEF 

E F 

F 

ABCDEF 

BCDEF 

Fixed 

ABCDEF 

ABCDEF 

ABCDEF 

ABCDEF 

ABCDEF 

ABCDEF 

ABCDEF 

ABCDEF 

Shift right 

ABCDEF 

ABCDE 

ABCD 

ABC 

AB 

A 

ABCDEF 

ABCDE 

Roll-user
supplied picture 

AAA 

AAA 

AAA 

AAA 

AAA 

AAA 

AAA 

AAA 

Wave-user
supplied picture 

AAA 

AAA 

AAA 

AAA 

AAA 

AAA 

AAA 

iAAA 

If no action is selected, or if the specified action is not compatible with the format, the 
fixed action is assumed by IEBDG. 

IEBDG uses the following input: 

• An input data set, which contains records that are to be used in the construction of 
an output data set or partitioned data set member. The input data sets are 
optional; that is, output records can be created entirely from utility control 
statements. 

• A control data set, which contains any number of sets of utility control statements. 



Control 

Job Control Statements 

IEBDG produces the following output: 

• An output data set, which is the result of the IEBDG operation. One output data set 
is created by each set of utility control statements included in the job step. 

• A message data set, which contains informational messages, the contents of 
applicable utility control statements, and any error messages. 

Note that input and output data sets may be sequential, indexed sequential, or 
partitioned data set members. 

BDAM is not supported. 

IEBDG produces a return code to indicate the results of program execution. The return 
codes and their meanings are: 

• 00, which indicates successful completion. 

• 04, which indicates that a user routine returned a code of 16 to IEBDG. The job 
step is terminated at the user's request. 

• 08, which indicates that an error occurred while processing a set of utility control 
statements. No data is generated following the error. Processing continues 
normally with the next set of utility control statements, if any. 

• 12, which indicates that an error occurred while processing an input or output data 
set. The job step is terminated. 

• 16, which indicates that an error occurred from which recovery is not possible. The 
job step is terminated. 

IEBDG is controlled by job control statements and utility control statements. The job 
control statements are used to execute or invoke IEBDG and define the data sets used 
and produced by IEBDG. Utility control statements are used to control the functions of 
the program and to define the contents of the output records. 

Table 15 shows the job control statements necessary for using IEBDG. 

Table 15. IEBDG Job Control Statements 

Statement 

JOB 

EXEC 

Use 

Initiates the job. 

Specifies the program name (PGM = IEBDG) or, if the job control statements 
reside in a procedure library, the procedure name. Additional information can be 
specified in the EXEC statement; see "PARM Information on the EXEC Statement" 
below. 

SYSPRINT DO Defines a sequential message data set. The data set can be written on a system 
output device, a tape volume, or a direct access volume. • 

SYSIN DD Defines the control data set, which contains the utility control statements and, 
optionally, input records. The data set normally resides in the input stream; 
however, it can be defined as a sequential data set or as a member of a 
partitioned data set. 

seqinset DO 

parinset DO 

seqout DD 

parout DD 

Defines an optional sequential or indexed sequential data set used as input to 
IEBDG. The data set can reside on a tape volume or on a direct access volume. 
Any number of these statements (each having a ddname different from all other 
ddnames in the job step) can be included in the job step. Each DO statement is 
subsequently referred to by a DSD utility control statement. 

Defines an optional input partitioned data set member residing on a direct access 
volume. Any number of these statements (each having a ddname different from 
all other ddnames in the job step) can be included in the job step. The "parinset" 
DO statement is referred to by a DSD utility control statement. 

Defines an output (test) sequential or indexed sequential data set. Any number of 
"seqout" DO statements can be included per job step; however, only one 
"seqout" statement is applicable per set of utility control statements. 

Defines an optional output partitioned data set member to be created and placed 
on a direct access volume. Any number of "parout" DO statements (eachDD 
statement referring to the same or to a different data set) can be included per job 
step; however, only one "parout" statement is applicable per set of utility control 
statements. 

IEBDG Program 83 



Restrictions 

PARM Information on 
the EXEC Statement 

84 Utilities (Release 21.7) 

The minimum region size required for using IEBDG varies with its use; see OS Storage 
Estimates, GC28-6551, for information on calculating the region size required for a 
particular application. 

The SYSPRINT data set and the SYSIN data set can have any blocking factor. 

Both input and output data sets can contain fixed, variable, or undefined records. 

Refer to OS Data Management Services Guide, GC26-3746, for information on 
estimating space allocations. . 

The "seqinset" DO statement can be entered: 

/ /seqinset DD DSNAME = setname,UNIT = xxxx,DISP = (OLD,KEEP), 
/ / VOLUME = SER = XXXXXX, LABEL = ( ... , ... ), 
/ / DCB(applicable subparameters) 

The LABEL parameter is included only for a magnetic tape volume. If the input data 
set has an indexed sequential organization, DSORG = IS should be coded in the DCB 
parameter. 

The "parinset" DO statement can be entered: 

/ /parinset DD DSNAME = setname(membername),UNIT = xxxx,DISP = (OLD, 
/ / KEEP), VOLUME = SER = xxxxxx, 
/ / DCB = (applicable subparameters) 

The "seqout" DO statement can be entered: 

/ /seqout DD DSNAME = setname, UNIT = xxxx, 
/ / DISP = (,KEEP),VOLUME = SER = xxxxxx, 
/ / DCB = (applicable subparameters) 

The LABEL parameter is included for magnetic tape; the SPACE parameter is included 
for direct access. 

The "parout" DO statement can be entered: 

/ /parout DD DSNAME = setname(membername),UNIT = xxxx, 
/ / VOLUME = SER = xxxxxx,DCB = (applicable 
/ / subparameters),DISP = (,KEEP), 
/ / SPACE = (applicable subparameter) 

The SPACE parameter is included on the parout DO statement when creating the first 
member to be placed in a partitioned data set. 

• The input data set record type must agree with the output data set record type. 

• The DSORG subparameter must be included in the DCB subparameters if the input 
or output data set has an indexed sequential organization (DSORG = IS). If 
members of a partitioned data set are used, DSORG = PS or DSORG = PO may be 
coded. If the DSORG subparameter is not coded, DSORG = PS is assumed. 

• If the SYSPRINT DO statement is omitted, no messages are written. 

• On an MVT system, the ddname of the "seqout" DD statement should not be 
SYSPRINT. 

• For an indexed sequential data set, the key length must be specified in the DCB. 

The EXEC statement can include an optional PARM parameter to specify the number 
of lines to be printed between headings in the message data set, coded as follows: 

PARM = LlNECNT = nnnn 

The nnnn is a four-digit decimal number that specifies the number of lines (0000 to 
9999) to be printed per page of output listing. 

If PARM is omitted, 58 lines are printed between headings (unless a channel 12 punch 
is encountered in the carriage control tape, in which case a skip to channell is 
performed and a heading is printed). 

Note: If IEBDG is invoked, the line-count option can be passed in a parameter list that 
is referred to by a subparameter of the LINK or ATTACH macro instruction. In 
addition, a page count can be passed in a six-byte parameter list that is referred to by 
a suparameter of the LINK or ATTACH macro instruction. For a discussion of linkage 
conventions, refer to "Appendix B: Invoking Utility Programs from a Problem 
Program." 



Utility Control Statements 

DS D Statement 

FD Statement 

IEBDG is controlled by the following utility control statements: 

• DSD statement, which specifies the ddnames of the input and output data sets. One 
DSD statement must be included for each set of utility control statements. 

• FD statement, which defines the contents and lengths of fields to be used in 
creating output records. 

• CREATE statement, which defines the contents of output records. 

• REPEAT statement, which specifies the number of times a CREATE statement or a 
group of CREATE statements are to be used in generating output records. 

• END statement, which marks the end of a set of IEBDG utility control statements. 

Any number of sets of control statements can appear in a single job step. Each set 
defines one data set. 

The DSD statement marks the beginning of a set of utility control statements and 
specifies the data sets that IEBDG is to use as input. The DSD statement can be used 
to specify one output data set and any number of input data sets for each application 
of IEBDG. 

The format of the DSD statement is: 

E~:~~~~WIE~:,;r.:]-=~=~=--==-~~-:~~-=·2j 
where: 

OUTPUT = (ddname) 
specifies the ddname of the DO statement defining the output data set. 

INPUT = (ddname, ... ) 
specifies the ddname of a DO statement defining a data set used as input to the 
program. Any number of data sets can be included as input-that is, any number of 
ddnames referring to corresponding DO statements can be coded. Whenever 
ddnames are included on a continuation card, they must begin in column four. 

Note: The ddname SYSIN must not be coded in the INPUT parameter. Each parameter 
should appear no more than once on any DSD statement. 

The FD statement defines the contents and length of a field that will be used 
subsequently by a CREATE statement (or statements) to form output records. A 
defined field within the input logical record may be selected for use in the output 
records if it is referred to, by name, by a subsequent CREATE statement. 

Figure 19 shows how fields defined in FD statements are placed in buffer areas so that 
subsequent CREATE statements can assign selected fields to specific output records. 

FD Statements-define fields 

"'t:1():.., 

~<t~~~ 

II "<;::~ 
Contents are placed in buffers"'; ',. ",,?JI----.:.::,),....---..:.:.:,)'r__--.;;..:~,r__--___, 
so that subsequent CREATE L' 
statements can selectively FIeld 1 
create output records. ,,'r-----I.------I.----:;fvr;p------I------' /,1 
CR EATE Statement-creates,tSa~put record froo",'"~,,,.----------..... ,{/;,..."..., , 

Figure 19. Defining and Selecting Fields for Output Records Using IEBDG 

IEBDG Program 85 



86 Utilities (Release 21.7) 

Figure 20 shows how the FD statement is used to specify a field in an input record to 
be used in output records. The left-hand side of the figure shows that a field in the 
input record beginning at byte 50 is selected for use in the output record. The 
right-hand side of the figure shows that the field is to be placed at byte 20 in the 
output record. 

LENGTH 
Same as input field 

Figure 20. Field Selected from the Input Record for Use in the Output Record 

The format of the FD statement is: 

:[lab~I]:FDTN~M~~~n.',".'~n1,:"",e.7r, "T~;:;·.>: ". """';';";J;':,: '. ',; 
;;", " ,'L' EN' G' TH' "~I' , ' th' It'" 'b' t' -'" ,. < :;~":>;J:/i<;<, 

. \'>:.':,,'<'~' .~,~ng,.,--:Ir.:'t ~~"~/':".<:"'<, ;,:;. " ', .. ;":.','/;.:;:.·',L;' 
"'. '·',;)t~,.Afrr~()C~~:st!J.rt;ngtbYt~,~/ocation]'; ... ,<;,',/,(:,' 

",' _,0' .' .. ' :W'-,' ,-' ", ~y', {'. • ,.,. "'";,/,;>":,;, {<.;~,\,'~,'.'~' 

;';';:' "'[,FltL,~,,echar~~~~f,~',.· ,"':::, ,;';' i';',}] .•• , "" ",::;;:~:;:::',,>:! " ,:;; 
,,;:.,',', ':. ·"''''';{~'4'7.h~~a~~c,iiJlahdig~~s:t,;,. '" :',~':,:<;"'" ,,' .;: 

;:'::;;"., '~I,f()RMAr ,=;p~tte,.n[" CH~RACTER=,char~cfer]r' /(: ,;., ',' 
f(' ,PIC'fURE~.len.'g'th"",,;{·jc.haraCter.',:,::string'· '~: .•. }':~<; .'x' .,.,': .. ';".' ,,:}i/;;:':'" 

~:, :',i : :;,: f'. , " <. . _" _ '., . _.. __ " 0" _ . _: ,.~ . _ '. '<",'. < " "<~ ,< ~:. h ,,- " :;;: ;H':~ ,:: 

' •.. ';~'>:.: '.:(,::.) ••. :'., ..•... :.' .':,:,c;.:·.IP.'dec;;f!J8J;-i'JtJrnb~r' '.:'}.:r' ...•.•.. ; .. r;; ".... .l:;: .. : .• ·.;'.c 

)C;),:;...:.: .• ·:{B~geCimal-number'.}] .... :;,:::::.:,'~;' 

·,,':.:;t~~~S~~~tjdn];', " ", ""~,,:,,./.,':":: •. ':;';~,: ,',./',;:; •• ;"',::; 
').i>}::::·::.\.:);;.·,[JINDE)f=·.numPer[,CYCLE~·riurribe(][;RANGE.::=numoorJl';2:.·".\':J.:.;;t;::i:,:,} 

~~,}'~~'IJt~~t~~~t1~z,j~tlCLJ018'f~~~1t'ir3dri~~;~ 
where: 

NAME = name 
specifies the name of the field defined by this FD statement. 

LENGTH = /ength-in-bytes 
specifies the length in bytes of the defined field. For· variable records, four bytes of 
length descriptor are added. 

STARTLOC = starting-byte-Iocation 
specifies a starting location (within all output records using this field) in which a 
field is to begin. For example, if the first byte 0.1 an output record is chosen as the 
starting location, the keyword is coded STARTLOC = 1; if the tenth byte is chosen, 
STARTLOC = 10 is coded, etc. If STARTLOC is omitted, the field will begin in the 
first available byte of the output record (determined by the order of specified field 
names in the applicable CREATE statement). For variable records the starting 
location is the first byte after the length descriptor. 

FILL= 
specifies an EBCDIC character or hexadecimal digits to be placed in each byte of 
the defined field prior to any other operation in the construction of a field. If FILL is 
omitted, binary zeros are placed in the field. These values can be coded: 

'character' 
specifies an EBCDIC character to be placed in the defined field. 

X'2-hexadecimal-digits' 
specifies two hexadecimal digits (for example, FILL = X'40' or FILL = X'FF') to 
be placed in each byte of the defined field. 

FORMAT = 
specifies an IBM-supplied pattern that is to be placed in the defined field. FORMAT 
must not be used when PICTURE is used. The values that can be coded are: 

pattern 
specifies the IBM-supplied patterns, as follows: 

AN 
specifies an alphameric pattern. 

ZD 
specifies a zoned decimal pattern. 



PO 
specifies a packed decimal pattern. 

CO 
specifies a collating-sequence pattern. 

BI 
specifies a binary pattern. 

AL 
specifies an alphabetic pattern. 

RA 
specifies a random binary pattern. 

CHARACTER = character 
specifies the starting character of a field. If CHARACTER is omitted, the starting 
character is as described under IIIBM-Supplied Patterns" earlier. 

PICTURE = 
specifies the length· and contents of a user-supplied field picture. PICTURE must 
not be used when FORMAT is used. These values can be coded: 

length 
specifies the number of characters in the FD picture. 

'character-string' 
specifies an EBCDIC character string that is to be placed in the defined field. 
The character string is left aligned in the field. A character string may be broken 
in column 71 and must be continued in column 4. Double quotation marks must 
not be coded to represent a single quotation mark within a character string.) 

P'decima/-number' . 
specifies a decimal number that is to be converted to packed decimal and 
placed right aligned in the defined field. 

B'decima/-number' 
specifies a decimal number that is to be converted to binary and placed right 
aligned in the defined field. In all cases, the number of characters within the 
quotation marks must equal the number specified in the length subparameter. 

SIGN = sign 
specifies a mathematical sign (+ or -), which is used when defining a 
packed decimal or binary field. If SIGN is omitted, the sign is assumed to be 
positive. 

ACTION = action 
specifies that the contents of a defined field are to be altered after the field's 
inclusion in an output record. These values can be coded: 

SL 

SR 

TL 

TR 

RO 

specifies that the contents of a defined field are to be shifted left after the 
field's inclusion in an output record. 

specifies that the contents of a defined field are to be shifted right after the 
field's inclusion in an output record. 

specifies that the contents of a defined field are to be truncated left after the 
field's inclusion in an output record. 

specifies that the contents of a defined field are to be truncated right after the 
field's inclusion in an output record. 

specifies that the contents of a defined field are to be rolled after the field's 
inclusion in an output record. RO can be specified only for a user-defined field. 

WV 

FX 

specifies that the contents of a defined field are to be waved after the field's 
inclusion in an output record. WV can be specified only for a user-defined field. 

specifies that the contents of a defined field are to be fixed after the field's 
inclusion in an output record. If ACTION is omitted, FX is assumed. 

IEBDG Program 87 



88 Utilities (Release 21.7) 

RP 
specifies that the contents of a defined field are to be rippled after the field's 
inclusion in an output record. 

INDEX = number 
specifies a number to be added to this field whenever a specified number of 
records have been written. If INDEX is omitted, no indexing is performed. These 
additional values can be coded: 

CYCLE = number 
specifies a number of output records (to be written as output or made available 
to an exit routine) that are treated as a group by the INDEX keyword. Whenever 
this field has been used in the construction of the specified number of records, it 
is modified as specified in the INDEX parameter. For example, if CYCLE = 3 is 
coded, output records might appear as 111 222 333 444 etc. This parameter 
can be coded only when INDEX is coded. If CYCLE is omitted and INDEX is 
coded, a CYCLE value of 1 is assumed; that is, the field is indexed after each 
inclusion in a potential output record. 

RANGE = number 
specifies an absolute value which the contents of this field can never exceed. If 
an index operation attempts to exceed the specified absolute value, the contents 
of the field as of the previous index operation are used. 

INPUT = ddname 
specifies the ddname for the input data set. 

FROMLOC = number 
specifies the location of the selected field within the input logical record. The 
number represents the position in the input record. If, for example, FROMLOC = 10 
is coded, the specified field begins at the tenth byte; if FROMLOC = 1 is coded, the 
field begins at the first byte. (For variable records, significant data begins on the 
first byte after the four-byte length descriptor.) 

Some of the FD keywords do not apply when certain patterns or pictures are selected 
by the user; for example, the INDEX, CYCLE, RANGE, and SIGN parameters are used 
only with numeric fields. Figure 21 shows which IEBDG keywords can be used with the 
applicable pattern or picture chosen by the user. Each keyword should appear no 
more than once on any FD statement. 

FORMAT/PICTURE Compatible Operations 

Fortf\at~", .... , , 
. , 

.' c Action .' 

AL SL 
AN SR 
CO TL 

TR 
FX 
RP 

: Format . :., ·c·.··.' .. ; • ,.,~'.; 

ZO Index 
PO Cycle 
BI Range 

Sign· 

Picture' ...... '. ..' " 

PO Index 
BI Cycle 

Range 
Sign 

Picture;': : ...... ;.". Action 
". ' .. 

EBCDIC SL 
SR 
TL 
TR 
FX 
RP 
WV 
RO 

·Zoned decimal numbers (ZO) do not include a sign. 

Figure 21. Compatible IEBDG Operations 



CREATE Statement The CREATE statement defines the contents of a record (or records) to be made 
available to a user routine or to be written directly as an output record (or records). 

The format of the CREATE statement is: 

[label] CREATE {[QUANTITY = number]} 
{[,FILL.= {'character'} 

{X'2-hexadecima/-digits'} ]} 
{[,INPUT = {ddname} 

{SYSIN[(cccc)] }]} 
{[,PICTURE = length,startloc, {'character-string' } 

{P'decima/-number' } 
{B'decima/-number' }]} 

wh"ere:" 

{[,NAME = {name} 
{(namel,namen ... ) } 
{(name,(COPY = namel,namen ... »}]) 

"J.[,~E~IT = ~9utinena'!l~]L", 

QUANTITY = number 
specifies the number of records that this CREATE statement is to generate; each 
record is specified by the other parameters. If QUANTITY is omitted and INPUT is 
not specified, only one output record is created. If QUANTITY is omitted and INPUT 
is specified, the number of records created is equal to the number of records in the 
input data set. If both QUANTITY and INPUT are coded, and the quantity specified 
is greater than the number of records in the input data set, the number of records 
created is equal to the number of input records to be processed plus the generated 
data up to the specified number. 

FILL = 
specifies a value that is to be placed in each byte of the output record before any 
other operation in the construction of record. If FILL is not coded, binary zeros are 
placed in the output record. These values can be coded: 

'character' 
specifies an EBCDIC character that is to be placed in each byte of the output 
record. 

X'2-hexadecimal-digits' 
specifies two hexadecimal digits (for example, FILL = X'40', or FILL = X'FF') to 
be placed in each byte of the output record. 

INPUT = 
defines an input data set whose records are to be used in the construction of 
output records. If INPUT is not coded, the output records are created entirely from 
utility control statements. If INPUT is coded, QUANTITY should also be coded, 
unless the remainder of the input records are all to be processed by this CREATE 
statement. These values can be coded: 

ddname 
specifies the ddname of a DO statement defining an input data set. 

SYSIN[(cccc)] 
specifies that the SYSIN data set (input stream) contains records (other than 
utility control statements) to be used in the construction of output records. If 
SYSIN is coded, the input records follow this CREATE statement (unless the 
CREATE statement is in a REPEAT group, in which case the input records follow 
the last CREATE statement of the group). When INPUT = SYSIN is coded, the 
input records are delimited from any additional utility control statements by a 
record containing $$$E in columns 1 through 4. If "(cccc)" coded, the input 
records are delimited by a record containing EBCDIC characters beginning in 
column 1; the ecce can be any combination 'of from one to four EBCDIC 
characters. 

PICTURE = 
specifies the length, starting byte, and contents of a user-supplied picture (CREATE 
statement picture). If both PICTURE and NAME are omitted, the fill character 
specified in the CREATE statement appears in each byte of applicable output 
records. These values can be coded: 

length 
specifies the number of bytes that the picture will occupy. 

IEBDG Program 89 



90 Utilities (Release 21.7) 

start/oc 
specifies a starting byte (within any applicable output record) in which the 
picture is to begin. 

Icharacter-string' 
specifies an EBCDIC character string that is to be placed in the applicable 
record(s). The character string is left aligned at the defined starting byte. A 
character string may be broken in column 71 and continued in column 4. 

p1decima/-number' 
specifies a decimal number that is to be converted to packed decimal and 
placed right aligned (within the boundaries of the defined length and starting 
byte) in the output records. 

B1decima/-number' 
specifies a decimal number that is to be converted to binary and placed right 
aligned (within the boundaries of the defined length and starting byte) in the 
output records. 

NAME = 
specifies the name or names of previously defined fields to be included in the 
applicable output records. If both NAME and PICTURE are omitted, the fill character 
specified in the CREATE statement appears in each byte of the applicable output 
record. These values can be coded: 

(namel, ... ) 
specifies the name or names of a field or fields to be included in the applicable 
output record(s). Each field is included in an output record in the order in which 
its name is encountered in the CREATE statement. 

COpy = number 
indicates that all fields named in the inner parentheses (maximum of twenty) are 
to be treated as a group and included the specified number of times in each 
output record produced by this CREATE statement. Any number of sets of inner 
parentheses can be included with NAME; however, sets of parentheses cannot 
be embedded. Within each set of inner parentheses, COpy must appear before 
the name of any field. 

EXIT = routinename 
specifies the name of a user routine that is to receive control from IEBDG before 
writing each output record. 

After processing each potential output record, the user routine provides a return code 
to instruct IEBDG how to handle the output record. The user codes are: 

• 00, which specifies that the record is to be written. 

• 04, which specifies that the record is not to be written. The skipped record is not to 
be counted as a generated output record; processing is to continue as though a 
record were written. If skips are requested through user exits and input records are 
supplied, each skip causes an additional input record to be processed in the 
generation of output records. For example, if a CREATE statement specifies that 
ten output records are to be generated and a user exit indicates that two records 
are to be skipped, 12 input records are processed. 

• 12, which specifies that the processing of the remainder of this set of utility control 
statements is to be bypassed. Processing is to continue with the next DSD 
statement. 

• 16, which specifies that all processing is to halt. 

Note: When an exit routine is loaded and when the user returns control to IEBDG, 
register one contains the address of the first byte of the output record. Each keyword 
should appear no more than once on any CREATE statement. 

Figure 22 shows the addition of field X to two different records. In this example, field x 
does not have a special starting location. In record 1, field X is the first field referred 
to by the CREATE statement; therefore, field X begins in the first byte of the output 
record. In record 2, two fields, field A and field B, have already been referred to by a 
CREATE statement; field X, the next field referred to, begins immediately after field B. 

The user can also indicate that a numerical field is to be modified after it has been 
referred to n times by a CREATE statement or statements, that is, after n cycles, a 
modification is to be made. A modification will add a user-specified number to a field. 

The CREATE statement constructs an output record by referring to previously defined 
fields by name and/or by providing a picture to be placed in the record. The user can 
generate multiple records with a single CREATE statement. 



Record 1 

1 

Field X 

Record 2 

1 

I Field A 

21 80 

41 61 80 

Field B Field X I 
Figure 22. Default Placement of Fields Within an Output Record Using IEBDG 

When defining a picture in a CREATE statement, the user must specify its length and 
starting location in the output record. The specified length must be equal to the 
number of specified EBCDIC or numeric characters. (When a specified decimal number 
is converted to packed decimal or binary, it is automatically right aligned.) 

Figure 23 shows three ways in which output records can be created from utility control 
statements. 

1. Fields only Output record 

3. Picture only 

( CREATE Picture 

Figure 23. Creating Output Records with Utility Control 

As an alternative to creating output records from utility control statements alone, the 
user can provide input records, which can be modified and written as output records. 
Input records can be provided directly in the input stream, or in a data set. 

As previously mentioned, the CREATE statement is responsible for the construction of 
an output record. An output record is constructed in the following order: 

1. A fill character, specified or default (binary zero), is initially loaded into each byte 
of the output record. 

2. An input record, if any is provided, is left aligned in the output record. 

3. FD fields, if any, are placed in the output record in the order of the appearance of 
their names in the CREATE statement. 

4. A CREATE statement picture, if any, is placed in the output record. 

IEBDG provides a user exit so that the user can provide his own routine to analyze or 
further modify a newly constructed record before it is placed in the output data set. 

A set of utility control statements contains one DSD statement, any number of FD, 
CREATE, and REPEAT statements, and one END statement when the INPUT parameter 
is omitted from the FD card. 

IEBDG Program 91 



REPEAT Statement 

END Statement 

92 Utilities (Release 21.7) 

When selecting fields from an input record (FD INPUT = ddname), the field must be 
defined by an FD statement within each set of utility control statements. In this case, 
defined fields for field selection are not usable across sets of utility control 
statements. The FD card may be duplicated and used in more than one set of utility 
control statements within the job step. 

The REPEAT statement specifies the number of times a CREATE statement or group of 
CREATE statements is to be used repetitively in the generation of output records. The 
REPEAT statement precedes the CREATE statements to which it applies. 

Figure 24 shows a group of five CREATE statements repeated n times. 

The format of the REPEAT statement is: 

Figure 24. Repetition Due to the REPEAT Statement Using IEBDG 

where: 

QUANTITY = number 
specifies the number of times the defined group of CREATE statements is to be 
used repetitively. This number cannot exceed 65,535. 

CREATE = number 
specifies the number of following CREATE statements to be included in the group. If 
the CREATE parameter is omitted, only one CREATE statement is repeated. 

The END statement is used to mark the end of a set of utility control statements. Each 
set of control statements can pertain to any number of input data sets and a single 
output data set. 

The format of the END statement is: 



IEBDG Examples 

IEBDG Example 1 

The following examples illustrate some of the uses of IEBDG. Table 16 can be used as 
a quick reference guide to IEBDG examples. The numbers in the "Example" column 
point to examples that follow. 

Table 16. IEBDG Example Directory 

Data Set 
Operation Organization Device Comments Example 

Place binary zeros in Sequential 9-track tape Blocked input and output. 
selected fields. 

Ripple alphabetic Sequential 9-track tape, Blocked input and output. 
pattern 2314 Disk 2 

Create output records Sequential 2314 Disk Blocked output. 3 
from utility control 
statements 

Modify records from Partitioned, 2314 Disk Reblocking is performed. Each 
partitioned members Sequential block of output records contains 
and input stream ten modified partitioned input 

records and two input stream 
records. 4 

Create partitioned Partitioned 2314 Disk Blocked output. One set of 
members for utility utility control statements per 
control statements member. 5 

Roll and wave user- Sequential 2311 Disk Output records are created 
supplied patterns from utility control statements. 6 

Create indexed Sequential, 2314 Disk Output records are created by 
sequential data set Indexed augmenting selected input 
using field selection sequential fields with generated data. 7 
and data generation 

In this example, binary zeros are to be placed in two fields of records copied from a 
sequential data set. After the operation, each record in the copied data set (OUTSET) 
contains binary zeros in locations 20 through 29 and 50 through 59. 

The example follows: 

IICLEAROUT JOB "MSGLEVEL=l 
II EXEC PGM=IEBDG 
IISYSPRINT DD SYSOUT=A 
IISEQIN DO DSNAME=INSET,UNIT=2400,DISP=(OLD,KEEP), 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800), 
II VOLUME=SER=240000,LABEL=( ,NL) 
IISEQOUT DO DSNAME=OUTSET,UNIT=2400,VOLUME=SER=240001, 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800), 
II DISP=( ,KEEP),LABEL=( ,NL) 
IISYSIN DO * 

DSD OUTPUT=(SEQOUT),INPUT=(SEQIN) 
FD NAME=FIELD1,INPUT=SEQIN,LENGTH=80 
FD NAME=FIELD2,LENGTH=10,STARTLOC=20 
FD NAME=FIELD3,LENGTH=10,STARTLOC=50 
CREATE QUANTITY=1.00, INPUT=SEQIN, NAME=( FIELD1 , II C 

FIELD2,FIELD3) 
END 

1* 
The control statements are discussed below: 

• SEQIN DD defines a sequential input data set (INSET). The data set was originally 
written on a 9-track, unlabeled tape volume. 

• SEQOUT DD defines the test data set (OUTSET). The output records are identical 
to the input records, except for locations 20 through 29 and 50 through 59, which 
contain binary zeros at the completion of the operation. 

• SYSIN DD defines the control data set, which follows in the input stream. 

• DSD marks the beginning of a set of utility control statements and refers to the DD 
statements defining the input and output data sets. 

• The first FD statement defines an 80 byte field of input data. 

• The second and third FD statements create two ten-byte fields (FIELD and FILED3) 
that contain binary zeros. The fields are to begin in the 20th and 50th bytes of 
each output record. 

IEBDG Program 93 



IEBDG Example 2 

IEBDG Example 3 

94 Utilities (Release 21.7) 

• CREATE constructs 100 output records in which the contents of previously defined 
fields (FIELD1, FIELD2, and FIELD3) are placed in their respective starting locations 
in each of the output records. Input records from data set INSET are used as the 
basis of the output records. 

• END signals the end of a set of utility control statements. 

In this example, a ten-byte alphabetic pattern is to be rippled. At the end of the job 
step the first output record contains "ABCEDFGHIJ", followed by data in location 11 
through 80 from the input record; the second record contains "BCDEFGHIJK" 
followed by data in locations 11 through 80, etc. 

The example follows: 

IIRIPPLE JOB "MSGLEVEL=1 
II EXEC PGM=IEBDG 
IISYSPRINT DD SYSOUT=A 
IISEQIN DD DSNAME=INSET,DISP=(OLD,KEEP),VOL=SER=240000, 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),UNIT=2400 
IISEQOUT DD DSNAME=OUTSET,UNIT=2314,VOLUME=SER=231400, 
I I . DCB=( RECFM=FB,LRECL=80 ,BLKSIZE=800), 
II DISP=( ,KEEP),SPACE=(TRK,(20,10» 
IISYSIN DD * 

DSD OUTPUT=(SEQOUT),INPUT=(SEQIN) 
FD NAME=FIELD1,INPUT=SEQIN,LENGTH=80 
FD NAME=FIELD2,LENGTH=10,FORMAT=AL,ACTION=RP, nc 

STARTLOC=1 
CREATE QUANTITY=100,INPUT=SEQIN,NAME=(FIELD1,FIELD2) 
END 

1* 
The control statements are discussed below: 

• SEQIN DO defines an.input sequential data set (INSET). The data set was originally 
written on a 9-track, standard labeled tape volume. 

• SEQOUT DO defines the test output data set (OUTSET). Twenty tracks of primary 
space and ten tracks of secondary space are allocated for the sequential data set 
on a 2314 volume. 

• SYSIN DO defines the control data set, which follows in the input stream. 

• DSD marks the beginning of a set of utility control statements and refers to the DO 
statements defining the input and output data sets. 

• The first FD statement defines an 80 byte field of input data. 

• The second FD statement creates a ten-byte field in which the pattern 
ABCEDFGHIJ is placed. The data is rippled after each output record is written. 

• CREATE constructs 100 output records in which the contents of a previously 
defined field (FIELD1) are included. The CREATE statement uses input records from 
data set INSET as the basis of the output records. 

• END signals the end of a set of utility control statements. 

In this example, output records are to be created entirely from utility control 
statements. Three fields are to be created and used in the construction of the output 
records. In two of the fields, alphabetic data is to be truncated; the other field is a 
numeric field that is to be indexed by one after each output record is written. Figure 
25 shows the contents of the output records at the end of the job step. 

Field 1 Field 2 Field 3 (packed decimal) 

1 31 61 71 80 
ABCDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFG H IJK LMNOPQRSTUVWXYZABCD FF ... FF 123 ... 90 

BCDEFGHIJKLMNOPQRSTUVWXYZABCD ABC DE FG H IJ K LM NOPQRSTUVWXYZABC FF ... FF 123 ... 91 

CDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZAB FF ... FF 123 ... 92 

DEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZA FF ... FF 123 ... 93 
EFGHIJKLMNOPQRSTUVWXYZABCD ABCDE FG H IJ KLMNOPQRSTUVWXYZ FF ... FF 123 ... 94 

Figure 25. Output Records at Job Step Completion 



IEBDG Example 4 

The example follows: 

IIUTLYONLY JOB , , MSGLEVEL= 1 
II EXEC PGM=IEBDG 
IISYSPRINT DD 
IISEQOUT DD 
II 

SYSOUT=A 
DSNAME=OUTSET,UNIT=2311,DISP=( ,KEEP), 

II 
IISYSIN DD 

DCB=(RECFM=FB,LRECL=80,BLKSIZE=800), 
SPACE=(TRK,(20,10»,VOLUME=SER=240000 

DATA 
DSD 
FD 
FD 
FD 

OUTPUT=(SEQOUT) 
NAME=FIELD1,LENGTH=30,STARTLOC=1,FORMAT=AL,ACTION=TL 
NAME=FIELD2,LENGTH=30,STARTLOC=31,FORMAT=AL,ACTION=TL 
NAME=FIELD3,LENGTH=10,STARTLOC=71,PICTURE=10, UC 

CREATE 
END 

P'1234567890' ,INDEX=l 
QUANTITY=100,NAME=(FIELD1,FIELD2,FIELD3),FILL=X'FF' 

1* 
The control statements are discussed below: 

• SEQOUT DO defines the test output data set. Twenty tracks of primary space and 
ten tracks of secondary space are allocated for the sequential data set on a 2311 
volume. 

• SYSIN DD defines the control data set, which follows in the input stream. 

• DSD marks the beginning of a set of utility control statements and refers to the DO 
statement defining the output data set. 

• FD defines the contents of three fields to be used in the construction of output 
records. The first field contains 30 bytes of alphabetic data to be truncated left 
after each output record is written. The second field contains 30 bytes of 
alphabetic data to be truncated right after each output record is written. The third 
field is a ten-byte field containing a packed decimal number (1234567890) to be 
incremented by one after each record is written. 

• CREATE constructs 100 output records in which the contents of previously defined 
fields (FIELD1, FIELD2, and FIELD3) are included. 

• END signals the end of a set of utility control statements. 

In this example, two partitioned members and input records from the input stream are 
to be used as the basis of a partitioned output member. Each block of 12 output 
records is to contain ten modified records from an input partitioned member and two 
records from the input stream. Figure 26 shows the content of the output partitioned 
member at the end of the job step. 

The example follows: 

IIMIX JOB, , MSGLEVEL= 1 • 
II EXEC PGM=IEBDG 
IISYSPRINT DD SYSOUT=A 
IIPARIN1 DD DSNAME=INSET1(MEMBA),UNIT=2314,DISP=OLD, 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS), 
II VOLUME=SER=231400 
I/PARIN2 DD DSNAME=INSET2(MEMBA),UNIT=2314,DISP=OLD, 
II DCB(RECFM=FB,LRECL=80,BLKSIZE=960,DSORG=PS), 
II VOLUME=SER=231401 
IIPAROUT DD DSNAME=PARSET(MEMBA),UNIT=2314,DISP=( ,KEEP), 
II VOLUME=SER=231402,SPACE=(TRK,(20,10,5», 
II DCB(RECFM=FB,LRECL=80,BLKSIZE=960,DSORG=PS) 
/ISYSIN DD DATA 

DSD OUTPUT=(PAROUT),INPUT=(PARIN1,PARIN2) 
FD NAME=FIELD1,LENGTH=13,PICTURE=13,'DEPARTMENT 21' 
REPEAT QUANTITY=10,CREATE=2 
CREATE QUANTITY=10,INPUT=PARIN1,NAME=FIELD1 
CREATE QUANTITY=2,INPUT=SYSIN 

(input records 1 through 20) 

$$$E 
REPEAT QUANTITY=10,CREATE=2 
CREATE QUANTITY=10,INPUT=PARIN2,NAME=FIELD1 
CREATE QUANTITY=2,INPUT=SYSIN 

(input records 21 through 40) 

$$$E 
END 

1* 

IEBDG Program 95 



IEBDG Example 5 

96 Utilities (Release 21.7) 

D~part~erit 2\, ':, 
",' Input record 21 

; Input record 22 

Figure 26. Output Partitioned Member at Job Step Completion 

The control statements are discussed below: 

o PARIN 1 DO defines one of the input partitioned members. 

Output Records 

o PARIN2 DO defines the second of the input partitioned members. (Note that the 
members are from different partitioned data sets.) 

o PAROUT DD defines the output partitioned member. This example assumes that the 
partitioned data set does not exist prior to the job step; that is, this DO statement 
allocates space for the partitioned data set. 

• SYSIN DD defines the control data set, which follows in the input stream. 

o DSD marks the beginning of a set of utility control statements and refers to the DD 
statements defining the input and output data sets. 

o FD creates a 13-byte field in which the picture IIDEPARTMENT 21" is placed. 

o The first REPEAT statement indicates that the following group of two CREATE 
statements is to be repeated ten times. 

o The first CREATE statement creates ten output records. Each output record is 
constructed from an input record (from partitioned data set INSETl) and from 
previously defined FIELDl. 

o The second CREATE statement indicates that two records are to be constructed 
from input records included next in the input stream. 

o The $$$E record separates the input records from the REPEAT statement. The next 
REPEAT statement group is identical to the preceding group, except that records 
from a different partitioned member are used as input. 

o END signals the end of a set of utility control statements. 

In this example, output records are to be created from three sets of utility control 
statements and written in three partitioned data set members. Four fields are to be 
created and used in the construction of the output records. In two of the fields 
(FIELDI and FIELD3), alphabetic data is to be shifted. The other two fields are to be 
fixed alphameric and zoned decimal fields. Figure 27 shows the partitioned data set 
members at the end of the job step. 



MEMBA 
Field 1 Field 3 Field 2 Binary zeros 
1 31 51 71 BO 

ABGDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRST 00000000010000000001 till 

BCDEFGHUKLMNOPQRSTUVWXYZABCD ABCDEFGH IJKLMNOPQRS 00000000010000000001 till 
CDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQR 00000000010000000001 till 

~G H IJ KI ~~ W1PQRSTUVWXYZABSD--...... ABCDEFGHIJKI M~IOPQ noo0000001 000O~fl1 .!ill 

MEMBB 
Field 3 Field 3 Field 3 Field 2 

1 21 41 61 80 

ABCDEFGHIJKLMNOPQRST ABCDEFGHIJKLMNOPQRST ABCDEFGHIJKLMNOPQRST 0000000001 0000000001 

ABCDEFGHIJKLMNOPQRS ABCDEFGHIJKLMNOPQRS ABCDEFGHIJKLMNOPQRS 00000000010000000001 

ABCDEFGH IJLKMNOPQR ABCDEFGHIJKLMNOPQR ABCDEFGHIJKLMNOPQR 00000000010000000001 
~BCDEFG HIJKLMNOPQ ABCDEFGHIJKLMI'.lnpn ABcnl=cr,HIJI<'I .. ..,.,PO ooonnOOOOlO~flnnn - -
MEMBC 
Field 4 Field 1 Binary zeros 

1 31 61 80 

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123 ABCDEFGHIJKLMNOPQRSTUVWXYZABCD till 

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123 BCDEFGHIJKLMNOPQRSTUVWXYZABCD till 

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123 CDEFGHIJKLMNOPQRSTUVWXYZABCD till 

ABCDE FG HI.IK LM NOPQRSTUVIMVYZ0123 DEFGHIJKI M~.!!lPQRs.;!:!..I\/WXY7 /I D"r) til!.... - - -
Figure 27. Partitioned Data Set Members at Job Step Completion 

The example follows: 

IIUTSTS JOB , , MSGLEVEL= 1 
II' EXEC PGM=IEBDG 
IISYSPRINT DD 
IIPAROUT1 DD 
II 

SYSOUT=A 
DSNAME=PARSET(MEMBA),UNIT=2314,DISP=( ,KEEP), 

II 
IIPAROUT2 DD 

VOLUME=SER=231400,SPACE=(TRK,(10,10,5)), 
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS), 

DSNAME=PARSET(MEMBB),UNIT=AFF=PAROUT1, 
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS), 
DISP=OLD,VOLUME=SER=231400 

DSNAME=PARSET(MEMBC),UNIT=AFF=PAROUT1, 

II 
II 
IIPAROUT3 DD 
II 
II 
IISYSIN 

DSD 
FD 
FD 
FD 
FD 
CREATE 
END 
DSD 
CREATE 
END 
DSD 
CREATE 
END 

1* 

DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS), 
DISP=OLD,VOLUME=SER=231400 

DD DATA 
OUTPUT=(PAROUT1 ) 
NAME=FIELD1,LENGTH=30,FORMAT=AL,ACTION=SL 
NAME=FIELD2, LENGTH=20, FORMAT=ZD 
NAME=FIELD3,LENGTH=20,FORMAT=AL,ACTION=SR 
NAME=FIELD4,LENGTH=30,FORMAT=AN 
QUANTITY=4,NAME=(FIELD1,FIELD3,FIELD2) 

OUTPUT=(PAROUT2) 
QUANTITY=4,NAME=«COPY=3,FIELD3),FIELD2) 

OUTPUT=(PAROUT3) 
QUANTITY=4,NAME=(FIELD4,FIELDl ) 

The control statements are discussed below: 

• PAROUTI DD defines the first member (MEMBA) of the partitioned output data set. 
This example assumes that the partitioned data set does not exist prior to this job 
step; that is, this DD statement allocates space for the data set. 

• PAROUT2 and PAROUT3 DD define the second and third members, respectively, of 
the output partitioned data set. Note that each DD statement specifies OISP = OLD 
and UNIT = AFF = PAROUTl. 

• SYSIN DO defines the control data set, which follows in the input stream. 

• DSD marks the beginning of a set of utility control statements and refers to the DD 
statement defining the member applicable to that set of utility control statements. 

• FD defines the contents of a field that is used in the subsequent construction of 
output records. 

• CREATE constructs four records from combinations of previously defined fields. 

• END signals the end of a set of utility control statements. 

IEBDG Program 97 



IEBDG Example 6 

98 Utilities (Release 21.7) 

In this example, ten fields containing user-supplied EBCDIC pictures are to be used in 
the construction of output records. After a record is written, each field is rolled or 
waved, as specified in the applicable FD statement. Figure 28 shows the contents of 
the output records at the end of the job step. 

FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6 FIELD7 FIELD8 

AAAAA BBBBB A AA SB B AAA eeeee DDDD e ee 
AAAAA BBBBB A AA BS B AAA eeeee DDDD e ee 

AAAAA BBBBB A AA SB B AAA eeeee DDDD e ee 
AAAAA BBBBB A AA BS B AAA eeeee DDDD e ee 

AAAAA BBBBB A AA SB B AAA eeeee DDDD e ee 
AAAAA BBBBB A AA BS B AAA eeeee DDDD e ee 

AAAAA BBBBB A AA SB B AAA eeeee DDDD e ee -AAAAA BBBBB A AA BS B AAA eeeee DDDD e ee 
AAAAA BBBBB A AA SB B AAA eeeee DDDD e ee 

AAAAA BBBBB A AA BS B AAA eeeee DDDD e ee 
"---- -- -
Figure 28. Contents of Output Records at Job Step Completion 

The example follows: 

IIROLLWAVE JOB , , MSGLEVEL= 1 
II EXEC PGM=IEBDG 
IISYSPRINT DD 
IIOUTSET DD 
II 

SYSOUT=A 
DSNAME=SEQSET,UNIT=2311,DISP=( ,KEEP), 

II 
IISYSIN 

DSD 

VOLUME=SER=2311,SPACE=(TRK,(20,10)), 
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800) 

DD * 
OUTPUT=(OUTSET) 

FIELD9 

o D D 
DO 0 
D D 

DO D 
DO 0 
D D 

DO D 
DD 0 
D 0 

DO D -

FD 
FD 
FD 
FD 

NAME=FIELD1,LENGTH=8,PICTURE=8,' AAAAA' , ACTION=RO 
NAME=FIELD2,LENGTH=8,PICTURE=8,'BBBBB ',ACTION=RO 
NAME=FIELD3,LENGTH=8,PICTURE=8,'A AA ',ACTION=RO 
NAME=FIELD4,LENGTH=8,PICTURE=8,' BB B' , ACT I ON=RO 

FD NAME=FIELD5 ,LENGTH=8, PICTURE=8, , AAA " ACTION=RO 

FIELD 10 

eee 
eee 

eee 
eee 

eee 
eee 

eee 
eee 

eee 
eee --

FD 
FD 
FD 
FD 
FD 
CREATE 

NAME=FIELD6,LENGTH=8,PICTURE=8, , CCCCC' , ACTION=WV 
NAME=FIELD7,LENGTH=8,PICTURE=8,' DDDD ',ACTION=WV 
NAME=FIELD8,LENGTH=8,PICTURE=8,' C CC ',ACTION=WV 
NAME=FIELD9,LENGTH=8,PICTURE=8,' DD D' , ACTION=WV 
NAME=FIELD10,LENGTH=8,PICTURE=8,' CCC ',ACTION=WV 

END 
1* 

QUANTITY=300,NAME=(FIELD1,FIELD2,FIELD3,FIELD4, nc 
FIELD5,FIELD6,FIELD7,FIELD8,FIELD9,FIELD10) 

The control statements are discussed below: 

• OUTSET DO defines the output sequential data set on a 2311 volume. Twenty 
tracks of primary space and ten tracks of secondary space are allocated to the 
data set. 

• SYSIN DO defines the control data set, which follows in the input stream. 

• DSD marks the beginning of a set of utility control statements and refers to the DO 
statement defining the output data set. 

• FD defines a field to be used in the subsequent construction of output records. 
Note that the direction and frequency of the initial roll or wave depends on the 
location of data in the field. 

• CREATE constructs 300 records from the contents of the previously defined fields. 

• END signals the end of a set of utility control statements. 



IEBDG Example 7 In this example, the first ten bytes of the output record contain zoned decimal format 
generated data. This field serves as the key field for the output record in the output 
indexed sequential data set. The key field is incremented (indexed) by one for each 
record. The input sequential data set provides an additional BO-byte field to complete 
the output record. 

The example follows: 

IICREATEIS JOB 
IIBEGIN EXEC 
IITAPEIN DD 
II 
II 
IIDISKOUT DD 
II 
II 

MSGLEVEL=l 
PGM=IEBDG 
DCB=(BLKSIZE=80,LRECL=80,RECFM=F), 

DISP=(OLD,KEEP),UNIT=2400,LABEL=( ,SL), 
DSNAME=TAPEIT,VOL=SER=MASTER 

DCB=(BLKSIZE=270,LRECL=90,RECFM=FB, 
DSORG=IS,NTM=2,OPTCD=MY,RKP=O,KEYLEN=10, 
CYLOFL=1 ),UNIT=2314,SPACE=(CYL,1), 

II 
IISYSPRINT 
IISYSIN 

VOL=SER=231400,DSNAME=CREATIS,DISP=(NEW,KEEP) 
DD SYSOUT=A 

1* 

DSD 
FD 

FD 
CREATE 
END 

DD * 
OUTPUT=(DISKOUT),INPUT=(TAPEIN) 
NAME=DATAFD,LENGTH=80,FROMLOC=1,STARTLOC=11, 

INPUT=TAPEIN 
NAME=KEYFD,LENGTH=10,STARTLOC=1,FORMAT=ZD,INDEX=1 
INPUT=TAPEIN,NAME=(KEYFD,DATAFD) 

The control statements are discussed below: 

• TAPEIN DD defines the sequential input data set. 

• DISKOUT DD defines the indexed sequential output data set. 

• SYSIN DD defines the control data set, which follows in the input stream. 

UC 

• DSD marks the beginning of a set of utility control statements and refers to the DD 
statement defining the output data set. 

• FD defines a field that wi" be used in the subsequent construction of output 
records. The first FD statement in this example defines and locates an BO-byte field 
of input data. The data is field selected from one of the input logical records and 
placed at start location 11 of the output logical record. The second FD statement 
defines and locates the ten-byte key field. 

• CREATE constructs a 90-byte output record by referring to the previously defined 
fields. 

• END signals the end of a set of utility control statements. 

IEBDG Program 99 





IEBEDIT Program 

Input and Output 

Control 

Job Control Statements 

Restrictions 

Utility Control Statement 

EDIT Statement 

IEBEDIT is a data set utility used to create an output data set containing a selection of 
jobs or job steps. (See Illntroduction" for general data set utility information.) At a 
later time, the data set can be used as an input stream for job processing. 

IEBEDIT creates an output job stream by editing and selectively copying a job stream 
provided as input. The program can copy: 

• An entire job or jobs, including JOB statements and any associated JOBUB 
statements. 

o Selected job steps, including the JOB statement and any associated JOBU~ 
statement. 

All selected JOB statements, JOBUB statements, jobs, or job steps are placed in the 
output data set in the same order as they exist in the input data set. Note that a 
JOBUB statement is copied only if it follows a selected JOB statement. 

When IEBEDIT encounters a selected job step containing an input record having the 
characters II .. *" in columns 1 through 3, the program automatically converts that 
record into a termination statement (J* statement) and places it in the output data 
set. 

IEBEDIT uses the following input: 

o An input data set, which is a sequential data set consisting of a job stream. The 
input data set is used as source data in creating an output sequential data set. 

• A control data set, which contains utility control statements that are used to specify 
the organization of jobs and job steps in the output data set. 

IEBEDIT produces the following output: 

• An output data set, which is a sequential data set consisting of a resultant job 
stream. 

o A message data set, which is a sequential data set that contains applicable control 
statements, error messages, if applicable, and, optionally, the output data set. 

IEBEDIT provides a return code to indicate the results of program execution. The 
return codes and their meanings are: 

• 00, which indicates successful completion. 

• 04, which indicates that an error occurred. The output data set may not be usable 
as a job stream. Processing continues. 

o 08, which indicates that an unrecoverable error occurred while attempting to 
process the input, output, or control data set. The job step is terminated. 

IEBEDIT is controlled by job control statements and utility control statements. The job 
control statements are required to execute or invoke the program and to define the 
data sets used and produced by the program. The utility control statements are used 
to control the functions of the program. 

Table 17 shows the job control statements necessary for using IEBEDIT. 

The minimum region size that can be specified for IEBEDIT is 10K. 

• The block size for the SYSPRINT data set must be a multiple of 121. The block size 
for the SYSIN, SYSUT1, and SYSUT2 data sets must be a multiple of 80. Any 
blocking factor can be specified for these block sizes. 

IEBEDIT is controlled through the EDIT utility control statement. 

The EDIT statement indicates which step or steps of a specified job in the input data 
set are to be included in the output data set. Any number of EDIT statements can be 
included in an operation, thus including selected jobs in the output data set. 

EDIT statements must be included in the same order as the input jobs that they 
represent. If no EDIT statement is present in the control data set, the entire input data 
set is copied. 

IEBEDIT Program 101 



102 Utilities (Release 21.7) 

Table 17. IEBEDIT Job Control Statements 

Statement Use 

JOB Initiates the job. 

EXEC Specifies the program name (PGM = IEBEDIT) or, if the job control statements 
reside in a procedure library, the procedure name. 

SYSPRINT DD Defines a sequential message data set. The data set can be written to a system 
output device, a tape volume, or a direct access volume. 

SYSUTl DD Defines a sequential input data set on a card reader, a tape volume, or a direct 
access device. 

SYSUT2 DD Defines a sequential output data set on a card punch, printer, tape volume, or 
direct access device. 

SYSIN DD Defines the control data set. The data set normally is included in the input 
stream; however, it can be defined as a member of a procedure library or as a 
sequential data set existing somewhere other than in the input stream. 

The format of the EDIT statement is: 
r f~~_-=<"'''''"«W ~'<;';»"'''''''''(''''W"$'r'~'''''~'*-~·:~<'''~:'~ '''/>':~M>:$t'?<','''.«:«;''';t.T'''''-'~;'~.':~:''-''.''.:?''.'' :rr:<':>":7~.~~·w'~«>'''''''''.:.'««<, . ..:«r~,<,'~' '~">h-.!:~.~th~::-:'>:7"~·'.,':i.~~":WH?~~':~":.":.~~'~~:,~~~r:-r:~7:~: ~.:"i'1 
\" [labellED IT ",[SrAflT~ io~nameL;.':·'i;",',,".': .• ' '. ";'i/:':~' "".:,l 
I "," [.TY,PE = {POSITIONlj ,,",', , " "':'1 
l', ' , {INCLUDE,,} ';» 

~' .. , '. . ,:',{~CLUDEJ:" ", •......... .. ...................": ,::c1 
i ,', [,STEPNAf!lE~({~m~-iJarl1e }[.{~iJ1E! .. nal11e'} ],; .. ) , 'J 
I '.':: .... . .... '.. {name' :.... '} [, {name i. }]]" " .! 

i:.:~.~m':m.' ,., [,NQ~~!~11",,,,,' . ,'" '.'d'~:; 
where: 

START = jobname 
specifies the name of the input job to which the EDIT statement applies. (Each EDIT 
statement must apply to a separate job.) If START is specified without TYPE and 
STEPNAME, the JOB statement and all job steps for the specified job are included 
in the output. If START is omitted and only one EDIT statement is provided, the first 
job encountered in the input data set is processed. If START is omitted from an 
EDIT statement other than the first statement, processing continues with the next 
JOB statement found in the input data set. 

TYPE = 
specifies the contents of the output data set. If TYPE is omitted, TYPE = POSITION 
is assumed. These values can be coded: . 

POSITION 
specifies that the output is to consist of a JOB statement, the job step specified 
in the STEPNAME parameter, and all steps that follow it. All job steps preceding 
the specified step are omitted from the operation. This is the default. 

INCLUDE 
specifies that the output data set is to contain a JOB statement and all job steps 
specified in the STEPNAME parameter. 

EXCLUDE 
specifies that the output data set is to contain a JOB statement and all jobs 
steps belonging to job except those steps specified in the STEPNAME 
parameter. 

STEPNAME = 
specifies the first job step to be placed in the output data set when coded with 
TYPE = POSITION. Job steps preceding this step are not copied to the output data 
set. When coded with TYPE = INCLUDE or TYPE = EXCLUDE, STEPNAME specifies 
the names of job steps that are to be included in or excluded from the operation. 
For example, STEPNAME = (STEPA,STEPF-STEPL,STEPZ) indicates that job steps 
STEPA, STEPF through STEPL, and STEPZ are to be included in or excluded from 
the operation. If STEPNAME is omitted, the entire input job whose name is specified 
on the EDIT statement is copied. If no job name is specified, the first job 
encountered is processed. 

NOPRINT 
specifies that the message data set is not to include a listing of the output data set. 
If NOPRINT is omitted, the resultant output is listed in the message data set. 

Note: Any JOBUB DD statement that follows a selected JOB statement is 
automatically copied to the output data set. 



IEBEDIT Examples 

IEBEDIT Example 1 

IEBEDIT Example 2 

The following examples show some of the uses of IEBEDIT. Table 18 can be used as a 
quick-reference guide to IEBEDIT examples. The numbers in the IIExample" column 
point to examples that follow. 

Table 18. IEBEDIT Example Directory 

Operation Devices 

COPY 9-track tape 

COpy 

COpy 

COpy 

COpy 

7 -track tape 

2311 Disk, 
9-track tape 

2314 or 2319 
Disk' 

9-track tape 

Comments 

The input data set contains three jobs. One job is 
to be copied. 

The output data set is the second data set on the 
volume. One job step is to be copied from each of 
three jobs. 

Include a job step from one job and exclude a 
job step from another job. 

LaUer portion of a job stream is to be copied. 

All records in the input data set are to be copied. 
The .. '" record is converted to a 1* statement in 

Example 

2 

3 

4 

the output data set. 5 

, The 2319 disk is functionally equivalent to the 2314 disk; to use the 2319, specify 2314 in the 
control statement. 

In this example one job (JOBA), including all of its job steps (A, B, C, and D), is to be 
copied into the output data set. The input data set contains three jobs: JOBA, which 
has four job steps; JOBB, which has three job steps; and JOBC, which has two job 
steps. 

The example follows: 

IIEDITl JOB 09#440,SMITH 
II EXEC PGM=IEBEDIT 
IISYSPRINT DD SYSOUT=A 
IISYSUTl DD UNIT=2400,DISP=(OLD,KEEP),VOLUME=SER=001234 
IISYSUT2 DD UNIT=2400,DISP=(NEW,KEEP),VOLUME=SER=001235, 
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80), 
II DSNAME=OUTTAPE 
IISYSIN DD * 

EDIT START=JOBA 
1* 
The control statements are discussed below: 

• SYSUT1 DO defines the input data set. The data set resides on a 9-track, standard 
labeled tape volume (001234). 

• SYSUT2 DO defines the output data set. The data set is to reside as the first data 
set on a standard labeled, 9-track tape volume (001235). 

• SYSIN DO defines the control data set, which follows in the input stream. 

• EDIT indicates that JOBA is to be copied in its entirety. 

This example copies: (1) the JOB statement and steps STEPC and STEPD for JOBA, 
(2) the JOB statement and STEPE for JOBB, and (3) the JOB statement and STEPJ for 
JOBC. The input data set contains three jobs: JOBA, which includes STEPA, STEPB, 
STEPC, and STEPD; JOB B, which includes STEPE, STEPF, and STEPG; and JOBC, 
which includes STEPH and STEPJ. 

The example follows: 

IIEDIT2 JOB 
II EXEC 
IISYSPRINT DD 
IISYSUTl DD 
II UNIT=2400-2 

09#440,SMITH 
PGM=IEBEDIT 
SYSOUT=A 
DISP=(OLD,KEEP),VOLUME=SER=001234, 

IISYSUT2 DD DSNAME=OUTSTRM,UNIT=2400-2,DISP=(NEW,KEEP), 
II DCB=(DEN=1,RECFM=F,LRECL=80,BLKSIZE=80, 
II TRTCH=C),LABEL=(2,SL) 
IISYSIN DD * 

1* 

EDIT START=JOBA,TYPE=INCLUDE,STEPNAME=STEPC,STEPD 
EDIT START=JOBB,TYPE=INCLUDE,STEPNAME=STEPE 
EDIT START=JOBC,TYPE=INCLUDE,STEPNAME=STEPJ 

IEBEDIT Program 103 



IEBEDIT Example 3 

IEBEDIT Example 4 

104 Utilities (Release 21.7) 

The control statements are discussed below: 

• SYSUT1 DO defines the input data set. The data set resides on a 7 -track, standard 
labeled tape volume (001234). 

• SYSUT2 DO defines the output data set. The data set is to reside as the second 
data set on a 7-track, standard labeled tape volume (001235). 

• SYSIN DO defines the control data set, which follows in the input stream. 

• The EDIT statements copy the indicated JOB statements and job steps. 

This example copies: (1) the JOB statement and steps STEPF and STEPG for JOBB 
and (2) the JOB statement and STEPH, excluding STEP J, for JOBC. The input data set 
contains three jobs: JOBA, which includes STEPA, STEPB, STEPC, and STEPD; JOBB, 
which includes STEPE, STEPF, and STEPG; and JOBC, which includes STEPH and 
STEPJ. 

The example follows: 

IIEDIT3 JOB 09#440~SMITH 
II EXEC PGM=IEBEDIT 
IISYSPRINT DD SYSOUT=A 
IISYSUT1 DD DSNAME=INSET,UNIT=2314,DISP=(OLD,KEEP), 
II VOLUME=SER=231400 
IISYSUT2 DD DSNAME=OUTTAPE,UNIT=2400,LABEL( ,NL), 
II DCB=(DEN=2,RECFM=F,LRECL=80,BLKSIZE=80), 
II· DISP=( ,KEEP) 
IISYSIN DD * 

1* 

EDIT START=JOBB,TYPE=INCLUDE,STEPNAME=STEPF-STEPG 
EDIT START=JOBC,TYPE=EXCLUDE,STEPNAME=STEPJ 

The control statements are discussed below: 

• SYSUT1 DO defines the input data set. The data set resides on a 2314 volume 
(231400). 

• SYSUT2 DO defines the output data set. The data set is to reside as the first or 
only data set on an unlabeled, 9-track (800 bits per inch) tape volume. 

• SYSIN DO defines the control data set, which follows in the input stream. 

• The EDIT statements copy selected JOB statements and job steps. 

This example copies the JOBA JOB statement, the job step STEPF, and all the steps 
that follow it. The input data set contains one job (JOBA), which includes STEPA, 
STEPS, ... STEPL. Job steps STEPA through STEPE are not included in the output 
data set. 

The example follows: 

IIEDIT4 JOB 09#440,SMITH 
II EXEC PGM=IEBEDIT 
IISYSPRINT DD SYSOUT=A 
IISYSUT1 DD DSNAME=INSTREAM,UNIT=2314,DISP=(OLD,KEEP), 
II VOLUME=SER=231400 
I/SYSUT2 DD DSNAME=OUTSTREM,UNIT=2314,DISP=( ,KEEP), 
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80), 
II VOLUME=SER=231401,SPACE=(TRK,2) 
/ISYSIN DD * 

EDIT START=JOBA,TYPE=POSITION,STEPNAME=STEPF 
1* 
The control statements are discussed below: 

• SYSUT1 DO defines the input data set. The data set resides on a 2314 or 2319 
volume (231400). 

• SYSUT2 DO defines the output data set. The data set is to reside on a 2314 volume 
(231401). Two tracks are allocated for the output data set. 

• SYSIN DO defines the control data set, which follows in the input stream. 

• EDIT copies the JOB statement and job steps STEPF through STEPL. 



IEBEDIT Example 5 This example copies the entire input (SYSUT1) data set. The record containing the 
characters 11 •• *" in columns 1 through 3 is converted to a II /*" statement in the 
output data set. 

The example follows: 

IIEDIT5 JOB 09#440,SMITH 
II EXEC PGM=IEBEDIT 
IISYSPRINT DD SYSOUT=A 
IISYSUT2 DD DSNAME=OUTTAPE,UNIT=2400,VOLUME=SER=001234, 
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80),DISP=(NEW,KEEP) 
IISYSIN DD DUMMY 
IISYSUT1 DD DATA 
IIBLDGDGIX JOB 
II EXEC PGM=IEHPROGM 
IISYSPRINT DD 
IIDD1 DD 

SYSOUT=A 
UNIT=2311,VOLUME=SER=111111,DISP=OLD 

IISYSIN DD 

* 1* 

BLDG * INDEX=A.B.C, ENTRIES=1 0, EMPTY 

The control statements are discussed below: 

• SYSUT2 DD defines the output data set. The data set is to reside as the first data 
set on a 9-track tape volume (001234). 

• SYSIN DD defines a dummy control data set. 

• SYSUT1 DD defines the input data set, which follows in the input stream. The job is 
terminated when the termination statement (/*) is encountered. 

IEBEDIT Program 105 

• 





IEBGENER Program - Class C 

Creating a Backup 
Copy 

Producing a Partitioned 
Data Set from 
Sequential Input 

Expanding a Partitioned 
Data Set 

Producing an Edited 
Data Set 

IEBGENER is a data set utility used to copy a sequential data set or a partitioned 
member, or to create a partitioned data set from a sequential or partitioned member 
used as input. (See Illntroduction" for general data set utility information.) IEBGENER 
can be used to expand an existing partitioned data set by creating partitioned 
members and merging .them into the data set that is to be expanded. 

IEBGENER provides optional editing facilities and exits for user routines that process 
labels, manipulate input data, create keys, and handle permanent input! output errors. 
Refer to IIAppendix A: Exit Routine Linkage" for a discussion of linkage conventions 
that are applicable when user routines are provided. 

IEBGENER can be used to: 

• Create a backup copy of a sequential data set or a partitioned member. 

• Produce a partitioned data set from sequential input. 

• Expand a partitioned data set. 

• Produce an edited sequential or partitioned data set. 

• Reblock or change the logical record length of a data set. 

• Create user labels on sequential output data sets. 

At the completion or termination of IEBGENER, the highest return code encountered 
within the program is passed to the calling program. 

A backup copy of a sequential data set or partitioned member can be produced by 
copying the data set or member to any IBM-supported output device. For example, a 
copy can be made from tape to tape, from direct access to tape, etc. 

A data set that resides on a direct access volume can be copied to its own volume, 
provided that its data set name is changed. A partitioned data set cannot reside on a 
magnetic tape volume. 

IEBGENER can be used to produce a partitioned data set from sequential output. 
Through the use of utility control statements, the user can logically divide the 
sequential data set into record groups and assign member names to the record 
groups. IEBGENER places the newly created members in a partitioned output data set. 

Note: A partitioned data set cannot be produced if an input or output data set 
contains spanned records. 

Figure 29 shows how a partitioned data set is produced from a sequential data set 
used as input. The left-hand side of the figure shows the sequential data set. Utility 
control statements are used to divide the sequential data set into record groups and 
to provide a member name for each record group. The right-hand side of the figure 
shows the partitioned data set produced from the sequential input. 

An expanded data set is a data set into which an additional member or members 
have been merged. IEBGENER creates the members from sequential input and places 
them in the data set being expanded. The merge operation-the ordering of the 
partitioned directory-is automatically performed by the program. 

Figure 30 shows how sequential input is converted into members that are merged into 
an existing partitioned data set. The left-hand side of the figure shows the sequential • 
input that is to be merged with the partitioned data set shown in the middle of the 
figure. Utility control statements are used to divide the sequential data set into record 
groups and to provide a member name for each record group. The right-hand side of 
the figure shows the expanded partitioned data set. Note that members B, D, and E 
from the sequential data set were placed in available space and that they are 
sequentially ordered in the partitioned directory. 

IEBGENER can be used to produce an edited sequential or partitioned data set. 
Through the use of utility control statements, the user can specify editing information 
that applies to a record, a group of records, selected groups of records, or an entire 
data set. 

IEBGENER Program-Class C 107 



108 Utilities (Release 21.7) 

Utility control statement 
names first member 

Utility control statement 
identified last record 

i, 

r~;~ <;' ~,~'" ", '~' 

Utility control statement, 
names new member," ", 

;,~ ,; 

Utility control statement 
identified last record ' , 

Utility control statement 
names new mel1!ber, ' 

Sequential 
input 
,-----.., Record 

lASTREC 1 

LASTREC 2 

LASTREC n 

group 
1 

Record 
group 
2 

Record 
group 
n 

Partitioned 
output 

Figure 29. Creating a Partitioned Data Set from Sequential Input Using IEBGENER 

An edited data set can be produced by: 

• Rearranging or omitting defined data fields within a record. 

• Supplying literal information as replacement data. 

• Converting data from packed decimal to unpacked decimal mode, unpacked 
decimal to packed decimal mode, or H-set BCD to EBCDIC mode. 

Utility controdtatem:~ts" 
define record igroups 
Name members ,,, 

{ 

Sequential 
input 

Member 
B l 

LASTREC 

Member 
D 

LASTREC 

Member 
F 

~ 

Existing 
data set 

Available space 

Expanded 
data set 

Directory 
A ',B' C'O' E;F G 

Members A 

• 

Figure 30. Expanding a Partitioned Data Set Using IEBGENER 

Figure 31 shows part of an edited sequential data set. The left-hand side of the figure 
shows the data set before editing is performed. Utility control statements are used to 



Reblocking or Changing 
Logical Record Length 

Input and Output 

Control 

identify the record groups to be edited and to supply editing information. In this figure, 
literal replacement information is supplied for information within a defined field. (Data 
is rearranged, omitted, or converted in the same manner.) The BBBB field in each 
record in the record group is to be replaced by CCCC. The right-hand side of the 
figure shows the data set after editing. 

» Record ;p 

Utility control statement » 1 » 
Defines record group, contains » » 
literal replacement data (CCCC). » » 

o:r, o· 
Applies to all records within co' 0: the group. co~ n; 

0,\ 0' 
» Record » 
» 2 » 
» » 
» » 
Ul: .. 'nl 
OJ' Record n' 
OJ; 0 
i::JJ' group 0 
» ;p 

~ ~ 
CO] ~ 
tit '0 
» Record » 
» n » 
» » 
» » 
!Xl) :C.f 
CO) '0' 

P'; :n~ 
co' 0 

Figure 31. Editing a Sequential Data Set Using IEBGENER 

Note: IEBGENER cannot be used to edit a data set if the input and output data sets 
consist of VS or VBS records and have equal block sizes and logical record lengths. In 
this case, any utility control statements that specify editing are ignored; IEBGENER 
performs a straight copy; that is, for each physical record read from the input data 
set, the utility writes an unedited physical record on the output data set. 

IEBGENER can be used to produce a reblocked output data set containing either 
fixed or variable records. In addition, the program can produce an output data set 
having a logical record length that differs from the input logical record length. 

IEBGENER uses the following input: 

• An input data set, which contains the data that is to be copied, edited, converted 
into a partitioned data set, or converted into members to be merged into an 
existing data set. The input is either a sequential data set or a member of a 
partitioned data set. 

• A control data set, which contains utility control statements. The control data set is 
required if editing is to be performed or if the output data set is to be a partitioned 
data set. 

IEBGENER produces the following output: 

• An output data set, which can be either sequential or partitioned. The output data 
set can be either a new data set (created during the current job step) or an existing 
partitioned data set that is to be expanded. 

• A message data set, which contains informational messages (for example, the 
contents of utility control statements) and any error messages. 

IEBGENER provides a return code to indicate the results of program execution. The 
return codes and their meanings are: 

• 00, which indicates successful completion. 

• 04, which indicates probable successful completion. A warning message is written. 

• 08, which indicates that processing was terminated after the user requested 
processing of user header labels only. 

• 12, which indicates an unrecoverable error. The job step is terminated. 

• 16, which indicates that a user routine passed a return code of 16 to IEBGENER. 
The job step is terminated. 

IEBGENER is controlled by job control statements and utility control statements. The 
job control statements are required to execute or invoke IEBGENER and to define the 
data sets that are used and produced by the program. The utility control statements 
are used to control the functions of IEBGENER. 

IEBGENER Program-Class C 109 

• 



Job Control Statements 

Restrictions 

110 Utilities (Release 21.7) 

Table 19 shows the job control statements necessary for using IEBGENER. 

Table 19. IEBGENER Job Control Statements 

Statement 

JOB 

EXEC 

SYSPRINT DD 

SYSUTI DD 

SYSUT2 DD 

SYSIN DD 

Use 

Initiates t~e job. 

Specifies the program name (PGM == IEBGENER) or, if the job control 
statements reside in a procedure library, the procedure name. 

Defines a sequential message data set. The data set can be written to a 
system output device, a tape volume, or a direct access volume. 

Defines the input data set. It can define a sequential data set or a member of 
a partitioned data set. 

Defines the output data set. It can define a sequential data set, a member of a 
partitioned data set, or a partitioned data set. 

Defines the control data set, or specifies DUMMY when the output is 
sequential and no editing is specified. The control data set normally resides in 
the input stream; however, it can be defined as a member within a library of 
partitioned members. 

The minimum region size that can be specified for the execution of IEBGENER is 
14K + b, where b is the largest block size in the job step rounded to the next higher 
2K. 

IEBGENER always uses two buffers regardless of what was specified in the DCB. 

If both the SYSUTI and the SYSUT2 DO statements specify standard user labels 
(SUL), IEBGENER copies user labels from SYSUTI to SYSUT2. See "Appendix E: 
Processing User Labels" for a discussion of the available options for user label 
processing. 

Both the input data set and the output data set can contain fixed, variable, undefined, 
or variable spanned records. These records can be reblocked by the specification of a 
new maximum block length on the SYSUT2 DO statement. During reblocking, if the 
output data set resides on a direct access volume: 

• For fixed or variable records, keys can be retained only by using the appropriate 
user exit. 

• For variable spanned records, keys can never be retained. 

When the input/output data set has fixed length, variable length, or variable spanned 
records, the block size, the logical record length, and the record format are required. 
When the input/output data set has undefined records, only the block size is required. 

Refer to as Data Management Services Guide, GC26-3746, for information on 
estimating space allocations. 

• The SYSPRINT DO statement is required for each use of IEBGENER. 

• The block size for the SYSPRINT data set must be a multiple of 121. The block size 
for the SYSIN data set must be a multiple of 80. Any blocking factor can be 
specified for these block sizes. 

• Space must be allocated for an output data set (SYSUT2 DO statement) that is to 
reside on a direct access device unless the data set is an expanded data set, in 
which case space must not be allocated. 

• DCB parameters in a SYSUT2 DO statement defining an expanded partitioned data 
set must be compatible with the specifications made when the data set was 
originally created. 

• Concatenated data sets with unlike attributes are not allowed as input to 
IEBGENER. For information on concatenated data sets, see as Data Management 
Services Guide, GC26-3746. 

• The SYSIN DO statement is required for each use of IEBGENER. 

• RECFM (except for undefined data sets), BLKSIZE, and LRECL (except for 
undefined data sets) must be specified on the SYSUTI/SYSUT2 DO statement 
when the data set is new and when the data set is a dummy data set, a card punch, 
or a printer. ' 

• When neither RECFM, BLKSIZE, nor LRECL are present for the input data set, these 
values are copied from the input data set. 

• Always specify the output BLKSIZE when the LRECL and RECFM (except for U) is 
specified. The default RECFM is U for the output data set. The output LRECL must 



Utility Control Statements 

GENERATE Statement 

EXITS Statement 

be present when editing is to be performed and the RECFM is either FB, VS, or 
VBS. In other cases a default LRECL value is generated by IEBGENER. 

• The input data set must always have a BLKSIZE parameter. The default RECFM is U 
for the input data set. The input LRECL must be specified when RECFM is either VS, 
VBS, or FB. In other cases a default LRECL is generated by IEBGENER. 

IEBGENER is controlled by utility control statements. The statements and the order in 
which they must appear are: 

• GENERATE statement, which is used to indicate the number of member names and 
alias names, record identifiers, literals, and editing information contained in the 
control data set. 

• EXITS statement, which is used to indicate that user routines are provided. 

• LABELS statement, which is used to specify user-label processing. 

• MEMBER statement, which is used to specify the member name and alias of a 
member of a partitioned data set to be created. 

• RECORD statement, which is used to define a record group to be processed and to 
supply editing information. 

The control statements are included in the control data set as required. If no utility 
control statements are included in the control data set, the entire input data set is 
copied sequentially. 

When the output is to be sequential and editing is to be performed, one GENERATE 
statement and as many RECORD statements as required are used. If user exits are 
provided, an EXITS statement is used. 

When the output is to be partitioned, one GENERATE statement, one MEMBER 
statement per output member, and RECORD statements, as required, are used. If user 
exits are provided, an EXITS statement is used. 

The GENERATE statement is used when: (1) output is to be partitioned, (2) editing is 
to be performed, or (3) user routines are provided and/or label processing is 
specified. 

The GENERATE statement must appear before other statements. If it contains errors 
or is inconsistent with other statements, IEBGENER is terminated. 

The format of the GENERATE statement is: 

[label] GENERATE 'IMA*XNAME:~~<nj 

MAXNAME=n 

[,MAXFLDS== .. n]··.· 
. ,[,MAXGPS' =n] 

...... J,.~~L1TS.~,~L.0., ... 

specifies a number that is no less than the total number of member names and 
aliases appearing in subsequent MEMBER statements. MAXNAME is required if 
there are one or more MEMBER statements. 

MAXFLDS = n 
specifies a number that is no less than the total number of FIELD parameters 
appearing in subsequent RECORD statements. MAXFLDS is required if there are any 
FIELD parameters in subsequent RECORD statements. 

MAXGPS=n • 
specifies a number that is no less than the total number of IDENT parameters 
appearing in subsequent RECORD statements. MAXGPS is required if there are any 
IDENT parameters in subsequent RECORD statements. 

MAXLITS = n 
specifies a number that is no less than the total number of characters contained in 
the FIELD literals of subsequent RECORD statements. MAXLITS is required if the 
FIELD parameters of subsequent RECORD statements contain literals. MAXLITS 
does not pertain to literals used in IDENT parameters. 

The EXITS statement is used to identify exit routines supplied by the user. Linkages to 
and from exit routines are discussed in "Appendix A: Exit Routine Linkage." 

The EXITS statement is used when user routines are provided. 

IEBGENER Program - Class C 111 



LABELS Statement 

112 Utilities (Release 21.7) 

The format of the EXITS statement is: 

INHDR = routinename 
specifies the symbolic name of a routine that processes user input header labels. 

OUTHOR = routinename 
specifies the symbolic name of a routine that creates user output header labels. 
OUTHOR is ignored if the output data set is partitioned. 

INTLR = routinename 
specifies the symbolic name of a routine that processes user input trailer labels. 

OUTTLR = routinename 
specifies the symbolic name of a routine that processes user output trailer labels. 
OUTTLR is ignored if the output data set is partitioned. 

KEY = routinename 
specifies the symbolic name of a routine that creates the output record key. (This 
routine does not receive control when a data set consisting of VS or VBS type 
records is processed because no processing of keys is permitted for this type of 
data.) 

DATA = routinename 
specifies the symbolic name of a routine that modifies the physical record (logical 
record for VS or VBS type records) before it is processed by IEBGENER. 

IOERROR = routinename 
specifies the symbolic name of a routine that handles permanent input/output error 
conditions. 

TOTAL = 
specifies that exits to a user's routine are to be provided prior to writing each 
record. The keyword OPTeD = T must be specified for the SYSUT2 DD statement. 
TOTAL is valid only when the utility is used to process sequential data sets. These 
values must be coded: 

routinename 
specifies the name of a user-supplied totaling routine. 

size 
specifies the number of bytes needed to contain totals, counters, pointers, etc. 

For a detailed discussion of the processing of user labels as data set descriptors, and 
for discussion of user label totaling), refer to "Appendix E: Processing User Labels." 

The LABELS statement specifies whether or not user labels are to be treated as data 
by IEBGENER. For a detailed discussion of this option, refer to "Processing User 
Labels as Data," in "Appendix E: Processing User Labels." 

The LABELS statement is used when the user wants to specify that: (1) no user labels 
are to be copied to the output data set, (2) user labels are to be copied to the output 
data set from records in the data portion of the SYSIN data set, or (3) user labels are 
to be copied to the output data set after they are modified by the user's label 
processing routines. If more than one valid LABELS statement is included, all but the 
last LABELS statement are ignored. 

The format of the LABELS statement is: 



MEMBER Statement 

RECORD Statement 

where: 

DATA = 
specifies whether user labels are to be treated as data by IEBGENER. These values 
can be coded: 

YES 
specifies that any user labels that are not rejected by a user's label-processing 
routine are to be treated as data. Processing of labels as data ends in 
compliance with standard return codes. If no value is entered, YES is assumed. 

NO 
specifies that user labels are not to be treated as data. 

ALL 
specifies that user labels in the group currently being processed are to be 
treated as data regardless of any return code. A return code of 16 causes 
IEBGENER to complete processing the remainder of the group of user labels and 
to terminate the job step. 

ONLY 
specifies that only user header labels are to be treated as .data. User header 
labels are processed as data regardless of any return code. The job terminates 
upon return from the OPEN routine. 

INPUT 
specifies that user labels for the output data set are supplied as SO-byte input 
records in the data portion of SYSIN. The number of input records that should be 
treated as user labels must be identified by a RECORD statement. 

Note: LABELS DATA = NO must be specified to make standard user label (SUL) exits 
inactive when input; output data sets with nonstandard labels (NSL) are to be 
processed. 

The MEMBER statement is used when the output is to be partitioned. One MEMBER 
statement must be included for each member to be created by IEBGENER. The 
MEMBER statement provides the name and aliases of a member that is to be created. 

All RECORD statements following a MEMBER statement pertain to the member named 
in that MEMBER statement. If no MEMBER statements are included, the output data 
set is organized sequentially. 

The format of the MEMBER statement is: 

;[/~b;JiMEMBERNAME = (riahl~[:aJi~s] ... ) 
L"'4_"~;"\" _,,,",,,w,,,', ,,"'''''''''''' v,:~:.·;,·; "',;:",.,,,;.:,;.~;,:.,;~:,"' ';.;" 
where: 

NAME = (name[,alias] ... ) . 
specifies a member name followe'd by a list of its aliases. If only one name appears 
in the statement, it need not be enclosed in parentheses. 

The RECORD statement is used to define a record group and to supply editing 
information. A record group consists of records that are to be processed identically. 

The RECORD statement is used when: (1) the output is to be partitioned, (2) editing is 
to be performed, or (3) user labels for the output data set are to be created from 
records in the data portion of the SYSIN data set. The RECORD statement defines a 
record group by identifying the last record of the group with a literal name,. 

If no RECORD statement is used, the entire input data set or member is processed • 
without editing. More than one RECORD statement may appear in the control 
statement stream for IEBGENER. 

Within a RECORD statement, one IDENT parameter can be used to define the record 
group; one or more FIELD parameters can be used to supply the editing information 
applicable to the record group; and one LABELS parameter can be used to indicate 

'that this statement is followed immediately by output label records. 

The format of the RECORD statement is: 
i-:·~f/;,;n;RE:CORD{[;li)ENT_;==«i~~gth:'name',;nput-locat;on)]}., .•• ·.·':~:'<::"~'"~··;' JvN;;';' ... w~;'·;·;;'\:1 

.. "{[,FIELD=([/ength], [input-Iocafion],[conversion], "! 
[output-[ocation]) ... ],['literal']} • ~ 

{[,LABELS = n]} , ,:J 

IEBGENER Program-Class C 113 



114 Utilities (Release 21.7) 

where: 

IDENT = 
identifies the last record of the input group to which the FIELD parameters or 
MEMBER statement applies. If the RECORD statement is not followed by additional 
RECORD or MEMBER statements, IDENT also defines the last record to be 
processed. If IDENT is omitted, the remainder of the input data is considered to be 
in ona record group; subsequent RECORD and MEMBER statements are ignored. 
These values can be coded: 

length 
specifies the length (in bytes) of the identifying name. The length cannot exceed 
eight characters. 

tname' 
specifies the exact literal that identifies the last input record of a record group" 
If no match for name is found, the remainder of the input data is considered to 
be in one record group; subsequent RECORD and MEMBER statements are 
ignored. 

input -location 
specifies the starting location of the field that contains the identifying name in 
the input records. 

FIELD = 
specifies field-processing and editing information. Only the contents of specified 
fields in the input record is copied to the output record. The values that can be 
coded are: 

length 
specifies the length (in bytes) of the input field or literal to be processed. If 
length is not specified, a length of 80 bytes is assumed. If a literal is to be 
processed, a length of 40 bytes or less must be specified. 

input-location 
specifies the starting byte of the field to be processed. If input-location is not 
specified, byte 1 is assumed. 

tliteral' 
specifies a literal (maximum length of 40 bytes) to be placed in the specified 
output location. If a literal contains apostrophes, each apostrophe must be 
written as two consecutive apostrophes. 

conversion 
specifies a two-byte code that indicates the type of conversion to be performed 
on this field. If no conversion is specified, the field is moved to the output area 
without change. The values that can be coded are: 

PZ 

zp 

HE 

specifies that data (packed decimal) is to be converted to unpacked decimal 
data. 

specifies that data (unpacked decimal) is to be converted to packed decimal 
data. 

specifies that data (H-set BCD) is to be converted to EBCDIC. 

output -location 
specifies the starting location of this field in the output records. If output-location 
is not specified, byte 1 is assumed. 

LABELS = n 
is an optional parameter that indicates the number of records in the SYSIN data set 
to be treated as user labels. The number n, which is a number from 1 to 8, must 
specify the exact number of label records that follow the RECORD statement. If this 
parameter is included, DATA = INPUT must be coded on a LABELS statement 
before it in the input stream. 

If conversion is specified in FIELD, the following restrictions apply: 

• PZ-type (packed-to-unpacked) conversion is impossible for packed decimal 
records longer than 16K bytes. 

• For ZP-type (unpacked-to-packed) conversion, the normal 32K-byte maximum 
applies. 



IEBGENER Examples 

• When the ZP parameter is specified, the conversion is performed in place. The 
original unpacked field is replaced by the new packed field. Therefore, the ZP 
parameter must be omitted from subsequent references to that field. If the field is 
needed in its original unpacked form, it must be referenced prior to the use of the 
ZP parameter. 

If conversion is specified in the FIELD parameter, the length of the output record can 
be calculated for each conversion specification. When L is equal to the length of the 
input record, the calculation is made, as follows: 

• For a PZ (packed-to-unpacked) specification, 2L - 1. 

• For a ZP (unpacked-to-packed) specification, (L/2) + C. If L is an odd number, C 
is 1/2; if L is an even number, C is 1. 

• For an HE (H-set BCD to EBCDIC) specification, L. 

If both output header labels and output trailer labels are to be contained in the SYSIN 
data set, the user must include one RECORD statement (including the LABELS 
parameter), indicating the number of input records to be treated as user labels, for 
header labels and one for trailer labels. The first such RECORD statement indicates 
the number of user header labels; the second indicates the number of user trailer 
labels. If only output trailer labels are included in the SYSIN data set, a RECORD 
statement must be included to indicate that there are no output header labels in the 
SYSIN data set (LABELS = 0). This statement must precede the RECORD LABELS = n 
statement which signals the start of trailer label input records. 

For a detailed discussion of the LABELS option, refer to "Processing User Labels As 
Data," in "Appendix E: Processing User Labels." 

Note: IDENT and FIELD parameters are ignored in straight copy processing of data 
sets that contain VS or VBS records. 

The examples that follow illustrate some of the uses of IEBGENER. Table 20 can be 
used as a quick reference guide to IEBGENER examples. The numbers in the . 
"Example" column point to the examples that follow. 

Table 20. IEBGENER Example Directory 

Data Set 
Operation Organization Devices Comments Example 

COpy Sequential Card Reader, Blocked output. 
Tape 

Copy-with Sequential Card Reader, Blocked output. 
editing Tape 2 

COPY-with Sequential Card Reader, Blocked output. Input includes 
editing Tape / / cards. 3 

COPY-with Sequential Card Reader, Blocked output. Input includes 
editing 2311 Disk / / cards. 4 

PRINT Sequential Card Reader, Input includes / / cards. System 
Printer output device is a printer 5 

CONVERT Sequential Tape, Blocked output. Three members 
input, 2314 Disk are to be created, 
Partitioned 
output 6 

Copy-with Sequential 2301 Drum Blocked output. Two members are 
editing to be merged into existing data set. 7 

COPY-with Sequential Tape Blocked output. Data set edited as 
editing one record group. 8 

COPY-with Sequential 2314 Disk Blocked output. New record length 
editing specified for output data set. Two 

record groups specified. 9 

COPY-with Sequential Tape Blocked output. Data set edited as 
editing one record group. 10 

IEBGENER Program - Class C 115 

• 



IEBGENER Example 1 

IEBGENER Example 2 

IEBGENER Example 3 

116 Utilities (Release 21.7) 

In this example, a card-input, sequential data set is to be copied to a 9-track tape 
volume. 

The example follows: 

IICDTOTAPE JOB 09#660,SMITH 
II EXEC PGM=IEBGENER 
IISYSPRINT DD SYSOUT=A 
IISYSIN DD DUMMY 
IISYSUT2 DD DSNAME=OUTSET,UNIT=2400,LABEL=( ,SL), 
II DISP=( ,KEEP),VOLUME=SER=001234, 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000) 
IISYSUT1 DD * 
(input card data set) 

1* 
The control statements are discussed below: 

• SYSIN DD defines a dummy data set. No editing is to be performed; therefore, no 
utility control statements are needed. 

• SYSUT2 DD defines the output data set. The data set is written to a 9-track tape 
volume at a density of 800 bits per inch. The data set is to reside as the first (or 
only) data set on the volume. 

• SYSUT1 DD defines the card-input data set. The data set can contain no / / cards. 

In this example, a card-input, sequential data set is to be copied to a 7-track tape 
volur'!le. The control data set is a member of a partitioned data set. 

The example follows: 

IICDTOTAPE JOB 09#660,SMITH 
II EXEC PGM=IEBGENER 
IISYSPRINT DD SYSOUT=A 
IISYSIN DD DSNAME=CNTRLIBY(STMNTS),UNIT=2311, 
II DISP=(OLD,KEEP),VOLUME=SER=111112, 
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80) 
IISYSUT2 DD DSNAME=OUTSET,UNIT=2400-2,LABEL=( ,SL), 
II DCB=(DEN=1,RECFM=FB,LRECL=80,BLKSIZE=2000, 
II TRTCH=C),DISP=( ,KEEP),VOLUME=SER=001234 
IISYSUT1 DD * 
(input card data set) 

1* 
The control statements are discussed below: 

• SYSIN DD defines the control data set, which contains the utility control 
statements. The control statements reside as a member, STMNTS, in a partitioned 
data set. 

• SYSUT2 DD defines the output data set. The data set is written as the first or only 
data set on the volume. It is written at 556 bits per inch density on a 7 -track tape 
volume. 

• SYSUT1 DD defines the card-input data set. The data set can contain no / / cards. 

In this example, a card-input, sequential data set is to be copied to a 9-track tape 
volume. The input contains cards that have slashes (J /) in columns 1 and 2. The 
control data set is a member of a partitioned data set. 

The example follows: 

IICDTOTAPE JOB 09#660,SMITH 
II EXEC PGM=IEBGENER 
IISYSPRINT DD SYSOUT=A 
IISYSIN DD DSNAME=CNTRLIBY(STMNTS),UNIT=2314, 
II DISP=(OLD,KEEP),VOLUME=SER=111112, 
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80) 
IISYSUT2 DD DSNAME=OUTSET,UNIT=2400,LABEL=(2,SL), 
II VOLUME=SER=001234,DCB=(RECFM=FB, 
II LRECL=80,BLKSIZE=2000),DISP=( ,KEEP) 
IISYSUT1 DD DATA 

(input card data set, including / / cards) 

1* 



IEBGENER Example 4 

IEBGENER Example 5 

The control statements are discussed below: 

• SYSIN DO defines the data set containing the utility control statements. The 
statements reside as a member, STMNTS, in a partitioned data set. 

• SYSUT2 DO defines the copied sequential data set (output). The data set is written 
as the second data set on the specified tape volume. 

• SYSUT1 DO defines the card-input data set. The data set is to be edited as 
specified in the utility control statements (not shown). The input data set contains 
/ / cards. 

In this example, a card-input, sequential data set is to be copied to a 2311 volume. 
The input data set contains / / cards. 

The example follows: 

IICDTOTAPE JOB 09#660,SMITH 
II EXEC PGM=IEBGENER 
IISYSPRINT DD SYSOUT=A 
IISYSIN DD DSNAME=CNTRLIBY(STMNTS),UNIT=2311, 
II DISP=(OLD,KEEP),VOLUME=SER=111112, 
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80) 
IISYSUT2 DD DSNAME=OUTSET,UNIT=2311,VOLUME=SER=111113, 
II DISP=( ,KEEP),SPACE=(TRK,(20,10)), 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000) 
IISYSUT1 DD DATA 

(input card data set, including / / cards) 

1* 
The control statements are discussed below: 

• SYSIN DO defines the control data set, which contains the utility control 
statements. The control statements reside as a member, STMNTS, in a partitioned 
data set. 

o SYSUT2 DO defines the output data set. Twenty tracks of primary storage space 
and ten tracks of secondary space are allocated for the data set on a 2311 volume. 

• SYSUT1 DO defines the card-input data set. The data set is to be edited as 
specified in the utility control statements (not shown). The input data set contains 
/ / cards. 

In this example, the content of a card data set isto be printed. The printed output is 
to be left aligned, with one 80~byte record appearing on each line of printed output. 

The example follows: 

IICDTOPTR JOB 
II EXEC 
IISYSPRINT DD 
IISYSIN DD 
IISYSUT2 DD 
IISYSUT1 DD 

09#660,SMITH 
PGM=IEBGENER 
SYSOUT=A 
DUMMY 
SYSOUT=A,DCB=(RECFM=F,LRECL=80,BLKSIZE=80) 
DATA 

(input card data set, including / / cards) 

1* 
The control statements are discussed below: 

• SYSIN DO defines a dummy data set. No editing is to be performed; therefore, no 
utility control statements are required. 

o SYSUT2 DO indicates that the output is to be written on the system output device 
(printer). Carriage control can be specified by changing the RECFM = F 
subparameter to RECFM = FA. 

• SYSUT1 DO defines the input card data set. The input data set contains / / cards. 

IEBGENER Program-Class C 117 



IEBGENER Example 6 

IEBGENER Example 7 

118 Utilities (Release 21.7) 

In this example, a partitioned data set (consisting of three members) is to be created 
from sequential input. 

The example follows: 

IITAPEDISK JOB 09#660,SMITH 
II EXEC PGM=IEBGENER 
IISYSPRINT DD SYSOUT=A 
IISYSUT1 DD DSNAME=INSET,UNIT=2400,LABEL=( ,SL), 
II DISP=(OLD,KEEP),VOLUME=SER=001234, 
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80) 
IISYSUT2 DD DSNAME=NEWSET,UNIT=2314,DISP=( ,KEEP), 
II VOLUME=SER=111112,SPACE=(TRK,(20,10,5)), 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000) 
IISYSIN DD * 

GENERATE MAXNAME=3,MAXGPS=2 
MEMBER NAME=MEMBER1 

GROUP 1 RECORD IDENT=(8,'FIRSTMEM',1) 
MEMBER NAME=MEMBER2 

GROUP2 RECORD IDENT=(8,'SECNDMEM',1) 
MEMBER NAME=MEMBER3 

1* 
The control statements are discussed below: 

• SYSUTI DO defines the input data set (INSET). The data set was originally written 
on a 9-track tape volume at 800 bits per inch density. 

• SYSUT2 DO defines the output partitioned data set (NEWSET). The data set is to be 
placed on a 2314 volume. Twenty tracks of primary space, ten tracks of secondary 
space, and five blocks (256 bytes each) of directory space are allocate~ to allow 
for future expansion of the data set. The output records are blocked to reduce the 
space required by the data set. 

• SYSIN DO defines the control data set, which follows in the input stream. The utility 
control statements are used to create members from sequential input data; the 
statements do not specify any editing. 

• GENERATE indicates that: (1) three member names are included in subsequent 
MEMBER statements and (2) the IDENT parameter appears twice in subsequent 
RECORD statements. 

• The first MEMBER statement' assigns a member name (MEMBERl) to the first 
member. 

• The first RECORD statement (GROUPl) identifies the last record to be placed in 
the first member. The name of this record (FIRSTMEM) appears in bytes 1 through 
8 of the input record. 

• The remaining MEMBER and RECORD statements define the second and third 
members. 

In this example, sequential input is to be converted into two partitioned members. The 
newly created members are to be merged into an existing partitioned data set. User 
labels on the input data set are to be passed to the user exit routines. 

The example follows: 

IIDRUMDRUM JOB 09#660,SMITH 
II EXEC PGM=IEBGENER 
IISYSPRINT DD SYSOUT=A 
IISYSUT1 DD DSNAME=INSET,UNIT=2301,DISP=(OLD,KEEP), 
II VOLUME=SER=111112,DCB=(RECFM=FB,LRECL=80, 
II BLKSIZE=20000),LABEL=( ,SUL) 
IISYSUT2 DD DSNAME=EXISTSET,UNIT=2301,DISP=(MOD,KEEP), 
II VOLUME=SER=111113,DCB=(RECFM=FB,LRECL=80, 
II BLKSIZE=2000) 
I/SYSIN DD * 

GENERATE MAXNAME=3,MAXGPS=1 
EXITS INHDR=ROUT1,INTLR=ROUT2 

MEMBER NAME=(MEMX,ALIASX) 
GROUP 1 RECORD IDENT=(8,'FIRSTMEM',1) 

MEMBER NAME=MEMY 
1* 
The control statements are discussed below: 

• SYSUTI DO defines the input data set (INSET). The input data set, which resides on 
a 2301 volume, has standard and user labels. 



IEBGENER Example 8 

• SYSUT2 DO defines the output partitioned data set (EXISTSET). The members 
created during this job step are merged into the partitioned data set. The output 
records are blocked to reduce the space required by the new members. 

• SYSIN DO defines the control data set, which follows in the input stream. The utility 
control statements are used to create members from sequential input data; the 
statements do not specify any editing. 

• GENERATE indicates that: (1) two member names and one alias are included in 
subsequent MEMBER statements and (2) an IDENT parameter appears in a 
subsequent RECORD statement. 

• EXITS defines the user routines that are to process user labels. 

• The first MEMBER statement assigns a member name (MEMX) and an alias 
(ALlASX) to the first member. 

• The first RECORD statement identifies the last record to be placed in the first 
member. The name of this record (FIRSTMEM) appears in bytes 1 through 8 of the 
input record. 

• The second MEMBER statement assigns a member name (MEMY) to the second 
member. The remainder of the input data set is included in this member. 

In this example, a sequential input data set is to be edited and copied. 

The example follows: 

IITAPETAPE JOB 09#660,SMITH 
II EXEC PGM=IEBGENER 
IISYSPRINT DD SYSOUT=A 
IISYSUT1 DD DSNAME=OLDSET,UNIT=2400-2,DISP=(OLD,KEEP), 
II VOLUME=SER=001234,LABEL=(3,SUL), 
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80,TRTCH=C), 
IISYSUT2 DD DSNAME=NEWSET,UNIT=2400-2,DISP=(NEW,PASS), 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000,TRTCH=C), 
II VOLUME=SER=001235,LABEL=( ,SL) 
IISYSIN DD * 

GENERATE MAXFLDS=3,MAXLITS=11 
RECORD FIELD=( 10,'**********' ,,1), llC 

F I ELD= ( 5 , 1 , HE, 1 1 ), F I ELD= ( 1 , '=' , , 1 6 ) 
EXITS INHDR=ROUT1,OUTTLR=ROUT2 

LABELS DATA=INPUT 
RECORD LABELS=2 

(first header label record) 
(second header label record) 

RECORD LABELS=2 

(first trailer label record) 
(second trailer label record) 

1* 
The control statements are discussed below: 

• SYSUTI DO defines the sequential input data set (OLOSET). The data set was 
originally written as the third data set (800 bits per inch) on a 7 -track tape volume. 

• SYSUT2 DO defines the sequential output data set (NEWSET). The data set is 
written as the first or only data set on a 7 -track tape volume. A density of 800 bits 
per inch and data conversion are specified for the write operation. The output 
records are blocked to reduce the space required by the data set and to reduce the 
access time required when the data set is subsequently referred to. The data set is 
passed to a subsequent job step. 

• SYSIN DO defines the control data set, which follows in the input stream. 

• GENERATE indicates that: (1) a maximum of three FIELD parameters is included in 
subsequent RECORD statements and (2) a maximum of 11 literal characters are 
included in subsequent FIELD parameters. 

• EXITS indicates that the specified user routines require control when SYSUTI is 
opened and when SYSUT2 is closed. 

• LABELS indicates that labels are included in the input stream. 

• The first RECORD statement controls the editing, as follows: (1) asterisks are 
placed in positions 1 through 10, (2) bytes 1 through 5 of the input record are 
converted from H-set BCD to EBCDIC mode and moved to positions 11 through 15, 
and (3) an equal sign is placed in byte 16. 

IEBGENER Program-Class C 119 



IEBGENER Example 9 

120 Utilitie's (Release 21.7) 

• The second RECORD statement indicates that the next two records from SYSIN 
should be written out as user header labels on SYSUT2. 

• The third RECORD statement indicates that the next two records from SYSIN 
should be written as user trailer labels on SYSUT2. 

Note: This example shows the relationship between the RECORD LABELS statement 
and the EXITS statement. IEBGENER attempts to write a first and second label trailer 
as user labels at close time of SYSUT2, but, before returning control to the system; 
the user routine ROUT2 can review these records and change them, if necessary. 

In this example, a sequential input data set is to be edited and copied. 

The example follows: 

IIDISKDISK JOB 09#660,SMITH 
II EXEC PGM=IEBGENER 
IISYSPRINT DD SYSOUT=A 
IISYSUT1 DD DSNAME=OLDSET,UNIT=2314,DISP=(OLD,KEEP), 
II VOLUME=SER=111112,DCB=(RECFM=F,LRECL=100,BLKSIZE=100) 
IISYSUT2 DD DSNAME=NEWSET,UNIT=2314,DISP=(NEW,KEEP), 
II VOLUME=SER=111113,DCB=(RECFM=FB,LRECL=80, 
II BLKSIZE=640),SPACE=(TRK,(20,10)) 
IISYSIN DD * 

GENERATE MAXFLDS=4,MAXGPS=1 
EXITS IOERROR=ERRORRT 

GROUP 1 RECORD IDENT=(8,'FIRSTGRP',1), 
FIELD=(21,80,,60),FIELD=(59,1,,1 ) 

GROUP2 RECORD FIELD=(11,90,,70),FIELD=(69,1,,1) 
1* 
The control statements are discussed below: 

UC 

• SYSUT1 DD defines the input data set (OLDSET). The logical record length of the 
input records is 100 bytes. 

• SYSUT2 DD defines the output data set (OUTSET). Twenty tracks of primary 
storage space and ten tracks of secondary storage space are allocated for the data 
set on a 2314 volume. The logical record length of the output records is 80 bytes, 
and the output is blocked. 

• SYSIN DD defines the control data set, which follows in the input stream. 

• GENERATE indicates that: (1) a maximum of four FIELD parameters is included in 
subsequent RECORD statements and (2) a maximum of one IDENT parameter 
appears in a subsequent RECORD statement. 

• EXITS identifies the user routine that handles inputj output errors. 

• The first RECORD statement controls the editing of the first record group, as 
follows: (1) FIRSTGRP, which appears in bytes 1 through 8 of the input record, is 
defined as being the last record in the first group of records and (2) bytes 80 
through 100 of each input record are moved into positions 60 through 80 of each 
corresponding output record. (This example implies that bytes 60 through 79 of the 
input records in the first record group are no longer required; thus, the logical 
record length is shortened by 20 bytes.) The remaining bytes within each input 
record are transferred directly to the output records, specified in the second FIELD 
parameter. 

• The second RECORD statement indicates that the remainder of the input records 
are to be processed as the second record group. Bytes 90 through 100 of each 
input record are moved into positions 70 through 80 of the output records. (This 
example implies that bytes 70 through 89 of the input records from group 2 are no 
longer required; thus, the logical record length is shortened by 20 bytes.) The 
remaining bytes within each input record are transferred directly to the output 
records, specified in the second FIELD parameter. 

If the logical record length of the output data set differs from that of the input data 
set, as in this example, all positions in the output records must undergo editing to 
justify the new logical record length. 



IEBGENER Example 10 In this example, a sequential input data set is to be edited and copied. 

The example follows: 

IITAPETAPE JOB 09#660,SMITH 
II EXEC PGM=IEBGENER 
IISYSPRINT DD SYSOUT=A 
IISYSUT1 DD DSNAME=OLDSET,UNIT=2400,DISP=(OLD,KEEP), 
II VOLUME=SER=001234,LABEL=(3,SUL),DCB=(RECFM=F, 
II LRECL=80,BLKSIZE=80) 
IISYSUT2 DD DSNAME=NEWSET,UNIT=2400,DISP=(NEW,PASS), 
II VOLUME=SER=001235,LABEL=( ,SUL), 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000) 
IISYSIN DD * 

GENERATE MAXFLDS=3,MAXLITS=11 
RECORD FIELD=(10,'**********',,1), 

FIELD=( 5, 1 , HE, 11 ) , FIELD=( 1 , '=' , , 16 ) 
LABELS DATA=INPUT 
RECORD LABELS=3 

(first header label record) 
(second header label record) 
(third header label record) 

RECORD LABELS=2 

(first trailer label record) 
(second trailer label record) 

1* 
The control statements are discussed below: 

• SYSUT1 DD defines the input data set (OLDSET). The data set was originally 
written as the third data set (800 bits per inch) on a 9-track tape volume. 

UC 

• SYSUT2 DD defines the output data set (NEWSET). The data set is written as the 
first or only data set on a 9-track tape volume. A density of 800 bits per inch is 
specified for the write operation. The output records are blocked to reduce the 
space required by the data set and to reduce the access time required when the 
data set is subsequently referred to. The data set is passed to a subsequent job 
step. 

• SYSIN DD defines the control data set, which follows in the input stream. 

• GENERATE indicates that: (1) a maximum of three FIELD parameters is included in 
subsequent RECORD statements and (2) a maximum of 11 literal characters are 
included in subsequent FIELD parameters. 

• LABELS indicates that label records are included in the input stream. 

• The first RECORD statement controls the editing, as follows: (1) asterisks are 
placed in positions 1 through 10, (2) bytes 1 through 5 of the input record are 
converted from H-set BCD to EBCDIC mode and moved to positions 11 through 15, 
and (3) an equal sign is placed in byte 16. 

• The second and third RECORD statements indicate that three 80-byte records 
(cards), to be written as user labels on the output data set, immediately follow. The 
first RECORD statement indicates that the following cards are to be treated as 
header labels. The second RECORD statement indicates that the following cards 
are to be treated as trailer labels. 

IEBGENER Program-Class C 121 

• 





IEBISAM Program-Class C 

Copying an Indexed 
Sequential Data Set 

Creating a Sequential 
Backup Copy 

IEBISAM is a data set utility used to copy an indexed sequential data set directly from 
one direct access volume to another. (See "Introduction" for general data set utility 
information.) 

Alternatively, IEBISAM can be used to reorganize an indexed sequential data set into a 
sequential (unloaded) data set and place that data set on a direct access or magnetic 
tape volume. The unloaded data set is in a form that can be subsequently loaded, that 
is, it can be converted back into an indexed sequential data set. 

Optionally, IEBISAM can be used to print the records of an indexed sequential data 
set. 

IEBISAM can be used to: 

• Copy an indexed sequential data set. 

• Create a sequential backup (transportable) copy of source data from an indexed 
sequential data set. 

• Create an indexed sequential data set from an unloaded data set. 

• Print an indexed sequential data set. 

At the completion or termination of IEBISAM, the highest return code encountered 
within the program is passed to the calling program. 

IEBISAM can be used to copy an indexed sequential data set directly from one 
direct access volume to another. When the data set is copied, the records marked for 
deletion are only deleted if the DELETE parameter was specified in the OPTCD 
(optional control program service) field. Those records that are contained in the 
overflow area of the original data set are moved into the primary area of the copied 
data set. The control information characteristics such as BLKSIZE and OPTCD can be 
overridden by new specifications. Caution should be used, however, when overriding 
these characteristics (see "Unloaded Data Sets" in this chapter). 

An unloaded sequential data set can be created to serve as a backup or 
transportable copy of source data from an indexed sequential data set. When the 
unloaded data set is created, the records marked for deletion are only deleted if the 
DELETE parameter was specified in the OPTCD field. When the data set is 
subsequently loaded-reconstructed into an indexed sequential data set-records that 
were contained in the overflow area assigned to the original data set are moved 
sequentially into the primary area. 

An unloaded data set consists of 80-byte logical records. The data set contains: 

• Fixed records from an indexed sequential data set. 

• Control information used in the subsequent loading of the data set. 

Control information consists of characteristics that were assigned to the indexed 
sequential data set. These characteristics are: 

• Optional control program service (OPTCD) 

• Record format (RECFM) 

• Logical record length (LRECL) 

• Block size (BLKSIZE) 

• Relative key position (RKP) 

• Number of tracks in cylinder index (NTM) 

• Key length (KEYLEN) 

• Number of overflow tracks on each cylinder (CYLOFL) 

When a load operation is specified, these characteristics can be overridden by new 
specifications in the DCB parameter of the SYSUT2 DD statement (refer to "Job 
Control Statements" for a discussion of the SYSUT2 DD statement). Caution should 
be used, however, because checks are made to ensure that: 

1. Record format is the same as that of the original indexed sequential data set 
(either fixed or variable length). 

I 2. Logical record length is greater than or equal to that of the original indexed 
sequential data set when the RECFM is V or VB. 

IEBISAM Program-Class C 123 



Creating an Indexed 
Sequential Data Set from 
an Unloaded Data Set 

Printing the Logical 
Records of an Indexed 
Sequential Data Set 

124 Utilities (Release 21.7) 

3. For fixed records, the block size is equal to or a multiple of the logical record length 
of the records in the original indexed sequential data set. For variable records, the 
block size is equal to or greater than the logical record length plus four. 

4. Relative key position is equal to or less than the logical record length minus the key 
length. Following are relative key position considerations: 

• If the RECFM is variable (V) or variable blocked (VB), the relative key position 
should be at least 4. 

• If the DELETE parameter was specified in the OPTCD field and the RECFM is 
fixed or fixed blocked, the relative key position should be at least 1. If the 
DELETE parameter was specified in the OPTCD field and the RECFM is V or VB, 
the relative key position should be at least 5. 

5. The key length is less than or equal to 255 bytes. 

6. For a fixed unblocked data set with relative key position equal to zero, the LRECL is 
the length of the data. In all other cases, the LRECL is the length of the key plus the 
data. When changing the record format from fixed unblocked and RKP = 0 to fixed 
blocked, the output LRECL value must be equal to the input LRECL plus the input 
key length. 

If either RKP or KEYLEN is overridden, it might not be possible to reconstruct the data 
set. 

The number of SO-byte logical records in an unloaded data set can be determined by 
the formula: 

x = n(y+2) + 158 
78 

where x is the number of a~-byte logical records created, n is the number of records 
in the indexed sequential data set, and y is the length of a fixed record or the average 
length of variable records. 

Figure 32 shows the format of an unloaded data set for the first three 100-byte 
records of an indexed sequential data set. Each is preceded by two bytes (bb) that 
indicate the number of bytes in that record. (The last record is followed by two bytes 
containing binary zeros to identify the last logical record in the unloaded data set.) 
The characteristics of the indexed sequential data set are contained in the first two 
logical records of the unloaded data set. Data from the indexed sequential data set 
begins in the third logical record. Each logical record in the unloaded data set contains 
a binary sequence number (a a) in the first two bytes of the record. 

1"""1-0----------------80 bytes ------------------iP I 

a a blbl Characteristics 

a a Characteristics 

a a blbl 76 bytes of data 

a a 24 bytes of data Iblbl 52 bytes of data 

a a 48 bytes of data Iblbl 28 bytes of data 

a a 72 bytes of data Ibl bl 

Figure 32. An Unloaded Data Set Created Using IEBISAM 

An indexed sequential data set can be created from an unloaded version of an 
indexed sequential data set. When the unloaded data set is loaded, those records 
that were contained in the overflow area assigned to the original indexed sequential 
data set are moved sequentially into the primary area of the loaded indexed 
sequential data set. 

The records of an indexed sequential data set can be printed or stored as a 
sequential data set for subsequent printing. Each input record is placed 
in a buffer from which it is printed or placed in a sequential data set. When the 
DELETE parameter is specified in the OPTCD field, each input record not marked for 
deletion is also placed in a buffer from which it is printed or placed in a sequential 
data set. Each printed record is converted to hexadecimal unless specified otherwise 
by the user. 

IEBISAM provides user exits so that the user can include his own routines to: 

• Modify records before printing. 

• Select records for printing or terminate the printing operation after a certain 
number of records have been printed. 

• Convert the format of a record to be printed. 



Input and Output 

Control 

• Provide a record heading for each record if the record length is at least 18 bytes. If 
no user routines are provided, each record is identified in sequential order on the 
printout. 

When a user routine is supplied for a print operation, IEBISAM issues a LOAD macro 
instruction. A BALR 14,15 instruction is used to give control to the user's routine. 
When the user's routine receives control, register 0 contains a pointer to a record 
heading buffer; register 1 contains a pointer to an input record buffer. 

The input record buffer has a length equal to the length of the input logical record. 

Figure 33 shows the record heading buffer. 

Register 0 

Available to the user -.... 

f-I.------Total length = line length of applicable printer---------t-

l"" 1 

I 
I- Total length = input logical record length (LRECLI-------<-

Figure 33. Record Heading Buffer Used by IEBISAM 

The user returns control to IEBISAM by issuing a RETURN macro instruction (via 
register 14) or by usii1g a BR 14 instruction after restoring registers 2 through 14. 
(Note that the user must save registers 2 through 14 when control is given to the user 
routine.) 

A user routine must place a return code in register 15 before returning control to 
IEBISAM. The possible return codes and their meanings are: 

• 00, which indicates that buffers are to be printed. 

• 04, which indicates that the buffers are to be printed and the operation is to be 
terminated. 

• 08, which indicates that this input record is not to be printed; processing continues. 

• 12, which indicates that this input record is not to be printed; terminate the 
operation. 

IEBISAM uses an input data set; the organization of the input data set depends on the 
operation to be performed, as follows: 

• If a data set is to be copied, unloaded, or printed in logical sequence, the input is 
an indexed sequential data set. 

• If a data set is to be loaded, the input is an unloaded sequential version of an 
indexed sequential data set. 

IEBISAM produces as output an output data set, which is the result of the IEBISAM 
operation, and a message data set, which contains informational messages and any 
error messages. 

IEBISAM provides a return code to indicate the results of program execution. The 
return codes and their meanings are: 

• 00, which indicates successful completion. 

• 04, which indicates that a return code of 04 or 12 was passed to IEBISAM by the 
user routine. 

• 08, which indicates that an error condition occurred that caused termination of the 
operation. 

• 12, which indicates that a return code other than 00, 04, 08, or 12 was passed to 
IEBISAM from a user routine. The job step is terminated. 

• 16, which indicates that an error condition caused termination of the operation. 

IEBISAM is controlled by job control statements. Utility control statements are not 
used. 

IEBISAM Program-Class C 125 



Job Control Statements 

PARM Information on 
the EXEC Statement 

126 Utilities (Release 21.7) 

Table 21 shows the job control statements necessary for using IEBISAM. 

Table 21. IEBISAM Job Control Statements 

Statement Use 

JOB Initiates the job. 

EXEC Specifies the program name (PGM = IEBISAM). Additional information is required 
on the EXEC statement to control the execution of IEBISAM; see "PARM 
Information on the EXEC Statement" below. 

SYSUTl DD Defines the input data set. 

SYSUT2 DD Defines the output data set. 

SYSPRINT DD Defines a sequential message data set, which can be written to a system output 
device, a tape volume, or a direct access device. 

The minimum region size that can be specified for the execution of IEBISAM is SK. 

If the block size of the SYSPRINT data set is not a multiple of 121, a default value of 
121 is taken (no error message is issued, and no condition code is set). 

The PARM parameter on the EXEC statement is used to control the execution of 
IEBISAM. The PARM parameter is entered: 

PARM = {COpy } 
{UNLOAD } 
{LOAD } 
{PRINTL } 
{·PRINTL[,N][,EXIT = routinename]' } 

The PARM values have the following meaning: 

• COPY specifies a copy operation. 

I • UNLOAD specifies an unload operation. This is the default. 

• LOAD specifies a load operation. 

• PRINTL specifies a print operation in which each record is converted to 
hexadecimal before printing. The N is an optional value that specifies that records 
are not to be converted to hexadecimal before printing. 

• EXIT is an optional value that specifies the name of an exit routine that is to receive 
control before each record is printed. 

Note: Exit routines must be included in either the job library or the link library. 

For a COpy operation, the SYSUT2 DO statement must include a primary space 
allocation that is sufficient to accommodate records that were contained in overflow 
areas in the original indexed sequential data set. New overflow areas can be specified 
when the data set is copied. 

For an UNLOAD operation, specifications that are implied by default or included in the 
DCB parameter of the SYSUT2 DO statement (for example, tape density) must be 
considered when the data set is subsequently loaded. If a block size is specified in the 
DCB parameter of the SYSUT2 DO statement, it must be a multiple 01S0 bytes. 

For a LOAD operation, if the input data set resides on an unlabeled tape, the SYSUTI 
DO statement must specify a BLKSIZE that is a multiple of 80 bytes. Specifications 
that are implied by default or included in the DCB parameter of the SYSUTI DO 
statement must be consistent with specifications that were implied or included in the 
DCB parameter of the SYSUT2 DO statement used for the UNLOAD operation. The 
SYSUT2 DO statement must include a primary space allocation that is sufficient to 
accommodate records that were contained in overflow areas in the original indexed 
sequential data set. If new overflow areas are desired, they must be specified when 
the data set is loaded. 

For a PRINTL operation, if the device defined by the SYSUT2 DO statement is a 
printer, the specified BLKSIZE must be equal to or less than the physical printer size; 
that is 121, 133, or 145 bytes. If BLKSIZE is not specified, 121 bytes is assumed. 
LRECL (or BLKSIZE when no LRECL was specified) must be between 55 and 255 
bytes. 

If a user routine is supplied for a PRINTL operation, IEBISAM issues a LOAD macro 
instruction to make the user routine available. A BALR 14,15 instruction is 
subsequently used to give control to the routine. When the user routine receives 
control, register 0 contains a pointer to a record heading buffer; register 1 contains a 
pointer to an input record buffer. 



IEBISAM Examples 

IEBISAM Example 1 

IEBISAM Example 2 

The following examples illustrate some of the uses of IEBISAM. Table 22 can be used 
as a quick reference guide to IEBISAM examples. The numbers in the uExample" 
column point to the examples that follow. 

Table 22. IEBISAM Example Directory 

Data Set 
Operation Organization Devices Comments Example 

COpy Indexed 2314 Disks Unblocked input; blocked output 
sequential Prime area and index separation. 

UNLOAD Indexed 2314 Disk, Blocked output. 
sequential, 9-track 
Sequential tape 

UNLOAD Indexed 2314 Disk, Blocked output. Data set written 
sequential, 7-track as second data set on input 
Sequential tape volume. 

LOAD Sequential, 9-track Input data set is second data set 
Indexed tape, on tape volume. 
sequential 2314 Disk 

PRINTL Indexed 2311 Disk, Blocked input. Output not 
sequential, System converted. 
Sequential Printer 

In this example, an indexed sequential data set is to be copied from two 2314 
volumes to two other 2314 volumes. The output data is blocked. 

The example follows: 

IICPY JOB 09#770,SMITH 
II EXEC PGM=IEBISAM,PARM=COPY 
IISYSPRINT DD SYSOUT=A 
IISYSUTl DD DSNAME=ISAM01,VOLUME=SER=(222222,333333), 
II DISP=(OLD,DELETE),UNIT=(2314,2), 

I II DCB=(DSORG=IS,RECFM=F,LRECL=500,RKP=4,BLKSIZE=500) 
IISYSUT2 DD DSNAME=ISAM02(INDEX),UNIT=2314, 
II DISP=(NEW,KEEP),VOLUME=SER=444444, 

I II DCB=(DSORG=IS,RECFM=FB,BLKSIZE=1000),SPACE=(CYL,(2» 
II DD DSNAME=ISAM02(PRIME),UNIT=(2314,2), 
II DSB=(DSORG=IS,BLKSIZE=1000),SPACE=(CYL,(10», 
II VOLUME=SER=(444444,555555),DISP=(NEW,KEEP) 
1* 
The control statements are discussed below: 

• EXEC specifies the program name and the COpy operation. 

2 

3 

4 

5 

• SYSUTI DO defines an indexed sequential input data set, which resides on two 
2314 volumes. 

• SYSUT2 DO defines the output data set index area; the index and prime areas are 
separated. 

I • The second SYSUT2 DD defines the output data set prime area. Ten cylinders are 
allocated for the prime area on each of the two 2314 volumes. 

In this example, indexed sequential input is to be converted into a sequential data set; 
the output is to be placed on a 9-track tape volume. 

The example follows: 

IISTEPl JOB 09#770,SMITH 
II EXEC PGM=IEBISAM,PARM=UNLOAD 
IISYSPRINT DD SYSOUT=A 
IISYSUTl DD DSNAME=INDSEQ,UNIT=2314,DISP=(OLD,KEEP), 

I II VOLUME=SER=111112,DCB=(DSORG=IS) 
IISYSUT2 DD DSNAME=UNLDSET,UNIT=2400,LABEL=( ,SL), 
II DISP=( ,KEEP),VOLUME=SER=001234, 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=640) 
1* 
The control statements are discussed below: 

• EXEC specifies the program name and the UNLOAD operation. 

• SYSUTI DO defines the indexed sequential input data set, which resides on a 2314 
volume. 

IEBISAM Program-Class C 127 



IEBISAM Example 3 

IEBISAM Example 4 

IEBISAM Example 5 

128 Utilities (Release 2L7) 

• SYSUT2 DD defines the unloaded output data set. The data set consists of fixed 
blocked records, and is to reside as the first or only data set on a 9-track tape 
volume. The data set is to be written at a density of 800 bits per inch. 

In this example, indexed sequential input is to be converted into a sequential data set 
and placed on a 7 -track, tape volume. 

The example follows: 

IISTEPA JOB 09#770,SMITH 
II EXEC PGM=IEBISAM,PARM=UNLOAD 
IISYSPRINT DD SYSOUT=A 
IISYSUTl DD DSNAME=INDSEQ,UNIT=2314,DISP=(OLD,KEEP), 

I I I VOLUME=SER=111112, DCB=( DSORG=IS ) 
IISYSUT2 DD DSNAME=UNLDSET,UNIT=2400-2,LABEL=(2,SL), 
II VOLUME=SER=001234,DCB=(DEN=2,RECFM=FB, 
II LRECL=80,BLKSIZE=1040,TRTCH=C),DISP=( ,KEEP) 
1* 
The control statements are discussed below: 

• EXEC specifies the program name and the UNLOAD operation. 

• SYSUT1 DD defines the input data set, which is an indexed sequential data set. The 
data set resides on a 2314 volume. 

• SYSUT2 DD defines the unloaded output data set. The data set consists of fixed 
blocked records, and is to reside as the second data set on a 7 -track tape volume. 
The data set is to be written at 800 bits per inch density. 

In this example, an unloaded data set is to be converted to the form of the original 
indexed sequential data set. 

The example follows: 

IISTEPA JOB 09#770,SMITH 
II EXEC PGM=IEBISAM,PARM=LOAD 
IISYSPRINT DD SYSOUT=A 
IISYSUTl DD DSNAME=UNLDSET,UNIT=2400,LABEL=(2,SL), 
II DISP=(OLD,KEEP),VOLUME=SER=001234 
IISYSUT2 DD DSNAME=INDSEQ,DISP=( ,KEEP),DCB=(DSORG=IS), 
II SPACE=(CYL,( 1 )),VOLUME=SER=111112,UNIT=2314 
1* 
The control statements are discussed below: 

• EXEC specifies the, program name and the LOAD operation. 

• SYSUT1 DD defines the input data set, which is a sequential (unloaded) data set. 
The data set is the second data set on a 9-track tape volume. 

• SYSUT2 DD defines the output data set, which is an indexed sequential data set. 
One cylinder of space is allocated for the data set on a 2314 volume. 

In this example, the logical records of an indexed sequential data set are to be printed 
on a system output device. 

The example follows: 

IlpRINT JOB 09#770,SMITH 
II EXEC PGM=IEBISAM,PARM='PRINTL,N' 
IISYSPRINT DD SYSOUT=A 
IISYSUTl DD DSNAME=ISAM03,UNIT=2311,DISP=OLD, 

I II VOLUME=SER=222222,DCB=(DSORG=IS) 
IISYSUT2 DD SYSOUT=A 
1* 
The control statements are discussed below: 

• EXEC specifies the program name and the PRINTL operation. The output records 
are not to be converted to hexadecimal prior to printing. 

• SYSUT1 DD defines the input data set, which resides on a 2311 volume. 

• SYSUT2 DD defines the output data set. A logical record length (LRECL) of 121 
bytes is assumed. 



IEBPTPCH Program-Class C 

Printing or Punching 
a Data Set 

Printing or Punching 
Selected Members 

Printing or Punching 
Selected Records 

Printing or Punching 
a Partitioned Directory 

IEBPTPCH is a data set utility used to print or punch all, or selected portions, of a 
sequential or partitioned data set. Records can be printed or punched to meet either 
standard specifications or user specifications. (See "Introduction" for general data set 
utility information.) 

The standard specifications are: 

• Each logical record begins on a new printed line or punched card. 

• Each printed line consists of groups of S characters separated by 2 blanks. Each 
punched card contains up to SO contiguous bytes of information. 

• Characters that cannot be printed appear as blanks. 

• When the input is blocked, each logical record is delimited by "*,, and each block is 
delimited by u**". 

User formats can be specified, provided that no output record exceeds the capability 
of the output device. 

IEBPTPCH provides optional editing facilities and exits for user routines that can be 
used to process labels or manipulate input or output records. 

IEBPTPCH can be used to: 

• Print or punch a sequential or partitioned data set in its entirety. 

• Print or punch selected members from a partitioned data set. 

• Print or punch selected records from a sequential or partitioned data set. 

• Print or punch the directory of a partitioned data set. 

• Print or punch an edited version of a sequential or partitioned data set. 

At the completion or termination of the program, the highest return code encountered 
within the program is passed to the calling program. 

IEBPTPCH can be used to print or punch a sequential data set or a partitioned data 
set in its entirety. Data to be printed or punched can be either hexadecimal or a 
character representation of valid alphameric bit configurations. For a print operation, 
packed decimal data should be converted to unpacked decimal or hexadecimal mode 
to ensure that all characters are printable. 

For a standard print operation, each logical record is printed in groups of eight 
characters. Each set of eight characters is separated from the next by two blanks. Up 
to 112 characters can be included on a printed line. (An edited output can be 
produced to omit the blank delimiters and print up to 144 characters per line.) 

Data from an input logical record is punched in contiguous columns in the punched 
card(s) representing that record. Sequence numbers can be created and placed in 
columns 73 through SO of the punched cards. 

IEBPTPCH can be used to print or punch selected members of a partitioned data set. 
Utility control statements are used to specify members to be printed or punched. 

IEBPTPCH can be used to print selected records from a sequential or partitioned 
data set. Utility control statements can be used to specify: 

• The termination of a print or punch operation after a specified number of records 
has been printed or punched. 

• The printing or punching of every nth record. 

• The starting of a print or punch operation after a specified number of records. 

IEBPTPCH can be used to print or punch the contents of a partitioned directory. 
Each directory block is printed in groups of eight characters. If the directory is printed 
in hexadecimal representation, the first four printed characters of each directory block 
indicate the total number of used bytes in that block. For details of the format of the 
directory, see as System Control Blocks, GC2S-662B. 

Data from a directory block is punched in contiguous columns in the punched cards 
representing that block. 

IEBPTPCH Program-Class C 129 



Printing or Punching 
an Edited Data Set 

Input and Output 

Control 

Job Control Statements 

130 Utilities (Release 21. 7) 

IEBPTPCH can be used to print or punch an edited version of a sequential or a 
partitioned data set. Utility control statements can be used to specify editing 
information that applies to a record, a group of records, selected groups of records, 
or an entire member or data set. 

An edited data set is produced by: 

• Rearranging or omitting defined data fields within a record. 

• Converting data from packed decimal to unpacked decimal or from alphameric to 
hexadecimal representation. 

IEBPTPCH uses the following input: 

• An input data set, which contains the data that is to be printed or punched. The 
input data set can be either sequential or partitioned. 

• A control data set, which contains utility control statements. The control data set is 
required for each use of IEBPTPCH. 

IEBPTPCH produces the following output: 

• An output data set, which is the printed or punched data set. 

• A message data set, which contains informational messages (for example, the 
contents of the control statements) and any error messages. 

IEBPTPCH provides a return code to indicate the results of program execution. The 
. return codes and their meanings are: 

• 00, which indicates successful completion. 

I · 04, which indicates either that a physical sequential data set is empty, or that a 
partitioned data set contains no members. 

• 08, which indicates that a member specified for printing does not exist in the input 
data set. Processing continues with the next member. 

• 12, which indicates that an unrecoverable error occurred or that a user routine 
passed a return code of 12 to IEBPTPCH. The job step is terminated. 

• 16, which indicates that a user routine passed a return code of 16 to IEBPTPCH. 
The job step is terminated. 

IEBPTPCH is controlled by job control statements and utility control statements. The 
job control statements are required to execute or invoke the IEBPTPCH program and 
to define the data sets that are used and produced by the program. The utility control 
statements are used to control the functions of IEBPTPCH. 

Table 23 shows the job control statements necessary for using IEBPTPCH. 

Table 23. IEBPTPCH Job Control Statements 

Statement 

JOB 

EXEC 

SYSPRINT DD 

SYSUTl DD 

SYSUT2 DD 

SYSIN DD 

Use 

Initiates the job step. 

Specifies the program name (PGM = IEBPTPCH) or, if the job control statements 
reside in a procedure library, the procedure name. 

Defines a sequential message data set. The data set can be written to a system 
output device, a tape volume, or a direct access device. 

Defines a sequential or partitioned input data set. 

Defines the output (printed or punched) data set. 

Defines the control data set. The control data set normally resides in the input 
stream; however, it can be defined as a member in a partitioned data set. 

The minimum region size that can be specified for the execution of IEBPTPCH is 
16K + 2b, where b is the largest block size in the job step rounded to the next higher 
2K. 

The input data set can contain fixed, variable, undefined, or variable spanned records. 
Variable spanned records are allowed only when the input is sequential. 

Both the output data set and the message data set can be written to the system 
output device if it is a printer. Variable spanned records are allowed only when the 
input is sequential. 



Restrictions 

Utility Control Statements 

If the logical record length of the input records is such that the output would exceed 
the output record length, the utility divides the record into multiple lines or cards in 
the case of standard printed output, standard punched output, or when the PREFORM 
parameter was specified. Otherwise, only part of the input record is printed (a 
maximum of 144 characters) or punched (a maximum of 80 characters). 

• The SYSPRINT DO statement is required for each use of IEBPTPCH. 

• The RECFM must be fixed block with ASCII carriage control characters (FBA), and 
the LRECL must be 121. Output can be blocked by specifying a BLKSIZE which is a 
multiple of 121 on the SYSPRINT DO statement. The default BLKSIZE is 121. 

• The SYSUTI DO statement is required for each use of IEBPTPCH. The RECFM 
(except for undefined records), and the BLKSIZE and the LRECL (except for 
undefined and fixed unblocked records) must be present on the DO statement, in 
the DSeB, or on the tape label. 

• The SYSUT2 DO statement is required for each use of IEBPTPCH. The RECFM must 
be FBA or fixed block with machine-code control characters (FBM). 

• The LRECL parameter, or, if no logical record length is specified, the BLKSIZE 
parameter, specifies the number of characters to be written per printed line or per 
punched card (this count includes a control character). The number of characters 
specified must be in the range of 2 through 145. The default values for edited 
output lines are 121 characters per printed line and 81 characters per punched 
card. The SYSUT2 data set can be blocked by specifying both the LRECL and the 
BLKSIZE parameters, in which case, block size must be a multiple of logical record 
length. 

• The block size for the SYSPRINT data set must be a multiple of 121. The block size 
for the SYSIN data set must be a multiple of 80. Any blocking factor can be 
specified for these block sizes. 

• The SYSIN DO statement is required for each use of IEBPTPCH. 

• The RECFM must be FB and the LRECL must be 80. Any blocking factor can be 
specified for the BLKSIZE (multiple of 80). The default BLKSIZE is 80. 

• A partitioned directory to be printed/punched must be defined as a sequential data 
set (TYPORG = PS). Code the RECFM, BLKSIZE, and LRECL in the SYSUTI DO 
card. 

IEBPTPCH is controlled by utility control statements. The control statements are 
shown in the order in which they must appear, as follows: 

• PRINT or PUNCH statement, which specifies that the data is to be either printed or 
punched. 

• TITLE statement, which specifies that a title is to precede the printed or punched 
data. 

• EXITS statement, which specifies that user routines are provided. 

• MEMBER statement, which specifies that the input is a partitioned data set and that 
a selected member is to be printed or punched. 

• RECORD statement, which specifies whether editing is to be performed, that is, 
records are to be printed or punched to nonstandard specifications. 

• LABELS statement, which specifies whether user labels are to be treated as data. 

The control statements are included in the control data set, as required. Any number 
of MEMBER and RECORD statements can be included in a job step. 

IEBPTPCH Program-Class C 131 



PRINT Statement 

132 Utilities (Release 21.7) 

The PRINT statement is used to initiate the IEBPTPCH operation. If this is a print 
operation, PRINT must be the first statement in the control data set. 

The format of the PRINT statement is: 

1"~,-D~be/rpRiNT(pREFORM~~"""{jrJ'"'w>W""" , 
i, , ..... ;. {~J] 
; [,TYPOR.G= .{PS} '. 
j: .. {PO}] 
r·· [,TOTCONV ==={XE} f;·'; ., If'ZJ] . 
[:'. [,CNTRL= '!l]' 
! .; : [,STRTAFT= n] 
!:::" [,STOPAFT:~n] 
! .'. . [,SKIP==,nI 
! GMAXNAME ==n] 
I;. [.MAX~LDS;:='/)] : 
I ·w.' [,MA)(G~S:= n] 
~ :: :: .. ; [,M~XLlTS~ rl]; 
\>:' · :[,INITPG'=:~J . 
ki;;.:;~~.;~" "," ,\" w'w, '['i~~~~~~~j=p]·. 
where: 

PREFORM = 
specifies that a control character is provided as the first character of each record 
to be printed. The control characters are used to control the spacing, number of 
lines per page, and page ejection. If an error occurs, the print operation is 
terminated. If PREFORM is coded, except for syntax checking, any additional PRINT 
operands and all other control statements except LABELS statements are ignored. 
PREFORM must not be used for printing data sets with VS or VBS records longer 
than 32K bytes. These values can be coded: 

A 

M 

specifies that an ASA control character is provided as the first character of each 
record to be printed. If the input record length exceeds the output record 
length, the utility uses the ASA character for printing the first line, with a single 
space character on all subsequent lines of the record. 

specifies that a machine-code control character is provided as the first 
character of each record to be printed. If the input record length exceeds the 
output record length, the utility prints all lines of the record with a 
print-skip-one-line character until the last line of the record, which will contain 
the actual character provided as input. 

TYPORG = 
specifies the organization of the input data set. If TYPORG is omitted, sequential 
organization is assumed. These values can be coded: 

PS 
specifies that the input data set is organized sequentially. 

PO 
specifies that the input data set is partitioned. 

TOTCONV = 
specifies the representation of data to be printed. TOTCONV can be overridden by 
any user specifications (RECORD statements) that pertain to the same data. These 
values can be coded: 

XE 

PZ 

specifies that data is to be printed in 2-character per byte hexadecimal 
representation (for example, C3 40 F4 F6). If XE is not specified, data is printed 
in I-character per byte alphameric representation. The above example would 
appear as C 46. 

specifies that data (packed decimal mode) is to be converted to unpacked 
decimal mode. If TOTCONV is omitted, data is not converted. IEBPTPCH does 
not check for packed decimal mode. The output is unpredictable when the input 
is not packed decimal. 



CNTRL = n 
specifies a control character for the output device that indicates line spacing, as 
follows: 1 indicates single spacing; 2 indicates double spacing; and 3 indicates 
triple spacing. If CNTRL is omitted, 1 is assumed. 

STRTAFT = n 
specifies, for sequential data sets, the number of logical records (physical blocks in 
the case of VS or VBS type records longer than 32K bytes) to be skipped before 
printing begins. For partitioned data sets, specifies the number of logical records to 
be skipped in each member before printing begins. The n value must not exceed 
32,767. If STRTAFT is specified and RECORD statements are present, the first 
RECORD statement of a member describes the format of the first logical record to 
be printed. 

STOPAFT = n 
specifies, for sequential data sets, the number of logical records (or physical blocks 
in the case of VS or VBS records longer than 32K bytes) to be printed. For 
partitioned data sets, this specifies the number of logical records to be printed in 
each member to be processed. The n value must not exceed 32,767. If STOPAFT is 
specified and RECORD statements are present, the operation is terminated when 
the STOPAFT count is satisfied, at the end of a record group, or at the end of the 
data set; whichever occurs first. 

SKIP = n 
specifies that every nth record (or physical block in the case of VS or VBS records 
longer than 32K bytes) is to be printed. If SKIP is omitted, successive logical 
records are printed. 

MAXNAME = n 
specifies a number no less than the total number of subsequent MEMBER 
statements. If MAXNAME is omitted when there is a MEMBER statement present, 
the print request is terminated. 

MAXFLDS = n 
specifies a number no less than the total number of FIELD parameters appearing in 
subsequent RECORD statements. If MAXFLDS is omitted when there is a FIELD 
parameter present, the print request is terminated. 

MAXGPS = n 
specifies a number no less than the total number of IDENT parameters appearing in 
subsequent RECORD statements. If MAXGPS is omitted when there is an IDENT 
parameter present, the print request is terminated. 

MAXLITS = n 
specifies a number no less than the total number of characters contained in the 
IDENT literals of subsequent RECORD statements. If MAXLITS is omitted when 
there is a literal present, the print request is terminated. 

INITPG = n 
specifies the initial page number; the pages are num~ered sequentially thereafter. 
If INITPG is omitted, 1 is assumed. The value of n must not be greater than 9999. 

MAXLINE = n 
specifies the maximum number of lines to a printed page. Spaces, titles, and 
subtitles are included in this number. If n is smaller than the total number of 
spaces, titles, and subtitles, an error message is issued. If MAXLINE is omitted, 60 
is assumed. 

IEBPTPCH Program-Class C 133 



PUNCH Statement 

134 Utilities (Release 21.7) 

The PUNCH statement is used to initiate the IEBPTPCH operation. If this is a punch 
operation, PUNCH must be the first statement in the control data set. 

The format of the PUNCH statement is: 

where: 

PREFORM = 
specifies that a control character is provided as the first character of each record 
to be punched. The control characters are used to select a stacker. If an error is 
discovered, the punch operation is terminated. If PREFORM is coded, except for 
syntax checking, any additional PUNCH operands and all other control statements 
except LABELS statements are ignored. PREFORM must not be used for punching 
data sets with VS or VBS records longer than 32K bytes. These values can be 
coded: 

A 

M 

specifies that an ASA control character is provided as the first character of each 
record to be punched. If the input record length exceeds the output record 
length, the utility duplicates the ASA character on each output card of the 
record. 

specifies that a machine-code control character is provided as the first 
character of each record to be punched. If the input record length exceeds the 
output record length, the utility duplicates the machine control character on 
each output card of the record. 

TYPORG = 
specifies the organization of the input data set. If TYPORG is omitted, sequential 
organization is assumed. These values can be coded: 

PS 
specifies that the input data set is organized sequentially. This is the default. 

PO 
specifies that the input data set is partitioned. 

TOTCONV = 
specifies the representation of data to be punched. TOTCONV can be overridden by 
any user specifications (RECORD statements) that pertain to the same data. These 
values can be coded: 

XE 

PZ 

specifies that data is to be punched in 2-character per byte hexadecimal 
representation (for example, C3 40 F4 F6). If XE is not specified, data is 
punched in I-character per byte alphameric representation. The above example 
would appear as C 46. 

specifies that data (packed decimal mode) is to be converted to unpacked 
decimal mode. If TOTCONV is omitted, data is not converted. IEBPTPCH does 
not check for packed decimal mode. The output is unpredictable when the input 
is not packed decimal. 



TIT LE Statement 

CNTRL =n 
specifies a control character for the output device that is used to select the 
stacker, as follows: 1 indicates the first stacker and 2 indicates the second stacker. 
If CNTRL is omitted, 1 is assumed. 

STRTAFT= n 
specifies, for sequential data sets, the number of logical records (physical blocks in 
the case of VS or VBS type records longer than 32K bytes) to be skipped before 
punching begins. For partitioned data sets, specifies the number of logical records 
(physical blocks in the case of VS or VBS type records longer than 32K bytes) to be 
skipped in each member before punching begins. The n value must not ex<;eed 
32,767. If STRTAFT is specified and RECORD statements are present, the first 
RECORD statements of a member describes the formatof the first logical record to 
be punched. 

STOPAFT= n 
specifies, for sequential data sets, the number of logical records (or physical blocks 
in the case of VS or VBS records longer than 32K bytes) to be punched. For 
partitioned data sets, this specifies the number of logical records (or physical 
blocks in the case of VS or VBS records longer than 32K bytes) to be punched in 
each member to be processed. The n value must not exceed 32,767. If STOPAFT is 
specified and RECORD statements are present, the operation is terminated when 
the STOPAFT count is satisfied or at the end of the first record group, whichever 
occurs first. 

SKIP = n 
specifies that every nth record (or physical block in the case of VS or VBS records 
longer than 32K bytes) is to be punched. If SKIP is omitted, successive logical 
records are punched. 

MAXNAME=n 
specifies a number no less than the total number of subsequent MEMBER 
statements. If MAXNAME is omitted when there is a MEMBER statement present, 
the punch request is terminated. 

MAXFLDS = n 
specifies a number no less than the total number of FIELD parameters appearing in 
subsequent RECORD statements. If MAXFLDS is omitted when there is a FIELD 
parameter present, the punch request is terminated. 

MAXGPS=n 
specifies a number no less than the total number of IDENT parameters appearing in 
subsequent RECORD statements. If MAXGPS is omitted when there is an IDENT 
parameter present, the punch request is terminated. 

MAXLlTS= n 
specifies a number no less than the total number of characters contained in the 
IDENT literals of subsequent RECORD statements. If MAXLITS is omitted when 
there is a literal present, the punch request is terminated. 

CDSEQ =n 
specifies the initial sequence number of a deck of punched cards. This value must 
be contained in columns 73 through 80. Sequence numbering is initialized for each 
member of a partitioned data set. If CDSEQ is omitted, the cards are not numbered. 
If the value of n is zero, 00000000 is assumed as a starting sequence. 

COl NCR = n 
specifies the increment to be used in generating sequence numbers. If COl NCR is 
omitted and CDSEQ is coded, 10 is assumed as an increment value for sequence 
numbering. 

The TITLE statement is used to request title and subtitle records. Two TITLE 
statements can be included for each use of IEBPTPCH. A first TITLE statement defines 
the title, and a second defines the subtitle. The TITLE statement, if included, must 
immediately follow the PRINT or PUNCH statement in the control data set. 

The format of the TITLE statement is: 

i.:> [name] tiTLE, ITEM = . ('title' [,output ':'/oeatiolj] )[.ITEM •.• ] 
~~~&",.,;;·~;'fl"~·~~;"/0*~,;.~;;.;";~",:~~;",,,,",i:;'''0:=W';::''''''':;;''*:~,<-»;~;"'=""'~:;>*"'~";;'·=>:<"';';:";;i~;·~:':':;; ~ ~.~'**;".~, ~,,;,:'d-:":,~~~:~:. ",*.~;,..;:,<;'.,Y./;~','.".:.". ',:;.&'.",~i'-;~":'''':~~~'''»':-O.<.,.,' ~ ,~,.~.,,,::;~.~,,;.:.,::,.»';,*,:~.<fu,,'.~",,,,;.:~.~.,.l 

IEBPTPCH Program-Class C 135

EXITS Statement

MEMBER Statement

RECORD Statement

136 Utilities (Release 21.7)

where:

ITEM =
specifies title or subtitle information. The values that can be coded are:

Ititle'
specifies the title or subtitle literal (maximum length of 40 bytes), enclosed in
apostrophes. If the literal contains apostrophes, each apostrophe must be
written as two consecutive apostrophes.

output-location
specifies the starting position at which the literal for this item is to be placed in
the output record. If output-location is not specified, 1 is assumed. The specified
title may not exceed the output logical record length minus 1.

The EXITS statement is used to identify exit routines supplied by the user. Exits to
label processing routines are ignored if the input data set is partitioned. Linkage'to
and from user routines are discussed in IIAppendix A: Exit Routine Linkage."

The EXITS statement, if included, must immediately follow any TITLE statement or
follow the PRINT or PUNCH statement.

The format of the EXITS statement is:
,r.' .. "" 'ti~b~ij'ExiTs'¥'~[iN~HDR'~:';~~tih;;~a~~I~~"-'~'<~:""""'¥¥"7'~' ~~7~:~'0:~".;~~q~~~~¥-~'~'-':='"2;'7?:?::'~'~~'1

[INTLR =routineflamel':', . ,:',;',:::::\": . 'J
[INREC=, routinenarn.el :'.' '" ... ' .•... ' .. ".: . ".: .•. : .•.. , .•.. "\ .' ' ... '. '.' ". , j

v . [OUTREC= routinename] < ,".. . .. '.'::: ,',:•• , .. :.', ·.·,· .. ··:,~~~,~0:;::::~;,JLLJ
':'wh'e're':"'~';~" , ,> :~~, .. ~,;.:" ,; ',;,'>':~".., ',},~ '~'N ',.,"",'.<";, '.<;,,<,~ <,~:;,·~,.""~;;;"'N·;"'~:"".:'.·;"'C,.:' !/ .->": +:::.,,v.,· '..,"" .. y.;.,:..../·;.::..,:::~'.:M<..(..,".',::..:-.-»·': "<,:;',;,x.,;;":';'>" ·j':.: .. r;v»>,:;".·.':h~..,<.;;,' ;::~,:~.;,,«'~

INHDR = routinename
specifies the symbolic name of a routine that processes user input header labels.

INTLR = routinename
specifies the symbolic name of a routine that processes user input trailer labels.

INREC = routinename
specifies the symbolic name of a routine that manipulates each logical record (or
physical block in the case of VS or VBS records longer than 32K bytes) before it is
processed.

OUTREC = routinename
specifies the symbolic name of a routine that manipulates each logical record (or
physical block in the case of VS or VBS records longer than 32K bytes) before it is
printed or punched. When standard specifications are used, this exit is not
available.

The MEMBER statement is used to identify members to be printed or punched. All
RECORD statements that follow a MEMBER statement pertain to the member indicated
in that MEMBER statement only. When RECORD and MEMBER statements are used, at
least one MEMBER statement must precede the first RECORD statement. If no
RECORD statement is used, the member is processed to standard specifications.

If no MEMBER statement appears, and a partitioned data set is being processed, all
members of the data set are printed or punched. Any number of MEMBER statements
can be included in a job step.

The format of the MEMBER statement is:

where:

NAME =
specifies a member to be printed or punched. These values can be coded:

membername
specifies a member by its member name.

alias name
specifies a member by its alias.

If the NAME parameter is specified in the MEMBER statement, MAXNAME must be
specified in a PRINT or PUNCH statement.

The RECORD statement is used to define a group of records-called a record
group-that is to be printed or punched to the user's specifications. A record group
consists of any number of records to be edited identically.

If no RECORD statements appear, the entire data set, or named member, is printed or
punched to standard specifications. If a RECORD statement is used, all data following
the record group it defines (within a partitioned member or within an entire sequential
data set) must be defined with other RECORD statements. Any number of RECORD
statements can be included in a job step.

The format of the RECORD statement is:

[label] RECORD [IDENT = (length, 'name' ,input-location)]

where:

IDENT =

[,FIELD = (length[,input-/ocation][,conversion]
['()LJtp~!-locatio~])][,FIE~D = ...]

identifies the last record of the record group to which the FIELD parameters apply.
If IDENT is omitted and STOPAFT is not included with the PRINT or PUNCH
statement, record processing halts after the last record in the data set. If IDENT is
omitted and STOPAFT is included with the PRINT or PUNCH statement, record
processing halts when the STOPAFT count is satisfied or after the last record of the
data set is processed, whichever occurs first. The values that can be coded are:

length
specifies the length (in bytes) of the field that contains the identifying name in
the input records. The length cannot exceed eight bytes.

'name'
specifies the exact literal that identifies the last record of a record group. If the
literal contains apostrophes, each must be written as two consecutive
apostrophes.

input -location
specifies the starting location of the field that contains the identifying name in
the input records.

Note: The sum of the length and input location must be equal to or less than the
initial LRECL plus one.

FIELD =
specifies field processing and editing information. These values can be coded:

length
specifies the length (in bytes) of the input field to be processed.

Note: The length must be equal to or less than the initial input LRECL.

input -location
specifies the starting byte of the input field to be processed. If input-location is
not specified, 1 is assumed.

Note: The sum of the length and input location must be equal to or less than the
initial input LRECL plus one.

conversion
specifies a two-byte code that indicates the type of conversion to be performed
on this field before it is printed or punched. If conversion is not specified, the
field is moved to the output area without change. The values that can be coded
are:

PZ

XE

specifies that data (packed decimal) is to be converted to unpacked decimal
data. The converted part of the input record (length L) occupies 2L - 1 output
characters.

specifies that data (alphameric) is to be converted to hexadecimal data. The
converted part of the input record (length L) occupies 2L output characters.

output-location
specifies the starting location of this field in the output records. If output-location
is not specified, 1 is assumed. Unspecified fields in the output records appear as
blanks in the printed or punched output. Data that exceeds the SYSUT2 printer •
or punch size is not printed or punched. The speCified fields may not exceed the
output logical record length minus 1. When either one or multiple "FIELDS" are
specified, the sum of all lengths and extra characters needed for conversions
must be equal to or less than the output LRECL minus one.

IEBPTPCH Program-Class C 137

LABELS Statement

138 Utilities (Release 21.7)

A RECORD statement referring to a partitioned data set for which no members have
been named need contain only FIELD parameters. These are applied to the records in
all members of the data set.

If a FIELD parameter is included in the RECORD statement, MAXFLDS must be
specified in the PRINT/PUNCH statement.

If an IDENT parameter is included in the RECORD statement, MAXGPS must be
specified in the PRINT/PUNCH statement. If a literal is specified in the IDENT
parameter, MAXLITS must be specified in the PRINT/PUNCH statement.

The LABELS statement specifies whether user labels are to be treated as data. For a
detailed discussion of this option, refer to "Processing User Labels as Data," in
"Appendix E: Processing User Labels."

The format of the LABELS statement is:

where:

DATA =
specifies whether user labels are to be treated as data. The values that can be
coded are:

YES
specifies that any user labels that are not rejected by a user's label processing
routine are to be treated as data. Processing of labels as data stops in
compliance with standard return codes. If no value is entered, YES is assumed.

NO
specifies that user labels are not to be treated as data.

ALL
specifies that user labels are to be treated as data regardless of any return
code. A return code of 16 causes the utility to complete the processing of the
remainder of the group of user labels and to terminate the job step.

ONLY
specifies that only user header labels are to be treated as data. User header
labels are processed as data regardless of any return code. The job terminates
upon return from the OPEN routine.

Note: DATA = NO must be specified to make standard user labels (SUL) exits inactive
when input data sets with nonstandard labels (NSL) are to be processed.

If more than one valid LABELS statement is included, all but the last LABELS
statement are ignored.

IEBPTPCH Examples

IEBPTPCH Example 1

The following examples illustrate some of the uses of IEBPTPCH. Table 24 can be
used as a quick reference guide to IEBPTPCH examples. The numbers in the
"Example" column point to the examples that follow.

Table 24. 'IEBPTPCH Example Directory

Data Set
Operation Organization Devices Comments Example

PRINT Sequential 9-track tape, Standard format. Conversion to
System printer hexadecimal.

PUNCH Sequential 7 -track tape, Standard format. Conversion to
Card Reader hexadecimal. 2

PRINT Partitioned 3330 Disk Storage Standard format. Conversion to
System printer hexadecimal. Ten records from

each member are to be printed. 3

PRINT Partitioned 2314 Disk, Standard format. Conversion to
System printer hexadecimal. Two members are

to be printed. 4

PRINT Sequential 9 track tape, User specified format. Input
System printer data set is the second data set

on the volume. 5

PUNCH Sequential 2314 Disk, User specified format. Sequence
Card Reader numbers are to be assigned and
Punch punched. 6

PRINT Sequential, 2314 Disk, Standard format. Conversion to
Partitioned System printer hexadecimal. 7

PUNCH Sequential Card Reader, Standard format. Control data
Card Read set is a member in a cataloged
Punch partitioned data set. 8

PRINT Sequential 2311 Disk, User specified format. User
System printer routines are provided. Processing

ends after first record group is
printed. 9

In this example, a sequential data set is to be printed according to standard
specifications. The input data set resides on a 9-track tape volume, originally written
at 800 bits per inch density. The printed output is to be converted to hexadecimal.

The example follows:

IIPRINT JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD, UNIT=2400,LABEL=(,NL),VOLUME=SER=001234,
II DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=2000)
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT TOTCONV=XE
TITLE ITEM=('PRINT SEQ DATA SET WITH CON V TO HEX' ,10)

1*
The control statements are discussed below.

• SYSUT1 DO defines the input data set. The data set contains undefined records; no
record is larger than 2,000 bytes.

• SYSUT2 DO defines the output data set. The data set is written to the system
output device (printer assumed). Each printed line contains groups (8 characters
each) of hexadecimal information. Each record begins a new line of printed output.

• SYSIN DO defines the control data set, which follows in the input stream. The
control data set contains the PRINT and TITLE statements.

• PRINT initiates the print operation and specifies conversion from alphameric to
hexadecimal representation.

• TITLE specifies a title to be placed beginning in column 10 of the printed output.
The title is not converted to hexadecimal.

IEBPTPCH Program-Class C 139

IEBPTPCH Example 2

IEBPTPCH Example 3

140 Utilities (Release 21.7)

In this example, a sequential data set is to be punched according to standard
specifications. The input data set resides on a 7 -track tape volume, originally written
at a density of 556 bits per inch. The punched output is converted to hexadecimal.

The example follows:

IIPUNCHSET JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=INSET,UNIT=2400-2,VOLUME=SER=001234,
II LABEL=(,NL),DISP=(OLD,KEEP),DCB=(DEN=1,RECFM=FB,
II LRECL=80,BLCKSIZE=2000,TRTCH=C)
IISYSUT2 DD UNIT=2540-2
IISYSIN DD *

PUNCH TOTCONV=XE
TITLE ITEM=('PUNCH SEQ DATA SET WITH CONV TO HEX',10)

1*
The control statements are discussed below:

• SYSUT1 DO defines the input data set. The data set contains 80-byte, fixed
blocked records.

• SYSUT2 DO defines the output data set. The data set is to be punched by an IBM
2540-2 Card Read Punch (punch feed). Each record from the input data set is
represented by two punched cards.

• SYSIN DO defines the control data set, which follows in the input stream. The
control data set contains the PUNCH and TITLE statements.

• PUNCH initiates the punch operation and specifies conversion from alphameric to
hexadecimal representation.

• TITLE specifies a title to be placed beginning in column 10. The title is not
converted to hexadecimal.

In this example, a partitioned data set (ten records from each member) is to be
printed according to standard specifications. The input data set resides on a 3330
volume. The printed output is converted to hexadecimal.

The example follows:

IIPRINTPDS JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=PDS,UNIT=3330,DISP=(OLD,KEEP),
II VOLUME=SER=111112,DCB=(RECFM=U,BLKSIZE=3265)
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT TOTCONV=XE, TYPORG=PO, STOPAFT=1 0
TITLE ITEM=('PRINT PDS ~ 10 RECS EACH MEM',20)

1*
The control statements are discussed below:

• SYSUT1 DO defines the input data set. The data set contains undefined records; no
record is larger than 3,625 bytes.

• SYSUT2 DO defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of hexadecimal
information. Each record begins a newline of printed output. The size of the record
determines how many lines of printed output are required per record.

• SYSIN DO defines the control data set, which follows in the input stream. The
control data set contains the PRINT and TITLE statements.

• PRINT initiates the print operation, specifies conversion from alphameric to
hexadecimal representation, indicates that the input data set is partitioned, and
specifies that ten records from each member are to be printed.

• TITLE specifies a title to be placed beginning in column 20 of the printed output.
The title is not converted to hexadecimal.

IEBPTPCH Example 4

IEBPTPCH Example 5

/ In this example, two partitioned members are to be printed according to standard
specifications. The input data set resides on a 2314 volume. The printed output is to
be converted to hexadecimal.

The example follows:

//PRNTMEMS JOB 09#660,SMITH
1/ EXEC PGM=IEBPTPCH
I/SYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=PDS,DISP=(OLD,KEEP),VOLUME=SER=111112,
1/ DCB=(RECFM=F,LRECL=80,BLKSIZE=80),UNIT=2314
//SYSUT2 DD SYSOUT=A
I/SYSIN DD *

PRINT TYPORG=PO,TOTCONV=XE,MAXNAME=2
TITLE ITEM=('PRINT TWO MEMBS WITH CONV TO HEX',lO)

MEMBER NAME=MEMBERl
MEMBER NAME=MEMBER2

1*
The control statements are discussed below:

• SYSUTI DD defines the input data set. The data set contains 80-byte, fixed
records.

• SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of hexadecimal
information. Each record begins a new line of printed output.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains PRINT, TITLE, and MEMBER statements.

• PRINT initiates the print operation, indicates that the input data set is partitioned,
specifies conversion from alphameric to hexadecimal representation, and indicates
that two MEMBER statements appear in the control data set.

• TITLE specifies a title to be placed beginning in column 10 of the printed output.
The title is not converted to hexadecimal.

• MEMBER specifies the member names of the members to be printed.

In this example, a sequential data set is to be printed according to user specifications.
The input data set is the second data set on a 9-track tape volume. The data set was
originally written at a density of 800 bits per inch.

The example follows:

I/PTNONSTD JOB 09#660,SMITH
1/ EXEC PGM=IEBPTPCH
I/SYSPRINT DD SYSOUT=A
I/SYSUTl DD DSNAME=SEQSET,UNIT=2400,LABEL=(2,SUL),
II DISP=(OLD,KEEP),VOLUME=SER=001234,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

1*

PRINT MAXFLDS=l
EXITS INHDR=HDRIN,INTLR=TRLIN

RECORD FIELD=(80)
LABELS DATA=YES

The control statements are discussed below:

• SYSUTI DD defines the input data set. The data set contains 80 byte,
fixed blocked records.

• SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains 80 contiguous characters (one record) of
information.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT, RECORD, EXITS and LABELS statements.

• PRINT initiates the print operation and indicates that one FIELD parameter is
included in a subsequent RECORD statement.

• EXITS indicates that exits will be taken to user header label and trailer label
processing routines when these labels are encountered on the SYSUTI data set.

• RECORD indicates that each input record is to be processed in its entirety (80
bytes). Each input record is printed in columns 1 through 80 on the printer.

• LABELS specifies that user header and trailer labels are to be printed according to
the return code issued by the user exits.

IEBPTPCH Program-Class C 141

•

IEBPTPCH Example 6

IEBPTPCH Example 7

142 Utilities (Release 21.7)

In this example, a sequential data set is to be punched according to user
specifications. The input data set resides on a 2314 volume.

The example follows:

IIPHSEQNO JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=SEQSET,UNIT=2314,LABEL=(,SUL),
II VOLUME=SER=111112,DISP=(OLD,KEEP),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
IISYSUT2 DD DSNAME=PUNCHSET,UNIT=2540-2
IISYSIN DD *

1*

PUNCH MAXFLDS=1,CDSEQ=OOOOOOOO,CDINCR=20
RECORD FIELD=(72)
LABELS DATA=YES

The control statements are discussed below:

• SYSUT1 DO defines the input data set. The data set contains aO-byte, fixed
blocked records.

• SYSUT2 DO defines the output data set. The data set is to be punched by an IBM
2540-2 Card Read Punch (punch feed). Each record from the input data set is
represented by one punched card.

• SYSIN DO defines the control data set, which follows in the input stream. The
control. data set contains the PUNCH, RECORD, and LABELS statements.

• PUNCH initiates the punch operation, indicates that one FIELD parameter is
included in a subsequent RECORD statement, and assigns a sequence number for
the first punched card (00000000) and an increment value for successive
sequence numbers (20). Sequence numbers are placed in columns 73 through ao
of the output records.

• RECORD indicates that bytes 1 through 72 of the input records are to be punched.
Bytes 73 through ao of the input records are replaced by the new sequence
numbers in the output card deck.

I
· LABELS specifies that user header labels are to be punched. Labels cannot be

edited. They are moved to the first 80 bytes of the output buffer. In this example,
there are no sequence numbers present in the cards with user header and user
trailer labels.

In this example, the directory of a partitioned data set is to be printed. The input data
set resides on a 2314 volume. The printed output is to be converted to hexadecimal.

The example follows:

I/PRINTDIR JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=PDS,UNIT=2314,VOLUME=SER=111112,
IIDISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=256)
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT TYPORG=PS,TOTCONV=XE
TITLE ITEM=('PRINT PARTITIONED DIRECTORY OF PDS',10)
TITLE ITEM=('FIRST TWO BYTES SHOW NUM OF USED BYTES',10)

LABELS DATA=NO
1*
The control statements are discussed below:

• SYSUT1 DD defines the input data set (the partitioned directory).

• SYSUT2 DO defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of. hexadecimal
information. Six lines of print are required for each record. Each record begins a
new line of printed output.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT, TITLE, and LABELS statements.

• PRINT initiates the print operation, indicates that the partitioned directory is
organized sequentially, and specifies conversion from alphameric to hexadecimal
representation.

• The first TITLE statement specifies a title, which is not converted to hexadecimal.

IEBPTPCH Example 8

IEBPTPCH Example 9

• The second TITLE statement specifies a subtitle, which is not converted to
hexadecimal.

• LABELS specifies that no user labels are to be printed.

Note: Not all of the bytes in a directory block need contain data pertaining to the
partitioned data set; unused bytes are sometimes used by the operating system as
temporary work areas. The first four characters of printed output indicate how many
bytes of the 256-byte block pertain to the partitioned data set. Any unused bytes
occur in the latter portion of the directory block; they are not interspersed with the
used bytes.

In this example, a card deck containing valid punch card code or BCD is to be
duplicated. The input card deck resides in the input stream.

The example follows:

IlpUNCH JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DO
IISYSIN DO
IISYSUT2 DO
IISYSUT1 DO

SYSOUT=A
DSNAME=PDSLIB(PNCHSTMT),DISP=(OLD,KEEP)
UNIT=2540-2
DATA

(input card data set including / / cards)

1*
The control statements are discussed below:

• SYSIN DD defines the control data set. The control data set contains a PUNCH
statement and is defined as a member of the partitioned data set PDSLIB. (The
data set is cataloged. The RECFM must be FB and the LRECL must be 80.)

• SYSUT2 DD defines the output data set. The data set is to be punched on an IBM
2540-2 Card Read Punch (punch feed).

• SYSUTI DD defines the input card data set, which follows in the input stream.

In this example a record group is to be printed. A user rOlJtine is provided to
manipulate output records before they are printed.

The example follows:

IlpRINT JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DO SYSOUT=A
IISYSUT1 DO DSNAME=SEQDS,UNIT=2311,DISP=(OLD,KEEP),
II LABEL=(,SUL),VOLUME=SER=111112,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
IISYSUT2 DO SYSOUT=A
IISYSIN DO *

1*

PRINT MAXFLDS=2,MAXGPS=1,MAXLITS=6,STOPAFT=32767
TITLE ITEM=('TIMECONV-DEPT D06'),ITEM=('JAN 10-17')
EXITS OUTREC=NEWTIME,INHDR=HDRS,INTLR=TLRS

RECORD IDENT=(6,'498414',1), UC
FIELD=(8,1,,10),FIELD=(30,9,XE,20)

LABELS DATA=ALL,CONV=XE

The control statements are discussed below:

• SYSUTI DD defines the input data set. The data set resides on a 2311 volume.

• SYSUT2 DD defines the output data set on the system output device (printer
assumed).

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT, TITLE, EXITS, and RECORD statements.

• The PRINT statement: (1) initializes the print operation, (2) indicates that two
FIELD parameters are included in subsequent RECORD statements, (3) indicates
that one IDENT parameter is included in a subsequent RECORD statement, (4)
indicates that six literal characters are included in the subsequent IDENT
parameter, and (5) indicates that processing is to be terminated after 32,767 •
records are processed or after the first record group is processed, whichever
comes first. Because MAXLINE is omitted, 60 lines are printed on each page.

• TITLE specifies a title.

• EXITS specifies the name of a user routine (NEWTIME), which is used to manipulate
output records before they are printed.

IEBPTPCH Program-Class C 143

144 Utilities (Release 21.7)

• RECORD defines the record group to be processed and indicates where information
from the input records is placed in the output records. Bytes 1 through 8 of the
input records appear in columns 10 through 17 of the punched output, and bytes 9
through 38 are printed in hexadecimal representation and placed in columns 20
through 79.

• LABELS specifies that all user header or trailer labels are to be printed regardless
of any return code, except 16, issued by the user's exit routine. It also indicates
that the labels are to be converted from alphameric to hexadecimal representation.

IEBTCRIN Program

Error Records

Error Description
Word (EDW)

Level Status (Byte 0)

IEBTCRIN is a data set utility used to read input from the IBM 2495 Tape Cartridge
Reader (TCR), edit the data as specified by the user, and produce a sequentially
organized output data set. (See "Introduction" for general data set utility
information.)

The input to IEBTCRIN is in the form of cartridges written by either the IBM Magnetic
Tape SELECTRIC Typewriter (MTST) or the IBM 50 Magnetic Data Inscriber (MTDI).
An input data set (one or more cartridges) must consist of either all MTST cartridges
or all MTDI cartridges.

IEBTCRIN can be used to construct records from the stream of data bytes read
sequentially from the Tape Cartridge Reader. The user has the option of gaining
temporary control (via a user-supplied exit routine) to process each logical record.

When MTDI input is edited, IEBTCRIN maintains information about each record as it is
being edited. This information is summarized in the Error Description Word (EDW)
which is described below. When the EDW contains a nonzero value in either the level
status (byte 0) or the type status (byte 1), the record is considered an error record by
the program and the EDW is appended to the start of the record to aid the user in
analyzing the error.

If a record is found to be in error; the record is passed. to the user error exit routine if
one is specified. If an error exit is not specified, the action to be taken is determined
by the option specified in a utility control statement.

When either MTST input or MTDI input without editing is specified, the only error that
can be recognized is a record containing one or more permanent data checks. The
data check bytes are replaced as described in a utility control statement. The record is
considered an error record, but because a data check is the only error that can occur,
no EDW is appended to the error record.

The Error Description Word (EDW) consists of four bytes that are appended to the
start of an error record.

The error description word is in EBCDIC format; for example, a 2 is represented as
X'F2' and a C is represented as X'C3'. The information provided in each of the four
bytes of the EDW is discussed below.

The level status indicator identifies error records that result from inter-record
dependency that cannot be identified in the type status byte.

The level status is presented with each error record and has a value of:

• 0, for any error record that will not cause questionable data in following records. A
nonzero type status accompanies this byte.

• 1, for any error record that may cause questionable data in following records, and
for which the level status of the previous record was O.

• 2, for any error record that contains questionable data because the error level of
the preceding record was 1 or 2, or for any error record that may cause
questionable data in the following records and for which the level status of the
previous record was 1 or 2.

A level status of other than 0 is presented with error records resulting from the
following:

• The start-of-record (SOR) location has a character defined as an error.

• The record contains two or more data check bytes side by side. These may have
been an SOR and EOR.

• The record is longer than the user-specified maximum length record.

• The length of the record is not equal to the length of the first valid record of the
same program level encountered on this cartridge. For this purpose, a valid record
is one that contains no errors as identified in the type status, with the possible
exception of being shorter than the user-specified minimum length.

• The record has a data-duplication dependency on a previous record with one of the
above errors.

The level status is set to 0 when IEBTCRIN encounters: (1) a record without one of the
previous errors, (2) a canceled record, or (3) the first record of a cartridge.

IEBTCRIN Program 145

Type Status (Byte 1)

Start-ot-Record (Byte 2)

End-ot-Record (Byte 3)

Sample Error Records

146 Utilities (Release 21.7)

The type status indicator identifies records in error because of SOR, EOR, length,
field, or data check error conditions.

The type status is presented with each error record and has a value of:

• 0, for any record that contains none of the following identifiable errors, but
contains questionable data due to a nonzero level status. (See "Level Status"
earlier in this chapter.)

• 1, for any record that has: (1) an SOR character of other than PI through P8 or a
GS code, (2) an EOR character of other than a VOK code for records when the user
specified a record verification check, or (3) an EOR character of other than a VOK
or RM code for records when the user specified no record verification check.

• 2, for any record that has an incorrect length because it is: (1) longer than the
user-specified maximum, (2) shorter than the user-specified minimum, or (3) not
equal to the length of the first valid record of the same program level encountered
on this cartridge.

• 4, for any record that has a field error. A field error occurs when duplication or
left-zero justification functions did not occur in a field due to an error condition.
See "MTDI Editing Criteria" below.

• 8, for any record that has a permanent data check error.

The type status indicator can also have values of 3, 5, 6, 7, 9, A, B, C, D, E, and F.
These values indicate a combination of SOR, EOR, length, field, and data check errors.
For example, a value of A indicates a record with a data check error (8) as well as an
incorrect length (2).

This byte contains an indication of the start-of-record (SOR) character associated
with this record. The SOR character can be 1 through 8, where 1 indicates PI, 2
indicates P2, etc., or E, which indicates that the SOR character is in error.

This byte contains an indication of the end-of-record (EOR) character associated with
this record. The EOR character can be: U, which indicates an unverified record; V,
which indicates a verified record; or E, which indicates that the EOR character is in
error.

Figure 34 shows a stream of data bytes read sequentially from the tape cartridge
reader.

Figure 35 shows the records constructed by IEBTCRIN from the input records shown in
Figure 34. These records show some of the errors that can occur during processing
and their effect on the Error Description Word. The following parameters were
specified on the TCRGEN statement for these records:

TCRGEN TYPE = MTDI,EDIT = EDITR,VERCHK = VOKCHK, U C
MAXLN = 50,REPLACE = X'58'

IEBTCRIN classifies records 2 through 9 in Figure 35 as error records. The records are
classified, as follows:

• Record 1 is a valid record. It contains a program level 1 code, and thus establishes
the valid length for all program level 1 records in this cartridge to be 25 bytes.

• Record 2 has a data check in the SOR location. Level status is set to 1 because the
SOR location might have contained a cancel code that would cause any data
duplicated on the following record to be questionable. The type status (9) indicates
the record has an incorrect SOR/EOR character (1) and a data check error (8).

• Record 3 contains no identifiable error, but contains questionable data because it
requires duplication from the previous record, which had a level status of 1.

• Record 4 has a data check. Because it contained no DUP codes, the level status is
set to O.

• Record 5 is shorter than the first program level 1 record on this cartridge (length
error). This record also contains an RM code rather than a VOK code in the EOR
location (VOKCHK was specified). Because IEBTCRIN cannot determine why the
record is short, all data duplicated from this record is questionable; the level status
is set to 1. The type status is set to 3 indicating an SOR/EOR error (1) and length
error (2).

• Record 6 contains a DUP code that is beyond the last position of the preceding
record.

P V
111372 RECORD NUMBER lAO

1 K

P DDDDDDDDDDDDDDD DV
357987UUUUUUUUUUUUUUU3UO

1 PPPPPPPPPPPPPPP PK

P R
358436 RECORD NUMBER 5

1 M

* DDDDODDDDDDDDDD DV
*111378UUUUUUUUUUUUUUU2UO
* PPPPPPPPPPPPPPP PK

P * V
358977 REC*RD NUMBER 4AO

1 K

P DDDDDDDDDDDDDDD DV
358436UUUUUUUUUUUUUUU6UO

1 PPPPPPPPPPPPPPP PK

P V
998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREHOUSEO

3 K

P VE
367*82 RECORD NUMBER 8AO

1 KD

Figure 34. Tape Cartridge Reader Data Stream

(Record 1) (Record 2)

V V
P 0 0
1111372 RECORD NUMBER 1M 19EV $111378 RECORD NUMBER 2AK

(Record 3) (Record 4)

V V
P 0 P 0

20W 1357987 RECORD NUMBER 3M 08W 1358977 REC$RD NUMBER 4AK

(Record 5) (Record 6)

V
P R P 0

131U 1358436 RECORD NUMBER 5M 24W 1358436 RECORD NUMBER 6$K

(Record 7) (Record 8)

P
233E 3998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREH

V
o

21EV OUSEK

(Record 9)

08W

V
P 0
1367$82 RECORD NUMBER 8AK

Resulting Error
Description Word

Figure 35. Record Construction

t
MAXLN ends here

(EOR Forced)

IEBTCRIN Program 147

MTDI Editing Criteria

MTDI Editing Restrictions

148. Utilities (Release 21.7)

• The seventh input record is longer than the maximum user-specified record length.
Note that it is passed as two records. The first record (record 7) indicates an EOR
error and a length error; the second (record 8) indicates an SOR error. Because
record 7 is an error record, its length (50 bytes) is not established as the valid
length for all program level 3 records on this cartridge.

• Record 9 has a data check. Because it contained no DUP codes, the level status is
set to O.

The cartridges created on the IBM 50 Magnetic Data Inscriber contain a continuous
stream of data bytes (that is, there are no interblock gaps). Therefore, when editing is
specified, IEBTCRIN extracts records one at a time from the data stream. To
accomplish this, IEBTCRIN scans for control codes written by MTDI. IEBTCRIN uses
start-of-record (SOR) and end-of-record (EOR) locations to extract MTDI records
from the input stream.

The (SOR) location is defined as:

• The location of the first character on a cartridge.

• The location of the first character after the previous record's (EOR) location.

• The location of an SOR code.

• The location of a GS code.

The character in the SOR location is checked to determine if it is a valid
start-of-record character. A PI through P8, a cancel code, or a GS code are valid
start-of-record characters; all others are invalid.

The EOR location by priority sequence is:

1. The same location as the SOR location, if the SOR character was a valid GS code.

2. The location of the first encountered RM or VOK code if that location is within the
length of the maximum user-specified record size.

3. The location of any code preceding either a valid SOR code or the end-of-media
code, if that location is within the length of the maximum user-specified record
size.

4. The location determined in 2 or 3, regardless of the maximum user-specified
record size if the SOR location contains a cancel code.

5. If one of the previous EOR locations cannot be defined, an EOR condition will be
forced at the location where the record length equals the maximum user-specified
record size.

The character in the EOR location is checked to determine if it is a valid
end-of-record character. Valid EOR characters are the GS character (if the SOR
character was a GS code) and VOK or RM codes; all others are invalid. Each GS code
is considered a valid SOR code or EOR code and will be bypassed.

Following are the restrictions that apply when editing MDTI records:

• All canceled records are bypassed; they are not passed to any exit routines or
written on any data sets. The level status is set to O.

• All input records less than three bytes in length (SOR location, one data byte, and
EOR location) are treated as canceled records. The remaining portion of a record
that was longer than the user-specified maximum record size can result in an input
record of this size.

• Data duplication is accomplished by replacing the DUP code with the character
from the corresponding location of the previous record.

• The record used for data duplication is the record returned from any user exits.

• GS codes will not affect the level status or duplication of following records.

• Data duplication does not occur for any of the following conditions:

1. The DUP code is encountered in the first record of a cartridge.

2. The DUP code is encountered in a record immediately following a canceled
record. A canceled record is one that contains a cancel code in the SOR location
or an input record of less than three bytes as described above.

3. The DUP code is encountered in a position that would cause duplication of a
position beyond the last data byte of the previous record.

4. The DUP code is encountered in a position that would cause duplication of an
error-replace character.

End-of-Cartridge

Input and Output

Control

Job Control Statements

In each case, the DUP code is replaced with the user specified error-replace
character, and a field error is indicated.

• Left-zero justification does not occur; the left-zero fill code (LZ) is replaced with
the user-specified error-replace character and a field error is indicated for either of
the following conditions:

1. The left-zero fill code (LZ) is encountered without first having encountered its
corresponding left-zero start code (LZS).

2. The user-specified maximum record size is exceeded before encountering the
valid end of a left-zero field.

Unique codes, written by the MTST or the MTDI device, signal the program when all
data on a cartridge has been read. For MTST cartridges, this end-of-cartridge code is
a lowercase stop code (st) or an uppercase stop code (ST). For MTDI cartridges, the
end-of-cartridge code is the end-data code (ED).

IEBTCRIN terminates input from a cartridge upon encountering the end-of-cartridge
code and rewinds the cartridge. IEBTCRIN continues to process cartridges until
end-of-file is encountered.

End-of-file is signaled following a rewind operation when there are no more cartridges
in the feed hopper, the END OF FILE button is pressed, and end-of-cartridge for the
last cartridge is recognized. An end-of-file indication will be passed to the OUTREC
and/ or ERROR exits if specified by setting register 1 equal to O.

IEBTCRIN uses the following input:

• An input data set, which contains data on tape cartridges to be read from the Tape
Cartridge Reader (TCR). The input data set was created on either MTST or MTDI.

• A control data set, which contains utility control statements that are used to control
the functions of IEBTCRIN.

IEBTCRIN produces the following output:

• An output data set, which contains the sequential output produced by the utility as
a result of processing the cartridge input according to the utility control statements.

• An error output data set, which contains records that do not conform to the
specifications for a valid record.

• A message data set, which contains diagnostic messages.

IEBTCRIN is controlled by job control statements and utility control statements. The
job control statements are required to execute or invoke IEBTCRIN and to define the
data sets that are used and produced by the program. The utility control statements
are used to indicate the source of the input data cartridges (MTST or MTDI) and to
specify the type of processing to be done.

Table 25 shows the job control statements necessary for using IEBTCRIN.

Table 25. IEBTCRIN Job Control Statements

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM = IEBTCRIN) or, if the job control statements
reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set, which can be written to any
QSAM-supported output device.

SYSUTI DD Defines the input data set.

SYSUT2 DD Defines a sequential output data set for valid records.

SYSUT3 DD Defines a sequential output data set for error records.

SYSIN DD Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a sequential data set or as a member of a
partitioned data set. If this statement is not included, all utility control statement
defaults are assumed and a message is issued to SYSPRINT. If DUMMY is
specified, all utility control statement defaults are assumed.

The minimum region size that can be specified for the execution of IEBTCRIN is
12K + 2b + c + e, where (1) b is value specified for BUFL on the SYSUT1 DO
statement, (2) c is the maximum logical record length, and (3) e is the sum of user
exit routines, each rounded to the next higher 2K.

If the SYSPRINT DO statement is missing, a message is written on the operator
console and processing continues.

IEBTCRIN Program 149

Restrictions

Utility Control Statements

150 Utilities (Release 21.7)

If some parameters are specified but others are omitted, IEBCTRIN attempts to set
defaults for the missing parameters that are consistent with those supplied. For
example, if RECFM = VBA is specified, IEBTCRIN assumes BLKSIZE = 129 and
LRECL = 125. If LRECL, BLKSIZE, and RECFM are not specified, the defaults are
LRECL = 121, BLKSIZE = 121, and RECFM = FBA.

For the SYSUTI DD statement, only the UNIT keyword is required. The value specified
in UNIT = xxxx can be '2495', the device address, or any other name that was
generated in the system as a unit device name. The VOLUME = SER = keyword may
be specified to identify the tape cartridges to be mounted. The volume serial number
must be an externally recognizable name associated with the cartridges to be
processed. A message is issued -to the operator instructing that the cartridges
identified by that name be mounted. If VOLUME is not specified, the name TCRINP is
assumed and used in the mount message. The BUFL DCB parameter can be specified
to indicate the size of input buffers; if BUFL is not specified, a value of 2000 is
assumed.

Fixed and variable records on the SYSUT2 or SYSUT3 data set can be blocked through
the specification of the BLKSIZE and RECFM DCB parameters.

SYSUT2 DD and SYSUT3 DD statements may be omitted or specified as DUMMY. A
message is issued on SYSPRINT and processing continues.

The DCB parameters defining the SYSIN, SYSPRINT, SYSUT2, and SYSUT3 data sets
can be supplied from any valid source (for example, DD statements or a data set
label). Because the output (SYSUT2 and/or SYSUT3) data sets are not opened until
the first record is ready for output (after any OUTREC and/or ERROR exits), DCB
parameters to be supplied from an existing data set label are not available for records
constructed before the data set is opened. Therefore, the DCB parameters should
always be provided in the DD statement even though they may already exist in the
label. Otherwise, defaults are used to construct records until the data set is opened.

If a permanent error occurs on SYSIN, SYSUT1 (not including a data check), SYSUT2,
or SYSUT3, a message is issued on SYSPRINT and the program is terminated. If a
permanent input/output error occurs on SYSPRINT, both the failing message and a
SYNADAF message indicating the error, are written on the programmer's console and
processing is terminated.

• Because IEBTCRIN always constructs the SYSPRINT records with USASI (type A)
control characters, type A control characters should be indicated when RECFM is
specified.

• If a parameter is specified on SYSPRINT DD that is not consistent with the other
parameters, a message is issued and processing is ended.

• The SYSUT1 DD statement is required for each use of IEBTCRIN.

• The SYSUT2 DD and SYSUT3 DD statements must identify sequential data sets; the
data sets can have fixed, variable, variable spanned, or undefined records. These
data sets can be written on any QSAM-supported device.

• If editing of MTDI input is specified on the utility control statements, the SYSUT3
LRECL parameter should be four bytes greater than the SYSUT2 LRECL parameter
to include a four-byte Error Descriptor Word appended to the front of the record by
IEBTCRIN. (See "Error Records" earlier in this chapter.) For variable records on
either SYSUT2 or SYSUT3, the LRECL and BLKSIZE DCB parameters must be large
enough to include the four-byte record descriptor word.

• If inconsistent parameters are specified on SYSUT2 DD or SYSUT3 DD, a message
is issued and processing is ended.

IEBTCRIN is controlled by the following utility control statements:

• TCRGEN statement, which specifies whether MTDI or MTST input is to be
processed and the type of processing to be performed.

• EXITS statement, which specifies any exit routines provided by the user.

If these statements contain errors or inconsistencies, the program is terminated and
the appropriate diagnostics are sent to the message data set. If TCRGEN is not
specified, standard defaults are used.

Note: If TCRGEN or EXITS is specified, the operand must be made up of one or more
parameters.

TCRGEN Statement The TCRGEN statement is used to indicate the device (MTDI or MTST) on which the
input data was created and the type of processing to be performed on the input data.

The format of the TCRGEN statement is:

[label] TCRGEN

'where:

TYPE =

[TYPE = {MTDI }
{MTST}]

[,TRANS = {STDUC }
{STDLC }
{name }
{NOTRAN}]

[,EDIT = {m!.!Q }
{EDITR }
{NOEDIT}]

[, VERCHK = {NOCHK }
{VOKCHK }]

[,MINLN = n]
[,MAXLN = n]
,REPLACE = X'xx'
[,ERROPT = {NORMAL}

{N~.ER~ "U ~<,

specifies the device on which the magnetic tape cartridge(s) was written. These
values can be coded:

MTDI
specifies that the input was created on a Magnetic Data Inscriber. This is the
default.

MTST
specifies that the input was created on a Magnetic Tape SELECTRIC typewriter.

TRANS =
specifies the type of processing to be performed on MTST input. These values can
be coded:

STDUC
specifies that the MTST code is to be translated to standard EBCDIC; alphabetic
characters are translated to uppercase. This is the default.

STDLC
specifies that the MTST code is to be translated to standard EBCDIC; alphabetic
characters are not translated to uppercase.

name
specifies a user-translate table to be used by IEBTCRIN. The translate table
must exist as a load module named in a user job library or the link library. This
load module must consist of a translate table which begins at the entry point and
conforms to the specifications for the translate instruction (TR) found in IBM
System/360 Principles of Operation, GA22-6821.

NOTRAN
specifies that no translation and no special processing is to be performed. Data
is passed exactly as read from the cartridge.

EDIT =
specifies the type of processing to be performed on MTDI input. These values can
be coded:

EDITD
specifies that the input is to be edited and that SOR and EOR codes are to be
deleted and not included as part of the output record. This is the default.

EDITR
specifies that the input is to be edited and SOR and EOR codes are to be kept as
part of the output record.

NOEDIT
specifies that no editing is to be performed. Data, including any group separator
(GS) codes, is passed exactly as read from the cartridge.

IEBTCRIN Program 151

152 Utilities (Release 21.7)

VERCHK =
specifies whether a record-verification check is to be made on MTDI input that is to
be edited. This parameter is valid only when TYPE = MTDI and either EDIT = EDITD
or EDIT = EDITR are specified. These values can be coded:

NOCHK
specifies that no record-verification check is to be made. Either a record mark
(RM) or a verify OK (VOK) code is considered a valid end-of-record code. This
is the default.

VOKCHK
specifies that a record-verification check is to be made. A record that does not
contain a verify OK code is to be considered an error record.

MINLN = n
specifies in bytes the length, n, of the shortest valid edited record. This parameter
is valid only when TYPE = MTDI and either EDIT = EDITD or EDIT = EDITR are
specified. If IEBTCRIN encounters a record shorter than this specified length, the
record is considered an error record. If MINLN is omitted, no minimum length
checking is performed.

MAXLN = n
specifies the number of bytes, n, plus four for the record descriptor word when
variable records are specified, to be contained in all but the last record passed to
the output routine when editing is not performed. IEBTCRIN does not indicate the
end of data from one cartridge and the beginning of data from the next. Usually this
transition from one cartridge to another occurs within an output record. The last
record passed to the output routine contains only the number of bytes remaining
(plus four if the record format is variable) and is the only record that can be shorter
than the length specified by MAXLN. The size of the records actually written
depends on the record length (LRECL) specified for the output data set. If MAXLN
is omitted, a value of 120 is assumed.

REPLACE = X'xx'
specifies the hexadecimal representation of the character to be used by IEBTCRIN
to replace error bytes. REPLACE allows the user to identify and possibly correct
error bytes in the error exit routine or in subsequent processing. The specified
REPLACE character should be one that does not normally appear in the data. X'19',
end-of-data, is assumed if REPLACE is not coded. To replace error bytes on MTDI
data, select a value for xx from Figure 36. to replace error bytes on MTST data,
select a value for xx from Figure 37. The replacement of error bytes is
accomplished before any specified MTST translation.

ERROPT =
specifies the disposition of all error records. ERROPT is ignored if a user error
routine is specified in the EXITS statement. These values can be coded:

NORMAL
specifies that all error records are to be placed in the error data set (SYSUT3).

NOERR
specifies that all records (including error records) are placed in the normal
output data set (SYSUT2). No records are placed in the error data set
(SYSUT3). This is the default.

If STDUC, STDLC, or name is specified, certain of the MTST codes are processed in a
special way before translation. Feed codes (FD), switch codes (SW), and autosearch
codes (AS), both uppercase and lowercase, are deleted from the data. Each
61-character reference code is reduced to a single search code (SRC).

A stop code, whether uppercase (ST) or lowercase (st), indicates that all data on a
cartridge has been read. Therefore, when an MTST cartridge to be processed by
IEBTCRIN is created, the user must not use a stop code for any purpose other than
signaling end-of-data on the cartridge. Stop codes within meaningful data cause any
subsequent data on the cartridge to be lost because the cartridge is rewound and
unloaded when a stop code is encountered.

If EDITD or EDITR is specified, the edit consists of the following functions:

• Records are extracted one at a time from the input buffers by scanning for the
record-delimiting codes (SOR and EOR).

• DUP codes are replaced with the character from the corresponding location in the
preceding record.

• Left-zero fields are right aligned and leading zeros are inserted where necessary.

EXITS Statement

• Left-zero start codes are deleted from the records.

• Group separator codes and records that start with cancel record codes are
bypassed.

For MTDI input with editing specified, MAXLN is used to specify in bytes the length of
the longest valid record after editing. If the program encounters a record in which a
valid end-of-record cannot be determined within this length, an end-of-record
condition is forced and the record is considered an error record.

The values that can be specified for MINLN and MAXLN are:

• For MTST processing or MTDI processing without editing, MINLN is not specified.
MAXLN should equal the number of bytes to be passed as a record.

• For MTDI processing when EDIT = EDITD, MINLN should equal the number of bytes
in the shortest valid record after editing, excluding SOR and EOR codes. MAXLN
should equal the number of bytes in the longest valid record after editing, excluding
SOR and EOR codes.

• For MTDI processing when EDIT = EDITR, MINLN should equal the number of bytes
in the shortest valid record after editing, including SOR and EOR codes. MAXLN
should equal the number of bytes in the longest valid record after editing, including
SOR and EOR codes.

Note: The values for MINLN and MAXLN should not include the four-byte record
descriptor word added to a variable length record.

Table 26 shows the hexadecimal characters representing special purpose codes that
must not be used as replacement bytes.

Table 26. Special Purpose Codes

MTDI Codes

X'OO' (lZ) X'IE' (VOK) X'74' (P4)
X'II' (OUP) X'3C' (RM) X'75' (P5)
X'12' (lZS) X'7I' (PI) X'76' (P6)
X'IS' (CAN) X'72' (P2) X'77' (P7)
X'IO' (GS) X'73' (P3) X'7S' (PS)

MTST Codes

X'IO' (cr) X'14' (CR) X'51' (as)
X'II' (sw) X'15' (SW) X'55' (AS)
X'13' (fd) X'I7' (FO) X'SO' (src)

X'SI through X'FF'

The special purpose codes listed in Table 26 are used by IEBTCRIN when constructing
records. Use of these codes causes a message to be issued and the utility to be
terminated.

Figure 36 shows the values that can be chosen to replace error bytes for MTDI input.

Figure 37 shows the values that can be chosen to replace error bytes for MTST input.

Figure 38 shows MTST codes after they have been translated by IEBTCRIN when
TRANS = STDLC is specified.

The EXITS statement is used to identify user-supplied exit routines, which must exist
in either the user job library or the link library.

Upon entry, a parameter list is supplied to the exit routine Upon returning from the
exit routine, the user must provide an acceptable return code. See HAppendix A: Exit
Routine Linkage."

The format of the EXITS statement is:
.~,,,.~ •. "WW [ERROR'= routine~~me] .• "'~W' ""w", "'W""',~~";W"::" "'TM~l

[,OUTREC = ;outinename] "j!
[,OUTHDR2 =routinename) 1

[,Ou'rHDR3 == routinename] , i
[;OUTTLR2= routinename] " ,,:J1
[,OUTTLR3=routinename] "

.w ~~'"'. ".,_ w. w' '-'" ,..,.m,.":'M' ~ d.w>" __ ~, ~.'-->h "'>-. .:..... '.~Y.mN ~." h. -j.,.>\, ~,~.,,",~"'.~,A-'''''''''' ,",~';':,.-",,:..:'" h' .,.XW:-.« ~.->. ,,,:;,,, __ ,~~ '","'NX 0..m,~»,."'" hw' :v;..:w."""w,;,.,.<....,~""".<...:~ .«> __ .""";.....-"*'""<;<>,;,.o.:~~..,,~~;.>,~,'$..w~~ ,1
where:

ERROR = routinename
specifies the symbolic name of a routine that receives control before an error
record is passed to the error output data set (SYSUT3). This exit routine can be
used to analyze and, if possible, correct the error record. This parameter nullifies
any ERROPT value.

IEBTCRIN Program 153

It) 'u
v' C1I

"0
00 01 en 10

c: X
0 C1I

.;:; J:

.;;; "0 00 01
0 c:

10 11 00 01 10
Cl.. 0 ... (J

m C1I 0 1 2 3 4 5 6 en

0000 0 LZ SP &

0001 1 DUP I

0010 2 LZS

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8 CAN

1001 9 ED

1010 A (j !

1011 B $

1100 C RM < * %

1101 0 GS ()

1110 E VOK + ; >

1111 F I -, ?

10

11 00 01 10 11 00

7 8 9 A B C

Pl A

P2 B

P3 C

P4 0

P5 E

P6 F

P7 G

P8 H

I

:

@

I

=

..

11

01 10

0 E

0 082

J

K S

L T

M U

N V

0 W

P X

Q y

R Z

11

F

0

1

2

3

4

5

6

7

8

9

Bit Positions 0,1

Bit Positions 2, 3

First Hexadecimal Digit

Special Control:

LZ = Left zero fill
DUP = Duplicate
LZS = Left zero start
ED = End data
GS = Group Separator

Start of Record (SOR):

Pl = Program level 1
P2 = Program level 2
P3 = Program level 3
P4 = Program level 4
P5 = Program level 5
P6 = Program level 6
P7 = Program level 7
P8 = Program level 8
CAN = Cancel

End of Record (EOR):

RM = Record mark
VOK = Verify OK

This figure represents the character set and control
codes as read from an MTDI created cartridge.

154 Utilities (Release 21.7)

Figure 36. MTDI Codes from TCR

OUTREC = routinename
specifies the symbolic name of a routine that receives control before the record is
passed to the normal output data set (SYSUT2). In this exit routine, the user can
process the record and perform his own output if output other than the SYSUT2
data set is desired. Any modification of an edited MTDI record may affect the
editing of following records because the record returned from this exit is used to
accomplish data duplication in the record that follows. If the SYSUT2 data set has
specified variable length records, a four-byte RDW is appended to the front of the
record.

OUTHDR2 = routinename
specifies the symbolic name of a routine that receives control during the opening of
the SYSUT2 data set; this exit routine can be used to create user output header
labels for the normal output data set (SYSUT2).

OUTHDR3 = routinename
specifies the symbolic name of a routine that receives control during the opening of
the SYSUT3 data set; this exit routine can be used to create user output header
labels for the error data set (SYSUT3).

OUTTLR2 = routinename
specifies the symbolic name of a routine that receives control during the closing of
the SYSUT2 data set; this exit routine can be used to create user output trailer
labels for the normal output data set (SYSUT2).

...
'01

I""- 0
cD ~
Ln 'u
v' CI.l

'0
00 <II co

C X
0 C1I

';; J:
'~ '0 00 01 10 11 c
0... 0 ... u
CD CI.l 0 1 2 3 U)

0000 0 z cr 5 0

0001 1 2 sw 6 9

0010 2 t e h

0011 3 n fd k b

0100 4 Z CR %)

0101 5 @ SW ~ (

0110 6 T E H

0111 7 N FD K B

1000 8 1 7 4

1001 9 3 st 8

1010 A x d I

1011 B u c

1100 C ± & $

1101 D # ST *

1110 E X D L

1111 F U C

OUTTLR3 = routinename
specifies the symbolic name of a routine that receives control during the closing of
the SYSUT3 data set; this exit routine can be used to create user output trailer
labels for the error data set (SYSUT3).

If MTDI is edited, a four-byte (EDW) is appended to the front of each error record
describing the error condition. For further definition of the EDW, see "Error Records"
earlier in this chapter. If the SYSUT3 DD statement specified variable length records,
a four-byte Record Descriptor Word (RDW) is also appended to the front of the
record. For further description of the RDW, see as Supervisor Services Guide,
GC28-6646 .

01

00 01 10

4 5 6

I tab
,

as i

j sp p

= q

0

TAB ..

• AS I

J SP P

+ Q

m bsp r

v a

9 :

f stx

M BSP R

V A

G :

F STX

10

11 00 01 10

7 8 9 A

s src

w

y

S SRC

W

Y

a

I

0

?

11

11 00 01 10

B C D E

11

F

,/

Bit Positions 0.1

Bit Positions 2. 3

First Hexadecimal Digit

cr and CR = Carrier return code
sw and SW = Switch code
fd and F D = Feed code
st and ST = Stop code
tab and TAB = Tab code
as and AS = Automatic search
sp and SP = Space
bsp and BSP = Backspace
stx and STX = Stop transfer
src and SRC = Search

This figure represents the character set and control
codes as read from an MTST created cartridge,

Figure 37. MTST Codes from TCR

The user-supplied routines specified in ERROR and OUTREC can be used to examine
and modify any byte in the record or EDW. The record length can be changed, subject
to the following restrictions:

• A work area used to construct the records is allocated by the program equal in size
to the largest of (1) MAXLN, (2) LRECL on SYSUT2, or (3) LRECL on SYSUT3.

• The record length must not be increased beyond this size. Overlaying of other work
areas may then occur, causing unpredictable results.

The new record length must be placed in the location pointed to by the second
parameter word as received at entry to the routine. This length must include the EDW
and RDW (if applicable). It is not necessary to modify the RDW because it is

IEBTCRIN Program 155

•

U') 'u
~'

Q)

"'0 00 on C\l
c: x

Q) ,g :I:
';;; "'0 00 01 10
0 c:
0- 0 (J

Q) 0 1 2 as en

0000 0

0001 1

0010 2 STX

0011 3

0100 4

0101 5 TAB

0110 6 BSP

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 0 CR

1110 E SRC

1111 F

re-created if the record is to be written by IEBTCRIN. However, if the user does his
own output from this routine, he must ensure that the ROW is correct for the record.

01 10

11 00 01 10 11 00 01

3 4 5 6 7 8 9

SP & -

I ,a j

b k

c I

d m

e n

f 0

g p

h q

i r

¢ I :

$ #

* % @

() - ,

+ ; = ±

? "

10 11 00 01

A B C D

0
A J

s B K

t C L

u D M

v E N

w F 0

x G P

y H Q

z I R

11

10

E

S

T

U

V

W

X

Y

Z

11

F

0

1

2

3

4

5

6

7

8

9

Bit Positions 0,1

Bit Positions 2, 3

First Hexadecimal Digit

TAB = Tab code
CR = Carrier return
BSP = Backspace
SRC = Search
STX = Stop transfer
SP = Space

Note: The STDUC option permits translating
both lowercase and uppercase alphabetic
characters to uppercase.

156 Utilities (Release 21.7)

Figure 38. MTST Codes after Translation by IEBTCRIN with TRANS = STDCL

If IEBTCRIN is to write the record, the length of the output record depends on the
RECFM specification, as follows:

• Fixed and variable records may have a maximum length equal to LRECL. Records
larger than this are truncated.

• Undefined records may have a maximum length equal to BLKSIZE. Records larger
than this are truncated.

These record lengths include the EOW and ROW, where applicable.

The record length returned from the error exit is used to establish the location of the
last data byte in the record. The location is used to control data duplication in the
following record. However, it is not used for checking the record length of subsequent
records.

Modifications to the EOW, record, or record length may affect the editing of
subsequent records. If the input is not edited, the user can examine and modify any
byte in the record. The record length can also be changed, subject to the MTOI editing
restrictions.

Return Codes from
IEBTCRIN

IEBTCRIN Examples

IEBTCRIN Example 1

At job termination, IEBTCRIN produces a return code to indicate the results of
program execution. Table 27 shows the return codes used by IEBTCRIN.

Table 27. IEBTCRIN Return Codes

Return
Code Interpretation

00 Normal termination.

04 Warning message issued; execution permitted. Conditions leading to issuance of this
code are: (1) SYSPRINT, SYSIN, SYSUT2, or SYSUT3 DD statements missing and (2)
DCB parameters missing in SYSUT2 or SYSUT3 DD statements.

12 Diagnostic error message issued; execution terminated. Conditions leading to issuance
of this code are: (1) SYSUT1 DD statement missing, (2) conflicting DCB parameters in
DD statements, and (3) invalid or conflicting utility control statements.

16 Terminal error message issued; execution terminated. Conditions leading to issuance
of this code are: (1) permanent input; output errors (not including data checks on the
TCR), (2) unsuccessful opening of data sets, (3) requests for termination by user exit
routine, (4) insufficient storage available for execution, and (5) user exit routine not
found.

The following examples illustrate some of the uses of IEBTCRIN. Table 28 can be used
as a quick reference guide to IEBTCRIN examples. The numbers in the "Example"
column point to examples that follow.

Table 28. IEBTCRIN Example Directory

Operation
Data Set
Organization Device Comments Example

Edit MDTI input

Invoke IEBTCRIN
with LINK macro
instruction

Sequential 2314 Disk,
9-track tape

Fixed blocked output. Error
exit routine specified 1

2

In this example, input from a tape cartridge is to be edited with normal records written
to a 2314 volume and error records written to a 9-track tape volume.

The example follows:

IIJOBNAME JOB 0, SMITH, MSGLEVEL=1
IISTPNAME EXEC PGM=IEBTCRIN
IISYSPRINT DO SYSOUT=A
IISYSUT1 DO UNIT=TCR,VOLUME=SER=MYTAPE,DCB=(BUFL=3000)
IISYSUT2 DO DSNAME=GOODSET,DISP=(NEW,CATLG),UNIT=2314,
II VOLUME=SER=111222,SPACE=(TRK,(10,10)),
II DCB=(LRECL=100,BLKSIZE=1000,REDFM=FB)
IISYSUT3 DO DSNAME=ERRSET,UNIT=2400,
II VOLUME=SER=000001,DISP=(NEW,KEEP),
II DCB=(BLKSIZE=104,RECFM=U)
IISYSIN DO *

TCRGEN TYPE=MTDI,EDIT=EDITD,MAXLN=100,REPLACE=X'5B'
EXITS ERROR=MYERR

1*
The control statements are discussed below:

• SYSUT1 DD defines the input tape cartridge data set. A console message instructs
the operator to mount a set of cartridges named MYTAPE. The two input buffers
are each 3000 bytes long (BUFL). The UNIT parameter assumes that TCR has been
system generated as a unit name for the Tape Cartridge Reader.

• SYSUT2 DD defines a sequential data set for the normal output records. The data
will be written to a 2314 volume.

• SYSUT3 DD defines a sequential data set for the error records. The records are
undefined with a maximum block size of 104 bytes, including a 4-byte "error
description word.

• SYSIN DD defines the control data set, which follows in the input stream.

• TCRGEN indicates MTDI input. The input is to be edited with SOR and EOR codes
deleted, the maximum valid record length is to be 100 bytes, and the replace
character is a hexadecimal "SB". VERCHK is defaulted to NOCHK. Minimum record
length checking is not requested.

IEBTCRIN Program 157

IEBTCRIN Example 2

158 Utilities (Release 21.7)

• EXITS indicates that a user has provided an exit routine to handle error records.
Because no job library has been specified, the exit routine (MYERR) must reside in
the link library.

In this example, IEBTCRIN is invoked via the LINK macro instruction in an Assembler
language program. An alternate name has been assigned to each of the DO
statements used by IEBTCRIN. The job control for this step must include DO
statements with the alternate DO names.

The example follows:

LINK EP=IEBTCRIN,PARAM=(OPTLIST,DDNAME),VL=1
CNOP 2, 4 (OPTLIST must be on halfword boundary)

OPTLIST DC H' 0' (Length must be zero for IEBTCRIN)
CNOP 2, 4 (DDNAME list must be on halfword boundary)

DDNAME DC H ' S 2' (Length of DDNAME list)
DC SF'O'
DC C' NEWIN '(Alternate DDNAME for SYSIN)
DC C' NEWPRINT ' (Alternate DDNAME for SYSPRINT)
DC 2F'O'
DC C' NEWUT1 '(Alternate DDNAMEforSYSUT1)
DC C ' NEWUT 2 '(Alternate DDNAME for SYSUT2)
DC C ' NEWUT 3 '(Alternate DDNAME for SYSUT3)

IEBUPDAT Program-Class C

Input and Output

Control

Job Control Statements

PARM Information on
the EXEC Statement

IEBUPDAT is a data set utility used to incorporate IBM- and user-generated source
language modifications into a symbolic library-a partitioned data set containing
aO-byte records, such as SYS1.PROCLIB and SYS1.MACLIB. (See Illntroduction" for
general data set utility information.)

IEBUPDAT can be used to:

• Add, copy, and replace members.

• Add, delete, replace, and renumber the records within an existing member.

• Assign sequence numbers to the records of a new member.

IEBUPDAT uses the following input:

• A partitioned input data set, which contains an old master data set.

• A sequential input data set, which contains the transactions that are to be applied
to the old master data set.

• A control data set, which contains utility control statements.

IEBUPDAT produces as output a new master partitioned data set and a sequential
data set (SYSPRINT) that reflects either the latest changes applied to the old master
data set or to the entire new master data set.

IEBUPDAT is controlled by job control statements and utility control statements.

Table 29 shows the job control statements necessary for using IEBUPDAT.

Table 29. IEBUPDAT Job Control Statements

Statement Use

JOB Initiates an IEBUPDAT job.

EXEC Specifies the program name (PGM = IEBUPDAT). Additional information can be
specified on the EXEC statement; see "PARM Information on the EXEC
Statement" below.

SYSUTl DD Defines an input data set.

SYSUT2 DD Defines an output data set.

SYSPRINT DD Defines the sequential message data set.

SYSIN DD Defines the control data set.

The minimum region size that can be specified for IEBUPDAT is 10K + 2b, where b is
the largest block size in the job step rounded to the next higher 2K.

The input data set defined by SYSUT1 and the output data set defined by SYSUT2 can
contain either blocked or unblocked records with a logical record length of ao bytes.
The output data set can have a blocking factor different from the input data set.

If the DD statements SYSUT1 and SYSUT2 define the same data set, the user can
make modifications to the old master without creating a new master.

If enough space cannot be allocated for reblocked output records, the update request
is terminated.

IEBUPDAT obtains control information through the EXEC statement and the SYSIN
data set. The EXEC statement for this program may contain the parameter:

PARM = (input,[!nhdr],[intlrJ)

The input value is either NEW or MOD, as follows:

• NEW, which indicates that the input consists of the SYSIN data set.

• MOD, which indicates that the input consists of both the SYSIN and SYSUT1 data
sets.

The SYSUT1 data set need not be defined if NEW is specified. If the input value is
neither NEW nor MOD, an error is indicated and the operation is terminated. If an
input value is not specified, MOD is assumed.

The Ilinhdr" value specifies the symbolic name of a routine that processes the user
header label on the SYSIN data set.

IEBUPDAT Program-Class C 159

Utility Control Statements

Header Statement

160 Utilities (Release 21.7)

The "intlr" value specifies the symbolic name of a routine that processes the user
trailer label on the SYSIN data set.

The utility control statements used to control IEBUPDAT are shown in the order in
which they must appear, as follows:

• Header statement, which is used to identify members to be processed.

• NUMBR statement, which is used to identify the sequence number of records to be
processed.

• DELET statement, which is used to identify records to be deleted.

• Logical Record, which contains data to be added to or to replace an existing
record.

• ALIAS statement, which is used to create or retain aliases in a new master
directory.

• ENDUP statement, which indicates the end of the SYSIN input to IEBUPDAT.

The SYSIN data set can contain any number of Header statements and ALIAS
statements, each followed by a group of NUMBR, DELET, Logical Record, and ALIAS
statements.

A Header statement is used to identify a member to be processed. The statements
must be in binary collating sequence by member name.

The format of the Header statement is:
"~'{.A'DO".· •• ""y~;;rib~'~n;~~~I~~~/:~~~;6;:r{~t;[:~~iJ~'M,'.' :~.: ": r'>~:7:;'7M:"';'*~"·.,'·':';~~·"~::~i:·
. {REPL . }<; ". ,'; ', ... " i ".::,"

{CHNGE'}" . ; , ", 'I
{ REfRO.,t· , , ";:, L;, ;L;~ ~"";~;"::;;M";;;: :,:,;;; ~'~M:"M~':::~'~:';"·":,,:Lkl

where:

.j
is required and must appear in columns 1 and 2.

ADD
specifies that the named member is to be added in its entirety to the new master. If
ADD is included, it must begin in column 10.

REPL
specifies that the named member is being entered in its entirety as a replacement
for a member in the old master. If REPL is included, it must begin in column 10.

CHNGE
specifies that modifications are to be made within the named member. If CHNGE is
included, it must begin in column 10.

REPRO
specifies that the entire named member is to be copied to the new master.
Members are deleted from a library by being omitted from a series of REPRO
Header statements. If REPRO is included, it must begin in column 10.

membername
specifies the name of the member to which the update transactions are to be
applied. The membername value must begin in column 16.

level
specifies the current run number, a two-digit number from 00 through 99.

source

list

specifies whether user or IBM modifications are to be made. The values that can be
coded are:

o
specifies user modifications.

1
specifies IBM modifications.

specifies what the SYSPRINT data set is to contain. The values that can be coded
are:

o
specifies that the SYSPRINT data set is to contain only modifications and control
statements.

NUMBR Statement

DELET Statement

ssi

1
specifies that the SYSPRINT data set is to contain the entire updated member
and control statements.

specifies eight hexadecimal characters of new system status index information that
is to be placed in the directory of the new master as the first four hexadecimal
bytes of user data. If ssi is not specified, the user data is copied as it exists in the
directory of the old master. System status index information is discussed in detail in
IBM Systemj360 Operating System: Maintenance, GC27-6918.

The NUMBR statement contains information to be applied to the member that is
named in the Header statement.

The NUMBR statement is used with CHNGE Header statements to change the
sequence number of one or more logical records within a member, and with ADD and
REPL Header statements to assign sequence numbers to the records within new and
replacing members. This statement affects only those sequence numbers that fall in
the specified range.

The format of the NUMBR statement is:

NUMBR seqnumb 1 ,seqnumb2,newseq,increment

where:

.j
is required and must appear in columns 1 and 2.

NUMBR
specifies that this is a NUMBR statement. NUMBR must begin in column 10.

seqnumbl
specifies the sequence number of the first record to be renumbered when used with
a CHNGE Header statement. This value is ignored when used with ADD and REPL
Header statements. This value must be contained in columns 16 through 23.

is a delimiter, which must appear in columns 24, 33, and 42.

seqnumb2
specifies the sequence number of the last record to bp. renumbered when used with
a CHNGE Header statement. This value is ignored when used with ADD and REPL
Header statements.

newseq
specifies the first new sequence number. This value must be contained in columns
34 through 41.

increment
specifies the increment value of successive new sequence numbers. This value
must be contained in columns 43 through 50.

All of the sequence numbers must be eight-digit alphameric fields.

The DELET statement contains information to be applied to the member that is named
in the Header statement.

The DELET statement is used to delete one or more logical records within a member.
It i~ used only in conjunction with a CHNGE Header statement.

The format of the DELET statement is:

DEtET seqnumb 1 ,seqnumb2

where:

.j
is required and must appear in columns 1 and 2.

DELET
specifies that this is a DELET statement. DELET must begin in column 10.

seqnumbl
specifies the sequence number of the first logical record to be deleted. This value
must begin in column 16 and not extend beyond column 23.

is a delimiter, which must appear in column 24.

IEBUPDAT Program-Class C 161

Logical Record Statement

ALIAS Statement

ENDUP Statement

IEBUPDAT Examples

162 Utilities (Release 21.7)

seqnumb2
specifies the sequence number of the last logical record to be deleted. This value
must begin in column 25 and cannot extend beyond column 32.

The Logical Record statement contains information to be applied to the member that
is named in the Header statement. The Logical Record statements contain the data to
be added to, or used to replace, existing logical records. They are used in conjunction
with ADD, REPL, or CHNGE Header statements.

data
is the data to be added to or to replace a record. This value must be contained in
columns 1 through 72.

record-sequence-number
specifies the sequence number of the record to be processed. This value must be
contained in columns 73 through 80.

The ALIAS statement is used to create or retain aliases in a new master directory. The
ALIAS statement can be used in conjunction with any of the Header statements. One
ALIAS statement must be supplied for each alias.

The format of the ALIAS statement

where:

.j
is required and must appear in columns 1 and 2.

ALIAS
specifies that this is an ALIAS statement. ALIAS must begin in column 10.

aliasname
specifies an alias. The aliasname value must begin in column 16.

If system status index information is provided for the member name, it is also inserted
into the alias entry in the directory of the new master.

The ENDUP statement can be used to indicate the end of the SYSIN input to this
program; it serves as an end-of-data indication if there is no other indication. The
ENDUP statement follows the last group of SYSIN control statements.

The format of the ENDUP statement is:

where:

.j
is required and must appear in columns 1 and 2.

ENDUP
specifies that this is an ENDUP statement. ENDUP must begin in column 10.

The examples that follow illustrate some of the uses of IEBUPDAT. Table 30 can be
used as a quick reference guide to IEBUPDAT examples. The numbers in the
"Example" column point to examples that follow.

Table 30. IEBUPDAT Example Directory

Operation

CATALOG

REPLACE

DELETE

COpy

CREATE

Comments

Job control statements are cataloged in
the procedure library.

A member of a symbolic library is replaced.

Records are deleted from a symbolic library.

A member of a symbolic library is copied.

A three-member library is created.

Example

1

2

3

4

5

IEBUPDAT Example 1

IEBUPDAT Example 2

IEBUPDAT Example 3

IEBUPDAT Example 4

In this example, a set of job control statements are cataloged in the cataloged
procedure library.

The example follows:

IIUPDl JOB 09#770,D.P.BROWN
II EXEC PGM=IEBUPDAT,PARM=NEW
IISYSPRINT DD SYSOUT=A
IISYSUT2 DD (Definition of cataloged procedure library)
IISYSIN DD DATA
.1 ADD PROC6,05,0,1
.1 NUMBR 00000000,00000000,00000010,00000010
IISTEPl EXEC
IIDD1 DD
IISTEP EXEC

1*
PROC6 will be added to the cataloged procedure library defined in SYSUT2. The first
record of this procedure will contain the sequence number 00000010 with successive
records numbered 00000020, 00000030, etc. The resulting cataloged procedure can
be executed with an EXEC statement specifying PROC = PROC6. For additional
information on cataloged procedures, see as JCL Reference, GC2B-6704.

In this example, a member in the old master is replaced by a new member.

The example follows:

I/UPD2 JOB
II EXEC
IISYSPRINT DD
IISYSUT1 DD
IISYSUT2 DD
IISYSIN DD
.1 REPL

09#770,D.P.BROWN
PGM=IEBUPDAT,PARM=MOD
SYSOUT=A
(Definition of old master data set)
(Definition of new master data set)

* MBR7,06,0,1
.1 NUMBR 00000000,00000000,00000010,00000010

(Logical Record statements)

.1. ALIAS ALS7
1*
MBR7 (alias ALS7) replaces MBR7 of the library named in SYSUTl. Successive
records in the new member will contain the sequence numbers 00000010,00000020,
etc.

In this example, logical records are deleted from a member of a symbolic library.

The example follows:

IIUPD3 JOB
II EXEC

09#770,D.P.BROWN
PGM=IEBUPDAT
SYSOUT=A IISYSPRINT DD

IISYSUT1 DD
IISYSUT2 DD

(Definition of old master data set)
(Definition of new master data set)

IISYSIN DD
.1 CHNGE
.1 DELET
.1 ALIAS
1*

* MBRS,13,0,1
00000050,00000090
ALS5

Logical records 00000050 through 00000090 are deleted from a symbolic library.

In this example, a member from an old master tape is copied to a new master.

The example follows:

IIUPD4 JOB 09#770,D.P.BROWN
II EXEC PGM=IEBUPDAT,PARM=MOD
IISYSPRINT DD SYSOUT=A
I ISYSUT 1 DD (Definition of old master data set)
IISYSUT2 DD (Definition of new master data set)
IISYSIN DD *
.1 REPRO MBRZ,12,0,1
1*
Member MBRZ, run number 12, is copied from the old master. The SYSPRINT data set
is to contain the entire updated member and control statements.

IEBUPDAT Program-Class C 163

IEBUPDAT Example 5

164 Utilities (Release 21.7)

In this example, a three-member libary is created; the members are named
LlBMEMB1, LlBMEMB2, and LlBMEMB3.

The example follows:

IIUPD5 JOB
II EXEC
IISYSPRINT DD
IISYSUT2 DD
IISYSIN DD
.1 ADD

09#770,D.P.BROWN
PGM=IEBUPDAT,PARM=NEW
SYSOUT=A
(Definition of new master data set)

* LIBMEMBliOl,O,1,1234ABCD

(Logical Record statements)

.1 ADD LIBMEMB2,01,O,1,1234EFAB

(Logical Record statements)

.1 ADD LIBMEMB3,Ol,O,1,1234ABAB

(Logical Record statements)

1*
Th.e control statements are discussed below:

• SYSUT2 DD defines a master data set to which the new members are to be written.

• The first ADD Header statement specifies that LlBMEMB1 is to be added to the new
master data set.

• The first set of Logical Record statements contain the records that are to become
LlBMEMBl.

• The second ADD Header statement specifies that LlBMEMB2 is to be added to the
new master data set.

• The second set of Logical Record statements contain the records that are to
become LlBMEMB2.

• The third ADD Header statement specifies that LlBMEMB2 is to be added to the
new master data set.

• The third set of Logical Record statements contain the records that are to become
LlBMEMB3.

IEBUPDTE Program

Creating and Updating
Symbolic Libraries

Incorporating Changes

Changing Data Set
Organization

Input and Output

IEBUPDTE is a data set utility used to incorporate IBM and user-generated source
language modifications into sequential or partitioned data sets. (See "Introduction"
for general data set utility information.) Exits are provided for user routines that
process user header and trailer labels.

IEBUPDTE can be used to:

• Create and update symbolic libraries.

• Incorporate changes to partitioned members or sequential data sets.

• Change the organization of a data set from sequential to partitioned or vice versa.

At the completion or termination of IEBUPDTE, the highest return code encountered
within the program is passed to the calling program.

IEBUPDTE can be used to create a library of partitioned members consisting of
(at the most) aO-byte logical records. In addition, members can be added directly to
an existing library, provided that the original space allocations are sufficient to
incorporate the new members. In this manner, a cataloged procedure can be placed
in a procedure library, or a set of job or utility control statements can be placed as a
member in a partitioned library.

IEBUPDTE can be used to modify an existing partitioned or sequential data set. Logical
records can be replaced, deleted, renumbered, or added to the member or data set.

A sequential data set residing on a tape volume can be used to create a new master
(that is, a modified copy) of the data set. A sequential data set residing on a direct
access device can be modified either by creating a new master or by modifying the
data set directly on the volume on which it resides.

A partitioned data set can be modified either by creating a new master or by
modifying the data set directly on the volume on which it resides.

IEBUPDTE can be used to change the organization of a data set from sequential to
partitioned, or to change a member of a partitioned data set to a sequential data set
(the original data set, however, remains unchanged). In addition, logical records can
be replaced, deleted, renumbered, or added to the member or data set.

IEBUPDTE uses the following input:

• An input data set (also called the old master data set), which is to be modified or
used as source data for a new master. The input data set is either a sequential data
set or a member of a partitioned data set.

• A control data set, which contains utility control statements and, if applicable, input
data. The data set is required for each use of IEBUPDTE.

IEBUPDTE produces the following output:

• An output data set, which is the result of the IEBUPDTE operation. The data set can
be either sequential or partitioned. It can be either a new data set (that is, created
during the present job step) or an existing data set, modified during the present job
step.

• A message data set, which contains the utility program identification, control
statements used in the job step, modification made to the input data set, and
diagnostic messages, if applicable. The message data set is sequential.

IEBUPDTE provides a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that a control statement is coded incorrectly or used
erroneously. If either the input or output is sequential, the job step is terminated. If
both are partitioned, the program continues processing with the next function to be
performed.

• 12, which indicates an unrecoverable error. The job step is terminated.

• 16, which indicates that a label processing code of 16 was received from a user's
label processing routine. The job step is terminated.

IEBUPDTE Program 165

Control

Job Control'Statements

Restrictions

166 Utilities (Release 21. 7)

IEBUPDTE is controlled by job control statements and utility control statements. The
job control statements are required to execute or invoke IEBUPDTE and to define the
data sets that are used and produced by the program. The utility control statements
are used to control the functions of IEBUPDTE and, in certain cases, to supply new or
replacement data.

Table 31 shows the job control statements necessary for using IEBUPDTE.

Table 31. IEBUPDTE Job Control Statements

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM = IEBUPDTE), or, if the job control statements
reside in a procedure library, the procedure name. Additional information can be
specified in the PARM parameter of the EXEC statement; see "PARM Information
on the EXEC Statement" below.

SYSPRINT DO Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access volume.

SYSUTl DO Defines the input (old master) data set. It can define a sequential data set on a
card reader, a tape volume, or a direct access volume. Or, it can define a
partitioned data set on a direct access volume. This DO statement is not required
if the input consists solely of the control data set.

SYSUT2 DO Defines the output data set. It can define a sequential data set on a card punch, a
printer, a tape volume, or a direct access device. It can define a partitioned data
set on a direct access device.

SYSIN DO Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a member of a partitioned data set.

The minimum region size that can be specified for IEBUPDTE is 14K + 2b, where b is
the largest block size in the job step rounded to the next higher 2K.

The input and output data sets contain blocked or unblocked logical records with
record lengths of up to 80 bytes. The input and output data sets may have different
block sizes as long as they are multiples of the logical record length.

If an ADD operation is specified with PARM = NEW on the EXEC card, the SYSUTI DO
statement need not be coded. See "PARM Information on the EXEC Statement"
below. Refer to 4 4Function Statement" below for a discussion of the ADD operation.

If an UPDATE operation is specified, the SYSUT2 DO statement should not be coded.
Refer to "Function Statement" for a discussion of the UPDATE operation.

If the SYSUTI DO statement defines a sequential data set, the file sequence number
of that data set must be included in the LABEL keyword (unless the data set is the first
or only data set on the volume).

If both the SYSUTI and SYSUT2 DO statements specify standard user labels (SUL),
IEBUPDTE copies user labels from SYSUTI to SYSUT2. See "Appendix E: Processing
User Labels" for a discussion of the available options for user label processing.

If the SYSUT1 and SYSUT2 DO statements define the same partitioned data set, the
old master data set can be updated without creating a new master data set; in this
case, a copy of the updated member or members is written within the extent of the
space originally allocated to the old master data set. Subsequent referrals to the
updated member(s) will point to the newly written member(s). The member names
themselves should not appear on the DO statements; they should be referenced only
through IEBUPDTE control statements.

• The SYSPRINT DO statement is required for each use of IEBUPDTE.

• The output data set can have a blocking factor that is different from the input data
set; however, if insufficient space is allocated for reblocked records, the update
request is terminated.

• When adding a member to an existing partitioned data set using an ADD Function
statement, any DCB parameters specified on the SYSUTI and SYSUT2 DD
statements (or the SYSUT2 DO statement if that is the only one specified) must be
the same as the DCB parameters already existing for the data set.

• Space must be allocated for an output data set (SYSUT2 DD statement) that is to
reside on a direct access device, unless the data set is an existing data set, in
which case space should not be allocated.

• The SYSUT2 DO statement must not specify a DUMMY data set.

PARM Information on
the EXEC Statement

Utility Control Statements

Function Statement

• If the SYSUTI and SYSUT2 DD statements define the same sequential data set
(direct access only), only those operations that add data to the end of the existing
data set can be made. In these cases:

1. The PARM parameter of the EXEC statement must imply or specify MOD. (See
"PARM Information on the EXEC Statement" below.)

2. The DISP parameter of the SYSUTI DD statement must specify OLD.

3. The DISP parameter of the SYSUT2 DD statement must specify MOD.

• The SYSIN DD statement is required for each use of IEBUPDTE.

• The message data set has a logical record length of 121 bytes, and consists of
fixed length, blocked or unblocked records with an ASA control character in the
first byte of each record. The input and output data sets have a logical record
length of SO bytes or less, and consist of fixed blocked (RECFM = FB) or unblocked
records. The control data set contains SO-byte, blocked or unblocked records.

Additional information can be coded in the PARM parameter of the EXEC statement,
as follows:

PARM = ({NEW} ,[inhdr],[intirD
{MQQ}

Following are the PARM values:

• NEW, which specifies that the input consists solely of the control data set. The •
input data set is not defined if NEW is specified.

• MOD, which specifies that the input consists of both the control data set and the
input data set. If neither NEW nor MOD is coded, MOD is assumed.

• "inhdr," which specifies the symbolic name of a routine that processes the user
header label on the volume containing the control data set.

• "intlr," which specifies the symbolic name of a routine that processes the user
trailer label on the volume containing the control data set.

For a detailed discussion of the processing of user labels as data set descriptors, refer
to "Appendix E: Processing User Labels."

The utility control statements used to control IEBUPDTE are:

• Function statement, which is used to initiate an IEBUPDTE operation.

• Detail statement, which is used with the Function statement for special applications.

• Data statement, which is a logical record of data to be used as a new or
replacement record in the output data set

• LABEL statement, which is used to indicate that the following data statements are
to be treated as user labels.

• ALIAS statement, which is used to assign aliases.

• ENDUP statement, which is used to terminate IEBUPDTE.

The Function statement is used to initiate an IEBUPDTE operation. At least one
Function statement must be provided for each member or data set to be processed.

A member or a data set can be added directly to an old master data set if the space
originally allocated to the old master is sufficient to incorporate that new member or
data set.

When a member replaces an identically named member on the old master data set or
a member is changed and rewritten on the old master, the alias (if any) of the original
member still refers to the original member. However, if an identical alias is specified
for the newly written member, the original alias entry in the directory is changed to
refer to the newly written member.

IEBUPDTE Program 167

168 Utilities (Release 21.7)

The format of the Function statement is:

= {PO }]
{PS}

[,MEMBER =cccccccc]
[,c::OLUMN :i:·dd]
[,UPDATE = INPLACE]
[,INHDR= cccccccc]
[,INTLR, == cccccccc] ,

, • [,OUTHOR = cccccccc] "
[, OUTTLR==cccccccc]
[,TOTAL =,(routinename,size)] ,
[,NAME =cccccccc]
[,LEVEL = hh]
[,S~URC~ =x]

""",,, ,.", ~ ,., "',' ." .. ,,:,.J,~~I~}1hlJ!1bh~hl.,~,. ".
where:

.j
is required and must appear in columns 1 and 2.

name
specifies an optional name which begins in column 3 and extends no further than
column 10.

ADD
specifies that a member or a data set is to be added to an old master data set. If a
member is to be added and the member name already exists in the old master data
set, processing is terminated. If, however, PARM = NEW is specified on the EXEC
statement, the member is replaced. For a sequential output master data set,
PARM = NEW must always be specified on the EXEC statement. At least one blank
must precede and follow ADD.

REPL
specifies that a member of a data set is being entered in its entirety as a
replacement for a sequential data set or for a member of the old master data set.
The member name must already exist in the old master data set. At least one blank
must precede and follow REPL.

CHANGE
specifies that modifications are to be made to an existing member or data set. Use
of the CHANGE Function statement without a NUMBER or DELETE Detail statement,
or a Data statement causes an error condition. At least one blank must precede
and follow CHANGE.

REPRO
specifies that a member or a data set is to be copied in its entirety to a new master
data set. At least one blank must precede and follow REPRO.

LIST = ALL
specifies that the SYSPRINT data set is to contain the entire updated member or
data set and the control statements used in its creation. If LIST is omitted, the
SYSPRINT data set contains modifications and control statements only. If UPDATE
was specified, the entire updated member is listed only when renumbering has
been done.

I SEQFLD = ddl
specifies, in decimal, the starting column (up to column 80) and length (8 or less)
of sequence numbers within existing logical records and subsequent Data
statements. Note that the starting column specification (dd) plus the length (I)
cannot exceed LRECL + 1. If SEQFLD is omitted, 738 is assumed, that is, an
eight-byte sequence number beginning in column 73. Therefore, if existing logical
records and subsequent Data statements have sequence numbers in columns 73
through 80, this keyword need not be coded. In any case, sequence numbers on
incoming Data statements and existing logical records must be padded to the left
with enough zeros to fill the length of the sequence field.

NEW=
specifies the organization of the old master data set and the organization of the
updated output. NEW should not be specified unless the organization of the new
master data set is different from the organization of the old master. Refer to Table
31 for the use of NEW with NAME and MEMBER. These values can be coded:

PO
specifies that the old master data set is a sequential data set, and that the
updated output is to become a member of a partitioned data set.

PS
specifies that the old master data set is a partitioned data set, and that a
member of that data set is to be converted into a sequential data set.

MEMBER = cccccccc
specifies a name to be assigned to the member placed in the partitioned data set
defined by the SYSUT2 DD statement. MEMBER is used only when SYSUT1 defines
a sequential data set, SYSUT2 defines a partitioned data set, and NEW = PO is
specified. Refer to Table 32 for the use of MEMBER with NEW.

COLUMN = dd
specifies, in decimal, the starting column of a data field within a logical record
image. The field extends to the end of the image. Within an existing logical record,
the data in the defined field is replaced by data from a subsequent Data statement.
COLUMN is valid only when CHANGE is coded.

UPDATE = INPLACE
specifies that the old master data set is to be updated within the space it actually
occupies. The old master data set must reside on a direct-access device. UPDATE
is valid only when coded with CHANGE.

INHDR = cccccccc
specifies the symbolic name of the user routine that handles any user input
(SYSUT1) header labels. When used with UPDATE, this routine assumes a special
function. This parameter is valid only when a sequential data set is being
processed. See "LABEL Statement" for a discussion of this function.

INTLR = cccccccc
specifies the symbolic name of the user routine that handles any user input
(SYSUT1) trailer labels. INTLR is valid only when a sequential data set is being
processed, but not when UPDATE is coded.

OUTHDR = cccccccc
specifies the symbolic name of the user routine that handles any user output
(SYSUT2) header labels. OUTHDR is valid only when a sequential data set is being
processed, but not when UPDATE is coded.

OUTTLR = cccccccc
specifies the symbolic name of the user routine that handles any user output
(SYSUT2) trailer labels. OUTTLR is valid only when a sequential data set is being
processed, but not when UPDATE is coded.

TOTAL =
specifies that exits to a user's routine are to be provided prior to writing each
record. This parameter is valid only when a sequential data set is being processed.
These values are coded: "

routinename
specifies the name of the user's totaling routine.

size
specifies the number of bytes required for the user's data. The size should not
exceed 32K, nor be less than 2 bytes. In addition, the keyword OPTeD = T must
be specified for the SYSUT2 (output) DD statement. Refer to "Appendix A: Exit
Routine Linkage" for a discussion of linkage conventions for user routines.

NAME = cccccccc
indicates the name of the member placed into the partitioned data set. The
member name need not be specified in the DD statement itself. NAME must be
provided to identify each input member. Refer to Table 32 for the use of NAME
with NEW. This parameter is valid only when a member of a partitioned data set is
being processed.

LEVEL ="hh
specifies the change (update) level in hexadecimal (OO-FF). The level number is
recorded in the directory entry of the output member. This parameter is valid only
when a member of a partitioned data set is being processed.

IEBUPDTE Program 169

•

170 Utilities (Release 21.7)

SOURCE=x
specifies user modifications when the x value is 0, or IBM modifications when the x
value is 1. The source is recorded in the directory entry of the output member. This
parameter is valid only when a member of a partitioned data set is being
processed.

551 = hhhhhhhh
specifies eight hexadecimal characters of system status information (551) to be
placed in the directory of the new master data set as four packed hexadecimal
bytes of user data. This parameter is valid only when a member of a partitioned
data set is being processed. 551 overrides any LEVEL or SOURCE data given on the
same Function statement.

Members can be deleted from a copy of a library by being omitted from a series of
REPRO Function statements within the same job step.

One sequential data set can be copied in a given job step. A sequential data set is
deleted by being omitted from a series of job steps which copy only the desired data
sets to a new volume. If the NEW subparameter is coded in the EXEC statement, only
the ADD Function statement is permitted.

Figure 39 shows how the system status information (SSI = OA3C123B) is packed.
Refer to IBM System/360 Operating System: Maintenance, GC27-6918, for a detailed
discussion of the format of system status information.

Change level Flag byte Serial number

byte 1 byte 2 byte 3 byte 4

o A 3 C

Figure 39. Format of System Status Information

When UPDATE is specified:

• The SYSUT2 DO statement need not be coded.

• The PARM parameter of the EXEC statement must imply or specify MOD.

• The NUMBER statement can be used to specify a renumbering operation.

• Data statements can be used to specify replacement information only.

• One CHANGE Function statement and one UPDATE parameter are permitted per job
step.

• No functions other than replacement, renumbering, and header label modification
(via the LABEL statement) can be ~pecified.

• Only replaced records are listed unless the entire data set is renumbered.

• System status information cannot be changed.

Within an existing logical record, the data in the field defined by COLUMN is replaced
by data from a subsequent data statement, as follows:

1. IEBUPDTE matches a sequence number of a Data statement with a sequence
number of an existing logical record. In this manner, the COLUMN specification is
applied to a specific logical record.

2. The information in the field within the Data statement replaces the information in
the field within the existing logical record. For example, COLUMN = 40 indicates
that columns 40 through 80 (assuming 80-byte logical records) of a subsequent
Data statement are to be used as replacement data for columns 40 through 80 of a
logical record identified by a matching sequence number. (A sequence number in
an existing logical record or Data statement need not be within the defined field.)

The COLUMN specification applies to the entire function, with the exception of:

• Logical records deleted by a subsequent DELETE Detail statement.

• Subsequent Data statements not having a matching sequence number for an
existing logical record.

• Data statements containing information to be inserted in the place of a deleted
logical record or records.

Detail Statement

Table 32 shows the use of NEW, MEMBER, and NAME parameters for different input
and output data set organizations.

Table 32. NEW, MEMBER, and NAME Parameters

Input Data Set Output Data Set Parameter
Combinations Organization Organization

Partitioned Partitioned With an ADD Function statement, use NAME to specify the
name of the member to be placed in the partitioned data
set defined by the SYSUT2 DD statement. If an additional
name is required, an ALIAS statement can also be used.

With a CHANGE, REPL, or REPRO Function statement, use
NAME to specify the name of the member within the
partitioned data set defined by the SYSUTI DD statement.
If a different or additional name is desired for the member
in the partitioned data set defined by the SYSUT2 DO
statement, use an ALIAS statement also.

None Partitioned (New) With each ADD Function statement, use NAME to assign a
name for each member to be placed in the partitioned
data set.

Partitioned Sequential With a Function statement, use NAME to specify the name
of the member in the partitioned data set defined by the
SYSUTI DD statement. Use NEW = PS to specify the
change in organization from partitioned to sequential. (The •
name and file sequence number assigned to the output
master data set are specified in the SYSUT2 DD
statement.)

Sequential Partitioned With a Function statement, use MEMBER to assign a name
to the member to be placed in the partitioned data set
defined by the SYSUT2 DD statement. Use NEW = PO to
specify the change in organization from sequential to
partitioned.

For a detailed discussion of the processing of user labels as data set descriptors, and
for a discussion of user-label totaling, see "Appendix E: Processing User Labels."

A Detail statement is used with a Function statement for certain applications, such as
deleting or renumbering selected logical records.

Note: Logical records cannot be deleted in part; that is, a COLUMN specification in a
Function statement is not applicable to records that are to be deleted. Each specific
sequence number is handled only once in any single operation.

The format of a Detail statement is:
r\'··''' ':'<"'~....,''>'"<:"·'~<:»'''''~~'<',<'<t~"..0' ~---><;.:'':N'";.:.:,--~'~«"'-;::'''*'"7:r-i"~'.~"~',=:,'!>.,.' " .. < .. -.~.""""'":t',~~~~'~*·*'~""'~·~:':-""~"":'f-..:~'·~:-:"::·~:"'...,»"<" :>~ .. O>;~~~.,,~-"'"'«~~~4"?"~~~:~~\w.~'
1,./[llame] :{NUMBE~;}[SEQI ~{cccccccc}l'" . , " ;' "':::"J'::
I, ", H~ElETE,;}:.:, ·,'{All,.',} ';.';' " ,'

" . "{;SEQ2"~'cccccqcc]
t ' .. [,N:~W~~'·c~ccc'cccr· • .

j'.,;.>,.: ' , ;;::ff'~.c~ ~fCf,ccccc]:.;. ,

~h'~~;e~ 'J~~~2.-1~~.~J~~::~~!~)N~~~E~YE~L,~2;~i;:·{ ~ > i;. {~: "

;'t

.j
is required and must appear in columns 1 and 2.

name
specifies an optional name which begins in column 3 and extends no further than
column 10.

NUMBER
specifies, when coded with a CHANGE Function statement, that the sequence
number of one or more logical records is to be changed. It specifies, when coded
with an ADD or REPL Function statement, the sequence numbers to be assigned to
the records within new or replacement members or data sets. When used with an
ADD or REPL Function statement, no more than one NUMBER Detail statement is
permitted for each ADD or REPL Function statement. If NUMBER is coded, it must
be preceded and followed by at least one blank.

DELETE
specifies, when coded with a CHANGE Function statement, that one or more logical
records is to be deleted from a member or data set. If DELETE is coded, it must be
preceded and followed by at least one blank.

IEBUPDTE Program 171

172 Utilities (Release 21.7)

SEQ1 =
specifies records to be renumbered, deleted, or assigned sequence numbers.
These values can be coded:

ecce ecce
specifies the sequence number of the first logical record to be renumbered or
deleted. This value is not coded in a NUMBER Detail statement that is used with
an ADD or REPL Function statement. When this value is used in an insert
operation, it specifies the existing logical record after which an insert is to be
made. It must not equal the number of a statement just replaced or added. Refer
to the INSERT parameter for additional discussion.

ALL
specifies a renumbering operation for the entire member or data set. ALL is used
only when a CHANGE Function statement and a NUMBER Detail statement are
used. ALL must be coded if sequence numbers are to be assigned to existing
logical records having blank sequence numbers. If ALL is not coded, all existing
logical records having blank sequence numbers are copied directly to the output
master data set. When ALL is coded: (1) SEQ2 need not be coded and (2) one
NUMBER Detail statement is permitted per Function statement. Refer to the
INSERT parameter for additional discussion.

SEQ2 = eeeceeee
specifies the sequence number of the last logical record to be renumbered or
deleted. If only one record is to be deleted, the SEQ1 and SEQ2 specifications must
be identical. SEQ2 is not coded in a NUMBER Detail statement that is used with an
ADD or REPL Function statement.

NEWl = eeeeeeee
specifies the first sequence number assigned to new or replacement data, or
specifies the first sequence number assigned in a renumbering operation. A value
specified in NEWl must be greater than a value specified in SEQl (unless
SEQ1 = ALL is specified, in which case this rule does not apply). This parameter is
valid only in a NUMBER Detail statement.

INCR = eeeeeeee
specifies an increment value used for assigning successive sequence numbers to
new or replacement logical records, or specifies an increment value used for
renumbering existing logical records. This parameter is valid only in a NUMBER
Detail statement.

INSERT = YES
specifies the insertion of a block of logical records. The records, which are Data
statements containing blank sequence numbers, are numbered and inserted in the
output master data set. INSERT is valid only when coded with both a CHANGE
Function statement and a NUMBER Detail statement.

When INSERT is coded:

• The SEQl parameter specifies the existing logical record after which the insertion is
to be made. The SEQ2 parameter need not be coded; SEQ1 = ALL cannot be
coded.

• The NEWl parameter assigns a sequence number to the first logical record to be
inserted.

• The INCR parameter is used to renumber as much as is necessary of the member
or data set from the point of the first insertion; the member or data set is
renumbered until an existing logical record is found whose sequence number is
equal to or greater than the next sequence number to be assigned. If no such
logical record is found, the entire member or data set is renumbered.

• Additional NUMBER Detail statements, if any, must specify INSERT. If a prior
numbering operation renumbers the logical record specified in the SEQl parameter
of a subsequent NUMBER Detail statement, any NEWl or INCR parameter
specifications in the latter NUMBER statement are overridden. The prior increment
value is used to assign the next successive sequence numbers. If a prior numbering
operation does not renumber the logical record specified in the SEQl parameter of
a subsequent NUMBER Detail statement, the latter statement must contain NEWl
and INCR specifications.

• The block of Data statements to be inserted must contain blank sequence numbers.

• The insert operation is terminated when a Function statement, a Detail statement,
an end-of-file indication, or a Data statement containing a sequence number is
encountered.

Data Statement

LABEL Statement

The SEQl, SEQ2, NEWl, and INCR parameters (with the exception of SEQ = ALL)
specify eight-character (maximum) decimal numbers. Only the significant numbers of
a value need be coded; for example, SEQ1 = 00000010 can be shortened to
SEQ1 = 10.

A Data statement is used with a Function statement, or with a Function statement and
a Detail statement. It contains a logical record used as replacement data for an
existing logical record, or new data to be incorporated in the output master data set.

Each Data statement contains one logical record, which begins in the first column of
the Data statement. The length of the logical record is equal to the logical record
length (LRECL) specified for the output master data set. Each logical record contains a
sequence number to determine where the data is to be placed in the output master
data set.

When used with a CHANGE Function statement, a Data statement contains new or
replacement data, as follows:

• If the sequence number in the Data statement is identical with a sequence number
in an existing logical record, the Data statement replaces the existing logical record
in the output master data set.

• If no corresponding sequence number is found within the existing records, the Data
statement is inserted in the proper collating sequence within the output master
data set. (For proper execution of this function, all records in the old master data
set must have a sequence number.)

• If a Data statement with a sequence number is used and INSERT = YES was
specified, the insert operation is terminated. IEBUPDTE will continue processing if
this sequence number is at least equal to the next old master record (record
following the referred to sequence record).

When used with an ADD or REPL Function statement, a Data statement contains new
data to be placed in the output master data set.

Sequence numbers within the old master data set are assumed to be in ascending
order.

Sequence numbers in Data statements must be in the same relative position as
sequence numbers in existing logical records. (Sequence numbers are assumed to be
in columns 73 through 80; if the numbers are in columns other than these, the length
and relative position must be specified in a SEQFLD parameter within a preceding
Function statement.)

The sequence number of the Data statement must always be equal to or greater than
the sequence number of the next old master record.

The LABEL statement indicates that the following Data statements are to be treated as
user labels. These new user labels are placed on the output data set. The next
Function statement indicates to IEBUPDTE that the last label data statement of the
group has been read.

There can be no more than two LABEL statements per execution of IEBUPDTE. There
can be no more than eight label data statements following any LABEL statement. The
first four bytes of each 80-byte label data statement must contain ··UHLn" or
HUTLn", where n is 1 through 8, for input header or input trailer labels respectively, to
conform to IBM standards for user labels. Otherwise, data management will overlay
the data with the proper four characters.

When IEBUPDTE encounters a LABEL statement, it reads up to eight Data statements
and saves them for processing by user output label routines. If there are no such
routines, the saved records are written by OPEN or CLOSE as user labels on the
output data set. If there are user output label processing routines, IEBUPDTE passes a
parameter list to the output label routines. This parameter list is described fully in
HAppendix A: Exit Routine Linkage." The label buffer contains a label data record
which the user routine can process before the record is written as a label. If the user
routine specifies (via return codes to IEBUPDTE) more entries than there are label
data records, the label buffer will contain meaningless information for the remaining
entries to the user routine.

The position of the LABEL statement in the SYSIN data set, relative to Function
statements, indicates the type of user label that follows the LABEL statement:

• To create output header labels, place the LABEL statement and its associated label
data statements before any Function statements in the input stream. A Function
statement other than LABEL must follow the last label data statement of the group.

IEBUPDTE Program 173

•

ALIAS Statement

174 Utilities (Release 21.7)

• To create output trailer labels, place the LABEL statement and its associated label
data statements after any Function statements in the input stream, but before the
ENDUP statement. The ENDUP statement is not optional in this case. It must follow
the last label data statement of the group if IEBUPDTE is to create output trailer
labels. IEBUPDTE will continue processing if this sequence number is at least equal
to the next old master record (record following the referred to sequence record).

When UPDATE is specified in a Function statement, user input header labels can be
updated by user routines, but input trailer and output labels cannot be updated by
user routines. User labels cannot be added or deleted. User input header labels are
made available to user routines by the label buffer address in the parameter list. See
"Appendix E: Processing User Labels" for a complete discussion of the linkage
between utility programs and user label-processing routines. The return codes when
UPDATE is used differ slightly from the standard codes discussed in "Appendix E:
Processing User Labels," as follows:

• 0, which specifies that the system resumes normal processing; any additional user
labels are ignored.

• 4, which specifies that the system does not write the label. The next user label is
read into the label buffer area and control is returned to the user's routine. If there
are no more user labels, the system resumes normal processing.

• 8, which specifies that the system writes the user labels from the label buffer area
and resumes normal processing.

• 12, which specifies that the system writes the user label from the label buffer area,
then reads the next input label into the label buffer area and returns control to the
label processing routine. If there are no more user labels, the system resumes
normal processing.

If the user wants to examine the replaced labels from the old master data set, he
must:

1. Specify an update of the old master by coding the UPDATE parameter in a Function
statement.

2. Include a LABEL statement in the input data set for either header or trailer labels.

3. Specify a corresponding user label routine.

If the above conditions are met, fourth and fifth parameter words will be added to the
standard parameter list. The fourth parameter word is not now used; the fifth contains
a pointer to the replaced label from the old master. In this case, the number of labels
supplied in the SYSIN data set must not exceed the number of labels on the old
master data set. If the user specifies, via return codes, more entries to the user's
header label routine than there are labels in the input stream, the first parameter will
point to the current header label on the old master data set for the remaining entries.
In this case, the fifth parameter is meaningless.

Note: DATA = NO must be specified to make standard user label (SUL) exits inactive
when input/output data sets with nonstandard labels (NSL) are to be processed.

The ALIAS statement is used to create or retain an alias in an output (partitioned)
master directory. The ALIAS statement can be used with any of the Function
statements. Multiple aliases can be assigned to each member.

The format of the ALIAS statement is:

where:

.j
is required and must appear in columns 1 and 2.

name
specifies an optional name which begins in column 3 and extends no further than
column 10.

NAME = cccccccc
specifies a one- to eight-character alias.

ALIAS must be preceded and followed by at least one blank. If multiple ALIAS
statements are used, they must follow the data records.

EN DU P Statement

IEBUPDTE Examples

An ENDUP statement can be used to indicate the end of SYSIN input to this job step.
It serves as an end-of-data indication if there is no other indication. The ENDUP
statement follows the last group of SYSIN control statements.

The format of the ENDUP statement is:

ENDUP

where:

.j
is required and must appear in columns 1 and 2.

name
specifies an optional name which begins in column 3 and extends no further than
column 10.

ENDUP must be preceded and followed by at least one blank. The ENDUP statement
must follow the last label data statement if IEBUPDTE is used to create output trailer
labels.

The following examples illustrate some of the uses of IEBUPDTE. Table 33 can be used
as a quick reference guide to IEBUPDTE examples. The numbers in the "Example"
column point to examples that follow.

Table 33. IEBUPDTE Example Directory

Data set
Operation Organization Device Comments Example

CATALOG a Partitioned 2314 Disks SYSUTI and SYSUT2 DD statements
procedure define the same data set. Procedure

to be cataloged is in the control
data set.

CREATE a Partitioned 2314 Disk Input data is in the control data set.
partitioned Output partitioned data set is to contain
library three members. 2

CREATE a Partitioned 2314 Disk Input from control data set and from
partitioned existing partitioned data set. Output
data set partitioned data set is to contain four

members. 3

UDPATE Partitioned 2314 Disk Input data set is considered to be the
INPLACE and output data set as well; therefore, no
renumber SYSUT2 DD statement is required. 4

CREATE and Partitioned, 3330 Disk Sequential master is to be created from
DELETE Sequential 9-track tape partitioned tape input. Selected

records are to be deleted. Blocked
output. 5

CREATE, Sequential, 9-track tape, Partitioned data set is to be created
DELETE, and Partitioned 2314 Disk from sequential input. Records are to
UPDATE be deleted and updated. Sequence

numbers in columns other than 73
through 80. One member is to be
placed in the output data set. 6

INSERT Partitioned 2314 Disks Block of logical records is to be
inserted into an existing member.
SYSUT 1 and SYSUT2 DD statements
define the same data set. 7

INSERT Partitioned 2314 Disks Two blocks of logical records are to be
inserted into an existing member.
SYSUTI and SYSUT2 DD statements
define the same data set. 8

CREATE Sequential Card Reader, Sequential data set with user labels is
2314 Disk to be created from card input. 9

COpy Sequential 2314 Disks Sequential data set is to be copied
from one direct access volume to
another; user labels can be processed
by exit routines. 10

IEBUPDTE Program 175

IEBUPDTE Example 1

IEBUPDTE Example 2

176 Utilities (Release 21.7)

In this example, a procedure is to be placed in the cataloged procedure library,
SYS1.PROCLIB. The example assumes that the new procedure (ERASE) can be
accommodated within the space originally allocated to the procedure library;
therefore, the update operation is performed directly to the old master.

The example follows:

IIUPDATE JOB
II EXEC
IISYSPRINT DD
IISYSUT1 DD
IISYSUT2 DD
IISYSIN DD
.1 ADD
.1 NUMBER
IIERASE EXEC
IIDDl DD
IISYSPRINT DD
.1 ENDUP
1*

09#660,SMITH
PGM=IEBUPDTE,PARM=MOD
SYSOUT=A
DSNAME=SYS1.PROCLIB,DISP=(OLD,KEEP)
DSNAME=SYS1.PROCLIB,DISP=(OLD,KEEP)
DATA
LIST=ALL,NAME=ERASE,LEVEL=01,SOURCE=0
NEW1=10,INCR=10
PGM=IEHPROGM
UNIT=190,DISP=(OLD,KEEP),VOLUME=SER=111111
SYSOUT=A

The control statements are discussed below:

• SYSUT1 and SYSUT2 DO define the SYS1.PROCLIB data set, which is assumed to
be cataloged.

• SYSIN DO defines the control data set. The data set contains the utility control
statements and the data to be placed in the procedure library.

• The ADD Function statement indicates that records (Data statements) in the control
data set are to be placed in the output. The newly created procedure is to be listed
in the message data set.

• The NUMBER Detail statement indicates that the new procedure is assigned
sequence numbers. The first record of the procedure is a"ssigned sequence number
10; the remaining two records are assigned sequence numbers 20 and 30.,

The ERASE EXEC, 001, and SYSPRINT DO statements are placed in the cataloged
procedure library, SYSl.PROCLlB, as a result of this job.

Note: The resulting procedure can be executed with an EXEC statement specifying
PROC = ERASE. For additional information on cataloged procedures, see as JeL
Reference, GC28-6704.

In this example, a three-member, partitioned library is to be created. The input data is
contained solely in the control data set.

The example follows:

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=NEW
IISYSPRINT DD SYSOUT=A
IISYSUT2 DD DSNAME=OUTLIB,UNIT=2314,DISP=(NEW,KEEP),
II VOLUME=SER=111112,SPACE=(TRK,(100,,10)),
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
IISYSIN DD DATA
.1 ADD NAME=MEMB1,LEVEL=00,SOURCE=0,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

.1 ADD NAME=MEMB2,LEVEL=00,SOURCE=0,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

.1 ADD NAME=MEMB3,LEVEL=00,SOURCE=0,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

.1 ENDUP
1*
The control statements are discussed below:

• SYSUT2 DO defines the new partitioned master OUTLIB. Enough space is allocated
to allow for subsequent modifications without creating a new master data set.

• SYSIN DO defines the control data set. The data set contains the utility control
statements and the data to be placed as three members in the output partitioned
data set.

• The ADD Function statements indicate that subsequent Data statements are to be
placed as members in the output partitioned data set. Each ADD Function
statement specifies a member name for subsequent data and indicates that the
member is to be listed in the message data set.

IEBUPDTE Example 3

• The Data statements contain the data to be placed in the output partitioned data
set.

• ENDUP signals the end of control data set input.

Note: Because sequence numbers (other than blank numbers) are included within the
data statements, no NUMBER Detail statements are included in the example.

In this example, a four-member, partitioned data set (NEWMCLlB) is to be created.
The data set is to contain:

• Two members (A TI ACH and DETACH) copied from an existing partitioned data set
(SYS1.MACLlB).

• One replacement member (BLDL) for an existing member of the input partitioned
data set.

• A new member (EXIT) The new member (EXIT) is contained in the control data set.

The example follows:

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=SYS1.MACLIB,DISP=SHR,UNIT=2314
IISYSUT2 DD DSNAME=NEWMCLIB,VOLUME=SER=111112,UNIT=2314,
II DISP=(NEW,KEEP),SPACE=(TRK,(100,,10)),
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
IISYSIN DD DATA •
. 1 REPRO NAME=ATTACH,LEVEL=OO,SOURCE=l,LIST=ALL
.1 REPRO NAME=DETACH,LEVEL=OO,SOURCE=l,LIST=ALL
.1 ADD NAME=EXIT,LEVEL=OO,SOURCE=l,LIST=ALL
.1 NUMBER NEW1=1 0, INCR=l 00

(Data cards for EXIT member)

.1 REPL NAME=BLDL,LEVEL=Ol,SOURCE=l,LIST=ALL

.1 NUMBER NEW1=10,INCR=100

(Data cards to replace BLDL member)

.1 ENDUP
1*
The control statements are discussed below:

• SYSUT1 DO defines the input partitioned data set SYS1.MACLlB, which is assumed
to be cataloged.

• SYSUT2 DO defines the output partitioned data set OUTLIB. Enough space is
allocated to allow for subsequent modifications without creating a new master data
set.

• SYSIN DO defines the control data set.

• The REPRO Function statements identify the existing input members to be copied
onto the output data set. These members are also listed in the message data set.

• The ADD Function statement indicates that records (subsequent Data statements)
are to be placed as a member in the output partitioned data set. The Data
statements are to be listed in the message data set.

• The NUMBER Detail statement assigns sequence numbers to the Data statements.
(The Data statements contain blank sequence numbers in columns 73 through 80.)
The first record of the output member is assigned sequence number 10;
subsequent records are incremented by 100.

• The REPL Function statement identifies a new member used as a replacement for
an existing member. The subsequent NUMBER Detail statement assigns sequence
numbers to the records in the new member.

• ENDUP signals the end of SYSIN data.

Note: The three named input members (ATIACH, DETACH, and BLDL) do not have to
be specified in the order of their collating sequence in the old master.

IEBUPDTE Program 177

IEBUPDTE Example 4

IEBUPDTE Example 5

178 Utilities (Release 21.7)

In this example, a member (MODMEMB) is to be updated within the space it actually
occupies. Two existing logical records are to be replaced, and the entire member is to
be renumbered.

The example folJows:

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUTl DO DSNAME=PDS,UNIT=2314,DISP=(OLD,KEEP),
II.VOLUME=SER=111112
IISYSIN DO *
.1 CHANGE NAME=MODMEMB,LIST=ALL,UPDATE=INPLACE
.1 NUMBER SEQ1=ALL,NEW1=10,INCR=5

(Data statement 1, sequence number 00000020)
(Data statement 2, sequence number 00000035)

1*
The control statements are discussed below:

• SYSUT1 DD defines the data set that is to be updated in place. (Note that the
member name need not be specified in the DD statement.)

• SYSIN DD defines the control data set.

• The CHANGE Function statement indicates the name of the member to be updated
and specifies the UPDATE = INPLACE operation. The entire member is to be listed
in the message data set.

• The NUMBER Detail statement indicates that the entire member is to be
renumbered, and specifies the first sequence number to be assigned and the
increment value for successive sequence numbers.

• The Data statements replace existing logical records having sequence numbers of
20 and 35.

In this example, a sequential master data set is to be created from partitioned input
and selected logical records are to be deleted.

The example follows:

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DO SYSOUT=A
IISYSUTl DD DSNAME=PARTDS,UNIT=3330,DISP=(SHR,KEEP),
II VOLUME=SER=111112
IISYSUT2 DO DSNAME=SEQDS,UNIT=2400,LABEL=(2,SL),
II DISP=(,KEEP),VOLUME=SER=001234
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
IISYSIN DO *
.1 CHANGE NEW=PS,NAME=OLDMEMBl

(Data statement 1, sequence number 00000123)

.1 DELETE SEQ1=223,SEQ2=246

(Data statement 2, sequence number 00000224)

1*
The control statements are discussed below:

• SYSUT1 DD defines the input partitioned data set PARTDS. Because no DCB
parameters are specified in the SYSUT1 DD statement, the input data set is
assumed to consist of 80-byte, unblocked records. A warning message is issued to
inform the user that this assumption was made.

• SYSUT2 DD defines the output sequential data set. The data set is to be written as
the second data set on a 9-track tape volume. The data set is written at 800 bits
per inch density.

• SYSIN DD defines the control data set.

• CHANGE identifies the input member (OLDMEMB1) and indicates that the output is
to be a sequential data set (NEW = PS).

• The first Data statement replaces the logical record whose sequence number is
identical to the sequence number in the Data statement (00000123). If no such
logical record exists, the Data statement is incorporated in the proper sequence
within the output data set.

• The DELETE Detail statement deletes logical records having sequence numbers
from 223 through 246.

IEBUPDTE Example 6

• The second Data statement is inserted in the proper sequence in the output data
set.

Note: Only one member can be used as input when converting to sequential
organization.

In this example, a member of a partitioned data set is to be created from sequential
input and existing logical records are to be updated.

The example follows:

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DO SYSOUT=A
IISYSUT1 DO DSNAME=OLDSEQDS, UNIT=2400, LABEL=(, SL)',
II DISP=(OLD,KEEP),VOLUME=SER=001234
IISYSUT2 DO DSNAME=NEWPART,UNIT=2314,DISP=(,KEEP),
II VOLUME=SER=111112,SPACE=(TRK,(20,5,5)),
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
IISYSIN DO *
.1 CHANGE NEW=PO,MEMBER=PARMEM1,LEVEL=01, llC
.1 SEQFLD=605,COLUMN=40,SOURCE=O

(Data statement 1, sequence number 00020)

.1 DELETE SEQ1=220,SEQ2=250

I (Data statement 2, sequence number 00230)
(Data statement 3, sequence number 00260)

.1 ALIAS NAME=MEMB1
1*
The control statements are discussed below:

• SYSUT1 DD defines the input sequential data set (OLDSEQDS). The data set was
originally written at a density of 800 bits per inch on a 9-track tape volume.

• SYSUT2 DD defines the output partitioned data set. Enough space is allocated to
provide for members that might be added in subsequent job steps.

• SYSIN DD defines the control data set.

• The CHANGE Function statement identifies the output member and indicates that a
conversion from sequential input to partitioned output is to be made. The SEQFLD
parameter indicates that a five-byte sequence number is located in columns 60
through 64 of each Data statement. The COLUMN parameter specifies the starting
column of a field (within subsequent data statements) from which replacement
information is obtained.

• The first Data statement is used as replacement data. Columns 40 through 80 of
the statement replace columns 40 through 80 of the corresponding logical record.
If no such logical record exists, the entire card image is inserted in the output
member. .

• The DELETE Detail statement deletes all of the logical records having sequence
numbers from 220 through 250.

e The second Data statement, whose sequence number falls within the range
specified in the DELETE Detail statement, is incorporated in its entirety in the
output member.

• The third Data statement, which is beyond the range of the DELETE Detail
statement, is treated in the same manner as the first Data statement.

• ALIAS assigns the alias MEMB1 to the output member PARMEMI.

IEBUPDTE Program 179

•

IEBUPDTE Example 7

180 Utilities (Release 21.7)

In this example, a block of three logical records is to be inserted into an existing
member, and the updated member is to be placed in the existing partitioned data set.

Figure 40 shows existing sequence numbers, new sequence numbers, and Data
statements to be inserted.

Sequence Numbers and
Data Statements to be
inserted

10

New Sequence Numbers

10
15
Data statement 1
Data statement 2
Data statement 3
20
25
30

15
20
25
30
35
40
45

Figure 40. Sequence Numbers and Data Statements to Be Inserted

The example follows:

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=PDS,UNIT=2314,DISP=(OLD,KEEP),
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=PDS,UNIT=2314,DISP=(OLD,KEEP),
II VOLUME=SER=111112
IISYSIN DD *
.1 CHANGE NAME=RENUM,LIST=ALL,LEVEL=01,SOURCE=O
.1 NUMBER SEQ1=15,NEW1=20,INCR=5,INSERT=YES

(Data statement 1)
(Data statement 2)
(Data statement 3)

1*
The control statements are discussed below:

• SYSUT1 and SYSUT2 DO define the partitioned data set PDS.

• SYSIN DO defines the control data set.

• The CHANGE Function statement identifies the input member RENUM. The entire
member is to be listed in the message data set.

• The NUMBER Detail statement specifies the insert operation and controls the
renumbering operation.

• The Data statements are the logical records to be inserted. (Sequence numbers are
assigned when the Data statements are inserted.)

In this example, the existing logical records have sequence numbers 10, 15, 20, 25,
30, etc. Sequence numbers are assigned by the NUMBER Detail statement, as follows:

1. Data statement 1 is assigned sequence number 20 (NEW1 = 20) and inserted after
existing logical record 15 (SEQ1 = 15).

2. Data statements 2 and 3 are assigned sequence numbers 25 and 30 (INCR = 5)
and are inserted after Data statement 1.

3. Existing logical records 20, 25, and ,30 are assigned sequence numbers 35, 40, and
45, respectively.

4. The remaining logical records in the member are renumbered.

IEBUPDTE Example 8 In this example, two blocks (three logical records per block) are to be inserted into an
existing member, and the member is to be placed in the existing partitioned data set.
A portion of the output member is to be renumbered.

Figure 41 shows existing sequence numbers, new sequence numbers, and Data
statements to be inserted.

Sequence Numbers and
Data Statements to be
inserted

10
15
Data statement 1
Data statement 2
Data statement 3
20
25
30
Data statement 4
Data statement 5
Data statement 6
35
Data statement 7
40
50
150
155

New Sequence Numbers

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
150
155

Figure 41. Sequence Numbers and Seven Data Statements to Be Inserted

The example follows:

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=PDS,UNIT=2314,DISP=(OLD,KEEP),
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=PDS,UNIT=2314,DISP=(OLD,KEEP),
II VOLUME=SER=111112,
IISYSIN DD *
.1 CHANGE NAME=RENUM,LIST=ALL,LEVEL=01,SOURCE=O
.1 NUMBER SEQ1=15,NEW1=20,INCR=5,INSERT=YES

(Data statement 1)
(Data statement 2)
(Data statement 3)

.1 NUMBER

(Data statement 4)
(Data statement 5)
(Data statement 6)

SEQ1=30,INSERT=YES

(Data statement 7, sequence number 00000038)

1*
The control statements are discussed below:

• SYSUT1 and SYSUT2 DO define the partitioned data set PDS.

• SYSIN DO defines the control data set.

• The CHANGE Function statement identifies the input member RENUM. The entire
member is to be listed in the message data set.

• The NUMBER Detail statements specify the insert operations (INSERT = YES) and
control the renumbering operation.

• Data statements 1, 2, 3, and 4, 5, 6 are the blocks of logical records to be
inserted. Because they contain blank sequence numbers, sequence numbers are
assigned: when the Data statements are inserted.

• Data statement 7 is a logical record to be inserted in the output member.

The existing logical records in this example have sequence numbers 10, 15, 20, 25,
30, 35,40, 45, 50, 150, 155, 160, 165, etc. The insert and renumbering operations
are performed as follows:

1. Data statement 1 is assigned sequence number 20 (NEW1 = 20) and inserted after
existing logical record 15 (SEQ1 = 15).

IEBUPDTE Program 181

IEBUPDTE Example 9

182 Utilities (Release 21.7)

2. Data statements 2 and 3 are assigned sequence numbers 25 and 30 (INCR = 5)
and are inserted after data statement 1.

3. Existing logical records 20, 25, and 30 are assigned sequence numbers 35, 40, and
45, respectively.

4. Data statement 4 is assigned sequence number 50 and inserted. (The SEQ 1 = 30
specification in the second NUMBER statement places this data statement after
existing logical record 30, which has become logical record 45.)

5. Data statements 5 and 6 are assigned sequence numbers 55 and 60 and are
inserted after Data statement 4.

6. Existing logical record 35 is assigned sequence number 65.

7. Data statement 7 is assigned sequence number 70 and is inserted.

8. The remaining logical records in the member are renumbered until logical record
150 is encountered. Because this record has a sequence number higher than the
next number to be assigned, the renumbering operation is terminated.

In this example, IEBUPDTE is used to create a sequential data set from card input.
User header and trailer labels, also from the input stream, are placed on this
sequential data set.

The example follows:

IILABEL JOB , MSGLEVEL= 1
IICREATION EXEC PGM=IEBUPDTE,PARM=NEW
IISYSPRINT DD SYSOUT=A
IISYSUT2 DD DSNAME=LABEL,VOLUME=SER=123456,
II DISP=(NEW,KEEP),LABEL=(,SUL),
II SPACE=(TRK,(15,3)),UNIT=2314
IISYSIN DD *
.1 LABEL

(First header label)

(Last header label)
.1 ADD

(First input data record)

(Last input data record)

.1 LABEL

(First trailer label)
(Last trailer label)

.1 ENDUP
1*

LIST=ALL,OUTHDR=ROUTINE1,OUTTLR=ROUTINE2

The control statements are discussed below:

• SYSUT2 DD defines and allocates space for the output sequential data set, which
resides on a 2314 volume.

• SYSIN DD defines the control data set. (This control data set includes the
sequential input data set and the user labels, which are on cards.)

• The first LABEL statement identifies the 80-byte card images in the input stream
which will become user header labels. (They can be modified by the user's header
label processing routine specified on the ADD Function statement.)

• The ADD Function statement indicates that the Data statements that follow are to
be placed in the output data set. The newly created data set is to be listed in the
message data set. User output header and output trailer routines are to be given
control prior to the writing of header and trailer labels.

• The second LABEL statement identifies the BO-byte card images in the input
stream which will become user trailer labels. (They can be modified by the user's
trailer label processing routine specified on the ADD Function statement.)

• ENDUP signals the end of the control data set.

IEBUPDTE Example 10 In this example, IEBUPDTE is used to copy a sequential data set from one
direct-access volume to another. User labels are processed by user exit routines.

The example follows:

IILABELS JOB ,MSGLEVEL=1
II EXEC PGM=IEBUPDTE,PARM=(MOD"MMMMMM)
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=OLDMAST,DISP=OLD,LABEL=(,SUL),
II VOLUME=SER=111111,UNIT=2314
IISYSUT2 DD DSNAME=NEWMAST,DISP=(NEW,KEEP),LABEL=(,SUL),
II UNIT=2314,VOLUME=SER=XB182.
II SPACE=(TRK,(10,10))
IISYSIN DD DSNAME=INPUT,DISP=OLD,LABEL=(,SUL),
II VOLUME=SER=222222,UNIT=2314
1*
(Input data set)

.1 REPRO LIST=ALL,INHDR=SSSSSS,INTLR=TTTTTT,

.1 OUTHDR=XXXXXX,OUTTLR=YYYYYY

.1 ENDUP

The control statements are discussed below:

• SYSUTI DD defines the input sequential data set, which resides on a 2314 volume.

• SYSUT2 DD defines the output sequential data set, which will reside on a 2314
volume.

• SYSIN DD defines the control data set.

• The REPRO Function statement indica~es that the existing input sequential data set
is to be copied to the output data set. This output data set is to be listed on the
message data set. The user's label-processing routines are to be given control
when header or trailer labels are encountered on either the input or the output data
set.

• ENDUP indicates the end of the control data set.

IEBUPDTE Program 183

IEHATLAS Program

Input and Output

Control

Job Control Statements

Restrictions

IEHATLAS is a system utility used when a defective track is indicated by a data check
or missing address marker condition. (See "Introduction" for general system utility
information.)

IEHATLAS can be used to locate and assign an alternate track to replace the defective
track. Usable data records on the defective track are retrieved and transferred to the
alternate track. The bad record from the defective track is then replaced on the
alternate by a correct copy provided by the user.

In a simple application, IEHATLAS is used as a separate job after an abnormal
termination of a problem program. Input data necessary for execution of
IEHATLAS-the address of the defective track and replacement records-may be
obtained from the dump and from backup data.

A more complex use of IEHATLAS may involve the preparation of a user's SYNAD
routine, which reconstructs the necessary input data and invokes IEHATLAS
dynamically.

When IEHATLAS is invoked, it attempts to write on the defective track. If the
subsequent read-back check indicates that the attempt was successful, a message is
issued on the SYSOUT device. If not, a supervisor call routine (SVC 86) is entered
automatically.

The SVC routine locates and assigns an alternate track. (If a defective track already
has an alternate and an error occurs on that alternate, the SVC routine assigns the
next available alternate. All of the valid data records on the defective track are
retrieved and transferred to the alternate track. The input record is written on the
alternate track in the correct position to recover from the previous error.

When a READ error occurs and a complete recovery is desired, IEHDASDR can be
used to produce a listing of error data on a track. Using this data, the input data
record 'lor IEHATLAS can be created. The rep/ace function can then be performed by
executing IEHATLAS.

The direct access device types sup·ported by IEHATLAS are 2302,2311,2314,2319,
2305, and 3330.

IEHATLAS uses the following input: (1) a description of the defective track, specifying
the bin (or cell), cylinder, track, record, key, and data length (in hexadecimal
notation), (2) an indication if WRITE Special is needed, and (3) a valid copy (in
hexadecimal notation) of the bad record.

IEHATLAS produces as output: (1) a message, issued on the SYSOUT device,
containing the user's control information, the input record, and diagnostics, (2) the
input record, written on either the original (defective) track or on an alternate track
containing the usable data taken from the defective track, and (3) the return
parameter list (specifying a maximum of three error record numbers in hexadecimal
when an unrecoverable error occurs).

IEHATLAS is controlled by job control statements and utility control statements. The
job control statements are used to execute or invoke IEHATLAS and to define the data
sets used and produced by IEHATLAS.

A utility control statement is used to specify whether the bad record is a member of
the volume table of contents or a member of some other data set. It is also used to
indicate whether or not the WRITE Special command is to be used.

Table 34 shows the job control statements necessary for using IEHATLAS.

For detailed information on the minimum region size that can be specified for
IEHATLAS, see as Storage Estimates, GC28-6551.

• The block size for the SYSPRINT data set must be a multiple of 121. The block size
for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified.

• DISP = SHR must not be coded on the SYSUT1 DD statement.

IEHATLAS Program 185

Utility Control Statement

TRACK or VTOC Statement

186 Utilities (Release 21.7)

Table 34. IEHATLAS Job Control Statements
Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM = IEHATLAS) or, if the job control statements
reside in a procedure library, the procedure name.

SYSABEND DD Defines a dump data .set. It must include appropriate parameters for a basic
sequential (BSAM) data set. The data set can be written to a system output
device, a tape volume, or a direct access volume.

SYSPRINT DD Defines a sequential data set that contains the output messages issued by
IEHATLAS.

SYSUTl DD Defines the data set that contains the bad record.

SYSIN DD Defines the control data set, which contains the utility control statement and a
copy of the bad record.

The TRACK or VTOC control statement is used to controIIEHATLAS.

The TRACK or VTOC statement is used to identify the defective record.

The format of the TRACK or VTOC statement is:

where:

TRACK =
specifies that an alternate track is to be assigned for a track that does not contain
VTOC records.

VTOC=
specifies that an alternate track is to be assigned for a track that contains VTOC
records .

. bbbb
is the bin (or cell) number when the device specified in the SYSUT1 DD Statement
is a 2321 data cell; if the device is other than a 2321 data cell, the number must
be padded with zeros.

cccc
is the number of the cylinder in which the defective track was found.

hhhh
is the defective track number.

rrkk
is the record number and key length for the bad record.

dddd

S

is the data length of the bad record. (When a WRITE Special command is used,
dddd is the length of the record segment.

is an optional byte of EBCDIC information that specifies that the WRITE Special
command is to be used (when the last record on the track overflows and must be
completed elsewhere).

Care should be taken to ensure that the input record data length does not exceed the
track size. This is especially important when the WRITE Special command is specified
because the error may not be recognized immediately by the system.

The TRACK or VTOC statement must not begin in column 1.

Input data (consisting of the hexadecimal replacement record) begins in column 1
immediately following the utility control data. Input data may continue through column
80. As many cards as necessary may be used to contain the replacement record. All
columns (1 through 80) are used on the additional cards.

IEHATLAS is designed to replace an error record with a copy of that record. It cannot
be used to replace a record with another of a different key and/or data length.

An end-of-file record cannot be changed; therefore, input for key and/or data fields
are ignored.

IEHATLAS Examples

IEHATLAS Example 1

IEHATLAS Example 2

The following examples illustrate some of the uses of IEHATLAS. Table 35 can be used
as a quick reference guide to IEHATLAS examples. The numbers in the "Example"
column point to examples that follow.

Table 35. IEHATLAS Example Directory

Operation

Get Alternate
Tracks

Get Alternate
Track

Get Alternate
Track

Get Alternate
Track

Comments

Write Special is included because of a
track overflow condition.

Alternate track assigned for a bad
end-of-file record.

Alternate track assigned for a bad
VTOC record.

Replace defective record zero.

Example

2

3

4

In this example, the data set defined by SYSUTI contains the bad record. An alternate
track on the specified unit and volume will be assigned to replace the defective track.

The example follows:

IIJOBATLAS JOB 06#990,SMITH,MSGLEVEL=1
IISTEP EXEC PGM=IEHATLAS
IISYSPRINT DD
IISYSUTl DD
II DISP=OLD

SYSOUT=A
DSNAME=NEWSET,UNIT=3330,VOLUME=SER=333011,

IISYSIN DD *
TRACK=00000002000422020006S

F3F1C2C2FOFOOOOO
1*
The control statements are discussed below:

• SYSPRINT DO defines the device to which the output messages can be written.

• SYSUTI DO defines the data set that contains the bad record.

• SYSIN DO defines the control data set, which follows in the input stream.

• TRACK specifies the bin, cylinder, and track number for the defective track; and
the record number, key length, and data length of the bad record. In this example,
the device is a 3330, so the input record has a bin number of zero; the record is to
be placed on cylinder 2, track 4, record 22; and it has a key length of 2 with a
logical record length of 8. The WRITE Special (S) character is used because there is
a track overflow condition.

The input record is a typical hexadecimal record as defined by the TRACK statement.
The input record contains eight bytes (data length = 6, key length = 2).

In this example, an alternate track is assigned for a bad end-of-file record.

The example follows:

IIJOBATLAS JOB 06#990, SMITH, MSGLEVEL=1
IISTEP EXEC PGM=IEHATLAS
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=EOFSET,UNIT=2305,VOLUME=SER=333333,
II DISP=OLD
IISYSIN DD *

TRACK=00000001000003000000
1*
The control statements are discussed below:

• SYSPRINT DO defines the device to which the output messages can be written.

• SYSUTI DD defines the data set that contains the bad record.

• SYSIN DD defines the control data set, which follows in the' input stream.

• TRACK defines an end-of-file record on cylinder one, track zero, record three.
Input data other than the utility control statement is not required.

IEHATLAS Program 187

IEHATLAS Example 3 In this example, an alternate track is assigned for a bad VTOC record.

The example follows:

/)JOBTALAS JOB 06#990,SMITH,MSGLEVEL=1
//STEP EXEC PGM=IEHATLAS
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=3330,VOLUME=SER=222222,DISP=OLD
//SYSIN DD *

VTOC=000000000005022C0060
D6C2D1C5C3E340
40404040F1F2F3F1F1FOF000014401360000000100
000040008000000FOOOF00033333333333333333310DDD00000100OOOAOOOOOOOAOOOOOOOOOOOOOO
00
/*

IEHATlAS Ex"mple 4

188 Utilities ('~e'ease 2) .7)

The control statements are discussed below:

• SYSPRINT DO defines the device to which the output messages can be written.

• SYSUTI DO defines the data set that contains the bad record.

• SYSIN DO defines the control data set, which follows in the input stream.

• VTOC defines the location of the bad VTOC record as track five of cylinder zero.
The record number is 2 with a key length of 44. Record length of the bad record is
96.

The input record in this example is a typical hexadecimal record as defined by the
VTOC statement. The input record contains 140 bytes (data length = 96, key
length = 44).

In this example, the replacement record is record zero.

The example follows:

//JOBATLAS JOB 06#990,SMITH,MSGLEVEL=1
//STEP EXEC PGM=IEHATLAS
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=NEWSET,UNIT=3330,VOLUME=SER=333001,
// DISP=OLD
//SYSIN DD *

TRACK=00000002000400000008
0000000000000000
/*
The control statements are discussed below:

• SYSPRINT DO defines the device to which the output messages can be written.

• SYSUTI DO defines the data set that contains the bad record.

• SYSIN DO defines the control data set, which follows in the input stream.

• TRACK specifies the bin, cylinder, and track number for the defective track; and
the record number, key length, and data length of the bad record. In this example,
the device is a 3330, so the input record has a bin number of zero; the record is to
be placed on cylinder 2, track 4, record 0; and it has a key length of zero with a
logical record length of 8.

The input record is a typical hexadecimal record as defined by the TRACK statement.
The input record contains eight bytes (data length = 8, key length = 0).

IEHDASDR Program

Initialize-With
Recording-Surface Analysis

Initialize-Without
Recording-Surface Analysis

IEHDASDR is a system utility used to prepare direct access volumes for operating
system use and to ensure that any permanent hardware errors (that is, defective
tracks) incurred on direct access volumes do not seriously degrade the performance
of those volumes. (See "Introduction" for general system utility information.)

In addition, IEHDASDR can be used to dump the entire contents or portions of a direct
access volume to a volume or volumes of the same direct access device type, to a
tape volume or volumes, or to a system output device. Data that is dumped to a
magnetic tape volume is arranged so that it can subsequently be restored to its
original organization by IEHDASDR. The direct access device types supported by
IEHDASDR are: 2301, 2302, 2303, 2305, 2311, 2314, 2319, 2321, and 3330.

The program can be used to:

• Analyze tracks, assign alternate tracks for defective tracks, and perform
housekeeping and formatting functions to make direct access volumes suitable for
IBM System/360 Operating System use.

Note: Defective tracks are flagged when the 3330 disk storage volumes are initialized
at the factory. An IEHDASDR job to initialize a 3330 does not perform a surface
analysis. The ANALYZE option performs a "quick-DASDI" which includes:

1. Initialization of track zero, including IPL1, IPL2, volume label, and optional
IPLTXT.

2. VTOC construction.

• Perform housekeeping and formatting functions on direct access volumes without
analyzing tracks.

• Change the volume serial number of a formatted direct access volume.

• Assign alternate tracks for specified defective or questionable tracks on disk or
data cell volumes.

• Create a backup or transportable copy of a direct access volume, or list the
contents on a system output device.

• Copy dumped data from a tape volume to a direct access volume.

IEHDASDR can be used to analyze the recording surface of a direct access device
to:

• Assign alternate tracks for any disk or data cell tracks found defective during an
analysis, or for any track previously flagged defective. Each track can be analyzed
from 1 to 255 times, at the discretion of the user. The test of looking for previously
flagged tracks must be suppressed when a new or unformatted direct access
volume is being initialized.

• Standardize each track by placing a standard home address and a record zero (RO)
field on it. The remainder of the track is erased.

• Construct IPL bootstrap records (records 1 and 2 of track 0), a volume label record
(record 3 of track 0), and a volume table of contents (VTOC), whose size and
placement are determined by the user.

• Provide owner information in the volume label record.

Figure 42 shows a direct access volume after it has been prepared for IBM
System/360 Operating System use. A direct access volume can be initialized in this
manner using IEHDASDR.

IEHDASDR can be used to prepare a direct access volume for use without
performing a recording-surface analysis.

A volume might be prepared for system use without recording-surface analysis to:

• Check a direct access volume for previously flagged tracks (except for drum
volumes). No formatting is performed on known defective tracks.

• Standardize each track by placing a standard home address and a record zero (RO)
field on it. The remainder of the track is erased (except on 3330 volumes).

• Construct IPL bootstrap records (records 1 and 2 of track 0), a volume label record
(record 3 of track 0), and a volume table of contents (VTOC), whose size and
placement are determined by the user.

IEHDASDR Program 189

Changing the Volume
Serial Number of a
Direct Access Volume

Assigning Alternate Tracks
for Specified Tracks

Creating a Backup,
Transportable, or
Printed Copy

190 Utilities (Release 21.7)

Standard home
address

IPL
bootstrap
records

Figure 42. Direct Access Volume Initialized Using IEHDASDR

Volume
label
record

• Optionally write an IPL program record for 2301, 2303, 2305, 2311, 2314, 2319,
and 3330 devices, and provide owner information in the volume label record.

IEHDASDR can be used to change the volume serial number of an initialized
direct access volume. Optionally, a one- to ten-character owner name can be
placed in the volume label record (record 3 of track 0). If an owner name already
exists, it is overwritten with the new name.

Note: All cataloged data sets residing on a volume whose label is changed must be
recataloged, if the catalog reflects the old serial number.

IEHDASDR can be used to assign an alternate track on a data cell or disk volume.
An alternate track can be assigned for any track, whether it is defective or not. If the
specified track is an alternate, a new alternate is assigned; if the specified track is an
unassigned alternate, it is flagged to prevent its future use.

Note: If it is necessary to assign an alternate track on a drum volume, an IBM
Programming Service Representative should be notified.

IEHDASDR can be used to dump a direct access volume or a portion of a volume to
any number of tape volumes or volumes of the same direct access device type, or
to a system output device. The program can dump a single track, a group of tracks, or
an entire volume.

When an entire volume is dumped:

• All primary tracks (for which no alternate tracks are assigned) are dumped.

• When a primary track is found to have an alternate track assigned, the alternate is
dumped in place of the primary.

Each track to be dumped will have all of its data except the home address and the
count field of record zero (RO) copied to the receiving volume.

A receiving direct access volume retains its own serial number unless the user
specifies that it is to be assigned the serial number of the direct access volume being
dumped.

Except for a printing operation, only data that is owned is dumped; IEHDASDR checks
the first or only Free Space (Format 5) data set control block (DSCB) in the volume
table of contents. The Free Space (Format 5) DSCB identifies unowned (unused)
space on the direct access volume. Whenever an unowned track is encountered, a
dummy record, containing a home address and record zero, is written on the receiving

•
•
•
•
•
•
•
•
•

volume. When data is dumped to a system output device, the entire range of specified
tracks is dumped.

A printing operation prints each record in hexadecimal. In addition, all printable
characters are also represented in EBCDIC.

Figure 43 shows the format of printed output. Each track is identified by its absolute
track address (cccchhhh). The RO data field is printed on the same line as the track
address. Each printed record is preceded by a count field that identifies the applicable
track address (cccchhhh), the record number of the record being printed (rr), and the
key and data length (kk and dddd) of the record.

•
• ••• TRACK cccchhhh RO DATA xxxxxxxxxxxxxxxx

COUNT cccchhhhrrkkdddd
key and data fie lds

(hexadec ima 1)

000000 xxxxxxxx XXxxxxxx xxxxxxxx xxxxxxxx
000032 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

etc.

COUNT cccchhhhrrkkdddd

000000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
000032 xxxxxxxx xxxxxxxx xxxxxxxx etc.

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

key and data f le lds

(EBCDIC)

•...................• . .
0" ••••••••••••••••

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx •.........•.........

••• TRACK cccchhhh RO DA;rA xxxxxxxxxxxxxxxx

COUNT cccchhhhrrkkdddd

000000
000032

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx etc.

- -= -
xxxxxxxx XXXXXXxX xxxxxxxx xxxxxxxx ••••••••••••.•.•••••

-

•
•
•
•
•
•
•

Figure 43. Format of a Direct Access Volume Dumped to a Printer Using IEHDASDR

If an alternate track is printed in place of a primary track, it is identified in the printout
by the primary track address.

Copying Dumped Data
to a Direct Access
Volume

When a direct access volume is dumped to a tape volume, the data is placed in a
format that is specially suited for the tape volume. IEHDASDR can be used to restore
the format of the dumped data and place the data on the same type of direct access
volume as the original volume; that is, data originally dumped from a 2311 volume can
be restored to a 2311 volume, data dumped from a 2314 volume can be restored to a
2314 volume.

Input and Output

Identical copies of dumped data can be restored to any number of volumes of the
same direct access device type as the original volume during the execution of a single
restore operation. In addition, data that was dumped by IBCDMPRS can be restored.

A receiving direct access volume retains its own serial number unless the user
specifies that it is to be assigned the serial number of the direct access volume
originally dumped. If multiple direct access volumes are to be dumped to, and the user
specifies that the serial number of the dumped volume is to be propagated, all
receiving volumes are assigned that serial number.

IEHDASDR uses as input a control data set containing utility control statements and,
optionally, IPL text.

The primary output or result of executing IEHDASDR is determined by the application.

A sequential message data set is created to list informational messages (for example,
control statements used), dumped data (for a print operation), and any error
messages.

IEHDASDR provides a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that an unusual condition was encountered; however, the
overall result is successful. A warning message is issued.

• 08, which indicates that a specified operation did not complete successfully. An
attempt is made to perform any additional operations.

• 16, which indicates that either an error occurred upon invoking IEHDASDR, or
IEHDASDR was unable to open the input or message data set. The job step is
terminated.

IEHDASDR Program 191

•

Control

Job Control Statements

192 Utilities (Release 21.7)

IEHDASDR is controlled by job control statements and utility control statements. The
job control statements are used to execute or invoke IEHDASDR and define the data
sets used and produced by IEHDASDR.

The utility control statements are used to control the functions of the program.

Table 36 shows the job control statements necessary for using IEHDASDR.

Table 36. IEHDASDR Job Control Statements
Statement

JOB

EXEC

SYSPRINT DD

anyname DD

tape name DD

SYSIN DD

Use

Initiates the job.

Specifies the program name (PGM = IEHDASDR) or, if the job control statements
reside in a procedure library, the procedure name. Additional information can be
entered in the PARM parameter of the EXEC statement; see "PARM Information
on the EXEC Statement" below.

Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access device.

Defines a direct access device type.

Defines a magnetic tape drive.

Defines the control data set. The control data set usually resides in the input
stream; however, it can be defined as a blocked or unblocked sequential data set
or as a member of a procedure library.

For detailed information on the minimum region size that can be specified for
IEHDASDR, see OS Storage Estimates, GC28-655l.

The "anyname" DD statement can be entered:

/ /anyname DD UNIT = xxxx,VOLUME = SER = xxxxxx,DISP = OLD

If more than one volume is to be processed on a single mountable device, deferred
mounting can be specified in the "anyname" DD statement by entering:

/ /anyname DD UNIT = (xxxx"DEFER),VOLUME = (PRIVATE, ...),
/ / DISP = (OLD, KEEP)

The "anyname" DD statement is not used for an operation that analyzes an offline
direct access volume.

If the volume serial number of a volume to be processed on line is not known, it may
be possible to make a nonspecific, PRIVATE volume request on a specific unit; for
example:

/ /anyname DD UNIT = (191"DEFER),VOLUME = PRIVATE,DISP = (NEW,KEEP),
/ / SPACE = (TRK,(1, 1»

In this case, the operator is asked to mount a scratch volume on that unit. See
"Appendix C: Defining Mountable Devices" for the appropriate DD statement and for
a discussion of how to make a nonspecific unit request.

If an IEHDASDR operation produces a volume serial number that is a duplicate of a
volume serial number already allocated within the system, the volume to which the
duplicate number is assigned is made unavailable to the system. The operator is asked
to remove the applicable volume at the completion of the operation.

The Iitapename" DD statement can be entered:

/ /tapename DD UNIT = xxxx,VOLUME = SER = xxxxxx,LABEL = (... , ...),
/ / DISP = (... ,KEEP),DCB = (TRTCH = C,DEN = x)

If more than one tape volume is to be processed on the same tape drive, deferred
mounting can be specified by:

/ /tapename DD UNIT = (xxxx"DEFER),VOLUME = (PRIVATE, ...)

If standard labeled tapes are specified, the DSNAME should also be provided.

The "anyname" DD and "tapename" DD statements are referred to by utility control
statements for program operation.

Both the SYSIN and the SYSPRINT data set can have a blocking factor of other than l.

Data can be dumped from the system residence volume (the IPL volume); however,
this is the only IEHDASDR operation that can be performed on that volume.

Restrictions

PARM Information on
the EXEC Statement

Because IEHDASDR can change serial numbers and existing data on a direct access
volume, operating precautions must be followed by users who have two or more
central processing units sharing the same direct access volume.

If IEHDASDR is run in a multiprogramming environment, the user must choose a
combination of DD statements (defining mountable devices) that will ensure that
volume integrity is maintained. Refer to "Appendix C: DD Statements for Defining
Mountable Devices."

If password-protected data sets reside on volumes that are used by IEHDASDR, the
following considerations must be made:

• When dumping from a volume containing password-protected data sets, each data
set must be described in a separate DD statement having a unique ddname. When
the program is executed, the operator must supply the correct password (in answer
to a console message) for each password-protected data set.

• When dumping to a tape volume from a direct access volume containing
password-protected data sets, the DD statement defining the tape volume must
include a DSNAME parameter. In addition, the LABEL parameter must define a
standard labeled tape, include a PASSWORD subparameter, and specify or imply a
file number of 1.

• When restoring from a tape volume, a DSNAME parameter must be included in the
DD statement defining the tape volume.

• During the DUMP, RESTORE, ANALYZE, and FORMAT functions (see "Utility
Control Statements"), the direct access liTO" volume is checked for
password-protected data sets. At this time the operator must supply the correct
password for each password-protected data set encountered.

Refer to as Data Management for System Programmers, GC28-6550, for additional
information on password protection.

IEHDASDR can perform up to six concurrent operations of ANALYZE, FORMAT, DUMP
or RESTORE operations (see "Utility Control Statements"). This feature, which can
shorten the time required to execute the program, is controlled by (1) the number of
devices defined for use and (2) the physical arrangement of utility control statements
in the input stream. For example, assuming that the required devices are defined and
available, a combination of six successive statements of the same type permits six
concurrent operations to take place. However, if the utility control statements are
arranged so that no operations of the same type appear in succession, no operations
are performed concurrently, even though many devices might be defined for use.

Note: The number of concurrent operations allowed can be overridden by an EXEC
statement PARM value.

• If IEHDASDR is used to change a volume serial number and a subsequent operation
is performed on the newly labeled volume in the same job step, two "anyname" DD
statements are required. The VOLUME parameter in the first statement includes the
old volume serial number; the VOLUME parameter in the second statement
specifies the new volume serial number. In addition, the second statement specifies
unit affinity with the first.

• One lIanyname" DD statement is required for each device to be used in the job
step unless the device is to be processed off line.

• The IItapename" DD statement must be included if a data set is dumped to tape or
if a previously dumped data set is to be restored to a direct access volume.

• If BLKSIZE is specified on the SYSIN DD statement, it must be a multiple of 80. If
BLKSIZE is omitted from the statement, a block size of 80 bytes is assumed.

• If BLKSIZE is specified on the SYSPRINT DD statement, it must be a multiple of
121. If BLKSIZE is omitted or incorrectly specified, a block size of 121 bytes is
assumed.

• SYSIN attributes must be identical if SYSIN data sets are to be concatenated.

The EXEC statement for IEHDASDR can contain PARM information that is used by
the program to control line density on output listings and to indicate the maximum
number of operations of the same type that can be performed concurrently in the job
step.

The EXEC statement can be coded:

/ / EXEC PGM = IEHDASDR {,PARM = 'N = n'
{,PARM = 'LlNECNT = xx'
{,PARM = 'LlNECNT = xX,N = n'

IEHDASDR Program 193

Utility Control Statements

ANALYZE Statement

194 Utilities (Release 21.7)

The LlNECNT value specifies the number of lines per page in the listing of the
SYSPRINT data set. The number xx is a 2-digit decimal number ranging from 01 to 99.
If LlNECNT is omitted, the number of lines per page is 58.

The N value specifies a decimal number from one to six that represents the maximum
number of like functions that can be performed concurrently by IEHDASDR, assuming
that adequate system resources are available. See as Storage Estimates, GC27-6551,
for the storage required for each operation. If N is omitted, up to six ANALYZE,
FORMAT, DUMP, or RESTORE operations are performed concurrently-according to
the number of successive like statements in the input stream. (See "Utility Control
Statements.")

System resources permitting, multiple output copies can be specified in any or all of
the concurrent operations.

For example, if N = 2 and four DUMP statements appear in succession, the first two
dump operations are performed concurrently. As each dump operation is completed
and system resources become available, a new dump operation begins.

The utility control statements used to control IEHDASDR are:

• ANALYZE statement, which is used to analyze the recording surface to test for
defective tracks, assign alternates for any defective tracks found, and to format the
volume to make it ready for use.

• FORMAT statement, which is used to make a volume ready for use without
performing an analysis of the recording surface.

• LABEL statement, which is used to change the volume serial number of a direct
access volume and, optionally, to update the owner field.

• GETALT statement, which is used to assign an alternate track for a specified disk
track or data cell.

• DUMP statement, which is used to dump a single track, a group of tracks, or an
entire direct access volume.

• RESTORE statement, which is used to restore a previously dumped direct access
volume to a direct access device.

• IPL TXT statement, which signals the beginning of IPL program text statements.

For most operations, multiple copies of a source volume can be made. The program
can also perform from two to six ANALYZE, FORMAT, DUMP, or RESTORE operations
concurrently, according to the number of successive like statements in the input
stream; that is, up to six direct access volumes can be analyzed or formatted, or
dumped simultaneously, or up to six magnetic tape (restore) volumes can be
processed simultaneously.

The ANALYZE statement is used to analyze the recording surface of a direct access
device. Bit patterns are written on a track, read, and tested for defects. If no defects
are found, the track is formatted to make it ready for system use.

The format of the ANALYZE statement is:

where:

TOOO=
specifies the volume to be processed. If multiple volumes are specified in an
ANALYZE statement and an abnormal completion of the ANALYZE operation
occurs, the operation is terminated on all volumes. These values can be coded:

(cuu, ...)
specifies the channel and unit address of a direct access device containing a
volume to be initialized. This value is used only for the analysis of a volume off
line, which includes the first analysis of a volume. If the volume to be processed
is a 2321 volume, TODD = cuulb is specified, where cuu is the channel and unit
address of the device, and b is the bin number of the volume; for example,
TOOD = 150/0 specifies bin 0 with a channel and unit address of 150. If this
value is coded, no DO statement defining a mountable device is required. When
this volume is coded, the specified devices must be varied off line (by use of the
VARY OFFLINE command) prior to the execution of the job step.

(ddname, ...)
specifies the ddname of a job control statement defining a direct access device
containing a volume to be analyzed, formatted, and labeled. Multiple ddnames
specifying additional job control statements can be included unless the TOOO
device is a 2321, in which case only one DO statement can be referred to.

VTOe = xxxxx
specifies a one- to five-byte decimal relative track address representing a primary
track on which the volume table of contents is to begin. The VTOe cannot occupy
track 0, and it cannot occupy track 1 if IPL text is written for 2303 and 2311
volumes.

EXTENT = xxxxx
specifies the decimal length of the VTOe in tracks. The VTOe cannot extend into
the alternate track area or onto a second volume.

NEWVOLID = serial
specifies a one- to six-character serial number. The serial number is assigned to all
direct access volumes processed through the use of this control statement. If
NEWVOLIO is omitted, all direct access volumes retain their own serial numbers.
This parameter is required for the analysis of a volume off line.

IPLOD = ddname
specifies the ddname of a DD statement defining the data set containing the IPL
program. The IPL program can be included in the SYSIN (input stream) data set, or
it can be defined as a sequential data set or a member of a partitioned data set. If
IPL text is included in the input stream, an IPLTXT statement is used to separate
the ANALYZE statement from the IPL program text statements. The maximum IPL
record size is 3625 bytes. IPLOD applies to 2301,2303,2305,2311,2314,2319,
and 3330 volumes.

Note: Caution should be used to ensure that the DO statement being referred to is
coded correctly.

FLAGTEST =
specifies whether a check is to be made for previously flagged tracks. FLAGTEST is
applicable to disk and data cell volumes, not to drum volumes. When a volume is
initialized off line, no check is made. These values can be coded:

YES
specifes that each track is to be checked to see if it was previously flagged as
defective. If FLAGTEST is omitted, YES is assumed.

NO
specifies that the program is not to check for previously flagged tracks on the
volume.

PASSES =
specifies the number of passes to be made in analyzing a recording surface. These
values can be coded:

n
specifies the number of times a bit pattern test is to be performed. The n value
is a decimal number from 1 to 255. If PASSES is omitted, the bit pattern test is
performed once on each track. This value is applicable to disk and drum
volumes, with the exception of 3330 volumes.

IEHDASDR Program 195

FORMAT Statement

196 Utilities (Release 21.7)

o
specifies that the ANALYZE function is to bypass all surface analysis and track
formatting, writing only a VTOC, track zero records (IPL bootstrap and volume
label records), and IPL text if requested. The 0 value applies to all direct access
volumes supported by IEHDASDR. If the device is a 3330, only the 0
specification is allowed, and is forced regardless of the PASSES parameter. This
value is applicable to all previously initialized direct access devices supported by
IEHDASDR while on line. The offline "quick-DASDI" feature is only supported for
2314, 2305, and 3330 volumes.

OWNERID = name
specifies a one- to ten-character name or other identifying information to be
placed in the volume label record. OWNERID is specified as an EBCDIC character
string with the exclusion of the blank and the comma characters (these terminate
the control card scan of a field or an entire card).

PURGE =
specifies whether the ANALYZE operation is to be terminated when an unexpired
data set is encountered. If PURGE is omitted, and an unexpired data set is
encountered, the ANALYZE operation is terminated. These values can be coded:

YES
indicates that all unexpired data sets on the volume can be overwritten provided
that the operator signals his concurrence when the first unexpired data set is
encountered.

NO
specifies that the ANALYZE operation is to be terminated if an unexpired data
set is encountered. This is the default.

If PURGE = YES is coded and an unexpired data set is encountered, the operator is
prompted. The operator replies are:

• U, which indicates that all unexpired data sets on this volume can be overwritten.
(The ANALYZE operation continues.)

• T, which indicates that this volume contains unexpired data sets that must not be
overwritten. (The ANALYZE operation is terminated.)

The PURGE parameter does not apply to password-protected data sets; that is, the
operator must always respond with the proper password for each password-protected
data set encountered. If he is unable to do so, the ANALYZE operation is terminated.

Note: If the device is on line and a volume label and VTOC are present, they are read,
and the information contained in them is used to initialize the volume. If the device is
off line, the volume label and VTOC are ignored.

The FORMAT statement is used to prepare a volume for operating system use. Except
for flag testing, no analysis is made prior to formatting a track. Previously flagged disk
tracks remain flagged; alternate tracks are assigned, where applicable. Because the
FORMAT statement does not cause recording-surface analysis, it should not be used
for the first initialization of a volume.

Output produced as a result of using the FORMAT statement includes a list of
defective tracks and their assigned alternates.

The FORMAT statement is not applicable to the 2321 data cell. The ANALYZE function
should be used when initializing a 2321 volume. (If FORMAT is specified for a 2321
volume, the ANALYZE function is automatically performed.)

Note: If a command reject is detected while a FORMAT operation is performed on an
assigned alternate track on an IBM 2305 Fixed Head Storage volume, processing
continues as if no alternate track existed. No action need be taken if message
IEH40001 is typed out on the operator's console in response to this condition. If
FORMAT cannot read a home address, it flags the defective track and assigns an
alternate track.

The format of the FORMAT statement is:

[label] FORMAT

where:

TODD = (ddname, ...)
,VToe = xxxxx
,EXTENT = xxxxx
[,NEWVOLIO = serial]
[,I PLOD = ddname]
[,OWNERIO = name]
[,PURGE = {YES}]

.... {NO,)

TODD = (ddname, ...)
specifies the ddname of a job control statement defining a direct access device
containing a volume to be formatted. Multiple ddnames specifying additional job
control statements can be included. If multiple volumes are specified in a FORMAT
statement and an abnormal completion of the FORMAT operation occurs, the
operation is terminated on all volumes.

VTOe = xxxxx
specifies a one- to five-byte decimal relative track address representing a primary
track on which the volume table of contents is to begin. The VTOC cannot occupy
track 0, or track 1 if IPL text is written for 2303 and 2311 volumes.

EXTENT = xxxxx
specifies the decimal length of the VTOC in tracks. The VTOC cannot extend into
the alternate track area or to a second volume.

NEWVOLIO = serial
specifies a one- to six-character serial number. The serial number is assigned to all
direct access volumes processed through the use of this control statement. If
NEWVOLIO is omitted, the direct access volumes retain their own serial numbers.

IPLOO = ddname
specifies the ddname of a DD statement defining the data set containing the IPL
program. The IPL program can be included in the SYSIN (input stream) data set, or
it can be defined as a sequential data set or a member of a partitioned data set. If
IPL text is included in the input stream, an IPL TXT statement is used to separate
the FORMAT statement from the program text statements. Maximum IPL record
size is 3625 bytes. This parameter applies to 2301,2303,2305,2311,2314,
2319, and 3330 volumes.

Note: Caution should be used to ensure that the DD statement being referred to is
coded correctly. An incorrectly DD statement results in a loss of the time required
to perform the FORMAT function.

OWNERIO = name
specifies a one- to ten-character name or other identifying information to be
placed in the volume label record. OWNERID is specified as an EBCDIC character
string with the exclusion of the blank and the comma characters (these terminate
the control card scan of a field or an entire card).

PURGE =
specifies whether the FORMAT operation is to be terminated when an unexpired
data set is encountered. If PURGE is omitted and an unexpired data set is
encountered, the FORMAT operation is terminated. These values can be coded:

YES
indicates that all unexpired data sets on the volume can be overwritten provided
that the operator signals his concurrence when the first unexpired data set is
encountered.

NO
specifies that the FORMAT operation is to be terminated when an unexpired data
set is encountered. This is the default.

If PURGE = YES is coded and an unexpired data set is encountered, the operator is
prompted. The operator replies are:

• U, which indicates that all unexpired data sets on this volume can be overwritten.
(The FORMAT operation continues.)

• T, which indicates that this volume contains unexpired data sets that must not be
overwritten. (The FORMAT operation is terminated.)

IEHDASDR Program 197

LABEL Statement

GETALT Statement

DUMP Statement

198 Utilities (Release 21.7)

The PURGE parameter does not apply to password-protected data sets; that is, the
operator must always respond with the proper password for each password-protected
data set encountered. If he is unable to do so, the FORMAT operation is terminated.

The LABEL statement is used to change the serial number of a direct access volume
and, optionally, to update the owner field in record 3 of track O. One LABEL statement
must be included for each volume that is to have its label changed.

The format of the LABEL statement is:

TODD =
specifies the volume to be processed. These values can be coded:

cuu
specifies the channel and unit address of a direct access device containing a
volume whose serial number is to be changed. This value is used only for
labeling an off line volume. If the volume to be processed is a 2321 volume,
TODD = cuu/b is specified, where cuu is the channel and unit address of the
device and b is the bin number of the volume. If this volume is coded, no DO
statement defining a mountable device is required. When this volume is coded,
the specified device must be varied off line (by use of the VARY OFFLINE
command) prior to the execution of the job step.

ddname
specifies the ddname of a job control statement defining a direct access device
containing a volume whose serial number is to be changed.

NEWVOLIO = serial
specifies a one- to six-character serial number. The serial number is assigned to
the direct access volume processed through the use of this control statement.

OWNERIO = name
specifies a one- to ten-character name or other identifying information. If
OWNERIO is omitted, the old owner information, if any, is retained. OWNERIO is
specified as an EBCDIC character string with the exclusion of the blank, the dash,
and the comma characters (these terminate the control card scan of a field or an
entire card).

The GETAL T statement is used to assign an alternate track for a specified data cell or
disk track if the volume was previously initialized.

The format of the GETALT statement is:

,~~I]]~ETAL1>J~ODO ;~; .
;:~;~f:h}~:ij."2Ui11t~l)t!~C.~~~~~,-~.

where:

TODD = ddname
specifies the ddname of a job control statement defining a data cell or disk device
containing a volume on which an alternate track is to be assigned.

TRACK = cccchhhh
specifies in hexadecimal the cylinder number, cccc, and head number, hhhh, of a
track for which an alternate track is requested. (When referring to a 2321 volume,
cccc is the subcell and strip address, and hhhh is the cylinder and head address.
TRACK cannot specify track 0 or the first track occupied by the VTOC.

I Note: FIc~gs set by the GETALT statement for defective 3330 tracks cannot be reset by
IEHDASOR.

The DUMP statement dumps a single track, a group of consecutive tracks, or an entire
direct access volume to one or more direct access volumes of the same device type,
to one or more tape volumes, or to a system output device (printer assumed).

I A detailed description of the tape volume format is available in the IBM System/360
Operating System: Utilities, Program Logic Manual, GY28-6614.

The format of the DUMP statement is:

i'~-fi~bil] DUMP FROMDD == ddname ' <" "1\

I .TODD - (ddname •.•• J I.

I [,CPYVOLID == {YES}
I {NO}]
I . [,BEGIN = eeeehhhh] I
! [,END = eeeehhhh] JI ! [.PURGE = {YES} .'
LM,.,~~ _____ ,",._ ... ~ ___ ._, .. _", ___ ... ,., __ .,~",,, .. _J,!,:,O !l."_ ... "', ____ ,,. M"_" ,.: •• ,,_. """_'.'~ ._.~ ____ ,"_._ •• ,"", .. ,_., .•• ';', __ .. "

where:

FROMDD = ddname
specifies the ddname of the DO statement defining the device containing the direct
access volume from which a copy or copies are to be made.

TODD = (ddname, ...)
specifies the ddname of the system output device (SYSPRINT) or specifies the
ddnames of the DO statements defining the devices containing the direct access or
tape volumes on which copies are to be made. If TODD = SYSPRINT is coded, the
direct access volume described by FROMDD is dumped to the system output
device. If a permanent data check or missing address marker is encountered while
reading the direct access volume, the defective records are identified and printed.
Output may exceed the expected data size due to a data check in the count field of
the error record. When dumping from a 2305 or 3330 to SYSPRINT, the SPACE
parameter must be used on the SYSPRINT DO card. Allocate sufficient space, for
example, U5,(5)", to allow large capacity devices to dump to SYSPRINT.

CPYVOLID =
specified whether receiving direct access volumes are to be assigned the serial
number of the dumped volume. If CPYVOLID is omitted, receiving volumes keep
their own serial numbers. These values can be coded:

YES
specifies that all receiving direct access volumes are to be assigned the serial
number of the dumped volume.

NO
specifies that receiving volumes are to keep their own serial numbers. This is the
default.

BEGIN = eeeehhhh
specifies in hexadecimal a cylinder number, eeee and head number, hhhh, that
identify the first track to be dumped. (When referring to a 2321 volume, eeee is the
subcell and strip address, and hhhh is the cylinder and head address.) If BEGIN is
omitted, the dump operation begins with track O.

END = eecchhhh
specifies in hexadecimal a cylinder number, ecee, and head number, hhhh, that
identify the last track to be dumped. If only one track is to be dumped, both BEGIN
and END specify that track address. (When referring to a 2321 volume, ecce is the
subcell and strip address, and hhhh is the cylinder and head address.) If END is
omitted, the last primary track of the volume is the last track to be copied.
(Alternate tracks are not dumped unless they are assigned as alternates.)

PURGE =
specifies whether the dump operation is to be terminated when an unexpired data
set is encountered. If PURGE is omitted, the dump operation is terminated when an
unexpired data set is encountered. PURGE does not apply when dumping to a
restore tape. These values can be coded:

YES
indicates that all unexpired data sets on a receiving direct access volume can be
overwitten, provided that the operator signals his concurrence when the first
unexpired data set is encountered.

NO
specifies that the dump operation is to be terminated when an unexpired data
set is encountered. This is the default.

IEHDASDR Program 199

RESTORE Statement

200 Utilities (Release 21.7)

If PURGE = YES is coded and an unexpired data set is encountered, the operator is
prompted. The operator replies are:

• U, which indicates that all unexpired data sets on the receiving direct access
volume can be overwritten. (The DUMP operation continues.)

• T, which indicates that the receiving direct access volume contains unexpired data
sets that must not be overwritten. (The DUMP operation is terminated.)

The PURGE parameter does not apply to password-protected data sets; that is, the
operator must always respond with the proper password for each password-protected
data set encountered. If he is unable to do so, the dump operation is terminated.

An extra input/output error (data check) message is generated at the console when
the dump to SYSPRINT function encounters one of the following conditions:

• Missing address marker.

• Data check in count and key fields and/or data field.

• Input/output error on a search command.

• Missing address marker and no record found.

The additional data check message printed at the console is generated by the dump
function's error recovery procedure. However, the additional message is not reflected
by a SYNADAF message in the SYSPRINT data set. If a missing address marker is
encountered during a space count command, the function terminates with a return
code of 8.

Note: If multiple output volumes are specified in a DUMP statement and an abnormal
completion of the DUMP operation occurs, the operation is terminated on all output
volumes.

Do not dump a volume and restore new data to that volume in the same job step.
IEHDASDR does not flush the input stream if an operation is unsuccessful; that is, the
program attempts to perform any remaining functions after encountering an error.
Thus, if a dump operation is unsuccessful, data is lost if a subsequent restore
operation places new data on the dumped volume.

Partial dumps of direct access volumes should be used with extreme caution. Because
only those tracks that are dumped are placed on the receiving volume, the partially
dumped data may not be usable. When partially dumped data is subsequently
restored, it is placed on the same tracks that it originally occupied.

When using the DUMP statement, do not specify the same ddname in more than one
TODD parameter in a single job step, except when the ddname is SYSPRINT.

When space permits, more than one direct access volume can be dumped to a restore
tape. However, IEHDASDR creates two files for each volume of data that is dumped.
Therefore, the LABEL parameter sequence number in the DO statement defining the
restore volume must be coded as 3, 5, 7, etc. for the second, third, fourth, etc.
volume dumped to the restore tape.

In the case of an IPL restore tape, the LABEL parameter sequence number must be
coded as 2, 4, 6, etc. for the first, second, third, etc. volume dumped to the restore
tape.

The files are referred to in the same manner when restoring data to a direct access
device.

When processing an unlabeled tape before a dump operation, the IEHDASDR writes an
end-of-file record (tapemark) and continues processing.

When dumping to or restoring from a tape, specified as standard label or IIBLP", a
disposition of KEEP should be specified in the DO statement for the tape. Unlabeled
tapes may have other disposition parameters.

When restoring from a restore file on a tape, the same file sequence number and tape
label format used in the dump operation must be used.

Intermixing of restore files with system data sets is not recommended because of the
unique format of the restore file. C

The RESTORE statement is used to restore a direct access volume or volumes from a
tape volume on which a dumped copy was previously placed.

Note: When a standard labeled restore tape created by IBCDMPRS is restored by
IEHDASDR, the DO card describing the tape for IEHDASDR can specify
LABEL = (2,BLP). Bypass label processing must have been system generated by

IPLTXT Statement

specifying OPTIONS = BYLABEL on the SCHEDULR control card. If bypass label
processing is not available, any standard labeled tape created by IBCDMPRS can be
restored by IEHDASDR, by providing appropriate DCB parameters on the DD
statement for the tape (RECFM = U,BLKSIZE = track length).

The format of the RESTORE statement is:
, --

[label] RESTORE TODD = (ddname, ...)

TODD = (ddname, ...)

,FROMOO = ddname
[,CPYVOLlO = {YES }]

{NO }
[,PURGE = {YES}]

{NO }

specifies the ddnames of the DD statements defining the devices containing the
direct access volumes to be restored. If multiple output volumes are specified in a
RESTORE statement and an abnormal completion of the restore operation occurs,
the operation is terminated on all output volumes.

FROMOD = ddname
specifies the ddname of the DD statement defining the tape volume containing the
data to be restored. If more than one tape volume is to be used as input, the DD
statement for the tape must indicate multiple volumes.

CPYVOLIO
specifies whether restored direct access volumes are to be assigned the serial
number of the dumped direct access device. If CPYVOLlO is omitted, receiving
volumes keep their own serial numbers. These values can be coded:

YES
specifies that all restored direct access volumes are to be assigned the serial
number of the dumped direct access volume.

NO •
specifies that receiving volumes are to keep their own serial numbers. This is the
default.

PURGE =
specifies whether the restore operation is to be terminated when an unexpired data
set is encountered. If PURGE is omitted, the restore operation is terminated when
an unexpired data set is encountered.

YES
specifies that all unexpired data sets on the receiving direct access volume can
be overwritten provided that the operator signals his concurrence when the first
unexpired data set is encountered.

NO
specifies that the restore operation is to be terminated if an unexpired data set
is encountered. This is the default.

If PURGE = YES is coded and an unexpired data set is encountered, the operator is
prompted. The operator replies are:

• U, which indicates that all unexpired data sets on this volume can be overwritten.
(The restore operation continues.)

• T, which indicates that this volume contains unexpired data sets that must not be
overwritten. (The restore operation is terminated.)

The PURGE parameter does not apply to password-protected data sets; that is, the
operator must always respond with the proper password for each password-protected
data set encountered. If he is unable to do so, the restore operation is terminated.

The IPLTXT statement is used to mark the beginning of IPL program text statements.
The IPL text must follow the first statement referring to it.

IPL text need be included only once in the input stream; that is, IEHDASDR refers to
the first copy of IPL text encountered when performing multiple functions in a single
job step.

The format for the IPLTXT statement is:

IEHDASDR Program 201

IEHDASDR Examples

IEHDASDR Example 1

202 Utilities (Release 21.7)

The following examples illustrate some of the uses of IEHDASDR. Table 37 can be
used as a quick reference guide to IEHDASDR examples. The numbers in the
"Example" column point to examples that follow.

Table 37. IEHDASDR Example Directory

Operation Device Comments Example

INITIALIZE 2314 Disk

INITIALIZE 2311 Disks

G ETA LT 2321 Disk
and LABEL

DUMP 2314 Disks

DUMP 2311 Disk,
system output
device

DUMP 2314 Disk,
9-track tape

RESTORE 2311 Disks,
7 -track tape

DUMP and 2314 Disks,
RESTORE 9-track tape

RESTORE 9-track tape,
2314 Disk

FORMAT 3330 Disk

FORMAT 3330 Disks

Quick-DASDI 3330 Disk

Volume is to be initialized for the first time;
therefore, recording serface is analyzed. IPL
text is included in the input stream.

Three previously initialized volumes are to
be initialized; their volume serial numbers are
to be changed. Surface analysis is to be
performed at the same time.

Get alternate tracks for a previously initialized
volume and change its volume serial number.

Dump a copy of one volume to three other
volumes.

Dump a group of tracks to the system output
device, which is assumed to be a printer.

Dump a disk volume to magnetic tape. Only
one tape volume is required.

A 2311 disk volume, previously dumped to
tape, is to be restored to direct access.

Dump operations are to be performed
concurrently to minimize input/output time.
Restore operations are to be performed
concurrently to minimize input/output time.

A 2314 volume, previously dumped to two tape
volumes, is to be restored to disk.

Format a disk by writing an RO on each
track. IPL text is included in the
input stream. The volume serial is
changed.

Format two disks.

Use the ANAL YZE function to build the
VToe and change the volume serial number.

2

3

4

5

6

7

8

9

10

11

12

In this example, a blank 2314 volume is to be analyzed and formatted for the first
time. Because this example deals with a blank volume, two considerations must be
made:

1. The TODD parameter in the ANALYZE statement must specify a channel and unit
address, rather than a ddname.

2. The selected device (in this example, unit 190) must be varied offline by the
operator; that is, before the job is executed, the operator must use the VARY
OFFLINE command.

The example follows:

IIDASDR 1 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

ANALYZE TODD=190,VTOC=00004,EXTEND=00010,
NEWVOLID=231400,OWNERID=SMITH,
IPLDD=SYSIN,FLAGTEST=NO

IPLTXT
TXT

(IPL text)

TXT
END

1*
The control statements are discussed below:

• SYSIN DO defines the control data set, which follows in the input stream.

llC
22C

IEHDASDR Example 2

IEHDASDR Example 3

• ANALYZE defines a mountable device on which a blank 2314 volume is to be
mounted. This statement defines the starting location and extent of a volume table
of contents, specifies a serial number and owner identification, indicates that no
flag testing is to be performed, and indicates that IPL text is included in the input
stream.

• IPLTXT signals the start of IPL text.

• END signals the end of IPL text.

In this example, three previously initialized 2311 volumes are to be initialized and
assigned new serial numbers.

The example follows:

IIDASDR2 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIVOLl DD UNIT=(2311"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231100))
IIVOL2 DD UNIT=(2311"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231101))
IIVOL3 DD UNIT=(2311"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231102))
IISYSIN DD *

ANALYZE TODD=VOL1,VTOC=00003,EXTENT=00010, llC
OWNERID=SMITH,NEWVOLID=DISK01,FLAGTEST=NO

ANALYZE TODD=VOL2,VTOC=00006,EXTENT=00010, llC
OWNERID=SMITH,NEWVOLID=DISK02,FLAGTEST=NO

ANALYZE TODD=VOL3,VTOC=00004,EXTENT=00010, llC
OWNERID=SMITH,NEWVOLID=DISK03,FLAGTEST=NO

1*
The control statements are discussed below:

• VOL1, VOL2, and VOL3 DD define three 2311 devices on which the volumes to be
initialized are mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• The ANALYZE statements indicate the ddnames of DD statements defining devices
on which the three 2311 volumes (231100, 231101, and 231102) are to be
mounted. The ANALYZE statements also define starting locations and extents of
the three volume tables of contents, specify new owner names and serial numbers
(DISK01, DISK02, and DISK03), and indicate that no flag testing is to be performed
on these volumes.

In this example, alternate tracks are to be assigned for three suspected defective
tracks on a 2321 volume.

The example follows:

IIDASDR3 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIVOLUMEl DD UNIT=(2321"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(232100))
IISYSIN DD *

GETALT TODD=VOLUME1,TRACK=05070310
GETALT TODD=VOLUME1,TRACK=OA06020F
GETALT TODD=VOLUME1,TRACK=OA070311

LABEL TODD=VOLUME1,NEWVOLID=DISKOO,OWNERID=SMITH
1*
The control statements are discussed below:

• VOLUMEI DD defines a device that is to contain the 2321 volume (232100).

• SYSIN DD defines the control data set, which follows in the input stream.

• The GETALT statements specify the ddname of the DD statement defining the
device on which the 2321 volume is mounted. The GETAL T statements specify the
relative track addresses of the tracks for which alternates are to be assigned.

• LABEL specifies the ddname of the DD statement defining the device on which the
2321 volume is mounted. The LABEL statement changes the serial number of the
2321 volume from 232100 to DISKOO.

IEHDASDR Program 203

•

IEHDASDR Example 4

IEHDASDR Example 5

IEHDASDR Example 6

204 Utilities (Release 21.7)

In this example, a copy of an entire volume (231400) is to be dumped onto three
volumes (231401, 231402, and 231403).

The example follows:

IIDASDR4 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIDUMPFROM DD UNIT=(2314"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231400»
IIDUMPT01 DD UNIT=(2314"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231401»
I IDUMPT02 DD UNIT=(2314,· ,DEFER), DISP=OLD,
II VOLUME=(PRIVATE"SER=(231402»
IIDUMPT03 DD UNIT=(2314"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231403»
IISYSIN DD *

DUMP FROMDD=DUMPFROM, TODD= (DUMP TO 1 ,DUMPT02, DUMPT03) , 2lC
PURGE=YES

1*
The control statements are discussed below:

• DUMPFROM DD defines a mountable device that is to contain a source volume.

• DUMPT01, DUMPT02, and DUMPT03 DD define mountable devices that are to
contain the three receiving volumes.

• DUMP specifies the dump operation and identifies the DD statements de1ining the
applicable devices. All receiving volumes are to retain their own serial numbers.

In this example, a copy of tracks 0 through 60 is to be dumped from a disk volume
(231100) to a system output device.

The example follows:

IIDASDR5 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIDEV DD UNIT=(2311"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231100»
IISYSIN DD *

DUMP FROMDD=DEV,TODD=SYSPRINT,BEGIN=OOOOOOOO,END=00050009
1*
The control statements are discussed below:

• DEV DD defines a mountable device that is to contain the source volume.

• DUMP specifies the dump operation, identifies the DD statements defining the
source and receiving devices, and identifies the tracks that are to printed.

In this example, a 2314 volume (231400) is to be dumped to a 9-track, 800 bits per
inch, tape volume (240000).

The example follows:

IIDASDR6 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IISOURCE DD UNIT=(2314"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231400»
IIRECEIVE DD UNIT=(2400, ,DEFER) ,DISP=NEW, DSNAME=TAPEl ,
II VOLUME=(PRIVATE"SER=(240000»
IISYSIN DD *

DUMP FROMDD=SOURCE,TODD=RECEIVE
1*
Note: This example assumes that only one tape volume is required. If more than one is
required, code the volume serial numbers of the additional volumes in the VOLUME
parameter of the DD statement that defines the magnetic tape device. For unlabeled
tapes, include a volume count in the DD statement.

The control statements are discussed below:

• SOURCE DD defines a mountable device that is to contain the source volume.

• RECEIVE DD defines a 9-track tape drive that is to contain the receiving tape
volume.

• DUMP specifies the dump operation and identifies the DD statements defining the
source and receiving devices.

IEHDASDR Example 7

IEHDASDR Example 8

In this example, three disk volumes (231100, 231101, and 231102) are to be
restored from a 7 -track, 556 bits per inch, standard labeled, tape volume.

The example follows:

IIDASDR7 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DO SYSOUT=A
IITAPE DO UNIT=(2400-2"DEFER),DISP=OLD,DCB=(TRTCH=C,
II ,DEN=1),DSNAME=TAPE1,VOLUME=(PRIVATE"SER=(240000))
IIDIRACC1 DD UNIT=(2311"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231100))
IIDlRACC2 DO UNIT=(2311"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231101))
IIDlRACC3 DD UNIT=(2311"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231102))
IISYSIN DD *

RESTORE TODD=(DIRACC1,DIRACC2,DlRACC3),FROMDD=TAPE
1*
The control statements are discussed below:

• TAPE DD defines a 7 -track tape drive that is to contain the source tape volume.

• DIRACC1, DIRACC2, and DIRACC3 DD define mountable devices that are to
contain the three receiving volumes.

• RESTORE specifies the restore operation and identifies the DD statements defining
the source and receiving devices. The receiving volumes retain their own serial
numbers.

In this example, two direct access volumes are to be dumped concurrently to two
receiving volumes in one operation; two direct access volumes are to be restored
concurrently from two 9-track, 800 bits per inch, standard labeled, tape volumes in
another operation.

The example follows:

IIDASDR8 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DO SYSOUT=A
II SOURCE 1 DD UNIT=(2314"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231400))
IISOURCE2 DD UNIT=(2314"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231401))
IIT01 DO UNIT=2314,VOLUME=SER=231402,DISP=OLD
IIT02 DO UNIT=2314,VOLUME=SER=231403,DISP=OLD
IisOURCE3 DD UNIT=(2400"DEFER),DISP=OLD,LABEL=(,NL),
II VOLUME=(PRIVATE"SER=(240000))
IISOURCE4 DD UNIT=(2400"DEFER),DISP=OLD,LABEL=(,NL),
II VOLUME=(PRIVATE,r SER=(240001))
IIT03 DO UNIT=AFF=T01,VOLUME=SER=231404,DISP=OLD
IIT04 DO UNIT=AFF=T02,VOLUME=SER=231405,DISP=OLD
IISYSIN DD *

1*

DUMP FROMDD=SOURCE1,TODD=T01
DUMP FROMDD=SOURCE2,TODD=T02

RESTORE TODD=T03,FROMDD=SOURCE3
RESTORE TODD=T04,FROMDD=SOURCE4

The control statements are discussed below:

• SOURCEI and SOURCE2 DD define devices on which the source volumes for the
dump operation are to be mounted.

• TOI and T02 DD define devices on which the receiving volumes for the dump
operation are to be mounted.

• SOURCE3 and SOURCE4 DD define devices on which the source tape volumes for
the restore operation are to be mounted.

• T03 and T04 DD define devices on which the receiving direct access volumes for
the restore operation are to be mounted. The receiving volumes for the restore
operation are to be mounted on the same devices as the receiving volumes for the
dump operation were mounted.

IEHDASDR Program 205

•

IEHDASDR Example 9

IEHDASDR Example 10

IEHDASDR Example 11

206 Utilities (Release 21.7)

In this example, a 2314 volume previously dumped to tape is to be restored. Because
a completely filled 2314 volume requires more space than is available on a single reel
of 9-track, 800 bits per inch tape, two tape volumes were used in the dump operation.

The example follows:

IIDASDR9 JOB
II EXEC
IISYSPRINT DD
IITAPE DD
II DISP=OLD

00#990,SMITH
PGM=IEHDASDR
SYSOUT=A
UNIT=2400, VOL=(, , ,2, SER=(240000,240001)),

IIDISK DD UNIT=2314,VOL=SER=231400,DISP=OLD
IISYSIN DD *

RESTORE FROMDD=TAPE,TODD=DISK
1*
The control statements are discussed below:

• TAPE DO defines the 9-track tape volumes that contain the data to be restored to
disk.

• DISK DO defines the 2314 volume to which data is to be restored.

• RESTORE specifies that data is to be restored from the tape volumes defined in the
TAPE DO statement to the 2314 volume defined in the DISK DO statement.

• For unlabeled tapes, use the external volume identification and the LABEL = (,NL)
parameter on the associated tape DO statement.

In this example, a 3330 volume is formatted and assigned a new serial number.

The example follows:

IIDASDR10 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIDISK DD UNIT=3330,DISP=OLD,VOL=(PRIVATE"SER=(333000))
IISYSIN DD *

FORMAT TODD=DISK, VTOC=00006, EXTENT=00005, 22C

IPLTXT
TXT
(IPL text)
TXT
END

1*

NEWVOLID=333001,PURGE=YES,IPLDD=SYSIN

The control statements are discussed below:

• DISK DO defines the 3330 device on which the volume (333000) is mounted.

• SYSIN DO defines the control data set which follows in the input stream.

• FORMAT defines a starting location and extent of a volume table of contents,
specifies a new serial number, and indicates that the IPL text is included in the
input stream. Record 0 of each track is rewritten.

• IPLTXT signals the start of IPL text.

• END signals the end of IPL text.

In this example, two 3330 volumes are formatted.

The example follows:

IIDASDR 1 1 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIDISK01 DD UNIT=3330,DISP=OLD,VOL=(PRIVATE"SER=(333001))
IIDISK02 DD UNIT=3330,DISP=OLD,VOL=(PRIVATE"SER=(333002))
IISYSIN DD *

FORMAT TODD=(DISK01,DISK02),VTOC=00010,EXTENT=00010
1*
The control statements are discussed below:

• DISK01 and DISK02 DO statements define the 3330 devices on which the volumes
(333001, 333002) are mounted.

• FORMAT defines a starting location and extent of a volume table of contents. The
Record 0 of each track is rewritten.

IEHDASDR Example 12 In this example, a 3330 volume is initialized with a VTOC and volume serial number, or
"quick-DASDI" .

The example follows:

IIDASDR12 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIDISK DD UNIT=3330,DISP=OLD,VOL=(PRIVATE"SER=(333000))
IISYSIN DD *

ANALYZE TODD=DISK,VTOC=00005,EXTENT=00010,NEWVOLID=333333
1*
The control statements are discussed below:

• DISK DD defines the 3330 device on which the volume (333000) is mounted.

• ANALYZE defines the starting location and extent of a volume table of contents. For
3330 devices, PASSES = 0 is the default so that only a "quick-DASDI" is
performed.

IEHDASDR Program 207

•

IEHINITT Program

Placing a Standard
Label Set on
Magnetic Tape

IEHINITI is a system utility used to place IBM volume label sets written in EBCDIC, in
BCD, or in ASCII (American Standard Code for Information Interchange) on magnetic
tapes mounted on one or more tape drives. (See IIlntroduction" for general system
utility information.) Each volume label set created by the program contains:

• A standard volume label with user specified serial number and owner identification.

• An 80-byte dummy header label. For IBM standard labels, this record consists of
HDR1 followed by zeros. For ANS labels, this record consists of HDR1 followed by
zeros in the remaining positions, with the exception of position 54, which contains
an ASCII space.

• A tapemark.

Note: When a labeled tape is subsequently used as a receiving volume: (1) the tape
mark created by IEHINITI is overwritten, (2) the dummy HDR1 record created by
IEHINITI is filled in with operating system data and device dependent information, (3)
a HDR2 record, containing data set characteristics, is created, (4) user header labels
are written if exits to user label routines are provided, (5) a tapemark is written, and
(6) data is placed on the receiving volume.

Figure 44 shows an IBM standard label group after a volume is used to receive data.
Refer to as Data Management Services Guide, GC26-3746, for a discussion of volume
labels.

Initial volume label

HDR1

HDR2

User header labels
(optional up to 8)

Tape mark

Data

Figure 44. IBM Standard Label Group After Volume Receives Data

IEHINITT can be used to write BCD labels on 7-track tape volumes and EBCDIC or
ASCII labels on 9-track tape volumes. Any number of 7 -track and/ or 9-track tape
volumes can be labeled in a single execution of IEHINITI.

Tape volumes are labeled in sequential order by specifying a serial number to be
written on the first tape volume. The serial number is incremented by 1 for each
successive tape volume. If only one tape volume is to be labeled, the specified serial
number can be either numeric or alphameric. If more than one volume is to be labeled,
the serial numbers must be specified as six numeric characters.

The user can provide additional information, such as owner name, rewind or unload
specifications, and whether the label is to be written in ASCII.

The user must supply all tapes to be labeled, and must include with each job request
explicit instructions to the operator about where each tape is to be mounted.

If any errors are encountered while attempting to label a tape, the tape is left
unlabeled. IEHINITT attempts to label any tapes remaining to be processed.

For information on creating routines to write standard or nonstandard labels, refer to
as Data Management for System Programmers, GC28-6550.

IEHINITI writes 7 -track tape labels in even parity (translator on, converter off).

Previously labeled tapes can be overwritten with new labels regardless of expiration
date and security protection.

IEHINITT Program 209

Input and Output

Control

Job Control Statements

Restrictions

PARM Information on
the EXEC Statement

210 Utilities (Release 21.7)

IEHINIIT uses as input a control data set that contains the utility control statements.

IEHINIIT produces an output data set that contains: (1) utility program identification,
(2) initial volume label information for each successfully labeled tape volume, (3)
contents of utility control statements, and (4) any error messages.

IEHINIIT produces a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion. A message data set was created.

• 04, which indicates successful completion. No message data set was defined by the
user.

• 08, which indicates that the program completed its operation, but error conditions
were encountered during processing. A message data set was created.

• 12, which indicates that the program completed its operation, but error conditions
were encountered during processing. No message data set was defined by the user.

• 16, which indicates that the program terminated operation because of error
conditions encountered while attempting to read the control data set. A message
data set was created if defined by the user.

IEHINIIT is controlled by job control statements and utility control statements. The job
control statements are used to execute or invoke IEHINIIT and to define data sets
used and produced by IEHINIIT. Utility control statements are used to specify
applicable label information.

Table 38 shows the job control statements necessary for using IEHINITT.

Table 38. IEHINITT Job Control Statements

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM = IEHINITT) or, if the job control statements
reside in a procedure library, the procedure name. The EXEC statement can
include additional PARM information; see "PARM Information on the EXEC
Statement.' ,

SYSPRINT DO Defines a sequential message data set.

anyname DO Defines a tape drive to be used in a labeling operation; more than one tape drive
can be identified.

SYSIN DO Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a member of a partitioned data set or as a
sequential data set outside the input stream.

The minimum region size that can be specified for IEHINITT is 14K.

The "anyname" DO statement is entered:

/ /anyname DO DCB = DEN = x,UNIT = (xxxx,n,DEFER)

The DEN parameter specifies the density at which the labels are written. The UNIT
parameter specifies the device type, number of drives to be used for the labeling
operation, and deferred mounting. The name "anyname" must be identical to a name
specified in a utility control statement to relate the specified drive(s) to the
appropriate utility control statement.

• The SYSPRINT data set must have a logical record length of 121 bytes. It must
consist of fixed length records with an ASA control character in the first byte of
each record. Any blocking factor can ~e specified.

• The SYSIN data set must have a block size that is a multiple of 80. Any blocking
factor can be specified.

• ANS labels can not be put on 7-track tape volumes.

The EXEC statement can include PARM information that specifies the number of
lines to be printed between headings in the message data set, as follows:

PARM = LlNECNT = nn

If PARM is omitted, 60 lines are printed between headings.

If IEHINITT is invoked, the line count option can be passed in a parameter list that is
referred to by the "optionaddr" subparameter of the LINK or ATTACH macro
instruction. In addition, a page count can be passed in a six-byte parameter list that is
referred to by the "hdingaddr" subparameter of the LINK or ATTACH macro

Utility Control Statement

INITT Statement

instruction. For a discussion of linkage conventions, refer to "Appendix B: Invoking
Utility Programs from a Problem Program."

IEHINITT uses a utility control statement to provide control information for a labeling
operation.

The INITT statement provides control information for the IEHINITT program.

Any number of INITT utility control statements can be included for a given execution
of the program. An identically named DD statement must exist for a utility control
statement in the job step.

The format of the INITT statement is:

name INITT SER = xxxxxx
[,OWNER = 'cccccccccc[cccc]']
[,NUMBTAPE = n]
,DISP = {REWIND }

, {UNLOAD}
I

L~<~_ .. ,~,_~,"; ","'.'_,",< ,.,[,,~,~~!YPE ~"~q, ,.' ."".<",",",.'",,"""~""<'<"'" ,,'" "",',,' h, ",<"",,~,,_,w, <""",~,_"",<,~=,,.'_~<,',~M_'<, <_<,,,~. __ <~~~,,<,~<".l
where:

name
specifies a name that is identical to a ddname in the name field of a DD statement
defining a tape drive or drives. This name must begin in column 1.

SER = xxx xxx
specifies the volume serial number of the first or only tape to be labeled. The serial
number cannot contain blanks, commas, apostrophes, equal signs, or special'
characters. A specified serial number is incremented by one for each additional
tape to be labeled. (Serial number 999999 is incremented to 000000.) When
processing multiple tapes, the volume serial number must be all numeric.

OWNER = 'cccccccccc[cccc]'
specifies the owner's name or similar identification. The information is specified as
character constants, and can be up to 10 bytes in length for EBCDIC and BCD
volume labels, or up to 14 bytes in length for ANS volume labels. The delimiting
apostrophes can be omitted if no blanks, commas, apostrophes, equal signs, or
other special characters (except periods or hyphens) are included. If an apostrophe
is included, it must be written as two consecutive apostrophes.

NUMBTAPE = n
specifies the number of tapes to be labeled according to the specifications made in
this control statement. The value n represents a number from 1 to 255. If
NUMBTAPE is omitted, one tape volume is labeled.

DISP=
specifies whether a tape is to be rewound or unloaded. These values can be coded:

REWIND
specifies that a tape is to be rewound (but not unloaded) after the label has
been written. If DISP = REWIND is not specified, the tape volume is rewound and
unloaded.

UNLOAD
specifies that a tape is to be unloaded after the label has been written. This is
the default.

LABTYPE = AL
specifies that an ANS volume label is to be created. If LABTYPE is not specified, the
tape is written in EBCDIC for 9-track tape volumes and in BCD for 7 -track tape
volumes.

Figure 45 shows a printout of a message data set including the INITT statement and
initial volume label information. In this example, one INITT statement was used to
place serial numbers 001122 and 001123 on two tape volumes. VOLI00112200 and
VOLI0011230 are interpreted, as follows:

• VOl1 indicates that an initial volume label was successfully written to a tape
volume.

• 001122 and 001123 are the serial numbers that were written onto the volumes.

• 0 is the Volume Security field.

No errors occurred during processing.

IEHINITT Program 211

•

IEHINITT Examples

IEHINITT Example 1

IEHINITT Example 2

IEHINITT Example 3

212 Utilities (Release 21.7)

SYSTEM SUPPORT UTILITIES IEHINITT

ALL INITT SER=001122,NUMBTAPE=2,OWNER='P.T.BROWN', UC

VOL 100'11220
VOL10011230

DISP=REWIND

P.T.BROWN
P.T.BROWN

Figure 45. Printout of INITT Statement Specifications and Initial Volume Label
Information

The following examples illustrate some of the uses of IEHINIIT. Table 39 can be used
as a quick reference guide to IEHINIIT examples. The numbers in the "Example"
column point to examples that follow.

Table 39. IEHINITT Example Directory

Operation Comments Example

LABEL Three 9-track tapes are to be labeled. 1

LABEL A 9-track tape is to be labeled. 2

LABEL Two groups of 9-track tape volumes are to be labeled. 3

LABEL 9-track tape volumes are to be labeled. Sequence
numbers are to be incremented by 10. 4

LABEL Three 9-track tape volumes are to be labeled. An
alphameric label is to be placed on a 2400 volume;
numeric labels are placed on the 2400-4 volumes. 5

In this example, serial numbers 001234, 001235, and 001236 are to be placed on
three tape volumes; the labels are to be written in EBCDIC at 800 bits per inch. Each
volume to be labeled is mounted, when it is required, on a single 9-track tape drive.

The example follows:

IILABEL 1 JOB
II EXEC
IISYSPRINT DD
IILABEL DD
IISYSIN DD
LABEL INITT
1*

09#990,BROWN,MSGLEVEL=(1,1)
PGM=IEHINITT
SYSOUT=A
DCB=DEN=2,UNIT=(2400,1,DEFER)

* SER=001234,NUMBTAPE=3

In this example, serial number 001001 is to be placed to one ASCII tape volume; the
label is to be written at 800 bits per inch. The volume to be labeled is mounted, when
it is required, on a 9-track tape drive.

The example follows:

IILABEL2 JOB
II EXEC
IISYSPRINT DD
IIASCIILAB DD
IISYSIN DD
ASCIILAB INITT
1*

09#990,BROWN,MSGLEVEL=(1,1)
PGM=IEHINITT
SYSOUT=A
DCB=DEN=2,UNIT=(2400,1,DEFER)
* SER=001001,OWNER='SAM A. BROWN' ,LABTYPE=AL

In this example, two groups of serial numbers (001234, 001235, 001236, and
001334, 001335, 001336) are placed on six tape volumes. The labels are to be
written in EBCDIC at 800 bits per inch. Each volume to be labeled is mounted, when it
is required, on a single 9-track tape drive.

The example follows:

IILABEL3 JOB
II EXEC
IISYSPRINT DD
IILABEL DD
IISYSIN DD
LABEL INITT
LABEL INITT
1*

09#990,BROWN,MSGLEVEL=(1,1)
PGM=IEHINITT
SYSOUT=A
DCB=DEN=2,UNIT=(2400,1,DEFER)

* SER=001234,NUMBTAPE=3
SER=001334,NUMBTAPE=3

IEHINITT Example 4

IEHINITT Example 5

In this example, serial numbers 001234, 001244, 001254, 001264, 001274, etc., are
to placed on eight tape volumes. The labels are to be written in EBCDIC at 800 bits
per inch. Each volume to be labeled is mounted, when it is required, on one of four
9-track tape drives.

The example follows:

IILABEL4 JOB
II EXEC
IISYSPRINT DD
IILABEL DD
IISYSIN DD
LABEL INITT
LABEL INITT
LABEL INITT
LABEL INITT
LABEL INITT
LABEL INITT
LABEL INITT
LABEL INITT
1*

09#990,BROWN,MSGLEVEL=(1,1)
PGM=IEHINITT
SYSOUT=A
DCB=DEN=2,UNIT=(2400,4,DEFER)
* SER=001234
SER=001244
SER=001254
SER=001264
SER=001274
SER=001284
SER=001294
SER=001304

In this example, serial number TAPEI, is to be placed on a 2400 tape drive and serial
numbers 001234 and 001235 are to be placed on two 2400-4 tape drives. The labels
are to be written in EBCDIC at 800 and 1600 bits per inch.

The example follows:

IILABEL5 JOB
II EXEC
IISYSPRINT DD
IILABELl DD
IILABEL2 DD
IISYSIN DD
LABELl INITT
LABEL2 INITT
1*

09#990,BROWN,MSGLEVEL=(1,1)
PGM=IEHINITT
SYSOUT=A
DCB=DEN=2,UNIT=(2400,1,DEFER)
DCB=DEN=3,UNIT=(2400-4,1,DEFER)

* SER=TAPEl
SER=001234,NUMBTAPE=2

Note: If 2400 tape drives are not available for allocation and the system configuration
includes 3400 tape drives, a 3400 tape drive may be allocated by default.

IEHINITT Program 213

•

IEHIOSUP Program

Input and Output

Control

Job Control Statements

Restrictions

IEHIOSUP Examples

IEHIOSUP is a system utility used to update TIR entries in the transfer control tables
of the supervisor call library (SVC library). (See IIlntroduction" for general system
utility information.) Because of the way SVC routines are loaded, it is necessary to
update TIR entries after changing or replacing a module. IEHIOSUP automatically
updates the TIR entries. IEHIOSUP must be used after:

• The SVC library is moved.

• The OPEN, CLOSE, TCLOSE, EOV, FEOV, SCRATCH, ALLOCATE, IEHATLAS,
SETPRT, STOW, or any Machine Check Handler (MCH) recovery management
module is changed or replaced in the SVC library.

IEHIOSUP uses as input an object data set (SYS1.SVCLlB) that contains the transfer
control tables that are to be updated.

IEHIOSUP produces as output a message data set that contains any error messages
generated during the execution of the program.

IEHIOSUP produces a return code to indicate the results of program execution. The
return codes and their interpretations are:

• 00, which indicates successful completion.

• 12, which indicates an unrecoverable error. The job step is terminated.

IEHIOSUP is executed or invoked with job control statements. Utility control
statements are not used.

Table 40 shows the job control statements necessary for using IEHIOSUP.

Table 40. IEHIOSUP Job Control Statements

Statement

JOB

EXEC

Use

Initiates the job.

Specifies the program name (PGM = IEHIOSUP) or, if the job control
statements reside in a procedure library, the procedure name.

Defines a sequential message data set. SYSPRINT DO

SYSUT1 DO Defines the object data set (SYS1.SVCLlB). The DSNAME, DISP, UNIT, and
VOLUME parameters should be included.

The minimum region size that can be specified for IEHIOSUP is 10K.

If the SYS1.SVCLlB data set is cataloged, the UNIT and VOLUME parameters are not
required on the SYSUTI DD statement.

• PARM = TSO must be coded on the EXEC statement if the data set to be updated is
from a TSO system.

• The block size for the SYSPRINT data set must be a multiple of 12l. Any blocking
factor can be specified.

The following examples illustrate some of the uses of IEHIOSUP. Table 41 can be used
as a quick reference guide to IEHIOSUP examples. The numbers in the IIExample"
column point to examples that follow.

Table 41. IEHIOSUP Example Directory

Data Set
Operation Organization Device Comments Example

UPDATE Partitioned, 2314 Disk, SVC library is to be updated.
Sequential system output SYS 1.SVCLlB is not cataloged.

device System output device is a printer.

UPDATE Partitioned, 3330 Disk, SVC library is to be updated.
Sequential system output SYS1.SVCLlB is cataloged. System

device output device is a printer. 2

UPDATE Partitioned, 2314 Disk, SVC library (TTRs) is to be updated
Sequential system output on a TSO pack. SYS1.SVCLlB is

device cataloged. System was generated
for TSO. 3

IEHIOSUP Program 215

IEHIOSUP Example 1

IEHIOSUP Example 2

IEHIOSUP Example 3

216 Utilities (Release 21.7)

In this example, the TTR entries in the SVC library are to be updated.

The example follows:

IITTRUPDTE JOB
II EXEC PGM=IEHIOSUP
IISYSUT1 DD DSNAME=SYS1.SVCLIB,DISP=OLD,UNIT=2314,
II VOLUME=SER=111111
IISYSPRINT DD SYSOUT=A
II
The control statements are discussed below:

• SYSUTI DD defines the object data set (the SYS1.SVCLlB data set).

• SYSPRINT DD defines the message data set.

In this example, the TTR entries in the SVC library are to be updated.

The example follows:

IlsVCUPDTE JOB
II EXEC
IISYSUT1 DD
IISYSPRINT DD
II

PGM=IEHIOSUP
DSNAME=SYS1.SVCLIB,DISP=OLD
SYSOUT=A

The control statements are discussed below:

• SYSUTI DD defines the object data set (the SYS1.SVCLlB data set). Because the
data set is cataloged, UNIT and VOLUME parameters are not required.

• SYSPRINT DD defines the message data set.

In this example, the TTR entries in a TSO SVC library are to be updated.

The example follows:

IITSOSVCUP JOB
II EXEC
IISYSUT1 DD
IISYSPRINT DD
II

PGM=IEHIOSUP, PARM=TSO
DSNAME=SYS1.SVCLIB,DISP=OLD
SYSOUT=A

The control statements are discussed below:

• SYSUTI DD defines the object data set (the SYSI,SVCLlB data set). Because the
data set is cataloged, UNIT and VOLUME parameters are not required.

• SYSPRINT DD defines the message data set.

IEHLIST Program

Listing Catalog Entries

Listing a Partitioned
Data Set Directory

Edited Format

, .1

IEHLlST is a system utility used to list entries in a catalog, entries in the directory of
one or more partitioned data sets, or entries in a volume table of contents. (See
IIlntroduction" for general system utility information.) Any number of listings can be
requested in a single job.

IEHLlST lists all catalog entries that are part of the structure of a fully-qualified data
set name. Figure 46 shows an index structure for which IEHLlST lists fully-qualified
names A.B.D.W, A.B.D.X, A.B.E.Y, and A.B.E.Z. Because A.C.F does not represent a
cataloged data set (that is, the lowest level of qualification has been deleted), it is not
a fully-qualified name, and it is not listed.

F

w x y z
Figure 46. Index Structure-Listed by IEHLlST

IEHLlST can list up to ten partitioned data set directories in a single application of
the program. A partitioned directory is composed of variable length records blocked
into 256-byte blocks. Each directory block can contain one or more entries which
reflect member (and/or alias) names and other attributes of the partitioned members
in edited and unedited format.

Figure 47 shows a directory block as it exists in storage.

-------------, ----) - -------
(

'_L~------~~----~~----~------~----~~~--~~----~

('-- ---- ---

Figure 47. Sample Directory Block

IEHLlST optionally provides the following information, which is obtained from the
. applicable partitioned data set directory, when an edited format is requested:

• Member name

• Entry point

• Attributes

• Relative address of start of member

• Relative address of start of text

• Contiguous main storage requirements

• Length of first block of text

• Origin of first block of text

• System status indicators

• Other information

Before printing the directory entries on the first page, an index is printed explaining
the asterisk (*) following a member name, the attributes (field 3) and other information
(field 10). Under the ATIRIBUTE INDEX, the meaning of each attribute bit is

IEHLlST Program 217

•
• MEMBER ENTRY ATTR

NAME PT-HEX HEX

• IEANUCO 1 000000 0662

Unedited (Dump) Format

Listing a Volume
Table of Contents

Edited Format

REL
BEGIN

000003

218 Utilities (Release 21.7)

explained; under the OTHER INFORMATION INDEX, scatter and overlay format data is
described, positionally, as it appears in the listing.

Each directory entry occupies one printed line, except when the member name is an
alias and the main member name and associated entry point appear in the user data
field. When this occurs, two lines are used and every alias is followed by an asterisk.

Note: The FORMAT option applies only to a partitioned data set whose members have
been created by the Linkage Editor (that is, the directory entries are at least 34 bytes
long). If a directory entry is less than 34 bytes, a message is issued and the entry is
printed in unedited format; if the entry is longer than 34 bytes, it is assumed that it is
created by the Linkage Editor.

Figure 48 shows an edited entry for a partitioned member (lEANUC01). The entry is
shown as it is listed by the IEHLlST program.

ADDR-HEX CONTIG
1 stTXT STOR-DEC

LEN 1st ORG 1st SSI
TXT-DEC TXT-HEX INFO

OTHER
INFORMATION

000104 00035643 01024 000000 ABSENT SCTR=000102,00168,00316,04,04 - - --
Figure 48. Edited Partitioned Directory Entry

The user may choose the unedited format. If this is the case, IEHLlST lists each
member separately.

Figure 49 shows how the information in Figure 47 is listed.

Note: A listing such as that shown in Figure 47 can also be obtained by using
IEBPTPCH (see "IEBPTPCH Program").

MEMBA

MEMBB

MEMBC

TTR

TTR

TTR

USER DATA

USER DATA

USER DATA

MEMB n TIR USER DATA

Figure 49. Sample Partitioned Directory Listing

•
•
•

To correctly interpret user date information, the user must know the format of the
partitioned entry. The formats of directory entries are discussed in as System Control
Blocks, GC28-6628. -

IEHLlST can be used to list, partially or completely, entries in a specified volume
table of contents (VTOC). The program lists the contents of selected data set control
blocks (OSCBs) in edited or unedited form.

Two edited formats are available. One is a comprehensive listing of the OSCBs in the
VTOC. It provides the status and attributes of the volume, and describes in depth the
data sets residing on the volume. This listing includes:

• Logical record length and block size

• Initial and secondary allocations

• Upper and lower limits of extents

• Alternate track information

• Available space information, in detail

• Option codes

• Record formats

A VTOC consists of as many as seven types of OSCBs, as follows:

• Identifier OSCB-Format 1

• Index OSCB-Format 2

• Extension OSCB-Format 3

• VTOC OSCB-Format 4

• Free Space OSCB-Format 5

• Shared Extent OSCB-Format 6

•
•

• Free VTOC OSCB-Format 0

The first OSCB in the VTOC (and on your listing) is always the VTOC (Format 4) OSCB,
which defines the VTOC data set itself and the attributes of the volume on which it
resides. The VTOC OSCB is always followed by the first Free Space (Format 5) OSCB,
which describes the space that is available on the volume for allocation. More than
one Free Space OSCB may be required to describe the available space on a volume
because each Free Space OSCB describes only 26 extents. The first Free Space OSCB
can be followed, in any order, by Format 1, 2, 3, or 6 OSCBs or by other Free Space
OSCBs if there are more than 26 available extents on the volume.

Identifier (Format 1) OSCBs describe a data set, its attributes, and its first three
extents.

Index (Format 2) OSCBs describe the index of a data set with indexed sequential
organization. The Index OSCB is always chained from the Format 1 OSCB for the data
set.

Extension (Format 3) OSCBs describe the fourth through the sixteenth extents of a
data set. The Extension OSCB is always chained from a Format 1 or a Format 2 OSCB.

Shared Extent (Format 6) OSCBs describe an extent of one or more contiguous
cylinders being shared by two or more data sets. The first Shared Extent OSCB is
chained from the Format 4 OSCB. Subsequent Shared Extent OSCBs are chained from
each previous Format 6 OSCB.

Free VTOC records (called Format 0 OSCBs) indicate that space is available for
another OSCB. Free VTOC OSCBs, which are 140-byte records that consist of binary
zeros, are written over with Format 1, 2, 3, and 6 OSCBs when a new data set is
allocated, and with Format 5 OSCBs when space is released. The Free VTOC OSCB is
not listed by IEHLlST.

Figure 50 shows a sample listing of the edited format. This sample illustrates how
each OSCB will appear on a listing, although in many cases the VTOC may not contain
all possible types. The information is in columns, with the values or numbers
appearing below each item's heading.

• S'lSTEMS SUPPORT UTILITIES---IEHLIST PAGE

CONTENTS OF VTOC ON VOL EXAMPL

• FORMAT 4 DSCB NO AVAIL/MAX DSCB /MAX DIRECT NO AVAIL NEXT ALT FORMAT 6 LAST FMT 1 VTOC EXTENT THIS DSCB

•
•

•
•
•

DSCBS PER TRK BLK PER TRK ALT TRK TRK(C-H) (C-H-R) DSCB(C-H-R)/LOW(C-H) HIGH(C-H) (C-H-R)

FORMAT 5 DSCB
TRK FULL

ADDR C'lLS
17 3

154 16 10 30 200 5 0 5 5 0 5 9 5 0

A = NUMBER OF TRKS IN ADDITION TO FULL CYLS IN THE EXTENT
TRK FULL TRK FULL TRK FULL

A ADDR C'lLS A ADDR C'lLS A ADDR CYLS A
3 110 189 0

DSeB(C-H-R)

TRK FULL
ADDR C'lLS A

TRK FULL
ADDR C'lLS A

• ---------------DATA SET NAME--------------- ID SER NO SEQ NO CREDT EXPDT NO EXT DSORG RECFM OPTCD BLKSIZE

•
•
•
•
•

•
•
•
•

EXAMPLE.OF·.COMBINED.FORMATS.ONE.AND.TWO 1 EXAMPL 1 36699 27469 1 IS F 100

LRECL KEYLEN INITIAL ALLOC 2ND ALLOC/LAST BLK PTR(T-R-L) USED PDS BYTES FMT 2 OR 3(C-H-R)/DSCB(C-H-R)
100 4 ABSTR 0 5 0 3 5 0 4

EXTENTS NO LOW(C-H) HIGH(C-H)
o 6 0 10 9

2MIND(M-B-C-H)/3MIND(M-B-C-H)/L2MFN(C-H-R)jL3MIN(C-H-R)/CYLAD(M-B-C-H)/ADLIN(M-B-C-H)/ADHIN(M-B-C-H)/NOBYT/ NOTRK
o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 9 0 0 0 0 1 0 10 9 70 0

LTRAD(C-H-R)/LCYAD(C-H-R)/LMSAD(C-H-R)/LPRAD(M-B-C-H-R) /NOLFV /C'lLOV/ TAGDT/ PRCTR / OVRCT/ RORG1/PTRDS(C-H-R)
6 0 3 10 9 1 0 0 0 1 0 6 1 12 1 0 20 0 0

----UNABLE TO CALCULATE EMPTY SPACE.

EXPDT NO EXT DSORG RECFM OPTCD BLKSIZE
27069 16 PS V 3504

LRECL KEY LEN INITIAL ALLOC 2ND ALLOC/LAST BLK PTR(T-R-L) USED PDS BYTES FMT 2 OR 3(C-H-R)/DSCB(C-H-R)
3500 TRKS 1 15 1 1723 5 0 6 5 0 5

EXTENTS NO LOW(C-H) HIGH(C-H) NO LOW(C-H) HIGH(C-H) NO LOW(C-H) HIGH(C-H)
0 0 1 0 1 1 0 2 0 2 2 0 3 0 3
3 0 4 0 4 4 0 5 0 5 5 0 6 0 6
6 0 7 0 7 7 0 8 0 8 8 0 9 0 9
9 1 0 1 0 10 1 1 1 1 11 1 2 1 2

12 1 3 1 3 13 1 4 1 4 14 1 5 1 5
15 1 6 1 6

----ON THE ABOVE DATA SET. THERE ARE o EMPTY TRACK(S) •

192 EMPTY CYL[NDERS PLUS 3 EMPTY BRACKS ON THIS VOLUME
154 BLANK DSCBS IN THE VTOC ON THIS VOLUME

Figure 50. Sample Printout of a Volume Table of Contents

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

IEHLlST Program 219

Unedited (Dump) Format

Input and Output

Control

Job Control Statements

220 Utilitie~ (Release 21. 7)

The second edited format is an abbreviated description of the data sets. It is provided
by default when no format is requested specifically. It provides the following
information:

• Data set name

• Creation date (dddyy)

• Expiration date (dddyy)

• Password indication

• Organization of the data set

• Extent(s)

• Volume serial number

The last line in the listing indicates how much space remains in the VTOC.

This option produces a complete hexadecimal listing of the DSCBs in the VTOC. The
listing is in an unedited dump form, requiring the user to know the various formats of
applicable DSCBs. The VTOC overlay for IEHUST listings of VTOCs in DUMP format
(Order Number ZM08-0033) is useful in identifying the fields of the DSCBs.

Refer to OS System Control Blocks, GC28-6628 for a discussion of the various formats
that data set control blocks can assume.

IEHUST uses the following input:

• One or more source data sets that contain the data to be listed. The input data
set(s) can be: (1) a VTOC data set, (2) a partitioned data set, or (3) a catalog data
set (SYSCTLG).

• . A control data set, which contains utility control statements that are used to control
the functions of IEHUST.

IEHUST produces as output a message data set, which contains the result of the
IEHUST operations. The message data set includes the listed data and any error
messages.

IEHUST produces a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

• 08, which indicates that an error condition caused a specified request to be
ignored. Processing continues.

• 12, which indicates that a permanent input/output error occurred. The job is
terminated.

• 16, which indicates that an unrecoverable error occurred while reading the data
set. The job is terminated.

IEHUST is controlled by job control statements and utility control statements. The job
control statements are used to execute or invoke IEHUST and to define the data set
used and produced by IEHUST.

Utility control statements are used to control the functions of the program and to
define those data sets or volumes to be modified.

Table 42 shows the job control statements necessary for using IEHUST.

The minimum region size that can be specified forlEHUST when an overlay structure
is not used is 44K.

The lIanyname1" DD statement can be entered:

/ /anynamel DD UNIT = xxxx,VOLUME = SER = xxxxxx,DISP = OLD

The UNIT and VOLUME parameters define the device type and volume serial number.
The DISP = OLD specification prevents the inadvertent deletion of the data set. This
statement is arbitrarily assigned the ddname DD1 in the IEHUST examples.

When deferred mounting is required, the Uanyname2" DD statement can be entered:

/ /anyname2 DD UNIT = (xxx"DEFER),VOLUME = (PRIVATE, ...),DISP = OLD

See "Appendix C: DD Statements for Defining Mountable Devices" for information on
defining mountable devices. This statement is arbitrarily assigned the ddname DD2 in
the IEHLlST examples. Statements defining additional mountable devices are assigned
ddnames DD3, DD4, etc.

Restrictions

PARM Information on
the EXEC Statement

Utility Control Statements

LlSTCTLG Statement

Table 42. IEHUST Job Control Statements

Statement

JOB

EXEC

SYSPRINT DD

anynamel DD

anyname2 DD

SYSIN DD

Use

Initiates the job.

Specifies the program name (PGM = IEHLlST) or, if the job control statements
reside in a procedure library, the procedure name. Additional PARM
information can be specified to control the number of lines printed per page.
See "PARM Information on the EXEC Statement" below.

Defines a sequential message data set.

Defines a permanently mounted volume.

Defines a mountable device type.

Defines the control data set. The control data set normally follows the job
control language in the input stream; however, it can be defined as an
unblocked sequential data set or member of a procedure library.

With the exception of the SYSIN and SYSPRINT DO statements, all DD statements in
this table are used as device allocation statements, rather than as true data definition
statements.

• The block size for the SYSPRINT data set must be a multiple of 121. The block size
for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified for these block sizes.

• An anyname1 DO statement must be included for each permanently mounted
volume referred to in the job step. (The system residence volume is considered to
be a permanently mounted volume.)

• An anyname2 DD statement must be included for each mountable device to be
used in the job step.

• Because IEHUST modifies the internal control blocks created by device allocation
DD statements, IEHUST job control statements must not include the DSNAME
parameter. (All data sets are defined explicitly or implicitly by utility control
statements.)

• When IEHUST is dynamically invoked in a job step containing another program, the
DD statements defining mountable devices for IEHUST must be included in the job
stream prior to DO statements defining data sets required by the other program.

• IEHUST cannot support empty space calculations for data sets allocated in blocks
when the blocksizes are approximately the same size or are larger than the
tracksize. The empty block calculation gives only approximate indications of
available space. When IEHUST cannot supply an approximate number, the "Unable
to Calculate" message is issued.

• IEHUST specifications do not allow for protection of the object being listed. If
another program updates a block of the data set just prior to IEHUST reading the
data set, a message (IEHI051 or IEH1081) may be issued. In the case of USTVTOC,
the output produced by IEHUST may be incorrect. When this happens, you should
rerun the job.

Additional information can be specified in the PARM parameter of the EXEC statement
to control the number of lines printed per page. The PARM parameter can be coded:

PARM = 'LlNECNT = xx'

The LlNECNT parameter specifies the number of lines, xx, to be printed per page; xx is
a decimal number from 01 through 99. If UNECNT is not specified, 58 lines are
printed per page. The PARM field cannot contain embedded blanks, zeros, or any
other PARM keywords, or the default of 58 is used.

IEHUST is controlled by the following utility control statements:

• USTCTLG statement, which is used to request a listing of all or part of a catalog.

• USTPDS statement, which is used to request a directory listing of one or more
partitioned data sets.

• USTVTOC statement, which is used to request a listing of all or part of a volume
table of contents.

The USTCTLG statement is used to request a listing of either the entire catalog or a
specified portion of the catalog (SYSCTLG data set). The listing includes the
fully-qualified name of each applicable cataloged data set and the serial number of
the volume on which it resides. Empty index levels are not listed.

IEHLlST Program 221

LlSTPDS Statement

LlSTVTOC Statement

222 Utilities (Release 21.7)

The format of the LlSTCTLG statement is:
1!'"_,,,,~~~,-,,""~~_$":"'~'W"_:"'~" __ ~'_:''''"''''.:''''W """~'~"'"''';~''_''''' __ '_"%'~~'''':''''~''''''''':''W'''ry'---"-~$~~~"-r-~":-<'''-:~:'~';''~'':~:'~~l

1,."".,.:,[/abe/] LISTCTLG" •• [VOL=devke,= serial],: """ ,',,' "':',,,.,',' ,i. ' .. ',",',:".:.,',:';'::',1

L::,.L::, "M;':"'~ "''''~'''''''M:",.;:'J!,~,~,~~~.~,!'!~~:JL~,.",,,, ;;,;.," ... ;;;;;>.:;;,;>;.,;.~,. ~ .•••• ;:.,.; •••• :;.:;..".,;.~.,~~:,,~._;:,,~w:i~,~2d
where:

VOL = device = serial
specifies the device type and volume serial number of the control volume on which
the specified portion of the catalog resides. If VOL is omitted, the catalog is
assumed to reside on the system residence volume.

NODE= name
specifies a qualified name. All data set entries whose names are qualified by this
name are listed. If NODE is omitted, all data set entries are listed.

Note: General catalog information (one-level data sets and CVOL pointers) is printed
prior to the printing of an entire catalog or node.

The LlSTPDS statement is used to request a directory listing of one or more
partitioned data sets that reside on the same volume.

The format of the LlSTPDS statement is:

DSNAME = (name[,name] ...)
specifies the fully-qualified names of the partitioned data sets whose directories
are to be listed. A maximum of ~en names is allowed. If the list consists of a single
name, the parentheses can be deleted.

VOL = device = serial
specifies the device type and volume serial number of the volume on which the
partitioned data sets reside. If VOL is omitted, the data sets are assumed to reside
on the system residence volume.

DUMP
specifies that the listing is to be in unedited, hexadecimal form.

FORMAT
specifies that the listing is to be edited for each directory entry.

Before printing the directory entries on the first page, an index is printed explaining
the attributes (field 3) and other information (field 10). ATTRIBUTE INDEX explains
each attribute bit; OTHER INFORMATION INDEX explains scatter and overlay format
data as it appears in the listing.

Note: The LlSTPDS statement may be used only on a partitioned data set whose
members have been created by the linkage editor. Members that have not been
created by the linkage editor cause their directory entries to be listed in unedited
(DUMP) format.

The LlSTVTOC statement is used to request a partial or complete listing of the entries
in a specified volume table of contents.

The format of the LlSTVTOC statement is:

DUMP
specifies that the listing is to be in unedited, hexadecimal form. If both DUMP and
FORMAT are omitted, an abbreviated edited format is generated by default.

FORMAT
specifies that a comprehensive edited listing is to be generated. If both FORMAT
and DUMP are omitted, an abbreviated edited format is generated by default.

IEHLlST Examples

IEHLlST Example 1

DATE = dddyy
specifies that each entry that expires before this date is to be flagged with an
asterisk ('~) in the listing. This parameter applies only to the abbreviated edited
format. The date is represented by ddd, the day of the year, and yy, the last two
digits of the year. If DATE is omitted, no asterisks appear in the listing.

VOL = device = serial
specifies the device type and volume serial number of the volume whose table of
contents is to be listed. If VOL is omitted, the system residence volume is assumed.

DSNAME = (name[,name] ...)
specifies the fully-qualified names of the data sets whose entries are to be listed. A
maximum of ten names is allowed. If DSNAME is omitted, the entire volume table of
contents is listed.

The following examples illustrate some of the uses of IEHLlST. Table 43 can be used
as a quick reference guide to IEHLlST examples. The numbers in the "Example"
column point to examples that follow.

Table 43. IEHLlST Example Directory

Operation Device

LIST 2314 Disk,
system output
device

LIST

LIST

LIST

2314 Disk,
system residence
device, system
output device

2314 or 2319
Disk,13330
Disk system
output device

2314 Disk,
system output
device

Comments

Source catalog is to be listed on the
system output device.

Three catalogs and part of a fourth
are to be listed on the system
output device.

Three partitioned directories are to
be listed on the system output device.

Volume table of contents is to be
listed in edited form; selected
data set control blocks are listed
in unedited form.

Example

2

3

4

1 Note that the 2319 disk is functionally equivalent to the 2314 disk; to use the 2319, specify 2314
in the control statement.

Note: In the IEHLlST examples, the EXEC statement and the SYSPRINT DO statement
can be replaced with the following job control statement:

I I EXEC PROC = LIST

The EXEC statement invokes the following IBM-supplied cataloged procedure:

II1IST EXEC PGM = IEHlIST,REGION = 44K
IIDDSRV DD VOLUME = REF = SYSl.SVClIB,DISP = OLD
IISYSPRINT DD SYSOUT = A

In this example a catalog residing on a 2314 volume (231400) is to be listed.

The example follows:

IILISTCAT JOB
II EXEC
IISYSPRINT DD
IIDD2 DD
IISYSIN DD

LISTCTLG
1*

09#550,BLUE
PGM=IEHLIST
SYSOUT=A
UNIT=2314,VOLUME=SER=231400,DISP=OLD

* VOL=2314=231400

The control statements are discussed below:

• DD2 DO defines a mountable device on which the volume containing the source
. catalog is mounted.

• SYSIN DO defines the control data set, which follows in the input stream.

• LlSTCTLG defines the source volume and specifies the list operation.

Note: The data set name of the catalog data set is SYSCTLG.

IEHlIST Program 223

IEHLlST Example 2

IEHLlST Example 3

224 Utilities (Release 21.7)

In this example a catalog residing on the system residence volume, two catalogs
residing on 2314 volumes, and a portion of a catalog residing on a 2314 volume, are
to be listed.

The example follows:

IILISTCATS JOB 09#550,BLUE
II EXEC PGM=IEHLIST
IISYSPRINT DD SYSOUT=A
IIDDl DD UNIT=3330,VOLUME=SER=111111,DISP=OLD
IIDD2 DD UNIT=(2314"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231400))
IISYSIN DD *

1*

LISTCTLG
LISTCTLG
LISTCTLG
LISTCTLG

VOL=2314=231400
VOL=2314=231401
VOL=2314=231402,NODE=A.B.C

The control statements are discussed below:

• DD1 DD defines a system residence device. (The first catalog to be listed resides
on the system residence volume.)

• DD2 DD defines a mountable device on which each 2314 volume is mounted as it is
required by the program.

• SYSIN DD defines the control data set, which follows in the input stream.

o The first LlSTCTLG statement indicates that the catalog residing on the system
control volume is to be listed.

• The second and third LlSTCTLG statements identify two 2314 disk volumes
containing catalogs to be listed.

• The fourth LlSTCTLG statement identifies a 2314 volume containing a catalog that
is to be partially copied. All data set entries whose beginning qualifiers are "A.B.C"
are copied.

In this example, a partitioned directory existing on the system residence volume is to
be listed. In addition, two partitioned directories existing on a 2314 or 2319 volume
are to be listed. Note that the 2319 disk is functionally equivalent to the 2314 disk; to
use the 2319 specify 2314 in the control statement.

The example follows:

IILISTPDIR JOB
II EXEC
IISYSPRINT DD
IIDDl DD
IIDD2 DD
IISYSIN DD

1*

LISTPDS
LISTPDS

09#550,BLUE
PGM=IEHLIST
SYSOUT=A
UNIT=3330,VOLUME=SER=111111,DISP=OLD
UNIT=2314,VOLUME=SER=231400,DISP=OLD
* DSNAME=PARSETl
DSNAME=(PART1,PART2),VOL=2314=231400

The control statements are discussed below:

• DD1 DD defines the system residence device.

• DD2 DD defines a mountable device on which a 2314 volume (231400) is to be
mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• The first LlSTPDS statement indicates that the partitioned data set directory
belonging to data set PARSET1 is to be listed. This data set exists on the system
residence volume.

• The second LlSTPDS statement indicates that partitioned directories belonging to
data sets PART1 and PART2 are to be listed. These data sets exist on a 2314
volume (231400).

IEHLlST Example 4 In this example, a volume table of contents in edited form, is to be listed. The edited
listing is supplemented by an unedited listing of selected data set control blocks.

The example follows:

IILISTVTOC JOB
II EXEC
IISYSPRINT DD
IIDD2 DD
IISYSIN DD

1*

LISTVTOC
LISTVTOC

09#550,BLUE
PGM=IEHLIST
SYSOUT=A
UNIT=2314,VOLUME=SER=231400,DISP=OLD

* FORMAT,VOL=2314=231400
DUMP,VOL=2314=231400,DSNAME=(SET1,SET2,SET3)

The control statements are discussed below:

• DD2 DD defines a mountable device on which the volume containing the specified
volume table of contents is to be mounted.

• SYSIN DD defines the control data set which follows in the input stream.

• The first LlSTVTOC statement indicates that the volume table of contents on the
specified 2314 volume is to be listed in edited form.

• The second LlSTVTOC statement indicates that the data set control blocks
representing data sets SET1, SET2, and SET3 are to be listed in unedited form.

IEHUST Program 225

IEHMOVE Program

IEHMOVE is a system utility used to move or copy logical collections of operating
system data. (See Ulntroduction" for general system utility information.)

IEHMOVE can be used to move or copy:

• A data set residing on from one to five volumes .

•. A group of cataloged data sets.

• A catalog, or portions of a catalog.

• A volume of data sets.

The scope of a basic move or copy operation can be enlarged by:

• Merging members from two or more partitioned data sets.

• Including or excluding selected members.

• Renaming moved or copied members.

• Replacing selected members.

• Including or excluding data sets from a move or copy operation.

If, for some reason, IEHMOVE is unable to successfully move or copy specified data,
an attempt is made to reorganize the data and place it on the specified output device.
The reorganized data-called an unloaded data set-is a sequential data set consisting
of a~-byte blocked records that contain the source data and control information for
subsequently reconstructing the source data as it originally existed.

When an unloaded data set is moved or copied to a device that will support the data in
its true form, the data is automatically reconstructed. For example, if the user
attempts to move a partitioned data set to a tape volume, the data is unloaded onto
that volume. The user can re-create the data set simply by moving the u,nloaded data
set to a direct access volume.

A move operation differs from a copy operation in that a move operation scratches
source data if the data set resides on a direct access source volume and the
expiration data has occurred, while a copy operation leaves source data intact. In
addition, for cataloged data sets, a move operation updates the catalog to refer to the
moved version (unless otherwise specified), while a copy operation leaves the catalog
unchanged.

Space for a new data set on a direct access device can be allocated by the user in a
previous job step or by IEHMOVE in an IEHMOVE job step.

Space can be allocated by the user in a previous job step by using a DO statement
that specifies the amount of space required. If, however, a data set that contains
location-dependent information (for instance, a data set with the unmovable attribute)
is being moved or copied, the user should allocate space for the receiving data set
using absolute track allocation. This ensures that the data is placed in the same
relative location on the receiving volume as on the source volume (provided the
device types of source and receiving volumes are the same). Unmovable data is
moved or copied even when space allocation was not made before the IEHMOVE job
step. No assumptions, however, can be made as to whether the location-dependent
information is correct. (The IEHIOSUP program can be used to update the new version
of a SYS1.SVCLlB after it has been moved or copied into a space which was not
preallocated.)

Space for a new data set cannot be allocated by the user under the following
circumstances:

• When the organization of the data set to be moved or copied is direct and the data
set is not to be unloaded, IEHMOVE cannot determine if the new data set is empty.

• When a partitioned data set is being moved or copied as part of a move or copy
volume operation and the data set is not to be unloaded. If the user does
preallocate a partitioned data set in this case, no merging takes place.

If IEHMOVE performs the space allocation for the new data set, the space requirement
information of the old data set (if available) is used. This space requirement
information is obtained from the DSCB of the source data set, if it is on a direct
access device, or from the control information in the case of an unloaded data set.

IEHMOVE Program 227

228 Utilities (Release 21.7)

If space requirement information is available, IEHMOVE uses this information to derive
an allocation of space for the receiving volume, taking into account all differences in
device characteristics, such as track capacity and overhead factors. However, when
data sets with variable or undefined record formats are being moved or copied
between unlike devices, no assumption can be made about the space that each
individual record needs on the receiving device.

In general, when variable or undefined record formats are to be moved or copied,
IEHMOVE attempts to allocate space on the assumption that all blocks in the data set
are of the maximum length. This can cause the following situations when moving or
copying between unlike devices:

• When moving or copying from a device with a relatively small block overhead to a
device with a larger block overhead, too much space is allocated.

• When moving or copying from a device with a large block overhead to a device with
a smaller block overhead, too little space might be allocated. In this case, the user
should preallocate the data set with enough primary or secondary space.

If the data set to be moved or copied is on neither a direct access device nor an
unloaded data set (for instance, a sequential data set on a tape volume), IEHMOVE
uses a default allocation of approximately 72,500 bytes of primary space plus 36,250
bytes of secondary space. Any default space that is unused after the data set has
been moved or copied is released.

Note: Data sets with direct organization and variable record format always have the
same amount of direct access space allocated by IEHMOVE. This practice preserves
any relative track addressing system that might exist within the data sets.

A move or copy operation results in: (1) a moved or copied data set, (2) no action, or
(3) an unloaded version of the source data set. These results depend upon the
compatibility of the source and receiving volumes with respect to:

• Size of the volumes.

• Data set organization (sequential, partitioned, or direct access).

• Movability of the source data set.

• Allocation of space on the receiving volume.

Two volumes are compatible with respect to size if (1) the source record size does not
exceed the receiving track size or (2) the receiving volume supports the track
overflow feature and the output is to be written with track overflow. (Refer to "Job
Control Statements" for notes on the track overflow feature.) When using direct
access organization, two volumes are compatible with respect to size if the source
track capacity does not exceed the receiving track capacity. Direct access data sets
moved or copied to a smaller device type or tape are unloaded. If the user wishes to
load an unloaded direct access data set, it must be loaded to the same device type
from which it originally was unloaded.

If the UNLOAD keyword is specified, a data set can be unloaded even though the
receiving volume and data set organization would allow for a normal copy or move
operation. (See "Utility Control Statements" in this chapter.)

Table 44 shows the results of move and copy operations when the receiving volume is
a direct access volume that is compatible in size with the source volume. The
organization of the source data set set is shown along with the characteristics of the
receiving volume.

Table 45 shows the results of move and copy operations when the receiving volume is
a direct access volume that is not compatible in size with the source volume. The
organization of the source data set is shown along with the characteristics of the
receiving volume.

Table 46 shows the results of move and copy operations when the receiving volume is
not a direct access volume. The organization of the source data set is shown along
with the characteristics of the receiving volume.

Table 44. Move and Copy Operations-Direct Access Receiving Volume with Size
Compatible with Source Volume

Receiving Volume
Characteristics Sequential Partitioned Direct Access

Space allocated moved or copied moved or copied moved or copied
by IEHMOVE
(movable data)

Space allocated moved or copied moved or copied no action
by IEHMOVE
(unmovable data)

Space previously moved or copied moved or copied no action
allocated, as yet
unused

Space previously no action moved or copied no action
allocated, partially (merged)
used

Table 45. Move and Copy Operations-Direct Access Receiving Volume with Size
Incompatible with Source Volume

Receiving Volume
Characteristics Sequential Partitioned Direct Accessf

Space allocated unloaded unloaded unloaded
by IEHMOVE

Space previously unloaded unloaded no action
allocated, as yet
unused

Space previously no action no action no action
allocated, partially
used

Table 46. Move and Copy Operations-Nondirect Access Receiving Volume

Receiving Volume
Characteristics

Movable data

Unmovable data

Sequential

moved or copied

unloaded

Partitioned

unloaded

unloaded

Direct Access

unloaded

no action

IEHMOVE does not scratch data sets if the expiration date has not occurred.
IEHPROGM can be used to scratch these data sets (see the chapter ulEHPROGM
Program").

Note: When space is previously allocated for a data set that is to be unloaded, the
data set should be sequentially organized, as is the case for unloaded data sets.

If a move or copy operation is unsuccessful, the source data remains intact.

If a move or copy operation is unsuccessful and space was allocated by IEHMOVE, all •
data associated with that operation is scratched from the receiving direct access
volume. If the receiving volume was tape, it will contain a partial data set.

If a move or copy operation is unsuccessful and space was previously allocated, no
data is scratched from the receiving volume. If, for example, IEHMOVE moved 104
members of a 105-member partitioned data set and encountered an input/output
error while moving the 105th member:

• The entire partitioned data set is scratched from the receiving volume if space was
allocated by IEHMOVE.

• No data is scratched from the receiving volume if space was previously allocated.
In this case, after determining the nature of the error, the user need move only the
105th member into the receiving partitioned data set.

When moving or copying a data set group or a volume containing password-protected
data sets, the user must provide the password each time a data set is opened or
scratched.

IEHMOVE Program 229

Reblocking

Moving or Copying
a Data Set

230 Utilities (Release 21.7)

IEHMOVE always moves or copies any user labels associated with an input data set.
IEHMOVE does not take exits to a user's label processing routines.

When moving or copying a password-protected data set, the reproduced data set is
protected in the same way as the source data set, unless a different protection level is
established through preallocation.

It is your responsibility to update your system's PASSWORD data set. This can be
done with the RENAME function of IEHMOVE.

Note: If a data set that has only user trailer labels is to be moved from a tape volume
to a direct access volume, space must be previously allocated on the direct access
volume to ensure that a track is reserved to receive the user labels.

Data sets with fixed or variable records can be reblocked to a different block size by
previously allocating the desired block size on the receiving volume. No reblocking can
be performed when loading or unloading.

When moving or copying data sets with undefined record format and reblocking to a
smaller block size (that is, transferring records to a device with a track capacity
smaller than the track capacity of the original device), the user must make the block
size for the receiving volume equal to or larger than the size of the largest record in
the data set being moved or copied.

IEHMOVE can be used to move or copy sequential, partitioned, and direct access
data sets, as follows:

• A sequential data set can be: (1) moved from one direct access or nondirect
access volume to another (or to the same volume provided that it is a direct access
volume) or (2) copied from one direct access or nondirect access volume to
another (or to the same volume provided that the data set name is changed and
the receiving volume is a direct access volume).

• A partitioned data set can be: (1) moved from one direct access volume to another
(or to the same volume) or (2) copied from one direct access volume to another
(or to the same volume provided that the data set name is changed).

• A direct access data set can be moved or copied from one direct access volume to
another provided that the receiving device type is the same device type or a larger
device type and that the record size does not exceed 32K.

In addition, IEHMOVE can be used to move or copy multivolume data sets. To move or
copy a multivolume data set, specify the complete volume list in the VOL = SER
parameter on the DD statement. To move or copy a data set that resides on more
than one tape volume, specify the volume serial numbers of all the tape volumes and
the sequence numbers of the data set on the tape volumes in a utility control
statement. (You must specify the sequence number even if the data set to be moved
or copied is the only data set on a volume.) To move or copy a data set to more than
one tape volume, follow the same procedure as for the list field of the
TO = device = list parameter in the utility control statement.

For MOVE/COPY operations on a data set that resides on multiple volumes, all volume
serial numbers involved should be given in the list field of the
FROM/TO = device = list parameter of the utility control statement. The volume serial
numbers must also appear in the list field of the VOLUME = SER = list parameter of
the DD statement indicating where the text is to be placed. On that same DD
statement, especially when operating on a BDAM data set, you should code the UNIT
parameter as follows: UNIT = (devicetype,P).

A data set with the unmovable attribute can be moved or copied from one direct
access volume to another or to the same volume provided that space has been
previously allocated on the receiving volume. Change the name of a data set to move
or copy it to the same volume. SVCLlB can be moved or copied to another location on
the system residence volume, provided that space is available and that space has
been previously allocated on that volume. IEHPROGM must be used immediately after
such a move operation to rename the moved version SYS1.SVCLlB. After such a copy
operation, IEHPROGM must be used to scratch the old version and to rename the
copied version. In either case, IEHIOSUP must be used immediately after the
IEHPROGM step to update the new version of SVCLlB.

When moving or copying a BDAM data set from one device to another device of the
same type, relative track and relative block integrity are maintained.

When moving or copying a BDAM data set to a larger device, relative track integrity is
maintained for data sets with variable or undefined record formats; relative block
integrity is maintained for data sets with fixed record formats.

When moving or copying a BDAM data set to a smaller device or a tape, the data set
is unloaded. An unloaded data set is loaded only when it is moved or copied to the
same device type from which it was unloaded.

Table 47 shows basic and optional move and copy operations for sequential and
partitioned data sets.

IEHMOVE moves or copies partitioned members in the order in which they appear in
the partitioned directory. That is, moved or copied members are placed in collating
sequence on the receiving volume.

Table 47. Moving and Copying Sequential and Partitioned Data Sets

Operation

Move
Sequential

Move
Partitioned

Copy

Copy
Partitioned

Basic Actions

Move the data set. For direct access,
scratch the source data. For cataloged
to refer to the moved data set.

Move the data set. For direct access,
scratch the source data. For cataloged
data sets, update the catalog to refer
to the moved data set.

Copy the data set. The source data set
is not scratched. The catalog is not
updated to refer to the copied data set.

Copy the data set. The source data is
not scratched. The catalog is not
updated to refer to the copied data
set.

Optional Actions

Prevent automatic cataloging of
the moved data set. Rename the
moved data set.

Prevent automatic cataloging of
the moved data set. Rename the
moved data set. Re-allocate
directory space. (Not possible if
the space previously allocated is
partially used.) Perform a merge
operation using members from two
or more data sets. Move only
selected members. Replace members.
Unload the data set.

Uncatalog the source data set.
Catalog the copied data set on
the receiving volume. Rename
the copied data set.

Uncatalog the source data set.
Catalog the copied data set on
the receiving volume. Rename
the copied data set. Re-allocate
directory space. (Not possible
if the space previously allocated
is partially used.) Perform a
merge operation using members from
two or more data sets. Copy only
selected members. Replace members.
Unload the data set.

Figure 51 shows a copied partitioned data set. Note that the members are copied in
the order in which they appear in the partitioned directory. IEBCOPY can be used to
copy data sets whose members are not to be collated.

Source data set Copied data set

Figure 51. Partitioned Data Set Before and After an IEHMOVE Copy Operation

Members that are merged into an existing data set are placed, in collating sequence,
after the last member in the existing data set.

Figure 52 shows members from one data set merged into an existing data set. Note
that members A, C, and G from the existing data set are copied to the receiving
volume before members Band F are copied from the source data set. Members Band
F are copied in collating sequence.

Figure 53 shows how members from two data sets are merged into an existing data
set. Members from additional data sets can be merged in a like manner. Note that

IEHMOVE Program 231

Moving or Copying
a Group of Cataloged
Data Sets

232 Utilities (Release 21.7)

Existing data set
prior to merge

Source data set

Figure 52. Merging Two Data Sets Using IEHMOVE

members A, C, and G are copied from the existing data set before any members are
copied from the source data sets. Members F, S, 0, and E from the source data sets
are copied in collating sequence.

Existing data set
prior to merge

Source data sets

Note: New members
~----~. are placed in

collating sequence
after existing
members

Figure 53. Merging Three Data Sets Using IEHMOVE

IEHMOVE can be used to move or copy a group of data sets that are cataloged on
the same volume and whose names are qualified by one or more identical names.
For example, a group of data sets qualified by the name A.S can include data sets
named A.B.D and A.B.E, but could not include data sets named A.C.D or A.D.F.

Additional data sets not belonging to the specified data set group can be included in
the move or copy operation; data sets belonging to the group can be excluded.

If a group of data sets is moved or copied to magnetic tape, the data sets must be
retrieved one by one by data set name and file sequence number, or by file sequence
number for unlabeled or nonstandard labeled tapes.

IEHLlST can be used to determine the structure of the catalog.

Table 48 shows basic and optional move and copy operations for a group of cataloged
data sets.

Moving or Copying
a Catalog

Moving or Copying a
Volume of Data Sets

Table 48. Moving and Copying a Group of Cataloged Data Sets

Operation

Move group
of cataloged
data sets

Copy group
of cataloged
data sets

Basic Actions

Move the data set group (excluding
password-protected data sets) to the
specified volumes. Scratch the source
data sets (direct access only).
The catalog is not updated to refer to
moved data sets. Merging is not done.

Copy the data set group (excluding
password-protected data sets.). Source
data sets are not scratched. The
catalog is not updated to refer to
copied data sets. Merging is not done.

Optional Actions

Prevent updating of the catalog.
Include password-protected data
sets in the operation. Include
additional data sets in the
operation. Exclude data sets from
the operation. Unload data sets.

Include password-protected data
sets in the operation. Uncatalog
the source data sets. Catalog
the copied data sets on the
receiving volumes. Include
additional data sets in the
operation. Unload a data set or
sets.

IEHMOVE can be used to move or copy a catalog or portions of a catalog without
copying the data sets represented by the cataloged entries. The SYSCTLG (system
catalog) data set need not be defined on the receiving volume before the operation.
If, however, SYSCTLG was defined before the operation, the data set organization
must not have been specified in the DCB field. Moved or copied entries are merged
with any existing entries on the receiving volume. Note that the receiving volume must
be a direct access volume unless the catalog is to be unloaded.

Table 49 shows basic and optional move and copy coperations for the catalog.

Table 49. Moving and Copying the Catalog

Operation

Move catalog

Copy catalog

Basic Actions

Move entries from the catalog to the
specified direct access volume.
Scratch the source volume.

Copy entries from the catalog to the
specified direct access device. The
source catalog is not scratched.

Optional Actions

Exclude selected entries from
operation. Move an unloaded
version of the catalog. Unload
the catalog to the magnetic
tape volume.

Exclude selected entries from
the operation. Copy an unloaded
version of the catalog. Unload
the catalog to a tape volume.

IEHMOVE can be used to move or copy the data sets of an entire direct access
volume to another volume or volumes. A move operation differs from a copy operation
in that the move operation scratches source data sets, while the copy operation does
not. For both operations, any cataloged entries associated with the source data sets
remain unchanged. IEHPROGM can be used to uncatalog all of the cataloged data sets
and recatalog them according to their new location.

If the source volume contains a SYSCTLG data set, that data set is the last to be
moved or copied onto the receiving volume.

If a volume of data sets is moved or copied to tape, the data sets must be retrieved
one by one by data set name and file sequence number, or by file sequence number
for unlabeled or nonstandard labeled tapes.

When copying a volume of data sets, the user has the option of cataloging all source
data sets in a SYSCTLG data set on a receiving volume. However, if a SYSCTLG data
set exists on the source volume, error messages indicating that an inconsistent index
structure exists are generated when the source SYSCTLG entries are merged into the
SYSCTLG data set on the receiving volume.

The move volume feature does not merge partitioned data sets. If a data set on the
volume to be moved or copied has a name identical to a data set name on the
receiving volume, the data set is not moved, copied, or merged onto the receiving
volume.

Table 50 shows basic and optional move and copy operations for a volume of data
sets.

IEHMOVE Program 233

•

Moving or Copying
Direct Data Sets with
Variable Spanned Records

Input and Output

Control

234 Utilities (Release 21.7)

Table 50. Moving and Copying a Volume of Data Sets

Operation Basic Actions

Move a volume Move all data sets not protected by a
of data sets password to the specified direct access

volumes. Scratch the source data sets
for direct access volumes. The catalog
is not updated.

COpy a volume Copy all data sets not protected by a
of data sets password to the specified direct access

volume. The source data sets are not
scratched.

Optional Actions

Include password-protected data
sets in the operation. Move to a
tape volume.

Include password-protected data
sets in the operation. Catalog all
copied data sets on the receiving
volume (direct access only).
Copy to a tape volume.

IEHMOVE can be used to move or copy direct data sets with variable spanned
records from one direct access volume to a compatible direct access volume,
provided that the record size does not exceed 32K.

Because a direct access data set can reside on one to five volumes (all of which must
be mounted during any move or copy operation), it is possible for the data set to span
volumes. However, single variable spanned records are contained on one volume.

Relative track integrity is preserved in a move or copy operation for spanned records.
Moved or copied direct access data sets occupy the same relative number of tracks
that they occupied on the source device.

If a direct data set is unloaded (moved or copied to a smaller device or tape), it must
be loaded back to the same device type from which it was originally unloaded.

When moving or copying variable spanned records to a larger device, record segments
are combined and respanned if necessary. Because the remaining track space is
available for new records, variable spanned records are unloaded before being moved
or copied back to a smaller device.

If a user wishes to create a direct data set without using data management BDAM
macros, all data management specifications must be followed. Special attention must
be given to data management specifications for RO track capacity record content,
segment descriptor words, and the BFTEK = R parameter.

When moving or copying a multivolume data set, the secondary allocation for direct
data sets should be at least two tracks. (See the "WRITE SZ" macro instruction in as
Supervisor & Data Management Macro Instructions, GC28-6647.)

IEHMOVE uses the following input:

• One or more data sets, which contain the data to be moved, copied, or merged into
a output data set.

• A control data set, which contains utility control statements that are used to control
the functions of the program.

• A work data set, which is a work area used by IEHMOVE.

IEHMOVE produces the following output:

• An output data set, which is the result of the move, copy, or merge operation.

• A message data set, which contains informational messages (for example, the
names of moved or copied data sets) and error messages, if applicable.

IEHMOVE produces a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that a specified function was not completely successful.
Processing continues.

• 08, which indicates a condition from which recovery is possible. Processing
continues.

• 12, which indicates an unrecoverable error. The job step is terminated.

IEHMOVE is controlled by job control statements and utility control statements. The
job control statements are used to execute or invoke the program, define the devices
and volumes used and produced by IEHMOVE, and prevent data sets from being
deleted inadvertently.

Job Control Statements

Utility control statements are used to control the functions of the program and to
define those data sets or volumes that are to be used.

Table 51 shows the job control statements necessary for using IEHMOVE.

Table 51. IEHMOVE Job Control Statements

Statement

JOB

EXEC

SYSPRINT DO

SYSUTI DO

Use

Initiates the job.

Specifies the program name (PGM = IEHMOVE) or, if the job control statements
reside in a procedure library, the procedure name. This statement can include
optional PARM information; see "PARM Information on the EXEC Statement"
below.

Defines a sequential message data set. The data set can be written onto a system
output device, a magnetic tape volume, or a direct access volume.

Defines a volume on which a work data set required by IEHMOVE is placed.

anynamel DO Defines a permanently mounted volume. (The system residence volume is
considered to be a permanently mounted volume.)

anyname2 DO Defines a mountable device type.

tape DO Defines a tape volume to be used when moving or copying from or to a 7 -track
tape volume, a 9-track tape volume not having standard labels, or a 1600 bits
per inch, 9-track tape volume on a single-density drive, or when copying to an
800 bits per inch tape on a dual-density drive.

SYSIN DO Defines the control data set. The data set, which contains utility control
statements, usually follows the job control statements in the input stream;
however, it can be defined either as an unblocked sequential data set or as a
member of a procedure library.

The minimum region size that can be specified for the execution of IEHMOVE is 16K +
b, where b is the largest block size in the job step rounded to the next higher 2K.

The SYSUT1 DD statement can be coded:

/ /SYSUTI DO UNIT = xxxx,VOLUME = SER = xxxxxx,DISP = OLD

At least 80 contiguous tracks must be available for work space on the volume defined
by the SYSUT1 DD statement. (This figure is based on a 2311 being the work volume.
If a direct access device other than a 2311 is used, an equivalent amount of space
must be available.)

When POWER = 2 is specified in the PARM field of the EXEC parameter, the number of
contiguous tracks that must be available for work space on the volume is doubled; see
uPARM Information on the EXEC Statement" below.

The anyname1 DD statement can be coded:

/ /anynamel DO UNIT = xxxx,VOLUME = SER = xxxxxx,DISP = OLD

In the anyname1 DD statement, the UNIT and VOLUME parameters define the device
type and volume serial number. The DISP = OLD specification prevents the
inadvertent deletion of a data set. The anyname1 DD statement is arbitrarily assigned
the ddname DD1 in the IEHMOVE examples.

The anyname2 DD statement can be coded:

/ /anyname2 DO UNIT = xxxx,VOLUME = SER = xxxxxx,DISP = OLD

When the number of volumes to be processed is greater than the number of devices
defined by DD statements, there must be an indication (in the applicable DD
statements) that multiple volumes are to be processed. This indication can be in the
form of deferred mounting, as follows:

/ /anyname2 DO UNIT = (xxxx"DEFER),VOLUME = (PRIVATE, ...),
/ / DISP = (... ,KEEP)

See "Appendix C: DD Statements for Defining Mountable Devices" for information on
defining mountable devices. The anyname2 DD statement is arbitrarily assigned the
ddname DD2 in the IEHMOVE examples. DD statements defining additional mountable
device types are assigned names DD3, DD4, etc.

IEHMOVE Program 235

•

Restrictions

PARM Information on
the EXEC Statement

236 Utilities (Release 21.7)

The tape DD statement can be coded:

/ /tape DO DSNAME = xxxxxxxx,UNIT = xxxx,VOLUME = SER = xxxxxx,
/ / DISP = (... ,KEEP),LABEL = (... , ...),DCB = (TRTCH = C,DEN = x)

when 7 -track tape is to be used. A utility control statement parameter refers to the
tape DD statement for label and mode information.

The date on which a data set is moved or copied onto a magnetic tape volume is
automatically recorded in the H DR 1 record of a standard tape label if a TODD
parameter is specified in a utility control statement. An expiration date can be
specified by including the EXPDT or RETPD subparameters of the LABEL keyword in
the DD statement referred to by a TODD parameter.

To define a sequence number for a data set on a tape volume, or to specify a specific
device (for example, unit address 190), you must use a utility control statement
instead of a DD statement. To move or copy a data set from or to a tape volume
containing more than one data set, specify the sequence number of the data set in a
utility control statement. To move or copy a data set from or to a specific device,
specify the unit address (rather than a group name or device type) in a utility control
statement. To copy to a unit record or unlabeled tape volume, specify any standard
name or number in a utility control statement.

The tape DD statement can be used to communicate DCB attributes of data sets
residing on tape volumes that do not have standard labels to IEHMOVE. If no DCB
attributes are specified, an undefined record format and a block size of 2560 are
assumed. However, in order to recognize unloaded data sets on an unlabeled tape
volume, the DCB attributes must be specified as follows:
DCB = (RECFM = FB,LRECL = BO,BLKSIZE = 800).

With the exception of the SYSIN and SYSPRINT DD statements, all DD statements
shown in Table 51 are used as device allocation statements, rather than as true data
definition statements. Because IEHMOVE modifies the internal control blocks created
by device allocation DD statements, these statements must not include the DSNAME
parameter. (All data sets are defined explicitly or implicitly by utility control
statements.)

A merge operation requires that one DD statement defining a mountable device be
present for each source volume containing data to be included in the merge operation.

Prior space allocations can be made by specifying a dummy execution of IEHPROGM
before the execution of IEHMOVE.

Blocked format data sets that do not contain user data TTRNs or keys can be
reblocked or unblocked by including the proper keyword subparameters in the DCB
operand of the DD statement used to previously allocate space for the data set. The
new blocking factor must be a multiple of the logical record length originally assigned
to the data set. (For a discussion of user data TTRNs, refer to as Data Management
Services Guide, GC26-3746.)

• The block size for the SYSPRINT data set must be a multiple of 121. The block size
for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified for these block sizes.

• One anynamel DD statement must be included for each permanently mounted
volume referred to in the job step.

• One anyname2 DD statement must be included for each mountable device to be
used in the job step.

• When IEHMOVE is dynamically invoked in a job step containing another program,
the DD statements defining mountable devices for IEHMOVE must be included in
the job stream prior to DD statements defining data sets required by the other
program.

The EXEC statement for IEHMOVE can contain PARM information that is used by
the program to allocate additional work space and/or control line density on output
listings. The EXEC statement can be coded, as follows:

/ / EXEC PGM = IEHMOVE[,PARM = {'POWER = n' }
{'POWER = n,LlNECNT = xx' }
{'LlNECNT = xx' }

The POWER = n parameter is used to request that the normal amount of space
allocated for work areas be increased n times. IEHMOVE automatically calculates and
allocates the amount of space needed for the work areas. No SPACE parameter,
therefore, should be coded in the SYSUTI DD statement. If, in the EXEC statement,

Job Control Language for
the Track Overflow Feature

Utility Control Statements

POWER = 3 is specified, the work space requirement is three times the basic
requirements, etc.

The POWER para,meter is used when 750 or more members are being moved or
, copied. The progression for the value of n is:

• POWER = 2 when 750 to 1,500 members are to be moved or copied.

• POWER = 3 when 1,501 to 2,250 members are to be moved or copied.

• POWER = 4 when 2,251 to 3,000 members are to be moved or copied.

If POWER = 2, the work space requirement on the SYSUT1 volume is two times the
basic requirement; if POWER = 3, work space requirement is three times the basic
requirement, etc. For example, if POWER = 2, 80 tracks on a 2314 must be available.

When moving or copying a catalog, the value of the POWER parameter can be
calculated, as follows:

POWER = (10D + V + 20G)/4000

where D is the total number of data sets, aliases, and generation data set entries
(which is the number of data set names printed by IEHLlST when LlSTCTLG is
specified); V is the total number of volumes used by these data sets (which is the
number of lines printed by IEHLlST when LlSTCTLG is specified); and G is the number
of generated data sets. The progression of the value of n when moving or copying a
catalog is:

• POWER = 2 when 350 to 700 data sets reside on the catalog.

• POWER = 3 when 701 to 1050 data sets reside on the catalog.

• POWER = 4 when 1051 to 1400 data sets reside on the catalog.

The LlNECNT = xx parameter specifies the number of lines per page in the listing of
the SYSPRINT data set; xx is a two-digit number in the range 04 through 99.

A data set containing track overflow records can be moved or copied if the source
volume and the receiving volume are mounted on direct access devices that support
the track overflow feature. (For BDAM data sets, the source and receiving devices .
must be the same device type.)

A data set that was written without track overflow can be moved or copied with or
without track overflow or vice versa if the following conditions are met:

• Space was allocated for ~he data set prior to the request for a move or copy
operation.

• The DD statement used for that allocation included the subparameter to specify the
changed track overflow value and all other desired values. (The RECFM
specifications assigned when the data set was originally created are overridden by
the RECFM subparameter in this DD statement.)

If space has not been allocated, or if RECFM was not specified when space was
allocated, the data set is moved or copied in accordance with RECFM specifications
that were made when the data set was originally created.

The track overflow attribute is not retained for a sequential data set that is moved or
copied to a device other than a direct access device.

IEHMOVE is controlled by the following utility control statements:

• MOVE DSNAME statement, which is used to move a data set.

• COpy DSNAME statement, which is used to copy a data set.

• MOVE DSGROUP statement, which is used to move a group of cataloged data sets.

• COpy DSGROUP statement, which is used to copy a group of cataloged data sets.

• MOVE PDS statement, which is used to move a partitioned data set.

• COpy PDS statement, which is used to copy a partitioned data set.

• MOVE CATALOG, which is used to move cataloged entries.

• COpy CATALOG statement, which is used to copy cataloged entries.

• MOVE VOLUME statement, which is used to move a volume of data sets.

• COPY VOLUME statement, which is used to copy a volume of data sets.

IEHMOVE Program 237

MOVE DSNAME Statement

238 Utilities (Release 21.7)

In addition, there are four subordinate control statements that can be used to modify
the effect of a MOVE DSGROUP, COpy DSGROUP, MOVE PDS, COPY PDS, MOVE
CATALOG, or COpy CATALOG operation. The subordinate control statements are:

• INCLUDE statement, which is used to enlarge the scope of a MOVE DSGROUP,
COpy DSGROUP, MOVE PDS, or COPY PDS statement by including a member or
data set not explicitly included by ~he statement it modifies.

• EXCLUDE statement, which is used with a MOVE DSGROUP, COPY DSGROUP,
MOVE PDS, COPY PDS, MOVE CATALOG, or COpy CATALOG statement to exclude
data from the move or copy operation.

• REPLACE statement, which is used with a MOVE PDS or COpy PDS statement to
exclude a member from a move or copy operation and to replace it with a member
from another partitioned data set.

• SELECT statement, which is used with MOVE PDS or COPY PDS statements to
select members to be moved or copied and, optionally, to rename the specified
members.

The MOVE DSNAME statement is used to move a data set. The source data set is
scratched.

The format of the MOVE DSNAME statement is:

,~J~~~~YE';-&~~~~t~·"""'1.o/«M<;_"~ ... ""'"r,.:~,:;\::;,
,:'.T~FRPM,=;.d~vice;;=~·li~f, ,.']: '1

".: ·:".[.CVOL~device~.seria/] ',:·1
:};: ··:·::\(;UNCATl.Gl,'; •. ··· . ·;:.·i

j
:

:;':.,'.:\ [,8EN:AME :;i:hamel·.>· . ',:1

;~,~:~2,~_,:~,fl~~~f~ft:~,,"~J .:~~._~L~.'~"~'~l,~~j
where:

DSNAME = name
specifies the fully-qualified name of the data set to be moved.

TO = device = list
specifies the volume or volumes to which the data set is to be moved.

FROM = device = list
specifies the volume or volumes on which the data set currently resides, if it is not
cataloged. If the data set is cataloged, FROM need not be written.

CVOL = device = serial
specifies the device type and volume serial number of the volume on which the
catalog search for the data set is to begin. If neither CVOL nor FROM is written, the
data set is assumed to be cataloged on the system residence volume.

UNCATLG
specifies that the catalog entry pertaining to the data set is to be removed. This
parameter should be used only if the source data set is cataloged. UNCATLG is
ignored if the volume is identified by FROM.

RENAME = name
specifies that the data set is to be renamed, and indicates the new name.

FROM DO = ddname
specifies the name of a DO statement from which DCB and LABEL information are
obtained. This parameter is valid for data sets residing on magnetic tape volumes.
See Table 51 and the tape DO statement under "Job Control Statements" for
additional information.

TODD = ddname
specifies the name of a DO statement from which DCB and LABEL information are
obtained. This parameter, which is valid for data sets to be moved to tape volumes,
describes the mode and label of the volume where the moved data set is to reside.
RECFM, LRECL, and BLKSIZE information is ignored.

UNLOAD
specifies that the data set is to be unloaded to the receiving volume(s).

If the data set is cataloged, the catalog is automatically updated unless UNCATLG is
specified.

COpy DSNAME Statement

MOVE DSGROUP Statement

The FROMPO and TODD parameters can be omitted for 800 bits per inch, 9-track
tape with standard labels on single-density drives or for 1600 bits per inch, 9-track
tape with standard labels on dual-density drives.

The COpy DSNAME statement is used to copy a data set.

The format of the COPY DSNAME statement is:
~[labelfCOPY ~-DSNAME ::~me··'''~~~-·-'~~-·--'-· -~"-.---.'-~':" .. ~-..",..'-.-:--'-.:-~.-~

I
f
I
L

f

, TO - device - list
[,FROM -.device -list· 1
[,CVOl- device- serlaf] '.

, [,UNCATlG].
[,CATLG]

. [,RENAME ~name]
[iFR()MOD-ddname] .

. [;TOOO= ddnamel
'[,UNLOAD]

OSNAME = name
specifies the fully-qualified name of the data set to be copied.

TO = device = list
specifies the volume or volumes on which the data set is to be copied.

FROM = device = list
specifies the volume or volumes on which the data set currently resides, if it is not
cataloged. If the data set is cataloged, FROM should not be written.

CVOL = device = serial
specifies the device type and volume serial number of the volume on which the
catalog search for the data set is to begin. If neither CVOL nor FROM is written, the
data set is assumed to be cataloged on the system residence volume.

UNCATLG
specifies that the catalog entry pertaining to the source data set is to be removed.
This parameter may only be used if the source data set is cataloged. UNCATLG is
ignored if the volume is identified by FROM.

CATLG
specifies that the copied data set is to be cataloged on its receiving volume if it is a
direct access volume. If a catalog does not exist on the receiving volume, a new
catalog is created.

RENAME = name
specifies that the data set is to be renamed, and indicates the new name.

FROMOO = ddname
specifies the name of the DO statement from which DCB and LABEL information are
obtained. DCB attributes for unloaded data sets are always RECFM = FB,
LRECL = 80, and BLKSIZE = 800. This parameter is valid for data sets residing on
tape volumes. See Table 51 and the tape DO statement under IIJob Control
Statements" for additional information.

TODD = ddname
specifies the name of a DO statement from which DCB and LABEL information are I
obtained. This parameter, which is valid for data sets to be copies onto magnetic
tape volumes, describes the mode and label of the magnetic tape where the copied
data set is to reside. RECFM, LRECL, and BLKSIZE information is ignored.

UNLOAD
specifies that the data set is to be unloaded to the receiving volume(s).

Note: The source dataset, if cataloged, remains cataloged unless UNCATLG is
specified.

The FROMOO and TODD parameters can be omitted for 800 bits per inch, 9-track
tape with standard labels on single-density drives or for 1600 bits per inch, 9-track
tape with standard labels on dual-density drives.

The MOVE DSGROUP statement is used to move groups of data sets that are
cataloged on the same volume and whose names are partially qualified by one or more
identical names. Source data sets are scratched. Data set groups to be moved must
reside on direct access volumes.

IEHMOVE Program 239

COPY DSGROUP Statement

240 Utilities (Release 21.7)

INCLUDE and EXCLUDE statements, discussed later in this chapter, can be used to
add to or delete data sets from the group.

The format of the MOVE DSGROUP statement is:

DSGROUP [= name]
specifies the cataloged data sets to be moved. If name, which is a qualified name, is
not coded, all data sets cataloged on the specified volume are to be moved. If
name is coded, all cataloged data sets whose names are qualified by this name are
moved. If the name is a fully-qualified data set name, only that data set is moved.

TO = device = list
specifies the volume or volumes to which the specified group of data sets is to be
moved.

CVOL = device = serial
specifi'es the device type and volume serial number of the volume on which the
catalog search for the data sets is to begin. If CVOL is omitted, the specified group
of data sets is assumed to be cataloged on the system residence volume.

PASSWORD
specifies that password-protected data sets contained in the group are to be
moved. If PASSWORD is omitted, only data sets that are not protected are moved.

UNCATLG
specifies that the catalog entries pertaining to the specified group of data sets are
to be removed.

TODD = ddname
specifies the name of a DO statement from which DCB and LABEL information are
obtained. This parameter, which is valid for data set groups to be moved to
magnetic tape volumes, describes the mode and label of the magnetic tape where
the moved data sets are to reside. RECFM, LRECL, and BLKSIZE information is
ignored. TODD can be omitted for 800 bits per inch, 9-track tape with standard
labels on single-density drives or for 1600 bits per inch, 9-track tape with standard
labels on dual-density drives.

UNLOAD
specifies that the data set is to be unloaded to the receiving volume(s).

MOVE DSGROUP operations cause the specified catalog to be updated automatically
unless UNCATLG is specified.

The COpy DSGROUP statement is used to copy groups of data sets that are cataloged
on the same control volume and whose names are partially qualified by one or more
identical names. Data set groups to be copied must reside on direct access volumes.

INCLUDE and EXCLUDE statements, discussed later in this chapter, can be used to
add data sets to or delete data sets from the data set group to be copied.

The format of the COpy DSGROUP statement is:

DSGROUP[= name]
specifies the cataloged data sets to be copied. If name, which is a qualified name, is
not coded, all cataloged data sets on the specified volume are to be copied. If

MOVE PDS Statement

name is coded, all cataloged data sets whose names are qualified by this name are
copied. If the name is a fully-qualified data set name, only that data set is copied.

TO = device = list
specifies the volume or volumes on which the specified group of data sets is to be
copied.

CVOL = device = serial
specifies the device type and volume serial number of the volume on which the
search for the catalog is to begin. If CVOL is omitted, the specified group of data
sets is assumed to be cataloged on the system residence volume.

PASSWORD
specifies that password-protected data sets contained in the group are to be
copied. If PASSWORD is omitted, only data sets that are not protected are copied.

UNCATLG
specifies that the catalog entries pertaining to the source group of data sets are to
be removed.

CATLG
specifies that the copied data sets are to be cataloged on their receiving volumes if
they are direct access volumes. If catalogs do not exist on the receiving volumes,
they are created.

TODD = ddname
specifies the name of a DO statement from which DCB and LABEL information are
obtained. This parameter, which is valid for data set' groups to be copied to
magnetic tape volumes, describes the mode and label of the magnetic tape on
which the copied data sets are to reside. RECFM, LRECL, and BLKSIZE information
is ignored. TODD can be omitted for 800 bits per inch, 9-track tapes with standard
labels on single-density drives or for 1600 bits per inch, 9-track tape with standard
labels on dual-density drives.

UNLOAD
specifies that the data set is to, be unloaded to the receiving volume(s).

Note: The source data sets remain cataloged unless UNCATLG is specified.

The MOVE PDS statement is used to move partitioned data sets. When used in
conjunction with INCLUDE, EXCLUDE, REPLACE, or SELECT statements, the MOVE
PDS statement can be used to merge selected members of several partitioned data
sets or to delete members.

If IEHMOVE is used to allocate space for an output partitioned data set, the MOVE
PDS statement can be used to expand a partitioned directory.

If the receiving volume contains a partitioned data set with the same name, the two
data sets are merged. The source data set is scratched if its expiration date has
occurred.

The format of the MOVE PDS statement is:

;W' PDS= name
,TO = device=ser;al ,
[,FROM = device = serial]

,'[,CVOL= device =:= serial]
[,EXPAND = nn]
[,UNCATLGI

\', [,RENAME = name] ,,' ,
\. ,,[,FROMOO'=ddname)' ,

~here·:~··"':""""~A.;~.\. . .I!cI~R~~,~~~~me)" ~~,.~~~~~.:::~~~.~~-~;d~';L~·~~~~::::;;;.2,~i~";~~;J
PDS = name

specifies the fully-qualified name of the partitioned data set to be moved.

TO = device = serial
specifies the device type and volume serial number of the volume to which the
partitioned data set is to be moved. The list parameter may be used when
unloading a partitioned data set that must span tape volumes.

IEHMOVE Program 241

•

COpy PDS Statement

242 Utilities (Release 21.7)

FROM = device = serial
specifies the device type and volume serial number of the volume on which the
partitioned data set currently resides, if it is not cataloged. If the data set is
cataloged, FROM need not be written. FROM = device = list may be used when
loading a PDS.

CVOL = device = serial
specifies the device type and volume serial number of the volume on which the
catalog search for the partitioned data set is to begin. If neither FROM nor CVOL is
written, the partitioned data set is assumed to be cataloged on the system
residence volume.

EXPAND =nn
specifies the number' of 256-byte records (up to 99 decimal) to be added to the
directory of the specified partitioned data set. EXPAND cannot be specified if space
is previously allocated.

UNCATLG
specifies that the catalog entry pertaining to the source partitioned data set is to
be removed. This parameter may only be used if the source data set is cataloged. If
the volume is identified by FROM, UNCATLG is ignored.

RENAME = name
specifies that the data set is to be renamed, and indicates the new name.

FROMDD = ddname
specifies the name of a DO statement from which DCB and LABEL information are
obtained. This parameter, which is valid for unloaded partitioned data sets on tape
volumes, describes the mode and label of the magnetic tape and, in addition, must
include the DCB attributes of the unloaded data set (RECFM = FB,LRECL = 80,
BLKSIZE = 800). See Table 51 and the tape DO statement under "Job Control
Statements" for additional information.

TODD = ddname
specifies the name of a DD stateml!nt from which DeB and LABEL information are
obtained. This parameter, which is valid for partitioned data sets to be unloaded to
tape volumes, describes the mode and label of the magnetic tape on which the
unloaded data set is to reside and, in addition, must include the DCB attributes of
the unloaded data set (RECFM = FB,LRECL = 80,BLKSIZE = 800).

FROMDD can be omitted for 800 bits per inch, 9-track tapes with standard labels on
single-density drives or for 1600 bits per inch, 9-track tape with standard labels on
dual-density drives.

Note: MOVE PDS causes the specified catalog to be updated automatically unless
UNCATLG is specified.

The COPY PDS statement is used to copy partitioned data sets. When used in
conjunction with INCLUDE, EXCLUDE, REPLACE, or SELECT statements, the COpy
PDS statement can be used to merge selected members of several partitioned data
sets or to delete members.

If IEHMOVE is used to allocate space for an output partitioned data set, the COpy PDS
statement can be used to expand a partitioned directory.

If the receiving volume already contains a partitioned data set with the same name,
the two are merged.

The format of the COpy PDS statement is:

where:

POS = name
specifies the fully-qualified name of the partitioned data set to be copied.

MOVE CATALOG Statement

TO = device = serial
specifies the device type and volume serial number of the volume to which the
partitioned data set is to be moved. The list value may be used when unloading a
partitioned data set that must span tape volumes.

FROM = device = serial
specifies the device type and volume serial number of the volume on which the
partitioned data set currently resides, if it is not cataloged. If the data set is
cataloged, FROM need not be written. FROM = device = list may be used when
loading a PDS.

CVOL = device = serial
specifies the device type and volume serial number of the volume on which the
catalog search for the partitioned data set is to begin. If neither FROM nor CVOL is
written, the partitioned data set is assumed to be cataloged on the system
residence volume.

EXPAND = nn
specifies the number of 256-byte records (up to 99 decimal) to be added to the
directory of the specified partitioned data set. EXPAND cannot be specified if space
is previously allocated.

UNCATLG
specifies that the catalog entry pertaining to the source partitioned data set is to
be removed. This parameter should be used only if the source partitioned data set
is cataloged. UNCATLG is ignored if the volume is identified by FROM.

CATLG
specifies that the copied partitioned data set is to be cataloged on the receiving
volume if it is a direct access volume. If a catalog does not exist on the receiving
volume, a new catalog is created.

RENAME = name
specifies that the data set is to be renamed, and indicates the new name.

FROMDD = ddname
specifies the name of a DO statement from which DCB and LABEL information are
obtained. This parameter, which is valid for unloaded partitioned data sets residing
on magnetic tape volumes, describes the mode and label of the magnetic tape and,
in addition, must include the DCB attributes of the unloaded data set (RECFM = FB,
LRECL = 80,BLKSIZE = 800). See Table 51 and the tape DO statement under IIJob
Control Statements" for additional information.

TODD = ddname
specifies the name of a DO statement from which DCB and LABEL information are
obtained. This parameter, which is valid for partitioned data sets to be unloaded to
magnetic tape volumes, describes the mode and label of the magnetic tape on
which the unloaded data set is to reside and, in addition, must include the DCB
attributes of the unloaded data set (RECFM = FB,LRECL = 80,BLKSIZE = 800).

The FROMDD and TODD parameters can be omitted for 800 bits per inch, 9-track
tapes with standard labels on single-density drives or for 1600 bits per inch, 9-track
tape with standard labels on dual-density drives.

Note: The source partitioned data set remains cataloged unless UNCATLG is specified.

The MOVE CATALOG statement is used to move the entries of a catalog without
moving the data sets associated with those entries. Certain entries can be excluded
from the operation by means of the EXCLUDE statement. If the receiving volume
contains a catalog, the source catalog entries are merged with it.

The format of the MOVE CATALOG statement is:

rYr~irMOVE~~~~~~:'_i~i'~~~~·· ·0".'~··.···.7;t;~·;~ST'~
,. : [,CVOL.= dsvice>= serial] . ',' ::"',c:;; .• >'.'.'
i . . [,FR()M::: deviq~=ser~a/l ';\>':::.:,~(;';':\':: i";'.<'.

I.'~:~~~~~d~~:rl, '. " .. ' .. '., '>:·.·~,···,'r
*-,,,_~~~ ... >_-..' ~.~., __ . _.~. ,,~ .. ~-.iO<~~""._~*_~_""~""'~ __ ~_~N.W~_"'""",,,' '~~""",,. < "~.::"':~~~' ~. ~~~.'

IEHMOVE Program 243

COpy CATALOG Statement

244 Utilities (Release 21.7)

where:

CATALOG [= name]
specifies the catalog entries to be moved. If name, which is a fully-qualified name,
is not coded, all entries in the catalog are to be moved. If name is coded, all catalog
entries whose names are qualified by this name are moved. If the name is a
fully-qualified data set name, only the catalog entry that corresponds to that data
set is moved.

TO = device = serial
specifies the device type and volume serial number of the volume to which the
specified catalog entries are to be moved.

CVOL = device = serial
specifies the device type and volume serial number of the volume on which the
search for the catalog is to begin. If both FROM and CVOL are omitted, the catalog
is assumed to reside on the system residence volume.

FROM = device = serial
specifies the device type and volume serial number of the volume on which an
unloaded version of the catalog resides. If neither FROM nor CVOL is coded, the
catalog is assumed to reside on the system residence volume.

FROMDO = ddname
specifies the name of a DD statement from which DCB and LABEL information are
obtained. This parameter, which is valid for unloaded catalogs residing on magnetic
tape volumes, describes the mode the label of the magnetic tape and, in addition,
must include the DCB attributes of the unloaded catalog (RECFM = FB,LRECL = 80,
BLKSIZE = 800). See Table 51 and the tape DD statement under uJob Control
Statements" for additional information.

TODD = ddname
specifies the name of a DD statement from which DCB and LABEL information are
obtained. This parameter, which is valid for catalogs to be unloaded to magnetic
tape volumes, describes the mode and label of the magnetic tape on which the
unloaded catalog is to reside.

The FROMOO and TODD parameters can be omitted for 800 bits per inch, 9-track
tapes with standard labels on single-density drives or for 1600 bits per inch, 9-track
tape with standard labels on dual-density drives.

The COPY CATALOG state~ent is used to copy the entries in a catalog without
copying the data sets associated with these entries. Certain entries can be excluded
from a copy operation with the EXCLUDE statement. If the receiving volume contains a
catalog, the source catalog is merged with it.

The format of the COpy CATALOG statement is:

CATALOG [= name]
specifies the catalog entries to be copied. If name, which is a fully-qualified name,
is not coded, all entries in the catalog are to be copied. If name is coded, all catalog
entries whose names are qualified by this name are copied. If the name is a
fully-qualified data set name, only the catalog entry that corresponds to that data
set is copied.

TO = device = serial
specifies the device type and volume serial number of the volume onto which the
specified catalog entries are to be copied.

CVOL = device = serial
specifies the device type and volume serial number of the volume on which the
search for the catalog is to begin.

FROM = device = serial
specifies the device type and volume serial number of the volume on which an
unloaded version of the catalog resides. If neither FROM nor CVOL is written, the
catalog is assumed to reside on the system residence volume.

MOVE VOLUME Statement

COPY VOLUME Statement

FROMDD = ddname
specifies the name of a DO statement from which DCB and LABEL information is
obtained. This parameter, which is valid for unloaded catalogs residing on tape
volumes, describes the mode and label of the tape and, in addition, must include
the DCB attributes of the unloaded catalog (RECFM = FB, LRECL = 80,
BLKSIZE = 800). See Table 51 and the tape DD statement under "Job Control
Statements" for additional information.

TODD = ddname
specifies the name of a DD statement from which DCB and LABEL information are
obtained. This parameter, which is valid for catalogs to be unloaded onto tape
volumes, describes the mode and label of the tape volume on which th'e unloaded
catalog is to reside.

The FROMDD and TODD parameters can be omitted for 800 bits per inch, 9-track
tapes with standard labels on single-density drives or for 1600 bits per inch, 9-track
tape with standard labels on dual-density drives.

The MOVE VOLUME statement is used to move all the data sets residing on a specified
volume. Catalog entries associated with the data sets remain unchanged. Data sets to
be moved must reside on direct access volumes.

The format of the MOVE VOLUME statement is:
r~""~'~=~~'-"'~~r","'~w'-~~---","""""""C'~~'~"_m W_:'''," ,M_~'''~_¥'' __ "_W;_;~:~: ,,"'-·"'~'--"'~',"C~'""'"-W'"~'-''''~---''C-'~~1,1':--~''''-~~''~.

1 [/aOOIJ MOVE VOLUME' =, device =, serial ' , , : ", :' • ~ , ;
i ' ,TO == device -list ' ' , '
l' '[JP~SSWORD] , "
!;:' :. [,TODD ~\ddtlarne] :'
L", , " ':[,ljNLOAD1'.;"':"',
;"here: ~,---,~~~~"",

VOLUME = device = serial
specifies the device type and volume serial number of the source volume.

TO = device = list
specifies the volume or volumes to which the data sets are to be moved.

PASSWORD
specifies that password-protected data sets are to be included in the operation. If
PASSWORD is omitted, only data sets that are not protected are moved.

TODD = ddname
specifies the name of a DD statement from which DCB and LABEL information are
obtained. This parameter, which is valid for data sets to be moved to tape volumes,
describes the mode and label of the receiving tape volume. If the RECFM, BLKSIZE,
and LRECL parameters were specified, they are ignored. TODD can be omitted for
800 bits per inch, 9-track tapes with standard labels on single-density drives or for
1600 bits per inch, 9-track tape with standard labels on dual-density drives.

UNLOAD
specifies that the data set is to be unloaded to the receiving volume(s).

The COPY VOLUME statement is used to copy all the data sets residing on a specified
volume. Catalog entries associated with the data sets remain unchanged. Data sets to
be copied must reside on direct access volumes.

The format of the COPY VOLUME statement is:
,':' tlabeJ]'pOpy:w-VOLiJ)iE,~-dE!vlce';-$eiiaJ ,:t:!':--~:C::'''''V;:0,"':~:~\';~~:~:;;~-f7~'':~:::C'Y::'~c;;,
, ' :,' ,T~' =devic~ ~ Jist, '

[.PASSvvOIlPJ:::
,,:c;'~A!LGll:;,~ .";:'!:':,, "

"; " Y<:[jriQDD: ... ~ ,dd.~me],:~ I,·.:,~;·"";·'
, ';':>': , i::'~I," t~,ijNLOA.D ,,;,,""
where: _~~_~~;~h~~~~'~J~~;_~~~k~~~~"~_~~~~',~_~.,~~~

VOLUME = device = serial
specifies the device type and volume serial number of the source volume.

TO = device = list
specifies the volume or volumes to which the data sets are to be copied.

IEHMOVE Program 245

INCLUDE Statement

EXCLUDE Statement

246 Utilities (Release 21.7)

PASSWORD
specifies that password-protected data sets are to be included in the operation. If
PASSWORD is omitted, only data sets that are not protected are copied.

CATLG
specifies that all copied data sets are to be cataloged in a SYSCTLG (system
catalog) data set on the direct access receiving volume. If a catalog does not exist
on the receiving volume, it is created.

TODD = ddname
specifies the name of a DD statement from which DCB and LABEL information are
obtained. This parameter, which is valid for data sets to be copied to magnetic tape
volumes, describes the mode and label of the receiving magnetic tape volume. If
RECFM, BLKSIZE, and LRECL were specified, they are ignored. TODD can be
omitted for 800 bits per inch, 9-track tapes with standard labels on single-density
drives or for 1600 bits per inch, 9-track tape with standard labels on dual-density
drives.

UNLOAD
specifies that the data set is to be unloaded to the receiving volume(s).

If CATLG is specified and the source volume contains a SYSCTLG data set, error
messages indicating that an inconsistent index structure exists are issued when the
source SYSCTLG data set entries are merged into the catalog on the receiving volume.
(Because the SYSCTLG data set is the last to be copied, only those entries
representing cataloged data sets not residing on the source volume are copied into a
receiving volume's SYSCTLG data set; entries representing all data sets residing on
the source volume have already been made in the receiving SYSCTLG data set.)

The INCLUDE statement is used to enlarge the scope of MOVE DSGROUP, COPY
DSGROUP, MOVE PDS, or COPY PDS statements by including a member or a data set
not explicitly defined in those statements. The INCLUDE statement follows the MOVE
or COpy statement whose function it modifies. Any number of INCLUDE statements
can modify a MOVE or COpy statement. The INCLUDE statement is invalid when data
is unloaded or when unloaded data is moved or copied.

The format of the INCLUDE statement is:

DSNAME = name
specifies the fully-qualified name of a data set. When the INCLUDE statement
modifies a MOVE DSGROUP or COpy DSGROUP statement, the named data set is
included in the group. When the INCLUDE statement modifies a MOVE PDS or
COPY PDS statement, either the entire named partitioned data set or a member of
the data set is included in the operation.

MEMBER = membername
specifies the name of a member of the partitioned data set named in the DSNAME
parameter. This member is merged with the partitioned data set that is moved or
copied. Its record characteristics must be the same as those of the data set with
which it it being merged. The data set containing this member is not scratched,
regardless of the operation. This parameter is valid and required only when the
INCLUDE statement modifies a MOVE PDS or COPY PDS statement.

FROM = device = list
specifies the volume or volumes on which the data set resides, if the data set is not
cataloged. If the data set is cataloged, FROM need not be specified. If both FROM
and CVOL are omitted, the specified data set is assumed to be cataloged on the
system residence volume. '

CVOL = device = serial
specifies the device type and volume serial number of the volume on which the
catalog search for the data set is to begin. If both FROM and CVOL are omitted, the
specified data set is assumed to be cataloged on the system residence volume.

The EXCLUDE statement is used to restrict the scope of MOVE DSGROUP, COPY
DSGROUP, MOVE PDS, COPY PDS, MOVE CATALOG, or COPY CATALOG statements
by excluding a specific portion of data defined in those statements.

SELECT Statement

REPLACE Statement

Partitioned data set members excluded from a MOVE PDS operation cannot be
recovered (the source data set is scratched). Any number of EXCLUDE statements can
modify a MOVE PDS or COPY PDS statement.

Source data sets or catalog entries excluded from a MOVE DSGROUP or MOVE
CATALOG operation remain available. Only one EXCLUDE statement can modify a
MOVE DSGROUP, COPY DSGROUP, MOVE CATALOG, or COPY CATALOG statement.
The EXCLUDE statement is invalid when data is unloaded or when unloaded data is
moved or copied.

The format of the EXCLUDE statement is:

[label] EXCLUDE {DSGROUP = name }
{MEMBER = membername}

".

where:

DSGROUP = name
specifies a qualified name. If the EXCLUDE statement modifies a MOVE DSGROUP
or COPY DSGROUP statement, all data sets whose names are qualified by this
name are excluded from the operation. If the EXCLUDE statement modifies a
MOVE CATALOG or COPY CATALOG statement, all catalog entries whose names
are qualified by this name are excluded from the operation.

MEMBER = membername
identifies a member to be excluded from the partitioned data set being moved or
copied when the EXCLUDE statement modifies a MOVE PDS or COPY PDS
statement.

The SELECT statement is used with the MOVE PDS or COPY PDS statement to select
members to be moved or copied, and to optionally rename these members. The
SELECT statement cannot be used with either the EXCLUDE or REPLACE statement to
modify the same MOVE PDS or COPY PDS statement. The SELECT statement is invalid
when data is unloaded or when unloaded data is moved or copied.

The format of the SELECT statement is:

[label] SELECT {MEMBER = (name[,name;~.) }
{.~E.MBER = ~.~~~T,~!~~~~~T~)J,(n,~T:!~:~~~T.~? j., . '), J "',

where:

MEMBER = (name[,name] ...)
identifies the members to be moved or copied. These members belong to the
partitioned data set identified in the preceding MOVE PDS or COPY PDS statement.

MEMBER = «name,newname(,,(name,newname)] ...)
identifies the members to be moved or copied and gives the new name for each
member.

The REPLACE statement is used with a MOVE PDS or COPY PDS statement to exclude
a member from the operation and replace it with a member from another partitioned
data set. The new member must have the same name as the old member and must
possess identical record characteristics. Any number of REPLACE statements can
modify a MOVE PDS or COPY PDS statement. The REPLACE statement is invalid when
data is unloaded or when unloaded data is moved or copied.

The format of the REPLACE statement is:

,[label] REPLACE DSNAME = name
,MEMBER = name
[,FROM = device = serial]

L.c_" ,(,~y~!:,~ ~~e,~!:~,~~~~~,~!~/]
where:

DSNAME = name
specifies the fully-qualified name of the partitioned data set that contains the new
member.

MEMBER = name
specifies the name of the member.

FROM = device = serial
specifies the device type and volume serial number of the volume that contains the
partitioned data set named in the DSNAME parameter. If the partitioned data set is
cataloged, FROM need not be specified.

IEHMOVE Program 247

•

IEHMOVE Examples

248 Utilities (Release 21.7)

CVOL = device = serial
specifies the device type and volume serial number of the control volume on which
the catalog search for the partitioned data set containing the new member is to
begin.

If neither FROM nor CVOL is specified, the partitioned data set is assumed to be
cataloged on the system residence volume.

The following examples illustrate some of the uses of IEHMOVE. Table 52 can be used
as a quick reference guide to IEHMOVE examples. The numbers in the "Example"
column point to the examples that follow.

Table 52. IEHMOVE Example Directory

Data Set
Operation Organization Device Comments Example

MOVE Sequential 3330 Disk, Source volume is demounted after
2314 Disks job completion. Two mountable

disks.

COpy Sequential 2314 Disk, Three cataloged sequential data
3330 Disk, sets are to be copied. The 2314
2314 or or 2319 are mountable.
2319 Disks1 2

MOVE Data set group 2311 Disk, Data set group is to be moved. The
2301 Drum, 2314 disks are mountable.
2314 Disk 3

MOVE PDS Partitioned 3330 Disk, A partitio,:,!ed data set is to be
2311 Disk moved; a member from another
2314 Disks PDS is to be merged with it. 4

MOVE and Catalog 2314 Disk, Catalog is to be moved from
CATALOG 3330 Disk, system residence volume to second

2311 Disk volume. Source catalog is scratched
from system residence volume. 5

MOVE Catalog 3330 Disk, Selected catalog entries are to be
2314 Disk moved from system residence to

a second volume. SYSCTLG is
scratched. 6

MOVE Volume 3330 Disk, Volume of data sets is to be moved.
2314 Disks 7

MOVE Partitioned 2301 Drum, A data set is to be moved to a
2314 Disks volume on which space was

previously allocated. 8

MOVE Partitioned 3330 Disk, Three data sets are to be moved
2311 Disk, and unloaded to a volume on which
2314 Disk space was previously allocated. 9

MOVE Sequential 2311 Disk, A sequential data set is to be
2314 Disk, unloaded to an unlabeled 9-track
2400 Tape tape volume. 10

MOVE Sequential 3330 Disk, Unloaded data sets are to be
2314 Disk, loaded from a single volume.
2400 Tape 11

COPY Sequential 2314 Disk, Data sets are to be copied from
2311 Disk, separate source volumes.
2400 Tape 12

COpy Partitioned 2400 Tape, Unloaded data sets are to be
2314 Disks loaded from unlabeled tape to a

specific device. 13

1 Note that the 2319 disk is functionally equivalent to the 2314 disk; to use the 2319, specify 2314
in the control statement.

IEHMOVE Example 1

IEHMOVE Example 2

In this example, three data sets (SEQSETl, SEQSET2, and SEQSET3) are to be moved
from a disk volume to three separate disk volumes. Each of the three receiving
volumes is mounted when it is required by IEHMOVE. The source data sets are not
cataloged. Space is allocated by IEHMOVE.

The example follows:

IIMOVEDS JOB 09#550,GREEN
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=3330,VOLUME=SER=333000,DISP=OLD
IIDD1 DD UNIT=2314,VOLUME=SER=111111,DISP=OLD
IIDD2 DD UNIT=(2314"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231400))
IIDD3 DD VOLUME=(PRIVATE,RETAIN,SER=(231411)),
II UNIT=2314,DISP=OLD
IISYSIN DD *

MOVE DSNAME=SEQSET1,TO=2314=231400,FROM=2314=231411
MOVE DSNAME=SEQSET2,TO=2314=231412,FROM=2314=231411
MOVE DSNAME=SEQSET3,TO=2314=231413,FROM=2314=231411

1*
The control statements are discussed below:

• SYSUT1 DO defines the device that is to contain the work data set.

• DO 1 DO defines the system residence device.

• 002 DO defines the mountable device on which the receiving volumes will be
mounted as they are required.

• 003 DO defines a mountable device on which the source volume is to be mounted.
Because the RETAIN subparameter is included, the volume remains mounted until
the job has completed.

• SYSIN DO defines the control data set, which follows in the input stream.

• MOVE moves the source data sets to volumes 231400, 231412, and 231413,
respectively. The source data sets are scratched. .

In this example, three cataloged data sets are to be copied to a 2314 or 2319 volume.
Note that the 2319 is functionally equivalent to the 2314; to use a 2319, specify
2314 in the control statement. Space is allocated by IEHMOVE. The catalog.is not
updated. The source data sets a~e not scratched.

The example follows:

IICOPYPDS JOB
II EXEC
IISYSPRINT DD
IISYSUT1 DD
IIDD1 DD
IIDD2 DD
IIDD3 DD
IISYSIN DD

1*

COPY
COpy
COpy

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=2314,VOLUME=SER=231400,DISP=OLD
UNIT=3330,VOLUME=SER=111111,DISP=OLD
UNIT=2314,VOLUME=SER=231400,DISP=OLD
UNIT=2314,VOLUME=SER=231401,DISP=OLD
* DSNAME=SEQSET1,TO=2314=231401
DSNAME=SEQSET3,TO=2314=231401
DSNAME=SEQSET4,TO=2314=231401

The control statements are discussed below:

• SYSUT1 DD defines the device that is to contain the work data set.

• DO 1 DO defines the system residence device.

• 002 DO defines a mountable device on which the source volume is mounted.

• 003 DO defines a mountable device on which the receiving volume is mounted.

• SYSIN DD defines the control data set which follows in the input stream.

• COpy copies the source data sets onto volume 231401.

Note: This example implies that the cataloged source data sets all exist on a 2314
volume. If the data sets existed on a volume or volumes other than a 2314, the
necessary DO statements would have to be included in this example to define the
applicable mountable device(s).

IEHMOVE Program 249

IEHMOVE Example 3

IEHMOVE Example 4

250 Utilities (Release 21.7)

In this example, the data set group A.B.C-which comprises data sets A.B.C.X,
A.B.C.Y, and A.B.C.Z-is moved from two 2314 volumes onto a third volume. Space is
allocated by IEHMOVE. The catalog is updated to refer to the receiving volume. The
source data sets are scratched.

The example follows:

//MOVEOSG JOB
/ / EXEC
//SYSPRINT 00
//SYSUT1 00
/ /001 00
//002 DO
//003 00
//004 00
//SYSIN 00

MOVE
/*

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=2311,VOLUME=SER=231101,DISP=OLD
UNIT=2301,VOLUME=SER=111111,OISP=OLO
UNIT=2314,VOLUME=SER=231401,OISP=OLO
UNIT=2314,VOLUME=SER=231410,OISP=OLO
UNIT=2314,VOLUME=SER=231411,OISP=OLD
* OSGROUP=A.B.C,TO=2314=231401

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work data set.

• DDI DD defines the system residence device.

• DD2 DD defines a mountable device on which the receiving volume is to be
mounted.

• DD3 DD defines a mountable device on which one of the source volumes is to be
mounted.

• DD4 DD defines a mountable device on which one of the source volumes is to be
mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE moves the specified data sets to volume 231401.

Note: This example can be used to produce the same result without the use of the
DD4 DD statement, using one less mountable 2314 device. With DD3 and DD4, both
of the source volumes are mounted at the start of the job. With DD3 only, the 231410
volume is mounted at the start of the job. After the 231410 volume is processed, the
utility requests that the operator mount the 231411 volume. In this case the DD3
statement is coded:

/ /003 DO UNIT = (2314"DEFER),DISP = OLD,VOLUME = (PRIVATE"
/ / SER = (231410))

In this example, a partitioned data set (PARTSET1) is to be moved to a disk volume. In
addition, a member (PARMEM3) from another partitioned data set (PARTSET2) is to
be merged with the source members on the receiving volume. The source partitioned
data set (PARTSET1) is scratched. Space is allocated by IEHMOVE.

The example follows:

//MOVEPOS JOB 09#550,GREEN
// EXEC PGM=IEHMOVE
//SYSPRINT DO SYSOUT=A
//SYSUT1 00 UNIT=3330,VOLUME=SER=333000,OISP=OLO
//001 00 UNIT=2311,VOLUME=SER=111111,OISP=OLO
//D02 00 UNIT=2314,VOLUME=SER=231400,OISP=OLO
//003 DO UNIT=2314,VOLUME=SER=231410,OISP=OLO
//004 00 UNIT=2314,VOLUME=SER=231420,OISP=OLO
//SYSIN DO *

MOVE POS=PARTSET1,TO=2314=231420,FROM=2314=231400
INCLUDE OSNAME=PARTSET2,MEMBER=PARMEM3,FROM=2314=231410

/*
The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work data set.

• DD 1 DD defines the system residence device.

• The DD2, DD3, and DD4 DD statements define mountable devices that are to
contain the two source volumes and the receiving volume.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE defines the source partitioned data set, the volume that contains it, and its
receiving volume.

• INCLUDE includes a member from a second partitioned data set in the operation.

IEHMOVE Example 5

IEHMOVE Example 6

IEHMOVE Example 7 .

In this example, the SYSCTLG data set is to be moved from the system residence
volume to a mountable 2311 volume. Space is allocated by IEHMOVE. The source
catalog is scratched from the system residence volume.

The example follows:

IIMOVECATl JOB
II EXEC
IISYSPRINT DD
IISYSUTl DD
IIDDl DD
IIDD2 DD
IISYSIN DD

MOVE
1*

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=2314,VOLUME=SER=231400,DISP=OLD
UNIT=3330,VOLUME=SER=111111,DISP=OLD
UNIT=2311,VOLUME=SER=222222,DISP=OLD
*
CATALOG,TO=2311=222222

The control statements are discussed below:

o SYSUT1 DD defines the device that is to contain the work data set.

• DD1 DD defines the system residence device. The system residence volume
contains the catalog to be moved.

• D02 DO defines the mountable device on which the receiving volume is to be
mounted.

• SYSIN DO defines the control data set, which follows in the input stream.

• MOVE specifies the move operation and defines the receiving volume.

In this example, the data set group A.B.C-which comprises data sets entries A.B.C.X,
A.B.C.Y, and A.B.C.Z-is to be moved from the SYSCTLG data set to a mountable
2314 volume. If no catalog exists on the 2314 volume, one is created; if a catalog
does exist, the specified entries are merged into it. The source SYSCTLG data set is
scratched. The work data set is deleted when the job step is completed.

The example follows:

IIMOVECAT2 JOB
II EXEC
IISYSPRINT DD
IISYSUTl DD
IIDDl DD
IIDD2 DD
IISYSIN DD

MOVE
1*

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=2314,VOLUME=SER=231402,DISP=OLD
UNIT=3330,VOLUME=SER=111111,DISP=OLD
UNIT=2314,VOLUME=SER=231402,DISP=OLD

* CATALOG=A.B.C,TO=2314=231402

The control statements are discussed below:

• SYSUT1 OD defines the device that is to contain the work data set. (Because
IEHMOVE deletes the work data set at the completion of the program, it can be
contained on the receiving volume, provided there is room for it.)

• DOl DO defines the system residence device. The system residence volume
contains the entries to be moved.

• D02 DO defines the mountable device on which the receiving volume is to be
mounted.

• SYSIN 00 defines the control data set, which follows in the input stream.

• MOVE specifies a move operation for selected entries and defines the receiving
volume.

In this example, a volume of data sets is to be moved to a 2314 volume. All data sets
that are successfully moved are scratched from the source volume; however, any
catalog entries pertaining to those data sets are not changed. Space is allocated by
IEHMOVE. The work data set is deleted when the job step is completed.

The example follows:

IIMOVEVOL JOB
II EXEC
IISYSPRINT DD
IISYSUTl DD
IIDDl DD
IIDD2 DD
IIDD3 DD
IISYSIN DD

MOVE
1*

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=2314,VOLUME=SER=231400,DISP=OLD
UNIT=3330,VOLUME=SER=111111,DISP=OLD
UNIT=2314,VOLUME=SER=231400,DISP=OLD
UNIT=2314,VOLUME=SER=231401,DISP=OLD

* VOLUME=2314=231401,TO=2314=231400,PASSWORD

IEHMOVE Program 251

IEHMOVE Example 8

252 Utilities (Release 21. 7)

The control statements are discussed below:

• SYSUTI DO defines the device that is to contain the work'data set. The work data
set is removed from the receiving volume when the job step is completed.

• DOl DO defines the system residence device.

• 002 DO defines the mountable device on which the receiving volume is to be
mounted.

• 003 DO defines a mountable device on which the source volume is to be mounted.

• SYSIN DO defines the control ,data set, which follows in the input stream.

• MOVE specifies a move operation for a volume of data sets and defines the source
and receiving volumes. This statement also indicates that password-protected data
sets are to be included in the operation.

Note: IEHPROGM can be used to uncatalog catalog entries pertaining to source data
sets and to catalog the moved versions of those data sets.

In this example, a partitioned data set is to be moved to a 2314 volume on which
space has been previously allocated for the data set. The source data set is
scratched. The work data set is deleted when the job step is completed.

The example follows:

IIALLOCATE JOB 09#550,GREEN
II EXEC PGM=IEHPROGM
IISYSPRINT DO SYSOUT=A
IISET1 DO OSNAME=POSSET1,UNIT=2314,DISP=(NEW,KEEP),
II VOLUME=SER=231401,SPACE=(TRK,(100,10,10)),
IIOCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
IISYSIN DO *
1*
II
IISYSPRINT
IISYSUT1
11001
11002
11003
IISYSIN

EXEC
DO
DO
DO
DO
DO
DO

MOVE
1*

PGM=IEHMOVE
SYSOUT=A
UNIT=2314,VOLUME=SER=231401,OISP=OLO
UNIT=2301,VOLUME=SER=111111,OISP=OLD
UNIT=2314,VOLUME=SER=231401,OISP=OLO
UNIT=2314,VOLUME=SER=231402,OISP=OLO

* POS=PDSSET1,TO=2314=231401,FROM=2314=231402

The IEHPROGM job step is used to allocate space for data set PDSSETI on a 2314
volume.

The control statements are discussed below:

• SYSUTI DO defines the device that is to contain the work data set. The data set is
removed from the receiving volume at the completion of the program.

• DOl DO defines the system residence device.

• 002 DO defines the device on which the receiving volume is to be mounted.

• DD3 DO defines a mountable device on which the source volume is to be mounted.

• SYSIN DO defines the control data set, which follows in the input stream.

• MOVE specifies a move operation for the partitioned data set PDSSETI and defines
the source and receiving volumes.

IEHMOVE Example 9 In this example, three partitioned data sets are to be moved from three separate
source volumes to a 2311 volume. The source data set PDSSET3 is unloaded. (The
record size exceeds the track capacity of the receiving volume.) The work data set is
deleted when the job step is completed.

The example follows:

IIALLOCATE JOB 09#550,GREEN
II EXEC PGM=IEHPROGM
IISYSPRINT DO SYSOUT=A
IISETl DO DSNAME=PDSSET1,UNIT=2311,DISP=(NEW,KEEP),
II VOLUME=SER=231101,SPACE=(TRK,(100,10,5)),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=1600)
IISET2 DO DSNAME=PDSSET2,UNIT=2311,DISP=(NEW,KEEP),
II VOLUME=SER=231101,SPACE=(TRK,(50,5,5)),
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
IISET3 DO DSNAME=PDSSET3,UNIT=2311,DISP=(NEW,KEEP),
II VOLUME=SER=231101,SPACE=(TRK,(50,5)),
II DCB=(RECFM=U,BLKSIZE=5000)
IISYSIN DO *
1*
II EXEC PGM=IEHMOVE
IISYSPRINT DO SYSOUT=A
IISYSUT1 DO UNIT=2311,VOLUME=SER=231101,DISP=OLD
11001 DO UNIT=3330,VOLUME=SER=111111,DISP=OLD
IIDD2 DO UNIT=(2314"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231400))
IIDD3 DO UNIT=2311,VOLUME=SER=231101,DISP=OLD
IISYSIN DO *

MOVE PDS=PDSSET1,TO=2311=231101,FROM=2314=231400
MOVE PDS=PDSSET2,TO=2311=231101,FROM=2314=231401
MOVE PDS=PDSSET3,TO=2311=231101,FROM=2314=231402

1*
The IEHPROGM job step is used to allocate space for the partitioned data sets
PDSSET1, PDSSET2, and PDSSET3 on the receiving volume. The SPACE parameter in
the SET3 DO statement allocates space for a sequential data set. This is necessary to
successfully unload the partitioned data set PDSSET3. The DCB attributes of PDSSET3
are:

DCB = (RECFM = U,BLKSIZE = 5000)

The unloaded attributes are:

DCB = (RECFM = FB,LRECL = 80,BLKSIZE = 800)

The control statements are discussed below:

• SYSUTI DO defines the device that is to contain the work data set.

• 001 DO defines the system residence device.

• 002 DO defines a mountable device on which the source volumes are mounted as
they are required.

• 003 DO defines a mountable device on which the receiving volume is mounted.

• SYSIN DO defines the control data set, which follows in the input stream.

• MOVE specifies move operations for the partitioned data sets and defines the
source and receiving volumes.

Note: For a discussion on estimating space allocations, refer to as Data Management
Services Guide, GC26-3746.

IEHMOVE Program 253

IEHMOVE Example 10

IEHMOVE Example 11

" ,

254 Utilities (Release 21.7)

In this example, a sequential data set is to be unloaded onto a 9-track, unlabeled tape
volume (800 bits per inch). The work data set resides on the source volume and is
deleted when the job step is com"pleted.

The example follows:

IIUNLOAD JOB 09#550,GREEN
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=2314,VOLUME=SER=231400,DISP=OLD
IIDD1 DD UNIT=2311,VOLUME=SER=111111,DISP=OLD
IIDD2 DD UNIT=2314,VOLUME=SER=231400,DISP=OLD
IITAPEOUT DD UNIT=2400,VOLUME=SER=SCRTCH,DISP=OLD,
II DCB=(DEN=2),LABEL=(,NL)
IISYSIN DD *

MOVE DSNAME=SEQSET1,TO=2400=SCRTCH, 22C
FROM=2314=231400,TODD=TAPEOUT

1*
The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work data set.

• DDI DD defines the system residence device.

• DD2 DD defines a mountable device on which the source volume is mounted.

• TAPEOUT DD defines a mountable device on which the receiving tape volume is
mounted. This statement also provides label and mode information.

• SYSIN DD defines the control data set which follows in the input stream.

• MOVE moves the sequential data set SEQSETI from a 2314 volume to the
receiving tape volume. The data set is unloaded. The TODD parameter in this
statement refers to the T APEOUT DD statement for label and mode information.

In this example, three unloaded sequential data sets are to be loaded from a labeled,
7 -track tape volume (556 bits per inch) to a 2314 volume. Space is allocated by
IEHMOVE. The example assumes that the 2314 volume is capable of supporting the
data sets in their original forms.

The example follows:

IILOAD JOB 09#550,GREEN
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=2314,VOLUME=SER=231400,DISP=OLD
IIDD1 DD UNIT=3330,VOLUME=SER=111111,DISP=OLD
IIDD2 DD UNIT=2314,VOLUME=SER=231400,DISP=OLD
IITAPESETS DD DSNAME=UNLDSET1,UNIT=2400,VOLUME=SER=001234,
II DISP=OLD,LABEL=(1,SL),DCB=(DEN=1,TRTCH=C)
IISYSIN DD *

MOVE DSNAME=UNLDSET1,TO=2314=231400, 22C
FROM=2400-2=(001234,1),FROMDD=TAPESETS

MOVE DSNAME=UNLDSET2,TO=2314=231400, 22C
FROM=2400=(001234,2),FROMDD=TAPESETS

MOVE DSNAME=UNLDSET3,TO=2314=231400, 22C
FROM=2400=(001234,3),FROMDD=TAPESETS

1*
The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work data set.

• DDI DD defines the system residence device.

• DD2 DD defines a mountable device on which the receiving volume is mounted.

• TAPESETS DD defines a mountable device on which the source volume is mounted.
DeB information is provided in this statement.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE moves the unloaded data sets to the receiving volume.

Note: To move a data set from a tape volume that contains more than one data set,
you must specify the sequence number of the data set in the list field of the FROM or
TO parameter on the utility control statement.

IEHMOVE Example 12

IEHMOVE Example 13

In this example, two sequential data sets are to be copied from separate source
volumes to a 2314 volume. Space'is allocated by IEHMOVE. Only one 9-track tape
drive is available for the operation.

The example follows:

IIDEFER JOB 09#550,GREEN
II EXEC PGM=IEHMOVE
IISYSPRINT DO SYSOUT=A
IISYSUT1 DO UNIT=2314,VOLUME=SER=231400,DISP=OLD
11001 DO UNIT=2311,VOLUME=SER=111111,DISP=OLD
11002 DO UNIT=2314,VOLUME=SER=231400,DISP=OLD
IITAPE1 DO DSNAME=SEQSET1,UNIT=2400,DISP=OLD,
II LABEL=(,SL),VOLUME=SER=01234,DCB=(DEN=2)
IITAPE2 DO DSNAME=SEQSET9,UNIT=AFF=TAPE1,DISP=OLD,
II LABEL=(4,SL),VOLUME=SER=01235,DCB=(DEN=2)
IISYSIN DO *

COPY DSNAME=SEQSET1,TO=2314=231400, UC
FROM=2400=(001234,2),FROMDD=TAPE1

COpy DSNAME=SEQSET9,TO=2314=231400, Uc
FROM=2400=(001235,4),FROMDD=TAPE2

1*
The control statements are discussed below:

• SYSUTI OD defines the volume that is to contain the work data set.

• DDI DD defines the system residence device.

• 002 DO defines a mountable device on which the receiving volume is mounted.

• TAPEI DO defines a mountable device on which the first volume to be processed is
mounted. The source data set is the second data set on the volume, as specified in
the utility control statement.

• TAPE2 DO defines a mountable device on which the second volume to be
processed is mounted when it is required. The source data set is the fourth data set
on the volume, as specified in the utility control statement.

• SYSIN DO defines the control data set, which follows in the input stream.

• COPY copies the data sets to the receiving volume.

Note: To copy a data set from a tape volume that contains more than one data set,
you must specify the sequence number of the data set in the list field of the fROM or
TO parameter on the utility control statement.

In this example, three unloaded partitioned data sets residing on an unlabeled tape
volume mounted on device 282 are copied to a 2314 volume mounted on device 191.

The example follows:

IILOAD JOB MEDDAUGH,PS40300439,MSGLEVEL=1
II EXEC PGM=IEHMOVE
IISYSPRINT DO SYSOUT=A
IISYSABEND DO SYSOUT=A
IISYSUT1 DD UNIT=191,VOLUME=SER=231400,DISP=OLD
IIDD1 DO UNIT=191,VOLUME=SER=231400,DISP=OLD
IITAPE1 DO UNIT=282,VOLUME=SER=NLTAPE,DISP=OLD,
1/ LABEL=(,NL),DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
IISYSIN DO *

COpy PDS=DSET1iFROM=282=(NLTAPE,1),TO=191=231400,FROMDD=TAPE1
COPY PDS=DSET2,FROM=282=(NLTAPE,2),TO=191=231400,FROMDD=TAPE1
COPY PDS=DSET3,FROM=282=(NLTAPE,3),TO=191=231400,FROMDD=TAPE1

1*
The control statements are discussed below:

• SYSUTI DO defines the work data set.

• TAPEI DD defines the source data sets. They are, in the order in which they reside
on the volume, DSET1, DSET2, and DSET3.

• DDI DO defines the receiving volume.

• SYSIN DO defines the control data set, which follows in the input stream.

• COPY copies the unloaded partitioned data sets from the unlabeled tape to the
receiving volume.

IEHMOVE Program 255

IEHMOVE Example 14

256 Utilities (Release 21.7)

Note: To copy data sets from a non labeled tape, you must place a label in the list field
of the FROM parameter of the utility control statement. Following this label, the
sequence numbers of the data sets must also be included in the same field. The unit
address must appear in the device field of the FROM or TO parameter whenever you
want to move from or c'opy to a specific device.

In this example, a BDAM data set on two 2314 volumes is copied to a 3330 disk
storage device and is renamed. Space is allocated by IEHMOVE.

The example follows:

//COPYBDAM JOB 09#550,GREEN
// EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=~
//SYSUT1 DD UNIT=3330,VOL=SER=333001,DISP=OLD
//DD1 DD UNIT=2314,VOL=SER=111111,DISP=OLD
//DD2 DD UNIT=(2314,2),VOL=SER=(231401,231402),DISP=OLD
//DD3 DD UNIT=3330,VOL=SER=333001,DISP=OLD
//SYSIN DD *

COPY FROM=2314=(231401,231402),TO=3330=333001, nc
DSNAME=TWOVOL.BDAM,RENAME=ONEVOL.BDAM

/*
The control statements are discussed below:

• SYSUTl DD defines the work data set.

• DDl DD defines the system residence device on which the source volumes reside.

• DD2 DD defines the two mountable volumes to be copied. Both volumes must be
mounted in parallel.

• DD3 DD defines the receiving volume.

• SYSIN DD defines !he control data set, which follows in the input stream.

• COpy copies the data set to the receiving volume and renames it.

IEHPROGM Program

Scratching a Data Set
or Member

Renaming a Data Set
or Member

Cataloging or Uncataloging
a Data Set

IEHPROGM is a system utility used to modify system control data and to maintain data
sets at an organizational level. (See "Introduction" for general system utility
information.)

IEHPROGM can be used to:

• Scratch a data set or a member.

• Rename a data set or a member.

• Catalog or uncatalog a data set.

• Build or delete an index or an index alias.

• Connect or release two volumes.

• Build and maintain a generation index.

• Maintain data set passwords.

At the completion or termination of the program, the highest return code encountered
within the program is passed to the calling program.

IEHPROGM can be used to scratch the following from a direct access volume or
volumes:

• Sequential, indexed sequential, partitioned, or direct access data sets.

• Members of a partitioned data set.

• Password-protected data sets.

• Data sets named by the operating system.

A data set is considered scratched when its data set control block is removed from
the volume table of contents (VTOC) of the volume on which it resides; its space is
made available for re-allocation.

The space occupied by a data set residing on a device that operates in split-cylinder
mode is not available for re-allocation until all data sets sharing the cylinder have
been scratched.

A member is considered scratched when its name is removed from the directory of the
partitioned data set that contains it. The space occupied by a scratched member is
not available for re-allocation until the partitioned data set is scratched, or the data
set is compressed in place. (When scratching a member of a partitioned data set, all
aliases of that member should also be removed from the directory.)

IEHPROGM can be used to rename a data set or member that resides on a
direct access volume. In addition, the program can be used to change any member
aliases.

IEHPROGM can be used to catalog or uncatalog a sequential, indexed sequential,
partitioned, or BDAM data set.

A data set is cataloged when its fully-qualified name and volume identification are
entered in one or more index levels of the SYSCTLG data set. The program catalogs a
data set by generating an entry, containing the data set name and associated volume
information, in the index of the catalog. If higher level indexes are necessary to
catalog the data set, they are automatically created.

The catalog function is used to: (1) catalog a data set that was not cataloged when it
was created or (2) satisfy, if necessary, the requirement that a higher level index or
indexes be created. Figure 54 shows how data set A.F.G is cataloged on the system
residence volume. Note that the level F index does not exist in the SYSCTLG data set
before the catalog operation.

IEHPROGM uncatalogs a data set by removing the data set name and associated
volume information from the lowest level index of the catalog.

The uncatalog function of the program differs from a DISP = (. .. ,UNCATLG)
specification in a DD statement in that the DISP = (... ,UNCATLG) specification cannot
remove an entry from the SYSCTLG data set on a volume other than the system
residence volume unless the two volumes are properly connected.

IEHPROGM Program 257

258 Utilities (Release 21.7)

System residence
before cataloging A.F.G.

System residence
after cataloging A.F.G.

Figure 54. Cataloging a Data Set Using IEHPROGM

Figure 55 shows how data set A.F.G is uncataloged by the program. Prior to the
operation, the fully qualified name and associated volume information are represented
in the catalog. The uncatalog operation removes the lowest level entry from the index
structure. Note that the structure A.F remains in the catalog.

System residence- System residence-
prior to uncataloging A.F.G. after uncata'oging A.F .G.

Figure 55. Uncataloging a Data Set Using IEHPROGM

IEHPROGM can be used to build a new index in the catalog or to delete an existing
index. In building an index, the program automatically creates as many higher level
indexes as are necessary to complete the specified structure.

IEHPROGM can be used to delete one or more indexes from an index structure;
however, an index cannot be deleted if it contains any entries. That is, it cannot be
deleted if it refers to a lower level index or if it is part of a structure indicating the
fully-qualified name of a cataloged data set.

Figure 56 shows an index structure before and after a build operation. The left-hand
portion of the figure shows two cataloged data sets, A.Y.YV and A.B.X.XX, before the
build operation. The right-hand portion of the figure shows the index structure after
the build operation, which was used to build index A.B.C.D.E. Note in the left-hand
portion of the figure that index levels C and D do not exist before the build operation.
These levels are automatically created when the level E index is built.

Note that when the level E index is subsequently deleted, the level C and D indexes
are not automatically deleted by the program. To delete these index levels, delete:
A.B.C.D.E, A.B.C.D, and A.B.C, in that order. The level B index cannot be deleted
because data set A.B.X.XX and the X level index are dependent upon the level B index.

A

B

x
yy

xx

Before build operation After build operation

Figure 56. Index Structure Before and After an IEHPROGM Build Operation

IEHPROGM can be used to assign an alternative name (alias) to the highest level
index of a catalog or to delete an alias previously assigned. An alias cannot, however,'
be assigned to the highest level of a generation index.

Figure 57 shows an alias, XX, that is assigned to index A (a high level index). The
cataloged data set A.B.C can be referred to as either A',B.C or XX.B.C.

Figure 57. Building an Index Alias Using IEHPROGM

IEHPROGM can be used to connect a volume to a second volume by placing an entry
(that contains an index name and the volume serial number and device type of the
second volume) into a high level index on the first volume. The program can
subsequently release the volumes by removing the entry from the high level index. If
two volumes are connected:

• The catalog (SVSCTLG data set) can be extended to a second volume, if necessary.

• Normal JCL can be used to process (retrieve, uncatalog, etc.) data sets cataloged
on the second volume (assuming that the first volume is the system residence
volume).

If the SVSCTLG data set is extended to a second volume, it must be identified on that
volume.

Figure 58 shows how the system residence volume can be connected to a second
volume. Any subsequent index search for index X on the system residence volume is
carried to the second volume.

Note: The index name of each high level index existing on the second volume must be
present in the first volume; when a new high level index is placed on a second volume,
the second volume should be connected to the first volume.

Figure 59 shows three volumes connected to the system residence volume. All
volumes are accessible (through high level indexes X, V, and Z) to the operating
system.

IEHPROGM Program 259

Building and Maintaining a
Generation Index

260 Utilities (Release 21.7)

System residence volume Connected volume

Figure 58. Connecting a Volume to a Second Volume Using IEHPROGM

System residence System residence

or

Figure 59. Connecting Three Volumes Using IEHPROGM

IEHPROGM can be used to build an index structure for a generation data group and
to control the action to be taken if the index overflows.

The lowest level index in the structure can contain up to 255 entries for successive
generations of a data set. If the index overflows, the oldest entry is removed from the
index, unless otherwise specified (in which case all entries are removed). If desired,
the program can be used to scratch all generation data sets whose entries are
removed from the index.

Figure 60 shows the index structure created for generation data group A.B.C. In this
example, provision is made for up to five subsequent entries in the lowest level index.

Figure 60. Building a Generation Index Using IEHPROGM

Note: Before a generation data group can be cataloged as such, a generation index
must exist. Otherwise, a generation data set is cataloged as an individual data set,
rather than as a generation.

Maintaining Data Set
Passwords

When creating and cataloging a generation data set, the user can provide necessary
DCB information. See "Providing DCB Attributes" in "Appendix 0: Generation Data
Groups" for a discussion of how DCB attributes are provided for a generation data
group.

IEHPROGM can be used to maintain password entries in the PASSWORD data set and
to alter the protection status of direct access data sets in the data set control block
(DSCB). For a complete description of data set passwords and the PASSWORD data
set as Data Management for System Programmers, GC28-6550.

A data set can have one of three types of password protection, as indicated in the
DSCB for direct access data sets and in the tape label for tape data sets (see as
System Control Blocks, GC28-6628, for a description of the DSCB and tape label). The
possible types of data set password protection are:

• No protection, which means that no passwords are required to read or write the
data set.

• Read/write protection, which means that a password is required to read or write
the data set.

• Read-without-password protection, which means that a password is required only
to write the data set; the data set can be read without a password.

Note: If a system data set is password protected and a problem occurs on a system
data set, maintenance personnel must be provided with the password in order to
access the data set and resolve the problem.

A data set can have one or more passwords assigned to it; each password has an
entry in the PASSWORD data set. A password assigned to a data set can allow read
and write access or only read access to the data set.

Figure 61 shows the relationship between the protection status of data set ABC and
the type of access allowed by the passwords assigned to the data set. Passwords
ABLE and BAKER are assigned to data set ABC. If no password protection is set in the
DSCB or tape label, data set ABC can be read or written without a password. If
read/write protection is set in the OSCB or tape label, data set ABC can be read with
either password ABLE or BAKER and can be written with password ABLE. If
read-without-password protection is set in the DSCB or tape label, data set ABC can
be read without a password and can be written with password ABLE; password BAKER
is never needed.

Protection status of data
set ABC-contained in
its DSCB or tape label The kind of protection pointed

at allows data set ABC to be:
No
password
protection

Read or written on with
•..... ,.~.- .•. , no password

Read/Write
protection

System
residence
volume

Figure 61. Relationship Between the Protection Status of a Data Set and Its
Passwords

Before IEHPROGM is used to maintain data set passwords, the PASSWORD data set
must reside on the system residence volume. IEHPROGM can then be used to:

• Add an entry to the PASSWORD data set.

• Replace an entry in the PASSWORD data set.

• Delete an entry from the PASSWORD data set.

• Provide a list of information from an entry in the PASSWORD data set.

Each entry in the PASSWORD data set contains the name of the protected data set,
the password, the protection mode of the password, an access counter, and 77 bytes
of optional user data. The protection mode of the password defines the type of access

IEHPROGM Program 261

Adding Data Set Passwords

Replacing Data Set Passwords

Deleting Data Set Passwords

262 Utilities (Release 21.7)

allowed by the password and whether the password is a control password or
secondary password. Control and secondary passwords are discussed under /I Adding
Data Set Passwords" below.

For direct access data sets, IEHPROGM updates the protection status in the DSCB
when a control password entry is added, replaced, or deleted. This permits setting and
resetting the protection status of an existing direct access data set at the same time
its passwords are added, replaced, or deleted. IEHPROGM automatically alters the
protection status of a data set in the DSCB if the following conditions are met:

• The control password for the data set is being added, replaced, or deleted. (The
control password for a data set is the initial password entry in the PASSWORD data
set for that data set name.)

• The data set is on line.

• The volume on which the data set resides is specified on the utility control
statement, or the data set is cataloged.

• The data set is not allocated within the IEHPROGM job.

For tape data sets, IEHPROGM cannot update the protection status in the tape label
when a password entry is added, replaced, or deleted. Protection status in a tape label
must be set via job control language.

Passwords to be added, replaced, deleted, or listed can be specified on utility control
statements or can be entered by the console operator. IEHPROGM issues a message
to the console operator when a password on a utility control statement is either
missing or invalid. The message contains the job name, step name, and utility control
statement name and identifies the particular password that is missing or invalid. Two
invalid passwords are allowed per password entry on each utility control statement
before the request is ignored; a total of five invalid passwords is allowed for the
password entries on all the utility control statements in a job step before the step is
canceled.

When a password is added for a data set, an entry is created in the PASSWORD data
set with the specified data set name, password name, protection mode of the
password (read/write or read-only), and the optional 77 characters of user-supplied
data. The access counter in the entry is set to zero.

If this is the first password added to the PASSWORD data set for a data set, the
password is marked in the entry as the control password for that data set. The second
and subsequent passwords added for the same data set are marked as secondary
passwords. The control password for a data set must always be specified to add,
replace, or delete secondary passwords. The control password should not be
specified, however, to list information from a secondary password entry.

Secondary passwords can be assigned to a data set to restrict some users to reading
the data set or to record the number of times certain users access the data set. The
access counter in each password entry provides a count of the number of times the
password was used to successfully open the data set.

If a control password for a direct access, online data set is added, the protection
status of the data set (read/write or read-without-password) is set in the DSCB.
However, the data set to be protected must not be allocated within the same job as
the one in which IEHPROGM is executed. If it is allocated, the DSCB cannot be
accessed and the protection status is not set. If the data set to be protected is being
created within the same job, use job control language to set the protection status in
the DSCB.

Any of the following information may be replaced in a password entry: the password,
protection mode (read/write or read-only) of the password, and the 77 characters of
user data. The access counter of the password entry is set to zero when any
information in the entry is replaced. The protection status of a data set can be
changed by replacing the control entry for the data set.

If the control entry of a direct access, online data set is replaced, the DSCB is also
reset to indicate any change in the protection status of the data set. Therefore, the
user should ensure that the volume is on line when changing the protection status of a
direct access data set.

When a control password entry is deleted from the PASSWORD data set, all secondary
password entries for that data set are also deleted. However, when a secondary entry
is deleted, no other password entries are deleted.

If the control password entry is deleted for an online, direct access data set, the
protection status of the data set in the DSCB is also changed to indicate no

Listing Password Entries

Input and Output

Control

protection. When deleting a control password for a direct access data set, the user
should ensure that the volume is on line. If the volume is not on line, the password
entry is removed, but data set protection is still indicated in the DSCB; the data set
cannot be accessed unless another password is added for that data set.

If the control password entry is deleted for a tape data set, the user must change the
protection status in the tape label to indicate no protection; otherwise, the data set
cannot be accessed. The tape label may be changed using the IEHINITT utility
program.

The delete function should be used to delete all the password entries for a scratched
data set to make the space available for new entries.

A list of information from any entry in the PASSWORD data set can be obtained in the
SYSPRINT data set by providing the password for that entry. The list includes: the
number of times the password has been used to successfully open the data set; the
type of password (control password or secondary password) and type of access
allowed by the password (read/write or read-only); and the user data in the entry.
Figure 62 shows a sample list of information printed from a password entry.

DECIMAL ACCESS COUNT= 000025
PROTECT MODE BYTE= SECONDARY, READ ONLY
USER DATA FIELD= ASSIGNED TO J. BROWN

Figure 62. Listing of a Password Entry

IEHPROGM uses as input a control data set that contains utility control statements
used to control the functions of the program and to indicate those data sets or
volumes that are to be modified.

IEHPROGM produces as output a modified object data set or volume(s) and a
message data set, which contains any error messages and information from the
PASSWORD data set.

IEHPROGM provides a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that a syntax error was found in the name field of the control
statement or in the PARM field in the EXEC statement. Processing is continued.

• 08, which indicates that a request for a specific operation was ignored because of
an invalid control statement or an otherwise invalid request. The operation is not
performed.

• 12, which indicates that an input/output error was detected when trying to read
from or write to SYSPRINT, SYSIN or the VTOC.

• 16, which indicates an unrecoverable error. The job step is terminated.

IEHPROGM is controlled by job control statements and utility control statements.

Job control statements are used to:

• Execute or invoke the program.

• Define the control data set.

• Define volumes and/or devices to be used during the course of program execution.

• Prevent data sets from being deleted inadvertently.

• Prevent volumes from being demounted before they have been completely
processed by the program.

• Suppress listing of utility control statements.

Utility control statements are used to control the functions of the program and to
define those data sets or volumes that are to be modified.

IEHPROGM Program 263

Job Control Statements

Restrictions

264 Utilities (Release 21.7)

Table 53 shows the job control statements necessary for using IEHPROGM.

Table 53. IEHPROGM Job Control Statements

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM = IEHPROGM) or, if the job control statements
reside in a procedure library, the procedure name. Additional PARM information
can be specified to control the line density on the output listing and to suppress
printing of utility control statements. See "PARM Information on the EXEC
Statement" below.

SYSPRINT DO Defines a sequential message data set.

anyname 1 DO Defines a permanently mounted volume. (The system residence volume is
considered to be a permanently mounted volume.)

anyname2 DO Defines a mountable device type.

SYSIN DO Defines the control data set. The control data set normally follows the job control
statements in the input stream; however, it can be defined as a member of a
procedure library.

The minimum region size that can be specified for the execution of IEHPROGM is 44K.

The anynamel DD statement can be entered:

/ /anynamel DO UNIT = xxxx,VOLUME = SER = xxxxxx,DISP = OLD

The UNIT and VOLUME parameters define the device type and volume serial number.
The DISP = OLD specification prevents the inadvertent deletion of a data set. The
anynamel DD statement is arbitrarily assigned the ddname DDI in the IEHPROGM
examples.

The anyname2 DD statement can be coded in the following ways:

/ /anyname2 DO VOLUME = SER = xxxxxx,UNIT = xxxx,DISP = OLD

/ /anyname2 DO VOLUME = (PRIVATE,SER = xxxxxx),
/ / UNIT = (xxxx"DEFER),DISP = OLD

The second example can be used to specify deferred mounting when a large number
of magnetic tapes or direct access volumes are to be processed in one application of
the program. The anyname2 DD statement is arbitrarily assigned the ddname DD2 in
the IEHPROGM examples. DD statements defining additional mountable devices are
assigned names DD3, DD4, etc.

Refer to "Appendix C: DD Statements for Defining Mountable Devices" for
instructions on defining mountable volumes.

• The block size for the SYSPRINT (message) data set must be a multiple of 121.
The block size for the SYSIN (control) data set must be a multiple of 80. Any
blocking factor can be specified for these block sizes.

• With the exception of the SYSIN and SYSPRINT DD statements, all DD statements
in Table 53 are used as device allocation statements, rather than as true data
definition statements. Because IEHPROGM modifies the internal control blocks
created by device allocation DD statements, these statements must not include the
DSNAME parameter. (All data sets are defined explicitly or implicitly by utility
control statements.)

• One anyname 1 DD statement must be included for each permanently mounted
volume referred to in the job step.

• One anyname2 DD statement must be included for each mountable device to be
used in the job step.

• When IEHPROGM is dynamically invoked in a job step containing a program other
than IEHPROGM, the DD statements defining mountable devices for IEHPROGM
must be included in the job stream prior to DD statements defining data sets
required by the other program.

• For MVT applications, DD statements defining mountable devices must appear in
the same order in the input stream as the utility control statements that refer to
volumes mounted on those devices.

When VOL = device = list specifies multiple volumes, no more than 50 volumes
may be specified.

PARM Information on
the EXEC Statement

Utility Control Statements

SCRATCH Statement

Additional information can be specified in the PARM parameter of the EXEC
statement to control line density on the output listing and to suppress printing of utility
control statements. The EXEC statement can be coded:

/ /EXEC PGM = IEHPROGM[,PARM = 'UNECNT = xx, {.EE!.t:!! } ']
{NOPRINT }

The L1NECNT parameter specifies the number of lines per page in the listing of the
SYSPRINT data set; xx is a 2-digit number, from 01 through 99. If L1NECNT is
omitted, or if an error is encountered in the LlNECNT subparameter, the number of
lines per page will be 45.

The PRINT value specifies that the utility control statements are to be written to the
SYSPRINT data set. If neither PRINT nor NOPRINT is coded, PRINT is assumed.

The NOPRINT value specifies that utility control statements are not to be written to
the SYSPRINT data set. Suppressing printing of utility control statements assures that
passwords assigned to data sets remain confidential. However, suppressing printing
may make it difficult to interpret error messages because the relevant utility. control
statement is not printed before the message.

IEHPROGM is controlled by the following utility control statements:

• SCRATCH statement, which is used to scratch a data set or a member from a direct
access volume.

• RENAME statement, which is used to change the true name or alias of a data set or
member residing on a direct access volume.

• CATLG statement, which is ,used to generate an entry in the index of a catalog.

• UNCATLG statement, which is used to remove an entry from the lowest level index
of the catalog.

• BLDX statement, which is used to create a new index in the catalog.

• DL TX statement, which is used to remove a low level index from the catalog.

• BLDA statement, which is used to assign an alias to an index at the highest level of
the catalog.

• DL TA statement, which is used to deiete an alias previously assigned to an index at
the highest level of the catalog.

• CONNECT statement, which is used to place an entry into an index at the highest
level of the catalog.

• RELEASE statement, which is used to remove an entry from the high level index of
a volume.

• BLDG statement, which is used to build an index for a generation data group and to
establish the action to be taken should the index overflow.

• ADD statement, which is used to add a password entry in the PASSWORD data set.

• REPLACE statement, which is used to replace information in a password entry.

• DELETEP statement, which is used to delete an entry in the PASSWORD data set.

• LIST statement, which is used to format and print information from a password
entry.

The SCRATCH statement is used to scratch a data set or member from a direct
access volume. A data set or member is scratched only from the volumes designated
in the SCRATCH statement. This function does not uncatalog scratched data sets.

The format of the SCRATCH statement is:

[/abe/]SCRATCH {DSNAME = name}
{VTOC }
,VOL = device = list
[,PURGE] .
[~MEMBER = name]

, ," ;.w;,;I~~X~]
where:

DSNAME = name
specifies the fully-qualified name of either the data set to be scratched or the
partitioned data set that contains the member to be scratched.

IEHPROGM Program 265

•

RENAME Statement

CAT LG Statement

266 Utilities (Release 21.7)

VToe
specifies that all data sets on the specified volume, except those protected by a
password or those whose expiration dates have not expired, are to be scratched.
Password-protected data sets are scratched if the correct password is provided.
The effect of VTOe is modified when it is used with PURGE or SYS.

VOL = device = list
specifies the volume or volumes that contain the data set or sets to be scratched. If
VTOe is specified, VOL cannot specify more than one volume. Caution should be
used when specifying VTOe if VOL specifies the system residence volume.

PURGE
specifies that each data set specified by DSNAME or VTOe be scratched, even'if its
expiration date has not elapsed. If PURGE is omitted, the specified data sets are
scratched only if their expiration dates have elapsed.

MEMBER = name
specifies a member name or alias of a member to be removed from the directory of
a partitioned data set. If MEMBER is omitted, the entire data set or volume of data
sets is scratched.

SYS
specifies that data sets that are to be scratched have names that begin with
"AAAAAAAA.AAAAAAAA.AAAAAAAA.AAAAAAAA." or IISYSnnnnn.T and F or V in
position 19. These are names assigned to data sets by the operating system. This
parameter is valid only when VTOe is specified.

If the name of the data set to be scratched begins with SYS, nnnn is the date and F or
V in position 19 represents MFT or MVT.

When executing a SCRATCH operation, care should be taken to ensure that the data
set or volume is not being used by a program executing concurrently.

The RENAME statement is used to change the true name or alias of a data set or
member residing on a direct access volume. The name is changed only on the
designated volume(s). The rename operation does not update the catalog.

The format of the RENAME statement is:

[labe/iRENAME~"" DS'NAME:"~;;;~"

DSNAME = name

,VOl=device= list
,··.,NEWNAME~==.·name
[,MEMBER = name]

specifies the fully-qualified name of the data set to be renamed or specifies the
data set that contains the member to be renamed.

VOL = device = list
specifies the volume or volumes that contain the data set or member whose name
is to be changed. If MEMBER is specified, VOL cannot specify more than one
volume.

NEWNAME = name
specifies the new fully-qualified name for the data set, or the new member or alias.

MEMBER = name
specifies the member name or alias for a member (in the named data set) that is to
be renamed. If MEMBER is omitted, the specified data set name is changed.

The CATLG statement is used to generate an entry in the index of a catalog. If
additional levels of indexes are required in the catalog, this function automatically
creates them. When cataloging generation data sets, refer to ··BLDG (Build Generation
Index) Statement" for the action to betaken when the index is full.

The format of the CATLG statement is:

~""'[I~~ii~CATl.(i'DSN·AME·= nam~"·
t· ,VOl.~dev{ce"=lisL .
f.:. [.eVOL~device·~ seria/l
;h~re:' ., :.~.: ... ; . . : .. ,,,,C .. , : .•. ,.,

DSNAME = name
specifies the fully-qualified name of the data set to be cataloged. The qualified
name must not exceed 44 characters, including delimiters.

UNCATLG Statement

BLDX (Build Index)
Statement

DLTX (Delete Index)
Statement

VOL = device = list
specifies the volume or volumes that contain the data set to be cataloged. For
either a sequential data set or an indexed sequential data set, the volume serial
numbers must appear in the same order in which they were originally encountered
(in DO statements within the input stream) when the data set was created. All serial
numbers specified in VOL must represent the same device type.

CVOL = device = serial
specifies the device type and volume serial number of the control volume on which
the catalog search for the index is to begin. If CVOL is omitted, the system
residence volume is assumed. If the volumes are connected at the highest level of
the index and the control volume is mounted, CVOL need not be specified.

Note: When device is represented by a group name (for example, SYSDA) instead of a
generic name (for example, 2314 or 2400) in the VOL parameter, the catalog
operation does not enter the device type code in the system catalog. Instead, it places
a unique entry in the device type field of the catalog. The allocation of the device for
this entry may not be satisfactory to the user. The generic name should be used if the
group name was generated for one or more device types. When the system is
subsequently generated, this entry may no longer be valid; that is, all such group
name entries should be uncataloged and then recataloged after a subsequent
generation of the system.

When cataloging data sets residing on tape, specify the data set sequence number
and the volume serial number, as follows:'

VOL = device = ({serial,seqno} , ...)

If a data set is created on a 9-track dual-density tape drive (2400-4), the data set
can be cataloged with a device specification of 2400 for an 800 bits per inch tape or
2400-3 for a 1600 bits per inch tape. If a device specification of 2400-4 is made
when the data set is cataloged, any subsequent retrieval of that data set is made on a
dual-density drive.

The UNCATLG statement is used to remove an entry from the lowest level index of the
catalog. This function does not delete higher level indexes from the index structure.

The format of the UNCATLG statement is:

~p~}]~~~~t:~fqf~~;~:f~'3~~~j!~~
where:

DSNAM E = name
specifies the fully-qualified name of the data set to be uncataloged.

CVOL = device = serial
specifies the device type and volume serial number of the control volume at which
the search for the catalog entry is to begin. If CVOL is omitted, the system
residence volume is assumed. If catalogs are properly connected at the highest
level of the index and the control volume is mounted, CVOL need not be specified.

The BLOX statement is used to create a new index in the catalog. If the creation
of an index requires that higher level indexes be created, this function automatically
creates them.

The format of the BLDX statement is:

INDEX = name
specifies the qualified name of the index to be created. The qualified name must •
not exceed 44 characters, including delimiters.

, CVOL = device = serial
specifies the device type and volume serial number of the control volume on which
the search for the index is to begin. If CVOL is omitted, the system residence
volume is assumed.

The DL TX statement is used to remove an index from the catalog. Only an index that
has no entries can be removed.

The format of the DL TX statement is:

IEHPROGM Program 267

BLDA (Build Index
Alias) Statement

DLTA (Delete Index
Alias) Statement

CONNECT Statement

268 Utilities (Release 21.7)

where:

INDEX = name
specifies the qualified name of the index to be deleted.

CVOL = device = serial
specifies the device type and volume serial number of the control volume on which
the search for the index is to begin. If CVOL is omitted, the system residence
volume is assumed.

Because this function does not delete higher level indexes, it must be used repetitively
to delete an entire structure. For example, to delete index structure A.B.C, delete
index A.B.C, index A.B, and index A.

The BLDA statement is used to assign an alias to an index at the highest level of the
catalog.

The format of the BLDA statement is:

INDEX = name
specifies the unqualified index to which an alias name is to be assigned.

ALIAS = name
specifies an unqualified name to be assigned as the alias.

CVOL = device = serial
specifies the device type and volume serial number of the control volume on which
the catalog entry is'to be made. If CVOL is omitted, the system residence volume is
assumed.

The DL TA statement is used to delete an alias previously assigned to an index at the
highest level of the catalog.

The format of the DL TA statement is:

ALIAS = name
specifies the unqualified index alias to be deleted.

CVOL = device = serial
specifies the device type and volume serial number of the control volume
containing the catalog entry to be deleted. If CVOL is omitted, the system residence
volume is assumed.

The CONNECT statement is used to place an entry in the high level index of the
catalog. The entry identifies a second volume by its device type and volume serial
number. In addition, it contains an index name identifying the index to be searched for
(during subsequent index searches) on the second volume.

Note: This function does not create an index on the second volume.

The format of the CONNECT statement is:

INDEX = name
specifies the index name to be entered in the high level index on the first volume.

VOL = device = serial
specifies the device type and volume serial number of the second volume. This
information is placed in the high level index on the first volume.

CVOL = device = serial
specifies the device type and serial number of the first volume. If CVOL is omitted,
the system residence volume is assumed to be the first volume.

RELEASE (Disconnect)
Statement

BLDG (Build Generation
Index) Statement

ADD (Add a Password)
Statement

The CONNECT statement does not create a SYSCTLG data set on the connected
volume. Before cataloging the first data set on a connected volume, the user must
define a SYSCTLG data set on that volume. This can be done with the following DO
statement:

/ /ddname DD DSNAME = SYSCTLG,UNIT = xxxx,DISP = (,KEEP),
/ / SPACE = (CYL, l),VOLUME = SER = xxxxxx

If a job requires an auxiliary control volume to complete a catalog search, the user
need not have the auxiliary control volume mounted before the job is begun. (The user
does not have to remember the volume on which a particular data set is cataloged.)
The system directs the operator to mount an auxiliary control volume if it is needed.
However, the auxiliary control volume must be connected to the system residence
volume by means of the CONNECT verb, as modified for Release 17. If an auxiliary
control volume was connected before Release 17, release the auxiliary control volume
for all high level indexes on the system residence volume that point to that volume,
and then use the current CONNECT verb to reconnect the auxiliary control volume
with the system residence volume.

The RELEASE statement is used to remove an entry from the high level index of a
volume. This effectively disconnects a second volume from the first volume. The
RELEASE statement does not delete an index from the second volume.

The format of the RELEASE statement is:

[label] RELEASE INDEX ==. name

b.~".,"" •• ",_,hh'H J,CVOL == device == seri~q 0 ••

where:

INDEX == name
specifies the index name to be removed from the high level index of the first
volume.

CVOL == device == serial
specifies the device type and volume serial number of the first volume. If CVOL is
omitted, the system residence volume is assumed to be first volume.

The BLDG statement is used to build an index for a generation data group, and to
establish the action to be taken should the index overflow.

The format of the BLDG statement is:

where:

INDEX = name
specifies the 1- to 35-character name of the generation index.

ENTRIES = n
specifies the number of entries to be contained in the generation index; n must not
exceed 255.

CVOL = device = serial
specifies the device type and volume serial number of the volume on which the
catalog search for the index is to begin. If CVOL is omitted, the system residence
volume is assumed.

EMPTY
specifies that all entries be removed from the generation index when it overflows. •
This effectively uncatalogs all of the generation data sets. If EMPTY is omitted, the
entries with the largest generation numbers will be maintained in the catalog when
the generation index overflows.

DELETE
specifies that generation data sets are to be scratched after their entries are
removed from the index. If DELETE is omitted, the data sets are not scratched.

The ADD statement is used to add a password entry in the PASSWORD data set.
When the control entry for a direct access, online data set is added, the indicated
protection status is set in the DSCB; when a secondary entry is added, the protection
status in the DSCB is not changed.

IEHPROGM Program 269

REPLACE (Rep/ace a
Password) Statement

270 Utilities (Release 21. 7)

The format of the AOO statement is:
r'~"--:~-"~-'~ "-'''''~~-'''~ ''''''''''w""" • "',' .:": ~""',"" ~~".'"

i'''< (label], ADD , DSNAME == name' " '
1'" (,PA5,WORD2 == new-password] ,,'

k. r:" ' [~CPAS"V0RD ~ ~ontro/-p~ssword]
l<,':";, [,TYPE==, code]

[:':\ , [~V()L ~device. =: list]
I'",:::'",:;", [~D~TA ~'user-c1ata']
~h'~'re~:"~··"'~' '.. "" .,,," ,,', ""'" ,,', ,"

DSNAME = name
specifies the fully-qualified name of the data set to which the password is to be
assigned.

PASWORD2 = new-password
specifies the password to be added. The password can consist of one- to
eight-alphameric characters. If PASWORD2 is omitted, the operator is prompted for
a new password.

CPASWORD = control-password
specifies the control password for the data set. The control password must be
specified unless this is the first password assigned to the data set.

TYPE = code
specifies the protection code of the password and, if a control password is being
assigned to a direct access, online data set, specifies the protection status of the
data set. If this parameter is omitted, the new password is assigned the same
protection code as the control password for the data set. If a control password is
being added, TYPE = 3 is the default. The values that can be specified for code are:

1

2

3

specifies that the password is to allow both read and write access to the data
set; if a control password is being assigned, read/write protection is set in the
DSCB.

specifies that the password is to allow only read access to the data set; if a
control password is being assigned, read/write protection is set in the OSCB.

specifies that the password is to allow both read and write access to the data
set; if a control password is being assigned, read-without-password protection
is set in the OSCB.

VOL = device = list
specifies the direct access volume or volumes that contain the data set to be
protected. If omitted, the protection status of the data set is not set in the OSCB,'
unless the data set is cataloged. This parameter is not necessary for secondary
password entries or if the desired protection status is already set in the OSCB.

DATA = ·user-data'
specifies that user datc! is to be included in the password entry. The user data must
be in single quotes and must not exceed 77 characters.

The REPLACE statement is used to replace any or all of the following information in
a password entry: the password name, protection mode (read/write or read-only) of
the password, and user data. When the control entry for a direct access, online data
set is replaced, the protection status of the data set is changed in the OSCB if
necessary; when a secondary entry is replaced, the protection status in the OSCB is
not changed.

The format of the REPLACE statement is:

DELETEP (Delete a
Password) Statement

where:

DSNAME = name
specifies the fully-qualified name of the data set whose password entry is to be
changed.

PASWORDI = current-password
specifies the current password in the entry to be changed. If PASWORDI is
omitted, the operator is prompted for the current password.

PASWORD2 = new-password
specifies the new password to be assigned to the entry. If the password is not to be
changed, the current password must also be specified as the new password. The
password can consist of one- to eight-alphameric characters. If PASWORD2 is
omitted, the operator is prompted for a new password.

CPASWORD = control-password
specifies the control password for the data set whose entry is to be changed. The
control password must be specified unless the control entry is being changed. If the
control entry is to be changed, the control password must be specified as
PASWORDl.

TYPE = code
specifies the protection code of the password and, if a control password entry is to
be changed for a direct access, online data set, specifies the protection status of
the data set. If this parameter is omitted, the protection is not changed. The values
that can be specified for code are:

1
specifies that the password is to allow both read and write access to the data
set; if a control password is being changed, read/write protection is set in the
OSeB.

2
specifies that the password is to allow only read access to the data set; if a
control password is being changed, read/write protection is set in the OSeB.

3
specifies that the password is to allow both read and write access to the data
set; if a control password is being changed, read-without-password protection is
set in the OSeB.

VOL = device = list
specifies the direct access volume or volumes that contain the data set whose
protection status is to be changed. If omitted, the protection status of the data set
is not changed in the OSeB, unless the data set is cataloged. This parameter is not
necessary for secondary password entries or if the protection status of the data set
is not to be changed.

DATA = 'user-data'
specifies that user data is to be included in the password entry. The user data must
be in single quotes and must not exceed 77 characters. If this parameter is
omitted, the user data is not changed.

The OELETEP statement is used to delete an entry in the PASSWORD data set. If
a control entry is deleted, all the secondary entries for that data set are also deleted.
If a secondary entry is deleted, only that entry is deleted. When the control entry for a
direct access, online data set is deleted, the protection status in the OSeB is set to
indicate that the data set is no longer protected.

The format of the OELETEP statement is:
C""'" "'::'~' "'''" "'" ""~,,

j,.'[laQell DELETEP[)~NAfJlE =\,n~me "" '" .,:'
1 ,0, '[,P~SWORPl:=: current~pass,wo~d]: •
i' I,CPASWORD= control.:.password] ,

where:
",r;YOL = devi~,e=,/{~t] ,

DSNAME = name
specifies the fully-qualified name of the data set whose password is to be deleted.

PASWORDI = current-password
specifies the password to be deleted.

IEHPROGM Program 271

LIST (List Information
from a Password) Statement

IEHPROGM Examples

272 Utilities (Release 21.7)

CPASWORD = control-password
specifies the control password for the data set whose password is to be deleted.
The control password must be specified unless the control password is to be
deleted. If the control password is to be deleted, the control password must be
specified as PASWORDl.

VOL = device = list
specifies the direct access volume or volumes that contain the data set whose
password is to be deleted. If omitted, the protection status of the data set is not
changed in the osca, unless the data set is cataloged. This parameter is not
necessary if a secondary password is to be deleted.

The LIST statement is used to format and print information from a password
entry.

The format of the LIST statement is:

DSNAME = name
specifies the fully-qualified name of the data set whose password entry is to be
listed.

PASWORDI = current-password
specifies the password in the entry to be listed.

The following examples illustrate some of the uses of IEHPROGM. Table 54 can be
used as a quick reference guide to IEHPROGM examples. The numbers in the
"Example" column point to the examples that follow.

Table 54. IEHPROGM Example Directory

Operation

SCRATCH

SCRATCH
UNCATLG,
and DLTX

RENAME,
UNCATLG,
DLTX, and
CATLG

UNCATLG
and DLTX

CONNECT
and CATLG

BLDG

BLDG and
CATLG

RELEASE and
CONNECT

RENAME,
DELETEP,
and ADD

LIST and
REPLACE

RENAME

Mountable
Volumes

2314 Disk

2314 Disk

2314 Disks

2314 Disk

2314 Disk

None

None

None

2314 Disk

2314 Disk

2314 Disk

Comments

VTOC is to be scratched.

Two data sets are to be scratched and
uncataloged. An index structure is to be deleted
from SYSCTLG.

A data set is to be renamed on two mountable
devices; the old data set name and index
structure are to be removed from the catalog. The
data set is cataloged under its new name. Object
data set resides on two mountable devices

Three data sets are to be uncataloged; their
supporting index structures are to be deleted
from the catalog.

Connect system residence volume to a second
volume. Catalog data sets on second volume.
SYSCTLG was previously defined on the second
volume.

A generation index is to be built.

A generation index is to be built and
three data sets are to be cataloged.

Auxiliary control volume is released and
connected.

The object data set exists on one mountable
device.

The object data set exists on two mountable
devices.

Rename a member of a partitioned data set.

Example

2

3

4

5

6

7

8

9

10

11

IEHPROGM Example 1

IEHPROGM Example 2

IEHPROGM Example 3

Note: In the IEHPROGM examples, the EXEC statement and the SYSPRINT DO
statement can be replaced with the following job control statement:

/ / EXEC PROC = MOD

which invokes the following IBM-supplied cataloged procedure:

/ /MOD EXEC PGM = IEHPROGM,REGION = 44K
/ /DDSRV DO VOLUME = REF = SYS1.SVCLlB,DISP = OLD
/ /SYSPRINT DO SYSOUT = A

In the following example, data sets are to be scratched from the volume table of
contents of a mountable volume. Because the system residence volume is not referred
to, no DD 1 DO statement is necessary in the job stream.

The example follows:

IISCRVTOC JOB
II EXEC
IISYSPRINT DD
IIDD2 DD
IISYSIN DD

SCRATCH
1*

09#550, BROWN
PGM=IEHPROGM
SYSOUT=A
UNIT=2314,VOLUME=SER=231400,DISP=OLD

* VTOC,VOL=2314=231400

The SCRATCH statement, used in this example, indicates that all data sets (including
those beginning with AAAAAA.AAAAAA.AAAAAA.AAAAAA) whose expiration dates
have expired are to be scratched from the specified volume.

In this example, two data sets are to be scratched: SET1 is to be scratched on volume
231401, and A.B.C.D.E is to be scratched on volume 231402. Both data sets are to
be uncataloged, and index structure A.B.C.D is to be deleted from the SYSCTLG data
set. Because the system residence volume, which resides on a 3330 volume, is
referred to through use of the UNCATLG and DLTX statements, a DO statement is
included in the input stream.

The example follows:

IISCRDSETS JOB 09#550,BROWN
II EXEC PGM=IEHPROGM
IISYSPRINT DD
IIDD1 DD
IIDD2 DD

SYSOUT=A
UNIT=3330,VOLUME=SER=111111,DISP=OLD
UNIT=2314,DISP=OLD,VOLUME=SER=(231400)

IISYSIN DD *
DSN&~E=SET1,VOL=2314=231401 SCRATCH

UNCATLG
SCRATCH
UNCATLG

DSNAME=SET1
DSNAME=A.B.C.D.E,VOL=2314=231402
DSNAME=A.B.C.D.E

1*

DLTX
DLTX
DLTX
DLTX

INDEX=A,B.C.D
INDEX=A.B.C
INDEX=A.B
INDEX=A

In this example, the name of a data set is to be changed on two mountable volumes.
The old data set name and index structure are to be removed from the catalog and
the data set is to be cataloged under its new data set name.

The example follows:

IIRENAMEDS JOB 09#550,BROWN
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDD1 DD VOLUME=SER=111111,UNIT=3330,DISP=OLD
IIDD2 DD UNIT=(2314"DEFER),DISP=OLD,
II VOLUME=(PRIVATE,SER=(231400,231401))
I ISYSIN DD * •

RENAME DSNAME=A. B. C, NEWNAME=NEWSET , llC
VOL=2314=(231400,231401)

UNCATLG DSNAME=A.B.C
DLTX INDEX=A.B
DLTX INDEX=A

CATLG DSNAME=NEWSET,VOL=2314=(231400,231401)
1*

IEHPROGM Program 273

IEHPROGM Example 4

IEHPROGM Example 5

IEHPROGM Example 6

274 Utilities (Release 21.7)

In this example, three data sets-A.B.C.D.E.F.SET1, A.B.C.G.H.SET2, and
A.B.I.J.K.SET3-are to be uncataloged and their supporting index structures deleted
from the catalog. The system residence volume resides on a 2314 volume.

The example f<?"ows:

IIDLTSTRUC JOB
II EXEC
IISYSPRINT DD
IIDDl DD
IISYSIN DD

1*

UNCATLG
UNCATLG
UNCATLG

DLTX
DLTX
DLTX
DLTX
DLTX
DLTX
DLTX
DLTX
DLTX
DLTX
DLTX

09#550,BROWN
PGM=IEHPROGM
SYSOUT=A
UNIT=2314,VOLUME=SER=111111,DISP=OLD
* DSNAME=A.B.C.D.E.F.SETl
DSNAME=A.B.C.G.H.SET2
DSNAME=A.B.I.J.K.SET3
INDEX=A.B.I.J.K
INDEX=A.B.I.J
INDEX=A.B.I
INDEX=A.B.C.G.H
INDEX=A.B.C.G
INDEX=A.B.C.D.E.F
INDEX=A.B.C.D.E
INDEX=A.B.C.D
INDEX=A.B.C
INDEX=A.B
INDEX=A

In this example, the system residence volume, which resides on a 3330 volume, is to
be connected to a second volume. Any subsequent index search for index level X,V,
or Z will be carried to the second volume.

The example follows:

IICONNECT JOB 09#550,BROWN
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDDl DD UNIT=3330,VOLUME=SER=111111,DISP=OLD
I/DD2 DD UNIT=2314,VOLUME=SER=231400,DISP=OLD
IISYSIN DD, *

CONNECT INDEX=X,VOL=2314=231400
CONNECT INDEX=Y,VOL=2314=231400
CONNECT INDEX=Z,VOL=2314=231400

CATLG DSNAME=X.BB.CCC,VOL=2314=231401,CVOL=2314=231400
CATLG DSNAME=Y.BB.CC,VOL=2314=231401,CVOL=2314=231400
CATLG DSNAME=Z.BB.XT,VOL=2314=231401,CVOL=2314=231400

1*

The control statements are discussed below:

• The CONNECT statements identify the second volume. The specified index names,
along with the volume identification, are placed on the system residence volume .

• The CATLG statements catalog three data sets (X.BB.CCC, V.BB.CC, and Z.BB.XT)
on the second volume. Because the volumes are connected before the catalog
operations are performed, the CVOL parameters are not required in the CATLG
statements; they are included to bypass the index search on the system residence
volume.

In this example, a generation index is to be built in the catalog. The system residence
volume resides on a 3330 volume.

The example follows:

IIBLDGDGIX JOB
II EXEC
IISYSPRINT DD
IIDDl DD
IISYSIN DD

BLDG
1*

09#550,BROWN
PGM=IEHPROGM
SYSOUT=A
UNIT=3330,VOLUME=SER=111111,DISP=OLD
* INDEX=A.B.C,ENTRIES=10,EMPTY

The BLDG statement s'pecifies the generation data group A.B.C and makes provision
for ten entries in the index. All entries are to be removed from the index when it
overflows.

IEHPROGM Example 7

IEHPROGM Example 8

IEHPROGM Example 9

In this example, a generation index is to be built and three data sets are to be
cataloged in the index. The system residence volume resides on a 3330 volume.

The example follows:

IICTLGDG JOB
II EXEC
IISYSPRINT DD
IIDDl DD
IISYSIN DD

1*

BLDG
CATLG
CATLG
CATLG

09#550, BROWN
PGM=IEHPROGM
SYSOUT=A
UNIT=3330,VOLUME=SER=111111,DISP=OLD

* INDEX=A.B.C,ENTRIES=20,EMPTY
DSNAME=A.B.C.G0001VOO,VOL=2314=231400
DSNAME=A.B.C.G0002VOO,VOL=2314=231400
DSNAME=A.B.C.G0003VOO,VOL=2314=231400

Figure 63 shows the index structure after the three generation data sets are
cataloged.

t
B
t
C G0003VOO G0002VOO GOOO 1 VOO

(latest. (latest -1) (latest -2)
generation)

Figure 63. Index Structure After Generation Data Sets Are Cataloged

In this example, the RELEASE and CONNECT statements are used to disconnect the
control volume, 231400, from the system residence catalog for the high level index A
and to reconnect that same control volume for that index. This technique is necessary
only if the auxiliary control volume was connected before Release 17. The system
residence volume resides on a 2314 volume.

The example follows:

IIRECONCT JOB
II EXEC
IISYSPRINT DD
IIDD1 DD
IISYSIN DD

1*

RELEASE
CONNECT

09#550,BROWN
PGM=IEHPROGM
SYSOUT=A
UNIT=2314,VOLUME=SER=111111,DISP=OLD

* INDEX=A
INDEX=A,VOL=2314=231400

In this example, a data set is to be renamed. The data set passwords assigned to the
old data set name are to be deleted. Then two pa~swords are to be assigned to the
new data set name.

Note: If the data set is not cataloged, a message indicating that the LOCATE macro
instruction failed is issued. The return code is 8.

The example follows:

IIADDPASS JOB 09#550,BROWN
EXEC PGM=IEHPROGM,PARM='NOPRINT'

IISYSPRINT DD SYSOUT=A
IIDD1 DD VOLUME=(PRIVATE,SER=231400),DISP=OLD,
II UNIT=(2314"DEFER)
IISYSIN DD *

RENAME DSNAME=OLD,VOL=2314=231400,NEWNAME=NEW
DELETEP DSNAME=OLD,PASWORD1=KEY
ADD DSNAME=NEW,PASWORD2=KEY,TYPE=1,

DATA='SECONDARY IS READ'
ADD DSNAME=NEW,PASWORD2=READ,CPASWORD=KEY,TYPE=2,

DATA='ASSIGNED TO J. DOE'
1*
The control statements are discussed below:

llC

llC

• OELETEP specifies that the entry for the password KEY is to be deleted. Because
KEY is a control password in this example, all the password entries for the data set
name are deleted. The VOL parameter is not needed because the protection status
of the data set as set in the OSCB is not to be changed; read/write protection is
presently set in the OSCB, and read/write protection is desired when the
passwords are reassigned under the new data set name.

IEHPROGM Program 275

•

IEHPROGM Example 10

IEHPROGM Example 11

276 Utilities (Release 21.7)

• The ADD statements specify that entries are to be added for passwords KEY and
READ. KEY becomes the control password and allows both read and write access to
the data set. READ becomes a secondary password and allows only read access to
the data set. The VOL parameter is not needed, because the protection status of
the data set is still set in the DSCB.

Note: The operator is required to supply a password to rename the old data set.

In this example, information from a password entry is to be listed. Then the protection
mode of the password, the protection status of the data set, and the user data are to
be changed.

The example follows:

I/REPLPASS JOB 09#550,BROWN
EXEC PGM=IEHPROGM,PARM='NOPRINT'

I/SYSPRINT DD SYSOUT=A
IIDD1 DD UNIT=3330,VOLUME=SER=111111,DISP=OLD
I/DD2 DD VOLUME=(PRIVATE,SER=(231400,231401)),
II UNIT=(2314"DEFER),DISP=OLD
I/SYSIN DD *

LIST DSNAME=A.B.C,PASWORD1=ABLE
REPLACE DSNAME=A.B.C,PASWORD1=ABLE, ~C

PASWORD2=ABLE, TYPE=3, llC
VOL=2314=(231400,231401), llC
DATA='NO SECONDARIES; ASSIGNED TO DEPT 31'

1*
The control statements are discussed below:

• LIST specifies that the access counter, protection mode, and user data from the
entry for password ABLE are to be listed. Listing the entry permits the content of
the access counter to be recorded before the counter is reset to zero by the
REPLACE statement.

• REPLACE specifies that the protection mode of password ABLE is to be changed to
allow both read and write access and that the protection status of the data set is to
be changed to write-only protection. The VOL parameter is required because the
protection status of the data set is being changed and the data set, in this example,
is not cataloged. Because this is a control password, the CPASWORD parameter is
not required.

In this example, a member of a partitioned data set is to be renamed.

The example follows:

I/REN JOB 09#550,BROWN
1/ EXEC PGM=IEHPROGM
I/DD1 DD VOL=SER=231411,DISP=OLD,UNIT=2314
I/SYSIN DD *

RENAME VOL=2314=231411,DSNAME=DATASET,NEWNAME=BC,MEMBER=ABC
/*
The control statements are discussed below:

• DOl DO defines a permanently mounted volume.

• SYSIN DD defines the input data set, which immediately follows in the input stream.

• RENAME specifies that member ABC in the partitioned data set DATASET, which
resides on a 2314 volume, is to be renamed BC.

IFHSTATR Program

Input and Output

•
• VOLUME CPU MOD TIME

SERIAL .DATE ID NO OF DAY

• 001021 69/309 BB 40 15:55:07
001022 69/309 AA 40 15:56:02

• 000595 69/309 CC 50 15:56:20

Control

IFHSTATR is a system utility used to select, format, and write information from type
21 (error statistics by volume) records when System Management Facilities (SMF) has
been system generated into the system. (See "Introduction" for general system utility
information.)

Figure 64 shows the format of the type 21 record.

4 Bytes of Record Descriptor Word

0 System Record Type Time of Day
Indicator

4 Time of Day (continued) Current Date

8 Current Date (continued) System
Identification

12 System Identifier Length of rest of record
including this field

16 Volume Serial Number

20 Volume Serial No. (cont.) 22 ChannellUnit Address

24 UCB Type

28
Temporary Read Temporary Write Start lID's
Errors Errors

32 Permanent Read Permanent Write Noise Blocks Erase Gaps
Errors Errors

36 Erase Gaps Cleaner Actions Tape Density
(continued)

40 Block Size Reserved

Figure 64. Type 21 (ESV) Record Format

Error statistics by volume (ESV) records should be retrieved from the IFASMFDP tape
or from SYS1.MAN (on tape). ESV can also be retrieved directly from SYS1.MANX or
SYS1.MANY (on a direct access storage device); however, IFHSTATR does not clear
the SYS1.MANX (or SYS1.MANY) data set and make it available for additional
records.

IFHSTATR uses as input type 21 records, which contain information about errors on
magnetic tape. IFHSTATR processes only type 21 records; if none are found, a
message is written to the output data set.

IFHSTATR produces as output an output data set, which contains information selected
from type 21 records. The output takes the form of 121-byte unblocked records, with
an ASA control character in the first byte of each record.

Figure 65 shows a sample of printed output from IFHSTATR.

•
• CHANNEL TEMP TEMP PERM PERM NOISE ERASE CLEANER USAGE TAPE BLOCK

/ UNIT READ WRITE READ WRITE BLOCKS GAPS ACTIONS (SIO's) DENSITY LENGTH

181 1 0 0 10 0800 80 •
184 10 0 0 28 1600 121
283 0 10 10 28 0800 50 •

Figure 65. Sample Output from IFHSTATR

IFHSTATR is controlled by job control statements. Utility control statements are not
used.

IFHSTATR Program 277

•

Job Control Statements

IFHSTATR Example

278 Utilities (Release 21.7)

Table 55 shows the job control statements necessary for using IFHSTATR.

Table 55. IFHSTATR Job Control Statements

Statement

JOB

EXEC

SYSUTl DD

SYSUT2 DD

Use

Initiates the job.

Specifies the program name (PGM = IFHSTATR).

Defines the input data set and the device on which it resides. The DSNAME,
UNIT, VOLUME, LABEL, DCB, and DISP parameters should be included.

Defines the sequential data set on which the output is to be written.

The minimum region size that can be specified for the execution of IFHSTATR is 4K.

The output data set can reside on any output device supported by BSAM.

Note: The LRECL and BLKSIZE parameters are not specified by IFHSTATR. This
information is taken from the DCB parameter on the SYSUTl DO statement or from
the tape label.

This example shows the JCL needed to produce a report.

The example follows:

I I· JOB
II EXEC PGM=IFHSTATR
IISYSUTl DD UNIT=2400,DSNAME=SYS1.MAN,LABEL=(,SL),
II VOLUME=SER=VOLID,DISP=OLD
IISYSUT2 DD SYSOUT=A
1*

Appendix A: Exit Routine Linkage

Linking to an
Exit Routine

Label Processing
Routine Parameters

Utility programs can be linked to user-supplied exit routines for additional processing.

Linking to an exit routine from a utility program is accomplished in one of the
following ways:

• If the exit routine is for label processing or totaling, or if the exit routine is specified
in the IEBTCRIN program by OUTREC or ERROR, linkage is performed by the BALR
instruction.

• In all other cases, linkage is performed by using the LINK macro instruction.

The LINK macro instruction contains the symbolic name of the entry point of an exit
routine and, if required, a list of parameters.

For further information on the use of the LINK macro instruction, see as Supervisor
Services Guide, GC2S-6646, and as Supervisor & Data Management Macro
Instructions, GC2S-6647.

At the time of the linkage operation:

• General register 1 contains the starting address of the parameter list, or contains
zero to indicate end-of-file on the input data set for the IEBTCRIN OUTREC or
ERROR exits.

• General register 13 contains the address of the register save area. This save area
must not be used by user label processing routines or by the IEBGENER
input/output error exit routines. See "Appendix E: Processing User Labels."

• General register 14 contains the address of the return point in the utility program.

• General register 15 contains the address of the entry point to the exit routine.

Registers 1 through 14 must be restored before control is returned to the utility
program.

The exit routine must be contained in either the job library or the link library.

The parameter lists passed to label processing routines and parameter lists passed to
nonlabel processing routines are described in the topics that follow.

The parameters passed to a user's label processing routine are addresses of the
aD-byte label buffer, the DCB being processed, the status information if an
uncorrectable input/output error occurs, and the totaling area.

The SO-byte label buffer contains an image of the user label when an input label is
being processed. When an output label is being processed, the buffer contains no
significant information at entry to the user's label processing routine. When the utility
program has been requested to generate labels, the label processing routine
constructs a label in the label buffer.

If standard user labels (SUL) are specified on the DD statement for a data set, but the
data set has no user labels, the system still takes the specified exits to the
appropriate user's routine. In such a case, the user's input label processing routine is

. entered with the buffer address parameter set to zero.

The format and content of the DCB are presented in as Supervisor & Data
Management Macro Instructions, GC2S-6647.

Bit 0 of flag 1 in the DCB-address parameter is set to a value of 0 except when:

• Volume trailer or header labels are being processed at volume switch time.

• The trailer labels of a MOD data set are being processed (when the data set is
opened).

If an uncorrectable input/output error occurs while reading or writing a user label, the
appropriate label processing routine is entered with bit 0 of flag 2 in the status
information address parameter set on. The low order three bytes of this parameter
contain the address of standard status information as supplied for SYNAD routines.
(The SYNAD routine is not entered.)

Appendix A: Exit Routine Linkage 279

Nonlabel Processing
Routine Parameters

Returning from
an Exit Routine

280 Utilities (Release 21.7)

Table 56 shows the program from which exits can be taken to nonlabel processing
routines, the names of the exits, and the parameters available for each exit routine.

Table 56. Parameter Lists for Nonlabel Processing Exit Routines
Program Exit Parameters

IEBGENER KEY Address at which key is to be placed (record follows key);
address of DCB.

IEBDG

IEBCOMPR

IEBPTPCH

DATA Address of SYSUT1 record; address of DCB.
10ERROR Address of DECB; cause of the error and address of DCB

(address in lower order three bytes and cause of error in high
order byte).

OUTREC

ERROR
PRECOMP

INREC
OUTREC

Address of output record.

Address of DCB for SYSUT1; address of DCB for SYSUT2.1
Address of SYSUT1 record; length of SYSUT1 record, address of
SYSUT2 record; length of SYSUT2 record.

Address of input record; length of the input record.
Address of output record; length of output record.

IEBTCRIN ERROR Address of the error record; address of a full word which
contains the record length.

OUTREC Address of the normal record; address of a full word which
contains the record length.

1 The IOBAD pointer in the DCB points to a location that contains the address of the corresponding
data event control block (DECB) for these records. The format of the DECB is illustrated as part
of the BSAM READ macro instruction in OS Supervisor & Data Management Macro Instructions,
GC28-6647.

An exit routine returns control to the utility program by means of the macro instruction
in the exit routine.

The format of the RETURN macro instruction is:

(r 1,r2)
specifies the range of registers to be reloaded by the utility program from the
register save area. If this parameter is omitted, the registers are considered
properly restored by the exit routine.

RC=
specifies a return code in register 15. If RC is omitted, register 15 is loaded as
specified by (r 1 ,r2). These values can be coded:

n
specifies a return code to be placed in the 12 low-order bits of register 15.

15
specifies that general register 15 already contains a valid return code.

The user's label processing routine must return a code in register 15 as shown in
Table 57 unless:

• The buffer address was set to zero before entry to the label processing routine. In
this case, the system resumes normal processing regardless of the return code.

• The user's label processing routine was entered after an uncorrectable output error
occurred. In this case the system attempts to resume normal processing.

Table 57 shows the return codes that can be issued to utility programs by user exit
routines. Slightly different return codes are used for the UPDATE = INPLACE option of
the IEBUPDTE program. See the discussion of UPDATE = INPLACE in the chapter
ulEBUPDTE Program."

Table 57. Return Codes Issued by User Exit Routines

Type of Exit

Input Header or
Trailer Label

Output Header or
Trailer Label

Totaling Exits

All other exits
(except IEBTCRIN's
ERROR and OUTREC
and IEBPTPCH's
exit OUTREC) .

ERROR

I OUTREC (IEBTCRIN)

Return
Code

0

4

16

0

4

8

16

o
4

8

16

0-11
(Set to
next
multiple
of four)

12 or 16

o

4

8

16

o
4

16

OUTREC (IEBPTPCH) 4

12 or 16

Any other

Number

Action

The system resumes normal processing. If there are
more labels in the label group, they are ignored.

The next user label is read into the label buffer area and
control is returned to the user's routine. If there are no
more labels, normal processing is resumed.

The utility program is terminated on request of the user
routine.

The system resumes normal processing. No label is
No label is written from the label buffer area.

The user label is written from the label buffer area. The
system then resumes normal processing.

The user label is written from the label buffer area. If fewer
than eight labels have been created, the user's routine again
receives control so that it can create another user label. If
eight labels have been created, the system resumes normal
processing.

The utility program is terminated on request of the user
routine.

Processing continues, but no further exits are taken.

Normal operation continues.

Processing ceases, except for EOD processing on output
data set (user label processing).

Utility program is terminated.

Return code is compared to highest previous return code;
the higher is saved and the other discarded. At the normal
end of job, the highest return code is passed to the
calling processor.

Utility program is terminated and this return code is passed
to the calling processor.

Record is not placed in the error data set. Processing
continues with the next record.

Record is placed in the error data set (SYSUT3).

Record is not placed in error data set but is processed as a
valid record (sent to OUTREC and SYSUT2 if specified).
IEBTCRIN removes the EDW from an edited MTDI record
before processing continues.

Utility program is terminated.

Record is not placed in normal output data set.

Record is placed in normal output data set (SYSUT2).

Utility program is terminated.

Record is not placed in output data set. The return code is
not passed to the calling processor.

Utility program is terminated and this return code is passed
to the calling processor.

Record is placed in the output data set.

The return code is not passed to the calling
processor.

Further information on the use of the RETURN macro instruction is contained in as
Data Management Services Guide, GC26-3746, and as Supervisor & Data Management
Macro Instructions, GC28-6647.

For a list of return codes issued by IEBTCRIN at job termination, see the "IEBTCRIN
Program" chapter of this publication.

Appendix A: Exit Routine Linkage 281

Appendix B: Invoking Utility Programs from a Problem Program

LINK or ATTACH
Macro Instruction

Utility programs can be invoked by a problem program through the use of the ATTACH
or LINK macro instruction. In addition, IEBTCRIN can be invoked through the use of
the LOAD or CALL macro instruction.

The problem program must supply the following to the utility program:

• The information usually specified in the PARM parameter of the EXEC statement.

• The ddnames of the data sets to be used during processing by the utility program.

Note: When IEHMOVE, IEHPROGM, or IEHLlST is dynamically invoked in a job step
containing a program other than one of these three, the DD statements defining
mountable devices for the IEHMOVE, IEHPROGM, or IEHLlST program must be
included in the job stream prior to DD statements defining data sets required by the
other program.

The LINK or ATTACH macro instruction can be used to invoke a utility 'program
from a problem program.

The format of the LINK or ATTACH macro instruction is:

r--[;;;]'{iitiK7-}EP .= ~g~me-~-'--c--~~--r--'~.-----~"'~':;J
i. '..{ATTACH}· .' '" . : ;.... •.... : ;,i,

I'; . ., ;.PARAM = (opfionaddr[,ddname(jddr][,hdingaddr]).· . ." ",

l~,~;~~:~:_~;.;~LJ~~ __ L,YJ:w~j~~~_","J~""~~~:~~~j~~, ... ~~;.~~_~~_J.'.". ",~.'.' " ':;.2:', ' .~".'."j;':
where:

EP = progname
specifies the symbolic name of the utility program.

PARAM =
specifies, as a sublist, address parameters to be passed from the problem program
to the utility program. These values can be coded:

optionaddr
specifies the address of an option list, which is usually specified in the PARM
parameter of the EXEC statement. This address must be written for all utility
programs.

ddnameaddr
specifies the address of a list of alternate ddnames for the data sets used during
utility program processing. If standard ddnames are used and this is not the last
parameter in the list, it should point to a halfword of zeros. If it is the last
parameter, it may be omitted.

hdingaddr
specifies the address of a six-byte list, HDNGLlST, which contains an EBCDIC
page count for the output device. If hdingaddr is omitted, the page number
defaults to 1.

VL= 1
specifies that the sign bit of the last fullword of the address parameter list is to be
set to 1.

Figure 66 shows these lists as they exist in the user's DC area. Note that the symbolic
starting addresses for OPTLIST and DDNMELST fall on halfword boundaries. Note also
the alternative ddnames INSTREAM, INPUTSET, and WHICHPTR.

The PARAM parameter of the LINK macro instruction in the calling program provides
the utility program with the symbolic addresses of the parameter lists shown in Figure
66, as follows:

• The option list, OPTLlST, which includes the number of bytes in the list
(hexadecimal 08) and the NOVERIFY option.

• The alternate ddname list, DDNMELST, which includes the number of bytes in the
list (hexadecimal 48) and alternative names for the SYSIN, SYSUTl, and SYSUT2
data sets.

• The heading list, HDNGLlST, which includes the number of bytes in the list
(hexadecimal 04) and indicates the starting page number (shown as 10) for
printing operations controlled through the SYSPRINT data set.

Appendix B: Invoking Utility Programs from a Problem Program 283

LOAD IV1acro '''struction

284 Utilities (Release 21.7)

Starting address 0
the optionaddr
parameter list
(OPTlIST)

Starting address 0

the ddnameaddr
parameter list
(OONMELST)

Starting address 0

the hdingaddr
parameter list
(HONG LIST)

f

Full word
boundary

Half word

Full word
boundary

Half word
boundary L boundary

.j., ~., . ~
001 08 N 00 V E R

- - 00 48 00
" ...

00
~!,

,~\ bo 00 00

./ lOa 00 00 00

f

00 00 00 00 I
.... "''''~,,~

Ck~; ~~ ,~~ _It W

H P T ,'Ff 00

Fl Fa

Figure 66. Typical Parameter Lists

I F y

00 00 00

00 00 00

N P U

H I C

04 Fa Fa

The option list, OPTLlST, must begin on a halfword boundary that is not also a fullword
boundary. The two high order bytes contain a count of the number of bytes in the
remainder of the list. (For all programs except IEHMOVE, IEHPROGM, IEHINITT,
IEBISAM, and IEBUPDTE, the count must be zero.) OPTLIST is free form with fields
separated by commas. No blanks or zeros should appear in the list.

The ddname list, DDNMELST, must begin on a halfword boundary that is not also a
fullword boundary. The two high order bytes contain a count of the number of bytes in
the remainder of the list. Each name of fewer than eight bytes must be left aligned and
padded with blanks. If an alternate ddname is omitted from the list, the standard name
is assumed., If the name is omitted within the list, the eight-byte entry must contain
binary zeros. Names can be omitted from the end by merely shortening the list. Table
58 shows the sequence of the eight-byte entries in the ddname list pointed to by
ddnameaddr.

The first two bytes of HDNGLIST contain the length in bytes of the heading list. The
remaining four bytes contain a page number that the utility program is to place on the
first page of printed output.

IEBTCRIN can be invoked through use of the LOAD macro instruction.

The LOAD macro instruction causes the control program to bring the load module
containing the specified entry point into main storage unless a copy is already there.
Control is not passed to the load module.

Table 58. Sequence of DDNMELST Entries

Entry Standard Name

1 00000000
2 00000000
3 00000000
4 00000000
5 SYSIN
6 SYSPRINT
7 00000000
8 SYSUTI
9 SYSUT2
10 SYSUT3
11 SYSUT4

The format of the LOAD macro instruction is:

where:

EP = IEBTCRIN
is the entry point name of the program to be brought into main storage.

EPLOC = address of name
is the main storage address of the entry point name described above.

CALL Macro Instruction The CALL macro instruction can be used to pass control to IEBTCRIN after IEBTCRIN
has been loaded into main storage.

Control can be passed to IEBTCRIN via a CALL macro instruction or via a branch and
link instruction. If the branch and link instruction is used, register 1 must be loaded
with the address of a parameter list of full words as described under "LINK or
ATTACH Macro Instruction." The last parameter list address must contain X'80' in
byte 1 to indicate the last parameter in the list.

The format of the CALL macro instruction is:

r~'[';;;'~]CAiLliBTCRiN~~;ti~~rr:~d;m;;;4~j[;~i~g;d~;i~VL~:'-:~-=~~"'-=~~~~,~~~.~~]
where:

IEBTCRIN
is the name of the entry point to be given control; the name is used in the macro
instruction as the operand of a V-type address constant.

optionaddr
specifies the address of an option list, OPTLlST, usually specified in the PARM
parameter of the EXEC statement. This address must be written for all utility
programs.

ddnameaddr
specifies the address of a list of alternate ddnames, DDNMELST, for the data sets
used during utility program processing. If standard ddnames are used and this is
not the last parameter in the list it should point to a halfword of zeros. If it is the
last parameter, it may be omitted.

hdingaddr

VL

specifies the address of a six-byte list containing an EBCDIC page count for the
output device.

specifies that the high order bit of the last address parameter in the macro
expansion is to be set to 1.

The option list, OPTLlST, must begin on a halfword boundary that is not also a fullword
boundary. The two high order bytes contain a count of the number of bytes in the
remainder of the list. (For all programs except IEHMOVE, IEHPROGM, IEHINITT, and
IEBISAM, the count must be zero.) The option list is free form with fields separated by
commas. No blanks or zeros should appear in the list.

The ddname list, DDNMELST, must begin on a halfword boundary that is not also a
fullword boundary. The two high order bytes contain a count of the number of bytes in
the remainder of the list. Each name of fewer than eight bytes must be left aligned and
padded with blanks. If an alternate ddname is omitted from the list, the standard name
is assumed. If the name is omitted within the list, the eight-byte entry must contain
binary zeros. Names can be omitted from the end by merely shortening the list. The
sequence of the eight-byte entries in the ddname list pointed to by ddnameaddr is
shown earlier in Table 58.

The first two bytes of the heading list, HDNGLlST, contain the length in bytes of the
heading list. The remaining four bytes contain a page number that the utility program
is to place on the first page of printed output.

Appendix B: Invoking Utility Programs from a Problem Program 285

Appendix C: DO Statements for Defining Mountable Devices

DO Statement Examples

DD Example 1

DD Example 2

DD Example 3

When defining mountable devices to be used by system utility programs IEHPROGM,
IEHMOVE, IEHLlST, or IEHDASDR, the user must consider the implications of the DD
statements he uses to define those devices.

DD statement parameters must ensure that no one else has access to either the
volume or the data set. Caution should be used when altering volumes that are
permanently resident or reserved (for example, volumes containing system data sets,
non-demountable volumes, and volumes reserved through the PRESRES option).

Under normal conditions, a mountable device should not be shared with another job
step; that is, if a utility program is used to update a volume on a mountable device,
the volume being updated must remain mounted until the operation is completed.

Following are ways to ensure that mountable devices are not shared:

• Specify DEFER in a DD stateme"t defining a mountable device.

• Specify unit affinity on a second DD statement defining a mountable device.

• Specify a volume count in the VOLUME parameter of a DD statement that is greater
than the number of mountable devices to be allocated.

• Specify PRIVATE in " DD statement defining a mountable device.

For a detailed discussion, see as JCL Reference, GC28-6704.

In the following examples of DD statements, an IBM 2314 Disk Storage Device is
indicated as the mountable device. Alternative parameters are stacked.

This DD statement makes a specific request for a private, nonsharable volume or
volumes to be mounted on a single 2314 device.

The example follows:

IIDD1 DD UNIT=(2314"DEFER),DISP=(,KEEP),
II VOLUME=(PRIVATE,SER=(123456))

A utility program causes a mount message to be issued for a specific volume when the
volume is required for processing by the program. The user should supply the
operator with the clearly marked volume or volumes to be mounted during the job
step.

This DD statement ensures that the volume integrity of a mountable volume is
maintained. If only one volume is to be processed, it is mounted at the start of the job
step and dismounted at the end of the step. If additional volumes are processed, they
are mounted and dismounted when needed by the utility program. The last volume to
be processed is dismounted at the end of the job step.

This DD statement makes a request for a private, nonsharable volume.

The example follows:

IIDD2 DD UNIT=(2314, , DEFER), VOLUME=PRIVATE, DISP=(NEW,KEEP)

The results of this statement are identical to those shown in DD Example 1.

If a specific unit is requested and the volume serial number is not given in the DD
statement, the user must be certain that either: (1) the desired volume is already
mounted on that unit or (2) a volume is not mounted, causing the system to issue a
mount message.

Note: This statement can be used only if the user is certain that a removable volume,
rather than a fixed volume, will be allocated by the scheduler. If there is any chance
that a fixed volume will be allocated, this statement must not be used.

This DD statement makes a specific request for a private, sharable volume to be
mounted on a 2314 device.

The example follows:

IIDD1 DD UNIT=2314,VOLUME=(PRIVATE,SER=(121212)),DISP=OLD

This DD statement does not ensure that volume integrity is maintained. It should be
used with extreme caution. A concurrently running job step might make a specific
request for the volume,. use the volume, and demount it.

Appendix C: DO Statements for Defining Mountable Devices 287

DO Example 4

DO Example 5

288 Utilities (Release 21.7)

This DD statement makes a specific request for a public, nonsharable volume to be
mounted on a 2314 device.

The example follows:

//DD3 DD UNIT=(2314"DEFER),VOLUME=SER=789012,DISP=(,OLD)

If the volume is already mounted, it is used. The volume remains mounted at the end
of the job step, and is not demounted until another job step requires the device on
which the volume is mounted.

This DD statement ensures that volume integrity is maintained between jobs; two or
more such statements in a single job can allocate the same device.

This DO statement makes a specific request for a public, sharable volume to be
mounted on a 2314 device.

The example follows:

//DD1 DD UNIT=2314,VOLUME=SER=654321,DISP=OLD

If the volume is already mounted, it is used. The volume remains mounted at the end
of the job step, and is not demounted until another job step requires the device on
which the volume is mounted. (This DO statement can also be used to define
permanently resident devices.)

This DO statement does not ensure that the volume integrity of a mountable volume is
maintained. It should be used with extreme caution because there is the possibility
that a job step running concurrently might use the device.

Appendix D: Generation Data Groups

Absolute Generation
and Version Numbers

A generation data group is a group of related cataloged data sets. The manner in
which these data sets are cataloged is what makes them a generation data group.
Within a generation data group, the generations can have like or unlike DCB attributes
and data set organizations. If the attributes and organizations of all generations in a
group are identical, the generations can be retrieved together as a single data set.
Each data set within a generation data group is called a generation data set.
Generation data sets are sometimes called generations.

There are advantages to grouping related data sets. Because the catalog management
routines can refer to the information in a special index-called a generation index-in
the catalog:

• All of the data sets in the group can be referred to by a common name.

• The operating system is able to keep the generations in chronological order.

• Outdated or obsolete generations can be automatically deleted by the operating
system.

The management of a generation data group depends upon the fact that generation
data sets have sequentially ordered names-absolute and relative names-that
represent their age. The absolute generation name is the representation used by the
catalog management routines in the catalog. Older data sets have smaller absolute
numbers. The relative name is a signed integer used to refer to the latest (0), next to
the latest (-1), etc. generation. The relative number can also be used to catalog a new
generation (+ 1).

An absolute generation and version number is used to identify a specific generation
of a generation data group. The generation and version numbers are in the form
GxxxxVyy, where xxxx is an unsigned four-digit decimal generation number and yy is
an unsigned two-digit decimal version number. For example:

• A.B.C.GOOOOVOO is generation data set zero, version zero in the generation data
group A.B.C.

• A.B.C.G0001 VOO is generation data set one, version zero in generation data group
A.B.C.

• A.B.C.G0009V01 is generation data set nine, version one in generation data group
A.B.C.

The number of new generations and versions is limited by the number of digits in the
absolute generation name, that is, 9999 for generations and 99 for versions.

The generation number is automatically maintained by the system. The number of
generations kept depends on the size of the generation index. For example, if the size
of the index allows ten entries, the ten latest generations may be maintained in the
index.

The version number allows you to perform normal data set operations without
disrupting the management of the generation data group. For example, if you want to
update the second generation in a three-generation index, replace generation two,
version zero, with generation two, version one. Only one version is kept per
generation.

A generation can be cataloged using either absolute or relative numbers. When a
generation is cataloged, a generation and version number is placed as a low level
entry in the generation index. In order to catalog a version number other than VOO,
you must use an atlsolute generation and version number.

Figure 67 shows how the index looks when three generations are cataloged. Note that
the generation index is a pushdown list, which allows you to use relative generation
numbers when cataloging or retrieving a generation.

Note: A new version of a specific generation can be cataloged automatically by
specifying the old generation number along with a new version number. For example, if
generation A.B.C.G0005VOO is cataloged in the index and you now create and catalog
A.B.C.G0005V01, the new entry is cataloged in the index location previously occupied
by A.B.C.G0005VOO. This process removes the old entry from the catalog but does
not scratch the old version. To scratch the old version and make its space available
for reallocation, a DD card, describing the data set to be deleted, with

Appendix D: Generation Data Groups 289

Relative Generation Numbers

Building a Generation
Index

290 Utilities (Release 21.7)

Figure 67. Generation Index-Three Entries

DISP = (OlD,DElETE) should be included at the time the data set is to be replaced by
the new version.

As an alternative to using absolute generation and version numbers when cataloging
or referring to a generation, you can use a relative generation number. To specify a
relative number, use the generation data group name followed by a negative integer, a
positive integer, or a zero, enclosed in parentheses. For example, A.B.C(-1),
A.B.C(+ 1), or A.B.C(O).

The value of the specified integer tells the operating system what generation number
to assign to a new generation, or it tells the system the location (in the generation
index) of an entry representing a previously cataloged generation.

When you use a relative generation number to catalog a generation, the operating
system assigns an absolute generation number and a version number of VOO to
represent that generation. The absolute generation number assigned depends on the
number last assigned and the value of the relative generation number that you are
now specifying. For example, if in a previous job generation A.B.C.G0005VOO was the
last generation cataloged and you specify A.B.C(+ 1), the generation now cataloged. is
assigned the number G0006VOO. Though any positive relative generation number can
be used, a number greater than 1 may cause absolute generation numbers to be
skipped.

When you use a relative generation number to refer to a generation that was
cataloged in a previous job, the relative number has the following meaning:

• A.B.C(O) refers to the latest existing cataloged entry.

• A.B.C(-I) refers to the next to latest entry, etc.

When cataloging is requested:

• A relative number refers to the same generation throughout a job.

• A job step that terminates abnormally may be deferred for a later step restart. If
the step cataloged a generation data set via JCl, you must change all relative
generation numbers in the succeeding steps via JCl before resubmitting the job.

For example, if the succeeding steps contained the relative generation numbers:

• A.B.C(+ 1), which refers to the entry cataloged in the terminated job step.

• A.B.C(O), which refers to the next to latest entry.

• A.B.C(-I), which refers to the third latest entry, etc.

You must change them as follows before the step can be restarted: A.B.C(O),
A.B.C(-I), A.B.C(-2), etc.

Note: New nonspecific generation data group requests are cataloged with a volume
serial number of X'FF4040404040' if they are not opened, so that data set integrity is
maintained and an incorrect generation is not retrieved.

Figure 68 shows how an index looks after three generations-A.B.C(+ 1), A.B.C(+1),
and A.B.C(+2)-have been cataloged in three separate jobs. The first generation is
assigned the generation number GOOO! VOO; the second, G0002VOO; the third,
G0004VOO.

A generation data group is managed via the information found in a generation index.
To build a generation index, use the BLDG function of the IEHPROGM utility program.
The BLDG function builds the index, providing lower level entries for as many .
generations (up to 255) as needed in a generation data group. The BLDG function

[A.B.C]
(0)

~.B.CJ (-1) ~ (-2)

(A.B.C. (A.B.C. (A.B.C.
GOO04VOOI GOO02VOO) GOOO1VOO)

Last Second First
cataloged- cataloged- cataloged-.
newest next·to· oldest
generation latest generation

!leneration

Figure 68. Relative Positioning-Three Entries in the Catalog

also indicates how older or obsolete generations are to be handled when the index is
full. For example, when the index is full, you may wish to empty it, scratch existing
generations, and begin cataloging a new series of generations.

Note: An alias cannot be assigned to the highest level of a generation index.

Figure 69 shows a generation index. When the index was built, provision was made for
the subsequent cataloging of ten generations.

After the index is built, a generation can be cataloged by its generation data group
name and either an absolute generation and version number or a relative generation
number.

Examples showing how to build a generation index included in ··Cataloging a
Generation" in this appendix.

A.B.C. A.B.C. A.B.C.
G0002VOO G0001VOO GOOOOVOO

Figure 69. Generation Index

Creating a New Generation To create a new generation data set:

• Allocate the generation.

• Catalog the generation.

Appendix D: Generation Data Groups 291

Allocating a Generation

Cataloging a Generation

Using JCL Procedures
to Catalog a Generation

Using IEHPROGM to
Catalog a Generation

Creating an ISAM Data
Set as Part of a
Generation Data Group

292 Utilities (Release 21.7)

To take full advantage of the facilities of the system, the allocation can be patterned
after a previously allocated generation in the same group. This is accomplished by the
specificationtOf DCB attributes for the new generation as described below.

If you are usin.g absolute generation and version numbers, DCB attributes for a
generation can be supplied directly in the DCB parameter of the DO statement
defining the generation to be created and cataloged.

If you are using relative generation numbers to catalog generations, DCB attributes
can be supplied either: (1) by creating a model OSCB on the volume on which the
index resides (the volume containing the SYSCTLG data set) or (2) by referring to a
cataloged data set for the use of its attributes. Attributes can be supplied before you
catalog a generation, when you catalog it, or at both times, as follows:

1. Create a model DSCB on the volume on which your index resides. You can provide
initial DCB attributes when you create your model; however, you need not provide
any attributes at this time. Initial or overriding attributes can be supplied when you
create and catalog a generation.' To create a model DSCB, include the following
DD statement in the job step that builds the index or in any other job step that
precedes the step in which you create and catalog your generation:

/ /name DD DSNAME = datagrpname,DISP = (,KEEP),SPACE = (TRK,(O»,
/ / UNIT = yyyy, VOLUME = SER = xxxxxx,
/ / DCB = (applicable subparameters)

The DSNAME is the common name by which each generation is identified; xxxxxx is
the serial number of the volume containing the catalog. If no DCB subparameters
are desired initially, you need not code the DCB parameter.

2. You do not need to create a model DSCB if you can refer to a cataloged data set
whose attributes are identical to those you desire or to an existing model OSCB for
which you can supply overriding attributes. A cataloged data set referred to in this
manner must reside on the same volume as your index. To refer to a cataloged
data set for the use of its attributes, specify DCB = (dsname) on the DO statement
that creates and catalogs your generation. To refer to an existing model, specify
DCB = (modeldscbname, your attributes) on the DO statement that creates and
catalogs your generation.

A generation can be cataloged through the use of normal job control language
procedures or through the use of IEHPROGM.

Assuming that a generation index has been built and that provisions have been made
for supplying DCB attributes, a generation is created and cataloged in the same
manner as any other type of data set.

When you use relative numbers in job control language procedures, you must include
the CATLG subparameter in the DO statement defining the new generation. When you
use absolute generation and version numbers, you need not catalog the new
generation immediately.

The CATLG function of IEHPROGM can be used to catalog a generation. Again, the
prerequisite for cataloging a generation is the existence of a generation index in the
SYSCTLG data set.

Note: You must always use an absolute generation and version number to catalog or
uncatalog a generation· using IEHPROGM. (lEHMOVE and IEHLlST also require that
absolute generation and version numbers be used.)

To create an indexed sequential data set as part of a generation data group, you
must: (1) create the indexed sequential data set separately from the generation
group and (2) use IEHPROGM to put the indexed sequential data set into the
generation group.

Use the RENAME function to rename the data set. Then use the CATLG function to
catalog the data set. For instance, if MASTER is the name of the generation data
group, and GggggVvv is the absolute generation name, you would code the following:

RENAME DSNAME = ISAM,VOL = 2314 = SCRTCH,NEWNAME = MASTER.GggggVvv
CATLG DSNAME = MASTER.GggggVvv,VOL = 2314 = SCRTCH

, Only one model DSCB is necessary for any number of generations. If you plan to use only one
model, do not supply DCB attributes when you create the model. When you subsequently create
and catalog a generation, include necessary DCB attributes in the DD statement referring to the
generation. In this manner, any number of generation data groups can refer to the same model.

Retrieving a Generation

Generation Data
Group Examples

Generation Example 1

A generation is retrieved through the use of job control language procedures. Any
operation that can be applied to a non-generation data set can be applied to a
generation. For example, a generation can be updated and reentered in the catalog, or
it can be copied, printed, punched, or used in the creation of new generation or
non-generation data sets.

You can retrieve a generation by using either relative generation numbers or absolute
generation and version numbers.

I

Because two or more jobs can compete for the same resource, generation data
groups should be updated with caution, as follows:

1. No two jobs running concurrently should refer to the same generation data group.
As a partial safeguard against this situation, use absolute generation and version
numbers when cataloging or retrieving a generation in a multiprogramming
environment. If you use relative numbers, a job running concurrently may update
the generation index, perhaps cataloging a new generation which you will then
retrieve in place of the one you wanted. -

2. Even when using absolute generation and version numbers, a job running
concurrently might catalog a new version of a generation or perhaps delete the
generation you wished to retrieve. For this reason~ some degree of control should
be maintained over the execution of job steps referring to generation data groups.

The following examples show some of the ways in which generations can be created
and cataloged or retrieved and used as source data in the creation of new generation
or non-generation data sets.

In this example, an IEHPROGM job step, STEPA, creates a model OSCB and builds a
generation index. STEPB, an IEBGENER job step, creates and catalogs a sequential
generation from card input.

The example follows:

IIBLDINDX JOB
IISTEPA EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIBLDDSCB DD DSNAME=A.B.C,DISP=(,KEEP),SPACE=(TRK,O),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=800),
II VOLUME=SER=111111,UNIT=2314
IISYSIN DD *

BLDG INDEX=A.B.C,ENTRIES=10,EMPTY,DELETE
1*
IISTEPB EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSIN DD DUMMY
IISYSUT2 DD DSNAME=A.B.C(+1),UNIT=2314,DISP=(,CATLG),
II VOLUME=SER=231400,SPACE=(TRK,(20))
IISYSUT1 DD DATA

(input card data)

1*
The control statements are discussed below:

• BLOOSCB 00 creates a model OSCB on the system residence volume.

• SYSIN DO indicates that a utility control statement (BLDG) is included next in the
input stream.

• BLDG specifies the generation group name A.B.C and makes provision for ten lower
level entries in the index. When the 11th entry is to be entered, the index is
emptied and all of the generations are deleted.

• SYSUT2 DO defines an output sequential generation. The generation is assigned
the absolute generation and version number GOOOI VOO in the index.

• SYSUT1 DO defines the input card data set.

Any subsequent job that causes the deletion of the generations should incl~de DO
statements defining the devices on which the volumes containing those generations
are to be mounted. Each generation for which no DO statement is included is
uncataloged at that time, but not deleted.

After the generation data group is emptied, new generations continue to be assigned
generation numbers according to the last generation number assigned before the
empty operation. To restart the numbering operation (that is, to reset to GOOOOVOO or
GOOOI VOO), it is necessary to uncatalog all the old generation data sets and then
rename and recatalog, beginning with GOOOOVOO.

Appendix D: Generation Data Groups 293

Generation Example 2

Generation Example 3

294 Utilities (Release 21.7)

In this example, a second generation is created and cataloged in the index built in
Example 1. DCB attributes are included to override those attributes that were
specified when the model DSCB was created.

The example follows:

II JOB
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSIN DD DUMMY
IISYSUT2 DD DSNAME=A.B.C(+l),UNIT=2314,DISP=(,CATLG),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=1600),
II VOLUME=SER=231401,SPACE=(TRK,(20))
IISYSUTl DD DATA

(input data set)

1*
The control statements are discussed below:

• SYSUT2 DO defines an output sequential generation. The generation is assigned
the absolute generation and version number G0002VOO in the index. The specified
DCB attributes override those initially specified in the model DSCB. The DCB
attributes specified when the model DSCB was created remain unchanged; that is,
those attributes are applicable when you catalog a succeeding generation unless
you specify overriding attributes at that time.

• SYSUT1 DO defines the input card data set.

In this example, a generation index for generation data group A.B.C is built. Three
existing noncataloged, non-generation data sets are renamed; the renamed data sets
are cataloged as generations in the generation index.

The example follows:

IIBLDINDEX JOB
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDDl DD UNIT=2314,VOLUME=SER=111111,DISP=OLD
IIDD2 DD UNIT=(2314"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(231400))
IISYSIN DD *

1*

BLDG INDEX=A.B.C,ENTRIES=10
RENAME DSNAME=DATASET1,VOL=2314=231400,

RENAME

RENAME

CATLG
CATLG
CATLG

NEWNAME=A.B.C.G0001VOO
DSNAME=DATASET2,VOL=2314=231400,

NEWNAME=A.B.C.G0002VOO
DSNAME=DATASET3,VOL=2314=231400,

NEWNAME=A.B.C.G0003VOO
DSNAME=A.B.C.G0001VOO,VOL=2314=231400
DSNAME=A.B.C.G0002VOO,VOL=2314=231400
DSNAME=A.B.C.G0003VOO,VOL=2314=231400

The control statements are discussed below:

• . 001 DO defines the system residence volume, on which the SYSCTLG (system
catalog) data set resides.

• BLDG specifies the generation group name A.B.C and makes provision for ten
entries in the index. The oldest generation is to be uncataloged when the index
becomes full. No generations are to be scratched.

• The RENAME statements rename three non-generation data sets residing on a
2314 disk volume. .

• CATLG catalogs the renamed data sets in the generation index.

2?C

UC

2?C

Note: Because the DCB parameters were supplied when the non-generation data sets
were created, no DCB parameters are now specified; therefore, no model DSCB is
required.

Generation Example 4

Generation Example 5

In this example, a non-generation version of a generation data set is to be made. The
generation is represented as the next to latest entry in the index. The name of the
resultant data set is TESTSET. This example assumes that the generation to be copied
is partitioned.

The example follows:

II COpy JOB
II EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=A.B.C(-1),DISP=OLD
IISYSUT2 DD DSNAME=TESTSET,UNIT=2314,DISP=(,KEEP),
II VOLUME=SER=231400,SPACE=(TRK,(20,10,5)),
III DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)
IISYSIN DD DUMMY
1*
The control statements are discussed below:

• SYSUT1 DD defines the generation from which a copy is to be made.

• SYSUT2 DD defines a partitioned data set (TESTSET) on a 2314 output volume.
The DCB attributes in this statement are identical to those assigned to the
generation. (Reblocking is permitted, but the SYSUT2 block size specification must
be a multiple of the original block size.)

In this example, a partitioned generation, consisting of three members, is to be used
as' source data in the creation of a new generation. IEBUPDTE is to be used to add a
fourth member to the three source members and to number the new member. The
resultant data set is to be cataloged as a new generation.

The example follows:

II JOB
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=A.B.C(O),DISP=OLD
IISYSUT2 DD DSNAME=A.B.C(+1)DISP=(,CATLG),UNIT=2314,
II VOLUME=SER=231400,SPACE=(TRK,(100,10,10)),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
IISYSIN DD DATA
.1 REPRO NAME=MEM1,LEVEL=00,SOURCE=0,LIST=ALL
.1 REPRO NAME=MEM2,LEVEL=00,SOURCE=0,LIST=ALL

·.1 REPRO NAME=MEM3,LEVEL=00,SOURCE=0,LIST=ALL
.1 ADD NAME=MEM4,LEVEL=00,SOURCE=0,LIST=ALL,IGNORE=EOF
.1 NUMBER NEW1=10,INCR=5

(data cards comprising MEM4)

.1 ENDUP
1*
The control statements are discussed below:

• SYSUT1 DD defines the latest generation, which is used as source data.

• SYSUT2 DD defines the new generation, which is created from the source
generation and from an additional member included as input card data.

• The REPRO Function statements reproduce the named source members in the
output generation.

• The ADD Function statement specifies that the data cards following the input
stream be included as MEM4.

• The NUMBER Detail statement indicates that the new member is to have sequence
numbers assigned in columns 73 through 80. The first record is aSSigned sequence
number 10. The sequence number of each successive record is incremented by 5.

• ENDUP signals the end of input card data.

Note: This example assumes that a model DSCB exists on the catalog volume on
which the index was built.

Appendix D: Generation Data Groups 295

Appendix E: Processing User Labels

Processing User Labels
as Data Set Descriptors

Exiting to a User's
Totaling Routine

User labels can be processed by IEBGENER, IEBCOMPR, IEBPTPCH, IEHMOVE,
IEBCTRIN, and IEBUPDTE. In some cases, user-label processing is automatically
performed; in other cases, you must indicate the processing to be performed. In
general, user label support allows the utility program user to:

• Process user labels as data set descriptors.

• Process user labels as data.

• Total the processed records prior to each WRITE command (IEBGENER and
IEBUPDTE only).

For either of the first two options, the user must specify standard labels (SUL) on the
DD statement that defines each data set for which user-label processing is desired.
For totaling routines, OPTCD = T must be specified on the DD statement.

The user cannot update labels by means of the IEBUPDTE program. This function must
be performed by a user's label processing routines. IEBUPDTE will, however, allow you
to create labels on the output data set from data supplied in the input stream. See the
discussion of the LABEL statement in the chapter IIIEBUPDTE Program."

IEHMOVE does not allow exits to user routines and does not recognize options
concerning the processing of user labels as data. IEHMOVE always moves or copies
user labels directly to a new data set. See the chapter IIIEHMOVE Program."

Volume switch labels of a multivolume data set cannot be processed by IEHMOVE,
IEBGENER, or IEBUPDTE. Volume switch labels are therefore lost when these utilities
create output data sets. To ensure that volume switch labels are retained, process
multivolume data sets one volume at a time.

When user labels are to be processed as data set descriptors, one of the user's
label processing routines receives control for each user label of the specified type.
The user's routine can include, exclude, or modify the user label. Processing of user
labels as data set descriptors is indicated on an EXITS statement with keyword
parameters that name the label processing routine to be used.

The EXIT keyword parameters indicate that a user routine should receive control each
time the OPEN, EOV, or CLOSE routine encounters a user label of the type specified.

Figure 70 illustrates the action of the system at OPEN, EOV, or CLOSE time. When
OPEN, EOV, or CLOSE recognizes a user label and when SUL has been specified on
the DD statement for the data set, control is passed to the utility program. Then, if an
exit has been specified for this type of label, the utility program passes control to the
user routine. The user's routine processes the label and returns control, along with a
return code, to the utility program. The utility program then returns control to OPEN,
EOV, or CLOSE.

OPEN/EOV/CLOSE

User's label
processing routine

Figure 70. System Action at OPEN, EOV, or CLOSE Time

This cycle is repeated up to eight times, depending upon the ,number of user labels in
the group and the return codes supplied by the user's routine.

When an exit is taken to a user's totaling routine, an output record is passed to the
user's routine just before the record is written. The first halfword of the totaling area
pointed to by the parameter contains the length of the totaling area, and should not
be used by the user's routine. If the user has specified user label exits, this totaling
area (or an image of this area) is pointed to by the parameter list passed to the
appropriate user label routine.

Appendix E: Processing User Labels 297

Processing User Labels
as Data

298 Utilities (Release 21.7)

Note: An output record is defined as a physical record (block), except when IEBGENER
is used to process and reformat a data set that contains spanned records.

When user labels are processed as data, the group of user labels, as well as the
data set, is subject to the normal processing done by the utility program. The user can
have his labels printed or punched by IEBPTPCH, compared by IEBCOMPR, or copied
by IEBGENER.

To specify that user labels are to be processed as data, include a LABELS statement
in the job step that is to process user labels as data.

There is no direct relationship between the LABELS statement and the EXITS
statement. Either or both can appear in the control statement stream for an execution
of a utility program. If there are user label-processing routines, however, their return
codes may influence the processing of the labels as data. In addition, a user's output
label processing routine can override the action of a LABELS statement because it
receives control before each output label is written. At this time the label created by
the utility as a result of the LABEL statement is in the label buffer, and the user's
routine can modify it.

The code returned by the user's totaling routine determines system response as
follows:

• 0, which specifies that processing is to continue, but no further exits are to be
taken.

• 4, which specifies that normal processing is to continue.

• 8, which specifies that processing is to terminate, except for EOD processing on
the output data set (user label processing).

• 16, which specifies that processing is to be terminated.

Index

Indexes to systems reference library manuals are
consolidated in IBM System/360 Operating System:
Systems Reference Library Master Index, GC28-6644. For
additional information about any subject listed below,
refer to other publications listed for the same subject in
the Master Index.

N.ote: If. m0.re ~han o.ne page num.ber. is given, the primary
diSCUSSion IS listed first. The entries In the index appear
the same way they appear in the body of the book, which
means that entries with bold type or italic type in the
~ody of the book appear in bold type or italic type in the
Index.

[] .
{ } . '

A
absolute generation and version number.
action on return codes . .
action (IEBDG)
ADD
ADD statement.
adding data set passwords
adding new member to a symbolic library
ALIAS statement

for IEBUPDAT
for IEBUPDTE

alias names
listed by IEHLlST ...
processed by IEBCOPY

ALLOCATE module, changing or replacing
allocating space

with the IEBCOPY program .
with the IEHMOVE program

alphameric tape labeling . . .
alternate DD names, specifying
alternate tracks, assigning

with IBCDASDI .
with IEHATLAS .
with IEHDASDR .

ANALYZE statement
ANS volume labels .
ASCII labels
assigning

alternate tracks

7
7

.289

.281
· 87
· 168
.269
.262
· 167

· 162
· 174

.218
· 53
· 215

· 57
227,228,229

· .209
· .283

.27,30
· . 185

189,198
... 194
209,211
· .209

with IBCDASDI . . 27,30
with IEHATLAS . . . 185
with IEHDASDR 189,198

sequence numbers . . . 171,172
serial numbers (IEHDASDR) . . 195,197,198,199,201

asterisk (II<) ,in PDS directory entry 217
ATTACH macro instruction , . 283
attributes of DD statements defining mountable volumes . 287

B
backup copy, producing a

using IEBCOPY
using IEBGENER
using IEHDASDR

bad VTOC, assigning alternate track for
basic move and copy operations. .
BDAM data set, moving or copying
BLDA statement
BLDG statement
BLDX statement
bold type, use of
bootstrap records, construction of .
braces { }, use of

· 53
· 107
· 190
· 185
.230
.230
.268
.269
.267
· . 7
· 189
· . 7

brackets [], use of .
buffer

FCB, loading of .
UCS, loading of .

building

. 7

43
43

.291 a generation data set
a generation index. .
an index
an index alias

bypassing defective-track checking feature

260,290
. .. 258
... 259
27,29,31

C
carriage control, specifying
catalog

building index in .
copying
listing
moving
placing entries in

cataloged data sets, punching .
cataloging

a data set
a generation data set . . .
a procedure.
with the IEHMOVE program .
with the IEHPROGM program

cataloging moved or copied data, automatically.
CATLG statement
CHANGE
changing

a volume serial number
the logical record length of a data set
the organization of a data set ..

chart, utility program function
checking for flagged defective tracks

with the IBCDASDI program . . .
with the IEHDASDR program . . .

CLOSE module, changing or replacing
COLUMN specification
combinations of NEW, MEMBER" and NAME keywords
comments, on utility control statements
CO,MPARE statement . .
comparing

partitioned directories
partitioned data sets
records
sequential data sets .

compatible volumes
compatibility with respect to size, volume
compress in place
compressing a data set
concatenating SYSIN data sets when using IEHDASDR .
concurrent operations when using IEHDASDR, specifying
CONNECT statement
connecting two control volumes
considerations

for the MVT user
for defining DD statements '"

continuing utility controll statements .
control passwords

adding
deleting
replacing .. .

control statements
format of ...
restrictions . . .

control statements, subordinate

133,135

258,260
.233
.217
.233
.257
· 129

.257

.297
· 175
.227
.257
.227
.266
· 168

.190

.109
165,107

· 19

· 27
· 189
.215
· 170
· 171

24
47

45
45
45
45

.228

.228
· 55
· 55
· 193
· 193
.268
.259

· 24
.287
· 24

.269
· 271
.270

· 23
· 24
.238

Index 299

control volumes
connecting .
copying ...
disconnecting
moving ..

controlling
IBCDASDI.
IBCDMPRS
IBCRCVRP
ICAPRTBL.
IEBCOMPR
IEBCOPY .
IEBDG ..
IEBEDIT ..
IEBGENER.
IEBISAM .
IEBPTPCH
IEBTCRIN .
IEBUPDAT
IEBUPDTE
IEHATLAS.
IEHDASDR
IEHINITT .
IEHIOSUP .
IEHLlST ..
IEHMOVE .
IEHPROGM
IFHSTATR.

conventions, notational
converting a data set

from partitioned to sequential organization
from sequential to partitioned organization

converting data
from alphameric to hexadecimal .
from H-set BCD to EBCDIC
from packed to unpacked decimal
from unpacked to packed decimal

COPY statement
COpy CATALOG statement
COPY DSGROUP statement
COPY DSNAME statement.
copy operation
COpy PDS statement . . .
COpy VOLUME statement .
copying

a BDAM data set . . .
a catalog
a data set.

.259

.233

.259

.233

27
33
37
43
46
56
83

· 101
· 109
· 125
· 130
. 149
· 159
· 166
· 185
. 192
. 210
. 215
. 220
.234
. 263
.277
· . 7

107,165
... 165

134,137
. 108,134,137
108,114,134,137

· 108
· 58

· .244
· .240
· .239
658,53

. 242

.245

. 230

.233
53,230

a direct data set with variable spanned records
a dumped data set .

· .234
· . 191

a" group of data sets
a partitioned data set
a volume of data sets
an indexed sequential data set .
members of a partitioned data set
records of a sequential data set
sequential data sets

CREATE statement
creating

a backup copy
using IEBCOPY .
using IEBGENER
using IEHDASDR

a generation index .
a library
a model DSCB
a partitioned data set from sequential input .

· .232
53,227,231
... 233

123,124
53,227

· 107
53
89

· 53
· 107
· 190
. 290
· 165
.292
· 107

a sequential copy of an indexed sequential data set
a sequential output data set . .

· 123
· 145

a sequential output job stream . · 101
an edited data set · 107
user labels on sequential output · 107

300 Utilities (Release 21.7)

o
DADEF statement.
DASDI program (see IBCDASDI)

· 28

data
dumped
movable
reconstructed . .
recovering usable
unloaded
unmovable

data set control block (DSCB), setting protection
status in

data set passwords .
adding .
deleting
listing
replacing

data set utility programs
IEBCOMPR
IEBCOPY .
IEBDG ..
IEBEDIT ..
IEBGENER .
IEBISAM .
IEBPTPCH
IEBTCRIN .
IEBUPDAT
IEBUPDTE

data sets
cataloging .
compressing
converting
copying ..
merging .
moving ..
protecting .
reconstructing
re-creating .
renaming ..
scratching .
uncataloging
unloading ..

data sets, moving or copying a group of
data sets, partitioned (see partitioned data sets)
Data statement.
DO names, alternate
DO statement, attributes
DO statements, operational results of
ddnameaddr
deblocking with IEBCOPY .
defective track

indicated by IEHATLAS
indicated by data check .
indicated by missing address marker .
recovering data from
testing for

deferred mounting, specifying.

· .. 191
· .. 228
227,123

· .. 37
227,123,124
..... 227

..... 261
261,262,263

262,269
262,271
269,272

.270
25

· 45
· 53
· 81
· 101
· 107
· 123
· 129
· 145
· 159
· 165

.257
· 55

107,165
53,230

· 55
.230
.261
· 55
.257
.257
.257
.257

227,123
232,233

· 173
.283
.287
.287
.283
· 57

· 185
· 185
· 185

185,33
189,27

.287
deferred step restart with relative generation numbers
defining data sets

.290

with the IEBCOMPR program
with the IEBCOPY program .
with the IEBDG program . .
with the IEBEDIT program .
with the IEBGENER program
with the IEBISAM program .
with the IEBPTPCH program
with the IEBTCRIN program
with the IEBUPDTE program
with the IEHDASDR program
with the IEHINITT program .
with the IEHIOSUP program
with the IEHLlST program .
with the IEHMOVE program
with the IEHPROGM program .

· 46
· 56

81,82,83
· 101
.110
· 126
· 130
· 149
· 166
· 191
.210
.215
.221
.235
.263

defining mountable devices
DFN
DELET statement . .
DELETE
DELETEP statement.
deleting

a record
an index
an index alias . .
data set passwords

demounting mountable volumes .
Detail statement . . .
device name
DFN statement
direct access volumes

assigning alternate tracks to
dumping
initializing
restoring

direct data set, moving or copying .
with variable spanned records

directory entry, format of
disconnecting volumes
DLT A statement
DL TX statement
DSCB

model for generation data sets .
setting protection status in .

DSD statement
dummy header label . . .
DUMP statement

for IBCDMPRS program
for IEHDASDR program

DUMP /RESTORE program (see IBCDMPRS)
dumping a direct access volume
dumping multiple volumes to a single restore tape
DUP (see TCRGEN statement)

E
EDIT statement .
edited format

of a VTOC ..
of a PDS directory entry

editing
a job stream .. .
data
sequential data set
partitioned data set

editing facilities
with the IEBGENER program
with the IEBPTPCH program
with the IEBTCRIN program

ellipsis, use of . .
END statement

for IBCDASDI .
for IBCDMPRS
for IBCRCVRP
for ICAPRTBL
for IEBDG ..

end of cartridge
end of file (EOF) record, assigning alternate track
ENDUP statement

for IEBUPDAT
for IEBUPDTE

ensuring volume integrity

.287
· 43
· 161
· 171
.271

171,161
.258
.259
· 271
.287
· 171
· 24
· 43

190,27,185
373,198,199

27,189
· 33
. 230
.234
· 212
. 259
.268
.267

.292
269,262

· 85
.209

· 33
· 198

333,189,198
..... 200

· 101

.219

.218

· 101
145,148,101

· 107
· 107

· 107
· 130
· 151

. 7

31
36
41
44
93

· 149
· 187

· 162
· 175
.287

entering job control statements into a procedure library
EOV module, changing or replacing

· 176
· 215

ERROPT ..
ERROR ...
ESV record

format .
processing

· 152
· 153

.277

.277

examples
IBCDASDI.
IBCDMPRS
IBCRCVRP
ICAPRTBL.
IEBCOMPR
IEBCOPY .
IEBDG ..
IEBEDIT ..
IEBGENER.
IEBISAM .
IEBPTPCH
IEBTCRIN .
IEBUPDAT
IEBUPDTE
IEHATLAS.
IEHDASDR
IEHINITI .
IEHIOSUP .
IEHLlST ..
IEHMOVE .
IEHPROGM
IFHSTATR .

EXCLUDE statement
for IEBCOPY
for IEHMOVE . .

excluding data from copy operations .
exclusive copy operation . .
executing

a data set utility program
a system utility program .
an independent utility program .

exit routine linkage . .
exit routines

location of
parameter lists for
return codes issued by user
returning from

EXITS statement
for IEBCOMPR .
for IEBGENER
for IEBPTPCH .
for IEBTCRIN .

expanding a partitioned data set (see also merging
partitioned data sets) . .

EXPDT subparameter . . .
expiration date, specifying

F
FCB

loading of .
statement.

FD statement
FEOV module, changing or replacing .
FIELD parameter
field processing and editing information, specifying .
flagged defective tracks, checking for
FORMAT statement
format of utility control statements
forms control buffer, loading the
Function statement

G
general uses

for data set utility programs
for independent utility programs
for system utility programs .

GENERATE statement.
generating test data

31
36
41
44
48
62
93

· 103
.115
· 127
.139
· 157
· 162
· 175
· 187
.202
.212
.215
.223
.248
.272
.278

· 61
.246

.54,55
· 55,61

· 24
· 24
· 26
.279

.279

.279

.281

.280

· 47
· 111
· 136
· 153

· 107
.236
.236

· 43,44
· 44

· . 85
· .215

114,137
114,137

189,27
· . 196
.23,24·
.43,44
· . 167

· 25
· 25
· 24
· 111
· 81

Index 301

generation
allocating a
cataloging a ..
creating a new
DCB attributes for .
definition of
retrieving a
supplying DCB attributes for
uncataloging
using IEHPROGM to catalog
using JCL to catalog

generation data groups
building
cataloging.
creating an ISAM data set as part of
deferred step restart with
examples ' .. .
general discussion of
multiprogramming considerations with

generation index, building.
generation numbers

absolute generation and version number
deferred step restart with
relative

GETALT statement

H

for IBCDASDI program .
for IEHDASDR program

header record, initializing
Header statement . . .
H-set BCD to EBCDIC conversion

IBCDASDI program
control of .. .
examples .. .
executing .. .
input and output
introduction . . .
used to

assign an alternate track
initialize a direct access volume .

utility control statements .
DADEF
END ..
GETALT
IPLTXT
JOB ..
LASTCARD.
MSG
VLD
VTOCD ..

IBCDMPRS program
control of
examples
executing
input and output
introduction ..
used to

dump data.
restore data

utility control statements .
DUMP.
END .. .
JOB .. .
MSG
RESTORE
VDRL ..

IBCRCVRP program.
control of
examples
executing

302 Utilities (Release 21.7)

· .. 292
· .. 291
· .. 291
289,292

· .. 289
· .. 293
289,292

.292

.292

.292

.289

.289

.292

. 292

. 290

. 293

.289

.293

.290

.289

.290

.290

28
. 198

· .. 209
· .. 160

108,114

27,25,26
27
31
26
27
25

27
27
27
28
28
28
28
27
28
28
28
28
33
33
36
26
33
25

33
33
33
33
33
33
33
35
35
37
37
41
26

input and output
introduction . . .
used to

recover usable data
replace bad data . .

utility control statements .
END ..
JOB ..
INSERT
LIST ..
MSG
RECOVER
REPLACE

ICAPRTBL program
control of ...
example ., .
executing ...
input and output
introduction . . .
used to

load forms control buffer
load Universal Character Set buffer

utility control statements .
DFN.
END.
FCB .
JOB .
UCS.

IEBCOMPR program
control of

job control statements
restrictions

utility control statements
examples
input and output
introduction.
region size . '.'
return codes . .
used to

compare partitioned data sets
compare sequential data sets .
verify backup copies . .
verify portions of records

utility control statements .
COMPARE.
EXITS ...
LABELS,' ..

IEBCOPY program
control of ...

job control statements
restrictions
space allocation for spill data sets

utility control statements
examples
input and output
introduction .
region size . . .
return codes . .
used to

compress a data set in place
copy data sets
create a backup copy. . . .
exclude members from a copy operation
merge data sets
re-create a data set when allocated space is
exhausted

rename selected members
replace identically named members .
replace selected members
select members to be copied

37
25

37
37
37
41
38
40
40
38
38
39
43
43
44
26
43
25

43
43
43
43
44
44
43
43
45
46
46
46
47
48
46
25
46
46

45
45
45
45
47
47
47
47
53
56
56
57
57
58
62
55
25
56
56

55
53
53
55
55

55
55
54
55
54

utility control statements .
COpy ..
EXCLUDE
INDO ..
SELECT .

IEBDG program.
control of ..

job control statements
PARM information .
restrictions

utility control statements
examples
input and output
introduction .
region size . . .
return codes . .
used to

generate test data
modify selected fields

utility control statements .
CREATE
DSD ..
END ..
FD
REPEAT

IEBEDIT program
control of ..

job .control statements
restrictions

utility control statement .
examples
input and output
introduction .
region size . . .
return codes . .
used to

copy an entire job
copy selected job steps .

utility control statement
EDIT

IEBGENER program
control of

job control statements
restrictions

utility control statements
examples
input and output
introduction .
region size . . .
return codes . .
used to

change logical record length
create a backup copy. . . .
create user labels on sequential output
expand a partitioned data set

'.

produce a partitioned data set from sequential input
produce an edited data set
reblock

utility control statements .
EXITS ...
GENERATE.
LABELS ..
MEMBER
RECORD ..

. IEBISAM program
control of ...

job control statements
PARM information .

examples
input and output
introduction .
region size .
return codes

58
58
61
59
60
81
83
83
84
84
85
93
82
25
84
83

81
82
85
89
85
92
85
92

· 101
· 101
· 101
· 101
· 101
· 103
· 101
· 25
· 101
· 101

· 101
· 101
· 101
· 101
· 107
· 109
.110
.110
· 111
.115
· 109
· 25
· 110
· 109

· 109
· 107
· 107
· 107
· 107
· 107
.109
· 111
· 111
· 111
· 112
.113
.113
· 123
· 125
· 125
· 125
· 127
· 125
· 25
.126
· 125

used to
copy an indexed sequential data set.
create a sequential copy of an indexed sequential
data set

create an indexed sequential data set from an
unloaded data set

print an indexed sequential data set .
IEBPTPCH program

control of
job control statements .

restrictions
utility control statements

examples
input and output
introduction . . .
region size
return codes . .
used to print or punch

a partitioned directory
an edited data set
data sets
selected members . .
selected records . . .

utility control statements .
EXITS ..
LABELS .
MEMBER
PRINT ..
PUNCH .
RECORD.
TITLE ..

IEBTCRIN program
control of ...

job control statements
restrictions

utility control statements
examples
input and output
introduction .
region size ...
used to

edit data ...
produce sequential output data
read input

utility control statements .
EXITS
TCRGEN

IEBUPDAT program
control of

job control statements
PARM information .

utility control statements
examples
input and output
introduction
region size
used to incorporate source language modifications
utility control statements .

ALIAS .
DELET .
ENDUP
Header
Logical Record
NUMBR ...

IEBUPDTE program .
control of

job control statements
PARM information.
restrictions

utility control statements
examples
input and output
introduction .
region size ...

· 123

· 123

· 124
· 124
· 129
.130
.130
· 131
· 131
· 139
.130
· 25
· 130
· 130

· 129
.130
· 129
· 129
· 129
· 131
· 136
· 138
· 136
· 132
· 134
· 136
· 135
· 145
· 149
· 149
· 150
· 150
· 157
· 149
· 25
· 149

145,148
· 145
· 145
· 150
· 153
· 151
· 159
· 159
· 159
· 159
· 160
· 162
· 159
· 25
· 159
· 159
.160
· 162
· 161
· 162
· 160
· 162
· 161
· 165
.166
· 166
· 167
· 166
· 167
· 175
· 165
· 25
· 166

Index 303

return codes
used to incorporate source language modifications
utility control statements .

ALIAS
Data.
Detail
ENDUP
Function
LABEL.

IEHATLAS program
control of .

job control statements
restrictions

utility control statement .
examples.
input and output
introduction . ..
region size
used to indicate a defective track
utility control statement

TRACK or VTOC
IEHDASDR program

control of . . .
job control statements

PARM information .
restrictions ...

utility control statements
examples ...
input and output
introduction .
region size
return codes
used to

assign alternate tracks
change volume serial numbers
copy dumped data
create a copy
initialize with recording-surface analysis .
initialize without recording-surface analysis

utility control statements .
ANALYZE
DUMP.
FORMAT.
G ETA LT
IPLTXT
LABEL.
RESTORE

IEHINITT program
control of .

job control statements
PARM information .
restrictions .

utility control statement .
examples ...
input and output
introduction .
region size
return codes
used to place volume label sets on magnetic tape
utility control statement

INITT ..
IEHIOSUP program
control of

job control statements
restrictions

examples.
input and output
introduction .
region size . .
return codes
used to update TTR entries

304 Utilities (Release 21.7)

· 165
· 165
· 167
· 174
· 173
· 171
· 175
· 167
· 173
· 185
· 185
· 185
· 185
· 186
· 187
· 185

24
· 185
· 185

· 186
· 189
· 192
· 192
· 193
· 193
· 194
.202
· 191

24
· 191
· 191

· 190
· 190
· 191
· 191
· 189
· 189
· 194
· 194
· 198
· 196
· 198
.201
· 198
.200
.209
.210
.210
.210
.210
· 211
.212
.210

24
.210
.210
.209

· 211
· 215
.215
· 215
.215
· 215
.215

24
· 215
· 215
.215

IEHLlST program
control of

job control statements
PARM information .
restrictions. ..

utility control statements
examples
input and output
introduction .
region size ..
return codes
used to list entries in

catalog ..
directory .
volume table of contents

utility control statements .
LlSTCTLG
LlSTPDS .
LlSTVTOC

IEHMOVE program
control of .

job control statements
for track overflow feature
PARM information . .
restrictions

utility control statements
examples.
input and output
introduction .
region size
return codes
used to move or copy

a catalog
a data set ..
a group of cataloged data sets
a volume of data sets
direct data sets with variable spanned records

utility control statements .
COpy CATALOG
COPY DSGROUP
COPY DSNAME
COpy PDS .
COPY VOLUME .
EXCLUDE
INCLUDE
MOVE CATALOG
MOVE DSGROUP
MOVE DSNAME
MOVE PDS .
MOVE VOLUME.
REPLACE
SELECT

IEHPROGM program
control of .

job control statements
PARM information .
restrictions. ..

utility control statements
examples ...
input and output
introduction .
region size
return codes
used to

add data set passwords
build and maintain a generation index
build or delete an index.
build or delete an index alias
catalog or uncatalog a data set
connect and release volumes
delete data set passwords
maintain data set passwords

.217

.220

.220

.221

.221

.221

.223

.220
24

.220

.220

.217

.217

.218

.221

.221

.222

.222

.227

.234

.235

.237

.236

.236

.237

.248

.234
24

.235

.234

.233

.230

.232

.233

.234

.237

.244

.240

.239

.242

.245

.246

.246

.243

.239

.238

.241

.245

.247

.247

.257

.263

.264

.265

.264

.265

.272

.263
24

.264

.263

.262

.260

.258

.259

.257

.259

.262

.261

rename a data set or member
replace data set passwords . .
scratch a data set or member .

utility control statements .
ADD.
BLDA .
BL~G ..
BLDX ..
CATLG ..
CONNECT
DELETEP.
DLTA ..
DLTX ..
LIST ...
RELEASE.
RENAME.
REPLACE
SCRATCH
UNCATLG

IFHSTATR program
control of ...

job control statements
example
input and output
introduction . . .
region size . . .
use of

INCLUDE statement
including data in move and copy operations
INDO statement
independent utility programs

IBCDASDI.
IBCDMPRS
IBCRCVRP
ICAPRTBL.

index
building ..
create new
deleting ..
generate entries in
generation
remove entries from .

index alias
building .. .
deleting .. .

index structure .
building ...
deleting from

indexed sequential data sets
copying
creating backup .
loading
printing
unloading

initializing direct access volumes
with IBCDASDI
with IEHDASDR
with surface analysis .
without surface analysis

INITT statement
input stream, organizing
input to and output from

IBCDASDI.
IBCOMPRS
IBCRCVRP
ICAPRTBL.
IEBCOMPR
IEBCOPY .
IEBOG ..
IEBEDIT ..
IEBGENER.
IEBISAM .
IEBPTPCH
IEBTCRIN .

.257

.262

.257

.265

. 269

.268

.269

.267

.266

.268

.271

.268

.267

.272

.269

.266

.270

.265

.267

.277

.277

.278

.278

.277
· 24
.278
.277
.246
.227

59
25
25
33
37
43

258,267
· .. 267
258,267

· .. 266
289,290,269

267,269

259,268
259,268

258,259,260
258,259,260
258,259,268

· .. 123
· .. 123
123,124

· 124
· 123

· 27
· 189
· 189
· 189
.211
· 101

27
33
37
43
46
55
82

· 101
· 109
· 125
· 130
· 149

IEBUPDAT
IEBUPDTE
IEHATLAS.
IEHDASDR
IEHINITI .
IEHIOSUP .
IEHLlST ..
IEHMOVE .
IEHPROGM
IFHSTATR.

INSERT statement
inserting blocks of records
introduction

to data set utilities. . .
to independent utilities
to system utilities . .

invoking utility programs
IPL TXT statement

for IBCDASDI . .
for IEHDASDR. .

IPL program
IPL records, writing .
italic type, use of

J
job control statement requirements
job control statements for

IEBCOMPR
IEBCOPY .
IEBDG ..
IEBEDIT ..
IEBGENER.
IEBISAM .
IEBPTPCH
IEBTCRIN .
IEBUPDAT
IEBUPDTE
IEHATLAS.
IEHDASDR
IEHINITI .
IEHIOSUP .
IEHLlST ..
IEHMOVE .
IEHPROGM
IFHSTATR.

JOB statement
for IBCDASDI
for IBCDMPRS
for IBCRCVRP .
for ICAPRTBL .

job statements in an output data set .
JOB steps, copying . .
job stream, organizing

K

· 159
· 165
· 185
· 191
.210
.215
.220
.234
.263
.277
· 40

173,165

· 25
· 25
· 24
.283

· 30
.201

195,197,201,28,30
195,197,201,28,30
......... 7

23

46
56
83

· 101
.110
· 125
· 130
· 149
· 159
· 166
· 185
· 192
.210
· 215
.220
.235
.264
.278

27
33
38
43

· 101
· 111
· 101

keywords, combinations of NEW, MEMBER, and NAME . . . 171

L
LABEL statement

for IEBUPDTE
for IEHDASDR. .

label processing
using IEBCOMPR
using IEBGENER .
using IEBPTPCH .
using IEBTCRIN .
using IEBUPDTE .
using IEHMOVE

LABELS statement
for IEBCOMPR .
for IEBGENER
for IEBPTPCH .

· 173
· 198

· 47
· 112
· 138

154,155
· 169
.230

· 47
.112
· 136

Index 305

labeling a magnetic tape volume
LASTCARD statement .
levels of index

creating
deleting

libraries, updating symbolic
LINK macro instruction .
linking to an exit routine
LIST statement

for IBCRCVRP .
for IEHPROGM '.

listing
a catalog ...
a partitioned data set
a partitioned directory
a password entry . .
a volume table of contents .
catalog entries .'
data set passwords
error statistics by volume (ESV) records
system control data

LlSTCTLG statement
LlSTPDS statement
LlSTVTOC statement
literal information, supplying
load operation, specified in PARM parameter.
loading

an indexed sequential data set .
an unloaded data set
forms control buffer
Universal Character Set buffer

logical record length, changing
Logical Record statement

M
magnetic tape volumes

labeling
moving or copying a group of data sets to. . .' . .
moving or copying a volume of data to

MEMBER, NEW, and NAME keywords, combinations of
MEMBER statement

for IEBGENER
for IEBPTPCH

members, partitioned, data set
comparing
copying and merging
printing and punching
renaming
replacing
scratching

members of a symbolic library
adding
replacing

merge data sets
methods of executing

data set utility programs . .
independent utility programs .
system utility programs . . .

.'

. 209
31

.258

.258
· 165

273,279
.273

40
.272

.217
· 129

129,217
.272
.218
.217
.272
.277
· 217
.221
.222
.222
· .7
.126

123,124
· 123

43
43

· 109
· 162

.209

.232

.233
· 171

~ 113
· 136

.45
53,227
.. 129

257,227
.227
.257

· 167
. 227

55

25
26
24

. '!mum region sizes (see region sizes for utility programs)
model DSCB, creating . 292
modify selected fields. 82
mountable devices, defining. . 287
MOVE CATALOG statement . 243
MOVE DSGROUP statement . 239
MOVE DSNAME statement .··238
MOVE PDS statement 241
MOVE VOLUME statement. . 245
moving

a BDAM data set 230
a catalog 233
a data set. 230
a direct data set with variable spanned records . 234

306 Utilities (Release 21.7)

a group of data sets .
a volume of data sets
the SYSCTLG data set

moving and copying
data
user labels

moving and copying operations
excluding data from . .
including data in
results of
selecting members for. . .

moving or copying a password-protected volume .
moving the SVC library
move vs. copy ; .
MSG statement

for IBCDASDI .
for IBCDMPRS
for I BCRCVRP "

MTDI input
MTST input '"
multivolume data sets, moving or copying
multiprogramming considerations

N

with generation data groups
for MFT system
for MVT. system ".'

new master dataset
NEW, MEMBER, and NAME keywords, combinations of
nonsharable attribute, assigning,. . . .
nonsharable devices
notation for defining control statements . .
NUMBR statement
numbering records in a partitioned data set
numeric tape labeling.

o
old master data set
OPEN module, changing or replacing
operand field.
operating procedures for independent utilities
optionaddr,
order of moved or copied members with the IEHMOVE

.232

.233

.233

.227

.230

55,61,246
.... 246
. 227,228
54,60,247

.229

.230

.227

· 28
· 33
· 38
· 145

.' .145
.227

.292

.287
287,24

.165

.'171
. .287,

.287
· . 7
· 161

165,168
... 209

· .165
· .215
.23,24
· . 26

283,285

program., ~ .. 231,232
organizing an input stream .. ; .. , '" . 101
output from utility programs (see input to and output from)

p
packed to unpacked decimal conversion
PARAM subparameter
parameters passed to exit routines

for label processing . . .
for non-label processing.

PARM information
,with the IEBDG program ..
with the IEBISAM program
with the IEBUPDAT program
with the IEBUPDTE program
with the IEHDASDR program
with the IEHINITT program .
with the IEHLlST program .
with the IEHMOVE program
with the IEHPROGM program .

, partial dumps of direct access volumes
partitioned data sets '

comparing '
compressing in place .
converting to sequential
copying
copying selected members of
editing
expanding ',' .
excluding,from m~ve,and copy operations
listing '.

108,114,134,137
.283
.279
.279
.280

· 84
· 125
· 159
· 167
· 193
.210
· 221
.236
.265
· 198 ,

· 45
· 55

107,165
53,230
53,227
· . 107
· . 107
61;246 '
· .217

merging members of
moving
numbering records in
produced from sequential input
renaming
replacing records in
unloading
updating in place

partitioned data s~t directory entry, edited format
PASSWORD data set

adding entries to . .
deleting entries from
listing entries in . . .
replacing entries in .

password-protected data sets, IEHDASDR
password-protected volumes, moving or copying.
passwords, data set

adding .
deleting
listing
replacing

patterns of test data
picture, user-specified
prerequisite publications
print specifications

standard ..
user

PRINT statement .
printing

a partitioned directory
an edited data set . .
data sets
indexed sequential data sets .
logical records from an indexed sequential data set
partitioned data sets
selected records
sequential data set

private attribute, assigning
procedure library, entering procedures in
procedures

cataloging. .
program classes

data set
system ...
independent

program selection
protecting data sets (see IEHPROGM utility program)
public attribute, specifying
punch specifications

standard .. .
user

PUNCH statement .
punching

records
partitioned data sets
sequential data sets .

punctuation, in syntax
purging unexpired data sets

ANALYZE operation
DUMP operation
FORMAT operation
RESTORE operation

Q

. . . 61

... 230
165,168
· . 165
· .257
54,165
· .227
· . 165

217,218

.269

.271

.272

. 270
· 189
.229

. 269

.271

.272

.270
81

· 82
· . 6

· 129
· 129
· 131

129,217
· 130
· 129
· 124
· 124
· 129
· 129

107,129
.287
· 176

· 176

25
24
25
19

.287

· 129
· 129
· 134

129,136
· 129
· 129
· . 7

· 194
· 198
· 196
.200

quick DASDI 27,189,196

R
read MTDI input
read MTST input
reader procedure, selecting
rearranging data fields within a record .

.145
· 145
· 25
· 107

reblocking
with IEBCOPY
with IEBGENER
with IEHMOVE .

RECORD statement
for IEBGENER .
for IEBPTPCH .

record groups, assigning
records

adding
aSSigning sequence numbers to
comparing
copying
deleting
error
error statistics by volume
ESV
printing ...
punching ..
renumbering
replacing ..

RECOVER statement
recovering data from defective tracks
recovering usable data
re-creating a data set
region specifications

IEBCOMPR
IEBCOPY .
IEBDG ..
IEBEDIT ..
IEBGENER.
IEBISAM .
IEBPTPCH
IEBTCRIN .
IEBUPDAT
IEBUPDTE
IEHATLAS.
IEHDASDR
IEHINITT .
IEHIOSUP .
IEHLlST ..
IEHMOVE .
IEHPROGM
IFHSTATR.

registers, contents of when linking.
relative generation numbers
RELEASE statement.
releasing two volumes
removable volumes, allocating .
removing

entries from an index structure

· 57
· 109
.230

.113

.136
· 107

160,165,173,159
159,161,165,170

· 45
· 107
· 171
· 145
.277
.277
.129
· 129

· . 165
167,157,165,173

38
27
37
55

46
56
84

· 101
.110
· 126
· 130
· 149
· 159
· 166
· 185
· 192
.210
.215
.220
.235
.264
.278
.279
.290
.269
.259
.287

member and alias names from a partitioned directory
RENAME statement .

.257

.257

.266
renaming

a data set
a multivolume data set
selected members

renumbering
REPEAT statement .
REPL
REPLACE statement

for IBCRCVRP . .
for IEHMOVE ..
for IEHPROGM

replacement data records .
replacing

bad data
data set passwords . .
identically named members
members in move and copy operations
members of a symbolic library .
records in a partitioned data set
selected members

.257

.273
55,257,266

· 165
· 92
· 168

· 39
.247
.270

159,165,173

· ... 37
· ... 270
· ... 54
227,53,54

· . 165
54,165
· . 55

Index 307

REPRO
reproducing members of a symbolic library
required publications
requirements, job control statement
RESTORE statement

for IBCDMPRS
for IEHDASDR.

restoring data to a direct access volume .
RETURN macro instruction
return codes

for IEBCOMPR .
for IEBCOPY
for IEBDG ..

. for IEBEDIT .
for IEBGENER
for IEBISAM .
for IEBPTPCH
for IEBUPDTE
for IEHDASDR .
for IEHINIIT .
for IEHIOSUP .
for IEHLlST ..
for IEHMOVE .
for IEHPROGM

return codes, action on
returning from an exit routine

S
SCRATCH module, changing or replacing
SCRATCH statement
scratching

a data set
a member
a volume table of contents .
temporary data sets .

secondary passwords .
adding
deleting
replacing .. .

SELECT statement
for IEBCOPY
for IEHMOVE .

selecting a program
selecting members to be moved or copied
selective

copy
rename
replace

sequence numbers, assigning .
sequential data sets

comparing
compressing
converting to partitioned .
copying.
creating
editing .
printing.
punching
unloaded
unloading.

sequential output job stream, creating
sharing mountable devices
simultaneous IEHDASDR operations .
SOR '
space allocation with IEBCOPY
specific request for mountable volumes
specific volumes, making requests for
specifying an expiration date .. .
spill data sets, used with IEBCOPY .
standard print operation .
standard punch operation'. .
straight copy
summary of major changes .
supplying literal information .

308 Utilities (Release 21.7)

... 168
159,165

. 6
· 23

· 35
.200

33,200
.280

· 46
· 56
· 83
· 101
.109
· 125
.130
· 165
· 191
.210
.215
.220
.234
.263
.280
.280

.215

.265

.257

.257
257,265
257,265

.262

. 269

.271

.270

.,

· 60
.247

19
54

60
55
60

· 165

· 45
· 55

159,165
. .. 53

123,145,101
145,148,101
107,129,130

129,130
· 123
.227

,. 101
.287
· 193
· 145
· 57
.287
.287

•. ,236
· 57
· 129
· 129

54
17

. 7

surface analysis of direct access volumes
SVC library, moving. . . .
symbolic libraries, updating
SYSCTLG data set

creating
moving or copying. . .

system control data, listing
system status information .
system utility programs

IEHATLAS.
IEHDASDR
IEHINIIT .
IEHIOSUP .
IEHLlST ..
IEHMOVE .
IEHPROGM
IFHSTATR.

T'
tape volumes, labeling
tapemark in a volume label set
TCLOSE module, changing or replacing
TCRGEN statement
temporary data sets, scratching .
temporary spill data sets
test data

,generating . .
patterns of . .

TITLE statement .
TRACK statement
track overflow feature

with IEHATLAS ..
with IEHMOVE . . .

tracks, getting alternate .
transfer control tables, updating.
ITR entries, updating . . .
TYPE
type 21 record processing

u
UCS

loading of .
statement.

uncataloging a data set
UNCATLG statement .
underscore, use of . . . ,
unexpired data sets encountered

during ANALYZE operation'
during DUMP operation . . .
during FORMAT operation ..
during RESTORE operation . .

Universal Character Set buffer, loading the
unloaded data . .
unloaded data sets

creating
loading
reconstructing
format of (lEBISAM)

unloading
indexed sequential data set
partitioned data set
sequential data set

unmovable data sets, moving or copying .
,unpacked to packed decimal conversion
updating

symbolic libraries
transfer control tables
ITR entries in the SVC library . . .

updating in place, a partitioned data set
user exits (see exits)

189,194,27
.215
· 165

.266

.233

.217
· 170
· 24
: 185
· 189
.209
.215
.217
.227
.257
.277

.209

.209

.215
· 151
.265

57

81
81

· 135
· 186

· 186
.237

27,185,189
· 215
.215
· 151
.277

· 43
· 43
.257
.267
· . 7

· 195
.200
· 197
.201
· 43
· 123

· 123
123,124

· 123
· 124

· 123
.227
.227
.227

114,115

· 165
.215
.215
· 165

user labels
as data
as data set descriptors
copying ..•...
EXITS statement ...
LABEL statement
LABELS statement. . .
linkage with label processing exit routines
moving
parameter lists of exit routines
RECORD statement •
relationship between EXITS and LABELS
return codes from exit routines .
utility program handling of
volume switch labels
with IEBCOMPR
with IEBGENER
with IEBPTPCH . . .
with IEBUPDTE . . .
with IEHMOVE

user print specifications
user punch specifications .
user-supplied picture. . .
using NEW, MEMBER, and NAME keywords
utility control statements, format of .
utility control statements (IBCDASDI)

DADEF .
END ..
GETALT ..
IPLTXT ..
JOB ...
LASTCARD
MSG .. .
VLD .. .
VTOCD ..

utility control statements (IBCDMPRS)
DUMP
END ..
JOB ..
MSG ..
RESTORE
VDRL ..

utility control statements (IBCRCVRP)
END .
INSERT
JOB ..
LIST ..
MSG ..
RECOVER
REPLACE

utility control statements (ICAPRTBL)
DFN
END
FCB
JOB
UCS

utility control statements (IEBCOMPR)
COMPARE
EXITS
LABELS

utility control statements (IEBCOPY)
COPY ..
EXCLUDE
INDD
SELECT

utility control statements (IEBDG)
CREATE.
DSD ..
END
FD
REPEAT

utility control statements (IEBEDIT)
EDIT

· 298
· 297
· 230
. 47,111,136,153

. 47,112,138
.297
.230
.279
.113
.298
.298
. 297
.297
· 47
.112
· 138
· 173
.230
· 129
· 129
· 82
· 171

23
27
27
28
28
28
27
28
28
28
28
33
33
36
33
33
35
35
37
41
40
38
40
38
38
39
43
43
44
44
43
43
46
46
46
46
58
58
61
59
60
85
89
85
92
85
92

· 101
· 101

utility control statements (IEBGENER)
EXITS ..•
GENERATE
LABELS ...•..•......
MEMBER•......
RECORD .•..........

utility control statements (IEBPTPCH)
EXITS ..
LABELS.
MEMBER
PRINT .
PUNCH.
RECORD
TITLE ..

utility control statements (IEBTCRIN)
EXITS•...
TCRGEN

utility control statements (IEBUPDAT)
ALIAS.
DELET
ENDUP
Header
Logical Record
NUMBR

utility control statements (IEBUPDTE)
ALIAS.
Data ..
Detail ..
ENDUP .
Function
LABEL .

utility control statement (IEHATLAS)
TRACK or VTOC

utility control statements (IEHDASDR)
ANALYZE
DUMP .
FORMAT
GETALT.
IPLTXT .
LABEL .
RESTORE

utility control statement (IEHINITI)
INITI

utility control statements (IEHLlST)
LlSTCTLG
lISTPDS
LlSTVTOC

utility control statements (IEHMOVE) .
COPY CATALOG.
COpy DSGROUP
COpy DSNAME
COpy PDS ..
COpy VOLUME .
EXCLUDE
INCLUDE
MOVE CATALOG .
MOVE DSGROUP
MOVE DSNAME
MOVE PDS ..
MOVE VOLUME .
REPLACE
SELECT

utility control statements (IEHPROGM)
ADD .
BLDA.
BLDG .. .
BLDX .. .
CATLG ..
CONNECT.
DELETEP
DLTA ..
DLTX ..
LIST ..
RELEASE

· 111
· 111
· 111
.112
.113
.113
· 131
.136
· 138
· 136
· 132
.134
· 136
· 135
· 150
· 153
· 151
· 160
· 162
· 161
· 162
· 160
· 162
· 161
· 167
· 174
· 173
· 171
· 175
· 167
· 173
· 186
· 186
· 194
· 194
· 198
· 196
· 198
.201
· 198
.200
.211
.211
.221
.221
.222
.222
.237
.244
.240
.239
.242
.245
.246
.246
.243
.239
.238
.241
.245
.247
.247
.265
.269
.268
.269
.267
.266
.268
.271
.268
.267
.272
.269

Index 309

RENAME
REPLACE
SCRATCH.
UNCATLG .•

utility programs
functions of .
invocation of from a problem program

V
VORL statement
verify

backup copies
portions of records

VLO statement
volume compatibility with respect to size .
volume integrity, ensuring. .
volume label set .

contents of •
placing on magnetic tape

310 Utilities (Release 21.7)

.266

.270

.265

.267

19
. 283

35

45
45
29

.228

.287

.209

.209

volume serial number, changing .
volume switch labels, processing
volume table of contents

listing ...
scratching

volumes
copying
mounting and demounting
moving

VTOC, see volume table of contents
VTOC entries/track, by device type
VTOC statement
VTOCO statement

W
3211

loading forms control buffer for
loading Universal Character Set buffer for

.190

.297

.218

.265

.232

.'287

.232

. 186
30

. 43,44

.. 43

Your Comments, Please ...

IBM System/360 Operating System
OS Utilities
System Reference Library

Order Number GC28-6586-15

Your comments and constructive criticism regarding this publication will help us to improve it
so that you may be better served. Each comment will be reviewed carefully by those
responsible for the publication. Comments and suggestions become the property of IBM.

Requests for copies of publications or for assistance in using IBM systems and programs
should not be offered as comments but should be directed to your local IBM representative.

Thank you for your cooperation.

Comments:

No postage necessary if mailed in the U.S.A.

GC28-6586-15

Business Reply Mail
No Postage Necessary If Mailed In The U. S. A.

Postage will be paid by:

IBM Corporation
Post Office Box 1900
Boulder, Colorado 80302

Attention:
Programming Publications

International Business Machines Corporation
Data Processing Division .
1133 Westchester Avenue, White Plains, New York 10604
(U. S. A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

First Class
Permit No. 568
Boulder, Colorado

