
File No. S360-20
Order No. GC28-6550-ll OS

Systems Reference Library

OS Data Management for System Programmers

Release 21

This publication consists of self-contained
~hapters, each of which provides information on
how to modify, extend, or implement the data
management capabilities of the IBM System/360
Operating System control program. It is
designed primarily for system programmers
responsible for maintaining, updating, and
extending the operating system features.

Topics:

Catalog and VTOC Maintenance
IECDSEC'l', IEFJFCBN, and IE.FUCBOB Macro

Instructions
The EXCE Macro Instruction
The XDAP Macro Instruction
Implementing Data Set Protection
Adding a UCS Image to the system Library

Twelfth Edition (April 1973)

This edition replaces the previous edition (numbered GC28-6550-10) and its technical
newsletter (numbered GN26-0750) and makes them both obsolete.

This edition applies to release 21. 7 and to all subsequent releases unless otherwise
indicated in new editions or technical newsletters.

Significant changes are summarized under "Summary of Amendments" following the
list of illustrations. Each technical change is marked by a vertical line to the left of
the changed area.

Information in this publication is subject to significant change. Any such changes will
be published in new editions or technical newsletters. Before using the publication,
consult the latest IBM System/360 and System/370 Bibliography, GA22-6822, and the
technical newsletters that amend that bibliography, to learn which editions and
technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for reader's comments are provided in the back of this pUblication. If the forms
have been removed, comments may be addressed to IBM Corporation, Programming
Center-Publishing, Department D58, Monterey and Cottle Roads, San Jose, California
95193. All comments become the property oflBM.

@) Copyright International Business Machines Corporation 1966, 1967,1968, 1969, 1970,
1971, 1972, 1973

Preface

This publication consists of self-contained
chapters, each of which provides system
programmers with information on how to
modify, extend, or implement the data
management capabilities of the IBM
system/360 Operating System control
program. Although the information in one
chapter is sometimes related to information
in another, all chapters have been written
as separate and complete units. It is
assumed that users of this publication are
thoroughly familiar with the d~ign of the
operating system and its features. such
information can be obtained in IBM
system/360 Operating system: Introduction,
GC28-6534. Each chapter contains its own
introductory section and list of
prerequisite publications. This
organization has been used to reduce
cross-referencing.

Preface 3

Contents

I SUMMARY OF AMENDMENTS FOR GC28-6550-11

SUMMARY OF AMENDMENTS FOR GC28-6550-10

OS RELEASE 21. 7

OS RELEASE 21

SUMMARY OF AMENDMENTS FOR GC28-6550-9 -- OS RELEASE 20.1 ••

MAINTAINING THE CATALOG AND THE VOLUME TABLE OF CONTENTS •
How to Read a Block From the Catalog ••••

-By Specifying the Name of a Data Set
-By Specifying the Name pf a Generation Data Set • • • • • • • • •
-By Specifying a Name Using an Alias •
-By Specifying by TTR • • •• • • • • • • • • •

How to Build an Index ••••••
How to Build a Generation Index • • • •
How to Delete an Index • • • • • • • • •
How to Assign an Alias • • • • • • • • • •
How to Delete an Alias •
How to Connect Control Volumes •
How to Disconnect Control Volumes • • • •
How to Catalog a Data Set • • • • • • • • •

-When Index Levels Exist • • • • • • • • •
-By Creating Required Index Levels • • • • • • • • • • • • • •

How to Remove Data Set References From the Catalog • • • •
-Uncatalog and Retain Index Levels • • • • • • • • •
-Uncatalog and Remove Index Levels • • • • • • • • • •

How to Recatalog a Data Set • • • •• • • • • • • • • • • • • •
How to Read a Data Set Control Block From the Volume Table of
contents
How to Delete a Data Set • • •
How to Rename a Data Set • • •

How to Share Space on a Volume Initialized Under DOS •
Appendix A: Catalog Block Entries • • • • • • •

Control Entries . •
Pointer Entries •• • • • • • • •
The Volume Control Block Contents

Appendix B: Device Code Designations • • •••

MACRO INSTRUCTIONS I IECDSECT, IEFUCBOB, and IEFJFCBN
IECDSECT Macro Instruction •
IEFUCBOB Macro Instruction • • •
IEFJFCBN Macro Instruction • •

.

EXECUTE CHANNEL PROGRAM (EXCP) MACRO INSTRUCTION
Use of EXCP in System and Problem Programs •

System Use of EXCP •• • • • • • • • • • • • •
Programmer Use of EXCP • • • • • • • • • • •

EXCP Requirements •
Channel PrograIn.
Control Blocks • • • • • • • • •

Channel Program Execution • • • • • • • • • • • •
Interruption Handling and Error Recovery Procedures ••••••

Appendages •
Start Input/Output (SIO) Appendage • • • • • • •
Program Controlled Interruption (PCI) Appendage
End-of-Extent Appendage. • • • • • • • • • • •
Channel End Appendage • • • • • • • • • • •
Abnormal End Appendage • • • • • • • • • • •
Block Multiplexer Channel Programming Notes

EXCP Programming Specifications
Macro Instructions • • • • •

DCB -- Define Data Control Block for EXCP

contents

9

10

11

15
16
16
17
18
18
19
20
20
21
21
22
22
23
23
24
24
24
25
25

26
27
28
29
30
30
31
33
34

35
36
37
38

39
40
41
41
42
42
42
43
45
46
48
49
49
50
51
52
54
54
54

5

OPEN -- Initialize Data Control Block
EXCP -- Execute Channel Program. • •
EOV -- End of Volume • • • • • • • •
CLOSE -- Restore Data Control Block

Control Block Fields • • • • • • • • • • • •
Input/Output Block Fields • • • • • • • • •
Event Control Block Fields • • • • • • • • • • •
Data Extent Block Fields • • • • • • • • •

Appendix: RESTORE and PURGE Macro Instruction •••••• •••
RESTORE Macro Instruction • • • • • • • • • •
PURGE Macro Instruction • • • • • • • • • • • • • • • •

ATLAS -- Assign an Alternate Track and Copy Data From the Defective
Track • • . . • • . • • . . . • • . . • • • •

ATLAS Macro Instruction • • • • •
Use of ATLAS .••. . • • • • • • • • • • • • •
Operation of the ATLAS program • • • • •
Return Codes • • • • • • • • • • •• • •

EXECUTE DIRECT ACCESS PROGRAM (XDAP) MACRO INSTRUCTION • • • • • • •
Requirements for Execution of Direct Access Program. • • • • •
XDAP Programming Specifications • • • •• • • • • • • • •

The XDAP Control Block • • • • •
Event Control Block CECB) • • • • • • • • •
Input/Output Block (IOB) •
Direct Access Channel Program • • • • • • • • • • • • • • •

XDAP Options • • • • • • • • •• . • • • • • • • • • • • • •
Appendix: CVT Macro Instruction • • • • • • • • • •

DATA SET PROTECTION • • • • • • • • • • • • • • • • • •
Implementing Data Set Protection • • • • •
Password Data Set Characteristics • • • • • •
Creating Protected Data Sets • • • • • • • • • • • • • • • • • •
Protection Feature Operating Characteristics • • • • • • •
Using the PROTECT Macro Instruction to Maintain the Password Data
Set .

Password Data Set Characteristics and Record Format When You Use
the PROTECT Macro •
Programming Conventions for the PROTECT Macro Instruction

PROTECT Macro Parameter Lists • • • •
Return Codes from the PROTECT Macro • • • •

SYSTEM MACRO INSTRUCTIONS ••• • • • • • • • • •
System Macro Instructions in This Publication • • • •

Locate Device Characteristics (DEVTYPE) Macro Instruction
Device Characteristics Information • • • • •
Output for Each Device Type • • •• •• • • • • •
Exceptional Returns •••••• •• •• • • • • •

How to Read a Job File Control Block •• •• • • • • •
OPEN -- Prepare the Data Control Block for Processing (S) ••••
RDJFCB -- Read a Job File Control Block (S) •••••••••

Programming Notes. •

ADDING A UNIVERSAL CHARACTER SET IMAGE OR A FORMS CONTROL BUFFER
IMAGE TO THE IMAGE LIBRARY • • • • • • • • • • • • • • •
How to Add a UCS Image to the Image Library • • • • • • • • •
How to Add a Forms Control Buffer Image to the Image Library • •

INDEX

6 OS Data Management for System Programmers

61
62
62
63
63
63
65
66
67
67
68

73
73
74
75
75

79
80
81
83
83
84
84
85
88

89
91
91
92
92

93

94
95
95
99

101
102
103
103
105
106
107
107
108
109

111
112
115

117

Figures

Figure EXCPl.
Figure EXCP2.
Figure EXCP3.
Figure EXCP4.

Figure EXCP5.

Figure XDAPl.
Figure XDAP2.
Figure PSWDl.
Figure PSWD2.
Figure PSWD3.
Figure PSWD4.
Figure PSWD5.
Figure CTLGl.
Figure CTLG2.

Illustrations

Data Control Block Format for EXCP (After OPEN) • • • •
Input/Output Block Format • • • • • • • • • • • • • • •
Event Control Block After Posting of Completion Code. •
Error Locations and Return Codes if CCHH is in the
count Area Field
Error Locations and Return Codes if CCHHRKDD is in
the Count Area Field • • • • • • • • • • • • • • • • •
Event Control Block After Posting of Completion Code. •
The XDAP Channel Programs • • • • • •
Parameter List for Add Function • •
Parameter List for Replace Function
Parameter List for Delete Function
Parameter List for List Function
Return Codes from the PROTECT Macro •
Catalog and VTOC Macro Instructions • • • • • • • •
Return Codes of Catalog and VTOC Macro Instructions • •

56
64
66

77

78
83
85
95
97
98
98
99

119
121

Illustrations 7

TAPE DRIVE FEATURE SUPPORT

Summary of Amendments
for GC28-6550-11

OS Release 21.7

The 7-track feature is now supported on all 3400 model tape drives. The
UCB Type Field has been corrected for 3400 tape drives, in the DEVTYPE
macro instruction portion of the manual.

MISCELLANEOUS CHANGES

Other technical and editorial corrections have been made throughout the
manual.

Summary of Amendments 9

Summary of Amendments
for GC28-6550-10
OS Release 21

NEW DEVICE SUPPORT

Information is added to support the IBM
3803/3420 Magnetic Tape Subsystem and
the IBM 3505/3525 Card Reader/Card
Punch.

CATALOG MANAGEMENT

Changes have been made to the section
on catalog and VTOC maintenance to show
changes in the method of adding,
deleting and naming data sets in the
catalog.

~~CRO INSTRUCTIONS ADDED

Information is added about the CVT and
LABEL macro instructions.

ORGANIZA'l'!ON CHANGE

Information from the following chapters
has been relocated to the IBM
System/360 Operating System-MFT Guide,
GC27-6939:

The Must Complete Function
Job Queue Formatting
The PRESRES Volume Characteristics

List
Output separation
Writing System Output Writer Routines
Adding SVC Routines to the Control

Program
Message Routing Exit Routines
Handling Accounting Routines
Reader/Interpreter and Output Writer

Cataloged Procedures
Resident Routines Option
~he Shared DASD Option
The Time slicing Facility
System Macro Instructions (except

DEVTYPE, OPEN, and RDJFCB)

Information from the following chapters
has been relocated to the IBM
System/360 Operating system--MVT Guide,
GC28-6720:

The Must Complete Function
Job Queue Formatting
The PRESRES Volume Characteristics

List
Output separation
Writing System Output Writer Routines
Adding SVC Routines to the Control

Program
Message Routing Exit Routines
Handling Accounting Routines
Reader/Interpreter and Output Writer

Cataloged Procedures - Dedicated
Data Sets

Using the Link Pack Area
Writing Rollout/Rollin Installation

Appendages
The Shared DASD Option
The Time Slicing Facility
System Macro Instructions (except

DEVTYPE, OPEN, and RDJFCB)

The chapter about graphic job
processing has been relocated to the
User's Guide for Job Control from the
IBM 2250 Display Unit, GC27-6933.

The chapter about satellite graphic job
processing has been relocated to the
User's Guide for Job Control from the
IBM 2250 Display Unit Attached to an
IBM 1130 system, GC27-6938.

The chapter about System Management
Facilities was removed during the last
revision. The information may now be
found in IBM system/360 Operating
System SMF Guide, GC28-6715.

Information about the tracing routine
option may now be found in IBM System/360
Operating System: Programmer's Guide to
Debugging, GC28-6670.

MISCELLANEOUS CHANGES

Information is added to clarify
specifications of the password data set
and the use of the IEHPROGM utility
program for updating the password data
set.

New Event Control Block (ECB) codes
have been added to the descriptions in
the EXCP and XDAP macro instruction
8ections.

10 OS Data Management for System Programmers

Summary of Amendments
for GC28·6550·9
OS Release 20.1

r---------------------T------------------------------------r----------------------------,
1 Item I Description 1 Chapter Affected 1
~---------------------+------------------------------------+----------------------------~
1 TSO 1 The PURGE parameter list has a 1 Execute Channel Program 1
1 1 fourth word that can be used to 1 I
1 1 purge a list of TCBs. 1 1
~---------------------+------------------------------------+----------------------------~
ISTART command IThe START command can now be used Isystem Reader, Initiator, I
1 Ito start a problem program. land writer Cataloged I
I I I procedures I
~---------------------+------------------------------------+----------------------------~ 17094 Emulator IChange to the ASB procedure for Isystem Reader, Initiator, 1
I 17094 Emulator land Writer Cataloged I
I I I Procedures I
~---------------------+------------------------------------+----------------------------~
IFORTRAN G IChange to data blocking for Isystem Reader, Initiator, I
I IFORTRAN G land Writer Cataloged I
I I I Procedures I
~---------------------+------------------------------------+----------------------------~
ISTAE IChange to STAE retry routine Isystem Macro Instructions I
I I procedure I I
~---------------------+------------------------------------+----------------------------~
I PROTECT IAdditional return code for IData Set Protection I
I IPROTECT macro instruction I I
~---------------------+------------------------------------+----------------------------~
3211 Printer New device dependent information IIECDSECT, IEFJFCBN, and

for the 3211 Printer IIEFUCBOB Macro Instructions
I
IExecute Direct Access
IProgram (XDAP) Macro
I Instructions
I
Isystem Macro Instructions
I
IWriting System Output Writer
I Routines
I
IOutput separation
I
Isystem Reader, Initiator,
land Writer Cataloged
I procedures
I
IAdding a Universal Character
Iset Image or FCB Image to
Ithe Image Library

~---------------------+------------------------------------+----------------------------~
13330 and ~305 New device dependent information IMaintaining the Catalog
IDirect Access for the 3330 and 2305 Direct land the Volume Table of
I Devices Access Devices I Contents
I I
I IExecute Direct Access
I Iprogram (XDAP) Macro
1 I Instruction
1 I
I Isystem Macro Instructions
I I
I IThe Shared Direct Access
I IStorage Device Option L _____________________ ~ ____________________________________ ~ ___________________________ _

Summary of Amendments 11

Maintaining the Catalog and the Volume Table of Contents

IECDSECT, IEFUCBOB, and IEFJFCBN Macro Instructions

Execute Channel Program (EXCP) Macro Instruction

Execute Direct Access Program (XDAP) Macro Instruction

Data Set Protection

System Macro Instructions

Adding a Universal Character Set Image or a Forms
Control Buffer I mage to the System Library

Index

CONTENTS DIRECTORY

Contents Directory 13

Maintaining the Catalog and
the Volume Table of Contents

This chapter provides detailed information
on how to maintain and modify the catalog
and volume table of contents.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publications listed
below.

PREREQUISITE PUBLICATIONS

The IBM System/360 operating system:
Assembler Language publication (GC28-6514)
contains the information necessary to code
programs in the assembler language.

The IBM systernl360 Operating system:
Data Management services publication
(GC26-3746) contains a general description
of the structure of catalog indexes, as
well as a brief discussion of the volume
table of contents (VTOC).

COMPANION PUBLICATION

The IBM systernl360 Operating system:
System Control Blocks publication
(GC28-6628) contains format and field
descriptions of the system control blocks
referred to in this chapter.

RECOMMENDED PUBLICATIONS

The IBM Systeml360 Operating system:
Utilities publication (GC28-6586) describes
how to maintain and modify the catalog and
the volume table of contents through the
use of utility programs.

Maintaining the Catalog and the Volume Table of Contents 15

Maintaining the Catalog and the Volume Table of Contents

This chapter describes how to maintain and modify the catalog and the
volume table of contents through the use of macro instructions. Most of
the maintenance and modification functions can also be performed using
utility statements. The utility statements are described in the
publication IBM system/360 Operating System: Utilities.

The functions you can perform using the macro instructions are
described in text, and the formats of the macro instructions are
tabulated on a fold-out sheet (Figure CTLG1) at the back of this book.
The chart on the fold-out sheet associates the function described in
text with the macro instructions needed to perform the function. You
should keep the fold-out sheet open when reading the text.

The functions that are described in text are:

• How to read a block from the catalog.
• How to build an index.
• How to build a generation index.
• How to delete an index.
• How to assign an alias.
• How to delete an alias.
• How to connect control volumes.
• How to disconnect control volumes.
• How to catalog a data set.
• How to remove data set references from the catalog.
• How to recatalog a data set.
• How to read a data set control block from the volume table of

contents.
• How to delete a data set.
• How to rename a data set.

Accompanying the function descriptions in text are coding examples
and programming notes; exceptional-return condition codes for the macro
instructions are tabulated on the back of the fold-out sheet (Figure
CTLG2). In the functional descriptions, bytes of data blocks are
numbered from zero (the first byte is byte zero).

HOW TO READ A BLOCK FROM THE CATALOG

To read either an index block or a block indicating the volumes on which
a data set is stored (volume-list block), you use the LOCATE and CAMLST
macro instructions. There are two ways to specify the block that you
want read into main storage: by using the name of the index level or
data set, or by using the block's location relative to the beginning of
the catalog (TTR).

-By specifying the Name of a Data Set

If you specify an index level name, the first block of the named index
is read into main storage, and an exceptional return code is set. Index
block formats are contained in Appendix A of this chapter.

If you specify a data set name, a 2S6-byte volume-list block is read
into main storage. The block contains up to 20 volume pointers, each of
which points to a volume on which part of the data set is stored. The
first two bytes of the block contain the number of volume pointe~s for
the data set. Each volume pointer is a 12-byte field that contains a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. (Device codes are contained in Appendix B of this
chapter.)

16 OS Data Management for System Programmers

If the named data set is stored on more than 20 volumes, bytes
252-254 of the block contain the relative track address of the next
volume-list block of volume pointers. Byte 255 contains a binary zero.

If the named data set is stored on only one volume, bytes 252-254 of
the block contain the relative track address of the DSCB for that data
set" otherwise these bytes are zero. Byte 255 contains a binary zero.

Example: In the following example, the list of volumes that contain
data set A.B is read into main storage. The search for the volume-list
block starts on the system residence volume.

r---------T----------T---,
I Name I Operationl Operand I
~---------+----------+---f
I I LOCATE I INDAB READ VOLUME-LIST BLOCK FOR I
I Check Exceptional Returns CATALOGED DATA SET A.B INTO I
I INDAB I CAMLST I NAME,AB, ,LOCAREA MAIN STORAGE AREA NAMED I
I AB I DC I CL44'A.B' LOCAREA. LOCAREA ALSO I
I LOCAREA I DS I OD CONTAINS 3-BYTE TTR AND I
I I DS I 265C 6-BYTE SERIAL NUMBER I L _________ ~ __________ ~ ___ J

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to
search the catalog for a volume-list block by using the name of a data
set. AB, the second operand, specifies the main storage location of a
44-byte area into which you have placed the fully qualified name of a
data set. LOCAREA, the fourth operand, specifies a 265-byte area you
have reserved in main storage.

After execution of these macro instructions, the 265-byte area
contains: the 256-byte volume-list block for the data set A.B and the
6-oyte serial number of the volume on which the block was found (in
bytes 259-264). If data set A.B resides on only one volume, bytes
252-254 of the volume-list block contain the relative track address of
the DSCB for data set A.B (relative to the beginning of the volume) •

If a code of 4 is returned in register 15 indicating that the
required control volume was not mounted, bytes 259-264 of the work area
will contain the volume serial number of this required volume. If
LOCATE finds an old CVOL pointer entry, and the CVOL is not mounted,
binary zeros will be returned in bytes 252-255 of the work area.
However, if a new CVOL pointer entry is found, the four-byte device code
of the CVOL will be returned in those bytes.

-By specifying the Name of a Generation Data Set

You specify'the name of a generation data set by using the fully
qualified generation index name and the relative generation number of
the data set. The value of a relative generation number reflects the
position of a data set in a generation data group. The following values
can be used:

• Zero - specifies the latest data set cataloged in a generation data
group.

• Negative number - specifies a data set cataloged before the latest
data set.

• Positive number - specifies a data set not yet cataloged in the
generation data group.

Maintaining the Catalog and the Volume Table of Contents 17

When you use zero or a negative number as the relative generation
number, a volume-list block is read into main storage and the relative
generation number is replaced by the absolute generation name.

When you use a positive number as the relative generation number, an
absolute generation name is created and replaces the relative generation
number,. A volume-list block is not read, since none exists for these
data sets.

Example: In the following example, the list of volumes that contain
generation data set A.PAY(-3) is read into main storage. The search for
the volume-list block starts on the system residence volume.

r---------T----------y---, I Name I operation I Operand I
~---------+----------+---~ I I LOCATE ! INDGX READ VOLUME-LIST BLOCK FOR I
I Check Exceptional Returns DATA SET A.PAY(-3) INTO I
I INDGX I CAMLST I NAME, APAY , ,LOCAREA MAIN STORAGE AREA NAMED I
I APAY I DC I CL44' A.PAY (-3) , LOCAREA. LOCAREA ALSO CON- I
I LOCAREA I DS I OD TAINS 3-BYTE TTR AND I
I I DS I 265C 6-BYTE SERIAL NUMBER I L _________ ~ __________ ~ __ J

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to
search the catalog for a volume-list block by using the name of a data
set. APAY, the second operand, specifies the main storage location of a
44-byte area into which you have placed the name of the generation index
and the relative generation number of a data set in the generation data
group. LOCAREA, the fourth operand, specifies a 265-byte area you have
reserved in main storage.

After execution of these macro instructions, the 265-byte area
contains: the 256-byte volume-list block for generation data set
A.PAY(-3) and the 6-byte serial number of the volume on which the block
was found (in bytes 259-264). If data set A.PAY(-3) resides on one
volume, bytes 252-254 of the volume-list block contain the relative
track address of the DSCB for that data set (relative to the beginning
of the volume). In addition, the system will have replaced the relative
generation number that you specified in your 44-byte area with the data
set's absolute generation name.

-By Specifying a Name Using an Alias

For each of the preceding functions, you can specify an alias as the
first name in the qualified name of an index level, data set, or
generation data set. Each function is performed exactly as previously
described, with one exception: the alias name specified is replaced by
the true name.

-By Specifying by TTR

You can read any block in the catalog by specifying, in the form TTR,
the identification of the block and its location relative to the
beginning of the catalog. TT is the number of tracks from the beginning
of the catalog, R is the record number of the desired block on the
track. (Formats of each type of catalog block are contained in Appendix
A of this chapter.)

Example: In the following example, the block at the location indicated
by TTR is read into main storage. The specified block is in the catalog
on the system residence volume.

18 OS Data Management for System Programmers

•

r---------T----------T---,
I Name I Operation I Operand I
~---------+----------+---~
I I LOCATE I BLK READ A BLOCK INTO MAIN I
I Check Exceptional Returns STORAGE AREA NAMED LOCAREA I
I BLK I CAMLST I BLOCK,TTR, ,LOCAREA I
I TTR I DC I H' 5 ' RELATIVE TRACK 5 I
I I DC I X'03' BLOCK 3 ON TRACK I
I LOCAREA I DS I OD LOCAREA ALSO CONTAINS 3-BYTEI
I I DS I 265C TTR AND 6-BYTE SERIAL NO. I L _________ ~ _________ ~ ___ J

The LOCATE macro instruction points to the CAMLST macro instruction.
BLOCK, the first operand of CAMLST, specifies that the system is to
search the catalog for the block indicated by TTR, the second operand.
LOCAREA, the fourth operand, specifies a 265-byte area you have reserved
in main storage.

After execution of these macro instructions, the 265-byte area
contains the 256-byte index block and the 6-byte serial number of the
volume on which the block was found (in bytes 259-264).

HOW TO BUILD AN INDEX

To build a new index structure and add it to the catalog, you must
create each level of the index separately. (You can also create index
levels while you are cataloging a data set onto those index levels. See
"How to Catalog a Data Set" in this chapter for details.) You create
each level of the index by using the INDEX and CAMLST macro
instructions.

These two macro instructions can also be used to add index levels to
existing index structures.

Example: In the following example, index structure A.B.C is built on
the control volume whose serial number is 000045.

r---------T----------T---,
I Name I Operation I Operand I
~---------+----------+---~

I INDEX I INDEXA BUILD INDEX A I
Check Exceptional Returns I

I INDEX I INDEXB BUILD INDEX STRUCTURE A.B I
Check Exceptional Returns I

I INDEX I INDEXC BUILD INDEX STRUCTURE A. B. C I
Check Exceptional Returns I

INDEXA I CAMLST I BLDX,ALEVEL, VOLNUM I
INDEXB I CAMLST I BLDX,BLEVEL,VOLNUM I
INDEXC I CAMLST I BLDX,CLEVEL, VOLNUM I
VOLNUM I DC I CL6'000045' VOLUME SERIAL NUMBER I
ALEVEL I DC I CL2' A' INDEX STRUCTURE NAMES I
BLEVEL I DC I CL4' A. B' FOLLOWED BY BLANKS I
CLEVEL I DC I CL6'A.B.C' WHICH DELIMIT FIELDS I _________ ~ __________ ~ __ J

Each INDEX macro instruction points to an associated CAMLST macro
instruction. BLDX, the first operand of CAMLST, specifies that an index
level be built. The second operand specifies the main storage location
of an area into which you have placed the fully qualified name of an
index level. The third operand specifies the main storage location of
an area into which you have placed the 6-byte serial number of the
volume on which the index level is to be built.

Maintaining the Catalog and the Volume Table of Contents 19

HOW TO BUILD A GENERATION INDEX

You build a generation index by using the INDEX and CAMLST macro
instructions. All higher levels of the index must exist. If the higher
levels of the index are not in the catalog, you must build them. How to
build an index has been explained previously. In the following example,
the generation index D is built on the control volume whose serial
number is 00004S. The higher level indexes A.B.C already exist. When
the number of generation data sets in the generation index D exceeds
four, the oldest data set in the group is uncataloged and scratched.

r---------T----------T---,
,Name ,Operation, Operand ,

~---------+----------+---~
, ,INDEX, GENINDX BUILD GENERATION INDEX I
, Check Exceptional Returns ,
I GENINDX ,CAMLST I BLDG,DLEVEL,VOLNUM, ,DELETE,,4 I
'DLEVEL ,DC , CL8' A. B. C. D' BLANK DELIMITER ,
'VOLNUM ,DC , CL6'00004S' , L _________ ~ _________ ~ __ J

The INDEX macro instruction points to the CAMLST macro instruction.
BLDG, the first operand of CAMLST, specifies that a generation index be
built. DLEVEL, the second operand, specifies the main storage location
of an area into which you have placed the fully qualified name of a
generation index. VOLNUM, the third operand, specifies the main storage
location of an area into which you have placed the 6-byte serial number
of the volume on which the generation index is to be built. DELETE, the
fifth operand, specifies that all data sets dropped from the generation
data group are to be deleted. The final operand, 4, specifies the
number of data sets that are to be maintained in the generation data
group.

HOW TO DELETE AN INDEX

You can delete any number of index levels from an existing index
structure. Each level of the index is deleted separately. Generation
indexes are also removed this way. (You can also delete index levels
automatically when they are no longer needed. See "How to Remove Data
set References from the Catalog" in this chapter for details.) You
delete each level of the index by using the INDEX and CAMLST macro
instructions.

If an index level either has an alias, or has other index levels or
data sets cataloged under it, it cannot be deleted.

Example: In the following example, index level C is deleted from index
structure A.B.C. The search for the index level starts on the system
residence volume.

, r---------T----------T---,
'Name 'Operation' Operand I
~---------+----------+---~ , I INDEX I DELETE DELETE INDEX LEVEL C FROM I
, Check Exceptional Returns INDEX STRUCTURE A.B.C I
I DELETE I CAMLST I DLTX, LEVELC I
,LEVELC I DC I CL6'A.B.C' ONE BLANK FOR DELIMITER I L _________ ~ _________ ~ ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
DLTX, the first operand of CAMLST, specifies that an index level be
deleted. LEVELC, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the index structure whose lowest level is to be deleted.

20 OS Data Management for System Programmers

HOW TO ASSIGN AN ALIAS

You assign an alias to an index level by using the INDEX and CAMLST
macro instructions. An alias can be assigned only to a high level
index; e.g., index A of index structure A.B.C can have an alias, but
index B cannot. Assigning an alias to a high level index effectively
provides aliases for all data sets cataloged under that index. An alias
cannot be assigned to a generation index with only one level.

Example: In the following example, index level A is assigned an alias
of X. The search for the index level starts on the system residence
volume.

r---------T----------T---, I Name ,Operation, operand ,
~---------+----------+---f
I ,INDEX, ALIAS BUILD AN ALIAS FOR A HIGH I
I Check Exceptional Returns LEVEL INDEX ,
'ALIAS ,CAl<1LST ,BLDA, DSNAME, , DSALIAS ,
I DSNAME ,DC , CLS 'A' MUST BE S-BYTE FIELDS I
I DSALIAS , DC , CLS'X' , L _________ ~ _________ ~ ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
BLDA, the first operand of CAMLST, specifies that an alias be built.
DSNAME, the second operand, specifies the main storage location of an
S-byte area into which you have placed the name of the high level index
to be assigned an alias. DSALIAS, the fourth operand, specifies the
main storage location of an S-byte area into which you have Flaced the
alias to be assigned.

HOW ~O DELETE AN ALIAS

You delete an alias previously assigned to a high level index by using
the INDEX and CAMLST macro instructions.

Example: In the following example, alias X, previously assigned as an
alias for index level A, is deleted. The search for the alias starts on
the system residence volume.

r---------T----------T---,
I Name ,Operationl Operand ,
~---------+----------+---f
I I INDEX I DELALIAS DELETE AN ALIAS FOR A ,
, Check Exceptional Returns HIGH LEVEL INDEX ,
I DELALIAS, CAMLST ,DLTA,ALIAS I
,ALIAS 'DC I CLS 'X, MUST BE S-BYTE FIELD I L _________ ~ __________ ~ ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
DLTA, the first operand of CAMLST, specifies that an alias be deleted.
ALIAS, the second operand, specifies the main storage location of an
S-byte area into which you have placed the alias to be deleted.

Maintaining the Catalog and the Volume Table of Contents 21

HOW TO CONNECT CONTROL VOLUMES

You connect two control volumes by using the INDEX and CAMLST macro
instructions. If a control volume is to be connected to the system
residence volume, you need supply only the serial number of the volume
to be connected and the name of a high level index associated with the
volume to be connected.

If a control volume is to be connected to a control volume other than
the system residence volume, you must supply the serial numbers of both
volumes and the name of a high level index associated with the volume to
be connected.

The result of connecting control volumes is that the volume serial
number of the control volume connected and the name of a high level
index are entered into the volume index of the volume to which it was
connected. This entry is called a control volume pointer.

Example: In the following example, the control volume whose serial
number is 001555 is connected to the control volume numbered 000155.
The name of the high level index is HIGHINDX.

r---------T----------T-------------~-----------------------------------,
1 Name 1 Operation 1 Operand 1
~---------+----------+---f I J INDEX J CONNECT CONNECT TWO CON- J
J Check Exceptional Returns THOL VOLUMES WHOSE 1
I CONNECT 1 CAMLST 1 LNRX,INDXNAME,OLDCVOL,NEWCVOL SERIAL NUMBERS AREJ
J INDXNAMEI DC J CLS'HIGHINDX' 000155 AND 001555.1
1 OLDCVOL 1 DC 1 CL6'000155' 1
1 NEWCVOL 1 DC 1 X'30002001' 2311 DISR STORAGE 1
1 1 DC 1 CL6'001555' 1 l _________ ~ _________ ~ ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
LNRX, the first operand of CAMLST, specifies that control volumes be
connected. INDXNAME, the second operand, specifies the main storage
location of an 8-byte area into which you have placed the name of the
high level index of the volume to be connected. OLDCVOL, the third
operand, specifies the main storage location of a 6-byte area into which
you have placed the serial number of the volume to which you are
connecting. NEWCVOL, the fourth operand, specifies the main storage
location of a 10-byte area into which you have placed the 4-byte binary
device code of the volume to be connected followed by the 6-byte area to
contain the volume serial number of the volume to be connected.

HOW TO DISCONNECT CONTROL VOLUMES

You disconnect two control volumes by using the INDEX and CAMLST macro
instructions. If a control volume is to be disconnected from the system
residence volume, you need supply only the name of the high level index
associated with the volume to be disconnected.

If a control volume is to be disconnected from a control volume other
than the system residence volume, you must supply, in addition to the
name of the high level index, the serial number of the control volume
from which you want to disconnect.

The result of disconnecting control volumes is that the control
volume pointer is removed from the volume index of the volume from which
you are disconnecting.

22 OS Data Management for System Programmers

Example: In the following example, the control volume that contains the
high level index HIGHINDX is disconnected from the system residence
volume.

r---------T----------T---,
,Name ,Operation, Operand ,
~---------+----------+---~
, ,INDEX, DISCNECT DISCONNECT TWO CONTROL VOLUMES ,
, Check Exceptional Returns ,
, DISCNECT' CAMLST 'DRPX,INDXNAME ,
, INDXNAME, DC ,CLS'HIGHINDX' MUST BE S-BYTE FIELD , l _________ ~ __________ ~ ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
DRPX, the first operand of CAMLST, specifies that control volumes be
disconnected. INDEXNAME, the second operand, specifies the main storage
location of an 8-byte area into which you have placed the name of the
high level index of the control volume to be disconnected.

HOW TO CATALOG A DATA SET

You catalog a data set by using the CATALOG and CAMLST macro
instructions. The CATALOG macro instruction points to the CAMLST macro
instruction; parameters of the CAMLST macro instruction specify the
options for cataloging a data set. When the CAT parameter is used, all
index levels required to catalog the data set must exist in the catalog.
The index structure need not exist when the CATBX parameter is used; any
missing index levels are automatically created.

You must build a complete volume list in main storage. This volume
list consists of volume pointers for all volumes on which the data set
is stored. The first two bytes of the list indicate the number of
volume pointers that follow. Each 12-byte volume pointer consists of a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. The sequence number is always zero for direct access
volumes. (Device codes are contained in Appendix B of this chapter.)

-When Index Levels Exist

When the index levels already exist for a data set, you can use the CAT
parameter of the CAMLST macro instruction to catalog the data set.
Missing index levels cause an exceptional return code to be set.

Example: In the following example, the data set named A.B.C is
cataloged under an existing index structure A.B. The data set is stored
on two volumes.

r---------T----------T---,
,Name ,Operation, Operand ,
~---------+----------+---~
, ,CATALOG ,ADDABC CATALOG DATA SET A.B.C. THE,
, Check Exceptional Returns INDEX STRUCTURE A.B. EXISTS'
'ADDABC ,CAMLST ,CAT,DSNAME"VOLUMES ,
'DSNAME ,DC I CL6'A.B.C' ONE BLANK FOR DELIMITER I
I VOLUMES I DC I H' 2' TWO VOLUMES I
I I DC I X, 30002001' 2311 DISK STORAGE I
I I DC I CL6' 000014' VOLUME SERIAL NUMBER I
, , DC I H' 0' DATA SE.'l' SEQUENCE NUMBER ,
I , DC , X'30002001' 2311 DISK STORAGE I
I , DC I CL6' 000015' VOLUME SERIAL NUMBER ,
I I DC I H' 0 ' SEQUENCE NUMBER I l _________ ~ __________ ~ ___ J

Maintaining the Catalog and the Volume Table of Contents 23

The CATALOG macro instruction points to the CAMLST macro instruction.
CAT, the first operand of CAMLST, specifies that a data set be
cataloged. DSNAME, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the data set to be cataloged. VOLUMES, the fourth operand, specifies
the main storage location of the volume list you have built.

-By Creatinq Required Index Levels

When index levels are missing, you can use the CATBX parameter of the
CAMLST macro instruction to automatically create them before cataloging
the data set.

Example: In the following example, the index structure A.B is created
and data set A.B.C is cataloged. The data set is stored on one volume.

r---------T----------T---,
I Name I Operation I Operand I
~---------+----------+---1
I I CATALOG I CTBXABC CATALOG DATA SET A.B.C I
I Check Exceptional Returns CREATE NEEDED INDEX LEVELS I
I CTBXABC I CAMLST I CATBX,DSNAME,VOLUMES,DSCBTTR=TTR I
I DSNAME I DC I CL6'A.B.C' ONE BLANK FOR DELIMITER I
I VOLUMES I DC I H'l' ONE VOLUME I
I I DC I X'30002001' 2311 DISK STORAGE I
I I DC I CL6'000015' VOLUME SERIAL NUMBER I
I I DC I H' 0' DATA SET SEQUENCE NUMBER I
I TTR I DC I XL3'000103' TTR OF DSCB IN VTOC I L _________ i __________ i ___ J

The CATALOG macro instruction points to the CAMLST macro instruction.
CATBX, the first operand of CAMLST, specifies that a data set is to be
cataloged and any required higher level indexes are to be created.
DSNAME, the second operand, specifies the main storage location of an
area into which you have placed the fully qualified name of the data set
to be cataloged. VOLUMES, the third operand, specifies the main storage
location of the volume list you have built. DSCBTTR=TTR, the fourth
operand, specifies the main storage location into which you have placed
the relative track address of the DSCB for the data set to be cataloged.
The DSCBTTR operand is optional and is ignored for data sets residing on
more than one volume.

HOW TO REMOVE DATA SET REFERENCES FROM THE CATALOG

You remove data set references from the catalog by using the CATALOG and
CAMLST macro instructions. Two options are available: simply remove
references, or remove references and delete any indexes that are no
longer needed.

-Uncataloq and Retain Index Levels

When the UNCAT operand of the CAMLST macro instruction is used, a data
set reference is removed, but all index levels are retained.

Example: In the following example, references to data set A.B .• C are
removed from the catalog.

24 OS Data Management for System Programmers

r---------T----------T---,
I Name I Operation I Operand I
~---------+----------+---f
I I CATALOG I REMOVE REMOVE REFERENCES TO DATA I
I Check Exceptional Returns SET A.B.C FROM THE CATALOG I
I REMOVE I CAMLST I UNCAT,DSNAME I
I DSNAME I DC I CL6'A.B.C· ONE BLANK FOR DELIMITER I l _________ ~ __________ ~ ___ J

The CATALOG macro instruction points to the CAMLST macro instruction.
UNCAT, the first operand of CAMLST, specifies that references to a data
set be removed from the catalog. DSNAME, the second operand, specifies
the main storage location of an area into which you have placed the
fully qualified name of the data set whose references are to be removed.

-Uncatalog and Remove Index Levels

When the UNCATDX operand of the CAMLST macro instruction is used, a data
set reference and unneeded indexes, with the exception of the
highest-level index, are removed from the catalog.

Example: In the following example, references to data set A.B.C are
removed from the catalog. Index B is removed unless it contains
references to other data sets. Index A remains because it is the
highest level index.

r---------T----------T---,
I Name I Operation I Operand I
~---------+----------+---f
I I CATALOG I RMDSNNDX REMOVE REFERENCES TO DATA I
I Check Exceptional Returns SET A.B.C FROM THE CATALOG I
I RMDSNNDXI CAMLST I UCATDX,DSNAME AND REMOVE INDEXES I

I DSNAME I DC I CL6'A.B.C' ONE BLANK FOR DELIMITER I l _________ ~ __________ ~ ___ J

The CATALOG macro instruction points to the CAMLST macro instruction.
UNCATDX, the first operand, specifies that references to a data set be
removed from the catalog. DSNAME, the second operand, specifies the
main storage location of an area into which you have placed the fully
qualified name of the data set whose references are to be rerooved.

HOW TO RECATALOG A DATA SET

You recatalog a cataloged data set by using the CATALOG and CAMLST macro
instructions. Recataloging is usually performed when new volume
pointers must be added to the volume list of a data set.

You must build a complete volume list in main storage. This volume
list consists of volume pointers for all volumes on which the data set
is stored. The first two bytes of the list indicate the number of
volume pointers that follow. Each 12-byte volume pointer consists of a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. The sequence number is always zero for direct access
volumes. (Device codes are contained in Appendix B of this chapter.)

Example: In the following example, the data set named A.B.C is
recataloged. A new volume pointer is added to the volume list, which
previously contained only two volume pointers.

Maintaining the Catalog and the Volume Table of Contents 25

r---------T----------T---, I Name I Operation I Operand I
.---------+----------+---f I CATALOG I RECATLG RECATALOG DATA SET A,. B. C,

Check Exceptional Returns ADDING A NEW VOLUME

RECATLG
DSNAME
VOLUMES

POINTER TO THE VOLUME
CAMLST RECAT,DSNAME"VOLUMES LIST.
DC CL6'A.B.C I ONE BLANK FOR DELIMITER
DC H I 3' THREE VOLUMES
DC X'30002001' 2311 DISK STORAGE
DC CL6'000014' VOLUME SERIAL NUMBER
DC H' 0 I SEQUENCE NUMBER
DC X'30002001' 2311 DISK STORAGE
DC CL6'00001S' VOLUME SERIAL NUMBER
DC H ' 0 ' SEQUENCE NUMBER
DC X'30002001' 2311 DISK STORAGE
DC CL6'000016' VOLUME SERIAL NUMBER
DC a'o' SEQUENCE NUMBER _________ ~ __________ ~ __ J

The CATALOG macro instruction points to the CAMLST macro instruction.
RECAT, the first operand of CAMLST, specifies that a data set be
recataloged. DSNAME, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the data set to be recataloged. VOLUMES, the fourth operand,
specifies the main storage location of the volume list you have built,.

HOW TO READ A DATA SET CONTROL BLOCK FROM THE VOLUME TABLE OF CONTENTS

You can read a data set control block (DSCB) into main storage by using
the OBTAIN and CAMLST macro instructions. There are two ways to specify
the DSCB that you want read: by using the name of the data set
associated with the DSCB, or by using the absdlute track address of the
DSCB.

When you specify the name of the data set, a format 1 <identifier)
DSCB is read into main storage. To read a DSCB other than a format 1
DSCB, you must specify an absolute track address. <OSCB formats and
field descriptions are contained in the system Control Block
publication).

When a data set name is specified, the 96-byte data portion of the
format 1 DSCB, and the absolute track address of the OSCB are read into
main storage. When the absolute track address of a DSCB is specified,
the 44-byte key portion and the 96-byte data portion of the DSCB are
read into main storage.

Example: In the following example, the format 1 OSCB for data set A.S.C
is read into main storage. The serial number of the volume containing
the DSCB is 770655.

r---------T----------T---, I Name I Operation I Operand I
.---------+----------+---f I I OBTAIN I DSCBABC READ DSCB FOR DATA I
I Check Exceptional Returns SET A.B.C INTO MAIN I
I DSCBABC I CAMLST I SEARCH,DSABC,VOLNUM,WORKAREA STORAGE AREA NAMED I
I DSABC I DC I CL44'A.B.C' WORKAREA. 96-BYTE I
I VOLNUM I DC I CL6'770655' DATA PORTION IS I
I WORKAREA I DS I OD READ. THE REST OF I
I I DS I 148C THE AREA IS USED BYI
I I I THE OBTAIN ROUTINE I l _________ ~ __________ ~ ___ J

26 OS Data Management for System Programmers

The OBTAIN macro instruction points to the CAMLST macro instruction.
SEARCH, the first operand of CAMLST, specifies that a OSCB be read into
main storage. OSABC, the second operand, specifies the main storage
location of a 44-byte area into which you have placed the fully
qualified name of the data set whose associated OSCB is to be read.
VOLNUM, the third operand, specifies the main storage location of a
6-oyte area into which you have placed the serial number of the volume
containing the required OSCB. WORKAREA, the fourth operand, specifies
the main storage location of a 148-byte work area that is to contain the
OSCB.

After execution of these macro instructions, the first 96 bytes of
the work area contain the data portion of the format 1 OSCB; the next
five bytes contain the absolute track address of the OSCB.

HOW TO OELETE A OATA SET

You delete a data set stored on direct access volumes by using the
SCRATCH and CAMLST macro instructions. This causes all data set control
blocks (OSCB) for the data set to be deleted, and all space occupied by
the data set to be made available for reallocation. If the data set to
be deleted is sharing a split cylinder, the space will not be made
available for reallocation until all data sets on the split cylinder are
deleted.

A data set cannot be deleted if the expiration date in ~he formqt 1
(identifier) OSCB has not passed, unless you choose to ignore the
expiration date. You can ignore the expiration date by using the OVRO
option in the CAMLST macro instruction.

If a data set to be deleted is stored on more than one volume, either
a device must be available on which to mount the volumes, or at least
one volume must be mounted. In addition, all other required volumes
must be serially mountable. Certain volumes, such as the system
residence volume, must always be mounted.

When deleting a data set, you must build a complete volume list in
main storage. This volume list consists of volume pointers for all
volumes on which the data set is stored. The first two bytes of the
list indicate the number of volume pointers that follow. Each 12-byte
volume pointer consists of a 4-byte device code, a 6-byte volume serial
nUmber, and a 2-byte scratch status code. ,(Device codes are contained
in Appendix B of this chapter.)

Volumes are processed in the order that they appear in the volume
list. Those volumes that are pointed to at the beginning of the list
are processed first. If a volume is not mounted, a message is issued to
the operator requesting him to mount the volume. This is done if you
indicate the I/O device on which unmoumted volumes are to be mounted by
loading register zero with the address of the UCB associated with the
device to be used. If you do not load register zero with the UCB
address, its contents must be zero, and at least one volume in the volume
list must be mounted before the SCRATCH macro instruction is executed.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then
set in the last byte of the volume pointer (the second byte of the
scratch status code) for the unavailable volume, and the next volume
indicated in the volume list is processed or requested.

Example:
volumes.

In the following example, data set A.B.C is deleted from two
The expiration date in the format 1 OSCB is ignored.

Maintaining the Catalog and the Volume Table of Contents 27

r---------T----------T---, I Name I Operationl Operand I
.---------+----------+---f I SR I 0,0 SEl' REG 0 TO ZERO I

I SCRATCH I DELABC DELEl'E DATA SET I
Check Exceptional Returns A.B.C. FROM TWO I

DELABC I CAMLST I SCRATCH, DSABC, , VOLIST , ,OVRD VOLUMES, IGNORING I
DSABC I DC I CL44'A.B.C' THE EXPIRATION I
VOLIST I DC I H' 2' DATE IN THE DSCB. I

I DC I X'30002001' 2311 DISK STORAGE I
I DC I CL6'000017' VOLUME SERIAL NO. I
I DC I H' 0' SCRATCH STATUS CODE I
I DC I X'30002001' 2311 DISK STORAGE I
I DC I CL6' 000018' VOLUME SERIAL NO. I
I DC I H' 0' SCRATCH STATUS CODE I L _________ i-_________ ~ ___ J

The SCRATCH macro instruction points to the CAMLST macro instruction.
SCRATCH, the first operand of CAMLST, specifies that a data set be
deleted. DSABC, the second operand, specifies the main storage location
of a 44-byte area into which you have placed the fully qualified name of
the data set to be deleted. VOLIST, the fourth operand, specifies the
main storage location of the volume list you have built. OVRD, the
sixth operand, specifies that the expiration date be ignored in the DSCB
of the data set to be deleted.

HOW TO RENAME A DATA SET

You rename a data set stored on direct access volumes by using the
RENAME and CAMLST macro instructions. This causes the data set name in
all identifier (format 1) data set control blocks (nsCB) for the data
set to be replaced by the new name that you supply.

If a data set to be renamed is stored on more than one volume, either
a device must be available on which to mount the volumes, or at least
one volume must be mounted,. In addition, all other required volumes
must be serially mountable. Certain volumes, such as the system
residence volume, must always be mounted.

When renaming a data set, you must build a complete volume list in
main storage. This volume list consists of volume pointers for all
volumes on which the data set is stored. The first two bytes of the
list indicate the number of volume pointers that follow. Each 12-byte
volume pointer consists of a 4-byte device code, a 6-byte volume serial
number, and a 2-byte rename status code. (Device codes are contained in
Appendix B of this chapter.)

Volumes are processed in the order they appear in the volume list.
Those volumes that are pointed to at the beginning of the list are
processed first. If a volume is not mounted, a message is issued the
operator requesting him to mount the volume. This is done if you
indicate the I/O device on which unmounted volumes are to be mounted by
loading register zero with the adaress of the UCB associated with the

I device to be used. If you do not load register zero with the UCB
address, its contents must be zero, and at least one volume in the volume
list must be mounted before the RENAME macro instruction is executed.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then
set in the last byte of the volume pointer (the secondary byte of the
rename status code) for the unavailable volume, and the next volume
indicated in the volume list is processed or requested.

28 OS Data Management for System Programmers

Example: In the following example, data set A.B.C is renamed D.E .• F .•
The data set extends across two volumes.

r---------T----------T---, I Name I Operation I Operand I
.---------+----------+---~ I SR I 0,0 SET REG 0 TO ZERO

I RENAME I DSABC CHANGE DATA SET
Check Exceptional Returns NAME A.B.C. TO

DSABC I CAMLST I RENAME,OLDNAME,NEWNAME,VOLIST D.E.F
OLDNAME I DC I CL44'A.B.C'
NEWNAME I DC I CL44'D.E.F'
VOLIST I DC I H' 2' TWO VOLUMES

I DC I X'30002001' 2311 DISK STORAGE
I DC I CL6'000017' VOLUME SERIAL NO.
I DC I H' 0 ' RENAME STATUS CODE
I DC I X'30002001' 2311 DISK STORAGE
I DC I CL6'00001S' VOLUME SERIAL NO.
I DC I H' 0 ' RENAME STATUS CODE I _________ ~ __________ ~ ___ J

The RENAME macro instruction points to the CAMLST macro instruction.
RENAME, the first operand of CAMLST, specifies that a data set be
renamed. OLDN~jE, the second operand, specifies the main storage
location of a 44-byte area into which you have placed the fully
qualified name of the data set to be renamed. NEWNAME, the third
operand, specifies the main storage location of a 44-byte area into
which you have placed the new name of the data set. VOLIST, the fourth
operand, specifies the main storage location of the volume list you have
built.

How to Share Space on a Volume Initialized Under DOS

With the addition to the OS DADSM allocation program of a routine to
convert a DOS format VTOC to an OS format VTOC, it is now possible to
share the space on such a volume (one initialized under DOS> between
data sets written by users using DOS and users using OS. The degree and
limits of sharing are:

• The OS user may now request space in any standard OS form of space
allocation, that is: TRK, CYL, average block size, and ABSTR •

• The OS stand-alone utility program IBCRCVRP does not accept
alternate track assignment made under DOS. If the volume has any
alternate tracks assigned under DOS, and additional alternate tracks
must be assigned, the DOS assign alternate track program must be
used to perform that function.

The net effect is that OS and DOS may share a volume, but the data sets
written under each system can only be read under the system under which
they were written.

Maintaining the Catalog and the Volume Table of Contents 29

Appendix A: Catalog Block Entries

This section describes the contents of all catalog entries.

Control Entries

A volume index control entry is always the first entry in a volume
index. The volume index control entry is 22 bytes long and contains
eight fields.

Field 1: Name field (8 bytes) -- contains only a binary one to ensure
that this entry is the first entry in the first block of the index.

Field 2: Last block address (3 bytes) -- contains the relative track
address of the last block in the volume index. The address is in the
form TTR.

F'ield 3: Halfword count (1 byte) ,-- contains a binary five to indicate
that five half words follow.

Field 4: Catalog upper limit (3 bytes) -- contains the relative track
address of the last block in the catalog data set. The address is in
the form TTR.

Field 5: Zero field (1 byte) -- contains binary zeros.

Field 6: First available block address (3 bytes) -- contains the
relative track address of the unused block in the catalog that is
closest to the beginning of the catalog data set.

Field 7: Zero field (1 byte) -- contains binary zeros.

Field 8: Unused bytes in last block (2 bytes) -- contains the binary
count of the number of unused bytes in the last block of the volume
index.

An index control entry is the first entry in all indexes except
volume indexes. The index control entry is 18 bytes long and contains
six fields.

Field 1: Name field (8 bytes) -- contains only a binary one to ensure
that this entry, because it has the lowest binary name value, is the
first entry in the first block of the index.

Field 2: Last block address (3 bytes) -- contains the relative track
address of the last block assigned to the index. The address is in the
form TTR.

Field 3: Halfword count (1 byte) -- contains a binary three to indicate
that three half words follow.

Field 4: Index lower limit (3 bytes) -- contains the relative track
address of the block in which this entry appears. The address is in the
form TTR.

Field 5: Number of aliases (1 byte) -- contains the binary count of the
number of aliases assigned to the index. If the index is not a high
level index, this field is zero.

Field 6: Unused bytes in last block (2 bytes) -- contains the binary
count of the number of unused bytes remaining in the last block of the
index.

30 as Data Management for System Programmers

An index link entry is the last entry in all index blocks. The entry
is 12 bytes long and contains three fields.

Field 1: Name field (8 bytes) -- contains only the hexadecimal number
FF to ensure that this entry, because it has the highest binary name
value, will appear as the last entry in any index block.

Field 2: Link address (3 bytes) -- contains the relative track address
of the next block of the same index, if there is a next block in the
index. Otherwise, the field contains binary zeros.

Field 3: Halfword count (1 byte) -- contains a binary zero to indicate
that no additional fields follow.

Pointer Entries

An index pointer entry can appear in all indexes except generation
indexes. The entry is 12 bytes long and contains three fields.

Field 1: Name field (8 bytes) -- contains the name of the index being
pointed to by field 2.

Field 2: Index address (3 bytes) -- contains the relative track address
of the first block of the index named in field 1. The address is in the
form TTR.

Field 3: Halfword count (1 byte) -- contains a binary zero to indicate
that no additional fields follow.

A data set pointer entry can appear in any index. It contains the
simple name of a data set and from one to five 12-byte fields that each
identify a volume on which the named data set resides. If the data set
resides on more than five volumes, a volume control block must be used
to point to the volumes. The volume control block is identified by a
volume control block pointer entry, not a data set pointer entry.

The data set pointer entry varies in length. The length is
determined by the formula (14+12m), where m is the number of volumes
containing the data set. The variable m can be from 1 through 5. The
data set pointer entry can appear in any index, and it contains five
fields.

Field 1: Name field (8 bytes) -- contains the simple name of the data
set whose volumes are identified in field 5.

Field 2: DSCB TTR (3 bytes) -- contains the track address (TTR) of the
data set control block if the data set resides on only one volume. If
the data set resides on more than one volume, this field contains a
binary zero.

Field 3: Halfword count (1 byte) -- contains the binary count of the
number of half words that follow. The number is found by the formula
(6m+l), where m is the number of volumes on which the data set resides.
The variable m can be from 1 through 5.

Field 4: Volume count (2 bytes) -- contains the binary count of the
number of volumes identified in field 5 of this entry.

Field 5: Volume entries (12 to 60 bytes) -- contains
12-byte entries, each of which identifies a volume on
resides. Each entry contains a 4-byte device code, a
serial number, and a 2-byte data set sequence number.
sequence number is zero for direct access volumes.

from one to five
which the data set
6-byte volume
The data set

Maintaining the Catalog and the Volume Table of Contents 31

A volume control block pointer entry can appear in any index. It can
identify up to 20 volumes. The entry is 14 bytes long and contains four
fields.

Field 1: Name field (8 bytes) -- contains the last name of the
qualified name of the data set identified by this entry. The data set
resides on the volumes whose serial numbers are given in the volume
control block pointed to by field 2.

Field 2: Address field (3 bytes) -- contains the relative track address
of the volume control block identifying the volumes containing the data
set named in field 1. The address is in the form TTR.

Field 3: Halfword count (1 byte) -- contains a binary one to indicate
that one half word follows.

Field 4: Zero field (2 bytes) -- contains binary zeros.

A control volume pointer entry can appear only in volume indexes. It
is 18 bytes long and contains four fields.

Field 1: Name field (8 bytes) -- contains a high level index name that
appears in the volume index of the control volume identified in field 4.

Field 2: Address field (3 bytes)

Field 3: Halfword count (1 byte)
that three half words follow.

contains binary zeros.

contains a binary three to indicate

Field 4: Control volume serial number (6 bytes) -- contains the serial
number of the control volume whose volume index contains an entry
identifying the high level index name in field 1.

A new control volume pointer entry can appear only in volume indexes.
It is 22 bytes long and contains 5 fields.

Field 1: Name field (8 bytes) contains a high level index name that
appears in the volume index of the control volume identified in fields 4
and 5.

Field 2: Address field (3 bytes) contains binary zeros.

Field 3: Halfword count {1 byte) contains a binary 5 to indicate that
five halfwords follow.

Field 4: Control volume device code (4 bytes) contains the 4-byte
binary device code of the control volume whose index contains an entry
identifying the high level index name in field 1.

Field 5: Control volume serial number (6 bytes) contains the serial
number of the control volume whose index contains an entry identifying
the high level index name in field 1.

An alias entry can appear in volume indexes only. An alias entry is
20 bytes long and contains four fields.

Field 1: Name field (8 bytes) -- contains the alias of the high level
index identified in field 2.

Field 2: Address field (3 bytes) -- contains the relative track address
of the first block of the index named in field 4,. The address is in the
form TTR.

32 OS Data Management for System Programmers

Field 3: Halfword count (1 byte) -- contains a binary four to indicate
that four half words follow.

Field 4: True name field (8 bytes) -- contains the name of the index
whose alias appears in field 1. The address of the index is in field 2.

A generation index pOinter entry can appear in all indexes except
generation indexes. The entry is 16 bytes long and contains six fields.

Field 1: Name field (8 bytes) -- contains the name of the generation
index whose address is contained in field 2.

Field 2: Address field (3 bytes) -- contains the relative track address
of the generation index named in field 1. The address is in the form
TTR.

Field 3: Halfword count (1 byte) -- contains a binary two to indicate
that two half words follow.

Field 4: Flags (1 byte) -- contains flags that govern the uncataloging
of data sets as specified by the DELETE and EMPTY options of the INDEX
macro instruction. The options and their hexadecimal codes are as
follows:

EMPTY=Ol DELETE=02 EMPTY and DELETE=03

Field 5: Maximum generations allowed (1 byte) -- contains the binary
count of the maximum number of generations allowed in the index at one
time as specified in the INDEX macro instruction.

Field 6: Current generation count (2 bytes) contains the binary
count of the number of generations cataloged in the index.

The Volume Control Block Contents

A volume control block is composed of one or more volume-list blocks.
Each volume-list block contains an 8-byte key and a 256-byte data
portion. The data portion of the volume-list block can identify up to
20 volumes on which a data set is recorded. The format of the volume
list block is as follows:

Field 1: Number of volumes (2 bytes) -- the first volume-list block
contains the binary count of volumes on which the data set is stored;
the value of this field is reduced by 20 for each subsequent volume-list
block. If a data set is on 61 volumes, for example, it has four
volume-list blocks. The first field of each block contains 61,41,21,
and 1, respectively.

Field 2: Volume identification (12 to 240 bytes) -- contains from 1 to
20 12-byte entries, each of which identifies a volume on which the data
set resides. Each entry contains a 4-byte device code, a 6-byte volume
serial number, and a 2-byte data set sequence number. The data set
sequence number is zero for direct access volumes.

Field 3: Zero field (10 bytes) -- contains binary zeros.

Field 4: Chain address (3 bytes) -- contains the relative track address
of the next block of this volume control block, if additional blocks
exist. The address is in the form TTR. If this is the last block of
the volume control block, the field contains a binary zero. If this
field is not zero, this block must contain twenty 12-byte fields
identifying volumes of the data set.

Field 5: Zero field (1 byte) -- contains binary zeros.

Maintaining the Catalog and the Volume Table of Contents 33

Appendix B: Device Code Designations

Device

IBM 2400 Series Magnetic
Tape Units

IBM 2400 series Magnetic
Tape Units

IBM 2400 Series Magnetic
Tape Units

IBM 2400 Series Magnetic
Tape Units

IBM 2400 Series Magnetic
Tape Units

IBM 2311 Disk Storage

IBM 2301 Drum Storage

IBM 2302 Disk Storage

IBM 2303 Drum Storage

IBM 2314 Direct Access
storage Facility

IBM 2321 Data Cell

IBM 2305 Fixed Head
storage Mode I 1

IBM 2305 Fixed Head
storage Model 2

Drive

IBM 3330 Disk Storage

IBM 3400 Series Magnetic
Tape Units

IBM 3400 Series Magnetic
Tape Units

IBM 3400 Series Magnetic
Tape Units

Features

7-track Compatibility

7-track Compatibility
Data Conversion

Phase Encoding

Phase Encoding
with Dual Density

Phase Encoding

Phase Encoding
with Dual Density

7-track

Device Code
Designation
(In Hexadecimal)

30008001

30808001

30C08001

34008001

34208001

30002001

30402002

30002004

30002003

30C02008

30002005

30002006

30002007

30502009

34008003

34208003

34C08003

Note: These and other device codes are also enumerated under the
DEVTYPE macro instruction in the chapter: "system Macro Instructions."

34 OS Data Management for System Programmers

IECDSECT, IEFUCBOB, and

IEF JFCBN Macro Instructions

If you want to use the IECDSECT, IEFJFCBN,
and IEFUCBOB macro instructions, you must
either add these macro definitions to the
macro library (SYS1.MACLIB) or place them
in a separate partitioned data set and
concatenate this data set to the macro
library. Expansions of these macros appear
in the microfiche for some open/close/EOV
modules.

This chapter contains the following:

• The format of the macro instructions.

• The job control and utility statements
needed to add the macro instructions to
the library.

Information about label handling routines
may be found in the publication IBM Ststem/360
Operating System: Tape Labels, GC28- 680.

IECDSECT, IEFUCBOB, and IEFJFCBN Macro Instructions 35

IECDSECT Macro Instruction

This macro instruction defines the s-mbolic names of fields in the work
area used by the OPEN, CLOSE, TCLOSE, and EOV routines. Consult IBM
System/360 Operating system: Input/Output support (OPEN/CLOSE/EOV)
Program Logic Manual, GY28-6609, for a description of fields in the work
area. Code this macro instruction with blank name and operand fields, and
precede it with a DSECT statement. Note: The IEFJFCBN macro instruction is
used in the assembly of IECDSECT. The macro definition for IEFJFCBN must be
present in the macro-library (SYS1.MACLIB) for successful definition of all
fields in the work area.

r------T-----------T---, I Name I Operation I Operand I
~------+-----------+---~ I I IECDSECT I I L ______ ~ __________ ~ ___ J

Control statements Reguired

r--,
//jobname JOB {parameters} I
//stepname EXEC PGM=IEBUPDTE,PARM=NEW I
/ /SYSPRINT DD SYSOUT=A I
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DD DATA
./ ADD NAME=IECDSECT,LIST=ALL

IECDSECT Macro definition

./ END UP
/* __ J

36 OS Data Management for System Programmers

IEFUCBOB Macro Instruction

This macro instruction defines the symbolic names of all fields in the
unit control block (UCB). Code this macro instruction with blank name
and operand fields, and precede it with a DSECT statement.

r------T-----------T---, I Name I Operation I Operand I
~------+-----------+---~
I I IEFUCBOB I I L ______ i-__________ ~ ___ J

Control statements Required

r--,
//jobname JOB {parameters}
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DD DATA
./ ADD NAME=IEFUCBOB,LIST=ALL

IEFUCBOB Macro definition

./ ENDUP
/* L __ J

The IEFUCBOB macro definition may be found in the SYSI.MODGEN data set on
one of the system generation DLIB disks. SYSI.MODGEN may be concatenated
to SYSI.MACLIB during your assembly.

IECDSECT, IEFUCBOB, and IEFJFCBN Macro Instructions 37

IEF JFCBN Macro Instruction

This macro instruction defines the symbolic names of all fields in the
job file control block (JFCB). Code this macro instruction with blank
name and operand fields, and precede it with a DSECT statement.

r------T-----------T---, I Name I Operation I Operand I
.------t-----------t---f
I I IEFJFCBN I I l ______ ~ __________ ~ ___ J

Control statements Required

r--,
//jobname JOB (parameters)
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DD DATA
./ ADD NAME=IEFJFCBN,LIST=ALL

IEFJFCBN macro definition

./ ENDUP
/* __ J

38 OS Data Management for System Programmers

Execute Channel Program (EXCP)
Macro Instruction

This chapter contains a general description
of the function and application of the
execute channel program (EXCP) macro
instruction, accompanied by descriptions of
specific control blocks and macro
instructions used with EXCP. Factors that
affect the operation of EXCP, such as
device variations and program modification,
are also discussed.

The EXCP macro Instruction provides you
with a device-dependent means of performing
the I/O operations. Before reading this
chapter, you should be familiar with system
functions and with the structure of control
blocks, as well as with the operational
characteristics of the I/O devices required
by your channel programs. Operational
characteristics of specific I/O devices are
contained in IBM system Reference Library
publications for each device.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:
Supervisor Services and Macro Instructions
publication (GC28-6646) explains the
standard procedures for I/O processing
under the operating system.

The IBM System/360 Operating system:
Assembler Language publication (GC28-6514)
contains the information necessary to code
programs in the assembler language.

The IBM system/360 Operatins system:
Data Management Macro Instruct10ns
publication (GC26-3794) describes the
system macro instructions that can be used
in programs coded in the assembler
language.

The IBM System/360 Operating System:
system Control Blocks publication
(GC28-6628) contains format and field
descriptions of the system control blocks
referred to in this chapter.

Execute Channel Program (EXCP) Macro Instruction 39

Execute Channel Program (EXCP) Macro Instruction

Execute channel program (EXCP) is a macro instruction of System/360
Operating system that causes a supervisor-call interruption to pass
control to the input/output supervisor. EXCP also provides the
input/output supervisor with control information regarding a channel
program to be executed. When the IBM standard data access methods are
being used, the access method routines are responsible for issuing EXCP.
If you are not using the standard access methods, you may issue EXCP
directly. Direct use of EXCP provides you with device dependence in
organizing data and controlling I/O devices.

You issue EXCP primarily for I/O programming situations to which the
standard access methods do not apply. When you are writing your own
data access methods, you must include EXCP for I/O operations. EXCP
must also be used for processing of nonstandard labels, including the
reading and writing of labels and the positioning of magnetic tape
volumes.

To issue EXCP, you must provide a channel program (a list of channel
command words) and several control blocks in your program area. The
input/output supervisor then schedules I/O requests for the device you
have specified, executes the specified I/O commands, handles I/O
interruptions, directs error recovery procedures, and posts the results
of the I/O requests.

When planning EXCP operations and appendages for use on central
processing units with parallel processing, special precautions must be
observed. Examples of such central processing units are the IBM
System/360 Models 91 and 195 and the IBM System/370 Model 195 that can
execute instructions in a sequence other than the physical sequence in
which they appear in a listing. such a central processing unit
maintains logical consistency in its own operations, including the
beginning and ending of I/O operations. However, it is impossible for
such a central processing unit to maintain consistency with operations
performed by asynchronous units. This type of central processing unit
recognizes a special "no operation" to force sequential operations in
the environments where it might be required. The appropriate hardware
manual should be carefully studied before coding EXCP and appendage
routines for this type of central processing unit.

Refer to the topic "Block Multiplexer Channel Programming Notes" for
special conditions encountered with command retry.

Use of EXCP In System and Problem Programs

This section briefly explains the procedures performed by the system and
the programmer when the EXCP macro instruction is issued by the routines
of the standard data access methods. The additional procedures that you
must perform when issuing the EXCP macro instruction yourself are then
described by direct comparison.

40 OS Data Management for System Programmers

SYSTEM USE OF EXCP

When using a standard data access method to perform I/O operations, the
programmer is relieved of coding channel programs, and of constructing
the control blocks necessary for the execution of channel programs. To
permit I/O operations to be handled by an access method, the programmer
need only issue the following macro instructions:

• A DCB macro instruction that produces a
the data set to be retrieved or stored.
used, a short DCB is constructed. Such
reduced error recovery.

data control block (DCB) for
If appendages are not being

a DCB does not support

• An OPEN macro instruction that initializes the data control block
and produces a data extent block (DEB) for the data set.

• A macro instruction (e.g., GET, WRITE) that requests I/O operations.

Access method routines will then:

1. Create a channel program that contains channel commands for the I/O
operations on the appropriate device.

2. Construct an input/output block (lOB) that contains information
about the channel program.

3. Construct an event control block (ECB) that is later supplied with
a completion code each time the channel program terminates.

4. Issue an EXCP macro instruction to pass the address of the lOB to
the routines that initiate and supervise the I/O operations.

The input/output supervisor will then:

5. Schedule the I/O request.
6. Issue a start input/output (SIO) instruction to activate the I/O

device.
7. Process I/O interruptions and schedule error recovery procedures,

when necessary.
8. Place a completion code in the event control block after the

channel program has been executed.

The programmer is not concerned with these procedures and does not
know the status of I/O operations until they are complet~d.
Device-dependent operations are limited to those provided by the macro
instructions of the particular access method selected.

PROGRAMMER USE OF EXCP

If you wish to issue the EXCP macro instruction directly, you must
perform the procedures that the access methods perform, as summarized in
items 1 through 4 of the preceding discussion. You must, in addition to
constructing and opening the data control block with the DCB and OPEN
macro instructions, construct a channel program, an input/output block,
and an event control block before you can issue the EXCP macro
instruction. The input/output supervisor always handles items 5 through
8.

After issuing the EXCP macro instruction, you should issue a WAIT
macro instruction specifying the event control block to determine
whether the channel program has terminated. If volume switching is

Inecessary , you must issue an EOV macro instruction. When processing of
the data set has been completed, you should issue a CLOSE macro instruction.

Execute Channel Program (EXCP) Macro Instruction 41

EXCP Requirements

This section describes the channel program that you must provide in
order to issue the EXCP macro instruction. The control blocks that you
must either construct directly, or cause to be constructed by use of
macro instructions, are also described.

CHANNEL PROGRAM

The channel program supplied by you and executed through EXCP is
composed of channel command words (CCWs) on doubleword boundaries. Each
channel command word specifies a command to be executed and, for
commands initiating data transfer, the area to or from which the data is
to be transferred. Channel command word formats used with specific I/O
devices can be found in IBM Systems Reference Library publications for
each device. You should also see the restrictions related to channel
commands for direct-access storage devices in the following section,
"Initiation of Channel Program." All channel command words described
in these publications can be used, with the exception of REWIND and
UNLOAD (RUN).

Data and Command Chaining

Chaining is the successive loading of channel command words into a
channel from contiguous doubleword locations in main storage. Data
chaining occurs when a new channel command word loaded into the channel
defines a new storage area for the original I/O operation. Command
chaining occurs when the new channel command word specifies a new I/O
operation. For detailed information about chaining, refer to the IBM
System/360: Principles of Operation publication (GA22-6821).

To specify either data chaining or command chaining" you must set
appropriate bits in the channel command word, and indicate the type of
chaining in the input/output block. Both data and command chaining
should not be specified in the same channel command word; if they are,
data chaining takes precedence.

When a channel program includes a list of channel command words that
chain data for reading operations, no channel command word may alter the
contents of another channel command word in the same list. (If such
alteration were allowed, specifications could be placed into a channel
command word without being checked for validity. If the specifications
were incorrect, the error could not be detected until the chain was
completed. Data could be read into incorrect locations and the system
could not correct the error.)

CONTROL BLOCKS

When using the EXCP macro instruction, you must be familiar with the
function and structure of an input/output block (IOB), an event control
block (ECB), a data control block (DCB), and a data extent block (DEB).
Brief descriptions of these control blocks follow. Their fields are
illustrated an the section "EXCP Programming specifications."

Input/Output Block (IOB)

The input/output block is used for communication between the problem
program and the system. It provides the addresses of other control
blocks, and maintains information about the channel program, such as the
type of chaining and the progress of I/O operations. You must define
the input/output block and specify its address as the only parameter of
the EXCP macro instruction.

42 OS Data Management for System Programmers

Event Control Block (ECB)

The event control block provides you with a completion code that
describes whether the channel program was completed with or without
error. A WAIT macro instruction for synchronizing I/O operations with
the problem program must be directed to the event control block. You
must define the event control block and specify its address in the
input/output block.

Data Control Block (DCB)

The data control block provides the system with information about the
characteristics and processing requirements of a data set to be read or
written by the channel program. A data control block must be produced
by a DCB macro instruction that includes parameters for EXCP. If
appendages are not being used, a short DCB is constructed. Such a DCB
does not support reduced error recovery. You specify the address of the
data control block in the input/output block.

Data Extent Block (DEB)

The data extent block contains one or more extent entries for the
associated data set, as well as other control information. An extent
defines all or part of the physical boundaries on an I/O device occupied
by, or reserved for, a particular data set. Each extent entry contains
the address of a unit control block (UCB), which provides information
about the type and location of an I/O device. More than one extent
entry can contain the same UCB address. (Unit control blocks are set up
at system generation time and need not concern you.) For all I/O
devices supported by the operating system, the data extent block is
produced during execution of the OPEN macro instruction for the data
control block. The system places the address of the data extent block
into the data control block. (Opening an EXCP data set with DSORG=IS
will not produce an ISAM section in the DEB.)

Channel Program Execution

This section explains how the system uses your channel program and
control blocks after the EXCP macro instruction has been issued.

INITIATION OF CHANNEL PROGRAM

By issuing the EXCP macro instruction, you request the execution of the
channel program specified in the input/output block. The input/output
supervisor checks the request for validity by ensuring that the required
control blocks contain the correct information. If they do not,
abnormal termination procedures are initiated. A program check occurs
if the control blocks are not on correct boundaries.

The input/output supervisor obtains the address of the data control
block from the input/output block and the address of the data extent
block from the data control block. From the data extent block, the
system obtains the address of the unit control block (UCB) for the
desired I/O device. To protect and facilitate reference to the
addresses of the lOB, DEB, and UCB, the input/output supervisor places
these addresses, along with other information about the channel program,
into an area called a request element. The request element is used by
the input/output supervisor for forming queues to keep track of I/O
requests. A channel program's request element is "available" if the
information it contains is no longer to be used by the input/output
supervisor and if it is ready to receive information about another
request. When a request element is "made available", it is removed from
all request queues and placed on a queue of available request elements.

Execute Channel Program (EXCP) Macro Instruction 43

You are not concerned with the contents of the request element unless
you have provided appendage routines, as explained in the section
"Appendages."

After completing the request element for the channel program, the
input/output supervisor determines whether a channel and the requested
I/O device are ready for the channel program. If they are not ready,
the request element is placed into the appropriate queue, and control is
returned to the problem program. The channel program is subsequently
executed when the channel and device are ready.

To initiate execution of the channel program, the system obtains its
address from the input/output block, places this address into the
channel address word (CAW), and issues a start input/output (SIO)
instruction.

Before issuing the SIO instruction for direct access devices, the
system issues the initial seek, which is overlapped with other
operations. You specify the seek address in the input/output block.
When the seek has completed, the system constructs a command chain to
reissue the seek, set the file mask specified in the data extent block,
and pass control to your channel program. (When using the operating
system, you cannot issue the initial seek or set the file mask yourself.
The file mask is set to prohibit Seek Cylinder qommands, or, if space is
allocated by tracks, Seek Track commands. If the data set is opened for
INPUT or RDBACK, Write commands are also prohibited.)

Before issuing SIO for magnetic tape devices, the system constructs a
command chain to set the mode specified in the data extent block and
pass control to your channel program. (When using the operating system,
you cannot set the mode yourself.)

COMPLETION OF CHANNEL PROGRAM

The system considers the channel program completed when it receives an
indication of a channel end condition. When channel end occurs, the
request element for the channel program is made available, and a
completion code is placed into the event control block. The completion
code indicates whether errors are associated with channel end. If
device end occurs simultaneously with channel end, errors associated
with device end (i.e., unit exception or unit check) are also accounted
for. .

Device End Errors

If device end occurs after channel end and an error is associated with
device end, the completion code in the event control block does not
indicate the error. However, the status of the unit and channel is
saved in the unit control block (UCB) for the device, and the UCB is
marked as intercepted. The input/output block for the next request
directed to the I/O device is also marked as intercepted. The error is
assumed to be permanent, and the completion code in the event control
block for the intercepted request indicates interception. The IFLGS
field of the data control block is also flagged to indicate a permanent
error. It should be noted that when a Write Tape Mark or Erase Long Gap
CCW is the last (or only) CCW in your channel program, the I/O
supervisor will not attempt recovery procedures for device end errors.
In these circumstances, command chaining a NOPCCW to your Write Tape
Mark or Erase Long Gap CCW ensures initiation of device end error
recovery procedures.

TO be prepared for device end errors. you should be familiar with
device characteristics that can cause such errors. After one of your
channel programs has terminated, you should not release buffer space

44 OS Data Management for System Programmers

until you have determined that your next request for the device has not
been intercepted. You may reissue an intercepted request.

INTERRUPTION HANDLING AND ERROR RECOVERY PROCEDURES

An I/O interruption allows the CPU to respond to signals from an I/O
device which indicate either termination of a phase of I/O operations or
external action on the device. A complete explanation of I/O
interruptions is contained in the IBM system/360: Principles of
Operation publication. For descriptions of interruptions by specific
devices, refer to IBM systems Reference Library publications for each
device.

If error conditions are associated with an interruption, the
input/output supervisor schedules the appropriate device-dependent error
routine. The channel is then restarted with another request that is not
related1 to the channel program in error. If the error recovery
procedures fail to correct the error, the system places ones in the
first two bit positions of the IFLGS field of the data control block.
You are informed of the error by an error code that the system places
into the event control block.

Error Recovery Procedures for Related Channel Programs

Related channel programs are requests that are associated with a
particular data control block and data extent block in the same job
step. They must be executed in a definite order, i.e., the order in
which the requests are received by the input/output supervisor. A
channel program is not started until all previous requests for related
channel programs have been completed. You specify, in the input/output
block, whether the channel program is related to others.

If a permanent error occurs in a channel program that is related to
other requests, the request elements for all the related channel
programs are removed from their queue and made available. This process
is called purging. The addresses of the input/output blocks for the
related channel programs are chained together, with the address of the
first input/output block in the chain placed into the "User Purge lOB
Address" field of the data extent block. The address of the second
input/output block is placed into the "Restart Address" field of the
first input/output block, and so on. The last input/output block in the
chain is indicated by all ones in its Restart Address field. The chain
defines the order in which the request elements for the related channel
programs are removed from the request queue.

For all requests that are related to the channel program in error,
the system places completion codes into the event control blocks. The
IFLGS field of the data control block is also flagged. Any requests for
a data control block with error flags are posted complete without
execution. If you wish to reissue requests that are related to the
channel program in error, you must reset the first two bits of the IFLGS
field of the data control block to zeros. You then issue a RESTORE
macro instruction, specifying, as the only parameter, the address of the
"User Purge lOB Address" field of the data extent block. This causes
execution of all the related channel programs. (The RESTORE macro
definition and how to add it to the macro-library are in the Appendix of
this chapter.) Alternatively, if you wish to restart only particular
channel programs rather than all of them, you may reissue the EXCP macro
instruction for each channel program desired.

1Related channel programs are discussed in the next section.

Execute Channel Program (EXCP) Macro Instruction 45

Appendages

This section discusses the appendages that you may optionally code when
using the EXCP macro instruction. Before a programmer-written appendage
can be executed, it must be included in the SVC library. These
procedures are explained first; descriptions of the routines themselves
and of their coding specifications follow.

DEFINING APPENDAGES

An appendage must be defined in a DD statement as a member of a SYSl
partitioned data set. The full member name of an appendage is eight
bytes in length, but the first six bytes are required by IBM standards
to be the characters IGG019. The last two characters must be provided
by you as an identification; they may range in collating sequence from
WA to Z9.

ENTERING APPENDAGES INTO SVC LIBRARY

The SVC library is a partitioned data set named SYS1.SVCLIB. You can
insert an appendage into the SVC library during the system generation
process or by link-editing it into the SYS1.SVCLIB. The routine must be
a member of a cataloged partitioned data set whose name begins with
SYS1.

To enter a routine into the SVC library during system generation, you
use the SVCLIB macro instruction. The format of this macro instruction
is given in the publication IBM System/360 Operating system: System
Generation, GC28-6554.

CHARACTERISTICS OF APPENDAGES

An appendage is a programmer-written routine that provides additional
control over I/O operations during channel program execution. By
providing appendages, you can examine the status of I/O operations and
determine the actions to be taken for various conditions. An appendage
may receive control when one of the following occurs:

• Start I/O is issued.
• Program controlled interruption.
• End of extent.
• Channel end.
• Abnormal end.

Appendages are executed in supervisor state. You must not issue, in

I an appendage, any SVc instructions or instructions that change the
status of the computing or operating system (e.g., WTO or LPSW). Since
appendages are disabled for all types of interruptions except machine
checks, you also must not enter loops that test for completion of I/O
operations. An appendage must not alter storage used by either the
supervisor or the input/output supervisor.

46 OS Data Management for System Programmers

The identification of an appendage, which consists of the last two
characters of its 8-character name, must be specified in the DCB macro
instruction, as described in the section "EXCP Programming
Specifications." When the OPEN macro instruction for the data control
block is issued, any appendages specified in the DCB macro instruction
are loaded into main storage. The appendages are linked to the
input/output supervisor when their addresses are placed into a table of
addresses called an appendage vector table. This table is always
constructed by the system when OPEN is issued; if an appendage is not
provided, the table contains the address of a return branch instruction
to the input/output supervisor. Using the appendage vector table, the
input/output supervisor branches and links to an appendage at the
appropriate time. The address of the starting location of the appendage
is placed into register 15.

Parameters are passed to appendages by the input/output supervisor.
These parameters are contained in registers, and are as follows:

• Register 1: Address.of the request queue element (RQE) for the
channe 1 prog ram.

The request queue element contains the following information:

Bytes 1 and 2 -
Link field when the RQE is an I/O queue.

Bytes 3 and 4 -
Address of the unit control block (UCB) for the I/O device.

Byte 5 -
Identification of the task control block (TCB) for the task.
(In a multitasking environment, this field is not used. It
contains all zeros if the request element is not available and
all ones when the request element is available.)

Bytes 6, 7, and 8 -
Address of the input/output block.

Byte 9 -
Priority of the request, if the priority option has been
selected for the system.

Bytes 10, 11, and 12 -
Address of the data extent block.

The request queue element is normally 12 bytes in length; for a
multitasking environment, it includes 4 more bytes that contain the
address of the TCB.

• Register 2:
• Register 3:
• Register 4:
• Register 7:
• Register 14:

• Register 15:

Address of the input/output block (lOB).
Address of the data extent block (DEB).
Address of the data control block (DCB).
Address of the unit control block (UCB).

Address of the loc~tion in the input/output supervisor
to which control i~ to be returned after execution of
the appendage. When passing control from an appendage
to the system, you may use displacements to the return
address in register 14 for optional return procedures.
Some of these procedures differ in their treatment of
the request element associated with the channel
program.
Address of the entry point to the appendage.

You may not change register 1 in an appendage; this is reserved in
case an abnormal condition occurs while the appendage is in control.
Register 9, if used, must be set to binary zero before control is
returned to the system. All other registers, except those indicated in
the descriptions of each appendage, must be saved and restored if they
are used. The following table summarizes register conventions.

Execute Channel Program (EXCP) MacrO Instruction 47

r----------T-----------T------------------------T----------------------,
IAppendageslEntry Pointl Returns I Available Work Reg. I
.----------+-----------+-----------T------------+----------------------~
I I I I Extent Error I I
I EOE I Reg 15 IReg 14 + 0 IReturn I I
I I IReg 14 + 4 ISkip I Reg. 10, 11, 12 & 13 I
I I IReg 14 + 8 ITry Again I I
.----------+-----------+-----------+------------+----------------------~
I SIO I Reg 15 IReg 14 + 0 INormal I Reg. 10, 11 & 13 I
I I IReg 14 + 4 ISkip I I
.----------+-----------+-----------+------------+----------------------~
I PCI I Reg 15 IReg 14 + 0 INormal I Reg. 10, 11, 12 & 13 I
.----------+-----------+-----------+------------+----------------------~
I CE I Reg 15 IReg 14 + 0 INormal I I
I I IReg 14 + 4 ISkip I Reg. 10, 11, 12 & 13 I
I I IReg 14 + 8 IRe-EXCP I I
I I IReg 14 + 12lBy-Pass I I
.----------+-----------+-----------+------------+----------------------~
I XCE I Reg 15 IReg 14 + 0 INormal I I
I I IReg 14 + 4 ISkip J Reg. 10, 11, 12 & 13 I
I I IReg 14 + 8 IRe-EXCP I I
I I IReg 14 + 12lBy-Pass I I L __________ ~ ___________ ~ ___________ ~ ____________ ~ _____________________ J

The types of appendages are listed in the following paragraphs, with
explanations of when they are entered, how they return control to the
system, and which registers they may use without saving and restoring.

Start Input/Output (SIO) Appendage

This appendage is entered before the input/output supervisor issues a
start input/output (SIO) instruction unless an error recovery procedure
is in control. If SIO is not initiated because of a busy condition, the
appendage will be reentered before SIO is reissued.

If the return address in register 14 is used to return control to the
input/output supervisor, the I/O operation is executed normally. You
may optionally bypass the SIO instruction and prevent execution of the
channel program by using the contents of register 14 plus 4 as the
return address. In this case, the channel program is not posted
complete, but its request element is made available. You may do the
posting by taking the following steps:

1.

2.

4.

5.

6.

Save necessary registers.

Place pointer to post entry address from the CVT in Reg 15.

Place current TCB address from the RQE in Reg 12 for OS/MVT.
For OS/MFT, place the TCB identifier from TCBlDF in Reg 12.

Place ECB address from the lOB in Reg 11.

Set the completion code in the high order byte in Reg 10.

Go to Post using BALR 14, 15.

You may use registers 10, 11, and 13 in a start input/output
appendage without saving and restoring their contents.

48 OS Data Management for System Programmers

Program Controlled Interruption (PCI) Appendage

This appendage is entered when a program controlled interruption occurs.
At the time of the interruption, the contents of the channel status word
will not have been placed in the ·channel status word" field of the
input/output block. The channel status word can be obtained from
location 64. You must use the return address in register 14 to allow
the system to proceed with normal interruption processing.

You may use registers 10 through 13 in a program controlled
interruption appendage without saving and restoring their contents.
This appendage may be reentered for the same channel program if the
error recovery procedure is in the process of retrying a CCW with the
program controlled bit set on. The IOBERR flag is set when the error
recovery procedure is in control (IOBFLl = X'20').

Refer to the topic "Block Multiplexer Channel Programming Notes" for
special PCI conditions encountered with command retry.

End-of-Extent Appendage

This appendage is entered when the seek address specified in the
input/output block is outside the allocated extent limits indicated in
the data extent block.

If you use the return address in register 14 to return control to the
system, the abnormal end appendage is entered. An end-of-extent error
code (X'42') is placed in the "ECB code" field of the input/output block
for subsequent posting in the event control block.

You may use the following optional return addresses:

• Contents of register 14 plus 4 - The channel program is posted
complete; its request element is returned to the available queue •

• Contents of register 14 plus 8 - The request is tried again.

You may use registers 10 through 13 in an end-of-extent appendage
without saving and restoring their contents.

Note: If an end-of-cylinder or file-protect condition occurs, the
input/output supervisor updates the seek address to the next higher
cylinder or track address, and re-executes the request. If the new seek
address is within the data set's extent, the request is executed; if the
new seek address is not within the data set's extent, the end-of-extent
appendage is entered. If you wish to try the request in the next
extent, you must move the new seek address into the UCB at UCB+48.

Execute Channel Program (EXCP) Macro Instruction 49

If a file protect condition occurs and was caused by a full seek
(command code=07) embedded within a channel program, the request is
flagged as a permanent error, and the abnormal end appendage is entered.

Channel End Appendage

This appendage is entered when a channel end, unit exception with or
without channel end, or channel end with wrong length record occurs
without any other abnormal end conditions.

If you use the return address in register 14 to return control to the
system, the channel program is posted complete, and its request element
is made available. In the case of unit exception or wrong length
record, the error recovery procedure is performed before the channel
program is posted complete, and the IOBEX flag (X'04') in IOBFLl is set
on.. The condition code may be directly tested by using a BC
instruction. A CC=O means no UEX or WLR accompanied this interruption.
The CSW status may be obtained from the IOBCSW.

If the appendage takes care of the wrong length record and/or unit
exception it may turn off the IOBEX (X'04') flag in IOBFLl and return
normally. The event will then be posted complete (completion code 7F
under normal conditions, taken from the high-order byte of the IOBECB
field). If the appendage returns normally without resetting the IOBEX
flag to zero, the request will be routed to the associated device error
routine, and then the abnormal end appendage will be immediately
entered. This abnormal end appendage will be entered with IOBECB
completion code = '41'.

You may use the following optional return addresses:

• Contents of register 14 plus 4 - The channel program is not posted
complete, but its request element is made available. You may post
the event by using the calling sequence described under the start
I/O appendage. This is especially useful if you wish to post an ECB
other than the IOBECB •

• Contents of register 14 plus 8 - The channel program is not posted
complete, and its request element is placed back on the request
queue so that the I/O operation can be retried. For correct
re-execution of the channel program, you must re-initialize the
"Flags 1", "Flags 2", and "Flags 3" fields of the input/output block
and set the "Error Counts" field to zero. As an added precaution,
the IOBSNS and IOBCSW fields should be cleared.

50 OS Data Management for System Programmers

• Contents of register 14 plus 12 - The channel program is not posted
complete, and its request element is not made available. (The
request element is assumed to be used in a subsequent asynchronous
exit routine.)

You may use registers 10 through 13 in a channel end appendage
without saving and restoring their contents.

Abnormal End Appendage

This appendage may be entered on abnormal conditions, such as: unit
check, unit exception, wrong length indication, program check,
protection check, channel data check, channel control check, interface
control check, chaining check, out-of-extent error, and intercept
condition (i.e., device end error). It may also be entered when an EXCP
is issued for a DCB that has already been purged.

1. When this appendage is entered due to a unit exception and/or wrong
length record indication, the IOBECB code is set to X'41'. For
further information on these conditions see "Channel End
Appendage."

2. When the appendage is entered due to an out-of-extent error, the
IOBECB code is set to X'42'.

3. When this appendage is entered with the IOBECB code set to X'4B',
it is because:

a. The tape ERP having been entered after a repositioning
for error recovery has been done and if there was a unit
check, a check was made in the sense byte for load point, or

b. The tape ERP determines that the IOBCSW command address con
tains zeros.

An exit is made to the I/O supervisor with a permanent error
indication.

4. When the appendage is first entered due to an intercept condition,
the IOBECB code is set to X'7E'. If it is then determined that the
error condition is permanent, the appendage will be entered a
second time with the IOBECB code set to X'44'. The intercept
condition signals that an error was detected at device end after
channel end on the previous request.

Execute Channel Program (EXCP) Macro Instruction 51

5. When the appendage is entered due to an EXCP being issued to an
already purged DCB, this request will enter the abnormal end
appendage with the IOBECB code set to X'4S'. This applies only to
related requests.

6. When the appendage is entered with the IOBECB code set to 7F, it
may be due to a unit check, program check, protection check,
channel data check, channel control check, interface control check
or chaining check. When the IOBECB code is 7F, it may be the first
detection of an error in the associated channel program, or it
could occur after an error routine has attempted to correct the
error but was unsuccessful in its retry. Under these two
conditions, the IOBERR flag is set, it indicates that the error
routine is in control but has not yet declared the error to be
permanent.

To determine if an error is permanent, you should check the nECB
coden field of the input/output block. To determine the type of error,
check the channel status word and the sense information in the lOB.
However, when the ECB code is X'42' or X'4S', these fields are not
applicable. For X'44' the CSW is applicable, but the sense is valid
only if the unit check bit is set. If you use the return address in
register 14 to return control to the system, the channel program is
posted complete, and its request element is made available. (The
SYNADAF macro instruction described in the supervisor and Data
Management Macro Instructions publication may be used in an error
analysis routine to analyze permanent I/O errors.) You may use the
following optional return addresses:

• Contents of register 14 plus 4 - The channel program is not posted
complete, but its request element is made available.

• Contents of register 14 plus S - The channel program is not posted
complete, and its request element is placed back on the request
queue so that the request can be retried. For correct re-execution
of the channel program, you must re-initialize the nFlags 1 n , nFlags
2n, and nFlags 3n fields of the input/output block and set the
nError Countsn field to zero. As an added precaution, the IOBSNS
and IOBCSW fields should be cleared.

• Contents of register 14 plus 12 - The channel program is not posted
complete, and its request element is not made available. (The
request element is assumed to be used in a subsequent asynchronous
exit.)

You may use registers 10 through 13 in an abnormal end appendage
without saving and restoring their contents.

Block Multiplexer Channel Programming Notes

Command retry is a new fUnction of the block multiplexer channel
supporting the 3330 Disk Storage and the 2305 Fixed Head Storage
devices. When the channel receives a retry request, it repeats the
execution of the channel command word (CCW) requiring no additional
input/output interrupts. For example, a control unit may initiate a
retry procedure to recover from a transient error.

52 OS Data Management for System Programmers

A command retry during the execution of a channel program may cause
any of the following conditions to be detected by the initiating
program:

• Modifying CCWs: A CCW used in a channel program must not be
modified before the CCW operation has been successfully completed.
Without the command retry function, a command was fetched only once
from storage by a channel. Therefore, a program could determine
through condition codes or program controlled interruptions (PCI)
that a CCW had been fetched and accepted by the channel. This
permitted the CCW to be modified before re-execution. With the
command retry function, this can not be done, since the channel will
fetch the CCW from storage again on a command retry sequence. In
the case of datachaining, the channel will command retry starting
with the first CCW in the data chain.

• Proqram Controlled Interrupts: A CCW containing a PCI flag may
cause multiple program controlled interruptions to occur. This
happens if the PCI flagged CCW was retried during a command retry
procedure, and a PCI could be generated each time the CCW is
re-executed.

• Residual Count: If a channel program is prematurely terminated
during the retry of a command, the residual count in the channel
status word (CSW) will not necessarily indicate the extent of main
storage used. For example, if the control unit detects a "wrong
length record" error condition, an erroneous residual count is
stored in the csw until the command retry is successful. When the
retry is successful, the residual in the CSW is the correct length
of the data transfer. Since the channel will not allow more data to
be transferred than is specified in the count field of the CCW, this
situation will occur only when reading variable records or unknown
record types.

• Command Address: When data chaining with command retry, the CSW may
not indicate how many CCWs have been executed at the time of a PCI.

For example:

ccw#
-1-

2
3
4

Channel
Read
Read
Read
Read

Program
data chain
data chain
data chain, PCI
command chain

In this example, assume that the control unit signals command retry
on Read #3 and the CPU accepts the PCI after the channel resets the
command address to Read #1 because of command retry. The CSW stored
for the PCI will contain the command address of Read #1, when
actually the channel has progressed to Read #3.

• "Bit Spinning" on Data Read: Any program that tests a data storage
location to determine when a CCW has been executed and continues to
execute based on this data may get incorrect results if an error is
detected and the CCW is retried. An example of this is a PCI
appendage in which ones are placed in a buffer area that will be
overlayed with zeros when a record is read,. When the PCI appendage
is entered, a check for zeros is made and the appendage will
continue to loop until the record is read into the buffer (indicated
by ones changed to zeros). If the appendage uses the data from this
record to modify a channel program., the results will be
unpredictable during a command retry sequence, as the CCW has not
been correctly executed.

Execute Channel Program (EXCP) Macro Instruction 53

EXCP Programming Specifications

This section describes the parameters of the macro instructions that you
must use with EXCP, and the fields of the required control blocks.

MACRO INSTRUCTIONS

If you are using the EXCP macro instruction you must also use DCB, OPEN,
CLOSE, and, in some cases, the EOV macro instruction. The parameters of
these macro instructions, and of the EXCP macro instruction itself, are
listed and explained here. A diagram of the data control block is
included with the description of the DCB macro instruction.

DCB -- Define Data Control Block for EXCP

The EXCP form of the DCB macro instruction produces a data control block
that can be used with the EXCP macro instruction. You must issue a DCB
macro instruction for each data set to be processed by your channel
programs. Notation conventions and format illustrations of the DCB
macro instruction are given in the Data Management Macro Instructions
publication. DCB parameters that apply to EXCP may be divided into four
categories, depending on the following portions of the data control
block that are generated when they are specified:

• Foundation block. This portion is required and is always 12 bytes
in length. You must specify two of the parameters in this category.

• EXCP interface. This portion is optional. If you specify any
parameter in this category, 20 bytes are generated.

• Foundation block extension and common interface. This portion is
optional and is always 20 bytes in length. If this portion is
generated, the device dependent portion is also generated.

• Device dependent. This portion is optional and is generated only if
the foundation block extension and common interface portion is
generated. Its size ranges from 4 to 20 bytes, depending on
specifications in the DEVD parameter of this category. However, if
you do not specify the DEVD parameter (and the foundation extension
and common interface portion is generated), the maximum 20 bytes for
this portion are generated.

Some of the procedures performed by the system when the data control
block is opened. and closed (such as writing file marks for output data
sets on direct access volumes) require information from optional data
control block fields. You should make sure that the data control block
is large enough to provide all information necessary for the procedures
you want the system to handle.

Figure EXCP1 shows the relative position of each portion of an opened
data control block. The fields corresponding to each parameter of the
DCB macro instruction are also designated, with the exception of DDNAME,
which is not included in a data control block that has been opened. The
fields identified in parentheses represent system information that is
not associated with parameters of the DCB macro instruction.

Sources of information for data control block fields other than the
DCB macro instruction are data definition (DD) statements, data set
labels, and data control block modification routines. You may use any
of these sources to specify DCB parameters. However, if a portion of
the data control block is not generated by the DCB macro instruction,
the system does not accept information intended for that portion from
any alternative source.

54 OS Data Management for System Programmers

FOUNDATION BLOCK PARAMETERS:

DDNAME=symbol
The name of the data definition (DD) statement that describes the
data set to be processed. This parameter must be given.

MACRF=(E)
The EXCP macro instruction is to be used in processing the data set.
This parameter must be given. When creating, updating, or accessing
a direct (BDAM) data set that resides on more than one volume, you
should code the DCB macro instruction using MACRF=(R) or MACRF=(W)
instead of MACRF=(E) so that the operating system will automatically
mount all of the volumes of the data set and complete the DEB.

REPOS= Y
M

Magnetic tape volumes:
If your system generation statements include the dynamic device
reconfiguration (DDR) entry, then this parameter controls whether the
DDR routine will attempt to reposition the volume after swapping
devices. (To have the DDR routine attempt to reposition your tape
volume, you must maintain the block count in the DCBBLKCT field.)

Y - Yes, attempt to reposition.

N - No, do not attempt to reposition.

If the entry is omitted, N is assumed.

EXCP INTERFACE PARAMETERS:

EOEA=symbol
2-byte identification of an end-of-extent appendage that you have
entered into the SVC library. (See Note A.)

PCIA=symbol
2-byte identification of a program controlled interruption (PCI)
appendage that you have entered into the SVC library. (See Note A.)

SIOA=symbol
2-byte identification of a start I/O (SIO) appendage that you have
entered into the SVC library. (See Note A.)

CENDA=symbol
2-byte identification of a channel end appendage that you have
entered into the SVC library. (See Note A.)

XENDA=symbol
2-byte identification of an abnormal end appendage that you have
entered into the SVC library. (See Note A.)

OPTCD=code
A code of Z indicates that for magnetic tape (input only) a reduced
error recovery procedure (5 reads only) will occur when a data check
is encountered. It should be specified only when the tape is known
to contain errors and the application does not require that all records
be processed. Its proper use would include error frequency analysis in
the SYNAD routine. Specification of this parameter will also cause
generation of a foundation block extension. This parameter is ignored
unless it was selected at system generation.

IMSK=value
Any specification indicates that the system will not use IBM supplied
error routines.

Execute Channel Program (EXCP) Macro Instruction 55

Note A: The full name of an appendage is eight bytes in length, but the
first six bytes are required by IBM standards to be the characters
IGG019. You provide the last two characters as the 2-byte
identification; they may range in collating sequence from WA to Z9.

DCB
Address

+ 4

+ 8

+12

+16

r---,
The device dependent portion of
the data control block varies
in length and format according
to specifications in the DSORG
and DEVD parameters. Illustra
tions of this portion for each
device type are included in
the description of the DEVD
parameter.

~----------T--------------------------------~
I I I

+20 I BUFNO I BUFCB I
~----------i----------T---------------------~

Device
Dependent

I I I Common
+24 I BUFL I DSORG I Interface

~---------------------i---------------------l
I I

+28 I IOBAD I
~----------T--------------------------------~
I BFTEK, I I

+32 I BFALN I EODAD I
I HIARCHY I I
~----------+--------------------------------~ Foundation Block
I I I Extension

+36 I RECFM I EXLST J

~----------i----------T---------------------~
I J I

+40 J (TIOT) I MACRF I
~----------T----------i---------------------~
I I I

+44 I (IFLGS) I (DEB Address) I Foundation Block

~----------+--------------------------------~
I I I

+48 J (OFLGS) J Reserved I
~----------+--------------------------------~
I I I

+52 I OPTCD I Reserved I
~------__ --i--------------------------------~
I I

+56 J Reserved I
~---------------------T---------------------i
I I I

+60 I EOEA I PCIA I EXCP Interface
~---------------------+---------------------i
I I I

+64 I SIOA I CENDA I
~---------------------+---------------------l
I I I

+68 I XENDA J Reserved I L _____________________ i _____________________ J

Figure EXCP1. Data Control Block Format for EXCP (After OPEN)

56 OS Data Management for System Programmers

FOUNDATION BLOCK EXTENSION AND COMMON INTERFACE PARAMETERS:

EXLST=relexp
specifies the address of an exit list that you have written for
exceptional conditions. The format of this exit list is given in
the Data Management Services publication.

EODAD=relexp
specifies the address of your end-of-data set routine. If this
routine is not available when it is required, the task is
abnormally terminated,.

DSORG=code
specifies the data set organization as one of the following codes.
Each code indicates that the format of the device dependent portion
of the data control block is to be similar to that generated for a
particular access method:

Code
PS
PO
DA
IS

DCB Format for
QSAM or BSAM
BPAM
BDAM
QISAM or BISAM

Note: For direct access devices, if you specify either PS or PO, you
must maintain the following fields of the device dependent portion of
the data control block so that the system can write a file mark for
output data sets:

• The track balance (TRBAL) field, which contains a 2-byte binary
number that indicates the remaining number of bytes on the current
track •

• The full disk address (FDAD-MBBCCHHR) field, which indicates the
location of the current record.

IOBAD=relexp
specifies the address of an input/output block (lOB). If a pointer
to the current lOB is not required, you may use this field for any
purpose.

The following parameters are not used by the EXCP routines but
provide cataloging information about the data set. This information can
be used later by access method routines that read or update the data
set.

RECFM=code
specifies the record format of the data set. Record format codes
are given in the Data Management Macro Instructions publication.
When writing a data set to be read later without EXCP, the RECFM,
LRECL, and BLKSIZE should be specified to identify the data set
attributes. LRECL and BLKSIZE can only be specified in a JCL
statement, since these fields do not exist in a DCB used by EXCP.

BFTEK={SIE}
specifies the buffer technique as either simple or exchange. BFTEK
bits 0 and 5 specify whether hierarchy 0 or hierarchy 1 is used to
form the buffer pool. If HIARCHY={Oll} is omitted from the DCB,
the buffer pool is formed in hierarchy O.

Execute Channel Program (EXCP) Macro Instruction 57

BFALN={FID}
specifies the word boundary alignment of each buffer as either
fullword or doubleword.

BUFL=absexp
specifies the length in bytes of each buffer; the maximum length is
32,767.

BUFNO=absexp
specifies the number of buffers assigned to the associated data
set; the maximum number is 255.

BUFCB=relexp
specifies the address of a buffer pool control block, i.e., the
a-byte field preceding the buffers in a buffer pool.

DEVICE DEPENDENT PARAMETERS:

DEVD=code
specifies the device on which the data set may reside as one of the
following codes. The codes are listed in order of descending space
requirements for the data control block:

Code
DA
TA
PT
PR
PC
RD

Device
Direct access
Magnetic tape
Paper tape
Printer
Card punch
Card reader

Note: If you do not wish to select a specific device until job set up
time, you should specify the device type requiring the largest area.

The following diagrams illustrate the device dependent portion of the
data control block for each device type specified in the DEVD parameter,
and for each data set organization specified in the DSORG parameter.
Fields that correspond to device dependent parameters in addition to
DEVD are indicated by the parameter name. For special services, you may
have to maintain the fields shown in parentheses. The special services
are explained in the note that follows the diagram.

Device dependent portion of data control block when DEVD=DA and
DSORG=PS or po:

DCB r-------T---------------------,
Address + 4 I Reservdl I

~ _____ J I

I I
+ a I (FDAD - MBBCCHHR) I

I I
I r-------T-----------_i

+12 I I DVTBL I Reserved I

+16
~-----+-------T------------_i I KEYLEN I DEVT I (TRBAL) I L _______ ~ ______ L ____________ _J

~: For output data sets, the system uses the contents of the full
disk address (FDAD-MBBCCHHR) field plus one to write a file mark when
the data control block is closed, provided the track balance (TRBAL)
field indicates that space is available. You must maintain the contents
of these two fields yourself if the system is to write a file mark.
OPEN will initialize DVTBL and DEVT.

58 OS Data Management for System Programmers

Device dependent portion of data control block when DEVD=DA and
DSORG=IS or DA:

DCB r-------T---------------------,
Address +16 IKEYLEN I Reserved I L--_____ ~ ___________________ _J

Device dependent portion of data control block when DEVD=TA and
DSORG=PS:

DCB r-----------------------------,
Address +12 I BLKCT I

r-----~------~-------T-----~
+16 ITRTCH IReservdlDEN I Resrvd I L ______ 4 ______ -4 _______ 4 _____ _J

Note: For output data sets, the system uses the contents of the block
count (BLKCT) field to write the block count in trailer labels when the
data control block is closed, or when the EOV macro instruction is
issued. You must maintain the contents of this field yourself if the
system is to write the correct block count.

When using EXCP to process a tape data set open at a checkpoint, you
must be careful to maintain the correct count 7 otherwise the system may
position the data set incorrectly when restart occurs.

If your system generation statements include the dynamic device
reconfiguration entry, this field must be maintained by you for
repositioning. Also, your DCB macro instruction must include the
REPOS=Y entry.

Device dependent portion of data control block when DEVD=PT and
DSORG=PS:

DCB r------T----------------------,
Address +16 ICODE I Reserved I L ______ 4 _____________________ _J

Device dependent portion of data control block when DEVD=PR and
DSORG=PS:

DCB r------T----------------------,
Address +16 IPRTSP I Reserved I L-_____ 4 _____________________ _J

Device dependent portion of data control block when DEVD=PC or RD and
DSORG=PS:

DCB r-----------T-----------------,
Address +16 IMODE,STACK I Reserved I L-__________ 4 ________________ _J

The following parameters pertain to specific devices and may be
specified only when the DEVD parameter is specified.

KEYLEN=value
specifies, for direct access devices, the length in bytes of the
key of a physical record, with a maximum value of 255. When a
block is read or written, the number of bytes transmitted is the
key length plus the record length.

Execute Channel Program (EXCP) Macro Instruction 59

CODE=value
specifies, for paper tape, the code in which records are punched as
follows:

Value
I
F
B
C
A
T
N

Code
IBM BCD
Friden
Burroughs
National Cash Register
ASCII
Teletype
no conversion (format F records only)

If this parameter is omitted, N is assumed.

DEN=value
specifies, for magnetic tape, the tape recording density in bits
per inch as follows:

r----------------------------------T-----------------------------------,
I I Density I
I Value .---------------~-----------------f
I I Model I Model I
I I 2400/3400 I 2400/3400 I
I I 7-track I 9-track I

I t----------------o-----------------t-200-(2400-~;1~)_t--------:--------1
I 1 I 556 I - I
I 2 I 800 I 800 I
I 3 I I 1600 I L __________________________________ ~ ________________ ~ ________________ J

If this parameter is omitted, the lowest density is assumed.

TRTCH=value
specifies, for 7-track magnetic tape, the tape recording technique
as follows:

Value
C

E

T

MODE=value

Tape Recording Technigue
Data conversion feature is available.

Even parity is used. (If omitted, odd parity is
assumed.)

BCDIC to EBCDIC translation is required.

specifies, for a card reader or punch, the mode of operation.
Either C (column binary mode) or E (EBCDIC code) may be specified.

STACK=value
specifies" for a card punch or card reader, the stacker bin to
receive cards as either 1 or 2.

PRTSP=Value
specifies, for a printer, the line spacing as either 0, 1, 2, or 3.

60 OS Data Management for System Programmers

OPEN -- Initialize Data Control Block

The OPEN macro instruction initializes one or more data control blocks
so that their associated data sets can be processed. You must issue
OPEN for all data control blocks that are to be used by your channel
programs. (A dummy data set may not be opened for EXCP.) Some of the
procedures performed when OPEN is executed are:

• Construction of data extent block (DEB).
• Transfer of information from DD statements and data set labels to

data control block.
• Verification or creation of standard labels.
• Tape positioning.
• Loading of programmer-written appendage routines.

The three parameters of the OPEN macro instruction are:

dcb-addr
specifies the address of the data control block to be initialized.
(More than one data control block may be specified.)

specifies the intended method of I/O processing of the data set.
You may specify this parameter as either INPUT, RDBACK, or OUTPUT.
For each of these, label processing when OPEN is executed is as
follows:

INPUT - Header labels are verified.
RDBACK - Trailer labels are verified.
OUTPUT - Header labels are created.

If this parameter is omitted, INPUT is assumed.

specifies the volume disposition that is to be provided when volume
switching occurs. The operand values and meanings are as follows:

REREAD

LEAVE

DISP

Reposition the volume to process the data set again.

No additional positioning is performed at end-of-volume
processing.

The disposition indicated on the DD statement is tested
and appropriate positioning provided. This service is
assumed if this operand is omitted and volume
positioning is applicable. If there is no disposition
specified in the DD statement when this operand is
specified, LEAVE is assumed.

OPEN processes the EXCP macro as a combination of the DSORG specified
in the DCB and physical sequential (PS). The DSORG specified in the DCB
only affects the merging of certain DSCB, JFCB, and DCB fields. For all
other operations, EXCP is considered to have a DSORG of PS. Only one
volume is processed for EXCP by the OPEN routine, except when there are
concatenated partitioned data sets, in which case all volumes concerned
are processed. Thus, direct access and indexed sequential organized
data sets will have only the first volume processed by OPEN.

The list and execute forms of the OPEN macro instruction are
described in the Data Management Macro Instruction publication.

Execute Channel Program (EXCP) Macro Instruction 61

EXCP -- Execute Channel Proqram

The EXCP macro instruction requests the initiation of the I/O operations
of a channel program. You must issue EXCP whenever you want to execute
one of your channel programs. The only parameter of the EXCP macro
instruction is:

iob-addrx
specifies the address, or a register that contains the address of
the input/output block of the channel program to be executed.

EOV -- End of Volume

The EOV macro instruction identifies end-of-volume and end-of-data set
conditions. For an end-of-volume condition, EOV causes switching of
volumes and verification or creation of standard labels. For an
end-of-data set condition, EOV causes your end-of-data set routine to be
entered. Before processing trailer labels on a tape input data set, you
must decrement the DCBBLKCT field. You issue EOV if switching of
magnetic tape or direct access volumes is necessary, or if secondary
allocation is to be performed for a direct access data set opened for
output.

For magnetic tape, you must issue EOV when either a tapemark is read
or a reflective spot is written over. In these cases, bit settings in
the l-byte OFLGS field of the data control block determine the action to
be taken when EOV is executed. Before issuing EOV for magnetic tape,
you must make sure that appropriate bits are set in OFLGS. Bit
positions 2,3,6, and 7 of OFLGS are used only by the system; you are
concerned with bit positions 0,1,4, and 5. The use of these OFLGS bit
positions is as follows:

Bit 0
indicates that a tape mark is to be written.

Bit 1

Bit 4

Bit 5

indicates that a backwards read was the last I/O operation.

indicates that data sets of unlike attributes are to be
concatenated.

indicates that a tape mark has been read.

If bits 0 and 5 of OFLGS are both off when EOV is executed, the tape
is spaced past a tapemark, and standard labels, if present, are verified
on both the old and new volumes. The direction of spacing depends on
bit 1. If bit 1 is off, the tape is spaced forward; if bit 1 is on, the
tape is backspaced.

If bit 0 is on when EOV is executed, a tapemark is written
immediately following the last data record of the data set, standard
labels, if specified, are created on the old and the new volume.

When issuing EOV for sequentially organized output data sets on
direct access volumes, you can determine whether additional s~ace has
been obtained on the same or a different volume. You do this by
checking the volume serial number in the unit control block (UCB) both
before and after issuing EOV.

The only parameter of the EOV macro instruction is:

dcb-addrx
specifies the address of the data control block that is opened for
the data set. If this parameter is specified as (1), register 1
must contain this address.

62 OS Data Management for System Programmers

CLOSE -- Restore Data Control Block

The CLOSE macro instruction restores one or more data control blocks so
that processing of their associated data sets can be terminated. You
must issue CLOSE for all data control blocks that were used by your
channel programs. some of the procedures performed when CLOSE is
executed are:

• Release of data extent block (DEB).
• Removal of information transferred to data control block fields when

OPEN was executed.
• verification or creation of standard labels.
• Volume disposition.
• Release of programmer-written appendage routines.

The two parameters of the CLOSE macro instruction are:

dcb-addr

opt

specifies the address of the data control block to be restored.
More than one data control block may be specified.

specifies the type of volume disposition intended for the data set.
You may specify this parameter as either LEAVE or REREAD. The
corresponding volume disposition when CLOSE is executed is as
follows:

LEAVE - Volume is positioned at logical end of data set.
REREAD - Volume is positioned at logical beginning of data set.
DISP - The disposition indicated on the DD statement is t'ested,

and appropriate positioning is provided. This service is
assumed if this operand is omitted and volume positioning
is applicable. If there is no disposition specified in
the DD statement when this operand is specified, LEAVE is
assumed.

This parameter is ignored if specified for volumes other than
magnetic tape or direct access.

Note: When CLOSE is issued for data sets on magnetic tape volumes,
labels are processed according to bit settings in the OFLGS field of the
data control block. Before issuing CLOSE for magnetic tape, you must
set the appropriate bits in OFLGS. The OFLGS bit positions that you are
concerned with are listed in the EOV macro instruction description.

The list and execute forms of the CLOSE macro instruction are
described in the Data Management Macro Instructions publication.

CONTROL BLOCK FIELDS

The fields of the input/output block, event control block, and data
extent block are illustrated and explained here~ the data control block
fields have been described with the parameters of the DCB macro
instruction in the section "EXCP Programming Specifications."

Input/Output Block Fields

The input/output block is not automatically constructed by a macro
instruction~ it must be defined as a series of constants and must be on
a fullword boundary. For unit record and tape devices, the input/output
block is 32 bytes in length. For direct access, teleprocessing, and
graphic devices, 8 additional bytes must be provided.

Execute Channel Program (EXCP) Macro Instruction 63

In Figure EXCP2, the shaded areas indicate fields in which you must
specify information. The other fields are used by the system and must
be defined as all zeros. You may not place information in these
fields, but you may examine them.

0(0)

4(4)

8(8)

12(C)

16(10)

20(14)

24(18)

28(1 C)

32(20)

,------ lOB Address

All
Devices

Figure EXCP2. Input/Output Block Format

Flags 1 (1 byte)
specifies the type of channel program. You must set bit positions
0, 1, and 6. One bits in positions 0 and 1 indicate data chaining
and command chaining, respectively. (If both data chaining and
command chaining are specified, the system does not use error
recovery routines except for the 2311, 2671, 1052, and 2150.) A
one bit in position 6 indicates that the channel program is not
related to any other channel program. Bit positions 2, 3, 4, 5,
and 7 are used only by the system.

Flags 2 (1 byte)
is used only by the system.

First two sense bytes (2 bytes)
are placed into the input/output block by the system when a unit
check occurs.

ECB code (1 byte)
indicates the first byte of the completion code for the channel
program. The system places this code in the high order byte of the
event control block when the channel program is posted complete.
The completion codes and their meanings are listed under "Event
Control Block Fields."

ECB address (3 bytes)
specifies the address of the 4-byte event control block that you
have provided.

Flags 3 (1 byte)
is used only by the system.

64 OS Data Management for System Programmers

Channel status word (7 bytes)
indicates the low order seven bytes of the channel status word,
which are placed into this field each time a channel end occurs.

SIO code (1 byte)
indicates in bits 0 and 1 the instruction-length code, in bits two and
three the condition code for the SIO instruction that the system issues
to start the channel program, and in bits 4 through 7 the program mask.

Channel program address (3 bytes)
specifies the starting address of the channel program to be
executed.

Reserved (1 byte)
is used only by the system.

DCB address (3 bytes)
specifies the address of the data control block of the data set to
be read or written by the channel program.

Reposition modifier (1 byte)
is used by the system for volume repositioning in error recovery
procedures.

Restart address (3 bytes)
is used by the system to indicate the starting address of a channel
program that performs special functions for error recovery
procedures. The system also uses this field in procedures for
making request elements available, as explained under nError
Recovery Procedures for Related Channel Programs. n

Block count increment (2 bytes)
specifies, for magnetic tape, the amount by which the block count
(BLKCT) field in the device dependent portion of the data control
block is to be incremented. You may alter these bytes at any time.
For forward operations, these bytes should contain a binary
positive integer (usually + 1); for backward operations, they
should contain a binary negative integer. When these bytes are not
used, all zeros must be specified.

Error counts (2 bytes)
indicates the number of retries attempted during error recovery
procedures.

M (1 byte)
Direct access devices:
Extent entry in the data extent block that is associated with the
channel program. (0 indicates the first extent; 1 indicates the
second, etc.)
Teleprocessing and graphic devices:
The UCB index.

BBCCHHR (7 bytes)
specifies, for direct access devices, the seek address for the
programmer's channel program.

Event Control Block Fields

You must define an event control block as a 4-byte area on a fullword
boundary. When the channel program has been completed, the input/output
supervisor places a completion code containing status information into
the event control block (Figure EXCP3). Before examining this
information, you must test for the setting of the "Complete Bit. n If
the complete bit is not on, and the problem program cannot perform other

Execute Channel Program (EXCP) Macro Instruction 65

useful operations, you should issue a WAIT macro instruction that
specifies the event control block. Under no circumstances may you
construct a program loop that tests for the complete bit.

r----------T----------T--, I WAIT I Complete I Remainder of Completion Code I
I Bit=O I I I
I I Bit=l I I L __________ ~ __________ ~ __ J

o 1 2 31

Figure EXCP3. Event Control Block After Posting of Completion Code

WAIT bit
A one bit in this position indicates that the WAIT macro
instruction has been issued, but that the channel program has not
been completed.

Complete bit
A one bit in this position indicates that the channel program has
been completed; if it has not been completed, a zero bit is in this
position.

Completion code
This code, which includes the WAIT and complete bits, may be one of
the following 4-byte hexadecimal expressions:

Code
7FOOOOOO

41000000

42000000

44000000

48000000

4BOOOOOO

4FOOOOOO

50000000

Data Extent Block Fields

Interpretation
Channel program has terminated without error.

Channel program has terminated with permanent
error.

Channel program has terminated because a direct
access extent address has been violated.

Channel program has been intercepted because of
permanent error associated with device end for
previous request. You may reissue the
intercepted request.

Request element for channel program has been
made available after it has been purged.

One of the following errors occurred during
tape error recovery processing:

• The CSW command address in the lOB is
zeros.

• An unexpected load point was encountered.

Error recovery routines have been entered
because of direct access error but are unable
to read home address or record O.

Channel program terminated with error. Input
block was a DOS embedded checkpoint record.

The data extent block is constructed by the system when an OPEN macro
instruction is issued for the data control block. You may not modify
the fields of the data extent block, but you may examine them. The data
extent block format and field description is contained in the system
Control Block publication.

66 OS Data Management for System Programmers

Appendix: RESTORE and PURGE Macro Instructions

If you want to use the RESTORE or PURGE macro instruction, you must
either add the macro definitions to the macro-library (SYS1.MACLIB) or
place them in a separate partitioned data set and concatenate this data
set to the macro-library. This section contains the following:

• The format of the macro instruction.

• The job control and utility statements needed to add the macro
definition to the library_

• The macro definition to be added to the library.

RESTORE Macro Instruction

This macro instruction is used to return purged request elements to the
request queues. The format of this macro instruction is as follows:

r------T-----------T---, I Name I Operation I operand I
~------f-----------+---~ I I RESTORE I User purge lOB address I L ______ ~ __________ ~ ___ J

The user purge lOB address is the address of a pointer to the first lOB
address in a previously purged lOB list. It could be the DEBUSRPG field
in the data extent block (see ·SVC Purge Routine").

RESTORE Macro Definition

&NAME

&NAME

.El

MACRO
RESTORE
AIF
IHBINNRA
SVC
MEXIT
IHBERMAC
MEND

Control statements Required

&LIST
('&LIST' EQ ·').El
&LIST
17

01,150

LOAD REG 1
ISSUE SVC FOR RESTORE

LIST ADDR MISSING

r---,
//jobname JOB {parameters}
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DD DATA
.1 ADD NAME=RESTORE,LIST=ALL

RESTORE Macro definition

./ ENDUP
f* L-___ _

Execute Channel Program (EXCP) Macro Instruction 67

PURGE Macro Instruction

The PURGE macro instruction is used to return request elements to the
I/O supervisor inactive queue (next available).

PURGE Macro Definition

&NAME

&NAME

.El

MACRO
PURGE
AIF
IHBINNRA
SVC
MEXIT
IHBERMAC
MEND

Control Statements Required

&LIST
('&LIST'EQ").El
&LIST
16

01,147

LOAD REG 1

LIST ADDR MISSING

r--,
//jobname JOB {parameter}
//stepname EXEC PGM=IEBUPDTE.PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DD *
./ ADD NAME=PURGE,LIST=ALL

PURGE Macro definition

./ ENDUP
/* __ J

r------~----------~--, I Name I Operation I Operand I
.-------t------------t---f I symbol I PURGE I User purge parameter list I L ______ ~ __________ ~ ___ J

The purge parameter list is constructed in the user's program area.
Depending on the options specified in the PURGE parameter list, elements
can be purged from

1. The asynchronous exit queue of the task supervisor.

2. The request blocks chained to the TCB.

3. The I/O supervisor logical channel queues.

68 OS Data Management for System Programmers

You can bypass the purge of the RBs chained to the TCB by setting bit
5 of the option byte. The parameter list is constructed prior to
issuing the PURGE macro instruction; this list must fallon a full word
boundary. It is either a three-word list or, if bit 4 of the options
byte in Word 1 equals one (1), a four-word list. It is constructed as
follows:

Word 1

Byte 1
(options byte)

r--,
IBit 0 - Specified DEB or DEB chain I
I =0 - Purge request elements associated with complete DEB chain I
I starting at the DEB specified in bytes 2, 3, and 4 of I
I word 1. I
I =1 - Purge only the request elements associated with the DEB I
I specified by bytes 2, 3, and 4 of word 1. I
~--~
IBit 1 - POST request purged or ignore posting. I
I =0 - Do not POST the purged requests. I
I =1 - POST the purge requests, code = X'4S'. I
~--~
I Bit 2 - HALT I/O or quiesce active requests.. I
I =0 - Allow the active requests to quiesce. I
I =1 - HALT the I/O operations. (The HALT I/O is simulated if I
I the operation is a SEEK. I
~--~ IBit 3 - Purge all or only related requests. I
I =0 - Purge all requests. I
I =1 - Purge only related requests. I
~--~
IBit 4 - Normal purge or list purge. I
I =0 - Normal purge. I
I =1 - Purge TCB list. I
~--~
IBit 5 - Purge all queues or bypass RB purge.. I
I =0 - Purge AEQ, RB, and I/O supervisor logical channel queues. I
I =1 - Purge only the I/O supervisor logical channel queue(s) I
I and AEQ. I
~--~ IBit 6 - Purge by TCB or DEB I
I =0 - Purge by DEB I
I =1 - Purge by TCB I
I I
I Note: This bit must be zero in order to honor bit o. I
I If this bit is one, all requests associated with the TCB I
I are purged, and bit 0 is ignored. I
~--~
IBit 7 - (Spare) I L __ ~

Bytes 2, 3, and 4
DEB address - not required if purging by TCB.

Word 2

Byte 1
completion code

Bytes 2, 3, and 4
TCB address - if none, the current TCB is used.

Execute Channel Program (EXCP) Macro Instruction 69

Word 3

Byte 1
Quiesce indicator field. It will indicate X'Ol' if one or
more requests are quiescing.

Bytes 2~ 3, and 4
Ad ress of the initial link field for chaining lOBs that are
purged. The initial link field can be the user purge field in
the DEB (DEBUSRPG) or any area you select. The initial link
field points to the first lOB in the chain. At the completion
of purge, the contents of word 3 are unpredictable. No
chaining is done when TCB with HALT I/O option is specified.

If the lOB restart field (IOBRESTR) is used as a link field,
the last one will contain X'FFFFFF' in its three low-order
bytes.

The following figure shows the lOB chain.

Chaining lOBs

r----T-----------, r----------------,
I I I I DEBUSRPG of DEB, I
I 1 t-I - Ior other initial
I 1 1 1 link field I L-___ ~ ___________ J L _______________ -J

Word 3

lOB
r----------------,
I 1 1
IOBRESTR I 1 _________ J I

L ________________ J

lOB
r----------------,
1 I I

IOBRESTR 1 I
1 FFFFFF 1 I
~ __________ J 1
L ________________ J

lOB Chain for PURGE

70 OS Data Management for System Programmers

Word 4

Byte 1
(flag byte)

r--,
IBit 1 - Purge or wait flag. I
I =0 - Purge entry. I
I =1 - Wait entry. I
~--~
IBit 2 - Wait flag. I
I =0 - Return to caller before waiting. I
I =1 - Perform purge and wait operations, and do not return to I
I caller. I
~--~
IBits 3-8 - Reserved. I L __ J

Bytes 2,3, and 4
Address of the QUIESCE I/O parameter list (QPL). This field
points to a list of TCBs that are to be purged. The format of
the list is shown below.

;

r-----~--------------, r----~---------------,
I I I 11 12 I
I I "'1 ---I~" Count I Reserved I
I I 1 I Field I I
L-____ ~ _____________ _J ~-----+---------------~

Word 4 15 16 I
I 0 I Chain Field I
I I I
~-----+---------------~
19 110 I
QPL I Address of TCBI

I Flags I I L _____ ~ _______________ J

r-----T---------------,
5+n 16+n I

I 0 I Chain Field I
I I I
~-----+---------------~
19+n 110+n I
IQPL I Address of TCBI
I Flags I I L _____ ~ _______________ J

n = 8x(# of TCBs to be purged -1)

1 Count field.

A temporary count field used to keep track of the number of TCBs
that have been purged.

6 Chain field.

Address of the initial link field for chaining lOBs that are
purged. See the illustration for chaining lOBs in this section.

Execute Channel Program (EXCP) Macro Instruction 71

7 QPL flags - Last entry or current entry.

Bit 0 - Last entry flag.
=0 - More entries follow.
=1 - Last entry.

Bit 1 - Current entry flag.
=0 - Not current.
=1 - Current.

Bits 2-8 - Reserved.

8 TCB address.

Address of the TCB to be purged.

72 OS Data Management for System Programmers

ATLAS--Assign an Alternate Track and Copy Data From the Defective
Track

A program that uses the EXCP macro instruction for input and output may
use the ATLAS macro instruction, during the execution of the program, to
obtain an alternate track and to copy a defective track onto the
alternate track. With the use of ATLAS, the program can recover from
permanent (hard> errors encountered in the execution of the following
types of I/O commands:

• Search ID.

• Write.
(The error condition must be confirmed during the execution of the
channel program by a CCW that checks the data written.>

• Read count.
Errors in the CCHHR part of the count area can be recovered from
unless the record is the home address or record zero.

Errors in the KDD part of the count area cannot be recovered from
unless the user has identified the defective record.

Your DCB must include the DCBRECFM field and the field must show
whether the data set is in the track overflow format. If it is,
recovery from errors in last records on tracks depends on your
identifying the track overflow record segments.

Recovery takes the form of obtaining an alternate good
copying the defective track onto the good alternate one.
re-execution of the channel program by ATLAS can correct
user should examine, and if necessary replace, defective
subsequent job if the data set is to be processed again.

track and
Unless a

the defect, the
records in a

ATLAS MACRO INSTRUCTION

The format of the macro instruction is:

r--------T---------T---,
I Name I Operation I Operands I
~--------t---------+---~
I I I {addreSS} [{R }] I I (symbol) I ATLAS I PARMADR= .CHANPRG= I
I I I (relister> NR I

iii [.CNTl"rR={!} ['WRITS~::}] i
L ________ ~ _________ ~ ___ J

PARMADR
Address of a parameter address list of the following format:

r---, C Address of the parameter address list I L __ J

r---,
+0 Address of the lOB for the channel program that I

I encountered the error I
~---~
I +4 Main storage address of the count area field I L __ J

The count area field contains the CCHHRKDD of a defective
record or the CCRH of a track that is to be copied.

Execute Channel Program (EXCP) Macro Instruction 73

address - Address is given as the symbolic label of the address
list.

(register)

CHANPRG

Address is given as the number of a general register
(1-12) that contains the address of the list.

Condition of the channel program that encountered the error.

R - Channel program may be re-executedby ATLAS. Before permitting
re-execution of the channel program by ATLAS, you must reset
the error indications of the previous execution fields in the
DCBIFLGS. (See the example of the use of ATLAS below.)

NR - Channel program may not be re-executed.

If this parameter is omitted, R is assumed.

,CNTPTR
Contents of the count area field.

P - Part of the count area - the CCHH address of the track to be
copied.

F - Full count area - CCHHRKDD count of the record found defective.

If this parameter is omitted, P is assumed.

,WRITS
track overflow segment identification.

If your data set is in the track overflow format, this
identification determines recovery from errors in last records on
tracks.

YES - If this is the last record on the track, it is a segment
other than the last of a track overflow record.

NO - If this is the last record on the track, it is the last or
only segment of a track overflow record.

If this parameter is omitted, it is assumed that it cannot be
established whether a last record is a segment of an overflow
record.

USE OF ATLAS

If a channel program encounters a unit check condition (shown in the
CSW) in its execution, the I/O supervisor program will place the Sense
bytes in the lOB. ATLAS can be used to recover from Sense conditions
shown by the following bit settings:

IOBSENSO X, OS'

IOBSENSl X'SO'

IOBSENSl X'02'

Data check (except in the count area)

Data check in the count area

Missing address marker
(But see the following for combinations of this
bit setting for which ATLAS is powerless.)

However, defects in the home address record or the record zero record
~annot be recovered from through the use of ATLAS. These conditions are
shown by:

IOBSENSl X'02' and IOBSENSO X'Ol' - home address defect.

IOBSENSl X'OA' - record zero defect, or,
home address cannot be located.

74 OS Data Management for System Programmers

Also" before using ATLAS, you must reset error indications as follows:

NI DCBIFLGS,X'3F' Reset the DCBIFLGS error indications.

The ATLAS program will attempt to find a good alternate track and
will attempt to copy the defective track onto the good track, including
all error conditions in either key or data areas. The error conditions
may be rectified by re-executing the channel program or through the use
of the IEHATLAS utility program in a subsequent step.

The following illustrates the use of the ATLAS macro instruction.

I EXCP
WAIT
TM
BO

TM
BL
TM
BO
TM
BO
TM
BO

ATLASGO EQU
NI
ATLAS

MYIOB
ECB=MYECB
MYECB,X'20'
NEXT

IOBCSW+ 3" X' 02 '
OTHER
IOBSENSO, X, 08'
ATLASGO
IOBSENS1,X'80'
ATLASGO
IOBSENS1,X'OA'
OTHER

*

TEST FOR I/O ERROR
NO, SUCCESSFUL, GO TO ANOTHER
ROUTINE
UNIT CHECK
NO, DO OTHER ERROR PROCESSING
DATA CHECK
YES, VALID ERROR
DATA CHECK IN COUNT
YES, VALID ERROR
MISSING ADDRESS MARKER
YES, ATLAS CANNOT HANDLE ERROR
DO OTHER ERROR PROCESSING

DCB1FLGS., X, 3F ' RESET ERROR 'INDI CATORS
PARMADR=THERE,CHANPRG=R

OPERATION OF THE ATLAS PROGRAM

The ATLAS program (SVC 86):

• Establishes the availability and address of the next alternate track
from the format 4 DSCB of the VTOC.

• Brings all count fields from the defective track into main storage
to establish the description of the track.

• Initializes the alternate track. (Write home address, write record
zero.)

• Brings the key and data areas of each record into main storage, one
at a time, and combines them with their new count area to write the
complete record onto the alternate track.

• When the copying is finished, chains the alternate to the defective
track and updates the VTOC.

RETURN CODES

When control returns to the user, he will find one of the following
decimal return codes in register 15: (Note that for return codes 0, 36,
40, and 44 the contents of register 0 may be significant.)

Execute Channel Program (EXCP) Macro Instruction 75

Decimal
Return
Code

Meaning

o - Successful completion.
Key and data areas have been copied from the defective track onto
a good alternate one. The only error encountered was in the
record identified by the user's CCHHRKDD value.

If the channel program is re-executable, it has been successfully
re-executed.

4 - This device type (2301 drum, 2303 drum) does not have alternate
tracks that can be assigned by programming.

8 - All alternate tracks for the device have been assigned.

12 - A request for storage (GET~~IN macro instruction) could not be
satisfied.

16 - All attempts to initialize and transfer data to an alternate
track failed. The number of attempts made is equal to 10% of the
assigned alternates for the device.

20 - The type of error shown by the sense byte cannot be handled
through the use of the ATLAS macro instruction. The condition is
other than a data check (in the count or data areas) or a missing
address marker.

24 - The format 4 DSCB of the VTOC cannot be read, therefore alternate
track information is not available to ATLAS.

28 - The record specified by the user was the format 4 DSCE and it
could not be read.

32 - An error found in count area of last record on the track cannot
be handled because last-record-on-track identification is not
supplied.

36 - An error was encountered reading or writing the home address
record or reocrd zero. No error recovery has taken place.
If register 0 contains X'Ol 00 00 00', the defect is in record
zero.

40 - Successful completion.
Key and data areas have been copied from the defective track onto
a good alternate one. However, the alternate track may have
records with defective key or data areas. Register 0 identifies
the first three found defective as follows:

r---------,
In R R R I L _______ -J

n - Number of record numbers that follow (0, 1, 2, or 3).

R - The number of the record found defective but copied anyhow.

If the channel program is re-executable, it has been successfully
re-executed.

76 OS Data Management for System Programmers

44 - Error/Errors encountered and no alternate track has been
assigned. The return parameter register (RO) will contain the R
of a maximum of three error records.

Error conditions that return this code are:

1. ATLAS received an error indication for a record with a data
length in the count field of zero. Recovery was not possible
because a distinction cannot be made between an EOF record
and an invalid data length.

2. An error occurred while reading the count field of a record
and the KDD (key length-data length) was found to be
defective.

3. More than three records on the specified track contained
errors in their count fields.

48 - No errors found on the track, no alternate assigned. ATLAS will
not assign an alternate unless a track has at least one defective
record.

52 - I/O error in re-executing user's channel program.
A good alternate is chained to the defective track and data has
been transferred. The user's control blocks will give indication
of the error condition causing failure in re-execution of his
channel program.

56 - The DCB reflects a track overflow data set but the UCB device
type shows that the device does not support track overflow.

60 - The CCHH of the user specified count area is not within the
extents of his data set.

Figures EXCP4 and EXCP5 summarize the return codes that reflect track
error conditions by error location.

Area in Error

Record in Error Count Area
Key Area Data Area

CCHHR KDD

Record r (r 10)

Not Last on Track 0 44 40 40

WRITS=YES 0 44 40 40
Last
on WRITS=NO 0 44 40 40
Track

Omitted* 32 44 40 40

Record Zero

36 36 36 36

Home Address

36

* Omitted and the Data Set is in the Track Overflow Format.

Figure EXCP4. Error Locations and Return Codes if CCHH is in the Count
Area Field

Execute Channel Program (EXCP) Macro Instruction 77

Area in Error

Record in Error Count Area
Key Area Data Area

CCHHR KDD

Record n (n=R in CCHHRKDD)

Not Last on Track 0 0 0 0

WRITS=YES 0 0 0 0
Last
on WRITS=NO 0 0 0 0
Track

Omitted * 32 32 0 0

Record m (m F R in CCHHRKDD)

Not Last on Track 0 44 40 40

WRITS=YES 0 44 40 40
Last
on WRITS=NO 0 44 40 40
Track

Omitted * 32 44 40 40

Record Zero

36 36 36 36

Home Address

36

* Omitted and the Data Set is in the Track Overflow Format.

Figure EXCP5. Error Locations and Return Codes if CCHBRKDD is in the
count Area Field

78 OS Data Management for System Programmers

Execute Direct Access Program

(XDAP) Macro Instruction

This chapter explains what the execute
direct access program (XDAP) macro
instruction does and how you can use it.
The control block generated when XDAP is
issued and the macro instructions used with
XDAP are also discussed.

The XDAP macro instruction provides you
with a means of reading, verifying, or
updating blocks on direct access volumes
without using an access method and without
writing your own channel program. Since
most of the specifications for XDAP are
similar to those for the execute channel
program (EXCP) macro instruction, it is
recommended that you be familiar with the
"EXCP Macro Instruction" chapter of this
publication, as well as with the
information contained in the required
publication.

PREREQUISITE PUBLICATION

The IBM System/360 Operating System:
Supervisor Services and Macro Instructions
publication (GC28-6646) explains the
standard procedures for I/O processing
under the operating system.

Execute Direct Access Program (XDAP) Macro Instruction 79

Execute Direct Access Program (XDAP) Macro Instruction

Execute direct access program (XDAP) is a macro instruction of
system/360 Operating system that you may use to read, verify, or update
a block on a direct access volume. If you are not using the standard
IBM data access methods, you can, by issuing XDAP, generate the control
information and channel program necessary for reading or updating the
records of a data set.

You cannot use XDAP to add blocks to a data set, but you can use it
to change the keys of existing blocks. Any block configuration and any
data set organization can be read or updated.

Although the use of XDAP requires much less main storage space than
do the standard access methods, it does not provide many of the control
program services that are included in the access methods. For example,
when XDAP is issued, the system does not block or deblock records and
does not verify block length.

To issue XDAP, you must provide the actual device address of the
track containing the block to be processed. You must also provide
either the block identification or the key of the block, and specify
which of these is to be used to locate the block. If a block is located
by identification, both the key and data portions of the block may be
read or updated. If a block is located by key, only the data portion
can be processed.

Requirements for Execution of Direct Access Program

Before issuing the XDAP macro instruction, you must issue a DCB macro
instruction, which produces a data control block (DCB) for the data set
to be read or updated. You must also issue an OPEN macro instruction,
which initializes the data control block and produces a data extent
block (DEB).

When the XDAP macro instruction is issued, another control block,
containing both control information and executable code, is generated.
This control block may be logically divided into three sections:

• An event control block (ECB), which is supplied with a completion
code each time the direct access channel program is terminated.

• An input/output block (lOB), which contains information about the
direct access channel program.

• A direct access channel program, which consists of three channel
command words (CCWs). The type of channel program generated depends
on specifications in the parameters of the XDAP macro instruction.

After this XDAP control block is constructed, the direct access channel
program is executed. A block is located by either its actual address or
its key, and is either read or updated.

When the channel program has terminated, a completion code is placed
into the event control block. After issuing XDAP, you should therefore
issue a WAIT macro instruction specifying the event control block to
determine whether the direct access program has terminated. If volume
switching is necessary, you must issue an EOV macro instruction. When
processing of the data set has been completed, you must issue a CLOSE
macro instruction to restore the data control block.

80 OS Data Management for System Programmers

XDAP Programming Specifications

MACRO INSTRUCTIONS

When you are using the XDAP macro instruction, you must also issue DCB,
OPEN, CLOSE, and, in some cases, the EOV macro instruction. The
parameters of the XDAP macro instruction are listed and described here.
For the other required macro instructions, special requirements or
options are explained, but you should refer to the "EXCP Macro
Instruction" section of this publication for listings of their
parameters.

DCB -- Define Data Control Block

The EXCP form of the DCB macro instruction produces a data control block
that can be used with the XDAP macro instruction. You must issue a DCB
macro instruction for each data set to be read or updated by the direct
access channel program. The "EXCP Macro Instruction" section of this
publication contains a diagram of the data control block, as well as a
listing of the parameters of the DCB macro instruction.

OPEN -- Initialize Data Control Block

The OPEN macro instruction initializes one or more data control blocks
so that their associated data sets can be processed. You must issue
OPEN for all data control blocks that are to be used by the direct
access program. Some of the procedures performed when OPEN is executed
are:

• Construction of data extent block (DEB).

• Transfer of information from DD statements and data set labels to
data control block.

• Verification or creation of standard labels.

• Loading of programmer-written appendage routines.

The two parameters of the OPEN macro instruction are the addressees)
of the data control block(s) to be initialized, and the intended method
of I/O processing of the data set. The method of processing may be
specified as either INPUT or OUTPUT; however, if neither is specified,
INPUT is assumed.

XDAP -- Execute Direct Access Program

The XDAP macro instruction produces the XDAP control block (i.e., the
ECB, lOB, and channel program) and executes the direct access channel
program. The format of the XDAP macro instruction is:

r-----------T--, I Operation I Operand I
.-----------+--f
I XDAP I ecb-symbol,type-{RIWIV}{IIK},dcb-addr,area-addr I
I I ,length-value,[(key-addr,keylength-value)],blkref-addr I

I r I [, sector-addr] I L ___________ ~ ___ J

ecb-symbol
specifies the symbolic name to be assigned to the XDAP control
block.

Execute Direct Access Program (XDAP) Macro Instruction 81

type-{RIWIV}{IIK}
specifies the type of I/O operation intended for the data set and
the method by which blocks of the data set are to be located.

The codes and their meanings are as follows:

dcb-addr

R - Read a block.
W - Write a block.
V - Verify contents of a block but do not transfer data.
I - Locate a block by identification. (The key portion, if

present, and the data portion of the block are read or
written.)

K - Locate a block by key. (Only the data portion of the
block is read or written.)

specifies the address of the data control block of the data set.

area-addr
specifies the address of an input or output area for a block of the
data set.

length-value
specifies the number of bytes to be transferred to or from the
input or output area. If blocks are to be located by
identification and the data set contains keys, the value must
include the length of the key. The maximum number of bytes
transferred is 32767.

key-addr
specifies, when blocks are to be located by key, the address of a
main storage field that contains the key of a block to be read or
overwritten.

keylength-value
specifies, when blocks are to be located by key, the length of the
key. The maximum length is 255 bytes.

blkref-addr
specifies the address of a main storage field containing the actual
device address of the track containing the block to be located. When
blocks are to be located by key, this field is seven bytes in length;
when blocks are to be located by identification, an eighth byte indi
cating block identification must be included in this field. (The
actual address of a block is in the form MBBCCHHR, where M indicates
which extent entry in the data extent block is associated with the
direct access program; BB indicates the bin number of direct access
volume; CC indicates the cylinder address; HH indicates the actual
track address; and R indicates the block identification.)

sector-addr
specifies the address of a one-byte field containing a sector value.
The sector-address parameter is used for rotational position sensing
(RPS) devices only. The parameter is optional, but its use will
improve channel performance. When the parameter is coded, a set-sector
CCW (using the sector value indicated by the data address field), pre
cedes the Search-ID-Equal command in the channel program. The sector
address parameter is ignored if the type parameter is coded as RK, WK,
or VK. If a sector address is specified in the list form of the macro,
then a sector address (not necessarly the same) must be specified in
the execute form.
Note: No validity check is made on either the address or the sector
value when the XDAP mapro is issued. However, a unit exception
interrupt will occur during the channel program execution if the
sector value is larger than the maximum for the device or if the
macro is issued against a device without RPS.

82 OS Data Management for System Programmers

EOV -- End of Volume

The EOV macro instruction identifies end-of-volume and end-of-data set
conditions. For an end-of-volume condition, EOV causes switching of
volumes and verification or creation of standard labels. For an
end-of-data set condition, EOV causes your end-of-data set routine to be
entered. When using XDAP, you issue EOV if switching of direct access
volumes is necessary, or if secondary allocation is to be performed for
a direct access data set opened for output.

The only parameter of the EOV macro instruction is the address of the
data control block of the data set.

CLOSE -- Restore Data Control Block

The CLOSE macro instruction restores one or more data control blocks so
that processing of their associated data sets can be terminated. You
must issue CLOSE for all data sets that were used by the direct access
channel program. Some of the procedures performed when CLOSE is
executed are:

• Release of data extent block (DEB).
• Removal of information transferred to data control block fields when

OPEN was executed.
• Verification or creation of standard labels.
• Release of programmer-written appendage routines.

The only parameter of the CLOSE macro instruction is the address of
the data control block to be restored. (More than one data control
block may be specified.)

THE XDAP CONTROL BLOCK

The three portions of the control block generated during execution of
the XDAP macro instruction are described here.

Event Control Block (ECB)

The event control block begins on a full word boundary and occupies the
first 4 bytes of the XDAP control block. Each time the direct access
channel program terminates, the input/output supervisor places a
completion code containing status information into the event control
block (Figure XDAP1). Before examining this information, you must test
for the setting of the "Complete Bit" by issuing a WAIT macro
instruction specifying the event control block.

r--------------T------------------T------------------------------------,
I WAIT Bit=O I Complete Bit=l I Remainder of Completion Code I L ______________ ~ __________________ i-___________________________________ J

o 1 2 31

Figure XDAP1. Event Control Block After Posting of Completion Code

WAIT Bit
A one bit in this position indicates that the WAIT macro
instruction has been issued, but that the direct access channel
program has not been completed.

Complete Bit
A one bit in this position indicates that the channel program has
been completed; if it has not been completed, a zero bit is in this
position.

Execute Direct Access Program (XDAP) Macro Instruction 83

I

Completion Code
This code, which includes the WAIT and complete bits, may be one of
the following 4-byte hexadecimal expressions:

Code
7FOOOOOO

41000000

42000000

44000000

48000000

4BOOOOOO

4FOOOOOO

50000000

Input/Output Block (lOB)

Interpretation
Direct access program has terminated without
error.

Direct access program has terminated with
permanent error.

Direct access program has terminated because a
direct access extent address has been violated.

Channel program has been intercepted because of
permanent error associated with device end for
previous request. You may reissue the
intercepted request.

Request element for channel program has been
made available after it has been purged.

One of the following errors occurred during
tape error recovery processing:

• The CSW command address in the IOB is
zeros.

• An unexpected load point was encountered.

Error recovery routines have been entered
because of direct access error but are unable
to read home address or record o.

Channel program terminated with error. Input
block was a DOS embedded checkpoint record.

The input/output block is 40 bytes in length and immediately follows the
event control block. The section "EXCP Macro Instruction" of this pub
lication contains a diagram of the input/output block. The only fields
with which the user of XDAP is concerned are the "First Two Sense Bytes"
and "Channel Status Word" fields. You may wish to examine these fields
when a unit check condition or an I/O interruption occurs.

Direct Access Channel Program

The direct access channel program is 24 bytes in length and immediately
follows the input/output block. Depending on the type of I/O operation
specified in the XDAP macro instruction, one of four channel programs
may be generated. The three channel command words for each of the four
possible channel programs are shown in Figure XDAP2.

When a sector address is specified with an RI, VI, or WI operation,
the channel program is 32 bytes long. In Figure XDAP2 each of the
channel programs would be preceded by a Set Sector command.

84 OS Data Management for System Programmers

r--------------------------T-----T-------------------------------------,
I Type of I/O Operation I CCW I Command Code I
~--------------------------+-----+-------------------------------------~
I Read by identification I 1 I Search ID Equal I
I I 2 I Transfer in Channel I
I Verify by identification1 1 3 I Read Key and Data I
~--------------------------+-----+-------------------------------------~ I Read by key I 1 I Search Key Equal I
I I 2 I Transfer in Channel I
I verify by key1 I 3 I Read Data I
~--------------------------+-----+-------------------------------------~
I I 1 I Search ID Equal I
I Write by identification I 2 I Transfer in Channel I
I I 3 I Write Key and Data I
~--------------------------+-----+-------------------------------------~
I I 1 I Search Key Equal I
I Write by key I 2 I Transfer in Channel I
I I 3 I Write Data I
~--------------------------L-----~--------------------________________ ~
I 1For verifying operations, the third CCW is flagged to suppress the I
I transfer of information to main storage. I L __ J

Figure XDAP2. The XDAP Channel Programs

XDAP Options

CONVERSION OF RELATIVE TRACK ADDRESS TO ACTUAL ADDRESS

To issue XDAP, you must provide the actual device address of the track
containing the block to be processed. If you know only the relative
track address, you can convert it to the actual address by using a
resident system routine. The entry point to this conversion routine is
labeled IECPCNVT. The address of the entry point is in the communication
vector table (CVT). The address of the CVT is in location 16. (The
CVT macro instruction defines the symbolic names of all fields in the
CVT. The macro definition and how to add it to the macro-library are in
the Appendix of this chapter.)

The conversion routine does all its work in general registers. You
must load registers 0, 1, 2, 14, and 15 with input to the routine.
Register usage is as follows:

Register
o

1

2

Use
Must be loaded with a 4-byte value of the form
TTRN, where TT is the number of the track
relative to the beginning of the data set, R is
the identification of the block on that track,
and N is the concatenation number of the data
set. (0 indicates the first or only data set
in the concatenation, 1 indicates the second,
etc.)

Must be loaded with the address of the data
extent block (DEB) of the data set.

Must be loaded with the address of an 8-byte
area that is to receive the actual address of
the block to be processed. The converted
address is of the form MBBCCHHR, where M
indicates which extent entry in the data extent
block is associated with the direct access

Execute Direct Access Program (XDAP) Macro Instruction 85

3-8

9-13

14

15

program (0 indicates the first extent, 1
indicates the second, etc.); BB indicates the
bin number of the direct access volume; CC
indicates the cylinder address; HH indicates
the actual track address; and R indicates the
block identification.

Are not used by the conversion routine.

Are used by the conversion routine and are not
restored.

Must be loaded with the address to which
control is to be returned after execution of
the conversion routine.

Is used by the conversion routine as a base
register and must be loaded with the address at
which the conversion routine is to receive
control.

OBTAINING SECTOR NUMBER OF A BLOCK ON AN RPS DEVICE

To obtain the performance improvement given by rotational position
sensing, you should specify the sector-addr parameter on the XDAP
macro. For programs which may be used for both RPS and non-RPS devices,
the UCBTYP field can be checked to determine whether or not the device
has the rotational position sensing feature.

The sector-addr parameter on the XDAP macro specifies the address
of a one byte field in your region. You must store the sector number of
the block to be located in this field. You can obtain the sector number
of the block by using a resident conversion routine, IECOSCRI. The
address of this routine is in field CVTOSCRl of the CVT, and the address
of the CVT is in location 16. The routine should be invoked via a BALR
14, 15 instruction.

86 OS Data Management for System Programmers

The conversion routine does all its work in general registers. You
must load registers 0, 1, 2, 14, and 15 with input to the routine.
Register usage is as follows:

Register

a

1

2

3-8,12,13

9-11

14

15

APPENDAGES

Use

For fixed length records, register 0 must be loaded
with a 4-byte value of the form DDKR, where DD is a
2-byte field containing the physical block size, K
is a l-byte field containing the key length, and R
is a l-byte field containing the record number for
which a sector value is desired. The high-order bit
of register a must be turned off to indicate fixed
length records. For variable length records,
register 0 must be loaded with a 4-byte value in the
form of BBIR, where BB is a 2-byte field containing
the total number of key and data bytes up to but not
including the target record, I is a l-byte key
indicator (1 for keyed records, a for non-keyed
records), and R is a l-byte field containing the
record number for which a sector value is desired.
The high order bit of register a must be turned on
to indicate variable length records.

Not used by the sector convert routine.

Must be loaded with a 4-byte field in which the
first byte is the UCB device type code for the
device (obtainable from UCB+19) , and the remaining
three bytes are the address of a l-byte area that
is to receive the sector value.

Not used.

Used by the convert routine and are not saved or
restored.

Must be loaded with the address to which control is
to be returned after execution of the sector
conversion routine.

Used by the conversion routine as a base register
and must be loaded with the address of the entry
point to the conversion routine.

For additional control over I/O operations, you may write appendages,
which must be entered into the SVC library. Descriptions of these
routines and their coding specifications are contained in the "EXCP
Macro Instruction" section of this publication.

L- AND E-FORMS OF XDAP MACRO INSTRUCTION

You may use the L-form of the XDAP macro instruction for a macro
expansion consisting of only a parameter list, or the E-form for a macro
expansion consisting of only executable instructions.

Note: The BLKREF parameter is ignored by the "L" form of the XDAP macro
instruction. The field may be supplied in the E-form of the macro
instruction or moved into the lOB by you.

Execute Direct Access Program (XDAP) Macro Instruction 87

I

Appendix: CVT Macro Instruction

If you want to use the CVT macro instruction, you must add the macro
definition to the macro-library (SYS1.MACLIB). This section contains
the following:

• The format of the CVT macro instruction.

• The job control and utility statements needed to add the macro
definition to the library.

The fields in the communication vector table are described in the
System Control Blocks publication.

Use the DEVTYPE macro instruction to request information relating to
the characteristics of an I/O device, and to cause this information to
be placed in a specified area. (The results of a DEVTYPE macro instruction
executed before a checkpoint is taken should not be considered vaiid after
a checkpoint/restart occurs.)

Format of the CVT Macro Instruction

This macro instruction defines the
the communication vector table (CVT).
instruction, you must precede it with
the macro instruction is as follows:

symbolic names of all fields in
When coding this macro

a DSECT statement. The format of

r------T-----------T---, I Name I Operation I Operand I
~------f-----------f---f
I I CVT I I L ______ ~ __________ ~ ___ J

Control Statements Required

r--,
//jobname JOB {parameters}
//stepname EXEC PGM=IEBUPDT~,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DD *
• / ADD NAME=CVT, LIST=ALL

CVT Macro definition

./ ENDUP
/* __ J

88 as Data Management for System Programmers

Data Set Protection

To use the data set protection feature of
the operating system, you must create and
maintain a password data set consisting of
records that associate the names of the
protected data sets with the password
assigned to each data set.

There are three ways to maintain the
PASSWORD data set:

• You can write your own routines.

• You can use the PROTECT macro
instruction.

• You can use the utility control
statements of the IEHPROGM utility
program.

This chapter is divided into two
sections. The first section describes the
general features of data set protection,
including the use of your own routines to
maintain the password data set. It
provides the information you need to create
the data set and characteristics of the
data set. The second section discusses the
PROTECT macro; it provides the programming
information you need to use the macro and
discusses the difference between using the
PROTECT macro and using your own routines
to maintain the password data set.

RECOMMENDED PUBLICATIONS

The IBM system/360 Operating system: Data
Management services publication (GC28-3746)
contains a general description of the data
set protection feature.

The IBM system/360 Operating system:
Messages and Codes publication (GC28-6631)
contains a description of the operator
messages and replies associated with the
data set protection feature.

The IBM system/360 Operating system:
Job Control Language Reference publication
(GC28-6704) contains a description of the
data definition (DD) statement parameter
used to indicate that a data set is to be
placed under protection.

The IBM system/360 Operating system:
Direct Access Device space Management
program logic manual, (GY28-6607) contains
a description of the password data set
record format.

Data Set Protection 89

The IBM system/360 Operating system:
Utilities publication (GC28-6586) contains
a description of how to maintain the
PASSWORD data set using the utility
statements of the IEHPROGM utility program.

90 OS Data Management for System Programmers

I

Implementing Data Set Protection

TO prepare for use of the data set protection feature of the operating
system, you place a sequential data set, named PASSWORD, on the system
residence volume (containing SYS1.NUCLEUS and SYS1.SVCLIB). Note: If
the routines that you write to maintain the password data set use the
basic direct access method (BDAM), you must place a BDAM data set named
PASSWORD on the system residence volume. This data set must contain one
record for each data set placed under protection. In turn, each record
contains a data set name, the password for that data set, a counter
field., a protection mode indicator, and a field for recording any
information you desire to log. On the system residence volume, these
records are formatted as a "key area" (data set name and password) and a
"data area" (counter field, protection mode indicator, and logging
field). The data set is searched on the "key area."

You can write routines to create and maintain the PASSWORD data set.
(If you use the PROTECT macro instruction to maintain the password data
set, see the section in this chapter called USING THE PROTECT MACRO
INSTRUCTION TO MAINTAIN THE PASSWORD DATA SET. If you use the IEHPROGM
utility program to maintain the PASSWORD data set, see the publication
IBM System/360 Operating system: Utilities, GC28-6586.) These routines
may be placed in your own library or the-system's linkage editor library
(SYS1.LINKLIB). You may use a data manag~ment access method or EXCP
programming to handle the PASSWORD data ~et.

If a data set is to be placed under protection, it must have a
protection indicator set in its label <DSCB or header 1 tape label).
This is done by the operating system when the data set is created or by
the IEBPROGM utility program. The protection indicator is set in
response to an entry in the LABEL= parameter of the DD statement
associated with the data set being placed under protection. The Job
Control Language Reference publication describes the entry. Note: Data
sets on magnetic tape are protected only when standard labels are used.

Users who wish to have the password supplied by some method other
than operator key-in may replace the password reading module with their
own routine. The READPSWD source module may be used as a base for
writing a new module. In this case, the new object module replaces
module READPSWD on the SVCLIB.

The balance of this chapter discusses the PASSWORD data set
characteristics, the creation of protected data sets, and operating
characteristics of the data set protection feature.

Password Data Set Characteristics

The PASSWORD data set must reside on the same volume as your operating
system. The space you allocate to the PASSWORD data set must be
contiguous, i .• e., its DSCB must indicate only one extent. The amount of
space you allocate is dependent on the number of data sets your
installation desires to place under protection. Each entry in the
PASSWORD data set requires 132 bytes of space. The organization of the
PASSWORD data set is physical sequential, the record format is
unblocked, fixed length records (RECFM=F). These records are 80 bytes
long (BLKSIZE=80) and form the data area of the PASSWORD data set records
on direct access storage. In these direct access storage records, the
data area is preceded by a key area of 52 bytes (KEYLEN=52). The
password assigned may be from one to eight alphameric characters. The
IBM System/360 Operating system Direct Access Device space Management
program logic manual (GY28-6607) describes the password data set record
format .•

Data Set Protection 91

Protecting the Password Data set

You can protect the PASSWORD data set itself by creating a password record
for it when your program initially builds the data set. Thereafter, the
PASSWORD data set cannot be opened (except by the operating system
routines that scan the data set) unless the operator enters the
password.

Note: If a problem occurs on a password-protected system data set,
maintenance personnel must be provided with the password in order to
access the data set and resolve the problem.

Creating Protected Data Sets

A data definition (DD) statement parameter (LABEL=) is used to indicate
that a data set is to be placed under protection. You may create a data
set, and set the protection indicator in its label, without entering a
password record for it in the PASSWORD data set. However, once the data
set is closed, any subsequent opening results in termination of the
program attempting to open the data set, unless the password record is
available and the operator can honor the request for the password.
Operating procedures at your installation must ensure that password
records for all data sets currently under protection are entered in the
PASSWORD data set.

Protection Feature Operating Characteristics

This section provides information concerning actions of the protection
feature in relation to termination of processing, volume switching, data
set concatenation, SCRATCH and RENAME functions, and counter
maintenance.

Termination of Processing

Processing is terminated when:

1. The operator cannot supply the correct password for the protected
data set being opened after two tries.

2. A password record does not exist in the PASSWORD data set for the
protected data set being opened.

3. The protection mode indicator setting in the password record, and
the method of I/O processing specified in the open routine do not
agree, e.g., OUTPUT specified against a read-only protection mode
indicator setting.

4. There is a mismatch in data set names for a data set involved in a
volume switching operation. This is discussed in the next section.

Volume switching

The operating system end-of-volume routine does not request a password
for a data set involved in a volume switch. Continuity of protection is
handled in the following ways:

Input Data Sets - Tape and Direct Access Devices
Processing continues if there is an equal comparison between the
data set name in the tape label or DSCB on .he volume switched to,
and the name of the data set opened with the password. An unequal
comparison terminates processing.

92 OS Data Management for System Programmers

I

Output Data Sets - Tape Devices
The protection indicator in the tape label for the first data set on the
volume switched to is tested:

1. If the protection indicator is set ON, an equal comparison
between the data set name in the label and the name of the data
set opened with the password allows processing to continue. An
unequal comparison results in a call for another volume.

2. If the protection indicator is OFF, processing continues, and a
new label is written with the protection indicator set ON.

3. If only a volume label exists On the volume switched to,
processing continues, and a new label is written with the
protection indicator set on.

Output Data Sets - Direct Access Devices
For existing data sets, an equal comparison between the data set
name in a DSCB on the volume switched to, and the name of the data
set opened with the password allows processing to continue. For new
output data sets, the mechanism used to effect volume switching
ensures continuity of protection and the DSCB created on the new
volume will indicate protection.

Data Set Concatenation

A password is requested for every protected data set that is involved in
a concatenation of data sets, regardless of whether the other data sets
involved are protected or not.

SCRATCH and RENAME Functions

An attempt to perform the SCRATCH or RENAME functions on a protected data
set results in a request for the password. The protection feature issues
an operator's message (IEC30lA) when a protected data set is the object of
these functions. The password supplied when attempting to scratch or
rename a data set must be a WRITE password. The Messages and Codes
publication discusses the message.

Counter Maintenance

The operating system does not maintain the counter in the password record
and no overflow indication will be given (overflow after 65,535 openings).
You must provide a counter maintenance routine to check and, if necessary,
reset this counter.

Using the Protect Macro Instruction to Maintain the Password Data Set

To use the PROTECT macro instruction, your password data set must be on
the system residence volume. The PROTECT macro can be used to:

• Add an entry to the password data set.

• Replace an entry in the password data set.

• Delete an entry from the password data set.

• Provide a list of information about an entry in the password data
set; this list will contain the security counter, access type, and
the 11 bytes of security information in the "data area" of the
entry.

In addition, the PROTECT macro, will update the DSCB of the protected
data set, for a direct access device, to reflect its protected status;
this feature eliminates the need for you to use job control language
whenever you place a data set under protection.

Data Set Protection 93

PASSWORD DATA SET CHARACTERISTICS AND RECORD FORMAT WHEN YOU USE THE
PROTECT MACRO

When you use the PROTECT macro, the record format and characteristics of
the password data set should be the same as the record format and
characteristics when you use your own routines to maintain it, with two
exceptions: the number of records that you establish for each protected
data set and the values of the protection mode indicator.

Number of Records for Each Protected Data Set: When you use the PROTECT
macro, the password data set must contain at least one record for each
protected data set. The password (the last 8 bytes of the "key area")
that you assign when you place the data set under protection for the
first time is called the control password, in addition, you may create
as many secondary records for the same protected data set as you need.
The passwords assigned to these additional records are called secondary
passwords. This feature is helpful if you want several users to have
access to the same protected data set, but you also want to control the
manner in which they can use it. For example: one user could be
assigned a password that allowed the data set to be read and written,
and another user could be assigned a password that allowed the data set
to be read only.

Note: The PROTECT macro will update the DSCB of the protected data set
only when you issue it for adding, replacing or deleting a control
password.

Protection Mode Indicator: You can set the protection mode indicator in
the password record to four different values:

• X'OO' to indicate that the password is a secondary password and the
protected data set is to be read only.

• X'80' to indicate that the password is the control password and the
protected data set is to be read only.

• X'Ol' to indicate that the password is a secondary password and the
protected data set is to be read and written.

• X'81' to indicate the password is the control password and the
protected data set is to be read and written.

Since the DSCB of the protected data set is updated only when the
control password is changed, it is possible to request protection
attributes for secondary passwords which conflict with the protection
attributes of the control password.

If the control password has read only protection, its secondary
passwords may have read only or read write protection. A request for a
secondary password with read without password protection will result in
a secondary password with read write protection. A read only control
password may be changed to a read write control password without
affecting any secondary passwords, but if a read only control password
is changed to a read without password control password all secondary
passwords will automatically become read without password secondary
passwords.

If the control password has read write protection, its secondary
passwords may have read only or read write protection. A request for a
secondary password with read without password protection will result in
a secondary password with read write protection. A read. write control
password may be changed to a read only control password without
affecting any secondary passwords, but if a read write control password
is changed to a read without password control password all secondary

94 OS Data Management for System Programmers

passwords will automatically become read without password secondary
passwords.

If the control password has read without password protection, its
secondary passwords must also have read without password protection. A
request for a read only or for a read write secondary password will
result in a read without password secondary password. If a read without
password control password is changed to either a read only or read write
control password all its secondary passwords will automatically become
read write secondary passwords.

PROGRAMMING CONVENTIONS FOR THE PROTECT MACRO INSTRUCTION

The format of the PROTECT macro is:

r----------T---------T---,
I Name I Operation I Operand I
.----------+-_._------+--~
I [symbol] IPROTECT 1{(1) register 1: address of a parameter list }I
I (optional) I I (REG) any register: address of a parameter list I
I I I list addr address of the parameter list I L __________ ~ _________ ~ __________________________________ ---____________ J

When you issue the PROTECT macro, you should have already established
the parameter list. Its size and contents depend on the function that
you want the macro to perform. In any case, the first byte of the
parameter list is an entry code that indicates the function:

• X'Ol' for adding an entry to the parameter list.

• X'02' for replacing an entry in the parameter list.

• X'03' for deleting an entry from the parameter list.

• X'04' for listing the information in a password data set entry. For
a complete discussion of the contents of the parameter lists, see
figures PSWDl to PSWD4 and the notes explaining each of these
figures.

PROTECT Macro Parameter Lists

The parameter lists, their,formats and contents are:

~ X'OI'
1

000000

4 5
Data Set Length Pointer to Data Set Name

8 9
00 000000

12 ~. Pointer to Control Password 00

~ Number of Volumes ~ Pointer to Volume List

~ Protection Code ~ Pointer to New Password

~ String Length ~ Pointer to String

Figure PSWD1. Parameter List for Add Function

Data set Protection 95 .

I

I

Explanatory Notes for Figure PSWD1.

o X'Ol'

13

Entry code indicating add function.

Pointer to control password.
The control password is the password assigned when the data set was
placed under protection for the first time. The pointer can be three
bytes of binary zeros if the new password is the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as
protected, you have to specify the number of volumes in this field.
A zero indicates that the catalog information should be used.

17 Pointer to volume list.
If the data set is not catalog~d and you want to have it flagged as
protected, you provide the address of a list of volume serial
numbers in this field. Zeros indicate that the catalog information
should be used.

20 Protection code.

21

A one-byte number indicating the type of protection: X'OO'
indicates default protection (for the add function, the default
protection is the type of protection specified in the control
password record of the data set), X'Ol' indicates that the data set
is to be read and written, X'02' indicates that the data set is to
be read only and X'03' indicates that the data set can be read
without a password, but a password is needed to write into it. The
PROTECT macro will use the protection code value, specified in the
parameter list, to set the protection mode indicator in the password
record.

Pointer to new password.
If the data set is being placed under protection for the first time,
the new password becomes the control password. If you are adding a
secondary entry, the new password is different from the control
password.

24 string length.
The length of the character string (maximum 77 bytes) that you want
to place in the optional information field of the password record.
If you do not want to add information, set this field to zero.

25 Pointer to string.
The address of the character string that is going to be put in the
optional information field. If you do not want to add additional
information, set this field to zero.

96 OS Data Management for System Programmers

I

~ X'02'
1

000000

4 5
Do to Set Length Painter to Data Set Name

8
00 tJ Pointer 10 Current Password

12 ~ 00 Pointer to Control Password

~ Number of Volumes ~ Pointer to Volume List

~ Protection Code ~ Pointer to New Password

~ Stri ng Length ~ Pointer to String

Figure PSWD2. Parameter List for Replace Function

Explanatory Notes for Figure PSWD2.

o X'02'
Entry code indicating REPLACE function

9 Pointer to current password.
The address of the password that is going to be replaced.

13 Pointer to control password.
The address of the password assigned to the data set when it was
first placed under protection. The pointer can be two bytes of binary
zeros if the current password is the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as
protected, you have to specify the number of volumes in this field.
A zero indicates that the catalog information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as
protected, you have to provide the address of a list of volume
serial numbers in this field. If this field is zero, the catalog
information will be used.

20 Protection code.
A one-byte number indicating the type of protection: X'OO'
indicates that the protection is default protection (for the
replacefunction the default protection is the protection specified
in the current password record of the data set), X'Ol' indicates
that the data set is to be read and written, X'02' indicates that
the data set is to be read only, and X'03' indicates that the data
set can be read without a password, but a password is needed to
write into the data set.

21 Pointer to new password.
The address of the password that you want to replace the current
password.

24 String length.
The length of the character string (maximum 77 bytes) that you want
to place in the optional information field of the password record.
set to zero if you do not want to add additional information.

25 Pointer to string.
The address of the character string that is going to be put in the
optional information field of the password record. set the address
to zero if you do not want to add additional information.

Data Set Protection 97

~ 1
X'03' 000000

4 5
Data Set Length Pointer to Dato Set Name

8
00 ~ Pointer to Current Password

12
00 ~ Pointer to Control Password

~ Number of Volumes ~ Pointer to Volume List

Figure PSWD3. Parameter List for Delete Function

Explanatory Notes for Figure PSWD3.

o X' 03'.
Entry code indicating delete function.

9 Pointer to current password.
The address of the password that you want to delete. You can delete
either a control entry or a secondary entry.

13 Pointer to control password.
The address of the password assigned to the data set when it was
placed under protection for the first time. This can be zeros if
the.current password is als9 the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as
protected, you have to specify the number of volumes in this field.
A zero indicates that the catalog information should be used.

17 Pointer to volume list.

~
4

8

If the data set is not cataloged and you want to have it flagged as
protected, you have to provide the address of a list of volume
serial numbers in this field. If this field is zero, the catalog
information will be used.

X'04' ~ Address of 80 Byte Buffer

5
Dato Set Length Address of Data Set Name

00 ~ Address of Current Password

Figure PSWD4. Parameter List for List Function

Explanatory notes for using Figure PSWD4.

o X' 04'.
Entry code indicating list function.

1 Address of 80-byte buffer.
The address of a buffer where the list of information can be
returned to your program by the macro instruction.

9 Pointer to current password.
The address of the password of the record that you want listed.

98 OS Data Management for System Programmers

Return Codes from the PROTECT Macro

When the PROTECT macro finished processing, register 15 will contain a
return code that indicates what happened during the processing. Figure
PSWD5 contains the return codes and their explanations.

r-----------T--,
I Register 151 Explanation I
.-----------+--f o IThe updating of the password data set was successfully

4

8

12

16
20

**24
28

*32

*36

I completed.
IThe password of the data set name was already in the
Ipassword data set.
IThe password of the data set name was not in the password
Idata set.
A control password is required or the one supplied is
incorrect.
The supplied parameter list was incomplete or incorrect.
There was an I/O error in the password data set.
The password data set was full.
The validity check of the buffer address failed.
The LOCATE macro failed. LOCATE's return code is in
register 1 and the number of indexes searched is in
register o.
The OBTAIN macro failed. OBTAIN's return code is in
register 1.

*40 The DSCB could not be updated.
44 The password data set does not exist.

*48 Tape data set can not be protected.
*52 Data set in use •

• -----------~--f
I*For these return codes, the password data set has been updated, but I
I the DSCB has not been flagged to indicate the protected status of thel
I data set. I
1**For this return code, a message is written to the console indicating I
I that the password data set is full. I L-___ J

Figure PSWD5. Return Codes from the PROTECT Macro

Data Set Protection 99

System Macro Instructions

This chapter contains the description and
formats of macro instructions that allow
you either to modify control blocks or to
obtain information from control blocks and
system tables. Before reading this
chapter, you should be familiar with the
information contained in the prerequisite
publications listed below.

PREREQUISITE PUBLICATIONS

The IBM system/360 operating system:
Assembler Language publication (GC28-6514)
contains the information necessary to code
programs in the assembler language.

The IBM system/360 Operating system:
system Control Blocks publication
(GC28-6628) contains format and field
descriptions of the system control blocks
referred to in this chapter.

system Macro Instructions 101

SYSTEM MACRO INSTRUCTIONS IN THIS PUBLICATION

The following system macro instructions are described in the chapters of this publication
that deal with the subjects shown.

Macro
Instruction

ATLAS

CAMLST

CATALOG

CLOSE

CVT

DCB

DEVTYPE

EOV

EXCP

IECDSECT,
IEFJFCBN,
IEFUCBOB

INDEX

LABEL

Chapter Subject

EXCP Macro Instruction

VTOC Maintenance

Catalog Maintenance

EXCP Macro Instruction

XDAP Macro Instruction
(Appendix)

EXCP Macro Instructions

System Macro Instructions

EXCP Macro Instruction

EXCP Macro Instruction

IECDSECT, IEFJFCBN,
IEFUCBOB Macro
Instructions

Catalog Maintenance

System Macro Instructions

Macro
Instruction

LOCATE

OBTAIN

OPEN

••• ,TYPE=J

Chapter SUbject

Catalog Maintenance

Catalog Maintenance

EXCP Macro Instruction

System Macro Instructions
<Read a JFCB)

POST, WAIT (ECB) EXCP Macro Instruction,
XDAP Macro Instruction

PURGE

RDJFCB

RENAME

RESTORE

SCRATCH

XDAP

EXCP Macro Instruction
(Appendix)

System Macro Instructions

VTOC Maintenance,
Data Set Protection

EXCP Macro Instruction
(Appendix)

VTOC Maintenance,
Data Set Protection

XDAP Macro Instruction

102 OS Data Management for System Programmers

I

Locate Device Characteristics (DEVTYPE) Macro Instruction

The DEVTYPE macro instruction is used to request information relating to
the characteristics of an I/O device, and to cause this information to
be placed into a specified area. (The results of a DEVTYPE macro
instruction executed before a checkpoint is taken should not be
considered valid after a checkpoint/restart occurs.)

r----------T-----------T-----------------~-----------------------------,
I Name I Operation I Operand I
~----------+-----------+---f I [symbol] I DEVTYPE I ddloc-addrx,area-addrx[,DEVTAB] [,RPS] I L __________ ~ ___________ ~ ___ J

ddloc-addrx
specifies the address of a doubleword that contains the symbolic
name of the DD statement to which the device is assigned. The name
must be left justified in the doubleword, and must be followed by
blanks if the name is less than eight characters. The doubleword
need not be on a doubleword boundary.

area-addrx
specifies the address of an area into which the device information
is to be placed. The area can be two, five, or six full words,
depending on whether or not the DEVTAB and RPS operands are
specified. The area must be on a fullword boundary.

DEVTAB

RPS

If DEVTAB is specified, and the device is a direct access device,
five full words of information are placed into your area. If
DEVTAB is specified, and the device is not a direct access device,
two fullwords of information are placed into your area. If DEVTAB
is not specified, two fullwords of information are placed into your
area .•

If RPS is specified, DEVTAB must also be specified. The RPS
parameter causes one additional full word of RPS information to be
included with the DEVTAB information.

Note: Any reference to a dummy DD statement in the DEVTYPE macro
instruction will cause zeroes to be placed in the output area.

Device Characteristics Information

The following information is placed into your area:

Word 1
(offset 0)

Device code from the UCB in which:

Byte 1

Byte 2

Byte 3

Byte 4

bit 0 Unassigned
bit 1 Overrunable device
bit 2 Burst/byte mode
bit 3 Data chaining
bit 4-7 Model code

Optional features

Device classes

Unit type

1 = yes
1 = burst
1 = yes

Note: Bit settings for byte 2 are noted in the UCB format and field
description in the system Control Blocks publication.

system Macro Instructions 103

Word 2
(offset 1)

Maximum block size. For direct access devices, this value
is the maximum size of an unkeyed block; for magnetic or
paper tape devices, this value is the maximum block size
allowed by the operating system. For all other devices,
this value is the maximum block size accepted by the device.

If DEVTAB is specified, the next three full words contain the following
information:

Word 3 Bytes 1-2 The number of physical cylinders on the device.

I

(offset 2)

Word 4
(offset 3)

Word 5
(offset 4)

Bytes 3-4 The number of tracks per cylinder.

Bytes 1-2 Maximum track length. Note that for the 2305
and 3330 direct access devices this value is not
equal to the value in word two (maximum block

Byte 3

Byte 4

size) as it is for other IBM direct access devices.

Block overhead - the number of bytes required
for gaps and check bits for each keyed block
other than the last block on a track.

Block overhead - the number of bytes required for
gaps and check bits for a keyed block that is the
last block on a track.

Bytes 3-4 Block overhead - the number of bytes required for
gaps and check bits for any keyed block on a track
including the last block. Use of this form is
indicated by a one in bit 4, byte 2 of word 5.

Byte 1 Block overhead - the number of bytes to be
subtracted if a block is not keyed.

Byte 2 bits 0-3
bit 4

bit 5

bit 6

bit 7

Reserved.
If 1, bytes 3 and 4 of word 4 contain
a halfword giving the block overhead
for any block on a track, including
the last

Reserved

Unconditionally on for 2321; off for
others

If 1, a tolerance factor must be applied
to all blocks except the last block on
the track.

Bytes 3-4 Tolerance factor - this factor is used to
calculate the effective length of a block. The
calculation should be performed as follows:

Step 1 - add the block's key length to the block's
data length.
Step 2 - test bit 7 of byte 2 of word 5. If bit
7 is 0, perform step 3. If bit 7 is 1, multiply
the sum computed in step 1 by the tolerance
factor. Shift the result of the multiplication
nine bits to the right.
Step 3 - add the appropriate block overhead to
the value obtained above.

If DEVTAB and RPS are specified, the next full word contains the
following information:

Word 6
(offset 5)

Bytes 1-2 RO overhead for sector calculations.

Byte 3 Number of sectors for the device.

Byte 4 Number of data sectors for the device.

104 OS Data Management for System Programmers

DutQut for Each Device !lQe

Maximmn
UCB Type Field Record Size DEVTAB RPS
(Word 1, (Word 2, (Words 3, 4, and 5, (Word 6
In Hexadecimal) In Decimal) In Hexadecimal) In Hexadecimal)

2540 Reader 10 00 08 01 80 Not Applicable Not Applicable
2540 Reader w/CI 10 01 08 01 80 Not Applicable Not Applicable
2540 Punch 10 00 08 02 80 Not Applicable Not Applicable
2540 Punch w/CI 10 01 08 02 80 Not Applicable Not Applicable

1442 Reader-Punch 50 00 08 03 80 Not Applicable Not Applicable
1442 Reader-Punch w/CI 50 01 08 03 80 Not Applicable Not Applicable
1442 serial Punch 51 80 08 03 80 Not Applicable Not Applicable
1442 serial Punch w/CI 51 01 08 03 80 Not Applicable Not Applicable

2501 Reader 50 00 08 04 80 Not Applicable Not Applicable
2501 Reader w/CI 50 01 08 04 80 Not Applicable Not Applicable

2520 Reader Punch 50 00 08 05 80 Not Applicable Not Applicable
2520 Reader Punch w/CI 50 01 08 05 80 Not Applicable Not Applicable
2520 B2-B3 11 00 08 05 80 Not Applicable Not Applicable
2520 B2-B3 w/CI 11 01 08 05 80 Not Applicable Not Applicable

1403 10 00 08 08 120* Not Applicable Not Applicable
1403 w/UCS 10 80 08 08 120* Not Applicable Not Applicable

1404 10 00 08 08 120* Not Applicable Not Applicable

1443 10 00 08 OA 120* Not Applicable Not Applicable

3211 10 80 08 09 132* Not Applicable Not Applicable

2671 10 00 08 10 32767 Not Applicable Not Applicable

1052 10 00 08 20 130 Not Applicable Not Applicable

2400 (9-track) 30 00 80 01 32767 Not Applicable Not Applicable
2400 (9-track, p .• e.) 34 00 80 01 32767 Not Applicable Not Applicable
2400 (9-track, d.d.) 34 20 80 01 32767 Not Applicable Not Applicable
2400 (7-track) 30 80 80 01 32767 Not Applicable Not Applicable
2400 (7-track, d.c.) 30 CO 80 01 32767 Not Applicable Not Applicable

2301 30 40 20 02 20483 000100C85003BA3535000200 Not Applicable

2302 30 00 20 04 4984 00FAOO2E1378511414010219 Not Applicable

2303 30 00 20 03 4892 0050000A131C922626000200 Not Applicable

2311 30 00 20 01 3625 00CBOOOAOE29511414010219 Not Applicable

2314 30 CO 20 08 7294 00CBOO141C7E922D2D010216 Not Applicable

2321 30 00 20 05 2000 140A051407D0641010030219 Not Applicacle

3210 Printer Keyboard 10 00 08 22 130 Not Applicable Not Applicable
3215 Printer Keyboard 10 00 08 23 130 Not Applicable Not Applicable

3505 Card Reader 10 00 08 06 80 Not Applicable Not Applicable
3505 Card Reader w/CI 10 01 08 06 80/160 Not Applicable Not Applicable
3525 Card Punch 10 00 08 OC 80 Not Applicable Not Applicable
3525 Card Punch w/cI 10 01 08 OC 80/160 Not Applicable Not Applicable

2305-1 30 50 20 06 14,138 0030000838E80278CA090200 02985A57

2305-2 30 50 20 07 14,660 006AOO083AOA01215B090200 0140B4B1

3330 30 50 20 09 13,030 019B0013336DBFBF38010200 00ED807C

System Macro Instructions 105

Maximum
UCB Type Field Record Size DEV'l'AB
(Word 1, (Word 2, (Words 3, 4, and 5,

Device In Hexadecimal> In Decimal> In Hexadecimal)
1053 14 00 10 04 Not Applicable

2250 (Mod 1) 31 xx 10 02 Not Applicable
2250 (Mod 2) 32 xx 10 02 Not Applicable
2250 (Mod 3) 33 xx 10 02 Not Applicable

2280 30 00 10 05 Not Applicable

2282 30 00 10 06 Not Applicable

3066 (Model 165
system Console) 10 00 10 08 Not Applicable

5450 (Model 85
Operators
Console) 10 00 10 07 Not Applicable

3400 (9-track,p.e.) 34 00 80 03 32767 Not Applicable

13400 (9-track, d.d.) 34 20 80 03 32767 Not Applicable
3400 (7-track) 30 CO 80 03 32767 Not Applicable

Legend

CI-Card image feature,· d,.c.-data conversion, d,.d.-dual density,
p.e.-phase encoding, UCS-universal character set, w/-with

*Although certain models can have a larger line size, the minimum
line size is assumed.

xx = Special feature (byte 2) configurations may be obtained from
the System Control Blocks publication.

Communication Equipment

1030,1050,83B3, TWX,2250, S360
1060, 115A,l130
2780
2740

UCB Type Field

51xx40YZ
52xx40YZ
53xx40YZ
54xx40YZ

Record Size

Not Applicable
Not Applicable
Not Applicable
Not Applicable

Y=Adapter Type (Bits 0-3) Z=Control Unit (Bits 4-7)
Hex Value Meaning Hex value Meaning

1 IBM Terminal Adapter, Type I 1 2702
2 IBM Terminal Adapter, Type II 2 2701
3 IBM Telegraph Adapter 3 2703
4 Telegraph Adapter, Type I
5 Telegraph Adapter, Type II
6 World Trade Telegraph Adapter
7 Synchronous Adapter, Type I
8 IBM Terminal Adapter, Type III
9 synchronous Adapter, Type II

Exceptional Returns

The following return codes are placed in register 15:

00 - Request completed satisfactorily.
04 - Ddname not found.
08 - Invalid area address. The address of the output area either

violates protection, or it is out of the range of main storage.

106 OS Data Management for System Programmers

RPS
(Word 6
In Hexadecima
Not Applicabl

Not Applicabl
Not Applicabl
Not Applicabl

Not Applicabl

Not Applicabl

Not Applicabl

Not Applicabl

Not Applicabl
Not Applicabl
Not Applicabl

How to Read a Job File Control Block

To accomplish the functions that are performed as a result of an OPEN
macro instruction, the OPEN routine requires access to information that
you have supplied in a data definition (DD) statement. This information
is stored by the system in a job file control block (JFCB).

Usually, the programmer is not concerned with the JFCB itself. In
special applications, however, you may find it necessary to modify the
contents of a JFCB before issuing an OPEN macro instruction. To assist
you, the system provides the RDJFCB macro instruction. This macro
instruction causes a specified JFCB to be read into main storage from
the job queue in which it has been stored. Format and field description
of the JFCB is contained in the system Control Blocks publication.

When subsequently issuing the OPEN macro instruction, you must
indicate, by specifying the TYPE=J option, that you have supplied a
modified JFCB to be used during the initialization process.

The JFCB is returned to the job queue by the OPEN routine or the
OPENJ routine, if any of the modifications in the following list occur.
These modifications can occur only if the information is not originally
in the JFCB.

• Expiration date field and creation date field merged into the JFCB
from the DSCB.

• secondary quantity field merged into the JFCB from the DSCB.

• DCB fields merged into the JFCB from the DSCB.

• DCB fields merged into the JFCB from the DCB.

• Volume serial number fields added to the JFCB.

• Data set sequence number field added to the JFCB.

• Number of volumes field added to the JFCB.

If you make these, or any other modifications, and you want the JFCB
returned to the job queue, you must set the high-order bit of field
JFCBMASK+4 to one. This field is in the JFCB. Setting the high-order
bit of field JFCBMASK+4 to zero does not necessarily suppress the return
of the JFCB to the job queue. If the OPEN or OPENJ routines have made
any of the above modifications, the JFCB is returned to the job queue.
To inhibit writing the JFCB back to the job queue during an OPENJ, the
field JFCBTSDM should be set to x'OS' prior to issuing the OPEN macro.

OPEN -- PREPARE THE DATA CONTROL BLOCK FOR PROCESSING (S)

The OPEN macro instruction initializes one or more data control blocks
so that their associated data sets can be processed.

A full explanation of the operands of the OPEN macro instruction,
except for the TYPE=J option, is contained in the Data Management Macro
Instructions publication. The TYPE=J option, because it is used in
conjunction with modifying a JFCB, should be used only by the system
programmer or only under his supervision.

System Macro Instructions 107

r----------T----------T--,
I Name I Operation I Operand I
.----------+----------+--~ I [symbol] I OPEN I ({dcb-addr.[(opt~-code[,opt2-code])],} •••) I
I I I [,TYPE=J] I L __________ ~ __________ ~ __ J

TYPE=J
specifies that, for each data control block referred to, the
programmer has supplied a job file control block (JFCB) to be used
during initialization. A JFCB is an internal representation of
information in a DD control statement.

During initialization of a data control block, its associated JFCB
may be modified with information from the data control block or an
existing data set label or with system control information.

The system always creates a job file control block for each DD
control statement. The job file control block is placed in a job
queue on direct access storage. Its position, in relation to other
JFCBs created for the same job step, is noted in a main storage
table.

When this operand is specified, the user must also supply a DD
control statement. However, the amount of information given in the
DD statement is at the programmer's discretion, because he can
ignore the system-created job file control block. (See the
examples of the RDJFCB macro instruction for a technique for
modification of a system-created JFCB.)

Caution: In MVT configurations of the operating system, data set
integrity provided by the job scheduler functions is lost if you change,
or do not use, the DSNAME=parameter in the DD statement.

Note: The DD statement must specify at least:

• Device allocation (refer to the Job Control Language publication for
methods of preventing share status) •

• A ddname corresponding to the associated data control block DCBDDNAM
field.

RDJFCB -- READ A JOB FILE CONTROL BLOCK (S)

The RDJFCB macro instruction causes a job file control block (JFCB) to
be read from the job queue into main storage for each data control block
specified.

r----------T----------T--,
I Name I Operationl Operand I
.----------+----------+--~ I [symbol] I RDJFCB I ({dcb-addr,[(opt1-code[,opt2-code])],} •••) I L __________ ~ __________ ~ __ J

dcb, (opt1 , opt2)
(same as dcb, opt1 , and opt2 operands in OPEN macro instruction)

Although the opt1 and opt2 operands are not meaningful during the
execution of the RDJFCB macro instruction, these operands can
appear in the L-form of either the RDJFCB or OPEN macro instruction
to generate identical parameter lists, which can be referred to
with the E-form of either macro instruction.

108 as Data Management for System Programmers

Examples: The macro instruction in EXl creates a parameter list for two
data control blocks: INVEN and MASTER. In creating the list, both data
control blocks are assumed to be opened for input, Opt2 for both blocks
is assumed to be DISP. The macro instruction in EX2 reads the syste~
created JFCBs for INVEN and MASTER from the job queue into main storage,
thus making the JFCBs available to the problem program for modification.
The macro instruction in EX3 modifies the parameter list entry for the
data control block named INVEN and indicates, through the TYPE=J
operand, that the problem program is supplying the JFCBs for system use.

EXl RDJFCB (INVEN"MASTER),MF=L

.
EX2 RDJFCB MF=(E,EX1)

EX3 OPEN (,(RDBACK,LEAVE»,TYPE=J,MF=(E,EX1)

Programming Notes

Any number of data control block addresses and associated options may be
specified in the RDJFCB macro instruction. This facility makes it
possible to read job file control blocks in parallel.

. An exit list address must be provided in each data control block
specified by an RDJFCB macro instruction. Each exit list must contain
an active entry that specifies the main storage address of the area into
which a JFCB is to be placed. A full discussion of the exit list and
its use is contained in the Data Management Services publication. The
format of the job file control block exit list entry is as follows:

r--------------T------------------T------------------------------------, I Type of Exit I Hexadecimal Code I Contents of Exit List Entry I
I List Entry I (high-order byte) I (three low-order bytes) I
.--------------+------------------+------------------------------------f I Job file I 01 I Address of a 116-byte area to be I
I control blockl I provided if the RDJFCB or OPEN I
I I I (TYPE=J) macro instruction is used. I
I I I This area must begin on a fullword I
I I I boundary and must be located I
I I I within the user's region. I L-_____________ ~ __________________ i_ ___________________________________ J

The main storage area into which the JFCB is read must be at least
176 bytes long.

The data control block may be open or closed when this macro
instruction is executed.

If the JFCB is read successfully for all DCBs in the parameter list,
a return code of zero is placed in register 15. If the JFCB is not read
for any of the DCBs because the DDNAME is blank or a DD statement is not
provided, then a return code of 4 is placed in register 15.

cautions: The following errors cause the results indicated:

System Macro Instructions 109

Error
A DD control statement has not been
provided.

DDNAME field in DCB is blank

A main storage address has not been
provided.

Result
A return code of 4 is placed
in register 15.

A write-to-programmer is
issued, the request for
this DeB is ignored, and
a return code of 4 is
placed in register 15.

Abnormal termination of task

110 OS Data Management for System Programmers

Adding a Universal Character Set Image
or a Forms Control Buffer Image
to the Image Library

This chapter provides a detailed
description of how to add either an IBM UCS
(universal character set) ireage or an IBM
FCB (forms control buffer) image to
SYS1. lMAGELIB.

Before reading this section, you should
be familiar with the information contained
in the publications listed below.

REFERENCE PUBLICATIONS

IBM 2821 Control Unit, GA24-3312, contains
the information necessary to create a
user-designed chain/train for the 1403
Printer.

OS Data Management Macro Instructions,
GC26-3794, describes the SETPRT macro
instruction that loads a UCS image and
an FCB image into their respective
buffers.

OS Job Control Language Reference,
GC28-6704, describes the UCS and FCB
parameters that can be specified in a DD
statement to load the UCS and FCB buffers
when they are opened.

IBM 3211 Printer and 3811 Centrol Unit
Component Description, GA24-3543, contains
the inforrr.ation necessary to create a
user-designed train for the 3211 Printer.

Adding a UCS Image or an FCB Image to the Image Library III

How to Add a UCS Image to .the Image Library

The IBM standard character set images listed in the following table may
be included in SYS1.IMAGELIB at system generation by using the DCS macro
instruction. You code a member name for an image in the image library
by prefixing a character set code shown in the table with Dcs1 or DCS2:
DCSl denotes a 1403 printer image and DCS2 denotes a 3211 printer
image (for example, DCS1AN or UCS2A11).

r--,
11403 AN, HN, PCAN, PCHN, PN, QNC, QN, RN, SN, TN, XN, YN I
r--f
13211 All, G11, H11, P11, T11 I L __ J

You may add a user-designed character image to the image library or
make an existing image a default image by following these rules:

1. The member name must be either the four characters UCSl for the
1403 or UCS2 for the 3211 printer. The member name must be
followed by a unique character set code that is one to four
characters long. This character set code can be any valid
combination of letters and numbers according to the rules for
assembler language symbols. 'I'he single letters U or C should not
be used as a character set code since they are symbols fer special
conditions recognized by the system. The assigned character set
code must be specified on the DD statement or SETPRT macro
instruction to load the image into the ues buffer.

2. The first byte in the load module of a character set image
specifies whether or not the image is a default. A default irrage
is indicated by X'80', and is used when the ues pararreter is not
coded in the DD statement. X·OO· specifies that the image is not
to be used as a default.

3. The second byte of the load module indicates the nurr.ber of lines
(n) to be printed for image verification.

4. Each byte if the next n bytes indicates the number of characters to
be printed on each verification line. (Note: For the 3211
printer, the maximum number of characters printed per line is 48;
the associative bytes are not printed during verification.>

5. A 240-byte 1403 DCS image or a 512-byte 3211 DCS image must follow
the previously described fields. (A 3211 DCS image has 432
characters, followed by 15 bytes of X'OO', 64 bytes of associative
bits, and a reserved byte (byte 512) of X'OO'.) Two apostrophes or
two ampersands must be coded to represent a single apostrophe .or
a single ampersand, respectively, that is a part of a character
set image.

112 OS Data Management for System Programmers

The following code is an example of adding a 1403 UCS image, YN, to
the image library.

r--,
I//ADDYN JOB MSGLEVEL=l
I//STEP EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',
1// PARM.LKED='LIST,NCAL,NE,OL'
//ASM.SYSIN DD *
UCS1YN CSECT

/*

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
END

X'80' (this is a default image)
AL1(6) (number of lines to be printed)
AL1(39) (39 characters printed on 1st line)
AL1(42) (42 characters printed on 2nd line)
AL1(39) (39 characters printed on 3rd line)
AL1(39) (39 characters printed on 4th line)
AL1(42) (42 characters printed on 5th line)
AL1(39) (39 characters printed on 6th line)
C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$'
C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,. '
C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$'
C'1234567890STABCDEFGHIJKLMNOPQRS~UVWXYZ*,.'

I//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS1YN) ,DISP=OLD

X

L __ J

Adding a UCS Image or an FeB Image to the Image Library 113

The following example shows the code used to add a 3211 UCS image (All)
to the image library. A 3211 UCS image has 432 characters, followed by 15
bytes of X'OO', 64 bytes of associative bits, and a reserved byte (byte
512) of X'OO'. Two ampersands must be coded to represent a single
ampersand that is part of the character set image.

The 64 bytes of associative bits must be coded to avoid data checks.
To determine how to code these bits for a particular chain, see the
IBM 3211 Printer, 3216 interchangeable Train Cartridge, and 3811 Printer
Control unit Component Description and Operator's Guide, GA24-3543.

,...- - -- -- -- ------ -- -- -- -- -- -- -- ---- -- -- ---- ---- -- ---,
//ADDAll JOB MSGLEVEL=l
//STEP EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD', X
// PARM.LKED= , LIST,NCAL,NE,OL ,
//ASM.SYSIN DD *
UCS2All CSECT

DC X'80' (THIS IS A DEFAULT IMAGE)
DC ALl (9) (NUMBER OF LINES TO BE PRINTED)
DC ALl (48) (48 CHARACTERS PRINTED ON 1ST LINE)
DC ALl (48) (48 CHARACTERS PRINTED ON 2ND LINE)
DC ALl (48) (48 CHARACTERS PRINTED ON 3RD LINE)
DC ALI (48) (48 CHARACTERS PRINTED ON 4TH LINE)
DC ALI (48) (48 CHARACTERS PRINTED ON 5TH LINE)
DC ALl (48) (48 CHARACTERS PRINTED ON 6TH LINE)
DC ALl (48) (48 CHARACTERS PRINTED ON 7TH LINE)
DC ALI (48) (48 CHARACTERS PRINTED ON 8TH LINE)
DC ALI (48) (48 CHARACTERS PRINTED ON 9TH LINE)

*THE FOLLOWING NINE LINES REPRESENT THE TRAIN IMAGE
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC l5X'OO' RESERVED FIELD, BYTES 433-447

*THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
*UCSB BYTE POSITIONS 448-511

DC X'COlOlOlOlOlOlOl010l000404042400040l0'
DC X'lOlOlOlOlOlOlOl00040404l00004040l0l0'
DC X'lOlOlOlOlOl0004040000000l0l0l0l0l0l0'
DC X'lOlOlOl0004040444800'
DC X'OO' RESERVED BYTE, BYTE 512
END

/*
L//LKED.SYSLMOD DD DSNAME=SYSl.IMAGELIB(UCS2All) ,DISP=OLD J

Note: Executing the ASMFCL procedure does not actually generate executable
code. The assembler/linkage editor is used as a vehicle to load the UCS
image into the image library.

114 OS Data Management for System Programmers

How to Add a Forms Control Buffer Image to the Image Library

TWo standard FCB images, STD1 and STD2, can be included in SYS1.IMAGELIB
during system generation for a 3211 printer. STD1 prints six lines per
inch on a 8 1/2 inch form. STD2 prints six lines per inch on an eleven
inch form. Channels for both images are evenly spaced with channel one
on the fourth line and channel nine on the last line.

In addition to the IBM-supplied images, user images can be defined.
Each user image is added to the image library as part of a load module.
To add an FCB image to the image library, follow these rules:

1. The member name cannot exceed eight bytes. The first four
characters of this member name must be FCB2. The characters that
follow FCB2 identify the FCB image and are referred to as the image
identifier. Any combination of characters that are valid in
assembly language can be used with the exception of a single ·S· or
a single ·U· as an image identifier. The image identifier must be
specified on a DD statement or in the SETPRT macro instruction to
load the image in the FCB buffer.

2. The first byte of the load module of a forms control image
specifies whether or not the image is a default. A default image
is indicated by X'80' and is used for all jobs that do not have the
FeB parameter coded on the DD statement; X'OO' indicates that the
image is not to be used as a default.

3. The second byte of the load module indicates the number of lines
per form (FCB image length). The maximum image length is 180
lines. The FCB image must be as long as the form. For example, if
you are printing eight lines per inch on an eleven inch form, the
FCB image must be 88 bytes long; if you are printing six lines per
inch on the same form, the FCB image must be 66 bytes long.

4. The first of the FCB image (the third byte of the load module)
defines the number of lines per inch and a channel:

• X'ln' means eight lines are printed per inch •
• X'On' means six lines are printed per inch.
All remaining bytes (lines) must contain X'On' except the last
byte. The last byte must be X'ln'. The letter n can be a
hexadecimal value from 1 to C representing a channel (one to
twelve); or it can be zero (0) which means no channel is indicated.

In the following example, an FCB load module is assembled and added
to SYS1.IMAGELIB. The image defines a print density of eight lines per
inch on an eleven inch form.

Adding a UCS Image or FCB Image to the Image Library 115

r--, I//ADDFCB JOB MSGLEVEL=l I
I//STEP EXEC PROC=ASMFCB,PARM.ASM='NODECK,LOAD', XI
1// PARM. LKED='L!ST , NCAL. NE,OL' I
I//ASM. SYSIN DD * I
I FCB2IDl CSECT I
I *THIS EXAMPLE IS FOR A FORM LENGTH OF 11 INCHES
I*WITH 8 LINES OF PRINT PER INCH (88 LINES)
I DC X'80' THIS IS A DEFAULT IMAGE

1/*

DC AL1(88) LENGTH OF FCB IMAGE
DC X'10' 8 LINES PER INCH-NO CHANNEL FOR POS.l
DC XL4'0' 4 LINES NO CHANNEL
DC X'Ol' CHANNEL 1 IN POSITION 6
DC XL6'0' 6 LINES NO CHANNEL
DC X'02' CHANNEL 2 IN POSITION 13
DC XL6'0'
DC X' 03'
DC XL6'0'
DC X' 04'
DC XL6'0'
DC X, OS'
DC XL6'0'
DC X, 06'
DC XL6'0'
DC X, 07'
DC XL6'0'
DC X, 08'
DC XL6'0'
DC X' 09'
DC XL6'0'
DC X'OA'
DC XL6'0'
DC X'OB'
DC XL6'0'
DC X'OC'
DC XL4'0'
DC X'10'
END

CHANNEL 12 IN POSITION 83
4 LINES NO CHANNEL
POSITION 88 - LAST LINE IN IMAGE

I//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(FCB2ID1),DISP=OLD L-___ J

116 OS Data Management for System Programmers

Ldexes to systems reference library
Lnuals are consolidated in the publica
.on IBM System/360 Operating System:
'stems Reference Library Master Index,
:der No. GC28-6644. For additional
Lformation about any subject listed
~low, refer to other publications
.sted for the same subject in the
Lster Index.

.ias name
used to read a block from the
catalog 18

>pendages
in EXCP 46

~LAS
macro instruction 73
error locations processed 77,78
example of use 75
processing 75
return codes 75

lliLST macro instruction
used in cataloging, VTOC maintenance
16-29,119

ltalog (SYSCTLG)
entries and blocks 31
index

how to build 19
how to delete 20

index name used to read a block
from 16

reading, maintaining 16
\TALOG macro instruction

use in cataloging 23-26,119
ltaloging a data set

when index levels exist 23
by creating index levels 24

lannel program
use in EXCP 42

~OSE macro instruction
in EXCP 63

)ntrol volumes, how to
connect 22
disconnect 22,23

TT macro instruction 88

ita set
delete from catalog 27
delete from VTOC 24,25
enter in catalog 23,24
protection 89-99
recatalog 25
rename in VTOC 28

:B (Data Control Block)
macro instruction, macro expansion

in EXCP 57-60
use in EXCP 43,54

Index

DDR
dynamic device reconfiguration

use in EXCP 55
DEB (Data Extent Block)

use in EXCP 43,66
defective track recovery

see: ATLAS
device codes

used by DEVTYPE macro instruc
tion 105

used in catalog volume list
pointers 34

DEVTYPE system macro instruction 103
DOS initialized volume

use in OS 29
DSCB (Data Set Control Block)

reading from VTOC 26

ECB (Event control block)
use in EXCP 43,65,66
use in XDAP 83,84

EOV macro instruction
in EXCP 62
in XDAP 83

EXCP processing
appendages 46
channel program 42
control blocks 42,63
description 40
EXCP macro instruction 62
macro instructions 54
RESTORE, PURGE macro instruc-
tion 67,68

FCB (see Forms Control Buffer)
forms control buffer

image on SYSl.IMAGELIB 115-116

generation data set
used in reading a block from the
catalog 17

generation index
how to build 20

IECDSECT system macro instruction
IECDSECS macro instruction 36
IECPCNVT

TTR address conversion routine
IEFJFCBN macro instruction 38
IEFUCBOB macro instruction 37
IEHPROGM utility program

use in data set protection 91
image library 112-116
index level

name used to read a block from
the catalog 16

used in cataloging a data set
used in uncataloging a data set

36

85

23
24

Index 117

•

INDEX macro instruction
used in cataloging 19-23,119

lOB (input/Output Block)
use in EXCP 42,63
use in XDAP 80,84

I/O interruption
processing in EXCP 45

I/O supervisor
appendages 46-52
processing in EXCP 43-45

JFCB (Job File Control Block)
in IEFJFCBN 38
reading, modifying before OPEN 107

LOCATE macro instruction
use in cataloging 17-19,119

macro instructions
described in this publication 110

Model 195
use of EXCP 40

OBTAIN macro instruction
use with VTOC 26,119

OPEN macro instruction
after modifying a JFCB 107
in EXCP 61
in XDAP 81

password data set (PASSWORD)
key area, data area of password
record 91

SCRATCH, RENAME 93
use of 92

protected data set
see: Password data set

PROTECT macro instruction
maintaining the password data set 93
number of records for each protected
data set 94

parameter lists 95
programming conventions 95
protection mode indicator 94
return codes 99

PURGE macro instruction
use in EXCP 68

RDJFCB macro instruction 108
reading a JFCB

use of system macro instructions
107

relative track address
see: TTR

RENAME macro instruction
use in VTOC maintenance 29,119
use with password data set 93

RESTORE macro instruction
use in EXCP 67

SCRATCH macro instruction
use in VTOC maintenance 28,119
use with password data set 93

track errors
see: ATLAS

TTR (Relative track address)
conversion to and from absolute
address 85

used to read a block from the
catalog 18

TYPE=J
operand of OPEN 107,108

UCB (Unit Control Block)
in DEVTYPE macro instruction 10:
in IEFUCBOB macro instruction 3'

UCS (Universal Character Set)
image on SYS1.IMAGELIB 112

VTOC (Volume Table of Contents)
maintenance 26

XDAP processing
channel program 80
control blocks 83,84
description 80
macro instructions 81
TTR conversion 85

118 OS Data Management for System Programmers

Macro Instructions Required to Maintain and Modify the Catalog and VTOC

Macro - I nstructions Required to Perform Function
Function

Name Operation Operands

Read a block from the [symbol] LOCATE list - addrx' []
cata log - by name [list-name] CAMLST NAME ,dsname-relexp6, cvo I-re lexp7 ,area-re lexp9

Read a block from the [symbol] LOCATE list-addrx' ~]
catalog - by location [list-name] CAMLST BLOCK,ttr-relexp3, cvol-relexp7 ,area-relexp9

Bui Id an index [symbol] INDEX list-addrx' []
[list-name] CAMLST BLDX,name-relexp2, cvol-relexp7

Build a generation [symbol] INDEX list-addrx' ~] [J
' [EMPTy16] index [list-name] CAMLST BLDG ,name-relexp2, cvol-relexp7 " DELETE's ,number-absexp'7

Assign an alias [symbol] INDEX list-addrx' ~]
[list-name] CAMLST BLDA,index name-relexp5, cvol-relexp7 ,alias name-relexplO

De lete an index [symbol] INDEX Ii st-add rx 1 [71
[list-name] CAMLST DLTX,name-relexp2, cvol-relexp7

Delete an alias [symbol] INDEX I ist-addrx' []
[list-name] CAMLST bLTA,alias name-relexpl0 , cvol-relexp7

Connect contra I [symbol] INDEX list-addrx' [J
vo lumes [list-name] CAMLST LNKX,index name-relexp5, cvol-relexp7 ,new cvol-rel exp'2

Disconnect control [symbol] INDEX Ii st-addrx' [J
volumes [list-name] CAMLST DRPX,index name-relexp5, cvol-addrx7

Catalog a data set [symbol] CATALOG Ii st-addrx' []
, [DSCBTTR=dscb ttr-relexpI9] when index exists [list-name] CAMLST CAT ,name-rel exp2, cvol-relexp7 ,vol list-relexp'3

Cata log a data set and [symbol] CATALOG I ist-addrx 1 []
,[DSCBTTR=dscb ttr-relexpI9] create indexes [list-name] CAMLST CATBX,name-relexp2, cvol-relexp7 ,vol list-relexp'3

Remove data set
[symbol] CATALOG list-addrx' [references from the

UNCAT,name-relexp2, cvol-relexp7] catalog and leave [list-name] CAMLST

indexes

Remove data set [symbol] CATALOG list-addrx' []
references from the [list-name] CAMLST UCATDX,name-relexp2, cvol-relexp7,
catalog along with
empty indexes

Recatalog a data set [symbol] CATALOG Ii st-addrx ' [.]
, [DSCBTTR=dscb ttr-relexp'9] [list-name] CAMLST RECAT ,name-relexp2, cvol-relexp 7 ,vol list-relexp'3

Read a DSCB from the [symbol] OBTAIN I ist-addrx 1

VTOC - by name [list-name] CAMLST SEARCH,dsname-relexp6 ,vol-relexp8 ,wk area-relexp'9

Read a DSCB from the [symbol] OBTAIN list-addrx'
VTOC - by location [list-name] CAMLST SEEK,cchhr-relexp4 ,vol-relexp8 ,wk area-relexp'4

De lete a data set [symbol] SCRATCH list-addrx' ~ ~
[list-name] CAMLST SCRATCH,dsname-relexp6 "vol Iist-relexpl3 " OVRD'8

Change the data set [symbol] RENAME list-addrx'
name in a DSCB [Ii st-name] CAMLST RENAME,dsname-relexp6 ,new name-relexpl1 ,vol list-relexp'3

list-oddrx
points to the parameter list (labeled
list-name) set up by the CAM LS T
macro instruction.

2 name-re lexp
specifies the main storage location of the
fully qualified name of a data set or index
level. The name cannot exceed 44
characters. If the name is less than 44
characters, it must be followed by a blank.
The name must be defined by a C-type
Define Constant (DC) instruction.

3 ttr-re lexp
specifies the main storage location of a
3-byte relative track address (TTR). This
address indicates the position, relative to
the beginning of the catalog data set, of
the track containing the block (TT), and
the block identification on that track (R).

4 cchhr-relexp

5

specifies the main storage location of the
5-byte abso lute track address (CCHHR) of
a DSCB.

index name-relexp
specifies the main storage location of the
name of a high level index. The area
that contains the name must be eight bytes
long. The name must be defined by a C-type
Define Constant (DC) instruction.

6 dsname-relexp

7

8

specifes the main storage location of a fully
qualified data set name. The area that
contains the name must be 44 bytes long.
The name must be defined by a C-type Define
Constant (DC) instruction.

cvo l-re lexp
specifies the main storage location of a
6-byte vo I ume serf a I number for the vo I ume
to be processed. If this parameter is not
specified, the system residence vo lume is
processed.

vol-relexp
specifies the main storage location of the
6-byte serial number of the volume on which the
required DSCB is stored.

9 area-re lexp
specifies the main storage location of a 265-byte
work area that you must defi ne. The work area
must begin on a doubleword boundary. The first
256 bytes of the work area wi II contain the block
that is read from the catalog, the next three bytes
will contain zeros, and the last six bytes wi II
contain the serial number of the volume on which
the block was found. If the data set resides on
one volume, bytes 252 - 254 wi II contain the
relative track address of the DSCB.

10 alias name-relexp
specifies the main storage location of the name
that is to be used as an alias for a high level
index. The area that contains the name must be
eight bytes long. The name must be defined by a
C-type Define Constant (DC) instruction.

11 new name-relexp
specifies the main storage location of a fully
qualified data set name that is to be used to
rename a data set. The area that contains the
name must be 44 bytes long. The name must
be defined by a C-type Define Constant (DC)
instruction.

12 new cvol-relexp
specifies the main storage location of the
4-byte device code and 6-byte vo lume serial
number of the control volume that is to be
connected to another control volume.

13 vol list-relexp
specifies the main storage location of an area
that contains a volume list. The area must
begin on a half-word boundary.

14 wk area-re lexp
specifies the main storage location of a 148
byte work area that you must defi ne. The
work area must begin on a doubleword
boundary.

If a data set name was specified, the first 96
bytes contain the data portion of a format 1
DSCB, and the next five bytes contain the
absolute track address of the DSCB.

If an absolute track address was specified, the
first 140 bytes contain the key portion and
data portion of the DSCB.

15 DELETE
specifies that all data sets dropped from a
generation data group are to be de leted,
i.e., the space allocated to the data sets is
to be made available for reallocation.

16 EMPTY
specifies that references to all data sets in a
generation data group cataloged in the
generation index are to be removed from the
index when the number of entries specified is
exceeded.

17 number-absexp
specifies the number of data sets to be
included in a generation data group. This
number must be specified, and cannot exceed
255.

18 OVRD
specifies that the expiration date in the DSCB
should be ignored.

19 DSCBTTR=dscb ttr-re lexp
specifies the main storage location of the
3-byte relative track address (TTR) of the
DSCB for a data set that residtos on only one
volume (relative to the beginning of the
volume),

Figure CTLG1. Catalog and VTOC Macro Instructions

119

I

EXCEPTIONAL RETURN CONDITION CODES

Control is always returned to the instruction that follows the LOCATE, INDEX, CATALOG, OBTAIN, SCRATCH, or RENAME macro instruction. If the function
has been performed successfully, register 15 contains zeros. Otherwise, register 15 contains a condition code that indicates the reason for the failure.
The condition codes for the macro instruction are as follows:

Code

4

12

16

20

24

LOCATE Macro Instruction

Interpretation

Either the required control volume was not mounted, there is a
closed chain of control volume pointers, the specified volume is a
2321, or the specified volume does not contain a catalog data set
(SYSCTLG). The work area contains the volume serial number
(in bytes 259-264) and the device code of the volume, if available
(in bytes 252-255).*

The last entry faund was a control volume pointer or, one of the
names of the qualified name was not found or, an unidentified
entry was found. Register 0 contains the number of the last valid
name in the qualified name. For example, if the qualified name
A.e.C.O were specified, but name C did not exist at the level
specified, register 0 would contain the binary number 2. The
work area contains the serial number of the volume containing
the index (in bytes 259-264).·

Either an index or an alias was found when the list of qualified
names was exhausted.·

A data set resides at some level of the index other than the lowest
index level specified. The work area contains the serial number of
the volume containing the index in which a data set was found
(in bytes 259-264). *

A syntax error exists in the name (for example, nine characters, a
double delimiter, blank name field, or a qualified name when a
simple name is needed).

A permanent I/O error was found when processing the catalog. *

28 Relative track address (TTR) supplied to LOCATE is out of the
SYSCTLG data set extents. *

32 Invalid work area pointer (for example, not a double-word
boundary).

* Register 0 contains the number of index levels that were searched before the
failure was encountered. The work area contains the last block that was
searched.

OBTAIN Macro Instruction

Code Interpretation

4 The required volume was not mounted.

8 SEARCH mode: The format-1 osce was not found in
the VTOC of the specified volume.

SeEK mode: No valid format-4 osce exists on the
specified volume.

12 A permanent 1/0 error was found when processing the specified
volume.

16 Invalid work area pointer.

20 CCHH not within boundaries of VTOC extent (Seek mode).

Code

4

8

12

16

20

24

28

72

Code

4

8

12

16

20

24

28

72

CATALOG Macro Instruction

Interpretation

Either the required control volume was not mounted, or the
specified volume does not contain a catalog data set (SYSCTLG).

The existing catalog structure is inconsistent with the operation
performed. (Because the CATALOG macro instruction uses the
search routine of the LOCATE macro instruction, register 1 contains
the condition code that would be given by the LOCATE macro
instruction. See the adiacent chart ~r the interpretation of that
code. Register 0 contains the number of the index levels referred
to before the exception was noted.)

Not used with the CATALOG macro instruction.

The index structure necessary to catalog the data set does not exist.

Space is not available on the specified control volume.

An attempt was made to catalog an improperly named generation
data set, or the generation index is full and the named data set is
older than any currently in the index.

A permanent I/O error was found when processing the catalog.

The VTOC of a DOS volume could not be converted to OS format.

I NDEX Macro Instruction

Interpretation

Either the required control volume was not mounted, or the specified
volume does not contain a catalog data set (SYSCTLG).

The existing catalog structure is inconsistent with the operation
performed. (Because the INDEX macro instruction uses the search
routine of the LOCATE macro instruction, register 1 contains the
condition code that would be given by the LOCATE macro
instruction, and register 0 contains the number of index levels
referred to during the search.)

An attempt was made to delete an index or generation index that
has an alias or has indexes or data sets cataloged under it. The
index is unchanged.

The qualified name specified when building an index or generation
index implies an index structure that does not exist; the high level
index, specified when connecting control volumes, does not exist.

Space is not available on the specified control volume.

Not used with the INDEX macro instruction.

A permanent I/O error was found when processing the catalog.

The VTOC of a DOS volume could not be converted to OS format.

Figure CTLG2.

I

I

I

I

I

~
4

RENAME Macro Instruction

I ntere rE'tatio n

No volumes containing any part of the data set were mounted, nor
did register 0 contain the address of a unit that was available for
mounting.

8 An unusual condition was encountered on one or more volumes.

12 Invalid volume list (not accompanied by the setting of the last
byte of each volume pointer).

r--- - -- -- -- - - - - -- - - - --_
After the RENAME macro instruction is executed, the last byte of each
12-byte volume pointer in the volume list indicates the following condi
tions in binary code:

Code

o

2

3

4

5

6

Code

4

8

12

Interpretation

The osce for the data set has been renamed in the VTOC on the
volume pOinted to.

The VTOC of this volume does not contain the osce to be renamed.

The macro instruction failed when the correct password was not
supplied in the two attempts allowed.

A osce containing the new name already exists in the VTOC of
this volume.

A permanent 1/0 error was found when processing this volume.

A device for mounting this volume was unavailable.

The operator was unable to mount this volume.

SCRATCH Macro Instruction

Interpretation

No vOlurnes containing any part of the data set were mounted, nor
did register 0 contain the address of a unit available for mounting.

An unusual condition was encountered on one or more volumes.

Invalid volume list (not accompanied by the setting of the last
byte of each volume pointer).

...----- - - --- - ---- --- ---
After the SCRATCH macro instruction is executed, the last byte of each
12-byte volume pointer in the volume list indicates the following condi
tions In binary code:

Code

o

2

3

Interpretation

The osce for the data set has been deleted from the VTOC on the
volume pointed to.

The VTOC of this volume does not contain the osce to be deleted.

The macro Instruction failed when the correct password was not
supplied n the two attempts allowed.

The OSC9 was not deleted because either the OVRO option was
not speci 'led or the retention cycle has not expired.

4 A permar ent 1/0 error was found when processing this volume.

5 A device for mounting this volume was unavailable or a mount
for this v'llume was not verified.

6 The operator was unable to mount this volume.

Return Codes of Catalog and VTOC Macro Instructions

121

OS Data Management for System Programmers

GC28-6550-11

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

Reader's
Comment
Form

G C28-6550-11

Fold and Staple

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I BM Corporation
Programming Center - Publishing
Department D58
Monterey and Cottle Roads
San Jose, California 95193

Fold and Staple

International Business Machines CorporaticlO
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only I

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternationall

First Class Permit
Number 2078
San Jose, California

o en
o
Q)
Q)

s:
Q)

::l
Q)

10
(1)

3
(1)
::l
-.. o ...,

!f
%l.
(1)

3
."

~ ..,
Q)

3
3
(1)
en

GC28-6550-11

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

o
en
I:)
Q) ...
Q)

s:
Q)

::l
Q)

(Q
(1)

3
CD
::l ...
-h o ...
!:R
'" ...
(1)

3
"'\J ...
c8 ...
Q)

3
3
CD ...
'"

