
c

o

o

Systems Reference Library

OS Data Management Services Guide

Release 21.7

File No. S360/370-30
Order No. GC26-3746-2

This book describes the services provided by the operating system
that allow the programmer to organize data into data sets on
auxiliary storage devices, to read information from these data sets
into main storage, and, after processing the information, to record it
on auxiliary storage devices.,

This book is intended for application programmers who write
assembler-language programs that create and process data sets. It
describes the assembler-language macro instructions used to request
input and output operations. The format of the macro instructions
is explained in OS Data Management Macro Instructions,
GC26-3794, which should be used with this book.

In addition to describing the characteristics of data sets and
direct-access storage devices, the book describes the techniques you
can use to process sequential, partitioned, indexed sequential, and
direct data sets.

This book ~ssumes you have a basic knowledge of the operating
system and of assembler language. Two books that contain
information about these subjects are OS Introduction, GC28-6534,
and OS Assembler Language, GC28-6514. It also assumes you
are familiar with job control language, especially the DD statement,
as described in OS Job Control Language Reference, GC28-6704.

This book does not discuss macro instructions used for the time
sharing option or for graphics, teleprocessing, optical character
readers, optical reader-sorters, or magnetic character readers. These
macro instructions are discussed in separate publications that are
listed in the iBjVi Sysiem/'360 and SYl'ie"t/'370 Bibliugi"upliY,
GA22-6822.

os

.. ""_ "" .. _._-,,_ " " "

Third Edition (July 1973)

This edition replaces the previous edition (numbered GC26-3746-l) and makes that edition obsolete.

This edition applies to Release 21.7 of OS and to all subsequent releases of that system unless
otherwise indicated in new editions or technical newsletters.

Significant system changes are summarized under "Summary of Amendments" following the list of
figures. Each technical change is marked by a vertical line to the left of the change.

Information in this publication is subject to significant change. Any such changes will be published in
new editions or technical newsletters. Before using the publication, consult the latest IBM
System/360 and System/370 Bibliography, GA22-6822, and the technical newsletters that amend the
bibliography, to learn which editions and technical newsletters are applicable and current.

Requests for copies of IBM Publications should be made to the IBM branch office that serves you.

Forms for readers' comments are provided at the back of the publication. If the forms have been
removed, comments may be addressed to IBM Corporation, Programming Center-Publishing,
Department 058, Monterey and Cottle Roads, San Jose, California 95193. All comments and
suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1971, 1972, 1973

c· ~,
-)

,
I

"Wi'" -Hfr" 1 S" - "2r P"W

c'
PREFACE

o

If you know how to write assembler-language programs and use job control statements,
you can use this book to write programs that create and process data sets. To use this
book you must have basic knowledge of the operating system as contained in OS
Introduction, GC28-6534, of assembler language as described in OS Assembler
Language, GC28-6514, and of job control language (JCL) as explained in OS Job
Control Language Reference, GC28-6704.

"Part 1: Introduction to Data Management" introduces you to the characteristics of
data sets, how you name them, how the system catalogs them, and how you format the
records in them. The format of tracks on a direct-access storage device is explained
briefly. If you want to know more on this subject you can refer to Introduction to
IBM System/360 Direct-Access Storage Devices and Organization Methods,
GC20-1649.

Part 1 also describes the data control block (PCe) and the information it supplies to
the operating system. Special processing routines that you specify in the DCB macro
instruction are also explained in this section.

In "Part 2: Data Management Processing Procedures" there is an explanation of
data-processing techniques that includes the macro instructions for the queued access
technigue and the basic access technique and the macro instructions for analyzing i.wult
and output errors. The section on data-processing techniques also tells how to select
an access method and how to begin and end processing of a data set.

The section "Buffer Acquisition and Control" in Part 2 explains three different
methods you can use to obtain buffers and the macro instructions you use with each
method. This section also describes ways to control buffers: simple buffering and
exchange buffering for the queued access technique, direct buffering and dynamic
buffering for the basic access technique. In addition, for the queued access technique,
iIi"ere is an explanation of the four modes of moving the records in main storage: move
mode, data mode, locate mode, and substitute mode. Macro instructions for controlling
buffers are described here, too.

The next four sections of Part 2 concern processing data sets of four different types: a
sequential data set, a partitioned data set, an indexed sequential data set, and a c;1h:.e.ct
data set. They· explain the organization of the data sets and the macro instructions

• •
used to process them. In the example~ the macro instructions are coded in just enough
detail to make the examples clear. For a complete description of the operands and
options available, see OS Data Management Macro Instructions, GC26-3794.

"Part 3: Data Set Disposition and Space Allocation" tells you how to figure the
amount of space you need for a data set on a direct-access storage device and how to
request that space in your JCL DD statement. You are given special directions for
allocating space for a partitioned data set and an indexed sequential data set. Part 3
also tells how to indicate in the JCL DD statement the status of the data set at the
beginning of and during processing and how to indicate what you want the system to
do with the data set when processing has terminated. You also are told how to use the
DD statement to route the data set to a system output writer, to concatenate data sets,
to catalog data sets, and to protect confidential data sets.

Appendix A describes data set labeling. Appendix B explains control characters you
can use to control card punches and printers. Appendix (; explains special
considerations for writing programs for the 3505Card Reader and the 3525 Card
Punch. A ~ossarY of acronyms and abbreviations and the index follow Appendix C.

Preface iii

--____________ ~ _______ .J

The following books are referred to in the text:

• OS Data Management for System Programmers, GC28-6550, is for system
programmers who are responsible for maintaining, updating, and extending the
data management libraries of the operating system.

• OS Messages and Codes, GC28-6631, explains the system completion codes
and error messages issued by the operating system.

• OS MFT Guide, GC27 -6939, and OS MVT Guide, GC28-6720, provide
introductory material for programmers not familiar with the multiprogramming
with a fixed number of tasks (MFT) and multiprogramming with a variable
number of tasks (MVT) versions of the operating system.

• OS Service Aids, GC28-6719, aids system programmers and persons maintaining
OS in diagnosis of system or application program failures.

• OS Sort/Merge, GC28-6543, explains how to use the sort/merge program.

• OS Supervisor Services and Macro Instructions, GC28-6646, explains how to
reserve system resources for the exclusive control of your program and how to
restart your program from a checkpoint if the system fails.

• OS System Control Blocks, GC28-6628, shows the format of the control blocks
used by more than one component of the operating system.

• OS System Generation, GC28-6554, describes the process you use to create or
modify an operating system.

• OS Tape Labels, GC28-6680, explains how the system processes tapes with
mM standard labels, American National Standard labels, nonstandard labels, or
no labels.

to

• OS Utilities, GC28-6586, describes how to use operating system utility programs
that are used by programmers responsible for organizing and maintaining
operating system data.

iv OS Data Management Services Guide

C''·'" , I

c

t"" ##t ?""":WWt*

c CONTENTS

o

t

o

iii Preface

ix Figures

xi Summary of Amendments
xi Release 21.7
xi Release 21

1 Part 1: Introduction to Data Management
1 Data Set Characteristics
3 Data Set Identification
3 Data Set Storage
4 Direct-Access Volumes
5 Magnetic-Tape Volumes
6 Data Set Record Formats
6 Fixed-Length Records
9 Variable-Length Records

14 Undefined-Length Records
15 Control Character
15 Direct-Access Device Characteristics
15 Track Format
17 Track Addressing
17 Track Overflow
18 Write-Validity-Check Option
18 The Data Control Block
19 Data Set Description
21 Processing Program Description
21 Macro Instructions Form (MACRF)
21 Exits to Special Processing Routines
35 Modifying the Data Control Block
36 Sharing a Data Set

39 Part 2: Data Management Processing Procedures
39 Data-Processing Techniques
39 Queued Access Technique
39 GET-Retrieve a Record
39 PUT-Write a Record
40 PUTX-Write an Updated Record
40 Basic Access Technique
40 READ-Read a Block
41 WRITE-Write a Block
42 CHECK-Test Completion of Read or Write Operation
42 WAIT-Wait for Completion of a Read or Write Operation
42 Data Event Control Block (DECB)
42 Error Handling
43 SYNADAF-Perform SYNAD Analysis Function
43 SYNADRLS-Release SYNADAF Message and Save Areas
43 ATLAS-Perform Alternate Track Location Assignment
44 Selecting an Access Method
44 Opening and Closing a Data Set
46 OPEN-Initiate Processing of a Data Set
4 7 CLOSE-Terminate Processing of a Data Set

Contents v

__________________ J

49 End-of-Volume Processing
50 FEOV-Force End of Volume
51 Buffer Acquisition and Control o
51 Buffer Pool Construction
52 BUILD-Construct a Buffer Pool
52 BUILDRCD-Build a Buffer Pool and a Record Area
52 GETPOOL-Get a Buffer Pool
53 Automatic Buffer Pool Construction
53 FREEPOOL-Free a Buffer Pool
54 Buffer Control
55 Simple Buffering
58 Exchange Buffering
62 RELSE-Release an Input Buffer
63 TRUNC-Truncate an Output Buffer
63 GETBUF-Get a Buffer from a Pool
63 FREEBUF-Return a Buffer to a Pool
63 FREEDBUF-Retum a Dynamic Buffer to a Pool
63 Processing a Sequential Data Set
64 Data Format-Device Type Considerations
64 Magnetic Tape (T A)
65 Paper-Tape Reader (PT)
65 Card Reader and Punch (RD JPC)
66 Printer (PR)
66 Direct-Access Device (DA)
67 Device Control
67 CNTRL-Control an I/O Device
67 PRTOV-Test for Printer Overflow
67 SETPRT-Load Universal Character Set and Forms Control Buffers
68 BSP-Backspace a Magnetic-Tape or Direct-Access Volume
68 NOTE-Return the Relative Address of a Block
68 POINT-Position to a Block
69 Device· Independence
69 System Generation Considerations
69 Programming Considerations
71 Chained Scheduling for I/O Operations
72 Search Direct for Input Operations
73 Creating a Sequential Data Set
74 Retrieving a Sequential Data Set
74 Updating a Sequential Data Set
75 Extending a Sequential Data Set
75 Determining the Length of a Record When Using the BSAM

READ Macro
75 Processing a Partitioned Data Set
76 Partitioned Data Set DrrectorY
79 Processing a Member of a Partitioned Data Set
80 BLDL-Construct a Directory Entry List
80 FIND-Position to a Member
81 STOW-Update the Directory
81 Creating a Partitioned Data Set
82 Retrieving a Member of a Partitioned Data Set
84 Updating a Member of a Partitioned Data Set
84 Updating in Place c

vi OS Data Management Services Guide

c

()

•

I"

o

85 Rewriting a Member
86 Processin an Indexed Se uential Data Set
86 ndexed Sequential Data Set Organization
87 Prime Area
87 Index Areas
89 Overflow Areas
89 Adding Records to an Indexed Sequential Data Set
89 Inserting New Records into an Existing Indexed Sequential Data Set
89 Adding New Records to the End of an Indexed Sequential Data Set
91 Maintaining an Indexed Sequential Data Set
92 Indexed Sequential Buffer and Work Area Requirements
95 Controlling an Indexed Sequential Data Set Device
96 SETL-Specify Start of Sequential Retrieval
97 ESETL-End Sequential Retrieval
97 Creating an Indexed Sequential Data Set
99 Retrieving and Updating an Indexed Sequential Data Set
99 Sequential Retrieval and Update

100' Direct Retrieval and Update
105 Processing a Direct Data Set
105 Organizing a Direct Data Set
106 Referring to a Record in a Direct Data Set
107 Creating a Direct Data Set
107 Adding or Updating Records on a Direct Data Set

111 Part 3: Data Set Disposition and Space Allocation
111 Allocating Space on Direct-Access Volumes
111 Specifying Space Requirements
112 Estimating Space Requirements
113 Allocating Space for a Partitioned Data Set
114 Allocating Space for an Indexed Sequential Data Set
115 Specifying a Prime Data Area
116 Specifying a Separate Index Area
116 Specifying an Independent Overflow Area
117 Calculating Space Requirements for an Indexed Sequential Data Set
121 Control and Disposition of Data Sets
122 Routing Data Sets through the Output Stream
123 Concatenating Sequential and Partitioned Data Sets
124 Cataloging Data Sets
125 Entering a Data Set Name in the Catalog
126 Building and Processing Generation Data Groups
126 Cataloging a Generation Data Group
127 Controlling Confidential Data-Password Protection

129 Appendix A: Direct-Access Labels
129 Volume-Label Group
130 Initial Volume Label Format
131 Data Set Control Block (DSCB)
131 User Label Groups
131 User Header and Trailer Label Format

133 Appendix B: Control Characters
133 Machine Code
135 Extended American National Standards Institute Code

Contents vii

---~----~-----------------------,;,....----~"~

------------_.---_.,--,. ---~-,

137 Appendix C: Special Programming Considerations for the 3505
Card Reader and the 3525 Card Punch

137 3525 Interpret Punch
137 3525 Print
138 3525 Associated Data Sets
139 Opening Associated Data Sets
140 Closing Associated Data Sets
140 Data Protection "Image (DPI) for the 3525
141 Optical Mark Read (3505 only) and Read Column Eliminate

(3505 and 3525)

143 Glossary of Acronyms and Abbreviations

147 Index

viii OS Data Management Services Guide

o

..

c

ri gI=",ie*e b b t !

0 FIGURES

7 Figure l. Fixed-Length Records
8 Figure 2. Fixed-Length Records for ASCn Tapes

10 Figure 3. Variable-Length Records
11 Figure 4. Spanned Variable-Length Records
11 Figure 5. Segment Control Codes
12 Figure 6. Spanned Variable-Length Records for BDAM Data Sets
13 Figure 7. Variable-Length Records for ASCn Tapes
14 Figure 8. Undefined-Length Records
14 Figure 9. Undefined-Length Records for ASCn Tapes
16 Figure 10. 2316 Disk Pack
16 Figure 1l. Direct-Access Volume Track Formats
18 Figure 12. Completing the Data Control Block
19 Figure 13. Sources and Sequence of Operations for Completing the

Data Control Block
22 Figure 14. Data Management Exit Routines
25 Figure 15. Format and Contents of an Exit List
26 Figure 16. Parameter List Passed to User Label Exit Routine

27 Figure 17. System Response to a User Label Exit Routine Return Code

31 Figure 18. System Response to Block Count Exit Return Code
32 Figure 19. Defining an FCB Image
33 Figure 20. Parameter List Passed to DCB ABEND Exit Routine

34 Figure 2l. Conditions for which Recovery Can Be Attempted
3S Figure 22. Recovery Work Area

0
36 Figure 23. Modifying a Field in the Data Control Block
44 Figure 24. Data Management Access Methods
47 Figure 25. Opening Three Data Sets Simultaneously
49 Figure 26. Closing Three Data Sets Simultaneously
53 Figure 27. Constructing a Buffer Pool From a Static Storage Area

54 Figure 28. Constructing a Buffer Pool Using GETPOOL and FREEPOOL

56 Figure 29. Simple Buffering with MACRF=GL and MACRF=PM

56 Figure 30. Simple Buffering with MACRF=GM and MACRF=PM

57 Figure 3l. Simple Buffering with MACRF=GL and MACRF=PL

58 Figure 32. Simple Buffering with MACRF=GM and MACRF=PL
58 Figure 33. Simple Buffering with MACRF=GL and MACRF=PM-UPDAT

Mode
60 Figure 34. Exchange Buffering with MACRF=GT and MACRF=PT
61 Figure 35. Exchange Buffering with MACRF=GL and MACRF=PM
61 Figure 36. Exchange Buffering with MACRF=GL and MACRF=PT
62 Figure 37. Buffering Technique and GET/PUT Processing Modes

65 Figure 38. Tape Density (DEN) Values
72 Figure 39. Creating a Sequential Data Set-Move Mode,

~.
Simple Buffering

73 Figure 40. Creating a Sequential Data Set-Locate Mode,
Simple Buffering

74 Figure 4l. Creating a Sequential Data Set-Substitute Mode,
Exchange Buffering

76 Figure 42. Determining the Length of the Record When Using
BSAM to Read Undefined Length Records

77 Figure 43. A Partitioned Data Set

0 77 Figure 44. A Partitioned Data Set Directory Block

Figures ix

78 Figure 45. A Partitioned Data Set Directory Entry

C 80 Figure 46. Build List Format
82 Figure 47. Creating One Member of a Partitioned Data Set
83 Figure 48. Creating Members of a Partitioned Data Set Using STOW
83 Figure 49. Retrieving One Member of a Partitioned Data Set
84 Figure 50. Retrieving Several Members of a Partitioned Data Set Using

BLDL, FIND, and POINT
85 Figure 51. Updating a Member of a Partitioned Data Set
87 Figure 52. Indexed Sequential Data Set Organization
88 Figure 53. Format of Track Index Entries
90 Figure 54. Adding Records to an Indexed Sequential Data Set
92 Figure 55. Deleting Records from an Indexed Sequential Data Set
99 Figure 56. Creating an Indexed Sequential Data Set

101 Figure 57. Sequentially Updating an Indexed Sequential Data Set
102 Figure 58. Directly Updating an Indexed Sequential Data Set
104 Figure 59. Directly Updating an Indexed Sequential Data Set with

Variable-Length Records
108 Figure 60. Creating a Direct Data Set
109 Figure 61. Adding Records to a Direct Data Set
110 Figure 62. Updating a Direct Data Set
113 Figure 63. Direct-Access Storage Device Capacities
113 Figure 64. Direct-Access Device Overhead Eormulas
116 Figure 65. Requests for Indexed Sequential Data Sets
124 Figure 66. Reissuing a READ for Unlike Concatenated Data Sets
125 Figure 67. Catalog Structure on Two Volumes
129 Figure 68. Direct-Access Labeling
130 Figure 69. Initial Volume Label (~;
132 Figure 70. User Header and Trailer Labels /
138 Figure 71. Correspondence Between Print Line Numbers and

Channel Numbers
140 Figure 72. Operations that Cause Card Feed for a 3525 Card Punch
141 Figure 73. Adding a Data Protection Image to SYS 1.IMAGELffi
142 Figure 74. OMR Coding Rules

c
x OS Data Management Services Guide

.. II"j

o

0

o

. RT5UV9PI7

SUMMARY OF AMENDMENTS

Release 21.7

Release 21

There are no significant system changes. However, the following technical changes
were made:

• The contents of registers 0-15 are given when control is passed to the EODAD
routine

• The explanation for CLOSE TYPE = T has been expanded

•

•

•

•

•

•

•

Three new examples have been added for simple buffering:

When MACRF=GL and MACRF=PL

When MACRF=GM and MACRF=PL

When MACRF=GL and MACRF=PM in UPDAT mode

The explanation for creating, retrieving, updating, and extending a sequential data
set has been expanded

A section on how QISAM processes deleted records when SETL is specified

An explanation for the feedback option for direct data sets has been added

The figures for direct-access device capacities have been revised

A new section on building, processing, and cataloging generation data groups has
been added

A section on data protection image for the 3525 has been added.

Two new charts have been added to Appendix B. One chart shows the machine
code control characters that may be specified for a printer and the other chart
shows the machine code control characters that may be specified for a card read
punch device.

DCB ABEND Exit
A description of the DCB ABEND exit routine has been added to the section "Exits to

DOS Tapes

Special Processing Routines" in Part 1.

Special considerations for using the CNTRL, BSP, and POINT macro instructions in
processing DOS tapes under OS are in the section "Device Control." A restriction is
listed in the section "Chained Scheduling for I/O Operations."

IEHPROGM Data Set Protection Feature
This new feature of the IEHPROGM utility program is described in the section
"Controlling Confidential Data-Password Protection."

Time Sharing Option (TSO)
TSO information has been removed. See Time Sharing Option Guide to Writing a
Terminal Monitor Program or a Command Processor, GC28-6764.

Summary of Amendments xi

________________________________ ~ ___ J

3400-Series Magnetic-Tape Units
Recording densities are given in the section "Data Format-Device Type
Considerations. "

3505 Card Reader and 3525 Card Punch
Special programming considerations for these devices are in Appendix C. Restrictions
appear in the sections "Opening and Closing a Data Set," "Data Format-Device Type
Considerations," and "Chained Scheduling for I/O Operations."

xii as Data Management Services Guide

.--~-.---~~-------~~--~- ---- .--~----- ._-_ .. _----
---~--------~~----------- ._ . ., -

------~ ---------- -- ----

C\ iiJ

o

o

o

I ...

o

• or - ii ""tidf"hdfirltrn
- - - r .. W iWt&iHk ·Wr-WI"WVWy·'Uj"" TI"' WW- m "Tnr"- "." "I

PART 1: INTRODUCTION TO DATA MANAGEMENT

Data Set Characteristics
The data management programs of the operating system (OS) help you achieve
maximum efficiency in managing the mass of data associated with the many programs
that are processed at your installation by providing systematic and effective means of
organizing, identifying, storing, cataloging, and retrieving all data, including programs,
processed by the operating system.

Data set storage control, along with an extensive catalog system, makes it possible for
you to retrieve data by symbolic name alone, without specifying device types and
volume serial numbers. In freeing computer personnel from maintaining involved
volume serial number inventory lists of stored data and programs, the catalog reduces
manual intervention and the likelihood of human error.

Data sets stored within the cataloging system can be classified according to installation
needs. For example, a sales department could classify the data it uses by geographic
area, by individual salesman, or by any other logical plan.

The cataloging system also makes it possible for you to classify successive generations
or updates of related data. These generations can be given an identical name and
subsequently be referred to relative to the current generation. The system
automatically maintains a list of the most recent generations.

You can request data from a direct-access volume, a remote terminal, or a tape volume,
and data organized sequentially or directly, in essentially the same way. In addition,
data management provides:

• Allocation of space on direct-access volumes. Flexibility and efficiency of
direct-access devices are improved through greater use of available space.

• Automatic retrieval of data sets by name alone.

• Freedom to defer specifications such as buffer length, blocksize, and device type
until a job is submitted for processing. This permits the creation of programs that
are in many ways independent of their operating environment.

Control of confidential data is provided by the data set security part of the operating
system. You can prevent unauthorized access to payroll data, sales forecast data, and
all other data sets that require special security· attention. An individual can use a
security-protected data set only after furnishing a predefined password.

Input/ output routines are provided to efficiently schedule and control the transfer of
data between main storage and input/output devices. Routines are available to:

Read data

• Write data

• Translate data from ASCII (American National Standard Code for Information
Interchange) to EBCDIC (Extended Binary Coded Decimal Interchange Code)
and back

• Block and deblock records

• Overlap reading, writing, and processing operations

• Read and verify volume and data set labels

Part 1: Introduction to Data Management 1

-----------------------------------~,-~

------------ -- --._-_.- - ----_._---- ~----.- -_. ----~- .. ,.",--.. --.~ .-,,-.... .-..-----..... ~--.,~~~~--~ -"'--"-...• " ... -..•. -' ---... ~ ... ,~, .. -...

Write data set labels

• Automatically position and reposition volumes

Detect error conditions and correct them when possible

• Provide exits to user-written error and label routines

OS data management programs also provide for a variety of methods for gaining access
to a data set. The methods are based on data set organization and data access
technique.

OS data sets can be organized in four ways:

• Sequential: Records are placed in physical rather than logical sequence. Given
one rec(;';d, the location of the next record is determined by its physical position
in the data set. Sequential organization is used for all magnetic-tape devices, and
may be selected for direct-access devices. Punched tape, punched cards, and
printed output are sequentially organized.

• Indexed $equential: Records are arranged in sequence, according to a key that is
a part of every recorQ, on the tracks of a direct-access volume. An index or set
of indexes maintained by the system gives the location of certain principal
records. This permits direct as well as sequential access to any record.

• Direct: The records within the data set, which must be on a direct-access volume,

•

;us may be organized in any manner you choose. All space allocated to the data set
is available for data records. No space is required for indexes. You specify
addresses by which records are stored and retrieved directly.

Partitioned: Independent groups of sequentially organized records, called
members, are in direct-access storage. Each member has a simple name stored in
a directory that is part of the data set and contains the location of the member's
starting point. Partitioned data sets are generally used to store programs. As a
result, they are often referred to as librari~.

Requests for input/output operations on data sets through macro instructions employ
two techniques: the technique for qJteued qccess and the technique for bpsi' Jlccess.
Each technique is identified according to its treatment of buffering and synchronization
of input and output with processing. The combination of an access technique and a
given data set organization is called an access method. In choosing an access method
for a data set, therefore, you must consider not only its organization, but also what you
need to specify through macro instructions. Also, you may choose a data organization
according to the access techniques and processing capabilities available.

The code generated by the macro instructions for both techniques is optionally
reenterable depending on the form in which parameters are expressed.

In addition to the access methods provided by the operating system, an elementary
access technique called .£xecute channel program is also provided. To use this
technique, you must establish your own system for organizing, storing, and retrieving
data. Its primary advantage is the complete flexibility it allows you in using the
computer directly.

An important feature of data management is that much of the detailed information
needed to store and retrieve data, such as device type, buffer processing technique, and
format of output records need not be supplied until the job is ready to be executed.
This device independence permits changes to those specifications to be made without

2 OS Data Management Services Guide

c

i,i'

o

lib ten I'¥ !, t' T h lit

o

o

Data

I·tt bbiji'fjj"-Y-f-o""W
IT T

changes in the program. Therefore, you may design and test a program without
knowing the exact input/output devices that will be used when it is executed.

Device independence is a feature of both access techniques for processing a sequential
data set. To some extent, you determine the degree of device independence achieved.
Many useful device-dependent features are available as part of certain macro
instructions, and achieving device independence requires some selectivity in their use.

Set Identification
Any information that is a named, organized collection of logically related records can
be classified as a data set. The information is not restricted to a specific type, purpose,
or storage medium. A data set may be, for example, a source program, a library of
macro instructions, or a file of data records used by a processing program.

Whenever you indicate that a new data set is to be created and placed on auxiliary
storage, you (or the operating system) must give the data set a name. The data set
name identifies a group of records as a data set. All data sets recognized by name
(referred to without volume identification) and all data sets residing on a given volume
must be distinguished from one another by unique names. To assist in this, the system
provides a means of qualifying data set names.

A data set name is one simple name or a series of simple names joined together so that
each represents a level of qualification. For example, the data set name
DEPT58.SMITH.DATA3 is composed of three simple names. Proceeding from the
left, each simple name is a category within which the next simple name is a
subcategory .

Each simple name consists of from 1 to 8 alphameric cbaracte~ the first of which must
be alphabetic. The special character period C) separates simple names from each other.
Including all simple names and periods, the length of the data set name must not
exceed 44 characters. Thus, a maximum of 22 simple names can make up a data set
name.

To permit different executions of a program to process different data sets without
program reassembly, the data set is not referred to by name in the processing program.
When the program is executed, the data set napte and other pertinent information (such
as unit type and volume serial number) are specified in a job control statement called
the tf!zta definition (DD) statem~nt. To gain access to the data set during processing,
reference is made to a data control block (DeB) associated with the name of the DO
stateme1!!; Space for a data control block, which specifies the particular data set to be
used, is reserved by a DCB macro instruction when your program is assembled.

Data Set Storage
System/360 and System/370 provide a variety of devices for collecting, storing, and
distributing data. Despite the variety, the devices have many common characteristics.
The generic term volume is used to refer to a standard unit of auxiliary storage. A
volume may be anyone of the following:

• A reel of magnetic tape

• A disk pack

• A bin in a data cell

• A drum

• That part of an mM 2302 disk storage device served by one access mechanism
(the device has either two or four volumes in all)

Part 1: Introduction to Data Management 3

___________ ~ __ ~ __ • ____ ~_~ ___ ~ _ •• _ ... ".~ __ __ _.'~ ___ M~'W_.'V,"'~ ~ " _ •. ,.-."'" ".,., .•.. ",,.,., ... ,-,., •.. ,-, ..•. ,.

Each data set stored on a volume has its name, location, organization, and other
control information stored in the data set label or volume table of contents (for
direct-access volumes only). Thus, when the name of the data set and the volume on
which it is stored are made known to the operating system, a complete description of
the data set, including its location on the volume, can be retrieved. Then, the data
itself can be retrieved, or new data added to the data set.

Various groups of labels are used to identify magnetic-tape and direct-access volumes,
as well as the data sets they contain. Magnetic-tape volumes can have standard or
nonstandard labels, or they can be unlabeled. Direct-access volumes must use standard
labels. Standard labels include a volume label, a data set label for each data set, and
optional user labels.

Keeping track of the volume on which a particular data set resides can be a burden and
a source of error. To alleviate this problem, the system provides for automatic
cataloging of data sets. The system can retrieve a cataloged data set if given only the
name of the data set. If the name is qualified, each qualifier corresponds to one of the
indexes in the catalog. For example, the system finds the data set
DEPT58.SMITH.DATA3 by searching a master index to determine the location of the
index name DEPT58, by searching that index to find the location of the index SMITH,
and by searching that index for DAT A3 to find the identification of the volume
containing the data set.

By use of the catalog, collections of data sets related by a common external name and
the time sequence in which they were cataloged (their generation) can be identified;
they are called generation data groups. For example, a data set name
LAB.P A YROLL(O) refers to the most recent data set of the group;
LAB.P A YROLL(-1) refers to the second most recent data set, etc. The same data set
names can be used repeatedly with no requirement to keep track of the volume serial
numbers used.

Direct-Access Volumes
Direct-access volumes are used to store executable programs, including the operating
system itself. Direct-access storage is also used for data and for temporary working
storage. One direct-access storage volume may be used for many different data sets,
and space on it may be reallocated and reused. A volume table of contents (VTOC) is
used to account for each data set and available space on the volume.

Each direct-access volume is identified by a volume label, which is usually stored in
track 0 of cylinder O. You may specify up to seven additional labels, located after the
standard volume label, for further identification.

The VTOC is a data set consisting of data set control blocks (DSCBsl that describe
the contents of the direct-access volume. The VTOC can contain seven kinds of
DSCBs, each with a different purpose and a different format number: . OS System
Control Blocks describes the seven kinds of DSCBs, their purposes, and their formats.

Each direct-access volume is initialized by a utility program before being used on the
system. The initialization program generates the volume label and constructs the table
of contents. For additional information on direct-access labels, see "Appendix A:
Direct-Access Labels."

When a data set is to be stored on a direct-access volume, you must supply the
operating system with the amount of space to be allocated to the data set, expressed in
blocks, tracks, or cylinders. Space allocation can be independent of device type if the
request is expressed in blocks. If the request is made in tracks or cylinders, you must
be aware of such device considerations as cylinder capacity and track size.

4 as Data Management Services Guide

o

.1

o

o

o

o

'Town!' '7 rn"dPiR"'-ij irTrV"'-

Magnetic-Tape Volumes
Because of the sequential organization of magnetic-tape devices, the operating system
does not require space allocation procedures comparable to those for direct-access
devices. When a new data set is to be placed on a magnetic-tape volume, you must
specify the data set sequence number if it is not the first data set on the reel. OS
positions a volume with IBM standard labels, American National Standard labels, or no
labels so that the data set can be read or written. If the data set has nonstandard
labels, you must provide for volume positioning in your nonstandard-label-processing
routines. All data sets stored on a given magnetic-tape volume must be recorded in the
same density.

When a data set is to be stored on an unlabeled tape volume and you have not
specified a volume serial number, the system assigns a serial number to that volume and
to any additional volumes required for the data set. Each such volume is assigned a
serial number of the form Lxxxyy where xxx indicates the data set sequence number
from IPL to IPL and yy indicates the volume sequence number for the data set. If you
specify volume serial numbers for unlabeled volumes on which a data set is to be
stored, the system assigns volume serial numbers to any additional volumes required. If
data sets residing on unlabeled volumes are to be cataloged or passed, you should
specify the volume serial numbers for the volumes required. This will prevent data sets
residing on different volumes from being cataloged or passed under identical volume
serial numbers. Retrieval of such data sets could result in unpredictable errors.

Each data set and each data set label group on magnetic tape that is to be processed by
the operating system must be followed by a tapemark. Tapemarks cannot exist within
a data set. When the operating system is used to create a tape with standard labels or

-no labels, all tapemarks are automatically written. Two tapemarks are written after the
last trailer label group on a volume to indicate the last data set on the volume. On an
unlabeled volume, the two tapemarks are written after the last data set.

When the operating system is used to create a tape data set with nonstandard labels,
the delimiting tapemarks are not written. If the data set is to be retrieved by the
operating system, those tapemarks must be written by your nonstandard-Iabel­
processing routine. Otherwise, tapemarks are not required after nonstandard labels
since positioning of the tape volumes must be handled by installation routines.

For more information on labels for magnetic-tape volumes, refer to OS Tape Labels.

The data on magnetic-tape volumes can be in either EBCDIC or ASCII. '. ASCII is a
7 -bit code consisting of 128 characters. It permits data on magnetic tape to be
transferred from one computer to another even though the two computers may be
products of different manufacturers.

Data management support of ASCII and of American National Standard tape labels is
such that data management can translate records on input tapes in ASCII into EBCDIC
for internal processing and translate the EBCDIC back into ASCII for output. Records
on such input tapes may be sorted into ASCII collating sequence, as explained in OS
Sort/Merge.

Part 1: Introduction to Data Management 5

________________ ~ _______ ._. ___ ... ~ ~ ___ .. • _________ u __ • __ ._·· __ ~· __ ~ ••• --~.-------.-.---.-.------------------- -- •• " •• -.--.-.---............. ---............... -----.-

Data Set Record Formats
A data set is composed of a collection of records that normally have some logical
relation to one another. The record is the basic unit of information used by a
processing program. It might be a single character, all information resulting from a
given business transaction, or measurements recorded at a given point in an experiment.
Much data processing consists of reading, processing, and writing individual records.

The process of grouping a number of records before writing them on a volume is
referred to as blocking. A block is made up of the data between interrecord gaps
(IRGs). Each block can consist of one or more records. Blocking conserves storage
space on the volume because it reduces the number of IRGs in the data set. In many
cases, blocking also increases processing efficiency by reducing the number of
input/ output operations required to process a data set.

Records may be in one of four formats: fixed-length (format-F), variable-length for
data in EBCDIC (format-V), variable-length for data to be translated to or from
ASCII (format-D), or undefined-length (format-U). The main consideration in the
selectioil"of a record format is the nature of the data set itself. You must know the
type of input your program will receive and the type of output it will produce.
Selection of a record format is based on this knowledge, as well as on an understanding
of the input/output devices that are used to contain the data set and the access method
used to read and write the data records. The record format of a data set is indicated in
the data control block according to specifications in the DCB macro instruction, the
DD statement, or the data set label.

For ASCII tapes, data can be in format-F, format-D, and format-U with the
restrictions noted under "Fixed-Length Records, ASCII tapes," "Variable-Length
Records-Format D," and "Undefined-Length Records." When data management
reads records from ASCII tapes, it translates the records into EBCDIC. When data
management writes records onto ASCII tapes, it translates the records into ASCII.
Because you use input records after they are translated and because output records are
translated when you ask data management to write them, you work only with EBCDIC.

Note: There is no minimum requirement for blocksize; however, if a data check occurs
on a magnetic-tape device, any record shorter than 12 bytes in a Read operation or !t.
bytes in a Write operation is treated as a noise record and lost. No check for noise is
made unless a data check occurs. The sort/merge program does not accept records
shorter than !§ bytes.

~-~ngt~
The size of fixed-length (format-F) records, shown in Figure 1, is constant for all
records in the data set. The number of records within a block is constant for every
block in the data set, except for blocks that are truncated (short blocks). If the data
set contains unblocked format-F records, one record constitutes one block.

I The system automatically performs physical length checking (except for card readers)
on blocked or unblocked format-F records. Allowances are made for truncated blocks.
Because the channel and interruption system can be used to accommodate length
checking, and the blocking and deblocking are based on a constant record length,
format-F records can be processed faster than format-V records.

Format-F records are shown in Figure 1. The optional control character (C), used for
stacker selection or carriage control, may be included in each record to be printed or
punched.

Fixed-Length Records, Standard Format: During creation of a sequential data set (to be

6 OS Data Management Services Guide

o

()

'tt!t'1\m 'tu"t"'t!*'*""tI'd."ffl)""' tV 'tt t t#r U . ##b'u'··. tf'I!f# H··j··j"t·. fri· i t····ni···f .. · id&frt#dff#6f·· .. 3tif .. r··if .. ·ri'r· .. · ·&HRI"· .. -'l -WE SpiD

o

.,

o

o

Blocked Records Record A

Block

Unblocked Records [ReCO:d A l

Block
A

Record B

Figure 1. Fixed-Length Records

Record C

"-'\
"-

"-'\
"-

Block

"-'\
"-

r Re~rd B 1

Block
/'0.

Record D Record E Record F

......

Record
......

c Data

\ L Optional Control ;'
\ Character - 1 Byte /

\ /
\ /

\ /
\ /

1 Record C r

Block

[ReC:d 0 1

processed by BSAM or QSAM) with fixed-length records, the RECFM subparameter
of the DCB macro instruction may specify a standard format (RECFM=FS or FBS).
A standard-format data set must conform to the following specifications:

• All records in the data set are format-F records.

• No block except the last block is truncated. (With BSAM you must ensure that
this specification is met.)

• Every track except the last one contains the same number of blocks.
(Direct-access devices only.)

• Every track except the last one is filled to capacity as determined by the track
capacity formula established for the device. (These formulas are presented in
Part 3 of this book under "Allocating Space on Direct-Access Volumes.")

A sequential data set with fixed-length records having a standard format can be read
more efficiently than a data set that doesn't specify a standard format. This efficiency
is possible because the system is able to determine the address of each record to be
read because each track contains the same number of blocks.

You should never extend a data set of this type (by coding DISP=MOD) if the last
block is truncated, because the extension will cause the data set to contain a truncated
block that isn't the last block. This type of data set on magnetic tape should not be
read backward, because then the data set would begin with a truncated block.
Consequently, you will probably not want to use this type of data set with magnetic
tape. If you use oJ1e of the basic access techniques with this type of data set, you
~ould not specify that the track overflow featu[~ is to be used with the data set.

If at any time the characteristics of your data set are altered from the specifications
described above, then the data set should no longer be processed with the standard
format specification.

Part 1: Introduction to Data Management 7

--)

Blocked
Records

Optional
Block
Prefix

Fixed-Length Records, ASCII Tapes: For ASCII tapes, format-F records are the same
as described above, with two exceptions:

• Control characters, if present, must be American National Standards Institute
(ANSI) control characters.

• Records or blocks of records can contain block prefixes.

Figure 2 shows the format of fixed-length records for ASCII tapes and where control
characters and block prefixes go if they exist.

The block prefix can vary in length from 0 to 99 bytes but the length must be constant
for the data set being processed. For blocked records, the block prefix precedes the
first logical record. For unblocked records, the block prefix precedes each logical
record.

Using QSAM and BSAM to read records with block prefixes requires that you specify
the BUFOFF operand in the DCB. When using QSAM, you cannot read the block
prefix on input. When using BSAM, you must account for the block prefix on both
input and output. When using either QSAM or BSAM, you must account for the
length of the block prefix in the BLKSIZE and BUFL operands of the DCB.

When you use BSAM on output records, the operating system does not recognize a
block prefix. Therefore, if you want a block prefix, it must be part of your record.
Note that you cannot include block prefixes in QSAM output records.

The block prefix can contain any data you want, but you must avoid using data types
such as binary, packed decimal, and floating-point that cannot be translated into
ASCII.

For more information about control characters, refer to "Control Character" and to
"Appendix B: Control Characters."

Block Block
A .

Optional
Record A Record B Record C Block Record D Record E Record F

Prefix

"

c Data

\LOptional Control /
\ Character-1 Byte /

\\ /
/ Block

\, (~----~.~----~
Block Block

~----~'----~, r~----~'----~

Optional
Unblocked Block
Records Prefix

Record A
Optional

Block Record B
Prefix

Optional
Block
Prefix

Figure 2. Fixed-Length Records for ASCII Tapes

8 as Data Management Services Guide

Record C
Optional

Block
Prefix

Record D

o

o

,'PMMu-r ... '.· "fit."

o

o

o

t i j! , ttL"#, t rt f··"tt··· .. '· t'" h f±r- -·i· .. f&f{·d· .. -·h .. ····c .. j!i'V·-ij"··j ... nr·-W'"I--rrrrr r 'r . w

~e-Length~
--- The variable-length record formats are format V and format D. Format-V records can

be spanned; that is, records can be larger thaiiti'ie blocksiz~escribed below.
Format-D records are used for ASCII tape data sets and cannot be spanned.

Variable-Length Records-Format V: Format V provides for variable-length records,
variable-length record segments, each of which describes its own characteristics, and
variable-length blocks of such records or record segments. Except when
variable-length track overflow records are specified for rotational position sensing, the
control program performs length checking of the block and uses the record or segment
length information in blocking and deblocking. The first 4 bytes of each record, record
segment, or block make up a descriptor word containing control information. You
must allow for these additional 4 bytes in both your input and output buffers.

Block Descriptor Word: A variable-length block consists of a block descriptor word
~) followed by one or more logical records or record segments. The block
descriptor word is a 4-byte field that describes the block. The first 2 bytes specify the
block length ('LL')-4 bytes for the BDW plus the total length of all records or
segments within the block. This length can be from 8 to 32.760 bytes or, when you
are using WRITE with~ from 18 to 32,760. The third and fourth bytes ar~
reserved for future system use and must b~ If the system does your blocking-that
is, when you use the queued access technigue-the operating system automatically
12rovides the BDW when it writes the data set. If you do your own blocking-that is,
when you use the basic access technique-you must supply the BDW.

Record Descriptor Word: A variable-length logical record consists of a record
descriptor word (RPW) followed by the data. The record descriptor word is a 4-byte
field describing the record. The first 2 bytes contain the length ('ll') of the logical
record (including the 4-byte RDW). The length can be from 4 to 32.756. For
information about processing a sequential data set, see "Data Format-Device Type
Considerations." All bits of the third and fourth bytes must be o. as other values are
used for spanned records. For output. you must provide the RDW except in data mode
for spanned records (described under "Buffer Control"). For output in data mode, you
must provide the total data length tn the physical record length field (DCBPRECL) of
the DCB. For input, the operating system provides the RDW except in data mode. In
data mode, the system passes the record length to your program in the logical record
length field (DCBLRECL) of the DCB. The optional control character (c) may be
specified as the fifth byte of each record and must be followed by at least one byte of
data (the length in the RDW, in this case, would be six). The RDW and the control
character, if specified, are not punched or printed.

Figure..J. shows blocked and unblocked variable-length records without spanning.

Spanned Variable-Length Records (Sequential Ac«D' Methods): The spanning feature
.. of the queued and basic sequential access methods enables you to create and process

variable-length logical records that are larger than one physical block and/or to pack
blocks with variable-length records by splitting the records into segments so that they
can be written into more than one block, as shown in Figure 4.

When spanning is specified for blocked records, the system tries to fill all blocks. For
unblocked records, a record larger than blocksize is split and written in two or more
blocks, each block containing only one record or record segment. Thus the blocksize
may be set to the one that is best for a given device or processing situation. It is not
restricted by the maximum record length of a data set. A record may, therefore, span
several blocks, and may even span volumes. Note that a logical record spanning three

Part 1: Introduction to Data Management 9

Blocked Records II

t

or more volumes cannot be processed in update mode (described under "Buffer
Control") by QSAM. A block can contain a combination of records and record
segments, but not mUltiple segments of the same record. When records are added to or
deleted from a data set, or when the data set is processed again with different blocksize
or record-size parameters, the record segmenting will change.

Considerations for Processing Spanned Record Data Sets: When spanned records span
volumes, reading errors may occur when using QSAM if a volume which begins with a
middle or last segment is mounted first or if an FEOV macro instruction is issued
followed by another GET. QSAM cannot begin reading from the middle of the record.
The errors include duplicate records, program checks in the user's program, and invalid
input from the spanned record data set.

When a spanned record data set is to be opened in UPDAT mode and QSAM is used,
locate mode for the GET and PUTX macro instructions must be specified. Also a
record area must be provided by using the BUILDRCD macro instruction or by
specifying BFTEK=A in the DCB.

Segment Descriptor Word: Each record segment consists of a segment descriptor word
(SDW) followed by the data. The segment descriptor word, similar to the record
descriptor word, is a 4-byte field that describes the segment. The first 2 bytes contain
the length ('II') of the segment, including the 4-byte SDW. The length can be from 5
to 32,756 bytes or, when you are using WRITE with tape, from 18 to 32,756 bytes.
The third byte of the SDW contains the segment control code, which specifies the
relative position of the segment in the logical record. The segment control code is in
the rightmost 2 bits of the byte. The segment control codes are shown in Figure 5.
The remaining bits of the third byte and all of the fourth byte are reserved for future
system use and must be O.

Block

l.,.l

00 Record A Record B Record C II 00 Record 0 Record E Record F

LReserved - 2 Bytes ----\ --Block len th -9
2 Bytes

\

\, ROW
~

Record U 00 c

Optional Control Character /
/

I
/
I

Reserved - 2 Bytes / /
~---Record length- /

2 Bytes /
/

/
/ r---B-O-W----

A
Record

Gfl l_:_

O

..... :_ ' ____ R_ec_o_rd_C ___ --If LL 00 Record N

Block

Reserved - 2 Bytes
~--'Block length - 2 Bytes

Figure 3. Variable-Length Records

10 OS Data Management Services Guide

--- - ------- - -- ------ -----------

o

o

b.? '.' 1M" 'M b
' j'Wb

o

0,

o

hpi '!

Block
BOW

A
/ -~L '\

LL
Last

Segment
of Logical
Record A

I
. Reserved - I
2 Bytes I

Block Length - I
2 Bytes I

First Segment
of Logical
Record B

11

,
LL

,
" ,

" ,

I ntermediate Segment
of Logical Record B

\ ,
\ ,

\
II \

Last First Segment
LL of Logical of Logical

Record B Record C

I " I ,
I "
I "
I J1.',

" \
\
\
\
\

.-A j.---------­
SOW Data ~

\
\(

SOW
I,.--__ --".A. "

/ SOW Data "'\
.A

,
Data '\

First
Segment
of Logical
Record

I nter-
mediate Last
Segment R1 Segment
of Logical of Logical
Record ~~r-'-...&..-_--"'" Record ~~r-'-...L.---_....J

Optional Control Segment Control
Character Code
Reserved - 1 Byte
Segment Control Code·
1 Byte (See Figure 5)

'-----Segment Length - 2 bytes U

Segment Control
Code

(~ __________ ~A~ _______________ ~\

ROW Data Portion oflDgical Record B

Logical Record 11
(I n User's Work Area)

A

Data Portion : Data Portion
c of : of

Note: Not All Segment and Block
Combinations are Represented

First Segment! Intermediate Segment
I

t LOptional Control C.haracter
~ Reserved - 2 Bytes

Data Portion
of Last

Segment

1..----Record Length - 2 Bytes

Figure 4. Spanned Variable-Length Records

Binary Code Relative Position of Segment

00 Complete logical record

01 First segment of a multisegment record

10 Last segment of a multisegment record

11 Segment of a multisegment record other than the first or last segment

Figure 5. Segment Control Codes

The SDW for the first segment replaces the RDW for the record after the record has
been segmented. You or OS can build the SDW, depending on which mode of
processing is used. In the basic sequential access method, you must create and
interpret the spanned records yourself. In the queued sequential access method move
mode, complete logical records, including the RDW, are· processed in your work area.
GET consolidates segments into logical records and creates the RDW. PUT forms
segments as required and creates the SDW for each segment. Data mode is similar to
move mode, but allows reference only to the data portion of the logical record in your
work area. The logical record length is passed to you through the DCBLRECL field of
data control block. In locate mode, both GET and PUT process. one segment at a time.
However, in locate mode, if you provide your own record area using the BUlLDRCD
macro instruction or if you ask the system to provide a record area by specifying
BFTEK=A, then GET, PUT, and PUTX process one logical record at a time.
(BFTEK=A cannot be specified when logical records exceed 32,760 bytes.)

Part 1: Introduction to Data Management 11

A logical record spanning three or more volumes cannot be processed when the data
set is opened for update.

When unit-record devices are used with spanned records, the system assumes
unblocked records and the blocksize must be equivalent to the length of one print line
or one card. Records that span blocks are written one segment at a time.

Spanned Variable-ungth Records (Basic Direct Acce.u Method): The spanning feature
of the basic direct access method (BDAM) enables you to create and process variable­
length unblocked logical records that are longer than 1 track. The feature also enables
you to pack tracks with variable-length records by splitting the records into segments.
These segments can then be written onto more than one track, as shown in Figure 6.

Track 1 Track 2 Track 3
~--------~~-----------~

BDW I'

'*
'\

.A.

0'·." Iii

First Segment
I ntermediate Segment of LastSegrrent

LL of Logical LL
Record A

..... ,
..........

track J "
...

Reserved -, LL -

.....

" 2 Bytes
, ,

iz ' s e \
\

\

Logical Record A
LL

\
\
\

of Logical
Record A

I
, ,

I ,
I ,

Block Length -
2 Bytes

" 11. " , A.' \ ____ -~M ---___..,
\
\

I U
, ,

I , ,r---
S
-
D
-
W
--- D-a-t-a ----,' V SDW Data

,\
f SDW

Intermediate
/----..,..---.--+--r-------I Segment /------r-r--i-------'I Last First

Segment
of Logical
-Record

of Logical Segment
Record H of Logical 11

Logical Record
(I n User's Work
Area)

Block Length -
2 Bytes

Reserved -
2 Bytes

Optional Control
Character

Reserved - 1 Byte
Segment Control Code -
1 Byte (See Figure 5)

...... _-- Segment Length - 2 Bytes

LAL

Record

Segment Control
Code

1). "
(~------------------~-----------------~\

BDW RDW Data Portion of Logical Record A

Data Portion : Data Portion :Data Portion
of :

First Segment I
of : of Last

I

I ntermediate Segment I Segment

Optional Control Character
Reserved - 2 Bytes

~---Record Length - 2 Bytes

Note: Not All Segment and Block Combinations are Represented

Figure 6. Spanned Variable-Length Records for BDAM Data Sets

When you specify spanned, unblocked record format for the basic direct access method
and when a complete logical record cannot fit on the track, the system tries to fill the
track with a record segment. Thus the maximum record length of a data set is not
restricted by blocksize. Furthermore, segmenting records allows a record to span
several tracks, with each segment of the record on a different track. However, since
the system does not allow a record to span volumes, all segments of a logical record in
a direct data set are on the same volume.

12 as Data Management Services Guide

Data "

r-",

Segment contro\..J)
Code

i' I n HI H (

o

o

o

Blocked
Records

r
Optional

Block
Prefix

Variable-Length Records-Format D: For ASCII tapes: variable-length records must be
format-D records. Format-D records are the same as format-V records, except:

• Control characters, if present, must be ~ control characters.

• Records or blocks of records can contain block prefixes.

Figure 7 shows the format of variable-length records for ASCII tapes, where the record
descriptor word (RDW) must go, and where block prefixes and control characters can
go when they exist.

The block prefix can vary in length from 0 to 99 bytes but its length must remain
constant for the data set being processed. For blocked records, the block prefix
precedes the first logical record in each block. For unblocked records, the block prefix
precedes each logical record. If the block prefix exists, it precedes the RDW.

To include block prefixes in format-D records on output, code BUFOFF=L as a DCB
operand. Your block prefix must be 4 bytes long, and it must contain the length of the
block, including the block prefix. If you use QSAM to write records, data management
fills in the block prefix for you. If you use BSAM to write records, you must fill in the
block prefix yourself. When BUFOFF=(L) is specified for format-D records, the
block prefix is treated as a block descriptor word (BDW) by data management.

When using QSAM, you cannot read the block prefix on input. When using BSAM,
you must account for the block prefix on both input and output. When using either
QSAM or BSAM, you must account for the length of the block prefix in the BLKSIZE
and BUFL operands.

When you use BSAM on output records, the operating system does not recognize the
block prefix. Therefore, if you want a block prefix, it must be part of your record.

Record A

/

Block Block . ..
\ (

Optional
Record B Record C Block Record 0 Record E

Prefix

\
\
\
\ y~ ________________ -A ______________ ~~\

/
/

/

/
/

/

ROW Data
~--------------~------------~\

H 00 c

Optional Control Character
Reserved - 2 Bytes.

~--- Record Length.;:.-- -----
2 Byte~--

___ --- --- Block

--- (\

Record F

Block
(\

Optional
Block Record 0

Unblocked Optional
Block Record C

Optional
Block
Prefix

Record E
Records Prefix Prefix

Note: Block prefixes on output records must be 4-bytes long.

Figure 7. Variable-Length Records for ASCII Tapes

Part 1: Introduction to Data Management 13

--~.,.~

The block prefix can contain any data you want, but you must avoid using data types,
such as binary, packed decimal, and, floating-point, that cannot be translated into
ASCII. For format-O records, the only time the block prefix can contain binary data is
when you have coded BUFOFF=L, which tells data management that the prefix is a
BOW. Unlike the block prefix, the ROW must always be in binary.

If you create variable-length records that are shorter than 18 bytes, data management
pads each one up to a length of 18 bytes when the records are written onto ASCII
tape. The padding character used is the ASCII circumflex.

For more information about control characters, refer to "Control Character" and to
__ ------"A~pendix B: Control Characters."

Undefined-Length Records

I

ormat U permits processing of records that do not conform to the F or V format. As
shown in Figure 8, each block is treated as a record; therefore, deblocking must be
~rformed b)! your program. The optional control character may be used in the first
byte of each record. Because the system does not perform length checking on
format-U records, your program may be designed to read less than a complete block
into main ,storage.

Record

c Data

'.lOptional Control
/

/ \
\ Character-1 Byte /
\ /

Block
\ /
\ Block / Block

8 1 Re~rd B I r Re~rdC l
Figure 8. Undefined-Length Records

For ASCII tapes, format-U records are the same as described above, with the two
exceptions described for format-F records on ASCII tapes.

Figure 9 shows the format of undefined-length records for ASCII tapes and where
control character and block prefixes, if any, go.

Record
" \

Optional
Block c Data
Prefix

\ to tional Control
/

\ / \ P I
\ Character-1 Byte I

\ I

Block Block
r------""-----....

\ Block /
\ v.------'~---....\/ r,------"------

Optional
Block Record A
Prefix

Optional
Block
Prefix

Record B
Optional

Block
Prefix

Figure 9. Undefined-Length Records for ASCII Tapes

Record C

For format-U records, the user must specify the record length when issuing the
WRITE, PUT or PUTX macro instruction. No length checking is performed by the ,

14 OS Data Management Services Guide

o

o

o

,' d t

o

o

o

\':!± I' t -till 'ttl" 'Itt tuUh t

Control Character

system, so no error indication will be given if the specified length does not match the
buffer size or physical record size.

In update mode, you must issue a GET or READ macro before you issue a PUTX or
WRITE macro to a file on a direct-access device. If you change the record length
when you issue the PUTX or WRITE macro, the record will be padded with zeros or
truncated to match the length of the record received when the GET or READ macro
was issued. !'lo error indication will be given.

You may specify in the DD statement, the DCB macro instruction, or the data set label
that an optional control character is part of each record in the data set. The I-byte
character is used to indicate a carriage control channel when the data set is printed or a
stacker bin when the data set is punched. Although the character is a part of the
record in storage, it is never printed or punched. For that reason, buffer areas must be
large enough to accommodate the character. If the immediate destination of the record
is a device, such as disk, that does not recognize the control character, the system
assumes that the control character is the first byte of the data portion of the record. If
the destination of the record is a printer or punch and you have not indicated the
presence of a control character, the system regards the control character as the first
byte of data. A list of the control characters is in "AppendixB: Control Characters."

Direct-Access Device Characteristics

Track Format

Regardless of organization, data sets created using the operating system can be stored
on a direct-access volume. Each block of data has a distinct location and a unique
address, making it possible to locate any record without extensive searching. Thus,
records can be stored and retrieved either directly or sequentially.

Although direct-access devices differ in physical appearance, capacity, and speed, they
are similar in data recording, data checking, data format, and programming. The
recording surface of each volume is divided into many concentric tracks. The numbe~
of tracks and their capacity vary with the device. Each device has some type of access
mechanism, containing read/write heads that transfer data as the recording surface
rotates past them. Only one head at a time can transfer data.

The logical arrangement of related tracks is vertical rather than horizontal. As shown
in Figure 10, a cylinder of a 2316 disk pack is composed of 20 tracks, one for each

recording surface. Because there are 203 tracks per recording surface, there are 203
vertical cylinders of 20 tracks each. If a data set extends to more than 1 track, it is
continued on the next track in the cylinder, not the next track on the same recording
surface.

Information is recorded on all direct-access volumes in a standard format. In addition
to device data, each track contains a track descriptor record (capacity record or RO)
and data records.

As shown in Figure 11, there are two possible data record formats-count-data and
count-key-data----only one of which can be used for a particular data set.

In addition to device data, the count area contains 8 bytes that identify the location of
the record by cylinder, head, and record numbers, its key length (0 if no keys are
used), and its data length.

Part 1: Introduction to Data Management 15

!count! B
Track Descriptor

Record (RO)

!count I B
Track Descriptor

Record (RO)

Comb-Type
Access Assembly

Ten Access Arms

Figure 10. 2316 Disk Pack

Tracks

Disks

If the records are written with keys, the key area (1 to 255 bytes) contains a record
key that specifies the data record by part number, account number, sequence number,
or some other identifier. In some cases, records are written with keys so that they can
be located quickly.

Count-Data Format

BB 00 I Count I B
Data Record (R 1) Data Record (Rn)

Count-Key-Data Format

BBB DO I Count I B B
Data Record (R 1) Data Record (Rn)

Figure 11. Direct-Access Volume Track Formats

16 OS Data Management Services Guide

o

o

t1tthttt h b'd #".....tM·u.\tt'

o Track A.ddressing

o

Track Over/low
t""""

o

·zm

Two types of addresses can be used to store and retrieve data on a direct-access
volume: actual addresses and relative addresses. The only advantage of using actual
addresses is the elimination of time required to convert from relative to actual addresses
and vice versa. When sequentially processing a multiple-volume data set, you can refer
only to records of the current volume.

Actual Addresses: When the system returns the actual address of a record on a
drrect-access volume to your program, it is in the form MBBCCHHR, where:

M - is a I-byte binary number specifying the relative location of an entry in a data
extent block (DEB). The data extent block is created by the system when the
data set is opened. Each extent entry describes a set of consecutive tracks
allocated for the data set.

BBCCHH

R -
is three 2-byte binary numbers specifying the cell (bin), cylinder, and head
number for the record (its track address). The cylinder and head numbers are
recorded in the count area for each record.

is a I-byte binary number specifying the relative block number on the track. The
block number is also recorded in the count area.

If you use actual addresses in your program, the data set must be treated as unmovable.

Relative Addresses: Two kinds of relative addresses can be used to refer to records in a
direct-access data set: relative bloc.!Laddresses and rel~i~ !!,ack ~ddresses.

The relative block address is a 3-byte binary number that indicates the position of the
block relatIve to the trrst 610ck of the data set. Allocation of noncontinuous sets of
blocks does not affect the number. The first block of a data set always has a relative
block address of O.

The relative track address has the form '!!!, where:

TT -
R

is a 2-byte binary number specifying the position of the track relative to the first
track allocated for the data set. The TT for the first track is O. Allocation of
noncontinuous sets of tracks does not affect the number.

is a I-byte binary number specifying the number of the block relative to the first
block on the track TT. The R value for the first block of data on a track is 1.

If the record qverflow feature is available for the direct-access device being used, you
can reduce the amount of unused s12~ on the volume by specifying the track overflow
option in the DD statement or the DCB macro instruction associated with the data set.
If the option is used, a block that does not fit on the track is partially written on that
track and continued on the next track. (The track onto which the record is continued
must be physically next and must be part of the same extent as the track that holds the
first part of the record.) Each segment (the portion written on one track) of an
overflow block has a count area. The data length field in the count area specifies the
length of that segment only. If the block is written with a key, there is only one key
area for the block. It is written with the first segment. If the track overflow option is
not used, blocks are not split between tracks.

Part 1: Introduction to Data Management 17

Write- Validity-Check Option 0
You can specify the write-validity-check option in either the DD statement or the DCB . -_ ..
macro instruction. After a record is transferred from main to secondary storage, the
system reads the stored record (without data transfer) and, by testing for a data check
from the I/O device, verifies that the record was written correctly. This verification
requires an additional revolution of the device for each record that was written.
Standard error recovery procedures are initiated if an error condition is detected.

>""

The Data Control Block

DCB Macro

B F G H J

You must describe the characteristics of a data set, the volume on which it resides, and
its processing requirements before processing can begin. During execution, the
descriptive information is made available to the operating system in the data control
block (DeB). A DCB is required for each data set and is created in a processing

.. program by a DCB macro instruction.

Primary sources of information to be placed in the data control block are a DeB macro
instruction, a data definition (DD) statement, and a data set label. In addition, you can
provide or modify some of the information during execution by storing the pertinent
data in the appropriate field of the data control block. The specifications needed for
input/ output operations are supplied during the initialization procedures of the OPEN
macro instruction. Therefore, the pertinent data can be provided when your job is to
be executed rather than when you write your program (see Figure 12).

When the OPEN macro instruction is executed, the Open routine:

Completes the data control block

Loads all necessary data access routines not already in main storage

• Initializes data sets by reading or writing labels and control information

• Constructs the necessary system control blocks

Information from a DD statement is stored in the job file control black 'WB) by
the operating system. When the job is to be executed, the JFCB is made available to
the Open roUtine. The data control block is filled in with information from the DCB
macro instruction, the JFCB, ot an existing data set label. If more than otie source

D D Statement Data Set Label

C D A E

Data Control Block

ABCDEFGH J

Figure 12. Completing the Data Control Block

18 OS Data Management Services Guide

..

,

Hfflt'td* : 'lit" 'ft •

o

o

o

- i

specifies information for a particular field, only one source is used. A DD statement
takes precedence over a data set label, and a DCB macro instruction over both.
However, you can modify any data control block field either before the data set is
opened, or when OS returns control to your program (at the data control block exit).
Some fields can be modified during processing.

Figure 13 illustrates the process and the sequence of filling in the data control block
from various sources. The primary source is your program, that is, the DCB macro
instruction. In general, you should use only those DCB parameters that are needed to
ensure correct processing. The other parameters can be filled in when your program is
to be executed. When a data set is opened, any field in the JFCB not completed by a
DD statement is filled in from the data set label (if one exists). Then any field not
completed in the DCB is filled in from the JFCB. Any field in the DCB can then be
completed or modified by your own DCB exit routine.

I Sa~~ II--------~

DO
Statement Control

Block

Old
Data Set

Label

DCB
Exit

Routine

New
Data Set

Label

Figure 13. Sources and Sequence of Operations for Completing the Data Control Block

When the data set is closed, the data control block is restored to the condition it had
before the data set was opened; it is then available for reuse with another data set.
The Open and Close routines also use the updated JFCB to write the data set labels for
output data sets. If the data set is not closed when your job terminates, the operating
system will close it automatically. Note, however, that the system cannot automatically
close any open data sets after the normal termination of a program that was brought
into main storage by the loader. Therefore, loaded programs must include CLOSE -macro instructions for all opened data sets.

Part 1: Introduction to Data Management 19

Data Set Description

I

For each data set you are going to process, there must be a corresponding DCB and
DD statement. The characteristics of the data set and device-dependent information
can be supplied by either source. In addition, the DD statement must supply data set
identification, device characteristics, space allocation requests, and related information
as specified in "The DD Statement" in OS Job Control Language Reference. You
establish the logical connection between a DCB and a DD statement by specifying the
name of the DD statement in the DDNAME field of the DCB macro instruction, or by
completing the field yourself before opening the data set.

Once the data set characteristics have been specified in the DCB macro instruction,
they can be changed only by modification of the DCB during execution. The fields of
the DCB discussed below are common to most data organizations and access
techniques.

Data Set Organization (DSORG): specifies the organization of the data set as physical
sequential (PS), indexed sequential (IS), partitioned (PO), or direct (DA). If the data
set containS'a'6Solute rather than relative addresses, ymi'iiiust mark ita'S7tnmovable by
adding a U to the DSORG parameter (for example, by coding DSORG=PSU). You
must specify the data set organization in the DCB macro instruction. When creating or
processing an indexed sequential organization data set or creating a direct data set, you
must also specify DSORG in the DD statement.

Record Format (RECFM): specifies the characteristics of the records in the data set as
fixed-length Q:1 variable-length ~, or undefined-length (ill. Blocked records are
specified as FB or VB. You may also specify the records as fixed-length standard by
using FS or FBS. You can request track overflow for records other than standard
format by adding a T to the RECFM parameter (for example, by coding FBT).

Record Length (LRECL): specifies the length, in bytes, of each record in the data set.
If the records are of vanable length, the maximum record length must be specified. For
input, the field should be omitted for format-U records.

Blocksize (BLKSIZE}: specifies the maximum length, in bytes, of a block. If the
records are of format F, the blocksize must be an integral multiple of the record length
except for SYSOUT data sets. (See "Routing Data Sets through the Output Stream" in
Part 3 of this book.) If the records are of format V, the blocksize specified must be
the maximum blocksize. If records are unblocked, the blocksize must be 4 bytes
greater than the record length (LRECL). When spanned variable-length records are
specified, the blocksize is independent of the record length.

Key Length (KEYLEN): specifies the length (0-255) in bytes of an optional key which
precedes each block on a direct-access device. The value of KEYLEN is not included
in BLKSIZE or LRECL but must be included in BUFL if buffer length is specified.
Thus, BUFL= KEYLEN + BLKSIZE.

Each of the data set description fields of the data control block:, except as noted for
data set organization, can be specified when your job is to be executed. In addition,
data set identification and disposition, as well as device characteristics, can be specified
at that time. The parameters of the DD statement discussed below are common to
most data set organizations and devices.

Data Definition Name (DDNAME): is the name of the DD statement and connects the
DD statement to the data control block that specifies the same DDNAME.

Data Set Name (DSNAME): specifies the name of a newly defined data set, or refers
to a previously defined data set.

20 OS Data Management Services Guide

o

•

o

wit,,! !" !"U"" \t'M"" ""we\IH'WW'$ MU U , mWU" mt'uWMtM.wwm"i ±rre+"1t LWt! tMt he ii. u'e - t - jth-6#~ #f· .. W .. ·,t(· .. ···mpC· ... WffH TT'W -_.- "'Wr -

o

..

o

Data Control Block (DCB): provides, by means of subparameters, information to be
used to complete those fields of the data control block that were not specified in the
DCB macro instruction. This parameter cannot be used to modify a data control block.

Channel Separation and Affinity (SEP / AFF): requests that specified data sets use
different channels during input/output operations.

Input/Output Device (UNIT): specifies the number and type of I/O devices to be
allocated for use by the data set.

Space Allocation (SPACE): designates the amount of space on a direct-access volume
that should be allocated for the data set. Unused space can be released when your job
is finished.

Volume Identification (VOLUME): identifies the. particular volume or volumes, or the
number of volumes, to be assigned to the data set, or the volumes on which existing
data sets reside.

Data Set Label (LABEL): indicates the type and contents of the label or labels
associated with the data set. The operating system verifies standard labels (SL),
standard user labels (SULL American National Standard Labels (AL), and American
National Standard User Labels (AUL). Nonstandard labels !NSL) can be specified
only if your installation has incorporated into the operating system routines to write
and process nonstandard labels.

Data Set Disposition (DISP): describes the status of a data set and indicates what is to
be done with it at the end of the job step.

Processing Program Description
OS requires several types of processing information to ensure proper control of your
input/ output operations. The forms of macro instructions in the program, buffering
requirements, and the addresses of your special processing routines must be specified
during either the assembly or the execution of your program. The DCB parameters
specifying buffer requirements are discussed in "Buffer Acquisition and Control."

Because macro instructions are expanded during the assembly of your program, you
must supply the macro instruction forms that are to be use~ in processing each data set
in the associated DCB macro instruction. You can supply buffering requirements and
related information in the DCB macro instruction, the DD statement, or by storing the
pertinent data in the appropriate field of the data control block before the end of your
DCB exit routine. If the addresses of special processing routines are omitted from the
DCB macro instruction, you must complete them in the DCB before opening the data
set.

Macro Instruction Form (MACRF)
The MACRF parameter of the DCB macro instruction specifies not only the macro
instructions used in your program, but also the processing mode as discussed in the
section "Buffer Control." The organization of your data set, the macro instruction
form, and the processing mode determine which of the data access routines will be used
during execution.

Exits to Special Processing Routines
The DCB macro instruction can be used to identify the location of:

• A routine that performs end-of-data procedures

• A routine that supplements the operating system's error recovery routine

• A list that contains addresses of special exit routines

Part 1: Introduction to Data Management 21

== "'" =, .. ~

i~ I

II

I

., .. ""'"'~-",,,-.,.------ '-'----'---'-'------'---,,--..... -~,-.. --,.-----""'"

The exit addresses can be specified in the DCB macro instruction or you can complete
the DCB fields before opening the data set. Figure 14 summarizes the exits that you
can specify either explicitly in the DCB, or implicitly by specifying the address of an
exit list in the DCB.

Exit Routine When Available Where Specified

End-of-Data-Set When no more sequential EODAD operand
records or blocks are
available

Error Analysis After an uncorrectable SYNAD operand
input/ output error

Standard User Label When opening, closing, EXLST operand and
(physical sequential or reaching the end of a exit list
or direct organization) data set, and when changing

volumes

Data Control Block When opening a data set EXLST operand and
exit list

End-of-Volume When changing volumes EXLST operand and
exit list

Block Count After unequal block count EXLST operand and
comparison by end-of-volume exit list
routine

FCB Image When opening a data set or EXLST operand and
issuing a SETPRT macro exit list

DCB ABEND When an ABEND condition EXLST operand and
occurs in Open, Close, or exit list
end-of-volume routine.

Figure 14. Data Management Exit Routines

End-of-Data-Set Exit RW ltia8 (EODAD); The EODAD parameter of the DCB macro
instruction specifies the address of your end-of -data routine, which performs any final
processing on an input data set. This routine is entered when a READ, GET, or
FEOV request is made and there are no more records or blocks to be retrieved. (On a
READ request, the routine is entered when you issue 3: CHECK macro instruction to
check for completion of the read operation.) Your routine can reposition the volume
for continued processing (if the access method is BP AM), close the data set, or process
the next sequential data set. If no exit routine is provided or if a GET macro is issued
in the EODAD routine, the task will be abnormally terminated. When control is
passed to the EODAD routine, the registers contain the following information:

Register

0-1
2-13
14

15

Contents

Reserved
Contents before execution of GET or CHECK macro instruction
Return address for GET or CHECK macro instruction, or
contents before execution of FEOV macro instruction
Reserved

Synchronous Error Routine Exit (SYNAD..h The SYNAD parameter of the D'CB macro
instruction specifies the addiess of an error routine that is to be given control when an
input/ output error occurs. This routine can be used to analyze exceptional conditions
or uncorrectable errors. The block being read or written can be accepted or skipped,
or processing can be terminated.

22 OS Data Management Services Guide

o

-.

I 'MUit.nN1WMUf1'h"'d'Mu:fMH1' r ,M'· • , _ ! r • thfd "Mt

o

o

o

iNi

If an input/output error occurs during data transmission, standard error recovery
procedures, provided by OS, attempt to correct the error before returning control to
your program. An uncorrectable error usually causes an abnormal termination of the
task. However, if you specify in the DCB macro instruction the address of an error
analysis routine (called a SYNAD routine), the routine is given control in the event of
an uncorrectable error.

You can write a SYNAD routine to determine the cause and type of error that occurred
by examining:

v' •

The contents of the general registers

The data event control block (discussed in Part 2 under "Basic Access
Technique")

The exceptional condition code

The standard status and sense indicators

You can use the SYNADAF macro instruction to-perform this analysis automatically.
This macro instruction prod~ces an error message that can be printed by a subsequent
PUT or WRITE macro instruction .

..After compJeting the analysis, you can return control to OS or close the data set. If
you close the data set, note that you may not use the temporary close option (CI aSF
TYPE=T) in the SYNAD routine. To continue processing the same data set, you must
first return control to the control program by a RETURN macro instruction. The
control program then transfers control to your processing program, subject to the
conditions described below. In no case should you attempt to reread or rewrite the
record, because the system has already attempted to recover from the error.

When you are using GET and PUT to process a sequential data set, the operating
system provides three automatic error options (EROPT) to be used if there is no
SYNAD routine or if you want to return control to your program from the SYNAD
routine:

•

•

•

ACC

SKP

ABE

accept the erroneous block

skip the erroneous block

abnormally terminate the task

These options are applicable only to data errors, as control errors result in abnormal
termination of the task. Data errors affect only the validity of a block of data.
Control errors affect information or operations necessary for continued processing of
the data set. These options are not applicable to output errors, except output errors on
the printer. When chained scheduling is used, the SKP option is not available, and
ACC is assumed if SKP is coded. If the EROPT and SYNAD fields are not completed,
ABE is assumed.

When you use READ and WRITE placro instructions, errors are detected when you
issue a CHECK macro instruction. If you are processing a direct or sequential data set
and you return to the control program from your SYNAD routine, the operating systeni
assumes that you have accepted the bad record. If you are creatin~ a direct data set
and you return to the control program from your SYNAD routine, your task is
abnormally terminated.

For a detailed description of the register contents upon entry to your SYNAD routine,
refer to the tables in the OS Data Management Macro Instructions manual. The

Part 1: Introduction to Data Management 23

--__________________________________ ~.J

tables there describe register contents for programs using QISAM, BISAM, BDAM,
BP AM, BSAM, and QSAM.

Your SYNAP rontine can end bX branching to another routine in your program, such
as a routine that closes the data set. It can also end by returning control to the control
program, which then returns control to the next sequential instruction (after the macro)
in your program. If your routine returns control, the conventions for saving and
restoring register contents are as follows:

./.

/.

" .

The SYNAD routine must preserve the contents of registers 13 and 14. If
required by the logic of your program, the routine must also preserve the contents
of registers 2 through 12. Upon return to your program, the contents of registers
2 through 12 will be the same as upon return to the control program from the
SYNAD routine.

The SYNAD routine must not use the save area whose address is in register 13,
because this area is used by the control program. If the routine saves and restores
register contents, it must provide its own save area.

If the SYNAD routine calls another routine or issues supervisor or data
management macro instructions, it must provide its own save area or issue a
SYNADAF macro instruction. The SYNAI2AF macro instruction provides a save
area for its own use, and then make'i this area available to the SYNAD routine.
Such a save area must be removed from the save area chain by a SYNAPRkS
macro instruction before control is returned to the control program.

When you use QSAM to read and translate paper-tape characters, your SYNAD
routine receives control when you request the record preceding the record in error.
Before giving control to your SYNAD routine, the system translates the requested
record into your buffer.

For example, suppose that you are using QSAM to read and translate a paper-tape data
set and that you have specified, in your DCB, SYNAD=(address) and EROPT=ACC.
Suppose also that the third record of the data set has a parity error. When you issue a
GET request for the second record, the system translates that record into your buffer
and, as a result of the error in the third record, passes control to your SYNAD routine.
Because you specified the accept option, the system returns control to your program
after your SYNAD error analysis routine completes its processing. When you issue a
GET request for the third record, all characters other than the erroneous one are
translated Into your buffer; the erroneous character is moved, in normal sequence, into
your buffer without translation.

Exit List (EXLST); The EXLST parameter of the DCB macro instruction specifies the
" address of a list that contains the addresses of special processing routines, a forms

control buffer (FCB) image, or a user totaling area. An ~xit list must be created if user
label, data control block, end of volume, block count, or DCB ABEND exits are used
or if an FCB image is defined in the processing program.

The exit list is constructed of 4-byte entries that must be aligned on fullword
boundaries. Each exit list entry is identified by a code in the high-order byte, and the
address of the routine, image, or area is specified in the 3 low-order bytes. Codes and
addresses for the eXIt list entries are shown in Figure 15.

You can activate or deactivate any entry in the list by placing the required code in the
high-order byte. Care must be taken, however, so as not to destroy the last entry
indication. OS scans the list from top to bottom, and the first active entry found with
the proper code is selected.

24 OS Data Management Services Guide

o

o

o

tt It! It *"i er t tt

o

o

o

j - #zri "j"ftf"'" ·_jijJ'b"r--·_···$jEfPi55 --··_-ffiEi .-

You can shorten the list during execution by setting the high-order bit to 1, and extend
it by setting the high-order bit to O.

Hexadecimal
Entry Type Code

Inactive entry 00

Input header label 01

Output header label 02

Input trailer label 03

Output trailer label 04

Data control block exit 05

End-of-volume

User totaling

Block count exit

Defer input trailer
label

Defer nonstandard
input trailer label

FCB image

DCB ABEND exit

Last ent,!X - -

06
-01
OA

OB

OC

00

10

11

80

3-Byte Address-Purpose

Ignore the entry; it is not active.

Process a user input header label.

Create a user output header label.

Process a user input trailer label.

Create a user output trailer label.

Take a data control block exit.

Take an end-of-volume exit. ~'
Al)DliC:~$ (> F :JTc...8 e.Vl F f~'fR
Assume this address is beginning of user's totaling area.

Take a block-count-unequal exit.

Defer processing of a user input trailer label from
end-of-data until closing.

Defer processing a nonstandard input trailer label on
magnetic tape unit from end-of-data until closing (no
exit routine address).

Define an FCB image.

Examine the ABEND condition and select one of several
options.

Treat this entry as last entry in list. This code can
be specified with any of the above but must always be
specified with the last entry.

Figure 15. Format and Contents of an Exit List

When control is passed to an exit routine, the registers contain the following
information:

Register

o
1

2-13
14
15

Contents

Variable; see exit routine description
The three, low-order bytes contain the address of DCB
currently being processed, except when user-label exit
(X'OI'-'04'), user totaling exit (X'OA'), or DCB ABEND
exit (X' 11') is taken, when register 1 contains the
address of a parameter list. The contents of the
parameter list are described in each exit routine
description.
Contents before execution of the macro instruction
Return address (must not be altered by the exit routine)
Address of exit routine entry point

The conventions for saving and restoring register contents are as follows:

• The exit routine must preserve the contents of register 14. It need not preserve
the contents of other registers. The control program restores the contents of
registers 2-13 before returning control to your program.

• The exit routine must not use the save area whose address is in register 13,

Part 1: Introduction to Data Management 25

.. _".1

because this area is used by the control program. If the exit routine calls another
routine or issues supervisor or data management macro instructions, it must
provide the address of a new save area in register 13.

Standard User Lobel Exit: When you create a data set with physical sequential or
direct organization, you can provide routines to create your own data set labels. You
can also provide routines to verify these labels when you use the data set as input.
Each label is 80 characters long with the first 4 characters UHLl,UHL2, ... ,UHL8 for a
header label or UTLl,UTL2, ... ,UTL8 for a trailer label.

The physical location of the labels on the data set depends on the data set organization.
For direct (BDAM) data sets, user labels are placed on a separate user label track in
the first volume. User label exits are taken only during execution of the Open and
Close routines. Thus you may create or examine up to eight user header labels only
during execution of Open and up to eight trailer labels only during execution of Close.
Since the trailer labels are on the same track as the header labels, the first volume of
the data set must be mounted when the data set is closed. For physical sequential
(BSAM or QSAM) data sets, you may create or examine up to eight header labels and
eight trailer labels on each volume of the data set. For ASCII tape data sets, you may
create unlimited user header and trailer labels. The user label exits are taken during
open, close, and end-of-volume processing.

To create or verify labels, you must specify the addresses of your label exit routines in
an exit list for use during standard label processing. Thus you may have separate
routines for creating or verifying header and trailer label groups. Care must· be taken if
a magnetic tape is read backward, since the trailer label group is processed as header
labels and the header label group is processed as trailer labels.

When your routine receives control, the contents of register 0 are unpredictable.
Register 1 contains the address of a parameter list. The contents of registers 2-13 are
the same as when the macro instruction was issued. However, if your program does
not issue the CLOSE macro instruction, or abnormally terminates before issuing
CLOSE, the CLOSE macro instruction will be issued by the control program, with
control-program information in these registers.

The parameter list pointed to by register 1 is a 16-byte area aligned on a fullword
boundary. Figure 16 shows the contents of the area.

o
Address of aO-byte buffer area

4
Address of DeB being processed

8
Address of status information

12
Address of user total ing image area

Figure 16. Parameter List Passed to User Label Exit Routine

The first address in the parameter list points to an 80-byte label buffer area. For input,
the control program reads a user label into this area before passing control to the label
routine. For output, the user label exit routine constructs labels in this area and returns

26 as Data Management Services Guide

o

",'

, I 0·\

o

o

0

o

!MET ''WVW' "'waF

to the control program, which writes the label. When an input trailer label routine
receives control, the EOF flag (high-order byte of the second entry in the parameter
list) is set as follows:

bit 0 = 0: Entered at end-of-volume or open for output with DISP=MOD
bit 0 = 1: Entered at end-of -file
bits 1-7: Reserved

When a user label exit routine receives control after an uncorrectable I/O error has
occurred, the third entry of the parameter list contains the address of the standard
status information. The error flag (high-order byte of the third entry in the parameter
list) is set as follows:

bit 0 = 1: Uncorrectable I/O error
bit 1 = 1: Error occurred during writing of updated label
bits 2-7: Reserved

The fourth entry in the parameter list is the address of the user totaling image area.
This image area is the entry in the user totaling save area that corresponds to the last
record physically written on the volume. The image area is discussed further under
"User Totaling."

Each routine must create or verify one label of a header or trailer label group, place a
return code in register 15, and return control to the operating system. The operating
system responds to the decimal return code as shown in Figure 17.

Routine Type Return Code

Input header 0
or
trailer label

4

8

12

Output header 0
or trailer label

4

8

System Response

Normal processing is resumed. If there are any remaining labels
in the label group, they are ignored.

The next user label is read into the label buffer area and control is
returned to the exit routine. If there are no more labels in the label
group, normal processing is resumed.

The label is written from the label buffer area and normal processing
is resumed.'

The label is written from the label area, the next label is read into the
label buffer area, and control is returned to the label processing
routine. If there are no more labels, processing is resumed.'

Normal processing is resumed; no label is written from the label
buffer area.

User label is written from the label buffer area. Normal processing is
resumed.

User label is written from the label buffer area. If fewer than eight
labels have been created, control is returned to the exit routine, which
then creates the next label. If eight labels have been created, normal
processing is resumed.

, Only for a physical sequential data set on a direct-access device opened for update. or opened for output with DISP = MOD.
or a direct data set opened for update or output.

Figure 17. System Response to a User Label Exit Routine Return Code

You can create user labels only for data sets on magnetic-tape volumes with IBM
standard labels or American National Standard labels and for data sets on direct-access
volumes. When you specify both user labels and IBM standard or American National
Standard labels in a DD statement by specifying LABEL=(,sUL) or LABEL = (,AUL)

Part 1: Introduction to Data Management 27

uw_

I

and there is an active entry in the exit list, a label exit is always taken. A label exit
may be taken when an input data set does not contain user labels, or when no user
label track has been allocated for writing labels on a direct-access volume. In either
case, the appropriate exit routine is entered with the buffer area address parameter set
to O. On return from the exit routine, normal processing is resumed; no return code is
necessary.

Label exits are not taken for system output (SYSOUT) data sets, or for data sets on
volumes that do not have standard labels. For other data sets, exits are taken as
follows:

•

•

•

When an input data set is opened, the input header label exit 01 is taken. If the
data set is on tape being opened for RDBACK, this will process user trailer
labels.

When an output data set is opened, the output header label exit 02 is taken.
However, if the data set already exists and DISP=MOD is coded in the DD
statement, the input trailer label exit 03 is taken to process any existing trailer
labels. For tape, these trailer labels will be overwritten by the new output data or
by EOY or CLOSE when writing new standard trailer labels. For direct-access
devices, these trailer labels will still exist unless rewritten by EOY or CLOSE in
an output trailer label exit.

When an input data set reaches end-of-volume, the input trailer label exit 03 is
taken. If the data set is on tape opened for RDBACK, this will process header
labels. The input trailer label exit 03 is not taken if you issue an FEOV macro
instruction. If a defer input trailer label exit OC is present, it is taken instead of
any input trailer label exit 03. After switching volumes, the input header label
exit 01 is taken. If the data set is on tape opened for RDBACK, this will process
trailer labels.

• When an output data set reaches end-of-volume, the output trailer label exit 04 is
taken. After switching volumes, output header label exit 02 is taken.

• When an input data set reaches end-of-data, the, input trailer label exit 03 is taken
before the EODAD exit, unless the DCB exit list contains a defer input trailer
label exit OC.

• When an input data set is closed, no exit is taken unless the data set was
previously read to end-of-data and the defer input trailer label exit OC is present.
If so, the defer input trailer label exit OC is taken to process trailer labels, or if
the tape is opened for RDBACK, header labels.

• When an output data set is closed, the output trailer label exit 04 is taken.

To process records in reverse order, a data set on magnetic tape can be read backward.
When you read backward, header label exits are taken to procesS-frailer labels, and
trailer label exits are taken to process header labels. The system presents labels from a
label group in ascending order by label number, which is the order in which the labels
were created. If necessary, an exit routine can determine label type (UHL or UTL)
and number by examining the first four characters of each label. Tapes with IBM
standard labels and direct-access devices can have as many as eight user labels. Tapes
with American National Standard labels can have unlimited user labels. Due to the
small track capacity of the 2321 data cell, only a total of 9 UHLs and UTLs can be
used.

28 OS Data Management Services Guide

o

•

o

o

t"Y

o

o

o

If an unco.rrectable erro.r o.ccurs during reading o.r writing o.f a user label, the system
passes co.ntro.l to. the appro.priate exit ro.utine with the third wo.rd o.f the parameter list
flagged and po.inting to. status info.rmatio.n.

After an input erro.r, the exit ro.utine must return co.ntro.l with an appro.priate return
co.de (0 o.r 4). No. return co.de is required after an o.utput erro.r. If an o.utput erro.r
o.ccurs while the system is o.pening a data set, the data set is no.t o.pened (DCB is
flagged) and co.ntrol is returned to. yo.ur pro.gram. If an o.utput erro.r o.ccurs at any
o.ther time, the system attempts to. resume no.rmal pro.cessing.

A sample pro.gram illustrating user label pro.cessing is included in SYS 1.SAMPLIB.
This pro.gram, named USERLABL, is discussed in OS System Generation.

User Totaling (BSAM and QSAM only): When creating o.r pro.cessing a data set with
user labels, yo.u may develo.p co.ntro.l to.tals fo.r each vo.lume o.f the data set and sto.re
this info.rmatio.n in yo.ur user labels. Fo.r example, a co.ntro.l to.tal that was accumulated
as the data set was created can be sto.red in yo.ur user label and later co.mpared with a
to.tal accumulated during pro.cessing o.f the vo.lume. User to.taling assists yo.u by
synchro.nizing the co.ntro.l data yo.u create with reco.rds physically written o.n a vo.lume.
Fo.r an o.utput data set witho.ut user labels, yo.u can also. develo.p a co.ntro.l to.tal that will
be available to. yo.ur end-o.f-vo.lume ro.utine.

To. request user to.taling, yo.u must specify OPTCD=T in the DCB macro. instructio.n o.r
in the DCB parameter o.f the DD statement. The area in which yo.u accumulate the
co.ntro.l data (the user to.taling area) must be identified to. the co.ntro.l pro.gram by an
entry o.f hexadecimal OA in the DCB exit list.

The user to.taling area, an area in sto.rage that yo.u pro.vide, must begin o.n a halfwo.rd
bo.undary and be large eno.ugh to. co.ntain yo.ur accumulated data plus a 2-byte length
field. The length field must be the first 2 bytes o.f the area and specify the length o.f
the entire area. A data set fo.r which yo.u have specified user to.taling (OPTCD=T) will
no.t be o.pened if either the to.taling area length o.r the address in the exit list is 0, o.r if
there is no. X'OA' entry in the exit list.

The co.ntro.l pro.gram establishes a user to.taling save area, in which the co.ntro.l pro.gram
preserves an image o.f yo.ur to.taling area, when an 1/0 o.peratio.n is scheduled. When
the o.utput user label exits are taken, the address o.f the save area entry (user to.taling
image area) co.rrespo.nding to. the last reco.rd physically written o.n a vo.lume is passed to.
yo.u in the fo.urth entry o.f the user label parameter list. This parameter list is described
in the sectio.n "Standard User Label Exit." When an end-o.f-vo.lume exit is taken fo.r
an o.utput data set and user to.taling has been specified, the address o.f the user to.taling
image area is in register O.

When using user to.taling fo.r an o.utput data set, that is, when creating the data set, yo.u
must update yo.ur co.ntro.l data in yo.ur to.taling area befo.re issuing a PUT o.r a WRITE
macro. instructio.n. The co.ntro.l pro.gram places an image o.f yo.ur to.taling area in the
user to.taling save area when an 1/0 o.peratio.n is scheduled. A po.inter to. the save area
entry (user to.taling image area) co.rrespo.nding to. the last reco.rd physically written o.n
the vo.lume, is passed to. yo.u in yo.ur label pro.cessing ro.utine. Thus yo.u can include the
co.ntro.l to.tal in yo.ur user labels. When subsequently using this data set fo.r input, yo.u
can accumulate the same info.rmatio.n as yo.u read each reco.rd and co.mpare this to.tal
with the o.ne previo.usly sto.red in the user trailer label. If yo.u have sto.red the to.tal
fro.m the preceding vo.lume in the user header label o.f the current vo.lume, yo.u can
pro.cess each vo.lume o.f a multivo.lume data set independently and still maintain this
system o.f co.ntro.l.

Part 1: Introduction to Data Management 29

When variable-length records are specified with the totaling facility for user labels,
special considerations are necessary. Since the control program determines whether a
variable-length record will fit in a buffer after a PUT or a WRITE has been issued, the
total you have accumulated may include one more record than is actually written on the
volume. In the case of variable-length spanned records, the accumulated total will
include the control data from the volume-spanning record although only a segment of
the record is on that volume. However, when you process such a data set, the
volume-spanning record or the first record on the next volume will not be available to
you until after the volume switch and user label processing are completed. Thus the
totaling information in the user label may not agree with that developed during
processing of the volume.

One way you can resolve this situation is to maintain, when you are creating a data set,
control data pertaining to each of the last two records and include both totals in your
user labels. Then the total related to the last complete record on the volume and the
volume-spanning record or the first record on the next volume would be available to
your user label routines. During subsequent processing of the data set, your user label
routines can determine if there is agreement between the generated information and
one of the two totals previously saved.

~ata Control Block Exit: You can specify in an exit list the address of a routine that
completes or modifies a DCB and does any additional processing required before the
data set is completely open. The routine is entered during the opening process after
the JFCB has been used to supply information for the DCB. The routine can
determine data set characteristics by examining fields completed from the data set
labels.

As with label processing routines, register 14's contents must be preserved and restored
if any macro instructions are used in the routine. Control is returned to the operating
system by a RETURN macro instruction; no return code is required.

End-oj-Volume Exit: You can specify in an exit list the address of a routine that is
entered when end-of-volume is reached in processing of a physical sequential data set.

When the end-of-volume routine is entered, register 0 contains 0 unless user totaling
was specified. If you specified user totaling in the DCB macro instruction (by coding
OPTCD=T) or in the DD statement for an output data set, register 0 contains the
address of the user totaling image area. The routine is entered after a new volume has
been mounted and all necessary label processing has been completed. If the volume is
a reel of magnetic tape, the tape is positioned after the tapemark that precedes the
beginning of the data.

You can use the end-of-volume exit routine to take a checkpoint by issuing the
CHKPT macro instruction, which is discussed in OS Supervisor Services and Macro
Instructions. If the job step terminates abnormally, it can be restarted from this
checkpoint. When the job step is restarted, the volume is mounted and positioned as
upon entry to the routine. Note that restart becomes impossible if changes are
subsequently made to the system SVC library (SYSl.SVCLIB). When the step is
restarted, pointers to end-of-volume modules must be the same as when the checkpoint
was taken.

The end-of-volume exit routine returns control in the same manner as the data control
block exit routine. Register 14's contents must be preserved and restored if any macro
instructions are used in the routine. Control is returned to the operating system by a
RETURN macro instruction; no return code is required.

30 OS Data Management Services Guide

o

o

C,'" ' ,I

t!ll! ".)"'$ j r $ «'\ "j"W"'

o

•

o

o

-- -?#ittbW'aa· -wefE 5--,-"-"ww-"-r ""]"'7--Y-rrooewer Frm

Block Count Exit: You can specify in an exit list the address of a routine that will
allow you to abnormally terminate the task or continue processing when the
end-of-volume routine finds an unequal block count condition. When you are using
standard labeled input tapes, the block count in the trailer label is compared by the
end-of-volume routine with the block count in the DCB. The count in the trailer label
reflects the number of blocks written when the data set was created. The number of
blocks read when the tape is used as input is contained in the DCBBLKCT field of the
DCB.

The routine is entered during end-of -volume processing. The trailer label block count
is passed in register O. You may gain access to the count field in the DCB by using the
address passed in register 1 plus the proper displacement, as given in OS System
Control B locks. If the block count in the DCB differs from that in the trailer label
when no exit routine is provided, the task is abnormally terminated. The routine must
terminate with a RETURN macro instruction and a return code that indicates what
action is to be taken by the operating system, as shown in Figure 18. As with other
exit routines, register 14's contents must be saved and restored if any macro
instructions are used.

Return Code System Action

o The task is abnormally terminated.

4 Normal processing is resumed.

Figure 18. System Response to Block Count Exit Return Code

Defer Nomtandard Input Trailer Label Exit: In an exit list, you can specify a code
that indicates that you want to defer nonstandard input trailer label processing from
end-of -data until the data set is closed. The address portion of the entry is not used by
the operating system.

An end-of-volume condition exists in several situations. Two are when the system
reads a filemark or tapemark at the end of a volume of a multivolume data set but that
volume is not the last, and when the system reads a filemark or tapemark at the end of
a data set. The first situation is referred to here as an end-of-volume condition, and
the second as an end-of-data condition, although it, too, can occur at the end of a
volume.

For an end-of-volume (EOV) condition, the EOV routine passes control to your
nonstandard input trailer label routine, whether or not this exit code is specified. For
an end-of-data condition when this exit code is specified, the EOV routine does not
pass control to your nonstandard input trailer label routine. Instead, the Close routine
passes control to your end-of-data routine.

FCB Image Exit: You can specify in an exit list the address of a forms control buffer
(FCB) image. This FCB image can be loaded into the forms control buffer of the
printer control unit. The FCB controls the movement of forms in printers that do not
use a carriage control tape.

The first 4 bytes of the FCB image contain the image identifier. To load the FCB, this
image identifier is specified in the FCB parameter of the DD statement or the SETPRT
macro instruction.

The image identifier is followed by the FCB load module, described in OS Data
Management for System Programmers.

Part 1: Introduction to Data Management 31

~
I

I

" ,.".---------.--.-~---

I

DCB

EXLIST DS
DC
DC
DC

FCBIMG DC
DC
DC
DC

You can use an exit list to define an FCB image only when writing to an online printer.
Figure 19 illustrates one way the exit list can be used to define an FCB image.

DeB ABEND Exit: You can specify in the DCB exit list the address of your DCB
f ABEND exit routine to be entered when an ~ condition occurs during open.

c!2§.e, or end-of-volume processing. When an ABEND condition occurs, a message
about the ABEND condition is issued and the DCB ABEND exit routine is given
control. The contents of the registe~s when the exit routine is entered are the same as '
for other DCB exit list routines except that register 1 contains the address of the
parameter list described in Figure 20. All information in the parameter list is in binary. -You must inspect bits 4, 5, and 6 of the option mask byte (byte 3 of the parameter list)
to determine which options are available. If a bit is set to 1, the corresponding optIon
is available. Indicate your choice by inserting the appropriate value in byte 3 of the
parameter list, overlaying the bits you inspected. If you use a value that specifies an
option that is not available, the ABEND is issued immediately.

If the contents of the option mask are 0, you must request an immediate ABEND by
leaving the value of 0 in the option DiaS'k unchanged. -

.. , EXLST=EXLIST

OF
X' 10' Flag code for FCB image
AL3(FCBIMG) Address of FCB image
X'80000000' End of EXLST
CL4' IMG1 ' FCB identifier
X'OO' FCB is not a default
AL1(67) Length of FCB
X'90' Offset print line

* 15 character positions to the right
DC X'OO' Spacing is 6 lines per inch
DC 5X'00' Lines 2-6 no channel codes
DC X' 01 ' Line 7 channel 1
DC 6X'00' Lines 8-13 no channel codes
DC X'02' Line (or Lines) 14 channel 2
DC 5X'OO' Line (or Lines) 15-19 no channel
DC X' 03' Line (or Lines) 20 channel 3
DC 9X'00' Line (or Lines) 21-29 no channel
DC X'04' Line (or Lines) 30 channel 4
DC 19X'OO' Line (or Lines) 31-49 no channel
DC X'05' Line (or Lines) 50 channel 5
DC X'06' Line (or Lines) 51 channel 6
DC X'07' Line (or Lines) 52 channel 7
DC X'08' Line (or Lines) 53 channel 8
DC x'09' Line (or Lines) 54 channel 9
DC X'OA' Line (or Lines) 55 channel 10
DC X'OB' Line (or Lines) 56 channel 11
DC X'OC' Line (or Lines) 57 channel 12
DC 8X'OO' Line (or Lines) 58-65 no channel
DC X' 10' End of FCB image

//ddname
/*

END
DDUNIT=3211,FCB=(IMG1,VERIFY)

Figure 19. Defining an FCB Image

32 OS Data Management Services Guide

codes

codes

codes

codes

o

..

0

o

it lit ¢" !

o

•

0

I

I

I

o

I

I

If bit 5 of the option mask is set to 1, you can ignore the ABEND by placing a decimal
value of 4 in byte 3 of the parameter list. Processing on the current DCB stops. If
you subsequently attempt to use this DCB, the results are unpredictable. If you ignore
an error in end-of-volume, the data set will be closed before control is returned to your
program at the point which caused the end-of-volume condition.

I

If bit 6 of the option mask is set to 1, you can delay the ABEND by placing a decimal
value of 8 in byte 3 of the parameter list. All other DCBs waiting for open or close
processing will be processed before the ABEND is issued. For end-of-volume,
however, you can't delay the ABEND because the end-of-volume routine never has
more than one DCB to process.

If bit 4 of the option mask is set to 1, you can attempt to recover. Place a decimal
value of 12 in byte 3 of the parameter list and provide information for the recovery
attempt. Figure 21 lists the ABEND conditions for which recovery can be attempted .
For ABEND conditions which can be ignored or delayed, see IBM System/360
Operating System: Messages and Codes.

For the recovery attempt, you should supply a recovery work area (see Figure 22) with
a new volume serial number for each volume associated with an error. If no new

------------------------~================~----
Bit Meaning

~--~------------------------------~
0-3 Reserved for Future Use

~----~----------------------------~
4 OK to Recover

~--~------------------------~

5 OK to Ignore

6 OK to Delay

7 Reserved for Future Use

Fullword Boundary
DisPlacement~----------~----------------------~I----------------~I------------------~

o System Completion Code * Return Code Option Mask

4 DCB Address

8 Open/Close/End-of-Volume Work Area Address

12 00 I Recovery Work Area Address

* I n the first 12 bits.

Figure 20. Parameter List as sed to DCB ABEND Exit Routine

Part 1: Introduction to Data Management 33

SQ-

volumes are supplied, recovery will be attempted with the existing volumes, but the
likelihood of successful recovery is greatly reduced.

If you request recovery for system completion code 213, return code 04, you must
indicate in your job control language (JCL) they are nonsharable by specifying unit
affinity, deferred mounting, or more volumes than units for the data set.

If you request recovery for system completion code 237, return code 04, you don't
need to supply new volumes or a work area. The condition that caused the ABEND is
the disagreement between the block count in the DCB and that in the trailer label.
This disagreement is ignored to permit recovery.

System
Completion Return
Code Code Description of Error

213 04 DSCB was not found on volume specified.

237 04 Block count in DCB does not agree with block count in trailer label.

413 18 Data set was opened for input and no volume serial number was specified.

613 08 I/O error occurred during reading of tape label.

717

813

OC Invalid tape label was read.

10 I/O error occurred during writing of tape label.

14 I/O error occurred during writing of tapemark following header labels.

10

04

I/O error occurred during reading of trailer label 1 to update block
count in DCB.

Data set name on header label does not match data set name on
DO statement.

Figure 21. Conditions for which Recovery Can Be Attempted

If you request recovery for system completion code 717, return code 10, you don't
need to supply new volumes or a work area. The ABEND is caused by an 110 error
during updating of the DCB block count. To permit recovery, the block count is not
updated. Consequently, an abnormal termination with system completion code 237,
return code 04, may result when you try to read from the tape after recovery. You
may attempt recovery from the ABEND with system completion code 237, return code
04, as explained in the preceding paragraph.

System completion codes and their return codes are described in as Messages and
Codes.

The work area that you supply for the recovery attempt must begin on a halfword
boundary and can contain the information described in Figure 22. Place a pointer to
the work area in the last 3 bytes of the parameter list pointed to by register I and
described in Figure 20.

If you acquire the storage for the work area by using the GETMAIN macro instruction,
you can request that it be freed by a FREEMAIN macro instruction after all
information has been extracted from it. Set the high-order bit of the option byte in the
work area to 1 and place the number of the subpool from which the work area was
requested in byte 3 of the recovery work area.

Only one recovery attempt per data set is allowed during open, close, or end-of-volume
processing. If a recovery attempt is unsuccessful, you may not request another
recovery. The second time through the exit routine you may request only one of the

34 OS Data Management Services Guide

o

o

.'r IrrMh

0

•

..

0

-.

o

1'- " dt'tt II',,'" I,"M U'

Bit Meaning

0 Free This Work Area

1
Volume Serial Numbers Are
Provided

2-7 Reserved for Future Use

Halfword Boundary
Displacement

o

4

r~

aT

Length of This Work Area Option Byte I Subpool Number

Number of I
New Volumes New Volume Serial Numbers (6 bytes each)

r'-'

J
Figure 22. Recovery Work Area

other options (if allowed): issue the ABEND immediately, ignore the ABEND, or delay
the ABEND. If at any time you select an option that is not allowed, the ABEND is
issued immediately.

Note that if recovery is successful, you still receive an ABEND message on your listing.
This message refers to the ABEND that would have been issued if the recovery had not
been successful.

Modifying the Data Control Block
You can complete or modify the DCB during execution of your program. You can also
determine data set characteristics from information supplied by the data set labels.
Changes or additions can be made before opening of the data set, after closing it,
during the DCB exit routine, or while the data set is open. Naturally, any information
must be supplied before it is needed.

Because each DCB does not have a symbolic name for each field, a DCBD macro
instruction must be used to supply the symbolic names. By loading a base register with
the address of the DCB to be processed, you can refer to any field symbolically.

The DCBD macro instruction generates a dummy control section !DSECT) named
• IHADCB. The nime of each field consists of DCB followed by the first five letters of
the keyword operand that represents the field in the DCB macro instruction. For
example, the field reserved for blocksize is referred to as DCBBLKSI.

Part 1: Introduction to Data Management 35

The attributes of each DCB field are defined in the dummy control section. Because
each field in the DCB is not necessarily aligned on a fullword boundary, care must be
taken when storing or moving data into the field. The length attribute and the
alignment of each field can be determined from an assembly listing of the DCBD
macro instruction.

The DCBD macro instruction can be coded once to describe all DCBs even though
their fields differ because of differences in data set organization and access technique.
It must not be coded more than once for a single assembly. If it is coded before the
end of a control section, it must be followed by a CSECT or DSECT statement to
resume the original control section.

Changing an Address in the Data Control Block: Figure 23 illustrates how you can
modify a field in the data control block. The DCBD macro instruction defines the
symbolic name of each field. ~

The data set defined by the data control block TEXTDCB is opened for use as both an
input and an output data set. When its use as an input data set is completed, the
EODAD routine closes the data set temporarily to reposition the volume for output.
The EODAD routine then uses the dummy control section IHADCB to change the
error exit address (SYNAD) from INERROR to OUTERROR.

The EODAD routine loads the address TEXTDCB into register 10, which it uses as a
base register for IHADCB. It then moves the'~ddress OUTERROR into the
DCBSYNAD field of the DCB. This field is a fullword, but contains information that
must not be disturbed in the high-order byte. For this reason, care must be taken to
change only the 3 low-order bytes of the field.

OPEN

EOFEXIT CLOSE
LA
USING
MVC
B

INERROR STM

OUTERROR STM

(TEXTDCB, INOUT)

(TEXTDCB,REREAD),TYPE=T
10,TEXTDCB
IHADCB,10
DCBSYNAD+1(3),=AL3(OUTERROR)
OUTPUT
14, 12,SYNADSA+12

14,12,SYN~SA+12

TEXTDCB DCB DSORG=PS,MACRF=(R,W),DDNAME=TEXTTAPE,
EODAD=EOFEXIT,SYNAD=INERROR

DCBD DSORG=PS

Figure 23. Modifying a Field in the Data Control Block

Sharing a Data Set

C

A data set can be shared by all the tasks of a job step. If requested in the DD
statement, a data set can be shared by all the tasks in the system. However, regardless
of which access method is used, the task that opens the data set must also close it.

When a data set is shared by several tasks, you must treat it as a serially reusable
resource. A task must have exclusive control of a data set in order to add or update
records, and shared control in order to read records.

In performing a task, you gain exclusive or shared control of a data set by issuing the

36 OS Data Management Services Guide

o

•

o

..

o

•

o

o

ENg and DEQ macro instructions, which are described in OS Supervisor Services
- and Macro Instructions. Note that these macro instructions must be used by ~of the

tasks that process a shared data set. When you process a direct data set, you need to
use the ENQ and DEQ macro instructions only when tasks that share a data set do not
refer to the same DCB. When all tasks do refer to the same DCB, you must have
exclusive control of a block of records that you are updating, but you do not need
either shared or exclusive control of the entire data set. You can request exclusive
control of a block of records through the DCB, READ, WRITE, and RELEX macro
instructions.

Shared Direct-Access Storage Devices: At some installations, a direct-access storage
device is shared by two or more independent computing systems. Tasks executed on
these systems can share data sets stored on the device. For details, refer to OS MFT
Guide or OS MVT Guide.

Part 1: Introduction to Data Management 37

~-- .. -­~-----------~- --~-----

O
'~"

' .

•

o

•

o

o

o

o

wmrm v

PART 2: DATA MANAGEMENT PROCESSING PROCEDURES

Data-Processing Techniques
The operating system allows you to concentrate most of your efforts on processing the
records read or written by the data management routines. To get the records read and
written, your main responsibilities are to describe the data set to be processed, the
buffering techniques to be used, and the access method. An access method has been
defined as the combination of data set organization and the technique used to gain
access to the data. Data access techniques are discussed here in two
categories-queued and basic.

Queued Access Technique
The queued a~cess technique provides GET and PUT macro instructions for
transmitting data between main and auxiliary storage. These macro instructions cause
automatic blocking and deblocking of the records stored and retrieved. Anticipatory
(look-ahead) buffering and synchronization (overlap) of input and output operations
with central processing unit (CPU) processing are automatic features of the queued
access technique.

Because the operating system controls buffer processing, you can use as many
input/output (I/O) buffers as needed without reissuing GET or PUT macro
instructions to fill or empty buffers. Usually, more than one input block is in main
storage at any given time, so I/O operations do not delay record processing.

Because the operating system synchronizes input/output with processing, you need not
test for completion, errors, or exceptional conditions. After a GET or PUT macro
instruction is issued, control is not returned to your program until an input area is filled
or an output area is available. Exits to error analysis (SYNAD) and end-of-volume or
end-of-data (EODAD) routines are automatically taken when necessary.

GET-Retrieve a Record
The GET macro instruction obtains a record from an input data set. It operates in a
logical sequential and device-independent manner. As required, the GET macro
instruction schedules the filling of input buffers, deblocks records, and directs input
error recovery procedures. For sequential data sets, it also merges record segments into
logical records. After all records have been processed and the GET macro instruction
detects an end-of-data indication, the system automatically checks labels on sequential
data sets and passes control to your end-of-data (EODAD) routine. If an
end-of-volume condition is detected for a sequential data set, the system provides
automatic volume switching if the data set extends across several volumes or if
concatenated data sets are being processed. If you specify OPTCD=Q in the DCB,
GET causes input data to be translated from ASCII to EBCDIC.

PUT-Write a Record
The PUT macro instruction places a record into an output data set. Like the GET
macro instruction, it operates in a logical sequential and device-independent manner.
As required, the PUT macro instruction schedules the emptying of output buffers,
blocks records, and handles output error correction procedures. For sequential data
sets, it also initiates automatic volume switching and label creation, and also segments
records for spanning. If you specify OPTCD=Q in the DCB, PUT causes output to be
translated from EBCDIC to ASCII.

If the PUT macro instruction is directed to a card punch or printer, the system
automatically adjusts the number of records or record segments per block of format-F

Part 2: Data Management Processing Procedures 39

or format-V blocks to 1. Thus, you can specify a record length (LRECL) and
blocksize (BLKSIZE) to provide an optimum blocksize if the records are temporarily
placed on magnetic tape or a direct-access volume.

For spanned variable-length records, the blocksize must be equivalent to the length of
one card or one print line. Record size may be greater than blocksize in this case.

PUTX-Write an Updated Record
The PUTX macro instruction is. used to update a data set or to create an output data
set using records from an input data set as a base. PUTX updates, replaces, or inserts
records from existing data sets but does not create records or add records from other
data sets.

When you use the PUTX macro instruction to update, each record is returned to the
data set referred to by a previous locate mode GET macro instruction. The buffer
containing the updated record is flagged and written back to the same location on the
direct-access storage device from which it was read. The block is not written until a
GET macro instruction is issued for the next buffer, except when a spanned record is
to be updated. In that case, the block is written with the next GET macro instruction.

When the PUTX macro instruction is used to create an output data set, you can add
new records by using the PUT macro instruction. As required, the PUTX macro
instruction blocks records, schedules the writing of output buffers, and handles output
error correction procedures.

Basic A.ccess Technique
the Basic access technique provides the READ and WRITE macro instructions for
transmitting data between main and auxiliary storage. This technique is used when the
operating system cannot predict the sequence in which the records are to be processed
or when you do not want some or all of the automatic functions performed by the
queued access technique. Although the system does not provide anticipatory buffering
or synchronized scheduling, macro instructions are provided to help you program these
operations.

The READ and WRITE macro instructions process blocks, not records. Thus, blocking
and deblocking of records is your responsibility. Buffers, allocated by either you or the
operating system, are filled or emptied individually each time a READ or WRITE
macro instruction is issued. Moreover, the READ and WRITE macro instructions only
initiate input! output operations. To ensure that the operation is completed
successfully, you must issue a CHECK macro instruction to test the data event control
block (DECB) or issue a WAIT macro instruction and then check the DECB yourself.
The number of READ or WRITE macro instructions issued before a CHECK macro
instruction is used should not exceed the specified number of channel programs (NCP).

READ-Read a Block
The READ macro instruction retrieves a data block from an input data set and places it
in a designated area of main storage. To allow overlap of the input operation with
processing, the system returns control to your program before the read operation is
completed. The DECB created for the read operation must be tested for successful
completion before the record is processed or the DECB is reused.

If an indexed sequential data set is being read, the block is brought into main storage
and the address of the record is returned to you in the DECB.

When you use the READ macro instruction for BSAM to read a direct data set with
spanned records and keys and you specify BFTEK=R in your DCB, the data
management routines displace record segments after the first in a record by key length.

40 as Data Management Services Guide

o

..

o

•

o

tii': !I' t'1t'1I t

o

•

o

•

o

t Hill alperE

Thus, you can expect the block descriptor word and the segment descriptor word at the
same locations in your buffer or buffers, regardless of whether you read the first
segment of a record, which is preceded in the buffer by its key, or a subsequent
segment, which does not have a key. This procedure is called offset reading.

You can specify variations of the READ macro instruction according to the
organization of the data set being processed and the type of processing to be done by
the system as follows:

Sequential
SF
SB

Read the data set sequentially.
Read the data set backward (magnetic tape, format-F and format-U
only). When RECFM=FBS, data sets containing a last truncated
block cannot be read backward.

Indexed Sequential
K Read the data set.
KU - Read for update. The system maintains the device address of the

record; thus, when a WRITE macro instruction returns the record, no

Direct
D
I
K
F
X
R
U

index search is required.

Use the direct access method.
Locate the block using a block identification.
Locate the block using a key.
Provide device position feedback.
Maintain exclusive control of the block.
Provide next address feedback.
Next address can be a capacity record or logical record, whichever
occurred first.

WRITE-Write a Block
The WRITE macro instruction places a data block in an output data set from a
designated area of main storage. The WRITE macro instruction can also be used to
return an updated record to a data set. To allow overlap of output operations with
processing, the system returns control to your program before the write operation is
completed. The DECB created for the write operation must be tested for successful
completion before the DECB can be reused. For ASCII tape data sets, do not issue
more than one WRITE on the same record, because the WRITE macro instruction
causes the data in the record area to be translated from EBCDIC to ASCII.

As with the READ macro instruction, you can specify variations of the WRITE macro
instruction according to the organization of the data set and the type of processing to
be done by the system as follows:

Sequential
SF
SFR -

Write the data set sequentially.
Write the data set sequentially with next-address feedback.

Indexed Sequential
K Write a block containing an updated record, or replace a record with

an unblocked record having the same key. The record to be replaced
need not have been read into main storage.

KN - Write a new record or change the length of a variable-length record.

Part 2: Data Management Processing Procedures 41

Direct
SD
SZ

D
I
K
A
F
X

Write a dummy fixed-length record.
Write a capacity record (RO). The system supplies the data, writes the
capacity record, and advances to the next track.
Use the direct access method.
Search argument identifies a block ..
Search argument is a key.
Add a new block.
Provide record location data (feedback).
Release exclusive control.

CHECK-Test Completion of Read or Write Operation
,,'='.... When processing a data set, you can test for completion of a READ or WRITE request

by issuing a CHECK macro instruction. The system tests for errors and exceptional
conditions in the data event control block (DECB). Successive CHECK macro
instructions issued for the same data set must be issued in the same order as the
associated READ and WRITE macro instructions.

The check routine passes control to the appropriate exit routines specified in the DCB
for error analysis (SYNAD) or, for sequential data sets, end-of-data (EODAD). It also
automatically initiates end-of-volume procedures (vohime switching or extending output
data sets).

If you specify OPTCD=Q in the DCB, CHECK causes input data to be translated
from ASCII to EBCDIC.

WAIT-Wait for Completion of a Read or Write Operation
When processing a data set, you can test for completion of any READ or WRITE
request by issuing a WAIT macro instruction. The input/output operation is
synchronized with processing, but the DECB is not checked for errors or exceptional
conditions, nor are end-of-volume procedures initiated. Your program must perform
these operations.

The WAIT macro instruction can be used to await completion of multiple read and
write operations. Each operation must then be checked or tested separately.

Data Event Control Block (DECB)

I
Error Handling

A data event control block is a 16 to 32-byte area reserved by each READ or WRITE
macro instruction. It contains control information and pointers to standard status
indicators. It is described in detail in Appendix A of OS Data Management Macro
Instructions.

The DECB is examined by the Check routine when the I/O operation is completed to
determine if an uncorrectable error or exceptional condition exists. If it does, control is
passed to your SYNAD routine. If you have no SYNAD routine, the task is
abnormally terminated. If an end-of -data condition is detected for input, control is
passed to the EODAD routine.

The basic and queued access techniques both provide special macro instructions for
analyzing input/output errors. These macro instructions can be used in SYNAD
routines and in error analysis routines that are entered directly when you use the basic
access technique with indexed sequential data sets.

42 as Data Management Services Guide

o

•

..

•

o

fit 'bf ! t ttte j d *,"00

o

•

o

•

•

o

SYNADAF-Perform SYNAD Analysis Function
'* The SYNADAF macro instruction analyzes the status, sense, and exceptional condition

code data that is available to your error analysis routine. It produces an error message
that your routine can write into any appropriate data set. The message is in the form
of an unblocked variable-length record, but you can write it as a fixed-length record by
omitting the block length and record length fields that precede the message text.

The text of the message is 120 characters long, and begins with a field of 36 or 42
blanks; you can use the blank field to add your own remarks to the message.
Following is a typical message with the blank field omitted:

,TESTJOB ,STEP2 , 283,TA,MASTER ,READ ,DATACHECK ,0000015,BSAM

This message indicates that a data check occurred during reading of the fifteenth block
of a data set. The data set was identified by a DD statement named MASTER, and
was on a magnetic-tape volume on unit 283. The name of the job was TESTJOB; the
name of the job step was STEP2.

If the error analysis routine is entered because of an input error, the first 6 bytes of the
message (bytes 8-13) contain binary information. If no data was transmitted or if the
access method is QISAM, the first 6 bytes are blanks or zeros. If the error did not
prevent data transmission, the first 6 bytes contain the address of the input buffer and
the number of bytes read. You can use this information to process records from the
block; for example, you might print each record after printing the error message.
Before printing the message, however, you should replace this binary information with
EBCDIC characters.

The SYNADAF macro instruction provides its own save area and makes this area
available to your error analysis routine. When used at the entry point of a SYNAD
routine, it fulfills the routine's responsibility for providing a save area.

SYNADRLS-Release SYNADAF Message and Save Areas
...... The SYNADRLS macro instruction releases the message and save areas provided by

the SYNADAF macro instruction. You must issue this macro instruction before

I returning from die error analysis routine if you previously issued the SYNADAF macro
in this routine.

ATLAS-Perform Alternate Track Location Assignment
The ATLAS macro instruction enables your program to recover from permanent
input/ output errors when processing a data set in direct-access storage. After a data
check, or in certain missing-address-marker conditions, you can issue ATLAS to assign
an alternate track to replace the error track or transfer data from the error track to the
alternate track.

Any program that uses EXCP programming can use the ATLAS macro instruction .
The use of both macros requires a knowledge of channel programming. A detailed
description of each macro instruction and its use is included in OS Data Management
for System Programmers .

If you do not use the ATLAS macro instruction, you can use the IEHATLAS utility
program to perform the same function. The principal difference between the macro
instruction and the utility program is that the latter provides error recovery only after
your own program has been completed. For a detailed description of IEHATLAS,
refer to OS Utilities.

Part 2: Data Management Processing Procedures 43

Selecting an Access Method
Access methods are identified primarily by the data set organization to which they
apply. For instance, BDAM is the basic access method for direct organization.
Nevertheless, there are times when an access method identified with one organization
can be used to process a data set usually thought of as organized in a different manner.
Thus, a data set created by the basic access method for sequential organization
(BSAM) may be processed by the basic direct access method (BDAM). If the queued
access technique is used to process a sequential data set, the access method is referred
to as the queued sequential access method (QSAM).

Basic access methods are used for all data organizations, while queued access methods
apply only to sequential and indexed sequential data sets as shown in Figure 24.

Data Set
Organization

Access Technique

Basic Queued

Sequential BSAM QSAM
Partitioned BPAM
Indexed Sequential BISAM QISAM
Direct BDAM

Figure 24. Data Management Access Methods

It is possible to control an I/O device directly while processing a data set with any data
organization without using a specific access method. The execute channel program
(EXCP) macro instruction uses the system programs that provide for scheduling and
queuing I/O requests, efficient use of channels and devices, data protection,
interruption procedures, error recognition and retry. Complete details about the EXCP
macro are in OS Data Management for System Programmers.

Opening and Closing a Data Set
Although your program has been assembled, the various data management routines
required for I/O operations are not a part of the object code. In other words, your
program is not completely assembled until the DCBs are initialized for execution. You
accomplish initialization by issuing the OPEN macro instruction. After all DCBs have
been completed, the system ensures that all required access method routines are loaded
and ready for use and that all channel command word lists and buffer areas are ready.

Access method routines are selected and loaded according to data control fields that
indicate:

• Data organization

• Buffering technique

• Access technique

• I/O unit characteristics

This information is used by the system to allocate main-storage space and load the
appropriate routines. These routines, the channel command word (CCW) lists, and
buffer areas created automatically by the system remain in main storage until the Close
routine signals that they are no longer needed by the DCB that was using them.

When I/O operations for a data set are completed, you should issue a CLOSE macro
instruction to return the DCB to its original status, handle volume disposition, create

44 OS Data Management Services Guide

o

•

o

•

o

jii" ·Wt. t H 'I J HI U "'tt'W

o

o
I
I

I
•

a

o

-ii -TY-IlYe? -- -WHT7TnT .. m . Itmw TUn If

data set labels, complete writing of queued output buffers, and free main and auxiliary
storage.

After closing the data set, you should issue a FREEPOOL macro instruction to release
the main storage used for the buffer pool. If you plan to process other data sets, use
FREEPOOL to regain the buffer pool storage space. If you expect to reopen a data
set using the same DCB, use FREEPOOL unless the buffer pool created the first time
the data set was opened will meet your needs when you reopen the data set.
FREEPOOL is discussed in more detail in the section "Buffer Pool Construction."

After the data set has been closed, the DCB can be used for another data set. If you
do not close the data set before a task terminates, the operating system closes it
automatically. If the DCB is not available to the system at that time, the operating
system abnormally terminates the task, and data results can be unpredictable. Note,
however, that the operating system cannot automatically close any open data sets after
the normal termination of a program that was brought into main storage by the loader.
Therefore, loaded programs must include CLOSE macro instructions for all open data
sets.

An OPEN or CLOSE macro instruction can be used to initiate or terminate processing
of more than one data set. Simultaneous opening or closing is faster than issuing
separate macro instructions; however, additional storage space is required for each data
set specified.

Notes:

•

•

•

•

Two or more DCBs should never be concurrently open for output to the same
data set on a direct-access device, except with the indexed sequential access
method (ISAM). Otherwise the end-of-file record written by the CLOSE for one
DCB may overlay data associated with another DCB.

If one DCB is concurrently open for input and one for output to the same data
set on a direct-access device, the input DCB may be unable to read what the
output DCB wrote if the output DCB extended the data set.

Two or more DCBs should not be concurrently open using the same DDname.
(This is true for both input and output and especially important when you are
using more than one access method.) However, a concurrent open of a single
volume data set allocated to a single unit does not adversely affect the TIOT.
Any action on one DCB that alters the task input/output table (TIOT) or JFCB
affects the other DCB(s) and thus can cause unpredictable results. A
multivolume ISAM or BDAM data set can be concurrently open as long as the
volume serial list remains the same.

If you want to use the same DD statement for two or more DCBs, you cannot
specify parameters for fields in the first DCB and then be assured of obtaining
the default parameters for the same fields in any subsequent DCB using the same
DD statement. Therefore, unless the parameters of all DCBs using one DD
statement are the same, you should use separate DD statements.

Associated data sets for the 3525 Card Punch can be opened in any order, but all
data sets must be opened before any processing can begin. Associated data sets
can be closed in any order, but once a data set has been closed, I/O operations
cannot be performed on any of the associated data sets. See "Appendix C:
Special Programming Considerations for the 3505 Card Reader and the 3525
Card Punch" for more information.

Part 2: Data Management Processing Procedures 45

•

•

Volume disposition specified in the OPEN or CLOSE macro instruction can be
overridden by the system if necessary. However, you need not be concerned; the
system automatically requests the mounting and demounting of volumes,
depending upon the availability of devices at a particular time.

If an abnormal termination occurs during open, close, or end-of-volume
processing, the DCB causing the error and any DCBs being processed in parallel
with it may be left in such a state that they cannot be used and cannot be closed
(or will be closed incorrectly). The device associated with the DCB in error (such
as a magnetic tape unit) can become locked to this DCB and will not be reuseable
until the end of the job step when device de allocation will unlock it. This is true
whether or not the abnormal termination is intercepted by a ST AE routine, a
DCB ABEND exit routine, or a mother task. When processing DCBs in parallel,
specifying delay or ignore abnromal termination in the DCB ABEND exit routine
will allow the other DCBs to complete processing normally.

• During termination the system issues a CLOSE macro for each data set which is
still open. If this is an abnormal termination, the QSAM close routines (which
would normally finish processing buffers) are bypasseq. Any outstanding 1/0
requests are purged. Thus, your last data records may be lost for a QSAM output
data set.

OPEN-Initiate Processing of a Data Set

I

The OPEN macro instruction is used to complete a data control block for an associated
data set. The method of processing and the volume positioning instruction in the event
of an end-of-volume condition can be specified.

Processing Method: You can process a data set as either input or output (by coding
INPUT or OUTPUT as the processing method operand of the OPEN macro) or, under
BSAM, a combination of the two (by coding INOUT or OUTIN). Associated data sets
to be processed concurrently on the 3525 Card Punch must have separate DCBs for
each data set. See "Appendix C: Special Programming Considerations for the3505
Card Reader and the 3525 Card Punch" for more information. If the data set resides
on a direct-access volume, you can code UPDAT in the processing method operand to
indicate that records can be updated. By coding RDBACK in this operand, you can
specify that a magnetic-tape volume containing format-F or format-\!,records is to be
read backwards. 8ariable-Iength records cannot be read backWjlr~ If the processing
method operand is omitted from the OPEN macro instruction, INPUT is assumed. The
operand is ignored by the basic indexed sequential access method (BISAM); it must be
specified as OUTPUT when you are using the queued indexed sequential access method
(QISAM) to create an indexed sequential data set. You can override the INOUT and
OUTIN at execution by using the LABEL parameter of the DD statement, as discussed
in OS Job Control Language Reference.

Simultaneous Opening of Data Sets: In Figure 25, the data sets associated with three
DCBs are to be opened simultaneously.

Since no processing method operand is specified for TEXTDCB, the system assumes
INPUT. Both CONVDCB and PRINTDCB are opened for output. No volume
positioning options are specified; thus, the position indicated by the DD statement
DISP parameter is used.

At execution, the SVC 19 instruction passes control to the Open routine, which then
initializes the three DCBs and loads the appropriate access method routines.

46 as Data Management Services Guide

•

'0/ ',-', -I

o

eW#'W"ri.ft»*MM'tfOUM' $.- -j

o

t···it !t!! ~T ·r

m

••• §····i#f5·jii·-*jd""#BdW p'--': ['1 fffW#5S-EHI'ffTfFJ7W"f$fITernf7 W'.-r1f'V

+
+
+
+
+
+
+
+
+

OPEN
CNOP
BAL
DC
DC
DC
DC
DC
DC
SVC

(TEXTDCB"CONVDCB,(OUTPUT),PRINTDCB,(OUTPUT»
0,4 Align list to fullword
1,*+16 Load regl w/list addr.
AL1(0) Option byte
AL3(TEXTDCB) DCB address
AL1(15) Option byte
AL3(CONVDCB) DCB address
AL1(143) Option byte
AL3(PRINTDCB) DCB address
19 Issue open SVC

Figure 25. Opening Three Data Sets Simultaneously

CLOSE-Terminate Processing of a Data Set

o

o

The CLOSE macro instruction is used to terminate processing of a data set and release
it from a DCB. The volume positioning that is to result from closing the data set can
also be specified. Volume positioning options are the same as those that can be
specified for end-of-volume conditions in the OPEN macro instruction or the DD
statement. An additional volume positioning option, REWIND, is available and can be
specified by the CLOSE macro instruction for magnetic-tape volumes. ~WIND_
positions the tape at the load point .regardless of the direction of processing.

You can code CLOSE TYPE=T and temporarily close sequential data sets on magnetic
tape and direct-access volumes processed with BSAM. When you use TYPE=T, the
DCB used to process the data set maintains its open status, and you don't have to issue
another OPEN macro instruction to continue processing the same data set. This option
cannot be used in a SYNAD routine.

A request to temporarily close a data set causes the system control program to process
labels, modify some of the fields in the system control blocks for that data set, and
reposition the volume (or current volume in the case of multivolume data sets) in much
the same way that the normal CLOSE macro does. When you code TYPE=T, you can
specify that the volume either be positioned at the end of data (the LEA VB option) or
be repositioned at the beginning of data (the REREAD option). Magnetic-tape
volumes are repositioned either immediately before the first data record or immediately
after the last data rec"ord; the presence of tape labels has no effect on repositioning.
The following table, which assumes a sample data set containing 1000 records,
illustrates the relationship between each positioning option and the point at which you
resume processing the data set after issuing the temporary close.

Begin

processing

7
Record

1
Record Record

2 3

1
\

'\
\

Record

999

Begin processing

tape data set

(open for read

backward) ~

Record

1000

Part 2: Data Management Processing Procedures 47

~
I,:
:,1

I

I!

If you issue CLOSE TYPE = T and specify After temporary close, you will resume

processing

LEAVE Immediately after record 1000

LEAVE (with tape data set open for read Immediately before record 1

backward)

REREAD Immediately before record 1

REREAD (with tape data set open for read Immediately after record 1000 -b~

If you code the release (RLSE) operand on the DD statement for the data set, it is
ignored by temporary close, but any unused space will be released when you finally
issue the normal CLOSE macro instruction.

It is possible to use BSAM to process a data set that is not physical-sequential; if you
use CLOSE TYPE=T for them, the following restrictions apply:

• The DCB for the data set you are processing on a direct-access device must
specify either DSORG=PS or DSORG=PSU for input processing, and either
DSORG=PS, DSORG=PSU, DSORG=PO, or DSORG=POU for output
processing.

• The DCB must not be open for input to a member of a partitioned data set.

• If you open a data set on a direct-access device for output and issue CLOSE
TYPE=T, the volume will be repositioned only if the data set specifies
DSORG=PS, DSORG=PSU, DSORG=PO, or DSORG=POU (you cannot
specify the REREAD option if DSORG=PO or DSORG=POU is specified).
(This restriction prohibits the use of temporary close following or during the
building of a BDAM data set which is created by specifying MACRF=WL in a
BSAMDCB).

• If you open the data set for input and issue CLOSE TYPE = T with the LEA VB
option, the volume will be repositioned only If the data set sp~cifies DSORG=PS
or DSORG=PO.

Note: When a data control block is shared among multiple tasks, only the task that
opened the data set can close it unless TYPE = T is specified.

Before issuing the CLOSE macro, a CHECK macro must be issued for all DECBs that
have outstanding I/O from WRITE macro instructions. When CLOSE TYPE=T is
specified, a CHECK macro must be issued for all DECBs that have outstandiili<l/o
from either WRITE or READ macro instructions.

Simultaneous Closing of Data Sets: In Figure 26, the data sets associated with three
DCBs are to be closed simultaneously.

48 as Data Management Servic~s Guide

o

o

o

'j t

0

.1<

o

o

•

CLOSE (TEXTDCB"CONVDCB"PRINTDCB)
+ CNOP 0,4 Align list to fullword
+ BAL 1,*+16 Load regl w/list addr
+ DC AL1 (0) Option byte
+ DC AL3(TEXTDCB) DCB address
+ DC AL1 (0) Option byte
+ DC AL3(CONVDCB) DCB address
+ DC AL 1 (128) Option byte
+ DC AL3(PRINTDCB) DCB address
+ SVC 20 Issue close SVC

Figure 26 .• Closing Three Data Sets Simultaneously _

Because no volume positioning operands are specified, the position indicated by the DD
statement DISP parameter is used.

At execution, the SVC 20 instruction passes control to the Close routine, which
terminates processing of the three data sets and returns the three DCBs to their original
status.

End-of -Volume Processing
Control is passed automatically to the data management end-of-volume routine when
any of the following conditions is detected:

• End-of -data indicator (input volume)

• Tapemark (input tape volume)

•

•

Filemark (input direct-access volume)

End of reel (output tape volume)

• End of extent (output direct-access volume)

You may issue a force end-of-volume (FEOV) macro instruction before the
end-of-volume condition is detected.

The end-of -volume routine checks or creates standard trailer labels, if the LABEL
parameter of the associated DD statement indicates standard labels. Control is then
passed to the appropriate user label routine if it is specified in your exit list.

If multiple-volume data sets are specified in your DD statement, automatic volume
switching is accomplished by the end-of-volume routine. When an end-of-volume
condition exists on an output data set, additional space is allocated as indicated in your
DD statement. If no more volumes are specified or if more than specified are required,
the storage is obtained from any available volume on a device of the same type. If no
such volume is available, your job is terminated.

Volume Positioning: When an end-of-volume condition is detected, the system positions
the volume according to the disposition specified in the DD statement unless the
volume disposition is specified in the OPEN macro instruction. Volume positioning
instructions for a sequential data set on tape or direct access can be specified as
LEAVE or REREAD.

LEAVE
positions the volume at the logical end of the data set just read or written. If the
data set has been read backward, the logical end is the physical beginning of the
data set.

Part 2: Data Management Processing Procedures 49

REREAD
positions the volume at the logical beginning of the data set just read or written.

If, however, you want to position the current volume according to the option specified
in the DISP parameter of the DD statement, you code DISP in the OPEN macro
instruction. The volume will then be positioned as follows:

DISP Parameter
of DD Statement

PASS

DELETE

KEEP,CATLG
or UNCATLG

Action

Forward space to the end of the data set on the current
volume.

Rewind current volume.

Rewind and unload the current volume.

A volume positioning instruction can be specified only if the processing method
operand has been specified. It is ignored if devices other than magnetic-tape and
direct-access are used, or if the number of volumes exceeds the number of available
units.

For magnetic-tape volumes, positioning varies according to the direction of the last
input operation and the existence of tape labels. If the tape was last read forward:

LEAVE
positions a labeled tape to the point following the tapemark that follows the data
set trailer label group, and an unlabeled volume to the point following the
tapemark that follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data set header label group,
and an unlabeled tape to the point preceding the first block of the data set.

If the tape was last read backward:

LEAVE
positions a labeled tape to the point preceding the data set header label group,
and an unlabeled tape to the point preceding the first block of the data set.

REREAD
positions a labeled tape to the point following the tapemark that follows the data
set trailer label group, and an unlabeled tape to the point following the tapemark
that follows the last block of the data set.

FEOV-Force End of Volume
The FEOV macro instruction directs the operating system to initiate end-of-volume
processing before the physical end of the current volume is reached. If another volume
has been specified for the data set, volume switching takes place automatically. The
volume positioning options REWIND and LEAVE are available.

The FEOV macro instruction can only be used when you are using BSAM or QSAM.
If you are using QSAM to read a spanned, multi-volume data set, errors may occur if
an FEOV macro instruction is issued followed by another GET. These errors are
documented in the section "Spanned Variable-Length Records (Sequential Access
Methods)" in "Part 1: Introduction to Data Management."

50 as Data Management Services Guide

o

o

c

o -

o

o

Buffer Acquisition and Control
The operating system provides several methods of buffer acquisition and control. Each
buffer (main-storage area used for intermediate storage of input/output data) usually
corresponds in length to the size of a block in the data set being processed. When you
use the queued access technique, any reference to a buffer actually refers to the next
record (buffer segment).

You can assign more than one buffer to a data set by associating the buffer with a
buffer pool. A buffer pool must be constructed in a main-storage area allocated for a
given number of buffers of a given length.

Buffer segments and buffers within the buffer pool are controlled automatically by the
system when the gueued access technique is used. However, you can terminate
processing of a buffer by issuing a release (RELSE) macro instruction for input or a
truncate (TRUNC) macro instruction for output. Two buffering techniques, simple and
exchange, can be used to process a sequential data set. Only simple buffering can be
used to process an indexed sequential data set.

If you use the basic access technique, you can use buffers as work areas rather than as
intermediate storage areas. You can control them directly, by using the GETBUF and
FREEBUF macro instructions, or dynamically for BDAM and BISAM, by requesting
pynamic buffering in your DCB macro instruction and your READ or WRITE macro
instruction. If you request dynamic buffering, the system will automatically provide a
buffer each time a READ macro instruction is issued. That buffer will be freed when
you issue a WRITE or FREEDBUF macro instruction.

Buffer Pool Construction
Buffer pool construction can be accomplished in any of three ways:

V'" • Statically using the BUILD macro instruction

t/. Explicitly using the GETPOOL macro instruction

v"'. Automatically by the system when the data set is opened

If QSAM simple buffering is used, the buffers are automatically returned to the pool
when the data set is closed. If the buffer pool is constructed explicitly or automatically,
the main storage area must be returned to the system by the FREEPOOL macro
instruction.

In many applications, fullword or doubleword alignment of a block within a buffer is
important. You can specify in the DCB that buffers are to start on either a
doubleword boundary or a fullword boundary that is not also a doubleword boundary
(by coding BFALN=D or F). If doubleword alignment is specified for format-~
records, the fifth byte of the first record in the block is so aligned. For that reason,
fullword alignment must be requested to align the first byte of the variable-length
record on a doubleword boundary. The alignment of the records following the first in
the block depends on the length of the previous records.

Note that buffer alignment provides alignment only for the buffer. If records from
ASCII magnetic tape are read and the records use the block prefix, the boundary
alignment of logical records within the buffer depends on the length of the block prefix.
If the length is 4, logical records are on fullword boundaries. If the length is 8, logical
records are on doubleword boundaries.

If the BUILD macro instruction is used to construct the buffer pool, alignment depends
on the alignment of the first byte of the reserved storage area.

Part 2: Data Management Processing Procedures 51

When you process multiple QISAM data sets, you can use a common buffer pool. To
do this, however, you must use the BUILD macro instruction to reformat the buffer
pool before opening each data set.

BUILD-Construct a Buffer Pool
.--- When you know, before program assembly, both the number and the size of the buffers

required for a given data set, you can reserve an area of appropriate size to be used as
a buffer pool. Any type of area can be used-for example~ a predefined storage area
or an(area of coding no longer needed. -

A BUILD macro instruction, issued during execution of your program, structures the
reserved storage area into a buffer pool. The address of the buffer pool must be the
same as that s ecified for the buffer 001 rol bloc . our DCB. The

u er pool control block is an 8-byte field preceding the buffers in the buffer pool.
The number (BUFNO) and length (BUFL) of the buffers must also be specified. For
QSAM the length of BUFL must be at least the blocksize.

When the data set using the buffer pool is closed, you can reuse the area as required.
You can also reissue the BUILD macro instruction to reconstruct the area into a new
buffer pool to be used by another data set. You can assign the buffer pool to two or
more data sets that require buffers of the same length. To do this, you must construct
an area large enough to accommodate the total number of buffers required at anyone
time during execution. That is, if each of two data sets requires five buffers
(BUFNO=5), the BUILD macro instruction should specify ten buffers. The area must
also be large enough to contain the 8-byte buffer pool control block.

BUILDRCD-Build a Buffer Pool and a Record Area
The BUILDRCD macro instruction, like the BUILD macro instruction, causes a buffer
pool to be constructed in an area of main storage you provide. In addition,
BUILDRCD makes it possible for you to access variable-length, spanned records as
complete logical records, rather than as segments.

You must be processing with QSAM in the locate mode and you must be processing
either VS or VBS records, if you want to access the variable-length, spanned records as
logical records. If you issue the BUILDRCD macro before the data set is opened, or
during your DCB exit routine, you automatically get'logical records rather than
segments of spanned records.

Only one logical record storage area is built, no matter how many buffers are specified;
therefore, you can't share the buffer pool with other data sets that may be open at the
same time.

GETPOOL-Get a Buffer Pool
If a specified area is not reserved for use as a buffer pool, or you want to defer
specifying the number and length of the buffers until execution of your program, you
should use the GETPOOL macro instruction. It enables you to vary the size and
number of buffers according to the needs of the data set being processed.

The GETPOOL macro instruction structures a main-storage area allocated by the
system into a buffer pool, assigns a buffer pool control block, and associates the pool
with a specific data set. The GETPOOL macro instruction should be issued either
before opening of the data set or during your DCB exit routine.

When using GETPOOL with QSAM, specify a buffer length (BUFL) of at least the
blocksize.

52 as Data Management Services Guide

------_ .. -_._ .. _._-----.----_.----

o

o

lei I UW t tMtt ""it&M WH,fN!t' II

o

o

I

o

Automatic Buffer Pool COnstruction
If you have requested a buffer pool and have not used an appropriate macro instruction
by the end of your DCB exit routine, the system automatically allocates main-storage
space for a buffer pool. The buffer pool control block is also assigned and the pool is

I
associated with a specific DCB. For BSAM, a buffer pool is requested by specifying
BUFNO. For QSAM, BUFNO can be speCified or allowed to default to 2 or 3 by the
open routines. If you are using the basic access technique to process an indexed
sequential or direct data set, you must indicate dynamic buffer control. Otherwise, the
system does not construct the buffer pool automatically.

Because a buffer pool obtained automatically is not freed automatically when you issue
a CLOSE macro instruction, 19u should al§o issue a FREEPOOL macro instruction,
which is discussed in the next section.

FREEPOOL-Free a Buffer Pool

ENDJOB

INDCB
OUTDCB

INPOOL

BUILD
OPEN

CLOSE

Any buffer pool assigned to a DCB either automatically by the OPEN macro
instruction (except when dynamic buffer control is used) or explicitly by the
GETPOOL macro instruction should be released before your program is terminated.
The FREEPOOL macro instruction should be issued to release the main storage area as
soon as the buffers are no longer needed. When you are using the queued access
technique, a data set must be closed first. When you are using exchange buffering, the
buffer pool must not be released until all the data sets have been closed.

Constructing a Buffer Pool: Figures 27 and 28 illustrate several possible methods of
constructing a buffer pool. They do not take into account the method of processing or
controlling the buffers in the pool.

In Figure 27, a static storage area named INPOOL is allocated during program
assembly. The BUILD macro instruction, issued during execution, arranges the buffer
pool into ten buffers, each 52 bytes long. Five buffers are assigned to INDCB and five

\ to OUTDCB, as specified in the DCB macro instruction for each. The two data sets
share the buffer pool because both specify INPOOL as the buffer pool control block.
Notice that an additional 8 bytes have been allocated for the buffer pool to contain the
buffer pool control block.

In Figure 28, two buffer pools are constructed explicitly by the GETPOOL macro
instructions. Ten input buffers are provided, each 52 bytes long, to contain one
fixed-length record; five output buffers are provided, each 112 bytes long, to contain
two blocked records plus an 8-byte count field (required by ISAM). Notice that both
data sets are Closed before the buffer pools are released by the FREEPOOL macro

INPOOL,10,52
(INDCB"OUTDCB,(OUTPUT))

(INDCB, , OUTDCB)

Processing
Structure a buffer pool

Processing

RETURN
Processing
Return to system

BUFNO=5,BUFCB=INPOOL,EODAD=ENDJOB,---
control

DCB
DCB BUFNO=5,BUFCB=INPOOL,--- '
CNOP 0,8 Force boundary alignment
DS CL528 Buffer pool

Figure 27. Constructing a Buffer Pool From a Static Storage Are~

Part 2: Data Management Processing Procedures 53

ENDJOB

INDCB
OUTDCB

GETPOOL
GET POOL
OPEN

INDCB,10,52
OUTDCB,5,112
(INDCB"OUTDCB,(OUTPUT))

CLOSE (INDCB"OUTDCB)
FREEPOOL INDCB

FREE POOL OUTDCB

Construct a 10-buffer pool
Construct a 5-buffer pool

Release buffer pools after all
I/O is complete

RETURN
DCB
DCB

Return to system control
DSORG=PS,BFALN=F,LRECL=52,RECFM=F,EODAD=ENDJOB,--­
DSORG=IS,BFALN=D,LRECL=52,KEYLEN=10,BLKSIZE=104,

RKP=1,RECFM=FB,---
C

Figure 28. Constructing a Buffer Pool !Ising GETPOOL and FREEPOOL

instructions. The same procedure should be used if the buffer pools were constructed
automatically by the OPEN macro instruction.

Buller Control
Your program can use four techniques to control the buffers used by your program.
The advantages of each depend to a great extent upon the type of job you are doing.
Simple and exchange buffering are provided for the queued access technique. The
basic access technique provides for either direct or dynamic buffer control.

Although only simple buffering can be used to process an indexed sequential data set,
buffer segments and buffers within a buffer pool are controlled automatically by the
operating system.

In addition, the queued access technique provides four processing modes that determine
the extent of data movement in main storage. Move, data, locate, or substitute mode
processing can be specified for either the GET or PUT macro instruction. The buffer
processing mode is specified in the MACRF field of the DeB macro instruction. The
movement of a record is determined as follows:

· I Move mode: The record is moved from an input buffer to your work area, or
from your work area to an output buffer.

· I Data mode (QSAM format-V spanned records only): The same as the move
mode except only the data portion of the record is moved.

· l Locate mode: The record is not moved. Instead, the address of the n~xt input
or output buffer is placed in register 1. For QSAM format-V spanned records, if
you have specified logical records by specifying BFTEK=A or by issuing the
BUILDRCD macro instruction, the address returned in register 1 points to a
record area where the spanned record is assembled or segmented.

• L Substitute mode: The record is not moved. Instead, the address of the next
input or output buffer is interchanged with the address of your work area.

Two processing modes of the PUTX macro instruction can be used in conjunction with
a GET -locate macro instruction. The update mode returns an updated record to the
data set from which it was read; the output mode transfers an updated record to an
output data set. There is no actual movement of data in main storage. The processing
mode is specified by the operand of the PUTX macro instruction, as explained in OS
Data Management Macro Instructions.

54 OS Data Management Services Guide

---.----~------.-------------

o

o

o

Simple Buffering

o

o

If you use the basic access technique, you can control buffers in one of two ways:

• Directly, using the GETBUF macro instruction to retrieve a buffer constructed as
described above. A buffer can then be returned to the pool by the FREEBUF
macro instruction.

• Dynamically, by requesting a dynamic buffer in your READ or WRITE macro
instruction. This technique can be used only when you are processing an indexed
sequential or direct data set. If you request dynamic buffering, the system
automatically provides a buffer each time a READ macro instruction is issued.
The buffer is supplied from a buffer pool that is created by the system when the
data set is opened. The buffer is released (returned to the pool) upon completion
of a WRITE macro instruction when you are updating. If you do not update the
record in the buffer and thus release the buffer when the record is written, the
FREEDBUF macro instruction may be used. If you are processing an indexed
sequential data set, the buffer is automatically released upon the next issuance of
the READ macro instruction if there has been no intervening WRITE or
FREEDBUF macro instruction.

The term simple buffering refers to the relationship of segments within the buffer. All
segments in a simple buffer are together in main storage and are always associated with
the same data set. When the buffer pool is constructed, the system creates a channel
command word (CCW) for each buffer in the buffer pool. For this reason, each
record must be physically moved from an input buffer segment to an output buffer
segment. It can be processed within either segment or in a work area.

If you use simple buffering, records of any format can be processed. New records can
be inserted and old records deleted as required to create a new data set. A record can
be moved and processed as follows:

• Processed in an input buffer and then moved to an output buffer (GET-locate,
PUT -move/PUTX-output)

• Moved from an input buffer to an output buffer where it can be processed
(GET -move, PUT -locate)

• Moved from an input buffer to a work area where it can be processed and then
moved to an output buffer (GET -move, PUT -move)

• Processed in an input buffer and returned to the data set (GET-locate,
PUTX-update)

The following examples illustrate the control of simple buffers and the processing
modes that can be used. The buffer pools may have been constructed in any way
previously described.

Simple Buffering-GET -locate, PUT -move/PUTX-output: The GET macro instruction
(step A, Figure 29) locates the next input record to be processed. Its address is
returned in register 1 by the system. The address is passed to the PUT macro
instruction in register O.

The PUT macro instruction (step B, Figure 29) specifies the address of the record in
register o. The system then moves the record to the next output buffer.

Note: The PUTX-output macro instruction can be used in place of the PUT-move
macro instruction. However, processing will be as described under exchange buffering
(see PUT -substitute).

Part 2: Data Management Processing Procedures 55

M Ed."

I

I

I

GET

A OUTPUT OUTPUT

B

NEXTREC GET

LR
PUT
B

INDCB DCB
OUTDCB DCB

INDCB

0, 1
OUTDCB,(O)
NEXTREC
MACRF=(GL) , --­
MACRF=(PM) , ---

Figure 29. Simple Buffering with MACRF=GL and MACRF=PM

I

A

Simple Buffering-GET -move, PUT -locate: The PUT macro instruction locates the
address of the next available output buffer. Its address is returned in register 1 and is
passed to the GET macro instruction in register O.

The GET macro instruction specifies the address of the output buffer into which the
system moves the next input record.

A filled output buffer is not written until the next PUT macro instruction is issued.

Simple Buffering-GET -move, PUT -move: The GET macro instruction (step A, Figure
30) specifies the address of a work area into which the system moves the next record
from the input buffer.

The PUT macro instruction (step B, Figure 30) specifies the address of a work area
from which the system moves the record into the next output buffer.

Simple Buffering-GET -locate, PUT -locate: The GET macro instruction (step A,
Figure 31) locates the address of the next input buffer. Its address is returned in
register 1.

I OUTPUT I OUTPUT I NEX~REC GET INDCB,WORKAREA

OUTDCB,WORKAREA
NEXTREC
CLSO

BIINPUT a
PUT
B

WORKAREA DS
INDCB DCB
OUTDCB DCB

MACRF=(GM), --­
MACRF=(PM) , ---

Figure 30. Simple Buffering with MACRF=GM and MACRF=PM

56 as Data Management Services Guide

-------------'--- ------------------------------

o

o

c

",tn,rtt") $ H"tt "1t"1"t

o

o

o

tta

c.

The PUT macro instruction (step B, Figure 31) locates the address of the next
available output buffer. The address is returned in register 1.

The record must then be moved from the input buffer to the output buffer (step C,
Figure 31). Processing can be done either before or after the move operation.

A filled output buffer is not written until the next PUT macro instruction is issued.
The CLOSE and FEOV macro instructions write the last record of your data set by
issuing TRUNC and PUT macro instructions. Be careful not to issue an extra PUT
before issuing CLOSE or FEOV. Otherwise, when the CLOSE or FEOV macro
instruction tries to write your last record, the extra PUT will write a meaningless record
or produce a sequence error.

Note: If records other than format F are being moved, the length attribute of the MVC
instruction must be changed as shown. If the record is more than 256 bytes, you will
have to code a move routine to process the complete record.

Simple Buffering-GET -move, PUT -locate: The GET macro instruction (step A, Figure
32) specifies the address of a work area into which the system moves the next record
from the input buffer.

The PUT macro instruction (step B, Figure 32) locates the address of the next
available output buffer. Its address is returned in register 1.

Your program must then move the record from the work area to the output buffer
(step C, Figure 32). Processing can be done before or after the move.

A filled output buffer is not written until the next PUT macro instruction is issued.
The CLOSE and FEOV macro instructions attempt to write the last record of your
data set. Be careful not to issue a PUT before issuing CLOSE or FEOV. Otherwise,
when the CLOSE or FEOV macro instruction tries to write your last record, the PUT
will write a meaningless record or produce a sequence error.

INPUT OUTPUT OUTPUT 'I
NEXTREC GET INDCB

LR 7,1
PUT OUTDCB
LR 6,1
LA 5, INDCB

See note USING IHADCB, 5
LH 4,DCBLRECL INPUT

SH 4 ,=H' 1 '
EX 4, MOVEREC

B NEXTREC
MOVEREC MVC 0(1,6),0(7)
INDCB DCB MACRF=(GL),

OUTPUT EODAD=EOF,---
OUTDCB DCB MACRF=(PL) , ---

DCBD
EOF

Figure 31. Simple Buffering with MACRF=GL and MACRF=PL

Part 2: Data Management Processing Procedures 57

.1

A. INPUT INPUT WORK I ~UTPUT I OUTPUT I
1... ___ --'.'--__ ----'. NEXTREC GET INDCB, WORKAREA

PUT
PUT
MVC
B

OUTDCB
O(50,1), WORKAREA
NEXTREC

t'-------.,....------. WORKAREA DS CLSO
INDCB DCB MACRF= (GM) ,

OUTDCB
EOF

EODAD=EOF--­
DCB MACRF=(PL),--­
CLOSE (INDCB, ,OUTDCB)

Figure 32. Simple Buffering with MACRF=GM and MACRF=PL

Exchange Buffering

Simple Buffering - UPDAT mode: The GET macro instruction (Figure 33) locates the
next input record to be processed. Its address is returned in register 1 by the system.
You may update the record and then issue a PUTX macro instruction, which causes the
block to be written back in its original location in the data set after all the logical
records in that block have been processed.

The term exchange buffering refers to the relationship of segments within a buffer.
All the segments in an exchange buffer are not necessarily together in main storage,
nor are they always associated with the same data set. When the buffer pool is
constructed, the system creates a channel command word (CCW) for each buffer
segment in the buffer. This makes it possible to exchange the CCWs of different
storage locations.

To use exchange buffering, you must provide a work area comparable in size and
alignment to a buffer segment. That work area is substituted for the next buffer
segment (the storage areas change roles). The CCW created for the buffer segment
actually points to the work area.

Why use exchange buffering? Because there is no need to move the record. This
means a considerable saving in processing time when you use substitute mode or
PUTX-output mode.

GET

INPUT/
OUTPUT

PUTX

INPUT/
OUTPUT

No movement of data takes place.

OPEN (UPDCB,(UPDAT))

NEXTREC GET

UPDCB

PUTX
B
DCB

UPDCB

UPDCB
NEXTREC
MACRF=(GL, PM),--

Figure 33. Simple Buffering with MACRF=GL and MACRF=PM - UPDAT Mode

58 OS Data Management Services Guide

o

o

o

o

o

'I· 12 ,!VI? T

The use of exchange buffering during execution of your program requires these·
conditions:

• Input and output buffers must be of the same size and alignment.

• Records must be format-F (unblocked or blocked).

• ASCII records must be format-F records with BUFOFF=(O).

• Track overflow cannot be used with blocked format-F records.

• GET-move and PUT-locate modes cannot be used.

• Unit-record devices must not be specified.

If you request exchange buffering, but it cannot be used, the system automatically uses
simple buffering. Move mode processing is used in place of substitute mode.

After opening the data set, you can test the DCBCIND 1 field of the DCB to determine
if simple buffering was substituted for exchange buffering because of inconsistencies in
the DCB information. The eighth bit of the DCBCINDI field is 1 for exchange
buffering and 0 for simple buffering.

If your records are blocked format-F records, each segment is aligned as specified in
the DCBBFALN field. Therefore, your buffer length (DCBBUFL) must specify
buffers large enough to contain segments whose length is a multiple of 16 bytes.
Otherwise, the specified boundary alignment cannot be achieved; simple buffering is
used and only the first byte in the first record is aligned as specified.

To reopen a DCB that has been opened for exchange buffering, you must first close all
DCBs using the buffer pool associated with the DCB to be reopened and issue a
FREEPOOL macro instruction specifying the DCB to be reopened.

There are two possible error conditions that cannot be prechecked by the system:

• Word alignment that does not correspond to the characteristics of the machine.
If, for example, you expect to process your data on a System/360 Model 65, 75,
85, or 91 or on a System/370, your record length should be a multiple of 16; on
a model 50, a multiple of 8; on a model 40, a multiple of 4. No error will result
if the records are processed on a smaller system.

• An I/O device that transfers the data faster than the CPU can exchange the
addresses in the CCW.

The following examples illustrate the control of exchange buffers and the corresponding
processing modes that can be used. The buffer pools may have been constructed in
any way previously described.

Exchange Buffering-GET -substitute, PUT -substitute: The GET macro instruction
(step A, Figure 34) specifies the address of a work area. The work area address is
exchanged with the address of the next input record returned in register 1. After
processing, the address of the record is passed to the PUT macro instruction.

The PUT macro instruction (step B, Figure 34) specifies the address of the output
record. The output record address is exchanged for the address of the next output
buffer available for use as a work area. The work area address, returned in register 1,
is passed to the GET macro instruction (step C, Figure 34) in register O.

Part 2: Data Management Processing Procedures 59

n---

~
';1
II
1'1

A

B ...

GET
I OUTPUT I OUTPUT I

PUT LA
NEXTREC GET

LR

PUT
LR
B

O,WORKAREA
INDCB, (0)
0, 1

OUTDCB,(O)
0,1
NEXTREC

Exchanged

GET=::::===:==~;==::=_-r--_--'
rnmrnm ~

WORKAREADS
INDCB DCB
OUTDCB DCB

CLSO
MACRF=(GT),--­
MACRF=(PT),---

c

Exchanged

Figure 34. Exchange Buffering with MACRF=GT and MACRF=PT

Notice that as the areas are exchanged there is no movement of data. Output records
are contained in the original input area and vice versa, but are logically associated with
the correct data set.

Exchange Buffering-GET-Iocate, PUTX-output: The GET macro instruction (step A,
Figure 35) locates the address of the·next input record. The address is returned in
register 1. The record must be processed in the buffer segment before the PUTX
macro instruction (step B, Figure 35) is issued. The PUTX macro instruction specifies
the address of both the input and output data control block. The two buffer segments
are exchanged without any movement of data. The GET macro instruction (step C,
Figure 35) locates the next record to be processed.

Notice that the DCB macro instruction for the output data set specifies move mode;
this is required.

Exchange Buffering-GET -locate, PUT -substitute: The GET macro instruction (step
A, Figure 36) locates the next input record. Its address is returned in register 1. You
must then move the record to a work area. You can process the record either before
or after the move.

The PUT macro instruction (step B, Figure 36) specifies the address of the work area
containing the next output record. The system returns the address of the next output
buffer available for use as a work area in register 1. That address is passed to the
move (MVC) instruction in register 6. The GET macro instruction (step C, Figure 36)
locates the next input record. You must then move the record to the new work area.
Notice that the previous work area becomes part of the output buffer (step C).

Note that if records other than format-F records are being moved, the length attribute
of the MVC instruction must be changed as shown by the code beginning with the

60 OS Data Management Services Guide

o

()

o

o

o

o

T

GET

A OUTPUT OUTPUT

NEXTREC GET INDCB

B
PUTX OUTDCB,INDCB
B NEXTREC

INDCB DCB MACRF=(GL), ---

Exchanged
OUTDCB DCB MACRF=(PM), ---

GET

c INPUT OUTPUT

Figure 35. Exchange Buffering with MACRF=GL and MACRF=PM

GET

A

USING statement in Figure 36. If the record is more than 256 bytes long, you must
code a move routine to process the complete record.

Buffering Techniques and GET/PUT Processing Modes: As you can see from the
previous examples, the most efficient code is achieved by use of 'automatic buffer pool
construction, and GET -locate and PUTX-output with either simple or exchange

I OUTPUT I OUTPUT I LA
NEXTREC GET

LR
USING
LA
LH

6,WORKAREA
INDCB

B I INPUT It~!~!1
SH
EX

PUT
LR
B

7 , 1
IHADCB,S
5,INDCB
4,DCBLRECL
4, =H' 1 '
4,MOVEREC

OUTDCB,(6)
6, 1

GET Exchanged

c

Figure 36. Exchange Buffering with MACRF=GL and MACRF=PT

MOVEREC MVC
WORKAREADS
INDCB DCB
OUTDCB DCB

DCBD

NEXTREC
0(1,6),0(7)
CLSO
MACRF=(GL) , --­
MACRF=(PT) , --­
DSORG=(LR)

Part 2: Data Management Processing Procedures 61

buffering. Figure 37 summarizes the combinations of buffering techniques and
processing modes that can be used. Notice, for example, that if you use PUT .. locate
and GET -substitute, you must provide a work area and you must also move the record
from the work area to the output buffer.

RELSE-Release an Input Buffer

Output Bufferi ng:

Input
Buffering: -+
Simple

Actions

~

Program must move
record

System moves record

System moves record
segment

Record is not moved

Work area requ ired

PUTX - output can
be used

1pUTX, only

When using the queued access technique to process a sequential or indexed sequential
data set, you can direct the system to ignore the remaining records in the input buffer
being processed. The next GET macro instruction retrieves a record from another
buffer. If format-V spanned records are being used, the next logical record obtained
may begin on any segment in any subsequent block.

If you are using move mode, the buffer is made available for refilling as soon as the
RELSE macro instruction is issued. When you are using locate mode, the system does
not refill the buffer until the next GET macro instruction is issued. If a PUTX macro
instruction has been used, the block is written before the buffer is refilled.

Simple Exchange Simple Exchange Simple Simple Exchange Simple Exchange

cu cu cu cu cu cu cu cu co > > co > > co cu > (.) 0 0 (.) 0 0 (.) > 0 0 E E 0 E E 0 0 E
j::: ~ t-!-

j::: t-!- t-!- j::: t-!- t-!-
cu~

::> ... ::> cu ::> ::> ::> cu Input ::> ::> ::> cu cu~ ai a)CU
:J ... 0.. 0.. 0.. ... "'C 0.. 0.. 0..

0.. 0.. 0.. :J CU~ .€ "- Buffering: :J :J :J :J :J :J ... CU~ a) CU~ cu 0 cu cu .. ai ait:: cu
CU~ CU~ CU .. cu·.j:j Exchange

cu·- • .j:j cu '.j:j cu '.j:j '.j:j ~~~
> > > > III co co co co III co co co co III III co III > III > III III
0 0 0 0.0 (.) (.) (.) (.).0 (.) "- (.) (.) (.) (.) (.).0 .0(.) .0 0 .00 .0.0
E E E E 5l 0 0 0 o :J ~13~

0 0 0 o :J :J 0 5l E ~ ~
:J :J

~ j::: j::: - III j::: j::: i:!: - III 1Il_ III III

t-!- t-!- t-!- fo!.t-!- t-!-t-!- - t-!-t-!- t-!-t-!- t-!-t-!- t-!-t-!-
w w w w::> w w w w::> w g»::> w w w w::> w::> w::> w::> w::>
C,!) C,!) C,!) C,!)o.. C,!) C,!) C,!) C,!)o.. C,!) ::::::. 0.. C,!) C,!) C,!) C,!)o.. C,!)o.. C,!)o.. C,!)o.. (,!)o..

X X X X X X

X X X X X X X X X X

X

X1 X

X X X X X X X X X

X X X X

Figure 37. Buffering Technique and GET/PUT Processing Modes

62 OS Data Management Services Guide

o

o

II T

o

o

o

rr "' • F •

TRUNC-Truncate an Output Buffer
Wnen usmg me gueued access technique to process a sequential data set, you can
direct the system to write a short block. The first record in the next buffer is the next
record processed by a PUT -output or PUTX-output mode.

If the locate mode is being used, the system assumes that a record has been placed in
the buffer segment pointed to by the last PUT macro instruction.

The last block of a data set is truncated by the close routine. Note that a data set
containing format-F records with truncated blocks cannot be read from direct-access
storage as efficiently as a standard format-F data set.

GETBUF-Get a Buffer from a Pool
TIie GETBUF macro instruction can be used with the basjc access technique to request
a buffer from a buffer pool constructed by the BUILD, GETPOOL, or OPEN macro
instruction. The address of the buffer is returned by the system in a register you
specify when you issue the macro instruction. If no buffer is available, the register.
contains 0 instead of an address.

FREEBUF-Return a Buffer to a Pool
The FREEBUF macro instruction is used with the basic access technique to return a
buffer to the buffer pool from which it was obtained by a GETBUF macro instruction.
Although the buffers need not be returned in the order in which they were obtained,
they must be returned when they are no longer needed.

FREEDBUF-Return ~ QI!!aDJi~_Bufffr to a Pool
Any buffer obtained through the. dynamic buffer option must be released before it can
be used again. When you are processing a direct data set, if you do not update the
block in the buffer and thus free the buffer when the block is written, you must use the
FREEDBUF macro instruction. If there is an uncorrectable input/output error, the '
control program releases the buffer. When you are processing an indexed sequential
data set, if you do not update the block in the buffer or if there is an uncorrectable
input error, the control program releases the buffer when the next READ macro
instruction is issued on the same DECB, unless you use the FREEDBUF macro

-instruction.

To effect the release, you must specify the address of the DECB that was created when
the block was read using the dynamic buffering option, as well as the address of the
DCB associated with the data set being processed.

&Sing -; Sequential Data 80
Data sets residing on all volumes other than direct-access volumes must be processed
sequentially. In addition, a data set residing on a direct-access volume, regardless of
organization, can be processed sequentially. This feature of the operating system
allows you to write your program with little regard for the type of device to be used
when the program is executed, except for restrictions on the use of certain
device-dependent macro instructions and processing options.

Either the queued or the basic access technique may be used to store and retrieve the
records of a sequential data set. Additionally, a technique called chained scheduling
can be used to accelerate the input/output operations required for a sequential data set.

Part 2: Data Management Processing Procedures 63

Data Format-Device Type Considerations

Magnetic Tape (TA)

Before execution of your program, you must supply OS with both the record format
(RECFM) and device-dependent (DEVD) information in a DCB macro instruction, a
DD statement, or a data set label. The DCB subparameters for the DD statement
differ slightly from those described here. A complete description of the DD statement'
and a glossary of DCB subparameters is contained in OS Job Control Language
Reference.

The record format (RECFM) parameter of the DCB macro instruction specifies the
characteristics of the records in the data set as fixed-length (RECFM=F),
variable-length (RECFM=V or D), or undefined-length (RECFM=U). Fixed-length
blocked records (RECFM=FB) can be specified as standard (RECFM=FBS), which
means there are no truncated (short) blocks or unfilled tracks within the data set, with
the possible exception of the last block or track. Data sets with a fixed-length,
standard format were described previously under "Fixed-Length Records, Standard
Format."

As an optional feature, a control character can be contained in each record. This
control character will be recognized and processed if the data set is printed or punched.
The control characters are transmitted on both tapes and direct-access volumes. The
presence of a control character is indicated by M or A in the RECFM field of the data
control block. M denotes machine code; A denotes American National Standards
Institute (ANSI) code. If either M or A is specified, the character must be present in
every record; the printer space (PRTSP) or stacker select (STACK) field of the DCB is
ignored. The optional control character must be in the first byte of format-F and
format-U records and in the fifth byte of format-V records and format-D records
where BUFOFF =L. Control character codes are listed in "Appendix B: Control
Characters. "

The device-dependent (DEVD) parameter of the DCB macro instruction specifies the
type of device on which the data set's volume resides:

T A magnetic tape
PT paper tape reader
PR printer
PC card punch
RD card reader
DA direct-access device

Format-F, -V, -D, and -U records are acceptable for magnetic tape. Format-V records
are not acceptable on 7-track tape if the data conversion feature} is not available.
ASCII records are not acceptable on 7 -track tape.

When you create a tape data set with variable-length record format (V or D), the
control program pads any data block shorter than 18 bytes. For format-V records, it
pads to the right with binary Os so that the data block length equals 18 bytes. For
format-D (ASCII) records, the padding consists of ASCII circumflex characters.

Note that there is no minimum requirement for blocksize; however, if a data check
occurs on a magnetic-tape device, any record shorter than 12 bytes in a read operation
or 18 bytes in a write operation will be treated as a noise record and lost. No check
for noise will be made unless a data check occurs.

} Data conversion makes it possible to write 8 binary bits of data on 7 tracks. Otherwise, only 6 bits of an 8-bit
byte are recorded. The length field of format-V records contains binary data and is not recorded correctly without data
conversion.

64 OS Data Management Services Guide

o

()

o

o

o

o

wsw ..

Tape density (DEN) specifies the recording density in bits per inch per track, as shown
in Figure 38. If this information is not supplied, the highest applicable density is
assumed.

The track recording technique (TRTCH) for 7-track tape can be specified as:

C Data conversion is to be used.

E Even parity is to be used; if E is omitted, odd parity is assumed.

T BCDIC to EBCDIC translation is required.

DEN Value

02

1
2
3

7-Track1

200
556
800

1 No 7 -track feature on the 341 0

Recording Density
Models 2400 and 3400

9-Track 9-Track (phase encoded)

800
1600

2 Specifying DEN = 0 for a 7-track, 3420 tape will result in a 556 BPI recording density,

but corresponding messages and tape labels will indicate a 200 BPI recording density.

3 Non-return-to-zero IBM (NRZI) mode

4 Phase encoding (PEl mode

Figure 38. Tape Density (DEN) Values

9-Track (dual-density)

8003

16004

Paper-Tape Reader (PT)
The paper-tape reader accepts format-F and format-U records. If you use QSAM, you
should not specify the records as blocked. Each format-U record is followed by an
end-of-record character. Data read from paper tape may optionally be converted into
the System/360 or System/370 internal representation of one of six standard
paper-tape codes. Any character found to have a parity error will not be converted
when the record is transferred into the input area. Characters deleted in the conversion
process are not counted in determining the blocksize.

The following symbols indicate the code in which the data was punched. If this
information is omitted, I is assumed.

I IBM BCD perforated tape and transmission code (8 tracks)
F Friden (8 tracks)
B Burroughs (7 tracks)
C National Cash Register (8 tracks)
A ASCII (8 tracks)
T Teletype 1 (5 tracks)
N No conversion

Note that when you are using QSAM, the processing mode must be move mode.

Card Reader and Punch (RD fPC)

I

Format-F, -V, and -U records are acceptable to both the reader and punch. The device
control character, if specified in the RECFM parameter, is used to select the stacker; it
is not punched. The first 4 bytes (record descriptor word or segment descriptor word)
of format-V records or record segments are not punched. For format-V records, at
least 1 byte of data must follow the record or segment descriptor word or the carriage
control character.

1 Trademark of Teletype Corporation.

Part 2: Data Management Processing Procedures 65

Printer (PR)

Each punched card corresponds to one physical record. Therefore, you should restrict
the maximum record size to 80 (EBCDIC mode) or 160 (column binary mode) data
bytes. When mode (C) is used for the card punch, BLKSIZE must be 160 unless you
are using PUT. Then you can specify BLKSIZE as 160 or a multiple of 160, and the
system handles this as described earlier under "PUT-Write a Record" in the section
"Queued Access Techniques." You can specify the read/punch mode of operation
(MODE) parameter as either card image (column binary) mode (C) or EBCDIC mode
(E). If this information is omitted, E is assumed.

The stacker selection parameter (STACK) can be specified as either 1 or 2 to indicate
which bin is to receive the card. If it is not specified, 1 is assumed.

Note that when QSAM is used, punch error correction on the IBM 2540 Card Read
Punch is automatically performed only for data sets using three or more buffers without
the chained scheduling feature.

The 3525 Card Punch accepts only format-F records for print data sets and for
associated data sets. Other record formats are allowed for the read data set, the punch
data set, and the interpret punch data set. See "Appendix C: Special Programming
Considerations for the 3505 Card Reader and the 3525 Card Punch" for more
information on programming for the 3525 Card Punch.

Records of format F, V, and U are acceptable to the printer. The first 4 bytes (record
descriptor word or segment descriptor word) of format-V records or record segments
are not printed. For format-V records, at least 1 byte of data must follow the record
or segment descriptor word or the carriage control character. The carriage control
character, if specified in the RECFM parameter, is not printed. However, the system
does not position the printer to channell for the first record.

Because each line of print corresponds to one record, the record length should not
exceed the length of one line on the printer. For variable-length spanned records, each
line corresponds to one record segment, and blocksize should not exceed the length of
one line on the printer.

If carriage control characters are not specified, you can indicate printer spacing
(PRTSP) as 0, 1, 2, or 3. If it is not specified, 1 is assumed.

Direct-Access Device (DA)
"'pirect-access devices acce12t records of format F, V, or U. If the records are to be
read or written with keys, the key length (KEYLEN) must be specified. In addition,
the operating system has a standard track format for all direct access volumes. Each
track contains data information as well as certain control information such as:

• The address of the track

• The address of each record

• The length of each record

• Gaps between areas
/

A complete description of track format is contained in the section "Direct-Access
Device Characteristics. " Your only concern in creating a sequential data set is to allow
for an 8-byte track descriptor record (capacity record or RO) when requesting space on
a direct-access volume. In addition, device overhead, which varies with the device,
must be allocated for each block on the track.

66 OS Data Management Services Guide

o

o

o

o

c

o

Device Control
The operating system provides you with six macro instructions for controlling
input/ output devices. Each is, to varying degrees, device-dependent. Therefore, you
must exercise some care if you wish to achieve device independence.

When you use the queued access technique, only unit record equipment can be
controlled directly. When using the basic access technique, limited device
independence can be achieved between magnetic-tape and direct-access devices. You
must check all read or write operations before issuing a device control macro
instruction.

CNTRL-Control an I/O Device
The CNTRL macro instruction performs these device-dependent control functions:

• Card reader stacker selection (SS)

• Printer line spacing (SP)

• Printer carriage control (SK)

Magnetic-tape backspace (BSR) over a specified number of blocks

• Magnetic-tape backspace (BSM) past a tapemark and forward space over the
tapemark

• Magnetic-tape forward space (FSR) over a specified number of blocks

• Magnetic-tape forward space (FSM) past a tapemark and a backspace over the
tapemark

Backspacing moves the tape toward the load point; forward spacing moves the tape
away from the load point.

Note that the CNTRL macro instruction cannot be used with an input data set
containing variable-length records on the card reader.

You can use the CNTRL macro instruction to position DOS tapes that contain
embedded DOS checkpoint records if you specify OPTCD=H in the DCB parameter
field of the DD statement. The CNTRL macro instruction cannot be used to
backspace DOS 7-track tapes that are written in data convert mode and contain
embedded checkpoint records.

PRTOV-Test for Printer Overflow

I

The PRTOV macro instruction tests for channel 9 or 12 of the printer carriage control
tape or the forms control buffer (FCB). An overflow condition causes either an
automatic skip to channell or, if specified, transfer of control to your routine for
overflow processing. If you specify an overflow exit routine, set DCBIFLGS to X'OO'
before issuing another PRTOV, but after issuing another PUT or WRITE for the
printer.

If the data set specified in the DCB is not for a printer, no action is taken.

SETPRT-Load Universal Character Set and Forms Control Buffers
The SETPRT macro instruction indicates the character set to be used by a printer with
the Universal Character Set (UCS) feature. When issued, SETPRT loads the UCS
buffer with a character set image from the image library. The image library
(SYSl.IMAGELm) is a cataloged data set containing the UCS and FCB images for
the 1403 and 3211 printers. This allows your program to change character sets during
execution. SETPRT also allows you to request the operator to verify loading of the

Part 2: Data Management Processing Procedures 67

buffer and to specify the printing of lowercase EBCDIC characters in uppercase when
no uppercase/lowercase print chain or train is available.

For a printer that has no carriage control tape, you can use the SETPRT macro
instruction to load the FCB, to request operator verification of buffer loading, and to
allow the operator to align the paper in the printer.

The FCB contents can .be fetched from the system library or defined in your program
through the exit list of the DCB macro instruction, as discussed under "Exit List
(EXLST)."

When issued, the SETPRT macro instruction loads a special UCS buffer from the
system library. The library contains images of standard mM character sets and of your
own special character sets. The operator can be requested to verify the loaded image
after mounting the appropriate print chain or train.

The SETPRT macro instruction can be used to block or deblock printer data checks.
When data checks are blocked, unprintable characters are treated as blanks and do not
cause an error condition.

BSP-Backspace a Magnetic-Tape or Direct-Access Volume
The BSP macro instruction backspaces one block on the magnetic-tape or direct-access
volume being processed. The block can then be reread or rewritten. An attempt to
rewrite the block destroys the contents of the remainder of the tape or track .
.........--. -- ----
The direction of movement is toward the load point or beginning of the extent. You
may not use the BSP macro instruction if the track overflow option was specified or if
the CNTRL, NOTE, or POINT macro instruction is used. The BSP macro instruction
should be used only when other device control macro instructions could not be used for
backspacing.

You can use the BSP macro instruction to backspace DOS tapes containing embedded
DOS checkpoint records. If you use this means of backspacing, you must test for and
bypass the embedded checkpoint records. You cannot use the BSP macro instruction
for DOS 7-track tapes written in translate mode.

NOTE-Return the Relative Address of a Block
The NOTE macro instruction requests the relative address of the block just read or
written. In a multivolume data set, the address is relative to the beginning of the
volume currently being processed.

The address provided by the operating system is returned in register 1. The address is
in the form of a 4-byte relative block address for magnetic tape; for a direct-access
device, it is a 4-byte relative track address. The amount of unused space available on
the track of the direct-access device is returned in register O.

POINT-Position to a Block

I
The POINT macro instruction causes repositioning of a magnetic-tape or direct-access
volume to a specified block. The next read or write operation begins at this block. If a
write operation follows the POINT macro instruction, the operation will begin at the
previous block if the data set was opened for UPDAT. In a multivolume data set, you
must ensure that the volume referred to is the volume currently being processed. If a
write operation follows the POINT macro instruction, all of the track following the
write operation is erased unless the data set is opened for UPDAT. set was opened for
UPDAT. You can use the POINT macro instruction to position DOS tapes that
contain embedded checkpoint records if you specify OPTCD=H in the DCB parameter
field of the DD statement. The POINT macro instruction cannot be used to backspace

68 OS Data Management Services Guide

o

f-"'\
~.,.-y

o

ttt ru'U -"Jt'

o

o

o

Device

DOS 7 -track tapes that are written in data convert mode and contain embedded
checkpoint records.

Independence
The ability to request input/output operations without regard for the physical
characteristics of the I/O devices makes it possible for you to write one program that
will fulfill a variety of needs. Device independence may be useful for:

Accepting data from a number of recording devices, such as 1316 disk pack, 7 - or
9-track magnetic tape, or unit-record equipment. This situation could arise when
several types of data-acquisition devices are feeding a centralized complex.

• Observing constraints imposed by the availability of input/output devices (for
example, when devices on order have not been installed).

• Assembling, testing, and debugging on one System/360 or System/370
configuration and processing on a different configuration. For example, a 2311
drive can be used as a substitute for several magnetic-tape units.

Device independence is not difficult to achieve, but requires some planning and
forethought. There are two areas of planning necessary to achieve device
independence - system generation considerations and programming considerations.

System Generation Considerations
You can provide for device independence when the system is generated by generating a
system that not only meets the current input/output configuration requirements but
includes anticipated device attachments. Creating such a system entails looking ahead
at expected delivery of input/output devices and, during system generation,
constructing the necessary control blocks and tables. Thus, when the devices are
delivered, they need only be physically attached. The operating system recognizes the
devices without modification. During the interim, unconnected devices must be placed
off-line by a VARY command issued by the operator.

When new device attachments cannot be fully anticipated, you can add new devices by
performing an I/O device generation. This is a limited type of system generation that
enables you to change your I/O configuration without regenerating other parts of the
system.

System generation techniques for effecting a smooth transition to new input/output
devices do not include addition of new device types. When support for new devices is
provided, a new system must be generated. A complete description of system
generation techniques is contained in OS System Generation.

Programming Considerations
Each of three data set organizations-uartitioned, indexed sequential, and
~t-reguires the use of a direct-access device. Device independence is meaningful,
then, only for a sequentially organized data set, that is, a data set where one block of
data follows another, thus allowing input or output to be on a magnetic tape drive, a
direct-access device, a card read/punch, or a printer.

Your program will be device-independent if you do two things:

• Omit all device-dependent macro instructions and macro instruction parameters
from your program.

• Defer specifying any required device-dependent parameters until the program is
ready for execution. That is, supply the parameters on your data definition (DD)
statement.

. Part 2: Data Management Processing Procedures 69

-.4

In examining the following list of macro instructions, consider only the logical layout of
your data record without regard for the type of device used. Also, consider that any
reference to a direct-access volume is to be treated like a reference to magnetic tape,
that is, you must create a new data set rather than attempt to update.

OPEN
Specify INPUT, OUTPUT, INOUT, or OUTIN. The parameters RDBACK and
UPDAT are device-dependent and cause an abnormal termination if directed to a
device of the wrong type.

READ
Specify forward reading (SF) only.

WRITE
Specify forward writing (SF) only; use only to create new records.

PUTX
Use only output mode.

NOTE/POINT

BSP

These macros are valid for both magnetic-tape and direct-access volumes.

This macro is valid for magnetic-tape or direct-access volumes. However, its use
would be an attempt to perform device-dependent action.

CNTRL/PRTOV
These macros are device-dependent.

DeB Subparameters

MACRF
Specify R/W or G /P. Processing mode can also be indicated.

DEVll
........ Specify DA if any direct-access device may be used. Magnetic-tape and

unit-recoro equipment DCBs will fit in the area provided during assembly.
Specify unit-record devices only if you expect never to change to tape or
direct-access devices. Key length (KEYLEN) can be specified on the DD
statement if necessary.

RECFM, LRECL, BLKSIZE
These can be specified in the DD statement. However, you must consider
maximum record size for specific devices, and track overflow cannot be specified
unless supported.

DSORG
Specify sequential organization (PS or PSU).

OPTCD
This subparameter is device-dependent; specify it in the DD statement.

SYNAD
Any device-dependent error checking is automatic. Generalize your routine so
that no device-dependent information is required.

70 as Data Management Services Guide

o

()

o

o

o

o

nern
, ··W w

Chained Scheduling lor I/O Operations

I

To accelerate the input/output operations required for a data set, the operating system
provides a technique called chained scheduling. When requested, the system bypasses
the normal I/O routines and dynamically chains several input/output operations
together. A series of separate read or write operations, functioning with chained
scheduling, is issued to the computing system as one continuous operation. The
program-controlled interruption (PCI) flag in the CCWs is used for synchronization of
the I/O operations.

The I/O performance is improved by reduction in both the CPU time and the channel
start/ stop time required to transfer data between main and auxiliary storage. The
effects of rotational delay are also reduced since several successive blocks, requested
separately, can be retrieved in a single rotation. Chained scheduling can be used only
with simple buffering. Each data set for which chained scheduling is :specified must be
assigned at least two, and preferably three, buffers.

A request for chained scheduling will be ignored and normal scheduling used if any of
the following are encountered when the data set is opened:

• BDAM CREATE, that is, MACRF=(WL)

• Track overflow

UPDAT in the operand of the OPEN macro instruction

• Exchange buffering

• CNTRL macro instruction to be used

Device type is paper tape reader

• A print data set or any associated data set for the 3525 Card Punch. (See
"Appendix C: Special Programming Considerations for the 3505 Card Reader
and the 3525 Card Punch" for more information on programming for the 3525.)

• Bypassing of embedded DOS checkpoint records on tape input data sets

When chained scheduling is being used, the automatic skip feature of the PRTOV
macro instruction for the printer will not function. Format control must be achieved by
ANSI or machine control characters. (Control characters are discussed in more detail
in Part 1 under "Control Character," in Part 2 under "Data Format-Device Type
Considerations," and in "Appendix B: Control Characters.") When you use
undefined-length records with QSAM, the DCBLRECL field is equal to the BLKSIZE
field, not the actual record length. The entire block is moved to your work area in the
move mode. In locate mode, the address of the beginning of the block is returned in
register 1.

When chained scheduling is used on the 2540 Card Read Punch, error recovery
procedures are not performed.

When using BSAM with chained scheduling, more than one DECB must be used. For
the best performance results, a different DECB should be specified for each channel

Part 2: Data Management Processing Procedures 71

program. For example, if you specify NCP=3 in your DCB for the data set and you
are reading records from the data set, you should code the following macros in your
program:

READ DECB1, ...
READ DECB2, ...
READ DECB3, ...
CHECK DECB1
CHECK DECB2
CHECK DECB3

Chained scheduling is most valuable for programs that require extensive input and
output operations. Because a data set using chained scheduling may monopolize
available time on a channel, separate channels should be assigned, if possible, when
more than one data set is to be processed.

Search Direct lor Input Operations

OPEN
NEXTREC GET

AP
UNPK
PUT
B

To accelerate the input operations required for a data set, the operating system
provides a technique called search direct. Search direct reads in the requested record
and the count field of the second record. This allows the operation to get the next
record directly, along with the count field of the following record. Search direct can be
used with all record formats except format-UT, format-FBT, and spanned. You
request search direct by coding OPTCD=Z in the DCB macro instruction except for
record formats FS and FBS. It is an automatic feature for formats FS and FBS. This
technique cannot be used. with the NOTE and POINT macro instructions when you
specify the UPDAT option of OPEN.

(INDATA"OUTDATA,(OUTPUT))
INDATA,WORKAREA
NUMBER,=P'1'
COUNT, NUMBER
OUTDATA,COUNT
NEXTREC

Move mode

Record count adds 6
bytes to each record

TAP ERROR SYNADAF
LA

ACSMETH=QSAM
0,68(0,1)

Control program returns message
address in register 1.

ST
PUT
SYNADRLS
L
RETURN

ENDJOB CLOSE

COUNT DS
WORKAREA DS
NUMBER DC
SAVE14 DS
INDATA DCB

14,SAVE14
OUTDATA,(O)

14,SAVE14

(INDATA"OUTDATA)

CL6
CL50
PL4'0'

SYNAD routine prints part of
the message (beginning with
the unit number) as a 56-byte
fixed-length record. It then
returns to the control
program.

F
DDNAME=INPUTDD,DSORG=PS,MACRF=(GM),EROPT=ACC,

OUTDATA DCB
SYNAD=TAPERROR,EODAD=ENDJOB

DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PM),EROPT=ACC

Figure 39. Creating a Sequential Data Set-Move Mode, Simple Buffering

72 as Data Management Services Guide

C

o

o

o

PFifRW'55PWer707W

o

o

o

w

Creating a Sequential Data Set

NEXTREC

TAP ERROR

ENDJOB

OPEN
GET
LR
AP
UNPK
PUT
MVC

As discussed earlier, a processing program should be developed using, as much as
possible, factors that are constant, with variable factors specified at execution. For that
reason, the following examples are generalized as much as possible. They are neither
exhaustive nor intended as complete examples. Rather, they are presented as
introductory sequences.

In creating a sequential data set on a magnetic tape or direct-access device, you must
do the following:

• Code DSORG=PS or PSU in the DCB macro instruction

• Indicate that the data is to be stored as a new data set (by specifying
DISP=NEW, UNIT = unit address, DSNAME=name in the DD statement)

• Request space for the data set in the DD statement

• Process the data set with an OPEN macro instruction (data set is opened for
output), a series of PUT or WRITE macros and then a CLOSE macro.

Tape-to-Print, Move Mode-Simple Buffering: In Figure 39, the GET-move and
PUT -move require two movements of the data records. If the record length (LRECL)
does not change in processing, only one move is necessary; you can process the record
in the input buffer segment. A GET -locate can be used to provide a pointer to the
current segment.

Tape-to-Print, Locate Mode-Simple Buffering: This example (Figure 40) is similar to
that in Figure 39. However, since there is no change in the record length, the records
can be processed in the input buffer. Only one move of each data record is required.

(INDATA"OUTDATA,(OUTPUT),ERRORDCB,(OUTPUT))
INDATA Locate mode
2,1 Save pointer

Process in input area
Locate mode
Move record to output buffer

B
SYNADAF
ST

NUMBER,=P'1' ° (6 , 2) , NUMBER
OUTDATA
0(50,1),0(2)
NEXTREC
ACSMETH=QSAM
2,SAVE2
2,8(0,1)
8(70,1),50(1)
78(50,1),0(2)
0, 4(1)

Message address in register 1
Save register 2 contents

L
MVC
MVC
LA
LR
PUT
SYNADRLS
LR
L
RETURN
CLOSE

2,14
ERRORDCB,(O)

14,2
2,SAVE2

(INDATA"OUTDATA"ERRORDCB)

Load pointer to input buffer
Shift nonblank message fields
Add input record to message
Load address of message
Save return address
Print message (move mode)
Release message and save area
Restore return address
Restore register 2 contents
Return to control program

NUMBER DC PL4'0'
DDNAME=INPUTDD,DSORG=PS,MACRF=(GL),EROPT=ACC,
SYNAD=TAPERROR,EODAD=ENDJOB
DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PL),EROPT=ACC
DDNAME=SYSOUTDD,DSORG=PS,MACRF=(PM),RECFM=V,
BLKSIZE=128,LRECL=124,EROPT=ACC

INDATA DCB

OUTDATA DCB
ERRORDCB DCB

SAVE 2 DS

C

C

F

Figure 40. Creating a Sequential Data Set-Locate Mode, Simple Buffering

Part 2: Data Management Processing Procedures 73

....... -.--.,.-----.. --.-... ---------....... --...'-.... --...-~--

Tape-to-Print, Substitute Mode-Exchange Buffering: Although the initial problem is
the same, the solution described in Figure 41 takes advantage of exchange buffering,
which eliminates the need to move the data record, and makes direct reference to
individual fields within a record through the use of a dummy control section (DSECT).
The use of the DSECT allows symbolic reference to be made for storage-to-storage
operations; therefore, the length attributes need not be explicitly stated.

Retrieving a Sequential Data Set
In retrieving a sequential data set on a magnetic tape or direct-access device, you must
do the following:

• Code DSORG=PS or PSU in the DCB macro instruction

Tell the system where your data set is located (by specifying the DISP,
DSNAME, VOLUME, and UNIT parameters on the DD statement

• Process the data set with an OPEN macro instruction (data set is opened for
input), a series of GET or READ macros and then a CLOSE macro

Updating a Sequential Data Set

OPEN
LA

NEXTREC GET
LR
USING
AP
UNPK
PUT
LR
B

A sequential data set may be updated in place (for direct-access devices only). To
update a sequential data set in place, you must specify UPDAT in the OPEN macro
instruction. You can then issue a READ or GET macro for a record, update the
record, then issue a WRITE or PUT macro for the record. A READ or GET is
required before every WRITE or PUT macro. Both the READ and WRITE macros for
a record must refer to the same data event control block. The first read issued after an
EOF condition causes control to be passed to the user's EODAD routine. Any
subsequent read issued to the data set would cause an I/O error.

(INDATA"OUTDATA,(OUTPUT),ERRORDCB,(OUTPUT))
O,GIVEAWAY
INDATA,(O)
2, 1
RECORD, 2
NUMBER,=P'1'
COUNT,NUMBER
OUTDATA,RECORD
0, 1

Set up for first buffer
Substitute mode
Pointer to next record
Establish address of DSECT

Substitute mode
Exchange work area

TAP ERROR SYNADAF
NEX'rREC
ACSMETH=QSAM SYNAD routine is same

as in previous example
ENDJOB CLOSE

DS
GIVEAWAY DS
NUMBER DC
INDATA DCB

OUTDATA DCB

DSECT

(INDATA"OUTDATA"ERRORDCE)

OD
CLSO
PL4'-'
DDNAME=INPUTDD,DSORG=PS,MACRF=(GT),BFTEK=E,BFALN=D,

EROPT=ACC,SYNAD=TAPERROR,EODAD=ENDJOB
DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PT),BFTEK=E,BFALN=D,

EROPT=ACC

RECORD
COUNT
RESTOFIT

- DS CL6
DS CL44

Figure 41. Creating a Sequential Data Set-Substitute Mode, Exchange Buffering

74 as Data Management Services Guide

C

C

o

o

o

o

o

o

-

Extending a Sequential Data Set
If you want to add records at the end of your data set, you must open the data set for
output with DlSP=MOD specified in the DD statement. You can then issue PUT or
WRITE macros to the data set. /

Determining the Length of a Record When Using the ~ Macro V
When you read a sequential data set, you can ~gth of the record in one
of the following three ways, depending upon the record format of the data set:

• For fixed-length unblocked records the length of all records is the value in the
DCBBLKSl field of the DCB.

• For variable-length records, the block descriptor word in the record contains the
length of the record.

• For fixed-length blocked or undefined-length records, the following method can
be used to calculate the block length. After checking the DECB for the READ
request but before issuing any subsequent data management macro instructions
that specify the DCB for the READ request, obtain the lOB address from the
DECB. The lOB address can be loaded from the location 16 bytes from the start
of the DECB.

There is no way to determine the record length when rotational position sensing (RPS)
devices are used. For other than RPS devices, obtain the residual count from the
channel status word (CSW) that has been stored in the input/output block (lOB). The
residual count is in the halfword 14 bytes from the start of the lOB. Subtract this
residual count from the number of data bytes requested to be read by the READ
macro instruction. If "S" was coded as the length parameter of the READ macro
instruction or the length parameter was omitted, the number of bytes requested is the
value of DCBBLKSl at the time the READ was issued. If the length was coded in the
READ macro instruction, this value is the number of data bytes and it is contained in
the halfword 6 bytes from the beginning of the DECB. The result of the subtraction is
the length of the block read. }eeFigure. 42..,

Processing a Partitioned Data Set
A partitioned data set can be stored only on a direct-access device. It is divided into
sequentially organized members, each made up of one or more records (see Figure 43).
Each member has a unique name, 1 to 8 characters long, stored in a directory that is
part of the data set. The records of a given member are stored or retrieved
sequentially.

The main advantage of using a partitioned data set is that you can retrieve any
individual member once the data set is opened without searching the entire data set.
For example, a program library can be stored as a partitioned data set, each member of
which is a separate program or subroutine. The individual members can be added or
deleted as required. When a member is deleted, the member name is removed from the
directory, but the space used by the member cannot be reused until the data set is
reorganized.

The directory, a series of records at the beginning of the data set, contains an entry for
each member. Each directory entry contains the member name and the starting
location of the member within the data set, as shown in Figure 43. In addition, you
can specify up to 62 characters of information in the entry. The directory entries are
arranged in alphameric collating sequence by name.

Part 2: Data Management Processing Procedures 75

OPEN(DCB,(INPUT))
LA DCBR,DCB
USING IHADCB,DCBR

READ DECB1,SF,DCB,AREA1
READ DECB2,SF,DCB,AREA2,50

CHECK DECB1
LH WORK 1 , DCBBLKS I
L WORK2,DECB1+16
SH WORK1,14(WORK2)

CHECK DECB2
LH WORK 1 , DECB2 +6
L WORK2,DECB2+16
SH WORK1,14(WORK2)

MVC DCBBLKSI,LENGTH3
READ DECB3,SF,DCB,AREA3

CHECK DECB3
LH WORK1,LENGTH3
L WORK2,DECB+16
SH WORK1,14(WORK2)

DCB DCB ... RECFM=U,NCP=2, ...
DCBD

Blocksize at time of READ
lOB address
WORK 1 has block length

Length requested
lOB address
WORK 1 has block length

Length to be read

Blocksize at time of READ
lOB address
WORK 1 has block length

I Figure 42. Determining the Length of the Record When Using BSAM to Read Undefined Length Records

. The track address of each member is recorded by the system as a relative track address
within the data set rather than as an absolute track address. Thus, an entire data set
can be moved without changing the relative track addresses in the directory. The data
set can be considered as one continuous set of tracks regardless of how the space was
actually allocated.

If there is not sufficient space available in the directory for an additional entry, or not
enough space available within the data set for ap. additional member, no new members
can be stored.

Partitioned Data Set Directory
The directory of a partitioned data set occupies the beginning of the area allocated to
the data set on a direct-access volume. It is searched and maintained by the FIND and
STOW macro instructions. The directory consists of member entries arranged in
ascending order according to the binary value of the member name or alias.

Member entries vary in length and are blocked into 256-byte blocks. Each block
contains as many complete entries as will fit in a maximum of 254 bytes; any remaining
bytes are left unused and are ignored. Each directory block contains a 2-byte count
field that specifies the number of active bytes in a block. As shown in Figure 44, each
block is preceded by a hardware-defined key field containing the name of the last
member entry in the block, that is, the member name with the highest binary value.

Each member entry contains a member name or alias. There can be as many as 16
aliases for each member. Each entry also contains the relative track address of the
member and a count field, as shown in Figure 45. In addition, it may contain a user

76 as Data Management Services Guide

o

o

-TW"" ZT"--Wtll"illF

o

o

o

Directory
Records

Entry for
Member A

I
Entry for I Entry for
Member B I Member C

Entry for
Member K

Space from
Deleted
Member

Available
Area

Figure 43. A Partitioned Data Set

data field. The last entry in the last directory block has a name field of maximum
binary value-all 1 s.

NAME

TTR

Key
Name of
Last
Entry in
Block

~
Bytes 8

specifies the member name or alias. It contains up to 8 alphameric characters,
left-justified and padded with blanks if necessary.

is a pointer to the first block of the member; TT is the number of the track,
relative to the beginning of the data set, and R is the number of the block,
relative to the beginning of that track.

Note: This pointer is created by adding 1 to the TTR for the last block of the
previous member (which is an end-of-file mark). If track TT is full, the next
block will begin at record 1 of track TT + 1, and the pointer will be updated
accordingly. The control program finds the block by searching in multitrack mode
using TT(R-l) as a search argument.

Data
Number of
Bytes Used
(Maximum

256)

Member
Entry A

Member
Entry B

Member
Entry N

'-- ~'----------------------__ r-----------------------J ------..y- V
2 2~

Figure 44. A Partitioned Data Set Directory Block

Part 2: Data Management Processing Procedures 77

Member
Name

8

Pointer to
First Record
of Member

TTR

Bits

C

--------•. -~.---.-.-.------~.

Optional User Da

I TTRN I I TTRN TTRN

----~ ta

----......
~~~""""~,-----------------~--------~ 

1 If 

..................... 0-31 halfwords 
........................ (Maximum 62 bytes) 

.......... 
........ 

........ 

Number of 

........ 

........ 
.......... 

Number of User 
Name is an User Data Data Halfwords 

Alias TTRNs 

o 1-2 3-7 

Figure 45. A Partitioned Data Set Directory Entry 

c 
specifies the number of halfwords contained in the user data field. It may also 
contain additional information about the user data field, as shown below: 

Bits 0 1-2 3-7 

I I 
o when set to 1, indicates that the NAME field contains an alias. 

1-2 specifies the number of pointers to locations within the member. 

A maximum of three pointers is allowed in the user data field. Additional 
pointers may be contained in a record referred to as a note list, discussed 
below. The pointers can be updated automatically if the data set is moved 
or copied by a utility program such as IEHMOVE. The data set must be 
marked unmovable under the following conditions: 

• More than three pointers are used in the user data field. 

• The pointers in the user data field or note list do not conform to the 
standard format. 

• The pointers are not placed first in the user data field . 

• Any direct access address (absolute or relative) are embedded in any 
data blocks or in another data set that refers to this data set. 

3-7 contains a binary value indicating the number of halfwords of user data. 
This number must include the space used by pointers in the user data field. 

You can use the user data field to provide variable data as input to the STOW macro 
instruction. If pointers to locations within the member are provided, they must be 4 

78 OS Data Management Services Guide 

o 

o 



W"" '" • 

o 

o 

Processing a 

o 

. 1 

bytes long and placed first in the user data field. The user data field format is as 

follows: 
User Data 

I TTRN I TTRN I TTRN I Optional 

TT is the relative track address of the note list or area to which you are 
pointing. 

R is the relative block number on that track. 

N is a binary value that indicates the number of additional pointers contained 
in a note list pointed to by the TTR. If the pointer is not to a note list, 
N=O. 

A note list consists of additional pointers to blocks within the same member of a 
partitioned data set. You can divide a member into subgroups and store a pointer to 
the beginning of each subgroup in the note list. The member may be a load module 
containing many control sections (CSECTs), each CSECT being a subgroup pointed to 
by an entry in the note list. You get the pointer to the beginning of the subgroup by 
using the NOTE macro instruction after you write the first record of the subgroup. 
Remember that the pointer to the first record of the member is stored in the directory 
entry by the system. 

If the existence of a note list was indicated as shown above, the list can be updated 
automatically when the data set is moved or copied by a utility program such as 
IEHMOVE. Each 4-byte entry in the note list has the following format: 

I TTRX I 
TT is the relative track address of the area to which you are pointing. 

R is the relative block number on that track. 

X is available for any use. 

To place the note list in the partitioned data set, you must use the WRITE macro 
instruction. After checking the write operation, use the NOTE macro instruction to 
determine the address of the list and place that address in the user data field of the 
directory entry. 

Member of a Partitioned Data Set 
Because a member of a partitioned data set is sequentially organized, it is processed in 
the same manner as a sequential data set. Either the basic or queued access technique 
can be used. However, you cannot alter the directory when using the queued 
technique. 

To locate a member or to process the directory, several macro instructions are provided 
by the operating system. The BLDL macro instruction can be used to structure a list 
of directory entries in main storage; the FIND macro instruction locates a member of 
the data set for subsequent processing; the STOW macro instruction adds, deletes, 
replaces, or changes a member name in the directory. To use these macro instructions, 
you must specify DSORG=PO or POU in the DCB macro instruction. Before issuing 
a FIND, BLDL, or STOW macro instruction, you must check all preceding 
input/ output operations for completion. 

Part 2: Data Management Processing Procedures 79 



I 

BLDL-Construct a Directory Entry List 
The BLDL macro instruction is used to place directory information in main storage. 
The data is placed in a build list, which you construct before the BLDL macro 
instruction is issued. The format of the list is similar to that of the directory. For each 
member name in the list, the system supplies the address of the member and any 
additional information contained in the directory entry. Note that if there is more than 
one member name in the list, the member names must be in collating sequence 
regardless of whether the members are from the same library or from different libraries. 

You can optimize retrieval time by directing a subsequent FIND macro instruction to 
the build list rather than the directory to locate the member to be processed. 

The build list, as shown in Figure 46, must be preceded by a 4-byte list description that 
indicates the number of entries in the list and the length of each entry (12 to 76 bytes). 
The first 8 bytes of each entry contain the member name or alias. The next 6 bytes 
must be available to contain the starting address of the member plus some control data. 
If there is no user data entry, only the TTR and C fields are required. If additional 
information is to be supplied from the directory, up to 62 bytes can be reserved. 

FIND-Position to a Member 

List 

To determine the starting address of a specific member, you must issue a FIND macro 
instruction. The system places the correct address in the data control block so that a 
subsequent input or output operation begins processing at that point. 

There are two ways you can direct the system to the right member when you· use the 
FIND macro instruction: specify the address of an area containing the name of the 

(Each entry starts on halfword boundary) 

Filled in by BLDL 
Descri ption FFLL I I " 

{ ( 

Programmer Supplies: 
FF 
LL 

Member name 

BLDL Supplies: 

Member TTR K Z C 

Name (3) (1 ) (1) (1 ) 

- __ t.----

Number of member entries in list. 
Even number giving byte length of each entry (minimum of 12). 
Eight bytes, left-justified. 

TTR Member starting location. 

User 

-

K If only data set = O. If concatenation = number. Not required if no user data. 

Data , 

) 

) 

Z Source of directory entry. 0 = private library. 1 = link library. 2 = job, task, or step library. 
3--255 = job, task, or step library of parent task n, where n = Z - 2. Not required if no user data. 

C Same C field from directory. Gives number of user data halfwords. As much as will fit in entry. 

User data As much as will fit in entry. 

Figure 46. Build List Format 

80 OS Data Management Services Guide 

\ 

o 

o 

o 



o 

-
" 

o 

o 

-

member or specify the address of the TTR field of the entry in a build list you have 
created by using the BLDL macro instruction. In the first case, the system searches the 
directory of the data set for the relative track address; in the second case, no search is 
required because the relative track address is in the build list entry. 

If you want to process only one member, you can process it as a sequential data set 
(DSORG=PS) using either BSAM or QSAM. You indicate the name of the member 
you want to process and the name of the partitioned data set in the DSNAME 
parameter of the DD statement. When you open the data set, the system places the 
starting address in the data control block so that a subsequent GET or READ macro 
instruction begins processing at that point. You cannot use the FIND, BLDL, or 
STOW macro instructions when you are processing one member as a sequential data 
set. 

STOW-Update the Directory 
When you add several members to a partitioned data set, you must issue a STOW 
macro instruction after writing each member so that an entry for each one will be 
added to the directory. To use the STOW macro instruction, DSORG=PO or POU 
must be specified in the DCB macro instruction. 

You can also use the STOW macro instruction to delete, replace, or change a member 
name in the directory, as well as to store additional information with the directory 
entry. Since an alias can also be stored in the directory in the same way, you should be 
consistent in altering all names associated with a given member. For example, if you 
replace a member, you must delete related aliases or change them so that they point to 
the new member. 

If you add only one member to a partitioned data set and indicate the member name in 
the DSNAME parameter of the DD statement, it is not necessary for you to issue a 
STOW macro instruction. When you close the data set, the operating system will issue 
a STOW macro instruction to add or replace a directory entry. If you specified 
DISP=MOD in the DD statement, the operating system will issue a STOW with the 
add option; if DISP=NEW or OLD was specified, a STOW macro instruction with the 
replace option will be issued. The directory entry added by the system after you close 
the data set is the minimum length, 12 bytes. If you want additional information in the 
entry, you must issue the STOW macro instruction in your program. 

Creating a Partitioned Data Set 
If you have no need to add entries to the directory, that is, the STOW and BLDL 
macro instructions will not be used, you can create a new data set and write the first 
member as follows (see Figure 47): 

• Code DSORG=PS or PSU in the DCB macro instruction. 

• Indicate in the DD statement that the data is to be stored as a member of a new 
partitioned data set, that is, DSNAME=name (membername) and DISP=NEW. 

• Request space for the member and the directory in the DD statement. 

Process the member with an OPEN macro instruction, a series of PUT or WRITE 
macro instructions, and then a CLOSE macro instruction. A STOW macro 
instruction is issued automatically when the data set is closed. 

As a result of these steps, the data set and its directory are created, the records of the 
member are written, and a 12-byte entry is made in the directory. 

Part 2: Data Management Processing Procedures 81 



//PDSDD 

OUTDCB 

--------~-~ 

DD ---,DSNAME=MASTFILE(MEMBERK),SPACE=(TRK,(100,5,7)), 
DISP=(NEW,KEEP) 

DCB --,DSORG=PS,DDNAME=PDSDD,---

OPEN (OUTDCB,(OUTPUT)) 
PUT [or WRITE] 

CLOSE (OUTDCB) Automatic Stow 

C 

Figure 47. Creating One Member of a Partitioned Data Set 

To add additional members to the data set, follow the same procedure. However, a 
separate DD statement (with the space request omitted) is required for each member. 
The disposition should be specified as modify, DISP=MOD. The data set must be 
closed and reopened each time a new member is specified. 

To take full advantage of the STOW macro instruction, and thus the BLDL and FIND 
macro instructions in future processing, you can provide additional information with 
each directory entry. You do this by using the basic access technique, which also 
allows you to process more than one member without closing and reopening the data 
set, as follows (see Figure 48): 

• Request space in the DD statement for the members and the directory. 

• 

• 

Define DSORG=PO or POU in the DCB macro instruction. 

Use WRITE and CHECK to write and check the member records. 

Use NOTE to note the location of any note list written within the member, if 
there is a note list. 

• When all the member records have been written, issue a STOW macro instruction 
to enter the member name, its location pointer, and any additional data in the 
directory. 

• Continue to write, check, note, and stow until all the members of the data set and 
the directory entries have been written. 

Retrieving a Member of a Partitioned Data Set 
To retrieve a specific member from a partitioned data set, either the basic or queued 
access technique can be used as follows (see Figure 49): 

• Code DSORG=PS or PSU in the DCB macro instruction. 

• Indicate in the DD statement that the data is a member of an existing partitioned 
data set by coding DSNAME=name(membername) and DISP=OLD. 

• Process the member with an OPEN macro instruction, a series of GET and 
READ macro instructions, and then a CLOSE macro instruction. 

When your program is· executed, the directory is searched automatically and the 
location of the member is placed in the DCB. 

82 OS Data Management Services Guide 

o 

o 

o 



o 

o 

o 

//PDSDD DD 

OUTDCB 

* 

* 

* 
* 

* 
* 

DCB 
OPEN 
WRITE 
CHECK 

WRITE 
CHECK 

NOTE 
ST 

WRITE 
CHECK 
NOTE 
ST 
STOW 

_ WSWF 

--,DSNAME=MASTFILE,SPACE=(TRK,(100,S,7)),DISP=MOD 

--,DSORG=PO,DDNAME=PDSDD,-­
(OUTDCB,(OUTPUT)) 
** Write and check first record of member. 

The system will supply the relative 
track address for the directory entry. 
Write and check remaining records of 
number. 

If you are dividing the member into 
subgroups, note the location of the first 
record in subgroup, storing pointer 
in note list. 
Write note list at end of member. 

Note location of note list, storing 
pointer in list for STOW. 
Enter information in directory for 
this member after all records and note 
lists are written. 

Repeat from ** for each additional member 

CLOSE (OUTDCB) 

Figure 48. Creating Members of a Partitioned Data Set Using STOW 

//PDSDD DD --,DSNAME=MASTFILE(MEMBERK),DISP=OLD 

INDCB DCB --,DSORG=PS,DDNAME=PDSDD,-­
OPEN ( INDCB ) 
GET (or READ) 
CLOSE (INDCB) 

Figure 49. Retrieving One Member of a Partitioned Data Set 

Automatic Find 

To process several members without closing and reopening, or to take advantage of 
additional data in the directory, the following technique should be used (see Figure 
50): 

• Code DSORG=PO or POU in the DCB macro instruction. 

• Build a list (BLDL) of needed member entries from the directory. 

• Indicate in the DD statement the data set name of the partitioned data set by 
coding DSNAME=name and DISP=OLD. 

• Use the FIND or POINT macro instruction to prepare for reading the member 
records. 

• The records may be read from the beginning of the member, or a note list may be 
read first, to obtain additional locations that point to subcategories within the 
member. 

Read (and check) the records until all those required have been processed. 

Point to additional categories, if required, and read the records. 

Part 2: Data Management Processing Procedures 83 



//PDSDD 

INDCB 

/* 

DD 

DCB 
OPEN 
BLDL 

--,DSNAME=MASTFILE,DISP=OLD 

--,DSORG=PO,DDNAME=PDSDD,-­
(INDCB) 

Build a list of selected member names 
in main storage. 

FIND (or POINT) 

READ 
CHECK 
POINT 
READ 
CHECK 

*Read note list. 

Locate subgroup by using note list. 

Read member records. 

Repeat from * for each additional member. 

CLOSE (INDCB) 

Figure 50. Retrieving Several Members of a Partitioned Data Set Using BLDL, FIND, 
and POINT 

• Repeat this procedure for each member to be retrieved. 

Updating a Member of a Partitioned Data Set 

Updating in Place 

A member of a partitioned data set can be updated in place, or can be deleted and 
rewritten as a new member. 

When you update in place, you read records, process them, and write them back to 
their original positions without destroying the remaining records on the track. The 
following rules apply: 

• You must specify the update option (UPDAT) in the OPEN macro instruction. 
To perform the update, you can use only the READ, WRITE, CHECK, NOTE, 
POINT, FIND, and BLDL macro instructions. 

• You cannot use chained scheduling. 

• You cannot delete any record or change its length; you cannot add new records. 

A record must be retrieved by a READ macro instruction before it can be updated by 
a WRITE macro instruction. Both macro instructions must be execute forms that refer 
to the same DECB; the DECB must be provided by a list form. (The execute and list 
forms of the READ and WRITE macro instructions are described in OS Data 
Management Macro Instructions.) 

Updating With Overlapped Operations: To overlap input/output and CPU activity, you 
can start several read or write operations before checking the first for completion. You 
cannot overlap read and write operations, however, as operations of one type must be 
checked for completion before operations of the other type are started or resumed. 
Note that each concurrent read or write operation requires a separate channel program 
and a separate DECB. If a single DECB were used for successive read operations, 
only the last record read could be updated. 

In Figure 51, overlap is achieved by having a read or write request outstanding while 
each record is being processed. Note the use of execute-form and list-form macro 
instructions, identified by the operands MF=E and MF=L. 

84 OS Data Management Services Guide 

o 

o 

o 



o 

o 

o 

Rewriting a Member 
There is no actual update option that can be used to add or extend records in a 
partitioned data set. If you want to extend or add a record within a member, you must 
rewrite the complete member in another area of the data set. Since space is allocated 
when the data set is created, there is no need to request additional space. Note, 
however, that a partitioned data set must be contained on one volume. If sufficient 
space has not been allocated, the data set must be reorganized by the· IEBCOPY utility 
program. 

When you rewrite the member, you must provide two DCBs, one for input and one for 
output. Both DCB macro instructions can refer to the same data set, that is, only one 
DD statement is required. 

You can reflect the change in location of the member either automatically, by 
indicating a disposition of OLD, or by using the STOW macro instruction. Although 
the old member is, in effect, deleted, its space cannot be reused until the data set is 
reorganized. 

/ /PDSDD DD DSNAME=MASTFILE(MEMBERK),DISP=OLD,---

UPDATDCB DCB 
READ 
READ 

AREAA DS 
AREAB DS 

DSORG=PS,DDNAME=PDSDD,MACRF=(R,W),NCP=2,EODAD=FINISH 
DECBA,SF,UPDATDCB,AREAA,MF=L Define DECBA 
DECBB,SF,UPDATDCB,AREAB,MF=L Define DECBB 

Define buffers 

OPEN (UPDATDCB,UPDAT) 
LA 2,DECBA 
LA 3,DECBB 

READRECD READ ( 2 ) , SF, MF=E 
NEXTRECD READ ( 3 ) , SF, MF=E 

CHECK (2) 
(If update is required, branch to R2UPDATE) 

LR 
LR 
LR 
B 

4,3 
3,2 
2,4 
NEXTRECD 

Open for update 
Load DECB addresses 

Read a record 
Read the next record 
Check previous read operation 

If no update is required, 
switch DECB addresses in 
registers 2 and 3 
and loop 

In the following statements, "R2" and "R3" refer to the records that were read using the DECBs whose addresses are in registers 
2 and 3, respectively. Either register may point to either DECBA or DECSB. 

R2UPDATE CALL UPDATE, ( ( 2 ) ) 
CHECK (3) 
WRITE (2),SF,MF=E 
(If R3 requires an update, branch to R3UPDATE) 
CHECK (2) 
B READRECD 

R3UPDATE CALL UPDATE, ( ( 3 ) ) 
WRITE (3),SF,MF=E 
CHECK (2) 
CHECK (3) 
B READRECD 

FINISH CLOSE (UPDATDCB) 

Figure 51. Updating a Member of a Partitioned Data Set 

Call routine to update R2 
Check read for next record (R3) 
Write updated R2 

If R3 requires no update, check 
write for R2 and loop 
Call routine to update R3 
Write updated R3 
Check write for R2 
Check write for R3 
Loop 
End-of-Data exit routine 

Part 2: Data Management Processing Procedures 85 



-......-------~;MI_8f~wza1iJo.n..af...anJ.n~~~~ential data set allows you a great deal of flexibility 
in the operations you can perform. The data set can be read or written sequentially, 
individual records can be processed in any order, records can be deleted, and new 
records can be added. The system automatically locates the proper position in the data 
set for new records and makes any necessary adjustments when records are deleted. 

The queued access technique must be used to create an indexed sequential data set. It 
can also be used to sequentially process or update the data set and to add records to 
the end of the data set. The basic access technique can be used to insert new records 
between records already in the data set and to update the data set directly. 

Indexed Sequential Data Set Organization 
The records in an indexed sequential data set are arranged according to collating 
sequence by a key field in each record. Each block of records is preceded by a key 
field that corresponds to the key of the last record in the block. 

An indexed sequential data set resides on direct-access storage devices and can occupy 
up to three different areas: 

• Prime Area-This area, also called the prime data area, contains data records and 
related track indexes. It exists for all indexed sequential data sets. 

• Overflow Area-This area contains records that overflow from the prime area 
when new data records are added. It is optional. 

• Index Area-This area contains master and cylinder indexes associated with the 
data set. It exists for a data set that has a prime area occupying more than one 
cylinder. 

The indexes of an indexed sequential data set are analogous to the card catalog in a 
library. For example, if the library user knows the name of the book or the author, he 
can look in the card catalog and obtain a catalog number that will enable him to locate 
the book in the book files. He would then go to the shelves and proceed through rows 
until he found the shelf containing the book. Usually each row contains a sign to 
indicate the beginning and ending numbers of all books in that particular row. Thus, as 
he proceeded through the rows, he would compare the catalog number obtained from 
the index with the numbers posted on each row. Upon locating the proper row, he 
would then search that row for the shelf that contained the book. Then he would look 
at the individual book numbers on that shelf until he found the particular book. 

ISAM uses the indexes in much the same way to locate records in an indexed 
sequential data set. 

As the records are written in the prime area of the data set, the system accounts for the 
records contained on each track in a track index area. Each entry in the track index 
identifies the key of the last record on each track. There is a track index for each 
cylinder in the data set. If more than one cylinder is used, the system develops a 
higher-level index called a cylinder index. Each entry in the cylinder index identifies 
the key of the last record in the cylinder. To increase the speed of searching the 
cylinder index, you can request that a master index be developed for a specified 
number of cylinders, as shown in Figure 52. 

Rather than reorganize the whole data set when records are added, you can request 
that space be allocated for additional records in an overflow area. 

86 OS Data Management Services Guide 

o 

o 



o 

o 

o 

Prime Area 

Index Areas 

~ 100 

Data 
10 

Data 
150 

I 

Sf- W pm-- -tum '3 

Records are written in the prime area when the data set is created or updated. The last 
track of prime data is reserved for an end-of-file mark. The portion of Figure 52 
labeled Cylinder 1 illustrates the initial structure of the prime area. Although tl1e prime 
area can extend across several noncontiguous areas of the volume, all the records are 
written in key sequence. Each record must contain a key; the system automatically 
writes the key of the highest record before each block. 

When the ABSTR option of the SPACE parameter of the DD statement is used to 
generate a multivolume prime area, the VTOC of the second volume and on all 
succeeding volumes must be contained within cylinder 0 of the volume. 

The operating system generates track and cylinder indexes automatically. Up to three 
levels of master indexes are created if requested. 

Track Index: This is the lowest level of index and is always present. There is one track 
index for each cylinder in the prime area; it is written on the first track(s) of the 
cylinder that it indexes. 

The index consists of a series of paired entries, that is, of a normal entry and an 
overflow entry for each prime track. For fixed-length records, each normal entry (and 
also DCBFIRSH) points to either record 0 or the first prime record on a shared track. 
For variable-length records, the normal entry contains the key of the highest record on 
the track and the address of the last record on the track. The overflow entry is 
originally the same as the normal entry. (This is why 100 appears twice on the track 
index for cylinder 1 in Figure 52.) The overflow entry is changed when records are 
added to the data set. Then the overflow entry contains the key of the highest 

Master Index 

I ~50 I 900 2000 I 
Cylinder Index 

200 300 375 450 .. 
"' 

500 600 700 900 ... 

.. 
1000 1200 15~0 2000 "' 

Cylinder 1 ~ Cylinder 11 Cylinder 12 

100 200 200 Track 
1

1500 ~ 
1

2000 
Index 

Data Data Data Prime 
20 40 100 Data 

Data Data Data Prime 
175 190 200 Data 

Overflow 

Figure 52. Indexed Sequential Data Set Organization 

Part 2: Data Management Processing Procedures 87 



r 
Normal 
Entry 

overflow record and the address of the lowest overflow record logically associated with 
the track. Figure 53 shows the format of a track index. 

If all the tracks allocated for the prime data area are not used, the index entries for the 
unused ones are flagged as inactive. The last entry of each track index is a dummy 
entry indicating the end of the index. When fixed-length record format has been 
specified, the remainder of the last track used for a track index contains prime data 
records if there is room for them. 

Each index entry has the same format. It is an unblocked, fixed-length record 
consisting of a count, a key, and a data area. The length of the key corresponds to the 
length of the key area in the record to which it points. The data area is always 10 
bytes long. It contains the full address of the track or record to which the index points, 
as well as the level of the index and the entry type. 

Cylinder Index: For every track index created, the system generates a cylinder index 
entry. There is one cylinder index for a data set, each entry of which points to a track 
index. Since there is one track index per cylinder, there is one cylinder index entry for 
each cylinder in the prime data area, except in the case of a I-cylinder prime area. As 
with track indexes, inactive entries are created for any unused cylinders in the prime 
data area. 

Master Index: As an optional feature, the operating system creates, at your request, a 
master index. The presence of this index makes long, serial searches through a large, 
cylinder index unnecessary. 

You can specify the conditions under which you want a master index created. For 
example, if you have specified NTM=3 and OPTCD=M in your DCB macro 
instruction, a master index is created when the cylinder index exceeds 3 tracks. The 
master index consists of one entry for each track of cylinder index. If your data set is 
extremely large, a higher-level master index is created when the first-level master index 
exceeds three tracks. This higher-level master index consists of one entry for each 

Norma I IOverfl ow Norma I IOverfl ow 
Pair Pair 

'" '" " , 
Overflow Normal Overflow 
Entry Entry Entry 

~ 

f '" " '" " '" v , 
Key1 Data 2 Key3 Data4 Key 1 Data 2 Key3 Data4 

1 Normal key = key of the highest record on the prime data track 

2Normal data = address of the prime data track 

30verflow key = key of the highest overflow record logically associated with the prime data track 

40verflow data = address of the lowest overflow record logically associated with the prime data track 

Notes: 

~ 

• If there are no overflow records, overflow key and data entries are the same as normal key and data entries . 
• This figure is a logical representation only; that is, it makes no attempt to show the physical size of track indexentries. 

Figure 53. Format of Track Index Entries 

88 OS Data Management Services Guide 

o 

... 

o 

o 

------------------ -~--------- --.. -------.. -------.---.---~---



o 

o 

o 

Overflow Areas 

track of the first-level master index. This procedure can be repeated for as many as 
three levels of master index. 

As records are added to an indexed sequential data set, space is required to contain 
those records that will not fit on the prime data track on which they belong. You can 
request that a number of tracks be set aside as a cylinder overflow area to contain 
overflows from prime tracks in each cylinder. An advantage of using cylinder overflow 
areas is a reduction of search time required to locate overflow records. A disadvantage 
is that there will be unused space if the additions are unevenly distributed throughout 
the data set. 

Instead of, or in addition to, cylinder overflow areas, you can request an independent 
overflow area. Overflow from anywhere in the prime data area is placed in a specified 
number of cylinders reserved solely for overflow records. An advantage of having an 
independent overflow area is a reduction in unused space reserved for overflow. A 
disadvantage is the increased search time required to locate overflow records in an 
independent area. 

If you request both cylinder overflow and independent overflow, the cylinder overflow 
area is used first. It is a good practice to request cylinder overflow areas large enough 
to contain a reasonable number of additional records and an independent overflow area 
to be used as the cylinder overflow areas are filled. 

Adding Records to an Indexed Sequential Data Set 
Either the queued access technique or the basic access technique may be used to add 
records to an indexed sequential data set. A record to be inserted between records 
already in the data set must be inserted by the basic access method using WRITE KN 
(key new). Records added to the end of a data set, that is, records with successively 
higher keys, may be added to the prime data area or the overflow area by the basic 
access method using WRITE KN, or they may be added to the prime data area by the 
queued access technique using the PUT macro instruction. 

Inserting New Records into an Existing Indexed Sequential Data Set 
As you add records to an indexed sequential data set, the system inserts each record in 
its proper sequence according to the record key. The remaining records on the track 
are then moved up one position each. If the last record does not fit on the track, it is 
written in the first available location in the overflow area. A IO-byte link field is 
added to the record put in· the overflow area to connect it logically to the correct track. 
The proper adjustments are made to the track index entries. This procedure is 
illustrated in Figure 54. 

Subsequent additions are written either on the prime track or as part of the overflow 
chain from that track. If the addition belongs after the last prime record on a track 
but before a previous overflow record from that track, it is written in the first available 
location in the overflow area. Its link field contains the address of the next record in 
the chain. 

Adding New Records to the End of an Indexed Sequential Data Set 
Records added to the end of a data set, that is, records with successively higher keys, 
may be added by the basic access method using WRITE KN (key new), or by the 
queued access method using the PUT macro instruction (resume load). In either case 
records may be added to the prime data area. 

When you use the WRITE KN macro instruction, the record being added is placed in 
the prime data area only if there is room for it on the prime data track containing the 
record with the highest key currently in the data set. If there is not sufficient room on 

Part 2: Data Management Processing Procedures 89 



Initial Format 

Add Records 
25 and 101 

Add Records 
26 and 199 

that track, the record is placed in the overflow area and linked to that prime track even 
though additional prime data tracks originally allocated have not been filled. 

When you use the PUT macro instruction (resume load), records are added to the 
prime data area until the space originally allocated is filled. Once this allocated prime 
area is filled, you can add records to the data set using WRITE KN, in which case they 
will be placed in the overflow area. Resume load is discussed in more detail later under 
"Creating an Indexed Sequential Data Set." 

Normal Entry Overflow "Entry 

Track 
Index 

10 20 40 100 
Prime 
Data 

150 175 190 200 

Overflow 

Track 
Index 

10 20 25 40 
Prime 
Data 

101 150 175 190 

100 
Track 

200 
Track 

Overflow 1 2 

Track 
Index 

10 20 25 26 
Prime 
Data 

101 150 175 190 

Track 
1 Overflow 

Figure 54. Adding Records to an Indexed Sequential Data Set 

90 as Data Management Services Guide 

o 

0 

0 



o 

o 

o 

w. 

In order to add records with successively higher keys using the PUT macro instruction 
(resume load): 

• The key of any record to be added must be higher than the highest key currently 
in the data set. 

• The DD statement must specify DISP=MOD. 

• The data set must have been successfully closed when it was created or when 
records were previously added using the PUT macro instruction. 

You may continue to add fixed-length records in this manner until the original space 
allocated for prime data is exhausted. 

When you add records to an indexed sequential data set using the PUT macro 
instruction (resume load), new entries are also made in the indexes. During resume 
load on a data set with a partially filled track and/or a partially filled cylinder, the 
track index entry and/or the cylinder index entry is overlaid when the track or cylinder 
is filled. If resume load abnormally terminates after these index entries have been 
overlaid, a subsequent resume load will get a sequence check when adding a key that is 
higher than the highest key at the last successful CLOSE but lower than the key in the 
overlaid index entry. When the SYNAD exit is taken for a sequence check, register 0 
contains the address of the highest key of the data set. 

Maintaining an Indexed Sequential Data Set 
An indexed sequential data set must be reorganized occasionally for two reasons: 

• The overflow area will eventually be filled. 
• Additions increase the time required to locate records directly. 

The frequency of reorganization depends on the activity of the data set and on your 
timing and storage requirements. There are two ways you can accomplish 
reorganization: 

• You can reorganize the data set in two passes by writing it sequentially into 
another area of direct-access storage or magnetic tape and then recreating it in 
the original area. 

• You can reorganize the data set in one pass by writing it directly into another 
area of direct-access storage. In this case, the area occupied by the original data 
set cannot be used by the reorganized data set. 

The operating system maintains statistics that are pertinent to reorganization. The 
statistics, written on the direct-access volume and available in the DCB for checking, 
include the number of cylinder overflow areas, the number of unused tracks in the 
independent overflow area, and the number of references to overflow records other 
than the first. They appear in the RORG 1, RORG2, and RORG3 fields of the DCB. 

If you indicate when creating or updating the data set that you want to be able to flag 
records for deletion during updating, you can set the delete code (the first byte of a 
fixed-length record or the fifth byte of a variable-length record) to X'FF'. If a flagged 
record is forced off its prime track during a subsequent update, it will not be rewritten 
in the overflow area, as shown in Figure 55, unless it has the highest key on that 
cylinder. Similarly, when you process sequentially, flagged records are not retrieved for 
processing. During direct processing, flagged records are retrieved like any other 
records, and you should check them for the delete code. 

Note that to use the delete option, RKP must be greater than 0 for fixed-length records 
and greater than 4 for variable-length records. 

Part 2: Data Management Processing Procedures 91 



Key Data 

Fixed Length Ix'wi i 
I 

Delete Code 

Key 
BOW ROW 
~ Data 

Variable I LLOO I teoo ! X'FF' i I LeOO! , Length 

t 
Delete Code 

Initial Format 

10 20 40 100 

150 175 190 200 

Record 100 is 
marked for deletion 
and record 25 is 
added to the 

10 20 25 40 
data set 

150 175 190 200 

Figure 55. Deleting Records from an Indexed Sequential Data Set 

Indexed Sequential Buller and Work A.rea Requirements 
The only case in which you will ever have to compute the buffer length (BUFL) 
requirements for your program is when you use the BUILD or GETPOOL macro 
instruction to construct the buffer area. If you are creating an indexed sequential data 
set (using the PUT macro instruction), each buffer must be 8 bytes longer than the 
blocksize to allow for the hardware count field, that is: 

BUffe;~:ngth 18 + Blocksite 
Data 

(BLKSIZE) 

.... Buffer • 

One exception to this formula arises when you are dealing with an unblocked format-F 
record whose key field precedes the data field; its relative key position is 0 (RKP=O). 
In that case the key length must also be added, that is: 

92 as Data Management Services Guide 

0 

() 

o 



o 

o 

PW'·UTI"'P"TJUWJ!)UWX" FW 7F 

Buffer length = 8 + Key length + Record length 

I (8) I (KE~e~EN) I (L~~~L) 
............. ---------- Buffer -----------4.~ 

The buffer requirements for using the queued access technique to read or update (using 
the GET or PUTX macro instruction) an indexed sequential data set are discussed 
below. 

For fixed-length unblocked records when both the key and data are to be read and for 
variable-length unblocked records, padding is added so that the data will be on a 
double word boundary, that is: 
Buffer length = Key length + Padding + 10 + Blocksize 

Key 
Padding 

Link Data 

(KEYLEN) (10) (BLKSIZE) 

... Buffer .. 
For fixed-length unblocked records when only data is to be read: 
Buffer length = 16 + LRECL 

Padding 
(6) 

Link 
(10) 

Data 
(LRECL) 

.. Buffer----------... ~ 
For fixed-length blocked records: 
Buffer length = 16 + Blocksize 

Data 
(BLKSIZE) 

~ Buffer • 
For variable-length blocked records, padding is 2 if the buffer starts on a fullword 
boundary that is not also a doubleword boundary or 6 if the buffer starts on a 
doubleword boundary, that is: 
Buffer length = 12 or 16 + Blocksize 

I Padding I ~;~~ I Data 
(BLKSIZE) 

~ Buffer .. 
If you are using the input data set with fixed-length, unblocked records as a basis for 
creating a new data set, a work area is required. 

The size of the work area is given by: 
Work area = Key length + Record length 

Key 
Data 

(LRECL) 

~ Work Area .. 

If you are reading only the data portion of fixed-length unblocked records or 
variable-length records, the work area is the same size as the record, that is: 
Work area = Record length 

Data 
(LRECL) 

.... ~_-----------Work Area---------.... ~ 

Part 2: Data Management Processing Procedures 93 



-------_._-----._._-----------'-_. 

When you use the basic access technique to update records in an indexed sequential 
data set, the key length field need not be considered in determining your buffer 
requirements. The area for fixed-length records must be: 
Buffer length = 16 + Blocksize 

Padding 
(6) 

Link 
(10) 

Data 
(BLKSIZE) 

• Buff~ ~ 

For variable-length records, padding is 2 if the buffer starts on a fullword boundary 
that is not also a doubleword boundary or 6 if a buffer starts on a doubleword 
boundary. Thus, the area must be: 
Buffer length = 1'2 or 16 + Blocksize 

I Padding I Link 
(10) 

Data 
(BLKSIZE) 

.. Buffer ... 

You can speed up the process of adding fixed-length or variable-length records to a 
data set by using the MSW A parameter of the DCB macro instruction to provide a 
special work area for the operating system. The size of the work area (SMSW 
parameter in the DCB) must be large enough to contain a full track of data, the count 
fields of each block, and the work space for inserting the new record. 

The size of the work area needed varies according to the record format and the device 
type. You can calculate it during execution using device-dependent information 
obtained with the DEVTYPE macro instruction and data set information from the 
DSCB obtained with the OBTAIN macro instruction. The DEVTYPE and OBTAIN 
macro instructions are discussed in OS Data Management for System Programmers. 

Note that you can use the DEVTYPE macro instruction only if the index and prime 
areas are on devices of the same type or if the index area is on a device with a larger 
track capacity than that of the device containing the prime area. If you are not trying 
to maintain device independence, you may precalculate the size of the work area 
needed and specify it in the SMSW field of the DCB macro instruction. The maximum 
value for SMSW is 65,535. 

For calculating the size of the work area, refer to the storage device capacities shown 
in Figure 63 under "Estimating Space Requirements" and the device overhead formulas 
given in the same section. 

For fixed-length blocked records, SMSW is calculated as follows: 

SMSW = HIRPD(BLKSIZE + 8) + LRECL + KEYLEN 

The formula for fixed-length unblocked records is 

SMSW = HIRPD(KEYLEN + LRECL + 8) + 2 

The value for HIRPD is in the index (format 2) DSCB. OS System Control Blocks 
shows the exact location of this field in the index DSCB. If you don't use the MSW A 
and SMSW parameters, the control program supplies a work area using the formula 
BLKSIZE + LRECL + KEYLEN. 

For variable-length records, SMSW may be calculated by one of two methods. The 
first method may lead to faster processing although it may require more main storage 
than the second method. 

94 OS Data Management Services Guide 

o 

o 



o 

o 

Controlling an 

o 

The first method is as follows: 

SMSW = HIRPD(BLKSIZE + 8) + LRECL + KEYLEN + 10 

The second method is as follows: 

SMSW - (TraCk C~'iCity-Bn+ ~(BLKSIZE)+8(HIRPD) +lRECL+ KEYLEN+ 1 O+(REM- N-KEYLEN) 

In all of the above formulas, the terms BLKSIZE, LRECL, KEYLEN, and SMSW are 
the same as the parameters in the DCB macro instruction. REM is the remainder of 
the division operation in the formula and N is the first constant in the Bi formulas 
described in Figure 64. (REM-N-KEYLEN) is added only if it is positive. The second 
method yields a minimum value for SMSW. Therefore, the first method is valid only if 
its application results in a value higher than the value that would be derived from the 
second method. If neither MSW A nor SMSW is specified, the control program supplies 
the work area for variable-length records, using the second method to calculate the 
size. 

Another technique to increase the speed of processing is to provide space in main 
storage for the highest-level index. To specify the address of this area, use the MSm 
operand of the DCB. When the address of this area is specified, you must also specify 
its size, which you can do by using the SMSI operand of the DCB. The maximum 
value for SMSI is 65,535. If you do not use this technique, the index on the volume 
must be searched. 

The size of the storage area (SMSI parameter) varies. To allocate that space during 
execution, you can find the size of the high-level index in the DCBNCRHI field of the 
DCB during your DCB exit routine or after the data set is open. Use the DCBD 
macro instruction to gain access to the DCBNCRHI field (see "Modifying the Data 
Control Block" in Part 1). You can also find the size of the high-level index in the 
DS2NOBYT field of the index (format 2) DSCB, but you must use the utility program 
IEHLIST to print the information in the DSCB. You can calculate the size of the 
storage area required for the high-level index by using the formula 

(
Number of -r:racks \ (Number of Entries) (Key Length + 10) 

SMSI = in High-Level Index) \per Track 

The formula for calculating the number of tracks in the high-level index is in the 
section "Calculating Space Requirements for an Indexed Sequential Data Set" in Part 
3. When a data set is shared and has the DCB integrity feature (DISP=SHR), the 
high-level index in storage is not updated when DCB fields are changed. 

Indexed Sequential Data Set Device 
An indexed sequential data set is processed sequentially or directly. Direct processing 
is accomplished by the basic access technique. Because you provide the key for the 
record you want read or written, all device control is handled automatically by the 
system. If you are processing the data set sequentially, using the queued access 
technique, the device is automatically positioned at the beginning of the data set. 

In some cases, you may wish to process only a section or several separate sections of 
the data set. You do this by using the SETL macro instruction, which directs the 
system to begin sequential retrieval at the record having a specific key. The processing 
of succeeding records is the same as for normal sequential processing, except that you 
must recognize when the last desired record has been processed. At this point, issue 
the ESETL macro instruction to terminate sequential processing. You can then begin 
processing at another point in the data set. 

Part 2: Data Management Processing Procedures 95 



.. --------~-~-~------.-.---.-----------.... -----------. __ ._----

SETL-Specify Start of Sequential Retrieval 
The SETL macro instruction enables you to retrieve records starting at the beginning of 
an indexed sequential data set or at any point in the data set. Processing that is to 
start at a point other than the beginning can be requested in the form of a record key, 
a key prefix, or an actual address of a prime data record. 

The key class concept is useful because you do not have to know the whole key of the 
first record to be processed. A key class comprises all of the keys that begin with 
identical characters. The key class is defined by specifying the desired characters of 
the key class at the address specified in the lower-limit operand of the SETL macro and 
setting the remaining characters to the right of the key class to binary zeros. 

To use actual addresses, you must keep an account of where the records were written 
when the data set was created. The device address of the block containing the record 
just processed by a PUT -move macro instruction is available in the 8-byte data control 
block field DCBLPDA. For blocked records the address is the same for each record in 
the block. 

Normally, when a data set is created with the delete option specified, deleted records 
cannot be retrieved using the QISAM retrieval mode. When the delete option is not 
specified in the DCB, the SETL macro options function as follows: 

SETLB­

SETLK-

Start at first record in the data set 

Start with record having the specified key 

SETL KH - Start with record whose key is equal to or higher than the 
specified key 

SETL KC - Start with first record having a key that falls into the specified key 
class 

SETL 1- Start with the record found at the specified direct-access address 
in the prime area of the data set 

Because the DCBOPTCD field in the DCB can be changed after the data set is created 
(by respecifying the OPTCD in the DCB or DD card), it is possible to retrieve deleted 
records. In this case, SETL functions as noted above. 

When the delete option is specified in the. DCB, the SETL macro options function as 
follows: 

SETLB-

SETLK-

Start retrieval at first nondeleted record in the data set 

Start retrieval at record matching the specified key if that record 
is not deleted. If the record is deleted, an NRF (no record found) 
indication is set in the DCBEXCD field of the DCB, and SYNAD 
is given control 

SETL KH - Start with first nondeleted record whose key is equal to or higher 
than the specified key 

SETL KC - Start with first nondeleted record having a key that falls into the 
specified key class or follows the specified key class 

SETL 1- Start with first nondeleted record following the specified 
direct-access address 

With the delete option not specified, QISAM retrieves and handles records marked for 
deletion like nondeleted records. 

96 OS Data Management Services Guide 

o 

O''Ir\ 
\. . 

o 



-Y-Tr-- -:-- ------tirtiriiA T -um -- mnrnnrT TTfT---WWB!!1rItT 

o 

o 

o 

Note: Regardless of the SETL or delete option specified, the NRF condition will be 
posted in the DCBEXCD field of the DCB, and SYNAD is given control if the key or 
key class: 

• Is higher than any key or key class in the data set 

• Does not have a matching key or key class in the data set 

ESETL-End Sequential Retrieval 
The ESETL macro instruction directs the system to stop retrieving records from an 
indexed sequential data set. A new scan limit can then be set, or processing 
terminated. An end-of-data-set indication automatically terminates retrieval. An 
ESETL macro instruction must be executed before another SETL macro instruction 
(described above) using the same DCB is executed. 

Creating an Indexed Sequential Data Set 
You can create an indexed sequential data set in one step or in several steps. You can 

I 

create the data set either by writing all records in a single step or by writing one group 
of records in one step and writing additional groups of records in subsequent steps. 
Writing records in subsequent steps is resume loading. When using either one step or 
several steps, you must present the records for writing in ascending order by key. 

To create an indexed sequential data set by the one-step method, you should proceed 
as follows: 

• Code DSORG=IS or ISU and MACRF =PM or PL in the DCB macro 
instruction. 

• Specify in the DD statement the DCB attributes DSORG=IS or ISU, record 
length (LRECL), blocksize (BLKSIZE), record format (RECFM), key length 
(KEYLEN), relative key position (RKP), options required (OPTCD), cylinder 
overflow (CYLOFL), and the number of tracks for a master index (NTM). 
Specify space requirements with the SPACE parameter. To reuse previously 
allocated space, omit the SPACE parameter and code DISP=(OLD,[KEEPD. 

• Open the data set for output. 

• Use the PUT macro instruction to place all the records or blocks on the 
direct-access volume. 

• Close the data set. 

The records that compose a newly created data set must be presented for writing in 
ascending order by key . You can merge two or more input data sets. If you want a 
data set with no records (a null data set), you must write at least one record when you 
create the data set. You can subsequently delete this record to achieve the null data 
set. 

If records are blocked, you should not write a record composed only of repeated X'FF'. 
This value is used for padding; if it occurs as the last record of a block, the record 
cannot be retrieved, causing unpredictable results. 

When creating an indexed sequential data set, a procedure called loading, you can 
improve performance by using the full-track-index-write option. You do this by 
specifying OPTCD= U in the DCB. This causes the operating system to accumulate 
track-index entries in main storage. Note that the full~track-index-write option can be 
used only for fixed-length records. 

Part 2: Data Management Processing Procedures 97 



-----------_._--- -~-

If you do not specify this option, the operating system writes each normal-overflow pair 
of entries for the track index after the associated prime data track has been written. If 
you specify this option, the operating system accumulates track-index entries in main 
storage until either there are enough entries to fill a track or end-of-data or 
end-of-cylinder is reached. Then the operating system writes these entries as a group, 
writing one group for each track of track index. 

When you specify the full-track-index-write option, the track index entries are written 
as fixed-length unblocked records. If a large enough area of main storage is not 
available, the entries are written as they are created, that is, in normal-overflow pairs. 

Once an indexed sequential data set has been created, its characteristics cannot be 
changed. However, for added flexibility, the system allows you to retrieve records 
using either the queued access technique with simple buffering, or the basic access 
technique with dynamic buffering. 

Tape-to-Disk-Indexed Sequential Data Set: The example in Figure 56 shows the 
creation of an indexed sequential data set from an input tape containing 60-character 
records. The key by which the data set is organized is in positions 20-29. The output 
records will be an exact image of the input, except that the records will be blocked. 
One track per cylinder is to be reserved for cylinder overflow. Master indexes are to 
be built when the cylinder index exceeds six tracks. Reorganization information about 
the status of the cylinder overflow areas is to be maintained by the system. The delete 
option will be used during any future updating. 

To create an indexed sequential data set in more than one step, create the first group 
of records using the one step method described above. This first section must contain 
at least one data record. The remaining records can then be added to the end of the 
data set in subsequent steps using resume load. Each group to be added must contain 
records with successively higher keys. This method allows you to create the indexed 
sequential data set in several short time periods rather than in a single long one. 

This method also allows you to provide limited recovery from uncorrectable output 
errors. When an uncorrectable output error is detected, do not attempt to continue 
processing or to close the data set. If you have provided a SYNAD routine, it should 
issue the ABEND macro instruction to terminate processing. If no SYNAD routine is 
provided, the control program will terminate your processing. If the error shows that 
space in which to add the record was not found, you must close the data set; issuing 
subsequent PUT macro instructions can cause unpredictable results. You should begin 
recovery at the record following the end of the data as of the last successful close. The 
rerun time is limited to that necessary to add the new records, rather than to that 
necessary to recreate the whole data set. 

When you extend an indexed sequential data set with resume load, the disposition 
parameter of the DD statement must specify MOD. To ensure that the necessary 
control information is in the DSCB before attempting to add records, you should at 
least open and close the data set successfully on a version of the system that includes 
resume load. This need be done only if the data set was created on a. previous version 
of the system. Records may be added to the data set by resume load until the space 
allocated for prime data in the first step has been filled. 

During resume load on a data set with a partially filled track and/or a partially filled 
cylinder, the track index entry and/or the cylinder index entry is overlaid when the 
track or cylinder is filled. If resume load abnormally terminates after these index 
entries have been overlaid, a subsequent resume load will result in a sequence check 
when it adds a key that is higher than the highest key at the last successful CLOSE but 

98 OS Data Management Services Guide 

o 

o 

o 



o 

o 

o 

/IINDEXDD DD 
II 

IIINPUTDD DD 

ISLOAD START 

DCBD 
ISLOAD CSECT 

OPEN 
NEXTREC GET 

LR 
PUT 
B 

CHECKERR L 
USING 
TM 
BO 
TM 
BO 
TM 
BO 

Rest of error checking 
Error routine 

71 Emn. m 

DSNAME=SLATE.DICT(PRIME),DCB=(BLKSIZE=240,CYLOFL=1, 
DSORG=IS,OPTCD=MYLR,RECFM=FB,LRECL=60,NTM=6,RKP=19, 
KEYLEN=10),UNIT=2311,SPACE=(CYL,25"CONTIG),---

o 

DSORG=IS 

(IPDATA"ISDATA,(OUTPUT)) 
IPDATA Locate mode 

C 
C 

0, 1 
ISDATA,(O) 

Address of record in register 1 
Move mode 

NEXTREC 

3,=A(ISDATA) 
IHADCB,3 
DCBEXCD1,X'04' 
OPERR 
DCBEXCD1,X'20' 
NOSPACE 
DCBEXCD2,X'80' 
SEQCHK 

Initialize base for errors 

Uncorrectable error 

Space not found 

Record out of sequence 

End of job routine (EODAD FOR IPDATA) 
IPDATA DCB 
ISDATA DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(PM),SYNAD=CHECKERR 

Figure 56. Creating an Indexed Sequential Data Set 

lower than the key in the overlaid index entry. When the SYNAD exit is taken for a 
sequence check, register 0 contains the address of the high key of the data set. 

Retrieving and Updating an Indexed Sequential Data Set 
Sequential Retrieval and Update 

To sequentially retrieve and update records in an indexed sequential data set: 

• Code DSORG=IS or ISU to agree with what you specified when you created the 
data set, and MACRF=GL, SK, or PU in the DCB macro instruction. 

• Code a DD statement for retrieving the data set. The data set characteristics and 
options are as defined when the data set was created. 

• Open the data set. 

• Set the beginning of sequential retrieval (SETL). 

• Retrieve records and process as required, marking records for deletion as required. 

• Return records to the data set. 

• Use ESETL to end sequential retrieval as required and reset the starting point. 

• Close the data set to end all retrieval. 

Sequential Updates-Indexed Sequential Data Set: Assume that, using the data set 
created in the previous example, you are to retrieve all records beginning with 915. 
Those records with a date (positions 13-16) before today's date are to be deleted. The 
date is in the standard form as returned by the system in response to the TIME macro 

Part 2: Data Management Processing Procedures 99 



\:! 

~ I 
I 
I 

instruction, that is, packed decimal OOyyddds. Overflow records can be logically 
deleted even though they cannot be physically deleted from the data set. 

One way to solve this problem is shown in Figure 57. 

Direct Retrieval and Update 
By using the basic indexed sequential access method (BISAM) to process an indexed 
sequential data set, you can make direct references to the records in the data set for the 
purpose of: 

• Direct retrieval of a record by its key 

• Direct· update of a record 

• Direct insertion of new records 

Because the operations are direct, there can be no anticipatory buffering. However, 
the system provides dynamic buffering each time a read request is made, if specified. 

To ensure that the requested record is in main storage before you start processing, you 
must issue a WAIT or CHECK macro instruction. If you issue a WAIT macro 
instruction, you must test the exception code field of the DECB. If you issue a 
CHECK macro instruction, the system tests the exception code field in the DECB. If 
an error analysis routine has not been specified and a CHECK is issued, the program is 
abnormally terminated with a system completion code X'OO 1'. In either case, if you 
wish to determine whether the record is an overflow record, you should test the 
exception code field of the DECB. 

After you test the exception code field of the DECB, you need not set it to O. If you 
have used a READ KU macro instruction and if you plan to use the same DECB again 
to rewrite the updated record using a WRITE K macro instruction, you should not set 
the field to O. If you do, your record may not be rewritten properly. 

To update existing records, you must use the READ KU and WRITE K combination. 
Because READ KU implies that the record will be rewritten in the data set, the system 
retains the DECB and the buffer used in the READ KU and uses them when the 
record is written. If you decide not to write the record, you should use the same 
DECB in another read or write macro instruction or issue a FREEDBUF macro 
instruction if dynamic buffering was used. If you issue several READ KU or WRITE 
K macro instructions before checking the first one, you may destroy some of your 
updated records unless the records are from different blocks. 

If there is the possibility that your task and another task will be simultaneously 
updating the same data set, or the same task has two or more DCBs opened for the 
same data set, you should use the DCB integrity feature. You specify the DCB 
integrity feature by coding DISP=SHR in your DD statement. In this way you ensure 
that the DCB fields are maintained for your program to process the data set correctly. 
If you do not use DISP=SHR and more than one DCB is open for updating the data 
set, the results are unpredicatable. 

If you specify DISP=SHR, you must also issue an ENQ for the data set before each 
input/ output request and a DEQ upon completion of the request. All users of the data 
set must use the same qname operand for ENQ. For example, the users might use the 
data set name as the qname operand. For more information about using ENQ and 
DEQ, see OS Supervisor Services and Macro Instructions. 

When you are using scan mode with QISAM and you want to issue PUTX, issue an 
ENQ on the data set before processing it and a DEQ after processing is complete. 

I ENQ must be issued before the SETL macro instruction, and DEQ must be issued after 

100 OS Data Management Services Guide 

o 

o 

o 



-iW'nEff -i'ij _ hrw--nT'-r-r-PTTTTTTK--n IR!!'TmnrnST1WTUE '-'TMn wewn? 

0 

0 

o 

//INDEXDD DD DSNAME=SLATE.DICT,---

ISRETR START 0 
DCBD DSORG=IS 

ISRETR CSECT 

USING IHADCB,3 
LA 3,ISDATA 
OPEN (ISDATA) 
SETL ISDATA,KC,KEYADDR Set scan limit 
TIME Today's date in register 1 
ST 1,TODAY 

NEXTREC GET ISDATA Locate mode 
CLC 1 9 ( 1 0 , 1 ) , LIMI T 
BNL ENDJOB 
CP 1 2 ( 4, 1 ), TODAY Compare for old date 
BNL NEXTREC 
MVI O( 1 ), X' FF' Flag old record for deletion 
PUTX ISDATA Return delete record 
B NEXTREC 

TODAY DS F 
KEYADDR DC C'915' Key prefix 

DC XL7'O' Key padding 
LIMIT DC C'916' 

DC XL7'O' 

CHECKERR 
Test DCBEXCD1 and DCBEXDE2 for error indication 
Error Routines 
ENDJOB CLOSE (ISDATA) 

ISDATA DCB DSNAME=INDEXDD,DSORG=IS,MACRF=(GL,SK,PU), C 
SYNAD=CHECKERR 

Figure 57. Sequentially Updating an Indexed Sequential Data Set 

t the ESETL macro instruction. When you are using BISAM to update the data set, do 
not modify any DCB fields or issue a DEQ until you have issued CHECK or WAIT. 

Sharing a BISAM DCB between Related Tasks: When a task using BISAM processes a 
data set whose DCB is defined and opened by a related task, the task must issue an 
ENQ on the DCB before an input/output request is issued and must issue a DEQ after 
the WAIT or CHECK for the input/output request is issued. If the task does not 
enqueue the DCB and any of its related tasks terminates abnormally, the task may 
enter a wait state or a program check may occur. Under MFT, I/O requests must be 
issued by the task which owns the DCB or a task which will remain active as long as 
the DCB is open. (Otherwise, storage used by data areas such as lOBs may be freed 
by one task and reused by another task). WAITs or CHECKs may still be issued by 
subtasks. See OS Supervisor Services and Macro Instructions for more information 
on the ENQ and DEQ macro instructions and on multitasking. 

Direct Update With Exclusive Control-Indexed Sequential Data Set: In the example 
shown in Figure 58, the previously described data set is to be updated directly with 
transaction records on tape. The input tape records are 30 characters long, the key is 
in positions 1-10, and the update information is in positions 11-30. The update 
information replaces data in positions 31-50 of the indexed sequential data record. 

Part 2: Data Management Processing Procedures 101 

,i_ 



/ /INDEXDD DD 
/ /TAPEDD DD 

ISUPDATE §TART 

NEXTREC 

RDCHECK 

AREA 
KEY 
UPDATE 
RESOURCE 
ELEMENT 

ISDATA 

TPDATA 
INDEX 

GET 
ENQ 
READ 
WAIT 
TM 
BM 
L 
MVC 
WRITE 
WAIT 
TM 
BM 
DEQ 
B 
TM 
BZ 
FREEDBUF 
MVC 
MVC 

WRITE 
WAIT 
TM 
BM 
DEQ 
B 
DS 
DS 
DS 
DS 
DC 
DC 
READ 
DCB 

DCB 
DS 

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=1, ... ),---

o 

TPDATA,KEY 
(RESOURCE,ELEMENT,E"SYSTEM) 
DECBRW,KU" 'S',MF=E 
ECB=DECBRW 
DECBRW+24,X'FD' 
RDCHECK 
3,DECBRW+16 
30( 20,3 ), UPDATE 
DECBRW,K,MF=E 
ECB=DECBRW 
DECBRW+24,X'FD' 
WRCHECK 
(RESOURCE,ELEMENT,SYSTEM) 
NEXTREC 
DECBRW+24,X'80' 
ERROR 
DECBRW,K,ISDATA 
AREA+19(L'KEY),KEY 
AREA+30(L'UPDATE),UPDATE 

DECBRW,KN"AREA-16,'S' ,MF=E 
ECB=DECBRW 
DECBRW+24,X'FD' 
ERROR 
(RESOURCE,ELEMENT"SYSTEM) 
NEXTREC 
4F 
30C 
CL10 
CL20 
CL8'SLATE' 
C'DICT' 

Test for any condition 
but overflow 
Pick up pointer to record 
Update record 

Any errors? 

No record found 
If not, go to error routine 
Otherwise, free buffer 
Key placed in positions 20-29 
Updated information placed 
in positions 31-50 of record 
Add record to file 

Test for errors 

Release exclusive control 

BISAM WRITE KN work field 
Logical record to be added 

DECBRW,KU,ISDATA,'S' ,'S' ,KEY,MF=L 
DDNAME=INDEXDD,DSORG=IS,MACRF=(RUS,WUA), 
MSHI=INDEX,SMSI=2000 

2000C 

Figure 58. Directly Updating an Indexed Sequential Data Set 

X 

C 

Exclusive control of the data set is requested sinc~ more than one task may be referring 
to the data set at the same time. Notice that exclusive control is released after each 
block is written to avoid tying up the data set until the update is completed. 

Note the use of the FREEDBUF macro instruction in Figure 58. Usually the 
FREEDBUF macro instruction has two functions: 

• To indicate to the ISAM routines that a record that has been read for update will 
not be written back 

• To free a dynamically obtained buffer 

In Figure 58, since the read operation was unsuccessful, the FREEDBUF macro 
instruction frees only the dynamically obtained buffer. 

102 OS Data Management Services Guide 

/' 

-----------------------~--~~~--.,----------------------.----

o 

o 

o 



o 

o 

o 

The first function of FREEDBUF allows you to read a record for update and then 
decide not to update it without performing a WRITE for update. You can use this 
function even when your READ macro instruction does not specify dynamic buffering, 
provided that you have included S (for dynamic buffering) in the MACRF field of your 
READ DCB. 

You can effect an automatic FREEDBUF simply by reusing the DECB, that is, by 
issuing another READ or a WRITE KN to the same DECB. You should use this 
feature whenever possible, since it is more efficient than FREEDBUF. For example, in 
Figure 58, the FREEDBUF macro instruction could be eliminated, since the WRITE 
KN addressed the same DECB as the READ KU. 

For an indexed sequential data set with variable-length records, you may make three 
types of updates by using the basic access technique. You may read a record and write 
it back with no change in its length, simply updating some part of the record. You do 
this with a READ KU followed by a WRITE K, the same way you update fixed-length 
records. Two other methods for updating variable-length records use the WRITE KN 
macro instruction and allow you to change the record length. 

In one method, a record read for update (by a READ KU) may be updated in a 
manner that will change the record length and then be written back with its new length 
by a WRITE KN. In the second method, you may replace a record with another 
record having the same key and possibly a different length using the WRITE KN macro 
instruction. To replace a record, it is not necessary to have first read the record. 

In either method, when changing the record length, you must place the new length in 
the DECBLGTH field of the DECB before issuing the WRITE KN macro instruction. 
If you use a WRITE macro instruction to update a variable-length record that has been 
marked for deletion, the first bit (no record found) of the exceptional condition code 
field (DECBEXCl) of the DECB is set on. If this condition is found, the record must 
be written using a WRITE KN with nothing specified in"the DECBLGTH field. 

Do not try to use the DECBLGTH field to determine the length of a record read, 
because DECBLGTH is for use with writing records, not reading them. If you are 
reading fixed-length records, the length of the record read is in DCBLRECL, and if 
you are reading variable-length records, the length is in the record descriptor word 
(RDW). 

Direct Update-Indexed Sequential Data Set with Variable-Length Records: In Figure 
59, an indexed sequential data set with variable-length records is updated directly with 
transaction records on tape. The transaction records are of variable length and each 
contains a code identifying the type of transaction. Transaction code 1 indicates that 
an existing record is to be replaced by one with the same key; 2 indicates that the 
record is to be updated by appending additional information, thus changing the record 
length; 3 or greater indicates that the record is to be updated with no change to its 
length. For this example, the maximum record length of both data sets is 256 bytes. 
The key is in positions 6-15 of the records in both data sets. The transaction code is in 
position 5 of records on the transaction tape. The work area (REPLAREA) size is 
equal to the maximum record length plus 16 bytes. 

Part 2: Data Management Processing Procedures 103 



//INDEXDD DD 
//TAPEDD DD 

ISUPDVLR START 

NEXTREC GET 
CLI 

* BL 
READ 
CHECK 
CLI 
BH 

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=1, ... ),---

o 

TPDATA,TRANAREA 
TRANCODE,2 

REPLACE 
DECBRW,KU,,'S','S',MF=E 
DECBRW,DSORG=IS 
TRANCODE,2 
CHANGE 

Determine if replacement or 
other transaction 
Branch if replacement 
Read record for update 
Check exceptional conditions 
Determine if change or append 
Branch if change 

* CODE TO MOVE RECORD INTO REPLACEA+16 AND APPEND DATA FROM TRANSACTION 
* RECORD 

* 

* 

CHANGE 

MVC 

WRITE 

CHECK 
B 

DECBRW+6(2),REPLAREA+16 

DECBRW,KN"REPLAREA,MF=E 

DECBRW,DSORG=IS 
NEXTREC 

Move new length from RDW 
into DECBLGTH (DECB+6) 
Rewrite record with changed 
length 

* CODE TO CHANGE FIELDS OR UPDATE FIELDS OF THE RECORD 

WRITE 

* 
CHECK 
B 

REPLACE MVC 

* 
WRITE 

* 
CHECK 
B 

CHECKERR 

REPLAREA DS 
TRANAREA DS 
TRANCODE DS 
KEY DS 
TRANDATA DS 

READ 
ISDATA DCB 
TPDATA DCB 

DECBRW,K,MF=E 

DECBRW, DSORG=IS 
NEXTREC 
DECBRW+6(2),TRANAREA 

DECBRW,KN"TRANAREA+16 
,MF=E 

DECBRW, DSORG=IS 
NEXTREC 

Rewrite record with no 
change of length 

Move new length from RDW 
into DECBLGTH (DECB+6) 
write transaction record 
as replacement for record 
with the same key 

SYNAD routine 

CL272 
CL4 
CL1 
CL10 
CL241 
DECBRW,KU,ISDATA, 's' ,'S' ,KEY,MF=L 
DDNAME=INDEXDD,DSORG=IS,MACRF=(RUSC,WUAC),SYNAD=CHECKERR 

Figure 59. Directly Updating an Indexed Sequential Data Set with Variable-Length Records 

104 OS Data Management Services Guide 

o 

/'-' 

o 

o 



.... y ... , "B'f·jjc·"nr ·-'Tf,vU,..,WfW-'iPW
' ,. mrTV""'· rrwarm!' Em 

o 

o 

o 

Processing a Direct Data Set 

I 

n a trect ata set, there is a relationship between a control number or identification 
of each record and its location on the direct-access volume. This relationship allows 
you to gain access to a record without an index search. You determine the actual 
organization of the data set. If the data set has been carefully organized, location of a 
particular record takes less time than with an indexed sequential data set. 

Although you can process a direct data set sequentially using either the queued access 
technique or the basJc access technique, you cannot read record keys using the ,gueued 
access technique. When you use the basic access technique, each unit of data 

i transmitted between main storage and an 110 device is regarded by the system as a 
record. If, in fact, it is a block, you must perform any blocking or deblocking required. 
For that reason, the ijLKSIZE value must he eQyal to the IRECI uall]~ ~~~R 

format-F or format-II records are processed. When format-V records are used, the 
'BLKSIZE value must be equal to the LRECL value plus 4. Only BLKSIZE must be 
specified when you add or update records on a direct data set. 

If dynamic buffering is specified for your direct data set, the system will provide a 
buffer for your records. If dynamic buffering is not specified, you must provide a 
buffer for the system to use. 

As indicated in the discussion of direct-access devices, record keys are optional. If they 
are specified, they must be used for every record and must be of a fixed length. 

Organizing a Direct Data Set 
In developing the organization of your data set, you can use direct addressing. When 
direct addresses are used, the location of each record in the data set is known. 

If format-F records with keys are being written, the key of each record can be used to 
identify the record. For example, a data set with keys ranging from 0 to 4999 should 
be allocated space for 5000 records. Each key relates directly to a location that you 
can refer to as a relative record number. The main disadvantage of this type of 
organization is that records may not exist for many of the keys even though space has 
been reserved for them. 

Space could be allocated on the basis of the number of records in the data set r~ther 
than on the range of keys. This type of organization requires the use of a 
cross-reference table. When a record is written in the data set, you must note the 
physical location either as an actual address or as a relative track and record number. 
The addresses must then be stored in a table that is searched when a record is to be 
retrieved. Disadvantages are that cross-referencing can be used efficiently only with a 
small data set, storage is required for the table, and processing time is required for 
searching and updating the table. 

A more common, but somewhat complex, technique for organizing the data set involves 
the use of indirect addressing. In indirect addressing, the address of each record in the 
data ,set is determined by a mathematical manipulation of the key. This manipulation is 
referred to as randomizing or conversion. Since a number of randomizing procedures 
could be used, no attempt is made here to describe or explain those that might be most 
appropriate for your data set. 

Part 2: Data Management Processing Procedures 105 



Re/e"ing to a Record in a Direct Data Set 
Once you have determined how your data set is to be organized, you must consider 
how the individual records will be referred to when the data set is updated or new 
records are added. This is important for determining whether a return address will be 
required when the data is created and, if so, in what form the return address will be 
used. The record identification can be represented in any of the following forms: 

Relative Block Address: You specify the relative location of the record (block) within 
the data set as a 3-byte binary number. This type of reference can be used only with 
format-F records. The system computes the actual track and record number. The 
relative block address of the first block is O. 

Relative Track Address: You specify the relative track as a 2-byte binary number and 
the actual record number on that track as a I-byte binary number. The relative track 
address of the first track is O. 

Relative Track Address and Actual Key: In addition to the relative track address, you 
specify the address of a main-storage location containing the record key. The system 
computes the actual track address and searches for the record with the correct key. 

Actual Address: You supply the actual address in the standard 8-byte 
form-MBBCCHHR. Remember that the use of an actual address may force you to 
indicate that the data set is unmovable. 

Extended Search: You request that the system begin its search with a specified starting 
location and continue for a certain number of records or tracks. This same option can 
be used to request a search for unused space in which a record can be added. 

To use the extended search option, you must indicate in the DCB the number of tracks 
(including the starting track) or records (including the starting record) that are to be 
searched. If you indicate a number of records, the system may actually examine more 
than this number. In searching a track, the system searches the whole track (starting 
with the first record); it therefore may examine records that precede the starting record 
or follow the ending record. 

If the DCB specifies a number equal to or greater than the number of tracks allocated 
to the data set or the number of records within the data set, the entire data set is 
searched in the attempt to satisfy your request. 

Exclusive Control for Updating: When more than one task in the same job step is 
refemng to the same data set through the same DCB, exclusive control of the block 
being updated is required to prevent simultaneous reference to the same record. Rather 
than issuing an ENQ macro instruc,tion each time you update a block, you can request 
exclusive control through the MACRF field of the DCB and the type operand of the 
READ macro. The coding example in Figure 62 illustrates the use of exclusive control. 
After the READ macro instruction is executed, your task has exclusive control of the 
block being updated. No other task in the system requesting access to the block is 
given access until you issue the WRITE macro. If, however, the block is not to be 
written, you can release exclusive control using the RELEX macro instruction. Only 
the task that opened the data set can use the RELEX macro instruction to release 
exclusive control of a block. 

Feedback Option: This option specifies that the system provide the address of the 
record requested by a READ or WRITE macro instruction. This address may be in the 
same form that was presented to the system in the READ or WRITE macro 
instruction, or as an 8-byte actual address. This option can be specified in the OPTCD 
parameter of the DCB and in the READ or WRITE macro instruction. If this option is 

106 OS Data Management Services Guide 

o 

o 



o 

o 

o 

I omitted from the DCB but is requested in a READ or WRITE macro instruction, an 
8-byte actual address is returned to the user. 

Creating a Direct Data Set 
Once the organization of a direct data set has been determined, the process of creating 
it is almost identical to that of creating a sequential data set. The data set organization 
field in the DCB macro instruction is specified as physical sequential (DSORG=PS or 
PSU). The DD statement must indicate direct-access (DSORG=DA or DAU). The 
DCB macro instruction must specify a direct-access device (DEVD=DA or omitted). 
If keys are used, a key length (KEYLEN) must also be specified, but may be used to 
provide compatibility with sequential access method processing of this data set. Record 
length (LRECL) need not be specified. The WRITE macro instruction should be of 
the form used to create a direct data set (MACRF=WL). 

If you are using direct addressing with keys, you can reserve space for future format-F 
records by writing a dummy record. To reserve or truncate a track for format-U or 
format-V records, write a capacity record (see "Direct-Access Device Charac­
teristics") . 

Format-F records are written sequentially as they are presented. When a track is filled, 
the system automatically writes the capacity record and advances to the next track. 
Because of the form in which relative track addresses are recorded, direct data sets 
whose records are to be identified by means other than actqaJ address must be limited 
in sIZe to no more than 65,536 tracks for the entire data set. 

Tape-to-Disk-Direct Data Set: In the example problem in Figure 60, a tape 
containing 204-byte records arranged in key sequence is used to create a direct data 
set. A 4-byte binary key for each record ranges from 1000 to 8999, so space for 8000 
records is requested. 

Adding or Updating Records on a Direct Data Set 
The techniques for adding records to a direct data set depend on the format of the 
records and the organization used. 

Format-F With Keys: Adding a record amounts to essentially an update by record 
identification. The reference to the record can be made by either a relative block 
address or a relative track address. 

If you attempt to add a record by relative block address, the system converts the 
address to a relative track address. That track is searched and the new record written 
in place of the first dummy record on the track. If there· is no dummy record on the 
track, you are informed that the write operation did not take place. If you request the 
extended search option, the new record will be written in place of the first dummy 
record found within the search limits you specify. If none is found, you are notified 
that the write operation could not take place. In the same way, a reference by relative 
track address causes the record to be written in place of the first dummy record on that 
track or the first within the search limits, if requested. 

Format-F Without Keys: Here too, adding a record is really updating a dummy record 
already in the data set. The main difference is that dummy records cannot be written 
automatically when the data set is created. You will have to use your own method for 
flagging dummy records. The update form of the WRITE macro instruction 
(MACRF=W) must be used rather than the add form (MACRF=WA). 

You will have to retrieve the record first (using a READ macro instruction), test for a 
dummy record, update, and write. 

Part 2: Data Management Processing Procedures 107 



/ /DAOUTPUT DD 

/ /TAPINPUT DD 

DIRECT START 

L 
OPEN 
LA 

NEXTREC GET 
LR 

COMPARE C 

* 
BNE 
WRITE 
CHECK 
AH 
B 

DUMMY C 
BH 
WRITE 
CHECK 
AH 
BR 

INPUTEND LA 
BR 

ENDJOB CLOSE 

DUMAREA DS 
DALOAD DCB 

TAPEDCB DCB 

DSNAME=SLATE.INDEX.WORDS,DCB=(DSORG=DA, 
BLKSIZE=200,KEYLEN=4,RECFM=F),SPACE=(204,8000),---

9,=F'1000' 
(DALOAD,(OUTPUT),TAPEDCB) 
1{) , COMPARE 
TAPEDCB 
2, 1 
9,0(2) Compare key of input 

control number 
DUMMY 
DECB1,SF,DALOAD,(2) Write data record 
DECB1 
9,=H'1 ' 
NEXTREC 

C 

against 

9,=F'8999' Have 8000 records been written? 
ENDJOB 
DECB2,SD,DALOAD,DUMAREA Write dummy 
DECB2 
9 ,=H' 1 ' 
10 
10,DUMMY 
10 
(TAPEDCB"DALOAD) 

CL5 
DSORG=PS,MACRF=(WL),DDNAME=DAOUTPUT, C 
DEVD=DA,SYNAD=CHECKER,---
EODAD=INPUTEND,MACRF=(GL), ---

Figure 60. Creating a Direct Data Set 

I 

Format-V or Format-U With Keys: The technique used to add records in this case 
depends on whether records are located by indirect addressing or a cross-reference 
table. If indirect addressing is used, you must at least initialize each track (write a 
capacity record) even if no data is actually written. That way the capacity record 
indicates how much space is available on the track. If a cross-reference table is used, 
you should exhaust the input and then initialize enough succeeding tracks to contain 
any additions that might be required. 

To add a new record, use a relative track address. The system examines the capacity 
record to see if there is room on the track. If there is, the new record is written. 
Under the extended search option, the record is written in the first available area within 
the search limit. 

Format-V or Format-U Without Keys: Because a record of this type does not have a 
key, you can refer to the record only by its relative track or actual address (direct 
addressing only). When you add a record to this data set, you must retain the relative 
track or actual address data (for example, by updating your cross-reference table). 

Tape-to-Disk Add-Direct Data Set: The example in Figure 61 involves adding records 
to the data set created in the last example. Notice that the write operation adds the 
key and the data record to the data set. If the existing record is not a dummy record, 
an indication is returned in the exception code of the DECB. For that reason, it is 

108 OS Data Management Services Guide 

o 

'!. 

0 

o 



o 

o 

" 

o 

//DlRADD DD 
//TAPEDD DD 

DIRECTAD START 

OPEN 
NEXTREC GET 

L 
SH 
ST 
WRITE 
WAIT 
CLC 
BE 

"TZ¥W - . -

better to use the WAIT macro instruction instead of the CHECK macro instruction to 
test for errors or exceptional conditions. 

Tape-to-Disk Update-Direct Data Set: The example in Figure 62 is similar to that in 
Figure 61, but involves updating rather than adding. There is no check for dummy 
records. The existing direct data set contains 25,000 records whose 5-byte keys range 
from 00001 to 25000. Each data record is 100 bytes long. The first 30 characters are 
to be updated. Each input tape record consists of a 5-byte key and a 30-byte data 
area. Notice that only data is brought into main storage for updating. 
Consideration for User Labels: User labels must be created when the data set is 
created. They may be updated, but not added or deleted, during processing of a direct 
data set. When creating a multivolume direct data set using BSAM, you should tum 
off the header exit entry after OPEN and turn on the trailer label exit entry just before 
issuing the CLOSE. This eliminates the end-of-volume exits. The first volume, 
containing the user label track, must be mounted when the data set is closed. If you 
have requested exclusive control, OPEN and CLOSE will ENQ and DEQ to prevent 
simultaneous reference to user labels. 

Consideration for Programming the 2305 Fixed Head Storage: When a data set on a 
2305 device is to be used by several tasks simultaneously, or when overlapping I/O 
(successive WRITEs are issued without an intervening CHECK or WAIT) is used, the 
following combination may produce overlaying of records: 

• WRITE ADD processing. 

• Fixed records with or without track overflow. 

DSNAME=SLATE.INDEX.WORDS,---

(DIRECT, (OUTPUT),TAPEIN) 
TAPEIN,KEY 
4,KEY Set up relative record number 
4,=H'1000' 
4,REF 
DECB,DA,DIRECT,DATA, 's' ,KEY,REF+1 
ECB=DECB 
DECB+1(2),=X'OOOO' Check for any errors 
NEXTREC 

Check error bits and take required action 

DIRECT 

TAPEIN 
KEY 
DATA 
REF 

DCB 

DCB 
DS 
DS 
DS 

DDNAME=DIRADD,DSORG=DA,RECFM=F,KEYLEN=4,BLKSIZE=200, 
MACRF=(WA) 

F 
CL200 
F 

C 

Figure 61. Adding Records to a Direct Data Set 

Part 2: Data Management Processing Procedures 109 



/ /DIRECTDD DD DSNAME=SLATE.INDEX.WORDS,--- 0 / /TAPINPUT DD 

DIRUPDAT START 

OPEN (DIRECT, (UPDAT),TAPEDCB) 
NEXTREC GET TAPEDCB,KEY 

PACK KEY, KEY 
CVB 3,KEYFIELD 
SH 3, =H' 1 ' 
ST 3,REF 
READ DECBRD,DI,DIRECT,'S','S',0,REF+1 
CHECK DECBRO 
L 3,DECBRD+12 
MVC ° ( 3 ° , 3 ) , DATA 
ST 3,DECBWR+12 
WRITE DECBWR,DI,DIRECT,'S' ,'S',0,REF+1 
CHECK DECBWR 
B NEXTREC 

KEYFIELD DS OD 
DC XL3'-' 

KEY DS CL5 
DATA DS CL30 
REF DS F 
DIRECT DCB DSORG=DA,DDNAME=DIRECTDD,~~CRF=(RISC,WIC), C 

OPTCD=R j BUFNO=1,BUFL=100 
TAPEDCB DCB 

Figure 62. Updating a Direct Data Set 0 

o 
110 OS Data Management Services Guide 

----~ - ----



.. ·M • ~"'''·TE"¥f"· ........ p KWn..... -r "fTTT!!JTFtf"""T? W· - . em ,. 'HI". -

o 

o 

o 

PART 3: DATA SET DISPOSITION AND SPACE ALLOCATION 

Allocating Space on Direct-Access Volumes 
When direct-access storage space is required for a data set, you specify the amount of 
space needed and the device type, and the operating system selects the device and 
allocates the space accordingly. This arrangement provides for flexible and efficient 
use of devices and available storage space, and relieves you of considering the details 
involved in efficient space control. 

Before a direct-access volume can be used for data storage, it must be initialized by the 
utility program IBCDASDI or IEHDASDR. IBCDASDI or IEHDASDR functions 
include in part: 

• Creating the standard 80-byte volume label and writing it on cylinder 0, track 0, 
of the volume. 

• Initializing the volume table of contents (VTOC). The location of the VTOC 
depends on the conventions your installation uses in initializing the volume. 

• Writing the home address (HA) and capacity record (RO) for each track. 

• Checking tracks and making alternate track assignments if necessary. 

When the data set is to be stored on a direct-access volume, you must supply, in the 
DD statement, control information designating the amount of space to be allocated and 
the manner in which it is to be allocated. 

Specifying Space Requirements 
The amount of space required can be specified in blocks, tracks, or cylinders. If you 
want to maintain device independence, specify your space requirements in blocks. If 
your request is in tracks or cylinders, you must be aware of such device considerations 
as cylinder and track capacity. 

Cylinder allocation allows faster input/output of sequential data sets than does track 
allocation. Track allocation stops input/output at the end of every track to prevent 
references on the same cylinder outside of the data set. The time difference occurs 
when you use the sequential access method or the partitioned access method to read a 
data set whose record format is not fixed standard (FS). If the data set is partitioned, 
the time difference occurs during both loading of a module from the data set and 
reading of the data set's directory. 

Allocation by Blocks: When the amount of space required is expressed in blocks, you 
must specify the number and average length of the blocks within the data set, as in this 
example: 

II DD --,SPACE=(300,(5000,100)) 

300 = average block length in bytes 
5000 = quantity (number of blocks) 

1 00 = increment (to be used if the quantity is not sufficient) allocated 
in additional blocks 

Note that when average block length and secondary space allocation are being used, 
the BLKSIZE parameter specified must be equal to the maximum block length. 

Part 3: Data Set Disposition and Space Allocation 111 



..•.. -.-.-.. -.-.•..• --.--..... -.................... ~ •. -----~-~--~ 

From this information, the operating system estimates and allocates the number of 
tracks required. Space is always in whole tracks. You may also request that the space 
allocated for a specific number of blocks begin and end on cylinder boundaries. 

You must be certain that both the quantity and the increment are large enough to 
contain the largest block to be written. Otherwise, all of the space requested is 
allocated but erased as the system tries to find a space large enough for the record. 

Allocation by Tracks or Cylinders: When the amount of space required is expressed in 
tracks or cylinders, you must also specify the device type in the DD statement, as in 
these examples: 

II DD --,SPACE=(TRK,(100,5)),UNIT=2305-2 
II DD -,SPACE=(CYL,(3,1 )),UNIT=2314 

Allocation by Absolute Addre~ If the data set contains location-dependent information 
in the form of an absolute track address (MBBCCHHR), space should be requested 
with respect to the number of tracks and the beginning address, as in this example: . 

II DD -,SPACE=(ABSTR,(500,20)),UNIT=2314 

where 500 tracks are required, beginning at relative track 20. 

Additional Space Allocation Options: The DD statement provides you with a great deal 
(;"f flexibility in specifying space requirements. These options are described in detail in 

OS Job Control Language Reference. 

Estimating Space Requirements 
To determine how much space your data set requires, you must consider these variables 
for the device type: 

• Track capacity 
• Tracks per cylinder 
• Cylinders per volume 
• Data length (blocksize) 
• Key length 
• Device overhead 

Figure 63 lists the physical characteristics of a number of direct-access storage devices. 

The term device overhead refers to the space required on each track for hardware data, 
that is, address markers, count areas, gaps between records, record 0, etc. Device 
overhead varies with each device and depends also on whether the blocks are written 
with keys. To compute the actual space required for each block including device 
overhead, you can use the formulas in Figure 64. Note that any fraction of a byte 
must be ignored. For example, if the formula gives 15.644 bytes, you must allocate 15 
bytes. 

The formulas can be combined in the following way: 

If you intend to specify your space requirements in tracks (TRK) or cylinders (CYL), 
your estimate should be made as shown above. If you request absolute tracks 
(ABSTR), remember that you cannot allocate track 0, cylinder O. The amount of space 
required for the VTOC will reduce the space available on the rest of the volume. 

If you specify your space requirements in average block length, the system performs the 
computations for you. 

112 OS Data Management Services Guide 

o 

o 

t. 

o 



-T---E-l-W-n-rf? -r- ··5l!TTm r-TTYW! II TnHn 

0 

o 

m mm 7 -

Volume Maximum Block Tracks per Number of Total 
Device Type Size per Track 1 Cylinder Cylinders2 Capacity 1,2 

2301 Drum 20483 8 25 4,096,600 
2302 Disk 4984 46 246 56,398,944 
2303 Drum 4892 10 80 3,913,600 
2305-1 Drum 14136 8 48 5,428,224 
2305-2 Drum 14660 8 96 11,258,880 
2311 Disk 3625 10 200 7,250,000 
2314/2319 Disk 7294 20 200 29,176,000 
2321 Data Cell 2000 20 9803 39,200,000 
3330/3333 Disk 13030 19 404 100,018,280 

1 Capacity indicated in bytes (when RO is used by the IBM programming system). 
2 Excluding alternate cylinders. 
3 A volume is equal to one bin in a 2321 Data Cell. 

Figure 63. Direct-Access Storage Device Capacities 

Bytes Required by Each Data Block 
Track Blocks With Keys Blocks Without Keys 

Device Capacity Bi 

2301 20483 186+KL+DL 
2302 4984 81+(KL+DL)537/512 
2303 4892 146+KL+DL 
2305-1 145681 634+KL+DL 
2305-2 148581 289+KL+DL 
2311 3625 81 +(KL+DL)537 /512 
2314/2319 7294 146+(KL+DL)534/512 
2321 2000 1 00+(KL+DL)537 /512 
3330/3333 131651 191+KL+DL 

Bi is any block but the last on the track. 
Bn is the last block on the track. 
DL is data length. 
KL is key length. 

Bn Bi Bn 

53+KL+DL 133+DL DL 
20+KL+DL 61 +(DL)537 /512 DL 
38+KL+DL 108+DL DL 
634+KL+DL 432+DL 432+DL 
289+KL+DL 198+DL 198+DL 
20+KL+DL 61 +(DL)537 /512 DL 
45+KL+DL 101 +(DL)534/512 DL 
16+KL+DL 84+(DL)537/512 DL 
191+KL+DL 135+DL 135+DL 

1 This value is different from the maximum block size per track because the formula for the last 
block on the track includes an overhead for this device. 

Figure 64. Direct-Access Device Overhead Formulas 

Because a sequential data set and a direct data set are created in the same way, the 
estimate and specification of space requirements are identical. If you use the WRITE 
SZ macro instruction, your secondary allocation for a direct data set should be at least 
2 tracks. Space allocation for a partitioned data set requires that you also consider the 
space used for the directory. Similarly, allocation for an indexed sequential data set 
requires that you consider the space needed for the prime area, index areas, and 
overflow areas. 

Allocating Space for a Partitioned Data Set 

o 

What is the average size of the members to be stored on your direct-access volume? 
How many members will fit on the volume? Will you need directory entries for the 
member names only or will aliases be used? How many? Will members be added or 
replaced frequently? All of these questions must be answered if you are to estimate 
your space requirements accurately and use the space efficiently. Note, too, that a 
partitioned data set cannot extend beyond one volume. 

Part 3: Data Set Disposition and Space Allocation 113 



If your data set will be quite large, or you expect to do a lot of updating, it lnight be 
best to allocate a full volume. If it will be small or seldom subject to change, you 
should make your estimate as accurate as possible to avoid wasted space or wasted time 
used for recreating the data set. 

Because the characteristics of all the members of the data set must be uniform, the 
record format could be specified as undefined (RECFM= U) and the blocksize 
(BLKSIZE) as a maximum length. It is a good practice to indicate a block length equal 
to track capacity, for example, BLKSIZE=3625 for a 2311 disk. You might then ask 
for either 200 tracks, or 20 cylinders, thus allowing for 725,000 bytes of data. 

Assuming an average length of 70,000 bytes for each member, you need space for at 
least 10 directory entries. If each member also has an average of three aliases, space 
for an additional 30 directory entries is required. 

Space for the directory is expressed in 256-byte blocks. Each block contains from 3 to 
20 entries, depending on the length of the user data field. If you expect 40 directory 
entries, request at least 8 blocks. Any unused space on the track is wasted unless there 
is enough space left to contain a block of the first member. Therefore, the most 
advisable request in this case would be for 10 blocks. 

Any of the following space specifications would cause the same allocation: 

SPACE= (3625 ,(200" 1 0» 

SPACE=(CYL,(20,,10» 

SP ACE= (TRK,(200" 1 0» 

Although an increment has been omitted in these examples, it could have been supplied 
to provide for extension of the member area. The directory size, however, cannot be 
extended. 

A.llocating Space for an Indexed Sequential Data Set 
An indexed sequential data set has three areas: prime, index, and overflow. Space for 
these areas can be subdivided and allocated as follows: 

• Prime area-If you request a prime area only, the system automatically uses a 
portion of that space for indexes, taking one cylinder at a time as needed. Any 
unused space in the last cylinder used for index will be allocated as an 
independent overflow area. More than one volume can be used in most cases, 
but all volumes must be for devices of the same device type. 

• Index area-You can request that a separate area be allocated to contain your 
cylinder and master indexes. The index area must be contained within one 
volume, but this volume can be on a device of a different type than the one that 
contains the prime area volume. If a separate index area is requested, you cannot 
catalog the data set with a DD statement. 

If the total space occupied by the prime area and index area does not exceed one 
volume, you can request that the separate index area be embedded in the prime 
area (to reduce access arm movement) by indicating an index size in the SPACE 
parameter of the DD statement defining the prime area. 

If you request space for prime and index areas only, the system automatically uses 
any space remaining on the last cylinder used for master and cylinder indexes for 
overflow, provided the index area is on a device of the same type as the prime 
area. 

114 OS Data Management Services Guide 

.~~---------.--------.----.-.---.----.-.-

o 

.. 

o 

f, 

o 



o 

o 

o 

• 

•• 

Overflow area-Although you can request an independent overflow area, it must 
be contained within one volume. If no specific request for index area is made, 
then it will be allocated from the specified independent overflow area. 

To request that a designated number of tracks on each cylinder be used for 
cylinder overflow records, you must use the CYLOFL parameter of the DCB 
macro instruction. The number of tracks that you can use on each cylinder equals 
the total number of tracks on the cylinder minus the number of tracks needed for 
track index and for prime data, that is: 

Usable tracks = total tracks - (track index tracks + prime data tracks) 

Note that when you create a I-cylinder data set, ISAM reserves 1 track on the last 
cylinder for the end-of-file filemark. 

When you request space for an indexed sequential data set, the DD statement must 
follow a number of conventions, as shown below and summarized in Figure 65. 

• Space can be requested only in cylinders (CYL) or absolute tracks (ABSTR). If 
the absolute track technique is used, the designated tracks must make up a whole 
number of cylinders. 

• Data set organization (DSORG) must be specified as indexed sequential (IS or 
ISU) in both the DCB macro instruction' and the DCB parameter of the DD 
statement. 

• All required volumes must be mounted when the data set is opened; that is, 
volume mounting cannot be deferred. 

• If your prime area extends beyond one volume, you must indicate the number of 
units and volumes to be spanned, for example, 
UNIT=(2311,3),VOLUME=(,,,3). 

• You can catalog the data set using the DD statement parameter DISP=(,CATLG) 
only if the entire data set is defined by one DD statement, that is, if you did not 
request a separate index or independent overflow area. 

As your data set is created, the operating system builds the track indexes in the prime 
data area. Unless you request a separate index area or an embedded index area, the 
cylinder and master indexes are built in the independent overflow area. If you did not 
request an independent overflow area, the cylinder and master indexes are built in the 
prime area. 

If an error is encountered during allocation of a multivolume data set, the IEHPROGM 
utility program should be used to scratch the DSCBs of the data sets that were 
successfully allocated. The IEHLIST utility program can be used to determine whether 
or not part of the data set has been allocated. The IEHLIST utility program is also 
useful to determine whether space is available or whether identically named data sets 
exist before space allocation is attempted for indexed sequential data sets. These utility 
programs are described in OS Utilities. 

Specifying a Prime Data Area 
To request that the system allocate space and subdivide it as required, you should code: 

Iiddname 
II 
II 

DD DSNAME=dsname,DCB=DSORG=IS, 
SPACE=(CYL,quantity"CONTIG),UNIT=unitname, 
DISP=( ,KEEP),---

C 

C 

Part 3: Data Set Disposition and Space Allocation 115 



Criteria 

1. Number 2. Types 3. Index 
of DO of DO Size 
Statements Statements Coded? 

3 INDEX 
PRIME 
OVFLOW 

2 INDEX 
PRIME 

2 PRIME No 
OVFLOW 

2 PRIME Yes 
OVFLOW 

PRIME No 

PRIME Yes 

Restrictions on 
Unit Types and 
Number of Units 
Requested 

None 

None 

None 

The statement 
defining the prime 
area cannot request 
more than one unit. 

None 

Statement cannot 
request more than 
one unit. 

Figure 65. Requests for Indexed Sequential Data Sets 

Resulting 
Arrangement 
of Areas 

Separate index, prime, 
and overflow areas. 

Separate index and prime 
areas. 

Prime area and overflow 
area with an index at its 
end 

Prime area and embedded 
index, and overflow area. 

Prime area with index at 
its end. Any unused index 
area is used for indepen­
dent overflow. 

Prime area with embedded 
index area. 

You can accomplish the same type of allocation by qualifying your dsname with the 
element indication (PRIME). This element is assumed if omitted. It is required only if 
you request an independent index or overflow area. To request an embedded index 
area when an independent overflow area is specified, you must indicate 
DSNAME=dsname(PRIME). To indicate the size of the embedded index, you specify 
SPACE=(CYL,(quantitY"index size». 

Specifying a Separate Index Area 
To request a separate index area, other than an embedded area as described above, you 
must use a separate DD statement. The element name is specified as (INDEX). The 
space and unit designations are as required. Notice that only the first DD statement 
can have a data definition name. The data set name (dsname) must be the same. 

Iiddname 
II 

DD DSNAME=dsname(INDEX),--­
DD DSNAME=dsname(PRIME),---

Specifying an Independent Overflow Area 
A request for an independent overflow area is essentially the same as for a separate 
index area. Only the element name, OVFLOW, is changed. If you do not request a 
separate index area, only two DD statements are required. 

Iiddname 
II 
II 

116 as Data Management Services Guide 

DD DSNAME=dsname(INDEX,--­
DD DSNAME=dsname(PRIME),--­
DD DSNAME=dsname(OVFLOW),---

o 

o 

o 



o 

o 

o 

Calculating Space Requirements for an Indexed Sequential Data Set 
To determine the number of cylinders required for an indexed sequential data set, you 
must consider the number of blocks that will fit on a cylinder, the number of blocks 
that will be processed, and the amount of space required for indexes and overflow 
areas. When you make the computations, consider how much additional space is 
required for device overhead. Figures 63 and 64 show device capacities and overhead 
formulas; use the device capacity shown in Figure 64, and use the overhead formulas 
for records with keys in Figure 64. In addition, in the formulas that follow, the length 
of the last block (or only block) must include device overhead as given in Figure 64 as 
Bn. 

Blocks 
per track 

== 1 + «Track capacity - Length of the last block)/(Length of other blocks» 

Bt == 1 + «Ct-Bn)/Bi) 

The following eight steps summarize calculation of space requirements for an indexed 
sequential data set. 

Step 1 

Once you know how many records will fit on a track and the maximum number of 
records you expect to create, you can determine how many tracks you will need for 
your data. 

Number of tracks == (Maximum number of blocks/Blocks per track) + 1 
required 

ISAM load mode reserves the last prime data track for the filemark. 

Example: Assume that a 200,000 record part-of-speech dictionary is stored on an ffiM 
2311 Disk Storage Drive as an indexed sequential data set. Each record in the 
dictionary has a 12-byte key (the word itself) and an 8-byte data area containing a 
part-of-speech code and control information. Each block contains 50 records; 
LRECL=20 and BLKSIZE=1000. Using the formula from Figure 64, we find that 
each track will contain 3 blocks or 150 records. A total of 1333 1/3 tracks will be 
required for the dictionary. 

Bt == 1 + 3625 - (20 + 12 + 1000) == 1 + 2593 == 3 
81 + 1.049(12 + 1000) 1143 

Records per track == (3 blocks)(50 records per block) == 150 

Prime data tracks required (T) 

Step 2 

200,000 records 
150 records per track 

+ 1 1334 1/3 

You will want to anticipate the number of tracks required for cylinder overflow areas. 
The computation is the same as for prime data tracks, but you must remember that 
overflow records are unblocked and a 10-byte link field is added. Remember, if you 
exceed the space allocated for any cylinder overflow area, an independent overflow 
area is required. Those records are not placed in another cylinder overflow area. 

Overflow records 
per track (Ot) 

Ot 

1 + Track capacity - Length of last overflow record 

Length of other overflow records 

1 + «Ct-Rn)/Ri) 

Part 3: Data Set Disposition and Space Allocation 117 

Ii· 



Example: Approximately 5000 overflow records are expected for the data set 
described in step 1. Since 29 overflow records will fit on a track, 173 overflow tracks 
are required. This is approximately 2 overflow tracks for every 15 prime data tracks. 
Since the 2311 disk has 10 tracks per cylinder, it would probably be best to allocate 2 
tracks per cylinder for overflow. 

Ot = 1 + 3625 - (20 + 12 + 20 + 10) = 1 + 3563 = 29 
81 + 1.049(12 + 20 + 10) 126 

Overflow tracks required = 5000 records = 173 
29 records per track 

Overflow tracks per cylinder (Oc) = 2 

Step 3 

You will have to set aside space in the prime area for track index entries. There will be 
two entries (normal and overflow) for each track on a cylinder that contains prime data 
records. The data field of each index entry is always 10 bytes long. The key length 
corresponds to the key length for the prime data records. How many index entries will 
fit on a track? 

Index entries = 1 + Track capacity - Length of last index entry 

per track (It) Length of other index entries 

It = 1 + «Ct-En)/Ei) 

Example: Again assuming 2311 disk and records with 12-byte keys, we find that 35 
index entries will fit on a track. 

It = 1 + 3625 - (20 + 12 + 10) 
81 + 1.049(12 + 10) 

1 + 3583 = 1 + 34 = 35 
105 

Step 4 

The number of tracks required for track index entries will depend on the number of 
tracks per cylinder and the number of track index entries per track. Any unused space 
on the last track of the track index can be used for any prime data records that will fit. 

Number of track index 

tracks per cylinder (Ic) 

Ic 

2(Tracks per cylinder-overflow tracks per cylinder) + 1 

Index entries per track + 2 

(2(Tc-Oc)+ 1)/(lt+2) 

Note that for variable-length records or when a prime data record will not fit on the 
last track of the track index, the last track of the track index is not shared with prime 
data records. In such a case, if the remainder of the division is less than or equal to 2, 
do not round the quotient up to the nearest integer. In all other cases, round the 
quotient up to the nearest integer. 

Example: The 2311 disk has 10 tracks per cylinder. You can fit 35 track index entries 
per track. Therefore, you need less than 1 track for each cylinder: 

Ic = 2(10-2) + 1 = E 
35 + 2 = 27 

The space remaining on the track is «(1-17/37)(3625)) = 1960 bytes. This is enough 
for 1 block of prime data records. Since the normal number of blocks per track is 3, 
the block uses 1/3 of the track, and the effective value of Ic is therefore 1-1/3 = 2/3. 

118 as Data Management Services Guide 

o 

o 

o. 



o 

I 

o 

" 

o 

• 

Step 5 

Next you have to compute the number of tracks available on each cylinder for prime 
data records. You cannot include tracks set aside for cylinder overflow records. 

Prime data {rrackS \ (oVerflOW traCkS) (Index traCkS) 
tra~ks per =~er cYlinde1 per cylinder per cylinder 
cylinder 

Pc = T c - oc - Ic 

Example: If you set aside 2 cylinder overflow tracks, and you require 2/3 of a track 
for the track index, 7 1/3 tracks are available on each cylinder for prime data records. 

Pc = 10 - 2 - 2/3 = 7 1/3 

Step 6 

The number of cylinders required to allocate prime space is determined by the number 
of prime data tracks required divided by the number of prime data tracks available on 
each cylinder. This area includes space for the prime data records, track indexes, and 
cylinder overflow records. 

Number of 

cylinders 

required 
= Prime data tracks required/Prime data tracks per cylinder 

" 

C = T/Pc 

Example: You need 1333 1/3 tracks for prime data records. You can use 7 1/3 
tracks per cylinder. Therefore, 182 cylinders are required for your prime area and 
cylinder overflow areas. 

C = (1333 1/3)/(7 1/3) = 181.9 

Step 7 

You will need space for a cylinder index as well as track indexes. There is a cylinder 
index entry for each track index (for each cylinder allocated for the data set). The size 
of each entry is the same as the size of the track index entries; therefore, the number 
of entries that will fit on a track is the same as the number of track index entries. 
Unused space on a cylinder index track is not shared. 

Number of tracks 

required for = (Track indexes + 1)/lndex entries per track 

cylinder index 

Ci (C+ 1)/lt 

Example: You have 182 track indexes. Since 35 index entries fit on a track, you need 
5.3 tracks for your cylinder index. The remaining space on the last track is unused. 

Ci = (182 + 1)/35 = 5.3 

Note that every time a cylinder index crosses a cylinder boundary, ISAM writes a 
dummy index entry that lets ISAM chain the index levels together. The addition of 
dummy entries can increase the number of tracks required for a given index level. To 
determine how many dummy entries will be required, divide the total number of tracks 
required by the number of tracks on a cylinder. If the remainder is 0, subtract 1 from 
the quotient. If the corrected quotient is not 0, calculate the number of tracks these 
dummy entries require. Also consider any additional cylinder boundaries crossed by 

Part 3: Data Set Disposition and Space Allocation 119 

, .. Ii] 



the addition of these tracks and by any track indexes starting and stopping within a 
cylinder. 

Step 8 

If you have a data set large enough to require master indexes, you will want to 
calculate the space required according to the number of tracks for master indexes 
(NTM parameter) you specified in the DCB macro instruction or the DD statement. 

If the cylinder index exceeds the NTM specification, an entry is made in the master 
index for each track of the cylinder index. If the master index itself exceeds the NTM 
specification, a second-level master index is started. Up to three levels of master 
indexes are created if required. 

The space requirements for the master index are computed in the same way as those 
for the cylinder index. 

Number of tracks 

required for 
master indexes 

== (Number of cylinder index tracks + 1)/lndex entries per track 

M} == (Ci+l)/It when Ci>NTM 

M2 == (M} + 1)/lt when M} >NTM 

M3 == (M2+ 1)/lt when M2>NTM 

Example: Assume that your cylinder index will require 22 tracks. Since large keys are 
used, only 10 entries will fit on a track. Assuming that NTM was specified as 2, 3 . 
tracks will be required for a master index, and two levels of master index will be 
created. 

M} == (22+ 1)/10 == 2.3 

Note that every time a master index crosses a cylinder boundary, ISAM writes a 
dummy index entry that lets ISAM chain the index levels together. The addition of 
dummy entries can increase the number of tracks required for a given index level. To 
determine how many dummy entries will be required, divide the total number of tracks 
required by the number of tracks on a cylinder. If the remainder is 0, subtract 1 from 
the quotient. If the corrected quotient is not 0, calculate the number of tracks these 
dummy entries require. Also consider any additional cylinder boundaries crossed by 
the addition of these tracks and by any track indexes starting and stopping within a 
cylinder. 

120 as Data Management Services Guide 

o 

(} 

o 



o 

o 

o 

-

Summary: Indexed Sequential Space Requirement Calculations 

1. How many blocks will fit on a track? 

Bt = 1 + «Ct-Bn)/Bi) 

2. How many overflow records will fit on a track? 

Ot = 1 + «Ct-Rn)/Ri) , 

3. How many index entries will fit on a track? 

It = 1 + «Ct-En)/Ei) 

4. How many track index tracks are needed per cylinder? 

Ie = (2(Te-Oe)+ 1)/(lt+2) 

5. How many tracks on each cylinder can be used for prime data records? 

Pc = T e - Oe - Ie 

6. How many cylinders are needed for the prime data area? 

C = T/Pe 

7. How many tracks are required for the cylinder index? 

Ci = (C+ l)/lt 

8. How many tracks are required for master indexes? 

M = (Ci+ l)/lt 

Control and Disposition of Data Sets 
You specify two kinds of status and disposition information for the data sets you use 
for your processing by coding DISP= (status,disposition) in the disposition field of the 
DD statement. The first kind deals with the status of the data set when you begin 
processing and the relationship of the data set to other job steps in your job or other 
jobs. The second deals with what is to be done with the data set when you have 
completed processing. In the latter case, you can take advantage of the catalog of the 
operating system. 

A data set that is being used for input has a status of.Q!!l. If it can be used by more 
than one job, the status should be specified as SHR. If you are going to add to the 
input data set, specify MOD. The system automaticallY positions the access mechanism 
after the last record wh~e data set is opened. A new output data set should be 
indicated as NEW. 

Having identified the status of the data set at the beginning of your job step, you 
should specify how you want it disposed of at the end of processing. If the disposition 
is to be unchanged, you need not specify anything. The status of an existing data set 
remains unchanged; a new data set is deleted. The requested disposition is performed 
at the end of the job step. A data set to be used in a later job can be kept (~) 
until a subsequent request is made to delete it. If the data set is to be used by more 
than one job step in the same job, you can specify that it is to be passed (~). 

If you specify the CATLG disposition, the data set name is recorded in the catalog by 
the system a;nd its volume is noted. An old data set can subsequently be removed from 
the catalog if you specify UNCATLG. 

Part 3: Data Set Disposition and Space Allocation 121 



Routing Data 

If you wish, you can specify one disposition to be performed if the job step terminates 
normally, and a different disposition to beperformed if the job step terminates 
abnormally. For example, you can specify DISP=(OLD,DELETE,KEEP) if you wish .... 
to delete a data set under normal conditions, but wish to keep it if processing is 
abnormally terminated. For normal termination, you can specify any 
disposition-PASS, KEEP, DELETE, CATLG, or UNCATLG; for abnormal 
termination, you can specify any ~position except PASS. 

Sets through the Output Stream 
Whenever you have an output data set to be printed or punched, you can route the 
data set through the output stream. Data sets in the output stream are written into 
intermediate storage on a direct-access device and later transferred to the card punch 
or printer by a system routine called the system output writer. Routing data sets 
through the output stream improves operating-system efficiency because the unit-record 
device is not tied up for the entire length of your program. It is busy only as long as it 
takes the system output writer to punch or print your output. 

When you route a data set through the output stream, you do not request a unit-record 
device for exclusive use by your job step. Instead, you request an output class that is 
assigned to the device you need. You should have a list of the output classes in your 
installation and of the devices assigned to each class. 

Output classes are identified by the letters A-Z and the digits 0-9. You request an 
output class by coding the SYSOUT keyword parameter in your DD statement. For 
example, code SYSOUT=A to request output class A. You can assign several data sets 
to the same output class. The system output writer copies data sets in the order of 
their DD statements. For other parameters you can code with the SYSOUT parameter, 
see "The SYSOUT Parameter" in the section "The DD Statement" in OS Job Control 
Language Reference. 

You open and close a SYSOUT data set (a data set routed through the output system) 
in the same way as any other data set. If specified in an exit list, the DCB exit routine 
is entered in the usual manner. 

You create a SYSOUT data st1 by using either the basic sequential access method 
(BSAM) or the queued sequential access method (QSAM). You can write records in 
any format defined for the type of unit-record device towhich the data set will be 
transferred. Record length must not exceed the maximum allowable for the device. 

When you use QSAM with fixed-length blocked records or BSAM, the DCB blocksize 
parameter does not have to be a multiple of logical record length (LRECL) if the 
blocksize is specified through the SYSOUT DD statement. Under these conditions, if 
blocksize is greater than LRECL but not a multiple of LRECL, blocksize is reduced to 
the nearest lower multiple of LRECL when the data set is opened. This feature allows 
a cataloged procedure to specify blocking for SYSOUT data sets, even though your 
LRECL is not known to the system until execution. Therefore, the SYSOUT DD 
statement of the go step of a compile-load-go procedure can specify blocksize without 
blocksize being a multiple of LRECL. For further information, refer to "The DCB 
Parameter" in the section "The DD Statement" in OS Job Control Language 
Reference. 

Because a SYSOUT data set is written on a direct-access device, you should omit the 
DEVD operand in the DCB macro instruction, or should code DEVD=DA. 

Your SYNAD routine is entered on errors that occur when you write the data set into 
intermediate storage on a direct-access device. 

122 OS Data Management Services Guide 

o 

o 

o 



o 

Concatenating 

o 

o 

Your program is responsible for printing format, pagination, and header control. Use 
of control characters must be indicated in the usual way in the DCB. If you do not use 
control characters, a standard control is supplied. When channel 12 is sensed, a printer 
will space one line and skip to channel 1; a card punch will select punch pocket 1. 

Cards can be punched only in EBCDIC mode. 

Sequential and Partitioned Data Sets 

, 

Two or more sequential or partitioned data sets can be automatically retrieved by the 
system and processed successively as a single data set. This reading technique is known 
as concatenation. A maximum of 255 data sets (16, if partitioned) can be concatenated, 
but they must be used only. for input. 

To save time when processing two consecutive data sets on a single volume, you 
specify LEAVE in your OPEN macro instruction. Concatenated data sets cannot be 
read backwatd. -

When data sets are concatenated, the system treats the group as a single data set and 
only one data extent block (DEB) is constructed. Thus, it is important to consider the 
characteristics of the individual data sets being concatenated. Data sets with like 
characteristics are those that may be processed correctly using the same data control 
block (DCB), input/output block (lOB), and channel program. Any exception makes 
them unlike. Concatenated partitioned data sets are always treated as like and use the 
attributes of the first data set only. You must inform the system if unlike data sets are 
concatenated by modifying the DCBOFLGS field of the DeB. The indication must be 
made before the end of the current data set is reached. You must set bit 4 to 1 by 
using the instruction 01 DCBOFLGS,X'08' as described in "Modifying the Data 
Control Block." If bit 4 of the DCBOFLGS field is 1, end-of-volume processing for 
each data set will issue a CLOSE for the data set just read and an OPEN for the next 
concatenated data set. This opening and closing procedure updates the fields in the 
DCB and, if necessary, builds a new lOB and a new channel program. If the buffer 
pool was obtained automatically by the open routine, the procedure also frees the 
buffer pool and obtains a new one for the next concatenated data set. The procedure 
does not issue a FREEPOOL for the last concatenated data set. Unless you have some 
way of determining the characteristics of the next data set before it is opened, you 
should not reset the DCBOFLGS field to indicate like characteristics during processing. 

When unlike data sets have been concatenated, you should not issue multiple input 
requests, that is, a series of READ or GET macro instructions, in your program. If you 
do, you will have to arrange some way to determine which requests have been 
completed and which must be reissued. In any case, the GET or READ macro 
instruction that detected the end of data set will have to be reissued. Figure 66 
illustrates a possible routine for determining when a GET or READ must be reissued. 
This restriction does not apply to like data sets since no open or close operation is 
necessary between data sets. 

When the change from one data set to another is made, label exits are taken as 
required; automatic volume switching is also performed for multiple-volume data sets 
unless they are partitioned. Your end-of-data-set (EODAD) routine is not entered 
until the last data set has been processed, except that for partitioned data sets, your 
EODAD routine receives control at the end of each member. At that time, you can 
process the next member or close the data set. 

You process a concatenation of partitioned data sets the same way you process a single 
partitioned data set with one exception. You must use the FIND macro instruction to 
begin processing a member; you cannot use the POINT (or NOTE) macro instruction 

Part 3: Data Set Disposition and Space Allocation 123 



Check 

Process 

On Set 
>-----~I Reread Switch 

Off 

Set 
Reread Switch 

On 

Yes 

DCBEXIT 

* Returns are to control 
program address in register 14 

Set First­
Time-In 

Switch Off 

Set Bit 4 
of OFLGS 

to 1 

Figure 66. Reissuing a READ for Unlike Concatenated Data Sets 

until after the FIND macro instruction has been issued. Figure 48 shows how to 
process a single partitioned data set using FIND. If two members of different data sets 
in the concatenation have the same name, the FIND macro instruction determines the 
address of the first one in the concatenation. You would not be able to process the 
second one in the concatenation. The BLDL macro instruction provides the 
concatenation number of the data set to which the member belongs in the K field of 
the build list. See the section "BLDL-Construct a Directory Entry List" under 
"Processing a Partitioned Data Set" in Part 2 of this book. 

Further discussion and examples of concatenated data sets are contained in OS Job 
Control Language Reference. 

Cataloging Data Sets 
The OS catalog is itself a data set residing on one or more direct-access volumes. It is 
organized into levels of indexes that connect the data-set names to corresponding 
volumes and data-set sequence numbers. For each level of qualification in the data-set 
name, there is an index group in the catalog. 

The highest level of the catalog resides on the system-residence volume. The VTOC 
contains an entry for the DSCB defining the catalog and its highest-level index, the 
volume index. The lowest-level index contains the simple name of the data set and the 
number of the volume on which it resides. 

124 OS Data Management Services Guide 

o 

o 

o 



o 

o 

o 

The complete catalog can exist on the system-residence volume, or you can specify that 
parts of it be constructed on other volumes. Any volume containing part of the catalog 
is called a control volume. The use of control volumes allows data sets that are 
functionally related to be cataloged separately. The advantages include: 

• Control volumes can be moved from one processing system to another. 

• System-residence requirements can be reduced by placement of seldom-used 
indexes on a control volume. 

For any given data set, only one level of control volume, other than the 
system-residence volume, can be used. Notice that in Figure 67, index E, which is the 
highest-level index on the control volume, has an entry in both volume indexes. 

Entering a Data Set Name in the Catalog 

Index 
B 

The catalog structure, including all levels of indexes, is initially created or modified by 
the utility program IEHPROGM. A data set name can then be entered if the proper 
index levels of the name exist. 

For example, if a data set named A.B.C is to be cataloged, the volume index on the 
system-residence volume must have an index entry for index A, which must point to an 
index B. When the data set A.B.C is cataloged, C is entered into index B along with 
the volume serial number of the volume where data set A.B. C resides. The cataloging 
request is entered as: 

//ddname DD DSNAME=A.B.C,DISP=(,CATLG) 

System-Residence Volume Control Volume 

Volume Table of Contents Volume Table of Contents 
Volume 

Volume Index E I Pointer to 

I I Volume Serial I Index E 
BI Pointer to EI Number of 

I Index B I 

Index 
E 

Index 
A 

Data Data Data Data 

Set Set Set Set 
B.F B.G E.A.L E.A.P 

Figure 67. Catalog Structure on Two.Volumes 

Part 3: Data Set Disposition and Space Allocation 125 

16_ ,-



II 

\ 

I 

Building and Processing Generation Data Groups 
A generation data group is a group of cataloged data sets that are related by time 
and/ or function. Each data set within a generation data group is called a generation 
data set or, more simply, a generation. Grouping these related data sets offers several 
advantages: 

• You can refer to all of the data sets in the group by a common name. 

• The operating system keeps track of the relationship of each data set to the other 
data sets in the group. 

• Obsolete generations can be deleted automatically by the operating system, if you 
wish. 

A generation data group can contain sequential, indexed sequential, partitioned, and 
direct data sets. A generation can reside on any volume that is compatible with its 
organization. For example, a partitioned generation can reside on any direct-access 
volume, but it cannot reside on a sequential volume, such as magnetic tape. 

Within a generation data group, the generations can have like or unlike DCB attributes 
and data set organizations. If the attributes and organizations of all generations in a 
group are the same, up to 255 generations can be retrieved together as a single data 
set. 

You can process generation data groups by one of three methods: job control language 
(JCL) statements, system macro instructions, or the mHPROGM utility program. You 
should refer to OS JCL Reference, OS Data Management for System Programmers, 
and OS Utilities for more detailed information and coding examples that show how to 
use these methods. 

Cataloging a Generation Data Group 
Generation data sets are grouped by cataloging them in a generation data group index. 
This index differs from a standard catalog index in that it is constructed so the 
operating system can maintain a set of lower-level entries in the index. In this way, the 
operating system can always. have a record of the relative age of the generations that 
are represented in the lower-level index entries. The index must reside on the 
system-residence volume or on an alternate direct-access control volume. You can use 
the BLDG function of the mHPROGM utility program to build the index. BLDG 
provides lower-level entries for up to 255 generations. See OS Utilities for detailed 
information. 

In addition to an index, generati9n data groups also must have a data set label list on 
the same volume as the index. To satisfy this requirement, you can either create a 
model data set label (format-l DSCB) before you define the first generation data set, 
or you can use the DCB parameter to refer the system to an existing cataloged data set 
each time you define a new generation data set. Since only the attributes in the data 
set label are used, the model data set should be allocated with SPACE=(TRK.,O) to 
conserve direct-access space. Note that the catalog and model data set label are always 
located on a direct-access volume,. even for a magnetic tape generation data group. See 
OS JCL Reference and OS Utilities for the attributes you can supply and for coding 
examples. 

Assuming that a generation data group index has been built and that provisions have 
been made for supplying DCB attributes, a generation is created and cataloged in the 
same way as any other type of data set; that is, all of the normal data set manipulations 
apply to a generation. You can catalog a generation by its generation group name and 
either an absolute generation and version number or a relative generation number. 

126 OS Data Management Services 

o 

o 



nne nrWT""rrnqYZ'fnw 

o 

• 

o 

o 

Absolute Generation and Version Numbers: An absolute generation and version number 
is used to identify a specific generation of a generation data group. The generation 
number indicates how far removed the data set is from the original generation; the 
version number indicates how many times the associated generation has been replaced. 
Only the most recent version of a specific generation is retained. 

The actual numbers, which are supplied by the system, are in the form GxxxxVyy, 
where xxxx is an unsigned 4-digit decimal generation number and yy is an unsigned 
2-digit decimal version number. For example: 

• A.B.C.GOOOOVOO is generation 0, version 0 of generation data group A.B.C. 

• A.B.C.G0001 VOO is generation 1, version 0 of generation data group A.B.C. 

• A.B.C.G0009V01 is generation 9, version 1 of generation data group A.B.C. 

Relative Generation Numbers: Rather than request a data set by its absolute version and 
generation number, you can refer to it relative to the most recent generation, that is, 
DSNAME=dsname(n). The most recent generation produced before the start of your 
current job has a generation number of O. Those generations immediately preceding 
the most recent are identified by n values of -1, -2, -3, etc. You create new 
generations by referring to them as DSNAME=name(+1), name(+2), name(+3), etc. 
After your current job, the highest generation number you produced (name ( +3), for 
example) is actually cataloged as name(O); name ( +2) becomes name(~1); and 
name(+1) is cataloged as name(-2). OS Utilities contains extensive information 
about absolute generation and version numbers and relative generation numbers. 

Controlling Confidential Data-Password Protection 
In addition to the usual label protection that prevents opening of a data set without the 
correct data set name, the operating system provides data set security options that 
prevent unauthorized access to confidential data. Two levels of protection options are 
available. You specify these options in the LABEL field of a DD statement with the 
parameter PASSWORD or NOPWREAD. 

• Password protection (specified by the PASSWORD parameter) makes ,a data set 
unavailable for all types of processing until a correct password is entered by the 
system operator. 

• No-password-read protection (specified by the NOPWREAD parameter) makes a 
data set available for input without a password, but requires that the password be 
entered for output or delete operations. 

If an incorrect password is entered twice, the job is terminated by the system. 

You can request password protection when you create the data set by using the 
LABEL field of the DD statement in your JCL. The system sets the data set security 
byte either in the standard header label 1 as shown in OS Tape Labels or in the 
identifier data set control block (DSCB) as shown in OS System Control Blocks. 
Once you have requested security protection, you cannot remove it with JCL unless 
you recreate the data set and scratch the protected data set. 

In addition to requesting password protection in your JCL, you must enter at least one 
record for each protected data set in a data set named PASSWORD that must be 
created on the system-residence volume. OS DADSM Logic, GY28-6607, contains a 
description of the record format for the PASSWORD data set. You should also request 
password protection for the PASSWORD data set itself to prevent both reading and 
writing without knowledge of the password. 

Part 3: Data Set Disposition and Space Allocation 127 

a 14 



'---'--~-'"'''--''--''''''.''''''''.''''''' ..... -.~-~~~~~-------~--~~----

For a data set on a direct-access device you can place the data set under protection at 
the same time that you enter its password in the PASSWORD data set. You can use 
the PROTECT macro instruction or the IEHPROGM utility program to add, change, 
or delete an entry in the PASSWORD data set; with either of these methods the system 
updates the DSCB of the data set to reflect its protected status. This provision 
eliminates the need for you to use JCL whenever you add, change, or remove security 
protection for a data set on a direct-access device. A description of how to maintain 
the PASSWORD data set, including the PROTECT macro instruction, is contained in 
OS Data Management for System Programmers. os Utilities describes 
IEHPROGM. 

128 as Data Management Services Guide 

o 

o 

o 



o 

o 

o 

APPENDIX A: DIRECT-ACCESS LABELS 

I 

Only standard label formats are used on direct-access volumes. Volume, data set, and 
optional user labels are used (see Figure 68). In the case of direct-access volumes, the 
data set label is the data set control block (DSCB). 

Tracks 

Cylinder 

All Remaining 
Track of Volume 

Figure 68. Direct-Access Labeling 

[ 

[ 

Volume Label 

Additional Labels 

(Optionall -
:-:J 

VTOC DSCB 

Free Space DSCB 

DSCB 

DSCB 

DCSB- l 

Unused Storage 
Area for Data Sets 

..., 

VTOC 

Volume-Label Group - The volume-label group immediately follows the first two initial program loading (IPL) 
records on track 0 of cylinder 0 of the volume. It consists of the initial volume label at 
record 3 plus a maximum of seven additional volume labels. The initial volume label 
identifies a volume and its owner, and is used to verify that the correct volume is 
mounted. It can also be used to prevent use of the volume by unauthorized programs. 
The additional labels are processed by an installation routine that is incorporated into 
the system. 

The format of the direct-access volume label group is shown in Figure 69. 

Appendix A: Direct-Access Labels 129 

aEQUMQi.ibs_a:s: r. 



~ 
'~·";,',"·I' ~: 

r 
:/1 

I 

Field (3) 

2 (1) 

3 (6) 

4 (1 ) 

5 (10) 

6 (10) 

7 (10) 

a (10) 

''- 29 

(Up to 7 Additional Volume Labels) 
aO-Byte Physical Record 

'-

Volume Label Identifier (VOL) 

Volume Label Number (1) 

Volume Serial Number 

Volume Security 

VTOC Pointer 

Reserved for Manufacturers (Blank) 

Reserved (Blank) 

OWner Name and Address Code 

Blank 

Figure 69. Initial Volume Label 

Initial Volume Label Format 
Volume Label Identifier (VOL): Field 1 contains the initial volume label. 

Volume Label Number (1): Field 2 identifies the relative position of the volume label in 
a volume label group. It must be written as 1. 

The operating system identifies an initial volume label when, in reading the initial 
record, it finds that the first 4 characters of the record are VOLI. 

Volume Serial Number: Field 3 contains a unique identification code assigned when the 
volume enters the system. You can place the code on the external surface of the 
volume for visual identification. The code is normally numeric (000001-999999), but 
may be any 6 alphameric characters. 

Volume Security: Field 4 is reserved for future use by installations that wish to provide 
security for volumes. It must be written as O. 

VTOC Pointer: Field 5 of direct-access volume label 1 contains the address of the 
VTOC. 

Reserved for Manufacturers: Field 6 is reserved for future standardization purposes. 
Leave it blank. 

130 as Data Management Services Guide 

o 

o 

o 



o 

o 

o 

Reserved: Field 7 is reserved for future developmental purposes. Leave it blank. 

Owner Name and Address Code: Field 8 contains a unique identification of the owner 
of the volume. 

All of the bytes in Field 9 are left blank. 

Data Set Control Block (DSCB) 
....... 

The system automatically constructs a DSCB when space is requested for a data set on 
a direct-access volume. Each data set on a direct-access volume has one or more 
DSCBs to describe its characteristics. The DSCB appears in the VTOC and contains 
operating-system data, device-dependent information, and data set characteristics, in 
addition to space allocation and other control information. There are seven kinds of 
DSCBs, each with a different purpose and a different format number. For an 
explanation of the seven kinds of DSCBs, see OS System Control Blocks. 

User Label Groups 
User header and trailer label groups can be included with data sets of physically 
sequential or direct organization. The labels in each group have the format shown in 
Figure 70. 

Each group can include up to eight labels, but the space required for both groups must 
not be more than 1 track on a direct-access device. The current minimum track size 
allows a maximum of eight labels, including both header and trailer labels. 
Consequently, a program becomes device-dependent (among direct-access devices) 
when it creates more than eight labels. 

If user labels are specified in the DD statement (LABEL=SUL), an additional track is 
normally allocated when the data set is created. No additional track is allocated when 
specific tracks are requested (SPACE=(ABSTR, ... », or when tracks allocated to 
another data set are requested (SUBALLOC= ... ). In either case, labels are written on 
the first track that is allocated. 

User Header Label Group: The operating system writes these labels as directed by the 
processing program recording the data set. The first 4 characters of the user header 
label must be UHLl, ... , UHL8; you can specify the remaining 76 characters. When the 
data set is read, the operating system makes the user header labels available to the 
problem program for processing. 

User Trailer Label Group: These labels are recorded (and processed) as explained in 
the preceding text for user header labels, except that the first 4 characters must be 
UTLl, .... , UTL8. 

User Header and Trailer Label Format 
Label Identifier: Field 1 indicates the kind of user header label. UHL indicates a user 
header label; UTL indicates a user trailer label. 

Label Number: Field 2 identifies the relative position (1-8) of the label within the user 
label group. 

User-Specified: Field 3 (76 bytes). 

Appendix A: Direct-Access Labels 131 

Eta : iA"aM ,S "'suus J! . ,;;lUi 



Field (3) 

2 (1 ) 

3 -" (76) 

80-Byte Physical Record (Maximum of 8) 

Label Identifier (UH L if Header, UTL if Trailer) 

Label Number (1 - 8) 

--.. User-Specified 

Figure 70. User Header and Trailer Labels 

132 OS Data Management Services Guide 

o 

<t .. 

() 

o 



o 

o 

o 

APPENDIX B: CONTROL CHARACTERS 

Machine Code 

As an optional feature, each logical record, in any record format, may include a control 
character. This control character is recognized and processed if a data set is being 
written to a printer or punch. 

For format-F and format-U records, this character is the first byte of the logical record. 

For format-V records, it must be the fifth byte of the logical record, immediately 
following the record descriptor word. 

Two options are available. If either option is specified in the DeB, the character must 
appear in every record and other line spacing or stacker selection options also specified 
in the DeB are ignored. 

You can specify in the DeB that the machine code control character has been placed in 
each logical record. If the record is to be written, the appropriate byte must contain 
the command code bit configuration specifying both the write and the desired carriage 
or stacker select operation. If the record is not to be written, the byte can specify any 
command other than write. 

Appendix B: Control Characters 133 

, c,_z.:uaaa.aa.s::&uua:, i I.$, $,211# a:e:e:us it i 



~~~.".-.-.---"~ .. --.-.... -~ .. , .. , ...... ---------.. ----.. --._ ..................... , .. . 

The machine code control characters for a printer are as follows:

Print and Then Act Act Immediately (No Printing)

Code in Hexadecimal Action Code in Hexadecimal

01 Print only (no space)

09 Space 1 line OB

11 Space 2 lines 13

19 Space 3 lines 1B

89 Skip to channel 1 8B

91 Skip to channel 2 93

99 Skip to channel 3 9B

A1 Skip to channel 4 A3

A9 Skip to channel 5 AB

B1 Skip to channel 6 B3

B9 Skip to channel 7 BB

C1 Skip to channel 8 C3

C9 Skip to channel 9 CB

01 Skip to channel 10 03

09 Skip to channel 11 DB

E1 Skip to channel 12 E3

The machine code control characters for a card read punch device are as follows:

Code in Hexadecimal Action

01 Select stacker 1

41 Select stacker 2

81 Select stacker 3

Other command codes for specific devices are contained in publications describing the
control units and devices.

134 OS Data Management Services Guide

o

•

o

f

o

-------~~---.---~~--~--------

o

o

•

,

o

Extended American National Standards Institute Code
In place of machine code, you can specify control characters defined. by the American
National Standards Institute, Inc. (ANSI). These characters must be represented in
EBCDIC. The extended American National Standards Institute (ANSI) code is as
follows:

Code Action Before Printing or Punching

b
o

+
1
2
3
4
5
6
7
8
9
A
B
C
V
W

Space one line (blank code)
Space two lines
Space three lines
Suppress space
Skip to channel 1
Skip to channel 2
Skip to channel 3
Skip to channel 4
Skip to channel 5
Skip to channel 6
Skip to channel 7
Skip to channel 8
Skip to channel 9
Skip to channel 10
Skip to channel 11
Skip to channel 12
Select punch pocket 1
Select punch pocket 2

These control characters include those defined by ANSI FORTRAN. If any other
character is specified, it is interpreted as 'b' or V, depending on the device being used;
no error indication is returned .

Appendix B: Control Characters 135

o

()

o

-zgl'lI

o

•

o

,

o

-'rw· ..

APPENDIX C: SPECIAL PROGRAMMING CONSIDERATIONS FOR THE
3505 CARD READER AND THE 3525 CARD PUNCH

Using BSAM or QSAM, you can read cards on the 3505 Card Reader, or you can
read, punch, interpret punch (punch and interpret the punches), or print cards on the
3525 Card Punch. There are no new programming considerations when you read or
punch cards unless you read using read column eliminate (RCB) or optical mark read
(OMR), which are explained in the last section of this appendix. The following three
sections will help you write programs to interpret punch, to print, or to do more than
one operation on each card during the execution of your program.

3525 Interpret Punch

3525 Print

You can interpret punch by specifying FUNC=I in the DCB. LRECL must be 80 or
81 if you use a control character. The first 64 characters that you punch in a card are
printed (interpreted) on line 1 of the card; the last 16 characters are printed
right-justified on line 3 of the card. One output macro instruction is all you need to
both punch and interpret the punches on a card.

You can print two lines of data or as many as 25 lines of data on a card. If you
specify FUNC=WT in the DCB, you can print on lines 1 and 3 only (two-line print).
If you specify FUNC=W, you can print as many as 25 lines on a single card (multiline
print). You can print data that is identical to or different from the data which is
punched on the card.

You effect stacker selection for cards when printing only by using the STACK operand
of the DCB macro instruction.

You can control line positioning and card feeding by using the CNTRL macro
instruction or by using the control characters explained in "Appendix B: Control
Characters." If you use ANSI control characters, abnormal termination results when
you try to space and print beyond line 3 (two-line print) or beyond line 25 (multiline
print) or when you try to suppress space and print on any line. You feed the next card
by skipping to a channel with a number equal to or less than the channel number on
the present card. Figure 71 shows the correspondence between print line number and
channel numbers.

If you do not control printing by using the CNTRL macro instruction or by using
control characters, print lines are single-spaced and cards are fed automatically.

Appendix C: Special Programming Considerations for the 3505 Card Reader and the 3525 Card Punch 137

3525 Associated Data Sets
You can perform more than one operation on each card during the execution of your
program. The data used f.or each operation is considered as an individual data set and
each data set must have a separate DCB. For example, if you want to read a card,
punch additional data into the card, and print data on the card, you must specify three
DCBs. These three data sets are called associated data sets. You indicate that they
are associated by coding the proper subparameters for FUNC in each DCB. In this
example you code FUNC=RPW. See OS Data Management Macro Instructions for
the other FUNC subparameters you would code for other associated data sets.

You must also indicate that the data sets are associated with the same device by using
the unit affinity parameter of the DD statement. On the first DD statement for an
associated data set you would code UNIT=3525 or UNIT=unitaddress; on the DD
statements for the other associated data sets you would code UNIT=AFF=READ,
where READ is the name of the first DD statement. The following JCL examples
show how you would code the UNIT parameter using device type and the DCB
parameter of the DD statement.

Line Number Channel Number

1
2
3 2
4
5 3
6
7 4
8
9 5

10
11 6
12
13 7
14
15 8
16
17 9 (overflow)
18
19 10
20
21 11
22
23 12 (overflow)
24
25

Figure 71. Correspondence Between Print Line Numbers and Channel Numbers

Read and punch associated data sets:

/ /READ DD
/ /PUNCH DD

UNIT=3525,DCB=(FUNC=RP)
UNIT=AFF=READ,DCB=(FUNC=RP)

Read, punch, and print associated data sets:

/ /READ DD
/ /PUNCH DD
/ /PRINT DD

138 OS Data Management Services Guide

UNIT=3525,DCB=(FUNC=RPW)
UNIT=AFF=READ,DCB=(FUNC=RPW)
UNIT=AFF=READ,DCB=(FUNC=RPWX)

o

•

0

,

o

o

o

o

Read and print associated data sets:

/ /READ DD
/ /PRINT DD

UNIT=3525,DCB=(FUNC=RW)
UNIT=AFF=READ,DCB=(FUNC=RWX)

Punch and print associated data sets:

//PUNCH DD
/ /PRINT DD

UNIT=3525,DCB=(FUNC=PW)
UNIT=AFF=PUNCH,DCB=(FUNC=PWX)

Only four combinations of operations are allowed for associated data sets. You can
read and punch; read, punch, and print; read and print; or punch and print. The
following restrictions apply to associated data sets:

• 110 operations on a single card must be completed in the sequence read, punch,
print. Two reads in succession or two punches in succession cause abnormal
termination if performed on the read and punch data sets or the read, punch, and
print data sets. A print operation can be omitted or repeated, but the first line on
a card cannot be printed until the card has been punched or, if the card is not to
be punched, until the card has been read.

• You can use either BSAM or QSAM to process associated data sets, but the same
access method must be used on all the associated data sets in the program.
Otherwise abnormal termination occurs.

• The FUNC parameter must be coded in the DCB or the DD statement for each
associated data set. See OS Data Management Macro Instructions for a
complete description of the FUNC parameter.

• Associated data sets cannot be allocated to SYSIN or SYSOUT. You must
request the specific device type or unit address in the UNIT parameter of the DD
statement. See OS Job Control Language Reference and the examples above
for more information on the DD statement and the UNIT parameter.

• BUFNO= 1 must be specified to read or punch an associated data set.

• When one of the associated data sets is to be punched, stacker selection can occur
only with the punch data set. You can accomplish this by using control characters
or the STACK operand of the DCB macro instruction. For the read and print
associated data sets where no punch data set is used, stacker selection can be
specified only with the read read data set through the CNTRL macro instruction.

• To prevent punching card columns that already contain data, you request the data
protection option in the FUNC parameter of the DCB macro instruction. This
option applies only to the read, punch, and print associated data sets and the read
and punch associated data sets. OS Data Management Macro Instructions
explains how to request the data protection option in the FUN C parameter of the
DCB macro instruction.

• An attempt to feed a card during printing causes abnormal termination. The next
card feeds automatically when you request the next read or punch.

Opening Associated Data Sets
Associated data sets can be opened in any order, but you cannot process one associated
data set unless all associated data sets are open. If an 110 operation is requested for a
data set when one or more of its associated data sets is not open, abnormal termination
results.

Appendix C: Special Programming Considerations for the 3505 Card Reader and the 3525 Card Punch 139

~.:'
1'[
:1

I

I'ii

1:~. :11

I.

'I

'I

.......... -............ ~ -.......... --.---------

Closing Associated Data Sets
Associated data sets can be closed in any order, but once a data set is closed, I/O
operations cannot be requested for any of its associated data sets. If such an operation
is requested, abnormal termination results.

When you close the associated data set that causes card feeds, the CLOSE macro
instruction causes a feed command to be issued. This ensures that your last data card
is moved from the card transport to the stacker. If you do not close the data set that
causes card feeds before your job terminates, your last data card will remain in the card
transport. Figure 72 shows which operation causes a card feed for 3525 data sets and
associated data sets.

Data Set

Read

Punch

Print

Interpret Punch

Read and Punch

Read, Punch, and Print

Read and Print

Punch and Print

Operation Causing a Card Feed

Read

Punch

Print

Punch

Read

Read

Read

Punch

Figure 72. Operations That Cause Card Feed for a 3525 Card Punch

If you use a data delimiter card for the input data set, your program must check for it
and branch to your EODAD routine. If the end-of-file condition is sensed by the
device, the system branches to your EO DAD routine and causes a card feed. After
your program reads a data delimiter card, do not attempt to punch or print on it; if you
do, you will cause the first card of the following job to be lost. Your data delimiter
card remains in the card transport until the following job causes a card feed or until a
nonprocess runout is performed by the operator.

To prevent the loss of the last data card when data sets are closed, remember the
following restrictions:

• All associated data sets must be closed before termination of the job step without
intervening I/O operations for any of the associated data sets.

• If any data set is reopened, the appropriate associations must be reestablished.

• If the data set was read in read column eliminate (RCE) mode, a card feed will
be issued to reset the mode to read 80 columns instead of the normal card feed
that is issued when the data set is closed.

Data Protection Image (DPI) for the 3525
The Data Protection Image (DPI) is associated with a particular data set through the
use of the FCB parameter of a DD statement. The FCB parameter, which is used to
designate a Forms Control Buffer (FCB) for some IBM printers, is used to establish
data protection for the 3525. The parameter must be coded FCB=XXXX, where X
represents the one to four characters of the format descriptor identifier.

The 80-byte data protection image is taken from the SYS1.IMAGELffi. (It must be
added to the SYSl.lMAGELffi before it can be used.) The member name of the image

140 as Data Management Services Guide

o

....

o

o

o

o

must be FORM XXXX, with the final one to four characters being a unique DPI
identifier. This identifier may be any combination of alphameric characters. An
example of the coding which will add a data protection image to the SYS 1.IMAGELIB
appears in Figure 73.

Data Protection for the 3525
Data Protection (D) is specified as a subparameter of the FUNC parameter
(FUNC=RPWD). The data protection option is used to protect data which might
otherwise be obliterated by punching in columns which already contain data.

An 80-byte Data Protection Image (DPI) must be stored in SYSl.IMAGELIB. The
DPI must contain blanks in the columns which are to be protected and alphameric
characters in the columns which can be punched.

Data protection is specified as shown below. D, which specifies the use of data
protection, follows a description of the function which is to be performed; (it must be
either READ and PUNCH or READ, PUNCH, and PRINT).

//PUNCHDDUNIT=AFF=READ,DCB=(FUNC=RPWD,LRECL=80,BUFNO=1),FCB=DPI

Optical Mark Read (3505 only) and Read Column Eliminate (3505 and 3525)
If you specify MODE=O for optical mark read (OMR) or MODE=R for read column
eliminate (RCE) in the DCB, you must provide a format descriptor card as the first
card of your data deck. The format descriptor card specifies the columns from which
optical marks are to be read or the columns which are to be eliminated. Abnormal
termination results if you do not supply a format descriptor card. If you use
checkpoint/restart, the format of the OMR or RCE data set must be reestablished
when the job is restarted.

Format Descriptor Card: The word FORMAT must be coded starting in column 2 of
the first card of the data deck, followed by a blank and the parameters that specify the
columns to be read in OMR mode or RCE mode. The remaining columns are read in
the normal punched mode.

If columns 1, 3, 5, 7, 9, 70, 72, 74, 76, 78, and 80 are to be read in OMR mode, code
FORMAT (1,9),(70,80). A maximum of 40 columns of OMR data can be read from
each card.

If columns 20 through 30 and 52 through 76 are not to be read (RCE mode), code.
FORMAT (20,30),(52,76).

Continuation cards can be coded if necessary and are coded like ma.cro instruction
continuation cards.

Note: This coding must be preceded by the proper JCL for compiling and linkage editing.

FORMDPI

/*

CSECT
DC X'40'
DC X'40'
DC C'3456789A'
DC 70XL'40'
END

protected column
protected column
columns to be punched
protected columns

//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(FORMXXXX),DISP=OLD
/*

Figure 73. Adding a Data Protection Image to SYS1.IMAGELffi

Appendix C: Special Programming Considerations for the 3505 Card Reader and the 3525 Card Punch 141

Card Column

Card Data

I nput Buffer and
Channel Data

OMR or RCE is in effect only while the data set that specifies it is open.

OMR Data Records: The following rules apply to coding an OMR record.

• Mark fields must be separated by at least one blank (not a punch or mark).

• Mark and punch fields must be separated by at least one blank (not a punch or
mark).

• Mark fields in odd columns and mark fields in even columns must be separated by
at least two blanks (not punches or marks).

• Mark or punch fields may begin in any column, so long as the coding conforms to
the first three rules.

These rules and their application to an 80-column card are represented in Figure 74.

Although OMR data is physically located on the card in alternating columns, the data is
compressed in the channel. The blank following an optical mark is not transferred to
the input buffer. See Figure 74 for the format of the OMR data as it appears in the
channel and input buffer.

When a marginal mark, weak mark, or poor erasure is detected, the column's data is
replaced with X'3F' in EBCDIC or with X'3F3F' in column binary mode. X'3F' is
also placed in column 80 for EBCDIC and column 160 for column binary. You are
responsible for checking for OMR reading errors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P1 P2 ® M4 @ M6 @ @ Mg @ Mll @ P13 P14 P15

.......... .--' ", ...
switch from switch from switch from

punch to mark even to odd marks mark to punch

P1 P2 16' M4 M6 to Mg Mll P13 P14 P15

@ must have neither punch nor mark data

b hexadecimal 40

Px punch data in Column X

Mx mark data in Column X

Figure 74. OMR Coding Rules

142 OS Data Management Services Guide

o

o

•

o

o

o

•

o

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

A
ABE
ABEND
ACC
AFF

ANSI
ASCII
ABSTR
AL
AUL

B
BCDIC
BDAM
BDW
BFALN
BYrEK
BISAM
BLDL
BLKSIZE
BPAM
BSAM
BSM

BSP
BSR

BUFCB
BUFL
BUFNO
BUFOFF

CCW
CONTIG
CPU
CSW
CYLOFL

D
DA
DAU
DCB
DCBD
DD
DEB
DECB
DEN
DEVD
DISP

ANSI control code (value of RECFM)
abnormal end (value of EROPT)
abnormal end (macro instruction)
accept erroneous block (value of EROPT)
affinity (channel separation parameter of DD statement or unit affinity
value of UNIT)
American National Standards Institute
American National Standard Code for Information Interchange
absolute track (value of SPACE)
American National Standard labels
American National Standard User labels (value of LABEL)

blocked records (value of RECFM)
Binary Coded Decimal Interchange Code
basic direct access method
block descriptor word
buffer alignment (operand of DCB)
buffer technique (operand of DCB)
basic indexed sequential access method
build list (macro instruction)
blocksize (operand of DCB)
basic partitioned access method
basic sequential access method
backspace past tapemark and forward space over tapemark (operand of
CNTRL)
backspace one block (macro instruction)
backspace over a specified number of blocks (records)
(operand of CNTRL)
buffer pool control block (operand of DCB)
buffer length (operand of DCB)
buffer number (operand of DCB)
buffer offset (length of ASCII block prefix by which the buffer is offset;
operand of DCB)

channel command word
contiguous space allocation (value of SPACE)
central processing unit
channel status word
number of tracks for cylinder overflow records (operand of DCB)

format-D (ASCII variable-length) records (value of RECFM)
direct-access (value of DEVD or DSORG)
direct-access unmovable data set (value of DSORG)
data control block (control block name or macro instruction)
data control block dummy section macro instruction
data definition
data extent block
data event' control block
magnetic tape density (operand of DCB)
device-dependent (operand of DCB)
data set disposition (parameter of DD statement)

Glossary of Acronyms and Abbreviations 143

DSCB
DSORG

EBCDIC
EODAD
EOF
EOV
EROPT

. ESETL
EXCP
EXLST

F
FB
FBS
FBT

FCB
FEOV
FS
FSM

FSR

data set control block
data set organization (operand of DCB)

Extended Binary Coded Decimal Interchange Code
end-of-data set exit routine address (operand of DCB)
end-of-file
end-of -volume
error options (operand of DCB)
end sequential retrieval (QISAM macro instruction)
execute channel program (macro instruction)
exit list (operand of DCB)

fixed-length records (value of RECFM)
fixed-length, blocked records (value of RECFM)
fixed-length, blocked, standard records (value of RECFM)
fixed-length, blocked records with track overflow option (value of
RECFM)
forms control buffer
force end-of-volume (macro instruction)
fixed-length, standard records (value of RECFM)
forward space past tapemark and backspace over tapemark (operand of
CNTRL)
forward space over a specified number of blocks (records) (operand of
CNTRL)

GL GET macro, locate mode (value of MACRF)
GM GET macro, move mode (value of MACRF)

HA

I/O
INOUT
lOB
IPL
IRG
IS
ISAM
ISU

JCL
JFCB

KEYLEN

LRECL

M
MACRF
MFT
MOD
MSHI
MSWA
MVT

home address

input/ output
input then output (operand of OPEN)
input/ output block
initial program load
interrecord gap
indexed sequential (value of DSORG)
indexed sequential access method
indexed sequential unmovable (value of DSORG)

job control language
job file control block

key length (operand of DCB)

logical record length (operand of DCB)

machine control code (value of RECFM)
macro instruction form (operand of DCB)
multiprogramming with a fixed number of tasks
modify data set (value of DISP)
main storage for highest-level index (operand of DCB)
main storage for work area (operand of DCB)
multiprogramming with a variable number of tasks

NCP number of channel programs (operand of DCB)
NOPWREAD no password to read a data set (value of LABEL)
NRZI non-retum-to-zero-inverse (tape recording mode)

144 OS Data Management Services Guide

o

o

•

o

.~~~ -.-.------.------------------------ .. ---------.-----~~------------- -

0 NSL nonstandard label (value of LABEL)
NTM number of tracks in cylinder index for each entry in lowest level of

master index (operand of DCB)

OMR optical mark read on 3505 Card Reader
OPTCD optional services code (operand of DCB)
OS operating system
OUTIN output then input (operand of OPEN)

PCI program-controlled interruption
PDS partitioned data set
PE phase encoding (tape recording mode)
PL PUT macro, locate mode (value of MACRF)
PM PUT macro, move mode (value of MACRF)
PO partitioned organization (value of DSORG)
POU partitioned organization unmovable (value of DSORG)
PRTSP printer line spacing (operand of DCB)
PS physical sequential (value of DSORG)
PSU physical sequential unmovable (value of DSORG)

QISAM queued indexed sequential access methods
QSAM queued sequential access method

RCE read column eliminate for 3505 Card Reader and 3525 Card Punch
ROBACK read backward (operand of DCB)
ROW record descriptor word
RECFM record format (operand of DCB)

0
RKP relative key position (operand of DCB)
RPS rotational position sensing

S standard format records (value of RECFM)
SDW segment descriptor word
SEP separation (channel separation parameter of DD statement or

unit separation value of UNIT)
SER volume serial number (value of VOLUME)
SETL set lower limit of sequential retrieval (QISAM macro instruction)

SF sequential forward (operand of READ or WRITE)
SK skip to a printer channel (operand of CNTRL)
SKP skip erroneous block (value of EROPT)
SL mM standard labels (value of LABEL)
SMSI size of main-storage area for highest-level index (operand of DCB)
SMSW size of main-storage work area (operand of DCB)
SP space lines on a printer (operand of CNTRL)
SS select stacker on card reader (operand of CNTRL)
SUL mM standard and user labels (value of LABEL)
SYNAD synchronous error routine address (operand of DCB)
SYSIN system input stream
SYSOUT system output stream

T track overflow option (value of RECFM)
TIOT task 110 table
TRTCH track recording technique (operand of DCB)

U undefined length records (value of RECFM)

0
UCS universal character set

Glossary of Acronyms and Abbreviations 145

~."'.' ;~ I
':1
,I

~I
~,:

UHL
UTL

V
VB
VBS
VTOC

146 as Data Management Services Guide

user header label
user trailer label

format-V (variable-length) records (value of RECFM)
variable-length, blocked records (value of RECFM)
variable-length, blocked, spanned records (value of RECFM)
volume table of contents

0,
... _.1,

'0'.'· \, .

l

o

. -----.. --...... --.. -----~.--.--.~~~~---------------

o

o

o

INDEX

Indexes to Systems Reference Library publications are
consolidated in OS Master Index to Reference Manuals,
GC28-6644. For additional information about any subject
listed below, refer to other publications listed for the same
subject in the master index.

A
ABE error option 23
absolute (actual) address 16-17,106,112
absolute generation name 127
ACC error option 23
access method 2

defined 39
selecting 44

access techniques
basic 2,40-43
queued 2,39-40

actual track address
(MBBCCHHR) 17,106,112

address, direct-access
absolute (actual) 17,106,112
relative 17,76-77,106

AFF (affinity, channel) 20
alias

effect on, of changing directory' entry 81
entry in directory 76

alignment, buffer 51,58
allocation

(see space allocation)
American National Standard Code for Information
Interchange

(see ASCII block prefix;
ASCII format)

American National Standard labels 5,28
American National Standards Institute

C$ee ANSI control character; American National
Standard labels)

ANSI control character
with chained scheduling 71-72
described 135
device-type considerations 64
with format-D records 13-14
with format-F ASCII tape records 8
with format-U records 14

anticipatory buffering
omitted with basic access technique 40,100
with queued access technique 39

ASCII block prefix
with format-D records 13-14
with format-F records 8
with format-U records 14
restrictions 8,13

ASCII format
and device-type considerations 64
restriction for 7-track tape 64
translating data from 5,6
translating data to 6,41

ASCII variable-length records (format-D) 13-14
associated data sets (3525 Card Punch)

closing
data delimiter 140
emptying card transport 140
end-of-file sensed by device 140
preventing loss of last data card 140

defined 138
FUNC operand 139
opening 139
restrictions

access method 139
BUFNO 139
card feeding during printing 139
data protection 139
sequence of I/O 139
stacker selection 139

unit affinity 138
automatic blocking 39
automatic cataloging of data sets 4
automatic error options (EROPT) 23
automatic volume switching 49,50,123
auxiliary storage

B

(see data set storage; direct-access storage;
magnetic-tape volumes)

backspace
byBSP 68
byCNTRL 67

basic access technique
blocking 105
buffer control 54-55
definition of 2,40
uses

creating data sets 73
reading fixed blocked records 74
with direct data sets 105
with indexed sequential data sets 86,89,100
with partitioned data sets 79

BDAM (basic direct access method)
restriction with chained scheduling 71
selecting an access method 44
spanned variable-length records 12
C$ee also direct data set)

BDW (block descriptor word) 9,14
BFfEK field 40,54
bin, data cell 3,17
BLDL macro instruction

build list format 80
description 80
updating a partitioned data set 84
use 80,82,84

BLKSIZE field
description 20
device":dependence 65,70
effect of data check on 6,64
including block prefix 13
requirement for direct data set 105

block, data
definition 6

Index 147

descriptor word (BDW) 9,14
(,yee a/so record format)

block count exit routine 25,31
block descriptor word (BDW) 9,14
blocking

automatic 39
defined 6
with fixed-length records 6
with standard fixed-length records 7
with undefined-length records 14
with variable-length records 9

block prefix (ASCII records)
with format-D records 13-14
with format-F records 8
with format-U records 14
restrictions 8,13

blocksize field
(,yee BLKSIZE field)

boundary alignment
buffer 51,58,59
data control block 35-36

BSAM (basic sequential access method)
(,yee basic access technique)

BSP macro instruction 68
buffer

acquisition and control 51-63
alignment 51,59
control

direct 51,55
dynamic 51,55
forms control 31-32

defined 51
length (BUFL) 52
number (BUFNO) 52
pool 51-54

(,yee a/so buffer pool construction)
segment 51

(,yee a/so GETBUF; FREEBUF; FREEDBUF;
RELSE; TRUNC)

buffer pool construction 51-54
automatic 51-53
examples 53-54
explicit 52
(,yee a/so BUILD; GETPOOL; FREEPOOL)

buffering
dynamic 51,55
exchange 51,54,58-61
forBDAM 105
simple 51,55-58

BUFOFF field 8,13
build list format 80
BUILD macro instruction

description 52
with indexed sequential data set 92

BUILDRCD macro instruction 52

148 OS Data Management Services Guide

c
capacity

cylinder 111
record 111
track 95,111-113

card punch (PC), record format with 65-66
card reader (RD)

record format with 65-66
carriage control

characters 66,134
format-D 13
format-F 6,8
format-U 14-15
format-V 9
(,yee a/so CNTRL; PRTOV)

catalog, system 124-125
control volumes 125
entering a data set name 125
entering a generation data group 126

cataloging data sets
automatic 4
defined 1
on system catalog 124

CCW
(,yee channel command word)

chained scheduling 71-72
restriction with partitioned data set 84
with sequential data set 63

changing an address in the data control block 35-36
channel command word (CCW)

PCI flag in 71
use in exchange buffering 58-59
use in simple buffering 55

channel program
execute (EXCP) 2,44
number of (NCP) 40

channel separation and affinity (SEP / AFF) field 21
CHECK macro instruction

DECB 42
description 42
updating a partitioned data set 84
use with SYNAD routine 23
using WAIT instead 42,100,10 1

checkpoint! restart
restriction for OMR and RCE 141

CHKPT macro instruction
use in end-of-volume exit routine 30

CLOSE macro instruction
description 47
function 45
for multiple data sets 48
with partitioned data set 81
temporary close option 47-48
TYPE=T 47-48
volume positioning 47

closing a data set 47-49
CNTRL macro instruction 67

device dependence 67
restrictions

with BSP macro instruction 68
with chained scheduling 71

concatenation
defined 123

o

..

,

o

o

•

o

o

of partitioned data sets 123-124
of sequential data sets 123-124
of unlike data sets 123-124

control buffer
(see forms control buffer)

control character (C)
ANSI 8,64,135
carriage 15,66,134
effect of omission for SYSOUT data set 122
explained 15,133-134
with fixed-length records 6,8
machine code 64,133-134
specifying 14,64,133-134
with undefined-length records 14
with variable-length records 9,13

control error 23
control section 36
control volume, defined 125
count area 15

device overhead 113
ISAM index entries 88
count-data format 15
count-key-data format 15

CSECT 36
cylinder

allocation by 112
capacity 111
definition 15
index 86,88,119-120
overflow (CYLOFL) 89,97,115

calculating space for 116
CYLOFL (cylinder overflow) 89,97,115

D
D-format records

(see format-D records)
data access techniques

(see access techniques)
data cell 3,17
data control block (DCB)

attributes of 19-21
changing an address in 36
completion 18-19
creation by DCB macro instruction 18
description 18-20
dummy control section 35
exit 22,25,32
modifying 18,35-36
primary sources of information 18-19
reopening, with exchange buffering 59
restriction for direct access devices 45
use 3

data definition (DD) statement
fields 19-20
relationship to DCB 18-20
relationship to JFCB 18-19
restrictions 45
use 3

data errors 22-23
data event control block (DECB)

checking for errors 40-41
description of 42

data format in sequential organization 64-66

data management, introduction to 1-38
data mode processing 54
data processing techniques 39-50

basic access technique 40-42
end-of-volume processing 49-50
error handling 42-43
queued access technique 39-40
opening and closing a data set 44-50
selecting an access method 44

data protection image (DPI) for 3525 140-141
data set

characteristics 1-15
definition 6
description 19-20
disposition 121-128

cataloging 121,124-125
concatenation 123-124
password protection 127-128
status 121-122

disposition (DISP) field 21
identification 3
label

contents 4
(see also magnetic-tape volumes; labels,
direct-access)

label (LABEL) field 21
like characteristics 123
name 3
name (DSNAME) field 20
organization 2

(see also direct data set; indexed sequential
data set; partitioned data set, sequential data
set)

organization (DSORO) field 20
output class 122
password protection 127-128
record formats

(see record formats)
routing through the output stream 122-123
security 127-128
sequence number 4
sharing 36-37
space allocation for direct-access volumes 111-121

estimation 112-113
for indexed sequential data sets 114-121
for partitioned data sets 113-114

storage 3-5
direct-access 4
magnetic-tape 5

SYSOUT 122-123
opening 122
writing 122

unlike characteristics 123
unmovable

indication 17,20
partitioned 78
(see also direct data set, indexed sequential
data set, partitioned data set, sequential
data set)

data set control block (DSCB)
contents of 4,131
data set label 131
location 131

DCB

Index 149

~ee data control block)
DCB macro instruction

creating data control block 18
DCBEXCD field 96,97
DCBIND 1 field, 59
DCBD macro instruction

restriction on use 35
use 35-36

DCBLPDA field 96
DCBLRECL field 11
DCBNCRHI field 95
DCBOPTCD field 96
DD statement fields 20
DDNAME

(ree data definition name field)
DECB

~ee data event control block)
refer nonstandard input trailer label exit 31
defining an FCB image 31,32
deletion

of member name 83
of indexed sequential data set records 91-92,100

deletion option for ISAM 96
DEN (tape density) 64,65
density, tape 64,65
descriptor word 9

~ee also block descriptor word, record descriptor
word)

DEVD field 64,70,122
device control for sequential data sets 67-69
device-dependent macro instructions 67-69
device independence 69-70
device-type considerations for data format

sequential organization 63-66
DEVTYPE macro instruction 94
direct-access storage

access mechanism 15
advantages 15
device characteristics 15-17
record format 66
track addressing 16-17
track, defined 15
track format 15-16
track overflow 17
write validity check 17

direct-access disk pack 3,15
direct-access volumes 4

labels 4,129-132
direct addressing 105
direct data set

access technique 105
actual addressing 105,106
adding records 107-109
creation 107

user labels 109
defined 2
dummy records 107
dynamic buffering 105
extended search option 106
feedback option 106
indirect addressing 105
organization 105
processing 105-11 0
record format 107-108

150 OS Data Management Services Guide

record reference 105
relative addressing 105,106
updating records 107-110

with exclusive control 106
fo'rmat-F with keys 107
format-F without keys 107
format-U or -V with keys 108
format-U or -V without keys 108
programming for 2305 109

direct organization 2
(ree also direct data set)

directory
~ee partitioned data set)

disk drive
(ree 2302 disk storage; 2311 disk drive; 2314
storage drive; 2319 storage drive; 2321 data· cell;
3330 disk drive)

disk pack 3,15
disk operating system

(ree DOS)
DOS (disk operating system) tapes with embedded
checkpoint records

backspacing 68
restriction with chained scheduling 71
positioning

CNTRL 67
POINT 68-69

DOS (disk operating system) 7-track tapes
restriction with BSP 68
restriction with CNTRL 67
restriction with POINT 68-69

DPI (data protection image) for 3525 140-141
drum storage

~ee 2301 drum storage; 2303 drum storage;
2305 drum storage)

DSCB (data set control block) 131
DSECT 35-36
DSNAME 20
DSORGfield

described 20
device independence 70
with indexed sequential data set 97
with partitioned data set 79-82

dummy control section for DCB 35-36
dummy record

with direct data set 107
dynamic buffering

E

buffer control 51,55
for direct data sets 105
release of 62
(see also READ; RELEX; WRITE)

EBCDIC (Extended Binary Coded Decimal
Interchange Code)

translation to and from ASCII 1,5,.6
embedded. index area 114,116
end-of-data set exit routine (EODAD) 22

with concatenated data sets 123
with queued access technique 39

end-of -volume
exit routine 30
with GET 39

_____ ~ __ • _______________ -,-__ ~---r- --- -.........------_-~ __ ~-~ - ~~-~~-~

._-.. _._ .. _ .•..•.• __ ._----_.-.-_.""--_ -
----~-- - --- ~-

o

o

o

•

o

o

processing 49-50
l.$ee also FEOV)

EODAD routine
(see end-of-data routine)

EOV
l.$ee end-of-volume)

EROPT field 23
error

analysis routine (SYNAD) 22-24,42
control 23
checking, automatic 70
data 23
handling 42-43
options, automatic 23
SYNAD 42
SYNADAF 43
SYNADRLS 43
uncorrectable 22,28

error routine
(see error; synchronous error routine exit)

ESETL macro instruction 97
exceptional condition code

(see condition, exceptional)
exchange buffering 54,58-61

buffer length requirements 59
examples 60-61
testing for 59

exclusive control
forBDAM 106
for ISAM 102-103

EXCP macro instruction 44
execute channel program 2
exit list (EXLST) field 24-25
exit routine

block count 30
conventions 24-25
data control block (DCB) 30
DCBABEND 32
defer nonstandard input trailer label exit 31
end-of-data 21-22
end-of-volume 30
error analysis (SYNAD) 22-24,42
FCB image 31
list (EXLST) 24-25
register contents on entry 25
user label 26-29
user totaling 29-30

exit routines identified by DCB 21-29
EXLST field 24-25
Extended Binary Coded Decimal Interchange Code
(EBCDIC)

translation to and from ASCII 1,5,6
extended American National Standards Institute (ANSI)
Code 64,135

extended search option for direct data sets 106

F
F-format records

(see format-F records)
FCB

l.$ee forms control buffer)
feedback

request for 41,42,106
FEOV macro instruction 50
fixed-length records 6-8
FIND macro instruction

description 80
updating a partitioned data set 84
use 79

force end of volume (FEOV) 50
format-F records 6-8

ASCII tapes 8
standard format 6-7

format-FBT records restriction with search direct 72
format-D records 13-14
format-U records 14
format-UT records restriction with search direct 72
format-V records 9-12

BDW 9
RDW 9
SDW 10
segment control codes 10
spanned 9-12

forms control buffer (FCB) 31
forms control buffer image

defining 31,32
exit list 24-25

FREEBUF macro instruction 63
FREEDBUF macro instruction 63

example 102
FREEPOOL macro instruction 53-54
full track-index write option 97
FUNC (DCB operand) 137-139

G
generation data groups

absolute generation name 127
cataloging 126
entering in the catalog 1,4,126
generation data group, defined 126
generation, defined 126
generation number, defined 127

generation
data set 126
data sets concatenated 127
increment 127
numbers, relative 127
version increment 127

GET macro instruction
description 39
used to create a sequential data set 73-74
with spanned records 10
l.$ee al$6 data mode processing; locate mode
processing; move mode processing; substitute mode
processing)

GETBUF macro instruction 63
GETPOOL macro instruction

Index 151

1",.,.-

-------------------~-~- ---------------------------------,

description 52
with indexed sequential data set 92

H
header label, user 26-29
HIRPD 94-95

I
IBCDASDI 111
IEBCOPY utility program 85
IEHDASDR utility program 111
IEHLIST utility program 95,115
IEHMOVE utility program 78,79
IEHPROGM utility program 115,125,126
IHADCB macro instruction 35-36
independent overflow area 89,116
index

catalog 4,124
cylinder 86,114,119
master 86,114,120
space allocation for 114-120
track 86,118

indexed sequential data set
adding records 89-91

inserting new records 89
new records at the end 89

areas 86-89
allocating space for 114-116
index 86-89
overflow 86,89
prime 86-87

buffer requirements 92-95
creation 97-99
DCB integrity 95,100
defined 2
deleting records 91-92
device control 95-96
direct retrieval 100-101
full track-index write option 97
high-level index in storage restriction with DCB
integrity 95
indexes

cylinder index. 86,114,119
master index 86,114,120
track index 85,86,118
key field 86
loading 97
maintenance 91-92
organization 86-89
processing 86
reorganization 91
resume load 89,97-99
retrieval 99-101
sequential retrieval 99-100
space allocation for 112-119
updating 99-104

work area requirements 92-95
indexed sequential organization 2

(yee also indexed sequential data set)
indexes of the catalog 124-125
indirect addressing 105

152 OS Data Management Services Guide

INOUT option
OPEN macrQ instruction 46
overriding 46

INPUT option
OPEN macro instruction 46

input/output device (UNIT) field 21
input/output device generation 69
input/output devices

card reader and punch 65-66
direct access 4,15-17,66
magnetic tape 5,64-65
paper tape reader 65
printer 66

interpret punch data set 137
ISAM

J

(yee indexed sequential data set; indexed
sequential organization)

job file control block (JFCB) 18-19

K
key area 16
key class 96
key length (KEYLEN) 20
key, record

direct access 16
indexed sequential 2,98
prefix 95,96,99

KEYLEN 20

L
LABEL field 21
labels, data set 4,21

(yee also magnetic-tape volumes; labels,
direct access)

labels, direct-access
data set control block 131
format 130
user label groups 131-132
volume label group 129-132

LEAVE option 47-48
length checking 6
link field 89
loading an indexed sequential data set 97-98
locate mode processing 54

defined 54
with GET macro instruction

creating a sequential data set 73
exchange buffering 59
simple buffering 55-58

with PUT macro instruction
creating a sequential data set 73
simple buffering 55-58

LRECLfield
described 20
device independence 69
in example of simple buffering 73
for format-U records 105

o

,

o

o

•

o

I

o

with PUT 40
with SYSOUT data set 122

M
machine code control character 64,133-134
MACRF (macro instruction form) field

described 21
device independence 70
processing mode 54

magnetic-tape volumes
defined 3
density 5,64,65
labels

American National Standard 5
none 5
nonstandard 5
standard 5
user 26-29
volume 3

organization 5
positioning 5
record format 64-65
serial number 5
tapemarks 5

MBBCCHHR 16-17,106
member of a partitioned data set

creation 81-82
deletion 75
description 75
directory entries for 75,79-81
positioning to a 80-81
processing 79-81
retrieving 82-83
rewriting 85
updating 84

in place 84
overlapped 84

(see also FIND; NOTE; partitioned data set;
POINT; STOW)

MODE=O for 3505, 3525 141
MODE=R for 3505, 3525 141
modes, processing

(see data mode; locate mode; move mode;
substitute mode)

modifying the data control block 18,35-36
move mode processing 54

defined 54
with GET macro instruction 55,71
with PUT macro instruction 55,71

MSHI field 95
MSW A field 94,95
multivolume data sets, restriction with NOTE and
POINT 68-69

N
names

dataset 3
generation data group 4,126

NCP (number of channel programs) 40,71
nonstandard tape labels 5
note list 78,79
NOTE macro instruction

description 68

o

device independence 70
restriction with BSP macro instruction 68
restriction with multivolume data sets 68
use with partitioned data set 79,82

OMR
(see optical mark read)

OPEN macro instruction
device independence 70
functions 18,44-47
used for more than one data set 46-47
volume positioning 46

opening a data set 44-47
opening and closing a data set 44-49
OPTCD field

with ASCII tapes 39,42
device dependence 70
with ISAM 96
to request user totaling 29

OPTCD=H 68
OPTCD=M 88
OPTCD=Z 72
optical mark read (OMR)

data format 141-142
data records, coding rules 142
format descriptor card 141
how to specify 141

OUTIN option 46
output class 122
output mode

exchange buffering 58
simple buffering 55

OUTPUT option 46
output stream 122-123
overflow

cylinder 89,115,118,119
entry 87
independent area 89
printer 67
track 17

effect on chained scheduling 71
restriction on BSP macro instruction 68

overlap of input/output 39,84
overriding OPEN options 46

Index 153

p
paper-tape reader (PT)

described 65
effect on chained scheduling 71
record format with 65
with a SYNAD routine 24

partitioned data set
concatenation 123-124
construct directory entry list (BLDL) 80
creation 81-82
defined 2,75-76
directory

adding members to 82
defined 76-79
obtaining information from 80

directory entry
described 76-79
length 76

processing 75-85
space allocation for 113-114

~ee also member of a partitioned data set;
partitioned organization)

position to a member (FIND) 80-81
retrieving a member 82
rewriting a member 85
updating a member 84
updating the directory 81

partitioned organization 2
password protection 127-128
PC (card punch) record format 65-66
PDS

<See partitioned data set)
POINT macro instruction

device independence 70
explained 68-69
restriction with BSP macro instruction 68
restriction with multivolume data sets 68
updating a partitioned data set 84

prefix, block
<See block prefix)

prime data area
description 86
space allocation for 114-121

print data set (3525 Card PUl1ch)
card feeding

automatic 137
program-controlled 137

line positioning
automatic 137
program-controlled 137
restriction with ANSI control
characters 137

line number correspondence to channel
numbers 138
multiline print 137
stacker selection 137
two-line print 137

printer (PR)
overflow 67
record format with 66

protection, password 127-128
PRTOV macro instruction

description 67

154 OS Data Management Services Guide

device dependence 70
PT

<See paper-tape reader)
PUT macro instruction

description 39-40
used to create a sequential data set 73
with spanned records 11
<See also data mode processing; locate mode
processing; move mode processing; substitute mode
processing)

PUTX macro instruction
description 40
device independence 70
with exchange buffering 58,60
with GET-locate 54,55
with spanned records 11
<See also output mode; update mode)

Q
queued access technique 39-40

buffer control 54-63
defined 39

R

introduced 2
processing modes
~ee data mode processing;
locate mode processing; move mode processing;
substitute mode processing)

RCE (read column eliminate) 137
format descriptor card 141
how to specify 141

RD (card reader) 65-66
RDW

~ee record descriptor word)
RDBACK option 46
read backward 41
read column eliminate (RCE)

format descriptor card 141
how to specify 141

READ macro instruction
description 40-41
device independence 70
updating a partitioned data set 84
with KU 100,103

RECFMfield
~ee record format)

record blocking
<See blocking)

record, defined 6
record descriptor word (RDW)

in ISAM data set being updated 103
variable-length records 13
when replaced by segment descriptor word 11

record format 6-15
device independence 69
fixed-length (F) 6-8
fixed-length (F) for ASCII 8
fixed-length standard (FS) 6-7
RECFM field 20,64
selecting 6

o

"

o

o

•

o

1

o

undefined-length (U) 14
undefined-length (U) for ASCII 14
variable-length (D) for ASCII 13-14
variable-length (V) 9

spanned (basic direct access method) 12
spanned (sequential access method) 9-10

with card punch 65-66
with card reader 65-66
with control character 64
with direct access storage device 66
with magnetic tape 64-65
with paper tape reader 65
with printer 66
with sequential organization 64

record length (LRECL) field 20
relative block address

defined 17
with direct data set 106

relative key position (RKP) 92
relative track address (TTR)

defined 17
with direct access 106

RELEX macro instruction 37,106
RELSE macro instruction 62
RLSE parameter of DD statement 48
reorganization of indexed sequential data set 91
REREAD option 49,50
restart

end-of-volume exit routine 30
resume load 97-99
return code

with block count exit 30-31
with user labels 27

REWIND option 47
RKP (relative key position) 92
RORGl, RORG2, RORG3 fields 91
RPS (rotational position sensing) devices

restrictions for BDAM 75

s
save area, user totaling 29-30
SDW

(see segment descriptor word)
search direct for input 72
secondary storage

(see data set storage; direct-access storage;
magnetic-tape volumes)

search option, extended 106
security, data set 1,127-128
segment

buffer 51
control code 11
descriptor word (SDW) 10,11
overflow record 17

selecting an access method 44
SEP (separation, channel) 20
sequential data set

creation 73-74
concatenation 123-124
processing 63-75

sequential organization
defined 2
device control 67-69

device independence 69-70
through programming 69-70
through system generation 69

SETL macro instruction 96-97
SETPRT macro instruction 67-68
sharing data sets 36-37
sharing direct access storage devices 37
simple buffering 55-58
simple names

levels of qualification 3
length 3

SKP error option 23
SMSI field 95
SMSW FIELD 94,95
space allocation

definition of 21
estimating requirements 112-113
field (SPACE) 20
for an indexed sequential data set 114-121
for a partitioned data set 113-114
specifying 111-112

spanned records
basic direct access method 12
restriction with search direct 72
sequential access method 9-10

stacker selection
control characters for 6,15,134
using CNTRL macro 67
using STACK operand 65
for 3525 print data set 137

standard fixed-length records 6-7
standard labels

direct-access volumes 4
magnetic-tape volumes 5

storage
(see direct-access storage; magnetic-tape volumes)

STOW macro instruction
description 81-82
input for 78
use 79

substitute mode processing
creating a sequential data set 73-74
defined 54
with exchange buffering 59-60,74
with GET macro instruction 59-60
with PUT macro instruction 59-61

switching, volume
automatic 49,50,123
initiated by CHECK 42

SYNAD field
device independence 70

SYNAD routine 22-24
SYNADAF macro instruction

description 43
examples 72-74
use in SYNAD routine 23,24

SYNADRLS macro instruction
description 43
examples 72-74
use in SYNAD routine 24

synchronous error (SYNAD) routine exit
device independence 70
examples 72-74
with ISAM 91,98
macro instructions 43

Index 155

specifying 22-24
with a SYSOVT data set 122
writing 22-24

SYSOVT data set 122-123
system generation 69
system output device 122
system output writer 122
SYS1.SVCLIB and checkpoint/restart 30
SYSl.SAMPLIB 29

T
tape

(see magnetic-tape volumes, paper-tape reader)
temporary close 47-48
totaling area, user totaling exit routine 29-30
track

addressing 17
defined 15-16
format

count-data format 15
count-key-data format 15

index 86
overflow option 17

effect on chained scheduling 71
restriction on BSP macro instruction 68

trailer label, user 26
TRVNC macro instruction 63
truncated blocks 7
TTR 17,77,78
TYPE=T 47-48

u
V-format records

(see format-V records)
VHL (user header label) 26
undefined length records (V) 14-15
VNIT field 20
unlabeled magnetic tape 5
VPDAT option 46
update mode 10,58
user header label (VHL) 26-29,131-132
user label exit routine 26-29

restriction for data sets on volumes without standard
labels 28
restriction for SYSOVT data sets 28
with read backward 26

user totaling exit routine 29-30
control program save area 29
control totals 29
exit list entry 25
image area address 27,29
OPTCD operand 29
restricted to BSAM, QSAM 29
totaling area 29
variable-length records and 29

user trailer label (UTL) 26-29,131-132
utility programs

IBCDASDI 111
IEBCOPY 85
IEHDASDR 111

156 OS Data Management Services Guide

IEHLIST 95,115
IEHMOVE 78,79
IEHPROGM 115,125,126
initialize a direct-access volume 4,111

VTL (user trailer label) 26-29

v
validity check option for write 18
variable-length block 9
variable-length record (format-V) 9-12

segments 11
spanned 9-12
special consideration for, with user totaling 29-30

variable-length record (format-D) 13-14
version increment, generation 126
V-format records

(see format-V records)
volume

control 125
defined 3
direct-access 4
disposiHon 49,121-122
labels 4
magnetic-tape 5
serial number 5

volume identification (VOLVME) field 21
volume index 125
volume switching 49,50,123
volume table of contents (VTOC) 4,111,129-131
VTOC (volume table of contents) 4,111,129-131

w
WAIT macro instruction

with basic access technique 40,100,101
description 42
examples 102

WRITE macro instruction
add form 107
description 41-42
device independence 70
update form 107
updating a partitioned data set 84
used with note list 79
with K 100
with KN 89,103

write validity check option 18

123
2316 Disk Pack 15
2301 Drum Storage

capacity 113
overhead formula 113

2302 Disk Storage
capacity 113
overhead formula 113
volume of 3

2303 Drum Storage
capacity 113
overhead formula 113

---~~----------~---- .. -.-----~------~.

o

f

{,

0

o

o

•

o

2305 Drum Storage
capacity 113
example 112
overhead formula 113
programming with BDAM 109

2311 Disk Drive
capacity 113
overhead formula 113

2314 Storage Drive
capacity 113
example 112
overhead formula 113

2319 Storage Drive
capacity 113
overhead formula 113

2321 Data Cell
capacity 113
maximum labels for 28
overhead formula 113

2400 Magnetic Tape Units
recording density 66

2540 Card Read Punch
chained scheduling restriction 71

3330 Disk Drive
capacity 113
overhead formula 113

3333 Disk Storage and Control
capacity 113
overhead formula 113

3400 Magnetic Tape Units
recording density 66

3505 Card Reader 137,141-142
(see also OMR; RCE)
chained scheduling restriction 71

3525 Card Punch
associated data sets 138-140
chained scheduling restirction 71
interpret punch data set 13 7
print data set 137

Index 157

GC26-3746-2

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A; only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

o en
o
Q)

at
s:
Q)

::J
Q)

(Q
CD
3
CD
::J
.-+

en
CD
~

< o·
CD
(I)

G')
c::
c:
CD

" CD
z
o
en
Co\)
0')
o en
Co\)
......
o
W
.9

o

o

•

o

f

o

o

OS Data Management Services Guide
GC26-3746-2

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

Reader's
Comment
Form

GC26-3746~2

Fold and Staple

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I BM Corporation
Programming Center -Publishing
Department D58
Monterey and Cottle Roads
San Jose, California 95193

First Class Permit
Number 2078
San Jose, California

..
Fold and Staple

®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
(International)

o
C/)

o
OJ
.-+
OJ

s:
OJ
::J
OJ
to
(1)

3
(1)
::J
.-+
C/)
(1)
~

< o·
(1)
en

o

t

g> I(»'.
Ci V
(1)

" ro
z
o
C/)
w
(j)
o en w
'-l
o
W
9

•

c

