
il

.1, ,
\ •

c

c

Systems Reference L~brary

IBM System/360 Operating System

File No. S360-25 OS
Form C27-6932-2

Graphic Programming Services for FORTRAN IV

Program Number 360S-LM-537

This publication describes how a FORTRAN programmer can
write graphic programs for use with the IBM 2250
Display Unit in association with the IBM System/360
Operating System. It also describes how the graphic
programming services for FORTRAN may be used in a
program written in Assembler Language.

The graphic programming services for FORTRAN IV consist
of subroutines and functions for displaying characters
or graphic forms on the 2250 screen and for controlling
communication between the program and the 2250 opera
tor. The subroutines may be called from a program
written in the E, G, or H level of FORTRAN IV, or from
a program written in Assembler Language. They are not
an extension of the FORTRAN IV language, but may be
used in conjunction with it.

It is assumed that the FORTRAN user of this publication
is experienced in the IBM System/360 Operating System
FORTRAN IV language. It is assumed that the Assembler
Language user of this publication is experienced in
both FORTRAN IV and Assembler Language.

~- - -.--~--.-~~--~--.~---- _ .. _--------~------.-----.. --... _. _.

PREFACE

This publication describes subroutines and functions that can be called
from a FORTRAN program to cause displays of characters and graphic data
to be produced on the screen of an IBM 2250 Display Unit attached to an
IBM System/360 Computing System. The displays may consist of charts,
circles, arcs, rectangles, or numerous other configurations.

This publication is divided into five major sections, a series of
appendixes, and an index.

The first section familiarizes the reader with the graphic programming
services and the 2250. It also discusses the format used in the
detailed descriptions of each subroutine and function described in this
manual.

The second section presents an overall view of how the graphic
programming services may be used to create, modify, and terminate a
display. It also defines terminology used in the publication.

The third section provides detailed descriptions of all the graphic
subroutines, except attention related and specialized subroutines.

The fourth section describes subroutines that enable two-way communica
tion between the 2250 operator and the user's program, and provides an
overall view of how these subroutines (called attention related subrou
tines) may be used.

Third Edition (May 1968)

This publication corresponds to Release 16 of the
operating system. It is a major revision of, and
obsoletes, IBM Systeml360 operating system Graphic
Programming Services for FORTRAN IV, Form C27-6932-1.
Major changes have been made to include descriptions
of a new routine called Specify Link or Load Status
(SPEC), of a change in the use of the alphameric
keyboard CANCEL key, and of the use of progran~ed

function key c.

Changes to the text are indicated by a vertical line
to the left of the change; revised illustrations and
tables are denoted by the symbol • to the left of the
caption.

Significant changes or additions to the specifications
contained in this publication are continually being
made. When using this publication in connection with
the operation of IBM equipment, check the latest SRL
Newsletter for revisions or contact the local IBN
branch office.

This publication was prepared for production using an IBt~ computer to
update the text and to control the page and line format. Page impres
sions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print chain.

copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form for reader's comments appears at the back of this publication.
Address any additional comments concerning the contents of this publica
tion to: IBM Corporation, Programming publications, Department 637
Neighborhood Road, Kingston, New York 12401

© International Business Machines Corporation 1967, 1968

,

o

c

•

..

o

•

c

The final section describes functions that allow the prograrmner
whether a particular subrbutine was able to perform the
cperation on the basis of the data supplied to it, and the
errors (if any) that were encountered.

to check
desired

type of

The appendixes consist of a sample program and descriptions of special
ized subroutines. Included are discussions of the use of the subrou
tines and fUnctions in an assembler language program, the displaying of
characters by means of lines (called strokes), and the direct specifica
tion of graphic orders and data. Also·included is a listing of the
statements necessary to invoke all the GSP subroutines and functions.

Before using this publication, the reader must be familiar with the
publication IBM System/360: FORTRAN IV Language, Form C28-6515. He
must also be familiar with one of the following publications:

IBM System/360 Component Description: IBM 2250 Display Unit Modell,
Form A27-2701

IBM System/360 Component Description: IBM 2250 Display Unit Model 3;
IBM 2840 Display Control Model 2, Form A27-2721.

In addition to
programmer should
Operating System:

the publications listed above, the Assembler Language
be familiar with the publication IBM System/360

Graphic programming Services for IBM 2250 Display
Unit, Form C27-6909.

3

o

•

c

c

GENERAL INFORMATION • •
The 2250 Display Unit
Error Handling •• • •
Machine and System Requirements •
Language Compatibility
Storage Requirements •••••

CONTENTS

9
• • • • • 9

• 10
10

• • 10
10

Linkage Editor Requi.rements for Using Gsp in a Fortran Program • • 10
System Generation Requirements
Processing Efficiency of GSP Programs •

• • 11
• 11

• • • 11 Loaded Subroutines •• • • •
Link-To Subroutines • • • • • · . . • • • 11
Altering Predefined Link/Load Status • • • • • • 12

• 12 Format of Subroutine Descriptions • • • • •
Format Illustration Conventions •• • • • • • • • • • • • 12

CREATING THE GRAPHIC PROGRAM • • • • • 14
Structure of the GSP Graphic Program 14

Establishing Communication Links and Identifying 2250's •• 14
Defining Graphic Data Sets • • • • • • • • • • • • •• •• 15
Defining Characteristics of the Data Used to Produce Displays • 15
creating Graphic Orders and Data ••• • • 17
causing An Image to be Displayed ••• • • • • • • • • •• 18
Modifying the Images Making Up a Display • • • • • • • • • • • 18
Establishing Communication Between the GSP Program and the
2250 Opera tor • 19

• • 19 Terminating the Display and the Use of GSP •••• •
Basic Subroutines for Creating and Terminating a Display • . • • . 20

THE GSP SUBROUTINES • • • • • • • • • •
Arguments Used By Many GSP Subroutines

• • • 23

Initiation and Termination Subroutines • • • •
INGSP--Initialize the Graphic Subroutine Package
INDEV--Initialize a Graphic Device ••••••••

• 23
• 24

• • 25
26
27

• • • • • • 30
INGDS--Initialize a Graphic Data Set • • • • • •
SPEC--Specify Link or Load Status • • • • • • •
TMGDS--Terminate the Use of a Graphic Data Set
TMDEV--Terminate the Use of a Graphic Device
TMGSP--Terminate Use of the Graphic Subroutine package

• • •• . • 31
• • • • • 32

• 32
Option Definition Subroutines ••••• • 33

SDATM--Set Data Mode • • • • • • • • • • • • • • • 33
SGRAM--Set Graphic Mode • • • • 34
SCHAM--Set Character Mode • • • • 35
SGDSL--Set Graphic Data Set Limits • • 36
SDATL--Set Data Limits • • • • • • • • • • 37
SSCIS--Set Scissoring Option • • • • • • • • • • 38

Image Generation Subroutines • • • • • • • • • • • 40
MVPOS--Move Beam to a Position • • • • • • • • •• • • • • 42
STPOS--Set Beam at Absolute position • • • • • • • • •
PLINE--Plot Line(s) ••••
PPNT--Plot Point (s) • • • • • • • • • • • • •
PSGMT--Plot Line Segment(s) •••••••••

42
• • 43
• • 46
• • 50

PTEXT--Plot Text • • • • • • • • • • •
STEOS--Set an End-Order-Sequence Order

• • • • • • 53

Identification Subroutines •••• • •
Grouping Elements Into a Sequence • •

BGSEQ--Begin a Sequence of Elements
ENSEQ--End a Sequence of Elements • • • • • •
Example of Creating a Sequence • • • • •

Grouping Elements Into a Buffer Subroutine (2250 Model 3 Only>

---_ _----

• • 55
56

• • 56
56

• • 57
• • 57

· 58

5

BGSUB--Begin a Buffer Subroutine • • • • • • 59
ENSUB--End a Buffer Subroutine • • • • • • • • • 59
LKSUB--Link to a Buffer Subroutine • • • • • • • • • • • • 60
Example of Use of a Buffer Subroutine • • • • • • • 60

Image Control Subroutines • • • • • • • • • • • • • • • • 62
Replacing and Eliminating Elements Within a Graphic Data Set • • 62

The Update Facility. • • • • • • • • • • • • • • • • • 63
RESET--Reset a Graphic Data Set • • • • • • • • • • • • 64
IDPOS--Indicate Beam position • • • • • • • • • • • 65

Controlling When Images are Displayed • • • • • • • 66
EXEC--Execute • • • • • • • • • • • • • • • • • • 66
INCL--Place in Include Status • • • • • • • • • • • • • • • 67
OMIT--Place in Omit Status • • • • • • • • • • • 67
ORGDS--Order Graphic Data sets •••• • • • • • • 68

Keyboard Input and Buffer Data Analysis Subroutines 69
ICURS-- Ins ert Cursor • • • • • • • • • • 69
RCURS--Remove Cursor • • • • • • • • • 70
GSPRD--Read Data • • • • • • • • • • • • • • • 71

COMMUNICATING WITH THE 2250 OPERATOR • • • • • • • • • • 73
Creating an Attention Level • • • • • • • • • • 73
Enabling and Disabling Attention Sources • • • • • • • • • 74
Placing Attention InfOrmation in an Attention Level Queue • • • 74
Using the Alphameric Keyboard CANCEL Key • • • • • • • • • • • 74
Using Multiple Attention Levels • 75

The Attention Related Subroutines • • • • • • • • 76
CRATL--Create an Attention Level • • • • • • • 76
ENATL--End Attention Levels • • • • • • • • • 77
ENATN--Enable Attention Sources • • • • • • • 77
DSATN--Disable Attention Sources • • • • • 79
SLPAT--Set Light Pen Attentions • • • • • • • • • • • • 79
RQATN--Request Attention Information • 80
MLPEO--Modify Light Pen or End-Order-Sequence Attention
Information . • . . . • • • . • . . . • • • . • . • 83
MLITS--Modify Status of the Programmed Function Indicator
Lights • • 85
MPATL--Modify Position of an Attention Level • • • • . 86
SALRM--Sound Audible Alarm • • • • • 87

Light Pen Subroutines • • • • • • • • • • • • • • •
Locating the Light Pen • • • • • • • • • • • • •

LOCPN--Locate the Position of the Light Pen • •

• • 87
• • • • • • 87

87
Tracking the Movement of the Light Pen (2250 Model 3 Only)

BGTRK--Begin Light Pen Tracking • • • • • • • • • •
ENTRK--End Light Pen Tracking • •• •• • • • • • •
RDTRK--Read the Current Location of the Tracking Symbol

CHECKING PROGRAM STATUS AFTER A CALL
The Return Codes • • • • • • • • •
The Status Information Functions

TO A GSP SUBROUTINE

• • • 88
89

• • 89
• • 89

92
• 92

92
• 92 ITRC--Test Return Code

ITBP--Test Integer Beam Position
RTBP--Test Real Beam Position •
ITST--Test Status • • • • • • •

• • • • • • 95
• • • 96

• 96

APPENDIX A: SAMPLE PROGRAM • 97

APPENDIX B: USING GSP IN AN ASSEMBLER LANGUAGE PROGRAM •••••• 107
Linkage Editor Requirements • • • • • • • • • • • • • • • • .107

APPENDIX C: PRODUCING CHARACTERS WITHOUT A CHARACTER GENERATOR • .108
.108
.108

6

The System Stroke Table • • • • • • • • • • • •
Creating a Stroke Table •
DFSTR--Define Strokes • • • • • • • • •
PLSTR--Plot Strokes • • • • • • • • • •

• ••••••• •• 110
• • • • • • .111

•

•

o

(.. -...•
/

c\

C'
/'

APPENDIX D: CONVERTING COORDINATES
CNVRT--Convert Coordinates

APPENDIX E: DIRECT ORDER GENERATION
ORGEN--Generate Graphic Orders

APPENDIX F: PROGRAMMER-DEFINED CORRELATION SCHEMES
FSMOD--Force a Set Mode Order • • • • • • •

APPENDIX G: EXAMPLE OF MULTIPLE LEVEL ATTENTION HANDLING

APPENDIX H: DIMENSIONS OF STANDARD 2250 CHARACTERS

• .113
• .113

• .114
• .114

• .115
• .116

· .117

.118

APPENDIX I: STATEMENTS FOR INVOKING GSP SUBROUTINES AND FUNCTIONS .119

INDEX • • • .121

7

ILLUSTRATIONS

FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.

TABLES

Table l.

Table 2.

Table 3.

Table 4.
Table 5.

Table 6.
Table 7.

8

Relationship of Graphic Data Sets to Images
Defining the Size and Position of a Graphic Data Set
Defining Limits of the User's Input Data
Input/Output Requirements and Programming
Considerations for the MVPOS, PLINE, PPNT, PSGMT,
and PTEXT Subroutines •
Example of Use of PLINE Subroutine
Display Produced by PLINE and PSGMT Examples
Example of Use of the PPNT Subroutine .
Displays Produced by PPNT Example .
Example of Use of the PSGMT Subroutine
Example of Use of the PTEXT Subroutine
Example of Use of a Buffer Subroutine .
Example of Use of Light Pen Tracking Subroutines
GSP Sample Program .. .
Displays Produced by GSP Sample Program
Composition of Stroke Table
Contents of Stroke Defining Halfwords •

Basic Subroutines Necessary to Create and Terminate a
Display •
Relationship Among Null Variable Value, Abnormal
Termination, and Abnormal Termination Dumps
Identifying GSP Subroutines in Calls to SPEC
Subroutine • . . .
Default Conditions for Option Definition Subroutines
Contents of Array that Provides Light Pen Attention
Information
Description of All GSP Return Codes
Return Codes for Each GSP Subroutine

16
39
39

42
45
46
47
49
52
54
61
90
99

.106

.109

.1l0

20

26

. 31
33

81
93
94

c

o

c

GENERAL INFORMATION

The IBM graphic programming services for FORTRAN IV consist of
tines that enable a FORTRAN programmer to create displays on one
IBM 2250 Display Units attached to an IBM System/360 Computing
These displays consist of figures that can be constructed with
lines, and characters.

subrou
or more
System.
points,

The set of subroutines available for use by the FORTRAN programmer is
called the graphic subroutine package (GSP). This package is not an
extension of the FORTRAN IV language, but is to be used in conjunction
with it. The execution of each subroutine is requested by using the
CALL statement.

A program that uses GSP includes calls
that causes displays to be produced and
tion between the 2250 operator and the
described in detail in the section
Program."

to GSP subroutines in a sequence
that provides two-way communica

program. Such a program is
• Structure of the GSP Graphic

Displays are produced on the basis of control information and data
supplied by the programmer in the call to each GSP subroutine. This
control information and data define what is to be displayed (e.g.,
points., lines, or characters) and where it is to be displayed.

Input data can be provided as scalar values or in main storage arrays.
As supplied by the programmer, this data is meaningful to GSP but not to
the 2250. Therefore, GSP converts this data to a form the 2250 can use.

THE 2250 DISPLAY UNIT

The 2250 Display Unit basically consists of a cathode ray tube on which
images are displayed under programmed control, and of optional features
that enable data to be entered from the 2250 into the computer. Among
these optional features are a light pen, an alphameric keyboard, and a
programmed function keyboard.

The screen (12" x 12") is defined by a matrix (1024,1024) of addressable
point positions. Each point, or screen location, is specified by a pair
of x- and y-coordinates called raster units.

The origin begins at the lower left corner of the screen, and extends
horizontally to the right in the x-direction and vertically in the
y-direction so that the coordinates at the top right corner represent
the maximum boundary of the screen.

A display is created when an electron beam in the 2250 moves over the
screen as directed by graphic orders and data being processed in the
2250 buffer. The orders may designate that the beam is to be on
(unblanked) or off (blanked) while it is being moved.

Images are only displayed if the beam is moved in the unblanked mode.
However, the images fade rapidly and must be continually regenerated to
make the display appear steady and stationary. Display regeneration is
accomplished by repeating the execution of the orders and data in the
2250 buffer thirty to forty times each second. The actual regeneration
rate is a function of the amount of data displayed.

Alphameric characters may be displayed by using the character generator
feature or by drawing the desired characters by a series of lines. The

General Information 9

character generator produces a standard set of characters of two sizes
(basic and large) and of one orientation (vertical). The dimensions and
spacing of characters produced by the character generator are listed in
Appendix H.

For a more detailed discussion of the 2250 (including descriptions of
the light pen, the alphameric keyboard, and the programmed function
keyboard), refer to either of the following publications as appropriate:

• IBM Systern/360 Component Description: IBM 2250 Display Unit Model
!, Form A27-2701.

• IBM System/360 CompOnent Description: IBM 2250 Display Unit Model
3; IBM 2840 Display Control Model 2, Form A27-2721.

ERROR HANDLING

Errors that occur while the program is communicating with the 2250 are
handled automatically by standard IBM error-ha.ndling routines. These
routines diagnose the errors and apply error-recovery procedures. If an
error cannot be corrected, the routines retur"n control to the user' s
program (if possible) and make available an indication that such an
error has occurred.

Specification of invalid arguments in the CALL statement for a GSP
subroutine results in GSP making codes available to the programmer that
tell what type of error occurred. These codes, called return codes, are
described in the section entitled "The Return Codes."

MACHINE AND SYSTEM REQUIREMENTS

GSP may be used with any IBM System/360 Operating System that contains
graphic programming services for the 2250 with basic attention handling.
For further information, refer to the publication IBM Systerw360
Operating System: Graphic Programming Services for the IBM 2250 Display
Unit, Form C27-6909.

The 2250's attached to the system may be any combination of Models 1 and
3. However, each 2250 must be equipped with absolute vectors and a
buffer. The character generator, alphameric keyboard, light pen,
programmed function keyboard, and graphic design features are optional.

LANGUAGE COMPATIBILITY

Facilities provided by GSP can be used by programs written in either the
E, G, or H level of the FORTRAN IV Language, or in Assembler Language.
The body of this publication is directed to the use of GSP by programs
written in FORTRAN IV. The use of GSP by programs written in Assembler
Language is described in Appendix B.

STORAGE REQUIREMENTS

Refer to the publication IBM System/360 Operating System: Storage
Estimates, Form C2S-6551, for a description of the amount of storage
necessary to process GSP programs.

LINKAGE EDITOR REQUIREMENTS FOR USING GSP IN A FORTRAN PROGRAM

For calls to GSP subroutines to be resolved, the following statement
must be included as input to the linkage editor:

10

o

c

•

o

•

INCLUDE SYSLIB (IHCGSP03)

When using a FORTRAN cataloged procedure for compilation, linkage
editing, and execution, that statement is included as follows:

/ /LI<.ED. SYSIN

/*

DD *
INCLUDE SYSLIB(IHCGSP03)

Additional job control requirements for processing a FORTRAN program are
contained in the programmer's guide for the FORTRAN compiler (E, G, or
H) being used.

Linkage editor requirements for using GSP in an Assembler Language
program are discussed in Appendix B.

SYSTEM GENERATION REQUIREMENTS

GSP is included in the operating system by specifying GSP=INCLUDE in the
GRAPHICS system generation macro instruction. The manner in which this
is specified is described in the publication IBM Systern/360 Operating
System: System Generation, Form C28-6554.

PROCESSING EFFICIENCY OF GSP PROGRAMS

Copies of most GSP subroutines are located on direct access storage and
are brought into main storage and given control the first time their use
is requested by the user's program. The length of time a copy of a
particular subroutine will remain in main storage has been predefined on
the basis of anticipated usage of the subroutines in a typical program.

Loaded Subroutines

Copies of GSP subroutines for which frequent use is anticipated are left
in main storage after their processing is complete. Subsequent requests
for the use of such a subroutine merely cause control to be passed to
the copy of the subroutine left in main storage. All copies of such
subroutines are deleted from main storage when the use of GSP is
terminated. A copy of a particular subroutine is deleted when its load
status is changed to link-to.

This technique eliminates the need for an input/output operation to be
performed each time the subroutine is requested, thus reducing program
processing time. However, it also increases the total amount of main
storage needed for a GSP program because main storage is occupied by a
subroutine no matter if the subroutine is or is not in use.

Within this publication, such subroutines are referred to as loaded
subroutines.

Link-To Subroutines

Copies of GSP subroutines for which infrequent use is anticipated are
removed from main storage when their processing is complete. Subsequent
requests for the use of such a subroutine cause a new copy of the
subroutine to be brought into main storage at each request and control
to be passed to that new copy.

This technique eliminates the need for main storage to be occupied by a
subroutine that is not in use, thus reducing total main storage
requirements for a GSP program. However, it also requires additional
processing time because an input/output operation must be performed each
time a subroutine is requested.

General Information 11

Within this publication, such subroutines are referred to as link-tc
subroutines.

Altering Predefined Link/Load status

Some GSP subroutines most frequently used in one program may be
infrequently used in another program. Therefore, to use the operating
system most efficiently, the predefined link-to or load designations may
need to be changed to ensure that the subroutines most frequently used
are loaded and those less frequently used are linked to. GSP provides a
subroutine, called Specify Link or Load Status (SPEC), that allows this
change to be easily made.

A description of the SPEC subroutine and a table that identifies the
predefined link/load status of each GSP subroutine is included in the
section "Initiation and Termination Subroutines." Estimates of the
amount of storage required by each GSP subroutine are contained in the
publication IBM System/360 Operating System: Storage Estimates, Form
C28-6551.

FORMAT OF SUBROUTINE DESCRIPTIONS

In this publication, the detailed description of each GSP subroutine or
function is organized as follows:

1. Name--The mnemonic entry name of the subroutine or function, and a
phrase explaining the meaning of that mnemonic.

2. Function--A brief
accomplishes, and
functions.

summary of what
its relationship

the
to

subroutine or function
other GSP subroutines or

3. Format Description--An illustration showing how the statement for
invoking the subroutine or function is written. Symbols used in
the illustration are discussed below in "Format Illustration
Conventions." To conserve space, a reference to the statement
number is not shown in the illustration.

4. Argument. Descriptions--Detailed information about writing each
argument, including any cautions or default conditions applicable
to a particular argument.

5. Cautions--A warning of any special restrictions on the use of the
subroutine or function.

6. Programming Considerations--Tutorial material describing the use of
the subroutine or function and the results it accomplishes.

7. Examples--Wherever necessary" one or more examples showing how the
statement that invokes the subroutine or function is written to
accomplish desired results. Statement numbers are used in DIMEN
SION statements for reference purposes only.

Items 1 through 4 are included in all subroutine and function descrip
tions. Other items are included as appropriate.

FORMAT ILLUSTRATION CONVENTIONS

For consistency and clarity, the following conventions are used in the
format illustrations in this publication:

12

•

c

c

• Upper case (capital) letters, numbers, parentheses, and commas must
be written by the programmer. exactly as ShOwn. Brackets [1, braces
{ }, vertical bars I, and ellipsis ••• are never written.

• Lower case (small) letters and words represent arguments for which
specific variables or constants must be supplied by the programmer.
Unles·s otherwise noted, all variables supplied in calls to GSP
subroutines must be of standard length.

• Brackets denote optional arguments. The items within the brackets
may be included or omitted at the programmer's discretion. If an
argument is omitted that is not the last argument the programmer
wishes to specify in the CALL statement, the null variable must be
substituted for the omitted argument. Otherwise, a terminating
right parenthesis is sufficient. The null variable is discussed in
the detailed description of the Initialize the Graphic Subroutine
package (INGSP) subroutine.

• Braces indicate grouping. One argument from the group must be
chosen unless a default option is indicated.

• An ellipsis indicates that the preceding syntactical unit can be
written one or more times in succession.

• A vertical bar indicates that either one of two arguments, but not
both, must be specified and that the null variable need not be
substituted for the omitted argument.

General Information 13

----------~~==

CREATING THE GRAPHIC PROGRAM

This section provides an overall view of the use of GSP to create,
modify. and terminate displays on one or more 2250's, and defines
terminology used later in this publication. The subroutines referred to
in this section are described in detail later in this publication.

STRUCTURE OF THE GSP GRAPHIC PROGRAM

Preparation of the GSP grapnic program requires that the programmer:

1. Establish communication links between the program and GSP (the
initiation subroutines);

2. Identify the 2250's on which displays are to be produced (the
initiation subroutines);

3. Define one or
subroutines) ;

several graphic data sets (the initiation

4. Define the characteristics of the data used to produce the display
(the option definition subroutines);

5. Create the graphic orders and data necessary for the display (the
image generation subroutines);

6. Cause the display to be produced on the 2250 screen (the image
cont~ol subroutines);

7. Modify the images making up the display as desired (the image
control subroutines);

8. Establish communication between the GSP program and the 2250
operator if desired (the attention related subroutines);

9. Terminate the display and the use of GSP (the termination
subroutines).

Terminating the use of GSP when the graphic processing portion of the
user's program has been completed is recommended, but is not required.

Establishing Communication Links and Identifying 2250's

To use GSP. the programmer must first establish communication links
between his program and GSP. That is, he must inform the operating
system that GSP is going to be used. This is accomplished by calling
the Initialize the Graphic Subroutine Package (INGSP) subroutine.

The programmer may next specify which subroutines he wants loaded and
which subroutines he wants linked to, or may not specify anything thus
causing the predefined link/load status conditions to be assumed (see
·processing Efficiency of GSP Programs·). Specification of link/load
status is accomplished by the Specify Link or Load Status (SPEC) subrou
tine. This subroutine may be called anywhere in the user's program.

Once communication links have been established and the link/load status
has been defined, the user must identify at least one (but preferably
all) of the 2250s on which displays are to be produced by his program.
This is accomplished by calling the Initialize a Graphic Device (INDEV)
Subroutine.

14

o

•

o

c!

Defining Graphic Data Sets

Once GSP and a 2250 have been initialized, one or several graphic data
sets must be created for that 2250.

A graphic data set is a named collection of all the graphic orders and
graphic data necessary to display an image on a 2250. It is created by
a call to the Initialize a Graphic Data Set (INGDS) subroutine.

Graphic orders are requests to the 2250 to perform operations; they
instruct the 2250 whether to plot a point, draw a line, display a
character, move the position of the beam, etc. Graphic data follows the
orders and provides the information necessary to perform operations
requested by the orders. Graphic data represents the programmer's input
data after that input data has been transformed by image generation
subroutines into configurations that are meaningful to the 2250.

A display may consist of the contents of one or of several graphic data
sets. Each graphic data set is represented as a rectangular area on the
screen within which an image may be displayed. The boundaries of this
rectangle (hence, the boundaries of the graphic data set) do not appear
on the screen.

The size and position of each graphic data set are defined in
relationship to the fixed size of the screen. An entire graphic data
set mayor may not lie within the screen boundaries. However, at least
one portion of it must lie within those boundaries.

Figure 1 depicts five graphic data sets and their relationship to images
of a display. several of the graphic data sets overlap one another, and
one lies partially outside the screen boundaries. The graphic data sets
in the figure make up a graphic program that is to display a resistor on
the screen. Broken lines represent the boundaries of the graphic data
sets. Solid lines and characters within the screen represent images
that are produced from the graphic orders and data in each graphic data
set.. Explanatory statements appear outside the screen boundaries.

The graphic data set is important for data scaling and image scissoring
operations. Data scaling involves the conversion of the programmer's
input coordinates so that these coordinates conform with the coordinate
system of a particular graphic data set or the screen and still remain
in relative position to one another. Image scissoring involves truncat
ing portions of a display that extend beyond the graphic data set or
screen boundaries.

Defining Characteristics of the Data Used to Produce Displays

Once a graphic data set has been initialized, the following characteris
tics must be established for it either by the programmer or by default:

• The relation of the graphic data set to the boundaries of the
screen;

• The type and form of input data that will be provided;

• The type and form of graphic orders and data that will be produced
as output data;

• The size of characters that are to be displayed; and

• How data scaling and image scissoring are to be performed.

The subroutines used for supplying this type of information are called
option definition subroutines. Unless they are called by the program
mer, default options are assumed.

Creating the Graphic Program 15

GRAPHIC
PROGRAM

GDSI
Orders

and
Data

GDS2
Orders
and

Data

GDS3
Orders
and

Data

GDS4
Orders
and

Data

GDS5
Orders
and
Data

SCREEN

, -------.,
I.

NOTES:

-,
I

..J

GDS denotes Grophic Data Set.
Broken lines denote boundaries

of Graphic Data Sets.

Figure 1. Relationship of Graphic Data sets to Images

16

o

(\

Input data may be main storage arrays of x- and y-coordinates or scalar
values that describe images to be displayed. This input data may be of
real or integer type, and of absolute or incremental form. Absolute
data represents the actual coordinates where an image is to be displayed
on the screen. Incremental data represents coordinate values that are
displacements from the coordinate values that precede them.

output data produced by GSP subroutines may be of absolute, incremental,
or optimized form. Optimized data represents input data that has been
transformed by image generation subroutines into a form that minimizes
the amount of buffer storage required to display an element. This form
consists of a combination of absolute and incremental data. (Note:
Incremental output can only be produced on the 2250 Model 1 with the
graphic design feature and on the 2250 Model 3.)

creating Graphic Orders and Data

After the characteristics of the data have been defined for a graphic
data set, the programmer may call the subroutines that create the
graphic orders and data necessary for displaying an image associated
with that graphic data set. These subroutines, called image generation
subroutines, create graphic orders and data for the following
operations:

• Moving the beam to a position on the screen where a display is to
begin (MVPOS or STPOS subroutine).

• Displaying a single line or a number of continuous lines by means of
one CALL statement (the PLINE subroutine>.

• Displaying a single point or a number of points by means of one CALL
statement (the PPNT subroutine).

• Displaying a single line segment or a number of line segments by
means of one CALL statement (the PSGMT subroutine).

• Displaying text by means of the 2250 character generator (the PTEXT
subroutine). (Note: Text may also be displayed by means of stroke
tables. This is discussed in Appendix C.)

• Placing an end-order-sequence order within a graphic data set (the
STEOS subroutine).

When incremental or optimized output is to be produced within a graphic
data set, the STPOS subroutine should be the first image generation
subroutine called for that graphic data set. This establishes a beam
position to which subsequent beam positions can be related.

The set of graphic orders and data created by one call to an image
generation subroutine is called an element. Elements are grouped into
three types: graphic elements, positioning elements, and text elements.
Graphic elements are created by calls to the PLINE, PPNT, and PSGMT
subroutines. Positioning elements are created by calls to the MVPOS and
STPOS subroutines. Text elements are created by calls to the PTEXT
subroutine.

As elements are created by image generation subroutines, they are
sequentially stored in a main storage area associated with the graphic
data set until such time that they are transferred to the 2250 buffer
for execution. The area in which elements are stored is called the
graphic data output area. Its size is defined either by default, or by
means of arguments in calls for the INDEV and the INGDS subroutines.

Elements may be generated either in include status or omit status.
Elements generated in include status are in such a form that the images

Creating the Graphic Program 17

associated with them are displayed on lC screen. Elements generated in
omit status are in such a form that tl L;;.::;-es associated with them are
not displayed on the screen. The programmer specifies that an element
is to be placed in include or omit status either by means of an argument
in the call to the subroutine that creates the element or by a call to
the Place in Include Status (INCL) and place in omit Status (OMIT)
subroutines.

A number of elements may be grouped into single units defined either as
sequences or buffer subroutines. Each sequence or buffer subroutine may
be manipulated as a single element, and each element within it may be
manipulated independently of the sequence or buffer subroutine itself.
A buffer subroutine can only be used with the 2250 Model 3.

A sequence consists of all elements within a graphic data set that are
generated between calls to the Begin a Sequence of Elements (BGSEQ)
subroutine and a corresponding End a Sequence of Elements (ENSEQ)
subroutine. Sequences are described in detail in the section "Grouping
Elements Into a Sequence."

A buffer subroutine consists of all elements within a graphic data set
that are generated between calls to the Begin a Buffer Subroutine
(BGSUB) subroutine and a corresponding End a Buffer Subroutine (ENSUB)
subroutine. It represents one copy of all the elements necessary to
display an image. This copy is placed at a fixed location in the 2250
buffer and can be repeatedly invoked to display its associated image at
several different screen locations. Use of a buffer subroutine elimi
nates the need for creating separate copies of all elements necessary to
produce a particular image each time that image is to be produced.
Buffer subroutines are described in detail in the section "Grouping
Elements Into a Buffer Subroutine."

causing An Image to be Displayed

Once one or several elements have been created, the programmer may have
the images associated with those elements displayed on the screen at any
time. He does so by calling the Execute (EXEC) subroutine.

The EXEC subroutine causes all elements within a particular graphic data
set that have been generated since a previous call to the EXEC
subroutine for that graphic data set to be transferred to the 2250
buffer and executed. This is true no matter if the elements are in
include or omit status. However, as mentioned previously, only images
associated with elements in include status are displayed. Images
associated with elements in omit status are not displayed. An element
can be changed from include status to omit status, and vice versa, at
any time.

The EXEC subroutine must be called for any new element (except those
created via the update facility described below) to be executed in the
buffer and thus have its associated image displayed. This is true even
when the elements are within sequences or buffer subroutines.

Modifying the Images Making Up a Display

The programmer can modify images that make up a display.
elements within a graphic data set with new elements, or
elements from a graphic data set.

He can replace
can eliminate

GSP provides two methods of modifying an image: updating (changing) and
resetting (deleting). Updating is accomplished by the update facility.
Resetting is accomplished by the Reset a Graphic Data Set (RESET)
subroutine.

18

o

The update facility involves calling an image generation subroutine to
create an element and substitute it for a previously created element.
The RESET subroutine removes a particular element and all elements that
follow it from a graphic data set.

To modify elements, the programmer must be able to refer to the elements
he wants to change. For this purpose, GSP provides keys and correlation
values.

A key is a value, unique within a graphic data set, assigned by GSP to
identify a particular element, sequence, or buffer subroutine. Once
this value is assigned, the element, sequence, or buffer subroutine is
said to be keyed.

To key an item, the programmer specifies an integer variable as the
"key" argument in the call that creates the item. The value assigned to
this integer variable by GSP is the key. Once keyed, an item can be
referred to by any integer variable the value of which is the key.

A correlation value is a value assigned by the programmer that may be
used later in the program to identify one or more elements, sequences,
or buffer subroutines within a graphic data ,set. Once this value is
assigned, elements, sequences, or buffer . subroutines are said to be
correlated.

The programmer provides correlation values by means of the "corrval"
argument. Correlation values are used to correlate one or several
elements, sequences, or buffer subroutines so that these items can be
referred to later in the program.

Every key within a graphic
correlation value may be
data set.

data set is unique. However, the same
assigned to more than one item in a graphic

Establishing Communication Between the GSP Program and the 2250 Operator

The programmer can include in his GSP program calls to subroutines that
facilitate communication between the program and the 2250 operator.
These subroutines are called attention related subroutines.

The program communicates with the 2250 operator by placing displays on
the screen. The operator communicates with the program by depressing
keys on the alphameric keyboard or on the programmed function keyboard,
or by touching a part of an existing display with the light pen. Such
actions cause attentions.

~n attention is an interruption that causes the executing program to
change its course at an unpredictable point. When it occurs, GSP makes
available to the program inforrr.ation that describes the type of
attention that occurred. The attention related subroutines permit this
attention information to be requested and obtained. They are described
in detail in the section "Communicating With the 2250 Operator."

Terminating the Display and the Use of GSP

Anywhere within the graphic program, the programmer may terminate the
use of a graphic data set or a 2250. This is accomplished by calling
the Terminate the Use of a Graphic Data Set (TMGDS) and the Terminate
the Use of a Graphic Device (TMDEV) subroutines. The TMDEV subroutine
also terminates the use of all graphic data sets associated with the
2250 being terminated.

The entire graphic program is terminated by calling the Terminate Use of
the Graphic Subroutine Package (TMGSP) subroutine. This subroutine also
terminates the use of all graphic data sets and 2250's. It is

Creating the Graphic Program 19

recommended, but not required, that this subroutine be called when the
graphic processing portion of the user's program has been completed.

It is advisable to terminate the use of a graphic data set when
longer needed in the program, rather than waiting until the end
program to do so. This allows storage occupied by the graphic
to be used for other purposes as required by the program.

it is no
of the

data set

GSP, a 2250, or a graphic data set may be reinitialized at any time by
proper calls to the initiation subroutines.

BASIC SUBROUTINES FOR CREATING AND TERMINATING A DISPLAY

Table 1 lists the basic GSP subroutines necessary to generate a display
that provides for communication between the program and the 2250
operator. The subroutines are listed in the recommended sequence for
their use. Optional subroutines are noted as such •

• Table 1. Basic Subroutines Necessary to Create and Terminate a
Display (Part 1 of 3)

r--------T-----------------------T-------------------------------------,
IMnemoniclName of Subroutine I Remarks I
r--------+-----------------------+-------------------------------------~
INGSP

SPEC

INDEV

INGDS

SDATM

ISGRAM
I
I
I
I
I

IInitialize the Graphic I Establishes communication links I
ISubroutine Package I between the user's program and GSP. I
I I Must be the first GSP subroutine I
I called. I
I I
ISpecify Link or Load Optional. Defines which subroutines I
Status are to be loaded and which are to I

be linked to. If omitted, prede- I
fined conditions are assumed. This I
subroutine is useful in reducing I
the time required for dynamic I
acquisition of GSP subroutines and I
the amount of main storage needed I
for a GSP program. I

Initialize a Graphic
Device

IInitialize a Graphic
Data Set

Set Data Mode

set Graphic Mode

I
I
I
I
I
I
I
I
I
I

I
Identifies a 2250 on which displays I
are to be produced. I

I
Creates a graphic data set for a I
particular 2250. Must not precede
the call to the INDEV subroutine
that identifies the 2250 with which
the created graphic data set is
associated.

Optional. Defines the type and
form of input data for image
generation subroutines for a par
ticular graphic data set. If not
called, the input data is assumed
to be real, absolute.

Optional. Defines the form of out
put to be produced by image genera
tion subroutines for a particular
graphic data set. If not called,
pre-established default options are
assumed according to the model of

I I the 2250 being used. L ________ ~ _________ - _____________ ~ _____________________________________ J

20

()

c

(~I

Table 1. Basic Subroutines Necessary to Create and Terminate a
Display (Part 2 of 3)

r--------T-----------------------T-------------------------------------,
,Mnemonic,Name of Subroutine , Remarks ,
~--------+-----------------------+-------------------------------------~
SCHAM Set Character Mode ,Optional. Defines (for a particu-

SGDSL

SDATL

,
SSCIS

I , , ,
I
I

Set Graphic Data Set
Limits

Set Data Limits

Set SCissoring Option

MVPOS
STPOS

'Move Beam to a position
,Set Beam at Absolute
I Position
I , ,

I PLINE I Plot
IPPNT I Plot
, PSGMT I Plot
I PTEXT 'Plot
, I
, I

Line(s)
Point(s)
Line segment(s)
Text

'EXEC I Execute
, I , , , , , ,

I lar graphic data set) the size of
I characters that are to be dis
I played, and designates whether
I these characters are to be pro
I tected or unprotected. If not
I called, basic size, protected
, characters are assumed.
I
I
I
I
I
I

Optional. Defines the boundaries
of a graphic data set in relation
ship to the screen. If not called,
the graphic data set boundaries are
assumed to coincide with the bound
aries of the screen. The graphic
data set boundaries are not
displayed.

Optional. Defines the scaling fac
tor to be used for input data
associated with a particular graph
ic data set. If not called, it is
assumed that the coordinates of the
input data conform with the coor
dinate system of the graphic data
set. In this case, no scaling is
performed.

Optional. Defines the action to be
taken if an image exceeds the
boundaries of a graphic data set or
the screen. If not called, all
characters, lines, or points within
the screen boundaries will be
displayed.

These subroutines establish the
position on the screen at which an
image is to be displayed. The
generated elements can be in
include or omit status.

These subroutines create the orders
and data necessary for displaying
lines, points, line segments, or
text. The generated orders can
be in include or omit status.

Must be called to
orders and data
cause associated
produced.

transfer graphic
to the buffer and
displays to be

ICRATL ,Create an Attention Establishes an active attention
'ILevel level for a 2250. (See "Commu-
'I I nicating With the 2250 Operator".) , L ________ ~ _______________________ ~ _____________________________________ J

Creating the Graphic Program 21

Table 1. Basic Subroutines Necessary to Create and Terminate a
Display (Part 3 of 3)

r-------T---------------------T.------------------------------------,
,Mnemonic/Name of Subroutine / Remarks /
~------+-----------------------+-------------------------------------~
ENATN Enable Attention Designates the type of attentions I

RQATN

TMGDS

TMDEV

/TMGSP
/
I
/
I

Sources that are to be accepted and the /
type of attentions that are to be /
ignored at a particular time. /

Request Attention
Information

Terminate the Use of a
Graphic Data Set

Terminate the Use of a
Graphic Device

Terminate Use of
the Graphic Subroutine
Package

Supplies information that desig
nates if an attention has occurred
and describes the action that had
caused the attention.

Optional. Allows programmer
minate use of a particular
data set at any point
program.

to ter
graphic
in his

Optional. Allows programmer to ter
minate use of a particular 2250 at
any point in his program.

Optional. Terminates the use of all
graphic data sets and 2250's, and
frees all storage used by GSP.
Should be called when the graphic
processing portion of the user's

/
/
/
I ,
I ,
I
I
I
I
I
I
I
I
I
I
/
I
/

/ program has been completed. , l ________ ~ _____________________ ~ _____________________________________ J

22

;f"."
I: .
~

c

THE GSP SUBROUTINES

This section describes in detail each GSP subroutine (except for
attention related, light pen, and specialized subroutines). It begins
with a discussion of those arguments used in many of the calling
sequences for the subroutines. Attention ~elated and light pen subrou
tines are described in the section "Communicating With the 2250
Operator." specialized subroutines are described in Appendixes C
through F. Unless otherwise noted, all variables supplied in calls to
GSP subroutines must be of standard length.

ARGUMENTS USED BY MANY GSP SUBROUTINES

This section describes those arguments that may be used in many of the
calls to GSP subroutines. These arguments are "gdsname", "devicename",
"key·, "corrval", and "gencode". Except where specification of the
argument in the call to that subroutine has a specialized meaning, the
description of a subroutine to which any of these arguments are
applicable merely lists the argument and refers to this section for a
description of it.

gdsname
is an integer variable the value of which identifies the graphic
data set with which the call is to be associated. This value must
be the same as was returned as the "gdsname" argument in the call
to the INGDS subroutine that created the graphic data set.

devicenaroe
is an integer variable the value ,of which identifies the 2250
associated with the call. This value must be the same as was
returned as the "devicename" argument in the call to the INDEV
subroutine that initialized the 2250.

corrval
is a constant or variable the value of which identifies the element
or sequence associated with the call.

When an element or sequence is to be created by the call, the
programmer is to assign a value to the variable or constant
specified as the "corrval" argument. GSP then correlates that
value with the element or sequence created by the called subrou
tine. This correlation value enables future operations to be
performed on a specific element or sequence.

When an element or sequence is to be referred to by the call (e.g.;
placed in include status, placed in omit status), the programmer
must specify as the "corrval" argument a constant or variable
having the same value previously correlated with the element or
sequence when that element or sequence was created. GSP then
examines that correlation value and performs the desired operation
on the element or sequence associated with that value. If more
than one item is associated with the same correlation value, the
desired operation is perforILed on the first item that had been
correlated with that value.

For a further discussion of correlation values, refer to the
section "Modifying the Images Making Up a Display."

The GSP Subroutines 23

is an integer variable the value of which identifies the element or
sequence associated with the call.

When an element or sequence is to be created by this call, GSP
assigns a value (called the key) to the integer variable. This key
enables future operations to be performed on this specific element
or sequence.

When an element or sequence is to be referred to by the call (e.g.;
placed in include status, placed in omit status), the programmer
must specify as the "key" argument an integer variable having the
same value previously assigned by GSP as the key when the element
or sequence was created. GSP then examines the value of the "key"
argument and performs the desired operation on the element or
sequence associated with that value.

For a further discussion of keys, refer to the section entitled
"Modifying the Images Making Up a Display."

gencode
is an integer constant or integer variable that defines what is to
be done with the element, sequence, buffer subroutine, or buffer
subroutine linkage generated by the call. The constant or variable
must have one of the following values:

1 To place the element, sequence, buffer subroutine, or buffer
subroutine linkage in include status;

2 To place the element, sequence, buffer subroutine, or buffer
subroutine linkage in omit status; or

3 To substitute the element for an element generated by a previous
call (see "The Update Facilityn).

When the "gencode" argument is explicitly specified with a value of
two or three, the "key" or "corrval" argument, or both, must also
be supplied. If the ngencode" argument is omitted from the CALL
statement, the element, sequence, buffer subroutine, or buffer
subroutine linkage is generated in include status.

INITIATION AND TERMINATION SUBROUTINES

This section describes the subroutines that initialize and terminate the
use of GSP, 2250s, and graphic data sets. Once the use of GSP, a 2250,
or a graphic data set has been terminated, it may be reinitialized by a
call to an appropriate initiation subroutine. The initiation and
termination subroutines are as follows:

• Initialize the Graphic Subroutine Package (INGSP)

• Initialize a Graphic Device (INDEV)

• Initialize a Graphic Data Set (INGDS)

• Specify Link or Load Status (SPEC)

• Terminate the Use of a Graphic Data Set (TMGDS)

• Terminate the Use of a Graphic Device (TMDEV)

• Terminate Use of the Graphic Subroutine Package (TMGSP)

24

c

C'
j

INGSP--Initialize the Graphic Subroutine Package

The INGSP subroutine establishes communication links between the user's
program and GSP, and names the null variable. The null variable is used
to identify (1) any optional argument omitted from the calling sequence
for a GSP subroutine, (2) when the program is to be abnormally
terminated, and (3) if a dump is to be produced. The INGSP subroutine
must be the first subroutine called in a graphic program. In effect, it
tells the operating system that GSP is going to be used.

r--,
IGeneral Form I
t--~
ICALL INGSP(gspname,null) I L __ J

gspname

null

is an integer variable to
subroutine to identify
value of zero is assigned
initialization process.

which a value is assigned by the INGSP
this call for initialization of GSP. A
if this subroutine fails to complete the

is an integer variable used to identify when optional arguments are
omitted from the calling sequence for a GSP subroutine, when a
program is to be abnormally terminated, and if a dump is to be
produced. The absolute value of the variable determines when the
program is to be abnormally terminated. The sign of that value
determines if an abnormal termination dump is to be produced. The
value may be changed by the programmer at any time.

When used to identify omitted optional arguments, the null variable
is to be substituted for each intentionally omitted argument. It
need not be included to omit optional arguments that would normally
appear at the end of a calling sequence. For this purpose, a right
parenthesis after the last argument specified is sufficient.

When used to identify when a program is to be abnormally ter
minated, the absolute value assigned to the null variable is
compared with the largest return code value made available by the
last subroutine called. If the absolute value of the null variable
is less than or equal to the value of the return code, the program
is abnormally terminated. If the absolute value of the null
variable is greater than the value of the return code, the program
is not abnormally terminated. The possible return codes are zero
through five. They are described in the section n'I'he Return
Codes". If the null variable has a value of zero, a value of one
is assumed instead, thus preventing the program from being abnor
mally terminated after valid execution of a subroutine.

When a program is abnormally terminated because of a return code
produced, the sign of the null variable denotes if an abnormal
termination dump is to be produced. A negative sign causes a dump
to be produced. A positive sign causes no dump to be produced.
Abnormal termination dumps are described in the publication IBM
System/360 Operating System: programmer's Guide to Debugging, Form
C28-6670.

Table 2 summarizes the information contained in the preceding
paragraphs concerning the relationship among the null variable
value, abnormal program termination, and abnormal termination
dumps.

CAUTION:
variable

GSP uses whatever value is in the field identified by the null
to determine whether the program is to be abnormally ter-

The GSP Subroutines 25

minated. Therefore, if a value is not assigned to
the program may be abnormally terminated at
termination is not desired.

the null variable,
a point when abnormal

PROGRAMMING CONSIDERATIONS: For the null variable to be passed to a
subprogram which in turn passes it to GSP, it must be defined in one of
the following ways:

1. Via the DIMENSION statement. In this case, the subprogram to which
the null variable is passed must also identify the argument via the
DIMENSION statement.

2. Via the COMMON statement.

3. As a "reference by location" argument (FORTRAN IV G and H only).

The null variable should be given a name (such as IGNORE) that will not
be confused with a variable used in computation. To assign a value to a
null variable defined via the DIMENSION statement, the null variable
must be treated as a subscripted variable. Example: IGNORE(l} =3.

EXAMPLE: Refer to the detailed description of the INGDS subroutine for
examples of proper calls to all the initiation subroutines.

Table 2. Relationship Among Null Variable Value, Abnormal Termination,
and Abnormal Termination Dumps

r--------------------------------------T-------------------------------,
When null variable absolute value is I Then I

I I
• Greater than return code I. No abnormal termination I

I occurs. I
I I

• Less than or equal to return codel • Abnormal termination I
I occurs. I
I I

When null variable sign is I Then I
I I

• Positive I • No dump is produced. I
I I

• Negative I • Dump is produced. I ______________________________________ ~ _______________________________ J

INDEV--Initialize a Graphic Device

The INDEV subroutine identifies a 2250 on which
produced, and establishes communication links between
A separate call to this subroutine is necessary for
used.

displays are to be
that 2250 and GSP.
each 2250 to be

This subroutine
macro instruction
System: Graphic
C27-6909.

performs essentially the same functions as the OPEN
described in the publication IBM System/360 Operating

programming Services for IBM 2250 Display Unit, Form

r--,
IGeneral Form I
~--~
I CALL INDEV(gspname, unit, devicename [,gdoalengthl) I L __ J

gspname

26

is an
same
INGSP

integer variable that identifies GSP. Its value must be the
as was returned as the ngspnamen argument in the call to the
subroutine.

r("\
~j

c

•

..

unit
is an integer constant or integer variable the value of which is
the data set reference number ("xx") that was specified in the name
field of the data definition (DD) job control statement for the
device: FTxxF001. This value must be greater than seven.

devicename
is an integer variable to which a value is assigned by the INDEV
subroutine to identify the 2250 initialized by this call. This
value must be supplied in calls to other GSP subroutines that refer
to this 2250 •

gdoalength
is an integer constant or integer variable the value of which is
the length in bytes of the graphic data output area to be used for
each graphic data set associated with the 2250 initialized by this
call. If this argument is omitted, a value of 256 bytes is assumed
for the graphic data output area. The value of the "gdoalength"
argument may be one of the following:

• A value of 128. In this case, a length of 128 bytes is assigned
for the ~graphic data output area. Six of these bytes are used by
GSP. Therefore, the size of the graphic data set is limited to
122 bytes of data. This size is most useful as a message area .

• A positive value that is an integral multiple of 256. In this
case, the value specified is the size of the graphic data output
area. The size of the graphic data set is limited by the amount
of 2250 buffer storage available to GSP minus 256 bytes. <GSP
uses these additional 256 bytes for control purposes.)

PROGRAMMING CONSIDERATIONS: The "gdoalength" argument can be used to
reduce the number of times input/output operations are performed to and
from the 2250 buffer. This saves central processing unit time but
increases the amount of main storage required for the program. Each
time an image generation subroutine is called, the elements generated
are placed in the graphic data output area. When this area becomes
full, or when the programmer calls the.EXEC subroutine, the elements in
the graphic data output area are transferred to the 2250 buffer. The
larger the graphic data output area, the less often it is filled and the
fewer times its contents are transferred to the 2250 buffer.

EXAMPLE: Refer to the detailed description of the INGDS subroutine for
examples of proper calls to all the initiation subroutines.

INGDS--Initialize a Graphic Data Set

The INGDS subroutine creates a graphic data set and associates it with a
designated 2250. For a display to be produced on a 2250, one or more
graphic data sets must be initialized for that 2250. A maximum of 23
calls to the INGDS subroutine may be issued before the use of a graphic
data set must be terminated.

Generally, a separate call
graphic data set created.
maximum of 50) may be
created in this manner are

to the INGDS subroutine is necessary for each
However, several graphic data sets (up to a
created by a single call. Graphic data sets
called equivalent graphic data sets.

Only one equivalent graphic data set can be displayed at a given tinle; a
call to the EXEC subroutine for an equivalent graphic data set replaces
any equivalent graphic data set on the display that was also initialized
by the same call. Equivalent graphic data sets are described in more
detail under "Programming Considerations" for this subroutine.

The GSP subroutines 27

r--,
IGeneral Form . I
~--------~---~
ICALL INGDS(devicename, gdsname [,gdoalengthl [,gdslevell I
I [,gdsname1 _·· ,gdsname .. g]) I l __ J

devicename
is described in "Arguments Used by Many GSP Subroutines."

gdsname
is an integer variable to which a value is assigned by the INGDS
subroutine to identify the graphic data set to be created by this
call. This value must be supplied in calls to other GSP subrou
tines that refer to this graphic data set.

gdoalength
is an integer constant or integer variable, the value of which is
the length in bytes of the graphic data output area to be used for
the graphic data set created by this call. The method of
specifying this argument is the same as described for the "gdoa
length" argument in the discussion of the INDEV subroutine.

This argument normally need not be used. However, the specifica
tion of it overrides the "gdoalength" argument in the call to the
INDEV subroutine that initialized the 2250 with which the specified
graphic data set is associated.

If this argwnent is omitted, the size of the graphic data
area is assumed to be either (1) the size specified in the
subroutine for the associated 2250, or (2) 256 bytes
"gdoalength" argument was omitted from the call to the
subroutine for the associated 2250.

output
INDEV

if the
INDEV

gdslevel
is an integer constant or integer variable that indicates whether
or not the standard GSP keying and correlating featur~s will be
used for the graphic data set initialized by this call. The
argument may have one of the following va.lues:

1 The standard GSP keying and correlating features will be used.

2 A programmer-defined correlation scheme will be used.

If the "gdslevel" argument is omitted, it is assumed that the
standard GSP keying and correlating features will be used.

The body of this publication is primarily directed to the use of
the standard GSP keying and correlating features. Use of a
programmer-defined correlation scheme is discussed in Appendix F.

gdsname1
is an integer variable that identifies a graphic data set that is
to be considered equivalent with the graphic data set identified by
the "gdsname" argument in this call. The value of this variable is
assigned by GSP and must be passed to other GSP subroutines that
are to refer to this graphic data set. This a.rgument may be
repeated a maximum of 49 times to identify the desired number of
equivalent graphic data sets that are to be initialized by this
call.

CAUTION: The number of bytes of data within an equivalent graphic data
set cannot exceed the length specified by the "gdoalength" argument or
256 bytes if that argument had not been specified_

28

c

lJ

•

PROGRAMMING CONSIDERATIONS: Like any other graphic data set, an
equivalent graphic data set can be placed in include or omit status, can
be executed, and can be modified.

If an equivalent graphic data set is placed in include or omit status,
all other equivalent graphic data sets created by the same call are also
placed in that same status.

If an equivalent graphic data set is executed by a call to the EXEC
subroutine, that graphic data set is moved to the 2250 buffer and
displayed just as any other graphic data set would be.

Only one of the equivalent graphic data sets initialized by the same
call can be displayed at a given time. A call to the EXEC subroutine to
display an equivalent graphic data set causes any previously-displayed
graphic data set in equivalence with it to be removed from the screen.

If the use of an equivalent graphic data set is terminated, the use of
all other graphic data sets in equivalence with it are also terminated.
In addition, all 2250 buffer storage allocated to these equivalent
graphic data sets is freed.

EXAMPLE: The example below shows proper calls to the initiation
subroutines where a program is to display images on a 2250 by using only
one graphic data set, and depicts the use of the null variable. The
subroutines called by these statements are the first three GSP subrou
tines called in this program.

Statement 10 allocates one word of storage for a variable named IGNORE.

Statement 11 assigns a value of -5 to IGNORE. Since statement 12
defines IGNORE as the null variable, the value of -5 designates that the
program is to be abnormally terminated and a dump is to be produced if a
return code of five is made available during the processing of a GSP
subroutine.

Statement 12 establishes communication links between the program and the
GSP and designates the variable named IGNORE as the null variable. This
statement also causes a unique value to be assigned to the variable
IGSP.

Statement 13 identifies the 2250 on which images are to be displayed; it
refers to the 2250 as being unit nurrber 49. IGRAFD is the name of the
variable the value of which (assigned by the INDEV subroutine) will be
used in subsequent calls to refer to that 2250.

Statement 14 identifies the graphic data sets that are to be used for
the display of images as equivalent graphic data sets. It refers to
these graphic data sets as IGDS1, IGDS2, and IGDS3, and associates them
with the 2250 (identified as IGRAFD). In this statement, the programmer
did not wish to specify the third and fourth arguments, which were
optional. However, he wanted to specify a fifth and a sixth argument.
Therefore, he wrote IGNORE as the third and fourth arguments and
followed them with the appropriate fifth and sixth arguments. This
causes the third and fourth arguments to be ignored and the fifth
argument to be accepted.

10 DIM~NSION IGNORE (1)
11 IGNORE(1)=-5
12 CALL INGSP(IGSP,IGNORE)
13 CALL INDEV(IGSP,49,IGRAFD)
14 CALL INGDS(IGRAFD,IGDS1,IGNORE,IGNORE,IGDS2,IGDS3)

The GSP Subroutines 29

SPEC--Specify Link or Load Status

The SPEC subroutine defines whether particular GSP subroutines are to be
loaded or linked to, thus overriding the link/load status previously
defined for those subroutines. Its use can reduce the time required for
dynamic acquisition of GSP subroutines and the amount of main storage
needed for a GSP program. This is described in the section "Processing
Efficiency of GSP Programs."

The SPEC subroutine may be called at any point in the user's program and
as many times as desired. If the status of a subroutine is changed to
link-to after a copy of that subroutine had been previously loaded into
main storage, the loaded copy is removed from main storage.

r--,
IGeneral Form I
~---1
I CALL SPEC (gs pname , code, rt number [, rtnumber •••]) I L __ J

gspname

code

is an integer variable that identifies GSP. Its value must be the
same as was returned as the "gspname" argument in the call to the
INGSP subroutine.

is an integer constant or
defines whether a subroutine
follows:

integer variable the value of which
is to be linked-to or loaded as

1 All subroutines defined in this call are to be loaded.

2 All subroutines defined in this call are to be linked to.

rtnumber
is an integer constant or integer variable the value of which
designates a subroutine to be affected by this call. The value
must be positive except when it indicates the highest value of a
range of values. The values and their corresponding subroutines
are listed in Table 3. This argument may be repeated as many times
as necessary to define the link/load status for as many subroutines
as desired.

To reduce the number of "rtnumber" arguments necessary in a calling
sequence, a pair of "rtnumber" arguments may be used to define a
range of subroutines as fOllows (see the example at the end of this
description):

• The argument that identifies the subroutine that has the lowest
corresponding value in the range must appear immedia.tely before
the argument that identifies the subroutine with the highest
corresponding value in the range •

• The argument that identifies the subroutine with the highest
corresponding value in the range must. be a negative value and
must appear in the argument list immediately after the argument
that identifies the subroutine with the lowest corresponding
value in the range.

EXAMPLE: The example that follcws designates that the LKSUB, INCL,
OMIT, and ORGEN subroutines are to be loaded subroutines (see Tc.ble 3):

CALL SPEC (IGSP,1,36,-38,51)

30

c

•

c

•

..

• Table 3. Identifying GSP Subroutines in Calls to SPEC Subroutine
r-----------------T-----------------T----------------T-----------------,
I Name Number' Name Number I Name Number' Name Number I
~-----------------+-----------------+----------------+-----------------~

INDEV 1 I GSPRD* 17
I

TMDEV 2 , RCURS* 18

INGDS 3 ICURS* 19

TMGDS 4 SDATM 20

CRATL 5 SGRAM 21

ENATL 6 SDATL 22

ENATN 7 SGDSL 23

DSATN 8 SSCIS 24

MPATL 9 SCHAM 25

MLPEO 10 PLINE* 26

SLPAT 11 PPNT* 27

MLITS 12 PSGMT* 28

RQATN* 13 PTEXT* 29

I MVPOS 31
I
I BGSEQ 32
I
I BGSUB 33
I
I ENSEQ 34
I
I ENSUB 35
I
I LKSUB 36
I
I INCL 37 ,
I OMIT 38

EXEC* 39

RESET 40

IDPOS 41

FSMOD 42

STEOS 43

I ORGDS
I
I LOCPN
I
I BGTRK
I
I RDTRK
I
I ENTRK
I
I DFSTR
I
I PLSTR
I
I ORGEN

CNVRT

ITRC*

ITBP*

RTBP*

ITST*

44

45

46

47

48

49

50

51

52

53

54

55

56

I
I
I
I

SALRM 16 I STPOS 30 I
~-----------------~-----------------~----------------~-----------------~
I Notes:
, 1. An asterisk to the right of the subroutine name denotes that
I load is the predefined GSP status for that subroutine.
I
, 2.
I ,
I
I 3.
I
I
I ,
I 4. ,

Subroutine numbers 14 and 15 are reserved. However, they may
be included within a range specified in the call to the SPEC
subroutine.

The status of the INGSP and TMGSP subroutines cannot be altered
by a call to the SPEC subroutine and, therefore, have no
associated subroutine number. TheSe two subroutines always
reside in main storage.

Estimates of the amount of storage required by each of these
subroutines are contained in the publication IBM System/360

, Operating System: Storage Estimates, Form C28-6551. L __ J

TMGDS--Terminate the Use of a Graphic Data Set

The TMGDS subroutine terminates the use of a particular graphic data set
and frees all main and buffer storage associated with that data set.

If the graphic data set terminated is an equivalent graphic data set,
all other graphic data sets in equivalence with the terminated graphic
data set are also terminated. Equivalent graphic data sets are
discussed in the detailed description of the INGDS subroutine.

r--,
'General Form I
~--~
'CALL TMGDS(gdsname) I L __ J

The GSP Subroutines 31

gdsname
is described in "Arguments Used by Many GSP Subroutines."

PROGRAMMING CONSIDERATIONS: The programmer need not specifically call
the TMGDS subroutine to terminate the use of every graphic data set in
his program. This is because (1) a call to the TMDEV subroutine also
terminates all graphic data sets associated with the specified 2250, and
(2) a call to the TMGSP subroutine automatically terminates all graphic
data sets. However, when main storage space is a consideration, it is
advisable to terminate the use of graphic data sets when they are no
longer needed. This allows storage occupied by those graphic data sets
to be used for other purposes.

EXAMPLE: The example below shows the use of the TMGDS subroutine.
Statement 15 initializes graphic data set IGDS1. Assuming that the
value of IGDSl is the same as returned in statement 15, statement 70
terminates the use of that graphic data set and frees all storage
associated with it.

15 CALL INGDS(IGRAFD,IGDS1)

70 CALL TMGDS(IGDS1)

TMDEV--Terminate the Use of a Graphic Device

The TMDEV subroutine terminates the use of a
graphic data sets associated with that 2250.
by the terminated graphic data sets is freed.

particular 2250 and all
All main storage occupied

r--,
I General Forni I
~--~
ICALL TMDEV(devicename) I l __ J

devicename
is described in "Arguments Used by Many GSP Subroutines."

EXAMPLE: The example below shows the use of the TMDEV subroutine.
Statement 15 initializes a 2250 identified as IGRAFD. Statements 16 and
17 create graphic data sets that are to be associated with IGRAFD.
Assuming that the value of IGRAFD is the same as was returned in
statement 15, statement 71 terminates the use of IGRAFD. If graphic
data sets IGDS1 and IGDS2 have not been terminated previously, they are
terminated when IGRAFD is terminated.

15
16
17

CALL
CALL
CALL

INDEV(IGSP,49,IGRAFD)
INGDS(IGRAFD,IGDS1)
INGDS (IGRAFD, IGDS2)

71 CALL TMDEV(IGRAFD)

TMGSP--Terminate Use of the Graphic Subroutine package

The TMGSP subroutine terminates the use of the GSP and frees all main
storage and buffer storage associated with it. This subroutine ter
minates all 2250's and graphic data sets that had not been previously
terminated. The TMGSP subroutine should be called when the graphic
processing portion of the user's program has been completed.

32

•

..

c

c

r--,
IGeneral Form I
.--~
I CALL TMGSP (gs pname) I L __ J

gspname
is an integer variable that identifies the GSP. Its value must be
the same as was returned as the "gspname" argument in the call to
the INGSP subroutine.

OPTION DEFINITION SUBROUTINES

This section describes the subroutines that define the characteristics
of the data to be supplied to image generation subroutines and of the
display to be produced. Use of these option definition subroutines in a
graphic program is optional. For each subroutine not called, pre
established default conditions are assumed. The option definition
subroutines and their default conditions are listed in Table 4.

Each option definition subroutine may be called
Options selected affect subsequent calls only; data
calls is not affected. Also, the options selected
specified graphic data set.

as often as desired.
produced by previous
apply only to the

Table 4. Default Conditions for Option Definition Subroutines
r--------T--------------------T--,
I Mnemonic I Name I Default Conditions I
.--------+--------------------+--~
SDATM Set Data Mode Real, absolute input data.

SGRAM

SCHAM

SGDSL

SDATL

ISSCIS
I

Set Graphic Mode

Set Character Mode

Set Graphic Data Set
Limits

Set Data Limits

Set sCissoring
Option

Optimized output.

Basic size, protected characters.

Graphic data set boundaries are the
same as the screen boundaries.

Input data limits are the same as the
graphic data set boundaries and no
scaling is to be performed.

Images are to be scissored at the
screen boundaries and image generation

I is to continue after scissoring. L ________ ~ ____ ----____________ ~ _______________________________________ _

SDATM--Set Data Mode

The SDATM subroutine defines the type and form of the data that the user
will provide as x- and y-coordinates for the image generation subrou
tines that refer to the specified graphic data set. This input data may
be of real or integer type, and of absolute or incremental form.

Absolute form consists of input data the values of which are actual
coordinates. Incremental form consists of input data the values of
which represent displacements from a previous point. If the subroutine
is not called for a graphic data set, it is assumed that real, absolute
data is provided as the x- and y-coordinates.

The GSP Subroutines 33

-I
I
,

r--,
IGeneral Form I
~---~
ICALL SDATM(gdsname,xmode[.ymode]) I L __ J

gdsname
is described in "Arguments Used by Many GSP Subroutines."

xmode.ymode
are integer constants or integer variables that define the type and
form of the data that will be provided as x- and y-coordinates.
The constants or variables must represent the following values:

1 for real, absolute
2 for real. incremental
3 for integer, absolute
4 for integer, incremental

If the "ymode" argument is omitted, the data mode for y-coordinates
is assumed to be the same as specified in the ftxmode" argument.

CAUTION: Input data for a particular graphic data set will always be
interpreted as being of the type and form defined by the SDATM
subroutine for that graphic data set. If the data is not of the type
and form defined by the SDATM subroutine, unpredictable results will
occur except in regard to scaling. For scaling. if the SDATM subroutine
is called to change the input mode from real to integer or vice versa,
input data limits previously defined via the SDATL subroutine need not
be redefined. Instead, these data limits are automatically converted by
GSP to their equivalent real or integer values and scaling is performed
in the new mode.

EXAMPLE: The example sets the data mode for the graphic data set
identified as IGDSl so that the programmer can provide integer, absolute
data as x- and y-coordinates in subsequent calls to image generation
subroutines for that graphic data set. The ftxmode" argument is
specified as an integer variable. The ftymode" argument is omitted and,
therefore, is assumed to be the same as the "xmode" argument.

15 IC=3
20 CALL SDATM(IGDS1,IC)

SGRAM--Set Graphic Mode

The SGRAM subroutine defines the form of output graphic orders and data
to be produced by image generation subroutines for a specified graphic
data set. These output orders and data may be absolute, incremental, or
optimized. (Incremental output is produced only on the IBM 2250, Model
1, with graphic design feature, and the IBM 2250, Model 3.)

Optimized data represents input data that has been transformed by image
generation subroutines into a form that minimizes the amount of buffer
storage required to display an element. This form may consist of
absolute data, incremental data, or a combination of the two.

If the SGRAM subroutine is not called for a particular graphic data set,
optimized form is assumed. However, only absolute mode is available on
the 2250, Model 1 without graphic design feature. In these cases,
optimized data is absolute.

34

o

c

o

r--,
IGeneral Form I
~--~
I CALL SGRAM (gdsname, gmode) I l __ J

gdsname

gmode

is described in "Arguments Used by Many GSP Subroutines."

is an integer constant or integer variable that defines the type of
output that is to be produced by image generation subroutines. The
constant or variable must represent the following values:

1 for optimized
2 for absolute
3 for incremental

PROGRAIJ!MING CONSIDERATIONS: Setting a particular graphic n,ode has no
effect on the data mode set by a call to the SDATM subroutine. That is,
absolute output can be produced using incremental input, and vice versa.

When incremental or optimized outf-ut is to be produced within a graphic
data set, the STPOS subroutine should be the first image generation
subroutine called within that graphic data set. This establishes a beam
position to which subsequent beam positions cal1 be related.

EXAMPLE: The example below sets the graphic mode for the graphic data
set identified as IGDSl so that image generation subroutines will
generate absolute output data.

30 CALL SGRAM(IGDS1,2)

SCHAM--Set Character Mode

The SCHAM subroutine defines the size (basic or large) of characters to
be produced when the PTEXT subroutine is called for a particular graphic
data set. This subroutine also defines whether the characters are to be
protected or unprotected.

A protected character cannot be overlaid (replaced) by a character
entered from the alphameric keyboard. However, an unprotected character
is replaced by a character entered from the alphameric keyboard when the
cursor appears beneath its position on the screen.

(The cursor is a symbol displayed on the screen that marks the position
at which the next character entered from the alphameric keyboard is to
appear. A cursor may be inserted into a graphic data set by means of
the ICURS subroutine.)

If the SCH&~ subroutine is not called for a graphic data set, it is
assumed that basic size, protected characters are to be produced for
that graphic data set.

r--,
IGeneral Form I
~--~
ICALL SCHAM(gdsname,mode) I l __ J

gdsname
is described in "Arguments Used by Many GSP Subroutines."

mode
is an integer constant or integer variable that defines the type of

The GSP Subroutines 35

characters to be produced. The constant or variable must represent
the following values:

1 for
2 for
3 for
4 for

basic
large
basic
large

size,
size,
size,
size,

protected.
protected.
unprotected.
unprotected.

EXAMPLE: The example below sets the character mode for the graphic data
set identified as IGDSl so that large size, protected characters will be
produced when the PTEXT subroutine is called for that graphic data set.

20 CALL SCHAM(IGDS1,2)

SGDSL--Set Graphic Data Set Limits

The SGDSL subroutine defines the size and position of a particular
graphic data set with respect to the boundaries of the 2250 screen.

The screen is the total surface of the 2250 on which images can be
displayed. A graphic data set is a rectangular area that may overlap
the screen. It may be entirely on the screen or some portion of it may
extend beyond the screen boundaries. Figure 1, which appears earlier in
this manual, shows the relationship of the graphic data set and images.

If the SGDSL subroutine is not called for a particular graphic data set,
the boundaries of the graphic data set are assumed to be the same as the
boundaries of the screen.

r--,
I Genera 1 Form I
~--~
ICALL SGDSL(gdsname,gllx,glly,gurx,gury[,sllx,slly,surx,sury]) I l __ J

gdsname
is described in "Argwnents Used by Many GSP Subroutines."

gllx,glly
are constants or variables representing x- and y-coordinates of the
lower left corner of the graphic data set. These coordinate values
must be less than the coordinate values used to represent the upper
right corner of the graphic data set.

gurx, gury
are constants or variables representing x- and y-coordinates of the
upper right corner of the graphic data set. These coordinate
values must be greater than the coordinate values used to represent
the lower left corner of the graphic data set.

sllx,slly
are constants or variables representing x- and y-coordinates that
correspond to the lower left corner of the screen. These coord.i
nate values must be less than the coordinate values used to
represent the upper right corner of the screen.

surx,sury
are constants or variables r'epresenting x- and y-coordinates
correspond to the upper right corner of the screen.
coordinate values must be greater than the coordinate values
to represent the lower left corner of the screen.

that
These

used

DEFAULT ARGUMENTS: If the "sllx,slly,surx,sury" arguments are omitt.ed,
the screen boundaries are assumed to be 0,0,4095,4095. These default
coordinates are absolute values of the same type (real or intEger)

36

c-"···· I. ,

c

c:'

specified by the SDATM subroutine, or by default, for the designated
graphic data set.

CAUTION: The constants or variables used as arg·uments to represent
screen and gra~hic data set coordinates must be absolute values of the
type (real or integer) specified by the call to the SDATM subroutine for
the specified graphic data set. If the SDATM subroutine has not been
called for this graphic data set, the data must be real and absolute.

EXAMPLE: Refer to the example in the detailed description of the SDATL
subroutine for an example of a call to the SGDSL subroutine.

SDATL--Set Data Limits

The SDATL subroutine allows the programmer to define a rectangular
coordinate system for his input data to image generation subroutines
that differs from the coordinate system established for the graphic data
set by the SGDSL subroutine.

The upper and lower limits specified for input data are mapped so that
they correspond to the upper right a.nd lower left corners of the
designated graphic data set.

Subsequent input data is appropriately scaled so that it relates to this
newly defined coordinate system. Images associated with data within the
designated range are displayed within the graphic data set. Images
associated with data that lies outside the designated range are
scissored as defined by the scissoring options specified by the SSCIS
subroutine.

If the SDATL subroutine is not called for a graphic data set, data
limits are assumed to be the same values specified for the graphic data
set boundaries by the SGDSL subroutine, and no scaling is performed.

r--,
IGeneral Form I
~--~
ICALL SDATL(gdsname,xlim1,ylim1,xlim2,ylim2) I L __ J

gdsname
is described in "Arguments Used by Many GSP Subroutines."

xlim1,ylim1
are constants or variables. representing the x- and y-coordinate
values that correspond to the lower left corner of the graphic data
set. These values may be greater or less than the values specified
as the "xlim2" and "ylim2" arguments.

xliITi2 ,y lim2
are constants or variables
values that correspond to the
data set.

representing the x- and y-coordinate
upper right corner of the graphic

CAUTION: If the SDJ.I.TM subroutine has not been called for the specified
graphic data set, real and absolute values must be supplied to the SDATL
subroutine.

EXAMPLE: The example that follows defines a data scaling factor that is
to be used when an image generation subroutine is called for the graphic
data set identified as IGDS1.

10 CALL SGDSL(IGDS1,0,5,5,10,0,0,10,10)
15 CALL SDATL(IGDS1,O,O,1000,1000)

The GSP Subroutines 31

Statement 10 establishes the size and position of graphic data set IGDS1
relative to the screen. It assigns coordinates of 0,0 and 10,10 to the
lower left and upper right corners of the screen, and coordinates of 0,5
and 5,10 to the lower left and upper right corners of IGDS1. Therefore,
IGDSl occupies the top left quarter of the screen as shown in Figure 2.

Statement 15 designates the range for input data to image generation
subroutines for graphic data set IGDSl as from 0,0 to 7000,7000. These
data limits are mapped so that 0,0 corresponds to the lower left corner
of IGDS1 and 7000,7000 corresponds to the upper right corner of IGDSl
(see Figure 3). All subsequent input data to image generation subrou
tines associated with IGDSl will now be scaled so that it corresponds to
this new coordinate system. If the SDATL subroutine were not called,
the input data would not be scaled and the images associated with it
would be displayed within IGDSl only if they were within the limits
0,2048 and 2048,4095.

SSCIS--Set Scissoring Option

The SSCIS subroutine detines the image scissoring option for a graphic
data set. Image scissoring involves truncating those portions of a
display that extend beyond the boundaries of the graphic data set or the
screen. When a portion of the graphic data set extends beyond one or
more of the screen boundaries, the screen boundaries intersecting the
graphic data set are considered to be the graphic data set boundaries.

If the SSCIS subroutine is not specified for a particular graphic data
set, images are scissored at the screen boundaries and image generation
continues after the scissoring.

r--,
IGeneral Form I
~--~
ICALL SSCIS(gdsname,scissoring) I l __ J

gdsname
is described in "Arguments Used by Many GSP SUbroutines."

scissoring
is an integer constant or integer variable that designates the
scissoring option selected for the specified graphic data set. Its
value must be one of the following:

+1 Scissoring occurs at screen boundaries, and image generation
continues after the scissoring.

-1 Scissoring occurs at screen boundaries, and image generation
does not continue after the scissoring.

+2 Scissoring occurs at graphic data set boundaries, and image
generation continues after the scissoring.

-2 Scissoring occurs at graphic data set boundaries, and image
generation does not continue after the scissoring.

+3 No scissoring is to be done.

CAUTION: If a value of three is specified as the "scissoring" argument,
the value of subsequent data is not checked to see if it lies within the
screen or graphic data set boundaries. When the data exceeds the screen
boundaries, the display is affected as described for absolute and
incremental data in the appropriate 2250 component description manual.
(Refer to "The 2250 Display Unit" for a listing of these manuals.)

38

(. -",
, .

f

~',

C"· 'L.../

IGDSI
lower left
(0,5)

Screen
lower left
(0,0)

Graphic
Data Set
IGDSI

I
I
I
I
I
I

______ 1

IGDSI
upper right
(5,10)

Screen
upper right
(10,10)

Figure 2. Defining the Size and Position of a Graphic Data Set

(0,0)

(7000,7000)

User's
Input
Data

IGDSI (0,5)
Input min. (0,0)

Graphic
Data Set
IGDSI

I
I
I
I
I
I

_____ J

IGDSI (5,10)
I nput max. (7000,7000)

Figure 3. Defining Limits of the User's Input Data

The GSP Subroutines 39

IMAGE GENERATION SUBROUTINES

This section describes the subroutines that generate the elements
necessary for displaying images associated with a graphic data set.
These subroutines, called the image generation subroutines, create
elements that identify the position on the screen where an image is to
begin, and that cause the display of lines, points, and characters.
Images are only displayed after a call is issued to the EXEC subroutine
for the graphic data set that contains the elements that produce the
images.. The image generation subroutines are:

• Move Beam to a Position (MVPOS)

• set Beam at an Absolute Position (STPOS)

• Plot Lines (PLINE)

• Plot Line segments (PSGMT)

• Plot Text (PTEXT)

• Set an End-Order-Sequence Order (STEOS)

Elements generated h1 the MVPOS and
positioning elements. Those generated
subroutines are called graphic elements.
subroutine are called text elements.
subroutine are called end-order-seguence

STPOS subroutines are called
by the PLINE, PSGMT, and PPNT

Those generated by the PTEXT
Those generated by the STEOS

order elements.

If an element is keyed or correlated, it may be generated in either
include status or omit status. Elements not keyed or correlated are
always generated in include status.

Images associated with elements in include status are displayed. Images
associated with elements in omit status are not displayed. Further
effect of include or omit status on an element depends on the element
type as follows: .

• A graphic element causes the 2250 beam to be moved
the element. When the element is in omit status,
to the end point of the element but no image is
result of that movement.

as directed by
the beam is moved
displayed as a

• A positioning element or text element in omit status does not cause
the 2250 beam to be moved as directed by the element; i.e., the beam
remains at the screen location at which it was before the element
was executed. Subsequently, if the element following a positioning
or text element in omit status does not absolutely position itself,
that succeeding element will have a different starting position than
it did previously.

• An end-order-sequence order element in omit status does not cause an
attention to occur and display regeneration continues as normal. An
end-order-sequence order element in include status causes an atten
tion to occur and stops display regeneration.

The status of an element that has not been keyed or correlated may
not be modified from its original include status. However, the status
of a keyed or correlated element may be modified as desired fron! include
status to omit status, and vice versa, by a call to either the Place in
Include Status (INCL) or the Place in Omit Status (OMIT) subroutine.
For detailed descriptions of these subroutines, refer to the section
"Controlling When Images are Displayed."

40

c

c'
A keyed or correlated element can be updated by a call to the same
subroutine that generated it. The effect of updating an element is a
replacement of the element. Updating is described in detail in nThe
Update Facility.n

As elements are created by image generation subroutines, they are
sequentially placed in the graphic data sets identified by the calls to
those subroutines. Within each graphic data set, the coordinates that
represent the end point of the most recent element generated within that
graphic data set are retained.

These retained coordinates are updated each time a new element is
created. They are used:

• To apply image sCissoring options as designated by the SSCIS
subroutine.

• As the starting position from which the end point of the next
element to be created within that graphic data set is computed.
(Thus, the end point of one element is the starting position of the
succeeding element.)

Subsequently, any time the sequence in which elements are created within
a graphic data set is interrupted (such as in updating and resetting),
the desired starting position must be reestablished prior to calling an
image generation subroutine for creating the next element to be placed
within that graphic data set. In the case of updating, this must be
done prior to the update call and prior to adding a new element to the
graphic data set after the update call. In the case of resetting, this
must be done prior to generating a new element after the reset operation
has been performed. If this is not done, images associated with the
newly created elements may appear in different locations than desired
and image scissoring may occur at an undesirable time during execution
of the program.

Reestablishing the desired starting position for new elements is
accomplished in one of the following ways:

• By a call to the STPOS subroutine, or

• By a call to the Indicate Beam Position (IOPOS) subroutine if the
beam position is known and that position is to be the starting
position of the new element.

FUrthermore, when incremental or optimized data is to
a graphic data set, the STPOS subroutine should be
generation subroutine called within that graphic
establishes an initial beam position for that graphic
subsequent beam positions can be related.

be produced within
the first image
data set. This

data set to which

CAUTION: All input data to image generation subroutines must be of the
type (integer or real) and form <absolute or incremental) designated by
the most recent call to the SOATM subroutine. All output data will be
of the form (absolute, incremental, or optimized) defined by the most
recent call to the SGRAM subroutine. Any input increment less than one
raster unit (0.0117 inch) from the previous increment is ignored.

The GSP Subroutines 41

:1
I

r--,
Input coordinates must be:

Input coordinates are:

loutput graphic element
'will be: ,
Output graphic element
will be:

PTEXT Subroutine Only

• Real or integer, and absolute or
incremental as defined by the most
recent ca:ll tc the SDATM subroutine,
or its default condition, for the
specified graphic data set.

• Appropriately scaled as defined by the
most recent call to the SDATL subrou
tine (in combination with the most
recent call to the SGDSL subroutine),
or its default condition, for the
specified graphic data set.

• Absolute,
as defined
the SGRAM
condition,
data set.

incremental, or optimized
by the most recent call to
subroutine, or its default

for the specified graphic

• In include or omit status as desig
nated by the ftgencode" argum~nt. ,

I
I

Input text string must be: • Packed four characters to a word and I
left-aligned. ,

When a text element in
include status is executed,

Ithe characters will be:

• Basic or large, and protected or un
prote,cted, as defined by the SCRAM
subroutine, or its default condition,

I
I
I ,

I for the specified graphic data set. , l __ J

Figure 4. Input/Output Requirements and Programming Considerations
for the MVPOS, PLINE, PPNT, PSGMT, and PTEXT Subroutines.

~VPOS--Move Beam to a Position

The MVPOS subroutine creates a positioning element that moves the 2250
beam to a specified screen location without producing an image.
Programming considerations and input/output requirements for the MVPOS
subroutine are listed in Figure 4.

r--,
IGeneral Form I
~--~
ICALL MVPOS<gdsname,xcoor,ycoor[,corrval] [,key] [,gencode]) I l __ J

gdsname,corrval,key,gencode
are described in "Arguments Used by Many GSP Subroutines."

xcoor,ycoor
are constants or variables representing x- and y-coordinates that
define where the beam is to be moved on the screen.

STPOS--Set Beam at Absolute Position

The STPOS subroutine perforws the same function as the MVPOS subrout.ine
except for the following:

42

• Absolute input data must always be supplied to the STPOS subroutine
regardless of the mode specified by the SDATl.\1 subroutine. This
input data may be either real or integer as defined by the SDATM

o

o

c
subroutine. (Note: If
the STPOS subroutine uses

the input data happens to be incremental,
this data as if it were absolute.)

• Absolute output data will always be produced by the S,!'POS subroutine
regardless of the mode specified by the SGRN~ subroutine.

When incremental or optimized output is to be produced within a graphic
data set, the STPOS subroutine should be the first image generation
subroutine called for that graphic data set. This establishes a beam
position to which subsequent beam positions can be related.

r--,
IGeneral Form I
~--~
ICALL STPOS(gdsname,xcoor,ycoor[,corrval] [,key] [,gencode]) I L __ J

gdsname,corrval,key,gencode
are described in "Arguments Used by Many GSP Subroutines."

xcoor,ycoor
are constants or variables representing x- and y-coordinates that
define where the beam is to be positioned on the screen. These
input coordinates must be of absolute form.

PLINE--Plot Line(s)

The PLINE subroutine creates a graphic element that displays a line or a
series of connected lines. Programming considerations and input/output
requirements for the PLINE subroutine are listed in Figure 4.

To cause a line to be drawn, the programmer need only specify the screen
location at which the line is to end. This location is called the end
point of the line. When displaying a series of connected lines, the end
point of each line is the starting point of its succeeding line.

r--,
IGeneral Form I
~--~
ICALL PLINE(gdsname,xcoor,ycoor[,corrvall [,key] [,gencode] [,count] I
I [, xindex] [, yindex] [, xincrl [, yincr]) I l __ J

gdsname, corrval, key, gencode
are described in "Arguments Used by Many GSP SUbroutines."

xcoor,ycoor

count

are constants, variables, or array names representing the respec
tive x- and y-coordinates of the end point(s) of the line(s) to be
produced.

is an integer constant or integer variable the value of which
specifies the number of lines to be produced by this call. This
argument must be specified if any of the index or increment
arguments are used. If the "count" argument is omitted, one line
is produced. If the "count" argument has a value greater than one
and neither the index nor increment argument is specified for a
particular type of coordinates (x or y), the input representing
that type of coordinates is assumed to be in an array with an index
value of one.

The GSP Subroutines 43

xindex,yindex
are integer constants or integer variables the values of which are
used in indexing corresponding arrays identified by the "xcoor" and
"ycoor" arguments. If these and the "xincr" and "yincr" arguments
are omitted, a value of one is used in indexing corresponding
arrays identified by the nxcoor" or "ycoor" argument. For further
details, refer to "programming Considerations."

xincr, y incr
are constants or variables the values of which designate increments
that are added to the preceding corresponding x- and y-coordinates
to form the end pOints of each succeeding line to be produced. The
values specified by the respective "xcoor" and nycoor" arguments
are used to form the first line. The number of lines to be
produced must be specified in the "count" argument. For further
details, refer to "Programming considerations."

PROGRAMMING CONSIDERATIONS: The "xindex" and Hyindex" arguments permit
the use of one or two arrays of coordinates to define the end points of
a series of 'connected lines. The number of lines to be produced is
defined by the "count" argument. The locations of 'the first x- and
y-coordinates to be used are defined by the "xcoor" and "ycoor R

arguments. The number of entries from the location of one x-coordinate
to the location of the next x-coordinate is defined by the "xindex"
argument. The number of entries from the location of one y-coordinate
to the location of the next y-coordinate is defined by the "yindex"
argument. From these argmnents, the PLINE subroutine proceeds through
the array, creating the element for the lines to be drawn.

The "xi ncr" and "yincr" arguments allow the programmer to increment
either the x- or y-coordinates, or both, by a constant amount for each
of a series of lines to be drawn without using an array. When one of
the arguments is specified (e.g., "xincr"), the value of the increment
is added to the previous value for that type of coordinate (e.g.,
x-coordinate) and this sum becomes the next coordinate. For absolute
input, the first coordinate to which the increment value is added is
defined by means of either the "xcoor" or "ycoor" argument, whichever is
appropriate. For incremental input, the first coordinate to which the
increment value is added is determined by adding the value of "xcoor" or
"ycoorn as appropriate to the current beam position to form a new beam
position. The number of lines to be drawn is defined by the "count"
argument.

The index and increment arguments cannot both be specified for a single
set of coordinates. However, an index argument may be specified for a
set of x-coordinates and an increment argument for a set of y
coordinates, and vice versa.

EX~~PLE: Figure 5 sho~s the use of the PLINE subroutine to generate
eight lines from a point at the center of the screen to the circum
ference of a circle. The circle has a radius of 100 units. The eight
lines are to be displayed 45 degrees apart. The display produced is
shown in Figure 6.

44

c

(

r--,
110 DIMENSION NULL(l) I
120 NULL(l) = -5 I
130 CALL INGSP{IGSP,NULL) I
140 CALL INDEV(IGSP,40,IGRAFD) I
150 CALL INGDS(IGRAFD,IGDS1) I
160 CALL SDATLCIGDS1,0.O,O.0,1000.0,1000.0) I
170 R = 100.0 I
180 C = 3.141593/180.0 I
190 THETA = 45.0 I
1100 DO 150 I = 1,8 I
1110 RADIAN=THETA*FLOAT(I)*C I
1120 X = 500.0+R*COS{RADIAN) I
1130 Y = 500.0+R*SIN(RADIAN) I
1140 CALL STPOS(IGDS1,500.0,500.0) I
1150 CALL PLINE(IGDS1,X,Y) 1
1160 CALL EXEC(IGDS1) I
I I
I I
I I
~--~
10,20 Designate storage for a variable named NULL and assign a I

30,40,50

60

70

80

90

1100

110

120,130

140

150

value of -5 to that variable. Since NULL is later I
identified as the null variable, the value of -5 indicates I
that the program is to be abnormally terminated and a dump I
is to be produced only when a return code of five is made I
available by a GSP subroutine. I

Establish communication links among the program, GSP, a
2250, and a graphic data set. Designate NULL as the null
variable.

Defines the input data limits of graphic data set IGDSL
No other option definition subroutines are called for
IGDS1. Subsequently, the default conditions of all other
option definition subroutines are assumed.

Defines the radius of the circle as 100 units.

Defines a constant (C) used to convert degrees to radians.

Specifies that the lines are to be 45 degrees apart.

Specifies that eight lines are to be displayed
establishes a DO loop with a range through statement

Converts degrees to radians.

and
150.

Establish the x- and y-coordinates for the end point of
one of the lines to be displayed.

Creates an element that moves the 2250 beam (in unblanked
mode) to the center of the screen. Since the "gencode"
argument is not specified, this element is generated in
include status.

Creates an element that draws a line to the x- and
y-coordinates established by statements 120 and 130.
Since the "gencode" argument is not specified, this
element is generated in include status.

I
I
I
I
I

1160 Causes the lines to be displayed as shown in Figure 6. l ______________________ ~ ___ J

Figure 5. Example of Use of PLINE Subroutine

The GSP Subroutines 45

r--------------------1..~ Screen and Graphic Data Set
Upper right corner

Screen and Graphic Data Set
Lower left corner
~,~ .

(1000, 1000)

*
Figure 6. Display Produced by PLINE and PSGMT Examples

PPNT--Plot Point(s}

The PPNT subroutine creates a graphic element that displays one or
several points. It performs in the same manner as the P~INE subroutine,
except that only end points are displayed.

Programming considerations and input/output requirements for the PPNT
subroutine are listed in Figure 4 included earlier in this section. For
detailed descriptions of the available arguments, refer to the descrip
tion of the PLINE subroutine.

r--,
IGeneral Form I
~--~
ICALL PPNT(gdsname, xcoor,ycoor [,corrval] [,key] [,gencode] I
I [,count] [,xindex] [,yindex] [,xincr] [,yincr]} I l __ J

EXAMPLE: Figure 7 shows the use of the PPNT subroutine to
display and then modify that display by means of the update
The update facility is described in the section -Replacing and
ing Elements Within a Graphic Data set."

produce a
facility.
Eliminat-

The first display contains 72 points that are plotted on the circum
ference of a circle that has a radius of 100 units. These points are
five degrees apart. The updated display also contains 72 points that
are five degrees apart. However, these points are plotted on the
circumference of a circle that has a radius of 200 units. Both the
initial display and the updated display are shown in Figure 8.

46

o

~,
I ,

~,

o

c

(

r--,
110
120
130
140
150
160
170
180
190
1100
1110
1120
\130
140
150
160
170

500
510
520
530
540

1550
1560
1570
1580
1590
I
I
1

DIMENSION X(72) ,Y(7'2) ,NO(1)
NO(1) = -5
CALL INGSP{IGSP,NO)
CALL INDEV(IGSP,40,IGRAFD)
CALL INGDS{IGR~FD,IGDS1)
CALL SDATL(IGDS1,0.O,0.0,1000.0,1000.0)
CALL SGRAM(IGDS1,2)
R = 100.0
C = 3.141593/180.0
THETA = 5.0
IGEN = 1
DO 150 I = 1,72
RADIAN=THETA*FLOAT(I)*C
XCI) = 500.0 + R*COS(RADIAN)
Y(l) = 500.0 + R*SIN(RADIAN)
CALL PPNT(IGDS1,X,Y,NO,IKEY,IGEN,72)
CALL EXEC(IGDS1)

SAVEX = RTBP(IGDS1,2)
SAVEY = RTBP(IGDS1,4)
IGEN = 3
R = 200.0
DO 570 1=1,72
RADIAN=THETA*FLOAT(I}*C
XCI) = 500.0 + R*COS(RADIAN)
yeI) = 500.0 + R*SIN(RADIAN)
CALL PPNT(IGDS1,X,Y,NO,IKEY,IGEN,72)
CALL IDPOS(IGDS1,SAVEX,SAVEY)

~---------.---~
110 Provides dimensions of two arrays, X and Y, that willi
1 contain the x- an'd y-coordinates where points are to be I
I plotted on the screen. Also names the variable (NO). I
1 I
120 Assigns a value of -5 to the variable NO. Since this 1
I variable is later identified as the null variable, the I
I value of -5 indicates that the program is to be abnormally I
I terminated and a dump is to be produced cnly when a return I
1 code of five is made available by a GSP subroutine. I
1 I
130,40,50 Establish communication links among the program, GSP, a I
I 2250, and a graphic data set. Designate NO as the null I
I variable. I
I I
160,70 Define the input data limits of graphic data set lGDSl I
1 (statement 60), and designate that absolute output is to I
1 be produced for that graphic data set (statement 70). No I
I other option definition subroutines are called. Subse- I
I quently, the default conditions of all other option I
I definition subroutines are assumed. I
1 I
180 Defines the radius of the circle as 100 units. I
I I
190 Defines a constant (C) used to convert degrees to radians. I
I I
1100 Specifies that the points are to be five degrees apart. I l __ J

Figure 7. Example of Use of the PPNT Subroutine (part 1 of 2)

The GSP Subroutines 47

r--,
1110 Assigns a value of one to IGEN that will be used as the I
I "gencode" argument in the call to the PPNT subroutine I
1 (statement 160). This causes the element for plotting I
1 points to be generated in include status. The "gencode" 1
I argument is defined as a variable by this statement so 1
1 that it can be changed if the element produced by the PPNT 1
I subroutine is to be updated. The "key" argument is I
I defined as the variable IKEY. 1
I 1
1120 Specifies that 72 points are to be displayed and estab- 1
I lishes a DO loop with a range through statement 150. I
1 1
1130 Converts degrees to radians. I
1 1
1140,150 Establish the coordinates for one of the points to be 1
I produced. The x-coordinate is stored in array x. The 1
I y- coordinate is stored in array Y. I
1 I
1160 Creates the element for displaying the 72 points. 1
I 1
1170 Causes the points to be displayed on the screen as shown 1
1 in Figure 8. 1
1 1
1500,510 Save the current x- and y-positions of the 2250 beam so 1
I that the beam can be positioned at the same location after I
1 the update call (statement 580) as it was prior to 1
1 issuance of that call, thus enabling new elements to be 1
1 added to the graphic data set after the update call. 1
1 1
1520 Changes the value of IGEN to three. This causes the next 1
1 call that contains IGEN as the "gencode" argument to be 1
1 considered an update call. 1
1 I
1530 Defines the radius of the new circle to be displayed as I
I 200 units. 1
1 I
1540,550, Establish a new array of coordinates for 72 points to be 1
1560,570 displayed in the same manner as the coordinates were
1 established in statements 120 through 150.
I
1580
I
I
1
I
I
1
I

Creates the update element and substitutes it
element previously created by statement 160.
element is automatically placed in the buffer
associated image is displayed. A call to
subroutine is unnecessary. This updated image is
Figure 8. Note that the updated element is still
fiable by the value of IKEY.

for the
The new

and its
the EXEC

shown in
identi-

1590 Restores the beam to the position it was in prior to
1 processing of the update call. l __ _

Figure 7. Example of Use of the PPNT Subroutine (Part 2 of 2)

48

..

iC
"\il_/

c

c'

1000,1000
~--------------------------------~

......... ••..
o 0

o 0
o 0
o 0
o 0
o 0
o 0
o 0 o 0
o 0
o 0 o 0 o 0

0,0

First Display

1000,1000
~--------------------------------~

0,0

o
o

o

.........

o

........

o
o

Updated Display

Figure 8. Displays Produced by PPNT Example

The GSP Subroutines 49

PSGMT--Plot Line Seqment(s)

The PSGMT subroutine creates a graphic element that displays one or
several line segments. It differs from the PLINE subroutine in that
segments produced by the PSGMT subroutine need not be connected.

Prior to the generation of a line segment, the beam is moved
starting location of that segment. This beam movement does not
in an image being displayed. Programming considerations and
output requirements for the PSGMT subroutine are listed in Figure

to the
result
input/
4.

r--,
IGeneral Form I
~--~
ICALL PSGMT(gdsname,xstart,ystart,xend,yend[,corrval] [,keyl [,gencodel I
I [, count] [, xstartindexl [, ystartindex] [, xendindexl I
I [,yendindexl [,xstartincrl [,ystartincrl [,xendincrl I
I [,yendincrl) I l __ J

gdsname,corrval,key,gencode
are described in' "Arguments Used by Many GSP Subroutines."

xstart,ystart
are constants, variables, or array names representing the respec
tive x- and y-coordinates of the starting point of each line
segment to be produced by this call. If incremental input mode is
specified, the first "xstart" value specified is added to the
current x-coordinate beam position to determine the starting point
of the fiI'St line segment to be produced. If array input is used,
the second "xstartn value is added to the computed starting point
of the first line segment to determine the starting point of the
second line segment; and so forth. The y-coordinate values ar~
determined in the same manner.

xend,yend

count

are constants, variables, or array names representing the respec
tive x- and y-coordinates of the end point of each line segment to
be produced by this call. If incremental input mode is specified,
the first nxend" value specified is added to the computed starting
point of the first line segment to determine the end point of that
first line segment. If array input is used, the second "xendn
value specified is added to the computed end point of the first
line segment to determine the end point of the second line segment;
the third nxend" value specified is added to the computed end point
of the second line segment to determine the end point of the third
line segment; and so forth. The y-coordinate end values are
determined in the same manner.

is an integer constant or integer variable the value of which
specifies the number of line segments to be produced by this call.
This i"rgument must be specified if any of the index or increment
arguments are specified. If the ncount" argument is omitted, one
line segment is produced. If the "count" argument has a value
greater than one and neither an index nor increment argument is
specified for a particular type of coordinates (x or y), the input
representing that type of coordinates is assumed to be in an array
with an index value of one.

xstartindex,ystartindex,xendindex,yendindex

50

are integer constants or integer variables the values of which are
used in indexing corresponding arrays identified by the "xstart",
"ystart", "xend", and nyend n arguments. If any of these arguments
are omitted, a value of one is used in indexing its corresponding c

array. Refer to "Programming Considerations" for a further discus
sion of how these arguments may be used.

xstartincr
is a constant or variable the value of which designates an
increment that is to be added to the x-coordinate starting point of
the preceding line segment produced by this call to determine the
x-coordinate starting point of the next line segment to be
produced. The value specified by the "xstart" argument is used to
form the x-coordinate starting point of the first line segment to
be produced. The number of line segments to be produced must be
specified by the "count" argument. Refer to "Programming Consider
ations" for a further discussion of how this argument may be used.

ystartincr,xendincr,yendincr
are specified in the same manner as the "xstartincr" argument to
determine y-coordinate starting points and x- and y-coordinate end
points of line segments to be produced by this call. The values
specified by corresponding "ystart", "xend", and "yend" arguments
are used to determine the respective y-coordinate starting point
and x- and y-coordinate end point of the first line segment to be
produced. Coordinates for subsequent line segments are detenr.ined
as follows: (1) the value specified as the "ystartincr" argument
is added to the y-coordinate starting point of the preceding line
segment produced; (2) the value specified as the "xendincr"
argument is added to the x-coordinate end point of the preceding
line segment produced; (3) the value specified as the "yendincr"
argument is added to the y-coordinate end point of the preceding
line segment produced.

PROGRAMMING CONSIDERATIONS: The index arguments permit the use of one
or more arrays of coordinates to define the starting and end points of a
series of line segments. The number of line segments to be produced is
defined by the "count" argument. The locations of the first of the
coordinates to be used are defined by the respective "xstart", "ystart",
"xend", and ·yendn arguments. The number of entries from the location
of one coordinate to the location of the next coordinate of the same
type is defined by the respective index argument. From these arguments,
the PSGMT subroutine proceeds through the array(s), creating the element
for the line segments to be displayed.

The increment arguments allow the programmer to increment by a Constant
amount the starting or end point coordinates <or all four) of each of a
series of line segments to be produced without using an array.

Both the index and increment arguments may be used with any input mode
designated by the SDATM subroutine. An index argument may be specified
for one set of coordinates (e.g., starting point x-coordinates) and an
increment argument for another set of coordinates <e.g., end point
y-coordinates). However, both an index and an increment argument cannot
be specified for a single set of coordinates.

EXAMPLE: Figure 9 shows the use of the PSGMT subroutine to generate
eight lines from a point at the center of the screen to the circum
ference of a circle. The circle has a radius of 100 units and the eight
lines are to be displayed 45 degrees apart.

The image displayed by the example shown in Figure 9 is the same as
displayed by the example for the PLINE subroutine. However, this PSGMT
example executes more efficiently than the PLINE example because it
contains fewer calls to image generation subroutines. The PLINE example
calls two image generation subroutines <STPOS and PLINE) to be executed

The GSP Subroutines 51

r--,
110
120
130
40
50
60
70
80
90
100
110
120
130
140
150

DIMENSION X(S),Y(S),NO(l)
NO(l) = -5
CALL lNGSP(lGSP,NO)
CALL lNDEV(lGSP,40,lGRAFD)
CALL lNGDS(lGRAFD,IGDS1)
CALL SDATL(lGDS1,0.0,0.0,1000.0,1000.0)
R = 100.0
C = 3.141593/180.0
THETA = 45.0
PO 130 I = 1,S
RADIAN=THETA*FLOAT(l)*C
XCI) = 500.0 +R*COS(RADlAN)
Y(l) = 500.0 +R*SlN(RADIAN)
CALL PSGMT(IGDS1,500.0,500.0,X,Y,NO,NO,NO,8,0,0)
CALL EXEC (IGDSl)

~--~
10 Provides dimensions of two arrays, X and Y, that will I

contain the x- and y-coordinates for the end points of line I
segments to be displayed. Also names the variable NO. I

20 Assigns a value of -5 to the variable NO. Since this
variable is later identified as the null variable, the
value of -5 indicates that the program is to be abnormally
terminated and a dump is to be produced only when a return
code of five is made available by a GSP subroutine.

I
I
I
I
I
I
I

30,40,50 Establish communication links among the program, GSP, a I

I
160
1
I
I
I
17 0
I
\80
I
190
1
1100
I
I
\110
1
120,130

140

2250, and a graphic data set. Specify NO as null variable. I

Defines the input data limits of graphic data set
No other option definition subroutines are called.
quently, the default conditions of all other option
tion subroutines are assumed.

I
IGDS1. I
Subse I

Defines the radius of the circle as 100 units.

defini- I
I
I
I
I

Defines a constant (C) used to convert degrees to radians. I

specifies that line segments are to be 45 degrees apart.
I
I
I

Specifies that eight line segments are to be displayed and I
establishes a DO loop with a range through statement 130. I

Converts degrees to radians.

Establish coordinates for the end point of one of the line
segments to be produced. The x-coordinate is stored in
array X. The y-coordinate is stored in array Y.

Creates the element for producing the eight line segments.
The arguments specified indicate the following: (1) output
from this subroutine is associated with graphic data set
lGDS1, (2 & 3) the first line segment is to start at
coordinates 500,500, (4 & 5) arrays that contain the
coordinates for the end points of the line segments to be
produced are respectively named X and Y, (6 & 7) no
correlation value or key is to be associated with this
element, (8) this element is to be generated in include
status, (9) eight line segments are to be produced, (10 &
11) by being set to zero, that the same starting point is
to be used for each of the line segments to be produced,
and (12 & 13) by their omission, that each of the arrays is
to be indexed by one in order to find the end point of each
succeeding line segment.

I

I
I
I
I
I
I
I

1150 Causes line segments to be displayed as shown in Figure 6. I l __ J

Figure 9. Example of Use of the PSGMT Subroutine

52

(~

(f~-

1,_/

c

c\

C·." i

eight times each for a total of 16 calls. The PSGMT example calls one
image generation subroutine (PSGMT) to be executed only one time. The
:1isplay produced is shown'in Figure 6.

PTEXT--Plot Text

The PTEXT subroutine creates a text element that displays one or more
characters using the character generator feature of the 2250. The
character oata is displayed in the same format as it appears in main
storage. Characters produced may be either of two sizes (basic or
large) and of one orientation (vertical). Character size is determined
by the most recent call to the SCHAM subroutine, or by default.

programming considerations and input/output requirements for the PTEXT
subroutine are listed in Figure 4. Scissoring options set by the SSCIS
subroutine apply to text in the same manner as they apply to images
resulting from the execution of the other image generation subroutines.

r--,
IGeneral Form I
~--~
ICALL PTEXT(gdsname,text, count [,corrval] [,keyJ [,gencodel I
I [,xcoor,ycoor]) I l __ J

gdsname,corrval,key,gencode

text

count

are described in "Arguments Used by Many GSP Subroutines."

is a variable or array name that specifies the storage location of
the first character of text to be displayed. The characters in the
text string must be packed four to a word and must be left aligned
at the location specified.

is an integer constant or integer variable the value of which
specifies the number of characters to be displayed.

xcoor,ycoor
are constants or variables representing the x- and y-coordinates of
the location where the first character is to be displayed. If
these arguments are not specified, the first character is displayed
wherever the 2250 beam is positioned at the time the subroutine is
called.

EXAMPLE: Figure 10 shows the use of the PTEXT subroutine. This example
assumes that the text to be displayed will be read from the first forty
columns of a card, a tape record, or a disk record. This is
accomplished in the example by a combination of the FORMAT statement and
the READ statement.

The GSP Subroutines 53

r--,
10 DIMENSION TEXT (10) ,NO(1)
20 NO(1) = -5
30 CALL INGSP(IGSP,NO)
40 CALL INDEV(IGSP, 40, IGRAFD)
50 CALL INGDS(IGRAFD,IGDS1)
60 CALL SDATL(IGDS1,O.0,0.0,1000.0,1000.0)
70 CALL SCHAM(IGDS1,2)
80 FORMAT (10A4)

160
170
180

READ (5,80) (TEXT(I),I=1,10)
CALL PTEXT(IGDS1,TEXT,40,NO,IKEY,1,20.0,975.0)
CALL EXEC (IGDS1)

I
I
I
I
I

~--~
110 Defines the size of an array called TEXT where the forty
I characters to be displayed will be placed by the READ

statement so that they can be located by the PTEXT
subroutine. Also names the variable NO.

I
I
I
I
I
I
I
I
I

20

30,40,50

60,70

80

160

170

Assigns a value of -5 to the variable NO. Since this
variable is later identified as the null variable, the
value of -5 indicates that the program is to be abnormally
terminated and a dump is to be produced only when a return
code of five is made available by a GSP subroutine.

Establish communication links among the program, GSP, a
2250, and a graphic data set. Designate NO as the null
variable.

Define the input data limits of graphic data set IGDSl
(statement 60), and specify that large size, protected
characters are to be displayed (statement 70). No other
option definition subroutines are called. Subsequently,
the default conditions of other option definition subrou
tines are assumed.

Defines the type and amount of characters to be read into
the array called TEXT.

Reads the text to be displayed into the main storage array
TEXT from a card, a tape record, or a disk record.

Creates the element for displaying the contents of array
TEXT on the screen. The arguments specified indicate the
following: (1) output from this subroutine is associated
with graphic data set IGDS1, (2) the characters to be
displayed are contained in the array TEXT, (3) 40 charac
ters will be displayed, (4) no correlation value is
assigned to the text element created by this call, (5) a
key is to be assigned to the variable IKEY so that the
text element created by this call can be identified later
in the program, (6) the text element is to be generated in
include status, and (7) the first character of text is to
be displayed on the screen at coordinate 20.0, 975.0.

1180 Causes the text to be displayed on the screen. I L __ J

Figure 10. Example of Use of the PTEXT Subroutine

54

c

,,f~

~~

STEOS--Set an End-Order-Sequence Order

The STEOS subroutine places an end-order-sequence order in the next
available location within a graphic data set. This order is used in
attention handling for controlling display regeneration (see "Communi
cating \'lith the 2250 Operator").

The element produced by a call to this subroutine is called an end
order-sequence order element. It has no data associated with it and
cannot be updated. However, it may be placed in include or omit status.

When the element is executed in include status, an attention occurs and
automatic regeneration of the display is stopped. When the element is
executed in omit status, no attention occurs and automatic regeneration
of the display proceeds as normal.

r--,
IGeneral Form I
~--~
I CALL STEOS (gdsname [, corrvalJ [, key] [, gencodeJ) I l __ J

gdsname,corrval,key,gencode
are the same as described in "Arguments Used by Many GSP Subrou
tines" except that a value of three cannot be assigned as the
"gencode" argument.

PROGRAMMING CONSIDERATIONS: The STEOS subroutine is useful in prevent
ing the display regeneration cycle from being interrupted before a
desired display completely appears on the screen. Each time new
elements are added to the buffer via the EXEC subroutine, display
regeneration is stopped, the new elements are placed in the buffer, and
display regeneration is restarted. Occasionally, the process of creat
ing new elements, placing them in the GDOA, and transferring them to the
buffer is completed by the operating system before the buffer can
complete regenerating all the elements previously transferred to it.
Thus, only a portion of a desired display (rather than the entire
display) will appear on the screen at a given time.

To prevent this, the following should be performed:

1. Call the STEOS subroutine before calling the EXEC subroutine that
transfers newly created elements to the buffer.

2. Call the RQATN subroutine to wait for an end-order-sequence
attention. The order that causes this attention was placed in the
buffer via the call to the STEOS subroutine noted in Step 1.

3. Call the RESET subroutine to remove the end-order-sequence order as
soon as the end-order-sequence attention occurs.

4. call desired image generation subroutines for
elements.

creating new

An example of the use of the preceding sequence is contained in the
detailed description of the RDTRK subroutine.

The GSP Subroutines 55

IDENTIFICATION SUBROUTINES

Elements can be identified as a unit by grouping them into a sequence or
a buffer subroutine. The subroutines available for this purpose, called
identification subroutines, are described in the sections that follow.

GROUPING ELEIJlENTS INTO A SEQUENCE

Elements within a graphic data set may be grouped into a sequence by
calls to the Begin a Sequence of Elements (BGSEQ) and the End a Sequence
of Elements (ENSEQ) subroutines. A sequence consists of all elements
between calls to the BGSEQ and ENSEQ subroutines that are associated
with the same graphic data set named in those calls.

A sequence must be keyed or correlated. All elements within a sequence
are treated as an entity identifiable by the key or correlation value
assigned to that sequence. In addition, each element within a sequence
mayor may not be keyed or correlated independently of the keying or
correlation of the sequence itself.

Since it is treated as an entity, a sequence can be manipulated as if it
were a single element. It can be placed in include or omit status. It
can have a cursor inserted into it. It can be removed by the RESET
subroutine. However, it cannot be updated. The manipulation of a
sequence does not restrict the manipulation of elements within it.

When a light pen is pointed at an image produced by an element that is
part of a sequence, GSP returns to the user's program a key or
correlation value for the element on which the light pen detect
occurred, and any key or correlation value for the sequence within which
the element is contained. This enables the programmer to use an
attention-handling routine to identify the entire sequence rather than
just the element detected by the light pen. For additional information,
refer to the description of the Request Attention Information (RQATN)
subroutine.

Use of the BGSEQ and ENSEQ subroutines in a program is optional.
are described in detail in the paragraphs that follow.

They

BGSEQ--Begin a Sequence of Elements

The BGSEQ subroutine designates the beginning of a sequence of one or
more elements within a particular graphic data set. Once this subrou
tine is called, all elements within the specified graphic data set that
are generated between this call and a call to the ENSEQ subroutine for
the same graphic data set are included as part of the sequence.

r--,
IGeneral Form I
~--~
I CALL BGSEQ (gdsname [, corrval) [, key) [, gencode]) I l __ J

gdsname,corrval,gencode

key

56

are the same as described in "Argurrents Used by Many GSP
tines," except that a value of three cannot be assigned
"gencode" al:gument.

Subrou
as the

is an integer variable that identifies the sequence begun by this
call. Its value, or the key, is assigned by GSP. This key can
only be used in a call to the RESET subroutine that is issued
before the ENSEQ subroutine is called for this sequence. A new key

c

c

is assigned when the ENSEQ subroutine is called and must be used
from that point on.

CAUTION: No sequence associated with a particular graphic data set may
be defined within another sequence or within a buffer subroutine
associated with that same graphic data set. This means that the ENSEQ
subroutine must be called for a graphic data set before a second call
for that same graphic data set can be issued to the BGSEQ subroutine.

EXAMPLE: For an example of the use of the BGSEQ subroutine, refer to
"Example of creating a Sequence."

ENSEQ--End a Seguence of Elements

The ENSEQ subroutine designates the end of a sequence of elements
associated with a graphic data set. Once this subroutine is called, the
sequence created consists of all elements within the specified graphic
data set that have been generated prior to this call and after a
preceding call to the BGSEQ subroutine for the specified graphic data
set.

r--,
IGeneral Form I
~--~
\CALL ENSEQ(gdsname[,key]) I L-___ J

gdsname,key
are described in "Arguments Used by Many GSP Subroutines," except
that the key specified in this call replaces any key assigned to
this sequence in the call to the BGSEQ Subroutine that created the
sequence (see "Programming Considerations" below).

CAUTION: If a correlation value had not been specified in the call to
the BGSEQ subroutine for this sequence, the "key" argument must be
included in the call to the ENSEQ subroutine.

PROGRAMMING CONSIDERATIONS: A correlation value assigned in the call to
the BGSEQ subroutine is valid as long as the sequence exists. Unless
the graphic data set is reset to a point within the sequence, a key
assigned in the call to the BGSEQ subroutine is valid only until the
ENSEQ subroutine is called to designate the end of the sequence. If a
key is to be used for identifying the sequence after the ENSEQ
subroutine has been called, the "key" argu~ent must be included in the
call to the ENSEQ subroutine. This argument mayor may not refer to the
same variable specified as the "key" argument in the call to the BGSEQ
subroutine.

Example of Creating a Seguence

The example below establishes a sequence of three elements within the
graphic data set identified by the value of IGDS1. In the example, NO
is used as the null variable.

Statement 50 begins a sequence within graphic data set IGDS1 and
correlates that sequence with a value of 25. Statement 54 ends the
sequence and requests that a key be assigned for the variable IKEY1.
Since the elements generated by statements 51, 52, and 53 are associated
with graphic data set IGDS1, these three elements make up the sequence
just begun. Note that the elements generated by statements 51 and 53
are keyed within the sequence and the element generated by statement 52
is not keyed. Statement 70 transfers the elements making up the
sequence to the buffer for execution.

The GSP Subroutines 57

50
51
52
53
54

CALL
CALL
CALL
CALL
CALL

BGSEQ(IGDS1.25)
PPNT(IGDS1.Xl.Yl.NO.IKEY4)
PTEXT(IGDS1.TEXT1.15)
PPNT(IGDS1.X2.Y2.NO,IKEY5)
ENSEQ(IGDS1,IKEY1)

70 CALL EXEC (IGDS1)

GROUPING ELEMENTS INTO A BUFFER SUBROUTINE (2250 MODEL 3 ONLY)

Occasionally. it is necessary to display the same image at several
different screen locations. GSP provides for this to be easily done on
the 2250 Model 3 through the use of buffer subroutines. (Buffer
subroutines cannot be used with the 2250 Modell.)

A buffer subroutine consists of one copy of all the elements necessary
to display an image. It is placed at a fixed location in the 2250
buffer and can be repeatedly invoked to display its associated image at
different screen locations. The starting position of the image is the
location of the 2250 beam at the time the buffer subroutine is invoked.

A buffer subroutine is created by a call to the Begin a Buffer
Subroutine (BGSUB) subroutine within a particular graphic data set and
is terminated by a call to the End a Buffer Subroutine (ENSUB)
subroutine for the same graphic data set. All elements created for that
graphic data set between these two calls are included in the buffer
subroutine. The BGSUB and ENSUB subroutines perform in pairs similar to
the BGSEQ and ENSEQ subroutines.

Once a buffer subroutine has been created, the execution of it can be
requested at any time (and as many times as desired) by a call to the
Link to a Buffer Subroutine (LKSUB) subroutine followed by a call to the
EXEC subroutine. The position of the 2250 beam at the time the LKSUB
subroutine is called designates the starting position of the image
produced by the buffer subroutine being called.

Once an image is displayed by a buffer subroutine, that image is
identified by the key or correlation value assigned to the linkage
produced by the call to the LKSUB subroutine that caused that image to
be displayed, rather than by the key or correlation value aSSigned to
the buffer subroutine itself. Therefore, if the 2250 operator points
the light pen at one of several images created by different executions
of the buffer subroutine, that light pen attention (if enabled) is
associated with the linkage that caused the designated image to be
displayed. A subsequent call to the Request Attention Information
(RQATN) subroutine makes available the key or correlation value of that
linkage. The key or correlation value of the element pointed at by the
light pen is not returned. For a description of light pen attention
handling, see ·communicating With the 2250 operator."

All input data to image generation subroutines within a buffer subrou
tine is assumed to be incremental, regardless of the mode specified by
the SDATM subroutine. This input data is appropriately scaled. Howev
er, images prOduced by buffer subroutines are not scissored.

Elements making up a buffer subroutine are always generated in incre
mental form, regardless of the type of output specified by the SGRAM
subroutine. This allows the image to be displayed anywhere on the
screen by the programmer specifying an absolute beam position prior to a
call for linking to the buffer subrdutine.

58

("
y

0·'
" .

o

c
Since incremental input and output are assumed for a buffer subroutine,
the STPOS subroutine should not be called within a buffer subroutine.
This is because the STPOS subroutine always assumes absolute input and
produces absolute output. If the STPOS subroutine is called, the call
will be treated as if it were a call to the MVPOS subroutine that
expects incremental input and produces incremental output.

Descriptions of the BGSUB, ENSUB, and LKSUB subroutines and an example
of their use are contained in the paragraphs that follow.

BGSUB--Begin a Buffer Subroutine

The BGSUB subroutine designates the beginning of a buffer subroutine
within a graphic data set. Once this subroutine is called, all elements
within the specified graphic data set that are generated between this
call and a call to the ENSUB subroutine for the same graphic data set
are included as part of the buffer subroutine.

r-~----------~---,
IGeneral Form I
~--~
I CALL BGSUB (gdsname [, corrval] [. key] (, gencode]) I L __ J

gdsname,gencode
are the same as described in "Arguments Used by Many GSP Subrou
tines" except that a value of three cannot be assigned as the
"gencode" argument.

corrval

key

is a constant or variable the value of which identifies the buffer
subroutine begun by this call. This value is assigned by the
programmer.

is an integer variable that,identifies the buffer subroutine begun
by this call. Its value, or the key, is assigned by GSP. This key
may only be used in a call to the RESET subroutine. A new key is
assigned when the ENSUB subroutine is called and must be used from
that point on.

CAUTION: No buffer subroutine associated with a particular graphic data
set may be defined within another buffer subroutine or sequence
associated with the same graphic data set. This means that the ENSUB
subroutine must be called within a graphic data set before a second call
within that same graphic data set can be issued to the BGSUB subroutine.

ENSUB--End a Buffer Subroutine

The EN SUB subroutine designates that the buffer subroutine begun by a
call to the BGSUB subroutine is complete. Once the ENSUB subroutine is
called, the buffer subroutine created consists of all elements within
the specified graphic data set that have been generated prior to this
call and after a preceding call to the BGSUB subroutine for the
specified graphic data set.

r--,
IGeneral Form I
~--~
ICALL ENSUB(gdsname[.key]) I L __ J

gdsname
is described in "Arguments Used by Many GSP Subroutines."

The GSP Subroutines 59

is an integer variable the value of which identifies the buffer
subroutine terminated by this call. This value (called the key) is
assigned by GSP. This key replaces any key assignEd to this bllffer
subroutine in the call to the BGSUB subroutine that began the
buffer subroutine. For additional information on the specification
of this argument, refer to "Caution" and "Programming Considera
tions" in the description of the ENSEQ subroutine.

LKSUB--Link to a Buffer Subroutine

The LKSUB subroutine generates linkage to a buffer subroutine. The
buffer subroutine must have been generated prior to the time this
subroutine is called. A light pen detect on any portion of the images
produced by a buffer subroutine makes available the key or correlation
value of the linkage. The element that produced the detected image is
not identified.

r--,
IGeneral Form I
~--~
ICALL LKSUB{gdsname[,bufcorrvaIJ [,bufkeyJ [,linkcorrvaIJ [,linkkeyJ I
I [, gencodeJ) I L __ J

gdsname,gencode
are as described in "Arguments Used by Many GSP Subroutines" except
that a value of three cannot be assigned as the "gencode" argument.

bufcorrval
is a constant or variable the value of which identifies the buffer
subroutine to be executed. This value must be the same as was
assigned by the programmer as the correlation value in the call to
the BGSUB subroutine that began the buffer subroutine. If this
argument is not specified, the "bufkey" argument must be specified.

bufkey
is an integer variable the value of which identifies the buffer
subroutine to be execut.ed. This value must be t.he same as was
assigned by GSP as the key value in the call to the ENSUB
subroutine that terminated the subroutine. If this argument is not
specified, the "bufcorrval" argument must be specified.

linkcorrval
is a constant or variable the value of which identifies the linkage
generated by this call. This value is assigned by the programrr.er.

linkkey
is an integer variable the value of which identifies the linkage
generated by this call. This value is assigned by GSP.

Example of Use of a Buffer Subroutine

Figure 11 shows the use of the BGSUB, l!:NSUB, and LKSUB subroutines to
display six squares on a diagonal line across the screen. Each of the
squares is the same size. The orders and data for displaying one square
is generated within a buffer subroutine identified as NSQURE. This
subroutine is then called six times to produce the six squares.

60

c

c

()

r--,
110 DIMENSION NULL(l} I
120 NULL(l) = -5 I
130 CALL INGSP(IGSP,NULL) I
140 CALL INDEV(IGSP,40,IGRAFD) I
150 CALL INGDS <IGRAFD, IGDSl) I
160 CALL SDA.TL(IGDS1,0.0,0.0,1000.0,1000.0) I
170 NSQURE = 10 I
I 80 CALL BGSUB (IGDS1, NSQURE) I
190 CALL MVPOS(IGDS1,25.0,25.0) I
1100 CALL PLINE(IGDS1,0.0,-50.0} I
1110 CALL PLINE(IGDS1,-50.0,0.O) I
1120 CALL PLINE(IGDS1,0.0,50.0) 1
1130 CALL PLINE(IGDS1,50.0,0.0) I
1140 CALL MVPOS(IGDS1,-25.0,-25.0) I
1150 CALL ENSUB(IGDS1) I
1160 Xl = 0 I
1170 DELTA = 150.0 I
1180 DO 210 I = 1,6 I
1190 Xl = Xl + DELTA I
1200 CALL STPOS(IGDS1,X1,Xl) I
1210 CALL LKSUB(IGDS1,NSQURE,NULL,I) I
1220 CALL EXEC(IGDS1) I
I I
I I
I I
t--~
110,20 Designate storage for a variable named NULL and assign a I
I value of -5 to that variable. Since NULL is later I
I identified as the null variable, the value of -5 indicates I
I that the program is to be abnormally terminated and a dump I
I is to be produced only when a return code of five is made I
I available by a GSP subroutine. I
I I
130,40,50 Establish communication links among the program, GSP, a I
I 2250, and a graphic data set. Designate NULL as the null I
I variable.
I
160
I
I
I
I
170
I
180
I
190

100,110,
120,130

140

Defines the input data limits of graphic data set IGDS1.
No other option definition subroutines are called for
IGDS1. Subsequently, the default conditions of all other
option definition subroutines are assumed.

Assigns a correlation value of 10 to the square.

Specifies the start of buffer subroutine NSQURE.

Moves the 2250 beam to what will be the upper right corner
of the square. Subsequent repositioning of the square
will be defined in terms of the center of the square.

Create the elements to draw the four sides of the square.
Each side is 50 units long.

Moves the 2250 beam to the center of the square. This
facilitates maintenance of the beam position during pro
gram execution. (Note: This positioning is not required
if the STPOS subroutine is used between calls to the LKSUB
subroutine.)

1150 Ends buffer subroutine NSQURE. l __ J

Figure 11. Example of Use of a Buffer Subroutine (Part 1 of 2)

The GSP Subroutines 61

r--,
160,170, Establish a DO loop with a range through statement 210.
180

190

200

210

Specifies the position of the center of the square.

Moves the 2250 beam to the position where the next square
is to be displayed. This position is the center of the
square. Since the same value is used for both the x- and
y-coordinate, the squares displayed after six executions
of this DO loop appear on a diagonal line from 0,0 to
1000,1000.

Creates linkage to buffer subroutine NSQURE. Each succes
sive execution of this DO loop assigns a correlation value
of 1 through 6 respectively to the elements that generate
the six squares.

1220 Causes the six squares to be displayed. l ___ --___ J

Figure 11. Exa~ple of Use of a Buffer Subroutine (Part 2 of 2)

IMAGE CONTROL SUBROUTINES

Controlling, the display of images involves designating when an image is
to be displayed and what is to be displayed. The subroutines available
for this purpose, called the image control subroutines, are described in
the sections that follow.

REPLACING AND ELIMINATING ELEMENTS WITHIN A GRAPHIC DATA SET

At any point within a program, the programmer may choose to replace
elements within a graphic data set with new elements, or may choose to
eliminate elements from a graphic data set. This section describes the
facilities and subroutines available for this purpose. They are:

• The Update Facility.

• The Reset a Graphic Data Set (RESET) subroutine.

• The Indicate Beam Pcsition CIDPOS) subroutine.

If the data to be modified constitutes an entire graphic data set or is
at the end of a graphic data set, the use of the RESET subroutine
followed by appropriate calls to image generation subroutines is an
efficient method of modifying the data. In this regard, a portion of a
graphic data set that is to be frequently modified should be generated
so that it is placed at the end of the graphic data set.

However, this is not always conveniently possible. For example, the
first line of more than one hundred lines in a graphic data set may
require moaification. In this case, it is inefficient to eliminate the
element used to display that line and all elements thereafter within the
graphic data set and then generate all the removed elements again. It
would be more efficient to USe the update facility and merely replace
the desired element by issuing one call to an image generation
subroutine.

CAUTION: Any time the sequence in which elements are created within a
graphic data set is interrupted (such as in updating and resetting), the
desired starting position must be reestablished prior to calling an
image generation subroutine for creating the next element to be placed
within that graphic data set. In the case of updating, this must be

62

1("',',
;'

c

(~

done prior to the update call and prior to adding a new element to the
graphic data set after the update call. In the case of resetting, this
must be done prior to generating a new element after the reset operation
has been performed. If this is not done, images associated with the
newly created elements may appear in different locations than desired
and scissoring may occur at an undesirable time during execution of the
program.

Reestablishing the desired starting position for new elements is
accomplished in one of the following ways:

e By a call to the STPOS subroutine, or

• By a call to the IDPOS subroutine if the beam position is known and
that position is to be the starting position of the new element.

The Update Facility

An element that has been keyed or correlated can be modified at any time
by means of the update facility. This facility involves calling the
subroutine that originally created a particular element to generate a
new element and substitute it for that previously created element. The
element being updated must have already been transferred to the 2250
buffer via the EXEC subroutine. The update element is automatically
transferred to the buffer after it is created; therefore, the EXEC
subroutine need not be recalled.

A key or correlation value must be used to identify the element to be
updated. An element modified by an update call will be in the Same
status (include or omit) as the previously created element it has
replaced.

To insure successful performance of the update facility, the following
conditions must be adhered to:

1.

2.

3.

The update element must be created by a call to the same image
generation subroutine that created the element being replaced.
That is, the PPNT subroutine must be called to update an element
created by a prior call to the PPNT subroutine; the PLINE
subroutine must be called to update an element created by a prior
call to the PLINE subroutine; and so forth.

The output data making up the update element must be of the same
form as the output data comprising the element being replaced.
That is, an element consisting of absolute output can only be
updated by an element consisting of absolute output; a text element
that produces basic size, protected characters can only be updated
by a text element that will produce basic size, protected charac
ters; and so forth.

The amount of data generated by the update call must not exceed the
amount of data originally generated for the element being updated.
If it does, an appropriate return code is made available and the
element to be updated is left unchanged. This condition, called
update data overflow, is likely to occur when scissoring has been
performed on the element to be updated, or when scissoring will be
required on the update element.

If an update element consists of less data than the element it is
replacing, the entire first element is replaced. However, the
amount of data that can be substituted by future updates of that
same element is based on the amount of data that was generated by
the call that originally created the element. For example, if an
element consisting of 39 words of data were :r-eplaced by an update
element of 21 words of data, that update element may in turn be

The GSP Subroutines 63

replaced by another update element consisting of from 1 through 39
words of data.

4. Prior to issuing the update call, the programmer must inform GSP of
the absolute starting location to be used for creating the update
element. Prior to adding a new element to the graphic data set
after an update call, the programmer must inform GSP of the
absolute starting location to be used for creating the new element.
These operations are accomplished by calling the STPOS or IDPOS
subroutine.

To use the update facility, the programmer must include the following in
his program (see Figure 7 for an example):

1. The "key" or "corrval" argument, or both, in the call to the
subroutine that generates the element that will later be updated.
In this case, the "key" or "corrval" argument identifies the
element that is generated by the call. If the "gencode" argument
is specified in this call, it must not have a value of three.

2. The "key" or "corrval" argument, and a value of three as the
"genco(Ie" argument in the call to the subroutine that generates the
element to be substituted for a previously generated element. In
this case, the "key" or "corrval" argument identifies the previous
ly generated element that is to be replaced.

If both the "key" and "corrval" arguments are specified in an update
call, the "key" argument is used to identify the element to be updated
and the value of the "corrval" argument is assigned as a new correlation
value to the updated element. A value of zero assigned to the "corrval"
argument causes removal of the correlation value previously associated
with the element being updated.

If only the "key" argument is specified in an update call, the value
that argument is used to identify the element to be updated.
updated element remains associated with the correlation value (if
with which it had been previously associated.

of
The

any)

If only the "corrval" argument is specified in an update call, the value
of that argument is used to identify the element to be updated and
remains as the correlation value of the updated element. If several
elements have been assigned the same correlation value, the first
element that was assigned that correlation value is assumed to be the
element that is to be updated.

CAUTION: When using the update facility, the programmer must make
certain that the updating is performed successfully (i.e., it does not
violate any of the conditions described in "The Update Facility") or
must include an alternate routine in his program that uses the RESET
subroutine to perform the same modification and that assumes control if
the update atten1pt is unsuccessful.

PROGRAMMING CONSIDERATION: If a text element containing a cursor is
updated, that cursor is overlaid by the update element.

RESET--Reset a Graphic Data Set

The RESET subroutine removes a particular sequence, buffer subroutine,
or element and all elements that follow it from a graphic data set, or
removes all elements from a graphic data set. When this subroutine is
called, the display of the image produced by the removed elements is
terminated and all 2250 buffer storage occupied by the removed elements
is freed. All keys or correlation values associated with the removed
elements are also permanently erased.

64

c

If only part of a graphic data set is to be removed by the RESET
subroutine, the first sequence, buffer subroutine, or element to be
removed must be identified by a key or correlation value. If neither a
key nor correlation value is specified, all elements within the
specified graphic data set are removed.

The removal of all elements in a graphic data set does not terminate the
use of that graphic data set. New elements can be generated for that
graphic data set until the use of the data set is terminated by one of
the termination subroutines. However, prior to adding a new element to
the graphic data set after the reset operation has been performed, GSP
must be informed of the desired starting position of that new element.
This is accomplished via the STPOS or IDPOS subroutine.

r--,
IGeneral Form I
r--~
ICALL RESET (gdsname[,corrval] [,key]) I L __ J

gdsname
is described in WArguments Used by Many GSP Subroutines. w

corrval

key

is a constant or variable the value of which has been correlated
with the first sequence, buffer subroutine, or element that is to
be removed from the specified graphic data set.

is an integer variable the value of which is the key that
identifies the first sequence, buffer subroutine, or element that
is to be removed from the specified graphic data set.

PROGRAMMING CONSIDERATIONS: If it is desired to redisplay images
associated with elements that have been removed from a graphic data set
by the RESET subroutine, those elements must be recreated by calls to
the im~ge generation subroutines.

IDPOS--Indicate Beam Position

The IDPOS subroutine provides GSP with a starting location from which
other x- and y-coordinates are to be computed. This starting location
is also used as a basis for applying scissoring options as specified by
the SSCIS subroutine. The IDPOS subroutine does not create orders and
data. It, or the STPOS subroutine in lieu of it, must be called prior
to issuance of an update call and before new elements are created within
a graphic data set after an element has been updated or a reset within
that graphic data set.

r--,
IGeneral Form I
~--~
ICALL IDPOS(gdsname,xlast,ylast[,xcurr,ycurr]) I L __ J

gdsname
is described in WArguments Used by Many GSP Subroutines. w

xlast,ylast
are constants or variables the values of which designate the
positions that are to be used as the absolute starting points from
which other x- and y-coordinates are to be computed. These values
must be absolute no matter what has been specified by the SDATM
subroutine. They may be either integer or real as defined by the

The GSP Subroutines 65

SDATM subroutine. (Note: If the values happen to be incremental
the IDPOS subroutine uses them as if they were absolute.)

xcurr,ycurr
are constants or variables the values of which designate the
current beam position after the "xlast" and "ylast" arguments have
been scissored. These values must be absolute and may be real or
integer as defined by the SDATM subroutine. These arguments must
be specified if the "xlast" and "ylast" arguments represent values
that have been scissored. If these arguments are omitted, their
values are assumed to be the same as the values of the "xlastR and
"ylast" arguments respectively.

CONTROLLING WHEN IMAGES ARE DISPLAYED

This section describes the subroutines that cause images to be displayed
or removed from the 2250 screen. These subroutines initiate the
pro~essing of ele~nts, thus producing a display; and place elements,
sequences, buffer subroutines, or graphic data sets in include or omit
status, thus altering a display. The subroutines described are as
follows:

• Execute (EXEC)

• Place in Include Status (INCL)

• Place in Omit Status (OMIT)

• Order Graphic Data Sets (ORGDS)

The status of a graphic data set, sequence, element, buffer subroutine,
or buffer subroutine linkage may be altered from include to omit status,
and vice versa, as often as desired. Altering the status of one of the
above does not affect the status of the others. HoweVer, it does
determine whether or not images associated with the others are displayed
in the following hierarchy: (1) graphic data set, (2) sequence or
buffer subroutine, and (3) element.

If a graphic data set is placed in omit status, images associated with
sequences, buffer subroutines, or elements within that graphic data set
are not displayed regardless of their status. An image associated with
an element is displayed only if the graphic data set and sequence or
buffer subroutine which contain it, and the element itself, are in
include status. Images associated with a sequence or buffer subroutine
are displayed only if the graphic data set and the sequence or buffer
subroutine itself is in include status. For a discussion of what occurs
when various types of elements (graphic, positioning, text, and end
order-sequence) are in include status, refer to the introduction to the
section "Image Generation Subroutines."

EXEC--Execute

The EXEC subroutine must be called to display an image. It causes all
elements within a particular graphic data set that have been generated
since a previous call to the EXEC subroutine for that graphic data set
to be transferred to the 2250 buffer. Images associated with any of
these transferred elements in include status are displayed at this time.
The first call to the EXEC subroutine causes the display of all elements
in include status within the specified graphic data set that have been
generated since the data set was initialized.

The EXEC subroutine does not affect the include or omit status of
elements, sequences, buffer subroutines, buffer subroutine linkages, or
graphic data sets. These items may b~ changed from include status to

66

c

o

c

omit status, and vice versa, merely by calling the INCl. or OMIT
subroutine. The EXEC subroutine need not be reissued.

A call to the EXEC subroutine also is not necessary in the case of
update elements. Such elements are automatically transferred to the
buffer and executed immediately after they are created.

r--,
\General Form \
~--~
\CALL EXEC (gdsname) \ l __ J

gdsname
is described in "Arguments Used by Many GSP Subroutines."

INCL--Place in Include Status

The INCL subroutine places a graphic data set, a keyed or correlated
sequence, a keyed or correlated buffer subroutine, keyed or correlated
buffer subroutine linkage, or a keyed or correlated element in the
include status. Elements that have not been keyed or correlated are
always placed in include status when they are created. If the item
referred to in a call to this subroutine is already in include status,
the call is ignored.

When a graphic or text element in include status is executed, the image
associated with that element is displayed on the screen. When a
positioning element in include status is executed, the 2250 beam is
moved as directed by that element; the beam is blanked so no image
appears.

r--,
\General Form \
~---~
\CALL INCL(gdsnamel,corrval] [,key]) \ L-___ J

gdsname, corrval, key
are described in "Arguments Used by Many GSP Subroutines."

CAUTION: Before a graphic data set can be placed in include status by
this subroutine, at least one element must have been created for it.

OMIT--Place in omit Status

The OMIT subroutine places a graphic data set, a keyed or correlated
sequence, a keyed or correlated buffer subroutine, keyed or correlated
buffer subroutine linkage, or a keyed or correlated element in omit
status. Elements not previously keyed or correlated cannot be placed in
omit status. If the item referred to in a call to this subroutine is
already in omit status, the call is ignored.

When a graphic or text element in omit status is executed, the image
associated with that element is not displayed on the screen. However,
for a graphic element, the 2250 beam is moved as designated by that
element; for a text element, the 2250 beam is not moved. When' a
positioning element in omit status is executed, the 2250 beam also is
not moved.

r--,
\General Form \
~--~
\CALL OMIT(gdsnarnel,corrval]l,key]) \ l __ J

The GSP Subroutines 67

gdsname,corrval,key
are described in "Arguments Used by Many GSP Subroutines."

CAUTION: Before a graphic data set can be placed in omit status by this
subroutine, at least one element must have been created for it.

ORGDS--Order Graphic Data Sets

The ORGDS subroutine modifies the sequence in which graphic data sets
associated with a particular' 2250 are regenerated within the buffer.
This ordering has no effect on the status (include or omit) of each
graphic data set in the sequence. Normally, graphic data sets are
regenerated in the sequence in which elements were first created for
them.

r--,
IGeneral Form I
~--~
ICALL ORGDS(gdsname~[,gdsname2··.,gdsnamen]} I L __ J

gdsname~ through gdsnamen
are integer
the ordering.
only once in
following:

variables that identify graphic data sets involved in
A particular graphic data set must be identified

a given call. The "gdsname" arguments indicate the

• "gdsname2" is to be regenerated imnlediately after ngdsname~",

" gdsname3 " is to be regenerated immediately after "gdsname2",
and so forth through "gdsnaroen" (see Statement 200 in the
example that follows) •

• All graphic data sets not specified in this call that are
associated with the same 2250 as the specified graphic data
sets are regenerated after the last graphic data set specified
in this call. These graphic data sets are regenerated in the
same relative order to one another as they were prior to this
call (see statements 300 and 400 in the example that follows).

PROGRAMMING CONSIDERATIONS: The ordering of graphic data sets is useful
in light pen attention-handling. For example, if a light pen were
directed at a point where two lines intersect and if each of these lines
are within a different graphic data set (e.g., IGDSl and IGDS2 in that
order) associated with the same 2250, the attention is queued for the
graphic data set that appears earliest in the sequence of graphic data
sets (in this case, IGDS1). If the sequence were ordered so that IGDS2
appears before IGDS1, the attention is then queued for IGDS2 which is
now the earliest appearing graphic data set in the sequence.

EXAMPLE: The following example depicts the ordering of graphic data
sets by means of the ORGDS subroutine:

70
80
90
100

CALL
CALL
CALL
CALL

STPOS(IGDS1,200,100)
STPOS(IGDS2,lOO,100)
STPOS(IGDS3,50,50)
STPOS(IGDS4,200,200}

----------> Places these four 'graphic
data sets in the following
sequence: IGDS1,IGDS2,IGDS3,
IGDS4. (Assumes that these
are the first calls to image
generation subroutines for
each graphic data set.)

200 CALL ORGDS(IGDS4,IGDS3,IGDS2,IGDS1)--> Orders the four graphic data
sets so that they are in the
following sequence: IGDS4,
IGDS3,IGDS2,IGDS1.

68

c

c\

c

c

300 CALL ORGDS(IGDS2,IGDS3)--------------> Orders the sequence estab
lished in Statement 200 so
that the graphic data sets
appear as follows: IGDS2,
IGDS3,IGDS4,IGDS1.

400 CALL ORGDS(IGDS4)--------------------> orders the sequence estab
lished in Statement 300 so
that the graphic data sets
appear as follows: IGDS4,
IGDS2,IGDS3,IGDS1.

KEYBOARD INPUT AND BUFFER DATA ANALYSIS SUBROUTINES

This section describes the subroutines that allow text data to be
entered from the alphameric keyboard and then read into main storage for
analysis. The subroutines described are Insert Cursor (ICURS), Remove
Cursor (RCURS), and Read Data (GSPRD). The GSPRD subroutine may also be
used to read into main storage graphic orders and data other than that
entered from the alphameric keyboard.

ICURS--Insert Cursor

The Insert Cursor (ICURS) subroutine inserts a cursor into a graphic
data set. The cursor is a symbol that is represented on the screen as a
dash beneath a character position. Only one cursor may be associated
with a 2250 at any time. An attempt to insert a second cursor causes
the previously displayed cursor to be repositioned to the location
specified for the second cursor.

The cursor marks the position on the screen at which the next character
entered from tlie alphameric keyboard will appear. It also serves as a
delimiter that terminates the reading of text from the 2250 buffer into
main storage.

A cursor must be displayed on the screen whenever text is to be entered
into the 2250 buffer from the alphameric keyboard. Text is read from
the buffer by means of the GSPRD subroutine.

The ICURS subroutine inserts a cursor at the beginning of the first text
element within a keyed or correlated sequence, at the beginning of a
keyed or correlated text element, or at any specified character position
within a keyed or correlated text element.

The cursor appears on the screen only when it is inserted into a text
element that is in the include status and is being executed. The
characters of the text element may be protected or unprotected.
However, data can be entered from the alphameric keyboard only when the
cursor appears in an unprotected area.

When the lCURS subroutine is called to insert a cursor within an
equivalent graphic data set, the cursor will not be inserted until the
next call to the EXEC subroutine for that graphic data set.

r-------------------~--,
IGeneral Form I
~--~
I CALL lCURS (gdsname [, corrvall [, key] [, charpos]) I L __ J

gdsname
is described in WArguments Used by Many GSP Subroutines. w

The GSP Subroutines 69

corrval

key

is a constant or variable the value of which has been correlated
with the sequence or element within the graphic data set into which
the cursor is to be inserted. If this argument is not specified,
the null variable must be substituted for it and the "key" argument
must be specified.

is an integer variable the value of which is the key that
iden,tifies the sequence or element within the graphic data set into
which the cursor is to be inserted. If this argument is not
specified, the "corrval" argument must be specified.

charpos
is an integer constant or integer variable the value of which
specifies the character position within a text element where a
cursor is to be inserted. This value must not exceed the number of
alphameric characters in the text element. If it does, no cursor
will be inserted and a return code indicating an invalid parameter
specification will be made available. The position of the first
character in a text element is considered to be one.

PROGRAMMING CONSIDERATIONS: During testing of a GSP program that
requests that characters previously created by the PTEXT subroutine be
overlaid with characters entered from the alphameric keyboard, addition
al characters occasionally cannot be entered in the prescribed area
without first depressing the JUMP key on the alphameric keyboard. This
results from the GDOA becoming full and its contents being transferred
to the buffer before all the characters were created. To override this
condition, increase the size of the GDOA for that graphic data set by
respecifying the "gdoalength" argument in the call to the INGDS
subroutine that initialized the graphic data set.

RCURS--Remove Cursor

The RCURS subroutine removes a cursor from a graphic data set.

r--,
IGeneral Form I
~--~
I CALL RCURS C gdsname) I l __ J

gdsname
is described in "Arguments Used by Many GSP Subroutines."

EXAMPLE: The statements below cause a cursor to be inserted into a
graphic data set, and then later removed from that graphic data set. In
the example, NO is used as the null variable.

Statement 50 causes a cursor to be inserted under the third character of
a text string in a text element identified by the value assigned by GSP
to IKEY. This text element is part of graphic data set IGDS1.

Statement 90 causes the inserted cursor to be removed from the graphic
data set.

50 CALL ICURSCIGDS1,NO,IKEY,3)

90 CALL RCURSCIGDS1)

70

c

GSPRD--Read Data

The GSPRD subroutine causes grafhic orders and data or alphameric
chara.cters to be read from the 2250 buffer to a main storage array. The
read initiated by this call may be terminated when a cursor is
encountered, when the specified amount of data has been read, or when
the end of the graphic data set or the element being read is
encountered.

Data is placed in the array in A format, four characters left-aligned in
a word. The characters are represented in extended binary-coded-decimal
interchange code (EBCDIC).

r--,
IGeneral Form I
~--~
ICALL GSPRD(gdsname,storageloc,count,rdtypel,termcode] l,corrval1 J I
I [,keY1 J [,corrva12] [,keY2]) I l __ J

gdsname
is described in "Arguments Used by Many GSP Subroutines."

storageloc

count

is the variable or array name that identifies the beginning of the
main storage array where the data being read is to be placed.

is an integer constant or integer variable that defines the amount
of data to be read. The va.lue assigned to this argument must be
given in terms of storage locations (bytes). This value may be
specified as a positive value or as a negative value having the
following meanings:

Positive-- The read is terminated after whichever of the following
conditions occurs first.':

• The specified amount of data has been read.

• The end of t.he graphic data set or the last element
being read is encountered.

Neqative-- The read is terminated as desc~ibed for a positive value,
unless a cursor is detected first. When the cursor is
detected, the read is terminated after the contents of
the buffer location immediately preceding the location
containing the cursor has been read.

rdtype
is an integer constant or integer variable that identifies what is
to be read as a result of this call. This constant or variable
must have one of the following values:

termcode

1 If text information is to be read. (Note: Both protected and
unprotected characters will be read.)----

2 If all orders and data are to be read.

is an integer variable the value of which is assigned by the GSPRD
subroutine to indicate what caused the read operation to be
terminated. The value and its meaning are as follows:

The GSP Subroutines 71

Value ---
a

+

Meaninq

The amount of data defined by the "count" argument has
been read.

The end of the graphic data set or the element being read
was encountered. The value is the nuwber of bytes of
data read.

A cursor was encountered.
bytes of data read.

The value is the number of

corrva11

is a constant or variable the value of which has been previously
correlated with the first or only element to be read. If more than
one element has been correlated with the value specified by this
argument, the read begins at the first element correlated with that
value.

is an integer variable the value of which is the key that
identifies the first or only element to be read.

corrva12
is a constant or variable the value of which has been previously
correlated with the last element of a series of elements to be
read.

is an integer variable the value of which is the key that
identifies the last element in a series of elements to be read.

PROGRAMMING CONSIDERATIONS: Since the number of bytes of data actually
read may be less than the number of bytes specified by the "count"
argument, the "termcode" argument should also be specified and the value
assigned to it by the GSPRD subroutine tested before the data that was
read is to be used.

72

i#'

"-,

,,,.r"

\,,-_/

C~\
I, __ ,.,

(:'

COMMUNICATING WITH THE 2250 OPERATOR

GSP provides subroutines that enable two-way communication between the
2250 operator and the program. The program communicates with the
operator by placing a message on the 2250 screen. It may also provide
the means by which the operator can respond to the message by making the
light pen or specific programmed function keys available for use. The
operator communicates with the program by entering information from the
alphameric keyboard, by depressing a programmed function key, or by
pointing tbe light pen at an image on the screen and activating that
light pen. Any such response causes an attention.

An attention is an interruption that causes the program to change its
course at an unpredictable point. When an attention occurs, processing
of the user's program is interrupted and control is passed to GSP to
process the attention. This processing results in information about the
attention being made available to the user's program upon request.

How the attention information is to be handled must be specified by the
programmer. The inforrn.ation may be ignored, or may be held in a queue
(queued) for later processing upon request. The processing is done by
routines written by the programmer.

There are thirty-five attention sources available to the GSP user.
These are:

• Thirty-two programmed function keys.

• The END key of the alphameric keyboard.

• The light pen.

• An end-order-sequence order.

The alphameric keyboard CANCEL key is
functions. Its use is described in detail
Keyboard CANCEL Key."

only available
in "Using the

for system
Alphameric

An end-order-sequence order is not available to the 2250 operator. It
is used by the programmer to control display regeneration (see the
description of the STEOS subroutine).

The programmer permits the queueing and processing of attention informa
tion from a particular source by enabling that source. He causes the
attention information to be ignored by disabling the source. GSP
provides subroutines for both enabling and disabling attention sources.

GSP permits one or several enabled attention sources for a 2250 be
grouped into sets according to how and when they are used in the
program. These sets are called attention levels. Only one level,
called the active attention level, is able to accept attention informa
tion at any given time. All other levels are called inactive attention
levels (see "Using Multiple Attention Levels").

Creating an Attention Level

An attention level is established by a call to the Create an Attention
Level (CRATL) subroutine and remains in existence either until its use
is terminated by a call to the End an Attention Level (ENATL) subroutine
or until the use of its associated 2250 is terminated.

Communicating with the 2250 Operator 73

When an attention occurs from an enabled source, attention information
is placed in the queue for the active attention level and processed as
directed by the programmer. When the use of an attention level is
terminated, all attention information in the queue for that level is
deleted and the storage occupied by that level is freed.

Generally, the use of one attention level for a 2250 should be
terminated before another level is created for that 2250. However, in
some cases, it may be desirable to have several attention levels for a
2250 exist simultaneously throughout a period of time. This use of
multiple attention levels is described in the section "Using Multiple
Attention Levels."

Enabling and Disabling Attention Sources

When an attention level is created, all
the alphameric keyboard CANCEL key are
remains enabled. Any attempts by the
ignored.

attention sources for it except
disabled. The CANCEL key always
programmer to disable it are

Each desired attention source must be enabled by the programmer by a
call to the Enable Attention Sources (ENATN) subroutine. Attention
information from disabled sources is ignored. Attention sources may be
repeatedly enabled or disabled as long as the level associated with them
exists.

Except for the light pen attention source, the enabling of an attention
source causes all attentions from that source to be accepted by GSP. To
process light pen attentions, the programmer must enable the light pen
attention source and designate those graphic data sets for which he
wishes light pen attentions to be accepted. Light pen attentions
occurring on undesignated graphic data sets are ignored by GSP, thus
preventing unwanted light pen attentions from being processed. The
designation of acceptable light pen attention sources is accomplished by
calls to the set Light Pen Attentions (SLPAT) subroutine.

Placing Attention Information in an Attention Level Queue

As mentioned previously, when an attention occurs from an enabled source
for an active attention level, the user's program is interrupted and
attention information is queued for that level. For a light pen
attention, the attention information is queued only if the graphic data
set associated with the image at which the light pen was directed has
been designated as an acceptable source by a call to the SLPAT
subroutine.

The queued attention information contains the identification of the
source that caused the attention. If the source was the light pen, a
programmed function key, or an end-order-sequence order, additional
information about that attention is also provided. However, for a light
pen or end-order-sequence attention, character code and coordinate
information is only queued if the Modify Light Pen or End-Order-Sequence
Attention Information (MLPEO) subroutine had been previously called for
the active attention level.

Once the attention information is queued, control is returned to the
user's program at the point where that program was interrupted. The
program is not notified that an attention has occurred until attention
information is requested by a call to the Request Attention Information
(RQATN) subroutine.

Using the Alphameric Keyboard CANCEL Key

The alphameric keyboard CANCEL key is reserved for direct
between the 2250 operator and the operating system.

74

communication
The key is c

(

automatically enabled as soon as its associated 2250 is initialized. It
is to be used when the operator has recognized a condition in his
program that warrants interruption.

When the CANCEL key is depressed, an image appears on the screen that
gives the 2250 operator the following options:

• TERMINATE -- Terminate the user's progrc.m without producing a dump.

• DUMP Terminat.e the user's program and produce an abnor:ulal
termination dump.

• RESUME -- Restore the user's program as it was before the CANCEL key
attention occurred and cause processing to be resumed.

The 2250 user selects one of these options by using the light pen.
Abnormal termination dumps are described in the publication IBM Systew/
360 Operating System: Programmer's Guide to Debugging, Form C28-6670.

Using Multiple Attention Levels

As mentioned previously, the use of a single attention level is normally
sufficient. However, in some cases, the use of multiple attention
levels may be desirable.

Each level is created by a separate call to the Create an Attention
Level (CRATL) subroutine. Attention sources may be enabled and disabled
for a particular level at any time as long as the level eXists.

As the term "level" implies, there is a strict hierarchy involved among
the groups of attention sources. As a result, even though many
attention levels may exist simultaneously for a particular 2250 through
out a period of time, only one level will be able to accept attention
information at any given time. This is called the active attention
level and is the lowest attention level in the hierarchy. All other
attention levels for that 2250 are inactive.

When an attention level is created for a 2250, it is made the lowest
attention level (the active level) in the hierarchy for that 2250. This
newly created level remains active either (l) until its use is
terminated by the call to the End an Attention Level (ENATL) subroutine,
(2) until a new attention level is created for the same 2250, or (3)
until the order of the attention level hierarchy for the 2250 is changed
by a call to the Modify position of an Attention Level (MPATL)
subroutine. An inactive level becomes active again whenever it reap
pears at the bottom of the hierarchy.

When an attention level becomes inactive as a result of the creation of
a new level or the reordering of the attention level hierarchy, any
attention information associated with it that had not yet been processed
remains in the attention queue for that level. No new attention
information can be added to that queue until the level is made active
again. However, any information currently in the queue may be reqnested
and processed at any time by a call to the Request Attention Information
(RQATN) subroutine. When an attention level is ended all attention
information in the queue for that level is deleted and the storage
c~~upjed by that level is freed.

Attention sources may be enabled and disabled at any time during the
existence of the level associated with them, even when the associated
level is inactive. When an inactive attention level is reactivated,
thecurrent status of its attention sources (enabled or disabled) becomes
effective immediately.

Communicating with the 2250 Operator 75

An example of the use of multiple level attention handling is included
in Appendix G.

THE ATTENTION RELATED SUBROUTINES

This section describes the attention related subroutines
communication between the program and the 2250 operator.
tines are as follows:

• Create an Attention Level (CRATL)

• End Attention Levels (ENATL)

• Enable Attention Sources (ENATN)

• Disable Attention Sources (DSATN)

• Set Light Pen Attentions (SLPAT)

• Request Attention Information (RQATN)

available for
These subrou-

• Modify Light_ Pen or End-Order-Sequence Attention Information (MLPEO)

• Modify Status of the Programmed Function Indicator Lights O"LITS)

• Modify Position of an Attention Level (MPATL)

• Sound Audible Alarm (SALRM)

CRATL--Create an Attention Level

The CRATL subroutine establishes an active attention level for a
particular 2250. When an attention level is created, no attention
sources are enabled for it. Therefore, all attentions that occur will
be ignored until the ENATN subroutine is called.

r--,
IGeneral Form I
~--~
ICALL CRATL(devicename,attnlevel[,dequectl]) I l __ J

devicename
is described in "Arguments Used by Many GSP Subroutines."

attnlevel
is an integer variable identifying the attention level created by
this subroutine. The CRATL subroutine assigns a value to this
variable.

dequectl

76

is an integer variable that defines when attention information is
to be dequeued after it is made available to the user by the RQATN
subroutine. This argument need only be specified when mUltiple
attention levels are used. If it is omitted, attention information
is dequeued immediately after it is rrede available to the program
mer. If the "dequectl" argument is specified, it must have one of
the following values:

1 Dequeue attention information as it is made available.

2 Dequeue attention information as it is made available if the
associated level is activE when this subroutine is called. Do

not dequeue that attention information if the associated level
is inactive when this subroutine is called.

EXAMPLE: Refer to the sample program in Appendix A for an example of
the use of the CRATL subroutine.

ENATL--End Attention Levels

The ENATL subroutine is used to perform one of the following:

• Terminate the use of a specified attention level and all levels
lower than it in the attention level hierarchy for a 2250. Any
level immediately higher than the specified level is now made
active.

• Terminate the use of all attention levels lower than a specified
attention level thus making the specified level active.

• Terminate the use of the only attention level created for a 2250 or
the last attention level in the attention level hierarchy.

r--,
IGeneral Form I
~--~
ICALL ENATL(attnlevell,rangecode]) I l __ J

attnlevel
is an integer variable having the same value as was returned as the
·attnlevel" argument in the call to the CRATL subroutine that
created the attention level to be terminated.

rangecode
is an integer constant or integer variable that designates the
operation to be performed by this call. This argument need only be
specified when multiple attention levels are used. It may have one
of the following values:

1 To terminate the specified attention level and all attention
levels lower than it in the attention level hierarchy. Any
attention level higher than the specified attention level is
made active.

2 To terminate all attention levels lower than the specified
attention level and make the specified attention level active.

If this argument is omitted, the specified attention level and all
levels lower than it are terminated.

EXAMPLE: Refer to Appendix G for an example of the use of the ENATL
subroutine.

ENATN--Enable Attention Sources

The ENATN subroutine designates attention sources to be processed at a
particular attention level and removes previous attention information
from those sources from the queue for that level. It may be called at
any time after the designated attention level has been created, whether
or not the attention level is active. Enabled attention sources for an
attention level can be disabled at any time by a call to the DSATN
subroutine.

Communicating with the 2250 Operator 11

~---~-~-----.---~----.------

Once attention sources are enabled for a particul~r a.ttention level, as
long as that level is active, attention iilformation from the enabled
sources is 'iuelled for it while attention information from sources not
enabled is ignored. No attention information is queued for inactive
attention levels. Once attention infornBtion has been queued for an
attention level, it can be requested at any time (even if the attention
level is inactive) by a call to the RQATN subroutine.

The ENATN subroutine may be called as often as desired to enable
aaditional attention sources for an attention level. However, when a
previously enabled attention sOUrce for an attention level is reenabled
for that level, all previously quelled attention information from that
source is aequeued for the designated attention level.

r--,
IGeneral Information I
~--~
ICALL ENATN(attnlevel,attnsourcel,attnsource ... 1) I l __ J

attn level
is an integer variable having the same value as was returned as the
Rattnlevel" argument in the call to the CRATL subroutine that
created the attention level for which the designated attention
sources are to be enabled.

attnsource
is an integer constant or integer variable the value of which is
the identification code of an attention source (or the first or
last sources of a range of attention sources) to be enabled for the
specified attention level. This argument ntay be repeated as many
times as necessary to enable desired attention sources. Its value
must be positive except when it identifies the highest attention
source in a range of attention sources.

To designate a ranqe of attention sources, a pair of "attnsource"
arguments must be specified in the calling sequence as follows (see
the example at the end of this description):

• The argument that identifies the lm'iest attention source in the
range must appear immediately before the argument that identi
fies the highest attention source in the range •

• The argument that identifies the highest attention source in
the range must be a negative. value and must appear in the
argument list immediately after the argwnent that identifies
the lowest attention source in the l:ange.

ATTENTION SOURCE IDENTIFICATION CODES:
identification codes are as follows:

Attention sources and their

0-31
32
33
34
35

Programmed function keys 0 through 31, respectively.
END key of the alphameric keyboard.
CANCEL key of the alphameric keyboard.
Light pen.
End-order-sequence order.

PROGRAMMING CONSIDERATION: The CANCEL key remains enabled as long as
its associated 2250 remains initialized. It can only be used for system
fUnctions (See "Using the Alphameric Keyboard CANCEL Key"). Reenabling
it by a call to this subroutine has no effect upon its previously
enabled status or use. However, the ability to specify its identiiica
tion code in calls to the ENATN subroutine is included to p€:rmit
specification of an uninterruptE;d ra.nge of attention sources.

78

,.

()

c::
EXAtilPLE: The example that follcws enables attention sources 3, 5
through 10, ana 15 for the attention level identified as LEVELl:

CALL ENATN(LEVEL1,3,5,-10,lS)

DSATN--Disable Attention Sources

The DSATN subroutine causes future attentions from the designated
attention sources to be disreq~rded for a particular attention level.
Disabled attentions are ignored until they are enabled again by a call
to the ENATN subroutine. However, any attention information from that
source that haC. been queued prior to the time the source was disabled
rerr.ains in t.he gueue until it is removed either by reenabling the source
or by a call to the RQATN subroutine.

The DSAT~ subroutine is the inverse of the ENATN subroutine. It can be
ca lIed even if the designated attention level is inact.i ve.

r--,
IGeneral Form I
t--~
ICALL DSl'lTN(attnlevel, attnsource [,attnsource •••]) I L __ J

attnlevel
is an integer variable having the same value as was returned as the
"attnlevel" argul11ent in the call to the CRATL subroutine that
created the attention level for which the designated attention
sources are to be disabled.

attnsource
is an integer constant or integer variable that identifies a single
attention source or one source in a range of sources to be disabled
tor the specified attention level. This argument is to be
specified in the same manner as described for the "attnsource"
argument in the discussion of the ENATN subroutine.

PROGRAr~MING CONSIDERATION: Attention source 33 (the CANCEL key) may be
specified in a call to the DSATN subroutine. However, the request to
disable this source will be ignored. The CANCEL key remains enabled as
long as its associated 2250 is initialized (see "Using the Alphameric
Keyboard CANCEL Key").

SLPAT--Set Light Pen Attentions

The SLPAT subroutine informs GSP whether or not to allow light pen
attentions on the images associated with a given graphic data set. This
subroutine thus allows the prograrr~:er to select those graphic data sets
for which meaningful light pen attentions could occur, so that informa
tion from accidental light pen attentions will not be queued.

If the SLP~T subroutine is not called for a graphic data set, light pen
attentions on that graphic data set are not accepted by GSP. Therefore,
this subroutine must be called at least once in the program if the
programroer wishes to process light pen attention information. The light
pen attention source is enabled for processing by the ENATN subroutine.

r--,
IGeneral Form I
~--~
ICALL SLPAT (gdsname, detect) I L __ J

communicating with the 2250 Operator 79

gdsnarne
is described in the section "Arguments Used
Subroutines."

by Many GSP

detect
is an integer constant or
describes the function to be
follows:

integer variable the value of which
performed by this subroutine, as

1 Permit light pen attentions on the designated graphic data
set.

2 Do not permit light pen attentions on the graphic data set.

RQATN--Request Attention Information

The RQATN subroutine enables the programmer to obtain attention informa
tion from an attention queue at any point in his program. By calling
this subroutine, the programmer can determine if an attention has
occurred and can identify its source, or can designate that execution of
his program be suspended until an attention from a specific source
occurs.

r--,
\General ForII' \
~--~
\CALL RQATN(attnlevel,codeloc,wait[,arrayname],attnsource \
I [,attnsource •••]) \ l __ J

attnlevel
is an integer variable having the same value as was returned as the
"attnlevel" argument in the call to the CRATL subroutine that
created the attention level for which attention information is
requested.

codeloc

wait

80

is an integer variable to which this subroutine will assign a value
that identifies the source of the attention iriformation being
returned. The possible values that can be assigned are as follows:

-1 Programmed function key 0 caused the attention.
o
1-31

No attention has occurred from the designated sources.
A programmed function key caused the attention. The value
assigned to this variable is the number of that key.

32
34
35

The END key of the alphameric keyboard caused the attention.
The light pen caused the attention.
An end-order-sequence order was encountered.

is an integer constant or integer variable that designates whether
or not execution of the user's program is to be suspended until an
attention occurs from any of the attention sources designated in
this CALL statement. 'rhis argument may be assigned one of the
following values:

1 Return the
tion source
information
immediately

first attention information queued for any
specified in the "attnsource" argument(s).

has been queued for any of these sources,
to the user's program.

atten
If no
return

2 Return the first attention information queued for any atten
tion sources specified in the "attnsource" argument(s). If no
information has been queued for any of these sources and the
attention level specified in this call is active, wait until

~'
"\..,,>

:.1('-"

"J'

c

arrayname

an attention occurs from one of the designated sources. This
value must not be specified if attention information is
requested from an inactive level. If it is, an argument error
return code is made available, this request for attention
information is ignored, and the next statement in the user's
program is processed.

is an array name identifying a ten-word array into which this
subroutine is to place additional information about light pen or
end-order-sequence attentions. This argument may also be used to
have an overlay code returned for a programmed function keyboard
attention. In this case, the overlay code is placed in the first
word of the array and all other words in the array are unused.
Therefore, the array need only be one word long. Table 5 lists the
light pen information placed in the array. Except for word 10,
this information also applies for end-order-sequence information.

attnsource
is an integer constant or integer variable that identifies one or
the first or last source of a range of attention sources for which
information is to be returned. This argument may be repeated as
many times as necessary. The manner in which attention sources are
specified by this argument is described in the discussion of the
ENATN subroutine.

CAUTION: To have character code and coordinate information queued for
attentions related to a specific attention level, the MLPEO subroutine
must have been previously called for that attention level.

PROGRAMMING CONSIDERATION: If attention information
dequeued when it is made available to the user, only
the first attention that occurred from a particular
accessed by calls to the RQATN subroutine that refer to
the "dequectln argument in the CRATL subroutine>.

is not to be
information from
source can be

that source (see

Table 5. Contents of Array That Provides Light Pen Attention Infor-
mation (Part 1 of 3)

r---------T--,
I Word I Contents I
~---------+--~
I 1 I· The integer value that identifies the graphic data set I
I I associated with the image detected by the light pen. I
I I I
I I Note: For a programmed function keyboard attention, an I
I I integer value that identifies the overlay being used will I
I I be placed (right-aligned) in this word and none of the I
I I other words in the array will be used. I
~---------+--~
I 2 I· The key aSSigned to the element associated with the I
I I image detected by the light pen. I
I I I
I I • A value of zero if the element associated with the image I
I I detected by the light pen has not been keyed or I
I I correlated. I L-________ ~ __ J

Communicating with the 2250 Operator 81

Table 5. Contents of Array That Provides Light Pen Attention Informa
tion (Part 2 of 3)

r---------T--,
I 3 I. If the light pen detect was on a character and the
I I element that generated the character was keyed, a number

I that designates the location of the character within the
I character string produced by the keyed element. For
I example: if ABC was produced by a keyed element and the
I light pen was pointed at C, this word would contain a
I value of three.
I
I
I
I
I
I
I

• If the light pen detect was not on a character and the
element that generated the detected image was keyed, the
number of storage locations that the first graphic order
for producing the detected image is from the beginning
of the element.

I • If the element that produced the image detected by the
I light pen is not keyed, the number of storage locations
I that the first graphic order for producing the detected I
I image is from the beginning of the graphic data set. I

~---------+-----------------------~------------------------------------~
I 4 I. The correlation value of the element associated with the I
I I image detected by the light pen. I
I I I
I I • A value of zero if the element associated with the image I
I I detected by the light pen has not been correlated. I
~---------+--~
I 5 I. The key of the sequence associated with the image I
I I detected by the light pen. I
I I I
I I • A value of zero if the image detected by the light pen I
I I is not associated with a sequence. I
~---------+---~
I 6 I. The number of storage locations that the graphic order I
I I for producing the detected image is from the beginning I
I I of the sequence. I
I I I
I I • A value of zero if word 5 is zero. I
r---------+--~
I 7 I • The correlation value of the sequence associated with I
I I the image detected by the light pen. I
I I I
I I • A value of zero if the sequence had not been correlated, I
I I or if the image detected by the light pen is not I
I I associated with a sequence. I
~---------+--~
I 8 and 9 I • The absolute coordinate values (x-coordinate in word 8
I I and y-coordinate in word 9) of the end point of a line
I I detected by the light pen, or the absolute coordinate of
I I the point or character detected by the light pen.
I I
I I • A value of zero if it had been specified that no
I I coordinates are to be returned for the type of image
I I that was detected by the light pen.
I I
I I
I I
I I
I I
I I
I I
I I

Note: The coordinates placed in words 8 and 9 will be in
the programmer coordinate system for the graphic data set
identified in word 1 of this array. These coordinates
will be real or integer as specified by the most recent
call to the SDATM subroutine for that graphic data set,
and will be scaled as designated by the most recent calls
to the SDATL and SGDSL subroutines. L _________ ~ ___ J

82

If'

'j

c

c

Table 5. contents of Array That Provides Light Pen Attention Informa-
tion (Part 3 Qf 3)

r---------T--,
I Word I Contents I

~---------+--~
I I Caution: The values of the coordinates in words 8 and 9 I
I I may differ slightly from the values originally supplied by I
I I the user for the specific end point or character detected I
I I by the light pen. This results from any rounding of I
I I coordinate values thiit may be necessary to scale these I
I I values to raster units, and. then reconverting the scaled I
I I raster units back to user coordinates when a light pen I
I I attention occurs. (Raster units are the standard measure- I
I I ment units used by the 2250 to position the 2250 beam.) I
r---------+--~
I 10 I • The EBCDIC code of the character at which the light pen I
I I was pointed. This code is left aligned with the I
I I remainder of the word filled with zeros. I
I I I
I I • A value of zero if it had been specified that no I
I I character code is to be returned, or if the light pen I
I I was not directed at a character. I
I I I
I I Note: Word 10 refers only to characters produced by the I
I I character generator feature of the 2250. It is not used I
I I for end-order-sequence attentions. I
t---------~--~

Notes:
1. To have character code and coordinate information queued for

attentions related to a specific attention level, the MLPEO
subroutine must have been previously called for that atten
tion level.

2. Integer values will be returned in words.l, 2, 3, 5, and 6.
All other words will contain either real or integer values as
previously set by the programmer. To access both real and
integer information, two array names -- one integer and one
real -- should be defined in EQUIVALENCE with each other.

3. If a value of two was specified as the ftgdslevel" argmnent in
the call to the INGDS subroutine for the graphic dat.a set
identified in word 1, only words 1, 3, 8, and 9 are
applicable. Word 3 will always contain an integer value
representing the logical buffer address of the image detected
by the light pen or of the end-order-sequence order that was
encountered. For additional information, see Appendix F. I l __ J

MLPEo--Modify Light Pen or Ena-Order-Sequence Attention Information

The MLPEO subroutine designates whether character code or coordinate
information, or both, is to be queued for light pen or end-order
sequence attentions for an attention level; and whether -::lisplay
regeneration is to be restarted after a light pen or end-order-sequence
attention has occurred for the specified attention level. The subrou
tine is used to designate this type of information for attentions
related to an attention level in the same manner as the SLPAT subroutine
is used to designate that light pen attentions are to be accepted for a
graphic data set.

If the ~1LPEO subroutine is not called for an attention level, the
display is restarted after a light. pen or an end-order-sequence
attention occurs, and no character code or x- and y-coordinate informa
tion is queued in the user's attention information array. Table 5 shows

Communicating with the 2250 Operator 83

the normal contents of the return array for light pen and end-order
sequence attention information.

r--,
IGeneral Form I
.--~
ICALL MLPEO(attnlevel,attntype[,info] [,restart]) I L ___ - __ J

attnlevel
is an integer varible having the same value as was returned as the
"attnlevel" a.rgument in the call to the CRATL subroutine for the
attention levei associated with this call.

attntype

info

is an integer constant or integer variable that designates whether
this call pertains to light pen or end-order-sequence order
attentions. It may have one of the following values:

1 for end-order-sequence attentions.
2 for light pen attentions.

If a value of one is specified, only values one and two can be
specified as the "info" argument.

is an integer constant or integer variable that designates the type
of information to be returned for either light pen or end-order
sequence attentions as designated by the "attntype" argument. It
may have one of the following values:

1 Do not return coordinate or character code information.

2 Return the coordinates of the end point of the element
detected by the pen, or where the 2250 beam was located when
the end-order-sequence order was encountered.

3 Return the character code information for a light pen atten
tion occurrence ("attntype" should be two).

4 Return both character code information (if the light pen was
pointed at character) and the coordinates of the character
detected by the light pen (nattntype" sh.ould be two).

If the "info" argument is not specified, it is assumed that neither
coordinate nor character code information is to be returned.

restart

84

is an integer constant or integer variable that designates whether
or not tne display is to be started after the return of light pen
or end-order-sequence attention information in response to a call
to the RQATN subroutine. This argument may have one of the
following values:

1 Designates that the display is to be restarted at the point of
interruption.

2 Designates that the display is not to De restarted at the
point of interruption. If this value is selected, the next
call to the EXEC subroutine causes the display to be
restarted.

If the "restart" argument is not specified in this call, the
display is restarted at the point of interruption. o

----- ~.-. -- - ---~----.-

c
MLITS--Modify Status of the Proqramrr.ed Function Indicator Lights

The MLITS subroutine defines which programmed fUnction indicator lights
are to be on and which are to be off at a given time. From the time a
2250 is initialized until specified otherwise by this subroutine, all
indicator lights are off. This is the standard GSP default status.

The programmer can alter the GSP default status for a 2250 at any time
by including the following in a call to the MLITS subroutine:

• The "devicename" argument.

• The "status" argument with a value other than one.

The new status selected as a result of this call now becomes the
currently applicable default status for the specified 2250.

The progran~er can override the currently applicable default status for
a particular attention level by including the following in a call to the
MLITS subroutine:

• The "attnlevel" argument.

• The "status" argument with a value other than one.

The keys designated by this call are lighted when the specified
attention level becomes active. If another call to the MLITS subroutine
is issued for this same attention level with a value of one as the
·status· argument, the currently applicable GSP default status for the
2250 associated with this level is invoked.

r--,
IGeneral Form I
~--~
ICALL MLITS({devicenamelattnlevel},status[,lights •••]) I L __ J

devicename
is an integer variable that identifies the 2250 for which a new
default status is to be set. The value of this variable must be
the same as was returned as the "devicename" argument in the call
to the INDEV subroutine that initialized the 2250. If this
argument is specified, the status indicated by this call applies to
all att.ention levels for the specified 2250 except for those levels
for which the MLITS subroutine is specifically called. Neither
this argument, nor the null variable in lieu of it, is to be
specified if the "attnlevel" argument is specified.

attnlevel
is an integer variable that identifies the attention level asso
ciated with this call. The value of this variable must be the same
as was returned as the "attnlevel" argument in the call to the
CRATL subroutine for this attention level. Neither this argument,
nor the null variable in lieu of it, is to be specified if the
"devicename" argument is specified.

status
is an integer constant or integer variable that specifies what is
to be done by this call. This argument may have one of the
following vi3.lues:

1 Use the currently applicable default status for
associated with the specified attention level.
value is specified, the "attnlevel" argument must
specified.

the 2250
When this
also be

Communicating with the 2250 Operator 85

2 Turn off all lights.

3 Turn on those lights associated with enabled keys.

4 Turn on all lights specified by the "lights" argument.

lights
is an integer constant or integer variable the value of which is a
number from 0 through 31 that identifies one of the programmed
function indicator lights to be turned on by this call. This value
must be positive except when it identifies the highest numbered
indicator light in a range of indicator lights to be turned on.
The "lights" argument may be repeated as many times as necessary to
turn on all desired indicator lights. However, it can only be
specified if a value of four is assigned as the "status" argument.

To designate a range of indicator lights to be turned on, a pair of
"lights" arguments must be specified in the calling sequence as
follows: (see the example at the end of this description):

• The argument that identifies the lowest numbered indicator
light in the range must appear immediately before the argument
that identifies the highest numbered indicator light in the
range.

• The argument that identifies the highest numbered indicator
light in the range must be a negative value and must appear in
the argument list immediately after the argument that identi
fies the lowest numbered indicator light in the range.

EXAMPLE: The example that follows turns on indicator lights 1, 7
through 21, and 30 associated with attention level IATL1.

CALL MLITS(IATL1,4,1,7,-21,30)

MPATL--Modify Position of an Attention Level

The MPATL
attention
Levels").
all other

subroutine is to be used by programs having more than one
level existing at a given time (see "Using Multiple Attention
It changes the position of an attention level with respect to

attention levels associated with the same 2250.

r--,
IGeneral Form I
~--~
I CALL MPATL(attnlevel, direction [, relattnlevell) I L __ J

attnlevel
is an integer variable that identifies the attention level that is
to have its position modified by this call. Its value must be the
same as was returned as the "attnlevel" argument in the call to the
CRATL subroutine for this attention level.

direction

86

is an integer constant or integer variable the value of which
defines the direction and number of levels that the attention level
specified by the Wattnlevel" argument is to be moved. A value of
zero causes this call to be ignored. One of the following values
may be specified:

a positive value Defines the number of levels that the specified
attention level is to be moved up the attention
level hierarchy relative to the attention level
designated by the "relattnlevel" argument.

c

a negative value Defines the number of levels that the specified
attention level is to be moved down the attention
level hierarchy relative to the attention level
designated by the "relattnlevel" argument.

relattnlevel
is an integer variable that identifies an attention level above or
below which the attention level identified by the "attnlevel"
argument is to be moved. The number of levels the attention level
identified by the "attnlevel" argument is to be placed above or
below this relative level is specified by the "direction" argument.

If the "relattnlevel" argument is omitted from this call, the
attention level specified by the "attnlevel" argument is moved up
or down the attention level hierarchy from its present position.

SALRM--Sound Audible Alarm

The SALRM subroutine causes the
designated 2250 to be sounded.
on 2250 performance.

single-stroke audible alarm on the
Sounding the audible alarm has no effect

'r--,
IGeneral Form I
~--~
ICALL SALRMCdevicename) I l __ J

devicename
is described in "Arguments Used by Many GSP Subroutines."

LIGHT PEN SUBROUTINES

This section describes those subroutines that facilitate two-way com
munication between the GSP program and the 2250 operat.or through use of
the light pen. The subroutines involve locating a position on the
screen at which the light pen is pOinted, and using the light pen to
cause the program to move a tracking symbol from one screen location to
another.

LOCATING THE LIGHT PEN

Normally, the light pen is only detectable when it is directed at an
image on the screen. However, through the Locate the Light Pen (LOCPN)
subroutine, GSP provides a means of locating any position on the 2250
screen at which the light pen is directed even if the light pen is not
directed at an image.

LOCPN--Locate the Position of the Light Pen

The LOCPN subroutine performs a scan of the 2250 screen to locate the
position of the light pen. Its use allows the program to identify' the
position of the light pen when the light pen is directed at a blank area
of the screen. The x- and y-coordinates of the located position are
returned to the calling program in terms of the programmer's coordinate
system. These values are always absolute.

The scan is accomplished by displaying characters on the screen
beginning at the location of the 2250 beam when the LOCPN subroutine is
called, proceeding left to right across each line of the screen until
the bottom right corner of the screen is reached. Once the scan has
reached the lower right corner of the screen, the characters are
displayed at the upper left corner of the screen and the scan continues.
The scan stops when a character is detected by the light pen.

Communicating with the 2250 Operator 87

r--,
IGeneral Form I
t--~
ICALL LOCPN(gdsname,xpos,ypos) I l __ J

gdsname
is described in "Arguments Used By Many GSP Subroutines."

xpos,ypos
are integer or real variables to which the LOCPN subroutine assigns
absolute values in the programmer's coordinate system that repre
sent the location on the screen at which the light pen was
detected. These values will be of the type (integer or real)
applicable for the specified graphic data set at the time the LOCPN
subroutine is executed. This type was previously set by the SDATM
subroutine.

PROGRAMMING CONSIDERATIONS: It may be desirable to request that the
2250 operator position the light pen before the scan begins. However,
for the light pen to be located, the pen must be activated after the
scan begins and must be left activated until the light pen attention
occurs.

EXAMPLE: The example that follows shows the use of the LOCPN subroutine
in conjunction with the Plot Points subroutine to display a point on the
screen at the position at which the light pen was pointed. The example
assumes that the 2250 operator has notified the program that the scan
for the light pen is to be begun.

Statement 60 calls the LOCPN subroutine to scan the screen for a light
pen detect and to place the x- and y-coordinates of the position where
the light pen is detected into locations LX and LY respectively.
Statement 70 creates an element for displaying a point on the screen at
the position indicated by the coordinates returned by the call to the
LOCPN subroutine in statement 60. Statement 80 executes the element
generated by statement 70, thus displaying the point on the screen.

60
70
80

CALL
CALL
CALL

LOCPN(IGDS1,LX,LY)
PPNT(IGDS1,LX,LY)
EXEC <IGDSl)

TRACKING THE MOVEMENT OF THE LIGHT PEN (2250 MODEL 3 ONLY)

Light pen tracking consists of displaying a tracking symbol that can be
moved by the 2250 operator by means of the light pen and of following
the path that the symbol is moved. It can only be used with the 2250
Model 3.

The tracking symbol can be moved by the 2250 operator by placing the
light pen on the symbol and moving the pen to a new screen position.
GSP causes the tracking symbol to move in the same path as the pen.

To accomplish light pen tracking,
subroutines:

• Begin Light Pen Tracking (BGTRK).

• End Light Pen Tracking (ENTRK).

GSP provides the

• Read the Current Location of the Tracking Symbol (RDTRK).

88

following

c

o

o

c

BGTRK--Beqin Liqht Pen Tracking

The BGTRK subroutine places the tracking symbol on the 2250 screen. It
is removed from the screen by a call to the ENTRK subroutine.

Only one tracking symbol can be placej on the scr<=;en at a given tlme.
If the BG'l'RK subroutine is called when the tracking symbol is already
being displayed, the displayed tracking symbol is repositioned at the
location specified by that new call.

r--,
IGeneral Form I
~--~
I CALI, BGTRK (gdsname, xcoor , ycoor) I l __ J

gdsname
is described in "AryufTl.ents Used by Many GSP Subroutines."

xcoor, y coor
are constants or variables the values of which are the x- and
y-coordinates of the location where the center of the tracking
symbol is to be placed on the screen. These values must be of
absolute form and must be given in terms of the programmer's
coordinate system. They must also be of real or integer type as
defined by the most recent call to the' SDATM subroutine for the
specified graphic data set. If these values identify a position
that is outside the screen boundaries, the tracking symbol is
positioned at the center of the screen and a scissoring return code
is made available.

PROGRAMMING CONSIDERATIONS: The °gdsnamen argument is used to identify
the 2250 on which the tracking symbol is to be displayed and the type of
data (real or integer) to be specified as the "xcoor" and "ycoor"
arguments. The tracking symbol is not affected by any other operation
performed on the graphic data set identified by the "gdsname" argument;
e.g., a call to the TMGDS SUbroutine for the specified graphic data set
will not remove the tracking symbol from the screen.

ENTRK--Enc Light Pen Tracking

The ENTRK subroutine removes the tracking symbol froll' the 2250 screen.

r--,
ICeneral Form I
~--~
ICALL ENTRK(gdsname) I l __ J

gdsnarne
is described in "Arguments Used by Many GSP Subroutines."

RDT~K--Read the Current Location of the Tracking Symbol

The RDTRK subroutine provides the x- and y-coordinates of the
of the tracking symbol at the time this subroutine is called.
called any time the tracking symbol is being displi3-yed.

location
It may be

r--,
IGeneral Form I
~--~
ICALL RDTRKCgdsname,xpos,ypos) I l __ J

Communicating with the 2250 Operator 89

gdsname
is described in "Arguments Used by Many GSP sub:r-outines."

xpos,ypos
are variables the values of which are assigned by the RDTRK
subroutine to identify the screen locaticn of the tracking symbol
at the time this call was iSSUEd. The values are returned in terrr,s
of the programmer's coordinate system and are always in absolute
forrr.. They are also of real or integer type as defined by the most
recent call to the SDATM subroutine for the specified graphic data
set.

EXAt-'lPLE: Figure 12 shows the use of the RDTRK subroutine in a program
that causes a line to be drawn along the path a tracking symbol is
moved. The 2250 operator must depress programmed function key 6 to o3tOP
the tracking operation. Note that a combination of the STEOS, RQATN,
and RESET subroutines is used to prevent interruption of the display
regeneration cycle before a desired display completely appear~3 on the
screen.

r--,
100 CALL BGTRK (IGDS1,200.0,200.0) I

170
180
190
200
210
220
230
240
250
260
270

(calls to other image generation subroutines)

CALL STEOS(IGDS1,NULL,EOSKEY)
CALL EXEC CIGDSl)
CALL RQATN(IATL1,ICODE,1,NULL,6)
IF(ICODE) 260,210,260
CALL RQATN(IATL1,ICODE,2,NULL,3S)
CALL RESET (IGDS1, NULL, EOSKEY)
CALL ~DTRK(IGDS1,X,Y)
CALL PLINE(IGDS1,X,Y)
GO TO 170
CALL RESET (IGDSl # NlJLL, FOSKEY)
CALL ENTRK (IGDS1)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
I

I I
I I
~--~

100 Places a tracking symbol on the screen at location 200.0,
200.0.

170 Places an end-order-sequence order in lGDSl and keys the
order.

180 Causes the end-order-sequence order and all other elements in
IGDS1 that were created since the last call to EXEC to be
tran~ferred to the 2250 buffer.

190 Checks if programmed function key 6 has been de[)ressed. If it
has been.1epressed, ICODE is set equal to si x. If it ha~> not
been depressed, leODE is set equal to zero.

200 If ICODE has a value of six (i.e., prograrr®ed fUnction key 6
had been depressed), control is passed to statement 260 to
conclude the tracking operation. Othen"ise, tIle tracking
operation continues. __ J

• Figu.re 12. Example of Use of Light Pen Tracking SUbroutir"es
(?art 1 of 2)

90

:f '--,

c

r--,
210 Sto~s program execution and waits for an enr'i-order-sequence

attention. This provides time for all elements in the buffer
to be regenerated at least once, thus enabling the entire
display to be produced before display regeneration is stopped.

220 Removes the end-order-sequence order identified by EOSKEY from
the buffer.

230 Stops display regeneration, identifies the current location of
the tracking symbol, places the coordinates of that location
in X and Y, and restarts display regeneration.

240 Creates the element for drawing a line from the position of
the 2250 beam after the last call to an image generation
subroutine to the coordinates supplied by the call to the
RDTRK subroutine at statement 230.

250 Branches back to statement 170 to place the STEOS order in
IGDS1 immediately after the element created by the call to
PLINE in statement 240 and to transfer to the buffer all
elements in IGDS1 that were created since the last call to the
EXEC subroutine.

260 Removes the end-order-sequence order from graphic data set
IGDS1.

270 Removes the tracking symbol from the 2250 screen. l ___________________ ~ __ J

• Figure 12. Example of Use of Light Pen Tracking Subroutines
(Part 2 of 2)

Comffiunicating with the 2250 Operator 91

CHECKING PROGRAM STATUS AFTER A CALL TO A GSP SUBROUTINE

The programmer can check the status of his program after a call to a
particular subroutine by requesting that certain information be made
available about the execution of that subroutine. This status informa
tion may be the return codes p:r·oduced by the subroutine {see nThe Return
Codes" below}, the location of the 2250 beam, or the option definition
conditions in effect {see "Option Definition Subroutines"}.

Four functions are available for requesting this status information.
They are t.he Test Return Coc.e {ITRC} , the Test Integer Beam Position
{ITBP}, the Test Real Beam Position {RTBP}, and the Test Status {ITST}
fUnctions. These functions are described in detail in the section "The
status Information Functions n•

To obtain the desired information about a subroutine, one or more of
these functions must ~e included immediately after the call to that
subroutine. Each fUnction may be used in conjunction with an IF
statement or an assignment statement.

THE RETURN CODES

Return codes al:e integer values set during the execution of each
sub:routine that tell whether or not an error has been encountered during
that execution, and that define the type of error {if any} that
occurred. There are six possible return codes. One or several {but not
necessarily all} of them may be made available by each subroutine except
the INGSP and TMGSP subroutines. Except for return codes 0 and 5,
additional information providing the reason for the code is also made
available. All return codes ana additional information about them may
be obtained by means of the ITRC function. All return codes are listed
in Table 6. The return codes produced by each subroutine are listed in
Table 7.

THE STATUS INFORMATION FUNCTIONS

The paragraphs that follow describe the functions available for request
ing status information about a subroutine.

ITRC--Test Return Code

The ITRC function assumes the value of a return code produced by the
subroutine immediately preceding it. Since more than one return code
can be associated witb a subroutine, the programmer specifies the return
code he is testing for. The ITRC function assumes either the value of
the highest code produced that is greater than or equal to the code
being testeo, or a value of zero if no code greater than or equal to the
code being tested exists.

If a value other than zero or five is assumed, additional information
concerning the reason for the return code is wade available. This
additional information can be obtained by again executing the ITRC
function, this time specifying a value of nine as the "code" argument.
In this case, the ITRC function will assume the value of the additional
information as listed in Table 6.

92

c

("

{.

>.".

/

Table 6. Description of All GSP Return Codes
r------T------------------------------T--------------------------------,
I Return, ,Additional I
I Code I Meaning , Information ,
~------+------------------------------+--------------------------------~
, 0 'The subroutine completed its I None I
I 'execution successfully. , I
I , I I
~------+------------------------------+--------------------------------~
, 1 JA scissoring option has been I- The value assigned as the
I invoked. I "count" argument in the call

I to the image generation sub
I routine that created the data
I that was last scissored.
I When the scissored data is
I associated with a call to the
I STPOS or MVPOS subroutine
I (the calling sequences of
, which do not contain the
, "count" argument), a value of
, of one is returned. ,
I- Zero, if no data was producea
I by the calli i.e., the call I
I was ignored. I

~------+------------------------------+--------------------------------~
, 2 IAn error occurred during the ,Same as for return code 1, ,
I Iscaling of input data. lexcept that it applies to I
I , Iscaled data rather than to I
I I I scissored data. I
, , , I
~-----+------------------------------+--------------------------------~
I 3 IAn attempt has been made to 1 The update function cannot be I
, 'exceed a program-defined or performed because the update I
, 'system-defined storage area element is larger than the,
, ,during the subroutine execu- originally created element it ,
, ,tion. The call essentially is replacing (see "The Update ,
I ,has been ignored. F'acili ty") • I
I , ,
, I 2 A 128-byte graphic data set ,
, I has been exceeded. I , , ,
1 , 3 Insufficient buffer storage,
I I is available for the data. ,
, , 1
, , 4 Insufficient main storage is ,
, , available for the data. I
I I I
~------+------------------------------+--------------------------------~
1 4 IThe arguments in the call to 10 The error cannot be attribu-I
I Ithis subroutine have been 1 ted to a single argument. ,
, 'specified incorrectly, or 1 1
I Ithere is a logical error in 11-n The integer number of the I
1 'subroutine usage (i.e •• an , first argument in the call- ,
1 lattempt was made to end a I ing sequence that caused I
, Isequence not yet begun). The 1 the error (from left to I
I Icall essentially has been I right beginning at one). I
I I ignored. I I
, I I ,
~-----+------------------------------+--------------------------------~
I 5 IAn input/output error was INone I
, 'encountered during execution I ,
I lof the subroutine. The call I I
, I essentially has been ignored. , I L ______ ~ ______________________________ ~ ________________________________ J

Checking Program Status After a Call to a GSP Subroutine 93

Table 7. Return Codes for Each GSP Subroutine

r-------------------------T------------T-------------------------------,
I I I Return Codes I
I Subroutine Group I Subroutine ~-------T-------T-------T-------~
I I I 1 I 2 I 3 I 5 I
~-------------------------+------------+-------+-------+-------+-------~
I Initiation I INGSP I I I I I
I I INDEV I I I X I X I
I I INGDS I I I X I I
I I SPEC I I I I I
.-------------------------+------------+-------+-------+-------+-------~
I Termination I TMGSP I I I I I
I I TMDEV I I I I X I
I I TMGOS I I I I X I
.-------------------------+------------+-------+-------+-------+-------~
I Option Definition I SDATM I I I I I
I I SGRAM I I I I I
I I SCHAM I I I I I
I I SGDSL I I I I I
I I SDATL I I I I I
I I SSCIS I I I I I
.-------------------------+------------+-------+-------+-------+-------~
I Image Generation I MVPOS I X I X I X I X I
I I STPOS I X I X I X I X I
I I PLINE I X I X I X I X I
I I PPNT I X I X I X I X I
I I PSGMT I X I X I X I X I
I I PTEXT I X I X I X I X I
I I STEOS I I I X I X I
r-------------------------+------------+-------+-------+-------+-------~
I Identification I BGSEQ I I I X I X I
I I ENSEQ I I I X I X I
I I BGSUB I I I X I X I
I I ENSUB I I I X I X I
I I LKSUB I I I X I X I
~-------------------------+------------+-------+-------+-------+-------~
I Image Control I EXEC I I I I X I
I I INCL I I I I X I
I I OMIT I I I I X I
I I ORGOS I I I I X I
I I R~ft I I I I ~ I
I I IDPOS I I X I I I
.-------------------------+------------+-------+-------+-------+-------~
I Keyboard Input & Buffer I ICURS I I I I X I
I Data Analysis I RCURS I I I I X I
I I GSPRD I I I I X I
~-------------------------+------------+-------+-------+-------+-------~
I Attention Related I CRATL I I I X I X I
I I ENATL I I I I X I
I I ENATN I I I I X I
I I DSATN I I I I X I
I I SLPAT I I I I X I
I I RQATN I I I I I
I I MLITS I I I I X I
I I MLPEO I I I I I
I I MPATL I I I I X I
I I SALRM I I I I X I
.-------------------------+------------+-------+-------+------~+-------~
I Light Pen I LOCPN I I X I I X I
I I BGTRK I X I X I I X I
I I ENTRK I I I I X I
I I RDTRK I I X I I X I
.-------------------------t------------t-------+-------+-------+-------~
I Stroke Generator I OFSTR I I I I X I
I I PLSTR I X I X I X I X I
~-------------------------+------------+-------+-------+-------+-------~
I Miscellaneous I CNVRT I I X I I I
I I ORGEN I I I X I X I
I I FSMOD I I I I I • _________________________ L ____________ i _______ i _______ i _______ i _______ ~

I NOTE: A code of zero or four may be returned by any of the subrou- I
I tines except INGSP and TMGSP, which do not make return codes I
I available. I c
L __ J.

94

(~\

c

r--,
IGeneral Form I
~--~
IITRC(gspname,code) I l __ J

gspname

code

is an integer variable the value of which must be the same as was
returned as the "gspname" argwilent in the call to the INGSP
sub:r·outine.

is an int.eger constant or integer. variable the value of which
either designates the return code being tested, or denotes a
request. for additional information about the last return code
assumed by the IT:8.C function. This argument_ may have one of tJ1e
following values:

1 For retu:r-n code 1
2 For return code 2
3 For L-eturn code 3
4 For return code 4
5 For return code 5
9 For additional information, H a code other than zero or five

was last returned.

If a value other than 1, 2, 3, 4, 5, or 9 is specified as the "code"
argument, the ITRC function assumes a value of -1.

CAUTION: Once a return code is tested for, the record of its existence
is destroyed. That is, the ITRC function will not return a specific
return co~e value about a particular call more than once.

ITBP--Test Integer Bearr. Position

The ITBP function returns coordinate information about the location of
the 2250 bean: if integer output is produced by the image generation
subroutine being tested. The inforuation returned may be either (1) the
x- or y-coordinate where the 2250 beam was posi t.ioned after execution of
the most recent image generation subroutine associated with the speci
fied graphic data set, or (2) the x- or y-coordinate where the
programmer intended the beam to be at the time this function is
executed. The actual beam position and the intended beam position are
the same except when scissoring has occurred. The coordinates returned
are in terms of the programmer's coordinate system.

If the coordinate to be returned is of real type, the maximum negative
value is returned. In this case, the correct coordinate can be obtained
by using the RTBP fUnction.

r--,
IGeneral Form I
~--~
IITBP(gdsname,info) I l_~ __ J

gdsname

info

is described in "Arguments Used by Many GSP Subroutines."

is an integer constant the value of which defines the coordinate to
be returned as follows:

1 The x-coordinate where the beam is supposed to be at this
time.

Checking Program Status After a Call to a GSP Subroutine 95

2 The x-coordinate wh2re the beam actually is at this time.
3 The y-coordinate where the beam is supposed to be at t.his

time.
4 The y-coordinate where the beam actually is at this time.

RTBP--Test Real Bearr, Position

The RTBP function is the same as the ITBP function except that it only
returns coordinates if real output dat.a is produced by the image
generation subroutine being tested. If the coordinate to be returned is
of integer type, the maximum negative value is returned. In this case,
the correct coordinate can be obtained by using the ITBP function.

r--,
IGeneral Form I
~--~
I RTBP (gdsname, info) I l __ J

gdsname,info
are described in the detailed description of the ITBP function.

ITST--Test Status

The ITST function assumes a value corresponding to the type of data
currently in effect for a particular option definition subroutine for
the associated graphic data set. 'l'he value assumed depends on the type
of data defined by the most recent execution of the specified option
definition subroutine, as follows:

Subroutine
SDATr.tJ

SGRAM

SCHAM

Assumed Value
1
2
3
4
1
2
3
1

2

3

4

Meaning
Input data is to be real, absolute.
Input data is to be real, incremental.
Input data is to be integer, absolute.
Input data is to be integer, incremental.
Output data is in optimized form.
output data is in absolute form.
Output data is in increnlental form.
Basic-size, protected characters were
requested.
LaI-ge-size, protected characters were
requested.
Basio-size, unprotected characters were
requested.
Large-size, unprotected characters were
requp.sted.

r--,
IGeneral Form I
~--i
I ITST(gdsname,optionsub) I l __ J

gdsname
is described in "Arguments Used by Many GSP Subroutines."

optionsub

96

is an integer constant that designates the option definition
subroutine being tested, as follows:

1 SDlI.TN
2 SDATM
3 SGRAN
4 SCHAlYl

subroutine
subroutine
subroutine
subroutine

(x-coordinate)
<y-coordinate)

c

c:
APPENDIX A: SAMPLE PROGRAM

This appendix describes sample coding techniq'.les using GSP subroutines
and fUnctions in conjunction with the FORTRAN IV language. The program
illustrates coding to generate displays on the IBM 2250 Display Unit,
l'Jodels 1 dnd 3.

ThE' coding is contained in Figure 13. Displays produced by it are shown
in Figure 14. comments in the coding explain the functions of various
portions of the program.

The program is intended for use with a 2250 Model 1
buffer, light pen, programmed function keyboard, and
features; or with a 2250 IYJodel 3 equipped with the
keyboard feature.

equipped with the
character generator
programmed function

The GSPSAMP card deck can be punched fIom SYS1.SAMPLIB. It consists
of:

1. The following job
cat.aloged I-,rocedure
program when the
systew:

//GSPSAMY
//SAMPL
/ / FORT. SYSIN

JOB
EXEC
DD

control language statements that will call a
to compile, linkage edit, and execute the
FOR'I'RAN (G) compiler is used in the operating

1234567,GSPSAMP,MSGLEVEL=1
FORT GCLG , PArut,. FORT= (NODECK, lVlAP, LOAD)

*
If the FORTRAN (E) or (E) compiler is to be used, the EXEC
statement listed above must be changed accordingly.

2. Sample program input symbolic deck.

3. The following cards after the FORTRAN Language END card:

/*
//LKED.SYSIN

INCLUDE
/*

DD
SYSLIB(IHCGSP03)

//GO.SYSABEND DD SYSOUT=A
//GO.FT10FOOl DD UNIT=(2250-1}
//GO.SYSIN DD *
X
NUM1NUM2NUM3NUM4NUIYlSNUIv16NUM7NUl18
/*

If the FORTRAN (E) compiler is to be used, the following card must
be added after the GO.SYSABEND DD statement listed above:

//GO.FT05F001 DD UNIT=AFF=FT01FOOl

Once the GSPSAMP card deck has been punched from SYS1.SAMPLIB, the
following steps are necessary to process the program:

1. Insure that the graphic device is on.

2. If the FORTRAN (E) or (H) compiler is being used, modify the card
deck accordingly as described in the preceding paragraph.

3. Place the sample program deck in the card reader.

Appendix A: Sample Program 97

4. Mount the operating system.

5. Set the load address switches and press the Initial Program Load
key to load the system.

6. Perform compile-link edit-go procedure.

7. Follow instructions which appear with sample program in Figure 13.

98

.6'
'"0
([)
::s
0.
1-'
~

::t>

CJl
!lJ

~
I-'
([)

"0
11 o

i.Q
11

~
\0
\0

~ ',- /

.~ ~

FORTRAN Coding Form

Figure 13. GSP Sample Program (Sheet 1 of 7)

I-'
o
o

• Figure 13. GSP Sample Program (Sheet 2 of 7)

""'. . (.. n ,) .) './

~
C1l

8.
><
~

en
PJ
8
'0
I-'
C1l

"t:I
11 o

l.Q

~
!3

~
o
~

~ ~ ~

Figure 13. GSP Sample Program (Sheet 3 of 7)

I-'
o
N

• Figure 13.

c

GSP Sample Program (Sheet 4 of 7)

pt..
I~.) ~ ,-_/

i
~
0.
~.

><
~

CIl
~

,§
.....
(1)

ftJ
ti

$
~
a

t->
o
w

~ ~ ~
" "

FORmAN Coding Form

Figure 13. GSP Sample Program (Sheet 5 of 7)

~
o
+:'

Figure 13.

c

GSP Sample Program (Sheet 6 of 7)

() n
~, /

~
'0
'0
(l)
::l
OJ
1-'.
:><:

~

Cfl
P!

~
~
(l)

"CI
H o

\.Q

11
P!
t:l

p
o
U'1

~

IBM

Figure 13.

~ ~

FORTRAN Coding Form

GSP Sample Program (Sheet 7 of 7)

x X ~UM2

x x x NUM3 X NUMI

x x x X NUM4 x X NUMS

x x x NUM5 X NUM7

x X NUM 6

A. Display Produced After Call to EXEC
for IGD51.

B. Display Produced After Light Pen Attention
on Center X.

X NUM2

X NUM3 o NUMI

X NUM4 X X NUM8

X NUMS X NUM 7

X NUM6

c. Display Produced After Light Pen Attention
on X labeled NUMI.

Figure 14. Displays Produced by GSP Sample Program

106

rC'
'~,

c

APPENDIX B: USING GSP IN AN ;'\SSEMBLER LANGTJAGE PROGRAM

All GSP capabilities available to the FORTRAN programmer are also
available to the Assembler Language programmer.

GSP does not set or alter the interruption mask established by the
Specify Program Interruption Exit (SPIE) macro instruction. setting
this mask is the responsibility of the Assembler Language programmer.

LINKAGES

All linkages in GSP are as described for a simple program structure in
the publication IBM System/360 Operating System: Supervisor and Data
IVlanagement Services, Form C28-6646.

CALLING A GSP SUBROUTINE

A GSP subroutine is called from an Assembler Language program by means
of the CALL maCIO instruction formatted as described in the publication
IBM System/360 Operatino System: Supervisor and Data Management Ivlacro
Instructions, Form C28-6647. The parameter list for each CALL macro
instruction must contain the addresses of the' constants or variables
being passed to the called subroutine; if the values of constants or
variables are placed in a parameter list, those values are considered to
be addresses.

FUNCTIONS

The value returned by the functions ITRC, ITBP, RTBP, and ITST will be
in general register 0 for fixed-point values, or in floating-point
register 0 for floating-point values, rather than in a parameter list.
For a complete discussion of calling FORTRAN functions, see the
Programmer's Guide for the FORTRAN compiler being used.

LINKAGE EDITOR REQUIREMENTS

For calls to GSP subroutines to be resolved, the following must be
specified as input to the linkage editor:

• Automatic library call mechanism must be used and must refer (via
the SYSLIB DD statement) to the FORTRAN library (SYS1.FORTLIB) •

• INCLUDE SYSLIB(IHCGSP03) statement must be specified.

Additional job control requirements for processing an Assembler Language
program are contained in the programmer's guide for the assembler being
used.

Appendix B: Using GSP in an Assembler Language Program 107

APPENDIX C: PRODUCING CHARACTERS WITHOUT A CHARACTER GENERATOR

The character generator of the 2250 produces a standard set of
characters of two sizes (basic and large) and of one orientation
(vertical). If the programmer wishes to display special characters, or
characters of a different size and orientation, he must plot these
characters by Il'eans of connecting lines, or strokes. GSP provides for
defining as a special character any design that can be constructed as
strokes joining points on an 128-by-128 matrix.

The strokes that define characters (hereafter referred to as graphic
symbols) in this manner are placed in a stroke table. Once placed in a
stroke table, a graphic symbol may be plotted in any position, size, and
orientation by calling the Plot Strokes (PLSTR) subroutine. Once
created, stroke tables can be modified by the,programmer by means of the
Define Strokes (DFSTR) subroutine.

The System Stroke Table

GSP provides a stroke table, called the system stroke table, which may
be used by the programmer. The system stroke table (named GSPOl)
contains the strokes which produce the standard set of extended
binary-coded-decimal interchange code (EBCDIC) graphic symbols and the
address of each set of strokes in th~ table.

The location of the address within the table of any specific set of
strokes is deterIl'~ned by the addition of the decimal integer value of
the EBCDIC representation of the graphic symbol to the address of the
table. This fUnction is performed by GSP.

The programmer must use the integer value of the EBCDIC representation
of the graphic symbol in calls to the PLSTR and DFSTR subroutines t;o
identify the location of the symbols to be affected by the call. For
example, the integer value of A is 193~ therefore, to locate the address
of the strokes to generate A, 193 would be used in the call.

The section of the system stroke table containing the addresses of the
strokes consists of 256 locations, one for each possible EBCDIC
representation. A value of zero is assigned to those locations that d.o
not correspond to the integer value of a valid EBCDIC graphic symbol.
Therefore, space for strokes is only allocated for those patterns which
represent graphic symbols. Subsequently, if special graphic symbols are
desired, the programmer should either (1) modify the system stroke table
by associating the special symbol with EBCDIC representations that would
normally produce another type of EBCDIC graphic symbol, or (2) create a
new stroke table.

The system stroke table allocates space for sixteen strokes (including
the positioning stroke) for each graphic symbol. EBCDIC representations
and their associated graphic symbols are described in the publication
IBM System/360 principles of Operation, Form A22-6821.

Creating a stroke table, and the DFSTR and PLSTR subroutines are
described in detail in the paragraphs that follow.

Creating a Stroke Table

Whenever the system stroke table does not contain symbols necessary for
a particular application, the GSP programmer can create his own stroke

108

o

..

c

table. This stroke table must be placed in the link library or the job
library. It must not be reusable or reenterable.

The stroke table may contain addresses and
associated constants for defining up to 256
symbols. Each address is the address of
the constants that define the strokes for a
particular symbol. The location of an
address in the table of addresses must be
used in calls to the PLSTR and DFSTR sub
routines to identify the location of the
symbols to be affected by the call.

r------------------------,
I 2 WORDS RESERVED I
~------------------------~
I ADDRESSES OF STROKE I
I I
I DEFINING CONSTANTS I
I I
I (0 through 255) I
~------------------------~
I STROKE DEFINING I

The strokE:: table must be named GSPnn, where
"nn" is a number from 02 to 99. Words 1
and 2 of the stroke table must be reserved;
the table of addresses and constants must
begin in word 3 (see Figure 15).

I I
I CONSTANTS I l ________________________ J

Figure 15. Composition of
Stroke Table

The starting position for a symbol and the strokes necessary to produce
that symbol are defined by a series of halfwords formed by Define
Constant (DC) instructions. The first halfword defined for each symbol
must position the 2250 beam at the starting location within the
128-by-128 matrix of the first stroke for the symbol. Each subsequent
halfword defines one of the strokes that make up the symbol. Each
halfword must contain the following (also see Figure 16):

Bits
o

1-7

8

9-15

Contents
A zero to designate that the 2250 beam is to be in the unblanked
mode. A one to designate that the 2250 beam is to be in the
blanked mode. A one must be specified in the halfword that
defines the starting position of the strokes.

An integer value from 0 through 127 that indicates the x
coordinate in an 128-by-128 matrix to which the beam is to be
moved.

A zero to indicate that additional strokes are necessary to
complete this symbol. A one to indicate that this is the last
stroke necessary to complete this symbol.

An integer value from 0 through 127 that indicates the y
coordinate in a 128-by-128 matrix to which the beam is to be
moved.

CAUTION: When creating a stroke table, the programmer should allocate
adequate space for future modification of the table. Also, any
increment in the matrix for defining the graphic symbol that is less
than one raster unit {0.0117 inch} from the preceding increment is
ignored.

EXAMPLE: A series of halfwords in a stroke table for producing the
letter "V" may be specified as follows:

CODEV DC X'9060300050EO'

Where:
9060 positions the 2250 beam (in
location within the matrix of
symbol.

blanked mode) to the starting
the first stroke making up the

3000 and 50EO define the two strokes making up the V.

Appendix C: Producing Characters Without a Character Generator 109

r-----------------T----------------T-----------------T-----------------,
I 0 unblanked I x-coordinate 10 additional I y-coordinate I
I 1 -- blanked I beam position I strokes are I beam position I
1 I I required I I
I I 11 last stroke I I L _________________ ~ ________________ i _________________ i _________________ J

Bit 0 Bits 1~7 Bit 8 Bits 9-15

Figure 16. contents of Stroke Defining Halfwords

DFSTR--Define Strokes

The DFSTR subroutine allows the programnter to modify the symbols
previously defined by a stroke table. The stroke table modified by this
subroutine may be the system stroke table (identified as number 01) or
any other stroke table. The control information about the strokes
making up the new symbols to be added by this subroutine must have been
previously placed in, a main storage array.

When this subroutine is called, a copy of the stroke table previously
placed in a system library is brought into main storage. All modifica
tions and additions are made to that main storage copy. The copy in the
system library remains unchanged.

r--,
IGeneral Form I
~--~
ICALL DFSTR(gdsname,table,strokes,symbol,strokecount) J l __ J

gdsname

table

is described in "Arguments Used by Many GSP Subroutines."

is an integer constant or integer variable that defines the stroke
table to be modified. A value of one designates the system stroke
table.

strokes
is a variable or array name that identifies the entry in a main
storage array that defines the strokes necessary to generate the
desired syrr~bol. A pair of words must be included in the array for
each stroke. The contents of each word is as follows:

Word 1

Is a positive or negat,ive integer value from 1 through 128 that
designates the x-coordinate in a 128-by-128 matrix to which the
beam is to be moved. If this value is positive, the beam is
moved in the unblanked mode. If this value is negative, the
beam is moved in the blanked mode.

Word 2

Is a positive integer value from 1 through 128 that designates
the y-coordinate in a 128-by-128 matrix to which the beam is 'to
be moved. The beam is moved in the blanked or unblanked mode as
designated by the sign (positive or negative) of the value in
word 1.

symbol

110

is an integer constant or integer variable from 0 through 255 that
defines the EBCDIC representation of the graphic symbol to be
modified in the stroke table. Integer equivalents of EBCDIC

(
'0,

(,I

~,,//

(

graphic symbols are described in the publication IBM System/360
principles of Operation, Form A22-6821.

strokecount
is an integer constant or integer variable the value of which
specifies the number of strokes that are used to make up the symbol
added to the stroke table by this call.

CAUTION: GSP assumes that there is adequate space in the stroke table
to make the requested modifications. If there is not enough space in
the stroke table for a specific modification, the symbol immediately
following the modified symbol may be altered or overlaid. The system
stroke table allocates space for sixteen strokes (including the posi
tioning stroke) for each EBCDIC graphic symbol.

Any increment in the matrix for defining the graphic symbol that is less
than one raster unit (0.011.7 inch) from the preceding increment is
ignored.

PROGRAM~llNG CONSIDERATIONS: If the configuration of any symbols in a
stroke table is modified by this subroutine, the next call to the PLSTR
subroutine for that EBCDIC representation produces the element necessary
for displaying the new symbol. The previous symbol is lost until it is
redefined by another call to the DFSTR subroutine or until a new copy of
the stroke table is brought into main storage. Once brought into main
storage, a copy of a stroke table remains there until the TMGSP
subroutine is called.

PLSTR--Plot Strokes

The PLSTR subroutine creates the element necessary for displaying
graphic symbols in any position, size, and orientation desired by the
programmer. The strokes necessary to produce these symbols must have
been previously placed in a stroke table.

The PLSTR subroutine may also be used to update an element produced by a
previous call to the PLSTR subroutine. This facility is described in
detail in a previous section entitled, "The Update Facility."

r--,
IGeneral Form I
.--~
ICALL PLSTR(gdsname,table,text,count,height[,width] [,spacing] I
I [,orientation] [,corrval] [,keyJ [,gencodeJ I
I £,xcoor,ycoor]) I l __ J

gdsname,corrval,key,gencode
are described in "Arguments Used by Many GSP Subroutines. n

table

text

is an integer constant or integer variable that defines the stroke
table containing the symbols to be displayed. A value of one
designates the system stroke table.

is either (1) an integer constant or integer variable with a value
from 0 through 255 that identifies the location of an address of a
word containing the symbol(s) to be plotted by this call or (2) an
array name that designates an array containing integer values from
o through 255 that identify the location of the addresses of
several words containing symbols to be plotted by this call. In
either case, there may be one symbol (right justified) or four
symbols in each word.

Appendix C: Producing Characters Without a Character Generator 111

count
is an integer constant or integer variable that specifies the
number of symbols in the text string to be plotted. A positive
sign indicates there are four EBCDIC symbols per word; a negative
sign indicates there is one EBCDIC symbol (right justified) per
word.

height

width

is a real constant or real variable that specifies the height (in
inches) of the matrix in which the symbol is to be plotted. The
minimum value that can be specified is 0.125 inches. No more than
three digits may appear to the right of the decimal.

is a real constant or real variable that specifies the width (in
inches) of the matrix in which the symbol is to be plotted. The
minimum value that can be specified is 0.125 inches. No more than
three digits may appear to the right of the decimal. If this
argument is not specified, the width is assumed to be two-thirds of
the value specified in the "height- argument.

spacing
is a real constant or real variable that specifies the center-to
center spacing between the symbols plotted. No more than three
digits may appear to the right of the decimal. Spacing may be
greater or less than the value specified as the "width" argument.
If this argument is not specified, spacing is assumed to be 1 1/3
times the value specified in the -height" argument.

orientation
is the name of a real, single-precision array consisting of four
elements that specify the orientation of the s~obols to be
displayed. Elements one and two contain the values of the sine and
cosine respectively of the angle of rotation of the symbol from the
positive x-axis. Elements three and four contain the values of the
sine and cosine respectively of the angle of rotation of the entire
text string from the positive x-axis. If this argument is not
specified, the symbol and text string will be plotted with the
angle of rotation of both of them at zero degrees.

xcoor,ycoor
are constants or variables representing the programmer's x- and
y-coordinates on the screen where the center of the first symbol
plotted by this call is to be displayed when the element produced
by this call is executed. Both arguments must be specified as a
pair. If they are not specified, the first symbol is displayed
wherever the 2250 beam is positioned at the time this subroutine is
called. If these arguments are specified, the coordinates must be
of the type and form defined by the most recent call to the SDATM
subroutine for the specified graphic data set, or by default. The
coordinates are appropriately scaled as defined by the most recent
call to the SDATL SUbroutine, or by default.

CAUTION: Unlike text elements, the 2250 beam is moved when a PLSTR
element in omit status is executed. As usual, the image associated with
the element is not displayed as long as the element is in omit status.

PROGRAMMING CONSIDERATIONS: Scissoring options set by the SSCIS subrou
tine apply to strokes in the same manner as they apply to images
reSUlting from the execution of the image generation subroutines.

112

AFPENDIX D: CONVERTING COORDINATES

Coordinates may be converted from the values specified by the programmer
to their corresponding values used by the 2250 to position the 2250
beam, and vice versa. This conversion may be accomplished by means cf
the Convert Coordinates (CNVRT) sub:r::outine described in the paragraphs
that follow.

CNVRT--Convert Coordinates

The CNVRT subroutine
programmer's coordinate
and vice versa. The
called raster units.

converts a specified coordinate value in the
system t.o a coordinate value used by the 2250,
device coordinates recognized by the 2250 are

r--,
IGeneral Form I
~---~
ICALL CNVRT(gdsname,convert[,xinput] [,yinput] [,xoutput] [,yout put]) I l __ J

gdsname
is described in "Arguments Used by Many GSP Subroutines. n

convert
is an integer constant or integer variable the value of -which
defines the type o~ conversion desired, as follows:

1 Convert integer coordinates supplied in raster units to their
equivalent scaled programmer coordinates of the type (integer
or real) currently applicable for the specified graphic data
set as defined by the SDATM subroutine.

2 Convert coordinates specified in terms of the programmer's
coordinate system into their equivalent integer raster unit
values.

xinput,yinput
are constants or variables the values of which are the coordinates
to be converted by this call.

xoutput,youtput
are variables to which the CNVRT subroutin~ will return the
converted values.

Appendix D: Converting Coordinates 113

APPENDIX E: DIP.ECT ORDER GENERATION

By using the Generate Graphic Orders (ORGEN) subroutine, graphic orders
valid for the IBM 2250 and their related data can be moved into a
graphic data set from a main storage array without calling the image
generation subroutines. The logic of the moved orders is not checked.

The graphic orders, their functions, and their hexadecimal equivalents
are described in the publication IBM System/360 Operating System:
Graphic programming Services for IBM 2250 Display Unit, Form C27-6909.

ORGEN--Generate Graphic Orders

The ORGEN subroutine
graphic data set from a
use of image generation
subroutine.

moves graphic orders and related data into a
main storage array. The rules that apply to the
subroutines also apply to the use of this

r---,
IGeneral Form I
~--~
ICALL ORGEN (gdsname,arrayname, count [,keylist] [,corrval] [,key] I
I [, gencode]) I L __ J

gdsname,corrval,key,gencode
are described in "Arguments Used by Many GSP Subroutines."

arrayname

count

is a variable or an array name that identifies an array cont.aining
the graphic orders and data to be added to the designated graphic
data set. These orders must be in the format defined for the 2250,
and must be as if they were written at buffer address O. (These
orders will be relocated as necessary by the ORGEN subroutine.)
Any addresses which refer to an element outside of the orders
contained in this array must be designated as X'FFFF'.

is an integer constant or integer variable that defines the number
of bytes of graphic orders that are in the array identified by the
"arrayname" argument.

keylist

114

is a variable or an array name that identifies a list of full-word
entries, each containing a key. As the value X'FFFF' is found in
address references in the graphic orders in the array identified by
the "arrayname" argument, the key identifying the element being
referred to is taken from this list. If the value X'FFFF' appears
four times in the array identified by the "arrayname" argument,
this key list must be a four-word array of keys.

.r'
i~_j~

c

•

c

APPENDIX F: PROGR~~ER-DEFINED CORRELATION SCHEMES

The programmer can use the standard keying and correlating features
provided in GSP to identify elements or can use his own correlation
scheme to identify the elements. This choice is made on a graphic data
set basis and is indicated by the value assigned to the "gdslevel"
argument in the call to the INGDS subroutine. When the programmer uses
his own correlation scheme, the GSP key and correlation value table for
the specified graphic data set is not created or maintained.

Except for this appendix, all sections of this publication describe the
use of the standard GSP keying and correlating features. These sections
also apply to the use of the programmer's OWn correlation scheme, except
as follows:

• The "corrval" argment, or a null variable in its position in the
calling sequence, must be specified. However, the correlation value
assigned as that argument is ignored.

• The
GSP.

value assigned by GSP as the "key" argument is not retained by
It is computed as follows:

Key Value = length x 216 + logical buffer address

Where: ---
length is the number of bytes of the element generated.

logical buffer address is the number of bytes of orders from the
beginning of the graphic data set to the first byte of data for
the keyed element, sequence, or buffer subroutine. The actual
buffer address of the keyed item does not affect the value of the
logical buffer address.

Notes: ---
Identical input data will not always occupy the same
amount of space in the 2250 buffer. Therefore, the length
of the element may differ from its original size. This
must be considered in any programmer correlation scheme.

2. Transfer orders resulting from the dynamic allocation of a
new buffer segment when the existing buffer segment is
filled are not included in the length or logical buffer
address factors used to compute the value of the key.

• A value of two cannot be assigned as the "gencode" argument. That
is, elements or buffer subroutines cannot be placed in the omit
status when they are created.

• The INCL and OMIT subroutines can only refer to graphic data sets.
Keyed elements or buffer subroutines cannot be placed in the include
or omit status by means of these two subroutines. The key must be
omitted, or the null variable substituted for it, in a call to
either of these subroutines.

• Elements cannot be grouped into sequences. Calls to the BGSEQ and
ENSEQ subroutines are ignored.

• Buffer subroutines must be keyed. That is, t.he "key" argument must
be specified in the call to the ENSUB subroutine.

Appendix F: Progran:mer-Defined Correlation Schemes 115

• The Force a Set Mode Order (FSMOD) subroutine, described below,
be used to facilitate the updating of elements.

FSMOD--Force a Set Mode Order

may

The FSMOD subroutine causes an appropriate set mode order to be
generated immediately preceding the data that follows an element to be
updated. If the FSMOD subroutine is not called, image generation
subroutines will not generate set mode orders unless necessary. For
example, if the last 'element in a graphic data set is a text element and
the PLINE subroutine is then called repeatedly to produce a single
unkeyed line for each call, only the first call to the PLINE subroutine
generates a set mode order for producing lines.

r--,
IGeneral Form I
~--------------------------------~-------------------------------------~
ICALL FSMOD(gdsname) I l __ J

gdsname
is described in "Arguments Used by Many GSP Subroutines."

116

f'1'~~ "

\"Lj

c

c

•

•

c

..

c

APPENDIX G: EXAMPLE OF MULTIPLE LEVEL ATTENTION HANDLING

The example that follows depicts the use of multiple attent'ion levels in
a GSP program. In the example, an attention level identified by the
value of the variable LEVEL is establiphed for the 2250 identified by
the value of IGRAFD (statement 100) and a call is issued to a graphic
subprogram identified as FCTAB (statement 200). The call to FCTAB
passes the value of the Rdevicenameo argument (hence, of IGRAFD) to that
subprogram. FCTAB identifies that value as INAME (statement 300) and
establishes its own attention level identified as ATL (statement 310).
The creation of the new attention level (ATL) makes the previously
established attention level (LEVEL) inactive, thus preventing subprogram
interference with the calling program's attention processing routines.
Before subprogram FCT~B returns control to the calling program, it ends
its attention level (ATL), thereby reactivating the calling program's
attention level (LEVEL).

100

200

300
310

CALL CRATL(IDEV,LEVEL)

CALL FCTAB(IDEV,X,Y)

SUBROUTINE FCTAB(INAME,X,Y}
CALL CRATL(INAME,ATL)

400 CALL ENATL(ATL)
Rl!.~URN

END

Appendix G: Example of Multiple Level Attention Handling 117

APPENDIX H: DIMENSIONS OF STANDARD 2250 CHARACTERS

Following is a table listing the dimensions and spacing of the
characters produced by the 2250 character generator:

r--T-------------------,
I , Character Size I
,Character ~---------T---------~
I , Basic I Large I
~--+---------+---------~
ICharacters per line (maximum) I 74 I 49 ,
,Lines per display (maximum) I 52 , 35 I
INumber of characters on display (maximum) ,3,848 I 1,715 I
,Spacing between characters (raster units -- ,14 I 21 ,
I center to center) 'I I
ISpacing between characters (inches -- center to I 0.164 I 0.246 I
I center) , , ,
ISpacing between lines of characters (raster ,20, 30 I
, units -- center to center) 'I'
,Spacing between lines of characters (inches ,0.234, 0.351 I
I center to center) "I l __ ~ _________ ~ _________ J

118

c

•

c

(.",

p'

•

•

"

A PPENDIX I: STATFIvii;lJTS FOR INVOXING GSP SUBROUTINES AND FUNC'l'IONS

This appendix provides a quick reference to statenlents for invoking GSP
subroutines and functions. The subrGutines are listed first, followed
by the functions. These subroutines are listed as they appear in the
preceding sections of this publication.

GSP SUBROU'l'INES

Initiation

CALL INGSPCgspname,null)
CALL INDEV(gspname,unit,devicename[,gdoalength])
CALL INGDS(devicename,gdsname[,gdoalength] [,gdslevell

[,gdsname1 ••• ,gdsname49]
CALL SPEC(gspname,code,rtnumber[,rtnumber ••• J)

Termination

CALL TMGDS(gdsname)
CALL TMDEV(devicename)
CALL TMGSP (gspname)

Option Definition

CALL SDATIvl (gdsname, xmode [, ymode])
CALL SGRAM(gdsname,gmode)
CALL SCHAM(gdsname,mode)
CALL SGDSL(gdsname,gllx,glly,gurx,gury[,sllx,slly,surx,suryJ)
CALL SDATLCgdsname,xliro1,ylim1,xlim2,ylim2)
CALL SSCIS(gdsname,scissoring)

Image Generation

CALL MVPOS (qdsname, xcoor, ycoor [, corrval} [, key] [, gEmeode])
CALL STPOS(gdsname,xeoor,yeoor[,eorrval] [,key] [,geneode])
C.1\LL PLINE (gdsname, xcoor, yeoor [, eorrval] [, key] [, geneode] [, count]

[,xindex] [,yindex) [,xiner] [,yiner])
CALL PPNT(gdsname,xcoor,ycoor[,eorrval] [,key) [,gE:neode] [,eoun t]

[,xindex] [,yindex] [,xincr] [,yiner])
CALL PSGMT(gdsname,xstart,ystart,xend,yend[,eorrval] [,key] [,geneode)

[, count] [, xstartindex) £, ystartindexl (, xendindex] (, yendindex]
[,xstartincr] [,ystartincr] [,xendiner) [,yendincr])

CALL PTEXT(gdsname,text,eount[,corrvalJ [,key] [,qeneode) [,xeoor,yeoor])
CALL STEOp(gdsname[,corrval] [,key] [,geneode)

Identification

CALL BGSEQ (gdsname [, corrval J [, key) [, geneode))
CALL ENSEQ(gdsname[,key])
CALL BGSUB(gdsname[,corrval] [,key] [,geneode)
CALL ENSUB(gdsname[,key)
CALL LKSUB(gdsname[,bufeorrval) [,bufkeyJ£,linkeorrvall [,linkkey)

[, gencode])

Image Control

CALL RESET(gdsname(,corrval] [,key])
CALL IDPOS(gdsnaroe,xlast,ylast[,xeurr,yeurr])
CALL]:;XEC(gdsname)
CALL INCL(gdsname[,eorrvalJ [,key])

Appendix I: Statements for Invoking GSP Subroutines and Functions 119

CALL OMIT (gdsnarne[, corrval] [,key]}
CALL ORGDS(gdsnarne1[,gdsname2 ••. ,gdsnarnen])

Keyboard Input & Buffer Data Analysis

CALL IClmS<gdsname[,corrval] [,key] [,charpos])
CALL RCURS(gdsnarne}
CALL GSPRD(gdsnarne,storageloc,count,rdtype[,termcode] [,corrva11 1 [,keY1]

[,corrva12] [,keY2]}

Attention Related

CALL CRATL(devicenarne,attnlevel[,deguectl])
CALL ENATL(attnlevel[,rangecode]}
CALL ENATN(attnlevel,attnsource[,attnsource •.•])
CALL DSATN(attnlevel,attnsource[,attnsource •••)
CALL SLPA'I(gdsname,detect}
CALL RQATN(attnlevel,codeloc,wait[,arraynamel,attnsource

[,attnsource •••])
CALL MLITS({devicenamelattnlevel},status[,lig~ts •••)
CALL MLPEO(attnlevel,att.ntype[,info] [,r2startJ)
CALL MPATL(attnlevel,direction[,relattnlevel)
CALL SALRM(devicename)

Light Pen

CALL LOCPN(gdsname,xpos,ypos)
CALL BGTRK(gdsname,xcoor,ycoor}
CALL ENTRK(gdsname}
CALL RDTRK(gdsname,xpos,ypos}

Stroke Generator

CALL DF'STR(gdsname,table,strokes,synbol,strokecount)
CALL PLSTR(gdsnarne,table,text,count,height[,width] [,spacing]

[,orientation] [,corrval] [,keY] [,gencode]
[, xcoor, ycoorl)

Miscellaneous

CALL CNVRT (gdsname, convert [, xinput] [, yinputJ [, xoutrmt] [, yout_putJ)
CALL ORGEN(gasname,arrayname,count[,keylistJ [,corrval1 [,key] [,gencode)
CALL FSMOD(gdsname)

GSP FUNCTIONS

ITRC(gspname,cooe)
ITBP(gdsnamA,info)
RTBP (gdsname, info)
ITST(gdsname,optionsub)

120

•

c'

J

•

•

Where more than one reference is given,
the first page number indicates the major
reference.

abnormal termination
effect of null variable

u(:on 25-26,29
with CANCEL key attention 74-75

abnormal termination dumps (see dumps)
absolute data

definition of 17,33
setting input mode 33-34
setting output mode 34-35

active attention
level 75-78,117

alarm (see audible alarm)
alphameric keyboard

CANCEL key 74-75
END key 73,78,80
entering information from 69-70
JUMP key 70

arguments used by many GSP
subroutines 23-24

assembler language (use of GSP in) 107
assigmrent statement 92
attention information

dequeueing of 76-77,74
for programmed function keyboard

overlays 81
from end-order-sequence 80-84
fron light pen 79-84,,56,58,60
queueing of 74,75,78
requesting 80-84

attention levels
active 75-78,117
creating 76-77,73-74,117
definition of 73
hierarchy 75-77,86-87
inactive 75,78,117
multiple 75-77,86-87,117
reordering of hierarchy 86-87,75-76
terminating 77,73-74,117

attention related
subroutines 76-87,19,117

attentions
definition of 19,73
processing of 73
sources of 73,78

attention sources
description of 73,78
disabling 79,73,74
enacling 77-80,73,74
enabling light pen 77-80,74

audible alarm 87

beam position testing 95-96
begin a buffer subroutine (BGSUB) 59
begin a sequence of elements

(BGSEQ) 56-57
begin light pen tracking (BGTRK) 89
BGSEQ 56-57
BGSUB 59
BGTRK 89

buffer subroutines 58-62,18,115
buffer subroutines in programmer-defined
correlation schemes 115

CANCEL key 74-75
character generator

size and spacing of characters pro
duced by 118,35-36,53

use of 9-10,53-54
characters

construction of via character
generator 53-54

construction of via stroke
tables 108-112

EBCDIC code
information 71,83-84,108,110-111

modes of 35-36
protected 35-36,69
sizes of 118,35-36,53
unprotected 35-36,69

CNVRT 113
COMMON statement 26
communication

between GSP and 2250 26-27,14-15
between 2250 operator and

GSP 73-91,19
between program and GSP 25-26,14
between program and 2250

operator 73-91,19
convert coordinates (CNVRT) 113
correlation values

definition of 19
use of 19,23,56,58,63-65,115

corrval argument
description of 23
use in resetting 64-65
use in updating 63-64
use with gencode argument 24
use with programmer-defined correla

tion schemes 115
CRATL 76-77,117
create an attention level

(CRATL) 76-77,117
cursor

definition of 69,35
inserting 69-70
removing 70
use in reading data from 2250

buffer 71-72

data
absolute 33-35,17
characteristics of 33-35,15,17
graphic 15,34-35,40-55
incremental 33-35,17
input 33-34,17
optimized 34-35,17
output 34-35,17
scaling 37-39,15
scissoring 38,15
specifying limits of 37-39

data set reference number 27
default options 33

Index 121

define strokes (DFSTR) 110-111
dequeueing attention
infor~ation 76-77,74

devicename argument 23,27
DFSTR 110-111
DIMENSION statement

use in examples 12
for defining null variable 26

direct order generation 114
disable attention sources (DSATN) 79
disatling attention sources 79,73,74
display creation by 2250 9-10
display regeneration

controlling occurrence
of 55# 90-91,40

definition of 9
restarting 83-84

display unit (the 2250)
constituents 9-10
use of in GSP 10

DSATN 79
dumps

caused by CANCEL key 74-75
caused by null variable

value 25,26,29

EBCDIC (extended binary-coded-decimal
interchange code) 71,83-84,108,110-111

element
correlating 19,23,63-64,115
creation of 17-18,40-55,111-112
definition of 17
end-order-sequence order 55,40
graphic 40,17,43-53
grouping into buffer

subroutines 58-62,18
grouping into sequences 56-58,18
in include

status 66-67,17-18,24,40,115
in omit status 66-68,17-18,24,40,115
keying 19,24,63-65,115
positioning 40,42-43,17
resetting 62-65,18-19,41
text 40,53-54,17
updating 63-64,18-19,41,116

enable attention sources (ENATN) 77-79
enabling attention sources 77-80,73,74
ENATL 77,117
ENATN 77-79
end a tuffer subroutine (ENSUB) 59-60
end a sequence of elements (ENSEQ) 57
end attention levels (ENATL) 77,117
END key 73,78,80
end light pen tracking (ENTRK) 89
end-order-sequence

attention 55,40,73,80-84
attention information 80-84
element 55,40
order 55,40,73
order in include status 55,40
order in omit status 55,40
use in display

regeneration 55,40,80-84
ENSEQ 57
ENSUB 59-60
ENTRK 89
error handling 10
equivalent graphic data set

creation of 27-29

122

definition of 27
effect of EXEC on 27,29
effect of GDOA length on 28
effect of include and omit status

on 213
example of 29
size of 28
termination of 29

EXEC (see Execute)
Execute (EXEC) 66-67,18,29,84
extended binary-cod ed-decimal inter-

change code (see EBCDIC)

force a set mode order (FSMOD) 116
FSMOD 116
functions for GSP 92-96,107

gdoalength argument
effect on equivalent graphic data

sets 28
effect on input/output

operations 27,70
overriding 28,70
use of in INDEV 27
use of in INGDS 28

gdslevel argument 28,83,115
gdsname argument 23,28
gencode argument

description of 24
use in updating 64
use with programmer-defined correla

tion schemes 115
generate graphic orders (ORGEN) 114
graphic data

creation of 40-55
definition of 15
modes of 34-35

graphic data output area 17,27,28,70
graphic data set

altering regeneration sequence
of 68-69

creation of 27-29
defining boundaries of 36-38
definition of 15
equivalent (see equivalent graphic

data set)
resetting 62-65
screen representation 15-16,36-39
setting options for 33-39

graphic design feature 10,34
graphic element 40,17,43-53
graphic orders

creation of 40-55
definition of 15
direct generation of 114

GSP functions 92-96,107
GSP graphic program

basic GSP subroutines for 20-22
return codes 92-95,10,25-26
structure of 14-20

GSP in assembler language program 107
gspname argument 25
GSPRD 71-72

hierarchy of attention
levels 75-77,86-87

lCURS 69-70
identification subroutines 56-62

,1'-'
'-/

f

c

•

IDPOS 65-66
IF statement 92
image control subroutines 62-69
image generation subroutines 40-55
image sCissoring

definition of 15,38
setting options for 38

inactive ~ttention level 75,18,117
INCL 61,115
include status 66-61,17-18,24,40,115
increment arguments 44,50-51
INDEV 26-21
index arguments 44,50-51
indicate beam position (IDPOS) 65-66
indicator lights 85-86
incremental data

definition of 17,33
setting input mode 33-34
setting output mode 34-35

INGDS 27-29
INGSP 25-26
initialize a graphic data set

(INGDS) 27-29
initialize a graphic device

(INDEV) 26- 21
initialize the graphic subroutine pack
age (INGSP) 25-26

initiation subroutines 25-31
input data

absolute 33-34,17
incremental 33-34,17
setting modes of 33-34
specifying limits of 37-39
types and forms of 33-34,17

input/output operations
buffer subroutining 58-62
effect of GDOA length on 27,70
EXEC subroutine 66-67
reducing the number of 30- 31.,27,11

insert cursor (ICURS) 69-70
invalid argument specification 10,93
ITBP 95-96
ITRC 92,95
ITST 96

key argument
description of 24
use in updating 63-64
use with gencode argument 24
use with programmer-defined correla

tion schemes 115
keyboard

alphameric (see alphameric keyboard)
programmed function (see programmed

fUnction keys)
keyboard input and buffer data analy

sis subroutines 69-72
keying

definition of 19
use of 24,56,57,63-65,115

language compatibility 10
levels (see attention levels)
light pen

attention information associated
with 79-84,56,58,60

enal:ling as attention
source 77-80,74

lccating position of 87-88

subroutines 87-91
tracking movement of 88-91

lines 43-46
line segments 50-53,46
linkage editor requirements

when using assembler language 101
when using FORTRAN IV 10-11

link/load status
altering predefined

status 30-31,12,14
definition of 11-12
predefined status 31

link to a buffer subroutine (LKSUB) 60
link-to subroutines

altering status of 30-31,12
definition of 11

LKSUB 60
loaded subroutines

altering status of 30-31,12
definition of 11

locate the position of the light pen
(LOCPN) 81-88

locating light pen 81-88
LOCPN 87-88
logical buffer address 115

machine requirements 10
main storage, most efficient use
of 11-12,30-31

mapping data 31-39
MLITS 85-86
MLPEO 83-84
modification of images

including elements (see include
status)

omitting elements (see omit status)
resetting 62-65,41
updating 62-64,41,116

modify light pen or end-order-sequence
attention information (MLPEO) 83-84

modify position of an attention level
(MPATL) 86-81

modify status of the programmed function
indicator lights (MLITS) 85-86

move beam to a position (MVPOS) 42
MPATL 86-81
multiple attention
levels 75-77,86-81,117

MVPOS 42

null variable
definition of 25
use of 25-26,13
identifying to GSP 25

OMIT 61-68,115
omit status 66-68,11-18,24,40,115
optimized data

definition of 17,34
setting output mode 34-35

optional arguments, omission of 25,13
option definition subroutines 33-39,96
order graphic data sets (ORGDS) 68-69
ORGDS 68-69
ORGEN 114
output data

absolute 34-35,17
incremental 34-35,17
optimized 34-35,17

Index 123

setting modes of 34-35
overlay codes (programmed function

keyboard) 81

place in include status (INCL) 67,115
place in omit status (OMIT) 67-68,115
PLINE 43-46
plot lines (PLINE) 43-46
plot line segments (PSGMT) 50-53,46
plot pcints (PPNT) 46-49
plot strokes (PLSTRl 111-112
plot text (PTEXT) 53-54
PLSTR 111-112
points 46-49
positioning element 36,38-39,16
PPNT 46-49
prograrrroer-defined correlation

schemes 115-116,28.,83
programmed function keys

as sources 73,78
attention information from 80
lighting the indicator lights 85-86
overlay codes 81

protected characters 35-36,69
PSGMT 50-53,46
PTEXT 53-54

queueing attention information 74,75,78

raster units 9,113,118
RCURS 70
RDTRK 89-90
read data (GSPRD) 71-72
read the current location of the track
ing symbol (RDTRK) 89-90

reference by location argument 26
regeneration of a display (see display
regeneration)

remove cursor (RCURS) 70
request attention information

(RQATN) 80-83
RESET 64-65
reset a graphic data set (RESET) 64-65
resetting 62-65,41
return codes

definition of 10
description of GSP return

codes 92-93
for each GSP subroutine 94
testing for a code 92,95
use with null variable 25-26

RQATN 80-83
RTBP 96

SALRM 87
sample program 97-106
scaling (see data scaling)
SCHAM 35-36,96
scissoring (see image scissoring)
screen

2250 addressibility 9
definition of 36
setting boundaries of 36-37

SDATL 37-39
SDATM 33-34,96

124

segments (see line segments)
sequence

creation of 56-58
definition of 56,18

set an end-order-sequence order
(STEOS) 55

set beam at absolute position
(STPOS) 42-43,59

set character mode (SCHAM) 35-36,96
set data limits (SDATL) 37-39
~et data mode (SDATM) 33-34,96
set graphic data set limits

(SGDSL) 36-37,39
set graphic mode (SGRAM) 34-35,96
set light pen attentions (SLPAT) 79-80
set mode order 116
set scissoring options (SSCIS) 38
SGDSL 36-37,39
SGRAM 34-35,96
SLPAT 79-80
sound audible alarm (SALRM) 87
sources of attentions (see attention
sources)

SPEC 30-31
Specify Link or Load Status

(SPEC) 30-31
SSCIS 38
status information functions 92-96,107
STEOS 55
STPOS 42-43,59
stroke tables

creation of 108-110
definition of 108
displaying characters of 111-112
modifying characters in or adding

to 110-111
system stroke table 108

system generation requirements 11
system requirements 10

terminate
(TMGDS)

terminate
(TMDEV)

the use of a graphic data set
31-32
the use of a graphic device
32

terminate use of the graphic subroutine
package (TMGSP) 32-33

terminating attention
levels 77,73-74,117

termination subroutines 31-33
test integer beam position (ITBP) 95-96
test real beam position (RTBP) 96
test return code (ITRC) 92,95
test status (ITST) 96
text

element 40,53-54,17
via character generator 53-54
via stroke tables 108-112

TMDEV 32
TMGDS 31-32
TMGSP 32-33
tracking movement of the light

pen 88-91

unprotected character 35-36,69
updating elements 63-64,18-19.,41,116

c

c

..

1

f

~~-,-~~-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

READER'S COMMENT FORM

IBM System/360 Operating System: Graphic programming Services for
FORTRAN IV; Program Number 360S-LM-537

C27-6932-2

Please check or fill in the items below, adding explanations and other comments
in the space provided.

Which of the following terms best describes your job?

!l Programmer !l Systems Analyst !l Customer Engineer
!l Manager !l Engineer !l Systems Engineer
!l Operator !l Mathematician !l Sales Representative
!l Instructor !l Student/Trainee !l Other (explain)

Does your installation subscribe to the SRL Revision Service? !l Yes !l No

How did you use this publication?

!l As an introduction
n As a reference manual
n As a text (student)
n As a text (instructor)
n For another purpose (explain)

Did you find the material easy to read and understand? n Yes n No (explain below)

Did you find the material organized for convenient use? n Yes !l No (explain below)

Specific criticisms (explain below)

Clarif ications on pages _____________________________ _

Additions on pages

Deletions on pages ________________________________ _

Errors on pages __________________________________ _

Explanations and other comments:

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

FOLD

FOLD

C27~6932-2

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY

IBM CORPORATION

NEIGHBORHOOD ROAD

KINGSTON, N. Y. 12401

ATTN: PROGRAMMING PUBLICATIONS

DEPARTMENT 637.

International Business Machines Corporation
Data Processing· Division
112 East Post Road, White Plains, N. Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

FIRST CLASS
PERMIT NO. 116

KINGSTON, N. Y.

FOLD

FOLD

('

l

t

•

C27-6932-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I0S01
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

c

(

1-'.
::l

C

en
~
. t

()
IV
..J
I

~.
W
IV
I

IV

