EDINBURGH

2nd-7th OCTOBER 1983

HP 3000 INTERNATIONAL
USERS GROUP

1983 HP 3000 INTERNATIONAL CONFERENCE
EDINBURGH OCTOBER 2-7

THE ASSEMBLY ROOMS AND

MUSIC HALL COMPLEX, GEORGE STREET
EDINBURGH, SCOTLAND

£2 PROCEEDINGS

LIST of PRESENTATIONS - by TITLE

Anticipating OSI
by Bjorn Vermo

The Architecture of Integrated Office Systems
by Peter Williams

Architectural Changes for MPE V
by David N. Holinstat

Automating Systems Development with a Data Dictionary
by David C. Dummer

Capital Project Control Systems
by David Harvey

A Case Study on the Installation of Manufacturing Systems
by R.J. Woodhead, B.Sc. MBPICS

A Communications Package for Internetworking on the HP 3000
by Reinhold Leitner

Companies Statutory Books on the HP 3000
by N. Bedford

A Comparative Study of RAPID and COBOL
by John Sanders

A Comparison of The OSI Reference Model & Hewlett-Packard’s
DS3000 Telecommunications Software
by Gregory J. Sannik

The Computer User/Network Interface at Glaxo Pharmaceuticals Limited

by Glaxo

Computer Megatrends of the 80’s Affecting Business Productivity
by Barry Klaas

Computerized Personnel Systems
by Tony lIve

37-1

60-1

70-1

51-1

52-1

30-1

24-1

27-1

29-1

45-1

23-1

Criteria for Selecting Software Packages for the HP 3000
by Thomas A. Wilson

Customizable Software - Why You Need It
by Mike Kolsolchroen

The Data Dictionary: An Emerging System Resource
by Alan T. Pare

Data Bases on Micro-Computers. A Reality.
by Michel Kohon

Data Communications for the HP 3000 User
by Micom

Data Dictionaries That Cost Nothing
by Robert A. Evans

Data Model Financial Modeling for the HP 3000
by Edward Humphrey

Database Techniques - IMAGE Versus KSAM
by Dipl. Ing. Jorg Grossler

Decentralizing the DP Function
by Nicholas H. Cuthbert

Developing Large Integrated Systems Using RAPID/3000
by M.P. Ashdown

Development of the Britoil Integrated Terminai Network
by N.H. Shelness

Direct Screen Addressing Using COBOL I
by J. Birkhead

Distributed Processing in an IBM-HP Environment
by Rolf Frydenberg

Effective Site Planning Strategy
by Lynn K. Darnton

Electronic Newsroom System
by Systemsolve

The FCS-EPS Decision Support System - Business Planning

on the HP 3000 Computers
by K.F. Ltd

10-1

78-1

39-1

14-1

56-12

82-1

46-1

18-1

35-1

15-1

28-1

73-1

58-1

62-1

For the Mis Manager: Even If Life Gives You Lemons,
You Can Make Lemonade!
by Margaret T. Van Vliet

Getting Started in Data Capture
by Bruce Toback

Grampian Software Facilities Ltd. H-PAY
by

Hoskyns Integrated Purchasing System
by Nigel Fielden

How HP Networks Can Improve Your Productivity
by Jay Kidd

How to Avoid Saying “:Hello” - Running Online Applications
on the HP 3000 Without Access to MPE
by John Parkinson

How to Get a High Performance Order-File
by Hanne Hansen, M.Sc

IAS/3000 Integrated Accounting Systems For the HP 3000
by

IMAGE Design: Documentation of Structured Analysis Techniques
Using Dictionary/3000
by Richard Irwin

IMAGE Design: Logical Data Base Mapping
by Timothy Cullis and Richard Irwin

IMAGE Design: Structured prototyping
by Timothy Cullis

IMAGE and ADAGER: The Dynamic Duo.
by F. Alfredo Rego & Fred White

IMAGE/3000 Strategy
by Wendi Brubaker

ITA/3000 A User-Friendly Screen Form Handler Operating
in Character Mode
by Kurt Sager

43-1

49-1

25-1

76-1

7-1

22-1

1-1

3-1

2-1

81-1

9-1

80-1

Implementing a Manufacturing System in an Engineering Company
by Stephen M. Foster, B.A., M.A.

Improving Database Application Performance Without
Changing Your Programs
by

Improving Hardcopy Output for Better Efficiency
by Matt Cuson

integrated Systems for Manufacturing Companies
by P. Robinson

Interbrocess Communication in a Network Environment
by Nick Bates and Gary Wolstenholme

A KSAM Handler
by Bruno H. Freudenthaler

L’Air Liquide
by D.S.1.O./S.E.l. JPB/GO

Linguistic Aspects of Word Processing
by Franz-Josef Boll '

MPE V: Product Overview, Project Development Strategy,
and Implementation Methodology
by Robert L. Mead

MPE in an Oil Industry Environment
by J. Moran and McTurnill

MPE-Disc Cache in Perspective
by John R. Busch and Alan J. Kondoff

Making Sense of Office Automation
by Trevor Wing

Making Utilities Non-utilitarian
by Chris Shinn

Networking Made Simple
by Jim Geers

New Product Announcement from Direct
by Bernard Lovell

47-1

20-1

66-1

53-1

36-1

4-1

12-1

56-1

72-1

67-1

69-1

59-1

74-1

32-1

65-1

Nucleus: A System Management Tool
by W. Gary Sitton

One-Line Support: An Inside Look or the Buck Stops Here (almost)
by Karen Biglarderi and Nancy Ofslager

Optimizing System Performance
by David S. Wertheim

Personal Computers in Networked Systems
by Bruce Woolpert

Programming for Performance
by Jim May

The Pains & Pleasures of Office Automation the HP Way -
A Case History of Office Automation at Glaxo Pharmaceuticals
by M.H. Wadsworth

“PERSON - The Personnel System That’s Different”
by

Planning and Implementing a Corporate Data Center
in an International Environment
by Norman W. Davis

RELATE/3000 - Relational DBMS for the HP 3000
by Assyst

Remote Line-Printing
by Michael P. Mansfield

Remote Spooled Printers in an Operatorless Environment
by Tor Kristian Hande

Simplify Workstation to Host Connection
by Hewlett-Packard

Software Prototyping: Today’s Approach to Information Systems
Design and Development
by Orland Larson

Solve Your Problems with Imagination
by Erik Wendelboe

Some Preliminary Suggestions For Transact Programming Standards
by Tony Seymour and Lawrence McNamara

79-1

68-1

69-9

57-1

19-1

55-1

26-1

42-1

77-1

63-1

75-1

16-1

The State of Affairs with Hewlett-Packard’s X.25 Product Offering
by Hewlett-Packard :

Structural Engineering on the HP 3000 - Creating an Environment
for the Engineer
by B. Brennan and G. Stewart

Synchronous Communication on the HP 3000
by N.M. Demos

Systems Development, Projects Life - The Practical Experience
by Carl Cristian Lassen, M.Sc.

Technical Publication Costs Cut in Half with Laser Printing
by Steve Wilk and Sam Boles

Techniques of Local Area Networking
by Marc Burch

Triple Convergence; Scottish Library Information Systems on the HP 3000

by Bruce Royan

Tingler or What sort of life do programs lead at run-time?
by Lance Carnes

A Tree Grows in IMAGE: Data Structures in the IMAGE Database
by Theodore Dillenkofer, Jr.

UNIX - An Introduction
by M.J. Bailey and John O’Leary

User Training in Office Systems
by Jay Young

Using Plotters in Word Processing
by Rolf Frydenberg

38-1

50-1

31-1

44-1

64-1

33-1

5-1

83-1

6-1

17-1

U Database Conauiants cuope by,

Keizersgracht 657, 1017 DR Amsterdamn. Telefoon +31 20 - 22 42 43

IMAGE DESIGN: Documentation of structured
analysis techniques using DICT'IONAKRY/3000

A presentation to the
HP3000 International Users Group
European 1983 Conference
Edinburgh October 3rd - 6th

Richard Irwin

Database Consultants Europe
Keizersgracht 557
1017 DR Amsterdam
The Netherlands
Tel: (020) 22 42 43

Abstract

This is the first in a trilogy of papers given jointly by Tim Cullis and
Richard Irwin addressing the subject of data base design using structured
methods.

The first paper concentrates on the twin subjects of Data Analysis and Activity
Analysis. It investigates the concepts of modelling the data area and business
activities as both an analysis method and a communications medium with the
user.

Methods are also introduced of using DICTIONARY/3000 as an integral part of the
initial analysis documentation.

The other two papers in the trilogy cover Structured Prototyping and the
Logical and Physical Design of IMAGE file structures. The three papers are
related; in the presentation of our papers, we assume attendance of previous
sessions.

1-1

1. INTRODUCTION

Ever since the early commercial computer systems we have been striving to
find a scientific yet understandable method for the analysis and design
plhase of a project. Even within the construction or programming phase it
is still clear that there are no hard and fast rules that can be applied to
guarantee a satisfactory result. One of the major reasons for this is
because a computer system is very personal to any one particular company

or department and yet we still continue to hide away in our ivory towers,
known as data processing departments, developing computer systems that

we think the user would like. It is very difficult for a user to adapt

to something new when he is most likely short of time in any case. This
problem is only compounded when the user cannot identify, in his terms,

any tangible benefit. The user must feel motivated and therefore involved
in each stage of his system. The objective of this paper is to demonstrate
a method widely used by our clients to ensure understanding of a project

by all wmembers of a team including the user. This method is independant

of any particular hardware/software but in this paper the standard tools

of Hewlett Packard are used to demonstrate its applicability within projects
destined to be developed on the HP3000.

2. SCOPE

The method embraces a project from conception to final implementation as
shown in figure 1. It is interesting to look at the background to the
method at this stage. With the introduction of on-line systems it became
clear that the data structure within computer systems needed careful thought
as different processes were now working off the same data from all different
views. This meant that the data had to have its own meaning without the
support of any particular application program. Hence, the introduction of
database management systems (DBMS) software that could look after the data
without those application programs. Data dictionaries have also been
introduced to centrally define the data. It is expected that in the very
near future data dictionaries/directories (DD/D) and DBMS's will be merged
to produce a piece of software to look after the definition/location and
integrity of our data. With these powerful facilities some method was
needed to construct the correct data structure and suijitable application

1-2

-l

DETAILED

ACCESS
PATH
ANALYSIS PHYSICAL
ACTIVITY
DEFINITI

REQUIRED CONSTRUCTION
HANGES: DATA
GLOBAL < 5
ACTIVITY
DEFINITION DETAILED
ACTIVITY ACTIVITY

DEFINITION

ANALYSIS

PECIFICATIO

DETAILED
TRANSACTION
DESIGN

FIGURE !

DIAGRAMS

programs that would work. This is why this method emphasizes the split
between data and activity analysis at the earliest possible point in the
project.

An interesting development has taken place since the introduction of
database, all kinds of development tools and utilities have blossomed
forth now that data can be centrally defined and therefore generalised
routines can be written to work effectively. As a result even the
simplest of applications are now adopting a database approach in order to
obtain the payoff from these software products. Many people have come
unstuck at this stage because they did not realise the basic requirement
for these new tools was to define the data properly. The method used in
this paper can be applied to most, if not all, commercial computer
projects. The activities of data analysis and activity analysis are
covered in this paper, the subject of logical file design being covered
in a separate paper. DICTIONARY/3000 has been taken as the dictionary
tool. An cxample project has been takem to demonstrate a practical
example of the method at work. This example is an actual system called
TRAP/3000, Time Reporting And Planning system.

3. DICTIONARY/3000

Before continuing any further a closer look at DICTIONARY is necessary.
Fiqure 2 shows a global data model of the DICTIONARY/3000 itself. It can
be scen from the diagram that the dictionary can he split into two major
areas

- ACTIVE meaning that data entered in this part of the dictionary
can be used by an automated process to build a database,
program data structure (in the case of TRANSACT) or an
enquiry.

- PASSIVE meaning that this part of the dictionary is only used for
documentation and will not influence any automated process.

It will now be demonstrated how the passive part of the dictionary can be
made use of, right from system conception through to implemcntation.

CATEGORY will be used to categorise data areas, subsystems and entities.
(entities will be defined shortly) ‘

1-4

PASSIVE

DIC

TIONARY / 3000

GLOBAL DATA MODEL

CATEGORY

PROCEDURE

LOCATION

ACTIVE
GROUP
-
I 0J
Lo — |
S |
| 1 |
rmn | |
HJ
|
ELEMENT 3 -
S
|
L I
]
| |
| it B
ws| I m

CLASS

1-5

3—‘— —‘E FILE

L----E

F1GURE, 2

ELEMENT will be used to uniquely identify attributes of entities, data
sets being passed between activities within data flows and any derived
fields within activities.

PROCEDURE will be used to define any level of activity from a business
area right down to a single program definition.

4. FEASIBILITY STUDY

The feasibility study of the TRAP system was a relatively short process.

A client required automation of a manual planning and time reporting
system. The usual PERT systems were examined and found not to be suitable
and so a general outline of the system was built. Here is an example of
some of the data areas that were identified

PROJECT - A project was defined as being something that was
carried out to produce a product within a
quantifiable time by the company on behalf of the
same company or another company.

PERSON - A person would only be a part of the system if, he/she
was carrying out a project activity.

DEPARTMENT - A department is a part of a company which the cost
of a person can be attributed to.

COMPANY ~ A company is either a company that is responsible for
paying for the project and/or supplying the people
for that project.

In a small system such as this the data area definitions will be written
in the report and would most likely not require any further changes. It
is therefore unlikely to give much benefit to update the dictionary at
this time. The dictionary will therefore not be needed until the next
phase. i.e. data analysis. An example of the global activities involved
in this system are as follows

PROJECT MANAGEMENT : This is the process of updating planning data
to identify who does which task and when.

1-6

ORGANISATION MANAGEMENT : It is necessary to relate people to their
correct departments and projects to the
correct companies for re-charging purposes.

TIME REPORTING : This is the function of recording time
against tasks or projects and non-project
activities.

From this type of information the data analysis phase was started.

5. DATA ANALYSIS

Before describing data analysis for TRAP, it is useful to examine what
data analysis is. Data analysis is a method used to understand and
document a company environment in terms of its data resources. The
results of data analysis are summarised in a diagram known as a data
model. This is our major communication tool for user and projects team.
Detailed results are documented in a structured form using the data
dictionary. 1In order to carry out data analysis it is necessary to have

" direct discussions with the user to extract information from his personal
knowledge, look at his manual/computer records or files and any
correspondence going in/out of the department/function. 7The framework of
data analysis consists of

ENTITIES

An entity is something of fundamental importance to a company. It
is thus something about which data will probably be kept in an
information handling system. e.g. Objects, people, places or
abstractions such as events.

ATTRIBUTES

An attribute is a basic unit of information which describe an entity.
An attribute cannot usefully be subdivided into other units of
information. An entity must have attributes if it is of interest to
the company. e.g. a code, data, quantity etc.

RELATIONSHIPS

A relationship is an association between entities. It has two

directions e.g. a car is made from many parts and a part exists
in zero, one or more cars.

1-7

The data model is often referred to as the entity/relationship model.
The rules are very simple. A rectangle is an entity with the name of
the entity inside the rectangle.

A line connecting either two entities or an entity to itself is a
relationship. There are various types of relationships.

Mandatory one to one (1:1) =

Mandatory one to amany (1:n) = {::
Mandatory many to many (m:n) = ::} '{::
Optional relationships = e e e e - - -
Partially optional = —— e

TRAP data model can now be examined. The first pass is shown in figure 3.

From this model discussions can begin as to the suitability of the data
structure. The first data model on a project is rarely correct. If
there are no changes it often means that the user does not understand
but assumes that you do! This is a more dangerous situation than the
complete first data model being wrong. In the TRAP data model it became
obvious to the user that one could not control a situation where many
people were working on many projects without defining something in between.
Oon this entity in between one could store information about the actual
work carried out by one person on one project. The data model developed
in this manner is shown in figure 4. One of the most important points
to note is the elimination of the mwany to many relationships as it is
unlikely that you will be able to support these satisfactorily within an
information handling system. The dictionary could now be used to enter
the definitions of the entities on the data model.

1-8

FIGURE 3 FIRST PASS DATA MODEL TRAP/3000

COMPANY |- — — — —-——E DEPARTMENT

ch rh

PROJECT 3- - - = - ‘E PERSON

RECORDED

L.

L] TIME

1-9

FIGURE 4

[e e e e e e — o cm—e -

|

PASS DATA MODEL TRAP/3000

COMPANY

DEPARTMENT
STRUCTURE

-

4

PROJECT

PHASE

e o= o o o

m

DEPARTMENT

I

PRESENT
TASK ' - 7
ASSIGHMENT
| I
| |
| I
|
RECORDED
TIME 3 PERSON

DICTDBM was used with the CREATE CATEGORY command e.g.

CATEGORY DEPT

LONG NAME DEPARTMENT

TYPE ENT (for ENTITY)
DESCRIPT1ON A department is a part of

a company which the cost

of a person can be attributed

VVVVVVy

to.

A CATEGORY was also set up with the TYPE = SDB (meaning subject database)
for TRAP itself so that all entities within the TRAP system could be
grouped under it. e.g.

CATEGORY > TRAP
LONG NAME > TIME REPORTING AND PLANNING SYSTEM
TYPE > spB
DESCRIPTION > (A generalised description of
> TRAP/3000 was entered)

The RELATE CATEGORY command was then used to associate the entities to
TRAP. e.qg.

PARENT CATEGORY > TRAP
CHILD CATEGORY => DEPT
DESCRIPTION = {not used)

REPORT/3000 was used to point all entities witnin TRAP with their
corresponding descriptions and given to the user for approval. This
process went on until the team and user were Happy. with the definitions.

1-11

Each entity was then taken and a list of attributes constructed against
it. e.g.

Entity : DEPARTMENT

Attributes : Department code (Unique identification)
Department Name
Company code (Key of company)
Department entity creation date
Date department entity last changed
User who changed entity (Key of system user)

Once again DICTDBM was used to enter the definition in the dictionary as
follows with CREATE ELEMENT command.

ELEMENT > DEPT-CODE

LONG NAME > DEPARTMENT CODE
TYPE > X

SIZE > 8

DESCRIPTION > The department code uniquely
identifies a department to
the system

The ADD CATEGORY command could then be used to associate attributes
(ELEMENTS) to entities (CATEGORIES) .

CATEGORY > DEPT
ELEMENT > DEPT-CODE

ELEMENT-ALIAS > UI (This was a trick to show
which attributes were
unique identifiers or
foreign keys)

DESCRIPTION > Not used

With REPORT/3000 another series of outputs were used to check if the
data area had been covered properly. The important ones were an
alphabetical list of attributes with a full description and an entity/
attribute matrix. e.g.

ENTITY s DEPARTMENT

Attribute Keys Type Size
DEPT-CODE (1) X 8

DEPT-NAME - X 50

COMPANY-CODE - FK X 8

DEP-CRE-DTE - X 6

DEP-UPD-DTE - X 6

USE-CODE - FK X 8

ENTITY : PERSON

etc.

with a good definition of the data at hand the activity analysis could
begin.

6. ACTIVITY ANALYSIS

Activity analysis is a method used to understand and document a company
environment in terms of the activities required to create, change and
retrieve data (defined in data analysis). Dataflow diagrams are used at
the high level to first identify the flow of data through the organisation
so that the activities working with that data can be identified.

Dataflow diagrams consist of the following parts :

ACTIVITY

An activity is shown by a circle with the name inside the circle.
A unique number (or letter) is placed in the top of the circle
to show (if it is a sub activity) where it was derived from.

DATA SET

A data set is shown by a line between two activities. It has
direction (either 'IN' or 'OUT') which is shown by an arrow on
the inbound activity.

HOLDING POINT

A holding point is shown as a file symbol. This is an area
where data is held for later use. It need not be a computer file.

EXTERNAL ACTIVITY

Activities that take place outside the system but help the
understanding of its interaction with other systems which are
identified by rectangles.

The results of activity analysis are documented in the dictionary which
once again gives a central definition of activity, data set, holding point
and external activity. A first pass dataflow diagram of TRAP looked like
the diagram in figure 5. Each activity could be broken down into sub
activities. An example is given in figure 6.

G-t

‘ORGANISATION

REPORTS OF

REPORT OF ORGANISATION
FOR CHECKING

PROJECT

FIGURE 5
TEET—

~QRGANISATION

-ORGANISATION
UPDATING

NEW 1p,
EAS on
PLANNING PLANNING

UPDATING

FIRST PASS DFD FOR TRAP/3000

T s | s

T

CONSOLIDATED REPORTS

TIM CONSTRUCTION
ON AND

TASK
REPORTING
TASK
_QRGANISATION DATA VALID
DATA TIMINGS
CRGAN-
ATTON PLANNING TIME
oATA DATA RECORDING
P‘z 222 EON PLANNIN RECORDED
DATA TIME
ORGANISATION BRI
DATA
?5,5

CONSOLIDATED
REPORTS

FIGURE 6 ACTIVITY ANALYSIS TRAP/3000
—_—=

ORGANISATION UPDATING

SELECTED
COMPAN COMPANY

VALID COMPANY

UPDATING

—
> ORGANISATION
DEPARTMENT ORGANISATION
PERSONNEL
MANAGEMENT DATA DATA
UPDATING

PERSONNEL
UPDATING

ORGANISATION

REPORTS OF
ORGANISAT
ORGANISATION GANISATION
FOR CHECKING REPORTING PROJECT
MANAGEMENT

ORGANISATION

The dictionary was then updated using the PROCEDURE part as follows :

REPEAT CREATE PROCEDURE

PROCEDURE > TRAP

LONG NAME > TIME REPORTING AND PLANNING SYSTEM

TYPE > ACT (Short for ACTIVITY)

LANGUAGE > Not used

DESCRIPTION > (Brief overview of the TRAP
activities)

PROCEDURE > SELECT-ORG-UPD

LONG NAME > SELECT ORGANISATION UPDATE

TYPE > ACT

LANGUAGE > Not used

DESCRIPTION > (Description of the activity)

etc.

The RELATE PROCEDURE command was then used to build the activity 'structure'
as follows

REPEAT RELATE PROCEDURE

PARENT PROCEDURE 2> TRAP
CHILD PROCEDURE > ORG-UPD
DESCRIPTION = (Not used)

.

PARENT PROCEDURE > ORG-UPD
CHILD PROCEDURE > SELECT-ORG-UPD
DESCRIPTION > (Not used)

External activities and holding points were also defined with the types
'XACT' and 'HOLD' respectively.
Data sets were created as ELEMENTS and the ADD PROCEDURE command was used

to associate the dataset to a particular activity and show its direction
as follows :

direction of the data set)

PROCEDURE > SELECT-ORG-UPD

ELEMENT >> ORG-CHARTS

ELEMENT-ALIAS > 1IN (This is a trick to show the
>

DESCRIPTION Not used

A report was then constructed to show the definition of activities,
external activities and data sets.

Sub activities finally become a transaction process within a system

e.g. DEPARTMENT UPDATING is actually a program that creates and updates
the DEPARTMENT and DEPARTMENT STRUCTURE in the database. At this stage
it is useful to identify the attributes belonging to the dataset. These
attributes should of course, already exist as a result of the data
analysis. That is nice in theory but in practice you very often have to
re-examine the data analysis as a result that your findings in the
activity analysis. The attributes belonging to a data set were
associated as follows using the RELATE ELEMENT command.

PARENT ELEMENT > SELECT-DEPT-DATA
CHILD ELEMENT > DEPT-CODE
etc.

A report of where each attribute was being used and/or changed was then
produced to check that all data within the system was being used in
some way. From this information, access path analysis could now begin
(not covered in this paper).

7. CONCLUSION

Once everything is documented in the dictionary it is a very simple task
to keep it maintained. Any new personnel coming onto the project have an
easy job when wishing to find out the stage of the project and what it is
all about. When using IMAGE/3000 the attributes can mostly be used
directly as data items (with a few compromises for compound keys)'once
again providing an easy method of maintenance. It is always a nice
feeling when you implement that new system and you have the confidence
that the user knows what the system is going to give him and your
documentation is alsc up to date!

Y Dalabase Conaiants europe by

Keizersgracht 557, 1017 DR Amsterdam. Telefoon +31 20 - 22 42 43

IMAGE DESIGN: Structured prototyping

A presentation to the
HP3000 International Users Group
European 1983 Conference
Edinburgh October 3rd - 6th

Timothy R. Cullis

Database Consultants Burope
69, Grasmere Gardens
Harrow Weald, Middx.

HA3 7PS England
Tel: (01) 863 2428

Abstract

At the 1982 European Copenhagen conference, prior to my joining DCE, Richard
Irwin and I discussed putting forward a trilogy of papers for the Edinburgh
meeting. The intention was to reflect our joint thoughts regarding what has
become known as Structured Analysis and how structured methods may be used on
HP3000 projects, especially in respect to data base design.

when analysing any situation, it is always a good idea to step back and take
the 'helicopter view' of the surroundings. In order to design for shared data
environments with IMAGE, it is essential to have a firm understanding of the
data resource. Richard Irwin's paper in the last session concentrated on this
and how Data Analysis and Activity Analysis are normally applied in a system
development.

I prefer the role of the "devil's advocate" and have assumed that you will come
across difficult situations in which you may think normal structured methods
are not sufficient. My written paper concentrates particularly on the subject
of prototyping and my thoughts on how, after all, this fits within the
structured methods. My actual presentation will focus on applying prototyping
concepts in your own projects.

In the next session, we will cover mapping our results to an IMAGE logical data

base design. The first two papers paint the background for the final IMAGE
design; the three papers together form the 'IMAGE design' trilogy.

2-1

The computer industry®s track record of success (?)

It is a horrifying statistic that over half of all computer projects are either
never implemented or are retrospectively judged not to have met original
requirement definitions. The reasons for this are varied and examples include:

Emperor's Clothes syndrome

The company embarked on an online system which was to be implefiented
nationally via a multidropping multiplexing network. The raison d'etre
of the new system was the over ambitious management sales targets. The
"Emperor's Clothes" syndrome prevented anyone questioning clearly
overstated needs.

Ten months into the project it was scrapped and replaced by a postal
batch service into a centralised data control department.

Frozen requirements specification

Because the requirements specification was frozen during the two year
development lead time, when the system came to be delivered it was not
suitable for the revised methods of working which were adopted a year
into the project development.

Modifying the system at the implementation stage doubled the project spend.

Unrealistic deadlines

The company management thought the project team were working on a 'state-
of-the-art' system revision on the new computer. In reality, due to the
unrealistic time constraints, the team were carrying out a rough and
ready conversion from the old machine in a vain attempt to meet deadlines.

The converted system was subsequently rewrittenl

Underlying reasons

The underlying reasons are a combination of two factors: lack of communication
and confusion about how to proceed to tackle a problem.

Communications: How to translate user and management wishes
Goal/objective setting
Analysing for change in the organisation
General lack of standards and ‘standard methods'
How to control/check/show progress?

Methods: How to carry out Business Analysis
How can the users understand this complex subject?
How do we proceed from here?

Using traditional methods, it is difficult to imagine how we can improve the

current track record. Let's have a look at these methods and identify the
shor tcomings.

2-2

Classical (traditional) systems development

The classical approach came about largely as a means Lo introduce contractual
checkpoints for software houses and clients to agice to. It assumes we can
usefully predetermine timescales and requitrements and that the contract exhibit
(Requirements Specification) is adeguate as a comaunications medium,

This is seldom the case, there are normally differences of interpretation
between the system builder, the system funder and the system user; also the
system user's requirements alter with time.

Overall DP Ad hoc request
strategy \ / for services
“—. J Requirements Spec.,
(feasibility | .= .} Options Report or
study "} ---- | Project Charter
ANALYSE ¢
analysis & T
functional #» —_ |l Functional Spec. or
L design - — j External System Spec.
4 yoe— e
(technical a ~ | Internal System Spec.
design "l = | plus Prog. Specs.
QNSTIUCT
L 4
programning
L and testing
. 4 P
training, — - | user documentation +
file create 77 |l system bocumentation.
IMPLEMENT T
y
run parallel
L go live

2-3

Classical (traditional) systems development

There is obviously a need to attempt to cost justify developments which are
given the go-ahead, also possibly to chose the most cost advantageous route.
The theory is fine; in practise estimates produced in early stages can be
hopelessly inaccurate. Using contractual methods to tie down a fixed price
with a supplier is fraught with danger due to the lack of a detailed definition
of what is to be built. Also, how do you evaluate potential quality?

The classical approach is typified by a linear progression, ptroceeding
sequentially from one task to another. This is shown in the Gant chart below.
Once a task is “finished", the results are cast in stone and never re-examined
- this is formally recognised by many organisations who "freeze the
specification”.

-=-=-TIMNE~-~ - (and money spent)

Initial study XXXX

Functional design 0K

Technical design XXAKXXKX

Programming ARARXAXAKRXXXKXK

System tests XXXX

File creation XX

Run parallel ‘ XXX

n N T W <€ w

Go live =>=d>=>

Document XXXXX

User in touch? YYYYYYYYY NO NO NO NO NO NO NO NO NO NO YYY

With this approach, it is necessary to carefully plan the project using
critical path analysis methods to ensure that slippages in one area don't
impact dependent linear tasks.

People who work this way normally employ bottom up testing; first modules are
individually tested, then program groups, then the system as a whole. This has
several disadvantages: duplication of testing, creation of a system testing
bottleneck at the end of the programming development and unnecessary delay in
finding errors of interpretation between users/analysts/designers/programmers.

Beware of elapsed development times in excess of one year; experience shows
that peoples' estimates become increasingly inaccurate with time. A lot can
happen in two years - the user manager could be promoted and replaced by
sameone with different ideas; the system funder may retire; technology may
force chanyes; the organisation objectives may change etc.

2-4

Structured systems development

The steps in Structured Analysis are shown below in the form of a Data Flow
Diagram (itself one of the methods of documenting Activity Analysis).

In the previous session, Richard Irwin explained the various stages of
Structured Analysis and covered the twin subjects of Data Analysis and Activity
Analysis. These are the first steps in a structured systems development.

Later in this trilogy we will deal with Access Path Analysis and the Logical
and Physical Data Base Design.

MANAGEMENT/

USER

REQUEST GLOBAL

DETAILED

DATA
DEFINITION

DATA

SYSTEM

REQUEST FILE STRUCTURE

FEASIBILITY
STUDY
ACCESS
PATH

ANALYSIS

PHYSICAL

GLOBAL
ACTIVITY

DEFINITION
DETALLED

ACTIVITY
DEFINITION

DETAILED
‘TRANSACTION
DESIGN

DIAGRAMS

Normally I would advocate the route of Structured Analysis and Design. There
are circumstances, however, where it may be useful to incorporate prototyping
to some degree.

A couple of pages on, I start to explore various methods of prototyping and
where these may be useful. Before going further, however, it is useful to
examine the different types of DP related systems and also some of the
misapprehensions we labour under regarding system users/funders.

2-5

Different types of DP related systems

Organisations initially purchased computers to streamline administration and

repetitive clerical functions such as payroll.

As these were accounting

orientated appplications, control of DP was vested in the Accountant or VP

Finance.

In larger organisations, many of the easily identified business

application areas have now been computerised, future developments being:

Further refine existing applications
Attempt to consolidate applications

Enter new spheres

(Routine DP)
(Information systems)

(Decision support, OA)

System
Classification

Main
Payoffs

Design
concerns

Routine DP (eg Payroll)
Predetermined tasks, decision
rules and transaction flows,
often high volume. Routine DP
forms the bulk of conventional
systems.

Business efficiency

fast turnaround, quick

answer to enquiries,

Efficiency of
bulk operations.
Matching work
patterns.

Information systems (MIS)
Consolidation of Routine DP
systems, to answer unanticipated
queries or queries which generate
secondary operations.

Better information to

decision makers.

Power ful end-user
friendly language.
Effectiveness of
mgmt operations.

Decision support systems
Unstructured use, not fully
anticipated. Does not automate
the decision but supports the
executive who makes the decision.

Better decisions (eg
"Head up" aircraft
tactical display:
kill/no kill).

The user may wish
to maintain his
own data base.

Process control

Extremely structured tasks.
Huge volumes of data, but
normally only kept for short
periods (gauge display) .

Better and faster
control of complex
processes.

Speed of process
(real time)

Special computational

CPU dependent processes such

as CAD/CAM for engineering
product design, array processing
for weather forecasting etc.

Speed of analysis of
data, interaction
with designer.

Complex technical
data, normally
unconnected with
routine DP system

Office automation

Support of secretarial services
such as document production,
appointment setting etc.

High degree of integration in
future with communications.

Initially aesthetic
until sufficient
communications links
are in place.

Ease of use with
long finger nails
(eg: infra red
touch screens).

2-6

Comnon misapprehensions regarding system users/funders/builders

I referred earlier to the overall computer industry "success rate". This stems
from lack of communication and misunderstanding about the role of the user.
Users are not "system builders®, yet we labour under many misapprehensions:

Users know what they want: They are able to functionally describe
their activities. They have a complete understanding of °state-of-
the-art' computer methods and are consequently able to decide their
particular requirements. They also agree amongst themselves.

They subjectively cost analyse potential solutions: Users perceive
what is expensive and what is cheap to produce. They only want cost
effective solutions.

Users are wildly enthusiastic about new systews: They forgive you
your previous failures, they believe you can achieve miracles.
They accept that a computer solution is the right one. When the
system is delivered they will accept it without criticism.

They are fully committed to the project: They have the time to fully
specify their needs to you. These needs will not change during the
course of development. At least one user will be allocated to the
project full time to assist and co-ordinate.

Management is committed to guality solutions: You will be allowed
sufficient time for investigation and analysis work before starting
the implementation. After the system is delivered you will be allowed
to complete the documentation in detail. You will have a 'post-
implementation audit® of the system.

There are no politics involved: The EDP personnel (who report to the
Accounting/Finance wing of the organisation) will be allowed total
freedom to investigate Production Depts and question established work
procedures etc.

Users understand Management objectives: Management has identified
objectives. Change studies are carried out to establish who/what/when
are involved in change in the organisation, the ramifications are
under stood.

The system builders are asked to develop software on time, on budget, which
forms the building block of the future, which meets the known (and
unknown!) requirements of users. It is in this environment that system
builders are turning away from classical methods and looking at prototyping as
the universal panacea for future development.

Let us then look at prototyping and define what is meant and what we hope to
achieve by this method.

2-7

What is a prototype?

Engineering prototype

The computer industry usage of the word ‘prototype’ is a rather unfortunate
misnomer due to the confusion with the automobile/engineering usage. The
engineering connotation is that of an archetype, the pattern of perfection,
'the first or original type or model from which anything is copied®.

In this context, development of a prototype is the prelude to full scale
production. The prototype exhibits the essential features and functions of the
final product and probably costs millions of dollars to develop. This has no
parallel with DP; our problems are one off - not mass production.

Throw away/simulation

Within our industry, one connotation of the word °‘prototyping' is that of a
throw away system. The system is developed in a very high level language (such
as RAPID) and shows some of the proposed features; the user agrees the design
and the system is then developed ‘properly' in COBOL/SPL etc.

I would prefer to refer to this as a 'simulation system’. The major difference
is that the simulation system is incapable of being used; whereas a prototype
automobile would normally be capable of being driven on the roads.

Simulation systems may be used at the Requirements Definition or Functional
Specification stages as an alternative to the boring 5000 page Victorian Novels
which masquerade as decision requests reports and documentation.

Structured (top-down) prototyping

Working on the HP3000, it is most likely that you will be building Routine DP
type software. This environment is typified by well defined transaction flows
and predetermined tasks. Your most productive usage of prototyping will be in
‘skeleton systems' and the top down development of user requirements. This is
the main area which my presentation at Edinburgh will address.

Expert system/true prototyping
The major use of full prototyping today is in the area of Decision Support
Systems. By Decision Support Systems, I do not mean VISICALC!, but rather user

systems which directly rather than indirectly affect decisions. This use of
prototyping is best described by Keen's triangle overleaf.

2-8

Decision Support Systems

The term Decision Support System is pertinent to a situation where a complete
solution can only be developed by an adaptive process of learning and
evolution. It is recognised that conventional analysis routes will not supply
the user feedback - perhaps the problem cannot be described until solutions are
apparent.

aAdditional problems are introduced when working in this manner: when do you
stop the iterative process of analysis, design, feedback; any system produced
becommes self extinct if the lterative process is allowed to continue.

facilitates
implementation

learning
exper ience

personalised outside~in
uses design

pressure for

/‘ evolution
BUILDER
evolution of /

system function

Keen's triangle above shows the three way iteration between the user, the
system builder and the system itself. For example, use of the system by the
user prompts change requests to the builder.

This three way learning clarifies whether true prototyping can be used as a
methods of developing routine DP applications. Where there is only one 'right'
way to use the system and the user must adjust to it, rather than visa versa,
then this approach cannot be used in its entirety.

This is normally the case for convent ional DP projects and I would suggest you
use prototyping concepts as part of a structured way of system development.

2-9

What do we hope to achieve by structured prototyping?

Prototyping is seen as a means of clarifying user needs. It has considerable
benefit to the end user in that it eliminates the surprise they may have at the
end of the development process — particularly annoying if their needs are
incorrectly defined, left unsatisfied or implemented in an unworkable manner.

Prototyping by definition must be an interactive development process with
considerable end-user involvement. Interaction of users and system builders
provides for improved descriptions of user requirements; even though in the
short term it drastically reduces productivity, leading to high initial costs.

Prototyping is not a way to avoid correct analysis of problems but it is an
attempt at verifying the correctness of a design against specific problem
requirements by the use of an actual construct. Speed is not of the essence;
you are attempting to define detail and any software developed without due care
and attention to detail is unlikely to assist in refining that detail.

There is no reason why a successful prototype cannot be enlarged/expanded when
constructed correctly, into an actual working system (do not prototype in a
language which is unsuited for the final system, make sure that a mix of
languages could be supported). Simulation can provide much that prototyping
can in the way of evaluation of solutions in a shorter time frame, but cannot
be part of the final solution. Incremental system development will reduce the
'surprise' element mentioned earlier as small parts of the system come through
on a regular basis; however, overall system objectives can not be evaluated
until the final increment is in place.

Prototyping should be a deliberate decision as part of the development strategy

and should therefore fit within the structured methods. Do not allow designers
and programners to just go off and do their own thing!

Where would you use prototyping?

In the early days of computers, many analysts had the superb background of work
study/O & M. Nowadays many analysts come from an operations/programming
background or straight from college, seldom have analytical skills and are
really System Designers.

Using prototyping in this situation (ie the system builder is incapable of
interpreting user wishes) may be ill advised, but is probably more suited than
conventional development methods. Online interaction is particularly difficult
to communicate to virgin users.

Other than 'internal sales' situations, the major use could be where the user
has insufficient resources to both cope with existing work load and also assist
in defining requirements. You may decide in this case to first develop a
simulation system, then to further develop into a prototype and then further
develop and implement.

I would, however, question management committment to the project and the
likelyhood of successful implementation. One of the disadvantages of such an
ad hoc approach is the de facto hardware selection.

2-10

Structured Analysis

The overall method of structured prototyping breaks into three distinct
activities (assuming some form of Business Analysis or Feasibility Study has
already been carried out):

Structured analysis: breaks large complex problems into more solvable chunks
using Data Analysis and Activity Analysis

Structured design using Iterative Prototyping as a means of confirming
decomposed structures from the analysis phase.

Structured implement: testing on a top down basis and implementing parts of
the system as applicable.

Structured analysis would be our preferred method when determining a strategic
plan for an organisation, the global data and activity working papers then
forming the basis of later application orientated studies. Richard Irwin's
paper on data analysis describes the use of Data and Activity modelling from an
individual project basis rather than in the corporate sense. Outputs from the
Structured Analysis stage would include:

Data Model showing entities and relationships
Data Flow Diagrams showing high level and decomposed business activities
Data Dictionary documentation including:
Definition of entities
Definition of relationships
Definition of attributes (at least the key or identifying attributes)
Where used matrix of entities/attributes
Definition of system procedures and external activities
Definition of data sets and sinks (holding points)

You can see from the above that the majority of analysis conclusions and
documentation are derived directly from data dictionary outputs. If we were
able to influence DICTIONARY/3000 development we would suggest the automation
of the production of Data Models and DFDs such that ALL development information
is contained in the dictionary.

(This is not difficult - we developed a small version of this
type of system for our internal use running on an Apple II with
graph plotter. In many instances we are brought in to advise at
the strategy planning stage, well before hardware is considered
and we needed a portable system to support a data dictionary with
automated graphics output for reports etc.)

Structured Analysis is an iterative process; the information we initially
collect will not be complete and will be successively refined throughout the
project as one's perception becomes clearer. Not all the attributes (which
later map to data fields) will have been identified, probably only the
important ones. It is likely that hardly any of the attributes will have
type/length definitions,

2-11

Structured Prototype: first level

Having decided to use prototyping, we take the outputs from Structured Analysis
and create an umbrella structure of the proposed system:

TR (1 03 0 O

0000 OO

At this stage the menu screens contain a description of the lower level
screens, the lower level screens probably only display the screen name and a
description of the activities which would be available on the screen. It would
be rather a neat convention if the screen name reflected the decomposed
activity name (eg V-1.3: Dept Update).

A simple program is then used to control the simulation, allowing the user to
navigate the system using function keys. Where linkages between screens are
data dependent rather than fixed, this may be driven by input fields and the
Enter key. By all means put some typical data fields on the forms, but do not
access these or refer to them in the program other than for navigation. This
type of simulation/first level prototype should be available at a very early
stage in the project. In a large system, spend no more than two to four weeks
defining screens and writing the driver program before showing to the user.

The feedback at this stage allows you to confirm that the overall scope of the
project is correct; also that the way the functions are hung together is
probably acceptable. Alteration in scope or method of system navigation can be
quickly made and shown to the user.

At this stage 95% of the functionality of the program will be VPLUS screen
handling and the first level prototyping could be programmed in TRANSACT.
Alternatively you could develop the system in OOBOL dynamics with judicious use
of pre-written VPLUS/IMAGE routines. If using TRANSACT, the only entries made
in DICTIONARY should be those of the VPLUS file and the forms within it.

No attempt should be made at this stage to define data baces, elements etc.

2-12

Structured Prototype: work study

One of the most valid reasons for doing a simulation or prototype is to get
feedback from users on natural methods of working. Activity Analysis enables
business activities to be successively decomposed but is not very good at
describing activities enforced by logic checks. For example, if a user is
entering invoices and the supplier is not yet on file, it would be nice to be
able to add the supplier at this point and resume, rather than backing out to
MENU-SCREEN, down to ADD-SUPPLIER, back up to MENU-SCREEN and then down again
to INPUT-INVOICE.

Many designers have little understanding of user working methods. It is quite
common to see all file-adds in one structure block, all file-updates in
another, all file-deletes in'a third block. A few minutes thought would lead
designers to recognise what an unfriendly system they have created.

When you are investigating the system, ask to spend some time in the user
departinent and study the work flow. Get the designer to watch the sequence of
events in the current method of working and relate this to transactions in the
new system. You will find a transaction breaks down into manual tasks (eg file
the invoice) as well as computer tasks. Fit long response program actions into
the work flow at periods where the user is doing manual tasks.

A useful method of anticipating system response (also useful in other areas) is
Queueing Theory. Using queueing theory and work study together you can quite
easily calculate how many input people are needed for a given number of
transactions, given peaks etc.

Much is written about the ergonomics of hardware design - is the terminal
keyboard at the right height etc. Little thought is given to software
ergonomics, yet poor software design is probably the cause of more user strain
than poor hardware design.

Try to be consistent without being unnecessarily rigid. Use standard
approaches for function key usage, 'HELP® screens etc. One neat trick with
help screens is to drive them from the procedure documentation within the data
dictionary.

Some designers seem to think users like working in batches - this is patently
untrue. Users cannot see why computer people force them to add things up and
log in batch control books! Unfortunately there are few enlightened software
designers about; even HP's new accounting software (HPFA) fails to make online
updating across subsystems and uses batch runs instead.

T~ this the wav manual double entrv bookkeenina works? Have vou reallv

€

Structured Prototyping: second level

Language considerations

Having gone through one level of iteration with the initial prototype it is now
time to expand to the next level. This is probably the last chance you have to
decide which language to use for the system. Other than performance and speed
of programning, an important decision criteria is segment/subprogram switching
speed. Subprogram calls in TRANSACT are terribly slow - the only workaround is
to write one large monolithic program to handle the whole system.

Terminal handler

I have assumed up to now that you will be using VPLUS. Certainly prototyping
is easier to initiate using block mode, but many system builders including
myself prefer character mode with formatted screens. Users also tend to prefer
character mode but unfortunately VPLUS has become the standard screen handler
on HP3000.

File bandling

The second level prototype should still not include data base handling, however
you may chose to incorporate a suitable skeleton routine which at this stage
returns dumny information relevant to the particular screen. When the system
goes through third level prototype, this routine would be modified to use the
global IMAGE procedure rather than returning dummy data.

Second level tasks

Complete the screen/function hierarchy

Examine methods of streaming and MPE interface (eg QUERY)

Complete as much as possible of the screen detail

Determine procedure sharing amongst functions (eg IMAGE/KSAM calls)
Group functions for segmentation/subprogram structure

The second level prototype should then be demonstrated to the user and
preferably left for them to play with. This is probably the last time you will
get major. function structure changes (ie knock out this facility, combine these
two into one, add this function).

Only at this stage need the user commit to a particular system design. Once
this has been accepted by the user we can move on to the third level of
prototyping.

In the meantime we have by default already started our Structured Testing
activities. By using the hardness/skeleton which will form part of the

2-14

Structured Prototyping: third level

We now need to convert our prototype to a working system. During the two
stages of user iteration the Data Model and other documentation should be kept
up to date. We should now be able to fully define attributes (fields) in terms
of their type, storage length, length on VPIUS screen; the Element definitions
in the data dictionary are now updated. The definition of the finalised VPLUS
forms are input, cross referencing the data elements used on the forms.

We can now finalise the Entity/Attribute matrices. These are used in the
design the data base but our next activity is to examine the prototype
functions in light of the data model and document access path requirements.
Access Path Analysis will be covered in more detail in the next paper, but
briefly the objective is to document entity navigation, search keys used,
frequency of access, speed of response required, numbers of entity occurences
involved in order to make subjective decisions regarding IMAGE paths.

Having deciphered this information we can map our refined data model to IMAGE
(also covered in the next paper) and create the data base. Finally we can
start the implementation phase proper and our main task is now to remove the
dumy stubs and replace with DATA BASE handling calls, preferably through a
centralised routine (DBACCESS). There are other tasks, for example, defining
the locking strategy

The dictionary should be used at this stage to cross reference Procedures and
Elements for future ‘'where used?' enquiries. Hewlett-Packard are rumoured to
be developing a routine to build copylibs from dictionary. As we couldn't wait
we wrote our own in-house system. The advantage of generating copylibs from
dictionary is the control you can now exercise over programmers and the
structures they access. It is impossible to enforce the Procedure/Element
cross references in dictionary without copylib generation.

The development emphasis should be on those functions which will allow us to
start the file creation, again using top down testing as we proceed. When
modules pass final tests they can be released to the user on a controlled
basis. In this manner the actual handover may stretch for several months, but
from the user's viewpoint will probably fit in better with his current
workload.

Conclusion

The methods I have described owe less allegiance to prototyping theory (as used
in Decision Support Systems) and more to the application of Structured Analysis
and Design. Nevertheless, my main contention is that uncontrolled prototyping
is unnecessary when developing a Routine DP system due to the easily defined
nature of the system.

The main use of prototyping is to ensure the system is egonomically correct and

models efficient work patterns. Cynically, prototyping is also an excellent
method for obtaining user involvement.

2-15

Bibliography, references, suggested reading (publication date order)

1. "Adaptive design for Decision Support Systems"
Peter Keen: ACM SIGOA Vol 1 No 4/5 Sep/Nov 1980

2. "Data Analysis - The Answer to Successful Implementation of IMAGE"
Richard Irwin: HPIUG Berlin proceedings October 1981

3. "This is IT: A Manager's Guide to Information Technology"
John Eaton & Jeremy Smithers: Philip Allen Publishers Ltd 1982

4. "Management: Key to Successful Systems Implementation”
Gary Langenwalter: HPIUG San Antonio proceedings March 1982

5. "User Friendly Software Development”
Ivan Rosenberg: HPIUG Montreal proceedings April 1983

6. "Software Prototyping: Today's Approach to Information Systems Design"
Orly Larsen: HPIUG Montreal proceedings April 1983

7. "Prototyping Interactive Information Systems"
Mason/Carey: ACM Communications Vol 26 No 5 May 1983

' Database Consutants euope by,

Keizersgracht 567, 1017 DR Amsterdam. Telefoon +31 20 - 22 42 43

IMAGE DESIGN: Logical Data Base Mapping

A presentation to the
HP3000 International Users Group
European 1983 Conference
Edinburgh October 3rd - 6th

Timothy R. Cullis
and Richard Irwin

Database Consultants Europe
69, Grasmere Gardens
Harrow Weald, Middx.

HA3 7PS England
Tel: (01) 863 2428

Abstract

This is the final paper in the IMAGE design trilogy. Having covered various
structured analysis methods in the two previous papers, we now look at ways to
map our conceptual thoughts to a firm IMAGE data base design. As a case study
for the data base design, we have used retrospective-ideas for a system to
handle HPIUG conferences.

Historically, there is little continuity of experience from one conference to
another either from the host committee, the IUG board-or even from IUG.
employees. Twice a year in North Aderica and Europe, ‘conference host
comnittees reinvent the wheel. By the time the host committee appreciate
better ways of doing things, the next conference has already passed the
relevant planning stage. ‘

We decided (in the Edinburgh host committee) that we would document our
experiences in organising this conference; 'this paper is one step towards the
documentation.

In practise, our conference organisation is being run on a mixture of HP3000
accounting software, IBM S/34 hotel bookings system and HP100 Condor based
speaker/session control system! Looking at the first pass Data Model overleaf
we recognise the data area (and therefore our administration) is more complex
than necessary.

First pass Data Model

The quickest way to get a understanding of a situation is to construct a Data
Model. This is the first pass and took about 30 minutes of thinking and
sketching. It already embodies some recognition of activities - the SPEAKER
entity has been separated from DELEGATE and VENDOR EMPLOYEE as at the time we
need SPEAKER information we do not have the other data available.

HOTEL g HOTEL VENDOR
ROOM BOOTH
T W3 l?
[TR 4 H
]]
woy i
DELEGATE | DELEGATE VENDOR
COMPANY k COMPANY
T L]
)]
1 I & NS A :
H t o hot®
PAPER 2] SPEAKER VENDOR
EMPLOYEE
(]
1}
]
1]
SESSION |.d FINaNCIAL
sLor TRANSACT .

As we get nearer the conference, our ideas will be refined. Initially we
thought the relationship between HOTEL ROOM and DELEGATE would be 1:1 however

due to the success of bookings this is no longer the case and some delegates
are doubling up!

Our outline ideas at the time the papers go to press will undoubtedly have
altered by October. The full text of this session will therefore be available
as laser printer output and will include:

Conference Data Model and Data Flow Diagrams

Activity Definitions and Access Path requirements

Data base mapping rules for IMAGE/3000

Finalised data base design including physical design considerations

2-18

A KSAM Handler

Bruno H. Freudenthaler
HP Vienna, SEO Department

A.

Reasons for the KSAM Handler

The project to develop a KSAM Handler was initiated by a
software house which implemented a hardware-independent
application on the HP/3000 containing the following
features:

1.

The "data base" consists of approximately eighty (80)
KSAM files altogether.

The users run a large set of progrem in session mode
using process handling (UMAIN+USONM).

The users frequently create different processes and
exit again.

User logging is invoked for every file in every user
process.

Running the workload described above on about 30 terminals
on an HP/%000 model 44 with 3 megabyte of memory, 1 drive
7925 and 2 drives 793%% revealed the following problems:

1.

Several MPE Operating System table limits were reached
or even exceeded. (user log id's, DST etc.).

The startup time of a single process turned out to be

very long ?at least 50 seconds, containing 6 to 8 seconds
of actual creation/activation time) due to the fact that

a large number of KSAM files are opened immediately

nfter creation/activation of the process. The "logical"
open of a KSAM file consists of at least three (3; physical
file open's which again keeps the system disc busy.

The locking strategy has been implemented by using
exclusive file opens creating additional disc I/0's.

For that reason a "K3SAM Handler Subsystem" has been develope?d
by the System Engineering DRepartment of HP Vienna.

4-1

B. Overview of the K1IAM Handler

The KSAIl Handler subsystem provides an casy programmatic
access to KSAM files.

First of all, it eliminates a part of the overhead gencrated
by using conventional KSAN intrinsics, especially when opening
or closing KSAIl files.

Secondly, it not only allows conditional file locking, but
also conditional record locking, a feature not normally
supported by the KSA! subsystem.

Also, it optionally performs logging concerning all trons-—
actions that somehow modify the contents of the data file.

A configuration utility (KSAMCONF) allows the operator
to include KOAM files for being handled by the KSA!l handler
or to change subsystem parameters.

An initialization routine (KSAMLORD) starts one process per
configured KSAM file and allows the operator to obtain
information about the active handlers and users respectively.

A cleanup routine (KSAMKILL) performs the removal of users
in case of unexpected user process aborts.

A handler process is started per configured KSAM file and
performs all file access functions. User commsands and data are
exchanged via message files.

The user communication procedures allow the user program to
perform the communication with the KSAM handler(sy.
Additionally, a second layer of user communication procedures
may be used by the application programmer(s) which checks if
the KSAM handlers are activated. If not, the procedures open
the KSAM file(s) directly.

Using this layered implementation philosophy plus a small
set of operating system dependent procedures in "privileged
mode" all application programs remain object-code compatible
and morcof the handler is totally transperent which has been
a major design goal.

Further on, we need the following files for the subsystom:
1. The MASTER-file contains all configuration parameters
(e.g., names of "data bases", number and names of
KSAM files, table information for active users or Tiles,

log-id's etec.).

2. A set of messape files is used for transmitting the
requests to the different handler processes.

A similar set of message files is used for transmitting

4-2

the answers to the different users.

In case of opplication process nborts or similar unforesecn
events a dedicated message file is used for transmitting the
process-specific socalled "user numbers" (serving the purpose
of identificniion) to the cleanup routine; ithis cleanup
routine performs the task of setting the user numbers free.

C. How it works.

The user roulines basically fulfil the following tnsks:
1. Open the MASTFR-file and obtain » user number.

First of nll the user job control words dedicated to the two
possible process levels of a Job or session nre checked if
they are established. If not, they are created and set to
zero; if yes, they are tested 1f they are set to zero. If
they contain any other value but zero it has to be a user
number that could not be set free before. In thnt case, a
message 18 sent to the KILLUSER messuge file which makes the
KSAMKTLL process resume execution and perform the abort of

a ugser number by sending a "remove user x" message to each
active handler, locking the MASTER-file, clearing the "active
user bit", unlocking the MASTER-file eand issuing the next
read request against the KILLUSER message file which sets
the KSAMKILL into a "blocked for I/0" slatle.

The MASTER-file is opened with the GMULTI option. In order to
obtain a unique user number the MASTER-flle is locked and the
"active user bit map” is scanned for a free user number and
the corresponding bit is set "active" hereafter followed by
the unlocking of the MASTER-file.

After that, the user specific message file with the actual
name "HESSxxxx.KSANUSER.KSAMUTIL" is opened for input. The
string "xxxx" is replaced by a four digit numeric string
containing the user number obtained just before nnd padded
by leading zeroes. Also, the user number is saved in the
gpecific user job control word.

2. Establish the "physical" communication link to a
certain handler process.

The KSAM handler directory contained in the MASTER-file is
acanned for the name of the KSAM file which is to be opened.
If the file name i8 not found, the user procedures have to
provide the necessary KSAM calls in order to perform the

file 1/0. 1f the name is found in the directory, the corres-
ponding message file of the handler is opened and the further
1/0 requests will be routed to the handlers vin the message
file. It seems worthwile noticing that the user may use any
HPE file cquations; all of them are resolved by our procedures.
This means that any formal file name is traced boack to the
actual file name which is the one contnined in the KSAl
hondler directory.

3. Fstabliagh the "logical" communication link to a
certain handler process.

The user procedure sends. a record to the KOANM handler meassage

file contsining the desired open option (shared or exclusive)

and nfte das waits for the messapge sent by the KSAN handler

Lo the w specific message file which moy be either success-
ful or unsuccessful.

4-3

4. Perform the communication.

In analopgy to the "open" transaction all the other requests
are exchanged between the user and the KSAN handler(s). The
list of available commands 18 contained in the appendix.

Fvery KSAM hnandler manintanins user specific informoiion
sbout the record numbers and chains he has accessed
in the last cnll in the same way as the KSAN intrinsics
do it. Thus the user process does not recognize the
difference whether he obtained the data or return code
from the MPE file system directly or from e handler.

If the users want to perform logging all transactions of

the KSAN handlers involving add, update or delete are logged.
For that purpose the operator only has to specify a log iden-
tifier in the MASTER-file using the utility KSAHCONF. Also,
the "timer" and "trnce" option may be invoked per dntn base.
The timer option prints an usage statistics of 0ll implemented
requests, namely the number of calls, sum of CPU-time and sum
of elapsed time. The trace option shows the type of request a KSAM
handler has received from a particular user, but not the
data. This option 18 especially useful for establishing a
user interface or debugging purposes. The output of the

trace option is sent to the operator console.

5. Close the "logical" communication 1link.

The transaction of closing the "logical" communication link con-
sists of the same sequence of operations as the opening handshake;
this feature shows one of the advantages over the conventional way
of opening a KSAM file by avoiding the overhead of accessing the
aystem directory etc.

6. Close the "physical" communication link.

The closing of the "physical" communication link shall only be
performed once just hefore exiting the process or if the
communication will not be needed agnin during the execution

of the process in order to omit unnecessary overhead.

T. Return the user number and close the MASTER-file.

The procedure performing this task should be called every

time before exiting a process. Its main task is to return

the user number which is performed by locking the MASTER-file,
clearing the specific "active user bit" and unlocking the
NASTER-Tile. Hereafter the specific user job control word

is reset to zcro and the user input messnge file is closed.

If the process sborts unexpectedly, the user number of the
process cannot be returned properly. Wow, if the next process

is started immediately without leaving the job/session, the
starting routine takes care of that, but if the job/session is
terminnted this may create problems if it happens too often. For
that purpose a specinl program may be executed which checks the

user job control words and performs the same steps to clear
"dead" user numbers as described under parapraph 2.

4-4

D. Preliminary Test Results
The usage of the KOAM handler showed the following
preliminary test results:

1. A lot of table entries are saved (only 1 user log-id per
handler, 1 KSAM file extra data segment per handler etc.).

2. The startup time is reduced by approximately 30 percent.
%. Situations involving the locking strategy improved by

40 percent and more.

It must be mentioned that up to now the emphiasis has been
put on debugging the software and the comparison with the
conventional KSAM intrinsics has been neglected, but the
comparisons will be performed in the near future.

4-5

List of commands for the KSAM-Handler:

CL closc (logically)

DE delete keyed

DL, delete locked record

FR erase all data within the data file

IF ,.... info about open file
IL info about locks

IJ «.... info about user

KY keyed read

IC lock chained

IF lock file

IK «.... lock keyed

LP lock partizl key

LS «.... lock serial

OP open shared (logically)
0X open exclusively (logically)
PK partial keyed read

RC read chained

RL remove locks

RS read serially

RU remove user

RW rewind serial pointer
SD shutdown KSAM

UK keyed update

UL update locked record
UN unlock file or record
US update serially

WS «.... write serially

UT «.... write keyed

4-6

[ﬁF] KSAM Handler

L _(L J KSAM key files ((((

(((KSAM data files (((

XDS XDS XDS XDS Xbs X0S

‘ UMAIN | UMAIN

Se : ob Seob

Fig. 1: Conventional KSAM file opens

4-7

@

!{nd!er

X0s Xos

C 1

L

Fig. 2: KSAM files opened by handlers

KSAM data files

KSAM key files

KSAM Handler

C 1

(1

3

SAMKIL }

OtLLUSE!

o]

[1—[

KBAMLORD

pr——

.
po—
b

Handlar message filea

KSAM

Handler

Rl

((User message files (———_1 (_——(

V

UMAIN

ESONB

/

7

Fig. 3: Overview of pracess structures and message files

192 user processes

4-9

\'4

/

[UMNN

TRIPLE CONVERGENCE; SCOTTISH LIBRARY
INFORMATION SYSTEMS ON THE HP 3000

Bruce Royan, SCOLCAP, National Library of Scotland, UK

Abstract: Part of the challenee of the 80's {3 the convergence
of Telecommmications, Nata Processing and Inforuatlion Sclence.
The Scottish Library Network exploits this triple convereence to
handle online the cataloguing, acquisitions and Inforwation
retrieval needs of some 25 major libraries in RScotland.

MIR/3000, R.IF 3000 and x5 are utilized to run a Nistributed
Natabase Svstem between an Fdinburgh-based ? fieahvte HP3000
series Lb and. the Rritish Library's lsree TRM machine, The
scope for sharing the intellectual work of book caraloguing and
class'fication 1s enormous, and this svstem provides both the
contrnls and the flexibility of presentation to allow this gain
in productivity to take place in institutions of differine size,
constitution and outlook, Accentance of this new technologv has
been eased bv careful design of the man-machine inteiface,
developing screens and character sets customized for librarv use.
The offerings of HP provide a natural match with the automation
needs of the book world and it is fitting that this svstem
should be running in 8cotland in time for IUC Edinburgh 1983

THE CONVERGENCE

More and more of our telephone calls are being switched by
machines we would once have called computers. Meanwhile our
computers are talking to each other over telephone lines.

On the theoretical front, library scientists started to

use concepts from telephony at about the same time as computer
scientists began taking seriously work done by librarians on
the organization of knowledge. This triple convergence of
Telecommunications, Data Processing and Information Science has
come not a moment too soon for a library world hard pressed

to maintain bibliographic control over what is popularly known
as the ‘information explosion'. It is now a commonplace to
point out that, for example, more scientific and technical
literature has been published in the last 10 years than in the
previous 10,000. What may not be so well known is the rapid
growth in the number of bibliographic computer systems being
developed to cope with it; during the nine months to April 1983,
the number of database systems commercially available for online
access worldwide increased by 30%. One system of particular
relevance to a Hewlett Packard user conference in Scotland, is
the subject of this paper.

A LIBRARY NETWORK FOR SCOTLAND

The Scottish Library Network has been set up to serve initially
some 25 major libraries . throughout Scotland and across the border
in the North East of England. While 10 of the dedicated terminals
are point-to-point, another 40 work on multipoint lines under
MTS/3000. The problem of running so many terminals at one time
with an acceptable response time has been resolved by using the
package TPE (Transaction Processing Environment, supplied by Riva,
of Bolton, England) which controls all terminals under a single
MPE session. To allow occasional enquiry access to a further 600
terminals spread across the research establishments of the ERCC
(Edinburgh Regional Computer Centre Network), we are developing

an x25 gateway into the British Telecomm PSS (Packet Switched
Service) Network. This part of the system has been subject to a

5-1

range of delays, first from British Telecomm, then from HP,
and now from our software house, but is essential in
extending our coverage to places that could never afford a
dedicated terminal.

A DISTRIBUTED DATABASE

The processes of acquisitions, cataloguing and Information
retrieval that our system supports are based on a bibliographic
record - something quite unlike the sort of records encountered
in more ‘normal' dataprocessing. Modelling as it does a real
world, where a book may have many authors or none at all, and a
title may contain five characters or 500, this record consists
of variable length, variable occurrence fields. The fields
themselves may be 'local' fields related only to a particular
library's copy of a book (whereabouts it has been placed on the
shelves, say, or whether it has been rebound), or ‘general’
fields relating to all copies (author, title). This structure
is mapped onto the IMAGE database system as follows. Each
logical record consists of a master 'Bib' record containing
fixed (often truncated) versions of fields needed for key
access, now or in the future, with a number of other records
attached to it. There are overflow (REST-OF-BIB) records
completing the variable length/variable occurrence general

data available; there are local records for each library
holding; and there are records relating to particular orders
for the book.

The system went live with a database of well over a million

holdings of 750,000 titles. This already takes a substantial
portion of our 2 Gigabyte disc capacity, and our libraries

continue to catalogue some 180,000 new titles a year. Added to
this, our members required access to the vast (currently 4 million)
and growing files of records in the MARC (Machine Readable

Catalog) format created by the Library of Congress and the British
Library. Fortunately, the British Library has mounted these records
on a series of databases on its IBM-based British Library Automated
Information Service (BLAISE). What was necessary was for our system
to provide users with the record required, irrespective of where

that record might be stored. The system developed (and dubbed
SCOLCAP) exhibits the three classic features of a Distributed Database
System.

Partitioning can be defined as "the separation of the conceptual
database into increments that reside in two or more locations".

We have already seen that. BLAISE is considered as a source of
potential requirements while SCOLCAP stores locally only the actual
holdings of our libraries. The user does not need to know where a
particular record is stored; this is ascertained by the system when
the record has been requested.

Replication can be defined as "maintaining copies of all or part of
the conceptual database, to reduce telecommunications line traffic and
to increase availability and resilience”. Studies of our libraries’
intake have shown that a relatively small portion of the most recent
British records on BLAISE, will satisfy a relatively large portion of
the demand for new catalogue records:

5-2

[- -
e © © © © ©

(3
=3

Prebadb{lity of Finding sought recerd (%)

10

031.5'lol?l&l‘“2022&262830)2}ﬁ}6”
Nuadber of Honths UK HAKC

As new records are added to BLAISE therefore, we also add

them to SCOLCAP, dropping them if they have not been used within
the first few months when demand is heaviest.

Fragmentation is “the distribution of the data elements of a
Togical record across more than one location". After a book

has been ordered and catalogued, the ‘volatility' of its record
begins to decay. Put another way; the records most likely to
be required for consultation or amendment are those that have
recently been created or amended, and once through the initial
active stage are unlikely ever to be touched again. When this
relatively stable state has been reached therefore, the system
automatically checks that the record is available on BLAISE. If
it is, considerable disc space is saved by 'discarding® the
general data from the SCOLCAP database (the local data continues
to be held locally on SCOLCAP). Although the user continues to
think of one catalogue record, it is infact distributed between
two physical systems 500 miles apart.

The computer/computer communication that facilitates this
distribution is effected by HPs standard 2780 emulator. This is
far from ideal in an application requiring constant interaction,
but was the only protocol on which all parties could reach
agreement. Each line in the inter-machine conversation is treated
as a file, and to prevent time-outs the SCOLCAP HP 'talks® to the
BLAISE IBM machine all day long, sending regular ‘do nothing’
messages whenever there are no outstanding searches to be done.

All this is best illustrated by an example; say a user wants to
order two books. He asks for the first by its International
Standard Book Number (or Author, Title, Key words, etc). The system
searches the SCOLCAP database, and if the book is not found, asks BLAISE
to search its file of current British records for it, continuing to
switch between files in this way until a hit is found. If this
process takes longer than 6 seconds, the user is kept informed of the
progress of the search; otherwise the record is displayed on the

vdu without any further formality. The second search may find a
fragmented record as described above. In this case the user is

asked whether he wants to see what is available locally (local data
plus short author/title details etc) or the full record. If the

full record is required, the general data is retrieved from BLAISE
and -blended with the SCOLCAP-held data to create a virtual record
which is presented to the user.

SHARING THE INFORMATION

This ability to present to each user his own view of the data

is vital to a system such as this, the purpose of which is to share
the intellectual effort of book description between many different

5-3

institutions. The need for this was identified over 100 years
ago:

“When [was a Librarian myself, [always wondered at the
extraordinary waste of power in cataloguing new books.
While I was writing my slip according te the rules followed
in most libraries, | felt that there were probably 100
people doing exactly the same work.” (Prof. Max-Muller)

Nowadays the number of libraries worldwide likely to be cataloguing
the same book at about the same time could be counted in thousands
rather than hundreds, and the Anglo-American Cataloguing Rules are
painstakingly observed by so many of them, that there are tremendous
savings to be gained by allowing each catalogue entry to be made
once and shared by all.

SCOLCAP's libraries come in all shapes and sizes. There are
Colleges of Technology like Napier (once the home of the inventor
of the slide rule), public libraries orientated towards light home
reading, great and ancient university and research libraries and
small sqeciallst institutions like the Royal Observatory (once

the collection of the computer pioneer Babbage). Each has its

own policies towards the level and quality of description it needs
from, and is prepared to contribute to, its catalogues.

The system therefore had to control who 1is allowed to enter or amend
which field on each record to maintain its quality and integrity.
This is done by means of a range of priority codes applied both

to the records and individual users. This strict control {is

tempered by great ‘flexibility in the presentation of the data.

A table (called a Profile) is set up for each user specifying

the fields that should (and should not) be displayed, prompts that
should be given during data entry, validation applied, and so on,

so that from the users point of view the records have been designed
specifically for each libraries use.,

GAINING ACCEPTANCE

Such tailoring is part of a range of design features that were

necessary to ensure that the twin revolutions of automation and
cooperation would be accepted by a profession perhaps a little

conservative in outlook.

Considerable care was taken with the choice of the vdu, and then

with the design of the screens that were to appear upon it. Long
before the 3000 had been installed, a simulation of the vdu
conversations was set up on a 2645A with cartridges, and was taken
around all the libraries for comment, the feed back from which was
inmensely useful in finalizing the screen layouts. The only drawback,
was that many users became convinced that the system was at that stage
already up and working, and could not understand the ‘delay’ in its
implementation!

Similar attention was paid to the character set. Libraries deal

with a range of material, including scientific and technical texts
and non european literature, which requires characters beyond the
range of standard ASCII. After long consultation we developed a
special character set for librarfes. It contains all of USASCII plus
Greek upper and lower case and a range of extra national
(Scandinavian, Polish, Turkish) characters, plus diacriticals

(accents). With this set it is possible to catalogue all material

5-4

either directly or according to internationally accepted rules

of transliteration (eg Cyrillic). The 264xx's matrix of

7 x 13 with half shift proved totally adequate for defining the
characters required. The only difficulty encountered was with

the superimposition of diacriticals. In normal printing, a
diacritical superimposes the character it modifies (eg &, &).
Unfortunately there seems to be no true 'overstrike' facility on the
264xx; one cannot simply 'or' the matrices together. The solution
was to define a third character set (in addition to the 'standard’
and 'special’ sets) containing all known combinations of

character and diacritical, and modify the terminal firmware to
display from this set whenever a character ‘has been preceded by

a legal diacritical.

Our experience with the character set is an example of something
more general. The requirements of an online distributed
cooperative bibliographic automation system have proved to be
specialized, even outlandish (at one agency's office I recently
saw a poster: GOD IS ALIVE AND WELL AND WORKING ON SOMETHING LESS
COMPLICATED THAN SCOLCAP), but they have always, so far, been
matched by some feature of HP hardware and software. In working
on this project I have found out about a wide range of book trade
systems that are using the 3000 as their workhorse. Perhaps the
time is right for a Special Interest Group on bibliographic
systems within HPIUG. If I can think of a suitable acronym,
perhaps I'11 set one up

5-5

A TREE GROWS IN IMAGE
Data Structures in the IMAGE Database

Theodore Dillenkofer Jr.
Software Development Manager
Austin Information Systems, U.S.A.

Introduction

Information aquisition, maintenance and access has become on of the fore-
most uses of computing machinery & software. Tools to organise information
have been developed and utilized with varying degrees of effeciency. Implicit
in the development of these tools and the systems that employ them has been
the concept of data structures; the logical organization of data into main-
tainable, accessable formats for use in computerized information systems.

This paper describes and explores in depth the hierarchal data structure com—

monly referred to as a tree and how to implement a hierarchal model using the
capabilities of the IMAGE database.

Nomenclature
PU——Y WY
[)
[
p
I]
‘ L 4 [e
Figure 1 Figure 2
A
C
F G
H L J
Figure 3 Figure &4

6-1

Terminology and morphology of trees can best be communicated through the
use of graphs. A graph is a set of points (NODES) defined by the termination
vertices of descreet line segements (EDGES or PATHS). Figure 1 is a graph with
seven nodes and five paths. A special case is presented in Figure 2, the con-
nected graph. A connected graph is any graph in which it is possible to con-
truct a path between any two vertices by using existing paths and nodes. Fig-
ure 3 is a subset of connected graphs known as a circular or cyclical graph.
In this case, a path can be contructed using three or more nodes to return to
the starting node. This structure must be avoided when using the technique in
this paper for reasons which are explained in the section on traversal
algorithms.

Figure 4 represents a tree structure. A tree can be defined as a con-
nected graph with no circular structures. In this paper we will deal with
oriented trees. An oriented tree 1s a tree in which one node is identified as
the root node (node A in figure 4). The other nodes can be referred to in
terms of levels. The root node is level zero. Nodes B and C are on level
one, nodes D, E, F and G are on level two and H, I, and J are on level three.
A particular node is referred to in terms relative to other nodes on the path
between that node and the root. Any nodes on the path between the root node
and the particular node are referred to as ancestors. The immediately preced-
ing node is the parent. Any nodes further down the tree from a given node are
called descendants. Descendants immediately following a node are called chil-
dren and a group of children with the same parent is referred to as a family.
A node with no descendants is called a terminal node. Referring again to Fig-
ure 4, node A 18 the root node with children B and C. B is the parent node of
a family composed of two children, D and E, of which D is a terminal node and
E 18 a parent in its own right. The ancestors of node I are B and E.

There is another form of tree called a binary tree, which i{s a subset of
the general tree graph. In a binary tree, each node has one parent and at
most two children. Removing node I from Figure 4 produces a binary tree.
While binary trees can be used to represent the same structure as a regular
tree, we shall use the regular tree for the purposes of demonstration.

IMAGE model

NAME: PARENT-MAST, MANUAL;
ENTRY: PARENT(1);
CAPACITY: n;

NAME: CHILD-DTL, DETAIL;

ENTRY: PARENT(!PARENT-MAST);
CHILD;

CAPACITY: n;

Figure 5

Implementing a tree utilizing IMAGE is a simple procedure. Two data sets
are required: a manual master called PARENT-MAST and a detail set called
CHILD-DTL. This is the minimum configuration ; other data sets can be added
to simplify operations and expand capabilities as explained in the applica-
tions examples. Figure 5 shows the database morphology and data items in each
data set.

6-2

Each family in the tree is entered as an IMAGE chain. The parent node 18
put in the PARENT-MAST and each child is entered into the CHILD-DTL with
{tsparent node as the search item. Some nodes are both parent and child
(nodes B, C and E in Figure 4) and are entered both in PARENT-MAST as PARENT
and in CHILD-MAST as the CHILD of ite PARENT node and as the PARENT ot its own
children (Figure 6).

PARENT-MAST CHILD-DTL
PARENT PARENT CHILD
A A B
A C
B B D
B E
C C F
Cc G
E E H
E I
E J
FPigure 6

In this manner a tree of any length can be comstructed, limited only by
the capacity of the data sets.

Traversal algorithm

One of the most important procedures performed on a tree is a traversal.
A traversal is accomplighed by starting at the root and following every path
to every node in the tree. In our example tree of Figure 4, the proper tra-
versal sequence is:

A,B,D,E,H,1,J,C, F,G

This 18 essentially left to right, top to bottom. Accomplishing this
traversal requires the use of IMAGE's internal chain pointers, accessed
through the database control block as previous record number, nmext record num-
ber and current record number. A stack or array must be set up to hold the
pointer of the current record being accessed in a mode 5 DBGET and the chain
head. Figure 7 is a flowchart of the complete process.

6-3

Figure 7

6-4

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

3:

4:

5:

6:

7:

Initialization.

The array to hold chain heads and pointers is set up. The
dimensions are (2,n), where n is the largest number of levels
expected. The level counter (LEVEL) is set to one, the array is
initialized to blanks and the root node is obtained and moved to
ARRAY(1,LEVEL) and the variable PARENT.

DBFIND.
A DBFIND is performed on the CHILD-DTL using PARENT as the
search item value.

Check for descendants.

The number of records in the chain is checked through use of the
NUM-RECS variable in the DB control block. If the current node
is a terminal node, the procedure jumps to a routine which rees-
tablishes position in the preceding chain, then returns to

step 4. This recovery procedure is covered in steps 7 through
10.

DBGET.
A chained (mode 5) DBGET is performed on the CHILD-DTL, bringing
a child into the procedure.

Check for end of chain.

If the end of the chain has been reached (DBCW=+15) the preced-
ing chain must be reestablished. This is accomplished using the
same routine branched to in step three and returns to step 4.

Storing information.

ARRAY(2,LEVEL) is set to the current record number of the chain
using CURR-REC-NO of the DB control block. This places the
chain head and the position in the chain opposite each other in
ARRAY., LEVEL is incremented by one, the CHILD from step 4 is
woved to ARRAY(1,LEVEL) and variable PARENT is equated with
CHILD. Process control is then shifted back to step 2.

Reestablishing the chain: part 1.
LEVEL is decremented to serve as a pointer into ARRAY for the
previous chain head and record pointer.

Check for fianish.
If LEVEL < one, then all nodes have been accessed and the pro-
cedure 18 finished. Step 10 terminates the procedure.

Reestablishing the chain: part 2.

Call DBFIND using ARRAY(1,LEVEL) as the search item value. Use a
directed read (mode 4) DBGET using the pointer value in AR-
RAY(2,LEVEL) as the record number. This raises the level of
access by one and resumes the previous chain at step 6 before
the branch to step 2'took place. The routine then jumps to

step 4, getting the next entry in the chain.

10: End of traversal.

6-5

Any operations to be performed on data should be inserted in step 6 be-
fore the branch to step 2. An example using this technique to store and
retrieve parts lists and generate total part quantities follows.

Example: Product Structure System.

BEGIN DATA BASE PSBASE;
PASSWORDS: 10 BOSS;

ITEMS: PART, X16;
CoMP, X16;
DESC, X20;
QUANT, 11 ;
SUM, 12 ;
LEVEL, X2 ;
SETS:

NAME: PART-MAST ,MANUAL(10/10);
ENTRY: PART(1),
DESC,
SUM,
LEVEL;
CAPACITY: 50;
KL »
NAME: COMP-MAST,AUTOMATIC(10/10);
ENTRY: COMP(1);
CAPACITY: 50;
<« »

NAME: COMP-DTL,DETAIL(10/10);
ENTRY: PART(!PART-MAST(COMP)),
COMP(COMP-MAST) ,

QUANT;
CAPACITY: 50;

Figure 8
END.

6-6

r?r»—g; F;{ L [

The first step is to create individual parts lists and then link them to
the top assembly to form a tree. If QUERY is to be used, all parts must first
be added to the PART-MAST and then added to the COMP-DTL, using the assembly
part number as PART, the compoment part number as COMP and the quantity of
components as QUANT. One record is added to the detail set for each component
of the assembly.

When each assembly is complete, it must be linked to the next higher as-
sembly in a similiar fashion. Add the next higher assembly number to PART-
MAST, then add one record for each sub-assembly as was done for components.
This process continues until all components, sub-assemblies, and assemblies
are entered into the database, forming a tree with the top assembly number
being the root node.

At this time, PART-MAST contains a list of all part numbers used in the
product, COMP-MAST contains all the entries im PART-MAST except the root or
top assembly number and the COMP-DTL holds the structure of the tree. It is
important to note that any given part cam occur in any number of assemblies,
reducing the amount of data entry time and disc epace required to build and
store the tree.

Parts lists can be generated by performing a DBFIND on COMP-DTL using any
PART value as the search value for the search item PART. A chained DBGET
(Mode 5) results in a 1list of all components used in the assembly requested.

In a like manner, where used lists can be obtained using & DBFIND on
COMP-DTL with any COMP value as the search value for the search item COMP.
This procedure results in a list of assemblies where a part is used. To ob-
tain full lists of either assemblies or where used, the PART-MAST or COMP-MAST
must be read serially, performing DBFIND's and chained DBGET's on the COMP-DTL
using the previously mentioned techniques. The masters can also be sorted to
make the resulting lists easier to user.

One of the major uses of systems of this nature is to generate gross re-
quirements of parts required to build a product. This is the purpose of the
SUM field in the PART-MAST. A tree traversal ie performed and each QUANT in
the COMP-DTL is multiplied by the QUANT's in the brach it belongs to and added
to the SUM of that QUANT PART's PART-MAST record. Figure 9 is a flowchart of
the algorithm to calculate these sums. The superstructure of the flowchart is
identical with that of Figure 7, differing only in the structure of ARRAY, a
few extra varibles and some IMAGE calls to DBGET and DBUPDATE the PART-MAST
records.

6-8

directed read (mode 4) DBGET using the pointer value in AR-
RAY(2,LEVEL) as the record number. This raises the level of
access by one and resumes the previous chain at step 6 before
the branch to step 2 took place. Divide LEVEL-MULT by AR-
RAY(3,LEVEL). The routine then jumps to step 4, getting the next
entry in the chain.

STEP 11: End of traversal.

6-9

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

2:

3:

10

Initialization.

The array to hold chain heads and pointers is set up. The
dimensions are (3,n), where n is the largest number of levels
expected. The level counter (LEVEL) is set to one, the array is
initialized to blanks and the root node is obtained and moved to
ARRAY(1,LEVEL) and the variable PARENT. The quantity multiplier
(LEVEL-MULT) is set to one, as is ARRAY(3,LEVEL).

DBFIND.
A DBFIND is performed on the CHILD-DTL using PARENT as the
search item value.

Check for descendants.

The number of records in the chain is checked through use of the
NUM-RECS variable in the DB control block. If the current node
is a terminal node, the procedure jumps to a routine which rees-
tablishes position in the preceding chain, then returns to

step 4. This recovery procedure is covered in steps 8 through
11.

DBGET.
A chained (mode 5) DBGET is performed on the CHILD-DTL, bringing
a child into the procedure.

Check for end of chain.

If the end of the chain has been reached (DBCW=+15) the preced-
ing chain must be reestablished. This is accomplished using the
same routine branched to in step three and returns to step 4.

Storing information.

ARRAY(2,LEVEL) 1is set to the current record number of the chain
using CURR-REC-NO of the DB coantrol block. This places the
chain head and the position in the chain opposite each other in
ARRAY. LEVEL is incremented by one, the CHILD from step 4 is
moved to ARRAY(1,LEVEL) and variable PARENT is equated with
CHILD.

Updating the sum field.

DBGET, mode 7 on PART-MAST. Move QUANT to SUM. DBUPDATE on
PART-MAST. Move QUANT to ARRAY(3,LEVEL). Multiply LEVEL-MULT
by QUANT. Process control is shifted to step 2.

Reestablishing the chain: part 1.
LEVEL 18 decremented to serve as a pointer into ARRAY for the
previous chain head and record pointer.

Check for finish.
If LEVEL < one, then all nodes have been accessed and the pro-
cedure is finished. Step 10 terminates the procedure.

Reestablishing the chain: part 2.
Call DBFIND using ARRAY(1,LEVEL) as the search item value. Use a

HOW TO GET A HIGH PERFORMANCE ORDER-FILE

by
Hanne Hansen, M.Sc
DOMI A/S
Denmark

Abstract

How do you organize an order-file, when you have to add
5000 new orderlines a day, and still be able to do
direct access to the orderlines ? The first answer is
naturally KSAM or IMAGE. We thought it to be KSAM, but
after we started production on the first part of the
system, we found that production on the whole system,
probably would give unsatisfactory responsetimes. The
second answer and the answer we stopped with, is a
structured MPE-file. This paper describes how we have
structered the file, fram our exact knowledge of the
data to be stored in the file, how we have made
intrinsics for accessing the file, including generic
search, and how we have made it possible to change the
‘key values, without the expensive disec I-O you have with

The System

The system we needed, was a order-entry system, capabel
of handling 5000 orderlines a day. The entry of the
orders would not present any problems, but as the orders
normally passes thru the whole system on the same day
they are entered, we found that direct-access to the
orders, was a must.

The problems

We found, from our knowledge of the HP-3000, that using
a KSAM-file for order/orderline-file, would be the right
solution, but when we started production on only a part
of the system, we realized that if we were to run the
whole system, we would get unsatisfactory responsetimes.

Knowing this, we started looking for the bottleneck of
the system, and soon found, by examine the logfiles, the
KSAM-file to be the main problem. From the logfiles, we
saw, that the number of accesses on the key-file was
8-20 times higher than on the data-file. As we
investigated the problems further, we found that the
responsetimes varied considerably, from user to user,
but seemed to be stable for each user. As it turned out,
the answer was quite simple. Some of the users entered
one order, with all connected orderlines, at the same
time. In this case the order and the orderlines would be
written close to each other in the KSAM-file, whereas
others entered the orders in the morning, and then added
orderlines to all the orders, during the day. In this
case the order and the lines are spread all over the
file, thus giving longer responsetimes, when the order,
later on, was processed. The elapsed time used for

7-1

adding one transaction, one orderline, varied from 1.9
sec. for the first type of user to 3.0 sec. for the
second type.

The solution

With this new information, and some extra demands to a
neWw orderfile, we felt that we would be able to build a
normal MPE-file, and then logically structure the file
to solve the same problem as KSAM did in the original
version, but with improved capabilities and reduced
responsetimes. As we started working on the idea, we
found that, by making two different structures in the
MPE-file, we could replace both the KSAM-file, and the
IMAGE databases, we used in the system.

The logical D-File

The file consists of two psysical files, a data-file and
a key-file. The first records of the data-file holds a
description of the logical files contained in the file,
where the keys are placed in the records, and some
pointer information (first entry etc.) The first records
of the key-file contains information on the keys in the
file, size, position etc. and 1links to the last sorted
key and the last written key.

Our main problem with KSAM, in this enviromnment, is the
heavy access on the key-file, because we, to be sure of
which record is current, has to read thru the key-file,
even for 'sequential' access. To solve this problem, we
specified, in the data-file definition, how many records
to allocate per primary key entry. (A definition of 1
record per primary key will give you a normal
'KSAM-type' file) When the first record, with a specific
key value, is written, a number of contigous records are
allocated in the data-file. Any subsequent writes, with
the same key value, will be written in the block
allocated by the first write, and no key entry will be
added in the key-file. With this structure, a whole
datablock can be retrieved with only one access to the
key-file.

This first version contains fixed length data records of
128 words each, and variable length keys, where, similar
to the UNIX concept, just the necessary number of words
(bytes) are written. A later edition will contain the
same concept for the data-file.

The intrinsics

To manipulate the data we have made the following
intrinsics :

- DREAD will read the next record in the data-
file in key order.

- DREADBYKEY will read the first record in the data-
file, with a specific key value.

- DREADDIR will read a record in the data-
file, specified by recordnumber.

7-2

DUPDATE will update current record in the data-
file. Any keys, referring to only
one record, can be changed.

DWRITE will write a new record in the data-
file.

- DREMOVE will remove current record from the
data-file and from the key-file.

DREORG will remove all deleted records
in the data-file and sort all key
entries into a new file.

Data consistency

The sequence of operation, is to update the key-file
before the data-file. For DUPDATE, if a key value has
been changed, the sequence 1s : A new key entry is
written, the data record with the new key value is
updated, the old key entry 1s deleted. This sequence,
and the fact that any mismatch, between the key value in
the key-file, and the key value in the data-file, is
considered as ‘'record not found',(The entry is logged
and removed) releases you from the time consuming
recovery from system failures, as KSAM-files requires.
The file will be recovered automatically, and you might
only loose what was current record.

Reorganization

As new key entries are added to an overflow area of the
key-file, it means that you have to reorganize the file,
when the overflow area becomes too big. By doing this,
rather than, 1like KSAM, keep the file 'sorted' at all
times, you can write the key-file with fewer disc
accesses, and with no overhead to key-split etc. This
overhead is transferred to the reorganization procedure,
which is run during nighttime, (maybe from a
sleeper-process) when the load on the system is nil. The
retrieval of the data does not take as many disc
accesses, as you should expect, because, in the most
dynamic files, a whole block of data is retrieved from
one single key.

This structure, with reorganization of the file, forces
you to split your data, according to how dynamic they
are, to get the best performance. The data can be
divided into three catagories :

- Activity data, where you adds, modifies and
deletes constantly.

- Update data, where you modifies constantly,
adds frequently and deletes
seldomly.

- Static data, where you modifies, adds and
deletes seldomly.

The reorganization procedure removes all deleted entries
in the data-file, and build a new key-file. As a special
feature, you can specify some alternative keys, for ad
hoc program: ionthly reports, or to establish a
relation betwe Jifferent logical files.

7-3

Our expectations to the D-file

Improved performance through fewer disc accesses

Improved performance because key-file
reorganization is running at night

Improved up-time because no time consuming
recovery is needed after a system failure

Improved portability as all routines are
written in FORTRAN

References :

"Systems Development, Projects Life - The practical experience"
Paper by Carl Christian Lassen at the IUG Edinburgh Conference 1983

"The Way To The Right Solution"
Article by Carl Christian Lassen, Supergroup Newsletter July 1982

"Centralized Database Access"
Paper by Erik Wendelboe at the IUG Copenhagen Conference 1982

"Solve Your Problems With Imagination"
Paper by Erik Wendelboe at the IUG Edinburgh Conference 1983

"Experiences With The SL Tecniques, Easing The Development

And Maintenance Burden"
Paper by Hanne Hansen at the IUG Copenhagen Conference 1983

7-4

SOFTWARE PROTOTYPING: TODAY'S APPROACH TO INFORMATION
SYSTEMS DESIGN AND DEVELOPMENT

ORLAND LARSON
HEWLETT -PACKARD

Among the challenges facing the data processing community are
the increasing costs and time associated with developing
applications, the increasing backlog of applications, the
excessive time spent maintaining applications, and the
shortage of EDP professionals. In addition, systems
implementation and functionality are impaired due to the lack
of tools which involve end-users in the system development
process.

Meeting these challenges requires a more progressive approach
to sapplications development - one that is significantly
different from traditional system development cycles. This
approach is called SOFTWARE PROTOTYPING.

This paper defines software prototyping, identifies its major
uses, reviews the step-by-step prototype development process,
and discusses the resources and skills required to
effectively prototype applications. It also addresses the
problems and costs associated with software prototyping.

8-1

INTRODUCTION

The Changing Role of Data Processing

The data processing department has changed dramatically since the
1960°e, when application development as well as production jobs
were usually run in a batch environment with long turnaround
times and out-of-date results.

The 1970’s were a period of tremendous improvement for the data
processing environment. One of the key developments of that
period was the development and use of Data Base Management Systems
(DBMS) . This provided the basis for on 1line interactive
applications. In addition, computers and operating systems
provided programmers the capability of developing application pro-
grams on line, sitting at a terminal and interactively developing,
compiling, and testing these applications. The end user was also
provided with easy to use on-line inquiry facilities to allow them
to access and report on data residing in their data bases. This
took some of the load off the programmers and allowed them to
concentrate on more complex problems.

During the 1980°'s, for the Data Base Administrator and MIS
manager, we see increased importance and use of centralized data
dictionaries or "centralized repositories of information about the
corporate data resources.” We also see simpler and more powerful
report writers for the end user and business professional. For
the programmer, we see the use of very high level transaction
processing languages to reduce the amount of code required to
develop applications. Finally, the tools have been developed to
effectively do software prototyping which will provide benefits to
the end user as well as the application programmer and analyst.

Throughout the Seventies and Eighties, information has become more
accurate, reliable, and available, and the end user or business
professional 1is becoming more involved in the application
development process.

Challenges Facing MIS

The MIS manager's number one problem is the shortage of EDP
gpecialists. A recent Computerworld article predicted that
by 1990 there will be 1/3 of a programmer available for each
computer delivered in this country. Software costs are also
increasing because people costs are going up and because of
the shortage of skilled EDP specialists. The typical MIS
manager is experiencing an average of two to five years of
application backlog. This doesn’t include the “invisible
backlog", the needed applications which aren't even requested
because of the current known backlog. In addition, another
problem facing MIS management is the limited centralized
control of information resources.

8-2

The programmer/analyst is frustrated by the changeability of
users’ application requirements (the only thing constant in a user
environment is change). A significant amount of programmers’ time
is spent changing and maintaining users’ applications (as much as
60% of their time). Much of the code the programmer generates is
the same type of routines such as error checking, formatting
reports, reading files, checking error conditions, data
validation, etc. This can become very monotonous or counter-
productive for the programmer.

The end user or business professional is frustrated by the limited
access to information needed to effectively do his/her day-to-day
Job. This is especially true for those users who know their
company has spent a great deal of money on computer resources and
haven't experienced the benefits. The user’s business environment
is changing dynamically and they feel MIS should keep up with
these changes. MIS, on the other hand, is having a difficult time
keeping up with these requests for application maintenance because
of the backlog of applications and the shortage of EDP
specialists. Once the user has "signed off" on an application, he
is expected to live with it for awhile. He is frustrated when he
requests what he thinks is a “simple change" and MIS takes weeks
or months to make that change.

Traditional Approach to Application Development

There are some myths concerning application development:

- Users know what they want
- Users can communicate their needs to MIS
- Users needs are static

The traditional approach to application development has serious
limitations when applied to on-line, interactive information
systems that are in a astate of constant change and growth.
Communications among the user, analyst, programmer, and manager
tend to be imprecise, a detalled analysis prolongs the process to
the annoyance of the user, and specifications are either ambiguous
or too voluminous to read. To compound this problem, the user is
often requested to "freeze" his requirements and subsequent
attempts at change are resisted.

Let’s review the traditional approach to application development.

8-3

(_ T Provratd ___\

TRADITIONAL APPROACH
TO APPLICATION DEVELOPMENT

User AnalysllPtommu

—
:xﬁ for ""’—”""‘_"Lf:?;;__—__m months
specificath

changes Develop
- The user first requests an application and then an analyst
or programmer is assigned to the application.

- The analyst or programmer takes the oftentimes sketchy user
specifications and designs more complete specifications.

- The user then reviews the analyst’s interpretations of his
specifications and probably makes additional changes.

- The analyst redesigns his specifications to adapt to these
changes. (By this time, several days, weeks or months have
gone by.)

- The user approves the specifications and a team of analysts
and programmers are assigned to develop, test and document
the application. (This may take months or years.)

- The user finally tries the application. Months or years
may have gone by before the user gets his first look at the
actual working application.

- The user, of course, will want additional changes or
enhancements made to the application, to adjust the
application to the “real world".

- Depending on the extent of these changes, additional
maintenance specifications may have to be written and then
coding, testing and documentation.

- The total application development process may take months
or years and the maintenance of these applications may go

on forever.

The question is: “Can MIS afford to continue using this
traditional approach to application development?"

8-4

Prototyping Defined

According to Webster's Dictionary, the term prototype has
three possible meanings:

1) It 4is an original or model on which something is
patterned: an archetype.

2) A thing that exhibits the essential features of a
later type.

3) A standard or typical example.

J. David Naumann and A. Milton Jenkins in a paper on
software prototyping (see reference 3) believe that all three
descriptions apply to systems development. Systems are
developed as patterns or archetypes and are modified or
enhanced for later distribution to multiple users. "A thing
that exhibits the essential features of a later type” is the
most appropriate definition because such prototypes are a
first attempt at a design which generally 1is then extended
and enhanced.

Software Prototypes

The process of software prototyping is a quick and relatively
inexpensive process of developing and testing an application
system. It involves the end user and programmer/enalyst
working closely to develop the application. It is a live,
working system; it is not just an idea on paper. It performs
actual work; it does not just simulate that work. It can be
used to test out assumptions about users’ requirements,
system design, or perhaps even the logic of a program.

Prototyping is an iterative process. It begins with a simple
prototype that performs only a few of the basic functions of
a system., It is a trial and error process - build a version
of the prototype, use it, evaluate it, then revise it or
start over on a new version, and so on. Each version
performs more of the desired functions end in an increasingly
efficient manner. It may, in fact, become the actual
production system. It ie a technique that minimizes the
dangers of a long formal analysis eand increases the
likelihood of a successful implementation.

The Prototype Model

Prototyping an information system can be viewed as a four
step procedure.

8-5

PROTOTYPING APPROACH
TO APPLICATION DEVELOPMENT

User Analyst/Programmer

Deveiop
working

Work closely tegether

identily Basic
Requiremants

identity changes to gystem Revise &
Provide new version \ enhance

implement
and use

_

Step 1. Identify users® basic requirements:

- End user and programmer/analyst work closely together.

- Concentrate on users’ most basic and essential requirements.

- Define data requirements, report formats, screens, and menus.

- Need not involve written specifications.

- For larger systems, a design team may need to spend a few weeks
preparing a first-effort requirements document.

Step 2. Develop a working prototype:

- Programmer analyst takes the notes developed in the user
discussions and quickly creates a working system.

- Designs and/or defines data base and loads subset of data.

- Makes use of defaults and standard report formats.

- Performs only the most important, identified functions.

Step 3. Implement and use the prototype:

- Programmer/analyst demonstrates prototype to small group of users.
- Users may request enhancements during demo.
- Users make notes of all changes they would like made.

Step 4. Revise and enhance the prototype:

- Programmer/Analyst and user discuss desired changes.

- Changes and enhancements for the next version are prioritized.
- Programmer/Analyst creates next version.

- Go back to Step 3.

NOTE: Steps 3 and U are repeated until the system achieves the
requirements of this small group of users. Then either
introduce to a larger group of users for additional require-
ments or if enough users are satisfied, demo to management
to gain approval for the production system.

8-6

Uses of Software Prototypes

1. To clarify user requirements:

- Written specs are often incomplete, confusing, and take a static
view of requirements.

- It is difficult for an end user to visualize the eventual system,
or to describe their current requirements.

- It is easier to evaluate a prototype than written specifications.

- Prototyping allows - even encourages users to change their minds.

- It shortens the development cycle and eliminates most design errors.

- It results in less enhancement maintenance and can be used to test
out the effects of future changes and enhancements.

2. To verify the feasibility of design:

- The performance of the application can be determined more easily.

- The prototype can be used to verify results of a production system.

- The prototype can be created on a minicomputer and then that software
prototype may become the specifications for that application which
may be developed on a larger mainframe computer.

3. To create a final system:
- Part (or all) of the final version of the prototype may become
the production version.

- It is easier to make enhancements and some parts may be recoded
in another language to improve efficiency or functionality.

Essential Resources

The following are the essential resources to effectively do software proto-
typing:

1. Interactive Systems

- Hardware and Operating System - When doing software prototyping, both
the builder and the system must respond rapidly to the user’s needs.
Batch systems do not permit interaction and revision at a human pace.
Hardware and associated operating systems tailored to on-line interac-
tive development are ideal for software prototyping.

2. Data Management Systems
- A Data Base Management System provides the tools for defining, creating,

retrieving, manipulating, and controlling the information resources.
Prototyping without a DBMS is inconceivablel

- A Data Dictionary provides standardization of data and file locations
and definitions, a cross reference of application programs, and a built-
in documentation capability. These are essential to managing the
corporate resources and extremely useful when prototyping.

8-7

3. Generalized Input and Output Software

- Easy to use data entry, data editing, and screen formatting software
are extremely helpful in the software prototyping process to allow
the programmer to sit down at a terminal with a user and interactively
create the user’s screens or menus.

- Powerful easy-to-use report writer and query languages provide a
quick and effective way of retrieving and reporting on data in the
system. A report writer that uses default formats from very brief
specifications is most useful in the initial prototype.

4. Very High Level Languages

~ Traditional application development languages such as COBOL may not be
well suited for software prototyping because of the amount of code
that hag to be written before the user sees any results.

- Very powerful high level (MACRO) languages that interface directly to
a data dictionary for their data definitions are ideal. One statement in
this high level language could realistically replace 20-50 COBOL state-
ments. This reduces the amount of code & programmer has to write and
maintain and speeds up the development process,

5. Library of Reusable Code

- A library of reusable code to reduce the amount of redundant code
a programmer has to write is sn important prototyping rescurce.

- This code could represent commonly used routines made available
to programmers.

Potential Problems

What are the problems with prototyping? How can data processing management
control its use and keep it within bounds?

One problem with prototyping is the acceptance of this method by the systems
people. It also may encourage the glossing over of the systems analysis
portion of a project. It may be difficult to plan the resources to develop
a system. Programmers may become bored after the nth iteration of the proto-
type. Testing may not be as thorough as desired and it might be difficult
to keep documentation on the application up to date because it is so easy to
change.

Even with these concerns, prototyping provides a very productive user-designer
working relationship. So it behooves all data processing executives
to learn to use this powerful tool creatively and to manage it effectively.

The advantages of prototyping greatly outweigh the problems.

8-8

Cost and Efficiency

It has been found that there is an order of magnitude decrease in both develop-
ment cost and time with the prototype model.

It is often difficult to estimate the cost of an application system because the
total costs of development, including maintenance are usually lumped together.

The cost of implementing the initial system is much lower than the traditional

approach (typically less than 25%).

However, software prototyping could be expensive in three ways:
1. It requires the use of advanced hardware and software.
2. It requires the time of high level users and experienced designers.

3. Efficiency may be compromised.

The main thing to remember is that the main focus of prototyping is not so
much efficiency but effectiveness.

Summary

Prototyping is truly a "state of the art" way of developing applications.

- Software prototyping promotes an interactive dialogue between the
users and the programmer, which results in a system being developed
more quickly, and results in an interactive development approach
which is friendlier for the end user.

- The prototype provides a live working system for the users to experiment
with instead of looking at lengthy specifications.

- The users are provided with an early visualization of the system which
allows them to immediately use it.

- The users are allowed and even encouraged to change their minds about
user interfaces and reports.

- Maintenance is viewed right from the beginning as a continuous process
and because the prototype is usually written in a very high level lan-
guage, changes are faster to locate and easjer to make.

- Software prototyping results in:

* Users who are much more satisfied and involved in the development
process.

* Systems that meet the user's requirements and are much more effective
and useful.

* Improved productivity for all those involved in software prototyping:
the users, the analysts, and the programmers.

8-9

&
Hewlett-Packard’s Prototyping Tools

Hewlett-Packard is one of the few vendors that supplies the majority of the
tools needed to effectively do software prototyping.

* Interactive Systems

- HP3000 (all series)
- MPE Operating System

Data Management Systems

- IMAGE/3000

- KSAM/3000

- MPE files

- DICTIONARY/3000

* Generalized Input/Output Software

- VPLUS/3000
- QUERY/3000
- REPORT/3000
- INFORM/3000
- DSG/3000

Very High Level Languages

- TRANSACT/3000

Bibliography

Canning, Richard G., "Developing Systems By Prototyping,” EDP Analyzer (19:9)
Canning Publications, Inc., September, 1981.

Naumann, Justus D. and Jenkins, A. Milton, "Prototyping: The New Paradigm
for Systems Development,” MIS Quarterly, Vol. 6, No. 3, September 1982.

Naumann, Justus D., and Galletta, Dennis F., “"Annotated Bibliography of Proto-
typing for Information Systems Development,” Management Information
Systems Research Center Working Paper (MISRC-WP-82-12), September 1982.

Note:

The above working paper as well as the paper by Naumann and Jenkins
entitled "Prototyping: The New Paradigm for Systems Development,”

MIS Research Center-Working Paper (MISRC-WP-82-03), October 1981, are
available for §3.00 each from :

3

University of Minnesota Systems Research Center
School of Management

269 19th Avenue South
University of Minnesota
Minneapolis, Minnesota 55455

or by calling 612-373-7822.

Podolsky, Joseph L., “"Horace Builds a Cycle,” Datamation, November 1977,
pp.162-186.

8-10

Title: IMAGE/3000 STRATEGY

Author: Wendi Brubaker

Position: Product Line Manager, (408) 725-8111
Ex. 3765

Address: 19420 Homestead Rd., Cupertno, CA 95014

Are you a HP employee? Yes
Abstract:

Virtually every HP3000 customer uses the IMAGE/3000
data base management system to help make everyday busi-
ness decisions. Part of Hewlett-Packard's strategy is
to protect that large software investment and to pro-
vide a growth path for the future.

In this calendar year, HP will be announcing several
IMAGE/3000 enhancements which focus on improved recov-
ery systems and larger applications. Intrinsic Level
Recovery will guarantee the physical integrity of a
data base after a system crash. Logical integrity will
be improved through an enhancement to the DBRecov
utility. This will allow the log file to be quickly
scanned for transaction begin and end pairs. Incom-
plete transactions against a single data base will be
backed out when the affected data base is reopened.

1983 also promises MPE-V with disc caching which, with
additional memory, will improve IMAGE/3000's perfor-
mance on the Series 4X and 6X computers.

In the future, HP plans to provide a next
generation IMAGE/3000 II product on HP3000's with MPE-
V. 1IMAGE/3000 II will elevate the current data base
size limits and increase the maximum number of concur-
rent users. There will also be an optional external
interface to IMAGE/3000 II which will conform to the
emerging HP IMAGE standard. Over the next few years,
HP IMAGE will be offered across a range of HP
computers.

HP is committed to the future of IMAGE across the com-
plete range of HP technical and business computers.

9-1

Alan T, Pare
Hewlett Packard

The Data Dictionary: An Emerging System Resource

The utility of the data dictionary grew out of its first
role as a documentation tool for managing data base defini-
tions in the mid 1970's. The spectrum of its uses has
evolved to a multitude of services for system data resources
ranging from control, standardization, reporting, document-
ing, to aiding in the development of application programs.
The way it is employed often depends on the organization's
requirements and obviously the data dictionary system (DDS)
capabilities itself. Today, information management necessi-
tates stricter control to allow timeliness in auditing prac-
tices, security enforcement, analyzing the impact of system
changes, maintenance procedures, design, and other opera-
tions tied to this objective. Cost effectiveness is para-
mount now more so than ever with higher labor expenses and
vast amounts of complex system data and application programs
to be developed and maintained. The DDS facilitates all of
these needs by providing a centralized repository for
documenting attributes, relationships, location, transac-
tions, ownership, and various other data about data as ref-
erenced in the system environment. To support this array of
functions, the DDS is being integrated with the operating
system, program development environment, language compilers,
report writers, query facilities, and other subsystems to
play a more active role in the execution process of data
access. This entails a high degree of sophistication and
intelligence to be built into the DDS and direct interfaces
with all referencing services. Optimizing performance in
accessing the data dictionary, providing independence from
physical storage structure for its dependent components, and
customizing the DDS around an organization's requirements
introduces even a higher degree of complexity in its
implementation.

The DDS technology is more understood today with the advent
of numerous research projects, technical literature and text

10-1

books, and current product offerings particularly those on
large mainframes. In the future, the DDS will be extended
to provide more accurate ways of modeling the system en-
vironment, prototyping and planning more effectively, aid in
developing friendlier end user products, and support dis-
tributed processing functions. The widespread proliferation
of DBMS usage is placing additional burdens on the DDS to
better support the DBA's responsibilities. The data dictio-
nary system will eventually permeate the system architecture
to optimize its controlling ability and performance. Figure
1 gives an overview of what a DDS of the future might look
like.

Realizing the needs of its customer base and the importance
of this flourishing technology, Hewlett-Packard is agres-
sively moving to meet this challenge.The corporate research
labs are studying advanced areas of DDSs dealing with infor-
mation oriented properties of data related to the semantics
of system data bases, i.e. real world entities as represent-
ed by data objects and their meaningful properties. The
development lab is pursuing investigations into an inte-
grated system wide DDPS with a view toward distributed
processing.

While these activities reflect a committment to understand-
ing the future implementation methodology required to
develop a state of the art DDS on Hewlett-Packard computers,
activities are currently underway to meet the needs of our
growing customer base in this area today.

Figure 2 illustrates the DICTIONARY/3000 applications data
dictionary and its supporting RAPID/3000 products. Our
short term strategy is now aimed at moving Dictionary/3000
into a more active role with manufacturing and financial
applications, the program development environment, the lan-
guage compilers, and a host of supporting utilities for
VPLUS/3000, IMAGE/3000, multiple dictionaries, and future

10-2

data base products. Figure 3 depicts the projects currently
under development to achieve this integration.

.

The integration of MM, PM, and FA/3000 with DICTIONARY/3000
will allow the loading of information about their respective
application's data bases and files into the DICTIONARY/3000
dictionary. This process will be a user option configured
through the customizer and activated via the SAI terminal
during preparation of the MM, PM, or FA/3000 applications
dictionary. During this operation a job will be spawned to
move the appropriate data definitions and relationships into
the DICTIONARY/3000 dictionary. This process will be free of
user interaction and may be reactivated at a later time if
any of the MM, PM, or FA/3000 data bases or files should be
modified. This new feature will provide customers using
these manufacturing and financial applications packages the
opportunity to use the report writing or applications lan-
guage products offered by RAPID/3000.

For applications development in languages other than TRANS-
ACT/3000, source code generation will be supported for PAS-
CAL/3000 and COBOL/3000 in the HPTOOLSET environment and by
means of a standalone utility. For COBOL/3000 development,
both data and environment divisions can be generated and
placed either in the HPTOOLSET edit files or COBOL/3000
copylibs with full editing capabilities being supported. 1In
the standalone utility the same functionality will be of-
fered except the COBOL/3000 copylib facility must be used
for copylib editing. For PASCAL/3000, source code will be
generated for both VAR and TYPE declarations in both the
HPTOOLSET and standalone utility environments.The source
code generated for both languages will optionally generate
special source code for VPLUS/3000 and IMAGE/3000 variable
names. In the standalone utility, input commands can be
directed to an output file for subsequent use in batch mode
or interactive updating of program declarations in the event
program referenced variables definitions or relationships
should change. Special features for default naming and data

10-3

mapping will also be provided for both the HPTOOLSET and
standalone utility user. This source code generation fea-
ture will provide a powerful mechanism for improving produc-
tivity in application program development, maintenance, and
control.

The DICTIONARY/3000 utilities will be enhanced to support
the loading of existing VPLUS/3000 forms files definitions
into the data dictionary. The merging of one DICTIONARY/
3000 dictionary into another will be supported. End user
security will be derived from DICTIONARY/3000 to provide
more transparency in such products as INFORM/3000. Future
product releases in the area of relational data base tech-
nology will also be addressed.

In summary, it is the goal of Hewlett-Packard to respond in
an expedient manner to its customer base needs and future
system requirements in this important and revolutionary area
of information management technology.

10-4

GENERATION

INPUT

PROGRAM
GENERATOR

DD

CREATION

rE<CZENCO+--0Zn

VOoOZUL~0DOEZSH-0X

AQWUL=-X=Fr-0Z®

DDS

CEWI<r+--0X0

xEWwaoEre

Db —~wun

PROCESSOR

oDweE >

EWAOKKr FE-FwWE®

EE S X FR X XN)

dnwuex <aoJ®

Oo® VvOoO3IXI<xzaen

~40<awk

<AAd ACUX<OWM®

DDS INTRINSICS
DATA DICTIONARY

w20 d>owxs 000

RECONFIGURE

DDS SPECS
COMPILER

COMPILE

ZWHEOEX QVWED>~-OWn

ZWHFH=20@xx

10-5

SPECIFICATIONS

CONFIGURATION

DDS ENVIRONMENT OF THE FUTURE

FIGURE 1

9-01

INFORM/3000

FIGURE 2

DICTIONARY/3000

TRANSACT/3000 REPORT/3000

DICTIONARY/3000 ENVIRONMENT TODAY

Mike Kosolchroen
Hewlett Packard

Customizable Software - Why You Need It

User friendliness, or ease of use, has been widely
heralded as the most significant attribute of a soft-
ware package. However, another important attribute is
the ability to accommodate changes without interrupting
the system.

A lot of time, resources, and system interruptions are
involved when code is modified to accommodate the sim-
ple changes in data base attributes. For instance, a
Hewlett-Packard division took five months and the ef-
forts of several programmers to make data base changes
on accounting codes and employee codes, because of the
number of programs involved and the number of systems
affected. Customizable software allows you to imple-
ment these changes without code alteration and in only
a few hours.

The concept of customizable software is not new.
However, very few systems have incorporated the tech-
niques necessary to derive its full benefits. The
spiraling cost of software maintenance, combined with
the need for fast system modification to cope with the
dynamic business environment, make customizable soft-
ware the most expedient answer.

Hewlett-Packard has developed two special software
utilities called the Application Customizer and the
Application Monitor. These utilities are incorporated
in two manufacturing systems - HP Materials Management/
3000 (MM/3000) and HP Production Management/3000 (PM/
3000)- and a financial system. As a result, users can

easily tailor these systems to their operations, with-
out data processing staff. At the same time, HP con-
tinues to support the customized version of the soft-
ware. This strategy has been well received, based on
feedback from over 600 hundred installations.

This paper discusses the concept of software customiza-
tion, the advantages and disadvantages, and the im-
plementation of a customizable system. The HP system
and its implementation are also reviewed in this paper.

Concepts of Software Customization

In general, software customization can be classified
into four major areas:

A) Input or Screen Customization. This process
involves modification the format of input or
data entry screens. In addition to cosmetic
changes, the content, field sequence, and field
editing are redefinable as well. V/3000 is used
in the HP system for this function.

B) Data Customization. This type of customization

includes the ability to modify:

~ Data item characteristics, such as data type
displayed numeric, packed, zoned, etc.,
data item length, data precision (number of
decimals), the default or initial value, and
even the naming of the data item.

- Data structures. Fields can be added to or
deleted from a data set or a file record
layout.

C) Logic Customization. This involves altering the
system processing logic via parameters, flags, or
user-defined processing logic. This is the most
difficult kind of customization, since logic is
usually hard-coded.

D) Output or Report Customization., This aspect of
customization involves changing the format of the
output screen or the hard copy report. New
fields can be included and existing fields can be
removed from the report. The entire report, both
the heading and content, are transformable.

Remember that because these areas of customization do
not affect the basic programs, code does not have to be
modified.

Example of Application System Customization
One example of application customization is modifying

an inventory count transaction for an oil refining en-
vironment. 1In MM/3000, this transaction performs a
warehouse inventory level count. 1In the standard
package, the user enters the counted part number, the
quantity, the warehouse, and the location ID. This
transaction does not quite fit the refinery inventory
count practice, since the refinery's parts are crude
oil kept in giant oil tanysl One customer completely
customized this standard count transaction. Rather
than having to enter in units (in this case gallons),
the system users’enter only the height of the liquid in
the tank, the ambient temperature, and the tank ID.
With a set of front-end processing logic, the system

calculates the volume of the tank using the tank's di-

ameter

(based on the tank ID.) and the tank's height,

and adjusts for the coefficient of expansion using the

ambient temperature. All these modifications were made

through user-defined specifications, and no code was

changed .

Advantages and Disadvantages of Customizable Software

Customizable software offers many benefits. This soft-
ware is:

A)

B)

c)

Inexpensive to operate. Customization does not
require data processing staff, so this scarce
resource is freed for other tasks.

Fast to implement changes. Since no programming
effort is involved and customization is done via
a special utility, modification can be made
quickly and with minimum system interruption.
The system can be designed to allow as much time
as the user needs to redefine the application
and its environment. Meanwhile, the application
system continues functioning using the current
specifications. Actual changes occur only when
the users are ready to implement them.

Reliable. The traditional method of code
modification is not only time-consuming, but
also problem-prone. In customizable software,
the application programs are separated and
remain unchanged. The chance of introducing
new bugs via customization is almost nil. Cus-
tomization also allows much shorter testing
time than the code change approach.

D) Versatile. Versatility is unquestionably one of

the biggest advantages. This versatility gives
the users freedom to tailor systems to meet
their specific needs. There are many success
stories from MM/3000 customers using the
Application Customizer. One customer has
completely transformed this material management
package, which is an object code product, to a
facility maintenance management system.

Other customers have tailored the standard
package to serve their refinery operation, which
is a continous flow environment.

There are also certain disadvantages associated with

customizable software:

A)

B)

Developing customizable software is not a simple
task. A lot of time must be invested in the
development stages. Several hundred thousand
lines of code were created to implement cus
tomization in HP software. This may not be
financially feasible for smaller EDP shops. At
HP, this concept is economical because of the
large number of packages sold.

Performance impact. Unfortunately, nothing
comes free. Customizable software, in theory,
will cost users more in terms of performance
than the non-customizable version. A poorly-
designed system can suffer substantial perfor-
mance degradation. However, improved hardware
price/perfor-mance, coupled with sophisticated
software technology and appropriate choice of
the implementing language, should minimize the

performance impact. The HP system was imple-
plemented in SPL (HP/3000 Systems Programming
Language) and employed the most current soft-
ware technology.

It is important to realize that there is, of course, a
limit to the extent of modification. The basic pro-
cessing logic must be capable or suitable for the
application.

Hewlett-Packard Implementation

HP's strategy is to circumvent the need for the ap-
plication programs to handle data directly. The Ap-
plication Customizer was designed to perform this task.
Its key component is a special data base called the
Application Data Dictionary. This data base maintains
all the user-definable application parameters. Infor-
mation such as data base schemas, data item attributes,
screen and report formats, terminal configurations, and
security are preserved. Figure 1 describes the con-
tents of the Application Data Dictionary in more
detail.

The Application Customizer provides an on-line, menu-
driven facility for users to customize the system via
the user-update version of the Application Data Dictio-
nary. This data dictionary is later transformed, by
the Application Customizer, into a more efficient run-
time version. With two versions of the data dictio-
nary, users can customize a system without affecting
system operations, and then implement the customization
when it is complete.

functions.

through intrinsics.

APPLICATION

MONITOR
N
Y
MONITOR INTRINSICS
A i MNGE
v/3400 , INTIRENS ICS
INTRIN$ICS &
& APPLICATION =P
//// IMAGE/3000
CUSTOM] ZER &
AP
USER inTRingjcg| SOFTWARE __fugronizer PLICATION
,///// 300 <> <?ENGRINSICS DATA BAS
TERMINAL
A N
Y
CUSTOMIZER INTRINSICS
RUN-TIME
CUSTOMIZATION
TABLES
RUN-TIME
DICTIONARY
PREPARATION
PROGRAM
/
/__“'\‘
~__ |- DATA ITEM
- DATA BASE SCHEMAS
| appLICATION - SCREENS
SYSTEM v/3000 DATA - REPORTS
DICTIONARY - SECURITY
ADMINISTRATOR - PROCESSING SPECS
- TERMINAL CONFIGURATIONS
FERMINAL - SYSTEM VALUES
R
FIG. 1 The application programs are well insulated from other Input/Output

Communication to the other sub systems is conducted

The Application Data Dictionary contains

all the data attrjbutes and the application environment which are

retrieved by the customizer intrinsics

11-7

A set of Application Customizer routines called cus-
tomizer intrinsics were developed to handle all the
arithmetic operations, data comparisons, data conver-
sions, and data movements. Operations such as add,
subtract, multiply, or divide are not performed direct-
ly in the application program, but are executed by
calling the intrinsics., The intrinsies, in turn,
reference the run-time data dictionary for necessary
information, which may be data related or processing-
logic-related. This design insulates the application
programs from possible changes introduced by the system

users,

There are many ways to accommodate logic customization.
Many functions in the application programs can be per-
formed using various logic choices specified via
parameters called System Values. These algorithms are
provided in anticipation of needs. A set of user-
defined functions called processing specifications can
also be entered via the Application Customizer. This
instruction set, maintained in the Application Data
Dictionary, allows simple data manipulation after nor-
mal processing but before the data base update. For
most extensive logic alteration, where complicated data
manipulation is needed, HP offers a special utility
called User Exit. User Exit allows users to supplement
the processing logic with their own programs. In
general, the users' programs can be called at three
major points: right after the screen input, before the
data base update, and after the data base update. This
latter provision is the ultimate solution to the cus-
tomization of processing logic.,

The system users may want some information, generated
in one process, to be carried over and used or reported
by another process. For example, users may want cer-
tain part attributes which are maintained in the
Materials Management/3000 system to be transferred and
reported in the Production Management/3000 system. To
accommodate such a requirement, the record layout of
the transfer file must be modified to include the new
fields. In addition, the writing and reading programs
must be modified. The Application Customizer offers a
special type of format called the Data Exchange format.
Using this type of format, application programs auto-
matically associate each data item in the format with
the corresponding field in the screen and the data set.
Hence, the system users can define a new field and have
the data updated or transferred to other processes or
systems.

Traditionally, whenever modification is made to a file
record layout, the associated job control file must
also be modified, and MPE "BUILD" statement may need
alteration on the record length. Customizable software
should not require job control file modification
whenever the file characteristics change. To meet this
objective, a special command called FBUILD is used in
lieu of the BUILD command. This command does not hard-
code the record length. It specifies the record layout
by referencing a format number corresponding to the
file to be built., This technique allows file charac-
teristics to change with no impact on the job control
files. An example of an FBUILD command comparable to
MPE'S BUILD command is shown in Figure 2 below.

L*AIR LIQUIDE

0.5.1.0./5.E.1.
JPB/6O

METHODS AND TOOLS]

SUMMARY

I- / METHODS 7

[-1) The concept of methodcciviiiiiiiiiiiinnirennennennn
[-2) System development methodcccvviieninnnennneennn.

11- /T00LS 7

II-1) Preliminary studycoiiieeeiniieneneiennnennnannananns
11-2) Detailed Studycviirnerennenreeenieernneeacsnnnannn
T1-3) REATiZAtION t.viieitniniiereenneeoencnneannnnaseoannanans
[1-4) Implementationciiiiiiineeeeieeeennneecrnnnnennens

I1I- / METHOD AND TOOLS /

[II-1) The problems ; primary objectivesccveveienn..
[11-2) Initial developmentscveveieeeerannennnnnnnnnnns
II[-3) Further developmentsccvveiiveneenennnnnnnnnnens

12-1

T o
o e
—

S as

TTTO

T T O
- ;N

I- / _METHODS /

I-1) the concept of method

The concept of method in data processing covers many fields. We can group
them into two areas.

- Project planning method concerns :
. Project management
. Development planning
. Resources management
. etc ...
- System development method proposes :

. a philosophy for looking at problems
. a guide for analysis, using concepts

Each of these two groups of methods has the some objectives :
- Increasing quality

- Increasing productivity

- Controlling costs and dead-lines.

We will try to show how, at L'AIR LIQUIDE, we tried to integrate methods
and HP-tools use.

We will not say much about planning methods, because for this we use tools
which are not implemented on HP computers.

1-2) System development method

The method we use is the MERISE method, which we have to describe briefly,
if what follows is to be understood.

It consists in identifying several choice levels and two axes of analysis :

(Saxes ° :)
(gvine. @ DATA i PROCESSING)
| Skl
(1 . CONCEPTUAL : CONCEPTUAL)
(‘ ‘)
g 2 LOGICAL : ORGANIZATIONAL)

:)
(: :)
(3 . PHYSICAL : OPERATIONAL)
(: :)

12-2

- Two axes : the important idea is that the two axes must be independant.
The field of data is a data set, which is managed in the firm. It has
its own existence, which does not depend on processing.

Conversely, processes are the result of organizational choices, and
do not depend on the existence of data.

- There are 3 levels of choice, as follows :
. Management choices, for example :
admit that an order can be delivered in one or several deliveries,
. Organizational choices, for example :

to execute part of an application in conversational, and leave another
part entirely in manual,

. Technical choices, for example :
Install at a specific location a specific type of terminal.
They form successive strata from the more general to the more detailed, each

level integrating the choices of the upper level. Those levels present a
decreasing invariance degree, from conceptual to operational (or physical).

Four steps are identified :

- The preliminary study must lead to a definition of general policy and
orientations within the guidelines of management and organization.

- The detailed study concerns the definition of detailed "external" fonctional
specifications, and must end with user's agreement.

- Realization : the end result is a system in working order, after being
subjected to the user's test data.

- Implementation in the system's real environment, and functioning at cruising
spead for its final acceptance.

The manipulated concepts are the following :
- For the conceptuel data model ;

. Objects (main entities such as "Product“ “customer", ...)

. Relations, such as "acustomer takes an order for a Product", ...)
- For the logical data model ;

. Records concepts of CODASYL
. Sets formalization

12-3

- For the physical data model ;
. Databases and/or files depending on the technical tools being used.

- For the conceptual processing model ;
. The formalization is a classic one

\ l / event

OPERATION

T T,

- For the organizational processing model ;

The same formalization is used with fonctional procedure instead of operation.
A procedure implies the involvement of a work-station.

- For the operational processing model ;
The procedures are described in sets of tasks.

The use of such a method enforces rigorous work. One of the disadvantages
of this way of working is the need to write and then manage a lot paper in
building the project‘s documentation. It also costs a lot of time.

Documentation management, for new system developments as for maintenance is
a difficult problem.

This fact, though common, led us to consider that the method to be used
must rely on automatization tools.

The choice for HP 3000 computers, at L'AIR LIQUIDE, (the first one was

implemented in July 1982) was decided because of the interest of RAPID tools,
and especially DICTIONARY.

I1- /700LS 7

The tools we use at L'AIR LIQUIDE on HP 3000 computers are classical tools one
the one hand ;

- IMAGE, FCOPY, EDITOR, VIEW,
and RAPID tools on the other ;

12-4

- DICTIONARY, TRANSACT, INFORM, REPORT

When we began, we used them during the different steps as follows.

[1-1) Preliminary study

No use.

11-2) Detailed study

Data

Introduction of the elements and their definition in DICTIONARY
Introduction of the physical model in DICTIONARY

Introduction of a short description of functional procedures in DICTIONALY.
Description of maps in FORMSPEC.
[1-3) Realization

Standard use of TRANSACT, INFORM, REPORT.

[1-4) Implementation

No use.

So we can use a chart to represent the rough contribution of the RAPID-tools
in the following areas.

- DP DOC ; Documentation for DP people
- USER DOC ; Documentation for users
- CONC HELP; Help in conception for DP people.

op f User f Conc.: Concerned Levels }
{ Doc : Doc : Help :|Concept: Organiz Operat ;

Preliminary study ; - ; - ; -

Realization ; X ; ; ; ; ; YES

Detailed | Data | XX : X : - : : vss}
Study Processf XX + X+ - : COYES i

Implementation ; - ; - ; -

12-5

I-

/__METHOD AND TOOLS /

I11-1) The problems ; primary objectives

I11-2)

Qur first experience of HP 3000 project development led us quickly to
several conclusions :

- Some of the steps find no contribution in using our tools,

The contribution concerns only the operational level (no contribution
to conceptual or organizational levels),

- The aid to documentation management is tangible for DP people, but
slight for end-users,

- The use of these tools had to be defined with strict rules. Without
these rules, there was a risk of not increasing productivity.
Indeed, the freedom of use, for ipstance in TRANSACT programming, could
lead to very dissimular programs, and so to heavy and difficult mainte-
nance.

Thus, it was clear that standard and RAPID-tools are interesting tools, but
that they must be integrated with the MERISE-method and completed with
accurate rules and specific tools.

In the face of urgent felt needs, the primary objectives were identified
as :

Rules for Dictionary use ; item-names coding,
Standardization of screens and PF Keys,
Standardization of TRANSAC procedures,

etc ...

These first points are detailed as follows.

Primary developements

IT11-2.1) Item-names coding

A list of short-names was established first, and then completed
progressively. The item-names are composed with these short-names.

For instance :

“NO-CLI" for 'NUMERO DE CLEINT'
"D-TAR" for 'DATE DE TARIF'

This standardization allows us the use of a common language on all projects.
The consequent advantages are numerous.

Procedures are simple to read ; DP people can easily move from one project
to another ; Maintenance becomes easier.

The short-names are inserted in DICTIONARY with a prefix ' % ' (% No, % CLI,

% D, % TAR) so as to avoid conflicts with item-names. Their management is
simple.

12-6

[11-2.2) Standardization of screens

We classified the screens depending on their type and their character.

Screen type
They are two types

date

Procédure —————my

N°® Client oy

Nom client ————my

Adresse t 1

N® SIREN [y

1

Head

Body

PF Keys

The fields are not numerous and aligned on a column. Each field
represents a singular item (no repeat items).

Horizontal screens present as following.

12-7

L~ Current
Procédure ———— date ——y page n°
N° client |—— page [:]/D — maximum
Head page n°
Nom client ———
1 [] [] <«——} data-entry
. line
Body) N° ligne Produit Tarif
\] (] l]
' T s
' L] L} \
'] ' one page
T — .
' ' .) of lines
1}))
+ L] 1
] C 1 (]
PF-
line n° e e o T s e v Y | F-KEYS
in the page

12-8

The fields of the body-part are entered many times. Each time, they are controlled
(formspec-process and/or transact-process), and moved, if correct, in the display-
window (i.e. the display-page).

N

v/// Yia 777

Introduced data
No Produit Tarif Lﬁ’///’///////
5‘\\\\“‘\~\\\\ﬁ3 Processl

Controlled data sent in the first free
line.

N
3B
M
N N

D000 NS

000
I

Moving from a page to-another is obtained with the PF-Keys.

Screen character
We distinguish between
- creation between

- modification screens
and -querry screens

The consequences for screens-presentation is reduced to horizontal screens
(there is no data entry-line on such a screen). But the difference is important
for procedure-structure (see further).

Standardization of PF-Keys

We assigned standard use to the keys :

For instance Key 1 : confirm (in case of add or modify)
Key 2 : preceding page (in case of horizontal screen)
etc ...

12-9

Comments

This choice was dictated by concern for user-comfort.

The disadvantage is a heavy description for horizontal screens in FORMSPEC ;
although the processing specifications concern only the "data-entry line",
So efficiency remains good.

We also defined rules for dialog design, but it would be too lengthy to
describe them here.

Advantages

These definitions allow us to :

- propose to end-users-a pleasant and steady way of working

- propose to DP people working habits, so as to increase their mobility

and minimize future programming loads.

Standardization of TRANSACT, TRAGEN generator

The characteristics of the program to be written are introduced (at the
terminal). The result is a Transact program skeleton, stored in a MPE file
(Editor-format) . To become a source, it must be completed with specific
code (with editor). It is then compiled in the normal way.

b) Characteristics

The programmer gives :

program's code and name.

Formspec file's name and quantity of screens
He gives then :

- the names of bases to be used

and defines, for each screen :

- Typeand character

Formspec name and literal name

Fields description

Standard keys to be used

12-10

In the case of a horizontal map, he has to define separately :

the head fields

- the body-fields, with the number of lines in a page, and the number of pages

e)

f)

q)

to store in memory.

.....................

The resulting skeleton includes :
- global declaration (SYSTEM order)
and for each map :

- DEFINE orders

- INIT orders

Display and read orders for the map

User's key declaration and process for standard keys
Management for horizontal maps.

]

The programmer is so freed from the heavy and repetitive part of his work.
He has to complete with "intelligent" code, such as :

- file-access
- external controls (i.e. non FORMSPEC-controls).

Observed results

The TRAGEN elaboration cost two months to write it (it is written in TRANSPACT).
and two months to test before it worked efficiently.

Nowadays the skeleton represents 50 % to 80 % of the program (Number of lines),
depending on the program's complexity.

We intend to go further. It is possible to :

- Integrate file-access
- Integrate TRAGEN with DICTIONARY and FORMSPEC
- Integrate simple external controls.

See in Annex an example with :
- TRAGEN declaration screens

- declared FORMSPEC screens
- final TRAGEN result.

12-11

111-3) Future developments

We can use other chart to represent some advantages observed, as a result
of our first efforts ;

hig f User f Conc. f Concerned Levels ;

Doc . Doc Help -)

pommm e NES femmmmnn IS Concept. ; Organiz. ; Operat.
(: : :)
(Preliminary Study H : - -)
2 : ! : ;
% Detailed : Data |- Xx : X[X]: - [: ©YES)
: : H : : : :)

(: : : : : : :)
% Study : Process|: XX ¢ X : - : : : YES)
: : : : : : :)

(: : : : : :)
g Realization s x[XJ: - o« [XJ e : : YES)
: : : i E : :)

(: : : : : :)
g Implementation : - : - : -)
. . .)

We intend togo further. New improvements could be obtained with new features
for existing tools or with new tools. We have drawn up a list of these
features and tools ; some are specific to our method, and we will of course
have to develop them ourselves, but others are more general in nature, and
we hope that future enbrancements of RAPID will include them. The list was
established on the following simple principles :

- The Dictionary is the basis for most of the developements aimed at.

- Consequentely, no real progress is possible if this dictionary remains
"closed". HP-users shauld be able to extend the dictionary, so as to
manage new entities with it, depending on their own needs.

- Whatever method is used, it requires several steps, and the study of
each step must be established on the basis of the preceding steps. Tools
must make it possible to introduce these results progressively in the
dictionary or connected areas, such as Formspec-files.

- the heavy parts of the development work should be automated as much as
possible.

12-12

In our list, we also included the following features :

- We want to be able to describe in the dictionary new entities, such as
“Object" or "Relation", so as to introduce the description of conceptual
or organizational levels.

- We want more efficient tools concerning the print of Formspec-files, so
as to use the reports for user-documentation. Moreover, it would be inte-
resting for us to have much more flexibility using these tools, so as to
adapt the reports to our needs, for instance in translating the processing
specifications into french user-language ; or in generating Formspec-files
from a shortened description according to our screens design-rules.

Such features cannot be developed without a contribution from HP.

Other features could be developed by ourselves, such as :

- Automation of user guides, based on the dictionary documentation and
Formspec description. The user guides could be automatically displayed
on the screen in response to a defined function key.

- Simple tools can be produced, as aids in conception, for instance conceptual
data model conception.

- TRAGEN can easily be extended to include further automation.

These objectives are more or less ambitions, but we are sure that very
important improvements are involved, concerning quality, efficiency, and
documentation accuracy.

We estimated for instance some increases in efficiency, as follows.

- Conceptual data model :

Dictionary extension is involved
About 1 day is to earn in this way, for a 10 months project (200 days)

- Automatian in-screens-design : about 5 days (for the same 200 days-project)

- Increased automation of program-production (TRAGEN) :
About 10 days.

- Automation in user guide production :
About 20 days.

The total increase would then be almost 20 %.But, the improvements inquality
and accuracy would have much more important effects.

- Important gains are possible by improving dialogue between DP people and
userss this is difficult to estimate.

12-13

- The cost of maintenance could be reduced by more than 50 % through strict
standardization and integrated documentation.

We can imagine the future chart, as follows :

bpP User Conc. Concerned Levels g
: Doc Doc Help ° -)
(............................. Concept.; Organiz. :_Operat.)
: : : :)
g Preliminary Study : [X] : : [XJ : YES)
: : : : : :)
(: : : : : : :)
g Detailed : Data : XX[X]: XX [X]: : YES o YES YES ;
(: : : : : : :)
% Study : Process : XX[XJ: xx[XJ: [X] : YES : YES YES ;
(' : T : : :)
g Realization : XX[X] :involved: XX [X]: : : YES)
: : : : - :)
{ : : : : E :)
§ Implementation : r X 2 X : YES : YES)
: : : : : :)

In conclusion, we are sure that these objectives are not utopian. Someof
them have already been reached on other machines and the RAPID-tools are
a good basis for reaching them on HP 3000 computers.

12-14

Gi-clt

L7AIR LIQUIDE
995 K KKK KKK X K

G100 A LA 'ROGEAMMATION TRANSACT

non du Progranmae
Libell(

Nombre d’{crans
Fichier des (crans

030101

VMG

CRLATIONM DL [M1CHE- EMEALLAGL

9k-¢t

L wmik LIGQUIDE
XK X KN KRR

AIDE A& LA PROGRANMATION TRANMSACT

tecrans vtilisis

Typ HNat Noa abrigl WNon

Ecr Lo Loiran Leean
Y A MCoLE CODE-EMBALLAGE
v C "MDLSCR DESCRINTLI-EMEBALLAGLE
b o MraRr TARIF GENERAL EMBALLAGE

Li-cl

L’AIR LIQUILE

3 3 26 26 6 96 26 36 34 2 96 3
AIDE A L& PROGRAMMATION TRANGACY
) Llclaration des Variables
£cran - CODE-EMQALLAGE
Neiv d2 Variable Typ - Size -
C-EMD 4 04

L’AIR LIQUIDE
062 X % 0 2 3 X3 X K

AIDC A LA PROGRAMMATION TRANSAC

Ecran CoDE- EHA ALLAGE
Touches.Fonction Standard Ceeran Suivantd
Touche 1 *Validation’
Touche & ‘Page precedente’
Tovche 3 ‘Page suivante’
Touche 4 : ‘Effacemrent Loran’
JTouche $ “Ceran pricedent’
Teuche & : ‘Eeran suivant’
Touche 7 *Copie Ceran’
Touche & : & ‘abandon’

Indiguvezr 35’ lorsgue vous sovhaltez uvne utilisation standanrnd
ou donnez (ventvellement le nos de 1/Lci-an Suivant
Pour les Touches O et 6, et Wpour elles seuvles, vous cever
donner le nos de L/Ucean Suivant en cae d’utilisation Standard

8L-clt

L &IR LIQUIDE
KRR AR KX

AILE A LA IPROGRAMMATION TRANTACT

Llclaration des Variables

tcran DESCRI PTIF - ENBALLAGE
Noth de Variable Tyu Size
C-EME X 04
Nkl X &
C-PLR-REC X 01
CONY-EML X 0%
U-CONT X 01
LONG-EME X 03
LAR--LME X 02
HAUT- EME X 03

TDS-EMB X &

L7ALR

L1QUILE

X KA K KKK K KX

6L-cl

ALDE A LA PROGRAMMATION TRANGAC

Ecran DESCRIPTIF

Touches.lFonctiaon

Touvche
Touche
Tovche
Touche
Touche
Touche
Touctie
Touche

NICU R WY e

[}

Indigquez ‘s’ lorsqu

dorniner le nows

o
-

=

el &)

e

EMNBALLAGE

Standard LCeran Suivant

*Yalidation’

‘Page precedente’
‘Page svivante’
‘Effacement Leran’
*Ecran pri{cedent’ -
“*lcran suivant!

*Copie Ecran”’

‘*Abandon’

vous souhaitez uwne uvtilisation standard
—ou donnez (ventuellement le nos -de 1’Cceiran Suivant
Pour les Touches 9 et &, et Wpour elles sevles, vous cevez

de 1’Ceran

Svivant en cas d’utilisatiaon Ctandard

L/aI% LIQUIDE
HERKXNEKKRXR®

AILE A LA PROGRAMMATION TRANSACT -

Dlclaration des VYarisbles

Ecran TAREF GLNERAL ENLALLAG T
Nor de Variable Typ Size
CHEME X 04
N- EMB X =R

L’AIR LIGUIDE

ALIDE A LA PRUGRAMMATION TRANSACT
B{claration des Tableauvx vutilisis
(Cas des Lcrans de Type ‘7))

occl

Nombre macinun de Lignes Presenties B 1’ Ecran : 08
Nombire maxinuen de Pages Stock(es en Fineire : 05

Noo de la Variable Typ Siz

D EF - TaR X 08
NO- VRS- ENE X o2
PRX-U-VEN X ne
PRX-U- CSG X 06

PRX--U-aCH X 04

IR LIQUIDE
HRHK KKK KK X

AIDE A LA PROGRAMMATION TRANTAC

Yoran © TAGIF - CENERALL ENBALLAGE

Touches. lFanction " Standard™ " Loran Suivant
Touche 1 :- 8 “Validation’
Teuche & : 4§ ‘Page precedente’
Toeuche 3 : § ‘Page svivante’
Touche 4 ; ¢ *Effacement Lcran’
Tovche S - " “Ecran pri{cedent”
Touche ¢ ‘Ceran svivant’
Toucke 7 t+ & “*Copie Ecran’ -
Touche § : S ‘Abandon”’

Indiquez ‘s’ lorsgve vous sovhaitez une utilisation standard
ouv donnez {(ventuellemernt le nom de 1/Eci-an Yuivant
Pour les fouches 5 et &, et @pour elles sevles, vous devez
donner le nom de l’Lcran Suivant en cas cd’utilisation Standard

Lcct

HEWLETT-PACKART 322014, Y 13 EUTT/5000 TUE, JUL 18, 1983, 5:35 6) 1

(&9 3
€€ >
(¢ PROGRAMMI ¢ 020101 >
{4)
€t CREATION PE TICHE- EMCALLAGE 3.
<<)
<<€ ‘3 [CCRANS 3
-((_)
'((¥
QY TEM 030101,
LASC=LEPROD , BASL . DEVL("DC" y 1),
YPLS=UREMB(MCODE (V--D=TJOUR V- LLfe- "R“C Y -C-iMp),

MOLSCR (V- D-JOUR ,\V-LIB-PROC, V- C- LHG, Ui EHE WA-C-PER-REC,

V-CONT -EME,V-U-CONT U LONG -EME,V -LARG-EME,V-HAUT EME,

VU EDRG-EME) .

MTAR (V- D=JOUR V-LIE-PROC, -G ERG,V- N ENE,CTR: PAGE: HIAR,

SPAGESHAX M TAR NUOEC-MTAR ,V-D-EF ~TAR U -RU-URS -EMG,

U=PRX- U VEN, V- PRX- U GGG, W PRX-U-ACH, TAL-NTAR)Y)
€< >
{<¢ >
< ECRAN NO 01 b
<<)
< CODE- LMEALLAGL i
<<)
(&4)

MCODE-DEF-ITIM:

DEFINCCITEM) V-D--TOUR XC08) s

DEF INE CLTEM): V-EIH-PROC X(500 ;-

PEFINCCITEN) MESS-ERR X(78)

PEFINECLTEM) =:Z~ERR X(20)

DEFINECITEM) - U=-C-EHNE- X(04);
-MCODE=INIT-TTEN:

RESET(STACIO) - LIST;

LIST HESS-ERR, INLT:
L~ERR; TMIT:
V-D-JOUR; INIT: -
USETE~PROC, INITY
V-C-EME, INIT)

MCODIE AT LCH:
- MOVE (V- LILl'-PRO(;‘)V“= " CREATION IO ERCALLAGLY
PUTATORM) MCOCE, TMIT,LIGT=(LI PROC) ,WIHOOWE-("")

MCODE--GALGTLE:
12-22

P&GL 2

1457)
14578
245530
145, %
1455
145,67
B K Y
14578
145,93
146 -
146.1
14672
144673
20077
20051
200.2
L2803
200, 4
200, %:
200486
L2007
20050
20049
201
2011
201.2
201.3
201.4-
201.9%
20t1.6
201.7
201.8
201.9:
210
210.1
210.2-
214.3
210.4
210.5
210.06
210.7
210.9
210 .‘)
211~
21151,
2112
213
214
-1 ‘CJ
211,
21157
pag ¢
S 2401
2402
240,33
2404

245

nerrTT PACI RD ZEEﬂlhilflu ﬁblr/zau

GET(FORMI ™ MCODE ;" CURRCNT,
‘ZEQ = MCODEFGAIGIES™
KCODE- ¢AISIE,
S=THCODE-SAIGIE,
NCODE- SAISIL.
= MCODE=SAISIE,
: MCUDE“SAISIE,
= MCUDE ~5AIGILE,
C=THCODE-BALSIL,
METOUR--MENU ;-

e
‘J—"

e
¥

-
<
[[

DEGCRIPTLI -

»

AA A AA A A
NN AN A

MOESER~DEF L TER:

DEF INE CITEN)
DEFINCCITEM)
“BEETHE CLTER)
DEF LNE CLTEM)
=DEF LNL (LTEN)
CDEF INE CITER)
DEF

INESEVEM) -
PEFENECETEMY

U N8
C-PER-REGC--
VCORT - BNk
Y- -CONT
VL ONG--ENBE
VL ARG -EME

V-HAUT-ErE -

VP DG e MR

’MDf.’S

MUESCR-INLIT-ETEM:

RES Lf(,TALV) LIGT; -
LIST -MESS-ERR, INIT:
Tz E.Rl‘,lN‘LT:
~ D= JOUR , TNIT:
SUSLTR-PROG, THIT
CV-C—EME,INET: - -
AN EME .lNlT o
YCPER-REC, INTT
UCONTEME; THIT:
V-U=CONT INTT 3 =
Ve LONG EMEFINIT -+
UL ARGE ML JINIF -
v~HAU1wEM$,INIT:
PP LML, INITY

CR-AFTLC:

PUl (FORM) MOEGUR , INLT W EHDOW= ¢)

12-23

0 Tue, JuL

ECRAN NO 02

-EMEBALLAGE

X((ll

300.3
300:4
30055
3004
<30 047
3008

BOISE
301D

3014
11 B
301.6
[ore e
3018

30179

300

302 ri

302.2-

023
362,4

302G

EYI D

302.7
B02.8

302.9

303

EURASE

303.2

HEWLETT PACKARD 33

T PV A

GLTRORMY " MDLSCR CURRLNT,
Foz= MDESCR-CONTROLE;

TMUESCR-VALID, -
MDESCR -EAIS Il'.'.,

iDESCRGALS TL—.'
. SMBESCR=AFFLCH
TS HOCGCRY "ﬁlal[)

SBHEGCRICOT,
FO=ARANDON

“HDEGCIE-EFFAG T

MODESCR=CORILY™,

MDESCR=SAISIE

PROCTHARDCOPY - C(RCOHCVENE)) §

SBOFFD- BDES cn«Aancw»

MOLGCR-CONTROLL

TARLE

HTAR-DEFEITEM:
DEFENE CEFEH - ETR-LE-HTAR™
REFINEAYTEM) - LG-TRT=MTAR:
DEFINECITEM) L IGNE-HTAR

CNU-EG-M AR
Vb EF-TAR

M3 P

400 TUR, JUL

[
[

12, 1703,

ECRAM NO 097

GENERAL

Y =N YR G MG

V- PRX- U= VEN
Yo RX U510
V- FRX U-AGH

DEFIMZCLTER) - CYR-PAGE -

HYAR

DEFINECLTEM) -PAGE-MAX-MTAR
‘DEF INECITEM Y - TAR- M1 AR
DEFINCCITUM) - WTAR- MTAR
WP AL rar
WROS-MTAR
NO -POS - ot
W B TAR

W-NO-URS Lkl

12-24

CRE L EMBALLAGE

X000y :
XC02)=LIGNE-MTARCT)¢
XC08) =L LGHE-HTAR () ¢
XCO2) -LIGRE-MIARCTL) :
XCOL) =L TOHL-MYAKC13)
X6 -LIGNE-MTARCL1Y) ¢
XEO6) =L LGRE-MTAK2E)

eI
P2

0BX0039);

AEXCQ240)

0BXLDO3ID) = WIAL-HTAR (1)
XCO029) = WraG-MTAK (1)
XCB2) = WPag-H1aR (anit)
XOB) = WrOs-Hiar o003y
X027y = YWPLS -) (00115

"M

[

FAGIE 4

3uq‘3
303
30u-5
30u.u
310
31041
310 T
310.3
J10 4.
310:5°
30,4
310.7
308
31009
311
31101
31t.2
311.3
311.4
31105
311706°
31107
311..8
311.9
340 :
340.1
340.2
340.3
3404
345
34501
3452
345737
34574
“JAG N
34556
345,77
345.0
345.,9
RET
34«.) v l .
3406.2
346,33
350
_5.‘.50 g‘l
3502
35043
3E0 .4
3350 .G
J&S0.
350.,7
350,68
3509
351 -
351.1
Jot1.2
3513

HEWLETT=PACKARD-32201A 7513 CLIT/3000 TUE, JuL 12, 19

WoPR% U VEN XC0H) —= WG -MTar
W PRX-U-COE X06) = WrOG-HYaR’
WP RR-U--ACH REDOH) = WPOG--MTAR

MEAR-INLT-LTEM:

RESETGTACK =L IGT;
EIST-MESS-ERR, INIT.
£ ERR, INIT:
LG-TRT-MTAR, INIT:
CTR-LG-NTAK, INLT -
V- D-JOUR, INIT:
V- LIEB=EROG; INLT &
Ve EMEINI T
V- N=EME, TNIT
CTR-PAGE ~MTAR , TNIT ¢
PAGL-NAX-HTAR | LHLT :
LIGNE-MTAR , INIT:
TAB-MTAR, INLT ;-
NTAL -MTAR, INIT;

MIAR=AFFITEH =

PUT(IFORM) . MTAR ,y TNIT, WINDOWEC"),

NTAR- GAISIE:

“GET(FORMY “MTAR, CURRLNT,
FU* = MTAR=CONTROLE;
* R-UALID,
P AG-PREC
~FAG-8ULY,
“BAIBILE,
SATSIE,
R-SAISIE,
TNTAR- COP L,
AEARDON

HTAR-PAG-PREC:

IF-(CTR-PAGIZ-MTARY = 1 -THEN
-0
PUTFORM) HTAR,
MINGOW=C"PAS DE -PAGE PRECEDENIE 1),
LG T (Y- D~IOUR TAL NTAR) ;
CGO:TO: MTAR-SATS
LOENO
LEGE
Lo -
LET =(CTR=PAGE-MTGR)- = (CTR-PAGL- MVar) 1;
LET OFFSEC(WTAG-MTAR) = GIFFSEM(WPAL-MTARY 0240,
HMOVE (LIGHE-FHTAR) - w-t .y

12-25

(o1
i)
CODIE)

PAGL &

J51.4
351,95

351.6
3%1.7
351.8 -
3%51.9-
35

JIHS 1

3563
3556, 4
3546.5°
35676
35657
354.0
3569

397
3671
357 .0
\I\J7 —S
357,
- &Jr’.u
3G7 00
3%G7:7-
:3&:;’43
=3&L0 =
SoHo 1

- 3e0i2-
36043
3604

HOVE CTAB-MTAR) = (WPAG-MTAR) ;
LET (LG-TRT-MTAR) = 0;
GO TO MTAR-AFFICH;

DOEND; -

M TAI-"'PM; -HUIV;
LE- (ETR=PAG
- P
PUFCFORMN): MFAR:~-z~w--_<:—~:
WINDOW=("PAS DE PAGL SUIVANTE "),
LLGT=(V B-FOURTAR-NMTAR)
GO TO MTAR-SALISIEy -
SDOEMD-- -
ELSE
-0 o N
LETF-(CTR-PAGL-NTAR) = (CTR PAGL-MNTAR) 1+ 1
LET-OFFEET(UPAG-MTAR) ==0F FEET CWPAG -1 IAR) 10240 ;
MOVE (LTOGNE-NTAR)y =" -
IF_ACTR ')A‘JL M'I'AR) (!"ﬂbL MAX MTAR) THEN
SIS
= MOVE- (NO-LEC MTAR) = (CTR: LG MYTAR)
ELET (LG-TRE-MIARY = (CTR-LG-MTAR);

AR) =" (r'm.z MAX-HTAR) THEN -

HEWLETT-PACKARD -32201A.Y.13 COoLT/3900 TUR, Jun 12, 12

us,

LET OFF ..»l TCHPOS- BTAR) = 0030% (LG TRT-N1AK) - 0

DOEND
ELSE-
DO
CCLET (LGETRT-NTAK) = 03
DOEND; - -
HOUE (1AL -HTAR) = (MIAG: HTAR
=GO T HTAR-AFFICH - -
DOEND ;-

HTARFEFFACT

MOVE- CLLTGMIE-MTARY -=- ="

SHOVE (NO-LC MTARY = (LG - !QI~HIAR)'
-ru TO MlAk AII]CV"“' -

MTAR-COP LI

PROC HARLCOPY (NCOW(VENI))
GO-TO WTAR-AFFICH; = - -

HWTAR: CONTROLL:

¢ . 3
<A TEGT PUUR DISTINGUER)
(L UL GALGLE UM SUIHCT >

L UNE BEMAHDE DI LIGMLE)

[el MODIFTCATION DL LIGH: >

i« ¥

12-26

oy
“

'
i

e
2

M

(&

PAGE™S BEMCETT-PACKARD=Z200 AT 7 13- EDLT/3000 TUL, JUL 12, 1943,

320 L5 (NUSEC=MTAR L2 €Y LG =0R F-HTARY (HEN G0 T0 DOE LG -MTAR;
371

(¢ i »

=3 CONTROLLE DE LA LIGNE SAISIE)

¢ MISE CN. TABLE APRLS COMTROLL)

2t)

MOVE- (NO-LE~MTAR)= = " -
IF -(LIGNE-MTAR) = " “ THEN
Lo
I CCTR-PAGE-NTAR) €3 (PABL NaX- HTAR) 1HLN
GO U SUP-LG MIAR;
TF CCTR LG NTARY "¢ (NO-LC-NTARY THEN
GO TO SUP LG MIAR;
LOEND; -
IF- CLIGNE-MTARY. == " % TUEN GO T0 NTAK-SALS1E;
HOVE (NO-LC-MTFARY = (LG~ IR(-ATAR) ;

< ¥
(84 CONTROLE -DE LATLIGNE »
(& >y
SUP-LG-MTAR

< CGUPPRLESSION DL LLIGNL »?
! GUPPREGHTION DIE LIGHE)
& i >

MOVE (NO-LC-MTAR) = (LG-TRT -MTAR)

FINEONTROLE-HFAR ¢

MOVLE: (WP0S- MTAR) = (LIGNC-MTAR) § - o
AFECETR-PAGE -HTAR) ~¢) (PAGE-MAX-MTAR) THEN GO 0 FLN-MEDIF -MTAR,
A (CTR-LG-NTAR) 7y AANU-LE-MTAR)™ THEN GO T0 RLPRISE-GEQ-HTAR,

376:3 MTAR-ENCREMENT - GEQULNCE - 1

3764

3765 UNE-PAGE-M VAR -

3766

3706, 7- UN-POSTE-MTAR 1

I7EL

37649 LEV OFFSET(UPOS-MTAR) = Or FSET (UPOS-MTAR) 1 39,
377 - HOVE - CLIGNE -MTAR) = v,y

3771 LETCCTR: LEG-NTAR) = (CTR-LG HTAR) 1 1,

372 SHOVE (NG -LEC-MTAR) -~ = (CTR-LEG-MTARDY |

B3 LET CLB=TRT=MTAKRY = €CTR-LG-#1AL) ;

37774 AIF (LB -TREO-MTAR)Y) 08 THEN GO TO FId-PAGE MTAR,
37005 MOVE= CTAR MTAR)Y = - (WPAG- M1 AR) §

377G GO TO MTAR-AFFICH;

377 -

377.8 FTIN-PAGE-MTAR ;

37759 .

37E == LET S(CTR-PAGE-HTARY £ - (CTR- PAGL-MIAR) 1 1
376+1 1 (CIR-PAGE-NTAR)) 05 THEN

12-27

PAGE -7 HEWLETT-PACKARE 32201A.7. 13 CLLT/3000 TUIL, JU. 12, l\‘}‘ii:l'l', 330 MO

Irae 00 o

370853 UPLATC(FORE) MTAR,

37604 WINDUW=CTABLE PLEINE 3 IRPUSSIELE GE CREER 1)
37815 MOUVE (NO- LG MTAR) = " %,

378,04 LET (crumwnwﬁ~nrA|) = (CIR-PAGE-NTARY - 1}

3737 CLEY ELGETRT=MTAK) = 0%

37078 S BO=EREMTAR AFETENH

argie “BOEND

e CEET QFESETOAGE MTARY. < OFF ST CHPAG-HTARY ST 0240
3795t LIEF OFFSETCNPOS-MTARY = 05

379 LEEAPAGE-NAX NTAK)= = =(E TR PAGL-NTAR)

3793 THOVE (L LBNE-MT AR) "y

MOVE: (NOQ:LCoMTAR):
EET—¢CTR=LG=MT MU

LTS (LG FRT- HTARY =1
GO FO=MEAR=AFFECH ;

REPR ESE=GEQ=M I"Mé:"“

E'E(l«ll Cl‘i NlAR). = Q030X CETR G- HTAR)- 0030
."'—“_.

_hI”Ak-l""‘(l IR-LG-HVAR) ;

FAR) -= ('df'ﬂ[, MTAR) ;-

LET LG TRT- NTAKR) = - (N~ LG hlﬁl\);

60 TO HIAR--RFFICH;’ =

380;8: o

3680.92 FIN-HODIF-MTAR

381-. o S

30151F MOVE CLIGNE-HTARY -=-" @ ¢

381.2 HOVE -CTAZ-MTAR) - = (WPAG-HTAR) ;

381.3 EEY (LG~TRT-HTAR) - = 0;

3814 GO GFD MTAR-AFFLCH;

30175 '

381.6 - o _

39137 DDE=LG--HTAR §

3818 - ‘

39109 FF=ECTREPAGE-NTAR) =" (PAGEC-HAX-HTAR) THEN
382 bo-) . -

3001 CIFE (NQ-LGNTAR)Y = (CTR-LG M1AR) THEN
3B2.2 .)13 3 ,

38053 CMOVE-EZEERR Y = YNO- LG MTAR"
324 SMOVES (MESS ERR Y =-"IL N’Y A PAS DE-LIGNE AU NUKERQ DEMARDE®,
ki: R E PERFORM- Analrh ERRIUR

382,6. GO TO MTAR-BATSIE ;

3627~ -nocwo. ‘

3028 . DUEND

392:9- ELSE

383 S 14 ,

38517 IF (ND-LE-MTak) -~y 08 THER -

363.2 i B

3BT MUVE" (Z-ERRY = “NO-LE HTARY,
3.4 HOVE S GRESS CERR) ~= "NUASRO DE LIGHE [MFERIEUR UM EGAL A 08",
5&...4‘ PERFORM AFT 10N ERREUR ;

303,56 GO TU MPaR-SAISIE;

300, DOEMD

363.8 T DUEND

12:28

 PAGL S

3561
35672
354.3
385, 4
—5~Ju V37
350,60
d56.7-
354,08
3502
387
367.1
357.2
397.3
-3 Jl . 4
357
357.6
-367.:7-
3G 0=
;360 ==
Jo0.1-
36002~
260.3
360 .4 -
ﬂuﬂ.J
340

HEWEETT-PACKARD 322014, Y .13 LOoLT/73900 TuU,

HOVE (TAB-MTAR) = (WPAG-MTAR) ;
LET QLG-TRT- hlAR) = 03
GO TO MTVAR- AIIIC

DOEMND ¢

MTAR-PAG-SUIV;

IE-CCTR=PAGE-HTAR) = (PAGL: NAX-MTAR) THEN -

I
PUFCFORN):. MTAR
WINDOW=(*PAS DE PAGE SUIVANTE 1"),
CLIGT= (Y B-TOURVAL-HTAR) ;
GO TO MTAR-SAISIE; - -
“DOEND-
,E,g-.
=00)
LET (CTR-PAGL-NTAR) = (CTR PAGL- MTAK)
LETF-OFFSE
-MOUE (L TGNE-NTAR) = %,

“IF _ACTR PAGE-MTAR) = (PAGLE -MAX -MTAR) THEN

—epgr
= MOVE- (NO-LE MTAR) = (CTR- LG MNYAR)
TLET (LE-TRI-MIAR) = (CTR-LG-MTAR)

LET OFFSETOWROS- MIAKR) = 0030% (LG TRT-NTAK) - 0t

DOEND

SLET OLG-TRT--MTAR) = 0
“DOEND; '
MOVE =CTAL-HTAR) = (WI'AG- MHTAR)
“GO TO HTAR-AFFICIH - - -
DOENDG 5 T

MFARSEFFAL i-

MOVE- (L TGNE--MTARY
MOVE (NO-LC MTARY = (LG-TRT-MTAR)
G0 TO NIAR AFthH"“

MTAR-COPLE

PROC HARLCOPY (“lUu(UtﬁU))'
GO-TO Mrar AFFICI‘ =

MTAR: CONTROLL:

<< 3

{1 TEGT POUR DISTINGUER)
(84 UL GALGIE BN SuucHer >
9 UNE BEMARDE DX LIGNE)
(94 U, MODEFTCATION DL LIGH: 7>
L)

12-26

JuL.

R W
TAUPAG-MTAR) ==0FFSLET (WPAG-MTAR) +0240

12,

X
§ W RE

by

(&

PAGL Y

924,5
P2074
P44

24071
94052
240.3
440 ., 4
PR
2421
2452
P4273
Y42 .4
243

2451
2432

HEMLETT=PFACKARD 222014713 CHIT/2000 TUE, JulL 1

ABANDON

GO T0 MEODL-INYT-LTEM:

RETOUR-=MIENUT
S SETCCORMAND) “LXITY

FIN:

LNL 030101

12-30

2

»

1

aQ

AUTOMATING SYSTEMS DEVELOPMENT WITH A

DATA DICTIONARY

David C. Duinmer
IMACS Systems Corporation
Los Angeles, California

This paper reviews the traditional role of a data dictionary and then
considers its specific role and capabilities in automating application systems
development. Delivery of the paper at the Edinburgh conference will
concentrate on details of the types of computer aids that can be driven by
Dictionury/3000; include practical experiences that the author has had with
such aids; and make mention of the latest factual and speculative information
on the future direction of Dictionary/3000.

Dictionary/3000 was introduced by Hewlett-Packard almost two years ago and
there are now several other general purpose and specialized data dictionaries
available for the HP3000 computer system from independent software suppliers.

Data dictionaries are in many ways the hot topic of the eighties much as data
base management systems were in the seventies. Dictionaries are not new to
the data pracessing profession, particularly in the mainframe environments,
but they are undergoing great change as they evolve from a passive
documentation role into being an active online component in computer system
operations. The breadth of use and application of a data dictionary are still
nol well understood by the data processing and user communities. Even less
well understood is the cost and effort involved in setting up a dala
dictionary facility to ensure maximum benefits for both current and potential
applications.

Data dictionaries first emerged as documentation and standardization tools
and, indeed, these purposes still remain a major contribution to their use in
data processing departments. This application of a dictionary can ensure that
everyone within the department uses consistent names for objects, such as data
ficlds and files, and understands the nature of an object when its name is
used in verbal or written communications. This is not unlike a natural
language dictionary that defines the meaning of a particular word (object) of
the language and details its use in the context of other words.

Within the data processing environment we can identify further objects such as
data entry screens, report layouts, data structures, data processing programs
and computer system equipment. If each of these objects is given a unique
name or identifier within its own type then use of the object should be
clearly and consistently understood. This is becoming even more critical in
distributed data base and processing situations where objects are often shared
by many people in different locations.

For example, a data dictionary could define a data field, whose name is
CUSTOMER-CODC, as an alpha-numeric string of ten characters which is used to

13-1

uniquely identify a customer. The dictionary inay provide still more
information about the data field: synonym nammes that apply to the field in
different areas of usage; physical locatien of the data field; the textual
heading for the field when used in a report; validation rules for field
values; who or what generates, changes or uses field values. This list is not
meant to be all-inclusive but to simply highlight the fact that the dictionary
can contain as little or as much information about an object as is required by
the users.

Dictionaries are not new to inany organizations. Most of them have at one time
or anather created manual forms to define data fields, data file record
layouts and data processing record layouts. These dictionaries have normally
been part of the documentation effort designed to allow additions and changes
to existing files or programs to be readily implemented. However, the recent
widespread computerization of data dictionaries has presented a tremendous
opportunity in the scope of their usage. Considering that a data dictionary
is simply an information system about a particular data processing
environment, all of the tools available to support computer-based information
management systems can therefore be used in the implementation of such a data
dictionary. For instance, its content can be stored in a data base structure
and use can be made of data base processing and reporting systems to
effectively manage and utilize the contents. Unfortunately the computer
industry has often been the last to benefit from its own technology and tools!

By making the dictionary resident on a computer system, its content is not
only available to users but can also be accessed by programs and processes
running on the computer. Such a dictionary data base becomes the hub of many
computer systems and utilities that can aid the analysis, design, development,
maintenance and control functions within the data processing department
(Figure 1). The degree to which an organization evolves its data dictionary
is generally a function of perceived value, the acceptance of centralized
definitions and the implementation budget available. It should not be
overlooked that a data dictionary will also require some level of maintenance
and control on an ongoing basis.

Several organizations have created the position of data base administrator or
information resource manager to address the need to manage the data resources
of the company. As the requirement for more accurate and timely information
for business decision-making continues to increase, the data base
administration role becomes more focussed. The dictionary represents a
fundamental tool by which the administrator can document and control the data
processing environment under his or her charge. Since many groups within the
data processing department will rely on the integrity of the dictionary
contents, a data dictionary will typically employ some form of security that
restricts its rnodification to the data base administrator. If an analyst or
programmer produces new or modified systems then the resulting data dictionary
entries should be made in a controlled manner through the data base
administration function.

Many data dictionaries contain extensive directory features. This facility
allows objects of different types to be linked in order to document ownership
ar usage. For example: a data field to a data file; a data field to a
program; a data file (set) to a data base; a data file to a disk drive. The
directory information not only supports system enhancement and inaintenance
efforts but can also allow programs to dynamically determine physical and
logical relationships between objects requiring process. For example, a

13-2

program nay require a particular data field; information from the dictionary
can then indicate which data file or files contain the field and, in a nelwork
environment, which computer(s) in the network should be accessed for the
files. The directory organization of Dictionary/3000 is shown in Figure 2.

Some data dictionaries contain information about the data processing users and
define which data files and programs a particular user may access. By placing
this type of access security rule in the dictionary the data base
administrator, or the equivalent function, can centrally control the data
processing envirorninent. Such a dictionary is of course complemented by the
necessary programs, monitors and operating system interfaces that
automaltically effect and enforce the security measures.

Data dictionaries are clearly evolving towards a state where all or ost of
the definitions are removed from programs and placed in a central system data
dictionary. These programs are then virtually independent of the physical
structures within the data processing system and the structures can be
modified, to react to configuration or usage changes, without affecting the
programs. The transition from a passive to an active role has moved the data
dictionary fram a position of usefulness to one af necessity.

With this perspective of a computer-based active data dictionary and the
definitional and directory structures available let us now examine its use by
automated systems development aids.

The simplest computer aids are utilities that transform dictionary information
into formats suitable for other processes to eliminate the need for any manual
input effort. Exarnples of such utilities in the HP3000 environment are:

a) DICTOBC: an HP utility that uses an IMAGE data base definition in
Dictionary/3000 to build a schema description file suitable as input
to the DRSCHEMA processor. Generation of physical IMAGE data bases
can therefore be completely automated from the design information in
the dictionary.

b) IMACS*COBRA: an independent software vendor utility that builds
COBOL copylib file records from data definitions in Dictionary/3000,
COBOL program development can then benefit from the central
definitions and control of the dictionary.

These utilities simply provide a ‘bridge' to a process that was not originally
designed to access the dictionary. One wonders, for example, whether a future
release of the HP COBOL "compiler might be capable of directly accessing the
dictionary for most, if not all, of the information required for the DATA
DIVISION. A direct link is however already used by the HP Transact compiler,
a member of the HP RAPID family of productivity tools, which accesses the
dictionary to resolve any undefined data items used in Transact program
procedures (Figure 3). A programmer need therefore only define local
computational items in a Transact program and can take advantage of central
definition and redefinition in Dictionary/3000. The latter inplies that no
program changes or additions are required when data items, data bases or files
are redesigned.

Processes that use dictionary information can also generate procedural logic

based on defined relationships. Such processes further reduce the need for
manual effort in building information systems. HP Inform uses the

13-3

Dictionary/3000 data base extensively to generate reports from requirements
specified by a simple end-user menu dialogue (Figure 4). Inform first uses
structures defined in the dictionary to present a set of tailored menus to the
end-user from which he or she may explore the information available for
reporting, whether stored in IMAGE data bases, KSAM files or MPL sequential
files. This presents a fully logical view of the data to the end-user and is
totally independent of the physical data structures. Once the end-user has
indicated the data items required and any additional specifications (such as
sorting, totals, selection rules, report format and computational fields),
Inform accesses the dictionary to find out <the file, or files, that cantain
the required data items. In the event of a data ilem appearing in more than
one file, Inform uses an optimizing algorithm to minimize the number of files
to be read and to favor files having some form of keyed access, such as an
IMAGE data set. It should be noted that Dictionary/3000 provides for
specifications that ran override or influence the Inform algorithm. Inforin
also determines an optimal access strategy if more than one file needs to be
read. From the dictionary information, indirect paths between files or data
bases can also be determined, for example: the need to read one or more
additional data sets to link two required data sets; or the use of a coununon
data item not defined as a key, or match variable, as a link between two data
sets or files. Inform finally builds the necessary procedural code to read
the data file, or files, and to produce the specified report format.

Inform could of course have an independent set of tables or libraries to drive
its algorithms and processes. Its use of a central dictionary minimizes the
work of data processing staff in recording any system additions or changes and
ensures that Inform has access to system information that should be the latest
and most accurate available.

Inform is a good example of an automated system development tool for
information reporting. However this is but only one part of general data
processing - what about data entry, storage, manipulation and retrieval?
Well, the same type of relationship structures used by Inform can also be
employed to build procedural logic to support data entry and storage. In the
HP3000 development environment, where VPLUS is a popular facility for block
mode data entry, Dictionary/3000 can be used to define VPLUS form layouts and
the relationship between form data fields and their appearance in storage
files. Based on this information, algorithms can be designed to drive VPLLIS
functions and then the required IMAGE, KSAM or MPE operations for subsequent
data storage or retrieval.

Variations of the developed procedural steps can be used to support other data
processing functions such as editing and updating. Such procedural logic will
often only support simple applications and, for instance, a data entry program
specification ay include complex rules for validation, error handling, table
lookup, etc. However, many of these rules can be expressed in the form of
definitions or tables and can therefere also be input to algorithins that will
autornatically generate the necessary procedural code.

There are many ways of providing the rules for autonatic code generation and
many language forms that the code can take. The rules can be provided by such
vehicles as a very bhigh level non-procedural system specification language, a
set of definitions and rules in a data dictionary, the schema structure of an
IMAGE. data base or combination thereof. The code generated can be in such
forms as COBOL, PASCAL, asseinbler statements or operators for a run-lime
transaction processor.

13-4

One example of the implementation of a dictionary-driven application gencrator
is IMACS*PROGRAIMMER. This product takes advantage of information in the
Dictionary/3000 data base to produce Transact source code files. It can
generale code to support the maintenance of IMAGE data bases, KSAM files and
MPPE sequential files with either a character mode or VPLUS user interface.
Information from the dictionary can. be complemented by additional
specifications input by the person running the program generation process.
The scope of Transact program generated varies fromm complete maintenance
systems to sophisticated programs that perform only certain functions, such as
data entry or reporting. The program produced may be a final solution or the
program source code ay be further tailored by a programmmer to better suit the
desired end-user interface or to perform specialized functions.
MACS*PROGRAMIMER in particular supports a prototyping approach to application
system development. The generation of each prototype can be completely, or
largely, automated thus freeing the progranuner to concentrate on the evolution
process and derivation of final design.

So far we have considered utilities and processes that aid or automate
application system implementation - what about analysis and design? We have
seen how a data dictionary can document both physical and logical data
processing structures. In the latter case this can clearly embrace the sort
of data and process structures that evolve during the analysis and design
steps of application development. Dictionary/3000 provides one structure,
CATEGORY, that a user may employ to document logical and functional aspects of
existing and planned systems. Even though the definition fields associated
with CATEGORY are limited, a useful level of design aid can be implemented to
document and assist in the analysis and design of procedures and data files.
As standard requirements for such computer aids become more evident,
Dictionary/3000 may well be expanded to meet their information needs.

There are several computer aids for analysis available in the mainframe
environment. One example is STRADIS-DRAW from McDonnell-Douglas Automation.
This product is based on the Gane and Sarson implementation of [Data flow
Diagrams that supports a system overview level and a design level for detailed
specifications. A Tektronix color graphics terminal is used to enable an
analyst to construct and manipulate the data flow diagrams. The diagrams and
associated textual contents are maintained in a special file on the mainframe
computer system.

In the HIP3000 computer system environment IMACS*ANALYST is a computer aid that
supports the well accepted Yourdon systern analysis method (data-flow
diagrams). The product uses a specialized diclionary data base to document
the analytical components and relationships. However, as detail design work
is accomplished the definitions of data items, files, bases and program
pracedures can be automatically loaded into Dictionary/3000. [IMACS*ANALYST
takes the automation level one step further by using Dictionary/3000 as a
bridge between design and implementation.

It is not difficult to sce the coming evolutionary steps for the dictionary
and such computer aids. -As more and more specifications and rules can be
accominodated by the dictionary then more and more system development steps can
be automated. Needless to say many challenges still exist in designing
algorithms than can produce complex data processing systems.

An important first step has been made in the HP3000 computer system
envirohment and you can expect to see many more computer aids from

13-5

Hewlett-Packard, independent software vendors and user qroup contributions
that nake use of Dictionary/3000.

Author Profile

David Dummer is president of IMACS Systems Corporation which develops and
markets software products, education and consulting services through offices
in the United States, Canada, the United Kingdoin and the Metherlands. The
company has specialized in productivity tools for the HP3000 computer system
since 1977. Four of its software products were acquired by Hewlett-Packard in
1981, enhanced and now marketed as the RAPID product family of Dictionary,
Transact, Report and Inform.

David has personally spent eighteen years in data pracessing most of which
have been in the research, development and marketing of data base and
dictionary driven systems for mainframe and mini-computer system environments.
For several years as a data base administrator he gained considerable
experience in shaping this corporate role and the associated development of
data dictionary driven systems. He has lectured extensively in North America
and Europe on technologies and implementation nethodologies associated with
the data base approach.

13-6

ROLE. OF DICTIONARY FOR COMPFUTER AIDS

ANALYSIS

COMTROL fe @ DESIGN

MAINTENANCE DEVELOIPMENT

FIGURE 1

13-7

DICTIONARY/3000: ORGAMIZATION

QEGORY

/

(PROCEDURE I
n“)

N

ELEMENT
(DATA 1TEM)

CLASS

e o et i

oot voeta e s v s

LOCATION

[——————

FIEORE 2

13-8

IMFORM
GROUP

FILE

[T U —

TRANSACT/3000: ORGANIZATION

o —— o o

(AU "~ e =
PESIGN PROGRAM COMPILER
~— -
Y.
CODE FILE
% v o

.-

TRANSACT

PATA BASE

T e w0710

CUTFUT
,,,___.«/ '

FIGURE 3

13-9

INFORM/3000: REPORT GENERATIOM SYEFS

REPORT
DATA breTONARY /3000
SELECTION "
P "-\\
b IMFORS
ELEMENT GROUP
e
SELECTION .
e

"ROCEDURE
CENERATION

%1 RrePORT |E————
EYECUTION

FIGURE 4

13-10

Data Dictionaries That Cost Nothing

K

Robert A. Evans

Freelance Analyst/Programmer

Sestil Ltd., 16, Lichfield Avenue,
Canterbury, Kent, CT1 3YA, 0227-58647.

To be presented at the

HP 3000 IUG International Meeting,

dinburgh, October, 1983,

14-1

The object of this paper is to look at the process of system
development, from database design through to program coding, in a

61ipghtly different light. The topics to be covered are:-

(a) How an IMAGE database is created, and how
aspects of the creation process can be of
particular use to us.

(b) The self-defining nature of IMAGE and VIEW files.

(c) Accessing and making use of this information, using
standard software and simple own-written utility
programs, and in program development,

(d) Conclusions to be drawn from the above.

Before starting, it is useful to set out some objectives, which
are as follows:-

(a) Use standard Hewlett Packard bundled software, plus a
compiler, wherever possible. Only use other development
tools where they fill a need that cannot adequately be
performed by standard software.

(b) Any utility programs that we write to make use of our
data dictionaries should be simply and clearly written.

(c) Privileged mode is absolutely forbidden except where
Hewlett Packard agree to support it. Failure to obhserve
this guideiine can leave us with a corrupt system and
without support from Hewlett Packard. This topic is
most impor tant and has been fully covered by Fugene Volokh (1),
although he draws a more lenient conclusion.

What are we looking for in this exercise? Some examples are

shown below:~

(a) Database design aids - to ensure that our physical
design is an efficient implementation of our logical
design - e.p. selecting the right dataset capacity and
block sizes.

(v) Prorram development aids - we can set up copy library
memhers or record definitions automatically.

(¢) Early warnings and indications of incompatibility -
in a database, perhaps our sorted chains are becoming
too large, our datasets are nearly full or are too full
to be efficient. If, for example, we are using items
of typre I, they are not fully compatible with COBOL.

(d) Procramring techniques that rake use of the information
available.

14-2

Every HP3000 installation has resources of data that are
carefully looked after but only rarely used to the full, Data,
for example, that would warn us that a particular database needs
some attention. Data that describes the elements of each
database and how the elements link together. Poor machine
performance stems from many different causes, some of which are
8o elementary that they can be picked up and eliminated before
calling upon the more complex performance monitoring tools. All
this data can be accessed using standard 1/0 intrinsics from almost
any programming language, at no extra cost. Only simple

vrogrammine is involved.

Let us consider the stages we go through to set up and use an
IMAGE database. We sketch out a design, having carried out our
data analysis, and we usually have several attempts before we feel
able to go any further. We describe the data and the way it links
together. Ve define our datasets according to their type, and we
work out the capacity.we will need for each one. If we want to,
we can do a dummy run through the schema processor so that we do
not create a root file but get a listing in a familiar format that
we can check and try to improve. We will probably make some small
syntax errors, which we correct, and then when we are ready, we

create the root file.

sehema™

text

DESLHEMA, _ o
fulk svys 5 schema
DR R i lislinq
i
)
v
" root
| e

Fig 1: Schema Processor

14-3

Figure 1 shows this development stage. Notice the dotted
line between the program and the root file. The latter is not
created until (a) we ask for it and (b) the syntax is correct.
THERE IS NO SUCH THING AS AN INVALID ROOT FILE. A schema input
file can be invalid but not the root file.

All database designers should be aware of what will actually
be set up on disk and the internal structure of an IMAGE database,
as described in Section 10 of the manual (2). An important point
that is not always realized is that the most suitable block size can
be worked out individually for each dataset and set up using the
CONTROL BLOCKMAX statement in front of each dataset definition (3).
Spending a 1ittle time on this aspect of the physical daﬁabaae
design can result in a more efficient database, which makes fewer
demands on main storage at run time. Trial and error is the
best way using CONTROL NOROOT and the Summary Table produced by
the schema processor, which shows the amount of disk space needed
by the root file.

Let us consider the root file. What 1is it, and what does
it do?

(a) It is a machine-readable definition of our database
and it holds details of all the items, sets, paths,
capacities and security just as we set them up in the
schema text file.

(b) It is the one and only reliable link betwéen the files
in our database and the I/0 routines that Hewlett
Packard provides to read 1it.

(¢) It provides access to information about the current
state of our database files. Some of this data is
static (definitions); other is dynamic (record counts).

It therefore contains data that can be of much use to us.

This point is taken up later.

To create the database, we run DBUTIL. By looking at the root
file, DBUTIL finds out what is needed and creates the necessary files.

14-4

o
Loct

fire

DRwTL.
R
1Y

g

; Dula Data Nata
et L Set 2 Cet A

Fig, 23 Data Base Creation .

Figure 2, iboie; iliugtraiés this proceés. By reference
to the root file (not thb schema text file), DBUTIL sets up the
empty database. There is a further chance to ehhance the
physical database design here. Performance can be improved by
suitable buffering (which is specified when running DBUTIL) and a
guide to this technique is provided by Wendy Matheson in her
paper "IMAGE/3000: Designing for Performance and Maintainability" (3).

14-5

Having got this far, with what by néw should be an optimal
physical database, we are now ready to put data into it by one
means or another. At run time, using an IMAGE database, file
access is performed as shown in Figure 3 below, with access to
the data sets being controlled through the Data Base Control
Block (DBCB) and with a User Control Block (ULCB) for each

access path,

! hate Rue

('(.'n‘-’l 1
E("Gt Kk)
e e e = BRCR
“]’Uqf‘\-\" - -
M&inﬁ
Imace N\
/ u -
~4 { e v
"\'_ Cenlro)
Rivck
_”luucu)

Fig. 3: Data Base Access .

14-6

e

-

"

As Fig. 4 below shows, access to conventional files is

simpler and data definitions are normally held in the program.

e
1
“A . - T T
P P 4
[..,.]:.\ 0wy /./
NCT uting | o
1AL e tole
2.

f:le
"M

Fig. 4: Conventional File Access .

The big difference is that, when using IMAGE, file access
also makes data definitions available whereas no such facility
exists with conventional (or KSAM) files. This is how we are
able to say: "Are there any INVOICE records with an INVOICE-DATE
of 8306012" rather than: "Are there any INVOICE records with
830601 in positions 12 - 177",

When accessing IMAGE data through a user-written program,
not only are we presented with the record (or portions of record)
that we ask for, but we are also given some very useful status
information. The choice is ours whether or not to use it, but

it is readily available in what 1s known as the Status Array.

The Status Array is "a ten-word array in which IMAGE returns
Status information." (2) When the IMAGE procedure call works
successfully, the array is set up with different information
accr ‘ng to the intrinsic being called. The first word of the

arra, «6 always returned from the procedure call with a value of

14-7

zero if successfulj non-zero if unsuccessful (with predetermined

codes for each error condition).

A very simple read of a master dataset can be used to
identify an impending loss of performance. Each master record's
physical location in the dataset is determined by the type and
value of the search item. For non-binary search items (type
U, X, Z and P) IMAGE attempts to spread new records evenly around
the dataset regardless of the value contained in the search item.
Performance deteriorates when the dataset becomes around 80% full,
For binary search items (type I, J, K, R) the search item VALUE
determines the disk address where IMAGE will attempt to put the
new record. Where a record already exists at this address, IMAGE
has to find somewhere else nearby to put the new, Synonym, record.
If an IMAGE program attempts to read this new record by search item
value, it will first of all go to the ‘'old' one, realize that it is
not the one required, and search through the synonym chain (records
with the same calculated address) until it finds the one with the
value it is looking for. As Wendy Matheson has shown, there need
not be many records in the master data set for this to happen (3).
Fortunately, we can detect this situation and do something about it.

Program 1t To check the number of synonyms in a master
dataset (used when search item is type I, J, K, or R).

DBOPEN

DBGET mode 2 (serial read)

Using the search item value thus obtained,

DBGET mode 8 (calculated primary read)

Ignore if return code = 17 (record not a primary)

Words 5 - € then contain the number of records

in the synonym chain.

By maintaining a count of records read, and of synonym chains
encountered, we can calculate some statistics. The program can be
run periodically, and as a diagnostic when machine performance
deteriorates. There is no '"magic number" to watch out for, but
trends can be established. The result should still be treated
with caution. If the master detail set is always read serially,
the program will deal with the records in the order it encounters
them, regardless of whether or not they are synonyms, ar? no

corrective action need be taken at thisstage. If, how »y the

14-8

dataset is accessed frequently by search item value and Program I
shows a trend of more and more synonyms, more and more I/0 is
needed to pet hold of the right records. The solution is to
examine the attributes of the search item, with a view to
converting it to a non-binary type if possible, or perhaps adding
a check digit (3).

Program 2: To look for overloaded sorted chains.

IMAGE offers the facility to sort detail records when adding
into a chain. The manual sugrests that these sorted chains be
kept relatively short (2); Robert Green advocates a maximum of
10 (b). The following sequence of intrinsics, when carried out
on a dataset containing a sorted chain, can be used to report on

overloaded sorted chains:i-

DBOPEN

DBGET mode 2 (serial read)

Usine the (sorted) search item value just read
DBFIND

Words 5 - 6 of the Status Array contain the

count of the number of records in the sorted chain.

Report if not less than (say) 8.

Arpain, the results of such a program should be treated with
caution. If records are rarely added to an offending dataset, or
if they are adfed in batch mode at a convenient time, remedial
action is less urgent. The solution is to consider whether the

sort can be taken out of the chain.

Both of these programs can be written quickly in any language
and in such a way as to take into account the nature of the
processing in the individual installation, Privilesed mode is
not needed. These are just two examples of prosrams that make
use of the Status Array which each prorram calling an IMAGE
intrinsic has to set up. We can now o back a step to think arain

about the facilities offered by the IMAGE root file.
Every IMAGE root file is also a machine-readable data

dictionary. When IMAGE datasets are accessed, the root file
(or rather, a copy of it - the DECB) is read at the same time to

14-9

define the data and its structure. There i=s also an IMAGE
intrinsic, sadly nerlected, which can access these definitions

programatically:-

DBINFO

Advantages of using IMAGE as a Data Dictionary.

1) An IMAGE ROOT File is always syntactically correct

and up to date.

2) No effort is needed to maintain it. It sets itself up
(DBSCHEMA,PUB,SYS).

3) There is no duplication, such as exists when a separate

data dictionary is maintained.

4) Being up to date, there is no risk of incompatibility with
the data it describes.

5) Before, during and after prorram development, where an
existing database design is beinpg modified, simply equate

the root file to access the correct version.
6) Similar facilities are available in VIEW.
7) It costs nothing, and is delivered with every HP3000.
8) It is integrated with the data it describes.

9) It comes complete with a free, HP - supported means of
interrogating it interactively (the FORM command within QUERY).

10) It is a mature, reliable product and there is plenty of
expertise available. There is also a continual development

and exchange of views on this product via the IUG.

The ¥OPM command within QUERY.

This feature is fairly-well known. It has the facility to
report on the usage of any, or all, of the data items, datasets,

or paths within the database being accessed.

DBINFO,

DBINFO is an IMAGE intrinsic that provides information about
any databhase and makes it available within a vrogram. It should

14-10

be pointed out that any such program should open the database with
total read capability. With any capability less than this, it
will not be presented with information for those items to which
it does not have access. Some of the more commonly-used modes

are shown below:-

Mode 203 "Identifies all datasets available in the

database and the type of access allowed."(2).

The above mode of DBINFO returns a word array
containing the set numbers for which the user
has access. The numbers correspond to the
order in which the datasets were originally
defined in the schema.

Mode 202 "Describes a specific dataset."(2)
Having obtained the dataset numbers, we can
now go in once for each dataset and obtain

a lot more information:~-

- dataset name

- dataset type (automatic or manual master,
or detail)

- record size

- blocking factor

- capacity

~ number of records present

Notice the combination of data definition and
physical aspects.

We now turn to two practical uses of this information.

Program 3: Access any database; find out each dataset

name, capacity and number of records present.

Produce a report showing this information and

flag any dataset that is critically full,

For our definition of ‘critically full', we can use that
provided by David Greer - namely 80% for masters and 902 for
details (5). The sequence of IMAGE intrinsics is:-

DEOPEN

DBINFO MODE 203 - what datasets are there?
14-11

DRINFO MODE 202 - capacities and record counts

Calculate, compare, print, and flag.

Once again, each shop needs to look at its own situation
and requireqents. For example, there could be a stand-alone
detail dataset that always contains one and only one record, with
a capacity also of one. This dataset will always be 100% full,
and it might be worth hard-coding such a dataset out of the flagging

routine.

Of narticular value are flags that start to apvear for
master data sets whose search item is of a non-binary data type
(u, X, Z and P). IMAGE attempts to spread these records evenly
around the dataset and they start to get in each other's way
(synonym chains begin to grow) when the record count approaches
80% of capacity.

Programming technigue: lboking ahead.

Consider a transaction that consists of adding one record
to a master dataset and three records to a related detail dataaef.
If there is only room for one new master record and one new detail
record, the transaction will fail, having added one record to each
dataset, and leaving the database in a state of logical incompatibility,
although perfectly valid as far as IMAGE is concerned. To avoid
this situation, the program should first issue a DBINFO for each
of the two datasets, and only continue if there is room for one
more record in the master and three more in the detail dataset.

Ve can now continue to look at what is available in DBINFO:-

Mode 103 Defines all data items in the data base
and 104 " " " " " " data set

(and the type of access allowed).

A word array is returned, containing data item numbers.
Having identified our datasets (modes 203 and 202) we
are now well on the way to finding out how the database

is made up.
Mode 102 Describes a specific data item.

This is the next step down and it tells us the na f a

14-12

specific data item, alonp with its data type (I, J, K, R, U, X,

Z, P), sub-item count and length.

Program b:

Create a COBOL copy library member or record

definition for each dataset in any database.

NDecide how to identify each set uniquely - prefixes?
DBOPEN
DBINFO Mode 203 - what datasets are there?
Mode 202 - define each dataset
Ignore automatic masters
Mode 104 - what data items are there in
each dataset?
Mode 102 ~ define each such data item
Convert data type to COBOL notation
e.g. J becomes PIC S9 (004) COMP
Deal with compound items
e.g. 30X2 becomes PIC X(002) OCCURS 30
¥Write to output file.

This program ies easy to write, can be tailored to enforce

an installation's programming standards, and can be used for any

database once written,

Program 5:

Report any data items that are not fully

compatible with COBOL.

Data types I, K and R are not fully compatible
with COBOL. If no processing is going to be done
on any such fields in a COBOL program, there is no
problem. Data type I is a particular problem
because COBOL will happily deal with values within
the range - 9999 to +9999 but not within the ranges
- 32768 to - 10000 or 10000 to 32768. It would be
useful to report any use of these data types for
further investigation:-
DBOPEN
DBINFO Mode 103 - what data items are there in
the databare?

Mode 102 -~ define each data item

Report data types I, K and R.

1413

V1
Forme files also carry their data definitions around with
them, and can be considered to be data dictionaries.

Again, as with IMAGE, we can access this information using
standard software supplied by Hewlett Packard. Interactively,
FORMSPEC 'S LIST command is used to report one or more forms.
Programmatically, three VIEW intrinsics can tell us everything we
need to know about any forms file:~

VGETFILFINFO - Returns FILE information - e.f. the FORMS
it contains.

VGETFORMINFO - Returns FORM information - e.g. the FIELDS

it contains.

VGETFIELDINFO - Returns FIELD information - i.e. the
attributes of one or more fields.

We could write a program similar to program 4, which would
use each of the three intrinsics in turn and set up a COBOL copy
library member or record definition for each form. The method is
slightly more complex, but information on each of the intrinsics

is fully set out in the appropriate manual (6),

It is more than feasible to write a reneral purpose data-entry
profram that will quickly set up a dataset from a screen if certain
naming conventions are followed. Bear in mind that the hyphen (-)
character used in IMAGE corresponds to the underline (_) character
used in VIFM and that fields in a VIEW form can be moved to their
equivalents in an IMAGE database using the COBOL MOVE CORVESPONDING

statement.

If we are using graphics, we can interrate DSG definitions

with those of VIEW and IMAGE. Possibilities abound,

14-14

Conclusion

Ve have pursued several ideas throughlooking at the normal
development process, but being a little more aware of what the
software offers. All of the programs described are functionally
simple, and can be quickly and easily written to suit each
installation. Closer examination of the manuals and of technical

papers will reveal further possibilities.

Only standard Hewlett Packard software has been considered.
These products have been around for years and are reliable. Before
buying any system development aids, we should look very closely at
what can be achieved using IMAGE and VIEW, Furthermore, by adding
to our knowledge of these products, we should be able to produce

better systems.
By what might be termed good housekeeping, we can avoid
some of the mysterious losses of performance and failures that

occur from time to time.

I hope that I have pgenerated a few useful ideas. I also

hope that I have saved you some money.

1415

1)

2)

3)

b)

5)

6)

References

VOLOKH, Eugene:
VeSoft Consultants

Hewlett Packard Company:

MATHESON, Wendy:
Hewlett Packard Company

GREEN, Robert M:
Rohelle Consulting Ltd.

GREER, David J:
Robelle Consulting Ltd.

Hewlett Packard Company:

Privilered Mode: Use and Abuse

Interact Magazine September - October

1982,

IMAGE Data Base Management System

Reference Manual.,

IHAOE/}OOO: Designing for Performance

and Maintainability IUG Montreal
April 1983,

Optimizing On-line prograns.
Technical Report 2nd edition.

IMAGE/COBOL: Practical Guidelines
IUG San Antonio Feb-March 1982,

Data Entry and Forms

Management System
VPLUS/3000 Reference Manual,

14-16

A paper to be presented at:
HP3000 International Users Group,
International Conference,
Scotland.

2nd - 7th October, 1983

DIRECT SCREEN ADDRESSING

USING CoB80L II

By: J. Birkhead,
L.C.P. Group Services Limited,
The Pensnett Estate,
Kingswinford,
West Midlands.
ENGLAND.

15-1

10

CONTVENTS,

INTRODUCTION

LCP - WHAT IS IT?

DATA PROCESSING IN

CURSOR ADDRESSING

DISADVANTAGES

ADVANTAGES

UPWARD COMPABILITY

PROGRAM SIZES

SUMMARY/CONCLUSION

BIBLIOGRAPHY

Lee

15-2

INTRODUCT 10N

This paper will highlight some of the reasons for and advantages/
disadvantages of using direct screen addressing with COBOL II at LCP.
It should not be seen as an “"anti-V/3000" paper, since V/3000 is an
admirable product in the right environment, however, LCP felt that
our installation was not such an environment for the reasons outlined

later.

Descriptions of the method we use in formatting the screen will
be given, although this example is by no means the only system that

can be used.

LCP - WHAT IS IT7?

LCP is a large group of diverse companies mainly based in the
UK, but also in mainland Europe and U.S.A. The major activities of

the group are outlined below:-

L.C.P. HOLDINGS Plc

f T T 1
PROPERTY DEVELOPMENT VEHICLE DISTRIBUTION DISTRIBUTION Automotive
& CONSTRUCTION Main Dealers for Building parts
Trading Estate FORD, GENERAL MOTORS, Supplies retailing
Management, Offices BRITISH LEYLAND, Solid Fuel

ROLLS ROYCE

Most of the above companies data processing requirements are serviced
by an in-house bureau based on a HP3000, with modems and multiplexors to

regional depots remote from the central site.

Last year the group had a turnover of £277 million.

Continued...
15-3

DATA PROCESSING IN LCP

Five years ago D.P. was based on accounting machines. The
information available from these machines was often late, inaccurate and
inflexible. LCP leased an IBM System/32 and acquired a set of
basic RPG ledger applications. Data was transferred over a period
of 3 months from the accounting machines, these were eventually

scrapped.

The 1BM System/32 was recognised as a stop-gap measure to build
up the non-existant confidence in the Data Processing Department and
computers in general. All data was keyed onto floppies and processed
in batch through the 32. Eventually there existed 100 megabytes of

backup storage on floppy - the system had 1 disk drive of 13.7 MB.

It was the eventual aim of the department to abandon central
data-entry and to remove it to the point of transaction source in the user
companies. In order for this to succeed, new applications were to be

written that were as simple to use as possible.

The applications were also to be 'crash resistant', therefore
it was decided to operate in foreground data entry/enquiry and background
batch ledger updates. This method of working protects the major
application files during a system crash. This has the effect of

increasing user confidence.

Although in-house program development is not charged for, cost
of the hardware to be used, i.e. VDUs and modems, was to be bourne by
user companies. In order to reduce resistance to new applications,
we recommended the use of the then newly available 2621As, instead

of the more expensive 264X series. This of course meant the us-

character made.

15-4

Continued...

It should be remembered that at this time (1978-79) V3000 was

relstively new, and H? S.E.s were rare in the UK.

The system/32 was replaced 18 months later by a IP3000 Series 33.
A software house wrote a suite of on-line entry programs to interface
the RPG background batch applications to the only method of data entry,
the VDU. These programs did not use V/3000, but used their own screen

handler in character mode.

With little experience of COBOL, two major applications were without
a method of data entry. These were Payroll and Nominal Ledger. Programs

were written using COBOL and V/3000.

Our own staff found V/3000 screens quite easy to use, lowever,
when this method of entry was introduced to user staff, some resistance
was encountered when they had used the character mode entry programs.

Subsequently we have re-written the nominal ledger entry program.

After investigating direct cursor addressing and writing an
application using it we decided that the method I will go on to

describe is as good a method as any.

Continued...

15-5

Continued...

CURSOR ADDRESS ING

Forms are placed on the screen using displays, with cursor
addresses, followed by field descriptions. The use of WRITE to
display operator prompts at the base of the screen and READ to

accept user responses on the same line:-

ENTER CUSTOMER ACCOUNT NO._

The effect "__" can also be achieved using ACCEPT and DISPLAY,

however this is more difficult.

In the examples shown below the message field PROMPT-OUT is
forty characters long. Longer fields can be created, but this then
reduces the length of operator reply. Usually we use two PROMPT-OUT

fields one of forty characters and one of 80 characters.

Essentially the screen is split into two sectors:-

Lines 0 - 19 Form Layout

Line 20 Blank

Line 21 - 22 Available for operator interaction

It should be noted that the 24 lines of the display are

numbered 0 - 23 and the 80 columns are numbered 0 - 79.

Continued...

15-6

Continued...

A few of the more common escape sequences are described below:-

(? = Escape)

H - Home cursor to top of memory

(g - Clear screen from current cursor position
@ - Pause for one second

?&dD - Underline

?&d8 - Inverse Video

?&a5r8C -~ Position cursor at absolute address row

5 (5r) and column 8 (8C)
When a cursor addressing program is run, the screen should be
cleared (i.e. ?7H?2J). The blank form is then painted on the screen

using display, as follows:-

DISPLAY "H?3".
DISPLAY "?&a3rlC" "ACCOUNT NO.".
DISPLAY "7&a3r30C" "CUSTOMER NAME".

Continued...

15-7

Continued...

This will clear the screen, and write the words ACCOUNT NO. starting
at row 3 column 1 and CUSTOMER NAME starting at row 3 column 30. The
remaining form is built up in this way using lines O - 19 of the screen.

Below shows the basic statements that need to be entered.

Assign $STDINX is used to prevent E.0.D. when entering a COLON (:).

INPUT-OUTPUT SECTION.
SELECT L-INP ASSIGN "$STDINX".
SELECT L-0UT ASSIGN "$STDLIST".

DATA DIVISION.
FILE SECTVION.

FD L-INP
LABEL RECORDS MISSING.
01 REC-IN PIC X (10).

FD L-0UT
LABEL RECORDS MISSING.
01 PROMPT-OUT PIC X (40).

PROCEDURE DIVISION.
A-OPEN SECTION.
OPEN INPUT L-INP.
OPEN OUTPUT L-0UT.

At this point the blank form is displayed as described above, prampt .

the operator and receive data as follows overleaf:-

Conti—ed...
15-8

Continued...

ASK-AGAIN.
DISPLAY "&a20r0C 7J 7&a20c0C".
MOVE "ENTER CUSTOMER ACCOUNT NO."
T0 PROMPT-0UT.
WRITE PROMPT-OUT AFTER O.
MOVE SPACES TO L-INP.
READ L-INP INTO ACCOUNT-NO
AT END STOP-RUN.
This code will place the operators response (i.e. an account number)

in the field ACCOUNT NO. This can then be used for validation.

If an error occurs, such as the account nunber does not exist,

then follow the code below:-

IF CONDITION-CODE = 17 (IMAGE DBGET MODE 7)
MOVE "ENTERED ACCOUNT NO. DOES NOT EXIST" TO PROMPT-OUT
DISPLAY "?&a20r0C 7J ?&a20rOC"
WRITE PROMPT-OUT AFTER O
DISPLAY '"?&a22r0C é@?@"
GO TO ASK-AGAIN.
After the display of the error message the program will pause for

2 seconds and then the prompt for the account number is displayed again.

When the account number has been verified, it and the customer name

can be displayed as below:-

DISPLAY '?&a3r15C" ACCOUNT-NO.

DISPLAY '"?&a3r44C" CUSTOMER-NAME.

Continued...

15-9

Continued...

The entry of numeric values such as a unit price can be received from
the screen using READ (into a PIC (X) field) then using a floating point
sub-program be transferred to a PIC 9's field. However the (DBOL II statement
ACCEPT fieldname FREE can also be used. ACCEPT FREE allows the entry of
numeric data, and automatically checks that the field is of the correct
length, the correct number of decimal places and contains only numbers

(or a decimal point or minus sign).
A field defined as:-
05 VALUE PIC 9(8) VALUE ZEROS.
Would take the operator input of 53 and place it in the field
"WALUE" as 00000053. The inclusion of a decimal place or minus sign
would institute an error. To allow the input of negatives the field should
be defined as a signed numeric (i.e. 59(8)). To allow the input of decimal

places define the field as S9(8)V99. An example of the input of a numeric

field is shown below:-

Field defined as:-

Continued...

15-10

Continued...

05 VALUE PIC S9(8)V99 VALUE ZEROS.
05 DIS-VALUE PIC 2(7)9.99-.

CoDE

GET-UNIT-PRICE.

MOVE "ENTER THE UNIT PRICE OF THIS PRODUCT" 10 PROMPT-OUT.
DISPLAY '?&a20rQC ?7J ?7&a20r0C".
WRITE PROMPT-OUT AFTER O.
ACCEPT VALUE FREE
ON INPUT ERROR
DISPLAY '"?4&a20rOC 73 ?&a20rOC"
MOVE "INVALID ENTRY" TO PROMPT-OUT
WRITE PROMPT-OUT AFTER O
DISPLAY '"?&a22r0C?@?@"
GO 7O GET-UNIT-PRICE.
MOVE VALUE YO DIS-VALUE.
DISPLAY ‘*?&a5r0C" DIS-VALUE.
(See COBOL IX Reference Manual Section 11 peges 1 to 7)
When entering long text fields such as names and addresses,
the displaying of a series of underscores can be used to indicate
the remaining size of the field since these will disappear as

the operator keys.

The program then continues to prompt for fields, validate, and

display them as above.

The use of displays and writes can be reduced by using a message
section. By moving a message number into a field and performing the
message section, the use of cursor positioning can be kept in one
place. By setting up program skeletons or copy libraries many of
the standard prompts can be held in previously defined message sections

or libraries.

Continued...

15-11

Continued...

By numbering fields during painting of the screen, at the end of
entry the operator can be prompted to enter a field number should an
amendment be required. Thus, the need for back tab to correct incorrect

fields is removed.

DISADVANTAGES

There are obviously some disadvantages in using this method of

data entry. Below are listed some of the major points.

a) When employing a HP experienced programmer we have to teach
the programmer new techniques. This may encounter some
resistance, however, in our experience the switch from V/3000

to direct cursor addressing can be achieved easily.

b) The absence of screen format files may mean same duplication
of effort in creating the screen format again in another

program. This may be overcome by using copy libraries.

c) Special code needs to be written to allow the refreshing

of the screen after the break key ispressed or a power failure.

d) Any changes to the screen layout require a recompilation of

the program.

Continued...

15-12

Continued...

ADVANTAGES

Below are listed the advantages as we see them.

a)

b)

c)

d)

e)

f)

A none HP programmer will learn escape sequences as easily
as an interface to a screen driver. Consequently there is

only the interface to IMAGE and KSAM to learn.

There is no software interface to have problems with. New

versions of software should not effect escape sequences.

There is no significant difference in elspsed time when coding

a cursor addressing program over using a screen handler.

Control of the screen is easier, the use of memory lock,
display enhancements, and screen rolling allow the creation

of complex screens relatively easily.

We have found that inexperienced user staff are easier to
train using this method. Prompts have the'effect of leading

vthe operator thraugh the scrsch.

If a field is in error, such as an invalid date, the
operator is informed when return is pressed, not at

the end of a screen.

Continued...

15-13

Continued...

g)

h)

i)

3

k)

There is never a large amount of data to transmit, therefore,
the operator sees the system response more evenly since by
the time the transaction is accepted all the data is in

the machine and is error free.

Field prompts and error messages can be more descriptive,
up to two or even three lings. This reduces the amount of

field description narrative on the screen.

In a multi-user, multi-company environment there is no
tendancy to proliferate screen format files which take
disk space. Screen formats are merged with code, reducing

directory entries.

We have found that the CPU is more evenly loaded since
it is transmitting/receiving small amounts of information

continually.

The use of character mode allows the use of system
intringsics to turn the echo off during password entry
or timed reads which return to the program if no data
is entered within a specified time limit, used to

protect sensitive information.

Continued...

15-14

Continued...

UPWARD COMPATABILITY

One of the 3000 range of computers main selling points is that all
software will remain upwardly compatible. This system of screen
formatting is as upward compatible as any other since there are around
200,000 HP VDUs installed today. The moving of the cursor around “he
screen is controlled by hardware, not software so it "stnulti" alwgys
work. V/3000 and any other screen handler must eventually i)roduée the
escape sequences that are created by the programmer. All tﬁis method
does is to remove a software screen handler from between the COBJL

program and the VOU. The new modular terminal family, however, has

not yet been proven to work.

PROGRAM SIZES

In order to reduce the size of the non-reentrant data segments,
all messages should be created and moved in the code segment, not in the
data division. This has the effect of enbedding the screen handler in

the code, so that only one copy is used in memory at once.

SUMMARY/ CONCLUSION

In conclusion, we chose this method of screen formatting 4 years
ago and have found no reason to change. There are obviously more
character mode screen handlers generally available today, however, we

find our awn method quite acceptable.

Direct screen addressing can be as sophisticated or as simple
as you want. We have found that with some practise, what may seem a

laborious method of screen handling can be completed very quickly

allowing t* orogrammer to code, not worry sbout software interfaces.

1515 Continued...

Continued...

1f you are faced with the same problems we were then I would

definately recommend this as an alternative to V/3000.

BIBL IOGRAPHY

Below are listed some references which may be of use in further

reading.
1. 2645A Display Station Manual - Section II Display Memory
(HP) Functions
2. Managing Data Entry with - 1980 SAN JOSE MEETING
Non-standard terminals Section 7 - 17
3. Communicator - (0BOL methods to
Issue Number 23 (HP) control Data Prompts

and Accepts to the same
line of a Terminal.

15-16

SOME PRELIMINARY SUGGESTIONS FOR TRANSACT PROGRAMMING STAMDARDS

hy Tony Sevmour and Lawrence McNamara

Alr Call Computer Systems,

INTRODUCTLON .

RAPID/3000 provides an integrated set of software tools which can
dramatically improve programmer productivity in the development of new
applications. One of these tools is the high~level proaramming
language TRANSACT,

TRANGACT has been in vse among HP users in Europe only for the
last year or two. This has been a tvime for programmers to experinent
with TRANSACT, while often finding themselves under considerable
pressure to complete programs to tight deadlines duve to high
management expectations of "rapid" programming. As a result, there
has been Little or no time to consider questions of programming
standards in TRANSACT,

It seems desirable to propose some initial standards for TRANSACY
coding, on similar principles to standards already widely adopted for
COROL and other established programming languages. In this paper we
will concentrate on the structure and layout of programs which handle
VPLUS forms,

An example program, illustrating many points of this paper, is
appended, The program is deliberately simple. It vses VPLUS forms
to input, update, and delete names on the SIG RAPID mailing database.

STRUCTURYE,

The overall design of the 8IG proaram vses some of the facilities
provided by TRANSACT for structured programming. The proaram
comprises a number of hierarchically organized modules. At the top
of the hierarchy it a control module (AA-CONTROL), which contains the
only EXIT from the program. The control module says: keep repeating
the menv until the vser presses f8 (to exit), and it does this by
means of the construct REPEAT PERFORM ... UNTIL ...

All other modules are performed routines, and each has a single
entry point and a single exit (RETURN). The menv module (AR-MENL)
calls one of 3 rouvtines, RA-ADD, CA-CHANGE, or DA-DELETE, depending on

the function key selected, The menu initiates an iteration of
whichever rouvtine is chosen, by means of the construct WHILE ...
PERFORM ... The iteration is terminated when the vser presses 7

(to return to the menu) or fB to exit the program.

There ig one other pertformed subroutine, AZ-FUNC-ERROR, which
handles the invalid vse of a function key anywhere in the progran,

16-1

The use of unnecessary "GO0 TO" statements is avoided,
The GO TO instruction is vsed mainly te Loop back to the beginning
of a paragraph or to proceed to the exit label of a module and thereby
RETURN,

The demonstration proagram does not illustrate all the facilities
provided by TRANSACT for struvatured programming. In retrieving
information from IMAGE databases we prefer to use the FIND verb with
the PERFORM=... option, and without the STATUS option, Performed

modules called in this way should be handled in the same way as other
modules.

LAYOUT,

The demonstration program illustrates many ways in which TRANSACT
code can be easy to read, uvnderstand, and maintain, For exanple:

-~ Each module, and the handling of a new form within a module,
begins on a new page in the listing.

-~ Each paragraph label occupies a lide which is separated from
adjacent code by lines of spaces.

-~ $ipace lines are used liberally elsewhere in the program to make
it easier to read,

- There is a standard pattern of indentation. A new statement
begins in column 3, while each option within the statement
occupies a separate line, beginning in column 5. Wi th

conditional statements (IF.,.. THEN.,., ELSE...) and the
DO. .. DOEND construct there is further indentation,

~ With the LIST verb, each item listed occupies a separate line,
beginning in column 9,

~ Comments are inserted where appropriate, although it is hoped
that the program is self-documenting to & great extent,

= The name of a paragraph label is used both to describe the
function of the routine and to aid in locating it
within the program: e.q. BA-ADD.

UrLusS.,

The demonstration program illustrates a method for handling VUPLUS
from TRANSACT. These are the main features.

Variables are defined in the dictionary for

(a) the name of the field to be enhanced (VENH)

(h) the window messaqge string (VMESSH)

(c) an inteqger to hold the number of the last
function key uvsed (YFKEY).

These 3 items are listed at the beginning of the proaramn, and

16-2

remain at the bottom of the list register, (At the start of each
module, the list register i1s cleared down, and VFKLY becomes the
current data item.)

The function keys f7(return to menu) and fB(exit) are handled in
such a way as to allow the vser to return to the menu or to EXIY
from anywhere in the program, while from the programmer’s point of
view this is handled in a structured manner. In every
GET(FORM) , PUT(FORM) , AND UPDATEC(FORM) statement the option
FKEY=VUFKEY 1s included, and f8= and f7= options are used to
branch to the module-exit (RETURN). Control then passes back via
the menv to the highest level of the program (AA-CONTROL.) which
checks the value of VFKEY,

- When handling a form, all the valid function keys C(including 0
tor ENTER) are specified as options. The invalid vse of a
function key can then be trapped without the use of an 1F
statement, simply by inserting a call te the suvbrouvtine
AZ-FUNC-ERROR .

The contents of the message window are controlled by including the
option WINDOW=((UMESS)), in all statements which handle a forn,
and ensurina that the item VMESS is updated before such statements
whaenever necessary, «.q. by MOVE (VUMESG) = " %

-' The typical handling of a form inveolves a maximum of 3 versions of
GET(FORIM) .

(1) GET(FORM) with the INIT option, to prompt for new input
with the +tields on the form initialized.

(2) GET(FORM) with the CURRENT option, to re-prompt after the
invalid use of a function key.

(3) GET(FORM) with the CURRENT option, and with a field enhanced
by WINDOU=((VENH) , (VMESS)) , after an error is trapped by
program validation.

The validation rovtine follows these 3 versions of the GET(FOKM)
statement, and is pointed to by the f0= option, If an error is
encountered during validation, the items VENH (name of the field
to be enhanced) and UMESS (message for the window) are set up and
a GO TO s«tatement cavses the program to branch back to version (3)
of the GET(FORM).

= The structuring of the proaram ensures that each module has a
single RETURN in its exit paragraph. Just before this RETURN,
any frozen form is cleared and old messages are removed from the
field holding the window message .

This method for handling VPLUS from TRANSACT may not be the most
efficient, nor the nost compact in terms of lines of code, Eut in
practice we have found that this style makes it possible to develop
bug-free proarams extremely quickly. EBecavse of the standard manner
of handling a form,it becomes possible to virtvally generate much of
a program with the text editor once the initial rovtines have been
coded. A program written with this method is alse very easy to read,
which makes subsequent maintenance simpler - especially if someone
other than the original avthor is asked to perforn the amendments.

16-3

EFFICIENCY.

Coding standards for TRANSACT should also pay attention to the
run-tine efficiency of proarams. Here the guidelines are already
available in Appendix E of the second edition of the TRANGACT manval
(published in December 1982).

With large programs, segmentation should be considered,

The organization of the demonstration program has this
consideration in mind: the RA-ADD, CA-CHANGE, and DA-DELETE
revtines could later become segments 1, 22, and 3, leaving
AA-CONTROL. and AZ-FUNC-LRROR in segment 0, The structuring of
of a program into moduvles makes eventval seamentation a simple
matter. The sizes of segeents may be assessed by compiling
with the STAT option,

- In the VPLS= option of the SYSTEM statement, declare only those
formns within the forms file which are required in the program,
When the system is complete use FORMSPEC to compile to a fast
forms file,

~ The size of the list reqister should be kept to a minimum,
Again, the structuring of the program helps becavuse the
SET(STACK) LIST(item-name) statement is vsed to clear down the
list register at the beginning of each module.

In the demonstration program the default TRANSACT data and

and workspace registers are larger than required. Using test

modes 3 and 102 the actuval requirements were assessed, and the
" sizes of the registers tuned down by means of the DATA= and

WORK= options of the SYSTEM statement,.

~ Where appropriate, temporary storage items defined in the proaran
should vse the OPT option, and in this case the proaram nust he
compiled with the OPTI optioen.

- A messages file or dataset may be used instead of program literals
to hold strings for the message window, (This was not done in
the demonstration pregram,)

CONCLUSION .

We hope that these preliminary suvqgestions for proaramming
standards in TRANSACT will initiate some thouaght and discussion,
If some agreement could be reached on coding standards, we believe
that this would further iaprove produvctivity in coding, debuvigging, and
maintenance work in TRANSACT, and alse maximize the run-time
efficiency of programs,

16-4

DTL![ONQRY/JUUU

DFF[NIIIUN U[DA!QHAQE

uIbRDH

FILE TYPE: RESPONSIRILITY:
SIGRDR BAGE
FILE (ALYAS) ¢ TYPE FILE(PRIMARY) CAPACITY:
A-NAKESET AUTO A-NANESGET 1001
ELEMENT(ALTAS) ; PROPERTIES ELEMENT (PRIMARY) &
NAME % X (30,0,30) NAME
FILECALIAS) ¢ TYPE: FILEC(PRIMARY) : CAPACITY:
A-COMP ANYSET AUTO A~COMP ANY SE T 1001
ELEMENT(ALIAS) : PROPERTIES FLEMENT (PRIMARY) :
COMP ANY % X (30,0,30) ° COMPANY
FILECALLIASG) TYPE ; FILEC(PRIMARY) : CAPACITY
D-ADDRESS-DETL DETL D-ADDRESS ~DETL.. 1002
ELEMENT (AL 1AS) 1 PROPERTIES ELEMENT (PRIMARY) :
NAME * X C30,0,30) NAME
CHAIN MASTER SET: 1A-NAMESET
COMPANY M X (30,0,30 COMP ANY
CHAIN MASTER SET: A-COMPANYSET
ADD 55X (30,0,30) ADD
TELNO X (20,0,20) TELNO

D[PIIUNARY/?OOO

ELEMENT TYPE: SIZE: DEC: LENGTH:
ADD X 30 0 30 b}
LEVEL: FLEMENT: POSITION: PROPERTIES
<1> ADD1 1 X (30,0,30)
(1> ALD2 31 X (30,0,30)
(1> ADD3 61 X (30,0,30)
(1) AbDA4 ?1 X (30,0,30)
(1> ADD% 121 X €30,0,30)

16-5

UEFINITIUN UF ELEMEN! ADD (ADDRE%

COUNT: RESPOMNSIRILY (Y

DICTIONARY/3000 DEFINITION OF FORMS FILE VSIGR,

FILE TYPE: RESPONGIRILITY:
UBIGR upPLS
FILECALTAS) ; TYPE: FILECPRIMARY) :
VS IGHENLU FORM VSTIGMENY
VS TGNAME FORM VSIGNAME
ELEMENT(ALTAS) PROPERTIES: ELEMENT (PRIMARY) ¢
NAME X (30,0,30) NANE
FILE(ALIAS): TYPE FILE(PRIMARY)
VSIGDETL FORM USTGDETL.
ELEMENT(ALIAS): PROPERTIE S ELEMENT(PRIMARY) ¢
COMPANY X (30,0,30) COMPANY
ADD1 X €(30,0,30) AbD1
ADD2 X (30,0,30) ADD2
~ADD3 X (30,0,30) ADD3
ADDA X (30,0,30) ADDA4
ADDS X (30,0,30) ADDY
TELNO X (20,0,20) TELNO

LISTING OF THE $IG DEMONSTRATION PROGRAM,

TRANSACT/3000 COMPILER (A.00.03): FRI, JUL 29, 1983, 12:16 PM COMPILED LIS)

COMPILING WITH OPTLONS: LIST ,CODE,DICT,DEFN ,ERRS,0PTI

1.000 €€ T3 36 9 36 302056 36 96 36 3 2 3 3669 3 396 36 36 3 26 22 3 36 36962 K 26K KKK MK N KW
2,000

3.000 Demonistration progran.

4.000 Illvstrates typical handling of VPLUS forns
5.000 with TRANSACT .

65,000

7.000 System inputs, updates, and deletes names
8.000 and addresses on the SIGRDE database
?.000 (HP S16G RAPID mailing list),

10. 000 i

11.000 Written by Tony Seymour

12.000 at Air Call Computer Svstems

13.000

14.000 July 1983,

15,000 WK KKK K KKK K KKK XK KEK KT KKK KKK KX KREAN KD)

16-6

1

b 000
17,000
3.000
». 000
20,000
21,000
22,000
3.000
24, 000
25,000
26,000
7.000
2,000
7. 000
000
1.000
32.000
3.000
34,000
365,000
36,000
37.000
38,000
39.000
40,000
41.000
42,000

TRANSACT /3000 COMPILER (A.00.03): FRI, JUL 29, 1983, 12:17 PM

43,000
44,000
A%, 000
46,000
47.000
48,000
49.000
50,000
51,000
52,000
53,000
54,000
55.000
56.000
57.000
58,000
59.000
60,000
61,000
62,000
63.000
64.000
65.000
66.000
67.000
683.000
69,000
70.000
71.000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0001
0003
0004
0004
000%
0009
000y
6010
0010

0010
0010
0010
0011
0011
0011
0011
0011
ou11
0011
0011
0011
0ot
0011
0025
0025
0027
0029
0029
0029
0029
0029
0036
1038
0038
0038
0038
0038
0045

SYSHTEM 816G,
TGRDEC"WRITER®, 1),
SIGR (VS EGMENL,
VG ITGNAME,
VSIGDETL),
Ve, 16,

L2,

DEFINE (CITEM)

GAVE - COMPANY XC30),0PT

AA-CONTROL. 1
LIST VENH:
UMESS, INIT ;
VFKEY ;

REPEAT PERFORM AHR-MENU
: UNTIL (VFKEY) = @3

CUEXITS

(XS 222223 2T LI LL I ITIELTITILLITIEIIILIIIZIZEL TS DY

'PAGE

AR -MENU ¢
SETCETACK) LIST(VFKEY)
AR-01:

PUTCFORM) VSIGMENY,
WAT T,
WINDOW= ((VHESS)) ,
FKEY=VFKEY,
FO=AR-EXLT,
F1=AR-10,
F2=AE-20,
F3=AR-30

PERFORM AZ-~FUNC-ERROR ;
GO 1D AR-01;

AR-10:
WHILE (VFKEY) ¢ 7
PERFORM BA-ADD;
GO TO AR-EXIT;
AR--20:
WHILE (VFKEY) ¢ 7

PERFORN CA~CHAMNGE
GO TO AB-EXIT)

16-7

COMPLLED L1GT)

0047

73 0047 AR-30 ;

74,000 0047 ;

75,000 0047 WHILE (VFKEY) < 7
76,000 0047 PERFORM DA-DELETE
77.000 0054 GO TO AR-EXIT;

78.000 0056
79.000 0056

B0.000 0056 AB-EXTT)

81.000 0056

82,000 0056 RETURN;

BR.000 0057 CERTBXRRKRRRRKXXRKKAR KKK KRR RRK I RXR XXX AKX RKRKKR Y)
84,000 0057

85,000 0057 AZ-FUNC-ERROR 3

86.000 0057

87,000 0057 MOVE (UMESS) = " Invalid vse of Function kew";
803,000 0059

89.000 0089 UPDATE(FORM) x,

20,000 00%9 LIST=(),

?1.000 0059 WINDOW= ((UMESS)) 3

92.000 0064

23.000 0064 RETURN;

4,000 0065 CUXRXEXXRKIRRKERRXRATRKRRRER LXK KR KRR ERXRTXRRRRKNXR))
?5.000 0065 ' PAGE

1
TRANSACT/3000 COMPILER (A.00.03): FRI, JUL 29, 1983, 12:17 PM COMPILED LISTY

P6.000 0065 BA-ADD ¢
P7.000 0065
P8.000 0065 EA-10:
99.000 0065
100,000 0065 CORRRKRXHKBKK KKK KK RIHHRRH KKK KKK KKK KKK KT KKK KKK KRHX KR
101,000 0065
102,000 0085 Handling of the form VSIGNAME
103.000 o006%
104,000 006% KEXKEXXXKKRKKRKEXRRIXXRKRXRKARKER R RRKRRRRKRRRR))
105.000 0065
106,000 006% SET(STACK) LIST(VUFKEY)
107.000 004606 MOVE (UMESG) = " »y
108.000 0048 LIST NAME;
107.000 0069
110.000 0069 BA-20:
111.000 0069
112,000 0069 GET(FORM) VSIGNAME,
113,000 0069 INTTY,
114.000 0069 LIGT=(NAME) ,
115,000 0069 WINDOW= ¢ (VMEES)) ,
116.000 0069 FKEY=VFKEY,
117,000 0069 Fa=RA~EXIT,
118,000 0069 F7=RA~EXIT,
119.000 0069 FO=RA-50;
120,000 0084
121.000 0084 PERI'ORM AZ-FUNC-FRROR 3
2 HLIEELY
0086 RA-30
0086
A 0086 GET(FORM) VSILGNAME,
126 000 0086 CURRENT ,
127,000 0086 LAGT=(NAME) ,

16-8

1

1

126,
129,
130.
.000
132.
13X,
134,
13%,
136.
137.
138.
139,
000
141,
142,
143,
144,
.000
146.
147,
144,
149,

131

140

145

000
000
(1]

000
000
000
000
000
000
0oo0
000

000
000
000
oo

aoo
000
000
000

{1157
0086
0084
0086
[IT:1:18
018t
016t
0103
[(R % 3]
0183
0189
0185
0185
0185
0103
0185
0185
0185
0169
0129
01ze
0122

WINDOW=((VMESS)),

FKEY=VFKEY,
FB=EA-EXIT,
F7=HA-EXIT,
FO=BA-50;

PERT URM AZ-FUNC—~ERROR ;

GO T0 BA-30;

BA-40:

GET(FORM) VSIGNAME,

CURRENT,
LIST=(NAME) ,
WINDOW=:((VUI:NH) ,
FKEY=VFKEY,
FB=RA-EXIT,
F/=RA-EXIT,
FO=RA-S50 ;

PEREORM AZ-FUNC-E

GO 10 RA-40;

(VHESS),

RROR ;

TRANSACT/3000 COMPILER (A.00.03): FRI, JUL 29, 1983, 12:17 PM COMPILED LIST)

150.
151,

152
153

154

15¢
157
15¢
159
160
161
162
163X
164
' ‘:l

000
goo0
000
800

000
15%.

000

800

400

.800

000
000
000
000
000
ong
000

0124
0124
8124
0124
0124
0124
0123
0125
0125
0128
0128
012¢
01213
1z
0137
0137

- oeh s b b

BA-50:

(¢ Validate that name does NOT already exist on file.

SET(KEY) LIST(NAME);
FINDCCHAIN)Y D-ADDRESS-DETL,

= “NAME"™;
= " Namne is elready on file";

SINGLE ,
LIST=();
IF STATUS = 1 THEN

b
MOVE (VENH)
MOVE (UHESS)
GO TO BA-A0;

DOEND ;

P AGE

»

TRANSALY /3000 COMPILER (A.00.03): FRI, JUL 29, 1983, 12:17 PM COMPILED LIGTI

166,
167.
1602,
169,

170
171

040
000
000
000

.000
.000
172,
173.
174.
175.
176.
177,
178.
179.

000
900
000
0ne
200
000
ooo
o000

0137
0137
0137
0137
0137
0137
0137
"niz
0137
0137
o148
0141
0142
0142

BA-110:

O 292 T6 0696 3 963K 3 263636 3 36 66 96 363636 96 303896 K X 9626 3 2 96X X KM

Handling of the form VSIGDETL

HAXKIRREXKKREXXRRENRRRANR RSN REXERRAXKERREARXRXRRR))

MOVF (VMESS) = *
LIST COMPANY:
ADD:
TELNO

BA-120:

"3

16-9

100.000 0142

181.000 0142 GET(FORM) VSIGIHTL,

182.000 0142 - OINIT,

183,000 0142 LIST=(COMPANY ,ADD1,ADDZ, ADD3 ,ADDA, ADDS, TLLNO) ,
184.000 0142 WINDOW= ((VHESS)), ’
185.000 0142 FKEY=VFKEY,

184,000 0142 F8=BA-EXIT,

187.000 0142 F7=RA-EXIT,

188.000 0142 FO=RA-150;

189.000 0164

190.000 0164 PERIFORM AZ-FUNC-ERROR;

191.000 0166

192,000 0166 BA-130:

193.000 0166

194,000 0166 GET(FORM) VSIGDETL,

195.000 0166 CURRENT,

196.000 0166 LIST=(COMPANY ,ADD1 ,ADD2,ADD3,ADDA ,ADDY, TEL NO),
197.000 0166 WINDOM=({UMLESS)) ,

196,000 8166 FKEY=VFKEY,

199.000 0166 F8=RA-EXIT,

200,000 0166 F7=BA-EXIT,

201.000 0166 FO=RA-150;

202.000 0188

203.000 0188 PERFORM AZ-FUNC-ERROR;

204,000 0190 GO TD BA-138;

205.000 0192
206.000 0192

207.000 0192 BA-13508:

208.000 0192

2092.000 0192 PUT D-ADDRESS-DETL,
210.000 01972 LIST=(NAME : TELNO);

211.000 0196
212,000 0196

213.000 0196 BA-EXIT:

214.000 0196

21%.000 0196 SET(FORM) » ,CLEAR; ({ clear a frozen forn)}
216,000 0198 MOVE (VMESS) = " % (¢ clear message window))
217.000 0200 RETURN;

2169.000 0201.' (EE 2122222 2382322233322 2223223333322 33232 DD)
219.000 0201 1PAGE

1 . .
TRANSACT/3000 COMPILER (A.00.03): FRI, JUL 29, 1983, 12:17 PM COMPILED LIST)

.

220,000 8201 CA-CHANGE :

221.0800 0201

‘222,000 0201 CA-10:

22,000 0201 ‘

224.000 0201 €€ 9698 9896 96 3636 36 96 963636 36 30 3 26 36 3636 36 36 36 36 36 3 3 3 36 36 3696 2 36 2 2 W 9 3 X 36X N
225.000. 0201 : Sl . : '
226,000 0201 Handling of the fors VSIGNAME

227.40080 0201 = .

2,°8.000 0201 FXERMRNNRIMNR NN RN NIRRT RENRARRNNRAANRRRARRN))
227.900 0201 :

230.000 0201 SET(STACK) LIST(UWKEY);

231.000 0282 MOVE (VNESS) = *_ °;

232.000 0204 LIST NANME:

233.000 0205 COMPANY:

234,000 0206 . ADD:

235.000 0207 ~ TELNO:

16-10

1

236.000
237,000
238.000
239.000
240,000
241,000
247,000
24%.000
244.000
245.000
246,000
247.000
248.000
249,000
250.000
201,000
o 252,000
253,000
254,000
255,000
256,000
2%7.000
258,000
a259.000
260,000
261.000
26:.000
263,000
264.000
265,000
266.000
267.000
268.000
269.000
270,000
271.000
272,008
273.000

0208
0209

0209

0209
0209
02y
0209
0209
0209
0209
0209
0209
0224
0224
9226
0226
0226
0226
0226
0226
0226
0226
0226
0226
0226
0241

0241

0243
0245
0245
0245
0245
0245
0245
0245
0245
0245
0245

SAVE ~CUMPANY 3

CA-20:

GETC(FURM) VSTGNAME,
INIT,
LIST=(NANED ,
WINDOW= (CUMESS),
FKEY=VUFKEY,
FB=CA-EXIT,
F7=CA~EXIT,
Fo=CA~-S0 ;

PEREORM AZ--FUNC—-ERROR;

CA-30:

GET(FORM) VUSIGNAME ,
CURRENT,
1 18T=(NAME) ,
WINDOW= ¢ (VMESS)) ,
FEEY=VFKEY, .
FB=CA-EXIT,
F7=CA-EXIT,
FO=CA-50;

PERFORM AZ-FUNC-ERROR;
GO 10 CA-30;

CA--40:

GET(FORM) VSIGNAME,
CURRENT,
LIST=(NAME),
WINDOW=((VENN) , (VMESS)),
FKEY=VFKEY,
F8=CA~EXIT,
f7=CA-EXIT,

TRANSACT/3000 COMPILER (A.00.03)s FRI, JUL 29, 1983, 12:17 PM COMPTLED LIST)

274.000
275.000
276.000
277.000
278.000
279.000

260,000
281.000
2682, 000
283.000
284.000
26%5.000

206,000
287.000
268,000
289.000
290.000
291.000

0245
0260
0260
0262
0264
0264
0264
8264
0264
0264
0265
0265
0265
0269
0269 1
0269 1
0274 1
0276 1

FO=CA-50;

PERIORM AZ~FUNC-ERROR ;.
G0 TO CA-48;

CA-501

<«

Validate that name DOI'S already ex

SET(KEY) LIST(NAME):
FIND(CHAIN) D-ADDRESS-DPETL.,
SINGLE , .
LIST=(COMPANY : TELNO)Y;
IF STATUS ¢ 1 THEN
00
MOVE (VNI = “NAME":
MOVE (VHESS) = * Name is not on
GO TO CA-464

16-11

ist on file,)

file"™:

292.000 0278 1 DOEIND ;
293.000 0278
274,000 0278 MOVE (SAVE-COMPANY) = (COMPANY)
29%.000 0280 1P AGE
1 i -
TRANSACT /3000 COMPILER (A.00.03): FRI, JUL 29, 1983, 12:17 PM COMPILED L1ST)

296,000 0280 CA-110:

297.000 6280

296,000 0280 GG %0363 98 336 9 60 36 29 36 969696 2 6 36 3636 3 2696 36 96 6 30 X 02396 96 96 36 36 26 2 2 XK X R
299.000 0280

300.000 0280 Handling of the form VGIGDETL

301.000 0280

302.000 0280 KIEREEARLRARRRRRRERKRARKFRREE KKK R LRRKX KX R KR))
303.000 0280

304.000 0280 MOVLT (UMESS) = * *;

305.000 0282 SET(FORM) VSIGDETL.,

306,000 0282 LIST=(COMPANY ,ADD1 ,ADD2 ,ADD3 ,ADDA ,ADDS , TEL.NW) ;
307,000 0292

306,000 0292 CA-120:

309.000 0292

310.000 0292 GET(FORM) VSIGDETL.,

311.600 0292 LIST=(COMPANY ,ADD1 ,ADD2,ADD3 ,AD 04 ,ADDS, TELMND) ,
312.000 0292 WINDOW= ((UMEGS)) , .

313.000 0292 FKEY=UFKEY,

314,000 0292 F8=CA-EXIT,

315.000 o292 F7=CA-EXIT,

316.000 0292 F0=CA-150

317.000 08314

318.000 0314 PERFORM AZ-FUNC-ERROR;

319.000 8316

320.000 0316 CA-130:

321,000 0316

322.000 06316 GET(FORM) VSIGDETL,

323.000 6316 CURRENT,

324,000 0314 LIST=(COMPANY,ADD1 ,ADDZ ,ADD3 ,ADDA ,ADDS , TEL N(D ,
325.000 8316 WINDOW=((UNESS)),

326.000 P36 FKEY=VFKEY,

327.000 B83te F8=CA-EXLT,

J28.000 0316 F7=CA-EXIT,

309,000 0316 FO=CA-150

330.000 0338

331.000 0338 PERFORM AZ-FUNC--ERROR

332.000 0340 GO TH CA-130;
333.008 0342 :
334,000 6342

335,000 0342 CaA-150:
336.000 0342
337.000 0342 IF (SAVE-COMPANY) = (COMPANY) THEN

338.000 8342
337.000 0345
340.000 0345
341.000 0345
242,000 08351
343.600 0353
344,080 6355
345,000 0357
344,000 835¢
347.008 0359

UPDATE D~ADDRESS-DETL,
LIST=(ADD : TELND)
FLSE -
DO ‘ .
SET (UPDATE) L IST(NAME) ;
SETAUPDATE) LIST(COMPANY):
SET(UPDATE) L.IST(ADD);
SET(UPDATE) | ISTATELNO) ;
REPLACE (CURRENT) D-ADDRESS-DE L,
LIST=(NAME : TELNO):

S e

16-12

1

1

340. 000
349.000

0363 1
0364 1

RESET(OPTION) UPDATE;
DUEND ;

TRANSACT/3000 COMPILER (A,00.03): FRI, JuL 26, 1983, 12:17 PH COMPTLED LISI]

350.000
3%51.000
352,000
353,000
354,000
355.000
356.000
357.000
358.000

0364
0364
1364
0364
0364
0364
0368
0369
0369

CA-EXIT:
SET(FORM) * ,CLEAR; ({ clear a frozen forn
MOVE (VMESS) = * %3 ({ clear message windew)
RETURN;

COMMIMMNRIIIEIN AN I I I I NI INNNNHMNNEXKNNK))
tPAGE ’

TRANSACT/3000 COMPILER (A.00.03): FRI, JuL 29, 1983, 12:17 PM COMPILED LIST]

357,000
360.000
361,000
362.000
36%.000
364.000
36%.000
I66.000
367.000
368.000
369.000
370.000
371.000
372.000
373,000
374,000
375.000
376.000
377.000
378,000
379.000
380.000
331.000
382,000
Ag3.000
384,000
385.000
386.000
387.000
388.000
389.000
3%90.000
391.000
392.000
393.000
394.000
39%,000
326.000
397.000
378.000
399.000

0369

- 0369

0369
0369
0369
0369
0369

0369

0369

0369

0369

0370

0372
0373
0374
0375
0376
0376
0376
0376
0376
0376
0376
0376
0376
0376
037%
0391
0391
0393

0393
039%

0393
0393
0393
0393
0393
0393
0393
0393
0408

DA-DELCETE:
DA—-10:
GO IE 6200609696 00 9630 6 36 06 96 3 36966 3096 3016 3690 3696 98 36 30 .6 6 36 000 96 36 3 08
Handling of the form VSIGNAME
M0 00606060660 XK R IR NR))

SET(STACK) LIST(VFKEY);
MOVE (VMESS) = * %

LIST NAME:
CONPANY
ADD
TELNO;
DA--20:

GET(FORM) VSIGNAME,
INIT,
LIST=(NAME),
WINDOW=((UMESS)) ,
FKEY=VFKEY,
FB=DA-EXIT,
F7=DA-EXIT,
FO=DA-S0 ;

PERFVORM AZ-FUNC-ERROR;
DPA-30:

GET(FORM) VSIGNAME,
CURRENT,
LIST=(NAMF) ,
WINDOW=((VMESS)) ,
FKEY=VUFKEY,
F8=DA-EXIT,
F7=DA-EXIT,
FO=DA-50 ;

16-13

1

1

400.
401.
402,
403,
404.
40%.,

406 .
. 000
408,
409,
4140,

407

goo
boo
000
006
000
000
000

0he
000
000

411.000
412,000

0408
94190
0412
0412
0412
0412
8412
0412
8412
0412
0412
0412
0412

PERFORN AZ-FUNC-ERROR;
€0 1O DA-38;

DA-40:

GET(FORM) VSTGNAME,
CURRENT ,
LIST=(NANE),
WINDON= ((VENH) , (UMESS)) ,
FKEY=VFKEY,
F8=DA-EXIT,
F7=DA-EXIT,
FO=DA-50;

TRANSACT/3000 COMPILER (A.08.83): FRI, JUL 29, 1983, 12:18 PM CONPLLED LIST)

413,

414,

415,

416.
417 .,
418,
419,
420,
421.
A22.

423,

424,
425.
426.
427.
428,
429,
430.
431.

TRANSACT/3000 C

432,
433,
434,
435,
436,
427.
438.
437,
4440,
441
447,

000
000
noo
000
008
000
089
000
000
000
000
000
000
000
000
000
000
000
000

000
000
ooo
000
000
ane
600
a00
000

000

4432000

444,
445,
446,
447,
444,

447,

450 .
451 .

000
00no
000
000
000
000
000
sao

0427
0427
0429
0431
0431
0431
0431
0431
0431
0432
0432
0432
0436
0436
0436
0441
0443
0445
0445

0445
0445
0445
0445
0445
0445
0445
0445
0445
0447
0447
0447
0447
0447

0447 -
0447
0447

0447

b b e b e

0447

0447

PERFORM AZ—-FUNC-ERROR;
GO TO DA-40;

{({ _Validate that name DUOES already exist on file.)»)

SET(KEY) LIST(NAME);
FIND(CHAIN) D-ADDRESS-DETL,
SINGLE,
LIST=(COMPANY : TELNWL);
IF STATUS ¢ 1 THEN
PO
MBVE (VENH) = "NAME";
MOVE (UNESS) = " Nane is not on file"™;
GO TO DA-40;
DOEND ;
tPAGE

OMPILER (A.00.83): FRY, JUL 29, 1983, 12:18 PM COMPILED LIST]

DA-110:
CCM2% 96 363030 963 996 26 98 36 36 2636 36 36 36 3626 3636 3 2 26 36 36 30 38 3206 X % 06 K X M XX XX %
Handling of the form VSIGDETL

WRXRAAMEXERXRERNARERXERARXXXRRRXRRNERXEXXRRRAKRR))

MOVE (UMESS) = * Press f6 to delete name and address®:
DA~-120:

PUT (FORM) VSIGDETL,
VATT=,
LIST=(COMPANY ,ADD1,ADD2,ADD3, ADDA ,ADDS , TELND) ,
WINDON=((VHESS)),
FKEY=UFKEY,
FB=DA-EXIT,
F7=DA-EXIT,
F6=DA-150;

16-14

452.000 0469

453.000 0469 MOVE (UMESS) = * Invalid function key;" +
454,000 0472 ‘ * vse f6 to delete, or £7 or FO";
A5%.000 0473

456 .000 0473 DA-130:

457.000 0473

458.000 0473 UPDATE (FORM) VSIGDETL,

459.000 0473 NALT=,

460,000 0473 L 18T=(),

461.000 0473 WINDOW=((VMESS)),

462.000 6473 FKEY=VFKEY,

463.000 0473 Fé=Da-EXIT,

464.000 0473 F7=DA-EXIT,

‘AR5 .000 0473 Fo=DA~150;

466.000 0488

A467.000 0488 G0 TO DA-130;

468.000 0490
469.000 0490

470.000 0490 DA-1%0:

471.000 0490

472.000 0490 DELETE (CURRENT) D-ADDRESGS DETL.,
473.000 0490 LIST=(NAME : TLLNO);

474.000 0494
475,000 0494

476.000 0494 DA-EXIT)

477.600 0494 .

478.000 0494 SET(FORM) % ,CLFAR; (¢ clear a frozen form))
479.000 0496 MOVE (UMESS) = " *; (¢ clear message windew))
4680.000 0498 RETURN;)

481.000 0499 CCMAINIIIET IO AN H NI N KN IMMIER NN RNNNRRRNRNNN))

DATA ITEM DEFINITIONS:
D ADD :

SX ¢ 30, 0, 30)
D ADD1 X

« 39, 0, 30) = ADD(1)
1

TRANSACT/3000° COMPILER (A.00.83): FRI, JUL 29, 1983, 12:18 PM COMPTLED LIST]

DATA TTEM DEFINITIONS:

D Abp2 X ¢ 38, 0, 30> = ADD(31)
b AOLS X « 30, 0, 30 = ADD(&T)
D ADDA X ¢ 30, 0, 30) = ADD(?1)
D aboLs X ¢« 39, 0, 30) = ADD(12Y)
D COMPANY X ¢ 30, 0, 30)

D NAME X « 30, 0, 3m

0 SAVE-COMPANY X « 30, 6, 30

D TELNO X (a0, 0, aum

D VENH X ¢ 16, 0, 18&6)

D VFKEY | B¢ 2, 0. 2)

D VMESS X 74, 0, 74)

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:46
ELAPSED TIME=00:01:31

16-15

UNIX - AN INTRODUCTION \

ABSTRACT

The paper explains why UNIX is of interest to the computing community at the
moment, how it came fnto being, what its features are, and how it relates to
CP/M, especially with respect to software portability; secondly, the ways in
which UNIX can be used in a commercial environment are discussed including,
by way of example, how Data Logic has used it as a software development tool
and new product base.

Data Logic, a subsidiary of The Raytheon Company, aupplies computer systems
and services primarily in the U.K.

Original Author: M.J. Bailey, Managing Consultant.
Revised and presented by: John O'Leary, Design Consultant

Data Logic Limited,

Westway House,

320, Ruislip Road East,

Greenford, . t

Middlesex UB6 9BH, I

England. (01-578-9111) DO Q
[0QIC

17-1

UNIX - AN INTRODUCTION

UNIX is often mentioned in the computer press these days, but how many readers
know the reason for this, or even what UNIX 18?7 If they know that UNIX i{s an
Operating System, how many know what kind it 1s, and why it is so often
compared with another Operating System, called CP/M?

Data Logic first became involved with the UNIX System (which is actually more
than just an Operating System) about 3 years ago, and since then we have
evaluated it, analysed it, and put it to practical commercial use, to.the
exteat that we now have more than 50 designers and programmers who have
worked with 1t. Currently we are undertaking both project work and studies
involving the use of UNIX for systems and software development applications.
So we are in a position to try to answer such frequently asked questions for
those who wonder what this UNIX discussion 1s all about.

UNIX 18 in fact a Time Sharing System (TSS). It originally ran on a variety
of minis, especially PDP-11's, but now runs on 16-bit and even 8-bit micros.
The design is simple and the code compact, so the number of users who can be
concurrently supported depends strictly on the hardware resources available,
with few constraints from the Operating System.

It 1s ironic that, to some people at any rate, one of UNIX' rivals today is
CP/M, which 1s a single-user-access, interactive, system, because UNIX was
originally similar although it is now very much a multi-user-access system.
In this sense UNIX was well ahead of its time when first developed, circa
1970, when systems were always either Batch (single-user, non-interactive)

or TSS (multi-user, interactive). A TSS provides a much more friendly user-—
interface and quicker turn-around than a Batch system but unfortunately, in
those days at any rate, TSS's only ran on large expensive mainframes. So
UNIX was begun at the Bell Telephone Labs, in New Jersey, an Engineering/R&D
environment, with the aim of creating a more productive programming environment
than those available in the absence of a large TSS. * The author of the first
version (K. Thompson) found he had personal (i.e. single-user) access to a
little-used DEC PDP-7 minicomputer, and he first developed the interactive
aspects of a TSS on it, without the multi-user-access. UNIX was thus named
for "uni-user MULTICS", after the TSS front-runner of that time, and possibly
even_now.

Data
_ OQIC

17-2

r”FAs the original program development facilities of UNIX became more popular at
Bell, it soon evolved into a multi-user system, so as to make better use of

the various computers available, and to this end it became portable as well.

As a result UNIX is probably unique among Operating Systems, especially
multi-user ones, in that it is over 90% written in a higher-level
machine-independent language, namely, 'C' (a descendent of Cambridge
University's BCPL). The early Assembler version was rewritten in 'C' in 1973
with only a (somewhat remarkable) 30X increase in code size which included
adding multiprogramming to the system. The fact that it is mostly in 'C' gives
it ease of modification as well as portability.

UNIX as we know 1t to-day has thus evolved as the system's requirements
changed, and as the developers of the later versions (D.M. Ritchie and

K. Thompson) evolved their ideas on the design of Operating Systems in small
computers. So by 1974 the characteristics hoped for by its authors had

become "simplicity, elegance and ease of use”; and because these hopes were
essentially met (although "elegance” 1s in the eye of the beholder!), the UNIX
user population mushroomed in the 1970's to 600 installations by 1978, and
over 800 non-Bell installations by mid-1979.

This UNIX popularity was mostly in the Universities and R & D Labs, and was
perhaps not unconnected with the fact that UNIX ran on the PDP-11 first and
foremost, but it did lead to a tremendous growth in software "add-ons”,
developed by users and “in the public domain”, in the line of compilers, text
editors, debugging aids, document preparation tools (e.g. word processors,
typesetting programs), etc.; plus a large number of less useful “recreation
and novelty” programs. In addition, in view of the environments in which
UNIX evolved it was gradually adapted for ease of use in experimental,
real-time, situations, including early computer networks.

This evolution of the UNIX software in a small computer environment, with

each Increment of change developed on the UNIX system itself, has given UNIX
the attributes which make it commercially attractive to—day, namely compactness,
portability, reliability (or at least stability) and software abundance.

Essentially UNIX consists of a Basic Operating System, known as the "Kernel",
plus over 100 "subsystems” which run as user processes controlled and scheduled
by the Kernel. 1In a configuration which supports up to 50 simultaneously
opened files, for example, and up to 64 concurrent processes, and has drivers
for 6 different types of device, the Kernel occupies about 90Kbytes of memory
on a 16-bit processor, and half of this is Buffer and Table Space (for files,
devices and processes). This becomes about 110 Kbytes on a 32-bit processor.

Dala
_ [OQIC /

17-3

4)

The main features of UNIX are:

. A uniform system of file, device and inter-process 1/0

. Ability to spawn autonomous processes from any process

. High degree of portability

. System Command Language is selectable on a per-user basis, and is not

processed by the Kernel but by a user process

. Multi-level file naming and access control system, with dynamically
growable files and mountable volumes.

The UNIX Kernel is in 3 parts, providing the following functions:
i) Process Management: process creation and (shared) program execution,

swapping, process synchronisation, resource allocation, process
scheduling.

11) 1/0 System: secondary storage "Block” I/0 with a Cache Buffer system,
character device 1/0, device drivers.

1i11) File System: file naming, access control, disc space allocation, file
sharing, "pipes” (i1.e. inter-process communication via unnamed FIFO
files).

On top of the Kernel software, the "subsystems” which make up the bulk of the
system and run as user processes include:

. Login and Logout of Terminal User

. Output Spooler

. SHELL Command Language Interpreter

. Assemblers

. 'C' Object Code Binder

. Linking Loader

. Compilers for 'C', FORTRAN 77, BASIC, SNOBOL, APL, ALGOL 68, PASCAL
. Program verifier for 'C' programs

Dala
_ [OQIC

17-4

| . Graphics packages ﬂ“\

. Typesetting programs

. Word processors

. Syntax Analyser and Lexical Analyser

. Electronic Mail

. UNIX-to-UNIX File Copy

. 'MAKE' - Source and Object Code Maintenance System
. File Back-up and Archive

Commercial interest in UNIX began when the very cheap, very reliable,
micro-chip processor arrived. Cheap, reliable, hardware is of no use without
cheap, reliable, software to sell it, and UNIX had become a possible source
for such software as far as some entrepreneurs are concerned, at least for
16-bit micros. CP/M, the single-user "Operating System” for 8-bit processors
is another because it became the first Operating System developed purely for
a micro to acquire a sizeable number of COBOL and BASIC commercial packages,
initially for the personal computer market.

For this reason alone, although UNIX and CP/M are as different as chalk and
cheese, they are often linked together in the probably irrelevant but apparently
burning question as to which 0S will become the "standard” for 16-bit micros.
What they have in common is relative ease of software portability and a

certain quantity of software but little else, and even their portability is
achieved in quite different ways.

Most Operating Systems hitherto have been inextricably linked to a particular
kind of hardware such that the only feasible way to port applications software
from one hardware system to another, avoiding changes to the applications
themselves, 18 to replicate the 0.S. functions and file formats of the first
system on the second, so that the porting or “"conversion” task is typically:
1. Alter compilers' back-ends to generate second hardware code.

2. Rewrite 0.S. in second hardware's Assembler language.

3. Debug the 0.S.

4, Rewrite and debug the Run-time (High Level Language support) Library in

second hardware's Assembler language.

17-5

4)

5. Recompile and re-test all applications, utilities, compilers to
be ported.

Needless to say this is very rarely done, although what is sometimes done is
to emulate in microcode the first hardware's code on the second hardware, and
possibly its 0.S. interface too.

Both UNIX and CP/M simplify this porting/conversion task in different ways.
The diagram shows two approaches to portability, and how High lLevel Language
(HLL) programs progress from Source code to actual execution on the hardware.

UNIX uses Method A. CP/M, as far as its portable applications are concerned,
uses Method B, and applications in this category are written in COBOL or
BASIC.

With UNIX, all five steps listed above are carried out (shown on the right in
the diagram overleaf with the same step numbers). However the hardest steps
(2 and 3) are greatly simplified because the 0.5. is over 90% in HLL. Step 1
is also relatively easy because the 'C' compiler is constructed to generate
symbolic assembler-like instructions, which are assembled into machine code
by a separate program.

With CP/M (Method B) there is no recompilation, so no steps 1 and 5; but
steps 2 and 3 must be carried out to the full, although CP/M is a relatively
simple (and one-user) 0.S.. Moveover with CP/M the COBOL and BASIC Run-Time
Interpreters themselves must be rewritten as well as the Run-Time Library,
therefore Step 4 is more difficult than in Method A.

Data
\ OQIC

17-6

'

INSTRU-

METHOD A

CTIONS

LANGUAGE “Al1™
PROGRAMS

TWO APPROACHES TO PORTABILITY

LANGUAGE "A2"
PRO?RAMS

| | |
= COMPILER "Al" g lﬂ COMPILER "A2" { e

OBJECT CODE FORMAT "A"

MACHINE CODE

SYSTEM CALLS

0.S. FOR SYSTEM "A"
90% in HLL (A1)

HARDWARE "A"

|
|RUN~TIME LIBRARY|

| (RTL) |

PORTING ACTIONS

5. RECOMPILE

1. ALTER BACK-ENDS

4. RECODE RTL

6. (null)

2. RECODE 102
3. DEBUG 10%

Dala
[OQIC

17-7

-

METHOD B

LANGUAGE “B1"
PRO?RAMS

LANGUAGE "B2" o« e

PRO?RAMS

| coMPILER "BL"

| COMPILER "B2"

|

OBJECT CODE
FORMAT "B1°*
(INTERPRETIVE) |

OBJECT CODE
FORMAT "B2"

(INTERPRETIVE) |

1

|

| INTERPRETER "B1"
|& BUILT-IN RTL
|

| INTERPRETER "B2"

B
|& BUILT-IN RTL
|

|

|
INSTR- |
UCTIONS |
|

|

{

: SYSTEM CALLS

0.S. FOR SYSTEM "B" -

| |
| |
’ All in ASSEMBLER |

|
| |

HARDWARE “B"

INSTRUCTIONS

5.

6.

(null)

(null)

MOVE AS IS

RECODE
INTERPRETERS
& RTL

RECODE 1002
DEBUG 100%

17-8

Two further points to notice with regard to the portability of UNIX and CP/M
software are:-

1) that 'C' programs written to interface to the “C Portable Run-Time
Library” only, i.e. containing no system calls, can also be run under
IBM's 0S or Honeywell's GCOS;

i11) application packages written in COBOL or BASIC to "run under CP/M" can
in fact run under any system on which the Interpreters can run, provided
that the system provides equivalent I/0 facilities and file formats to
those provided by CP/M -~ not the most difficult of tasks!

Therefore now that BASIC and COBOL Interpreters have been commercially
developed for UNIX and/or ite derivatives, the question as to whether UNIX
or CP/M becomes a standard for applications on micros could soon become
academic - to be superseded by "which BASIC and COBOL Interpretive Code
Formats will become the standard for micro-based applications?”

Of how much use then 1s UNIX i{n the commercial world to-day? First it is a
good multi-user development system that can run on mini and micro-based
hardware. The programs developed using it need not necessarily run ultimately
under UNIX, especially if they are written in 'C' and purely to the "C Portable
Run-Time Library" Interface, or in interpreted COBOL or BASIC.

Secondly, UNIX can provide an instant product-base for multi-user interactive
system software. This is particularly true if the system being developed is
general-purpose and, 1f it is a multi-computer (distributed) system, 1f the
configuration 1s a "star” (one master or cluster controller plus N satellites).
In as much as there 18 a UNIX-to-UNIX File Store transfer capability, UNIX
could also be theoretically adapted to local area network situations, 1.e.
linear or ring configurations, easier than some 0.S.

Data Logic has been uging UNIX for the last 2 years in the development of
new software and hardware products, having evaluated UNIX both as a
development system, and as a possible commercial product base.

We found that UNIX, Version 6 at any rate, had certain deficlencies to bhe
overcome if used in a commercial product. The most serious of these were as
follows (where “#*" indicates a potential development system problem also):

*1. There was inadequate error detection and prevention (e.g. no file or
record sharing locks, system crashes when the maximum number of open
files exceeded, files could become corrupt after an I/0 error).

*2. No recovery facilities, e.g. to do a "warm start”, checkpoint a job,
etc.

Dalg
- |°0QIC_

17-9

r A

3. Access control to files and functions was not sufficient for some
applications.

4. UNIX Shell Command Language was not user—-friendly enough for application
programmers or even some system programmers.

5. There were no Database Management Facilities, although there is nothing
to prevent them being easily superimposed on the File I/0.

6. Each record accessed, in any user-imposed file organisation, required
at least 2 disc accesses, at least 3 {f the file is 70Kbytes, at
least 4 {f the file is 8.5Mbytes; this 18 worse if the file organisation
involves intermediate records - e.g. ISAM.

*7. There was no per-user file space quota allocation/enforcement system and
the system crashed when all file space was allocated.

*8, There was no Batch Job Scheduler - UNIX accepts as many background
processes as it 18 given which eventually clogs the system.

9. Application Program Structuring problems could arise because there is
no overlay facility and no program segment sharing between processes -
only sharing of entire programs; the UNIX solution was to make each
overlay or segment a process but this increases IPC overhead.

10. The IPC (Inter-process communication) facilities were not adequate.
"Pipes” can only be used between a parent process and its child. There
was no data segment sharing between processes.

11. All 1/0 appears synchronous to user processes; this fact, coupled with
the inability to wait for the first of N events, created problems for
“"real-time” event handling processes such as Communications Servers;
again the solution is to create N processes — 1 per event.

The principal remedies for these problems which we adopted were first for
Data Logic to write a DBMS which sits on top of the UNIX file system and
provides a relational database facility with 5 types of access path within
such databases: SAM, ISAM, DAM, HRAM (Hashed-Random) and LIAM (Linked-Indexed,
e.g. for WP).

The second remedy adopted was to use XENIX instead of UNIX, which helped us
overcome such major problems as File System Integrity, inadequate IPC,

and inadequate error detection/prevention. Other crucial problems,
e.g. the lack of an overlay facility, were circumvented in various ways.

Dala
. 0QIC__J

17-10

Using XENIX as a product-base probably saved us on the order of 25 skilled “\\
man-years when compared to starting from scratch. Product control software,

the DBMS and the initial applications are all written in 'C' (only the most
hardware-oriented pleces of special device drivers are in Assembler). Later,
vertical market applications will be written in interpreted COBOL or BASIC

which are supplied by outside vendors.

For development purposes we first used UNIX, then XENIX as its various
enhancements became available, although the latter had little impact on the
development system per se.

The main problems with UNIX as a development system are to do with ease of
learning and, in our case (having a lot of software under development at one
time) table overflow in the Kernel, 'C’ compiler, and other utilities. The
latter is fairly easily overcome by recompiling the offending part of UNIX,
but learning to use UNIX effectively presented more difficulties because of
the unprofessional quality of the UNIX user documentation.

This user documentation seems to be geared to Time Sharing System buffs who
are not too long out of college. However once our systems specialists had
learned, by experimentation sometimes, how UNIX should be used, 1t was
relatively easy to pass this knowledge on to the application programmers,
and it should be said straight away that we found UNIX to be a very powerful
development system, especially in comparison to some commercial minicomputer
(and even larger) systems that we have used. 1

The software MTBF was on the order of a week and the errors encountered were
elther of the aforementioned table overflow type, or very esoteric bugs.

Because of the portability of UNIX-based software discussed earlier we have
been able to develop products first on a PDP-11, for later transfer to other
machines whenever we wish to do so.

The faults in UNIX described here should not deter anyone from using it in
the appropriate situations {(as defined herein). Many of the problems listed,
which Data Logic first recognised in 1980, are being rectified in various
quarters, and there is certainly no comparable 0.S. available for the price,
especially one which is both so well tried over time, and so easily portable.

Dala
\ |OQIC

17-11

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

A Presentation for:

The HP3000 International Users Group Conference Edinburgh 1983

By:

M.P« Ashdown
Shell UK Exploration and Production

18-1

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

This paper describes the approach and methods adopted for a major development
project - Project Management Information Systems, one of a number of concurrent
development projects in Shell Expro.

SHELL EXPRO'S CONSTRUCTION PROJECTS

Before describing our own project I would first like to describe our user
environment.

The development of oil and gas fields in the North Sea has necessitated the
construction of large, complex platforms and production facilities in a hostile
environment, with water depths of up to 500ft, waves of up to B80ft and wind
speeds of up to 100mph.

Expro's philosophy for construction projects has evolved over nearly fifteen
years of, sometimes bitter, experience and it is now common practice to set-up a
dedicated 'project management team' for each large project.

The project teams have overall responsibility for the design, fabrication and
installation of the platform, with most of the ‘'actual work' being contracted
outs The projects have a duration of between three and six years and, at their
peak, may have a management team of more than 200 staff. Costs for the larger
projects can be well in excess of £500 million. Staff are assigned to projects
from several functional departments, mainly Engineering, Materials, Quality
Assurance and Project Services, to make-up a truly multi-functional and self

sufficient team.

pPM28/2
18-2

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

To meet the current computing needs of project management. teams and be prepared
for a future, where more marginal fields requiring even more computing support
are developed, Expro decided, in early 1981, to embark on a major exercise
involving the development (60 manyears) of an integrated suite of 'Project
Management Information Systems'. Here, I shall describe the application, the
development environment and our experiences with the productivity tool RAPID.

THE PROJECT

The use of computers by Expro's Project Management Teams increased rapidly in the
late seventies with the introduction of dedicated minicomputers and associated
'do it yourself' software, Soon a varlety of systems was developed to meet
individual projects' urgent and specific needs but in the heat of battle, not
enough consideration was given to relationships between the systems and their
data.,

It was decided to develop a comprehensive integrated 'Project Management
Information System® for the benefit of all future projects and consisting of some
sixteen modules (or systems). An outline description of these modules formed the
framework for the *PMIS* project.

Early analysis identified five main groups of data, related to the main business
functions, comprising activity, cost, contract, material and facility data
respectively, The sixteen computer systems to support the various business
functions were grouped around the main *data banks' as illustrated in figure 1.
A closer look at the application of these systems within a construction project
reveals that they are by no means independent; this being reflected by the
interlocking arrows in the centre of the diagram.

PM28/3
18-3

$022€ ON Bumnig

PROJECT MANAGEMENT INFORMATION SYSTEMS

NETWORK
PLANNING

PROBABILISTIC
ANALYSIS

ESTIMATE 8 |
BUDGET
R —— \ / RECORDING
CONTRACTS
PLANNING ACTIVITY COMMITMENT
DATA RECORDING
\ BANK /
G ‘
CONTRACTS fcos*r
ADMINISTRATION| CONTRA COST +— | RECORDING
DATA DATA
BANK BANK ‘
e
JoB cosT
MANAGEMENT

\ REPORTING
ECONOMIC
MODELLING

PROCUREMENT
MATERIAL) «—> |PLANNING

DATA
™~ ORDER

BANK
/‘ CONTROL

STOCK
CONTROL

WEIGHT

MONITORING
DOCUMENT
CONTROL

EQUIPMENT
REGISTER

18-4

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

WHY THE HP3000

To achieve integration, the ability to share data between systems is essential
and a simple software/hardware environment is, therefore, highly desirable,

Given the present state of communication facilities, we quickly found ourselves
heading for a 'dedicated-mini' solution in order to satisfy the project team's
need for interactive systems and to cater for a 'mobile' project team,
(Construction project teams frequently operate from non-Shell offices and may
even move during the project.) It was also clear that, certainly in large
projects, the system could become heavily loaded adding 'growth path' to our list

of requirements.

We selected the HP3000 on the following grounds:

- it is designed for an on-line transaction-oriented environment

- it has well integrated software and has good development tools

- it provides good communications facilities (needed for interfaces with

corporate systems)

- there is an increasing range of commercially available packages which could
meet some of our requirements, and

-~ there is considerable HP3000 experience in Shell UK.
We now have a 12 terminal-HP3000/44 (2Mb) with 520Mb (120+400) disc storage

dedicated to the development and a similar system has been installed for the
first projects' operational use, Our initial estimates indicate that large

PM28/4
18-5

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

projects would have their own computer with up to 50 terminals and 800-1200Mb of
disc storage.

SYSTEM CHARACTERISTICS

Because the systems are being developed to be run by project personnel, we have
designed them to be as user-friendly as possible. A hierarchial menu structure
has been used throughout, the exception being the G/C Cue Network Planning
package (bought from a third party), but even this is accessed via a menu.

Conversational mode is normally wused for retrieval purposes, and a
'fill-in-the-blanks' (VPLS) approach is widely used for data entry., In addition
to a sulte of standar;d reports for each system, a 'report-writer' (Inform &
Report) facility is also provided.

Security provisions are based on password protected user names, thus allowing
individuals to be granted (or denied) access to (sub) functions at any level of
the menu hierarchy.

WHY_RAPID/3000

At the start of PMIS in 1981 there were 6 dp staff in the development téam, and
we had ju§t 3 years in which to provide 16 major systems, fully integrated and
documented. We realised that we needed all the help we could find if we were
going to meet our targets. So, while the first functional specifications were
being written by our Users in the team, an evaluation was undertaken of
productivity tools currently available on the Hewlett Packard 3000.

PM28/5
18-6

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

RAPID was the one chosen as a result of that evaluation on the following

grounds: -

Firstly, since RAPID/3000 is marketed by Hewlett Packard, this meant that not
only could we buy our hardware and software tools from the same supplier, but
also that if HP were to modify, say, the Operating System of the HP3000, we
could be confident that RAPID would be made compatible, and its long term
support and development were more certain.

Secondly, RAPID is able to access all types of file structure on the HP3000,
including multiple IMAGE databases and KSAM files, This was essential for
PMIS, whose sub-systems included bought packages like G/C Cue. Whatever file
structures they used, all of the systems had to be integrated.

Thirdly, RAPID supports HP's packages for forms-handling and graphics (VPLUS
and DSG); and, where necessary, COBOL, FORTRAN, SPL or PASCAL sub-programs
can be used from within the TRANSACT main programs.

Fourthly, initial demonstrations of the product and programs generated using
it, showed that RAPID 1is ‘'User-friendly'; essential of course, for
interactive systems such as PMIS.

So, in late 1981 we acquired RAPID/3000 and started to learn how to use it.

HOW WE USE RAPID/3000

DICTIONARY 1is central to our development; it contains the definitions of all our
data items and their attributes and relationships enabling us to uniquely
identify data items without any misunderstandings. These data items are first
entered into the dictionary during analysis, this is as a by-product of
documenting analysis within DICTIONARY.

PM28/6

18-7

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

Files and forms are defined for TRANSACT and REPORT programs and for INFORM
reports. The programs are documented within DICTIONARY as are any predetermined
reports,

We have written TRANSACT programs to extract information, in formats normally
unavailable, from DICTIONARY so that we can show the relationships among
elements, files, systems, etc... .

DICTIONARY also holds 'Help Text' which is available on-line to users whilst
executing PMIS.

We use DICTIONARY and its utilities to create, maintain and enhance our
databases.

INFORM groups are set up within DICTIONARY and both INFORM and REPORT are
available to our users (although the use of REPORT is restricted due to the
impact of campilations on system response).

To date 95% of our programs to date have been written in TRANSACT, the remainder
in FORTRAN.

The approach to programming we developed was of a hierarchical modular design,
the sixteen systems we required splitting nicely into five application areas.
Each of the sixteen systems is to become a transact program (or system) belonging
to one of five application area menus which in turn belong to the main menu in
the structure. This methodology has given us very large TRANSACT programs. This
set of menus and our security module became our master program which calls the
systems available,

PM28/7 18-8

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

Within each of the systems the transactions are broken down into functional areas
to allow sensible menu structuring. Normally each of the transactions is one
segment; however in the case of some of the more complex transactions several
segments are used. When this is the case 1logically complete parts of the
transaction are put into their own segments.

This approach has-allowed us to deliver systems independently and to easily test
transactions during developmente

A MATURING PRODUCT

When in late 1981 we acquired RAPID we were given a pre-release version and a
training course by David Dummer. We experienced considerable problems for the
next few months with bugs in the product stopping us or forcing us to use
workrounds, However, our relationship with David and HP flourished and enabled
us to have direct input into some of the early enhancements to the product.

When the A,00.01 version appeared we were starting to use more advanced
techniques with the product, our staff having become familiar with its power. It
was about this time that we began to see some of the shortcomings of the product.
The documentation was very poor and as a result some misunderstandings arose;

local HP support was almost non-existent; we constantly ran out of stack space.

We obtained advanced training and advice again from DCD and as a result our
confidence in both ourselves and the product grew. We developed rules to stop
known problems from occuring and workrounds to avoid other problems. We also

wrote an 'in-house' manual to overcome some of the documentation shortcomings.

PM28/8
18-9

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

The A.00.03 release of transact helped stop problems of stack overflow by the use
of the SWAP option on the CALL verb; documentation improved drasticélly which
enabled us to discard some of our own in-house documentation and let us direct
people to the manual instead.

In June 1983 we received A.00.05, a version of TRANSACT that we consider to be
fairly stable. The last occurrences of integer overflows and bounds violations
which had plagued it appear to have been removed and we are now confident we know
how the product will perform/react under given circumstances. HP support is
still poor (see later) but we only infrequently need help due to our own internal
level of expertise., Our contact with the SE structure is more often for
reporting faults.

Our use of RAPID over the last 2 years or so, has shown it to be an extremely
effective tool for use in developing the PMIS systems. But it is not a 'perfect'
product, and we believe that it may not be as well suited for other application
areas.

LIMITATIONS OF RAPID

The main weaknesses that we have come across during its use, are, on the
technical side first:

- a very limited mathematical capability and poor array (or table) handling.
We have found the use of FORTRAN subroutines to be a satisfactory alternative
to TRANSACT heres

- there is no equivalent to a Linkage Editor, so that if a change is made to
code in one transaction, the entire system has to be recompiled. HP have
been requested by ourselves and other clients to provide this Linkage Editor
facility.

PM28/9 18-10

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

- TRANSACT currently 'locks' the whole database rather than just a single
dataset from simultaneous updates by competing Users or proceses; this may be
a disadvantage in some applications (HP say they will allow dataset locking).

-~ all our TRANSACT programs seem to require the maximum allowed data area at
run-time, and therefore for the programs to run successfully, we have to use
careful segmentation and good coding (see later).

Weaknesses of a more general nature, include:

- support for the product is still sub-standard. Very few HP Support Engineers
have any experience with. the product and ‘'experts' are virtually
non-existent; the Phone In Consultancy Service also suffers from this lack of
experience, Since it seems to be HP's policy to use SEs for customer
training the level of tuition given to clients also suffers as the SEs are
unsure of the material presented and often unable to answer questions.

- a significant 1learning curve. Just because TRANSACT is a high level,
extremely concise programming language does not mean that it is necessarily
simple to use. In fact, for coding of complex transactions which have to be
precisely customised, TRANSACT can become as difficult to use as COBOL,
however, it does retain the advantages of powerful verbs for database and
screen handling. We have found that while a programmer can write basic
programs after an introductory course and just a few week's use, it requires
3-6 months' experience and an advanced training course, before becoming fully
proficient.

SOME SIMPLE TIPS

TRANSACT may be a free format language but in order to improve maintenance of
programs coding standards should be developed e.gs for labelling conventions and
indentation. (No one convention is necessarily better then an other but almost
any is better than none.)

PM28/10
18-11

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPTD/3000

Ensure that programmers understand the implication of the verbs, their modifiers
and options that they are using as significant performance gains can be achieved
e.g. by using the SINGLE option with the FIND verb when only retrieving one
record.,

Avoid the use of the STATUS option as this removes a lot of power from a TRANSACT
verb and importantly suppresses automatic error handling.

Encourage the use of test modes to debug programs (using 2 terminals, one equated
to TRANDUMP, if you have enough VDUs to spare).

SOME ANSWERS TO THE STACK PROBLEM

Within the PMIS team this subject has become very important as we are now
producing systems that have in the order of 25,000 words of p-code, for which the
source is approximately U50-500 pages of standard print-out. This may not appear
to be a problem unless you have produced a sizeable system using TRANSACT, but
those that have, will probably have come across this one major problem of stack
size.

The user data stack on the HP3000 is limited to 31,262 words (or less if your
system configuration is less) and the TRANSACT processor has been PREPed to allow
for this. The processor is effectively a command interpretor which operates on
inputs from the user and upon the p-code generated by the compiler, thus the
p-code resides in your user data stack. If you generate a large amount of p-code
and do not segment your programs you will very quickly run out of stack.

p
M28/11 1812

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

Judicious use of the ISEGMENT instruction will solve most problems associated
with stack size but does have other implications. Do not use only one !SEGMENT
as the root segment (the first code in the source file before the 1SEGMENT)
always remains in the stack and this will be Joined by the segment which is
currently in use (or was Just used if the current instruction is in the root
segment); there will also be transfer vector tables for segment entry labels, so,
if there are only two segments, there will be an overhead of the transfer vector
table thus making the problem worse.

When segmenting keep the root segment as small as possible, because it is in the
stack all the time, but put common routines in it if possible, as there is very
little overhead associated with switching in and out of the root segment from the
other segment in memory. All other segments should be kept as similarly sized as
possible as the overlay areas are as large as the largest required by any one
segment .

Remember, only those items defined in the root segment or defined in Dictionary
and referenced in the root segment, are global to the whole program. Similarly,
only the labels in the root segment are global and any labels outside this
segment, that are referenced from a segment other than the one they are in, must
be included in a DEFINE (ENTRY) instruction.

Global definition of items is important as internally each item is referenced by
a number which is assigned as the compiler encounters them at compile time; thus
the items in the root segment come first, The items referenced in all other
segments but not occurring in the root segment are given numbers starting with
the last item referenced in the root segment plus 1; however, this is done
separately for each segment, thus the same number may be used for different
items, This will never cause a problem if process control between segments is

PM28/12
18-13

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

always passed through the root segment and if the only items in the list, each
time control passes from the root segment, are items that have reference numbers
generated from the root segment. The problems will arise if segment control is
passed from one segment to another (and neither are the root segment). In this
case, an item that is in the LIST, MATCH or UPDATE registers when the segment
boundary is crossed, may have a reference number the same as a different item in
the new segment, thus the processor would think a different item was in the
register; To stop this occurring the processor checks that the references in the
registers were not generated from the segment before it crosses the boundary, if
any such reference is found an error message is generated. This checking takes
time, so after thoroughly testing to ensure that the problem will not occur, use
the OPTS compiler option for the operational system;l this tells the processor
that you are sure you have no local items in your registers when you change
segments and thus not to check for you, thus eliminating the overhead.

The compiler offers two other chances to reduce the amount of stack required.
Use OPT when defining items regardless of the segment, e.g.:

DEFINE(ITEM) REPLY X(1,,2), OPT;

This ensures that the compiler will not generate references for any item that is
defined but not used within the segment or entire system (in the case of those
defined in the root segment). Secondly, use the OPTI compiler option, in
addition to OPT, so that all those items so defined will be stripped of their
associated textual strings, such as their ASCII name and entry text, (assuming
you do not use these strings in the system). The loss of ASCII names means that
this should not be done on database items, as the name is required for the IMAGE
call, Note that it is possible to define items that are already defined in
Dicionary without altering their attributes but stripping these textual strings.

PM28/13 1814
o

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

This can be very important when using the VPLS interface to remove strings
associated with items only used for VPLS forms e.g.:

DEFINE(ITEM) FORMELEMENT,OPT;

[N.B.: Do not use this option on any item that you wish to highlight using
variable field highlight i.e.

PUT (FORM) formname, WINDOW=((errorfield),(message)).]

If you do not require the heading text or entry text for database items in your
programmes, but do require them for INFORM, it may be necessary to maintain two
dictionaries. These strings cannot be stripped out at compilation time as the
OPTI option would also take its ASCII name, but leaving these strings in may
cause stack problems. Thus the only solution, currently, is to compile systems
referencing a Dictionary that has not been given any of these strings, associated
with the items, and running the systems and INFORM referring to one that does.
Note that deleting a string from Dictionary is not the same as it never having
had one.

Use of Test Mode 4 when running your systems can show you why and where your
stack problems are occurring. This mode shows the following:

seg.address instruction ty t2 Zz s q dl where:

seg.address is the segment number followed by the instruction
location within the segment

instruction is the p-code instruction at the given location

tq 1s the time taken to perform the instruction in
millisecs (subtracting the test mode overhead) and
if it is less than 1ms zero, is indicated and the
fraction added to the next instruction

PM28/14
18-15

DEVELOPING LARGE INTREGRATED SYSTEMS USING RAPID/3000

t2 is the accumulated t1 since the test mode was
switched on

zZ is the high water mark at the top of the stack

s 1s the current top of stack

q is the pointer that differentiates between global
and local variables for the processor and its
subroutines

dl is the area in the stack taken up by MPE subsystems.
Often VPLS.

This can show you how close you are to having stack problems as z+dl may never
exceed 31,262 words.

Within the PMIS team we have a stack size calculation sheet (see below). These
figures can be explained as follows:

1) PMIS menu overhead, this is caused by our systems being called from a master
program using the SWAP option. This value is the summation of the remaining
stack space after the call.

2) The stack required for the transact processor

3) The summation of the TRANSACT Processor Control Block and the Transact Outer
Block

4) The DL required for VPLS

5) The bottom line of the compiler output with STAT option.

PM28/15
18-16

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

1, 2, 3 and 5 are explained further in Appendix E of the transact manual. The
total we allow 13 29.0 Kw which gives us a good confidence level that there is
sufficient stack space left to allow for changes.

0000000360 00 000000 00 300 00 30 0000 0006 00 30 36 06 30 00 20 06 00 06 0 06 00 08 08 00 90 00 30 06 06 30 0 00 30 00 06 30 00 6 00 30 98 90 36 20 36 30 30 30 0 90 30 30 6 30 06 06 6 06 38 0 08

TRANSACT PROGRAM STACK SIZE CALCULATION SHEET

(1) PMIS MENU OVERHEAD 1.5K (fixed)

(2) TRANSACT OVERHEAD LN (fixed - from HP)

(3) CONTROL BLOCK OVERHEADS 1.0K (fixed - from HP)
(TPCB & TOB)

(4) VPLUS OVERHEAD surcasensy (from fast forms file)

(5) PROGRAM RUN-TIME STACK SIZE .esovvenss (fom STAT listing)

TOTAL HE YT Y T Y]

N.B. SYSTEM WILL N O T BE ACCEPTED BY THE SUPPORT TEAM IF THE

TOTAL EXCEEDS 29,0K

ST 0000060608006 00 0006 30 900800 06 00 06 00 36 06 30 0006 00 30 00 30 00 36 20 06 06 00 00 D608 0000 06 36 00 06 90 36 26 6 06 00 00 00 90 20 06 06 0 00 36 36 6 00 06 00 20 00 00 06 36 3¢ 36 % F

THIS FORM MUST BE COMPLETED FOR EVERY SYSTEM

EAEDEII0 TN 00000600 06 06 000000 000 000000 00606 3000006 00630 00 06 30 036 06 0 30 36 00 0006 06 06 0000 00 00 00 00 30 00 00 26 9000 26 9000 0 00 00 000 3000 6 06 0 6

PM28/16
18-17

DEVELOPING LARGE INTREGRATED SYSTEMS USING RAPID/3000

If you are using VPLS, the size of dl may be up to 8Kw which obviously limits
room for other operations, such as, that other well known user of stack, the
sorts A sort will require a minimum of 3Kw to run but will grab all of your
stack available minus 1Kw to get it. You now have a problem if it cannot get
enough stack as the dl pointer is so high The only way to release this dl area
is to close the forms file, unfortunately the CLOSE command will not do this.
Solution: open a dummy forms file by doing a SET(FORM) on a form in the dummy
file that has no fields.

Only one forms file can be open at one time, thus the first forms file is closed
releasing the dl, the second is opened at a cost of less than 1Kw dl giving up to
7Kw for the sort. Do note that using fast forms files saves 800w and I/0.

All the preceding problems can be compounded by using the CALL command.
Segmentation is limited to 64 segments and so, if large systems are to interface
it may be necessary to use CALL. The problem with CALL is that it only shares
the data register with the called system and builds all the other internal tables
again in the data stack above the original ones, thus adding the calling system
and called systems stack together. This problem can be overcome as of Version
A,00.03, which has the SWAP option on the CALL command to allow the overwriting
of some of the internal data when calling another system and these tables are
rebuilt when crossing back. This obviously has an overhead but this is
preferable to a system that will not run.

18-18
PM28/17

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

CONCLUSIONS

Naturally we have come to certain conclusions about the RAPID product, both from
our own use of it and also from discussions with other users both within and
outside Shell.

Firstly, we have indeed found RAPID to be an effective aid to productivity during
the development of our PMIS systems.

However, we believe it could be less beneficial for ‘'batch' processing systems,
rather than the on-line transaction-based systems for which it, and the HP3000
itself was designed., Also, it might be 1less effective for short-duration
projects 1if their personnel had no previous knowledge of RAPID and who would
therefore suffer from the learning curve.

In PMIS, we have made a rough estimate of 30-40% saving on programming, testing
and documentation time, compared with if we had used a conventional programming
language like COBOL.,

The achievable gains in productivity from using TRANSACT are directly linked to
the quality of staff employed for a particular task. High level languages do not
mean that less skillful staff can be employed and expected to perform as well as
the 'expert's The areas in which skills are required change when using RAPID; it
is possible to lose much of the potential for coding productivity by poor design,
thus programmers and designers need to understand the concepts of RAPID in order
to maximise their performance.

PM28/18 18-19

DEVELOPING LARGE INTEGRATED SYSTEMS USING RAPID/3000

We have found RAPID to be a very powerful and flexible tool, limited only for
mathematical and table-handling applications.

Despite having may be more than it is fair share of bugs in the initial months of
its released in the UK, it is now a stable and reliable product, which it appears
HP have every intention of supporting and developing further.

RAPID's ‘'uwser-friendliness' and performance in development and ‘'live'
environments, have been found generaly to be very good, and compare favourably
with COBOL.

Lastly, it should be mentioned that RAPID goes beyond the normal realm of a
development tool by providing the Support Team, who have to maintain the Systems,
both with good documentation of data and program structures, and also with
utilities to maintain and audit the databases and their contents. The source
code that has been developed has so far been easily maintained and enhanced
leading us to hope for productivity gains from our support team. It is however
too early in the life of our operational systems to be able to quantify any such

improvements.

PM28/19 18-20

19-1

This paper represents my personal concepts of programming and
performance as best [can express them at this time. Nothing
I have either included or excluded is meant to reprasent the
official posture of the Hewlett-Packard Company.

Hewlett-Packard allows, expects, and encourages individual
initiative. The aexistence of this paper exemplifies that
philosophy in action Newlett-Packard has completely
supported my efforts. I have enjoved total freedom in my
choices of subject, content and format

This paper originated from the Baltimore, Maryland sales and
service district office of the Eastern Sales Region: It was
physically prepared on equipment in the Technical Center in
Rockville, Maryland.

The graphics were created on a 2647A terminal wusing
Interactive Formating System software. Textual data, sample
programs excepted, were prepared using HPSLATE. Final
printing was done on the 2680 Laser Printer. A CO30L program
using IFS intrinsics generated input to the printer.

1 have had much help and cooperation in nreparing this paper.
Thanks to all with special appreciation to Ruth, my wife, for
her patience, support and unselfish sacrifice of many
evenings and weekends during its preparation.

19-2

SECTION 1 GENERAL INTRODUCTION

-- SEQUENTIAL PROCESSING
LIMITED BY DISC

-~ FORTRAN OUTPERFORMS
COBOL

-- V/3000 TOO INEFFICIENT

-- IMAGE IS TOO SLOW

-- HP3000 INEFFECTIVE
BATCH PROCESSOR

-- MOON IS MADE OF
GREEN CHEESE

Figure 1

TRADITION (Figure 1)
-- SEQUENTIAL PROCESSING IS LIMITED BY DISC ACCESS

This is one of those generally accepted truths that all of us
have been taught from the beginning of our careers. In most
cases, on most machines, this is probably a valid generality.
Because HP has concentrated on transaction processing,
certain defaults built into the file system often make this
assumption invalid when evaluating batch processing
performance.

19-3

-~ FORTRAN OUTPERFORMS COBOL.

In typical business applications, this is generally untrue.
The FORTRAN compiler is admittedly superior in handling
numeric data if we limit the definition of numeric data to
binary and real data formats. The COBOL compiler, however,
does a much better job with ASCII numeric data and is quite
effective when dealing with files, records, and ASCII
character fields. The net effect is that COBOL wusually
outperforms FORTRAN in the average commercial application.

-- V/3000 IS TOO INEFFICIENT.

Considering the powerful, highly generalized capabilities
provided within V/3000, this statement is not acceptable.
The original V/3000 did have design characteristics,
particularly the use of KSAM and the prohibitive form file
recompilation techniques, that left a bad taste in our
mouths. The new V/3000 has corrected these shortcomings. In
any particular application, a good programmer could probably
outperform V/3000; even so, V/3000 1is a highly efficient
subsystem that deserves the chance to earn our confidence.

-- IMAGE IS TOO SLOW.
IMAGE is not at all slow but it is easily abused. IMAGE is

an excellent example of a network data base and as such is
inherently very rapid when used for record retrieval.

Unfortunately, the price of rapid random retrieval is
relatively slow structure maintenance, particularly when the
structure becomes complex. Add to this the overhead for

sophisticated internal security, multiuser update access, and
extensive chain sequencing and you have a heavily burdened
environment. In effect, the demands of our applications lead
to slow performance; IMAGE itself is not inherently slow.

19-4

-- HP 3000 IS INEFFECTIVE IN BATCH PROCESSING.

The HP 3000 running MPE is admittedly biased towards
transaction processing. The defaults built into MPE have not
been chosen to maximize batch processing; the programmer who
attacks a batch application without taking this into
consideration may be displeased with the results. An
informed programmer will know which override options to
invoke in order to bring out the batch processing strengths
of the machine. When ' handled properly, the HP 3000 is
capable of surprising batch performance.

-- THE MOON IS MADE OF GREEN CHEESE.

I finally stopped believing this in 1969.

PROGRAMMING FOR PERFORMANCE

-- Programmer is -- Measured by your
problem solver MANAGEMENT !l

- Programming is ~- Compromise between
problem solving elements

—-- Entire problem is -- Doing job
fair game -on schedule

. L. -within budget
-- Entire solution is

fair game —- Response (TP & B)

-~ Throughput (TP & B)

Figure 2

PROGRAMMING AND PERFORMANCE (Figure 2)

-- PROGRAMMING

19-5

A programmer is much more than a technican who encodes a
problem solution in machine readable form. A true programmer
is deeply involved in formulating the solution to the
problem and, in some cases, may even identify and define
the problem prior to compounding a solution.

No discussion of programming, therefore, can be limited
strictly to an examination of computer coding techniques.
The subject must be broadened to include all aspects of the
problem and all details pertinent to the problem solution.

-- PERFORMANCE.

We technicians often forget that the criteria for performance
measurements are defined by management and may differ greatly
between organizations and even between functional areas
within an organization. In too many cases we refuse to
accept the fact that the only satisfactory solution may
require compromise, most often a sacrifice of technical
elegance, in order to meet a management objective. A
technically advanced solution finished too late may be
worthless; one that exceeds the planned cost may be even
worse.

Fortunately for us technicians, this discourse will
concentrate on technical performance. We will be concerned
with traditional indicators, response and throughput, in both
batch and transaction processing environments. Many times,
one can be gained only at the expense of the other. Luckily,
some techniques can improve performance in all instances.

PERFORMANCE CURVE (Figure 3)

A generally acceptable graphic depiction of a machine’s
performance is a curved line, the "“performance curve",
showing the gradual performance degradation for the average
program as the machine 1is progressively loaded. In typical
transaction processing environments, the curve shows a
definite pattern (Curve #1). At first, performance degrades
very little as the first few interactive jobs compete with
one another. As more jobs are added, each tends to have a

19-6

R :
) GO FOR $$

E 80/20 RULE

S

P

(o)

N

S . -

E xn-.:-.-:::;::'.:::::Z:ff::::::::::::::::..

A C T 1T VI TY

i=NOW 2 =MORE MEMORY 3=LESS OVERHEAD
EXECUTE FASTER -- OR -- EXECUTE LESS
ACCESS FASTER —- OR —- ACCESS LESS

Figure 3

greater negative impact and the curve begins to climb more
rapidly. Eventually the "knee in the curve" is reached where
each added job causes a disproportionate degradation. At the
knee the machine has usually reached the point where the
aggregate useful work done by the machine drops for each job
introduced.

If the real memory in the machine increases, performance
normally improves as shown by Curve #2. On the low load end,
the performance improves only slightly if at all since low
load performance is not generally memory limited. Mid-range
performance improvement is more noticeable and the mid-range
itself is extended. The knee still occurs but does not show
up until the machine is more heavily loaded. The wusual
impact of additional memory shows up more in improved
throughput rather than in improved individual program

19-7

response.

Increasing the raw execution power of the machine affects
performance differently from increasing its memory.
Improvement shows up immediately on the low end of the curve
and the knee shows up later. Similar improvement can also be
attained by improving mass storage access even without
increased raw execution power. Curve #3 shows a typical
example of such improvement.

Improved programming exhibits characteristics similar to
those of Curve #3. We could expect this since improved
programming usually causes less code to be executed or.less
disc accesses to be made. This, in fact, becomes a basic
guideline for improving programming. Most effective
performance improving techniques center around reducing
executed code and reducing disc access. Since improvements
in disc access are more practical to accomplish and will
reduce code execution as a byproduct, disc access reduction
usually assumes first priority.

TRANSACTION PROCESSING PERFORMANCE (Figure 4)

Batch performance is fairly easily measured. We can easily
time how long a job runs, what resources it seems to be
absorbing, and how much competing batch jobs inhibit one
another. TP performance is much more difficult to quantify.

TP performance is measured by two yardsticks, throughput and
response. Throughput is the objective count of the number of
transactions that can be processed in any given time period.
Response is more difficult to measure because it 1is a
subjective evaluation.

A programmer has more influence on response than on
throughput. Additionally, dramatic changes to response may
make little change to throughput . This paper will
concentrate on response.

TP is too complex to try to examine as a single entity. For
simplicity, I am limiting this overview to an evaluation of

19-8

TRANSACTION PROCESSING PERFORMANCE

BAD NORMAL GOOD
THINK THINK THINK
— _____+_____
ENTER A
ENTER
ENTER I TRANSFER B
| TRANSFER PROCESS C
-1 * RESET D
TRANSFER PROCESS
Y RESET
PROCESS
A = System Load
¥ B = Baud Rate
C = System Load
RESET D = Baud Rate + Load
I B, C, AND D also = Program
Figure 4
the processing of a simple transaction. This can be broken
into S distinct pieces of time.
1. Think Time.
The time for the wuser to fill a screen. Think time 1is

normally the longest item in TP and is application dependent.
I will arbitrarily disregard think time in this paper.

19-9

2. Enter Time.

The time from the hitting of the enter key to the beginning
of actual data transfer to the machine. This time is mostly
determined by the hardware, the operating system, and the
overall machine load. Although a programmer may impact enter
time, we will not discuss it.

3. Transfer Time.

The time from the start of data transfer from the screen to
its completion. This is mostly a hardware function. In some
instances the programmer can change this item. We will
address transfer time briefly.

4. Process Time

The time your program spends actually processing the screen
input. By definition this is under programmer control. We
will concentrate on improving process time.

5. Reset Time

The time required to prepare the terminal for the next user
interaction. In pure data entry this time might be trivial.
In other applications it might involve screen switches,
response transmission or similar lengthy activities. We will
examine some cases involving reset time.

Traditional measurements of system response times tend to
emphasize the measurement of enter time. For system
evaluation this is a valid point of reference. We
programmers must concern ourselves with application dependent
factors over which we have some control.

Programmers deal most directly with transfer, process, and
reset times. These three items are the primary criteria used
by users in measuring how responsive a system is.

The user who waits fifteen seconds for the computer to digest

a screen of data and prepare the terminal for next input
feels that the machine is not responsive. Our job is to make

19-10

the machine responsive in the eyes of the user.

PERFORMANCE DELIMITERS
DATA LANGUAGES Vv /3000

Stack sizes COBOL Edits
Stack util 4 FORTRAN Enhancements
EDS sizes SPL Form sizes

Downloading
CODE IMAGE

SYSTEM TABLES

Segment sizes Capacities

Segmentation MAST vs. DET OTHER FACTORS
Seg-seg trans MAN vs. AUTO

Libraries

Figure §

PERFORMANCE DELIMETERS (Figure 5)

Almost anything can impact performance. I have consciously
oversimplified the situation by dividing the subject into
seven groupings. Each of these groupings could be considered
most important by any individual. This would be influenced
considerably by a person’'s experience and background. A
quick overview of each will set the tone for the presentation
of my views on the subject.

GROUPS 1 AND 2 -- DATA AND CODE.
These related items are very important factors influencing
performance. They have also received much attention by many

people.

This is fortunate in that the programmer has definite

19-11

guidelines to follow to try to avoid creating totally
unacceptable programs. It is wunfortunate in that we often
assume that the volume of verbiage on a subject indicates its
relative impact on our work. I feel this is not always true
and that some of us have become entirely too concerned with
data and code considerations.

I am almost certain that neither data nor code are the
primary culprits when the first questions I am asked about a
program are "Do I have my stacks small enough?" or "Have I
segmented the program properly?". All too often these are
dead giveaways that the programmer has become intimidated by
the massive documentation about code and data and has failed
to get a good perspective on the whole situation. How, for
example, could code and data be causing 10 second response
delays in a program that makes 250 data base accesses per
response?

I firmly believe that code and data can significantly impact
performance. I believe even more firmly that they should be
held suspect only after many of the other possible
contributors have been reviewed and evaluated.

GROUP 3 -- LANGUAGES.

This 1is another area where I feel we have all expended too
much effort. Except for special cases in which specific
capabilities of a language are required, I have yet to find a
program which would be meaningfully more efficient in one
language than another. The one rule I would accept would be
the prohibition of interpretive BASIC in a production
environment.

I have seen many instances where the absolute requirement to
have a "COBOL shop" has denied a programmer access to
efficiencies available in other languages, particularly SPL.
I have seen even more cases where the fear of the assumed
inefficiencies of COBOL has resulted in FORTRAN or SPL
programs which quite often run slower than a COBOL version.

Although this may represent a minority viewpoint, I claim

19-12

that COBOL will often be the most efficient and the most
effective language in the typical commercial application.
And even if this may not be true, I further claim that the
choice of languages does not have a meaningful impact either
way. If you like COBOL, wuse it. If you hate COBOL, wuse
FORTRAN or perhaps SPL. In any case, use whatever helps you
as an individual to get your job done.

GROUP 4 -- IMAGE

By now, everyone should be wondering just what I think are
the important performance delimiters. We've finally hit one.
IMAGE has a big effect on performance.

The factors sublisted in this group are the ones wusually
quoted as being critical. These and the use or non-use of
sorted chains have been discussed to death. In addition,
with the probable exception of the constraints on sorted
chains, their importance is generally blown all out of
proportion.

We will cover the impact of IMAGE but it will be done from a
different vantage point. Our primary concern will be
centered around the ways we have structured our data bases
and the effects those structures have on performance.

GROUP 5 -- V/3000.

V/3000 is very good but it is not perfect. As with any
highly generalized package, V/3000 can probably be "beaten"
in any given application by a highly skilled programmer. In
some applications, V/3000 may also be a less desirable choice
because more performance oriented but less generalized
techniques are available. A case in point might be the data
capture environment where we would want to consider using the
more efficient data capture intrinsics.

Just because V/3000 may not always be the best solution in
all instances should not become a rationale for avoiding
V/3000 altogether. V/3000 simply has too many capabilities
to be ignored. It is also more efficient than most of us

19-13

probably realize.

V/3000 was introduced with two specific faults which gave
some of us some bad memories. Both of these have been
corrected. The KSAM oriented forms file structure has been
replaced by a vastly superior file access method. The
ability to recompile only modified forms has greatly reduced
development and maintenance overhead. If we have not reviewed
our evaluation of V/3000 since its introduction we may be
cheating ourselves.

There are some capabilities still suspect within V/3000. I
claim that in most cases, the culprit is the heavy demands we
build into our applications rather than the way V/3000
handles those demands. I strongly suspect that most of us
would be pleasantly surprised at the performance V/3000 gives
compared to that provided by user written code performing the
same functions. We would also probably be appalled by the
volume of code we would have to write and maintain to replace
standard V/3000 capabilities.

There is much potential benefit for us if we closely
evaluate our techniques of using V/3000. In many cases we
can improve performance by using V/3000 differently. In the
average application, however, we would probably do much harm
by trying to avoid or replace V/3000.

GROUP 6 -- SYSTEM TABLES.

Let’s handle this fast. Look at system tables from an
overall system point of view. Forget about them in
applications programming.

GROUP 7 -- OTHER FACTORS

When somebody ends a list of items with a group called "other
factors", they probably plan to quickly dismiss those same
factors as relatively unimportant. In our case, I have
deliberately placed them last for emphasis. What many might
consider relatively unimportant are the very items experience
has taught me to look at more carefully. I think that look

19-14

will be most revealing.

SPECIAL USER SUBPROGRAMS

-SUBSYSTEMS MACHINE
-INTRINSICS INSTRUCT
-COMPILER

SUBROUTINES MICRO
INSTRUCT
-MPE

USER APPLICATION PROGRAM CODE

USER CODE -~ v§ - INTRINSICS, ETC.

NO /0 -- v§ — ALL I/0
5-20% CPU —— y§ —~ 80-95% CPU
DIMES - y§ - DOLLARS

Figure 6

PROGRAM CHARACTERISTICS (Figure 6)

How we visualize our programs can have a great influence on
our attempts to improve their performance. A reasonably
accurate picture of a typical commercial application program
might surprise some of us. It might also help explain why
two programs, one written by a highly technical programmer
and the other written by an experienced but relatively non-
technical programmer, can have maddeningly (to the technical
programmer) similar performance characteristics.

The most important fact to be realized is that the normal
application program written on a typical modern commercial

19-15

computer is a “driver". Whenever we write a program,
particularly in a high-level language, we do not generate
computer instructions. We are actually writing compiler
instructions which will be converted into computer
instructions. Our choices of coding techniques can have
significant influence on some of the code generated. In
general, however, the problem being coded has a far greater
effect than our choices of how we code our solution.

A consequence of the "driver" aspect of our programs is that
our program code (that is, the portion controlled by our

coding techniques) never performs I-0. Except for rare,
highly specialized, privileged mode applications, all I-0 is
performed by MPE Intrinsics. Once we have designed our

application characteristics, the I-0 required is essentially
independent of our programming language or our programming
techniques.

Some programmers could be somewhat discouraged at being told
their coding techniques have relatively little effect on a
program. Others will be relieved on hearing the same message
because it allows them to code without fearing that they
might mess up a program through "“poor" programming. Both of
these types of programmers have missed the boat on
performance.

Better programmers reprioritize their efforts away from mere
technical coding competence and concentrate on design. They
realize that the characteristics designed into an application
are the major determinants of performance.

Being better programmers, we will concentrate on design in
our search for improved performance. Even relatively small
changes in design can have more effect than massive changes
in pure coding. Wise decisions during application design can
have immense impact on eventual performance.

SUBPROGRAMS (Figure 7)

Utilizing subprograms allows us to program for performance.
Period. End of sentence.

19-16

UTILIZE SUBPROGRAMS !l

-- SPEEDS DEVELOPMENT

—-— SPEEDS TESTING

-- SPEEDS MAINTENANCE

EVALUATION
-- PERMITS AND
MODIFICATION

Figure 7

A non-trivial program written using subprograms will be
faster to develop and test than an equivalent program written
as a single unit. This is not prejudiced conjecture by me;
it is a widely recognized fact. Since development and test
time for a program are included in the broad definition of
performance, programs written in subprogram form give
improved performance.

Maintenance is also simplified for programs built from
subprograms. It is easier to determine where to modify a
subprogram than where to modify a unit program. The validity
of the <change is more easily tested in a subprogram.
Subprograms even require less expense to test than do unit
programs. Smaller listings, shorter compilations, and more
controllable logic give wus tremendous return for our
investment.

Subprograms would justify themselves solely on the merits
claimed up to this point, but we should look deeper.
Subprograms can be powerful tools in the attempt to improve
application performance.

19-17

Subprograms are prime examples of modular program and

application architecture. Modularity isolates functions so
that modifications affecting those functions can likewise be
isolated. Isolation of modifications allows more accurate

evaluation of the effects of those modifications. The more
accurately we evaluate our modifications, the more effective
our modifications can become.

NORMAL VS MODULAR
100 CPU UNITS 101 CPU UNITS

A =8 units
B =10 units

C =30 units

BIG PROGRAM D =10 units

E =12 units
F =6 units

G =25 units

PROBABLE PAYBACK = WHERE ??

RESULT OF CHANGE = WHAT ??

Figure 8

MORMAL vs MODULAR (Figure 8)

Subprograms do not give us more efficient programs. All
factors being equal, a unit program will execute more
efficiently than one written in subprogram form.
Subprograms, however, give us the means to improve
performance and efficiency in ways generally unavailable in

19-18

unit programs.

Improving performance comes only partly from improving
programming. Far more important than how much we improve
programming is where we decide to try to improve programming.
I would much prefer to reduce a high overhead item than a low
one.

Intelligent attempts to improve performance require a
disciplined plan of action. That plan must include at least
four discreet items:

-- Evaluation of existing performance

-- Identification of candidates for alteration
-- Selection and implementation of changes

-- Evaluation of resultant performance

To get a feel for the potential importance of subprograms for
performance improvement, we can review two hypothetical
cases. The first involves a unit program; the second, a
modular program. In both cases, someone with clout has
decided that the performance needs improvement.

CASE I -- THE UNIT PROGRAM.
The programmer follows a rational plan:

-- Measures performance of unmodified program. 100 CPU units
are needed for control run.

-- Uses past experience to identify probable bottlenecks

-- Program changes, all quite valid, to improve performance
at selected areas

-- Measures performance of modified program. 75 CPU units
are needed for test run.

Now we have a few questions to answer:

Q. Was 25 CPU wunit improvement good, fair, or poor?
A. Can't tell.

Q. How much of the potential improvement was realized?

19-19

A. Can’'t tell.

Q. Did every change improve performance? A. We don’'t know.
We couldn’t make evaluations of each change because the
compile cost was too high.

Q. What do we try next? A. Whatever the boss says.

This would have been so easy had the original changes taken
us from 100 CPU units to 20. That type of improvement gets
praised, not questioned. But who said everything was easy?

CASE 1II -- THE MODULAR PROGRAM.
This programmer also follows a rational plan:

-- Measures performance of unmodified program. 101 CPU units
are needed for control run. Usage per module ranges from
6 to 30 units.

-- Decides that most probably payback is in modules C and G
with 30 and 25 unit loads, respectively

-- Uses past experience to decide that module G is most
likely candidate.

-- Program changes to module G

-- Measures performance of modified program. 86 CPU units
are needed for test run. Module G has gone from 25
units to 10 units.

This programmer also must answer some questions:

Q. Was a 15 CPU unit improvement good, fair, or poor?

A. Quite good. The portion changed showed a 60% (from 25
units to 10) reduction.

Q. How much of the potential improvement was realized?

A. For module G, probably most of it. But we only changed

25% of the program. 75% still merits evaluation.

Q. Did every change improve performance? A. Looks
probable.

19-20

Q. What do we try next? A. Module C is a likely candidate
because it absorbs 30 wunits during execution. That’s more
than a third of the remaining overhead!

We may require a number of iterations before we reach the
point of diminished returns. At least we have a better way
to tell where we have probably reached it. In addition, we
have begun to build a body of experience to help us optimize
our next program more easily.

19-21

SECTION 2 BIG ITEM CHECKLISTS

Talking about techniques to wuse in isolating performance
problem areas is valuable. Knowing what to do next is
equally important. This paper will attempt to identify some
of the most frequent "next steps”.

Sometimes, of course, the "next step" becomes the only step.
This occurs most often when we are called upon to help
optimize a unit program whose performance is suspect. We
can't waste time wishing the program could be more easily
analyzed. After all, if it were easily analyzed, we wouldn't
have been called in. So we take it as we find it.

Every experienced performance consultant has a mental
checklist of potential problem areas. This checklist
includes specific techniques found helpful in the past and
the expected benefits for each.

Each checklist is different. The differences depend upon the
consultants background, track record, and personal biases. A
specialist experienced in commercial applications has a
different checklist from a specialist who has worked with
technical applications. Similarily, checklists based on
batch applications will differ from those written for on-line
systems.

My background is in commercial applications, both batch and

on-line. I would 1like to share part of my checklist with
you. The sequence is for convenience and continuity; it has
no priority implications. For each major item, I will

organize its analysis this way:
-- A header visual showing:
- TASK: The description of the checklist item.

- PLAN: The proposed corrective action most

19-22

likely to succeed.
- GOAL: The expected benefits.
-- One or more subordinate visuals showing.
- Why the item might be degrading performance.
- Detail examination of the proposed action.

- Why the proposed action should improve performance.

GOAL: REDUCE DISC ACTIVITY
REDUCE CPU CYCLES USED

Figure 9

TASK: REVIEW SEQUENTIAL
FILE PROCESSING

PLAN: REBLOCK FILES
USE NOBUF I-O

SEQUENTIAL FILE PROCESSING (Figure 9)

Almost every shop has batch programs that process large
sequential files. Quite often they are programs originally

19-23

written for Brand-X and converted to run on the 3000. They
frequently run much slower than we think they should.

We keep reminding ourselves that most commercial applications
are I-0 bound, not CPU intensive. We begin wondering about
the power of the 3000 when our "I-O Bound" programs run at
close to 100% CPU utilization. It's time we found out why
this happens.

TASK: Check out sequential files looking for high record
volumes, low blocking factors, and default file

access.

PLAN: Increase blocking factors and replace default file
access with nobuf I-0.

GOAL: Reduce disc activity (blocking factors). Reduce CPU
load (nobuf I-0).

I-0 -- BUFFERED vs. NOBUF (Figure 10)

Those of us who learned programming on a Brand-X machine,

know how sequential files are processed. A pair of buffers
are set up in the program and the physical I-0 system tries
to keep them full. The logical I-0 system provides records

to us by indexing through the buffers as I-0 is requested.
This indexing through internal buffers is extremely efficient.
Machines using this approach to sequential processing usually

handle batch processing better than on-line processing.

Every operating system on every computer is optimized for a

particular environment. This includes both the internal
architecture of the I-0 system and the choice of standard
defaults for its wuser interface. HP emphasizes on-line

processing and has designed its I-0 system accordingly.
Batch processing is performed well but suffers somewhat to
benefit on-line work.

On-line processing emphasizes random retrieval. Random
retrieval implies retrieval of a record from a reasonably

19-24

BUFF vs NOBUF I-O

LOGICAL
RECORD

READ or WRITE
25-5SMS/REC

LOGICAL
RECORD (User must block/deblock)

READ or WRITE<«—>»{ FULL BLOCK BUFFER

4 - 6 MS/BLOCK

Figure 10

well-defined location on disc. Knowing a records location
eliminates most of the benefits of large blocking factors.
Therefore, HP has set up relatively small default blocking
factors. These utilize disc space well but are usually
comparatively small for batch processing.

On-line processing also requires effective file sharing
capabilities. Files are quite difficult to share when the
I-0 system puts the buffer inside programs. HP simplifies
file sharing by isolating the buffer from the program. This
is excellent for on-line activities but increases overhead
when doing batch.

File buffers reside in extra data segments under MPE.
Logical I-0 requires the file system to expend considerable

19-25

effort to transfer records back and forth between the user
stack and these extra data segments. This explains the high
CPU load during sequential file access.

Once we know how the defaults in MPE increase overhead in
batch applications we can make intelligent adjustments. The
rewards are well worth the effort. In typical cases, we can
reduce overhead by 70 to 90 percent.

Blocking factors are easily changed by coding the "REC"
parameter in the "BUILD" command. I can’t tell anyone what
factors to use but I would probably choose between 7 and 30
depending on record size.

Conversion to nobuf I-0 is not so simple but contributes most
to CPU load reductions. There are two basic ways to do this:

-~ Code your routine directly into your program. Although
this is how I coded my sample program, I prefer the second
technique.

-- Code your routine in a subprogram. I prefer this
technique. It suits my mode of operation.

RECORD SORTING (Figure 11)

Every shop needs sort capabilities. Batch applications are
particularly heavy users of sorts because they are inherently
sequence dependent.

Sorting places heavy demands on the machine. Although we
cannot reasonably eliminate sorting from our programs, we

have techniques to reduce their overhead.

TASK: Review our use of the sort capability in our
environment.

PLAN: Avoid file-to-file sorts and the use of the stand-
alone sort subsystem.

19-26

TASK: REVIEW USE OF

SORT SUBSYSTEM

PLAN: AVOID SORT SUBSYSTEM
AVOID FILE-FILE SORTS

GOAL: REDUCE DISC ACTIVITY
REDUCE CPU CYCLES USED

Figure 1l

GOAL: Reduce I-0 activity in sort functions. As a secondary
benefit, reduce CPU load on the system.

BRUTE FORCE (Figure 12)

When you had a small machine and tape was your primary
storage media you learned how to drag data through programs
using brute force. The standard mode for sorting was to read
a tape into the sort and write sorted records back to tape.
Sometimes this had to be done in multiple passes with
multiple tapes. It wasn’'t much but it certainly beat loading
and unloading card hoppers.

Modern computer systems support and use tape but they rely
more often on disc for primary storage. Modern programmers
have also begun to rely on disc. They have finally gotten
rid of their little drawers full of punched cards. Why,
then, do they still do their work, particularly their sorts,
by brute force.

The stand-alone sort is useful and necessary. It is also a
resource hog. The I-0 required for a sort is extensive,
especially when added to the I-0 to read and write output

19-27

BRUTE FORCE

FIRST
USER
FILE

Y

N STAND-ALONE

SORT
C 3

SECOND
USER
FILE

A

\ 4
Ne— USER WRITTEN

© PROGRAM

THIRD |,

USER

FILE

A

~— STAND-ALONE
Etc. SORT
Etc. B
Etc.

Figure 12

files.

Disc availability is a prime constraint on performance.
Sorts, particularly the stand-alone file-to-file sort, eat
deeply into this availability. In the interest of
performance we should try to reduce these activities whenever
practical.

FANCY BRUTE FORCE (Figure 13)

19-28

FANCY BRUTE FORCE

USER
FILEIN

USER 1
(COBOL)
PROGRAM SORT

USER
FILEOUT

SORT ...
USING FILEIN
GIVING FILEOUT

Figure 13

Programmers have learned how to invoke the sort programmati-
cally. They have effectively used this to replace two or
nore programs and one or more sorts with single programs.
Then they have held back from using the true capabilities of
programmatic sort access.

Programmatic file-to-file sorts are not necessarily bad but
they usually have a negative effect on performance. They use
up disc resources at at least the same rate as stand-alone
sorts. Except for very small data volumes, programs written
nith file-to-file internal sorts usually run slower than the

19-29

individual programs and sorts they replaced.

Some shops will not allow programmers to use sort capabili-
ties programmatically. I think they are missing a good
opportunity by this blanket condemnation. On the other hand,
if they are only avoiding "“fancy brute force", they can be
partially excused.

VIABLE ALTERNATIVE #1

RELEASE ..
(WRITE)

USER
(COBOL)
PROGRAM

RETURN ..
(READ)

SORT ..
INPUT PROCEDURE ..
OUTPUT PROCEDURE ..

Figure 14

VIABLE ALTERNATIVE #1, DIRECT SORT INTERFACE (Figure 14)

Programmatic access to the sort subsystem gives the

19-30

programmer many attractive options. Hooks built into the
sort allow programmers to pass records directly to the sort
and receive sorted records directly from the sort. This
capability can be used effectively to improve program
performance.

Direct interaction with the sort allows us to avoid disc
activity. Every time we interact directly with sort we avoid
two potential disc accesses; we have eliminated a read access
and a write access. This can greatly reduce disc activity.

We also reduce CPU overhead by talking directly to the sort.
We get rid of the CPU overhead for the file system to process
our logical I-0. Unfortunately, there is a price to be paid
for this ability.

Interaction with the sort requires direct resources other
than disc I-0 and CPU cycles. The sort needs memory to be
efficient and that memory comes from the user stack. If our
stack is too small or the program data is large the internal
sort may lose its value. It may then become a burden.

Another limitation of the internal sort is the inability to
have multiple sorts executing simultaneously. In programs
with multiple internal sorts we may have to allow some file-
to-file sorts or the logical equivalent.

VIABLE ALTERNATIVE # 2, PROCESS HANDLING (Figure 15)

MPE offers us another means to reduce sort overhead. We can
use process handling as a means to bypass I-O in sorting
applications.

Some shops fear process handling. I wish more of them could
begin wusing it to advantage. Perhaps there is too much
emphasis on the "special" in "special capabilities". What-
ever the reason, many of us look upon process handling as a
tool only for exceptional cases. We should view it as an
exceptional tool useful in many applications.

There 1is no justification for reserving process handling

19-31

VIABLE ALTERNATIVE #2

USER
PROGRAM

"BUFFER"

SEGMENT USE PROCESS

HANDLING

"BUFFER"

RELEASE *“"‘**‘1
RETURN 4‘“*—*J

Figure 1S

solely for esoteric or multi-threading environments. Process
handling is perfectly suitable for use in relatively simple,
single-threaded applications. An obvious use would be in a
program involving sorts where we can use multiple processes
to advantage.

We should examine how sort functions can be accomplished
using process handling. The concept is similar to the normal
programmatic sort interface especially if we isolate all
calls to the process handling intrinsics in a subprogram.
The rest is simplicity itself.

19-32

The master program initiates sorting by a call to the
subprogram. The subprogram creates and activates a slave
program whose job is to sort records. The subprogram
also creates an extra data segment to use in passing
blocks of records to the slave. It waits until the slave
program is ready for work.

The slave begins 1life by starting up its own internal
sort. Its subprogram then wakens the master, in effect
saying "OK, I'm ready". It waits for instructions.

The master sends raw records to the slave for sorting.
Every call to the master subprogram represents logical
passage of a record to the slave. The subprogram fills
an internal buffer with records.

When the subprogram has a full buffer it loads it into
the extra data segment and wakes the slave, effectively
saying "OK, give these to sort". It waits until the
slave has done its work.

The slave retrieves the extra data segment, unloads the
logical records, and passes them to the sort. When
finished, it wakes the master, saying "OK, I'm ready for
more". It waits for more.

Steps 3, 4 and 5 are looped through until all records
have been sent to the slave. The master then sends an
"end of data" message to the slave after preparing to
receive sorted records. The master waits now.

The slave receives the "end of data" message and lets
actual sorting begin. When sorted records are available,
the slave is ready to awaken its master.

The return of sorted records from master to slave is a
reversal of the process described for sending unsorted
records from master to slave.

A sample program is included with this paper to show the
technique. It does not use subprogram interfaces because 1
wanted to isolate the example in one source file. In real

19-33

life, I would recommend a squrogram.

This example obviously reduces disc activity. It offers
other benefits as well.

1. The slave has its own stack which 1is not loaded with
application data. The sort can be given plenty of room
to breathe. The slave can perform actual sorting more
efficiently than could its master.

2. The program is no longer limited to having only one sort
active at any time. Except for the normal constraints of
MPE, any number of sort slaves may be active at any time.

As with other alternative techniques, process handling
extracts a cost.

1. Process handling absorbs CPU overhead. If records are
not passed back and forth in blocks, the overhead may be
relatively high.

2. Multiple processes and their stacks need memory. This
may cause problems in some cases. Your machine size and
workload profile are critical decision criteria.

3. Process handling is not difficult but is more complex
than the use of standard compiler features. Subprograms
eliminate this problem once you have the subprograms
written and tested.

DATA VALIDATION AND CONVERSION (Figure 16)

Both batch and on-line programs perform extensive data
validations and conversions. Quite often these account for a
high portion of the overhead within a program.

Validations and conversions come in two basic flavors-
algorithmic and tabulated.

-- Algorithmic validations check validity according to a
processing rule. Check-digit calculations and pattern

19-34

TASK: REVIEW VALIDATIONS
VIA FILE ACCESS

PLAN: REPLACE FILES WITH
PB-RELATIVE CODE

GOAL: ELIMINATE DISC ACTIVITY
REDUCE CPU CYCLES USED

Figure 16

matches are examples.

-- Algorithmic conversions convert data based upon a
conversion algorithm. Julian to Gregorian data conversion
is an example.

-- Tabulated validations check validity by searching a table
or file for a "hit". Customer validation through
attempted retrieval against a data base is an example.

-- Tabulated conversions convert data from argument to result
by searching a table or a file. Converting numeric error
codes to meaningful error messages is an example.

Algorithmic techniques and table oriented searches are
normally efficient but may be difficult to modify and
maintain. File oriented techniques are easily modified but
absorb considerable overhead. Performance considerations may
make file oriented techniques too expensive.

TASK: Review file oriented validations and conversions.

PLAN: Replace files with PB-relative code. This normally
takes the form of a binary search procedure.

19-35

GOAL: Eliminate disc I-0 completely when possible.
Significantly reduce CPU overhead.

FILES vs PB-RELATIVE

PROGRAM (IMAGE)

HEAVY DISC & HEAVY CPU

SUBPROGRAM
~ CALLTOA | {SING BINARY
PROGRAM >l PB-RELATIVE
SUBPROGRAM SEARCH

USER

NO DISC & LOW CPU

.

Figure 17

FILES vs PB-RELATIVE (Figure 17)

Files are frequently used for data validation or code
expansion in all data processing. We usually use KSAM or
IMAGE. In either case the disc I-0 is extensive and involves
considerable overhead.

In many cases there is no viable alternative to file access.
Volatile information is ideally suited to randomly accessed
and maintained file structures. Massive quantities of data
cannot be economically maintained except on disc media.

In other cases we may be able to use techniques that require
little or no disc access. The following are the normal

19-36

techniques used.

1. Tables may be hard-coded into storage if the information
is not too massive and is not volatile. Massive data
volumes are prohibitive and volative data values create
maintenance hang-ups.

2. Volatile tables may be filled at execution time via file
access. This 1is impractical for large files and may
cause excessive overhead in short duration programs.

3. Values may be hard-coded into program code as literals.
This saves stack but creates maintenance problems for
volatile values.

4. Data values may be loaded into extra data segments. This
is especially useful for highly volatile data values in
transaction processing applications wutilizing multi-
threaded process handling. It is a relatively complex
approach but can be of great use.

Another available but seldom used technique is to place data

values into PB-relative code. The code is SPL and the

internal retrieval is via a binary search. This technique
has tremendous potential for improving performance.

1. Disc access is eliminated.

2. CPU overhead for retrieval is extremely low.

3. Stqrage demands are relatively low, particularly if the
code resides in readily shareable SL segments.

4. Access 1is simple since a single call statement is
sufficient.

Nothing is free. For all its benefits, PB-relative code has
many drawbacks.

1. Dynamic changes cannot be made to PB-relative code.

2. SPL is a requirement for PB-relative binary access.

19-37

3. CST table limitations may restrict use of easily
shareable SL files.

On balance, 1 strongly recommend PB-relative techniques in
cases where performance potential is needed. I also
recommend that they not be applied just because they are
available. Like many other techniques, its use must be based
upon its relative value within the application.

Two example subprograms are included in this paper. One
demonstrates retrieval of fixed length values; the other,
variable length. Obviously, either will validate data
arguments.

PB-RELATIVE MAINTENANCE (Figure 18)

A major reason to avoid using PB-relative code for validation
and conversion purposes is the difficulty it presents to
maintenance. The potential benefits cannot, however, be

ignored.

Maintenance of tabular data in PB-relative code is not

trivial but it need not be excessively difficult. The first
step requires that records be prepared for batch input to a
maintenance program. This is a common function in all batch

maintenance applications and should be no problem.

The actual maintenance run is different depending on how we
wish to apply the maintenance. There are three primary
approaches to applying maintenance.

1. Maintenance data can be converted to CON (constant)
constructs in SPL. These can be inserted into a skeleton
program which will be compiled into a USL. This 1is a
straight-forward approach but requires multiple steps.

2. Maintenance data can be applied directly to a generalized
USL skeleton. This is quite efficient but requires
considerable knowledge of USL structure.

3. Maintenance data can be applied directly to either an RL

19-38

PB RELATIVE MAINTENANCE

FILE
EXTRACT

FILE
EXTRACT

FILE
EXTRACT

Figure 18

or an SL. This is even more direct than modifying a USL
but is probably more difficult.

We have a fourth technique that I hesitated to put on the
diagram. We can change the program directly. I left it off
the diagram because it destroys my credibility with the
fragile types.

Program code is not user-alterable during execution. That
does not keep us from altering files just because they happen

19-39

to represent programs. There are many things you can do with
program files if the need arises. Keep your eyes open for
opportunities. It's fun.

REVIEW IMAGE
DATA BASES

SIMPLIFY

STRUCTURE

REDUCE DISC ACTIVITY
REDUCE CPU CYCLES USED

Figure 19

IMAGE DATA BASES (SIMPLIFICATION) (Figure 19)

Commercial applications contain requirements that often lead
to complex data structures. IMAGE gives us the means to
control these data structures with reasonable ease.
Sometimes we forget that what is reasonable for us from a
design and access point of view may be totally unreasonable
at the machine performance level.

Designing paths to detail data set records is a simple task,
particularly if the path 1is from an automatic master. The
desire for vrapid random retrieval often justifies this
structure. '

Using a path from a detail data set to a manual master can
provide non-programmatic data validation as well as
potentially rapid retrieval. This capability justifies many
of our decisions during application and data base design.

19-40

When performance becomes unsatisfactory we have to revalue
our decisions. With experience, most of us become more
selective with the facilities we include in our designs. We
have learned that complex, aesthetically pleasing structures
may become our white elephants of performance.

TASK: Review IMAGE data base structures.

PLAN: Revalue our design with hopes of simplifying the
structure without undue impact on functional
performance.

GOAL: Reduce disc activity and CPU load.

REDUCE LINKAGE PATHS (Figure 20)

IMAGE gives excellent performance in random record retrieval.
This is one of the major reasons why IMAGE has become so
widely accepted. We appreciate the capability to read detail
records by multiple key items. Sometimes we get carried away
in our appreciation and go too far.

Rapid detail access is achieved using pointers which allow
precise record location. These pointers have to be created
before the record 1s accessible. The price of rapid
retrieval is paid by the machine when it sets these pointers.

The majority of the overhead for adding a detail record
linked to multiple masters comes from establishing the
linkages to those masters. On a dedicated Series III you can
closely predict that about 7 or 8 linkages can be created or
deleted per wall second This has tremendous implications
for performance.

Adding or deleting a detail linked to 7 masters will take
about 1 wall second This 1is the main reason why IMAGE
reloads ‘and batch reccrd maintenance programs run relatively
slowly. With 7 linkage paths per detail you can only expect
about 4000 adds and deletes per hour.

Transaction processing is also severely impacted by the

19-41

REDUCE LINKAGE PATHS

DETMANY

A

' ¥ ¥ ¥ ¥ ¥ ¥

MSTOL | MSTO2 | | MSTO3 | | MSTO4 | | MSTOS | | MSTO6 | | MSTO7

1 |)

Y.

DETFEW

ON DEDICATED MACHINE (III OR 44)

-- DETMANY: Add/Delete will take
about 1.0 sec wall time
-- DETFEW: Add/Delete will take

about 0.5 sec wall time

Figure 20

maintenance of linkage paths. If a transaction causes
additions of 3 records and each has 7 linkage paths you have
every reason to expect at least a 3 second delay during those
adds Under normal circumstances when others are sharing the
machine you should not be surprised with much longer delays.
This helps explains the following common situation. You can
supply the interpretation.

- Design goals call for S second maximum processing time
delay

- Testing shows excellent average delays of 3.5 seconds

19-42

- Initial production delays average a satisfactory 4.5
seconds

- 3 months later the delays are averaging 10 seconds

- You have a problem. The test cases did not predict the
realistic performance.

Worst case performance comes during record modification if a

search item needs to be changed. This requires a physical
delete and add. The time for this change is the sum of the
delete and add times. This type of processing can break the

back of an application.

All too often the ability to define multiple paths into
details seduces us into defining too many paths. Unless the
path is required or gives a high priority extra capability
you should think seriously before creating it.

1. Every path defined has essentially the same cost.

2. Every path probably does not give the same payback.

3. Is the payback worth the cost?

4. Will the extra path create the monster called “change =
delete + add"?

Limiting the number of linkage will improve performance.
Consider the case where we go from 7 to 3 linkage paths.

1. Processing delays will drop from 1 to about .5 seconds.

2. Delete and add for change will occur less often and will
take only half as long.

3. Delays on a loaded system will probably grow much less
and will be less dramatic.

4. Reloads and batch maintenance will be significantly
faster.

19-43

LIMIT SORTED CHAINS

SORTED2

SORT

MASTERI MASTER2

NORM

SORTEDI

ASSUMING NON-TRIVIAL CHAIN LENGTHS

-- Add/Delete & access of SORTED2
MUST BE relatively slow

-- Add/Delete & access of SORTEDI
MIGHT NOT BE slow

Figure 21
LIMIT SORTED CHAINS (Figure 21)
IMAGE allows details within a logical path to be sorted by
some other item value. This 1is a powerful capability which

may be of use to us. It is also an expensive capability.

Addition of a detail with a sorted path causes more overhead

because sort sequence must be maintained. IMAGE starts at
the logical high end of the chain and follows it backwards
until it finds the correct logical home for the detail. It

then links the detail into the 1logical path and goes about
its business for the remaining linkage paths.

19-44

If the detail fits at the logical end of the chain, the added
overhead is trivial. If sort-item values are random, IMAGE
must read half through the chain on"average to find a logical
home. This can be quite expensive.

Note: Sorted paths can give you unpleasant surprises.

1. The value sorted extends from the sort item to the end of
the record. This is the "implied sort".

2. Additions will use the entire implied sort value.

3. Any sort before addition should include the full implied
sort item. Hideous performance can result if this is not
done. This explains why sort items should usually be at
the end of a record.

4. Implied sort sequences can be wuseful. They are also
functionally dangerous. IMAGE allows update in place on
non-sort items. The implied sequence disappears once
updates are done to fields within the implied sort.

Defining multiple sorted paths within a detail guarantees
performance degradation. There 1is no way to avoid extra
overhead with multiple sorted paths.

LIMIT LONG OR VOLATILE CHAINS (Figure 22)

The ability to chain logically related records together is a
necessary function in any Data Base Management System. This
function is designed with relatively short logical chains in
mind. It is not meant to be abused.

A good logical chain wusually maintains relationships based
upon important data items. They are designed to preserve
solid logical relationships among records.

1. Customer identities linked to their orders.

2. Line items within an crder linked to an order header.

19-45

LIMIT LONG/VOLATILE CHAINS

COMPLINK]

1
| ¥ {

Activity MASTO? iM ASTO3 Record

Date Status

Activity] Record
SIMPLINK Date | Status

CHANGING Activity Date or Record Status
Requires Delete/Add of COMPLINK
Needs only in-place update of SIMPLINK

Figu;e 22)

3. Order line items linked to inventory status records.
4. Inventory status records linked to open purchase orders.
5. Purchase orders linked to responsible vendors.

A poor logical chain usually attempts to maintain

relationships which are relatively less important. They are
often designed to try to create artificial order out of
inherent chaos. Even worse, they may exist simply because

the capability to create them is provided.
1. Personnel records linked to employee sex.

2. Invoice records linked to invoice status.

19-46

3. Student records linked to grade values.
4. Inventory records linked to last activity dates.

Another form of poor chain would be the case where the search
value is volatile. Every time the value changes, a complete
delete/add must be done. This can be very expensive.

My generalized definition of a poor logical chain is based
upon present technology. A poor chain is one whose cost
exceeds its wvalue. When technology reduces cost
sufficiently, I will change my definition.

The definition of a poor chain is also not absolute. If your
application benefits more from a chain than it spends to have
the chain, the chain is good. Good and bad are merely a
comparison of relative gain to relative cost.

TASK: REVIEW IMAGE
DATA BASES

COMPLICATE
STRUCTURE

REDUCE DISC ACTIVITY ¥
REDUCE CPU CYCLES USED
INCREASE CAPABILITIES

Figure 23

IMAGE DATA BASES (COMPLICATION) (Figure 23)

Simple IMAGE data base structures generally absorb less
19-47

overhead per function than do complex structures. This leads
us to avoid complex structures to maintain good performance.
Sometimes, however, the simple structure becomes a burden and
causes unacceptable performance for some required application
functions.

Overall performance within an application is a complex
entity. Each function performed carries an inherent overhead
based upon the function, how often it is performed, and the
structure of the data base it accesses. Simple structures
can degrade performance if they fail to permit efficient
processing of frequently required functions.

Relatively complex structures may benefit overall performance

if the structure matches the intended use. Simple
structures, while inherently more efficient, may degrade
performance if they do not satisfy the application. We

cannot judge nor can we design a data base without extensive
knowledge of the application.

We may find that our application cannot be serviced
satisfactorily without complicating our data base. With
proper planning we may be able to use complexity to our
advantage to improve both functional and overall performance.

TASK: Review IMAGE data base structures.
PLAN: Revalue our design based wupon our knowledge of the

application and try to find places where a more
complex structure can improve performance.

GOAL: Selectively increase complexity to make our
application overhead go down when performing required
functions.

SELECTIVE CONSTRUCTIVE ABUSE (Figure 24)

Simple data structures are normally preferable to complex
structures. Chains should usually be avoided where data
volatility is a problem. But you can throw out any
generalized rule if it serves you poorly.

19-48

SELECTIVE CONSTRUCTIVE ABUSE

COMPLINK

[

'

Special
status

SIMPLINK

COMPLINK may be more effecient
than SIMPLINK if:

-- Special status is relatively stable

— Relatively few special status records

— Heavy batch serial access

Figure 24

Every application 1is different. Its success depends much
more on how well you have made it perform in the eyes of ycur
users than on how well you have applied standard technigues
and principles.

Sometimes you do everything "right" and create a performance
dog. You may be stuck in the a lose-lose position.

1: Your application has two obviously good linkage paths.

Performance is acceptable for all transaction
processing.

19-49

6.

Nightly batch exception reporting 1is horrendous You
can’'t get your special status reports finished by 8:00
A M.

You establish a linkage allowing direct access by status.
Note: VYou're lucky you didn't blow chain length limits.

Your nightly exception reporting is now a piece of cake.
You have a new problem. Transaction processing is dying.
The extra chain and its volatility are weating resources

alive.

Now what?

The time has come to revalue your position. Your thought and
action process might go like this

1.

I can only get batch efficiency using the complexity of
an added linkage path.

I can only get transaction processing efficiency with a
simple structure.

Maybe if I combine the two structures I can have the best
of both worlds. I'll try a more complex physical
structure that I can look at from two logical directions.
For my normal records I'l11 have a detail linked by the
normal two linkages. As long as the status isn't really

special I'1l1l treat it as just another field.

For my special records, those with very special status
codes, I'1]1 design another detail linked to status.

With rare exceptions, my transaction processing will run
well just like it did before.

My batch exception reports will be printed on time.

I think I've got it!

19-50

You have abused the data base by making it much more complex.
You have been selective in matching your changes to your
application. You have been constructive - your application
now performs properly.

There are times to follow accepted rules and there are times
to write your own rules. The only real problem is knowing

when to do which.

USE SORTED CHAINS

ACCOUNT SUBACCT

SUBACCT
SORT

MDETL

SORTED CHAINS MAY BE VERY
USEFUL/EFFICIENT FOR

-— "MASTER" detail data
-- non-volatile data

Figure 25

USE SORTED CHAINS (Figure 25)

Sorted chains are powerful tools and carry with them high
potential overhead burdens. We should use them carefully but
we should not be afraid of them.

Many data base designs could improve functionally if we

19-51

designed them with sorted chains. We avoid most potential
uses because they will perform poorly. Certain cases will
perform extremely well.

1. The detail sets are pure linkage sets: they merely serve
to define ordered paths between masters.

2. The detail sets are "master" type details. They
represent, for example, what might be considered a master
record in an indexed file environment.

3. The data in question is stable.

This structure 1is extremely useful for keeping master
implosion and explosion chains. In an accounting applica-
tion, they can allow us to explode an account number into
sorted sub-account to account.

CONSIDER COMPLEX SORT STRUCTURES (Figure 26)

Sorted chains and complex structures are both potential
performance bottlenecks. Functional necessity may require
their use.

IMAGE is not designed to give logically sequential access of
master data sets. Indexed file structures provide logical
sequential access but lack most of the capabilities of IMAGE.
We're in that potential lose-lose situation again if we need
IMAGE capabilities and have to have logical sequential
access.

Some programmers solve this problem by maintaining dual data
structures. They create the normal IMAGE data base and keep
a separate KSAM file to contain key values extracted from
their IMAGE master sets. It works well for most of them.

Other programmers attack the problem by setting out to
emulate index type structures within IMAGE. I 1like this
approach because it seems more fun to work with and it keeps
everything in IMAGE. Once you define the master you follow
this basic plan.

19-52

COMPLEX SORTED CHAINS

ARTIAL ENTIRE
KEY KEY

)

Y

LOOPING SORTED DETAIL

SORTED
LINK LINK DATA

~- short interval generics

-- limited next/prev access

-- needs program control
(use SUBPROGRAMY)
-~ can kill your application

Figure 26

Define a path to a detail which links your master to your
index emulation sets. This detail is optionally sorted
by master value on the linkage path coming from the index
emulators.

Define a detail index set to hold linkages between par-
tial keys. This set links to your interface linkage
detail and has two linkages to a detail linkage set.
Define a detail index set to hold linkages between
partial keys in the master index set. One path is sorted
to point to lower level (longer) partial keys. A second
optional sorted path allows reversal in sequence.

A partial key of null values starts your emulated index.

The rest of the index structure contains gradually longer

19-563

partial keys. The common increment is two characters.

Index emulation has both good and bad points. You make your
own choices since you pay the bills.

1.

2.

Short interval generics become possible.

Limited next/previous record capabilities are available.
If you try to process the data base purely sequentially
you will probably regret your decision.

This technique requires extensive programmatic control.
I suggest a canned subprogram.

You may be tempted too much by logical sequential access.
Remember that physical access will actually be totally

random and expensive.

Your application may die.

TASK: REVIEW TP FUNCTION
TRANSFER DELAYS

PLAN: ELIMINATE TRANSFERS

AVOID BUILD/WRECK

GOAL: REDUCE OVERHEAD
REDUCE DELAYS

Figure 27

FUNCTION TO FUNCTION TRANSFER DELAYS (Figure 27)

Batch processing applications tend to isolate functionally

19-54

similar records into groups (often as physical "batches") and
pass them as a unit through a program or program stream.
Pure transaction processing applications, on the other hand,
provide users the ability to enter virtually any transaction
with assurance that processing resources will be available.
In theory, no transaction can be predicted before the user
presents it to the application.

No matter how well we process a transaction, we are judged

harshly if we take too long getting ready to process it. A
beautifully performing program gives poor performance if it
takes too long to begin executing. Our wusers will

justifiably demand rapid transition between functions.

Transfers from one function to another c¢an also involve

considerable overhead. If this overhead is too high the
machine can become so bogged down it has little left for its
true job, processing transactions. Successful applications

spend their resources processing, not getting ready to
process.

We wusually test programs for their ability to process
transactions efficiently. We often forget that much more
than efficient programs is needed for effective applications.
We have to be concerned with function to function transfers
if we expect success.

TASK: Review function-to-function transfers.

PLAN: Try to eliminate transfers if possible. When
transfers cannot be eliminated, try to reduce their
cost by reducing their overhead.

GOAL: Reduce system overhead in general. Reduce transfer
delays to improve user perception of performance.

MAGNIFICENT MASOCHISM (Figure 28)

Transaction processing applications are often complex.
Demands for extreme flexibility stretch programmers skills to
the limit. Process handling is an easily implemented

19-55

MAGNIFICENT MASOCHISM

WAKE V/3000
PROCESS MENU
WAKE IMAGE

SHUT V /3000 N

PROCESS
CREATE/ACTIVATE

TRANSACTION
WAKE V/3000

SHUT IMAGE
SHUT V/3000

I

POWERFUL, VALUABLE TOOL
HOWEVER
N=1 Tremendous overhead
N =few Not terrible

N = many Not really too bad

Figure 28

technique often used to help simplify a complex situation.
It can be quite effective in the proper circumstances and can
beat the machine senseless when misused.

Most users have plenty to keep them busy. They justifiably
require the simplest possible interface between themselves
and the machine. Most commercial software packages are menu
driven to help win acceptance in the market.

Menu driven applications are easy to design and document.
They can also be reasonably simple to program and test.
Their biggest potential problem is a tendency toward tedious
maintenance and relatively poor performance.

Modular programming techniques reduce the difficulty of

19-56

maintenance. The most modular technique involves isolating
individual or similar functions in separate programs which

can be controlled using process handling. A selection of a
menu item triggers a programmatic execution of the
appropriate program. In effect, the menu program issues

predefined "run"* commands which are functionally invisible to
the user.

Function invisibility 1is not true invisibility. The user
sees the execution of the internal "run" as a delay in
processing. There is considerable overhead associated with
both starting and stopping a program. The overhead to
execute a normal transaction is wusually much less than the
overhead spent invoking its program.

When the selected program will execute numerous transactions
before returning to the menu the overhead burden may be quite
acceptable. As the number of transactions per execution gets
smaller, the overhead becomes objectionable. If the design
calls for only 1 transaction per execution the application is
potentially terminally ill.

A standard technique to allow flexibility without tremendous
overhead is to keep a program alive after it has been
invoked. Process handling allows reactivation of a suspended
program (process) with minimum overhead and delay. V/3000
processing may create some problems, however, and the limit
on the number of processes alive within MPE may curtail your
ability to use this technique.

VIABLE ALTERNATIVE (Figure 29)
Some programs promise so much power and flexibility that it
is impossible to avoid some performance loss. With

intelligent programming we can minimize the loss.

Subprograms allow almost as much flexibility as process

handling and usually require less overhead. Critical values
such as IMAGE and V/3000 control areas can be passed as
parameters from caller to callee. A standard technique

involves defining a single data area containing the most

19-57

VIABLE ALTERNATIVE

WAKE V/3000

WAKE IMAGE

PROCESS MENU

ISSUE CALL<—> SUBPROGRAM

SHUT IMAGE (DYNAMICY?)

SHUT V /3000

Pass IMAGE DBNAME, DBSTATUS, and
V/3000 CONTROL as
Parameter(s)

Figure 29

common data and passing it to all subprograms as a single
parameter.

Stack sizes may be a limit on the use of subprograms.
Dynamic subprograms can help control stack size but must be
used carefully to avoid excessive overhead of their own.
Excessively large stacks inhibit performance and so can
excessive stack expansion, contraction, and initialization.

Dynamic subprograms also limit capabilities of the sub-
program. Values kept in local storage is lost when you exit
the subprogram. If files are opened they must be closed
before you exit. More care is needed when you decide to make
an existing subprogram dynamic than when you originally
design it to be dynamic.

19-68

TASK: REVIEW TP
PROCESSING DELAYS

PLAN: SPLIT PROCESSING
OVERLAP PROCESSING

GOAL: IMPROVE RESPONSE
TO USER

Figure 30

PROCESSING DELAYS (Figure 30)

Processing the actual transaction data is the eventual goal
of transaction processing. The time taken for processing
ranges from a very small percentage of the total transaction
time to a very large percentage. When the percentage is too
large we have to try to reduce it to a more acceptable level.

Processing normally breaks down into two phases, data
validation and data storage or retrieval. Either or both
phases may require extensive disc access with corresponding
overhead.

Assuming overhead has already been minimized, there is
virtually no way to do anything with the data validation
phase. If we expect to reduce processing delays, we can make
improvements only in the storage or retrieval phase.

MPE contains easily implemented techniques that allow us to
improve performance as perceived by the user. Improvement in
perceived performance will not reduce machine overhead and

may in fact increase it. In the final analysis, though,
increased machine overhead is meaningless so long as the
user, the authoritative judge of performance, sees

19-59

improvement.
TASK: Review processing delays.
PLAN: Evaluate data storage and retrieval delays. When

excessive, attempt to use MPE capabilities to reduce
or eliminate them.

GOAL: Improve perceived performance as measured by the user.

SPLIT ACCESS IN
DATA ENTRY
VGETBUFFER VGETBUFFER
VALIDATE VALIDATE

PUT AWAY >< VSHOWFORM
VSHOWFORM

PUT AWAY
VREADFIELDS VREADFIELDS

‘__'__J L

CAN REALLY IMPROVE USER

PERCEPTION OF PERFORMANCE

Figure 31

SPLIT ACCESS IN DATA ENTRY (Figure 31)

Performance as perceived by the user is or probably should be
our primary concern in transaction processing. This is most
critical in data entry applications where uniform response
helps set up a work rhythm.

19-60

Data entry may involve one or many screens per logical

transaction. Multi-screen transactions usually benefit from
hardware advances such as the ability to wuse screens
downloaded to the terminal. Single screen transaction

performance can be influenced by programming.

Screen data is usually validated and then stored on disc.
When the storage is in a data base the overhead for storage
may take much time. This time is usually the major contri-
butor to delays in processing functions in data entry.

V/3000 can be used to reduce the delays in data entry. Once
you have validated the screen and are certain that only a
catastrophic failure could keep you from storing the record,
you can return the screen to the user for entry of the next
record. While the user fills the next screen, you put away
your record. '

No data will be 1lost if the record is not stored before the

user hits the enter key or a soft key. These attempted
transmissions will be ignored until the program issues a
read. In all but a few special cases the validated record

will be stored well before the user has submitted the next
screen.

This technique will not reduce overhead or performance of
individual functions within the program. Responsiveness to
the user, however, will be improved. The degree of
improvement is proportionate to the amount of work being done
parallel to the next transaction think time. An additional
benefit is that response will become somewhat less dependant
upon overall system load.

PROCESS HANDLING IN DATA INQUIRY (Figure 32)

Application programs often have only the simple capability to

allow usér data inquiry. These programs must perform well
but wusers expect and usually tolerate reasonable response
delays. When the data inquiry is part of a larger function

those delays must be minimized.

1961

PROCESS HANDLING IN
DATA INQUIRY

VGETBUFFER VGETBUFFER

VALIDATE VALIDATE

GET RESPONSE TO SLAVE

NEW SCREEN NEW SCREEN GET

VPUTBUFFER VSHOWFORM RESPj)NSE

VSHOWFORM FROM SLAVE
VPUTBUFFER
VSHOYFORM

— Not with downloaded forms
-- Not with same form
-~ Increases overhead

— Not for trivial responses

Figure 32

Programs which update existing records have characteristics
of both data entry and inquiry. The inquiry part can be a
major performance bottleneck. This is quite common since
update programs often must retrieve multiple records even
though only one may actually be subject to change.

Additional delays are built into such programs if the
modifiable response must be displayed on a new screen. User
patience is severely tested in many applications because we
program serially

1. We read the request and validate its content. We hit the
screen fast 1f we find errors.

2. We are not so friendly with good input. The user must

19-62

wait for us to access our data bases to build a reply.
Their reward for good input 1is the chance to watch a
cursor blink.

3. We finally respond by sending out a new screen and allow
user modification.

4. We satisfy wuser function but we do it in slow, easy
steps.

Process handling can be used to make a program toth more
responsive and more friendly. We can perform critical time
consuming steps in parallel so that delays visitle to the
program can be invisible to the user.

1. We read requests and handle errors as usual.

2. For good input we immediately send a ‘"please retrieve
this data" message to a slave process we have created.
The slave was waiting patiently since its only job is to
retrieve records from data bases.

3. While the slave gathers records we paint the response
screen. This is a friendly act. Our response to good
input is probably only a fraction of a second slower than
a responsé to bad input.

4. The faster parallel function waits for the slower to
finish. We then retrieve the response buffer from the
slave and write it to the screen.

S. Except for a short time needed for process to process
communication we have reduced user delay to the delay
of the longer parallel process. Even more important,
we have become responsive to our users.

This technique is valuable because it improves performance
within a technologically limited environment. Changes in
technology could make it less valuable or even useless.
For example, this technique has no benefit when screens
have been downloaded to the terminal since that technology
has already eliminated screen painting delays.

19-63

We also would not use this technique for trivial responses
which take little time to prepare. Process handling
absorbs overheads and may not always be cost effective.

TASK: REVIEW V/3000
FORM PROCESSING

PLAN: RESEQUENCE FUNCTIONS
DEFER/DROP FUNCTIONS

GOAL: IMPROVE RESPONSE
REDUCE OVERHEAD

Figu;e 33

V/3000 FUNCTIONAL SEQUENCING (Figure 33)

Your application defines the V/3000 screens you and your
users create for the person to machine interface. Although
physical screen design may be c¢ritically important to per-
formance it is too broad a subject for this paper. We'll
have to assume you've already designed satisfactory screens.

After the screen has been filled, the programmer can begin to
manage the processing of the input. Application requirements
and V/3000 protocols must be satisfied but the programmer has

many options. Some of these options can greatly influence
performance.
Application requirements must be met. The programmer should

interpret these requirements, however, to see if they can be
resequenced more efficiently in the program. Resequencing
internal events often changes performance.

19-64

V/3000 protocols must also be satisfied. The V/3000 docu-
mentation defines a hierarchy among the V/3000 intrinsics and
among the functions performed for us by the V/3000 edits.
That hierarchy is also open to programmer interpretation. We
may be able to improve performance by changing our use of the
V/3000 intrinsics.

TASK: Review V/3000 form processing

PLAN: Resequence functions selectively, defer functions when
practical, drop functions where possible

GOAL: Improve performance within the program and as
perceived by the user.

SOFT KEYS AND SELECTIVE EDITING (Figure 34)

Dumb terminals and unsophisticated terminal I-O limit trans-
action processing. Intelligent terminals and more
sophisticated terminal I-O'interfaces remove many of these
limitations. We may also have to become more intelligent and
sophisticated to more fully utilize our better tools.

Soft keys were among the first improvements as terminals
began evolving from absolute dumb to somewhat smart. We take
them for granted and use them for standard functions such as
"exit" or ‘"refresh". Few of us are using them fully. This
paper cannot attempt to cover this topic but we can justify
looking at a frequently overlooked usage.

Many applications could flow more smoothly if soft keys could
be used to trigger processing functions and if screen
information could also be available for processing. A common
design technique is to require the user to hit the function
defining soft key and then hit "enter" to transmit the
buffer. This works but it is neither sophisticated nor
friendly.

V/3000 can work with the terminal to allow reading the screen

after a soft key. We can trigger this function, called auto-
read, any time we wish using a simple subprogram or any other

19-65

USE SOFT-KEYS

AND SELECTIVE EDITING

SOFT-KEYS NORMAL SEL EDITS
VSHOWFORM VSHOWFORM VSHOWFORM
VREADFIELDS VREADFIELDS VREADFIELDS
SOFT-KEY? — VFIELDEDITS VGETBUFFER
etc. VGETBUFFER TRANS-CODE?
TRANS-CODE? VFIELDEDITS
PROCESS VGETBUFFER
etc. PROCESS
Y etc. l

-- Combination of above can give
much smoother flow
-- Autoread after soft-keys

may be valuable

Figure 34

technique to set the autoread bit in the V/3000 common area.
Autoread can help make an application run more smoothly and
be more friendly. That qualifies as a performance
improvement .

Another facility we often ignore is the ability to edit data
selectively. V/3000 documentation implies that screen edits
must preceed program edits. This is a valid standard for

most cases but it may not fit comfortably into all
situations. Fortunately, the implied sequence 1is not
mandatory.

When we assume that all screen edits must be done before any
program edits we may be painting ourselves into a corner.

19-66

Why, for example, should we edit an order quantity when the
ordered item is an invalid product. A standard workaround is
to avoid V/3000 edits in favor of program edits. Like many
workarounds, it works but denies wus access to a useful
subsystem capability.

We can sometimes "have our cake and eat it too" if we become

more flexible. Consider the following sequence of events
that uses full V/3000 field edits but allows program
intervention at a critical point. This is only a simplified

example of sequence editing.
1. Read the screen normally using VSHOWFORM and VREADFIELDS

2. Don't edit the screen yet. Issue a call to VGETBUFFER so
you can check a critical field in your program

3. If the critical field fails a test, give the screen back
with an appropriate message

4. If the critical field is acceptable, go back to “normal®
processing. Issue calls to VFIELDEDITS, etc.

5. You have it made. You get program control at a critical
stage and you use V/3000 for less critical work.

DEFER OR DROP PROCESSING (Figure 35)

V/3000 gives us much power with little programming effort.
When used sensibly, V/3000 can be good for both the
programmer and the user. When used only from the programmers
point of view, V/3000 can be a nuisance to the user.

V/3000 gives us three standard processing phases. The
initialization phase is relatively little used and causes few
problems. We seldom use the edit and finish phases

absolutely wrong but we often cause excessive overhead and
user aggrevation.

Unless there is some special requirements in an application,
some edit functions should never be considered in the edit

19-67

DEFER/DROP PROCESSING

DROP AS FOUND DEFER

IN 7:204 ... IN 7:204 ... IN 7:204 ...

FINISH JUSTIFY RIGHT FINISH

JUSTIFY RIGHT FILL LEADING "0" JUSTIFY RIGHT
FILL LEADING "0"

ZERO FILL IT WORKS # WHY NOT WAIT?
NOT ALWAYS AVOID "JIGGLING"
NEEDED

Figure 35

phase. Whenever we justify or fill a field in an edit phase
statement we are performing a potentially wasted function.
Even more important, why should we run the risk of having to
rewrite a valid field just because we have altered its form?
Users object to excessive screen "jiggling".

We have done only part of our job when we isolate functions
within logical V/3000 phases. Whenever possible we should
avoid the finish phase until we fully accepted the screen.
We waste overhead and risk "jiggling" when we perform this
work prior to full screen acceptance.

Some functions can be dropped entirely. Until the machine or
operating system are changed, we do not have to fill leading
blanks with zeros in numeric fields. The machine treats
leading blanks as zeros and allows us to drop the fill
function if absolutely necessary for performance.

INTRINSICS AND LANGUAGES (Figure 36)

19-68

TASK: REVIEW USE OF
INTRINSICS & LANGUAGES

PLAN: UTILIZE GOOD POINTS
AVOID BAD POINTS

GOAL: IMPROVE PERFORMANCE
AVOID NON-PERFORMANCE

Figure 36

Most programmers prefer a particular language and are
proficient in it. In the average application the choice of
languages will not determine program performance. We cannot
guarantee that any one language is inherently better than
another in all possible applications.

We also know that the average application often requires
specific functions that may not be available in our language
of choice. If we work in a multi-lingual shop we may be able
to have a special subprogram written in a language that
supplies that function. If our shop is single language we
either avoid special functions or devise emulation techniques
of some sort.

MPE assists all of wus by providing intrinsics for many
special functions. Many functions not built into a compiler
may be available through an intrinsic. This can simplify our
programming and make our jobs much easier.

Somehow we will find ways to get our programs running. All
too often we immediately have to find a way to get them
running more efficiently. Part of that may require a revalu-
ation of how we have used our languages and the intrinsics.

19-69

TASK: Reviews use of languages and intrinsics
PLAN: Use strengths of each and try to avoid weaknesses

GOAL: Improve performance. Of utmost importance, avoid
non-performance.

INTRINSICS

PROVIDE: CAPABILITIES
CONVENIENCE
UNIFORMITY

NOT ALWAYS: MOST SPEED
MOST EFFICIENCY

FOR SIMILAR UTILITARIAN
FUNCTIONS, COMPILER
ROUTINES USUALLY
BEAT INTRINSICS

Figure 37

INTRINSICS (Figure 37)

Intrinsics are powerful generalized routines provided with
MPE . Some allow limited access to highly specialized
functions and others give standardized access to common
utility functions.

Intrinsics offer the only access to many functions not
available unless you program at the machine instruction level
and execute in privileged mode. Access to I-0, for example,
is only available through the intrinsics. Compiler library
modules invoked by the compilers eventually call intrinsics

19-70

for all file access.

All ‘"“special capabilities" are available only through the
intrinsics. Process handling and data management are invoked
using a relatively small subset of the intrinsics. Program-
matic communication between computers is handled in similar
fashion.

Intrinsics also provide convenient access to many utilitarian
functions. Binary to Ascii and Ascii to Binary conversions
are common examples. Serial table searches and character
transformations are also available.

Specific parameter format and sequence requirements guarantee
uniformity. Except for individual compiler conventions and
limitations, once you learn to use an intrinsic in one
language you should be able to use it in all languages.

SPL comes closest to accessing intrinsics in strict
conformance with their documentation. All other languages
provide higher level interfaces to one degree or another.

Intrinsics are carefully coded and function efficiently.
They are also highly generalized. This generalization leads
to relatively high internal overhead. The intrinsic may
expend a good portion of its efforts isolating the particular
subfunction it is being asked to perform.

Intrinsics will generally be marginally more efficient for
file manipulation than the corresponding compiler modules.
The difference is slight and seldom justifies the required
attention to minute detail. This generalization is meaning-
less when we wuse the intrinsics to reach capabilities not
available within a particular language.

Compiler routines usually handle discrete data manipulations
more efficiently than would the corresponding intrinsic.
Even when the compiler routine internally invokes an
intrinsic it will not be meaningfully degraded.

Arithmetic functions are particularly well handled by
compiler routines. Many of these routines generate highly

19-71

efficient machine code. The COBOL compiler wuses packed
decimal instructions extensively and is surprisingly
efficient in handling numeric data.

LANGUAGES

FORTRAN: --IF MOST FAMILIAR
-- ACCESS TO FLOATING POINT
-- MASSIVE BINARY DATA
-- MACRO AVAILABILITIES

-— ACCESS TO MACHINE INSTRUCT
-- BIT/BYTE/WORD MANIPULATIONS

— ASCII NUMERIC DATA
-- PACKED DECIMAL DATA
-- FILE/RECORD/FIELD HANDLING

Figure 38

LANGUAGES (Figure 38)
No language is perfect. Each has its special strengths and
weaknesses. A language should be evaluated according to how

it fits into the application environment.

FORTRAN is an established language with many strong
supporters. Programmers either love it or hate it. Either
way, there are times when it should probably be your language
of choice.

1. If FORTRAN is most familiar to you, why not use it? Most
of us wusually produce better work when we work with a
known quantity.

2. FORTRAN offers excellent high-level access to floating

19-72

SPL
is

point arithmetic. This is a major strength of FORTRAN
and often wvirtually necessitates its use. FORTRAN is
often used to write subprograms accessible from other
languages.

FORTRAN works very close to the machine when doing binary
arithmetic. Massive calculations with binary data often
justify FORTRAN for performance reasons.

FORTRAN includes many high-level macro constructs. These
may make FORTRAN more useful than other languages.

Unfortunately, FORTRAN performs poorly with Ascii numeric
data and in its current implementation cannot handle
packed decimal numerics. Since these data formats are
used extensively in commercial applications, FORTRAN is
usually a poor choice there.

is the lowest level language on the HP3000. As such, it
potentially the most efficient. It is also relatively

tedious compared to most high-level languages.

1.

Although SPL is potentially more efficient than any other
languages it will probably not improve performance enough
to justify wholesale use in commercial applications.
Higher level languages are simply better suited for
general purpose use.

SPL usually fits in best when used for writing
specialized subprograms. Some functions are simply not
handled well by high-level languages.

Machine instructions can be reached in SPL. This is
particularly valuable for string and bit manipulations.

SPL is most suited for work with low level data. It
works especially well at the word level and below. SPL
handles records and fields well but the source code tends
to become cumbersome and difficult to maintain in large
programs.

COBOL is the most widely used high-level commercial language.

19-73

Most programmers hate COBOL, some grudingly accept it, and
almost none will publicly admit a preference for it. For all
its faults it remains the language of choice in most shops.

1. COBOL has a reputation as an inefficient language. COBOL
is definitely not the most efficient language but its
wide use implies acceptable performance. There is little
question that it is highly effective.

2. COBOL is quite efficient in handling numeric Ascii data.
Ascii numeric functions are performed using packed
decimal arithmetic. Conversions between Ascii and packed
decimal data are done efficiently by native machine
instructions.

3. Packed decimal data is a standard data format in COBOL
under MPE. The ability to deal with packed numerics is a
definite advantage for conversions or interfaces with the
best known Brand-X computer.

4. COBOL 1is a high-level language designed to be effective
with high-level data. It is most powerful when used to
process files, records within files, and fields within
records. This is probably the main reason for its wide
acceptance.

19-74

SECTION 3 MIXED BAG

NITS (USUALLY)

WHY: -- Retest functions in subprograms?

—- Pass long/short parameter lists?
-- Nibble at extra data segments?
-- Use absolute values?

— Use abnormal data formats?

- Parse in COBOL or FORTRAN?
-- Initialize tables with loops?

-- Waste stack flagrantly?

-- Save most of nothing?

Figure 39

NITS (USUALLY) (Figure 39)

We concern ourselves too much with minor programming
considerations. They wusually influence performance only
slightly. That is not justification, however, for us to code
inefficiently.

1. Unless we are writing highly generalized subprograms we
probably waste overhead retesting functions. We know why
we c¢all a subprogram. In most cases we would be more
officient by writing subprograms with multiple entry
points. This avoids retesting to identify our request
and also results in more readable programs.

2. Many words have been written about the effect of

19-75

parameter lists on subprogram efficiency. Long parameter
lists are less efficient than short ones. On the other
hand, artifically short lists are eventually less
efficient if we waste CPU power loading and unloading
common control areas. How we enter a subprogram is
probably meaningless unless we are doing very little work
within the subprogram.

Extra data segements have many uses. They can be used
quite efficiently but not without added overhead.
Whenever data must be moved to or from an extra data
segment we should move as much as practical per access.
Moving a single word twice costs about the same as moving
over 1000 words once.

Absolute numeric values are often needed. They cause
extra overhead, however, when used in calculations,
especially when the result of the calculation is an
absolute value. Absolute values force the compiler to
generate extra code to guarantee proper results.

Packed decimal data has a natural format containing an
odd number of numeric digits, each taking up one 4 bit
nibble. These plus a 4 bit numeric sign fills complete
bytes. If you specify an even number of decimal digits
for packed data you force the compiler to do extra work
controlling the low order nibble.

Character strings are best parsed by specialized routines
which utilize special machine instructions. These
routines may be designed directly into a compiler or are
easily written in SPL. Complex byte manipulations and
loop constructs written in highlevel languages are
inefficient and should be avoided in most cases.

Tables are often initialized using a program loop which

19-76

indexes through the table depositing values along the
way. This is relatively inefficient and cumbersome. You
can save overhead by filling only the first entry and
then performing an overlapping move into the rest of the
table.

8. Stack space is valuable and should be used with care.
Program-directed literals save the stack area needed for
valued data elements. But programmers often value
documentation over stack. Even so, using a 132 character
data element full of spaces to clear a print record is
intolerable flagrant waste.

9. Programmers should be efficient but they have to be

reasonable first. There is no way we can justify spend-
ing time optimizing a small inefficiency when the same
effort could be more productive elsewhere. Inefficient

coding 1in insignificant routines does not make
inefficient programs.

DON'T .. BUT ...

DON'T Believe everything
BUT Believe something

DON’T Challenge everything
BUT Challenge something

DON'T Optimize everything
BUT Optimize something

DON'T Quantify everything
BUT Quantify something

Figure 40

DON'T ... BUT ... (Figure 40)
19-77

What was impossible or ridiculous in the past may be standard
practice today. What is absolutely true today will quite
often be made false by the technology of tomorrow. There are
no absolutes but there may be some valuable guidelines.

I'm a programmer, not a philosopher. In Figure 40, I put
some comments that have a certain meaning to me. I think
they will be more meaningful to you if you supply your own
interpretations and meanings.

Good luck and good programming.

19-78

SECTION 4 SAMPLE SOURCE LISTINGS

X XKKKAIORKRRAR KRR KKK KKK KKK KKK KK KKK KKK KO R kKK kK

X THIS IS THE MASTER PROGRAM USED AS A DRIVER TO SHOW THE
X TECHNIQUES OF HAVING SORTS EXECUTE IN A SLAVE PROGRAM
* THIS PROGRAM COULD HAVE DRIVEN MULTIPLE SLAVE SORT

¥+ PROGRAMS AT THE SAME TIME IF I WANTED TO TAKE UP THAT

¥ MUCH CODE SPACE IN THE HANDOUT
¥ kKoK KKK KKK KKK IR KKK KR Kok Kk oicckoloiokokk ok Kook kK

$CONTROL USLINIT
IDENTIFICATION DIVISION.

X DRIVER TO TEST PROGRAM SORTS!
PROGRAM-ID. FREPSRSS.
ENVIRONMENT DIVISION.

CONF IGURATION SECTION.
SOURCE-COMPUTER. X.
OBJECT-COMPUTER. Y.
SPECTAL-NAMES.

CONDITION-CODE IS COND-CODE .
INPUT-OUTPUT SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 UNBLOCKER PIC S9999 COMP .
01 SAVED PIC S9999 COMP.
01 PROG PIC X(10) VALUE "SORTSIR".
01 PIN PIC S9999 COMP.
01 BFACT PIC S9999 COMP VALUE 13.
01 DSEG-IND PIC S9999 COMP.
01 DSEG-ID PIC S9999 COMP VALUE 43.
01 DSEG-LEN PIC S9999 COMP VALUE 79.
01 REC-AREA.

05 CURR-COUNT PIC S9999 COMP VALUE 0.

05 EACH-REC PIC X(12) OCCURS 13 TIMES.
01 DATA-REC.

05 SEND-COUNT PIC 999 VALUE 5S.

05 SEND-PROC PIC 9(9).

PROCEDURE DIVISION.

19-79

START-ITS SECTION.
START-IT.
CALL INTRINSIC “GETDSEG" USING
DSEG-IND DSEG-LEN DSEG-ID
IF COND-CODE < O
CALL INTRINSIC "QUIT" USING 101

CALL INTRINSIC “CREATE®" USING
PROG \\ PIN
IF COND-CODE NOT = 0
CALL INTRINSIC "QUIT" USING 201

PERFORM SEND-EMS UNTIL
SEND-COUNT < 1

MOVE -1 TO CURR-COUNT

PERFORM ACTUAL-SENDS

MOVE 0 TO CURR-COUNT

PERFORM GET-EMS UNTIL
CURR-COUNT = -1

DISPLAY “THAT'S ALL, FOLKS"

STOP RUN

GET-EMS SECTION.
GET-EM.
CALL INTRINSIC "DMOVIN" USING
DSEG-IND O 79 REC-AREA
IF COND-CODE NOT =-0
CALL INTRINSIC *"QUIT" USING 204

MOVE 1 TO UNBLOCKER
PERFORM DOITS UNTIL
UNBLOCKER > CURR-COUNT
IF CURR-COUNT NOT = -1
CALL INTRINSIC *"ACTIVATE" USING
PIN 3
IF COND-CODE NOT = O

19-80

CALL INTRINSIC *QUIT" USING 205

DOITS SECTION.

DOIT.
DISPLAY "FROM SORT " EACH-REC(UNBLOCKER)

ADD 1 TO UNBLOCKER

SEND-EMS SECTION.
SEND-EM.
MOVE 0 TO CURR-COUNT
PERFORM LOAD-BUFFERS UNTIL
CURR-COUNT = BFACT OR SEND-COUNT < 1
PERFORM ACTUAL-SENDS

ACTUAL-SENDS SECTION.
ACTUAL-SEND.
CALL INTRINSIC "DMOVOUT" USING
DSEG-IND 0 79 REC-AREA
IF COND-CODE NOT = O
CALL INTRINSIC "QUIT" USING 303

éALL INTRINSIC “ACTIVATE"™ USING PIN 3
IF COND-CODE NOT = O
CALL INTRINSIC "QUIT* USING 304

ﬁOVE 0 TO CURR-COUNT

LOAD-BUFFERS SECTION.
LOAD-BUFFER.
SUBTRACT 1 FROM SEND-COUNT
CALL INTRINSIC “PROCTIME" GIVING SEND-PROC
IF YOU RUN THIS TEST VERSION, DON'T ASSUME COBOL IS
SLOW JUST BECAUSE THE CPU TIME SHOWS 4-5 MILLISECOND
BETWEEN RECORDS. THAT TIME PRIMARILY REPRESENTS
THE CPU TIME NEEDED TO DO THE DISPLAY STATEMENT
ADD 1 TO CURR-COUNT
MOVE DATA-REC TO EACH-REC(CURR-COUNT)
DISPLAY *TO SORT * DATA-REC

I ¥ I

X RRIRKAKRKAKKIOK KRR KK KK KKK KK RK K IOR KA R KKK KIOR KKK KKK K KK KKK
X RKKKKAIKARKKKAKKK KKK KRR IR KRR AN IOKKAIK KKK KKK KKK KRR KKKK KKK KK

19-81

X kkkkkkinichkiciok ook kR okk koo koK
X THIS IS A SAMPLE OF A SLAVE SORT PROGRAM CONTROLLED BY
X PROCESS HANDLING TO ALLOW SORTING OF RECORDS OUTSIDE
X THE MASTER PROGRAM

X MULTIPLE SUCH PROGRAMS CAN BE CONTROLLED AT THE SAME

X TIME BY THE MASTER
X koo ook kokckoookRk ok ko ok ook
$CONTROL USLINIT

IDENTIFICATION DIVISION.
X KEPT AS SORTSIS, PROGRAM KEPT AS SORTSIR
X RECEIVES RECORDS FROM SORTMASR
X SORTS
X RETURNS SORTED RECORDS TO SORTMASR

PROGRAM-ID. FREPSRTS.

ENVIRONMENT DIVISION.

CONF IGURATION SECTION.

SOURCE -COMPUTER . 'X.

OBJECT-COMPUTER. Y.

SPECIAL-NAMES.

CONDITION-CODE IS COND-CODE.
INPUT-OUTPUT SECTION.
FILE-CONTROL .
SELECT SORTFILE ASSIGN TO "TEMPSORT,,,,100".
DATA DIVISION.
FILE SECTION.

SD SORTFILE.
01 SORTREC.
05 KEY1 PIC 999.
05 FILLER PIC X(7).
05 KEY2 PIC 99.
WORKING-STORAGE SECTION.
01 SORT-FLAG PIC XX VALUE LOW-VALUES.
01 TO-WAIT PIC S9999 COMP VALUE 3.
01 BFACT PIC S9999 COMP VALUE 13.
01 DSEG-IND PIC S9999 COMP.
01 DSEG-ID PIC S9993 COMP VALUE 43.
01 DSEG-LEN PIC S9999 COMP VALUE 79.
01 REC-AREA.
05 CURR-COUNT PIC 59999 COMP VALUE 0.
05 EACH-REC PIC X(12) OCCURS 13 TIMES.

PROCEDURE DIVISION.
START-ITS SECTION.

19-82

START-IT.
CALL INTRINSIC "GETDSEG" USING
DSEG-IND DSEG-LEN DSEG-ID
IF COND-CODE < 0
CALL INTRINSIC "QUIT" USING 101

SORT SORTFILE
ASCENDING KEY KEY2
DESCENDING KEY KEY1
INPUT PROCEDURE GET-INS
OUTPUT PROCEDURE SEND-BACKS
STOP RUN

SEND-BACKS SECTION.

SEND-BACK.
MOVE LOW-VALUES TO SORT-FLAG
MOVE 0 TO CURR-COUNT
PERFORM GET-AND-SENDS UNTIL

SORT-FLAG = HIGH-VALUES

PERFORM SEND-DATAS
MOVE 0 TO TO-WAIT
MOVE -1 TO CURR-COUNT
PERFORM SEND-DATAS

SEND-DATAS SECTION.
SENDING.
CALL INTRINSIC "DMOVOUT" USING
DSEG-IND 0 79 REC-AREA
IF COND-CODE NOT = 0
CALL INTRINSIC "QUIT" USING 102

CALL INTRINSIC "ACTIVATE" USING 0 TO-WAIT
IF COND-CODE NOT = 0
CALL INTRINSIC "QUIT™ USING 103

MOVE 0 TO CURR-COUNT
GET-AND-SENDS SECTION.
GET-AND-SEND.

IF CURR-COUNT NOT < BFACT
PERFORM SEND-DATAS

19-83

RETURN SORTFILE AT END
MOVE HIGH-VALUES TO SORT-FLAG

IF SORT-FLAG NOT = HIGH-VALUES
ADD 1 TO CURR-COUNT
DISPLAY “FROM SORT IN SORTSIR " SORTREC
MOVE SORTREC TO EACH-REC(CURR-COUNT)

GET-INS SECTION.
GET-IN.
PERFORM GET-IN-LOOPS UNTIL
CURR-COUNT = -1

GET-IN-LOOPS SECTION.
GET-IN-LOOP.
CALL INTRINSIC "DMOVIN" USING
DSEG-IND 0 79 REC-AREA
IF COND-CODE NOT = 0
CALL INTRINSIC "QUIT" USING 111
STOP RUN

PERFORM UNLOAD-EMS UNTIL
CURR-COUNT < 1
IF CURR-COUNT NOT = -1
CALL INTRINSIC "ACTIVATE" USING 0 TO-WAIT
IF COND-CODE NOT = 0
CALL INTRINSIC "QUIT" USING 105

UNLOAD-EMS SECTION.

UNLOAD-EM.
RELEASE SORTREC FROM EACH-REC(CURR-COUNT)
DISPLAY "TO SORT IN SORTSIR " EACH-REC(CURR-COUNT)
SUBTRACT 1 FROM CURR-COUNT

X kkkkkkckkkkkkkokkokkkkkkkokkkkkokkokkkkkkkokkkkokokkokkkkkkkokkkkkkk
X kkkokkdokokokkRRRKKK KK KK AKKAK KKK K KKK KK KKK KKK KKK KKK KKK KK KKK KKK K

X XKKKKKKRRKKRKIOKRRAKKKKAK KKK KKK KRKKKK KRR KK RRA K KKK KKK KKK
X THIS IS A DRIVER FOR A SHORT TEST RUN SHOWING SOME OF

X THE COMPARISONS BETWEEN COBOL AND FORTRAN PERFORMANCE

% IT PASSES ASCII NUMERICS TO A COBOL SUBPROGRAM AND A

19-84

FORTRAN SUBPROGRAM

IT COLLECTS PROCTIMES FOR 1000 CALLS TO THESE SUBPROGRAMS
THE SUBPROGRAMS EACH ADD 100 6 DIGIT ASCII NUMBERS

TO A COUNTER AND THEN RETURN
THE TIMES ARE REPRESENTATIVE BUT ARE SLIGHTLY LONG

SINCE I HAVE NOT BACKED OUT THE TIME FOR THE LOOP
CONTROLLING THE 1000 CALLS. THAT TIME IS SMALL
WHEN THIS WAS TESTED ON A SERIES III IN DECEMBER OF

1981, THE RESULTS WERE AS FOLLOWS:

COBOL TOOK 16635 CPU MILLISECONDS

FORTRAN TOOK 76217 CPU MILLISECONDS
xkkkkckkkkkkkkkokkkkkdokkkkokkkkokkkiokiokkkkkokkokkokkkokdokkkkokkkk

I} I K I K I K I H K K

$CONTROL SOURCE ,USLINIT
IDENTIFICATION DIVISION.
* KEPT AS FORCOBDA
PROGRAM-ID. TESTFORD.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 STAMPS PIC S9(9) COMP.
01 STAMPE PIC S9(9) COMP.
01 STAMPD PIC 9(6).

01 THE-SUM PIC 9(8).

01 THE-SUMD PIC 9(8).

01 THE-COUNT PIC 999 VALUE 0.
01 THE-TABLE.

05 THE-NUM PIC 9(6) OCCURS 100 TIMES

INDEXED BY THE-IND.
PROCEDURE DIVISION.
START-0UT.
DISPLAY "COMPARISON USING 100 6 DIGIT ASCII ENTRIES"
PERFORM LOAD-EM VARYING THE-IND FROM 1 BY 1
UNTIL THE-IND > 100
CALL "COBADD" USING THE-TABLE THE-SUM
MOVE THE-SUM TO THE-SUMD
DISPLAY "FROM COBOLII, SUM = " THE-SUMD
CALL "FORADD" USING @THE-TABLE @THE-SUM
MOVE THE-SUM TO THE-SUMD
DISPLAY "FROM FORTRAN, SUM = " THE-SUMD
CALL INTRINSIC "PROCTIME" GIVING STAMPS
PERFORM COB-SHOT 1000 TIMES

19-85

CALL INTRINSIC "PROCTIME" GIVING STAMPE

COMPUTE STAMPD = STAMPE - STAMPS

DISPLAY "1000 CALLS TO COBOLII SUMMATION SUBPROGRAM " STA
CALL INTRINSIC "PROCTIME" GIVING STAMPS

PERFORM FOR-SHOT 1000 TIMES

CALL INTRINSIC "PROCTIME" GIVING STAMPE

COMPUTE STAMPD = STAMPE - STAMPS

DISPLAY "1000 CALLS TO FORTRAN SUMMATION SUBPROGRAM " STA
STOP RUN

LOAD-EM.
ADD 5 TO THE-COUNT
MOVE THE-COUNT TO THE-NUM(THE-IND)

COB-SHOT.
CALL "COBADD" USING THE-TABLE THE-SUM

FOR*SHOT.
CALL "FORADD" USING @THE-TABLE @THE-SUM

Xkkkkookkkdokkokkokkokkkkkkkok kKKK ROk KK KKK KK KIOKK KKKk KK
xkkxkkRkkkkkRkkKRkKkIKKk kKKK kKKK kKKK KoKk Kk kkkkkkdokkkkdkok

* ¢

X XdkkkkiokkiokokkkIokKKKKK KRR KR KR KRR KRR KKK KKK KKKk kK
* THIS IS THE COBOL SUBPROGRAM MENTIONED IN THE PRECEEDING
% COBOL MAIN PROGRAM. IT IS AN ASCII NUMBER CRUNCHER
X kkxkkkkkkkkkRkkkkkokkkokok koo koo koRkkok kR kokkk
$CONTROL SOURCE , SUBPROGRAM

IDENTIFICATION DIVISION.
% KEPT AS ADDCOBSA

PROGRAM-ID. COBADD.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 THE-COUNT PIC S9(9) COMP-3.

LINKAGE SECTION.

01 THE-TABLE.

05 THE-NUM PIC 9(6) OCCURS 100 TIMES
INDEXED BY THE-IND.
01 THE-SUM PIC 9(8).

19-86

PROCEDURE DIVISION USING THE-TABLE THE-SUM.
START-0UT.
MOVE 0 TO THE-COUNT
PERFORM ADD-EM VARYING THE-IND FROM 1 BY 1
UNTIL THE-IND > 100
MOVE THE-COUNT TO THE-SUM
GOBACK

ADD-EM.
ADD THE-NUM(THE-IND) TO THE-COUNT

X kdokkokkokekkokkokokkksokkkkokkkkokkkxekokkekiokkkkkdekkokkkkkkdkokkokokkkokkok
X kkkkiokikekiorkkokkkkokkkkokkkkkokkokkkk ok kkiokkokkkkokkkokokkkokkkok

C XKKKKAKKIOKI KA KK KKK R KK KK KKK K AOK AR AR AOKK KK AOK I OK K K K KKKk K KKk KKK
C THIS IS THE FORTRAN SUBPROGRAM MENTIONED IN THE
C PRECEEDING COBOL MAIN PROGRAM
C XKKEKAKEKAKKAKAKIKAKKIKK KKK KKK KK KA KKK KKK KK KK RAKKAK KKK KK AR K KKK
o
$CONTROL LIST,MAP,LOCATION, STAT
SUBROUTINE FORADD(INMAT, SUM)
CHARACTER*6 INMAT{(100)
CHARACTERX8 SUM
INTEGER*4 OUTPUT
OUTPUT = 0
DO 60 I=1,100
60 OUTPUT = QUTPUT + JNUM(INMAT(I))
SUM = STR(OUTPUT,8)
RETURN
END

Jkkkkxkdokkckkkkkkokkiciokk ko koiokkokokokokokkkkokkokk ko kkekekokkk
KRR KRRk KRk okkokkkkok koo ok ok kokk Kok K

*

ok kkokkkokkokok kKR KKKk KoKk KK
THIS IS A DRIVER FOR A SHORT TEST RUN SHOWING SOME OF

THE COMPARISONS BETWEEN COBOL AND FORTRAN PERFORMANCE

IT PASSES BINARY DOUBLE WORDS TO A COBOL SUBPROGRAM

AND A FORTRAN SUBPROGRAM

IT COLLECTS PROCTIMES FOR 1000 CALLS TO THESE SUBPROGRAMS

K I H H K N

19-87

X THE SUBPROGRAMS EACH ADD 100 BINARY DOUBLE WORDS
X TO A COUNTER AND THEN RETURN
¥ THE TIMES ARE REPRESENTATIVE BUT ARE SLIGHTLY LONG
¥ SINCE I HAVE NOT BACKED OUT THE TIME FOR THE LOOP
X CONTROLLING THE 1000 CALLS. THAT TIME IS SMALL
* WHEN THIS WAS TESTED ON A SERIES III IN DECEMBER OF
X 1981, THE RESULTS WERE AS FOLLOWS:
* COBOL TOOK 9942 CPU MILLISECONDS
X FORTRAN TOOK 2499 CPU MILLISECONDS
X koo ek KKK oK KKKk KKKk KoKk KoKk
$CONTROL SOURCE ,USLINIT

IDENTIFICATION DIVISION.
* KEPT AS TESTFORD

PROGRAM-ID. FORCOBDB.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 STAMPS PIC S9(9) COMP.
01 STAMPE PIC S9(9) COMP.
01 STAMPD PIC 9(6).

01 THE-SUM PIC S9(9) COMP.
01 THE-SUMD PIC 9(8).

01 THE-COUNT PIC 999 VALUE 0.
01 THE-TABLE.

05 THE-NUM PIC S9(9) COMP OCCURS 100 TIMES

INDEXED BY THE-IND.
PROCEDURE DIVISION.
START-0UT.
DISPLAY "COMPARISON USING 100 DOUBLE ENTRIES"
PERFORM LOAD-EM VARYING THE-IND FROM 1 BY 1
UNTIL THE-IND > 100
CALL "COBADD" USING THE-TABLE THE-SUM
MOVE THE-SUM TO THE-SUMD
DISPLAY "FROM COBOLII, SUM = " THE-SUMD
CALL "FORADD" USING THE-TABLE THE-SUM
MOVE THE-SUM TO THE-SUMD
DISPLAY “FROM FORTRAN, SUM = " THE-SUMD
CALL INTRINSIC "PROCTIME" GIVING STAMPS
PERFORM COB-SHOT 1000 TIMES
CALL INTRINSIC "PROCTIME" GIVING STAMPE
COMPUTE STAMPD = STAMPE - STAMPS
DISPLAY "1000 CALLS TO COBOLII SUMMATION SUBPROGRAM * STA

19-88

CALL INTRINSIC "PROCTIME" GIVING STAMPS

PERFORM FOR-SHOT 1000 TIMES

CALL INTRINSIC "PROCTIME" GIVING STAMPE

COMPUTE STAMPD = STAMPE - STAMPS

DISPLAY "1000 CALLS TO FORTRAN SUMMATION SUBPROGRAM " STA
STOP RUN

LOAD-EM.
ADD 5 TO THE-COUNT
MOVE THE-COUNT TO THE-NUM(THE-IND)

COB-SHOT.
CALL "COBADD" USING THE-TABLE THE-SUM

FOR-SHOT .
CALL "FORADD" USING THE-TABLE THE-SUM

X kckckkokkkookkerkokkkkkkkkokIok Rk KRk kKR Kk kokkkokdokkkokkokkckkokok
X RRKKKKKKKAKRRKAKAKKR KKK KRR IKKK KK KA KR RAKK KKK KK KKK KKK KK KKK KK

XkkkRkkkkkRkkRokkkkekkkokokkkokkckck koK Kook Rk kKRR Kokkkkekk
THIS IS THE COBOL SUBPROGRAM MENTIONED IN THE

X

%

X PRECEEDING COBOL MAIN PROGRAM

¥ KKKRRRKKRRRKKKKRRKKRR KKK KRR RKOKR KKK KKK KKK KRR KKKk

$CONTROL SOURCE, SUBPROGRAM
IDENTIFICATION DIVISION.
% KEPT AS ADDCOBSB
PROGRAM-ID. COBADD.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 THE-COUNT PIC S9(9) COMP.
LINKAGE SECTION.
01 THE-TABLE.
05 THE-NUM PIC S9(9) COMP OCCURS 100 TIMES
INDEXED BY THE-IND.
01 THE-SUM PIC S9(9) COMP.
PROCEDURE DIVISION USING THE-TABLE THE-SUM.
START-0UT.
MOVE 0 TO THE-COUNT

19-89

PERFORM ADD-EM VARYING THE-IND FROM 1 BY 1
UNTIL THE-IND > 100

MOVE THE-COUNT TO THE-SUM

GOBACK

ADD-EM.
ADD THE-NUM(THE-IND) TO THE-COUNT

X kkdokkokkkkkdokekkkkkokkokkIokkkKkkkkkk oKk KKKk KKKk KoKk kK kKR koK K
X XHRKIRKKARRIARKIAAKIKAKIRAKAKK I AR AKIRAKKKAKIRAAK KK KARIRAKIKAKAKK

C Xxkkkxckiikikokkiokkiokkkiokiokkkkikkkkkkokkkokokkkokkokkkokkkokkokkk
C THIS IS THE FORTRAN SUBPROGRAM MENTIONED

C IN THE PRECEEDING COBOL MAIN PROGRAM
C Xkkxicokkokkkkkkokkkkkokkokkkkiokkkdokkkokkkokkkiokkkkkkk kKKK kK

$CONTROL LIST,MAP,LOCATION, STAT

SUBROUTINE FORADD (INMAT, SUM)
INTEGER*4 INMAT(100)
INTEGER*4 SUM
INTEGER*4 OUTPUT
OUTPUT = 0
DO 60 I=1,100

60 OUTPUT = OUTPUT + (INMAT(I))
SUM = (OUTPUT)
RETURN
END

Jokxokxkokk kK kKKK KKKk Kk kkkkokdokkkokokdokdokdokdokdkkokokkkkkkokokkekkkkk
XRKRKKKKRKKERRARRKKARKKRKKKRRRKKRKKKKRRKKKIKKRKKKKAKAKK KKK KK

*

XRRRRRRRRRRORKIORRK KKK K RKRARRRKRRKKKKRKRRKRRRRR KKK KK KKK
THIS IS A DRIVER FOR A SHORT TEST RUN SHOWING SOME OF

THE COMPARISONS BETWEEN COBOL AND FORTRAN PERFORMANCE

IT PASSES BINARY DOUBLE WORDS TO A COBOL SUBPROGRAM

AND A FORTRAN SUBPROGRAM

IT COLLECTS PROCTIMES FOR 1000 CALLS TO THESE SUBPROGRAMS
THE SUBPROGRAMS EACH ADD 100 BINARY DOUBLE WORDS

TO A COUNTER AND THEN RETURN

THE TIMES ARE REPRESENTATIVE BUT ARE SLIGHTLY LONG

19-90

I} I K I I K H K K

I I K K ¥ F ¥ ¥ X

X

SINCE I HAVE NOT BACKED OUT THE TIME FOR THE LOOP
CONTROLLING THE 1000 CALLS. THAT TIME IS SMALL

THE FORTRAN SUBPROGRAM WAS THE SAME AS THE ONE USED

IN THE PRECEEDING TEST

I CHANGED THE COBOL SUBPROGRAM TO SHOW HOW COBOL

COULD BE SPEEDED UP USING DIFFERENT CODING

WHEN THIS WAS TESTED ON A SERIES III IN DECEMBER OF

1981, THE RESULTS WERE AS FOLLOWS:
COBOL TOOK 6527 CPU MILLISECONDS
FORTRAN TOOK 2482 CPU MILLISECONDS

X xxpkkkkkokkkkokk koo kKR kkIckokkkookkoRKIk kKKK KK
$CONTROL SOURCE ,USLINIT

IDENTIFICATION DIVISION.
% KEPT AS TESTFORD

PROGRAM-ID. FORCOBDB.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01
01
01
01
01
01
01

STAMPS PIC S9(9) COMP.

STAMPE PIC S9(9) COMP.

STAMPD PIC 9(6).

THE-SUM PIC S9(9) COMP.

THE-SUMD PIC 9(8).

THE-COUNT PIC 999 VALUE 0.

THE-TABLE.

05 THE-NUM PIC S9(9) COMP OCCURS 100 TIMES

INDEXED BY THE-IND.

PROCEDURE DIVISION.
START-0UT.

DISPLAY "COMPARISON USING 100 DOUBLE ENTRIES"

PERFORM LOAD-EM VARYING THE-IND FROM 1 BY 1
UNTIL THE-IND > 100

CALL "COBADD" USING THE-TABLE THE-SUM

MOVE THE-SUM TO THE-SUMD

DISPLAY "FROM COBOLII, SUM = " THE-SUMD

CALL "FORADD" USING THE-TABLE THE-SUM

MOVE THE-SUM TO THE-SUMD

DISPLAY "FROM FORTRAN, SUM = " THE-SUMD

CALL INTRINSIC "PROCTIME" GIVING STAMPS

PERFORM COB-SHOT 1000 TIMES

CALL INTRINSIC "PROCTIME" GIVING STAMPE

COMPUTE STAMPD = STAMPE - STAMPS

19-91

DISPLAY "1000 CALLS TO COBOLII SUMMATION SUBPROGRAM * STA
CALL INTRINSIC "PROCTIME" GIVING STAMPS

PERFORM FOR-SHOT 1000 TIMES

CALL INTRINSIC "“PROCTIME" GIVING STAMPE

COMPUTE STAMPD = STAMPE - STAMPS

DISPLAY “1000 CALLS TO FORTRAN SUMMATION SUBPROGRAM * STA
STOP RUN

LOAD-EM.
ADD 5 TO THE-COUNT
MOVE THE-COUNT TO THE-NUM(THE-IND)

COB-SHOT.
CALL "COBADD" USING THE-TABLE THE-SUM

FOR-éHOT.
CALL "FORADD" USING THE-TABLE THE-SUM

KAKKACKRKACK KKK AR KKK KKK K AR AR KK KK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK
AKAKAKKAKAKKKAKKAKKAKAK KKK A KK AKK KKK KKK AOKAKAOK KKK AKKAK KA KKK KK KKK KKK

3¢ ¢

XKKAKAK KKK AR KKK KKK KKK KKK KKK KR AKAK KK KK KK KAKKAKK KKK AR KKK
THIS IS THE IMPROVED COBOL SUBROUTINE MENTIONED IN THE
PREVIOUS COBOL MAIN PROGRAM. IT SHOWS THAT A PROGRAM
CODED LOOP CONTROL CAN BE MORE EFFICIENT THAN A

COMPILER CONTROLLED LOOP IN SOME CASES
UNLESS HARD PRESSED FOR PERFORMANCE, I WOULD NOT

USUALLY PREFER MY OWN LOOP CONTROL
Jokkkkokkkkkkkkkkokkkk kKKK KKKk KKK KKKk K KKKk Kk Kok kK

I I MW H WK H

$CONTROL SOURCE, SUBPROGRAM

IDENTIFICATION DIVISION.
% KEPT AS ADDCOBXB

PROGRAM-ID. COBADD.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 THE-COUNT PIC S9(9) COMP.
01 THE-IND PIC S9999 COMP.
LINKAGE SECTION.

01 THE-TABLE.

19-92

05 THE-NUM PIC S9(9) COMP OCCURS 100 TIMES.

01 THE-SUM PIC S9(9) COMP.
PROCEDURE DIVISION USING THE-TABLE THE-SUM.
START-0UT.

MOVE 0 TO THE-COUNT
MOVE 1 TO THE-IND

ADD-EM.
ADD THE-NUM(THE-IND) TO THE-COUNT
ADD 1 TO THE-IND
IF THE-IND < 101
GO TO ADD-EM

MOVE THE-COUNT TO THE-SUM
GOBACK

X kRkkRkkokkkkkooRkkkoRkk koo ook kkooRkkokokkkkkokkkkokkokokkkkk
X KRKKKKKKKIAK KKK KKK KKK KKK KKK AR KKK AKRAK KKK KA KK KK KKK KK

<< THIS SUBPROGRAM ALLOWS BINARY SEARCH OF PB-RELATIVE >>
<< CODE. IT REQUIRES A FIXED LENGTH ARGUMENT AND »>
<< SENDS BACK A FIXED LENGTH RESULT. >>

$CONTROL SUBPROGRAM, SEGMENT=FSEARCH

<< KEPT AS SEARCHFS »>>

<< FIXED LEN ARG (WORDS) AND FIXED LEN RESULT (WORDS) »>>
BEGIN PROCEDURE FINDFIXED(FOUND,ARG,RESULT);
INTEGER FOUND;

INTEGER ARRAY ARG,RESULT;

BEGIN

EQUATE ARG'WLEN = 2;

EQUATE RESULT'WLEN = 17;

EQUATE STEP'SIZE = ARG'WLEN + RESULT'WLEN;
EQUATE ARG'BLEN = ARG'WLEN % 2;

EQUATE RESULT'BLEN = RESULT'WLEN X 2;

EQUATE NUM’COMPARES = 5;

<< FOR NUM’COMPARES: >>
<< IF TOO LARGE, WASTED TIME; IF TOO SMALL, NO-HITS »>>
<< GENERAL GUIDELINE: >>
<< IF NUM’'COMPARES *¥ 2 IS LESS THAN THE NUMBER >

<< OF ARGUMENTS TO BE SEARCHED, THE SEARCH WILL >»
19-93

<< NOT SUCCEED IN ALL CASES
<< IF (NUM"COMPARES -1) *X 2 IS GREATER THAN THE
<< NUMBER OF ARGUMENTS TO BE SEARCHED, THERE WILL
<< BE SOME WASTED COMPUTER CYCLES
INTEGER POS,DISP;
BYTE POINTER RESULTB,BARG;
TOS: =@ARG;
ASSEMBLE (LSL 1);
@BARG:=T0S;
FOUND : ="NN";
TOS: =@RESULT;
ASSEMBLE (LSL 1);
@RESULTB:=TOS;
T0S:=1;
ASSEMBLE (LSL NUM’COMPARES) ;
DISP:=T0S;
POS:=@START 'DATA + ((DISP - 1) % STEP’SIZE);
WHILE DISP <> 0 DO
BEGIN
DISP:=DISP/2;
IF POS >= @END’'DATA THEN
POS:=P0OS - (DISP X STEP°SIZE)
ELSE
BEGIN
TOS: =@BARG;
TOS: =POS;
ASSEMBLE (LSL 1);
TOS:=ARG'BLEN;
ASSEMBLE (CMPB PB);
IF = THEN
BEGIN
DISP:=0;
FOUND:="YY";
TOS:=@RESULT;
ASSEMBLE (LSL 1);
TOS: =POS+ARG'WLEN;
ASSEMBLE (LSL 1);
TOS: =RESULT'BLEN;
ASSEMBLE (MVB PB);
END
ELSE
IF < THEN POS:=P0OS-(DISP X STEP'SIZE)

19-94

>
>>
>>
>

ELSE POS:=POS+(DISP * STEP'SIZE);

END;
END;

ASSEMBLE (EXIT 3);
START'DATA:
<< START CONS »>>
ASSEMBLE (CON "AB RESAB ")
ASSEMBLE (CON "BB RESULT BB ")
ASSEMBLE (CON “CC RESULT cc 1 ")
ASSEMBLE (CON "CEF RES CEF ")
ASSEMBLE (CON "CEFARESULT CEFA *x%") ;
ASSEMBLE (CON “"DE RDE ")
ASSEMBLE (CON "DEF RDEF ")
ASSEMBLE (CON “"GHIJRESULT FOR GHIJ---- ")
ASSEMBLE (CON "GHK RESULT FOR GHK.................. ")
ASSEMBLE (CON "KKL RESULT FOR KKL ");
END ' DATA:
END;
END.

X kkkkckkkkkkkkokckikskokkkoRkioRkkkkkokkkkkkkokokkRokkkkokk ok ok xkkk
X dokkkiokiokkokkckkckiokokskockkekokokokkokskokkockok ok ok ok kokkkkokkkkokkkkdok ok kok

<< THIS SUBPROGRAM ALLOWS BINARY SEARCH OF PB-RELATIVE >>

<< CODE. IT REQUIRES A FIXED LENGTH ARGUMENT AND >>
.<< SENDS BACK A FIXED LENGTH RESULT. >>
<< THE RESULT IS STORED IN CODE AS A VARIABLE LENGTH »>>
<< ENTITY AND THE SUBPROGRAM NEED NOT WASTE SPACE >>
<< WITH TRAILING BLANKS. THIS CAN BE SIGNIFICANT. >>

$CONTROL SUBPROGRAM, SEGMENT=VSEARCH

<< KEPT AS SEARCHVS »>>

<< FIXED LEN ARG (WORDS) AND VARIABLE LEN RESULT (WORDS) »>>
BEGIN PRO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>