
HP WindolVs/9000 Reference 
HP 9000 Series 300 Computers 

HP Part Number 97069-90022 

rh~ HEWLETT 
a!~ PACKARD 

Hewlett-Packard Company 
3404 East Harmony Road, Fort Collins. Colorado 80525 



NOTICE 
The information contained in this document is subject to change without notice. 

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO, 
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable 
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, 
or use of this material. 

WARRANTY 
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local 
Sales and Service Office. 

Copyright © Hewlett-Packard Company 1988 

This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without 
prior written premission is prohibited, except as allowed under the copyright laws. 

Restricted Rights Legend 

Use, duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the 
Rights in Technical Data and Software clause in FAR 52.227-7013. 

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional copies of the programs 
can be made for security and back-up purposes only. Resale of the programs in their present form or with alterations, is expressly prohibited. 

ii 



Printing History 

New editions of this manual will incorporate all material updated since the previous 
edition. Update packages may be issued between editions and contain replacement and 
additional pages to be merged into the manual by the user. Each updated page will be 
indicated by a revision date at the bottom of the page. A vertical bar in the margin 
indicates the changes on each page. Note that pages which are rearranged due to changes 
on a previous page are not considered revised. 

The manual printing date and part number indicate its current edition. The printing 
date changes when a new edition is printed. (Minor corrections and updates which are 
incorporated at reprint do not cause the date to change.) The manual part number 
changes when extensive technical changes are incorporated. 

April 1988 ... Edition 1 

Printing History iii 



iv Printing History 



COMMAND SUMMARY 

wborder ......................................................................................... control window border style, color, label 
wcreaie ................... ......... .............. .... ......... ...... .......... ....... ............. ....... ... create one or more new windows 
wdestroy ........................................................... destroy one or more windows or set autodestroy attributes 
wdisp ... ...... .................... ... ............................. ................... ..... ............. ...... change display ability of windows 
wlont ........................................................................... .............. ..... ........ ......... ......... load and activate fonts 
windows ......................................................................................... window system concepts and commands 
wlist ... ....... ......... ..... ................ ..... .................. ...... .............. ..... ...... ... ...... ....... list status of windows or fonts 
wmove .......... .................... ............. ... ... .... ..... .............. ............ ..... move one or more windows or their icons 
wmready ..... .... ....... ....................... ... ..... ....................... .............. tell if window manager is awake and ready 
wmstart ....................... "................................................................... start the window system on one display 
wmstop ........................................ _ .................................................. stop the window system on one display 
wselect ................................................................................................... connect a window to the keyboard 
wsh ......................................................................................... create new shells in new or existing windows 
wsize ................................................................................................... change sizes of one or more windows 

Hew lett-Packard -i- April 1988 



Hewlett-Packard -ii April 1988 



WBORDER (1) WBORDER (1) 

NAME 
wborder - control window border style, color, label 

SYNOPSIS 
wborder [-ntT] [-c fcolor,bcolor] [-1 label] [window---..Spec ... ] 

OESCRIPTION 
This command lets you change the border style (normal, thin, or none), colors, and/or label for 
the specified windows (by default, if you give no window_specs, the window connected to stan
dard input). See windows(l) for an explanation of window_spec. 

Options are: 

-n . Set the borders to normal form (label and manipulation areas displayable). This is the 
default if you give no options. 

-t Set the borders to thin form. Label and manipulation areas are concealed and inaccessi-
ble, except that you can get a pop-up menu using the thin border. 

-T Do not display a border. This option is supported only by the graphics window type. 

You can only give one of -n, -t, or -T. 

-c fcolor, bcolor 
Set the border foreground (lcolor) and background (bcolor) colors (index numbers). Each 
number specifies an actual color in the color map (there is only one per physical display). 
The colors are not changed unless you give this option. 

Color names or abbreviations (substrings) may be given instead of numbers, in any mix
ture of upper and lower case. They are mapped to color indices as follows: 

black 
white 
red 
yellow 
green 
cyan 
blue 
magenta 

o ("b" and "bI" mean "black") 
1 
2 
3 
4 
5 
6 ("blu" or "blue" is required) 

7 

This mapping is only valid as long as the default color map for the device is not changed. 

-1 label Set the windows' labels to the given string, which should be enclosed in quotes if neces
sary to have the shell treat it as a single item. The label is not changed unless you give 
this option. 

Up to 128 characters of the label are displayed in the border of a graphics window, and 
up to 12 characters of the label are displayed in the border of a termO window. Only the 
first 12 characters of the label are displayed in the icon label and the default pop-up menu 
title. Only the first 14 characters are displayed in the title in the SFK area. When a 
window is sized such that not all of the label would fit in the border, the display length of 
the label is truncated, down to a minimum of one character. (A window cannot be sized 
any smaller than this if the border is normal). 

Note that the label is not necessarily the true name of the window. Only the true name 
can be given to other commands as window_spec. You can use wlist(l) with no argu
ments to get the true name. 

None of the changes made using this command are immediately visible if a window is concealed or 
occluded. The border label is only displayed when the border is normal. 

Hewlett-Packard Company - 1 - April 1988 



WBORDER (1) WBORDER (1) 

You can't make the border normal on a window whose current size is less than the minimum size 
allowed with a normal border. If a window does not have a big enough raster/buffer to allow it to 
grow to this minimum size, it can never have a normal border. 

EXAMPLES 
wborder 

Set the border to normal width on the window connected to standard input. 

wborder -t 
Set the border to thin style on the window connected to standard input. 

wborder -n -c 23,104 -1'A Window' win4 winS 
Set the border to normal, the border foreground color to 23 and background color to 104, 
and the label to "A Window" for the windows named "win4" and "winS". 

wborder -cb,cy 
Set the border foreground color to black (0) and the background color to cyan (6) for the 
window connected to standard input. 

wborder -c Red,Green 
Set the border foreground color to red (5) and the background color to green (3) for the 
window connected to standard input. 

HARDW ARE DEPENDENCIES 
Series 500: 

SEE ALSO 

The -T option is not supported on Series 500. The Series 500 does not support the null 
border type; each window must have either a thin or normal border. 

windows(l), wcreate(l), wlist(1),wsh(1),wsize(1),wbanner(3W),wsetbcolor(3W), wsetlabel(3W). 

DIAGNOSTICS 
The following values are returned by this routine: 

o If no errors are detected. 

If it encounters an error which prevents changing border attributes for a window, "including 
trouble while expanding a window_spec pattern. Note that an error message is also 
displayed to standard error in this case. 

2 If it encounters any error while trying to set attributes for one window. An error message is 
also displayed to standard error. 

Hewlett-Packard Company - 2 - April 1988 



WCREATE (1) WCREATE (1) 

NAME 
wcreate - create one or more new windows 

SYNOPSIS 
wcreate [-w windowtype] [-kboiTtMmNnv] [':""1 x,y] [-s w,h] [-r w,h] [window-Bpec ... ] 

DESCRIPTION 
This command creates one or more new windows on the display, of the selected windowtype, 
named window_spec ... (if you give no window_spec, it creates one window with a name selected 
by the window manager). See windows(l) for explanations of windowtype and window_spec. 

New windows have default icon positions set, have default viewing (pan) positions, have default 
border labels and colors and have null typing aids. Other attributes of new windows are con
trolled by the options: 

-w windowtype 
Type of windows to create (see windows(l)). The default window type is the termO win
dow. The default base and alternate fonts used for this window type are dependent on 
the resolution of the display screen and the $LANG environment variable. Default fonts 
are found under the directory /usr/lib/raster/dflt. Under that directory are two direc
tories: b for the base fonts and a for the alternate fonts. Under those directories are 
three more directories: v for the very high resolution displays, h for the high resolution 
displays, and I for the low resolution displays. Under those directories is a file named 
after the current language name as defined by the $LANG environment variable; this file 
is linked to the default font. For example, if $LANG is set to japanese, the default base 
font on the high resolution display would be /usr/lib/raster/dflt/b/h/japanese, 
which would be a link to /usr/lib/raster/8x18/kanji.16K. The default alternate font 
on the high resolution display would be found in /usr/lib/raster/dflt/a/h/japanese, 
which would be a link to /usr/lib/raster/8x18/kana.8K. If the $LANG environment 
variable is not set or an entry for it does not exist in the default directories, then the fol
lowing default base and alternate fonts are used: 

Very High Resolution: 
/usr/lib/raster/lOx20/lp.8U 
/usr /lib/raster /lOx20/lp.b.8U 

High Resolution: 
/usr /lib/raster /8x16 /lp.8U 
/usr /lib/raster /8x16/lp.b.8U 

Low Resolution: 
/usr /lib/raster /6x8/lp.8U 
/usr /lib/raster /6x8/lp.b.81 

A Very High Resolution display is one having 1280 pixel columns. This includes the 
HP98720, HP98548, HP98550 and HP98730. High Resolution displays have a pixel width 
of 1024. Some High Resolution graphics displays are the HP98700, HP98549, and 
HP98547. Low Resolution displays have a width of 512 pixels. The HP98543 is a Low 
Resolution display. 

If you want a different base and/or alternate font assigned at the time of window crea
tion, set the environment variables $ WMBASEFONT and $ WMALTFONT to the path
names (or $ WMFONTDIR-relative basenames) of the desired font files. 

-k Attach a new window to the keyboard (i.e. select the last window in the list). The 
default is to leave the currently selected window attached to the keyboard. 

Hewlett-Packard Company - 1 - April 1988 



WCREATE (1) WCREATE (1) 

-b Put new windows on the bottom of the display stack (in the order created). By default 
they are created as topmost windows (if not concealed). 

-0 Conceal new windows "off screen" (make them non-displayable). By default they are 
displayable, thus visible if not occluded by other windows. 

You can only give one of the -b and -0 options. 

-i Make the new window iconic. 

- T Do not display a border for the new window. 

-t Make new window borders thin, not normal in width. This also allows very small win-
dows and raster/buffer sizes. 

You can only give one of the -T and -t options. 

-M Make window rasters retained as byte/pixel. This is the default. This option is ignored 
for window types like termO or see_thru, which never retain their rasters. 

-m Make window rasters retained as bit/pixel. This option is ignored for window types like 
termO or see_thru, which never retain their rasters. 

-N Make the window an IMAGE graphics window. This means that the user area of the 
window is mapped into the image planes while the border is displayed in the overlay 
planes. This option only applies on the HP98730 display system and is ignored for win
dow types other than graphics. 

-n Make window rasters non-retained (see windows(l)). By default they are retained as 
byte/pixel, so they consume memory, and the windows may be repainted. This option is 
ignored for window types like termO or see_thru, which never retain their rasters. 

You can only give one of the -M, -m , -N and -n options. 

-v Verbose mode: Print the full pathname of each new window (including $ WMDIR if it is 
declared in the environment and is used) to standard output as each window is created. 
By default wcreate is silent unless there is an error. Verbose mode is useful when you 
don't give window_spec, but allow the window manager to create a name for you. You 
can capture new window names in a shell variable, for example (using sh(l)): 

win=' wcreate -vw graphics' # save window name. 
win=' basename "$win" , # get basename only. 

-1 X,Y Set the upper left corner location (anchor point) for the contents area of all new windows 
(the border area is outside this point). The X,y coordinates are in screen units (pixels). 
The default location for the anchor point, set by the window manager (and varied for 
each window), is near the upper left corner of the screen. 

-s w,h Set the width and height of the contents area in rows and columns, for termO windows, 
or in pixels, for other window types. Default sizes are 80,24 for termO windows and 
200,200 for other window types. If an 80,24 window with the specified font will not fit on 
the display the size of the window is reduced to a size that will fit. For example, if a 
termO window is created with an 5x18 font on a low resolution display and the size of the 
window is not specified, the default size of the window will be 80,18. (400/18 = 22 -
4(adjustment to allow room for border) = 18) 

-r w,h Set raster/buffer sizes associated with new windows. The width and height of the 
rasters/buffers are specified in units appropriate to the window type. Use rows and 
columns for termO windows; use pixel width and pixel height for other window types. 

Hewlett-Packard Company - 2 - April 1988 



WCREATE (1) WCREATE (1) 

Default values are: 

• 80,48 for termO scroll buffers (two full pages of text), 

• the resolution of the display for see_thru window types, 

• and the same as the initial window size for other window types. 

If you give -r but not -s, the default window width (height) is decreased, if necessary, to be as 
small as the raster/buffer width (height). Likewise, if you give -s but not -r, the default 
raster/buffer width (height) is increased, if necessary, to be as large as the window width (height). 

If new window borders are normal, the windows and rasters/buffers have minimum allowable sizes 
greater than one pixel (or one character cell). A window's contents area can never grow to be 
larger than its raster/buffer size, or, for termO windows, its screen size (see below), whichever is 
smaller. Do not confuse the raster/buffer memory with the amount of graphics/text visible at one 
time, which depends on a window's size and pan position. 

For termO windows, the screen size, distinct from window and buffer sizes, is set the same as the 
initial window size. The screen size is the same as given by thetermcap(5) co and Ii values. If 
the default window size is used, screen size is always set to 80,24 even if the window size is 
adjusted to allow the window to fit on the screen. It is only useful with library calls and escape 
sequences (such as those provided by the curses(3X) library). It remains set to the initial row 
and column size, so it may change pixel size with font changes, but cannot be otherwise changed 
using wsize(l} or any other command. See the Programmer's Manual sections on termO for 
details. 

Normally the owner of the window's special file is set to the process id of the wcreate process by 
the window manager. 

EXAMPLES 
wcreate Joe John 

Create termO windows named" Joe" and" John" near the upper left corner of the screen, 
whose special files reside "in the usual place" (e.g. the directory specified by $WMDIR). 

wcreate /tmp/windows/wl 
Create a termO window named "wI" near the upper left corner of the screen, whose spe
cial file is located in the directory specified in the pathname. 

wcreate -w graphics -kotn -1100,200 -s300,300 graphwin 
Create an assigned (selected), concealed, thin-border Starbase window named graphwin in 
the directory $ WMDIR, whose raster is non-retained. The upper left corner is at 
x = 100, y = 200 (pixels). The window is 300 pixels on a side. Its corresponding raster 
is also 300 pixels on a side. 

wcreate -kts80,66 
Create a selected, thin-bordered, top-of-display-stack termO window with a default name, 
whose window, screen, and scroll buffer sizes are all 80 columns by 66 rows. 

wcreate -w see_thru 
Create a see_thru widow with default name, location, and size. 

wcreate -w see_thru -ib -1 0,0 -s 1280,1024 image_planes 
Create a see_thru window named image_planes, which will appear on the screen as an 
icon on the bottom of the window stack. When the window is made normal, it will be 
located at the upper-left corner of the display and will have a size of 1280 by 1024 pixels, 
i.e., it will cover the entire screen. (Use [SHIFTJ-[SELECTJ to bring another window to 
the top.) 

Hewlett-Packard Company - 3 - April 1988 



WCREATE (1) WCREATE (1) 

wcreate ~w graphics ~Nt ~l 100,100 ~s 640,512 accelwin 

SEE ALSO 

Create an IMAGE graphics window named aeeelw£n, which will be approximately one 
fourth the screen size of the HP98730 display and which will have a thin border. 

windows(l),wborder(l),wlist(l), wsh(l),wsize(l), wcreate_graphics(3W), wcreate_termO(3W). 

DIAGNOSTICS 
The following values are returned by were ate: 

° If no errors are detected. 

If any of the following occurs: 

bad invocation 
invalid window type 
anchor point out of bounds 
location point out of bounds 
negative size (possibly due to bad location point) 
raster size out of bounds 
any other error which prevents creation of any windows 

An appropriate error message is also written to standard output. Also prints a message 
and returns 1 if it fails to create anyone window (but still tries to create the others, 
unless it has trouble while expanding a w£ndow_spee pattern). 

2 After each window is created, some window attributes must be set separately (i.e. key
board selection and top or bottom of stack). If an error is detected in attempting to set 
them, the new window name is still printed if the -v option was used. Later a 2 is 
returned, meaning a window was created incorrectly, unless some other error caused a 1 to 
be returned instead. 

Hewlett-Packard Company - 4 - April 1988 



WDESTROY (1) WDESTROY (1) 

NAME 
wdestroy - destroy one or more windows or set autodestroy attributes 

SYNOPSIS 
wdestroy window---Bpec ... 
wdestroy [-adn] [window---Bpec ... ] 

DESCRIPTION 
When none of the -a, -d, or -n options are specified, this command destroys (deletes) one or more 
specified windows. See windows(l) for an explanation of window_spec. For safety, you must use 
"-" to refer to the window affiliated with standard input. Note that "wdestroy 'wlist'" works 
equally well. 

Any processes in the process group whose leader opened the deleted window are sent the SIGHUP 
signal. This typically terminates them, unless they are background processes started using 
nohup(l), or they do something special with that signal. 

If a destroyed window was the selected one, then after it is gone the keyboard is attached to the 
top window, if one exists; otherwise it is not attached to any window. In the latter case, you can 
select a new window using a pop-up menu. Likewise, if the last window is destroyed, you can 
create a new one using a pop-up menu. 

When called with the -a, -d, or -n options, the specified window is not deleted; rather, the 
window's autodestroy and recovered attributes are affected as follows: 

-a Causes the window to be automatically deleted when the window's device interface 
(special file) is closed by every process that has opened the interface. Note that this is 
the default state for windows created through the system pop-up menu, and is also the 
default state for the wconsole window created by wmstart(l). 

-d Causes the window to be deleted when the window's device interface is closed by every 
process and a new window is created. Therefore, to remove windows that are in this 
state, you must either create a new window (after its device interface is closed by all 
processes that opened it), or you must explicitly destroy the window via wdestroy 
(with no options specified) or by using the Destroy option of the pop-up menu. 

-n When this option is used, the specified window won't be deleted when its device inter
face is closed by every process; you must explicitly destroy the window via wdestroy 
(with no options), or you must use the Destroy option of the pop-up menu. Note that 
this is the default state for windows created by wcreate(1) or wsh(l) with no options 
specified. In addition, specifying this option is equivalent in effect to using the Save 
item of the pop-up menu on a window. 

EXAMPLES 
wdestroy -

Delete the window affiliated with standard input. 

wdestroy oldwinl oldwin2 
Delete the windows named "oldwin1" and "oldwin2". 

wdestroy -a window12 
Causes the window named "window12" to be automatically destroyed when its device 
interface is closed by every process associated with it. For example, if "window12" con
tains a shell, then terminating the window's shell via exit(1) will cause the window to be 
automatically destroyed. 

wdestroy -d pa~win 
Automatically delete the window named "pa~win" only when every process that has 
opened the window's interface has also closed it; additionally, the window won't be 

Hewlett-Packard Company - 1 - April 1988 



WDESTROY (1) WDESTROY (1) 

destroyed until a new window is created. For example, if the window contains a shell, 
then terminating the shell via ctl-D or exit(l) won't cause the window to be deleted, 
until a new window is created, either by the pop-up menu or the wsh(l) or wcreate(l) 
commands. 

wdestroy -n wconsole 

SEE ALSO 

By default the wconsole window, i.e., the first window normally created by wmstart(1) , is 
set to be automatically destroyed (-a) when you exit the shell in that window. The com
mand shown here reverses the auto-termination status so that wconsole won't be 
automatically destroyed. 

windows (1 ),wcreate( 1 ),wlist( 1) ,wsh( 1 ),wautodestroy(3W) ,wdestroy(3W), wrecover(3W). 

DIAGNOSTICS 
This routine returns the following values: 

o If no errors are detected. 

Prints a message to standard error and returns 1, with no windows destroyed, in case of an 
error which prevents destroying any windows. Also aborts and returns 1 in case of trouble 
while expanding a window_spec pattern. 

2 If anyone window cannot be destroyed for some reason, prints a message to standard error, 
continues with the next window_spec (if any), and eventually returns 2. 

Hewlett-Packard Company - 2 - April 1988 



WDISP (1) WDISP (1) 

NAME 
wdisp - change displayability of windows 

SYNOPSIS 
wdisp [-tbo] [-nil [window_spec ... ] 
wdisp -d 
wdisp -u 

DESCRIPTION 
This command changes one or more windows' positions in the display stack, their concealment, 
and/or their representation (normal or icon). By default; if you give no window_specs, the win
dow connected to standard input is made displayable as the top window on the stack and put in 
normal (not icon) form. See windows(l) for an explanation of window_spec. 

Options are: 

-t Make the windows displayable and on top of the stack (in the order their names appear). 
This (along with -n) is the default if you give no options. 

-b Make the windows displayable and on the bottom of the stack (in the order their names 
appear). They may be partially or totally occluded by other windows, thus not totally 
visible. 

-0 Make the windows concealed off-screen. Concealing windows removes them from the 
stack. 

Only one of -t, -b, and -0 is allowed. If you give one of them, but neither -n nor -i, then only the 
windows' displayability is changed, not their representations. 

-n Make the windows go to normal form (if they were iconic). This (along with -t) is the 
default if you give no options. 

-i Make the windows go to iconic form (if they were normal). 

Only one of -n and -i is allowed. If you give one of them, but none of -t, -b, or -0, then only the 
windows' representations are changed, not their displayability. 

-d Shuffle the top window down, i.e. the old top window becomes the bottom window and 
the new top window becomes selected. 

-u Shuffle the bottom window up, i.e. the old bottom window becomes the top and selected 
window. 

The -d and -u options each cannot be combined with any other, nor applied to any 
window_specs. Note also that with these options, the resulting topmost window automatically 
becomes the selected window. 

EXAMPLES 
wdisp Make the window connected to standard input displayable, on top of the stack, and nor

mal form. 

wdisp -bi 
Make the window connected to standard input displayable, at the bottom of the stack, 
and convert it to icon form. 

wdisp -on minnow tadpole 
Make the windows "minnow" and "tadpole" concealed and convert them to normal form. 

wdisp -u 
Shuffle the bottom window to the top of the display stack and make it selected. 

SEE ALSO 
windows(l ),wcreate(l ),wlist( 1 ),wsh( 1) ,wautotop(3W),wbottom(3W),wconceal(3W), 

Hewlett-Packard Company - 1 - April 1988 



WDISP (1) WDISP (1) 

wiconic( 3W) ,wshuffle( 3W), wtop( 3W). 

DIAGNOSTICS 
The following values are returned by this routine: 

o If no errors are detected. 

Prints a message to standard error and returns 1 if it encounters an error which prevents 
changing a window or doing a shuffle, including trouble while expanding a window_spec 
pattern. 

2 Prints a message to standard error, continues, and later returns 2 if it encounters any error 
while trying to change an attribute of a window. 

Hewlett-Packard Company - 2 - April 1988 



WFONT (1) WFONT (1) 

NAME 
wfont - load and activate fonts 

SYNOPSIS 
wfont [-ar] font_path [window-..Spec ... ] 
wfont -f font_path [window-..Spec ... ] 
wfont [-F base-I"ont_path alt-I"ont_path [window-..Spec ... ]] 

DESCRIPTION 
This command loads and activates the font file(s) specified by fonLpath, for the windows 
specified by window_spec ... (by default, if you give no window_specs, the window connected to 
standard input). See windows(l) for an explanation of window_spec. 

Invoking the command with no arguments is a quick way to reset fonts to defaults for the stan
dard input window. It behaves exactly as if you had typed: 

wfont -F $WMBASEFONT $WMALTFONT 

except that, if either variable is null or not defined, the same default is used as in wcreate(l). 

The affected windows must be of type termO (or you get an error). If font_path does not begin 
with "r, ". r, or " .. r, it is assumed to be relative to the directory specified by environment vari
able $ WMFONTDIR, or the current directory if that variable is null or undefined. 

By default, only the base font is changed for future writing of characters. Currently-displayed 
characters don't change appearance (there is no immediately visible effect). 

Options are: 

-a Load and activate font_path as the alternate font, not the base font, for the specified win
dows. 

-r Replace the existing base (or with -a, alternate) font with fonLpath and repaint the win
dows. If any visible characters were written in the base (or alternate) font, they immedi
ately change to the new font. 

-f Flush all existing fonts for the specified windows, load fonLpath as the new base and 
alternate font, and repaint the windows. All currently displayed characters switch to the 
new font. You can't mix this option with any other. 

-F Flush all existing fonts for the specified windows, load base_font_path as the new base 
font and alt_font_path as the new alternate font, and repaint the windows. If the 
current base and alternate are the same font, all currently displayed characters switch to 
the new base font. If the current base and alternate are different, all characters which 
were written using the current alternate font switch to the new alternate, and all others 
switch to the new base. You can't mix this option with any other. 

If the fonLpaths given with the -F option are identical (after $ WMFONTDIR is possibly 
prepended to each), the effect is the same as if you had used -f with only one font_path. 

Normally, every font loaded must be the same cell size as those already loaded. The -f and -F 
options let you change the cell size. When this happens, window sizes may also be affected, so 
that the number of rows and columns displayable (and the window's logical screen size) remains 
unchanged. 

Fonts are loaded into memory as needed (no more than eight at once). To avoid confusion, no 
font is loaded more than once (by font filename). All characters which use a given font use the 
same instance of it, so all change together when the font is replaced using the -r option. There
fore, you can't replace a font with any font which is already loaded (this would lead to it being 
loaded twice). You can make the already-loaded font the base or alternate font, but you can't use 

Hewlett-Packard Company - 1 - April 1988 



WFONT (1) WFONT (1) 

the -r option on it. 

NOTE: If you need to simulate multiple loading of a font without doing library calls, you can link 
the font file to another filename, then load the two "different" fonts at the same time. 

EXAMPLES 
wfont Flush all fonts for the standard input window, set the base and alternate fonts to defaults, 

map all displayed characters to one of these fonts, and repaint the window. 

wfont /usr/lib/raster/8x16/cour.8U 
Make the "cour.8U" font the base font for the window connected to standard input. It is 
loaded if not already in memory. 

wfont -a cour.8U win5 
wfont -ra Ip.b.8U win5 

Make the font "cour.8U" the alternate font for the window "win5" (assume it is already 
loaded and there are characters which were written using it). Then make the font 
"lp.b.8U" the alternate font for the window, and repaint it. This has the effect of chang
ing all the "cour.8U" characters to "lp.b.8U". 

wfont -f 7xlO/helv.8U 
Flush all fonts for the window connected to standard input and repaint it with all charac
ters displayed using the font "7xlO /helv .8U" . 

wfont -F Ip.8U Ip.b.8U win2 
Flush all fonts for the window "win2", make the base and alternate fonts "lp.8U" and 
"lp.b.8U" respectively, map all displayed characters to one of these fonts, and repaint the 
window. 

HARDW ARE DEPENDENCIES 
Series 500: 

HP-15 (2-byte) fonts are not supported on Series 500. Two-byte fonts work only on 
Series 300. 

SEE ALSO 
windows(1),wcreate(1),wlist(1),wsh(1),altfont_termO(3W),basefont_termO(3W). 

DIAGNOSTICS 
The following values are returned by this command: 

o If no errors are detected. 

Prints a message to standard error and returns 1 if invoked improperly, or if it has trouble 
while expanding a window_spec pattern. 

2 Prints a message to standard error, continues, and later returns 2 if it encounters any error 
while trying to perform font operations for anyone window. 

WARNINGS 
If any application program which calls window library routines previously ran in a window, it is 
possible that one or more fonts might be loaded multiple times. Thus, different characters 
displayed in the same font might not be changed together to a new font. You can avoid confusion 
by using wfont -f or wfont -F to flush all existing fonts before starting new operations. 

wfont fails if you try to use -f or -F to switch to a smaller font in a window with a normal 
border and this would make the window size less than the minimum allowed with a normal 
border. 

HP-15 fonts (2-byte fonts) cannot be loaded as the alternate font. Thus they cannot be used with 
the -a or -f options or as the second font of the -F option. 

Hewlett-Packard Company - 2 - April 1988 



WINDOWS (1) WINDOWS (1) 

NAME 
windows - window system concepts and commands 

DESCRIPTION 
There are a number of user-level commands which help you manage windows. Each is described 
separately. This manual entry covers concepts they share in common. 

All numeric variables given to commands are limited to 16 bits, e.g. the (x,y) pair for wmove{l} 
must be in the range -16384 through +16383. 

Window Types 
The following window types are supported: 

termO Terminal level-O emulation window. This type acts like an HP 2622 Terminal without 
block or format mode. It also supports the HP 2627 color escape sequences. 

graphics 
Starbase graphics window. This type implements the procedural interface defined in the 
Starbase Device Drivers Library and supports the Font Manager and Fast Alpha libraries. 

The IMAGE graphics window is a special case for the HP98730 display system. This 
allows a user to create a graphics window which has the user area mapped to the image 
planes while the border is displayed in the overlay planes. This window type is useful for 
using the accelerated driver (HP98731) in windows where the user will have access to the 
3D graphics functionality that is available to the raw (non-window) device with the obvi
ous exception of managing shared resources like the color map and the hardware cursor. 
The IMAGE graphics window can also be used with the non-accelerated driver 
(HP98730). Use of the IMAGE graphics window type only requires the specification of 
the proper option or parameter at creation time. Thereafter, it behaves exactly the same 
as any normal graphics window. The number of IMAGE windows allowed at one time is 
31. 

see_thru 
See_thru window used to view the image planes. This window type is not really a 
separate window type. It is a special case of the graphics window. Some Series 300 frame 
buffer devices support two sets of frame buffer memory. One set is called the image 
planes and is the area where most graphics output is sent; the other set is called the over
lay planes and is where the human interface operations take place. The number of planes 
present in the overlay planes is device-dependent. If an overlay colormap is supported, 
the colors that can be set include combinations of red, green, blue, and see_thru. If a 
pixel in the overlay planes is see_thru, then the pixel color will be the color of the image 
planes "behind" the overlay planes; otherwise, the pixel color is forced to the color 
specified by the overlay planes. On this type of a display, the window manager runs in 
the overlay planes. A see_thru window is a non-retained graphics window whose back
ground color is set to see_thru. A server, stserver, is started for the see_thru window. 
This server catches the SIGWINDOW signal for the repaint event. When a repaint event 
occurs, stserver repaints the window with the see_thru index value, causing the window 
to create a "peep-hole" through the overlay planes to the image planes. The see_thru 
color index value defaults to three (usually yellow), but can be changed either via the 
SB_OV _SEE_THRU-.lNDEX environment variable by setting this variable before start
ing the window manager, or by calling wseL..see_thru(3W). The see_thru window type 
is used only by wcreate(I). For all other purposes, the see_thru window is considered a 
graphics window. 

Window Specification 
A particular window can be specified to the commands in several ways. 

Hewlett-Packard Company - 1 - April 1988 



WINDOWS (1) WINDOWS (1) 

1. Give no window_specs at all. 
In this case, some commands create a window with a default name obtained from the win
dow manager, and others operate on the window connected to standard input, as 
appropriate. For example: 

wdisp-i 
Put into iconic form the window connected to standard input. 

2. Give" -" as a window_spec. 
This also means "default window name from the window manager" or "window connected 
to standard input", as appropriate. For example: 

wcreate winl - win2 
Create three windows named "win!", some default name, and "win2". 

3. Give a basename or indefinite pathname. 
If window_spec does not begin with "j", ". j", or " .. j", and it is not a pattern (see 
below), the window's special file resides in the directory specified by environment variable 
$ WMDIR. If this variable is null or not defined, or if window_spec already begins with 
"$WMDIRj", its value is not prepended, and the window's location is relative to the win
dow manager's current working directory. For example: 

wcreate wconsole 
Create the (termO) window "$WMDIR/wconsole". 

4. Give a definite pathname. 
If window_spec begins with" j", ".j", or " .. j", $ WMDlR is never prepended. For exam
ple: 

wcreate -wgraphics /dev /HP 9837 A/sales_graph 
Create the graphics window "sales_graph" whose special file lives in the directory 
"/dev/HP 9837A". 

5. Give a shell-style pattern. 
Window names may be specified using meta-characters, similar to sh(l) and find(l) (but 
different than ed(I)). Be sure to quote patterns to hide them from the shell. Unlike find, 
which always compares patterns with basenames only, the appearance of '/' require!:> a 
pattern to match against full window pathnames (as known to the window manager) 
rather than basenames. For example: 

wsize '*' Set default sizes for all windows, wherever they are located. 

wlist '/*3' List information on all windows whose full pathnames start with slash 
and end with '3'. 

Patterntneta-characters are '*', '?', and '['. Following '[', special meanings are also 
assigned to 'I', '-', and ']'. Any character, including '\', may be quoted (made to stand 
for itself) by preceding it with '\'. 

Patterns are compared against the names of all existing windows known to the window 
manager. If a pattern contains a 'I' anywhere, it must match a window's full pathname. 
Otherwise, it is only compared against each window's basename. Either way, the result is 
the alphabetically sorted list of full pathnames of selected windows, or the pattern itself if 
no window matches. 

Meanings of pattern meta-characters: 

* Matches any string, including the null string. 
? Matches any single character. 

Hewlett-Packard Company - 2 - AprilI988 



WINDOWS (1) WINDOWS (1) 

[ ... ) Matches anyone of the enclosed characters. A pair of characters separated by '-' 
matches any character lexically between the pair, inclusive. 

[L..) A NOT operator can be specified immediately following the left bracket to invert 
the sense of the comparison, i.e. match any single character not enclosed (expli
citly and/or in a range) in the brackets. (Note, this is different syntax than the 
,., used in regular expressions.) 

Like the shell, "[)" matches no character. Unlike the shell, "[!)" matches any character, 
and '-' in a list is not taken as part of a range unless used properly. 

Also note: 

Window basenames are truncated to 12 characters (not 14). 

Window pathnames are limited to 37 characters after possibly prep ending $ WMDIR, 
and/or expanding ".j" or " .. j" to the current working directory or its parent, respec
tively. If you try to refer to a window with a final pathname longer than 37, you get an 
error from the commands. 

Font file pathnames are similarly truncated (to 39), but no check is performed. Attempts 
to use longer final pathnames normally fail (no such file). 

Hewlett-Packard Company - 3 - April 1988 



WINDOWS (1) WINDOWS (1) 

Summary of Command Options 
This table tersely summarizes the options recognized by the window commands. Note that com-
mands which do not have any options are not shown in the table (Le., wmstart(l), wselect(1), 
wmstop(l)). 

Options and Commands 
option bordr I creat I destr I wdisp I wfont I wlist I wmove I wsh I wsize I wmrdv 
-a adest alt adest 
-b bottm bottm bottm 
-cf,b color 
-cxxx cmdln 
-d wdest down wdest 
-e exist 
-f flush fonts 
-F flush 
-g login 
-i icon icon icon icon 
-k keybd keybd 
-1 long 
-lx,y locat locat locat 
-lxxx label 
-M byte byte 
-m bit bit 
-N IMAGE IMAGE 
-n norml noret nodst norml noret 
-0 concl concl concl 
-r repIc 
-rw,h rsize rsize 
-sw,h size size size 
-T bdrls bdrls bdrls 
-t thin thin top thin 
-u up 
-v verbo verbo verbo 
-wxxx type tYJ2e 

Hewlett-Packard Company - 4 - April 1988 



WINDOWS (1) WINDOWS (1) 

HARDW ARE DEPENDENCIES 
Series 500: 

SEE ALSO 

IMAGE graphics windows (-N option) are not supported on Series 500, and only on 
HP98730 for Series 300. 

Byte/pixel is specified by the absence of -n, not the presence of -M. Bit/pixel (-m) is 
not supported. 

Borderless windows (-T option) are not supported on Series 500. 

The see_thru window type is supported only on the HP 98720 and HP 98730 for Series 
300. 

HP-15 (two-byte) fonts are not supported on Series 500; they can be used only on Series 
300. 

wmstart(l), wmready(l), wmstop(l), wborder(l), wcreate(1), wdestroy(l), wdisp(l), wfont(l), 
wlist(l), wmove(l), wselect(l), wsh(l), wsize(l), wseL_..see_thru(3W). 

DIAGNOSTICS 
All of the commands try to give helpful error messages. When an error is detected in a call to a 
system or Windows routine, the commands also print and interpret the value of errna (see 
errna(2)). They tell you the name of the routine which returned the error so you can look in the 
appropriate manual entry for more information. 

Hewlett-Packard Company - 5 - April 1988 



WLIST (1) WLIST (1) 

NAME 
wlist - list status of windows or fonts 

SYNOPSIS 
wlist [-8] [window~'lpec ... ] 

DESCRIPTION 
This command lists information about currently existing windows or their loaded fonts. It only 
knows about the windows and fonts associated with the one invocation of the window manager 
(wm) which supports the same physical display. 

By default, wlist prints to standard output the full names of the given windows, or the one con
nected to standard input if you give no window_specs, one name per line. See windows(l) for an 
explanation of window_spec. (Note in particular that you can use '-' to list the window con
nected to standard input along with others, and '*' to list all windows.) 

Options are: 

-f List information about fonts currently loaded for the specified windows, which should be 
of type termO (other types appear to have no fonts loaded). Prints the full name of each 
window, followed by a colon, followed by the full pathnames of all fonts loaded for that 
window, one name per line. 

-1 List (long-form) all available and useful information about each window or font. The out
put formats are described below. 

To get information on font files, whether or not they are currently loaded, use file(I). 

Long-form Output Format 
For fonts (-f option), each font pathname is preceded by a cell size (pixel width x height) and an 
activation indicator: 

b/a active as both base and alternate font 
base active as base font 
alt active as alternate font 

font loaded but not active 

For windows, wlist prints a title line followed by one line of data for each window. Field title::> 
and values are: 

WT Window type: 
to termO 
gr graphics 
gi IMAGE graphics 

K Keyboard attached (window selected): 
not selected 

k selected 

D Display status: 
t top 
b bottom 

displayable, but not top or bottom 
c concealed offscreen 

T Border style: 
normal 
thin 

T no border 

Hewlett-Packard Company - 1 - April 1988 



WLIST (1) 

Iconic: 
normal 
iconic 

A Auto Destroy: 
normal 

a autodestroyable and recoverable 
d recoverable but not autodestroyable 

LOCXLOCY 
X,Y locations of window's normal state (pixels). 

WIDE HIGH 
Window's width, height (type-dependent units). 

PANXPANY 

WLIST (1) 

Window's pan X,Y offsets (type-dependent units). They appear as "?" for termO win
dows because that window type does not support panning. 

RASW RASH 
Window's raster/buffer height, width (type-dependent units). 

ILCX ILCY 
X,Y location of window's iconic state (pixels). 

FGCBGC 
Window's foreground, background border colors (indices). 

WINDOW 
The window's basename. 

The output format is carefully arranged so that, even with the longest window basename (12 char
acters), each output line just fits on one 80-character display line without wrapping. If any 
numeric value is larger than five digits (with possible sign), the line may wrap around. 

EXAMPLES 
wlist List the full name of the window connected to standard input. 

wlist -f winS 
List information on fonts loaded for window "winS". 

wlist -I List all available information about the window connected to standard input. 

The final example checks whether standard input is a window and prints a message accordingly: 

if wlist > /dev /null 2>&1 

SEE ALSO 

then 
echo "stdin is a window" 

else 
echo,"stdin is NOT a window" 

fi 

windows(1), file(1), wborder(1), wcreate(1), wdestroy(1), wdisp(1), wmove(1), wselect(1), wsh(1), 
wsize(1). 

Hewlett-Packard Company - 2 - April 1988 



WLIST (1) WLIST (1) 

DIAGNOSTICS 
This command returns the following values: 

o If no errors are detected. 

Prints a message to standard error and returns 1 if it encounters an error which prevents 
listing any information, including trouble while expanding a window_spec pattern. 

2 Prints a message to standard error, continues, and later returns 2 if it encounters any 
error while trying to list information for one window. No information is printed for the 
affected window (or its fonts). 

Hewlett-Packard Company - 3 - April 1988 



WMOVE (1) WMOVE (1) 

NAME 
wmove - move one or more windows or their icons 

SYNOPSIS 
wmove [-i] [-1 x,y] [window-----Bpec ... ] 

DESCRIPTION 
This command changes the location on the display of the specified windows or their iconic 
representations, while keeping their sizes and other attributes intact. See windows(l) for an 
explanation of window_spec. By default, if you give no window_specs, the window connected to 
standard input (not its icon) is moved to a default location, with its upper left corner near the 
upper left corner of the screen. The default location for icons is near the lower left or upper right 
corner of the screen, depending on your configuration. 

Options are: 

-i Move windows' iconic representations (icons), not their normal forms. See windows(1) for 
an explanation of icons. 

-1 X,Y Move windows' upper left corners to the pixel location given by x,y. If you don't give a 
location, each window or icon is moved to a slightly different location. 

The results of wmove may not be immediately visible if a window is: 
* concealed 
* located off-screen 
* occluded by others 
* normal and its icon is moved 
* iconic and its normal form is moved. 

EXAMPLES 
wmove Move the window connected to standard input to a default location, near the upper left 

corner of the screen. 

wmove -illOO,200 win2 win3 
Move the icon form of windows "win2" and "win3" to pixel location x = 100, y = 200. 

SEE ALSO 
windows(l), wborder(1), wcreate(1), wdestroy(l), wdisp(l), wfont(l), wlist(l), wselect(l), wsh(l), 
wsize(l), wmove(3W). 

DIAGNOSTICS 
The following values are returned by this command: 

o If no errors are detected. 

Prints a message to standard error and returns 1 if it encounters an error which prevents 
moving a window, including trouble while expanding a window_spec pattern. 

2 Prints a message to standard error, continues, and later returns 2 if it encounters any error 
while trying to move one window. 

Hewlett-Packard Company - 1 - April 1988 



WMREADY (1) WMREADY (1) 

NAME 
wmready - tell if window manager is awake and ready 

SYNOPSIS 
wmready [-v] 

DESCRIPTION 
This command reports on whether the window manager (wm) is currently awake, running, and 
ready to accept requests. It uses the wm special file in the directory specified by the environment 
variable $ WMDIR. It can be used to wait for wm startup, or to check if the window system is 
already running. 

The only option is: 

-v Verbose operation: Print a message to standard output in addition to returning a value. 

wmready says wm is not ready if the wm special file can't be opened for read/write within two 
seconds (using alarm(2) for timeout), or if a simple wm request fails. If wm is "ready" but merely 
busy (e.g. with a pop-up menu), the command blocks on the request for an indefinite time, but 
may eventually indicate wm is ready. 

RETURN VALUE 
o the window manager is ready, 
1 the window manager is not ready. 

SEE ALSO 
windows(l), wmstart(l), wmstop(l), alarm(2). 

Hewlett-Packard Company - 1 - April 1988 



WMSTART (1) WMSTART (1) 

NAME 
wmstart - start the window system on one display 

SYNOPSIS 
wmstart [optional_args] 

DESCRIPTION 
This command initiates the window system for one display, normally the one from which it is 
invoked. First it sets environment variables as needed (see below). It does not change your 
$p A TH variable or your current working directory. It checks that no window manager is 
currently running using the directory specified by environment variable $ WMDIR. If the variable 
is not null, i.e. the window special files directory is not the current directory, and it is also not set 
to "/" or /dev, it attempts to remove any character special files found in or below the specified 
directory. 

wmstart starts the window system, which blocks input to (but not output from) the internal ter~ 
minal emulator (ITE). The window manager (wm) process is started and, if no argument is 
specified to wmstart, it calls wsh (1) to create an initial window (named wconsole) with a shell 
attached. 

wmstart , is a shell script that normally resides in /usr /bin. You can study and modify wmstart 
if so desired. Personal copies of it can be tailored to the specific hardware being used. Desired 
applications or window commands can be initiated after the window system is up. 

Note: If you customize wmstart, change a copy, not the original script, so your changes are not 
lost at the time of system software update. Then execute your copy to start the window system. 

The wmstart process does not terminate until operation of the window system is terminated. 
Thus the caller (e.g., init(lM) or sh(l)) can wait for it to terminate. See below for examples. 

Environment Variables 
wmstart sets necessary environment variables to default values if undefined or null. Only those 
are set which must be defined for wm or the window commands to work properly. Those already 
in the environment are not altered (except for $ TERM), so you can pass in values from outside 
the window system. Note that you can (in sh(l)) set them on the command line which calls 
wmstart, for example: 

WMDIR=/dev /screenl wmstart 

In particular, the $ WMDRIVER variable tells the window system what type of display you have. 
If it is undefined or null, wm (not wmstart) sets it automatically to the right type. If you set it 
explicitly to the wrong type, you may get strange results. 

Here is the complete list of variables. For each variable, the default value (if any) set up by 
wmstart is indicated along with the default value that the window system uses if the variable is 
undefined or null. 

WMDIR 
Directory where window device files are put by the window manager. Default: set to 
/dev /screen. Typical values might be: /dev /screenl, /dev /screen2, etc. If wm is 
called with it undefined or null, "$WMDIRj" is never prepended to a window_spec. See 
windows(l} for more on window_specs. 

WMSCRN 
Device file of the physical display where windows appear. Default: not set by wmstart; if 
undefined, wm uses /dev /crt, unless the device is HP98730 in which case /dev /ocrt is 
used. Typical values might be: /dev/crt9837, /dev/crt98700, etc. 

Hewlett-Packard Company - 1 - April 1988 



WMSTART (1) WMSTART (1) 

WMDRIVER 
Starbase driver used to write to the display when windows is running. Default: not set 
by wmstart. If this variable is undefined, then wm uses the appropriate driver for the 
window system running on your display. For example, on Series 300 low- or medium
resolution displays, wm uses "hp3001" for the driver. 

SB_DISPLA Y _ADDR 
Memory address in the user address space of the Starbase display device. Default: not 
set by wmstart; if undefined, wm uses "OxbOOOOO". Since this is normally a global entity, 
it should be set and exported from fete/profile and /ete/esh.login. Should different 
instances of the variable have different values, unpredictable errors may occur. 

WMKBD 
Device file of the keyboard. Default: set to /dev /hilkbd. If wm is called with it 
undefined or null, keyboard input is disabled. 

WMINPUTCTLR 
Device file of the input controller. Default: set to /dev /rhil. If wm is called with it 
undefined or null, keyboard input is disabled. 

WMLOCATOR 
Device file of the locator. Default: set to /dev /loeator. If wm is called with it 
undefined or null, locator input is disabled. 

WMLOCSCALE 
Normally, when the graphics tablet is used as a locator device, the entire graphics tablet 
maps to the entire screen. By setting this variable, you can map a rectangular area on 
the graphics tablet to the entire screen, i.e., you can specify that only part of the graphics 
tablet map to the display screen. This variable requires four coordinates and is set as fol
lows: 

WMLOCSCALE="xl yl x2 y2" 

where xl,yl are coordinates on the graphics tablet that correspond to the lower-left corner 
of the display screen; x2,y2 correspond to the upper-right corner of the screen. 

Coordinates can be specified as either absolute or percentage. Absolute coordinates 
require knowledge of the graphics tablet resolution; percentage coordinates do not. 

Absolute coordinates give an absolute address on the graphics tablet; percentage coordi
nates give a location with respect to the entire tablet and have a trailing percent sign. 

Absolute and percentage coordinates can be mixed. For example, the following causes the 
display screen to map to the lower-left quadrant of the graphics tablet: 

WMLOCSCALE="O 0 50% 50%" 

WMPTYMDIR 
Directory where master pseudo-tty (pty) special files are located. Default: not set by 
wmstart; if undefined, wm uses /dev /ptym. 

WMPTYSDIR 
Directory where slave pseudo-tty (pty) special files (generic window names) are located. 
Default: not set by wmstart; if undefined, wm uses /dev /pty. 

WMPTYNAME 
Starting name of the set of pseudo-ttys (ptys) used for windows. Must follow the pty 
naming convention: tty[p-v][O-~. Default: not set by wmstart; if undefined, wm uses 
"ttyp8". 

Hewlett-Packard Company - 2 - April 1988 



WMSTART (1) WMSTART (1) 

WMPTYCNT 
Number of contiguous pseudo-ttys (ptys) used by the window manager. Default: not set 
by wmstart; if undefined, wm uses "31". Note: The number of open files allowed per pro
cess sets an upper limit on this value. Each graphics window type requires one pty and 
each TermO window type requires three ptys. 

WMPTYCACHECNT 
Maximum number of pseudo-ttys (ptys) that the window manager is permitted to keep 
pre-opened for performance purposes, and thus unusable by other applications. Default: 
not set by wmstart; if undefined, wm uses "10". Note: This pty cache applies only for 
graphics window types or two of the three ptys used by TermO window types. 

WMSHMSPC 
Maximum size of shared memory used by window manager. Increments of OxIOOO are 
strongly recommended. Default: set to "Ox200000". Minimum size is Ox20000 even if set 
to a smaller value. 

WMIA TIMEOUT 
The purpose of this variable is two-fold: 

1. It specifies the timeout period (in seconds) for interactive operations, and 

2. It determines the number of milliseconds the window manager will not process locator 
changes. This allows other processes to run when the window manager is tracking. 

Specifying Timeout 
The two least-significant bytes of this variable (OxFFFF) specify the number of seconds of 
absolute inactivity in the locator that the window manager will allow during an interac
tive operation. 

If this value is not set, or is less than or equal to zero or null, then it defaults to 60 
seconds. 

Tracking 
The window manager reads information from the locator whenever its position changes; 
this is known as tracking. If the position changes a lot, the window manager (because it 
is a high-priority process) may nearly consume the CPU, thereby preventing other 
processes from running. If locator movement tracking is also being done by one or more 
other processes, it becomes jerky or stops. To more fairly allow other processes to run, 
the window manager temporarily ignores the locator for a short period of time, thus 
allowing the other processes to run. 

You can control the length of time that the window manager ignores locator information 
during tracking. Valid values range anywhere from 0 to 255 milliseconds. Values are 
specified in the third byte of this environment variable (OxFFOOOO). 

If no value is specified or 0 is specified, it defaults to 30 milliseconds. 

Values from 1 to 254 can be used. Keep in mind: (1) as this number becomes lower, the 
echo tracks better on the screen, but user processes can't track as well; (2) as this number 
becomes higher, the echo tracks worse on the screen, but user processes track the locator 
as least as well as the window manager. 

Note that although time can be specified in one-millisecond increments, the Series 
200/300 clock "clicks" every twenty milliseconds. Therefore, you might want to specify 
time in 20-millisecond increments on Series 200/300. 

If the value is 255, then locator information is not ignored. 

Hewlett-Packard Company - 3 - April 1988 



WMSTART (1) WMSTART (1) 

WMCONFIG 
Window manager configuration, the OR of: 

Ox07 Enable window manager process locking: OxO default is for no locking, Oxl is text 
only, Ox2 is data only, and Ox4 is shared memory locking. Any combination of 
the three bits is allowed. This can be used when lots of physical memory is 
present, the window system is competing with very large processes, and snappy 
window system performance is still desired. If shared memory locking is enabled, 
setting WMSHMSPC to the minimum value needed is advisable. 

Ox08 Enable clear of graphics retained raster unconditionally upon create of a graphics 
window. The default of 0 is much faster because the clear is delayed until the 
window is made visible or graphics is done in the window. This enable is for 
compatibility purposes in the case of programs that meet all of the following: 
linked prior to 5.2 HP-UX, drawing in a concealed window that the same pro
gram did not create, and depend on the window being cleared prior to any gopen. 

OxlO Enable double buffering color mode. This causes all colors used in window bord
ers, window icons, softkeys, desktop, popup menus, and termO window text to be 
modified so that the visible color for these will not change whenever the display
enabled planes are modified by a Starbase program using double buffering. All 
colors written to the display are first converted to (C « (N/2) + C), where C is 
the color being written and N is the number of planes on the display. The window 
manager will modify the color map so that color indices (C < < (N /2)) and (C 
« (N/2) + C) have the same RGB values as color index C. 

Enabling double buffering color mode reduces the effective number of colors from 
2'N to 2'(N/2). The window system will force all colors set via environment 
variables to be within the allowed range. 

Double buffering color mode may be enabled only on color displays with 6 or 
more planes. 

Ox20 Force the use of software sprites (pointers) which implies that, on displays which 
provide hardware support for sprites, hardware will not be used for window sys
tem sprites. So, when this bit is set, all sprites will be rendered using software. 
The default of 0 will provide better performance, but at the cost of not being able 
to represent the full range of raster echo sprites. This enable is for compatibility 
purposes in the case of programs that use sprites that have more than two color 
index values, and require that those sprites be displayed exactly as defined. It is 
also appropriate for an application that wants exclusive access to the hardware 
sprite. 

On the HP 98730 display, the hardware is capable of displaying only two colors 
for sprites. However, raster echos may contain color index values of up to eight 
bits in depth (0-255). When the window system is using the hardware for sprites 
(the default), a conversion must take place to convert the raster echo from n 
colors to 2 colors. This conversion will make all bgcolor index values in the raster 
echo be displayed as the bgcolor, and all non-bgcolor index values be displayed as 
the fgcolor. When the window system is using the software, the raster echo will 
be displayed as specified. The window's border sprite colors are set respectively to 
the border's foreground and background color. For all other window sprites, if no 
call has been made to wsetjw-Bprite_color, the defaults are fgcolor = land 
bgcolor = O. 

Hewlett-Packard Company - 4 - April 1988 



WMSTART (1) WMSTART (1) 

Default: not set by wmstart; if undefined, wm uses "OxOO", i.e. don't lock the window 
manager process or shared memory, allow higher performance delayed clear of graphics 
windows upon create, don't enable double buffering color mode and use the hardware cur
sor. 

WMIUICONFIG 
Interactive user interface configuration, the OR of: 

Ox00007f 
Ox000080 
OxOOOlOO 
Ox000200 
Ox000400 
Ox000800 
OxOOlOOO 
Ox002000 
Ox004000 
Ox008000 
OxOlOOOO 
Ox020000 
Ox040000 
Ox080000 
Ox 100000 
Ox200000 
Ox400000 

Ox800000 

Ox1000000 
Ox2000000 

Ox4000000 

Ox8000000 

Enabled buttons; button 1 is least significant bit. 
Enable Select key. 
Top if select over window. 
Top if going icon/normal. 
Top if unobscured move/size. 
Top if obscured move/size. 
Disable move manipulation symbol. 
Disable icon/normal manipulation symbol. 
Disable size manipulation symbol. 
Disable pause/resume manipulation symbol. 
Disable pan manipulation symbols. 
Disable popup menu in border. 
Disable popup menu over desk top. 
De-select if going to icon. 
Icon default position base: 0 == lower left; 1 == upper right. 
Disable tiler alignment by interactive operations. 
If set, it lets the sprite (echo) move outside the menu without aborting the 
pop-up menu operation. 
If set, interactively changing a window from an icon to normal representation 
will automatically select the window. 
If set, disables the cache of a pop-up window create. 
If set, serializes the pop-up window creates so that you cannot do two or 
more creates simultaneously. 
If set, disables audio feedback that an interactive operation was somehow 
aborted. 
If set, reverses the sense of the border arrows for graphics windows whenever 
the scroll bars are set to pan mode. The sense of the border arrows for termO 
windows is also reversed. 

Default: not set by wmstart; if undefined, wm uses "Ox80781", i.e. button 1 (left mouse 
button), Select key, top if select over window, top if going icon/normal, top if unobscured 
move/size, and de-select if going to icon. 

WMRTPRIORITY 
Real time priority for window manager and servers. First byte is real time priority for 
window manager, second byte for servers. Range for each is 0 (highest) to 127 (lowest). 
If out of range, real time priority is disabled. Default: not set by wmstart; if undefined, 
wm uses "Ox787c", i.e. 120 for window manager, 124 for servers. 

WMDESKPTRN 
Dither pattern for desktop; value ranges from 0 to 100. Significant values are 0, 25, 50, 
75 and 100; given value is rounded to nearest significant value. Zero means desktop is 
solid in the desk background color; 100 means solid in the desk foreground color. Default: 
not set by wmstart; if undefined, wm uses "50". 

Hewlett-Packard Company - 5 - April 1988 



WMSTART (1) WMSTART (1) 

WMDESKFGCLR 
Foreground color for the desk top. Default: not set by wmstart; if undefined, wm uses 
"0" (black, unless the color map is changed). If out of range for device, forced within 
range. 

WMDESKBGCLR 
Background color for the desk top. Default: not set by wmstart; if undefined, wm uses 
"1" (white, unless the color map is changed). If out of range for device, forced within 
range. Note: If $ WMDESKBGCLR == $ WMDESKFGCLR, $ WMDESKBGCLR is treated if 
set to the complement of the least significant bit of the foreground color, i.e. black or 
white unless the color map is changed. 

WMBDRFGCLR 
Initial foreground color for window borders. Default: not set by wmstart; if undefined, 
wm uses $ WMDESKFGCLR. If out of range for device, forced within range. 

WMBDRBGCLR 
Initial foreground color for window borders. Default: not set by wmstart; if undefined, 
wm uses $ WMDESKBGCLR. If out of range for device, forced within range. Note: If 
$ WMBDRBGCLR == $ WMBDRFGCLR, $ WMBDRBGCLR is treated if set to the comple
ment of the least significant bit of the foreground color, i.e. black or white unless the color 
map is changed. 

WMMENUFONT 
Font used for pop-up menus. Default: not set by wmstart; if undefined, wm uses 
/usr/lib/raster/dflt/b/v/language for the very high resolution display, 
/usr/lib/raster/dflt/b/h/language for the high resolution display, or 
/usr/lib/raster/dflt/b/l/language for the low resolution display where, language is the 
value of the $LANG environment variable. If $LANG is not defined or an entry for the 
language does not exist, it uses /usr/lib/raster/lOx20/lp.b.8U for the very high reso
lution display, /usr/lib/raster/8x16/lp.b.8U for the high resolution display, or 
/usr/lib/raster/6x8/lp.8U for the low resolution display. 

WMSFKFONT 
Font used for saftkey labels. Default: not set by wmstart. If this variable is undefined, 
wm uses /usr/lib/raster/dflt/b/v/language for the very high resolution display, 
/usr/lib/raster/dflt/b/h/language for the high resolution display, and 
/usr/lib/raster/dflt/b/l/language for the low resolution display, where language is the 
value of the $LANG environment variable. If $LANG is not defined or an entry for the 
language does not exist, it uses /usr/lib/raster/l0x20/lp.8U for the very high resolu
tion display, /usr/lib/raster/8x16/lp.8U for the high resolution display, or 
/usr/lib/raster/6x8/lp.8U for the low resolution display. 

ICONFONT 
Font used for icons. Default: not set by wmstart; if undefined, wm uses 
/usr/lib/raster/dflt/b/v/language for the very high resolution display, 
/usr/lib/raster/dflt/b/h/language for the high resolution display, or 
/usr/lib/raster/dflt/b/l/language for the low resolution display where language is the 
value of the $LANG environment variable. If $LANG is not defined or an entry for the 
language does not exist, it uses /usr/lib/raster/6x8/lp.8U for all displays. 

BANNERFONT 
Font used in window borders. Default: not set by wmstart; if undefined, wm uses 
/usr/lib/raster/dflt/b/v/language for the very high resolution display, 
/usr/lib/raster/dflt/b/h/language for the high resolution display, or 
/usr/lib/raster/dflt/b/l/language for the low resolution display, where language is the 

Hewlett-Packard Company - 6 - April 1988 



WMSTART (1) WMSTART (1) 

value of the $LANG environment variable. If $LANG is not defined or an entry for the 
language does not exist, it uses $ WMMENUFONT. 

WMFONTDIR 
Directory under which font files are located. Default: set to /usr/lib/raster. 

WMBASEFONT 
Default font to load as base font for newly-created termO windows. Default: set to 
/usr/lib/raster/dflt/b/v/language for the very high resolution display, 
/usr/lib/raster/dflt/b/h/language for the high resolution display, or 
/usr/lib/raster/dflt/b/l/language for the low resolution display where language is the 
value of the $LANG environment variable. If $LANG is not defined or an entry for the 
language does not exist, it defaults to /usr/lib/raster/10x20/lp.8U for very high reso
lution display, or /usr /lib/raster /8x16/lp.8U for high resolution display; for Series 
300 low resolution displays, it defaults to /usr/lib/raster/6x8/lp.8U. 

WMALTFONT 
Default font to load as alternate font for newly-created termO windows. HP-15 (2-byte) 
fonts cannot be used for the alternate font. Default: set to 
/usr/lib/raster/dflt/a/v/language for the very high resolution display, 
/usr/lib/raster/dflt/a/h/language for the high resolution display, or 
/usr/lib/raster/dflt/a/l/language for the low resolution display where language is the 
value of the $LANG environment variable. If $LANG is not defined or an entry for the 
language does not exist, it defaults to /usr/lib/raster/lOx20/lp.b.8U for very high 
resolution displays or /usr/lib/raster/8x16/lp.b.8U for high-resolution displays; for 
Series 300 low-resolution displays, it defaults to /usr /lib/raster /6x8/lp.b.8I. 

KJINPUTFONT 
Font used in the Kanji input window for termO windows. KJINPUTFONT is used only by 
the Japanese tOserver which supports the Kanji input method. Default: not set by 
wmstart; if undefined, $ WMBASEFONT is used. 

TERM Always set to "hp9836". 

Window System Context 
There are a number of different ways you can start up and exit the window system. 

1. Directly from init to wmstart 
This is appropriate for a single-user (single-display), single-uid system, or one with limited 
flexibility (always same user on each display; no security). You can go through sU(l) if 
desired to run the window system's processes as other than super-user (for safety, if noth
ing else). Init can be told to restart wmstart if the window system terminates. No login 
status is recorded. Extra work is needed in inittab to set up environment variables, etc. 

1.1. wmstart from init state 1 
Wakes up immediately when the system is booted. May be dangerous if fsck(lM) 
is needed, because lots of file· system activity occurs in the process of waking up 
the window system, which could corrupt a disc further. Greatly increases the 
dependence on the health of the system to get a shell, compared to vanilla 
getty jlogin. 

1.2. wmstart from init state 2 
The system wakes up a single-user (super-user) shell for fsck, on the ITE or on a 
normal terminal. Mayor may not require login while in state 1 (it's up to you). 
The "init 2" command is given by the super-user when ready to start the window 
system. The single-user shell may be automatically killed, or the super-user may 
have to exit it first. 

Hewlett-Packard Company - 7- April 1988 



WMSTART (1) WMSTART (1) 

2. From init via getty 
Appropriate for a single- or multi-user (multi-display), multi-uid system. Not every ter
minal need be a bit-mapped display which supports windows. Getty and login run using 
the ITE. Users must log in normally. This can be done from init state 1 (wake up multi
user), or iriit 2 (wake up single-user, then switch). 

2.1. User's home shell is wmstart 
Windows start up automatically after login. All terminals must be bit-mapped 
displays, or window users may only log in on window devices (other users mayor 
may not, at their choice). It's difficult to customize the environment per user 
without modifying wmstart. Doing a wmstop leaves you logged out. 

To put wmstart in /etc/passwd as a login shell, the following must be done: 

1. Make a custom version, and name it something that does not contain 
the letter r, for example, "wmstat". 

2. In the custom version, explicitly set SHELL to the value desired: 

SHELL="bin/sh"; export SHELL 

3. Put the name of this custom version in /etc/passwd. 

2.2. Home shell is sh(l) or csh(l) 
This allows you t2Sustomize the window environment for all users. You must set 
up the I'I:~_environment first (e.g. using tset( 1)). 

2.2.1. Run wmstart from /etc/profile 
All users get windows (all terminals are bit-mapped displays). Windows 
start up automatically after login. No per-user cllstomization is possible 
(global only). Only works for sh(l) (until csh(l) supports global initiali
zation). 

2.2.2. Run wmstart from .profile or .login 
Per-user customization and control is possible. Windows start up 
automatically after login. This can be made conditional on terminal type 
(bit-mapped display or not). 

2.2.3. Run wmstart manually 
You get a normal shell on the ITE after login. You can reinvoke wmstart 
to restart windows after exiting. This provides full user control, but win
dows aren't automatic. 

For methods 2.2.1 - 2.2.3, there are two ways to start the window system: 

2.2.A. Run as subprocess ('wmstart') 
ITE shell waits for termination (an extra process). After wmstop, the 
user is still logged in to the ITE shell, and can manually restart windows. 

2.2.B. Execute directly ('exec wmstart') 
The ITE shell is replaced by the wmstart process; there is no waiting shell 
process. After wmstop, the user is logged out. 

Note that clever combinations of init(l) and wmstart are possible. For example, you could require 
login to a single-display, multi-user system, then run wmstart, then switch to an init state which, 
for example, restarts a shell on the console window (wconsole) each time the old one terminates. 

Suppose you want the window system to terminate when the first shell exits. To accomplish this, 
you can execute "trap wmstop 0" in that shell. To make this automatic, change a copy of 
wmstart so it invokes wsh with the -g (login shell) option, and put a .profile file containing the 
command in your home directory. 

Hewlett-Packard Company - 8 - April 1988 



WMSTART (1) WMSTART (1) 

SEE ALSO 
windows(l), wmready(l), wmstop(l), wsh(l), umask(l), rtprio(2), plock(2), pty(4). 

DIAGNOSTICS 

BUGS 

In general wmstart does not check for errors. If anything goes wrong, various commands may 
write to standard error, but the script might not terminate. If $PATH is strange, some commands 
may not be found. If the window manager is not ready after about 20 seconds, wmstart prints a 
message to standard error and quits waiting to start an initial window and shell. 

If you invoke wmstart from the ITE in the background (with "& "), the ITE shell does not wait. 
Instead it puts out a prompt before blocking, waiting for the next command line. Depending on 
timing, this prompt may appear on the windows screen, and can only be erased by repainting. 

Hewlett-Packard Company - 9- April 1988 



WMSTOP (1) WMSTOP (1) 

NAME 
wmstop - stop the window system on one display 

SYNOPSIS 
wmstop 

DESCRIPTION 
This command stops the window system for one display, normally the one from which it was 
invoked. It may be called from any process connected to any window in that window system. 

wmstop actually calls a library routine (wmkiU(3W)) to stop the window system whose window 
manager's special file is in the directory specified by the environment variable $ WMDIR. Calling 
the library routine causes the window manager to terminate gracefully, destroying all windows 
and clearing the screen. 

After wm terminates, a signal (SIGHUP) propagates to all server processes for windows in the win
dow group, thence to user processes in the group. This normally causes them to also exit (grace
fully or not). Processes which ignore the signal (such as those started with nohup(l)) may con
tinue to run, but their output is lost or overwrites portions of the screen asynchronously unless it 
was redirected away from a window. Meanwhile, the internal terminal emulator (ITE) regains 
control of the keyboard for input. 

SEE ALSO 
windows(l), wmstart(l), wmready(l), wmkill(3W). 

DIAGNOSTICS 
The following diagnostic values are returned by this routine: 

o If no errors are detected. 

Prints a message to standard error and returns 1 if it can't open the special file (within two 
seconds), or if the library call fails. If invoked from a process connected to a window, and if 
successful, wmstop may get a signal and terminate before returning O. 

H~wlett~Packard Company - 1 - April 1988 



WSELECT (1) WSELECT (1) 

NAME 
wselect ~ connect a window to the keyboard 

SYNOPSIS 
wselect [window_spec] 

DESCRIPTION 
This command makes the specified window the selected window, that is, the one attached to the 
keyboard and the buttons on the optional mouse or stylus switch on the optional tablet. By 
default, if you give no window_specs, the window selected is the one which is the standard input 
to wselect. See windows (1) for an explanation of window_spec. 

The selected window is highlighted by having a line through the center of its border. 

EXAMPLES 
wselect Select the window connected to standard input. If it was not already selected, this can 

only be done from a shell script. 

wselect win8 
Attach the keyboard to window "win8". 

SEE ALSO 
windows(l), wborder(l), wcreate(l), wdestroy(l), wdisp(l), wfont(l), wlist(l), wmove(l), wsh(l), 
wsize(l), wautoselect(3W), wselect(3W). 

DIAGNOSTICS 
The following diagnostic values are returned by this routine: 

o If the routine is succesfull. 

Prints a message to standard error and returns 1 if any error is detected, such as bad invo
cation, standard input is not a window, can't open the window, etc. 

Hewlett-Packard Company - 1 - April 1988 



WSH (1) WSH (1) 

NAME 
wsh - create new shells in new or existing windows 

SYNOPSIS 
wsh [-w type] [-kboiTtMmNnv] [-1 x,y] [-s w,h] [-r w,h] [-gad] [-c cmdline] 

[window-llpec ... ] 
wsh -e [-gad] [-c cmdline] window-llpec ... 

DESCRIPTION 
This command creates new windows with the given names, sets up reasonable environments in 
them (see below), and starts shells associated with them. If you don't give window_spec, wsh 
creates one window with a default name. See windows(l) for an explanation of window_spec. 

The shell program used is defined by the $SHELL environment variable. It can be a full path
name, or be relative to one of the directories in $p A TH. If $SHELL is null or not defined, the 
default shell is /bin/sh. 

By default (no -e option), wsh creates all the needed windows at once, before creating any shells. 

The options for wsh are identical to those for wcreate, with the addition of: 

-e Create shells and attach them to existing windows (or terminals ... ), which must not be 
already affiliated to any program(s). With this option, none of the options normally 
passed to wcreate are allowed, and you must supply at least one window_spec. 

-g Make the new shell for each window a login shell. The literal effect is to prepend a "-" to 
the first argument (argO, program basename) passed to the shell program. This causes 
some programs to do extra initialization, e.g. /bin/sh runs fete/profile and 
$HOME/ .profile. 

-e Give the new shell for each window a command line to execute. This option and its argu
ment are passed (as two separate arguments) to each new shell. 

-a Causes the window to be automatically destroyed when its device interface (special file) is 
closed by every process that has opened it. See wdestroy(l) for details on the -a option. 

-d Causes the window to be automatically destroyed when its device interface (special file) is 
closed by every process and only when a new window has been created. See wdestroy(l} 
for details on the -d option. 

WARNING: Don't give the -e option unless the shell program recognizes it. 

If you do not give a window_spec, wsh calls the window manager to pick a name for you before 
calling wcreate. 

wsh waits until each shell is successfully executed from a child process before starting the next 
one. 

Side Effects 
wsh sets up a reasonable user environment for each shell. It performs only those actions which 
most users need, leaving all other initialization under user control. 

wsh adds an entry to /ete/utmp for termO windows. This means that who(l) will show the user 
as being logged in on a pty for every window shell still active. 

Each new shell is a process group leader, affiliated to its window, with its standard input, output, 
and error connected to the window, opened for read/write, and with all other files closed. wsh 
checks affiliation by opening (and closing) /dev/tty. It refuses to start an unaffiliated shell, e.g., 
if there is already a shell connected to the window. 

wsh sets signals SIGHUP, SIGINT, and SIGQUIT to SIG-DFL (see signal(2)). The first is necessary 
in case the program was started with nohup(l); each new shell must be able to receive SIGHUP 

Hewlett-Packard Company - 1 - April 1988 



WSH (1) WSH (1) 

from its window's server. The latter two are necessary in case the program was started in the 
background with' " &"; they are safe because each new shell is affiliated to a new window. 

wsh sets the window's special file permissions to 0622. (Ownership must already be set to the 
process's userid for this to succeed. Normally this is done automatically by wcreate.) 

wsh calls ioctl(2) to set the line discipline for each window to the following (see tty(4) for details): 

1* Wag * / BRKINT I IGNPAR I ICRNL I IXON, 
1* oflag * / OPOST IONLCR I TABO, 
1* cflag * / B9600 I CS8 I CREAD I CLOCAL, 
1* lflag * / ISIG I ICANON I ECHO I ECHOE I ECHOK, 
1* line */ 000, 

1* OINTR */ 003, 1* AC */ 
/* 1 QUIT */ 034, 1* A\ * / 
1* 2 ERASE */ 010, /* AH * / 
1* 3 KILL */ 025, /* AU * / 
1* 4 EOF */ 004, 1* AD * / 
1* 5 EOL */ 000, 1* A@ * / 
1* 6 rsvd1 */ 000, 
1* 7 rsvd2 */ 000, 

wsh does not change environment variables, nor alarm(2) or nice(2) settings. 

EXAMPLES 
wsh Greg 

Create a termO window named "Greg" at the default screen location, and start a shell in 
it. 

SHELL=/usr/bin/vi wsh -kb -1100,200 -s80,20 termwin 
Create an assigned (selected), bottom, termO window named term win in the directory 
$ WMDIR, with a "shel1" of type /bin/vi connected. The upper left corner is at x = 100, 
y = 200 (pixels). The window is 80 columns and 20 rows in size. 

wsh -wgraphics -gc'exec anvil' win1 win2 
Create graphics windows "win1" and "win2", start a login shell for each window, and 
have them execute the command "exec anvil". 

wsh -ea uhoh 
Connect a shell to window "uhoh", which was created with wcreate (or whose shell ter
minated). In addition, automatically destroy the window when the new shell is ter
minated. 

To cause a termO window to be destroyed when the connected shell exits, specify -a with the 
other wsh options. 

SEE ALSO 
windows(l), wborder(l), wcreate(l), wdestroy(l), wdisp(l), wfont(l), wlist(l), wmove(l), 
wselect(l), wsize(l), ioctl(2), signal(2), utmp(4), tty(7). 

Hewlett-Packard Company - 2- April 1988 



WSH (1) WSH (1) 

DIAGNOSTICS 
wsh prints a message to standard error and returns non-zero if it detects any error. 

wsh uses a close-on-exec pipe from its child processes to gain information on any error which 
occurs up through successful exec(2) of each shell. 

Return values and possible meanings: 

WARNINGS 

o No errors detected. 

No windows or shells created, due to: 
bad invocation 
error before calling wcreate 
failure to call wcreate 
wcreate returned anything other than 2 
(including termination due to signal) 

Aborted after possibly creating windows, due to problems while expanding a 
window_spec pattern. 

2 Windows possibly created, but no shells (wcreate returned 2) 

3 All windows and one or more shells possibly created, but failed to: 
open pipe (with write file descriptor greater than 2) 
set pipe to close-on-exec 
fork 
open window as file descriptor 0 
affiliate to window 
dup 0 to file descriptors 1 and 2 
set window permissions (using chmod) 
set window line discipline (using ioctl) 
execute shell program 

If the process which calls wsh has SIGCLD set to SIG--.lGN, wsh thinks wcreate fails because sys
tem(3) returns -1. 

Hewlett-Packard Company - 3 - April 1988 



WSIZE (1) WSIZE (1) 

NAME 
wsize - change sizes of one or more windows 

SYNOPSIS 
wsize [-s w,h] [window-------.Spec ... ] 

DESCRIPTION 
This command changes the sizes of the specified windows (by default, if you give no 
window_specs, the window connected to standard input). See windows(l) for an explanation of 
window_spec. 

By default (if you give no -s option), wsize changes each window to its maximum possible size 
(width and height), which is its raster/buffer size less its pan (view) offsets. The upper left 
corners of the user units remain fixed, while the opposite corners change their locations. For 
termO windows, which do not support panning, the maximum size is the logical screen size, nor
mally the same number of rows and columns as when the window was created. See wcreate(l) for 
details. 

The option is: 

-s w,h Set the new sizes to the given width and height, in units appropriate to type of each win
dow, as in wcreate(l). (If you give more than one window_spec, this only makes sense if 
they are all of the same type.) 

wsize silently limits the new size of each window to its maximum width and height. It also 
silently limits its minimum width and height when it has a normal border. If the window's border 
is thin, or if the window has no border, the minimum allowed size is one character cell on a side 
(for termO windows) or one pixel on a side (for other types). 

This command does not let you change the logical screen size (distinct from window and buffer 
sizes) of a termO window. 

EXAMPLES 
wsize Change the window connected to standard input to its maximum size. 

wsize -s400,500 win5 win2 
Change the size of graphics windows "win5" and "win2" to 400 pixels wide, 500 pixels 
high, or to their maximum widths and/or heights if smaller. 

wsize -s40,10 
Change the size of the window connected to standard input, of type termO, to 40 
columns by 10 rows. 

HARDW ARE DEPENDENCIES 
Series 500: 

Borderless windows (-T option) are not supported on Series 500. 

SEE ALSO 
windows(l), wborder(l), wcreate(l), wdestroy(l), wdisp(1), wfont(l), wlist(1), wmove(l), 
wselect(1), wsh(l), wsize(3W). 

DIAGNOSTICS 
The following diagnostic values are returned by ihis command: 

o If no errors are detected. 

Prints a message to standard error and returns 1 if it encounters an error which prevents 
sizing a window, including trouble while expanding a window_spec pattern. 

2 Prints a message to standard error, continues, and later returns 2 if it encounters any error 
while trying to size one window. 

Hewlett-Packard Company - 1 - April 1988 





LIBRARY ROUTINE SUMMARY 

altJont_termO ........... ........... ........... ................ .................. .... .......... set or inquire the TermO alternate font 
baseJont_termO ...... .... ........................ ............... ........ ..... ............... ... ...... set or inquire the TermO base font 
JontgetiLtermO ........ ...... ................................ ..... ..... .... ........... ..... ............... inquire the ID of a TerrnO font 
Jontgetname_termO ... .......... .......... ........................ ... .... ............ ......... ...... inquire the name of a TermO font 
JontloaLtermO .............................................................................................................. load a TermO font 
JontreplacealLtermO ... ... ........ ............................... ............ replace the current base font and alternate font 
Jontsize_sizeO ................................................................................................................... ,. TermO font size 
Jontswap_termO ................. ............................ .......... .......... ............ ... ........... ........ ... .... replace a TermO font 
Jromxy_termO ..... ... .................... ........ ............ ... ... ................. convert from TermO pixel units to characters 
toxy_termO .................................................................................... convert TermO character units to pixels 
wautodestroy ........ ..... ... ................ ... ...... ... ...... ... ....... .............. .... .......... .... ...... ... ........ autodestroy a window 
wautoselect ..... ........ ........... ... ........... ... ......... ...... ... .... ... ..... ....... .... ........ ... ..... ......... ... ..... autoselect a window. 
wautotop ....... ........... ......... ......... ......... ... ..... ........... ... ...... ....... .................... ...................... autotop a window 
wbanner ................................................................................... inquire about or control a window's border 
wbottom .................................................................................... ........................................... bottom window 
wconceal ................. ............................................................................................................. conceal window 
wcreate_graphics ....................................................................................... create a graphics window type 
wcreate_termO ......... ....................... ........... ......... ............ ............................... create a termO window type 
wdestroy ........................................................................................................................... destroy a window 
wdfttpos .. .......... ........................................................ ....... ................. .............. default window/icon position 
weventclear .. ................. ............................ ................................................ ........ clear window locator events 
weventpoll ..................................... ................................... .............. ........ ....... poll for window locator events 
wgeLhw_sprite_color ........ ................ .......... .............. .............. ........................ get hardware sprite colors 
wget_see_thru ...... .............. ................................ ............ ........ .............. ...... get see_thru color index value 
wgetbcolor .......................... ....................................... ...... ............. ........ ................. get window border colors 
wgetbcoords ..................... ...... .................................................................... ................ get border coordinates 
wgetcoords ..... ................. ........................................................ ...... ....... ..... ............... get window coordinates 
wgetecho ......... ....... ..................................... ............................. ....................................................... get echo 
wgeticonpos ...... ........ ......................................... ....... ......... ......... .............. ............. get current icon position 
wgetlocator ........................................................................................... get window echo/locator parameter 
wgetname .............................................................................................................................. get path name 
wgetrasterecho ............................................ ........................... .................................. ............. get raster echo 
wgetscreen ....................................................... .......... ..... ...................... ..................... get screen information 
wgetsigmask ............................................................................... get window SIGWINDOW interrupt mask 
wgskbd .... ........ ................ ............ ........ ...................... .............. set keyboard mode for graphics window type 
whotspoLcreate .... ........ ................................. ..................................... ............................... create a hotspot 
whotspot_delete ........ ............................. ..... ............................. ........................................... delete a hotspot 
whotspot_get ............... .............. .............. ............... ................. .......................................... get hotspot data 
whotspot_set ....... ............................................................. ....... ............ ............................... set hotspot data 
wiconic .................................................................................................... change a window to/from an icon 
window....... ......... ............... ...................... ................. ................ .......... summary of window library routines 
winit ...... ....................................... ......... ................... ............. ...................... ........... initialize window device 
winpuLconJ ...................................................................... read/set configuration of window input channel 
winput_getroute ........ .............. ...... ........ ............ .......................... ...... determine window input routing path 
winput_read .......... ............ ..... .................................. ....... ..... .................... read from window input channel 
winpuLsetroute .......... .............. ...... ...... ................ ............ ....... routes input and events to another window 
winpuLwidpath ........................................................................................... get path name for a window id 
wmen'1L--activate ................................................................................................................. activate a menu 
wmen'1L--create ....................................................................................................................... create a menu 
wmen'1L--delete ...... ........ ........... .................................. ............... ........ ............ .............. ............ delete a menu 

Hewlett-Packard -i- April 1988 



LIBRARY ROUTINE SUMMARY 

wmen1L-eventread .... .......... .................... ................. .............. .......... ...... ............ ....... ... read the menu event 
wmen1L-item ...................................... .......................................................... specify or change a menu item 
wminquire ............................................................................... get a window manager environment variable 
wmkill .................................................................................................................... kill the window manager 
wmove .......................................................................................................... move the location of a window 
wmpathmake ......................... .......................................... build a path name using an environment variable 
wmrepaint ................ .............. ............ ......................... ...... ... ........... ............................. repaint the desk top 
wpan ....................................................... ........................................................... ....... .......... pan the window 
wpauseoutput ......................... ............ ...................... ........................................... pause output to a window 
wrecover .......................................... ...................... ............... ........... ............................ ..... recover a window 
wscrn_sprite_mode ................................................. ............................... set full-screen sprite control mode 
wscrolLget ................. ........... ................. ... ...... ........................................ interrogate scroll bar information 
wscroll_set ......... ...... .......... ........... ................................. control of window scroll bar elevators and arrows 
wselect . ................................................... .......................... ......... attach a keyboard to the specified window 
wset_hw_sprite_color ... ........ ................ .... ...................... ...... ..... ............. .... ....... set hardware sprite colors 
wset_see_thru ............ ... ....... .......... ... .............. ............................................ set see_thru color index value 
wsetbcolor .. ............................................................................................. .............. set window border colors 
wsetecho ...................................... ........... ..................................................... ........... ........... ... ........... set echo 
wseticon .......................................... ........ .......................................... ........ ................... .................... set icon 
wseticonpos ................................. ........... ... ...... ......... .......................................................... set icon position 
wsetlabel ............................................................................................................. set label in window border 
wsetlocator .... ..... ........... ......... ............ ............................................................... set window locator position 
wsetrasterecho ........... ........ ...... ........ ................................................................... ................... set raster echo 
wsetsigmask ............................................................................... set window SIGWINDOW interrupt mask 
wsfLmode .............................. ................................ ................. ........... ........ ..... ...... switch to soft key mode 
wsfLprog ................ ..... ..... ................ ......................................................... ... ... set programmable soft keys 
wshuffle ........................................ ........... ............... shuffle windows' relative locations within display stack 
wsize ................................................................................................................ change the size of a window 
wterminate ...... ................................ .................................. ... ......... .... .... ............... release window resources 
wtop ................................................ ...................... .......... move the window to the top of the window stack 

Hewlett-Packard -ii- April 1988 



ALTFONT_TERMO (3W) ALTFONT_TERMO (3W) 

NAME 
altfont_termO - set or inquire the TermO alternate font 

SYNOPSIS 
int altfont_termO(fd,id); 
int fd; 
int id; 

DESCRIPTION 
fd is an integer file descriptor for an opened TermO window type device interface. 

id identifies the font which shall become the alternate font, or requests inquiry. 

DISCUSSION 
This routine has two distinct uses. If id has a value of -1, the font id of the current alternate font 
is returned. If id is not -1, this routine attempts to make the font specified by id become the new 
alternate font. HP-15 (2-byte) fonts cannot be used as the alternate font; attempting to do so will 
result in an error. 

The screen is not repainted when this routine is used. Only future use of the alternate font is 
affected by this routine (i.e., changing the alternate font is not retroactive). 

HARDW ARE DEPENDENCIES 
Series 500: 

TermO routines do not support HP-15 (2-byte) fonts on Series 500. 

SEE ALSO 
fon tgetid_termO( 3W) ,fontloaLtermO( 3W), basefont_termO( 3W) ,fontswap_termO( 3W), 
fontreplaceall(3W). 

DIAGNOSTICS 
A return value of -1 indicates failure. Otherwise, the font id is returned for successful inquiry, or 
the font id of the new alternate font is returned for successful selection. 

Hewlett-Packard Company - 1 - April 1988 



BASEFONT_TERMO (3W) BASEFONT_TERMO (3W) 

NAME 
basefont_termO - set or inquire the TermO base font 

SYNOPSIS 
int basefont_termO(fd,id); 
int fd; 
int id; 

DESCRIPTION 
fd is an integer file descriptor for an opened TermO window type device interface. 

id identifies the font which shall become the base font, or requests inquiry. 

DISCUSSION 
This routine has two distinct uses. If id has a value of -1, the font id of the current base font is 
returned. If id is not -1, this routine attempts to make the font specified by id become the new 
base font. The screen is not repainted. Only future use of the base font is affected by this routine 
(i.e., changing the base font is not retroactive). 

HARDW ARE DEPENDENCIES 
Series 500: 

TermO routines do not support HP-15 (2-byte) fonts on Series 500. 

SEE ALSO 
fontloacLtermO(3W) , 
fontreplaceall (3W). 

DIAGNOSTICS 

fontgeticLtermO(3W) , altfont_termO(3W) , fontswap_termO(3W) , 

A return value of -1 indicates failure. Otherwise, the font id is returned for successful inquiry, or 
the font id of the new base font is returned for successful selection. 

Hewlett-Packard Company - 1 - April 1988 



FONTGETID_TERMO (3W) FONTGETID_TERMO (3W) 

NAME 
fontgetid_termO - inquire the ID of a TermO font 

SYNOPSIS 
int fontgetiLtermO( fd,fontpath); 
int fd; 
char "'fontpath; 

DESCRIPTION 
fd is an integer file descriptor for an opened TermO window type device interface. 

fontpath 
a pointer to a path name for the font in question. 

DISCUSSION 
This routine returns the font id of the named font, if it is currently loaded. If the font is loaded 
more than once, the minimum font id which describes the font is returned. This routine is 
intended to support programs wishing to prevent multiple instances of the same font in TermO's 
cache. The values returned for id have no meaning as fast alpha or font manager font ids. 

HARDW ARE DEPENDENCIES 
Series 500: 

TermO routines do not support HP-15 (2-byte) fonts on Series 500. 

SEE ALSO 
fontgetname (3W) ,fontsize_termO( 3W). 

DIAGNOSTICS 
A return of -1 indicates and error; otherwise the font id is returned. Possible errors can occur if 
the requested font is not present in TermO's cache. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



FONTGETNAME_TERMO (3W) FONTGETNAME_TERMO (3W) 

NAME 
fontgetname_termO - inquire the name of a TermO font 

SYNOPSIS 
#include <stdio.h> 
char * fontgetname_termO ( fd,id); 
int fd, id; 

DESCRIPTION 
fd is an integer file descriptor for an opened TermO window type device interface. 

id identifies the font whose path name is desired. 

DISCUSSION 
This routine returns the name of the specified font, if it is currently loaded. Its return value is a 
pointer to static storage which is modified every time this routine is called. 

This routine is intended to support programs wishing to use font manager inquiry routines in con
junction with TermO font routines. 

HARDW ARE DEPENDENCIES 
Series 500: 

TermO routines do not support HP-15 (2-byte) fonts on Series 500. 

SEE ALSO 
fontgetiLtermO(3W) ,~leinfo(3W). 

DIAGNOSTICS 
A return of NULL indicates and error; otherwise the font name is returned. Errors can occur if 
the requested font is not present in TermO's cache. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



FONTLOAD_TERMO (3W) FONTLOAD_TERMO (3W) 

NAME 
fontloaLtermO - load a TermO font 

SYNOPSIS 
int fontload_termO(fd,fontpath); 
int fd; 
char *fontpath; 

DESCRIPTION 
fd is an integer file descriptor for an opened TermO window type device interface. 

fontpath 
a pointer to a path name for the font to be loaded. 

DISCUSSION 
This routine causes a font file to be loaded from the file system into TermO's font cache. This 
action prepares the font to be used by TermO later, by means of the basefont_termO or 
altfonLtermO routines or via escape code sequences. The id of the newly loaded font is returned. 
The values returned for id have no meaning as font manager parameters. 

It is possible to load the same font path name more than once, in which case fontloaLtermO 
returns a unique id each time. 

HARDW ARE DEPENDENCIES 
Series 500: 

TermO routines do not support HP-15 (2-byte) fonts on Series 500. 

SEE ALSO 
fontswap_termO(3w) ,fontreplaceall(3w) ,basefont_termO(3w) ,altfont_termO( 3w) 
fontgetiLtermO( 3w ). 

DIAGNOSTICS 
A return of -1 indicates and error; otherwise the font id is returned. Errors include atte:r.npting to 
load when there is not enough space in the font cache, and attempting to load a font which is not 
the same cell size as the other font(s) currently in use. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



FONTREPLACEALL_TERMO (3W) FONTREPLACEALL_TERMO (3W) 

NAME 
fontreplaceall_termO - replace the current base font and alternate font 

SYNOPSIS 
int fontreplaceall_termO(fd,bfpath,afpath); 
int fd; 
char *bfpath, *afpath; 

DESCRIPTION 
fd is an integer file descriptor for an opened TermO window type device interface. 

bfpath path name to the new base font. 

afpath path name to the new alternate font, or NULL. 

DISCUSSION 
This routine causes all of the fonts currently being used to be removed and replaced by the 
specified base font and alternate font. If the alternate font pathname parameter is not supplied, 
the font designated by b/path is used for both the base font and the alternate font. HP-15 (2-byte) 
fonts are not allowed to be alternate fonts. If a/path is a HP-15 font or if a/path is set to NULL 
and b/path is a HP-15 font, an error will be returned and no fonts will have changed. 

All characters printed in the old alternate font are changed to use the new alternate font, named 
a/path. Then all other characters are changed to use the new base font, named b/path. The 
screen is repainted, using the new font or fonts. 

HARDW ARE DEPENDENCIES 
Series 500: 

TermO routines do not support HP-15 (2-byte) fonts on Series 500. 

SEE ALSO 
fontswap_termO(3W),fontloacLtermO(3W). 

DIAGNOSTICS 
A return of -1 indicates failure, see errno(2) for further information. Otherwise, 0 is returned. It 
is an error for b/path to be NULL. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



FONTSIZE_TERMO (3W) FONTSIZE_TERMO (3W) 

NAME 
fontsize-sizeO - TermO font size 

SYNOPSIS 
int fontsize_termO( fd, wptr ,hptr); 
int fd; 
int *wptr, *hptr; 

DESCRIPTION 
fd is an integer file descriptor for an opened TermO window type device interface. 

wptr,hptr 
the pixel width and height components of the fonts' common cell size. 

DISCUSSION 
This routine sets the caller's variables to the current cell size of the I-byte characters, which is 
common to all fonts in the cache. The 2-byte characters are twice as wide as the I-byte charac
ters. This size is in units of "square pixels", common to all display hardware. 

HARDW ARE DEPENDENCIES 
Series 500: 

TermO routines do not support HP-I5 (2-byte) fonts on Series 500. 

SEE ALSO 
fontreplaceall{3W) . 

DIAGNOSTICS 
A return of -1 indicates failure, see errno(2) for further information; otherwise, 0 is returned. See 
errno(2) for more information. 

Hewlett-Packard Company - I - April 1988 



FONTSWAP_TERMO (3W) FONTSWAP_TERMO (3W) 

NAME 
fontswap_termO - replace a TermO font 

SYNOPSIS 
int fontswap_termO( fd,newpath,oldid); 
int fd; 
char *newpath; 
int oldid; 

DESCRIPTION 
fd is an integer file descriptor for an opened TermO window type device interface. 

newpath 
path name to the new font. 

oldid identifies the old font to be replaced. 

DISCUSSION 
This routine causes the old TERMO font with font id of oldid to be removed and replaced by a 
new one specified by newpath. 

All characters displayed in the old font are changed to use the new font. If the old font was the 
base font, the new font becomes the base font. If the old font was the alternate font and the new 
font is not a HP-15 (2-byte) font, the new font becomes the alternate font. If the new font is a 
HP-15 font, an error will occur and the fonts will not be swapped. HP-15 fonts cannot be the 
alternate font. The font id of the new font is returned. 

HARDW ARE DEPENDENCIES 
Series 500: 

TermO routines do not support HP-15 (2-byte) fonts on Series 500. 

SEE ALSO 
fontloaLtermO( 3W) ,fontreplaceall_termO( 3W). 

DIAGNOSTICS 
A return value of -1 indicates failure. Otherwise, the fontid is returned. It is an error for newpath 
to be NULL. See errno(2) for more information. 

Hewlett-Packard Company - 1 - , April 1988 



FROMXY_TERMO (3W) FROMXY_TERMO (3W) 

NAME 
frornxy_termO - convert from TermO pixel units to characters 

SYNOPSIS 
int fromxy _termO( fd,x,y ,colptr ,rowptr); 
int fd; 
int x,y; 
int *colptr, *rowptr; 

DESCRIPTION 
fd is an integer file descriptor for an opened TermO window type device interface. 

x,y are the coordinates, in pixels relative to upper left corner of window, of the point to be 
mapped. 

colptr ,rowptr 
are pointers to the coordinates, in character units, after mapping. 

DISCUSSION 
This routine provides a mapping from pixel units to column and row in a TERMO window. The 
column and row returned are the coordinates of the 1 byte character cell which contains the point 
x,y. The current font cell size applies to this conversion. Note that 2-byte characters take up two 
columns. Both coordinate systems (pixels and characters) define 0,0 to be at the upper left corner 
of the window (which may be offscreen). Note that character 0,0 in the window may not be char
acter 0,0 in the scroll buffer. 

This routine is useful to convert coordinates from locator input devices into screen positions. 

HARDW ARE DEPENDENCIES 
Series 500: 

TermO routines do not support HP-15 (2-byte) fonts on Series 500. 

SEE ALSO 
toxy_termO(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



TOXY_TERMO (3W) TOXY_TERMO (3W) 

NAME 
toxy _termO - convert TermO character units to pixels 

SYNOPSIS 
int toxy _termO( fd,xptr ,yptr ,col,row); 
int fd; 
int *ptr, *yptr; 
int col, row; 

DESCRIPTION 
fd is an integer file descriptor for an opened TermO window type device interface. 

xptr,yptr 
pointers to pixel coordinates of the point after mapping, whose values are set by this rou
tine. 

col,row 
the coordinates (in character units) of the point to be mapped. 

DISCUSSION 
This routine provides a mapping from character units (columns and rows) to pixels in a TermO 
window. The coordinates of the upper-left-most pixel in the character are used. Both coordinate 
systems (pixels and characters) define 0,0 to be at the upper left corner of the window (which may 
be offscreen). Note that character 0,0 in the window may not be character 0,0 in the scroll buffer. 

This routine is useful to convert screen positions into x,y locations suitable for use with sprites or 
other pixel-oriented tracking schemes. 

HARDW ARE DEPENDENCIES 
Series 500: 

TermO routines do not support HP-15 (2-byte) fonts on Series 500. 

SEE ALSO 
frornxy_termO(3W). 

DIAGNOSTICS 
A return of -1 indicates failure, see errno(2) for further information; otherwise 0 is returned. See 
errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WAUTODESTROY (3W) W A UTODESTROY (3W) 

NAME 
wautodestroy - autodestroy a window 

SYNOPSIS 
#include <window.h> 
int wautodestroy (fd, value) 
int fd; 
int value; 

DESCRIPTION 
fd is an integer file descriptor for a window's opened device interface. 

value is an integer which determines the action of this routine. 

DISCUSSION 
This call inquires or sets whether the window will automatically be destroyed upon the last close 
operation on that window. Note that this routine is ineffectual unless wrecover{3W) has been 
called to make the window recoverable. 

If value is set to -1, then the window's current autodestroy status is returned. A 1 value returned 
indicates that the window denoted by this file descriptor is currently autodestroy, while a 0 value 
returned indicates that it is not. 

If value is set to 0, then the window will not be destroyed when its device interface is closed by 
every process that has opened the window. This is the default state at window create time. 

Setting value to 1 causes the window to be destroyed upon the last close. 

SEE ALSO 
wrecover(3W) . 

DIAGNOSTICS 
A value of 0 or 1 is returned unless fd does not refer to a window, in wich case -1 is returned. See 
errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WAUTOSELECT (3W) WAUTOSELECT (3W) 

NAME 
wautoselect - autoselect a window 

SYNOPSIS 
#inciude <window.h> 
int wautoselect (fd, value) 
int fd; 
int value; 

DESCRIPTION 
fd is an integer file descriptor for an opened TermO window type device interface. 

value is an integer which determines what action the routine will take. 

DISCUSSION 
This call inquires or sets, depending on the value parameter, whether the termO window will 
automatically become selected when output is sent to its device interface. This routine does not 
work with graphics windows. 

If value is -1, then the current autos elect status is returned. A 1 value returned indicates that the 
window denoted by this file descriptor is currently autoselect while a 0 value returned indicates 
that it is not. 

Setting value to 0 will turn off autoselect-the window won't automatically be selected when out
put is sent to its device interface. This is the default state at window create time. 

Setting value to 1 causes the window to become selected automatically upon output to its device 
interface. 

Sending output to a window that has auto-selection enabled has an additional side effect: it turns 
auto-selection off. Therefore, to automatically select a window when output is sent to it, call wau
toseleel whenever output is sent to the window. 

DIAGNOSTICS 
A value of 0 or 1 is returned unless auto-select does not apply or fd does not refer to a window, in 
which case -1 is returned. See errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WAUTOTOP (3W) WAUTOTOP (3W) 

NAME 
wautotop - autotop a window 

SYNOPSIS 
#include <window.h> 
int wautotop (fd, value) 
int fd; 
int value; 

DESCRIPTION 
fd is an integer file descriptor for an opened termO window type device interface. 

value is an integer which determines what action the routine should take. 

DISCUSSION 
This call inquires or sets whether the window will automatically become top most upon output to 
its device interface. This routine does not work with graphics window types. 

If value is -1, the current autotop state is returned. A 1 value returned indicates that the window 
indicated by this file descriptor is currently autotop while a 0 value returned indicates that it is 
not. 

If value is 0, then the window is not moved to the top upon output. This is the default state at 
window create time. 

If value is 1, then the window is automatically moved to the top when output is sent to its device 
interface (special file). If the window is currently in an iconic state, it will become normal the 
next time output is directed to the window. 

Note that the autotop attribute is turned off after output is sent to a window. Therefore, to 
automatically top a window every time output is sent to it, be sure to call wautotop whenever out
put is sent to the window. 

DIAGNOSTICS 
A value of 0 or 1 is returned unless autotop does not apply or fd does not refer to a window, in 
which case -1 is returned. See errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WBANNER (3W) WBANNER (3W) 

NAME 
wbanner - inquire about or control a window's border 

SYNOPSIS 
int wbanner(fd,value}; 
int fd; 
int value; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interf?-ce. 

value is the set/interrogation parameter; following are valid values for this parameter. 

-1 return whether the window's border status: a return value of 0 means the window 
has a thin border; 1 means the window has a normal (thick) border; 2 means that 
the window has no border. 

DISCUSSION 

o display a thin border with the window. 

display a border with the window; this is the default state for windows created 
via the pop-up menu or window system commands. 

2 do not display a border around the window (null border type). This border type 
is supported only on the graphics window type. 

This call inquires or sets whether a border is displayed around the specified window. 

HARDW ARE DEPENDENCIES 
Series 500: 

Only the thin and normal border types are supported on Series 500; the null border type 
(no border) is not supported. 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 or 1 is returned. See errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WBOTTOM (3W) 

NAME 
wbottom bottom window 

SYNOPSIS 
int wbottom(fd,value}; 
int fd; 
int value; 

DESCRIPTION 
fd is an integer file descriptor for an opened window device interface. 

WBOTTOM (3W) 

value is the set/interrogation parameter. Following are valid values and their effect: 

-1 returns 1 if the window is the bottom window in the stack; returns 0 otherwise. 

o then the library procedure is ignored. 

place the window or icon underneath all other windows. If the window is con
cealed, make it visible but below all others. Obscurity may very well make it 
invisible, but shuffling the windows would eventually bring it on top. 

DISCUSSION 
This call inquires or sets whether this window is bottom most. 

SEE ALSO 
wtop(3w),wshuffle(3w),wconceal(3w). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 or 1 is returned. See errno(2} for further information, 

Hewlett-Packard Company - 1 - April 1988 



WCONCEAL (3W) WCONCEAL (3W) 

NAME 
wconceal - conceal window 

SYNOPSIS 
int wconceal(fd,value); 
int fd; 
int value; 

DESCRIPTION 
fd is an integer file descriptor for an opened window device interface. 

value is the set/interrogation parameter which determines the action taken by this routine; 
valid values are: 

DISCUSSION 

-1 return whether the window is concealed (0, means no; 1 means yes). 

o then the window's state is not changed-the routine does nothing. 

set the window or icon to be concealed. 

This call inquires or sets the value of the window's visibility. wconceal must be false for anything 
to be visible. Being not concealed does not guarantee visibility, because it might be obscured via 
another window or by the screen edges itself. 

SEE ALSO 
wtop(3W),wbottom(3W),wshufHe(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 or 1 is returned. See errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WCREATE_GRAPHICS (3W) WCREATE_GRAPHICS (3W) 

NAME 
wcreate_graphics - create a graphics window type 

SYNOPSIS 
int wcreate_graphics( wmfd, wname,x,y, w ,h,rasterw ,rasterh, attributes, border); 
int wmfd; 
char ·wname; 
int x,y; 
int w,h; 
int rasterw,rasterh; 
int attributes; 
int border; 

DESCRIPTION 
wmfd is an integer file descriptor for an opened window manager device interface. 

wname 
a pointer to a path name to use as the name of the window's window type device inter
face. Also the base name (see basename(l)) is known as the window name. By default, 
the window name is used as the window label in the window's border. The window type 
device interface is used for communicating with the window. wname is also a pointer to a 
path name that should be use for doing Starbase graphics to the contents window. This 
is the device to which gopen is applied. 

x,y the device coordinates for the upper left corner of the drawing area of the window with 
respect to the upper left corner of the screen. 

w,h the width and height of the screen view into the virtual raster in device coordinates. 

rasterw,rasterh 
the width and height of the virtual raster. (Also the maximum values that wand h can 
have for the life of the window.) 

attributes 

border 

DISCUSSION 

specifies whether the window should be non-retained, retained, or IMAGE. A value of 0 
specifies non-retained. A value of 1 specifies retained as byte/pixel. A value of 2 specifies 
retained as bit/pixel. A value of 4 specifies IMAGE which also implies non-retained. 
IMAGE means that the user area of the window is mapped into the image planes while 
the border is displayed in the overlay planes. This value only applies on the HP98730 
display system. All other values are reserved for future use and are currently invalid. 

chooses either thin, normal, or no border for the window. A value of 0 indicates a thin 
border. A value of 1 indicates a normal border. A value of 2 indicates no border (null 
border type). If a normal border is chosen, there is a minimum enforced size for the win
dow. A normal border contains the window name and various symbols for manipulating 
the window. A thin border consists of a thin blank frame around the window with no 
name or symbols. 

Create a graphics window type with default characteristics. 

HARDW ARE DEPENDENCIES 
Series 500: 

For attributes, called retained on Series 500, a non-zero value specifies retained, a zero 
value specifies non-retained. 

Hewlett-Packard Company - 1 - April 1988 



WCREATE_GRAPHICS (3W) WCREATE_GRAPHICS (3W) 

Only the thin and normal border types are supported on Series 500; the null border type 
is not supported. 

SEE ALSO 
wcreate_termO(3W) ,wdestroy( 3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 2 - April 1988 



WCREATE_TERMO (3W) WCREATE_TERMO (3W) 

NAME 
wcreate_termO create a termO window type 

SYNOPSIS 
in t wcreate_termO (wmfd ,name ,x,y ,wincols, winrows, scrncols, scrnrows, bufcols, 

bufrows, basefont, altfont, colormode, border); 
int wmfd; 
char *name; 
in t x,y, wincols, winrQws,scrncols,scrnrows, bufcols, bufrows; 
char * basefont , *altfont; 
int colormode,border; 

DESCRIPTION 
wmfd is an integer file descriptor for an opened window manager device interface. 

name a pointer to a path name that is used to make the device node that is associated with the 
new window. 

x,y the device coordinates for the upper left corner of the contents portion of the window 
(ignoring the window borders), with respect to the upper left corner of the screen. 

wincols,winrows 
the width and height of the window in columns and rows. Note that each 2-byte charac
ter takes up two columns. This specifies the size of the contents portion of the window, 
and does not include space for a label and borders. 

scrncols,scrnrows 
the width and height of the terminal screen being emulated in columns and rows. 

bufcols,bufrows 
the width and height of the scroll buffer in columns and rows. 

basefont ,altfont 
pointers to path names for the base and alternate font files to be used. If alt/ont is 
NULL, base/ont will be used for both the base and the alternate font. HP-15 (2-byte) 
fonts may not be used for the alternate font. If alt/ont is a HP-15' font or if alt/ont is 
NULL and base/ont is a HP-15 font, an error will result and the window will not be 
created. 

colormode 

border 

enables color mode on color systems. A value of 2 indicates a color system. This parame
ter should always be set to 2. 

chooses either thin or normal borders for the terminal window. A value of 1 indicates 
normal borders. A value of 0 indicates thin borders. A value of 2 indicates no border 
(null border type). If normal borders are chosen, there is a minimum size for the termi
nal, which is enforced. A normal border contains the window name and various symbols 
for manipulating the window. A thin border consists of a thin blank frame around the 
window with no name or symbols. 

Hewlett-Packard Company - 1 - April 1988 



WCREATE_TERMO (3W) WCREATE_TERMO (3W) 

DISCUSSION 
Create a TermO window type with default characteristics. The width and height of the terminal 
screen must be no larger than the scroll buffer. Similarly, the size of the window must be no 
larger than the terminal screen. The terminal screen is used for screen-relative cursor addressing. 

The default characteristics are: 

• The window is offscreen (that is, not visible). 

• The keyboard is not attached to the terminal emulator. 

• The 8 alpha color pairs are initialized identically to the color pairs of the HP2627 A termi
nal. 

• Color pair 0 (white characters on black background) is selected. 

• The base name of the window path name is used as the border label, if the border is not 
"thin". 

• The cursor is at column 0, row 0, and is turned on (enabled). 

• The terminal screen being emulated is positioned at the upper left of the scroll buffer. 

• The window is positioned at the upper left of the terminal screen. 

• There are no characters in the scroll buffer. 

• The softkeys are in USER state, labeled f1 through f8, but are not displayed. 

• There are no fonts in the cache other than basefont and altfont, and the basefont is 
active. 

• The terminal emulator is in ASCII 8-bit mode. 

• The "Keyboard" field in the configuration menu is set to match the keyboard which is 
actually present. 

• Display Functions is not enabled. 

• The left and right margins are set to 0 and the largest column of the scroll buffer. 

• Tabs are set at column 9 and every 8th column thereafter. 

• The window has a default icon image resembling a terminal. 

• The border color is set to the values of environment variables; see wmstart(l). 

• Fonts used in the border, icon, softkeys, and popup menu are set to the values of environ
ment variables; see wmstart(l). 

HARDW ARE DEPENDENCIES 

Hewlett-Packard Company - 2 - April 1988 



WCREATE_TERMO (3W) WCREATE_TERMO (3W) 

Series 500: 
HP-15 (2-byte) fonts are not supported on Series 500. 

SEE ALSO 
wcreate (1), wmstart (1). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 3 - April 1988 



WDESTROY (3W) 

NAME 
wdestroy - destroy a window 

SYNOPSIS 
int wdestroy(wmfd,name); 
int wmfd; 
char *name; 

DESCRIPTION 

WDESTROY (3W) 

wmfd is an integer file descriptor for an opened window manager device interface. 

name the path name of the window type to destroy. 

DISCUSSION 
This routine destroys the window specified by name. 

SEE ALSO 
wcreate_termO (3W), wcreate_graphics( 3 W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WDFLTPOS (3W) WDFLTPOS (3W) 

NAME 
wdfltpos - default window/icon position 

SYNOPSIS 
int wdfttpos(fd,req,wx,wy,ix,iy,name); 
int fd; 
int req; 
int *wx, *wy; 
int *ix, *iy; 
char *name; 

DESCRIPTION 
fd is an integer file descriptor of an opened window manager or window type device interface. 

req determines which values are returned by this routine; values are specified by setting the 
appropriate bits in this parameter. Bits are defined as follows: 

bit 1 return wx, wy 

bit 2 return iconx, icony 

bit 3 return name[16] 

wx,wy are pointers to the default position of a window. 

ix,iy are pointers to the default position of an icon. 

name is a pointer to a 16-character space in which a window system default name is returned. 
This name is only the basename (see basename(1)). 

DISCUSSION 
This routine returns a round robin default position for a window or icon. Windows stair step 
down from the upper left corner of the screen. Icons go down from the upper right or up from the 
lower left, depending on the icon placement parameter given to the window manager at powerup. 

Note: wdfitpos assigns values to only the requested parameters; therefore, dummy space need not 
be declared for the name parameter. 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno (2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WEVENTCLEAR (3W) WEVENTCLEAR (3W) 

NAME 
weventclear - clear window locator events 

SYNOPSIS 
#include <window.h> 
int weventclear(fd,mask); 
int fd; 
int mask; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

mask is used to specify conditions to interrupt the user process with the SIGWINDOW signal. 
mask is a set of bits defined by the following bit names, where the default mask setting is 
O. The header file containing these defines is /usr /include/window .h; the 
wsetsigmask(3W) reference page lists the events also. SIGWINDOW is defined in 
/usr /include/sys/signal.h. 

DISCUSSION 
This routine will clear the events specified by the event mask, so that a subsequent weventpoll of 
those events will return a 0 count. 

SEE ALSO 
wgetsigmask (3W), wsetsigmask( 3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WEVENTPOLL (3W) WEVENTPOLL (3W) 

NAME 
weventpoll - poll for window locator events 

SYNOPSIS 
#include <window.h> 
int weventpoll( fd,mask,count,x,y); 
int fd; 
int *mask, *count, *x, *y; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

mask is defined as in wsetsigmask. In this routine, however, it is both an input parameter and 
an output parameter. 

If mask = O,then the bit corresponding to the last event that has occurred will be set and 
passed back in mask (EVENT--.ECHO will not be considered an event in this case). 
Events are not queued, so weventpoll will return only the most recent event since the last 
call to weventpoll. 

If mask <> 0, then weventpoillooks only at the events whose bits are set in mask. If one 
of the specified events has occurred, then the bit will remain set; otherwise, if the event 
has not occurred, then the bit is cleared in mask on return. count, x, and yare returned 
for the most significant bit (event) set, and the count is cleared for that event. If none of 
the events specified in mask have occurred, then 0 is returned in mask. 

Valid event bits are defined in window.h. 

count is the number of times this event has occurred since the last time the count, x, y values 
were read for this event. 

x,y contain event-specific information, see below. 

DISCUSSION 
This routine checks to see whether one or more specific events have occurred. 

If the event was EVENT_SIZE, then x and y contain the new width and height of the window. 

If the event was EVENT-----.MOVE, then x and y contain the new location of the window. 

If the event was EVENT--REPAINT, EVENT_SELECT, EVENT-.-DESTROY, 
EVENT_BREAK, EVENT--.-lCON, or EVENT---.ABORT then x and y both contain O. 

If the event was EVENT-----.MENU, then x contains the menu id of the menu from which a selec
tion was made, and y contains the item id of the selected item. 

If the event was EVENT----.HOTSPOT, then x contains the event_byte specified for the hotspot in 
whotspoLcreate(3W) or whotspoLset(3W), and y contains the cause of the hotspot activation. 

If the event was EVENT--.ELEVATOR then an interactive move of an elevator has been 
requested by the user. In this case, x contains either SCROLLBAR-V or SCROLLBAR----.H to 
identify the elevator, and y contains the requested value for the elevator. Note that the elevator 
hasn't actually been moved; this can be accomplished using wscroILset(3W). Elevator events can 
only occur for elevators that are in user mode. 

If the event was EVENT_SB---.ARROW, then x contains the sum of all horizontal scroll bar 
arrow events that have occurred where a right arrow event adds 1 and a left arrow event adds -1. 
Likewise, y contains the sum of all vertical scroll bar arrows events that have occurred where a 
down arrow event adds 1 and an up arrow event adds -1. 

If the event was EVENT_B1-.-DOWN through EVENT_B8_UP or EVENT--.ECHO, x and y 
are the the echo x and y locations at the time of the last event of this type. Note that x and yare 

Hewlett-Packard Company - 1 - April 1988 



WEVENTPOLL (3W) 

in pixel units. 

HARDW ARE DEPENDENCIES 
Series 500: 

The following events are not supported on Series 500: 
EVENT ~OTSPOT 
EVENT~ESTROY 

EVENT_BREAK 
EVENT~CON 

EVENT-ELEVATOR 
EVENT_SB~RROW 

EVENT~BORT 

WEVENTPOLL (3W) 

In addition, the Series 500 does not support hot spots or scroll bars; these are supported 
on Series 300 Only. 

SEE ALSO 
wgetsigmask(3W), whotspot_create(3W), whotspot~et(3W), wscroll~et(3W), 

wsetsigmask(3W), weventclear(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 2 - April 1988 



WGET~W_SPRITE_COLOR (3W) 

NAME 
wgetJw_sprite_color get hardware sprite colors 

SYNOPSIS 
int wget----.hw _sprite_color ( fd,fgcolor, bgcolor); 
int fd; 
int *fgcolor, *bgcolor; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

fgcolor, bgcolor 
the foreground sprite color, and background sprite color. 

DISCUSSION 
Returns the foreground and background colors given by the last wset----.hw-Bprite_color call. 
If no call has yet been made to wset----.hw-Bprite_color, then defaults will be returned. 

This call can be made on all devices, but the returned value will only be valid on the HP98730. 

SEE ALSO 
wsetJw _sprite_color( 3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



NAME 
wget~ee_thru - get see_thru color index value 

SYNOPSIS 
int wget~ee_thru(wmfd,see_thru); 
int wmfd; 
int *see_thru; 

DESCRIPTION 
fd is an integer file descriptor for an opened window manager device interface. 

see_thru, 
the see_thru color index. 

DISCUSSION 
Returns the window system see_thru color index. The default is set at window system startup. 

This call can be made on all devices, but the returned value will only be valid on the HP98730 or 
the HP98720. 

SEE ALSO 
windows(l), wmstart(l), wset_see_thru(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WGETBCOLOR (3W) WGETBCOLOR (3W) 

NAME 
wgetbcolor ~ get window border colors 

SYNOPSIS 
int wgetbco}or( fd,fgborder, bgborder); 
int fd; 
int *fgborder, *bgborder; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

fgborder, bgborder 
the foreground label character color, and background label and border color. 

DISCUSSION 
Returns the current foreground and background border colors. The defaults at window creation 
time are determined by the WMBDRFGCLR and WMBDRBGCLR environment variables. 

If double buffering color mode is enabled via the WMCONFIG environment variable, the colors 
returned are the lower N/2 bits of the colors actually used, where N is the number of planes on 
the display. 

SEE ALSO 
wsetbcolor(3W) . 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2} for more information. 

Hewlett-Packard Company - 1 - April 1988 



WGETBCOORDS (3W) WGETBCOORDS (3W) 

NAME 
wgetbcoords - get border coordinates 

SYNOPSIS 
jnt wgetbcoords(fd,x,y,w,h); 
jnt fd; 
jnt *x,*y; 
jnt *w,*h; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

x,y are pointers to the screen pixel coordinates of the upper left corner of the border with 
respect to the physical screen. Positive, negative and zero values for x and yare allowed. 
(0,0) is the upper left corner of the screen. 

w,h are pointers to the pixel width and height of the border. 

DISCUSSION 
Returns the border coordinates associated with the window type device indicated by fd. 

SEE ALSO 
wgetcoords( 3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise ° is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WGETCOORDS (3W) WGETCOORDS (3W) 

NAME 
wgetcoords - get window coordinates 

SYNOPSIS 
int wgetcoords( fd,x,y , w ,h,dx,dy ,rw ,rh); 
int fd; 
int *x,*y; 
int *w,*h; 
int *dx, *dy; 
int *rw, *rh; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

x,y are pointers to the screen pixel coordinates of the upper left corner of the window view 
with respect to the physical screen. This refers to the upper left corner of the contents 
portion, not the border. Positive, negative and zero values for x and yare allowed. (0,0) is 
the upper left corner of the screen. 

w,h are pointers to the pixel width and height of the window view. For a window type these 
refer to the contents portion, not the border. 

dx,dy are pointers to the pixel delta x and delta y offset of the view in the window raster. 
These refer to the contents portion, not the border. dx and dy can have positive values 
only and tell how much the window is panned. 

rw,rh are pointers to the pixel width and height of the window raster. rwand rh limit the max
imum values for dx, dy, w, and h. 

DISCUSSION 
Returns the window coordinates associated with the window device denoted by /d. 

SEE ALSO 
wgetbcoords(3W) . 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise ° is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WGETECHO (3W) WGETECHO (3W) 

NAME 
wgetecho - get echo 

SYNOPSIS 
int wgetecho( fd,echo_ value,x2,y2,optimized); 
int fd; 
int *echo_value, *x2, *y2, * optimized; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

echo_value 
is the type of echo to be used. Predefined types are listed below. 

a invisible echo. 

1 device's best echo. 

2 full screen cross hair. 

3 small tracking cursor. 

4 rubber band line, with anchor point at x2,y2. 

5 rubber band rectangle, with anchor point at x2,y2. 

6 alpha digital representation (for displaying characters on external devices such as 
button boxes). 

7 user defined raster cursor. (Default at window creation time where raster is defined to 
be a small arrow.) To get back to the default raster, set wand h to a (zero) for 
wsetrasterecho. 

8 box of width x2, height y2; where the upper left corner is the current cursor position 

> 8 device-dependent representation. 

x2,y2 are the echo anchor position or box width and height. 

optimized 

DISCUSSION 

is a boolean with two possible values: 

a means echo is exactly as defined. And movement via wsetlocator will do exactly as 
specified. 

means echo representation may be modified as per the device to make it track in the 
best way possible. Movement via wsetlocator may snap to device-dependent boun
daries to take advantage of specialized hardware (such as a 4 X 4 pixel tile mover). 

Get the window's current echo. An additional routine, wgetrasterecho, is needed to get informa
tion about a raster echo. 

SEE ALSO 
wsetecho( 3W), wgetrasterecho (3W), wsetrasterecho( 3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WGETICONPOS (3W) 

NAME 
wgeticonpos - get current icon position 

SYNOPSIS 
int wgeticonpos(fd,x,y); 
int fd; 
int *x,*y; 

DESCRIPTION 

WGETICONPOS (3W) 

fd is an integer file descriptor for an opened window type device interface. 

x,y are pointers to the screen pixel coordinates for the position of the upper left hand corner 
of the icon representation of a window type with respect to the physical screen. Positive, 
negative and zero values are allowed. 

DISCUSSION 
The wgeticonpos function returns the icon representation position associated with the window 
device indicated by fd. 

(0,0) is the upper left hand corner of the screen. 

SEE ALSO 
wseticonpos(3W),wseticon(3),wiconic(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise a is returned. See errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WGETLOCATOR (3W) WGETLOCATOR (3W) 

NAME 
wgetlocator - get window echo/locator parameter 

SYNOPSIS 
int wgetlocator(fd,x,y,buttons); 
int fd; 
int *x, *y, *buttons; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

x,y contain the current echo position. x and yare relative to the current window data space 
(not the screen). They are also in pixel units. The echo hot spot determines which part of 
the echo is actually at the coordinates, see wsetrasterecho and wsetecho. For a window 
type, they are relative to the contents portion, not the border. 

buttons 
specifies the current state of the locator buttons. The least significant bit is associated 
with the left most button. If a bit is set, then that button is down. 

DISCUSSION 
Get the current echo position and buttons state. For higher performance, do gopen to get fd, or 
use wsetrasterecho on fd. 

SEE ALSO 
wsetlocator{3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WGETNAME (3W) 

NAME 
wgetname - get path name 

SYNOPSIS 
int wgetname(fd,path); 
int fd; 
char *path; 

DESCRIPTION 

WGETNAME (3W) 

fd is an integer file descriptor for an opened window type or window manager device inter
face. 

path is a pointer to the path name for the referenced file descriptor. 

DISCUSSION 
The path name of the window type device or window manager indicated by fd is returned in 
name. 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise a is returned. See errno (2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WGETRASTERECHO (3W) WGETRASTERECHO (3W) 

NAME 
wgetrasterecho - get raster echo 

SYNOPSIS 
int wgetrasterecho( fd,dx,dy, w ,h,rule,masiLJule,mask,image); 
int fd; 
int *dx, *dy, *w, *h, *rule, *masLrule; 
char *mask, *image; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

dx,dy are the offset of the echo hot spot to the upper left corner of the echo, usually negative. 

w,h are the echo's size. 

rule,mask-------.rule 
are the echo's replacement rules used when displaying a raster cursor. These rules are 
defined in the HP Starbase Documentation. 

mask is a pointer to a bit-per-pixel array of 128 characters. This array is used to make the 
mask for the raster echo. The mask is placed on the screen before the image. Each bit 
represents two possible values for each pixel: zero or all ones. 

image is a pointer to a byte-per-pixel array of 1024 characters. This array is used to make the 
image for the raster echo. 

DISCUSSION 
Get the window's raster echo type. An additional routine, wgetecho, is needed to get more infor
mation about basic echo attributes first. 

SEE ALSO 
wsetrasterecho( 3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WGETSCREEN (3W) WGETSCREEN (3W) 

NAME 
wgetscreen - get screen information. 

SYNOPSIS 
int wgetscreen( wmfd, w ,h,b,cmapent,sfkh) j 
int wmfdj 
int *w, *h, *b, *cmapent, *sfkhj 

DESCRIPTION 
wmfd is an integer file descriptor for an opened window manager device interface. 

w,h are pointers to the pixel width and height of the screen. 

b is a pointer to the number of bytes/pixel. 

cmapent 
is a pointer to the number of color map entries. Black and white has only two. 

sfkh is a pointer to the height of the softkeys in pixels. 

DISCUSSION 
Returns the screen information associated with the specified window manager device indicated by 
wmfd. 

SEE ALSO 
wgetbcoords(3W),wgetcoords(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WGETSIGMASK (3W) WGETSIGMASK (3W) 

NAME 
wgetsigmask - get window SIGWINDOW interrupt mask. 

SYNOPSIS 
#include <window.h> 
int wgetsigmask(fd,mask); 
int fd; 
int *mask; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

mask is specifies conditions to interrupt the user process with the SIGWINDOW signal. Mask 
is a set of bits defined by wsetsigmask. 

DISCUSSION 
Interrogate the value of the SIGWINDOW interrupt mask for the specified window. 

SEE ALSO 
wsetsigmask(3W) . 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WGSKBD (3W) WGSKBD (3W) 

NAME 
wgskbd - set keyboard mode for graphics window type 

SYNOPSIS 
#include <window.h> 
int wgskbd(fd,mode); 
int fd; 
int mode; 

DESCRIPTION 
fd is an integer file descriptor for an opened graphics window type device interface. 

mode A value of -1 inquires the current keyboard mode for the the graphics window. A value of 
0, 1, or 2 sets the keyboard mode to that value. 

DISCUSSION 
This routine sets or inquires the keyboard mode for a graphics window type. The keyboard mode 
determines the type of processing done by the window type on input data prior to supplying the 
data to the application. The default mode is O. Whenever the mode is changed, any data in the 
input queue is flushed. 

When used to set the keyboard mode, wgskbd has the side effect of resetting all winput_conJ(3W) 
settings to defaults which are dependent upon mode. See winpuLconf(3W). In addition, wgskbd 
calls ioctl(2) to modify the line discipline for the window as follows (see tty(4) for details). 

ICANON disabled 
BRKINT enabled 
VTIME 0 
VMIN 1, 2, or sizeof(struct event_code), depending on whether mode is 0, 1, or 2, 

respectively. 

Other than the side effect of resetting winpuLconf(3W) settings, wgskbd has no effect if input 
routing is in effect for this window. 

Mode 0 
If mode has the value 0, ASCII mode is enabled wherein data is processed as per the normal key
board input model for graphics windows, essentially that of a TermO window in transmit func
tions mode (see the" Window System Input" and" Graphics Softkeys" chapters of the HP Win
dows/9000 Programmer's Manual). Note the window must be selected for keycodes to be avail
able via fd. 

Mode 2 
If mode has the value of 2, the window type is put into packetized input mode as described in the 
winput_read(3W) man entry. Using a value of 2 is only supported in conjunction with 
winpuLread(3W). 

Whenever the keyboard mode is set to 2, a button press over that window will not cause that 
window to be moved automatically to the top and/or selected as would normally happen with a 
window. If this behavior is desired, the application can simulate it when appropriate button 
events are detected. The WMIUICONFIG environment variable should be interrogated using 
wminquire(3W) to determine which buttons cause the top and/or select, and whether the action is 
select only or top-and-select. 

Mode 1 
If mode has the value 1, the window type is put into 2-byte mode. A complete description of this 
mode follows. NOTE: This discussion only applies to non-Katakana ITF keyboards. 

First are some definitions for terms used later - these are all essentially key-types: Modifier keys 
are the keys labeled CTRL, Shift (2), and Extend char (2). A Normal key is any key that has a 

Hewlett-Packard Company - 1 - April 1988 



WGSKBD (3W) WGSKBD (3W) 

single ASCII character for a label; some have two labels (unshifted and shifted). Also included is 
the key labeled DEL/ESC. A Special key is any key which is not a Normal key or Modifier key 
(this includes such things as keys labeled with words, function keys, cursor keys, and blank keys). 
An Npad key is any key which is part of the numeric keypad (18 keys grouped together on the 
right side of the ITF keyboard) and the 4 unlabeled keys above it. A Roman8 key is any Normal 
key which is not also an Npad key, or the DEL/ESC key. Any given key may be in more than one 
of these sets; for example, the key labeled 0 in the numeric keypad is both a Normal key and an 
Npad key. 

When a read is done on jd, key code information is returned in 2-byte packets; all reads should be 
in multiples of two. The packet looks like: 

struct gr~ey_code { 

}; 

unsigned char control_byte; 
unsigned char dat~byte; 

The control_byte is a bit field interpreted by the following values: 

K_SHIFT _B Shift Bit 
K_CONTROL_B Control Bit 
K----.MET A-B Meta (Extend Left) 
K-----.EXTEND-B Extend (Extend Right) 
K-----.NPAD Number Pad Key 
K_SPECIAL Special Keys 

The K-----.NPAD and the K--SPECIAL flags indicate the type of key being pressed (see definitions 
for Npad and Special above). 

The K_SHIFT_B, K_CONTROL-B, K----.META-B, and K-----.EXTEND-B flags are keycode 
(dat~byte) modifiers, and are the result of combination keypresses (multiple keys simultane
ously). K_SHIFT_B applies to either Shift key being used; K----.META-B applies to the Extend 
char key to the left of the spacebar; K-----.EXTEND-B applies to the Extend char to the right of the 
spacebar. 

The datiL-byte for K_SPECIAL keys is noi ASCII data. A complete list of #defines for these is 
provided in <window.h>. Any of the keypress modifiers can be applied to these keys, and no 
mapping is done; that is, the value of dat~byte is independent of the modifier. 

The dat~byte for K-----.NPAD keys can be either Special (K_SPECIAL) or Normal. Any of the 
keypress modifiers can be applied to these keys also, and no mapping is done. 

The dat~byte for Normal keys (not K_SPECIAL or K-----.NPAD) is mapped according to the fol
lowing rules: 

(1) If no modifiers are present, the dat~byte is ASCII, and the value is mapped to the appropri
ate shifted or unshifted value, determined by the current Capsmode state (initially unshifted, 
see below for discussion of the Capsmode toggle). . 

(2) If the K_SHIFT_B modifier is set, the dat~byte is mapped to the appropriate shifted or 
unshifted value, determined on the current Capsmode state. 

(3) If the K_CONTROL-B modifier is set, no mapping is done to reflect this. 

(4) If the K----.META-B modifier is set, no mapping is done to reflect this. 

(5) If the K~XTEND-B modifier is set and the key is a Roman8 key, the dat~byte is 
mapped to the appropriate Roman-8 character (either shifted or unshifted depending on the 
K_SHIFT_B modifier and the Capsmode state). (see "Series 300 System Console" in HP-

Hewlett-Packard Company - 2 - April 1988 



WGSKBD (3W) WGSKBD (3W) 

UX Concepts and Tutorials: Facilities Jor Series 200, 300, and 500 for the ITF keyboard lay
out, and roman8(7) for dat~byte values). If the key is not a Roman8 key, no mapping of 
the dat~byte is done. 

There are some special cases that should be noted: 

(1) The graphics window type maintains the Capsmode state for the Normal keys which can be 
capitalized (alphabetic and some Roman-8 characters). Initially this state is off, or unshifted. 
The state is toggled by the Caps key, which returns either K_CAPS_ON or K_CAPS_OFF 
in dat~byte when pressed, depending on the state. If the state is off, keys which can be 
capitalized are mapped to their down-shifted value, and are up-shifted when typed with a 
Shift key. If the state is on, such keys are mapped to their up-shifted value, and when typed 
with a Shift key are mapped to their down-shifted value. 

(2) Pressing the Break key (or the Break key with any modifier except K_SHIFT_B) will cause 
the graphics window type to emit a gL_.key_code with both the control_byte and the 
dat~byte being null (0). Additionally, a TIOCBREAK ioctl call will be issued which will 
send a SIGINT to the user process if it has done a setpgrp(2) properly, otherwise the user 
process will only see the null gr-1<ey_code. 

(3) The K_SHIFT_B modifier cannot be read with the Select key - this keypress is intercepted 
by the window system and cannot be used. 

(4) The K_CONTROL_B modifier applied to arrow-keys are intercepted by the window system, 
and will cause the sprite to move; then these key codes are passed on to the user process. 

HARDW ARE DEPENDENCIES 
Series 300: 

Each packet of information sent in mode 2 has a time-stamp specifying exactly when the 
event or keypress occurred. Most of the time, packets will be time-ordered in the queue; 
that is, packets are ordered in the sequence in which they occurred--oldest first, latest last. 
However, the window processes locator data before keypress data; so in rare instances, it 
is possible that a locator data packet may precede a keypress packet, even though the 
keypress occurred before the locator packet. Nevertheless, the time-stamps are correct 
for both packets; thus the application can still determine the exact order of keypresses or 
events by looking at the time-stamp. 

Series 500: 
This routine is not supported on Series 500. None of the winput_* routines is supported 
either. 

SEE ALSO 
winput_conf(3W) ,winput-I"ead(3W) ,winput-Betroute(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise the current mode is returned. See errno(2) for more 
information. 

Hewlett-Packard Company - 3 - April 1988 



WHOTSPOT_CREATE (3W) WHOTSPOT_CREATE (3W) 

NAME 
whotspot_create - create a hotspot 

SYNOPSIS 
#include <window.h> 
int whotspot_create( fd,bmask,x,y, w ,h,event_byte); 
int fd; 
int bmask; 
int x,y,w,h; 
int event_byte; 

DESCRIPTION 
fd is an integer file descriptor for an opened graphics window type device interface. 

bmask is a bit mask indicating which locator button(s) activate the hotspot. The bit mask is 
defined as follows: 

HS-----.MASK_BUTTON1 
HS-----.MASK_BUTTON2 
HS-----.MASK_BUTTON3 
HS-----.MASK_BUTTON4 
HS-----.MASK_BUTTON5 
HS-----.MASK_BUTTON6 
HS-----.MASK_BUTTON7 
HS-----.MASK_BUTTON8 

HS-----.MASK_SELECT 
HS-----.MASK-ENTEREXIT 

Locator Button 1 
Locator Button 2 
Locator Button 3 
Locator Button 4 
Locator Button 5 
Locator Button 6 
Locator Button 7 
Locator Button 8 (In Proximity)-i.e., the 
graphics tablet stylus or puck switch was 
placed on the graphics tablet 
Keyboard SELECT 
Locator enter/exit 

x,y are the coordinates of the upper left corner of the rectangular hotspot region in device 
units relative to the upper left corner of the virtual raster of the window. 

w,h are the width and height of the rectangular hotspot region in device units. These parame
ters must be greater than 7:ero. 

event_byte 
is the event to occur when the hotspot is activated. Legal values are discussed below. 

DISCUSSION 
This call creates a hotspot for the window specified by the opened fd. The hotspoLid for the 
created hotspot is returned. The hotspot_id is then used to refer to the newly created hotspot in 
subsequent calls. If a -1 is returned the call was unsuccessful. 

A hotspot is activated whenever one of the buttons or the SELECT key specified in bmask is 
pressed while the locator is within the rectangle defined by x,y,w,h. A hotspot will also be 
activated if the enter/exit bit in bmask is 1 and the locator enters or exits the specified hotspot. 
Any combination of locator buttons, SELECT key, and enter/exit may be specified in bmask. 

The activation of a hotspot can be detected by enabling SIGWINDOW for hotspots via 
wsetsigmask(3W), then using weventpoll(3W) to determine which hotspot was activated. 
Weventpoll(3W) will return the evenLbyte for the last hotspot activated and the cause for the 
hotspot being activated in x and y respectively. The cause returned in y can be anyone of the fol
lowing: 

EC-BUTTON1 
EC---.BUTTON2 

Hewlett-Packard Company 

Button 1 was pressed 
Button 2 was pressed 

- 1 - April 1988 



WHOTSPOT_CREATE (3W) 

Button 3 was pressed 
Button 4 was pressed 
Button 5 was pressed 
Button 6 was pressed 
Button 7 was pressed) 

WHOTSPOT_CREATE (3W) 

EC-13UTTON3 
EC-13UTTON4 
EC-13UTTON5 
EC-13UTTON6 
EC-13UTTON7 
EC-13UTTON8 Button 8 (proximity) was pressed-i.e., the graphics tablet 

stylus or puck switch was placed on the graphics tablet. 
EC_SELECT SELECT was pressed 
EC-ENTER Hotspot was entered 
EC-EXIT Hotspot was exited 

If packetized window input is enabled for the window (see wgskbd(3W)), the hotspot data can be 
read from the input queue as an evenLcode packet. The value for the controLbyte will be 
K-EVENT, the value for dat~byte will be K-ILLEGAL, the value for event_byte will be the 
value specified in whotspot_create or whotspot_set(3W), and the value for evenLcause will be 
one of EC_BUTTON1 through EC-EXIT. 

The value specified for event_byte must be one of K~OVE_ST, K-SIZE-LR-ST, 
KJOPUP _ST, or a value between 128 and 255 inclusive. If the value is K~OVE_ST, 
K_SIZE-LR_ST, or KJOPUP _ST, then an interactive move, size, or pop-up menu, respec
tively, will be started for that window. In those cases the hotspot activation will not be signalled 
via SIGWINDOW. If event_byte is between 128 and 255 inclusive, the hotspot activation will be 
signalled via SIGWINDOW and the event_code packet will also be available via the packetized 
input queue. 

The rectangles defined by hotspots can overlap. When they overlap, the hotspots form a stack 
within the window of which they are a part. When a hotspot is created, it is placed at the top of 
the stack. The position of a hotspot in the stack cannot be changed, except by deleting it and 
creating it again to force it to the top. The locator can only be over one hotspot at one time; if 
the locator is over a region that is the overlap between two or more hotspots, the locator is con
sidered to be only over the top-most of those hotspots. 

Whenever a hotspot is activated with a locator button, the activation only occurs on the down
stroke of the button, not the upstroke. The upstroke of that button is never transmitted. 

An enter/exit hotspot does not require that the window be the selected window for it to be 
activated. A button press over a hotspot whose bmask includes that button in a window that is 
not the selected window will activate the hotspot but will not select the window. 

HARDW ARE DEPENDENCIES 
Series 500: 

Hotspot routines (whotspot_*) are not supported on Series 500; they work only on the 
Series 300. 

SEE ALSO 
wgskbd(3W),whotspot_delete(3W), whotspot_get(3W), whotspoL . ..set(3W), winput-I"ead(3W), 
wsetsigmask(3W), weventpoll(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise the hotspot~d for the created hotspot is returned. See 
errno(2) for more information. 

Hewlett-Packard Company - 2 - April 1988 



WHOTSPOT-DELETE (3W) 

NAME 
whotspot_delete - delete a hotspot 

SYNOPSIS 
int whotspot_delete( fd,hotspot_id); 
int fd; 
int hotspot-.id; 

DESCRIPTION 

WHOTSPOT-DELETE (3W) 

fd is an integer file descriptor for an opened graphics window type device interface. 

hotspot_id 
is the identifier of the hotspot to be released. 

DISCUSSION 
This call deletes the hotspot identified by hotspot_id for the window specified by the opened fd. 
If the hotspot is to be activated on enter/exit and the locator is currently over the hotspot, the 
hotspot will not be activated when it is deleted. 

HARDW ARE DEPENDENCIES 
Series 500: 

Hotspot routines (whotspot_*) are not supported on Series 500; they work only on Series 
300. 

SEE ALSO 
whotspot_create(3W), whotspot_get(3W), whotspot------set(3W), winput-------.read(3W), 
wsetsigmask(3W), weventpoll(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WHOTSPOT_GET (3W) WHOTSPOT_GET (3W) 

NAME 
whotspot_get -- get hotspot data 

SYNOPSIS 
int whotspot_get (fd,hotspot_id,bmask,x,y, w ,h,event_byte); 
int fd; 
int hotspot_id; 
int *bmask; 
int *x, *y, *w, *h; 
int *event_byte; 

DESCRIPTION 
fd is an integer file descriptor for an opened graphics window type device interface. 

hotspot_id 
is the identifier for an existing hotspot. 

bmask is a pointer to the button bit mask for activating the hotspot. 

x,y are pointers to the coordinates of the upper left corner of the rectangular hotspot region 
in device units relative to the upper left corner of the virtual raster of the window. 

w,h are pointers to the width and height of the rectangular hotspot region in device units. 

event_byte 
is a pointer to the value for event_byte for this hotspot. 

DISCUSSION 
This call inquires the data of the hotspot identified by hotspot_id for the window specified by the 
opened fd. 

HARDW ARE DEPENDENCIES 
Series 500: 

Hotspot routines (whotspot_ *) are not supported on Series 500; they work only on Series 
300. 

SEE ALSO 
w hotspot_create( 3 W), whotspot_delete (3W), whotspoL . ..set(3W) , winput-Iead(3W), 
wsetsigmask(3W), weventpoll(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno (2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WHOTSPOT_SET (3W) WHOTSPOT_SET (3W) 

NAME 
whotspot--ilet - set hotspot data 

SYNOPSIS 
int whotspot---.Set (fd,hotspot_id,bmask,x,y, w ,h,event_byte); 
int fd; 
int hotspot~d; 
int bmask; 
int x,y,w,h; 
int event_byte; 

DESCRIPTION 
fd is an integer file descriptor for an opened graph£cs w£ndow type device interface. 

hotspot_id 
is the identifier for an existing hotspot. 

bmask is the button bit mask for activating the hotspot. 

x,y are the coordinates of the upper left corner of the rectangular hotspot region in device 
units relative to the upper left corner of the virtual raster of the window. 

w,h are the width and height of the rectangular hotspot region in device units. These parame
ters must be greater than zero. 

event_byte 
is the event to occur when the hotspot is activated. 

DISCUSSION 
This routine sets the data for the hotspot identified by hotspot_£d for the window specified by the 
opened fd. 

A hotspot can be disabled, by setting bmask to 0 or by placing the hotspot outside of the virtual 
raster of the window (e.g., set x and y to -10,-10 and wand h to 1,1). 

The parameters are defined more thoroughly in the whotspot_create(3W) page. 

HARDW ARE DEPENDENCIES 
Series 500: 

Hotspot routines (whotspot_*) are not supported on Series 500; they work only on Series 
300. 

SEE ALSO 
whotspot_create(3W),whotspot_delete(3W),whotspot_get(3W),winput-I'ead(3W), 
wsetsigmask(3W), weventpoll(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WI CONIC (3W) 

NAME 
wiconic - change a window to/from an icon 

SYNOPSIS 
int wiconic(fd,value); 
int fd; 
int value; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

WICONIC (3W) 

value determines the action taken by this routine; valid values and their effects follow: 

DISCUSSION 

-1 return the window's iconic state: 1 is returned if the window is iconic; otherwise, 0 is 
returned. 

o display the window normally (non-iconic). This is the default state at window create 
time. 

display the window as an icon. 

Inquires on or sets a window's iconic state. 

SEE ALSO 
wseticon(3W) ,wseticonpos(3W) ,wgeticonpos(3W). 

DIAGNOSTICS 
A value of 0 or 1 is returned unless fd does not refer to a window, in which case -1 is returned. 
See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WINDOW (3W) WINDOW (3W) 

NAME 
window - summary of window library routines 

DISCUSSION 
The window library, jusrjIibjIibwindow.a, contains routines that do window functions nor
mally done by commands, for example, moving, selecting, or changing the size of a window. Win
dow library routines also allow programs to do functions not attainable through commands, for 
example, event detection, user-defined icons, or changing graphics window softkeys. 

Programs that call window library routines must be sure to link the window library ( lwindow). 

The jusrjincludejwindow.h header file contains many useful type and constant definitions 
used by window library routines. Programs should use these definitions when calling window 
library routines. 

Window library routines are summarized below. For more information on each routine, consult 
its reference page. 

Window Management Routines 
wcreate_graphics(3W) 

wcreate_termO(3W) 

wdestroy(3W) 

wdfltpos(3W) 

wgetname(3W) 

wgetscreen(3W) 

wget_see_thru( 3W) 

winit(3W) 

wminquire( 3W) 

wmkill(3W) 

wmpathmake(3W) 

wmrepaint(3W) 

wset-Eiee_thru(3W) 

wshuffle(3W) 

wterminate(3W) 

Window Manipulation Routines 
wautodestroy(3W) 

wautoselect(3W) 

wautotop(3W) 

wbanner(3W) 

Hewlett-Packard Company 

Create a graphics window type device interface. 

Create a TermO window type device interface. 

Destroy a window. 

Return the default location for the next window or icon to 
create; also return the next default name. 

Return the path name of a window's window type device 
interface. 

Get information (resolution, etc) about the current display 
screen device. 

Get the see_thru color index. 

Initialize a communication path with the window manager or 
a window type device interface. 

Return the value of a window system environment variable. 

Kill the window manager and the window system. 

Build a path name from a window system environment vari
able and a user-supplied suffix. 

Repaint all windows and the desk top. 

Set the see_thru color index. 

Shuffle windows up or down through the display stack. 

Release window manager or window type resources allocated 
by winit(3W). 

Set or determine a window's autodestroy status; used with 
wrecover(3W). 

Set or determine a TermO window's autoselect status. 

Set or determine a TermO window's autotop status. 

Set or determine a window's border type (thin, normal, or no 
border). 

- 1 - April 1988 



WINDOW (3W) 

wbottom(3W) 

wconceal(3W) 

wgetbcolor(3W) 

wgetbcoords(3W) 

wgetcoords(3W) 

wmove(3W) 

wpan(3W) 

wpauseoutput(3W) 

wrecover(3W) 

wselect(3W) 

wsetbcolor(3W) 

wsetlabel(3W) 

wsize(3W) 

wtop(3W) 

Icon Manipulation Routines 
wgeticonpos(3W) 

wiconic(3W) 

wseticon(3W) 

wseticonpos(3W) 

Event Detection Routines 
weventclear( 3W) 

weventpoll(3W) 

wgetsigmask(3W) 

wsetsigmask(3W) 

Locator and Echo Routines 
wgetecho(3W) 

wgetlocator(3W) 

wgetrasterecho( 3W) 

WINDOW (3W) 

Display a window as the bottom window in the display stack, 
or determine if a window is bottom. 

Conceal a window, or determine if a window is concealed. 

Get a window's border foreground and background colors. 

Get coordinate information (x,y pixel location, and pixel 
width and height) for a window's border. 

Get coordinate information (x,y pixel location, pixel width 
and height, pan position, raster width and height) for a 
window's user (contents) area. 

Change a window's x,y pixel location. 

Change the view into a graphics window's raster. 

Pause or resume output to a TermO window. 

Set or determine a window's recover state; used with 
wautodestroy(3W). 

Set or determine a window's selected status; i.e., whether the 
keyboard is attached to a window. 

Set the foreground and background colors of a window's 
border. 

Change a window's label, displayed in the window's border. 

Change a window's size. 

Display a window as the top window in the display stack, or 
determine if a window is top. 

Return an icon's X,y pixel location. 

Set or determine whether a window is displayed as an icon or 
normal. 

Change a window's icon to the representation given in an 
icon file. 

Set a the X,y location of a window's icon. 

Clear event(s) for a window. 

Poll for event(s) that may have occurred in a window. 

Return the current event mask for a window. 

Set the event mask for a window. 

Get information about a window's echo (pointer). 

Return the locator's current X,y pixel location and a mask 
representing which locator buttons are currently pressed. 

Return information about the echo's image for a given win
dow. 

wget~w~prite_color(3W) 

Get the color indexes used for the sprite when using the 

Hewlett-Packard Company - 2 - April 1988 



WINDOW (3W) WINDOW (3W) 

hardware support for sprites. 

wscrIL-Bprite-IIlode(3W) Set or determine whether a window is in full-screen sprite 
control mode. 

wsetecho(3W) 

wsetlocator(3W) 

wsetrasterecho (3W) 

WSeLJ1W -Bprite_color( 3W) 

Set a window's echo to a specific type; used with 
wsetrasterecho (3W) when creating user-defined echoes. 

Set the locator's position, relative to a window. 

Set a user-defined echo type for a window; used with 
wsetecho(3W). 

Set the color indexes used for displaying the sprite when 
using hardware support. 

Graphics Window Scroll Bar Routines 
wscroll_get(3W) Get information about a graphics window's scroll bars. 

wscroll-Bet (3W) Set information about a graphics window's scroll bars. 

Graphics Window Hotspot Rectangle Routines 
whotspot_create(3W) Create a hotspot rectangle in a graphics window. 

whotspot_delete(3W) Delete a hotspot rectangle from a graphics window. 

whotspot_get(3W) Return information about a specific hotspot rectangle in a 
given graphics window. 

whotspot-Bet(3W) 

User-Defined Menu Routines 
wmen11-activate(3W) 

wmen11-create(3W) 

wmen11-delete(3W) 

wmen11-eventread( 3W) 

wmen11-item(3W) 

Graphics Window Input Routines 
wgskbd(3W) 

winput_conf(3W) 

winput_getroute(3W) 

winput-I"ead( 3W) 

winput_setroute (3W) 

winput_widpath(3W) 

Set information for a specific hotspot rectangle in a given 
graphics window. 

Activate a user-defined pop-up menu for a window. 

Create a pop-up menu for a window. 

Delete (remove) a pop-up menu from a window. 

Determine which item was selected from a pop-up menu in a 
window. 

Specify or change an item in a window's pop-up menu. 

Set or determine the graphics window input mode (Mode 0, 
1, or 2). 

Set or determine the configuration of a graphics window's 
input channel. 

Return the path name of a window to which a window's 
input is routed. 

Read event_code packets (defined in window.h) from a 
graphics window. 

Reroute a graphics window's input to a different graphics 
window. 

Return the path name of a graphics window, given the 
window's window id. 

Graphics Window Softkey Routines 

Hewlett-Packard Company - 3 - April 1988 



WINDOW (3W) 

wstk-Illode(3W) 

wstk_prog(3W) 

TermO Font Management Routines 

Turn graphics window soft keys on or off. 

Define the softkeys for a graphics window. 

WINDOW (3W) 

altfont_termO(3W) Set or determine the current TermO alternate font. 

EXAMPLES 

basefont_termO( 3W) 

fontgetid_termO( 3W) 

fontgetname_termO( 3W) 

fontload_termO(3W) 

fontreplaceall_termO(3W) 

fontsize_termO(3W) 

fontswap_termO(3W) 

fromxy _termO(3W) 

toxy_termO(3W) 

Set or determine the current TermO base font. 

Return the font ID of a TermO font, if the font is currently 
loaded. 

Return the path name of a font file for a loaded TermO font. 

Load a TermO font. 

Replace the current base and alternate font with new base 
and alternate fonts. 

Return the pixel width and height of all loaded fonts. (All 
loaded fonts must be the same size.) 

Replace a loaded TermO font with a font that is currently not 
loaded. 

Convert X,Y pixel coordinates to column and row coordinates, 
based on the current font size. 

Convert column and row coordinates to x, y pixel coordinates, 
based on the current font size. 

The following example compiles a program, named winprog. c, that calls window library routines. 

cc winprog.c -lwindow 

SEE ALSO 
windows(l). 

Hewlett-Packard Company - 4 - April 1988 



WINIT (3W) 

NAME 
winit - initialize window device 

SYNOPSIS 
int winit(fd); 
int fd; 

DESCRIPTION 

WINIT (3W) 

fd is an integer file descriptor for an opened window type' or window manager device inter
face. 

DISCUSSION 
Initialize window device for subsequent calls to the window device. This is called just after 
open(2) or Starbase gopen(3S). 

SEE ALSO 
wterminate(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WINPUT_CONF (3W) WINPUT_CONF (3W) 

NAME 
winput_conf - read/set configuration of window input channel 

SYNOPSIS 
#include <window.h> 
int winput_conf(fd,param,value); 
int fd; 
int param,value; 

DESCRIPTION 
fd is an integer file descriptor for an opened graphics window type device interface. 

param the parameter to set or inquire. 

value the value to set the desired parameter. If value is -1, then the parameter will only be 
inquired. Otherwise, the parameter will be set (enabled) or cleared (disabled) depending 
on whether value is 1 or 0, respectively. The value of the specified parameter is returned 
by winput_conf on a successful call, otherwise a -1 is returned. 

DISCUSSION 
This library call is supported by only the graphics window type. It sets or returns an input 
configuration parameter for a window. This routine should only be called in input mode 2. 

The following parameters, defined in window.h, can be supplied as param: 

K_TRACK 
If set, report all locator moves. The default is cleared. Locator moves are reported only 
when the keyboard is connected to the window. Locator moves during an interactive 
size/move or window system pop-up menu are not reported. Moves will be reported rela
tive to the current window virtual raster in pixel coordinates. Warning: enabling 
K_TRACK will cause window system performance to degrade. 

K---.LANGUAGE 
Language nationality of the keyboard. The value parameter can be changed to a 
language supported on the current keyboard family. The default language is that of the 
keyboard attached. The supported values currently are: 

K----.l_USASCII ITF United States. 
K----.l_BELGIAN ITF Belgian. 
K----.l_CANENG ITF Canadian English. 
K----.l-----.DANISH ITF Danish. 
K----.l-----.DUTCH ITF Dutch. 
K----.lJINNISH ITF Finnish. 
K----.lJRENCH ITF French (AZERTY). 
K----.l_CANFRENCH ITF Canadian French. 
K----.l_SWISSFRENCH ITF Swiss French. 
K----.l_GERMAN ITF German. 
K----.l_SWISSGERMAN ITF Swiss German. 
K----.l----.lTALIAN ITF Italian. 
K----.l~ORWEGIAN ITF Norwegian. 
K----.l-.EUROSP ANISH ITF European Spanish. 
K----.l---.LA TSP ANISH ITF Latin Spanish. 
K----.l_SWEDISH ITF Swedish. 
K----.l_UNITEDK ITF United Kingdom. 
K----.l--.KATAKANA ITF Katakana. 
K----.l_SWISSFRENCH2 ITF Swiss French II. 

Hewlett-Packard Company - 1 - April 1988 



WINPUT_CONF (3W) 

K~_SWISSGERMAN2 

K~--KANJI 

K_CAPSMODE 

ITF Swiss German II. 
ITF Kanji. 

WINPUT_CONF (3W) 

CAPS Key. If set (the default) then characters will automatically be converted to upper 
case when the CAPS key is pressed. If cleared, disable handling of CAPS. (In any case, 
pressing the CAPS key will cause a key code to be sent.) 

K----.EXTEND 
Alternate Keyboards. For some languages, the EXTEND key can be used to toggle 
between normal and alternate keyboards; for other languages, the EXTEND key is a 
modifier to get additional codes. This parameter controls whether the EXTEND key will 
perform the language dependent function. If set (the default) then the language depen
dent function will be enabled. If cleared, the function will be disabled. 

K_CONTROL 
Control Collapsing of Printables. If set (the default for wgskbd(3W) mode 0), then the 
control key will cause characters from 64 to 127 decimal to be collapsed to their control 
values before being received. If cleared (the default for wgskbd(3W) mode 1 or 2) then 
collapsing will be disabled. (In any case, pressing the CONTROL key will cause the con
trol bit to be set when the associated key code is sent.) 

K_SHIFT 
Shift Collapsing of Capitals. If set (the default), then the shift key will cause keys subject 
to the CAPS key to have their case inverted before being received. If cleared, this inver
sion is disabled. (In any case, pressing the SHIFT key will cause the shift bit to be set 
when the associated key code is sent.) 

K~ETA 

Enable META Modifiers. If set (the default), the presence of meta keys will be recognized 
by setting the appropriate meta bits when key codes are sent. A zero parameter will dis
able this capability. 

K~ETA_EXTEND 

Enable Left-EXTEND as META Modifier. This is effective only when K~ETA is set. 
If this parameter is set (the default for wgskbd(3W) mode 1 or 2), the left-EXTEND key 
will become the meta key. For the Katakana keyboard it will also switch the keyboard to 
the ROMAN keyboard at the same time. If cleared (the default for wgskbd(3W) mode 0), 
the left-EXTEND key is simply treated as an EXTEND key. (In any case, pressing the 
left-EXTEND key will cause a key code to be sent.) 

K_CAPSLOCK 
CAPS Mode State. Set means locked; cleared (the default) means not locked. 

K--KANAKBD 
Katakana Keyboard. If set, means that the a.lternate Katakana keyboard is currently 
active. If cleared (the default), means it is not in effect. This bit is only meaningful for a 
Katakana language keyboard. 

K--KANJI 
Enable KANJI mode. This parameter is effective only when the keyboard language is 
K~ET A----.EXTEND. If this parameter is set, the left extend key is used to toggle the 
state of K--KANJIKBD. If cleared (the default), means it is not in effect. 

K--KAN JIKBD 
Kanji input mode. If set, left meta key will be used as a key only. If cleared (the 
default), the left meta key will be used as a meta key. 

Hewlett-Packard Company - 2 - April 1988 



WINPUT_CONF (3W) 

HARDW ARE DEPENDENCIES 
Series 500: 

WINPUT_CONF (3W) 

Graphics window input routines (winput_*) are not supported on Series 500; they only 
work on Series 300. 

SEE ALSO 
winpuLread(3W), wgskbd(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise the current value of the specified parameter is returned. 
See errno(2) for more information. 

Hewlett-Packard Company - 3 - April 1988 



WINPUT_GETROUTE(3W) WINPUT_GETROUTE(3W) 

NAME 
winput_getroute - determine window input routing path 

SYNOPSIS 
int winput_getroute(fd,routepath); 
int fd; 
char *routepath; 

DESCRIPTION 
fd is an integer file descriptor for an opened graphics window type device interface. 

routepath 
is a pointer to a space to be filled with the null-terminated path name of the window type 
device interface currently receiving all input and events that would normally go to the 
window represented by fd. The path name string cannot exceed 40 characters in length. 

DISCUSSION 
This routine determines whether any input or event routing is being done for the window refer
enced by fd (see winput_setroute(3W)). If input routing is enabled for the window, then 
routepath will point to the path name of the window receiving this input. Otherwise routepath 
will point to a null (zero-length) string. 

In a multi-hop route, this routine will return the path name of the immediate window to which its 
input is routed, not necessarily the final destination. 

HARDW ARE DEPENDENCIES 
Series 500: 

Graphics window input routines (winpuL*) are not supported on Series 500; they work 
only on Series 300. 

SEE ALSO 
winput-I"ead(3W), winput---.Setroute(3W), winput_widpath(3W). 

DIAGNOSTICS 
A return value of -1 indicates failure; see errno(2) for more information. Otherwise, the window 
id, wid, of the window referenced by fd is returned. 

Hewlett-Packard Company - 1 - April 1988 



WINPUT_READ (3W) WINPUT-R.EAD (3W) 

NAME 
winput--..read read from window input channel 

SYNOPSIS 
#include <window.h> 
int winput-Iead(fd,bufadr,count); 
int fd; 
struct event_code *bufadr; 
int count; 

DESCRIPTION 
fd is an integer file descriptor for an opened graphics window type device interface. 

bufadr 
the address of the buffer to read data into. 

count number of packets to read. 

DISCUSSION 
This routine may only be used in conjunction with wgskbd(3W) mode 2, known as packetized 
input mode. 

WinpuLread reads evenLcode packets (described below) into a buffer pointed to by bufadr. 
Each packet placed in the buffer represents a single key press or an event. 

WinpuLread attempt to read count packets into the bufadr buffer. The number of packets 
read is returned, and could be less than the number requested, or even zero. For optimal perfor
mance, set count to 25. 

If more than 25 events occur between calls to winpuLread, some event information may be lost. 
When this occurs, an event_code packet is sent with its event_byte field set to 
K_OVERFLOW. Any key presses or hot spot events occuring after the overflow condition will 
be lost. However, the most recent event for all other types of events will not be lost. For exam
ple, suppose K_OVERFLOW occurs and the user moves a window several times before the pro
gram calls winput_read. Then all window move events between the K_OVERFLOW and the 
final window move will be lost. But the last window move won't be lost; the program will still 
receive a packet for the last window move. 

If winput_read is called from a window that has no data available, then the action taken by 
winput_read depends on the O-.NDELA Y value, set when the window type device interface was 
opened. See open(2) and fcntl(2) for details on O-.NDELA Y. If O-.NDELA Y is set, winpuLread 
returns 0, meaning that no event packets have yet occurred since the last call to winput_read. If 
O-.NDELA Y is not set, winput_read will block until a signal or an event occurs in the window, at 
which point winput_read returns an event_code packet for the event. If a signal occurred, but 
not an event, winput_read will return O. 

The packets returned in bufadr are defined by the event_code structure (found in window.h): 

struct event_code { 

}; 

unsigned char control_byte; 
unsigned char data_byte; 
unsigned char event_byte; 
unsigned char event_cause; 
unsigned int timestamp; 
unsigned int wid; 
int x; 
int y; 

Hewlett-Packard Company - 1 - April 1988 



WINPUT_READ (3W) WINPUT-READ (3W) 

timestamp 
A 32-bit integer number that specifies when, in milliseconds, the packet was received. 

wid The window id that the packet originated in. (The winpuLwidpath(3W) routine can be 
used to convert this into a window path name.) 

control_byte 
is a bit field consisting of the OR of the following: 

K_SHIFT _B Shift 
K_CONTROL_B Control 
K~ETA_B META 
K~XTEND_B Right Extend 
K_UP UP==lDOWN==O 
K~PAD Number Pad Key 
K~VENT Key==O Event==l 
K_SPECIAL Special Keys such as CLR LINE, ENTER, fl, etc. 

dat~byte 

is either a special key (if K_SPECIAL is true), or it is a processed character value 
appropriate for the current configuration of the input channel (as set by 
winput_conJ(3W)) . 

Below is a list of all the unique keys (other than alpha-numeric) that are currently sup
ported for the K_SPECIAL data case. (Notice that with the addition of the control bits, 
every possible unique normal physical mechanical key combination can be represented.) 

K-ILLEGAL if no character, data byte will contain ILLE
GAL 

K_CAPS_ON 
K_CAPS_OFF 
K_GO-ROMAN 
K_GO-KATAKANA 
K_GO-KANJI 
K_GO~OKANJI 

K_CAPS-LOCK 
K_TAB 
KJ1 
KJ2 
KJ3 
KJ4 
KJ5 
KJ6 
KJ7 
KJ8 
K--DOWN--.ARROW 
K_UP --.ARROW 
K-LEFT --.ARROW 
K-RIGHT--.ARROW 
K-INSERT-LINE 
K--DELETE-LINE 
K-INSERT _CHAR 
K--DELETE_CHAR 
K_BACKSP ACE 

Hewlett-Packard Company - 2 -

Only when K_CAPSMODE enabled 
Only when K_CAPSMODE enabled 
Only when language is Katakana or Kanji 
Only when language is Katakana or Kanji 
Only when language is Katakana or Kanji 
Only when language is Katakana or Kanji 
Only when K_CAPSMODE disabled 

ROLL--DOWN when shifted 
ROLL_UP when shifted 
ROLL-LEFT when shifted 
ROLL-RIGHT when shifted 

April 1988 



WINPUT_READ (3W) 

event_byte 

K-RETURN 
K-EXTEND--LEFT 
K-EXTEND-RIGHT 
K~ET A--LEFT 
K~ETA-RIGHT 

K_BUTTONI 
K_BUTTON2 
K_BUTTON3 
K_BUTTON4 
K_BUTTON5 
K_BUTTON6 
K_BUTTON7 
K_BUTTON8 

K_BREAK 
K_STOP 
K_SELECT 
K~P-ENTER 

K~P-KO 

K~P-Kl 

K~P-K2 

K~P-K3 

K--HOME-ARROW 
KJREV 
K~EXT 

K-ENTER 

K~ENU 

K_CLR--LINE 
K_CLR.-DISP 

WINPUT---READ (3W) 

In proximity-i.e., the graphics tablet stylus or 
puck switch was placed on the graphics tablet. 
RESET-KEY when shifted 

PRINT when shifted K_SYSTEM 
when shifted) 

(USER 

is used if the K-EVENT bit is set in control_byte. It can have any of the following 
values: 

K~OVE_CT 

~SIZE--LR_CT 

K-ICON_SHK 
K-ICON-EXP 
KJAUSE 
K-------DESTROY 
K_SELECTED 
~USELECTED 

K-REPAINT 
KJSSM-ABORT 
K~OUSE~OVE 
K_BUTTON 
K~ENU-ITEM 

K-ELEV_CT 
~SB--ARROW 
K_OVERFLOW 
K_USER--HS 

Hewlett-Packard Company - 3 -

Window Move Completion 
Size Lower Right Completion 
Shrink to an icon 
Expand from an icon 
Pause Toggle Bit 
Window is trying to be destroyed 
Window was just selected 
Window was just unselected 
Window needs to be repainted 
Full screen sprite mode aborted 
Mouse has moved 
Button press/release 
User popup menu item selected 
Elevator move complete . 
Scroll bar arrow event 
Overflow occurred - events lost 
First user-defined hotspot 

April 1988 



WINPUT_READ (3W) 

K_USER-HS+ 1 
K_USER.-HS+n 
K_USER.-HS+ 127 

WINPUT-READ (3W) 

Second user-defined hotspot 
nth user-defined hotspot 
Last user-defined hotspot 

x,y are used if the K---.EVENT bit is set in control_byte. For events (other than hotspots) 
that generate the SIGWINDOW signal, x and yare set to the values described in 
weventpoll(3W). For hotspot events, x and y provide the position of the locator, relative 
to location 0,0 of the window's raster. 

event_cause 
is used if the K---.EVENT bit is set in control_byte and if the event was caused by a 
hotspot or valid menu item selection. It indicates which locator button or keyboard key 
was pressed, or if a hotstop was entered or exited. event_cause can have anyone of the 
following values: 

EC----.NONE 
EC_BUTTON1 
EC_BUTTON2 
EC_BUTTON3 
EC_BUTTON4 
EC_BUTTON5 
EC_BUTTON6 
EC_BUTTON7 
EC_BUTTON8 

EC_SELECT 
EC---.ENTER 
EC---.EXIT 

No button pressed and no hotspot entered. 
Button 1 was pressed 
Button 2 was pressed 
Button 3 was pressed 
Button 4 was pressed 
Button 5 was pressed 
Button 6 was pressed 
Button 7 was pressed 
Button 8 was pressed, in proximity-i.e., the 
graphics tablet stylus or puck switch was 
placed on the graphics tablet 
SELECT was pressed 
Hotspot was entered 
Hotspot was exited 

HARDW ARE DEPENDENCIES 
Series 500: 

Graphics window input routines (winput_*) are not supported on Series 500; they work 
only on Series 300. 

SEE ALSO 
open(2), fcnt1(2), select(2), winput_conf(3W), winput_getroute(3W), winput--iletroute(3W), 
winput_widpath(3W), wgskbd(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise the number of packets read is returned. See errno(2) 
for more information. 

Hewlett-Packard Company - 4 - April 1988 



WINPUT_SETROUTE (3W) WINPUT_SETROUTE(3W) 

NAME 
winput_setroute - routes input and events to another window 

SYNOPSIS 
int winput---Betroute(fd,routepath); 
int fd; 
char *routepath; 

DESCRIPTION 
fd is an integer file descriptor for an opened graphics window type device interface. 

routepath 
is a pointer to a null-terminated path name of the window to receive all input and events 
occurring in the window represented by jd. This string can be a maximum of 40 charac
ters in length. 

DISCUSSION 
This routine reroutes a (source) window's input to another (destination) window. After calling 
this routine, all keystrokes and events that would normally go to the source window will instead 
be sent to the destination window. The fd parameter is the file descriptor returned from opening 
the source window's device interface; routepath points to the path name of the destination 
window's window type device interface. 

On receiving input from the source window, the destination window will handle the data in a way 
appropriate to its input mode, as set by the wgskbd(3W) routine, regardless of the input mode of 
the source window. 

Each window has its own set of winput_conf(3W) configuration parameters. When using input 
routing, it is normally desirable to have all windows set to the same configuration. This can be 
accomplished either by setting each window to the same wgskbd(3W) mode or by explicitly calling 
winpuLconj(3W) to set the parameters of each window. 

Although it is desirable to have the same winput_conj configuration parameters for each window, 
it is not absolutely necessary. If the source and destination windows have different winpuLconj 
parameters, then input from the destination window will conform to the winpuLconj parameters 
of the source window. 

In Mode 2 (packetized input mode), the wid field of the event_code structure will be set to the 
window id of the window from which the packet originated. Because of this, wid is useful to 
determine which window an event or keypress actually occurred in. In all other modes, the pro
cess that reads data from the routepath window cannot determine which window the input data 
originated from. 

The call will return the window id, wid, for the window referenced by jd if it is successful. Other
wise -1 will be returned, and errno(2) will be set appropriately. 

If a window which is the target of one or more input routes is destroyed, all input routing for 
those windows is cancelled. Input and event routing can also be disabled by passing a null value 
for routepath. 

When input routing is enabled for a window, any data waiting in the input queue at the time of 
the winput_setroute is flushed. This is typically done immediately after an open(2) call, to ensure 
routing of important input and events. 

Multi-hop routing is allowed. For example, the input to window a can be routed to window b, 
which in turn can be routed to window c. In this example, any input to windows a, b, or c will 
be routed to window c. 

Note, however, that routing loops are not allowed. For example, routing a to b, b to c, and c to 
a will cause an error. Also, routing a window to itself (e.g., window d to window d) is a loop and 

Hewlett-Packard Company - 1 - April 1988 



WINPUT_SETROUTE (3W) WINPUT_SETROUTE(3W) 

is not allowed. 

If routing is disabled in one of the windows in a multi-hop route, then routing still is valid for the 
windows that precede the disabled window in the route path. For example, suppose a routes to 
b, b routes to c, and c routes to d. Then, if the route from c to d is disabled, any input originat
ing from windows a, b, or c is still available only from window c, while input originating from 
window d is still available only from window d. 

HARDW ARE DEPENDENCIES 
Series 500: 

Graphics window input routines (winput_*) are not supported on Series 500; they work 
only on Series 300. 

SEE ALSO 
wgskbd(3W),winput_conf(3W),winput_getroute(3W),winput~ead(3W), winput_widpath(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise the window id, wid, of the window referenced by fd is 
returned. See errno(2) for more information. 

Hewlett-Packard Company - 2 - April 1988 



WINPUT_WIDPATH (3W) WINPUT_WIDPATH (3W) 

NAME 
winput_widpath -- get path name for a window id 

SYNOPSIS 
int winput_widpath(wmfd,wid,wname); 
int wmfd; 
int wid; 
char *wname; 

DESCRIPTION 
wmfd is an integer file descriptor for an opened window manager device interface. 

wid is the window id for a window as returned by either winput_setroute(3W) or 
winput_getroute(3W). Note that a window id is not the same as a window's file 
descriptor. 

wname 
is a pointer to a space to be filled with the path name of the window referred to by wid. 
This string will be null-terminated and will not exceed 40 characters in length. 

DISCUSSION 
This routine works only with graphics windows. On return, the wname parameter points to the 
null-terminated path name of the window whose window id is wid. To get the window id for a 
path name, see winput_getroute(3W). A window's window is is also returned by 
winpuLsetroute (3W). 

HARDW ARE DEPENDENCIES 
Series 500: 

Graphics window input routines (winput_*) are not supported on Series 500; they work 
only on Series 300. 

SEE ALSO 
winput_getroute( 3W), winput-I'ead( 3W), winput-iletroute( 3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988, 



WMENU~CTIVATE (3W) WMENU_ACTIVATE (3W) 

NAME 
wmenu_activate - activate a menu 

SYNOPSIS 
wmenu_activate (fd, menuid, value) 
int fd; 
int menuid; 
int value; 

DESCRIPTION 
fd the file descriptor for an opened window type device interface. 

menuid 
id of the menu whose activation status will be changed or inquired. 

value determines the action take by this routine: 

-1 inquires (returns) present value: 0 means that automatic pop-up is disabled; 1 
means that automatic pop-up is enabled 

DISCUSSION 

o disable automatic pop-up of the menu 

will pop-up the menu automatically upon next press of an enabled start menu 
button 

2 pops up the menu immediately, thereby waiting for a selection of an item 

See window.h for named definitions of the values. 

This routine inquires or changes the menu activation state, as determined by the value parameter 
described above. 

SEE ALSO 
wmenu_create(3W), wmenu_destroy(3W), wmenu_eventread(3W), wmentL-item(3W). 

DIAGNOSTICS 
If fd, menuid, or value is invalid; a -1 is returned. See ermo (2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WMENU_CREATE (3W) WMENU_CREATE (3W) 

NAME 
wmenu_create - create a menu 

SYNOPSIS 
#include <window.h> 
int wmenu_create (fd, chits, hutton----.-mask, parent----.-menuid, parent_item) 
int fd; 
int chits; 
int hutton----.-mask; 
int parent----.-menuid, parent_item; 

DESCRIPTION 
fd is the file descriptor of the window for which the menu is to be created. 

chits control bits, see window.h for supported options. 

hutto~ask 

the enabling mask for the start of a menu and the selection of an item within the menu. 
The lower byte represents the start menu enable mask where Ox7F are buttons 1-7, but
ton one being the least significant bit, and Ox80 enables the Select key. Likewise the byte 
above that represents the select item enable mask where Ox7FOO are buttons 1-7, button 
one being the least significant bit, and Ox8000 enables the Select key. 

paren t----.-men uid 
menu id of the parent menu to this one. MENU--.NOPARENT, from window.h, indi
cates there is no parent menu. At this time, parent menus are NOT supported, so always 
use MENU--.NOPARENT. 

parenL.Jtem 
item id of the parent item within the parent menu. Always use MENU--.NOPARENT, 
from window.h, for this parameter. 

DISCUSSION 
This routine creates a user-defined pop-up menu according to the parameters described above. It 
returns as its value the id of the created menu. 

SEE ALSO 
wmenu_activate(3W), wmentL-delete(3W), wmentL-eventread(3W), wmentL-item(3W). 

DIAGNOSTICS 
If any of the following conditions occur, -1 is returned; otherwise 0 is returned: 

* fd is invalid 

* there are no buttons enabled for selecting an item 

* parenLmenuid is anything greater than -1 

* no more menus can be created. 

See errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WMENU--DELETE (3W) 

NAME 
wmenu_delete - delete a menu 

SYNOPSIS 
wmenu_delete (fd, menuid) 
int fd; 
int menuid; 

DESCRIPTION 

WMENU--DELETE (3W) 

fd file descriptor of the window type device interface from which the menu is to be deleted. 

menuid 
id of the menu to be deleted from the window. 

DISCUSSION 
This routine deletes the specified menu. 

SEE ALSO 
wmenu_activate(3W), wmen11-create(3W), wmenu_eventread(3W), wmenu_item(3W). 

DIAGNOSTICS 
If fd or menuid is invalid, a -1 is returned; otherwise 0 is returned. See errno (2) for further infor
mation. 

Hewlett-Packard Company - 1 - April 1988 



WMENU_EVENTREAD (3W) WMENU_EVENTREAD (3W) 

NAME 
wmenu_eventread - read the menu event 

SYNOPSIS 
#include <window.h> 
wmenu_eventread (fd, menuid, itemno) 
int fd; 
int *menuid; 
int *itemno; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

menuid 
id of the menu from which an item was selected. 

itemno 
id of the item selected; -1 indicates the menu was somehow aborted. 

DISCUSSION 
This routine returns menu event data. It's the responsibility of the application to sort menu 
event data by menuid. A return value of 0 indicates that no menu event data was available from 
fd. A return value of greater than 0 indicates the number of queued menu data events the first of 
which contained is returned in menuid and itemno. 

This routine is typically used in conjunction with notification by SIGWINDOW and 
weventpoll(3W) that a menu event has happened. The EVENT~ENU bit (see window.h) is 
used with wsetsigmask(3W). 

SEE ALSO 
wmenu_activate(3W), wmentL-create(3W), wmenll-delete(3W), wmenll-item(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise the number of queued menu data events is returned. 
See errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WMENU-ITEM (3W) WMENU_ITEM (3W) 

NAME 
wmenu_item - specify or change a menu item 

SYNOPSIS 
#include <window.h> 
int wmenu_item (fd, menuid, itemno, type, disp-Bel, type-Btruct) 
int fd; 
int menuid; 
int itemno; 
int type; 
int disp-Bel; 
char *type-Btruct; 

DESCRIPTION 
fd is a file descriptor for an opened window type device interface. 

menuid 
id of the menu to which an item will be added or changed. 

itemno 
id of the item to be affected or MENU-----.NEWITEM, see window.h, which establishes a 
new item within the menu. 

type determines what type this item will be, valid values include, MENU_STRING and 
MENU_SEP ARATOR, see window.h for a complete list. 

disp-Bel 
Sets the select, display, and tracking attributes of this item. Selection attributes are 
MENU-----.NOTSELECT ABLE or MENU_SELECTABLE. Display attributes are 
MENU-DISPNORM or MENU-DISPGREY. Track attributes are 
MENU_TRACKNOCHNG or MENU_TRACKINV. see window.h for a complete list. 

type-Btruct 
This is the data associated with the type. For MENU_STRING pass the text string to 
be displayed. For MENU_SEPARATOR pass a single character whose ordinal value is 
the thickness of the separator line. 

For example, if you pass a space (' ') character as this parameter, and the type is 
MENU_SEPARATOR, then the thickness of the line will be 32 pixels (because an ASCII space 
character is 32 in decimal). 

Note that values of 0 or less default to a thickness of two. For example, if you pass a null string 
("), then the separator thickness defaults to 2 pixels. 

DISCUSSION 
This routine changes or adds an item to the specified menu. It returns as its value the id of the 
item. 

SEE ALSO 
wmenu_activate(3W), wmentL-create(3W), wmenu_delete(3W), wmentL-eventread(3W). 

DIAGNOSTICS 
If either of the following occur, -1 is returned; otherwise 0 is returned: 

* jd, menuid, itemno, or type is invalid 

* there is no room for the item. See errno(2) for further details. 

Hewlett-Packard Company - 1 - April 1988 



WMINQUIRE (3W) WMINQUIRE (3W) 

NAME 
wminquire -- get a window manager environment variable 

SYNOPSIS 
int wminquire( fd,environ, target); 
int fd; 
char *environ, *target; 

DESCRIPTION 
fd is an integer file descriptor for an opened window manager or window type device inter

face. 

environ 
is a pointer to a null terminated character string with the name of an environment vari
able known to the window manager. 

target is a pointer to sufficient space to place the resulting string. No string will be longer than 
40 characters. 

DISCUSSION 
Place the value of environment variable name, as used by the window manager, environ, in string 
space pointed to by target. 

SEE ALSO 
wmpathmake(3W) ,wmstart( 1). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WMKILL (3W) WMKILL (3W) 

NANE 
wmkill ~ kill the window manager 

SYNOPSIS 
int wmkill(wmfd); 
int wmfd; 

DESCRIPTION 
wmfd is an integer file descriptor for an opened window manager device interface. 

DISCUSSION 
This routine kills the window manager, all associated windows and affiliated processes. 

SEE ALSO 
wmstart (1), wmready (1), wmstop( 1). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WMOVE (3W) WMOVE (3W) 

NAME 
wmove - move the location of a window 

SYNOPSIS 
int wmove(fd,x,y); 
int fd; 
int x,y; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

x,y are the screen pixel coordinates for the position of the upper- corner of window view with 
respect to the physical screen. 

DISCUSSION 
Move the window's position on the physical screen. This position can be anywhere on or off the 
screen. 

x and y refer to the upper left corner of the contents portion, not the border. Positive, negative 
and zero values for x and yare allowed. (0,0) is the upper left hand corner of the screen. 

SEE ALSO 
curses(3X), wsize(3W),wpan(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise ° is returned. See errno(2) for more information. 

WARNING 
The HP Windows/9000 library (-Iwindow) and the curses library (-!curses) both define the name 
wmove o. If both libraries are needed by the same program, the program must be compiled in 
pieces, with the window and curses pieces linked individually with their respective libraries. 

For example, the following will not work: 

cc main.c curses_piece.c window_piece.c -!curses -Iwindow # won't work 

Instead use: 

cc -c curses_piece.c window_piece.c 
ld -r curses_piece.o -!curses -0 curses.o -h _wmove 
Id -r window_piece.o -lwindow -0 window.o -h _wmove 
cc main.c curses.o window.o 

If Starbase libraries ·were required for a device such as the 9837 bit-mapped display, the last cc 
could be: 

cc main.c curses.o window.o -ldd9837 -Iwindow -Isbl -lsb2 

Hewlett-Packard Company - 1 - April 1988 



WMPATHMAKE (3W) WMPATHMAKE (3W) 

NAME 
wmpathmake - build a path name using an environment variable 

SYNOPSIS 
int wmpathmake( environ,suffix,target); 
char *environ, * suffix , *target; 

DESCRIPTION 
environ 

is a pointer to a null terminated character string with the name of an environment vari
able containing a directory path. 

suffix is a pointer to a null terminated character string with a path name in it. 

target is a pointer to sufficient space, minimum of 40 chars, to return the resulting path name. 

DISCUSSION 
Wmpathmake expands the given suffix and environment variable to an absolute path name. Rules 
of processing are: unless the suffix begins with "j", ". j", or " .. j", the suffix is appended to the 
value of the named environment variable. In all cases the path name is expanded to an absolute 
path name. Note the following: 

The space pointed at by target, must be a minimum of 40 characters. 

* If the value of the environment variable duplicates the leading portion of the suffix, then no 
appending is done. For example, "x/y/z" cannot be appended to "x/y". 

* wmpathmake requires stdin and stdout to be open in order to expand ".j" or " .. j", see 
getcwd(3C). 

Typically wmpathmake is used to attach the value of the $ WMDIR environment variable to "wm" 
or some window name. Care should be taken when $ WMDIR is ".j" or " .. j", in that $ WMDIR 
must be the same for both the window system and the user, otherwise unexpected results will 
occur. 

SEE ALSO 
wminquire(3W). 

DIAGNOSTICS 
A return value of -1 indicates that the resulting path name was truncated at 40 characters; other
wise a return value of 0 indicates no error occurred. 

Hewlett-Packard Company - 1 - April 1988 



WMREP AINT (3W) 

NAME 
wmrepaint - repaint the desk top 

SYNOPSIS 
int wmrepaint(wmfd); 
int wmfd; 

DESCRIPTION 

WMREP AINT (3W) 

wmfd is an integer file descriptor for an opened window manager device interface. 

DISCUSSION 
This routine sends a repaint event to all window units, then totally repaints the desk top. This 
library call exists in order to repair damage caused to the display, should such damage occur. 
For example, if the following is executed to a device with several windows displayed, 

echo "lsakdjflaksdj" > /dev/console 

the display may not act as expected-i.e., it is damaged. 

Graphics windows mayor may not be repaired by this library call. It depends upon if the applica
tion program using the windows has the ability to repaint upon receiving a repaint event (see 
weventpol0· 

SEE ALSO 
weventpoll (3 W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WPAN (3W) 

NAME 
wpan ~. pan the window 

SYNOPSIS 
int wpan(fd,dx,dy); 
int fd; 
int dx,dy; 

DESCRIPTION 

WPAN (3W) 

fd is an integer file descriptor for an opened graphics window type device interface. 

dx,dy is the pixel delta x and delta y offset in the window raster of the upper left hand corner of 
the view that is being shown. 

DISCUSSION 
Changes the position of the view within the raster, in graphics terminology this is called panning. 

This operation is limited by the current position of the view into the raster and the raster's size. 
Under no circumstance will the pan cause the size of the view of the window to change. If an 
out-of-range operation is attempted, nothing will happen and a -1 will be returned. 

SEE ALSO 
wsize(3W),wmove(3W) . 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WPAUSEOUTPUT (3W) WPAUSEOUTPUT (3W) 

NAME 
wpauseoutput - pause output to a window 

SYNOPSIS 
int wpauseoutput(fd,value); 
int fd; 
int value; 

DESCRIPTION 
fd is an integer file descriptor for an opened TermO window type device interface. 

value is the set/interrogate parameter. Following are valid values for this parameter and the 
resulting effect: 

DISCUSSION 

-1 returns 0 if the window is not paused, otherwise it returns l. 

o resume output to the window. On a TermO window this is equivalent to XON. This 
is the default state at window create time. 

all output to the window is stopped (a paused condition). On a TermO window this 
is equivalent to an XOFF. 

This call inquires or sets whether to pause output to a window. This routine works only with 
TermO window types. 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 or 1 is returned. See errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WRECOVER (3W) WRECOVER (3W) 

NAME 
wrecover - recover a window 

SYNOPSIS 
#include <window.h> 
int wrecover (fd, value) 
int fd; 
int value; 

DESCRIPTION 
fd is an integer file descriptor for an opened window device interface. 

value is an integer which determines the action of this routine. 

DISCUSSION 
This call inquires or sets a window's recover state. 

Setting a window's state to recovered will cause the window to be automatically destroyed when 
its device interface is no longer open by any process. The exact time that the window is des
troyed is determined by the wautodestroy(3W) routine. If a window is recovered and it is set to 
be automatically destroyed, then the window will be immediately destroyed when its device inter
face is closed by every process that had it opened; if a window is recovered and it is not set for 
auto-destruction, then the window is destroyed when its device interface is closed by every process 
that had it opened and only when a new window is about to be created. 

Setting value to -1 causes this routine to return whether the window is recoverable or not. A 1 
value returned indicates that the window denoted by this file descriptor is currently recoverable, 
while a 0 value returned indicates that it is not. 

If value is set to 0, then the window is not recovered upon next creation of a window. This is the 
default state at window create time. 

Setting value to 1 causes the window to be recovered. 

SEE ALSO 
wautodestroy(3W). 

DIAGNOSTICS 
A value of 0 or 1 is returned unless fd does not refer to a window, in which case -1 is returned. 
See errno (2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WSCRN_SPRITE~ODE (3W) 

NAME 
wscrn-Bprite--.mode - set full-screen sprite control mode 

SYNOPSIS 
#include <window.h> 
int wscrn-Bprite-IDode(fd,value); 
int fd; 
int value; 

DESCRIPTION 
fd is an integer file descriptor for an opened graphics window type device interface. 

value is the set/interrogation parameter for which the following values are valid: 

DISCUSSION 

-1 return the window's current screen sprite control mode. 

o disable full-screen sprite control mode. This is the default mode. 

enable full-screen sprite control mode. See discussion below. 

This routine inquires or sets the window's screen sprite control mode. If the window is in full
screen sprite control mode, the window manager will set the locator echo for the full-screen to 
that of the window specified by fd. When the locator is moved over other windows, the desktop, 
or window borders, the echo will not change. In addition, a locator button press or SELECT key 
press while in full-screen sprite control mode will not cause the default actions; rather, the button 
press will be transmitted to the specified window as a button-press event. 

If the user presses any key other than the SELECT key or buttons while in full-screen sprite con
trol mode, full-screen sprite control mode is aborted. The SIGWINDOW signal is then sent to all 
processes that have used wsetsigmask(3W) to enable SIGWINDOW on EVENT----ABORT for this 
window. 

Note that all button press events are sent to the application when full-screen sprite mode is in 
effect, regardless of whether the locator is over a window or the background (desk top). There
fore, if the application is to be consistent with the semantics of the window manager (e.g., give a 
system pop-up menu if the SELECT button is pressed over the desk top pattern), it will take 
extra work to do so. This extra work probably involves using wminquire(3W) to get the value of 
WMIUICONFIG and to act appropriately to button presses, based on the value of WMIUICON
FIG. 

HARDWARE DEPENDENCIES 
Series 500: 

Full-screen sprite control mode is not supported on Series 500; it only works on Series 
300. 

SEE ALSO 
wsetecho(3W) ,wsetrasterecho(3W) ,wsetsigmask(3W) ,wevent poll(3W),wmstart(1). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 or 1 is returned. See errno(2) for more information. 

Full-screen sprite control mode aborts if the interactive operation times-out, just like other 
interactive operations (controlled by the WMIATIMEOUT variable; see wmstart(l)). 

Hewlett-Packard Company - 1 - April 1988 



WSCROLL_GET (3W) WSCROLL_GET (3W) 

NAME 
wscroll_get - interrogate scroll bar information 

SYNOPSIS 
#include <window.h> 
int wscroll_get (fd,which,mode, value,min,max,size); 
int fd; 
int which; 
int *mode, *value, *min, *max, *size; 

DESCRIPTION 
fd is an integer file descriptor of an opened graphics window type device interface. 

which identifies whether to interrogate the vertical or horizontal scroll bar, and must be one of: 

SCROLLBAR_ V 
Vertical scroll bar (in the right hand border) 

SCROLLBAR-H 
Horizontal scroll bar (in the bottom border) 

mode returns the mode of the specified scroll bar, and will consist of the OR of: 

SCROLLBAR_ELEVATOR 
the elevator is enabled. 

SCROLLBAR~RROWS 

the arrows are enabled. 

SCROLLBAR_USERMODE 
The scroll bar is enabled in user mode (otherwise it is in pan mode). If 
SCROLLBALUSERMODE and SCROLLBAR-------.ELEV ATOR are both set, the 
following parameters are also returned: 

value The position (on a scale of min to max) of the elevator. 

min The value to be associated with the upper or left end of the elevator. 

max The value to be associated with the lower or right end of the elevator. 

size The size (on a scale of min to max) of the elevator. 

DISCUSSION 
Wscroll_get returns information about the vertical or horizontal scroll bar elevators and arrows in 
the border of a window. 

HARDWARE DEPENDENCIES 
Series 500: 

Scroll bar capabilities are not supported on Series 500; they work only on Series 300. 

SEE ALSO 
wscroll_set(3W), wsetsigmask(3W), weventpoll(3W), winput-------.read(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WSCROLL_SET (3W) WSCROLL_SET (3W) 

NAME 
wscroll-set - control of window scroll bar elevators and arrows 

SYNOPSIS 
int wscroll-set(fd,which,mode [ ,value [ ,min,max,size II ); 
int fd; 
int which; 
int mode; 
int value; 
int min,max,size; 

DESCRIPTION 
fd is an integer file descriptor of an opened graphics window type device interface. 

which identifies whether vertical, horizontal, or both scroll bars are to be affected. This parame
ter can be set by OR'ing one or both of the following values, defined in window.h. 

SCROLLBAR-V vertical scroll bar (in the right-hand border) 

SCROLLBAR-H horizontal scroll bar (in the bottom border) 

Illode controls the mode of the specified scroll bar. This parameter is set by OR'ing one or more 
of the following bit values, defined in window.h. 

SCROLLBAR-ELEVATOR 
enable the elevator. 

SCROLLBAR-ARROWS 
enable the arrows. 

SCROLLBAR-USERMODE 
enable user mode. If this is not set, then the default pan mode is used. If both 
SCROLLBAR-ELEV A TOR and SCROLLBAR-USERMODE are set, then the value 
parameter must also be supplied. 

SCROLLBAR-SCALE 
meaningful only if the SCROLLBAR-USERMODE and SCROLLBAR-ELEV AT OR 
are specified. If this is set, then the min, max, and size parameters must also be 
supplied. 

value The position where the elevator should appear in the scroll bar within the min and max 
parameters, discussed next. 

min The value to be associated with the upper (for SCROLLBAR-V) or left (for 
SCROLLBAR-H) end of the scroll bar. 

If both SCROLLBAR-V and SCROLLBAR-H are set in the which parameter, then min is 
the same for both the horizontal and vertical scroll bar. 

Illax The value to be associated with the lower (for SCROLLBAR-V) or right (for 
SCROLLBAR-H) end of the elevator. min must be less than max. 

The elevator cannot be moved outside the range specified by min and max. 

If both SCROLLBAR_ V and SCROLLBAR-H are set in the which parameter, then min is 
the same for both the horizontal and vertical scroll bar. 

size The size (on a scale of min to max of the elevator). For example, if min and max are 
-100 and + 100, respectively, then setting size to 50 will cause the elevator to be one 
fourth the size of the scroll bar. 

DISCUSSION 
WscrolLset enables or disables vertical and/or horizontal scroll bar elevators and arrows in the 

Hewlett-Packard Company - 1 - April 1988 



WSCROLL_SET (3W) WSCROLL_SET (3W) 

border of a window. Enabling or disabling scroll bar elevators or arrows has the side effect of turn
ing on or off their visual representation. 

There are two modes of operation for the scroll bars: pan mode and user mode. In pan mode, the 
size and position of an elevator are determined by the size and position of the view with respect to 
the raster. Completion of an interactive move of the elevator or activation of scroll arrows cause 
the window to pan. Conversely, panning the window via wpan(3W) causes the elevators to move. 

In user mode, the size and position of the elevator are specified by the user in a user-supplied 
integer coordinate system and movement of an elevator or activation of a scroll arrow causes an 
event to occur. If the scale information is never supplied, defaults of 0 to 100 are used for min 
and max, and 10 is used for size. 

To interactively move an elevator while in pan mode, position the pointer over the elevator and 
press a select button. This initiates an interactive operation which is echoed as a dotted box in 
the elevator "shaft." Move the locator to position the box to the desired location and press a 
select button to complete the move. Elevator operations can be aborted in the same manner as 
any other interactive operation (e.g., press a key or timeout). 

The activation of a user mode scroll bar arrow or elevator can be detected by enabling SIGWIN
DOW for the desired event via wsetsigmask(3W) , then using weventpoll(3W) to determine what 
event occurred. It can also be detected using winput_read(3W) while the graphics window is in 
Mode 2 (see wgskbd(3W)). For elevator events, weventpoll(3W) will return which scroll bar 
(SCROLLBAR-V or SCROLLBAR-H) and the coordinate for the most recent elevator move
ment in x and y respectively. For arrow events, weventpoll(3W) will return in x and y the accu
mulated number of arrow events (x positive is right, y positive is down) since the last 
weventpoll( 3W). 

In user mode, activation of an elevator does not cause the elevator to move. The application must 
move the scroll bar by calling wscrolLset again with the value parameter set to the appropriate 
value. 

When using elevators in pan mode, you may wish to reverse the sense of the border arrows; see 
the WMIUICONFIG environment variable in wmstart(l) for details on how to do this. 

HARDW ARE DEPENDENCIES 
Series 500: 

Scroll bar capabilities are not supported on Series 500; they work only on Series 300. 

SEE ALSO 
wscroll_get(3W), wsetsigmask(3W), weventpoll(3W), winput-I"ead(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 2 - April 1988 



WSELECT (3W) WSELECT (3W) 

NAME 
wselect attach a keyboard to the specified window 

SYNOPSIS 
int wselect(fd,value}; 
int fd; 
int value; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

value is the set/interrogation parameter; the following values are valid for this parameter: 

DISCUSSION 

-1 returns 0 if a keyboard is not attached to this window, otherwise it returns a 1 if a 
keyboard is attached. 

o the keyboard is detached from this window. The keyboard is then automatically 
attached to the topmost window unless the window specified is the topmost window. 
In this case the keyboard is attached to the next window down in the stack. If there 
is only one window the keyboard remains attached to it. 

the keyboard is attached to the specified window. This has the side effect of detach
ing the keyboard from its current window. 

This call inquires or sets whether the keyboard is attached to this window device. 

There can only be one window at a time connected to the keyboard. 

The window attached to the keyboard is also the window that is currently subject to manipula
tion by the interactive human interface. 

SEE ALSO 
wautoselect(3WS), wshuffie(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 or 1 is returned. See errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WSETJIW _SPRITE_COLOR (3W) WSETJIW_SPRITE_COLOR (3W) 

NAME 
wsetJw---sprite_color - set hardware sprite colors 

SYNOPSIS 
int wset~w --.-Sprite_color (fd,fgcolor ,bgcolor); 
int fd; 
int fgcolor,bgcolor; 

DESCRIPTION 
fd is an integer file descriptor for an opened wz"ndow type device interface. 

fgcolor, bgcolor 
the foreground sprite color, and background sprite color. Colors are taken from the sys
tem (Starbase) color map. 

DISCUSSION 
Defaults for fgcolor and bgcolor are 1 and 0 respectively for the default at window creation time, 
except for border sprites that are set to the window's border fgcolor and bgcolor. 

The sprite is displayed as follows. All bgcolor index values in the sprite data will be displayed as 
bgcolor, and all non-bgcolor index values will be displayed as fgcolor. 

If a color is out of range for the device an error is generated. Normally the valid range is from 0 
to (2'N - 1), where N is the number of planes. 

This call can be made on all devices, but will only have an effect on the HP98730 when using the 
hardware support for sprites. The use of the hardware for sprites can be disabled with the 
WMCONFIG environment variable. 

SEE ALSO 
wgetJw---sprite_color(3W), wmstart(l). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



NAME 
wset-----See_thru - set see_thru color index value 

SYNOPSIS 
int wset_see_thru(wmfd,see_thru); 
int wmfd; 
int see_thru; 

DESCRIPTION 
fd is an integer file descriptor for an opened window manager device interface. 

see_thru, 
the see_thru color index. Colors are taken from the system (Starbase) color map. 

DISCUSSION 
This tells the window system what color index to use in the overlay planes when displaying 
see_thru and IMAGE windows. This routine will modify the system color map by setting the old 
see_thru index back to the last known color map values and setting the new index to see_thru 
(transparent) . 

Defaults for see_thru are set at window creation time. 

If a color is out of range for the device, an error is generated. Normally the valid range is from 0 
to (2'N - 1), where N is the number of planes. 

This call can be made on all devices, but will only have an effect on the HP98730. 

SEE ALSO 
wget-----See_thru(3W), windows(1), wmstart(l). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno (2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WSETBCOLOR (3W) 

NAMER 
wsetbcolor - set window border colors 

SYNOPSIS 
int wsetbcolor( fd,fgborder, bgborder); 
int fd; 
int fgborder,bgborder; 

DESCRIPTION 

WSETBCOLOR (3W) 

fd is an integer file descriptor for an opened window type device interface. 

fgborder, bgborder 
the foreground label character color, and background label and border color. Colors are 
taken from the system (Starbase) color map. 

DISCUSSION 
Defaults for fgborder and bgborder are determined from the WMBDRFGCLR and 
WMBDRBGCLR window system environment variables. 

If a color is out of range for the device, it is modified to be within the valid range. Normally the 
valid range is from 0 to (2'N - 1), where N is the number of planes. If double buffering color 
mode is enabled via the WMCONFIG environment variable, then the valid range is from 0 to 
(2' (N /2) - 1), and the color actually displayed is of the form (C < < (N /2) + C), where C is the 
color to display. 

SEE ALSO 
wgetbcolor(3w). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WSETECHO (3W) WSETECHO (3W) 

NAME 
wsetecho - set echo 

SYNOPSIS 
in t wsetecho( fd,echo_ value,x2 ,y2 ,optimized); 
int fd; 
int echo_value,x2,y2,optimized; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

echo_value 
is the type of echo to be used. Predefined types are listed below: 

o invisible window 

1 device's best echo 

2 full screen cross hair 

3 small tracking cursor 

4 rubber band line, with anchor point atx2,y2 

5 rubber band rectangle, with anchor point at x2,y2 

6 alpha digital representation (for displaying characters on external devices such as 
button boxes) 

7 user defined raster cursor 

8 box of width x2, height y2; where the upper left corner is the current cursor position 

>8 device dependent representation 

x2,y2 are the echo anchor position or box width and height. 

optimized 

DISCUSSION 

is a boolean with two possible values: 

o means echo is exactly as defined. Movement via wsetlocator will do exactly as 
specified. 

means echo representation may be modified as per the device to make it track in the 
best way possible. Movement via wsetlocator may snap to device dependent boun
daries to take advantage of specialized hardware (such as a 4 X 4 pixel tile mover). 

Set the window's echo to the specified Starbase compatible echo type. An additional routine, 
wsetrasterecho, is needed to set up a raster echo. 

SEE ALSO 
wgetecho(3W), wscreeILJlprite-Illode(3W), wset-.-hw----sprite_color(3W), wsetrasterecho{3W). 

DIAGNOSTICS 
A -1 indicates failure; otherwise, 0 is returned. See errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WSETICON (3W) 

NAME 
wseticon - set icon 

SYNOPSIS 
#include <fonticon.h> 
int wseticon( fd,imode,lmode,iconfile); 
int fd; 
int imode,lmode; 
char *iconfile; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

WSETICON (3W) 

imode is the mode controlling which parts of the icon are displayed; following are valid values for 
this paramter: 

o then do not display the picture portion of the icon. 

1 display the type-dependent picture for the icon. 

2 display the icon picture referenced by iconfile. 

Imode is the mode controlling the display choice of the label: 

o do not display a label. 

display the label last specified by wsetlabel. 

iconfile 
is the full path name of an icon file. See the iconstruct definition in 
jusr jinclude jfonticon.h. 

DISCUSSION 
wseticon sets the iconic representation for the window. The default at creation depends upon the 
window type. The foreground and background colors are the same as the window border colors. 

Note that imode and lmode cannot both equal O. 

SEE ALSO 
wiconic(3W),wseticoIlpos(3W),wgeLicollpos(3Vv'),wsetlabel(3W). 

DIAGNOSTIC 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WSETICONPOS (3W) WSETICONPOS (3W) 

NAME 
wseticonpos - set icon position 

SYNOPSIS 
int wseticonpos(fd,x,y); 
int fd; 
int x,y; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

x,y are the screen pixel coordinates for the position of the upper left hand corner of iconic 
representation of the window type with respect to the physical screen. Positive, negative 
and zero values for x and yare allowed. 

DISCUSSION 
wseticonpos sets the icon representation position associated with the window device indicated by 
fd. 

(0,0) is the upper left hand corner of the screen. 

SEE ALSO 
wiconic( 3W) ,wgeticonpos(3W) ,wseticon(3W). 

DIAGNOSTICS 
A -1 indicates failure; otherwise a a is returned. See errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WSETLABEL (3W) WSETLABEL (3W) 

NAME 
wsetlabel - set label in window border 

SYNOPSIS 
int wsetlabel(fd,label); 
int fd; 
char *label; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

label is a pointer to a null-terminated character string to be displayed as the label in the border 
of the window, the title in the SFK area, the title in the popup menu for this window, 
and the label in the icon for the window. 

DISCUSSION 
This call sets the label to be displayed in the border of a window, the title in the SFK area, the 
title in the popup menu for the window, and the label in the icon for the window. 

Only the first 12 bytes of a label are displayed, except for the label in the border of a graphics 
window type, in which up to 128 bytes are displayed. If the last byte in a label is the first byte of 
a 2-byte character, then the character is ignored and not displayed. 

HARDW ARE DEPENDENCIES 
Series 500: 

Graphics window labels can contain no more than 12 characters on Series 500. 

HP-15 (2-byte) characters are not supported on Series 500. 

SEE ALSO 
wborder(l). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WSETLOCATOR (3W) WSETLOCATOR (3W) 

NAME 
wsetlocator - set window locator position 

SYNOPSIS 
init wsetlocator( fd,x,y); 
int fd; 
int x,y; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

x,y contain the current locator position. 

DISCUSSION 
Set the window system locator position relative to the specified window unit. The definition of 
the locator will switch to whatever the locator is defined for the object in the window system that 
it is over. 

x and yare relative to the current window data space (not the screen). They are also in pixel 
units. The locator hot spot determines which part of the locator is actually at the coordinates, see 
wsetrasterecho and wsetecho. For a window type, they are relative to the contents portion, (not 
the border). 

SEE ALSO 
wgetlocator(3W),wscreen-ilprite-------lliode(3W),wsetrasterecho(3W),wsetecho(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WSETRASTERECHO(3W) WSETRASTERECHO(3W) 

NAME 
wsetrasterecho - set raster echo 

SYNOPSIS 
int wsetrasterecho( fd,dx,dy, w ,h,rule,masLrule,mask,image); 
int fd; 
in t fd,dx,dy, w ,h,rule,masLrule; 
char * mask, *image; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

dX,dy are the offset of the echo hot spot to the upper left corner of the echo, usually negative. 

w,h are the echo's size. Setting both to 0 (zero) caused the default echo to be used (small 
arrow). 

rule,masLrule 
are the echo's replacement rules used when displaying a raster cursor. These rules are 
defined in the HP Starbase documentation. 

mask is a pointer to a bit-per-pixel array of 128 characters. This array is used to make the 
mask for the raster echo. The mask is placed on the screen before the image. Each bit 
represents two possible values for each pixel: zero or all ones. 

image is a pointer to a byte-per-pixel array of 1024 characters. This array is used to make the 
image for the raster echo. 

DISCUSSION 
Set the window's raster echo to the specified STARBASE compatible echo type. An additional 
routine, wsetecho, is needed to set up more basic echo attributes first. 

SEE ALSO 
wgetrasterecho(3W), wsetJw -Bprite_color( 3W), wsetecho(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WSETSIGMASK (3W) WSETSIGMASK (3W) 

NAME 
wsetsigmask - set window SIGWINDOW interrupt mask 

SYNOPSIS 
#include <window.h> 
#include <sys/signal.h> 
int wsetsigmask(fd,mask); 
int fd; 
int mask; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

mask is used to specify conditions to interrupt the user process with the SIGWINDOW signal. 
mask is a set of bits defined by the following bit names, where the default mask setting is 
O. The header file containing these defines is /usr/include/window.h. SIGWINDOW 
is defined in /usr/include/sys/signal.h. 

DISCUSSION 

EVENT --.B1-.DOWN button 1 pressed 
EVENT_B1_UP button 1 released 
EVENT_BL.DOWN button 2 pressed 
EVENT_B2_UP button 2 released 
EVENT_B3-.DOWN button 3 pressed 
EVENT --.B3_UP button 3 released 
EVENT_B4-.DOWN button 4 pressed 
EVENT_B4_UP button 4 released 
EVENT_B5-.DOWN button 5 pressed 
EVENT _B5_UP button 5 released 
EVENT_B6-.DOWN button 6 pressed 
EVENT_B6_UP button 6 released 
EVENT--.B7-.DOWN button 7 pressed 
EVENT_B7_UP button 7 released 
EVENT_B8-.DOWN button 8 pressed (in proximity)-Le., the 

puck switch or stylus was placed on the 
graphics tablet 

EVENT--.B8_UP button 8 released (not in proximity)-i.e, 
the puck switch or stylus was picked up 
from the graphics tablet 

EVENT-ECHO echo moved while selected 
EVENT~OVE window moved 
EVENT -SIZE window sized 
EVENT_SELECT KBD Attach state changed 
EVENT-REPAINT window needs to be repainted 
EVENT ~ENU selection made from user-defined menu 
EVENT-ROTSPOT a hotspot has been activated 
EVENT -.DESTROY window destroyed 
EVENT -BREAK BREAK key pressed 
EVENT-ICON iconic state changed 
EVENT -ELEV A TOR window border elevator moved 
EVENT_SB-.ARROW scroll bar arrow selected 
EVENT-.ABORT interactive operation was aborted 

This command is used set up signal generation events. Each process that desires to receive 
SIGWINDOW for a set of mask bits must call wsetsigmask separately. One window can send 

Hewlett-Packard Company - 1 - April 1988 



WSETSIGMASK (3W) WSETSIGMASK (3W) 

SIGWINDOW to up to three processes. The receiving program still has to catch SIGWINDOW 
with the signal function call. The default signal behavior is SIG--IGN (ignore signal). 

EVENT-HOTSPOT, EVENT-----.DESTROY, EVENT_BREAK, EVENT--ICON, 
EVENT-ELEVATOR, EVENT_SB----ARROW, and EVENT----ABORT are supported only by 
graphics windows. 

If the limit of three processes per window is exceeded then ENOSPC error will be returned. 

HARDW ARE DEPENDENCIES 
Series 500: 

The Series 500 does not support the following events: 

SEE ALSO 

EVENT-HOTSPOT 
EVENT -----.DESTROY 
EVENT_BREAK 
EVENT--ICON 
EVENT-ELEVATOR 
EVENT _SB----ARROW 
EVENT----ABORT 

weventclear(3W), weventpoll(3W), wgetsigmask(3W), signal(2). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 2 - April 1988 



WSFK~ODE (3W) 

NAME 
wsflc--.lllode -- switch to soft key mode 

SYNOPSIS 
int ws~mode(fd,mode); 
int fd; 
int mode; 

DESCRIPTION 

WSFK~ODE (3W) 

fd is an integer file descriptor for an opened graphics window type device interface. 

mode is the mode to which the softkeys will be set: 

DISCUSSION 

o softkey labels are turned off. 

softkey labels are turned on. 

Switch the soft key labels for the specified window to the specified mode. If the mode specified is 
soft key labels on, the labels will be displayed whenever the window becomes the selected window. 
If the mode is off, the no labels will be displayed whenever the window becomes the selected win
dow. 

SEE ALSO 
wsfk_prog{3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WSFK-PROG (3W) WSFK-PROG (3W) 

NAME 
wsfk_prog - set programmable soft keys 

SYNOPSIS 
int wsf'k-prog (fd,key ,label,separator); 
int fd; 
int key; 
char *label; 
char separator; 

DESCRIPTION 
fd is an integer file descriptor for an opened graphic window type device interface. 

key is the key label number to set. 1 thru 8 are for keys f1 thru f8 respectively. 

label a pointer to a null terminated character string. Only the first 16 bytes are used. If less 
than 16 characters are supplied, blanks are assumed for the remaining characters. Keys 1 
through 8 are displayed as two rows of eight I-byte characters. If the eighth byte is the 
first byte of a 2-byte character, then all bytes from the eighth byte on are shifted up by 
one (eight goes to nine, nine goes to ten, etc) and the eighth byte is replaced with a space. 
This causes the 2-byte character to be wrapped to the second line instead of being split 
across the lines. If the last byte is the first byte of a 2-byte character, the byte is trun
cated. 

separator 
indicates whether or not to display a horizontal line to separate the the shifted and 
unshifted text for the sfk. If separator is non-zero, the separator line is displayed. If 
separator is zero, the separator line is not displayed. 

DISCUSSION 
Set the displayed string for a particular programmable soft key label. When the soft keys are 
displayed, the specified string will be displayed for that soft key. If a soft key is selected via 
SELECT or locator button, the key code for that soft key will be sent. 

HARDW ARE DEPENDENCIES 
Series 500: 

HP-15 (2-byte) characters are not supported on Series 500. 

SEE ALSO 
wsfk-.mode(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WSHUFFLE (3W) 

NAME 
wshufHe - shufHe windows' relative locations within display stack 

SYNOPSIS 
int wshufHe(wmfd,value); 
int wmfd; 
int value; 

DESCRIPTION 

WSHUFFLE (3W) 

wmfd is an integer file descriptor for an opened window manager device interface. 

value determines how the windows are shuffled through the display stack: 

o means to shuffle the top window to the bottom, e.g., deal from the top of the deck. 

means to shuffle the bottom window to the top, e.g., deal from the bottom of the 
deck. 

DISCUSSION 
This call shuffles the whole visible stack of windows. It always attaches the keyboard to the 
resulting top most window. 

SEE ALSO 
wtop(3W), wbottom(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 or 1 is returned. See errno(2) for further information. 

Hewlett-Packard Company - 1 - April 1988 



WSIZE (3W) WSIZE (3W) 

NAME 
wsize - change the size of a window 

SYNOPSIS 
int wsize(fd,w,h); 
int fd; 
int w,h; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

w,h is the width and height of the window view measured in pixels. Width and height always 
refer to the contents portion, not the border. 

DISCUSSION 
This procedure is used to change the size of the window, which means to change the view into the 
virtual raster. 

This operation is limited by the current position of the view into the raster and the raster's size. 
Under no circumstance will the size cause the delta x,y into the raster to change. Also the size 
operation may cause a portion of the window to be off screen. 

A request to set the size of the window to less than the minimum width or height will set the win
dow size to the minimum width or height. In the same way, a request to set the size to more 
than the maximum width or height will set the window size to the maximum width or height. 
The maximum size for a graphics window type is its raster size minus the current pan delta set via 
wpan. The maximum size for a termO window type is its initial creation size. If the border type 
set via wbanner(3W) is "normal" (i.e. display a border), then the minimum size for both a termO 
and graphics window type is such that at least one character of the label is visible. If the border 
type is "thin", then the minimum size is 1 pixel for graphics and 1 character for termO. 

SEE ALSO 
wpan(3W),wbanner(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WTERMINATE (3W) 

NAME 
wterminate - release window resources 

SYNOPSIS 
int wterminate(fd); 
int fd; 

DESCRIPTION 

WTERMINATE (3W) 

fd is an integer file descriptor for an opened window type or window manager device inter
face. 

DISCUSSION 
This call releases window resources that were allocated by a call to winit(3W), when window com
munication was started with the window or window manager. 

SEE ALSO 
winit(3W). 

DIAGNOSTICS 
A return of -1 indicates failure; otherwise 0 is returned. See errno(2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



WTOP (3W) 

NAME 
wtop - move the window to the top of the window stack 

SYNOPSIS 
int wtop(fd,value); 
int fd; 
int value; 

DESCRIPTION 
fd is an integer file descriptor for an opened window type device interface. 

value is the set/interrogation parameter for which the following values are valid: 

WTOP (3W) 

-1 return the window's current top status. If the window is the top window in the 
stack, then 1 is returned; otherwise, 0 is returned. 

o causes the routine to do nothing. 

places the window or icon on top of all other windows. If the window is concealed 
make it visible and on top. 

DISCUSSION 
This call inquires or sets whether this window is top most. 

SEE ALSO 
wbottom(3W),wshuffie(3W). 

DIAGNOSTICS 
A value of 0 or 1 is returned unless fd does not refer to a window, in which case -1 is returned. 
See errno (2) for more information. 

Hewlett-Packard Company - 1 - April 1988 



COMMAND/KEYWORD INDEX 

WHAT IT IS! 
This is an "in context" index. It is sometimes called a permuted index. It is generated from the 
NAME part, i.e., the command, or routine name, and its description part, of the reference pages. 
Each significant word in the command/description line is used as an index entry, a keyword. It is 
"in context" because the words in the command/description line surrounding, i.e., preceding and/or 
following, the keyword are included with it. In certain cases, especially when more than one command 
is included in the NAME part of a reference page, some license is used to select command line 
information. 

HOW IT IS! 
These conventions apply: 

commands 

• a command, or routine name, is printed in italics and followed by a colon (:) 

context 

• the context for the keyword is contained in the left and center columns 

• to read the context of a keyword, start with the command or, if the command part 
has been truncated, with the right brace ( } ); read to the end of the center column 
and wrap around to the beginning of the left column; read across to the command or 
either brace 

keyword 

• the keyword, or look-up word, for an index entry is the left word in the center 
column, i.e., the one under the 1 

• keywords are in alphabetical order; uppercase is folded into lowercase 

• if a keyword is a command it is preceded by an asterisk (*) 

PAGE NAME 

• the PAGE NAME, where the command is presented in this reference, appears in the 
right column; the number and/or letter in parentheses identifies the section where 
this referenced PAGE NAME is located 

special characters 

an asterisk indicates the keyword is a command 

a colon separates a command or routine name from its description 

a left brace indicates where the end of the command line is truncated 

a right brace indicates where the beginning of the command line is truncated 

truncation 

• if a command line, including the command and the description, is too long to fit in 
the context area, the end and/or the beginning of the line is truncated 

• braces are used to indicate where a truncation occurs 

Hewlett-Packard -i- April 1988 



COMMAND/KEYWORD INDEX 

EXAMPLE 
Here is a command/description from this reference manual: 

fontreplaceall_termO - replace the current base font and alternate font 

And here are the entries produced for the index: 

1 * command/keyword 
the current base font and alternate font }replace ......................... . 

}replace the current base font and alternate font ................ . 
font }replace the current base font and alternate ........... . 

}replace the current base font and alternate font ........................ . 
current base font and alternate font }replace the .................................. . 

the current base font and{ *fontreplaceaILtermO: replace ............ . 
and{ fontreplacealLtermO: replace the current base font ............... . 

Hewlett-Packard -ii-

PAGE-.NAME 
FONTREPLACEALL_TERMO(3W) 

FONTREPLACEALL_TERMO(3W) 

FONTREPLACEALL_TERMO(3W) 

FONTREPLACEALL_TERMO(3W) 

FONTREPLACEALL_TERMO(3W) 

FONTREPLACEALL_TERMO(3W) 

FONTREPLACEALL_TERMO(3W) 

April 1988 



COMMAND/KEYWORD INDEX 

1 * command/keyword 
wmentL-activate: activate a menu ..................................... . 

wfont: load and activate fonts ........................................ . 
set or inquire the TermO alternate font altfont_term{}, ................ . 

the current base font and alternate font }replace .......................... . 
the TermO alternate font * altfont_term{}, set or inquire ............... . 

window scroll bar elevators and arrows wscrolLset: control of ............... . 
specified window wselect: attach a keyboard to the ....................... . 

more windows or set autodestroy attributes }destroy one or ..................... . 
wautodestroy: autodestroy a window ........................... . 

one or more windows or set autodestroy attributes }destroy ............ . 
wautoselect: autoselect a window .............................. . 

wautotop: autotop a window ................................ .. 
tell if window manager is awake and ready wmready: ................... . 
}control of window scroll bar elevators and arrows ....................... . 

wscrolLget: interrogate scroll bar information ..................................... . 
}replace the current base font and alternate font .................. . 

set or inquire the TermO base font basefont_term{}, ..................... . 
the TermO base font *basefont_termO: set or inquire ............ . 

wgetbcolor: get window border colors ......................................... . 
wsetbcolor: set window border colors ......................................... . 

wgetbcoords: get border coordinates ................................. . 
wborder: control window border style, color, label ........................ . 

about or control a window's border wbanner: inquire ........................ . 
wsetlabel: set label in window border ................................................... . 

wbottom: bottom window ..................................... . 
environment{ wmpathmake: build a path name using an ................... . 

wmentL-item: specify or change a menu item .............................. . 
wiconic: change a window to/from an icon ......... . 

wdisp: change displayability of windows .......... . 
windows wsize: change sizes of one or more ................... . 

wsize: change the size of a window .................. . 
configuration of window input channel winput_conf. read/set .............. . 

read from window input channel winput_read: ............................ . 
toxy_termO: convert TermO character units to pixels ........................ . 

from TermO pixel units to characters }convert ............................... . 
weventclear: clear window locator events .................. . 

wget_see_thru: get see_thru color index value ................................... . 
wset_see_thru: set see_thru color index value ................................... . 
control window border style, color, label wborder: .............................. . 

wgetbcolor: get window border colors ..................................................... . 
get hardware sprite colors wget_hw_sprite_color: .............. . 

wsetbcolor: set window border colors .................................................... .. 
set hardware sprite colors wset_hw_sprite_color: ............... . 

window system concepts and commands windows: .............................. . 
wconceal: conceal window ..................................... . 

windows: window system concepts and commands ........................ . 
channel winpuLconf read/set configuration of window input ............... . 

wselect: connect a window to the keyboard ........ . 
wbanner: inquire about or control a window's border ..................... . 

set full-screen sprite control mode wscr'TI...-sprite_mode: ....... . 

PAGE~AME 

WMENlLACTIVATE(3W) 

WFONT(l) 
ALTFONT_TERMO(3W) 

FONTREPLACEALL_TERMO(3W) 

ALTFONT_TERMO(3W) 

WSCROLL--.SET(3W) 

WSELECT(3W) 

WDESTROY(l) 

WAUTODESTROY(3W) 
WDESTROY(l) 

WAUTOSELECT(3W) 

WAUTOTOP(3W) 

WMREADY(l) 
WSCROLL--.SET(3W) 

WSCROLL_GET(3W) 

FONTREPLACEALL_TERMO(3W) 

BASEFONT_TERMO(3W) 

BASEFONT_TERMO(3W) 

WGETBCOLOR(3W) 
WSETBCOLOR(3W) 

WGETBCOORDS(3W) 

WBORDER(l) 

WBANNER(3W) 

WSETLABEL(3W) 

WBOTTOM(3W) 
WMPATHMAKE(3W) 

WMENU-ITEM(3W) 
WICONIC(3W) 

WDISP(l) 

WSIZE(l) 

WSIZE(3W) 
WINPUT_CONF(3W) 

WINPUT-READ(3W) 
TOXY _TERMO(3W) 

FROMXY _TERMO(3W) 

WEVENTCLEAR(3W) 
WGET-1lEE_THRU (3W) 
WSET~EE_THRU(3W) 

WBORDER(1) 

WGETBCOLOR(3W) 

WGET -HW --.SPRITE_COLOR(3W) 

WSETBCOLOR(3W) 

WSET -HW --.SPRITE_COLOR(3W) 
WINDOWS(l) 

WCONCEAL(3W) 

WINDOWS(l) 
WINPUT_CONF(3W) 

WSELECT(l) 

WBANNER(3W) 
WSCRN-1lPRITE.J10DE(3W) 

: separates command from description; indicates location of leading truncation; indicates location of trailing truncation; 

Hewlett-Packard -1- April 1988 



COMMAND/KEYWORD INDEX 

elevators and { wscrolLset: 
color, label wborder: 

to characters fromxy_termO: 
pixels toxy_termO: 

wgetbcoords: get border 
wgetcoords: get window 
type wcreate_graphics: 

wcreate_termO: 
whotspoLcreate: 

wmenu-create: 
existing windows wsh: 

wcreate: 
font }replace the 
wgeticonpos: get 

whotspoLget: get hotspot 
whotspoLset: set hotspot 

wdfttpos: 
whotspoLdelete: 

wmenu-delete: 
wmrepaint: repaint the 

wdestroy: 
set autodestroy{ wdestroy: 

path winpuLgetroute: 
win it: initialize window 

relative locations within 
start the window system on one 
stop the window system on one 

wdisp: change 
wgetecho: get 

wgetrasterecho: get raster 
wsetecho: set 

! * command/keyword 
control of window scroll bar 
control window border style, ............... . 
convert from TermO pixel units ........... . 
convert TermO character units to ........ . 
coordinates .......................................... . 
coordinates .......................................... . 
create a graphics window ..................• 
create a termO window type ............... . 
create a hotspot .................................. .. 
create a menu ...................................... . 
create new shells in new or .................. . 
create one or more new windows ......... . 
current base font and alternate ........... . 
current icon position ............................ . 
data ..................................................... . 
data ..................................................... . 
default window/icon position ............... . 
delete a hotspot ................................... . 
delete a menu ...................................... . 
desk top ............................................... . 
destroy a window ................................ . 
destroy one or more windows or .......... . 
determine window input routing ......... . 
device .................................................. . 
display stack }shufHe windows' ........... . 
display wmstart: .................................. . 
display wmstop: ................................... . 
displayability of windows .................... . 
echo ..................................................... . 
echo ..................................................... . 
echo ..................................................... . 

wsetrasterecho: set raster echo ..................................................... . 
wgetlocator: get window echo/locator parfuueter ....................... . 

}control of window scroll bar elevators and arrows ............................ . 
wminquire: get a window manager environment variable ........................... . 

}build a path name using an environment variable ........................... . 
wmenu-eventread: read the menu event ................................................... . 

}routes input and events to another window .................... . 
clear window locator events weventclear: ............................. .. 

poll for window locator events weventpoll: ................................ . 
wsh: create new shells in new or existing windows .....................•............ 

were ate_graphics: create a graphics window type ........................ . 
wcreate_termO: create a termO window type ............................ . 

or inquire the TermO alternate font altfonLtermO: set ........................ . 
}replace the current base font and alternate font ........................ . 

set or inquire the TermO base font basefonLtermO: ........................... . 
inquire the ID of a TermO font fontgetiLtermO: .......................... . 

inquire the name of a TermO font fontgetname_termO: ..................... . 
fontloaLtermO: load a TermO font ..................................................... . 

current base font and alternate font }replace the ................................. .. 

: separates command from description; indicates location of leading truncation; 

Hewlett-Packard -2-

PAGEJAME 
WSCROLL---BET(3W) 

WBORDER(l) 
FROMXY _TERMO(3W) 

TOXY _TERMO(3W) 

WGETBCOORDS(3W) 

WGETCOORDS(3W) 

WCREATLGRAPHICS(3W) 
WCREATLTERMO(3W) 
WHOTSPOT_CREATE(3W) 

WMENU_CREATE(3W) 

WSH(l) 

WCREATE(l) 
FONTREPLACEALL_TERMO(3W) 
WGETICONPOS(3W) 

WHOTSPOT_GET(3W) 

WHOTSPOT---BET(3W) 

WDFLTPOS(3W) 

WHOTSPOT-DELETE(3W) 

WMENU-DELETE(3W) 
WMREPAINT(3W) 

WDESTROY(3W) 

WDESTROY(l) 

WINPUT_GETROUTE(3W) 

WINIT(3W) 

WSHUFFLE(3W) 
WMSTART(l) 

WMSTOP(l) 

WDISP(l) 

WGETECHO(3W) 

WGETRASTERECHO(3W) 

WSETECHO(3W) 

WSETRASTERECHO(3W) 

WGETLOCATOR(3W) 
WSCROLL---BET(3W) 

WMINQUIRE(3W) 

WMPATHMAKE(3W) 

WMENU-EVENTREAD(3W) 
WINPUT ---BETROUTE(3W) 

WEVENTCLEAR(3W) 

WEVENTPOLL(3W) 

WSH(l) 

WCREATE_GRAPHICS(3W) 

WCREATE_TERMO(3W) 

ALTFONT_TERMO(3W) 
FONTREPLACEALL_TERMO(3W) 

BASEFONT_TERMO(3W) 

FONTGETID_TERMO(3W) 

FONTGETNAME_TERMO(3W) 

FONTLOAD_TERMO(3W) 

FONTREPLACEALL_TERMO(3W) 

indicates location of trailing truncation; 

April 1988 



COMMAND/KEYWORD INDEX 

1 *command/keyword 
fontswap_termO: replace a TermO font ..................................................... . 

fontsize_sizeO: TermO font size ............................................... . 
of a TermO font * fontgetiLtermO: inquire the ID ........ . 

name of a TermO font *fontgetname_termO: inquire the ........ . 
font *fontloaLtermO: load a TermO ........... . 

the current base font and{ *fontreplacealLtermO: replace ............ . 
wfont: load and activate fonts .................................................... . 

wlist: list status of windows or fonts .................................................... . 
* fontsize_sizeO: TermO font size ......... . 

font *fontswap_termO: replace a TermO ..... . 
pixel units to characters *fromxy_termO: convert from TermO .. . 
wscr~sprite_mode: set full-screen sprite control mode ............. . 

wgskbd: set keyboard mode for graphics window type .......................... . 
wgeLhw_sprite_color: get hardware sprite colors ......................... . 
wset_hw_sprite_color: set hardware sprite colors ......................... . 

whotspoLget: get hotspot data ........................................ . 
whotspoLset: set hotspot data ........................................ . 

whotspoLcreate: create a hotspot ................................................ . 
whotspoLdelete: delete a hotspot ................................................ . 
wgeticonpos: get current icon position ........................................ . 

wseticonpos: set icon position ........................................ . 
change a window to/from an icon wiconic: ........................................ . 

wseticon: set icon ..................................................... . 
one or more windows or their icons wmove: move .............................. . 
fontgetiLtermO: inquire the ID of a TermO font .............................. . 
get path name for a window id winpuLwidpath: ............................. . 

get see_thru color index value wgeLsee_thru: ................ . 
set see_thru color index value wseLsee_thru: ................ . 

wgetscreen: get screen information .......................................... . 
interrogate scroll bar information wscrolLget: ...................... . 

winit: initialize window device ....................... . 
window winpuLsetroute: routes input and events to another ................ . 

configuration of window input channel }read/set ....................... . 
winpuLread: read from window input channel ...................................... . 

}determine window input routing path ............................... . 
window's border wbanner: inquire about or control a .................... . 

fontgetiLtermO: inquire the ID of a TermO font ............ . 
fontgetname_termO: inquire the name of a TermO font ........ . 
altfonLtermO: set or inquire the TermO alternate font ......... . 

basefont_termO: set or inquire the TermO base font ................ . 
information wscrolLget: interrogate scroll bar ........................... . 

get window SIGWINDOW interrupt mask wgetsigmask: ............... . 
set window SIGWINDOW interrupt mask wsetsigmask: ................ . 

specify or change a menu item wmen'1L-item: .............................. . 
wsfk-mode: switch to soft key mode ............................................. . 

window type wgskbd: set keyboard mode for graphics ................. . 
wselect: attach a keyboard to the specified window ........ . 

wselect: connect a window to the keyboard ............................................. . 
wsfk-prog: set programmable soft keys ..................................................... . 

wmkill: kill the window manager ..................... . 

PAGE~AME 
FONTSWAP _TERMO(3W) 
FONTSIZE_TERMO(3W) 
FONTGETID_TERMO(3W) 
FONTGETNAME_TERMO(3W) 
FONTLOAD_TERMO(3W) 
FONTREPLACEALL_TERMO(3W) 
WFONT(l) 
WLIST(l) 
FONTSIZE_TERMO(3W) 
FONTSWAP _TERMO(3W) 
FROMXY _TERMO(3W) 
WSCRN-8PRITE-MODE(3W) 
WGSKBD(3W) 
WGETJIW -8PRITE_COLOR(3W) 
WSEL . .HW-8PRITE_COLOR(3W) 
WHOTSPOT _GET(3W) 

WHOTSPOT-8ET(3W) 
WHOTSPOT _CREATE(3W) 

WHOTSPOT-DELETE(3W) 
WGETICONPOS(3W) 
WSETICONPOS(3W) 
WICONIC(3W) 
WSETICON(3W) 
WMOVE(l) 
FONTGETID_TERMO(3W) 
WINPUT _WIDP ATH(3W) 
WGET-8EE_THRU(3W) 
WSET-8EE_THRU(3W) 

WGETSCREEN(3W) 
WSCROLL_GET(3W) 

WINIT(3W) 
WINPUT-8ETROUTE(3W) 
WINPUT_CONF(3W) 
WINPUT-...READ(3W) 
WINPUT_GETROUTE(3W) 
WBANNER(3W) 
FONTGETID_TERMO(3W) 
FONTGETNAME_TERMO(3W) 
ALTFONT_TERMO(3W) 
BASEFONT_TERMO(3W) 
WSCROLL_GET(3W) 
WGETSIGMASK(3W) 
WSETSIGMASK(3W) 
WMENU-ITEM(3W) 
WSFK-MODE(3W) 
WGSKBD(3W) 
WSELECT(3W) 
WSELECT(l) 
WSFIL.PROG(3W) 
WMKILL(3W) 

: separates command from description; } indicates location of leading truncation; { indicates location of trailing truncation; 

Hewlett-Packard -3- April 1988 



COMMAND/KEYWORD INDEX 

1 * command/keyword 
wsetlabel: set label in window border ........................ . 

window border style, color, label wborder: control .......................... . 
window: summary of window library routines .................................... . 

wlist: list status of windows or fonts ............. . 
lontloaLtermO: load a TermO font .......... '" .................. . 

wlont: load and activate fonts ........................ . 
wmove: move the location of a window ............................ . 

}shufHe windows' relative locations within display stack .............. . 
weventclear: clear window locator events ................. '" .................. . 

weventpoll: poll for window locator events ................. ' .................... .. 
wsetlocator: set window locator position .................................... . 

wminquire: get a window manager environment variable ............ . 
wmready: tell if window manager is awake and ready ................ . 
wmkill: kill the window manager ............................................. .. 

get window SIGWINDOW interrupt mask wgetsigmask: ............................... . 
set window SIGWINDOW interrupt mask wsetsigmask: ............................... . 

wmenu-eventread: read the menu event .......................................... . 
wmenu-item: specify or change a 

wmenu-activate: activate a 
wmenu-create: create a 
wmenu-delete: delete a 

wgskbd: set keyboard 
set full-screen sprite control 

wslLmode: switch to soft key 
their icons wmove: 

wmove: 
the window stack wtop: 

winput_widpath: get path 
lontgetname_termO: inquire the 

wmpathmake: build a path 
wgetname: get path 

wpauseoutput: pause 
wpan: 

get window echo/locator 
winput_widpath: get 

variable wmpathmake: build a 
wgetname: get 

determine window input routing 
wpauseoutput: 

Iromxy_termO: convert from TermO 
convert TermO character units to 

weventpoll: 
wdfitpos: default window/icon 
wgeticonpos: get current icon 

wseticonpos: set icon 
wsetlocator: set window locator 

wslLprog: set 
wgetrasterecho: get 
wsetrasterecho: set 

winput_read: 

menu item ........................................... . 
menu 
menu ................................................... . 
menu ................................................... . 
mode for graphics window type ........... . 
mode wscrrL-sprite_mode: .................. . 
mode ................................................... . 
move one or more windows or ............. . 
move the location of a window ............ . 
move the window to the top of ............ . 
name for a window id .......................... . 
name of a TermO font .......................... . 
name using an environment{ ............... . 
name ................................................... . 
output to a window ............................. . 
pan the window ................................... . 
parameter wgetlocator: ........................ . 
path name for a window id .................. . 
path name using an environment ........ . 
path name ........................................... . 
path winput_getroute: ......................... . 
pause output to a window ................... . 
pixel units to characters ...................... . 
pixels toxy_termO: ............................... . 
poll for window locator events ............. . 
position ............................................... . 
position ............................................... . 
position ............................................... . 
position ............................................... . 
programmable soft keys ....................... . 
raster echo .......................................... .. 
raster echo ........................................... . 
read from window input channel ......... . 

PAGE-.NAME 
WSETLABEL(3W) 

WBORDER(l) 

WINDOW(3W) 

WLIST(l) 

FONTLOAD_TERMO(3W) 

WFONT(l) 

WMOVE(3W) 

WSHUFFLE(3W) 

WEVENTCLEAR(3W) 

WEVENTPOLL(3W) 

WSETLOCATOR(3W) 

WMINQUIRE(3W) 

WMREADY(l) 

WMKILL(3W) 

WGETSIGMASK(3W) 

WSETSIGMASK(3W) 

WMENU-EVENTREAD(3W) 

WMENU~TEM(3W) 

WMENU-ACTIVATE(3W) 

WMENU_CREATE(3W) 

WMENU-DELETE(3W) 

WGSKBD(3W) 

WSCRN~PRITE~ODE(3W) 

WSFK~ODE(3W) 

WMOVE(1) 

WMOVE(3W) 

WTOP(3W) 

WINPUT_WIDPATH(3W) 

FONTGETNAME_TERMO(3W) 

WMPATHMAKE(3W) 

WGETNAME(3W) 

WPAUSEOUTPUT(3W) 

WPAN(3W) 

WGETLOCATOR(3W) 

WINPUT_WIDPATH(3W) 

WMPATHMAKE(3W) 

WGETNAME(3W) 

WINPUT_GETROUTE(3W) 

WPAUSEOUTPUT(3W) 

FROMXY _TERMO(3W) 

TOXY _TERMO(3W) 

WEVENTPOLL(3W) 

WDFLTPOS(3W) 

WGETICONPOS(3W) 

WSETICONPOS(3W) 

WSETLOCATOR(3W) 

WSFKJROG(3W) 

WGETRASTERECHO(3W) 

WSETRASTERECHO(3W) 

WINPUT-READ(3W) 

: separates command from description; indicates location of leading truncation; indicates location of trailing truncation; 

Hewlett-Packard -4- April 1988 



COMMAND/KEYWORD INDEX 

1 * command/keyword 
wmen'IL..eventread: read the menu event ............................ . 

window input{ winpuLconj: read/set configuration of ..................... . 
if window manager is awake and ready wmready: tell ............................. . 

wrecover: recover a window ................................. . 
wshuffle: shuffle windows' relative locations within{ ..................... . 

wterminate: release window resources ..................... . 
wmrepaint: repaint the desk top ............................ . 

fontswap_termO: replace a TermO font ........................... . 
and{ fontreplacealLtermO: replace the current base font ............... . 
wterminate: release window resources ............................................... . 

another window winpuLsetroute: routes input and events to ................... . 
summary of window library routines window: ................................. .. 

determine window input routing path winpuLgetroute: ............ . 
wgetscreen: get screen information ............................... . 

wscrolLset: control of window scroll bar elevators and arrows ............ . 
wscrolLget: interrogate scroll bar information .......................... . 

wget_see_thru: get see_thru color index value .................. . 
wseLsee_thru: set see_thru color index value .................. . 

}destroy one or more windows or set autodestroy attributes .... '" ............ . 
wsetecho: set echo ............................................... . 

mode wscrfL-sprite_mode: set full-screen sprite control ................. . 
wset_hw_sprite_color: set hardware sprite colors .................... . 

whotspot_set: set hotspot data .................................. . 
wseticonpos: set icon position .................................. . 

wseticon: set icon ................................................ . 
window type wgskbd: set keyboard mode for graphics ........... . 

wsetlabel: set label in window border .................. . 
alternate font altfonLtermO: set or inquire the TermO ...................... . 

font basefonLtermO: set or inquire the TermO base .............. . 
wsfLprog: set programmable soft keys ................. . 

wsetrasterecho: set raster echo ..................................... . 
wseLsee_thru: set see_thru color index value ............ . 

wsetbcolor: set window border colors ..................... . 
wsetlocator: set window locator position ................. . 

mask wsetsigmask: set window SIGWINDOW interrupt ... . 
windows wsh: create new shells in new or existing ....................... . 

locations within{ wshuffle: shuffle windows' relative ...................... . 
wgetsigmask: get window SIGWINDOW interrupt mask ............. . 
wsetsigmask: set window SIGWINDOW interrupt mask ............. . 

fontsize_sizeO: TermO font size ...................................................... . 
wsize: change the size of a window .................................. . 

wsize: change sizes of one or more windows ............... . 
wsfLmode: switch to soft key mode ...................................... . 

wsfLprog: set programmable soft keys .............................................. . 
attach a keyboard to the specified window wselect: ..................... . 

wmen'IL..item: specify or change a menu item ............ . 
}get hardware sprite colors ......................................... . 
}set hardware sprite colors ......................................... . 

}set full-screen sprite control mode .............................. . 
locations within display stack }shuffle windows' relative ........... . 

PAGE--.NAME 
WMENU-EVENTREAD(3W) 
WINPUT_CONF(3W) 

WMREADY(I) 

WRECOVER(3W) 

WSHUFFLE(3W) 

WTERMINATE(3W) 

WMREPAINT(3W) 
FONTSWAP _TERMO(3W) 

FONTREPLACEALL_TERMO(3W) 

WTERMINATE(3W) 

WINPUT---BETROUTE(3W) 

WINDOW(3W) 

WINPUT_GETROUTE(3W) 
WGETSCREEN(3W) 

WSCROLL---BET(3W) 

WSCROLL_GET(3W) 

WGET---BEE_THRU(3W) 

WSET---BEE_THRU(3W) 

WDESTROY(I) 
WSETECHO(3W) 

WSCRN---BPRlTEJ10DE(3W) 

WSET-HW ---BPRITE_COLOR(3W) 

WHOTSPOT----BET(3W) 

WSETICONPOS(3W) 

WSETICON(3W) 
WGSKBD(3W) 

WSETLABEL(3W) 

ALTFONT_TERMO(3W) 

BASEFONT_TERMO(3W) 

WSFILPROG(3W) 

WSETRASTERECHO(3W) 
WSET----BEE_THRU(3W) 

WSETBCOLOR(3W) 

WSETLOCATOR(3W) 

WSETSIGMASK(3W) 

WSH(I) 

WSHUFFLE(3W) 
WGETSIGMASK(3W) 

WSETSIGMASK(3W) 

FONTSIZE_TERMO(3W) 

WSIZE(3W) 

WSIZE(l) 

WSFKJ10DE(3W) 
WSFILPROG(3W) 

WSELECT(3W) 

WMENU-ITEM(3W) 
WGET-HW----BPRlTE_COLOR(3W) 

WSET-HW---BPRITE-COLOR(3W) 

WSCRN---BPRlTEJ10DE(3W) 

WSHUFFLE(3W) 

: separates command from description; indicates location of leading truncation; { indicates location of trailing truncation; 

Hewlett-Packard -5- April 1988 



COMMAND/KEYWORD INDEX 

1 *command/keyword 
window to the top of the window stack wtop: move the .......................... .. 

display wmstart: start the window system on one .......... . 
wlist: list status of windows or fonts ................... . 

display wmstop: stop the window system on one ........... . 
wborder: control window border style, color, label ................................ .. 

routines windom summary of window library ................. . 
wsfLmode: switch to soft key mode ....................... . 

windows: window system concepts and commands .......... . 
wmstart: start the window system on one display ......................... .. 
wmstop: stop the window system on one display .......................... . 

and ready wmready: tell if window manager is awake .......... . 
}set or inquire the TermO alternate font ........................... . 
set or inquire the TermO base font basefonLtermO: " ..... . 

toxy_termO: convert TermO character units to pixels ........... . 
inquire the ID of a TermO font fontgetiLtermO: ............... . 

inquire the name of a TermO font fontgetname_termO: ......... . 
fontloaLtermO: load a TermO font .......................................... . 

fontswap_termO: replace a TermO font .......................................... . 
fontsize_sizeO: TermO font size ................................... . 

fromxy_termO: convert from TermO pixel units to characters ... '" ..... . 
wiconic: change a window to/from an icon ................................... . 

wtop: move the window to the top of the window stack ...................... . 
wmrepaint: repaint the desk top ....................................................... . 

character units to pixels *toxy_termO: convert TermO ............... . 
create a graphics window type wcreate_graphics: ....................... . 

create a termO window type wcreate_termO: ........................... . 
mode for graphics window type wgskbd: set keyboard ................... . 
}convert from TermO pixel units to characters .............................. .. 

convert TermO character units to pixels toxy_termO: ................. . 
wmpathmake: build a path name using an environment variable ............. . 

get see_thru color index value wgeLsee_thru: .......................... . 
set see_thru color index value wseLsee_thru: ......................... .. 

get a window manager environment variable wminquire: ............................. . 
a path name using an environment variable wmpathmake: build ................ . 

window *wautodestroy: autodestroy a .............. . 
*wautoselect: autoselect a window ....... . 
*wautotop: autotop a window .............. . 

control a window's border *wbanner: inquire about or .................. . 
style, color, label *wborder: control window border ........ . 

*wbottom: bottom window ................... . 
*wconceal: conceal window .................. . 

windows *wcreate: create one or more new ........ . 
graphics window type *wcreate_graphics: create a ................ . 

termO window type *wcreate_termO: create a .................... . 
*wdestroy: destroy a window ............... . 

windows or set autodestroy{ *wdestroy: destroy one or more ........... . 
position *wdjltpos: default window/icon ........... . 

windows *wdisp: change displayability of ........... . 
locator events *weventclear: clear window .................. . 
locator events *weventpoll: poll for window ................ . 

PAGE---..NAME 
WTOP(3W) 
WMSTART(l) 
WLIST(1) 
WMSTOP(l) 
WBORDER(l) 
WINDOW(3W) 
WSFKJ10DE(3W) 
WINDOWS(l) 
WMSTART(1) 
WMSTOP(l) 

WMREADY(l) 
ALTFONT_TERMO(3W) 
BASEFONT_TERMO(3W) 
TOXY _TERMO(3W) 
FONTGETID_TERMO(3W) 
FONTGETNAME_TERMO(3W) 
FONTWAD_TERMO(3W) 
FONTSWAP _TERMO(3W) 
FONTSIZE_TERMO(3W) 
FROMXY _TERMO(3W) 

WICONIC(3W) 
WTOP(3W) 
WMREPAINT(3W) 
TOXY _TERMO(3W) 

WCREATE_GRAPHICS(3W) 
WCREATE_TERMO(3W) 
WGSKBD(3W) 
FROMXY _TERMO(3W) 
TOXY _TERMO(3W) 

WMPATHMAKE(3W) 
WGET~EE_THRU(3W) 

WSET~EE_THRU(3W) 

WMINQUIRE(3W) 
WMPATHMAKE(3W) 
WAUTODESTROY(3W) 
WAUTOSELECT(3W) 
WAUTOTOP(3W) 
WBANNER(3W) 
WBORDER(l) 
WBOTTOM(3W) 
WCONCEAL(3W) 
WCREATE(l) 
WCREATE-GRAPHICS(3W) 
WCREATE_TERMO(3W) 
WDESTROY(3W) 
WDESTROY(l) 

WDFL TPOS( 3W) 
WDISP(l) 
WEVENTCLEAR(3W) 
WEVENTPOLL(3W) 

: separates command from description; indicates location of leading truncation; indicates location of trailing truncation; 

Hewlett-Packard -6- April 1988 



COMMAND/KEYWORD INDEX 

! * command/keyword 
*wfont: load and activate fonts ............ . 

colors *wgetbcolor: get window border .......... .. 
coordinates *wgetbcoords: get border .................... .. 
coordinates *wgetcoords: get window .................... .. 

*wgetecho: get echo ............................ .. 
hardware sprite colors *wgeLhw_sprite_color. get .............. .. 

position *wgeticonpos: get current icon ............ .. 
echo/locator parameter *wgetlocator: get window .................... .. 

*wgetname: get path name .................. . 
* wgetrasterecho: get raster echo .......... . 

information *wgetscreen: get screen ........................ . 
color index value *wgeLsee_thru: get see_thru ............ . 

SIGWINDOW interrupt mask *wgetsigmask: get window .................. .. 
graphics window type *wgskbd: set keyboard mode for .......... .. 

hotspot *whotspoLcreate: create a .................. . 
hotspot *whotspoLdelete: delete a .................. .. 

*whotspoLget: get hotspot data ........ .. 
*whotspoLset: set hotspot data .......... . 

to/from an icon *wiconic: change a window .................. . 
wgetbcolor: get window border colors .......................... .. 
wsetbcolor: set window border colors .......................... .. 

label wborder: control window border style, color, .................. . 
wsetlabel: set label in window border .................................... .. 

wgetcoords: get window coordinates ............................ .. 
winit: initialize window device .................................... .. 

wgetlocator. get window echo/locator parameter .......... . 
get path name for a window id winpuLwidpath: ................ . 

}read/set configuration of window input channel ........................ .. 
winpuLread: read from window input channel ........................ .. 

winput_getroute: determine window input routing path .................. . 
window: summary of window library routines ...................... .. 

we vent clear: clear window locator events ........................ .. 
weventpoll: poll for window locator events ........................ .. 

wsetlocator: set window locator position ...................... .. 
variable wminquire: get a window manager environment ............ .. 

ready wmready: tell if window manager is awake and ............ . 
wmkill: kill the window manager ................................ .. 

wterminate: release window resources ................................ .. 
arrows wscrolLset: control of window scroll bar elevators and .......... . 

wgetsigmask: get window SIGWINDOW interrupt mask. 
wsetf5igmask: set window SIGWINDOW interrupt mask. 

the window to the top of the window stack wtop: move .................... . 
library routines *window: summary of window ............ .. 

commands windows: window system concepts and .............. .. 
wmstart: start the window system on one display ............ .. 
wmstop: stop the window system on one display ............ .. 

wselect: connect a window to the keyboard ...................... . 
stack wtop: move the window to the top of the window ........ . 

wiconic: change a window to/from an icon ...................... . 
create a graphics window type wcreate_graphics: .......... . 

PAGE--.NAME 
WFONT(l) 
WGETBCOLOR(3W) 
WGETBCOORDS(3W) 
WGETCOORDS(3W) 

WGETECHO(3W) 
WGETJlW --8PRITE_COLOR(3W) 
WGETICONPOS(3W) 
WGETLOCATOR(3W) 
WGETNAME(3W) 
WGETRASTERECHO(3W) 
WGETSCREEN(3W) 
WGET--8EE_THRU(3W) 
WGETSIGMASK(3W) 
WGSKBD(3W) 
WHOTSPOT_CREATE(3W) 

WHOTSPOTJ>ELETE(3W) 
WHOTSPOT_GET(3W) 

WHOTSPOT--8ET(3W) 
WICONIC(3W) 
WGETBCOLOR(3W) 
WSETBCOLOR(3W) 
WBORDER(l) 
WSETLABEL(3W) 
WGETCOORDS(3W) 
WINIT(3W) 
WGETLOCATOR(3W) 
WINPUT_WIDPATH(3W) 
WINPUT_CONF(3W) 
WINPUT-READ(3W) 
WINPUT_GETROUTE(3W) 
WINDOW(3W) 
WEVENTCLEAR(3W) 
WEVENTPOLL(3W) 
WSETLOCATOR(3W) 
WMINQUIRE(3W) 
WMREADY(1) 
WMKILL(3W) 
WTERMINATE(3W) 
WSCROLL--8ET( 3W) 
WGETSIGMASK(3W) 
WSETSIGMASK(3W) 
WTOP(3W) 
WINDOW(3W) 
WINDOWS(l) 

WMSTART(l) 
WMSTOP(l) 

WSELECT(l) 
WTOP(3W) 
WICONIC(3W) 
WCREATE_GRAPHICS(3W) 

: separates command from description; indicates location of leading truncation; indicates location of trailing truncation; 

Hewlett-Packard -7- April 1988 



COMMAND/KEYWORD INDEX 

! * command/keyword 
create a termO window type wereate_termO: 

set keyboard mode for graphics window type wgskbd: ........................... . 
wautodestroy: autodestroy a window ................................................ . 

wautoseleet: autoselect a window ................................................ . 
wautotop: autotop a window ................................................ . 

wbottom: bottom window ................................................ . 
weoneeal: conceal window ................................................ . 

wdestroy: destroy a window ................................................ . 
input and events to another window winpuLsetroute: routes .......... . 

wmove: move the location of a window ................................................ . 
wpan: pan the window ................................................ . 

wpauseoutput: pause output to a window ............................................... .. 
lwreeover: recover a window ................................................ . 

a keyboard to the specified window wseleet: attach ........................ . 
wsize: change the size of a window ................................................ . 

wdjltpos: default window/icon position .......................... . 
inquire about or control a window's border wbanner: ................... . 

wlist: list status of windows or fonts ................................. . 
wdestroy: destroy one or more windows or set autodestroy{ ............... . 

wmove: move one or more windows or their icons ......................... . 
within{ wshuffle: shuffle windows' relative locations .................. . 

were ate: create one or more new windows .............................................. . 
wdisp: change displayability of windows .............................................. . 

and commands *windows: window system concepts ..... . 
new shells in new or existing windows wsh: create ............................ . 

change sizes of one or more windows wsize: .................................... . 

configuration of window input{ 
window input routing path 

input channel 
and events to another window 

*winit: initialize window device ........... . 
*winpuLconf: read/set ....................... . 
*winpuLgetroute: determine ............... . 
*winpuLread: read from window ........ . 
*winpuLsetroute: routes input ........... . 

for a window id *winput_widpath: get path name ........ . 
windows' relative locations within display stack }shuffie ................ . 

fonts * wlist: list status of windows or ........... . 

event 
menu item 

environment variable 

or their icons 
window 

using an environment variable 
is awake and ready 

on one display 
on one display 

window 

*wmenu-activate: activate a menu ..... . 
*wmenu-create: create a menu ........... . 
*wmenu-delete: delete a menu ............ . 
*wmenu-eventread: read the menu ..... . 
*wmenu-item: specify or change a ...... . 
* wminquire: get a window manager ..... . 
* wmkill: kill the window manager ........ . 
*wmove: move one or more windows ... . 
* wmove: move the location of a ........... . 
*wmpathmake: build a path name ....... . 
*wmready: tell if window manager ....... . 
* wmrepaint: repaint the desk top ........ . 
* wmstart: start the window system ..... . 
* wmstop: stop the window system ....... . 
*wpan: pan the window ....................... . 
*wpauseoutput: pause output to a ....... . 

PAGE~AME 

WCREATE_TERMO(3W) 
WGSKBD(3W) 
WAUTODESTROY(3W) 
WAUTOSELECT(3W) 
WAUTOTOP(3W) 
WBOTTOM(3W) 
WCONCEAL(3W) 
WDESTROY(3W) 
WINPUT-BETROUTE(3W) 
WMOVE(3W) 
WPAN(3W) 
WPAUSEOUTPUT(3W) 
WRECOVER(3W) 
WSELECT(3W) 
WSIZE(3W) 
WDFLTPOS(3W) 
WBANNER(3W) 
WLIST(l) 
WDESTROY(l) 
WMOVE(l) 
WSHUFFLE(3W) 
WCREATE(l) 
WDISP(l) 
WINDOWS(l) 

WSH(l) 
WSIZE(l) 
WINIT(3W) 
WINPUT_CONF(3W) 
WINPUT_GETROUTE(3W) 
WINPUT-READ(3W) 
WINPUT-BETROUTE(3W) 
WINPUT_WIDPATH(3W) 
WSHUFFLE(3W) 
WLIST(l) 
WMENU--.ACTIV ATE(3W) 
WMENU_CREATE(3W) 
WMENU-DELETE(3W) 
WMENU-EVENTREAD(3W) 
WMENU-1TEM(3W) 
WMINQUIRE(3W) 
WMKILL(3W) 

WMOVE(l) 
WMOVE(3W) 
WMPATHMAKE(3W) 
WMREADY(l) 
WMREPAINT(3W) 
WMSTART(l) 
WMSTOP(l) 
WPAN(3W) 
WPAUSEOUTPUT(3W) 

: separates command from description; } indicates location of leading truncation; indicates location of trailing truncation; 

Hewlett-Packard -8- April 1988 



COMMAND/KEYWORD INDEX 

1 * command/keyword 
*wrecover: recover a window ............... . 

full-screen sprite control mode *wscrTl-sprite_mode: set .................... . 
bar information *wscroILget: interrogate scroll ............ . 

scroll bar elevators and arrows *wscroILset: control of window .......... . 
the specified window *wselect: attach a keyboard to ............ . 

keyboard *wselect: connect a window to the ...... .. 
colors *wsetbcolor: set window border .......... .. 

*wsetecho: set echo .............................. . 
hardware sprite colors *wseLhw_sprite_color: set ................ . 

*wseticon: set icon .............................. .. 
*wseticonpos: set icon position ............ . 

border * wsetlabel: set label in window ............ . 
position 

color index value 
SIGWINDOW interrupt mask 

mode 
keys 

existing windows 
relative locations within { 

more windows 
window 

resources 
of the window stack 

*wsetlocator: set window locator ........ .. 
*wsetrasterecho: set raster echo .......... .. 
*wset_see_thru: set see_thru ............ .. 
*wsetsigmask: set window .................... . 
*wsfLmode: switch to soft key .......... .. 
*wsfLprog: set programmable soft .... .. 
*wsh: create new shells in new or ........ . 
*wshuffle: shuffle windows' .................. . 
*wsize: change sizes of one or .............. . 
* wsize: change the size of a ................ .. 
*wterminate: release window .............. .. 
*wtop: move the window to the top .... .. 

PAGE~AME 
WRECOVER(3W) 

WSCRN~PRITE~ODE(3W) 

WSCROLL_GET(3W) 

WSCROLL~ET(3W) 

WSELECT(3W) 

WSELECT(l) 
WSETBCOLOR(3W) 

WSETECHO(3W) 

WSET--HW ---BPRITE_COLOR(3W) 

WSETICON(3W) 

WSETICONPOS(3W) 

WSETLABEL(3W) 
WSETLOCATOR(3W) 

WSETRASTERECHO(3W) 
WSET---BEE_THRU(3W) 

WSETSIGMASK(3W) 

WSFK~ODE(3W) 

WSFKJROG(3W) 

WSH(l) 
WSHUFFLE(3W) 

WSIZE(l) 

WSIZE(3W) 

WTERMINATE(3W) 

WTOP(3W) 

: separates command from description; } indicates location of leading truncation; indicates location of trailing truncation; 

Hewlett-Packard -9- April 1988 







HP Part Number 
97069-90022 
Microfiche No. 97069-99022 
Printed in U.S.A. E0488 

r/in- HEWLETT 
a:~ PACKARD 

97069-90609 
For Internal Use Only 


