
HP Windows /9000
Programmer's Manual

HP 9000 Series 300 Computers

HP Part Number 97069-90002

Flin- HEWLETT
a:~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Table of Contents

Chapter 1: Overview
Example Source Code 2
Conventions .. 3
Prerequisites ... 4
Programming Manual Contents .. 5

Overview .. 5
Concepts .. 5
Window Library .. 6
Fast Alpha Library. .. 7
Font Manager 7
Appendices .. 7

Chapter 2: Concepts
Window Types ... 9

TermO Window Type. .. 9
Graphics Window Type ~ '" 10

Programs 12
Window-Dumb Programs ... 12
Window-Smart Programs 12

Window Type Device Interface .. 13
Window Name .. '" 14
Window Manager .. 15
Window Manager Device Interface 16
Window Group .. 16
Input Devices ... 17
Window Attributes. .. 17

Window Name ... 17
Window Type ... 17
Representation .. 18
Location .. 18
Size .. 18
Place in Stack .. 18
View ... 18
Keyboard Selection .. 19
Soft Keys .. 19
Pop-Up Menu Type .. 19

Table of Contents i

Border Type .. 19
Label ... 19
Colors .. 20
Raster or Buffer Size .. 20
Raster Retention. .. 20
Window Paused ... 21
Autotop (TermO Only) ... 21
Auto-Selection (TermO Only) .. 21

Writing Window-Smart Programs .. 22
Writing Window-Dumb Programs .. 24

Chapter 3: Window Management
Concepts ... 28

The Window Manager. .. 28
Starting Window Manager Communication. .. 29
Stopping Window Manager Communication .. 30
Example .. 30
est_wm_com and term_wm_com 32

Creating a TermO Window .. 35
Procedure. .. 35
Precautions ... 38
Example .. 38

Creating a Graphics Window .. 40
Procedure. .. 40
Precautions ... 42
Example .. 42

Destroying a Window. .. 45
Procedure. .. 45
Related Routines .. 46
Precautions ... 46
Example .. 47

Shuffling Windows 49
Procedure. .. 49
Example .. 50

Repainting the Display Screen ... 51
Procedure. .. 51
Example .. 51

Killing the Window Manager .. 53
Procedure. .. 53
Precautions 54
Example .. 54

ii Table of Contents

Chapter 4: Window Manipulation
Concepts 0 58

The Window Type Device Interface 0000000000000000000000000000000000 58
Program Structure 0 58
Starting Window Communication 0 59
Stopping Window Communication 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o. 62

Selecting a Window 0 ••• 0 0 ••••••• 0 0 0 0 0 0 • • •• 65
Procedure 0 65
Related Routines 0 65
Precautions 0 66
Example 000000000000000000.000000000000000000.00000000000000 0 0 0 0 0 0 66

Displaying and Concealing a Window 0000000000000000000000000000000000000 68
Procedure 0 68
Precautions 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 69
Example 00 0 0 0 0 0 0 70

Moving a Window 00 0 72
Procedure 0 72
Precautions 0 73
Example 00 0 0 0 000 73

Changing a Graphics Window's Size 00000000000000000000000000000000000000 76
Procedure 0 76
Precautions . 0 • 0 77
Example 00 0 0 0 0 0 0 77

Changing a TermO Window's Size 00 80
Procedure 0 81
Precautions o. 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 • 0 0 •• 0 0 0 0 0 0 0 • 0 0 • 0 0 0 ••• 0 •• 0 ••• 0 ••• 0 82
Example 0 •• 000 •• 0.0 ••• 000 •••• 00 •• 0 0.0.0 ••• 0.000 •• 0 0.0 ••• 0 •••• 0 •••• 82

Changing a Window's Border 0 0 0 •• 00 •• 000 •••• 000 •• 00 •• 0.00 ••• 00 •• 00 85
Procedure 0 • 0 0 0 ••• 0 • 0 ••• 0 0 0 •• 0 0 •• 0 0 0 •• 0 0 0 ••• 0 0 0 ••• 0 •••• 0 0 • 0 ••• 0 0 • 0 0 85
Example 0.0 •••••••• 0 ••••••••• 0 ••••• 0.0 ••••••• 00. 000 ••• 0.00 •••• 0 •• 0 86

Changing a Window's Label. 0 0 0 • 0 0 • 0 0 •• 0 0 ••• 0 0 •• 0 0 0 • 0 ••• 0 • 0 ••• 0 •••••••• 0 87
Procedure .. 0 0 0 • 0 0 • 0 ••• 0 0 0 0 0 0 0 0 0 •• 0 0 • 0 • 0 • 0 ••• 0 0 0 ••• 0 0 0 0 •• 0 ••• 0 0 •• o. 87
Example. o. 0 0 0.0. 0 •• 0.00.0 •• 0 0 0 •• 00 ••• 00 •••• 0000.000.0000 ••• 000 ••• 87

Setting a Window's Border Colors . 0 0 •••• 0 0 ••• 0 0 0 0 0 • 0 ••• 0 •••• 0 0 • 0 • 0 • 0 0 •• 0 89
Procedure 0 • 0 ••• 0 0 0 • 0 0 • 0 0 •• 0 0 • 0 • 0 0 •• 0 • 0 0 0 ••• 0 • 0 0 •• 0 0 0 • • • • • •• 89
Example 0 •• 000.00.0.0.0000 •• 0.0 ••• 0 ••• 0 ••••• 000 •• 000.0.00 ••• 0 0 0.0. 90

Pausing and Resuming Output to a TermO Window. 0 0 o. 0.000 •• 0 0 0 o. 0.00 •• 0 92
Procedure ... 0 0 ••• 0 • 0 •••• 0 •••• 0 •• 0 • 0 0 ••• 0 0 • 0 0 0 0 •••• 0 ••• 0 •• 0 0 •• 0 0 •• 0 92
Example 0 ••• 0 ••••••••••• 0 •• 0. 00 •• 0 •• 0.000.0 •• 0 0 ••• 00.0 •• 0.0.0 ••••• 92

Panning a Graphics Window 0 0 0 ••• 0 0 0 •• 0 0 ••• 0 ••••• 0 0 0 ••• 0 0 •• 0 0 0 ••• 0 0 • • •• 94
Procedure ... 0 0 • 0 •• 0 • 0 • 0 0 0 0 •• 0 0 0 •• 0 0 ••• 0 •••••• 0 •••• 0 0 •• 0 • 0 0 ••• 0 0 0 • 0 94

Table of Contents iii

Example .. 95
Setting Autodestroy Status .. 96

Procedure. .. 96

Chapter 5: Icons
Concepts ... 98
Changing a Window's Iconic State 99

Procedure. .. 99
Example. .. 100

Moving an Icon. .. 101
Procedure .. 101
Example .. 102

Customizing Icons .. 103
Procedure. .. 103
Controlling the Display of Picture/Label 104
Defining and Using aNon-Standard Picture .. 104
Example .. 107

Chapter 6: Event Detection
HP-UX Signals ... 114

The signal (2) System Call. .. 114
Example Signal Handler .. 116

Events ... 117
Button Press Events .. 117
Locator Moved ... 118
Window Moved .. , 118
Window's Size Changed ... 119
Window's Selection Status Changed 119
Window Needs Repainting ... 119
A Selection Made from User-Defined Menu 119
A Hot Spot Was Activated , 120
Window Destroyed .. 120
BREAK Key Pressed. .. 120
Window's Iconic State Changed 120
Elevator Moved. .. 120
Arrow Activated .. 120
Full-Screen Sprite Mode Aborted 120

Event Detection .. 121
Step 1: Start Communication with the Window 122
Step 2: Set Up a Signal Handler to Receive SIGWINDOW 123
Step 3: Define the Event Mask 124
Step 4: Call wsetsigmask(3W) .. 126

iv Table of Contents

Step 5: Wait for the Event{s) 127
Step 6: Receive the Signal ... 127
Step 7: Execute the Signal Handler 127
Step 8: Call weventpoll{3W) 127
Step 9: Stop Window Communication .. 130
Related Routines ... 130
Performance Considerations .. 131
Example. .. 131

Chapter 7: Locator and Echo Routines
Concepts .. 136

Absolute Locator Device ... 136
Relative Locator Device ... 136
The Echo .. 136
The Locator's Hot Spot .. 137

Getting Locator Information ... 138
Procedure .. 138
Precautions .. 138
Example. .. 139

Moving the Locator .. 140
Procedure. .. 140
Example ... 140

Changing the Echo. .. 141
Procedure .. 141
Related Routines ... 142
Example. .. 142

Customizing the Echo 145
Procedure. .. 145
Related Routines ... 147
Example ... 147

Enabling Full-Screen Sprite Control 150
Procedure. .. 151
Precautions 151
Example .. 152

Chapter 8: Arrows and Elevators
Concepts .. 156

Scroll Bars ... 156
Pan Mode. .. 157
User Mode ... 160

Enabling Arrows, Elevators in Pan Mode 161
Procedure. .. 161

Table of Contents v

Examples .. 163
User Mode .. 165

Procedure .. 165
Reusing Scroll Bar Scale Information .. 167
Precautions 167
Example. .. 167

Getting Scroll Bar Events in User Mode 169
Procedure. .. 169
Example .. 172

Chapter 9: Graphics Window Hotspots
Concepts .. 178

What Is a Hotspot? .. 178
Hotspot Event Detection. .. 178

Creating a Hotspot. .. 179
Procedure. .. 179
Overlapping Hotspots ... 181
Precautions 182
Example. .. 182

Changing a Hotspot's Characteristics. .. 184
Procedure. .. 184
Precautions 185
Example .. 185

Deleting a Hotspot .. 187
Procedure. .. 187
Precautions 187

Detecting Hotspot Events .. 188
Procedure .. 188
Example. .. 191

Chapter 10: User-Definable Menus
Concepts .. 198
Creating a Menu. .. 200

Procedure. .. 200
Precautions .. 201
Example ... 201

Adding Menu Items .. 202
Procedure. .. 202
Example .. 203

Activating a Menu 206
Procedure. .. 206
Precautions 207

vi Table of Contents

EXaIIlple .. 207
Getting Menu Information 208

Setting Up Event Detection 208
Polling for Event Information. .. 208
Procedure. .. 209

Deleting a Menu .. 210
Procedure .. 210

Chapter 11: Graphics Window Input Routines
Concepts .. 212

Input Modes ... 212
Input Re-Routing ... 213
Input Configuration ... 213

Changing Input Mode .. 214
Effect on Line Discipline. .. 214
Procedure. .. 214
Precautions .. 215
EXaIIlple ... 215

Reading Data in ASCII Mode .. 216
Procedure. .. 216
Precautions 216
Example ... 217

Reading Data in Two-Byte Mode 219
Key Types ... 219
Reading Keycode Packets .. 220
Control Byte .. 221
Data Byte ... 222
Special Cases. .. 224
EXaIIlple .. 224

Changing Input Configuration .. " 227
Input Configuration Parameters " 227
Procedure. .. 230
Example .. 231

Re-Routing Window Input ... 232
Concepts .. 232
Procedure .. " 236

Reading Data in Packetized Input Mode .. 238
Event Code Packets .. 238
Procedure. .. 240
Example ... 241

Table of Contents vii

Chapter 12: Graphics Softkeys
Concepts .. 248

Softkey Labels. .. 248
Return Values .. 249

Thming Softkey Labels On and Off 251
Procedure. .. 251

Changing Softkey Labels ... 252
Procedure. .. 252
Example. .. 253

Chapter 13: TermO Windows
Concepts .. 256

TermO Window Features .. 256
TermO Window Escape Sequences 257
U ser-Definable Softkeys .. 259
The TermO Font Management Model 261
Colors ... 262

Thrning the Cursor On and Off. .. 265
Procedure. .. 265

Thrning Softkeys On and Off .. 266
Procedure. .. 266

Defining Softkeys ... 267
Procedure. .. 267
Examples .. 269

Getting Font Information .. 270
Procedure ... 270

Setting the Basel Alternate Font .. 272
Procedure. .. 272
Example .. 273

Replacing Fonts .. 275
Procedure. .. 275
Examples .. 276

Converting Pixel and Character Coordinates 278
Procedure. .. 278

Using Raw Mode ... 279
Changing to Raw Mode. .. 280
Handling Interrupt. .. 281
Returning to Cooked Mode. .. 281
A Word About the Transmit Function 282
Running in Raw Mode. .. 282
Blocked vs. Unblocked Reads 284

viii Table of Contents

Chapter 14: The Fast Alpha Library
Concepts .. 288

Programming Model .. 288
Cursor Positioning .. 290
Character Enhancements .. 290
Fast Alpha Rectangles. .. 291

Initializing/Terminating the Fast Alpha Environment 292
Procedure. .. 292
Example ... 293

Changing the Fast Alpha Environment 294
Procedure. .. 294
Performance Considerations .. 295
Example ... 297

Cursor Control '" .. 298
Procedure. .. 298
Precautions .. 299
Examples .. 299

Writing Characters .. 300
Procedure. .. 300
Example. .. 301

Font Manipulation .. 302
Concepts .. 302
Procedure. .. 303
Precautions .. 304
Example ... 304

Clearing a Rectangle .. 306
Procedure. .. 306
Example .. 306

Scrolling a Rectangle .. 308
Procedure. .. 308
Example .. 308

Chapter 15: The Font Manager Library
Concepts .. 312
Font Management ... 313

Concepts .. 313
Procedure .. 314
Example. .. 315

Font Information Routines 317
Concepts .. 317
Procedure. .. 319
Example .. 320

Table of Contents ix

Writing Characters. .. 322
Procedure. .. 322
EXaIllple .. 325

Character Clipping. .. 327
Procedure. .. 328
EXaIllple .. 328

Appendix A: Compiling Window Programs
Linking Window Libraries. .. 331
Examples .. 332

Appendix B: Windows/9OOO Files
Device Files .. 333
Manual EXaIllples and Demos .. 334
Font and Icon Files ... 334
Header Files. .. 335
Windows/9000-Specific Files ... 335

Subjeet Index

x Table of Contents

Overview 1
HP Windows/gOOD supports subroutine libraries in the Window library,
lusT Ilib Ilibwindow. a.

Window routines can be called from user programs to do tasks performed by window
commands-for example, creating, moving, or changing the size of a window. In addition,
library routines allow users to do tasks unachievable through the window commands­
for example, adding scroll bars to a window's border. This manual discusses the use of
Window routines in user programs.

Overview 1

Example Source Code
Throughout this manual, you will find several source code examples on how to use
Window library routines. Most of these example programs and functions are stored in
lUST Iliblhpwindowslman_examples, hereafter referred to as the man_examples directory.

Also, the examples found throughout this manual use constant definitions defined in the
header file lUST lincludelwindow.h, referred to as the window.h header file. Using these
definitions (via the #include C-compiler directive) in your windowing programs will help
ensure portability.

For details on compiling window programs, see the Appendix A, "Compiling Window
Programs."

2 Overview

Conventions
The following typeface conventions are used throughout this manual:

• Italic text is used for the names of files and HP-UX commands, system calls, sub­
routines, etc. found in the HP- UX Reference. Italics is also used to denote window
commands (e.g., wsh{l)) and Window library routines (e.g., winit{3W)).

• Boldface text is used when a word is first defined (as termO) and for strong emphasis
(never do this).

• Computer text denotes literal text, either typed by the user or displayed by the
system. For example,

wmstart I Return I

means to type "wmstart" at the keyboard, and press the I Return I key.

• Environment variables, such as WMDIR and WMIATIMEOUT, are represented in
upper-case letters.

Overview 3

Prerequisites
Before reading this guide, you should know:

1. How to use the window system. You should feel comfortable with the window
commands; in particular, you must understand window concepts presented in the
HP Windows/9000 User's Manual.

2. The C programming language and its standard input/output routines. All program
examples in this guide are presented in C, and all input/output is done in C. For
more information on C, consult:

• the C programming manual shipped with HP-UX documentation,

• HP- UX Concepts and Tutorials: Programming Environment.

3. If you intend to use graphics windows, then become familiar with the Starbase
Graphics library routines documented in HP- UX Concepts and Tutorials: Starbase
Graphics Techniques.

The Starbase Device Drivers Library may also be helpful; it contains information
about the Graphics Window Device Driver.

4 Overview

Programming Manual Contents
The HP Windows/9000 Programmer's Manual consists of the following tabbed sections:

• Overview

• Concepts

• Window Library

• Appendices

Descriptions of each tabbed section follow.

Overview
This tabbed section contains Chapter 1: Overview, which describes the organization
and contents of the Programmer's Manual, explains conventions used, and identifies
information you should know before using the manual.

Concepts
This tabbed section contains Chapter 2: Concepts, which describes window system
concepts and HP Windows/gOOD system architecture and data flow. This chapter is
useful if you wish to know the intrinsic structure of the window system. If you like to
know how things work before you use them, then read this chapter.

Overview 5

Window Library
This tabbed section of the manual contains chapters three through ten, all dealing with
Window library routines.

Chapter 3: Window Management defines the programming model used in programs that
call window management routines. It discusses how to start and stop communication
with the window manager, how to create termO and graphics windows, how to destroy
windows, how to shuffle windows and repaint the display screen, and how to kill the
window manager.

Chapter 4: Window Manipulation defines how to start communication with a termO
or graphics window. Once this is done, a program can call other window manipulation
routines to change window attributes such as size, location, and label.

Chapter 5: Icons shows how to use the icon manipulation routines. These routines
display icons and change windows to icons (and vice versa). In addition, you can make
your own custom icons by using these routines.

Chapter 6: Event Detection describes how to use event detection routines, which allow
a program to be signaled (interrupted) when window system events (such as moving a
window, selecting a window, or activating a hotspot) occur.

Chapter 7: Locator and Echo Routines describes the use of routines that read from and
manipulate the locator devices and echo. For example, with these routines you can define
your own echo to appear over a window's user area. You can also determine the locator's
position via these routines.

Chapter 8: Arrows and Elevators shows how to create elevators in a graphics window's
border. It also shows how to enable user mode, in which a graphics window's elevators
and arrows send signals to programs that have enabled event detection for the window.

Chapter 9: Graphics Window Hotspots illustrates how to create hotspots in a graphics
window's user area. A hotspot is a sensitive rectangle which can be activated either by
the user pressing a button, or simply by the locator entering or exiting its boundary.
When activated, a hotspot can signal an application.

ChapterlO: User-Definable Menus describes how to define and read from pop-up menus,
which you can use from your applications.

6 Overview

Chapter 11: Graphics Window Input Routines shows how to read input from graphics
windows. Graphics window input routines provide several different, powerful ways to
read input from graphics windows. Each method has its own benefits, which you may
find useful for your application development needs.

Chapter 12: Graphics Window Softkeys describes the use of routines that edit graphics
window softkeys and turn them on and off.

Chapter 13: TermO Windows describes termO window features, termO escape sequences,
user-definable softkeys, termO font management routines, termO window colors, and using
raw mode with termO windows.

Appendices
The "Appendices" tab contains the appendices described below and a subject index.

Appendix A: Compiling Window Programs describes how to compile programs that call
routines from the Window libraries.

Appendix B: HP Windows/gOO~ Files lists files associated with the window system and
briefly describes their function.

Overview 7

Notes

8 Overview

Concepts 2
Before you begin using Window routines, you should understand basic window system
concepts. This chapter provides an overview of essential window concepts and a
description of HP Windows/9000 system architecture.

Window Types
To maximize the use of software developed for non-window systems on HP Widows/9000,
two window types are supported: termO and graphics.

TermO Window Type
TermO windows (pronounced "term-zero") emulate HP 2622 terminals without block or
format mode and also support HP 2627 color escape sequences. Therefore, programs
written for HP 2622 terminals are easily ported to termO windows. Chapter 10, "TermO
Windows," describes how to manage fonts in termO windows, how to use termO window
escape sequences, and how to input information from termO windows.

Figure 2-1 shows a typical termO window. The user of this window executed
the more{l} command to display the contents of the README file (found in the
/ usr /lib /hpwindows / demo directory).

Concepts 9

1* @(II> HP Windows/9000 README 28.1 7/15/85 19: 10:23 *1

README

is directory, "/usr/lib/hpwindows/demo" contains a variety of demo and
i lity programs for HP-windows. You may use these programs as is, move them

o other directories so that they are more accessible, or delete them entirely
f more di sc space is needed.

source to these programs is contained in "/usr/lib/hpwindows/demosrc" .
. s source is made avai lable so that you may examine coding conventions or
ermi ne how certai n operat ions are performed or actua Ily modi fy the source

o customi ze the program for your own purposes. No guarantees are made as
o the correctness or usefulness of these programs. A "Makefi Ie" exists to
implify compi lation of' the programs.

programs and shell scripts are described as follows. All examples assume
hat ':lou have cd' ed to thi s di rectory.

Thi s she II scri pt wi II change the foreground/background co lors
of a TERM0 window. This is useful for both color and mono­
chromatic displays. You can change to black on white lettering

Figure 2-1. A TermO Window

Graphics Window Type
Graphics windows emulate the bit-mapped graphics displays supported by HP Win­
dows/gOOD. They support the Starbase, Font Manager, and Fast Alpha libraries. Star­
base graphics applications are easily ported to graphics windows.

Special see-thru and IMAGE graphics windows are simply special cases of the graphics
window type. See the appendix "Accelerated 3D Graphics Display Stations" in the
HP Windows/YOOO User's Manual.

10 Concepts

Figure 2-2. A Graphics Window

Concepts 11

Programs
Two kinds of programs run in the window system: window-dumb and window-smart.

Window-Dumb Programs
Window-dumb programs do not require windows to run. The vi(l) editor is a good
example of a window-dumb program: although vi can run in windows, it was not created
only for windows and can run outside the window system. Window-dumb programs
never call Window library routines.

Window-Smart Programs
Unlike window-dumb programs, window-smart programs take advantage of windowing
capabilities. In other words, window-smart programs call Window library routines to
do windowing tasks. The purpose of this manual is to show you how to use windowing
routines to write window-smart programs.

Note

Window-dumb applications are normally invoked only from win­
dows in which a shell is running. Window-smart applications are
not easily ported to non-window systems.

12 Concepts

Window Type Device Interface
Each window has its own special file (device file) known as the window's window type
device interface. To identify a window, many routines require, as a parameter, the
file descriptor returned from opening (via open(2)) the window's window type device
interface. The file descriptor identifies which window the routine should work on. For
example, the wmove Window library routine has the following syntax:

wmove(fd, x,y)

The fd parameter is an integer file descriptor for the opened window type device interface
of the window to move. The x and y parameters are integers specifying the new location
for the window.

A window type device interface is a pseudo-terminal special file, or pty for short. (For
details on pty special files, see the pty(7) page in the HP-UX Reference.) Programs read
and write through the slave side of the pty, and the pty's master side is controlled by the
window system.

Concepts 13

Window Name
Some Window library routines require, as a parameter, a window's name. A window's
name is simply the basename (see basename{l)) of the window's window type device
interface.

Each window's window type device interface is stored in the directory specified by the
WMDIR window system environment variable. For example, if you create a window
named bunion, and $WMDIR is /dev/screen, then the window type device interface for
the window is /dev/screen/bunion.

Note

To determine the value of WMDIR on your system, look in the
wmstart shell script, which assigns the default value for WMDIR.

To verify this, simply create a few windows via the wsh command, and list the WMDIR
directory. For example, you might enter:

wah win_l I Return I
wsh I Return I
wsh win_2 I Return I
Is -1 $WMDIR I Return I

You should see a special file for every window displayed on the screen.

Note that some of the files listed in the $WMDIR directory may not belong to a window.
For example, the window manager has a file in this directory, $WMDIR/ wm, but has no
window.

14 Concepts

Window Manager
The window manager (wm) is a special server created when you start the window system
via the wmstart command. The window manager is simply a program that manages
the window system. It communicates with windows and hardware devices such as the
keyboard, locator, and CRT. Only one instance of the window manager is allowed per
physical display: you can't have two or more wm processes running simultaneously.

Examples of some of the tasks done by the window manager are:

• managing pop-up menus

• repainting the display screen

• channeling communication through windows

• moving and changing the size of windows.

Concepts 15

Window Manager Device Interface
The window manager has a window manager device interface (special file). Many window
routines require, as a parameter, the file descriptor returned from opening the window
manager device interface. You can see the window manager special file by listing the
$WMDIR directory; thewindow manager special file is always named wm.

The window manager device interface is a pty whose master side is attached to the window
manager; programs can communicate with the window manager through the slave side.

Window Group
The window manager process heads a window group that typically consists of numerous
process groups (see setpgrp(2)). A window group is all the processes associated with a
single instance of the window manager-all processes connected to windows on a single
physical display. Window groups are relevant because signals can propagate through
them (see wmstop (l)) .

The window manager runs as a single, setuid (super-user) process. It has no knowledge
of login security. Once it is running, anyone can interactively get a shell using a pop-up
menu. Running getty{lM) within a window is both difficult and useless; in other words,
it doesn't make sense to log in users in a window. (Note that you can still use su{l)
within a window.)

16 Concepts

Input Devices
The keyboard and mouse buttons or tablet stylus switch are attached to one window at
a time. The wselect Window library routine selects a window, making it attached to the
keyboard, mouse buttons, and/or tablet stylus switch. Any process in a selected window
can read locator information (such as from an optional mouse or graphics tablet) at any
time.

Window Attributes
To write window-smart applications that manipulate and manage windows requires some
knowledge of window attributes. Each window has many attributes which describe char­
acteristics of the window. Window commands and library routines can change window
attributes and thus change a window's characteristics. Descriptions of each attribute
follow.

Window Name
A window's name, specified when the window is created, is the basename (see base­
name{l)) of the window's window type device interface. By default, the window name
is displayed as the window's label (in the border), and in its icon, softkeys, and pop-up
menu. The name is set when the window is created and cannot be changed. (Note,
however, that a window's label can be changed to something other than the window's
name.)

Window Type
The type of the window-either termO or graphics-is set when the window is created.
The type cannot be changed.

Concepts 17

Representation
Any window may be displayable (in normal or icon form) or concealed. A displayable
window may be located partly or totally off screen, or- occluded by other windows so
that it is not actually visible at all. A concealed window, however, is never displayed,
regardless of location or other attributes.

Location
Each window has two locations on the display screen: one for its normal form, the other
for its iconic form. Both may be set to defaults determined by the window manager.
Both the normal and iconic location can be changed.

Size
Each window has a displayable size for its normal form. This is the number of displayable
X,Y pixels (for graphics windows) or rows and columns (for termO windows). The size
can be set when the window is created, and modified after creation, if necessary.

Place in Stack
Each window, if not concealed, has a place in the display stack. Windows toward the
top of the stack occlude those lower in the stack. Windows can be shuffled (rotated) up
or down through the display stack, and any window can be made visible as the top or
bottom window in the stack.

View
Each graphics window (with a retained raster) provides a view into its corresponding
virtual device (an underlying area of memory that may be larger than the window size).
The view of a window into its virtual device is just that part of the virtual device seen
through the window (as long as it is displayable and not occluded). Panning is the
operation of moving the view position over the virtual device. Panning does not change
the location of the window; rather, the virtual device appears to move under the window.

18 Concepts

Keyboard Selection
At any time, only one window is selected, meaning it is attached to the keyboard for
input. The currently selected window has a line through its border and an asterisk (*) to
the left of its label. When a window becomes un-selected, the line and asterisk disappear.

Softkeys
Each window has up to sixteen soft keys whose displayed labels and values may be set
using escape sequences or library routines. (See the "Graphics Window Softkeys" and
"TermO Windows" chapters for details.) When a window is selected, its soft key labels
are displayed at the bottom of the display screen.

Pop-Up Menu Type
The type and status of a window affect the choices available when you pop up an inter­
active menu.

Border Type
A termO or graphics window's border may be:

• normal, in which case the label and manipulation areas are present

• thin, in which case the border is just a thin line surrounding the window

In addition to these two types, graphics windows can have null borders-that is, no
border.

Label
A window's label is a text string displayed in the window's border. By default, the label
is identical to the window's name (window spec) used when the window was created.
The wborder{l) command or the wsetlabel{3W) Window library routine can change a
window's label to a string other than the default name. The maximum length of a
window's label depends on the window's type.

Some commands or routines may require a window's name to manipulate it. If a window's
label is different from its name, then attempting to use the window's label for such
commands or routines will result in a window system error.

Concepts 19

Colors
Each window has various colors attributes. Most are controlled through writing or plot­
ting to the window. However, colors can be controlled through library routines. Note
also that all colors are indices into the display device's color map; also, there is only one
color map per physical display.

The window system maintains and manages the following colors per window:

• font foreground
• font background
• border foreground
• border background
• user foreground
• user background

Note that eight different color combinations of font foreground and background colors
can appear simultaneously in termO windows; they can be changed non-retroactively via
Fast Alpha and Font Management routines.

Raster or Scroll Buffer Size
Graphics windows have a maximum raster size; termO windows have a maximum scroll
buffer size. This size is set when the window is created and cannot be changed. The
raster/buffer size denotes the maximum size to which the window can grow. For termO
windows the maximum size is measured in rows and columns of characters; for graphics
windows, rows and columns of pixels.

Raster Retention
For graphics windows, the raster may be retained, in which case memory is allocated
at window creation time to save occluded areas. It can also be non-retained, in which
case no memory is allocated for the image. A graphics window may be retained in a
byte-per-pixel or bit-per-pixel format (see appendix for linking information).

Windows that are not retained may not be properly repainted by the window manager
because no memory for the image is allocated from which the windows can be redrawn.
Programs that use non-retained windows must take care of repainting windows.

For termO windows, no raster is allocated, but the window acts as though it were retained,
because it is redrawn using its scroll buffer, which contains any characters displayed in
the window.

Retention is set when the window is created, and cannot be changed.

20 Concepts

Window Paused
Output to termO windows can be paused, i.e., temporarily suspended. The window
paused attribute denotes whether a termO window's output is currently paused.

Autotop (TermO Only)
On TermO windows, the autotop attribute allows a window to be "marked" to be dis­
played automatically as the top window in the display stack whenever output is sent to
its window type device interface.

Auto-Selection (TermO Only)
On TermO windows, a window can also be "marked" to be selected when output is sent
to its device interface if this attribute is on.

Concepts 21

Writing Window-Smart Programs
U sing the Window library routines described in this manual, you can write window­
smart programs that use windows and windowing capabilities. Figure 2-3 illustrates how
window-smart programs interact with the window system.

Program

f
Window Mono ement . ;t. Routines HP-UX I 0 Routines HP-UX So Routin ..

22 Concepts

LOCATOR

Window Ubrary Routines

• • •

Window Manager

KEYBOARD

Starbase Routines
Window Ubrary Routines

Fast Alpha Ubrary Routines
Fast Manager Ubrary Routines

••• ••

DISPLAY

TI __ 1l'OUT IN~l: II
~ .USER r

Figure 2-3. Program Interaction with Window System

Using HP-UX system calls {e.g., open {2}, close {2}, read{2}) , HP-UX subroutines {e.g.,
getc{3C}, putc{3C}, etc), or both, a program can read input from and write output to
a given window through the window's window type device interface. {Note, however,
that programs cannot use write{2} to write to graphics windows; instead, they must use
Fast Alpha, Font Manager and/or Starbase library routines to do graphics output to a
graphics window.)

A program can call Window routines to change a window's attributes-e.g., change the
window's size, location, or representation. Like HP-UX system calls and subroutines,
library routines manipulate a window through the window's device interface. Routines
that manipulate a given window require the file descriptor returned from starting
communication with the window. (See the "Window Manipulation" chapter for details
on starting window communication.)

Additionally, a program can call Window routines to do window manager functions, such
as repainting the display screen, shuffling windows, and creating or destroying windows.
These routines communicate with the window manager the window manager's device
interface. Routines that do window manager functions require the file descriptor returned
from opening (via open{2}) the window manager's device interface.

Window routines are described in detail in the remainder of this manual.

Concepts 23

Writing Window-Dumb Programs
When the window system is not running, programs interact with the bit-mapped display
and its keyboard through an internal terminal emulator (ITE). The ITE causes the
bit-mapped display to appear to be a simple terminal; thus, programs not written for
bit-mapped displays can still run on the bit-mapped display through the ITE.

The Fast Alpha, Font Manager, and Starbase libraries can also be used to write to a
bit-mapped display when Windows/9000 is not running.

/dev/console is a typical path name of the special file for the terminal emulated by the
ITE. The ITE accepts input only from the keyboard and ignores the optional mouse or
graphics tablet if they are present. Figure 2-4 illustrates the ITE architecture.

PROGRAM

t
reod(2)
write(2)

KERNAL
(ITE)

KEYBOARD 4= lOUT LJSER

(tty(7»

IN I~ BIT-MAPPED DISPLAY

Figure 2-4. Architecture without Windows

24 Concepts

The following references provide more information on this topic:

• For more details on the internal terminal emulator, see the ITE article in HP-UX
Concepts and Tutorials: Facilities for Series 200, 300, and 500. Also see tty{7} .

• To use graphics with the ITE, see HP- UX Concepts and Tutorials: Starbase
Graphics Techniques.

Concepts 25

Notes

26 Concepts

Window Management 3
This chapter describes how to use window management routines found in the Window
library. By calling window management routines, a program can:

• create termO or graphics windows

• destroy windows

• shuffle windows

• repaint the screen

• kill the window manager.

These tasks are described in the following sections.

Window Management 27

Concepts
This section discusses concepts essential to using window management routines. Be sure
to read this section before any others in this chapter.

The Window Manager
Window management routines communicate directly with the window manager. There­
fore, before a program can call window management routines, the window manager must
be running and the window manager device interface ($WMDIRj wm) must exist.

There are two ways to be sure of this:

1. Start the window system via the wmstart{l} command before running the program
that calls window management routines.

2. Start the window system from the program itself, using the system{3} HP-UX
subroutine to invoke wmstart from the program.

NOTE: If you start the window system this way, be sure to invoke wmstart as
a background process (with a trailing ampersand), e.g., system("wmstart &"). If
you do not invoke wmstart as a background process, then your program will hang
indefinitely because wmstart does not return until the window system is exited.

It may take a few seconds time for the window manager device interface to be created
after wmstart is executed, so be sure to wait until it really exists before trying to start
communication. (You can use the wmready{l) command to determine whether the win­
dow manager is running.)

28 Window Management

Starting Window Manager Communication
Before doing any other window management task, a program must start communication
with the window manager, which entails the following steps:

1. Build the path name of the window manager device interface.

2. Open the window manager device interface.

3. Call winit(3W) on the window manager device interface.

Each step is described in detail next.

Build the Path Name of the Window Manager Device Interface
The path name of the window manager device interface is normally $WMDIR/ wm. To
build the path name, you can use the wmpathmake(3W) routine, which builds a path
name from an environment variable and a user-supplied file name; its syntax is:

wmpathmake (environ, suffix, target)

The environ parameter points to a null-terminated character string containing the name
of an environment variable; suff£x points to a base name that will be appended to the
value of the environment variable pointed to by environ. The resulting path name is
pointed to by the target parameter.

Open the Window Manager Device Interface
Using the open(2) HP-UX system call, open the window manager device interface with
read/write permission (O_RDWR). The returned file descriptor is required as a parameter
to other window management routines.

Call winit(3W) on the Window Manager Device Interface
Initialize the window manager via the winit(3W) routine; its syntax is:

wini t (wmfd)

The wmfd parameter is the file descriptor returned from opening the window manager
device interface.

At this point, window manager communication is started, and the program can begin
doing other window management tasks.

Window Management 29

Stopping Window Manager Communication
When finished doing window management tasks, a program must stop communication
with the window manager, which entails the following steps:

1. Call wterminate{3W} on the window manager device interface.

2. Close the window manager device interface.

These steps are described in detail next.

Call wterminate(3W) on the Window Manager Device Interface
Call the wterminate{3W} routine; its syntax is:

wterminate (wmfd)

The wmfd parameter is the file descriptor obtained when the program started communi­
cation with the window manager.

Note that wterminate does not kill the window system as does the wmstop command and
the Exit WS option of the pop-up menu.

Close the Window Manager Device Interface
Finally, you must close the window manager device interface using close{2} HP-UX sys­
tem call.

Example
The following program starts and stops communication with the window manager. Any
program that calls window management routines must conform to the structure of this
program. That is, the program must:

1. Start communication with the window manager.

2. After starting window manager communication, the program can call other window
management routines.

3. When the program is finished doing window management tasks, it must stop com­
munication with the window manager.

30 Window Management

#include <fcntl.h>
#include <stdio.h>
#include <window.h>
main 0

/* system call i/o definitions */
/* system subroutine i/o definitions */
/* window library definitions */

{

int
char

wmfd;
wm_path[WINNAMEMAX] ;

/* window manager file descriptor */
/* window manager path name */

/*
* START WINDOW MANAGER COMMUNICATION:

* * STEP 1: Create the path name of the window manager device interface:
*/

wmpathmake(IWMDIR", "wm", wm_path);

/*
* STEP 2: Open the window manager device interface:
*/

/*

if «wmfd = open (wm_path, O_RDWR» < 0) {

}

perror("open window manager device interface failed");
exit(l);

* STEP 3: Call winit on the window manager device interface:
*/

/*

if (winit(wmfd) < 0) {

}

perror(lIwinit on window manager device interface failed");
exit(2);

printf("Communication with wm started successfully\n ll
);

* The program can now call other window management routines in here.

*
*
*
*/

Window Management 31

1*
* STOP WINDOW MANAGER COMMUNICATION:

* * STEP 1: Call wterminate on the window manager device interface:
*1

if (wterminate(wmfd) < 0) {

}

perror("wterminate failed on window manager device interface.");
exit(3);

1*

}

* STEP 2: Close the window manager device interface:
*1

if (close (wmfd) < 0) {

}

perror("close failed on window manager device interface.");
exit(3);

printf("Communication with wm stopped successfully\n");
exit(O) ;

esLwm_com and term_wm_com
To shorten source code examples throughout this manual, two routines are provided in
the man_examples directory: est_wm_com.c and term_wm_com.c. They are not Window
library routines; they are provided here only to shorten examples. Nevertheless, you may
find them useful, and you can compile them separately and link them with your programs.

esLwm_com
The esCwm_com routine starts communication with the window manager. This routine,
if used, should be called before a program does any window management tasks. If it
cannot start communication, it returns -1; otherwise, it returns the file descriptor for
the window manager device interface.

32 Window Management

#include <fcnt1.h> /* system call i/o definitions */
/* window library definitions */ #include <window.h>

est_wm_comO
{

}

int wmfd;
char wm_path[WINNAMEMAX];

* STOP WINDOW MANAGER COMMUNICATION:

* * return -1 if an error occurs

/* window manager file descriptor */
/* window manager path name */

* return the window manager file descriptor (wmfd) if successful

* * STEP 1: Create the path name of the window manager device interface:
*/

wmpathmake("WMDIR". "wm". wm_path);

* STEP 2: Open the window manager device interface:
*/

if ((wmfd = open(wm_path. O_RDWR» < 0) return(-l);

* STEP 3: Call winit; set this function's return value accordingly.
*/

if (winit(wmfd) < 0) {
close(wmfd);
return(-l);

} else
return(wmfd);

term_wm_com
The term_wm_com routine stops communication with the window manager. This routine,
if used, should be called only after a program is finished with all window management
tasks. If it fails, it returns -1; otherwise, it returns O.

Window Management 33

#include <fcntl.h>
#include <window.h>
term_wm_com(wmfd)

/* system i/o call definitions */
/* window library definitions */

int wmfd; /* file descriptor for wm device interface */
{

/*
* STOP WINDOW MANAGER COMMUNICATION:

*
*
*
*

return -1 if an error occurs
return 0 if termination is successful

* STEP 1: Call wterminate:
*/

if (wterminate(wmfd) < 0) {
close(wmfd);
return(-l);

}

/*

}

* STEP 2: Close the window manager device interface:
*/

if (close(wmfd) < 0)
return(-l);

else
return(O);

34 Window Management

Creating a TermO Window
The wcreate_termO{3W) routine creates a termO window. It creates the window's window
type device interface in the $WMDIR directory.

Note that creating a window does not make the window visible on the display screen. For
details on making termO and graphics windows visible, see "Displaying and Concealing
a Window" in the chapter "Window Manipulation."

All newly created windows inherit their run-time environment from that which existed
when the wmstart{l) command was executed. For example, if you invoke wmstart from
the /usr/lib/hpwindows/demo directory, the first window created, wconsole, will have its
current directory set to the same, and so will any windows created thereafter.

Procedure
To create a termO window, follow these steps:

1. Build the path name of the window's window type device interface.

2. Compute the window's anchor point.

3. Call wcreate_termO{3 W).

Details on each step come next.

Build the Path Name of the Window's Window Type Device Interface
Determine an unused name for the window-a name no other window is using-and
build the path name for its window type device interface. This path name should be
$WMDIR/name, where name is the window name. The path name is required as a
parameter to wcreate_termO.

The easiest way to build the path name is by using the wmpathmake{3W) routine, which
builds a path name from an environment variable and a user-supplied suffix; its syntax
is:

wmpathmake (environ, suffix, target)

After calling this routine, the target parameter will point to a path name created by
appending the suffix string to the environment variable pointed to by environ (in this
case, "WMDIR").

Window Management 35

You can also obtain a window name from the wdfltpos{3W) routine, which returns default
name and anchor point values for windows created interactively through the window
manager.

Compute the Window's Anchor Point
Compute the window's anchor point in x,y pixel coordinates. The upper-left corner of
the screen is the origin 0, o. X coordinates increase as you move to the right on the
screen; y coordinates increase as you move down on the screen. Three methods can be
used to compute the anchor point:

• You can specify absolute coordinates. This simply means that if you want the
window to appear at a specific x,y location on the screen, you specify the exact X,y
values as parameters to the wcreate_termOroutine. For example, if you want a termO
window's anchor point to appear at 300 pixels over and 200 pixels down from the
upper-left corner, simply supply 300,200 as the X,y coordinates to wcreate_termO.

• You can use default coordinates supplied by wdfltpos. This routine returns the
round-robin default position for the next window (or icon). When using this routine,
window coordinates stair-step down from the upper-left corner of the screen. Note
that the window manager calls this routine to determine new window coordinates
when you interactively create windows.

• To specify coordinates relative to an existing window, use the wgetcoords{3W) rou­
tine, which allows you to obtain coordinates (and other important information) for
any existing window.

Compute relative coordinates by adding to or subtracting from the X,y coordinates
returned from wgetcoords. For example, if you want a new window to appear 50
pixels up and 70 pixels to the right of an existing window, simply use wgetcoords
to get the existing window's coordinates, add 70 to the x-coordinate, subtract 50
from the y-coordinate, and supply these new coordinates to wcreate_termO.

36 Window Management

Call wcreate_termO
Finally, you must call wcreate_termO(3W), which will create a window type device
interface for the window; the syntax for this routine is:

wcreate_termO(wmfd, name, x,y,
wincols, winrows,
scrncols, scrnrows,
bufcols, bufrows,
basefont, altfont,
colormode, border)

The wmfd parameter is the file descriptor returned from starting window manager
communication; name points to the window's path name (determined above); x,y specify
the window's anchor point.

Note that the window's device interface path name cannot contain more characters than
the value of WINNAMEMAX - 2. The last character must be NULL (. \0').

The wincols, winrows parameters specify the width and height (in columns and rows) of
the window to create; the window can become no larger than these values.

The scrncols, scrnrows parameters specify the number of columns and rows in the
terminal being emulated. For termO windows, these values should be 80 columns by
24 rows.

The bufcols, bufrows parameters specify the size of the scroll buffer to be used with the
window. These values should be at least as large as the scrncols, scrnrows parameters;
they can be larger if desired. Typically, bufrows is given as two times the scrnrows value;
this way, you can buffer up to two screens of window information.

The basefont and altfont parameters specify the fonts to use for the base and alternate
fonts respectively. These parameters point to the path names of font files found under the
font directory specified by the WMFONTDIR environment variable. For more details
on fonts in termO windows, see the "TermO Windows" chapter.

The colormode parameter enables color mode on color systems; it should always be set
to COLORMODE as defined in the header file window. h.

The border parameter determines whether the border is normal (interactive manipulation
areas present) or thin (no manipulation areas). If border is SETBANNER, the window will
have a normal border, if border is SETNOBANNER, no banner will be displayed, and if border
is SETNULLBANNER, the window will have no border.

Window Management 37

Precautions

• Creating a window does not make the window visible. In fact, nothing can be done
with a newly created window until communication is started with the window.
For details on window communication, see the "Concepts" section of the "Window
Manipulation" chapter.

• The name of a newly created window must be unique: it cannot have the same
name as any existing window.

Example
The following program creates a termO window named flebnee; its anchor point is de­
termined by wdfltpos. The program does not display the window; it merely creates the
window's device interface. To display the window use the wdisp{l} window command as:

wdisp flebnee

The source is named create_W.c and is found in the man_examples directory. The pro­
gram calls the functions esC wm_ com and term_ wm_ com described in the "Concepts"
section. (See the appendix "Compiling Programs" for details on compiling window pro­
grams.)

#include <window.h> /* window library CONSTANT definitions are kept here */
mainO
{

/*

int wmfd;
char wt_path[WINNAMEMAX] ;
int wx,wy,ix,iy;
char *dflt_name;
int est_wm_com();
int term_wm_com();

/* window manager file descriptor */
/* path name for window type */
/* parameters for wdfltpos routine */
/* dummy name parameter for wdfltpos */
/* routine to start wm communication */
1* routine to stop wm communication */

* START WINDOW MANAGER COMMUNICATION:
*/

if «wmfd = est_wm_com(» == -1)
{

}

perror("est_wm_com") ;
exit (1) ;

38 Window Management

/*
* CREATE THE TERMO WINDOW:

*
* STEP 1: Create the path name for the window.
*/

wmpathmake(IWMDIR". "flebnee". wt_path);

/*
* STEP 2: Get default coordinate from wdfltpos.
*/

if (wdfltpos(wmfd. DFLT_WPOS. &wx.&wy. &ix.&iy. dflt_name) < 0)
{

}

perror("wdfltpos wmfd");
exit(l);

/*
* STEP 3: Determine remaining parameters and call wcreate_termO:

*
*
*
*
*
*
*
*
*
*
*/

Initial window size (wincols. winrows) is ao columns
by 24 rows of characters.

Character width and height of the emulated terminal
(scrncols. scrnrows) is ao columns by 24 rows.

The standard ax16-pixel font will be used as the base
font (*basefont).

No alternate font is used (*altfont = ALTFONTNULL).
Enable color mode (colormode = COLORMODE).
Normal border (border = SETBANNER).

if (wcreate_termO(wmfd. wt_path. wx.wy. aO,24. aO.24. aO.4a.
"/usr/lib/raster/ax16/lp.aU". ALTFONTNULL. COLORMODE. SETBANNER) < 0)

{

}

perror("wcreate_termO wmfd");
exit (1) ;

/*

}

* STOP WINDOW MANAGER COMMUNICATIONS:
*/

if (term_wm_com(wmfd) == -1)
{

perror(lIterm_wm_com wmfd") ;
exit(l) ;

}
exit(O);

Window Management 39

Creating a Graphics Window
Creating a graphics window is similar to creating a termO window. However, the rou­
tine that creates the graphics window-wcreate_graphics{3W}-requires some different
parameters than wcreate_termO.

All newly created windows inherit their run-time environment from that which existed
when the wmstart{l} command was executed. For example, if you invoke wmstart from
the /usr/lib/hpwindows/demo directory, the first window created, wconsole, will have its
current directory set to the same, and so w'ill any windows created thereafter.

Procedure
To create a graphics window, a program must:

1. Build the path name of the window's window type device interface.

2. Compute the window's anchor point.

3. Call wcreate_graphics(3W).

Build the Path Name of the Window's Window Type Device Interface
Determine an unused name for the window-a name no other windows are using. Use
this name to build the path name of the window type device interface for the window
to create. Normally, the path name will be $WMDIR/ name, where name is the window
name. Use the wmpathmake routine to build the path name. Wdjltpos can be used to
get a default window name.

Compute the Anchor Point
Compute the graphics window's anchor point in X,y pixel coordinates. There are three
methods for computing the anchor point coordinates:

• You can specify absolute coordinates.

• You can use default coordinates supplied by wdfltpos.

• You can specify coordinates relative to another window.

See the section "Creating a TermO Window" for details on computing coordinates using
these three methods.

40 Window Management

Call wcreate_graphics
Finally, you must determine the remaining parameters and call wcreate_graphics, which
creates the window's device interface. The syntax for this routine is:

wcreate_graphics(wmjd, wname, x,y,
w, h,
rasterw, rasterh,
attributes, border)

The wmjd parameter is the file descriptor returned from starting communication with
the window manager. The wname parameter points to the path name for the window's
device interface; X,y specify the window's anchor point.

Note that the window's device interface path name cannot exceed WINNAMEMAX characters
in length; the last cha~acter must be NULL.

The w, h parameters specify the initial width and height (in pixels) of the view into the
virtual raster.

The rasterw, rasterh parameters define the width and height of the window's virtual
raster. The window's size (specified by wand h) can grow no larger than the raster size.

The attributes parameter specifies certain attributes of the graphics window. If attributes
is SETRETAIN, the raster is retained as byte/pixel (SETRETAIN and SETRETAINBYTE are defined
to be the same value). If attributes is SETRETAINBIT, the raster is retained as bit/pixel
(this only applies to monochrome displays). If attributes is set to SETNORETAIN, the raster
is not retained. Finally, if attributes is SETIMAGE, the raster is not retained and the user
area of the window is mapped into the image planes of the display (this only applies on
the HP 98730).

The border parameter determines whether the border is normal (interactive manipulation
areas present), thin (no manipulation areas), or null (no border). If border is SETBANNER,

the window will have a normal border; if border is SETNOBANNER, the window will have a
thin border; if border is SETNULLBANNER, the window will have no border.

Window Management 41

Precautions

• Remember that creating a window does not make the window visible. In fact, a
program cannot manipulate a window unless it first starts communication with the
window. For details, see the "Concepts" section of the "Window Manipulation"
chapter .

• The name of a newly created window must be unique: it cannot have the same
name as any existing window.

Example
The following program, create_gr.c, creates a graphics window named solipsist. The
program is found in the man_examples directory.

The anchor point of solipsist is at 350,100; its virtual raster is 512 pixels wide and 398
pixels high; and the window is created with an initial width and height of 300 by 200
pixels. In addition the raster is not retained, and it has a normal border.

Note that the program does not display the window; it merely creates the window's
device interface. To display the window use the wdisp{l} window command as:

wdisp solipsist

The program calls the esLwm_com and term_wm_com routines defined in the "Concepts"
section. Therefore, for the program to work properly, it must be compiled with those
functions.

42 Window Management

#include <window.h>
maine)

/* window library defintions

{

int wmfd;
char wt_path[WINNAMEMAX] ;
int wx,wy;

/* window manager file descriptor
/* path name for window type

*/
*/

location */
int est_wm_com();
int term_wm_com();

/* x,y parameters for window
/* start wm communication
/* stop wm communication

* START WINDOW MANAGER COMMUNICATION:
*/

if «wmfd = est_wm_com(» == -1)
{

}

perror("est_wm_com");
exit (1) ;

*/
*/

/*
* CREATE THE GRAPHICS WINDOW:

* * STEP 1: Create the path name:
*/

wmpathmake(IWMDIR", "solipsist", wt_path);

/*
* STEP 2: Assign the window coordinates (350,100):
*/

wx = 350; wy = 100;

/*
* STEP 3: Determine the remaining parameters and call wcreate_graphics:

*
*
*
*
*
*
*
*/

The width and height (w,h) of the view into the virtual raster
is 300 by 200 pixels.

The virtual raster (rasterw,rasterh) is 512 pixels wide by
398 pixels high.

The raster will not be retained (retained = SETNORETAIN).
The window will have a normal border (border = SETBANNER).

if (wcreate_graphics(wmfd, wt_path, wX,wy, 300,200, 512,398,
SETNORETAIN, SETBANNER) < 0)

{

}

perror("wcreate_graphics wmfd");
exit (1) ;

Window Management 43

/*
* STOP WINDOW MANAGER COMMUNICATION:
*/

}

if (term_wm_com(wmfd) == -1)
{

perror(lIterm_wm_com wmfd");
exit(l);

}

exit(O);

44 Window Management

Destroying a Window
A program can destroy any window-those created by commands and your programs,
or those created interactively via the pop-up menu. The wdestroy{3W) routine destroys
windows.

A destroyed window is immediately concealed and the window type device interface will
be removed. But the window will not really be destroyed until it is closed by every
process that has it open.

When a window is destroyed, all processes affiliated with the window which do not catch
the SIGHUP signal will be killed.

Procedure
To destroy a window, a program must:

1. Build the path name of the window's window type device interface.

2. Call wdestroy.

Build the Path Name of the Window's Window Type Device Interface
To destroy a window you created, simply use the path name you supplied as a parameter
to the wcreate_termO or wcreate_graphics routine. To destroy a window created externally
to your program, build the path name using the wmpathmake{3W) routine.

Call wdestroy
Call the wdestroy routine; the syntax for this routine is:

wdestroy (wmfd, wCpath)

The file descriptor returned from starting window manager communication is passed as
the wmfd parameter. The path name of the window to destroy is pointed to by the
wCpath parameter; it should be a null-terminated string.

Window Management 45

Related Routines
By using the wrecover(3W} and wautodestroy(3W} routines you can change the way
windows are destroyed. See the section "Setting Autodestroy Status" in the "Window
Manipulation" chapter for details on using these routines.

Precautions

• Destroying a window can be dangerous: Once a window is destroyed, it cannot be
recovered. In addition, all processes affiliated with the window which do not catch
the SIGHUP signal will be killed. Therefore, be careful when destroying windows.

• If a process is not affiliated to a window and it has the window open, then the
process will not receive the SIGHUP signal sent when the window is destroyed.
Because of this, the window will continue to exist, unoccluded. You can determine
which windows are in this state by using the wlist(l} command as follows:

wlist *

Wlist will display "I can't find window-name window" for each window in this
state.

• If the selected window is destroyed, the keyboard is attached· to the resulting top
window (if one exists; otherwise it is riot attached to any window).

• When a termO window is destroyed, it will send the SIGCLD signal to its parent
process. For the window to be completely destroyed, the parent process must
receive the signal. To receive the signal you should call the signal(2} system call as
follows:

signal(S1GCLD. S1G_1GN);

This will cause the signal to be received but ignored, and the window will be
completely destroyed. If you don't do this, then the destroyed window will become
a defunct process.

• When writing code to create graphics windows on Series 300 HP-UX 5.2 and later
systems, you needn't worry about defunct processes for graphics windows. However,
if you run pre-5.2 compiled window source on 5.2 or later systems, then you must
handle defunct processes as described above; otherwise, defunct processes will exist
until the program exits.

46 Window Management

Example
The following program, named rm_window.c, is a simplified version of the wdestroy{l}
command: it destroys a window specified by the user. Its syntax is:

rm_ window windowspec

where windowspec is the name of the window type device interface for the window to
destroy.

The source for this program is found in the man_ examples directory; it c·alls the func­
tions found in the sections "Starting Window Manager Communication" and "Stopping
Window Manager Communication."

#include <window.h>
main (argc, argv)

/* window library definitions */

int argc; /* number of arguments on command line
/* command line argument list char *argv [] ;

{

int wmfd; /* window manager file descriptor */
char wt_path[WINNAMEMAX]; /* path name for window type */
int est_wm_com(); /* starts window manager communication */
int term_wm_com(); /* stops window manager communication */

/*
* START WINDOW MANAGER COMMUNICATION:
*/

if «wmfd = est_wm_com(» == -1)
{

}

perror("est_wm_com");
exit (1) ;

Window Management 47

/*
* DESTROY THE WINDOW:

* * STEP 1: build the path name of the window to destroy:
*/

wmpathmake("WMDIR". argv[l]. wt_path);

* * STEP 2: Call wdestroy:
*/

if (wdestroy(wmfd. wt_path) < 0)
{

}

perror("wdestroy wmfd");
exit(1) ;

/*

}

* STOP WINDOW MANAGER COMMUNICATION:
*/

if (t erm_wm_c om (wmfd) == -1)
{

}

perror(IIterm_wm_com wmfd");
exit(1);

exiteD);

48 Window Management

Shuf,f,ling Windows
When one or more windows are visible on the display screen, they can be shuffled via the
wshuffle{3W) routine. Windows can be shifted (or shuffled) either upward or downward
through the display stack. If windows are shuffled upward, the bottom window in the
stack. becomes the top, and the other windows are shifted down one position in the
display stack. If windows are shuffled downward, the top window in the stack is placed
on bottom, and the remaining windows are shifted up one position.

Note

When windows are shuffled, the keyboard is attached to the result­
ing topmost window in the display stack-the top window becomes
selected.

You can call wshuffle when no windows are visible on the screen; however, the window
system and the display screen will not change as a result of using the routine in this
state, and the selected window will not change either.

Procedure
To shuffle windows, call wshuffle; its syntax is:

wshuffle (wmfd, value)

The wmfd parameter specifies the file descriptor of the open window manager device
interface.

The value parameter gives the direction of the shuffle. If value is SHUFFLEDOWN, the
windows are shuffled down; if value is SHUFFLEUP, windows are shuffled up.

Window Management 49

Example
The following program, named shuffle_dn.c, causes the top window to shuffled to the
bottom and the remaining windows to be shifted up one position through the display
stack.

The source is found in the man_ examples directory; the program calls the esC WrTL com
and term_wm_com functions defined earlier.

#include <window.h>
maine)
{

int wmfd; /* file descriptor for wm device interface */
char wm_path[WINNAMEMAX]; /* path name for wm device interface */
int est_wm_com(); /* starts wm communication */
int term_wm_com(); /* stops wm communication */

/*
* START WINDOW MANAGER COMMUNICATION:
*/

if ((wmfd = est_wm_com(» == -1)
{

}

perror("est_wm_com");
exit (1) ;

/*
* SHUFFLE TOP WINDOW TO BOTTOM AND MOVE OTHERS UP ONE POSITION:
*/

if (wshuffle(wmfd. SHUFFLEDOWN) < 0)
{

}

perror("wshuffle wmfd");
exit (1) ;

/*

}

* STOP WINDOW MANAGER COMMUNICATION:
*/

if (term_wm_com(wmfd) == -1)
{

perror(IIterm_wm_com wmfd") ;
exit (1) ;

}
exit(O);

50 Window Management

Repainting the Display Screen
Repainting the display screen causes the entire display screen to be redisplayed: all
windows, icons, and typing aids are redisplayed on the desk top. This task is required
only when part of the display becomes mussed-for example, if a graphics program
accidentally writes over the desk top, making the display difficult to understand.

Procedure
To repaint the display screen, call wmrepaint; its syntax is:

wmrepaint (wmfd)

The wmfd parameter is the file descriptor returned from starting window manager com­
munication.

Example
The following program, named wrepaint. c, causes the display screen to be repainted. The
source is found in the man_ examples directory, and the program calls the esC wm_ com
and term_wm_com functions presented earlier.

#include <window.h>
mainO
{

/*

int wmfd;
int est_wm_com();
int term_wm_com();

/* file descriptor for wm device interface */
/* start wm communication */
/* stop wm communication */

* START WINDOW MANAGER COMMUNICATION:
*/

if «wmfd = est_wm_com(» == -1)
{

}

perror("est_wm_com");
exit (1) ;

Window Management 51

1*
* REPAINT THE DISPLAY SCREEN:
*1 .

if (wmrepaint(wmfd) < 0)
{

}

.. perror("wshuffle wmfd");
exit(1);

1*

}

* STOP WINDOW MANAGER COMMUNICATION:
*1

if (term_wm_com(wmfd) == -1)
{

perror(IIterm_wm_com wmfd");
exit (1) ;

}

exit(O);

52 Window Management

Killing. the Wi~d()w Manager
When a program kills the window manager:

• all existing windows are destroyed

• the window manager stops executing

.• controlof the physical. display returns to the ITE.

The wmkill(3W) routine "marks" (flags) the window system to be killed when the pro­
gram stops communication with the window manager.

CAUTION

Extreme caution should be exercised when using this routine. It
will destroy all windows and kill all processes affiliated to the win­
dow system; in addition, the window manager will stop executing.

Procedure
To kill the window manager, call the wmkill routine; its syntax is:

wmkill (wmfd>

The wmfd parameter specifies the file descriptor returned from starting communication
with the window manager.

Note

Wmkill should be called immediately before stopping window man­
ager communication. No other calls to window routines should be
made between killing the window manageL and stopping commu­
nication.

Window Management 53

Precautions .
Be aware that all windows will be destroyed and the window manager will stop executing
when this task is done. Do this task only if you are absolutely sure you want to exit the
window system.

Example
When executed from the window system, the following program kills the window man­
ager. It is equivalent in effect to executing the wmkill{l} command or selecting the
Exit WS option of the pop-up menu. Be aware of the consequences of executing this
program.

The program is named kilLwm.c and is found in the man_examples directory. It calls
the esLwm_com and term_wm_com functions described in the "Concepts" section.

#include <window.h>
mainO
{

int wmfd; /* file descriptor for wm device interface */
int est_wm_com(); /* start wm communication */
int term_wm_com(); /* stops wm communication */

/*
* START WINDOW MANAGER COMMUNICATION:
*/

/*

if «wmfd = est_wm_com(» == -1)
{

}

perror("est_wm_com") ;
exit(l);

* KILL THE WINDOW MANAGER:
*/

if «wmkill (wmfd) < 0)
{

}

perror(lIwmkill wmfd");
exit (1) ;

54 Window Management

/*
* STOP WINDOW MANAGER COMMUNICATION:
*/

}

if (term_wm_com(wmfd) == -1)
{

perror(IIterm_wm_com wmfd");
exit(l);

}

exit(O);

Window Management 55

Notes

56 Window Management

Window Manipulation 4
This chapter describes how to use window manipulation routines, which change window
attributes (e.g., size, location, or label). By calling window manipulation routines, a
program can:

• select a window

• display or conceal a window

• move a window

• change a graphics window's size

• change a termO window's size

• change a window's border

• change a window's label

• change a window's border colors

• pause and resume output to a termO window

• pan a graphics window.

Window Manipulation 57

Concepts
This section discusses concepts essential to using window manipulation routines. Be sure
to read this section before any others in this chapter.

The Window Type De~ice Interface
Obviously, before a program can call window manipulation routines to change a window's
attributes, the window must exist. There are three ways to create a window, once the
window system is running:

1. Via the system pop-up menu, as described in the HP Windows/9000 User's Manual;

2. Via window system commands wsh{l} and wcreate{l}, as described in the HP Win­
dows/9000 User's Manual;

3. Via the wcreate_termO{3W} and wcreate_graphics{3W} routines described in the
"Creating a TermO Window" and "Creating a Graphics Window" sections of the
"Window Management" chapter.

Once a window is created, its window type device interface will exist in the $WMDIR
directory. The path name of the window type device interface is $WMDIR/ wname,
where wname is the window's name.

Program Structure
Any program that calls window manipulation routines must conform to the following
structure:

1. First, the program must start communication with the window.

2. After starting communication with the window, the program can then call other
window manipulation routines.

3. When a program is finished calling window manipulation routines on a window,
the program must finally stop communication with the window.

If you start communication with a window, be sure to stop it. Stopping window commu­
nication before exiting will ensure the proper execution of the window system and your
programs.

Starting and stopping window communication is described in detail in the following sub­
sections.

58 Window Manipulation

Starting Window Communication
Once a window is created, its window type device interface exists, but a program can
do nothing with the window until communication between the program and the window
is started. After starting communication with the window, a program can call other
library routines to manipulate the window. For instance, routines can be called to make
the window visible, to move it on the screen, or to attach the keyboard to it.

Starting window communication entails the following steps:

1. Build the· path name of the window's window type device interface.

2. Open the window's window type device interface.

3. Call winit{3W).

Build the Path Name of the Window's Window Type Device Interface
Remember, the path name of a window's window type device interface is
$WMDIR/wname, where wname is the window's name. You can use the wmpath­
make{3W) routine to build the path name from the WMDIR environment variable and
the window's name.

Open the Window's Window Type Device Interface
For graphics windows, open the window's window type device interface using the Starbase
gopen{3G) routine; for termO windows, use the open(2) system call. The file descriptor
returned from opening the window type device interface is required by window manipu­
lation routines.

Note that gopen requires the name of the device driver for the physical display. This
value is determined by the WMDRIVER environment variable. To get this value for
gopen, simply use the wminquire{3W) routine, which gets the value of a window system
environment variable. You can then supply this value to gopen. (For details on using
wminquire, see the example in this section.)

Call winit(3W)
After opening and obtaining a file descriptor for the window type device interface, call
winit{3W); its syntax is:

winit(jd)

The jd parameter is the file descriptor returned from opening the window's window type
device interface.

At this point, communication with the window has been started, and a program can call
window manipulation routines that alter some of the window's attributes.

Window Manipulation 59

Examples
The following function, esLtO.c, starts communication,with a termO window and returns
its file descriptor. It requires the path name of the window's window type device interface
as a parameter. It returns the window's file descriptor if successful; otherwise, it returns
-1. The function's source can be found in the mg,n_examples directory:

#include <window.h>
#include <fcntl.h>
est_tO (wt_path)
char *wt_path;

/* window library definitions */
/* system call i/o defintions */

/* name of the window */
{

int wfd; /* window file descriptor */

* START WINDOW COMMUNICATION:

*
* return -1 if an' error occurs
~ return wfd if successful

*
* STEP 1: Build the path name of the window's window type device interface:
* [Note: The path name is determined BEFORE this routine
* is called; the path name is passed as a parameter.]

*
* STEP 2: Open the window type device interface for reading and writing:
*/

if «wfd = open(wt_path. O_RDWR» == -1) return(-1);

/*

}

* STEP 3: Call winit:
*/

if (winit(wfd) < 0)
return(-1);

else
return(wfd);

60 Window Manipulation

The next function, esLgr.c, starts communication with a graphics window and returns
its file descriptor. It requires the window manager's file descriptor and the graphics
window's path name as a parameter. Its source is found in man_examples:

#include <starbase.c.h> /* starbase library definitions */
#include <window.h> /* window li.brary definitions */ .'
est_gr(wmfd. wt_path)
int wmfd; /* wm file descriptor
char *wt_path; /* graphics window's name
{

int wfd;
char dr_path [WINNAMEMAX] ;

/* window file descriptor */
/* screen driver name variable */

/*
* START WINDOW COMMUNICATION:

*
* return -1 if an error occurs
* return wfd if successful

*
* STEP 1: Build the path name of the window's window type device interface:
* [NOTE: The path name is determined before this routine is
* called; the path name is supplied as the parameter.]

*
* STEP 2: Get the physical screen device 'driver's name. and open the
* device interface (for output only) via Starbase gopen:
*/

if (wminquire(wmfd. "WMDRIVER". dr_path) < 0) return(-1);

if ((wfd = gopen(wt_path. OUTDEV. dr_path. INIT» < 0) return(-1);

/*

}

* STEP 3: Initialize the window type device interface:
*/

if (winit(wfd) < 0)
return(-1);

else
return(wfd);

Window Manipulation 61

Stopping Window Communication
When a program is finished with a terniO or graphics window, communication with
the window should be stopped. Stopping window communication does not remove the
window from the window system; it merely releases resources allocated at the time com­
munication was started. The window still exists afterward but is under the control of
the window manager.

Stopping window communication involves the following steps:

1. Call wterminate{3W).

2. Close the window's window type device interface.

Call wterminate
Call the wterminate{3 W) routine; its syntax is:

wterminate (jd)

It requires the device interface's file descriptor-i.e., the descriptor returned from starting
communication with the window.

Close the Window's Device Interface
Use the close(2) routine on termO windows; use the Starbase gclose{3G) routine for
graphics windows.

62 Window Manipulation

Examples
The following function stops communication with any graphics window, given the file
descriptor of the window's window type device interface. The function is named term_yr.c
and is found in the man_ examples directory.

#include <starbase.c.h> /* contains starbase library definitions */
#include <window.h> /* window library definitions */
term_gr(wfd)
int wfd; /* window type descriptor */
{

/*
* STOP GRAPHICS WINDOW COMMUNICATION:

* * return 0 if successful
* return -1 if error occurs

* * STEP 1: Call wterminate:
*/

if (wterminate(wfd) < 0) return(-l);
/*

}

* STEP 2: Close the window type device interface.
*/

if (gclose(wfd) < 0)
return(-l);

else
return(O);

Window Manipulation 63

The next function is similar to the previous, except that it stops communication with
any termO window. The source is named term_tO.c and is found in the man_examples
directory.

#include <fcntl.h>
#include <window.h>
term_tO (wfd)
int wfd;
{

/*

/* system call i/o definitions */
/* window library definitions */

/* window type descriptor *1

* STOP TERMO WINDOW COMMUNICATION:

* * return 0 if successful
* return -1 if error occurs

* * STEP 1: Call wterminate:
*/

if (wterminate(wfd) < 0) return(-l);
/*

}

* STEP 2: Close the window type device interface.
*/

if (close(wfd) < 0)
return(-l);

else
return(O);

64 Window Manipulation

Selecting a Window
The keyboard and mouse or graphics tablet can be attached to one window at a time.
Once these input devices are attached to a window, a process can read keyboard in­
formation and detect activity (events) in the mouse and/or graphics tablet.

If you wish to read key board data from or perform event detection with a window (as
described in the "Event Detection" chapter), attach the keyboard and other input devices
to the window. The wselect{3W) routine attaches and detaches the keyboard and optional
mouse or graphics tablet.

Procedure
To attach input devices to a window, simply call wselect; its syntax is:

wselect (fd, value)

The value parameter determines whether to attach the window (value = SETSELECT),

detach the window (value = SETNOSELECT), or inquire on select status (value = GETSELECT).

Related Routines
The wautoselect{3W) routine can also be used to attach input devices to a window.
However wautoselect works differently than wselect: wautoselect automatically attaches
the input devices to a window when output is sent to the window. The syntax for this
routine is:

wautoselect (fd, value)

If value is SETAUTOSELECT, then the window will automatically become the selected window
when output is sent to its device interface; if value is SETNOAUTOSELECT (the default when
the window is created), then the window won't be selected. If value is GETAUTOSELECT,

then the current auto-selection status is returned.

NOTE: A window's auto-selection status is automatically set to SETNOAUTOSELECT when­
ever output is sent to its device interface. Therefore, whenever a window becomes de­
selected, you must re-call this routine if you want the window to again become selected
when output is sent to its device interace.

Window Manipulation 65

Precautions
Detaching the input devices from a window causes them to be attached to the topmost
window in the display stack, unless the detached window was already topmost. In that
case, the keyboard is attached to the next window down in the display stack.

If only one window exists, the keyboard cannot be detached from it; attempting to do
so won't work.

Example
The following function, named toggle_sel.c, inquires on whether the input devices are
attached to a specified window. If the window is already selected, then the input devices
are detached from the window; otherwise, the window is made the selected window.

#include <window.h>
toggle_sel(wfd)

/* window library definitions */

int wfd; /* window's file descriptor */
{

int select_state; /* current select state variable */

/*
* TOGGLE A WINDOW'S SELECT STATE:

* * return -1 if an error occurs
* return resulting select state, if successful

* * Check the current state:
*/

if «select_state = wselect(wfd, GETSELECT» < 0) return(-1);

66 Window Manipulation

/*

}

* Toggle the state:
*/

if (select_state == SETSELECT)
{

}
else
{

}

if (wselect(wfd. SETNOSELECT) < 0)
return(-l);

else
return(SETNOSELECT);

if (wselect(wfd. SETSELECT) < 0)
return(-l);

else
return(SETSELECT);

Window Manipulation 67

Displaying and Concealing a Window
At any time after a window is created, it can be normal or iconic. In either of these
representations, a window can either be displayed-capable of being seen on the screen­
or concealed-i.e., made invisible. This section discusses how to display and conceal
windows in a normal state.

Changing a window from a visible to an iconic representation (and vice versa) is discussed
in the chapter "Icons." Keep in mind that the routines discussed here can also be used
to display or conceal icons.

Procedure
Following are separate discussions for displaying a window and concealing a window.

Displaying a Window
By default when a window is created via window library routines, it is concealed. Three
routines can be used to make windows visible:

• wtop (3 W)-displays a window as the top window in the display stack. No portion
of the window will be occluded by any others. However, depending on the window's
location and size, all or part of the window may be off screen. The syntax for this
routine is:

wtop (Jd, value)

The value parameter determines the action of the routine: if value is SETTOP, then
the window (specified by Jd) is made the top window in the display stack; if value is
GETTOP, then the routine returns a value of SETTOP if the window is the top window
in the stack, SETNOTOP otherwise.

• wbottom(3W)-displays a window as the bottom window in the display stack. All
or part of the window may be occluded by other windows. In addition, all or part
of the window may be off screen. This routine's syntax is:

wbottom(/d, value)

If value is SETBOTTOM, then the window is made visible as the bottom window in the
display stack; if value is GETBOTTOM, then wbottom returns a value of SETBOTTOM if the
window is the bottom one, SETNOBOTTOM otherwise.

• wautotop(3W)-causes a termO window to be displayed as the top window in the
stack when output is sent to the window's device interface. This routine is useful
to applications that display urgent information in a termO window and want the
window to be visible when the urgent information is displayed.

68 Window Manipulation

For example, suppose that you've written an application for a nuclear power plant,
and you have a meltdown emergency window. You probably want this window to
be displayed should a meltdown occur. You can use wautotop to have the window
automatically come to the top if the meltdown message is ever displayed.

The syntax for this routine is:

wautotop (fd, value)

If value is SETAUTOTOP, then the window specified by fd will automatically come to
the top when output is written to its device interface. If value is SETNOAUTOTOP then
the window won't automatically come to the top. If value is GETAUTOTOP, then the
routine returns the current autotop state.

NOTE: The window's autotop state will be automatically set to SETNOAUTOTOP when­
ever output is sent to the window. Therefore if you must re-call wautotop after any
data is written to the window, if you want the window to come to the top when
the next message is written.

Concealing a Window
After a window is made normal, it can be concealed. You might conceal a window
if you don't want to destroy it (or its associated programs) but do want to remove it
temporarily from the display screen. The window can then be made normal again (via
wtop or wbottom) when needed. Windows are concealed via wconceal{3W); its syntax is:

wconceal (fd, value)

If value is SETCONCEAL, then the window is concealed; if value is GETCONCEAL, then wconceal
returns a value of SETCONCEAL if the window is concealed, NOSETCONCEAL otherwise.

Window Manipulation 69

Precautions
Remember that displaying a window via wtop or wbottom does not ensure that the window
will be visible on the screen: the window may be displayed totally or partly off the screen.
In addition, if the window is made displayable by wbottom the window may be occluded
by other windows.

Example
The following program requires that a window named tOwin exist. You can create this
window (if it doesn't already exist) by typing:

wsh tOwin I Return I

The following program toggles the window from displayed to concealed representation,
waits about five seconds, and makes the window visible again. The program is found in
the man_ examples directory and is named conceaL to. c.

#include
#include
mainO
{

1*

int
char

<window.h>
<stdio.h>

wfd;
wt_path[WINNAMEMAX] ;

1* window file descriptor *1
1* window path name *1

* Build the window's path name and start window communication by
* using the est_tO routine defined in the previous chapter.
*/

/*

wmpathmake(IWMDIR". ItOwin". wt_path);
if ((wfd = est_tO(wt_path» < 0)
{

}

printf(lIest_tO failed - path is %s\n". wt_path);
exit (1) ;

* CONCEAL the window:
*/

wconceal(wfd. SETCONCEAL);

/*
* Wait for approximately five seconds:
*/

sleep(5);

70 Window Manipulation

1*
* DISPLAY the window as the top window in the stack:
*1

wtop(wfd. SETTOP);

1*
* Stop communication with the window:
*1

}

if (term_tO(wfd) < 0)
{

printf("term_tO failed - wfd is %d\n". wfd);
exit(l);

}
exit(O); 1* NORMAL TERMINATION *1

Window Manipulation 71

Moving a Window
A window's location attribute determines the position (in x,y pixel coordinates) of the
window's anchor point on the physical display. (The anchor point is the upper-left corner
of the window's user area.) Location 0,0 is the upper-left corner of the display-Le., the
origin. The x coordinates increase to the right; y coordinates increase downward. The
wmove{3W} routine allows you to change a window's location.

Note that moving a window does not change its position in the display stack.

Procedure
To move a window, do the following tasks:

Compute the New Coordinates
First, compute the new coordinates for the window. The new coordinates can be either
absolute, relative, or default:

• To compute absolute coordinates, simply determine the exact x, y coordinates to
which you wish the window to be moved. Then supply these as parameters to the
wmove routine.

To determine if moving the window will cause part of it to appear off screen, call
the wgetscreen{3W} routine, which returns the maximum x,y coordinates on the
physical display-Le., the coordinates of the lower-rightmost pixel on the display.
Coordinates less than 0, ° or greater than the screen size will cause part of the
window to appear off screen.

• To compute new coordinates relative to a window (which could be the window
itself), use the wgetcoords routine. Then compute the relative coordinates as offsets
of those returned by wgetcoords{3W}.

• You can also specify default coordinates returned from wd/ltpos{3W} which returns
coordinates for the next window to be created by the window manager. However,
this routine is normally used only when creating windows.

Call wmove
Call the wmove routine with the desired coordinates; its syntax is:

wmove(/d, x,y)

The x, y parameters specify the new location for the window denoted by /d.

72 Window Manipulation

Precautions
Keep in mind that when you move a window, all or part of the window may be off screen
and, therefore, not visible on the display.

Example
The following program requires that a window named my_ wz'n exists on the display
screen. To create this window, simply type:

On each invocation of the following program, my_ wz'n will move 50 pixels down and 60
pixels to the right on the display screen. Before moving the window, the program checks,
via wgetscreen and wgetcoords, to see if moving the window will cause part of it to appear
off screen. If so, the window will instead be moved to absolute location 0,0 so that the
stair-step movement can proceed again from the upper-left corner of the display. This
program is stored in the man_examples directory and is named staz'r_step.c.

#include <fcntl.h>
#include <window.h>

#define stepx 60
#define stepy 50

maine)
{

int wmfd;
int screenw, screenh;
int bytepp, cmapent, sfkh;

int wfd;
char wt_path[WINNAMEMAX] ;
int bx, by, bw, bh;
int x,y, w,h, dx,dy, rW,rh;
int est_wm_com();
int term_wm_com();

1* system i/O call definitions *1
1* window library definitions *1

1* pixel step in x direction */
1* pixel step in y direction */

1* window manager file descriptor *1
1* screen width and height *1
/* bytesper pixel, color map entries,

and softkey height for the screen *1
1* window file descriptor *1
1* path name for window type */
1* dimensions of the border *1
1* dimensions of the window *1
1* routine to start wm communication *1
1* routine to stop wm communication */

Window Manipulation 73

/*
* Start window manager communication.
*/

/*

if «wmfd = est_wm_com(» == -1)
{

}

perror(lIest_wm_com failed");
exit(1);

* Create a path name for the window.
*/

wmpathmake(IWMDIR". limy_win II • wt_path);

* Open the window and initialize it.
*/

/*
* Get
*/

wfd = open(wt_path. O_RDWR);
if (wfd <0)
{

}

perror("open of window failed") ;
exit (1) ;

if (winit(wfd) < 0)
{

}

the

if

{

}

perror("winit of window failed");
exit (1) ;

screen size.

(wgetscreen(wmfd. &screenw. &screenh. &bytepp.
&cmapent. &sfkh) < 0)

perror(lIwgetscreen to wmfd failed");
exit(1);

74 Window Manipulation

/*
* Get the border size and the contents size of the window.
*/

if (wgetbcoords(wfd, kbx, kby, kbw, kbh) < 0)
{

}

perror("wgetbcoords of window failed") ;
exit(1);

if (wgetcoords(wfd, kX,ky, kW,kh, kdx,kdy, krw,krh) < 0)
{

}

perror("wgetcoords of window failed");
exit (1) ;

/*
* Compute the new position of the window by adding stepx pixels to the
* x value and stepy pixels to the y value. If any part of the window
* will move off the screen, then reposition the window to 0,0.
*/

if «(bx + bw + stepx) >= screenw) I I «by + bh + stepy) >= screenh»
{

} else
{

}

x -= bx;
y by;

X += stepx;
y += stepy;

if (wmove(wfd, x, y) < 0)
{

}

perror("wmove of window failed");
exit (1) ;

/*
* Close the window.
*/

if (close(wfd) < 0)
{

}

perror("close of window failed");
exit (1) ;

/*

}

* Stop window manager communication.
*/

Window Manipulation 75

Changing a Graphics Window's Size
Each graphics window has a size attribute that represents the pixel width and height of
the window; wsize{3W) changes a window's size.

Maximum Window Size
The maximum size for a graphics window is its raster size (determined by the rasterw
and rasterh parameters to wcreate_graphics) and pan position (set by the wpan routine).
The window cannot be wider than the raster width minus the x-coordinate of the pan
position; it can be no taller than the raster height minus the y-coordinate pan position.

Minimum Window Size
The window's minimum possible width and height depend on whether the window has a
normal border (window border displayed) or thin border (border not displayed):

• With a normal border, the window has a minimum size determined by factors such
as the current border font size and the location of the interactive manipulation
areas (which must all remain visible).

• With a thin border, the minimum width and height is one pixel by one pixel.

Note: Attempting to set a window's size less than the minimum will cause the window
to be redrawn to the minimum size; setting the size larger than the maximum will cause
the window to be redrawn to its maximum size.

Procedure
Changing a window's size involves the following tasks:

Optionally Get Window and Screen Size Information
Before changing a window's size, you may want to make sure that changing its size won't
make it appear off screen. The following routines can be used with wsize:

• wgetcoords{3W)-gets information about the window's user unit. This information
includes the window's anchor point, current width and height, offset into the virtual
raster, and maximum width and height (as specified when the window was created).

• wgetbcoords{3W)-gets information about the window's border unit. Specifically,
it returns the x,y location of the upper-left corner of the window's border. It also
returns the width and height of the window's border.

• wgetscreen{3W)-returns the pixel width and height of the display screen.

76 Window Manipulation

Call wsize
Call wsize with the new width and height parameters; its syntax is:

wsize (fd, w,h)

The window's new width and height are given by the w,h parameters.

Precautions
Keep in mind that making a window larger may cause parts of it to be occluded by other
windows or the edge of the screen.

Example
The following program requires that a graphics window named grwin exist on the display
screen. To create this window (if it doesn't already exist), simply type:

wcreate -wgraphics -1400,100 -s100,150 -r800,150 grwin I Return I

The window is created at location 400,100; its initial size is 100 pixels wide by 150 pixels
high; its virtual raster is 800 pixels wide by 150 pixels high. If you want the following
program to work as stated, then do not move or manipulate the window created above.

On invoking the following program, the window will stretch to the right edge of the
display screen. This program is stored in the man_ examples directory and is named
stretch_gr. c.

#include <fcntl.h>
#include <window.h>
main()
{

int wmfd;
int screenw, screenh;
int bytepp, cmapent, sfkh;

int wfd;
char wt_path[WINNAMEMAX];
int bx, by, bw, bh;
int x,y, w,h, dX,dy, rW,rh;
int est_wm_com();
int term_wm_com();

/* system i/O call definitions */
/* window library definitions */

/* window manager file descriptor */
/* screen width and height */
/* bytesper pixel, color map entries,

and softkey height for the screen */
/* window file descriptor */
/* path name for window type */
/* dimensions of the border */
/* dimensions of the window */
/* routine to start wm communication */
/* routine to stop wm communication */

Window Manipulation 77

/*
* Start window manager communication.
*/

/*

if «wmfd = est_wm_com(» == -1)
{

}

perror(lIest_wm_com failed");
exit(l) ;

* Create a path name for the window.
*/

wmpathmake(IWMDIR". "grwin". wt_path);

* Open the window and initialize it.
*/

/*
* Get
*/

wfd = open(wt_path. O_RDWR);
if (wfd <0)
{

}

perror("open of window failed");
exit(l) ;

if (winit(wfd) < 0)
{

}

the

if

{

}

perror("winit of window failed");
exit(l);

screen size.

(wgetscreen(wmfd. &screenw. &screenh. &bytepp.
&cmapent. &sfkh) < 0)

perror("wgetscreen to wmfd failed");
exit(l);

78 Window Manipulation

1*
* Get the border size and the contents size of the window.
*1

if (wgetbcoords(wfd. &bx. &by. &bw. &bh) < 0)
{

}

perror("wgetbcoords of window failed");
exit (1) ;

if (wgetcoords(wfd. &x.&y. tw.&h. &dx.&dy. &rw.&rh) < 0)
{

}

perror("wgetcoords of window failed");
exit (1);

1*
* Compute the new size of the window so that the right edge of the border
* is flush with the right edge of the display screen and then change the
* size of the window.
*1

w += screenw - bx - bw;
if (wsize(wfd. w. h) < 0)
{

}

perror("wsize of window failed");
exit(l);

1*
* Close the window.
*1

if (close(wfd) < 0)
{

}

perror("close of window failed");
exit(l);

1*
* Stop window manager communication.
*1

}

Window Manipulation 79

Changing a TermO Window's Size
Like graphics windows, termO windows have a current size (pixel width and height)
attribute. The wsize{3W) routine-the same one used to change the size of graphics
windows-changes the window's size to the specified pixel width and height. However,
it works slightly differently with termO windows.

If you specify a new pixel width/height that doesn't fall on a character boundary, then the
window will be redrawn to the outermost edge of the character boundary. For example, if
you specified a width and height that sliced through the middle of column 15 and row 12,
then the window would actually be redrawn to touch the right edge of column 15 and the
bottom edge of row 12-i.e., slightly larger than the width and height that you specified.

You can see this phenomenon when you interactively change the size of a termO window.
Try to change the size of a termO window to the middle of some column in the window;
the window is always drawn to the right edge of the column.

Maximum Window Size
The maximum window size for a termO window depends on two factors:

1. The maximum number of columns and rows in the window. The scrncols and
scrnrows parameters to wcreate_ termO specify the maximum columns and rows
when the window is created.

2. The second factor is the size of fonts being used in the window's user (contents) area.
All fonts displayed in the window's user area at a given time have the same pixel
width and height. The current font size can be determined via the Jontsize_termO
routine.

With these two factors in mind, the maximum pixel width and height of a window are
computed as:

max_ width = scrncols x Jontsize_ width
max_height = scrnrows x Jontsize_height

80 Window Manipulation

Minimum Size
The window's minimum size depends on whether the window has a normal or thin border:

• With a normal border, the window has a minimum size determined by factors such
as the current border font size and the location of the interactive manipulation
areas (which must all remain visible).

• With a thin border, the minimum pixel width and height is that of the current font
size. That is, the window can be shrunk so that only one character is displayed in
the user area.

Attempting to set a window's size less than the minimum will cause the window to be
drawn to the minimum size; setting its size larger than the maximum will cause the
window to be redrawn to its maximum size.

Procedure
The following tasks should be done to change a window's size:

Calculate the New Pixel Width and Height
The first thing you must do is calculate the new pixel width and height of the window.
The wsize routine requires that width and height be specified in pixels. The formulas for
converting from columns and rows to pixel width and height are:

pixeLx = (col x currenL!onLwidth) - 1
pixeLy = (row x currenL!onLheight) - 1

Fortunately, there is a routine you call.. use instead of calculating these values every time
you want to change a window's size. The toxy_termO{3W) routine converts column and
row coordinates to x,y coordinates. Note that the returned coordinates are the zero-based
coordinates of the upper-left corner of the character positioned at column,row.

Optionally Determine Window and Screen Size Information
Before changing a window's size, you may want to make sure that changing its size won't
make it appear off screen. You may also want to ensure that you don't make the window
larger than its maximum size. The following routines can be used with wsize:

• wgetcoords{3W)-gets the window's location and current size in pixel units.

• wgetbcoords{3W)-gets information about the window's border unit. Specifically,
it returns the x,y location of the upper-left corner of the window's border. It also
returns the width and height of the window's border.

Window Manipulation 81

• wgetscreen{3W)-returns the pixel width and height (in pixels) of the display
screen.

Call wsize
Call wsize with the new width and height parameters; its syntax is:

wsize (fd, w,h)

The window's new width and height are given by the w, h parameters.

Precautions
Keep in mind that making a window larger may cause parts of it to be occluded by other
windows or the edge of the screen.

Example
The following program requires that a termO window name tOwin exist on the display
screen. To create this window (if it doesn't already exist), simply type:

wsh tOwin I Return I

The initial width and height of the window is 80 columns by 24 rows. The following
program will shrink the window to one fourth its original size (40 columns by 12 rows)
and will move the window to be flush with the lower-right corner of the display screen.
The program is stored in the man_ examples directory and is named shrink_ to. c.

#include <fcntl.h>
#include <window.h>
main 0
{

int wmfd;
int screenw, screenh;
int bytepp, cmapent, sfkh;

int wfd;
char wt_path[WINNAMEMAX];
int bx, by, bw, bh;
int x,y, w,h, dX,dy, rW,rh;
int est_wm_com();
int term_wm_com();

82 Window Manipulation

1* system i/O call definitions */
1* window library definitions */

1* window manager file descriptor */
1* screen width and height */
/* bytesper pixel, color map entries,

and softkey height for the screen */
1* window file descriptor */
1* path name for window type *1
1* dimensions of the border */
1* dimensions of the window */
1* routine to start wm communication *1
1* routine to stop wm communication */

/*
* Start window manager communication.
*/

/*

if «wmfd = est_wm_com(» == -1)
{

}

perror(IIest_wm_com failed");
exit(1);

* Create a path name for the window.
*/

wmpathmake("WMDIR", "tOwin", wt_path);

* Open the window and initialize it.
*/

/*

wfd = open (wt_path, O_RDWR);
if (wfd <0)
{

}

perror("open of window failed");
exit(1);

if (winit(wfd) < 0)
{

}

perror("winit of window failed");
exit(1);

* Shrink the window to one fourth of its size.
*/

if (toxy_termO(wfd, tw, &h, 40, 12) < 0)
{

}

perror("toxy_termO to wfd failed");
exit(1);

if (wsize(wfd, w, h) < 0)
{

}

perror("wsize of window failed");
exit(1);

Window Manipulation 83

/*
* Get the screen size.
*/

if (wgetscreen(wmfd. &screenw. &screenh. &bytepp.
&cmapent. &sfkh) < 0)

{

}

perror(lIwgetscreen to wmfd failed") ;
exit(l);

/*
* Get the border size and the contents size of the window.
*/

if (wgetbcoords(wfd. &bx. &by. &bw. &bh) < 0)
{

}

perror("wgetbcoords of window failed") ;
exit (1) ;

if (wgetcoords(wfd. &x.&y. &w.&h. &dx.&dy. &rw.&rh) < 0)
{

}

perror("wgetcoords of window failed");
exit(l);

/*
* Compute the new position of the window so that it is flush with the lower
* right hand corner of the display screen.
*/

x += screenw - bx - bw;
y += screenh - by - bh;
if (wmove(wfd. x. y) < 0)
{

}

perror("wmove of window failed");
exit(l);

/*
* Close the window.
*/

if (close(wfd) < 0)
{

}

perror("close of window failed");
exit(l);

/*

}

* Stop window manager communication.
*/

84 Window Manipulation

Changing a Window's Border
By calling the wbanner{3W) routine, a program can change a window's border type to
normal, thin, or null, depending on the window's type. Table 4-1 describes the valid
border types.

Table 4-1. Window Border Types

Border Type Description

Normal Window label and interactive areas present in
the window's border; border is "thick".

Thin No label or manipulation areas are present;
border is a thin line surrounding the window's
contents area; user can get a pop-up menu by
clicking the locator on the thin border.

Null No border exists whatsoever; the user cannot
click on the border to get a system menu
because there is no border.

Procedure
To change a window's border, call the wbanner routine; its syntax is:

wbanner (fd, value)

For termO and graphics windows: If value is SETBANNER, then the window's border is
changed to a normal border; if value is SETNOBANNER, the window's border is changed to
a thin border; if value is SETNULLBANNER, then the window's border is removed.

If value is GETBANNER, then wbanner returns the window's current border type: that is,
SETBANNER for a normal border, SETNOBANNER for a thin border, and SETNULLBANNER if the
window has no border.

Window Manipulation 85

Example
The following function determines a window's border representation. If the window has
a normal border, the routine changes it to a thin border; if the window has no border or
if the window's border is thin, the routine changes the border to normal.

For example, if this routine is called on a graphics window with no border, its border
will then be changed to normal. The source is stored in the man_ examples directory and
is named wbanner _sub. c.

#include <window.h>
wbanner_sub(wfd)
int wfd;

/* window library definitions */

/* window's file descriptor */
{

int border_state; /* current border state variable */

/*
* TOGGLE A WINDOW'S BANNER STATE:

* * return -1 if an error occurs
* return resulting border state. if successful

* * Check the current state:
*/

if «border_state = wbanner(wfd. GETBANNER» < 0) return(-l);

/*

}

* Toggle the state:
*/

if (border_state == SETBANNER)
{

}

else
{

}

if (wbanner(wfd. SETNOBANNER) < 0)
return(-l);

else
return(SETNOBANNER);

if (wbanner(wfd. SETBANNER) < 0)
return(-l);

else
return(SETBANNER);

86 Window Manipulation

Changing a Window's Label
A window's label is displayed in the window border area, the title of the pop-up menu,
the title for the softkey labels, and the label in the icon for the window. By default, a
window's label is identical to its name (Le., the base name of its full path name), specified
when the window is created. The wsetlabel{3 W) routine changes the label to a string
other than the window's name.

The maximum number of bytes allowed in a window's label depends on the window's
type. A termO window's label can contain LABELMAX bytes (defined in w£ndow.h). A
graphics window's label can contain 128 bytes. The final byte in a window's label must
be a '\0' (terminating NULL).

Procedure
To set a window's label, call wsetlabel; its syntax is:

wsetlabel (fd, label)

The label parameter points to a null-terminated string containing the new label to use.

Example
This sample program requires that a graphics window named grw£n exist. To create the
window, simply type:

wcreate -wgraphics grwinlReturn!

Executing the following program will change the window's label from the default grwin
to »NEWLABEL«, wait five seconds, and change its label back to grwin. The program is
found in the man_examples directory and is named setlabeLgr.c.

#include <fcntl.h>
#include <window.h>
main()
{

int wfd;
char wt_path[WINNAMEMAX] ;

/* system i/O call definitions */
/* window library definitions */

/* window file descriptor */
/* path name for window type */

Window Manipulation 87

1*
* Open the window and initialize it.
*1

1*

wmpathmake("WMDIR". "grwin". wt_path);
wfd = open(wt_path. O_RDWR);
if (wfd <0) {

}

perror("open of window failed");
exit(1);

if (winit(wfd) < 0) {

}

perror("winit of window failed") ;
exit(1);

* Change the window's label and wait 5 seconds.
*1

1*

if (wsetlabel(wfd. II »NEWLABEL«II) < 0) {
perror("wsetlabel of window failed") ;
exit (1);

}
sleep(5) ;

* Change the window's label back.
*1

1*

if (wsetlabel(wfd. "grwin") < 0) {
perror("wsetlabel of window failed");
exit (1);

}

* Close the window.
*1

}

if (close(wfd) < 0) {

}

perror("close of window failed");
exit(1);

88 Window Manipulation

Setting a Window's Border Colors
Each window has foreground and background colors for its border. By default when a
window is created, its foreground border color is black, and its background border color
is white (0 is black and 1 is white). (These default values are defined by the window
system environment variables WMBDRFGCLR and WMBDRBGCLR.)

Table 4-2 defines the default Starbase color map entries.

Table 4-2. Default Starbase Color Map Entries

Color Index Default Starbase Color

0 Black

1 White

2 Red

3 Yellow

4 Green

5 Cyan

6 Blue

7 Magenta

Procedure
Determining Border Colors
The wgetbcolor{3W) routine returns the current foreground and background colors for a
window's border; its syntax is:

wgetbcolor (fd, fgbanner, bgbanner)

The fgbanner and bgbanner parameters are pointers to integers that will contain the
current border foreground and background colors, respectively.

Setting Border Colors
The wsetbcolor routine sets the foreground and background colors for a window's border;
its syntax is:

wsetbcolor (fd, fgbanner, bgbanner)

The fgbanner and bgbanner parameters are indices into the system color map that specify
the new border foreground and background colors to use.

Window Manipulation 89

Example
The following program swaps the border foreground and background colors for any spec­
ified window. To use this program, you would type:

invert_bc wname I Return I

Wname is the name of the window whose border is to be inverted. The above syntax:
assumes that you have compiled the following source program (named inverLbe.e) and
have named it inverL be. The program is found in the man_ examples directory.

#include <fcntl.h>
#include <window.h>
main(argc. argv)
int argc;
char *argv[];
{

/*

int wfd;
char *wt_name;
char wt_path[WINNAMEMAX] ;
int fg_color. bg_color;

/* system i/O call definitions */
/* window library definitions */

/* number of arguments */
/* array of arguments */

/* window file descriptor */
/* name of window */
/* path name for window type */
/* border colors */

* INVERT THE BORDER COLORS OF A WINDOW

*
* First. check for a window name argument.
*/

if (argc < 2)
{

}

printf(IIusage: invert_be window_name\n");
exit (1) ;

90 Window Manipulation

1*
* Create a path name for the window.
*1

wmpathmake(IWMDIR". wt_name. wt_path);

* Open the window and initialize it.
*1

wfd = open (wt_path. O_RDWR);
if (wfd <0)
{

}

perror(" open of window failed");
exit (1) ;

if (winit(wfd) < 0)
{

}

perror("winit of window failed");
exit (1) ;

1*
* Inquire the border foreground and background colors of the window.
*1

if (wgetbcolor(wfd. &fg_color. &bg_color) < 0)
{

}

perror("wgetbcolor of window failed");
exit(1);

1*
* Swap the foreground and background colors of the border.
*1

if (wsetbcolor(wfd. bg_color. fg_color) < 0)
{

}

perror("wsetbcolor of window failed");
exit(1);

1*

}

* Close the window.
*1

if (close(wfd) < 0)
{

}

perror("close of window failed");
exit(1);

Window Manipulation 91

Pausing and Resuming Output to a TermO Window
Output to a termO window can be halted and restarted by the wpauseoutput(3Wj routine.
On termO windows, pausing output via this routine is equivalent to typing an XOFF char­
acter on an HP 2622 terminal; resuming output is equivalent to typing an XON character.

Note that pausing a window's output does not halt the process that is creating the
output. The output is simply "frozen." However, if a window is paused long enough,
the window's buffers will become full and the writing process will be forced to wait until
window output is resumed.

Procedure
To pause output to a termO window, call wpauseoutput; its syntax is:

wpauseoutput (fd, value)

If value is SETPAUSE, then the window will be paused; if value is GETPAUSE, then a value
of SETPAUSE will be returned if the window is currently paused, otherwise SETNOPAUSE is
returned.

Example
The following function determines whether output to a window is paused or resumed
and toggles the window to the opposite state. For example, if this function is called on
a window that is paused, output to the window will resume. The source is stored in the
man_examples directory and is named pause_resume.c.

#include <window.h>
pause_resume (wfd)
int wfd;
{

int pause_state;

92 Window Manipulation

1* window library definitions *1

1* window's file descriptor *1

1* current pause state variable *1

/*
* TOGGLE A TERMO WINDOW'S OUTPUT PAUSE STATE:

* * return -1 if an error occurs
* return resulting pause state. if successful

* * Check the current state:
*/

if «pause_state = wpauseoutput(wfd. GETPAUSE» < 0) return(-1);

/*

}

* Toggle the state:
*/

if (pause_state == SETPAUSE)
{

}

else
{

}

if (wpauseoutput(wfd. SETNOPAUSE) < 0)
return(-1) ;

else
return (SETNOPAUSE) ;

if (wpauseoutput(wfd. SETPAUSE) < 0)
return(-1);

else
return(SETPAUSE);

Window Manipulation 93

Panning a Graphics Window
In graphics terminology, panning changes the view into a graphics window's virtual raster.
When the window's size is smaller than the raster, panning a window can be thought
of as moving the window over the raster to a specific position in the raster. It has the
effect of looking as though the raster moves under the window while the window remains
motionless on the display. The wpan(3W) routine is used to pan graphics windows.

Window panning is limited by both the current pan position within the virtual raster
and the size of the raster. Attempting to pan outside the virtual raster will do nothing.

Note

TermO windows cannot be panned. Attempting to use wpan with
termO windows will cause an error. Note, however, that termO
escape sequences for "rolling" window contents can be used instead.
For details, see the "TermO Windows" chapter in this manual, and
the TermO Reference Manual.

Procedure
To pan a graphics window, call the wpan routine; its syntax is:

wpan(fd, x,y)

The x,y parameters specify the offset (panning position) into the virtual raster. The
upper-left corner of the virtual raster has coordinates 0,0; the lower-right corner has
coordinates one less than those specified by the rasterw and rasterh parameters used
when the window was created via wcreate_graphics(3W).

94 Window Manipulation

Example
The following function pans any graphics window to be flush with the lower-right corner
of its virtual raster. The source is found in the man_examples directory and is named
pan_gr.c.

#include <window.h>
pan_gr(wfd)

/* window system definitions */

int wfd; /* file descriptor for a window */
{

int x.y. w.h. dx.dy. rw.rh; /* dimensions of the window */

/*
* PAN A GRAPHICS WINDOW TO BE FLUSH WITH THE LOWER-RIGHT CORNER OF ITS
* VIRTUAL RASTER

* * Inquire the size of the window and raster:
*/

if (wgetcoords(wfd. &x.&y. &w.&h. &dx.&dy. &rw.&rh) < D)
{

}

. perror("wgetcoords of window failed II);
exit (1) ;

/*

}

* Compute the new offset into the raster so that the window is flush with
* the lower-right corner of the virtual raster and call wpan.
*/

dx = rw - w;
dy = rh - h;
if (wpan(wfd. dx. dy) < D)
{

}

perror("wpan of window failed");
exit (1) ;

returneD);

Window Manipulation 95

Setting Autodestroy Status
The wrecover(3W} and wautodestroy(3W} routines control whether a window is auto­
matically destroyed when all processes that have opened the window stop executing.

Procedure
The use of the wrecover and wautodestroy routines is discussed here.

The wrecover(3W) Routine
The wrecover routine controls whether a window is automatically destroyed; its syntax
is:

wrecover (fd, value)

The fd parameter is the file descriptor returned from starting communication with the
window. The value parameter controls the window's recover state.

If value is SETNORECOVER, then windows are not automatically deleted from the system;
they must explicitly be removed using the wdestroy(l} command, the wdestroy(3W}
window management routine, or the Destroy option of the pop-up menu.

If value is SETRECOVER, then windows are automatically destroyed after all process are
disassociated with the window. The exact time at which the window is destroyed is
determined by the wautodestroy routine, described next.

If value is GETRECOVER, then the current recover state is returned.

The wautodestroy(3W) Routine
The wautodestroy routine works only when the recover state is set to SETRECOVER. When
a window has been set to SETRECOVER, the wautodestroy routine will control when the
window is automatically removed from the system. The syntax for this routine is:

wautodestroy (fd, value)

If value is SETAUTODESTROY, then the window is destroyed immediately when all processes
have closed the window's device interface.

If value is SETNOAUTODESTROY, then the window is destroyed when all processes have closed
the window's device interface followed by a new window being created.

If value is GETAUTODESTROY, then the current auto-destroy status is returned.

96 Window Manipulation

Icons 5
By calling icon routines, a window program can:

• change a window's iconic state

• move an icon

• customize icons.

Icons 97

Concepts
This section explains concepts you should understand before using icon routines.

At any time, a window is in one of three states: concealed, normal, or iconic. When in
an iconic state, a window is represented by a graphic picture known as an icon.

An icon can be thought of as the shrunken form of a window. However, it has no user
(contents) area. Instead, it is comprised of two components: the top portion is known as
the picture, the bottom part is the label. Figure 5-1 defines the layout of an icon.

} Picture

} Label

Figure 5-1. Icon Format.

Normally when a window is changed to an icon, both parts-picture and label-are
displayed. By using icon routines, a program can suppress either the picture or label.
(For details, see "Customizing Icons.")

Additionally, two interactive manipulation symbols appear within the label area:

I ~ I moves the icon

00 returns the window to normal representation

See the section "Moving an Icon" for details on moving icons. For information on chang­
ing a window to an icon and vice versa, see the section "Changing a Window's Iconic
State"

TermO and graphics windows use default, predefined pictures when an icon is displayed.
However, you can create your own iconic pictures. These pictures are stored in files and
can be recalled to replace the default icon picture for any termO or graphics window.
See "Customizing Icons" for details on creating user-defined pictures for icons. ,ind
picture, icon default

98 Icons

Changing a Window's Iconic State
The wiconic(3W) routine changes a window's iconic state. It performs three different
functions:

• change a window to an icon

• change an icon to a window

• return the window's iconic state.

Procedure
To change a window to an icon, or vice versa, call wiconic with the appropriate param­
eters; its syntax is:

wiconic (fd, value)

The fd parameter is the file descriptor of the window type device interface for the window
whose iconic state you wish to change.

The value parameter determines the action taken by wiconic:

value action of wiconic

SETICONIC The window is changed to iconic representation.

SETNOICONIC The window is changed to normal representation.

GETICONIC Return the window's iconic state (SETNOICONIC = normal;
SETICONIC = iconic).

When a window is changed to an icon, the icon appears at the position specified by its
icon location attribute; likewise, changing an icon to a window causes the window to
appear at the screen coordinates specified by the window location attribute.

By default when a window is changed to an icon, the icon is placed at the left edge of
the screen. Each new icon is placed above the previous one, starting from the bottom
of the screen. Therefore, when changing a window to an icon, if you want the icon to
appear at some position other than the default, you must change the icon's location
before changing it to an icon. (Moving icons is covered in the section "Moving an Icon.")

Icons 99

Similarly, if you want to use a custom picture with an icon instead of the default, cus­
tomize the icon before changing the window to an icon. This way, only your custom
picture will appear when the window is changed to an icon-the default icon won't.
(This is covered in the section "Customizing Icons.")

Example
The following function, named toggle_ icon. c, checks the iconic state of a specified window.
It then toggles the window to the opposite state. Because the routine requires the file
descriptor of the window's device interface, communication with the window should be
started before calling this routine.

#include <window.h> 1* window library definitions *1
toggle_icon (wfd)
int wfd; /* window's file descriptor *1
{

int iconic_state; /* current iconic state variable

1*
* TOGGLE A WINDOW'S ICONIC STATE:

* * return -1 if an error occurs
* return resulting iconic state. if successful

* * Check the current state:
*1

*/

if «iconic_state = wiconic(wfd. GETICONIC» < 0) return(-l);

1*
* Toggle the state:
*1

}

if (iconic_state == SETICONIC)
{

}

else
{

}

if (wiconic(wfd. SETNOICONIC) < 0)
return(-l);

else
return(SETNOICONIC);

if (wiconic(wfd. SETICONIC) < 0)
return(-l);

else
return(SETICONIC);

100 Icons

Moving an Icon
An icon's location attribute determines (in X,y pixel coordinates) the position on the
screen of the upper-left corner of the icon's picture rectangle. Location 0,0 is the origin­
i.e., the upper-leftmost pixel on the screen. X coordinates increase to the right; y coor­
dinates increase downward. The wseticonpos(3W) routine changes an icon's location.

Procedure
Compute New Icon Location
First, compute the new icon coordinates. The new coordinates can be either absolute,
relative, or default:

• To compute absolute coordinates, simply determine the exact x, y coordinates at
which you want the icon to appear. Supplying negative coordinates or coordinates
greater than the screen size has the same effect as when moving a window. The
wgetscreen(3W) routine returns information about the size of the screen. (See
"Moving a Window" of Chapter 4, "Window Manipulation.")

• To compute coordinates relative to an existing icon, use the wgeticonpos(3W) rou­
tine, which returns the location of an icon. Then compute the relative coordinates
as offsets of those returned by wgeticonpos.

• The wd/ltpos(3W) routine returns default icon coordinates. These are the default
coordinates used when a window is changed to an icon. These coordinates start at
the lower-left corner of the display and move upward as more windows are changed
to icons.

Call wseticonpos
Call wseticonpos with the coordinates computed above; its syntax is:

wseticonpos (/d, x,y)

The X,y parameters specify the location at which the icon will be displayed when the
window is in an iconic state.

Icons 101

Example
The following code segment gets an icon's location and moves the icon 30 pixels to the
right and 40 pixels down from its previous position.

{
int wfd;
int ix, iy;

/* window file descriptor */
/* icon's x,y location */

/*
* Get icon's current location:
*/

/*

if (wgeticonpos(wfd, &ix, &iy) < 0)
{

}

perror("wgeticonpos wfd");
exit(l);

* Set new location relative to previous:
*/

ix = ix + 30;
iy = iy + 40;

* Set new icon location:
*/

if (wseticonpos(wfd, ix, iy) < 0)
{

}

102 Icons

perror("wseticonpos wfd");
exit (1) ;

Customizing Icons
HP Windows/9000 provides you with the capability to define your own custom icons.
You can suppress the display of the icon's label area, its picture, or both. In addition,
custom pictures can be defined and stored in icon files. These files can then be recalled
as necessary to replace the standard icon for a particular window. The wseticon{3W)
routine provides these capabilities.

Procedure
To customize an icon for a given window, call wseticon; its syntax is:

wseticon(/d, imode, lmode, icon/ile)

Brief descriptions of each parameter follow:

• /d-the file descriptor for the window's device interface

• imode-controls the icon's picture:

• if imode=IMODE_NONE, then the picture will not be displayed with the icon;

• there are default termO and graphics pictures for termO and graphics windows,
respectively; if imode=IMODE_ TYPE, then the window's type-dependent picture
is displayed with its icon;

• if imode=IMODE_FILE, then a user-defined icon picture will be used in place of
the default, type-dependent picture.

• lmode-controls the icon's label:

• if lmode=LMODE_NONE, then do not display the icon's label;

• if lmode=LMODE_DISP, then do display the icon's label.

• icon/ile-is a pointer to the full path name of a file containing a custom icon defi­
nition.

Note that unless imode=IMODE_FILE, this parameter should be null, because it
doesn't make sense to specify an icon file unless you want to use a custom icon
picture. If imode is not set to IMODE_FILE, then the icon/ile parameter is ignored.

Icons 103

Controlling the Display of Picture/Label
Controlling the display of the icon's picture and/or label is easy once you know what
values to use for the imode and lmode parameters. Table 5-1 shows the result of using
each possible combination of imode and lmode.

Table 5-1. imode and lmode combinations

imode lmode What Is Displayed

IMODE_NONE LMODE_NONE NOT ALLOWEDl.

IMODE_NONE LMODE_DISP Only the label.

IMODE_TYPE LMODE_NONE Type-dependent picture only.

IMODE_TYPE LMODE_DISP Standard icon.

IMODE_FILE LMODE_NONE Only the customized picture.

IMODE_FILE LMODE_DISP Custom picture with label.

Defining and Using a Non-Standard Picture
As mentioned above, you can design your own icon pictures to be used in place of the
type-dependent pictures used by default. Each custom picture is stored in its own file;
the file consists of one variable-length record; and the record structure is of the type
iconstruct, defined in lusr lincludel/onticon.h.

Before going into detail on the format of this file, a discussion of picture size, masks, and
images is required.

When the window system displays an icon, the picture is drawn from three entities:
picture size, mask, and image. The picture size is simply the pixel width and height of
the rectangle in which the picture is drawn; the mask defines the shape of the picture;
and the image defines the colors to be used within the shape outlined by the mask.

The following analogy helps in understanding picture size, mask, and image: Suppose
you are an artist, and you're commissioned to draw a picture of a computer terminal.
The picture is to be drawn on a polka-dotted piece of paper that matches the person's
desk top. The paper is 50 centimeters wide by 30 centimeters high---this is the picture
size.

1 This combination of parameters is not allowed; to conceal an icon, you should use the wconceal(3W)
routine.

104 Icons

After obtaining the paper, your first task is to define the terminal's shape-this is the
mask.

Finally, you fill in the mask with the appropriate lines and colors to make it look like a
terminal-this is the image. (Note that the person commissioning the drawing is rather
eccentric and doesn't want the polka dots outside the image to be covered by the picture.
The window system is the same, any area of the icon's picture not defined by the mask
is displayed in the desk top pattern.) Figure 5-2 illustrates this process.

Background

:::=::::;:::::::::::::::::::::::::;:::::::::::::::::::::::: .:.

~~rrrfffrfffrt~tJ

iii!!
fffIttf~ttttttt: ..

Mask Image

Result
...

j~rr~_:·:·:·:::::\j~r

~~~~~I~~)jlliill :~I~I: 
Iff .It~t 
:::: .. :::::::::::::::: 
::::::::::.:.:.:......... ..::::::::::::::::::: ......................................................... 

Figure 5-2. Creating a Picture from Mask and Image. 

Defining an icon's picture is similar to drawing a picture as described above. The only 
difference is that you define the picture size, mask, and image in a record structure in a 
data file, called an icon file. Table 5-1 provides a detailed discussion of each field of the 
iconstruct structure defined in fonticon.h. 

Icons 105 



Item 

magic 

header_length 

filetype 

width 

height 

mbytes 

ibytes 

idepth 

hot x and hot y 

unused 

106 Icons 

Table 5-2. The iconstruct structure. 

Description Range 

This number flags the file as being an icon FMAGICNUM 
file. By default, this value should be set to 
FMAGICNUM, as defined in fonticon.h. 

Defines the offset to the mask and image ar- sizeof (struct 
rays from the start of the file. This field was iconstruct) 
included only to allow upward compatibil-
ity of HP Windows/9000 if more fields are 
added to the structure in later versions. It 
should always be set to the size of the struc-
ture. (The C-language compile-time opera-
tor sizeof gives the size in bytes of any data 
structure) . 

Defines whether the file is for a font 2 
(filetype=O), sprite (filetype=l), or icon 
(filetype=2). 

Image width in pixels. 

Image height in pixels. 

Number of bytes in the pixel mask array that 
immediately follows this structure. 

N umber of bytes in the image array that fol­
lows the pixel mask array. 

Number of bytes per pixel in the image. If 
you only wish to design a black-and-white 
picture, then this value should be zero: a 
zero value specifies that each bit in the image 
corresponds to a specific pixel in the picture. 
However, if you wish to design color pictures, 
then you need one or more bytes for each 
pixel on the screen. Each byte will hold the 
color for a corresponding pixel in the picture. 

These fields are used with sprites only. 

Not currently used by the system. 

1 to 127 

1 to 127 

1 (for a one-pixel picture) 
to 
2032 (for a 127-by-127-pixel 
picture) 

ibytes 2: 1 

o => one bit per pixel 
1 => one byte per pixel 
2 => two bytes per pixel 

set to a for future expansion 

nothing 



The Pixel Mask Array 
The pixel mask array, mask[mbytes], immediately follows the iconstruct record in the 
picture file. Each bit in the mask can correspond to a pixel in the picture. 

Note that each row of pixels is masked, starting at a byte boundary; in addition, masking 
proceeds left to right through the bits of each mask byte. For example, if you designed a 
picture with 14 bits per row and 10 rows, the pixel mask would consist of 20 bytes: ten 
rows at two bytes per row; the most-significant bit of the first byte of each row maps to 
the leftmost bit of the corresponding row; and the two least-significant bits of the second 
byte of each row are ignored because only 14 bits are needed for each row. (The example 
below should help clarify this.) 

The Image Array 
The image array, image [ibytes], immediately follows the pixel mask array in the picture 
file. Depending on the value of the idepth parameter, each bit, byte, or group of bytes, 
corresponds to a bit in the pixel mask array. If the bit in the pixel mask is set, then the 
value in the image array is used to plot the corresponding pixel on the screen; otherwise 
the background is drawn as the desk top dither pattern. 

Remember that if idepth=O, then there is a one-to-one relation between the bits in the 
mask and image arrays. If idepth=l, there is a byte-to-bit relation between the image and 
mask arrays; that is, the first byte in the image array corresponds to the most-significant 
bi t in the first byte of the mask array. 

Example 
The following example program, build_icon.c, defines an icon that is simply a square with 
a white line through its border; the middle of the square is not masked, so the dither 
pattern can be seen through it if the icon is displayed. 

#include <stdio.h> 
#include <fonticon.h> 
mainO 
{ 

int icon_file; 

1* standard 1/0 definitions *1 
1* icon definitions *1 

1* file descriptor for the icon file 

struct iconstruct square_icon; 1* icon structure to be defined *1 

Icons 107 



/* 
* Define the mask for the icon: 
*/ 

static unsigned char mask[32*32/8] = { 
255,255,255,255, 255,255,255,255, 255,255,255,255, 255,255,255,255, 
255,255,255,255, 248,0,0,31, 248,0,0,31, 248,0,0,31, 
248,0,0,31, 248,0,0,31, 248,0,0,31, 248,0,0,31, 
248,0,0,31, 248,0,0,31, 248,0,0,31, 248,0,0,31, 
248,0,0,31, 248,0,0,31, 248,0,0,31, 248,0,0,31, 
248,0,0,31, 248,0,0,31, 248,0,0,31, 248,0,0,31, 
248,0,0,31, 248,0,0,31, 248,0,0,31, 255,255,255,255, 
255,255,255,255, 255,255,255,255, 255,255,255,255, 255,255,255,255 }; 

108 Icons 



static unsigned char image[32*32] = { 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
O,O,l,O,O,O,O,O,O,O,O,O,O,O,O~O,O,O,O,O,O,O,O,O,O,O,O,0,0,1,0,0, 

0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; 

Icons 109 



/* 
* DEFINE AN ICON CONSISTING OF A SQUARE WITH A WHITE LINE THROUGH ITS 
* BORDER; THE MIDDLE OF THE SQUARE IS NOT MASKED, SO THE BACKGROUND 
* WILL SHOW THROUGH WHEN THE ICON IS DISPLAYED. 

* * Initialize the icon structure variables: 
* magic is FMAGICNUM as defined in fonticon.h. 
* The length of the header is sizeof(iconstruct). 
* The file version number is 1. 
* The file type is icon (2). 
* The icon size is 32 pixels wide by 32 pixels high. 

square_icon.magic = FMAGICNUM; 
square_icon.header_length = sizeof(square_icon); 
square_icon. version = 1; 
square_icon.filetype = 2; 
square_icon. width = 32; 
square_icon.height = 32; 

/* 
* Initialize the image and mask specific variables of the icon structure: 
* The number of bytes in the mask are 128. 
* The number of bytes in the image is 1024. 
* The image contains one byte per pixel. 

square_icon.mbytes = square_icon. width * square_icon.height / 8; 
square_icon.ibytes = square_icon. width * square_icon.height; 
square_icon.idepth = 1; 

/* 

} 

* Create and open a file to hold the icon definition, and then 
* write the iconstruct, mask, and image to the file. 
*/ 

if «icon_file = 
creat(l/tmp/squareicon",0600» < 0) 

{ 

} 

perror("cerat of square_icon failed"); 
exit (1) ; 

write(icon_file, &square_icon, sizeof(square_icon»: 
write(icon_file, mask, square_icon.mbytes); 
write (icon_file , image, square_icon.ibytes): 
close(icon_file); 

110 Icons 



The next program, named replace_icon.c, replaces the icon for any window, specified 
on the command line, with the icon created above; in addition, the icon's label is not 
displayed. 

#include <fcntl.h> /* system I/O call definitions 
#include <window.h> /* window library definitions 
main(argc. argv) 
int argc; /* number of arguments on command line 
char *argv[]; /* command line argument list 
{ 

int wmfd; /* window manager file descriptor 
int wfd; /* window type file descriptor 
char wt_path[WINNAMEMAX] ; /* path name for window type 
int est_wm_comO; /* routine to start wm communication */ 
int term_wm_comO; /* routine to stop wm communication */ 

/* 
* START WINDOW MANAGER COMMUNICATION: 
*/ 

/* 

if ((wmfd = est_wm_com(» == -1) { 
perror(ltest_wm_com"); 
exit (1) ; 

} 

* REPLACE THE WINDOW'S CURRENT ICON WITH THE SQUARE ICON. 

* 
* STEP 1: Build the path name of the window: 
*/ 

wmpathmake(ItWMDIRIt. argv[l]. wt_path); 

/* 
* STEP 2: Open the window and call winit: 
*/ 

if ((wfd = open(wt_path. O_RDWR» < 0) { 
perror(lt open wfd lt ); 
exit(l) ; 

} 

if (winit(wfd) < 0) { 
perror(ltwinit wfd lt ); 
exit (1) ; 

} 

*/ 
*/ 

*/ 
*/ 

*/ 
*/ 
*/ 

Icons 111 



/* 
* STEP 3: Set up the new icon and don't display the label: 
*/ 

if (wseticon(wfd. IMODE_FILE. LMODE_NONE. 
"/tmp/squareicon") < 0) { 

perror("wseticon wfd"); 
exit(l); 

} 

/* 
* STEP 4: Stop communication with the window: 
*/ 

if (wterminate(wfd) < 0) { 

} 

perror("wterminate wfd"); 
exit(l); 

if (close(wfd) < 0) { 
perror("close wfd"); 
exit (1) ; 

} 

/* 

} 

* STOP WINDOW MANAGER COMMUNICATIONS: 
*/ 

if (term_wm_com(wmfd) == -1) { 
perror(lIterm_wm_com wmfd"); 
exit(l) ; 

} 

exit(O) ; 

112 Icons 



Event Detection 6 
Using HP-UX signal capabilities, a process can be signalled (interrupted) when window 
system events occur. Moving a window, changing a window's size, and moving the pointer 
over a particular area of a window are examples of events. On receiving a signal, a process 
can execute event detection routines to determine what event caused the signal. 

This chapter contains many complex concepts, some of which you may already under­
stand, depending on your level of Windows/9000 or HP-UX expertise. The following 
table briefly describes the three sections in this chapter and how you should read them. 

Section Contents How to Read 

HP -UX Signals An overview of HP-UX signals. De- Read this section thoroughly if you 
scribes what signals are and how to know nothing about signals. If you 
use them in programs. already know how to use signals, 

then you should at least skim this 
section. 

Events An overview of events. Describes Read the introduction to this section 
what events are and lists all the thoroughly so you can understand 
events currently supported. basically what events are. Then skim 

the list of events just to get a feel for 
the kind of events you can detect. 

Event Detection Describes how to detect events from Read this section thoroughly since it 
your programs using event detection contains the most important infor-
routines. This is the main informa- mation in the chapter. As you read 
tion you will need to write programs this section, you may find it helpful 
that interact with users through the to refer back to the "HP-UX Signals" 
locator devices. and "Events" sections. 

Event Detection 113 



HP-UX Signals 
A signal is an interrupt sent to a process. For example, if a program is set up properly, 
it can be signalled (interrupted) when the I Break I key is _pressed on the keyboard. 

On receiving a signal, a process can do one of three things: 

• Do a default action, depending on the signal. For example, if the I Break I key is 
pressed, terminate the process. 

• Ignore the signal, as if it never occurred. For example, if the I Break I key is pressed, 
continue executing as if the I Break I key was never pressed. 

• Call a signal handler, a routine that determines what caused the signal and does 
an appropriate action. For example, if the I Break I key is pressed, the process is 
interrupted from whatever it was doing and calls the signal hander; the signal 
handler then asks the user whether he or she really wants to exit the program. 

The signal(2) System Call 
The signal{2} system call allows the calling process to choose which way-default, ignore, 
or signal handler-to react to the receipt of a specific signal. The signal system call has 
the following syntax: 

signal (sig, fune) 

The sig parameter is an integer code specifying the signal the process may re­
cieve. (Valid signals are defined on the signal{2) HP-UX Reference page and in the 
lusr lincludelsyslsignal.h header file.) 

The June parameter specifies the action the process should take on receiving the signal. 
Func should be assigned one of three values: SIG_DFL, SIG_IGN, or the address of a signal 
handler. 

If the signal call is unsuccessful, a negative value is returned. 

114 Event Detection 



SIG_DFL 
If June is set to SIG_DFL, then the signal will cause the process to take the default action 
as defined in the signal{2} page of the HP-UX ReJerence. For example, if a program calls 
signal as 

signal (SIGINT, SIG_DFL) 

then the program will terminate if the process receives the SIGINT signal (usually caused 
by the user pressing the I Break I key). 

SIG_IGN 
If June is set to SIG_IGN, the signal will be ignored by the process. For example, if a 
program calls signal as 

signal (SIGINT , SIG_IGN) 

then the program will not terminate as usual if it receives the SIGINT signal. Instead, 
it will continue executing as if nothing happened. 

Signal Handler 
Finally, the June parameter can be set to the address of a signal handler. On receiving 
the signal, the receiving process is to execute the signal-handling routine pointed to by 
June. 

To pass the address of a signal handler, simply use the name of the signal handler as the 
June parameter. For example, 

signal (SIGINT, catch_break) 

will cause the calling process to execute the user-defined routine catch_break if the process 
receives the SIGINT signal. 

Event Detection 115 



Example Signal Handler 
The following program sets up a signal handler named catch_sigint for the 81G1NT 
signal (lines 8 -11 ). The 81 G 1NT signal is defined in the signal. h header file (line 1). 
The signal system call returns negative one (-1) if it fails, thus the if statement on line 
8. 

After calling the signal system call, the program waits via the pause{2} system call (line 
12) till it receives the 81G1NT signal, at which time the catch_sigint signal handler 
(lines 16-29) is executed. 

The catch_sigint routine simply sleeps for one second (line 21), displays a message asking 
whether the user wants to exit (lines 22, 23), and reads the user's answer (line 24). If 
the user answers by entering 'y', then the program exits via the exit{2} system call. 
Otherwise, the routine simply returns to the while loop (lines 7-13) to do everything 
again. 

1: #include <signal.h> 
2: #include <stdio.h> 
3: mainO 
4: { 
5: int catch_sigint(); 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 

while (1) { 

} 

if (signal(SIGINT, catch_sigint) = -1) { 
fprintf(stderr, "\nsignal(2) failed\n"); 
exit(1); 

} 

pause 0 ; 

} /* END of main() */ 

catch_sigint( signal /* the signal handler */ 
int signal; 
{ 

int ans; 

} 

sleep(l); 
printf("SIGINT received. Do you wish to exit (y = yes)?"); 
fflush(stdout); 
fflush(stdin); ans = getchar(); 
if (ans == 'y') 

exit (0) ; 
else 

return(ans); 

116 Event Detection 



Events 
An event is an action that changes the state of the window system. For example, moving 
a window is an event, as is attaching the keyboard to a different window. The window 
manager always knows the current state of the window system and, therefore, knows 
when an event occurs. 

Events occur on a per-window basis; that is, each event is sent to one window. Event 
detection routines, described in the next section "Event Detection," allow a process to 
be signalled when an event occurs in a specific window. 

Button Press Events 
The window system supports devices (e.g., mouse, puck) which have buttons. A button is 
simply a switch on an input device. HP Windows/9000 recognizes eight buttons, defined 
in Table 6-1. 

A button press event occurs when a button is pressed (pushed down) or released (raised 
up from the down position). Thus, there are 16 distinct button press events: button 1 
up, button 1 down, button 2 up, button 2 down, ... , button 8 up, button 8 down. 

If a button is released, then the button up event goes to the same window to which the 
button down event was sent. When a button is pressed (button down event), the window 
manager steps through the following rules to determine where the button down event is 
sent: 

1. If full-screen sprite mode is enabled for a window, then all button press events are 
sent to that window. 

2. If the locator is over a window's user area, then the button press goes to that 
window. 

3. If the button is a system button (e.g., the Select button over the desk top, or over 
a window's border), then the button press invokes a system pop-up menu. 

4. If user-defined menus are activated on the button press, then a user-defined menu 
pops up. 

5. Otherwise, the button press goes to the selected window. 

Event Detection 117 



Table 6-1. Supported Buttons 

Button Corresponding Locator Device Button 

1 The following are all equivalent to button one: 
• The I Select I key on the ITF keyboard 
• The left mouse button 
• The leftmost button on the graphics tablet puck 
• The graphics tablet stylus point. 

2 The following are both equivalent to button two: 
• The right mouse button 
• The rightmost button on the puck. 

3 The topmost button (closest to the cross-hairs) on the graphics tablet puck. 

4 The bottom button (furthest from the cross-hairs) on the graphics tablet 
puck. 

5,6,7 Not currently used on locator devices. 

8 Indicates stylus or puck proximity. That is, the stylus or puck may be 
touching the graphics tablet. The stylus or puck touching the tablet is 
defined as button 8 being pressed down. The stylus or puck not touching 
the tablet is defined as button 8 being up. 

Locator Moved 
This event is occurs if the locator moves. The event is sent to the selected window only. 

Note that enabling this event may significantly degrade system performance because 
the window manager must constantly track the locator and signal processes that have 
enabled event detection in the selected window. 

Window Moved 
This event occurs when a window is moved. The event is sent to the window that moved. 

118 Event Detection 



Window's Size Changed 
This event occurs when a window's size is changed. The event is sent to the window that 
changed size. 

Window's Selection Status Changed 
This event occurs when a window's select status changes. If a different window is selected, 
two events actually occur: 

1. One event occurs for the window that becomes unselected; 

2. The other event occurs for the window that becomes selected. 

Window Needs Repainting 
This event occurs if any part of a non-retained graphics window needs repainting. For 
example, if a non-retained graphics window is partially occluded by another window, and 
the other window is moved completely away from the non-retained window, then more 
of the non-retained window becomes visible; thus, the window repaint event occurs for 
the non-retained· window. 

This event also occurs when the user selects the Repaint option of the system pop-up 
menu, or when the wmrepaint(3W) routine is called. 

This event is helpful for letting an application know when it should repaint a non-retained 
graphics window. 

A Selection Made from User-Defined Menu 
This event occurs when the user makes a selection from a user-defined menu for a window. 
The event is sent to the window from which a pop-up menu selection was made. (See 
the "Pop-Up Menus" chapter for details on using user-defined pop-up menus in your 
programs.) 

Event Detection 119 



A Hot Spot Was Activated 
This event is generated for graphics windows only. Hot spots are sensitive rectangles 
that you can define in a graphics window's raster. Using hot spot routines described in 
the "Graphics Window Hot Spots" chapter, a program can define the location and size 
of hot spots, and the sensitivity of the hot spot-e.g., did the pointer move in or out of 
the hot spot. An event occurs when the user does some action as defined by the hot spot 
routines. 

Window Destroyed 
This event is generated when a graphics window is destroyed. TermO windows do not 
support this event. 

BREAK Key Pressed 
This event is generated when the I Break I key is pressed in a selected graphics window. 
TermO windows do not support this event. 

Window's Iconic State Changed 
This event is generated for graphics window is changed to an icon, or vice versa. TermO 
windows do not support this event. 

Elevator Moved 
This event is generated when a graphics window's elevator bar moves. See the "Graphics 
Window Scroll Bars and Elevators" chapter for details. TermO windows do not support 
this event. 

Arrow Activated 
This event is generated when an arrow is activated in a graphics window's border. See 
the "Arrows and Elevators" chapter for details. TermO windows do not support this 
event. 

Full-Screen Sprite Mode Aborted 
This event is generated when the user aborts full-screen sprite mode. See the "Locator 
and Echo Routines" chapter for details. TermO windows do not support this event. 

120 Event Detection 



Event Detection 
At this point, you have the conceptual information you need to perform event detection. 
That is, you understand signals, and you should know what events can be detected. 
This section pulls everything together by showing you how to write programs that detect 
events. 

A program that performs event detection consists of the following steps: 

1. Start communication with the window in which you wish to detect events. 

2. Set up a signal handler to receive SIGWINDOW. 

3. Define an event mask. 

4. Call wsetsigmask{3W}. 

5. Wait for an event to happen. 

6. Receive the signal. 

7. Execute the signal handler. 

8. Discover which event(s) caused the signal and do the appropriate action. 

9. Before the program terminates, stop communication with the window. 

Event Detection 121 



Figure 6-1 illustrates this procedure. Each of the steps is described in detail following 
the diagram. 

Keyboard 

Mouse (5) 

~ 

~ ® 

SIGWINDOW 

Event 

Signal 

9 

PROCESS (PROGRAM) 

CD start window communication 

CID signal (SIGWINDOW, signal_handler) 

Q) define event_mask 

@ wsetsigmask (wfd, event_mask) 

(J) signal_handler (signal) 

® weventpoll (wfd, event-mask, 
count, x,y) 

@ stop window communication 

Figure 6-1. Event Detection. 

Step 1: Start Communication with the Window 
As mentioned in the "Events" section, events occur per window. To determine which 
window to detect events in, event detection routines require the file descriptor returned 
from starting communication with the window. (If you don't remember how to start 
communication with a window, review the "Concepts" section of the "Window Manipu­
lation" chapter.) 

122 Event Detection 



Step 2: Set Up a Signal Handler to Receive SIGWINDOW 
The SIGWINDOW signal is sent to a process when an event occurs in the window in 
which the process has enabled event detection. 

The signal system call allows a program to receive the SIGWINDOW signal and, upon 
receiving the signal, execute a signal handler. The signal handler can then determine 
(via event detection routines) which event(s) caused the signal and take the appropriate 
action for the event. 

When calling signal, the sig parameter should be set to SIGWINDOW, and the June 
parameter should be the name of the signal handler. The following code example, taken 
from the example program at the end of this chapter, illustrates how to do this: 

#include <signal.h> /* signal definitions */ 

main(argc. argv) 

int which_event(); /* signal handling procedure */ 

/* 
* STEP 2: Set up the signal handler to catch SIGWINDOW: 
*/ 

if (signal (SIGWINDOW. which_event) < 0) 
{ 

} 

perror("signal SIGWINDOW"); 
exit (1) : 

Event Detection 123 



Step 3: Define the Event Mask 
As mentioned in Step 2, a process receives the SIGWINDOW signal when an event occurs 
in the window with which event detection has been enabled. The event mask allows a 
program to select which events should cause SIGWINDOW to be sent to a process. 

The event mask is a 32-bit word; each bit represents an event. For example, the least­
significant bit represents button 1 being pressed down. 

For a process to be signalled when an event occurs, the corresponding bit in the event 
mask must be set. In other words, if you want to check for an event, set its bit in the 
event mask. 

Constant definitions for each bit are found in the lusT /includejwindow.h header file. 
Table 6-2 shows what event each constant represents. You can set the bit for an event 
you wish to detect by OR-ing its constant with the event mask. 

The following code segment, taken from the final example in this chapter, sets the event 
mask to check for button 1 being pressed, or button 2 being released, or the window being 
sized: 

int event_mask; /* mask of events to be detected */ 

/* 
* STEP 3: Define the Event Mask: 
*/ 

124 Event Detection 



Constant 

Table 6-2. Event Constant Definitions 

Event Description 

Button number n has been pressed down. Note that this does not indicate 
that it has been released after being pressed down. 

Valid values for n are 1 through 8. Table 6-1, found in the "Events" section 
of this chapter, maps the various buttons to the corresponding buttons on 
HP-HIL devices. 

EVENT_Bn_UP Button number n has been released. Valid values for n correspond to those 
for EVENT _Bn_DOWN. 

EVENT _ECHO Means that the pointer (locator position) changed on the screen while the 
window was selected. 

EVENT_MOVE The window moved. 

EVENT_SIZE The window's size was changed. 

EVENT _SELECT The keyboard attach state changed-the window was selected or unselected. 

EVENT_REPAINT The window needs to be repainted. This event is generated when a non­
retained graphics window needs to be repainted by the application control­
ling the window. 

EVENT_MENU A selection was made from the window's user-defined pop-up menu(s). 

EVENT_HOTSPOT A hotspot was activated. This works with graphics windows only. (See 
the "Graphics Window Hot Spots" chapter for details on using window hot 
spots.) 

EVENT _DESTROY The window was destroyed. This works with graphics windows only. 

EVENT_BREAK The I Break I key was pressed while the window was selected. This works in 
graphics windows only. 

EVENT_ICON The window's iconic state changed. This works with graphics windows only. 

EVENT_ELEVATOR The window's border elevator moved. This works with graphics windows 
only. See the "Graphics Window Scroll Bars and Elevators" chapter for 
details. 

EVENT_SB_ARROW The window's scroll bar arrow was activated. This works with graphics win­
dows only. See the "Graphics Window Scroll Bars and Elevators" chapter 
for details. 

EVENT _ABORT A full-screen sprite operation was aborted. This works with graphics win­
dows only. See the "Graphics Window Scroll Bars and Elevators" chapter 
for details. 

Event Detection 125 



Step 4: Call wsetsigmask(3W) 
The wsetsigmask{3W) shows a process's event mask to the window manager so the win­
dow manager knows which process to signal if one of the events (specified in the event 
mask) occurs in a particular window. 

The syntax for wsetsigmask is: 

wsetsigmask(jd, mask) 

The jd parameter is a file descriptor returned from starting communication with the 
window in which you wish to detect events. 

The mask parameter is the event mask defined in Step 3. 

Note 

A maximum of three processes can call wsetsigmask for a given 
window. In other words, a window can send signals to only three 
processes. 

The following code segment, taken from the example at the end of this chapter, calls 
wsetsigmask using the event mask from Step 3. The if statement checks whether wset­
sigmask returns a negative value; if so, an error occurred. The wfd parameter is the file 
descriptor returned from starting window communication (Step 1). 

/* 
* STEP 4: Call wsetsigmask(3W): 
*/ 

if (wsetsigmask(wfd. event_mask) < 0) 
{ 

} 

perror("wsetsigmask wfd"); 
exit (1) ; 

126 Event Detection 



Step 5: Wait for the Event(s) 
After calling wsetsigmask, the process must wait for an event to occur. Typically, a 
program will wait via the pause{2} system call, which suspends execution of a process 
until a signal is received. 

The following code segment, from the example program, calls pause to wait until the 
process receives the SIGWINDOW signal. 

/* 
* STEP 5: Wait for an event to occur: 
*/ 

pause 0 ; 

Step 6: Receive the Signal 
If the window manager detects an event in a window, it sends the SIGWINDOW signal 
to all processes that requested the signal via signal{2}. 

Step 7: Execute the Signal Handler 
On receiving the SIGWINDOW signal, the process will execute the signal handler set up 
in Step 2. 

Step 8: Call weventpoll(3W) 
To determine which event(s) caused the SIGWINDOW interrupt, use the weventpoll{3W} 
routine. Typically, you would call weventpoll in the signal handler. The syntax for this 
routine is: 

weventpoll(jd, mask, count, x,y) 

Weventpoll has input and output parameters, discussed next. 

Inputs 

• jd-the integer file descriptor returned from starting communication with the win­
dow . 

• mask-an integer point to an event mask. Note that mask is also an output pa­
rameter. The output value in mask depends on what is sent as input in mask. 

If mask is set to 0 before calling weventpoli, then event information is returned for 
the most recent event only. 

If mask is set to a valid event mask, then information is returned for the event (s ) 
that caused the SIGWINDOW interrupt. 

Event Detection 127 



Outputs 

• mask-a pointer to the resulting event mask, depending on the input value of mask. 

If mask was passed in as 0, then the bit corresponding to the most recent event is 
set in mask. (Note that EVENT_ECHO is never returned as the last event.) 

Weventpoll does not queue events; so you can't use weventpoll to determine the 
order of events. You can, however, determine the order of events that have taken 
place with graphics windows; the "Graphics Window Input" chapter describes how 
to do this. 

If mask is passed with event bits set, the resulting mask is the logical AND of mask 
and the bits corresponding to any events that have occurred since the last call to 
weventpoll. In other words, weventpoll checks only for events whose bits are set in 
mask. On return from weventpoll, mask contains an event mask representing which 
of the requested events occurred. 

Typically, a signal handler will call weventpoll in a loop until mask is O. This way, the 
signal handler will not miss any events that occur between the time SIGWINDOW 
is actually generated and the time the signal handler is executed. 

• count-the number of times the event represented by the most-significant bit set 
in mask has occurred since the last call to weventpoll. 

Note that the window system keeps an internal count for the number of times each 
event has occurred. Whenever count is returned for a particular event, the internal 
count is reset to zero. This way, the next time weventpoll is called for the event, 
count will accurately reflect the number of times the event has occurred since the 
last time it was polled. 

• x,y-the values are also returned for the event represented by the most-significant 
bit that is set in mask; their values depend on the type of event. Table 6-3 defines 
the values returned for each event. 

128 Event Detection 



Table 6-3. Weventpoll(3W) x,y Values 

Event(s} X,Y Return Values 

EVENT_Bn_UP The locator's position when this event occurred. 
EVENT_Bn_DOWN 
EVENT_ECHO 

EVENT_MOVE The new window location. 

EVENT_SIZE The new width and height of the window. 

EVENT_SELECT Both are set to zero. 
EVENT_REPAINT 
EVENT_DESTROY 
EVENT_BREAK 
EVENT_ICON 
EVENT_ABORT 

EVENT_MENU X contains the menu id of the menu from which a selection was 
made; y contains the item id of the item selected from the menu. 
The "User-Defined Menus" chapter describes these topics in de-
tail. (A program must use winpuCread(3W) to get the cause of a 
menu item selection; see the "Graphics Window Input" chapter.) 

EVENT_HOTSPOT X contains the evenCbyte specified for the hot spot via the 
whotspoCcreate(3W) or whotspoCset(3W) routines; y contains the 
cause of the hot spot activation. (See the "Graphics Window Hot 
Spots" chapter for details.) 

EVENT_ELEVATOR X contains a horizontal or vertical scroll bar indicator; y contains 
the requested value for the elevator. (See the "Graphics Window 
Scroll Bars and Elevators" chapter for details.) 

EVENT_SB_ARROW X contains the sum of all horizontal scroll bar arrow movements: 
a right arrow movement adds 1 to the sum, and a left arrow 
movement subtracts 1. Likewise, y contains the sum of all vertical 
scroll bar arrow movements: a down arrow adds 1 to the sum, and 
an up arrow subtracts 1. (See the "Graphics Window Scroll Bars 
and Elevators" chapter for details.) 

Weventpoll(3W) Example 
The following code segment, taken from the example at the end, uses weventpoll to 
determine which event generated the signal. It then prints a message to standard output, 
describing which event caused the signal. 

Event Detection 129 



/* 
* FIND OUT WHICH EVENT CAUSED THE SIGWINDOW. 

* * STEP 9: Set the event mask and call weventpoll: 
*/ 

event_mask = EVENT_Bi_DOWN I EVENT_B2_UP I EVENT_SIZE; 
if (weventpoll(wfd. tevent_mask. tcount. tXt ty) < 0) 
{ 

} 

perror("weventpoll wfd"); 
exit (i) ; 

/* 

} 

* Check for the individual events and print an appropriate message: 
*/ 

if (event_mask t EVENT_Bi_DOWN) 
printf ("Button i was depressed\n II) ; 

if (event_mask t EVENT_B2_UP) 
printf("Button 2 was released\n"); 

if (event_mask t EVENT_SIZE) 
printf("The window's has been resized.\n"); 

return(O); 

Step 9: Stop Window Communication 
Before the event detection program terminates, it must stop communication with the 
window. If you don't remember how to do this, review the "Concepts" section of the 
"Window Manipulation" chapter. 

Related Routines 
Two other window input routines are applicable to event detection: 

• wgetsigmask returns the event mask that was set by the calling process for a given 
window. This is useful if you want to alter the event mask for a window. 

• weventclear clears events' internal counters (specified by an event mask parameter) 
so that an immediate call to weventpoll will return a 0 count for the cleared events. 

130 Event Detection 



Performance Considerations 
Enabling the SIGWINDOW interrupt on every movement of the locator, via the 
EVENT_ECHO bit in the event mask, may significantly degrade system performance. This is 
because the system must constantly track and signal any locator movements. However 
for most applications, tracking the locator is not necessary anyway, because weventpoll 
returns the locator's coordinates when a button press event occurs: Most programs can 
wait to get the locator's position until the user presses a button, or when a hotspot is 
activated. 

Example 
The following program, named polLevents.c, polls for three events: EVENT_SIZE, 
EVENT_B2_UP, and EVENT_Bl_DOWN. If any of the events occur, a message describing the 
event is written to standard output, and the program exits. You must provide the name 
of an existing window's device interface to the program; for example: 

poll_events wconsole 

will check for the events for the window named wconsole. The program source is found 
in the man_examples directory. 

(Note: Programs which give excellent examples of event detection can also be found in 
the chapters "Arrows and Elevators" and "Graphics Window Hotspots.") 

#include <fcntl.h> 
#include <signal.h> 
#include <window.h> 

int wfd; 

main(argc. argv) 
int argc; 
char *argv [] ; 
{ 

/* system I/O call definitions 
/* signal definitions including SIGWINDOW 
/* window library definitions 

/* window type file descriptor 

/* number of arguments on command line 
/* command line argument list 

int wmfd; /* 
char wt_path[WINNAMEMAX]; /* 

window manager file descriptor */ 

int event_mask; /* 
int est_wm_com(); /* 
int term_wm_com(); /* 
int which_event(); /* 

path name for window type */ 
mask of events to be trapped */ 
routine to establish wm communication */ 
routine to terminate wm communication 
signal handling procedure 

*/ 
*/ 

Event Detection 131 



/* 
* START WINDOW MANAGER COMMUNICATION: 
*/ 

/* 

if «wmfd = est_wm_com(» == -1) 
{ 

} 

perror("est_wm_com"); 
exit(1); 

* POLL FOR EVENT_B1_DOWN. EVENT_B2_UP. AND EVENT_SIZE. 

* * STEP 1: Start communication with the window in which 
* event detection is to be done. 

/* 

wmpathmake(IWMDIR". argv[1]. wt_path); 
if «wfd = open(wt_path. O_RDWR» < 0) 
{ 

} 

perror("open wfd"); 
exit(1); 

if (winit(wfd) < 0) 
{ 

} 

perror("winit wfd"); 
exit(1); 

* STEP 2: Set up the signal handler to catch SIGWINDOW: 
*/ 

/* 

if (signal (SIGWINDOW. which_event) == -1) 
{ 

} 

perror("signal SIGWINDOW"); 
exit(1); 

* STEP 3: Define the Event Mask: 
*/ 

132 Event Detection 



/* 
* STEP 4: Call wsetsigmask(3W): 
*/ 

if (wsetsigmask(wfd. event_mask) < 0) 
{ 

} 

perror(lIwsetsigmask wfd ll
) ; 

exit (1) ; 

/* 
* STEP 5: Wait for an event to occur: 
*/ 

pause 0 ; 

/* 
* STEP 9: Terminate communication with the window: 
*/ 

if (wterminate(wfd) < 0) 
{ 

} 

perror(lIwterminate wfd"); 
exit(l); 

if (close(wfd) < 0) 
{ 

} 

perror(lIclose wfd ll
); 

exit(l); 

/* 

} 

* STOP WINDOW MANAGER COMMUNICATIONS: 
*/ 

if (t erm_wm_c om (wmfd) == -1) 
{ 

perror(lIterm_wm_com wmfd ll
); 

exit (1) ; 
} 

exit(O); 

Event Detection 133 



/* 
* STEPS 6.7: Receive the SIGWINDOW signal and execute the signal handler: 

* * NOTE: When the signal is generated. the signal handler is called with 
* its parameter set to the signal value that caused the interrupt. 
*/ 

which_event (signal) 
int signal; /* signal value set when routine is called */ 
{ 

int event_mask; 
int count; 
int x. y; 

/* mask of events to be polled for */ 
/* number of times the event has occurred */ 
/* locator position at time of the event */ 

/* 
* FIND OUT WHICH EVENT CAUSED THE SIGWINDOW. 

* * STEP 8: Set the event mask and call weventpoll: 
*/ 

do { 
event_mask = EVENT_B1_DOWN I EVENT_B2_UP I EVENT_SIZE; 
if (weventpoll(wfd. &event_mask. &count. &x. &y) < 0) 
{ 

} 

perror("weventpoll wfd"); 
exit(1); 

/* 

} 

* Check for the individual events and print an appropriate message: 
*/ 

if (event_mask & EVENT_B1_DOWN) 
printf("Button 1 was depressed\n"); 

if (event_mask & EVENT_B2_UP) 
printf("Button 2 was released\n"); 

if (event_mask & EVENT_SIZE) 
printf("The window>s has been resized.\n"); 

} while (event_mask != 0); 

return(O); 

/* LOOP to ensure you don>t miss 
any events */ 

134 Event Detection 



Locator and Echo Routines 7 
A locator is any HP-HIL input device that provides X,Y location information. The mouse, 
and graphics tablet stylus or puck switch are locator devices. The window manager uses 
locator information to move the echo (also known as a pointer or sprite) on the display 
screen; that is, when the user moves a locator device, the window manager moves the 
echo on the display screen. Using locator and echo routines, a program can: 

• get locator information-i.e., the locator's X,y position and which buttons are 
pressed 

• set the locator's X,y position 

• change the echo's representation 

• customize the echo 

• enable full-screen sprite control. 

Locator and Echo Routines 135 



Concepts 
This section presents concepts you should understand before using locator and echo 
routines. 

Absolute Locator Device 
The graphics tablet stylus and puck switch provide absolute location information. That 
is, the user specifies exact coordinates by pointing at an X,y location on the graphics 
tablet. Every x, y location on the graphics tablet corresponds to an x, y location on the 
display screen. 

Note, however, that the WMLOCSCALE environment variable can be used to scale the 
graphics tablet so that only a sub-portion of the graphics tablet corresponds to the display 
screen. See the "Environment Variablesx" chapter of the HP Windows/9000 User's 
Manual for details on scaling the graphics tablet via the WMLOCSCALE environment 
variable. 

Relative Locator Device 
The keyboard cursor keys and the mouse provide relative location information. These 
devices don't specify exact coordinates; they tell the window system the direction of 
movement so that the system can track the exact location. 

The Echo 
The echo is a Starbase graphics sprite that shows the locator's current location. The 
echo gets its name because it echoes the locator's position on the display screen. 

U sing echo manipulation and customization routines, a program can change the echo 
to different representations, such as a full-screen cross hair, small tracking cursor, or 
user-defined picture. 

136 Locator and Echo Routines 



The Locator's Hot Spot 
The locator and echo are directly related. Moving the locator causes the echo to move 
similarly on the screen. The exact relation between the two is given by the echo's hot 
spot. 

The hot spot is a special pixel in the echo. This pixel is denoted in X,y pixel coordinates 
relative to the upper-left corner of the echo. The hot spot tells the window system how 
the echo should align over the coordinates specified by the locator. Figure 7-1 illustrates 
this concept. 

[y.Locatorlls position 
and 

• echo"s hot spot 

Figure 7-1. The Echo's Hot Spot 

The echo's hot spot always covers the screen pixel whose coordinates are returned by the 
locator. However, the hot spot's location within the echo may vary, depending on which 
echo is displayed, and the displayed echo depends on which interactive manipulation 
area the locator is positioned over. Table 7-1 shows where the hot spot is for the various 
echoes displayed by the window system. 

Echo 

D 
+ 

Table 7-1. Standard Hot Spots 

Where Its Hot Spot Is 

When the echo is located over the dither pattern, the hot spot is located 
directly in the middle of the box. 

When the echo is located in a window's border and manipulation areas, 
the hot spot is in the middle of the cross hairs. 

When the echo is located over a shifted soft key or window contents area, 
the hot spot is in the upper-leftmost pixel, at the arrow's tip. 

When located over an unshifted soft key, the hot spot is the lower-leftmost 
pixel, at the arrow's tip. 

Locator and Echo Routines 137 



Getting Locator Information 
You can determine the current location of the locator via the wgetlocator{3W) routine. In 
addition to returning the locator's position, this routine returns the state of the locator 
buttons at the time the routine is called. 

Procedure 
To get locator information, call wgetlocator. The syntax: for this routine is: 

wgetlocator (fd, x, y, buttons) 

Fd is an integer file descriptor returned from starting communication with a window. Lo­
cator coordinates are returned relative to the window's anchor point (the upper-leftmost 
pixel in the window's contents area). 

The x, y parameters point to integers containing the pixel coordinates of the locator (and 
echo's hot spot) with respect to the window's anchor point. The window's anchor point 
is at location 0, O. 

Buttons is a pointer to an integer specifying the state of the locator buttons when wget­
locator is called. The least-significant bit of this integer represents button one; the next 
bit, button two; and so on. If a bit is set, then the button is down. 

Precautions 
This precaution applies only to graphics windows. If you use a graphics escape (gesc (3G)) 
to lock the screen, then do not call wgetlocator until after the screen is unlocked. Calling 
wgetlocator with a locked graphics window will cause the system to hang; you must do a 
hard reset to get out of this state. 

138 Locator and Echo Routines 



Example 
The following function, named loc_in_user.c, determines whether the locator is within a 
window's user (contents) area. If an error occurs when inquiring, then -1 is returned; if 
the locator is within the window's user area, then 1 is returned; if the locator is outside 
the window's contents area, then 0 is returned. The source for this routine is found in 
man_ examples. 

#include <window.h> /* window routine definitions */ 
loc_in_user( wfd ) 
int wfd; /* window's file descriptor */ 
{ 

int w. h; /* window's width and height (of 
int wx. wy; /* window's x.y-coordinates 
int dx. dy. rw. rh; /* other parameters to wgetcoords 
int Ix. ly; /* the locator's x.y position 
int buttons; /* locator button mask 

/* 
* First. get the pixel width and height of the window: 
*/ 

user area) */ 
*/ 
*/ 
*/ 
*/ 

if (wgetcoords(wfd. kwx.&Wy. &w.kh. kdx.kdy. krw.krh) < 0) return(-l); 

} 

* Now get the locator's position: 
*/ 

if (wgetlocator(wfd. klx.kly. kbuttons) < 0) return(-l); 

* Check if the locator's position is within the window's user area: 
*/ 

if «Ix >= 0 kk Ix < w) kk (ly >= 0 kk ly < h» 
return(l); 

else 
return(O); 

Locator and Echo Routines 139 



Moving the Locator 
The wsetlocator{3W) routine sets the locator's and echo's x,y location. Moving the locator 
to an x, y location causes the echo to move to the same x, y pixel on the display screen. 
If the specified location is off screen, then x, yare adjusted to keep the echo within the 
screen boundaries. 

Procedure 
To move the locator call wsetlocator; its syntax is: 

wsetlocator (fd, x,y) 

Fd is the file descriptor of a window with which communication is started. The locator 
will be moved relative to this window. 

The X,y parameters are integers specifying the new location. These coordinates are 
interpreted as being relative to the window's anchor point. The window's anchor point 
is at 0,0. 

Example 
The following function, named reseCloc. c, moves the locator to the anchor point of the 
window specified by the file descriptor parameter wfd. If the function is successful, it 
returns 0; otherwise, it returns -1. The source for this routine is found in man_examples. 

#include <window.h> 
reset_Ioc( wfd ) 
int wfd; 
{ 

/* window constant definitions */ 

/* window's file descriptor */ 

if (wsetlocator(wfd. O. 0) < 0) 
return(-l); 

} 

else 
return(O); 

140 Locator and Echo Routines 



Changing the Echo 
When the locator is moved over a window's user area, a standard echo (an arrow pointing 
up and left) is displayed by default. With the wsetecho{3W} routine, a program can 
replace the standard echo with a Starbase-compatible echo or a user-defined raster image. 

This capability is powerful because it allows you to use special echoes in your own appli­
cations. 

Procedure 
To manipulate and change the echo's representation, call wsetecho; its syntax is: 

wsetecho (fd, echo_value, x2, y2, optimized) 

where: 

• fd-is an integer file descriptor returned from starting communication with a win­
dow. Whenever the locator is moved over the visible part of the window's contents 
area, the echo will be displayed as defined by the remaining parameters. 

• echo_value-is the type of echo to use. If its value is 7, then a user-defined echo 
is displayed instead of the standard echo. If its value is 1-6 or 8, then a Star­
base echo types is displayed. If the value is 9 or greater, then a device-dependent 
representation is displayed. 

See the wsetecho{3W} reference page for details on the values supplied for this 
parameter. 

• x2,y2-are the echo's anchor position or box width and height, depending on the 
value of echo_value. For example, if echo_value is 5 (rubber band rectangle), then 
x2,y2 represent the anchor point for the rubber band, and the lower-right corner is 
moved by the locator. (This representation is used when you interactively change 
the size of a window.) 

• optimized-is a boolean that is either 0 or 1. If 0, then the echo is displayed and 
moves exactly as defined. If 1, then the echo representation may be modified to 
make it track the best way possible for the display hardware. 

A value of 1 is recommended since it takes advantage of specialized hardware and 
is more efficient. 

Locator and Echo Routines 141 



Related Routines 

• wgetecho (3 W) retrieves the above parameters for a specified window. This is useful 
if you wish to determine the what the current echo is. 

• wsetrasterecho{3W) allows you to define a custom echo. By calling wsetecho with 
the echo_value parameter set to 7, the window's default echo will be replaced with 
the echo defined by wsetrasterecho. Defining a custom echo with wsetrasterecho is 
discussed in the next section, "Customizing the Echo." 

• wseLhw_sprite_color{3W) allows the colors used for displaying the sprite, when 
using hardware support for sprites on the HP 98730, to be set. This must be called 
after every wsetecho{3W) unless the defaults (or the colors specified by the last 
wseLhw_sprite_color{3W)) are acceptable. 

• wgeLhw_sprite_color{3W) inquires the colors being used for displaying the hard­
ware sprite on the HP 98730. 

Example 
The following function, named shrink_it.c, allows the user to interactively shrink a 
specified window. It uses a rubber band rectangle echo to make the window size visible 
as it is changed. 

#include <fcntl.h> 
#include <signal.h> 
#include <window.h> 

int global_wfd; 

shrink_it (wfd) 
int wfd; 
{ 

int event_mask; 
int size_window(); 
int echo_type; 
int x, y; 
int optimized; 

/* system I/O call definitions */ 
/* signal definitions, including SIGWINDOW *1 
/* window library definitions *1 

/* window type file descriptor *1 

/* window's file descriptor *1 

/* mask of events to be trapped 
/* signal handling procedure 
/* original echo type 
/* original echo anchor point 
/* original echo optimized state 

1* INTERACTIVELY SHRINK A WINDOW. 
* STEP 1: Get the current echo values: 
*1 

global_wfd = wfd; 
if (wgetecho(wfd, &echo_type, &x, &y, &optimized) < 0) 

{ 

} 

perror("wgetecho wfd"); 
exit(1); 

142 Locator and Echo Routines 



/* 
* STEP 2: Set up the signal handler to catch SIGWINDOW: 
*/ 

if (signal (SIGWINDOW, size_window) < 0) 
{ 

} 

perror("signal SIGWINDOW"); 
exit(i) ; 

/* 
* STEP 3: Change the sprite to a rubber band rectangle: 
*/ 

if (wsetecho(wfd, ECHO_RUBRECT, 0, 0, ECHO_NOOPT) < 0) 
{ 

} 

perror("wsetecho wfd"); 
exit(i); 

/* 
* STEP 4: Set up to size the window when button 1 goes up: 
*/ 

event_mask = EVENT_Bi_UP; 
if (wsetsigmask(wfd, event_mask) < 0) 
{ 

} 

perror("wsetsigmask wfd") ; 
exit(i); 

pause 0 ; 

/* 

} 

* STEP 5: Change the sprite back to its original representation: 
*/ 

if (wsetecho(wfd. echo_type. x. y. optimized) < 0) 
{ 

} 

perror("wsetecho wfd"); 
exit (1) ; 

Locator and Echo Routines 143 



/* 
* The signal handler: 
*/ 

size_window(signal) 
int signal; /* signal value set when routine is called */ 
{ 

int x, y; 
int buttons; 

/* locator position */ 
/* locator button mask */ 

/* 
* RESIZE THE WINDOW WHEN BUTTON 1 IS RELEASED. 

* * Find out the current locator position: 
*/ 

if (wgetlocator(global_wfd, &x, &y, &buttons) < 0) 
{ 

} 

perror("wgetlocator wfd"); 
exit(1); 

/* 

} 

* Change the size of the window: 
*/ 

if (wsize(global_wfd, x, y) < 0) 
{ 

perror("wsize wfd"); 
} 
return(O); 

144 Locator and Echo Routines 



Customizing the Echo 
As described in the previous section, each window can have a customized echo-Le., a 
user-defined picture. Customized echoes are defined via the wsetrasterecho{3W} routine. 
Once defined, the customized echo can then be displayed via wsetecho{3W}. 

Procedure 
To define and display a customized echo: 

1. Define the echo via wsetrasterecho{3W}. 

2. Display the echo via wsetecho{3W}. 

Define the Echo Via wsetrasterecho(3W) 
To define the echo, call wsetrasterecho; its syntax is: 

wsetrasterecho(fd. dx.dy. w.h. rule.mask_rule. mask. image) 

where: 

• fd-is the file descriptor of the window for which the custom echo will be defined. 

• dx, dy-are the offset of the echo hot spot to the upper-left corner of the echo. For 
example, if the hot spot is the upper-leftmost pixel of the echo, then dX,dy are 0,0. 

• w,h-are the echo's pixel width and height. 

• rule,mask_rule-are the rules to be used when displaying the echo against the screen 
background. For example, with these rules, you can specify that the echo's image 
is to be exclusive-OR'd with the background, thus making it the complement of 
anything it appears over. 

Valid values for these parameters are defined in Table 7-2. 

• mask-is a pointer to an array of up to 128 characters; each bit of the array rep­
resents one pixel in the echo. This array contains a mask that defines the shape 
of the echo. This mask is defined like an icon mask, except that a pointer to the 
mask is passed as a parameter-the mask is not defined in a file as with icons. See 
the "Icons" chapter for details on defining the mask. 

• image-is a pointer to a byte-per-pixel array of up to 1024 characters. This array 
defines the image to be used with mask. Each byte represents the color to use for 
the corresponding bit in mask. The rules for defining the image are the same as for 
icons; however, the image is supplied as a parameter, not a file. See the "Icons" 
chapter for details on defining the image. 

Locator and Echo Routines 145 



Table 7-2. Valid rule and mask_rule Values1 

Value Resulting Destination Pixel 

0 ZERO 

1 source AND destination 

2 source AND NOT destination 

3 source (the default rule) 

4 NOT source AND destination 

5 destination 

6 source EXCLUSIVE OR destination 

7 source OR destination 

8 NOT source AND NOT destination 

9 source EXCLUSIVE NOR destination 

10 NOT destination 

11 source OR NOT destination 

12 NOT source 

13 NOT source OR destination 

14 NOT source OR NOT destination 

15 ONE 

Display the Echo Via wsetecho(3W) 
After defining the custom echo via wsetrasterecho, a program must call wsetecho to display 
the new echo in place of the old one. To replace the current echo with the customized 
echo, call wsetecho as: 

echo_value = 7; /* user-defined raster echo */ 
x2 = y2 = -1; /* these params are no-ops for echo_value 7 */ 
optimized = 1; /* optimize the echo */ 
wsetecho(fd, echo_value, x2,y2, optimized); 

1 The source is the pixel to be written to the screen; destination is the current value of that pixel on the 
screen where source is to be written. For example, if value is 1, then the resulting pixel will be turned 
on if both source AND destination are asserted. 

146 Locator and Echo Routines 



Related Routines 

• wgetrasterecho{3W) returns the above parameters for the pointer in a given window. 
This is useful if you wish to change the custom echo for a window. 

• wseLhw_sprite_color{3 W) allows the colors used for displaying the sprite, when 
using hardware support for sprites on the HP 98730, to be set. This must be called 
after every wsetecho{3W) unless the defaults (or the colors specified by the last 
wseLhw_sprite_color{3W)) are acceptable. 

• wgeLhw_sprite_color{3W) inquires the colors being used for displaying the hard­
ware sprite on the HP 98730. 

Example 
The following function, echo_hand. c, defines the custom echo to be a pointing hand with 
the hot spot being the finger tip. It then calls wsetecho to ensure that the hand is 
displayed whenever the locator moves over the window's user area. 

#include <stdio.h> 
#include <fcntl.h> 
#include <window.h> 

/* 
* Define the echo mask: 
*/ 

char mask[72] = { 

}; 

/* standard I/O definitions */ 
/* file definitions */ 
/* window library definitions */ 

OxO, OxO, OxO, OxO, 
OxO, OxlE, OxO, OxO, 
OxO, OxlF, OxFF, OxCO, 
OxO, OxOF, OxFF, OxEO, 
OxO, Ox07, OxFF, OxF8, 
Ox7F, OxFF, OxFF, OxFC, 
OxFF, OxFF, OxFF, OxFE, 
OxFF, OxFF, OxFF, OxFE, 
Ox7F, OxFF, OxFF, OxFF, 
OxO, Ox07, OxFF, OxFF, 
OxO, Ox07, OxFF, OxFF, 
OxO, Ox07, OxFF, OxFF, 
OxO, OxOl, OxFF, OxFF, 
OxO, OxOl, OxFF, OxFF, 
OxO, OxOl, OxFF, OxFF, 
OxO, OxO, Ox7F, OxFF, 
OxO, OxO, Ox7F, OxFF, 
OxO, OxO, Ox7F, OxFO, 

Locator and Echo Routines 147 



1* 
* Define the echo image: 
*1 

char image [576] = { 
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0, 0,0,0,1,1,1,1,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,1, 1,1,1,1,1,1,1,1, 1,1,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0, 
0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0, 0,0,0,1,1,0,0,0, 
0,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,0,0,0,0,0, 0,0,0,0,0,1,0,0, 
1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0, 
1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1, 
0,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,1, 
0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0, 0,0,0,0,1,1,0,0, 0,0,0,0,0,0,0,1, 
0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0, 0,0,0,0,1,1,0,0, 0,0,0,0,0,0,0,1, 
0,0,0,0,0,0,0,0, 0,0,0,0,0,1,1,1, 1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,1, 
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1, 0,0,0,0,0,1,1,0, 0,0,0,0,0,0,0,1, 
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1, 0,0,0,0,0,1,1,0, 0,0,0,0,0,0,0,1, 
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1, 1,1,1,1,1,1,0,0, 0,0,0,0,0,0,0,1, 
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,1,0,0,0,0,1,1, 0,0,0,0,0,0,0,1, 
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,1,0,0,0,0,1,1, 0,0,0,0,1,1,1,0, 
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,0, 

}; 

* Define some program constants: 
*1 

#define DONT_CARE 
#define ECHO_WIDTH 
#define ECHO_HEIGHT 
#define ECHO_X2 
#define ECHO_Y2 
#define ECHO_DX 
#define ECHO_DY 
#define ECHO_OPT 
#define ECHO_RULE 

-1 
32 
18 
DONT_CARE 
DONT_CARE 
o 
-7 
1 
7 

#define ECHO_MASKRULE 4 
#define ECHO_TYPE 7 

148 Locator and Echo Routines 

1* width of the echo in pixels *1 
1* height of the echo in pixels *1 
1* there is no anchor point for *1 
1* raster echoes *1 
1* hot spot for the echo *1 

1* optimize the echo *1 
1* replacement rule for the image *1 
1* replacement rule for the mask *1 
1* define a raster echo *1 



echo_hand (wfd) 
int wfd; /* window's file descriptor */ 
{ 

/* 
* SET THE WINDOW'S ECHO TO A POINTING HAND. 

* * STEP 1: Define a new rasterecho: 
*/ 

if (wsetrasterecho(wfd.ECHO_DX.ECHO_DY.ECHO_WIDTH.ECHO_HEIGHT. 
ECHO_RULE.ECHO_MASKRULE.mask.image) < 0) return(-l); 

/* 
* STEP 2: Change the echo for the current window to a raster echo: 
*/ 

if (wsetecho(wfd.ECHO_TYPE.ECHO_X2.ECHO_Y2.ECHO_OPT) <0) return(-l); 

/* 

} 

* STEP 3: Move the echo to the upper left hand corner of the window: 
*/ 

if (wsetlocator(wfd.O.O) < 0) return(-l); 
return(O); 

Locator and Echo Routines 149 



Enabling Full-Screen Sprite Control 
By default, the echo type displayed by the window manager depends on what area of 
the screen the locator is position over. Similarly, when the user presses a button, the 
action taken by the window manager for the particular button press depends on the 
echo's location. For example, when located over a window's border, the echo is displayed 
as cross-hairs; and when the user presses the select button, the window manager will 
display a system pop-up menu for the window. 

This default mode can be changed to full-screen sprite mode via the 
wscrn_sprite_mode{3W) routine. Full-screen sprite mode causes the echo to be set to 
that of a given window, regardless of the echo's location. When the echo is moved over 
other windows, the desk top, or window borders, its representation will not change. In 
addition, a locator button press or I Select I key press while in full-screen sprite mode will 
not cause the default action; rather, the button press will be transmitted as a button 
press event to the full-screen sprite mode window. 

If the user presses any key other than the I Select I key or buttons while in full-screen sprite 
mode, then this mode is aborted-the window manager returns to default mode. Then 
the SIGWINDOW signal is sent to all processes that have enabled the EVENT _ABORT 
event for this window. 

All button press events are sent to the process that enables full-screen sprite mode, if 
the process has enabled event detection for th se button presses. As described above, 
these button presses would normally cause a default action by the window manager; 
however, in full-screen sprite mode, the window manager does not do anything for the 
button press. Therefore, a program must check for button presses and do default window 
manager actions itself if the program wishes to emulate the window manager. 

Programs can determine the default window manager configuration from the value of 
the WMIUICONFIG environment variable (see the "Environment Variables" chapter of 
the HP Windows/9000 User's Manual). To get this value, programs will typically call 
wminquire{3W), which returns the value of a window manager environment variable. 

150 Locator and Echo Routines 



Procedure 
Programs that use full-screen sprite mode will typically: 

1. Set up a signal handler for full-screen sprite mode. 

2. Call wscrn_sprite_mode(3W). 

Set Up a Signal Handler for Full-Screen Sprite Mode 
Before enabling full-screen sprite mode, a program should set up a signal handler to catch 
button presses that occur during full-screen sprite mode. Depending on your needs, the 
program may also need to catch the EVENT_ABORT event, which is generated when full­
screen sprite mode is aborted. 

Call wscrn_sprite_mode(3W) 
After the signal handler is set up, the program can call wscrn_sprite_mode; its syntax is: 

wscrn_spri te_mode (fd, value) 

The integer file descriptor returned from starting communication with the window should 
be passed as the fd parameter. 

The value parameter determines the action of wscrn_sprite_ mode. If value is SETFULL­

SPRITE, then full-screen sprite mode is enabled. If value is SETNOFULLSPRITE, then full­
screen sprite mode is turned off, which causes the EVENT_ABORT event. If value is GETFULL­

SPRITE, then the current mode is returned: SETNOFULLSPRITE if disabled for the window, 
SETFULLSPRITE if enabled for the window. 

Precautions 

• The process that enables full-screen sprite mode for a window is the only process 
that can disable full-screen sprite mode for that window. 

• If a process other than the enabling process attempts to disable full-screen sprite 
mode, then a system error occurs, and errno{2} is set to EACCESS. 

• If a process attempts to enable full-screen sprite mode for a window, but full-screen 
sprite mode is already enabled for a window, then a system error occurs, and 
errno{2} is set to EBUSY. 

• If a process attempts to disable full-screen sprite mode in a window in which full­
screen sprite mode is not already enabled, a system error occurs, and errno{2} is 
set to EBADF. 

Locator and Echo Routines 151 



Example 
The following code sets up a signal handler named full_screen, which will handle any 
button press or EVENT_ABORT events occurring during full-screen sprite mode for the win­
dow identified by wfd (the window interface file descriptor). It then turns on full-screen 
sprite mode for the window. 

#include <window.h> 
#include <signal.h> 
#include <stdio.h> 
main 0 
{ 

int 
int 
int 

wfd; 
event_mask; 
full_screen 0 ; 

/* file descriptor for the window */ 
/* event mask for the window */ 
/* signal handler for full-screen sprite mode */ 

/* 
* At this pOint. the program has already started communication with 
* the window that full-screen sprite mode will be used with. 
* "wfd" is the file descriptor returned from starting communication. 

* * STEP 1: Set up the signal handler: 
*/ 

/* 

if (signal (SIGWINDOW. full_screen) < 0) 
{ 

} 

perror("signal SIGWINDOW"); 
exit (1) ; 

* Define the event mask for button 1 & 2 events and EVENT_ABORT: 
*/ 

event_mask = EVENT_B1_DOWN EVENT_B1_UP 
EVENT_B2_DOWN EVENT_B2_UP 
EVENT_ABORT; 

if (wsetsigmask(wfd. event_mask) < 0) 
{ 

} 

perror("wsetsigmask wfd"); 
exit (1) ; 

152 Locator and Echo Routines 

/* button 1 events */ 
/* button 2 events */ 
/* abort full-screen mode */ 



/* 
* STEP 2: Call wscrn_sprite_mode to enable full-screen sprite mode: 
*/ 

if (wscrn_sprite_mode(wfd. 1) < 0) 
{ 

} 

perror("wscrn_sprite_mode wfd"); 
exit (1); 

} /* END of main() */ 

int full_screen(signal) 
int signal; 
{ 

/* 
* The body of the signal handler goes here. This is where the program 
* handles button presses and aborts during full-screen sprite mode. 
*/ 

} /* END of full_screen() */ 

Locator and Echo Routines 153 



Notes 

154 Locator and Echo Routines 



Arrows and Elevators 8 
This chapter describes how to use scroll bar routines with graphics windows. By calling 
scroll bar routines, a program can: 

• Enable pan mode (the default for all newly created graphics windows), in which 
clicking the locator over arrows or elevators causes the window to pan . 

• Enable user mode, in which an event occurs when the user clicks the locator over 
either an arrow or elevator. 

Arrows and Elevators 155 



Concepts 
This section discusses concepts essential to using scroll bar routines with graphics win­
dows. Be sure to read this section before using these routines. 

Scroll Bars 
Each graphics window has a vertical and a horizontal scroll bar. A scroll bar is simply 
an area in a window's border in which the window's arrows and elevators are displayed. 
The vertical scroll bar contains the vertical arrows and elevator; the horizontal scroll bar 
contains the horizontal arrows and elevator. Figure 8-1 shows the scroll bar, arrows, and 
elevators in a typical graphics window. 

'\./ WINDOW 

Arrows ~ 

Elevators 

" 
Arrows.,. 

Ol- l I .. 
\. ) 

y 
HORIZONTAL SCROLL BAR 

Figure 8-1. Scroll Bars, Arrows, and Elevators. 

0 
~ 

r--

----

• D 

VERTICAL 
SCROLL BAR 

Arrows and elevators are either enabled or disabled. When an arrow or elevator is 
enabled, it is visible in the window's border. In addition, when the user clicks the 
locator over an arrow or elevator, the window manager does an action appropriate to the 
scroll bar mode. Two scroll bar modes are supported: pan mode and user mode. 

Pan and user modes are discussed in the next two sections. If an elevator or arrows are 
disabled in a scroll bar, then they are not visible, and they have no function. 

156 Arrows and Elevators 



In the example window in Figure 8-1, the arrows and elevators are enabled in both the 
vertical and horizontal scroll bars. 

By default, when a graphics window is created, only its arrows are enabled in the vertical 
and horizontal scroll bars. Also, the window is in pan mode. 

Pan Mode 
In pan mode, the arrows and elevators cause a window to pan; that is, they change the 
window's pan position. However, arrows and elevators pan differently, as discussed next. 

Panning via Arrows 
To pan a window via arrows, move the pointer over an arrow and click the Select button. 
The picture will move in the direction of the arrow; the window's pan position will change 
opposite the direction of the arrow. The magnitude of the pan depends on the size of 
the window's view: pans are always one-fifth the size of the view into the raster. 

Recall that the origin of the raster (0,0) is the upper-left corner of the raster, and a 
window's pan position (dx,dy) is the location of the view with respect to the raster. 
Figure 8-2b (later in this section) shows the relationship between pan position and a 
window's view into the raster. Table 8-1 defines the relationship between arrows, the 
direction the picture moves, and the effect on the window's pan position. 

Table 8-1. Relationship between Arrows, Pan Direction, and Pan Position 

Arrow Picture Effect on 
Direction Moves Pan Position 

Up Up Pan position moves down: 
dy = dy + (vertical view -7- 5) 
dx does not change 

Down Down Pan position moves up: 
dy = dy - (vertical view -7- 5) 
dx does not change 

Right Right Pan position moves left: 
dx = dx - (horizontal view -7- 5) 
dy does not change 

Left Left Pan position moves right: 
dx = dx + (horizontal view -7- 5) 
dy does not change 

Arrows and Elevators 157 



Note, however, that the direction of the pan can be reversed by setting the Ox8 000 000 
bit in the WMIUICONFIG environment variable. (See the "Environment Variables" 
chapter of the HP Windows/gOOD User's Manual for details on setting this variable.) 

Panning via Elevators 
Elevators provide another intuitive way to pan windows. The advantage of elevators over 
arrows is that elevators can pan much faster: arrows pan a fixed amount, while elevators 
pan directly to a location in the window's raster. 

To pan a window via elevators, position the locator over the elevator and press the I Select I 
button. The elevator will then appear as a dotted box, which can then be moved within 
the scroll bar (up and down in the vertical scroll bar; left and right in the horizontal scroll 
bar). The interactive elevator pan is completed by moving the elevator to the desired 
location and pressing the I Select I button again. When the interactive elevator operation 
is finished, the window will be panned to the position represented by the vertical and 
horizontal elevators. 

The notion of an elevator shaft is useful. An elevator shaft is simply the length in which 
the elevator can move within the scroll bar. It is slightly shorter than the distance 
between the arrows. In the vertical scroll bar, the elevator moves up and down only; 
in the horizontal scroll bar, the elevator moves only left and right. The length of the 
elevator shaft is determined from the size of the window. For example, if the window 
grows wider, the horizontal elevator shaft will get longer, too. And if the window grows 
taller, the vertical elevator shaft will get longer, also. 

In pan mode, the length of an elevator is determined from the window's current size and 
the size of the raster. The elevator's length is directly proportional to the ratio of the 
window's size to its raster size. The following formulas define the length of the vertical 
and horizontal elevators: 

vert_elev_length = vert_shaft_length X (window_height 7 raster_height) 
horz_elev_length = horz_shaft_length X (window_width 7 raster_width) 

The position of an elevator within the shaft is determined from the window's pan position. 
For example, if the window's pan position is 0,0, then the vertical elevator will be flush 
with the top of the vertical elevator shaft, and the horizontal elevator will be flush with 
the left end of the horizontal elevator shaft. If the window's view is flush with the 
lower-right corner of the window's raster, then the vertical elevator will be flush with the 
bottom of the vertical elevator shaft, and the horizontal elevator will be flush with the 
right end of the horizontal elevator shaft. 

158 Arrows and Elevators 



Figures 8-2a and 8-2b show a window with its elevators enabled, illustrating the rela­
tionship between elevator size/position and the window's pan position, window size, and 
raster size. In 8-2a the window is flush with the upper-left corner of its raster; in 8-2b 
the window is centered within its raster. Note the location and size of the elevators as 
the pan position changes in each part of the figure. 

D 
---l 

WINDOW VIEW 

.. 0 

I 
I 
I 
I 
I 
I 
I 

I 

I 
L _________________ ~ 

RASTER 

Figure 8-2a. View Flush with Upper-Left Corner of Raster 

Arrows and Elevators 159 



,--. --------------1 
I d.y I 

dx I 
WINDOW D I 

I PAN • I 
I POSITION 

~ 
I 

I WINDOW VIEW I 
I I 
I .J I 
I I O+- .. D 
I I 
I I 
L ___ _ _ __ -.J 

RASTER 

Figure 8-2h. View Centered within Raster 

User Mode 
In user mode, the arrows and elevators do not pan windows. Instead, when the user 
clicks the locator over an arrow or elevator, the window manager interprets it as an 
event. Clicking the locator over an arrow causes an EVENT_SB_ARROW event; completing an 
elevator move operation causes EVENT_ELEVATOR. 

A program can detect these events by enabling SIGWINDOW for the desired event via 
wsetsigmask(3Wj; then, on receiving SIGWINDOW, use weventpoll(3Wj to determine 
which event occurred. This method is discussed in the section "Getting Scroll Bar Events 
in User Mode." 

A program can also detect these events via graphics window input routines, discussed 
fully in the "Graphics Window Input" chapter. You should see that chapter for details 
on using this method. 

160 Arrows and Elevators 



Enabling Arrows, Elevators in Pan Mode 
The wscrolLset{3W) routine enables arrows, elevators, or both for a graphics window in 
pan mode. 

Procedure 
To enable arrows or elevators in pan mode, call wscrolLset; its syntax is: 

wscroll_set (fd, which, mode[, value, min, max, size]) 

The value, min, max, and size parameters are not used in pan mode; they are used only 
in user mode. When enabling pan mode, a program need only supply the fd, which, and 
mode parameters, described below. The other parameters, if supplied, will be ignored in 
pan mode. 

fd 
The fd parameter is an integer file descriptor returned from starting communication with 
the graphics window. 

which 
The which parameter identifies whether the vertical scroll bar, horizontal scroll bar, or 
both will be affected by this function. Set this parameter by ORing the following values, 
defined in window. h: 

SCROLLBAR_V 

SCROLLBAR_H 

Affect the vertical scroll bar. 

Affect the horizontal scroll bar. 

To affect both the vertical and horizontal scroll bars, set the which parameter to the OR 
of both SCROLLBAR_V and SCROLLBAR_H; e.g.: 

which = SCROLLBAR_V I SCROLLBAR_H; 

To affect only the vertical arrows or elevator, set which to SCROLLBAR_V. To affect only 
the horizontal arrows or elevator, set which to SCROLLBAR_H. 

Arrows and Elevators 161 



mode 
The mode parameter controls whether the arrows, elevator, or both are enabled within 
the affected scroll bar(s). Valid values for mode are defined in window.h as: 

SCROLLBAR_ELEVATOR Enable the elevator in the scroll bar(s). 

SCROLLBAR_ARROWS Enable the arrows in the scroll bar( s ). 

To enable only the arrows within the affected scroll bar( s), set mode to SCROLLBAR_ARROWS. 

To enable only the elevator, set mode to SCROLLBAR_ELEVATOR. To enable arrows and the 
elevator within the affected scroll bar(s), OR the two together, as: 

mode = SCROLLBAR_ARROWS I SCROLLBAR_ELEVATOR. 

162 Arrows and Elevators 



Examples 
Given the file descriptor returned from starting communication with a graphics window 
(gwfd), the following function: 

1. Enables arrows and elevators in the window's vertical and horizontal scroll bars; 

2. Sets the window's border to a normal border, via wbanner{3W); and 

3. Displays the window as the top window in the display stack, via wtop{3 W). 

#include <window.h> 
int pan_mode_top(gwfd) 
int gwfd; /* fildes returned from starting comm with window */ 
{ 

int which; 
int mode; 

/* 
* Enable both the vertical and horizontal scroll bar: 
*/ 

which = SCROLLBAR_V I SCROLLBAR_H; 
/* 

} 

* Enable both the elevator and the arrows within each scroll bar: 
*/ 

mode = SCROLLBAR_ELEVATOR SCROLLBAR_ARROWS; 

* Call wscroll_set(3W): 
*/ 

if (wscroll_set(gwfd. which. mode) < 0) 
return(-l); 

* Make the window's border normal and display the window: 
*/ 

wbanner(gwfd. SETBANNER); 
wtop(gwfd. SETTOP); 
return(O); 

Arrows and Elevators 163 



Given the file descriptor returned from starting communication with a graphics window 
(gwfd) the next function enables only the elevator in the vertical scroll bar: 

#include <window.h> 
int v_elev_only(gwfd) 
int gwfd; 1* fildes returned from starting comm with window *1 
{ 

int which; 
int mode; 

1* 

} 

* Call wscroll_set(3W): 
*1 

if (wscroll_set(gwfd. SCROLLBAR_V. SCROLLBAR_ELEVATOR) < 0) 
return(-1); 

* Make the window's border normal and display the window: 
*1 

wbanner(gwfd. SETBANNER); 
wtop(gwfd. SETTOP); 
return(O); 

164 Arrows and Elevators 



User Mode 
The wscrolLset{3W) routine is also used to set a window to user mode. However, the 
parameters are set differently from those used in pan mode. 

Procedure 
To enable arrows or elevators in user mode, call wscrolLset as: 

wscroll_set (fd, which, mode, value [, min, max, size]> 

The fd, which, mode, and value parameters must always be supplied. The min, max, and 
size parameters are optional; they specify elevator scale information. 

fd 
The fd parameter is an integer file descriptor returned from starting communication with 
the window. 

which 
The which parameter defines which scroll bars will be affected. The rules for setting 
which in user mode are the same as those for pan mode. For example, to affect both the 
vertical and horizontal scroll bars, set which to the OR of SCROLLBAR_ V and SCROLLBAR_H: 

which = SCROLLBAR_V I SCROLLBAR_H; 

mode 
As with pan mode, this parameter defines whether to enable arrows, elevators, or both 
in the affected scroll bar(s). But in addition to enabling arrows or scroll bars, mode has 
other functions, described next. 

The first additional function of mode is to enable user mode. To enable user mode, OR 
mode with SCROLLBAR_USERMODE. For example, to enable user mode and the arrows and 
elevators, set mode as: 

mode = SCROLLBAR_USERMODE I SCROLLBAR_ARROWS I SCROLLBAR_ELEVATOR; 

The second additional function of mode is to indicate whether optional scale information 
is provided, i.e., whether the min, max, and size parameters are passed. This is useful 
only if elevators are enabled. 

Arrows and Elevators 165 



To specify elevator scale information, OR mode with SCROLLBAR_SCALE. If this bit is set 
in mode, then the min, max, and size parameters must be supplied also. If this bit is not 
set, but elevators are enabled, then wscrolLset assumes default scale values. Elevator 
scale parameters are discussed next. 

value 
When in user mode, the value parameter must be supplied. Value specifies the location 
to put the elevator within the elevator shaft. Value must be within the range specified 
by the min and max parameters, described next. 

min, max, and size 
If the SCROLLBAR_SCALE and SCROLLBAR_ELEVATOR bits are set in the mode parameter, then 
these parameters must be supplied. These parameters allow the programmer to define 
scale information for the elevators. 

Table 8-2 defines each parameter. The Default column shows the values wscrolLset uses 
when elevators are enabled but the SCROLLBAR_SCALE bit is not set. 

Table 8-2. Min, Max, and Size Parameters 

Param Description Default 

min The value corresponding to the upper (if SCROLLBAR_ V is set) or a 
left (if SCROLLBAR_H is set) end of the elevator shafts. If both 
scroll bars are enabled, then min is the same for both the vertical 
and horizontal elevator shafts. 

max The value corresponding to the lower (if SCROLLBAR_ V is set) or 100 
right (if SCROLLBAR_H is set) end of the elevator shafts. If both 
scroll bars are enabled, then max is the same for both the vertical 
and horizontal elevator shafts. 

size The length (on a scale of min to max) of the elevator. For example, 10 
if min and max are -100 and + 100, respectively, then setting size 
to 50 will cause the elevator to always be one-fourth the size of 
the elevator shaft (50 -;- (100 - -100) = 1/4). 

166 Arrows and Elevators 



Reusing Scroll Bar Scale Information 
If serollbar _set is called for the first time, and the SCROLLBAR_SCALE bit is not set in the 
mode parameter, then the defaults shown in Table 8-2 are used for scroll bar scaling. On 
subsequent calls to serollbar _set, if the SCROLLBAR_SCALE bit is not set, wserolLset uses 
the scroll bar scale values set by the last call. 

This allows a program to set scroll bar scaling information once, when wserolLset is first 
called for a window. Thereafter, the program doesn't have to re-supply scroll bar scale 
information (doesn't have to supply the min max, and size parameters). 

Precautions 
In user mode, the EVENT_ELEVATOR event, per se, does not cause the elevator to move. The 
application must move the elevator by calling wserolLset again with the value parameter 
set "appropriately" for the attempted move. 

The "appropriate" value is determined via event detection. This is discussed in detail in 
the "Getting Scroll Bar Events in User Mode" section, later. 

Example 
The following code segment enables user mode in a graphics window. The program 
has already started communication with the window; gwfd is the integer file descriptor 
returned from doing so. Both the vertical and horizontal elevators are enabled, but not 
the arrows. In addition, optional elevator scale information is provided. 

#include <window.h> 

int 
int 
int 

int 
int 

int 

/* 

gwfd; 
which; 
mode; 

value; 
min. 
max; 
size; 

/* 
/* 
/* 

* 
* 
* 
*/ 

/* 

/* 
/* 

graphics window file descriptor */ 
identifies which scroll bars to enable */ 
identifies: 

- whether to enable arrows. elevators. 
- user or pan mode 
- optional elevator scale information 

where to put the elevator in the shaft */ 

coordinates for ends of elevator shaft */ 
size of elevator. based on min and max */ 

* Start communication with the window. obtaining "gwfd": 
*/ 

or both 

Arrows and Elevators 167 



* Enable both the vertical and horizontal scroll bars: 
*/ 

which = SCROLLBAR_V SCROLLBAR_H; 
/* 
* Enable the elevators only: 
*/ 

mode = SCROLLBAR_ELEVATOR; 
/* 
* Enable user mode: 
*/ 

mode 1= SCROLLBAR_USERMODE; 
/* 
* Optional elevator scale information to be passed also: 
*/ 

mode 1= SCROLLBAR_SCALE; 
/* 
* Define scale information: 
*/ 

/* 

min = -100; max = 100; 
size = 25; 
value = 0; 

* Call wscroll_set: 
*/ 

/* from -100 to +100 */ 
/* elevator will be 1/8th length of shaft */ 
/* position the elevator in the middle */ 

if (wscroll_set(gwfd, which, mode, value, min, max, size) < 0) 
{ 

} 

fprintf(stderr, "Error calling wscroll_set ... \n"); 
exit(l); 

168 Arrows and Elevators 



Getting Scroll Bar Events in User Mode 
Once user mode is enabled for a window, a program can get EVENT_SB_ARROW and 
EVENT_ELEVATOR event information via either event detection routines, or graphics win­
dow input routines. This section discusses how to use event detection routines to get 
this information; graphics window input routines are discussed in the "Graphics Window 
Input Routines" chapter. 

Procedure 
To detect scroll bar events in a window, a program would typically do the following: 

1. Call signal{2} to set up a signal handler for SIGWINDOW. 

2. Call wsetsigmask{3W) to enable scroll bar events; then wait for events to occur. 

3. Enable user mode for the window. 

4. On receiving SIGWINDOW, call weventpoll{3W) to get scroll bar event informa­
tion. 

Each step is discussed in more detail next. 

Call signal(2) 
Setting up a signal handler is discussed in detail in the "Event Detection" chapter. You 
should understand the concepts in that chapter before proceeding. 

#include 
#include 

void 
void 

/* 

<stdio.h> 
<signal.h> 

sb_events 0 ; 
pollevents 0 ; 

/* signal handler for elevator & arrow events */ 
/* routine to poll elevator & arrow events */ 

* Call signal(2) to set up the signal handler; then set the event mask: 
*/ 

if (signal (SIGWINDOW. sb_events) == -1) 
{ 

fprintf(stderr. "Error setting up signal handler.\n"); 
exit(l); 

} 

Arrows and Elevators 169 



Call wsetsigmask(3W) 
After setting up the signal handler, the program should call wsetsigmask(3W) to ensure 
that SIGWINDOW is sent when the desired scroll bar events occur. To catch arrow 
events, a program should set the EVENT_SB_ARROW bit in the event mask passed to wset­
sigmask; to catch elevator events, the program should set the EVENT_ELEVATOR bit. The 
following code segment sets a window's event mask so the window will send SIGWIN­
DOW when arrow and elevator events occur. 

#include 
#include 

int 
int 

/* 

gwfd; 
events; 

<stdio.h> 
<window.h> 

/* graphics window file descriptor */ 
/* event mask */ 

* Set the window's event mask to catch arrow and elevator events: 
*/ 

events = EVENT_SB_ARROW I EVENT_ELEVATOR; 
if (wsetsigmask(gwfd. events) == -1) 
{ 

} 

fprintf(stderr. "Error setting event mask.\n"); 
exit (1) ; 

Enable User Mode 
After the signal handler is set up and the window's event mask is set appropriately, the 
program should call wscrolLset to enable user mode for the arrows and/or elevators. The 
following code segment enables user mode and defines scroll bar scale information. 

#include 
#include 

int 
int 
int 
int 
int 

int 
int 

<stdio.h> 
<window.h> 

value O' 
min = -100; 
max = 100; 
size = 20; 
which = SCROLLBAR_V 

gwfd; 
mode; 

170 Arrows and Elevators 

/* graphics window file descriptor */ 
/* parameters to wscroll_set */ 



/* 
* Enable vertical and horizontal scroll bars and arrows. 
*/ 

mode = SCROLLBAR_ELEVATOR 1 SCROLLBAR_ARROWS; 
mode 1= SCROLLBAR_USERMODE 1 SCROLLBAR_SCALE; 
if (wscroll_set(gwfd. which. mode. value. min. max. size) == -1) 
{ 

} 

fprintf(stderr. "Error setting scroll bar info.\n"); 
exit(1); 

Wait for SIGWINDOW 
Once all the setup is finished, the program can wait for the SIGWINDOW signal. The fol­
lowing code segment waits for SIGWINDOW in a while loop. The variable got_sigwindow 
is a global boolean variable which is set by the signal handler sb_events when SIGWIN­
DOW is received. If sb_events == 1, then the program executes pollevents, which 
determines what event occurred and does the appropriate action. This is shown more 
thoroughly in the final code example in this section. 

int got_sigwindow = 0; /* global boolean. set by signal handler when 
SIGWINDOW is received */ 

main(argc. argv) 

/* 
* Now wait for SIGWINDOW. 
*/ 

while (1) 
{ 

if (got_sigwindow) 
{ 

got_sigwindow = 0; 
pollevents(gwfd) ; 
continue; /* go back in case signals occurred 

before "continue" was reached */ 
} 

pause 0 ; 
} 

Arrows and Elevators 171 



Example 
The following program enables both the vertical and horizontal elevators and arrows in 
a graphics window's border. The program assumes the name of the graphics window is 
passed as the first positional parameter; i.e., the program is called as: 

program grwindow 

where grwindow is the name of the graphics window in which to enable elevators and 
arrows, and program is the name of the program after it is compiled. 

When the user activates an arrow or scroll bar in grwindow's border, the program displays 
a message telling what type of event (arrow or elevator) occurred along with descriptive 
information about the event. If the user moves an elevator, the program re-positions thp 
elevator accordingly. 

#include <stdio.h> 
#include <window.h> 
#include <signal.h> 
int events = EVENT_ELEVATOR I EVENT_SB_ARROW; 
int got_sigwindow = 0; /* boolean, set if SIGWINDOW received */ 

1* 
* Define elevator location (value) and scale information globally: 
*/ 

int value = 0; 
int min = -100; 
int max = 100; 
int size = 20; 

172 Arrows and Elevators 



main(argc. argv) 
int argc; 
char *argv [] ; 
{ 
int 
int 
char 
int 
int 
int 
int 
int 
int 
void 
void 

/* 

WDlfd; 
gwfd; 
wname[WINNAMEMAX] ; 
mode; 
which; 
est_WDl_comO; 
term_WDl_comO; 
est_grO; 
term_grO; 
sb_events 0 ; 
pollevents 0 ; 

1* window manager file descriptor *1 
1* graphics window file descriptor *1 
1* path name of window device interface *1 
1* parameters to wscroll_set */ 
1* determines which scroll bars to affect *1 
1* starts WDl communication *1 
1* stops wm communication *1 
1* starts graphics window communication *1 
1* stops graphics window communication *1 
1* sig handler for elevator & arrow events */ 
1* routine to poll elevator & arrow events *1 

* Start communication with the window manager to get "wmfd": 
*1 

/* 

if «WDlfd = est_wm_com(» == -1) { 

} 

fprintf(stderr. "Error starting wm communication.\n"); 
exit(1); 

* Build the window's path name and start communication: 
*1 

/* 

if (wmpathmake(IWMDIR". argv[1]. wname) == -1) { 
fprintf(stderr. "Error building window path name.\n"); 
exit(1); 

l: 
if «gwfd = est_gr(WDlfd. wname» == -1) { 

} 

fprintf(stderr. "Error starting window communication.\n"); 
exit(1); 

* Call signal(2) to set up the signal handler; then set the event mask: 
*1 

if (signal(SIGWINDOW. sb_events) == -1) { 

} 

fprintf(stderr. "Error setting up signal handler.\n"); 
exit(1); 

if (wsetsigmask(gwfd. events) == -1) { 

} 

fprintf(stderr. "Error setting event mask.\n"); 
exit (1) ; 

Arrows and Elevators 173 



/* 
* Enable vertical and horizontal scroll bars and arrows. 
*/ 

mode = SCROLLBAR_ELEVATOR 1 SCROLLBAR_ARROWS; 
mode 1= SCROLLBAR_USERMODE 1 SCROLLBAR_SCALE; 
which = SCROLLBAR_V 1 SCROLLBAR_H; 
if (wscroll_set(gwfd, which, mode, value, min, max, size) == -1) { 

fprintf(stderr, "Error setting scroll bar info.\n"); 
exit(l); 

} 

/* 

} 

* Now wait for SIGWINDOW. 
*/ 

while (1) { 
if (got_sigwindow) { 

got_sigwindow = 0; 
pollevents(gwfd); 
continue; /* go back in case signals occurred 

before "continue" was reached */ 
} 

pause 0 ; 
} 

/* 
* Signal catcher for scroll bar events. 
* Sets "got_sigwindow" to 1 and re-enables itself to catch SIGWINDOW. 

void sb_events(signum) 
int signum; 
{ 

} 

if (signum != SIGWINDOW) { 

} 

fprintf(stderr, "Wrong signal number received.\n"); 
exit (1) ; 

printf("\nSIGWINDOW received!\n"); 
got_sigwindow = 1; 
/* Re-enable SIGWINDOW to catch events should they occur again. */ 
if (signal (SIGWINDOW, sb_events) == -1) { 

} 

fprintf(stderr, "signal failed in sb_events.\n"); 
exit (1) ; 

174 Arrows and Elevators 



/* 
* Routine to poll for elevator and arrow events; 
* called when global "got_sigwindow" is set to 1. 

void pollevents(gwfd) 
int gwfd; 
{ 

int event_mask; 
int count. x.y; 
int mode; 
char *elev_str; 

do { 

/* 

event_mask = events; 
if (weventpoll(gwfd. &event_mask. &count. &x.&y) 

fprintf(stderr. "Weventpoll failed.\n"); 
exit (1) ; 

} 

if (event_mask & EVENT_ELEVATOR) 
{ 

switch (x) 
{ 

} 

case SCROLLBAR_V 
elev_str 
break; 

case SCROLLBAR_H 
elev_str 
break; 

default: 
elev_str 

"VERTICAL" ; 

"HORIZONTAL"; 

"INVALID" ; 

-1) { 

printf("%s elevator activated.\n". elev_str); 
printf("Is now at location %d.\n\n". y); 

* Call wscroll_set again to display elevator at its new location: 
*/ 

mode = SCROLLBAR_ELEVATOR 1 SCROLLBAR_ARROWS; 
mode 1= SCROLLBAR_USERMODE; 
if (wscroll_set(gwfd. x. mode. y) == -1) { 

fprintf(stderr. "Wscroll_set failed.\n"); 
exit (1); 

} 

Arrows and Elevators 175 



} 

} 

if (y == min) { 

} 

printf("Elevator at 'min' position.\n"); 
printf("\n\n***FINISHED***\n") ; 
exit(O); 

else if (event_mask & EVENT_SB_ARROW) { 
printf("Arrow clicked.\n"); 

} 

printf("Sum of horizontal arrows is %d.\n". x); 
printf("Sum of vertical arrows is %d.\n\n". y); 

} while (event_mask); 

176 Arrows and Elevators 



Graphics Window Hotspots 9 
Graphics window hotspots allow a program to be signalled when the locator enters or 
exits a rectangular area within the graphics window's raster, or when the user presses a 
button within the rectangle. This chapter describes how to use hotspot routines. 

By calling hotspot routines, a program can: 

• create a hotspot 

• change a hotspot's characteristics 

• delete a hotspot 

• get hotspot event information. 

Graphics Window Hotspots 177 



Concepts 
This section discusses hotspot concepts. You should read this section before using hotspot 
routines. 

What Is a Hotspot? 
A hotspot is an invisible rectangular area on a graphics window's raster. The location 
and size of the hotspot are defined via hotspot routines. 

A hotspot event (EVENT_HOTSPOT) occurs when the user activates a hotspot. Any of the 
following actions can activate a hotspot: 

• moving the locator into or out of a hotspot 

• pressing the I Select I key while the locator is within a hotspot 

• pressing a button (1 through 8) while the locator is within a hotspot. 

Using hotspot routines, a program can control which action or actions activate the 
hotspot. For example, a hotspot could be activated only when the locator enters or 
exits the hotspot, or when the user presses button 2. 

A window can have up to 128 hotspots. Each hotspot has a unique hotspot id, returned 
when the hotspot is created. Hotspot routines use the hotspot id to identify which 
hotspot to change, inquire, or delete. 

Hotspot Event Detection 
Hotspot events can be detected two ways: via graphics window input routines or event 
detection routines. The "Graphics Window Input" chapter discusses the use of graphics 
window input routines; event detection is covered in the "Event Detection" chapter and 
later in this chapter. 

178 Graphics Window Hotspots 



Creating a Hotspot 
The whotspoLcreate{3W} routine creates a hotspot for a graphics window. 

Procedure 
To create a hotspot, call whotspoLcreate; its syntax is: 

whotspot_create(jd, bmask, x,y,w,h, evenLbyte) 

return value (hotspot id) 
If whotspoLcreate successfully creates the hotspot, then the hotspot's hotspot id is re­
turned. The hotspot id is an integer which identifies the hotspot for the window. Other 
hotspot routines require the hotspot id as a parameter. 

If whotspoLcreate cannot create the hotspot, then -1 is returned, and errno{2} may be 
set. 

fd 
The jd parameter is an integer file descriptor returned from starting communication with 
the graphics window. 

bmask 
Bmask is an integer bit mask defining which activity or activities should activate the 
hotspot. Each bit in bmask represents an activity, such as moving the locator into or out 
of a hotspot. To activate the hotspot when a particular activity occurs, simply set the 
corresponding bit in bmask. 

Table 9-1 defines the valid activities and the constant values for the bits representing the 
activities. The constants are defined in window.h. 

Table 9-1. Activity Bit Definitions 

Constant (Bit) Activity 

HS_MASK_BUTTONn Locator button n pressed while the locator is within the 
hotspot. n must be between 1 and 8. For example, the 
constant for button 2 is HS_MASK_BUTTON2. 

HS_MASK_SELECT The I Select I key pressed while the locator is within the 
hotspot. 

HS_MASK_ENTEREXIT The locator entered or exited the hotspot. 

Graphics Window Hotspots 179 



x,y,w,h 
The x and y parameters define where to put the hotspot. The upper-left corner of the 
hotspot is placed at the specified coordinates. The -origin (0,0) is the upper-leftmost 
pixel of the raster. The wand h parameters give the hotspot's pixel width and height, 
respectively. 

evenLbyte 
The evenCbyte parameter specifies what should happen when the user activates the 
hotspot. Table 9-2 describes the acceptable values for evenCbyte, as defined in window.h. 

Table 9-2. Valid Values for event_byte (from window.h) 

Value 

K_USER_HS to 
K_USER_HS + 127 

Description 

Start an interactive window move operation on the 
window. When the window move is finished, the 
EVENT _MOVE event will occur for the window. 

Start an interactive window size operation on the 
window. When the size operation is finished, the 
EVENT_SIZE event will occur for the window. 

Activate a system or user-defined pop-up menu for the 
window. The user can then abort the menu, or make a 
selection. 

If you do not want to move or size the window or gener­
ate a system pop-up menu when the hotspot is activated, 
then set evenCbyte to one of these values. When set 
to one of these values, evenCbyte identifies the hotspot 
to event detection and graphics window input routines. 
Typically, evenCbyte is set to a value corresponding to 
the hotspot. 

For example, for the first hotspot, set evenCbyte to 
K_USER_HS; for the second hotspot, set evenCbyte to 
K_USER_HS + 1; for the third, K_USER_HS + 2; and so 
on. Then, when the program calls event detection or 
graphics window input routines to get hotspot informa­
tion, the evenCbyte parameter is returned, identifying 
which hotspot was activated. 

180 Graphics Window Hotspots 



Overlapping Hotspots 
Hotspot rectangles can overlap. When they overlap, they form a stack within the window. 
When an overlapping hotspot is created, it is placed on top of the stack. The only way 
to change a hotspot's location within the stack is to delete it and create it again, forcing 
it to the top. 

When hotspots overlap, the window manager uses the following rules for hotspot enter­
exit semantics: 

• If the locator moves from a hotspot that is lower in the hotspot stack to a hotspot 
that is higher in the hotspot stack, then the lower hotspot is exited and the higher 
hotspot is entered . 

• If the locator moves from a higher into a lower hotspot, then the higher hotspot is 
exited and the lower hotspot is entered. 

For example, suppose two hotspots (A and B) are set up so that B is on top of A (see 
Figure 9-1). When the locator moves into hotspot A, then hotspot A is entered. When 
the locator moves into hotspot B, then hotspot A is exited and hotspot B is entered. 
Then when the locator moves out of B and into A, hotspot B is exited and hotspot A is 
entered. 

EXIT B; 

ENTER A. 

EXIT A 

A 

B 

Figure 9-1. Overlapping Hot~pot Example 

EXIT A; 

ENTER B. 

ENTER A 

Graphics Window Hotspots 181 



Precautions 

• A hotspot can be activated, regardless of whether or not the hotspot's window is 
selected. 

• Pressing an enabled button over a hotspot will activate the hotspot but will not 
select the window. For example, if a hotspot's bmask is set to HS_MASK_BUTTON1 and 
the window is not currently selected, then pressing button lover the hotspot will 
activate the hotspot, but will not select the window, as would normally happen. 

• Only one hotspot at a time can be activated. When the locator is over an area 
which is overlapped by two or more hotspots, only the topmost hotspot in the 
stack can be activated. 

• When a hotspot is activated via a button press, the activation occurs when the 
button is pressed down-not when the button is released. The upstroke of the 
button cannot be detected. 

• A button press over a hotspot whose bmask includes that button will activate the 
hotspot, but will not select the window. 

• If a hotspot is completely obscured (covered) by another hotspot or hotspots, then 
it cannot be activated. 

Example 
The following code segment sets up two hotspots. The hotspot id for each hotspot is 
stored in the array named hotspots. 

The first hotspot is located at 0,0, is 50 pixels wide by 100 pixels high, is activated by 
button 1 or 2 being pressed within the hotspot, and on being activated, a window move 
operation is generated. The second hotspot is activated by the locator entering or exiting 
the hotspot, is located at 50,0, is 20 by 20 pixels, and on being activated, its evenLbyte 
parameter is set to K_USER_HS. 

#include <window.h> 

mainO 
{ 

int 
int 
int 

hotspots [128] ; 
gwfd; 
bmask, 
x,y,w,h; 

/* holds up to 128 hotspot id's per window */ 
/* graphics window file descriptor */ 
/* activation bit mask */ 
/* hotspot location and size information */ 

int event_byte; /* what-to-doon hotspot activation */ 

182 Graphics Window Hotspots 



* Start communication with the window. obtaining "gwfd". 
*1 

1* 
* Create the first hotspot: 
*1 

bmask = HS_MASK_BUTTONl I HS_MASK_BUTTON2; 
x = y = 0; 
w = 50; h = 100; 
event_byte = K_MOVE_ST; 
hotspots[O] = whotspot_create(gwfd. bmask. x.y.w.h. event_byte); 
if (hotspots[O] < 0) 
{ 

} 

perror("whotspot_create gwfd"); 
exit(l); 

1* 

} 

* Create the second hotspot: 
*1 

bmask = HS_MASK_ENTEREXIT; 
x = 50; Y = 0; 
w = h = 20; 
event_byte = K_USER_HS; 
hotspots[l] = whotspot_create(gwfd. bmask. x.y.w.h. event_byte); 
if (hotspots[l] < 0) 
{ 

} 

perror("whotspot_create gwfd"); 
exit (1) ; 

Graphics Window Hotspots 183 



Changing a Hotspot's Characteristics 
Once a ho.tspo.t is created, it can be mo.dified. Fo.r example, it may be desirable to. change 
the width and height, o.r the lo.catio.n o.f a ho.tspo.t after it is activated. Two. ro.utines are 
used to. change a ho.tspo.t's characteristics: whotspoLget(3W) and whotspoLset(3W). 

Procedure 
To mo.dify a ho.tspo.t, call whotspoLset to. change the ho.tspo.t's parameters to new values. 
A program can also. o.ptio.nally call whotspoLget to. get informatio.n abo.ut a ho.tspo.t. 

whotspoLset 
The whotspoLset ro.utine changes a ho.tspo.t's parameters; its syntax is: 

whotspot_set (fd, hotspoL id, bmask, x, y, w, h, evenL byte) 

The hotspoLid parameter tells whotspoLset which ho.tspo.t to mo.dify. Set this parameter 
to. the hotspo.t id returned when the ho.tspot was created via whotspoLcreate. 

The fd, bmask, x,y,w,h, and evenLbyte parameters are identical in functio.n to. tho.se o.f 
whotspoLcreate. That is, fd is the file descripto.r o.f the windo.w, and bmask, x,y,w,h, 
and evenLbyte define the hotspo.t's activity bit mask, lo.catio.n, size, and event byte, 
respectively. 

whotspoLget 
The whotspoLget ro.utine's syntax is: 

whotspot_get (fd, hotspoLid, bmask, x,y,w,h, evenLbyte) 

Fd is the file descriptor returned from starting co.mmunicatio.n with the windo.w. 

The hotspoL id parameter is an integer id number, returned when the ho.tspot was cre­
ated via whotspoLcreate. This parameter lets whotspoLget kno.w which ho.tspot to. get 
info.rmatio.n fo.r. 

On return fro.m whotspoLget, bmask, x, y, w, h, and evenLbyte po.int to. integers co.ntain­
ing the ho.tspo.t's activatio.n bit mask, lo.catio.n, size, and event_byte respectively. 

184 Graphics Windo.w Ho.tspo.ts 



Precautions 
When a hotspot is changed to be activated on entering or exiting the hotspot-i.e., when 
its bmask parameter is changed to HS_ENTEREXIT-the hotspot will be activated according 
to the rules in Table 9-3. 

Table 9-3. Activating a Hotspot When ENTEREXIT Is Changed 

ENTEREXIT Set Pointer in Hotspot Pointer in Hotspot Hotspot 
Previously Before Change After Change Entered or Exited 

No No Yes Enter 

No Yes Yes Enter 

Yes No Yes Enter 

Yes Yes No Exit 

Example 
The following code segment creates a hotspot, modifies the hotspot, and finally, gets and 
displays the hotspot's parameters. 

#include <stdio.h> 
#include <window.h> 
maine) 
{ 
int gwfd; /* graphics window file descriptor */ 
int hotspot_id; 
int bmask. x.y.w.h. event_byte; 

/* 
* Create the hotspot: 
*/ 

bmask = HS_MASK_BUTTONl HS_MASK_SELECT; 
x = y = 0; w = h = 50; 
event_byte = K_POPUP_ST; 
hotspot_id = whotspot_create(gwfd. bmask. x.y.w.h. event_byte); 
if (hotspot_id < 0) {, 

} 

perror("whotspot_create gwfd"); 
exit(l); 

Graphics Window Hotspots 185 



/* Modify the hotspot's width and height: */ 
w = 100; h = 15; 
if (whotspot_set(gwfd, hotspot_id, bmask, x,y,w,h, event_byte) < 0) { 

perror("whotspot_set gwfd"); 
exit(1); 

} 

/* Get and display the hotspot's parameters: */ 

} 

if (whotspot_get(gwfd, hotspot_id, tbmask, tX,ty,tw,th, tevent_byte) < 0) { 
perror("whotspot_get gwfd"); exit(1); 

} 

printf("HOTSPOT parameters for hotspot id = Xd\n\n", hotspot_id); 
printf(" bmask = Xd\n", bmask); 
printf(" x,y, w,h = Xd,Xd, Xd,Xd\n", x,y, w,h); 
printf(" event_byte = Xd\n", event_byte); 

186 Graphics Window Hotspots 



Deleting a Hotspot 
The whotspoLdelete{3W) routine deletes a hotspot from a window. 

Procedure 
To delete a hotspot, simply call whotspoLdelete; its syntax is: 

whotspot_delete (fd, hotspoL id) 

Fd is the file descriptor returned from starting communication with the graphics window. 
The hotspoLid parameter is the hotspot id returned when the hotspot was created via 
whotspoLcreate. After calling this routine, the hotspot will no longer exist. 

Precautions 
Hotspots are not activated when they are deleted. For example, a program doesn't get a 
hotspot exit if the locator is over a hotspot when the hotspot is deleted. However, if the 
deleted hotspot is over another hotspot, then the hotspot underneath the deleted one 
will get a hotspot enter activation (if enabled in the hotspot underneath). 

Graphics Window Hotspots 187 



Detecting Hotspot Events 
Once a hotspot is created, a program can get hotspot event information via either event 
detection routines or graphics window input routines. This section discusses the use of 
event detection routines; graphics window input routines are discussed in the "Graphics 
Window Input Routines" chapter. 

Procedure 
To detect hotspot events, a program would typically do the following: 

1. Create the hotspot(s) via whotspoLcreate{3W}. 

3. Call signal{2} to set up a signal handler for SIGWINDOW, and wait for a hotspot 
event to generate SIGWINDOW. 

3.- Call wsetsigmask{3W} to enable hotspot events. 

4. On receiving SIGWINDOW, call weventpoll{3W} to get hotspot event information. 

Each step is discussed in more detail below. 

Call whotspoLcreate 
To create hotspots in a window, call whotspoLcreate, as described in the previous section 
"Creating a Hotspot." Once a hotspot is created, it can be activated and can send 
SIGWINDOW to any process that has enabled it, as discussed next. 

Call signal(2) 
To catch SIGWINDOW for hotspot (or any other) window events, a program must set 
up a signal handler via signal{2}. The following code segment sets up a signal handler 
named hs_events. 

#include <stdio.h> 
#include <signal.h> 
#include <window.h> 

int gwfd; /* graphics window file descriptor */ 
void hs_events(); /* signal handler for hotspot events */ 

188 Graphics Window Hotspots 



/* 
* Call signal(2) to set up the signal handler; then set the event mask: 
*/ 

if (signal (SIGWINDOW , hs_events) == -1) 
{ 

} 

fprintf(stderr, "signal failed.\n"); 
exit (1) ; 

/* 
* This signal handler set a global variable "got_sigwindow" to 1 
* upon recieving SIGWINDOW. When this variable is "1", the program 
* knows it has received SIGWINDOW and can act accordingly. 
*/ 

void hs_events(signtun) 
int signum; 

{ 

} 

if (signum != SIGWINDOW) 
{ 

} 

fprintf(stderr, "Wrong signal number received.\n"); 
exit(l); 

printf("\nSIGWINDOW received!\n"); 
got_sigwindow = 1; 

/* Re-enable SIGWINDOW to catch events should they occur again. */ 
if (signal (SIGWINDOW , hs_events) == -1) 
{ 

} 

fprintf(stderr, "signal failed in hs_events.\n"); 
exit (1) ; 

Call wsetsigmask(3W) 
After setting up the signal handler, the program should call wsetsigmask to ensure that 
the SIGWINDOW signal is sent when hotspot events occur. Wsetsigmask sets the event 
mask for a window. Every bit in the event mask corresponds to a window system event. 
To catch hotspot events, set the EVENT_HOTSPOT bit in the event mask, and call wsetsig­
mask. For example, the following code enables hotspot events the window whose file 
descriptor is gwfd: 

Graphics Window Hotspots 189 



#include 
#include 

<stdio.h> 
<window.h> 

if (wsetsigmask(gwfd. EVENT_HOTSPOT) == -1) 
{ 

} 

fprintf(stderr. "wsetsigmask failed.\n"); 
exit(1) ; 

Call weventpoll(3W) 
On receiving SIGWINDOW, the program can determine which event caused SIGWIN­
DOW by calling weventpoll(3Wj. 

For hotspot events, weventpoll sets its x parameter to the evenL byte parameter of the 
activated hotspot. For example, suppose a hotspot was the second hotspot created in 
a window, and its e'l.'enLbyte was set to K_USER_HS + 1 when the hotspot was created. 
Then if the hotspot is activated, wevenLpoll will return the value K_USER_HS + 1 in the 
x parameter. 

On return from weventpoll, the y parameter is set to the cause that activated the hotspot. 
Table 9-4 defines the valid return values for y; these values are defined in window.h. 

Table 9-4 

Cause Description 

EC_BUTTONn Button n was pressed while the locator was 
within the hotspot; 1 ::; n ::; 8. For example, 
EC_BUTTONl means that button 1 activated the 
hotspot. 

EC_SELECT The I Select I key was pressed while the locator 
was within the hotspot. 

EC_ENTER The locator entered the hotspot. That is, the 
locator crossed over the hotspot's border into 
the hotspot. 

EC_EXIT The locator exited the hotspot. That is, the 
locator crossed over the hotspot's border out 
of the hotspot. 

190 Graphics Window Hotspots 



Example 
The following program creates two hotspots in a graphics window and draws the hotspots' 
borders using Starbase graphics routines. The first hotspot is underneath the second 
hotspot. The first hotspot is activated by button one, the Select button, and entering 
or exiting the hotspot. The second hotspot is activated by button two and entering or 
exiting the hotspot. Whenever a hotspot is activated, the program displays a message 
to standard output describing what which hotspot was activated and what caused the 
activation. 

#include 
#include 
#include 
#include 

/* 

<stdio.h> 
<signal.h> 
<window.h> 
<starbase.c.h> 

* Global variables: 
*/ 

int got_sigwindow = 0; 
struct hs_info { 

int id; 
int eb; 

} hs[2]; 

main(argc. argv) 
int argc; 
char *argv [] ; 
{ 

/* boolean. set if SIGWINDOW received */ 
/* hotspot ids and event bytes structure */ 

int wmfd; /* window manager file descriptor */ 
int gwfd; /* graphiCS window file descriptor */ 
char wname[WINNAMEMAX] ; 
int 
int 
int 
int 
void 
void 

/* 

x.y.w.h.dx.dy.rw.rh; 
bmask; 
hsx. hsy; 
hsw. hsh; 
hs_events 0; 
pollevents 0 ; 

/* window size information variables */ 
/* hotspot bmask parameter */ 
/* hotspot location */ 
/* hotspot width and height */ 
/* signal handler for hotspot events */ 
/* routine to poll hotspot events */ 

* Start window manager communication 
*/ 

if «wmfd = est_wm_com(» == -1) 
{ 

fprintf(stderr. "est_wm_com failed.\n"); 
exit (1) ; 

} 

Graphics Window Hotspots 191 



1* 
* Start window communication: 
*1 

1* 

if (wmpathmake("WMDIR", argv[l] , wname) ,;.= -1) 
{ 

} 

fprintf(stderr, "wmpathmake failed.\n"); 
exit(l); 

if «gwfd = est_gr(wmfd, wname» == -1) 
{ 

} 

fprintf(stderr, "est_gr failed.\n"); 
exit(l); 

* Get the size of the window so that hotspots will be one-fourth the 
* size of the window's raster: 
*1 

1* 

if (wgetcoords(gwfd, &x,&y,&w,&h, &dx,&dy,&rw,&rh) -1) 
{ 

} 

fprintf(stderr, "wgetcoords failed.\n"); 
exit (1) ; 

if (wsize(gwfd, rw, rh) == -1) 
{ 

1* make window full size *1 

} 

fprintf(stderr, "wsize failed.\n"); 
exit (1) ; 

* Draw the outline for the hotspots: 
*1 

write_enable (gwfd, -1); 
drawing_mode (gwfd, 3); 
background_color (gwfd, 0); 
clear_view_surface(gwfd) ; 
perimeter_color_index(gwfd, 1); 
interior_style (gwfd, INT_HOLLOW, TRUE); 
dcrectangle(gwfd, 0,0, rw 12 - 1 , rh 1 2 - 1); 1* hs 0 */ 
hsx = rw 1 4; hSy = rh / 4; 
hsw = rw I 2; hsh = rw / 2; 
dcrectangle(gwfd, hsx,hsy, hsx + hsw - 1, hsy + hsh - 1); /* hs 1 *1 
make_picture_current(gwfd) ; 

192 Graphics Window Hotspots 



/* 
* Set hotspot values for hotspot 0: 
*/ 

/* 

bmask = HS_MASK_BUTTONl I HS_MASK_SELECT I HS_MASK_ENTEREXIT; 
hsx = hSy = 0; 
hsw = rw / 2; hsh = rh / 2; 
hs[O] .eb = K_USER_HS; 
if ((hs[O] .id = whotspot_create(gwfd. 

{ 

} 

bmask. hsx.hsy. hsw.hsh. hs[O] .eb» == -1) 

fprintf(" whotspot_create failed on hotspot O.\n"); 
exit (1) ; 

* Set hotspot values for hotspot 1: 
*/ 

/* 

bmask = HS_MASK_BUTTON2 I HS_MASK_ENTEREXIT; 
hsx = rw / 4; hSy = rh / 4; 
hsw = rw / 2; hsh = rw / 2; 
hs[l] .eb = K_USER_HS; 
if ((hs[l].id = whotspot_create(gwfd. 

{ 

} 

bmask. hsx.hsy. hsw.hsh. hs[l] .eb» == -1) 

fprintf(" whotspot_create failed on hotspot l.\n"); 
exit (1) ; 

* Call signal(2) to set up the signal handler; then set the event mask: 
*/ 

if (signal (SIGWINDOW. hs_events) == -1) 
{ 

} 

fprintf(stderr. "signal failed.\n"); 
exit (1) ; 

if (wsetsigmask(gwfd. EVENT_HOTSPOT) == -1) 
{ 

} 

fprintf(stderr. "wsetsigmask failed.\n"); 
exit(l); 

Graphics Window Hotspots 193 



/* 
* Now wait for SIGWINDOW. 
*/ 

while (1) 
{ 

if (got_sigwindow) 
{ 

got_sigwindow = 0; 
pollevents(gwfd); 
continue; /* go back in case signals occurred 

before "continue" was reached */ 
} 

pause 0 ; 
} 

} 

/* 
* Signal handler for hotspot events. Sets global got_sigwindow to 1. 
*/ 

void hs_events(signum) 
int signum; 
{ 

} 

if (signum != SIGWINDOW) 
{ 

} 

fprintf(stderr. "Wrong signal number received.\n"); 
exit (1) ; 

printf("\nSIGWINDOW received!\n"); 
got_sigwindow = 1; 

/* Re-enable SIGWINDOW to catch events should they occur again. */ 
if (signal (SIGWINDOW. hs_events) == -1) 
{ 

} 

fprintf(stderr. "signal failed in hs_events.\n"); 
exit (1) ; 

void pollevents(gwfd) 
int gwfd; 
{ 
int event_mask; 
int count. x.y; 
char *cause; 
int hs_num; 

194 Graphics Window Hotspots 



} 

do { 
event_mask = EVENT_HOTSPOT; 
if (weventpoll(gwfd. &event_mask. &count. &x.&y) -1) 
{ 

} 

fprintf(stderr. "Weventpoll failed.\n"); 
exit(l); 

if (event_mask == EVENT_HOTSPOT) 
{ 

} 

if (x == hs[O] .eb) 
hs_nwn = 0; 

else if (x == hs[l] .eb) 
hs_nwn 1; 

else 

switch (y) 
{ 

} 

case EC_BUTTON1 
cause = "button one"; 
break; 

case EC_BUTTON2 
cause = "button two"; 
break; 

case EC_SELECT : 
cause = "Select button"; 
break; 

case EC_ENTER : 
cause = "entering hotspot"; 
break; 

case EC_EXIT : 

default: 

cause = "exiting hotspot"; 
break; 

cause = "unknown cause"; 
break; 

printf("Hostpot %d (id: %d) activated by %s.\n". 
hs_nwn. hs[hs_nwn] .id. cause); 

} while (event_mask); 

Graphics Window Hotspots 195 



Notes 

196 Graphics Window Hotspots 



User-Definable Menus 10 
You can create your own pop-up menus by using window menu routines. These menus 
are much like the system pop-up menu: by using the locator, users of your applications 
can select items from these menus; your programs can then determine which item(s) the 
user selected and do some appropriate action. This chapter describes the use of window 
menu routines; the following topics are covered: 

• concepts essential to using menu routines 

• creating a menu 

• activating a menu 

• adding menu items 

• getting menu selections 

• deleting a menu 

User-Definable Menus 197 



Concepts 
Each window can have up to 24 user-defined menus. Each menu has a unique menu id, 
returned when the menu is created. 

Although a window can support several menus, only one menu at a time can be displayed 
per window. Only when a menu is displayed can the user select items from the menu. 

To be displayed, a menu must first be activated. Several menus can be activated at 
the same time, and window routines allow a program to specify which button press{es) 
should cause the menu to be displayed. 

Each menu is comprised of menu items. Menu items are added to menus via menu 
routines. Each menu item is identified by an item id, returned when the item is added 
to the menu. 

Menu items can be either selectable or non-selectable. If event detection is enabled for a 
window, then selectable items are capable of generating a menu event; that is, they can 
be selected from a pop-up menu by clicking the locator over the menu item. 

If the locator is clicked over a selectable menu item of the active displayed menu, the 
SIGWINDOW interrupt will be sent to all processes which requested window signals via 
signal(2) and weventpoll{3W). The weventpoll routine can be used to determine that a 
menu item selection was made (the EVENT _MENU event mask indicates that a menu selection 
was made); menu routines can be used to get the menu and item id's for the selected 
item. 

If the locator is clicked over a non-selectable item, the menu is aborted, and a value of 
-1 is returned as the selected item id. A menu item should be made non-selectable if 
you don't wish the menu item to be selectable from the pop-up menu. For example, on 
the system pop-up menu, the window label appears on the menu but is not selectable; 
invalid options, such as the Top option is already the top window in the display stack, 
should also be made non-selectable. 

You can define your own menu button mask which tells the window manager which 
locator button{s) should invoke a pop-up menu in a window. This mask is specified 
when the menu is created. 

The window manager determines whether to invoke a user-defined or system pop-up 
menu by looking at the WMIUICONFIG window system environment variable and the 
menu button masks for the active menus in each window. 

198 User-Definable Menus 



When a locator button is pressed, the window manager looks at the lower eight bits of 
the WMIUICONFIG environment variable. If the bit corresponding to the button is set, 
then a system pop-up menu will be invoked under either of the following conditions: 

• The locator is positioned over the desk top and the pop-up menu is enabled over the 
desk top (Le., WMIUICONFIG is not logically ORed with Ox040000). By default 
the pop-up menu is enabled over the desk top. In this case, the system pop-up 
menu is invoked for the selected window. 

• The locator is positioned over a window's border and the pop-up menu is enabled 
over window borders (i.e., WMIUICONFIG is not logically ORed with Ox020000). 
By default the pop-up menu is enabled over window borders. The system pop-up 
menu is invoked for the window whose label the locator was clicked over. 

If none of the bits in WMIUICONFIG corresponds to the button that was pressed, then 
the window manager looks at the menu button mask for the active menus in the various 
windows. Whether or not a user-defined menu is invoked depends on the position of the 
locator when the button is pressed. 

• If the locator is positioned over the desk top, then a pop-up menu will be invoked 
for the selected window if all the following are true: 

a. The selected window has an activated pop-up menu, 

b. A bit corresponding to the pressed button is set in the active menu's button 
mask, and 

c. The menu is "marked" to pop up automatically when the button is pressed. 
(Whether or not a menu is marked to pop up is specified when the menu is 
activated. ) 

• If the locator is positioned over a window's border area (not over manipulation 
areas) or user area, then a pop-up menu will be invoked for the window if all the 
following are true: 

a. The window has an activated pop-up menu, 

b. A bit corresponding to the pressed button is set in the window's menu button 
mask, and 

c. The menu is "marked" to pop up automatically when the button is pressed. 

User-Definable Menus 199 



Creating a Menu 
The wmenu_create(3W) routine allocates the resources necessary for a user-defined pop­
up menu. A menu's button mask is also specified when the menu is created. The button 
mask determines which locator buttons invoke the pop-up menu. 

Procedure 
To create a pop-up menu, call wmenu_create. It will create the menu and return the 
menu's menu id. The syntax for this routine is: 

wmenu_create(wfd, cbits, button_mask, parenLmenuid, parenLitem) 

You specify which window to create the menu for by passing the file descriptor of the 
window's device interface, wfd. 

The cbits parameter defines the menu's type. Currently, only the pop-up menu type is 
supported, so cbits should always be set to MENU_POPUP. 

The button_mask parameter defines which button(s) invoke this pop-up menu and which 
button(s) select an item when clicked over a menu item. The lower eight bits (least­
significant byte) define the buttons that invoke the pop-up menu; the next eight bits 
define the buttons that select a menu item. 

The least-significant bit of each button mask corresponds to button one; the second bit 
corresponds to button two; and so on. The most-significant bit of each mask (bit eight) 
corresponds to the select key. For example, if you want button two to invoke a menu 
and both buttons one and two to make item selections, then set this mask to Ox0302. 

You should always set the parenLmenuid and parenLz"tem parameters to MENU_NOPARENT. 

200 U ser-Definable Menus 



Precautions 
Note that calling this routine does not activate the menu, nor does it cause the menu to 
have any items. For information on activating the menu, see the section "Activating a 
Menu." For details on adding menu items, see the section "Adding Menu Items." 

Example 
The following call to wmenu_create creates a menu; the menu will be invoked when button 
number two (for example, the rightmost mouse button) is pressed; either button one, 
two, or the I Select I key will select a menu item. The menu's id is stored in the menu_id 
variable. 

meIlu_id = wmenu_createCwfd. MENU_POPUP. Ox8202. 
MENU_NOPARENT. MENU_NOPARENT); 

User-Definable Menus 201 



Adding Menu Items 
The wmenu_item{3W) routine adds menu items to a menu; it also can be used to change 
items. 

Procedure 
To add items to a menu, call wmenu_item; its syntax is: 

wmenu_item(w/d, menuid, itemno, type, disp_sel, type_struct) 

The wid and menuid parameters identify the window and menu for which menu items 
are added (or changed). 

If you're adding a new item to a menu, then itemno should be set to MENU_NEWITEM. Items 
are added to the menu sequentially; i.e., the first item added is the topmost menu item 
displayed in the menu. If you're changing an item, you supply the item id that was 
returned when the item was added. 

The type parameter defines the type of the menu item. Set this parameter to MENU_STRING 

if you want a text string to appear as a menu item. Currently, the only other valid value 
is MENU_SEPARATOR which causes a horizontal bar to appear; you can use this type to 
separate different sections of the menu. 

The disp_sel parameter defines whether the item is selectable, how the item is displayed 
within the menu, and how the item will appear when the locator is positioned over it. 
This parameter is set by logically ORing the bits defined in window.h. 

If the item is selectable, then the disp_sel should be logically ORed with MENU_SELECTABLE, 

i.e., the least-significant bit of this parameter should be set; if the parameter is not be 
selectable, then OR it with MENU_NOTSELECTABLE. 

Two different modes can be used to display a menu item: normal or grey. On the system 
menu, valid options are displayed in normal mode (Le., dark letters); invalid options are 
displayed in grey mode (i.e., grey letters). To display an item in normal mode, logically 
OR the disp_sel parameter with MENU_DISPNORM; to display it in grey mode, logically OR 
it with MENU_DISPGREY. If neither bit is set, the default is MENU_DISPNORM. 

202 User-Definable Menus 



Two different modes can be used for tracking an item: inverse tracking and no track­
ing. With inverse tracking, a menu item is displayed in inverse video whenever the 
locator moves over it; with no tracking, the menu item does not invert when the lo­
cator moves over it. To set inverse tracking for an item, set the MENU_TRACKINV bit in 
disp_sel; for no tracking, set the MENU_TRACKNOCHNG bit. If neither bit is set, the default is 
MENU_TRACKNOCHNG. 

The type_struct parameter depends on the type of the menu item. If the type is 
MENU_STRING, then this parameter should point to a null-terminated character string to 
display as the menu item. If the type is MENU_SEPARATOR, then this parameter should point 
to a single-character integer containing the pixel thickness (from 0 to 255) of the line (0 
defaults to 2). 

Example 
The following code sample defines a menu titled fruits. Below the title is a horizontal 
separator bar. Below this are three options defined as follows: 

Menu Item 

kumquat 

carrot 

kiwi 

Description 

A selectable menu item displayed in normal mode and inverted when 
the locator tracks over it. 

A non-selectable menu item displayed in grey mode and not tracked 
when the locator moves over it. 

A selectable menu item displayed in normal mode and inverted when 
the locator tracks over it. 

U ser-Definable Menus 203 



if «menu_id = wmenu_create(wfd. MENU_POPUP. Ox0202. 

{ 
MENU_NOPARENT. MENU_NOPARENTITEM» < 0) 

perror(lIwmenu_create failed ll ); 
exit(1); 

} 

1* 
* Now add the menu items: 

* * First. assign the menu title. 
*1 

if «title_id = wmenu_item(wfd. menu_id. MENU_NEWITEM. O. MENU_STRING. 
(MENU_DISPNORM I MENU_TRACKNOCHNG). IIfruitsll» < 0) 

{ 

} 

perror(lIwmenu_item failed on fruitsll); 
exit (1) ; 

/* 
* Next. put in the horizontal separator bar. 
*/ 

if «bar_id = wmenu_item(wfd. menu_id. MENU_NEWITEM. O. MENU_SEPARATOR. 
(MENU_DISPNORM I MENU_TRACKNOCHNG). NULL» < 0) 

{ 

} 

/* 

perror("wmenu_item failed on bar") ; 
exit (1) ; 

* Assign the "kumquat" menu item. 
*/ 

if «item_id[O] = wmenu_item(wfd. menu_id. MENU_NEWITEM. O. MENU_STRING. 
(MENU_SELECTABLE I MENU_DISPNORM I MENU_TRACKINV). 
"kumquat"» < 0) 

{ 

} 

perror("wmenu_item didn't like the kumquat"); 
exit (1) ; 

204 User-Definable Menus 



/* 
* Assign the "carrot" menu item. 
*/ 

if «item_id[l] = wmenu_item(wfd. menu_id. MENU_NEWITEM. O. MENU_STRING. 
(MENU_DISPNORM I MENU_TRACKNOCHNG). "carrot")) < 0) 

{ 

} 

perror(IIwmenu_item choked on the carrot"); 
exit (1) : 

/* 
* Assign the "kiwi" menu item. 
*/ 

if «item_id[2] = wmenu_item(wfd. menu_id. MENU_NEWITEM. O. MENU_STRING. 
(MENU_SELECTABLE MENU_DISPNORM I MENU_TRACKINV). 

{ 

} 

/* 

"kiwi")) < 0) 

perror("the kiwi gave wmenu_item indigestion") : 
exit (1) ; 

* Now activate the menu so that items can be selected from it: 
* (This is discussed in detail in the next section.) 
*/ 

U ser-Definable Menus 205 



Activating a Menu 
In order for selections to be made from a pop-up menu, the menu must be activated, as 
defined in the concepts section. Activating a menu causes it to be displayable; only 
after a menu is activated and displayed can menu selection be made from it. The 
wmenu_activate{3W) routine activates a user-defined menu. 

Procedure 
To activate a menu, call wmenu_activate; its syntax is: 

wmenu_acti vate (wid, menuid, value) 

The wid parameter is the file descriptor for the window whose menu is to be activated. 

The menuid parameter is the menu id of the menu to activate. This is the id returned 
when the menu was created. 

The value parameter defines when and if to display the menu: 

• If value is MENU_ACT_DIS, then the pop-up menu will be disabled; that is, it won't 
pop up when the user presses the appropriate locator button. You would use this 
if you wanted to disable the menu. 

• If value is MENU_ACT_AUTO, then the pop-up menu will automatically pop up when 
the user presses the appropriate locator button, as defined in the menu button 
mask that was used when the menu was created. The menu pops up at the current 
locator position. 

• If value is MENU_ACT_INQ, then the routine returns the current pop-up state of the 
menu, either MENU_ACT_DIS or MENU_ACT_AUTO. 

• If value is MENU_ACT_IM, then the current pop-up state is ignored and the menu is 
automatically popped up at the current locator position. 

206 U ser-Definable Menus 



Precautions 
Be sure to add items to a menu before activating it. Otherwise, you'll have a null menu 
from which no item selections can be made. 

Example 
The following code segment creates a pop-up menu and activates it. The menu is acti­
vated on button one being clicked; menu selections are rriade with either button one or 
two; the menu can be exited by moving the locator outside its boundary; and the menu 
will automatically pop up when the locator button is pressed. 

if «menu_id = wmenu_create(wfd, MENU_POPUP, Ox0301, 
MENU_NOPARENT, MENU_NOPARENTITEM» < 0) 

{ 

perror(" wmenu_create failed"); 
exit (1) ; 

} 

/* 
* Now add items to the menu ... 
*/ 

/* 
* Now activate the menu to pop up automatically: 
*/ 

if «wmenu_activate(wfd, menu_id, MENU_ACT_AUTO» < 0) 
{ 

} 

perror("wmenu_activate wfd failed"); 
exit (1) ; 

U ser-Definable Menus 207 



Getting Menu Information 
There are two methods for getting menu selection information: 

• you can set up event detection so that you application is notified when a menu 
selection is made 

• or you can constantly poll for menu information using the wmenu_eventread{3W) 
routine. 

Setting Up Event Detection 
As mentioned in the "Concepts" section, if you want your programs to be notified when 
a menu selection is made, you must establish a signal handler and event detection with 
the window in which the menu is activated. After you've established event detection, 
your program will be signaled with the SIGWINDOW interrupt that a window event has 
occurred. 

After receiving the signal, you must be sure that it was a menu item selection that caused 
the event. To do this, you must call weventpoll{3W) with the EVENT_MENU bit set in the 
event mask. 

When you've determined that a menu item was selected, you can use the 
wmenu_eventread{3W) routine to determine which menu and what item was selected. 

Polling for Event Information 
To poll for event information, simply poll for menu information using wmenu_eventread. 
This means to keep calling the routine as often as needed-until you get the menu 
information that you want. Note that although this method is less efficient than setting 
up event detection, it is easer. 

208 User-Definable Menus 



Procedure 
To get the id of the menu from which an item was selected, and to get the item's id, call 
wmenu_eventread{3W}; its syntax is: 

wmenu_eventread(wfd, menuid, itemno) 

Menu selections are kept in a queue until requested with this routine. If the queue is 
empty, then the routine returns -1. Otherwise, it returns the number of items (menu 
selection data items) remaining in the queue. 

Because selection items are queued, you receive menu selection information for the oldest 
menu selection made. The queue holds information for up to 32 item selections. 

The wfd parameter is the file descriptor of the window for which menu selection infor­
mation is to be read. 

The menu'id parameter points to an integer which will contain the id of the menu in 
which a selection was made. 

The itemno parameter points to an integer which will contain the item id of the menu 
item that was selected from the menu. A -1 is returned if the menu was aborted. The 
menu is aborted any of the following ways: 

• the user tries to select a non-selectable item 

• the interactive timeout period (as defined by the WMIATIMEOUT environment 
variable) is exceeded 

• an invalid button is pressed. 

U ser-Definable Menus 209 



Deleting a Menu 
When you are finished with a menu, you should delete it from the system. The 
wmenu_delete{3W) routine removes a user-defined pop-up menu from the system, re­
leasing the resources that were allocated for that menu. 

Procedure 
To delete a menu, call wmenu_delete; its syntax is: 

wmenu_delete( wId, menuid) 

The wId parameter is the file descriptor of the window whose menu will be removed. 

The menuid parameter is the menu id of the menu to delete from the window. 

210 U ser-Definable Menus 



Graphics Window Input Routines 11 
Depending on your application development needs, you may find graphics window input 
capabilities useful. Graphics window input routines provide different ways to read input 
from graphics windows. By calling graphics window input routines, a program can: 

• enable different input modes (ASCII, two-byte, and packetized input modes) 

• read characters in ASCII mode 

• read two-byte keycodes in two-byte mode 

• change a window's input configuration 

• reroute a window's input to another window 

• read event packets in packetized input mode. 

Graphics Window Input Routines 211 



Concepts 
This section discusses concepts essential to using graphics window input routines. Be 
sure to read this section before using these routines. 

Input Modes 
A window's input mode determines how the window handles input. That is, a window's 
input mode determines what kind of data the window sends to processes which read from 
the window. There are three input modes: 

• Mode 0 (ASCII Mode) 

• Mode 1 (Two-Byte Mode) 

• Mode 2 (Packetized Input Mode) 

Mode 0 (ASCII Mode) 
By default, when a graphics window is created, its input mode is Mode 0, also known 
as ASCII mode. If a window is in ASCII mode and the window is selected, then all 
keystrokes are sent to the window's device interface as ASCII characters. See the section 
"Reading Data in ASCII Mode" for details on using ASCII mode. 

Mode 1 (Two-Byte Mode) 
In Mode 1 (also known as two-byte mode), each keypress on the keyboard sends a two­
byte packet identifying which key (or combination of keys) was pressed. Two-byte mode 
is useful to applications that require complete keyboard control. 

For example, when reading data from a window in ASCII mode, a program cannot tell 
the difference between a '2' from the typewriter keys and a '2' from the numeric pad keys. 
However, by reading data from a window in two-byte mode, a process can differentiate 
the CD key on the typewriter keys and the CD key on the numeric pad. See the section 
"Reading Data in Two-Byte Mode" for details on using two-byte mode. 

Mode 2 (Packetized Input Mode) 
In Mode 2 (also known as packetized input mode), a process reads event code packets 
from a window via the winpuLread(3Wj routine. Event code packets contain information 
for a single key press or window event. Event code packets are time-stamped and usually 
time-ordered from the input queue, so a program can determine the order of and time 
between events and key presses. 

212 Graphics Window Input Routines 



When a window is in packetized input mode, button presses over the window will not 
select or top the window as usual. Instead, such button presses are sent to the window 
in an event code packet. 

Packetized input mode provides an alternative to using event detection routines with 
graphics windows. Some application developers may find packetized input mode more 
useful than event detection because the order of events can be determined from the time­
stamp. Also, event code packets generally provide more detailed information than can 
be obtained with event detection routines. The use of packetized input mode is discussed 
in the section "Reading Data in Packetized Input Mode." 

Input Re-Routing 
Windows/9000 allows the input from one graphics window to be routed to a different 
graphics window. The window from which input is re-routed is called the source; the 
window to which the source window's input is sent is called the destination. A program 
can re-route the input from several source windows to one destination window. The 
section "Re-Routing Window Input" discusses how to re-route window input. 

Input Configuration 
Each graphics window has a set of input configuration parameters, which determines how 
the window handles keyboard input and locator tracking information. For example, a 
window's input configuration defines the "nationality" of the keyboard when the window 
is selected; it also determines how the window handles shifted characters; and so on. 

Each window has a default configuration, determined from the window's input mode. For 
modes 0 and 1 (ASCII and two-byte modes), the input configuration cannot be changed. 
However, the input configuration can be changed for windows in Mode 2 (packetized 
input mode). The section "Changing Input Configuration" describes how to change the 
input configuration for a window in packetized input mode. It also describes the default 
configurations for ASCII and two-byte modes. 

Graphics Window Input Routines 213 



Changing Input Mode 
When a window is created, its input mode is ASCII mode by default. The wgskbd{3W} 
routine changes a graphics window's input mode. 

Effect on Line Discipline 
Some application developers may need to know how wgskbd affects the window's line 
discipline. The line discipline is a group of attributes which determine how the window 
type device interface handles input. Wgskbd calls ioctl{2} to change the line discipline 
for the window as follows (see termio{7) and tty{7} for details): 

• BRKINT is enabled-any process affiliated with a window in ASCII or two-byte modes 
will be signaled (via SIGINT) when the I Break I key is pressed and the window is 
selected. 

• ICANON is disabled-canonical processing is turned off. That is, the window will 
not process editing keys; read requests are satisfied directly from the input queue. 
Read requests will not be satisfied until at least VMIN bytes have been received, or 
the timeout value VTIME has expired between bytes. 

• VTIME is O-there is no time-out. Read requests are satisfied only when VMIN bytes 
have been received. 

• VMIN is set to the size of the packets read from the window: 1, 2, or sizeof (struct 

event_code), depending on whether mode is 0, 1, or 2, respectively. 

Procedure 
To change a graphics window's input mode, call wgskbd{3W); its syntax is: 

wgskbd (jd, mode) 

fd 
The fd parameter is the integer file descriptor returned from starting communication 
with the window. 

mode 
Set mode to 0, 1, or 2 to enable ASCII, two-byte, or packetized input mode, respectively. 
Set mode to -1, and wgskbd will return the current mode (0, 1, or 2). 

214 Graphics Window Input Routines 



Precautions 
When the input mode is changed, any unread data from the window will be flushed 
(lost). 

Example 
The following function enables packetized input mode for a graphics window, given the 
window's file descriptor (gwfd). 

#include <window.h> 
int enable_packetized(gwfd) 
int gwfd; 
{ 

} 

if (wgskbd(gwfd. 2) < 0) 
return(-l); 

else 
return(O) ; 

Graphics Window Input Routines 215 



Reading Data in ASCII Mode 
When in ASCII mode, a graphics window processes input data the same as a termO 
window in transmit functions mode. That is, the function keys ([ill ... [][)), editing keys 
(e.g., I Back space I, I Delete line I), and cursor/screen control keys (e.g., I Clear display I, or [£]) 
don't do their usual function; instead, they transmit a special character or an escape 
sequence (string of special characters) when pressed. 

Because the editing keys do not function in ASCII mode, programs must interpret and 
do the appropriate actions for editing keys, such as I Back space I, I Return I, I Delete line I, etc. 
The "Graphics Softkeys" chapter defines the special characters and escape sequences 
returned by editing keys. 

Procedure 
A program can read from a window's device interface using the read{2} system call. The 
syntax of read is: 

read (jd, buj, nbyte) 

Fd is the file descriptor returned from starting communication with the window. The 
buj parameter is a pointer to an area of memory, such as an array, in which to put the 
input characters. Nbyte is the number of bytes to read into the buj area. 

Precautions 

• Even though a graphics window is, by default, in ASCII mode when created, it is 
still good programming practice to call wgskbd to set the mode before reading data. 
This ensures that the window is properly set to ASCII mode. 

• Characters typed at the keyboard will not be sent to a window unless the window is 
selected-Le., the keyboard is attached to the window-or unless the selected win­
dow's input is re-routed to it. The wselect{3 W} routine, described in the "Window 
Manipulation" chapter, attaches the keyboard to a window. 

• Characters typed in the selected graphics window are not displayed. The program 
which reads the characters must display the characters. Fast alpha and font man­
ager routines display characters in graphics windows; see the "Fast Alpha Library" 
and "Font Manager Library" chapters for details. 

216 Graphics Window Input Routines 



Example 
The following program sets a graphics window's input mode to ASCII mode, selects 
the window, and displays it as the top window in the stack. All characters typed at 
the keyboard are echoed to standard output. When the user presses the I ESC I key, the 
program terminates. 

To use this program on a window, you would type: 

program window-name 

w here program is the name of the program after it is compiled and linked, and window­
name is the name of the graphics window from which program reads keyboard input data. 

#include <stdio.h> 
#include <window.h> 
main (argc, argv) 
int argc; 
char *argv [] ; 
{ 

int wmfd; 
int gwfd; 
char wname[WINNAMEMAX] ; 
char ch; 

1* 
* Start communication with the window, select it, and display as top: 
*1 

1* 

wmfd = est_wm_com(); 
wmpathmake(IIWMDIRII, argv[1] , wname); 
if «gwfd = est_gr(wmfd, wname» == -1) { 

fprintf(stderr, lIest_gr failed.\nll); 
exit(1); 

} 
wselect(gwfd, SETSELECT); 
wtop(gwfd, SETTOP); 

* Set the input mode to 0 and echo input characters from the window 
* until the ESC character is read. 

if (wgskbd(gwfd, 0) == -1) { 

} 

fprintf(stderr, IIwgskbd failed.\nll); 
exit(1); 

Graphics Window Input Routines 217 



while (ch != '\033') { 

} 

read (gwfd, &ch, 1); 
if (ch != '\033') { 

putchar(ch); 
fflush(stdout); 

} 

printf("\n\nlnput terminated by ESC character.\n"); 

/* 

} 

* Stop communication with the window: 
*/ 

if (term_gr(gwfd) == -1) { 
fprintf("term_gr failed.\n"); 
exit (1) ; 

} 

218 Graphics Window Input Routines 



Reading Data in Two-Byte Mode 
When the selected window is in two-byte mode, each key or combination of keys pressed 
sends a two-byte keycode packet to the window's device interface. The keycode packet 
identifies which key or combination of keys was pressed on the keyboard. 

Key Types 
To understand what keycode packets are, one must first know what the different key 
types are. Table 11-1 defines the key types. 

Table 11-1. Key Types. 

Type Definition 

modifier The I CTRL I, I Shift I, and I Extend char 1 keys are known as modifier keys. 
These are the only modifier keys. 

normal Any key that represents a single ASCII character is a normal key. 
This includes the I ESC 1/1 DEL I, alphabetical, numeric, punctuation, and 
math symbol keys. 

special Any key that is neither a modifier nora normal key. This includes keys 
labelled with words (e.g., I Clear display I, I Print 1/1 Enter I, I Next I), function 
keys ([ill ... [][]), cursor keys ([!], [3], [8, [TI, and [!]), and blank 
keys (like those above the numeric keypad). 

npad Any key which is part of the 18 keys grouped together on the right 
side of the keyboard and the four unlabeled keys above it. 

roman8 Any normal key which is not an npad key and not the I ESC 1/1 DEL 1 key. 

Some keys are members of more than one set of key types. For example, the rn key in 
the numeric pad is both a normal and an npad key. 

Graphics Window Input Routines 219 



Reading Keycode Packets 
Reading data in two-byte mode is similar to reading data in ASCII mode: The graphics 
window device interface must first be opened via gopen(3G). Once the interface is open, 
the program can read data from the device interface using the read(2) system call. 

However, in two-byte mode, a program reads two-byte keycode packets instead of ASCII 
characters. The format of a keycode packet is: 

struct keycode { 

}; 

unsigned char 
unsigned char 

control_byte; 
data_byte; 

This structure is not defined in any #include files. It is shown here only to clarify the 
structure of keycode packets. 

When reading keycode packets, a program should always read in two-byte multiples 
to ensure that packets don't get "split up." For example, the following code segment 
requests five keycode packets from the graphics window whose file descriptor is gwfd. The 
keycode packets will be placed in an array of keycode structures named keycode_array. 

int gwfd; 
struct keycode { 

unsigned char 
unsigned char 

} keycode_array[5] ; 

control_byte; 
data_byte; 

if (read (gwfd, keycode_array, 5 * sizeof(struct keycode» < 0) 
{ 

} 

perror("read gwfd"); 
exit(l) ; 

220 Graphics Window Input Routines 



Control Byte 
The first byte of a keycode packet is the control byte. The control byte is a bit mask. The 
bits of this mask are defined as constants in window.h; Table 11-2 shows the constants 
and briefly describes them. 

Table 11-2. Control Byte Constants 

Constant (Bit) Definition 

K_SPECIAL Special Key 

K_NPAD Numeric Pad Key 

K_SHIFT_B I Shift I Key Pressed Also 

K_CONTROL_B I CTRL I Key Pressed Also 

K_META_B Meta (Left I Extend char I Key) 
Pressed Also 

K_EXTEND_B Extend (Right I Extend char I Key) 
Pressed Also 

ILSPECIAL 
If a special key is pressed, then the K_SPECIAL bit is set. For example, if the user presses 
the I Enter I key on the numeric pad, then the K_SPECIAL bit will be set, as well as the 
K_NPAD bit. 

ILNPAD 
If an npad key is pressed, then the K_NPAD bit is set. For example, if the user presses the 
CD key on the numeric pad, then this bit will be set in the control byte. 

Modifier Keys (ILSHIFT _B, ILCONTROL_B, K_META_B, K_EXTEND_B) 
If the user holds down a modzJier key while pressing a normal, npad, or special key, then 
the appropriate modifier key bit will be set. For example, if the user holds down the left 
I Extend char I key and the I CTRL I key while pressing the I Back space I key, then the K_META_B, 

K_CONTROL_B bits will be set along with the K_SPECIAL bit. 

Graphics Window Input Routines 221 



Data Byte 
The second byte of the keycode packet is the data byte. The value of the data byte 
depends on the key type. 

Data Byte Values for Special Keys 
If the K_SPECIAL bit is set in the control byte, then the data byte is set to a spe­
cial key value, not an ASCII value. Data byte values for special keys are defined in 
jusr jincludejwindow.h under the "Special key defines" section. For example, if the user 
presses the rightmost key above the numeric pad, the data byte will be K_NP _K3, as defined 
in window. h. 

A program may not be able to read some of the special keys defined in window. h. The 
special keys a program can receive from a window depend on the keyboard's nationality. 
For example, a program cannot read a K_GO_KANJI key from a USASCII keyboard. 

Data Byte Values for Normal Keys 
The data byte for normal keys is determined from the following rules: 

1. If no modifier keys are pressed, then the data byte is set to the shifted or unshifted 
value of the pressed key, determined from the current capslock state. 

Capslock is initially OFF, meaning that roman8 characters will be lower case when 
typed. When the ~ key is pressed, the current caps lock state is toggled. If 
capslock is ON, then roman8 characters will be mapped to upper case. For example, 
if capslock is OFF, then the [EJ key will send a keycode packet whose control byte 
is zero and whose data byte is set to the ASCII value for the 'h' character. And if 
capslock is ON, then pressing the [EJ key by itself will send a packet whose control 
byte is zero and whose data byte is set to the ASCII value for the 'H' character. 

The ~ key itself sends a special key value when pressed. If capslock is currently 
OFF, then pressing ~ will send a keycode packet with the K_SPECIAL bit set in 
the control byte, and the data byte set to K_CAPS_ON. If capslock is ON, then the 
~ will send a keycode packet with the K_SPECIAL bit set and the data byte set 
to K_CAPS_OFF. 

2. If the user holds down the I Shift I modifier key while pressing another key, then the 
K_SHIFT_B bit is set in the control byte, and the data byte is mapped to the ap­
propriate upper- or lower-case ASCII character, depending on the current capslock 
state. 

For example, if capslock is ON, and the user holds down I Shift I while pressing the 
m key, then the K_SHIFT_B bit will be set in the control byte and the data byte 
will be set to the ASCII value for the 'a' character. 

222 Graphics Window Input Routines 



3. If the user holds down the I CTRL I modifier key while pressing another key, then the 
K_CONTROL_B bit is set in the control byte, and the data byte is set to the ASCII 
value of the key. For example, if capslock is OFF and the user holds down I CTRL I 
while pressing the IT] key, then the control byte will be set to K_CONTROL_B and the 
data byte will be set to the ASCII value for the 'c' character. 

4. If the user holds down the left I Extend char I modifier key while pressing another key, 
then K_META_B is set in the control byte, and the data byte is set to the ASCII 
value of the key. For example, if capslock is ON and the user holds down the left 
I Extend char I key while pressing the ~ key, then the control byte will be set to 
K_META_B and the data byte will be set to the ASCII value for the 'M' character. 

5. If the user holds down the right I Extend char I modifier key while pressing a roman8 
key, then K_EXTEND_B is set in the control byte, and the data byte is set to a value 
corresponding to the appropriate Roman-8 character. If the user does not press a 
roman8 key, then data byte is set to the ASCII value for the pressed key. 

For details on the ITF keyboard layout, see the article "Series 300 System Console" 
in HP- UX Concepts and Tutorials: Facilities for Series 200, 300, and 500. For 
information on the Roman-8 character set, see roman8(4) in the HP- UX Reference. 

Numeric Pad Keys 
When an npad key is pressed, the K_NPAD bit is set in the control byte. The numeric pad 
contains both normal and special keys. If a normal key is pressed, then the data byte is 
set to the ASCII value of the key. If a special key is pressed, then the K_SPECIAL bit is 
also set in the control byte, and the data byte is set to the value of the special key, as 
defined in window. h. 

Note that the modzJier keys do not cause npad keys to be mapped to different values: 
data byte is always set to the value of the pressed key. 

Graphics Window Input Routines 223 



Special Cases 
There are special keystrokes which a program should know about. 

BREAK Key 
If the user presses the I Break 1 key by itself, or with any modifier key except I Shift I, then a 
keycode packet will be generated with both the control byte and data byte set to zero. 
In addition, a TCIOBREAK ioctl(2} call will be issued, which will send the SIGINT signal 
to the user process if it has done a setpgrp(2} properly; otherwise, the user process will 
only receive the keycode packet. 

SHIFT -SELECT 
A process cannot read the I Shift H Select I key combination. This key combination is caught 
by the window system (to shuffle windows) and cannot be used by user programs. 

CONTROL-ARROWS 
The combination of the I CTRL 1 and arrow (8], [8, m, [!]) keys will be sent to processes 
reading from the window. However, these key presses will also move the pointer on the 
window system desktop. 

Example 
The following program reads keys from a graphics window in two-byte mode. The pro­
gram echoes a descriptive message for the control byte and data byte for each key pressed. 
When the user holds down the I CTRL 1 key while pressing the I Enter 1 key on the numeric 
pad, the program terminates. 

The program would be executed as: 

program window-name 

where program is the name of the program after it is compiled, and window-name is the 
name of the graphics window from which to read two-byte keycode data. 

224 Graphics Window Input Routines 



#include <stdio.h> 
#include <window.h> 
main(argc. argv) 
int argc; 
char *argv [] ; 
{ 
int wmfd; 
int gwfd; 
char wname[WINNAMEMAX] ; 
short done = 0; 
unsigned char control_byte; 

data_byte; unsigned char 

1* 
* Start communication with the window. top it . and select it: 
*1 

1* 

wmfd = est_wm_com(); 
wmpathmake(IIWMDIRII. argv[l]. wname); 
if «gwfd = est_gr(wmfd. wname» == -1) { 

fprintf(stderr. lIest_gr failed.\nll); 
exit(l); 

} 
wselect(gwfd. SETSELECT); 
wtop(gwfd. SETTOP); 

* Set the input mode to 1 and echo keycode structures 
* until the Enter key on the numeric pad is pressed: 

if (wgskbd(gwfd. 1) == -1) { 
fprintf(stderr. IIwgskbd failed.\nll); 
exit(l); 

} 

while (done == 0) { 
read(gwfd. kcontrol_byte. 1); 
read(gwfd. kdata_byte. 1); 
printf(II----------\nll ); 
if (control_byte k K_SPECIAL) 

printf("Special Key\nll); 
else 

printf(IINormal Key\nll); 

Graphics Window Input Routines 225 



1* 

} 

if (control_byte & K_NPAD) 
printf("Numeric Pad Key\n"); 

if (control_byte & K_SHIFT_B) 
printf("SHIFT also pressed\n"); 

if (control_byte & K_CONTROL_B) 
printf("CTRL also pressed\n"); 

if (control_byte & K_META_B) 
printf("Meta also pressed\n"); 

if (control_byte & K_EXTEND_B) 
printf("Extend also pressed\n"); 

if (control_byte == K_SPECIAL I K_NPAD I K_CONTROL_B) 
done = (data_byte == K_NP_ENTER); 

if (control_byte & K_SPECIAL) 
printf("Data byte value: Y.d\n". data_byte); 

else 
printf("Data byte value: Y.c\n". data_byte); 

printf("\n\nlnput terminated by CTRL + Enter key on numeric pad.\n"); 

* Stop communication with the window: 
*1 

} 

if (term_gr(gwfd) == -1) { 
fprintf("term_gr failed.\n"); 
exit(l); 

} 

226 Graphics Window Input Routines 



Changing Input Configuration 
As mentioned in the "Concepts" section, each graphics window has a default input config­
uration, a set of parameters which determine how the window handles keyboard input and 
locator tracking. For ASCII and two-byte modes this configuration cannot be changed. 
However, for packetized input mode, it can be changed via the winpuCconf(3W) routine. 

Input Configuration Parameters 
Before you can change a window's input configuration parameters, you must know what 
they are. Listed below are the input configuration parameters and their default values 
for each input mode. The parameter names are defined in window. h. 

ILTRACK 
If set, causes the window to report all locator movements for the window when in packe­
tized input mode; that is, allows a program to read locator movements from the window 
via winpuCread(3W). Locator moves are reported only when the keyboard is attached to 
the window. Locator moves during an interactive size or move or pop-up menu operation 
are not reported. 

Note: Enabling K_ TRACK will degrade window system performance because the win­
dow manager must constantly report locator movements. Typically, a program can use 
hotspots to eliminate the need for continuous locator tracking. 

By default, K_TRACK is cleared for all input modes. 

ILLANGUAGE 
Language nationality of the keyboard when attached to the window. See the win­
puLconf(3W) page for supported keyboard nationalities. The constant values shown 
on the winpuLconf(3W) page are defined in window.h. 

The default language is that of the keyboard attached to the computer. For example, if 
the system uses a United States ITF keyboard, then the default language is K_I_USASCII. 

Graphics Window Input Routines 227 



ILCAPSMODE 
Determines whether capslock processing is done. If this parameter is set, then capslock 
processing is enabled. If this parameter is not set, then capslock processing is disabled. 

When capslock processing is enabled, the ~ key toggles the current capslock state and 
causes either the K_CAPS_ON or K_CAPS_OFF key to be sent. When capsmode is disabled, 
the ~ key simply causes the K_CAPS_LOCK key to be sent; all capslock processing is 
disabled (the K_CAPS_ON and K_CAPS_OFF keys are not sent). 

ILCAPSLOCK 
Affect the capslock state. If set, then capslock is turned ON; if cleared, capslock is turned 
off. This is effective only if K_CAPSMODE is set. 

When capslock is OFF, roman8 keys are mapped to lower case characters, unless the 
user also holds down the I Shift I key, in which case the key is mapped to an upper case 
character. For example, if capslock is OFF and the user holds down the I Shift I key while 
pressing the m key, then a 'T' character is sent. The converse is true when capslock is 
ON: For example, if capslock is ON and the user presses the [[] key, then a 'N' character 
is sent; but if the user also holds down the I Shift I key, then a In' character is sent. 

This parameter is cleared by default (capslock is initially OFF). 

ILEXTEND 
Alternate keyboards. For some languages, the I Extend char I key to the right of the space 
bar toggles between normal and alternate keyboards. For other languages, the right 
I Extend char I key is a modifier key to get additional keycodes. This parameter controls 
whether this key does the language-dependent function. 

If this parameter is set, the language-dependent function will be done when this key is 
pressed; if not set, this function won't be done. Depending on your application develop­
ment needs, this mayor may not be important. 

By default, this parameter is set for all input modes. 

228 Graphics Window Input Routines 



ILCONTROL 
Control collapsing of printable characters. If this parameter is set, the I CTRL I key causes 
characters from 64 to 127 decimal to be collapsed to their control values before being 
sent. If not set, then collapsing is not done. (In either case, the I CTRL I key still causes 
the K_CONTROL_B bit to be set in the control byte when the keycode is sent.) For example, 
if K_CONTROL is set and the user holds down I CTRL I while pressing [[], then ASCII EOT 
character (decimal value 4) is sent ('D' ck 037). 

For mode 0, this parameter is set by default; for modes 1 and 2, this parameter is cleared. 

ILSHIFT 
Shift collapsing of capitals. If set, the I Shift I key toggles the case of keys that are affected 
by capslock. If not set, then the I Shift I key does not affect the case of keys. (In either 
case, the K_SHIFT_B bit is set in the control byte if I Shift I is pressed.) 

This parameter is set by default. 

K_META 
Enable Meta modifiers. If set, the presence of Meta keys will be recognized by setting 
the appropriate Meta bits when key codes are sent. If cleared, this capability is disabled. 

This parameter is set by default. 

ILMET~EXTEND 

Enable the I Extend char I key to the left of the space bar as the Meta key. This is effective 
only when K_META is set. If this parameter is set, the left I Extend char I key becomes the 
Meta key. For the Katakana keyboard, it will also switch the keyboard to the Roman 
keyboard at the same time. 

If this parameter is cleared, the left I Extend char I key is simply treated as an I Extend char I 
key, and not a Meta key. 

For mode 0, this parameter is cleared by default; for modes 1 and 2, this parameter is 
set. 

Graphics Window Input Routines 229 



ILKANAKBD 
Katakana keyboard. If set, the alternate Katakana keyboard is currently active. If 
cleared, the Katakana keyboard is not active. This parameter is effective only with 
Katakana-Ianguage keyboards. 

This parameter is cleared by default. 

ILKANJI 
Enable KANJI mode. This parameter is effective only when the keyboard language is 
japanese. If this is set, the left I Extend char I key toggles the state of K_KANJIKBD, described 
next. 

This parameter is cleared by default. 

ILKANJIKBD 
KAN JI input mode. If set, the left Meta key will be used as a key only. If cleared, the 
left Meta key will be used as a Meta key. (The left and right Meta keys, when present, 
are directly under the I Shift I keys.) 

This parameter is cleared by default. 

Procedure 
Input configuration parameters cannot be changed for windows in ASCII or two-byte 
modes. However, a program can change input configuration parameters for a window in 
packetized input mode. 

The winpuCconf(3W) routine can be used to change or determine an input configuration 
parameter; its syntax is: 

winput_conf (fd, param, value) 

The fd parameter is the integer file descriptor returned from starting communication 
with the window. Param should be set to the parameter, from the above list, to change 
or inquire. The value parameter defines the value to set the parameter to. 

To set a parameter other than K_LANGUAGE, set value to 1; to clear a parameter other than 
K_LANGUAGE, set value to o. (For the K_LANGUAGE parameter, set value to a supported value 
shown on the winpuCconf(3W) reference page.) 

To inquire a parameter's value, set value to -1; winpuCconfwill then return the current 
value (0 if the parameter is not set, 1 if set). 

230 Graphics Window Input Routines 



Example 
The following code segment sets the window's input mode to packetized input (Mode 2). 
Then it determines the current value for K_TRACK and displays whether it is set. Finally, 
it sets the K_CONTROL parameter. 

#include 
#include 
main 0 
{ 

int 
int 
int 

gwfd; 
param; 
pval; 

<stdio.h> 
<window.h> 

1* fildes for the graphics window *1 
1* variable to hold input configuration parameter */ 
/* variable to hold value of the input config param */ 

/* Set the window's input mode to packetized input (Mode 2): */ 
if (wgskbd(gwfd. 2) == -1) { 

perror("wgskbd gwfd"); 
exit(1); 

} 

/* Inquire the window's K_TRACK parameter value and display: */ 
pval = winput_conf(gwfd. K_TRACK. -1); 
switch (pval) { 

} 

case 0 printf("Tracking is OFF.\n"); 
break; 

case 1 printf("Tracking is ON.\n"); 
break; 

default: perror(lIwinput_conf gwfd"); 
exit(1); 

/* Set the K_CONTROL parameter: */ 

} 

if (winput_conf(gwfd. K_CONTROL. 1) 
perror("winput_conf gwfd"); 
exit (1) ; 

} 

-1) { 

Graphics Window Input Routines 231 



Re-Routing Window Input 
By calling graphics window input routines, a program can re-route a window's input to 
another window. That is, the keystrokes and events for one window can be sent to another 
window. By re-routing several windows' input to one window, a program can receive all 
events and keystrokes through one window, instead of having to read them separately 
from each window. The following routines are used to re-route graphics window input: 
winpuCsetroute(3W), winpuCgetroute(3W), winpuCwidpath(3W). 

Concepts 
Before using re-routing routines, you should understand some basic concepts. 

Source and Destination Window 
The window from which input is re-routed is the source window. The window that the 
source window's input is re-routed to is the destination window. 

Many-to-One Re-Routing 
Each source window can be re-routed to only one destination window at a time. However, 
several source windows can be re-routed to the same destination window (a many-to-one 
group). Figure 11-1 shows some valid many-to-one groups. 

window 1 

,yindow 2 

winoow J 

source windows 

window 0 

d .. tination 
window 

Figure 11-1. Valid Many-to-One Input Re-Routing Groups 

232 Graphics Window Input Routines 



Multi-Hop Re-Routing 
Windows can also be re-routed in a multi-hop formation (Le., from window to window 
to window, etc.). Figure 11-2 shows some valid multi-hop routes. 

...... _wl_ndo_W_1 ....... t-----... ,.. window 2 
t-----.. ,.. window 3 

window 1 

window 5 

window 2 

window 7 

window 3 

window 6 

window 4 

Figure 11-2. Valid Multi-Hop Routes 

Graphics Window Input Routines 233 



Routing Loops 
A window's input cannot be re-routed backward to any preceding window in the input 
path (known as routing loops). All routing loops ~re illegal. Figure 11-3 shows some 
routing loops. 

window 1 - window 2 - window 3 - ~ 

~l 

r+ window" -

Figure 11-3. Routing Loops-Don't Do Them 

Window ID (wid) 
Every window in an input path has a unique window id (wid) that identifies the window. 
Window id's are useful in packetized input mode: they identify the window from which 
an event code packet originated. 

In packetized input mode, each event code packet has a wid field which is set to the 
window id of the window from which the packet originated. In ASCII and two-byte 
modes, a program cannot determine the originating window for keystrokes. 

Note that a window id is not the same as a window's file descriptor. Window id's 
are maintained globally by the window system, whereas file descriptors are private to 
processes. 

234 Graphics Window Input Routines 



Final Destination Window 
The final destination window is the last window in an input path. Typically, a program 
reads from this window to get input from all windows in the input path. 

Input Modes and Configuration Parameters 
On receiving input from a source window, a destination window handles the data in a 
way appropriate to its input mode, as set by the wgskbd(3W) routine, regardless of the 
input mode of the source window. 

Each window also has its own set of input configuration parameters, as determined by 
the window's input mode (or set via winpuLconf(3W)). When using input routing, it 
is normally desirable to have the same input configuration parameters for all windows. 
This can be accomplished by calling wgskbd to set the mode for each window; or if in 
packetized input mode, by calling winpuLconfto set the parameters for each window. 

Although it is desirable to have the same input configuration parameters, it is not abso­
lutely necessary. If the source and destination windows have different input configuration 
parameters, then input from the destination window will conform to input configuration 
parameters of the source window. 

For most applications, the input mode and input configuration parameters for all windows 
in an input route should be the same. For example, if the final destination window is 
in ASCII mode, then all windows in the path should be in ASCII mode. If the final 
destination window is in two-byte mode, then all windows in the path should be in two­
byte mode. (By default, if all windows are in ASCII mode or in two-byte mode, their 
input configuration parameters will be identical, too.) 

As another example: If the final destination window is in packetized input mode, then all 
windows in the path should be in packetized input mode. If a program changes the input 
configuration parameters of any window in the input path, then all windows should be 
changed similarly, thus ensuring that the input configuration parameters are identical 
for all windows. 

Graphics Window Input Routines 235 



Procedure 
By calling graphics window input routines a program can: 

• re-route a window's input 

• get re-routing information for a window 

Re-Routing 
To re-route a window's input to another window, call winpuCsetroute(3W); its syntax 
is: 

winput_setroute (fd, routepath) 

Fd is the integer file descriptor returned from starting communication with the source 
window. The routepath parameter points to the path name of the destination window. 
After calling this routine, all input from the window represented by fd will be sent to the 
window whose window type device interface is pointed to by the routepath parameter. 

WinpuCsetroute returns the window id of the source window. Note that the window id 
is not the same as the fd parameter. 

If a program reads data in packetized input mode, it should save the window id's of 
windows when calling winpuCsetroute. This way, it can determine which window an 
event code packet came from by comparing the window id field of the event code packet 
with the window id's saved from winpuCsetroute. 

Cancelling Re-Routing 
To turn off input re-routing for a window, call winpuCsetroute on the window and set the 
routepath parameter to NULL. For example, to turn off input re-routing for the window 
whose file descriptor is wfd, call winpuCsetroute as: 

winput_setroute(wfd. NULL) 

where NULL is defined in stdio.h. 

236 Graphics Window Input Routines 



Determining Whether Input Routing Is in Effect 
It may be useful for a program to determine whether a window is part of an input routing 
path, and if so, what is its destination window. The winpuLgetroute(3W) routine does 
this; its syntax is: 

winput_getroute (fd, routepath) 

The fd parameter is the file descriptor returned from starting communication with the 
window for which input routing is to be determined. The routepath parameter is a 
pointer to a space to be filled with the null-terminated path name of the destination 
window device interface if routing is in effect. The space must be large enough to 
hold WINNAMEMAX characters (the maximum path name length for window type device 
interfaces) . 

If input routing is not in effect for the source window, then routepath will point to a 
zero-length, null-terminated string. 

If fd is valid, then winpuLgetroute always returns the window id of the window of the 
window represented by fd. This is useful for getting the window id of the final destination 
window. 

Getting the Path Name for a Window 10 
Given a window id, the winpuLwidpath(3W) routine returns the path name of the win­
dow's window type device interface. The syntax of winpuLwidpath is: 

winput_widpath(wmfd, wid, wname) 

The wmfd parameter is an integer file descriptor returned from starting communication 
with the window manager. The wid parameter is the window id to get the path name 
for. And the wname parameter is a pointer to a space to put the path name of the 
window type device interface whose window id is wid. This space must be large enough 
to hold WINNAMEMAX characters (the maximum length of window type device interface path 
names). 

If wid represents a valid window id, then winpuL widpath returns zero. 

Graphics Window Input Routines 237 



Reading Data in Packetized Input Mode 
In packetized input mode (Mode 2), each event or keystroke in a window is sent to the 
window's window type device interface in an event code packet. The event code packet 
contains information which defines whether an event or keystroke occurred. The event 
code packet also contains information describing what type of event or which keystroke 
occurred. Programs must read event code packets using the winpuLread(9W) routine. 

Event Code Packets 
An event code packet is a structure defined in window.h: 

struct event_code { 

}; 

unsigned char control_byte; 
unsigned char data_byte; 
unsigned char event_byte; 
unsigned char event_cause; 
unsigned int timestamp; 
unsigned int wid; 
int x; 
int y; 

A description of each field of this structure is listed next. 

controLbyte 
The controL byte is a bit mask, similar to the control byte used in two-byte mode, except 
that it has two additional bits: K_EVENT and K_UP. 

If the K_EVENT bit is set (==1), then the event code packet represents an event; if the 
K_EVENT bit is cleared (==0), then the event code packet represents a keystroke. 

If the event code packet represents a keystroke. (K_EVENT bit == 0), then the controL byte 
field represents the same information as the control byte in two-byte mode. For example, 
if a window has the default input configuration parameters for packetized input mode, 
and the user holds down the I Shift I key while pressing the QJ key, then an event code 
packet will be sent with the K_SHIFT_B bit set. 

The K_UP bit is used only with locator button events. If K_UP is set (==1), then a button 
was released from a down position; if K_UP is cleared (==0), then a button was pressed. 
In either case, the K_EVENT bit will also be set, indicating that the event code packet 
represents an event. 

238 Graphics Window Input Routines 



data_byte 
If the event code packet represents a keystroke (K_EVENT bit == 0), then the data_byte 
field represents the same information as the data byte field in two-byte mode: If the 
K_SPECIAL bit is set in controL byte, then data_ byte is set to a value (defined in window. h) 
representing the special key. A complete list of supported special keys is given on the 
winpuLread(3W) reference page. 

If the K_SPECIAL bit is cleared (==0), then data byte is mapped to the appropriate 
character value, depending on: 

1. Which modifier keys are pressed (determined from controL byte), and 

2. The window's input configuration parameters (changed via winpuLcon/(3W)). 

evenLbyte 
If the event code packet represents an event (K_EVENT bit set in controL byte) , then 
evenL byte represents the type of event that occurred. A complete list of event causes is 
listed on the winpuLread(3W) reference page. 

For hotspot events, evenLbyte is set to the hotspot's event byte value, specified when 
the hotspot was created (via whotspoLcreate{3W)) or changed (via whotspoLset{3W)). 
Review the "Graphics Window Hotspots" chapter for details on hotspot event bytes. 

evenLcause 
If the event code packet represents an event, and if the event was caused by a hotspot 
or valid menu item selection, then evenLcause indicates what caused the event. Valid 
values for evenLcause are defined on the winpuLread{3W) reference page. 

timestamp 
The timestamp field is a 32-bit integer specifying when the packet was received by the 
window. Time is given in milliseconds. 

wid 
The wid field is the window id of the window from which the packet originated. The 
window id is useful if a program reads packets from a destination window that is part of 
an input routing path. For details on window id's, see the section "Re-Routing Window 
Input." 

Graphics Window Input Routines 239 



x and y 
If the event code packet represents an event other than hotspot events, x and yare set 
to the x,y values returned by weventpoll{3Wj during-event detection. (See the "Event 
Detection" chapter for detailed descriptions of x and y.) 

For hotspot events, x and y give the position of the locator when the hotspot event 
occurred. X and yare given relative to location 0,0 of the window's virtual raster. 

Procedure 
The winpuLread{3Wj routine reads event code packets from a window's device interface; 
its syntax is: 

winput_read (fd, bufadr, count) 

WinpuLread attempts to read count event code packets into the buffer b ufa dr. Event 
code packets are read from the window whose file descriptor is fd. Bufadr is a pointer to 
a memory space to contain the event code packets read. 

To get the best performance when reading event code packets, set count to 25. Win­
puLread returns the number of event code packets actually read, which may be less than 
count. See "Input Blocking" below for details. 

Event Code Overflow 
It is possible that more than 25 events or keypresses may occur between calls to win­
puL read. If this happens, an event code packet is sent with its evenL byte field set to 
K_OVERFLOW. 

Any hotspot events or keystrokes occurring after overflow will be lost. However, the 
window manager keeps track of the most recent state for other types of events, and will 
send an event code packet indicating these states. 

For example, suppose overflow occurs and the user moves a window several times before 
the program calls winpuL read. All the locator moves after the K_OVERFLOW packet will be 
lost. But the last window move will not be lost; the program will still receive a K_MOVE_CT 

packet indicating where the window was placed by the final move. 

240 Graphics Window Input Routines 



Input Blocking 
If a program calls winpuL read on a window that doesn't yet have any event code packets, 
then the action of winpuLread depends on the O_NOELAY value, set when the window type 
device interface was opened. (See open{2) and fcntl{2} for details on O_NDELAY.) 

If O_NOELAY is set, winpuLread returns zero, meaning that no event code packets have yet 
occurred since the last call to winpuL read. 

If O_NOELAY is not set, winpuLread will block until an event occurs in the window or a 
signal aborts the read. If an event occurs, winpuLread returns an event code packet for 
the event; if a signal occurs, winpuLread returns -1 and errno{2} is set to EINTR. 

Example 
The following program reads event code packets from a graphics window. It then displays 
information from each event code packet. 

The program would be executed as: 

program window-name 

where program is the name of the program after it is compiled, and window-name is the 
name of the graphics window from which event code packets will be read. 

#include 
#include 

<stdio.h> 
<window.h> 

extern int errno; 
main (argc, argv) 
int 
char 
{ 

argc; 
*argv[] ; 

int wmfd; 
int gwfd; 
int i, count; 
char wname[WINNAMEMAX]; 
struct event_code buffer[10]; 

Graphics Window Input Routines 241 



1* 
* Start communication with the window. select it. and display as top: 
*1 

wmfd = est_wm_com(); 
wmpathmake("WMDIR". argv[1]. wname); 
if «gwfd = est_gr(wmfd. wname» == -1) { 

fprintf(stderr. "est_gr failed.\n"); 
exit(1); 

} 

wselect(gwfd. SETSELECT); 
wtop(gwfd. SETTOP); 

1* 
* Set the input mode to 2 and echo input characters from the window 
* until the ESC character is read. 
*1 

if (wgskbd(gwfd. 2) == -1) { 

} 

fprintf(stderr. "wgskbd failed.\n"); 
exit (1) ; 

1* 
* Loop and read event code packets no more than 10 at a time: 
*1 

while «count=winput_read(gwfd. buffer. 10» >= 0) { 
printf(II\nwinput_read returned %d\n\n".count); 
for (i = 0; i < count; i++) 

} 

if (buffer[i] . control_byte & K_EVENT) { 
print_event(&buffer[i]); 

} 
else { 

print_key(&buffer[ij); 
} 

fflush (stdout); 

if (count < 0) fprintf(stderr. "errno %d \n". errno); 

1* 

} 

* Stop communication with the window: 
*1 

if (term_gr(gwfd) == -1) { 
fprintf("term_gr failed.\n"); 
exit (1) ; 

} 

242 Graphics Window Input Routines 



/* 
* Display information for an event: 
*/ 

print_event (ep) 
struct event_code *ep; 
{ 

printf("Event. wid = %2d\n".ep->wid); 
print_control_byte(ep->control_byte); 
print_data_byte(ep->control_byte. ep->data_byte); 
printf (II event_byte = II); 

switch (ep->event_byte) { 
case K_MOVE_CT: printf("K_MOVE_CT"); break; 
case K_SIZE_LR_CT: printf("K_SIZE_LR_CT"); break; 
case K_ICON_SHK: printf("K_ICON_SHK"); break; 
case K_ICON_EXP: printf("K_ICON_EXP"); break; 
case K_PAUSE: printf ( II K_PAUSE II) ; break ; 
case K_DESTROY: printf("K_DESTROY"); break; 
case K_SELECTED: printf("K_SELECTED"); break; 
case K_USELECTED: printf("K_USELECTED"); break; 
case K_REPAINT: printf("K_REPAINT"); break; 
case K_FSSM_ABORT: printf("K_FSSM_ABORT"); break; 
case K_MOUSE_MOVE: printf("K_MOUSE_MOVE"); break; 
case K_BUTTON: printf("K_BUTTON"); break; 
case K_MENU_ITEM: printf("K_MENU_ITEM"); break; 
case K_ELEV_CT: printf("K_ELEV_CT"); break; 
case K_SB_ARROW: printf("K_SB_ARROW"); break; 
case K_OVERFLOW: printf("K_OVERFLOW"); break; 
case K_MOVE_ST: printf("K_MOVE_ST"); break; 
case K_POPUP_ST: printf("K_POPUP_ST"); break; 
case K_SIZE_LR_ST: printf("K_SIZE_LR_ST"); break; 
default: printf ("Unknown (%3d) ". ep->event_byte); break; 
} 
printf("\n"); 
printf(" event_cause = II); 

Graphics Window Input Routines 243 



switch (ep->event_cause) { 
case EC_NONE: printf("EC_NONE"); break; 
case EC_BUTTON1: printf("EC_BUTTON1"); break; 
case EC_BUTTON2: printf("EC_BUTTON2"); break; 
case EC_BUTTON3: printf("EC_BUTTON3"); break; 
case EC_BUTTON4: printf("EC_BUTTON4"); break; 
case EC_BUTTON5: printf("EC_BUTTON5"); break; 
case EC_BUTTON6: printf("EC_BUTTON6"); break; 
case EC_BUTTON7: printf("EC_BUTTON7"); break; 
case EC_BUTTON8: printf("EC_BUTTON8"); break; 
case EC_SELECT: printf ("EC_SELECT") ; break; 
case EC_ENTER: printf("EC_ENTER"); break; 
case EC_EXIT: printf("EC_EXIT"); break; 
default: printf("Unknown (%3d)".ep->event_cause); break; 

} 

} 

printf("\n"); 
printf(" timestamp = Y.d\n".ep->timestamp); 
printf(" x.y = %d.Y.d\n".ep->x.ep->y); 

1* 
* Print keycode packet information: 
*/ 

print_key(kp) 
struct event_code *kp; 
{ 

} 

printf("Key. wid = Y.2d\n".kp->wid); 
print_control_byte(kp->control_byte) ; 
print_data_byte(kp->control_byte. kp->data_byte); 
printf(" timestamp = Y.d\n".kp->timestamp); 

* Print the data byte of the keycode: 
*/ 

print_data_byte(control_byte. data_byte) 
unsigned char control_byte. data_byte; 
{ 

if (control_byte&K_SPECIAL) { 
printf(" data_byte II); 
switch (data_byte) { 
case K_ILLEGAL: 
case K_EXTEND_LEFT: 
case K_EXTEND_RIGHT: 
case K_META_LEFT: 
case K_META_RIGHT: 
case K_CAPS_ON: 
case K_CAPS_OFF: 

printf("K_ILLEGAL"); 
printf("K_EXTEND_LEFT"); 
printf("K_EXTEND_RIGHT"); 
printf("K_META_LEFT"); 
printf("K_META_RIGHT") ; 
printf("K_CAPS_ON"); 
printf("K_CAPS_OFF") ; 

244 Graphics Window Input Routines 

break; 
break; 
break; 
break; 
break; 
break; 
break; 



case K_GO_ROMAN: printf(IK_GO_ROMAN"); break; 
case K_GO_KATAKANA: printf(IK_GO_KATAKANA"); break; 
case K_BUTTON1: printf(IK_BUTTON1"); break; 
case K_BUTTON2: printf(IK_BUTTON2"); break; 
case K_BUTTON3: printf(IK_BUTTON3"); break; 
case K_BUTTON4: printf(IK_BUTTON4"); break; 
case K_BUTTON5: printf(IK_BUTTON5"); break; 
case K_BUTTON6: printf(IK_BUTTON6"); break; 
case K_BUTTON7: printf (IIK_BUTTON7 11 ) ; break; 
case K_BUTTONS: printf(IK_BUTTONS"); break; 
case K_GO_KANJI: printf (IIK_GO_KANJI") ; break; 
case K_GO_NOKANJI: printf ( "K_ GO_NOKAN JI") ; break; 
case K_BREAK: printf(IK_BREAK"); break; 
case K_STOP: printf(IK_STOP"); break; 
case K_SELECT: printf(IK_SELECT"); break; 
case K_NP_ENTER: printf(IK_NP_ENTER"); break; 
case K_NP_KO: printf(IK_NP_KO"); break; 
case K_NP _K1: printf (IIK_NP _K1") ; break; 
case K_NP_K2: printf (IIK_NP _K2") ; break; 
case K_NP_K3: printf ( II K_NP _K3") ; break; 
case K_HOME_ARROW: printf(IK_HOME_ARROW"); break; 
case K_PREV: printf(IK_PREV"); break; 
case K_NEXT: printf(IK_NEXT"); break; 
case K_ENTER: printf(IK_ENTER"); break; 
case K_SYSTEM: printf(IK_SYSTEM"); break; 
case K_MENU: printf(IIK_MENUII); break; 
case K_CLR_LINE: printf(IK_CLR_LINE"); break; 
case K_CLR_DISP: printf(IIK_CLR_DISPII) ; break; 
case K_CAPS_LOCK: printf(IIK_CAPS_LOCK"); break; 
case K_TAB: printf(IK_TAB"); break; 
case K_F1: printf(IIK_F1"); break; 
case K_F2: printf(IIK_F2"); break; 
case K_F5: printf(IIK_F5 11 ); break; 
case K_F6: printf(IIK_F6 11 ); break; 
case K_F7: printf(IIK_F7"); break; 
case K_F3: printf(IIK_F3") ; break; 
case K_F4: printf(IIK_F4"); break; 
case K_DOWN_ARROW: printf(IIK_DOWN_ARROW"); break; 
case K_UP_ARROW: printf(IIK_UP_ARROWII); break; 
case K_FS: printf(IIK_FS"); break; 
case K_LEFT_ARROW: printf(IIK_LEFT_ARROW"); break; 
case K_RIGHT_ARROW: printf(IK_RIGHT_ARROW"); break; 
case K_INSERT_LINE: printf(IK_INSERT_LINE"); break; 
case K_DELETE_LINE: printf(IIK_DELETE_LINE"); break; 
case K_INSERT_CHAR: printf(IIK_INSERT_CHAR"); break; 
case K_DELETE_CHAR: printf(IIK_DELETE_CHAR"); break; 
case K_BACKSPACE: printf(IIK_BACKSPACE"); break; 
case K_RETURN: printf(IIK_RETURNII); break; 
default: printf(IIUnknown ll

); break; 
} 

Graphics Window Input Routines 245 



} 

/* 

} else { 

} 

printf(" data_byte = %3d",data_byte); 
if (data_byte >= ' , && data_byte <= '-') 

printf(" '%c'II,data_byte); 

printf("\n"); 

* Print the control byte of a keycode packet: 
*/ 

print_control_byte(control_byte) 
unsigned char control_byte; 
{ 

} 

printf(" control_byte ="); 
if (control_byte&K_SHIFT_B) 
if (control_byte&K_CONTROL_B) 
if (control_byte&K_META_B) 
if (control_byte&K_EXTEND_B) 
if (control_byte&K_UP) 
if (control_byte&K_NPAD) 
if (control_byte&K_EVENT) 
if (control_byte&K_SPECIAL) 
if (control_byte == 0) 
printf("\n"); 

246 Graphics Window Input Routines 

printf(" K_SHIFT_B"); 
printf(" K_CONTROL_B"); 
printf(" K_META_B"); 
printf(" K_EXTEND_B"); 
printf(" K_UP"); 
printf(" K_NPAD"); 
printf(" K_EVENT"); 
printf(" K_SPECIAL"); 
printf(" Oil); 



Graphics Softkeys 12 
This chapter discusses the use of soft keys with graphics windows. The following topics 
are covered: 

• concepts essential to understanding the use of soft keys with graphics windows 

• turning on and off softkey labels 

• changing softkey labels 

Note 

For details on user-defined softkeys with termO windows, see Chap­
ter 10, "TermO Windows." 

Graphics Softkeys 247 



Concepts 
Any process that reads input from a selected graphics window can take input from the 
keyboard function keys ([ill, [][], .. ,OO, I User I, I System I, and I Menu I). Each of these function 
keys has a softkey definition comprised of a softkey label and return value. 

Softkey Labels 
Softkey labels are descriptive names that correspond to the function keys. The selected 
window's softkey labels are displayed at the base of the display if the display of the 
window's soft key labels has been enabled via window routines. 

Windows/9000 allows you to set your own labels for the function keys [ill through 00. 
For example, you could set the softkey labels to represent menu options that the user 
chooses by pressing the corresponding function key on the keyboard. 

Changing the selected window changes the softkey labels to those of the newly selected 
window. If the display of softkey labels is not enabled in the newly selected window, 
then softkey labels are not displayed. 

The labels are displayed on top of any windows that extend into the softkey display 
area. Windows still have full use of the display; just keep in mind that softkey labels are 
displayed on top of any window ( s) extending into the soft key display area. 

Figure 12-1. Softkey Label Format. 

Figure 12-1 illustrates the format of softkey labels as they are displayed on the screen. 
Key labels 1 through 8 are eight characters wide by two characters high. 

The ~/I System 1 and I Menu 1 softkey labels are six by two characters in size. The 
I User 1/1 System 1 label always has a horizontal line that separates its shifted and unshifted 
modes. 

The wlabellabel is 14 characters wide by two characters high. The window label of the 
selected window is displayed in the top portion of the label. 

248 Graphics Softkeys 



The key labels are centered in a pseudo window at the bottom of the display. 

The I Menu I, I User 1/1 System I, and wlabellabels are displayed with their color pair inverted. 
If the wlabellabel doesn't fit, then it isn't shown. (This may occur on the HP 300 
medium-resolution displays, for instance.) 

Return Values 
When a function key is pressed, an escape sequence 1 is sent to the selected window's de­
vice interface. The sequence returned is always the same, regardless of whether modifier 
keys such as I Shift I or I CTRL 1 are held down when the function key is pressed. Table 12-1 
defines the escape sequence generated by each softkey. 

You can get these softkey values by opening and reading from the window's device 
interface. Read the "Graphics Window Input" chapter for details on how to read from 
graphics windows. 

Table 12-1. Returned softkey escape sequences. 

Escape Sequence 
Key Returned 

I Menu 1 Fe " j CI 

I Slstem I Fe " j A 

I User I Fe " j B 

[ill Fep 
@] Feq 
em Fer 
[ill Fea 
[][J Fet 
[][] Feu 
em Fev 
Q[] Few 

1 An escape sequence is a string of characters that starts with the escape character, denoted as Fe in 
Table 12-1. The escape character is 033 in octal, 27 in decimal, and Oxlb in hexadecimal. 

Graphics Softkeys 249 



The escape sequences in Table 12-1 contain spaces only for readability. The actual escape 
. sequences do not contain any embedded spaces. 

Keys other than soft keys also return escape sequences. Table 12-2 shows these keys and 
their return values. 

Table 12-2. Other escape keys. 

Escape Sequence 
Key Returned 

I Clear line I EtK 
I Clear dis~la~ I Et J 

II nsert line I EtL 
I Delete line I EtM 
II nsert char I EtQ 
I Delete char I Etp 

m Eth 
m EtA 
[Y] EtB 
G Etc 
[3J Eto 

250 Graphics Softkeys 



Turning Softkey Labels On and Off 
By default when a graphics window is created, its softkey labels are not displayed. With 
the wsfk_mode(3W) routine, you can enable or disable the display of softkey labels for a 
given graphics window. 

Procedure 
To turn a graphics window's softkey labels on or off, call wsfk_mode; its syntax is: 

wsfk_mode (fd, mode) 

The mode parameter detemines whether or not softkey labels are displayed. Following 
are valid values for mode: 

• if mode=SFKON, then the window's softkey labels are displayed when the window is 
selected; 

• if mode=SFKOFF, then the labels are not displayed. 

Note that the example in the next section illustrates the use of this routine. 

Graphics Softkeys 251 



Changing Softkey Labels 
For any graphics window, the wsf!cprog(3Wj routine sets the softkey label string for a 
specified function key. It also controls whether or not a horizontal separator bar is placed 
in the softkey's label area. 

Procedure 
To change a graphics window's softkey label for a specific function key, simply call 
wsf!cprog; its syntax is: 

wsfk_prog (fd, key, label, separator) 

The key parameter specifies the function key number; the new soft key label to use is 
pointed to by label; and the separator parameter is a horizontal separator flag. 

The key parameter must range from 1 to 8, corresponding to function keys lliJ through 
[ill. 

The label parameter is a null-terminated character string that replaces the softkey label 
designated by the key parameter. The following rules describe how label fills in the softkey 
label area: 

• Each softkey label contains only 16 characters-two rows at eight characters per 
row. Therefore, if label is longer than 16 characters, only the first 16 are used. 

• If label is less than 16 characters, then blanks are assumed for the remaining char­
acters. 

• label fills the top row of the label area first, then the second row: the first eight 
characters of label fill the top row; the second eight fill the lower row. Therefore, 
if you want label to appear in the bottom row only, you must pad label with eight 
leading blanks. 

The separator parameter indicates whether or not to display a horizontal line (separator) 
between the upper and lower portions of the softkey's label area: 

• if separator=SFKSEPON, then the separator is displayed 

• if separator=SFKSEPOFF, then no separator is displayed. 

Presently, shifted softkeys cannot be differentiated from unshifted softkeys. (The re­
turned codes are documented in Table 12-1.) 

252 Graphics Soft keys 



Example 
The following function, seLgr_labs.c, resets the softkey labels for a graphics window 
to those specified in an array parameter, new_labels. A separator bar is displayed if 
specified by the sep_bar parameter. Finally, the displaying of softkey labels is enabled 
for the specified window. 

#include <window.h> /* window library definitions */ 
set_gr_labs(wfd, new_labels, sep_bar) 
int wfd; /* window's file descriptor */ 
char *new_labels[]; /* new softkey labels */ 
int sep_bar; /* 0 = no separaotr, 1 = separator */ 
{ 

int key; /* softkey number 

/* 
* DISPLAY NEW SOFTKEY LABELS FOR A GRAPHICS WINDOW. 

* 
* STEP 1: Change the softkey labels: 
*/ 

for (key=1; key<=8; key++) 
if (wsfk_prog(wfd, key, new_labels [key-1] , sep_bar) < 0) return(-1); 

/* 

} 

* STEP 2: Display the new softkeys: 
*/ 

if (wsfk_mode(wfd, SFKON) < 0) return(-1); 

return(O) ; 

Graphics Softkeys 253 



Notes 

254 Graphics Softkeys 



TermO Windows 13 
TermO windows (pronounced "term zero") have many of the capabilities of Hewlett­
Packard terminals-specifically, HP 2622/2627 terminals. Applications written for these 
terminals are easily ported to termO windows. 

If your application requires only limited terminal support-simply displaying characters 
and reading characters typed from the keyboard-then you needn't bother with this 
chapter. 

If, on the other hand, you're interested in more sophisticated terminal capabilities­
for example, font management, underlining characters, positioning the cursor at x, y 
locations, and accepting keyboard input without echoing characters-then this chapter 
will be useful. 

The following topics are discussed in this chapter: 

• termO window concepts 

• turning the cursor on and off 

• turning the softkeys on and off 

• defining softkeys 

• getting font information 

• setting the base/alternate font 

• replacing fonts 

• converting pixel and character coordinates 

• using raw mode 

TermO Windows 255 



Concepts 
This section discusses concepts essential to successfully using and programming termO 
windows. Specifically, the following topics are discussed: 

• termO window features 

• termO window escape sequences 

• user-definable softkeys 

• the termO font management model 

• colors 

• raw mode 

TermO Window Features 
Each termO window offers the following features: 

• a user-selectable number of lines of display memory 

• complete screen editing functions: insert/delete character, insert/delete line, and 
clear line/display 

• absolute and relative cursor positioning 

• vertical and horizontal scrolling 

• tab and margin settings 

• one set of eight (or sixteen) softkeys; you may program both the soft key labels 
(the characters composing the menu at the bottom of the display) as well as the 
soft key definitions (the string of characters that are output when a function key is 
pressed) 

• user-selectable fonts 

• underlining and inverse video display enhancements in HP mode (field-oriented) 

• color enhancements 

• support for TERMCAP entries and the curses(3X) library routines 

• a standard HP-UX tty programmatic interface 

256 TermO Windows 



Note: termO windows do not offer the following HP 2622 capabilities: 

• block mode 

• format mode (including protected and unprotected fields) 

• memory lock 

• programmable time delay 

• "local" mode. 

Also, termO windows do not provide HP 2623 or HP 2627 graph£cs capabilities. 

TermO Window Escape Sequences 
Almost any termO window function that can be performed from the keyboard (for ex­
ample, pressing the I Clear display 1 key or the ~ keys) can be programmed by means of 
escape sequences. 

What Is an Escape Sequence? 
An escape sequence is a string of characters that begins with an ASCII ESC character! 
(denoted hereafter as Ec). TermO windows interpret escape sequences as commands rather 
than as a sequence of simple display characters. 

Escape sequences can be typed from the keyboard (in which case, they affect the window 
attached to the keyboard), or they can be written (via wr£te{2), putchar{3}, etc.) to any 
termO window. Note that if you type escape sequences from a shell, they will also be 
interpreted by the shell and will cause error messages, because the shell won't understand 
them. (Escape sequences cannot be typed in if you're using the C-shell, csh{l); this is 
because the I ESC 1 key has special meaning in this shell.) 

Examples 
For example, with a termO window, you can turn off the menu at the bottom of the 
display by outputting the following escape sequence2 to the termO window: 

The effect is the same as if you had pressed I Menu I. 

1 Decimal code 27; octal code 33. 
2 The escape sequences in this chapter are shown with embedded blanks for readability. When writing an 

escape sequence to a termO window, omit the blanks. 

TermO Windows 257 



The following escape sequence turns on the user function keys: 

Et &: j B 

The effect is the same as if you had pressed I User I. 

Commonly Used Escape Sequences 
TermO windows recognize only HP escape sequences. Table 13-1 defines some of the 
most commonly used escape sequences. The TermO Reference Manual provides more 
detail on the various supported escape sequences. 

Table 13-1. Useful Escape Sequences 

Escape Sequence Its Effect on the Window 

Eth Home the cursor. 

EtJ Clear from cursor to bottom of window buffer. 

EthEt J Home up and clear to bottom of window buffer. 

EtK Clear from the cursor to the end of the line. 

Et&:dD Turn on underlining. 

Et&:dB Turn on inverse video. 

Et&:d~ Turn off underlining, inverse, or both. 

EtA Move the cursor up one row. 

EtB Move the cursor down one row. 

Etc Move the cursor right one column. 

~D Move the cursor left one column. 

Et &: a <col> c <row> R Position the cursor to <col> and <row> in the window. 

258 TermO Windows 



User-Definable Softkeys 
Windows/9000 supports anywhere from eight up to 16 user-definable softkeys per termO 
window. A user-definable soft key is comprised of two parts: a label and a definition 
string. 

Softkey Labels 
Softkey labels are descriptive names that correspond to function keys ([ill, [][j, .. ,[][)). 
The selected window's softkey labels are displayed at the base of the display if the 
display of the window's softkey labels has been enabled via the I Menu I key or termO 
escape sequences. 

You can define your own softkey labels, for both unshifted and shifted softkeys, via 
termO escape sequences. This is useful when you want to use the function keys from your 
application(s), and when you want to assign meaningful names to the function keys. For 
example, you may want the soft key labels to correspond to menu options that the user 
can select by pressing a function key. 

The following rules apply to softkey labels: 

• Changing the selected window changes the softkey labels to those of the newly 
selected window. If the display of softkey labels is not enabled in the newly selected 
window, then no softkey labels are displayed. 

• The labels are displayed on top of any windows that extend into the softkey display 
area. Windows still have full use of the display; just keep in mind that softkey 
labels are displayed on top of any window(s) extending into the softkey display 
area. 

• Figure 13-1 shows a termO window with softkeys enabled; it illustrates the format 
of softkey labels as they are displayed on the screen. Key labels 1 through 8 are 
eight characters wide by two characters high. 

TermO Windows 259 



Figure 13-1. Softkey Label Format. 

• The wlabellabel is 14 characters wide by two characters high. The window label of 
the selected window is displayed in the top portion of the label. 

• The key labels are centered at the bottom of the display. 

• The I Menu I, I User 1/1 System I, and wlabel labels are displayed with their color pair 
inverted. If the wlabellabel doesn't fit, then it isn't shown. (This may occur on 
the HP 300 medium-resolution displays, for instance.) 

Softkey Definition Strings 
A softkey definition is a string of characters, up to 80 characters in length, that is 
returned when the user presses a function key. Using termO escape sequences, you can 
create a softkey definition string for either unshifted or shifted function keys. Then when 
a function key is pressed, the definition string is sent as standard input from the device 
interface of the selected window-it's as if the definition string is actually typed at the 
keyboard, even though only the function key is pressed. 

Each function key has a default escape sequence value that is returned if no definition 
string has been defined. Table 9-1 in chapter 9, "Graphics Softkeys," shows the default 
values that are returned for each function key. 

260 TermO Windows 



The TermO Font Management Model 
Each termO window has a base and alternate font. By default, when you write characters 
to a termO window, the characters are displayed in the base font. You can cause characters 
to be written in the alternate font by sending an ASCII SOl character (I CTRL ~ffiJ); to 
return to the base font, send an ASCII S12 character (I CTRL ~[QJ) or a carriage-return. 

Note, however, that you are not limited to just two fonts in a window at a time-you can 
have up to eight fonts displayed in a window simultaneously. The fonts must all be of the 
same size (in pixel width and height). However by using commands (e.g., w/ont{l)) or 
window library routines, you can switch to a different font size, in which case the termO 
window's size is automatically readjusted to accomodate the new font size. 

The simultaneous display of eight fonts is possible because of the font cache. The font 
cache is an array that holds font information in memory. Each termO window has a 
font cache which holds font definitions for up to eight same-sized fonts. Font defini­
tion information is kept permanently in font files; when needed, font files are loaded 
into the font cache via termO font management routines. (The fontstruct structure in 
lusr linclude//onticon.h defines the format of a font file.) Each font in the cache has a 
unique font id which distinguishes that font from others in the cache. 

Font files are stored in font directories. Font files for all fonts of the same size-i.e., same 
pixel width and height-are stored in specific font directory. The size of fonts in a given 
font directory is denoted by the font directory's name, and all font directories are found 
in the directory specified by the window system environment variable WMFONTD1R 
(normally /usr/lib/raster). To see the various font sizes supported on your system, 
simply list the $WMFONTD1R directory; for example: 

Is $WMFONTDIR I Return I 

may list the following font directories: 

l2x20 l8x30 7xl0 8x16 L6x15 

Directory 12x2D contains font files for all fonts that are 12 pixels wide by 20 pixels high; 
directory 8x16 contains font files for all 8-by-16-pixel fonts; and so on. 

1 Decimal 14; octal 016. 
2 Decimal 15; octal 017. 

TermO Windows 261 



After you've loaded any needed fonts into the font cache via termO font management 
routines or escape sequences, you must activate one of the fonts as the base font; you may 
also optionally activate one of the fonts as the alternate font. TennO font management 
routines or termO escape sequences can be used to activate fonts. However, we suggest 
that you use termO font management routines to activate fonts, because escape sequences 
are sometimes too ambiguous to specify exactly which font in the cache to activate. 

Once base and alternate fonts are activated, you can cause characters to be written in 
the alternate font by sending an 80 character to the window; you can return to the base 
font by sending 81 or CR (carriage-return). 

In addition to loading and activating a font, you can replace a font in the cache with 
a font from a font directory. This is useful if the font cache is full and you wish to use 
another font-an unused font in the cache can be replaced with the needed font from the 
font directory. 

Colors 
Every character displayed in a termO window has a color pair attribute. The color pair 
attribute determines the foreground and background colors to use when displaying the 
character. 

The color pair attribute is essentially a pointer to a color pair in the termO window's 
color pair table. A color pair defines foreground and background colors to use when 
displaying a character; the color pair table contains eight color pairs. Table 13-2 shows 
the default color pair table, i.e., the color pair table for newly created termO windows. 

262 TermO Windows 



Table 13-2. Default color pair table. 

Color Pair Foreground Color Background Color 

0 White Black 

1 Red Black 

2 Green Black 

3 Yellow Black 

4 Blue Black 

5 Magenta Black 

6 Cyan Black 

7 Black Yellow 

Color pair 0 (white characters on black background) is the default color pair used when 
displaying text in termO windows. Certain color escape sequences allow you to use 
different color pairs when displaying text. In other words, you're not restricted to using 
color pair 0; you can display text using any of the color pairs defined in Table 13-2. 

Each color in the color pair table is defined by mixing different amounts of red, green, 
and blue colors (this is known as RGB technology). With termO windows, the red, green, 
and blue values can be on or off. The result is that eight different colors can be created. 
Table 13-3 defines the colors produced by each possible combination of red, green, and 
blue. 

TermO Windows 263 



Table 13-3. RGB color definitions. 

R G B Resulting Color 

0 0 0 Black 

0 0 1 Blue 

0 1 0 Green 

0 1 1 Cyan 

1 0 0 Red 

1 0 1 Magenta 

1 1 0 Yellow 

1 1 1 White 

Other color escape sequences allow you to redefine the color pairs. For example, if you 
don't like the default white characters on a black background, you can redefine the default 
color pair (0) to be black characters on a yellow background. 

Note that if you change a color pair, then any visible characters that were displayed using 
the changed color pair will automatically be redisplayed using the new color pair values. 

Note 

The "Windows/9000 Escape Sequences" chapter of the TermO Ref­
erence Manual provides detailed information on using color escape 
sequences. 

264 TermO Windows 



Turning the Cursor On and Off 
Each termO window has its own cursor, to mark where the next display character will 
appear in the termO window. You may want to turn the cursor off to avoid distracting 
the user, especially if your application does a lot of cursor positioning. 

As an added benefit, displaying rows of characters with the cursor off is slightly faster 
than with the cursor on. 

Procedure 
Turning the Cursor On 
To turn the cursor back on, use: 

Turning the Cursor Off 
To turn off the cursor, use the following escape sequence: 

TermO Windows 265 



Turning Softkeys On and Off 
HP escape sequences are also used to enable or disable the display of the soft key menu 
for a termO window. 

Procedure 
Turning the Softkeys On 
To ensure that the soft keys are displayed in a termO window, use the following HP escape 
sequence: 

Ec & j B 

Turning the Softkeys Off 
To stop displaying a termO window's softkey menu, use the following escape sequence: 

Ec&j<O 

266 TermO Windows 



Defining Softkeys 
As mentioned in the "Concepts" section, softkey labels and definition strings can be 
defined via HP escape sequences. By sending ~ writing) the appropriate escape sequence 
to a termO window, you can define the softkeys for that window. 

Procedure 
An HP escape sequence for a softkey typically specifies three items: 

• the function key that you wish to define (1-16) 

• the key label to appear in the menu at the bottom of the display (1 to 16 characters) 

• the string of characters to be output when the user presses the function key (up to 
80 characters). 

In general, the escape sequence used to define softkeys conforms to the following format; 
the embedded blanks are shown only to enhance readability; do not include blanks in 
the actual escape sequence: 

Ec&f Oa zk jel kl label definition 

The Oa, zit, jel, and kl parameters can appear in any order; just remember that the last 
parameter must be capitalized. Table 13-4 describes each parameter in detail. 

TermO Windows 267 



Table 13-4. Parameters to soft key defintion escape sequence. 

Parameter Definition 

Ec&f Tells the window that the escape sequence redefines a soft key. 

Oa Says that the softkey will be a normal soft key. This is the only softkey type 
supported by Windows/9000. 

ik: The softkey to set the label and definition strings for is denoted by i. i is an 
ASCII integer string from 1 to 16. 

jd The length of the label string is denoted by j. j is an ASCII integer string. 

kl The length of the definition string is given by k. k is an ASCII integer string. 

label The label string. Should contain exactly as many characters as specified by jd. 

definition The definition string. Should contain exactly the number of characters specified 
by kl. 

Note: You should refer to the TermO Reference Manual as you read this section; the 
escape sequence is described in more detail in that manual. 

If you specify a key greater than eight (8), then the termO window will display a separator 
bar between the shifted and unshifted representations for the softkey-the lower row for 
the unshifted function key, the upper row for the shifted function key. If the lower half 
of the key label is empty, and there is no horizontal separator bar between the upper 
and lower halves, then pressing the shifted function key is no different than pressing the 
unshifted function key. 

Softkey definitions take effect as soon as the escape sequence is written to the window. 

268 TermO Windows 



Examples 
Entering the following escape sequence from a termO window renames the softkey label 
for 00 to DateTime; the definition string is set to the HP-UX command date terminated 
with a carriage-return. After you have typed in the following sequence, the softkey for 
[![) will be redefined as described. Whenever you press this key, or boink the locator 
over its displayed softkey label, the date command will be excecuted. The blanks in the 
escape sequence are included only to enhance the readability of the sequence; do not 
include the blanks when typing this sequence. 

~f Oa 8k 8d 5L DateTime date! Return I 

The following write{2} statement when called from a program redefines the softkey for 
function key f9 (I Shift H]]). Its label is set to INVERSE and its definition is set to the 
escape sequence for inverse video. 

write(1. II \033&fOa9k7d4LINVERSE\033&dB II • 21); 

TermO Windows 269 



Getting Font Information 
You can use termO window library routines to obtain information about the fonts being 
used in a termO window. For example, you can determine: 

• the current font size-the size of the fonts stored in the font cache 

• the font ids of fonts stored in the cache, given their names 

• font names of fonts stored in the cache 

• the font id of the current base font 

• the font id of the current alternate font 

Procedure 
To get font information for a termO window, call the appropriate termO library routine. 
These routines all require a file descriptor (fd) for the termO window's device interface; 
the remaining parameters vary: 

• fontsize_termO(/d, wptr, hptr) - returns the current font size being used in the 
window. wptr and hptr are pointers to integers that will contain the pixel width 
and height of the current font size. For example: 

gets the current font width and height and puts them in font_wand font_h, respec­
tively. 

• fontgetid_termoC/d, /ontpath) - returns the font id of the font specified by the 
path name pointed to by /ontpath, if the font exists in the font cache. For example: 

font_id = fontgetid_termO(fd. l/usr/lib/raster/8x16/1p.8U"); 

sets font_id to the font id of the font specified by the second argument, if that font 
is currently in the font cache. 

270 TermO Windows 



• fontgetname_termO(jd, id) - this function returns a pointer to a static storage area 
containing a null-terminated character string that represents the path name of the 
font denoted by id, if the font exists in the font cache. 

char *font_path; 
int font_id; 

makes font_path point to the path name of the font specified by font_id, if the font 
exists in the font cache. 

• basefont_termO(jd, id) - returns the base font's id when id is set to GETFONTID. For 
example: 

#include <window.h> 

base_font_id = basefont_termO(fd. GETFONTID); 

sets base_font_id to the font id of the base font. 

• altfont_termO(jd, id) - returns the alternate font's id when id is GETFONTID. For 
example: 

#include <window.h> 

alt_font_id = altfont_termO(fd. GETFONTID); 

sets alt_font_id to the alternate font's id. 

TermO Windows 271 



Setting the Base/Alternate Font 
The base and alternate fonts for any window can be set via termO window library routines. 
This section describes the use of these routines. 

Procedure 
The procedure for setting the base and/or alternate font is straightforward: 

1. A font cannot be made the base or alternate font until it is loaded into the font 
cache. Therefore, if the desired base/alternate font is not already loaded, you must 
load it. The fontload_termO{3W) routine loads a font into the font cache and returns 
the font's id; its syntax is: 

fontload_termO(fd, fontpath) 

The fontpath parameter is the path name of the font file to load into the font cache. 
You may want to use the fontgetid_termO routine to make sure that loaded font 
doesn't already exist in the font cache before loading it. 

Note that if the font cache is already full, then you must replace, or swap, base and 
alternate fonts; this is discussed in the section "Replacing Fonts." 

2. Once a font file is loaded into the font cache, you can activate it as the base or 
alternate font. The basefonLtermO{3W) routine activates a font as the base font; 
its syntax is: 

basefont_termo(jd, id) 

The id parameter is the font id of the font. The font id can be obtained when the 
font is loaded (as in step 1), or it can be obtained via the fontgetid_termO routine. 

The altfonLtermO{3W) routine activates a font as the alternate font; its syntax is: 

altfont_termO(fd, id) 

The id parameter is the font id of the font to activate as the alternate. 

272 TermO Windows 



Example 
The following program, basalt.c, loads the bold, 8-by-16-pixel font into the font cache; it 
also loads the italic, 8-by-16-pixel font. It then activates the bold font as the base font 
and the italic font as the alternate. 

Note that this program works on the window from which it is invoked. In other words, 
if you invoke this program from a termO window, the base and alternate fonts for that 
window will be reset as described above. 

This is possible because the window's device interface is automatically opened for stan­
dard input and output when the program (process) starts execution. That is, the win­
dow's device interface is opened as standard output if standard output isn't redirected 
when the program is invoked. Therefore, you must initialize (via winit(3W)) standard 
input (or output) before calling the termO window routines with the standard input (or 
output) file descriptor. 

#include <window.h> 
#define 

#define 
#define 

main() 
{ 

WFD_STDOUT 1 

BOLD_8x16_FONT 
ITAL_8x16_FONT 

/* window constant definitions 
/* standard output filedes 

"/usr/lib/raster/8x16/lp.b.8U" 
l/usr/lib/raster/8x16/lp.i.8U" 

*/ 
*/ 

/* base font 
/* alt font 

int base_id, alt_id; /* base and alternate font ids */ 

/* 
* The termO window is opened as stdout when the window. is created. 
* We will be using the stdout file descriptor (WFD_STDOUT) as the 
* file descriptor for the window's device interface. 
* Since the window's device interface is automatically opened when 
* the process is spawned from the window, all that's left to 
* do is initialize the device interface so that you can use 
* window library routines on the window using the stdout file 
* descriptor. 

if (winit(WFD_STDOUT) < 0) 
{ 

} 

fprintf(WFD_STDOUT, "error initializing stdout\n"); 
exit(l); 

*/ 
*/ 

TermO Windows 273 



/* 
* STEP 1: Load the base font into the font cache. 

* * Before loading the font, check to see if it already 
* exists in the font cache. If so, then skip this step; 
* otherwise, go ahead and load the font. 

if ((base_id = fontgetid_termO(WFD_STDOUT, BOLD_8x16_FONT» < 0) 
if ((base_id = fontload_termO(WFD_STDOUT, BOLD_8x16_FONT» < 0) 
{ 

} 

fprintf(WFD_STDOUT, "error loading base font\n"); 
exit(l); 

* STEP 2: Activate the font as the base font: 
*/ 

if (basefont_termO(WFD_STDOUT, base_id) < 0) 
{ 

} 

fprintf(WFD_STDOUT, "error activating the base font\n"); 
exit(l); 

/* 
* STEP 1: Load the alternate font into the font cache. 

* * Before loading the font, check to see if it already 
* exists in the font cache. If so, then skip this step; 
* otherwise, go ahead and load the font. 

if ((alt_id = fontgetid_termO(WFD_STDOUT, ITAL_8x16_FONT» < 0) 
if ((alt_id = fontload_termO(WFD_STDOUT, ITAL_8x16_FONT» < 0) 
{ 

} 

fprintf(WFD_STDOUT, "error loading alternate font\n"); 
exit(l); 

/* 

} 

* STEP 2: Activate the font as the alternate font: 
*/ 

if (altfont_termO(WFD_STDOUT, alt_id) < 0) 
{ 

} 

fprintf(WFD_STDOUT, "error activating the alternate font\n"); 
exit(l); 

274 TermO Windows 



Replacing Fonts 
The font cache holds a maximum of eight fonts. Trying to load another font when the 
cache is already full results in an error. With termO window routines, you can replace 
a font in the cache with a font from the font directories, thus avoiding the problem of 
loading too many fonts in the cache. 

Procedure 
Two kinds of font replacement can be performed using termO window routines: you can 
replace any single font in the cache, or you can replace both the base and alternate fonts. 

Replacing a Single Font in the Cache 
To replace a single font in a termO window's font cache, use the fontswap(3W) routine 
which has the following syntax: 

fontswap_ termO (fd, newpath, oldid> 

The cache font represented by oldid is replaced with the font file represented by newpath, 
a null-terminated path name. The new font's id is returned by the routine. 

Any characters that were displayed in the old font will be redisplayed in the new font. 

Replacing the Base and Alternate Fonts 
To replace a termO window's base and alternate fonts, use the fontreplacealLtermO(3W) 
routine. Its syntax is: 

fontreplaceall_ termO (fd, bfpath, afpath> 

The current base and alternate fonts are removed from the cache and replaced with bfpath 
and afpath. bfpath and afpath are both null-terminated path names of font files. 

This routine does not return font ids for the new base and alternate fonts. You must 
obtain their font ids by using the fontgetid_termO routine (or the basefonLtermO and 
altfonLtermO routines). 

TermO Windows 275 



Examples 
The following function, base_Ioad.c, is used to load and activate a base font, specified by 
the fontname parameter. It checks to see if the font is already loaded; if so, it doesn't 
load it. Otherwise, it tries to load the font; if the font cache is full, then it replaces the 
current base font with the new base font. 

The source for this function is found in the man_ examples directory. 

#include <window.h> /* window constant definitions */ 
base_load (wfd, fontname) 
int wfd; /* window's file descriptor */ 
char *fontname; /* path name of new base font */ 
{ 

int base_id; /* base font id 
int new_base_id; /* font id of new base font 

/* 
* Load the new font into the font cache: 

* * Before loading the font, check to see if it already 
* exists in the font cache. If so, then skip this step; 
* otherwise, go ahead and load the font. If the font 
* cache is full, swap this font with the current base 
* font. 
*/ 

if ((new_base_id = fontgetid_termO(wfd, fontname» < 0) 
if ((new_base_id = fontload_termO(wfd, fontname» < 0) 
{ 

} 

base_id = basefont_termO(wfd, fontname, GETFONTID); 
if ((new_base_id = fontswap_termO(wfd, base_id» < 0) 
{ 

} 

fprintf(wfd, lIerror loading the new base font\nll); 
exit (1) ; 

276 TermO Windows 



/* 

} 

* Activate the font as the base font: 
*/ 

if (basefont_termO(wfd. new_base_id) < 0) 
{ 

} 

fprintf(wfd. "error activating the base font\n"); 
exit(1); 

The following code segment replaces the current base and alternate fonts. The new base 
font is 18-by-30-pixel pica; the new alternate font, 18-by-30-pixel math font. Note that 
the window size will be changed if this font size is different that the current font size. 

/* 
* Replace all the fonts in the font cache with a new base and 
* a new alternate font. 
*/ 

if «fontreplaceall_termO(wfd. l/us r /lib/raster/18x30/pica.8U". 
l/us r /lib/raster/18x30/math.OM"» < 0) 

{ 

} 

perror("fontreplaceall_termO failed"); 
exit(1); 

TermO Windows 277 



Converting Pixel and Character Coordinates 
Window routines can be used to convert from pixel X,y coordinates to column, row 
coordinates (and vice versa) with termO windows. 

Procedure 
Converting Pixels to Characters 
The fromxy_termO(3Wj routine converts pixel coordinates to character coordinates; its 
syntax is: 

fromxy _ termO (fd, x, y, colptr, rowptr) 

The X,y parameters specify the pixel coordinates to be converted. When fromxy_termO 
is finihsed, colptr, rowptr will point to integers containing the equivalent column and row 
coordinates. 

Converting Characters to Pixels 
The toxy_termO(3Wj routine converts character coordinates to pixel coordinates; its 
syntax is: 

toxy_termO(fd, xptr,yptr, col,row) 

The xptr,yptr parameters will point to integers containing pixel coordinates as converted 
from the col, TOW parameters. 

278 TermO Windows 



Using Raw Mode 
The default setting of a termO window is cooked mode, which has the following charac­
teristics: 

• The editing keys act locally. For example, when the user presses the down-arrow 
key, the cursor will move one row at a time down the termO window. An application 
waiting for keyboard input will have no knowledge of-and no control over-the 
cursor. In cooked mode, the editing keys don't transmit. 

• The typing keys echo on the display. For example, when the user presses the 
unshifted m key, the termO window will display the character a. 

In raw mode, your application has much greater control over keyboard input. For exam­
ple, your application might define the I Tab I, G, and space bar keys to move the cursor 
to the next selection in a menu, while "locking out" other keyboard responses. 

Note that the following system keystrokes are not affected by raw mode-they perform 
their normal system functions: 

• ~toggles the function key labels off and on. 

• I User 1/1 System ~switches between the user (application program) key labels and the 
system key labels. 

• ~selects the active application window. 

The following header files contain the data type declarations to set a termO window to 
raw mode and to perform terminal i/o: 

#include <stdio.h> 
#include <signal.h> 
#include <termio.h> 

In addition, the tty(J) entry in the HP-UX Reference contains more detailed documen­
tation of the termio structure and the meaning of its various fields. 

TermO Windows 279 



Changing to Raw Mode 
The following setraw routine sets the termO window to raw, no-echo mode: 

setraw 0 
{ 

struct termio t; 

ioctl (0. TCGETA. &t); 
t.c_cc[VMIN] = 1; 
t.c_cc[VEOL] = 1; 

1* get the TTY parameters *1 

t.c_lflag &= -(ICANON XCASE 1 ECHO); 

} 

t.c_lflag 1= ISIG; 
ioctl (0. TCSETA. &t); 1* 
write (1. 1\033&s1A". 5); 1* 
write (1. 1\033*dR". 4); 1* 
signal (SIGINT. fixup); 1* 
signal (SIGQUIT. SIG_IGN); 1* 

set the new parameters *1 
set XMIT straps *1 
turn the cursor off */ 
enable interrupt 
disable quit 

*1 
*/ 

The termio structure above, defined in /usr/include/termio.h, is common across all HP­
UX terminal devices. 

The setraw routine uses one ioctl{2} call to get the current termio values, turns off 
canonical processing, turns off keyboard echo, and then uses a second ioctl to set the 
termio structure to the new values. 

Notice the two signal{2} calls appearing at the end of the routine. The first, with SIGINT, 
sets up an interrupt-if the user presses the I CTRL ~[]] keystroke (or whatever INT is set 
to), execution will jump to the fixup routine (see below). 

The second signal call, with SIGQUIT, tells the program to ignore I CTRL ~[IJ if it is 
pressed. You could instead define SIGQUIT to jump to your own interrupt handler. 

280 TermO Windows 



Handling Interrupt 
The SIGINT signal, appearing in the setraw routine above, enables an interrupt routine 
named Jixup. 

Jixup will be called if the user presses I CTRL ~W (or whatever INT is set to): 

fixupO 
{ 

} 

setcookO; 
exit (0) ; 

The purpose of Jixup is to "clean up" the termO window and to cause the application to 
terminate normally. 

The setcook routine appears below. 

Returning to Cooked Mode 
When your application exits, or whenever you want to restore the termO window to its 
initial state, you can use the following setcook routine: 

setcookO 
{ 

struct termio t; 

ioctl (0, TCGETA, &t); 
t.c_cc[VEOF] = CEOF; 
t.c_cc[VEOL] = CNUL; 
t.c_iflag 1= (BRKINT 1 IGNPAR 1 ISTRIP 1 ICRNL 1 IXON 1 IXOFF); 
t.c_oflag 1= OPOST; 

} 

t.c_cflag &= -CSIZE; 
t.c_cflag 1= CS8; 
t.c_lflag 1= ECHO; 
t.c_lflag 1= (ISIG 1 ICANON); 
ioctl (0, TCSETAW, &t); 
write (1, "\033&sOA", 5); /* clear xmit straps */ 
write (1, "\033*dQ", 4); /* turn the cursor on! */ 

TermO Windows 281 



A Word About the Transmit Function 
The transmit strap, a software "switch" that is initially cleared, determines whether 
an escape sequence is transmitted to an application or is handled locally by the termO 
window (unknown to the application). 

One of the purposes of the seiraw routine above is to enable your application to receive 
all editing keystrokes-hence, that routine includes a write statement to set the transmit 
strap. The following escape sequence does the trick: 

Et&s1A 

The next escape sequence restores normal (or local) handling of escape sequences: 

Et&sOA 

We'll send this escape sequence to the termO window when we want to restore the termO 
window to cooked mode. 

Running in Raw Mode 
With your termO window in raw mode, certain terminal functions are no longer handled 
for you automatically. Your application must handle them on its own. 

This section mentions some of the more important responsibilities left to your application. 

Echoing Characters 
The most common need is to echo characters as they're typed. For example: 

write(i.&ch.1) ; 

writes one character to standard output. 

Without an explicit write statement, the user can't see what is typed at the keyboard. 

282 TermO Windows 



Destructive Back Space 
In raw mode, I Back space 1 simply moves the cursor to the left one space. To create a 
destructive back space: 

1. Move the cursor one space to the left by sending an ASCII BS character. 1 

2. Write a space (to "white out" the next character).2 

3. Again move the cursor one space to the left. 

The net effect is a back space with erasure. But that's not all! 

In cooked mode, your application will never see the user's input line until the user presses 
I Return I. Any erasures will be handled for you and automatically eliminated from the key 
buffer so that your application receives only the corrected line. 

In raw mode, however, your application receives characters as they are typed. If the 
user presses I Back space I, your application will detect an ASCII BS character just as it 
would detect a printable character. In the event of a back space, it's up to your keyboard 
handling routines to "erase" (or remove) the undesired character from your own input 
buffer. 

New Lines and Carriage Returns 
Normally in cooked mode, when a new line character (ASCII LF)3 is written to a termO 
window, a carriage return/linefeed sequence is generated. 

In raw mode, you must explicitly write the two characters to the window: 

write(l,"\015\012",2) ; 

The effect is to position the cursor at the left margin of the next line. 

Decimal code 8; octal code 10. 
Decimal code 32; octal code 40. 

3 Decimal code 10; octal code 12. 

TermO Windows 283 



Escape Sequence Parsing 
Recognizing escape sequences as they are transmitted from the keyboard can involve a 
lot of code. The simplest way is to set up an input parser of the form: 

#define ESC '\033' 

char parsekey 0 
{ 

} 

char ch; 
read(O. &ch. 1); 
if (ch == ESC) 

{ 

read(O. &ch. 1); . 

process the remainder of the 
escape sequence ... 

} 
else return(ch); 

The parsekey routine can include a large switch statement, after it has detected an Et 
character, to pick out the individual keystrokes that the user might have pressed. 

Blocked vs. Unblocked Reads 
There are two common ways to accept terminal input: using blocked reads and unblocked 
reads. 

The previous seiraw routine initialized the termO window to accept blocked reads. That 
is, when reading from the keyboard, your program will block, or wait, until a key is 
pressed. (The read won't return.) 

You may want to use unblocked reads instead. In an unblocked read, the read statement 
returns immediately, whether or not there's a key in the key buffer. 

The advantage of an unblocked read is that your application doesn't have to be hung up 
waiting for the user-it can go off and do other things. 

It's easy to set up the termO window for unblocked reads: Simply define both the VMIN 
and the VTIME values in your termio structure to be 0 (zero) inside the setraw routine. 

284 TermO Windows 



The main disadvantage is that polling the keyboard, as happens during unblocked reads, 
can be a drain on system resources. If a number of applications are all polling the 
keyboard at the same time, then system response time can become degraded. 

A compromise solution is to set up a signal handler that is executed when the window 
in which your application is executing becomes detached (not selected), etc. You can 
start off by polling the keyboard, but when your application senses that its window is 
detached from the keyboard, it can return to blocked reads. 

Another alternative is to use the HP-UX system call select{2}. Or, you can limit the 
number of times your program polls the keyboard. 

TermO Windows 285 



Notes 

286 TermO Windows 



The Fast Alpha Library 14 
The fast alpha display library provides high-performance alpha (textual) capabilities with 
graphics windows and bit-mapped graphics displays. For example, you can write text 
and manipulate fonts, you can clear a portion of a window/display, or you can scroll part 
of a window/display. The following topics are covered in this chapter: 

• concepts essential to using fast alpha routines 

• initializing and terminating the fast alpha environment 

• changing the fast alpha environment 

• cursor control 

• writing characters 

• font manipulation 

• clearing part of a window 

• scrolling part of a window. 

The Fast Alpha Library 287 



Concepts 
This section discusses concepts essential to understanding the use of fast alpha routines. 
The following topics are discussed: 

• the fast alpha programming model 

• cursor positioning 

• character enhancements 

• fast alpha rectangles 

Note 

Definitions of fast alpha constants and structures are found in the 
file lUST jincludej/a.h. 

Also, programs that call fast alpha routines require that both the 
fast alpha and font manager libraries be linked. 

Programming Model 
Fast alpha routines can be used with any graphics window or any bit-mapped display 
supported by Windows/gOOD. In other words, you can call fast alpha routines to work 
with bit-mapped displays or windows on bit-mapped displays. It's the same concept as 
using Starbase graphics routines with either a bit-mapped display or graphics windows. 
Certain tasks must. always be performed in programs that call fast alpha routines. 

288 The Fast Alpha Library 



First, Get the File Descriptor 
Fast alpha routines require the file descriptor of the window or the display's opened 
device interface. The following rules should be followed: 

• When using fast alpha routines with a graphics window, you must first start com­
munication with the graphics window (as described in the "Concepts" section of the 
"Window Manipulation" chapter). The file descriptor returned from performing a 
graphics open (gopen(3G)) is required by fast alpha routines . 

• When using fast alpha routines with a bit-mapped display, you must obtain a 
file descriptor for the display by performing a graphics open (gopen(3G)) on the 
display's device interface. The file descriptor returned from gopening the device 
interface is the one used by fast alpha routines. 

Note 

If you are using fast alpha routines to combine text and graphics in 
the same window, then you should obtain separate file descriptors 
for fast alpha routines and Starbase routines; that is, you must 
open the graphics window once for fast alpha routines and once 
for Starbase routines. 

Getting separate file descriptors ensures that fast alpha routines 
work predictably. You can use the same file descriptor for both fast 
alpha and Starbase routines, but the results will be unpredictable. 

Initializing/Terminating the Fast Alpha Environment 
Before calling any other fast alpha routines, you must initialize the fast alpha environment 
for the window / display on which the routines operate. Once the fast alpha environment is 
initialized, you can call fast alpha routines that manipulate the window/display. When 
you are finished using the fast alpha routines with a window/display, the fast alpha 
environment must be terminated. (The section "Initializing/Terminating the Fast Alpha 
Environment" contains more information on how to do this.) 

Note that you can use window library routines on the window before, during, and after 
initializing and terminating the fast alpha environment; however, you can use fast alpha 
routines only between initializing and terminating the environment. 

The Fast Alpha Library 289 



Don't Forget to Close 
The final task that must be performed in fast alpha programs is closing the device 
interface of the window or display: 

• If you're operating on a graphics window, then stop communication with the window 
(as described in the "Concepts" section of the "Window Manipulation" chapter) . 

• If you're operating on a bit-mapped display, then perform a graphics close 
(gclose{3G)) on the display's device file. 

Cursor Positioning 
To provide you with a more intuitive interface, the screen position for placing characters 
is specified by character column and line, rather than display pixels. The leftmost column 
of the display or window is column 0; the topmost row is row o. 

The pixel coordinate equivalents of column-row depend on the size of the current font­
the smaller the font, the smaller the pixel coordinates; the larger the font, the larger 
the pixel coordinates. Proportionally spaced fonts can be used, but the results are 
unpredictable because fast alpha routines will use the height and width of the biggest 
character for determining spacing. 

Character Enhancements 
Each character may be enhanced with one or more video enhancements. Inverse video 
and underlining are currently the only enhancements supported by Windows/gOOD. 

When the fast alpha environment is initialized, font colors default to white foreground 
and black background-white characters on a black background. Through fast alpha 
routines, you can redefine the font foreground and background colors. 

290 The Fast Alpha Library 



Fast Alpha Rectangles 
Many fast alpha routines reference rectangles. Rectangles are your means of specifying a 
particular subset of the window / display area (in columns and lines) for a fast alpha opera­
tion involving more than one line. The rectangle structure is defined in lusT lincludel/a.h 
as: 

struct fa_coordinate { 
int x.y; 

}; 

/* 
* A rectangle includes [origin] but does 
* not include [corner] 
*/ 

struct fa_rectangle { 

}; 

struct fa_coordinate origin; 
struct fa_coordinate corner; 

As the comment indicates, the lower-right-corner character is not included in the rect­
angle as is consistent with C-Ianguage arrays. For example, if fa_rect is defined as: 

struct fa_rectangle fa_rect; /* fast alpha rectangle structure */ 

then the following rectangle: 

columns 

012345 
0 ..... . 
1. .XX .. 

rows 2 .. XX .. 
3 .. XX .. 

is denoted by: 

fa_rect.origin.x = 2; 
fa_rect.origin.y = 1; 
fa_rect.comer.x = 4; 
fa_rect.comer.y = 4; 

4 ..... . 
5 ..... . 

The Fast Alpha Library 291 



This method of display access is fairly low-level, and you may want to build a "friendlier" 
interface upon this base. The main purpose of the fast alpha routines is to provide you 
with a fast and intuitive method for getting alpha information in a graphics window or 
on the display. 

Initializing/Terminating the Fast Alpha Environment 
The fainit{3W) routine initializes the fast alpha environment for a window or display de­
vice; the faterminate{3W) terminates a window's (or display's) fast alpha environment­
i.e., it releases resources allocated when fainit was called. 

Procedure 
Initializing the Fast Alpha Environment 
To initialize a graphics window's (or display's) environment, simply call fainit; its syntax 
is: 

fainit(gfd, driver) 

The driver parameter should be set to FAWINDOW for graphics windows and bit-mapped 
displays supported by Windows/gOOD. The gfd parameter is the file descriptor for the 
graphics window or display. 

Initializing the fast alpha environment causes environment information to be allocated 
for the window or display. This information affects how fast alpha routines work with the 
window or display. You can inquire and change this information via fast alpha routines 
(discussed in the next section, "Changing the Fast Alpha Environment"). 

Terminating the Fast Alpha Environment 
To terminate a graphics window's (or display's) environment, call faterminate; its syntax 
is: 

faterminate(gfd> 

Calling this routine causes fast alpha environment information to be deallocated for the 
window or display device represented by gfd. (In order to use fast alpha routines with 
the window again, you must call fainit again.) 

292 The Fast Alpha Library 



Example 
The following code segment exemplifies the structure of programs that call fast alpha 
routines. 

/* 
* Establish communication with the window with which 
* fast alpha routines will be used. 

gfd = gopen(device_path, OUTDEV, device_name, INIT); 

/* 
* Initialize the fast alpha environment for the window. 
*/ 

fainit(gfd, FAWINDOW); 

/* 
* Now other fast alpha routines can be called to write 
* text to the window, scroll it, clear it, etc. 
*/ 

/* 
* Finally, you must terminate the fast alpha environment. 
*/ 

faterminate( gfd ); 

The Fast Alpha Library 293 



Changing the Fast Alpha Environment 
As described in the previous section, fast alpha environment information is allocated 
when the environment is initialized. This information affects the manner in which fast 
alpha routines work with graphics windows and bit-mapped displays. 

The exact information maintained in the fast alpha environment is defined by the fa info 
structure in the header file fa.h. Table 14-1 (which follows "Performance Considerations" 
in this section) briefly describes each of fainfo's fields; for more information on this 
structure and its values, see fa.h and the HP-UX Reference pages for fasetinfo{3W}. 

Procedure 
Getting Environment Information 
To get the current fast alpha environment for a window or display, simply call fagetinfo; 
its syntax is: 

fagetinfo (gfd, fainfoptr) 

The fainfoptr parameter is a pointer to a fainfo structure as defined in fa.h. After calling 
fagetinfo, the fields of the structure will the fast alpha environment values for the window 
(or screen) specified by gfd. 

Setting Environment Information 
To set fast alpha environment parameters for a window or display, call fasetinfo; its 
syntax is: 

fasetinfo (gfd, fainfoptr) 

The fainfoptr parameter is a pointer to a fa info structure containing the new values for 
the environment. Note that only the following parameters can be set via this routine: 

• defaultenhancements 

• clearbeforewrite 

• colormode 

• makecurrent. 

294 The Fast Alpha Library 



Performance Considerations 

• You can set defaultenhancements to a different value, but remember that it initially 
contains the value that makes the fast alpha library work most efficiently (i.e., 
FAOFF). Therefore, changing this may degrade system performance. 

• The default value for clearbeforewrite is TRUE which causes the screen background 
to be cleared before writing any characters. This ensures that the space where 
characters are to be displayed is properly cleared, so that new characters are read­
able. However, you can change this value to FALSE, in which case the background is 
not cleared before writing, and you are responsible for controlling the background 
area. 

• Changing the colormode parameter to FACOLOR will cause the fast alpha routines to 
run slower. Black and white colors (the default) cause the system to run faster. 

• To increase the speed of fast alpha routines, you may wish to suppress the updating 
of the display until several write operations are queued. Then when updating is 
desired, simply signal the fast alpha environment to update by setting the make­

current field to MCALWAYS. Queued operations will be displayed at that time. Then 
reset makecurrent so that operations will queue up-i.e., set the bits in makecurrent 

that will suppress screen updates (see fa.h). By doing this you are making effective 
use of the Starbase buffering facility. 

The default value is MCALWAYS, which updates the screen after every fast alpha call 
and may degrade system performance (compared to queueing). 

The Fast Alpha Library 295 



Table 14-1. The CainCo structure!. 

Field Description Range 

size This is a rectangle structure as defined in the "Con- The limits of the 
cepts" section; it defines the screen size. window's (or dis-

play's) size. 

capabilities The contents of this field may be used to detect FAWINDOW 
what additional capabilities are available on a par-
ticular device. 

enhancements This bit-mask defines the default enhancements See fa.h 
that are supported on the window or display de-
vice. 

default en- Is initially set to a value which optimizes the per- See fa.h. 
hancements2 formance of the window system (FAOFF). 

cursor Is TRUE if the cursor can be physically removed from TRUE or FALSE 
the window device and is FALSE otherwise. TRUE in 
Windows/9OOO. 

fontcellheight Indicate the pixel height and width of the active 
fontcellwidth font. 

cl earbef ore- Determines whether the background is automati- TRUE or FALSE 
write2 cally cleared before writing characters. The default 

value is TRUE, which causes the background to clear 
before writing. 

foregroundplanes Specifies the number of memory planes available for 0, 1,4, or 8 
and controlling the foreground and background colors, 
backgroundplanes respectively. 

colormode2 Indicates which color option is currently in use. De- FAWONB, 
fault is FAWONB. FACOLOR, 

FABONW 

makecurrent2 This bit-mask controls the updating of fast alpha See fa.h. 
operations to the screen. Various bits in the mask 
control when information is displayed via fast alpha 
routines. 

1 All fields of the fainfo structure are 32-bit integers; this provides compatibility with other languages. 
2 Only these fields can be changed via fasetinfo. 

296 The Fast Alpha Library 



Example 
The following code segment sets clearbeforewrite to TRUE and sets makecurrent so that 
the screen won't be updated for any fawrite operations-i.e., writes will be queued. Later 
on, makecurrent is reset so that all queued fawrite operations will be performed. 

#include <fa.h> /* fast alpha constant/structure definitions */ 

/* 

struct fainfo fa_env; 
int gfd; 

/* fast alpha environment structure */ 
/* graphics window file descriptor */ 

gfd = gopen(device_path, OUTDEV, device_name, INIT); 

* First, get the current environment: 
*/ 

/* 

if (fagetinfo(gfd, kfa_env) < 0) { 
perror(lIfagetinfo gfd ll

); 

exit (1) ; 
} 

* Next set the appropriate values in the structure and call fasetinfo: 
*/ 

/* 

fa_env.clearbeforewrite = TRUE; 
fa_env.makecurrent = (NOMCONFAWRITE I NOMCONFARECTWRITE); 
if (fasetinfo(gfd, kfa_env) < 0) { 

} 

perror(lIfasetinfo gfd NOMCONFAWRITE(S)"); 
exit(l); 

* Now any fawrite or clear operations that occur will not be 
* updated on the display until the make current field is 
* reset to MCALWAYS. (This is done next.) 
*/ 

The Fast Alpha Library 297 



1* 
* Now set make current so that queued writes will be displayed: 
*1 

fa_env.makecurrent = MCALWAYS; 
if (fasetinfo(fgd. kfa_env) < 0) { 

perror("fasetinfo gfd MCALWAYS"); 
exit(1) ; 

} 

Cursor Control 
With fast alpha routines, you can display and move a cursor in graphics windows and 
bit-mapped displays. The facursor(3W) routine performs cursor control operations. 

Procedure 
To move and/or turn the cursor on or off, call facursor; its syntax is: 

facursor (gfd, column, line, cflag) 

The column and line parameters specify the column and line at which to position the 
cursor; the top line of the window or display is line 0, and the leftmost column is column 
o. 

The cflag parameter determines whether or not the cursor is displayed. If cflag is TRUE, 

the cursor is displayed; if FALSE, the cursor is turned off. Note that turning the cursor 
on or off doesn't in itself change the cursor position as fast alpha remembers it. 

If you specify invalid coordinates for column and line-specifically, FACURSORNOMOVE as 
defined in fa.h-then the cursor wonit move, but cflag is still effective. This is useful if 
you simply wish to turn on/off the cursor at its current position. 

Note that if part of the window is off screen, then the desired cursor position may also 
be off screen. For example, if the upper-left corner of the window is off screen, then 0,0 
are valid cursor coordinates, but the cursor will not be visible; it will be off screen. 

Also, you can specify a cursor position that might be occluded by windows higher up in 
the display stack. 

298 The Fast Alpha Library 



Precautions 
The cursor is actually a displayable character and is taken from the currently active font. 
Therefore if no font is activated, the cursor is automatically turned off. Attempting to 
turn the cursor on when no font is active will result in an error. 

Examples 
The following code segment displays the cursor at column 27 and line 12: 

#include <fa.h> /* fast alpha constant and structure definitions */ 

facursor(gfd, 27, 12, TRUE); 

The next example turns the cursor off at its current position: 

#include <fa.h> /* fast alpha constant and structure defintions */ 

facursor(gfd, FACURSORNOMOVE, FACURSORNOMOVE, FALSE); 

Note that if either column or line is invalid (or equals FACURSORNOMOVE), then the cursor's 
position will not be updated. 

The Fast Alpha Library 299 



Writing Characters 
Fast alpha routines provide two kinds of writing operations: you can write a string of 
characters, or you can fill a rectangle with a specific character. 

Procedure 
Following are separate discussions for writing strings and filling rectangles. 

Writing Character Strings 
To write character strings, use the fawrite{3W) routine; its syntax is: 

fawrite(gfd, column, line, charbuf, ebuf, nchars) 

The column and line parameters specify the character location where the string should 
start in the window (or bit-mapped display). 

The charbuf parameter is a pointer to the buffer of characters that is to be written; this 
buffer contains nchars characters. That is, fawrite will write nchars characters, taking 
characters from the address specified by charbuf. 

The ebuf parameter is a pointer to a buffer of enhancements that are to be applied to 
each character in charbuJ; ebuf can be either NULL (no characters at all) or can contain 
nchars characters: 

• If ebuf is NULL, then the enhancements specified in defaul tenhancements are made 
to each character in the output string . 

• Otherwise, each character in ebuf defines the enhancement(s) (such as inverse or 
underlining) to use when displaying the corresponding character in charbuf. For ex­
ample, the fifth character in ebufdefines the enhancement(s) to use when displaying 
the fifth character in charbuf. 

Valid enhancements are defined in fa.h. To combine enhancements, you should OR 
the different enhancements. 

300 The Fast Alpha Library 



Filling a Rectangle 
The /arectwrite{3W} routine fills a rectangular area in the window (or screen) that is 
specified by a rectangle structure. (See the "Concepts" section for details on rectangles.) 
This routine has the following syntax: 

farectwrite(g/d, character, enhancement, rp) 

The rp parameter is a pointer to a rectangle structure that defines the area to be filled. 
The area is filled with the character specified by the character parameter, and the en­
hancement parameter describes which enhancement(s) to use when displaying the char­
acter. (If enhancement is NULL, then defaultenhancements are used when displaying char­
acter. ) 

Example 
The following code segment fills a screen rectangle with inverse video X's; the rectangle's 
upper-left corner is at the origin (column 0, line 0). It then writes the message: 

What an exciting 
rectangle this is! 

and underlines the word "exciting." 

#include <fa.h> 

struct fa_rectangle rp; 

/* 
* First. write the inverse-X rectangle to the screen; 
* it must be large enough to surround the message 
* that will be written inside of it. 
*/ 

.rp.origin.x = 0; 
rp.origin.y = 0; 
rp.comer.x = 21; 
rp.comer.y = 4; 
farectwrite(gfd. "X". FAINVERSE. &rp); 

The Fast Alpha Library 301 



1* 
* Now write the first line into the rectangle: 
* Note that in the enhancements string; 
* ~ --> FAOFF (no enhancements) 
* D --> FAUNDERLINE (underline the text) 

fawri te (gfd. 2. 1. "What an exciting". "~~~~~~~~DDDDDDDD". 16); 

* Now write the second line with no enhancements: 
*1 

fawrite(gfd. 1.2. "rectangle this is!". NULL. 18); 

Font Manipulation 
The fast alpha library contains font manipulation routines which you can use to display 
different fonts in graphics windows or bit-mapped displays. 

Concepts 
At fast alpha initialization time, a default font is established. If a font has already been 
established via font manager routines (discussed in the next chapter), then that font is 
used. If there is no active font at initialization, then a system default font is activated 
(the font specified by the WMBASEFONT environment variable). The current font can 
be changed via fast alpha routines or font manager routines; however, it is recommended 
that once you've started using the fast alpha environment, you should make font changes 
using only the fast alpha routines; this ensures that the fast alpha environment is always 
aware of the current font attributes (such as height, width, and colors). 

Unlike the termO font management model, there is no notion of base and alternate fonts; 
there is only the active font. Any text written is always displayed in the active font. 

Fonts are loaded into the fast alpha font cache from the font directories described in the 
termO font management model; loading a font causes it to be the active font. Note that 
the fast alpha font cache is not the same one used by termO font management routines. 
However, the fast alpha font cache is the same as the font manager's. (In fact, to perform 
font management, the fast alpha routines call font manager routines.) 

When you are through using a font, you can remove it from the font cache. 

302 The Fast Alpha Library 



Note that fast alpha fonts are often denoted by font ids; these are not the same as termO 
font ids but are the same as font manager font ids. Attempting to intermix termO and 
fast alpha font ids may result in unpredictable system behavior. 

Procedure 
Following are brief discussions of how to perform the various fast alpha font management 
tasks: 

Loading a Font 
To load a font into your font cache, call the fafontload{3W) routine; its syntax is: 

fafontload(gfd, path) 

The path parameter is the path name of the font file to load. When the font is loaded, 
it is automatically activated, and fafontload returns a unique!, system-wide font id that 
identifies the font. This font id is required as a parameter to some other font routines. 

Activating a Font 
To activate a loaded font that isn't currently active, call fafontactivate{3W); its syntax 
is: 

fafontacti vate (gfd, fontid) 

This routine activates as the current font the font specified by fontid-the system-wide 
font id returned when the font was loaded into the cache. After calling this routine, any 
text written subsequently will be displayed in the new font. 

Removing a Font 
When you are finished using a font, you can remove it from the font cache. The fa­
fontremove{3W) routine removes a font from the cache; its syntax is: 

fafontremove (gfd, fontid) 

After calling this routine, the font specified by fontid will no longer exist in the font 
cache; to use this font again, it must be reloaded and reactivated. 

1 Unique only if gfd is the file descriptor for an open window device interface. 

The Fast Alpha Library 303 



Setting Font Colors 
The foreground and background colors to be used when displaying fonts can be set via 
the facolors{3W) routine; its syntax is: 

facolors (gfd, foreground, background> 

After calling this routine, the active font's foreground and background colors will be set 
to those specified by the foreground and background parameters. These colors are indices 
into the system color map. 

Supported values are determined by the display device: 0 or 1 for monochromatic dis­
plays,O to 15 for 4-plane color, and 0 to 255 for 8-plane color. 

Note that if the colormode field of the fainfo structure is not set to FACOLOR, the system 
ignores any color changes-it assumes everything is black and white. 

Note that calling this routine also causes the fast alpha environment to take note of the 
current font attributes (Le., width, height, color, etc.). 

Precautions 
The cursor is actually a displayable character and is taken from the currently active font. 
Therefore if no font is activated, the cursor is automatically turned off. Attempting to 
turn the cursor on when no font is active will result in an error. 

Example 
The following code segment loads an 8-by-16-pixel bold font into the font cache, activates 
the font, changes its colors to black on white, writes the word "HELLO," and removes 
the font from the cache. 

#include <fa.h> /* fast alpha definitions */ 
#define BLACK 0 
#define WHITE 1 

int 
int 

gfd; 
fid; 

/* graphics window file descriptor */ 
/* font id for the bold font */ 

304 The Fast Alpha Library 



/* 
* Load the bold font into the font cache: 
*/ 

if «fid = fafontload(gfd, l/usr/lib/raster/8x16/lp.b.8U"» < 0) 
{ 

} 

/* 

perror("fafontload gfd") ; 
exit (1) ; 

* Activate the font: 
*/ 

/* 

if (fafontactivate(gfd, fid) < 0) 
{ 

} 

perror("fafontactivate gfd"); 
exit(!) ; 

* Change the foreground and background to black on white: 
*/ 

/* 

if (facolors(gfd, BLACK, WHITE) < 0) 
{ 

} 

perror("facolors gfd"); 
exit(!) ; 

* Now write the "HELLO" message: 
*/ 

fawrite(gfd, 0,0, "HELLO", NULL, 5); 

* Finally, remove the bold font from the cache: 
*/ 

if (fafontremove(gfd, fid) < 0) 
{ 

} 

perror("fafontremove gfd"); 
exit(l); 

The Fast Alpha Library 305 



Clearing a Rectangle 
Any rectangular area of characters in a graphics window or bit-mapped display can 
be cleared (erased). For example, you could clear an entire window. The jaclear(3W) 
routine is used for this purpose. 

Procedure 
To clear a rectangle, simply call the jaclear(3W) routine; its syntax is: 

faclear(yjd, enhancements, rp) 

The rp parameter is a pointer to a rectangle structure that defines the rectangle to clear. 

The enhancements parameter is currently ignored by the system and is reserved for future 
expansion. For now, just leave this parameter set to FAOFF. 

Example 
The following subroutine clears a rectangular portion of a window, given the window's 
file descriptor. You must specify the rectangle's location and size. Note that the alpha 
environment must be initialized before calling this routine. 

This function is named clear_yr.c and is found in the man_examples directory. 

#include <fa.h> 
clear_gr(gfd, row, col, 
int gfd; 
int row, col; 
int x_chars, y_chars; 
{ 

1* fast alpha definitions 
x_chars, y_chars) 

1* gopened file descriptor 
1* starting row and column to be cleared 
1* number of characters to be cleared 

struct fa_rectangle rect; 1* rectangle to be cleared 

306 The Fast Alpha Library 



1* 
* CLEAR A PORTION OF A GRAPHICS WINDOW, APPLYING THE SPECIFIED ENHANCEMENT 

* * Determine the size of the area to be cleared: 
*1 

rect.origin.x row; 
rect.origin.y col; 
rect.comer.x row + x_chars; 
rect.comer.y = col + y_chars; 

1* 

} 

* Call fast alpha to clear the area: 
*1 

if (faclear(gfd, FAOFF, trect) < 0) return(-1); 
return(O); 

The Fast Alpha Library 307 



Scrolling a Rectangle 
Any screen area defined by a rectangle structure can be scrolled. The /aToll{3W} routine 
performs this task. 

Procedure 
To scroll a portion of a window (or screen), simply call/aToll{3W}; its syntax is: 

faroll(g/d, how, how/aT, Tp) 

The Tp parameter points to a rectangle structure that defines the portion of the window 
to scroll. The how parameter defines the direction to scroll, and the how/aT parameter 
defines how many character units to scroll in the direction indicated by how. 

The following are valid values for how: 

• FAROLLUP ('u') - says to roll the rectangle's contents up. 

• FAROLLDOWN ('d') - roll the rectangle's contents down. 

• FAROLLLEFT ('1') - roll the rectangle's contents left. 

• FAROLLRIGHT ('r') - roll the rectangle's contents to the right. 

Note that the area uncovered by scrolling is cleared. 

Example 
The following code segment rolls a graphics window's contents in all four directions: up, 
right, down, left. 

struct fa_rectangle rp; 

1* 
* Roll the contents of the window specified by gfd up 5 lines: 
*/ 

if (faroll(gfd, FAROLLUP, 5, &rp) < 0) { 
perror("faroll Upll); 
exit(1); 

} 

308 The Fast Alpha Library 



/* 
* Roll the contents of the window specified by gfd right 11 characters: 
*/ 

/* 

if (faroll(gfd, FAROLLRIGHT, 11, &rp) < 0) { 
perror("faroll right"); 
exit(1); 

} 

* Roll the contents of the window specified by gfd down 1 line: 
*/ 

/* 

if (faroll(gfd, FAROLLDOWN, 1, &rp) < 0) { 
perror("faroll down"); 
exit (1) ; 

} 

* Roll the contents of the window specified by gfd left 7 characters: 
*/ 

if (faroll(gfd, FAROLLLEFT, 7, &rp) < 0) { 
perror("faroll left"); 
exit (1) ; 

} 

The Fast Alpha Library 309 



Notes 

310 The Fast Alpha Library 



The Font Manager Library 15 
The font manager library provides a high-performance, low-level textual interface to 
graphics windows and bit-mapped displays. This library's functionality overlaps with 
the fast alpha library, and in fact, some fast alpha routines call font manager routines. 
However, the font manager does provide some powerful capabilities not provided by the 
fast alpha library. The following topics are discussed in this chapter: 

• concepts essential to using font management routines 

• font management 

• font information routines 

• writing characters 

• character clipping. 

The Font Manager Library 311 



Concepts 
Font manager routines can be used with either graphics windows or bit-mapped dis­
plays supported by Windows/9000; the routines require the file descriptor returned from 
performing a graphics open (gopen(9G)) on the device interface for the window or bit­
mapped display. 

When used with the window system, the font manager is a distributed library that is 
controlled via a set of data structures kept in shared memory common to all users of 
the font manager. However, when using the font manager with a supported bit-mapped 
display, the concepts of "distributed" and "global" are lost; the font manager becomes 
isolated to the calling process and does not cooperate with other applications trying to 
use the font manager to the same device. 

Font manager routines allow you to load, activate, and remove fonts, and change at­
tributes that affect how a font is displayed. The font management model is identical to 
that used by fast alpha routines. In fact, fast alpha routines simply call font manager 
routines to perform font management tasks. 

All fonts in the system, regardless of process association, have a unique font id; that is, 
font ids are global. Routines are provided to obtain the path name of the font represented 
by a font id. 

Note that there are two main differences between the font manager and fast alpha li­
braries: 

1. Font manager uses pixel units to specify character coordinates; fast alpha uses 
character column and line addressing. 

2. Font manager can operate with proportionally spaced fonts; fast alpha cannot. 

Note 

Definitions from the lusT lincludelfonticon.h header file are used 
throughout this chapter. 

312 The Font Manager Library 



Font Management 
The font manager library contains font management routines which you can use to display 
different fonts in graphics windows or bit-mapped displays. 

Concepts 
Like the termO and fast alpha routines, the font manager maintains a font cache (font 
table). The font table is an area of memory shared by all users of the font manager; it 
can hold information for up to 32 different fonts. 

Font information is loaded into the font table from font files. Font files are stored in font 
directories-sub-directories located under the directory specified by the WMFONTDIR 
environment variable. 

When a font is loaded via font manager routines, it automatically becomes the active 
font. Text is always displayed in the active font. Font manager routines can be used to 
activate any font that you have loaded. 

In addition when a font is loaded, a unique, system-wide font id is returned. This font 
id is used to identify the font to certain font management routines. Font manager font 
ids are different than those used by termO font management routines; these ids should 
not be mixed. 

Loaded fonts can be different sizes; by using font manager routines, different-sized fonts 
can be mixed in the same graphics window (or bit-mapped display). 

When you are finished using a font, you must always remove it from the font table. 
Loading and removing a font is analogous to opening and closing a file-after you open 
a file, you must eventually close it. 

As mentioned previously, the font table is shared by all users of the font manager library­
that is, all users of the computer system on which Windows/9000 is used. Therefore, 
several users may be using the same font in the font table. The font manager takes care 
not to duplicate fonts in the font table; when a user attempts to load an already-loaded 
font, the font manager simply takes note that another user is using the font; the font 
isn't reloaded into the table. 

The same goes for removing fonts. If more than one user is using the same font, then 
the font isn't actually removed from the table; the font manager simply takes note that 
one less user is using the font. If only one user is using a font, then removing the font 
will cause it to be removed from the font table. 

The Font Manager Library 313 



Note: Never assume that a font exists in the font table unless you've loaded it and 
haven't yet removed it. If you remove a font, there's no guarantee that it still exists in 
the table, because others using the font might remove it. Just remember: don't make 
any assumptions about the shared memory; load and remove fonts as if you're the only 
user. 

The foreground and background colors of the active font default to white on black. On 
color systems, you can redefine the foreground and background colors to any from the 
system color map. 

Procedure 
Following are brief discussions of how to perform the various font manager tasks: 

Loading a Font 
To load a font into the font table, call fm_load{3W} which has the following syntax: 

fm_load (gfd, path, fontid) 

The path parameter points to the path name of the font file to load into the font table. 
The font's id is returned in the integer pointed to by the fontid parameter. 

In addition to being loaded, the font automatically becomes the active font. So if you 
want a font other than the loaded font to be the active font, you must activate the other 
font. 

Note: When you are finished using a loaded font, you must remove it. 

Activating a Font 
To activate a previously loaded font, call fm_activate{3W}; its syntax is: 

fm_acti vate (gfd, fontid> 

The font represented by the fontid parameter is made the active font. All text will be 
displayed in the new font until the next call to fm_activate. 

314 The Font Manager Library 



Removing a Font 
To remove a loaded font, call fm_remove{3W) which has the following syntax: 

fm_remove (gfd, font£d) 

After calling this routine, the font specified by fontid will be removed from the font table 
(as far as your application is concerned). 

Note: If you've accidentally loaded a font twice, the font must be removed twice also. 

Setting Colors 
To change the active font's foreground and background colors, call fm_colors{3W); its 
syntax is: 

fm_colors (gfd, foreground, background) 

The foreground and background parameters specify the new colors to use; they are indices 
into the system color map. 

Supported values are determined by the display device: 0 or 1 for monochromatic dis­
plays, 0 to 15 for 4-plane color, and 0 to 255 for 8-plane color. 

Note: The foreground and background colors return to the defaults (black and white) 
whenever a font is activated. 

Example 
The following code segment loads an 8-by-16-pixel bold font into the font cache, activates 
the font, changes its colors to black on white, writes the word "ERROR," and removes 
the font from the cache. 

#define BLACK 0 
#define WHITE 1 

int gfd; /* graphics window file descriptor */ 
int fid; /* font id for the bold font */ 

The Font Manager Library 315 



/* 
* Load the bold font into the font cache; the font is 
* automatically activated: 

/* 

if (fm_load(gfd, l/usr/lib/raster/8x16/lp.b.8U", &fid) < 0) 
{ 

} 

perror(lIfm_load gfd"); 
exit(1); 

* Change the foreground and background to black on white: 
*/ 

/* 

if (fm_colors(gfd, BLACK, WHITE) < 0) 
{ 

} 

perror("fm_colors gfd"); 
exit (1) ; 

* Now write the "ERROR" message (see the section 
* "Writing Characters" for more details on writing): 

fm_write(gfd, 10,10, II ERROR II , 5, TRUE, TRUE); 

* Finally, remove the bold font from the cache: 
*/ 

if (fm_remove(gfd, fid) < 0) 
{ 

} 

perror(lIfm_remove gfd"); 
exit (1) ; 

316 The Font Manager Library 



Font Information Routines 
The font manager library provides routines that obtain information about fonts. In 
particular you can discover: 

• font size information 

• a font's path name 

• information on a font's style. 

Concepts 
Before discussing how to obtain font information, a discussion of font sizes and font styles 
is needed. 

Font Size 
Font size is actually comprised of three different attributes: width, height, and baseline 
height. 

Font width and height are straightforward. Each character in a font is displayed in a 
font cell. The font cell is the same size for all characters. The font's width and height 
represent the pixel width and height of the font cell. 

All the characters of a given font "sit" on an invisible line called the baseline. The 
"bottom" of each character is flush with this line. Note however that parts of characters 
can extend below the baseline-for example, the "stem" that extends below the circle on 
the letter p. Figure 15-1 illustrates each of these size attributes. 

The baseline attribute is important because it allows you to align different-sized fonts 
on the same line. For example, suppose you are writing a story that starts with "In 
the beginning," and you want the first letter I to be in a large font and the rest of the 
characters to be in a normal-sized font. To make the text look more natural, you should 
align the baseline of the big I with the baseline of the normal-sized font. 

The Font Manager Library 317 



WIDTH WIDTH 

HEIGHT 

________ ...j.-.-.::::_O:::::; ___ _ 

BASELINE 

~ 
BASELINE 
HEIGHT 

---- ~--------------~~--------------~ ~ 
Figure 15-1. Font Size Attributes. 

Font Style 
Each font has certain attributes that define its style. These attributes are defined by the 
escapecodes structure in the fonticon.h header file; Table 15-1 briefly defines each of the 
fields in this structure. 

318 The Font Manager Library 



Table 15-1. Quality attributes defined by escapecodes structure. 

Item 

typeface 

proportional 

hpitch 

vheight 

boldness 

quality 

Procedure 

Description Range 

Gives the numerical part of the font's iden- 0, 7, or 8 
tification string; e.g., 8 for 8-bit Roman-8 
(8U); 0 for 7-bit math font (OM). The value 
for this field indicates whether the font is 8-
bit (=8) or 7-bit (=0). 

Specifies the kind of typeface, e.g. pica=l, 0 to 10 
prestige=8, etc. 

Tells whether the font is uniform width (=0) 0 or 1 
or proportional (= 1 ) . 

Approximates horizontal characters per Depends on font width. 
inch. 

Approximates vertical characters per inch. Depends on font height. 

Indicates the boldness of the font. -7 is the -7 to 7 
lightest, 7 is the boldest. 

Describes the quality of the font: data pro- 0 to 2 
cessing (=0), near letter quality (=1), or cor­
respondence quality (=2). 

Getting Font Size . Information 
Two font manager routines obtain font size information: fm_!ileinfo{3W) and 
!m_rasterin!o{3W). The fm_rasterinfo routine gets size information for fonts in the font 
table; its syntax is: 

fm_rasterinfo(gfd, fontid, width, height, baseline) 

This routine returns the font cell width and height (in pixels) and the baseline height 
(also in pixels) for the font sp~cified by fontid. 

The fm_fileinfo routine gets size information for a font file; its syntax is: 

fm_fileinfo(gfd, path, width,height, baseline) 

This routine returns font size information for the font file whose path name is pointed 
to by path. 

The Font Manager Library 319 



Getting Font Style Information 
To get font style information (as described in Table 15-1), call the fm_styleinfo{3W) 
routine; its syntax is: 

fm_styleinfo(gfd, fontid, symboL char, escapecodes) 

The symboL char parameter should point to a character which will contain a character 
describing the font (e.g., 'u' for Roman-8 fonts, 'K' for Katakana fonts). 

The escapecodes parameter should point to an escapecodes structure as defined in fonti­
con.h. Upon returning, this structure will contain style information for the font indicated 
by fontid. 

Getting a Font's Name 
The fm_getfontid{3W) routine translates a font id into its corresponding font name; its 
syntax is: 

fm_getname (gfd, fontid, filename) 

The filename parameter points to a character string that will contain the path name that 
was used to load the font represented by fontid. 

Example 
The following function gets font size, style, and name information for the font specified 
by the fid parameter; it returns this information to the calling program. 

#include <fonticon.h> /* font manager definitions */ 
get_font_info(gfd, fontid, width ,height , baseline, symbol_char, 

escapecodes, filename) 
int gfd; /* window's file descriptor */ 
int fontid; /* font id for the desired font */ 
int *width, *height; /* character cell size */ 
int *baseline; /* baseline of the character cells */ 
char *symbol_char; /* character describing the font */ 
struct escapecodes *escapecodes; /* pOints to font-specific 

style information */ 
char *filename; /* the path name of the font */ 

320 The Font Manager Library 



{ 

/* 
* Get the size information for the specified font id: 
*/ 

if (fm_rasterinfo(gfd, fontid, width, height, baseline) < 0) return(-1); 

/* 
* Get the style information for the specified font id: 
*/ 

if (fm_styleinfo(gfd, fontid, symbol_char, escapecodes) < 0) return(-1); 

/* 

} 

* Get the path name for the font specified by font id: 
*/ 

if (fm_getname(gfd, fontid, filename) < 0) return(-1); 

return(O); 

The Font Manager Library 321 



Writing Characters 
With font manager routines, you can write text in the active font to any graphics win­
dow or the bit-mapped display. By default, characters are written from left to right; 
however, characters can be written in any direction-up, down, to the right, or to the 
left. In addition, you can optimize the generation of characters on your particular display 
hardware. 

Procedure 
Controlling the Write Direction 
By default characters are written to the right. By using the fm_fontdir{3W) routine, you 
can write characters any horizontal or vertical direction. The syntax of this routine is: 

fm_fontdir (gfd, direction) 

After calling this routine, any characters written to the window via the fm_write routine 
will be written in the direction specified by the direction parameter. Valid values for 
direction are: 

• 'u' - write upward 

• 'd' - write downward 

• '1' - write to the left 

• 'r' - write to the right (this is the default). 

Note: This routine affects only the direction of the write and not the characters 
themselves-they are still displayed normally within each character cell. Also, the write 
direction stays in effect until a different font is activated; at that point, the direction 
returns to the default ('r'). 

Writing Characters 
The fm_ write{3 W) routine displays character strings to a graphics window or bit-mapped 
display; its syntax is: 

fm_write(gfd, X,y, str, numchars, dump, colormode) 

The string to write is pointed to by the str parameter; the number of characters in the 
string is given by numchars. 

322 The Font Manager Library 



The string is written at the pixel coordinates specified by x,y. Note that in graphics 
windows, the upper-leftmost pixel in the contents area has coordinates 0,0; in bit-mapped 
displays, the upper-leftmost pixel is 0,0. 

How the characters are positioned with respect to the x,y coordinates depends on the 
current write direction. Figure 15-2 illustrates character positioning. 

The dump parameter indicates whether or not to immediately update the display after 
the write: TRUE means to update; FALSE means to let the system-imposed buffering take 
care of the visual update. 

The colormode parameter determines whether or not to use colors from the previous call 
to 1m_colors. If TRUE, then the area where the characters will be written is cleared to the 
current background color, and the characters are written in the foreground color. Setting 
this parameter to TRUE is analogous to setting clearbeforewri te to TRUE in the fast alpha 
environment. This mode has the side effect of leaving the colormode and write-enable 
masks set as needed. 

If colormode is FALSE, then the characters are displayed using the current Starbase graph­
ics replacement rule and write mask. For example, if the current replacement rule is to 
OR the image onto the background, then the characters will simply be placed over the 
background image without erasing it. Setting colormode to FALSE is somewhat analogous 
to setting clearbeforewrite to FALSE in the fast alpha environment. 

The Font Manager Library 323 



start 
/ 

of string 

x,y 

B ---.. 
Left-to-Right: x-advance in effect 

X'YB. cell y-advance in effect 
Top-to-Bottom: 

Right-to-Left: 
~ x,Y 

cell ..- x-advance in effect 

Bottom-to-Top: Bt y-advance in effect 

x,y 

Figure 15-2. Character Positioning at x,y Coordinates. 

Optimizing Character Generation 
Some systems have specialized hardware for writing to bit-mapped displays. This special 
hardware allows characters to be written faster to the display. The Jm_opt(3w) routine 
allows you to take advantage of specialized display hardware; its syntax is: 

fm_opt (gJd, optmode) 

If optmode is 1, then optimization is turned on; if optmode is 0, then optmization is 
turned off. 

Note: This routine will fail if optimization hardware doesn't exist on the system or if 
too many fonts have been optimized already. This should not be considered a fatal error. 
Therefore, you should not abnormally terminate your program (via exit( 2) or whatever) 
if this routine fails. 

324 The Font Manager Library 



Determining String Length 
Often times you may wish to determine the length of a character string. For example, 
if you want to determine if a character string is so long that it will "run off" the edge 
of a window or display. The /m_str_len{3W) routine determines the pixel length of any 
character string along the current direction of the active font; its syntax is: 

fm_str_len(g/d, str, numchars) 

The str parameter points to the character string which contains numchars characters. 

Note: This routine is especially useful if character clipping is disabled (see the "Character 
Clipping" section for details). 

Example 
The following function, write_dn.c, displays a null-terminated character string downward 
from the pixel location specified by the xpos. ypos parameters. It then sets the write 
direction back to the right. 

The source for this routine is found in the man_ examples directory. 

#include <fonticon.h> /* font manager definitions */ 
write_dn(gfd. str. str_len. xpos. ypos) 
int gfd; /* window's file descriptor */ 
char *str; /* the string to be written */ 
int str_len; /* length of the string to be written */ 
int xpos. ypos; /* starting position for the string */ 

The Font Manager Library 325 



{ 

/* 
* Set the write direction to down: 
*/ 

if (fm_fontdir(gfd, 'd') < 0) return(-1); 

/* 
* Write the string at the specified position: 
* update the screen immediately 
* don't use the colors from fm_colors 

if (fm_write(gfd, xpos, ypos, str, str_len, 1, 0) < 0) return(-1); 

/* 

} 

* Set the write direction to right: 
*/ 

if (fm_fontdir(gfd, 'r') < 0) return(-1); 

return(O) ; 

326 The Font Manager Library 



Character Clipping 
Character clipping controls the area in which characters are written in a graphics window. 
When character clipping is enabled in a window, the window system will not allow 
characters to be written outside established clip limits. You can enable or disable clipping 
and redefine clip limits via font manager routines. 

By default when a graphics window is created, clipping is enabled and the clip limits are 
always set to the current window size. 

Note 

Memory can become corrupted if clipping is not enabled. This is 
because characters could inadvertently be written outside the dis­
play memory established by the clip limits. Conceivably, you could 
write spurious data into your data structures and your program. 

If you do not use clipping, be sure to check the length of every 
character string (via fm_str _len(3 W)) to ensure that displaying 
the string will not cause it to extend outside the display screen 
boundaries. 

IMPORTANT 

If you are using font manager routines in color mode (colormode = 

FACOLOR), then be careful when writing characters with clipping en­
abled: clipping may not work when color mode is in effect. There­
fore, you must ensure that writing characters does not cause them 
to appear outside a window's boundary whenever color mode is in 
effect. 

The Font Manager Library 327 



Procedure 
Enabling/Disabling Clipping 
To enable or disable clipping for a given window or bit-mapped display, use the 
fm_clipflag(3W} routine; its syntax is: 

fm_clipflag(gfd, flag) 

The flag parameter indicates whether to enable or disable clipping: if flag=l, then clip­
ping is enabled; if flag=O, then clipping is disabled. 

Setting Clip Limits 
To set clip limits for a graphics window or bit-mapped display, use the fm_cliplim(3W} 
routine; its syntax is: 

fm_cliplim(gfd, x,y, width, height) 

The x,y parameters indicate the x,y location of the upper-left corner of the Clipping rect­
angle (with respect to the upper-leftmost pixel of the window or display); the width,height 
parameters define the pixel width and height of the clipping rectangle. After calling this 
routine, characters can be written only within the defined rectangle. 

Example 
The following function, quarter_clip.c, redefines the clipping area to be one-fourth the 
size of the current window, and it centers the clipping area in the window. (The wgetco­
ords(3W) routine is used to get information about the window's size.) 

The source for this function is found in the man_ examples directory. 

#include <fonticon.h> 
quarter_clip (gfd) 

/* font manager definitions 

int gfd; /* window's file descriptor 
{ 

int x.y. w.h. dx.dy. rw.rh; 1* dimensions of the window *1 

* Get the size of the user portion of the window: 
*1 

if (wgetcoords(gfd. &x.&y. &w.&h. &dx.&dy. &rw.&rh) < 0) return(-1); 

328 The Font Manager Library 



/* 
* Compute the bounds of the clipping area: 
* The clipping area is one-fourth the size of the window, 
* and is centered in the window. 
*/ 

w /= 2; 
h /= 2; 
x = w / 2; 

Y = h / 2; 

/* 
* Set the new font clip area: 
*/ 

if (fm_cliplim(gfd, x, y, w, h) < 0) return(-l); 

/* 

} 

* Turn on font clipping: 
*/ 

if (fm_clipflag(gfd, 1) < 0) return(-l); 

return(O); 

The Font Manager Library 329 



Notes 

330 The Font Manager Library 



Compiling Window Programs A 
This appendix discusses: 

• the various libraries supported by Windows/9000 

• how to compile programs that call window library routines. 

Linking Window Libraries 
When compiling a program that uses window library routines, link the libraries in the 
order shown in the list below. Remember that you need link only the libraries that the 
program uses. 

1. libfa. a-if the program calls any fast alpha routines, link this library first. 

2. libfontm. a-if the program calls any fast alpha or font management routines, then 
link this library. 

3. libdddriver.a-always link the device driver (or drivers) of the CRT(s) on which 
the program will run. 

4. libddbyte. a-if the program performs graphics to windows with retained byte-per­
pixel rasters, and you want the raster to be maintained in memory, then load this 
driver, which writes to the retained memory. 

libddbi t . a-if the program performs graphics to windows with retained bit-per­
pixel rasters, and you want the raster maintained in memory, then load this driver 
which writes to the retained memory. 

Note 

The 3001 Device Driver does not support bi t-per-pixel retained 
rasters. 

Compiling Window Programs 331 



5. libwindow. a-this library should be linked if the program calls any window library 
routines or performs Starbase graphics, fast alpha, font manager output to windows. 

6. libsbl. a-link this library if the program calls any Starbase graphics, fast alpha, 
or font manager routines. 

7. libsb2. a-link this library immediately after libsbl. a if libsbl. a was loaded. 

Examples 
The following examples should help clarify how the libraries are linked with the main 
program. 

A C program named winprog. c that calls only window manipulation routines and only 
creates termO windows on a S300 low-resolution display would be compiled as: 

cc winprog.c -lwindow 

A C program named grprog. c that creates, manipulates, and performs graphics to non­
retained graphics windows (on an HP9837 display) would be compiled as: 

cc grprog.c -ldd9837 -lwindow -lsbl -lsb2 

A C program named grtD. c that creates and manipulates both termO and graphics 
windows, calls fast alpha and font management routines, and does graphics to retained 
windows (on an HP98700 display) would be compiled as: 

cc grtO.c -lfa -lfontm -ldd98700 -lddbyte -lwindow -lsbl -lsb2 

OR 

cc grtO.c -lfa -lfontm -ldd300h -lddbit -lwindow -lsbl -lsb2 

332 Compiling Window Programs 



Windows/9000 Files B 
This appendix describes files associated with HP Windows/9000. 

Device Files 
/dev/crt, /dev/ocrt 

/ dev /hilkbd 

/ dev /locator 

/dev/rhil 

/dev/screen 

bit-mapped display special files 

ITF keyboard 

locator (mouse or tablet) 

raw input controller 

window directory-holds window type and unit 
device files and the window manager's device 
interface (wm) 

Manual Examples and Demos 
/usr/lib/hpwindows/man_examples source for all code examples found in this manual 

/usr/lib/hpwindows/demo all demo programs and the README file 

/usr/lib/hpwindows/demosrc all demo source 

Windows/9000 Files 333 



Font and Icon Files 
/usr /lib/raster /* 

/usr /lib /raster /icons 

/usr /lib/raster /dftt/b/h/$LANG 

/ usr /lib /raster / dftt/b /l/$LAN G 

/usr /lib/raster / dftt/b/v/$LANG 

/usr /lib /raster / dftt/ a/h/$LAN G 

/usr/lib/raster/dftt/a/l/$LANG 

/usr/lib/raster/dftt/a/v/$LANG 

334 Windows/gOOD Files 

contains all font directories from fast alpha and 
font manager filesets 

icon definition files are stored here 

If this file is present, it is the default 
(/usr/lib/raster/dflt) base font (/b) for high­
resolution displays (lh) for the language defined 
by the LANG environment variable. 

If this file is present, it is the default 
(lusr/lib/raster/dflt) base font (lb) for low­
resolution displays (11) for the language defined 
by the LANG environment variable. 

If this file is present, it is the default 
(/usr/lib/raster/dflt) base font (/b) for very 
high resolution displays (Iv) for the language de­
fined by the LANG environment variable. 

If this file is present, it is the default 
(lusr/lib/raster/dflt) alternate font (la) for 
high-resolution displays (lh) for the language de­
fined by the LANG environment variable. 

If this file is present, it is the default 
(lusr/lib/raster/dflt) alternate font (la) for 
low-resolution displays (11) for the language de­
fined by the LANG environment variable. 

If this file is present, it is the default 
(lusr/lib/raster/dflt) alternate font (la) for 
very high resolution displays (Iv) for the language 
defined by the LANG environment variable. 



Header Files 
JUST jincludejwindow.h window library constants and structure defini­

tions 

Windows/9000-Specific Files 
jusTjbinjw* 

JUST IlibjtOseTveT 

JUST Ilib j gseTveT 

lUST jlibjstseTveT 

lusTjlibjwm 

lUST jlib jlibwindow. a 

window system commands 

a termO window server 

a dummy graphics window server process for 
object compatibility with pre-HP-UX 5.2 releases 
of HP Windows/9000 

server for the see_ thru window type (for special 
hardware only) 

the window manager process 

window management, manipulation, icon, input, 
termO font management, menu, and softkey li­
brary routines 

Windows/gOO~ Files 335 



Other Files 
/usr /include//a. h 

/usr /include//onticon.h 

/usr/include/starbase. *.h 

/usr/lib/lib/a.a 

/usr /lib /lib/ontm. a 

/usr/lib/libsbl.a 

/usr/lib/libsb2.a 

/usr/lib/libdd*.a 

lusr /lib /libddbyte. a 

/ usr Ilib /libddbit. a 

336 Windows/9000 Files 

fast alpha constant and structure definitions 

font constant and structure definitions 

Starbase constant and structure definitions 

fast alpha library 

font manager library 

Starbase graphics routines 

stubs to Starbase routines-i.e., routines that 
make direct calls to the kernel 

Starbase drivers 

driver that allows Starbase routines to write re­
tained byte-per-pixel raster memory 

driver that allows Starbase routines to write re­
tained bit-per-pixel raster memory 



Subject Index 

a 
IT] ..................................................................... 136 
CD ..................................................................... 136 
G ..................................................................... 136 
G ..................................................................... 136 
aborting full-screen sprite mode ............................................ 151 
aborting full-screen sprite mode, event ...................................... 120 
absolute coordinates ................................................ 36, 40, 72 
absolute locator device .................................................... 136 
activating a fast alpha font ................................................ 303 
activating a hotspot ...................................................... 178 
activating a menu ........................................................ 206 
activating hotspots, the bit mask ........................................... 179 
activating termO font ..................................................... 262 
activation bit mask for hotspot, side effect of changing ........................ 185 
activation bit mask for hotspots ............................................ 182 
activation, causing automatic menu display .................................. 206 
active font, fast alpha ..................................................... 302 
adding items to a menu ................................................... 202 
affecting scroll bars ....................................................... 161 
alternate font file, termO .................................................. 334 
alternate font id, getting in a termO window ................................. 271 
alternate font, setting via termO font management routines .................... 272 
alternate font, switching to via termO window escape sequence ................. 261 
alternate font, termO .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37 
altjonLtermO(9W) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 271, 272 
anchor point .......................................................... 36, 40 
architecture, window system ................................................ 22 
arrow events ............................................................. 160 
arrows ......................................................... 120, 155, 156 
arrows, enabling ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 162 
arrows, enabling in pan mode .............................................. 161 
arrows, event detection in user mode ........................................ 169 
arrows, panning via ....................................................... 157 
arrows, reversing direction of pan ........................................... 158 

Subject Index 337 



ASCII mode ............................................................. 212 
ASCII mode, reading data in .............................................. 216 
attached, keyboard ........................................................ 17 
attaching the keyboard to a window ........................................ 119 
attributes, window ........................................................ 17 
autodestroy status, setting ................................................. 96 
automatic menu pop-up on activation ....................................... 199 
automatically destroying a window on close ................................... 96 
automatically display menu on activation .................................... 206 
autoselect status .......................................................... 21 
autoselect status, setting ................................................... 65 
autotop status ............................................................ 21 
autotop status, setting ..................................................... 68 

b 
background border color ................................................... 89 
backgroundplanes, of the fast alpha fainfo structure .......................... 296 
I Back space I, handling in raw mode .......................................... 283 
basalt. c ................................................................ 273 
base font file, termO ...................................................... 334 
base font id, getting in termO window ....................................... 271 
base font, setting via termO font management routines ........................ 272 
base font, switching to via termO window escape sequence ..................... 261 
base font, termO ........................................................... 37 
basejonLtermO{3W} ................................................. 271, 272 
base_load. c ............................................................. 276 
basename{l} .......................................................... 14, 17 
bit mask for activating hotspots ............................................ 179 
bit-mapped display special file ............................................. 333 
block mode, termO ....................................................... 257 
blocked reads, termO raw mode ............................................ 284 
blocking, when reading graphics window input in packetized mode .............. 241 
border background color ................................................... 20 
border, changing .......................................................... 85 
border colors, determining current ........................................... 89 
border colors, setting ...................................................... 89 
border foreground color .................................................... 20 
border, normal ............................................................ 37 
border size, determining .................................................... 81 
border, thin .............................................................. 37 
bottom window ....................................................... 18, 68 

338 Subject Index 



I Break I, effect in two-byte mode ............................................. 224 
I Break I, interrupt programming ............................................. 120 
I Break I, relation to event detection .......................................... 120 
I Break I, side-effect from wgskbd(9W) ......................................... 214 
BRKINT, side-effect from wgskbd(9W) ........................................ 214 
BS character, handling in raw mode ........................................ 283 
building a window type device interface's path name ........................... 59 
building pathname from environment variable ............................. 29, 35 
button definitions ........................................................ 118 
button, map to locator devices ............................................. 118 
button mask, menu activation ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 200 
button mask, user-define menus ............................................ 198 
button press events .................................................. 117, 131 
button presses, emulating in full-screen sprite mode ........................... 150 
button presses in packetized input mode .................................... 213 
button presses, where sent ................................................. 117 
button priority ........................................................... 117 
buttons, determining which are pressed without event detection ................ 138 

c 
cache for fast alpha fonts ............................................. 302, 303 
cancelling input re-routing for a window ..................................... 236 
canonical input processing ................................................. 280 
canonical processing, side-effect from wgskbd(9W) ............................ 214 
capabilities, of fast alpha fainfo structure ................................. 296 
~, effect on data byte in two-byte mode ................................. 222 
capslock input configuration parameter ..................................... 228 
capslock, relation to K_SHIFT input configuration parameter .................... 229 
capslock state ............................................................ 222 
carriage return, handling in raw mode ...................................... 283 
changing a graphics window's size ........................................... 76 
changing a hotspot ....................................................... 184 
changing a termO window's size ............................................. 80 
changing a window's border ................................................ 85 
changing a window's border colors ........................................... 89 
changing a window's iconic state ............................................ 99 
changing a window's label .................................................. 87 
changing auto destroy status ................................................ 96 
changing input configuration parameters .................................... 227 
changing input mode ..................................................... 214 
changing the echo ........................................................ 141 

Subject Index 339 



changing the fast alpha environment ........................................ 294 
changing the pointer ...................................................... 141 
changing the sprite ....................................................... 141 
character enhancements, fast alpha ......................................... 290 
clear from cursor to bottom of screen, termO window ..... . . . . . . . . . . . . . . . . . . . .. 258 
clear from cursor to end of line, termO window ............................... 258 
clearbeforewrite, of the fast alpha fainfo structure ................. 294, 295, 296 
I Clear display I (escape sequence) ............................................. 250 
clearing a fast alpha rectangle .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 306 
I Clear line I (escape sequence) ................................................ 250 
close(2) .............................................................. 30, 62 
closing a window's device interface .......................................... 62 
closing the window manager device interface .................................. 30 
color escape sequences ...................................................... 9 
color map ................................................................ 20 
color map, default ......................................................... 89 
color pair attribute, termO characters ....................................... 262 
color pair table .......................................................... 262 
color pair table, default termO ............................................. 263 
color, setting for fast alpha fonts ........................................... 304 
color, termO characters .................................................... 262 
COLORMODE ••••.•••.•......••.•...•....•...•••••••••••••.••••.•...••..••••• 37 
colormode, of fast alpha fainfo structure ........................... 294, 295, 296 
colors .................................................................... 20 
colors, border ............................................................. 89 
column,row coordinates, converting to pixels ................................. 278 
compiling window programs ............................................... 331 
concealed representation ............................................ 18, 68, 98 
concealed, setting to ....................................................... 69 
concealing a window ....................................................... 69 
control byte for event code packets, relation to two-byte mode ................. 238 
control byte, keycode ..................................................... 221 
control byte, packetized input mode event code packets ....................... 238 
converting column,row to x,y pixel coordinates ............................... 278 
converting x,y pixels to column,row coordinates .............................. 278 
cooked mode, returning to after raw mode in a termO window .................. 281 
cooked mode, termO input ................................................. 279 
CR character, effect on termO fonts ......................................... 262 
CR character, handling in raw mode ........................................ 283 
creating a graphics window ................................................. 40 
creating a graphics window hotspot ......................................... 179 

340 Subject Index 



creating a menu .......................................................... 200 
creating a termO window ................................................... 35 
CRT special file .......................................................... 333 
I CTRL 1 + arrow keys, effect in two-byte mode ................................ 224 
I CTRL I, effect in two-byte mode ............................................. 221 
I CTRL I, effect on data byte values in two-byte mode ........................... 223 
I CTRL I, relation to K_CONTROL input configuration parameter .................... 229 
I CTRL ~ITJ, effect in two-byte mode ......................................... 224 
I CTRL ~m, effect in two-byte mode ......................................... 224 
I CTRL ~G, effect in two-byte mode .......................................... 224 
I CTRL H~, effect in two-byte mode .......................................... 224 
curses(3X) .............................................................. 256 
cursor control, fast alpha .................................................. 298 
cursor control keys, effect in two-byte mode ................................. 224 
cursor keys .............................................................. 136 
cursor, move down one row in termO window .................. . . . . . . . . . . . . . .. 258 
cursor, move left one column in termO window ............................... 258 
cursor, move right one column in termO window .............................. 258 
cursor, move up one row in termO window ................................... 258 
cursor, of the fast alpha fainfo structure .................................... 296 
cursor positioning, termO window ............................ . . . . . . . . . . . . . .. 258 
cursor, turning on and off in termO window .................................. 265 
custom echo, defining ................................................ 142, 145 
custom icon picture ....................................................... 104 
customizing an icon's picture .............................................. 103 
customizing the echo .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 145 
cycles (loops) in re-routing path ............................................ 234 

d 
data byte for event code packets, relation to two-byte mode .................... 239 
data byte, keycode ....................................................... 222 
data byte, packetized input mode event code packet .......................... 239 
data byte values for normal keys in two-byte mode ........................... 222 
data byte values for special keys ............................................ 222 
default color map ......................................................... 89 
default color pair table, termO characters .................................... 263 
default coordinates ................................................. 36, 40, 72 
default elevator scale information ........................................... 166 
default icon coordinates ................................................... 101 
default icon picture ........................................................ 98 
default window location .................................................... 36 

Subject Index 341 



default window name .................................................. 36, 40 
defaultenhancements, of fast alpha fainfo structure .................. 294, 295, 296 
defining termO window softkeys ....................................... 259, 267 
definition string, termO softkey ............................................. 259 
defunct processes, side-effect from destroying ................................. 46 
I Delete char I (escape sequence) .............................................. 250 
I Delete line I (escape sequence) ............................................... 250 
deleting a hotspot ........................................................ 187 
deleting a menu .......................................................... 210 
demo directory ......................................................... 9, 334 
demo program source directory ............................................ 334 
demo programs directory .................................................. 334 
demosrc directory ......................................................... 334 
desk top, repainting ....................................................... 51 
destination window, final in routing path .................................... 235 
destination window, input re-routing ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 213, 232 
destroying a window ....................................................... 45 
destroying a window on close of its device interface ............................ 96 
destroying a window, relation to event detection .............................. 120 
detaching keyboard from window, side-effects of ............................... 66 
determining current border colors ........................................... 89 
determining menu activation status ......................................... 206 
determining termO window size .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 81 
determining without event detection which buttons are pressed ................. 138 
/dev/console ............................................................. 24 
/dev/crt ................................................................ 333 
/dev/hilkbd ............................................................. 333 
device driver for CRT, linking with programs ................................ 333 
device driver, physical display ............................................... 59 
device files used by window system ......................................... 333 
device interface, window manager ................................. 28, 29, 30, 41 
device interface, window type ........................... 17, 35, 41, 45, 58, 59, 62 
device's color map ......................................................... 20 
/ dey /locator ............................................................ 333 
/dev/rhil ............................................................... 333 
/dev/screen ......................................................... 14, 333 
directory, current ...................................................... 35, 40 
disable, elevator .......................................................... 156 
disabling menu activation .................................................. 206 
display device special file .................................................. 333 
displayable representation .............................................. 18, 68 

342 Subject Index 



displaying a user-defined pop-up menu ...................................... 206 
displaying a window ....................................................... 68 
displaying characters in raw mode .......................................... 282 

e 
w (escape sequence) ..................................................... 250 
[!] (escape sequence) ..................................................... 250 
G (escape sequence) ..................................................... 250 
G (escape sequence) ..................................................... 250 
EACCESS .•••••..•......................•...................•...•.•.•..... 151 
EBADF ....................••.....•.•..••..•.............................. 151 
EBUSY ....................••...........•................................. 151 
EC_BUTTONn .•...••.•...................•............•..•...•.....•.•.•..• 190 
EC_ENTER ............................•.....••......•.•....••.....•....••• 190 
EC_EXIT ..................••....••.....•................................. 190 
echo ............................................................... 135, 136 
echo, changing the ........................................................ 141 
echo, custom definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 142, 145 
echo, enabling full-screen mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 150 
echo, getting current representation ................................. . . . . . . .. 142 
echo, getting its definition ................................................. 147 
echo image .............................................................. 145 
echo mask ............................................................... 145 
echo mask rule ...................................................... 145, 146 
echo, optimizing for hardware .............................................. 141 
echo rule ........................................................... 145, 146 
echoing characters in raw mode ............................................ 282 
EC_SELECT •.............................................................. 190 
editing keys .................................... '. . . . . . . . . . . . . . . . . . . . . . . .. 279 
editing keys, effect in ASCII mode .......................................... 216 
effect of editing keys in ASCII mode ........................................ 216 
EINTR ....•.•.....•.•.................................................... 241 
elevator ............................................................ 155, 156 
elevator events ...................................................... 120, 160 
elevator length ...................................................... 158, 166 
elevator, moving in user mode ............................................. 167 
elevator, panning via ..................................................... 158 
elevator position ......................................................... 158 
elevator, position in elevator shaft .......................................... 166 
elevator scale information ................................................. 166 
elevator scale information, default .......................................... 166 

Subject Index 343 



elevator shaft ............................................................ 158 
elevators, enabling ........................................................ 162 
elevators, enabling in pan mode ............................................ 161 
elevators, event detection in user mode ...................................... 169 
emulating the window manager in full-screen sprite mode ...................... 150 
enable, elevator .......................................................... 156 
enabling arrows .......................................................... 162 
enabling arrows in pan mode .............................................. 161 
enabling elevators ........................................................ 162 
enabling full-screen sprite mode ............................................ 150 
enabling user mode ....................................................... 170 
enhancements, of the fast alpha fainfo structure .............................. 296 
enhancements to fast alpha characters ...................................... 290 
environment variable, building pathname from ............................ 29,35 
environment variable, getting the value of .................................... 59 
environment variables: 

LANG ................................................................ 334 
WMBASEFONT ....................................................... 302 
WMDIR .................................................. 14, 16, 35, 58, 59 
WMDRIVER ........................................................... 59 
WMFONTDIR .................................................... 37, 261 
WMIATIMEOUT ...................................................... 209 
WMIUICONFIG ............................................... 150, 158, 198 
WMLOCSCALE ....................................................... 136 

environment, window run-time .......................................... 35, 40 
errno{2} ........................................................... 151, 241 
escape sequence, commonly used termO ..................................... 258 
escape sequence, graphics window softkeys ................................... 249 
escape sequence, parsing on raw mode termO input ........................... 284 
escape sequence, termO .................................................... 257 
escape sequence, termO softkey ............................................. 260 
est_gr. c ................................................................. 61 
est_tO. c ................................................................. 60 
est_WlIl_com. c ............................................................. 32 
event bit ................................................................ 124 
event bit definitions ...................................................... 125 
event byte, hotspot ....................................................... 180 
event byte, packetized input mode .......................................... 239 
event cause, event code packet ............................................. 239 
event code overflow in packetized input mode ................................ 240 
event code packet ................................................... 212, 238 

344 Subject Index 



event code packet, control byte ........................................... .. 238 
event code packet, data byte ............................................... 239 
event code packet, event byte .............................................. 239 
event code packet, event cause ............................................. 239 
event code packet, timestamp .............................................. 239 
event code packet, window id (wid) .................................... 234, 239 
event code packet, x and y ................................................ 240 
EVENT_* constant definitions ............................................... 125 
event detection ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113, 121, 178 
event detection, scroll bars ................................................ 155 
event detection with arrows and elevators .............................. 160, 169 
event detection with hotspots .............................................. 188 
event detection with pop-up menus ......................................... 208 
event detection with user-defined menus ..................................... 198 
event mask ......................................................... 126, 127 
event mask, clearing events in the .......................................... 130 
event mask, defining for event detection ..................................... 124 
event mask, determining current value ...................................... 130 
event mask, resulting from weventpoll(3Wj .................................. 128 
event rectangles (hotspots) ........................................... 120, 177 
EVENT_ABORT ..........•....••.••..........•......................... 150, 151 
EVENT_ECHO warning ....................................................... 131 
EVENT_ELEVATOR ••••.•••..•••.•.••••••••.•••••.••••.••.....•••...•.••.••.•• 169 
EVENT_HOTSPOT .••. • . • . . • • . • • . • . • • • . • . • • • • . . • • • . • • • • • • • . • • • • • • . . • • • • •. 178, 189 
EVENT _MENU ...••.•...•....•.....•..•...•..••.••••.•••••••.•••.••••••••••• 208 
events, general description ............................................. 65, 117 
events: 

aborting full-screen sprite mode ..................................... 120, 151 
arrow activated ........................................................ 169 
arrow in graphics window border activated ................................ 120 
button press (down) .................................................... 117 
button release (up) ..................................................... 117 
elevator moved .................................................... 120, 169 
EVENT _ELEVATOR •••••••••••••••••••••.•••••••.•.•....••.••••..••....••. •• 160 
EVENT_SB_ARROW ••.•.....••...••.•..••...••.......•.•••...•...•••..•••.•. 160 
hotspot activated .............................................. 120, 178, 189 
icon to window, or vice versa ............................................ 120 
locator moved .................................................... 118, 131 
selection made from user-defined menu .................................... 120 
selection status changed ................................................. 119 
window destroyed ...................................................... 120 

Subject Index 345 



window moved ......................................................... 119 
window repaint ........................................................ 119 
window size change ..................................................... 119 
window to icon, or vice versa ............................................ 120 

EVENT_SB_ARROW ••.•••••.••.••.••..•••••..••.•••.••.•••.••••••••••••.••.••• 169 
example program source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2,334 
examples: 

activating a user-defined pop-up menu .................................... 207 
adding items to a menu ................................................. 203 
arrows and elevators, enabling pan mode .................................. 163 
ASCII mode, reading data ............................................... 217 
basalt. c .............................................................. 273 
base_load. c ........................................................... 276 
build_icon. c .......................................................... 107 
changing a hotspot ..................................................... 185 
changing the fast alpha environment ...................................... 297 
clear_gr. c ............................................................ 306 
colors, setting for fast alpha font ......................................... 304 
compiling window programs ............................................. 332 
conceal_ to. c ........................................................... 70 
create_gr. c ............................................................ 42 
create_tO.c ............................................................ 38 
creating a user-defined pop-up menu ...................................... 201 
defining a termO window softkey using write (2) ............................ 269 
definining softkeys from a termO window Bourne shell ....................... 269 
directory in which source is stored ........................................ 334 
disabling display of fast alpha cursor ...................................... 299 
elevators, enabling in user mode .......................................... 167 
enabling arrows and elevators in pan mode ................................ 163 
enabling full-screen sprite mode .......................................... 152 
enabling vertical elevator only in pan mode ................................ 164 
est_gr. c (starting graphics window communication) ......................... 61 
est_tO. c (starting termO window communication) ........................... 60 
est_wm_com.c (starting window manager communication) ..................... 32 
event detection .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 172 
event detection in user mode ............................................. 172 
event detection with hotspots ............................................ 191 
fast alpha cursor, disabling display of ..................................... 299 
fast alpha cursor positioning ............................................. 299 
fast alpha environment, changing ........ '.' ............................... 297 
fast alpha, loading and activating a font ................................... 304 

346 Subject Index 



fast alpha rectangle, scrolling ............................................ 308 
fast alpha, writing characters ............................................ 301 
font colors, setting for fast alpha ......................................... 304 
full-screen sprite mode .................................................. 152 
function to enable packetized input mode .................................. 215 
hotspot, changing ...................................................... 185 
hotspot, setting up ..................................................... 182 
hotspots, event detection ................................................ 191 
initializing and terminating the fast alpha environment ...................... 293 
input configuration parameters, setting in mode 2 .......................... 231 
invert_bc . c ............................................................ 90 
loading and activating a fast alpha font ................................... 304 
loc_in_user. c .......................................................... 139 
menu, activating ....................................................... 207 
menu, creating ......................................................... 201 
menus, creating and adding items to ...................................... 203 
mode 0, reading data ................................................... 217 
mode 1, reading data ................................................... 224 
mode 2, reading data ................................................... 241 
moving an icon ......................................................... 102 
packetized input mode, reading data ...................................... 241 
pan mode, enabling arrows and elevators .................................. 163 
pan mode, enabling vertical elevator only .................................. 164 
pan_gr. c ............................................................... 95 
pause_resume. c .......................................................... 92 
pOll_events. c .......................................................... 131 
positioning the fast alpha cursor ......................................... 299 
reading data in ASCII mode (mode 0) .................................... 217 
reading data in two-byte mode (mode 1) .................................. 224 
reading event code packets in packetized input mode (mode 2) ............... 241 
replace_icon. c ......................................................... 111 
replacing base and alternate fonts ........................................ 277 
reset_Ioc. c ........................................................... 140 
rm_window. c ............................................................ 47 
scrolling a fast alpha rectangle ........................................... 308 
set_gr _labs. c .......................................................... 253 
set label_gr. c ........................................................... 87 
setting fast alpha font colors ............................................. 304 
setting input configuration parameters in mode 2 ........................... 231 
shrink_i t . c ........................................................... 142 
shrink_tO. c ............................................................ 82 

Subject Index 347 



shuffle_dn. c ........................................................... 50 
signal handler .......................................................... 116 
softkey definition, termO window with Bourne shell ......................... 269 
softkey definition, using write (2) to termO window .......................... 269 
stair _step. c ........................................................... 73 
starting and stopping window manager communication ....................... 30 
starting graphics window communication (est_gr. c) ......................... 61 
starting termO window communication: ( est_tO. c) ........................... 60 
starting window manager communication (est_wm_com. c) ..................... 32 
stopping window communication (term_gr. c) ............................... 63 
stopping window communication (term_tO. c) ............................... 64 
stopping window manager communication (term_wm_com.c) .................... 33 
stretch_gr. c ........................................................... 77 
term_gr. c (stopping window communication) ............................... 63 
term_tO.c (stopping window communication) ............................... 64 
term_wm_com.c (stopping window manager communication) .................... 33 
toggle_icon. c .......................................................... 100 
toggle_sel. c ........................................................... 66 
two-byte mode, reading data ............................................. 224 
user mode, enabling elevators ............................................ 167 
user mode, event detection .............................................. 172 
wbanner _sub. c ........................................................... 86 
window-smart programs, compiling ....................................... 332 
wmrepaint.c ............................................................ 51 
writing fast alpha characters ............................................. 301 

exiting the window system .................................................. 53 
Extend key, effect in two-byte mode ........................................ 221 
Extend key, effect on data byte values in two-byte mode ....................... 223 
I Extend char I, effect in two-byte mode ........................................ 221 
I Extend char I, effect on data byte values in two-byte mode ...................... 223 
I Extend char I, relation to K_EXTEND input configuration parameter ................ 228 

f 
[]!], .. ,00 ................................................................ 248 
[]!], .. ,00 (escape sequence) ................................................ 249 
FABONW .•••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••• 296 
/aclear(3W) ............................................................. 306 
FACOLOR ••••••••••••••••••••••••••••.•••••••.••••.••••.••••..••• 295, 296, 304 
fa_coordinate structure ................................................... 291 
/acursor(3W) ............................................................ 298 
F ACURSORNOMOVE •.••••••.••••••••••••••••••••••••••••••••••••••••••. . • • • • •• 298 

348 Subject Index 



/a/ontload{3W) ........................................................... 303 
/agetin/o{3W) ............................................................ 294 
fa. h header file ..................................................... 288, 335 
fainfo structure .......................................................... 294 
fainfo structure, description of fields ....................................... 296 
/ainit{3W) ............................................................... 292 
F AOFF ......•.•...........•.•............•.•.......••..•......••••.. 295, 306 
fa_rectangle structure .................................................... 291 
/arectwrite{3W) .......................................................... 301 
/aroll{3W) ............................................................... 308 
F AROLLDOWN .....•..............••.........•............•.•............••. 308 
F AROLLLEFT ............................................•...........•..... 308 
F AROLLRIGHT ...........••••.......................•••.........••......... 308 
F AROLLUP ••.•.•..........••.••..........•..........•...•.......••.......• 308 
/asetin/o{3W) ............................................................ 294 
fast alpha active font ..................................................... 302 
fast alpha character enhancements .......................................... 290 
fast alpha character strings, writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 300 
fast alpha cursor control .................................................. 298 
fast alpha environment, changing ........................................... 294 
fast alpha environment, getting information about ............................ 294 
fast alpha environment, initializing .................................... 289, 292 
fast alpha environment, setting ............................................. 294 
fast alpha environment, terminating ................................... 289, 292 
fast alpha font, activating ................................................. 303 
fast alpha font cache ................................................. 302, 303 
fast alpha font colors, setting .............................................. 304 
fast alpha font id ......................................................... 303 
fast alpha font management ............................................... 302 
fast alpha font, removing from cache ................................... 302,303 
fast alpha fonts, loading ................................................... 303 
Fast Alpha Library ........................................... 1, 10, 22, 24, 287 
Fast Alpha Library, linking with programs ................................... 331 
fast alpha, loading fonts ................................................... 302 
fast alpha protocol ....................................................... 288 
fast alpha rectangle, clearing ............................................... 306 
fast alpha rectangle, filling with characters .................................. 301 
fast alpha rectangle, scrolling .............................................. 308 
fast alpha rectangles ...................................................... 291 
fast alpha, writing characters .............................................. 300 
/aterminate{3W) ......................................................... 292 

Subject Index 349 



F AWINDOW ••••.•••••••••••••••••••.•.•••••.•..•.•••.•••.•.••.•••••••••••.• 292 
FAWONB .0 ................................................................. 296 
fawrite{3W} ............................................................. 300 
file descriptor for window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13 
file descriptor, relation to window id ........................................ 234 
file descriptor, window ................................................. 23, 59 
file descriptor, window manager ......................................... 37,41 
filling a fast alpha rectangle with characters ................................. 301 
final destination window .................................................. 235 
final destination window in routing path .................................... 235 
font, activating fast alpha ................................................. 303 
font, activating termO ..................................................... 262 
font background color ...................................................... 20 
font cache, termO ......................................................... 261 
font colors, setting for fast alpha ........................................... 304 
font directories ...................................................... 261, 334 
font files ................................................................ 334 
font foreground color ...................................................... 20 
font id, fast alpha ........................................................ 303 
font id, getting for base font in termO window ................................ 271 
font id, getting for termO alternate font ..................................... 271 
font id, getting in termO window ........................................... 270 
font id, termO ....................................................... 261, 270 
font, loading a termO ..................................................... 272 
font management, fast alpha ............................................... 302 
font management model, termO ............................................ 261 
Font Manager Library ............................................ 1, 10, 22, 24 
Font Manager Library, linking with programs ................................ 331 
font name, getting for termO window ........................................ 271 
font, replacing a termO .................................................... 262 
font size ................................................................. 261 
font size, determining in termO window .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 270 
fontcellheight, of the fast alpha fainfo structure ............................ 296 
fontcellwidth, of the fast alpha fainfo structure ............................. 296 
fontgetid_termO{3W} ...................................................... 270 
fontgetname_termO{3W} ................................................... 271 
fonticon.h header file. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 261,335 
fontload_termO{3W} ...................................................... 272 
fontreplacealLtermO{3W} .................................................. 275 
fonts, maximum in termO window .......................................... 261 
fonts, replacing in a termO window ......................................... 275 

350 Subject Index 



fonts, swapping in a termO window ......................................... 275 
jontsize_termO{3W) ....................................................... 270 
fontstruct structure ...................................................... 261 
jontswap_termO{3W) ...................................................... 275 
foreground border color .................................................... 89 
foregroundplanes, of the fast alpha fainfo structure .......................... 296 
format mode, termO ...................................................... 257 
jromxy_termO{3W) ....................................................... 278 
full-screen sprite mode, aborting ........................................... 151 
full-screen sprite mode events .............................................. 120 
full-screen sprite (pointer, echo) mode ...................................... 150 

9 
gelose (3G) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 62 
gclose{3G) when using fast alpha routines ................................... 290 
gesc{3G) ................................................................ 138 
GETAUTODESTROY ............................................... . . . . . . . . . . . .. 96 
GETAUTOSELECT .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65 
GETAUTOTOP ............................................................... 69 
GETBOTTOM ..................................................•............. 68 
GETCONCEAL ............................................................... 69 
GETFONTID ............................................................... 271 
GETFULLSPRITE .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 151 
GETICONIC ................................................................ 99 
GETPAUSE ................................................................. 92 
GETRECOVER ............................................................... 96 
GETSELECT ................................................................ 65 
getting fast alpha environment information .................................. 294 
getting input re-routing information ........................................ 237 
getting menu selection information ......................................... 208 
getting scroll bar events in user mode ....................................... 169 
getting termO base font ................................................... 271 
getting termO font information ............................................. 270 
getting the value of an environment variable .................................. 59 
GETTOP ................................................................... 68 
getty{lM) ................................................................ 16 
gopen{3G) ........................................................... 59, 220 
gopen{3G) when using fast alpha routine .................................... 289 
graphics softkey label separator ............................................ 252 
graphics softkey label, turning on and off .................................... 251 
graphics softkeys ......................................................... 247 

Subject Index 351 



graphics tablet ................................................ 17, 65, 135, 136 
graphics tablet scaling .................................................... 136 
graphics window, creating .................................................. 40 
graphics window hotspots ................................................. 177 
graphics window input ............................................... 160, 211 
graphics window input, re-routing .......................................... 232 
graphics window input re-routing, handling input configuration ................ 235 
graphics window, maximum label length ..................................... 87 
graphics window maximum size ............................................. 76 
graphics window minimum size .............................................. 76 
graphics window server ................................................... 335 
graphics window softkey label, changing ..................................... 252 
graphics window type .................................................. 10, 17 
graphics window type, displaying text in using Fast Alpha ..................... 287 
grey menu items ......................................................... 202 
group, process ............................................................ 16 
group, window ............................................................ 16 

h 
handling SIGINT on termO window input ................................... 281 
header files: 

fa.h ............................................................. 288,335 
fonticon.h ................................................... 104,261,335 
signal.h .............................................................. 279 
stdio . h ............................................................... 279 
termio.h .............................................................. 279 
window. h ........................................................... 2, 335 

home the cursor, termO window ............................................ 258 
home up and clear to bottom of scroll buffer, termO window ................... 258 
horizontal scroll bar ................................................. 156, 161 
hot spot, locator ......................................................... 137 
hotspot ............................................................ 120, 131 
hotspot activation ........................................................ 178 
hotspot, activation bit mask .......................................... 179, 182 
hotspot activation events .................................................. 120 
hotspot, activity bit definitions ............................................. 179 
hotspot, changing characteristics ........................................... 184 
hotspot, creating in a graphics window ...................................... 179 
hotspot, deleting a ....................................................... 187 
hotspot event byte ....................................................... 180 
hotspot events ........................................................... 178 

352 Subject Index 



hotspot events when reading in packetized input mode (mode 2) ............... 239 
hotspot id ............................................................... 178 
hotspot, size and location ................................................. 180 
hotspot stack ............................................................ 181 
hotspot, what happens when activated ...................................... 180 
hotspots, event detection .................................................. 188 
hotspots, graphics window ................................................. 177 
hotspots; overlap rules .................................................... 181 
hotspots per window, maximum number of .................................. 178 
HP 2622 .......................................................... 9, 92, 255 
HP 2627 ............................................................. 9, 255 
HP Windows/9000 User's Manual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4, 136 
HP-HIL input controller special file ......................................... 333 
HP- UX Concepts and Tutorials: Facilities for Series 200, 900, and 500 .......... 25 
HP- UX Concepts and Tutorials: Programming Environment ..................... 4 
HP- UX Concepts and Tutorials: Starbase Graphics Techniques ............... 4, 25 
HS_MASK_BUTTONn ••..••••.•.•.••••...•••••.•••••.••••••••..•..••••..•••••• 179 
HS_MASK_BUTTTON n ....................................................... " 182 
HS_MASK_ENTEREXIT ..•••••..•••••••.••••...•.••..••.•••••.••.•••.•..•.•••.• 179 
HS_MASK_SELECT •..••••••..••••..•••••••...••••.•.••••••••.••••.•••.••••. " 179 

. 
I 

ICANON, side-effect from wgskbd(9W) ........................................ 214 
icon ................................................................. 97,98 
icon, changing to normal form .............................................. 99 
icon default picture ........................................................ 98 
icon definition files ....................................................... 334 
icon files ........................................................... 103, 334 
icon image ............................................................. " 104 
icon image array ......................................................... 107 
icon label ................................................................ 98 
icon, location ............................................................ 101 
icon location, setting ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99 
icon mask ............................................................... 104 
icon mask array .......................................................... 107 
icon move box ............................................................ 98 
icon, moving ............................................................. 101 
icon normal box ........................................................... 98 
icon picture ......................................................... 98, 100 
icon picture, customizing .................................................. 103 
icon picture size .......................................................... 104 

Subject Index 353 



iconic form ........................................................ 18, 68, 98 
iconic location ............................................................ 18 
iconic representation, relation to event detection ............................. 120 
iconstruct structure ................................................. 104, 105 
image (for pointer, echo, sprite) ............................................ 145 
IMODE_FILE •••••••••••.•...••..•••••••••.•••.•••••••••...••••.•••••••.••• 104 
IMODE_NONE ...•••••••••••..•...•.•.••••••••....•..••••••..••.•..•••••.•.• 104 
IMODE_TYPE ..•.•••••••••••••.•.•••....••••••..••..•..••.•••••.•...••••..• 104 
inherited window environment .......................................... 35, 40 
initializing the communication path .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29 
initializing the fast alpha environment ...................................... 292 
initializing window communication path ...................................... 59 
input blocking ........................................................... 241 
input configuration parameters, changing .................................... 227 
input configuration parameters, general discussion ............................ 213 
input configuration parameters, relation to input re-routing .................... 235 
input configuration parameters: 

K_CAPSLOCK •••.•...•••••••..•••.......•••.•.••..•.•••••••.•.....••••••• 228 
K_CAPSMODE, capslock processing .......................................... 228 
K_CONTROL, control processing ............................................ 229 
K_EXTEND ••••••.•.•..••••••••••..••....•••..•••....••..••..........•..• 228 
K_KANAKBD •••••.•.•.•••••••••.•..••..•.••••••...•..•••••••••••....••••• 230 
K_KANJI •••••••.•.••...•••••••••.••••..••••••••.••.••.•••••••...•.••••• 230 
K_KANJIKBD ••••.••••.......•••••••••..••....••••••.••..••••••••••.••.•• 230 
K_LANGUAGE, keyboard language ........................................... 227 
K_META, Meta key processing ............................................. 229 
K_META_EXTEND .•••••••••..•..••.••••••.•.......••••••...••..••••••..•.•• 229 
K_SHIFT, capital collapse ................................................. 229 
K_ TRACK, locator tracking ................................................ 227 

input devices ..................................................... 17, 65, 135 
input mode .............................................................. 212 
input mode, changing ..................................................... 214 
input mode, relation to input re-routing ..................................... 235 
input queue, time-ordered ................................................. 212 
input re-routing .......................................................... 213 
input re-routing, handling input configuration .. , . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 235 
input re-routing, handling input mode ...................................... 235 
input re-routing information, getting ........................................ 237 
II nsert char I (escape sequence) ............................................... 250 
I I nsert line I (escape sequence) ............................................... 250 
interactive user interface configuration ................................. 150, 198 

354 Subject Index 



internal terminal emulator .................................................. 24 
interrupt ................................................... 113, 114, 124, 126 
inverse tracking in menus .................................................. 203 
z"octl(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 214, 224, 280 
ITE ..................................................................... 24 
item id .................................................................. 202 
item type, menu .......................................................... 202 
ITF key board ............................................................ 223 
ITF keyboard special file .................................................. 333 

k 
K_CAPS_LOCK •...•..•••...•.••••.•••.•••.......•.••.....••.••.....•••..... 228 
K_CAPSLOCK input configuration parameter ................................... 228 
K_CAPSMODE input configuration parameter ................................... 228 
K_CAPS_OFF •....••.......•.•...••••..••..••••.......•••...••.••••..• 222, 228 
K_CAPS_ON •....•••••...•.••....•.••...•...•••.•.......•...••..•..... 222, 228 
K_CONTROL input configuration parameter .................................... 229 
K_ CONTROL_B ....••....•••..••...•••..••..•••....••..••.•...•.•••.•.. 221, 223 
K_EVENT .•.••••.•..•••••...•••••.••..••••..••..•.•.........••••.•.•. 238, 239 
K_EXTEND input configuration parameter ..................................... 228 
K_EXTEND_B .•••••.....•••.•....•••....•.••••......•••.•...•••••..•.•••••• 221 
key type ................................................................ 219 
keyboard ......................................................... 17, 65, 135 
keycode control byte ...................................................... 221 
keycode data byte ........................................................ 222 
keycode packet ........................................................... 219 
keycode packets, reading .................................................. 220 
key code structure ........................................................ 220 
killing the window manager .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53 
K_KANAKBD input configuration parameter .................................... 230 
K_KANJI input configuration parameter ...................................... 230 
K_KANJIKBD input configuration parameter ................................... 230 
K_LANGUAGE input configuration parameter ................................... 227 
K_META input configuration parameter ....................................... 229 
K_META_B .•••...••.••.•.....••.•.••...••••.••.....•.......•••••.•.•..•••• 221 
K_META_EXTEND input configuration parameter ................................ 229 
K_MOVE_ST •••...•.••.......•••...•.•...•..........•..••...••••...•.•.•••• 180 
K_NPAD •••••.....••......••••......•••••...•..••••.....••••••....••.••••• 221 
K_OVERFLOW •••..•...••......••••..•..•••••.••....•..••.•.....••••.•..••.. 240 
K_POPUP _ST •.•..••••.••..•.•••...•....•••..••.....•....•...••••.•••..•••• 180 
K_SHIFT input configuration parameter 229 

Subject Index 355 



K_SHIFT_B ..•••..••••..•••...••...•.....••..••.•..•••.•.••••.••.••.• 221, 222 
K_SIZE_LR_ST ••..•.••...••..•••...•.•.•...•.••••..••.••••••.•••..•..•.••• 180 
K_SPECIAL ..•..•.•.••••.•..•••...••••..•..•..•••...•...•.••.••••.....•..• 221 
K_TRACK input configuration parameter ...................................... 227 
K_UP .•.••...•....•.•..•••.•.•.....•.•..•..••..•..•.•.•.••.•............• 238 
K_USER_HS ..•••.•.•••..•••...•.•..•.....••..•..•..•••...•..•....••.....•. 180 

I 
label ..................................................................... 87 
label, changing ............................................................ 87 
label, changing a graphics window softkey ................................... 252 
label, graphics window softkey ............................................. 248 
label, icon ................................................................ 98 
label length, maximum ..................................................... 87 
label, relation to window name .............................................. 19 
label, softkey ............................................................. 19 
label, termO softkey ....................................................... 259 
label, turning on and off graphics window softkey ............................ 251 
label, window ......................................................... 17, 19 
LANG .................................................................. 334 
left I Extend char I key, effect in two-byte mode ................................. 223 
left I Extend char I key, relation to K_META_EXTEND ..•••.•.••••...••...•..........• 229 
LF character, handling in raw mode ........................................ 283 
libdddriver.a ............................................................ 331 
libfa.a ................................................................. 331 
libfontm. a .............................................................. 331 
libraries, linking with window programs ..................................... 331 
libraries: 

Fast Alpha .............................................................. 1 
Font Manager ............................................................ 1 
Window ................................................................. 1 

libsb1. a ................................................................ 331 
libsb2. a ................................................................ 331 
libwindow.a ............................................................. 331 
line discipline, side-effects from wgskbd(3W) ................................. 214 
line feed, handling in raw mode ............................................ 283 
link order when compiling window programs ................................. 331 
linking libraries with window programs ...................................... 331 
LMODE_DISP •.••...••...••..•.....•••..•..•..••.•..••..•••.••.•......•.•.• 104 
LMODE_NONE •.••...•..••••..•.•...•••..•..•..••....••..•••.••.••.••..•••.• 104 
loading a termO font ...................................................... 272 

356 Subject Index 



loading fast alpha fonts .............................................. 302, 303 
"local" mode, termO ...................................................... 257 
location, iconic .................................................... 18, 99, 101 
location, setting window ................................................... 72 
location, window .......................................................... 18 
location, window default ................................................... 36 
locator .......................................................... 17, 118, 135 
locator, absolute ......................................................... 136 
locator device special file .................................................. 333 
locator hot spot .......................................................... 137 
locator, moving the ....................................................... 140 
locator position, determining .............................................. 138 
locator, relative .......................................................... 136 
locator representation ..................................................... 136 
locator tracking events ............................................... 118, 131 
login ..................................................................... 16 
loops in input re-routing path .............................................. 234 

m 
makecurrent, of fast alpha fainfo structure ......................... 294, 295, 296 
managing termO window fonts ............................................. 261 
man_examples directory ................................................. 2, 334 
many-to-one input re-routing .............................................. 232 
mask (for pointer, echo, sprite) ............................................. 145 
mask rule (for pointer, sprite, echo) .................................... 145, 146 
master side of pty ......................................................... 13 
maximum fonts in termO window ........................................... 261 
maximum graphics window size ............................................. 76 
maximum label length ..................................................... 87 
maximum length, window name ................................ '" . . .... 37,41 
maximum number of hotspots per window ................................... 178 
maximum termO window size ............................................... 80 
maximum user-defined menus per window ................................... 198 
MCALWAYS •..•••..•••..•••.••••••.•.•••.•.•.•••...•••.•••.•..•....••.•..•. 295 
memory lock, termO ...................................................... 257 
I Menu I ................................................................... 248 
menu, activating ......................................................... 206 
menu activation .......................................................... 198 
menu activation button mask .............................................. 200 
menu activation, disabling ................................................. 206 
menu, adding items to .................................................... 202 

Subject Index 357 



menu, automatic display on activation ...................................... 206 
menu button mask ....................................................... 198 
menu, creating ........................................................... 200 
menu, deleting ........................................................... 210 
menu, determining activation status ........................................ 206 
I Menu I (escape sequence) ................................................... 249 
menu event detection ................................................ 198, 208 
menu, getting selection information ......................................... 208 
menu, grey items ......................................................... 202 
menu id .................................................................. 198 
menu, immediate display (don't wait for activation) .......................... 206 
menu item ............................................................... 198 
menu item, non-selectable ................................................. 198 
menu item, selecatable .................................................... 198 
menu item separator ...................................................... 203 
menu item type .......................................................... 202 
menu items, grey ......................................................... 202 
menu, non-selectable item ................................................. 202 
menu, polling for selection information ...................................... 208 
menu, selectable item ..................................................... 202 
menu, timeout period ..................................................... 209 
menu tracking ........................................................... 203 
menu type ............................................................... 200 
MENU_ACT _AUTO .•......••....••...•.•.............•.....•••.••••..•.•••.•.• 206 
MENU_ACT _DIS ...••...•...•.....•.••..••....••....••....••..••.....•.••••. 206 
MENU_ACT_IM ..•.••...•••.....••.....••.•..••.....••..•.•.•...••....••••.• 206 
MENU_ACT_INQ ....••...•.••.••.••••...••.....•...•.••..•.•......••.•.•••.. 206 
MENU_DISPGREY . . . • . • • • • . . . • • . . . . . • • . . . . . • . . . • • • • . . • . • . • . . . • • • • . . • . . • . • • • •. 202 
MENU_DISPNORM •...•.••••....••....•••.•••••••...•••...•...•.•••...•••.•••. 202 
MENU_NEWITEM ..••..•••••....•••.••.•.....•••....••..•.•••....••.•.••..•.• 202 
MENU_NOPARENT •..•..•••....••.....••....•••.•..•••••.•••...••.....••...••. 200 
MENU_NOTSELECTABLE ...•••..•.•.••.•.•...•••••...••••..•••...•••.•..•...••. 202 
MENU_POPUP .....•.....•••.••..•••...••.••..••...•.••.•••••...•.••...•••.. 200 
menus per window, maximum .............................................. 198 
menus, user-defined pop-up ................................................ 197 
MENU_SELECTABLE .••...•..••.....•••..••.•...••..•.•.•••...•••...••.•..•••. 202 
MENU_SEPARATOR ..•••...•..••....••.....••...•••...•...•.•.••••..•••. , 202, 203 
MENU_STRING ••....•••.....••....•••..•.•...•.•••.•..••••.••••....•.• 202, 203 
MENU_ TRACKINV •• . • . . • • . . . . . • • • . . . • . • • . . . . • . . . . . . . • . . . . . • . • . . • • . . . • . . . . . • •. 203 
MENU_ TRACKNOCHNG •.••••...••...•.••.....•....•..••....•••.•.••••..•....••.. 203 
Meta key, effect in two-byte mode 221 

358 Subject Index 



Meta key, effect on data byte values in two-byte mode ........................ 223 
Meta key, relation to K_KANJIKBD input configuration parameter ................ 230 
Meta key, relation to K_META input configuration parameter .................... 229 
minimum graphics window size .............................................. 76 
minimum termO window size ................................................ 81 
mode 0 ................................................................. 212 
mode 1 ................................................................. 212 
mode 1, reading data ..................................................... 219 
mode 2 ................................................................. 212 
mode 2, button presses .................................................... 213 
mode 2, event overflow .................................................... 240 
mode 2, reading data ..................................................... 238 
modifier key ............................................................. 219 
mouse ....................................................... 17, 65, 135, 136 
move cursor down one row in termO window ................................. 258 
move cursor left one column in termO window ................................ 258 
move cursor right one column in termO window .............................. 258 
move cursor to specific column and row, termO window ....................... 258 
move cursor up one row in termO window ................................... 258 
moving a window .......................................................... 72 
moving an icon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 101 
moving the locator ....................................................... 140 
multi-hop re-routing ...................................................... 233 

n 
name, window ........................................ 14, 17, 35, 37, 40, 41, 58 
name, window default. ...... . ..... .... . ...... . .... ......... ...... . ..... 36,40 
no window border .................................................. 19,41, 85 
non-retained raster ................................................ 20, 41, 119 
non-selectable menu item ............................................. 198, 202 
normal border ............................................... 19, 37, 41, 76, 85 
normal border, effect on minimum termO window size .......................... 81 
normal form ....................................................... 18, 68, 98 
normal key .............................................................. 219 
normal key, data byte values in two-byte mode ............................... 222 
npad key ........................................................... 219, 223 
null border ........................................................ 19, 41, 85 
numeric pad (npad) key .............................................. 219, 223 

Subject Index 359 



o 
occlusion ............................................................ 18, 119 
O_NDELAY •....•.••.•...••.•....••••.....•.......•.•...••.•....•••.••••..• 241 
open(2) .......................................................... 29, 59, 241 
opening a window type device interface ...................................... 59 
opening the window manager device interface ................................. 29 
optimizing echo, pointer, sprite for display hardware .......................... 141 
optimizing packetized input mode reads ..................................... 240 
overflow when reading events in packetized input mode (mode 2) ............... 240 
overlapping hotspots ...................................................... 181 

p 
packetized input mode .................................................... 212 
packetized input mode, button presses ...................................... 213 
packetized input mode, event overflow ...................................... 240 
packetized input mode, reading data ........................................ 238 
pan mode .......................................................... 155, 157 
pan mode, enabling arrows in .............................................. 161 
pan position ....................................................... 18, 76, 94 
pan position, relationship to elevators in pan mode ...................... 158, 159 
panning .............................................................. 18, 94 
panning via arrows ....................................................... 157 
panning via elevators ..................................................... 158 
path name, building a window type device interface's .......................... 59 
pathname, building from environment variable ............................ 29, 35 
pause status, window ...................................................... 21 
pause (2) ................................................................ 127 
pausing termO window output ............................................... 92 
physical display device driver ............................................... 59 
picture, custom icon ...................................................... 104 
picture, icon ......................................................... 98, 100 
place in stack ......................................................... 18, 49 
pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 135, 136 
pointer, changing the ..................................................... 141 
pointer, custom definition ............................................ 142, 145 
pointer, enabling full-screen mode .......................................... 150 
pointer, getting current representation ...................................... 142 
pointer, getting its definition ............................................... 147 
pointer image ............................................................ 145 
pointer mask ............................................................ 145 
pointer mask rule ................................................... 145, 146 

360 Subject Index 



pointer, optimizing for hardware ........................................... 141 
pointer rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 145, 146 
polling for events via weventpoll(9W) ....................................... 127 
polling keyboard in raw mode (unblocked reads) ............................. 285 
pop-up menu, activating .................................................. 206 
pop-up menu activation, disabling .......................................... 206 
pop-up menu, adding items to ............................................. 202 
pop-up menu, automatic display on activation ............................... 206 
pop-up menu automatically on activation .................................... 199 
pop-up menu, creating .................................................... 200 
pop-up menu, deleting .................................................... 210 
pop-up menu, determining activation status ................................. 206 
pop-up menu, event detection ........................................... ,.. 208 
pop-up menu, getting selection information .................................. 208 
pop-up menu, grey items .................................................. 202 
pop-up menu, immediate display (don't wait for activation) .................... 206 
pop-up menu item separator ............................................... 203 
pop-up menu, non-selectable item .......................................... 202 
pop-up menu, polling for selection information ............................... 208 
pop-up menu, selectable item .............................................. 202 
pop-up menu, timeout period .............................................. 209 
pop-up menu tracking .................................................... 203 
pop-up menu type.. ... ..... ....... . .. .. .......... .. ... ..... . .. ..... .. 19,200 
pop-up menus, user defined ................................................ 197 
process group ............................................................. 16 
programmable time delay, termO ........................................... 257 
protocol, fast alpha ....................................................... 288 
proximity ............................................................... 118 
pseudo-terminal ....................................................... 13, 16 
pty .................................................................. 13, 16 
puck .................................................................... 135 
puck, graphics tablet ...................................................... 17 

r 
raster ................................................................ 41, 94 
raster, non-retained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20, 41 
raster, retained ....................................................... 20, 41 
raster retention ........................................................... 20 
raster retention, effect on compiling programs ................................ 331 
raster retention, relation to event detection .................................. 119 
raster retention, setting .................................................... 41 

Subject Index 361 



raster size ................................................................ 76 
raster, size of graphics window's ............................................. 20 
raw mode blocked reads ................................................... 284 
raw mode, changing to in a termO window ................................... 280 
raw mode, echoing characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 282 
raw mode, handling I Back space I ............................................ 283 
raw mode, handling carriage return character ................................ 283 
raw mode, handling line feed (LF) character ................................. 283 
raw mode, parsing escape sequence input .................................... 284 
raw mode, termO input .................................................... 279 
raw mode unblocked reads ................................................. 284 
re-routing a window's input ................................................ 236 
re-routing graphics window input ...................................... 213, 232 
re-routing loops .......................................................... 234 
re-routing, many-to-one ................................................... 232 
re-routing, multi-hop ..................................................... 233 
re-using elevator scale information .......................................... 167 
read(2) .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 216, 220 
reading data in ASCII mode ............................................... 216 
reading data in packetized input mode (mode 2) ............................. 238 
reading data in two-byte mode (mode 1) .................................... 219 
reading from windows .................................................. . . .. 23 
reading keycode packets ................................................... 220 
rectangles, fast alpha ..................................................... 291 
relative coordinates ................................................. 36, 40, 72 
relative icon coordinates ................................................... 101 
relative locator device ...................................... . . . . . . . . . . . . . .. 136 
removing fast alpha fonts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 302, 303 
rentention, raster .......................................................... 20 
repaint window event ..................................................... 119 
repainting the display screen ................................................ 51 
replacing a termO font .................................................... 262 
replacing termO fonts in the cache .......................................... 275 
representation, changing a window's ......................................... 68 
representation, relation to event detection ................................... 120 
representation, window ..................................................... 18 
resuming termO window output ............................................. 92 
retained raster ..................................................... 18, 20, 41 
retained raster, linking programs that use them .............................. 331 
retention, setting .......................................................... 41 
return value, graphics window softkey ....................................... 248 

362 Subject Index 



reverse video characters in a termO window .................................. 258 
reversing the direction of panning with arrows ............................... 158 
RGB ................................................................... 263 
right [Extend char I key, effect in two-byte mode ................................ 223 
roman8 key .............................................................. 219 
routing loops ............................................................ 234 
run-time environment of a window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35,40 

s 
scale information for elevators 166 
screen size, determining ................................................ 72, 76 
scroll bar ........................................................... 155, 156 
scroll bar, affecting ....................................................... 161 
scroll bar events .......................................................... 160 
scroll bar, horizontal ...................................................... 161 
scroll bar, vertical ........................................................ 161 
scroll buffer size .................................................... 20, 37, 80 
SCROLLBAR_ARROWS .......................................•................• 162 
SCROLLBAR_ELEVATOR ....................•......................•........•.. 162 
SCROLLBAR_H .................................................•........... 161 
SCROLLBAR_SCALE .......................................................... 166 
SCROLLBAR_USERMODE ......................•.............................•.. 165 
SCROLLBAR_ V ..........................•.............•.................... 161 
scrolling a fast alpha rectangle ............................................. 308 
see_thru window type server ............................................... 335 
I Select I ............................................................. 118, 150 
I Select I activating a hotspot ................................................ 178 
select{2} ................................................................. 285 
selectable menu item. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 198, 202 
selecting a window ................................................... 65, 216 
selecting a window on output to the window .................................. 65 
selection, detecting ....................................................... 119 
selection, general overview .............................................. 17, 19 
selection made from user-defined menu, event detection ....................... 120 
selection, setting .......................................................... 65 
selection, side-effect from shuffling ........................................... 49 
selection, side-effects from destroying ........................................ 46 
selection-changed events ................................................... 119 
separator between menu items ............................................. 203 
separator, graphics window softkey label .................................... 252 
SETAUTODESTROY ........................ . . . . . . . . . . . . . . • . . • . . . . . . . . . . . . . . . . .. 96 

Subject Index 363 



SETAUTOSELECT •• • • • • • • • • • • . . • • • • . • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • . • . . • • .• 65 
SETAUTOTOP •••...••••.••....•...•••..•••...••..•..•....••...••••••••••••.. 69 
SETBANNER ••.•••••.....••...••....•..•••....•.....•..•.•..•.••••••• 37, 41, 85 
SETBOTTOM ...•..•••.•••••.••••.•••••.••••••.•.••••••.•.••••.•....•.•••.••• 68 
SETCONCEAL •••••••.•••••••••••••••••••••••.••••••••••••••••••....•••..•••• 69 
SETFULLSPRITE . • . • . . . • • . • . . . . • . . . • . . . . . . . • . . • . . . . . • • . . . • • . . . • • • • • • • • • . . . •• 151 
set_gr _labs. c ............................................................ 253 
SETICONIC •••••.•.••••••••.••••••••.•••....••.•..••..••.••••••.....•..•..• 99 
SETNOAUTOSELECT ••.....•.... . • . . . . • • . . • • . . • . • • • . . . . • . . . • . . . . • • • • • • • • • . . • . .. 65 
SETNOAUTOTOP ......•...•....•....•.•.••..•.••...........•...•...••••...•.. 69 
SETNOBANNER •...••.•........•....•••.••....••..•.............•...•• 37, 41, 85 
SETNOBOTTOM .....................•.................................•...... 68 
SETNOCONCEAL ....•....••....•....••..•••....•........•......•.•......••••. 69 
SETNOFULLSPRITE .•••.••••...••...•••..•••••.••.....•..•.•..•.•.•.......••• 151 
SETNOICONIC •...•....••••..••••••••••••••••••••••.••••.•...........•....•• 99 
SETNOPAUSE •••.••••..•••••.•••••••••••••••••••.••.•••••••.•.......••..•••• 92 
SETNORECOVER .•••..•.••••..••••••••..•••••••••....•....•..........••.••••. 96 
SETNORETAIN •••••••••.••.••...••••..••....••••..••••.•••••.•.....•••..•.•. 41 
SETNOSELECT ...•....•.•....••...••....•.•..•.....••...••..•••••.••••..•..• 65 
SETNOTOP ••••••••.•••••••••.••••••••••••••.•••••••••..••...•.•...•••..•... 68 
SETNULLBANNER . . . . . . . . . • • . . . . • . . . • • . . . . • . . . . • • . . . . • • . . • • • • • • • . • . . . . . • .. 41, 85 
SETPAUSE ..•.•..•.....••....•...••....•....••....•....•..•.•.•••••••••.•.. 92 
setpgrp(2) ........................................................... 16, 224 
SETRECOVER ..•..•...•••••..•••.•.•..•.•.••••••..••....•....•.•.....•...••• 96 
SETRETAIN ••••.•••••••••••.•••••••••.••••.••••••••••..•....•.•.....•...••. 41 
SETSELECT ••....•.•.•••••..•••••••••••••••••••..••....•....•.•.....•...•.• 65 
setting border colors ....................................................... 89 
setting fast alpha environment information .................................. 294 
setting fast alpha font colors ............................................... 304 
setting the termO alternate font ............................................ 272 
setting the termO base font ................................................ 272 
SETTOP •.••••••.•••.•.•••..•••••••••••••••.••••.••••.•••.•.•.•.....•..••.. 68 
setuid .................................................................... 16 
SFKOFF •••.••••.•••.•••..•••••.•••••.•••••.•.•..•••••••••.•.....••••..•.. 251 
SFKON ••...............•....•...••......•.•......••....•................. 251 
SFKSEPOFF •.•••..••••.••••••••••••••••••••.•.•.•.•••••••.•..•....•.•..•.. 252 
SFKSEPON •••••••••••••••••..•••••••••••••.•••••••••••••••.•••.•..•.....•. 252 
I Shift I, effect in two-byte mode .............................................. 221 
I Shift I, effect on data byte values in two-byte mode ............................ 222 
I Shift I, relation to K_CAPSLOCK input configuration parameter .................... 228 
I Shift I, relation to K_SHIFT input configuration parameter ....................... 229 

364 Subject Index 



I Shift H Select I, effect in two-byte mode ....................................... 224 
SHUFFLEDOWN ............................................................•. 49 
SHUFFLEUP ...................................•......................•..••. 49 
shuffling windows ..................................................... 18, 49 
SI character ............................................................. 261 
SI character, effect on termO fonts .......................................... 262 
side effect of changing activation bit mask ................................... 185 
SIGCLD ................................................................. 46 
SIG_DFL ....................................•................•....•. 114, 115 
SIGHUP ............................................................. 45,46 
SIG_IGN .............. ,............................................. 114, 115 
SIGINT .................................................... 115, 116, 224, 280 
SIGINT, handling on termO window input ................................... 281 
SI G INT, side-effect from wgskbd (3 W) ....................................... 214 
signal .................................................. 113, 114, 123, 124, 126 
signal handler ........................................... 114, 115, 123, 127, 151 
signal(2) ....................................... 46, 114, 116, 123, 127, 169, 280 
signal.h header file .............................................. 114, 116, 279 
signals ................................................................... 16 
SIGQUIT ............................................................... 280 
SIGWINDOW ...................................... 123, 124, 127, 150, 169, 171 
size and location of a hotspot .............................................. 180 
size, changing a graphics window's ........................................... 76 
size, changing a termO window's ............................................. 80 
size, determing for termO window font ...................................... 270 
size, determining a window's border ......................................... 81 
size, determining screen ................................................ 72, 76 
size, determining window ................................................... 76 
size, determining window's border ........................................... 76 
size events for windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 119 
size, font ................................................................ 261 
size, icon picture ......................................................... 104 
size, maximum for termO windows ........................................... 80 
size, maximum graphics window ............................................. 76 
size, minimum for termO windows ........................................... 81 
size, minimum graphics window ............................................. 76 
Size, of fast alpha fainfo structure ......................................... 296 
size of graphics window raster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 
size of termO window scroll buffer ....................................... 20, 37 
size, raster ............................................................... 94 
size, relation between termO window size and font size ........................ 261 

Subject Index 365 



size, screen ............................................................... 72 
size, scroll buffer ...................................................... 37, 80 
size, virtual raster ......................................................... 94 
size, window ....................................................... 18, 76, 80 
slave side of pty ........................................................... 13 
SO character ............................................................ 261 
SO character, effect on termO fonts ......................................... 262 
softkey ................................................................... 19 
softkey definition ......................................................... 248 
softkey definition escape sequence, termO window ............................. 267 
softkey definition string, termO ............................................. 260 
softkey definition, termO .................................................. 256 
softkey label, graphics window ............................................. 248 
softkey label, termO .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 256, 259 
softkey labels, changing ................................................... 252 
softkey return value, graphics window ....................................... 248 
softkey return values, graphics windows ..................................... 249 
softkeys, defining termO .............................................. 259, 267 
softkeys, graphics window ................................................. 247 
softkeys, termO window ................................................... 256 
softkeys, turning on and off in a termO window ............................... 266 
source window, input re-routing ....................................... 213, 232 
special files used by window system ......................................... 333 
special key .............................................................. 219 
special key, data byte values ............................................... 222 
sprite .............................................................. 135, 136 
sprite, changing the ....................................................... 141 
sprite control, full-screen mode ............................................. 150 
sprite, custom definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 142, 145 
sprite, enabling full-screen mode ........................................... 150 
sprite, getting current representation ........................................ 142 
sprite, getting its definition ................................................ 147 
spri te image ............................................................. 145 
sprite mask .............................................................. 145 
sprite mask rule ..................................................... 145, 146 
sprite, optimizing for hardware ............................................. 141 
sprite rule ...................................... ~ . . . . . . . . . . . . . . . . . .. 145, 146 
stack, window .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18, 49 
Starbase Device Drivers Library .............................................. 4 
Starbase Libraries ......................................................... 24 
Starbase Libraries, linking with programs ................................... 331 

366 Subject Index 



starting window communication .................................. 23, 58, 59, 122 
starting window manager communication. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. 29,37 
stdio . h header file ....................................................... 279 
stopping window communication .................. ;................. 58, 62, 130 
stopping window manager communication .................................... 30 
stylus, graphics tablet ................................................. 17, 135 
sU(l) .................................................................... 16 
super-user ................................................................ 16 
swapping termO fonts in the cache .......................................... 275 
switch to alternate font in termO window .................................... 261 
switch to base font in termO window ........................................ 261 
I System I ................................................................. 248 
I System I (escape sequence) ................................................. 249 
system(3) ................................................................ 28 

t 
TCIOBREAK 224 
termO alternate font ....................................................... 37 
termO base font ........................................................... 37 
termO block mode ........................................................ 257 
termO character, color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 262 
termO commonly used escape sequences ..................................... 258 
termO escape sequence .................................................... 257 
termO font cache ......................................................... 261 
termO font id ............................................................ 261 
termO font id, determining " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 270 
termO font information, getting ............................................ 270 
termO font management model ............................................. 261 
termO font size, effect on window size ........................................ 80 
termO format mode ....................................................... 257 
termO graphics ........................................................... 257 
termO input, cooked mode ................................................. 279 
termO input, raw mode .................................................... 279 
termO "local" mode ...................................................... , 257 
termO memory lock ....................................................... 257 
termO programmable time delay ............................................ 257 
termO softkey definition ................................................... 256 
termO softkey definition string ........................................ 259, 260 
termO softkey escape sequence ............................................. 260 
termO softkey label .................................................. 256, 259 
termO softkeys, defining ................................................... 259 

Subject Index 367 



termO softkeys, turning on and off .......................................... 266 
termO window, creating .................................................... 35 
termO window input/output features ........................................ 256 
termO window, maximum label length ........................................ 87 
termO window scroll buffer size ............................................. , 37 
termO window server ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 335 
termO window size, determining ............................................. 81 
termO window softkeys .................................................... 256 
termO window type ..................................................... 9, 17 
TERMCAP ............................................................. 256 
term_gr. c ................................................................ 63 
terminal (termO) window type ........................................... 9, 17 
terminating the fast alpha environment ..................................... 292 
termio structure .................................................... , 279, 284 
termio{7} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 214, 279 
termio. h header file ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 279 
term_tO. c ................................................................ 64 
term_wm_com. c ............................................................. 33 
text in a graphics window, using Fast Alpha ................................. 287 
thin border .................................................. 19, 37, 41, 76, 85 
thin border, effect on minimum termO window size ............................ 81 
time delay, programmable termO ........................................... 257 
timestamp, event code packet .............................................. 239 
top window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18,68 
toxy_termO{3W} ...................................................... 81, 278 
tracking, in menus ........................................................ 203 
tracking locator movements ........................................... 118, 131 
transmit functions mode .................................................. 216 
transmit strap ........................................................... 282 
tty{7} ........................................................... 25, 214, 279 
turn on inverse video, termO window ........................................ 258 
turn on underline, termO window ........................................... 258 
turning graphics softkey label on and off .................................... 251 
turning termO cursor on and off ............................................ 265 
turning termO softkeys on and off .......................................... 266 
two-byte mode ........................................................... 212 
two-byte mode, reading data ............................................... 219 
type, menu item .......................................................... 202 
type, window .......................................................... 9, 17 

368 Subject Index 



u 
unblocked reads, termO raw mode .......................................... 284 
underlining characters in a termO window ................................... 258 
I User I ................................................................... 248 
user background color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 
I User I (escape sequence) ................................................... 249 
user foreground color ...................................................... 20 
user mode ...................................................... 155, 160, 165 
user mode, enabling ................................................. 165, 170 
user-defined echo ......................................................... 145 
user-defined menu ........................................................ 120 
user-defined menu, activating .............................................. 206 
user-defined menu activation, disabling ...................................... 206 
user-defined menu, adding items to ......................................... 202 
user-defined menu, automatic display on activation ........................... 206 
user-defined menu button mask ............................................ 200 
user-defined menu, deleting ................................................ 210 
user-defined menu, determining activation status ............................. 206 
user-defined menu, event detection ......................................... 208 
user-defined menu, getting selection information .............................. 208 
user-defined menu, grey items .............................................. 202 
user-defined menu, immediate display (don't wait for activation) ............... 206 
user-defined menu item separator ......................................... " 203 
user-defined menu, non-selectable item ...................................... 202 
user-defined menu, polling for selection information ........................... 208 
user-defined menu, selectable item .......................................... 202 
user-defined menu, timeout period .......................................... 209 
user-defined menu tracking ................................................ 203 
user-defined menu type ................................................... 200 
user-defined pop-up menu, creating ......................................... 200 
user-defined pop-up menus ................................................ 197 
/usr/bin/w* ............................................................. 335 
/usr/include/fa.h ................................................... 288,335 
/usr/include/fonticon.h ......................................... 104, 261, 335 
/usr/include/signal.h .................................................... 279 
/usr/include/stdio.h ..................................................... 279 
/usr/include/sys/signal. h ........................................... 114, 116 
/usr/include/termio.h .................................................... 279 
/usr/include/window.h ......................................... 2, 124, 222, 335 
/usr/lib/gserver ..... ' .................................................... 335 
/usr/lib/hpwindows/demo ............................................... 9, 334 

Subject Index 369 



/usr/lib/hpwindows/demosrc ............................................... 334 
/usr/lib/hpwindows/man_examples ........................................ 2, 334 
/usr/lib/libdd*. a ........................................................ 335 
/usr/lib/libddbyte. a ..................................................... 335 
/usr/lib/libdddriver.a .................................................... 333 
/usr/lib/libfa.a .................................................. 1,333,335 
/usr/lib/libfontm.a ............................................... 1,333,335 
/usr/lib/libsbl. a ................................................... 333, 335 
/usr/lib/libsb2. a ................................................... 333, 335 
/usr/lib/libwindow. a .............................................. 1, 333, 335 
/usr/lib/raster/* ........................................................ 334 
/usr/lib/raster .......................................................... 261 
/usr/lib/raster/dflt/a/h/$LANG ......................................... 334 
/usr/lib/raster/dflt/a/l/$LANG ......................................... 334 
/usr/lib/raster/dflt/b/h/$LANG ......................................... 334 
/usr/lib/raster/dflt/b/l/$LANG ......................................... 334 
/usr/lib/raster/icons .................................................... 334 
/usr/lib/stserver ........................................................ 335 
/usr/lib/tOserver ........................................................ 335 
/usr/lib/wm ................................................... 15, 16, 28, 335 

v 
value, soft key ............................................................. 19 
vertical scroll bar .................................................... 156, 161 
view ................................................................. 18,41 
virtual device ............................................................. 18 
virtual raster ...................................................... 18, 41, 94 
virtual raster size ......................................................... 76 
VMIN ...................................................................• 284 
VMIN, side-effect from wgskbd{3W} .......................................... 214 
VTIME .••....................................•......•.................... 284 
VTIME, side-effect from wgskbd{3W} ......................................... 214 

w 
wautodestroy{3W} ..................................................... 46, 96 
wautoselect{3W} .......................................................... 65 
wautotop{3W} ............................................................ 68 
wbanner{3W} ............................................................. 85 
wborder{l} ................................................................ 19 
wbottom{3W} .............................................................. 68 
wconceal{3W} ............................................................. 69 

370 Subject Index 



wcreate (1) ................................................................ 58 
wcreate_graphics{3W) ............................................ 40, 41, 58, 76 
wcreate_termO{3W) .............................................. 35, 37, 40, 58 
wdestroy{l) ............................................................... 96 
wdestroy{3W) ............................................................. 45 
wdjltpos{3W) ..................................................... 36,72, 101 
weventpoll{3W) ............................................. 127, 160, 169, 208 
weventpoll{3W) for hotspots ............................................... 190 
weventpoll{3W), inputs to ................................................. 127 
weventpoll{3W), no queue ................................................. 128 
weventpoll{3W), outputs from. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 128, 129 
wjont{l) ................................................................ 261 
wgetbcolor{3W) ........................................................... 89 
wgetbcoords{3W) .......................................................... 76 
wgetcoords{3W) ................................................. 36, 72, 73, 76 
wgetecho{3 W) ............................................................ 142 
wgeticonpos{3W) ......................................................... 101 
wgetlocator{3W) .......................................................... 138 
wgetrasterecho{3W) ....................................................... 147 
wgetscreen{3W) .................................................... 72, 73, 76 
wgetsigmask{3W) ......................................................... 130 
wgskbd{3W) ............................................................. 214 
wgskbd{3W), relation to input re-routing .................................... 235 
whotspoLcreate{3W) ...................................................... 179 
whotspoLcreate{3W), realtion to packetized input mode ....................... 239 
whotspoLdelete{3W) ...................................................... 187 
whotspoLget{3W) ........................................................ 184 
whotspoLset{3 W), relation to packetized input mode .......................... 239 
wiconic{3W) .............................................................. 99 
wid, event code packet .................................................... 234 
wid, getting path name from ............................................... 237 
wid (window id), obtained from re-routing window input ...................... 234 
window attributes ......................................................... 17 
window border size, determining ............................................ 76 
window commands ........................................................ 335 
window communication, starting ............................................ 23 
window destruction events ................................................. 120 
window file descriptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13, 59 
window group ............................................................. 16 
window id, event code packets ........................................ 234, 239 
window id, getting path name from ......................................... 237 

Subject Index 371 



window id, obtained from re-routing window input ........................... 234 
window id, relation to file descriptor ........................................ 234 
window label ......................................................... 19,87 
Window Library ....................................................... 1, 22 
Window Library, linking with programs ..................................... 331 
window location ........................................................... 18 
window location, default ................................................... 36 
window location, setting ................................................... 72 
window management routines ............................................... 27 
window manager ................................................ 15, 16, 22, 28 
window manager device interface ............................ 16, 22, 28, 29, 30, 41 
window manager device interface, opening .................................... 29 
window manager, emulating in full-screen sprite mode ........................ 150 
window manager file descriptor ...................................... 29, 37, 41 
window manager, interactive configuration ................................... 150 
window manager, killing the ................................................ 53 
window manager special file ................................................ 16 
window manager, starting communication with ................................ 29 
window manager, stopping communication with ............................... 30 
window manipulation routines .............................................. 57 
window move events ...................................................... 119 
window, moving ........................................................... 72 
window name ......................................... 14, 17,35, 37, 40, 41, 58 
window name, default ...................................................... 36 
window name, maximum length ............................................. 37 
window paused ............................................................ 21 
window representation, changing ............................................ 68 
window size ....................................................... 18,76,80 
window size change events ................................................. 119 
window size, determining ................................................... 76 
window size, relation to font size in termO window ............................ 261 
window special file .................................................... 13, 17 
window stack ......................................................... 18, 49 
window system architecture ................................................. 22 
window system device files ................................................ 333 
window system, exiting .................................................... 53 
window system special files ................................................ 333 
window type ........................................................... 9, 17 
window type device interface ..................... , 13, 17, 22, 35, 40, 41, 58, 59, 62 
window type device interface, destroying ..................................... 45 
window type device interface, opening ....................................... 59 

372 Subject Index 



window-dumb programs .................................................... 12 
window-dumb programs, writing ............................................ 24 
window-smart programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. 12, 22 
window-smart programs, compiling ......................................... 332 
window. h header file .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2, 124, 335 
winit{3W} ............................................................ 29, 59 
WINNAMEMAX •••.••••••••....•••....•..........•........•.....•..•.•.••. 37, 41 
winpuLcon/{3W} .................................................... 227,230 
winpuLcon/{3W}, relation to input re-routing ................................ 235 
winpuLcon/{3W}, relation to packetized input mode .......................... 239 
winpuLgetroute{3W} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 232, 237 
winpuLread{3W} ................................................ 212, 238, 240 
winpuLsetroute{3W} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. 232, 236 
winpuLwidpath{3W} ...................................................... 232 
wm ............................................................ 15, 16, 22, 28 
WMBASEFONT ......................................................... 302 
WMDIR ............................................. 14, 16, 28, 35, 40, 58, 59 
WMDRIVER ............................................................. 59 
wmenu_activate{3W} ..................................................... 206 
wmenu_delete{3W} ....................................................... 210 
wmenu_eventread{3W} .................................................... 208 
wmenu_item{3W} ........................................................ 202 
WMFONTDIR ...................................................... 37, 261 
WMIATIMEOUT ........................................................ 209 
wminquire{3W} ...................................................... 59, 150 
WMIUICONFIG ................................................ 150, 158, 198 
wmk";ll{l} ................................................................. 54 
wmkill{3W} ............................................................... 53 
WMLOCSCALE ......................................................... 136 
wmove{3W} .............................................................. 72 
wmpathmake{3W} ............................................... 29, 35, 40, 59 
wmreadY{l} ............................................................... 28 
wmrepaint{3W} ...................................................... 51, 119 
wmstart{l} .................................................. 14, 15, 28, 35, 40 
wmstop{l} .... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. 16,30 
wpan{3W} ............................................................ 76,94 
wpauseoutput{3W} ......................................................... 92 
wrecover{3W} ......................................................... 46,96 
writing fast alpha character strings ......................................... 300 
writing fast alpha characters ............................................... 300 
writing to windows ........................................................ 23 

Subject Index 373 



wscrn_sprite_mode{3W) ................................................... 150 
wscrolLset{3W) ..................................................... 161, 165 
wselect{3W) ...................................................... 17,65,216 
wsetbcolor{3W) ........................................................... 89 
wsetecho{3W) ......................................•................ 141, 145 
wseticon{3W) ............................................................ 103 
wseticonpos{3W) ......................................................... 101 
wsetlabel{3W) ......................................................... 19, 87 
wsetlocator{3W) .......................................................... 140 
wsetrasterecho{3W) .................................................. 142, 145 
wsetsigmask{3W) .................................................... 126, 160 
wsfk_mode{3W) .......................................................... 251 
wsfk_prog{3W) ........................................................... 252 
wsh{l) ................................................................... 58 
wshuffle{3W) ............................................................. 49 
wsize{3W) ....................................................... .. 76, 80, 80 
wterminate{3W) ...................................................... 30,62 
wtop{3W) ................................................................ 68 

x 
x and y, event code packet ................................................. 240 
XOFF ................................................................... 92 
XON .................................................................... 92 
x,y pixel coordinates, converting to rows and columns ................. . . . . . . .. 278 

374 Subject Index 



fold--

Win an HP Calculator! 
Your comments and suggestions help us determine how well we meet your needs. 
Returning this card with your name and address enters you into a quarterly 
drawing for an HP calculator*. 

HP Windows/9000 Documentation 

The manual is well organized. 

It is easy to find information in the manual. 

The manual explains features well. 

The manual contains enough examples. 

The examples are appropriate for my needs. 

The manual covers enough topics. 

Overall, the manual meets my expectations. 

You have used this product: 

Less than 1 week _ Less than 1 year 

Less than 1 month 1 to 2 years 

Agree 

0 
0 
0 
0 
0 
0 
0 

Disagree 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

More than 2 years 

Please write additional comments, particularly if you disagree with a statement 
above. Use additional pages if you wish. The more specific your comments, the 
more useful they are to us. 

Comments: ______________________________________________ __ 

* Offer expires June 1990. (97069-90002 E0488) 

Please Tape Here 



Please print or type your name and address. 

Name: ______________________________________________ ___ 

Company: ____________________________________________ __ 

Address: ____________________________________________ ___ 

City, State, Zip: _______________________________________ _ 
Telephone: __________________________________________ __ 

Additional Comments: 

HP Windows/9000 Documentation 
HP Part Number 97069-90002 
E0488 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 37 LOVELAND,COLORADO 

POSTAGE WILL BE PAID BY ADDRESSEE 

Hewlett-Packard Company 
Attn: Learning Products Center 
3404 East Harmony Road 
Fort Collins, Colorado 80525-9988 

11 •• 1.1111111.1 ••• 1.1.1.1.1.1 •• 1.1 •• 1 •• 1.1 •• 11111 • .I 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 





HP Part Number 
97069-90002 
Microfiche No. 97069-99002 
Printed in U.S.A. E0488 

FliOW HEWLETT 
~~ PACKARD 

97069-90608 
For Internal Use Only 


