HP Windows /9000
Programmer’s Manual

HP 9000 Series 300 Computers

HP Part Number 97069-90002

() Preare

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Table of Contents

Chapter 1: Overview

Example Source Codecouuiiiiiiiiiii i e e 2
ConVentionS . . . oo vttt e e e 3
Prerequisitesooviiuii i e e e 4
Programming Manual Contentscooiiitiiinniiiiiniiineennnnn 5
L0 =3 (=1 O 5
CONCEPES .« ottt ittt e e e e 5
Window Librarycooiiiun it i it e 6
Fast Alpha Libraryo i i i i 7
Font Managervvunniiitt ittt ittt cieeanenneens 7
Appendices e e e 7

Chapter 2: Concepts

Window Types . ..o i e i s 9
Term0 WiIindow Type .. .voiiir ettt i it e et e i e nnns 9
Graphics Window Type. ...ttt 10

Programscouniiiiit e e e e 12
Window-Dumb Programs 12
Window-Smart Programso 12

Window Type Device Interface it 13

Window Name. e e 14

Window Managerottt et e e e 15

Window Manager Device Interfaceo i L., 16

WiIndow GroUD .. oottt et et et et ittt et et 16

Input Devicesot e e e e e e 17

Window Attributes. e 17
Window Name. e 17
Window Type . oot i i i i i i i et e e 17
Representationciiiiiiniiiinitie ittt 18
LoCation . ..oovtit e e 18
3 T 18
Place in Stack ... e 18
VW ottt e e e e e 18
Keyboard Selection i 19
o) A =) 7P 19
Pop-Up Menu Typeoooiii i e et 19

Table of Contents i

Label. .. e e e 19
1070) T A PPN 20
Raster or Buffer Sizeo i e e 20
Raster Retention....... ...t 20
Window Pausedc. it et i 21
Autotop (Term0 Only)oooiinii i 21
Auto-Selection (TermO Only) e 21
Writing Window-Smart Programsottt iiannnn, 22
Writing Window-Dumb Programs i i i, 24
Chapter 3: Window Management
L0701 4T o7 7 O A 28
The Window Managerovttn it ittt ittt iin e iieeieennns 28
Starting Window Manager Communication...................coieaun.. 29
Stopping Window Manager Communication 30
Example e e 30
est_wm_com and term_wIm_comiiiiiiiiiiiie i, 32
Creating a Term0 Windowttt iiiiinnenann, 35
Procedure. e et e 35
Precautionscoiiiiiiii i e e 38
Example e e e 38
Creating a Graphics Window i i 40
Procedure. e e e 40
Precautionscoiiiiiiiii i e 42
Example . ..o e e e 42
Destroying a Windowttt it ettt 45
Procedure.t e e e 45
Related Routinesooiiiiiiinniieiinnniiiieiieaaneenannn. 46
Precautionsot e e 46
Example e e e i e 47
Shuffling Windowsoiiiiiii it it ettt iiieaenans 49
Procedure...... ..o e 49
e ' 11 +) (- 50
Repainting the Display Screenot 51
Procedure. e e et it e, 51
EXampleot e e e e 51
Killing the Window Managerc.cciiiiriiinneininerennnnnenennn. 53
Procedure. i e e e e 53
Precautionsc.o i e 54
Exampleo e e e e, 54

ii Table of Contents

Chapter 4: Window Manipulation

(0703 (YT 7 58
The Window Type Device Interface e 58
Program Structure ...ttt i i i e 58
Starting Window Communicationciiiiiieieinernenn... 59
Stopping Window Communicationcoiiiiiiiennennrnnn.. 62

Selecting @ WINdow oovtiti it e et e e 65
Procedure.ooiiii i e e 65
Related ROUINESttt iiir e eiieneeneeeenn 65
Precautionsoouiiiiiiiii e e et e 66
Example o e e 66

Displaying and Concealing a Windowo, 68
Procedure.oiiii i e e e 68
Precautionsottt e et e e 69
B0 111 o) L= O 70

Moving @ WInNdowottt ittt iiee e ieie e 72
Procedure.coiii i e e e e 72
Precautionsiii it e e et e 73
Example e e 73

Changing a Graphics Window’s Size.. ..., 76
Procedure.ottt e i e et et i e, 76
Precautionsooiiii it i i e e i e 77
Example e 77

Changing a Term0 Window’s Size ...ttt 80
Procedure.oii i i e e e e 81
Precautionscooiiiiiii i e e 82
EXample . ..o et 82

Changing a Window’s Border......... i i, 85
Procedure. ...t e e e 85
Example e e 86

Changing a Window’s Label i i, 87
Procedure.o i e 87
Exampleo e 87

Setting a Window’s Border Colorsccoiviiiiiiiinniiinneenn.. 89
Procedure.ooiii e e e 89
EXample . ..o e e e et 90

Pausing and Resuming Output to a Term0 Window 92
Procedure. it e e e e 92
< 114) (OO N 92

Panning a Graphics Window it 94
Procedure.o i e e e 94

L D50 111 o) (- G 95

Setting Autodestroy Status.............c i i e 96
Procedure.ottt e e et e 96
Chapter 5: Icons
L7051] T PPN 98
Changing a Window’s Iconic Stateo i, 99
Procedure.ciiit it e e e 99
EXample . . .oo it e e 100
Moving an Icomt e 101
Procedure.coviiiiii i e e e e 101
Exampleo e e e e 102
Customizing IConSoiiiiinit ittt e e e 103
Procedure.cciiiniiiii i i e e i e e 103
Controlling the Display of Picture/Label 104
Defining and Using a Non-Standard Picture 104
Exampleo e e e et e e 107
Chapter 6: Event Detection
HP-UX Signalsovvtittiiiiiet et ettt ieeneenaeeans 114
The signal(2) System Call.......... ..ottt .. 114
Example Signal Handler i, 116
Events . ..o e e e e it e e 117
Button Press Eventscoiiiiiiiiiinniiininiiniiinennns 117
Locator Movedccoiiiiiinii ittt ittt et eiaenns 118
Window Moved it i i e e e 118
Window’s Size Changedcotiitiiiiiiiin e 119
Window’s Selection Status Changedcoooiiiinenienn.. 119
Window Needs Repaintingot iiiiiinnaenn.. 119
A Selection Made from User-Defined Menucooviven.. 119
A Hot Spot Was Activatedottt i, 120
Window Destroyedooiiiiiiiii it i e i e 120
BREAK Key Pressedcoiiiiiininii ittt ieineanns 120
Window’s Iconic State Changed............ ..ot 120
Elevator Movedcouittr ittt it e it et e 120
Arrow Activatedo e e e e 120
Full-Screen Sprite Mode Abortedot 120
Event Detectionttt it ittt i, 121
Step 1: Start Communication with the Window....................... 122
Step 2: Set Up a Signal Handler to Receive SIGWINDOW 123
Step 3: Define the Event Mask iiiiiiiiina., 124
Step 4: Call wsetsigmask(3W) i il 126

iv Table of Contents

Step 5: Wait for the Event(s) ...ttt 127

Step 6: Receive the Signal o i 127
Step 7: Execute the Signal Handler it 127
Step 8: Call weventpoll(BW)ooiiiuiiiiiii it 127
Step 9: Stop Window Communicationcooiiio.... 130
Related Routines ittt iinennnn 130
Performance Considerationsooiiiiiiiiiiinnennnnnennn. 131
Example e e i 131
Chapter 7: Locator and Echo Routines
(07051103 o] PP 136
Absolute Locator Deviceoiiinit i 136
Relative Locator Deviceo i, 136
The Echo e e et 136
The Locator’s Hot Spot ...t 137
Getting Locator Information i 138
Procedure. e e e e 138
Precautions ittt e e e 138
Exampleo e e e 139
Moving the Locatoro e 140
Procedure. e e i 140
Exampleooi i e e e 140
Changing the Echo i i i 141
Procedure.ot e e i 141
Related Routines i 142
Example 142
Customizing the Echoot i i i et 145
Procedure.o e 145
Related Routines oo i e 147
Example e 147
Enabling Full-Screen Sprite Control i it 150
Procedure. ...ttt i e e e e 151
Precautions i i i e e e e 151
Example e e 152
Chapter 8: Arrows and Elevators
(070)177=] o] - SO AP 156
Scroll Bars . ..o e e e e 156
Pan Mode. o e e e 157
User Mode ... oooi it i e i et et e e 160
Enabling Arrows, Elevatorsin Pan Mode 161
Procedure. oo i e e e e 161

Table of Contents v

Exampleso e et e e 163

USer Mode . ..o iv ittt i e e e et e 165
Procedure. ...ttt i et i et e e 165
Reusing Scroll Bar Scale Informationoo... 167
Precautionsciiuiiiiii i e e e e e 167
Exampleot e e e et e 167

Getting Scroll Bar Events in User Mode oo, 169
Procedure.t et e 169
Example i 172

Chapter 9: Graphics Window Hotspots

070 ¢ TT=) PO 178
What Is a Hotspot?oivr i i i it i eeeae e 178
Hotspot Event Detection........ i, 178

Creating a Hotspotttt i i it e 179
Procedure. e e e 179
Overlapping Hotspots oottt i 181
Precautionsc.oiuuiitiitii i i e ittt 182
Example i e e e e 182

Changing a Hotspot’s Characteristicscooiiiieiiiiiennnaann. 184
Procedure.ottt i i e e e 184
Precautions ittt et 185
Exampleo e 185

Deleting a HOtSPOto oottt e it et et et e 187
Procedure. e e e 187
Precautionsiiiiiiiiii i e i e 187

Detecting Hotspot Eventso i 188
Procedure. .. .ot e e e e e e 188
Example . ..o e e e 191

Chapter 10: User-Definable Menus

L0703 4T3 o1 1~ 198

Creating a Menu.ottt it ittt iaie e aas 200
Procedure.t e e e 200
Precautions oottt i i i e et 201
Example e e i et 201

Adding Menu Itemst 202
Procedure.o e e i e 202
Example e e s 203

Activating a Menu ... e e e 206
Procedure.o e et 206
Precautionsouiiiiiiiiiii i e e e e 207

vi Table of Contents

Example ... 207

Getting Menu Information i i 208
Setting Up Event Detectioncoiiiiiiiiiiiiiiinn.. 208
Polling for Event Information............... i, 208
Procedure.oouuniiiii i e e e 209

Deleting a Menuooouiiitii i it it et 210
Procedure.t et e 210

Chapter 11: Graphics Window Input Routines

L0703 1T 7 O 212
Input Modesoiiiin i i i et e 212
Input Re-Routing ...t i it ittt i iieanns 213
Input Configurationcuiniiiiiiiiin ittt 213

Changing Input Modet it ittt 214
Effect on Line Disciplineooiii i 214
Procedure.cooiniii i e e et e 214
Precautionsottt e e et e 215
Example e e et e 215

Reading Data in ASCII Modeottt it 216
Procedure.ttt e e e e e 216
Precautionscoiiiiiiiiiii e e e 216
Example e e e e e 217

Reading Data in Two-Byte Mode 219
A ' - TP 219
Reading Keycode Packets ..ottt 220
Control Byte ..o 221
Data Byteooiiiiii i e e e e 222
Special Casesottt i i e e e 224
Examplet e e 224

Changing Input Configuration ittt 227
Input Configuration Parameters 227
Procedure.ooiiiii i e e et e 230
ExXample . ..ot e e 231

Re-Routing Window Input i it i, 232
L0 0) 4T o 7S 232
Procedure.ot e e 236

Reading Data in Packetized Input Mode 238
Event Code Packetsooiiiiii it 238
Procedure.ot e i 240
Example e e 241

Table of Contents vii

Chapter 12: Graphics Softkeys

L0731 o7 248
Softkey Labelsooitittii ittt it ittt 248
Return Values i i i it e i 249

Turning Softkey Labels Onand Off oo, 251
Procedure.t i e et e e 251

Changing Softkey Labels........ ... i, 252
Procedure. i i e e 252
Exampleo e 253

Chapter 13: Term0 Windows

L7103 1167 o 7 256
Term0 Window Featuresttt 256
Term0 Window Escape Sequencesccoviiiiieinninneennnnn... 257
User-Definable Softkeysot i 259
The Term0 Font Management Model 261
L70) 1o} ¢ S 262

Turning the Cursor Onand Off i i, 265
Procedure.ot i e e 265

Turning Softkeys Onand Off i i 266
Procedure.o e e e 266

Defining Softkeyscoiniiiiriii i i i i e 267
Procedure.o e e e e 267
Exampleso e 269

Getting Font Information i i i 270
Procedure.o e e 270

Setting the Base/Alternate Font il 272
Procedure. e 272
Example e e i e e 273

Replacing Fontst i it 275
Procedure.ot e et e 275
EXamples ..ot e e e 276

Converting Pixel and Character Coordinates 278
Procedure.ot i e e e 278

Using Raw Modecoiiiiiii i i e et et it e et 279
Changing to Raw Mode.......ottt 280
Handling Interrupto o 281
Returning to Cooked Mode....................ciiiiiiaa... PR 281
A Word About the Transmit Function eeieeneniieaa. 282
Runningin Raw Mode. i i i i 282
Blocked vs. Unblocked Reads............cooiiiiii ... 284

vili Table of Contents

Chapter 14: The Fast Alpha Library

L0734 ToT=7 o - PN 288
Programming Model e 288
Cursor Positioningc.ooi it i e i 290
Character Enhancements iiiiiiiiiiiiininneennn.. 290
Fast Alpha Rectanglesottt 291

Initializing/Terminating the Fast Alpha Environment...................... 292
Procedure. e e 292
Example e e 293

Changing the Fast Alpha Environment 294
Procedure.ottt e 294
Performance Considerations iiiiiiiiiininnn.. 295
Example e e 297

Cursor Comtroloiiieerniiteiie i it e 298
Procedure.ooiiii i e e e 298
Precautions i e et e e 299
ExXamples ..o e et e e 299

Writing Charactersottt ittt et e iienannns 300
Procedure.ttt e e e 300
Exampleo e e e e e 301

Font Manipulation o i e 302
COMCEPES vttt ettt e e e e 302
Procedure. e e i 303
Precautionsol e 304
Example e e e 304

Clearing a Rectangleottt ittt 306
Procedure. e 306
Example e e i e e 306

Scrolling a Rectangleo i e 308
Procedure.o i e e 308
Example ... e e 308

Chapter 15: The Font Manager Library

L0705 447 o1 1 312

Font Managemento iiiiiiiiii i it 313
COMCEDES vttt e e e e 313
Procedure.ot i e e et e e 314
Example e e 315

Font Information Routineso ... 317
L0703 4Tl o 7 317
Procedure.o e e e 319
Example e e e 320

Table of Contents ix

Writing Characters.ttt i 322

Procedure.c.vniiiiiii i e e i 322
Exampleooeiniii i i i e e e et e 325
Character CIpPINgottt i e ittt iiieees e 327
Procedure.oivrtii i e e e 328
Exampleot e e e 328
Appendix A: Compiling Window Programs
Linking Window Libraries........... ...ttt iiiannann. 331
| 0513 1)+ [T R 332
Appendix B: Windows/9000 Files
Device Filesot i i e e e e e 333
Manual Examples and Demosc.oiiiiiiiiiiiii i, 334
Fontand Icon Files ...ttt ieennennnn 334
Header Files.t ittt ittt 335
Windows/9000-Specific Files ...t 335

Subject Index

x Table of Contents

Overview

HP Windows/9000 supports subroutine libraries in the Window library,
Jusr/lib/libwindow. a.

Window routines can be called from user programs to do tasks performed by window
commands—for example, creating, moving, or changing the size of a window. In addition,
library routines allow users to do tasks unachievable through the window commands—
for example, adding scroll bars to a window’s border. This manual discusses the use of
Window routines in user programs.

Overview 1

Example Source Code

Throughout this manual, you will find several source code examples on how to use
Window library routines. Most of these example programs and functions are stored in
Jusr/lib/hpwindows/man_exzamples, hereafter referred to as the man_ezamples directory.

Also, the examples found throughout this manual use constant definitions defined in the
header file /usr/include/window.h, referred to as the window.h header file. Using these
definitions (via the #include C-compiler directive) in your windowing programs will help
ensure portability.

For details on compiling window programs, see the Appendix A, “Compiling Window
Programs.”

2 Overview

Conventions

The following typeface conventions are used throughout this manual:

e ltalic text is used for the names of files and HP-UX commands, system calls, sub-
routines, etc. found in the HP-UX Reference. Italics is also used to denote window
commands (e.g., wsh(1)) and Window library routines (e.g., winit(3W)).

e Boldface text is used when a word is first defined (as term0) and for strong emphasis
(never do this).

e Computer text denotes literal text, either typed by the user or displayed by the
system. For example,

wmstart
means to type “wmstart” at the keyboard, and press the key.

e Environment variables, such as WMDIR and WMIATIMEOUT, are represented in
upper-case letters.

Overview 3

Prerequisites
Before reading this guide, you should know:

1. How to use the window system. You should feel comfortable with the window
commands; in particular, you must understand window concepts presented in the
HP Windows/9000 User’s Manual.

2. The C programming language and its standard input/output routines. All program
examples in this guide are presented in C, and all input/output is done in C. For
more information on C, consult:

e the C programming manual shipped with HP-UX documentation,
e HP-UX Concepts and Tutorials: Programming Environment.

3. If you intend to use graphics windows, then become familiar with the Starbase
Graphics library routines documented in HP-UX Concepts and Tutorials: Starbase
Graphics Techniques.

The Starbase Device Drivers Library may also be helpful; it contains information
about the Graphics Window Device Driver.

4 Overview

Programming Manual Contents
The HP Windows/9000 Programmer’s Manual consists of the following tabbed sections:

o Overview

e Concepts

e Window Library
e Appendices

Descriptions of each tabbed section follow.

Overview

This tabbed section contains Chapter 1: Overview, which describes the organization
and contents of the Programmer’s Manual, explains conventions used, and identifies
information you should know before using the manual.

Concepts

This tabbed section contains Chapter 2: Concepts, which describes window system
concepts and HP Windows/9000 system architecture and data flow. This chapter is
useful if you wish to know the intrinsic structure of the window system. If you like to
know how things work before you use them, then read this chapter.

Overview 5

Window Library

This tabbed section of the manual contains chapters three through ten, all dealing with
Window library routines.

Chapter 3: Window Management defines the programming model used in programs that
call window management routines. It discusses how to start and stop communication
with the window manager, how to create term0 and graphics windows, how to destroy
windows, how to shuffle windows and repaint the display screen, and how to kill the
window manager.

Chapter 4: Window Manipulation defines how to start communication with a term0
or graphics window. Once this is done, a program can call other window manipulation
routines to change window attributes such as size, location, and label.

Chapter 5: Icons shows how to use the icon manipulation routines. These routines
display icons and change windows to icons (and vice versa). In addition, you can make
your own custom icons by using these routines.

Chapter 6: Event Detection describes how to use event detection routines, which allow
a program to be signaled (interrupted) when window system events (such as moving a
window, selecting a window, or activating a hotspot) occur.

Chapter 7: Locator and Echo Routines describes the use of routines that read from and
manipulate the locator devices and echo. For example, with these routines you can define
your own echo to appear over a window’s user area. You can also determine the locator’s
position via these routines.

Chapter 8: Arrows and Elevators shows how to create elevators in a graphics window’s
border. It also shows how to enable user mode, in which a graphics window’s elevators
and arrows send signals to programs that have enabled event detection for the window.

Chapter 9: Graphics Window Hotspots illustrates how to create hotspots in a graphics
window’s user area. A hotspot is a sensitive rectangle which can be activated either by
the user pressing a button, or simply by the locator entering or exiting its boundary.
When activated, a hotspot can signal an application.

Chapter 10: User-Definable Menus describes how to define and read from pop-up menus,
which you can use from your applications.

6 Overview

Chapter 11: Graphics Window Input Routines shows how to read input from graphics
windows. Graphics window input routines provide several different, powerful ways to
read input from graphics windows. Each method has its own benefits, which you may
find useful for your application development needs.

Chapter 12: Graphics Window Softkeys describes the use of routines that edit graphics
window softkeys and turn them on and off.

Chapter 13: Term0 Windows describes term0 window features, term0 escape sequences,
user-definable softkeys, term0 font management routines, term0 window colors, and using
raw mode with term0 windows.

Appendices

The “Appendices” tab contains the appendices described below and a subject index.

Appendix A: Compiling Window Programs describes how to compile programs that call
routines from the Window libraries.

Appendix B: HP Windows/9000 Files lists files associated with the window system and
briefly describes their function.

Overview 7

Notes

8 Overview

Concepts

Before you begin using Window routines, you should understand basic window system
concepts. This chapter provides an overview of essential window concepts and a
description of HP Windows/9000 system architecture.

Window Types

To maximize the use of software developed for non-window systems on HP Widows/9000,
two window types are supported: term0 and graphics.

Term0 Window Type

Term0 windows (pronounced “term-zero”) emulate HP 2622 terminals without block or
format mode and also support HP 2627 color escape sequences. Therefore, programs
written for HP 2622 terminals are easily ported to term0 windows. Chapter 10, “Term0
Windows,” describes how to manage fonts in term0 windows, how to use term0 window
escape sequences, and how to input information from term0 windows.

Figure 2-1 shows a typical termQ window. The user of this window executed

the more(1) command to display the contents of the README file (found in the
Jusr/lib/hpwindows/demo directory).

Concepts 9

/% B(#) HP Windows/9000 README 28.1 7/15/85 19:10:23 =/
RERDME

iThis directory, "/usr/lib/hpwindows/demo” contains a variety of demo and

juti lity programs for HP-windows. You may use these programs as is, move them
ito other directories so that they are more accessible, or delete them entirely
lif more disc space is needed.

The source to these programs is contained in "/usr/lib/hpwindows/demosrc”.
jThis source is made available so that you may examine coding conventions or

ldetermine how certain operations are performed or actually modify the source
to customize the program for your own purposes. No guarantees are made as

to the correctness or usefulness of these programs. R "Makefile" exists to
implify compilation of the programs.

The programs and shell scripts are described as follows. All examples assume
ithat you have cd’ed to this directory.

chcolor -- This shell script will change the foreground/background colors
of a TERM® window. This is useful for both color and mono-
chromatic displays. You can change to black on white lettering

Figure 2-1. A Term0 Window

Graphics Window Type

Graphics windows emulate the bit-mapped graphics displays supported by HP Win-
dows/9000. They support the Starbase, Font Manager, and Fast Alpha libraries. Star-
base graphics applications are easily ported to graphics windows.

Special see-thru and IMAGE graphics windows are simply special cases of the graphics

window type. See the appendix “Accelerated 3D Graphics Display Stations” in the
HP Windows/9000 User’s Manual.

10 Concepts

Figure 2-2. A Graphics Window

Concepts 11

Programs

Two kinds of programs run in the window system: window-dumb and window-smart.

Window-Dumb Programs

Window-dumb programs do not require windows to run. The vi(1) editor is a good
example of a window-dumb program: although vz can run in windows, it was not created
only for windows and can run outside the window system. Window-dumb programs
never call Window library routines.

Window-Smart Programs

Unlike window-dumb programs, window-smart programs take advantage of windowing
capabilities. In other words, window-smart programs call Window library routines to
do windowing tasks. The purpose of this manual is to show you how to use windowing
routines to write window-smart programs.

Note

Window-dumb applications are normally invoked only from win-
dows in which a shell is running. Window-smart applications are
not easily ported to non-window systems.

12 Concepts

Window Type Device Interface

Each window has its own special file (device file) known as the window’s window type
device interface. To identify a window, many routines require, as a parameter, the
file descriptor returned from opening (via open(2)) the window’s window type device
interface. The file descriptor identifies which window the routine should work on. For
example, the wmove Window library routine has the following syntax:

wmove (fd, z,1)

The fd parameter is an integer file descriptor for the opened window type device interface
of the window to move. The z and y parameters are integers specifying the new location
for the window.

A window type device interface is a pseudo-terminal special file, or pty for short. (For
details on pty special files, see the pty(7) page in the HP-UX Reference.) Programs read
and write through the slave side of the pty, and the pty’s master side is controlled by the
window system.

Concepts 13

Window Name

Some Window library routines require, as a parameter, a window’s name. A window’s
name is simply the basename (see basename(1)) of the window’s window type device
interface.

Each window’s window type device interface is stored in the directory specified by the
WMDIR window system environment variable. For example, if you create a window
named bunion, and $WMDIR is /dev/screen, then the window type device interface for
the window is /dev/screen/bunion.

Note

To determine the value of WMDIR on your system, look in the
wmstart shell script, which assigns the default value for WMDIR.

To verify this, simply create a few windows via the wsh command, and list the WMDIR
directory. For example, you might enter:

wsh win_1
wsh

wsh win_2

1s -1 $WMDIR

You should see a special file for every window displayed on the screen.
Note that some of the files listed in the $WMDIR. directory may not belong to a window.

For example, the window manager has a file in this directory, SWMDIR /wm, but has no
window.

14 Concepts

Window Manager
The window manager (wm) is a special server created when you start the window system
via the wmstart command. The window manager is simply a program that manages
the window system. It communicates with windows and hardware devices such as the
keyboard, locator, and CRT. Only one instance of the window manager is allowed per
physical display: you can’t have two or more wm processes running simultaneously.
Examples of some of the tasks done by the window manager are:

® managing pop-up menus

e repainting the display screen

e channeling communication through windows

¢ moving and changing the size of windows.

Concepts 15

Window Manager Device Interface

The window manager has a window manager device interface (special file). Many window
routines require, as a parameter, the file descriptor returned from opening the window
manager device interface. You can see the window manager special file by listing the
$WMDIR directory; the window manager special file is always named wm.

The window manager device interface is a pty whose master side is attached to the window
manager; programs can communicate with the window manager through the slave side.

Window Group

The window manager process heads a window group that typically consists of numerous
process groups (see setpgrp(2)). A window group is all the processes associated with a
single instance of the window manager—all processes connected to windows on a single
physical display. Window groups are relevant because signals can propagate through
them (see wmstop(1)).

The window manager runs as a single, setuid (super-user) process. It has no knowledge
of login security. Once it is running, anyone can interactively get a shell using a pop-up
menu. Running getty(1M) within a window is both difficult and useless; in other words,
it doesn’t make sense to log in users in a window. (Note that you can still use su(1)
within a window.)

16 Concepts

Input Devices

The keyboard and mouse buttons or tablet stylus switch are attached to one window at
a time. The wselect Window library routine selects a window, making it attached to the
keyboard, mouse buttons, and/or tablet stylus switch. Any process in a selected window
can read locator information (such as from an optional mouse or graphics tablet) at any
time.

Window Attributes

To write window-smart applications that manipulate and manage windows requires some
knowledge of window attributes. Each window has many attributes which describe char-
acteristics of the window. Window commands and library routines can change window
attributes and thus change a window’s characteristics. Descriptions of each attribute
follow.

Window Name

A window’s name, specified when the window is created, is the basename (see base-
name(1)) of the window’s window type device interface. By default, the window name
is displayed as the window’s label (in the border), and in its icon, softkeys, and pop-up
menu. The name is set when the window is created and cannot be changed. (Note,
however, that a window’s label can be changed to something other than the window’s
name.)

Window Type

The type of the window—either term0 or graphics—is set when the window is created.
The type cannot be changed.

Concepts 17

Representation

Any window may be displayable (in normal or icon form) or concealed. A displayable
window may be located partly or totally off screen, or occluded by other windows so
that it is not actually visible at all. A concealed window, however, is never displayed,
regardless of location or other attributes.

Location

Each window has two locations on the display screen: one for its normal form, the other
for its iconic form. Both may be set to defaults determined by the window manager.
Both the normal and iconic location can be changed.

Size
Each window has a displayable size for its normal form. This is the number of displayable

z,y pixels (for graphics windows) or rows and columns (for term0 windows). The size
can be set when the window is created, and modified after creation, if necessary.

Place in Stack

Each window, if not concealed, has a place in the display stack. Windows toward the
top of the stack occlude those lower in the stack. Windows can be shuffled (rotated) up
or down through the display stack, and any window can be made visible as the top or
bottom window in the stack.

View

Each graphics window (with a retained raster) provides a view into its corresponding
virtual device (an underlying area of memory that may be larger than the window size).
The view of a window into its virtual device is just that part of the virtual device seen
through the window (as long as it is displayable and not occluded). Panning is the
operation of moving the view position over the virtual device. Panning does not change
the location of the window; rather, the virtual device appears to move under the window.

18 Concepts

Keyboard Selection

At any time, only one window is selected, meaning it is attached to the keyboard for
input. The currently selected window has a line through its border and an asterisk (*) to
the left of its label. When a window becomes un-selected, the line and asterisk disappear.

Softkeys

Each window has up to sixteen softkeys whose displayed labels and values may be set
using escape sequences or library routines. (See the “Graphics Window Softkeys” and
“Term0 Windows” chapters for details.) When a window is selected, its softkey labels
are displayed at the bottom of the display screen.

Pop-Up Menu Type
The type and status of a window affect the choices available when you pop up an inter-

active menu.

Border Type
A termO or graphics window’s border may be:
e normal, in which case the label and manipulation areas are present
e thin, in which case the border is just a thin line surrounding the window
In addition to these two types, graphics windows can have null borders—that is, no
border.

Label

A window’s label is a text string displayed in the window’s border. By default, the label
is identical to the window’s name (window spec) used when the window was created.
The wborder(1) command or the wsetlabel(3W) Window library routine can change a
window’s label to a string other than the default name. The maximum length of a
window’s label depends on the window’s type.

Some commands or routines may require a window’s name to manipulate it. If a window’s

label is different from its name, then attempting to use the window’s label for such
commands or routines will result in a window system error.

Concepts 19

Colors

Each window has various colors attributes. Most are controlled through writing or plot-
ting to the window. However, colors can be controlled through library routines. Note
also that all colors are indices into the display device’s color map; also, there is only one
color map per physical display.

The window system maintains and manages the following colors per window:

font foreground
font background
border foreground
border background
user foreground
user background

Note that eight different color combinations of font foreground and background colors
can appear simultaneously in term0 windows; they can be changed non-retroactively via
Fast Alpha and Font Management routines.

Raster or Scroll Buffer Size

Graphics windows have a maximum raster size; term0 windows have a maximum scroll
buffer size. This size is set when the window is created and cannot be changed. The
raster/buffer size denotes the maximum size to which the window can grow. For term0O
windows the maximum size is measured in rows and columns of characters; for graphics
windows, rows and columns of pixels.

Raster Retention

For graphics windows, the raster may be retained, in which case memory is allocated
at window creation time to save occluded areas. It can also be non-retained, in which
case no memory is allocated for the image. A graphics window may be retained in a
byte-per-pixel or bit-per-pixel format (see appendix for linking information).

Windows that are not retained may not be properly repainted by the window manager
because no memory for the image is allocated from which the windows can be redrawn.
Programs that use non-retained windows must take care of repainting windows.

For term0 windows, no raster is allocated, but the window acts as though it were retained,
because it is redrawn using its scroll buffer, which contains any characters displayed in

the window.

Retention is set when the window is created, and cannot be changed.

20 Concepts

Window Paused

Output to term0 windows can be paused, i.e., temporarily suspended. The window
paused attribute denotes whether a term0 window’s output is currently paused.

Autotop (Term0 Only)

On TermO windows, the autotop attribute allows a window to be “marked” to be dis-
played automatically as the top window in the display stack whenever output is sent to
its window type device interface.

Auto-Selection (Term0 Only)

On Term0 windows, a window can also be “marked” to be selected when output is sent
to its device interface if this attribute is on.

Concepts 21

Writing Window-Smart Programs

Using the Window library routines described in this manual, you can write window-
smart programs that use windows and windowing capabilities. Figure 2-3 illustrates how
window-smart programs interact with the window system.

Progrom
Window Monagement Routines HP-UX 1/0 Routines HP-UX 1/0 Routines
Window Library Routines Starbase Routines

Window Library Routines
Fast Alpha Library Routines
Fast Manager Library Routines

Graphics
Device Interface

TermO
Device Interface
[]
H

Window Manager

Window Manager
Device Interface

Keyboard
Special File

Locator Device

Display Device
Special File

Special File

LOCATOR KEYBOARD DISPLAY

| o]

USER

Figure 2-3. Program Interaction with Window System

22 Concepts

Using HP-UX system calls (e.g., open(2), close(2), read(2)), HP-UX subroutines (e.g.,
gete(8C), putc(3C), ete), or both, a program can read input from and write output to
a given window through the window’s window type device interface. (Note, however,
that programs cannot use write(2) to write to graphics windows; instead, they must use
Fast Alpha, Font Manager and/or Starbase library routines to do graphics output to a
graphics window.)

A program can call Window routines to change a window’s attributes—e.g., change the
window’s size, location, or representation. Like HP-UX system calls and subroutines,
library routines manipulate a window through the window’s device interface. Routines
that manipulate a given window require the file descriptor returned from starting
communication with the window. (See the “Window Manipulation” chapter for details
on starting window communication.)

Additionally, a program can call Window routines to do window manager functions, such
as repainting the display screen, shuffling windows, and creating or destroying windows.
These routines communicate with the window manager the window manager’s device
interface. Routines that do window manager functions require the file descriptor returned
from opening (via open(2)) the window manager’s device interface.

Window routines are described in detail in the remainder of this manual.

Concepts 23

Writing Window-Dumb Programs

When the window system is not running, programs interact with the bit-mapped display
and its keyboard through an internal terminal emulator (ITE). The ITE causes the
bit-mapped display to appear to be a simple terminal; thus, programs not written for
bit-mapped displays can still run on the bit-mapped display through the ITE.

The Fast Alpha, Font Manager, and Starbase libraries can also be used to write to a
bit-mapped display when Windows/9000 is not running.

/dev/console is a typical path name of the special file for the terminal emulated by the
ITE. The ITE accepts input only from the keyboard and ignores the optional mouse or
graphics tablet if they are present. Figure 2-4 illustrates the ITE architecture.

PROGRAM

!

read(2)
write(2)

Terminal
Special File

KERNAL
(ITE)

(tty(7))

Keyboard
Special File

Display
Special File

KEYBOARD <] OUT USER IN |& BIT-MAPPED DISPLAY

Figure 2-4. Architecture without Windows

24 Concepts

The following references provide more information on this topic:

e For more details on the internal terminal emulator, see the ITE article in HP-UX
Concepts and Tutorials: Facilities for Series 200, 800, and 500. Also see tty(7).

e To use graphics with the ITE, see HP-UX Concepts and Tutorials:

Starbase
Graphics Techniques.

Concepts 25

Notes

26 Concepts

Window Management

This chapter describes how to use window management routines found in the Window
library. By calling window management routines, a program can:

e create term(or graphics windows
e destroy windows

e shuffle windows

e repaint the screen

e Kkill the window manager.

These tasks are described in the following sections.

Window Management 27

Concepts

This section discusses concepts essential to using window management routines. Be sure
to read this section before any others in this chapter.

The Window Manager

Window management routines communicate directly with the window manager. There-
fore, before a program can call window management routines, the window manager must
be running and the window manager device interface (SWMDIR/wm) must exist.

There are two ways to be sure of this:

1. Start the window system via the wmstart(1) command before running the program
that calls window management routines.

2. Start the window system from the program itself, using the system(3) HP-UX
subroutine to invoke wmstart from the program.

NOTE: If you start the window system this way, be sure to invoke wmstart as
a background process (with a trailing ampersand), e.g., system("wmstart &"). If
you do not invoke wmstart as a background process, then your program will hang
indefinitely because wmstart does not return until the window system is exited.

It may take a few seconds time for the window manager device interface to be created
after wmstart is executed, so be sure to wait until it really exists before trying to start
communication. (You can use the wmready(1) command to determine whether the win-
dow manager is running.)

28 Window Management

Starting Window Manager Communication

Before doing any other window management task, a program must start communication
with the window manager, which entails the following steps:

1. Build the path name of the window manager device interface.
2. Open the window manager device interface.

3. Call winit(8W) on the window manager device interface.
Each step is described in detail next.

Build the Path Name of the Window Manager Device Interface

The path name of the window manager device interface is normally SWMDIR/wm. To
build the path name, you can use the wmpathmake(3W) routine, which builds a path
name from an environment variable and a user-supplied file name; its syntax is:

wmpathmake (environ, suffix, target)

The environ parameter points to a null-terminated character string containing the name
of an environment variable; suffiz points to a base name that will be appended to the
value of the environment variable pointed to by environ. The resulting path name is
pointed to by the target parameter.

Open the Window Manager Device Interface

Using the open(2) HP-UX system call, open the window manager device interface with
read/write permission (0_RDWR). The returned file descriptor is required as a parameter
to other window management routines.

Call winit(3W) on the Window Manager Device Interface
Initialize the window manager via the winit(3W) routine; its syntax is:

winit (wmfd)

The wmfd parameter is the file descriptor returned from opening the window manager
device interface.

At this point, window manager communication is started, and the program can begin
doing other window management tasks.

Window Management 29

Stopping Window Manager Communication

When finished doing window management tasks, a program must stop communication
with the window manager, which entails the following steps:

1. Call wterminate(3W) on the window manager device interface.

2. Close the window manager device interface.
These steps are described in detail next.

Call wterminate(3W) on the Window Manager Device Interface
Call the wterminate(8W) routine; its syntax is:

wterminate (wmfd)

The wmfd parameter is the file descriptor obtained when the program started communi-
cation with the window manager.

Note that wterminate does not kill the window system as does the wmstop command and
the Ezit WS option of the pop-up menu.

Close the Window Manager Device Interface
Finally, you must close the window manager device interface using close(2) HP-UX sys-
tem call.

Example

The following program starts and stops communication with the window manager. Any
program that calls window management routines must conform to the structure of this
program. That is, the program must:

1. Start communication with the window manager.

2. After starting window manager communication, the program can call other window
management routines.

3. When the program is finished doing window management tasks, it must stop com-
munication with the window manager.

30 Window Management

#include <fcntl.h> /* system call i/o definitions */

#include <stdio.h> /* system subroutine i/o definitions */
#include <window.h> /* window library definitions */
main()
{
int wnfd; /* window manager file descriptor */
char wm_path[WINNAMEMAX] ; /* window manager path name */
/*
* START WINDOW MANAGER COMMUNICATION:
*
* STEP 1: Create the path name of the window manager device interface:
*/
wmpathmake ("WMDIR", "wm", wm_path);
/*
* STEP 2: Open the window manager device interface:
*/
if ((wmfd = open(wm_path, O_RDWR)) < 0) {
perror("open window manager device interface failed");
exit(1);
}
/*

* STEP 3: Call winit on the window manager device interface:
*/
if (winit(wmfd) < 0) {
perror("winit on window manager device interface failed");
exit (2);
)

printf ("Communication with wm started successfully\n");

/*

*

The program can now call other window management routines in here.

* *

*/

Window Management

/*
* STOP WINDOW MANAGER COMMUNICATION:
K

* STEP 1: Call wterminate on the window manager device interface:
*/
if (wterminate(wmfd) < 0) {
perror ("wterminate failed on window manager device interface.");

exit (3);
}
/*
* STEP 2: Close the window manager device interface:
*/
if (close(wmfd) < 0) {
perror("close failed on window manager device interface.");
exit(3);
}
printf ("Communication with wm stopped successfully\n");
exit (0);
}

est_wm_com and term_wm_com

To shorten source code examples throughout this manual, two routines are provided in
the man_examples directory: est_wm_com.c and term_wm_com.c. They are not Window
library routines; they are provided here only to shorten examples. Nevertheless, you may
find them useful, and you can compile them separately and link them with your programs.

est_wm_com

The est_wm_com routine starts communication with the window manager. This routine,
if used, should be called before a program does any window management tasks. If it
cannot start communication, it returns —1; otherwise, it returns the file descriptor for
the window manager device interface.

32 Window Management

#include <fcntl.h> /* system call i/o definitions */

#include <window.h> /* window library definitions */

est_wm_com()

{
int wmfd; /* window manager file descriptor */
char wm_path [WINNAMEMAX] ; /* window manager path name */

/*

* STOP WINDOW MANAGER COMMUNICATION:

*

* return -1 if an error occurs

* return the window manager file descriptor (wmfd) if successful

*

* STEP 1: Create the path name of the window manager device interface:

wmpathmake ("WMDIR", "wm", wm_path);

/*
* STEP 2: Open the window manager device interface:
*/
if ((wmfd = open(wm_path, O_RDWR)) < 0) return(-1);
/*

* STEP 3: Call winit; set this function’s return value accordingly.
x/
if (winit(wmfd) < 0) {
close(wmfd) ;
return(-1);
} else
return(wnfd) ;

term_wm_com

The term_wm_com routine stops communication with the window manager. This routine,
if used, should be called only after a program is finished with all window management
tasks. If it fails, it returns —1; otherwise, it returns 0.

Window Management 33

#include <fcntl.h> /* system i/o call definitions */

#include <window.h> /* window library definitions =*/
term_wm_com (wmfd)
int wmfd; /* file descriptor for wm device interface */
{
/%
* STOP WINDOW MANAGER COMMUNICATION:
*
* return -1 if an error occurs
* return O if termination is successful
*
* STEP 1: Call wterminate:
*/
if (wterminate(wmfd) < 0) {
close (wmfd) ;
return(-1) ;
}
/*

* STEP 2: Close the window manager device interface:
*/
if (close(wmfd) < 0)
return(-1);
else
return(0);

34 Window Management

Creating a Term0 Window

The wereate_term0O(3W) routine creates a term0 window. It creates the window’s window
type device interface in the $WMDIR. directory.

Note that creating a window does not make the window visible on the display screen. For
details on making termO and graphics windows visible, see “Displaying and Concealing
a Window” in the chapter “Window Manipulation.”

All newly created windows inherit their run-time environment from that which existed
when the wmstart(1) command was executed. For example, if you invoke wmstart from
the /usr/lib/hpwindows/demo directory, the first window created, weconsole, will have its
current directory set to the same, and so will any windows created thereafter.

Procedure
To create a term0 window, follow these steps:

1. Build the path name of the window’s window type device interface.
2. Compute the window’s anchor point.
3. Call wereate_term0(SW).

Details on each step come next.

Build the Path Name of the Window’s Window Type Device Interface

Determine an unused name for the window—a name no other window is using—and
build the path name for its window type device interface. This path name should be
$WMDIR /name, where name is the window name. The path name is required as a
parameter to wcreate_term0.

The easiest way to build the path name is by using the wmpathmake(3W) routine, which
builds a path name from an environment variable and a user-supplied suffix; its syntax
is:

wmpathmake (environ, suffiz, target)
After calling this routine, the target parameter will point to a path name created by

appending the suffiz string to the environment variable pointed to by environ (in this
case, “WMDIR”).

Window Management 35

You can also obtain a window name from the wdfltpos(3 W) routine, which returns default
name and anchor point values for windows created interactively through the window
manager.

Compute the Window’s Anchor Point

Compute the window’s anchor point in z,y pixel coordinates. The upper-left corner of
the screen is the origin 0,0. X coordinates increase as you move to the right on the
screen; y coordinates increase as you move down on the screen. Three methods can be
used to compute the anchor point:

e You can specify absolute coordinates. This simply means that if you want the
window to appear at a specific z,y location on the screen, you specify the exact z,y
values as parameters to the wcreate_term0routine. For example, if you want a term0
window’s anchor point to appear at 300 pixels over and 200 pixels down from the
upper-left corner, simply supply 300,200 as the z,y coordinates to wcreate_term0.

e You can use default coordinates supplied by wdfltpos. This routine returns the
round-robin default position for the next window (or icon). When using this routine,
window coordinates stair-step down from the upper-left corner of the screen. Note
that the window manager calls this routine to determine new window coordinates
when you interactively create windows.

o To specify coordinates relative to an existing window, use the wgetcoords(3W) rou-
tine, which allows you to obtain coordinates (and other important information) for
any existing window.

Compute relative coordinates by adding to or subtracting from the z,y coordinates
returned from wgetcoords. For example, if you want a new window to appear 50
pixels up and 70 pixels to the right of an existing window, simply use wgetcoords
to get the existing window’s coordinates, add 70 to the z-coordinate, subtract 50
from the ypcoordinate, and supply these new coordinates to wcreate_termo0.

36 Window Management

Call wcreate_term0
Finally, you must call wcreate_term0(3W), which will create a window type device
interface for the window; the syntax for this routine is:

wcreate_term0(wmfd, name, z,y,
wincols, winrows,
scrncols, scrnrows,
bufeols, bufrows,
basefont, altfont,
colormode, border)

The wmfd parameter is the file descriptor returned from starting window manager
communication; name points to the window’s path name (determined above); z,y specify
the window’s anchor point.

Note that the window’s device interface path name cannot contain more characters than
the value of WINNAMEMAX — 2. The last character must be NULL (*\0°).

The wincols, winrows parameters specify the width and height (in columns and rows) of
the window to create; the window can become no larger than these values.

The scrncols, scrnrows parameters specify the number of columns and rows in the
terminal being emulated. For term0 windows, these values should be 80 columns by
24 rows.

The bufcols, bufrows parameters specify the size of the scroll buffer to be used with the
window. These values should be at least as large as the scrncols, scrnrows parameters;
they can be larger if desired. Typically, bufrows is given as two times the scrnrows value;
this way, you can buffer up to two screens of window information.

The basefont and altfont parameters specify the fonts to use for the base and alternate
fonts respectively. These parameters point to the path names of font files found under the
font directory specified by the WMFONTDIR environment variable. For more details
on fonts in term0 windows, see the “Term0 Windows” chapter.

The colormode parameter enables color mode on color systems; it should always be set
to COLORMODE as defined in the header file window.h.

The border parameter determines whether the border is normal (interactive manipulation
areas present) or thin (no manipulation areas). If border is SETBANNER, the window will
have a normal border, if border is SETNOBANNER, no banner will be displayed, and if border
is SETNULLBANNER, the window will have no border.

Window Management 37

Precautions

e Creating a window does not make the window visible. In fact, nothing can be done
with a newly created window until communication is started with the window.
For details on window communication, see the “Concepts” section of the “Window

Manipulation” chapter.

e The name of a newly created window must be unique: it cannot have the same

name as any existing window.

Example

The following program creates a term0 window named flebnee; its anchor point is de-
termined by wdfltpos. The program does not display the window; it merely creates the
window’s device interface. To display the window use the wdisp(1) window command as:

wdisp flebnee

The source is named create_t0.c and is found in the man_ezamples directory. The pro-

gram calls the functions est_wm_com and term_wm_com described in the “Concepts”

section. (See the appendix “Compiling Programs” for details on compiling window pro-

grams.)

#include <window.h> /% window library CONSTANT definitions are kept here */

main()
{
int wmfd; /* window manager file descriptor
char wt_path[WINNAMEMAX] ; /* path name for window type
int wx,wy,ix,iy; /* parameters for wdfltpos routine
char *dflt_name; /* dummy name parameter for wdfltpos
int est_wm_com(); /* routine to start wm communication */
int term_wm_com(); /* routine to stop wm communication */
/*
* START WINDOW MANAGER COMMUNICATION:
*/
if ((wmfd = est_wm_com()) == -1)
{
perror("est_wm_com") ;
exit(1);
}

38 Window Management

*/
*/
*/
*/

/*
* CREATE THE TERMO WINDOW:
*
* STEP 1: Create the path name for the window.
*/
wmpathmake ("WMDIR", "flebnee", wt_path);

/*
* STEP 2: Get default coordinate from wdfltpos.
*/
if (wdfltpos(wmfd, DFLT_WPOS, &wx,&wy, &ix,&iy, dflt_name) < 0)
{
perror ("wdfltpos wmfd");
exit(1);
}
/*

STEP 3: Determine remaining parameters and call wcreate_termO:

*
*

* Initial window size (wincols, winrows) is 80 columns

* by 24 rows of characters.

* Character width and height of the emulated terminal

* (scrncols, scrnrows) is 80 columns by 24 rows.
* The standard 8x16-pixel font will be used as the base
* font (*basefont).

* No alternate font is used (*altfont = ALTFONTNULL).

* Enable color mode (colormode = COLORMODE) .

* Normal border (border = SETBANNER).

if (wcreate_termO(wmfd, wt_path, wx,wy, 80,24, 80,24, 80,48,
"/usr/lib/raster/8x16/1p.8U", ALTFONTNULL, COLORMODE, SETBANNER) < 0).

{
perror ("wcreate_term0 wmfd");
exit(1);
}
/%
* STOP WINDOW MANAGER COMMUNICATIONS:
*/
if (term_wm_com(wmfd) == -1)
{
perror ("term_wm_com wmfd") ;
exit(1);
}
exit (0);
}

Window Management 39

Creating a Graphics Window

Creating a graphics window is similar to creating a term(Q window. However, the rou-
tine that creates the graphics window—uwcreate_graphics(8 W)—requires some different
parameters than wcreate_term0.

All newly created windows inherit their run-time environment from that which existed
when the wmstart(1) command was executed. For example, if you invoke wmstart from
the /usr/lib/hpwindows/demo directory, the first window created, weonsole, will have its
current directory set to the same, and so will any windows created thereafter.

Procedure
To create a graphics window, a program must:

1. Build the path name of the window’s window type device interface.

2. Compute the window’s anchor point.

3. Call wcreate_graphics(3W).
Build the Path Name of the Window’s Window Type Device Interface
Determine an unused name for the window—a name no other windows are using. Use
this name to build the path name of the window type device interface for the window
to create. Normally, the path name will be §WMDIR/name, where name is the window

name. Use the wmpathmake routine to build the path name. Wdfltpos can be used to
get a default window name.

Compute the Anchor Point
Compute the graphics window’s anchor point in z,y pixel coordinates. There are three
methods for computing the anchor point coordinates:

o You can specify absolute coordinates.
e You can use default coordinates supplied by wdfltpos.
e You can specify coordinates relative to another window.

See the section “Creating a Term0 Window” for details on computing coordinates using
these three methods.

40 Window Management

Call wcreate_graphics
Finally, you must determine the remaining parameters and call wcreate_graphics, which
creates the window’s device interface. The syntax for this routine is:

wcreate_graphics(wmfd, wname, z,y,
w, h,
rasterw, rasterh,
attributes, border)

The wmfd parameter is the file descriptor returned from starting communication with
the window manager. The wname parameter points to the path name for the window’s
device interface; z,y specify the window’s anchor point.

Note that the window’s device interface path name cannot exceed WINNAMEMAX characters
in length; the last character must be NULL.

The w, h parameters specify the initial width and height (in pixels) of the view into the
virtual raster.

The rasterw, rasterh parameters define the width and height of the window’s virtual
raster. The window’s size (specified by w and h) can grow no larger than the raster size.

The attributes parameter specifies certain attributes of the graphics window. If attributes
is SETRETAIN, the raster is retained as byte/pixel (SETRETAIN and SETRETAINBYTE are defined
to be the same value). If attributes is SETRETAINBIT, the raster is retained as bit/pixel
(this only applies to monochrome displays). If attributes is set to SETNORETAIN, the raster
is not retained. Finally, if attributes is SETIMAGE, the raster is not retained and the user
area of the window is mapped into the image planes of the display (this only applies on
the HP 98730).

The border parameter determines whether the border is normal (interactive manipulation
areas present), thin (no manipulation areas), or null (no border). If border is SETBANNER,
the window will have a normal border; if border is SETNOBANNER, the window will have a
thin border; if border is SETNULLBANNER, the window will have no border.

Window Management 41

Precautions

e Remember that creating a window does not make the window visible. In fact, a
program cannot manipulate a window unless it first starts communication with the
window. For details, see the “Concepts” section of the “Window Manipulation”
chapter.

e The name of a newly created window must be unique: it cannot have the same
name as any existing window.

Example

The following program, create_gr.c, creates a graphics window named solipsist. The
program is found in the man_examples directory.

The anchor point of solipsist is at 850,100; its virtual raster is 512 pixels wide and 398
pixels high; and the window is created with an initial width and height of 300 by 200

pixels. In addition the raster is not retained, and it has a normal border.

Note that the program does not display the window; it merely creates the window’s
device interface. To display the window use the wdisp(1) window command as:

wdisp solipsist
The program calls the est_wm_com and term_wm_com routines defined in the “Concepts”

section. Therefore, for the program to work properly, it must be compiled with those
functions.

42 Window Management

#include <window.h> /* window library defintions */

main ()
{
int wmfd; /* window manager file descriptor */
char wt_path[WINNAMEMAX]; /* path name for window type */
int wx,wy; /* x,y parameters for window location */
int est_wm_com(); /* start wm communication */
int term_wm_com() ; /* stop wm communication */
/*
* START WINDOW MANAGER COMMUNICATION:
*/
if ((wmfd = est_wm_com()) == -1)
{
perror("est_wm_com") ;
exit(1);
}
/%

*

CREATE THE GRAPHICS WINDOW:

*

* STEP 1: Create the path name:

*/

wmpathmake ("WMDIR", "solipsist", wt_path);

/*
* STEP 2: Assign the window coordinates (350,100):
*/

wx = 350; wy = 100;

STEP 3: Determine the remaining parameters and call wcreate_graphics:

The width and height (w,h) of the view into the virtual raster

The virtual raster (rasterw,rasterh) is 512 pixels wide by

398 pixels high.

The raster will not be retained (retained = SETNORETAIN) .
The window will have a normal border (border = SETBANNER).

*
*
*
* is 300 by 200 pixels.
*
*
*
*

if (wcreate_graphics(wmfd, wt_path, wx,wy, 300,200, 512,398,

SETNORETAIN, SETBANNER) < 0)
{
perror ("wcreate_graphics wmfd") ;
exit(1);

Window Management

43

/*
* STOP WINDOW MANAGER COMMUNICATION:

*/

if (term_wm_com(wmfd) == -1)

{
perror("term_wm_com wmfd");
exit(1);

}

exit(0);

44 Window Management

Destroying a Window

A program can destroy any window—those created by commands and your programs,
or those created interactively via the pop-up menu. The wdestroy(3W) routine destroys
windows.

A destroyed window is immediately concealed and the window type device interface will
be removed. But the window will not really be destroyed until it is closed by every
process that has it open.

When a window is destroyed, all processes affiliated with the window which do not catch
the SIGHUP signal will be killed. '

Procedure
To destroy a window, a program must:

1. Build the path name of the window’s window type device interface.
2. Call wdestroy.
Build the Path Name of the Window’s Window Type Device Interface
To destroy a window you created, simply use the path name you supplied as a parameter

to the wereate_term0 or wereate_graphics routine. To destroy a window created externally
to your program, build the path name using the wmpathmake(3W) routine.

Call wdestroy
Call the wdestroy routine; the syntax for this routine is:

wdestroy (wmfd, wi_path)
The file descriptor returned from starting window manager communication is passed as

the wmfd parameter. The path name of the window to destroy is pointed to by the
wt_path parameter; it should be a null-terminated string.

Window Management 45

Related Routines

By using the wrecover(3W) and wautodestroy(3W) routines you can change the way
windows are destroyed. See the section “Setting Autodestroy Status” in the “Window
Manipulation” chapter for details on using these routines.

Precautions

e Destroying a window can be dangerous: Once a window is destroyed, it cannot be
recovered. In addition, all processes affiliated with the window which do not catch
the SIGHUP signal will be killed. Therefore, be careful when destroying windows.

e If a process is not affiliated to a window and it has the window. open, then the
process will not receive the SIGHUP signal sent when the window is destroyed.
Because of this, the window will continue to exist, unoccluded. You can determine
which windows are in this state by using the wlist(1) command as follows::

wlist *

Whist will display “I can’t find window-name window” for each window in this
state.

o If the selected window is destroyed, the keyboard is attached to the resulting top
window (if one exists; otherwise it is not attached to any window).

e When a term0 window is destroyed, it will send the SIGCLD signal to its parent
process. For the window to be completely destroyed, the parent process must
receive the signal. To receive the signal you should call the signal(2) system call as
follows:

signal (SIGCLD, SIG_IGN);

This will cause the signal to be received but ignored, and the window will be
completely destroyed. If you don’t do this, then the destroyed window will become
a defunct process.

e When writing code to create graphics windows on Series 300 HP-UX 5.2 and later
systems, you needn’t worry about defunct processes for graphics windows. However,
if you run pre-5.2 compiled window source on 5.2 or later systems, then you must
handle defunct processes as described above; otherwise, defunct processes will exist
until the program exits.

46 Window Management

Example

The following program, named rm_window.c, is a simplified version of the wdestroy(1)
command: it destroys a window specified by the user. Its syntax is:

rm_window windowspec

where windowspec is the name of the window type device interface for the window to
destroy. ,

The source for this program is found in the man_ezarhples directory; it calls the func-
tions found in the sections “Starting Window Manager Communication” and “Stopping
Window Manager Communication.”

#include <window.h> /* window library definitions */
main(arge, argv)
int argc; /* number of arguments on command line . */
char *argv(]; /* command line argument list */
{ A
int wmfd; /* window manager file descriptor */
char wt_path[WINNAMEMAX]; /* path name for window type */
int est_wm_com(); /* starts window manager communication */
int term_wm_com(); /* stops window manager communication */
/*
* START WINDOW MANAGER COMMUNICATION:
*/
if ((wmfd = est_wm_com()) == -1)
{

perror("est_wm_com") ;
exit(1);

Window Management 47

/* L
* DESTROY THE WINDOW:
*
* STEP 1: build the path name of the window to destroy:
*/
wmpathmake ("WMDIR", argv{1i], wt_path);

/*
*
* STEP 2: Call wdestroy:
*/
if (wdestroy(wmfd, wt_path) < 0)
c g
perror ("wdestroy wmfd");
exit(1);
}
/x :
* STOP WINDOW MANAGER COMMUNICATION:
*/
if (term_wm_com(wmfd) == -1)
perror("term_wm_com wnfd");
exit(1); .
}
exit (0);
}

48 Window Management

Shuffling Windows

When one or more windows are visible on the display screen, they can be shuffled via the
wshuffle(8W) routine. Windows can be shifted (or shuffled) either upward or downward
through the display stack. If windows are shuffled upward, the bottom window in the
stack becomes the top, and the other windows are shifted down one position in the
display stack. If windows are shuffled downward, the top window in the stack is placed
on bottom, and the remaining windows are shifted up one position.

Note

When windows are shuffled, the keyboard is attached to the result-
ing topmost window in the display stack—the top window becomes
selected.

You can call wshuffle when no windows are visible on the screen; however, the window
system and the display screen will not change as a result of using the routine in this
state, and the selected window will not change either.

Procedure
To shuffle windows, call wshuffle; its syntax is:

wshuffle(wmfd, value)

The wmfd parameter specifies the file descriptor of the open window manager device
interface.

The value parameter gives the direction of the shuffle. If value is SHUFFLEDOWN, the
windows are shuffled down; if value is SHUFFLEUP, windows are shuffled up.

Window Mana_gement 49

Example

The following program, named shuffle_dn.c, causes the top window to shuffled to the
bottom and the remaining windows to be shifted up one position through the display
stack. ' :

The source is found in the man_ezamples directory; the program calls the est_wm_.com
and term_wm_com functions defined earlier.

#include <window.h>

main()
{
int wmfd; /* file descriptor for wm device interface */
char wm_path[WINNAMEMAX]; /* path name for wm device interface */
int est_wm_com(); /* starts wm communication 74
int term_wm_com(); /* stops wm communication */
/*
* START WINDOW MANAGER COMMUNICATION:
*/
if ((wmfd = est_wm_com()) == -1)
{
perror("est_wm_com") ;
exit(1);
}
/*
* SHUFFLE TOP WINDOW TC BOTTOM AND MOVE OTHERS UP ONE POSITION:
*/
if (wshuffle(wmfd, SHUFFLEDOWN) < 0)
{
perror ("wshuffle wmfd");
exit(1);
}
/*
* STOP WINDOW MANAGER COMMUNICATION:
*/
if (term_wm_com(wmfd) == -1)
{
perror("term_wm_com wmfd") ;
exit(1);
}
exit (0);
}

50 Window Management

Repainting the Display Screen

Repainting the display screen causes the entire display screen to be redisplayed: all
windows, icons, and typing aids are redisplayed on the desk top. This task is required
only when part of the display becomes mussed—for example, if a graphics program
accidentally writes over the desk top, making the display difficult to understand.

Procedure
To repaint the display screen, call wmrepaint; its syntax is:

wmrepaint (wmfd)

The wmfd parameter is the file descriptor returned from starting window manager com-
munication.

Example

The following program, named wrepaint.c, causes the display screen to be repainted. The
source is found in the man_exzamples directory, and the program calls the est_wm_com
and term_wm_com functions presented earlier.

#include <window.h>

main()
{
int wmfd; /* file descriptor for wm device interface */
int est_wm_com(); /* start wm communication */
int term_wm_com(); /* stop wm communication */
/*
* START WINDOW MANAGER COMMUNICATION:
*/
if ((wmfd = est_wm_com()) == -1)
{

perror("est_wm_com") ;
exit(1);

Window Management 51

/*
* REPAINT THE DISPLAY SCREEN:
*/

if (wmrepaint(wmfd) < 0)

{
. perror{"wshuffle wmfd");
exit(1);
}
/*
* STOP WINDOW MANAGER COMMUNICATION:
*/
if (term_wm_com(wmfd) == -1)
{
perror ("term_wm_com wmfd");
exit(1);
}
exit(0);
}

52 Window Management

Killing the Window Manager
When a program kills the window manager:

o all existing windows are destroyed

e the window manager stops executing

.o control-of the physical display returns to the ITE.

The wmkill(3W) routine “marks” (flags) the window system to be killed when the pro-

gram stops communication with the window manager.

CAUTION

Extreme caution should be exercised when using this routine. It
will destroy all windows and kill all processes affiliated to the win-
dow system; in addition, the window manager will stop executing.

Procedure
To kill the window manager, call the wmkill routine; its syntax ist

wmkill (wmfd)

The wmfd parameter specifies the file descriptor returned from startmg communication

with the window manager.

Note

Wmkill should be called immediately before stopping window man-
ager communication. No other calls to window routines should be
made between killing the window manager. and stopplng comu-

nication.

Window Management

53

Precautions
Be aware that all windows will be destroyed and the window manager will stop executing
when this task is done. Do this task only if you are absolutely sure you want to exit the
window system.

Example

When executed from the window system, the following program kills the window man-
ager. It is equivalent in effect to executing the wmkill(1) command or selecting the
Ezit WS option of the pop-up menu. Be aware of the consequences of executing this
program. ‘

The program is named kill_wm.c and is found in the man_ezamples directory. It calls
the est_wm_com and term_wm_com functions described in the “Concepts” section.

#include <window.h>

main() '

{
int wmfd; /* file descriptor for wm device interface */
int est_wm_com(); /* start wm communication = */ :
int term_wm_com(); /* stops wm communication */

/*
* START WINDOW MANAGER COMMUNICATION:
*/
if ((wmfd = est_wm_com()) == -1)
{
perror ("est_wm_com") ;
exit(1);
}
/* .
* KILL THE WINDOW MANAGER:
*/
if ((wmkill(wmfd) < O)
{ ,
perror ("wmkill wmfd");
exit(1);
}

54 Window Management

/*

* STOP WINDOW MANAGER COMMUNICATION:

*/
if (term_wm_com(wmfd) == -1)
{
perror("term_wm_com wmfd");
exit(1);
}
exit(0);

Window Management 55

Notes

56 Window Management

Window Manipulation

This chapter describes how to use window manipulation routines, which change window
attributes (e.g., size, location, or label). By calling window manipulation routines, a
program can:

select a window

display or conceal a window
move a window

change a graphics window’s size

change a term0 window’s size

“change a window’s border

change a window’s label
change a window’s border colors
pause and resume output to a term0 window

pan a graphics window.

Window Manipulation 57

Concepts

This section discusses concepts essential to using window manipulation routlnes Be sure
to read this section before any others in this chapter.

The Window Type Device Interface

Obviously, before a program can call window manipulation routines to change a window’s
attributes, the window must exist. There are three ways to create a window, once the
window system is running:

1. Via the system pop-up menu, as described in the HP Windows/9000 User’s Manual,

2. Via window system commands wsh(1) and wereate(1), as described in the HP Win-
dows/9000 User’s Manual,

3. Via the wecreate_term0(3W) and wcreate_graphics(8W) routines described in the
“Creating a Term0 Window” and “Creating a Graphics Window” sections of the
“Window Management” chapter.

Once a window is created, its window type device interface will exist in the §WMDIR
directory. The path name of the window type device interface is $WMDIR/wname,
where wname is the window’s name.

Program Structure

Any program that calls window manipulation routines must conform to the following
structure:

1. First, the program must start communication with the window.

2. After starting communication with the window, the program can then call other
window manipulation routines.

3. When a program is finished calling window manipulation routines on a window,
the program must finally stop communication with the window.

If you start communication with a window, be sure to stop it. Stopping window commu-
nication before exiting will ensure the proper execution of the window system and your
programs.

Starting and stopping window communication is described in detail in the following sub-
sections.

58 Window Manipulation

Starting Window Communication

Once a window is created, its window type device interface exists, but a program can
do nothing with the window until communication between the program and the window
is started. After starting communication with the window, a program can call other
library routines to manipulate the window. For instance, routines can be called to make
the window visible, to move it on the screen, or to attach the keyboard to it.

Starting window communication entails the following steps:
1. Build the path name of the window’s window type device interface.
2. Open the window’s window type device interface.
3. Call winit(8W).

Build the Path Name of the Window’s Window Type Device Interface

Remember, the path name of a window’s window type device interface is
$WMDIR /wname, where wname is the window’s name. You can use the wmpath-
make(3W) routine to build the path name from the WMDIR environment variable and
the window’s name.

Open the Window’s Window Type Device Interface

For graphics windows, open the window’s window type device interface using the Starbase
gopen(8G) routine; for term0 windows, use the open(2) system call. The file descriptor
returned from opening the window type device interface is required by window manipu-
lation routines.

Note that gopen requires the name of the device driver for the physical display. This
value is determined by the WMDRIVER environment variable. To get this value for
gopen, simply use the wminquire(8W) routine, which gets the value of a window system
environment variable. You can then supply this value to gopen. (For details on using
wminquire, see the example in this section.)

Call winit(3W)
After opening and obtaining a file descriptor for the window type device interface, call
winit(3W); its syntax is:

winit (fd)

The fd parameter is the file descriptor returned from opening the window’s window type
device interface.

At this point, communication with the window has been started, and a program can call
window manipulation routines that alter some of the window’s attributes.

Window Manipulation 59

Examples

The following function, est_t0.c, starts communication.with a term0 window and returns
its file descriptor. It requires the path name of the window’s window type device interface
as a parameter. It returns the window’s file descriptor if successful; otherwise, it returns
-1. The function’s source can be found in the man_ezamples directory:

#include <window.h> /* window library definitions */
#include <fcntl.h> /* system call i/o defintions */
est_t0(wt_path)
char *wt_path; /* name of the window */
{

int wfd; /* window file descriptor */
/*

START WINDOW COMMUNICATION:

return -1 if an error occurs
return wfd if successful

‘*‘****

* STEP 1: Build the path name of the window’s window type device interface:
* [Note: The path name is determined BEFORE this routine

* is called; the path name is passed as a parameter.]
£
*

STEP 2: Open the window type device interface for reading and writing:

if ((wfd = open(wt_path, O0_RDWR)) == -1) return(-1);
/*
* STEP 3: Call winit:
.y
if (winit(wfd) < 0)
return(-1) ;
else
return(wfd) ;
}

60 Window Manipulation

The next function, est_gr.c, starts communication with a graphics window and returns
its file descriptor. It requires the window manager’s file descriptor and the graphics
window’s path name as a parameter. Its source is found in man_ezamples:

#include <starbase.c.h> /* starbase library definitions */
#include <window.h> /* window library definitions */
est_gr(wmfd, wt_path) ’

int
char
{

int

wnfd; /* wm file descriptor */
wt_path; / graphics window’s name */
wfd; » /* window file descriptor */

char dr_path[WINNAMEMAX]; /* screen driver name variable */

STEP

/*
* STEP
*/

START WINDOW COMMUNICATION:

return -1 if an error occurs
return wfd if successful

1: Build the path name of the window’s window type device interface:

[NOTE: The path name is determined before this routine is
called; the path name is supplied as the parameter.]

2: Get the physical screen device 'driver’s name, and open the
device interface (for output only) via Starbase gopen:
if (wminquire(wmfd, "WMDRIVER", dr_path) < 0) return(-1); -

if ((wfd = gopen(wt_path, OUTDEV, dr_path, INIT)) < O) return(-1);

3: Initialize the window type device interface:

if (winit(wfd) < 0)
return(-1);
else
return(wfd) ;

Window Manipulation 61

Stopping Window Communication

When a program is finished with a term0 or graphics window, communication with
the window should be stopped. Stopping window communication does not remove the
window from the window system; it merely releases resources allocated at the time com-
munication was started. The window still exists afterward but is under the control of
the window manager.

Stopping window communication involves the following steps:
1. Call wterminate(3W).

2. Close the window’s window type device interface.

Call wterminate
Call the wterminate(38W) routine; its syntax is:

wterminate (fd)

It requires the device interface’s file descriptor—i.e., the descriptor returned from starting
communication with the window. ‘

Close the Window’s Device Interface

Use the close(2) routine on term0 windows; use the Starbase gclose(3G) routine for
graphics windows.

62 Window Manipulation

Examples

The following function stops communication with any graphics window, given the file
descriptor of the window’s window type device interface. The function is named term_gr.c
and is found in the man_ezamples directory.

#include <starbase.c.h> /* contains starbase library definitions */
#include <window.h> /* window library definitions */
term_gr (wfd)
int wid; /* window type descriptor */
{
/%

STOP GRAPHICS WINDOW COMMUNICATION:

*
*

* return O if successful

* return -1 if error occurs
*
*

STEP 1: Call wterminate:
*/
if (wterminate(wfd) < 0) return(-1);
/*
* STEP 2: Close the window type device interface.
*/
if (gclose(wfd) < 0)
return(-1);
else
return(0) ;

Window Manipulation 63

The next function is similar to the previous, except that it stops communication with
any term0 window. The source is named term_t0.c and is found in the man_ezamples
directory.

#include <fcntl.h> /* system call i/o definitions */
#include <window.h> /* window library definitions */
term_t0(wfd)

int wid; /* window type descriptor */

{
STOP TERMO WINDOW COMMUNICATION:

return O if successful
return -1 if error occurs

STEP 1: Call wterminate:

if (wterminate(wfd) < 0) return(-1);
/*
* STEP 2: Close the window type device interface.
*/
if (close(wfd) < 0)
return(-1);
else
return(0) ;

64 Window Manipulation

Selecting a Window

The keyboard and mouse or graphics tablet can be attached to one window at a time.
Once these input devices are attached to a window, a process can read keyboard in-
formation and detect activity (events) in the mouse and/or graphics tablet.

If you wish to read keyboard data from or perform event detection with a window (as
described in the “Event Detection” chapter), attach the keyboard and other input devices
to the window. The wselect(8 W) routine attaches and detaches the keyboard and optional
mouse or graphics tablet.

Procedure
To attach input devices to a window, simply call wselect; its syntax is:

wselect (fd, value)

The value parameter determines whether to attach the window (value = SETSELECT),
detach the window (value = SETNOSELECT), or inquire on select status (value = GETSELECT).

Related Routines

The wautoselect(3W) routine can also be used to attach input devices to a window.
However wautoselect works differently than wselect: wautoselect automatically attaches
the input devices to a window when output is sent to the window. The syntax for this
routine is:

wautoselect (fd, value)

If value is SETAUTOSELECT, then the window will automatically become the selected window
when output is sent to its device interface; if value is SETNOAUTOSELECT (the default when
the window is created), then the window won’t be selected. If value is GETAUTOSELECT,
then the current auto-selection status is returned.

NOTE: A window’s auto-selection status is automatically set to SETNOAUTOSELECT when-
ever output is sent to its device interface. Therefore, whenever a window becomes de-
selected, you must re-call this routine if you want the window to again become selected
when output is sent to its device interace.

Window Manipulation 65

Precautions

Detaching the input devices from a window causes them to be attached to the topmost
window in the display stack, unless the detached window was already topmost. In that
case, the keyboard is attached to the next window down in the display stack.

If only one window exists, the keyboard cannot be detached from it; attempting to do
so won’t work.

Example

The following function, named toggle_sel.c, inquires on whether the input devices are
attached to a specified window. If the window is already selected, then the input devices
are detached from the window; otherwise, the window is made the selected window.

#include <window.h> /* window library definitions */
toggle_sel (wfd)

int wfd; /* window’s file descriptor */
{

int select_state; /* current select state variable */

TOGGLE A WINDOW’S SELECT STATE:

*
*
* return -1 if an error occurs

* return resulting select state, if successful
*

*

Check the current state:

if ((select_state = wselect(wfd, GETSELECT)) < 0O) return(-1);

66 Window Manipulation

/*
* Toggle the state:

*/
if (select_state == SETSELECT)
{
if (wselect(wfd, SETNOSELECT) < 0)
return(-1);
else
return (SETNOSELECT) ;
}
else
{
if (wselect(wfd, SETSELECT) < 0)
return(-1);
else
return (SETSELECT) ;
}
}

Window Manipulation 67

Displaying and Concealing a Window

At any time after a window is created, it can be normal or iconic. In either of these
representations, a window can either be displayed—capable of being seen on the screen—
or concealed—i.e., made invisible. This section discusses how to display and conceal
windows in a normal state.

Changing a window from a visible to an iconic representation (and vice versa) is discussed
in the chapter “Icons.” Keep in mind that the routines discussed here can also be used
to display or conceal icons.

Procedure
Following are separate discussions for displaying a window and concealing a window.

Displaying a Window
By default when a window is created via window library routines, it is concealed. Three
routines can be used to make windows visible:

o wtop(3W)—displays a window as the top window in the display stack. No portion
of the window will be occluded by any others. However, depending on the window’s
location and size, all or part of the window may be off screen. The syntax for this
routine is:

wtop(fd, value)

The value parameter determines the action of the routine: if value is SETTOP, then
the window (specified by fd) is made the top window in the display stack; if value is
GETTOP, then the routine returns a value of SETTOP if the window is the top window
in the stack, SETNOTOP otherwise.

o wbhottom(8W)—displays a window as the bottom window in the display stack. All
or part of the window may be occluded by other windows. In addition, all or part
of the window may be off screen. This routine’s syntax is:

wbottom(fd, value)

If value is SETBOTTOM, then the window is made visible as the bottom window in the
display stack; if value is GETBOTTOM, then wbottom returns a value of SETBOTTOM if the
window is the bottom one, SETNOBOTTOM otherwise.

o wautotop(3W)—causes a term0 window to be displayed as the top window in the
stack when output is sent to the window’s device interface. This routine is useful
to applications that display urgent information in a term0 window and want the
window to be visible when the urgent information is displayed.

68 Window Manipulation

For example, suppose that you’ve written an application for a nuclear power plant,
and you have a meltdown emergency window. You probably want this window to
be displayed should a meltdown occur. You can use wautotop to have the window
automatically come to the top if the meltdown message is ever displayed.

The syntax for this routine is:
wautotop (fd, value)

If ‘value is SETAUTOTOP, then the window specified by fd will automatically come to
the top when output is written to its device interface. If value is SETNOAUTOTOP then
the window won’t automatically come to the top. If value is GETAUTOTOP, then the
routine returns the current autotop state.

NOTE: The window’s autotop state will be automatically set to SETNOAUTOTOP when-
ever output is sent to the window. Therefore if you must re-call wautotop after any
data is written to the window, if you want the window to come to the top when
the next message is written.

Concealing a Window

After a window is made normal, it can be concealed. You might conceal a window
if you don’t want to destroy it (or its associated programs) but do want to remove it
temporarily from the display screen. The window can then be made normal again (via
wtop or whottom) when needed. Windows are concealed via wconceal(8W); its syntax is:

wconceal (fd, value)

If value is SETCONCEAL, then the window is concealed; if value is GETCONCEAL, then wconceal
returns a value of SETCONCEAL if the window is concealed, NOSETCONCEAL otherwise.

Window Manipulation 69

Precautions

Remember that displaying a window via wtop or wbottom does not ensure that the window
will be visible on the screen: the window may be displayed totally or partly off the screen.
In addition, if the window is made displayable by wbottom the window may be occluded

by

other windows.

Example

The following program requires that a window named t0win exist. You can create this

window (if it doesn’t already exist) by typing:

The following program toggles the window from displayed to concealed representation,
waits about five seconds, and makes the window visible again. The program is found in

wsh tOwin

the man_ezamples directory and is named conceal_t0.c.

70

#include <window.h>
#include <stdio.h>
main ()
{
int wid; /* window file descriptor */
char wt_path [WINNAMEMAX] ; /* window path name */
/*
* Build the window’s path name and start window communication by
* using the est_tO routine defined in the previous chapter.
*/

wmpathmake ("WMDIR", "tOwin", wt_path);
if ((wfd = est_t0(wt_path)) < 0)

{
printf("est_t0 failed - path is %s\n", wt_path);
exit(1);
}
/*
* CONCEAL the window:
*/
wconceal (wfd, SETCONCEAL) ;
/*
* Wait for approximately five seconds:
*/
sleep(5);
Window Manipulation

/*
* DISPLAY the window as the top window in the stack:

*/
wtop(wfd, SETTOP);
/*
* Stop communication with the window:
*/
if (term_tO(wfd) < 0)
{
printf("term_t0 failed - wfd is %d\n", wfd);
exit(1);
}
exit(0); /* NORMAL TERMINATION */
}

Window Manipulation 71

Moving a Window

A window’s location attribute determines the position (in z,y pixel coordinates) of the
window’s anchor point on the physical display. (The anchor point is the upper-left corner
of the window’s user area.) Location 0,0 is the upper-left corner of the display—i.e., the
origin. The z coordinates increase to the right; y coordinates increase downward. The
wmove(3W) routine allows you to change a window’s location.

Note that moving a window does not change its position in the display stack.

Procedure
To move a window, do the following tasks:

Compute the New Coordinates
First, compute the new coordinates for the window. The new coordinates can be either
absolute, relative, or default:

e To compute absolute coordinates, simply determine the exact z,y coordinates to
which you wish the window to be moved. Then supply these as parameters to the
wmove routine.

To determine if moving the window will cause part of it to appear off screen, call
the wgetscreen(3W) routine, which returns the maximum z,y coordinates on the
physical display—i.e., the coordinates of the lower-rightmost pixel on the display.
Coordinates less than 0,0 or greater than the screen size will cause part of the
window to appear off screen.

e To compute new coordinates relative to a window (which could be the window
itself), use the wgetcoords routine. Then compute the relative coordinates as offsets
of those returned by wgetcoords(3W).

¢ You can also specify default coordinates returned from wdfltpos(3W) which returns
coordinates for the next window to be created by the window manager. However,
this routine is normally used only when creating windows.

Call wmove
Call the wmove routine with the desired coordinates; its syntax is:

wmove (fd, z,y)

The z,y parameters specify the new location for the window denoted by fd.

72 Window Manipulation

Precautions

Keep in mind that when you move a window, all or part of the window may be off screen
and, therefore, not visible on the display.

Example

The following program requires that a window named my_win exists on the display
screen. To create this window, simply type:

wsh my_win

On each invocation of the following program, my_win will move 50 pixels down and 60
pixels to the right on the display screen. Before moving the window, the program checks,
via wgetscreen and wgetcoords, to see if moving the window will cause part of it to appear
off screen. If so, the window will instead be moved to absolute location 0,0 so that the
stair-step movement can proceed again from the upper-left corner of the display. This
program is stored in the man_ezamples directory and is named stair_step.c.

#include <fcntl.h> /* system 1/0 call definitions */
#include <window.h> /* window library definitions */
#define stepx 60 /* pixel step in x direction */
#define stepy 50 /* pixel step in y direction */
main()
{
int wmid, /* window manager file descriptor */
int screenw, screenh; /* screen width and height */

int bytepp, cmapent, sfkh; /% bytesper pixel, color map entries,
and softkey height for the screen */

int wfd; /* window file descriptor */

char wt_path[WINNAMEMAX]:; /* path name for window type */

int bx, by, bw, bh; /* dimensions of the border */

int x,y, w,h, dx,dy, rw,rh; /* dimensions of the window */

int est_wm_com(); /* routine to start wm communication */
int term_wm_com(); /* routine to stop wm communication */

Window Manipulation 73

/*

* Start window manager communication.

*/
if ((wmfd = est_wm_com()) == -1)
{
perror("est_wm_com failed");
exit(1);
}
/*
* Create a path name for the window.
*/
wmpathmake ("WMDIR", "my_win", wt_path);
/*
* Open the window and initialize it.
*/
wfd = open(wt_path, O_RDWR);
if (wfd <0)
{
perror("open of window failed");
exit(1);
}
if (winit(wfd) < 0)
{
perror("winit of window failed");
exit(1);
}
/*
* Get the screen size.
*/

if (wgetscreen(wmfd, &screenw, &screenh, &bytepp,
&cmapent, &sfkh) < 0)
{

perror("wgetscreen to wmfd failed");
exit(1);

74 Window Manipulation

/*

¥ Get the border size and the contents size of the window.

*/
if (wgetbcoords(wfd, &bx, &by, &bw, &bh) < 0)
{
perror ("wgetbcoords of window failed");
exit(1);
}
if (wgetcoords(wfd, &x,&y, &w,&h, &dx, &dy, &rw,&rh) < 0)
{
perror("wgetcoords of window failed");
exit(1);
}
/*
* Compute the new position of the window by adding stepx pixels to the

*

x value and stepy pixels to the y value. If any part of the window

* will move off the screen, then reposition the window to 0,0.
*/
if (((bx + bw + stepx) >= screenw) || ((by + bh + stepy) >= screenh))
{
x -= bx;
y -= by;
} else
{
x += stepx;
y += stepy.;
}
if (wmove(wfd, x, y) < 0)
{
perror ("wmove of window failed");
exit(1);
}
/*
* Close the window.
*/
if (close(wfd) < 0)
{
perror("close of window failed");
exit(1);
}
/*
* Stop window manager communication.
*/
term_wm_com(wmfd) ;
}

Window Manipulation 75

Changing a Graphics Window’s Size
Each graphics window has a size attribute that represents the pixel width and height of
the window; wsize(8W) changes a window’s size.

Maximum Window Size

The maximum size for a graphics window is its raster size (determined by the rasterw
and rasterh parameters to wereate_graphics) and pan position (set by the wpan routine).
The window cannot be wider than the raster width minus the z-coordinate of the pan
position; it can be no taller than the raster height minus the y-coordinate pan position.

Minimum Window Size
The window’s minimum possible width and height depend on whether the window has a
normal border (window border displayed) or thin border (border not displayed):

e With a normal border, the window has a minimum size determined by factors such
as the current border font size and the location of the interactive manipulation
areas (which must all remain visible).

e With a thin border, the minimum width and height is one pixel by one pixel.
Note: Attempting to set a window’s size less than the minimum will cause the window

to be redrawn to the minimum size; setting the size larger than the maximum will cause
the window to be redrawn to its maximum size.

Procedure
Changing a window’s size involves the following tasks:

Optionally Get Window and Screen Size Information
Before changing a window’s size, you may want to make sure that changing its size won’t
make it appear off screen. The following routines can be used with wsize:

e wgetcoords(8W)—gets information about the window’s user unit. This information
includes the window’s anchor point, current width and height, offset into the virtual
raster, and maximum width and height (as specified when the window was created).

o wgetbcoords(3W)—gets information about the window’s border unit. Specifically,
it returns the z,y location of the upper-left corner of the window’s border. It also
returns the width and height of the window’s border.

o wgetscreen(3W)—returns the pixel width and height of the display screen.

76 Window Manipulation

Call wsize
Call wsize with the new width and height parameters; its syntax is:

weize(fd, w,h)
The window’s new width and height are given by the w,h parameters.

Precautions

Keep in mind that making a window larger may cause parts of it to be occluded by other
windows or the edge of the screen.

Example

The following program requires that a graphics window named grwin exist on the display
screen. To create this window (if it doesn’t already exist), simply type:

wcreate -wgraphics -1400,100 -8100,150 -r800,150 grwin

The window is created at location 400,100; its initial size is 100 pixels wide by 150 pixels
high; its virtual raster is 800 pixels wide by 150 pixels high. If you want the following
program to work as stated, then do not move or manipulate the window created above.

On invoking the following program, the window will stretch to the right edge of the
display screen. This program is stored in the man_ezamples directory and is named
stretch_gr.c.

#include <fcntl.h> /* system i/0 call definitions */
#include <window.h> /* window library definitions */
main()
{
int wmfd; /* window manager file descriptor */
int screenw, screenh; /* screen width and height */

int bytepp, cmapent, sfkh; /#* bytesper pixel, color map entries,
and softkey height for the screen */

int wfd; /* window file descriptor */

char wt_path[WINNAMEMAX]; /* path name for window type */

int bx, by, bw, bh; /* dimensions of the border */

int x,y, w,h, dx,dy, rw,rh; /* dimensions of the window */

int est_wm_com(); /* routine to start wm communication */
int term_wm_com() ; /* routine to stop wm communication */

Window Manipulation 77

/*

* Start window manager communication.

*/
if ((wmfd = est_wm_com()) == -1)
{
perror("est_wm_com failed");
exit(1);
}
/*
* Create a path name for the window.
*/
wmpathmake ("WMDIR", "grwin", wt_path);
/*
* Open the window and initialize it.
*/
wfd = open(wt_path, O_RDWR);
if (wfd <0)
{
perror("open of window failed");
exit(1);
}
if (winit(wfd) < 0)
{
perror("winit of window failed");
exit(1);
}
/*
* Get the screen size.
*/

if (wgetscreen(wmfd, &screenw, &screenh, &bytepp,
&cmapent, &sfkh) < 0)
{

perror("wgetscreen to wmfd failed");
exit(1);

78 Window Manipulation

/%
* Get the border size and the contents size of the window.
*/
if (wgetbcoords(wfd, &bx, &by, &bw, &bh) < 0)

{
perror ("wgetbcoords of window failed");
exit(1);
}
if (wgetcoords(wfd, &x,&y, &w,&h, &dx,&dy, &rw,&rh) < 0)
{
perror ("wgetcoords of window failed");
exit(1);
}

/* :
* Compute the new size of the window so that the right edge of the border
* is flush with the right edge of the display screen and then change the
size of the window.

*

*/
w += screenw - bx - bw;
if (wsize(wfd, w, h) < 0)
{
perror("wsize of window failed");
exit(1);
}
/*
* Close the window.
*/
if (close(wfd) < 0)
{
perror("close of window failed");
exit(1);
}
/*
* Stop window manager communication.
*/
term_wm_com(wmfd) ;
}

Window Manipulation

79

Changing a Term0 Window’s Size

Like graphics windows, term0 windows have a current size (pixel width and height)
attribute. The wsize(3W) routine—the same one used to change the size of graphics
windows—changes the window’s size to the specified pixel width and height. However,
it works slightly differently with term0 windows.

If you specify a new pixel width/height that doesn’t fall on a character boundary, then the
window will be redrawn to the outermost edge of the character boundary. For example, if
you specified a width and height that sliced through the middle of column 15 and row 12,
then the window would actually be redrawn to touch the right edge of column 15 and the
bottom edge of row 12—i.e., slightly larger than the width and height that you specified.

You can see this phenomenon when you interactively change the size of a term0 window.
Try to change the size of a term0 window to the middle of some column in the window;
the window is always drawn to the right edge of the column.

Maximum Window Size
The maximum window size for a term0 window depends on two factors:

1. The maximum number of columns and rows in the window. The scrncols and
sernrows parameters to wereate_term0 specify the maximum columns and rows
when the window is created.

2. The second factor is the size of fonts being used in the window’s user (contents) area.
All fonts displayed in the window’s user area at a given time have the same pixel
width and height. The current font size can be determined via the fontsize_term0
routine.

With these two factors in mind, the maximum pixel width and height of a window are
computed as:

maz_width = scrncols x fontsize_width
maz_height = scrnrows X fontsize_height

80 Window Manipulation

Minimum Size
The window’s minimum size depends on whether the window has a normal or thin border:

e With a normal border, the window has a minimum size determined by factors such
as the current border font size and the location of the interactive manipulation
areas (which must all remain visible).

e With a thin border, the minimum pixel width and height is that of the current font
size. That is, the window can be shrunk so that only one character is displayed in
the user area.

Attempting to set a window’s size less than the minimum will cause the window to be
drawn to the minimum size; setting its size larger than the maximum will cause the
window to be redrawn to its maximum size.

Procedure
The following tasks should be done to change a window’s size:

Calculate the New Pixel Width and Height

The first thing you must do is calculate the new pixel width and height of the window.
The wsize routine requires that width and height be specified in pixels. The formulas for
converting from columns and rows to pixel width and height are:

pizel_z = (col x current_font_width) - 1
pizel_y = (row X current_font_height) - 1

Fortunately, there is a routine you can use instead of calculating these values every time
you want to change a window’s size. The tozy_term0(3W) routine converts column and
row coordinates to z,y coordinates. Note that the returned coordinates are the zero-based
coordinates of the upper-left corner of the character positioned at column,row.

Optionally Determine Window and Screen Size Information

Before changing a window’s size, you may want to make sure that changing its size won’t
make it appear off screen. You may also want to ensure that you don’t make the window
larger than its maximum size. The following routines can be used with wsize:

o wgetcoords(3W)—gets the window’s location and current size in pixel units.

o wgetbcoords(3W)—gets information about the window’s border unit. Specifically,
it returns the z,y location of the upper-left corner of the window’s border. It also
returns the width and height of the window’s border.

Window Manipulation 81

o wgetscreen(3W)—returns the pixel width and height (in pixels) of the display
screen.

Call wsize
Call wstze with the new width and height parameters; its syntax is:

wsize(fd, w,h)
The window’s new width and height are given by the w, h parameters.

Precautions

Keep in mind that making a window larger may cause parts of it to be occluded by other
windows or the edge of the screen.

Example

The following program requires that a term0 window name t0win exist on the display
screen. To create this window (if it doesn’t already exist), simply type:

wsh tOwin

The initial width and height of the window is 80 columns by 24 rows. The following
program will shrink the window to one fourth its original size (40 columns by 12 rows)
and will move the window to be flush with the lower-right corner of the display screen.
The program is stored in the man_examples directory and is named shrink_t0.c.

#include <fcntl.h> /* system i/0 call definitions */
#include <window.h> /* window library definitions */
main()
{
int wmfd; /* window manager file descriptor */
int screenw, screenh; /* screen width and height */

int bytepp, cmapent, sfkh; /#* bytesper pixel, color map entries,
and softkey height for the screen */

int wfd; /* window file descriptor */

char wt_path[WINNAMEMAX]; /* path name for window type */

int bx, by, bw, bh; /* dimensions of the border */

int x,y, w,h, dx,dy, rw,rh; /* dimensions of the window */

int est_wm_com(); /* routine to start wm communication */
int term_wm_com() ; /* routine to stop wm communication */

82 Window Manipulation

/*

* Start window manager communication.

*/
if ((wmfd = est_wm_com()) == -1)
{
perror("est_wm_com failed");
exit(1);
}
/*
* Create a path name for the window.
*/
wmpathmake ("WMDIR", "tOwin", wt_path);
/*
* Open the window and initialize it.
*/
wfd = open(wt_path, O_RDWR);
if (wfd <0)
{
perror("open of window failed");
exit(1);
}
if (winit(wfd) < 0)
{
perror("winit of window failed");
exit(1);
}
/%

* Shrink the window to one fourth of its size.
*/
if (toxy_termO(wfd, &w, &h, 40, 12) < 0)
{

perror ("toxy_term0 to wfd failed");

exit(1);

}

if (wsize(wfd, w, h) < 0)

{
perror("wsize of window failed");
exit(1);

}

Window Manipulation

83

/*

* Get the screen size.

*/
if (wgetscreen(wmfd, &screenw, &screenh, &bytepp,
&cmapent, &sfkh) < 0)

{
perror ("wgetscreen to wmfd failed");
exit(1);

}

/*

* Get the border size and the contents size of the window.
*/
if (wgetbcoords(wfd, &bx, &by, &bw, &bh) < 0)

{
perror ("wgetbcoords of window failed");
exit(1);
}
if (wgetcoords(wfd, &x.&y, &w,&h, &dx, &dy, &rw,&rh) < 0)
{
perror ("wgetcoords of window failed");
exit(1);
}

/*
* Compute the new position of the window so that it is flush with the lower
* right hand corner of the display screen.

*/
X += screenw - bx - bw;
y += screenh - by - bh;
if (wmove(wfd, x, y) < 0)
{
perror("wmove of window failed");
exit(1);
}
/*
* Close the window.
*/
if (close(wfd) < 0)
{
perror("close of window failed");
exit(1);
}
/*
* Stop window manager communication.
*/
term_wm_com(wmfd) ;
}

84 Window Manipulation

Changing a Window’s Border

By calling the wbanner(3W) routine, a program can change a window’s border type to
normal, thin, or null, depending on the window’s type. Table 4-1 describes the valid
border types.

Table 4-1. Window Border Types

Border Type Description

Normal Window label and interactive areas present in
the window’s border; border is “thick”.

Thin No label or manipulation areas are present;
border is a thin line surrounding the window’s
contents area; user can get a pop-up menu by
clicking the locator on the thin border.

Null No border exists whatsoever; the user cannot
click on the border to get a system menu
because there is no border.

Procedure
To change a window’s border, call the wbanner routine; its syntax is:

wbanner (fd, value)
For term0 and graphics windows: If walue is SETBANNER, then the window’s border is
changed to a normal border; if value is SETNOBANNER, the window’s border is changed to
a thin border; if value is SETNULLBANNER, then the window’s border is removed.
If value is GETBANNER, then wbanner returns the window’s current border type: that is,

SETBANNER for a normal border, SETNOBANNER for a thin border, and SETNULLBANNER if the
window has no border.

Window Manipulation 85

Example

The following function determines a window’s border representation. If the window has
a normal border, the routine changes it to a thin border; if the window has no border or
if the window’s border is thin, the routine changes the border to normal.

For example, if this routine is called on a graphics window with no border, its border
will then be changed to normal. The source is stored in the man_ezamples directory and
is named wbanner_sub.c.

#include <window.h> /* window library definitions */
wbanner_sub (wfd)
int wfd; /* window’s file descriptor %/
{

int border_state; /* current border state variable */
/*

TOGGLE A WINDOW'S BANNER STATE:

*
*
* return -1 if an error occurs

* return resulting border state, if successful
*

*

Check the current state:

if ((border_state = wbanner(wfd, GETBANNER)) < 0) return(-1);

/*
* Toggle the state:
*/
if (border_state == SETBANNER)
{
if (wbanner (wfd, SETNOBANNER) < 0)
return(-1);
else
return (SETNOBANNER) ;
}
else
{
if (wbanner(wfd, SETBANNER) < 0)
return(-1);
else
return (SETBANNER) ;
}
}

86 Window Manipulation

Changing a Window’s Label

A window’s label is displayed in the window border area, the title of the pop-up menu,
the title for the softkey labels, and the label in the icon for the window. By default, a
window’s label is identical to its name (i.e., the base name of its full path name), specified
when the window is created. The wsetlabel(3W) routine changes the label to a string
other than the window’s name.

The maximum number of bytes allowed in a window’s label depends on the window’s
type. A term0 window’s label can contain LABELMAX bytes (defined in window.h). A
graphics window’s label can contain 128 bytes. The final byte in a window’s label must
be a *\0’ (terminating NULL).

Procedure
To set a window’s label, call wsetlabel; its syntax is:

wsetlabel (fd, label)
The label parameter points to a null-terminated string containing the new label to use.

Example

This sample program requires that a graphics window named grwin exist. To create the
window, simply type:

wcreate -wgraphics grwin

Executing the following program will change the window’s label from the default grwin
to >>NEWLABEL<<, wait five seconds, and change its label back to grwin. The program is
found in the man_ezamples directory and is named setlabel_gr.c.

#include <fcntl.h> /* system i/0 call definitions */
#include <window.h> /* window library definitions */
main()
{

int wfd; /* window file descriptor */

char wt_path[WINNAMEMAX]; /* path name for window type */

Window Manipulation 87

/*

* Open the window and initialize it.

*/

wmpathmake ("WMDIR", "grwin", wt_path);

wfd = open(wt_path, O_RDWR);

if (wfd <0) {
perror("open of window failed");
exit(1);

}

if (winit(wfd) < 0) {
perror ("winit of window failed");
exit(1);

}

/*

* Change the window’s label and wait 5 seconds.
*/
if (wsetlabel(wfd, ">>NEWLABEL<<") < 0) {
perror ("wsetlabel of window failed");

exit(1);
}
sleep(5);
/*
* Change the window’s label back.
*/
if (wsetlabel(wfd, "grwin") < 0) {
perror ("wsetlabel of window failed");
exit(1);
}
/*
* Close the window.
*/
if (close(wfd) < 0) {
perror("close of window failed");
exit(1);
}
}

88 Window Manipulation

Setting a Window’s Border Colors

Each window has foreground and background colors for its border. By default when a
window is created, its foreground border color is black, and its background border color
is white (0 is black and 1 is white). (These default values are defined by the window
system environment variables WMBDRFGCLR and WMBDRBGCLR.)

Table 4-2 defines the default Starbase color map entries.

Table 4-2. Default Starbase Color Map Entries

Color Index| Default Starbase Color
Black
White
Red
Yellow

Green

Cyan
Blue
Magenta

N O G R W N = O

Procedure

Determining Border Colors
The wgetbcolor(3W) routine returns the current foreground and background colors for a
window’s border; its syntax is:

wgetbcolor (fd, fgbanner, bgbanner)

The fgbanner and bgbanner parameters are pointers to integers that will contain the
current border foreground and background colors, respectively.

Setting Border Colors
The wsetbcolor routine sets the foreground and background colors for a window’s border;
its syntax is:

wsetbcolor (fd, fgbanner, bgbanner)

The fgbanner and bgbanner parameters are indices into the system color map that specify
the new border foreground and background colors to use.

Window Manipulation 89

Example

The following program swaps the border foreground and background colors for any spec-
ified window. To use this program, you would type:

invert_be wname

Wname is the name of the window whose border is to be inverted. The above syntax
assumes that you have compiled the following source program (named ¢nvert_bc.c) and
have named it invert_bc. The program is found in the man_ezamples directory.

#include <fcntl.h> /*

#include <window.h> /*
main(argc, argv)
int argc; /*
char *argv[]; /*
{
int wfd; /*
char *wt_name; /*
char wt_path[WINNAMEMAX]; /=
int fg_color, bg_color; /*
/*

system i/0 call definitions */
window library definitions */

number of arguments */
array of arguments */

window file descriptor */
name of window */

path name for window type */
border colors */

* INVERT THE BORDER COLORS OF A WINDOW

*

* First, check for a window name argument.

printf("usage: invert_bc window_name\n");

*/
if (arge < 2)
{
exit(1);
}

wt_name = argv([i];

90 Window Manipulation

/*
* Create a path name for the window.

*/
wmpathmake ("WMDIR", wt_name, wt_path);
/*
* Open the window and initialize it.
*/
wfd = open(wt_path, O_RDWR);
if (wfd <0)
{
perror("open of window failed");
exit(1);
}
if (winit(wfd) < 0)
{
perror("winit of window failed");
exit(1);
}
/*

* Inquire the border foreground and background colors of the window.
*/

if (wgetbcolor(wfd, &fg_color, &bg_color) < 0)

{

perror ("wgetbcolor of window failed");
exit(1);

/*
* Swap the foreground and background colors of the border.
*/
if (wsetbcolor(wfd, bg_color, fg_color) < 0)

{
perror ("wsetbcolor of window failed");
exit(1);
}
/%
* Close the window.
*/
if (close(wfd) < 0)
{
perror("close of window failed");
exit(1);
}
}

Window Manipulation

91

Pausing and Resuming Output to a Term0 Window

Output to a term0 window can be halted and restarted by the wpauseoutput(8W) routine.
On term0 windows, pausing output via this routine is equivalent to typing an XOFF char-
acter on an HP 2622 terminal; resuming output is equivalent to typing an XON character.

Note that pausing a window’s output does not halt the process that is creating the
output. The output is simply “frozen.” However, if a window is paused long enough,
the window’s buffers will become full and the writing process will be forced to wait until
window output is resumed.

Procedure
To pause output to a term0 window, call wpauseoutput; its syntax is:

wpauseoutput (fd, value)

If value is SETPAUSE, then the window will be paused; if value is GETPAUSE, then a value
of SETPAUSE will be returned if the window is currently paused, otherwise SETNOPAUSE is
returned.

Example

The following function determines whether output to a window is paused or resumed
and toggles the window to the opposite state. For example, if this function is called on
a window that is paused, output to the window will resume. The source is stored in the
man_examples directory and is named pause_resume.c.

#include <window.h> /* window library definitions */
pause_resume (wfd)
int wfd; /* window’s file descriptor */
{
int pause_state; /* current pause state variable */

92 Window Manipulation

TOGGLE A TERMO WINDOW’S OUTPUT PAUSE STATE:

*
*
* return -1 if an error occurs

* return resulting pause state, if successful
*

*

Check the current state:

if ((pause_state = wpauseoutput(wfd, GETPAUSE)) < 0) return(-1);

/%
* Toggle the state:
*/
if (pause_state == SETPAUSE)
{
if (wpauseoutput(wfd, SETNOPAUSE) < 0)
return(-1);
else
return (SETNOPAUSE) ;
}
else
{
if (wpauseoutput(wfd, SETPAUSE) < 0)
return(-1);
else
return (SETPAUSE) ;
>
}

Window Manipulation 93

Panning a Graphics Window

In graphics terminology, panning changes the view into a graphics window’s virtual raster.
When the window’s size is smaller than the raster, panning a window can be thought
of as moving the window over the raster to a specific position in the raster. It has the
effect of looking as though the raster moves under the window while the window remains
motionless on the display. The wpan(3W) routine is used to pan graphics windows.

Window panning is limited by both the current pan position within the virtual raster
and the size of the raster. Attempting to pan outside the virtual raster will do nothing.

Note

TermO windows cannot be panned. Attempting to use wpan with
term0 windows will cause an error. Note, however, that term0
escape sequences for “rolling” window contents can be used instead.
For details, see the “Term0 Windows” chapter in this manual, and
the Term0 Reference Manual.

Procedure
To pan a graphics window, call the wpan routine; its syntax is:

wpan (f d; z,y)

The z,y parameters specify the offset (panning position) into the virtual raster. The
upper-left corner of the virtual raster has coordinates 0,0; the lower-right corner has
coordinates one less than those specified by the rasterw and rasterh parameters used
when the window was created via wereate_graphics(SW).

94 Window Manipulation

Example

The following function pans any graphics window to be flush with the lower-right corner
of its virtual raster. The source is found in the man_ezamples directory and is named
pan_gr.c.

#include <window.h> /* window system definitions */
pan_gr (wfd)

int wfd; /* file descriptor for a window */
{

int x,y, w,h, dx,dy, rw,rh; /* dimensions of the window */

/*

*

PAN A GRAPHICS WINDOW TO BE FLUSH WITH THE LOWER-RIGHT CORNER OF ITS
VIRTUAL RASTER

*

* Inquire the size of the window and raster:

*/
if (wgetcoords(wfd, &x,&y, &w,&h, &dx,&dy, &rw,&rh) < 0)
{
"perror("wgetcoords of window failed");
exit(1);
}
/%

* Compute the new offset into the raster so that the window is flush with
* the lower-right corner of the virtual raster and call wpan.
*/

dx = rw - w;

dy = rh - h;

if (wpan(wfd, dx, dy) < 0)

{
perror("wpan of window failed");
exit(1);

¥

return(0) ;

Window Manipulation 95

Setting Autodestroy Status

The wrecover(3W) and wautodestroy(3W) routines control whether a window is auto-
matically destroyed when all processes that have opened the window stop executing.

Procedure
The use of the wrecover and wautodestroy routines is discussed here.

The wrecover(3W) Routine
The wrecover routine controls whether a window is automatically destroyed; its syntax
is:

wrecover (fd, value)

The fd parameter is the file descriptor returned from starting communication with the
window. The value parameter controls the window’s recover state.

If value is SETNORECOVER, then windows are mot automatically deleted from the system:;
they must explicitly be removed using the wdestroy(1) command, the wdestroy(8W)
window management routine, or the Destroy option of the pop-up menu.

If value is SETRECOVER, then windows are automatically destroyed after all process are
disassociated with the window. The exact time at which the window is destroyed is
determined by the wautodestroy routine, described next.

If value is GETRECOVER, then the current recover state is returned.

The wautodestroy(3W) Routine

The wautodestroy routine works only when the recover state is set to SETRECOVER. When
a window has been set to SETRECOVER, the wautodestroy routine will control when the
window is automatically removed from the system. The syntax for this routine is:

wautodestroy(fd, value)

If value is SETAUTODESTROY, then the window is destroyed immediately when all processes
have closed the window’s device interface.

If value is SETNOAUTODESTROY, then the window is destroyed when all processes have closed
the window’s device interface followed by a new window being created.

If value is GETAUTODESTROY, then the current auto-destroy status is returned.

96 Window Manipulation

Icons

By calling icon routines, a window program can:
e change a window’s iconic state
e move an icon

e customize icons.

Icons 97

Concepts

This section explains concepts you should understand before using icon routines.

At any time, a window is in one of three states: concealed, normal, or iconic. When in
an iconic state, a window is represented by a graphic picture known as an icon.

An icon can be thought of as the shrunken form of a window. However, it has no user
(contents) area. Instead, it is comprised of two components: the top portion is known as
the picture, the bottom part is the label. Figure 5-1 defines the layout of an icon.

} Picture

} Label

Figure 5-1. Icon Format.
Normally when a window is changed to an icon, both parts—picture and label—are
displayed. By using icon routines, a program can suppress either the picture or label.

(For details, see “Customizing Icons.”)

Additionally, two interactive manipulation symbols appear within the label area:

F":xl moves the icon

| returns the window to normal representation

See the section “Moving an Icon” for details on moving icons. For information on chang-
ing a window to an icon and vice versa, see the section “Changing a Window’s Iconic
State”

TermO and graphics windows use default, predefined pictures when an icon is displayed.
However, you can create your own iconic pictures. These pictures are stored in files and
can be recalled to replace the default icon picture for any term0 or graphics window.
See “Customizing Icons” for details on creating user-defined pictures for icons. ,ind
picture, icon default

98 Icons

Changing a Window’s Iconic State

The wiconic(8W) routine changes a window’s iconic state. It performs three different
functions:

e change a window to an icon
e change an icon to a window

e return the window’s iconic state.

Procedure

To change a window to an icon, or vice versa, call wiconic with the appropriate param-
eters; its syntax is:

wiconic(fd, value)

The fd parameter is the file descriptor of the window type device interface for the window
whose iconic state you wish to change.

The value parameter determines the action taken by wiconic:

value action of wiconic

SETICONIC | The window is changed to iconic representation.

SETNOICONIC | The window is changed to normal representation.

GETICONIC |Return the window’s iconic state (SETNOICONIC = normal;
SETICONIC = iconic).

When a window is changed to an icon, the icon appears at the position specified by its
icon location attribute; likewise, changing an icon to a window causes the window to
appear at the screen coordinates specified by the window location attribute.

By default when a window is changed to an icon, the icon is placed at the left edge of
the screen. Each new icon is placed above the previous one, starting from the bottom
of the screen. Therefore, when changing a window to an icon, if you want the icon to
appear at some position other than the default, you must change the icon’s location
before changing it to an icon. (Moving icons is covered in the section “Moving an Icon.”)

Icons 99

Similarly, if you want to use a custom picture with an icon instead of the default, cus-
tomize the icon before changing the window to an icon. This way, only your custom
picture will appear when the window is changed to an icon—the default icon won’t.
(This is covered in the section “Customizing Icons.”)

Example

The following function, named toggle_icon.c, checks the iconic state of a specified window.
It then toggles the window to the opposite state. Because the routine requires the file
descriptor of the window’s device interface, communication with the window should be
started before calling this routine.

#include <window.h> /* window library definitions */
toggle_icon(wfd)
int wid; /% window’s file descriptor */
{
int iconic_state; /* current iconic state variable */

/*

* TOGGLE A WINDOW’S ICONIC STATE:

*

* return -1 if an error occurs

* return resulting iconic state, if successful

*

* Check the current state:

if ((iconic_state = wiconic(wfd, GETICONIC)) < 0) return(-1);

/*
* Toggle the state:
*/
if (iconic_state == SETICONIC)
{
if (wiconic(wfd, SETNOICONIC) < 0)
return(-1);
else
return (SETNOICONIC) ;
}
else
{
if (wiconic(wfd, SETICONIC) < 0)
return(-1);
else
return(SETICONIC) ;
}
}

100 Icons

Moving an Icon

An icon’s location attribute determines (in z,y pixel coordinates) the position on the
screen of the upper-left corner of the icon’s picture rectangle. Location 0,0 is the origin—
i.e., the upper-leftmost pixel on the screen. X coordinates increase to the right; y coor-
dinates increase downward. The wseticonpos(3W) routine changes an icon’s location.

Procedure

Compute New Icon Location
First, compute the new icon coordinates. The new coordinates can be either absolute,
relative, or default:

e To compute absolute coordinates, simply determine the exact z,y coordinates at
which you want the icon to appear. Supplying negative coordinates or coordinates
greater than the screen size has the same effect as when moving a window. The
wgetscreen(3W) routine returns information about the size of the screen. (See
“Moving a Window” of Chapter 4, “Window Manipulation.”)

e To compute coordinates relative to an existing icon, use the wgeticonpos(8W) rou-
tine, which returns the location of an icon. Then compute the relative coordinates
as offsets of those returned by wgeticonpos.

e The wdfltpos(3W) routine returns default icon coordinates. These are the default
coordinates used when a window is changed to an icon. These coordinates start at
the lower-left corner of the display and move upward as more windows are changed
to icons.

Call wseticonpos
Call wseticonpos with the coordinates computed above; its syntax is:

wseticonpos(fd, ,1)

The z,y parameters specify the location at which the icon will be displayed when the
window is in an iconic state.

Icons 101

Example

The following code segment gets an icon’s location and moves the icon 30 pixels to the
right and 40 pixels down from its previous position.

{
int wifd; /* window file descriptor */
int ix, iy; /* icon’s x,y location */
/*
* Get icon’s current location:
*/
if (wgeticonpos(wfd, &ix, &iy) < 0)
perror ("wgeticonpos wfd");
exit(1);
}
/*
* Set new location relative to previous:
*/
ix = ix + 30;
iy = iy + 40;
/*
* Set new icon location:
*/
if (wseticonpos(wfd, ix, iy) < 0)
{
perror ("wseticonpos wfd");
exit(1);
}

102 Icons

Customizing Icons

HP Windows/9000 provides you with the capability to define your own custom icons.
You can suppress the display of the icon’s label area, its picture, or both. In addition,
custom pictures can be defined and stored in icon files. These files can then be recalled
as necessary to replace the standard icon for a particular window. The wseticon(3W)
routine provides these capabilities.

Procedure
To customize an icon for a given window, call wseticon; its syntax is:

wseticon(fd, tmode, Imode, tconfile)

Brief descriptions of each parameter follow:
e fd—the file descriptor for the window’s device interface
e imode—controls the icon’s picture:
o if imode=IMODE_NONE, then the picture will not be displayed with the icon;

e there are default term0 and graphics pictures for term0 and graphics windows,
respectively; if smode=IMODE_TYPE, then the window’s type-dependent picture
is displayed with its icon;

e if ymode=IMODE_FILE, then a user-defined icon picture will be used in place of
the default, type-dependent picture.

e Imode—controls the icon’s label:
e if /mode=LMODE_NONE, then do not display the icon’s label;
e if /mode=LMODE_DISP, then do display the icon’s label.

e iconfile—is a pointer to the full path name of a file containing a custom icon defi-
nition.

Note that unless #mode=IMODE_FILE, this parameter should be null, because it
doesn’t make sense to specify an icon file unless you want to use a custom icon
picture. If imode is not set to IMODE_FILE, then the iconfile parameter is ignored.

Icons 103

Controlling the Display of Picture/Label

Controlling the display of the icon’s picture and/or label is easy once you know what
values to use for the imode and Imode parameters. Table 5-1 shows the result of using
each possible combination of ¢mode and Imode.

Table 5-1. imode and Imode combinations

imode Imode What Is Displayed
IMODE_NONE | LMODE_NONE | NOT ALLOWED!.
IMODE_NONE | LMODE_DISP |Only the label.
IMODE_TYPE | LMODE_NONE | Type-dependent picture only.
IMODE_TYPE | LMODE_DISP |Standard icon.
IMODE_FILE | LMODE_NONE | Only the customized picture.
IMODE_FILE | LMODE_DISP | Custom picture with label.

Defining and Using a Non-Standard Picture

As mentioned above, you can design your own icon pictures to be used in place of the
type-dependent pictures used by default. Each custom picture is stored in its own file;
the file consists of one variable-length record; and the record structure is of the type
tconstruct, defined in /usr/include/fonticon.h.

Before going into detail on the format of this file, a discussion of picture size, masks, and
images is required.

When the window system displays an icon, the picture is drawn from three entities:
picture size, mask, and image. The picture size is simply the pixel width and height of
the rectangle in which the picture is drawn; the mask defines the shape of the picture;
and the image defines the colors to be used within the shape outlined by the mask.

The following analogy helps in understanding picture size, mask, and image: Suppose
you are an artist, and you're commissioned to draw a picture of a computer terminal.
The picture is to be drawn on a polka-dotted piece of paper that matches the person’s
desk top. The paper is 50 centimeters wide by 30 centimeters high--this is the picture
size.

This combination of parameters is not allowed; to conceal an icon, you should use the wconceal(8W)
routine.

104 Icons

After obtaining the paper, your first task is to define the terminal’s shape—this is the
mask.

Finally, you fill in the mask with the appropriate lines and colors to make it look like a
terminal—this is the image. (Note that the person commissioning the drawing is rather
eccentric and doesn’t want the polka dots outside the image to be covered by the picture.
The window system is the same, any area of the icon’s picture not defined by the mask
is displayed in the desk top pattern.) Figure 5-2 illustrates this process.

Background Mask Image

Result

Figure 5-2. Creating a Picture from Mask and Image.

Defining an icon’s picture is similar to drawing a picture as described above. The only
difference is that you define the picture size, mask, and image in a record structure in a
data file, called an icon file. Table 5-1 provides a detailed discussion of each field of the
iconstruct structure defined in fonticon.h.

Icons 105

Item

Table 5-2. The iconstruct structure.

Description

Range

magic

header_length

filetype

width
height
mbytes

ibytes

idepth

hotx and hoty

unused

106 Icons

This number flags the file as being an icon
file. By default, this value should be set to
FMAGICNUM, as defined in fonticon.h.

Defines the offset to the mask and image ar-
rays from the start of the file. This field was
included only to allow upward compatibil-
ity of HP Windows/9000 if more fields are
added to the structure in later versions. It
should always be set to the size of the struc-
ture. (The C-language compile-time opera-
tor sizeof gives the size in bytes of any data
structure).

Defines whether the file is for a font
(filetype=0), sprite (filetype=1), or icon
(filetype=2).

Image width in pixels.

Image height in pixels.

Number of bytes in the pixel mask array that
immediately follows this structure.

Number of bytes in the image array that fol-
lows the pixel mask array.

Number of bytes per pixel in the image. If
you only wish to design a black-and-white
picture, then this value should be zero: a
zero value specifies that each bit in the image
corresponds to a specific pixel in the picture.
However, if you wish to design color pictures,
then you need one or more bytes for each
pixel on the screen. Each byte will hold the
color for a corresponding pixel in the picture.

These fields are used with sprites only.

Not currently used by the system.

FMAGICNUM

sizeof (struct
iconstruct)

1 to 127
1 to 127

1 (for a one-pixel picture)

to

2032 (for a 127-by-127-pixel

picture)
ibytes > 1

0 = one bit per pixel
1 = one byte per pixel
2 = two bytes per pixel

set to 0 for future expansion

nothing

The Pixel Mask Array
The pixel mask array, mask{mbytes], immediately follows the iconstruct record in the
picture file. Each bit in the mask can correspond to a pixel in the picture.

Note that each row of pixels is masked, starting at a byte boundary; in addition, masking
proceeds left to right through the bits of each mask byte. For example, if you designed a
picture with 14 bits per row and 10 rows, the pixel mask would consist of 20 bytes: ten
rows at two bytes per row; the most-significant bit of the first byte of each row maps to
the leftmost bit of the corresponding row; and the two least-significant bits of the second
byte of each row are ignored because only 14 bits are needed for each row. (The example
below should help clarify this.)

The Image Array

The image array, image [ibytes], immediately follows the pixel mask array in the picture
file. Depending on the value of the idepth parameter, each bit, byte, or group of bytes,
corresponds to a bit in the pixel mask array. If the bit in the pixel mask is set, then the
value in the image array is used to plot the corresponding pixel on the screen; otherwise
the background is drawn as the desk top dither pattern.

Remember that if idepth=0, then there is a one-to-one relation between the bits in the
mask and image arrays. If idepth=1, there is a byte-to-bit relation between the image and
mask arrays; that is, the first byte in the image array corresponds to the most-significant
bit in the first byte of the mask array.

Example

The following example program, build_icon.c, defines an icon that is simply a square with
a white line through its border; the middle of the square is not masked, so the dither
pattern can be seen through it if the icon is displayed.

#include <stdio.h> /* standard I/0 definitions */
#include <fonticon.h> /* icon definitions */
main()
{
int icon_file; /* file descriptor for the icon file
*/
struct iconstruct square_icon; /* icon structure to be defined */

Icons 107

/*
* Define the mask for the icon:
*/
static unsigned char mask[32%32/8] = {
255,255,265,265, 255,255,255,265, 255,255,2565,265, 255,255,265,255,
255,2565,265,265, 248,0,0,31, 248,0,0,31, 248,0,0,31,
248,0,0,31, 248,0,0,31, 248,0,0,31, 248,0,0,31,
248,0,0,31, 248,0,0,31, 248,0,0,31, 248,0,0,31,
248,0,0,31, 248,0,0,31, 248,0,0,31, 248,0,0,31,
248,0,0,31, 248,0,0,31, 248,0,0,31, 248,0,0,31,
248,0,0,31, 248,0,0,31, 248,0,0,31, 255,255,2565,255,
255,265,255,265, 255,265,255,2656, 255,255,255,2565, 265,255,255,255

108 Icons

(o]
"

™

tatic unsigned char image [32%32

~
00000000000000000000000000000000
00000000000000000000000000000000
001.1.1.111111111111111111111111100
00100000000000000000000000000..100
00100000000000000000000000000100
00100000000000000000000000000100
001000000000000000000000000001nvnv
00..100000000000000000000000000100
00100000000000000000000000000100
Oﬂwi00000000000000000000000000100»
00100000000000000000000000000100
00100000000000000000000000000100
00100000000000000000000000000100
00.100000000000000000000000000100
00100000000000000000000000000100
00100000000000000000000000000100
00100000000000000000000000000100
00100000000000000000000000000100

00100000000000000000000000000100

SSH69505666965666956669566669S-0g

001.00000000000000000000000000100
001.00000000000000000000000000100
001.00000000000000000000000000100
Oo100000000000000000000000000100
001.00000000000000000000000000100
001.00000000000000000000000000100
001.00000000000000000000000000100
001.00000000000000000000000000100
00111111111111111111111111111100
68699565695 9566595555955665995S9

3

0
0
0
0
0
0
o]
0
0
0
0
0
0
0
0
0
0,
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

109

Icons

/*

* DEFINE AN ICON CONSISTING OF A SQUARE WITH A WHITE LINE THROUGH ITS
* BORDER; THE MIDDLE OF THE SQUARE IS NOT MASKED, SO THE BACKGROUND
* WILL SHOW THROUGH WHEN THE ICON IS DISPLAYED.

*

* Initialize the icon structure variables:
magic is FMAGICNUM as defined in fonticon.h.
The length of the header is sizeof (iconstruct).

*
%
*
*
%*
*/
square_icon.
square_icon.
square_icon.
square_icon.
square_icon.
square_icon.
/*

*

*/

The file version number is 1.
The file type is icon (2).

The icon size is 32 pixels wide by 32 pixels high.

magic = FMAGICNUM;
header_length = sizeof(square_icon);
version = 1;

filetype = 2;
width = 32;
height = 32;

Initialize the image and mask specific variables

The number of bytes in the mask are
The number of bytes in the image is

of the icon structure:
128.
1024.

The image contains one byte per pixel.

square_icon.mbytes = square_icon.width * square_icon.height / 8;

square_icon.ibytes
square_icon.idepth

1;

/*

square_icon.width * square_icon.height;

* Create and open a file to hold the icon definition, and then
* write the iconstruct, mask, and image to the file.

*/

if ((icon_file =

creat ("/tmp/squareicon",0600)) < 0)

{

perror("cerat of square_icon failed");

exit(1);
}

write(icon_file, &square_icon, sizeof(square_icon));

write(icon_file, mask, square_icon.mbytes);
write(icon_file, image, square_icon.ibytes);

close(icon_file);

110 Icons

The next program, named replace_icon.c, replaces the icon for any window, specified
on the command line, with the icon created above; in addition, the icon’s label is not
displayed.

#include <fcntl.h> /* system I/0 call definitions */
#include <window.h> /* window library definitions */
main(argc, argv)
int argc; /* number of arguments on command line */
char xargv[]; /* command line argument list */
int wmfd; /* window manager file descriptor */
int wfd; /* window type file descriptor */
char wt_path[WINNAMEMAX]; /* path name for window type */
int est_wm_com(); /* routine to start wm communication */
int term_wm_com(); /* routine to stop wm communication */
/*
* START WINDOW MANAGER COMMUNICATION:
*/
if ((wmfd = est_wm_com()) == -1) {
perror ("est_wm_com") ;
exit(1);
}
/%

* REPLACE THE WINDOW’S CURRENT ICON WITH THE SQUARE ICON.
*
* STEP 1: Build the path name of the window:
*/
wmpathmake ("WMDIR", argv[1], wt_path);

/*
* STEP 2: Open the window and call winit:
*/

if ((wfd = open(wt_path, O_RDWR)) < 0) {
perror("open wfd");
exit(1);

}

if (winit(wfd) < 0) {
perror ("winit wfd");
exit(1);

Iecons 111

/*
* STEP 3: Set up the new icon and don’t display the label:
*/
if (wseticon(wfd, IMODE_FILE, LMODE_NONE,
"/tmp/squareicon") < 0) {
perror("wseticon wfd");
exit(1);

/*
* STEP 4: Stop communication with the window:
*/
if (wterminate(wfd) < 0) {
perror("wterminate wfd");
exit(1);
}
if (close(wfd) < 0) {
perror("close wfd");
exit(1);

/*
* STOP WINDOW MANAGER COMMUNICATIONS:
*/
if (term_wm_com(wmfd) == -1) {
perror ("term_wm_com wmfd");
exit(1);
}
exit(0);

112 Icons

Event Detection

Using HP-UX signal capabilities, a process can be signalled (interrupted) when window
system events occur. Moving a window, changing a window’s size, and moving the pointer
over a particular area of a window are examples of events. On receiving a signal, a process

can execute event detection routines to determine what event caused the signal.

This chapter contains many complex concepts, some of which you may already under-
stand, depending on your level of Windows/9000 or HP-UX expertise. The following
table briefly describes the three sections in this chapter and how you should read them.

Section Contents How to Read
HP-UX Signals | An overview of HP-UX signals. De- | Read this section thoroughly if you
scribes what signals are and how to | know nothing about signals. If you
use them in programs. already know how to use signals,
then you should at least skim this
section.
Events An overview of events. Describes | Read the introduction to this section

what events are and lists all the
events currently supported.

thoroughly so you can understand
basically what events are. Then skim
the list of events just to get a feel for
the kind of events you can detect.

Event Detection

Describes how to detect events from
your programs using event detection
routines. This is the main informa-
tion you will need to write programs
that interact with users through the
locator devices.

Read this section thoroughly since it
contains the most important infor-
mation in the chapter. As you read
this section, you may find it helpful
to refer back to the “HP-UX Signals”
and “Events” sections.

Event Detection 113

HP-UX Signals

A signal is an interrupt sent to a process. For example, if a program is set up properly,
it can be signalled (interrupted) when the key is pressed on the keyboard.

On receiving a signal, a process can do one of three things:

e Do a default action, depending on the signal. For example, if the key is
pressed, terminate the process.

e Ignore the signal, as if it never occurred. For example, if the key is pressed,
continue executing as if the key was never pressed.

e Call a signal handler, a routine that determines what caused the signal and does
an appropriate action. For example, if the key is pressed, the process is
interrupted from whatever it was doing and calls the signal hander; the signal
handler then asks the user whether he or she really wants to exit the program.

The signal(2) System Call

The signal(2) system call allows the calling process to choose which way—default, ignore,
or signal handler—to react to the receipt of a specific signal. The signal system call has
the following syntax:

signal(sig, func)

The sig parameter is an integer code specifying the signal the process may re-
cieve. (Valid signals are defined on the signal(2) HP-UX Reference page and in the
Jusr/include/sys/signal.h header file.)

The func parameter specifies the action the process should take on receiving the signal.
Func should be assigned one of three values: SIG_DFL, SIG_IGN, or the address of a signal
handler.

If the signal call is unsuccessful, a negative value is returned.

114 Event Detection

SIG_DFL
If func is set to SIG_DFL, then the signal will cause the process to take the default action
as defined in the signal(2) page of the HP-UX Reference. For example, if a program calls
signal as

signal (SIGINT, SIG_DFL)

then the program will terminate if the process receives the SIGINT signal (usually caused
by the user pressing the key).

SIG_IGN
If func is set to SIG_IGN, the signal will be ignored by the process. For example, if a
program calls signal as

signal (SIGINT, SIG_IGN)

then the program will not terminate as usual if it receives the SIGINT signal. Instead,
it will continue executing as if nothing happened.

Signal Handler
Finally, the func parameter can be set to the address of a signal handler. On receiving
the signal, the receiving process is to execute the signal-handling routine pointed to by

fune.

To pass the address of a signal handler, simply use the name of the signal handler as the
func parameter. For example,

signal (SIGINT, catch_break)

will cause the calling process to execute the user-defined routine catch_break if the process
receives the SIGINT signal.

Event Detection 115

Example Signal Handler

The following program sets up a signal handler named catch_sigint for the SIGINT
signal (lines 8—11). The SIGINT signal is defined in the signal.h header file (line 1).
The signal system call returns negative one (-1) if it fails, thus the if statement on line
8.

After calling the signal system call, the program waits via the pause(2) system call (line
12) till it receives the SIGINT signal, at which time the catch_sigint signal handler
(lines 16—29) is executed.

The catch_sigint routine simply sleeps for one second (line 21), displays a message asking
whether the user wants to exit (lines 22, 23), and reads the user’s answer (line 24). If
the user answers by entering ‘y’, then the program exits via the exit(2) system call.
Otherwise, the routine simply returns to the while loop (lines 7—13) to do everything
again.

1: #include <signal .h>

2: #include <stdio.h>

3: main()

4: {

5: int catch_sigint();

6:

7: while (1) {

8: if (signal(SIGINT, catch_sigint) = -1) {
9: fprintf (stderr, "\nsignal(2) failed\n");
10: exit(1);

11: }

12: pause() ;

13: }

14: } /* END of main() */

15:

16: catch_sigint(signal) /* the signal handler */
17: int signal;

18: {

19: int ans;
20:
21: sleep(1);
22: printf ("SIGINT received. Do you wish to exit (y = yes)?");
23: fflush(stdout);
24: fflush(stdin); ans = getchar();
25: if (ans == 'y’)

26: exit(0);

27: else

28: return(ans) ;
29: }

116 Event Detection

Events

An event is an action that changes the state of the window system. For example, moving
a window is an event, as is attaching the keyboard to a different window. The window
manager always knows the current state of the window system and, therefore, knows
when an event occurs.

Events occur on a per-window basis; that is, each event is sent to one window. Event
detection routines, described in the next section “Event Detection,” allow a process to
be signalled when an event occurs in a specific window.

Button Press Events
The window system supports devices (e.g., mouse, puck) which have buttons. A button is

simply a switch on an input device. HP Windows/9000 recognizes eight buttons, defined
in Table 6-1.

A button press event occurs when a button is pressed (pushed down) or released (raised
up from the down position). Thus, there are 16 distinct button press events: button 1
up, button 1 down, button 2 up, button 2 down, ..., button 8 up, button 8 down.

If a button is released, then the button up event goes to the same window to which the
button down event was sent. When a button is pressed (button down event), the window
manager steps through the following rules to determine where the button down event is
sent:

1. If full-screen sprite mode is enabled for a window, then all button press events are
sent to that window.

2. If the locator is over a window’s user area, then the button press goes to that
window.

3. If the button is a system button (e.g., the Select button over the desk top, or over
a window’s border), then the button press invokes a system pop-up menu.

4. If user-defined menus are activated on the button press, then a user-defined menu
pops up.
5. Otherwise, the button press goes to the selected window.

Event Detection 117

Table 6-1. Supported Buttons

Button Corresponding Locator Device Button

1 The following are all equivalent to button one:

e The key on the ITF keyboard

e The left mouse button

e The leftmost button on the graphics tablet puck
e The graphics tablet stylus point.

2 The following are both equivalent to button two:
e The right mouse button
o The rightmost button on the puck.

3 The topmost button (closest to the cross-hairs) on the graphics tablet puck.

4 The bottom button (furthest from the cross-hairs) on the graphics tablet
puck.

5,6,7 | Not currently used on locator devices.

8 Indicates stylus or puck proximity. That is, the stylus or puck may be
touching the graphics tablet. The stylus or puck touching the tablet is
defined as button 8 being pressed down. The stylus or puck not touching
the tablet is defined as button 8 being up.

Locator Moved
This event is occurs if the locator moves. The event is sent to the selected window only.

Note that enabling this event may significantly degrade system performance because
the window manager must constantly track the locator and signal processes that have
enabled event detection in the selected window.

Window Moved

This event occurs when a window is moved. The event is sent to the window that moved.

118 Event Detection

Window’s Size Changed

This event occurs when a window’s size is changed. The event is sent to the window that
changed size.

Window’s Selection Status Changed
This event occurs when a window’s select status changes. If a different window is selected,
two events actually occur:

1. One event occurs for the window that becomes unselected;

2. The other event occurs for the window that becomes selected.

Window Needs Repainting

This event occurs if any part of a non-retained graphics window needs repainting. For
example, if a non-retained graphics window is partially occluded by another window, and
the other window is moved completely away from the non-retained window, then more
of the non-retained window becomes visible; thus, the window repaint event occurs for
the non-retained window.

This event also occurs when the user selects the Repaint option of the system pop-up
menu, or when the wmrepaint($W) routine is called.

This event is helpful for letting an application know when it should repaint a non-retained
graphics window.

A Selection Made from User-Defined Menu

This event occurs when the user makes a selection from a user-defined menu for a window.
The event is sent to the window from which a pop-up menu selection was made. (See
the “Pop-Up Menus” chapter for details on using user-defined pop-up menus in your
programs.)

Event Detection 119

A Hot Spot Was Activated

This event is generated for graphics windows only. Hot spots are sensitive rectangles
that you can define in a graphics window’s raster. Using hot spot routines described in
the “Graphics Window Hot Spots” chapter, a program can define the location and size
of hot spots, and the sensitivity of the hot spot—e.g., did the pointer move in or out of
the hot spot. An event occurs when the user does some action as defined by the hot spot
routines.

Window Destroyed

This event is generated when a graphics window is destroyed. Term(0 windows do not
support this event.

BREAK Key Pressed

This event is generated when the key is pressed in a selected graphics window.
TermO windows do not support this event.

Window’s Iconic State Changed

This event is generated for graphics window is changed to an icon, or vice versa. Term0Q
windows do not support this event.

Elevator Moved

This event is generated when a graphics window’s elevator bar moves. See the “Graphics
Window Scroll Bars and Elevators” chapter for details. TermO windows do not support
this event.

Arrow Activated

This event is generated when an arrow is activated in a graphics window’s border. See
the “Arrows and Elevators” chapter for details. Term0 windows do not support this
event.

Full-Screen Sprite Mode Aborted

This event is generated when the user aborts full-screen sprite mode. See the “Locator
and Echo Routines” chapter for details. Term0 windows do not support this event.

120 Event Detection

Event Detection

At this point, you have the conceptual information you need to perform event detection.
That is, you understand signals, and you should know what events can be detected.
This section pulls everything together by showing you how to write programs that detect
events.

A program that performs event detection consists of the following steps:

1.

© o N O G s W N

Start communication with the window in which you wish to detect events.
Set up a signal handler to receive SSIGWINDOW.

Define an event mask.

Call wsetsigmask(3W).

. Wait for an event to happen.

. Receive the signal.

. Execute the signal handler.

. Discover which event(s) caused the signal and do the appropriate action.

. Before the program terminates, stop communication with the window.

Event Detection 121

Figure 6-1 illustrates this procedure. Each of the steps is described in detail following
the diagram.

PROCESS (PROGRAM)

start window communication

signal (SIGWINDOW, signal_handler)

Keyboard
define event_mask

—— Mouse @ Event

<Window System) <+

% ® Signal
@ signal_handler (signal)

SIGWINDOW @ weventpoll (wfd, event—mask,
count, x.y)

® stop window communication

® ©60 0

wsetsigmask (wfd, event_mask)

Figure 6-1. Event Detection.

Step 1: Start Communication with the Window

As mentioned in the “Events” section, events occur per window. To determine which
window to detect events in, event detection routines require the file descriptor returned
from starting communication with the window. (If you don’t remember how to start
communication with a window, review the “Concepts” section of the “Window Manipu-
lation” chapter.)

122 Event Detection

Step 2: Set Up a Signal Handler to Receive SIGWINDOW

The SIGWINDOW signal is sent to a process when an event occurs in the window in
which the process has enabled event detection.

The signal system call allows a program to receive the SIGWINDOW signal and, upon
receiving the signal, execute a signal handler. The signal handler can then determine
(via event detection routines) which event(s) caused the signal and take the appropriate
action for the event.

When calling signal, the sig parameter should be set to SIGWINDOW, and the func
parameter should be the name of the signal handler. The following code example, taken
from the example program at the end of this chapter, illustrates how to do this:

#include <signal.h> /* signal definitions */
main(argc, argv)
int which_event(); /* signal handling procedure */

/*
* STEP 2: Set up the signal handler to catch SIGWINDOW:
*/
if (signal(SIGWINDOW, which_event) < 0)
{
perror("signal SIGWINDOW");
exit(1);

Event Detection 123

Step 3: Define the Event Mask

As mentioned in Step 2, a process receives the SIGWINDOW signal when an event occurs
in the window with which event detection has been enabled. The event mask allows a
program to select which events should cause SIGWINDOW to be sent to a process.

The event mask is a 32-bit word; each bit represents an event. For example, the least-
significant bit represents button 1 being pressed down.

For a process to be signalled when an event occurs, the corresponding bit in the event
mask must be set. In other words, if you want to check for an event, set its bit in the
event mask.

Constant definitions for each bit are found in the /usr/include/window.h header file.
Table 6-2 shows what event each constant represents. You can set the bit for an event
you wish to detect by OR-ing its constant with the event mask.

The following code segment, taken from the final example in this chapter, sets the event
mask to check for button 1 being pressed, or button 2 being released, or the window being
sized:

int event_mask; /* mask of events to be detected */
/*

* STEP 3: Define the Event Mask:

*/

event_mask = EVENT_B1_DOWN | EVENT_B2_UP | EVENT_SIZE;

124 Event Detection

Table 6-2. Event Constant Definitions

Constant

Event Description

EVENT_Bn_DOWN

EVENT_Bn_UP

EVENT_ECHO

EVENT_MOVE
EVENT_SIZE
EVENT_SELECT

EVENT_REPAINT

EVENT_MENU
EVENT_HOTSPOT

EVENT_DESTROY
EVENT_BREAK

EVENT_ICON

EVENT_ELEVATOR

EVENT_SB_ARROW

EVENT_ABORT

Button number n has been pressed down. Note that this does not indicate
that it has been released after being pressed down.

Valid values for n are 1 through 8. Table 6-1, found in the “Events” section
of this chapter, maps the various buttons to the corresponding buttons on
HP-HIL devices.

Button number n has been released. Valid values for n correspond to those
for EVENT_Bn_DOWN.

Means that the pointer (locator position) changed on the screen while the
window was selected.

The window moved.
The window’s size was changed.

The keyboard attach state changed—the window was selected or unselected.

The window needs to be repainted. This event is generated when a non-
retained graphics window needs to be repainted by the application control-
ling the window.

A selection was made from the window’s user-defined pop-up menu(s).

A hotspot was activated. This works with graphics windows only. (See
the “Graphics Window Hot Spots” chapter for details on using window hot
spots.)

The window was destroyed. This works with graphics windows only.

The key was pressed while the window was selected. This works in
graphics windows only.

The window’s iconic state changed. This works with graphics windows only.

The window’s border elevator moved. This works with graphics windows
only. See the “Graphics Window Scroll Bars and Elevators” chapter for
details.

The window’s scroll bar arrow was activated. This works with graphics win-
dows only. See the “Graphics Window Scroll Bars and Elevators” chapter
for details.

A full-screen sprite operation was aborted. This works with graphics win-
dows only. See the “Graphics Window Scroll Bars and Elevators” chapter
for details.

Event Detection 125

Step 4: Call wsetsigmask(3W)

The wsetsigmask(3W) shows a process’s event mask to the window manager so the win-
dow manager knows which process to signal if one of the events (specified in the event
mask) occurs in a particular window.

The syntax for wsetsigmask is:

wsetsigmask (fd, mask)

The fd parameter is a file descriptor returned from starting communication with the
window in which you wish to detect events.

The mask parameter is the event mask defined in Step 3.

Note

A maximum of three processes can call wsetsigmask for a given
window. In other words, a window can send signals to only three
processes.

The following code segment, taken from the example at the end of this chapter, calls
wsetsigmask using the event mask from Step 3. The if statement checks whether wset-
stgmask returns a negative value; if so, an error occurred. The wfd parameter is the file
descriptor returned from starting window communication (Step 1).

/%
* STEP 4: Call wsetsigmask(3W):
*/
if (wsetsigmask(wfd, event_mask) < 0)
{

perror ("wsetsigmask wfd");
exit(1);

126 Event Detection

Step 5: Wait for the Event(s)

After calling wsetsigmask, the process must wait for an event to occur. Typically, a
program will wait via the pause(2) system call, which suspends execution of a process
until a signal is received.

The following code segment, from the example program, calls pause to wait until the
process receives the SIGWINDOW signal.

/%
* STEP 5: Wait for an event to occur:
*/

pause();

Step 6: Receive the Signal

If the window manager detects an event in a window, it sends the SIGWINDOW signal
to all processes that requested the signal via signal(2).

Step 7: Execute the Signal Handler

On receiving the SIGWINDOW signal, the process will execute the signal handler set up
in Step 2.

Step 8: Call weventpoll(3W)

To determine which event(s) caused the SIGWINDOW interrupt, use the weventpoll(3W)
routine. Typically, you would call weventpoll in the signal handler. The syntax for this
routine is:

weventpoll (fd, mask, count, z,y)
Weventpoll has input and output parameters, discussed next.

Inputs

e fd—the integer file descriptor returned from starting communication with the win-
dow.

e mask—an integer point to an event mask. Note that mask is also an output pa-
rameter. The output value in mask depends on what is sent as input in mask.

If mask is set to 0 before calling wevenipoll, then event information is returned for
the most recent event only.

If mask is set to a valid event mask, then information is returned for the event(s)
that caused the SIGWINDOW interrupt.

Event Detection 127

Outputs
e mask—a pointer to the resulting event mask, depending on the input value of mask.

If mask was passed in as 0, then the bit corresponding to the most recent event is
set in mask. (Note that EVENT_ECHO is never returned as the last event.)

Weventpoll does not queue events; so you can’t use weventpoll to determine the
order of events. You can, however, determine the order of events that have taken
place with graphics windows; the “Graphics Window Input” chapter describes how
to do this.

If mask is passed with event bits set, the resulting mask is the logical AND of mask
and the bits corresponding to any events that have occurred since the last call to
weventpoll. In other words, weventpoll checks only for events whose bits are set in
mask. On return from weventpoll, mask contains an event mask representing which
of the requested events occurred.

Typically, a signal handler will call weventpollin a loop until maskis 0. This way, the
signal handler will not miss any events that occur between the time SIGWINDOW
is actually generated and the time the signal handler is executed.

e count—the number of times the event represented by the most-significant bit set
in mask has occurred since the last call to weventpoll.

Note that the window system keeps an internal count for the number of times each
event has occurred. Whenever count is returned for a particular event, the internal
count is reset to zero. This way, the next time weventpoll is called for the event,
count will accurately reflect the number of times the event has occurred since the
last time it was polled.

e z,y—the values are also returned for the event represented by the most-significant
bit that is set in mask; their values depend on the type of event. Table 6-3 defines
the values returned for each event.

128 Event Detection

Table 6-3. Weventpoll(3W) x,y Values

Event(s) X,y Return Values
EVENT_Bn_UP The locator’s position when this event occurred.
EVENT_Bn_DOWN
EVENT_ECHO
EVENT_MOVE The new window location.

EVENT_SIZE The new width and height of the window.

EVENT_SELECT Both are set to zero.
EVENT_REPAINT
EVENT_DESTROY
EVENT_BREAK
EVENT_ICON
EVENT_ABORT

EVENT_MENU X contains the menu id of the menu from which a selection was
made; y contains the item id of the item selected from the menu.
The “User-Defined Menus” chapter describes these topics in de-
tail. (A program must use winput_read(3W) to get the cause of a
menu item selection; see the “Graphics Window Input” chapter.)

EVENT_HOTSPOT | X contains the event_byte specified for the hot spot via the
whotspot_create(8W) or whotspot_set(3W) routines; y contains the
cause of the hot spot activation. (See the “Graphics Window Hot
Spots” chapter for details.)

EVENT_ELEVATOR | X contains a horizontal or vertical scroll bar indicator; y contains
the requested value for the elevator. (See the “Graphics Window
Scroll Bars and Elevators” chapter for details.)

EVENT_SB_ARROW | X contains the sum of all horizontal scroll bar arrow movements:
a right arrow movement adds 1 to the sum, and a left arrow
movement subtracts 1. Likewise, y contains the sum of all vertical
scroll bar arrow movements: a down arrow adds 1 to the sum, and
an up arrow subtracts 1. (See the “Graphics Window Scroll Bars
and Elevators” chapter for details.)

Weventpoll(3W) Example

The following code segment, taken from the example at the end, uses weventpoll to
determine which event generated the signal. It then prints a message to standard output,
describing which event caused the signal.

Event Detection 129

/*
* FIND OUT WHICH EVENT CAUSED THE SIGWINDOW.

*

STEP 9: Set the event mask and call weventpoll:
*/
event_mask = EVENT_B1_DOWN | EVENT_B2_UP | EVENT_SIZE;
if (weventpoll(wfd, &event_mask, &count, &x, &y) < 0)
{

perror("weventpoll wfd");

exit(1);

/*
* Check for the individual events and print an appropriate message:
*/

if (event_mask & EVENT_B1_DOWN)
printf("Button 1 was depressed\n");

if (event_mask & EVENT_B2_UP)
printf ("Button 2 was released\n");

if (event_mask & EVENT_SIZE)
printf ("The window’s has been resized.\n");

return(0) ;

}

Step 9: Stop Window Communication

Before the event detection program terminates, it must stop communication with the
window. If you don’t remember how to do this, review the “Concepts” section of the
“Window Manipulation” chapter.

Related Routines
Two other window input routines are applicable to event detection:

e wgetsigmask returns the event mask that was set by the calling process for a given
window. This is useful if you want to alter the event mask for a window.

o weventclear clears events’ internal counters (specified by an event mask parameter)
so that an immediate call to weventpoll will return a 0 count for the cleared events.

130 Event Detection

Performance Considerations

Enabling the SIGWINDOW interrupt on every movement of the locator, via the
EVENT_ECHO bit in the event mask, may significantly degrade system performance. This is
because the system must constantly track and signal any locator movements. However
for most applications, tracking the locator is not necessary anyway, because weventpoll
returns the locator’s coordinates when a button press event occurs: Most programs can
wait to get the locator’s position until the user presses a button, or when a hotspot is
activated.

Example

The following program, named poll_events.c, polls for three events: EVENT_SIZE,
EVENT_B2_UP, and EVENT_B1_DOWN. If any of the events occur, a message describing the
event is written to standard output, and the program exits. You must provide the name
of an existing window’s device interface to the program; for example:

poll_events wconsole

will check for the events for the window named wconsole. The program source is found
in the man_ezamples directory.

(Note: Programs which give excellent examples of event detection can also be found in
the chapters “Arrows and Elevators” and “Graphics Window Hotspots.”)

#include <fcntl.h> /* system I/0 call definitions */
#include <signal.h> /* signal definitions including SIGWINDOW */
#include <window.h> /* window library definitions */
int wfd; /* window type file descriptor */
main(argc, argv)
int argc; /* number of arguments on command line */
char *argv[]; /* command line argument list */
int wmid; /* window manager file descriptor */
char wt_path[WINNAMEMAX]; /* path name for window type */
int event_mask; /* mask of events to be trapped */
int est_wm_com(); /* routine to establish wm communication */
int term_wm_com(); /* routine to terminate wm communication */
int which_event(); /* signal handling procedure */

Event Detection 131

/¥
* START WINDOW MANAGER COMMUNICATION:

*/
if ((wmfd = est_wm_com()) == -1)
{
perror ("est_wm_com") ;
exit(1);
}
/*

* POLL FOR EVENT_B1_DOWN, EVENT_B2_UP, AND EVENT_SIZE.
*
* STEP 1: Start communication with the window in which
* event detection is to be domne.
*/

wmpathmake ("WMDIR", argv[i], wt_path);

if ((wfd = open(wt_path, O_RDWR)) < 0)

{
perror("open wfd");
exit(1);

}

if (winit(wfd) < 0)

{
perror("winit wfd");
exit(1);

}

/*
* STEP 2: Set up the signal handler to catch SIGWINDOW:
*/
if (signal(SIGWINDOW, which_event) == -1)
{
perror("signal SIGWINDOW");
exit(1);

/%
* STEP 3: Define the Event Mask:
*/
event_mask = EVENT_B1_DOWN | EVENT_B2_UP | EVENT_SIZE;

132 Event Detection

/*
* STEP 4: Call wsetsigmask(3W):
*/
if (wsetsigmask(wfd, event_mask) < 0)

perror ("wsetsigmask wfd");

exit(1);
}
/*
* STEP 5: Wait for an event to occur:
*/
pause () ;
/*
* STEP 9: Terminate communication with the window:
*/
if (wterminate(wfd) < 0)
{
perror ("wterminate wfd");
exit(1);
}
if (close(wfd) < 0)
{
perror("close wfd");
exit(1);
}
/*
* STOP WINDOW MANAGER COMMUNICATIONS:
.74
if (term_wm_com(wmfd) == -1)
{
perror("term_wm_com wmfd");
exit(1);
}
exit (0);
3

Event Detection 133

/*
* STEPS 6,7: Receive the SIGWINDOW signal and execute the signal handler:
*

* NOTE: When the signal is generated, the signal handler is called with

* its parameter set to the signal value that caused the interrupt.
*/
which_event(signal)
int signal; /* signal value set when routine is called */
{
int event_mask; /* mask of events to be polled for */
int count; /* number of times the event has occurred x*/
int x, y; /* locator position at time of the event */
/%

* FIND OUT WHICH EVENT CAUSED THE SIGWINDOW.
%

* STEP 8: Set the event mask and call weventpoll:

*/
do {
event_mask = EVENT_B1_DOWN | EVENT_B2_UP | EVENT_SIZE;
if (weventpoll(wfd, &event_mask, &count, &x, &y) < 0)
{
perror("weventpoll wfd");
exit(1);
}
/*

* Check for the individual events and print an appropriate message:
*/
if (event_mask & EVENT_B1_DOWN)
printf("Button 1 was depressed\n");
if (event_mask & EVENT_B2_UP)
printf("Button 2 was released\n");
if (event_mask & EVENT_SIZE)
printf("The window’s has been resized.\n");

} while (event_mask != 0); /* LOOP to ensure you don’t miss
any events */
return(0) ;

}

134 Event Detection

Locator and Echo Routines

A locator is any HP-HIL input device that provides z,y location information. The mouse,
and graphics tablet stylus or puck switch are locator devices. The window manager uses
locator information to move the echo (also known as a pointer or sprite) on the display
screen; that is, when the user moves a locator device, the window manager moves the
echo on the display screen. Using locator and echo routines, a program can:

get locator information—i.e., the locator’s z,y position and which buttons are
pressed

set, the locator’s z,y position
change the echo’s representation
customize the echo

enable full-screen sprite control.

Locator and Echo Routines 135

Concepts

This section presents concepts you should understand before using locator and echo
routines.

Absolute Locator Device

The graphics tablet stylus and puck switch provide absolute location information. That
is, the user specifies exact coordinates by pointing at an z,y location on the graphics
tablet. Every z,y location on the graphics tablet corresponds to an z,y location on the
display screen.

Note, however, that the WMLOCSCALE environment variable can be used to scale the
graphics tablet so that only a sub-portion of the graphics tablet corresponds to the display
screen. See the “Environment Variablesx” chapter of the HP Windows/9000 User’s
Manual for details on scaling the graphics tablet via the WMLOCSCALE environment
variable.

Relative Locator Device

The keyboard cursor keys and the mouse provide relative location information. These
devices don’t specify exact coordinates; they tell the window system the direction of
movement so that the system can track the exact location.

The Echo

The echo is a Starbase graphics sprite that shows the locator’s current location. The
echo gets its name because it echoes the locator’s position on the display screen.

Using echo manipulation and customization routines, a program can change the echo

to different representations, such as a full-screen cross hair, small tracking cursor, or
user-defined picture.

136 Locator and Echo Routines

The Locator’s Hot Spot

The locator and echo are directly related. Moving the locator causes the echo to move
similarly on the screen. The exact relation between the two is given by the echo’s hot
spot.

The hot spot is a special pixel in the echo. This pixel is denoted in z,y pixel coordinates
relative to the upper-left corner of the echo. The hot spot tells the window system how
the echo should align over the coordinates specified by the locator. Figure 7-1 illustrates
this concept.

Locator''s position
and

L —
o =& echo''s hot spot

Figure 7-1. The Echo’s Hot Spot

The echo’s hot spot always covers the screen pixel whose coordinates are returned by the
locator. However, the hot spot’s location within the echo may vary, depending on which
echo is displayed, and the displayed echo depends on which interactive manipulation
area the locator is positioned over. Table 7-1 shows where the hot spot is for the various
echoes displayed by the window system.

Table 7-1. Standard Hot Spots

Echo Where Its Hot Spot Is

When the echo is located over the dither pattern, the hot spot is located
directly in the middle of the box.

When the echo is located in a window’s border and manipulation areas,
the hot spot is in the middle of the cross hairs.

When the echo is located over a shifted soft key or window contents area,
‘% the hot spot is in the upper-leftmost pixel, at the arrow’s tip.

.@ When located over an unshifted soft key, the hot spot is the lower-leftmost
pixel, at the arrow’s tip.

Locator and Echo Routines 137

Getting Locator Information

You can determine the current location of the locator via the wgetlocator(3W) routine. In
addition to returning the locator’s position, this routine returns the state of the locator
buttons at the time the routine is called.

Procedure
To get locator information, call wgetlocator. The syntax for this routine is:

wgetlocator (fd, z, y, buttons)

Fdis an integer file descriptor returned from starting communication with a window. Lo-
cator coordinates are returned relative to the window’s anchor point (the upper-leftmost
pixel in the window’s contents area).

The z,y parameters point to integers containing the pixel coordinates of the locator (and
echo’s hot spot) with respect to the window’s anchor point. The window’s anchor point
is at location 0,0.

Buttons is a pointer to an integer specifying the state of the locator buttons when wget-
locator is called. The least-significant bit of this integer represents button one; the next
bit, button two; and so on. If a bit is set, then the button is down.

Precautions

This precaution applies only to graphics windows. If you use a graphics escape (gesc(3G))
to lock the screen, then do not call wgetlocator until after the screen is unlocked. Calling
wgetlocator with a locked graphics window will cause the system to hang; you must do a
hard reset to get out of this state.

138 Locator and Echo Routines

Example

The following function, named loc_in_user.c, determines whether the locator is within a
window’s user (contents) area. If an error occurs when inquiring, then -1 is returned; if
the locator is within the window’s user area, then 1 is returned; if the locator is outside
the window’s contents area, then 0 is returned. The source for this routine is found in
man_examples.

#include <window.h> /* window routine definitions #*/
loc_in_user(wfd)
int wid; /* window’s file descriptor */
{
int w, h; /* window’s width and height (of user area) */
int wx, wy; /* window’s x,y-coordinates */
int dx, dy, rw, rh; /* other parameters to wgetcoords */
int 1x, 1ly; /* the locator’s x,y position */
int buttons; /* locator button mask */
/*
* First, get the pixel width and height of the window:
*/
if (wgetcoords(wfd, &wx,&wy, &w,&h, &dx,&dy, &rw,&rh) < 0) return(-1);
/*
* Now get the locator’s position:
*/
if (wgetlocator(wfd, &lx,&ly, &buttons) < 0) return(-1);
/%

* Check if the locator’s position is within the window’s user area:
*/
if ((1x >= 0 && 1x < w) && (ly >= O && 1y < h))
return(1);
else
return(0) ;

Locator and Echo Routines 139

Moving the Locator

The wsetlocator(3W) routine sets the locator’s and echo’s z,y location. Moving the locator
to an z,y location causes the echo to move to the same z,y pixel on the display screen.
If the specified location is off screen, then z,y are adjusted to keep the echo within the
screen boundaries.

Procedure
To move the locator call wsetlocator; its syntax is:

wsetlocator (fd, z,7)

Fd is the file descriptor of a window with which communication is started. The locator
will be moved relative to this window.

The z,y parameters are integers specifying the new location. These coordinates are
interpreted as being relative to the window’s anchor point. The window’s anchor point
is at 0,0.

Example

The following function, named reset_loc.c, moves the locator to the anchor point of the
window specified by the file descriptor parameter wfd. If the function is successful, it
returns 0; otherwise, it returns ~1. The source for this routine is found in man_ezamples.

#include <window.h> /* window constant definitions */
reset_loc(wfd)

int wfqd; /* window’s file descriptor */
{
if (wsetlocator(wfd, 0, 0) < 0)
return(-1);
else
return(0) ;

140 Locator and Echo Routines

Changing the Echo

When the locator is moved over a window’s user area, a standard echo (an arrow pointing
up and left) is displayed by default. With the wsetecho(3W) routine, a program can
replace the standard echo with a Starbase-compatible echo or a user-defined raster image.

This capability is powerful because it allows you to use special echoes in your own appli-
cations.

Procedure
To manipulate and change the echo’s representation, call wsetecho; its syntax is:

wsetecho (fd, echo_value, z2,y2, optimized)

where:

e fd—is an integer file descriptor returned from starting communication with a win-
dow. Whenever the locator is moved over the visible part of the window’s contents
area, the echo will be displayed as defined by the remaining parameters.

e echo_value—is the type of echo to use. If its value is 7, then a user-defined echo
is displayed instead of the standard echo. If its value is 1-6 or 8, then a Star-
base echo types is displayed. If the value is 9 or greater, then a device-dependent
representation is displayed.

See the wsetecho(8W) reference page for details on the values supplied for this
parameter.

e 12 y2—are the echo’s anchor position or box width and height, depending on the
value of echo_value. For example, if echo_value is 5 (rubber band rectangle), then
z2,y2 represent the anchor point for the rubber band, and the lower-right corner is
moved by the locator. (This representation is used when you interactively change
the size of a window.)

e optimized—is a boolean that is either 0 or 1. If 0, then the echo is displayed and
moves exactly as defined. If 1, then the echo representation may be modified to
make it track the best way possible for the display hardware.

A value of 1 is recommended since it takes advantage of specialized hardware and
is more efficient.

Locator and Echo Routines 141

Related Routines

wgetecho(3W) retrieves the above parameters for a specified window. This is useful
if you wish to determine the what the current echo is.

wsetrasterecho(3W) allows you to define a custom echo. By calling wsetecho with
the echo_value parameter set to 7, the window’s default echo will be replaced with
the echo defined by wsetrasterecho. Defining a custom echo with wsetrasterecho is
discussed in the next section, “Customizing the Echo.”

wset_hw_sprite_color(3W) allows the colors used for displaying the sprite, when
using hardware support for sprites on the HP 98730, to be set. This must be called
after every wsetecho(3W) unless the defaults (or the colors specified by the last
wset_hw_sprite_color(3W)) are acceptable.

wget_hw_sprite_color(3W) inquires the colors being used for displaying the hard-
ware sprite on the HP 98730.

Example
The following function, named shrink_it.c, allows the user to interactively shrink a
specified window. It uses a rubber band rectangle echo to make the window size visible
as it is changed.
#include <fcntl.h> /* system I/0 call definitions */
#include <signal.h> /* signal definitions, including SIGWINDOW */
#include <window.h> /* window library definitions */
int global_wfd; /* window type file descriptor */
shrink_it(wfd)
int wid; /* window’s file descriptor */
{
int event_mask; /* mask of events to be trapped */
int size_window(); /* signal handling procedure */
int echo_type; /* original echo type */
int x, y; /* original echo anchor point */
int optimized; /* original echo optimized state */
/* INTERACTIVELY SHRINK A WINDOW.

142

* STEP 1: Get the current echo values:
*/
global_wfd = wfd;
if (wgetecho(wfd, &echo_type, &x, &y, &optimized) < 0)
{
perror ("wgetecho wfd");
exit(1);

Locator and Echo Routines

/*
* STEP 2: Set up the signal handler to catch SIGWINDOW:

*/
if (8ignal (SIGWINDOW, size_window) < 0)
{
perror("signal SIGWINDOW");
exit(1);
}
/*
* STEP 3: Change the sprite to a rubber band rectangle:
*/
if (wsetecho(wfd, ECHO_RUBRECT, O, O, ECHO_NOOPT) < 0)
{
perror ("wsetecho wfd");
exit(1);
}
/*

* STEP 4: Set up to size the window when button 1 goes up:
*/

event_magk = EVENT_B1_UP;

if (wsetsigmask(wfd, event_mask) < 0)

{
perror ("wsetsigmask wfd");
exit(1);

}

pause() ;

/*
* STEP 5: Change the sprite back to its original representation:
*/
if (wsetecho(wfd, echo_type, x, y, optimized) < 0)
{
perror ("wsetecho wfd");
exit(1);

Locator and Echo Routines 143

/*
* The signal handler:

*/
size_window(signal)
int signal; /* signal value set when routine is called */
int x, y; /* locator position */
int buttons; /* locator button mask */
/*

*

RESIZE THE WINDOW WHEN BUTTON 1 IS RELEASED.

*

Find out the current locator position:
*/
if (wgetlocator(global_wfd, &x, &y, &buttons) < 0)
{
perror ("wgetlocator wfd");
exit(1);

/*
* Change the size of the window:
*/
if (wsize(global_wfd, x, y) < 0)
{

perror("wsize wfd");
}
return(0) ;

}

144 Locator and Echo Routines

Customizing the Echo

As described in the previous section, each window can have a customized echo—i.e., a
user-defined picture. Customized echoes are defined via the wsetrasterecho(3W) routine.
Once defined, the customized echo can then be displayed via wsetecho(SW).

Procedure
To define and display a customized echo:

1.
2.

Define the echo via wsetrasterecho(3W).

Display the echo via wsetecho(3W).

Define the Echo Via wsetrasterecho(3W)
To define the echo, call wsetrasterecho; its syntax is:

wsetrasterecho(fd, dx,dy, w,h, rule,mask_rule, mask, image)

where:

fd—is the file descriptor of the window for which the custom echo will be defined.

dz,dy—are the offset of the echo hot spot to the upper-left corner of the echo. For
example, if the hot spot is the upper-leftmost pixel of the echo, then dz,dy are 0,0.

w,h—are the echo’s pixel width and height.

rule,mask_rule—are the rules to be used when displaying the echo against the screen
background. For example, with these rules, you can specify that the echo’s image
is to be exclusive-OR’d with the background, thus making it the complement of
anything it appears over.

Valid values for these parameters are defined in Table 7-2.

mask—is a pointer to an array of up to 128 characters; each bit of the array rep-
resents one pixel in the echo. This array contains a mask that defines the shape
of the echo. This mask is defined like an icon mask, except that a pointer to the
mask is passed as a parameter—the mask is not defined in a file as with icons. See
the “Icons” chapter for details on defining the mask.

tmage—is a pointer to a byte-per-pixel array of up to 1024 characters. This array
defines the image to be used with mask. Each byte represents the color to use for
the corresponding bit in mask. The rules for defining the image are the same as for
icons; however, the image is supplied as a parameter, not a file. See the “Icons”
chapter for details on defining the image.

Locator and Echo Routines 145

Table 7-2. Valid rule and mask_rule Values!

Value Resulting Destination Pixel
0 ZERO
1 source AND destination
2 source AND NOT destination
3 source (the default rule)
4 NOT source AND destination
5 destination
6 source EXCLUSIVE OR destination
7 source OR destination
8 NOT source AND NOT destination
9 source EXCLUSIVE NOR destination
10 NOT destination
11 source OR NOT destination
12 NOT source
13 NOT source OR destination
14 NOT source OR NOT destination
15 ONE

Display the Echo Via wsetecho(3W)

After defining the custom echo via wsetrasterecho, a program must call wsetecho to display
the new echo in place of the old one. To replace the current echo with the customized
echo, call wsetecho as:

echo_value = 7; /* user-defined raster echo */
x2 =y2 = -1; /* these params are no-ops for echo_value == 7 */
optimized = 1; /* optimize the echo */

wsetecho(fd, echo_value, x2,y2, optimized);

The source is the pixel to be written to the screen; destination is the current value of that pixel on the
screen where source is to be written. For example, if value is 1, then the resulting pixel will be turned
on if both source AND destination are asserted.

146 Locator and Echo Routines

Related Routines

e wgetrasterecho(3W) returns the above parameters for the pointer in a given window.
This is useful if you wish to change the custom echo for a window.

o wset_hw_sprite_color(3W) allows the colors used for displaying the sprite, when
using hardware support for sprites on the HP 98730, to be set. This must be called
after every wsetecho(3W) unless the defaults (or the colors specified by the last
wset_hw_sprite_color(8W)) are acceptable.

o wget_hw_sprite_color(3W) inquires the colors being used for displaying the hard-
ware sprite on the HP 98730.

Example

The following function, echo_hand.c, defines the custom echo to be a pointing hand with
the hot spot being the finger tip. It then calls wsetecho to ensure that the hand is
displayed whenever the locator moves over the window’s user area.

#include <stdio.h> /* standard I/0 definitions */
#include <fcntl.h> /* file definitions */
#include <window.h> /* window library definitions */
/*

* Define the echo mask:

*/

char mask([72] = { 0x0, 0x0, 0x0, 0x0,

0x0, Ox1E, 0x0, 0x0,
0x0, Ox1F, OxFF, 0xCO,
0x0, 0xOF , OxFF, 0xEO0,
0x0, 0x07, OxFF, OxF8,
Ox7F, OxFF, OxFF, OxFC,
OxFF, OxFF, OxFF, OxFE,
, OxFF, OxFF, OxFE,
. OxFF, OxFF, OxFF,
0x0, 0x07, OxFF, OxFF,
0x0, 0x07, OxFF, OxFF,
0x0, 0x07, OxFF, OxFF,
0x0, 0x01, OxFF, OxFF,
0x0, 0x01, OxFF, OxFF,
0x0, 0x01, OxFF, OxFF,
0x0, 0x0, Ox7F, OxFF,
0x0, 0x0, Ox7F, OxFF,
0x0, 0x0, Ox7F, OxFO,

Locator and Echo Routines 147

* Define the echo image:

/*
*/

L R R e e R R e e k)

000000100000000010

000001000000000010
©699-15660660066589a3
COO0OOXOO0OO0OO0OO0OO0O0CO0OO0OO0OO0O0O
2892995500988 9990
OCOO¥ OO0 O0CO0OO0OO0O0OO0OO0O0OO0OO0OO0O0O
So+H0660006066060006
SSHc36660335560 0
001000000000110111

CCHOO0O00O0OHHO M= "o
COHO00O0O0O0OH-H"OO =00
COHC00CO0OHOOHOO OO~
COHOOHOOHOOHOO -GSO~
001001001001001111

001001001001001000

001001001001111000
010001001001000000
010011001111000000
0101010010..00000000
011001001000000000
000001001000000000
000001001000000000

CO000O0-"00 00000000 O
COCO0O0OHOO0O-000000S0O
C000O0HOOHOO0O0O000O00O

R LR
Il 0000 -0O0O-0O000O0O0 OO

$S2C0090"C0530690060099

£5COQC0Q0M0Oo10000QCQQCQ
22CCOQOMO0OMO00000R0Q0C

5

g
]
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0

char image

*/
*/
*/
*/
*/
*/
*/
*/

raster echoes
/* replacement rule for the image */

/* replacement rule for the mask

/* there is no anchor point for
/* define a raster echo

/* height of the echo in pixels
/%

/* width of the echo in pixels
/* hot spot for the echo

/* optimize the echo

DONT_CARE
DONT_CARE

32
18
1
7
4
4

* Define some program constants:

*/
#define ECHO_MASKRULE

#define DONT_CARE
#define ECHO_WIDTH
#define ECHO_HEIGHT
#define ECHO_X2
#define ECHO_Y2
#define ECHO_DX
#define ECHO_DY
#define ECHO_OPT
#define ECHO_RULE
#define ECHO_TYPE

/%
148 Locator and Echo Routines

echo_hand (wfd)
int wfd; /* window’s file descriptor */
{
/*
* SET THE WINDOW’S ECHO TO A POINTING HAND.
*
* STEP 1: Define a new rasterecho:
*/
if (wsetrasterecho(wfd,ECHO_DX,ECHO_DY,ECHO_WIDTH,ECHO_HEIGHT,
ECHO_RULE, ECHO_MASKRULE ,mask,image) < 0) return(-1);

/*
* STEP 2: Change the echo for the current window to a raster echo:
*/
if (wsetecho(wfd,ECHO_TYPE,ECHO_X2,ECHO_Y2,ECHO_OPT) <0) return(-1);

/*
* STEP 3: Move the echo to the upper left hand corner of the window:
*/
if (wsetlocator(wfd,0,0) < 0) return(-1);
return(0) ;

Locator and Echo Routines 149

Enabling Full-Screen Sprite Control

By default, the echo type displayed by the window manager depends on what area of
the screen the locator is position over. Similarly, when the user presses a button, the
action taken by the window manager for the particular button press depends on the
echo’s location. For example, when located over a window’s border, the echo is displayed
as cross-hairs; and when the user presses the select button, the window manager will
display a system pop-up menu for the window.

This default mode can be changed to full-screen sprite mode via the
wscrn_sprite_mode(3W) routine. Full-screen sprite mode causes the echo to be set to
that of a given window, regardless of the echo’s location. When the echo is moved over
other windows, the desk top, or window borders, its representation will not change. In
addition, a locator button press or key press while in full-screen sprite mode will
not cause the default action; rather, the button press will be transmitted as a button
press event to the full-screen sprite mode window.

If the user presses any key other than the key or buttons while in full-screen sprite
mode, then this mode is aborted—the window manager returns to default mode. Then
the SIGWINDOW signal is sent to all processes that have enabled the EVENT_ABORT
event for this window.

All button press events are sent to the process that enables full-screen sprite mode, if
the process has enabled event detection for th se button presses. As described above,
these button presses would normally cause a default action by the window manager;
however, in full-screen sprite mode, the window manager does not do anything for the
button press. Therefore, a program must check for button presses and do default window
manager actions itself if the program wishes to emulate the window manager.

Programs can determine the default window manager configuration from the value of
the WMIUICONFIG environment variable (see the “Environment Variables” chapter of
the HP Windows/9000 User’s Manual). To get this value, programs will typically call
wminquire(3W), which returns the value of a window manager environment variable.

150 Locator and Echo Routines

Procedure
Programs that use full-screen sprite mode will typically:

1. Set up a signal handler for full-screen sprite mode.

2. Call wscrn_sprite_mode(3W).

Set Up a Signal Handler for Full-Screen Sprite Mode

Before enabling full-screen sprite mode, a program should set up a signal handler to catch
button presses that occur during full-screen sprite mode. Depending on your needs, the
program may also need to catch the EVENT_ABORT event, which is generated when full-
screen sprite mode is aborted.

Call wscrn_sprite_mode(3W)
After the signal handler is set up, the program can call wscrn_sprite_mode; its syntax is:

wscrn_sprite_mode (fd, value)

The integer file descriptor returned from starting communication with the window should
be passed as the fd parameter.

The value parameter determines the action of wscrn_sprite_mode. If value is SETFULL-
SPRITE, then full-screen sprite mode is enabled. If value is SETNOFULLSPRITE, then full-
screen sprite mode is turned off, which causes the EVENT_ABORT event. If value is GETFULL-
SPRITE, then the current mode is returned: SETNOFULLSPRITE if disabled for the window,
SETFULLSPRITE if enabled for the window.

Precautions

e The process that enables full-screen sprite mode for a window is the only process
that can disable full-screen sprite mode for that window.

e If a process other than the enabling process attempts to disable full-screen sprite
mode, then a system error occurs, and errno(2) is set to EACCESS.

e If a process attempts to enable full-screen sprite mode for a window, but full-screen
sprite mode is already enabled for a window, then a system error occurs, and
errno(2) is set to EBUSY.

e If a process attempts to disable full-screen sprite mode in a window in which full-
screen sprite mode is not already enabled, a system error occurs, and errno(2) is
set to EBADF.

Locator and Echo Routines 151

Example

The following code sets up a signal handler named full_screen, which will handle any
button press or EVENT_ABORT events occurring during full-screen sprite mode for the win-
dow identified by wfd (the window interface file descriptor). It then turns on full-screen
sprite mode for the window.

#include <window.h>
#include <signal.h>
#include <stdio.h>
main()
{
int wfd; /* file descriptor for the window */
int event_mask; /* event mask for the window */
int full_screen(); /* signal handler for full-screen sprite mode */

/*

At this point, the program has already started communication with
the window that full-screen sprite mode will be used with.

"wfd" is the file descriptor returned from starting communication.

* X K X ¥

STEP 1: Set up the signal handler:
*/
if (signal (SIGWINDOW, full_screen) < 0)
{
perror("signal SIGWINDOW");
exit(1);
}
/*
* Define the event mask for button 1 & 2 events and EVENT_ABORT:
*/
event_mask = EVENT_B1_DOWN | EVENT_B1_UP | /* button 1 events */
EVENT_B2_DOWN | EVENT_B2_UP | /* button 2 events */

EVENT_ABORT; /* abort full-screen mode */
if (wsetsigmask(wfd, event_mask) < 0)
{
perror ("wsetsigmask wfd");
exit(1);
}

152 Locator and Echo Routines

/*
* STEP 2: Call wscrn_sprite_mode to enable full-screen sprite mode:
*/
if (wscrn_sprite_mode(wfd, 1) < 0)
{
perror("wscrn_sprite_mode wfd");
exit(1);
}

Y /x ﬁND of main() */

int full_screen(signal)

int signal;

{

/*

* The body of the signal handler goes here. This is where the program
* handles button presses and aborts during full-screen sprite mode.
*/

} /% END of full_screen() */

Locator and Echo Routines 153

Notes

154 Locator and Echo Routines

Arrows and Elevators

This chapter describes how to use scroll bar routines with graphics windows. By calling
scroll bar routines, a program can:

e Enable pan mode (the default for all newly created graphics windows), in which
clicking the locator over arrows or elevators causes the window to pan.

e Enable user mode, in which an event occurs when the user clicks the locator over
either an arrow or elevator.

Arrows and Elevators 155

Concepts

This section discusses concepts essential to using scroll bar routines with graphics win-
dows. Be sure to read this section before using these routines.

Scroll Bars

Each graphics window has a vertical and a herizontal scroll bar. A scroll bar is simply
an area in a window’s border in which the window’s arrows and elevators are displayed.
The vertical scroll bar contains the vertical arrows and elevator; the horizontal scroll bar
contains the horizontal arrows and elevator. Figure 8-1 shows the scroll bar, arrows, and
elevators in a typical graphics window.

Ny | WinDow []

Arrows P ‘

> VERTICAL

Elevators
SCROLL BAR

Arrows r
@K L] =

. J
Y

HORIZONTAL SCROLL BAR

-

[]] 4m

Figure 8-1. Scroll Bars, Arrows, and Elevators.

Arrows and elevators are either enabled or disabled. When an arrow or elevator is
enabled, it is visible in the window’s border. In addition, when the user clicks the
locator over an arrow or elevator, the window manager does an action appropriate to the
scroll bar mode. Two scroll bar modes are supported: pan mode and user mode.

Pan and user modes are discussed in the next two sections. If an elevator or arrows are
disabled in a scroll bar, then they are not visible, and they have no function.

156 Arrows and Elevators

In the example window in Figure 8-1, the arrows and elevators are enabled in both the
vertical and horizontal scroll bars.

By default, when a graphics window is created, only its arrows are enabled in the vertical
and horizontal scroll bars. Also, the window is in pan mode.

Pan Mode

In pan mode, the arrows and elevators cause a window to pan; that is, they change the
window’s pan position. However, arrows and elevators pan differently, as discussed next.

Panning via Arrows

To pan a window via arrows, move the pointer over an arrow and click the Select button.
The picture will move in the direction of the arrow; the window’s pan position will change
opposite the direction of the arrow. The magnitude of the pan depends on the size of
the window’s view: pans are always one-fifth the size of the view into the raster.

Recall that the origin of the raster (0,0) is the upper-left corner of the raster, and a
window’s pan position (dz,dy) is the location of the view with respect to the raster.
Figure 8-2b (later in this section) shows the relationship between pan position and a
window’s view into the raster. Table 8-1 defines the relationship between arrows, the
direction the picture moves, and the effect on the window’s pan position.

Table 8-1. Relationship between Arrows, Pan Direction, and Pan Position

Arrow Picture Effect on
Direction Moves Pan Position
Up Up Pan position moves down:

dy = dy + (vertical view + 5)
dz does not change

Down Down Pan position moves up:
dy = dy - (vertical view + 5)
dz does not change

Right Right Pan position moves left:

dz = dz - (horizontal view + 5)
dy does not change

Left Left Pan position moves right:

dz = dz + (horizontal view + 5)
dy does not change

Arrows and Elevators 157

Note, however, that the direction of the pan can be reversed by setting the 0x8 000 000
bit in the WMIUICONFIG environment variable. (See the “Environment Variables”
chapter of the HP Windows/9000 User’s Manual for details on setting this variable.)

Panning via Elevators

Elevators provide another intuitive way to pan windows. The advantage of elevators over
arrows is that elevators can pan much faster: arrows pan a fixed amount, while elevators
pan directly to a location in the window’s raster.

To pan a window via elevators, position the locator over the elevator and press the
button. The elevator will then appear as a dotted box, which can then be moved within
the scroll bar (up and down in the vertical scroll bar; left and right in the horizontal scroll
bar). The interactive elevator pan is completed by moving the elevator to the desired
location and pressing the button again. When the interactive elevator operation
is finished, the window will be panned to the position represented by the vertical and
horizontal elevators.

The notion of an elevator shaft is useful. An elevator shaft is simply the length in which
the elevator can move within the scroll bar. It is slightly shorter than the distance
between the arrows. In the vertical scroll bar, the elevator moves up and down only;
in the horizontal scroll bar, the elevator moves only left and right. The length of the
elevator shaft is determined from the size of the window. For example, if the window
grows wider, the horizontal elevator shaft will get longer, too. And if the window grows
taller, the vertical elevator shaft will get longer, also.

In pan mode, the length of an elevator is determined from the window’s current size and
the size of the raster. The elevator’s length is directly proportional to the ratio of the
window’s size to its raster size. The following formulas define the length of the vertical
and horizontal elevators:

ert_shaft_length X (window_height - raster_height)

vert_elev_length = v
= horz_shaft_length X (window_width - raster_width)

horz_elev_length

The position of an elevator within the shaft is determined from the window’s pan position.
For exampile, if the window’s pan position is 0,0, then the vertical elevator will be flush
with the top of the vertical elevator shaft, and the horizontal elevator will be flush with
the left end of the horizontal elevator shaft. If the window’s view is flush with the
lower-right corner of the window’s raster, then the vertical elevator will be flush with the
bottom of the vertical elevator shaft, and the horizontal elevator will be flush with the
right end of the horizontal elevator shaft.

158 Arrows and Elevators

Figures 8-2a and 8-2b show a window with its elevators enabled, illustrating the rela-
tionship between elevator size/position and the window’s pan position, window size, and
raster size. In 8-2a the window is flush with the upper-left corner of its raster; in 8-2b
the window is centered within its raster. Note the location and size of the elevators as
the pan position changes in each part of the figure.

N\ | winoow D L
t
H |
WINDOW VIEW |
|
|
A |
Ol e | = |
|
|
- - _

RASTER
Figure 8-2a. View Flush with Upper-Left Corner of Raster

Arrows and Elevators 159

|r o 71
! d,x |
| | winoow [] |
| * |
PAN
| POSITION |
| WINDOW VIEW I:l |
| |
| : |
: Ok, 1 | = :
| |
- - - - -
RASTER
Figure 8-2b. View Centered within Raster
User Mode

In user mode, the arrows and elevators do not pan windows. Instead, when the user
clicks the locator over an arrow or elevator, the window manager interprets it as an
event. Clicking the locator over an arrow causes an EVENT_SB_ARROW event; completing an
elevator move operation causes EVENT_ELEVATOR.

A program can detect these events by enabling SIGWINDOW for the desired event via
wsetsigmask(8W); then, on receiving SIGWINDOW, use weventpoll(3W) to determine
which event occurred. This method is discussed in the section “Getting Scroll Bar Events
in User Mode.”

A program can also detect these events via graphics window input routines, discussed

fully in the “Graphics Window Input” chapter. You should see that chapter for details
on using this method.

160 Arrows and Elevators

Enabling Arrows, Elevators in Pan Mode

The wscroll_set(3W) routine enables arrows, elevators, or both for a graphics window in
pan mode.

Procedure

To enable arrows or elevators in pan mode, call wscroll_set; its syntax is:
wscroll_set(fd, which, mode[, value, min, maz, size])

The value, min, maz, and size parameters are not used in pan mode; they are used only
in user mode. When enabling pan mode, a program need only supply the fd, which, and
mode parameters, described below. The other parameters, if supplied, will be ignored in
pan mode.

fd
The fd parameter is an integer file descriptor returned from starting communication with
the graphics window.

which

The which parameter identifies whether the vertical scroll bar, horizontal scroll bar, or
both will be affected by this function. Set this parameter by ORing the following values,
defined in window.h:

SCROLLBAR_V Affect the vertical scroll bar.
SCROLLBAR_H Affect the horizontal scroll bar.

To affect both the vertical and horizontal scroll bars, set the which parameter to the OR
of both SCROLLBAR_V and SCROLLBAR_H; e.g.:

which = SCROLLBAR_V | SCROLLBAR_H;

To affect only the vertical arrows or elevator, set which to SCROLLBAR_V. To affect only
the horizontal arrows or elevator, set which to SCROLLBAR_H.

Arrows and Elevators 161

mode
The mode parameter controls whether the arrows, elevator, or both are enabled within
the affected scroll bar(s). Valid values for mode are defined in window.h as:

SCROLLBAR_ELEVATOR Enable the elevator in the scroll bar(s).

SCROLLBAR_ARROWS Enable the arrows in the scroll bar(s).

To enable only the arrows within the affected scroll bar(s), set mode to SCROLLBAR_ARROWS.
To enable only the elevator, set mode to SCROLLBAR_ELEVATOR. To enable arrows and the
elevator within the affected scroll bar(s), OR the two together, as:

mode = SCROLLBAR_ARROWS | SCROLLBAR_ELEVATOR.

162 Arrows and Elevators

Examples

Given the file descriptor returned from starting communication with a graphics window
(gwfd), the following function:

1. Enables arrows and elevators in the window’s vertical and horizontal scroll bars;
2. Sets the window’s border to a normal border, via wbanner(8W), and

3. Displays the window as the top window in the display stack, via wtop(3W).

#include <window.h>
int pan_mode_top (gwfd)
int gwid; /* fildes returned from starting comm with window */
{
int which;
int mode;
/*
* Enable both the vertical and horizontal scroll bar:
*/

which = SCROLLBAR_V | SCROLLBAR_H;
/%
* Enable both the elevator and the arrows within each scroll bar:
*/

mode = SCROLLBAR_ELEVATOR | SCROLLBAR_ARROWS;

/*
* Call wscroll_set(3W):
*/
if (wscroll_set(gwfd, which, mode) < 0)
return(-1);
/*
* Make the window’s border normal and display the window:
*/
wbanner (gwfd, SETBANNER) ;
wtop(gwfd, SETTOP);
return(0) ;
}

Arrows and Elevators 163

Given the file descriptor returned from starting communication with a graphics window
(gwfd) the next function enables only the elevator in the vertical scroll bar:

#include <window.h>
int v_elev_only(gwfd)
int gwid; /* fildes returned from starting comm with window */
{
int which;
int mode;
/*
* Call wscroll_set(3W):
*/
if (wscroll_set(gwfd, SCROLLBAR_V, SCROLLBAR_ELEVATOR) < 0)
return(-1);
/%
* Make the window’s border normal and display the window:
*/
wbanner (gwfd, SETBANNER) ;
wtop(gwfd, SETTOP);
return(0) ;
}

164 Arrows and Elevators

User Mode

The wscroll_set(3W) routine is also used to set a window to user mode. However, the
parameters are set differently from those used in pan mode.

Procedure
To enable arrows or elevators in user mode, call wscroll_set as:

wacroll_set (fd, which, mode, value [,min, maz, size])

The fd, which, mode, and value parameters must always be supplied. The min, maz, and
size parameters are optional; they specify elevator scale information.

fd
The fd parameter is an integer file descriptor returned from starting communication with
the window.

which

The which parameter defines which scroll bars will be affected. The rules for setting
which in user mode are the same as those for pan mode. For example, to affect both the
vertical and horizontal scroll bars, set which to the OR of SCROLLBAR_V and SCROLLBAR_H:

which = SCROLLBAR_V | SCROLLBAR_H;

mode

As with pan mode, this parameter defines whether to enable arrows, elevators, or both
in the affected scroll bar(s). But in addition to enabling arrows or scroll bars, mode has
other functions, described next.

The first additional function of mode is to enable user mode. To enable user mode, OR
mode with SCROLLBAR_USERMODE. For example, to enable user mode and the arrows and
elevators, set mode as:

mode = SCROLLBAR_USERMODE | SCROLLBAR_ARROWS | SCROLLBAR_ELEVATOR;
The second additional function of mode is to indicate whether optional scale information

is provided, i.e., whether the min, maz, and size parameters are passed. This is useful
only if elevators are enabled.

Arrows and Elevators 165

To specify elevator scale information, OR mode with SCROLLBAR_SCALE. If this bit is set
in mode, then the min, maz, and size parameters must be supplied also. If this bit is not
set, but elevators are enabled, then wscroll_set assumes default scale values. Elevator
scale parameters are discussed next.

value

When in user mode, the value parameter must be supplied. Value specifies the location
to put the elevator within the elevator shaft. Value must be within the range specified
by the min and mazx parameters, described next.

min, max, and size

If the SCROLLBAR_SCALE and SCROLLBAR_ELEVATOR bits are set in the mode parameter, then
these parameters must be supplied. These parameters allow the programmer to define
scale information for the elevators.

Table 8-2 defines each parameter. The Default column shows the values wscroll_set uses
when elevators are enabled but the SCROLLBAR_SCALE bit is not set.

Table 8-2. Min, Max, and Size Parameters

Param Description Default

min | The value corresponding to the upper (if SCROLLBAR_V is set) or 0
left (if SCROLLBAR_H is set) end of the elevator shafts. If both
scroll bars are enabled, then min is the same for both the vertical
and horizontal elevator shafts.

max | The value corresponding to the lower (if SCROLLBAR_V is set) or [100
right (if SCROLLBAR_H is set) end of the elevator shafts. If both
scroll bars are enabled, then maz is the same for both the vertical
and horizontal elevator shafts.

size The length (on a scale of min to maz) of the elevator. For example, 10
if min and maz are ~— 100 and +100, respectively, then setting size
to 50 will cause the elevator to always be one-fourth the size of
the elevator shaft (50 + (100 — ~100) = 14).

166 Arrows and Elevators

Reusing Scroll Bar Scale Information

If scrollbar_set is called for the first time, and the SCROLLBAR_SCALE bit is not set in the
mode parameter, then the defaults shown in Table 8-2 are used for scroll bar scaling. On
subsequent calls to scrollbar_set, if the SCROLLBAR_SCALE bit is mot set, wscroll_set uses
the scroll bar scale values set by the last call.

This allows a program to set scroll bar scaling information once, when wscroll_set is first
called for a window. Thereafter, the program doesn’t have to re-supply scroll bar scale
information (doesn’t have to supply the min maz, and size parameters).

Precautions

In user mode, the EVENT_ELEVATOR event, per se, does not cause the elevator to move. The
application must move the elevator by calling wscroll_set again with the value parameter
set “appropriately” for the attempted move.

The “appropriate” value is determined via event detection. This is discussed in detail in
the “Getting Scroll Bar Events in User Mode” section, later.

Example

The following code segment enables user mode in a graphics window. The program
has already started communication with the window; gwfd is the integer file descriptor
returned from doing so. Both the vertical and horizontal elevators are enabled, but not
the arrows. In addition, optional elevator scale information is provided.

#include <window.h>

int gwfd; /% graphics window file descriptor */
int which; /#* identifies which scroll bars to enable */
int mode; /* identifies:
* - whether to enable arrows, elevators, or both
* - user or pan mode
* - optional elevator scale information
*/
int value; /* where to put the elevator in the shaft */
int min,
max; /* coordinates for ends of elevator shaft */
int size; /* size of elevator, based on min and max */
/*
* Start communication with the window, obtaining "gwfd":
*/
/%

Arrows and Elevators 167

* Enable both the vertical and horizontal scroll bars:

*/
which = SCROLLBAR_V | SCROLLBAR_H;
/%
* Enable the elevators only:
*/
mode = SCROLLBAR_ELEVATOR;
/*
* Enable user mode:
*/
mode |= SCROLLBAR_USERMODE;
/*
* Optional elevator scale information to be passed also:
*/
mode |= SCROLLBAR_SCALE;
/*
* Define scale information:
*/
min = -100; max = 100; /* from -100 to +100 */
size = 25; /* elevator will be 1/8th length of shaft */
value = 0; /* position the elevator in the middle */
/%
* Call wscroll_set:
*/
if (wscroll_set(gwfd, which, mode, value, min, max, size) < 0)
{
fprintf(stderr, "Error calling wscroll_set...\n");
exit(1);
}

168 Arrows and Elevators

Getting Scroll Bar Events in User Mode

Once user mode is enabled for a window, a program can get EVENT_SB_ARROW and
EVENT_ELEVATOR event information via either event detection routines, or graphics win-
dow input routines. This section discusses how to use event detection routines to get
this information; graphics window input routines are discussed in the “Graphics Window
Input Routines” chapter.

Procedure
To detect scroll bar events in a window, a program would typically do the following:

Call signal(2) to set up a signal handler for SIGWINDOW.
Call wsetsigmask(3W) to enable scroll bar events; then wait for events to occur.
Enable user mode for the window.

On receiving SIGWINDOW, call weventpoll(3W) to get scroll bar event informa-
tion.

B W N e

Each step is discussed in more detail next.

Call signal(2)
Setting up a signal handler is discussed in detail in the “Event Detection” chapter. You
should understand the concepts in that chapter before proceeding.

#include <stdio.h>

#include <signal.h>

void sb_events(); /* signal handler for elevator & arrow events */
void pollevents(); /* routine to poll elevator & arrow events */
/*

* Call signal(2) to set up the signal handler; then set the event mask:
*/
if (signal (SIGWINDOW, sb_events) == -1)
{
fprintf(stderr, "Error setting up signal handler.\n");
exit(1);

Arrows and Elevators 169

Call wsetsigmask(3W)

After setting up the signal handler, the program should call wsetsigmask(3W) to ensure
that SIGWINDOW is sent when the desired scroll bar events occur. To catch arrow
events, a program should set the EVENT_SB_ARROW bit in the event mask passed to wset-
sigmask; to catch elevator events, the program should set the EVENT_ELEVATOR bit. The
following code segment, sets a window’s event mask so the window will send SIGWIN-
DOW when arrow and elevator events occur.

#include <stdio.h>

#include <window.h>

int gwid; /* graphics window file descriptor */
int events; /* event mask */

/%

* Set the window’s event mask to catch arrow and elevator events:
x/)

events = EVENT_SB_ARROW | EVENT_ELEVATOR;

if (wsetsigmask(gwfd, events) == -1)

{

fprintf (stderr, "Error setting event mask.\n");
exit(1);

Enable User Mode

After the signal handler is set up and the window’s event mask is set appropriately, the
program should call wscroll_set to enable user mode for the arrows and/or elevators. The
following code segment enables user mode and defines scroll bar scale information.

#include <stdio.h>

#include <window.h>

int value = O;

int min = -100;

int max = 100;

int size = 20;

int which = SCROLLBAR_V | SCROLLBAR_H;

int gwid; /* graphics window file descriptor */
int mode; /* parameters to wscroll_set */

170 Arrows and Elevators

/*
* Enable vertical and horizontal scroll bars and arrows.
*/
mode = SCROLLBAR_ELEVATOR | SCROLLBAR_ARROWS;
mode |= SCROLLBAR_USERMODE | SCROLLBAR_SCALE;
if (wscroll_set(gwfd, which, mode, value, min, max, size) == -1)
{
fprintf(stderr, "Error setting scroll bar info.\n");
exit(1);

Wait for SIGWINDOW

Once all the setup is finished, the program can wait for the SIGWINDOW signal. The fol-
lowing code segment waits for SSIGWINDOW in a while loop. The variable got_sigwindow
is a global boolean variable which is set by the signal handler sb_events when SIGWIN-
DOW is received. If sb_events == 1, then the program executes pollevents, which
determines what event occurred and does the appropriate action. This is shown more
thoroughly in the final code example in this section.

int got_sigwindow = 0; /* global boolean, set by signal handler when
SIGWINDOW is received */

main(argc, argv)

/e

* Now wait for SIGWINDOW.
*/

while (1)

{

if (got_sigwindow)
{

got_sigwindow = O;

pollevents(gwfd) ;

continue; /* go back in case signals occurred
before "continue" was reached */

}

pause () ;

Arrows and Elevators 171

Example

The following program enables both the vertical and horizontal elevators and arrows in
a graphics window’s border. The program assumes the name of the graphics window is
passed as the first positional parameter; i.e., the program is called as:

program grwindow

where grwindow is the name of the graphics window in which to enable elevators and
arrows, and program is the name of the program after it is compiled.

When the user activates an arrow or scroll bar in grwindow’s border, the program displays
a message telling what type of event (arrow or elevator) occurred along with descriptive
information about the event. If the user moves an elevator, the program re-positions the
elevator accordingly.

#include <stdio.h>

#include <window.h>

#include <gignal.h>

int events = EVENT_ELEVATOR | EVENT_SB_ARROW;

int got_sigwindow = O; /* boolean, set if SIGWINDOW received */
/%

* Define elevator location (value) and scale information globally:
*/

int value = 0;
int min = -100;
int max = 100;
int size = 20;

172 Arrows and Elevators

main(argc, argv)

int argc;

char *argv(];

{

int wnfd; /* window manager file descriptor */

int gwid; /* graphics window file descriptor */

char wname [WINNAMEMAX] ; /* path name of window device interface */
int mode; /* parameters to wscroll_set */

int which; /* determines which scroll bars to affect */
int est_wm_com() ; /* starts wm communication */

int term_wm_com() ; /* stops wm communication */

int est_gr(); /% starts graphics window communication */
int term_gr(); /* stops graphics window communication */
void sb_events(); /* sig handler for elevator & arrow events */
void pollevents(); /* routine to poll elevator & arrow events */
/%

* Start communication with the window manager to get "wmfd":

*/

if ((wmfd = est_wm_com()) == -1) {
fprintf (stderr, "Error starting wm communication.\n");
exit(1);
}
/*
* Build the window’s path name and start communication:
*/
if (wmpathmake("WMDIR", argv[i], wname) == -1) {
fprintf(stderr, "Error building window path name.\n");
exit(1);
)
if ((gwfd = est_gr(wmfd, wname)) == -1) {
fprintf (stderr, "Error starting window communication.\n");
exit(1);
}
/*

* Call signal(2) to set up the signal handler; then set the event mask:
*/

if (signal(SIGWINDOW, sb_events) == -1) {
fprintf (stderr, "Error setting up signal handler.\n");
exit(1);

}

if (wsetsigmask(gwfd, events) == -1) {
fprintf (stderr, "Error setting event mask.\n");
exit(1);

}

Arrows and Elevators 173

/*
* Enable vertical and horizontal scroll bars and arrows.
*/
mode = SCROLLBAR_ELEVATOR | SCROLLBAR_ARROWS;
mode |= SCROLLBAR_USERMODE | SCROLLBAR_SCALE;
which = SCROLLBAR_V | SCROLLBAR_H;
if (wscroll_set(gwfd, which, mode, value, min, max, size) == -1) {
fprintf(stderr, "Error setting scroll bar info.\n");
exit(1);

/%
* Now wait for SIGWINDOW.
*/
while (1) {
if (got_sigwindow) {
got_sigwindow = 0;
pollevents(gwfd) ;
continue; /* go back in case signals occurred
before "continue" was reached */
}
pause();

}
/*

* Signal catcher for scroll bar events.

* Sets "got_sigwindow" to 1 and re-enables itself to catch SIGWINDOW.
*/

void sb_events (signum)

int signum;

{

if (signum != SIGWINDOW) {
fprintf(stderr, "Wrong signal number received.\n");
exit(1);

}

printf ("\nSIGWINDOW received!\n");
got_sigwindow = 1;
/* Re-enable SIGWINDOW to catch events should they occur again. */
if (8ignal (SIGWINDOW, sb_events) == -1) {
fprintf (stderr, "signal failed in sb_events.\n");
exit(1);

174 Arrows and Elevators

/*

* Routine to poll for elevator and arrow events;

*
*/
void
int
{
int
int
int
char

called when global "got_sigwindow" is set to 1.

pollevents(gwfd)
gwid;

event_mask;
count, x.,y:

mode;
*elev_str;
do {
event_mask = events;
if (weventpoll(gwfd, &event_mask, &count, &x,&y) == -1) {
fprintf(stderr, "Weventpoll failed.\n");
exit(1);
}
if (event_mask & EVENT_ELEVATOR)
{
switch (x)
{
case SCROLLBAR_V :
elev_str = "VERTICAL";
break;
case SCROLLBAR_H :
elev_str = "HORIZONTAL";
break;
default:
elev_str = "INVALID";
}
printf ("%s elevator activated.\n", elev_str);
printf ("Is now at location %d.\n\n", y);
/%

* Call wscroll_set again to display elevator at its new location:

*/
mode = SCROLLBAR_ELEVATOR | SCROLLBAR_ARROWS;
mode |= SCROLLBAR_USERMODE;

if (wscroll_set(gwfd, x, mode, y) == -1) {
fprintf(stderr, "Wscroll_set failed.\n");
exit(1);

}

Arrows and Elevators

175

if (y == min) {
printf("Elevator at ’min’ position.\n");
printf ("\n\nx**xFINISHED***\n") ;
exit (0);

3

else if (event_mask & EVENT_SB_ARROW) {
printf("Arrow clicked.\n");
printf("Sum of horizontal arrows is %d.\n", x);
printf("Sum of vertical arrows is %d.\n\n", y);
}

} while (event_mask);

176 Arrows and Elevators

Graphics Window Hotspots

Graphics window hotspots allow a program to be signalled when the locator enters or
exits a rectangular area within the graphics window’s raster, or when the user presses a
button within the rectangle. This chapter describes how to use hotspot routines.

By calling hotspot routines, a program can:
e create a hotspot
e change a hotspot’s characteristics
o delete a hotspot

e get hotspot event information.

Graphics Window Hotspots 177

Concepts

This section discusses hotspot concepts. You should read this section before using hotspot
routines.

What Is a Hotspot?

A hotspot is an invisible rectangular area on a graphics window’s raster. The location
and size of the hotspot are defined via hotspot routines.

A hotspot event (EVENT_HOTSPOT) occurs when the user activates a hotspot. Any of the
following actions can activate a hotspot:

e moving the locator into or out of a hotspot
e pressing the key while the locator is within a hotspot
e pressing a button (1 through 8) while the locator is within a hotspot.

Using hotspot routines, a program can control which action or actions activate the
hotspot. For example, a hotspot could be activated only when the locator enters or
exits the hotspot, or when the user presses button 2.

A window can have up to 128 hotspots. Each hotspot has a unique hotspot id, returned
when the hotspot is created. Hotspot routines use the hotspot id to identify which
hotspot to change, inquire, or delete.

Hotspot Event Detection

Hotspot events can be detected two ways: via graphics window input routines or event
detection routines. The “Graphics Window Input” chapter discusses the use of graphics
window input routines; event detection is covered in the “Event Detection” chapter and
later in this chapter.

178 Graphics Window Hotspofs

Creating a Hotspot

The whotspot_create(8 W) routine creates a hotspot for a graphics window.

Procedure
To create a hotspot, call whotspot_create; its syntax is:

whotspot_create(fd, bmask, z,y,w,h, event_byte)

return value (hotspot id)

If whotspot_create successfully creates the hotspot, then the hotspot’s hotspot id is re-
turned. The hotspot id is an integer which identifies the hotspot for the window. Other
hotspot routines require the hotspot id as a parameter.

If whotspot_create cannot create the hotspot, then ~1 is returned, and errno(2) may be
set.

fd
The fd parameter is an integer file descriptor returned from starting communication with
the graphics window.

bmask

Bmask is an integer bit mask defining which activity or activities should activate the
hotspot. Each bit in bmask represents an activity, such as moving the locator into or out
of a hotspot. To activate the hotspot when a particular activity occurs, simply set the
corresponding bit in bmask.

Table 9-1 defines the valid activities and the constant values for the bits representing the
activities. The constants are defined in window.h.

Table 9-1. Activity Bit Definitions

Constant (Bit) Activity

HS_MASK_BUTTONn Locator button n pressed while the locator is within the
hotspot. n must be between 1 and 8. For example, the
constant for button 2 is HS_MASK_BUTTON2.

HS_MASK_SELECT The key pressed while the locator is within the
hotspot.

HS_MASK_ENTEREXIT | The locator entered or exited the hotspot.

Graphics Window Hotspots 179

x,y,w;h

The z and y parameters define where to put the hotspot. The upper-left corner of the
hotspot is placed at the specified coordinates. The -origin (0,0) is the upper-leftmost
pixel of the raster. The w and h parameters give the hotspot’s pixel width and height,
respectively.

event_byte

The event_byte parameter specifies what should happen when the user activates the
hotspot. Table 9-2 describes the acceptable values for event_byte, as defined in window.h.

Table 9-2. Valid Values for event_byte (from window.h)

Value Description

K_MOVE_ST Start an interactive window move operation on the
window. When the window move is finished, the
EVENT_MOVE event will occur for the window.

K_SIZE_LR_ST Start an interactive window size operation on the
window. When the size operation is finished, the
EVENT_SIZE event will occur for the window.

K_POPUP_ST Activate a system or user-defined pop-up menu for the
window. The user can then abort the menu, or make a
selection.

K_USER_HS to If you do not want to move or size the window or gener-

K_USER_HS + 127 ate a system pop-up menu when the hotspot is activated,

then set event_byte to one of these values. When set
to one of these values, event_byte identifies the hotspot
to event detection and graphics window input routines.
Typically, event_byte is set to a value corresponding to
the hotspot.

For example, for the first hotspot, set event_byte to
K_USER_HS; for the second hotspot, set eveni_byte to
K_USER_HS + 1; for the third, K_USER_HS + 2; and so
on. Then, when the program calls event detection or
graphics window input routines to get hotspot informa-
tion, the event_byte parameter is returned, identifying
which hotspot was activated.

180 Graphics Window Hotspots

Overlapping Hotspots

Hotspot rectangles can overlap. When they overlap, they form a stack within the window.
When an overlapping hotspot is created, it is placed on top of the stack. The only way
to change a hotspot’s location within the stack is to delete it and create it again, forcing
it to the top.

When hotspots overlap, the window manager uses the following rules for hotspot enter-
exit semantics:

e If the locator moves from a hotspot that is lower in the hotspot stack to a hotspot
that is higher in the hotspot stack, then the lower hotspot is exited and the higher
hotspot is entered.

o If the locator moves from a higher into a lower hotspot, then the higher hotspot is
exited and the lower hotspot is entered.

For example, suppose two hotspots (A and B) are set up so that B is on top of A (see
Figure 9-1). When the locator moves into hotspot A, then hotspot A is entered. When
the locator moves into hotspot B, then hotspot A is exited and hotspot B is entered.
Then when the locator moves out of B and into A, hotspot B is exited and hotspot A is
entered.

EXIT B; - -~
ENTER A

- ENTER A

EXIT A

Figure 9-1. Overlapping Hotspot Example

Graphics Window Hotspots 181

Precautions

A hotspot can be activated, regardless of whether or not the hotspot’s window is
selected.

Pressing an enabled button over a hotspot will activate the hotspot but will not
select the window. For example, if a hotspot’s bmask is set to HS_MASK_BUTTON1 and
the window is not currently selected, then pressing button 1 over the hotspot will
activate the hotspot, but will not select the window, as would normally happen.

Only one hotspot at a time can be activated. When the locator is over an area
which is overlapped by two or more hotspots, only the topmost hotspot in the
stack can be activated.

When a hotspot is activated via a button press, the activation occurs when the
button is pressed down—not when the button is released. The upstroke of the
button cannot be detected.

A button press over a hotspot whose bmask includes that button will activate the
hotspot, but will not select the window.

If a hotspot is completely obscured (covered) by another hotspot or hotspots, then
it cannot be activated.

Example

The following code segment sets up two hotspots. The hotspot id for each hotspot is
stored in the array named hotspots.

The first hotspot is located at 0,0, is 50 pixels wide by 100 pixels high, is activated by
button 1 or 2 being pressed within the hotspot, and on being activated, a window move
operation is generated. The second hotspot is activated by the locator entering or exiting
the hotspot, is located at 50,0, is 20 by 20 pixels, and on being activated, its event_byte
parameter is set to K_USER_HS.

#include <window.h>

ma
{

in
in
in

in

/*

182

in()
t hotspots[128]; /* holds up to 128 hotspot id’s per window */
t gwfd; /* graphics window file descriptor */
t bmask, /* activation bit mask */
x,y,w,h; /* hotspot location and size information */
t event_byte; /* what-to-do.on hotspot activation */
Graphics Window Hotspots

* Start communication with the window, obtaining "gwfd".

*/

/*

* Create the first hotspot:

*/

/*

bmask = HS_MASK_BUTTON1 | HS_MASK_BUTTON2;
x-_-y:o;

w = 50; h = 100;

event_byte = K_MOVE_ST;

hotspots[0] = whotspot_create(gwfd, bmask, x,y,w,h, event_byte);

if (hotspots[0] < 0)

{
perror ("whotspot_create gwfd");
exit(1);

}

* Create the second hotspot:

*/

bmask = HS_MASK_ENTEREXIT;
x=050; y=0;
w=nh = 20;
event_byte = K_USER_HS;
hotspots[1] = whotspot_create(gwfd, bmask, x,y,w,h, event_byte);
if (hotspots[1i] < 0)
{
perror ("whotspot_create gwfd");
exit(1);

Graphics Window Hotspots

183

Changing a Hotspot’s Characteristics

Once a hotspot is created, it can be modified. For example, it may be desirable to change
the width and height, or the location of a hotspot after it is activated. Two routines are
used to change a hotspot’s characteristics: whotspot_get(3W) and whotspot_set(3W).

Procedure

To modify a hotspot, call whotspot_set to change the hotspot’s parameters to new values.
A program can also optionally call whotspot_get to get information about a hotspot.

whotspot_set
The whotspot_set routine changes a hotspot’s parameters; its syntax is:

whotspot_set (fd, hotspot_id, bmask, x,y,w,h, event_byte)

The hotspot_id parameter tells whotspot_set which hotspot to modify. Set this parameter
to the hotspot id returned when the hotspot was created via whotspot_create.

The fd, bmask, x,y,w,h, and event_byte parameters are identical in function to those of
whotspot_create. That is, fd is the file descriptor of the window, and bmask, z,y,w,h,
and event_byte define the hotspot’s activity bit mask, location, size, and event byte,
respectively.

whotspot_get
The whotspot_get routine’s syntax is:

whotspot_get (fd, hotspot_id, bmask, x,y,w,h, event_byte)
Fd is the file descriptor returned from starting communication with the window.
The hotspot_id parameter is an integer id number, returned when the hotspot was cre-
ated via whotspot_create. This parameter lets whotspot_get know which hotspot to get

information for.

On return from whotspot_get, bmask, z, y, w, h, and event_byte point to integers contain-
ing the hotspot’s activation bit mask, location, size, and event_byte respectively.

184 Graphics Window Hotspots

Precautions

When a hotspot is changed to be activated on entering or exiting the hotspot—i.e., when
its bmask parameter is changed to HS_ENTEREXIT—the hotspot will be activated according
to the rules in Table 9-3.

Table 9-3. Activating a Hotspot When ENTEREXIT Is Changed

ENTEREXIT Set | Pointer in Hotspot | Pointer in Hotspot Hotspot
Previously Before Change After Change Entered or Exited
No No Yes Enter
No Yes Yes Enter
Yes No Yes Enter
Yes Yes No Exit
Example

The following code segment creates a hotspot, modifies the hotspot, and finally, gets and
displays the hotspot’s parameters.

#include <stdio.h>
#include <window.h>

main()
{

int
int
int

gwid;

/*

* Create

*/
bmask
xX=y

event_byte

hotspot_id =

/* graphics window file descriptor */
hotspot_id;
bmask, x,y,w,h, event_byte;

the hotspot:

= h = 50;

K_POPUP_ST,
whotspot_create(gwfd, bmask, x,y,w,h, event_byte);

if (hotspot_id < 0) {-
perror ("whotspot_create gwfd");

exit(1);

HS_MASK_BUTTON1 | HS_MASK_SELECT;
O; w

Graphics Window Hotspots

185

/* Modify the hotspot’s width and height: */
w = 100; h = 75;
if (whotspot_set(gwfd, hotspot_id, bmask, x,y,w,h, event_byte) < 0) {
perror ("whotspot_set gwfd");
exit(1);
}

/* Get and display the hotspot’s parameters: */

if (whotspot_get(gwfd, hotspot_id, &bmask, &x,&y,&w,&h, &event_byte) < 0) {
perror ("whotspot_get gwfd"); exit(1);

}

printf ("HOTSPOT parameters for hotspot id = %d\n\n", hotspot_id);

printf(" bmask %d\n", bmask) ;

printf(" x,y, w,h %d.%, %4d,%d\n", x,y, w,h);

printf(" event_byte = %d\n", event_byte);

186 Graphics Window Hotspots

Deleting a Hotspot

The whotspot_delete(3W) routine deletes a hotspot from a window.

Procedure
To delete a hotspot, simply call whotspot_delete; its syntax is:

whotspot_delete(fd, hotspot_id)

Fdis the file descriptor returned from starting communication with the graphics window.
The hotspot_id parameter is the hotspot id returned when the hotspot was created via
whotspot_create. After calling this routine, the hotspot will no longer exist.

Precautions

Hotspots are not activated when they are deleted. For example, a program doesn’t get a
hotspot exit if the locator is over a hotspot when the hotspot is deleted. However, if the
deleted hotspot is over another hotspot, then the hotspot underneath the deleted one
will get a hotspot enter activation (if enabled in the hotspot underneath).

Gfaphics Window Hotspots 187

Detecting Hotspot Events

Once a hotspot is created, a program can get hotspot event information via either event
detection routines or graphics window input routines. This section discusses the use of
event detection routines; graphics window input routines are discussed in the “Graphics
Window Input Routines” chapter.

Procedure
To detect hotspot events, a program would typically do the following:
1. Create the hotspot(s) via whotspot_create(3W).

3. Call signal(2) to set up a signal handler for SIGWINDOW, and wait for a hotspot
event to generate SIGWINDOW.

3. Call wsetsigmask(3W) to enable hotspot events.
4. On receiving SIGWINDOW, call weventpoll(3W) to get hotspot event information.

Each step is discussed in more detail below.

Call whotspot_create

To create hotspots in a window, call whotspot_create, as described in the previous section
“Creating a Hotspot.” Once a hotspot is created, it can be activated and can send
SIGWINDOW to any process that has enabled it, as discussed next.

Call signal(2)

To catch SIGWINDOW for hotspot (or any other) window events, a program must set
up a signal handler via signal(2). The following code segment sets up a signal handler
named hs_events.

#include <stdio.h>

#include <signal.h>

#include <window.h>

int gwfd; /* graphics window file descriptor */

void hs_events() ; /* signal handler for hotspot events */

188 Graphics Window Hotspots

/*
* Call signal(2) to set up the signal handler; then set the event mask:
*/

if (signal (SIGWINDOW, hs_events) == -1)

{

fprintf (stderr, "signal failed.\n");
exit(1);

/%

* This signal handler set a global variable "got_sigwindow" to 1

* upon recieving SIGWINDOW. When this variable is "1", the program
* knows it has received SIGWINDOW and can act accordingly.

*/
void hs_events (signum)
int signum;
{
if (signum != SIGWINDOW)
{
fprintf(stderr, "Wrong signal number received.\n");
exit (1); ’
}
printf ("\nSIGWINDOW received!\n");
got_sigwindow = 1;
/* Re-enable SIGWINDOW to catch events should they occur again. */
if (8ignal(SIGWINDOW, hs_events) == -1)
{
fprintf(stderr, "signal failed in hs_events.\n");
exit(1);
}
}

Call wsetsigmask(3W)

After setting up the signal handler, the program should call wsetsigmask to ensure that
the SIGWINDOW signal is sent when hotspot events occur. Wsetsigmask sets the event
mask for a window. Every bit in the event mask corresponds to a window system event.
To catch hotspot events, set the EVENT_HOTSPOT bit in the event mask, and call wsetsig-
mask. For example, the following code enables hotspot events the window whose file
descriptor is gwfd:

Graphics Window Hotspots 189

#include <gtdio.h>
#include <window.h>

if (wsetsigmask(gwfd, EVENT_HOTSPOT) == -1)
{
fprintf (stderr, "wsetsigmask failed.\n");

exit(1);
}

Call weventpoli(3W)
On receiving SIGWINDOW, the program can determine which event caused SIGWIN-
DOW by calling weventpoll(3W).

For hotspot events, weventpoll sets its = parameter to the event_byte parameter of the
activated hotspot. For example, suppose a hotspot was the second hotspot created in
a window, and its event_byte was set to K_USER_HS + 1 when the hotspot was created.
Then if the hotspot is activated, wevent_poll will return the value K_USER_HS + 1 in the
T parameter.

On return from weventpoll, the y parameter is set to the cause that activated the hotspot.
Table 9-4 defines the valid return values for y; these values are defined in window.h.

Table 9-4

Cause Description

EC_BUTTON# |Button n was pressed while the locator was
within the hotspot; 1 < n < 8. For example,
EC_BUTTON1 means that button 1 activated the
hotspot.

EC_SELECT |The key was pressed while the locator
was within the hotspot.

EC_ENTER The locator entered the hotspot. That is, the
locator crossed over the hotspot’s border into
the hotspot.

EC_EXIT The locator exited the hotspot. That is, the

locator crossed over the hotspot’s border out
of the hotspot.

190 Graphics Window Hotspots

Example

The following program creates two hotspots in a graphics window and draws the hotspots’
borders using Starbase graphics routines. The first hotspot is underneath the second
hotspot. The first hotspot is activated by button one, the Select button, and entering
or exiting the hotspot. The second hotspot is activated by button two and entering or
exiting the hotspot. Whenever a hotspot is activated, the program displays a message
to standard output describing what which hotspot was activated and what caused the
activation.

#include <stdio.h>
#include <signal.h>
#include <window.h>
#include <starbase.c.h>
/*
* Global variables:
*/)
int got_sigwindow = 0; /* boolean, set if SIGWINDOW received */
struct hs_info { /* hotspot ids and event bytes structure */
int id;
int eb;
} nsl2];
main(argc, argv)
int argc;
char *argv[];
{
int wnfd; /* window manager file descriptor */
int gwfd; /% graphics window file descriptor */
char wname [WINNAMEMAX] ;
int x,y,w,h,dx,dy,rw,rh; /* window size information variables */
int bmask; /* hotspot bmask parameter */
int hsx, hsy; /* hotspot location */
int hsw, hsh; /* hotspot width and height */
void hs_events () ; /* signal handler for hotspot events */
void pollevents(); /* routine to poll hotspot events */
/*
* Start window manager communication
*/
if ((wmfd = est_wm_com()) == -1)
{
fprintf (stderr, "est_wm_com failed.\n");
exit(1);
}

Graphics Window Hotspots 191

/*

* Start window communication:

*/
if (wmpathmake("WMDIR", argv[1], wname) == -1)
{
fprintf(stderr, "wmpathmake failed.\n");
exit(1);
}
if ((gwfd = est_gr(wmfd, wname)) == -1)
{
fprintf (stderr, "est_gr failed.\n");
exit(1);
}
/%
* Get the size of the window so that hotspots will be one-fourth the
* size of the window’s raster:
*/
if (wgetcoords(gwfd, &x,&y,&w,&h, &dx,&dy,&rw,&rh) == -1)
{
fprintf (stderr, "wgetcoords failed.\n");
exit(1);
}
if (wsize(gwfd, rw, rh) == -1) /* make window full size */
fprintf(stderr, "wsize failed.\n");
exit(1);
}
/*
* Draw the outline for the hotspots:
*/

write_enable(gwfd, -1);

drawing_mode(gwfd, 3);

background_color (gwfd, 0);

clear_view_surface(gwfd) ;

perimeter_color_index(gwfd, 1);

interior_style(gwfd, INT_HOLLOW, TRUE);

dcrectangle(gwfd, 0,0, rw /2 -1 , th / 2 - 1); /% hs O %/
hsx = rw / 4; hsy = rh / 4;

hsw = rw / 2; hsh = rw / 2;

dcrectangle(gwfd, hsx,hsy, hsx + hsw - 1, hsy + hsh - 1); /* hs 1 */
make_picture_current (gwfd) ;

192 Graphics Window Hotspots

/*

* Set hotspot values for hotspot O:

*/

/*

bmask = HS MASK _BUTTON1 | HS_MASK_SELECT | HS_MASK_ENTEREXIT;
hsx = hsy =
hsw = rw / 2 hsh =rh / 2;
hs[0] .eb = K_USER_HS;
if ((hs[0].id = whotspot_create(gwfd,
bmask, hsx,hsy, hsw,hsh, hs[0].eb)) == -1)
{
fprintf("whotspot_create failed on hotspot 0.\n");
exit(1);

* Set hotspot values for hotspot 1:

*/

/*
* Call
*/

bmask = HS_MASK_BUTTON2 | HS_MASK_ENTEREXIT;
hsx = rw / 4; hsy = rh / 4;
hsw = rw / 2; hsh = rw / 2;
hs[1].eb = K_USER_HS;
if ((hs[1]).id = whotspot_create(gwfd,
bmask, hsx,hsy, hsw,hsh, hs[1].eb)) == -1)
{

fprintf ("whotspot_create failed on hotspot 1.\n");
exit(1);

signal(2) to set up the signal handler; then set the event mask:

if (signal(SIGWINDOW, hs_events) == -1)

{
fprintf(stderr, "signal failed.\n");
exit(1);

}

if (wsetsigmask(gwfd, EVENT_HOTSPOT) == -1)

{
fprintf(stderr, "wsetsigmask failed.\n");
exit(1);

}

Graphics Window Hotspots

193

/*

* Now wait for SIGWINDOW.

*/

}
/*

while (1)

{
if (got_sigwindow)
{

got_sigwindow = O;
pollevents(gwfd) ;
continue; /* go back in case signals occurred
before "continue" was reached */
}

pause() ;

* Signal handler for hotspot events. Sets global got_sigwindow to 1.

*/
void
int

{

void
int

int
int
char
int

hs_events(signum)
signum;

if (signum != SIGWINDOW)

{
fprintf(stderr, "Wrong signal number received.\n");
exit(1);

}

printf ("\nSIGWINDOW received!\n");

got_sigwindow = 1;

/* Re-enable SIGWINDOW to catch events should they occur again. */

if (signal (SIGWINDOW, hs_events) == -1)

{
fprintf(stderr, "signal failed in hs_events.\n");
exit(1);

}

pollevents(gwfd)

gwid;

event_mask;
count, x,y;
*cause;
hs_num;

194 Graphics Window Hotspots

do {
event_mask = EVENT_HOTSPOT;

if (weventpoll(gwfd, &event_mask, &count, &x,&y) == -1)

{

fprintf(stderr, "Weventpoll failed.\n");

exit(1);
}

if (event_mask == EVENT_HOTSPOT)

{
if (x == hs[0].eb)
hs_num = O;

else if (x == hs[1].eb)

hs_num = 1;
else
hs_num = -1;

switch (y)
{

case EC_BUTTON1

cause
break;

case EC_BUTTON2 :

cause
break;

"button one";

"button two";

case EC_SELECT :

cause
break;

case EC_ENTER :

cause

break;
case EC_EXIT :

cause

break;
default:

cause

break;

}

printf ("Hostpot %d (id:
hs_num,

}
} while (event_mask);

"Select button";

"entering hotspot";

"exiting hotspot”;

"unknown cause";

%d) activated by %s.\n",
hs[hs_num] .id, cause);

Graphics Window Hotspots

195

Notes

196 Graphics Window Hotspots

User-Definable Menus 1 0

You can create your own pop-up menus by using window menu routines. These menus
are much like the system pop-up menu: by using the locator, users of your applications
can select items from these menus; your programs can then determine which item(s) the
user selected and do some appropriate action. This chapter describes the use of window
menu routines; the following topics are covered:

concepts essential tc using menu routines
creating a menu

activating a menu

adding menu items

getting menu selections

deleting a menu

User-Definable Menus 197

Concepts

Each window can have up to 24 user-defined menus. Each menu has a unique menu id,
returned when the menu is created.

Although a window can support several menus, only one menu at a time can be displayed
per window. Only when a menu is displayed can the user select items from the menu.

To be displayed, a menu must first be activated. Several menus c¢an be activated at
the same time, and window routines allow a program to specify which button press(es)
should cause the menu to be displayed.

Each menu is comprised of menu items. Menu items are added to menus via menu
routines. Each menu item is identified by an item id, returned when the item is added
to the menu.

Menu items can be either selectable or non-selectable. If event detection is enabled for a
window, then selectable items are capable of generating a menu event; that is, they can
be selected from a pop-up menu by clicking the locator over the menu item.

If the locator is clicked over a selectable menu item of the active displayed menu, the
SIGWINDOW interrupt will be sent to all processes which requested window signals via
signal(2) and weventpoll(3W). The weventpoll routine can be used to determine that a
menu item selection was made (the EVENT_MENU event mask indicates that a menu selection
was made); menu routines can be used to get the menu and item id’s for the selected
item.

If the locator is clicked over a non-selectable item, the menu is aborted, and a value of
-1 is returned as the selected item id. A menu item should be made non-selectable if
you don’t wish the menu item to be selectable from the pop-up menu. For example, on
the system pop-up menu, the window label appears on the menu but is not selectable;
invalid options, such as the Top option is already the top window in the display stack,
should also be made non-selectable.

You can define your own menu button mask which tells the window manager which
locator button(s) should invoke a pop-up menu in a window. This mask is specified
when the menu is created.

The window manager determines whether to invoke a user-defined or system pop-up
menu by looking at the WMIUICONFIG window system environment variable and the
menu button masks for the active menus in each window.

198 User-Definable Menus

When a locator button is pressed, the window manager looks at the lower eight bits of
the WMIUICONFIG environment variable. If the bit corresponding to the button is set,
then a system pop-up menu will be invoked under either of the following conditions:

e The locator is positioned over the desk top and the pop-up menu is enabled over the
desk top (i.e., WMIUICONFIG is not logically ORed with 0x040000). By default
the pop-up menu is enabled over the desk top. In this case, the system pop-up
menu is invoked for the selected window.

e The locator is positioned over a window’s border and the pop-up menu is enabled
over window borders (i.e., WMIUICONFIG is not logically ORed with 0x020000).
By default the pop-up menu is enabled over window borders. The system pop-up
menu is invoked for the window whose label the locator was clicked over.

If none of the bits in WMIUICONFIG corresponds to the button that was pressed, then
the window manager looks at the menu button mask for the active menus in the various
windows. Whether or not a user-defined menu is invoked depends on the position of the
locator when the button is pressed.

e If the locator is positioned over the desk top, then a pop-up menu will be invoked
for the selected window if all the following are true:

a. The selected window has an activated pop-up menu,

b. A bit corresponding to the pressed button is set in the active menu’s button
mask, and

c. The menu is “marked” to pop up automatically when the button is pressed.
(Whether or not a menu is marked to pop up is specified when the menu is
activated.)

o If the locator is positioned over a window’s border area (not over manipulation
areas) or user area, then a pop-up menu will be invoked for the window if all the
following are true:

a. The window has an activated pop-up menu,

b. A bit corresponding to the pressed button is set in the window’s menu button
mask, and

¢. The menu is “marked” to pop up automatically when the button is pressed.

User-Definable Menus 199

Creating a Menu

The wmenu_create(3W) routine allocates the resources necessary for a user-defined pop-
up menu. A menu’s button mask is also specified when the menu is created. The button
mask determines which locator buttons invoke the pop-up menu.

Procedure

To create a pop-up menu, call wmenu_create. It will create the menu and return the
menu’s menu id. The syntax for this routine is:

wmenu_create (wfd, cbits, button_mask, parent_menuid, parent_item)

You specify which window to create the menu for by passing the file descriptor of the
window’s device interface, wfd.

The cbits parameter defines the menu’s type. Currently, only the pop-up menu type is
supported, so cbits should always be set to MENU_POPUP.

The button_mask parameter defines which button(s) invoke this pop-up menu and which
button(s) select an item when clicked over a menu item. The lower eight bits (least-
significant byte) define the buttons that invoke the pop-up menu; the next eight bits
define the buttons that select a menu item.

The least-significant bit of each button mask corresponds to button one; the second bit
corresponds to button two; and so on. The most-significant bit of each mask (bit eight)
corresponds to the select key. For example, if you want button two to invoke a menu
and both buttons one and two to make item selections, then set this mask to 0x0302.

You should always set the parent_menuid and parent_item parameters to MENU_NOPARENT.

200 User-Definable Menus

Precautions

Note that calling this routine does not activate the menu, nor does it cause the menu to
have any items. For information on activating the menu, see the section “Activating a
Menu.” For details on adding menu items, see the section “Adding Menu Items.”

Example

The following call to wmenu_create creates a menu; the menu will be invoked when button
number two (for example, the rightmost mouse button) is pressed; either button one,
two, or the key will select a menu item. The menu’s id is stored in the menu_id
variable.

menu_id = wmenu_create(wfd, MENU_POPUP, 0x8202,
MENU_NOPARENT, MENU_NOPARENT) ;

User-Definable Menus 201

Adding Menu ltems

The wmenu_item(38W) routine adds menu items to a menu; it also can be used to change
items.

Procedure

To add items to a menu, call wmenu_item; its syntax is:
wnenu_item(wfd, menuid, itemno, type, disp_sel, type_struct)

The wfd and menuid parameters identify the window and menu for which menu items
are added (or changed).

If you're adding a new item to a menu, then ¢temno should be set to MENU_NEWITEM. Items
are added to the menu sequentially; i.e., the first item added is the topmost menu item
displayed in the menu. If you're changing an item, you supply the item id that was
returned when the item was added.

The type parameter defines the type of the menu item. Set this parameter to MENU_STRING
if you want a text string to appear as a menu item. Currently, the only other valid value
is MENU_SEPARATOR which causes a horizontal bar to appear; you can use this type to
separate different sections of the menu.

The disp_sel parameter defines whether the item is selectable, how the item is displayed
within the menu, and how the item will appear when the locator is positioned over it.
This parameter is set by logically ORing the bits defined in window.h.

If the item is selectable, then the disp_sel should be logically ORed with MENU_SELECTABLE,
i.e., the least-significant bit of this parameter should be set; if the parameter is not be
selectable, then OR it with MENU_NOTSELECTABLE.

Two different modes can be used to display a menu item: normal or grey. On the system
menu, valid options are displayed in normal mode (i.e., dark letters); invalid options are
displayed in grey mode (i.e., grey letters). To display an item in normal mode, logically
OR the disp_sel parameter with MENU_DISPNORM; to display it in grey mode, logically OR
it with MENU_DISPGREY. If neither bit is set, the default is MENU_DISPNORM.

202 User-Definable Menus

Two different modes can be used for tracking an item: inverse tracking and no track-
ing. With inverse tracking, a menu item is displayed in inverse video whenever the
locator moves over it; with no tracking, the menu item does not invert when the lo-
cator moves over it. To set inverse tracking for an item, set the MENU_TRACKINV bit in
disp_sel; for no tracking, set the MENU_TRACKNOCHNG bit. If neither bit is set, the default is
MENU_TRACKNOCHNG.

The type_struct parameter depends on the type of the menu item. If the type is
MENU_STRING, then this parameter should point to a null-terminated character string to
display as the menu item. If the type is MENU_SEPARATOR, then this parameter should point
to a single-character integer containing the pixel thickness (from 0 to 255) of the line (0
defaults to 2).

Example
The following code sample defines a menu titled frusts. Below the title is a horizontal

separator bar. Below this are three options defined as follows:
Menu Item Description

kumgquat A selectable menu item displayed in normal mode and inverted when
the locator tracks over it.

carrot A non-selectable menu item displayed in grey mode and not tracked
when the locator moves over it.

kiwi A selectable menu item displayed in normal mode and inverted when
the locator tracks over it.

User-Definable Menus 203

if ((menu_id = wmenu_create(wfd, MENU_POPUP, 0x0202,
MENU_NOPARENT, MENU_NOPARENTITEM)) < 0)

{
perror ("wmenu_create failed");
exit(1);

}

/*

* Now add the menu items:

%

* First, assign the menu title.

*/

if ((title_id = wmenu_item(wfd, menu_id, MENU_NEWITEM, O, MENU_STRING,
(MENU_DISPNORM | MENU_TRACKNOCHNG), "fruits")) < 0)

{
perror("wmenu_item failed on fruits");
exit(1);
}
/%
* Next, put in the horizontal separator bar.
*/

if ((bar_id = wmenu_item(wfd, menu_id, MENU_NEWITEM, O, MENU_SEPARATOR,
(MENU_DISPNORM | MENU_TRACKNOCHNG), NULL)) < 0)

{
perror ("wmenu_item failed on bar");
exit(1);
}
/%
* Assign the "kumquat" menu item.
*/

if ((item_id[0] = wmenu_item(wfd, menu_id, MENU_NEWITEM, O, MENU_STRING,
(MENU_SELECTABLE | MENU_DISPNORM | MENU_TRACKINV),
"kumquat")) < 0)

perror ("wmenu_item didn’t like the kumquat");
exit(1);

204 User-Definable Menus

/*
* Assign the "carrot" menu item.
*/
if ((item_id[1] = wmenu_item(wfd, menu_id, MENU_NEWITEM, O, MENU_STRING,
(MENU_DISPNORM | MENU_TRACKNOCHNG), "carrot")) < 0)

{
perror("wmenu_item choked on the carrot");
exit(1);
}
/*
* Assign the "kiwi" menu item.
*/

if ((item_id[2] = wmenu_item(wfd, menu_id, MENU_NEWITEM, O, MENU_STRING,
(MENU_SELECTABLE | MENU_DISPNORM | MENU_TRACKINV),

"kiwi")) < 0)
{
perror("the kiwi gave wmenu_item indigestion");
exit(1);
X
/*

* Now activate the menu so that items can be selected from it:
* (This is discussed in detail in the next section.)

*/

User-Definable Menus

205

Activating a Menu

In order for selections to be made from a pop-up menu, the menu must be activated, as
defined in the concepts section. Activating a menu causes it to be displayable; only
after a menu is activated and displayed can menu selection be made from it. The
wmenu_activate(3W) routine activates a user-defined menu.

Procedure
To activate a menu, call wmenu_activate; its syntax is:

wmenu_activate(wfd, menuid, value)
The wfd parameter is the file descriptor for the window whose menu is to be activated.

The menuid parameter is the menu id of the menu to activate. This is the id returned
when the menu was created.

The value parameter defines when and if to display the menu:

o If value is MENU_ACT_DIS, then the pop-up menu will be disabled; that is, it won’t
pop up when the user presses the appropriate locator button. You would use this
if you wanted to disable the menu.

e If value is MENU_ACT_AUTO, then the pop-up menu will automatically pop up when
the user presses the appropriate locator button, as defined in the menu button
mask that was used when the menu was created. The menu pops up at the current
locator position.

e If value is MENU_ACT_INQ, then the routine returns the current pop-up state of the
menu, either MENU_ACT_DIS or MENU_ACT_AUTO.

o If value is MENU_ACT_IM, then the current pop-up state is ignored and the menu is
automatically popped up at the current locator position.

206 User-Definable Menus

Precautions

Be sure to add items to a menu before activating it. Otherwise, you’ll have a null menu
from which no item selections can be made.

Example

The following code segment creates a pop-up menu and activates it. The menu is acti-
vated on button one being clicked; menu selections are made with either button one or
two; the menu can be exited by moving the locator outside its boundary; and the menu
will automatically pop up when the locator button is pressed.

if ((menu_id = wmenu_create(wfd, MENU_POPUP, 0x0301,
MENU_NOPARENT, MENU_NOPARENTITEM)) < 0)

{
perror("wmenu_create failed");
exit(1);
}
/%
* Now add items to the menu...
*/
/*
* Now activate the menu to pop up automatically:
*/
if ((wmenu_activate(wfd, menu_id, MENU_ACT_AUTO)) < 0)
{
perror ("wmenu_activate wfd failed");
exit(1);
}

User-Definable Menus 207

Getting Menu Information

There are two methods for getting menu selection information:

e you can set up event detection so that you application is notified when a menu
selection is made

e or you can constantly poll for menu information using the wmenu_eventread(3W)
routine.

Setting Up Event Detection

As mentioned in the “Concepts” section, if you want your programs to be notified when
a menu selection is made, you must establish a signal handler and event detection with
the window in which the menu is activated. After you've established event detection,
your program will be signaled with the SIGWINDOW interrupt that a window event has
occurred.

After receiving the signal, you must be sure that it was a menu item selection that caused
the event. To do this, you must call weventpoll(3W) with the EVENT_MENU bit set in the
event mask.

When you've determined that a menu item was selected, you can use the
wmenu_eventread(3W) routine to determine which menu and what item was selected.

Polling for Event Information

To poll for event information, simply poll for menu information using wmenu_eventread.
This means to keep calling the routine as often as needed—until you get the menu
information that you want. Note that although this method is less efficient than setting
up event detection, it is easer.

208 User-Definable Menus

Procedure

To get the id of the menu from which an item was selected, and to get the item’s id, call
wmenu_eventread(8W); its syntax is:

wnenu_eventread (wfd, menuid, itemno)

Menu selections are kept in a queue until requested with this routine. If the queue is
empty, then the routine returns -1. Otherwise, it returns the number of items (menu
selection data items) remaining in the queue.

Because selection items are queued, you receive menu selection information for the oldest
menu selection made. The queue holds information for up to 32 item selections.

The wfd parameter is the file descriptor of the window for which menu selection infor-
mation is to be read.

The menuid parameter points to an integer which will contain the id of the menu in
which a selection was made.

The ttemno parameter points to an integer which will contain the item id of the menu
item that was selected from the menu. A -1 is returned if the menu was aborted. The
menu is aborted any of the following ways:

o the user tries to select a non-selectable item

o the interactive timeout period (as defined by the WMIATIMEOUT environment
variable) is exceeded

e an invalid button is pressed.

User-Definable Menus 209

Deleting a Menu

When you are finished with a menu, you should delete it from the system. The
wmenu_delete(3W) routine removes a user-defined pop-up menu from the system, re-
leasing the resources that were allocated for that menu.

Procedure
To delete a menu, call wmenu_delete; its syntax is:

wmenu_delete (wfd, menuid)
The wfd parameter is the file descriptor of the window whose menu will be removed.

The menuid parameter is the menu id of the menu to delete from the window.

210 User-Definable Menus

Graphics Window Input Routines 1 1

Depending on your application development needs, you may find graphics window input
capabilities useful. Graphics window input routines provide different ways to read input
from graphics windows. By calling graphics window input routines, a program can:

enable different input modes (ASCIL, two-byte, and packetized input modes)
read characters in ASCII mode

read two-byte keycodes in two-byte mode

change a window’s input configuration

reroute a window’s input to another window

read event packets in packetized input mode.

Graphics Window Input Routines 211

Concepts

This section discusses concepts essential to using graphics window input routines. Be
sure to read this section before using these routines.

Input Modes

A window’s input mode determines how the window handles input. That is, a window’s
input mode determines what kind of data the window sends to processes which read from
the window. There are three input modes:

e Mode 0 (ASCII Mode)
e Mode 1 (Two-Byte Mode)
e Mode 2 (Packetized Input Mode)

Mode 0 (ASCII Mode)

By default, when a graphics window is created, its input mode is Mode 0, also known
as ASCII mode. If a window is in ASCII mode and the window is selected, then all
keystrokes are sent to the window’s device interface as ASCII characters. See the section
“Reading Data in ASCII Mode” for details on using ASCII mode.

Mode 1 (Two-Byte Mode)

In Mode 1 (also known as two-byte mode), each keypress on the keyboard sends a two-
byte packet identifying which key (or combination of keys) was pressed. Two-byte mode
is useful to applications that require complete keyboard control.

For example, when reading data from a window in ASCII mode, a program cannot tell
the difference between a ‘2’ from the typewriter keys and a ‘2’ from the numeric pad keys.
However, by reading data from a window in two-byte mode, a process can differentiate
the key on the typewriter keys and the key on the numeric pad. See the section
“Reading Data in Two-Byte Mode” for details on using two-byte mode.

Mode 2 (Packetized Input Mode)

In Mode 2 (also known as packetized input mode), a process reads event code packets
from a window via the winput_read(3W) routine. Event code packets contain information
for a single key press or window event. Event code packets are time-stamped and usually
time-ordered from the input queue, so a program can determine the order of and time
between events and key presses.

212 Graphics Window Input Routines

When a window is in packetized input mode, button presses over the window will not
select or top the window as usual. Instead, such button presses are sent to the window
in an event code packet.

Packetized input mode provides an alternative to using event detection routines with
graphics windows. Some application developers may find packetized input mode more
useful than event detection because the order of events can be determined from the time-
stamp. Also, event code packets generally provide more detailed information than can
be obtained with event detection routines. The use of packetized input mode is discussed
in the section “Reading Data in Packetized Input Mode.”

input Re-Routing

Windows/9000 allows the input from one graphics window to be routed to a different
graphics window. The window from which input is re-routed is called the source; the
window to which the source window’s input is sent is called the destination. A program
can re-route the input from several source windows to one destination window. The
section “Re-Routing Window Input” discusses how to re-route window input.

Input Configuration

Each graphics window has a set of input configuration parameters, which determines how
the window handles keyboard input and locator tracking information. For example, a
window’s input configuration defines the “nationality” of the keyboard when the window
is selected; it also determines how the window handles shifted characters; and so on.

Each window has a default configuration, determined from the window’s input mode. For
modes 0 and 1 (ASCII and two-byte modes), the input configuration cannot be changed.
However, the input configuration can be changed for windows in Mode 2 (packetized
input mode). The section “Changing Input Configuration” describes how to change the
input configuration for a window in packetized input mode. It also describes the default
configurations for ASCII and two-byte modes.

Graphics Window Input Routines 213

Changing Input Mode

When a window is created, its input mode is ASCII mode by default. The wgskbd(3W)
routine changes a graphics window’s input mode.

Effect on Line Discipline

Some application developers may need to know how wgskbd affects the window’s line
discipline. The line discipline is a group of attributes which determine how the window
type device interface handles input. Wgskbd calls ioctl(2) to change the line discipline
for the window as follows (see termio(7) and tty(7) for details):

e BRKINT is enabled—any process affiliated with a window in ASCII or two-byte modes
will be signaled (via SIGINT) when the key is pressed and the window is
selected.

e ICANON is disabled—canonical processing is turned off. That is, the window will
not process editing keys; read requests are satisfied directly from the input queue.
Read requests will not be satisfied until at least VMIN bytes have been received, or
the timeout value VTIME has expired between bytes.

e VTIME is 0—there is no time-out. Read requests are satisfied only when VMIN bytes
have been received.

e VMIN is set to the size of the packets read from the window: 1, 2, or sizeof (struct
event_code), depending on whether mode is 0, 1, or 2, respectively.

Procedure
To change a graphics window’s input mode, call wgskbd(3W); its syntax is:

wgskbd (fd, mode)

fd
The fd parameter is the integer file descriptor returned from starting communication
with the window.

mode

Set mode to 0, 1, or 2 to enable ASCII, two-byte, or packetized input mode, respectively.
Set mode to ~1, and wgskbd will return the current mode (0, 1, or 2).

214 Graphics Window Input Routines

Precautions

When the input mode is changed, any unread data from the window will be flushed
(lost).

Example

The following function enables packetized input mode for a graphics window, given the
window’s file descriptor (gwfd).

#include <window.h>

int enable_packetized(gwfd)
int gwid;
{
if (wgskbd(gwfd, 2) < 0)
return(-1);
else
return(0) ;

Graphics Window Input Routines 215

Reading Data in ASCIl Mode

When in ASCII mode, a graphics window processes input data the same as a term0
window in transmit functions mode. That is, the function keys ((f1]...[f8]), editing keys
(e.g., [Back space], {Delete line]), and cursor/screen control keys (e.g., (Clear display], or [(¥])
don’t do their usual function; instead, they transmit a special character or an escape
sequence (string of special characters) when pressed.

Because the editing keys do not function in ASCII mode, programs must interpret and
do the appropriate actions for editing keys, such as [Back space], {Return], [Delete line], etc.
The “Graphics Softkeys” chapter defines the special characters and escape sequences
returned by editing keys.

Procedure

A program can read from a window’s device interface using the read(2) system call. The
syntax of read is:

read(fd, buf, nbyte)

Fd is the file descriptor returned from starting communication with the window. The
buf parameter is a pointer to an area of memory, such as an array, in which to put the
input characters. Nbyte is the number of bytes to read into the buf area.

Precautions

e Even though a graphics window is, by default, in ASCII mode when created, it is
still good programming practice to call wgskbd to set the mode before reading data.
This ensures that the window is properly set to ASCII mode.

e Characters typed at the keyboard will not be sent to a window unless the window is
selected—i.e., the keyboard is attached to the window—or unless the selected win-
dow’s input is re-routed to it. The wselect(3W) routine, described in the “Window
Manipulation” chapter, attaches the keyboard to a window.

e Characters typed in the selected graphics window are not displayed. The program
which reads the characters must display the characters. Fast alpha and font man-
ager routines display characters in graphics windows; see the “Fast Alpha Library”
and “Font Manager Library” chapters for details.

216 Graphics Window Input Routines

Example

The following program sets a graphics window’s input mode to ASCII mode, selects
the window, and displays it as the top window in the stack. All characters typed at
the keyboard are echoed to standard output. When the user presses the key, the
program terminates.

To use this program on a window, you would type:

program window-name

where program is the name of the program after it is compiled and linked, and window-
name is the name of the graphics window from which program reads keyboard input data.

* Start communication with the window, select it, and display as top:

fprintf(stderr, "est_gr failed.\n");

#include <stdio.h>
#include <window.h>
main(arge, argv)
int argc;
char *argv(];
{
int wmfd;
int gwid;
char wname [WINNAMEMAX] ;
char ch;
/*
*/
wmfd = est_wm_com();
wmpathmake ("WMDIR", argv[1], wname);
if ((gwfd = est_gr(wmfd, wname)) == -1) {
exit(1);
}
wselect (gwfd, SETSELECT);
wtop(gwfd, SETTOP);
/*

* Set the input mode to O and echo input characters from the window

*

*/

until the ESC character is read.

if (wgskbd(gwfd, 0) == -1) {

fprintf(stderr, "wgskbd failed.\n");

exit(1);

Graphics Window Input Routines

217

while (ch != ’\033’) {
read(gwfd, &ch, 1);
if (ch t= '\033’) {

putchar(ch);
fflush(stdout) ;
}
}
printf("\n\nInput terminated by ESC character.\n");
/*
* Stop communication with the window:
*/
if (term_gr(gwfd) == -1) {
fprintf ("term_gr failed.\n");
exit(1);
}
term_wm_com (wmfd) ;
}

218 Graphics Window Input Routines

Reading Data in Two-Byte Mode

When the selected window is in two-byte mode, each key or combination of keys pressed
sends a two-byte keycode packet to the window’s device interface. The keycode packet
identifies which key or combination of keys was pressed on the keyboard.

Key Types

To understand what keycode packets are, one must first know what the different key
types are. Table 11-1 defines the key types.

Table 11-1. Key Types.

Type Definition

modifier The [CTRL], [Shift], and { Extend char] keys are known as modifier keys.
These are the only modifier keys.

normal Any key that represents a single ASCII character is a normal key.
This includes the [ESC]/[DEL), alphabetical, numeric, punctuation, and
math symbol keys.

special Any key that is neither a modifier nor a normal key. This includes keys
labelled with words (e.g., [Clear_display], [Print]/(Enter], [Next]), function
keys ((f1]...(18]), cursor keys ((¥], (<], (>], (A}, and (¥]), and blank
keys (like those above the numeric keypad).

npad Any key which is part of the 18 keys grouped together on the right

) side of the keyboard and the four unlabeled keys above it.
roman8 Any normal key which is not an npad key and not the [ESC J/[DEL] key.

Some keys are members of more than one set of key types. For example, the key in
the numeric pad is both a normal and an npad key.

Graphics Window Input Routines

219

Reading Keycode Packets

Reading data in two-byte mode is similar to reading data in ASCII mode: The graphics
window device interface must first be opened via gopen(3G). Once the interface is open,
the program can read data from the device interface using the read(2) system call.

However, in two-byte mode, a program reads two-byte keycode packets instead of ASCII
characters. The format of a keycode packet is:

struct keycode {
unsigned char control_byte;
unsigned char data_byte;

};

This structure is not defined in any #include files. It is shown here only to clarify the
structure of keycode packets.

When reading keycode packets, a program should always read in two-byte multiples
to ensure that packets don’t get “split up.” For example, the following code segment
requests five keycode packets from the graphics window whose file descriptor is gwfd. The
keycode packets will be placed in an array of keycode structures named keycode_array.

int gwid;

struct keycode {
unsigned char control_byte;
unsigned char data_byte;

} keycode_array[5];

if (read(gwfd, keycode_array, 5 * sizeof(struct keycode)) < 0)
{

perror("read gwfd");

exit(1);

220 Graphics Window Input Routines

Control Byte

The first byte of a keycode packet is the control byte. The control byte is a bit mask. The
bits of this mask are defined as constants in window.h; Table 11-2 shows the constants
and briefly describes them.

Table 11-2. Control Byte Constants

Constant (Bit) Definition

K_SPECIAL Special Key

K_NPAD Numeric Pad Key

K_SHIFT_B Key Pressed Also

K_CONTROL_B Key Pressed Also

K_META_B Meta (Left Key)
Pressed Also

K_EXTEND_B Extend (Right Key)
Pressed Also

K_SPECIAL

If a special key is pressed, then the K_SPECIAL bit is set. For example, if the user presses
the key on the numeric pad, then the K_SPECIAL bit will be set, as well as the
K_NPAD bit.

K_NPAD
If an npad key is pressed, then the X_NPAD bit is set. For example, if the user presses the
key on the numeric pad, then this bit will be set in the control byte.

Modifier Keys (K_SHIFT_B, K_CONTROL_B, K_META_B, K_EXTEND_B)
If the user holds down a modifier key while pressing a normal, npad, or special key, then
the appropriate modifier key bit will be set. For example, if the user holds down the left

key and the key while pressing the key, then the K_META_B,

K_CONTROL_B bits will be set along with the K_SPECIAL bit.

Graphics Window Input Routines 221

Data Byte

The second byte of the keycode packet is the data byte. The value of the data byte
depends on the key type.

Data Byte Values for Special Keys

If the K_SPECIAL bit is set in the control byte, then the data byte is set to a spe-
cial key value, not an ASCII value. Data byte values for special keys are defined in
Jusr/include/window.h under the “Special key defines” section. For example, if the user
presses the rightmost key above the numeric pad, the data byte will be K_NP_K3, as defined
in window.h.

A program may not be able to read some of the special keys defined in window.h. The
special keys a program can receive from a window depend on the keyboard’s nationality.
For example, a program cannot read a K_GO_KANJI key from a USASCII keyboard.

Data Byte Values for Normal Keys
The data byte for normal keys is determined from the following rules:

1. If no modifier keys are pressed, then the data byte is set to the shifted or unshifted
value of the pressed key, determined from the current capslock state.

Capslock is initially OFF, meaning that roman§ characters will be lower case when
typed. When the key is pressed, the current capslock state is toggled. If
capslock is ON, then roman8 characters will be mapped to upper case. For example,
if capslock is OFF, then the key will send a keycode packet whose control byte
is zero and whose data byte is set to the ASCII value for the ‘h’ character. And if
capslock is ON, then pressing the key by itself will send a packet whose control
byte is zero and whose data byte is set to the ASCII value for the ‘H’ character.

The key itself sends a special key value when pressed. If capslock is currently
OFF, then pressing will send a keycode packet with the K_SPECIAL bit set in
the control byte, and the data byte set to K_CAPS_ON. If capslock is ON, then the
will send a keycode packet with the K_SPECIAL bit set and the data byte set
to K_CAPS_OFF.

2. If the user holds down the modifier key while pressing another key, then the
K_SHIFT_B bit is set in the control byte, and the data byte is mapped to the ap-
propriate upper- or lower-case ASCII character, depending on the current capslock
state.

For example, if capslock is ON, and the user holds down while pressing the
key, then the K_SHIFT_B bit will be set in the control byte and the data byte
will be set to the ASCII value for the ‘a’ character.

222 Graphics Window Input Routines

3. If the user holds down the modifier key while pressing another key, then the
K_CONTROL_B bit is set in the control byte, and the data byte is set to the ASCII
value of the key. For example, if capslock is OFF and the user holds down
while pressing the key, then the control byte will be set to K_CONTROL_B and the
data byte will be set to the ASCII value for the ‘c’ character.

4. If the user holds down the left modifier key while pressing another key,
then K_META_B is set in the control byte, and the data byte is set to the ASCII
value of the key. For example, if capslock is ON and the user holds down the left

key while pressing the (M] key, then the control byte will be set to
K_META_B and the data byte will be set to the ASCII value for the ‘M’ character.

5. If the user holds down the right modifier key while pressing a roman8
key, then K_EXTEND_B is set in the control byte, and the data byte is set to a value
corresponding to the appropriate Roman-8 character. If the user does not press a
romans key, then data byte is set to the ASCII value for the pressed key.

For details on the ITF keyboard layout, see the article “Series 300 System Console”
in HP-UX Concepts and Tutorials: Facilities for Series 200, 300, and 500. For
information on the Roman-8 character set, see roman8(4) in the HP-UX Reference.

Numeric Pad Keys
When an npad key is pressed, the K_NPAD bit is set in the control byte. The numeric pad
contains both normal and special keys. If a normal key is pressed, then the data byte is
set to the ASCII value of the key. If a special key is pressed, then the XK_SPECIAL bit is
also set in the control byte, and the data byte is set to the value of the special key, as
defined in window.h.

Note that the modifier keys do not cause npad keys to be mapped to different values:
data byte is always set to the value of the pressed key.

Graphics Window Input Routines 223

Special Cases
There are special keystrokes which a program should know about.

BREAK Key

If the user presses the key by itself, or with any modifier key except [Shift), then a
keycode packet will be generated with both the control byte and data byte set to zero.
In addition, a TCIOBREAK zoct!(2) call will be issued, which will send the SIGINT signal
to the user process if it has done a setpgrp(2) properly; otherwise, the user process will
only receive the keycode packet.

SHIFT-SELECT
A process cannot read the key combination. This key combination is caught
by the window system (to shuffle windows) and cannot be used by user programs.

CONTROL-ARROWS

The combination of the and arrow ([<J, (], (&3, (¥]J) keys will be sent to processes
reading from the window. However, these key presses will also move the pointer on the
window system desktop.

Example
The following program reads keys from a graphics window in two-byte mode. The pro-

gram echoes a descriptive message for the control byte and data byte for each key pressed.
When the user holds down the key while pressing the key on the numeric
pad, the program terminates.

The program would be executed as:

program window-name

where program is the name of the program after it is compiled, and window-name is the
name of the graphics window from which to read two-byte keycode data.

224 Graphics Window Input Routines

#include <stdio.h>

#include <window.h>
main(argc, argv)

int argc;

char *argv[];

{

int wmid;

int gwid;

char wname [WINNAMEMAX] ;
short done = 0;

unsigned char control_byte;
unsigned char data_byte;
/*

* Start communication with the window, top it , and select it:
*/

wnfd = est_wm_com();

wmpathmake ("WMDIR", argv[1], wname);

if ((gwfd = est_gr(wmfd, wname)) == -1) {
fprintf(stderr, "est_gr failed.\n");
exit(1);

}

wselect(gwfd, SETSELECT);
wtop (gwfd, SETTOP);

/*
* Set the input mode to 1 and echo keycode structures
* until the Enter key on the numeric pad is pressed:
*/
if (wgskbd(gwfd, 1) == -1) {
fprintf (stderr, "wgskbd failed.\n");
exit(1);
}

while (done == 0) {
read(gwfd, &control_byte, 1);
read(gwfd, &data_byte, 1);
printf ("---------- \n");
if (control_byte & K_SPECIAL)
printf("Special Key\n");
else
printf("Normal Key\n");

Graphics Window Input Routines 225

if (control_byte & K_NPAD)
printf ("Numeric Pad Key\n");
if (control_byte & K_SHIFT_B)
printf ("SHIFT also pressed\n");
if (control_byte & K_CONTROL_B)
printf ("CTRL also pressed\n");
if (control_byte & K_META_B)
printf("Meta also pressed\n");
if (control_byte & K_EXTEND_B)
printf("Extend also pressed\n");
if (control_byte == K_SPECIAL | K_NPAD | K_CONTROL_B)
done = (data_byte == K_NP_ENTER);
if (control_byte & K_SPECIAL)
printf("Data byte value: %d\n", data_byte);
else
printf("Data byte value: %c\n", data_byte);

}
printf ("\n\nInput terminated by CTRL + Enter key on numeric pad.\n");
/*
* Stop communication with the window:
*/
if (term_gr(gwfd) == -1) {
fprintf ("term_gr failed.\n");
exit(1);
}
term_wm_com(wmfd) ;
}

226 Graphics Window Input Routines

Changing Input Configuration

As mentioned in the “Concepts” section, each graphics window has a default input config-
uration, a set of parameters which determine how the window handles keyboard input and
locator tracking. For ASCII and two-byte modes this configuration cannot be changed.
However, for packetized input mode, it can be changed via the winput_conf(3W) routine.

Input Configuration Parameters

Before you can change a window’s input configuration parameters, you must know what
they are. Listed below are the input configuration parameters and their default values
for each input mode. The parameter names are defined in window.h.

K_TRACK

If set, causes the window to report all locator movements for the window when in packe-
tized input mode; that is, allows a program to read locator movements from the window
via winput_read(3W). Locator moves are reported only when the keyboard is attached to
the window. Locator moves during an interactive size or move or pop-up menu operation
are not reported.

Note: Enabling K_TRACK will degrade window system performance because the win-
dow manager must constantly report locator movements. Typically, a program can use
hotspots to eliminate the need for continuous locator tracking.

By default, K_TRACK is cleared for all input modes.

K_LANGUAGE

Language nationality of the keyboard when attached to the window. See the win-
put_conf(3W) page for supported keyboard nationalities. The constant values shown

on the winput_conf(3W) page are defined in window.h.

The default language is that of the keyboard attached to the computer. For example, if
the system uses a United States ITF keyboard, then the default language is K_I_USASCII.

Graphics Window Input Routines 227

K_CAPSMODE
Determines whether capslock processing is done. If this parameter is set, then capslock
processing is enabled. If this parameter is not set, then capslock processing is disabled.

When capslock processing is enabled, the key toggles the current capslock state and
causes either the K_CAPS_ON or K_CAPS_OFF key to be sent. When capsmode is disabled,
the key simply causes the K_CAPS_LOCK key to be sent; all capslock processing is
disabled (the K_CAPS_ON and K_CAPS_OFF keys are not sent).

K_CAPSLOCK
Affect the capslock state. If set, then capslock is turned ON; if cleared, capslock is turned
off. This is effective only if K_CAPSMODE is set.

When capslock is OFF, roman8 keys are mapped to lower case characters, unless the
user also holds down the key, in which case the key is mapped to an upper case
character. For example, if cepslock is OFF and the user holds down the key while
pressing the key, then a ‘T’ character is sent. The converse is true when capslock is
ON: For example, if capslock is ON and the user presses the [N] key, then a ‘N’ character
is sent; but if the user also holds down the key, then a ‘n’ character is sent.

This parameter is cleared by default (capslock is initially OFF').

K_EXTEND

Alternate keyboards. For some languages, the key to the right of the space
bar toggles between normal and alternate keyboards. For other languages, the right
key is a modifier key to get additional keycodes. This parameter controls
whether this key does the language-dependent function.

If this parameter is set, the language-dependent function will be done when this key is
pressed; if not set, this function won’t be done. Depending on your application develop-
ment needs, this may or may not be important.

By default, this parameter is set for all input modes.

228 Graphics Window Input Routines

K_CONTROL

Control collapsing of printable characters. If this parameter is set, the key causes
characters from 64 to 127 decimal to be collapsed to their control values before being
sent. If not set, then collapsing is not done. (In either case, the key still causes
the K_CONTROL_B bit to be set in the control byte when the keycode is sent.) For example,
if K_CONTROL is set and the user holds down while pressing (D }, then ASCII EOT
character (decimal value 4) is sent (*D’ & 037).

For mode 0, this parameter is set by default; for modes 1 and 2, this parameter is cleared.

K_SHIFT

Shift collapsing of capitals. If set, the key toggles the case of keys that are affected
by capslock. If not set, then the key does not affect the case of keys. (In either
case, the K_SHIFT_B bit is set in the control byte if is pressed.)

This parameter is set by default.

K_META
Enable Meta modifiers. If set, the presence of Meta keys will be recognized by setting
the appropriate Meta bits when key codes are sent. If cleared, this capability is disabled.

This parameter is set by default.

K_META_EXTEND

Enable the key to the left of the space bar as the Meta key. This is effective
only when K_META is set. If this parameter is set, the left key becomes the
Meta key. For the Katakana keyboard, it will also switch the keyboard to the Roman
keyboard at the same time.

If this parameter is cleared, the left key is simply treated as an
key, and not a Meta key.

For mode 0, this parameter is cleared by default; for modes 1 and 2, this parameter is
set.

Graphics Window Input Routines 229

K_KANAKBD

Katakana keyboard. If set, the alternate Katakana keyboard is currently active. If
cleared, the Katakana keyboard is not active. This parameter is effective only with
Katakana-language keyboards.

This parameter is cleared by default.

K_KANJI

Enable KANJI mode. This parameter is effective only when the keyboard language is
japanese. If this is set, the left key toggles the state of K_KANJIKBD, described
next.

This parameter is cleared by default.

K_KANJIKBD

KANJI input mode. If set, the left Meta key will be used as a key only. If cleared, the
left Meta key will be used as a Meta key. (The left and right Meta keys, when present,
are directly under the keys.)

This parameter is cleared by default.

Procedure

Input configuration parameters cannot be changed for windows in ASCII or two-byte
modes. However, a program can change input configuration parameters for a window in
packetized input mode.

The winput_conf(3W) routine can be used to change or determine an input configuration
parameter; its syntax is:

winput_conf (fd, param, value)

The fd parameter is the integer file descriptor returned from starting communication
with the window. Param should be set to the parameter, from the above list, to change
or inquire. The value parameter defines the value to set the parameter to.

To set a parameter other than K_LANGUAGE, set value to 1; to clear a parameter other than
K_LANGUAGE, set value to 0. (For the K_LANGUAGE parameter, set value to a supported value
shown on the winput_conf(8W) reference page.)

To inquire a parameter’s value, set value to -1; winput_conf will then return the current
value (0 if the parameter is not set, 1 if set).

230 Graphics Window Input Routines

Example

The following code segment sets the window’s input mode to packetized input (Mode 2).
Then it determines the current value for K_TRACK and displays whether it is set. Finally,
it sets the K_CONTROL parameter.

#include <stdio.h>

#include <window.h>

main()

{

int gwfd; /* fildes for the graphics window */

int param; /* variable to hold input configuration parameter */
int pval; /% variable to hold value of the input config param */

/* Set the window’s input mode to packetized input (Mode 2): */

if (wgskbd(gwfd, 2) == -1) {
perror("wgskbd gwfd");
exit(1);

}

/* Inquire the window’s K_TRACK parameter value and display: */
pval = winput_conf(gwfd, K_TRACK, -1);
switch (pval) {
case O : printf("Tracking is OFF.\n");

break;
case 1 : printf("Tracking is ON.\n");
break;
default : perror("winput_conf gwfd");
exit(1);

/* Set the K_CONTROL parameter: */

if (winput_conf(gwfd, K_CONTROL, 1) == -1) {
perror("winput_conf gwfd");
exit(1);

}

Graphics Window Input Routines 231

Re-Routing Window Input

By calling graphics window input routines, a program can re-route a window’s input to
another window. That is, the keystrokes and events for one window can be sent to another
window. By re-routing several windows’ input to one window, a program can receive all
events and keystrokes through one window, instead of having to read them separately
from each window. The following routines are used to re-route graphics window input:
winput_setroute(3W), winput_getroute(8W), winput_widpath(3W).

Concepts
Before using re-routing routines, you should understand some basic concepts.

Source and Destination Window
The window from which input is re-routed is the source window. The window that the
source window’s input is re-routed to is the destination window.

Many-to-One Re-Routing

Each source window can be re-routed to only one destination window at a time. However,
several source windows can be re-routed to the same destination window (a many-to-one
group). Figure 11-1 shows some valid many-to-one groups.

window 1
window 2 window 0
destination
window

window 3

source windows

Figure 11-1. Valid Many-to-One Input Re-Routing Groups

232 Graphics Window Input Routines

Multi-Hop Re-Routing
Windows can also be re-routed in a multi-hep formation (i.e., from window to window
to window, etc.). Figure 11-2 shows some valid multi-hop routes.

window 1 1 window 2 |——] window 3

window 1
window 5
window 2 /
window 7
window 3 \
window 6
window 4 /

Figure 11-2. Valid Multi-Hop Routes

Graphics Window Input Routines 233

Routing Loops

A window’s input cannot be re-routed backward to any preceding window in the input
path (known as routing loops). All routing loops are illegal. Figure 11-3 shows some
routing loops.

window 1 ’Jl window 2 F———P window 3

window 4

Figure 11-3. Routing Loops—Don’t Do Them

Window ID (wid)

Every window in an input path has a unique window id (wid) that identifies the window.
Window id’s are useful in packetized input mode: they identify the window from which
an event code packet originated.

In packetized input mode, each event code packet has a wid field which is set to the
window id of the window from which the packet originated. In ASCII and two-byte
modes, a program cannot determine the originating window for keystrokes.

Note that a window id is not the same as a window’s file descriptor. Window id’s

are maintained globally by the window system, whereas file descriptors are private to
processes.

234 Graphics Window Input Routines

Final Destination Window
The final destination window is the last window in an input path. Typically, a program
reads from this window to get input from all windows in the input path.

Input Modes and Configuration Parameters

On receiving input from a source window, a destination window handles the data in a
way appropriate to its input mode, as set by the wgskbd(3W) routine, regardless of the
input mode of the source window.

Each window also has its own set of input configuration parameters, as determined by
the window’s input mode (or set via winput_conf(8W)). When using input routing, it
is normally desirable to have the same input configuration parameters for all windows.
This can be accomplished by calling wgskbd to set the mode for each window; or if in
packetized input mode, by calling winput_conf to set the parameters for each window.

Although it is desirable to have the same input configuration parameters, it is not abso-
lutely necessary. If the source and destination windows have different input configuration
parameters, then input from the destination window will conform to input configuration
parameters of the source window.

For most applications, the input mode and input configuration parameters for all windows
in an input route should be the same. For example, if the final destination window is
in ASCII mode, then all windows in the path should be in ASCII mode. If the final
destination window is in two-byte mode, then all windows in the path should be in two-
byte mode. (By default, if all windows are in ASCII mode or in two-byte mode, their
input configuration parameters will be identical, too.)

As another example: If the final destination window is in packetized input mode, then all
windows in the path should be in packetized input mode. If a program changes the input
configuration parameters of any window in the input path, then all windows should be
changed similarly, thus ensuring that the input configuration parameters are identical
for all windows.

Graphics Window Input Routines 235

Procedure
By calling graphics window input routines a program can:

e re-route a window’s input

e get re-routing information for a window

Re-Routing
To re-route a window’s input to another window, call winput_setroute(3W); its syntax
is:

winput_setroute(fd, routepath)

Fd is the integer file descriptor returned from starting communication with the source
window. The routepath parameter points to the path name of the destination window.
After calling this routine, all input from the window represented by fd will be sent to the
window whose window type device interface is pointed to by the routepath parameter.

Winput_setroute returns the window id of the source window. Note that the window id
is not the same as the fd parameter.

If a program reads data in packetized input mode, it should save the window id’s of
windows when calling winput_setroute. This way, it can determine which window an
event code packet came from by comparing the window id field of the event code packet
with the window id’s saved from winput_setroute.

Cancelling Re-Routing

To turn off input re-routing for a window, call winput_setroute on the window and set the
routepath parameter to NULL. For example, to turn off input re-routing for the window
whose file descriptor is wfd, call winput_setroute as:

winput_setroute(wfd, NULL)

where NULL is defined in stdio.h.

236 Graphics Window Input Routines

Determining Whether Input Routing Is in Effect

It may be useful for a program to determine whether a window is part of an input routing
path, and if so, what is its destination window. The winput_getroute(8W) routine does
this; its syntax is:

winput_getroute (fd, routepath)

The fd parameter is the file descriptor returned from starting communication with the
window for which input routing is to be determined. The routepath parameter is a
pointer to a space to be filled with the null-terminated path name of the destination
window device interface if routing is in effect. The space must be large enough to
hold WINNAMEMAX characters (the maximum path name length for window type device
interfaces).

If input routing is not in effect for the source window, then routepath will point to a
zero-length, null-terminated string.

If fd is valid, then winput_getroute always returns the window id of the window of the
window represented by fd. This is useful for getting the window id of the final destination
window.

Getting the Path Name for a Window ID
Given a window id, the winput_widpath(3W) routine returns the path name of the win-
dow’s window type device interface. The syntax of winput_widpath is:

winput_widpath(wmfd, wid, wname)

The wmfd parameter is an integer file descriptor returned from starting communication
with the window manager. The wid parameter is the window id to get the path name
for. And the wname parameter is a pointer to a space to put the path name of the
window type device interface whose window id is wid. This space must be large enough
to hold WINNAMEMAX characters (the maximum length of window type device interface path
names).

If wed represents a valid window id, then winput_widpath returns zero.

Graphics Window Input Routines 237

Reading Data in Packetized Input Mode

In packetized input mode (Mode 2), each event or keystroke in a window is sent to the
window’s window type device interface in an event code packet. The event code packet
contains information which defines whether an event or keystroke occurred. The event
code packet also contains information describing what type of event or which keystroke
occurred. Programs must read event code packets using the winput_read(3W) routine.

Event Code Packets
An event code packet is a structure defined in window.h:

struct event_code {
unsigned char control_byte;
unsigned char data_byte;
unsigned char event_byte;
unsigned char event_cause;
unsigned int timestamp;
unsigned int wid;
int x;
int y;

}

A description of each field of this structure is listed next.

control_byte
The control_byte is a bit mask, similar to the control byte used in two-byte mode, except
that it has two additional bits: K_EVENT and K_UP.

If the K_EVENT bit is set (==1), then the event code packet represents an event; if the
K_EVENT bit is cleared (==0), then the event code packet represents a keystroke.

If the event code packet represents a keystroke. (K_EVENT bit == (), then the control_byte
field represents the same information as the control byte in two-byte mode. For example,
if a window has the default input configuration parameters for packetized input mode,
and the user holds down the key while pressing the key, then an event code
packet will be sent with the K_SHIFT_B bit set.

The K_UP bit is used only with locator button events. If K_UP is set (==1), then a button
was released from a down position; if K_UP is cleared (==0), then a button was pressed.
In either case, the K_EVENT bit will also be set, indicating that the event code packet
represents an event.

238 Graphics Window Input Routines

data_byte

If the event code packet represents a keystroke (K_EVENT bit == 0), then the data_byte
field represents the same information as the data byte field in two-byte mode: If the
K_SPECIAL bit is set in control_byte, then data_byte is set to a value (defined in window.h)
representing the special key. A complete list of supported special keys is given on the
winput_read(3W) reference page.

If the K_SPECIAL bit is cleared (==0), then data byte is mapped to the appropriate
character value, depending on:

1. Which modifier keys are pressed (determined from control_byte), and

2. The window’s input configuration parameters (changed via winput_conf(3W)).

event_byte

If the event code packet represents an event (K_EVENT bit set in control_byte), then
event_byte represents the type of event that occurred. A complete list of event causes is
listed on the winput_read(8W) reference page.

For hotspot events, event_byte is set to the hotspot’s event byte value, specified when
the hotspot was created (via whotspot_create($W)) or changed (via whotspot_set(3W)).
Review the “Graphics Window Hotspots” chapter for details on hotspot event bytes.

event_cause

If the event code packet represents an event, and if the event was caused by a hotspot
or valid menu item selection, then event_cause indicates what caused the event. Valid
values for event_cause are defined on the winput_read(3W) reference page.

timestamp
The timestamp field is a 32-bit integer specifying when the packet was received by the
window. Time is given in milliseconds.

wid

The wid field is the window id of the window from which the packet originated. The
window id is useful if a program reads packets from a destination window that is part of
an input routing path. For details on window id’s, see the section “Re-Routing Window
Input.”

Graphics Window Input Routines 239

xandy

If the event code packet represents an event other than hotspot events, z and y are set
to the z,y values returned by weventpoll(3W) during-event detection. (See the “Event
Detection” chapter for detailed descriptions of z and y.)

For hotspot events, z and y give the position of the locator when the hotspot event
occurred. X and y are given relative to location 0,0 of the window’s virtual raster.

Procedure

The winput_read(3W) routine reads event code packets from a window’s device interface;
its syntax is:

winput_read (fd, bufadr, count)

Winput_read attempts to read count event code packets into the buffer bufadr. Event
code packets are read from the window whose file descriptor is fd. Bufadr is a pointer to
a memory space to contain the event code packets read.

To get the best performance when reading event code packets, set count to 25. Win-
put_read returns the number of event code packets actually read, which may be less than
count. See “Input Blocking” below for details.

Event Code Overflow

It is possible that more than 25 events or keypresses may occur between calls to win-
put_read. If this happens, an event code packet is sent with its event_byte field set to
K_OVERFLOW.

Any hotspot events or keystrokes occurring after overflow will be lost. However, the
window manager keeps track of the most recent state for other types of events, and will
send an event code packet indicating these states.

For example, suppose overflow occurs and the user moves a window several times before
the program calls winput_read. All the locator moves after the K_OVERFLOW packet will be
lost. But the last window move will not be lost; the program will still receive a K_MOVE_CT
packet indicating where the window was placed by the final move.

240 Graphics Window Input Routines

Input Blocking

If a program calls winput_read on a window that doesn’t yet have any event code packets,
then the action of winput_read depends on the 0_NDELAY value, set when the window type
device interface was opened. (See open(2) and fentl(2) for details on 0_NDELAY.)

If 0_NDELAY is set, winput_read returns zero, meaning that no event code packets have yet
occurred since the last call to winput_read.

If O_NDELAY is not set, winput_read will block until an event occurs in the window or a
signal aborts the read. If an event occurs, winput_read returns an event code packet for

the event; if a signal occurs, winput_read returns ~1 and errno(2) is set to EINTR.

Example

The following program reads event code packets from a graphics window. It then displays
information from each event code packet.

The program would be executed as:
program window-name

where program is the name of the program after it is compiled, and window-name is the
name of the graphics window from which event code packets will be read.

#include <gtdio.h>
#include <window.h>
extern int errno;
main(argc, argv)

int argc;

char *argv(];

{

int wnfd;

int gwid;

int i, count;

char wname [WINNAMEMAX] ;
struct event_code buffer[10];

Graphics Window Input Routines 241

/*
* Start communication with the window, select it, and display as top:
*/
wmfd = est_wm_com();
wmpathmake ("WMDIR", argv[1], wname);

if ((gwfd = est_gr(wmfd, wname)) == -1) {
fprintf (stderr, "est_gr failed.\n");
exit(1);

}

wselect (gwfd, SETSELECT);
wtop(gwfd, SETTOP);

/*
* Set the input mode to 2 and echo input characters from the window
* until the ESC character is read.
*/
if (wgskbd(gwfd, 2) == -1) {
fprintf(stderr, "wgskbd failed.\n");
exit(1);
}
/*

* Loop and read event code packets no more than 10 at a time:
*/
while ((count=winput_read{(gwfd, buffer, 10)) >= 0) {
printf ("\nwinput_read returned %d\n\n",count);
for (i = 0; i < count; i++)
if (buffer[i].control_byte & K_EVENT) {
print_event (&buffer[i]);

}
else {
print_key(&buffer[i]);
}
fflush (stdout);
}
if (count < 0) fprintf(stderr, "errno = %d \n", errno);
/%
* Stop communication with the window:
*/
if (term_gr(gwfd) == -1) {
fprintf("term_gr failed.\n");
exit(1);
}
term_wm_com(wnfd) ;
}

242 Graphics Window Input Routines

/*

* Display information for an event:

*/

print_event (ep)

struct event_

{

code *ep;

printf("Event, wid = %2d\n",ep->wid);
print_control_byte(ep->control_byte):
print_data_byte(ep->control_byte, ep->data_byte);

printf ("

event_byte

");

switch (ep->event_byte) {

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

K_MOVE_CT:
K_SIZE_LR_CT:
K_ICON_SHK:
K_ICON_EXP:
K_PAUSE:
K_DESTROY:
K_SELECTED:
K_USELECTED:
K_REPAINT:
K_FSSM_ABORT:
K_MOUSE_MOVE:
K_BUTTON:
K_MENU_ITEM:
K_ELEV_CT:
K_SB_ARROW:
K_OVERFLOW:
K_MOVE_ST:
K_POPUP_ST:
K_SIZE_LR_ST:

default:

}

printf("\n");

printf ("

event_cause

printf ("K_MOVE_CT") ; break;
printf ("K_SIZE_LR_CT"); break;
printf ("K_ICON_SHK") ; break;
printf ("K_ICON_EXP"); break;
printf ("K_PAUSE") ; break;
printf ("K_DESTROY") ; break;
printf ("K_SELECTED"); break;
printf ("K_USELECTED"); break;
printf ("K_REPAINT") ; break;
printf ("K_FSSM_ABORT") ; break;
printf ("K_MOUSE_MOVE"); break;
printf ("K_BUTTON") ; break;
printf ("K_MENU_ITEM"); break;
printf ("K_ELEV_CT") ; break;
printf ("K_SB_ARROW") ; break;
printf ("K_OVERFLOW"); break;
printf ("K_MOVE_ST") ; break;
printf ("K_POPUP_ST"); break;

printf ("K_SIZE_LR_ST"); break;

printf ("Unknown (%3d)",ep->event_byte); break;

=",

Graphics Window Input Routines

243

switch (ep->event_cause) {

case EC_NONE: printf ("EC_NONE") ; break;
case EC_BUTTON1: printf ("EC_BUTTON1") ; break;
case EC_BUTTON2: printf ("EC_BUTTON2") ; break;
case EC_BUTTON3: printf ("EC_BUTTON3") ; break;
case EC_BUTTON4: printf ("EC_BUTTON4") ; break;
case EC_BUTTONS: printf ("EC_BUTTON5") ; break;
case EC_BUTTONG: printf ("EC_BUTTON6") ; break;
case EC_BUTTON7: printf ("EC_BUTTON7") ; break;
case EC_BUTTONS: printf ("EC_BUTTON8") ; break;
case EC_SELECT: printf ("EC_SELECT") ; break;
case EC_ENTER: printf ("EC_ENTER") ; break;
case EC_EXIT: printf ("EC_EXIT") ; break;
default: printf ("Unknown (%3d)",ep->event_cause); break;
}

printf("\n");
printf(" timestamp = %d\n",ep->timestamp);
printf(" x,y = %d,%d\n",ep->x,ep->y);
}

/*
* Print keycode packet information:
*/
print_key (kp)
struct event_code *kp;
{
printf("Key, wid = %2d\n",kp->wid);
print_control_byte(kp->control_byte);
print_data_byte(kp->control_byte, kp->data_byte);
printf(" timestamp = %d\n",kp->timestamp);
}

/*
* Print the data byte of the keycode:
*/
print_data_byte(control_byte, data_byte)
unsigned char control_byte, data_byte;
{
if (control_byte&K_SPECIAL) {
printf(" data_byte = ");
switch (data_byte) {

case K_ILLEGAL: printf ("K_ILLEGAL"); break;
case K_EXTEND_LEFT: printf ("K_EXTEND_LEFT") ; break;
case K_EXTEND_RIGHT: printf ("K_EXTEND_RIGHT"); break;
case K_META_LEFT: printf ("K_META_LEFT") ; break;
case K_META_RIGHT: printf ("K_META_RIGHT") ; break;
case K_CAPS_ON: printf ("K_CAPS_ON") ; break;
case K_CAPS_OFF: printf ("K_CAPS_OFF") ; break;

244 Graphics Window Input Routines

case K_GO_ROMAN: printf ("K_GO_ROMAN") ; break;
case K_GO_KATAKANA: printf ("K_GO_KATAKANA") ; break;
case K_BUTTON1: printf ("K_BUTTON1") ; break;
case K_BUTTON2: printf ("K_BUTTON2") ; break;
case K_BUTTON3: printf ("K_BUTTON3") ; break;
case K_BUTTON4: printf ("K_BUTTON4") ; break;
case K_BUTTONS: printf ("K_BUTTON5") ; break;
case K_BUTTONG: printf ("K_BUTTON6") ; break;
case K_BUTTON7: printf ("K_BUTTON7"); break;
case K_BUTTONS: printf ("K_BUTTON8") ; break;
case K_GO_KANJI: printf ("K_GO_KANJI"); break;
case K_GO_NOKANJI: printf ("K_GO_NOKANJI") ; break;
case K_BREAK: printf ("K_BREAK") ; break;
case K_STOP: printf ("K_STOP") ; break;
case K_SELECT: printf ("K_SELECT") ; break;
case K_NP_ENTER: printf ("K_NP_ENTER") ; break;
case K_NP_KO: printf ("K_NP_KO"); break;
case K_NP_K1: printf ("K_NP_K1"); break;
case K_NP_K2: printf ("K_NP_K2"); break;
case K_NP_K3: printf ("K_NP_K3"); break;
case K_HOME_ARROW: printf ("K_HOME_ARROW") ; break;
case K_PREV: printf ("K_PREV") ; break;
case K_NEXT: printf ("K_NEXT") ; break;
case K_ENTER: printf ("K_ENTER") ; break;
case K_SYSTEM: printf ("K_SYSTEM") ; break;
case K_MENU: printf ("K_MENU") ; break;
case K_CLR_LINE: printf ("K_CLR_LINE"); break;
case K_CLR_DISP: printf ("K_CLR_DISP"); break;
case K_CAPS_LOCK: printf ("K_CAPS_LOCK") ; break;
case K_TAB: printf ("K_TAB") ; break;
case K_F1: printf ("K_Fi"); break;
case K_F2: printf ("K_F2"); break;
case K_F5: printf ("K_F5"); break;
case K_F6: printf ("K_Fé6"); break;
case K_F7: printf ("K_F7"); break;
case K_F3: printf ("K_F3"); break;
case K_F4: printf ("K_F4") ; break;
case K_DOWN_ARROW: printf ("K_DOWN_ARROW") ; break;
case K_UP_ARROW: printf ("K_UP_ARROW") ; break;
case K_F8: printf ("K_F8"); break;
case K_LEFT_ARROW: printf ("K_LEFT_ARROW") ; break;
case K_RIGHT_ARROW: printf ("K_RIGHT_ARROW") ; break;
case K_INSERT_LINE: printf ("K_INSERT_LINE"); break;
case K_DELETE_LINE: printf ("K_DELETE_LINE") ; break;
case K_INSERT_CHAR: printf ("K_INSERT_CHAR") ; break;
case K_DELETE_CHAR: printf ("K_DELETE_CHAR") ; break;
case K_BACKSPACE: printf ("K_BACKSPACE") ; break;
case K_RETURN: printf ("K_RETURN") ; break;
default: printf ("Unknown") ; break;
}

Graphics Window Input Routines 245

} else {

printf (" data_byte = %3d",data_byte);
if (data_byte >= * ' && data_byte <= ’~?)
printf (" ’%c’",data_byte);

}
printf("\n");
}

/*

* Print the control byte of a keycode packet:

*/

print_control_byte(control_byte)

unsigned char control_byte;

{

printf(" control_byte =");

if (control_bytekK_SHIFT_B)
if (control_byte&K_CONTROL_B)
if (control_byte&K_META_B)
if (control_byte&K_EXTEND_B)
if (control_byte&K_UP)
if (control_byte&K_NPAD)
if (control_byte&K_EVENT)
if (control_byte&K_SPECIAL)
if (control_byte == 0)
printf ("\n");

246 Graphics Window Input Routines

printf("
printf("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("

K_SHIFT_B");
K_CONTROL_B") ;
K_META_B") ;
K_EXTEND_B") ;
K_UP");
K_NPAD") ;
K_EVENT") ;
K_SPECIAL") ;
0");

Graphics Softkeys

This chapter discusses the use of softkeys with graphics windows. The following topics
are covered:

e concepts essential to understanding the use of softkeys with graphics windows
e turning on and off softkey labels

e changing softkey labels

Note

For details on user-defined softkeys with term0 windows, see Chap-
ter 10, “Term0 Windows.”

Graphics Softkeys 247

Concepts

Any process that reads input from a selected graphics window can take input from the
keyboard function keys ([f1], (2],..,(18], [User], [System], and [(Menu]). Each of these function
keys has a softkey definition comprised of a softkey label and return value.

Softkey Labels

Softkey labels are descriptive names that correspond to the function keys. The selected
window’s softkey labels are displayed at the base of the display if the display of the
window’s softkey labels has been enabled via window routines.

Windows/9000 allows you to set your own labels for the function keys through [18).
For example, you could set the softkey labels to represent menu options that the user
chooses by pressing the corresponding function key on the keyboard.

Changing the selected window changes the softkey labels to those of the newly selected
window. If the display of softkey labels is not enabled in the newly selected window,
then softkey labels are not displayed.

The labels are displayed on top of any windows that extend into the softkey display
area. Windows still have full use of the display; just keep in mind that softkey labels are
displayed on top of any window(s) extending into the softkey display area.

Figure 12-1. Softkey Label Format.

Figure 12-1 illustrates the format of softkey labels as they are displayed on the screen.
Key labels 1 through 8 are eight characters wide by two characters high.

The (User])/[System] and softkey labels are six by two characters in size. The
(User]/(System] label always has a horizontal line that separates its shifted and unshifted
modes.

The wlabel label is 14 characters wide by two characters high. The window label of the
selected window is displayed in the top portion of the label.

248 Graphics Softkeys

The key labels are centered in a pseudo window at the bottom of the display.

The [Menu], [User]/(System], and wlabel labels are displayed with their color pair inverted.
If the wlabel label doesn’t fit, then it isn’t shown. (This may occur on the HP 300
medium-resolution displays, for instance.)

Return Values

When a function key is pressed, an escape sequence! is sent to the selected window’s de-
vice interface. The sequence returned is always the same, regardless of whether modifier
keys such as or are held down when the function key is pressed. Table 12-1
defines the escape sequence generated by each softkey.

You can get these softkey values by opening and reading from the window’s device
interface. Read the “Graphics Window Input” chapter for details on how to read from

graphics windows.

Table 12-1. Returned softkey escape sequences.

Escape Sequence

Key Returned
FFeje
g ja
fbajs
Ep
B q
for
s
@ %t
o u
o v
o w

1 An escape sequence is a string of characters that starts with the escape character, denoted as Ec in
Table 12-1. The escape character is 033 in octal, 27 in decimal, and Ox1b in hexadecimal.

Graphics Softkeys 249

The escape sequences in Table 12-1 contain spaces only for readability. The actual escape
“sequences do not contain any embedded spaces.

Keys other than softkeys also return escape sequences. Table 12-2 shows these keys and
their return values.

Table 12-2. Other escape keys.

Escape Sequence
Key Returned

Bk
[Ciear display] | B¢ J
EL
BEw
nsert char E't:l)
Delete char) | B P
B
Boa
E B
B¢
B

T

250 Graphics Softkeys

Turning Softkey Labels On and Off

By default when a graphics window is created, its softkey labels are not displayed. With
the wsfk_mode(3W) routine, you can enable or disable the display of softkey labels for a
given graphics window.

Procedure
To turn a graphics window’s softkey labels on or off, call wsfk_mode; its syntax is:

wsfk_mode (fd, mode)

The mode parameter detemines whether or not softkey labels are displayed. Following
are valid values for mode:

o if mode=SFKON, then the window’s softkey labels are displayed when the window is
selected;

o if mode=SFKOFF, then the labels are not displayed.

Note that the example in the next section illustrates the use of this routine.

Graphics Softkeys 251

Changing Softkey Labels

For any graphics window, the wsfk_prog(3W) routine sets the softkey label string for a
specified function key. It also controls whether or not a horizontal separator bar is placed
in the softkey’s label area.

Procedure

To change a graphics window’s softkey label for a specific function key, simply call
wsfk_prog; its syntax is:

wsfk_prog(fd, key, label, separator)

The key parameter specifies the function key number; the new softkey label to use is
pointed to by label; and the separator parameter is a horizontal separator flag.

The key parameter must range from 1 to 8, corresponding to function keys through

The label parameter is a null-terminated character string that replaces the softkey label
designated by the key parameter. The following rules describe how labe! fills in the softkey
label area:

e Each softkey label contains only 16 characters—two rows at eight characters per
row. Therefore, if label is longer than 16 characters, only the first 16 are used.

o If label is less than 16 characters, then blanks are assumed for the remaining char-
acters.

o label fills the top row of the label area first, then the second row: the first eight
characters of label fill the top row; the second eight fill the lower row. Therefore,
if you want label to appear in the bottom row only, you must pad label with eight
leading blanks.

The separator parameter indicates whether or not to display a horizontal line (separator)
between the upper and lower portions of the softkey’s label area:

o if separator=SFKSEPON, then the separator is displayed

e if separator=SFKSEPOFF, then no separator is displayed.

Presently, shifted softkeys cannot be differentiated from unshifted softkeys. (The re-
turned codes are documented in Table 12-1.)

252 Graphics Softkeys

Example

The following function, set_gr_labs.c, resets the softkey labels for a graphics window
to those specified in an array parameter, new_labels. A separator bar is displayed if
specified by the sep_bar parameter. Finally, the displaying of softkey labels is enabled
for the specified window.

#include <window.h> /* window library definitions */
set_gr_labs(wfd, new_labels, sep_bar)
int wfd; /* window’s file descriptor */
char *new_labels([]; /* new softkey labels */
int sep_bar; /¥ 0 = no separaotr, 1 = separator */
{

int key; /* softkey number */
/*

*

DISPLAY NEW SOFTKEY LABELS FOR A GRAPHICS WINDOW.
%
* STEP 1: Change the softkey labels:
*/

for (key=1; key<=8; key++)

if (wsfk_prog(wfd, key, new_labels[key-1], sep_bar) < 0) return(-1);

/*
* STEP 2: Display the new softkeys:
*/
if (wsfk_mode(wfd, SFKON) < 0) return(-1);

return(0) ;

Graphics Softkeys 253

Notes

254 Graphics Softkeys

Term0 Windows 1 3

TermO windows (pronounced “term zero”) have many of the capabilities of Hewlett-
Packard terminals—specifically, HP 2622/2627 terminals. Applications written for these
terminals are easily ported to term0 windows.

If your application requires only limited terminal support—simply displaying characters
and reading characters typed from the keyboard—then you needn’t bother with this
chapter.

If, on the other hand, you’re interested in more sophisticated terminal capabilities—
for example, font management, underlining characters, positioning the cursor at z,y
locations, and accepting keyboard input without echoing characters—then this chapter
will be useful.
The following topics are discussed in this chapter:

¢ term0 window concepts

e turning the cursor on and off

e turning the softkeys on and off

o defining softkeys

o getting font information

e setting the base/alternate font

e replacing fonts

e converting pixel and character coordinates

e using raw mode

TermO Windows 255

Concepts

This section discusses concepts essential to successfully using and programming term0
windows. Specifically, the following topics are discussed:

term0 window features

term(0 window escape sequences
user-definable softkeys

the term0 font management model
colors

raw mode

Term0 Window Features
Each term0 window offers the following features:

256

a user-selectable number of lines of display memory

complete screen editing functions: insert/delete character, insert/delete line, and
clear line/display

absolute and relative cursor positioning
vertical and horizontal scrolling
tab and margin settings

one set of eight (or sixteen) softkeys; you may program both the soft key labels
(the characters composing the menu at the bottom of the display) as well as the
soft key definitions (the string of characters that are output when a function key is
pressed)

user-selectable fonts

underlining and inverse video display enhancements in HP mode (field-oriented)
color enhancements

support for TERMCAP entries and the curses(8X) library routines

a standard HP-UX ¢ty programmatic interface

Term0 Windows

Note: term0 windows do net offer the following HP 2622 capabilities:

e block mode

format mode (including protected and unprotected fields)

memory lock

programmable time delay

“local” mode.

Also, term0 windows do not provide HP 2623 or HP 2627 graphics capabilities.

Term0 Window Escape Sequences

Almost any term0 window function that can be performed from the keyboard (for ex-

ample, pressing the key or the keys) can be programmed by means of
escape sequences.

What Is an Escape Sequence?

An escape sequence is a string of characters that begins with an ASCII ESC character!
(denoted hereafter as). Term0 windows interpret escape sequences as commands rather
than as a sequence of simple display characters.

Escape sequences can be typed from the keyboard (in which case, they affect the window
attached to the keyboard), or they can be written (via write(2), putchar(8), etc.) to any
term0 window. Note that if you type escape sequences from a shell, they will also be
interpreted by the shell and will cause error messages, because the shell won’t understand
them. (Escape sequences cannot be typed in if you’re using the C-shell, esh(1}; this is
because the key has special meaning in this shell.)

Examples
For example, with a term0 window, you can turn off the menu at the bottom of the
display by outputting the following escape sequence? to the term0 window:

Egjo

The effect is the same as if you had pressed [Menu].

Decimal code 27; octal code 33.
The escape sequences in this chapter are shown with embedded blanks for readability. When writing an
escape sequence to a term0 window, omit the blanks.

Term0 Windows 257

The following escape sequence turns on the user function keys:
Bk jB
The effect is the same as if you had pressed [User].
Commonly Used Escape Sequences
Term0 windows recognize only HP escape sequences. Table 13-1 defines some of the

most commonly used escape sequences. The Term0 Reference Manual provides more
detail on the various supported escape sequences.

Table 13-1. Useful Escape Sequences

Escape Sequence Its Effect on the Window
B n Home the cursor.
E g Clear from cursor to bottom of window buffer.
EnhEyJ Home up and clear to bottom of window buffer.
Bk Clear from the cursor to the end of the line.
EEgabD Turn on underlining.
ExtaB Turn on inverse video.
EEgde Turn off underlining, inverse, or both.
Eo A Move the cursor up one row.
E B Move the cursor down one row.
E ¢ Move the cursor right one column.
B D Move the cursor left one column.
E: & a <col> ¢ <row> R Position the cursor to <col> and <row> in the window.

258 Term0O Windows

User-Definable Softkeys

Windows,/9000 supports anywhere from eight up to 16 user-definable softkeys per term0
window. A user-definable softkey is comprised of two parts: a label and a definition
string.

Softkey Labels

Softkey labels are descriptive names that correspond to function keys ((f1], (f2],..,(f8]).
The selected window’s softkey labels are displayed at the base of the display if the
display of the window’s softkey labels has been enabled via the key or term0
escape sequences.

You can define your own softkey labels, for both unshifted and shifted softkeys, via
term0 escape sequences. This is useful when you want to use the function keys from your
application(s), and when you want to assign meaningful names to the function keys. For
example, you may want the softkey labels to correspond to menu options that the user
can select by pressing a function key.

The following rules apply to softkey labels:

e Changing the selected window changes the softkey labels to those of the newly
selected window. If the display of softkey labels is not enabled in the newly selected
window, then no softkey labels are displayed.

e The labels are displayed on top of any windows that extend into the softkey display
area. Windows still have full use of the display; just keep in mind that softkey
labels are displayed on top of any window(s) extending into the softkey display
area.

o Figure 13-1 shows a term0 window with softkeys enabled; it illustrates the format
of softkey labels as they are displayed on the screen. Key labels 1 through 8 are
eight characters wide by two characters high.

Term0O Windows 259

+ wlabel

Figure 13-1. Softkey Label Format.

o The wlabel label is 14 characters wide by two characters high. The window label of
the selected window is displayed in the top portion of the label.

e The key labels are centered at the bottom of the display.
e The [Menu], [User)/[System], and wlabel labels are displayed with their color pair

inverted. If the wlabel label doesn’t fit, then it isn’t shown. (This may occur on
the HP 300 medium-resolution displays, for instance.)

Softkey Definition Strings

A softkey definition is a string of characters, up to 80 characters in length, that is
returned when the user presses a function key. Using termO escape sequences, you can
create a softkey definition string for either unshifted or shifted function keys. Then when
a function key is pressed, the definition string is sent as standard input from the device
interface of the selected window—it’s as if the definition string is actually typed at the
keyboard, even though only the function key is pressed.

Each function key has a default escape sequence value that is returned if no definition
string has been defined. Table 9-1 in chapter 9, “Graphics Softkeys,” shows the default
values that are returned for each function key.

260 TermO Windows

The Term0 Font Management Model

Each term0 window has a base and alternate font. By default, when you write characters
to a term0 window, the characters are displayed in the base font. You can cause characters
to be written in the alternate font by sending an ASCII SO! character ((CTRL} N)); to
return to the base font, send an ASCII SI? character ((CTRL}O) or a carriage-return.

Note, however, that you are not limited to just two fonts in a window at a time—you can
have up to eight fonts displayed in a window simultaneously. The fonts must all be of the
same size (in pixel width and height). However by using commands (e.g., wfont(1)) or
window library routines, you can switch to a different font size, in which case the term(
window’s size is automatically readjusted to accomodate the new font size.

The simultaneous display of eight fonts is possible because of the font cache. The font
cache is an array that holds font information in memory. Each term(Q window has a
font cache which holds font definitions for up to eight same-sized fonts. Font defini-
tion information is kept permanently in font files; when needed, font files are loaded
into the font cache via term0 font management routines. (The fontstruct structure in
Jusr/include/fonticon.h defines the format of a font file.) Each font in the cache has a
unique font id which distinguishes that font from others in the cache.

Font files are stored in font directories. Font files for all fonts of the same size—i.e., same
pixel width and height—are stored in specific font directory. The size of fonts in a given
font directory is denoted by the font directory’s name, and all font directories are found
in the directory specified by the window system environment variable WMFONTDIR
(normally /usr/lib/raster). To see the various font sizes supported on your system,
simply list the SWMFONTDIR directory; for example:

1s $WMFONTDIR
may list the following font directories:
12x20 18x30 7x10 8x16 L6x15

Directory 12220 contains font files for all fonts that are 12 pixels wide by 20 pixels high;
directory 8z16 contains font files for all 8-by-16-pixel fonts; and so on.

! Decimal 14; octal 016.
2 Decimal 15; octal 017.

Term0O Windows 261

After you've loaded any needed fonts into the font cache via term0O font management
routines or escape sequences, you must activate one of the fonts as the base font; you may
also optionally activate one of the fonts as the alternate font. Term0 font management
routines or term(escape sequences can be used to activate fonts. However, we suggest
that you use term0 font management routines to activate fonts, because escape sequences
are sometimes too ambiguous to specify exactly which font in the cache to activate.

Once base and alternate fonts are activated, you can cause characters to be written in
the alternate font by sending an SO character to the window; you can return to the base
font by sending SI or CR (carriage-return).

In addition to loading and activating a font, you can replace a font in the cache with
a font from a font directory. This is useful if the font cache is full and you wish to use
another font—an unused font in the cache can be replaced with the needed font from the
font directory.

Colors

Every character displayed in a term0 window has a color pair attribute. The color pair
attribute determines the foreground and background colors to use when displaying the
character.

The color pair attribute is essentially a pointer to a color pair in the term0 window’s
color pair table. A color pair defines foreground and background colors to use when
displaying a character; the color pair table contains eight color pairs. Table 13-2 shows
the default color pair table, i.e., the color pair table for newly created term0 windows.

262 Term0O Windows

Table 13-2. Default color pair table.

Color Pair| Foreground Color |Background Color
0 White Black
1 Red Black
2 Green Black
3 Yellow Black
4 Blue Black
5 Magenta Black
6 Cyan Black
7 Black Yellow

Color pair 0 (white characters on black background) is the default color pair used when
displaying text in termO windows. Certain color escape sequences allow you to use
different color pairs when displaying text. In other words, you’re not restricted to using
color pair 0; you can display text using any of the color pairs defined in Table 13-2.

Each color in the color pair table is defined by mixing different amounts of red, green,
and blue colors (this is known as RGB technology). With term0 windows, the red, green,
and blue values can be on or off. The result is that eight different colors can be created.
Table 13-3 defines the colors produced by each possible combination of red, green, and
blue.

Term0 Windows 263

Table 13-3. RGB color definitions.

R | G | B | Resulting Color
01010 Black
0|0 |1 Blue
0J11]0 Green

0 {1 {1 Cyan
1]01]0 Red

110 |1 Magenta

1 110 Yellow
111 (1 White

Other color escape sequences allow you to redefine the color pairs. For example, if you
don’t like the default white characters on a black background, you can redefine the default
color pair (0) to be black characters on a yellow background.

Note that if you change a color pair, then any visible characters that were displayed using
the changed color pair will automatically be redisplayed using the new color pair values.

Note

The “Windows/9000 Escape Sequences” chapter of the Term0 Ref-
erence Manual provides detailed information on using color escape
sequences.

264 Term0O Windows

Turning the Cursor On and Off

Each term0 window has its own cursor, to mark where the next display character will
appear in the term0 window. You may want to turn the cursor off to avoid distracting
the user, especially if your application does a lot of cursor positioning.

As an added benefit, displaying rows of characters with the cursor off is slightly faster
than with the cursor on.

Procedure

Turning the Cursor On
To turn the cursor back on, use:

BEbxdq

Turning the Cursor Off
To turn off the cursor, use the following escape sequence:

EcxanR

TermO Windows 265

Turning Softkeys On and Off

HP escape sequences are also used to enable or disable the display of the softkey menu
for a term0 window.

Procedure

Turning the Softkeys On
To ensure that the softkeys are displayed in a term0 window, use the following HP escape
sequence:

EE&jB

Turning the Softkeys Off
To stop displaying a term0 window’s softkey menu, use the following escape sequence:

BEgje

266 Term0 Windows

Defining Softkeys

As mentioned in the “Concepts” section, softkey labels and definition strings can be
defined via HP escape sequences. By sending \writing) the appropriate escape sequence
to a term0 window, you can define the softkeys for that window.

Procedure
An HP escape sequence for a softkey typically specifies three items:

e the function key that you wish to define (1-16)
o the key label to appear in the menu at the bottom of the display (1 to 16 characters)
o the string of characters to be output when the user presses the function key (up to

80 characters).

In general, the escape sequence used to define softkeys conforms to the following format;
the embedded blanks are shown only to enhance readability; do not include blanks in
the actual escape sequence:

Eouf 0a dk jda k1 label definition

The 0a, ik, jd, and k1 parameters can appear in any order; just remember that the last
parameter must be capitalized. Table 13-4 describes each parameter in detail.

Term0 Windows 267

Table 13-4. Parameters to softkey defintion escape sequence.

Parameter Definition
Eogt Tells the window that the escape sequence redefines a softkey.
Oa Says that the softkey will be a normal softkey. This is the only softkey type
supported by Windows/9000.
k The softkey to set the label and definition strings for is denoted by 7. ¢ is an
ASCII integer string from 1 to 16.
sd The length of the label string is denoted by j. j is an ASCII integer string.
k1 The length of the definition string is given by k. kis an ASCII integer string.
label The label string. Should contain exactly as many characters as specified by jd.
definition | The definition string. Should contain exactly the number of characters specified

by k1.

Note: You should refer to the Term0O Reference Manual as you read this section; the
escape sequence is described in more detail in that manual.

If you specify a key greater than eight (8), then the term0 window will display a separator
bar between the shifted and unshifted representations for the softkey—the lower row for
the unshifted function key, the upper row for the shifted function key. If the lower half
of the key label is empty, and there is no horizontal separator bar between the upper
and lower halves, then pressing the shifted function key is no different than pressing the
unshifted function key.

Softkey definitions take effect as soon as the escape sequence is written to the window.

268 TermO Windows

Examples

Entering the following escape sequence from a term0 window renames the softkey label
for to DateTime; the definition string is set to the HP-UX command date terminated
with a carriage-return. After you have typed in the following sequence, the softkey for
will be redefined as described. Whenever you press this key, or boink the locator
over its displayed softkey label, the date command will be excecuted. The blanks in the
escape sequence are included only to enhance the readability of the sequence; do not
include the blanks when typing this sequence.

[ESClut 0a 8k 8d 5L DateTime date[Return]

The following write(2) statement when called from a program redefines the softkey for
function key f9 ([Shift}-[f1]). Its label is set to INVERSE and its definition is set to the
escape sequence for inverse video.

write(l, "\033&f0a9k7d4LINVERSE\033&dB", 21);

Term0 Windows 269

Getting Font Information

You can use term0 window library routines to obtain information about the fonts being
used in a term0 window. For example, you can determine:

the current font size—the size of the fonts stored in the font cache
the font ids of fonts stored in the cache, given their names

font names of fonts stored in the cache

the font id of the current base font

the font id of the current alternate font

Procedure

To get font information for a term0 window, call the appropriate term0 library routine.
These routines all require a file descriptor (fd) for the term0 window’s device interface;
the remaining parameters vary:

270

fontsize_term0(fd, wptr, hptr) — returns the current font size being used in the
window. wptr and hptr are pointers to integers that will contain the pixel width
and height of the current font size. For example:

int font_w, font_h;
fontsize_termO(fd, &font_w, &font_h);
gets the current font width and height and puts them in font_w and font_h, respec-

tively.

fontgetid_termO(fd, fontpath) — returns the font id of the font specified by the

path name pointed to by fontpath, if the font exists in the font cache. For example:
int font_id;

font_id = fontgetid_termO(fd, "/usr/lib/raster/8x16/1p.8U");

sets font_id to the font id of the font specified by the second argument, if that font
is currently in the font cache.

Term0 Windows

e fontgetname_term0(fd, id) — this function returns a pointer to a static storage area
containing a null-terminated character string that represents the path name of the
font denoted by id, if the font exists in the font cache.

char *font_path;
int font_id;
font_path = fontgetname_termO(fd, font_id);
makes font_path point to the path name of the font specified by font_id, if the font

exists in the font cache.

e basefont_term0(fd, 1d) — returns the base font’s id when id is set to GETFONTID. For
example:
#include <window.h>
int base_font_id;
base_font_id = basefont_termO(fd, GETFONTID);
sets base_font_id to the font id of the base font.
e altfont_termO(fd, id) — returns the alternate font’s id when #d is GETFONTID. For
example:
#include <window.h>
int alt_font_id;

alt_font_id = altfont_termO(fd, GETFONTID);

sets alt_font_id to the alternate font’s id.

Term0O Windows 271

Setting the Base/Alternate Font

The base and alternate fonts for any window can be set via term0 window library routines.
This section describes the use of these routines.

Procedure
The procedure for setting the base and/or alternate font is straightforward:

1.

272

A font cannot be made the base or alternate font until it is loaded into the font
cache. Therefore, if the desired base/alternate font is not already loaded, you must
load it. The fontload_term0(3 W) routine loads a font into the font cache and returns
the font’s id; its syntax is:

fontload_term0(fd, fonipath)

The fontpath parameter is the path name of the font file to load into the font cache.
You may want to use the fontgetid_term0 routine to make sure that loaded font
doesn’t already exist in the font cache before loading it.

Note that if the font cache is already full, then you must replace, or swap, base and
alternate fonts; this is discussed in the section “Replacing Fonts.”

Once a font file is loaded into the font cache, you can activate it as the base or
alternate font. The basefont_term0(3W) routine activates a font as the base font;
its syntax is:

basefont_termO(fd, ¢d)

The id parameter is the font id of the font. The font id can be obtained when the
font is loaded (as in step 1), or it can be obtained via the fontgetid_term0 routine.

The altfont_term0(3W) routine activates a font as the alternate font; its syntax is:
altfont_termO(fd, id)

The id parameter is the font id of the font to activate as the alternate.

Term0 Windows

Example

The following program, basalt.c, loads the bold, 8-by-16-pixel font into the font cache; it
also loads the italic, 8-by-16-pixel font. It then activates the bold font as the base font
and the italic font as the alternate.

Note that this program works on the window from which it is invoked. In other words,
if you invoke this program from a term0 window, the base and alternate fonts for that
window will be reset as described above.

This is possible because the window’s device interface is automatically opened for stan-
dard input and output when the program (process) starts execution. That is, the win-
dow’s device interface is opened as standard output if standard output isn’t redirected
when the program is invoked. Therefore, you must initialize (via winit(3W)) standard
input (or output) before calling the term0 window routines with the standard input (or
output) file descriptor.

#include <window.h> /* window constant definitions */
#define WFD_STDOUT 1 /* standard output filedes */

#define BOLD_8x16_FONT "/usr/lib/raster/8x16/1p.b.8U" /* base font */
#define ITAL_8x16_FONT "/usr/lib/raster/8x16/1p.i.8U" /* alt font */

main()
{

int base_id, alt_id; /* base and alternate font ids */

* The termO window is opened as stdout when the window is created.
* We will be using the stdout file descriptor (WFD_STDOUT) as the
* file descriptor for the window’s device interface.

* Since the window’s device interface is automatically opened when
* the process is spawned from the window, all that’s left to
* do is initialize the device interface so that you can use

* window library routines on the window using the stdout file
E

descriptor.
*/
if (winit (WFD_STDOUT) < 0)
{
fprintf (WFD_STDOUT, "error initializing stdout\n");
exit(1);
}

Term0 Windows 273

/*
STEP 1: Load the base font into the font cache.

%
*
* Before loading the font, check to see if it already
* exists in the font cache. If so, then skip this step;
* otherwise, go ahead and load the font.
*/
if ((base_id = fontgetid_termO(WFD_STDOUT, BOLD_8x16_FONT)) < 0)
if ((base_id = fontload_termO(WFD_STDOUT, BOLD_8x16_FONT)) < 0)

{
fprintf (WFD_STDOUT, "error loading base font\n");
exit(1);
}
/*
* STEP 2: Activate the font as the base font:
*/
if (basefont_termO(WFD_STDOUT, base_id) < 0)
{
fprintf (WFD_STDOUT, "error activating the base font\n");
exit(1);
}
/*
* STEP 1: Load the alternate font into the font cache.
*
* Before loading the font, check to see if it already
* exists in the font cache. If so, then skip this step;
* otherwise, go ahead and load the font.
*/
if ((alt_id = fontgetid_termO(WFD_STDOUT, ITAL_8x16_FONT)) < 0)
if ((alt_id = fontload_termO(WFD_STDOUT, ITAL_8x16_FONT)) < 0)
{
fprintf (WFD_STDOUT, "error loading alternate font\n");
exit(1);
}
/*
* STEP 2: Activate the font as the alternate font:
*/
if (altfont_termO(WFD_STDOUT, alt_id) < 0)
{
fprintf (WFD_STDOUT, "error activating the alternate font\n");
exit(1);
}
}

274 Term0O Windows

Replacing Fonts

The font cache holds a maximum of eight fonts. Trying to load another font when the
cache is already full results in an error. With term0 window routines, you can replace
a font in the cache with a font from the font directories, thus avoiding the problem of
loading too many fonts in the cache.

Procedure

Two kinds of font replacement can be performed using term0 window routines: you can
replace any single font in the cache, or you can replace both the base and alternate fonts.

Replacing a Single Font in the Cache
To replace a single font in a term0 window’s font cache, use the fontswap(3W) routine
which has the following syntax:

fontswap_term0(fd, newpath, oldid)

The cache font represented by oldid is replaced with the font file represented by newpath,
a null-terminated path name. The new font’s id is returned by the routine.

Any characters that were displayed in the old font will be redisplayed in the new font.
Replacing the Base and Alternate Fonts

To replace a term0 window’s base and alternate fonts, use the fontreplaceall_term0(3W)
routine. Its syntax is:

fontreplaceall_termO(fd, bfpath, afpath)

The current base and alternate fonts are removed from the cache and replaced with bfpath
and afpath. bfpath and afpath are both null-terminated path names of font files.

This routine does not return font ids for the new base and alternate fonts. You must

obtain their font ids by using the fontgetid_term0 routine (or the basefont_term0 and
altfont_term0 routines).

Term0 Windows 275

Examples

The following function, base_load.c, is used to load and activate a base font, specified by
the fontname parameter. It checks to see if the font is already loaded; if so, it doesn’t
load it. Otherwise, it tries to load the font; if the font cache is full, then it replaces the
current base font with the new base font.

The source for this function is found in the man_ezamples directory.

#include <window.h> /* window constant definitions */
base_load(wfd, fontname)
int wfd; /* window’s file descriptor */
char *fontname; /* path name of new base font */
{
int base_id; /* base font id */
int new_base_id; /* font id of new base font */
/*

Load the new font into the font cache:

*

*

* Before loading the font, check to see if it already

* exists in the font cache. If so, then skip this step;
* otherwise, go ahead and load the font. If the font

* cache is full, swap this font with the current base

* font.

if ((new_base_id = fontgetid_termO(wfd, fontname)) < 0)
if ((new_base_id = fontload_termO(wfd, fontname)) < 0)

{
base_id = basefont_termO(wfd, fontname, GETFONTID);
if ((new_base_id = fontswap_termO(wfd, base_id)) < 0)
{
fprintf (wfd, "error loading the new base font\n");
exit(1);
}
}

276 Term0 Windows

/*
* Activate the font as the base font:

*/
if (basefont_termO(wfd, new_base_id) < 0)
{
fprintf (wfd, "error activating the base font\n");
exit(1);
}

}

The following code segment replaces the current base and alternate fonts. The new base
font is 18-by-30-pixel pica; the new alternate font, 18-by-30-pixel math font. Note that
the window size will be changed if this font size is different that the current font size.

/*

* Replace all the fonts in the font cache with a new base and
* a new alternate font.

*/

if ((fontreplaceall_termO(wfd, "/usr/lib/raster/18x30/pica.8U",
"/usr/lib/raster/18x30/math.OM")) < 0)
{

perror ("fontreplaceall_term0 failed");
exit(1);

TermO Windows 277

Converting Pixel and Character Coordinates

Window routines can be used to convert from pixel z,y coordinates to column, row
coordinates (and vice versa) with term0 windows.

Procedure

Converting Pixels to Characters
The fromzy_term0(3W) routine converts pixel coordinates to character coordinates; its
syntax is:

fromxy_term0(fd, z,y, colptr,rowptr)
The z,y parameters specify the pixel coordinates to be converted. When fromzy_term0
is finihsed, colptr,rowptr will point to integers containing the equivalent column and row

coordinates.

Converting Characters to Pixels
The tory_term0(3W) routine converts character coordinates to pixel coordinates; its
syntax is:

toxy_term0(fd, zptr,yptr, col,row)

The zptr,yptr parameters will point to integers containing pixel coordinates as converted
from the col,row parameters.

278 Term0 Windows

Using Raw Mode

The default setting of a term0 window is cooked mode, which has the following charac-
teristics:

e The editing keys act locally. For example, when the user presses the down-arrow
key, the cursor will move one row at a time down the term0 window. An application
waiting for keyboard input will have no knowledge of—and no control over—the
cursor. In cooked mode, the editing keys don’t transmit.

e The typing keys echo on the display. For example, when the user presses the
unshifted key, the term0 window will display the character a.

In raw mode, your application has much greater control over keyboard input. For exam-
ple, your application might define the [Tab}, (>], and space bar keys to move the cursor
to the next selection in a menu, while “locking out” other keyboard responses.

Note that the following system keystrokes are not affected by raw mode—they perform
their normal system functions:
o [Menu —toggles the function key labels off and on.

o [User]/[System | —switches between the user (application program) key labels and the
system key labels.

o [Select}—selects the active application window.
The following header files contain the data type declarations to set a term0 window to
raw mode and to perform terminal i/o:

#include <stdio.h>
#include <signal.h>
#include <termio.h>

In addition, the ¢ty(7) entry in the HP-UX Reference contains more detailed documen-
tation of the termio structure and the meaning of its various fields.

Term(O Windows 279

Changing to Raw Mode

The following setraw routine sets the term0 window to raw, no-echo mode:

setraw ()

{

struct termio t;

ioctl (0, TCGETA, &t); /* get the TTY parameters */
t.c_cc[VMIN] = 1;

t.c_cc[VEOL] = 1;

t.c_lflag &= ~(ICANON | XCASE | ECHO);

t.c_lflag |= ISIG;

ioctl (0, TCSETA, &t): /* set the new parameters */
write (1, "\O33&siA", 5); /* set XMIT straps x/
write (1, "\O33*dR", 4); /+* turn the cursor off */
signal (SIGINT, fixup); /* enable interrupt */
signal (SIGQUIT, SIG_IGN); /* disable quit */

b4
The termio structure above, defined in /usr/include/termio.h, is common across all HP-

UX terminal devices.

The setraw routine uses one doctl{(2) call to get the current termio values, turns off
canonical processing, turns off keyboard echo, and then uses a second foct! to set the
termio structure to the new values.

Notice the two signal(2) calls appearing at the end of the routine. The first, with SIGINT,
sets up an interrupt—if the user presses the keystroke (or whatever INT is set
to), execution will jump to the fizup routine (see below).

The second signal call, with SIGQUIT, tells the program to ignore [CTRL}|] if it is
pressed. You could instead define SIGQUIT to jump to your own interrupt handler.

280 Term0O Windows

Handling Interrupt

The SIGINT signal, appearing in the setraw routine above, enables an interrupt routine
named firup.

fizup will be called if the user presses (or whatever INT is set to):

fixup()

{
setcook() ;
exit (0) ;

}

The purpose of fizup is to “clean up” the term0 window and to cause the application to
terminate normally.

The setcook routine appears below.

Returning to Cooked Mode

When your application exits, or whenever you want to restore the term0 window to its
initial state, you can use the following setcook routine:

setcook()
{

struct termio t;

ioctl (0, TCGETA, &t);

t.c_cc[VEOF] = CEOF;

t.c_cc[VEOL] = CNUL;

t.c_iflag |= (BRKINT | IGNPAR | ISTRIP | ICRNL | IXON | IXQFF);
t.c_oflag |= OPOST;

t.c_cflag &= ~CSIZE;

t.c_cflag |= CS8;

t.c.1flag |= ECHO;

t.c_lflag |= (ISIG | ICANON);

ioctl (0, TCSETAW, &t);

write (1, "\033&sOA", 5); /* clear xmit straps */
write (1, "\033*dQ", 4); /* turn the cursor on! */

Term0 Windows 281

A Word About the Transmit Function

The transmit strap, a software “switch” that is initially cleared, determines whether
an escape sequence is transmitted to an application or is handled locally by the term0
window (unknown to the application).

One of the purposes of the setraw routine above is to enable your application to receive
all editing keystrokes—hence, that routine includes a write statement to set the transmit
strap. The following escape sequence does the trick:

EEgs1a
The next escape sequence restores normal (or local) handling of escape sequences:
ﬁ:& s 0A

We’ll send this escape sequence to the term0 window when we want to restore the term0
window to cooked mode.

Running in Raw Mode

With your term0 window in raw mode, certain terminal functions are no longer handled
for you automatically. Your application must handle them on its own.

This section mentions some of the more important responsibilities left to your application.

Echoing Characters
The most common need is to echo characters as they’re typed. For example:

write(1,&ch,1);
writes one character to standard output.

Without an explicit write statement, the user can’t see what is typed at the keyboard.

282 Term0O Windows

Destructive Back Space
In raw mode, simply ‘moves the cursor to the left one space. To create a
destructive back space:

1. Move the cursor one space to the left by sending an ASCII BS character.!
2. Write a space (to “white out” the next character).2

3. Again move the cursor one space to the left.
The net effect is a back space with erasure. But that’s not all!

In cooked mode, your application will never see the user’s input line until the user presses
(Return]. Any erasures will be handled for you and automatically eliminated from the key
buffer so that your application receives only the corrected line.

In raw mode, however, your application receives characters as they are typed. If the
user presses [Back space], your application will detect an ASCII BS character just as it
would detect a printable character. In the event of a back space, it’s up to your keyboard
handling routines to “erase” (or remove) the undesired character from your own input
buffer.

New Lines and Carriage Returns
Normally in cooked mode, when a new line character (ASCII LF)3 is written to a term0
window, a carriage return/linefeed sequence is generated.

In raw mode, you must explicitly write the two characters to the window:

write(1,"\015\012",2);

The effect is to position the cursor at the left margin of the next line.

1 Decimal code 8; octal code 10.
2 Decimal code 32; octal code 40.
3 Decimal code 10; octal code 12.

Term0 Windows 283

Escape Sequence Parsing
Recognizing escape sequences as they are transmitted from the keyboard can involve a
lot of code. The simplest way is to set up an input parser of the form:

#define ESC ’\033°

char parsekey()
{

char ch;
read(0, &ch, 1);
if (ch == ESC)
{
read(0, &ch, 1);

process the remainder of the
escape sequence...

}
else return(ch);

}

The parsekey routine can include a large switch statement, after it has detected an B
character, to pick out the individual keystrokes that the user might have pressed.

Blocked vs. Unblocked Reads

There are two common ways to accept terminal input: using blocked reads and unblocked
reads.

The previous setraw routine initialized the termG window to accept blocked reads. That
is, when reading from the keyboard, your program will block, or wait, until a key is

pressed. (The read won’t return.)

You may want to use unblocked reads instead. In an unblocked read, the read statement
returns immediately, whether or not there’s a key in the key buffer.

The advantage of an unblocked read is that your application doesn’t have to be hung up
waiting for the user—it can go off and do other things.

It’s easy to set up the term0 window for unblocked reads: Simply define both the VMIN
and the VTIME values in your termio structure to be 0 (zero) inside the setraw routine.

284 Term0 Windows

The main disadvantage is that polling the keyboard, as happens during unblocked reads,
can be a drain on system resources. If a number of applications are all polling the
keyboard at the same time, then system response time can become degraded.

A compromise solution is to set up a signal handler that is executed when the window
in which your application is executing becomes detached (not selected), etc. You can
start off by polling the keyboard, but when your application senses that its window is
detached from the keyboard, it can return to blocked reads.

Another alternative is to use the HP-UX system call select(2). Or, you can limit the
number of times your program polls the keyboard.

Term0 Windows 285

Notes

286 Term0 Windows

The Fast Alpha Library

The fast alpha display library provides high-performance alpha (textual) capabilities with
graphics windows and bit-mapped graphics displays. For example, you can write text
and manipulate fonts, you can clear a portion of a window /display, or you can scroll part
of a window /display. The following topics are covered in this chapter:

concepts essential to using fast alpha routines
initializing and terminating the fast alpha environment
changing the fast alpha environment

cursor control

writing characters

font manipulation

clearing part of a window

scrolling part of a window.

The Fast Alpha Library 287

Concepts

This section discusses concepts essential to understanding the use of fast alpha routines.
The following topics are discussed:

the fast alpha programming model

e cursor positioning

character enhancements

fast alpha rectangles

Note

Definitions of fast alpha constants and structures are found in the
file /usr/include/fa.h.

Also, programs that call fast alpha routines require that both the
fast alpha and font manager libraries be linked.

Programming Model

Fast alpha routines can be used with any graphics window or any bit-mapped display
supported by Windows/9000. In other words, you can call fast alpha routines to work
with bit-mapped displays or windows on bit-mapped displays. It’s the same concept as
using Starbase graphics routines with either a bit-mapped display or graphics windows.
Certain tasks must always be performed in programs that call fast alpha routines.

288 The Fast Alpha Library

First, Get the File Descriptor
Fast alpha routines require the file descriptor of the window or the display’s opened
device interface. The following rules should be followed:

e When using fast alpha routines with a graphics window, you must first start com-
munication with the graphics window (as described in the “Concepts” section of the
“Window Manipulation” chapter). The file descriptor returned from performing a
graphics open (gopen(3G)) is required by fast alpha routines.

e When using fast alpha routines with a bit-mapped display, you must obtain a
file descriptor for the display by performing a graphics open {gopen(3G)) on the
display’s device interface. The file descriptor returned from gopening the device
interface is the one used by fast alpha routines.

Note

If you are using fast alpha routines to combine text and graphics in
the same window, then you should obtain separate file descriptors
for fast alpha routines and Starbase routines; that is, you must
open the graphics window once for fast alpha routines and once
for Starbase routines.

Getting separate file descriptors ensures that fast alpha routines
work predictably. You can use the same file descriptor for both fast
alpha and Starbase routines, but the results will be unpredictable.

Initializing/Terminating the Fast Alpha Environment

Before calling any other fast alpha routines, you must initialize the fast alpha environment
for the window /display on which the routines operate. Once the fast alpha environment is
initialized, you can call fast alpha routines that manipulate the window/display. When
you are finished using the fast alpha routines with a window/display, the fast alpha
environment must be terminated. (The section “Initializing/Terminating the Fast Alpha
Environment” contains more information on how to do this.)

Note that you can use window library routines on the window before, during, and after

initializing and terminating the fast alpha environment; however, you can use fast alpha
routines only between initializing and terminating the environment.

The Fast Alpha Library 289

Don’t Forget to Close
The final task that must be performed in fast alpha programs is closing the device
interface of the window or display:

¢ If you’re operating on a graphics window, then stop communication with the window
(as described in the “Concepts” section of the “Window Manipulation” chapter).

e If you’re operating on a bit-mapped display, then perform a graphics close
(gclose(3G)) on the display’s device file.

Cursor Positioning

To provide you with a more intuitive interface, the screen position for placing characters
is specified by character column and line, rather than display pixels. The leftmost column
of the display or window is column 0; the topmost row is row 0.

The pixel coordinate equivalents of column-row depend on the size of the current font—
the smaller the font, the smaller the pixel coordinates; the larger the font, the larger
the pixel coordinates. Proportionally spaced fonts can be used, but the results are
unpredictable because fast alpha routines will use the height and width of the biggest
character for determining spacing.

Character Enhancements

Each character may be enhanced with one or more video enhancements. Inverse video
and underlining are currently the only enhancements supported by Windows/9000.

When the fast alpha environment is initialized, font colors default to white foreground

and black background—white characters on a black background. Through fast alpha
routines, you can redefine the font foreground and background colors.

290 The Fast Alpha Library

Fast Alpha Rectangles

Many fast alpha routines reference rectangles. Rectangles are your means of specifying a
particular subset of the window /display area (in columns and lines) for a fast alpha opera-
tion involving more than one line. The rectangle structure is defined in /usr/include/fa.h
as:

struct fa_coordinate {
int x,y;
};
/%
* A rectangle includes [origin] but does
* not include [corner]

*/
struct fa_rectangle {
struct fa_coordinate origin;

struct fa_coordinate corner;

}
As the comment indicates, the lower-right-corner character is not included in the rect-
angle as is consistent with C-language arrays. For example, if fa_rect is defined as:

struct fa_rectangle fa_rect; /* fast alpha rectangle structure */

then the following rectangle:

columns

012345

rows 2. .XX..

is denoted by:

fa_rect.origin.x
fa_rect.origin.y
fa_rect.corner.x
fa_rect.corner.y

oo

Lo SR]

The Fast Alpha Library 291

This method of display access is fairly low-level, and you may want to build a “friendlier”
interface upon this base. The main purpose of the fast alpha routines is to provide you
with a fast and intuitive method for getting alpha information in a graphics window or
on the display.

Initializing/Terminating the Fast Alpha Environment

The fainit(3W) routine initializes the fast alpha environment for a window or display de-
vice; the faterminate(8W) terminates a window’s (or display’s) fast alpha environment—
i.e., it releases resources allocated when fainit was called.

Procedure

Initializing the Fast Alpha Environment
To initialize a graphics window’s (or display’s) environment, simply call fainit; its syntax
is:

fainit(gfd, driver)

The driver parameter should be set to FAWINDOW for graphics windows and bit-mapped
displays supported by Windows/9000. The gfd parameter is the file descriptor for the
graphics window or display.

Initializing the fast alpha environment causes environment information to be allocated
for the window or display. This information affects how fast alpha routines work with the
window or display. You can inquire and change this information via fast alpha routines
(discussed in the next section, “Changing the Fast Alpha Environment”).

Terminating the Fast Alpha Environment
To terminate a graphics window’s (or display’s) environment, call faterminate; its syntax
is:

faterminate (gfd)

Calling this routine causes fast alpha environment information to be deallocated for the
window or display device represented by gfd. (In order to use fast alpha routines with
the window again, you must call fainit again.)

292 The Fast Alpha Library

Example

The following code segment exemplifies the structure of programs that call fast alpha
routines.

/*
* Egstablish communication with the window with which
* fast alpha routines will be used.
*/
gfd = gopen(device_path, OUTDEV, device_name, INIT);
/*
* Initialize the fast alpha environment for the window.
*/
fainit(gfd, FAWINDOW);
/*
* Now other fast alpha routines can be called to write
* text to the window, scroll it, clear it, etc.
*/
/%
* Finally, you must terminate the fast alpha environment.
*/

faterminate(gfd);

The Fast Alpha Library 293

Changing the Fast Alpha Environment

As described in the previous section, fast alpha environment information is allocated
when the environment is initialized. This information affects the manner in which fast
alpha routines work with graphics windows and bit-mapped displays.

The exact information maintained in the fast alpha environment is defined by the fainfo
structure in the header file fa.h. Table 14-1 (which follows “Performance Considerations”
in this section) briefly describes each of fainfo's fields; for more information on this
structure and its values, see fa.h and the HP-UX Reference pages for fasetinfo(3W).

Procedure

Getting Environment Information
To get the current fast alpha environment for a window or display, simply call fagetinfo;
its syntax is:

fagetinfo(gfd, fainfoptr)

The fainfoptr parameter is a pointer to a fainfo structure as defined in fa.h. After calling
fagetinfo, the fields of the structure will the fast alpha environment values for the window
(or screen) specified by gfd.

Setting Environment Information
To set fast alpha environment parameters for a window or display, call fasetinfo; its
syntax is:

fasetinfo(gfd, fainfoptr)
The fainfoptr parameter is a pointer to a fainfo structure containing the new values for
the environment. Note that only the following parameters can be set via this routine:

o defaultenhancements

® clearbeforewrite

® colormode

® makecurrent.

294 The Fast Alpha Library

Performance Considerations

® You can set defaultenhancements to a different value, but remember that it initially
contains the value that makes the fast alpha library work most efficiently (i.e.,
FAOFF). Therefore, changing this may degrade system performance.

e The default value for clearbeforewrite is TRUE which causes the screen background
to be cleared before writing any characters. This ensures that the space where
characters are to be displayed is properly cleared, so that new characters are read-
able. However, you can change this value to FALSE, in which case the background is
not cleared before writing, and you are responsible for controlling the background
area.

e Changing the colormode parameter to FACOLOR will cause the fast alpha routines to
run slower. Black and white colors (the default) cause the system to run faster.

o To increase the speed of fast alpha routines, you may wish to suppress the updating
of the display until several write operations are queued. Then when updating is
desired, simply signal the fast alpha environment to update by setting the make-
current field to MCALWAYS. Queued operations will be displayed at that time. Then
reset makecurrent so that operations will queue up—i.e., set the bits in makecurrent
that will suppress screen updates (see fa.h). By doing this you are making effective
use of the Starbase buffering facility.

The default value is MCALWAYS, which updates the screen after every fast alpha call
and may degrade system performance (compared to queueing).

The Fast Alpha Library 295

Table 14-1. The fainfo structurel.

Field Description Range
size This is a rectangle structure as defined in the “Con- | The limits of the
cepts” section; it defines the screen size. window’s (or dis-
play’s) size.
capabilities The contents of this field may be used to detect | FAWINDOW
what additional capabilities are available on a par-
ticular device.
enhancements This bit-mask defines the default enhancements [See fa.h
that are supported on the window or display de-
vice.
defaulten- Is initially set to a value which optimizes the per- | See fa.h.
hancements? formance of the window system (FAOFF).
cursor Is TRUE if the cursor can be physically removed from | TRUE or FALSE
the window device and is FALSE otherwise. TRUE in
Windows/9000.
fontcellheight Indicate the pixel height and width of the active
fontcellwidth font.
clearbefore- Determines whether the background is automati- | TRUE or FALSE
write? cally cleared before writing characters. The default
value is TRUE, which causes the background to clear
before writing.
foregroundplanes | Specifies the number of memory planes available for | 0, 1, 4, or 8
and controlling the foreground and background colors,
backgroundplanes | respectively.
colormode? Indicates which color option is currently in use. De- | FAWONB,
fault is FAWONB. FACOLOR,
FABONW
makecurrent? This bit-mask controls the updating of fast alpha | See fa.h.

operations to the screen. Various bits in the mask
control when information is displayed via fast alpha
routines.

1 All fields of the fainfo structure are 32-bit integers; this provides compatibility with other languages.
2 Only these fields can be changed via fasetinfo.

296 The Fast Alpha Library

Example

The following code segment sets clearbeforewrite to TRUE and sets makecurrent so that
the screen won’t be updated for any fawrite operations—i.e., writes will be queued. Later
on, makecurrent is reset so that all queued fawrite operations will be performed.

#include <fa.h> /* fast alpha constant/structure definitions */

struct fainfo fa_env; /* fast alpha environment structure */
int gfd; /* graphics window file descriptor */

gfd = gopen(device_path, OUTDEV, device_name, INIT);

/*
* First, get the current environment:
*/
if (fagetinfo(gfd, &fa_env) < 0) {
perror("fagetinfo gfd");
exit(1);
}
/*

* Next set the appropriate values in the structure and call fasetinfo:
*/
fa_env.clearbeforewrite = TRUE;
fa_env.makecurrent = (NOMCONFAWRITE | NOMCONFARECTWRITE) ;
if (fasetinfo(gfd, &fa_env) < 0) {
perror("fasetinfo gfd NOMCONFAWRITE(S)");

exit(1);
}
/*
* Now any fawrite or clear operations that occur will not be
* updated on the display until the makecurrent field is
* reset to MCALWAYS. (This is done next.)
*/

The Fast Alpha Library 297

/*
* Now set makecurrent so that queued writes will be displayed:
*/
fa_env.makecurrent = MCALWAYS;
if (fasetinfo(fgd, &fa_env) < 0) {
perror("fasetinfo gfd MCALWAYS");
exit(1);

Cursor Control

With fast alpha routines, you can display and move a cursor in graphics windows and
bit-mapped displays. The facursor(3W) routine performs cursor control operations.

Procedure
To move and/or turn the cursor on or off, call facursor; its syntax is:

facursor (gfd, column, line, cflag)

The column and line parameters specify the column and line at which to position the
cursor; the top line of the window or display is line 0, and the leftmost column is column
0.

The cflag parameter determines whether or not the cursor is displayed. If cflag is TRUE,
the cursor is displayed; if FALSE, the cursor is turned off. Note that turning the cursor
on or off doesn’t in itself change the cursor position as fast alpha remembers it.

If you specify invalid coordinates for column and line—specifically, FACURSORNOMOVE as
defined in fa.h—then the cursor won’t move, but cflag is still effective. This is useful if
you simply wish to turn on/off the cursor at its current position.

Note that if part of the window is off screen, then the desired cursor position may also
be off screen. For example, if the upper-left corner of the window is off screen, then 0,0
are valid cursor coordinates, but the cursor will not be visible; it will be off screen.

Also, you can specify a cursor position that might be occluded by windows higher up in
the display stack.

298 The Fast Alpha Library

Precautions

The cursor is actually a displayable character and is taken from the currently active font.
Therefore if no font is activated, the cursor is automatically turned off. Attempting to
turn the cursor on when no font is active will result in an error.

Examples
The following code segment displays the cursor at column 27 and line 12:

#include <fa.h> /* fast alpha constant and structure definitions */

facursor(gfd, 27, 12, TRUE);
The next example turns the cursor off at its current position:

#include <fa.h> /* fast alpha constant and structure defintions */

facursor(gfd, FACURSORNOMOVE, FACURSORNOMOVE, FALSE);

Note that if either column or line is invalid (or equals FACURSORNOMOVE), then the cursor’s
position will not be updated.

The Fast Alpha Library 299

Writing Characters

Fast alpha routines provide two kinds of writing operations: you can write a string of
characters, or you can fill a rectangle with a specific character.

Procedure
Following are separate discussions for writing strings and filling rectangles.

Writing Character Strings
To write character strings, use the fawrite(3W) routme, its syntax is:

fawrite(gfd, column, line, charbuf, ebuf, nchars)

The column and line parameters specify the character location where the string should
start in the window (or bit-mapped display).

The charbuf parameter is a pointer to the buffer of characters that is to be written; this
buffer contains nchars characters. That is, fawrite will write nchars characters, taking
characters from the address specified by charbuf.

The ebuf parameter is a pointer to a buffer of enhancements that are to be applied to
each character in charbuf. ebuf can be either NULL (no characters at all) or can contain
nchars characters:

e If ebufis NULL, then the enhancements specified in defaultenhancements are made
to each character in the output string.

e Otherwise, each character in ebuf defines the enhancement(s) (such as inverse or
underlining) to use when displaying the corresponding character in charbuf. For ex-
ample, the fifth character in ebuf defines the enhancement(s) to use when displaying
the fifth character in charbuf.

Valid enhancements are defined in fa.h. To combine enhancements, you should OR
the different enhancements.

300 The Fast Alpha Library

Filling a Rectangle

The farectwrite(3W) routine fills a rectangular area in the window (or screen) that is
specified by a rectangle structure. (See the “Concepts” section for details on rectangles.)
This routine has the following syntax:

farectwrite(gfd, character, enhancement, rp)

The rp parameter is a pointer to a rectangle structure that defines the area to be filled.
The area is filled with the character specified by the character parameter, and the en-
hancement parameter describes which enhancement(s) to use when displaying the char-
acter. (If enhancement is NULL, then defaultenhancements are used when displaying char-
acter.)

Example

The following code segment fills a screen rectangle with inverse video X’s; the rectangle’s
upper-left corner is at the origin (column 0, line 0). It then writes the message:

What an exciting
rectangle this is!

and underlines the word “exciting.”

#include <fa.h>

struct fa_rectangle rp;

/*
* First, write the inverse-X rectangle to the screen;
* it must be large enough to surround the message
* that will be written inside of it.
*/

.rp.origin.x = 0;

rp.origin.y = 0;

rp.corner.x = 21;

rp.corner.y = 4;

farectwrite(gfd, "X", FAINVERSE, &rp).

The Fast Alpha Library 301

/*

* Now write the first line into the rectangle:

* Note that in the enhancements string;

* Q@ --> FAOFF (no enhancements)

* D --> FAUNDERLINE (underline the text)

*/

fawrite(gfd, 2, 1, "What an exciting", "@Q@@@QQQEDDDDDDDD", 16);

/%

* Now write the second line with no enhancements:

*/

fawrite(gfd, 1, 2, "rectangle this is!", NULL, 18);

Font Manipulation

The fast alpha library contains font manipulation routines which you can use to display
different fonts in graphics windows or bit-mapped displays.

Concepts

At fast alpha initialization time, a default font is established. If a font has already been
established via font manager routines (discussed in the next chapter), then that font is
used. If there is no active font at initialization, then a system default font is activated
(the font specified by the WMBASEFONT environment variable). The current font can
be changed via fast alpha routines or font manager routines; however, it is recommended
that once you’ve started using the fast alpha environment, you should make font changes
using only the fast alpha routines; this ensures that the fast alpha environment is always
aware of the current font attributes (such as height, width, and colors).

Unlike the termO font management model, there is no notion of base and alternate fonts;
there is only the active font. Any text written is always displayed in the active font.

Fonts are loaded into the fast alpha font cache from the font directories described in the
termO font management model; loading a font causes it to be the active font. Note that
the fast alpha font cache is not the same one used by termO font management routines.
However, the fast alpha font cache is the same as the font manager’s. (In fact, to perform
font management, the fast alpha routines call font manager routines.)

When you are through using a font, you can remove it from the font cache.

302 The Fast Alpha Library

Note that fast alpha fonts are often denoted by font ids; these are not the same as term0
font ids but are the same as font manager font ids. Attempting to intermix term0O and
fast alpha font ids may result in unpredictable system behavior.

Procedure

Following are brief discussions of how to perform the various fast alpha font management
tasks:

Loading a Font
To load a font into your font cache, call the fafontload(3W) routine; its syntax is:

fafontload(gfd, path)

The path parameter is the path name of the font file to load. When the font is loaded,
it is automatically activated, and fafontload returns a unique!, system-wide font id that
identifies the font. This font id is required as a parameter to some other font routines.

Activating a Font
To activate a loaded font that isn’t currently active, call fafontactivate(3W); its syntax
is:

fafontactivate(gfd, fontid)

This routine activates as the current font the font specified by fontid—the system-wide
font id returned when the font was loaded into the cache. After calling this routine, any
text written subsequently will be displayed in the new font.

Removing a Font
When you are finished using a font, you can remove it from the font cache. The fa-
fontremove(3W) routine removes a font from the cache; its syntax is:

fafontremove(gfd, fontid)

After calling this routine, the font specified by fontid will no longer exist in the font
cache; to use this font again, it must be reloaded and reactivated.

1 Unique only if gfd is the file descriptor for an open window device interface.

The Fast Alpha Library 303

Setting Font Colors
The foreground and background colors to be used when displaying fonts can be set via
the facolors(8W) routine; its syntax is:

facolors(gfd, foreground, background)

After calling this routine, the active font’s foreground and background colors will be set
to those specified by the foreground and background parameters. These colors are indices
into the system color map.

Supported values are determined by the display device: 0 or 1 for monochromatic dis-
plays, 0 to 15 for 4-plane color, and 0 to 255 for 8-plane color.

Note that if the colormode field of the fainfo structure is not set to FACOLOR, the system
ignores any color changes—it assumes everything is black and white.

Note that calling this routine also causes the fast alpha environment to take note of the
current font attributes (i.e., width, height, color, etc.).

Precautions

The cursor is actually a displayable character and is taken from the currently active font.
Therefore if no font is activated, the cursor is automatically turned off. Attempting to
turn the cursor on when no font is active will result in an error.

Example

The following code segment loads an 8-by-16-pixel bold font into the font cache, activates
the font, changes its colors to black on white, writes the word “HELLO,” and removes
the font from the cache.

#include <fa.h> /* fast alpha definitions */

#define BLACK 0O
#define WHITE 1

int gfd; /* graphics window file descriptor #*/
int fid; /* font id for the bold font */

304 The Fast Alpha Library

/*
* Load the bold font into the font cache:
*/
if ((fid = fafontload(gfd, "/usr/lib/raster/8x16/1p.b.8U")) < 0)
{
perror("fafontload gfd");
exit(1);

/%
* Activate the font:
*/
if (fafontactivate(gfd, fid) < 0)
{
perror("fafontactivate gfd");
exit(1);

/*
* Change the foreground and background to black on white:
*/
if (facolors(gfd, BLACK, WHITE) < 0)
{
perror("facolors gfd");
exit(1);

/: Now write the "HELLO" message:
Y fawrite(gfd, 0,0, "HELLO", NULL, 5);
/: Finally, remove the bold font from the cache:
Y if (fafontremove(gfd, fid) < 0)
¢ perror ("fafontremove gfd");
exit(1);

The Fast Alpha Library 305

Clearing a Rectangle

Any rectangular area of characters in a graphics window or bit-mapped display can
be cleared (erased). For example, you could clear an entire window. The faclear(3W)
routine is used for this purpose.

Procedure
To clear a rectangle, simply call the faclear(3W) routine; its syntax is:

faclear(gfd, enhancements, rp)
The rp parameter is a pointer to a rectangle structure that defines the rectangle to clear.

The enhancements parameter is currently ignored by the system and is reserved for future
expansion. For now, just leave this parameter set to FAOFF.

Example

The following subroutine clears a rectangular portion of a window, given the window’s
file descriptor. You must specify the rectangle’s location and size. Note that the alpha
environment must be initialized before calling this routine.

This function is named clear_gr.c and is found in the man_ezamples directory.

#include <fa.h> /* fast alpha definitions */
clear_gr(gfd, row, col, x_chars, y_chars)
int gfd; /* gopened file descriptor */
int row, col; /* starting row and column to be cleared */
int x_chars, y_chars; /* number of characters to be cleared */
{

struct fa_rectangle rect; /* rectangle to be cleared */

306 The Fast Alpha Library

/*

*

CLEAR A PORTION OF A GRAPHICS WINDOW, APPLYING THE SPECIFIED ENHANCEMENT

*

* Determine the size of the area to be cleared:
*/
rect.origin.x
rect.origin.y
rect.corner.x
rect.corner.y

row;
col;

row + x_chars;
col + y_chars;

/*

* Call fast alpha to clear the area:

*/
if (faclear(gfd, FAOFF, &rect) < 0) return(-1);
return(0) ;

}

The Fast Alpha Library 307

Scrolling a Rectangle

Any screen area defined by a rectangle structure can be scrolled. The faroll(8 W) routine
performs this task.

Procedure
To scroll a portion of a window (or screen), simply call faroll(3W); its syntax is:

faroll (gfd, how, howfar, rp)

The rp parameter points to a rectangle structure that defines the portion of the window
to scroll. The how parameter defines the direction to scroll, and the howfar parameter
defines how many character units to scroll in the direction indicated by how.
The following are valid values for how:

e FAROLLUP ('u’) — says to roll the rectangle’s contents up.

e FAROLLDOWN (’d’) — roll the rectangle’s contents down.

e FAROLLLEFT (’I’) — roll the rectangle’s contents left.

e FAROLLRIGHT (’r’) — roll the rectangle’s contents to the right.

Note that the area uncovered by scrolling is cleared.

Example

The following code segment rolls a graphics window’s contents in all four directions: up,
right, down, left.

struct fa_rectangle rp;

/*
* Roll the contents of the window specified by gfd up 5 lines:
*/
if (faroll(gfd, FAROLLUP, 5, &rp) < 0) {
perror("faroll up");
exit(1);

308 The Fast Alpha Library

/*
* Roll the contents of the window specified by gfd right 11 characters:
*/
if (faroll(gfd, FAROLLRIGHT, 11, &rp) < 0) {
perror("faroll right");
exit(1);

/*
* Roll the contents of the window specified by gfd down 1 line:
*/
if (faroll(gfd, FAROLLDOWN, 1, &rp) < 0) {
perror("faroll down");
exit(1);

/*
* Roll the contents of the window specified by gfd left 7 characters:
*/
if (faroll(gfd, FAROLLLEFT, 7, &rp) < 0) {
perror("faroll left");
exit(1);

The Fast Alpha Library 309

Notes

310 The Fast Alpha Library

The Font Manager Library

The font manager library provides a high-performance, low-level textual interface to
graphics windows and bit-mapped displays. This library’s functionality overlaps with
the fast alpha library, and in fact, some fast alpha routines call font manager routines.
However, the font manager does provide some powerful capabilities not provided by the
fast alpha library. The following topics are discussed in this chapter:

e concepts essential to using font management routines

¢ font management

font information routines

writing characters

character clipping.

The Font Manager Library 311

Concepts

Font manager routines can be used with either graphics windows or bit-mapped dis-
plays supported by Windows/9000; the routines require the file descriptor returned from
performing a graphics open (gopen(3G)) on the device interface for the window or bit-
mapped display.

When used with the window system, the font manager is a distributed library that is
controlled via a set of data structures kept in shared memory common to all users of
the font manager. However, when using the font manager with a supported bit-mapped
display, the concepts of “distributed” and “global” are lost; the font manager becomes
isolated to the calling process and does not cooperate with other applications trying to
use the font manager to the same device.

Font manager routines allow you to load, activate, and remove fonts, and change at-
tributes that affect how a font is displayed. The font management model is identical to
that used by fast alpha routines. In fact, fast alpha routines simply call font manager
routines to perform font management tasks.

All fonts in the system, regardless of process association, have a unique font id; that is,
font ids are global. Routines are provided to obtain the path name of the font represented
by a font id.

Note that there are two main differences between the font manager and fast alpha li-
braries:

1. Font manager uses pixel units to specify character coordinates; fast alpha uses
character column and line addressing.

2. Font manager can operate with proportionally spaced fonts; fast alpha cannot.

Note

Definitions from the /usr/include/fonticon.h header file are used
throughout this chapter.

312 The Font Manager Library

Font Management

The font manager library contains font management routines which you can use to display
different fonts in graphics windows or bit-mapped displays.

Concepts

Like the term0 and fast alpha routines, the font manager maintains a font cache (font
table). The font table is an area of memory shared by all users of the font manager; it
can hold information for up to 32 different fonts.

Font information is loaded into the font table from font files. Font files are stored in font
directories—sub-directories located under the directory specified by the WMFONTDIR
environment variable.

When a font is loaded via font manager routines, it automatically becomes the active
font. Text is always displayed in the active font. Font manager routines can be used to
activate any font that you have loaded.

In addition when a font is loaded, a unique, system-wide font id is returned. This font
id is used to identify the font to certain font management routines. Font manager font
ids are different than those used by term0 font management routines; these ids should
not be mixed.

Loaded fonts can be different sizes; by using font manager routines, different-sized fonts
can be mixed in the same graphics window (or bit-mapped display).

When you are finished using a font, you must always remove it from the font table.
Loading and removing a font is analogous to opening and closing a file—after you open
a file, you must eventually close it.

As mentioned previously, the font table is shared by all users of the font manager library—
that is, all users of the computer system on which Windows/9000 is used. Therefore,
several users may be using the same font in the font table. The font manager takes care
not to duplicate fonts in the font table; when a user attempts to load an already-loaded
font, the font manager simply takes note that another user is using the font; the font
isn’t reloaded into the table.

The same goes for removing fonts. If more than one user is using the same font, then
the font isn’t actually removed from the table; the font manager simply takes note that
one less user is using the font. If only one user is using a font, then removing the font
will cause it to be removed from the font table.

The Font Manager Library 313

Note: Never assume that a font exists in the font table unless you’ve loaded it and
haven’t yet removed it. If you remove a font, there’s no guarantee that it still exists in
the table, because others using the font might remove it. Just remember: don’t make
any assumptions about the shared memory; load and remove fonts as if you're the only
user.

The foreground and background colors of the active font default to white on black. On

color systems, you can redefine the foreground and background colors to any from the
system color map.

Procedure
Following are brief discussions of how to perform the various font manager tasks:

Loading a Font
To load a font into the font table, call fm_load(3W) which has the following syntax:

fm_load(gfd, path, fontid)

The path parameter points to the path name of the font file to load into the font table.
The font’s id is returned in the integer pointed to by the fontid parameter.

In addition to being loaded, the font automatically becomes the active font. So if you
want a font other than the loaded font to be the active font, you must activate the other
font.

Note: When you are finished using a loaded font, you must remove it.

Activating a Font
To activate a previously loaded font, call fm_activate(3W); its syntax is:

fn_activate(gfd, fontid)

The font represented by the fontid parameter is made the active font. All text will be
displayed in the new font until the next call to fm_activate.

314 The Font Manager Library

Removing a Font
To remove a loaded font, call fm_remove(8 W) which has the following syntax:

£m_remove (gfd, fontid)

After calling this routine, the font specified by fontid will be removed from the font table
(as far as your application is concerned).

Note: If you've accidentally loaded a font twice, the font must be removed twice also.

Setting Colors
To change the active font’s foreground and background colors, call fm_colors(8W); its
syntax is:

fm_colors(gfd, foreground, background)

The foreground and background parameters specify the new colors to use; they are indices
into the system color map.

Supported values are determined by the display device: 0 or 1 for monochromatic dis-
plays, 0 to 15 for 4-plane color, and 0 to 255 for 8-plane color.

Note: The foreground and background colors return to the defaults (black and white)
whenever a font is activated.

Example

The following code segment loads an 8-by-16-pixel bold font into the font cache, activates
the font, changes its colors to black on white, writes the word “ERROR,” and removes
the font from the cache.

#define BLACK 0O
#define WHITE 1

int gfd; /* graphics window file descriptor */
int fid; /* font id for the bold font */

The Font Manager Library 315

/%
* Load the bold font into the font cache; the font is
* automatically activated:
*/
if (fm_load(gfd, "/usr/lib/raster/8x16/1p.b.8U", &fid) < 0)
{
perror("fm_load gfd");
exit(1);

/*
* Change the foreground and background to black on white:
*/
if (fm_colors(gfd, BLACK, WHITE) < 0)

{
perror ("fm_colors gfd");
exit(1);
}
/*
* Now write the "ERROR" message (see the section
* "Writing Characters" for more details on writing):
*/
fm_write(gfd, 10,10, "ERROR", 5, TRUE, TRUE);
/*
* Finally, remove the bold font from the cache:
*/
if (fm_remove(gfd, fid) < 0)
{
perror("fm_remove gfd");
exit(1);
}

316 The Font Manager Library

Font Information Routines

The font manager library provides routines that obtain information about fonts. In
particular you can discover:

o font size information
e a font’s path name

¢ information on a font’s style.

Concepts

Before discussing how to obtain font information, a discussion of font sizes and font styles
is needed.

Font Size
Font size is actually comprised of three different attributes: width, height, and baseline
height.

Font width and height are straightforward. Each character in a font is displayed in a
font cell. The font cell is the same size for all characters. The font’s width and height
represent the pixel width and height of the font cell.

All the characters of a given font “sit” on an invisible line called the baseline. The
“bottom” of each character is flush with this line. Note however that parts of characters
can extend below the baseline—for example, the “stem” that extends below the circle on
the letter p. Figure 15-1 illustrates each of these size attributes.

The baseline attribute is important because it allows you to align different-sized fonts
on the same line. For example, suppose you are writing a story that starts with “In
the beginning,” and you want the first letter I to be in a large font and the rest of the
characters to be in a normal-sized font. To make the text look more natural, you should
align the baseline of the big I with the baseline of the normal-sized font.

The Font Manager Library 317

'¢ WIDTH * WIDTH ——»l

A

HEIGHT BASELINE

. S R — —_— | —— — — — —
T
BASELINE
HEIGHT
Y |
Figure 15-1. Font Size Attributes.

Font Style

Each font has certain attributes that define its style. These attributes are defined by the
escapecodes structure in the fonticon.h header file; Table 15-1 briefly defines each of the
fields in this structure.

318 The Font Manager Library

Table 15-1. Quality attributes defined by escapecodes structure.

Item Description Range

symbol_int Gives the numerical part of the font’s iden- |0, 7, or 8
tification string; e.g., 8 for 8-bit Roman-8
(8U); 0 for 7-bit math font (OM). The value
for this field indicates whether the font is 8-
bit (=8) or 7-bit (=0).

typeface Specifies the kind of typeface, e.g. pica=1,|0 to 10
prestige=8, etc.

proportional Tells whether the font is uniform width (=0) | 0 or 1
or proportional (=1).

hpitch Approximates horizontal characters per [Depends on font width.
inch.

vheight Approximates vertical characters per inch. |Depends on font height.

boldness Indicates the boldness of the font. -7 is the [-7 to 7

lightest, 7 is the boldest.

quality Describes the quality of the font: data pro-|0 to 2
cessing (=0), near letter quality (=1), or cor-
respondence quality (=2).

Procedure

Getting Font Size Information

Two font manager routines obtain font size information: fm_fileinfo(8W) and
fm_rasterinfo(3W). The fm_rasterinfo routine gets size information for fonts in the font
table; its syntax is:

fm_rasterinfo(gfd, fontid, width,height, baseline)

This routine returns the font cell width and height (in pixels) and the baseline height
(also in pixels) for the font specified by fontid.

The fm_fileinfo routine gets size information for a font file; its syntax is:
fm_fileinfo(gfd, path, width,height, baseline)

This routine returns font size information for the font file whose path name is pointed
to by path.

The Font Manager Library 319

Getting Font Style Information
To get font style information (as described in Table 15-1), call the fm_styleinfo(3W)
routine; its syntax is:

fm_styleinfo(gfd, fontid, symbol_char, escapecodes)

The symbol_char parameter should point to a character which will contain a character
describing the font (e.g., ‘U’ for Roman-8 fonts, ‘K’ for Katakana fonts).

The escapecodes parameter should point to an escapecodes structure as defined in fonti-
con.h. Upon returning, this structure will contain style information for the font indicated
by fontid.

Getting a Font’s Name
The fm_getfontid(3W) routine translates a font id into its corresponding font name; its
syntax is:

fn_getname(gfd, fontid, filename)

The filename parameter points to a character string that will contain the path name that
was used to load the font represented by fontid.

Example

The following function gets font size, style, and name information for the font specified
by the fid parameter; it returns this information to the calling program.

#include <fonticon.h> /* font manager definitions */
get_font_info(gfd, fontid, width,height, baseline, symbol_char,
escapecodes, filename)

int gfd; /* window’s file descriptor */
int fontid; /* font id for the desired font */
int *width, *height; /* character cell size */
int #baseline; /* baseline of the character cells */
char *gymbol_char; /* character describing the font */

struct escapecodes *escapecodes; /* points to font-specific
style information */
char *filename; /* the path name of the font */

320 The Font Manager Library

{

/*
* Get the size information for the specified font id:
*/
if (fm_rasterinfo(gfd, fontid, width, height, baseline) < 0) return(-1);
/*
* Get the style information for the specified font id:
*/

if (fm_styleinfo(gfd, fontid, symbol_char, escapecodes) < 0) return(-1);

/*
* Get the path name for the font specified by font id:
*/
if (fm_getname(gfd, fontid, filename) < 0) return(-1);

return(0);

The Font Manager Library 321

Writing Characters

With font manager routines, you can write text in the active font to any graphics win-
dow or the bit-mapped display. By default, characters are written from left to right;
however, characters can be written in any direction—up, down, to the right, or to the
left. In addition, you can optimize the generation of characters on your particular display
hardware.

Procedure

Controlling the Write Direction
By default characters are written to the right. By using the fm_fontdir(3W) routine, you
can write characters any horizontal or vertical direction. The syntax of this routine is:

fm_fontdir (gfd, direction)

After calling this routine,' any characters written to the window via the fm_write routine
will be written in the direction specified by the direction parameter. Valid values for
direction are:

e 'u’ — write upward

e ’d’ — write downward

e ’I’ — write to the left

e ’r’ — write to the right (this is the default).
Note: This routine affects omty the direction of the write and not the characiers
themselves—they are still displayed normally within each character cell. Also, the write

direction stays in effect until a different font is activated; at that point, the direction
returns to the default (’r’).

Writing Characters
The fm_write(3W) routine displays character strings to a graphics window or bit-mapped
display; its syntax is:

fn_write(gfd, z,y, str, numchars, dump, colormode)

The string to write is pointed to by the str parameter; the number of characters in the
string is given by numchars.

322 The Font Manager Library

The string is written at the pixel coordinates specified by z,y. Note that in graphics
windows, the upper-leftmost pixel in the contents area has coordinates 0,0; in bit-mapped
displays, the upper-leftmost pixel is 0,0.

How the characters are positioned with respect to the z,y coordinates depends on the
current write direction. Figure 15-2 illustrates character positioning.

The dump parameter indicates whether or not to immediately update the display after
the write: TRUE means to update; FALSE means to let the system-imposed buffering take
care of the visual update.

The colormode parameter determines whether or not to use colors from the previous call
to fm_colors. If TRUE, then the area where the characters will be written is cleared to the
current background color, and the characters are written in the foreground color. Setting
this parameter to TRUE is analogous to setting clearbeforewrite to TRUE in the fast alpha
environment. This mode has the side effect of leaving the colormode and write-enable
masks set as needed.

If colormode is FALSE, then the characters are displayed using the current Starbase graph-
ics replacement rule and write mask. For example, if the current replacement rule is to
OR the image onto the background, then the characters will simply be placed over the
background image without erasing it. Setting colormode to FALSE is somewhat analogous
to setting clearbeforewrite to FALSE in the fast alpha environment.

The Font Manager Library 323

X,y
Left—to—Right:

Top—to—Bottom:

Right—to—Left:

Bottom—to—Top:
X,y

start

._—._‘
cell

cell

cell
o—— |

of string

x—advance in effect

¢ y—advance in effect

X,y
-¢— x—advance in effect

? y—advance in effect

Figure 15-2. Character Positioning at x,y Coordinates.

Optimizing Character Generation

Some systems have specialized hardware for writing to bit-mapped displays. This special
hardware allows characters to be written faster to the display. The fm_opt(3w) routine

allows you to take advantage of specialized display hardware; its syntax is:

£n_opt (gfd, optmode)

If optmode is 1, then optimization is turned on; if optmode is 0, then optmization is

turned off.

Note: This routine will fail if optimization hardware doesn’t exist on the system or if
too many fonts have been optimized already. This should not be considered a fatal error.
Therefore, you should not abnormally terminate your program (via ezi¢(2) or whatever)

if this routine fails.

324 The Font Manager Library

Determining String Length

Often times you may wish to determine the length of a character string. For example,
if you want to determine if a character string is so long that it will “run off” the edge
of a window or display. The fm_str_len(3W) routine determines the pixel length of any
character string along the current direction of the active font; its syntax is:

fm_str_len(gfd, str, numchars)
The str parameter points to the character string which contains numchars characters.

Note: This routine is especially useful if character clipping is disabled (see the “Character
Clipping” section for details).

Example

The following function, write_dn.c, displays a null-terminated character string downward
from the pixel location specified by the xpos,ypos parameters. It then sets the write
direction back to the right.

The source for this routine is found in the man_ezamples directory.

#include <fonticon.h> /* font manager definitions */
write_dn(gfd, str, str_len, xpos, ypos)

int gfd; /* window’s file descriptor */
char *str; /* the string to be written */
int str_len; /* length of the string to be written */
int xpos, ypos; /* starting position for the string */

The Font Manager Library 325

{

/*
* Set the write direction to down:
*/

if (fm_fontdir(gfd, ’d’) < 0) return(-1);
/*
* Write the string at the specified position:
* update the screen immediately
* don’t use the colors from fm_colors
*/

if (fm_write(gfd, xpos, ypos, str, str_len, 1, 0) < 0) return(-1);
/*
* Set the write direction to right:
*/

if (fm_fontdir(gfd, ’r’) < 0) return(-1);

return(0) ;

326 The Font Manager Library

Character Clipping

Character clipping controls the area in which characters are written in a graphics window.
When character clipping is enabled in a window, the window system will not allow
characters to be written outside established clip limits. You can enable or disable clipping
and redefine clip limits via font manager routines.

By default when a graphics window is created, clipping is enabled and the clip limits are
always set to the current window size.

Note

Memory can become corrupted if clipping is not enabled. This is
because characters could inadvertently be written outside the dis-
play memory established by the clip limits. Conceivably, you could
write spurious data into your data structures and your program.

If you do not use clipping, be sure to check the length of every
character string (via fm_str_len(3W)) to ensure that displaying
the string will not cause it to extend outside the display screen
boundaries.

IMPORTANT

If you are using font manager routines in color mode (colormode =
FACOLOR), then be careful when writing characters with clipping en-
abled: clipping may not work when color mode is in effect. There-
fore, you must ensure that writing characters does not cause them
to appear outside a window’s boundary whenever color mode is in
effect.

The Font Manager Library 327

Procedure

Enabling/Disabling Clipping
To enable or disable clipping for a given window or bit-mapped display, use the
fm_clipflag(8W) routine; its syntax is:

fm_clipflag(gfd, flag)

The flag parameter indicates whether to enable or disable clipping: if flag=1, then clip-
ping is enabled; if flag=0, then clipping is disabled.

Setting Clip Limits
To set clip limits for a graphics window or bit-mapped display, use the fm_cliplim(3W)
routine; its syntax is:

fm_cliplim(gfd, x,y, wedth,height)

The z,y parameters indicate the z,y location of the upper-left corner of the ¢lipping rect-
angle (with respect to the upper-leftmost pixel of the window or display); the width,height
parameters define the pixel width and height of the clipping rectangle. After calling this
routine, characters can be written only within the defined rectangle.

Example

The following function, quarter_clip.c, redefines the clipping area to be one-fourth the
size of the current window, and it centers the clipping area in the window. (The wgetco-
ords(3W) routine is used to get information about the window’s size.)

The source for this function is found in the man_ezamples directory.

#include <fonticon.h> /* font manager definitions */
quarter_clip(gfd)
int gfd; /* window’s file descriptor */
{
int x,y, w,h, dx,dy, rw,rh; /* dimensions of the window */
/*
* Get the size of the user portion of the window:
*/

if (wgetcoords(gfd, &x,&y, &w,&h, &dx,&dy, &rw,&rh) < 0) return(-1);

328 The Font Manager Library

/*
* Compute the bounds of the clipping area:

* The clipping area is one-fourth the size of the window,
* and is centered in the window.
*/
w /= 2;
h /= 2;
x=w/ 2;
y=h/2;
/*
* Set the new font clip area:
*/
if (fm_cliplim(gfd, x, y, w, h) < 0) return(-1);
/*
* Turn on font clipping:
*/
if (fm_clipflag(gfd, 1) < 0) return(-1);
return(0) ;
}

The Font Manager Library 329

Notes

330 The Font Manager Library

Compiling Window Programs

This appendix discusses:
e the various libraries supported by Windows/9000

e how to compile programs that call window library routines.

Linking Window Libraries

When compiling a program that uses window library routines, link the libraries in the
order shown in the list below. Remember that you need link only the libraries that the
program uses.

1. 1ibfa.a—if the program calls any fast alpha routines, link this library first.

2. libfontm.a—if the program calls any fast alpha or font management routines, then
link this library.

3. libdddriver.a—always link the device driver (or drivers) of the CRT(s) on which
the program will run.

4. libddbyte.a—if the program performs graphics to windows with retained byte-per-
pixel rasters, and you want the raster to be maintained in memory, then load this
driver, which writes to the retained memory.

1libddbit.a—if the program performs graphics to windows with retained bit-per-
pixel rasters, and you want the raster maintained in memory, then load this driver
which writes to the retained memory.

Note

The 3001 Device Driver does not support bit-per-pixel retained
rasters.

Compiling Window Programs 331

5. libwindow.a—this library should be linked if the program calls any window library
routines or performs Starbase graphics, fast alpha, font manager output to windows.

6. 1ibsbi.a—link this library if the program calls any Starbase graphics, fast alpha,
or font manager routines.

7. libsb2.a—link this library immediately after 1ibsb1.a if 1ibsbi.a was loaded.

Examples

The following examples should help clarify how the libraries are linked with the main
program.

A C program named winprog.c that calls only window manipulation routines and only
creates term0 windows on a S300 low-resolution display would be compiled as:

cc winprog.c -lwindow

A C program named grprog.c that creates, manipulates, and performs graphics to non-
retained graphics windows (on an HP9837 display) would be compiled as:

cc grprog.c -1dd9837 -lwindow -1lsbl -1sb2
A C program named grt0.c that creates and manipulates both term0 and graphics
windows, calls fast alpha and font management routines, and does graphics to retained
windows (on an HP98700 display) would be compiled as:

cc grt0.c -1fa -1fontm -1dd98700 -lddbyte -lwindow -1sbl -1sb2

OR

cc grt0.c -1fa -1fontm -1dd300h -1ddbit -lwindow -1s8bl -1sb2

332 Compiling Window Programs

Windows/9000 Files B

This appendix describes files associated with HP Windows/9000.

Device Files

/dev/crt, /dev/ocrt bit-mapped display special files

/dev/hilkbd ITF keyboard

/deu/locator locator (mouse or tablet)

/dev/rhil raw input controller

/dev/screen window directory—holds window type and unit

device files and the window manager’s device
interface (wm)

Manual Examples and Demos

Jusr/lib/hpwindows/man_ezamples source for all code examples found in this manual

Jusr/lib /hpwindows/demo all demo programs and the README file

Jusr/lib/hpwindows/demosrc all demo source

Windows/9000 Files 333

Font and Icon Files
Jusr/lib/raster /%

Jusr/lib/raster /icons
Jusr/lib/raster/dfit/b/h/$SLANG

Jusr/lib/raster/dfit/b/l/SLANG

Jusr/lib/raster/dfit/b/v/SLANG

Jusr/lib/raster/dflt/a/h/SLANG

Jusr/lib/raster/dflt/a/l/S$LANG

Jusr/lib/raster/dfit/a/v/SLANG

334 Windows/9000 Files

contains all font directories from fast alpha and
font manager filesets

icon definition files are stored here

If this file is present, it is the default
(/usr/1ib/raster/dflt) base font (/b) for high-
resolution displays (/h) for the language defined
by the LANG environment variable.

If this file is present, it is the default
(/usr/1lib/raster/dflt) base font (/b) for low-
resolution displays (/1) for the language defined
by the LANG environment variable.

If this file is present, it is the default
(/usr/1ib/raster/df1lt) base font (/b) for very
high resolution displays (/v) for the language de-
fined by the LANG environment variable.

If this file is present, it is the default
(/usr/lib/raster/dflt) alternate font (/a) for
high-resolution displays (/h) for the language de-
fined by the LANG environment variable.

If this file is present, it is the default
(/usr/1ib/raster/dflt) alternate font (/a) for
low-resolution displays (/1) for the language de-
fined by the LANG environment variable.

If this file is present, it is the default
(/usr/lib/raster/df1lt) alternate font (/a) for
very high resolution displays (/v) for the language
defined by the LANG environment variable.

Header Files
Jusr/include/window.h

window library constants and structure defini-
tions

Windows/9000-Specific Files

Jusr/bin/w*
Jusr/lib/t0server
Jusr/lib/gserver

Jusr/lib/stserver

Jusr/lib/wm
Jusr/lib/libwindow.a

window system commands
a term0 window server

a dummy graphics window server process for
object compatibility with pre-HP-UX 5.2 releases
of HP Windows /9000

server for the see_thru window type (for special
hardware only)

the window manager process

window management, manipulation, icon, input,
term0 font management, menu, and softkey li-
brary routines

Windows/9000 Files 335

Other Files

Jusr/include/fa.h
/usr/include/fonticon.h
Jusr/include/starbase. *.h
Jusr/lib/libfa.a
Jusr/lib/libfontm.a
Jusr/lib/libsb1.a
Jusr/lib/libsb2.a

Jusr/lib/libdd*.a
Jusr/lib/libddbyte.a

Jusr/lib/libddbit.a

336 Windows/9000 Files

fast alpha constant and structure definitions
font constant and structure definitions
Starbase constant and structure definitions
fast alpha library

font manager library

Starbase graphics routines

stubs to Starbase routines—i.e., routines that
make direct calls to the kernel

Starbase drivers

driver that allows Starbase routines to write re-
tained byte-per-pixel raster memory

driver that allows Starbase routines to write re-
tained bit-per-pixel raster memory

Subject Index

S 136
P 136
L] o e e e e 136
P 136
aborting full-screen sprite mode i e 151
aborting full-screen sprite mode, event i i, 120
absolute coordinatesc..iiiiiiiii i e e e 36, 40, 72
absolute locator device i e 136
activating a fast alpha font i 303
activating a hotspot o i e e 178
activating a menu i e e e e s 206
activating hotspots, the bit mask i il 179
activating termO font L i i 262
activation bit mask for hotspot, side effect of changing 185
activation bit mask for hotspotst i e i 182
activation, causing automatic menu display 206
active font, fast alpha i e e ... 302
adding tems t0 8 MEMUenutntr et e ettt ettt e e e 202
affecting scroll barso e e 161
alternate font file, termO i i i e 334
alternate font id, getting in a termO window oL, 271
alternate font, setting via term0 font management routines 272
alternate font, switching to via term0 window escape sequence 261
alternate font, termO i e e e 37
altfont_termO(SW)ot e 271, 272
anchor POINL i i i i e e e et e 36, 40
architecture, window system i i i ees 22
AITOW EVEINES - . ot ittt ettt e e et te e it seaeaeeeeteoanananaanaeneenas 160
Y 0 ¢ 03 T AP 120, 155, 156
arrows, enabling e e e 162
arrows, enabling in panmode L e 161
arrows, event detection inusermode i i i i 169
ATTOWS, PANNINEG VIA . . oottt ettt ittt ettt it et e e eeaeaaeennn 157
arrows, reversing direction of pan L i e 158

Subject Index 337

ASCIIMOAe .ottt e e e e e e 212

ASCII mode, reading data in i e 216
attached, keyboard i e e e 17
attaching the keyboard toawindow i i, 119
attributes, window i e i e e e e 17
autodestroy status, settingot e 96
automatic menu pop-up on activation i i i i, 199
automatically destroying a window on closeo i, 96
automatically display menu on activation oo, 206
autoselect Status e 21
autoselect status, setting 65
AULOLOD StatUS i e e e e 21
autotop status, setting e 68
b
background border color it e e e e e e 89
backgroundplanes, of the fast alpha fainfo structure 296
[Back space], handling in raw mode i 283
DABALE . C ot v vttt e e e e e e e e e e 273
base font file, termO i e e e 334
base font id, getting in term0 windowl 271
base font, setting via term0 font management routines 272
base font, switching to via term0 window escape sequence 261
base font, termO e e 37
basefont_termO(8W) ... e 271, 272
DASE_LOBA.C & e vt vee e tete s et 276
Dasename(1) e e 14, 17
bit mask for activating hotspots o i, 179
bit-mapped display special file e 333
block mode, termO i e e e e e e e 257
blocked reads, termQ raw mode i 284
blocking, when reading graphics window input in packetized mode 241
border background color e e 20
border, changing i e 85
border colors, determining current i i i 89
border colors, Settingt e 89
border foreground color i e 20
border, nOrmal e e e e et e 37
border size, determiningcoiiiiii i e e 81
border, thint e e e i e e 37
bottom Window i e e e 18, 68

338 Subject Index

[Break), effect in two-byte mode i i 224

[Break], interrupt programmingciiiiiiii i 120
[Break], relation to event detectioncoiiiiiiiiiiiiiiiiiiii 120
(Break], side-effect from wgskbd(SW) i 214
BRKINT, side-effect from wgskbd(3W) o i 214
BS character, handling in raw mode i i il 283
building a window type device interface’s pathname, 59
building pathname from environment variable 29, 35
button definitionst e e it 118
button, map to locator devices it e 118
button mask, menu activation i i i e 200
button mask, user-define menust i i et e e 198
button press eVentsiiiiiiiie i 117, 131
button presses, emulating in full-screen sprite mode 150
button presses in packetized input mode il 213
button presses, wWhere sent it e 117
bUutton Prioribyottt e e 117
buttons, determining which are pressed without event detection 138
C
cache for fast alpha fonts i i 302, 303
cancelling input re-routing forawindow il 236
canonical iNPUt ProcessIiNgoviiitiii i i e 280
canonical processing, side-effect from wgskbd(SW)o 214
capabilities, of fast alpha fainfo structure i il 296
(Caps], effect on data byte in two-byte mode 222
capslock input configuration parameter ittt 228
capslock, relation to K_SHIFT input configuration parameter 229
capslocKk State et 222
carriage return, handling inrawmode i i, 283
changing a graphics window’s size il 76
changing a hotspotot i e 184
changing a term0 window’s size i i 80
changing a window’s border e 85
changing a window’s border colors i 89
changing a window’s iconic state i 99
changing a window’s label i 87
changing autodestroy status i 96
changing input configuration parameters 227
changing input mode e 214
changing the echo i e 141

Subject Index 339

changing the fast alpha environment i ... 294

changing the pointer o i e 141
changing the spriteo ittt i i i 141
character enhancements, fast alpha i .., 290
clear from cursor to bottom of screen, termO window 258
clear from cursor to end of line, term0 window 258
clearbeforewrite, of the fast alpha fainfo structure 294, 295, 296
(escape SEqQUENCE)t e e 250
clearing a fast alpha rectangle i i 306
(eSCAPE SEQUENCE) ...ttt e 250
Close(B) ... e 30, 62
closing a window’s device interface i 62
closing the window manager device interface 30
COlOT €SCAPE SEQUEIICES vt vt vttt tete et e et e et eiee e e titeeeteennnneaeneaannns 9
10) 103 ' -1 o X 20
colormap, default i e 89
color pair attribute, term0O characters i il 262
color pair table e 262
color pair table, default termQ 263
color, setting for fast alpha fonts il 304
color, term0 charactersttt i 262
COLORMODE ..ttt et ittt it ettt e e e et et e e et et et st e e e 37
colormode, of fast alpha fainfo structure 294, 295, 296
7o) 3 A 20
COlOTS, DOTAer . ..t e e e 89
column,row coordinates, converting topixels, 278
compiling Window PrOGIaIlsuietttuneeenneeeennnneeeennaaneeennnns 331
concealed representation i i e e 18, 68, 98
concealed, setting to i e e 69
concealing a Windowottt i i e e 69
control byte for event code packets, relation to two-byte mode 238
control byte, keycode e 221
control byte, packetized input mode event code packets 238
converting column,row to x,y pixel coordinates, 278
converting x,y pixels to column,row coordinates, 278
cooked mode, returning to after raw mode in a term0 window 281
cooked mode, term0 input e 279
CR character, effect on termQ fonts i i, 262
CR character, handling inrawmode i 283
creating a graphics window i i e 40
creating a graphics window hotspot i il 179

340 Subject Index

Creating @ MEMUttt ettt ettt e 200

creating a termO window i e e 35
CRT special file e 333
+ arrow keys, effect in two-bytemode o ..., 224
(CTRL), effect in two-byte mode e, 221
(cTRL), effect on data byte values in two-byte mode 223
(CTRL], relation to K_CONTROL input configuration parameter 229
(CTRL} ¢ J, effect in two-byte mode ..., 224
(CTRLI ¥], effect in two-byte modeoiiuuneiiiiniinnnnnennns 224
[CTRL}H), effect in two-bytemodecoviviiiiininiiiiiiieeeeennnn.. 224
(CTRL}(], effect in two-byte modeccoiiuiiniiiii ... 224
CUTSES(8K) o e e 256
cursor control, fast alpha e 298
cursor control keys, effect in two-byte mode i, 224
LT 0) o (<) /- T PP 136
cursor, move down one row in termO window 0., 258
cursor, move left one column in termO window, 258
cursor, move right one column in term0 window 258
cursor, move up one row in term0 window il i, 258
cursor, of the fast alpha fainfo structure iiiiiiernnn.... 296
cursor positioning, term0 window 258
cursor, turning on and off in term0 window i, 265
custom echo, definingc. . i e 142, 145
CUSHOIM 1CON PICEUTE ...\ttt et ittt it ettt it it e e n e 104
customizing an icon’s picture i i e 103
customizing the echo i i i e 145
cycles (loops) in re-routing path i 234
d
data byte for event code packets, relation to two-byte mode 239
data byte, keycodeo e 222
data byte, packetized input mode event code packet 239
data byte values for normal keys in two-bytemode 222
data byte values for special keys i e 222
default color Mmapt e e 89
default color pair table, term0 characters L. 263
default coordinatesl e 36, 40, 72
default elevator scale information i 166
default icon coordinates e 101
default icon picture i e e 98
default window locationouiiiiiiiint i e 36

Subject Index 341

default window name it i i s 36, 40

defaultenhancements, of fast alpha fainfo structure 294, 295, 296
defining term0 window softkeysciiiiiiiiii ittt 259, 267
definition string, term0 softkey i i i 259
defunct processes, side-effect from destroying 46
(€SCAPE SEQUENCE) ...\ttt e 250
(€SCAPE SEQUENCE) .« o\ttt ittt e 250
deleting a hotspotot e e 187
deleting @ MeNMUouiitumnie ittt et e 210
demo AIreCHOrY ..\ ittt e e e e et i e e 9, 334
demo program source direCtorycu et trieern e eeaariernennnn 334
demo programs direCtoryottt in ittt ittt it e 334
00 T oD el 1 (T3 7o) o 334
desk top, repaintingo . e e et e e 51
destination window, final in routing path 235
destination window, input re-routing i i i, 213, 232
destroying a window i i i e e 45
destroying a window on close of its device interface 96
destroying a window, relation to event detection 120
detaching keyboard from window, side-effects of 66
determining current border colors i 89
determining menu activation status i i i il 206
determining term0 window size i e e 81
determining without event detection which buttons are pressed 138
JAV/COMBOLE .t ittt ettt e e e e e e 24
2o T3 4 333
7AeV/RITKDA oo e e 333
device driver for CRT, linking with programs, 333
device driver, physical displayo i e e 59
device files used by window system i 333
device interface, window manager ittt 28, 29, 30, 41
device interface, window type oL 17, 35, 41, 45, 58, 59, 62
device’s COlOT TNAP ... vttt ittt ettt ittt it e i e i e 20
P Ty Yo T N 333
P G T Pt 333
JAOV/BCTBON .« it ittt e e e e e 14, 333
directory, CUrrent oottt e e 35, 40
disable, €levatorii it e e e e 156
disabling menu activation L, 206
display device special file e 333
displayable representation il i 18, 68

342 Subject Index

displaying a user-defined pop-upmenu i iiiiiiiii... 206

displaying a window e e e 68
displaying characters in raw mode it 282
e
(2] (eSCAPE SEQUENCE) ...ttt ittt ettt e 250
(ESCAPE SEQUENCE) - ...ttt t ittt ettt 250
(€] (eSCAPE SEQUEIICE) ... e v v vttt ettt ittt et it 250
[#] (€SCAPE SEQUENCE) ..ttt ettt ittt ettt e 250
O (0 0 D 151
003712 151
EBUSY ..t i it e e e ettt e e e et i e e 151
o 0200 510 i) 190
oo 8 i o A 190
00 0. 8 I 190
0O i e e e 135, 136
echo, changing the e 141
echo, custom definition i i e 142, 145
echo, enabling full-screenmode il 150
echo, getting current representation il it 142
echo, getting its definition i 147
€Ch0 IMIAZE ..ttt e 145
eCho TNASK ...t et 145
echomask ruleiioiiiin i i i i et 145, 146
echo, optimizing for hardware i i e 141
eChO TUle .. e e e 145, 146
echoing characters inrawmode i 282
o1 08 19 X 190
editing keys i e e e e 279
editing keys, effect in ASCII mode 216
effect of editing keys in ASCII modeoiiiiiiiiiiiiiiiiiiiiiinan. 216
08 1 241
T2 (37} o PP 155, 156
CleVatOr EVEILS it e i e 120, 160
elevator length e 158, 166
elevator, moving in user mode il e e 167
elevator, panning via e e 158
elevator POSILION e e 158
elevator, position in elevator shaft i il 166
elevator scale information i 166
elevator scale information, default 166

Subject Index 343

elevator shaftt e 158

elevators,enabling i i e e 162
elevators, enabling in pan mode i i e e 161
elevators, event detection inusermode i i i, 169
emulating the window manager in full-screen sprite mode 150
enable, elevator e e 156
enabling arTOWS i e e e e e e 162
enabling arrows in pan mode e e 161
enabling elevators i e e 162
enabling full-screen sprite mode, 150
enabling uUSer MOdec.outiiieiiiie ittt e 170
enhancements, of the fast alpha fainfo structure 296
enhancements to fast alpha characters 290
environment variable, building pathname from 29, 35
environment variable, getting the valueof 59
environment variables:
LANG . e e e e e 334
WM B A SEF ON T . i e e e et 302
CWMDIR .. e e 14, 16, 35, 58, 59
WMDRIVER ... e e 59
WMEONTDIR ..o e ettt e et et 37, 261
WMIATIMEQOUT .. e e et iaaeeas 209
WMIUICONFIG ...t e 150, 158, 198
WMLOCSCALE ... ittt ittt ettt et it 136
environment, window run-time i i i i i 35, 40
] €27 151, 241
escape sequence, commonly used term0 i i i i i 258
escape sequence, graphics window softkeys i, 249
escape sequence, parsing on raw mode termQO input, 284
escape sequence, termQ i i i e 257
escape sequence, term0 softkey i i 260
EBL_GT.C ottt i i e A PO 61
@B B0, € ottt e e e 60
EBL_WIM_COM.C .ttt ittt titeette st ennesnaesnsooneoeneesnneennennennan 32
L3 0L o € P 124
event bit definitions i e 125
event byte, hotspoto i i e e . 180
event byte, packetized input mode i e 239
event cause, event code packet i i e 239
event code overflow in packetized input mode 240
event code packet e 212, 238

344 Subject Index

event code packet, control byte 238

event code packet, databyte e 239
event code packet, event byte i i e 239
event code packet, event causel i e e e 239
event code packet, timestamp e 239
event code packet, window id (wid) i, 234, 239
event code packet, X and ¥ i e e e 240
EVENT_* constant definitions i i, 125
event detection i e i e, 113, 121, 178
event detection, scroll barsottt e 155
event detection with arrows and elevators 160, 169
event detection with hotspots it it 188
event detection with pop-up menusoiuiiiiiineniernennenennnnn 208
event detection with user-defined menus i i, 198
eVvent MASK .. i i e e et e e e 126, 127
event mask, clearing eventsinthe il 130
event mask, defining for event detection 124
event mask, determining current value i, 130
event mask, resulting from weventpoll(8W) i 128
event rectangles (hotspots) il 120, 177
EVENT _ABORT . .ottt ettt e et e et e et e e e e et e et e 150, 151
EVENT_ECHO WAITHIIE\ttt ittt ettt ittt iiaeeieeeneneneennnnn 131
EVENT _ELEVATOR ...ttt it ittt ittt tneoetooeeneoaenoanonesoeanesseeananean 169
EVENT _HOTSPOT ...ttt ittt ittt etaneesionaenannens 178, 189
EVENT _MENU it ittt ittt eietanesetonnoaanassosansooesnsoneas 208
events, general description i il i e 69, 117
events:
aborting full-screen spritemode i iiiiiiaLL, 120, 151
arrow activated ... e e 169
arrow in graphics window border activated oo 120
button press (dowWn) i e 117
button release (UP)c..urittttt it e e 117
elevator moved i e 120, 169
EVENT ELEVATOR ...ttt ittt it ittt et tetoesneaaoenessssasoaaanoensnesanas 160
EVENT_SB_ARROW . ..ottt ttnnieettae et e e taaeeeetniaeeeetnaneeennenanns 160
hotspot activated e 120, 178, 189
icon to WIndow, OF VICE VEISAiiieriee e in et ieneeaenanaanns 120
Jocator moved e e e e 118, 131
selection made from user-defined menu i, 120
selection status changedol e e e 119
window destroyed i e e 120

Subject Index 345

WINAOW IOVed . ..o 119

window repaint e e 119
window size Changeciuiiiiiiin it i i e i e 119
WInAOW t0 ICOM, OF VICE VEISA ..ttt tteere it ite e e eneeeneaannnnnannns 120
EVENT _SB_ARROWt i i ittt ittt et iiineeannaenas 169
€Xample PrOGram SOUICE et euit et ttee e e aeneieaeeneeeneeaaaannnas 2,334
examples:
activating a user-defined pop-up menuc. ..., 207
adding items t0 A MeNUottt i e e i e 203
arrows and elevators, enabling pan mode oL, 163
ASCII mode, reading data ... 217
DABALE . C ittt e e e e e e 273
DABE_10AA.C .ottt e e e e 276
DUILA_1COM.C .ttt e e e e e e 107
changing a hotspot e 185
changing the fast alpha environment 297
L T o« 306
colors, setting for fast alpha font L. 304
compiling window programsttt i e 332
COMCEAL _£0.C oot ittt e e e e e 70
08 T -« < N 42
LoB o T 38
creating a user-defined pop-up menu it i e 201
defining a term0 window softkey using write(2) 269
definining softkeys from a term0 window Bourne shell 269
directory in which sourceis stored i il 334
disabling display of fast alpha cursor il 299
elevators, enabling inusermode il 167
enabling arrows and elevators in panmode il 163
enabling full-screen sprite mode i i i e 152
enabling vertical elevator only in panmode oL, 164
est_gr.c (starting graphics window communication) 61
est_t0.c (starting term0 window communication) 60
est_wm_com.c (starting window manager communication) 32
event detection e 172
event detection inuser mode i i 172
event detection with hotspots i, 191
fast alpha cursor, disabling display of i i, 299
fast alpha cursor positioning i i e 299
fast alpha environment, changing P 297
fast alpha, loading and activatingafont oL 304

346 Subject Index

fast alpha rectangle, scrolling i i i 308

fast alpha, writing characters i il i 301
font colors, setting for fast alpha i i, 304
full-screen sprite mode i it 152
function to enable packetized input mode 215
hotspot, changingottt i i ittt 185
hotspot, setting Up e 182
hotspots, event detection i 191
initializing and terminating the fast alpha environment 293
input configuration parameters, settinginmode 2 231
B (875 o 7« T PP 90
loading and activating a fast alphafont i ii.L. 304
100 _AD UBBT.C &t v ettt ettt ettt e eeeentenseenneneenesaeaesaeneaneaceneanns 139
menu, activating e 207
00053 000 I8 4cY: 11§47 U 201
menus, creating and adding items to i i i i 203
mode 0, reading data i i e 217
mode 1, reading data i e 224
mode 2, reading data i e 241
INOVING AN ICOM . . ottt ittt ettt et ettt et eaa et 102
packetized input mode, reading data i i, 241
pan mode, enabling arrows and elevators o o iiiiiiaa., 163
pan mode, enabling vertical elevatoronly o ool 164
2 (TN e < O U 95
PAUSE_TESUME . C .. ev vt ve vt ttennen e eneneesenaeenenesaesneeneenesseeesnnas 92
POLL _BVENMEE.C vttt ettt et iiee et eanenenneansnseasenenneaenns 131
positioning the fast alpha cursor i, 299
reading data in ASCII mode (mode 0)c.oviviiiiiiieneannnnnnnn, 217
reading data in two-byte mode (mode 1)ciiiiiiiiiiiiaa., 224
reading event code packets in packetized input mode (mode 2) 241
B oY o IS o« 111
replacing base and alternate fonts i i, 277
TEBEE _L0C.C oottt tet e eae et et et et 140
IO WANAOW. C o v et e e e teae e teeeaeeaeaeaeeneeneaneneaeeaeasaneaneanenns 47
scrolling a fast alpha rectangle i, 308
BEE_ET_LABDB.C oottt ittt e 253
BEELADEL BT . € oottt ettt e e e e 87
setting fast alpha font colorso i 304
setting input configuration parametersinmode 2 231
-3 15 o 11 o 200 SR 142
-1 1 1 O P 82

Subject Index 347

L) N i =T b S 50

signal handler i e e e 116
softkey definition, term0 window with Bourne shell 269
softkey definition, using write(2) to term0 windowcov.n. 269
BLAIT B .C ..t titt e et et 73
starting and stopping window manager communication 30
starting graphics window communication (est_gr.c)c.. il 61
starting term0 window communication:(est_t0.c)iiiiiiiiian... 60
starting window manager communication (est_wm_com.c)iiiiiann 32
stopping window communication (term_gr.c)iiiiiiiiiiiaan... 63
stopping window communication (term_t0.c) iiiiiiiiiiiiiannn 64
stopping window manager communication (term_wm_com.c), 33
1 Tl T« < S 77
term_gr.c (stopping window communication)o i 63
term_t0.c (stopping window communication)o, 64
term_wm_com.c (stopping window manager communication) 33
e T4 T T 100
BOGELE BEL.C . ettt ettt e e e 66
two-byte mode, reading data i 224
user mode, enabling elevators i i il e 167
user mode, event detection il i i 172
WDBNNET _BUD . C . vttt i ittt it ettt teesae et eee e 86
window-smart programs, compiling i i i i e, 332
L o1}« 51
writing fast alpha characters i 301
exiting the window system i i e e 53
Extend key, effect in two-byte mode i 221
Extend key, effect on data byte values in two-bytemode 223
(Extend char), effect in two-byte mode il 221
(Extend char), effect on data byte values in two-byte mode 223
(Extend char), relation to K_EXTEND input configuration parameter 228
f
I T T 248
[f1),-.,[18] (€SCAPE SEQUENCE) ... v ettt ittt eeer et e eae e aiiee e e 249
FABONW ..ttt i it ittt ittt iisseenne e eennsneeennnnnas 296
faclear(SW) .o 306
T S 295, 296, 304
fa_coordinate structure i e e 291
Jacursor(8W) ..o e e e 298
FACURSORNOMOVEt ittt ittt ittt tanes et naenennannns 298

348 Subject Index

fafontload(SW)o e 303

fagetinfo(SW) . . o e e 294
fa.hheaderfile i e 288, 335
£fainfo SETUCLUTEot e e e e 294
fainfo structure, description of fields il 296
Jainit(SW) o e 292
FADFF .ttt ettt e e et e e e 295, 306
fa_rectangle Structure i i i i e e e 291
farectwrite(SW) . ..o e 301
Jaroll(8W) e 308
FAROL L DOWN .ottt ittt it ittt ettt e itteeeeeeeennnanseaaaeasannan 308
FAROLLLEF T ... i it i it ettt ittt toneenaeannesonnnns 308
FAROLLRIGHT ..ottt ittt it ittt ittt ettt asninnsessseaannonenanns 308
FARODLLUP ...t ittt itiiiiiien ettt eeeeinonenensosasosonoeensnsanannsaenss 308
fasetinfo(SW) . ..o e 294
fast alpha active font e 302
fast alpha character enhancements i ... 290
fast alpha character strings, writing i i e 300
fast alpha cursor control e e 298
fast alpha environment, changing 294
fast alpha environment, getting information about 294
fast alpha environment, initializing i, 289, 292
fast alpha environment, setting i i i e 294
fast alpha environment, terminating 289, 292
fast alpha font, activating i e 303
fast alpha font cache i e 302, 303
fast alpha font colors, setting o i e 304
fast alpha font id e 303
fast alpha font management i e 302
fast alpha font, removing from cache L. 302, 303
fast alpha fonts, loading 303
Fast Alpha Libraryc.oo i, 1, 10, 22, 24, 287
Fast Alpha Library, linking with programs oot 331
fast alpha, loading fonts 302
fast alpha protocol i e 288
fast alpha rectangle, clearing i e 306
fast alpha rectangle, filling with characters 301
fast alpha rectangle, scrolling i e e 308
fast alpha rectangles i e e 291
fast alpha, writing characters i 300
faterminate(SW) . . 292

Subject Index 349

FAWINDOW .. i i i i it i it i it e e e e e 292

O 1) - O R 296
Jawrite(SW) ..o e 300
file descriptor for window i e i 13
file descriptor, relation to window id i i, 234
file descriptor, window i e 23, 59
file descriptor, window managerieiiiiiiiiiriieiiaaaa... 37, 41
filling a fast alpha rectangle with characters 301
final destination window i e e 235
final destination window in routing path 235
font, activating fast alpha e 303
font, activating termO i e 262
font background color e 20
font cache, termO e e 261
font colors, setting for fast alpha e 304
font directoriescoouiiini i i e e e 261, 334
font flles . ..ot e e 334
font foreground color e 20
font id, fast alpha o e 303
font id, getting for base font in termO window 271
font id, getting for term0 alternate font 271
font id, getting in term0 window i e e 270
font id, termO e e 261, 270
font, loading a term0 i e e 272
font management, fast alpha i e 302
font management model, termQ 261
Font Manager Libraryc.o.iiiiiiiinnin it i, 10, 22, 24
Font Manager Library, linking with programs 331
font name, getting for termQ window i il 271
font, replacing a term0 e 262
font SizZe ... e 261
font size, determining in termO window il 270
fontcellheight, of the fast alpha fainfo structure 296
fontcellwidth, of the fast alpha fainfo structure 296
fontgetid_termO(3W) e i e 270
fontgetname_termO(SW) 271
fonticon.h header file 261, 335
fontload_termO(8W) o e 272
fontreplaceall_termO(SW) e e 275
fonts, maximum in term0 windowl i e 261
fonts, replacing in a term0 window i i 275

350 Subject Index

fonts, swapping in a term0 window i 275

fontsize_termO(8W) 270
fontstruct structure e 261
Jontswap_termO(SW) e 275
foreground border colort e 89
foregroundplanes, of the fast alpha fainfo structure 296
format mode, termQ 257
Jromzy_termO(BW) oot 278
full-screen sprite mode, aborting L 151
full-screen sprite mode events il 120
full-screen sprite (pointer, echo) modet 150
g
gelose(3G) .. oo 62
gclose(3G) when using fast alpha routines il 290
gesc(8G) ... e 138
GETAUTODESTROY . .. ittt ittt et it it ittt cia e 96
GETAUTOSELECT ..t ittt ittt ittt ittt it ittt 65
GETAUTOTOP .« o oot ttttn ettt ettt ettt e e e e et e e e et e e e 69
GETBOT T OM ...t e e e et e e 68
[0 0 1 (03 .) 69
GETFONTID e e 271
GETFULLSPRITE ...t i i i ittt et it e 151
GETICONIC ..ttt ittt et et it e et e et et e et et 99
GETPAUSE ..ottt ettt e 92
GETRECOVER . ..ottt it ittt ittt ittt ittt ittt ot aae s taneaneneenas 96
[D0 53 08 10 65
getting fast alpha environment information 294
getting input re-routing information i 237
getting menu selection information i, 208
getting scroll bar events in user mode L., 169
getting termQ base font 271
getting termO font information 270
getting the value of an environment variable oL 59
L3 0) 68
GELtY(IM) o 16
GOPEN(BG) - o o e 59, 220
gopen(3G) when using fast alpha routine 289
graphics softkey label separator i, 252
graphics softkey label, turningonand off i il 251
graphics SOftKeYS ...ttt e e 247

Subject Index 351

graphics tablet i i i i e 17, 65, 135, 136

graphics tablet scaling e 136
graphics window, creating i e e e 40
graphics window hotspots e 177
graphics window input i e i 160, 211
graphics window input, re-routing i i 232
graphics window input re-routing, handling input configuration 235
graphics window, maximum label length 87
graphics window maximum S1Z€iiiiiiiiiii i i e e 76
graphics window minimum size i i e e 76
graphics Window SEIVErottt e i e 335
graphics window softkey label, changing i, 252
graphics window type e 10, 17
graphics window type, displaying text in using Fast Alpha 287
Grey MENU TEeINS . ..ottt it it et ettt ittt e e 202
BTOUD, PTOCESS .« oot vttt vttt teaee e et atonsonsaeonoasnsonsenennsoneansns 16
BroUD, WIIAOW . .ttt et ittt e et e e e 16
h
handling SIGINT on term0 window input i, 281
header files:
2 Y00 PP 288, 335
B e 35 T3 0 - 104, 261, 335
- o1 1 0 P 279
17 B O P 279
R 5 <« PSP 279
L 8 1T (o1 PPt 2, 335
home the cursor, term0 window ittt i, 258
home up and clear to bottom of scroll buffer, term0 window 258
horizontal seroll bar ...t e 156, 161
hot spot, locator i e e 137
ROt POt et e 120, 131
hotspot activationottt i i e 178
hotspot, activation bit mask i i i e 179, 182
hotspot activation eventsttt i e e e 120
hotspot, activity bit definitions e 179
hotspot, changing characteristics i 184
hotspot, creating in a graphics window il 179
hotspot, deleting a o e e 187
hotspot event byteo e 180
hotspot events i e e 178

352 Subject Index

hotspot events when reading in packetized input mode (mode 2) 239

ROtSPOt I . ot et 178
hotspot, size and location i 180
hotsSpot Stack vi i e e e e 181
hotspot, what happens when activated oL, 180
hotspots, event detection il e e 188
hotspots, graphics window it i i e i e 177
hotspots, overlap rules i e e 181
hotspots per window, maximum number of i i, 178
HP 2622 ... e e 9, 92, 255
HP 2627 . o i e e e 9, 255
HP Windows/9000 User’s Manualcoiiiiiiiiiiininiiennnn. 4, 136
HP-HIL input controller special file0 o iiiiiiiiiiiiinenn.n. 333
HP-UX Concepts and Tutorials: Facilities for Series 200, 300, and 500 25
HP-UX Concepts and Tutorials: Programming Environment 4
HP-UX Concepts and Tutorials: Starbase Graphics Techniques 4, 25
HS _MASK _BUTTONZ ...ttt ittt ittt ittt ittt iiannneenaeenensennannenas 179
HS _MASK _BUT T ONZ ...ttt ittt ittt i te e estiteseeeanensasesosssnsananonnes 182
HS _MASK _ENTEREXIT ... ittt ittt iietineenneaneenesoseneenssesonsncansns 179
HS _MASK _SELECT ... ittt ittt ittt iittetenennesoneenoeneeneensseennaneenns 179
I
ICANON, side-effect from wgskbd(8W)o i 214
o o AN 97, 98
icon, changing to normal form i i i i 99
icon default picture i e 98
icon definition files e e e 334
IeOm fIleS .. i et 103, 334
ST0T0) 0§00 =Y 104
ICON IMAEGE AITAY ... ottt it ettt e et e et e e e 107
$Te70) 00 =1 o =) PPt 98
16703 ¢ WO U Y- 175 o o KPP 101
icon location, settingottt e e i e 99
ICOM TASK .ottt i e e e e e e e 104
ICOM MASK QI Ay ..o ottt ettt e ettt et e e aeee e te e e e neeaaaaens 107
FTT0) e U 40103 Yo >~ S N 98
e W 4 T4 3 11 PP 101
icon normal box e e 98
FT0) o B 0 (62 1V ¥ - SN 98, 100
icon picture, customizingt e e 103
1COM PICHUTE SIZ .ot v vttt ittt it ettt i er it eteeeeeaanenennnn 104

Subject Index 353

FTT0) 1§ Lol) w ¢ o R 18, 68, 98

iconic locationo e e 18
iconic representation, relation to event detection, 120
icomstruct SEIUCLUTEttt i i i i et e e 104, 105
image (for pointer, echo, sprite) il 145
8002 O O 75 104
IMODE _NONE ...ttt it i ittt it iat e eittee e ananeannneas 104
0 0]) O 1 € 50 104
inherited window environment i i i e, 35, 40
initializing the communication path i i i 29
initializing the fast alpha environment i, 292
initializing window communication path i, 59
iInput blocking ...t e e . 241
input configuration parameters, changing i, 227
input configuration parameters, general discussion 213
input configuration parameters, relation to input re-routing 235
input configuration parameters:
K CAPSLOCK .. ittt ittt ittt ittt aeeeteneeenannaaenaneans 228
K_CAPSMODE, capslock processingoiioiiiniieniinnnerenneeennnn. 228
K_CONTROL, cOntrol processingc..ouuiiiiinmninnrunneennnneeeennn. 229
G 918 00 1 I 228
K KANAKBD .ttt ittt e ittt ittt ettt 230
S €3 N I 230
K KANTIKBD ..ttt it it ittt ittt it tet ettt 230
K_LANGUAGE, keyboard languageccoiiimiiiiniiiniiniennnennenn. 227
K_META, Meta key processingcoieriiurinniiiinininnennenennans 229
K_META_EXTENDttt ittt ittt ittt it e e e e, 229
K_SHIFT, capital collapsettt 229
K_TRACK, locator trackingccoiiiiiiiiiiinneiiiineiinneennnnn. 227
INPUL deVICES ..\ttt i e e e e 17, 65, 135
10N 010 1/ 1 1T Yo U< G P 212
input mode, changingottt i i i e 214
input mode, relation to input re-routing i i, 235
input queue, time-ordered il e e e 212
Input re-routingo i i e e 213
input re-routing, handling input configuration 235
input re-routing, handling input mode i i, 235
input re-routing information, getting o i, 237
(©SCAPE SEQUENCE) - .« vttt ettt e 250
(€SCAPE SEQUEINICE) .« vttt ettt e 250
interactive user interface configuration L, 150, 198

354 Subject Index

internal terminal emulator e e 24

1103 0 o 0] 0 113, 114, 124, 126
inverse tracking in Menusottt 203
10 () e 214, 224, 280
I E o e e e e 24
temm I ..ot e e e 202
J1 5300140 LT 01 o L PP 202
ITF keyboardco.iiuii i e i et 223
ITF keyboard special fileco oot iiiiaann. 333
k
K CAPS _LOCK ...t it it i ittt ittt ettt e 228
K_CAPSLOCK input configuration parameter oo o.. 228
K_CAPSMODE input configuration parametercc.ciiiiiuniaenn... 228
K CAPS O F .ottt t it iee ettt et e et et e e e e e 222, 228
K_CAPS_ON e vt e e et e e e e e e e e e e e e 222, 228
K_CONTROL input configuration parametercoiuiiiiun.n. 229
1) 11 1 221, 223
0 201 01 O 238, 239
K_EXTEND input configuration parameterot 228
K ERTEND B . ittt ittt i ittt iis ettt as s enenenennensnneas 221
ROy B P oottt e e 219
keyboard e e e e 17, 65, 135
keycode control byte e e 221
keycode data byte i e 222
keycode packetttt e e e e e 219
keycode packets, reading 220
keycode Structureiiiiii i e e e e 220
killing the window manager it e 53
K_KANAKBD input configuration parameter 230
K_KANJI input configuration parameterc.ciiiiierinennnnnnnn. 230
K_KANJIKBD input configuration parameterc..viuiiiierennnn.. 230
K_LANGUAGE input configuration parameter 227
K_META input configuration parameter iiiiiinrnnrnnn.. 229
S 1 O - W - 221
K_META_EXTEND input configuration parameterc.c..... 229
S 1 O 180
G 1 2 P 221
008 31 3 10 240
SO 0] S 180
K_SHIFT input configuration parameter oooiiiiiiiaan.. 229

Subject Index 355

=1 10 2 T 221, 222

O A o7 18 N 180
S 2 0L 3 1 221
K_TRACK input configuration parameteroiuuiieiiinenennnnn.. 227
K P ittt ettt et ettt e et e e e e e e 238
K USER _HS .. i i it ittt ittt it et taa st 180
|

Jabel o e 87
label, changingo o i e 87
label, changing a graphics window softkey 252
label, graphics window softkey i 248
label, 1Con e e 98
label length, maximum i i e 87
label, relation to window name i i il it i e i 19
label, softkey e 19
label, termO softkey i e e 259
label, turning on and off graphics window softkey 251
label, Window ...ttt i i i e e e e 17, 19
LANG . e e e e e e e 334
left key, effect in two-byte mode, 223
left key, relation t0 K_META_EXTENDevveenennnneennnneennnnnnn. 229
LF character, handling inraw mode il 283
1iDAAATIVET. @ o oo ettt s e e e e e 331
6 - T N 331
IiDFOMBIM. @ ottt e e e et e e 331
libraries, linking with window programs i i, 331
libraries:

Fast Alpha e e e e e 1

Font Manager . ..ottt it ittt it et i e e e e 1

WnAOW . .t e e 1
BT 5 - OO P 331
). - N 331
LaDWANAOW . 8 oottt ettt e et e et e e e 331
line discipline, side-effects from wgskbd(3W) il 214
line feed, handling in raw mode i e 283
link order when compiling window programsciiiiiiiiiiiiina.n 331
linking libraries with window programs ittt iiiiinnnnn. 331
D80 OO] 2 104
LMODE _NONE ..ttt ittt ittt ieee s teneenteaneeocaesoanesoneeencnaannas 104
loading a termO font e 272

356 Subject Index

loading fast alpha fonts i 302, 303

“local” mode, termO i e 257
location, iCONICot i i e e et i 18, 99, 101
location, setting window i e i i e 72
location, Window i e e et e 18
location, window default i e 36
loCatOr ... e e e et et e 17, 118, 135
locator, absolute i e 136
locator device special file it e e 333
locator hot Spot it e et 137
locator, moving the it i i i e s 140
locator position, determining e i i 138
locator, relative e e 136
locator representation i i i e i i 136
locator tracking events i i i i i 118, 131
LOgIn . e e 16
loops in input re-routing path i i e 234
m
makecurrent, of fast alpha fainfo structure 294, 295, 296
managing termQ window fonts L i 261
man_examples dir€CtOryc..uiiiiiniiit i i e 2,334
many-to-one input re-routing i e e e 232
mask (for pointer, echo, sprite) i e 145
mask rule (for pointer, sprite, echo) i 145, 146
master Side Of Plyo ot e e e 13
maximum fonts in term0 window i 261
maximum graphics window size i i i i i i 76
maximum label length e 87
maximum length, window name i .. 37, 41
maximum number of hotspots per window L. 178
maximum term0 window size e e 80
maximum user-defined menus per window i, 198
MOALWAY S . i it i ittt e i e e e i e e 295
memory lock, termO e e 257
... 248
menu, actiVatingo e e e e 206
menu activation e e e 198
menu activation button mask 200
menu activation, disabling e 206
menu, adding items t0 e e 202

Subject Index 357

menu, automatic display on activation 206

menu button mask e e e 198
IENU, CTEAINE . . vttt ittt ettt ittt et ettt te ettt eeentetenaeeaanonsnns 200
menu, deletingottt e e e e e 210
menu, determining activation status i i it i 206
(ESCAPE SEQUETICE) v v vttt et ettt e et e 249
menu event detection e e e e e 198, 208
menu, getting selection information i, 208
MENU, BIeY T6EINS . ..ottt ettt et et et e e e 202
04 T 61 B T RGP 198
menu, immediate display (don’t wait for activation) 206
5310 B X3 o« U N OO P 198
menu item, non-selectable i i e e e 198
menu item, selecatable i e e 198
MENU T6EIM SEPATATOT . .\ttt ittt ittt ettt et e e 203
MENU ILeIM BYDE .ottt i ettt ettt ettt et e e e 202
300 L) 010 B 00 E T3 o o) 2 202
menu, non-selectable item e 202
menu, polling for selection information 208
menu, selectable item e 202
menu, timeout period i i e e 209
menu tracking e 203
14073 110 B o PP 200
MENU_ACT _AUTO .. .ottt tt ittt ittt ittt tent e itans it eeeaneens 206
MENU _ACT DI .. ittt ittt ittt ittt ittt i ittt 206
00 L N 206
MENU_ACT_INQ oottt tunnneee e ettt ettt tneaiee e sttt etnann e, 206
MENU _DISPGREYttt ittt ittt tnenansstnenacessnseoasosenssoasencnoasnsnos 202
MENU _DISPNORM ... ittt i ittt ia i eetenaestaeeeseneeneenseenenss 202
MENU _NEWITEM ..ttt ittt it ittt ittt it ittt ae i neeaeenenneennenoeennns 202
MENU _NDPARENTttt ittt ittt ettt e et tase s etannseeaansens 200
MENU_NOTSELECTABLE ittt ittt ittt ittt it iennnneeeennns 202
MENU _POPUP ..ttt ittt ittt ittt i ittaeeinnnenneeinnnneecnnnns 200
menus per window, MaXimMuUINc..tenrtnn et e terannennnecnnneeneens 198
menus, user-defined pop-up e e e e et e e e 197
MENU _SELECTABLE ittt ittt ittt it iteernanstnoeeeseoesneesasnensos 202
MENU_SEPARATOR . .ttt veveee et e taeeeeieneeieeneneenanesnannannennnns 202, 203
MENU_STRING .t tvttttetee et e e eeeeoeneeneeneneeaeeesneeneenannnas 202, 203
MENU_TRACKINV ..ottt ittt ettt ettt et e e e e ee e e et 203
MENU_TRACKNOCHNGcovuuienenn.. P 203
Meta key, effect in two-byte mode i 221

358 Subject Index

Meta key, effect on data byte values in two-bytemode 223

Meta key, relation to K_KANJIKBD input configuration parameter 230
Meta key, relation to K_META input configuration parameter 229
minimum graphics window size i i 76
minimum term0 window Size i i e e 81
MOde O ... e e, 212
MOde 1 o e e e e 212
mode 1, reading data i 219
IOAE 2 oo 212
mode 2, DUttOn PresSSesovvvt ettt e e e e e 213
mode 2, event overflow e 240
mode 2, reading data e 238
MOAIIEr Ry ..ot e e e 219
INOUSE & v ettt e te e et e e e tee e e e e te e e 17, 65, 135, 136
move cursor down one row in termQ window i, 258
move cursor left one column in term0 window, 258
move cursor right one column in term0 window 258
move cursor to specific column and row, term0 window 258
move cursor up one row in term0 window i, 258
moving a WinAOW e e 72
IMOVINE 81 HCOI . . ottt ettt ettt e it ettt e ete e ae e 101
moving the locator i e e 140
multi-hop re-routingt e e 233
n
name, Window e e 14, 17, 35, 37, 40, 41, 58
name, window default e 36, 40
no window border e 19, 41, 85
non-retained Tasteriiiiiii i i i e i e 20, 41, 119
non-selectable menu item 198, 202
normal bordert e i e e e e 19, 37, 41, 76, 85
normal border, effect on minimum term0 window size 81
normal form e e e 18, 68, 98
000 17 1 <=3 2P 219
normal key, data byte values in two-bytemode, 222
npad KeY .o e e 219, 223
null border ... e e e e 19, 41, 85
numeric pad (npad) Key e 219, 223

Subject Index 359

LT LT o o 18, 119
L0011 0 11 PPt 241
OPET(D) o e e 29, 59, 241
opening a window type device interface i i, 59
opening the window manager device interface 29
optimizing echo, pointer, sprite for display hardware 141
optimizing packetized input modereads i, 240
overflow when reading events in packetized input mode (mode 2) 240
overlapping hotspotsciiiiiiiii i i i i i et i e e, 181
p
packetized input mode e e 212
packetized input mode, button presses il 213
packetized input mode, event overflow 240
packetized input mode, reading data il i 238
PAN IOAE oottt e et i e 155, 157
pan mode, enabling arrows in i i i i i e 161
Pan POSItion e et 18, 76, 94
pan position, relationship to elevators in panmode 158, 159
PANNINIE .ottt it i e et e e 18, 94
PANNING VA& AITOWS ..t vttt it ie e te e e ee e e eneeneaanaeeneeannnsnens 157
panning via elevators i e e e 158
path name, building a window type device interface’s 59
pathname, building from environment variable 29, 35
pause status, WIndoWo ittt i i e e e e e 21
POUSE(L) e e e 127
pausing term0 window output i i e 92
physical display device driver i e i e 59
picture, CUStOM JCONttt e e 104
PICtUTE, 1CON ...t e 98, 100
Place in StACKo i e e e e e 18, 49
0 X031 417 PP 135, 136
pointer, changing the i i e 141
pointer, custom definition i i e 142, 145
pointer, enabling full-screen mode i i 150
pointer, getting current representation i i et 142
pointer, getting its definition i 147
POINtEr IMAZE . . ittt ittt ettt it e et e 145
POINtEr MASK ..ottt i e e e e e 145
pointer mask rule e 145, 146

360 Subject Index

pointer, optimizing for hardware i, 141

pointer rule e e e 145, 146
polling for events via weventpoll(SW) ... i i 127
polling keyboard in raw mode (unblocked reads) 285
pPop-up menu, activating e 206
pop-up menu activation, disabling i e 206
pop-up menu, adding items t0 i e 202
pop-up menu, automatic display on activation oL, 206
pop-up menu automatically on activation i, 199
POP-UP MEINU, Creatingcuunin ittt ineiiieetie e tie e taeiateeannnnenns 200
pop-up menu, deleting i i i e e 210
pop-up menu, determining activation status L oL, 206
pop-up menu, event detection i i i e 208
pop-up menu, getting selection information L. 208
POP-UDP menu, grey itemsttt et e 202
pop-up menu, immediate display (don’t wait for activation) 206
POP-UD IMENU item SEPAratorc.iettnninenetinneenneeennneennnn, 203
pop-up menu, non-selectable item i i 202
pop-up menu, polling for selection information 208
pop-up menu, selectable item i 202
pop-up menu, timeout period e 209
Pop-up menu tracking i i e e 203
POP-UDP MENU £FPE - .ottt ittt ittt i e e et ettt tae i eae e eaneann 19, 200
pop-up menus, user defined i e 197
PTOCESS GLOUD .« v v vt teete ettt e et ee e e e ettt ie e eneenennenosonneeneanans 16
programmable time delay, termO i 257
protocol, fast alphao i e e 288
PIOXII Y ..ot e e e 118
pseudo-terminal e e 13, 16
2% PP 13, 16
PUCK it e e et e et 135
puck, graphics tablet e, 17
r
0 151 1 P 41, 94
raster, non-retainedl e e 20, 41
raster, retained e 20, 41
raster Tetention e e e 20
raster retention, effect on compiling programs, 331
raster retention, relation to event detection 119
raster retention, setting i i e 41

Subject Index 361

o1 o /1< SO 76

raster, size of graphics window’s il i e 20
raw mode blocked reads i e 284
raw mode, changing toin a termQ window oo, 280
raw mode, echoing characters i i i 282
raw mode, handling (Back space]ccoiiiiiiiiiiit i 283
raw mode, handling carriage return character 283
raw mode, handling line feed (LF) character 283
raw mode, parsing escape Sequence inputcciiiiiiiiiaiiaa.n. 284
raw mode, term0 INPUt e i e e e 279
raw mode unblocked reads e 284
re-routing a window’s input i i e e e 236
re-routing graphics window input i i, 213, 232
re-routing loops e e 234
re-routing, many-t0-0ne e e 232
re-routing, multi-hop e e 233
re-using elevator scale information il 167
TERA(D) . o oot e 216, 220
reading data in ASCIImode, 216
reading data in packetized input mode (mode 2) oLl 238
reading data in two-byte mode (mode 1) oL, 219
reading from windows i i e e 23
reading keycode packets e e 220
rectangles, fast alpha i e i e 291
relative coordinatesot i i i e e 36, 40, 72
relative icon coordinatesttt e e 101
relative 10cator deviceot i et e e 136
removing fast alpha fonts e 302, 303
rentention, Taster e et 20
repaint window eVentt e e 119
repainting the display screen e 51
replacing a termO font 262
replacing term0 fonts in the cache i i i i 275
representation, changing a window’s i 68
representation, relation to event detection Lt 120
representation, Window e 18
resuming term0 window output i i e e 92
retained Taster ittt e e e et 18, 20, 41
retained raster, linking programs that usethem 331
retention, Setting oovt e e e e 41
return value, graphics window softkey 248

362 Subject Index

reverse video characters in a termO window 258

reversing the direction of panning with arrows L. 158
RG B o e e e 263
right key, effect in two-byte mode, 223
TOMANS KEY . oottt e e e e 219
TOULINE l00DS .« .ottt e e e e e 234
run-time environment of awindow i i, 35, 40
S
scale information for elevators e 166
screen size, determininguiiintotniiine e eriieeeninannnnn 72,76
SCrOll AT . .o e e 155, 156
scroll bar, affecting e 161
scroll bar events i e 160
scroll bar, horizontal e 161
scroll bar, vertical i e e e 161
scroll buffer size i e 20, 37, 80
SCROLLBAR _ARROWS . .. i i it ettt ettt teee i e 162
SCROLLBAR _ELEVATORttt ittt tiietttienneoneaaeennesooenenannnnnn 162
510 0) 1.7 161
SCROLLBAR _SCALE ittt ittt tientteneansnsteneneanianieeaeennas 166
SCROLLBAR_USERMODE ittt it i tette i eeenn et ineanannens 165
SOROLLBAR _V . it et e e e e e e e e 161
scrolling a fast alpha rectangle i, 308
see_thru window type server it i e 335
... 118, 150
activating a hotspot i 178
SeleCt(D) < e 285
selectable menu item e 198, 202
selecting awindow L L e 65, 216
selecting a window on output to the window 65
selection, detecting ...ttt e 119
selection, general OVEIrvVIEWt iineiin ittt 17, 19
selection made from user-defined menu, event detection 120
selection, setting ... e e 65
selection, side-effect from shuffling L 49
selection, side-effects from destroying 46
selection-changed events ittt i e 119
separator between menu items i il e i 203
separator, graphics window softkey label 252
SETAUTODES TROY it i i it ettt iineestnneneeenneennneennn 96

Subject Index 363

SETAUTOSELECT .. vttt it ittt ittt ittt ieiinianeeenenaneeesoannneneens 65

£ 00 L0 1 0 69
SETBANNER .ot teteete ettt e e e et e e et e e e e e e e e e 37, 41, 85
£ 031 10] P 68
£33 0 I 1.0 O R 69
SETFULLSPRITE ittt ittt ittt ittt e tie it et ansseaenenas 151
BEE_ BT _L8BDB.C o\ttt ittt e e e i 253
£ 00 1103 99
SETNOAUTOSELECTttt ittt ittt it ittt tte s tn i ees e tnaennseonsensnsnanen 65
SETNOAUTOTOP ... ittt it ittt ettt ittt tiiee et 69
SETNOBANNER ... tttttttttiene et ettt teeanaanaareieeeenannann 37, 41, 85
£23 5 ()11) 68
£ 08 010 1) 0 F - S 69
SETNOFULLSPRITE ...ttt ittt it ittt ittt et iaseneeneeasonennnensas 151
13 00 1 0 1) R 99
SETNOPAUSE ..ttt it e et e e i e e e e 92
SETNORECOVER ...ttt ittt ittt ittt ittt ettt ittt st aannenns 96
SETNORETAIN ..ttt it ittt ittt ittt ettt neneenns 41
£ 0 01 08 13 X 65
£ 0 10 1] 68
SETNULLBANNER . . . o oot veett et e e e e e e e e e e e e e e e et 41, 85
SET P AUSE . .o i e e e e e e e e it i e e 92
SELPGTD(2) o oo e 16, 224
SETRECOVER ... i i it ittt et e e i e e 96
£] 08 81 08 7 15 41
£ 08 S 01 18 - 65
setting border Colors i e e e 89
setting fast alpha environment information oL 294
setting fast alpha font colors i 304
setting the term0 alternate font i, 272
setting the term0 base font 272
BETTOP ottt ettt ettt e ettt e e e 68
SEUUIA .« vt 16
) 201 251
5] 300 G 251
SEKSE PO F .. i e e e e e e e e e 252
3] 061 04 1) 252
[(Shift], effect in two-byte modecoiiiiiii i 221
[Shift], effect on data byte values in two-bytemode 222
[Shift], relation to K_CAPSLOCK input configuration parameter 228
[Shift], relation to K_SHIFT input configuration parameter 229

364 Subject Index

(Shift}[Select], effect in two-byte mode i, 224

£37:3 1030 3 18 00 1) 49
£ L0120 3 18 0L) 49
shuffling windows i e 18, 49
SIcharacterttt i e e e 261
SI character, effect on termO fonts i 262
side effect of changing activation bit mask i, 185
SIG LD .ttt e e e e e e 46
=3 (e 1) P 114, 115
SIGHU P . e e e 45, 46
SIG_ION . ettt e et et et e e e e 114, 115
SIGIN T L e e e et e 115, 116, 224, 280
SIGINT, handling on term0 window input i, 281
SIGINT, side-effect from wgskbd(8W)o i iiiiiii i, 214
Y 0 -1 113, 114, 123, 124, 126
signal handler i 114, 115, 123, 127, 151
SIGRAl(2) .o 46, 114, 116, 123, 127, 169, 280
signal.hheader file 114, 116, 279
SNl L. e e 16
SLG QUL oot et e et e e e 280
SIGWINDOW ... et 123, 124, 127, 150, 169, 171
size and location of a hotsSpot e 180
size, changing a graphics window’s i ittt i i et 76
size, changing a termO window’s o ittt e i 80
size, determing for term0 window font L iiiiiiiiilLL. 270
size, determining a window’s border i i i 81
size, determining SCreenutttunntttiuneeae e eeeennnnn 72, 76
size, determining windowt e e i e 76
size, determining window’s border i 76
size events for Windowsttt e e 119
3T/ (o) ¢ O 261
SI1Z€, 1COM PICEUTE . o\ttt et e et e e e 104
size, maximum for term0 windows i e 80
size, maximum graphics windowo il 76
size, minimum for termO0 windows i e 81
size, minimum graphics window L e 76
size, of fast alpha fainfo structure i, 296
size of graphics window raster i e 20
size of term0 window scroll buffer ii.. 20, 37
ST 2] 7 O P 94
size, relation between term0 window size and font size 261

Subject Index 365

S1ZE, SCTEEIL .+ v v vt ve vt ettt et ettt it e e tee e te ettt e ie et e 72

size, scroll buffer 37, 80
Size, VIrtual Taster i e i 94
Size, WINAOWt i e e e e 18, 76, 80
slave side Of Plyot e e 13
SO characterooi i e 261
SO character, effect on termO fonts i 262
SOt KREY .. e e e e 19
softkey definition e 248
softkey definition escape sequence, termQ window 267
softkey definition string, term0 e 260
softkey definition, term0 e 256
softkey label, graphics window i 248
softkey label, term0t i . 256, 259
softkey labels, changingccoo ittt . 252
softkey return value, graphics window i, 248
softkey return values, graphics windows i, 249
softkeys, defining term0 259, 267
softkeys, graphics window i e 247
softkeys, term0 window i . 256
softkeys, turning on and off in a termO window, 266
source window, input re-routing il 213, 232
special files used by window system i 333
Special Key ... e e 219
special key, data byte values e 222
] o) o L7 O N 135, 136
sprite, changing the i i e e i41
sprite control, full-screen mode e 150
sprite, custom definition 142, 145
sprite, enabling full-screen mode i i 150
sprite, getting current representation i il i i 142
sprite, getting its definition 147
SPIILE IMAZE . .ottt e e e 145
SPIIte INASK ..ttt e 145
spritemask rule e 145, 146
sprite, optimizing for hardware 141
SpIIte TUle .. e e 145, 146
stack, window i e 18, 49
Starbase Device Drivers Libraryottt 4
Starbase Librariesuiieer it e e 24
Starbase Libraries, linking with programs, 331

366 Subject Index

starting window communication 23, 58, 59, 122

starting window manager communication e 29, 37
stdio.h header file i e 279
stopping window communication i, 58, 62, 130
stopping window manager communication0 iiiiiiieiiaa... 30
stylus, graphics tablet 17, 135
SU() o e 16
10y 03 D11 S O 16
swapping termO fonts in thecache 275
switch to alternate font in termQ window il 261
switch to base font in termO window i 261
... 248
(€SCAPE SEQUEIICE) . ..\ vttt ettt ettt e et e e 249
SYSEEM() o e 28
t
TCIOBREAK ... ittt it et e e et e i e e, 224
termO0 alternate font L e 37
termO base font e e e 37
termO block mode e 257
termO character, color i e 262
term0 commonly used escape SeqUENCEScveerrrreiiatieeaiiian. 258
term0 escape SEQUETICEttt ittt e 257
termO font cache e e 261
termO font id e e 261
termO font id, determining e 270
termO font information, getting 270
termO font management model i 261
termO font size, effect on window size i 80
termO format mode 257
termO graphics e 257
termO input, cooked mode e 279
termO input, Taw MOde e i e e e 279
term0 “local” mode e e e 257
termO memory lock e e 257
termO programmable time delay e 257
term0 softkey definition e 256
termO softkey definition string i, 259, 260
termO softkey escape Sequenceiiiiiiiii i i i i 260
termO softkey label e 256, 259
termO softkeys, defining i 259

Subject Index 367

term0 softkeys, turningonand off 266

term0 window, creating i i e 35
term0 window input/output features 256
term0 window, maximum label length 87
term0 window scroll buffer size 37
term0 WIndOW SEIVETuiienn ittt tnneiineiiereennnennnen, 335
term(window size, determining i i e 81
term0 window softkeys i e e 256
term0 window type e e 9, 17
TERM O AP e e 256
L < O P 63
terminal (term0) window typeciiiiiiii e 9,17
terminating the fast alpha environment 292
termio structure e e 279, 284
Bermio(T) .o e 214, 279
termio.h header file e 279
BT B0 . C ittt e e e e e e 64
BOTM W _COM.C vttt ittt ettt ee et eenteesaennsaneaenneneeneneaeeneeneennnns 33
text in a graphics window, using Fast Alpha 287
thin bordero i e 19, 37, 41, 76, 85
thin border, effect on minimum term0 window size 81
time delay, programmable term0 i i e 257
timestamp, event code packet L e 239
0D WINAOW . ..ot i e e e e e e 18, 68
tozy_termO(SW) .o e 81, 278
tracking, In enuUSst e e e 203
tracking locator movements i i i e 118, 131
transmit functions mode e 216
tranSmit SEraD ..ottt e e e 282
() e e 25, 214, 279
turn on inverse video, term0 window i, 258
turn on underline, termQ window i e 258
turning graphics softkey label onand off 251
turning termQ cursoron and off L. e 265
turning termO softkeys on and off 266
two-byte mode e e e 212
two-byte mode, reading data e 219
tyPe, MENU IteIMot it i it i e e e e e 202
BYDE, WINAOW . ..ot e e 9, 17

368 Subject Index

unblocked reads, termO raw mode 284
underlining characters in a termQ window 258
... 248
user background color e e e e 20
(€SCAPE SEQUENCE)\ttt ittt e 249
user foreground color e e 20
L0 ET<) ol 4 o Yo (-0 O 155, 160, 165
user mode, enabling e e e e 165, 170
user-defined echo L e e 145
user-defined MENU i e e e 120
user-defined menu, activating i i e 206
user-defined menu activation, disabling 206
user-defined menu, adding items to i 202
user-defined menu, automatic display on activation 206
user-defined menu button mask L . 200
user-defined menu, deleting i e e 210
user-defined menu, determining activation status 206
user-defined menu, event detection iiiiiiia., 208
user-defined menu, getting selection information 208
user-defined menu, grey itemsc. i i e e i i 202
user-defined menu, immediate display (don’t wait for activation) 206
user-defined menu item separatort it i i e 203
user-defined menu, non-selectableitem i, 202
user-defined menu, polling for selection information 208
user-defined menu, selectable item i e 202
user-defined menu, timeout period i i . 209
user-defined menu tracking 203
user-defined menu type ... e 200
user-defined pop-up menu, creating i i e, 200
user-defined POP-UP MEMUSottt et iie e eieareeenennnenn 197
JUBT /DI WE et 335
Jusr/include/fa.h e i e 288, 335
/Jusr/include/fonticon.ht e 104, 261, 335
/usr/include/signal M e 279
/usr/include/stdio.h e 279
/usr/include/sys/signal.h i i i i e 114, 116
/usr/include/termio.h e e e e e 279
/usr/include/window.httt et 2, 124, 222, 335
/usr/lib/gserver e e e e e e e e e e 335
/uST/1ib/hpWindows/demO . .. v e utt ittt e e, 9, 334

Subject Index 369

/usT/1ib/hpwindows/demMOSTCo vv ettt ettt e 334

/usr/1lib/hpwindows/man_examplesceuueeenreennennranaenorann 2, 334
JUBT/1AD/LabAA* .8 ..ttt e e e e e e s 335
/UST/1ib/1ibAAbYEe. @ ...t 335
JUST/Lib/1ibAAdITUET @ o\ oottt e e e e e e 333
0BT/ 1Ab/LabEa. 8 oottt e e e e e 1, 333, 335
/uST/1ib/1ibfontm. @ ...t i e et 1, 333, 335
JUBT/LAb/1AbabL .8 .ottt e e e e e e 333, 335
JUBT/LAb/ LabaD 2. 8 oot e e et e e 333, 335
/UST/1ab/ LibWindow. @ . .vvt ittt e e e e 1, 333, 335
JUST/Lab/raster/* oo e e e e e 334
F A T3 o T LY Y-) - 261
/usr/lib/raster/dflt/a/h/SLANG 334
/usr/lib/raster/dflt/a/1/SLANG i e 334
/usr/lib/raster/df1t/b/h/SLANG 334
/usr/lib/raster/dflt/b/1/SLANG e 334
JUST/1ib/Taster/iCOnSEt e e e 334
JUBT/ LiD/ BEBOIVET o ittt ettt e e e e e e e 335
JUBE/LAb/B0BOTVET .« ottt ettt e e e e e e 335
JUBT/Lab/WI .ot 15, 16, 28, 335
\'4
value, softkey i e 19
vertical scroll bar e 156, 161
72 (=3 s 2% 18, 41
virtual device e e e 18
Virtual Taster e e e i8, 41, 94
virtual Taster Size e e e i 76
UMD e e e e e e et e e 284
VMIN, side-effect from wgskbd(SW) o e 214
VTIME ottt ittt ittt et e e e e e e e 284
VTIME, side-effect from wgskbd(SW) oo i i 214
W
wautodestroy(8W) e e 46, 96
wautoselect (3W) . .o e 65
wautotop(SW) o 68
whanner(SW) ..o e 85
whorder(1) ..o e 19
WhOLLOM(BW) o e 68
weonceal(8W) . ..o e 69

370 Subject Index

WETEALE(1) oot e 58

wereate_graphics(SW) . e 40, 41, 58, 76
wereate_termO(SW) ..o oo e 35, 37, 40, 58
WAESITOY(1) . oo oo e e 96
wdestroy(8W) ..o 45
wdfltpos(8W) e 36, 72, 101
weventpoll(8W) . .. e 127, 160, 169, 208
weventpoll(8W) for hotspotsot 190
weventpoll(8W), INPuts 10o ou ittt e 127
weventpoll(8W), 0 qUEUe 128
weventpoll(8W), outputs from ...ttt i i, 128, 129
WIONE(L) e e 261
wgetheolor(SW) o o e 89
wgethcoords(8W) . ..o e 76
wgetcoords(8W) . ..o e 36, 72, 73, 76
wgetecho(SW) ..o e 142
wgeticonpos(8W) . .o e 101
wgetlocator(8W) .. .o 138
wgetrasterecho(SW)o e 147
wgetscreen(8W) ..o e 72, 73, 76
wgetsigmask(SW) ..o e 130
wgskbA(8W) . oo e 214
wgskbd(3W), relation to input re-routing i, 235
whotspot_create(SW)o e e 179
whotspot_create(3W), realtion to packetized input mode 239
whotspot_delete(SW) o e e 187
whotspot_get(SW) ... e 184
whotspot_set(3 W), relation to packetized input mode 239
wicontc(8W) o 99
wid, event code packet e 234
wid, getting pathname from it i i e 237
wid (window id), obtained from re-routing window input 234
window attributes 17
window border size, determining i i i i e e e 76
WiIindow commands e it 335
window communication, starting i i i i e 23
window destruction events i e 120
window file descriptort i e 13, 59
WINAOW GTOUD - v vttt e et e e et et 16
window id, event code packets i i i 234, 239
window id, getting path name from i i, 237

Subject Index 371

window id, obtained from re-routing window input Lo L. 234

window id, relation to file descriptor o i i i e 234
window label i e e et et e 19, 87
Window Librarycoouiiiiiiii i i e 1, 22
Window Library, linking with programs o it 331
window location i e e 18
window location, default i i e, 36
window location, setting i e 72
window management routines i i i i e e 27
WINAOW IMANAZET <o\ v vttt tr ettt tte s eee e ene e teeeaeeinneeneannes 15, 16, 22, 28
window manager device interface 16, 22, 28, 29, 30, 41
window manager device interface, opening i, 29
window manager, emulating in full-screen sprite mode 150
window manager file descriptor il 29, 37, 41
window manager, interactive configurationo i 150
window manager, killing the i i e 53
window manager special file i 16
window manager, starting communication witho i 29
window manager, stopping communication with o il 30
window manipulation routines i i i i i it a7
WINAOW IOVE EVENES . ot v vttt ittt et e etie e ie e eae e ae e aae e ennenaneens 119
WINAOW, IOVIILE . .ottt ittt e ettt et e e 72
WINAOW NAIMEttt ittt it ee i e 14, 17, 35, 37, 40, 41, 58
window name, default e 36
window name, maximum length i i i i 37
WINAOW PAUSEd . ..o v ittt et 21
window representation, changing i i i i 68
WINAOW SIZ€ . ..ottt i e e e e 18, 76, 80
window size change eventsoiiiiiniiii i 119
window size, determining i i e 76
window size, relation to font size in term0 window 261
window special file e 13, 17
WINAOW SEACK ... i ittt i i e i i e e e e e 18, 49
window system architecture 22
window system device files e 333
window system, exiting i e e e 53
window system special files i 333
WINAOW B D8 .« o ettt ittt e e e e 9,17
window type device interface 13, 17, 22, 35, 40, 41, 58, 59, 62
window type device interface, destroying i i, 45
window type device interface, opening i e, 59

372 Subject Index

Window-dumb PrOgramsottt et iiee e iieeienennnaneannas 12

window-dumb programs, Writingot i e 24
WINAOW-SIArt PrOZTAINS - .« o vt v vt tie ettt ettt ee e ieeneenennaenennnn, 12, 22
window-smart programs, compiling it 332
window.h header file i, 2, 124, 335
WIS) oo e e 29, 59
WINNAMEMAK .« oo voonee e e et e e e e e e e e e e e e 37, 41
WINPUL_COnf(8W) oo e e 227, 230
winput_conf(3W), relation to input re-routingoiiiiiiiiiiia... 235
winput_conf(3W), relation to packetized input mode 239
winput_getroute(SW) e 232, 237
winput_read(SW) 212, 238, 240
winput_setroute(SW) 232, 236
winput_widpath(3W) o e 232
WM oo e e e e e e e e e e 15, 16, 22, 28
WMBASEF ON T ..ottt ittt ettt e 302
14101 14, 16, 28, 35, 40, 58, 59
WMDRIVER ...ttt ettt et et e 59
wmenu_activate(SW) ..o e 206
wmenu_delete(SW) .. 210
wmenu_eventread(SW) ... o e 208
wmenu_ttem(SW) . 202
WMEONTDIR ..ttt ettt et et et 37, 261
WMIATIMEOUT ..ottt ettt e et ettt e eaeenns 209
wmingquire(8W) . 59, 150
WMIUICONFIG ..ttt ettt e e 150, 158, 198
wmktll(1) .o e 54
WIMKI B) o oo e 53
WMLOCSCALE ...ttt e e e 136
WIMOVE(BW) e e 72
wmpathmake(SW) . ..o e 29, 35, 40, 59
wmready(1) ... e 28
wmrepaint(SW) .. 51, 119
WMSEArt(1) ... e 14, 15, 28, 35, 40
WIMSLOP(1) e e e 16, 30
WPAR(SW) oo e 76, 94
wpauseoutput(SW) .. oo 92
wrecover(SW) o e 46, 96
writing fast alpha character strings i i, 300
writing fast alpha characters i i i i 300
Writing t0 WindOWSo i e e e e e 23

Subject Index 373

wsern_sprite_mode(SW) e 150

wseroll_set(8W) oo e 161, 165
WEleCt (W) o e 17, 65, 216
wsetheolor(SW) . oo e 89
WIeteCho(SW) o o ot et 141, 145
WSELICON(SW) . oo e e 103
wseticompos(BW) o e 101
wsetlabel(SW) ... o 19, 87
wsetlocator(SW) . . o e 140
wsetrasterecho(SW) ... 142, 145
wsetsigmask(SW) . .. 126, 160
wsfk_mode(SW) . ..o e 251
WSFh_prog(8W) oo e 252
WSh(1) e 58
wshuffle(SW) oo e 49
WSLZE(SW) o o e 76, 80, 80
wterminate(SW) .o e e 30, 62
WEOP(SW) o e 68
X
x and y, event code packet 240
XOFF o e 92
KON e 92
x,y pixel coordinates, converting to rows and columns 278

374 Subject Index

Win an HP Calculator!

Your comments and suggestions help us determine how well we meet your needs.
Returning this card with your name and address enters you into a quarterly
drawing for an HP calculator*.

HP Windows/9000 Documentation

Agree Disagree
The manual is well organized.
It is easy to find information in the manual.
The manual explains features well.
The manual contains enough examples.
The examples are appropriate for my needs.
The manual covers enough topics.
Overall, the manual meets my expectations.

OO0O00OO0O0
OO00O0OO0O0O
ONONONONONOR®,
ONONONONONON®,
OXONONONONORG

You have used this product:
__Less than 1 week __Less than 1 year __More than 2 years
___Less than 1 month __1to2years

fold ——

Please write additional comments, particularly if you disagree with a statement
above. Use additional pages if you wish. The more specific your comments, the
more useful they are to us.

Comments:

*Offer expires June 1990. (97069-90002 EQ488)

Please Tape Here

Please print or type your name and address.

Name:

Company:

Address:

City, State, Zip:

Telephone:

Additional Comments:

HP Windows/9000 Documentation
HP Part Number 97069-90002
E0488

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company

Attn: Learning Products Center
3404 East Harmony Road

Fort Collins, Colorado 80525-9988

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

HP Part Number
97069-90002

Microfiche No. 97069-99002
Printed in U.S.A. E0488

A

HEWLETT
PACKARD

Il

970b9-90L08

For Internal Use Only

