
Compiling HP BASIC 6.2 Programs

FliOW HEWLETT
~~ PACKARD

HP Part No. 98618-90001
Printed in USA

Notice
The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP MAKES NO WARRANTIES OF ANY KIND WITH
REGARD TO THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED.
HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this product are restricted.
Additional copies of the software can be made for security and backup purposes
only. Resale of the software in its present form or with alterations is expressly
prohibited.

Copyright © Hewlett-Packard Company 1988, 1989, 1990, 1991

Copyright © International Electronic Machinery, Inc. 1987, 1991

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Copyright © AT&T Technologies, Inc. 1980, 1984, 1986

Copyright © The Regents of the University of California 1979, 1980, 1983,
1985-86

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California.

Printing History
First Edition - April 1990
Second Edition - June 1991

iv

Contents

1. Using This Manual
Manual Notation
Syntax Drawings Explained
Keywords and Spaces . . .

Space Between Keywords and Names
No Spaces in Keywords or Reserved Groupings
U sing Keyword Letters for a Name . . .

Preview of the Chapters and Appendixes
Chapter 1 : Using This Manual
Chapter 2: The BASIC Compiler
Chapter 3: Overview of Compiler Tasks
Chapter 4: Details of Using Your Compiler ..
Chapter 5: Details of Compiler Directives . .
Chapter 6: Improving Compiled Programs ..
Appendix A: Error Messages and Warnings
Appendix B: Troubleshooting..
Appendix C: Glossary

2. The BASIC Compiler
Hardware and Software Requirements
Com piler Capabilities
Identifying the Compiler Revisions
Compiler Overview

The Compilation Process
A Dummy MAIN Program and Mainsub
Compiler Limitations

1-1
1-2
1-3
1-4
1-4
1-4
1-4
1-4
1-5
1-5
1-5
1-5
1-5
1-5
1-6
1-6

2-1
2-2
2-2
2-3
2-5
2-6
2-7

Contents-1

3. Overview of Compiler Tasks
Chapter Contents
How Tasks Are Described

Task
Considerations
Solution ..
Reference

Task Reference
Install the Compiler (BASIC /WS and BASIC/DOS only)
Compile a Simple Program
Access On-line Help
Remove the Compiler (BASIC /WS and BASIC/DOS only). .
Send Compiler Output to Printer
Compile Program to Run as Quickly as Possible
Optimize Program for Size and Speed
Use Compiler Directives ...
Use Conditional Compilation .
Use $EOL OFF Correctly ..
Build CSUBs Library
Set Up Programs with Event Processing .
Compile Program without Error Prompts
Access MC68020/30 Processor and MC68881/82 Coprocessor .

4. Details of Using Your Compiler
Installing the BASIC Compiler (BASIC /WS and BASIC/DOS

only)
Compiler Directives
Invoking the Compiler . . .
The COMPILE Command .

Default Compiler Directives
The UNCOMPILE Command
Devi ce Selectors
Compile List

Compiler Invocation Examples
Options List

Switches in the Options List . .

Contents-2

CC (corresponds to CONFIGCHECK) .
EO L (corresponds to EO L).

3-2
3-3
3-3
3-3
3-3
3-3
3-3
3-4
3-5
3-6
3-7
3-8
3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17

4-1
4-2
4-3
4-3
4-4
4-6
4-7
4-7
4-8
4-9

4-10
4-10
4-10

ERR (corresponds to ERROR) . .
KEEP (corresponds to KEEP) . .
LC (corresponds to LONGCODE)
MTP (corresponds to MC68020) .
MCP (corresponds to MC68881) .
OP (corresponds to OPTIMIZE) .
OC (corresponds to OVERFLOWCHECK) .
RC (corresponds to RANGECHECK) .. .
SA (corresponds to STATICARRAYS) .. .
SL (corresponds to SAVELINENUMBER)
ST (corresponds to SYMBOLS). . . .
STC (corresponds to STACKCHECK) .

Commands in the Options List
BEST Command
DS Command
HIDE Command .
SHOW Command.

Correcting Compile-Time Errors
Correcting Run-Time Errors
Compiler Output
Compiler Command Reference . .

COMPILE and UNCOMPILE
HELP
HELP COMPILE
HELP OPTIONS
REMOVE COMPILER (BASIC/WS and BASIC/DOS only)

4-11
4-11
4-11
4-11
4-12
4-12
4-12
4-12
4-12
4-13
4-14
4-14
4-15
4-15
4-16
4-16
4-17
4-18
4-19
4-20
4-20
4-21
4-24
4-25
4-26
4-27

5. Details of Compiler Directives
Default Values of Compiler Directives
Set Location of Compiler Directives
A Detailed Description of Compiler Directives

Directive Topics
Default
Scope
Set Location
Details

Directives Overview .
COMPLEX Directive

5-2
5-2
5-3
5-3
5-3
5-3
5-3
5-4
5-4
5-6

Contents-3

CONFIGCHECK (CC) Directive
CONTROLVAR (CONTROL or C) Directive ..
EOL Directive
ERROR (ERR) Directive .
IF and IFNOT Directives .
KEEP Directive
LONGCODE (LC) Directive
MC68020 (MTP) Directive.
MC68881 (MCP) Directive .
OPTIMIZE (OP) Directive.
OVERFLOWCHECK (OVFLCHECK or OC) Directive
RANGECHECK (RC) Directive . .
REAL Directive
SAVELINENUMBER (SL) Directive
STACKCHECK (STC) Directive
STATIC ARRAYS (SA) Directive
SYMBOLS (ST) Directive

6. Improving Compiled Programs
Storing Your Program
Compiled Program Compatibility ..
Interacting with Compiled Programs
Writing Efficient Programs . . .

Interpreted vs. Compiled Code .
Compute-Bound Code ..
I/O-Bound Code

Optimizing Your Program
Compiler Directives .

Contents-4

CONFIGCHECK .
EOL
KEEP
LONGCODE .. .
MC68020 and MC68881
OPTIMIZE
OVERFLOWCHECK
RANGECHECK . . .
SAVELINENUMBER .
STACKCHECK

5-10
5-11
5-13
5-15
5-16
5-20
5-22
5-24
5-25
5-27
5-29
5-31
5-33
5-37
5-39
5-40
5-42

6-1
6-2
6-2
6-3
6-3
6-4
6-5
6-7
6-7
6-7
6-7
6-8
6-8
6-8
6-9
6-9
6-9
6-9

6-10

STATICARRAYS .
Looping Control
U sing Integers
Arithmetic Expressions
BEST Command
Overall Program Efficiency .

Using the EOL Directive
Interpretive Event Processing. .

ON ERROR Events
ON TIMEOUT and ON END Events
All Other Events

Compiled Events Processing
EOL ON
EOL OFF
ON ERROR Events (with EOL OFF)
ON TIMEOUT and ON END Events (with EOL OFF)
All Other Events (with EOL OFF)
Special Considerations . .

Toggling EO L
Special Consideration

U sing the DS Command . . .

A. Error and Warning Messages
Compiler Error Messages
Compiler Warning Messages

B. Troubleshooting
How Problems Are Presented

Problem
Probable Cause
Solution ...
Reference

Compiler Problems
Problem and Solution Reference

Compiled Program Runs Too Slowly
Compiled Program is Too Big
Program Runs in Interpreted Mode but not When Compiled .
System Hangs During Compilation

6-10
6-10
6-11
6-11
6-12
6-13
6-13
6-14
6-15
6-16
6-16
6-17
6-17
6-17
6-18
6-19
6-19
6-21
6-23
6-25
6-25

A-2
A-3

B-1
B-1
B-1
B-1
B-1
B-2
B-2
B-3
B-5
B-6
B-8

Contents-5

Memory Overflow Error During Compilation . . . B-9
Compiler Did Not Create Mainsub for Program. . B-11
Cannot TRACE or Single-step Compiled Program B-12
Error 1010-Non-compilable Command B-13
Error 1018-Context Code Too Long B-14
Program Runs on One Computer but not Another B-15
Configuration Error at Run Time B-16
Internal Compiler Error (1002) at Compile Time . B-17
Wrong Line Number Reported with Run-Time Errors B-18
Too Many Error/Warning Messages . . B-19
Computer Hangs in Middle of CSUB B-20

c. Quick Reference
BASIC Compiler Directives, Switches, and Commands . C-2

D. Glossary

Index

Contents-6

1
Using This Manual

When you are using a new software product, one of the most important
elements of success is the documentation. Being without a complete and
readable user's manual is like being in a strange city without a map. Before
you start using the BASIC Compiler, you should read this chapter and
familiarize yourself with the organization and content of the manual, as well as
the notation and terms that are used. Taking time to do this will, in the long
run, save you some effort.

Manual Notation
This manual will utilize the following notational conventions:

Computer Font

Italics Font

Bold Font

[]

()

/

UPPER CASE
LETTERS

is used in all examples.

is used to identify generic descriptions of items to be
supplied by you.

is used to identify important terms which may be found in
the Glossary (see appendix C). Each of these terms will be
in bold font the first time you see them in this manual.

are used to denote optional items.

are used to specify parameters or arguments which are not
optional and must be supplied by you.

is used to separate two items and means that one or the
other (but not both) secondary keywords may be used.

are used to denote BASIC keywords and secondary BASIC
keywords which must appear in the same form as they
appear in the manual.

Using This Manual 1-1

1

Key caps are shown in appropriate key envelopes (e.g. 0).
The following is an example of notational conventions:

10 $CONFIGCHECK [ON/OFF] [$ [comments]]

where:

10

ON/OFF

[ON/OFF]

$CONFIGCHECK

comments

is in computer font because it is an example.

are two secondary keywords separated by a
"/". The "/" tells you that one or the other
but not both secondary keywords may be used.

are optional as indicated by the square
brackets.

is in italics to indicate that the text is to be
supplied by you.

Syntax Drawings Explained
Statement and directive syntax are represented pictorially as shown in the
following example. All characters enclosed by a rounded envelope must be
entered exactly as shown. Words enclosed by a rectangular box are names of
items used in the statement. A description of each item is given either in the
table following the drawing, in another drawing, or in the Glossary.

Statement elements are connected by lines. Each line can be followed in only
one direction as indicated by the arrow at the end of the line. Any combination
of statement elements that can be generated by following the lines in the
proper direction is syntactically correct. An element is optional if there is a
path around it. Optional items usually have default values. The table or text

1-2 Using This Manual

following the drawing specifies the default value that is used when an optional
item is not included in a statement.

Comments may be added to any valid line. A comment is created by placint
an exclamation point after a statement or after a line number or line label. For
example:

100 PRINT "Hello" ! This is a comment
110 ! This is also a comment.

The text following the exclamation point may contain any characters in any
order.

Comments for directives are created by placing a dollar sign after the directive
statement. For example:

10 ! $KEEP ON $ This is a comment.

The text following the second dollar sign may contain any characters in any
order.

The drawings do not necessarily deal with the proper use of spaces (ASCII
blanks). In general, whenever you are traversing a line, any number of spaces
may be entered. If two envelopes are touching, it indicates that no spaces are
allowed between the two items. However, this convention is not always possible
in drawings with optional paths, so it is important to understand the rules for
spacing given in the next section.

Keywords and Spaces
The computer uses spaces, as well as required punctuation, to distinguish the
boundaries between various keywords, names, and other items. In general,
at least one space is required between a keyword and a name if they are
not separated by other punctuation. Spaces cannot be placed in the middle
of keywords or other reserved groupings of symbols. Also, keywords are
recognized whether they are typed in uppercase or lowercase. Therefore, to
use the letters of a keyword as a name, the name entered must contain some
mixture of upper-case and lower-case letters. The following are some examples
of these guidelines.

USing This Manual 1·3

11
Space Between Keywords and Names

The keyword NEXT and the variable Count are properly entered with a space
between them, as in NEXT Count. Without the space, the entire group of
characters is interpreted as the name Nextcount.

No Spaces in Keywords or Reserved Groupings

The keyword DELSUB cannot be entered as DEL SUB. The array specifier (*)
cannot be entered as (*). A function call to "A$" must be entered as FNA$,
not FN A $. The I/O path name "@Meter" must be entered as <OMeter, not as
<0 Meter. The "exceptions" are keywords that contain spaces, such as END IF
and OPTION BASE.

Using Keyword Letters for a Name

Attempting to store the line IF X=1 THEN END will generate an error because
END is a keyword not allowed in an IF ... THEN statement. To create a line
label called "End," type IF X=1 THEN ENd. This or any other mixture of
uppercase and lowercase will prevent the name from being recognized as a
keyword.

Preview of the Chapters and Appendixes
Below is a summary of the organization of the material in this manual.

Chapter 1: Using This Manual

Unless you skipped right to this section, you know what this chapter is all
about.

1-4 Using This Manual

Chapter 2: The BASIC Compiler

This chapter is devoted to giving you an idea of what the compiler does, how it
works, and what its limitations are.

Chapter 3: Overview of Compiler Tasks

This chapter is a quick reference and index into tasks described in the manual.
It lists a number of common tasks that you may want to perform, gives a quick
explanation of how to accomplish them, and tells you where in the manual to
look for more detailed information on the tasks.

Chapter 4: Details of Using Your Compiler

This chapter gives you detailed instructions on using the compiler. It includes
the methods for installing the compiler binary (BASIC/WS and BASIC/DOS
only), and invoking the compiler and the options that are available to you.

Chapter 5: Details of Compiler Directives

This chapter lists and describes the compiler directives that are available to
you.

Chapter 6: Improving Compiled Programs

This chapter provides information about compiled programs and offers tips on
how to write programs that compile and run efficiently. Detailed instructions
on using the EOL directive are also found in this chapter.

Appendix A: Error Messages and Warnings

This appendix describes error messages and warnings created by the compiler.

Using This Manual 1·5

1

Appendix B: Troubleshooting

This appendix provides help with common problems encountered when using
the compiler.

Appendix C: Glossary

This appendix contains a list of important terms found in this manual.

1-6 Using This Manual

The BASIC Compiler

This chapter is devoted to giving you an idea of:

• what the compiler does

• how it works

• what its limitations are

If you are using HP BASIC/UX 6.2, the BASIC/UX compiler is included
and installed with BASIC/UX. If you are using HP BASIC/WS 6.2 or
HP BASIC/DOS 6.2, the HP 98618A BASIC Compiler must be installed to
allow you to compile your BASIC programs.

Hardware and Software Requirements

2

The BASIC Compiler can be run on any HP Series 200 or 300 computer
running the HP BASIC Language System of the appropriate version (e.g., 6.2
for the 6.2 compiler). If you are using BASIC/WS, you will also need a local
disk drive to install the compiler binary or to transfer the compiler binary from
the disk media to another storage location. A disk drive is not needed during
the compilation process.

A different compiler is required for each new version of the BASIC Language
System. For example, if you have compiled programs on a 1.0, then they will
run on all Lx revisions (such as 1.0, 1.1, etc.): a different compiler would be
required to run such programs on revisions 2.x or 3.x.

The compiler compiles a program that is residing in memory. Since it needs
room to hold both the source code and the compiled code, it may require
available memory up to 3 times the size of the program to be compiled. Some
programs require much less.

The BASIC Compiler 2-1

2

2 Compiler Capabilities
The BASIC Compiler provides you with the ability to translate a BASIC
program into a series of Compiled Subprograms (CSUBs). Each CSUB is a
machine code routine (written in the language of the MC68000/68010/68020
microprocessor) which will perform the same task as the original BASIC
subprogram. BASIC SUBs are compiled into CSUBs, and BASIC functions are
compiled into CDEFs (see the Glossary). The advantages of compiled BASIC
include:

• Speed-because the compiled program needs fewer steps to complete the
same task as an interpreted BASIC program, a compiled program runs faster .

• Security-as each CSUB is written in machine code, it is almost impossible
to recover the original BASIC source code (the BASIC statements which
make up your program).

Identifying the Compiler Revisions
The BASIC compiler is associated with a software revision number. The
revision number will change each time you get a software update. To determine
the revision number using BASIC, type:

SYSTEM$ (IIVERSION: COMPILERII) (Return)

This returns a string containing the revision number. The number is of the
form:

R.x

where R is the BASIC Language System revision (6, etc.) and x is the release
number of the BASIC Compiler.

2-2 The BASIC Compiler

Compiler Overview
The BASIC compiler will compile from and to RAM. The program to be
compiled must reside in RAM and the results of compilation will be resident
in RAM. If you are using BASIC/WS or BASIC/DOS the BASIC Compiler is
a BASIC binary that is loaded into the system via the LOAD BIN command.
After a program has been compiled the COMPILER binary need not reside in
memory.

The compiler can be invoked with a compiler invocation command. These
commands will cause the compiler to begin compiling a BASIC program
which is residing in memory. The simplest compiler invocation command
is COMPILE. The following describes what occurs when the COMPILE
command is executed.

With the compiler installed, you are ready to compile a program. Either
develop a new program to be compiled or LOAD a program from an external
location to be compiled. Let's suppose that your program to be compiled looks
like this:

10 COM REAL D, INTEGER A
20 PRINT "NOW IN MAIN PROGRAM"
30 CALL Subone
40 CALL Subtvo
50 A=l
60 D=5.4
70 END
80 SUB Subone
90 PRINT "NOW IN SUB Subone"
100 SUBEND
110 SUB Subtvo
120 PRINT "NOW IN SUB Subtvo"
130 SUBEND

With this program in memory, you would enter the compiler invocation
command:

COMPILE (Return)

The BASIC Compiler 2-3

2

2
If you EDIT this program, you will see:

1 OPTION BASE 0
3 COM REAL Dt INTEGER A
4 Mainsub
5 END
6 CSUB Mainsub
7 SUB Mainsub
8 COM REAL D t INTEGER A
9 PRINT "NOV IN MAIN PROGRAM"
10 CALL Subone
11 CALL SubtllO
12 A=l
13 D=5.4
14 SUBEND
15 CSUB Subone
16 SUB Subone
17 PRINT "NOV IN SUB Subone"
18 SUBEND
19 CSUB SubtllO
20 SUB SubtllO
21 PRINT "NOV IN SUB SubtllO"
22 SUBEND

You should notice a few things about this program. First, the compiler
renumbers your program as it compiles it. So, no matter how you number your
program, it will be numbered starting with line 1 after it is compiled. Note
that the line number sequence may be broken by one line number because
the compiler reserved that line during compilation and later decided not to
use it. Therefore, the line sequence in the above program is broken at line 2.
This does not mean that there is a program line missing. Second, the original
BASIC source code is still there. By default, the compiler will keep both the
source code and the compiled code in memory. The interpreted parts of your
program will be indented further than the compiled lines so that they are easily
distinguishable.

When you want to RUN your program, simply press the (RUN) key (@ in the
System menu on the ITF Keyboard). When the system encounters the call
to "Mainsub," it will execute the first "Mainsub" it finds, which will be the
compiled version (CSUB Mainsub). In the above program, only the compiled
subprograms will be executed when the (RUN) key is pressed.

2-4 The BASIC Compiler

The Compilation Process

The compiler binary first pre-runs your program to cause the system to
build the necessary tables. It will then begin to compile your program. Each
subprogram in your program will be transformed into a CSUB (Compiled
subprogram). If your main program consists of an END statement, it will be
left as is. If, however, your main program is more than an END statement, it
will be transformed into a subprogram called "Mainsub." This subprogram
created by the compiler will then be compiled into a CSUB of the same name.
Each function will be transformed into a CDEF (Compiled function). Each
CSUB or CDEF is written in machine code.

The BASIC compiler will keep the source code of the original subprograms and
functions, along with the compiled CSUBs and CDEFs. After compilation,
both the compiled code and the source code will reside in memory. This
enables you to modify your original program if you wish. Each subprogram and
function will have its associated CSUB or CDEF inserted immediately before
it. The name of each CSUB/CDEF will be the name of the subprogram or
function from which it was created. This will not cause any problems when the
program is run, since the BASIC Language System always executes the first
subprogram it finds when a name is encountered more than once. Hence, the
compiled version (the CSUB or CDEF) of each routine will be executed when
the program is run.

You may choose not to keep the source code either by deleting it after the
program is compiled or by using the KEEP OFF compiler switch or directive
(see the section "Switches in the Options List" and the chapter "Details
of Compiler Directives"). However, once the source code has been removed
you can no longer use the UNCOMPILE command to remove the compiled
code. The UNCOMPILE command and KEEP OFF directive are covered in
subsequent chapters. To invoke the compiler using the KEEP OFF directive,
type:

COMPILE: KEEP OFF

The source code will be deleted from memory as the compiled code is
produced. If you want to delete the source code after the program has been
compiled, you can use the DEL command. You cannot delete the source code
with the DELSUB command, because it deletes the compiled code.

The BASIC Compiler 2-5

2

2
Since the main context of your program is compiled into a CSUB, your main
program "disappears" during the compilation process. To adjust for this,
the Compiler will create a dummy main program (see the section in this
chapter titled "A Dummy MAIN Program and Mainsub"). This dummy main
program will consist of a call to Mainsub (the CSUB created from your original
main program) and an END statement. If your program contains any COM
statements, the dummy main program will also contain a duplicate of each
COM statement in your program, as well as the appropriate OPTION BASE
statement.

CSUBs and CDEFs generated by the BASIC compiler can be loaded at
run time from any BASIC program (interpreted or compiled) by using the
LOADSUB command. If you wish to LOADSUB a subprogram from a
compiled program that you have previously stored, and that program consists
of both compiled code and source code (Le., the source code was not deleted),
then the command:

LOADSUB subprogram FROM "program_name"

will always bring in the CSUB of the subprogram specified, since the CSUB
occurs before the subprogram.

A Dummy MAIN Program and Mainsub
If your main program contains more than an END statement, at compile time
the compiler converts your main program into a subprogram called "Mainsub"
and then compiles it into a CSUB called "Mainsub." Since this means that you
no longer have a main program, the compiler creates a dummy main program
for you. The dummy MAIN program created by the compiler contains all COM
declarations from your original main program, a call to "Mainsub," and an
END statement (see the previous section titled "Compiler Overview"). Note
that you can EDIT and change this dummy MAIN program if you wish but
do not re-enter the END statement if you wish to keep this dummy MAIN
program in interpreted form.

When the dummy MAIN is created, the END statement is "marked" by
the compiler to prevent the compiler from re-compiling the dummy MAIN
in subsequent compilations. The compiler scans your program while it is

2-6 The BASIC Compiler

compiling to find out if any subprograms with the name "Mainsub" already
exist. If it finds that a subprogram with the name "Mainsub" exists, the
compiler issues a warning (warning 22). If you choose to ignore this warning
you may end up with an infinitely recursive program, or your program may
display a totally different behavior from what you were expecting.

If you do not want the compiler to compile your main program, you should
invoke the compiler via the command:

COMPILE SUBX TO END

where SUBX is the subprogram occurring after the main program.

If, for some reason, you wish to compile your main program, then you can force
it to be compiled by one of two methods:

• Invoke the compi.1er with the command:

COMPILE MAIN [Return)

• Re-enter the END statement. It is the END statement that is marked by the
compiler to prevent subsequent regeneration of the dummy MAIN program.
Re-entering the END statement erases this mark.

Compiler Limitations
The BASIC Compiler compiles programs written in Hewlett Packard's Series
200/300 BASIC Language. However, a few statements, commands, and keys
in BASIC are not supported since they are not applicable to a compiled
environment. Note that they should not affect the execution of compiled
BASIC programs. If your program contains one or more of these statements or
commands, you may remove them or put them in an interpreted section of your
program (Le., a section of your program which is not compiled). The following
is a list of compiler limitations as they relate to certain statements, commands
a.nd keys.

• Programmable BASIC comma.nds are not supported by the compiler. These
commands are as follows:

GET RE-SAVE SAVE

The BASIC Compiler 2-7

2

2
Note that a GET statement which is followed by a file name is allowed in a
compiled program. However, a GET statement followed by a file name and a
line number is not permitted.

• Non-programmable BASIC commands that cannot be used to access, modify,
or locate the compiled part of a BASIC program (CSUBs) are given below:

CHANGE
CONT

COPYLINES
DEL

INDENT
FIND

REN
MOVELINES

• TRACE PAUSE does not work in compiled programs.

• The (STEP) key (@ key on the ITF Keyboard System menu) cannot be used
to single step into a CSUB. Using the (STEP) key will have the same effect as
pressing the (CONTINUE) key (@ key on the ITF Keyboard System menu).

• Caution must be exercised when performing DELSUB, LOADBIN, or
INITIALIZE of a memory volume, whether from within a program or from
the keyboard. In other words, do not cause any active CSUB to physically
be moved at run time. Once a CSUB is activated it cannot be relocated in
memory because this can cause the machine to hang or a run-time error 133
to occur. You should keep the following guidelines in mind:

Do not DELSUB the CSUB you are currently executing;

Do not DELSUB any CSUBs, SUBs, or DEFs which are located physically
before any active CSUB. Attempting to delete a CSUB (at run time)
which was physically loaded before the CSUB containing the DELSUB
statement will generate run-time error 133 (DELSUB of non-existent or
busy sub (or prior sub».

Do not INITIALIZE a RAM volume or LOADBIN any binary (for
BASIC/WS or BASIC/DOS) while any CSUB is still active. An active
CSUB is a CSUB which was called and is currently executing or which
made a CALL to another subprogram and is waiting for a RETURN,
SUBEXIT, or SUB END to be executed.

• You cannot single-step a compiled program. However, you can use the
(PAUSE) key (~key on the ITF Keyboard) and the PAUSE statement
to pause the program while it is executing. The [PAUSE) key will be
processed quicker if the program was compiled with EOL ON and an EOL is
encountered.

2-8 The BASIC Compiler

• When using the BASIC function ERRL in a compiled program, the value 2
returned by ERRL will always be zero (0) .

• If you have a program that loads parts of another program, such as:

100 LOAD IIp1 11 , Lb11

150 LOAD IIp1 11 , Lb12

200 LOAD IIp1 11 , Lb13

it will not work if the program to be loaded (PI in this case) is compiled.
This is because the labels are moved to the compiled subprogram "Mainsub"
during compilation. A run-line label on a LOAD statement is valid only if
the run-line label is in the main program (The above program segment would
work fine if PI were interpreted). As a solution for this problem, you could
have the calling program structured like this: .

100 COM /Loadloe/ Loe
110 Loe=1
120 LOAD "P1"

180 Loe=2
190 LOAD IIp1 t1

240 Loe=3
250 LOAD "P1"

and the referenced program (PI in this case) structured as:

100 COM /Loadloe/ Loe

150 OR Loe GOTO Lb11,Lb12,Lb13

The BASIC Compiler 2-9

2
• It is very important that the BASIC Compiler know the types of functions

used during compilation, especially when a function is part of an expression,
as in:

A = x + FNSample(Y) - Z

where "FNSample" is a function in your program. The compiler directives
REAL and COMPLEX determine which data type a function must return.
The COMPLEX directive must be used to declare functions that are to
return a COMPLEX value. REAL functions need not be declared this way
(since REAL is the default), though your program may be more consistent if
all of your functions are declared. These directives are explained in detail in
the chapter "Details of Compiler Directives."

• When using a list of subprograms with the COMPILE command, the
program is limited to only 2048 subprograms. This limitation does not exist
if the COMPILE command is used without a list of subprograms when
compiling the program.

• The LOAD SUB FROM command will not load subprograms referenced
in compiled subprograms (unless the interpreted version of the same
subprogram is in memory).

• A GOTO will not have an EOL surrounding it even if EOL is ON (see
the section "Toggling EOL" found in the chapter "Improving Compiled
Programs").

• Caution must be exercised when compiling large programs with line
increments of 1, especially when your last line is greater than 32700. The
reason for this is that the compiler inserts lines to create a dummy MAIN
program at the start and inserts a new line for each CSUB it creates.
Therefore, it is likely that the maximum line number may be exceeded. To
solve this problem, break your program up into several subprograms and
compile and load them separately. If you are unsure whether this problem
exists with your program, then it is a good idea to store your program before
compiling it.

2-10 The BASIC Compiler

3
Overview of Compiler Tasks

This chapter acts as a quick reference guide and is not intended as the only
reading material for first-time users. First-time users are advised to read the
entire manual before using the BASIC Compiler. Depending on this chapter as
your main source of information will cause you to miss important information.
This chapter:

• lists common tasks that you may want to perform.

• gives a quick explanation of how to accomplish each task.

• tells you where in the manual to look for more detailed information related
to the task.

Overview of Compiler Tasks 3-1

3

Chapter Contents
This table of contents will help you find the task you want to perform:

3 Tasks Page

Install the Compiler (BASIC/WS or BASIC/DOS only) 3-4
Compile a Simple Program 3-5
Access On-line Help 3-6
Remove the Compiler (BASIC/WS or BASIC/DOS only) 3-7
Send Compiler Output to Printer 3-8
Compile Program to Run as Quickly as Possible 3-9
Optimize Program for Size and Speed 3-10
Use Compiler Directives 3-11
Use Conditional Compilation 3-12
Use $EOL OFF Correctly 3-13
Build CSUBs Library 3-14
Set Up Programs with Event Processing 3-15
Compile Program without Error Prompts 3-16
Access MC68020/30 Processor and MC68881/82 3-17
Coprocessor

3-2 Overview of Compiler Tasks

How Tasks Are Described
The material in this section should be considered as an expanded index only.
Each "how to" task is described in the following manner:

Task

Considerations

Lists some things that need to be considered before the task is done (when
applicable).

Solution

Provides a quick "how to" for the listed task.

Reference

Refers you to the appropriate sections of the manual for more information.

Task Reference
There are 12 tasks covered in this section for BASIC lUX users, and 14 tasks
for BASIC IWS users. Each task contains a solution and a reference section
and in some cases a considerations section, as explained at the beginning of
this chapter.

Overview of Compiler Tasks 3·3

3

3

Install the Compiler (BASIC/WS and BASIC/DOS only)

(BASIC lUX includes the Compiler and does not require separate installation.)

Solution

Insert the disk containing the compiler into a disk drive connected to your
computer, and type:

LOAD BIN ItCOMPILER [: msvs] It [Return)

where msvs is the mass storage volume specifier.

Reference

See the section "Language Extensions, Drivers, and Configuration" found in
the Installing and Maintaining HP BASIC manual, chapter 5.

3-4 Overview of Compiler Tasks

Compile a Simple Program

Compile a Simple Program

Solution

LOAD or GET the program to be compiled into memory (or develop a new
program in memory). Then execute: 3

COMPILE (Return)

Reference

Chapter/Section Title Page

Invoking the Compiler 4-3

COMPILE Command 4-3

Overview of Compiler Tasks 3-5

3

Access On-line Help

Solution

Enter one of the following commands:

HELP

HELP COMPILE

HELP OPTIONS

Reference

prints a HELP screen which gives you general instructions
on how to invoke the compiler.

prints a HELP screen which outlines the syntax of the
COMPILE and UNCOMPILE commands and their
parameters.

prints a HELP screen which provides information on each
compiler switch and command that can be used in the
options list. For information on switches and commands in
the options list, read the chapter "Details of Using Your
Com piler ."

See the section titled "Compiler Command Reference" in chapter 4, page 4-20.

3-6 Overview of Compiler Tasks

Remove the Compiler (BASIC/WS and BASIC/DOS only)

Remove the Compiler (BASIC/WS and BASIC/DOS only)

Considerations

The BASIC Compiler Binary can be removed (without disturbing any system
binaries or your program) if it was the last binary loaded and the system was 3
not stored with the STORE SYSTEM command.

Solution

Enter the command:

REMOVE COMPILER

Reference

See the section titled "Compiler Command Reference" in chapter 4, page 4-20.

Overview of Compiler Tasks 3-7

Send Compiler Output to Printer

Considerations

No output will be generated by the compiler unless you invoke the compiler
3 with the SHOW, DS or ST command options or unless you include the

SYMBOLS directive in one or more of your subprograms. By default, compiler
output, (if any) will be routed to the current PRINTER IS device.

Solution

The compiler output can be re-routed by specifying a device selector in the
invocation command. Enter this command:

COMPILE #701

This will route your output to the printer at device selector 701.

Reference

See the section titled "Compiler Output" in chapter 4, page 4-20.

3-8 Overview of Compiler Tasks

Compile Program to Run as Quickly as Possible

Compile Program to Run as Quickly as Possible

Considerations

The speed of your program will depend upon several factors. Using integers
instead of real numbers and constants instead of variables whenever possible 3
will improve performance. Also, certain compiler directives or compiler
commands can be used to enhance program speed.

Solution

In very general terms, to get the fastest code (while possibly increasing the size
of your compiled code), you should use the BEST command option in your
compiler invocation command:

COMPILE: BEST

Be aware that BEST will set a number of compiler directive defaults, such as
EOL OFF and STATICARRAYS ON. These two directives in particular may
adversely affect the waY'your program works. If you compile with BEST and
encounter problems, try one of these invocation commands:

COMPILE: BEST, EOL ON
COMPILE: BEST, SA OFF
COMPILE: BEST, EOL ON, SA OFF

Reference

Chapter /Section Title Page

STATICARRAYS (SA) Directive 5-40

Writing Efficient Programs 6-3

Optimizing Your Program 6-7

BEST Command 6-12

Overview of Compiler Tasks 3·9

Optimize Program for Size and Speed

Considerations

Writing efficient programs entails establishing a balance between code size and
3 program speed. This balance can be achieved through the judicious use of

compiler directives.

Solution

In general, you will get the best compromise of space and speed by using the
compiler invocation command:

COMPILE: BEST, OP OFF

The BEST command in the options list optimizes your program for speed,
and the OP OFF switch optimizes your program for space. Be aware that
the BEST command will set a number of compiler directive defaults, such as
EOL OFF and STATICARRAYS ON. These two directives in particular may
adversely affect the way in which your program works. If you compile with
BEST and encounter problems, try one of these invocation commands:

COMPILE: BEST, OP OFF, EOL ON
COMPILE: BEST, OP OFF, SA OFF
COMPILE: BEST, OP OFF, EOL ON. SA OFF

Reference

Chapter /Section Title

STATICARRAYS (SA) Directive

Writing Efficient Programs

Optimizing Your Program

BEST Command

3-10 Overview of Compiler Tasks

Page

5-40

6-3

6-7

6-12

Use Compiler Directives

Use Compiler Directives

Considerations

Compiler directives are special commands inserted into your program to help
control the compilation environment. Different directives may affect your 3
program speed, size, or the degree to which error-checking occurs.

Solution

All compiler directives must appear inside a comment line, as the first sequence
of characters following the "!". More than one directive may appear on a single
line, if they are separated by semicolons or commas. The syntax is:

~$directive [;/, directive] ...] [$[comments]]

where directive is a compiler directive.

Reference

See the section titled "Compiler Directives" in chapter 4, page 4-2.

Overview of Compiler Tasks 3·11

Use Conditional Compilation

Considerations

Conditional compilation is a useful tool if used carefully. Incorrect use may
3 cause your compiled program to run much differently than your interpreted

program, or it may not run at all.

Solution

Conditional compilation uses the directives $IF or $IFNOT. The directive
$CONTROLVAR assigns values to control variables. For example:

10 !$CONTROLVAR A=1tB=O
20 !$IF A

90 ! this segment will be compiled

140 !$END
150 !$IF B

190 ! this segment will not be compiled

250 !$END
260 END

Though the code between lines 150 and 250 exists as interpreted code, it does
not exist in compiled code.

Reference

Chapter /Section Title Page

CONTROLVAR (CONTROL or C) 5-11
Directive

IF and IFNOT Directives 5-16

3-12 Overview of Compiler Tasks

Use SEOl OFF Correctly

Use $EOL OFF Correctly

Considerations

The EOL OFF compiler directive can be used to increase the speed and
decrease the size of a compiled program by eliminating unnecessary event 3
checking. However, when used improperly, it can cause many problems with
your program.

Solution

In general, you should have EOL ON whenever your program will be waiting to
acknowledge events such as ON ERROR GOSUB. With EOL OFF, you may
encounter some problems, even if you are not processing any events. Read the
section specified below before using EOL OFF.

Reference

See the section titled "Using the EOL Directive" in chapter 6, page 6-13.

Overview of Compiler Tasks 3-13

Build CSUBs Library

Solution

A library of CSUBs consists of a collection of CSUBs which perform similar
3 tasks. For example, you might have a need for a collection of CSUBs which

perform specific input and output tasks.

You can build a library of CSUBs by compiling a program that consists of a
number of SUBs, where the main program consists solely of an END statement.
By compiling with the invocation command:

COMPILE: KEEP OFF

the compiler will compile your SUBs, and delete the source code as compilation
progresses. This will leave you with a series of CSUBs.

Reference

Chapter /Section Title Page

A Dummy MAIN Program and 2-6
Mainsub

KEEP Directive 5-20

3-14 Overview of Compiler Tasks

Set Up Programs with Event Processing

Set Up Programs with Event Processing.

Considerations

The proper use of the EOL directive may be essential to the success of a
program that uses event processing. In some cases, this directive must be ON 3
in order for events to be processed correctly.

Solution

When your program depends on event processing, you should leave EOL ON
throughout the program. If you want to toggle EOL in programs that process
events, you must read the section listed below.

Reference

See the section titled "Using the EOL Directive" in chapter 6, page 6-13.

Overview of Compiler Tasks 3·15

Compile Program without Error Prompts

Considerations

When an error occurs during compilation, the compiler will (by default) pause
3 compilation and ask the user whether to stop compilation so the error can be

corrected immediately or continue. Some users may wish to "turn off" the
prompt and have the compiler automatically continue compilation when errors
occur.

Solution

Compile the program with ERROR OFF in every SUB, or use the compiler
invocation command:

COMPILE: ERROR OFF

Reference

Chapter /Section Title Page

Switches in the Options List 4-10

Correcting Compile-Time Errors 4-18

Correcting Run-Time Errors 4-19

ERROR (ERR) Directive 5-15

3-16 Overview of Compiler Tasks

Access MC68020/30 Processor and MC68881/82 Coprocessor

Access MC68020/30 Processor and MC68881/82
Coprocessor

Considerations

By default, the compiler generates code that checks for the presence of the
MC68020 or MC68030 processor and the MC68881 or MC68882 coprocessor
and uses them if they are present. You may wish to eliminate these checks
and have the compiler generate code that is dependent upon the M C68020 /30
and/or MC68881/82 (co)processor.

Solution

Use the MC68020 ON and/or MC68881 ON directives in any SUB that wants
to eliminate these checks, or use the compiler invocation command:

COMPILE: HTP. HCP

The MC68020 directive accesses the MC68020 and MC68030 processors. This
manual refers to these processors in common as MC68020/30. The MC68881
directive accesses the MC68881 and MC68882 coprocessors. This manual refers
to these coprocessors in common as MC68881/82.

Reference

Chapter /Section Title Page

Switches in the Options List 4-10

MC68020 (MTP) Directive 5-24

MC68881 (MCP) Directive 5-25

Overview of Compiler Tasks 3-17

3

4
Details of Using Your Compiler

This chapter explains how to install and use the BASIC Compiler. (If you are
using BASICIUX, you won't need to install the compiler-this is done when
you ihstall BASIC lUX.) The following topics are covered: 4

• invoking the compiler

• using the compiler commands

• using the switches and commands in the options list

• correcting compile- and run-time errors

• producing compiler output

A command reference is included at the end of the chapter.

Installing the BASIC Compiler (BASIC/WS and
BASIC/DOS only)

If you are using BASIC/WS or BASIC/DOS, you will need to install the
BASIC Compiler binary before you can use it. Insert the disk containing the
compiler into a disk drive connected to your computer and type:

LOAD BIN "COMPILER [: msvs] II

N ext press (EXECUTE] ((ENTER], (EXEC] or (Return l). Be sure that the correct msvs
(Mass Storage Volume Specifier) is included in the file name. For example:

COMPILER:HP82901,700,1

The default msvs will be used if none is specified.

Details of USing Your Compiler 4-1

4

Once the BASIC Compiler binary is installed, you can compile any BASIC
program residing in memory. A list of compiler invocation commands appears
later in this chapter.

Note The BASIC compiler binary is removable under certain
conditions (see the section in this chapter titled "REMOVE
COMPILER"). As long as the BASIC Compiler was the last
binary loaded and the system was not stored with the STORE
SYSTEM command, it can be removed using the REMOVE
COMPILER command (without disturbing any system binaries
or your program).

Compiler Directives
Compiler directives are special commands that can be included in your
interpreted BASIC program to control the compiling environment. They do
not affect the semantics of the program (unless you use them incorrectly).
Compiler directives can be very helpful for debugging, optimizing the speed of
your program, or optimizing the size of your compiled code. A full list of the
available compiler directives and instructions on how to use them appears in
the chapter "Compiler Directives."

The chapter titled "Improving Compiled Programs" contains a section
describing how each directive affects the size and/or the speed of your compiled
program. We recommend that you read this chapter, especially the section on
the EOL directive.

4·2 Details of Using Your Compiler

Invoking the Compiler
Once the compiler has been installed, it is ready for use. When invoked, the
compiler will compile a program residing in memory-so make sure there is
one present. You can either LOAD a program residing on an external device
or develop a new program in memory. The compiler is then invoked via a
compiler invocation command. Topics covered in this section are:

• COMPILE command
• UNCOMPILE command
• Device Selector
• Compile List
• Options List

The COMPILE Command

The COMPILE command, with nothing following it, is the simplest of all the
compiler invocation commands. When you enter the command:

COMPILE

the BASIC compiler will compile the entire program that is currently residing
in memory. If the compiler was invoked with this command and it encounters a
subprogram that is already compiled (for which compiled code already exists),
that subprogram will only be re-compiled if it has been modified since the last
compilation. The compiler "marks" each line of a program as it is compiled.
If the compiler encounters a line that has no mark, it recognizes that the
subprogram has had changes made to it. The compiler can also tell if a line
was deleted and it recompiles the subprograms.

The COMPILE command may be followed by an options list, a compile list,
and/or a device selector. These are described in detail later in this chapter.

Details of Using Your Compiler 4-3

4

4

Default Compiler Directives

When you invoke the compiler via the COMPILE command (without
specifying an options list), you are producing the "safest" code. It may not be
the fastest or most compact code possible, but it will have all error checking
and a number of other "safe" features enabled. The compiler directives will
have the following values when the compiler is invoked with the command
COMPILE:

CONFIGCHECK ON

EOL ON

KEEP ON

LONGCODE OFF

MC68020 OFF

MC68881 OFF

OPTIMIZE OFF

OVERFLOWCHECK ON

RANGECHECK ON

STATICARRAYS OFF

SAVELINENUMBER OFF

STACKCHECK ON

ERROR ON

enables configuration checks.

generates end-of-line activity code.

preserves both the source and the compiled
code.

keeps extended addressing from being generated.

keeps MC68020/30-dependent code from being
generated. This directive's default state is ON
if running on a computer with a MC68020/30
processor or MC68881/82 coprocessor.

keeps MC68881/82-dependent code from being
generated. This directive's default state is ON
if running on a computer with a MC68881/82
coprocessor.

optimizes a program for space, not speed.

provides integer/string overflow checking.

provides checking for out-of-range values.

allows the use of REDIM.

prevents line numbers from being retained.

enables system stack checking.

emits a user prompt when errors occur.

4-4 Details of Using Your Compiler

When the compiler finishes, both the compiled code and the source code will
exist in memory. If you edit a compiled program, you will see something like:

1 Mainsub
2 END
3 CSUB Mainsub
4 SUB Mainsub

21 SUBEND
22 CSUB Subone
23 SUB Subone

30 SUBEND
31 CSUB Subtllo
32 SUB Subtllo

53 SUBEND

Each BASIC SUB is preceded by a line of the form:

CSUB subprogram name

This line represents the compiled version of the subprogram. Remember that
if the compiler encounters a subprogram for which compiled code exists,
that subprogram will only be re-compiled if it has been modified (unless the
COMPILE was followed by a compile list). To re-compile a SUB that has not
been modified, you can:

• EDIT the program, and delete the line representing the compiled code. You
can then type in COMPILE which will cause all uncompiled subprograms to
be compiled.

• UNCOMPILE that SUB (or the entire program), and then COMPILE it
again. See the next section titled "The UNCOMPILE Command."

• You can specify a compile list (after the keyword COMPILE) which contains
the name of the subprograms you wish to compile. See the section "The
Compile List."

Details of Using Your Compiler 4-5

4

4

The UNCOMPILE Command
The UNCOMPILE command removes compiled code from memory restoring
your interpreted program to its original form provided that the source code
is still in memory. To un compile a compiled program which is currently in
memory, type:

UWCOMPILE [Return)

This causes the compiler to go through your program and remove (delete) all
of the compiled code (leaving the source code intact). With this command,
only those subprograms for which source code exists will have the compiled
code removed. If you have deleted the source code for a subprogram, or if you
compiled a subprogram without keeping the source code, the UNCOMPILE
command will have no effect on its associated CSUB.

The UNCOMPILE command may also be followed by an options list, a compile
list, and/or a device selector. These are described in detail later in this
chapter.

If you want to remove compiled code for a SUB whose source code is not
present, you have two choices:

• EDIT the program, and delete the CSUB lines from the program

• Use the DELSUB command followed by the appropriate subprogram name

Note The UNCOMPILE command cannot change compiled code
back into source code. It simply removes compiled code
(provided that the source code is resident in memory).

4·6 Details of Using Your Compiler

Device Selectors
A device selector can be specified in the invocation of the COMPILE
command. The purpose of the device selector is to route output produced
by the compiler to a device other than the default set by the PRINTER IS
command. If a device selector is included in the invocation command, it must
immediately follow the keyword COMPILE or UNCOMPILE and be preceded
by a #. For example:

COMPILE #701

will send the output to a device located at device selector 701 (usually the
printer). If no device selector is specified, output will be routed to the current
PRINTER IS device.

A device selector is either an interface select code or a combination of an
interface select code and a primary address. To construct a device selector
with a primary address, multiply the interface select code by 100 and add the
primary address. For example, if you have an interface select code of 7 and. a
primary address of 1, your device selector would be 701.

By default, the compiler runs silently (does not produce any output or
compilation messages) except when error messages occur. Therefore, unless you
have included a directive in your program, or a command in the options list
that will generate output, changing the device selector will have no effect.

Compile List
A compile list can be specified after either the COMPILE or UNCOMPILE
command. The compile list is a list of SUBs that are to be COMPILEd or
UNCOMPILEd. When a compile list is specified, the action requested will be
performed on all items in the list. In other words, if a compile list follows the
COMPILE command, all subprograms in the list, and only those subprograms,
will be compiled. Note that all subprograms in the list will be compiled, or
re-compiled if they have already been compiled.

If a compile list follows the UNCOMPILE command, all of the subprograms in
the list, and only those subprograms, will have their compiled code removed.

Details of USing Your Compiler 4-7

4

4

The compiled code will only be removed if the source code exists in memory
along with the compiled code.

The compile list has the following syntax:

subpr09ram name

where subprogram name is the name of a subprogram in your program, or
MAIN to designate the main program. The following are all valid forms:

[-] subprogram name TO subprogram name

[-] subprogram name TO END

[-] subprogram name [, subprogram name] ...

If the compile list is preceded by a minus sign (-), then all subprograms except
those in the compile list will be compiled. Similarly, if you specify a compile
list with the UNCOMPILE command, and if the compile list is preceded
by a minus sign (-), all subprograms except those in the compile list will
be uncompiled (have their associated CSUBs removed). Again, only those
subprograms for which source code exists in memory will be uncompiled.

Compiler Invocation Examples

Here are some examples of valid compiler invocation commands using a compile
list:

COMPILE MAIN

will compile the dummy main program.

4-8 Details of Using Your Compiler

This command:

COMPILE 1701; -A,SUBTWO,FIRST

will compile (or recompile) all subprograms in the program, except for the
subprograms A, SUBTWO and FIRST. The output for this compilation has been
re-routed to the device located at device selector 701. This command:

UNCOMPILE THISSUB TO THATSUB

will remove the compiled code for the subprograms THISSUB, THATSUB, and all
the subprograms in between them. (The compiled code will only be removed if
the source code exists in memory). Finally, this command:

COMPILE SUBTWO TO END

will compile (or recompile) the subprogram SUBTWO and every subprogram that
occurs after it.

Options List
The options list is a list of options which will affect how a program is compiled.
The syntax is:

Items in the options list are identified as either switches or commands.

Note Only the short form of switches and commands can be used in
the options list. For example, you would use CC OFF instead
of CONFIGCHECK OFF.

Details of Using Your Compiler 4·9

4

Switches in the Options List

The switches are used to change the default values of compiler directives. Each
compiler directive has a certain default value that is used if that directive
does not appear in your program. The switches can be used to change
these defaults. Switches . will have no effect on subprograms in which the
corresponding compiler directives appear. Switches affect only subprograms in
which the corresponding directives do not appear. Switches are ignored if they
are used in conjunction with UNCOMPILE.

Each switch can appear alone or followed by ON or OFF. A switch appearing
4 alone is equivalent to the switch followed by ON. If a switch appears in the

options list more than once, the last value will be used. Switches can be
interspersed with commands in the options list.

The switches and their corresponding compiler directives are covered in
the following sections. For a more detailed explanation of the action of a
specific switch and how it may affect your code, refer to the description of
its corresponding compiler directive in the chapter "Details of Compiler
D irecti ves."

CC (corresponds to CONFIGCHECK)

By default, the compiler will emit code to check for the existence of binaries,
subprograms, and functions before they are called. Using the CC ON (or
CC) switch leaves this default value unchanged. If CC OFF is specified in
the options list, the compiler will emit such checks only in those subprograms
containing the CONFIGCHECK ON directive.

EOl (corresponds to EOl)

By default, the compiler emits end-of-line activity code which allows the
operating system to service pending events such as key presses and interrupts.
Using the EOL ON (or EOL) switch leaves this default value unchanged. If
EOL OFF is specified in the options list, the compiler will emit end-of-line
activity code only in subprograms containing the EOL ON directive. For
more information, read the section "Using the EOL Directive" in the chapter
"Improving Compiled Programs."

4-10 Details of Using Your Compiler

ERR (corresponds to ERROR)

By default, when an error or warning is encountered during compilation, the
compiler will give you the choice of stopping immediately to correct the error
or continuing compilation. If ERR ON (or ERR) is in the options list, the
default remains as is. If ERR OFF appears in the options list, the compiler will
automatically continue compilation without the prompt unless the error occurs
in a subprogram containing the ERR ON directive.

KEEP (corresponds to KEEP)

By default, the compiler will keep the source code along with the compiled
code as your program is compiled. Specifying KEEP ON (or KEEP) in the
options list leaves this default value unchanged.

Specifying KEEP OFF in the options list will cause the compiler to save the
source code for only those subprograms containing the KEEP ON directive.

LC (corresponds to LONGCODE)

By default, the compiler will not generate object code with extended
addressing. Extended addressing is necessary for jumps and addresses to string
constants that are more than 32K bytes away. Note that the compiler informs
you if the LONGCODE directive is necessary for any of the contexts. If LC
OFF is used in the options list, the default will remain as is. If LC ON (or LC)
is used in the options list, the compiler will generate object code with extended
addressing in all subprograms not containing the LONGCODE OFF directive.
We recommend that you use LONGCODE ON in only those subprograms that
require it.

MTP (corresponds to MC68020)

The default value for MC68020 is ON for computers with a MC68020 or
MC68030 processor; otherwise, the default is OFF meaning that the compiler
generates code that checks for the presence of the MC68020/30 processor and
uses it if it is present. Compiling with MC68020 ON causes the compiler to
generate code that runs only on the MC68020/30 processor.

Details of Using Your Compiler 4·11

4

4

MCP (corresponds to MC68881)

The default value for MC68881 is ON for computers with a MC68881 or
MC68882 coprocessor; otherwise, the default is OFF meaning that the compiler
generates code that checks for the presence of the MC68881/82 coprocessor and
uses it if it is present. Compiling with MC68881 ON causes the compiler to
generate code that runs only on the MC68881/82 coprocessor.

OP (corresponds to OPTIMIZE)

By default, the compiler will optimize your program for space. Using OP OFF
(or OP) will keep the default as is. If OP ON is specified, your program will
be optimized for speed rather than for space except in those subprograms
containing the OPTIMIZE OFF directive.

OC (corresponds to OVERFLOWCHECK)

The compiler normally emits code to check for integer and string overflow after
each integer and string computation. Using the OC ON switch will keep the
default as is. Using the OC OFF switch will cause the compiler to not emit
such checks except in those subprograms containing the OVERFLOWCHECK
ON directive.

RC (corresponds to RANGECHECK)

The compiler normally emits code to check, at run time, for out of range values
before they are used. The RC ON (or RC) switch will keep the default as is.
If you specify RC OFF in the options list, range checking will be done in only
those subprograms that contain the RANGECHECK ON directive.

SA (corresponds to STATICARRAYS)

By default, the compiler assumes that you may be using the REDIM statement
in your program. Using the SA OFF switch will keep this default as is. If
you specify SA ON (or SA) in the options list, the compiler will assume that
a subprogram contains only static arrays (thus saving space and significantly
increasing the speed of array access for local arrays) unless that subprogram
contains the STATICARRAYS OFF directive.

4-12 Details of Using Your Compiler

SL (corresponds to SAVELINENUMBER)

The 8L command is useful when you need to know the line number where
a run-time error occurred. Compiling a program using the 8L ON command
causes all subprogram lines to be saved. When you run this compiled program
and a run-time error occurs the correct line number where the error occurred
will appear in the error message. If this same program had been compiled
using the 8L OFF command, you would have received only the line number of
the line calling the compiled subprogram. This is not the line number where
the error occurred.

Normally, the compiler does not emit code to save the line number before a line
is executed. With 8L OFF in the options list, the default remains the same. If
8L ON (or 8L) is specified in the options list, the compiler will save the line
numbers in all subprograms except those containing the 8AVELINENUMBER
OFF directive.

Details of Using Your Compiler 4·13

4

4

ST (corresponds to SYMBOLS)

When this switch is included in your options list, the symbol table for each
subprogram will be displayed after it is compiled. The symbol table produced
will look something like:

------- SYMBOL TABLE DUMP for Subone

NAME TYPE KIND SCOPE
--------------- ------- -------- ----------------
Sub_x REAL SUB Global
A INTEGER VARIABLE Parameter
STR$ STRING VARIABLE Parameter
Lbl LABEL Local
FNVork$ STRING SUB Global
Intarray INTEGER ARRAY Local
D_array REAL ARRAY Local Dynamic
Com_one COM LABEL Global
C_array REAL ARRAY Common Variable
S$ STRING VARIABLE Local
GFile IO PATH VARIABLE Local
80 LABEL Local

Number of Entries in Table = 17
Number of Used Entries = 12

The Used Entries as seen on the above display are covered in the section titled
"U nused Entries" found in the chapter "Debugging Programs" in the HP
BASIC Programming Techniques manual.

STC (corresponds to STACKCHECK)

The compiler automatically emits code to check for overflow of the system
stack before variable space is allocated. Using STC ON (or STC) in the
options list keeps the default as is. Using STC OFF in the options list will
cause these checks to be made only in those subprograms containing the
STACKCHECK ON directive.

4-14 Details of Using Your Compiler

Commands in the Options List

Commands that appear in the options list will affect a certain feature of
the compiler. A command is not followed by ON or OFF, like a switch-a
command will just appear as a single word. Commands (with the exception of
the SHOW command) will be ignored if they are used in conjunction with the
UNCOMPILE command. The commands that are available and their effects
are described in detail below.

BEST Command

If the BEST command appears in the options list, the compiler directives listed 4
below are set to values that produce the fastest code. The compiler directives
are set to:

COBFIGCHECK OFF OPTIMIZE OB SAVELINENUMBER OFF

EOL OFF OVERFLOWCHECK OFF STACK CHECK OFF

LOBGCODE OFF RANGE CHECK OFF STATICARRA YS ON

Keep in mind that BEST will set EOL OFF and STATICARRAYS ON,
which may cause serious problems with your program. Make sure that all
the directive values set with BEST are valid in your program. When using
the BEST command, you may use switches to override one or more of the
directives set by BEST. For example, either of these:

COMPILE: BEST, EOL ON
COMPILE: EOL ON, BEST

will set all the BEST conditions, then enable the generation of end-of-line
activity code. If you set a switch more than once, the last specified value will
be used. For example:

COMPILE: EOL ON, BEST, EOL OFF

will use EOL OFF, while this:

COMPILE: EOL OFF, EOL ON, BEST

or this:

COMPILE: EOL OFF, BEST, EOL

will use EOL ON.

Details of Using Your Compiler 4-15

4

DS Command

If the DS command appears in the options list, the compiler prints out
(dumps) statistical information on each subprogram after it is compiled. As
soon as the compiler finishes compiling a subprogram or function, a table like
the following will be printed on the output device (specified as the device
selector or current PRINTER IS device):

CSUB Header 60 bytes --> 9 %
Symbol Tables 82 bytes ==> 12 %
CSUB Entry Code 404 bytes ==> 61 %
CSUB Body Code 84 bytes ==> 13 %
Event Lines o bytes ==> o %
Constant Pool 4 bytes ==> 1 %
Added Libraries o bytes ==> o %
Relocation Tables 26 bytes ==> 4 %
Data Statements Pool o bytes ==> o %
Local DIM Table o bytes ==> o %
TOTAL CODE 660 bytes ==> 100 %

Note that the percentages in the far right column are rounded up to the
nearest percent, so they may add up to more than 100.

If a program contains more than one SUB or DEF, a summary table will be
printed at the end of compilation which generates the above information about
the total code that was generated during compilation.

The DS command and the tables it produces are explained in detail in the
chapter "Improving Compiled Programs."

HIDE Command

This command provides additional security to your program when used with
the KEEP OFF switch.

In a compiled program, each subprogram becomes a CSUB and each
function becomes a CDEF. Each CSUB or CDEF is followed by a list of the
subprogram's parameters. So this header:

SUB Sample (String$,INTEGER Iarray(*),REAL Temp)

when compiled, will by default become:

CSUB Sample (String$,INTEGER Iarray(*),REAL Temp)

4-16 Details of Using Your Compiler

When the HID E command appears in the options list the parameter lists for
each of your compiled subprograms will be "hidden." Each parameter name
will be replaced by a single blank character. So, the header shown above
becomes:

CSUB Sample (,INTEGER (*),REAl)

after compilation with HIDE. Note that the parameter names are hidden, but
the types are not.

If the program source was retained during compilation, the parameter list of
the SUB source will not be affected by the use of this command.

SHOW Command

By default, the compiler is "quiet", meaning it does not display any messages
while it is running. The SHOW command can be used to cause the compiler to
produce output about the status of compilation. If SHOW is used, a message
such as:

COMPILING X

will appear as each subprogram is compiled or uncompiled. After each
subprogram is compiled, the compiler will display a list of all the compiler
directives, and the values that were in effect during the compilation of that
subprogram such as:

Config Check :ON Emit long Code:OFF EOl Set/Check :ON
MC68881 Code :OFF Optimize Code :OFF Overflow Check:ON
ROM Based Only:ON Save line Num.:OFF Stack Check :ON

MC68020 Code :OFF
Range Check :ON
Static Arrays:OFF

All of this output will go either to the current PRINTER IS device by default,
or to the device you specified in the compiler invocation command.

Details of Using Your Compiler 4·17

4

Correcting Compile-Time Errors
If the compiler encounters an error during compilation, it will print the relevant
line number, error message, and error number. If you did not specify a device
selector in the invocation command, these messages will be printed to the
current PRINTER IS device. If you did specify a device selector, the printout
of the error message will go to that device.

After the error message is printed, the compiler will pause and ask you if you
wish to continue. This prompt will always go to the screen, even if you have
specified an alternate device selector for output. If your answer to the prompt

4 is:

• YES (you would like to continue)-the compiler will "skip" the error, and
the subprogram in which the error was found, and will continue compiling.
The subprogram containing the error will remain uncompiled, but any
subprograms that are error free will be compiled. You can, after compilation,
go back and correct any errors that were detected .

• NO (you would not like to continue)-the compilation process will halt,
and you can EDIT the program to correct the error immediately. The
subprogram containing the error will not be compiled, but all preceding
(error-free) subprograms will have been com piled.

The ERROR OFF compiler directive (or switch) can be used in your program
if you don't want the compiler to prompt for error correction. If the compiler
encounters an error in a subprogram which uses the ERROR OFF directive,
the compiler will assume that you want to continue compilation. It will still
print out the associated error message and number to the current PRINTER IS
device (unless output was re-routed using a device selector) so you can correct
any errors after compilation is complete.

4-18 Details of Using Your Compiler

Correcting Run-Time Errors
When you encounter an error at run time, remember these four rules:

• If the subprogram containing the error was compiled with
SAVELINENUMBER OFF (or SL OFF which is the default), the line
number reported with the error will be the line number of the CSUB in
which the error occurred.

• If the subprogram containing the error was compiled with
SAVELINENUMBER ON and KEEP ON, the line number reported with
the error will be the line number within the SUB following the CSUB being
executed (which is the source code form of the CSUB).

• If the subprogram containing the error was compiled with
SAVELINENUMBER ON and KEEP OFF, the compiler will assume that
you are keeping a copy of your source code elsewhere. Therefore, the line
number that is reported with the error message will correspond to the line
number of your original BASIC program (before the program was compiled).

• Separately compiled subprograms with SL ON will report the wrong
line number if a run-time error occurs in the compiled subprogram. For
example, you may compile a subprogram using COMPILE: SL with line
numbers ranging from 1 to 10 and store it in a file. First make sure that this
subprogram will cause a run-time error such as division by zero. Perform a
LOADSUB of the compiled CSUB into another program which contains lines
with line numbers greater than 10. The loaded CSUB will end up with a
line number greater than 10. Running the program which calls the compiled
CSUB will generate a run-time error which points to a line number less
than 10. This line number should be in the CSUB, but when you EDIT the
program you will be looking at the wrong line. This is due to the fact that
when the CSUB was called it told the BASIC Language System that its line
numbers are in the range of 1 to 10 since it' was compiled that way. The
CSUB had no knowledge of where it was loaded.

This problem can be avoided by not separately compiling subprograms with
SL ON, so when an error occurs the system points to the CSUB line.

Details of Using Your Compiler 4-19

4

4

Compiler Output
Normally the compiler will run silently (Le., no printed output will be
produced). The only way that you can tell the compiler is running is from the
run light in the lower right hand corner of your screen. However, there are
three compiler commands that can be used with the COMPILE command to
produce output:

• SHOW
• DS
• ST
The command UNCOMPILE will produce output if it is used in conjunction
with the command SHOW. See the previous sections titled "The UNCOMPILE
Command" and "SHOW Command" for details on these commands.

The printed output produced by the compiler can be re-routed by specifying a
device selector in the invocation command, such as:

COMPILE #701: SHOW

The command above would route all output to device selector 701. If you
specify a device selector, the printed output generated by the compiler (such
as symbol tables, statistical information; error messages, etc.) will go to the
device specified. If, you do not specify a device selector, output will to go the
current PRINTER IS device.

Compiler Command Reference
This section briefly describes the COMPILE and UNCOMPILE commands, as
well as four more commands that can be used with the compiler, but which do
not actually invoke the compiler. These commands are:

• HELP
• HELP COMPILE
• HELP OPTIONS
• REMOVE COMPILER

4-20 Details of Using Your Compiler

COMPILE and UNCOMPILE

Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

COMPILER
Yes
No
No

COMPILE and UNCOMPILE

These commands compile and un compile a program that is currently in
memory.

UNCOMPILE

compile list

subprogram name

Details of Using Your Compiler 4-21

4

4

COMPILE and UNCOMPILE

Item

device selector

compile list

option list

subprogram
name

command

switch

Description

numeric expression, rounded to an
integer

a list of one or more subprogram names

a list of one or more options
representing compiler commands and
switches

name of a subprogram or function

controls the compilation environment

a directive which can change its own
default value

Example Statements

COMPILE
UNCOMPILE
COMPILE MAIN
COMPILE #701
UNCOMPILE #705; Program_1
COMPILE: BEST
COMPILE #701; -SUBONE,SUB19,SUB_1
COMPILE #701; Srq_ck,Printer:KEEP ON
COMPILE Sub_here TO Sub_there
COMPILE Sub_seven TO END
UNCOMPILE Sub_second TO Sub_sixth
UNCOMPILE -Sub_one,Sub_tvo
COMPILE #701; -Sub_one,Sub_seven:BEST,MTP OFF

4-22 Details of Using Your Compiler

Range

see the "BASIC
Language Reference"
glossary

any valid name

see the section "Options
List"

any valid name

see the section
"Commands in the
Options List"

see the section "Switches
in the Options List"

COMPILE and UNCOMPILE

Semantics

The device selector part of the COMPILE statement determines where the
output will be routed for printing. If no device selector is given, output will be
routed to the current PRINTER IS device.

MAIN in a compile list is a valid name fo.r a subprogram, and refers to
the main program. Also, if the compile list is preceded by a minus sign
(-), then the list is used to indicate the subprograms that will not be
compiled/uncompiled. In other words, all subprograms except those appearing
in the list will be compiled/uncompiled.

Once the source code has been removed, you can no longer use the
UNCOMPILE command to remove the compiled code.

Details of Using Your Compiler 4-23

4

4

HELP
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

COMPILER
Yes
No
No

This command prints a HELP screen, which gives you general instructions on
how to invoke the compiler.

Item Description

device selector numeric expression, rounded to an
integer

Example Statements

HELP
HELP 1701

Semantics

Range

see the "BASIC
Language Reference"
glossary

If no device selector is specified, the output will go to the current PRINTER IS
device.

4·24 Details of Using Your Compiler

HELP COMPILE

Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

COMPILER
Yes
No
No

HELP COMPILE

This command will print out a HELP screen which outlines the syntax of the
COMPILE and UNCOMPILE commands and their parameters.

HELP COt.4PllE,...-------.-toi

Item Description

device selector numeric expression, rounded to an
integer

Example Statements

HELP COMPILE
HELP COMPILE #701

Semantics

Range

see the "BASIC
Language Reference"
glossary

[f no device selector is specified, the output will go to the current PRINTER IS
device.

Details of Using Your Compiler 4-25

4

4

HELP OPTIONS
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

COMPILER
Yes
No
No

This command will print out a HELP screen which provides information on
each compiler switch and command that can be used in the options list.

HELP OPTION

Item Description

device selector numeric expression, rounded to an
integer

Example Statements

HELP OPTIONS
HELP OPTIONS #701

Semantics

Range

see the "BASIC
Language Reference"
glossary

If no device selector is specified, the output will go to the current PRINTER IS
device.

4-26 Details of Using Your Compiler

REMOVE COMPILER (BASIC/WS and BASIC/DOS only)

REMOVE COMPILER (BASIC/WS and BASIC/DOS only)

Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

COMPILER
Yes
No
No

This command will remove the compiler binary from memory for BASIC/WS
and BASIC/DOS. Do not use this command with BASIC/UX.

REMOVE COMPILER-----,.....

Item Description

device selector numeric expression, rounded to an
integer

Example Statement

REMOVE COMPILER

Semantics

Range

see the "BASIC
Language Reference"
glossary

The COMPILER binary is not needed after compiling a program. Therefore,
Y'ou may want to use the REMOVE COMPILER command to create extra
,pace to load data such as user subprograms or other binaries.

rhe REMOVE COMPILER command removes the COMPILER binary
)nly if it was the last one loaded and is not part of the system (STORE
,YSTEM was not used to store the system and the COMPILER binary). If
;he REMOVE COMPILER command cannot be used, the compiler prints a
nessage explaining the reason.

Using this command will not disturb any system binaries or your program.

Details of Using Your Compiler 4-27

4

5
Details of Compiler Directives

Compiler directives are special commands used to control the compilation
process. They do not affect the semantics of the compiled program. Since
directives are not part of the program, they must appear inside a comment
line, on a line by themselves (though more than one directive may appear on
the same line, separated by semicolons or commas). They are permitted only
as the first sequence of characters following the "!". The general syntax of a
compiler directive is:

! $ directive [; / J directive] ... [$ [comments]]

Compiler directive lines begin with a $ (after the !), to tell the compiler that
this comment line contains one or more compiler directives, and end with
an optional $. Characters appearing after the second $ are considered to be
comments, and will be ignored by the compiler. For example:

10 ! $KEEP OFF $ Removes the source code from the compiled program.

Details of Compiler Directives 5·1

5

Default Values of Compiler Directives
Each compiler directive has a certain default value that is used if the directive
is not explicitly set. All of the directives, except the CONTROLVAR directive,
are eontext-scoped, which means they are set (or re-set) to their default values
at the beginning of each context. The CONTROLVAR is global-scoped, which
means that it retains its value across each context boundary. A context is
a section of code (a subprogram) beginning with a SUB or DEF statement
and ending with a SUBEND or FNEND statement. The main program is also
considered a context.

To change default values, you can use directives or options in the options
list of the COMPILE command (the short form of the compiler directive).
For example, to change the default value for range checking (default is
RANGECHECK ON), you could include this statement at the beginning of a
context:

5 10! $RANGECHECK OFF

The default value for range checking of an entire program can be changed using
this command:

COMPILE : RC OFF

Note that this command will only eliminate range checking in those contexts
which do not contain a RANGECHECK ON directive in them.

Set Location of Compiler Directives
Each compiler directive also has a certain "set location" where it is valid for
that directive to appear. If a directive's set location is the beginning of each
context, then it must appear before the first executable statement of that
context or it will be ignored by the compiler. If a directive's set location is
anywhere, it will be valid anywhere in a context. Directives that can appear
anywhere within a context can be toggled ON or OFF as many times as is
desired.

Compiler directives that are inserted into the dummy MAIN program
(generated by the compiler) will be ignored unless the dummy main was

5-2 Details of Compiler Directives

compiled using the COMPILE MAIN command. This restriction will only
affect the CONTROLVAR directive in most cases.

For directives that can be ON or OFF (switches), the directive can be toggled
ON by including the name of the directive (long or short form) optionally
followed by ON. The directive name appearing alone is equivalent to toggling
the directive ON. To toggle a directive OFF, the directive name (long or short)
should be followed by OFF.

When using ON or OFF, you must include a space after the directive name.

A Detailed Description of Compiler Directives
The long and short form of each compiler directive appears in this section. The
short form of a directive is simply an abbreviated form of the directive. For
example, OC ON will have exactly the same effect as OVERFLOWCHECK
ON. The paragraph immediately following the name of the directive gives a
complete description of the function of the directive and outlines the syntax.
Also included with the description of the directive are the topics given below.

Directive Topics

Default

Shows what default is used if the directive is not specified and if it has not
been changed by using its associated switch in the options list of the compiler
invocation command.

Scope

Tells whether the directive is context-scoped or global-scoped.

Set Location

Shows the set location of the directive which is either the beginning of the
context or anywhere within a context.

Details of Compiler Directives 5·3

5

5

Details

Provides any additional information that you may need to use the directive.

Directives Overview

The following table lists each directive with its short form, default value, set
location, and a brief description of what feature of compilation may be affected
by its use.

Short Set Compiler Feature
Directive Form Default Location Affected

COMPLEX none none Anywhere Returns COMPLEX function
results

CONFIGCHECK CC ON Anywhere User subs and system binaries
check

CONTROLVAR C none Anywhere Control variable values

EOL none ON Anywhere End of line activity code

ERROR ERR ON Anywhere Prompt when errors occur

IF none none Anywhere Conditional compilation

IFNOT none none Anywhere Conditional compilation

KEEP none ON Anywhere Keep the Source code

LONGCODE LC OFF Beginning Extended addressing code

MC68020 MTP 1 Beginning Code specific for the MC68020/30
processor

MC68881 MCP 2 Beginning Code specific for the MC68881/82
math coprocessor

1 If the computer used has a MC68020/30 processor then the default is ON.

2 If the computer used has a MC68881/82 coprocessor then the default is ON.

5-4 Details of Compiler Directives

Short Set Compiler Feature
Directive Form Default Location Affected

OPTIMIZE OP OFF Beginning Space (OFF)/speed (ON)
optimization

OVERFLOWCHECK OC ON Anywhere Overflow checking

RANGECHECK RC ON Anywhere Out-of-range value check

REAL none none Anywhere Returns REAL function results

SAVELINENUMBER SL OFF Anywhere Save program line numbers

STACKCHECK STC ON Anywhere System stack bound check

STATICARRAYS SA OFF Beginning Use of static local arrays (REDIM
not used)

SYMBOLS ST OFF Anywhere Symbol table listing
5

Details of Compiler Directives 5·5

5

COMPLEX Directive
By default, the value returned by any function in your program will be of type
REAL. The directive COMPLEX allows you to specify certain functions that
will return a value of type COMPLEX. The syntax is:

$COMPLEX function name [;/, function name] ... [$comment]

Each function name is the name of a function that is to return a COMPLEX
value.

Default

By default, all functions return a REAL value.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive is valid anywhere within a context.

Details

When using this directive, the first two letters of any specified function name
must be FN or warning 21 (Improper ID on Declaration Directive) will be
generated at compile time. If a specified function name ends with the character
$, warning 21 will occur at compile time. Warning 21 will also be generated

5-6 Details of Compiler Directives

COMPLEX Directive

any time a specified function is not found in the symbol table (Le., if a function
is declared using this directive but is not called within the context). If warning
21 is ignored (you continue compilation without correcting the error), the
function will be assumed to be of type REAL.

This directive must appear once in every context (subprogram) that calls the
function before the function is called and in the function itself. For example:

10 COMPLEX C
20 ! $COMPLEX FNOne
30 C=FNOne(10)
40 END
50
60 DEF FNOne(X)
70 !$COMPLEX FNOne,FNTwo
80 RETURN CMPLX(X,0)+FNTwo(X,2*10)
90 FNEND
100
110 DEF FNTwo(R,I)
120 !$COMPLEX FNTwo
130 RETURN CMPLX (I , R)
140 FNEND

If a function was declared to be of a given type (using the directive COMPLEX
or REAL) and the function returns a value of a different type, a run-time error
will occur stating that the value returned is not of the correct type.

The directive in the calling context (as in line 20 in the previous program)
indicates what type the calling context should expect to receive (the expected
type). The directive in the function itself (as in line 120 in the previous
program) indicates what type should be returned by the function (the returned
type). The value to be returned from a function will be converted to the
returned type (if necessary) before the value is returned. When the value is
returned, the returned and expected types are compared: if they are different,
error 19 (Improper value or value out of range) will be generated. In this
program sample, the value of function FNOne (12, as indicated in line 80) will
be converted to the COMPLEX value (12.,0.) before it is returned.

Details of Compiler Directives 5-7

5

5

COMPLEX Directive

10 ! $COMPLEX FHOne
20 REAL X
30 X=FHOne
40 EHD
50
60 DEF FHOne
70 ! $COMPLEX FHOne
80 RETURN 12
90 FREND

After it is returned the value will be converted to REAL, since X is a real
value, and then assigned to X on line 30.

The REAL directive can also be used to declare the type of a function. These
directives (REAL and COMPLEX) can be used in conjunction to toggle the
type returned by a function. For example:

10 COMPLEX C
20 REAL R

100 ! $COMPLEX FHOne
110 C=FHOne(l)
120 !$REAL FHOne
130 R=FHOne(2)
140 END
150
160 DEF FNOne(Parm)
170 COMPLEX C
180 REAL R
190 IF Parm=1 THEH
200 ! $COMPLEX FHOne

240 RETURN C
250 ELSE
260 !$REAL FHOne

310 RETURHR
320 END IF
330 FNEND

5-8 Details of Compiler Directives

COMPLEX Directive

Keep in mind that any time the returned and expected types differ, an error
will be generated. So, the following code will generate an error:

10 ! $COMPLEX FROne
20 R=FROne
30 END
40
50 DEF FNOne
60 RETURN 2
70 FNEND

Line 10 indicates that the expected type of FNOne is COMPLEX. Since there
is no directive in FNOne declaring its type, the function will return a REAL
value by default. An error will occur on line 20 at run time when the expected
and returned types do not match.

Details of Compiler Directives 5·9

5

5

CONFIGCHECK (CC) Directive
This directive causes the compiler to emit code to check (at run time) for the
existence of binaries, subprograms, and functions before they are called. The
syntax is:

$CONFIGCHECK [ON/OFF] [$[comments]]

where CONFIGCHECK OFF suppresses these checks.

Default

The default for this directive is CONFIGCHECK ON.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive is valid anywhere that it appears within a context.

Details

CONFIGCHECK OFF will disable checking for the existence of functions,
subprograms or system binaries before allowing these calls to be made. If all
associated system binaries, functions and subprograms are present at run time,
checking for them is redundant and time wasting. If they are not present,
however, the system will crash if CONFIGCHECK is OFF.

5-10 Details of Compiler Directives

CONTROLVAR (CONTROL or C) Directive

CONTROLVAR (CONTROL or C) Directive
This directive is used to set the values of any control variables in your program.
A control variable is a variable name composed of multiple characters, with the
first character being alphabetic (a-z, A-Z). The compiler uses only the first
character to identify a control variable, so the first letter must be unique. The
compiler will distinguish between upper and lower case letters, so there are 52
possible unique control variables. Control variables are used in conjunction
with the IF and IFNOT compiler directives. Control variables are assumed to
have a value of 0 (zero), unless their values are changed with this directive.
The syntax is:

$CONTROL VAR variable = value [$ [comments]]

$CONTROLVAR (variable=value[;/, variable=value] ...)

where variable is the name of the control variable and value is an integer value
(positive or negative) you wish to have assigned to the variable (see "Details"
below). The user can set control variables at the start of the main program,
and keep their values for the entire compilation.

Default

Control variables are set to 0 (zero) at the start of compilation.

Details of Compiler Directives 5-11

5

5

CONTROLVAR (CONTROL or C) Directive

Scope

It is a global-scoped directive which retains its value across context boundaries.
Note that it is the only directive which is global scoped.

Set Location

This directive is valid anywhere within a context except within the dummy
MAIN program.

Details

The CONTROLVAR directive is not valid in the dummy main program
generated by the compiler.

Control variables are used to control conditional compilation. They appear
in the IF ... END directive pair. If the control variable following the IF has
a non-zero value, the code between the IF and the END will be compiled;
otherwise, it will not (Le. it will be treated as comments). For example:

100 $COHTROLVAR (Z=O;a=l) $
110 $IF Z$

150 END
160 $IF a$

210 END

The first IF . .. END segment would not be compiled because the control
variable "Z" was set to zero by the CONTROLVAR directive. The second
IF ... END segment is compiled because the control variable "a" was set to
one by the CONTROLVAR directive.

With the IFNOT directive, if the control variable following the IFNOT has a
value of zero, the code between the IFNOT and the END will be compiled.
Otherwise it will not.

5-12 Details of Compiler Directives

EOl Directive

EOl Directive
This directive instructs the compiler to emit end-of-line activity code. This
enables the operating system to service pending events such as key presses
and interrupts. The absence of such code will cause the entire CSUB to be
processed as a single line of code. In other words, events occurring during
the execution of a compiled BASIC CSUB with EOL OFF will not be
acknowledged until the end of the CSUB execution or an end-of-line check in
the code, whichever comes first. This can be accomplished by setting EOL ON
at some point or calling an interpreted or compiled SUB with EOL ON. The
syntax is:

$EOL [ON/OFF] [$[comments]]

where EOL OFF suppresses the generation of end-of-line activity code. Using
EOL OFF produces much faster and smaller code than EOL ON.

Default

The default for this directive is EOL ON.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Details of Compiler Directives 5-13

5

5

EOl Directive

Set Location

This directive is valid anywhere within a context.

Details

Before you use this directive, you MUST read the section, "Using the EOL
Directive" in the chapter "Improving Compiled Programs." Using this directive
improperly can cause very serious side effects.

Errors will be processed by the operating system even with EO L 0 FF, but an
ON event statement may not be processed properly unless it is compiled with
EOL ON.

If a context is compiled with EOL OFF, events (such as key presses, pauses,
etc.) will not be acknowledged until the next line where end-of-line checking is
enabled.

EO L OFF makes a section of code look (to the operating system) and behave
like a single line of BASIC code.

5-14 Details of Compiler Directives

ERROR (ERR) Directive

ERROR (ERR) Directive
The compiler generates error messages when errors are encountered during
compilation. By default, each time an error is encountered the compiler will
pause and ask if you wish to stop and correct the error or continue with
compilation. If you decide to continue compilation, only those subprograms
containing errors will not be compiled-all the rest will. If you decide to stop
and correct the error, all code generated for previously compiled subprograms
will remain intact. The ERROR directive can be used to tell the compiler
whether or not to give you this option. It has the syntax:

$ERROR [ON/OFF] [$[comments]]

If ERROR OFF is specified, the compiler will assume that you want to
continue compilation without correcting the error. The error message will still
be displayed, but the compiler will not give you the option of immediately
correcting the error.

Default

The default value for this directive is ERROR ON.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive is valid anywhere within a context.

Details of Compiler Directives 5-15

5

5

IF and IFNOT Directives
The IF and IFNOT directives are used to allow conditional compilation. They
are always paired with a corresponding END directive. The text from (and
including) the IF (or IFNOT) up to (and including) the END is the text
affected by this directive. The syntax is:

120 ! $IF control variable [$[comments]]

180 ! $END [$[comments]]

or

120 ! $IFNOT control variable [$[comments]]

180 ! $END [$[comments]]

~L® p.1
L:j comment

The control variable is a variable name composed of alphanumeric characters.
The first character of a control variable name must be a unique alphabetic
(a-z, A-Z) character. Only the first character of a control variable name is
recognized by the compiler and all other characters are ignored. The control
variable is used to decide whether or not the IF ... END segment will be
included in compilation (see Details below).

5-16 Details of Compiler Directives

IF and IFNOT Directives

Default

None

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

An IF ... END segment must be entirely contained within a single context.

Details

Control variables automatically have a value of 0 (zero) when they are
encountered unless they have been reset using the CONTROLVAR directive.

Any variable name following an IF or IFNOT directive is assumed to be a
control variable. The compiler can distinguish between control variables and
program variables so you can use a control variable with the same name as a
program variable.

When the compiler encounters the IF directive, the value of the control variable
is checked. If the control variable has a nonzero value, the code between the IF
and the END directives is compiled; otherwise, it is ignored. In the following
sample:

230 $IF compile

270 END

the code between the IF and the END would be ignored, because the value
of "compile" is zero. (We are assuming the "compile" has not appeared in a
CONTROLVAR directive).

Details of Compiler Directives 5-17

5

5

IF and IFNOT Directives

When the compiler encounters the IFNOT directive, the value of the control
variable is checked. If the variable has a value of 0 (zero), the code between the
IFNOT and the END directives is compiled; otherwise, it is ignored. In the
following program sample:

100 $CONTROLVAR compile=1
110 $IFNOT compile

150 END

the text between the IFNOT and the END will be ignored by the compiler.
The value of compile was set to 1 using the CONTROLVAR directive.

An IF ... END segment may appear anywhere within your program as long as
it is entirely contained within a single context. Nested IF ... END segments
are not allowed.

Care must be exercised when using the IF ... END construct. Block
statements such as:

SELECT ... CASE ... END SELECT
WHILE ... END WHILE
LOOP ... END LOOP
IF ... ELSE ... END IF
REPEAT ... UNTIL
FOR ... NEXT

must not be broken by a conditional compilation. An error will be generated if
any of the above constructs are only partially contained within an IF ... END
segment. For example, if a conditional compilation causes a END, SUBEND or
FNEND to be ignored, an error 1028 will be generated. The following program
lines will produce this error:

10 ! $CONTROLVAR z=o
20 SUB Sample

100 ! $IF Z

150 SUBEND

190 ! $END

5-18 Details of Compiler Directives

IF and IFNOT Directives

Conditional compilation is very useful for "removing" debug statements or
statements that are not compilable without actually having to remove them
from your program. For example, in the following program:

10 DIM Data_array(10)
20 Array_size=10
30 ! SAMPLE PROGRAM USING CONDITIONAL COMPILATION
40 ! THE FOLLOWING LINE WILL BE COMPILED:
50 PRINT "PROCESSING DATA ARRAY"
60 !$IF DEBUG
70 ! THE FOLLOWING 3 STATEMENTS WILL NOT BE COMPILED
80 PRINT "THE DATA ARRAY IS"
90 PRINT Data_array(*)
100 TRACE PAUSE
110 !$END
120
130 FOR 1=1 TO Array_size
140 Data_array (I) =1
150 NEXT I
160 !$IF DEBUG
170 ! AGAIN t THE FOLLOWING STATEMENTS WILL NOT BE COMPILED
180 PRINT "THE RESULT IS"
190 PRINT Data_array(*)
200 TRACE PAUSE
210 !$END
220 END

the debugging code (lines 80-90, 180-190) would be present in the interpreted
environment, as would the TRACE commands (lines 100 and 200). When your
program is running correctly and you are ready to compile it, the debugging
lines will be "skipped" since the value of the control variable "DEBUG" was
never set to 1 (0 is the default). This is also a good way to support the usage
of non-compilable commands (such as TRACE) in your program.

Details of Compiler Directives 5-19

5

KEEP Directive
By default, the compiler will keep the source code along with the compiled
code when it compiles a program. This feature can be turned off with the
KEEP OFF directive, so the source code will be discarded (only if it is
successfully compiled). The syntax is:

! $KEEP [ON/OFF] [$[comments]]

5 where KEEP OFF discards your source code as the program is compiled.

Default

The default value for this directive is KEEP ON.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive is valid anywhere within a context.

5-20 Details of Compiler Directives

KEEP Directive

Details

Make sure that you have saved a copy of your program on an external device
before you compile it with KEEP OFF. You will not be able to recover the
original source code of a program that is compiled with the KEEP OFF
directive.

When you compile your program copies of both the compiled code and source
code remain in memory. If you have a limited amount of memory to use, the
KEEP directive is useful for discarding the unneeded source code. To discard
the source code selectively, you can place the KEEP OFF directive at the
beginning of each subprogram you wish to discard.

Details of Compiler Directives 5-21

5

LONGCODE (LC) Directive
The LONGCODE directive permits the user to selectively enable or disable the
generation of object code which uses extended addressing. This directive must
be ON when forward addressing exceeds 32K bytes of code (see Details below).
The syntax is:

! $LONGCODE [ON/OFF] [$[comments]]

~~L@ a'i L:j comment
OFF

5 where LONGCODE OFF inhibits the generation of extended addressing.

Default

The default value for this directive is LONGCODE OFF.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive must appear before the first executable statement of a context or
it will be ignored by the compiler.

5-22 Details. of Compiler Directives

LONGCODE (LC) Directive

Details

You will not know prior to compilation whether or not the LONGCODE
directive should be used. The compiler emits "short" code by default and
informs you if the LONG CODE directive is necessary for any of the contexts.
Instead of using LONG CODE, you could separate long contexts into two
smaller ones. You should use LONG CODE only in those context(s) where it is
necessary as this directive produces longer and slower code.

Details of Compiler Directives 5·23

5

5

MC68020 (MTP) Directive
The default value for MC68020 is ON for computers with a MC68020/30
processor; otherwise, the default is OFF meaning that the compiler generates
code that checks for the presence of the MC68020/30 processor and uses it if it
is present. Compiling with MC68020 ON causes the compiler to generate code
that runs on only the MC68020/30 processor. The syntax is:

! $MC680.20 [ON I OFF] [$ [comments]]

~tWL@ p."1 L:i comment
OFF

Default

The default value for this directive is MC68020 OFF on a computer without a
MC68020/30 processor and ON on a computer with a MC68020/30 processor.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive must appear before the first executable statement of a context or
it will be ignored by the compiler.

Details

If a program (or subprogram) is compiled with MC68020 ON, the resultant
code will not run if the MC68020/30 is not present (a system error will occur).

The speed increases that result from this directive will be most apparent in
compute-bound subprograms. Code that is I/O bound will not yield a speed
improvement when this directive is used.

5-24 Details of Compiler Directives

MC68881 (MCP) Directive

MC68881 (MCP) Directive

The default value for MC68881 is ON for computers with a MC68881/82
coprocessor; otherwise, the default is OFF meaning that the compiler generates
code that checks for the presence of the MC68881/82 coprocessor and uses it
if it is present. Compiling with MC68881 ON causes the compiler to generate
code that runs on only the MC68881/82 coprocessor. The syntax is:

! $MC68881 [ON/OFF] [$[comments]]

~tgg3L@ ~'I L:f comment
OFF

Default

The default value for this directive is MC68881 OFF on a computer without
a MC68881/82 coprocessor and ON on a computer with a MC68881/82
coprocessor.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive must appear before the first executable statement of a context or
it will be ignored by the compiler.

Details of Compiler Directives 5-25

5

5

MC68881 (MCP) Directive

Details

If a program (or subprogram) is compiled with MC68881 ON, the resultant
code will not run if the MC68881/82 is not present (a system error will occur).

The speed increases that result from this directive will be most apparent
in compute-bound code. Code that is I/O bound will not yield a speed
improvement with this directive.

5·26 Details of Compiler Directives

OPTIMIZE (OP) Directive

OPTIMIZE (OP) Directive
When the compiler is invoked, the default value of this directive is OFF
which means that your program is optimized for space rather than speed. In
other words, the compiler may be sacrificing a small amount of speed to reduce
the size of your compiled program. This feature can be controlled using the
OPTIMIZE directive. The syntax is:

$OPTIMIZE [ON/OFF] [$[comments]]

where OPTIMIZE OFF optimizes for space, and OPTIMIZE ON optimizes for
speed.

Default

The default value for this directive is OPTIMIZE OFF (space optimization).

Scope

It is a context-scoped directive which resets to a default value at the start of
each context .

Set Location

This directive must appear before the first executable statement of a context or
it will be ignored by the compiler.

Details of Compiler Directives 5-27

5

5

OPTIMIZE (OP) Directive

Details

To get the smallest possible code, possibly at the expense of some speed, you
should use OPTIMIZE OFF. To get the fastest code, which may increase
the size of your compiled program, use OPTIMIZE ON. To get the best
compromise of space and speed, you should use BEST and OPTIMIZE OFF in
the options list of your compiler invocation command.

Space optimization will affect only your 110 and graphics speeds.
Computations, logical operations, and looping are not affected by space
optimization. For more details, see the chapter "Improving Compiled
Programs."

5-28 Details of Compiler Directives

OVERFLOWCHECK (OVFLCHECK or OC) Directive

OVERFLOWCHECK (OVFLCHECK or OC) Directive
The compiler will normally emit code to check for integer and string overflow
after each integer and string computation. This capability can be enabled or
disabled using the OVERFLOWCHECK directive. The syntax is:

! $ OVERFLOWCHECK [ON/OFF] [$[comments]]

where OVERFLOWCHECK OFF suppresses the check for integer and string
overflow. 5

Default

The default value for this directive is OVERFLOWCHECK ON.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive is valid anywhere within a context.

Details of Compiler Directives 5-29

5

OVERFLOWCHECK (OVFLCHECK or OC) Directive

Details

Integer overflow will occur if computations cause an integer variable to be
greater than 32767 (the largest allowable integer value) and smaller than
-32768 (the smallest allowable integer value). The compiler emits code to
check for overflow after each integer computation. This increases memory
requirements and decreases speed. You may wish to disable such checks when
you are confident that overflow is not possible.

OVERFLOWCHECK OFF will also disable checking for string overflow in the
following cases:

string_var$=string_var$

string_var$=string_constant

5-30 Details of Compiler Directives

RANGECHECK (RC) Directive

RANGECHECK (RC) Directive

The compiler automatically emits code to check for out of range values (for
example, in the indexing of array subscripts) before they are used. This feature
is controlled using the RANGECHECK directive. The syntax is:

$RANGECHECK [ON/OFF] [$[comments]]

where RANGECHECK OFF suppresses generation of range checking code.

Default

The default value for this directive is RANGECHECK ON.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive is valid anywhere within a context.

Details of Compiler Directives 5·31

5

RANGECHECK (RC) Directive

Details

RANGECHECK OFF will suppress the following checks:

• tests for missing OPTIONAL parameters when parameters are accessed

• testing for a division by zero (INTEGER) with DIV, MOD and MODULO

• testing for a RETURN statement that does have a corresponding GOSUB to
return to

• indexing of array subscripts

The compiler emits code to check for out of range values in applicable cases
which will increase memory requirements and decrease speed. You may wish to
disable such checks when you are confident that your program works.

When the RANGECHECK compiler directive is ON, range checking for local
static arrays is done differently in interpreted BASIC and compiled BASIC. In

5 interpreted BASIC, each separate index of an array is checked to make sure
that it is in bounds. In compiled BASIC, only the overall index is checked.
As an example, take a 3-dimensional array called Array _1 which has the
dimensions (assuming OPTION BASE 1):

6 X 3 X 2

This array has a total of 36 elements. If you try to access the element (2,7,1)
in this array, it will be rejected as out of range by interpreted BASIC because
the second dimension has only three elements. If you tried to access this same
element in compiled BASIC, the error would go undetected. This is because
the compiler does range checking on the overall array index, and:

(2 X 7 X 1) = 14

which is not more than the overall index of 36 elements representing the entire
array.

5·32 Details of Compiler Directives

REAL Directive

REAL Directive
By default, the value returned by any function in your program will be of type
REAL. The COMPLEX directive allows you to specify functions that will
return a COMPLEX value. If this directive has been used to specify the type
of a function, REAL can be used to change the type back to REAL. REAL can
also be used to declare a function that will be returning a real value, though
this is redundant since REAL is the default. The syntax is:

! $REAL function name [;/, function name] ...

Each function name is the name of a function that is to return a REAL value.

Default

By default, all functions return a REAL value.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive is valid anywhere within a context.

Details of Compiler Directives 5-33

5

5

REAL Directive

Details

When using this directive, the first two letters of any specified function name
must be FN or warning 21 (Improper ID on Declaration Directive) will be
generated at compile time. If a specified function name ends with the character
$, warning 21 will occur at compile time. Warning 21 will be generated any
time a specified function is not found in the symbol table (Le., if a function is
declared, but it is not called within the context). If warning 21 is ignored (if
you continue compilation without correcting the error) the function in question
will be assumed type REAL.

The rules for this directive are not as strict as those for the COMPLEX
directive since the default type of any function is already REAL. To follow the
rules exactly, the directive should appear:

• once in every context (subprogram) that calls the specified function

• before the function is called

• within the function itself

For example:

10 REAL X
20 !$REAL FNOne
30 X=FNOne(3)
40 END
50
60 DEF FNOne(X)
70 !$REAL FNOne,FNTwo
80 RETURN «X/4)+FNTwo(2*X»
90 FNEND
100
110 DEF FNTwo(X)
120 !$REAL FNTwo
130 RETURN X-3
140 FNEND

If a function was declared to be of a given type (using one of the directives
REAL or COMPLEX) and the function returns a value of a different type, a
run-time error will occur stating that the value returned is not of the correct
type.

The directive in the calling context (as in lines 20 and 70 in the previous
program) indicates what type the calling context should expect to receive

5-34 Details of Compiler Directives

REAL Directive

(the expected type). The directive in the function itself (as in lines 70 and
120 in the previous program) indicates what type should be returned by the
function (the returned type). The value to be returned from a function will
be converted to the returned type (if necessary) before the value is returned.
When the value is returned, the returned and expected types are compared. If
the returned and expected types are different, error 19 (Improper value or value
out of range) will be generated.

In this program sample:

10 !$REAL FNOne
20 INTEGER X
30 X=FNOne
40 END
50
60 DEF FNOne
70 !$REAL FROne
80 RETURN 12.7
90 FNEND

The returned and expected types are both REAL. The value of the function
FNOne (12.7, as indicated in line 80) is already a REAL value, so no
conversion will take place before it is returned. After it is returned, the value
will be converted to INTEGER (the value will be rounded to 13), since X is an
integer value. The directives in the program sample above are unnecessary and
redundant because REAL is the default condition anyway. The REAL directive
is most useful when you are toggling the type of a function, as described below.

Details of Compiler Directives 5-35

5

5

REAL Directive

The COMPLEX directive can be used to declare the type of a function. The
REAL and COMPLEX directives can be used in conjunction to toggle the type
returned by a function. A sample program illustrating this ability is given
below:

10 COMPLEX C
20 REAL R

100 ! $COMPLEX FROne
110 C=FROne(l)
120 !$REAL FROne
130 R=FROne(2)
140 ERD
150
160 DEF FROne(Parm)
170 COMPLEX C
180 REAL R
190 IF Parm= 1 THER
200 ! $COMPLEX FROne

240 RETURR C
250 ELSE
270 !$REAL FROne

310 RETURR R
320 ERD IF
330 FRERD

Keep in mind that any time the returned and expected types differ, an error
will be generated. So, the following code will generate an error:

10 ! $COMPLEX FROne
20 R=FROne
30 ERD
40
50 DEF FROne
60 !$REAL FNOne
70 RETURR 3
80 FREND

Line 10 indicates that the expected type of FNOne is COMPLEX, and line 50
indicates that the returned type of FNOne is REAL.

5-36 Details of Compiler Directives

SAVELINENUMBER (SL) Directive

SAVELINENUMBER (SL) Directive
This directive can be used to indicate whether or not the compiler should emit
code to save each line number in a program when the line is executed. If a
run-time error occurs in a context with SAVELINENUMBER OFF, the line
number reported with the error will be the first line of the context rather than
the line where the error actually occurred. The syntax is:

! $SAVELINENUMBER [ON/OFF] [$[comments]]

where SAVELINENUMBER OFF suppresses the saving of line numbers.

Default

The default value for this directive is SAVELINENUMBER OFF.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive is valid anywhere within a context.

Details of Compiler Directives 5·37

5

5

SAVELINENUMBER {SL) Directive
''\

\

Details '\\~
The SAVELINENUMBER directive will have the most impact when run-time
errors are encountered. When you encounter an error at run time, remember
these four rules:

• If the subprogram containing the error was compiled with
SAVELINENUMBER OFF (or SL OFF), the line number reported with the
error will be the line number of the CSUB in which the error occurred.

• If the subprogram containing the error was compiled with
SAVELINENUMBER ON and KEEP OFF, the compiler assumes that you
are keeping a copy of your source code elsewhere. Therefore, the line number
that is reported with the error message will correspond to the line number of
your original BASIC program (before the program was compiled).

• If the subprogram containing the error was compiled with
SAVELINENUMBER ON and KEEP ON, the line number reported with
the error will be the line number within the SUB following the CSUB being
executed (the source code form of the CSUB).

• Separately compiled subprograms with SL ON will report the wrong
line number if a run-time error occurs in the compiled subprogram. For
example, you may compile a subprogram using COMPILE: SL with line
numbers ranging from 1 to 10 and store it in a file. First make sure that this
subprogram will cause a run-time error such as division by zero. Perform a
LOADSUB of the compiled CSUB into another program which contains lines
with line numbers greater than 10. The loaded CSUB will end up with a
line number greater than 10. Running the program which calls the compiled
CSUB will generate a run-time error which points to a line number less
than 10. This line number should be in the CSUB, but when you EDIT the
program you will be looking at the wrong line. This is due to the fact that
when the CSUB was called it told the BASIC Language System that its line
numbers are in the range of 1 to 10 since it was compiled that way. The
CSUB had no knowledge of where it was loaded.

This problem can be avoided by not separately compiling subprograms with
SL ON. So when an error occurs the system points to the CSUB line.

5·38 Details of Compiler Directives

STACKCHECK (STC) Directive

STACKCHECK (STC) Directive
During program execution, space may be needed for temporary variables. The
compiler automatically emits code to check for the availability of such space
before it is allocated. The STACKCHECK directive can be used to control this
feature of the compiler. The syntax is:

! $STACKCHECK [ON/OFF] [$[comments]]

where STACKCHECK OFF inhibits the check for available space and
suppresses error messages for memory overflow.

Default

The default value for this directive is STACKCHECK ON.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive is valid anywhere within a context.

Details

STACKCHECK ON causes the compiler to emit extra code, which decreases
speed and increases the memory requirements. You may wish to disable such
checks when you are confident that memory overflow cannot occur.

Details of Compiler Directives 5-39

5

5

STATICARRAVS (SA) Directive
The STATICARRAYS directive affects arrays declared with DIM, INTEGER,
REAL, or COMPLEX statements (in other words, all arrays except those
declared with an ALLOCATE or COM statement, and those that appear as
parameters). If you do not use the REDIM statement on any of your local
arrays within a context, you should take advantage of the speed increases that
are produced with the STATICARRAYS directive. The syntax is:

! $STATICARRAYS [ON/OFF] [$[comments]]

where STATICARRAYS OFF allows the use of REDIM statement.

Default

The default value for this directive is STATIC ARRAYS OFF.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

STATICARRAYS ON must appear before the first executable statement of the
context or it will be ignored by the compiler.

5·40 Details of Compiler Directives

STATICARRAYS (SA) Directive

Details

This directive tells the compiler that the local array bounds are static (Le.,
do not change during program execution by using the RED 1M statement or
a copy sub array does not cause an auto-REDIM). The compiler will then
perform most of the array indexing calculations during compile time, saving
program execution time. The speed of execution will be greatly enhanced when
multi-dimensional arrays are being used.

If you set STATICARRAYS ON, and a REDIM is encountered, warning 20 will
be generated at compile time. This warning can be ignored if the RED 1M is
for:

• an array in COM

• a single-dimensional array

• a multi-dimensional array whose number of dimensions is changed

You must pay attention to this warning if you are:

• REDIMming a local multi-dimensional array

• RED IMming some dimension other than the last

When the STATICARRAYS compiler directive is ON, range checking for local
static arrays is done differently in interpreted BASIC and compiled BASIC. In
interpreted BASIC, each separate index of an array is checked to make sure
that it is in bounds. In compiled BASIC, only the overall index is checked.
As an example, take a 3-dimensional array called Array _1 which has the
dimensions:

6 X 3 X 2

This array has a total of 36 elements. If you try to access the element (2,7,1)
in this array, it will be rejected as out of range by interpreted BASIC because
the second dimension has only three elements. If you tried to access this same
element in compiled BASIC, the error would go undetected. This is because
the compiler does range checking on the overall array index, and:

(2 X 7 X 1) = 14

which is not more than the overall index of 36 elements representing the entire
array.

Details of Compiler Directives 5-41

5

5

SYMBOLS (ST) Directive
This directive will dump a symbol table (at compile time) for the context in
which it appears. The syntax is:

! $SYMBOLS [ON/OFF] [$[comments]]

Default

By default, a symbol table is not dumped.

Scope

It is a context-scoped directive which resets to a default value at the start of
each context.

Set Location

This directive is valid anywhere that it appears within a context.

5-42 Details of Compiler Directives

SYMBOLS (ST) Directive

Details

The symbol table includes the name of the symbol, its type (REAL,
INTEGER, etc.), what it is (variable, SUB, array, etc.), and its scope (local
or global). If the directives REAL or COMPLEX are used in a program, the
corresponding type will be in the symbol table for that function. If you use
directives to toggle the type of a function (see the sections "REAL Directive"
and "COMPLEX Directive"), the type declaration will be used in the symbol
table. For example:

10 !$ST
20 !$COMPLEX FNComplex
30 !$REAL FNReal
40 COMPLEX Complex_num
50 REAL Real_num
60 Complex_num=FNComplex
70 Real_num=FNReal
80 END

will produce the following symbol table:

------- SYMBOL TABLE DUMP for Mainsub

NAME TYPE KIND SCOPE
--------------- ------- -------- ----------------
Complex_num COMPLEX VARIABLE Local
Real_num REAL VARIABLE Local
FNComplex COMPLEX SUB Global
FNReal REAL SUB Global
Mainsub REAL SUB Global
--
Number of Entries in Table =11
Number of Used Entries =7

Details of Compiler Directives 5-43

5

5

SYMBOLS (ST) Directive

For this program:

10 !$ST
20 !$COMPLEX FNSome_function
30 COMPLEX Complex_num
40 REAL Real_num
50 Complex_num=FNSome_function
60 !$REAL FNSome_function
70 Real_num=FNSome_function
80 END

the symbol table entry for FNSomeJunction will be listed as type REAL, as
that is the last type the function was set to.

5-44 Details of Compiler Directives

6
Improving Compiled Programs

Previous chapters in this manual explained how the BASIC compiler works and
how to use it. This chapter provides information about compiled programs,
and offers tips on how to write programs that compile and run efficiently.
Topics covered are:

• Storing Your Program
• Compiled Program Compatibility
• Interacting with Compiled Programs
• Writing Efficient Programs
• Optimizing Your Program
• Using the EOL Directive
• Using the DS. Command

Storing Your Program
Compiled programs must never be SAVEd or RE-SAVEd. The SAVE
command converts a file into an ASCII file. Trying to SAVE your program
would cause only the readable part of the compiled program (the CSUB and
CDEF statements) to be copied into the ASCII file, not the machine code
which is really the compiled program. Subsequent attempts to GET the
SAVEd file will fail, since the BASIC Operating System cannot syntax CSUB
or CDEF statements.

Note Always use STORE or RE-STORE to move a compiled
program from the computer memory to a disk file.

Improving Compiled Programs 6·1

6

6

Compiled Program Compatibility
You can write programs consisting of both interpreted and compiled BASIC.
It is perfectly acceptable to have a BASIC program which consists of
a interpreted BASIC main program which calls compiled functions and
subprograms, as well as interpreted BASIC functions and subprograms and
user-written CSUBs. Compiled SUBS follow the same compatibility rules as
interpreted subprograms. These are outlined below.

• SUBs and CSUBs may call user-written CSUBs generated from Pascal,
Assembly, or FORTRAN using the BASIC CSUB utility.

• SUBs and CSUBs may be called by interpreted BASIC routines.

• Compiled and interpreted BASIC routines can communicate through
parameters or COMmon statements.

• SUBs and CSUBs may call interpreted BASIC routines or those BASIC
routines compiled with the BASIC Compiler.

Interacting with Compiled Programs
When running a compiled program, the keyboard works much the same way as
it does when running an interpreted program. However, the following "rules"
must be kept in mind:

• Pressing the (PAUSE) key (or ~ key on an ITF Keyboard) will work only if
the context was compiled with EOL ON. Otherwise, the entire context will
be executed befo,re the pause is acknowledged.

• The following are ok: (RUN) key (or @ key on the System menu of an ITF
Keyboard), RUN keyword without a line number or label, (CONTINUE) key (or
@ key on the System menu of an ITF Keyboard), CONT keyword without a
line number or label. If you use the CONT or RUN keywords, you may not
specify a line number or label.

• All other command keys such as (EXECUTE), (SHIFTHcLR I/O), etc. will work
only if the EOL ON compiler directive was in effect when your program was
compiled. This directive assures that the interrupts from these keys will be
serviced.

6-2 Improving Compiled Programs

• The PAUSE statement may be used in your program, even if EOL OFF
was in effect. It will work in the same manner as it would in an interpreted
program.

• The STEP key (which is in the System menu on an ITF keyboard) cannot be
used to step into a CSUB. Using the STEP key will have the same effect as
pressing the (CONTINUE) key.

With the exception of the keys or commands mentioned above, all other
commands can be executed while a compiled program is running.

Writing Efficient Programs

Writing efficient programs entails establishing a balance between code size and
program speed. A program that runs very quickly may not be worthwhile if it
occupies 8 megabytes of memory. On the other hand, a very compact program
may be useless if it takes all day to execute.

Before you can begin making decisions about the efficiency of a program, you
need to understand some differences between compilers and interpreters. This
section covers these differences as well as the following topics: 6

• Compute-bound code
• I/O-bound code

Interpreted vs. Compiled Code

In an interpreted BASIC program, each BASIC line is represented as a series of
"intermediate codes" (referred to as I-codes):

I Line Header I I-code I I-code I ... I EOL I
Each I-code represents an activity that must be carried out by the interpreter.
The EOL represents the end-of-line I-code, and it occupies 1 byte. The "line
header" occupies 6-8 bytes, depending upon whether the line is labeled.

Improving Compiled Programs 6-3

6

An interpreted BASIC program is fairly compact as far as code size goes. Its
instructions do not occupy a lot of space. The "expense" of interpreted BASIC
occurs at run time. Each I-code has to be fetched and recognized by the
interpreter. After this, an interpretation of the I-code semantics is made, then
the I-code instruction is carried out.

In a compiled program, every BASIC line is represented directly in machine
code. Machine code is bit patterns that can be understood by the computer. It
is a direct and exact representation of the semantics of the original BASIC line.
Since the statements have been "expanded" into machine code, a compiled
program will be larger than an interpreted one.

Even though the code is larger, a compiled program usually executes much
faster than the interpreted version because the "overhead" of fetching and
recognizing instructions at run time is eliminated.

Compute-Bound Code

Compute-bound code consists largely of arithmetic expressions, string
expressions, logical expressions, and looping statements. When code is compute
bound, it will execute much faster when compiled.

In an interpreted BASIC program, the statement "A = B + C" is represented
as:

1 Line Header (12113114123211441 EOL 1

where the I-code:

12 means push the address of A onto the BASIC stack

13 means push the address of B onto the BASIC stack

14 means push the address of C onto the BASIC stack

232 means add Band C, and push the result on the stack

144 means store the value on the top of the stack in A

These I-codes occupy about 5 bytes of storage. The interpreter will execute at
least 200 machine code instructions to carry out the operation.

6-4 Improving Compiled Programs

In a compiled program, the statement "A = B + C" could be represented in
machine code as:

aove.v -26 (A4), DO
add.v -28(A4), DO
move.v DO. -24(A4)

This machine code occupies 12 bytes. However, this operation is executed by 3
machine code instructions.

For this assignment statement, the "code expansion ratio" (the amount the
code expands when compiled) is 12/5, or 2.4. This means that the compiled
code is about 2.4 times the size of the interpreted code, but it should be about
40 to 70 times faster.

On the average, the code expansion ratio for compute-bound code will be
between 1.5 and 2.0. The speed increases for compute-bound code, however,
are very great. Computations with real numbers can be expected to run 1.15
to 5.0 times faster than interpreted code; computations with integers will run
between 5 and 10 times faster, with some operations as great as 40 times faster.

The speed of programs that make extensive use of system functions such
as SIN, COS, or SQR may be improved approximately 10% by compilation
because these functions are implemented in firmware even when the program is
compiled. 6

I/O-Bound Code

I/O-bound code is code that consists mainly of I/O or graphics operations such
as PRINT, READ, or MOVE. The speed increases for I/O-bound code are not
as great as for compute-bound code.

In interpreted BASIC, the statement PRINT A is represented as:

I Line Header 1155(0 1164 1 EOL I

Improving Compiled Programs 6·5

6

where the I-code:

155 initializes the print operation

o pushes the address of A onto the BASIC stack

164 performs an I/O operation

These I-codes occupy about 3 bytes.

In a compiled program, the statement "PRINT A" could be represented in
machine code as:

lea global_pntr, AS
move.l A2, B_TOS
jar Print_init
movea.l Valptr, A4
movea.l B_TOS, A2
movem.l -8(A4), DO_D1
movem.l DO_D1, -(A2)
elr.Y -(A2)
movea.y #443, A3
move.l A3, IPC
movea.l 36(A4), AO
jar Goto_OS

This machine code occupies 64 bytes.

The code expansion ratio for this example is 21. The form shown above is one
of the worst case examples for compiled BASIC. On the average, the code
expansion ratio for I/O-bound code will be between 2.5 and 4.0. If you had a
print statement with 20 items listed after it, the code expansion ratio would be
much smaller. Note that the compiled program has no additional overhead
after the first item is printed. With an interpreted program, the overhead
would continue for each item in the list to be printed.

On the average, the speed increases that can be expected for I/O-bound code
are from 20% to 50% (Le., 1.2 to 1.5 times faster), depending upon the device
and operating system routines that you are using.

The BASIC Compiler will use the above code generation method when the
program is being optimized for speed (OPTIMIZE ON). When optimizing for
space (OPTIMIZE OFF), the compiler uses a completely different method of
code generation that reduces the code size considerably, while sacrificing a
small amount of speed for I/O statements (not more than 10%).

6-6 Improving Compiled Programs

Optimizing Your Program
There are a number of programming techniques that can affect code size and
speed. This section explains what effect different compiler directives and
programming techniques will have on the speed and size of your compiled
program.

Compiler Directives

Compiler directives are special commands that may be used in your program
to enable or disable certain features of the compiled environment. A full
explanation of each directive described in this section can be found in the
chapter "Compiler Directives."

The directives listed in this section are the ones that could have an effect on
the size or speed of your program. Note that the ERROR and SYMBOLS
directives will never have an effect on the size or speed of your program,
so they are not listed. Also note that the IF, IFNOT and CONTROLVAR
directives will only affect your program size and speed when blocks of code are
not compiled due to conditional compilation. If you have blocks of code that
are not compiled (due to conditional compilation), your code will be smaller
and faster. The same thing would happen in interpreted BASIC if you deleted
sections of your program.

CONFIGCHECK

With CONFIGCHECK ON, the compiler emits code (at run time) to check for
the presence of user subprograms and system binaries before they are used.
Since the code emitted to make these checks takes up space, and the actual
checking takes time, your program will be both smaller and faster if you set the
CONFIGCHECK directive to OFF. If you have very few calls to user SUBs or
system binaries, the speed and size differences will be minimal.

EOl

By default, the compiler generates end-of-line activity code for each line in a
program. This allows ON events to be processed properly. End-of-line activity
code adds a certain amount of code to each line of a program, so turning EOL
OFF can decrease your code size considerably. Note that the longer your
program is, the more EOL OFF will help. EOL OFF will also increase the

Improving Compiled Programs 6-7

6

6

speed, as the line pointers will not have to be moved after the execution of
each line. Leaving EOL OFF is ok if you do not mind the increased amount of
time it takes to service interrupts. However, if this is a problem you may want
to use this directive only in subprograms where the time delay for servicing
interrupts is minimal. Before you use the EOL directive, be sure to read the
section on "Using the EOL Directive," later in this chapter.

KEEP

The KEEP directive is used to specify whether or not the source code should
be kept in memory with the compiled code. Using KEEP ON will have no
effect on the speed of your compiled code. Using KEEP ON will, however,
greatly increase the size of your program, since both the compiled and
interpreted versions of the program are being kept together.

LONGCODE

The LONG CODE directive must be used when forward addressing exceeds 32K
bytes of code. You should not use it unless necessary because this directive will
make your code larger and slightly slower.

MC68020 and MC68881

The default value for the MC68020 directive is OFF on a computer without a
MC68020/30 processor and ON on a computer with a MC68020/30 processor.
The default value for the MC68881 directive is OFF on a computer without
a MC68881/82 coprocessor and ON on a computer with a MC68881/82
coprocessor.

When these directives are OFF, the compiler generates code that checks for
the presence of the MC68020/30 processor and MC68881/82 coprocessor and
uses them if they are present. When these directives are ON, the compiler
will emit code that is dependent upon the processor and/or coprocessor and
uses them without checking to see if they are there. With these directives ON,
your program will be smaller (since the compiler does not emit the "check
for" code), and faster (since the check does not take place). If you use these
directives, make sure that the processor and/or coprocessor is installed before
you run your program. The difference will be significant in compute-bound
code where the (co)processor is frequently used.

6-8 Improving Compiled Programs

OPTIMIZE

OPTIMIZE ON will cause the compiler to produce the fastest code.
OPTIMIZE OFF will cause the compiler to generate the smallest code. Space
optimization will affect only the speed of I/O-bound code (by at most 10%).
The speed of compute-bound code will not be affected by space optimization.

If you want the compiler to produce code that is the most efficient compromise
between size and speed, you should use:

BEST, OP OFF

in the options list following the compiler invocation command. A compiler
invocation command such as:

COMPILE SUB! TO END: BEST, OP OFF

will do the trick.

OVERFLOWCHECK

With OVERFLOWCHECK ON, the compiler will emit code to check (at
run time) for integer or string overflow after each integer or string operation.
Since this causes extra code to be generated and these checks take time,
OVERFLOWCHECK OFF will make your program smaller and faster. The
difference will be most obvious in integer compute-bound code where overflow
checking frequently occurs.

RANGE CHECK

With RANGECHECK ON, the compiler will emit code to check (at run time)
for out-of-range values (for example, when indexing arrays) before they are
used. Since extra code is generated to make the check and the checking takes
time, programs with range checking enabled will be slower and larger than
those without.

SAVELINENUMBER

By default, the compiler will not emit code to save the number of each line
(at run time) as it is executed. The SAVELINENUMBER ON directive can
be used to tell the compiler to emit code to save the line numbers. Since this
extra code is generated, and since the actual saving of the line number takes

Improving Compiled Programs 6·9

6

time, programs with the SAVELINENUMBER ON directive will be larger and
slower than programs that do not save the line numbers.

STACKCHECK

During program execution, space is needed for temporary variables. With
STACKCHECK ON, the compiler will emit code to check for the availability
of such space before it is allocated. A program compiled with STACKCHECK
OFF will be faster and smaller than a program compiled with STACKCHECK
ON since the code to perform the check takes up space and the actual checking
takes time.

STATICARRAYS

Static arrays are local (non-parameter) arrays that are not declared using the
ALLOCATE statement and never appear in a REDIM statement. If you do
not use the REDIM statement in any of your local arrays, the compiler will
be able to perform most of the array indexing operations at compile time.
If you use STATIC ARRAYS ON in your program, the compiler will assume
that all local arrays are static. Since array indexing operations are done only
once, at compile time, setting this directive to ON will produce faster, smaller
code. The speed of execution will be greatly enhanced when you are using

6 multi-dimensional arrays.

Looping Control

Loop control statements such as REPEAT, WHILE, and LOOP will run much
faster if you use local integer variables as controls. In a compiled program, the
FOR ... NEXT statement has been highly optimized for the following cases:

• Integer loop counter, constant step, constant end

• Integer loop counter, constant step

• Integer loop counter, constant end

• Integer loop counter

6-10 Improving Compiled Programs

Using Integers

All integer calculations are significantly faster than real number calculations.
Hence, using integers whenever possible will increase the speed of your
programs. Also, use local integer variables whenever you can.

The code generated for local integer variables is extremely fast. If you have to
pass a value as a parameter, your code will be fastest if you assign it to a local
variable and use the local variable from that point on. If you have to return
the new value to the calling subprogram, reassign the value before exiting.

Arithmetic Expressions

You can increase the efficiency of your program if you take the time to
"optimize" the structure of arithmetic expressions (those using +, -, *, /, D IV
and MOD) in your program. "Optimization" of arithmetic expressions entails
effective mixing of constants and variables within your expressions. Your
compiled program will be faster if you let the compiler do most of the work.
Any computations that can be done at compile time rather than at run time
will increase the efficiency of your program.

A variable is a named data element whose value can change throughout the
course of your program. A constant is a number whose value is always the 6
same.

When the compiler comes across an arithmetic expression in your program,
it will group together as many constants as possible, perform the desired
operations, and emit code for the result. For example, if the compiler comes
across the following line:

A = 1 + 2.5 + 3 + 16 + 22.7 + (198/3)

it will emit code for: A = 111.2

So, any time an expression is composed of constant operations, these will
be operated on at compile time rather than at run time. Keep in mind that
MAXREAL, MINREAL, PRT, PI, KBD, and CRT are treated as constants.

Improving Compiled Programs 6-11

6

BEST Command

If the BEST command appears in the options list of the compiler invocation
command, the compiler directives will be set to values that promote the
production of the fastest and most compact code. The values will be set to:

CONFIGCHECK OFF STATICARRAYS ON

EOL OFF LONGCODE OFF

OVERFLOVCHECK OFF SAVELINENUMBER OFF

OPTIMIZE ON STACK CHECK OFF

RANGECHECK OFF

BEST will produce code that is the fastest possible and is fairly small.
However, to produce the smallest possible code that is fairly fast use the
following command:

COMPILE: BEST, OP OFF

Be aware that BEST will set EOL OFF and STATICARRAYS ON. These two
directives (in particular) may cause problems in your program depending upon
the structure of your code. If your program does a lot of event processing, you
should probably have EOL ON. Read the section, "Using the EOL Directive,"
for more information on this. If all local arrays in your program are static,
the STATICARRAYS ON directive will not cause any problems. For more
information on the STATICARRAYS directive, turn to the chapter "Compiler
Directives. "

6-12 Improving Compiled Programs

Overall Program Efficiency

To optimize the efficiency of your program, you may need to compromise
between speed and code size. As evidenced by the discussion on compute
bound and I/O-bound code, the effect of the compiler is much greater for
computational tasks than for I/O tasks. When you are writing your program,
you would be wise to put all of your computations (or as many as possible)
in one or more subprograms or functions and keep them separate from those
subprograms and functions that contain a great amount of I/O and graphics
interactions.

In some instances, where memory is a scarce resource, it may be wise to
compile your subprograms and functions that are compute bound, and leave
the I/O-bound subprograms and functions in interpreted BASIC. This would
keep your code file relatively small, and you would not be losing too much
speed. The only thing that you really lose in such a situation is the security
provided by the compiler. Compiled programs are much harder to gain access
to than interpreted ones.

Using the EOl Directive
The EOL directive can be used to control when and where end-of-line activity
code is to be emitted. EOL can be toggled ON and OFF throughout your
program, but using EOL improperly can cause some very serious problems with
the execution of your program. A compiled program using EOL haphazardly
may run differently from its interpreted counterpart. If you have a program
that toggles the value of EOL and you encounter problems, turn EOL ON
throughout the entire program. This may very well help.

EOL is described thoroughly in this section to help you avoid any mishaps with
its use. We urge you to read this section very carefully.

Before you can understand EOL checking in a compiled environment, you must
understand how event processing occurs in an interpreted environment.

Improving Compiled Programs 6·13

6

Interpretive Event Processing

In interpreted BASIC, each line contains a line header, the contents of the
statement, and an end-of-line token (EOL token). The line header contains
information about the line number, how far the line is indented (for the
Editor), where the previous line is, and where the next line is. At the end of
each line, the EOL code will check to see if any events occurred while the line
was executing. If no events occurred, then the EOL code will establish pointers
to the next line, and execution will continue. The diagram here shows an
interpreted BASIC line:

The "ptr to current token" is a pointer that moves through the line as it is
executing, pointing to the token (I-code) that is currently being executed. The
"ptr to current line" and "ptr to next line" are pointers that keep track of

6 where the current and next lines begin.

6-14 Improving Compiled Programs

ON ERROR Events

When an error occurs during the execution of a line, it will be acknowledged
and processed immediately, without waiting for the line to finish executing. If a
statement of the form:

ON ERROR GOSUB location

was established in the same context where the error occurred, or:

ON ERROR CALL subprogram name

was established anywhere in the program, the location of the line where the
error occurred will be saved. After the specified subroutine (in the case of
GOSUB) or subprogram (in the case of CALL) has been executed control will
return to the line where the error occurred (in the case of a normal subprogram
exit using RETURN or SUBEND) or to the line following the line that caused
the error (when the subprogram was exited with ERROR RETURN or
ERROR SUBEXIT). Program execution will continue from there.

With statements of the form:

ON ERROR GOTO location

or:

ON ERROR RECOVER location

the location of the line where the error occurred does not get saved. Program
control transfers to the location specified by the 0 N ERROR statement and
program execution will continue from there.

Improving Compiled Programs 6·15

6

6

ON TIMEOUT and ON END Events

ON TIMEOUT and ON END events are processed as soon as they occur
because they normally generate an error when they occur. If a statement of the
form:

ON TIMEOUT device selector GOSUB location
ON END io_path GOSUB location

was established in the same context where the error occurred, or:

ON TIMEOUT device selector CALL subprogram name
ON END io_path CALL subprogram name

was established anywhere in the program, the location of the line where the
timeout or end occurred will be saved. After the specified subroutine (in the
case of GOSUB) or subprogram (in the case of CALL) has been executed,
control will return to the line immediately following the line where the timeout
or end occurred. Program execution will continue from there.

With statements of the form:

or:

ON TIMEOUT device selector GOTO location
ON END io_path GOTO location

ON TIMEOUT device selector RECOVER location
ON END io_path RECOVER location

the location of the line where the timeout or end occurred does not get saved.
Program control transfers to the location specified by the ON event statement,
and program execution will continue from there.

All Other Events

For all other events, their occurrence will be acknowledged by the operating
system; they will not be immediately processed. When the interpreter reaches
the EOL token, it will check to see if an event occurred during execution of
that line. If so, the event is processed. For statements of the form:

ON event GOSUB subprogram name
ON event CALL subprogram name

the event will be processed, and control will return to the line following the line
where the event occurred.

6-16 Improving Compiled Programs

For statements of the form:

ON event RECOVER location
ON event GOTO location

control will pass to the specified location when the event occurs, and execution
will continue there.

Compiled Events Processing

When a SUB is compiled, the compiler creates a dummy line header for each
CSUB. This dummy line header contains two pointers:

• one to the first executable line in the CSUB.
• one to the SUBEND statement.

The pointer to the first line of the CSUB is established as the "current line"
pointer. The pointer to the SUBEND statement is the "next line" pointer.

EOlON

If the SUB was compiled with EOL ON, pointers are established (at run time)
that point to the actual "current line" and the actual "next line," before the
line is executed. For each line of the program, the compiler generates:

• special "beginning of line" code
• the machine code for the line itself
• special end-of-line code

After each line has executed, any event that occurred will be processed, and
program execution will resume at the next line. In other words, the CSUB will
behave exactly like the corresponding interpreted version.

EOlOFF

If the SUB was compiled with EOL OFF, pointers are not established to the
actual "current" and "next" lines. The pointers· remain pointing to the first
line of the CSUB (as the "current line" pointer) and the SUB END (as the
"next line" pointer). No EOL activity is performed until after the SUBEND
statement.

Improving Compiled Programs 6-17

6

6

ON ERROR Events (with EOl OFF)

The ON ERROR statement should be the first statement of your subprogram
or subroutine.

Remember, errors are processed as soon as they occur, rather than waiting for
the end of the line. If a statement of the form:

ON ERROR GOSUB location

was established in the same context where the error occurred, or:

ON ERROR CALL subprogram name

was established anywhere in the program, the "current line" pointer will be
saved. After the specified subroutine (in the case of a GOSUB) or subprogram
(in the case of CALL) has been executed, control will return to the line pointed
to by the "current line" pointer. In the case of a CSUB compiled with EOL
OFF, the "current line" pointer is still pointing to the first executable line of
the CSUB. Therefore, after the specified subroutine or subprogram is executed,
control will return to the beginning of the CSUB in which the error occurred,
rather than to the actual line where the error occurred. The entire CSUB will
be executed again, no matter where the error occurred.

With statements of the form:

ON ERROR GOTO location

or:

ON ERROR RECOVER location

the location of the line where the error occurred does not get saved. Program
control transfers to the location specified by the ON ERROR statement, and
program execution continues from there. In this case, a CSUB compiled with
EOL OFF will behave exactly like its interpreted counterpart.

6·18 Improving Compiled Programs

ON TIMEOUT and ON END Events (with EOl OFF)

ON TIMEOUT and ON END events are also processed as soon as they occur.
If a statement of the form:

ON TIMEOUT device selector GOSUB location
ON END io_path GOSUB location

was established in the context where the error occurred, or:

ON TIMEOUT device selector CALL subprogram name
ON END io_path CALL subprogram name

was established in the program, the "next line" pointer will be saved.

After the specified subroutine (in the case of GOSUB) or subprogram (in the
case of CALL) has been executed, control will return to the line pointed to by
the "next line" pointer, and program execution will continue from there. In the
case of a CSUB compiled with EOL OFF, the "next line" pointer is pointing
to the SUB END statement of the CSUB where the event occurred. Therefore,
after the specified subroutine or subprogram is executed, control will return
to the end of the CSUB in which the event occurred, rather than to the line
following the actual line where the error occurred.

With statements of the form:

or:

ON TIMEOUT device selector GOTO location
ON END io_path GOTO location

ON TIMEOUT device selector RECOVER location
ON END io_path RECOVER location

the location of the line where the event occurred does not get saved. Program
control transfers to the location specified by the ON event statement, and
program execution continues from there. In this case, a CSUB compiled with
EOL OFF will behave exactly like its interpreted counterpart.

All Other Events (with EOl OFF)

All other events will not be processed immediately. They will be processed
when end-of-line code is encountered. In the case of a CSUB compiled
with EOL OFF, end-of-line code is not generated until after the SUBEND

Improving Compiled Programs 6-19

6

6

statement. So, events (other than TIMEOUT, END or ERROR) will not be
processed until after the entire CSUB has finished executing.

In the case of statements of the form:

ON event GOSUB subprogram name
ON event CALL subprogram name

the event will be processed after the SUBEND is reached. After the specified
subroutine or subprogram is executed, control will return to the line pointed to
by the "next line" pointer, which will be the SUBEND. Exceptions to this rule
are outlined in the next section, "Special Considerations."

For statements of the form:

ON event RECOVER location
ON event GOTO location

control will pass to the specified location, and execution will continue from
there, but not until the entire CSUB has been executed.

6-20 Improving Compiled Programs

Special Considerations

There are some statements which must have EOL checking enabled, such as
CALL statements. For these statements, EOL checking is enabled whether
or not EOL ON is in effect. If EOL OFF is in effect, end-of-line checking
will be enabled at the occurrence of the statement and disabled immediately
afterward. What this does, is move the "current line" and "next line" pointers.
Suppose you have the statement:

CALL Subtllo

in your CSUB. When the statement is encountered, the "current line" pointer
will be set to that line, and the "next line" pointer will be set to point to the
following line. To see what this means, consider the following subprogram:

10 SUB Thissub
20 !$EOL OFF
30 ON ERROR CALL Errproc

100 CALL SubtllO
110 PRINT A

500 SUBEND

EOL checking is turned OFF in this CSUB, so when the compiled version
of the above SUB is executed, the "current line" pointer will point to the
first executable line of the SUB, and the "next line" pointer will point to the
SUBEND statement.

When line 100 is reached, end-of-line checking will be turned on around the
statement, and the pointers will be reset. The "current line" pointer will be set
to point to line 100 (CALL Subtwo), and the "next line" pointer will be set to
point to line 110 (PRINT A). EOL checking will be disabled as soon as line 100
is compiled, so the pointers will remain there.

Improving Compiled Programs 6-21

6

6

Now, suppose an error occurs in line 490. Because the ON ERROR CALL
exists, the subprogram Errproc will be executed. After this subprogram is
executed, control will pass to the line pointed to by the "current line" pointer.
The "current line" pointer is pointing to line 100, since the pointers were reset
when the CALL was encountered. So, after the error is processed, Subtwo
will be executed. If the above example had used ON TIMEOUT or ON END,
control would have passed to line 110.

The following is a list of statements that will have end-of-line checking enabled
around them, even when EOL OFF is in effect:

CALL sub name LINPUT anything

DEALLOCATE anything ON expression GOSUB location

ENABLE OUTPUT anything

ENABLE INTR anything PAUSE

ENTER anything READ read list

GOSUB location SEND anything

INPUT anything STATUS anything

LABEL anything TRIGGER anything

End-of-line checking will also be enabled around statements like:

10 GOTO 10 ! GOTO to the same line

or statements of the form:

10 IF expression THEN statement

where statement is any of the statements listed above, including GOTO 10.

In addition, end-of-line checking will be enabled around an empty LOOP ...
END loop construct:

10 LOOP
11 END LOOP

6-22 Improving Compiled Programs

Toggling EOl

Because of all the conditions outlined above, you should be very careful about
toggling EOL ON and OFF. Every time you toggle EOL ON, the "current line"
and "next line" pointers will be reset. This capability to toggle EOL can be
useful, however. For example:

110 OR IRTR 7 CALL Intproc
120 ERABLE IRTR 7

200 CALL Rumcrunch

300 END
310 SUB Numcrunch
320 A=l
330 WHILE A
340 PRINT

900 ERD WHILE
910 SUBERD

Suppose that you are using the above program. The main program makes a
call to the SUB Numcrunch. Line 110 of the main program:

110 OR IRTR CALL Intproc

was set up so that the number crunching routine (Numcrunch) could be
interrupted.

Improving Compiled Programs 6·23

6

6

SUB Numcrunch is a highly computational routine working on a large amount
of data. If you compiled this routine with EOL ON, your program would be
unnecessarily large and much slower than you would like. On the other hand,
if you compiled it with EOL OFF, an interrupt would never be acknowledged
until the entire Numcrunch subprogram had finished executing. The statement
in line 110 above would be ineffective. To get around this, you could do the
following:

310 SUB Numcrunch
315 ! $EOL OFF
320 A=l
325 ! $EOL ON
330 WHILE A
335 $EOL OFF

900 END WHILE
910 SUBEND

Compile the subprogram with EOL OFF, and turn EOL ON around a single
line in the WHILE loop. End-of-line checking would only be enabled during
a very small percentage of the program, so you would not lose a significant
amount of speed. Also, the compiled program would be much smaller
than if EOL ON was used throughout. Events such as interrupts would be
acknowledged and processed once for each iteration of the loop when line 330 is
executed.

You should remember that your "current line" and "next line" pointers will be
set to lines 330 and 340, respectively. Any:

ON event GOSUB

or:

ON event CALL

construct would return from the event processing to one of these lines:

• ON ERROR would return to line 330

• ON TIMEOUT, ON END, and all other events would return to line 340

Thus, if the program receives an ON TIMEOUT, ON END, or any other event,
the EOL OFF directive is ignored.

6-24 Improving Compiled Programs

Special Consideration

For the sake of space and speed, optimizing GOTO statements that go to lines
other than themselves will not have EOL activities performed around them
even if $EOL ON was used around the GOTO statement. In other words,
events will never be processed or acknowledge after GOTO statements unless
they go to themselves. So avoid depending on using the GOTO statement as
the place to toggle EOL ON for event acknowledgement in a loop construct.
Use another statement in the loop.

Using the OS Command
The DS compiler command is a tool provided with the compiler that can help
you evaluate the performance versus code size of your program. When the DS
compiler command is used, the compiler will generate statistical information on
each CSUB or CDEF in your compiled program.

As soon as the compiler finishes compiling a SUB or DEF, a table like the
following will be included in the compiler listing:

CSUB Header 60 bytes ==> 51.
Symbol Tables 78 bytes ==> 61.
CSUB Entry Code 432 bytes ==> 331.
CSUB Body Code 542 bytes ==> 411.
Event Lines 26 bytes ==> 21.
Constant Pool 26 bytes ==> 21.
Added Libraries 38 bytes ==> 31.
Relocation Tables 104 bytes ==> 81.
Data Statements Pool 12 bytes ==> 11.
Local DIM Table 10 bytes ==> 11.
TOTAL CODE 1328 bytes ==> 1001.

This tells you how large each section of your subprogram or function is and
what percentage of the total code each section occupies. The sections include
the following:

CSUB Header The CSUB header will always occupy 60 bytes: the
header code contains information that is needed to
run the context.

Improving Compiled Programs 6·25

6

6

Symbol Tables

CSUB Entry Code

CSUB Body Code

Event Lines

Constant Pool

Added Libraries

Relocation Tables

Data Statements Pool

Local DIM Table

TOTAL CODE

This section includes all of the tables (symbol
table, formal parameter table, token table, etc.)
that are needed to run the context.

This section contains code that initializes the
CSUB before it is run. The size of this code will be
the same for any subprogram or function compiled.
The size of this code may change from one release
of the compiler to the next.

The CSUB body code is the section containing
your compiled program.

This section is comprised of special code that is
emitted by the compiler to allow your compiled
program to process events (such as 0 N ERROR,
ON TIME, etc.). Each event destination line will
have special code representing it.

All string constants and IMAGE statements
are stored in the constant pool. Duplicates are
eliminated.

This section contains common segments of code
including math support code that are needed to
execute an operation.

The relocation tables contain data needed to
initialize the CSUB. These tables are used by the
CSUB entry code to make sure that your program
can run where it is loaded.

This section contains the data in DATA
statements.

The Local DIM table is a table needed to describe
arrays or string variables declared locally in the
CSUB.

The TOTAL CODE entry in this table is the sum
of all of the sections listed above.

6-26 Improving Compiled Programs

If a program contains more than one program unit, a summary table will be
printed at the end of compilation, generating the above information about all
the code that was generated during compilation. You may notice that the
TOTAL CODE entry in the summary table will not exactly match the total
size of your code that is listed at the end of the compiler listing. The TOTAL
CODE entry of the summary table and the total size of your code that is listed
at the end of the compiler listing will usually differ by about 94 bytes or so.
The total size number includes code that is needed by the operating system to
manage your CSUB. This code is not included in the TOTAL CODE entry of
the summary table.

Improving Compiled Programs 6·27

6

A
Error and Warning Messages

Errors numbered from 0 to 999 are generated by the BASIC Language System.
For information on these errors, please refer to the HP BASIC Language
Reference. The compiler may emit some of these errors during compilation.

Errors numbered from 1002 to 1999 are errors generated by the BASIC
compiler, and will have an associated error message. These are documented in
the section of this appendix titled "Compiler Error Messages."

Error number 1002 indicates an internal compiler error. When such an error is
generated, the compiler will print a message of the form:

error message / codes: nl t n2

where nl and n2 are internal error codes. If the compiler generates such an
error, you should contact your local HP sales office. Upon contacting your local
HP sales office, you need to report the above error codes. If possible, send a
copy of your program to the local HP sales office. At least include a listing
of the section of code and the line where the error occurred. This will help
to recreate the error condition(s) and find a solution to your problem much
quicker.

Warning messages 1 through 22 do not prevent the compiler from generating
code. However, the code generated may not perform in the manner that you
expect.

Error and Warning Messages A-1

A

Compiler Error Messages

1001 COMPLEX type not allowed here.

1002 Internal compiler error. Note the error codes reported and contact your
local HP sales office.

1003 Line number exceeds limit. Re-compile with KEEP OFF. Since the
compiler adds more lines and re-numbers your program while compiling
with KEEP ON, you may end up with the tail end of your program
having line numbers exceeding the limit that your editor can cope with.

1004 To many SUBs/DEFs. Recompile without a compile list. Whenever the
COMPILE command contains a list of subprograms then the compiler is
limited to 2048 subprograms in RAM.

1009 Unsupported Binary Group. The compiler does not support non-HP
binaries. If you get this error message with an HP binary, please contact
your local HP sales office.

1010 NON-COMPILABLE Command. Non-compilable commands are listed
in the section "Compiler Limitations" found in the chapter titled
"The BASIC Compiler." Remove these statements, or use conditional
compilation.

1016 UNKNOWN Command. May be using a statement that is not
recognized by the compiler. This statement may be supported by some
foreign system binary. Isolate the statement and make sure it is part of
the HP supported group. If all else fails, contact your local HP sales

A office.

1018 Context code too long. Recompile with $LONGCODE ON.

1019 Unrecognized CONTEXT. The compiler will only recognize contexts
that begin with a SUB, DEF, CSUB or CDEF statement.

1020 Nested $IF Compiler Directives not allowed. Make sure that no $IF or
$IFNOT directive appears between another $IF or $IFNOT and its
corresponding $END directive.

1021 $END directive does not match a preceding $IF or $IFNOT. Make
sure that every $END directive has a corresponding (preceding) $IF or
$IFNOT directive.

A-2 Error and Warning Messages

1022 There is no closing $END directive for a prior $IF or $IFNOT.

1023 String overflow. Constant string is too big (too long) for locally
dimensioned string. This type of construct:

DIM A$[1]

will generate this error:

A$ = "AB"

1025 Too many SELECT ICASE statements nested. You may have up to 100
nested SELECT I CASE statements.

1026 CASE structure mismatch. CASE, CASE ELSE or END SELECT
encountered before SELECT. Check to see if SELECT is within a
conditional compilation block.

1027 SELECT Expression and CASE Expression mismatch. This error may
occur if the CASE expression does not match the SELECT expression
(Le., mixing string with numeric).

1028 END/SUBEND/FNEND not found. $IF directive may have inhibited it.

1029 Statement too complex. Possible 10 List too long. Break up your
statement into two statements, and recompile.

1030 Expression(s) too complex. Too many factors in statements. Break long
expressions into two pieces across two statements, and recompile.

Compiler Warning Messages

1 Unrecognized compiler directive; directive ignored. Check spelling and
syntax.

3 Unrecognized interpreted BASIC control variable name; control
variable ignored. Make sure the first character of the control variable is
alphabetic (A-Z, a-z).

7 Improper compiler control variable name; control variable ignored. Make
sure the first character of the control variable is alphabetic (A-Z, a-z).

Error and Warning Messages A-3

A

A

8 Improper compiler directive syntax; directive ignored.

12 Improper control variable value or syntax; control variable ignored. First
character of control variable must be alphabetic (A-Z, a-z); value must
be an integer.

13 Improper ON/OFF toggle value. Check syntax.

14 Improper character in compiler directive or command string; remainder
is ignored. Check spelling and syntax.

15 Directive does not appear at the beginning of the context; directive
ignored. This directive's set location is at the beginning of a context.
It must appear after a SUB or DEF statement and before the first
executable statement in that context.

16 Possible DEAD Code after the SELECT statement.

17 A GOSUB to the same line is not allowed.

18 Referenced IMAGE/DATA was never found in CONTEXT. You

19

have an I/O or RESTORE statement that references a non-existent
IMAGE/DATA statement. This is all right in interpreted BASIC as long
as the referencing statement is not executed. Compiled BASIC requires
that all IMAGE or referenced DATA statements exist. You might also
check to see if the statements are contained within an $IF ... END or
$IFNOT ... END compiler directive pair.

Label(s) listed above this warning are not defined in this context. This
is permitted in interpreted BASIC, as long as the labeled statement is
never executed. Compiled BASIC requires that all labels exist. You
might also check to see if the labeled statement is contained within an
$IF ... END or $IFNOT ... END directive pair.

A-4 Error and Warning Messages

20 REDIM used with $SA ON. Multi-dimensional arrays will be affected.
This warning will be generated if your program has $STATICARRA YS
ON specified and a REDIM is encountered. This warning is ignored if
the REDIM is working on:

• an array in COM

• a single-dimensional array

• a multi-dimensional array whose last dimension is being changed

Pay attention to this warning if you are REDIMming a local,
multi-dimensional array and you are REDIMming some dimension other
than the last.

21 Improper ID on Declaration Directive. Make sure you are using the
directives COMPLEX and REAL properly. A function name specified
with these directives must begin with FN and cannot end with the
character $. This warning will also be generated when a function name
is specified in one of these directives and the function is never called
within the context that declared it.

22 Compiler created Mainsub and a SUB named Mainsub was also found.
It is not illegal to have two subprograms with the same name but it can
be confusing to the system. The first instance of the SUB will be the
one that will always be executed.

Error and Warning Messages A .. 5

A

B
Troubleshooting

This appendix is a "what to do if ... " section. It lists some common problems
that you may encounter when using the compiler, suggests a possible cause and
solution, and tells you where in the manual to go for more detailed information.

How Problems Are Presented
Each problem is presented in the following format:

Problem

~robable Cause

This section suggests a likely cause.

Solution

rhis section offers a solution if the problem was caused by conditions listed in
;he above section.

:teference

rhis section tells you where to look for details. For example:

Chapter /Section Page

Writing Efficient Programs 6-3

Troubleshooting 8-1

B

8

Compiler Problems
To assist you in finding the task which you would like to perform, here is an
index for the "Troubleshooting" chapter.

Problem Page

Compiled Program Runs Too Slowly B-3
Compiled Program is Too Big B-5
Program Runs in Interpreted Mode but not When Compiled B-6
System Hangs During Compilation B-8
Memory Overflow Error During Compilation B-9
Compiler Did Not Create Mainsub for Program B-11
Cannot TRACE or Single-Step Compiled Program B-12
Error 1010-Non-Compilable Command B-13
Error 1018-Context Code Too Long B-14
Program Runs on One Computer but not Another B-15
Configuration Error at Run Time B-16
Internal Compiler Error (1002) at Compile Time B-17
Wrong Line Number Reported with Run-Time Errors B-18
Too Many Error/Warning Messages B-19
Computer Hangs in the Middle of CSUB B-20

Problem and Solution Reference
There are 16 problems and their solutions listed in this section. Each problem
has listed with it a probable cause, a solution for the problem, and a reference
to more detail.

8-2 Troubleshooting

Compiled Program Runs Too Slowly

Compiled Program Runs Too Slowly

Probable Cause

The speed of your program will depend upon a number of criteria. Using
integers instead of real numbers and constants instead of variables whenever
possible will be of help. Also, certain compiler directives or compiler commands
can be used to enhance program speed.

Solution

In very general terms, to get the fastest code (while possibly increasing the size
of your compiled code), you should use the BEST command option in your
compiler invocation command:

COMPILE: BEST

Be aware that BEST will set a number of compiler directive defaults, such as
EOL OFF and STATICARRAYS ON. These two directives in particular may
adversely affect the way in which your program works. If you compile with
BEST and encounter problems, try one of these invocation commands:

COMPILE: BEST, EOL ON
COMPILE: BEST, SA OFF
COMPILE: BEST, EOL ON, SA OFF

A program that consists largely of trigonometric and exponential functions will
not achieve a great speed increase no matter what you do. Likewise, programs
that consist of mainly IIO and graphics will show minimal speed increases
when compiled. Programs that gain the most speed when compiled are those
that are compute bound. Programs consisting of integer computations benefit
the most by compilation.

Troubleshooting B-3

B

8

Compiled Program Runs Too Slowly

Reference

Chapter /Section

STATICARRAYS (SA) Directive

Writing Efficient Programs

Optimizing Your Program

BEST Command

8-4 Troubleshooting

Page

5-40

6-3

6-7

6-12

Compiled Program is Too Big

Compiled Program is Too Big

Probable Cause

Writing efficient programs entails establishing a balance between code size and
program speed. This balance can be achieved through the judicious use of
compiler directives.

Solution

In general, you will get the best compromise of space and speed by using the
compiler invocation command:

COMPILE: BEST, OP OFF

Be aware that the BEST command will set a number of compiler directive
defaults, such as EOL OFF and STATICARRAYS ON. These two directives
in particular may adversely affect the way in which your program works. If
you compile with BEST and encounter problems, try one of these invocation
commands:

COMPILE: BEST, OP OFF, EOL ON
COMPILE: BEST, OP OFF, SA OFF
COMPILE: BEST, OP OFF, EOL ON, SA OFF

Reference

Chapter /Section

STATICARRAYS (SA) Directive

Writing Efficient Programs

Optimizing Your Program

BEST Command

Page

5-40

6-3

6-7

6-12

Troubleshooting B-5

B

B

Program Runs in Interpreted Mode but not When
Compiled

Probable Cause

There could be a number of reasons for this, but three of the most common
are:

• improper use of the EOL directive
• improper use of conditional compilation
• improper use of compiler directives

Solution

If you are toggling EOL ON and OFF throughout your program, turn EOL ON
throughout and see if this helps.

If you are using conditional compilation, make sure that all of your $IF and
$IFNOT directives have $ENDs, and that you are not conditionally not
compiling an essential section of your code.

U sing any compiler directive improperly may cause your compiled program to
run incorrectly. The best way to see if compiler directives are the problem is to
use:

COMPILE

without including any other compiler directives in the code. After the program
runs this way, you can start setting various compiler directives in the code.
You will have to recompile and run the program each time you do this. Repeat
this process until you find the compiler directive which caused the problem.

B .. 6 Troubleshooting

Program Runs in Interpreted Mode but not When Compiled

Reference

Chapter /Section Page

Compiler Directives 4-2

Commands in the Options List 4-15

IF and IF NOT Directives 5-16

Using the EOL Directive 6-13

B

Troubleshooting 8-7

B

System Hangs During Compilation

Probable Cause

There are two probable causes for this problem:

• Since the compiler runs quietly (does not produce any messages as it
compiles), it may appear that the system has hung when it has not. This is
especially true if you are trying to compile a very large program .

• You may be compiling to a printer that is not on-line.

Solution

For the first case, you should use the compiler invocation command:

COMPILE: SHOW

which tells the compiler to generate messages during compilation.

In the second case, check to make sure your printer is on-line.

Reference

Chapter /Section Page

Commands in the Options List 4-15

Compiler Output 4-20

8-8 Troubleshooting

Memory Overflow Error During Compilation

Memory Overflow Error During Compilation

Probable Cause

You may get a memory overflow error if you do not have enough RAM to
compile the entire program. Keeping the source code while you compile will
greatly increase the memory requirements for a given program.

Solution

STORE a copy of the source code on disk, and compile the program with the
invocation command:

COMPILE: KEEP OFF

or use the KEEP OFF compiler directive in each of your SUBS. This will cause
the compiler to discard the source code as it is compiled. If your program is
still too large, you can compile one SUB at a time. Do this by preceding each
SUB (or group of SUBs) to be compiled with a main program that consists
solely of an END statement. After all subprograms have been compiled you
can remove the BASIC Compiler and load all of the subprograms into one
program. This process will give you a program that is small enough to fit
within your memory constraints. If not, you need more memory.

Another possible solution would be to recompile your program with the
following compiler command:

COMPILE: BEST, OP OFF, KEEP OFF

Troubleshooting B-9

B

Memory Overflow Error During Compilation

Reference

Chapter /Section Page

Switches in the Options List 4-10

KEEP Directive 5-20

OPTIMIZE Directive 5-27

BEST Command 6-12

B

B·10 Troubleshooting

Compiler Did Not Create Mainsub for Program

Compiler Did Not Create Mainsub for Program

Probable Cause

There are two common reasons for this:

• Mainsub will not be created for main programs that consist of only an END
statement .

• When the dummy main program is created, the END statement is marked
to indicate that this main program was created by the compiler. If you
delete the SUB Mainsub and the CSUB Mainsub, and you create a new main
program, this new main program will not be compiled if you use the END
statement that was at the end of the dummy main program. This is because
the compiler will recognize that the END statement is marked, and it will
think that it is the dummy main program.

Solution

If your main program consists of only an END statement, then there is no
reason for the compiler to create Mainsub. If you re-use the END statement
of the dummy main program to create a new main program, you must move
the cursor to the END statement, and press (ENTER) ((Return) key on an ITF
Keyboard). This will remove the mark that identifies the dummy main
program.

Reference

See the section titled "A Dummy MAIN Program and Mainsub" in chapter 2,
page 2-6.

Troubleshooting B-11

B

B

Cannot TRACE or Single-step Compiled Program

Probable Cause

TRACE and single-stepping are not supported by the compiler.

Solution

Do not use TRACE or single-stepping.

Reference

See the section titled "Compiler Limitations" in chapter 2, page 2-7.

8-12 Troubleshooting

Error 1010-Non-compilable Command

Error 1010-Non-compilable Command

Probable Cause

You are using a command that is not appropriate in a compiled environment,
and therefore not supported by the compiler.

Solution

Remove any of the following commands:

GET RE-SAVE SAVE

from your program. Note that GET followed by a file name is allowed. GET
followed by a file name and line number is not permitted.

Reference

See the section titled "Compiler Limitations" in chapter 2, page 2-7.

Troubleshooting 8-13

B

B

Error 1018-Context Code Too long

Probable Cause

Code that uses forward addressing that exceeds 32K bytes of code must use
extended addressing.

Solution

Put the directive LONG CODE ON in the offending subprogram(s). We do not
recommend turning LONGCODE ON throughout the program as this directive
greatly increases the size of your compiled program.

Reference

See the section titled "LONGCODE (LC) Directive" in chapter 5, page 5-22.

B-14 Troubleshooting

Program Runs on One Computer but not Another

Program Runs on One Computer but not Another

Probable Cause

You are compiling on a computer with a MC68020/30 processor and
MC68881/82 coprocessor and you ran the program on a computer without
them.

Solution

Either run the program on a computer that has an MC68020/30 processor and
MC68881/82 coprocessor, or compile the program with the compiler directives
MC68020 OFF and MC68881 OFF.

Reference

Cbapter /Section Page

MC68020 (MTP) Directive 5-24

MC68881 (MCP) Directive 5-25

Troubleshooting 8-15

B

B

Configuration Error at Run Time

Probable Cause

You are trying to access a binary or a subprogram that is not present.

Solution

Make sure that all needed binary or user subprograms are available at run
time.

Reference

Chapter/Section Page

Compiler Limitations 2-7

Commands in the Options List 4-15

B-16 Troubleshooting

Internal Compiler Error (1002) at Compile Time

Internal Compiler Error (1002) at Compile Time

Probable Cause

Internal compiler errors are very rare. They are caused by problems with the
compiler itself rather than problems with your program.

Solution

When internal compiler errors are generated, the compiler will print a message
of the form:

error message / codes: nl t n2

where nl and n2 are internal error codes. If your compiler generates such an
error, you should contact your local HP sales office and report the numbers,
as well as the source of the line which caused the error. It would also help to
have a copy of the program available to help recreate or talk through the error
condition.

Troubleshooting B·17

B

Wrong Line Number Reported with Run-Time Errors

Probable Cause

There are two probable causes for this problem:

1. You are compiling a subprogram using SL and then loading it into another
program using LOAD SUB ... FROM. This gives you the wrong line number
w hen a run-time error occurs.

2. Compiling a program with SAVELINENUMBER OFF (the default
condition) will affect the line number reported with any run-time error
messages.

Solution

A solution for the first probable cause is to remember that separately compiled
subprograms with SL ON will report the wrong line number if a run-time
error occurs in the compiled subprogram. For example, you may compile a
subprogram using COMPILE: 8L with line numbers ranging from 1 to 10 and
store it in a file. First make sure that this subprogram will cause a run-time
error such as division by zero. Perform a LOADSUB of the compiled C8UB
into another program which contains lines with line numbers greater than 10.
The loaded CSUB will end up with a line number greater than 10. Running
the program which calls the compiled C8UB will generate a run-time error
which points to a line number less than 10. This line number should be in the
CSUB, but when you EDIT the program you will be looking at the wrong
line. This is due to the fact that when the CSUB was called it told the BASIC
Language System that its line numbers are in the range of 1 to 10 since it was
compiled that way. The CSUB had no knowledge of where it was loaded.

A solution for the second probable cause is either re-compile the program with
8 SAVELINENUMBER ON (which we do not recommend, as it will make your

code unnecessarily large), or read the reference provided below.

Reference

See the section titled "SAVELINENUMBER (SL) Directive" in chapter 5, page
5-37.

8-18 Troubleshooting

Too Many Error/Warning Messages

Too Many Error/Warning Messages

Probable Cause

If the compiler is generating large amounts of warning and error messages, you
have some problems with your program. You will need to correct these errors.
In the meantime, tell the compiler not to prompt you when errors occur, but to
continue compiling the rest of the program.

Solution

To suppress the prompt (do you want to stop now, or continue compiling?)
when errors occur, use the compiler invocation command:

COMPILE: ERROR OFF

or include the compiler directive:

$ERROR OFF

in each subroutine where you wish to have this prompt suppressed. The
compiler will still report the appropriate error messages to the device specified
for output, but it will not stop and ask if you wish to correct the error
immediately.

Reference

Chapter /Section Page

Switches in the Options List 4-10

Correcting Compile-Time Errors 4-18

Correcting Run-Time Errors 4-19

ERROR (ERR) Directive 5-15

Troubleshooting 8-19

B

B

Computer Hangs in Middle of CSUB

Probable Cause

A DELSUB, LOADSUB, or INITIALIZE of a memory volume was performed
from within the program or from the keyboard.

Solution

Do DELSUB, LOADSUB, and INITIALIZE of a memory volume from the
interpreted dummy MAIN program.

Reference

See the section titled "Compiler Limitations" in chapter 2, page 2-7.

B-20 Troubleshooting

c
Quick Reference

The quidk-reference table on the following two pages summarizes the BASIC
Compiler directives, switches, and commands.

Quick Reference C-1

C

BASIC Compiler Directives, Switches, and Commands

Switches
and Compiler Feature

Directive Commands Default Affected Page

COMPLEX none none Sets functions to COMPLEX 5-6
type

CONFIGCHECK CCl ON Checks subprograms and 4-10, 5-10
binaries

CONTROLVAR C none Control variable values 5-11
EOL EOLl ON End of line activity code 4-10,5-13
ERROR ERRl ON Prompt when errors occur 4-11, 5-15
IF none none Conditional compilation 5-16
IFNOT none none Conditional compilation 5-16

c KEEP KEEpl ON Keep the source code 4-11, 5-20

1 Switch
C-2 Quick Reference

Switches
and Compiler Feature

Directive Conunands Default Affected Page
LONGCODE LCI OFF Extended addressing code 4-11, 5-22
MC68020 MTPI 3 Code specific for 4-11,5-24

MC68020/30 processor
MC68881 MCpl 4 Code specific for 4-12,5-25

MC68881/82 math
coprocessor

OPTIMIZE Opl OFF Optimize for space 4-12, 5-27
(OFF)/speed (ON)

OVERFLOWCHECK OCI ON Overflow checking 4-12, 5-29
RANGECHECK RCI ON Out-of-range value check 4-12, 5-31
REAL none none Sets functions to REAL type 5-33
SAVELINENUMBER SLI OFF Save program line numbers 4-13, 5-37
STACKCHECK STCI ON System stack bound check 4-14, 5-39
STATICARRAYS SAl OFF Use of static local arrays 4-12, 5-40

(REDIM not used)
SYMBOLS STI OFF Symbol table listing 4-14, 5-42
Not a Directive BEST2 none Produces the fastest code 4-15
Not a Directive DS2 none Prints statistical information 4-16
Not a Directive HIDE2 none Provides security to CSUB 4-16

and CDEF parameters
Not a Directive SHOW2 none Outputs status of 4-17

compilation

1 Switch
2 Command
3 If the computer used has a MC68020/30 processor, then the default is ON.
4 If the computer used has a MC68881/82 coprocessor, then the default is
ON.

Quick Reference C-3

C

D
Glossary

The following is a list of terms used in this manual:

CDEF

CSUB

Compile List

Compiler
Command

Compiler
Directive

Compiler
[nvocation
~ommand

~ompiler
)witch

jompute
lound Code

is a section of compiled code that results from compiling an
interpreted BASIC function.

is a section of compiled code that results from compiling an
interpreted BASIC subprogram or main program. CSUBs can
also be generated on the Pascal Workstation System using the
BASIC CSUB utility. Note that BASIC CSUBs created using
the BASIC CSUB Utility are not the same as CSUBs created
using the BASIC compiler.

is an optional part of the compiler invocation command. A
compile list is a list of subprograms that are to be included
in the compilation (or, to be uncompiled). If the compile
list is preceded by a minus sign (-), the list specifies the
subprograms that are not to be compiled or uncompiled.

is an optional element of the compiler invocation command.
Compiler commands are used to control the compilation
environment.

is a command to the compiler which is included within an
interpreted BASIC program before compilation begins.

is any command that is used to invoke the BASIC compiler.
The invocation command may include a compile list and/or an
options list.

can be included in the compiler invocation command options
list to change the default values of certain compiler directives.

is code that consists of mainly computational statements
(including assignment statements, arithmetic statements, etc.).

Glossary D-1

D

o

Context

Context
Scoped

Control
Variable

Dummy Main
Program

Function

is a section of code in an interpreted program. The main
context is all the text appearing up to the END statement. All
the text from a SUB (or DEF) statement to the next SUB (or
DEF) statement makes up a context. Contexts that are not
main programs are subprograms.

refers to the scope of a compiler directive. A context-scoped
directive is one which is reset to a default value at the start of
each context. Such directives assume their default values at
the beginning of each context and retain these values unless
they are explicitly changed.

is used for conditional compilation. It consists of one or more
characters and digits. The first must be alphabetic, and it
must be unique. The compiler distinguishes between upper
and lower case, so there are 52 possible starting letters (A-Z,
a-z). The compiler can distinguish between control variables
and regular program variables so you can have a control
variable in a program with the same name as a program
variable. Control variables are only used with IF jIFNOT
directives.

is created at compile time. At compile time, the compiler
converts your main program into a SUB, and then compiles it
into a CSUB called Mainsub. Since this means that your main
program no longer exists, the compiler creates a dummy main
program for you. The dummy main program created by the
compiler contains all COM declarations from your original
main program, a call to the SUB Mainsub, and an END
statement. It also may contain an OPTION BASE statement.

refers to a procedural call that returns a value. The call can
be to a user-defined-function subprogram (such as FNInvert)
or a machine-resident function (such as COS or EXP). The
value returned by the function is used in place of the function
call when evaluating the expression containing the function
call.

Global-Scoped refers to the scope of a compiler directive. A globally
scoped directive is one that retains its value across context

0-2 Glossary

IF ... END

I/O-Bound
Code

Main Program

Options List

Scope

Subprogram

Subroutine

boundaries. In other words, its value is not reset to the default
at the beginning of each context.

is the segment of text from (and including) the IF compiler
directive, to (and including) its corresponding END directive.
The same is true for the IFNOT compiler directive.

is code that consists mainly of I/O operations (which includes
graphics). This would include PRINT, READ, etc.

(or main context) is a section of code at the beginning of a
BASIC program which is terminated by an END statement.
When compiled, the main program becomes the first CSUB of
your compiled program called Mainsub.

is an optional part of the compiler invocation command. The
options list contains compiler commands and/or compiler
switches and can be used to change the default values of a
number of compiler directives or to specify special actions to
be taken by the compiler during compilation.

is a term used in relation to compiler directives. The scope
of a directive is the amount of code that it affects. Compiler
directives with context scope are reset to their default values
at the beginning of each new context. Compiler directives with
global scope will retain their values across context boundaries.

is a section of code making up a context. This code can
perform every function that a main program can with the
exception of "execution." A subprogram must be called by a
main program or another subprogram in order to be executed.
The code in a subprogram begins with a SUB or DEF
statement and ends with a SUBEND or FNEND statement.

is a section of code occurring within a main program or a
subprogram. This code is designed to perform a specific task
and in most cases is used more than once within a program.
Subroutines are executed when a statement such as ON event
GOSUB or GOSUB is encountered. The subroutine must reside in
the same context as the GOSUB statement.

Glossary 0-3

o

Index

A

Accessing On-line Help, 3-6
Active CSUB, 2-8
Added libraries, 6-26
Arithmetic expressions, 6-11

B

BASIC Compiler, 2-3
BEST command, 3-10, 4-15, 6-12

c
CC switch, 4-10
CDEF, 2-2, D-l
Changing default values, 5-2
Chapter preview, 1-4
Compatibility, compiled program, 6-2
Compilation process, 2-5
Compilation, using conditional, 3-12
COMPILE command, 2-3, 3-5, 4-3, 4-21
Compiled events processing, 6-17
Comp~led program compatibility, 6-2
ComplIed program, quick, 3-9
Compiled programs, improving, 6-1
Compiled programs, interacting, 6-2
Compiled programs, storing, 6-1
Compiled subprogram (CSUB), 2-5
Compiled Subprograms (CSUBs), 2-2
Compiled vs. interpreted code, 6-3
Compile list, 4-7, D-l
COMPILER binary, 2-3, 4-1
Compiler Capabilities, 2-2
Compiler command, 3-9, D-l

Compiler directive, 4-2,5-1,5-3,6-7, D-l
Compiler directives, default, 4-4
Compiler directives, using, 3-11
Compiler error messages, A-2
Compiler, installing, 3-4
Compiler invocation command, 2-3, 3-9,

D-l
Compiler invocation examples, 4-8
Compiler, invoking, 2-7
Compiler, invoking the, 4-3
Compiler limitations, 2-7
Compiler output, 4-20
Compiler output, printing, 3-8
Compiler Overview, 2-3
Compiler problems, B-2
Compiler, removing, 3-7
Compiler Revisions, 2-2
Compiler switch, D-l
Compiler tasks, 3-1
Compiler warning messages, A-3
Compile-time errors, correcting, 4-18
Compiling a program, 3-5
COMPLEX Directive, 5-6
Compute-bound code, 6-3-4, D-l
Conditional compilation, using, 3-12
CONFIGCHECK directive, 5-10, 6-7
Constant pool, 6-26
Context, D-2
Context scoped, 5-2, D-2
Control, looping, 6-10
CONTROLVAL directive, 5-11
Control variable, 5-16, D-2

Index-1

Index

Index

Correcting compile-time errors, 4-18
Correcting run-time errors, 4-19
CSUB, 2-2, 2-5, D-l
CSUB, active, 2-8
CSUB body code, 6-26
CSUB entry code, 6-26
CSUB header, 6-25
CSUB Mainsub, 2-4
CSUBs library, building, 3-14

o
Data statements pool, 6-26
Default compiler directives, 4-4
Defaults, directive, 5-2
Default values, changing, 5-2
DELSUB command, 2-5
DELSUB statement, 2-8
Device selector, 4-7
Directive, compiler, 5-1, 6-7
Directive defaults, 5-2
Directive short form, 5-3
Directives overview, 5-4
DS command, 4-16
DS Command, 6-25
Dummy main program, 2-6, D-2
Dummy MAIN program, 2-6

E

End-of-line checking statements, 6-22
Enhance program speed, 3-9
EOL directive, 5-13, 6-7
EOL directive, using, 6-13
EOL OFF, 6-17
EOL OFF, Using, 3-13
EOL ON, 6-17
EOL switch, 4-10
ERROR directive, 5-15
Error messages, A-I
Error prompts, removing, 3-16
ERR switch, 4-11
Event processing, 3-15

Index·2

Event processing, interpretive, 6-14
Events, all other, 6-16
Events lines, 6-26
Events, ON END, 6-16
Events, ON ERROR, 6-15
Events, ON TIMEOUT, 6-16
Events processing, compiled, 6-17
Events (with EOL OFF), all other, 6-19

F

Function, D-2
Function name, 5-6
Functions, 2-2

G

Global scoped, 5-2, D-2

H

Hardware Requirements, 2-1
HELP command, 3-6, 4-24
HELP COMPILE command, 3-6,4-25
HELP OPTIONS command, 3-6; 4-26
HIDE command, 4-16

IF directive, 5-16
IF ... END, D-3
IFNOT directive, 5-16
Improving compiled programs, 6-1
INITIALIZE statement, 2-8
Install the Compiler, 3-4
Integers, using, 6-11
Interpreted vs. compiled code, 6-3
Interpretive event processing, 6-14
Invoking compiler, 2-7
Invoking the compiler, 4-3
I/O-bound code, 6-3, 6-5, D-3

K

KEEP directive, 5-20, 6-8
KEEP OFF directive, 2-5

KEEP switch, 4-11
Keywords and spaces, 1-3

L

Limitations, compiler, 2-7
LOADBIN statement, 2-8
LOADSUB command, 2-6
Local DIM table, 6-26
LONGCODE directive, 5-22, 6-8
Looping control, 6-10

M

Main program, D-3
Mainsub, 2-4, 2-6
Manual notation, 1-1
Manual overview, 1-1
MC68020/30 processor, accessing, 3-17
MC68020 directive, 5-24
MC68881/82 coprocessor, accessing, 3-17
MC68881 directive, 5-25
MCP switch, 4-12
MTP switch, 4-11

N

Notational conventions, 1-2

o
OC switch, 4-12
ON END events, 6-16
ON END events (with EOL OFF), 6-19
ON ERROR events, 6-15
ON ERROR Events (with EOL OFF), 6-

18
On-line Help, Access, 3-6
ON TIMEOUT events, 6-16
ON TIMEOUT events (with EOL OFF),

6-19
~P switch, 4-12
=>ptimization, program, 6-7
=>PTIMIZE directive, 5-27, 6-9
)ptimizing a program, 3-10

Optimizing arithmetic expressions, 6-11
OPTION BASE statement, 2-6
Options list, 4-9, D-3
Options list commands, 4-15
Options list switches, 4-10
Overall program efficiency, 6-13
OVERFLOWCHECK directive, 5-29, 6-9

P

PAUSE statement, 2-8
Printing compiler output, 3-8
Problem reference, B-2
Program compatibility, compiled, 6-2
Program efficiency, overall, 6-13
Program, optimization, 6-7
Programs, storing compiled, 6-1
Programs, writing efficient, 6-3

Q

Quick compiled program, 3-9

R

RANGECHECK directive, 5-31, 6-9
RC switch, 4-12
Reference, task, 3-3
Relocation tables, 6-26
REMOVE COMPILER command, 3-7,4-

27
Removing error prompts, 3-16
Removing the compiler, 3-7
Run-line label, 2-9
Run-time errors, correcting, 4-19

S

SA switch, 4-12
SAVE command, 6-1
SAVELINENUMBER directive, 5-37, 6-9
Scope, D-3
Security, 2-2
Set location, 5-2
Short form, directive, 5-3

Index-3

Index

Index

SHOW command, 4-17
SL switch, 4-13
Software Requirements, 2-1
Solution reference, B-2
Space between keywords, 1-4
Space between names, 1-4
Spaces and keywords, 1-3
Special considerations, 6-21
Speed, 2-2
STACKCHECK directive, 5-39, 6-10
STATICARRAYS directive, 5-40, 6-10
STC switch, 4-14
Storing compiled programs, 6-1
ST switch, 4-14
Subprogram, D-3
Subroutine, D-3
Switches, 4-10
SYMBOLS directive, 3-8, 5-42

Index-4

Symbol tables, 6-26
Syntax drawings, 1-2
SYSTEM$("VERSION:COMPILER"),2-

2

T

Task reference, 3-3
Toggling EOL, 6-23
TOTAL CODE entry, 6-26
Troubleshooting, B-1

U

UNCOMPILE command, 2-5, 4-6, 4-21
Using integers, 6-11

W

Warning Messages, A-I
Writing efficient programs, 6-3

