
HP BASIC 6.2
Porting and Globalization

FliOW HEWLETT
.:~ PACKARD

HP Part No. 98616-90014
Printed in USA

Notice
The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP MAKES NO WARRANTIES OF ANY KIND WITH
REGARD TO THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED.
HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this product are restricted.
Additional copies of the software can be made for security and backup purposes
only. Resale of the software in its present form or with alterations is expressly
prohibited.

Copyright © Hewlett-Packard Company 1987, 1988, 1990

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Copyright © AT&T Technologies, Inc. 1980, 1984, 1986

Copyright © The Regents of the University of California 1979, 1980, 1983,
1985-86

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the U niverslty of
California.

Printing History
First Edition - June 1991

iv

Contents

1. Porting to 3.0
Porting Topics Covered
Compatibility with Preceding Versions.
Configuring BASIC

Missing Language Extensions BIN Files
Missing Driver BIN Files.

Statement Changes
CSUBs
PHYREC
Knob ..

The KNOBX Function. .
Keyboards with Built-in Knob
HP-HIL Keyboards with Mouse.
Programming for Both Versions and Keyboards
KNB2_0

Special Consideration
Graphics

Default Plotter
Implicit GCLEAR
Input Device Viewport
Graphics Tablet DIGITIZE
The VIEWPORT Statement
The PIVOT Statement

RPLOT with PIVOT
LABEL with PIVOT

Display Functions
Prerun On LOADSUB . . .
Special Case of 110 Transfers. .

1-1
1-2
1-2
1-2
1-3
1-4
1-4
1-5
1-6
1-6
1-8
1-9
1-9

1-10
1-11
1-11
1-11
1-12
1-12
1-12
1-12
1-17
1-17
1-19
1-22
1-23
1-23

Contents-1

2. Porting to Series 300 and 4.0
Overview

Methods of Porting . . .
Chapter Organization . .

Description of Series 300 Hardware
Areas of Change
Areas that Did Not Change
Displays
Processor Boards
Battery-Backed Real-Time Clock
Built-In Interfaces.

Serial Interface
HP-HIL Keyboard Interface

ID PROM
Just Loading and Running Programs

Should Problems Arise
U sing a Configuration Program . . .

HP 98644 Serial Interface Configuration
HP 98203 Keyboard Compatibility Mode

Brief Comparison of Keyboard Layouts
Enabling Keyboard Compatibility Mode
Using Compatibility Mode
Exiting Keyboard Compatibility Mode. .

Configuring Separate Alpha and Graphics Planes
An Example

U sing the Display Compatibility Interface .
Hardware Description

The Relay and BN C Video Connectors
Display Compatibility Interface Capabilities
Configurations Possible

Steps in Using this Card Set
Switching Back to the Series 300 Display. . .
Automatic Display Selection at System Boot .
Removing Display Drivers
If Your Screen Is Blank

Contents-2

What Happened? . . .
What To Do Next. .
Another Related Note

2-1
2-2
2-3
2-3
2-4
2-4
2-4
2-6
2-7
2-7
2-7
2-8

2-10
2-11
2-11
2-12
2-12
2-13
2-13
2-17
2-18
2-24
2-25
2-25
2-26
2-28
2-28
2-29
2-29
2-29
2-30
2-31
2-32
2-32
2-32
2-33
2-33

Modifying the Source Program (Porting to 4.0) .
Incompatible CSUBs
HP 98203 Specific Key Codes.
Additional Porting Considerations

New SYSTEM$("SYSTEM ID") Values
Alpha Color Changes
Alpha Screen Height and Graphics Scrolling
GLOAD/GSTORE Compatibility.
PLOTTER IS Changes
Hidden Color Changes
HP-HIL Knob Interval Parameter.

BASIC 4.0 Enhancements for Series 200 Computers .

3. Porting to S.x
Compatibility with Previous Versions
Categories of New Features.
New Hardware Supported
New Utilities
HFS Disk Support
Human Interface Enhancements. .
New Keywords that Duplicate Register Operations
General Programming Additions . .
New STATUS/CONTROL Registers
Additional HP-HIL Support
Additional Graphics Features .
Additional CSUB Capabilities
5.1 Enhancements.

New Capabilities
Manual Changes
Duplicating Files with the LINK Command

A Simple Example
Characteristics of Linked Files

More Examples of Creating Linked Files
Example of Breaking a Link

2-33
2-34
2-34
2-34
2-35
2-35
2-35
2-35
2-36
2-37
2-37
2-38

3-1
3-2
3-3
3-4
3-5
3-6
3-8

3-10
3-11
3-12
3-13
3-14
3-14
3-15
3-15
3-15
3-16
3-16
3-16
3-17

Contents-3

4. Porting and Sharing Files
Sharing HFS Disks and Data Files 4-2

General Compatibility Requirements 4-2
A Note About HP-UX File Terminology . . 4-2

Common File Types. 4-4
Common Data Types 4-5
HP-UX Text and Binary Files 4-6
Examples of HP-UX File Access: Textual Numeric Data. 4-7

Examples of HP-UX File Access: Textual Strings . . 4-10
Examples of HP-UX File Access: Binary Real Values 4-12
Examples of HP-UX File Access: Binary Integers 4-15
Examples of HP-UX File Access: Binary Strings 4-17
Examples of ASCII File Access . 4-19
HP-UX File Dump Utility 4-23

Porting LIF Files to SRM 4-25
SRM File Specifiers 4-26

Composition of SRM File Names 4-26
SRM File and Mass Storage Device Specification in String

Variables 4-26
SRM Mass Storage Volume Specification . 4-27
Allowing for SRM Directory Paths 4-27
SRM Passwords vs. LIF Protect Codes 4-28
Copying Item-by-Item Using ENTER and OUTPUT 4-29
Accessing Files Created on Non-Series-200/300 SRM

Workstations 4-30

5. BASIC lUX Differences and Enhancements
Introduction 5-1
Prerequisi tes to Reading this Chapter 5-1
Compatibility Between BASIC/UX and BASIC/WS . 5-2

Are You Porting BASIC/WS Programs to BASIC/UX? . 5-2
Summary of BASIC/UX Differences. . . 5-2

BASIC lUX Mass Storage Differences . 5-17
Maximum Number of Open HFS Files . 5-17
Locking SRM Files 5-17
Leaving SRM Files Open 5-17
SRM Security 5-18
Using a Single SRM Interface Card with BASIC/UX 5-18

Contents-4

Accessing LIF Media by a Single User
Overview of BASIC lUX Enhancements

Entering and Exiting the BASIC lUX Environment
Multi-Tasking and Multi-User Capabilities
System Status and Configuration Information
Running HP-UX Commands from within BASIC lUX
Window Management
Additional Interface Control
Using HP-UX Pipes ...
Selecting HP-HIL Devices
Trapping HP -UX Signals .
HFS File Buffering . . .
Graphics Buffering
BASIC lUX Mass Storage Enhancements .

Locking HFS Files
Accessing Networked HFS File Systems
U sing Long File Names on the HFS File Systems

6. Porting to BASIC lUX
General Steps
Prerequisite
Copying BASIC IWS Files to BASIC lUX

Prerequisites
Copying Files from a LIF Disk
Copying Files from an SRM Disk . . .
Copying Files from a Mounted HFS File System

Debugging the Program
Overview
Prerequisites
Loading the Program
Running the Program . .
Recognizing and Correcting Run-Time Errors
Recognizing and Correcting Silent Errors

5-18
5-19
5-20
5-20
5-20
5-21
5-21
5-22
5-23
5-24
5-24
5-25
5-25
5-26
5-26
5-26
5-27

6-1
6-2
6-2
6-2
6-2
6-3
6-3
6-4
6-4
6-4
6-4
6-5
6-5
6-6

Contents-5

7. Porting to 6.x
Compatibility with Previous Revisions .
New Hardware Support . .

New SPU Support
New Interface Support. .' . .

BASIC Language Convergence
Globalization Enhancements (BASIC/WS and BASIC/UX only)
File Related Enhancements .

Wildcards
A ppending To Files . . .
Overwriting Files
A More Forgiving GET

Human Interface Enhancements.
READ KEY
RUNLIGHT ON/OFF

CSUB Enhancements (BASIC /WS and BASIC/DOS only)
Binary Enhancements . . .

New Binaries
Changes in HFS Binary

Miscellaneous Additions and Changes
Keyword Additions and Changes
CRT Register 21

8. Globalization Overview
Globalization Support .
Related Documents . .
Terminology

Globalization and Localization
Understanding One- and Two-Byte Characters

Overview
The One-Byte World
The Two-Byte World

Two-byte Languages
One-byte or Two-Byte?

Two-Byte Character Conversions
Converting Codes
Converting Alphabets ...
Converting Keyboard Input

Contents-6

7-1
7-2
7-2
7-2
7-4
7-8
7-9
7-9

7-10
7-10
7-10
7-11
7-11
7-11
7-11
7-12
7-12
7-12
7-13
7-13
7-13

8-1
8-2
8-3
8-3
8-4
8-4
8-5
8-6
8-8
8-9

8-10
8-11
8-12
8-12

Inside Globalized BASIC. . .

9. Features of Globalized BASIC
U sing Keyboards

Review of One-Byte Character Input
Direct Keyboard Entry
Extended Keyboard Entry .

Extend Keys
Any Char Keyboard Entry ..
Non-ASCII Key Entry . .
Programmatic Character Entry

Two-Byte Character Input.
Using Any Char
Special Key Assignments. . .
Keyboard STATUS and CONTROL Registers

U sing Displays
Hardware Support
Overview of Fonts ..
Two-Byte Fonts

Look-alike Characters
Character Size . . .

Double and Single Width
Galley Characters

Determining Display and Character Size .
U sing the Print Area
Display Enhancement Characters ..

Display Enhancement Guidelines .
The Two-Byte Underline Character

U sing Printers . . .
Using EXCHANGE
Using SHIFT IN ... OUT

Two-Byte Printer Example.
New Keywords

Using CVT$
Using FBTYE and SBYTE
Using GFONT IS
Using DICTIONARY IS (BASICjWS only)
Using EXCHANGE and SHIFT IN ... OUT .

8-13

9-1
9-1
9-2
9-3
9-3
9-4
9-4
9-6
9-7
9-7
9-8
9-8
9-9
9-9
9-9

9-10
9-11
9-11
9-11
9-11
9-12
9-13
9-16
9-18
9-18
9-19
9-19
9-20
9-21
9-21
9-22
9-23
9-24
9-24
9-25

Contents-7

Changes in String Functions
String Comparisons

Porting and Globalization .
Understanding Porting and Localization .

Special Cases

Index

Contents-8

9-26
9-27
9-28
9-28
9-30

1
Porting to 3.0

This chapter describes the differences between BASIC 2.0/2.1 extensions and
BASIC 3.0.

Note

"
If you are porting a program from a "pre-3.0" version of the
BASIC system to a 4.0 or 5.0 system, then you should also
read the subsequent porting chapters. Anytime you see 3.0
mentioned in this chapter it also refers to all subsequent system
versions.

Porting Topics Covered
The following areas require consideration when transporting programs from
BASIC 2.0/2.1 to BASIC 3.0. They are listed in the order in which they're
discussed in this chapter.

• Compatibility with previous versions
• Configuring BASIC
• Statement changes
• CSUBs
• PHYREC
• Knob
• Graphics

o Default plotter
o Implicit GCLEAR
o Input device viewport
o Graphics Tablet DIGITIZE
o The VIEWPORT Statement
o The PIVOT Statement

Porting to 3.0 1-1

• Display functions
• Prerun on LOADSUB
• Special case of I/O transfers

Compatibility with Preceding Versions
If you have programs which were written on previous Series 200 BASIC
systems, you can use these same programs with little or no changes. The
major task you have to perform is to configure the BASIC 3.0 system with the
necessary BIN files.

Configuring BASIC
This section contains procedures that help you ensure you have loaded all the
required language extensions and drivers. It also tells you where to find related
information in your BASIC manual set.

Missing Language Extensions BIN Files

Follow this procedure to make sure that you have all the language extensions
BIN files that a program needs. The procedure ensures that each program unit
is not prerun and then preruns all program units. Prerun reports the first
missing BIN file that it finds. Editing a program unit ensures that it is not in
the prerun state. Stepping a stopped program preruns it.

Load the program and the BIN files PDEV and ERR. Enter the first line of the
program to ensure that the main program is not in a prerun state. Find every
SUB statement (using the FIND command enabled by the PDEV BIN file)
and enter it. Find every DEF FN statement and enter it. Now no program
unit is in a prerun state. Stepping preruns every subprogram. If prerun finds a
statement or option that requires a missing BIN file, error 1 is given along with
the name (if the ERR BIN file is loaded) of the missing BIN file. After loading
the missing BIN file, step again to prerun the program. If a BIN file is missing,
error 1 and its name are given. Repeat this process until stepping gives no

1-2 Porting to 3.0

errors. At that point, all language extensions BIN files needed by the program
are present. If the program loads subprograms or other programs, repeat this
process for each of them.

This process does not work for a secured program. The best approach in this
case is to ask the author or vendor for a list of the BIN files required. If this
is not possible, load the ERR BIN file and run the program. Whenever a
statement is executed that requires a missing BIN file, an error 1 and the
name of the BIN file are given. After loading the BIN file, the program can be
continued. However, it may be difficult to force the execution of all paths in
the program. This can be a serious problem if a real-time control program is
surprised by a missing BIN file at a critical moment.

Remember, if you have enough memory, you can load all the BIN files.
However, only load KNB2_0 if you want KNOBX to function as it does in
BASIC 2.0/2.1 and KNOBY to always return a zero. Refer to the Knob section
later in this chapter for more information.

Missing Driver BIN Files

To ensure that all required driver BIN files are loaded, load the appropriate
BIN file for each interface card and I/O port used (including the built-in HP-IB
and RS-232 serial interface, if present). Also load the appropriate disk driver
BIN file for each disk drive used.

If an operation is attempted to a device but the card driver BIN file is
missing, the message "ERROR 163 I/O interface/driver not present" is usually
provided. Examples of this are: CAT":,700" or PRINTER IS 701 with the
HPIB BIN file missing.

If the card BIN file is present but the disk driver BIN file is missing, an
attempt to access the disk causes error 1. If the ERR BIN file is loaded, the
message "ERROR 1 Configuration error" is provided.

If both the card driver and disk driver BIN files are missing, error 163 is
usually given but error 1 can also occur.

Porting to 3.0 1-3

Statement Changes
There are several statements added with BASIC 3.0. These are listed below.

KNOBY PRINTER IS file

LIST BIN READ LABEL

MAXREAL RES

MINREAL SCRATCH BIN

MODULO SECURE
PDIR SET LOCATOR

PLOTTER IS file STORE SYSTEM

PRINT LABEL SYSBOOT

Two statements were deleted, STORE BIN and RE-STORE BIN.

CSUBs

If you used Pascal-compiled subprograms (CSUBs) in your BASIC 2.0/2.1
programs, you need to purchase a Pascal 3.0 system upgrade and a CSUB
Utility upgrade to use those CSUBs with BASIC 3.0. You must recompile
the Pascal routine on Pascal 3.0 and re-execute the CSUB utility to make the
routine look like a BASIC subprogram. If you are using a CSUB supplied by a
vendor, you must have the supplier update the CSUB for you.

1-4 Porting to 3.0

PHVREC
The PHYREC routine that allowed you to read from and write to physical
records on a disk was changed from a binary program to a CSUB with BASIC
3.0. The PHYREC CSUB is located on the BASIC Utilities Disk.

You must append the PHYREC CSUB to your program and change the
PHYREAD /PHYWRITE statements. If the PHYREC binary is appended to a
program, a warning message is displayed and the binary is ignored by BASIC.

Use the following steps to locate all the lines for an application that uses
PHYREC and change them to call and append the PHYREC CSUB.

1. Boot a BASIC 2.0/2.1 system.

2. Delete the PHYREC binary.

LOAD "program"
SAVE "program2"
SCRATCH A

This saves the program without the binary.

GET "program2"

RE-STORE "program"
PURGE "program2"

This deletes the program and binary from memory.
Calls to P HYREC are commented. Write down the line
numbers.

3. Attach the PHYREC CSUB.

LOADSUB ALL FROM "PHYREC"

This file is located on BASIC Utilities Disk. Do not try to run your
application until you have completed all steps.

4. Uncomment and change all the calls to PHYREC. These are the lines you
noted in step 2 above.

PHYREAD Sector,Int_array(*) > Phyread(Sector,Int_array(*»
PHYWRITE Sector,Int_array(*) > Phywrite(Sector,Int_array(*»

5. If Sector is declared to be an INTEGER, you need to put it into
parentheses so that PHYREC will interpret is as a REAL.

Phyread«Sector),Int_array(*»

Porting to 3.0 1-5

6. The syntax for a conditional call must be changed from:

to:

IF condition THEN PHYREAD Sector,Int_array(*)

IF condition THEN
Phyread(Sector,Int_array(*»

END IF

or to:

IF condition THEN CALL Phyread(Sector,Int_array(*»

7. RE-STORE "program" after you have completed the changes.

8. Boot BASIC 3.0 and run your application.

Knob
In BASIC 3.0, unshifted knob movement causes horizontal cursor movement,
and shifted knob movement results in vertical movement. This allows for
greater compatibility between the knob and the HP-HIL mouse. (In BASIC
2.0/2.1, horizontal and vertical modes are toggled and interlocked.)

The KNOBX Function

The BASIC 2.0/2.1 definition of KNOBX, which we will refer to as all-pulse
mode, is as follows: When an ON KNOB statement is executed to trap
knob movement, knob pulses are accumulated and accessed via the KNOBX
statement. Since the KNOBX function returns information on X-axis
movement, a method of tracking Y-axis movement is not directly available
with BASIC 2.0/2.1. The common method used to track Y-axis movement,
is to interrogate keyboard status register 10 for information on the state of
the CTRL and SHIFT keys at the time of the last knob interrupt. Using this
information, SHIFTed and/or CTRLed knob movement could be interpreted
differently; in fact, an example program showing this was included in the
2.0/2.1 manual set. Following is another sample 2.0/2.1 program with this type
of knob interpretation:

1-6 Porting to 3.0

30 ON KNOB .1 GOSUB Knobsvc
40 Loop: GOTO Loop
50 STOP
60
70 Knobsvc:
80 STATUS KBD,10;State
90 Shift=BIT(State,O)
100 Ctrl=BIT(State,l)
110 SELECT Shift
120 CASE 0
130 IF Ctrl THEN
140 X=X+KNOBX/l0
150
160
170
180
190
200

ELSE
X=X+KNOBX

END IF
CASE 1

IF Ctrl THEN
Y=Y+KNOBX/l0

210 ELSE
220 Y=Y+KNOBX
230 ENDIF
240 END SELECT

vas SHIFT or CTRL key pressed?
bit 0 set = SHIFT key pressed
bit 1 set = CTRL key pressed

if shift not pressed, X direction
if ctrl pressed, give finer resolution

if shift pressed, Y direction
if ctrl pressed, give finer resolution

With the introduction of the new HP-HIL keyboards (no built-in knob but
optional mouse), the intent was to allow the mouse to emulate knob behavior
in situations where a knob is no longer present. The all-pulse mode of
interpretation, however, is unacceptable when using a mouse because the mouse
is not a unidirectional device, yet movement information in only one direction
is available. It is virtually impossible to move the mouse in one direction only.
To be able to distinguish movement in each direction, the keyword KNOBY
has been added to BASIC 3.0. KNOBY returns the net number of V-direction
knob pulses counted since the last time the KNOBY counter was zeroed.

Porting to 3.0 1-7

1

I

I
1

Keyboards with Built-in Knob

To convert your programs which run on hardware with a built-in knob from
2.0/2.1 to 3.0, simply replace KNOBX with KNOBX+KNOBY in situations
where total knob movement is being recorded. The major difference in 3.0
operation is that knob pulses in the X-direction are accessed via KNOBX and
knob pulses in the V-direction are accessed via KNOBY. One way to modify
the above program for 3.0 is:

30 ON KNOB .1 GOSUB Knobsvc
40 Loop: GOTO Loop
50 STOP
60
70 Knobsvc:
80 STATUS KBD,10;State
90 Shift=BIT(State,O)
100 Ctrl=BIT(State,l)
110 SELECT Shift
120 CASE 0
130 IF Ctrl THEN
140 X=X+KNOBX/l0
150 ELSE
160 X=X+KNOBX
170 ENDIF
180 CASE 1
190 IF Ctrl THEN
200 Y=Y+KNOBY/10
210 ELSE
220 Y=Y+KNOBY
230 ENDIF
240 END SELECT

1-8 Porting to 3.0

vas SHIFT or CTRL key pressed?
bit 0 set = SHIFT key pressed
bit 1 set = CTRL key pressed

if shift not pressed, X direction
if ctrl pressed, give finer resolution

if shift pressed, Y direction
if ctrl pressed, give finer resolution

However, this does not work with the HP-HIL mouse. A method that works
with the HP-HIL mouse as well as with the built-in knob is:

30 ON KNOB .1 GOSUB Knobsvc
40 Loop: GOTO Loop
50 STOP
60
70 Knobsvc:
80 X=X+KNOBX
90 Y=Y+KNOBY

HP-HIL Keyboards with Mouse

If your ON KNOB routine reads keyboard status register 10 for shift-knob or
control-knob actions you will need to make some other changes to convert
2.0/2.1 programs to 3.0. On HP-HIL input devices (i.e. the mouse), keyboard
status register 10 has a different interpretation: bit 0 (SHIFT key pressed) is
set if last data processed at the last knob interrupt was Y-axis information
(data accessed via KNOBY) and cleared if last data processed was X-axis
data; bit 1 (CTRL key pressed) is never set. If unidirectional HP-HIL devices
were to become available, a toggle switch would exist on the device to switch
between X-axis and Y-axis directions and the shift bit on keyboard status
register 10 would be set when in the V-direction mode.

The previous program segment shows recommended servicing of the mouse.

Programming for Both Versions and Keyboards

In the most complicated case, you may wish to write code that runs on both
BASIC 2.0/2.1 and BASIC 3.0 with either a built-in knob or HP-HIL mouse.
Write knob service routines for the BASIC 2.0/2.1 program and the BASIC 3.0
program and LOADSUB the appropriate routine based on the current version
of BASIC. The following program segments show one method of handling this
situation:

Porting to 3.0 1-9

I
1

30 GOSUB Whichversion
40 IF Version=3 THEN
50 LOADSUB ALL FROM "KNOBSVC3_0"
60 ELSE
70 LOADSUB ALL FROM "KNOBSVC2_0"
80 END IF

110 Whichversion:
120 ON ERROR GOTO B2_0
130 STATUS 2,2;A
140 Version=3
150 GOTO Versionfound
160 B2_0: !
170 Version=2
180 Versionfound:
190 OFF ERROR
200 RETURN

running BASIC 2.0/2.1 or 3.0 ?

KBD register 2 does not exist for 2.0/2.1, error
if line 130 didn't error out, must be 3.0

Because these modifications to the KNOB facilities may prevent your 2.0/2.1
programs from running on BASIC 3.0 without making a few changes, we have
developed a way to return to the all-pulse mode of KNOB operation in which
all knob pulses are accessed via KNOBX. This mode is not recommended for
the HP-HIL mouse. To switch to this mode, execute CONTROL KBD,ll;1.

Note If you select all-pulse mode, KNOBY always returns a zero.

.;
Executing CONTROL KBD,ll;O returns you to the 3.0 mode of operation in
which V-direction pulses are accessed via KNOBY. To determine the mode,
execute STATUS KBD,ll;M. If M=O, KNOBX is in horizontal-pulse mode; if
M=l, KNOBX is in all-pulse mode.

1-10 Porting to 3.0

In some cases, it may be desirable to make this mode change implicitly. This
can be accomplished by loading the BIN file KNB2_0 from the Language
Extensions disk. A LIST BIN describes the new BIN file as 2.0 KNOBX
Definition. The only effect of KNB2_0 being loaded is that it executes
CONTROL KBD,11;1 for you automatically. When KNB2_0 is loaded,
executing SCRATCH A also automatically executes CONTROL KBD,11;1.
Note that if this binary is included in a stored system (e.g. created with the
STORE SYSTEM statement), the effects are the same as loading it afterwards.

Note

"
All-pulse mode (KNB2_0 loaded) is not recommended for the
HP-HIL mouse. Also note that the KNB2_0 binary and the
all-pulse mode are not supported by BASIC/UX.

Special Consideration

Since the KNB2_0 binary functionality is not supported by BASIC/UX, you
will need to modify any program containing this functionality.

Graphics
Several graphics statements function differently with BASIC 3.0 than they did
in BASIC 2.0/2.1. This section explains the differences.

Default Plotter

The initialization of graphics system variables and devices was changed
slightly in BASIC 3.0. When GINIT is executed, several operations are
performed automatically such as setting line type and character size. In
addition to these operations, BASIC 2.0/2.1 also implicitly does a PLOTTER
IS 3, "INTERN AL" to select the CRT as the default plotting device. In BASIC
3.0, the default plotting device is not selected until a statement is executed
that affects it (e.g., DRAW, LABEL, GLOAD). At this time, the appropriate
PLOTTER IS statement is executed along with GCLEAR, VIEWPORT and
WINDOW statements. Refer to GINIT in the BASIC Language Reference
manual for more information.

Porting to 3.0 1-11

Implicit GCLEAR

In BASIC 2.0/2.1, any graphics statement following GINIT except PLOTTER
IS, GINIT, and DUMP DEVICE causes the implicit execution of GCLEAR,
VIEWPORT, and WINDOW. With BASIC 3.0, if a statement that requires
a plotter is executed after GINIT, a PLOTTER IS CRT, "INTERN AL" is
executed followed by GCLEAR, VIEWPORT, and WINDOW. Refer to GINIT
in the BASIC Language Reference manual for more information.

Input Device Viewport

The GRAPHICS INPUT IS statement sets the hard clip limits of the input
device to the largest space possible that has the same aspect ratio as the
output device. Since this was not so in earlier versions, there were two
potential problems. The first problem is that it is possible to move to positions
on the input device that do not exist on the output device. The extent of this
problem may be reduced with BASIC 3.0, but the problem is not eliminated.
The second problemis that the aspect ratios of the input and output devices
may differ causing pictures on the devices to appear different. BASIC 3.0
solves this problem by automatically setting the hard clip limits of the input
device to the largest possible space that has the same aspect ratio as the
output device.

Graphics Tablet DIGITIZE

A stylus press on the HP 9111A Graphics Tablet prior to execution of a
DIGITIZE statement does not satisfy the DIGITIZE with BASIC 3.0 as it does
with BASIC 2.0/2.1. An output of the string "SG" to the graphics tablet after
the GRAPHICS INPUT IS statement causes BASIC 3.0 to work like BASIC
2.0/2.1.

The VIEWPORT Statement

VIEWPORT was changed in BASIC 3.0 to make it compatible with the
Series 500 and the industry standard. In BASIC 3.0, VIEWPORT rescales
immediately. In BASIC 2.0/2.1, VIEWPORT does not rescale; only WINDOW
and SHOW statements rescale.

1-12 Porting to 3.0

An example helps demonstrate the difference. The following program
behaves the same way in BASIC 2.0/2.1 and 3.0 because it does not have a
VIEWPORT statement. It draws a large frame with a large quadrangle in
it as shown in the following figure titled "BASIC 2.0/2.1 and 3.0 without
VIEWPORT."

10 GINIT
20 GRAPHICS ON
30 FRAME
40 CLIP OFF
50 MOVE 0.50
60 DRAW 100.100
70 DRAW RATIO*100.50
80 DRAW 100.0
90 DRAW 0.50
100 END

BASIC 2.0/2.1 and 3.0 without VIEWPORT

Porting to 3.0 1-13

If a VIEWPORT statement is placed inthe program, BASIC 2.0/2.1 and
BASIC 3.0 give different results. The program becomes:

10 GINIT
20 GRAPHICS ON
30 VIEWPORT 80,100,20,80
40 FRAME
50 CLIP OFF
60 MOVE 0,50
70 DRAW 100,100
80 DRAW RATIO*100,50
90 DRAW 100,0
100 DRAW 0,50
110 END

With BASIC 2.0/2.1, the result is a small frame with a large quadrangle
around it (see figure titled "BASIC 2.0/2.1 with VIEWPORT"). The frame
is what one would expect from the VIEWPORT; it is tall and thin. The
quadrangle is the same as the one drawn by the program without the
VIEWPORT because the VIEWPORT has not caused the DRAW's to be
rescaled.

1·14 Porting to 3.0

BASIC 2.0/2.1 with VIEWPORT

With BASIC 3.0, the result is a small frame with a small quadrangle inside the
frame (see figure titled "BASIC 3.0 with VIEWPORT"). The frame is the same
frame as given by BASIC 2.0/2.1. The quadrangle fits inside the frame because
the VIEWPORT in BASIC 3.0 causes all subsequent DRAW's to be rescaled.

Porting to 3.0 1-15

BASIC 3.0 with VIEWPORT

The VIEWPORT change usually does not affect programs because most
programs used a sequence such as:

VIEWPORT 20,100,20,80
WINDOW Xmin,Xmax,Ymin,Ymax

The result of these two statements in order is the same in BASIC 2.0/2.1 and
BASIC 3.0.

Some BASIC 2.0/2.1 programs used the following order:

VIEWPORT 20,100,20,80
WINDOW Xmin,Xmax,Ymin,Ymax
VIEWPORT 0,100*RATIO,0,100

The second VIEWPORT was used to change the soft clip limits. In BASIC
2.0/2.1, the second VIEWPORT did not rescale so that the scale defined by
the WINDOW and the first VIEWPORT remains effective. When the above
sequence is run in BASIC 3.0, the second VIEWPORT rescales all subsequent
plotting.

1-16 Porting to 3.0

The best solution to this problem is to change the sequence to:

VIEWPORT 20,100,20,80
WINDOW Xmin,Xmax,Ymin,Ymax
CLIP OFF

The PIVOT Statement

In BASIC 3.0, the local origin of RPLOT and LABEL is affected by the
PIVOT statement. The best way to see the differences between BASIC 2.0/2.1
and BASIC 3.0 is by studying the following examples.

RPLOT with PIVOT

The following program illustrates the effects of PIVOT on RPLOT statements.
Outputs of the program with BASIC 2.0/2.1 and 3.0 are shown after the
program.

10 DEG
20 GINIT
30 GRAPHICS ON
40 VIEWPORT 0,64,51,100
50 Pivot (0)
60 VIEWPORT 66,130,51,100
70 Pivot (30)
80 VIEWPORT 0,64,0,49
90 Pivot (60)
100 VIEWPORT 66,130,0,49
110 Pivot (90)
120 END
130 SUB PivotCP)
140 WINDOW 0,131,0,100
150 FRAME
160 MOVE 30,80
170 LABEL "PIVOT",P
180 MOVE 40,20
190 PIVOT P
200 Tri
210 MOVE 80,20
220 Tri
230 PIVOT 0
240 SUBEND
250 SUB Tri
260 RPLOT 20,0,-1

Porting to 3.0 1-17

270 RPLOT 20,20
280 RPLOT 0,0

290 SUBEND

PIVOT o PIVOT 30

PIVOT 60 PIVOT 90

BASIC 2.0/2.1 RPLOT with PIVOT

1-18 Porting to 3.0

PIVOT o PIVOT 30

PIVO\; 60 PIVOT 90

~

V ~

BASIC 3.0 RPLOT with PIVOT

LABEL with PIVOT

The following program illustrates the effects of PIVOT on LABEL statements.
Outputs of the program with BASIC 2.0/2.1 and 3.0 are shown after the
program.

10 DEG
20 GINIT
30 GRAPHICS ON
40 VIEWPORT 0,64,51,100
50 FRAME
60 Pivot (0)
70 VIEWPORT 66,130,51,100
80 FRAME
90 Pivot (30)
100 VIEWPORT 0,64,0,49
110 FRAME
120 Pivot (60)

Porting to 3.0 1-19

I ,0'.: "1

130
140

VIEWPORT 66,130,0,49
FRAME

150 Pivot(90)
160 END
170 SUB Pivot(P)
180 WINDOW 0,131,0,100
190 MOVE 40,80
200 LABEL "PIVOT",P
210 MOVE 60,60
220 PIVOT P
230 IDRAW 0,0
240 LABEL "Ll"
250 LABEL "L2"
260 LABEL "L3"
270 IDRAW 0,0
280 PIVOT 0
290 IDRAW 0,0
300 LABEL "L4"
310 LABEL "L5"
320 LABEL "L6"
330 SUB END

1-20 Porting to 3.0

PIVOT 0 PIVOT 30

Ll L1 · .
L2 L2
L3 L3
L4 L4 . · .
L5 L5
L6 L6

PIVOT 60 PIVOT 90

Ll Ll · L2 L2
L3 L3
L4 L4
L5 L5
L6 L6

BASIC 2.0/2.1 LABEL with PIVOT

Porting to 3.0 1-21

PIVOT 0 PIVOT 30

L1 L1
'l2 'l2
l3 l3
L4 l4

L5
'l5 •

l6 L6

PIVOT 60 PIVOT 90

L1 l4 L1
l2 l5 L2

l4 L3 l6 L3 'lS
l6

BASIC 3.0 LABEL with PIVOT

Display Functions
The effect of turning Display Functions mode on is to display special control
characters on the screen. In BASIC 2.0/2.1, Display Functions has no effect
on control characters 128 through 159. With BASIC 3.0, the appropriate
character is displayed on the screen when control characters 128 through 159
are displayed and Display Functions is enabled. For example, on a Model 236
running BASIC 2.0/2.1, the following statement:

PRINT CHR$(129)1' 'HI THERE"lCHR$(128)

results in:

HI THERE in inverse video

With BASIC 3.0, the result is:

hp HI THERE hp CR
L

F

The symbols are machine dependent; the actual characters displayed may vary
with other models.

1·22 Porting to 3.0

Prerun On LOADSUB
To speed the execution of the LOADSUB statement, BASIC 3.0 does not
prerun each subprogram loaded by the execution of the LOADSUB statement
if the subprogram has been stored in a "prerun state." This differs from
BASIC 2.0/2.1 in that BASIC 2.0/2.1 does prerun on the entire program every
time LOADSUB is executed. The only effect seen by this change is improved
performance when loading subprograms with the LOADSUB statement. For
more information on prerun, refer to the "Program Structure and Flow"
chapter.

Special Case of I/O Transfers
A special case of decreased I/O performance has occurred with BASIC 3.0
due to a missed interleave caused by the increased overhead for handling
multiple processors. Outbound transfers without DMA to the 913xA/B/V /XV
Winchester disk drives perform at 11.75 Kbytes/second in BASIC 3.0. In
BASIC 2.0/2.1, those transfers perform at a rate of 50 Kbytes/second. This
degradation occurs only if all the following conditions are met:

• 8 MHz processor board (no cache)

• Not using DMA

• Using outbound TRANSFER (not OUTPUT) to 913xA/B/V /XV drive

This performance degradation affects users who are logging test data onto
their disks. Adding DMA can increase the outbound transfer rate to 50
Kbytes/second. (Inbound transfers without DMA from those drives perform at
11.75 Kbytes/second in both BASIC 2.0/2.1 and BASIC 3.0.)

Porting to 3.0 1-23

2
Porting to Series 300 and 4.0

Overview
This chapter mainly focuses on one objective:

• Making BASIC programs which have been written for Series 200 computers
run on Series 300 computers. (This process is known as "porting" programs.)

Note

"
If you are porting from a "pre-3.0" version of BASIC to the 4.0
version, then you should also read the preceding "Porting to
3.0" chapter. Anytime you see 4.0 mentioned in this chapter it
also refers to all subsequent system versions.

This chapter also discusses the following topics, which may not in all cases be
directly related to porting existing Series 200 software to Series 300 computers:

• Configuring the built-in 98644-like RS-232C serial interface in Series 300
computers.

• Using the "98203 keyboard compatibility" mode with ITF keyboards (such as
the 46020 key board).

• Using the 98546 Display Compatibility Interface in your Series 300 computer
(this interface provides the alpha and graphics capabilities of the Model 217
computer).

Porting to Series 300 and 4.0 2-1

2

2 Note

"
If you are no't porting BASIC 3.0 programs to Series 300
computers (that is, if you will be using BASIC 4.0 on a Series
200 computer), then much of the first part of this chapter
may not pertain to you. The subsequent sections called
"Modifying the Source Program (Porting to 4.0)" and "BASIC
4.0 Enhancements for Series 200 Computers" will contain useful
information for you.

Methods of Porting

Here are several methods of porting Series 200 software to Series 300 machines:

• Just load the program into a Series 300 computer-with no modifications
and run it.

• Write and run a program that properly configures the Series 300 computer
for the program.

• Make your Series 300 computer emulate a Series 200 Model 217 computer
(by installing a HP 98546 Display Compatibility Interface), and then run
your unmodified Series 200 program on it.

• Modify your Series 200 BASIC source program, and then run it on a Series
300 computer with the BASIC 4.0 system.

Each method has a slightly different set of requirements for its use, as
described subsequently.

2-2 Porting to Series 300 and 4.0

Chapter Organization

This chapter is organized according to the above strategies. It consists of the
following sections:

• Description of Series 300 computer hardware, focusing on the enhancements
to and differences from Series 200 computers

• Descriptions of porting methods, including when and how to use each:

o Just loading and running programs

DUsing configuration programs

DUsing the "Display Compatibility Interface"

o Modifying the program's source code

Note Note that you may need to use more than one method in
porting a program. For instance, you may need to write a
configuration program and use the Display Compatibility
Interface in order to port a program.

Description of Series 300 Hardware
Acquiring a general understanding of the enhancements or changes to Series
200 computers provided by Series 300 computers will help you to choose a
porting method.

Porting to Series 300 and 4.0 2-3

2

2 Areas of Change

Series 300 computers have changes in the following areas:

• Many choices of processor, display, and human interface boards:

o Six displays (including a separate, high-speed display controller)

o Two processors: MC68010, and MC68020 (with MC68881 math
co-processor)

o Battery-backed, real-time clock

o RS-232C serial interface (similar to the 98644 serial interface)

o ITF keyboard ("Integrated Terminal Family" keyboard, which is similar to
Models' 217 and 237 keyboards, but different from other Series 200 models'
keyboards)

• No ID PROM (not all Series 200 Models had this feature)

Areas that Did Not Change

It will probably be comforting to know that if a feature is not listed above (and
discussed in this chapter), then it is the same for both Series 300 and Series
200 computers.

It may also be comforting to note that Series 300 computers can use most
Series 200 accessories and peripheral devices. See the HP 9000 Series 300
Configuration Reference Manual for a complete list.

Displays

Series 300 display technology is the most visible area of change from Series 200
computers.

All Series 300 computers utilize bit-mapped alpha display technology, which
combines alpha and graphics like the display of the Series 200 Model 237. (All
other Series 200 models have separate alpha and graphics.)

The main difference between "non-bit-mapped" and "bit-mapped" alpha
displays lies in whether or not alpha and graphics are separate.

2-4 Porting to Series 300 and 4.0

• With non-bit-mapped alpha displays, alpha is separate from graphics. Alpha 2
is produced by character-generating hardware, while graphics are produced
by bit-mapping hardware.

(You can use the (ALPHA) and (GRAPHICS) keys to turn on alpha and graphics
independently. When alpha is already on, pressing the (ALPHA) key turns off
graphics. Similarly, pressing the (GRAPHICS) key while graphics is on turns off
alpha.)

• With bit-mapped alpha displays, alpha and graphics are not separate.
Both alpha and graphics are produced by a combination of software and
bit-mapping hardware.

(With BASIC 4.0, there is a way to configure the Series 300 color displays
as separate alpha and graphics planes. This technique is described in the
subsequent "Using a Configuration Program" section.)

An effect of bit-mapped alpha is that both alpha and graphics are dominant.
In other words, displaying a character on the screen overwrites all pixels within
the character cell; the previous contents of those pixels, which may have
been graphics, are lost. Also, any scrolling/clearing of the alpha screen will
scroll/ clear the graphics information on the screen, since they share the same
display plane. Conversely, graphics operations overwrite alpha-related pixels.

With Series 300 computers, you may choose from one of six displays:
monochrome and color, each available in both medium-resolution (two
monochrome and one color) and high-resolution (one monochrome and two
color) versions. (Most Series 200 computers have only one display available for
each model.)

• Medium-resolution graphics displays have 512 horizontal by 400 vertical
pixels (many of the Series 200 graphics displays had 512x390-pixel graphics
displays).

(Series 300 medium-resolution displays actually have 1 024 horizontal
pixels. However, BASIC graphics (but not alpha) handles contiguous pairs
of horizontal (non-square) pixels as one unit in order to make square dots on
the screen. Series 300 medium-resolution displays actually have 512 vertical
pixels; however, only 400 are displayed.)

Alpha capabilities of these medium-resolution displays are 80 columns of
characters by 26 lines on-screen, plus 51 lines off-screen (as opposed to the

Porting to Series 300 and 4.0 2-5

2
80x25-character alpha displays, with 39 lines off-screen, of many Series 200
computers). The characters on Series 300 medium-resolution displays are in a
12x 15-pixel cell. These displays have no blinking mode (except for the alpha
cursor), and no half-bright mode.

• High-resolution displays have 1 024 horizontal by 768 vertical pixels. (Series
300 high-resolution displays actually have 1 024 vertical pixels; however, only
768 are displayed.)

Alpha capabilities of high-resolution displays are 48 lines of 128 characters,
with no lines off-screen, like the Model 237. The characters are in an
8x 16-pixel cell. These Series 300 high-resolution displays also have no
half-bright mode and no blinking mode (except for the alpha cursor on all
Series 300 displays except the 98700 display controller).

Processor Boards

Two processor boards are available with Series 300 computers:

• Medium-performance boards, which feature an MC68010 processor (10 MHz
clock rate).

• Higher-performance boards, which feature an MC68020 processor (16 MHz
clock rate) and an MC68881 floating-point math co-processor.

(Series 200 computers have either an MC68000 or MC68010 processor with an
8 or 12.5 MHz clock, depending on model numbers and product options.)

The 68010 is a 16-bit virtual memory microprocessor with a 32-bit internal
architecture, while the MC68020 is a 32-bit microprocessor with an internal
256-byte instruction cache (which is normally operative but can be disabled by
executing CONTROL 32,3;0).

The MC68020 also has a flexible co-processor interface that allows close
coupling between the main processor and co-processors such as the MC68881
floating-point math co-processor. The MC68881, which provides full IEEE
floating-point math support, can execute concurrently with the MC68020 and
usually overlaps its processing with the 68020's processing to achieve higher
performance. The MC68881 provides increased performance for floating-point
operations, particularly for the evaluation of transcendental functions; refer to
the "Efficient Use of the Computer's Resources" chapter for further details.

2·6 Porting to Series 300 and 4.0

(The MC68881 co-processor is normally operative, but you can disable it by
executing CONTROL 32,2; 0.)

Battery-Backed Real-Time Clock

Series 300 computers have a built-in, battery-backed, real-time clock as well as
a built-in volatile clock. Both have a lower limit of March 1, 1900. However,
the upper limit of the volatile clock is August 4, 2079, while the upper limit of
the non-volatile clock is February 29, 2000.

(Only Series 200 Models 226 and 236 could have optionally installed
battery-backed, real-time clocks. This hardware was included with the HP
98270 Powerfail Option, whose main purpose was to provide power during
brown-out or black-out situations.)

Built-In Interfaces

All Series 300 computers have a built-in HP-IB interface, which is the same as
the built-in HP-IB interface of all Series 200 computers.

Series 300 computers also feature the following built-in interfaces, which differ
slightly from some of their Series 200 counterparts:

• RS-232C serial interface (like the HP 98644 low-cost serial interface) .

• HP-HIL keyboard interface (like the one in Models 217 and 237)

Serial Interface

All Series 300 computers have a built-in, 98644-like, serial interface. As with
Series 200 Models 216 and 217 built-in serial interfaces, this interface is
permanently set to select code 9. However, this interface differs slightly from
versions of the Series 200 built-in serial interface (which are like the optional
HP 98626 serial interface).

Porting to Series 300 and 4.0 2-7

2

2
Since the goal of the 98644 is to provide a low-cost serial interface, there are no
hardware switches that allow you to specify values for the following parameters:

• Select code (hard-wired to 9)

• Interrupt level (hard-wired to 5)

• Default baud rate (the BASIC system sets default to 9600 baud)

• Default line control parameters (the BASIC system sets defaults to 8
bits/character, 1 stop bit, parity disabled).

If your program expects any other values for the baud rate and line control
parameters, you will have to change them programatically (select code and
interrupt level cannot be set programmatically). See "Using a Configuration
Program" in this chapter for further information.

Hp·HIL Keyboard Interface

Like the Series 200 Models 217 and 237 computers, Series 300 computers are
equipped with ITF ("Integrated Terminal Family") keyboards connected
through an HP-HIL interface (Hewlett-Packard Human Interface Link).

Note

"
Note

"

With BASIC 4.0 and subsequent system revisions, the HP
98203C keyboard is also optionally available. This keyboard
has the layout of the HP 98203B keyboard (and Model 226 and
236 built-in keyboards), but it is connected to the computer
through the HP-HIL interface. If you will be using this
keyboard, you will not have to make any changes to programs
that use the HP 98203B-style keyboard.

If you are porting existing Series 200 software to Series 300
and have already modified it to run on a Model 217 or 237
computer's ITF keyboard, then you have already made the
adjustments necessary for this keyboard. If not, then continue
reading this section.

The major human-interface differences between 98203 keyboards and ITF
keyboards are in the number and layout of "user" and "system" function keys.

2·8 Porting to Series 300 and 4.0

o 2

HP 98203A Keyboard

HP 98203B/C Keyboard

DD II III 1[C]fD[JD1 III IICJD] DO [J[J[Jl[]

ITF Keyboard

Porting to Series 300 and 4.0 2-9

2
Note that the ITF keyboard has only eight physical "user" function keys (@
through @, rather than @ through @), and lacks some of the physical
"system" keys (such as (ALPHA) and (RUN l). However, ITF keyboards actually
have more functionality than 98203 keyboards, because BASIC provides
several "system" and "user" definitions for ITF function keys @ through @.
For complete definitions of each key on every keyboard, see the "Keyboard
Reference" chapter of the Using BASIC manual.

BASIC also provides a way to emulate the operation of a 98203 keyboard using
an ITF keyboard. Using this mode is a convenient way of porting Series 200
programs to Series 300 machines without modifying the source program. For
further details of the "98203 compatibility mode", see the subsequent "Using
a Configuration Program" section. (A keyboard overlay is provided with the
system to label BASIC definitions of several ITF keys. The subsequent "98203
Keyboard Compatibility Mode" section describes the use of this overlay in both
normal and compatibility modes.)

Also note that the 98203 keyboards can produce some keycodes that cannot
be produced with the 46020 keyboard. These keycodes are produced by
pressing the (EXECUTE) and (EDIT) keys. Thus if the Series 200 program depends
upon these keycodes, the source code must be modified. See the subsequent
"Modifying the Source Program" section for further details.

10 PROM

Note that there is no built-in ID PROM available with Series 300 computers,
as was the case with many models of Series 200 computers. However, an
equivalent feature is provided by an optional HP-HIL device-the 46084A ID
Module.

If the program reads the ID PROM's contents with a SYSTEM$("SERIAL
NUMBER") function call, then the program will also read the ID Module's
contents correctly. See "Software Security" in the "Entering, Running, and
Storing Programs" chapter for further information. However, if its contents
were read by a CSUB (CSUB stands for Compiled SUBroutine, which is a
program written in Pascal and generated using the CSUB Utility), then you
will need to use a version that does not read the ID PROM.

2-10 Porting to Series 300 and 4.0

Just Loading and Running Programs
This is the most desirable method, since it requires the least amount of work
just load the program into the Series 300 computer, and run it.

You can probably port most of your BASIC 3.0 or 3.01 programs this way.

There are three different actions you can take, depending on who developed
your program:

• If HP developed the program, look in the "Operating Systems and
Applications" section of the HP 9000 Series 300 Configuration Reference
Manual. The manual shows which 3.0 or 3.01 applications will run on a
Series 300 computer using the 4.0 system.

• If another software vendor developed the program, check with that vendor to
determine whether it will run on a Series 300 computer. (You can also take
one of the two actions listed below.)

• If you developed the program, you can do one of two things:

o Read through the following sections to see whether it requires another
porting method.

o Try running it.

Should Problems Arise

If your program will not run on your Series 300 system, then you may want to
make considerations such as the following:

• Does it meet all of the criteria listed in the subsequent sections?

• Is there sufficient memory in the computer?

• Are all the necessary devices and corresponding device drivers installed?

• Have you fulfilled all other requirements listed by the software developer?

[f the program still doesn't run, then you may want to call the organization
responsible for supporting the program (the programmer, the software vendor,
:>r HP).

Porting to Series 300 and 4.0 2-11

2

2 Using a Configuration Program
This method involves writing a program that configures the system for your
program. Here are the situations for which this porting method will work:

• The program depends on a "non-default" 98626 serial interface configuration
as set by hardware switches.

• The program depends on the 98203 keyboard layout (but does not depend on
trapping the (EXECUTE) or (EDIT) keys).

• The program depends on separate alpha and graphics planes (and you have a
Series 300 color display which you can configure to have separate alpha and
graphics).

HP 98644 Serial Interface Configuration

Here is an example situation for which you could use this method. Suppose
your program depends on reading the following "non-default" parameters from
the configuration switches on the 98626-like, built-in serial interface in a Model
217:

• 4800 baud

• 7 bits per character (with 1 stop bit) and odd parity.

However, the default parameters for the built-in 98644-like interface in Series
300 computers are as follows:

• 9600 baud

• 8 bits/character (with 1 stop bit), and parity disabled

One solution is to use a short program that selects the desired "non-default"
baud rate (4800) and line-control parameters (7 bits, odd parity). This
example program changes the "default" parameters by writing to CONTROL
registers 13 and 14. (Note that you can also execute these CONTROL
statements directly from the keyboard.)

100 CONTROL 9,13;4800 ! Baud rate.
110 CONTROL 9,14; IVAL(I11001010", 2) No handshake (bits 7,6)
120 Odd parity (bits 5-3)
130 1 stop bit (bit 2)
140 END 7 bits/char (bits 1,0)

2-12 Porting to Series 300 and 4.0

Enter and run this program on the 4.0 system, making sure that the SERIAL
binary program is installed beforehand. The serial card is properly configured
by this program, which you may want to verify by reading the corresponding
STATUS registers. You can then run the application program.

Another solution is to modify the source program to select these parameters
(Le., insert this segment of code into the program). In such case, you could
change the "current" parameters by writing to CONTROL registers 3 (baud
rate) and 4 (line control). However, if the interface is reset with the SCRATCH
A statement, then the values in these registers will be restored to the "default"
values currently in registers 13 and 14. See the BASIC Interfacing Techniques
manual for details on the serial interface registers.

HP 98203 Keyboard Compatibility Mode

The BASIC system provides a mode of keyboard operation in which the
ITF keyboards are compatible with (Le., emulate) 98203 keyboards. Before
describing how the compatibility mode works, it will be helpful to review each
keyboard's layout and normal operation.

Brief Comparison of Keyboard Layouts

Below are diagrams of each keyboard. They are shown here for the purpose of
comparing their physical differences. For a key-by-key description of each one,
refer to the "Keyboard Reference" setion of the Using BASIC manual.

Here are the layouts of the 98203 keyboards:

Porting to Series 300 and 4.0 2-13

2

2
Softkeys

l J J

P I

-l J

Cursor

Control Keys

}---J

J

Editing

Keys

JI JILJ~
'II 'II -"II

System

Control Keys

J l J
--\ U

.~UJUJ U PJ~LJj
[!~ ,~ I ~ I ~ l~ III III II D

"V ~lL 'ft/ ~ ~lL .:-IlL ~IL '-I

[I III II
\11/ \I

o

In I~l IIIl JIU"U~l J~l
\It \IV \IV \It -"IlL -'JlL -'JlL

Softkeys

Character Entry Keys

HP 98203A Keyboard

Cursor
Control Keys -----.

Editing
Keys

J'Il
J[QJ

System
Control Keys

[J

c::r=r=:c::J

c::r=r=:c::J

Character Entry Keys Program Numeric Pad
Control Keys

HP 982038 and C Keyboards

Note the "system" keys across the top of the keyboard (two rows across the top
and one column down the middle of the larger 98203B; one row across the top
and one column down the right side of the smaller 98203A).

Softkeys on the 98203 keyboards are labeled @ through @. There are
corresponding "softkey labels" which can be displayed on the alpha screen.

2-14 Porting to Series 300 and 4.0

For instance, you can enable the display of the default "typing-aid" labels by
executing this statement:

LOAD BIN "KBD"

If this binary is already loaded and the "typing-aid" definitions are not
currently displayed, execute LOAD KEY (with no file specifier).

Here is the format of the 98203 softkey labels. (Note that they match the
physical layout of the softkeys.)

HP 98203 Softkey Labels

There are 2 rows of 5 labels each. Each label consists of up to 14 characters.

Contrast this layout to that of the ITF keyboards:

Proqram
Control Keys ----
DO II III

Softkeys and
Sottkeys Control

I~I Inl IDOl III

Character Entry Keys

Editing
Keys ----

III lui II DO

Cursor
Control Key9

System
Control Keys

[][]l[]D)

Numeric
Keypad

ITF Keyboards (such as the 46020)

Porting to Series 300 and 4.0 2-15

2

2
Here are the default ITF "typing-aid" labels and corresponding keys. There
is 1 row of 8 labels. Each label consists of up to 16 characters (2 rows of 8
characters per label).

fl's
label

f2's
label

f3's
label

f4's
label

f5's
label

f6's
label

HIL "Typing-Aid" Softkey Labels

f7's
label

f8's
label

Even though the ITF keyboards have fewer physical function keys, they have
more functionality than 98203 keyboards. This additional functionality is due
to the fact that BASIC provides 1 menu of "system" keys (shown below) and 3
menus of "User" definitions for soft keys @ through @.

Here is the ITF "System" menu of keys, which you can display by pressing the
(Menu) key (if labels are not already displayed) and then the (System) key:

Step Continue RUN
Print

ALL *
Clr Tab Display Any
Set Tab Fctns char

HIL "System" Menu Labels

This menu of soft key definitions provides most of the 98203 system key
functions.

2-16 Porting to Series 300 and 4.0

Recall

As you can see, there are two main areas of differences between 98203
keyboards and ITF keyboards:

• There are several "system" keys on the 98203 keyboards, such as (STEP),

(CONTINUE) ((CaNT) on the smaller 98203A keyboard) and (RECALL) ((RCL) on
the 98203A). These system functions are not written on the key-cap labels of
ITF keyboards, but the BASIC system functions are available on the Systen1
menu .

• Softkeys on the 98203 keyboards are labeled @ through @' Thus, there
are 20 soft keys available on the larger 98203 keyboards (by using (SHIFT l),
and 10 on the smaller 98203 keyboard. Softkeys on the ITF keyboard are
labeled @ through @' Thus, there are 24 softkeys available on these
keyboards (3 menus of 8 keys each). The number and size of screen labels are
also different.

Enabling Keyboard Compatibility Mode

You can enter this mode by writing a non-zero value into keyboard control
register 15:

CONTROL KBD,15;1

The following correspondence between function keys and labels is established
(if you are in edit mode when you enter this compatibility mode, then edit
mode is canceled):

kO's
label

k1's
label

k2's
label

k3's
label

k4's
label

kS's
label

k6's
label

k7's
label

Correspondence Between Function Keys and Labels

k8's
label

kg's
label

There is 1 row of labels, and each label may have up to 14 characters (two rows
of 7 characters each).

Porting to Series 300 and 4.0 2-17

2

2
If you want to fully emulate the 98203 keyboard and corresponding softkeys'
display behavior, you will need to execute the following statements:

CONTROL CRT,12;O
LOAD KEY

The CONTROL statement sets up the "key labels display mode" to match
the default behavior of a display with the 98203 keyboard. The LOAD KEY
statement loads the default "typing-aid" softkey definitions for the 98203
keyboards.

Using Compatibility Mode

Here is a listing of the correspondence between ITF keys and 98203 keys while
in this mode. For a detailed description of each 98203 key's function, see the
"Keyboard Reference" chapter of Using BASIC manual.

Note

"
Place the BASIC keyboard overlays on the ITF keyboard
before reading this section. Also note that you can use these
overlays in normal mode as well as in compatibility mode.

2-18 Porting to Series 300 and 4.0

• To access a 98203 softkey definition, merely press the appropriate ITF 2
soft key. For instance, the ITF @ softkey emulates the 98203 @ soft key,
and the ITF [Menu) key emulates the 98203 @ softkey. (These key
definitions are printed on the bottom row of the keyboard overlay.)

Similarly, 98203 softkeys @) through @) are accessed by pressing the ITF
[Shift) key with the appropriate soft key.

Step Continue RUN Print All ClrlSet Tab Disp Fctns Any Char Recall

kO kl k2 k3 k4 k5 k6 k7 k8 kg

• To access a 98203 system-key definition, press [Extend char) with the
appropriate ITF soft key. For instance, the ITF [Extend char }-@ key emulates
the 98203 [STEP) key. (These key definitions are printed on the top row of
the keyboard overlay. Note that these definitions are the same as in the
normal-mode System soft key menu.)

EJ]a::JJ[DJEJ] I Menu III I ~Y:::mll 1(5 II[EJJDJ[EJJ
Step Continue RUN Print All ClrlSet Tab Disp Fctns Any Char Recall

kO kl k2 k3 k4 k5 k6 k7 k8 kg

Porting to Series 300 and 4.0 2-19

2 • The 98203 (CLR I/O) and (PAUSE) system-key definitions are available by using
the ITF (Break) and ~ keys (without pressing (Extend char l). Note that these
key definitions are the same in normal mode.

Reset Stop

Clear I/O Pause

Step

kO

Continue

kl

• The 98203 (CLR--+END), (CLR LN), and (CLR SCR) system-key definitions are
available by using the ITF (Clear line), (Shift) (Clear line), and (Clear display) keys.
Note that these key definitions are the same in normal mode.

[DILJJ
Any Char

k8

Recall

kg

2-20 Porting to Series 300 and 4.0

Clr Ln

Clr-7 End Clr Scr

• The 98203 (RECALL), (ALPHA), (GRAPHICS), and~§. system-key definitions are 2
available by using the unlabeled ITF keys above the numeric keypa~~.I~~
shifted keys also have corresponding definitions (for example, (Shift }-!iliEm~ is
the DUMP ALPHA function). Note that these key definitions are the same
in normal mode.

DDDD
Clr Ln Dump Alpha Dump Graph

Clr-7 End Clr Scr Recall Alpha Graphics Result

Porting to Series 300 and 4.0 2-21

2 • When shifted, the c:J, 0, 0, and (] ITF keys on the top row of the numeric
keypad have the same definitions as the keys on the top row of the 98203
numeric keypad. They are ® «(Shift~c:J), CD «(Shift~0), CD «(Shift~0), and o «(Shift ~(]). Note that these key definitions are the same in normal mode.

DD DD

O[CJIIOO ~/ \~~

ggggg
g~ (1lgg
snOOD It==1J~~~

D ODD ~~~

2-22 Porting to Series 300 and 4.0

DDDD

• (Extend char H Menu) is an on/off toggle for the key labels. ((Extend char H Shift ~ 2
(Menu) produces no visible change.)

Continue RUN Print All ClrlSet Tab Disp Fctns

kl k2 k3 k4 k5 k6 k7

ggggggggg
gggggggggg
000000000 ~~~~~~~~~

00000. '00000 ~~~~~~~~~~
, ~~~nd' [1 f]' ~~~~n/
/ \/ \/ \

Porting to Series 300 and 4.0 2-23

2 • (Extend char H System) exits compatibility mode, and returns you to the ITF
"System" key definitions. Similarly, [Extend char HUser) exits this mode, and
returns you to the ITF "User I" key definitions. (Note that there is no
corresponding keystroke to return to compatibility mode.)

Continue

kl

RUN

k2

Print All

k3

elr/Set Tab Disp Fctns

k4 k5 k6 k7

000000000 DJDJDJDJDJDJDJDJDJ
0000000000 ~DJDJDJDJDJDJDJDJDJ
000000000 DJDJDJDJDJDJDJDJDJ

0000000000 DJDJDJDJDJDJDJDJDJDJ
~ ~ rl~ char

/ \ \ / \

Exiting Keyboard Compatibility Mode

In addition to using the (Extend char H System) and (Extend char}-(Used keys to exit
this mode, you can also use keyboard register 15:

CONTROL KBD,15;O

If the system is currently in edit mode, then exiting keyboard compatibility
mode will also cancel the edit mode.

2-24 Porting to Series 300 and 4.0

If you were emulating the 98203 keyboard and corresponding softkeys' display
behavior (and want to return to the "normal" behavior), you will need to
execute the following statements:

CONTROL CRT.12;2
LOAD KEY

The CO NTRO L statement restores the "key labels display mode" to the
default behavior of a display with the ITF keyboard. The LOAD KEY
statement restores the default "typing-aid" soft key definitions for the ITF
keyboard.

Configuring Separate Alpha and Graphics Planes

With BASIC 4.0 on bit-mapped color (multi-plane) displays, you have the
ability to specify which planes are to be:

• write-enabled and used to display alpha

• write-enabled and used to display graphics

This feature allows you to simulate separate alpha and graphics of Series 200
displays. For instance, you will be able to:

• Turn alpha and graphics on and off independently.

• Dump them separately.

• Scroll alpha without scrolling graphics.

An Example

Assuming that you have a four-plane display, you could enable plane 4 for
alpha and planes 1 through 3 for graphics. The following program performs
this as well as some other operations, as described in the program's comments
(note that BASIC 5.0 provides the SEPARATE ALPHA FROM GRAPHICS
statement to perform nearly the same functions as this program; see the
BASIC Language Reference for details):

Porting to Series 300 and 4.0 2-25

2

2
100 PLOTTER IS CRT,"INTERNAL";COLOR MAP Select Series 300 graphics.
110 FOR I=8 TO 15
120 SET PEN I INTENSITY 0,1,0 Set alpha pen colors (green).
130 NEXT I
140 CONTROL CRT,5;0 Set alpha pen to black (temp.)
150 OUTPUT KBD;CHR$(255)I;IK"; Clear alpha screen.
160 CONTROL CRT,18;8 Select plane 4 for alpha.
170 CONTROL CRT,5;8 Set alpha pen.
180 INTEGER Gm(O) Declare array for GESCAPE.
190 Gm(0)=7 Set bits 2,1,0, which select
200 GESCAPE CRT,7,Gm(*) graphics planes 3,2,1.
210 PLOTTER IS CRT,"INTERNAL" Return to non-color-map
220 END mode (optional).

This program provides eight graphics pen colors (either the default or
previously defined colors) and a single alpha pen color (green).

For more information concerning graphics displays, see the the "Multi-Plane
Bit-Mapped Displays" section of the manual BASIC Programming Techniques,
Volume II: General Topics and Graphics. For more information on alpha
displays, see the "Display Interfaces" chapter of the BASIC Interfacing
Techniques manual.

Using the Display Compatibility Interface
This method involves installing an HP 98546 Display Compatibility Interface,
which consists of essentially the separate graphics and alpha boards of the
Series 200 Model 217 computer. You can then direct the system to use the
compatibility display, enabling you to run existing Series 200 programs, which
depend on this display's characteristics, on your Series 300 computer.

2-26 Porting to Series 300 and 4.0

This card set remedies the following situations.

• The program depends on having separate alpha and graphics planes (and you
do not have a color display which can emulate this feature, as described in
the preceding "Configuring Separate Alpha and Graphics Planes" section).

• The program directly accesses alpha or graphics hardware (such as through a
CSUB, rather than through a BASIC graphics statement).

• The program depends on blinking alpha display highlights (characters with
codes 130, 134, and 135).

• The program depends on the Model 217's specific graphics resolution
(512x390 pixels) or alpha display size (80x25 characters), or upon its
specific alignment of graphics pixels and alpha pixels.

This method is required if any of the above statements is true and you cannot
modify a program's source code (or don't want to). If you have the program's
source code, then you may want to instead make the necessary modifications to
it.

If your program requires separate alpha and graphics and also uses color, you
have the option of using any color graphics display to drive a separate color
monitor. Graphics can be displayed on this color monitor while alpha is display
on the original monitor.

Porting to Series 300 and 4.0 2-27

2

2 Hardware Description

The card set consists of two circuit cards joined by a cable.

RELAY

(CONTROLLED
BY SOFTWARE)

TO MONITOR D======;=:::;'

SERIES 300 COMPUTER

COMPATIBILITY
VIDEO CARD SET

SERIES 300
VIDEO BOARD

The HP 98546 Display Compatibility Interface

These cards are:

• An alpha display card, which is like the existing 98204B display controller
card except for a relay and an additional BNC video connector on the rear
panel.

• A graphics display card, which is identical to the Model 217's graphics card.

The Relay and BNC Video Connectors

The relay on the alpha card is used to switch between using the Series 300
bit-mapped display's signal and using the compatibility display's signal.

2-28 Porting to Series 300 and 4.0

Display Compatibility Interface Capabilities

Capabilities of this card are identical to those of the Model 217. The alpha
display is an 80x25-character screen with half-bright, blinking, underline,
and inverse-video display enhancements. The graphics display is 512x390
monochrome pixels.

Configurations Possible

Here are the video-interface/monitor configurations possible:

• Shared monitor: The Display Compatibility Interface and the Series 300
bit-mapped display can share a medium-resolution monitor (monochrome or
color).

• Separate monitors: The Display Compatibility Interface can use a
medium-resolution monitor, and a Series 300 Video Board can use a separate
monitor (monochrome or color, whichever is appropriate).

• Single monitor: The Display Compatibility Interface can use a
medium-resolution monitor (with no Series 300 bit-mapped display).

Steps in Using this Card Set

Here are the steps you will take with this method:

1. Turn off the computer.

2. Configure and install the Display Compatibility Interface according to
the instructions in its Installation Note. Also connect the monitor(s) as
described in that note.

3. Turn on the computer, and boot the BASIC system.

4. Load the CRTA display driver binary, if not already installed.

LOAD BIN "CRTA" [Return)

5. Select the Display Compatibility Interface as the display device.

CONTROL CRT,21;1 [Return]

Porting to Series 300 and 4.0 2-29

2

2 Note

"
When using one monitor for two different displays (as in the
"shared monitor" configuration described earlier), a small
amount of time is required for the monitor to synchronize with
the new display whenever you switch from one display to the
other. It is normal for the screen to flicker when this switch is
made.

The preceding CONTROL statement also performs the following actions:

• Chooses and sets up the Display Compatibility Interface's alpha display as
appropriate:

o Sets all CRT registers to the appropriate default values.

o Clears the Series 300 bit-mapped display screen.

o Displays a cursor.

o Displays key labels (if appropriate) in half-bright mode.

o Displays a status indicator, such as the run light (if appropriate).

(See "How the Default Alpha Display Is Chosen" in the "Display Interfaces"
chapter of BASIC Interfacing Techniques. Items 1 and 2 are exchanged and
a new selection of the "default display device" is made.)

• Chooses and sets up the Display Compatibility Interface's graphics display
by effectively initializing this display and executing GINIT and PLOTTER IS
CRT, II INTERNAL ". (The "default graphics display" is chosen according to the
order listed under PLOTTER IS in the BASIC Language Reference.)

Switching Back to the Series 300 Display

The CONTROL statement is also used to select the Series 300 display:

CONTROL CRT,21;O (Return)

2-30 Porting to Series 300 and 4.0

The preceding CONTROL statement performs the following actions:

• Chooses and sets up the Series 300's alpha display as appropriate:

o Sets all CRT registers to the appropriate default values.

o Clears the Display Compatibility Interface's alpha display.

o Displays a cursor.

o Displays key labels (if appropriate).

o Displays a status indicator, such as the run light (if appropriate).

(See "How the Default Alpha Display Is Chosen" in the "Display Interfaces"
chapter of BASIC Interfacing Techniques. A new selection of the "default
display device" is made. Items 1 and 2 are not exchanged as in the switch to
the Display Compatibility Interface.)

• Chooses and sets up the Series 300 graphics display by effectively
initializing the bit-mapped display and executing GINIT and PLOTTER IS
CRT, II INTERNAL ". (The "default graphics display" is chosen according to the
order listed under PLOTTER IS in the BASIC Language Reference.)

Automatic Display Selection at System Boot

When the BASIC system is booted with both the Display Compatibility
Interface and the Series 300 bit-mapped display installed, it automatically
selects one of them in the following manner:

• If only the CRTA driver is installed, the system selects the Display
Compatibility Interface.

• If only the CRTB driver is installed (or if both CRTA and CRTB are
present), the system selects the Series 300 bit-mapped display.

If only the Display Compatibility Interface is installed, the system selects it as
the display (CRTA must be currently installed, of course). For a more detailed
description of how the BASIC system selects the "default display device," see
the "Display Interfaces" chapter of BASIC Interfacing Techniques.

Porting to Series 300 and 4.0 2-31

2

2 Removing Display Drivers

You can use SCRATCH BIN to remove all but the currently required display
driver. In other words, if you are in compatibility display mode, then CRTB
is removed. If you are in "native" Series 300 display mode (Le., not in
compatibility mode), then CRTA is removed.

If Your Screen Is Blank

Your screen can go blank (and characters you type in from the key board are
not "echoed" on the screen) under the following conditions:

• You have both a Display Compatibility Interface and a Series 300
hit-mapped display installed, and they are sharing the same monitor.

• You are not in compatibility mode (Le., alpha is on the bit-mapped display).

• You are running a BASIC program that contains the following statement:

PLOTTER IS 3,"INTERNAL"

The execution of this statement causes your screen to go blank. You have just
lost your alpha and graphics.

What Happened?

The PLOTTER IS 3, "INTERNAL" statement changed the current plotter
device from 6 (bit-mapped display) to 3 (compatibility display). The system
is talking to the compatibility cards, and the software-controlled relay that
switches from the bit-mapped to the compatibility display has been (implicitly)
directed to switch to the compatibility display's video signal. However, the
remainder of the operations performed by the CONTROL CRT,21;1 statement
have not been performed. Therefore, you will not be able to see your alpha or
graphics.

2-32 Porting to Series 300 and 4.0

What To Do Next

Temporary solution: You can do one of two things:

• To return to the bit-mapped display, first press the (Reset) key, and then
execute a SCRATCH A or CONTROL CRT ,21;0 statement.

• To select the Display Compatibility Interface, execute CONTROL CRT, 21; 1.

Note that you will not see any characters echoed on the display until you have
executed one of the above statements.

Long-term solution: Change all references to select code "3" to "CRT" (e.g.
PLOTTER IS CRT, "INTERNAL").

Another Related Note

If you want to determine how well your program runs on a Series 300
bit-mapped display and this program executes a PLOTTER IS 3,
"INTERNAL" statement, and you have Display Compatibility Interface
installed, then you will not be able to adequately test the functionality of your
software on a bi t-mapped display unless you first remove the com pati bili ty
hardware (or change the PLOTTER IS 3, "INTERNAL" statements to
PLOTTER IS CRT,"INTERNAL").

Modifying the Source Program
(Porting to 4.0)
This method involves changing or adding to the program's source code to make
an existing (pre-4.0) program perform the desired operations on the 4.0 system.

Here are some, but not all, situations for which this method is required:

• The program depends on a CSUB with version 3.01 (or earlier).

• The program depends upon trapping HP 98203 (EXECUTE) or (EDIT) key codes,
which cannot be generated by an ITF keyboard.

• None of the preceding porting methods worked. (In such case, you should
read the subsequent "Additional Porting Considerations" section to see if
your problem is described therein.)

Porting to Series 300 and 4.0 2-33

2

2
If any of the above statements is true, then you must modify the program to
run on the 4.0 system. If you do not have access to the source code, then you
cannot port it-you will have to obtain a BASIC 4.0 version of the program, if
it is available.

Incompatible CSUBs

An example of this situation is a program that depends upon using a "pre-4.0"
CSUB.

To remedy this situation, you will need to obtain a CSUB that is compatible
with the BASIC 4.0 system. (This may require modifying the CSUB source
program; it will definitely require re-generating a new CSUB with the CSUB
4.0 Utility.)

HP 98203 Specific Key Codes

The 98203 keyboards can generate (EXECUTE) and (EDIT) key codes which
cannot be generated by a 46020 keyboard. If your program depends on
trapping these key codes, then you will need to modify it to use 46020 keys
instead. For instance, you could trap the ITF (Select) key rather than the 98203
(EXECUTE) key. See the "Keyboard Interfaces" chapter of the BASIC Interfacing
Techniques manual for examples of trapping keystrokes with a BASIC program.

Additional Porting Considerations

This section describes the following topics, which may also require
consideration in porting programs from "pre-4.0" BASIC programs to the
BASIC 4.0 system.

• New SYSTEM$("SYSTEM ID") values for Series 300 computers

• Alpha color changes on Series 300 color displays

• Alpha screen height and graphics scrolling

• GLOADjGSTORE compatibility

• PLOTTER IS statement

• Hidden color changes

• ON KNOB "interval" parameter for HP-HIL knobs

2-34 Porting to Series 300 and 4.0

New SYSTEM$("SYSTEM 10") Values

On Series 300 computers, SYSTEM$("SYSTEM ID") will return two different
values:

• 5300: 10 for computers with an MC68010 processor

• 5300: 20 for computers with an MC68020 processor

Alpha Color Changes

With multi-plane bit-mapped displays, printing one of the alpha color highlight
characters, CHR$(136) through CHR$(143), will provide the same colors
as on the Model 236C as long as the color map contains default values. A
user-defined color map which changes the values of any pen in the range 0
to 7 will consequently change the effect of the corresponding color highlight
character. See "Display-Enhancement Characters" in the "Useful Tables"
appendix of the BASIC Language Reference for more information.

Alpha Screen Height and Graphics Scrolling

With BASIC 3.0 and later versions, you can limit the height of the alpha
portion of the screen. For instance, to limit the alpha portion of the screen to
the bottom 11 lines, execute this statement:

CONTROL CRT,13;11

The screen height parameter of 11 specifies the number of lines to be used for
the alpha screen (4 lines of "output area," and 7 lines used by the system).
The value of this parameter may not be less than 9. A corresponding STATUS
statement will return the current screen height.

This capability allows you to separate alpha and graphics on a single-plane
bit-mapped display screen. You would also have to limit graphics to the upper
portion of the screen (which is not used for alpha).

GLOAO /GSTORE Compatibility

Raster images loaded by GLOAD should have been stored (GSTORE) from the
same type of display. Otherwise, if the image was stored on a machine with
a different graphics resolution or number of bits per pixel, then the resultant
image will be scrambled.

Porting to Series 300 and 4.0 2-35

2

2
If your program first creates a graphics image and then GSTOREs and
GLOADs it, then the image may be truncated (due to the difference in
required array sizes). With BASIC 4.0, you can use the GESCAPE statement
to determine the required array size.

For example, the Model 236C requires an integer array size of 49 920
elements to store information from the graphics planes in the frame buffer
[(4 bits/pixel)x(512x390 pixels)/(16 bits/integer)], while a Series 300
medium-resolution color display requires 102 400 elements (4x(1024x400)/16]).
The value of 1024 is used because Series 300 medium-resolution bit-mapped
displays have non-square-pixels.

See GLOAD and GSTORE in the BASIC Language Reference for details
concerning this topic. With BASIC 4.0, there are new utility CSUBs (Bstore
and Bload) th~t allow you to store and load specified portions of the graphics
raster. You may alternatively want to use these utilities in favor of using
GSTORE and GLOAD.

PLOTTER IS Changes

There are several values that you can use when specifying the graphics display;
however, the following examples show the best way:

PLOTTER IS CRT,"INTERNAL"
PLOTTER IS 1,"INTERNAL"

CRT is a built-in function that always returns 1. The value of 1 signifies the
"default display" (to the PLOTTER IS statement).

The following statement, with select code of 3, specifies a non-bit-mapped
display, if there is one; otherwise it is the same as PLOTTER IS
1, "INTERNAL".

PLOTTER IS 3,"INTERNAL"

The following statement always specifies a bit-mapped display. If one is not
currently installed, then an error results.

PLOTTER IS 6,"INTERNAL"

Refer to the BASIC Language Reference for further details on the PLOTTER
IS statement.

2-36 Porting to Series 300 and 4.0

Hidden Color Changes

On a Model 236C display, the following sequence of commands:

GRAPHICS OFF
SET PEN ° INTENSITY 1,0,1
GRAPHICS ON

produces the following results.

• The GRAPHICS OFF statement will turn the graphics display off.

• SET PEN 0 is executed while the graphics screen is still blank and when the
GRAPHICS ON statement is executed, the previous display contents with
modified color map entry 0 is displayed.

On the Series 300 and 98700 displays, the above command sequence produces
the following results:

• If the alpha and graphics planes overlap (Le. the default configuration),
then GRAPHICS OFF and GRAPHICS ON are no-op's, so the display will
change immediately.

• If the alpha and graphics planes are totally independent (such as in
"Configuring Separate Alpha and Graphics Planes" in the "Using a
Configuration Program" section), then:

o GRAPHICS OFF turns the graphics planes off, leaving the alpha plane on.

o SET PEN n INTENSITY a,b,c will not be seen on the screen until the
GRAPHICS ON statement is executed, unless n is equal to 0 or specifies
an alpha pen.

o GRAPHICS ON turns on the graphics planes again.

Note

"
This occurs because alpha and graphics share the same color
map on Series 300 and 98700 displays, and PEN 0 is the default
alpha background color.

HP-HIL Knob Interval Parameter

The ON KNOB "interval" parameter for the optional HP-HIL knob (46083A)
has been implemented in BASIC 4.0 (it was not implemented with HIL knobs
in BASIC 3.0 or 3.01). This parameter works same way on an HIL knob as

Porting to Series 300 and 4.0 2-37

2

2
on the non-HIL knob (built into Series 200 98203 keyboards). See the "Using
the Knob" section of the "Communicating with the Operator" chapter of this
manual.

BASIC 4.0 Enhancements
for Series 200 Computers
Although the main objective of BASIC 4.0 was to add support of Series 300
computers, it also added some additional features for Series 200 computer
users (these enhancements also pertain to Series 300 computers). This section
describes these enhancements.

Note

"
The new HP-HPL graphics devices, new foreign-language
ITF keyboards, and HPHIL knob (see the "BASIC 4.0
Enhancements or Series 200 Computers" tables below) can only
be connected to computers with an HP-HIL interface. For
Series 200 computers, it includes Model 217 and Model 237
computers, and Model 220 computers with an optional HP-HIL
interface.

2-38 Porting to Series 300 and 4.0

BASIC 4.0 Enhancements for Series 200 Computers

Hardware Enhancements

Support New HP-HILGraphics Devices:

Tablets: HP 46087 A (A size) HP
46088A (B size)

TouchScreen: HP 35723

Ability to Specify Different Colors for
Alpha Display Regions:

Model 236C Only.

New Graphics Utilities:

No additional hardware is required.

Software Enhancements

(Still use GRAPHICS INPUT IS,
DIGITIZE, READ LOCATOR, etc.) Can
determine maximum hard clip values with
G ESCAPE operation selectors 20 through
22. (See the "Interactive Graphics"
chapter of Graphics Techniques.)

CRT STATUS/CONTROL registers 5
(modified definition) and 15 through
17 (new). (See the BASIC Language

Reference.)

"Bstore" and "Bload" utilities allow
you to store and load specified portions
of graphics rasters. "GdumpJotated"
allows you to dump graphics rotated by
900

• (See the "BASIC Utilities Library"
chapter of the Installing and Maintaining
BASIC manual.)

Porting to Series 300 and 4.0 2-39

2

2
BASIC 4.0 Enhancements for Series 200 Computers (continued)

Hardware Enhancements Software Enhancements

HP 98644A Serial Interface Registers: Interface STATUS/CONTROL registers

Less-expensive than HP 98626A (but has
13 and 14 allow you to read and change
the "SCRATCH A defaults" to get the

fewer "default" configuration switches). functionality of switches. (See the "Serial
Interface" chapter of BASIC Interfacing
Techniques.)

HP 98203 KeyboardCompatibility Mode: KBD CONTROL register 15 enables

None (useful with Models 217 and 237;
the ITF keyboard to emulate the HP
98203B (Model 226/236) keyboard. (See

also with 220 that uses the optional ITF
the preceding "HP 98203 Keyboard

keyboard). Compatibility Mode" section of this
chapter.)

Support New Foreign-Language ITF SYSTEM$("KEYBOARD
Keyboards: LANGUAGE") returns corresponding

Revised HIL "Swiss French *" and "Swiss
identifier. (See the BASIC Language

German*" keyboards are now supported. Reference.)

HP HIL Knob Interval Parameter: With BASIC 3.0, the interval parameter

None (same HIL knob as before).
for ON KNOB was ignored for HIL
knobs. With 4.0, the parameter is used.
(See the BASIC Language Reference.)

Read "Keyboard Input" Line Use SYSTEM$("KBD LINE"). (See the
(Non-Destructively): "Communicating with the Operator"

None.
chapter of this manual.)

2-40 Porting to Series 300 and 4.0

Porting to S.x

This chapter describes the differences and enhancements of BASIC 5.0 and
BASIC 5.l.

3

The BASIC 5.0 System is the latest revision of the "Series 200/300
Workstation BASIC" product. It consists of miscellaneous new features which
further enhance the capabilities of this language and operating system. This
chapter describes the incremental features of BASIC 5.0, as well as describes
the small changes made to some existing BASIC features. It will help you
determine what to do when moving from the 4.0 to the 5.0 revision of this
system.

Compatibility with Previous Versions
As with most other version changes to this BASIC language, the 5.0 revision is
highly compatible with preceding versions. In other words, using the BASIC
5.0 system:

• You can LOAD and RUN program (PROG) files created with STORE on
previous versions of BASIC.

• You can GET and RUN program (ASCII) files created with SAVE on
previous versions of BASIC.

• You can use all data files (BDAT and ASCII) created on previous versions of
BASIC. (If you will be using the HFS directory format, then you should also
read the "Porting and Sharing Files" chapter.)

• If you are using Compiled Subprograms (CSUB's), you will have to
regenerate them using the CSUB 5.0 Utility.

Porting to S.x 3-1

3

• The BASIC editor is now in a separate binary (EDIT). If you require this, be
sure to LOAD BIN "EDIT" before attempting to EDIT, LIST, or SAVE a
program.

• The typing-aid soft key definitions have changed slightly from 4.0. If your
application depends upon a particular typing-aid definition, then check to see

3 whether it has changed. (If it has, then you can programmatically re-define it
with LOAD KEY or SET KEY.)

Categories of New Features
This section describes the general categories of 5.0 features. They are presented
roughly in the order you would encounter them while using the system.
(Subsequent sections further describe each category, and list where they are
described in the BASIC manuals.)

• New hardware supported

• New utilities

• Hierarchical File System (HFS) support

• Human interface enhancements

• Keywords that duplicate register operations

• General programming additions.

• New STATUS and CONTROL registers

• Additional support for HP-HIL devices

• Additional graphics capabilities

• Additional CSUB capabilities

3-2 Porting to 5.x

New Hardware Supported
BASIC 5.0 is supported with the new Model 330 and 350 computers.

Note

•
The Local Area Network (LAN) interface available with some
of these models is not supported by BASIC .

New Hardware Supported

Computer
Model BASIC Language Support

Model 330 Supported in "Main" system
(no binary is required).

Model 350 Supported in "Main" system
(no binary is required).

Porting to S.x 3-3

3

3

New Utilities
The following utilities have been added to BASIC to simplify and speed up the
installation, configuration, verification, and maintenance tasks.

New Utilities

New Feature New Utility Tutorial Information

Can verify the operation of Peripheral "Verifying and Labeling
disks, printers, plotters, HP-HIL Verification Peripheral" chapter of
devices, and HP-IB graphics Utility Installing and Maintaining
tablets. Also helps you to label (VERIFY) BASIC
your mass storage devices,
printers, and plotters.

Can install BASIC on LIF and System Disk Utility "Putting BASIC on a Hard
HFS hard and flexible disks, (DISC_UTIL) Disk" chapter of Installing
including formatting the disk1 and Maintaining BASIC
and storing the BASIC system
on the disk.

Can back up and restore entire Backup Utility "Maintaining" section of
disk and tape volumes, as well as (BACKUP). Installing and Maintaining
individual files. Has the ability BASIC
to specify files and directories
with wildcards. (Uses the
HP-UX cpio format.)

Can edit the display font in Font Editor Utility "BASIC Utilities Library"
bit-mapped alpha displays, store (FONT_ED) chapter of Installing and
the new font in a file, and load it Maintaining BASIC
at a later time.

Text editor and file-copy utilities Memory-Resident "BASIC Utilities Library"
called by pressing typing-aid Utilities chapter of Installing and
softkeys. (MEM_UTILS) Maintaining BASIC

lThe System Disk Utility is also used to format and check the consistency of an
HFS disk, as described in the next section.

3-4 Porting to S.x

HFS Disk Support

The following features have been added to BASIC (with the HFS binary) to
support the Hierarchical File System (HFS) format for disks and other mass
storage devices. This file system is compatible with Series 200/300 HP-UX (5.0
and later versions).

HFS Disk Support

Supporting
System

New Feature Component Tutorial Information

BASIC, HP-UX, and Pascal System Disk Utility "Putting BASIC on a Hard
can reside on the same mass (DISC_UTIL) formats Disk" chapter of Installing
storage volume HFS volumes and Maintaining BASIC

BASIC, HP-UX, and Pascal CREATE and "Porting and Sharing Files"
can access compatible files ASSIGN l chapter of this manual
(ASCII and HP-UX).

Hierarchical directories are HFS-formatted "u sing Directories and
supported (on both hard and volumes Files" chapter of Using
flexible disks). BASIC

Extensible files are available HFS files "Data Storage and
Retrieval" chapter in volume
1 of this manual

Access to the HP-UX PERMIT, CHGRP, "u sing Directories and
file-protection scheme (on HFS and CHOWN Files" chapter of Using
directories) statements BASIC

Ability to detect and correct System Disk Utility "Maintaining" section of
HFS inconsistencies (DISC_UTIL) Installing and Maintaining

BASIC

1 These are just a few of the I/O Operations (Le. ENTER, OUTPUT, GET,
etc. may also be included).

Porting to S.x 3-5

3

3

Note that time stamps are placed on HFS files whenever the BASIC system
modifies the contents of the file. LIF files are also time-stamped with the
BASIC 5.0 revision (previous versions did not do this).

Human Interface Enhancements
The following features have been added to the system to improve the BASIC
system's human interface. (The editor and lister were put into the EDIT
binary so that the entire "main" system could fit on a single disk, not
to "improve" the human interface. It does, however, allow you to have a
"run-only" system which might be useful in some applications.)

3-6 Porting to 5.x

Human Interface Enhancements

Supporting
System Component

New Feature (Binary Required) Tutorial Information

New textual "run light" on Enabled whenever "Loading and Running
the screen (systems with ITF soft key labels are on Programs" chapter of Using 3
key boards only). (No binary required) BASIC

Can clear the (RECALL) key SCRATCH R "Introduction to the
buffer. (No binary required) System" chapter of Using

BASIC

New default typing-aid key No new keywords Various locations in Using
definitions. (No binary required) BASIC

Additional "sound" capabilities SOUND "Communicating with the
(on computers with HP-HIL (KBD binary) Operator" chapter in volume
interfaces) 1 of this manual

Redefinable character fonts SET CHR, CHRX, "Communicating with the
(on bit-mapped alpha displays and CHRY Operator" chapter in volume
only). (CRTX binary) 1 of this manual

Separated Program EDIT, LIST, and "Language Extensions,
Editor/Lister (LIST) from main SAVE moved to Drivers, and Configuration"
system EDIT binary chapter of Installing and

Maintaining BASIC

New BASIC statements to CLEAR SCREEN, "Communicating with the
clear display regions (formerly CLEAR LINE Operator" chapter in volume
performed with OUTPUT (CRTX binary) 1 of this manual
KBD)

Can load individual (or SET KEY "Communicating with the
all) typing-aid soft keys (KBD binary) Operator" chapter in volume
programmatically 1 of this manual

Porting to S.x 3-7

3

New Keywords that Duplicate
Register Operations
Several STATUS and CONTROL register operations have been duplicated by
keywords which perform the same action.

Keywords Duplicating Register Operations

New Keyword Register Operation Duplicated

DISPLAY FUNCTIONS ON CONTROL CRT, 4 j 1
DISPLAY FUNCTIONS OFF CONTROL CRT, 4 j 0

ALPHA PEN Pen_number CONTROLCRT,5jPen_number

KEY LABELS ON CONTROL CRT, 12 j 2
KEY LABELS OFF CONTROL CRT. 12; 1

ALPHA HEIGHT Lines CONTROL CRT ,13;Lines

ALPHA HEIGHT Restores default (when Lines omitted)

PRINT PEN Pen_number CONTROL CRT, 15; Pen_number

KEY LABELS PEN Pen_number CONTROL CRT, 16; Pen_number

KBD LINE PEN Pen_number CONTROL CRT, 17; Pen_number

SET ALPHA MASK Mask_value CONTROL CRT , 18jMask_value

SET DISPLAY MASK Mask_value CONTROL CRT, 20; Mask_ value

SYSTEM KEYS CONTROL KBD , 2 ; 0

USER 1 KEYS CONTROL KBD , 2 j 1

USER 2 KEYS CONTROL KBD , 2 ; 2

USER 3 KEYS CONTROL KBD , 2 ; 3

KBD CMODE ON CONTROL KBD, 15; 1
KBD CMODE OFF CONTROL KBD i 15 -.L 0

3-8 Porting to 5.x

For tutorial information, see the "Display Interfaces" and "Keyboard
Interfaces" chapters of BASIC Interfacing Techniques. (The KBD register
statements are in the KBD binary; all others are in the CRTX binary.)

Porting to S.x 3-9

3

General Programming Additions
The following features are used in BASIC programming.

General Programming Additions

3 New Keyword
New Feature (Binary Required) Tutorial Information

Complex math COMPLEX data type, "Numeric Computation"
supported in most chapter in volume 1 of this
math operations manual
(COMPLEX binary)

Hyperbolic functions SINH, COSH, TANH, etc. "Numeric Computation"
(COMPLEX binary) chapter in volume 1 of this

manual

Searching arrays for patterns MAT SEARCH "N umeric Arrays" chapter
and conditions (MAT binary) in volume 1 of this manual

Copying subarrays MAT enhancement "N umeric Arrays" chapter
(MAT binary) in volume 1 of this manual

New string variable function MAXLEN function "String Manipulation"
(returns DIMensioned string (No binary required) chapter in volume 1 of this
length). manual

Error-trapping feature CAUSE ERROR, "Handling Errors" chapter
enhancements. ERRLN, in volume 1 of this manual

ERROR RETURN,
ERROR SUBEXIT,
CLEAR ERROR
(No binary required)

Can programmatically SYSBOOT BASIC Language
specify which system to enhancement Reference
re-boot (No binary required)

3-10 Porting to 5.x

New STATUS/CONTROL Registers
The following new STATUS and CONTROL registers have been added in
BASIC 5.0.

New STATUS/CONTROL Registers

New Register

STATUS 32,4; Batt_clock_type

Definition

Returns the following values:

o => no battery-backed clock;
1 => HP 98270 battery-backed clock

(Models 226 and 236 only);
2 => HP-HIL battery-backed clock.

STATUS KBD, 16; Scroll_disabled Reading the STATUS register allows you to
determine whether the PRINT area of the display
can be scrolled by keystrokes or equivalent
operations (the default is to allow scrolling).

o = > scrolling enabled
1 => scrolling disabled

CONTROL KBD, 16; Disable_scroll Writing a 1 to the CONTROL register disables
scrolling (useful to prevent scrolling of alpha
display; writing a 0 to the register enables
scrolling) .

STATUS KBD, 17 ; Auto_menu Automatic menu switching:

1 => enable (default)
o => disable

CONTROL KBD, 17; Disable_auto Automatic menu switching: mode.

<>0 => enable
o => disable

This register controls whether a system with an
ITF keyboard will switch to (from) the User 2
Menu automatically on entering (leaving) EDIT
mode.

Porting to S.x 3-11

3

3

See the "Clock and Timers" chapter of this manual for details on determining
clock type. See the "Keyboard Interfaces" chapter of BASIC Interfacing
Techniques for details of disabling scrolling. Also see the descriptions of these
registers in the "Useful Tables" section of this manual or the BASIC Language
Reference.

Additional HP-HIL Support
The following features provide greater support for Hewlett-Packard Human
Interface Link (HP-HIL) devices. All of these capabilities require the KBD
binary.

Additional HP-HIL Support

New Keyword
New Feature (Binary Required) Tutorial Information

Capability of setting ON HIL EXT, "HIL Devices" chapter
up interrupts for and HIL SEND, of BASIC Interfacing
communicating with many and HILBUF$ Techniques
HP-HIL devices (useful when (KBD binary)
writing your own HP-HIL device
drivers)

Capability of setting up ON CDIAL, CDIAL, "Communicating with the
interrupts for and reading pulses and OFF CDIAL Operator" chapter in volume
from the HP 46085A Control (KBD binary) 1 of this manual
Dial (9-knob) Box

3-12 Porting to S.x

Additional Graphics Features
The following graphics features have been added to the BASIC system.

Additional Graphics Features

Keyword 3
New Feature (Binary Required) Tutorial Information

New register that disables CRT register 16 "Introduction to Graphics"
scrolling the display (to chapter of BASIC Graphics
avoid scrolling graphics on Techniques
bit-mapped alpha displays)

Can now send HPG L commands GSEND "Using Plotters and
to PLOTTER IS device or file. (GRAPH binary) Printers" chapter of BASIC

Graphics Techniques

Can simulate separate alpha SEPARATE ALPHA, "Using Graphics Effectively"
and graphics rasters of Series MERGE ALPHA chapter of BASIC Graphics
200/300 displays with a single Techniques
statement (formerly required a
short program)

Porting to S.x 3-13

3

Additional CSUB Capabilities

The following capabilities have been added to CSUB's (Compiled
Subroutines-created using the Pascal Workstation System and CSUB Utility).

Additional CSUB Capabilities

New Feature General Capability Tutorial fuformation

CSUB's can Categories of I/O procedures now CSUB Utility manual
now perform available:
I/O operations.

• Most of the Pascal I/O Procedure
Library

• Some of the BASIC file I/O capabilities

• Some display I/O capabilities

• Some keyboard I/O capabilities

• All SYSTEM$ capabilities

5.1 Enhancements
BASIC 5.1 provides additional software capabilities and improvements in
documentation.

3-14 Porting to S.x

New Capabilities

New Feature Description

PaintJet™ Support A CSUB performs a color dump. See the "BASIC Utilities
(HP 3630A Color Library" chapter of the Installing and Maintaining the
Graphics Printer) BASIC System manual.

HP 98548A, HP 98549A, These cards are high resolution bit-mapped display
and HP 98550A interfaces. (Note that on these displays, the alpha cursor
Display Support will not blink.)

New CSUB Utility Passing COMPLEX and I/O-path-name parameters to
Features CSUB's. See the BASIC 5.1 CSUB Utility manual.

HP 98646A VME This CSUB was formerly a separate product, but is now
Interface CSUB included in the BASIC 5.1 product (there are no new

features). See the "BASIC Utilities Library" chapter of the
Installing and Maintaining the BASIC System manual.

Manual Changes

In order to make the installation and maintenance of the BASIC Language
System easier, the Installing, Using and Maintaining the BASIC System
manual has been divided into two manuals:

• Installing and Maintaining

• Using BASIC

Duplicating Files with the LINK Command

The COpy command creates a duplicate file by copying a file's contents
under a different file name. On the other hand, the LINK command creates
additional filenames which refer to the same file. This is done by creating:

• A new file name (an entry in a directory).

• A pointer to the existing file's contents (note that the contents are not
duplicated).

Porting to S.x 3-15

3

Thus, LINK saves disk space, because there is only one copy of the body of the
file (but there are two file names, or links, to the file's contents).

It is important to remember that the LINK command is usable only with HFS
and SRM volumes.

3 A Simple Example

Executing the following statement:

LINK "Existing_file" TO "New_name"

links the file name called New_name to the existing file called Existing_file.

Characteristics of Linked Files

As mentioned before, LINK makes a new name and creates a pointer to
an existing file. This gives the file some useful, but sometimes subtle,
characteristics. For instance, an OUTPUT to a data file will change its
contents. Using ENTER with any file linked to the changed file will reflect the
change. (Note that there is only one copy of the file's data but two or more file
names are linked to it.)

If you RE-STORE or RE-SAVE a file that is linked to other files, a new file
will be created and the link to the original file will be broken. In this case
the RE-STORE'd or RE-SAVE'd file is changed but the linked files are not
changed.

The keyword LINK is like the COpy command and in some cases they can be
used interchangeably. However, COPY results in two different files, while LINK
results in one file with two different file names linked to it. LINK is used when
you need to save disk space or you want the OUTPUT command to change the
contents of all linked files. COPY should be used if you want OUTPUT to
modify one version of the file but not all versions.

More· Examples of Creating Linked Files

The first example below creates an HP-UX file and links it to another file. It
then outputs data to the original file. Finally the contents of each file (which
are identical) are displayed.

100 CREATE "File_1",1
110

3·16 Porting to 5.x

! Create an HP-UX file.

120 LINK "File_l" TO "File_2" Link "File_2" to "File_l".
130
140 ASSIGN GFile_l TO "File_l" Open File_l for writing.
150
160 String$="This is a test."
170 OUTPUT GFile_l;String$
180
190 ASSIGN GFile_l TO *
200

Assign the output string.
Output message to all linked files.

Close File_l before reading it.

210 ASSIGN GFile_l TO "File_l" Open File_l for reading.
220 ENTER GFile_l;Stringl$ Read GFile_l into Stringl$
230 PRINT "The contents in File 1: ";Stringl$! Print Stringl$
240 ASSIGN GFile_l TO * Close File_l
250
260 ASSIGN GFile_2 TO "File_2" Open File_2 for reading.
270 ENTER GFile_2;String2$ Read GFile_2 into String2$
280 PRINT "The contents in File 2: ";String2$! Print String2$
290 ASSIGN GFile_2 TO * ! Close File_2
300
310 END

Here are the results of running the program:

The contents in File 1: This is a test.

The contents in File_2: This is a test.

Example of Breaking a Link

The next example shows how RE-STORE breaks a link. Create the program:

10 PRINT "Original Program"
20 END

Next give this file the name Original and store and create a link to it:

STORE "Original"
LINK "Original" TO "New_name"

Modify the program called New_name to read:

10 PRINT "Modif ied Program"
20 END

Porting to S.x 3-17

3

3

Now store the program using the RE-STORE command:

If you next LOAD the program called Original and LIST it, you will find
that it remains unchanged because the link between Original and New_name
is broken. (That is, there are now two files on the system, each being slightly
different from the other.)

3-18 Porting to S.x

4
Porting and Sharing Files

There are three different types of mass storage formats supported by BASIC:

• Logical Interchange Format (LIF)

• Shared Resource Manager (SRM)

• Hierarchical File System (HFS)

With each of these types of formats, BASIC supports three types of data files,
as well as other types of files used by the BASIC system:

• ASCII

• BDAT

• HP-UX

• PROG

• BIN

• SYSTM

This chapter describes what tasks you will need to perform in transporting
BASIC files from one type of volume to another. It also describes how to share
HP-UX files between Series 200/300 BASIC, HP-UX, and Pascal systems.

Porting and Sharing Files 4-1

4

4

Sharing HFS Disks and Data Files
With the introduction of BASIC 5.0, it is now possible to share data files
between BASIC applications and HP-UX applications using HFS volumes.
This allows you to develop a total solution that takes advantage of the best
features of each available operating system.

• As an example, a system can use BASIC for instrument control or automated
data acquisition and then use HP-UX applications to analyze or manipulate
the data for statistical quality control or management information systems.

• HP-UX also allows a gateway to networking capabilities that are becoming
an important part of information sharing in the factory.

• Another advantage of HP-UX is the availability of the HP-UX Starbase
Graphics Library and Graphics Hardware, which provides many additional
graphics features that are not available with the BASIC Operating System.

General Compatibility Requirements

In order to share data files between BASIC and HP-UX, there must be
compatibility of:

• File types (both operating systems must be able to read and write a file to be
shared)

• Data representations (both operating systems must write and interpret the
bytes in the file in the same manner)

These requirements will be explored here, and examples of sharing data files
between BASIC and HP-UX will be shown.

A Note About HP-UX File Terminology

From the following matrices, we see that BASIC and HP- UX can easily share
files of "type HP-UX":

• On BASIC, these files will be listed with CAT as being of type HP-UX.

• On HP-UX, these files will be listed as text or data, depending on the
contents of the file.

4-2 Porting and Sharing Files

From the HP-UX viewpoint, this type of file can be called an "HP-UX text"
file or an "HP-UX binary" file. The "HP-UX text" file contains data written in
ASCII representation, while the "HP-UX binary" file contains data written in
internal representation.

Porting and Sharing Files 4-3

4

4

Common File Types

The following matrix shows which file types are supported by each operating
system available on Series 300 computers.

Data File Support Matrix

Operating System Pascal
or Language ASCII BDAT Text 1 HP-UX

BASIC 4.0 (or earlier) y y

BASIC 5.0 (or later) y y y

Workstation Pascal 3.12 (or earlier) y y

Workstation Pascal 3.2 (or later) Y Y Y

Technical BASIC 2

HP-UX C 3 Y

HP-UX Pascal 3 Y

HP-UX FORTRAN 3 Y

MS-DOS 4

Legend:
1

y

2

3

4

"Pascal Text" files include type" .TEXT" files and type "Data" files that
contain text.

means that the Operating System or Language can easily read or write
the file type with a native language program.

HP-UX Technical BASIC can only handle HP-UX files that contain text.

HP-UX has utilities to transfer LIF files to HFS volumes (lifcp, etc.).

Utilities are available for MS-DOS to transfer LIF files.

4-4 Porting and Sharing Files

Common Data Types

Once a common file type to be used has been identified, the next step is to
determine the data types that can be used within the file. To share data
within a file between BASIC and HP-UX, the data type must be a type that
is supported in both operating systems. The following matrix shows which
data types are supported by each operating system available on Series 200/300
computers.

Data-Type Support Matrix

Operating Null-Ter-
System or 16-Bit 32-Bit 32-Bit 64-Bit 128-Bit minated
Language Integer Integer Real Real Complex 1 String String

BASIC 4.0 Y Y Y
(and earlier)

BASIC 5.0 Y Y Y Y 2

(and later)

Workstation Pascal Y Y Y Y
3.12 (and earlier)

Workstation Pascal Y Y Y y

3.2 (and later)

Technical BASIC Y Y Y Y

HP-UX C y y y y y y

HP-UX Pascal Y Y Y Y Y

HP-UX Fortran Y Y Y Y Y Y Y

MS-DOS Y Y Y Y Y Y

Legend:

1 The 128-bit complex data type is equivalent to two 54-bit reals.

y means that the Operating System or Language can easily read or write
the data type with a native language program.

2 This data type works with "HP-UX binary" data files only.

Porting and Sharing Files 4-5

4

4

From this matrix, we see that BASIC and HP-UX can easily share data that is
16-bit integer, 64-bit real, 128-bit complex, string, and null-terminated strings.
Before you can access this data, however, you must know:

• Which data types are used in the file .

• The order in which they are used.

Then you can use the corresponding data types in the programming language
while reading the data. For example, BASIC and HP-UX C must have this
data type matching to share data:

Data-Type Matching Between BASIC and C

BASIC C

INTEGER short

REAL double

COMPLEX 2 double's

String array of char

HP-UX Text and Binary Files

"HP-UX text and binary" files are the native file types supported by HP-UX
on HFS volumes. Support for this data file type has been added in BASIC 5.0
to allow sharing data files with HP-UX applications. BASIC still retains full
support for all existing data file types, ASCII and BDAT, but some keywords
have been updated to provide support for HFS disks and HP-UX text and
binary files.

In particular, the ASSIGN, OUTPUT, and ENTER keywords now support
"HP-UX text" and "HP-UX binary" files. (Note once again that these are both
considered to be an HP-UX file type in BASIC; the only difference is in the file
contents.)

A new CREATE statement has also been added to allow HP -UX files to be
created from the BASIC system. To create an HP-UX file, use the CREATE
keyword without the BDAT or ASCII secondary keywords.

CREATE "HPUX_file",10

4-6 Porting and Sharing Files

When the ASSIGN statement is executed to open a file, the file type in the file
header is examined. If the file is BDAT or ASCII, it will be treated as such.
Otherwise, the file will be treated as:

• An "HP-UX binary" file (if it is assigned with FORMAT OFF)

• An "HP-UX text" file (if it is assigned with FORMAT ON).

Examples of HP-UX File Access: Textual Numeric Data

Some examples will demonstrate how to access an HP-UX text file from BASIC
and from HP-UX. The first program below is a BASIC program that writes
some real numbers into an HP-UX text file. 4

10 RE-STORE "SHARE_TEXT"
20
30
40
50
60
70

Create l Assign the output file.

CREATE "TEXT_DATA",l
ASSIGN GFile TO "TEXT_DATA";FORMAT ON

Create an HP-UX file.
Treat as "text" file.

80 ! Output the data to the HP-UX Text file.
90
100 FOR N=-9.0 TO 8.5 STEP .07
110 OUTPUT GFile;N
120 NEXT N
130 ASSIGN GFile TO *
140
150 END

In this BASIC program, the file TEXT _DATA is an HP-UX file into which
this program writes 250 real numbers. The ASSIGN statement is performed
with FORMAT ON, thus specifying that this file is to be treated as a
"text" file-using the ASCII data representation. (Note that the default
FORMAT attribute for an HP-UX file is FORMAT OFF.) This program also
demonstrates that file access of an "HP-UX text" file is performed with the
same statements that would be used for access of an ASCII or BDAT file.

The next program is an HP -UX C program to read the data file that the above
BASIC program wrote.

#include <stdio.h>
mainO
{

Porting and Sharing Files 4-7

4

}

float I, Y;
FILE *datafile, *fopen();

/*** ***/
/*** Open file to read data ***/
/*** ***/
datafile = fopen("/users/vorkstation/basic/files/TEXT_DATA". "r");
if (datafile == NULL) {

}

printf("Can't open file.\n");
exit(t) ;

/*** ***/
/*** Get data from file and print data ***/
/*** ***/
for (I = 1.0; I <= 250.0; I += 1.0) {

}

fscanf (datafile, "Yef", iY);
printf ("Yef\n" , Y) ;

fclose(datafile);

In this HP-UX C example, the file TEXT -DATA is the "HP-UX text" file into
which the BASIC program wrote 250 real numbers. Note that the HP-UX C
program reads these real numbers as strings with the "fscanf' routine, then
converts each string back to the real number value with the "%f' conversion
specification.

Note Data in an "HP-UX text" file is stored as ASCII characters,
and this data can be read and edited by HP-UX editors or read
by HP-UX commands such as "cat" and "more."

4-8 Porting and Sharing Files

The next program is an HP-UX Technical BASIC program to read the data file
which the preceding BASIC program wrote.

10 CLEAR
20 REAL x,y
30 name$="TEXT_DATA"
40 ASSIGN 14 TO name$
50 FOR x=l TO 250
60 ENTER 14 ; Y
70 PRINT x,y
80 NEXT x
90 ASSIGN 14 TO "*"
100 END

This HP-UX Technical BASIC example reads the file TEXT J)ATA into which
the BASIC program wrote real numbers. Note that Technical BASIC can
convert each string back to the real number value with the number builder in
the ENTER statement. This program demonstrates the simplicity of HP-UX
Technical BASIC when used for sharing files between HP-UX Technical BASIC
and the BASIC workstation environment.

Below is the hexadecimal dump of the first 40 bytes of the file TEXT J)ATA,
which will be used to get a better understanding of how BASIC formatted
the data when it wrote to this "HP-UX text" file; contrast it to the following
ASCII dump of the same file. (A listing of the program is shown at the end of
this chapter.)

Contents of TEXT_DATA

BYTE I +0 I +1 I +2 I +3 I +4 I +5 I +6 I +7 I +8 I +9 I
----+------+------+------+------+------+------+------+------+------+------+

0 2d 39 I d a I 2d I 38 2e 39 33 I d
10 a 2d I 38 2e I 38 I 36 d a 2d I 38
20 2e 37 I 39 d I a I 2d 38 2e 37 I 32
30 d a I 2d 38 I 2e I 36 35 d a I 2d

HP-UX Text File Contents

Porting and Sharing Files 4-9

4

4

Here are the contents of the first 40 bytes of the file TEXT -DATA, shown in
hexadecimal format. To show that the data items in an "HP-UX text" file are
ASCII characters, the ASCII equivalent of this same data is now shown below.

BYTE I +0 I +1 I +2 I +3 I +4 I +5 I +6 I +7 I +8 I +9 I
----+------+------+------+------+------+------+------+------+------+------+

0 I - I 9 I "CR" I "LF" - I 8 I 9 3 I "CR" I
10 I "LF" I - I 8 I 8 I 6 I "CR" "LF" - I 8 I
20 I I 7 I 9 I "CR" "LF" I - I 8 7 I 2 I
30 I "CR" I "LF" I - I 8 I 6 I 5 "CR" "LF" I - I

ASCII Character Equivalent

This table shows that a real number output to the HP-UX text file by BASIC
is output as a string of ASCII characters representing the real number and this
real number string terminated by "CR" and "LF" characters.

Examples of HP-UX File Access: Textual Strings

The next data type to be demonstrated will be strings. The first program
below is a BASIC program that writes some strings into an "HP-UX text" file.

10 ! RE-STORE "SHARE_STR2"
20
30 INTEGER N
40
50 ! Create i Assign the output file.
60
70
80
90

CREATE "STR2_DATA",l
ASSIGN GFile TO "STR2_DATA"jFORMAT ON

100 ! Output the strings to the data file
110
120 FOR N=-9 TO 240

Create HP-UX file.
Treat as "text" file.

130 OUTPUT GFilej"This is "iTRIM$(VAL$(N»i" line"
140 NEXT N
150 ASSIGN GFile TO *
160
170 END

In this BASIC example, the file STR2-DATA is an "HP-UX text" file into
which this program writes 250 data strings. The ASSIGN statement is again

4-10 Porting and Sharing Files

performed with FORMAT ON to specify that the data are to be represented in
ASCII format (an "HP-UX text" file).

The next program is an HP-UX C program to read the data file that the above
BASIC program wrote.

#include <stdio.h>
mainO
{

}

int x:
char Strng[40]:
FILE *datafile, *fopen();

/*** ***/ 4
/*** Open file to read data ***/
/*** ***/
datafile = fopen(l/users/workstation/basic/files/STR2_DATA", Itrlt):
if (datafile == NULL) {

}

printf("Can't open file.\n"):
exit (1) :

/*** ***/
/*** Get string data from file and print data ***/
/*** ***/
for (X = 0: X <= 249; X += 1) {

}

fgets(Strng, 40, datafile):
printf(lt%slt,Strng);

fclose(datafile):

In this HP-UX C example, the file STR2_DATA is the "HP-UX text" file into
which the BASIC program wrote 250 data strings. Note that the HP-UX C
program reads these data strings into an "array of char" with the "fgets"
routine. The "fgets" routine used here terminates with the new-line character,
then replaces this new-line character with a NULL character.

Porting and Sharing Files 4-11

4

Below is the hexadecimal dump of the first 40 bytes of the file STR2-DATA,
which will be used to get a better understanding of how BASIC stored the
strings when it wrote to this "HP-UX text" file.

BYTE' +0 , +1 , +2 , +3 , +4 , +5 , +6 , +7 , +8 , +9 ,
----+------+------+------+------+------+------+------+------+------+------+

0 , 54 68 69 , 73 , 20 69 73 , 20 2d 39
10 , 20 6c 69 , 6e I 65 d a , 54 68 69
20 , 73 20 69 , 73 , 20 2d 38 , 20 6c 69
30 I 6e 65 d , a , 54 68 69 , 73 20 69

HP-UX Text File Contents with Strings

These are the contents of the first 40 bytes of the file STR2_DATA, shown in
hexadecimal format. To prove that the data in an "HP-UX text" file is ASCII
characters, the ASCII equivalent of this same data is now shown below.

BYTE' +0 , +1 , +2 , +3 , +4 , +5 , +6 , +7 , +8 I +9
----+------+------+------+------+------+------+------+------+------+------+

o , T , h i 5 I i , 5
, , 9

10 , , 1 i n e , "CR" , "LF" , T , h i
20 , 5

, i 5 , , 8 , , 1 i
30 , n , e "CR" "LF" T I h , i , s , i

ASCII Character Equivalent

This table shows that a string output to the HP-UX text file by BASIC is
output as a string of ascii characters with no added length header bytes and
terminated by "CR" (carriage-return) and "LF" (line-feed) characters.

Examples of HP-UX File Access: Binary Real Values

There are three different types of data that can be stored in an HP-UX file
that BASIC can also access. These data types are REAL, INTEGER, and
string. The first type to be demonstrated in examples will be files of REAL
data. The first program below is a BASIC program that writes some REAL
numbers into an "HP -UX binary" file.

4-12 Porting and Sharing Files

,
I ,
,

10 RE-STORE "SHARE_REAL"
20
30 Create 1 Assign the output file.
40
50 CREATE II REAL_DATA II ,1
60 ASSIGN GFile TO "REAL_DATA";FORMAT OFF! Treat as "binary" file.
70
80 ! Output the real numbers to the data file
90
100 FOR N=-9.0 TO 8.5 STEP .07
110 OUTPUT GFile;N
120 NEXT N
130 ASSIGN GFile TO *
140
150 END

In this BASIC program, the file REAL_DATA is an HP-UX file into which
this program writes 250 real numbers. Note that the ASSIGN statement is
performed with FORMAT OFF, thus specifying that this file is to be written
as internal representation numbers. This program also demonstrates that file
access of an "HP-UX binary" file is performed with the same keywords that
would be used for access of a BDAT file.

The next program is an HP-UX C program to read the data file that the above
BASIC program wrote.

Porting and Sharing Files 4-13

4

4

#include <stdio.h>
mainO
{

}

int
double
FILE

X;
Y[250];
*datafile, *fopen();

/*** ***/
/*** Open file to read data ***/
/*** ***/
datafile = fopen("/users/workstation/basic/files/REAL_DATA", "r");
if (datafile == NULL) {

}

printf("Can't open file.\n");
exit(l) ;

/*** ***/
/*** Get real data from file and print data ***/
/*** ***/
fread«char *)Y, sizeof(Y[O]), 250, datafile);
for (X = 0; X <= 249; X += 1)

printf(IYof\n", Y[X]);
fclose(datafile);

In this HP-UX C example, the file REAL_DATA is an "HP-UX binary" file
into which the BASIC program wrote 250 real numbers. Note that the HP-UX
C program reads these real numbers into an array of double with the "fread"
routine. This data must be handled as type double in C to remain compatible
with the 64-bit real format used in BASIC. This data cannot be read and
edited by HP-UX editors or read by HP-UX commands such as "cat" and
"more." However, this data representation may allow for more efficient disk
space use since every real number takes 8 bytes of disk space. The Ij 0 transfer
rates are also higher, since neither the output or the input routines need to
format the data. In many cases, the internally represented numbers provide
greater accuracy than would an ASCII representation of the number.

4-14 Porting and Sharing Files

Below is the hexadecimal dump of the first 40 bytes of the file REAL_DATA,
which will be used to get a better understanding of how BASIC represented the
real number data when it wrote to this HP-UX (or "HP-UX binary") file.

BYTE' +0 , +1 , +2 , +3 , +4 , +5 , +6 , +7 , +8 , +9
----+------+------+------+------+------+------+------+------+------+------+

0 , cO 22 0 , 0 , 0 , 0 , 0 , 0 , cO 21
10 , de 28 f5 , e2 , 8f , 5e , cO , 21 , b8 51
20 , eb 85 1e , b8 , cO , 21 , 94 , 7a , e1 47
30 , ae 14 cO , 21 , 70 , a3 , d7 , a , 3d 70

HP-UX Binary File Contents with Real Numbers

The real number data in an HP-UX binary file is formatted in IEEE-standard,
64-bit, floating-point notation for real numbers.

Examples of HP-UX File Access: Binary Integers

The next data type to be demonstrated in examples will be files of integer
data. The first program below is a BASIC program that writes some integer
values into an HP-UX file.

10 ! RE-STORE "SHARE_INT"
20
30 INTEGER N
40
50 ! Create 1 Assign the output file.
60
70 CREATE "INT_DATA",l
80 ASSIGN GFile TO "INT_DATA";FORMAT OFF! Treat as "binary" file.
90
100 ! Output the integer numbers to the data file
110
120 FOR N=-9 TO 240
130 OUTPUT GFile;N
140 NEXT N
150 ASSIGN GFile TO *
160
170 END

In this BASIC program, the file INT _DATA is an HP-UX file into which
this program writes 250 integer numbers. The ASSIGN statement is again

Porting and Sharing Files 4-15

4

4

performed with FORMAT OFF to specify that the internal data representation
is to be used (which makes the file an "HP -UX binary" file).

The next program is an HP -UX C program that reads the data file that the
above BASIC program wrote.

#include <stdio.h>
main 0
{

}

int
short
FILE

X;
Y[250] ;
*datafile. *fopen();

/*** ***/
/*** Open file to read data ***/
/*** ***/
datafile = fopen("/users/workstation/basic/files/INT_DATA". "r");
if (datafile == NULL) {

}

/***

printf("Can't open file.\n");
exit(l);

***/
/*** Get integer data from file and print data ***/
/*** ***/
fread«char *)Y. sizeof(Y[O]). 250, datafile);
for (X = 0; X <= 249; X += 1)

printf("%d\n".Y[X]);
fclose(datafile);

In this HP-UX C example, the file INT _DATA is the HP-UX binary (or
untyped) file into which the BASIC program wrote 250 integer numbers. Note
that the HP-UX C program reads these integers into an array of short with
the "fread" routine. This data must be handled as type short in C to remain
compatible with the 16-bit integer format used in BASIC. An HP-UX binary
file allows more efficient disk-space use than an HP-UX text file, since each
integer number takes 2 bytes of disk space. An HP -UX binary file is also faster
because no format-conversion is required.

4-16 Porting and Sharing Files

Below is the hex dump of the first 40 bytes of the file "INT _DATA", which will
be used to get a better understanding of how BASIC formatted the integer
number data when it wrote to this HP-UX binary file.

BYTE I +0 I +1 I +2 I +3 I +4 I +5 I +6 I +7 I +8 I +9 I
----+------+------+------+------+------+------+------+------+------+------+

0 I ff f7 I ff f8 ff f9 ff I fa ff I fb I
10 I ff fc I ff fd ff fe ff I ff 0 I 0 I
20 I 0 1 I 0 2 0 3 0 I 4 0 I 5 I
30 I 0 6 I 0 7 0 8 0 I 9 0 I a I

HP-UX Binary File Contents with INTEGER Values

INTEGERs in an HP-UX binary file are formatted in 16-bit two's-complement
notation.

Examples of HP-UX File Access: Binary Strings

The first program below is a BASIC program that writes some strings into an
HP -UX binary file.

10 ! RE-STORE "SHARE_STR"
20
30 INTEGER N
40
50 ! Create t Assign the output file.
60
70 CREATE "STR_DATA",l
80 ASSIGN GFile TO "STR_DATA";FORMAT OFF Treat as "binary" file.
90
100 ! Output the strings to the data file
110
120 FOR N=-9 TO 240
130 OUTPUT GFile; "This is "tTRIM$(VAL$(N»t" line"
140 NEXT N
150 ASSIGN GFile TO *
160
170 END

In this BASIC example, the file STR_DATA is an HP-UX file into which this
program writes 250 data strings. The ASSIGN statement is again performed
with FORMAT OFF to specify that the internal data representations are to

Porting and Sharing Files 4-17

4

4

be used (an "HP-UX binary" file). Each string output to the file has a null
character, CHR$(O), appended to the end of the string automatically by the
OUTPUT statement. This null character is used by the HP -UX C program as
a string-termination character.

The next program is an HP -UX C program to read the data file that the above
BASIC program wrote.

#include <stdio.h>
mainO
{

}

int I, Xj
char Strng[40]j
FILE *datafile, *fopen()j

/*** ***/
/*** Open file to read data ***/
/*** ***/
datafile = fopen("/users/vorkstation/basic/files/STR_DATA", "r") j
if (datafile == NULL) {

}

printf("Can't open file.\n")j
exit(l)j

/*** ***/
/*** Get string data from file and print data ***/
/*** ***/
for (X = OJ X <= 249j X += 1) {

}

I = OJ
vhile «Strng[I] = getc(datafile» != '\000')

I++j
printf(l;'s\n",Strng)j

fclose(datafile)j

In this HP-UX C example, the file STR_DATA is the HP-UX file into which
the BASIC program wrote 250 strings. Note that the HP-UX C program reads
these strings into an "array of char" with the "getc" routine reading each
character. The "while" loop repeats until a null character has been read by the
"getc" routine.

4·18 Porting and Sharing Files

Below is the hexadecimal dump of the first 60 bytes of the file "STR-DATA".
This shows how BASIC formatted the strings in this HP-UX binary file.

BYTE I +0 I +1 I +2 I +3 I +4 I +5 I +6 I +7 I +8 I +9
----+------+------+------+------+------+------+------+------+------+------+

o I 54 68 69 73 20 69 73 20 2d 39
10 I 20 6c 69 6e 65 0 54 68 69 73
20 I 20 69 73 20 2d 38 20 6c 69 6e
30 I 65 0 54 68 69 73 20 69 73 20
40 I 2d 37 20 6c 69 6e 65 0 54 68
50 I 69 73 20 69 73 20 2d 36 20 6c

HP-UX Binary File Contents with Strings

To help visualize how this data is stored in an HP-UX binary file, the ASCII
equivalent of this same data is now shown below.

BYTE I +0 I +1 I +2 I +3 I +4 I +5 I +6 I +7 I +8 I +9 I
----+------+------+------+------+------+------+------+------+------+------+

0 I T I h I i I s I i s I I I 9 I
10 I I 1 I i I n I e I II NUL II T I h I i I s I
20 I I i I s I I 8 I 1 I i I n I
30 I e I II NUL II I T I h I i s I i I s I I
40 I 7 I I 1 I i n e I II NUL II I T I h I
50 I i s I I i I s I 6 I I 1 I

ASCII Character Equivalent

This table shows that each string written by BASIC was terminated by a null
character. There is no carriage return or line feed.

Examples of ASCII File Access

The file types demonstrated so far have been HP-UX files that both BASIC
and HP-UX can easily access with a native language program. When the file
type is a ASCII file, it can still be accessed from HP-UX.

This example writes real numbers into a ASCII file.

Porting and Sharing Files 4-19

4

10 RE-STORE "SHARE_ASC"
20
30 Create t Assign the output file.
40
50 CREATE ASCII "ASC_DATA",l
60 ASSIGN GFile TO "ASC_DATA"
70
80 ! Output the data to the ASCII file.
90
100 FOR N=-9.0 TO 8.5 STEP .07
110 OUTPUT GFile;N
120 NEXT N

4
130 ASSIGN IFile TO *
140
150 END

The next program is an HP -UX C program to read the data file that the above
BASIC program wrote. .

4·20 Porting and Sharing Files

#include <stdio.h>
#include <math.h>
mainO
{

}

float Y, Result, rval;
short 1[1];
int J, X;
char Strng[40];
FILE *datafile, *fopen();

/*** ***/
/*** Open file to read data ***/
/*** ***/
datafile = fopen("/users/workstation/basic/files/ASC_DATA", "r");
if (datafile == NULL) {

}

printf("Can't open file.\n");
exit(l);

/*** ***/
/*** Get voltage data from file and print data ***/
/*** ***/
fseek(datafile, 512, 0);
for (X = 1; X <= 250; X += 1) {
fread«char *)1, sizeof(I), 1, datafile);
rval = 1[0];
if «Result = fmod(rval, 2.0» != 0.0)
1[0] ++;

J = 0;
while (J < 1[0]) {

}

Strng[J] = getc(datafile);
J++;

sscanf (Strng, "%f", lY);
printf("%f\n",Y);

}

fclose(datafile);

In this HP-UX C example, the file ASC_DATA is the ASCII file into which the
BASIC program wrote 250 real values. Note that the HP-UX C program reads
the 2-byte length header with the "fread" routine, then uses this length number
to read the same number of characters with the "getc" routine. The "sscanf'
routine then converts each string back to the real number value with the "%f'
conversion specification. This program also requires the "fseek" routine to force

Porting and Sharing Files 4-21

4

4

the file pointer to skip over the 512-byte header block that BASIC inserts at
the beginning of the ASCII file.

Below is the hexadecimal dump of significant portions of the first 560 bytes
of the file ASC_DATA, which shows how BASIC formatted the data when it
wrote to this AS CII file.

BYTE' +0 , +1 , +2 , +3 , +4 , +5 , +6 , +7 , +8 , +9 ,
----+------+------+------+------+------+------+------+------+------+------+

0 , 80 , 0 , 48 , 46 , 53 , 4c , 49 , 46 , 0 , 0 ,
10 , 0 , 1 , 10 , 0 , 0 , 0 , 0 , 0 , 0 , 1 I
20 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 I
30 I 0 I 1 , 0 , 0 I 0 I 3 I 11 I 11 I 11 I 11 I
40 I 11 I 11 I 0 I 0 I 0 I 0 , 0 I 0 I 0 I 0 I

240 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 11 11
250 11 I 11 I 11 I 11 I 0 I 0 I 57 I 53 I 5f 46
260 49 I 4c , 45 I 20 I 20 I 20 I 0 I 1 I 0 0
270 0 , 2 I 0 I 0 I 0 , 3 , 86 I 12 I 5 15
280 54 I 16 I 80 I 1 I 0 I 0 I 0 I 0 I 0 0
290 0 , 0 I 0 I 0 I 0 , 0 I 0 I 0 I ff ff

510 0 I 0 0 2 I 2d 39 0 I 5 I 2d I 38
520 2e I 39 33 20 I 0 5 2d I 38 I 2e I 38
530 36 I 20 0 5 I 2d 38 2e I 37 I 39 I 20
540 0 I 5 2d 38 I 2e 37 32 I 20 I 0 I 5
550 2d , 38 2e 36 , 35 20 0 , 5 I 2d I 38

ASCII File Contents with Real Values

4-22 Porting and Sharing Files

The ASCII equivalent of this same data is shown below.

BYTE I +0 +1 +2 +3 +4 I +5 +6 +7 I +8 +9
----+------+------+------+------+------+------+------+------+------+------+

0 180hex I "NUL" H F S L I F I "NUL" I "NUL"
10 I "NUL" I "SOH" I "OLE" I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" I"SOH"
20 I "NUL" I "NUL" I "NUL" I "NUL" 1 "NUL" I "NUL" 1 "NUL" 1 "SOH" 1 "NUL" 1 "NUL"
30 I "NUL" I "SOL" I "NUL" I "NUL" I "NUL" I "EXT" I"DC1" I"DC1" I"DC1" I"DC1"
40 I"DC1" I"DC1" I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" I "NUL"

240 I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" I"DC1" I"DC1"
250 I"DC1" I"DC1" I"DC1" I"DC1" I "NUL" I "NUL" W S I I F
260 I I I L I E I I "NUL" I "SOH" I "NUL" I "NUL"
270 I "NUL" I "STX" I "NUL" I "NUL" I "NUL" I "EXT" I 86hex I "DC2" I "ENQ" I "NAK"
280 T I "SYNC" 180hex 1 "SOH" I "NUL" I "NUL" I "NUL" 1 "NUL" 1 "NUL" I "NUL"
290 I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" I "NUL" IFThex IFFhex

510 I "NUL" I "NUL" I "NUL" I "STX" 9 1 "NUL" 1 "ENQ" 8
520 9 I 3 I I "NUL" I "ENQ" I I 8 8
530 6 I "NUL" I "ENQ" I 8 I I 7 9
540 I "NUL" I "ENQ" I 8 1 7 I 2 1 I "NUL" I "ENQ"
550 I 8 I 6 5 I I "NUL" 1 "ENQ" I 8

ASCII Character Equivalent

This table shows the 512 byte header block that BASIC puts at the beginning
of a LIF ASCII file on HFS disks. The portions of this block not shown in the
table contains all zeros. This table also shows the 2-byte length header at the
beginning of each string. Note that the strings have no added termination
characters.

HP-UX File Dump Utility

When debugging problems that can arise from BASIC and HP-UX sharing
data files, it may be necessary to look at the contents of data within the file.
This program is an HP-UX C program to read the contents of a file and display
the contents in hexadecimal format.

Porting and Sharing Files 4-23

4

4

#include <stdio.h>
main (argc, argv)
int argc;
char *argv[];
{

int X, Y, values [20] , start, ~nd;
FILE *datafile, *fopen();

printf("Contents of %s\n" ,argv[l]);
1*** ***1
1*** Open file to read data ***1
1*** ***1
datafile = fopen(argv[l] , "r");
if (datafile == NULL) {
printf("Can't open file %s\n",argv[l]);
exit (1);

}

1*** ***1
1*** Get data from file and print data ***1
1***
sscanf (argv [2], "%d", &start);
sscanf(argv[3], "%d", &end);
fseek(datafile, start, 0);
printf(IBYTEI") ;
for (X = 0; X <= 9; X += 1) {
printf("%4+d I",X);

}

printf(lI\n") ;
for (X = 0; X <= 3; X += 1) {
printf("_II);

}

printf(II+") ;
for (Y = 0; Y <= 9; Y += 1) {
for (X = 0; X <= 5; X += 1) {
printf("_") ;

}

printf("+");
}

printf("\n") ;
for (Y = start; Y <= end; Y +=10) {
printf("%3d I",Y);
for (X = 0; X <= 9; X += 1) {

values[X] = getc(datafile);
values[X] = values[X] & 0377;

4·24 Porting and Sharing Files

***1

}

}

printf (II%4:x: I II , values [X]) ;
}

printf("\n");

fclose(datafile);

Once this program has been compiled, it is executed by the following syntax:

prog_name file_name start end

in which:

prog_name

file_name

start

end

is the name of the compiled program that is to be executed

is the file to dump

is the starting byte at which to begin the dump

is the last byte of the dump

Porting LIF Files to SRM
This section summarizes ways you can modify existing programs that use LIF
disks to allow those programs to access the SRM system.

When modifying programs to access SRM-controlled mass storage device(s),
you should be aware that:

• LIF and SRM mass storage file specifiers may differ and string variable
names that contain file specifiers may need corresponding modification.

• References to mass storage volume specifiers (msvs) throughout the program
may have to be altered.

• Allowances may have to be made for directory path specification.

• LIF protect codes may differ from SRM passwords. The syntax for
protecting SRM files is different from that used for LIF files.

Porting and Sharing Files 4-25

4

4

SRM File Specifiers

Composition of SRM File Names

All file names for local mass storage are one to 10 characters long, while SRM
file names contain one to 16 characters. Remote file names can contain the
period character (.) while local files cannot. If file name compatibility
between resources is required, use 10 or fewer characters and do not use periods
within SRM file names.

SRM File and Mass Storage Device Specification in String Variables

Modifying programs for use with SRM resources generally requires changing
the value, and often the length, of the string variables used to specify files
and mass storage devices. The statements that assign the actual values to the
string variables may have to be modified individually.

Some programs use one string variable for the entire file specifier. For instance:

100 DIM File_specifier$[32]
110 LINPUT "Enter file specifier" t File_specifier$
120 ON ERROR GOTO 110 ! Try again if improper specifier.
130 ASSIGN IPath TO File_specifier$
140 OFF ERROR

If one variable is used for all file specifiers (as in the preceding example), only
the length of the variable needs to be changed to allow for the additional
characters allowed in SRM file specifiers.

The maximum number of characters that can be entered into a string variable
from the key board in one operation is a good size for a file specifier variable .

• Series 200 Models 216, 220, 226 and 236 allow up to 160 characters. Series
300 computers with medium-resolution displays also allow 160 characters .

• Model 237 allows 256 characters. Series 300 computers with high-resolution
displays also allow 256 characters.

Thus, the length of File_specifier$ in the preceding example's DIM
statement would be changed from 32 to 160 or 256, accordingly.

Note that the system mass storage device (the current MASS STORAGE IS
device) will be accessed if no msvs is explicitly specified.

4·26 Porting and Sharing Files

SRM Mass Storage Volume Specification

Some programs use separate variables for the file name and volume specifiers.
For example:

ASSIGN GPath TO Filename$lMsvs$

If so, both variables may have to be dimensioned to greater lengths. Allowing
34 characters for the file name variable accommodates a 16-character file
name, a 16-character password, and the "<" and ">" password delimiters (for
example, "ASCDEFGHIJ123456<1234567890123456>"). The SRM volume
specifier may occupy up to 54 characters.

Other programs may use MASS STORAGE IS statements throughout the
program instead of including the msvs in each file specifier. For instance:

MASS STORAGE IS Left_drive$
ASSIGN GFile TO File_name$

Unless variable(s) are used to specify the msvs and each variable is assigned a
value in only one place, you may have to modify each MASS STORAGE IS
statement to specify the desired SRM volume.

Allowing for SRM Directory Paths

Suppose the following program needs to be modified to include a SRM file's
directory path.

100 DIM Filename$[14],Msvs$[20]

500 Filename$="SLIDES"
510 Msvs$=":HP9895,700"

1000 ASSIGN GFile TO Filename$lMsvs$
1010 OUTPUT GFile;Data(*)
1020 ASSIGN GFile TO *

2000 ASSIGN GFile TO Filename$lMsvs$

Porting and Sharing Files 4-27

4

4

2010 OUTPUT GFile;Data(*)
2020 ASSIGN GFile TO *

In the next example, it is probably easiest to add another string variable for
the (optional) directory path name. For example:

100 DIM Dir_path$[160],File_name$[80],Vol_spec$[80]

500 Dir_path$="FRED/DATA_FILES/"
510 File_name$="SLIDES"
520 Vol_spec$=":REMOTE 21,1"

1000 ASSIGN GFile TO Dir_path$&:File_name$&:Vol_spec$
1010 OUTPUT GFile;Data(*)
1020 ASSIGN GFile TO *

If the Dir _path$ variable is null, the statement looks exactly like it did before
the modification. If the Vol_spec$ variable is null, the current mass storage
device is accessed. The only difference is in the allowable length of the string
variables.

SRM Passwords vs. LIF Protect Codes

The PROTECT statement syntax for SRM files is different from the syntax for
LIF files. Depending on the type of mass storage that is being used, you can
use either of the following to decide which syntax will be used:

1. Try the non-SRM syntax with an ON ERROR statement enabled. If an
error occurs, see if it indicates that the mass storage device is an SRM. An
Error 1 occurs when the following statement is executed on an SRM file:

PROTECT file specifier, protect code

2. If the program uses a string to store the volume specifier, check for a
non-zero value of POS <Vol_spec$, "REMOTE"). This alternative is easier to
implement than alternative 1 but will not work if the program accesses the
default device when Vol_spec$ is empty.

4-28 Porting and Sharing Files

If the program looks for a password error (Error 62) at ASSIGN time, the
program may have to be modified because the system may not detect the
password error until an ENTER @Path or OUTPUT @Path is attempted.

Copying Item-by-Item Using ENTER and OUTPUT

You may copy a file from LIF to SRM mass storage one item at a time, as
illustrated in the programs that follow. These programs use the ENTER and
OUTPUT statements to copy data item-by-item from a LIF BDAT file to an
SRM BDAT file.

The first program creates and fills a BDAT file named BOAT_FILE.

10 CREATE BDAT IBDAT_FILE:INTERNAL",10
20 ASSIGN GLocal TO "BDAT_FILE:INTERNAL"
30
40 FOR Item=l TO 50
50 OUTPUT GLocal;"String data item"
60 NEXT Item
70
80 ASSIGN GLocal TO *
90 END

The second program copies the contents of BOAT_FILE item-by-item into a file
(also called BOAT_FILE) in the SRM directory named General (shown in the
previous illustration).

100 DIM String_item$[20]
110 CREATE BDAT "PROJECTS/General/BDAT_FILE:REMOTE" ,10
120 ASSIGN fl)Local TO "BDAT_FILE:INTERNAL"
130 ASSIGN GRemote TO "PROJECTS/General/BDAT_FILE:REMOTE"
140
150 FOR Item=l TO 50
160 ENTER G Local;String_item$
170 OUTPUT GRemote;String_item$
180 NEXT Item
190
200 ASSIGN GLocal TO *
210 ASSIGN fl)Remote TO *
220 END

Porting and Sharing Files 4-29

4

4

Accessing Files Created on
Non-Series-200/300 SRM Workstations

Regardless of the kind of the computer or language system, ASCII files can be
shared among all workstations on the SRM.

This example shows how you can access an ASCII file named Prog_x, which
was created on an HP 9845 with the SAVE ASCII statement.

In this example, Prog_x is in an HP 9845 workstation user's directory called
COMMON. COMMON is located in the directory WORK_45, which is at the root of the
SRM directory structure. The password mypass protects the READ capability
on WORK_ 45. All access capabilities on COMMON are public.

To access Prog_x on a Series 200/300 Workstation, you would type:

GET "WORK_45<mypass>/COMMON/Prog_x:REMOTE"

or

GET "/WORIC 45<mypass> /COMMON/Prog_x"

The system would then put Prog_x into your workstation. Keep in mind that,
with GET, any lines containing syntax that is invalid for Series 200/300 BASIC
will be stored as commented program lines (such as 100! BEEPER 10,10).

4-30 Porting and Sharing Files

BASIC/UX Differences
and Enhancements

Introduction
There are three implementations of HP BASIC:

5

BASIC/WS The Workstation implementation, which is a combined
language and operating system that runs on HP 9000 Series
200/300 computers.

BASIC /DOS BASIC /DOS is an implementation of HP BASIC for the HP

BASIC/UX

Measurement Coprocessor, that plugs into a PC. 5

The HP-UX implementation, which is essentially the BASIC
interpreter and part of the BASIC Workstation operating
system that runs as a set of processes "on top of' the HP -UX
operating system.

This chapter describes the differences and enhancements that BASIC/UX
provides to the BASIC /WS implementation. (It does not describe the
differences between BASIC/DOS and BASIC/WS. See the documentation
supplied with the HP Measurement Coprocessor for that information.)

Prerequisites to Reading this Chapter
In order to understand the information in this chapter, you should:

• Already be familiar with the BASIC/WS implementation of HP BASIC
(otherwise, this "delta" information will not make much sense to you) .

• Have a copy of the BASIC/UX manual set available (so you can look up
some of the details of the brief descriptions given here).

BASIC/UX Differences 5·1
and Enhancements

5

Compatibility Between BASIC/UX and BASIC/WS
The BASIC lUX implementation is highly compatible with the BASIC /WS
implementation. Nearly all programs written for BASIC /WS will run
(with minor modifications) on the BASIC lUX system. However, because
BASIC/WS has its own operating system and BASIC/UX runs on the HP-UX
operating system:

• Some BASIC/WS keywords do not work on BASIC/UX.

• Some BASIC /WS keywords work differently on BASIC lUX.

• BASIC/UX has also added new keywords to the BASIC/WS keyword set.

This chapter provides a brief summary of these differences and enhancements.
For a detailed description of a particular difference or enhancement, refer to the
BASIC manual specified in the table entry (in this chapter) that describes that
feature.

Are You Porting BASICfWS Programs to BASIC/UX ?

One of the main benefits of reading this chapter is that it will help you
determine what will be required to port existing BASIC /WS programs to run
on the BASIC lUX system. If you are porting existing software, you should at
least scan this chapter before reading the chapter called "Porting BASIC /WS
Programs to BASIC/UX."

Summary of BASIC/UX Differences

The following tables list the differences between BASIC lUX and BASIC /WS
keywords.

5-2 BASIC/UX Differences
and Enhancements

BASIC/WS
Keyword/Feature Description

ALPHA ON and Turns the alphanumeric
ALPHA OFF display on or off.

ASSIGN Assigns an I/O path
name and attributes to a
device, group of devices,
a mass storage file, or a
buffer.

CAT Lists the contents of a
mass storage directory or
provides information on a
specified PROG file.

BASIC/UX
Description

On a console, these keywords
function the same as for BASIC/WS.
However, on a terminal or in X
Windows these keywords are no-ops.
The reason for this is on terminals
alpha and graphics are separated and
cannot be merged and in X Windows
alpha and graphics are merged and
cannot be separated.

Extended to allow piping to/from
HP-UX commands (such as II I Ipll)
and to allow output to windows.

For HFS directories, the device
selector, unit, and volume numbers
normally found in the first line are
not displayed, and the device type
is shown as HFS. Also, CAT on
BASIC/UX recognizes additional file
types which may be found on HFS
volumes (e.g., PIPE). CAT has not
changed for LIF or SRM directories.

BASIC/UX Differences 5-3
and Enhancements

5

5

BASIC/WS
Keyword/Feature Description

CONTROL CRT,18 Sets the alpha
write-enable mask to a bit
pattern.

CONTROL CRT,21 Switches between Series
200 CRT compatibility
mode and native
hit-mapped mode.

CONTROL KBD,11 Sets the knob pulse mode.

CONTROL 32 This pseudo select code is
used to turn on and off
parity checking, system
(memory) cache, and
processor (instruction)
cache.

CREATE Creates a new file.

5-4 BASIC/UX Differences
and Enhancements

BASIC/UX
Description

Same as the description for
the keywords ALPHA ON and
ALPHA OFF.

Not supported.

KNB2_0 binary functionality is not
supported on BASIC/UX.

Control registers 0, 1, and 3 are
not supported on pseudo select
code 32; however, all of its status
registers are supported.

The default permission for files
and directories created on HFS
volumes may be modified using
the HP-UX umask (1) command.

BASIC/WS
Keyword/Feature Description

Datacomm and Supported as stated in
Serial Interfaces: the BASIC Interfacing

• CONTROL
Techniques manual.

Registers

• STATUS Registers

DUMP ALPHA Copies the output of the
DUMP GRAPHICS alpha or graphics display

to a printing device.

DUMP DEVICE IS Specifies which device
receives the data when
either DUMP ALPHA or
DUMP GRAPHICS is
executed without a device
selector.

BASIC/UX
Description

Some registers are not supported
or have slightly different
definitions, some registers have
been added, and READIO and
WRITEIO are not supported.
Also, the HP 98642A 4-Channel
Multiplexer has been added as a
new datacomm interface card that
is supported by BASIC/UX.

Extended to support output to
windows and named or unnamed
pipes. Note that windows can only
receive alpha output. Also, DUMP
GRAPHICS is not supported on
terminals.

Extended to support output to
windows and named or unnamed
pipes. Note that windows can only
receive alpha output.

BASIC/UX Differences 5-5
and Enhancements

5

5

Keyword/Feature

ENTER

ERRM$
ERRN

BASIC/WS
Description

U sed to input data
from a specified source
and assign the value(s)
entered to variable(s).

ERRM$ returns the text
of the error message
associated with the most
recent program execution
error. ERRN returns the
number of the most recent
error.

BASIC/UX
Description

Extended to support input from a
named or unnamed pipe.

BASIC/UX provides new errors in
the range 186 to 198 and 810 to
867. (All error messages are listed
in the appendices of the BASIC
Language Reference and BASIC
Condensed Reference.)

GESCAPE CRT, 7 Sets the graphics write- Not supported in windows or
and display-enable masks. terminals.

GLOAD

GRAPHICS
INPUT IS

Loads the contents of an
INTEG ER array into a
frame buffer.

Assigns the graphics
input device for
DIGITIZE, READ
LOCATOR, etc.

5-6 BASIC/UX Differences
and Enhancements

Not supported on terminals.

Works the same as with
BASIC/WS on a console. In a
window environment, use the
keyword SET HIL MASK to select
graphics input devices not used by
the window manager. Terminals
are restricted to input from the
keyboard.

BASIC/WS
Keyword/Feature Description

GRAPHICS ON Turns the graphics
GRAPHICS OFF display on or off.

GSTORE Stores the contents of
the frame buffer into an
INTEG ER array.

HFS Formatted Requires that HFS disks
Disks be connected to the

system to access them.

BASIC/UX
Description

Same as the description for
the keywords ALPHA ON and
ALPHA OFF.

Not supported on terminals.

Requires that all HFS disks be
"mounted" before they can
be accessed. This allows file
buffering to be performed, which
greatly improves performance.
Also note that with BASIC/UX,
all HFS volumes are joined
into a single hierarchy (by the
HP-UX operating system). In
addition, STATUS register 2 is
not supported for an I/O path
name assigned to a file on an HFS
volume.

BASIC/UX Differences 5-7
and Enhancements

5

5

BASIC/WS
Keyword/Feature Description

HP-HIL Commands: These HP-HIL commands
work as stated in

IDD Appendix A of the
RNM BASIC Workstation
EXD Interfacing Techniques

RST manual.

RSC

INITIALIZE Prepares (formats) mass
storage media for use by
the computer.

Interfaces not Supported as stated
supported on in the BASIC /WS
BASIC/UX: documentation.

• BCD
• EPROM
• Powerfail

• Bubble Memory

KNOBX Return the net number
KNOBY of horizontal knob pulses

(KNOBX) or vertical
knob pulses (KNOBY).

5-8 BASIC/UX Differences
and Enhancements

BASIC/UX
Description

Since BASIC/UX cannot
determine the number of bytes
in a packet of information
returned when you execute these
commands, it uses the null byte
as a packet terminator. This
means that it will return up to the
maximum number of bytes in a
packet and ignore all trailing null
bytes.

Works the same as with
BASIC/WS; however, only
an unmounted disk may be
INITIALIZE'd.

These interfaces are not supported
on BASIC/UX; however, you can
gain access to their hardware by
using the keywords READIO and
WRITEIO.

Use BASIC/WS 3.0 definitions
(and the KNB2_0 binary/definition
is not supported).

BASIC/WS
Keyword/Feature Description

LIST Lists the program
currently in memory, and
then shows the amount
of memory available for
program storage.

LIST BIN Lists the name and
version number of each
binary currently in
memory.

LOAD BIN Loads binaries into
memory.

ON/OFF CYCLE Enable/cancel
ON/OFF DELAY event-initiated branches.
ON/OFF TIME
ON/OFF TIMEOUT

OUTPUT Outputs items to a
specified destination
(device, I/O path, or
string variable).

BASIC/UX
Description

Lists the program, and then shows
the sum of the memory available
for program storage, stack, and
COM.

Functions the same as with
BASIC/WS; however, the LIST
BIN command will list all
BASIC/WS binaries (the display
will not vary since all binaries are
always loaded).

Not supported by BASIC/UX,
because all BASIC/WS binaries
are part of the BASIC/UX system.

Work the same as with
BASIC/WS; however, clock/timer
resolution is 20 milliseconds (vs.
10 for BASIC/WS). A child
process of BASIC/UX is spawned
to handle timers.

Works the same as with
BASIC/WSj however, you can also
output to a window and named or
unnamed pipe.

BASIC/UX Differences 5-9
and Enhancements

5

5

BASIC/WS
Keyword/Feature Description

Memory Volume BASIC/WS allows you to
create a memory volume
in your computer's
random access memory
(RAM). This provides a
fast means for storing and
retrieving files.

msvs Allows you to specify
(mass storage mass storage devices
volume specifier) other than the default

volume.

PASS CONTROL Passes Active Controller
capability to a specified
HP-IB device.

5-10 BASIC/UX Differences
and Enhancements

BASIC/UX
Description

BASIC/UX will not support
TRANSFERs to memory volumes.
Also, BASIC/UX only supports
LIF formatted memory volumes.
It does not support HFS formatted
memory volumes.

Allows mapping of a volume
specifier to an HP-UX directory
name by using the specifier DISK
in your BASIC/UX configuration
file (.rmbrc). Also when the
device type is HFS, the device
selector is ignored unless it is
mapped. Finally, ": HFS" may
be used to refer to the current
working directory (the HFS
directory that you had most
recently moved to using the MASS
STORAGE IS command).

Passing control to an interface
connected to a swap device or a
mounted file system is not allowed.

BASIC/WS
Keyword/Feature Description

PLOTTER IS PLOTTER IS selects the
system plotting device.

PRINTALL IS PRINTALL IS selects a

PRINTER IS
printing device for error
messages, and PRINTER
IS specifies the default
system printing device
(for PRINT, CAT, etc.).

PRINT LABEL Gives a name to a mass
storage volume.

READ LABEL Reads a volume label into
a string variable.

RE-SAVE Creates an ASCII file and
copies program lines as
strings into that file.

"Run Light" and An asterisk (*) and
Other Activity other textual messages
Indicators are shown in the lower,

right-hand corner of the
screen.

BASIC/UX
Description

These statements have been
extended to allow:

• piping of output to an HP-UX
command (for instance, to a
spooler such as II I pIt").

• redirection of output to a
window.

Also, PRINTALL IS has been
extended to include files.

Not supported on HFS volumes.

Not supported on HFS volumes.

BASIC/UX will create an HP-UX
type file instead of an ASCII file
when saving a program on an HFS
volume.

BASIC/UX provides:

• No Run Light indicator (this is
on if KEY LABELS is off);

• A new activity indicator
(Execute).

BASIC/UX Differences 5-11
and Enhancements

5

5

BASIC/WS
Keyword/Feature Description

SAVE Creates an ASCII file and
copies program lines as
strings into that file.

SC Returns the interface
select code associated
with an I/O path name.

SCRATCH BIN Clears what SCRATCH
A does, plus it clears all
binaries except the CRT
driver for the CRT in use.

SEPARATE ALPHA Used to simulate the
FROM GRAPHICS separate alpha and

graphics rasters of Series
200 displays.

SET ALPHA Sets the alpha
MASK write-enable mask to a bit

pattern

SET DISPLAY Sets the display
MASK write-enable mask to a bit

pattern.

5-12 BASIC/UX Differences
and Enhancements

BASIC/UX
Description

BASIC/UX will create an HP-UX
type file instead of an ASCII file
when saving a program on an HFS
volume.

Not supported for an I/O path
name assigned to a file on an HFS
volume. Also, it is not supported
for HP-UX pipes.

All binaries are permanently
loaded and therefore are
non-scratchable.

Same as the description for
the keywords ALPHA ON and
ALPHA OFF.

Same as the description for
the keywords ALPHA ON and
ALPHA OFF.

Same as the description for
the keywords ALPHA ON and
ALPHA OFF.

BASIC/WS
Keyword/Feature Description

SET TIME Resets the time-of-day
given by the real-time
clock.

SET TIMEDATE Resets the absolute
seconds (time and date)
given by the real-time
clock.

SRM Interface Provides access to the
HP Shared Resource
Manager.

STATUS and Supported as described in
CONTROL the BASIC Interfacing
Registers: Techniques manual.

• Datacomm

• RS-232

BASIC/UX
Description

Affects the "local" BASIC/UX
clock value only (HP-UX system
time and date will not change). It
also allows re-synchronization with
HP-UX time.

Affects the "local" BASIC/UX
clock value only (HP-UX system
time and date will not change). It
also allows re-synchronization with
HP-UX time.

BASIC/UX only supports one
SRM interface card per system.
Also, the semantics for LOCK
are different if more than one
BASIC/UX process is running on
the same system. Finally, support
is only provided for SRM STATUS
registers 3 and 6.

Some registers are not supported
or have slightly different
definitions.

BASIC/UX Differences 5-13
and Enhancements

5

5

BASIC/WS
Keyword/Feature Description

STORE SYSTEM Stores the BASIC/WS
operating system and
all binaries currently in
memory.

SYSBOOT Returns control to the
BOOT ROM to restart
the system selection and
configuration process.

SYSTEM$ Returns the amount of
("AVAILABLE memory available for
MEMORY") program storage.

SYSTEM$ Returns
("MASS XOOOYZOOOOOOOOOO where:
MEMORY")

X= Number of internal
disk drives;

Y= Number of
initialized EPROM
cards;

Z= Number of bubble
memory cards.

(If Y or Z exceed 9, an
asterisk appears.)

5-14 BASIC/UX Differences
and Enhancements

BASIC/UX
Description

Not supported on BASIC/UX (not
needed, since there are no separate
binaries).

Not supported on BASIC/UX.

Returns the sum of the memory
available for program storage,
stack, and COM.

Always returns
0000000000000000.

BASIC/WS
Keyword/Feature Description

SYSTEM$ Returns the mass storage
("MASS unit specifier of the
STORAGE current MASS STORAGE
IS") IS device as it appears in

the CAT heading.

SYSTEM$ Returns one of the
("SERIAL NUMBER") following:

• Bytes 4-14 of an ID
PROM (if present);

• an encoded serial
number from an
HP-HIL ID module (if
present);

otherwise, it returns the
null string.

TIMEDATE Returns the current value
of the real-time clock.

BASIC/UX
Description

For HFS volumes, the device
selector, unit, and volume
numbers are not shown. For
LIF and SRM volumes, it has
not changed.

Returns an encoded serial
number from an HP-HIL ID
module (if present);

(ID PROMs are only available
with Series 200 computers);

otherwise, it returns the null
string.

Works the same as with
BASIC/WS; however,
resolution is limited to 20
milliseconds (vs. 10 ms with
BASIC/WS).

BASIC/UX Differences 5-15
and Enhancements

5

5

BASIC/WS
Keyword/Feature Description

TIMEZONE IS Specifies the offset from
Greenwich Mean Time,
providing compatibility
with HP-UX time stamps
on files when switching
back and forth between
the BASIC and HP-UX
systems.

TRANSFER Initiates unformatted
I/O transfers, which can
take place concurrently
with continued program
execution.

WAIT Causes the computer
to wait approximately
the number of seconds
specified before executing
the next statement.

5-16 BASIC/UX Differences
and Enhancements

BASIC/UX
Description

Works the same as on BASIC/WS;
however, when used without
a parameter the time zone is
resynchronized with the HP-UX
time zone.

Supports BASIC/WS
TRANSFER-related statements:

• Memory-mapped I/O is selected
if burst I/O is associated with
an I/O path name .

• Concurrent inbound & outbound
TRANSFERs are not permitted
on an RS-232 interface.

• Runs as a separate process.

TRANSFER is only supported for
HFS and not for SRM, LIF, or
MEMORY volumes.

Works the same as on BASIC/WS;
however, resolution is load
dependent, but generally 60
milliseconds (vs. 10 ms on
BASIC/WS).

BASIC/UX Mass Storage Differences

This section covers mass storage differences between BASIC IWS and
BASIC lUX. Topics covered are:

• Maximum Number of Open HFS Files

• Locking S RM Files

• Leaving SRM Files Open

• SRM Security

• Using a Single SRM Interface Card with BASIC/UX

• Accessing LIF Media by a Single User

Maximum Number of Open HFS Files

The HP-UX operating system imposes a limit on the maximum number of file
descriptors that each process may use at any time (currently 60). BASIC lUX
generally uses at least 10 of these internally, plus one for each device in use.
Any time an HFS file is opened, another file descriptor is put into use until the
file is closed. Note that opening a LIF or SRM file does not require the use of
a file descriptor. If the maximum number of open files is reached, then some
files must be closed. This may be done by executing ASSIGN TO *, pressing the
(Resed key, or executing SCRATCH A.

Locking SRM Files

BASIC lUX allows several instances of HP BASIC to be run on the same
system. However, the SRM server assumes that each process is running on a
different system. Because of this, the semantics of LOCK are different if more
than one BASIC lUX process is trying to access the same file at the same time.
For example, an ENTER normally hangs until the file is unlocked. If the file
is locked by another BASIC lUX process on the same system, however, the
ENTER returns error 481.

Leaving SRM Files Open

Because the BASIC IWS is a single user system, it can request that the
SRM server close all files open for that system. This "clean up" operation is
performed when the system boots, when a [Resed key or SCRATCH A is done,

BASIC/UX Differences 5-17
and Enhancements

5

5

etc. BASIC lUX, however, is a multi-user system, and such an action could
cause the files of other users on the same system to be closed inappropriately.
BASIC lUX attempts to close all files that it opens, however, there may
occasionally be some left open for this reason. In general this is not a problem.
These files may be closed by executing the "remove user" command on the
SRM console, or running the hp-ux srmclean(l) utility. Be sure that no one
else is using the SRM from that system before taking these actions.

SRM Security

Because the hp-ux operating system allows multiple users to access the SRM
from the same system, some access security is lost.

Using a Single SRM Interface Card with BASIC/UX

The HP-UX operating system only supports one SRM card per system. This
card can be shared simultaneously by several processes (BASIC/UX and/or the
HP-UX SRM utilities), however, the performance will decrease as the number
of processes using it increases.

Accessing LIF Media by a Single User

It is highly recommended that only one process access a LIF media at a time.
The HP-UX operating system coordinates multiple processes accessing the HFS
file system simultaneously, and the SRM server does the same thing for the
SRM file systems. However, there is no such support for multiple processes
accessing the same LIF media simultaneously. For this reason, if more than one
process does try to access the same LIF media at the same time, the media
may become corrupt and data may be lost. Also, the accurate detection of
media change can only be done when one process is accessing the media. Single
process access is enforced for Amigo protocol devices. Once a process has
begun accessing an Amigo protocol device, it "owns" that device until the
{Resetl key is hit, a SCRATCH A is performed, or the process terminates.

5-18 BASIC/UX Differences
and Enhancements

Overview of BASIC/UX Enhancements
Since BASIC/UX runs on the HP-UX operating system, it provides you with
essentially all of the capabilities of HP-UX. Here are the categories of these
new features:

• Multi-tasking (the ability to run several processes/programs concurrently
for example, support of HP terminals).

• Multi-user environment (the ability for several users to use the system
simultaneously).

• Additional system status and configuration information (regarding processes,
operating system, and windowing system).

• Ability to run HP-UX commands from within BASIC/UX.

• Networking capabilities (such as remote file access and network file transfer).

• Window management capabilities (X Windows). 5

• Additional interface control:

o Interface mapping (for non-supported interfaces)

o Interface locking.

o Burst I/O.

• Use of HP-UX pipes.

• Selecting HP-HIL devices.

• HP -UX signal handling.

• HFS File buffering.

• Graphics buffering.

The following tables list the BASIC/UX enhancements to BASIC/WS.

BASIC/UX Differences 5-19
and Enhancements

5

Entering and Exiting
the BASIC/UX Environment

Since the BASIC/UX system runs on the HP-UX operating system, you have
the ability to enter BASIC/UX from an HP-UX shell prompt. (You can
also have your System Administrator set up your console to automatically
"wake up" in the BASIC/UX system. See the Installing and Maintaining the
BASIC/UX System for details.)

Keyword/Feature Description

rmb Enters you into the BASIC/UX system (from an
HP-UX shell).

QUIT Exits you from the BASIC/UX system (returns you to
an HP-UX shell).

Multi-Tasking and Multi-User Capabilities

You can run several BASIC lUX processes at the same time by executing the
rmb command from within a windowing environment (while in an HP-UX
shell). Each BASIC/UX process can be running a separate BASIC/UX
program at the same time that other processes are running. (See Using the
BASIC/UX System for instructions.)

You can also have several users running processes concurrently on the HP-UX
system. Each one will be on a separate console or terminal. (See the HP-UX
documentation for more details on this capability.)

System Status and
Configuration Information

The SYSTEM$ function has some additional capabilities with BASIC lUX.

5·20 BASIC/UX Differences
and Enhancements

Keyword/Feature Description

SYSTEM$("PROCESS ID") Returns the process identifier of the main
BASIC/UX process.

SYSTEM$("VERSION :OS") Returns the operating system version and
name.

SYSTEM$ Returns information that describes the
("WINDOW SYSTEM") windowing system currently in use.

Running HP-UX Commands from within BASIC/UX

You can send commands to HP-UX while in the BASIC/UX system. For
instance, the following command returns a printout of a calendar for the
current month:

EXECUTE "cal"

The results of the command appear in the HP-UX window from which
BASIC/UX was started.

Keyword/Feature Description

EXECUTE Gives you access to the HP-UX operating
system for executing commands and
programs.

Window Management

A windowing system gives you the ability to partition your screen into several
"panes", each of which is the display for a process. The BASIC/UX system
uses the X Windows system. (The X Windows documentation provides a more
complete description of a windowing system.)

BASIC/UX Differences 5-21
and Enhancements

5

5

Keyword/Feature Description

CLEAR WINDOW Clears the contents of the specified window.

CONTROL CRT, 22 ShufHesa specified window number to the top or
bottom of the window stack.

CREATE WINDOW Creates a window which can be accessed by
BASIC/UX.

DESTROY WINDOW Deletes a window created by BASIC/UX.

LIST WINDOW Shows a list of all active BASIC/UX windows.

MOVE WINDOW Moves a window to another x-y location on the
screen.

SCRATCH WINDOW Destroys all windows created from within the
current BASIC/UX process. (Note that it will
not remove the "boot" BASIC/UX window.)

Additional Interface Control

The BASIC/UX system runs "on top of' the HP-UX multi-tasking, multi-user
system. In this environment, several processes/users may attempt to access an
interface simultaneously. Therefore, BASIC/UX provides a way of "locking" an
interface to a process so that no other process(es) may use it.

BASIC/UX also has the capability of using HP-UX's "burst mode" of I/O
operations. This mode is generally faster than the default (non-burst) mode of
I/O operations used with BASIC/UX.

There are a few interface cards that are not supported by BASIC lUX such as
the EPRO Mand BCD interface cards. To access these interface cards, you
need to use memory-mapped I/O. Once one of these interfaces is memory
mapped into the BASIC lUX address space, you can access locations on the
interface using the keywords READIOand WRITEIO.

The following keywords and registers provide you access to the above
mentioned features:

5-22 BASIC/UX Differences
and Enhancements

Keyword/Feature Description

CONTROL SeLcode, 255 CONTROL turns interface mapping, locking,
STATUS SeLcode, 255 and burst I/O on or off. STATUS queries

the status of locking and burst mode for the
interface at the specified select code.

Using HP-UX Pipes

The HP-UX system has a feature called a "pipe", which is a special memory
buffer that is used to hold the output of one command so that it can be used
as the input to another command. Pipes may be used with the following
commands:

Keyword/Feature

ASSIGN

CONTROL

DUMP DEVICE IS

ENTER

OUTPUT

PLOTTER IS

PRINTALL IS

PRINTER IS

STATUS

TRANSFER

Description

These statements have been extended to allow piping
of output to an HP-UX command (for example, to a
spooler such as II I pIt").

BASIC/UX Differences 5-23
and Enhancements

5

Selecting HP-HIL Devices

With BASICjUX, you have additional control capabilities for HP-HIL devices.
You can enable or restrict a BASICjUX process' access to selected HP-HIL
devices by setting and clearing bits in a mask.

Keyword/Feature Description

SET HIL MASK Enables the specified HP-HIL devices to be used by
the BASIC/UX system. (All other HP-HIL devices
cannot be used by this particular BASIC/UX process.)

Trapping HP-UX Signals

HP-UX processes use signals to communicate among one another. BASICjUX
5 can set up interrupt-branching to trap these signals.

Keyword/Feature

ON EXT SIGNAL
OFF EXT SIGNAL

STATUS 33, Register

ENABLE EXT SIGNAL
DISABLE EXT SIGNAL

5·24 BASIC/UX Differences
and Enhancements

Description

ON EXT SIGNAL defines an end-of-statement
branch to be taken when an HP-UX signal is
received. OFF EXT SIGNAL cancels the branch.

Queries HP-UX system signal information. (The
Register number corresponds to an HP-UX signal.
See the BASIC/UX Language Reference for a
complete list of signals and register numbers.)

Enable and disable a specified HP-UX signal to
cause interrupts (end-of-statement branches) or tG

cause default actions.

HFS File Buffering

File buffering describes the way that the system handles data going to and
coming from a disk.

If file buffering is enabled:
(default for BASIC/UX)

The system writes all file output data into a
memory buffer. This buffer is then written onto
the disk whenever it is filled, and at regular
intervals (typically every 30 seconds) by the
HP-UX syncer (1M) daemon. This buffering
action reduces wear on the disk and speeds up
most disk operations.

If file buffering is disabled: All data output to the file is sent to the memory
buffer then immediately to the disk.

File buffering usually speeds up disk operations, but at the risk of losing the
memory buffer's contents (if power were to fail before the buffer is flushed).

Note that file buffering is only available with HFS files. (LIF files are never
buffered, and only the SRM controller dictates how buffering is handled with
SRM files.)

Keyword/Feature Description

CONTROL la_path, 9 CONTROL turns file I/O buffering on or off. STATUS
STATUS la_path, 9 queries the status of file I/O buffering.

Graphics Buffering

Graphics buffering describes the way that the system handles data going to and
coming from the frame buffer. The following are GESCAPE operation selectors
that help you perform graphics buffering:

BASIC/UX Differences 5-25
and Enhancements

5

Keyword/Feature Description

GESCAPE Operation selectors have the following
definitions:

10 turns graphics buffering on;

11 turns graphics buffering off;

12 returns the current graphics buffering
mode;

13 flushes the graphics buffer.

BASIC/UX Mass Storage Enhancements

5 This section covers mass storage enhancements included with BASIC lUX.
Topics covered are:

• Locking HFS Files

• Accessing Networked HFS File Systems

• Using Long File Names on the HFS File System.

Locking HFS Files

The keywords LOCK and UNLOCK have been extended to work with HFS file
systems. In general, the semantics are very similar to those of the SRM file
system. For information on LOCKing and UNLOCKing HFS files, read the
section "Locking HFS Files" in the chapter "Data Storage and Retrieval" found
in the HP BASIC 6.2 Progmmming Guide.

Accessing Networked HFS File Systems

BASIC JUX has been extended to allow access to networked HFS file systems
through Remote File Access (RFA) and Network File Service (NFS). This
allows files on other systems to be accessed in many of the same ways that
local files are accessed. For information on networking with BASIC lUX, read
the section "If You Have Networking Options" in the chapter "Using HP-UX
Commands in BASICjUX" found in the Using the BASIC/UX System manual.

5-26 BASIC/UX Differences
and Enhancements

Using Long File Names on the HFS File Systems

The HP-UX operating system supports two types of HFS file systems.
The Short File Name (SFN) system has a maximum file name length of 14
characters. Long File Name (LFN) systems, however, allow files names to
be up to 255 characters long. BASIC/WS only supports SFN file systems,
however, BASIC/UX will work with both types. See your HP-UX operating
system documentation for details.

BASIC/UX Differences 5-27
and Enhancements

5

Porting to BASIC/UX

Most BASIC /WS programs will run on a BASIC lUX system with little or
no modification. This chapter describes the process of copying, running,
debugging, and modifying BASIC /WS programs for use on BASIC lUX.

General Steps

6

1. Copy the BASIC/WS program to a disk that you are using for BASIC/UX.
(This is a simple operation, since both systems can access HFS, LIF, and
SRM disks.)

2. Run the program to find all run-time errors. As you encounter each error,
note the BASIC keyword and look it up in the preceding chapter or in the 6
BASIC Language Reference. Make the change, and re-run the program to
find the next run-time error.

3. Once you have corrected all the run-time errors, you should store the
program.

4. Run the program again to locate all silent errors (ones that do not generate
a BASIC error message, but that do cause the program to work differently
on BASIC/UX).

5. Once you have located and corrected all errors, store the program. This will
complete the porting process.

Porting to BASIC/UX 6-1

6

Prerequisite
If you are not already in BASIC/UX, you need to enter it before learning
the above tasks.. For information on how to do this, read the chapter called
"Entering and Leaving BASIC/UX" in the Using the BASIC/UX System
manual.

Copying BASIC/WS Files to BASIC/UX

BASIC /WS programs can be stored in files on three possible disk formats:

• HFS (Hierarchical File System).

• LIF (Logical Interchange Format).

• SRM (Shared Resource Manager).

Since the BASIC/UX system also supports all three of these disk formats, you
must decide whether to use the same disk or to use the HP-UX system's HFS
disk. This section describes the necessary steps for copying files.

Prerequisites

In order to use a LIF disk from BASIC/UX, the appropriate device files must
be set up in your /dev/rmb directory. For information on how to do this,
read the section "Setting Up LIF Devices" in the chapter "Maintaining the
BASIC/UX System" in the Installing and Maintaining the BASIC/UX System
manual.

Copying Files from a LIFDisk

The following steps copy a file from a LIFdisk to your current BASIC/UX
working directory.

1. Catalog the files on the floppy using the CAT command. For example, the
following command assumes you have a disk drive located at device selector
702 with unit 1.

CAT ":,702,1"

6-2 Porting to BASIC/UX

2. Look at the catalog listing of the files on the disk and select the file you
wish to COPY. For example, if you select file Progl, execute the following
command to copy the file into your current BASIC lUX working directory:

COpy "Prog1:,702,1" TO "Prog1"

This file can now be loaded as explained in the section "Debugging the
Program."

Copying Files from an SRM Disk

The following are steps required to copy a file from the SRM file system into
the current working directory of your BASIC lUX system. (These steps assume
your BASIC lUX system is connected to an SRM system through an HP
98629A or HP 50961A interface card located in your computer's backplane.)
The steps are as follows:

1. Catalog the files on the SRM file system using the CAT command. For
example, the following command assumes the SRM interface is located at
select code 8 and the file you are looking for is located in the root-level
"USERS" directory on the server with node number 1.

CAT "/USERS:REMOTE 8,1"

2. Look at the cataloged listing of the files on the disk and select the file you 6
wish to COPY. For example, if you select a file /USERS/Progl, execute the
following command to copy the file into your current BASIC lUX working
directory:

COpy "/USERS/Prog1:REMOTE 8,1" TO "Prog1"

This file can now be loaded into memory as explained the the section
"Debugging the Program."

Copying Files from a
Mounted HFS File System

The following are steps required to copy a file from a mounted HFS disk into
the current working directory of your BASIC/UX system. (These steps assume
the HFS disk has been "mounted" in the HP-UX system. If not, see your
System Administrator.)

Porting to BASIC/UX 6-3

6

The steps are as follows:

1. Catalog the files on the HFS disk using the CAT command. For example,
the following command assumes the HFS disk is mounted at the location of
the" /users" directory.

CAT "/users"

2. The following COpy command copies the file named "Progl" located in the
root-level "users" directory:

COpy l/users/Progl:HFS" TO "Progl:HFS"

where "Progl" is the name of the new copy of the file. (The files can have
the same name if they are not in the same directory.) Note that if your
current MASS STORAGE IS directory is on HFS, you may omit the II: HFS II

portion of the above file specifiers.

Debugging the Program

Overview

This section explains how to load, run, debug, and correct your BASIC /WS
programs.

Prerequisites

You should have already copied all BASIC/WS programs into your current
BASIC/WS working directory.

Loading the Program

To load a program, use either the GET or LOAD command. The GET
command allows you to load ASCII and HP-UX files, and the LOAD command
allows you to load PROG files. To determine whether the file you are loading
is an ASCII or a PROG file, execute the CAT command. This command will
list the TYPE attribute for the files in your current directory or the directory
that you specified when you executed the CAT command. Once you have
determined the type of file you are to load, you can then select the appropriate

6-4 Porting to BASIC/UX

command for loading that file. For example, assuming there is a file named
Progl in the directory you are currently in, you would execute this command:

GET "Prog1" Get an "ASCII" or "HP- UX" type file.

or

LOAD "Prog1" Load a "PROG" type file.

Note that you can MSI to any file system (LIF, SRM, or mounted HFS) and
use the above commands to load a file. For more information on loading
programs read the chapter "Loading and Running Programs" found in the
Using the BASIC/UX System manual.

Running the Program

To run a program that has been loaded into memory, use the RUN command.
For exam pIe, type:

RUN (Return)

or press the soft key ijl~B·i!.

Subsequent pages describe how to correct errors in the program.

Recognizing and Correcting
Run-Time Errors

If the BASIC/UX system should encounter an error while the program is
running (a "run-time" error), it will report an error message containing the line
number where the error occurred. For example:

ERROR 150 IN 110 Bad select code or device spec

where 150 is the error number, 110 is the line number where the error occurred
(in some cases it is the approximate line number), and Bad select code or
device spec is the error message. These items are important in correcting
your program's run-time errors. It would be a good idea to write this
information down as well as the statement that you feel caused the error.

Porting to BASICjUX 6-5

6

6

The steps you need to take toward correcting your run-time errors are as
follows:

1. Look up the error number in the appendix titled "Error Messages" in
the BASIC Language Reference. This will in some cases give you a more
complete error message and better help you determine what is wrong.

2. Use the statement's keyword to direct you to the location in the "Summary
of Keyword Differences" chapter that will help you in most cases find a
solution to the run-time error. For example, if the run-time error is an I/O
error dealing with the TRANSFER statement, then you would look for the
TRANSFER statement in the "Summary of Keyword Differences" table in
the preceding chapter. This table will give you a comparison of how this
keyword is used on BASIC /WS and BASIC lUX. It also refers to a more
detailed tutorial in one of the Techniques manuals. (Note that the BASIC
Language Reference contains the most detailed information on each BASIC
keyword.

3. Once you have found what your error is, correct it and re-run the program.
You should continue to do this until you have corrected all the run-time
errors in your program. When the errors have all been corrected, you should
make sure that there are no "silent" errors in the program. Silent errors are
differences in the way the program actually runs now and how it should run
(see the next section).

4. When there are no more run-time errors in your program, you should
RE-STORE or RE-SAVE it.

Recognizing and Correcting
Silent Errors

Silent errors are differences between:

• The way the program should run, and

• The way it actually runs on BASIC/UX.

They do not generate an error message, as is the case with run-time errors.

For example, the color of your graphics output might have changed. This is
not an error that would cause the program to stop working; however, it is an
error and it must be corrected to make the program function as it did prior to
running it on BASIC lUX.

6·6 Porting to BASIC/UX

The steps to take toward correcting your silent errors are as follows:

1. Locate the places in the program that exhibit behavior different from the
way the program used to work.

2. Isolate the silent error to a certain part of your program by:

• Reading the program listing.

• Single-stepping through the program using the Step key (@ in the
System menu of your ITF keyboard).

• Using the Pause key where unusual behavior occurs.

The procedures for using these statements to troubleshoot a program are
described in the chapter called "Debugging Programs" found in the BASIC
Programming Techniques manual. Following the procedures explained in
these sections will help you find the statement that is causing your silent
error.

3. Use the statement's keyword to direct you to the location in the
"BASIC lUX Differences and Enhancements" chapter that helps you, in
most cases, find a solution to the silent error. For example, if the silent
error is a graphics error dealing with the SEPARATE ALPHA FROM
GRAPHICS statement, then you would look for this statement in the
"Summary of Keyword Differences" table. The table gives you a comparison
of how this keyword is different from BASIC/WS to BASIC/UX. It also
provides a reference to more detailed information. Continue debugging until
you have corrected all errors in your program.

4. When the errors have all been corrected, RE-STORE or RE~SAVE the
program. It is ready for use on BASIC/UX.

Porting to BASIC/UX 6-7

6

Porting to 6.x

This chapter describes the new features of BASIC 6.x. It will help you
determine what to do when moving programs from the 5.0/5.1 revisions of
BASIC to 6.x.

7

BASIC 6.2 is currently available in BASIC/WS, BASIC/UX and BASIC/DOS
implementations.

Compatibility with Previous Revisions
BASIC 6.x is highly compatible with previous versions. This includes
compatibility with the other implementations of HP BASIC including
BASIC lUX and BASIC /DOS. Using BASIC 6.x you can:

• LOAD and RUN program (PROG) files created with STORE on previous
versions of BASIC.

• GET and RUN program (ASCII or HP-UX) files created with SAVE on
previous versions of BASIC. 7

• use all data files (BDAT, ASCII, and HP-UX) created on previous versions of
BASIC.

Note

"
If you are using compiled subprograms (CSUBS), you
must relink them using the BASIC 6.0 CSUB Utility (sold
separately). Refer to the section "CSUB Enhancements" for
more information.

Porting to S.x 7-1

New Hardware Support

New SPU Support

BASIC 6.0 includes, support for the Model 345, 375, and V 1360 computers.
BASIC 6.2 includes support for the Model 362, 380, and 382 computers.
BASIC lUX also includes support for 8400.

New System Hardware Supported

Computer Model BASIC Language Support

Model 345 BASIC Main (no binary required)

Model 375 BASIC Main (no binary required)

Model 380 BASIC Main and MCMATH binary

Model V /360 Operation supported by BASIC Main (no binary
required). VXIbus access provided via the
optional VXI binary and utilities.

Model 362 BASIC Main (no binary required)

Model 382 BASIC Main and MCMATH binary

S400 BASIC Main (no binary required)
(400s/400t/425s/425t/425e)

7 Some 362 and 382 SPU configurations include monochrome multi-plane
displays. Standard BASIC 6.2 color features will be mapped into gray scale on
these systems.

New Interface Support

BASIC 6.2 supports the HP SCSI interface only for use with SCSI-based
disk drives. SCSI is not supported for peripherals other than disk drives;
no SCSI Level II devices are supported. BASIC lUX supports SCSI-based
devices mounted as HFS file systems via HP-UX. See the HP-UX System
Administration Manual for more information.BASIC 6.2 also supports access
to the VXIbus when used with the Model V 1360 embedded VXI controller and

7 ·2 Porting to 6.x

the VXI binary. BASIC 6.2 supports the Parallel interface for the 345, 375,
362, 380, and 382.

New Interface Hardware Supported

Interface BASIC Language Support

SCSI l Provides support for HP SCSI-based disk drives only. Does
not support SCSI tape drives or general SCSI interface I/O
operations. Requires SCSI binary.

VX12,3 Provides Model V /360 with the capability to access and
manipulate the VXlbus backplane and VXlbus instruments
directly. Requires VXI binary.

HP Parallel HP Parallel printer interface (Centronics compatible) requires
PLLEL binary.

1 Booting from a SCSI disk drive requires boot ROM revision C or later. Series
200 computers and some Series 300 computers do not include this boot ROM
revision and cannot provide system boot capability. In this situation, BASIC
can boot from a different interface (HPIB or SRM), load the SCSI binary, and
then access SCSI drives.

2Direct VXIbus access is only supported on the Model V /360 embedded VXI
controller.

3The VXI binary and utilities are not included in the standard BASIC
product. This binary and the utilities are available as a separated product from
Hewlett-Packard.

Porting to 6.x 7 -3

7

7

BASIC Language Convergence
A number of language extensions were made to the HP BASIC language
definition with the introduction of BASIC/UX. For details about these
enhancements, refer to the "BASIC/UX Differences and Enhancements"
chapter of this manual. To provide better compatibility between BASIC /WS
and BASIC tux applications, BASIC /WS 6.0 and later versions has
incorporated these language extensions.

The operation of these keywords on BASIC/WS systems differs in some cases
from the BASIC/UX definition. Generally, BASIC/WS operation of these
keywords falls into three categories:

• Keywords that syntax and list, but do not execute.

• Keywords that syntax, list and execute, but have no effect upon system
operation or return a known value.

• Keywords that syntax, list, execute and provide capability similar to the
BASIC tux definition.

This section provides a brief summary of these differences and enhancements.
For a detailed description of a particular keyword, refer to the HPBASIC
Language Reference.

All keywords listed in the following tables will syntax, LIST and LOAD on
BASIC /WS 6.x. For each BASIC tux keyword, the table includes information
about the binary file required for operation and how this keyword operates in
BASIC/WS 6.x.

7 ·4 Porting to 6.x

Keywords From BASIC/UX

Keyword Binary Execution in BASIC /WS

CLEAR WINDOW RMBUX ERROR
Not a in Window System

CREATE WINDOW RMBUX ERROR
Not a in Window System

DESTROY WINDOW RMBUX ERROR
Not a in Window System

LIST WINDOW RMBUX ERROR
Not a in Window System

MOVE WINDOW RMBUX ERROR
Not a in Window System

DISABLE EXT SIGNAL RMBUX ERROR
Feature not supported by this OS

ENABLE EXT SIGNAL RMBUX ERROR
Feature not supported by this OS

ON EXT SIGNAL RMBUX ERROR
Feature not supported by this OS

OFF EXT SIGNAL RMBUX ERROR
Feature not supported by this OS

ENABLE EXT SIGNAL RMBUX ERROR
Feature not supported by this OS 7

EXECUTE RMBUX ERROR
Feature not supported by this OS

QUIT or BYE RMBUX ERROR
Feature not supported by this OS

Porting to S.x 7-5

Keywords From BASIC/UX (continued)

Keyword Binary Execution in BASIC /WS

SET HIL MASK None This statement has no effect.

SET TIME CLOCK With no argument, this statement has no
effect.

SET TIMEDATE CLOCK With no argument, this statement has no
effect.

SYSTEM$("PROCESS ID") CRTX This function returns o.

SYSTEM$("VERSION:OS") None This function returns 6.0 WS.

SYSTEM$ ("WINDOW SYSTEM II) None This function returns Console.

TIMEZONE IS CLOCK With no argument, the statement has no
effect.

PLOTTER IS numexp, GRAPH ERROR
WINDOW Not in a window system.

DUMP ALPHA numexp ... None The numeric expression must evaluate to
1 or an error will occur.

DUMP DEVICE IS strexp GRAPH This is a variant of DUMP DEVICE
IS where strexp specifies a file as the
destination pf DUMP ALPHA or DUMP
GRAPHICS. The behavior is analogous
to PRINTER IS file.

7
PRINTALL IS strexp None This is a variant of PRINTALL IS, where

strexp specifies a file as the printall
device. The behavior is analogous to
PRINTER IS file.

7·6 Porting to 6.x

Keywords From BASIC/UX (continued)

Keyword Binary Execution in BASIC /WS

GESCAPE CRT, selector GRAPHX GESCAPE selectors 10-13 were added
to BASIC/UX to control graphics
buffering. BASIC/WS 6.x will accept
these selectors, and always return "0" .
These commands have no effect.

CONTROL sc,255 HPIB or Register 255 was added to HPIB and
STATUS sc,255 GPIO GPIO interfaces to control interface

locking, mapping and 10 Burst
extensions. BASIC/WS accepts
these registers and return "3". These
commands will have no effect.

CONTROL ~path,9 . None For paths assigned to file names, this
STATUS ~path,9 register controls file buffering on a per file

basis. BASIC/WS accepts these registers
and returns "0". These commands have
no effect on BASIC/WS.

CONTROL sc,22 None This register was added for window
STATUS sc,22 support in BASIC/UX. The Not in a

window system message will be reported
if executed. Values of sc between 600 and
699 are not be accepted.

CONTROL sc,23 None This register was added to return
STATUS sc,23 terminal compatibility mode. BASIC/WS 7

accepts this register when sc evaluates to
1 (CRT) .and always returns "1". These
commands will have no effect.

Porting to 6.x 7-7

Keywords From BASIC/UX (continued)

Keyword Binary Execution in BASIC /WS

CONTROL 33; numexp None This pseudo select code was added to
STATUS 33; numexp manage external signals in BASIC/UX.

BASIC /WS will not support this select
code. An error will be reported if a
statement accessing select code 33 is
executed.

SCRATCH ALL None Additional SCRATCH secondaries were
SCRATCH A added as aliases of other SCRATCH
SCRATCH BIN secondaries. All of these secondaries will
SCRATCH B be accepted by BASIC/WS.
SCRATCH COM
SCRATCH C
SCRATCH RECALL
SCRATCH R
SCRATCH WINDOW
SCRATCH W

Globalization Enhancements
(BASIC/WS and BASIC/UX only)
In addition to the one-byte ASCII and Japanese Katakana character sets

7 supported by previous revisions, BASIC IWS 6.x and BASIC lUX 6.2 also
supports two-byte characters, such as Japanese Kanji. The support of general
two-byte character handling is called globalization. Note that you must
purchase specific localization binaries to get support for a particular language's
character set. At the time of first release, BASIC 6.2 supports localization
for Japanese only. Localization binaries for other two-byte languages
may be available at later dates-contact your local Hewlett-Packard Sales
Representative for details.

A new globalized CRT driver, CRTD, is included in BASIC 6.x. You do not
need to use CRTD unless you are using a localized version of BASIC.

7 -8 Porting to 6.x

Note Due to PC hardware differences, BASIC/DOS 6.2 does not
support globalization.

Some new keywords are available to support two-byte characters, but they
are not discussed in this chapter. The keywords added to support two-byte
character handling are:

• CVT$

• DICTIONARY IS

• FBYTE

• GFONT IS

• SBYTE

• SYSTEM$(various_specifiers)

• Secondary keywords:

o EXCHANGE

o SHIFT IN/OUT

Globalization, localization,two-byte characters, and CRTD are discussed in
detail in the "Globalization Overview" and "Features of Globalized BASIC"
chapters of this manual.

File Related Enhancements

Wildcards

BASIC 6.x supports wildcards for file name matching with many file related
commands. Note that wildcard recognition is disabled at power-on and
after SCRATCH A or SCRATCH BIN; you must manually enable wildcard
recognition.

Porting to 6.x 7-9

7

7

For a detailed discussion of wildcards with examples, refer to the
WILDCARDS entry in the HP BASIC Language Reference.

Appending To Files

BASIC 6.x allows you to specify the optional secondary keyword APPEND
with many commands which write to files. When APPEND is omitted, the file
is overwritten. When APPEND is specified, new data is appended to the end
of the file.

The following commands support APPEND:

• ASSIGN

• DUMP DEVICE IS

• PRINTALL IS

• PRINTER IS

• PLOTTER IS

Refer to the HP BASIC Language Reference for details on the proper use of
APPEND with each keyword.

Overwriting Files

BASIC 6.x allows you to specify the secondary keyword PURGE with the
following file related commands:

• COpy

• LINK

A More Forgiving GET

BASIC 6.2 allows you to GET files that use a carriage return/line feed
combination to terminate a line. This makes it easier to GET files created on
certain computers, such as PCs.

7-10 Porting to 6.x

Human Interface Enhancements

READ KEY

BASIC 6.x provides READ KEY to allow you to read typing-aid softkey
definitions created with SET KEY. Refer to the HP BASIC Language
Reference for a detailed description with examples.

RUNLIGHT ON/OFF

BASIC 6.x allows you to turn on or off the runlight (status indica.tor) at the
bottom right side of the display using RUNLIGHT ON/OFF. This allows you
to create more tidy displays and it is especially useful for making neat graphics
dumps to printers.

CSUB Enhancements (BASIC/WS and BASIC/DOS only)
The internal architecture of BASIC revision 6.0 and above is designed to ease
the maintenance associated with compiled subprograms (CSUBS). When
you port a program containing CSUBS from any prior revision of BASIC to
6.0, you must relink the CSUBS using the BASIC 6.0 CSUB Utility (sold
separately). However, CSUBS compiled for BASIC 6.0 will port directly to
BASIC revisions 6.0 and above without relinking.

Porting to S.x 7-11

7

7

Binary Enhancements

New Binaries

RMBUX (BASIC/WS and
BASIC/DOS)

CRTD (BASIC/WS)

MCMATH (BASIC/WS)

PLLEL

Changes in HFS Binary

This binary allows non-BASIC/UX
implementations of BASIC to syntax,
list, and execute certain commands
previously available only in BASIC/UX.
These commands are summarized in this
chapter in the section "BASIC Language
Convergence. "

This display binary (CRT driver) is
included primarily to support the
two-byte raster characters used by
certain localized versions of BASIC, such
as Japanese localized BASIC.

This binary provides a library of
mathematical routines that are used
by computers with the Motorola 68040
processor, e.g., Model 382.

This binary allows execution of I/O
operations over the HP Parallel
interface, built in with some S300
models. See the HP BASIC 6.2 Interface
Reference for more information.

Certain keywords previously required the HFS binary. The following keywords
no longer require HFS or any other binary to execute:

• LINK

• PERMIT

• CHOWN

• CHGRP

7-12 Porting to 6.x

Miscellaneous Additions and Changes

Keyword Additions and Changes

Keyword

INMEM

CALL

SCRATCH

SYSTEM$

CRT Register 21

Description

This function tests whether the specified
subprogram is in memory.

The CALL statement now supports calling
subprograms specified by a string, for example:
CALL Subname$ WITH (Paraml,Param2$)

The SCRATCH statement now accepts the
specifiers ALL, B, COM, RECALL, W, and
WINDOW.

The SYSTEM$ statement now allows you to
request current settings for:

• WILDCARDS

• WINDOW SYSTEM

• PROCESS ID

• VERSION:OS

• VERSION:BASIC

Additional requests are allowed when
localization binaries are loaded.

BASIC 6.x expands the function of CRT STATUS/CONTROL register 21. In
previous versions of BASIC, this register was used only to indicate whether
the display was in bit-mapped or non-bit-mapped mode. In BASIC 6.x, this
register is used to selectively activate anyone of the supported CRT binaries
that are currently in memory. Refer to the STATUS/CONTROL register tables
in the "Interface Registers" appendix of the HP BASIC Language Reference for
details.

Porting to 6.x 7 ·13

7

8
Globalization Overview

Globalization allows BASIC to process strings containing two-byte characters.
This chapter contains brief, general descriptions of globalization and two-byte
characters. To learn how to program with two-byte characters, read the
following chapter, "Features of Globalized BASIC."

You do not need to read this chapter unless you plan to write programs that
use two-byte characters.

Globalization Support

These features are supported by BASIC/WS version 6.0 and above and
BASIC/UX version 6.2 and above. BASIC/DOS/IN does not support
globalization. The new features added to globalized BASIC do not change the
way it behaves when processing one-byte characters, such as Extended US
ASCII. Thus, BASIC /WS 6.0 and BASIC lUX 6.2 are backward compatible.

To use most globalized features in a meaningful way, you must purchase a
localized version of BASIC with specialized language binaries. A localized
version is one that supports a specific two-byte language, such as Japanese.

Note

" Note

"

BASIC/UX 6.2 supports globalization only in the X-Windows
environment.

BASIC/DOS 6.2 for the HP Measurement Coprocessor does not
support globalization.

Globalization Overview 8-1

8

8

Related Documents
Since programming with globalized BASIC is an advanced topic, you should
already be familiar with BASIC in general. In particular, you need to
thoroughly understand how to input, process, and display character data
using BASIC with your display and keyboard. If you think you need more
background information, consider the following topics:

Topic Suggested Reading

Programming with
Character Data

Using the Keyboard

U sing the Display

Local Language
Programming

See the chapter "String Manipulation" in HP BASIC
Programming Guide. For a list of string functions, see
the listing under the headings String Operations and
Globalization in the appendix "Keyword Summary" of
the HP BASIC Language Reference.

See the "Keyboard Interface" chapter of HP BASIC
Interface Reference. For a detailed description of all the
keys available, refer to Using HP BASIC.

See the "Display Interfaces" chapter of HP BASIC
Interface Reference.

If you purchased a localized version of BASIC, you
should also have a manual titled Using LanguageX with
HP BASIC, where Language X is a local language.
This manual explains the details specific to your
localized version such as character sets, supporting files,
and keyboard entry methods.

8-2 Globalization Overview

Terminology
This chapter explains the meaning of most special terms at the time they are
first used. However, you need to understand the following terms before you
continue:

• Globalization

• Localization

Globalization and Localization

Globalization and localization are related, but they are not the same.
Globalized BASIC is a version of BASIC that supports two-byte characters
internally and displays them using the CRTD binary. Two-byte characters
are used by certain non-Roman languages, such as Japanese. However,
globalized BASIC does not support a specific language. For example, to use
Japanese characters with BASIC, you must purchase specific Japanese FONT,
LANGUAGE, and INPUT binaries from Hewlett-Packard. Localized BASIC
is globalized BASIC into which INPUT, LANGUAGE, and FONT have been
loaded.

Consider this analogy. Globalized BASIC is like a laser printer that can accept
font cartridges for many fonts. The localization binaries are like font cartridges.
Just as you must plug a font cartridge into the printer to print with a special
font, you must load localization binaries into globalized BASIC. Most laser
printers provide a default internal font that is accessible whether or not a font
cartridge is installed. Similarly, globalized BASIC contains one-byte Extended
ASCII and Katakana whether or not any localization binaries have been
installed.

Note

\I
BASIC can only support one set of localization binaries
at a time. Thus, you cannot simultaneously load INPUT,
LANGUAGE, and FONT for more than one language.

Globalization Overview 8-3

8

8

Understanding One- and Two-Byte Characters

Overview

The key to understanding globalization is understanding one- and two-byte
characters. Normally, BASIC assumes that each character in a string is one
byte long. This applies to characters stored in memory, displayed on the
screen, or entered from the keyboard.

To enable BASIC to process two-byte characters, you must:

• LOAD BIN the globalized CRTD display binary.

• LOAD BIN localized LANGUAGE, INPUT, and FONT binaries.

• Activate the CRTD binary (using CRT CONTROL register 21).

You can then use two-byte characters in the BASIC editor for variables,
labels, and string literals. You can also use two-byte characters in application
programs as keyboard input and screen output.

1 00 =- 0) 1 0 l' "3 L. Ij: 1 iJ\ G t 0 0) ~ 1m 0) ~ ~. ~ ~. 7f\ L * g-
110 PRINT II 10 * C' 0) ~ ~: "
120
130 OO:PEl:
140 FOR ~ ~=1 TO 10
150 CALL ~ ~ 0) ~ iF (~ !:f)
160 NEXT rx ~
170 END
180
190 SUB ~!.:f 0) ~ ff\ (rx ~)
200 PRINT fx ~
210 SUBEND

A Program Listing with Two-byte Characters

8-4 Globalization Overview

0 PJ
~ j±j %
D lEJJ %

A Graphics Plot with Two-byte Characters

Globalized BASIC and localized BASIC can process and display a mixture
of one-byte and two-byte characters. For example, it is possible to create
a bilingual error message string containing both one-byte English and and
two-byte Japanese.

A Message with One- and Two-Byte Characters

The One-Byte World

The one-byte characters that non-localized BASIC recognizes are US
ASCII/European display characters and Japanese Katakana display characters.
Refer to the "Useful Tables" chapters of the HP BASIC Language Reference or
the HP BASIC Condensed Reference for a complete listing. Each character set
is a definition of 256 codes that represent letters in an alphabet, typographic
symbols, control characters, and display enhancement characters.

Globalization Overview 8-5

8

8

For example, if you are using an HP series 300 computer, the codes are
assigned like this:

Series 300 Extended ASCII Display Characters

Code Range Functions

Decimal Hexadecimal

0-31 00-IF Non-printable 7-bit ASCII control characters

32-64 20-40 7-bit ASCII typographic symbols and digits

65-126 41-7E 7-bit ASCII alphabet and punctuation symbols

127 7F Delete

128-135 80-87 Alpha display enhancement characters

136-143 88-8F Alpha display pen colors

144-160 90-AO Reserved

161-241 AI-Fl European alphabet and punctuation characters

242-254 F2-FE Miscellaneous

255 FF N on-ASCII prefix

These code definitions are adequate for the one-byte world of Roman
characters. However, they do not address several problems encountered with
characters in non-Roman languages. In particular, these languages:

• have alphabets of more than 256 characters

• are more typographically complex

• use some fundamentally different input methods

The Two-Byte World

In the previous discussion, we saw how ordinary BASIC uses one-byte codes
to identify each Extended ASCII character. Similarly, globalized BASIC uses
two-byte codes to identify each character. Two bytes are required because of
the large number of characters available in many Asian alphabets.

8-6 Globalization Overview

Two-byte characters are coded in HP-15 and HP-16. HP-15 codes are used
to represent characters inside software applications, while HP-16 codes are
used primarily to send characters to peripherals, such as printers. HP-15 and
HP-16 are coding systems that can be used to specify characters for a variety
of languages. They specify a region of code space into which characters may be
mapped, but not the characters themselves.

Note that only parts of the available code space in HP-15 and HP-16 define
valid two-byte codes. If either byte of a potential two-byte code falls outside
the valid region, both bytes are treated as one-byte codes. As the last
statement implies, one-byte and two-byte characters coexist inside BASIC.

Globalization Overview 8-7

8

8

Two-byte Languages

Different languages require different numbers of characters. For this reason, it
is not possible to make any general statement about how much of the HP-15
or HP-16 code space is filled with printable characters. For example, HP-15
Korean character codes fill only about one fourth of the available code space.

00

* <l>
+'
>.
ill

+' a1 (/)
~

~

ff
00 a1

Second Byte*

D - Defined Characters

~ - Undefined Characters

* - Byte values in hexadecimal

HP-15 Korean Character Codes

ff

Languages do not always provide distinct printable characters for all codes in a
region. Unused codes within a region are typically filled with galley characters,

8-8 Globalization Overview

which are essentially blank placeholders of the same physical dimensions as
other printable two-byte characters.

• • • rAJ-----ji------~
• • • • • • • • • Using PRINT (raster font)
• • • • • •
~---[---··--L~WO-byte

Normal two-byte

galley character

character

fAJ-----r-------i Using LABEL (graphics font)
• • • • • •

:---[------[-:WO-byte galley choracter (blank)

Normal two-byte character

Two-byte Galley Characters

One-byte or Two-Byte?

Localized BASIC must frequently break character strings into ordered lists of
bytes and classify them as one- or two-byte characters. As a programmer, you
may need to perform the same analysis, so let's examine the algorithm:

1. Get the first byte of the string.

2. If the first byte is not in the valid range of two-byte characters, then treat
it as a one-byte character. Go to step one and continue the procedure with
next character.

3. If the first byte is in the valid range for two-byte characters, get the second
byte. If the second byte is in the valid range for two-byte characters, treat
the pair as a single two-byte character. If the second byte is not in the valid
range for two-byte characters, treat each byte as a single one-byte character.

Globalization Overview 8-9

8

8

Two-Byte Character Conversions

Two-byte languages differ from one-byte languages in many ways. Most
one-byte languages, such as English, have a single alphabet composed of
relatively few characters. Consequently, most characters are available directly
as labeled keys on the computer keyboard. In general, keyboards, displays, and
printers for a particular one-byte language all use the same basic codes for the
printable characters in the alphabet. Thus, one-byte languages use a single
alphabet that maps directly to a single set of character codes.

In two-byte languages the situation is more complex. Many two-byte
printers use character codes different from the codes used by computers.
Therefore, programs must convert from one coding system to another when
using certain peripherals. Two-byte languages may include more than one
alphabet in their character set. Consequently, programs using two-byte
characters must sometimes convert between alphabets by translating strings
character-by-character. Since two-byte languages often have more characters
than can fit on a keyboard, different keyboard input methods must be used.

8-10 Globalization Overview

Converting Codes

Globalized BASIC uses HP-15 to represent any two-byte characters that are
stored internally. Therefore, all characters displayed on the screen, including
both raster and graphics fonts, are HP-15. Since some two-byte printers use
HP-16 to print two-byte characters, localized BASIC provides a way to convert
between the two. In the next chapter, we will discuss how BASIC accomplishes
this with EXCHANGE.

<2'~~_EXCHANGE ~CJ~)
<2~~

Character Conversion Using EXCHANGE

Globalization Overview 8-11

8

8

Converting Alphabets

Many two-byte languages contain several alphabets or several dialects. In
addition, some two-byte languages have adopted methods for using Roman
characters to express words phonetically. For example, Japanese words can be
written in three different alphabets.

Japanese Alphabets in HP-15

Alphabet Description

Katakana Simplified phonetic alphabet

Hiragana Phonetic alphabet

Kanji Traditional alphabet

Because of the different alphabets available, Japanese localized BASIC must be
able to quickly convert from one alphabet to another, character-by-character.
In the next chapter, we will discuss how BASIC accomplishes this with CVT$.

Converting Keyboard Input

Some two-byte languages use special keyboard input conversions to enter
two-byte characters. An operator may type in a string phonetically and then
press a conversion key to translate the string word-by-word. For example, a
Japanese operator might type in a string in Hiragana and press a conversion
key to automatically translate the string to Kanji. Details of these types of
input procedures are outlined in the manual Using LanguageX with HP BASIC,
where LanguageX is a local language, such as Japanese.

8·12 Globalization Overview

Inside Globalized BASIC
Now that you understand two-byte characters, let's look at what has been
added to BASIC to handle them. Globalized BASIC contains additional
binaries, mainframe keywords, and support for localization binaries.

Globalized BASIC

Localized BASIC

Binaries
Binaries

• CRTD
• LANGUAGE
• INPUT
• FONT

MainFrame
Support Files

• FBYTE
• SBYTE
• SYSTEM$

• graphics font
• dictionaries

Globalized BASIC-Additions and Enhancements

Globalization Overview 8-13

8

New Globalized Features

Location Name Description

Binary CRTD The new binary CRTD is a globalized display
driver required for displaying two-byte characters.
Note that CRTD works with bit mapped displays
only; it does not work with the HP 98700 graphics
display station or HP Series 200 computer
displays.

Mainframe FBYTE/SBYTE The BASIC mainframe includes two new string
functions, FBYTE and SBYTE, used to determine
the one/two-byte identity of character strings.

Mainframe SYSTEM$ Globalized BASIC can return additional system
settings for GFONT IS, LANGUAGE, VERSION:,
CONVERSION BUFFER, and DICTIONARY IS: .
(CONVERSION BUFFER and DICTIONARY IS are only

supported on BASIC/WS.)

8

8-14 Globalization Overview

New Localized Features

n Name Description

INPUT This binary supports keyboard entry of two-byte
characters. Key mapping, dictionary lookup functions,
and alphabet conversions are provided for keyboard
entry. The DICTIONARY IS statement requires this
binary.

LANGUAGE This binary supports two-byte character graphics fonts
for the GRAPH binary. This binary also contains
most localization related keywords including CVT$,
GFONT IS, EXCHANGE, SHIFT IN/OUT, and
several new SYSTEM$ extensions.

FONT This binary provides raster character fonts for both
one- and two-byte characters. It contains other font
information required by CRTD. (Not supported on
BASIC/UX.)

Dictionaries, Graphics Fonts Most localized versions of BASIC contain one or more
support files. These files may include system and
user defined dictionaries for alphabet and phrase
conversion. A file containing graphics font data is
always included.

8

Globalization Overview 8-15

9
Features of Globalized BASIC

This chapter describes how to use the two-byte character handling features of
globalized BASIC. Two-byte characters are used by certain languages, such as
Japanese. You should read the preceding chapter "Globalization Overview"
before reading this chapter.

Using Keyboards
This section reviews the keyboard input methods available for one-byte
characters and presents the enhanced two-byte methods.

Review of One-Byte Character Input

BASIC provides a variety of methods for keyboard input in the one-byte world.
You need to understand these methods because they are reused and extended
in globalized, two-byte BASIC. If you have difficulty understanding or using a
particular method for two-byte character entry, refer back to this section. It is
often easier to learn an input method in the one-byte world and then apply it
in the two-byte world.

Note BASIC lUX 6.2 supports globalization only in the X-Windows
environment.

BASIC/DOS 6.2 does not support globalization.

Features of Globalized BASIC 9-1

9

9

This review covers the following character input methods:

One-Byte Character Input Methods

Input Method Description

Direct Enter characters by pressing the labeled keys on your keyboard. In
general, these are the printable letters, numbers, and punctuation
symbols.

Extended Enter characters other than the ones labeled on your key caps using
(Extend charlo In general, these characters are the printable letters,
numbers, and punctuation symbols.

Any Char Enter any character recognized by BASIC in the entire code range
0-255. This method can be used for printable or non-printable
characters.

Non-ASCII Simulate a keypress for a non-ASCII key using (CTRL). This is
useful for simulating keys such as (Insert char), (Clear line), and arrow
keys.

Programmatic Generate characters inside a BASIC program using CHR$, VAL$,
or similar functions.

Direct Keyboard Entry

Direct keyboard entry is the input method normally associated with a
key board. This is the method you use to type in a numbered program
statement in the BASIC editor. To use this method, you simply press the key
with label corresponding to character you wish to enter.

Direct Keyboard Entry Examples

To Enter ... You Type ...

A ®
r- OO

Red ®ill)

9-2 Features of Globalized BASIC

Note that not all labeled keys generate a character. Some keys take a specific
action, such as (Insert line], ('Reiii"T), C§.ei), and~. You cannot use direct
keyboard entry to input these keystrokes into a quoted string; refer to the
following section "Non-ASCII Key Entry."

Extended Keyboard Entry

BASIC recognizes one-byte codes for US Roman, European Roman, and
Japanese Katakana characters whether or not localization binaries are loaded.
However, most keyboards are designed and labeled to use only one group of
characters at a time. You must press {Extend char] while simultaneously pressing
another key to access other characters. For example, the HP 46021A ITF
keyboard is configured like a standard US typewriter. You can access the
European Roman characters on the HP 46021A keyboard using the (,-E-xt-e-nd-ch-a r)
key.

Extended Keyboard (HP 46201A) Entry Examples

To Enter ... You Type ...

13 (Extend char H!J
0 (Extend char }-0 0
Ii (Extend char }-[) 0

The native language of the keyboard determines what characters are available
as direct input keys and what characters are available through (Extend char).

Extend Keys. The mechanical design of HP keyboards makes it possible to
have more than one extended character key. The generic name for this type
of key is an extend key. The names printed on these keys varies slightly
depending on the native language of the keyboard, but the position is the
same. Such keys are located adjacent to the space bar to the right and left. In
general, there can be up to four extend keys.

Features of Globalized BASIC 9-3

9

o:J[][JDO[]EJEJLJLJ[]L]
DOl Space Bar IDD
L [Left Extend Right Extend J J

Left-Left Extend Right-Right Extend

Extend Keys

Any Char Keyboard Entry

The direct and extended keyboard entry methods provide an easy way to input
most printable characters. But some valid characters in the BASIC character
set do not map to either normal or extended Y()u can enter these "keyless
characters" , or any other character, using the .. soft key.

To input a character using this method, simply press !!;lii;::lIII:II:i, followed by
the three digit decimal code for that key. You can find a complete list of codes
in the US /European/Katakana display codes table in the "Useful Tables"
chapter of the HP BASIC Language Reference or in the back of the HP BASIC
Condensed Reference.

ANY CHAR Keyboard Entry Examples

To Enter ... You Type ...

A

£

ENQ

ACK

Non-ASCII Key Entry

Certain keys on the BASIC keyboard take immediate actions instead of
9 generating characters. This type of key inlcludes (Insert char land (Clear display l.

You may want to type one of these characters into a quoted string in BASIC

9-4 Features of Globalized BASIC

instead of taking the action labeled on the key. You can enter (Clear display)

within a quoted string by pressing (CTRL H Clear displa~l~ The key appears on the
screen as a two-character sequence beginning with ,11.

Non-ASCII Key Entry Examples

To Enter ... You Type ... The Screen Shows ...

(Clear display) (CTRL H Clear display) .il!:i:K

(Insert char) (CTRL H Insert char) :k::'f+

For additional details, refer to the section titled "Second Byte of Non-ASCII
Key Sequences" located in the "Useful Tables" chapter of the HP BASIC
Language Reference.

Note Do not confuse the two-character sequence used to represent
non-ASCII keys with the two-byte characters used by
globalized BASIC.

Features of Globalized BASIC 9-5

9

9

Programmatic Character Entry

All of the character entry methods discussed previously are designed to permit
humans to interactively input characters from a keyboard. The methods for
generating characters within a program are somewhat different. The most
common methods for generating strings programmatically are:

CHR$ The CHR$ function converts a decimal number into one
byte of a character. For example, on a system using US
ASCII, CHR$(65) is equivalent to "A".

VAL$

OUTPUT KBD

The functions VAL$, DVAL$, and IVAL$ convert
numeric values into character strings composed of
digits. VAL$ creates only decimal digits, while DVAL$
and IVAL$ can create binary, octal and hexadecimal
digits.

Sometimes it is useful to make your BASIC program
send characters to the keyboard buffer using
OUTPUT KBD. This accurately simulates human
keystrokes. For example, OUTPUT KBD; "NO" can be
provide a default response to a query. Note that the
quoted string may contain any simulated keystrokes,
including non-ASCII keys such as [Insert charlo

9-6 Features of Globalized BASIC

Two-Byte Character Input

This section describes the two-byte character input methods available in
globalized BASIC. If you have not already done so, read the preceding section
"Review of One-byte Character Input" to familiarize yourself with input
terminology.

Two-Byte Character Input Methods

Input Method Conunents

Direct Enter characters by pressing the labeled keys on your keyboard.
This input method is not available for two-byte characters.

Extended Enter characters other than the ones labeled on your key caps
using (Extend char). This input method is not available for two-byte
characters.

Any Char ~:!!~~~:::;:::~:e~,:::.character recognized by BASIC one byte at a time using

i!!iIiI~J!~-:-;·· This method can be used from any keyboard to enter

one- or two-byte characters.

Non-ASCII Simulate a keypress for a non-ASCII key using (CTRL). This method
works for all keyboards.

Translation Enter a phrase in one alphabet and localized BASIC translates
and and displays it in a different alphabet. Different versions of
localized BASIC support different input methods and hardware.

Programmatic Generate characters using BASIC string functions. These methods
work for one- or two-byte characters.

Using Any Char
..

Note that :;I!I~l~il~II:~ can be used from any keyboard to generate either one- or
two-byte characters byte by byte. Thus, two codes must be specified to generate
a single two-byte character.

The appearance of a two-byte character typed into a quoted string on the
command line may be somewhat cQnfusing. Type in the following statement
on the BASIC command line. Observe the difference between the printed 9
character and the contents of the quoted string on the command line.

Features of Globalized BASIC 9-7

9

PRINT II: 6 "(R;bjffl)

If you have the Japanese localization binaries loaded, and the CRTD driver is
selected, this will print the two-byte letter A on the screen.

Special Key Assignments

Some localized versions of BASIC assign special functions to various key
combinations. These keys are frequently in conjunction with keyboard input
translators. For example, Japanese localized BASIC defines actions for many
control key sequences, such as (CTRL }-CD, (CTRL }-@), and others. You need to
be aware of these types of key definitions if you write a program with its own
keyboard handler.

Keyboard STATUS and CONTROL Registers

Globalized BASIC contains the additional keyboard STATUS/CONTROL
registers 24 and 25. These registers affect two-byte character input
and are inoperative unless an INPUT bi~ary is loaded. Refer to the
CONTROL/STATUS register summary in the BASIC Language Reference for
details.

Some versions of localized BASIC include additional keyboard
STATUS/CONTROL registers. For details, refer to the manual Using
LanguageX with HP BASIC where LanguageX is your local language.

9·8 Features of Globalized BASIC

Using Displays
This section explains how to display two-byte characters using globalized
BASIC.

Hardware Support

The CRTD binary used to display all two-byte characters works only with HP
Series 300 bit-mapped computer displays. CRTD does not support HP Series
200 displays, so you cannot display two-byte characters on an HP Series 200
computer. Similarly, CRTD does not the HP 98546 Display Compatibility
Interface for HP Series 300 computers, or the HP 98700 Graphics Display
Station.

Note BASIC/UX 6.2 supports globalization only in the X-Windows
environment.

Overview of Fonts

A font describes the way a printable character is displayed on the BASIC
screen. BASIC uses raster fonts in its alpha display and graphics fonts in its
graphics display. A raster font defines each displayed character as a matrix of
pixels. A graphics font defines each displayed character as an outline traced by
a graphics pen.

PRINT "HELLO" raster font
LABEL "HELLO" graphics font

Note that raster fonts vary among different displays. This is because pixels
in displays vary widely in their number, size and shape. In particular, you
cannot assume that two arbitrary displays contain the same number of rows
or columns of characters. To determine the physical characteristics of your
display, use SYSTEM$("CRT ID"), CHRX, CHRY, and ALPHA HEIGHT.
Refer to the HP BASIC Interface Reference for details.

Features of Globalized BASIC 9·9

9

9

Two-Byte Fonts

Ordinarily, BASIC uses the standard one-byte Extended ASCII or Japanese
Katakana characters for graphics and raster fonts. To be able to process and
display two-byte characters, you generally must load the following binaries:

• CRTD-Supports display of raster characters on the display.

• FONT-Contains raster font FONT definitions. (Not supported on
BASIC/UX)

• LANGUAGE-Contains graphics FONT definitions. (Supports two-byte
graphics font)

• GRAPH-Supports the LABEL command.

Two-Byte Font Binaries Required

Raster Font LANGUAGE
FONT
CRTD

Graphics Font LANGUAGE
FONT
CRTD
GRAPH

In addition to loading these binaries into memory, you may also need to
activate the CRTD binary, depending on what other display drivers you have
loaded (CRTA,CRTB). To do this, use one of the following two statements:

CONTROL CRT,21j4
CONTROL CRT,21j5

activate CRTD, single-width characters
activate CRTD, double-width characters

Note

•
For BASIC/UX the CRTD binary acts differently, and the
above two statements both activate CRTD with single-width
characters.

9-10 Features of Globalized BASIC

Globalized BASIC supports the simultaneous display of one- and two-byte
characters. For example, you can display a line of text containing one-byte
Roman characters and two-byte Japanese characters.

Look-alike Characters

Note that LANGUAGE and FONT usually contain two-byte chara.cters
corresponding to Roman letters and digits. It is very important to distinguish
between one-byte characters and their two-byte character look-alikes. Certain
functions in BASIC require one-byte characters. Other functions behave
differently depending on character length. For example, the Japanese FONT
definition contains these codes for the Roman letter A:

One_byte$=CHR$(65)
Two_byte$=CHR$(130)lCHR$(96)

Character Size

one-byte Roman letter A
two-byte Roman letter A (HP-15 Japanese)

Two-byte characters are displayed twice as wide as one-byte characters.
This must be done to clearly depict complex Asian language characters.
Consequently, the two-byte Roman letter A is twice as wide as the one-byte
Roman letter A. One-byte characters are the same height as two-byte
characters. These rules apply to both raster and graphics fonts.

Double and Single Width. When CRTD, FONT and LANGUAGE are loaded
and CRTD is activated, you can set the size of raster characters to double or
single width. Raster character height is unaffected. Double-width characters
are intended for use primarily with I2-inch displays, although you can use them
on any display. Most two-byte raster characters are not readable on I2-inch
displays unless they are displayed using double width.

Galley Characters

Sometimes BASIC cannot display a character that you request. If you try to
display a valid HP-15 character that has no font description, BASIC displays a
galley character in place of the character you requested. A galley character is a
blank or empty character of the same dimensions as a printable character.

Features of Globalized BASIC 9-11

9

9

• • •
: : : Using PRINT (raster font)
~AJ-----ri------.

• • •

L--[---:'1--L~wO_byte galley character

Norm(J1 two-byte ch(Jr(Jcter

~AJ-----r--------~ •

Using LABEL (graphics font)

----[------t::-:wO-byte galley character (blank)

Normal two-byte character

Determining Display and Character Size

If your program must support different languages or different displays, you
may need to determine character and display sizes. You can determine raster
character size in pixels using CHRX and CHRY. Note that the values returned
by CHRX and CHRY apply to one-byte raster characters.

You can use CSIZE to set the size and aspect ratio of graphics fonts (graphics
characters), but two-byte characters are always twice and as wide and the same
height as one-byte characters.

CRT STATUS registers 9 and 13 contain the width and height of the print area
respectively. The following code segment determines the size of the display area
in character units (current one-byte characters):

100 X_size = Screen width in one-byte characters
110 ! Y_size = Screen height in one-byte characters
120
130 STATUS CRT t 9;X_size
140 STATUS CRT,13;Y_size

9·12 Features of Globalized BASIC

Using the Print Area

Globalized BASIC allows you to intermix one- and two-byte characters on the
same line of the print area of the display. The print area is the set of lines at
the top of the CRT used by the PRINT command. The ability to mix one- and
two-byte characters creates some unique situations when overwriting characters
with TABXY.

In the following discussion and examples, lower case letters represent one-byte
characters and upper case letters represent two-byte characters. Thus, the
following program segment contains a sequence of alternating one- and
two-byte characters:

10 CLEAR SCREEN

20 PRINT "AaBbCc" a=l-byte, A=2-byte

It is important to distinguish the physical positions of the characters on the
screen from their position in memory. In the preceding example there are six
characters totalling 9 bytes. When addressing a position in the print area with
TABXY, localized BASIC determines position on a byte-by-byte basis, not a
character-by-character basis. Since Extended ASCII and Japanese Katakana
characters are always one-byte per character, this is consistent with previous
versions of BASIC.

TABXY Positions

TABXY
Character Bytes Position

A 2 1
a 1 3
B 2 4
b 1 6
C 2 7
c 1 9

Total 9

Features of Globalized BASIC 9-13

9

9

Suppose you want to overwrite a character using the secondary keyword
TABXY. We can easily expand the previous example to do this:

10 CLEAR SCREEN

20 PRINT "AaBbCc" a=l-byte, A=2-byte
30 PRINT TABXY(l,l),"Z" replace 2-byte A with 2-byte Z

10 CLEAR SCREEN

20 PRINT "AaBbCc" a=l-byte, A=2-byte
30 PRINT TABXY(3,1), "z" replace l-byte a with l-byte z

These operations are simple if you replace one-byte characters with one-byte
characters, and two-byte characters with two-byte characters. In each case, the
new character fills the same amount of space as the old character. But what
happens if you try to overwrite a one-byte character with a two-byte character,
or vice versa? What happens if you try to overwrite the second byte of a
two-byte character? The figures that follow illustrate what happens in a variety
of cases.

9-14 Features of Globalized BASIC

first

Case Case 2 Case 3

New

Old

Result

161 Anyone-byte character

D = One-byte space character

~ = Any two-byte character

byte second byte

Overwriting With One-Byte Characters

Features of Globalized BASIC 9-15

9

first

Case 1 Case 2 Case 3

New

Old

Result [6J 06J [6[J
D = One-byte space character (Blank)

Q = Any two-byte character

byte second byte

Overwriting With Two-Byte Characters

The following general rules apply when overwriting print area characters with
PRINT TABXY:

• Unused portions of the print area are filled with one-byte spaces. CLEAR
SCREEN fills the entire print area with one-byte spaces.

• There are always the same number of bytes on a line after a TABXY
overwrite as before it. Output formatted in columns remains intact.

• Any unused portion of an overwritten two-byte character is replaced by a
one-byte space character.

Display Enhancement Characters

BASIC uses certain characters as display enhancement characters. These
characters do not occupy any space on the screen, nor do they produce
a.ny immediately visible effect. Display enhancement characters change the

9 appearance of characters that follow.

9-16 Features of Globalized BASIC

Globalized BASIC defines both one- and two-byte display enhancement
characters. The one-byte display enhancement characters are the same
as those used in BASIC IWS lUX 5.x and previous versions; they are
CHR$(128)-CHR$(143). The two-byte display enhancement characters are
created by adding CHR$(255) before the one-byte display enhancement
character. For example:

PRINT CHR$(132) ;A$;CHR$(128) underline on/off
PRINT CHR$ (255)iCHR$ (132) ;A$;CHR$(255)iCHR$(128) underline on/off

Monochrome Display Enhancements

Character Resulting Enhancement

One-byte Two-byte

CHR$(128) CHR$(255)&CHR$(128) All enhancements off

CHR$(129) CHR$(255)&CHR$(129) Inverse video on

CHR$(130) CHR$(255)&CHR$(130) Blinking on

CHR$(131) CHR$(255)&CHR$(131) Inverse video and blinking on

CHR$(132) CHR$(255)&CHR$(132) Underline on

CHR$(133) CHR$(255)&CHR$(133) Underline and inverse video on

CHR$(134) CHR$(255)&CHR$(134) Underline and blinking on

CHR$(135) CHR$(255)&CHR$(135) Underline, inverse video, and blinking on

Features of Globalized BASIC 9-17

9

Color Display Enhancements

Character Resulting Enhancement

One-byte Two-byte Model 236C Bit-mapped

CHR$(136) CHR$(255)iCHR$(136) White Pen 1

CHR$(137) CHR$(255)iCHR$(137) Red Pen 2

CHR$(138) CHR$(255)iCHR$(138) Yellow Pen 3

CHR$(139) CHR$(255)iCHR$(139) Green Pen 4

CHR$(140) CHR$(255)iCHR$(140) Cyan Pen 5

CHR$(141) CHR$(255)&CHR$(141) Blue Pen 6

CHR$(142) CHR$(255)&CHR$(142) Magenta Pen 7

CHR$(143) CHR$(255)&CHR$(143) Black Pen 8

Display Enhancement Guidelines

For maximum portability between localized and non-localized BASIC,
always use the two-byte form of display enhancement characters. Two-byte
display enhancements are compatible with both one- and two-byte languages.
One-byte display enhancement characters are not compatible with many
two-byte languages.

If you have difficulty debugging a problem, you may want to use DISPLAY
FUNCTIONS ON/OFF to inspect display enhancements on the screen. See the
DISPLAY FUNCTIONS ON/OFF entry in the HP BASIC Language Reference
for more details.

The TWO-Byte Underline Character

When you specify underlining for displayed characters, BASIC creates the
underlined image by combining the bits of the character to be underlined with
a predefined underline character. More specifically, the bit patterns that define
the character image and the underline image are exclusively OR'd to form
the final image of the underlined character. The one-byte underline image is

9 CHR$(256). The two-byte underline images are defined by CHR$(257) and
CHR$(258).

9-18 Features of Globalized BASIC

You can alter the pre-defined pattern stored in any of the underline characters
using SET CHR. Refer to the SET CHR entry in the HP BASIC Language
Reference for details.

Using Printers

Globalized BASIC supports both one-byte and two-byte printers. The
secondary keywords EXCHANGE and SHIFT IN ... OUT can be used with
ASSIGN, PRINTER IS, PRINTALL IS, and DUMP DEVICE IS to properly
configure BASIC to communicate with two-byte printers. Once it is properly
configured, BASIC will automatically send mixtures of one- and two-byte
characters to the printer using the proper format and protocol for each.

Using EXCHANGE

Globalized BASIC uses HP-15 to represent any two-byte characters that are
stored internally. Therefore, all characters displayed on the screen, including
both raster and graphics fonts, are HP-15. Since some two-byte printers use
HP-16 or other character codes to print two-byte characters, localized BASIC
provides a way to convert between the two using EXCHANGE.

Features of Globalized BASIC 9-19

9

9

Note

II

<2~i3>-EXCHANGE ~ <J~)

0~v

Character Conversion Using EXCHANGE

When the LANGUAGE binary is loaded, the DUMP DEVICE
IS device defaults to HP-16 conversion.

Using SHIFT IN ... OUT

Some two-byte printers can shift back and forth between printing one- and
two-byte characters. You must send special escape codes to tell the printer
whether the bytes that follow are to be interpreted as one- or two-byte
characters.

9·20 Features of Globalized BASIC

Two-Byte Printer Example

Suppose you wish to use the HP C1202A Asian Highspeed Serial Printer as the
PRINTER IS device. The following code segment shows how you might use
EXCHANGE and SHIFT IN ... OUT to print Japanese one- and two-byte
characters:

100 In$=CHR$ (27)1;"$2C1"
110 Out$=CHR$(27)1;" (2C1"
120
130 PRINTER IS 701;EXCHANGE "HP-16" SHIFT IN In$ OUT Out$

The EXCHANGE "HP-i6" part of line 130 automatically converts characters from
the HP-15 format used in BASIC memory to HP-16 for printing. The SHIFT
IN In$ part of line 130 causes BASIC to automatically send the proper escape
string to the printer before printing two-byte characters. Similarly, OUT Out$
causes BASIC to automatically send the proper escape string to the printer
before printing one-byte characters.

You can use similar methods with the other printer related commands. For
example:

ASSIGN ClAsian_prt TO 701; EXCHANGE "HP-16" SHIFT IN In$ OUT Out$
DUMP DEVICE IS 701; EXCHANGE "HP-16" SHIFT IN In$ OUT Out$
PRINTALL IS 701; EXCHANGE IHP-16" SHIFT IN In$ OUT Out$

For more details on using printers, refer to Using LanguageX with HP BASIC,
where LanguageX is your local language.

New Keywords
Globalized BASIC includes a number of new and enhanced keywords designed
to handle two-byte characters and localization files. This section briefly
describes how to use the new commands. For additional details and syntax
diagrams, refer to the HP BASIC Language Reference.

Features of Globalized BASIC 9-21

9

9

Summary of Globalization/Localization Keywords

Keyword Type Description

CVT$ function Converts strings from one alphabet to another,
character by character.

FBYTE function Returns 1 (true) if the first byte of the string
argument is a valid first byte of a two-byte (HP-15)
character.

SBYTE function Returns 1 (true) if the first byte of the string
argument is a valid second byte of a two-byte (HP-15)
character.

GFONT IS statement Specifies the file which contains graphics font data.

DICTIONARY IS statement Specifies the dictionary file used for translating
phrases.

EXCHANGE secondary Used with printer or files related commands to convert
internally stored HP-15 characters codes to printer
compatible codes.

SHIFT IN/OUT secondary Used with printer files related commands to specify
what control strings set the printer one-byte/two-byte
mode.

Using CVT$

Some two-byte languages, such as Japanese, use several alphabets. Therefore,
it is often desirable to translate from one alphabet to another. The
CVT$ function allows you to perform this translation inside a localized
BASIC program. Note that CVT$ converts strings character by character.
Consequently, localized BASIC will convert strings containing a mixture of
both one- and two-byte characters.

To access CVT$, you must load a localized LANGUAGE binary. LANGUAGE
determines the choices that are available for source and destination alphabets.
LANGUAGE also determines the character mapping between alphabets.

9·22 Features of Globalized BASIC

Here are some CVT$ examples using the Japanese LANGUAGE binary:

Rew$=CVT$(Old$,"ZERKAKU KATAKARA TO ZERKAKU HIRAGARA")

Rew$=CVT$(Old$,"HARKAKU KATAKARA TO HARKAKU HIRAGARA")

Using FBTYE and SBYTE

The functions FBYTE and SBYTE are generally used together to determine
whether a particular character is one or two bytes long. FBYTE returns 1
(true) when the first byte of the string argument is in the valid range for the
first byte of two-byte HP-15 characters. SBYTE returns 1 (true) when the
first byte of the string argument is in the valid range for the second byte of
two-byte HP-15 characters.

Note that both FBYTE and SBYTE operate on the first byte of their string
argument. You must use substring expressions to properly test the first byte
with FBYTE and and the second with SBYTE.

The following program illustrates a practical application of FBYTE and
SBYTE.

100 ! This program analyzes the byte length of each character in a string
110 DIM A$[64]
120 IRTEGER L,I
130 LIRPUT "Type in a string ... ",A$
140 L=LER(A$)
150 1=1
160 WHILE I<=L
170 IF FBYTE(A$[I]) AND I<L THER ! It may be a valid two-byte character
180 IF SBYTE(A$[I+l]) THER ! It is a valid two-byte character
190 PRIRT "''';A$[I;2];''': 2-byte character"
200 1=1+2
210 ELSE ! Invalid 2nd byte;treat them as 2 ASCII characters
220 PRINT"'" ;A$[I; 1] ; ''', ,,, ;A$ [1+1; 1] ;"': Two l-byte characters"
230 1=1+2
240 ERD IF
250 ELSE
260 PRINT "'";A$[I;l];''' l-byte character"
270 1=1+1
280 END IF
290 END WHILE 9
300 END

Features of Globalized BASIC 9-23

Using GFONT IS

Localized BASIC uses a special graphics font to display graphics characters.
You must specify the file that supports the graphics font using GFONT IS
before using LABEL to display a character. For example:

GFONT IS "/users/BASIC/JPN_VECTOR"
GFONT IS "JPN_VECTOR:,700,O"
GFONT IS "/usr/lib/rmb/gfontsIJPN_VECTOR"

You can check the current setting of GFONT IS using SYSTEM$. For
example:

Old_gfont$=SYSTEM$("GFONT IS")

Using DICTIONARY IS (BASICjWS only)

Some versions of localized BASIC support automatic input phrase translators.
The user types a phrase into a conversion buffer and presses a special key
to invoke the translator. The translator converts strings word by word, not
character by character as CVT$ does. The translation information is contained
in a dictionary file. This file must be specified using the DICTIONARY IS
command before attempting translation. For example:

DICTIONARY IS "JPN_SYSDCT:,700,O","SYSTEM"
DICTIONARY IS "/users/BASIC/JPN_USRDCT","USER"

The second string parameter is used by some versions of localized BASIC
to specify additional dictionaries. For example, Japanese localized BASIC
supports a standard dictionary (SYSTEM) and a user-defined dictionary
(USER).

You can check the current settings of DICTIONARY IS and the contents of the
conversion buffer using SYSTEM$. For example:

Old_sysdct$=SYSTEM$("DICTIONARY IS:SYSTEM")
Old_ursdct$=SYSTEM$("DICTIONARY IS:USER")

Convert$=SYSTEM$("CONVERSION BUFFER")

Note that you can programmatically translate phrases by sending the
appropriate simulated keystrokes to the keyboard buffer using OUTPUT KBD.

9 Refer to the HP BASIC Interface Reference for information on simulating
keystrokes.

9·24 Features of Globalized BASIC

Using EXCHANGE and SHIFT IN ... OUT

Localized BASIC stores all two-byte strings internally as HP-15 codes. Many
printers use character codes other than HP-15. The secondary keyword
EXCHANGE allows you to automatically convert HP-15 characters to an
alternate character set, such as HP-16 or the Japanese Industrial Standard
(JIS) or Extended UNIX Code (EUC).

The LANGUAGE binary determines the choices available for alternate
character sets. You must load a LANGUAGE binary to use EXCHANGE or
SHIFT IN/OUT.

The keywords that support EXCHANGE and SHIFT IN/OUT are:

ASSIGN

DUMP DEVICE IS

PRINTALL IS

PRINTER IS

Refer to the previous section "Using Printers" for more details.

Features of Globalized BASIC 9-25

9

9

Changes in String Functions
Certain string related functions in BASIC behave differently when handling
one-byte characters and two-byte characters. Globalized BASIC does not
change any of the previously existing definitions for one-byte characters-it is
backward compatible. However, two-byte characters must sometimes be treated
specially.

Function

&

CHR$

DVAL

DVAL$

IVAL

IVAL$

LEN

LEXICAL
ORDER IS

LWC$

Comments

Concatenates two strings. The strings may contain any
combination of one- and two-byte characters.

Converts a numeric value to one byte of a character. Two-byte
characters must be constructed byte by byte. For example,
the two-byte Roman letter A is CHR$(130)&CHR$(96) (using
(HP-15) Japanese).

Converts strings representing hexadecimal, octal, and binary
numbers into numeric values. The string digits must be
one-byte characters.

Converts numeric values to into strings representing
hexadecimal, octal, or binary numbers. The digits in the
resulting string are one-byte characters.

Converts strings representing hexadecimal, octal, and binary
numbers into INTEGER values. The string digits must be
one-byte characters.

Converts INTEGER values to into strings representing
hexadecimal, octal, or binary numbers. The digits in the
resulting string are one-byte characters.

Returns the number of bytes in a string. The string may
contain any combination of one- and two-byte characters.

Determines the collating sequence used in string comparisons.
Valid only for one-byte characters.

Returns the lower case value of a string. Only one-byte
characters are converted to lower case; two-byte characters are
returned unchanged.

9·26 Features of Globalized BASIC

MAXLEN

NUM

pas

REV$

RPT$

TRIM$

UPC$

VAL

VAL$

Returns the maximum (dimensioned) length of a string in
bytes.

Returns the decimal value of the first byte of a string. The
string may contain any combination of one- and two-byte
characters. You must use substrings to identify each byte of a
two-byte character.

Returns the byte position of a substring within a string. Either
string may contain any combination of one- and two-byte
characters.

Reverses the order of the characters in a string expression.
The operation is performed character by character on any
combination of one- and two-byte characters.

Repeats the characters in a string a specified number of times.
The repeated string may contain any combination of one- and
two-byte characters.

Removes leading and trailing one-byte blanks from a string.
The string may contain any combination of one- and two-byte
characters. Only CHR$(32) (ASCII space) is trimmed from the
string.

Returns the upper case value of a string. Only one-byte
characters are converted to upper case; two-byte characters are
returned unchanged.

Converts a string representing a decimal number into a
numeric value. The string digits must be one-byte numeric
characters.

Converts a numeric value into a string representing a decimal
number. The string contains only one-byte numeric characters.

String Comparisons

BASIC can compare strings containing combinations of one- and two-byte
characters using the comparison operators. BASIC compares characters byte
by byte, without regard to two-byte character boundaries. Note that BASIC
does not support LEXICAL ORDER for two-byte characters.

Features of Globalized BASIC 9-27

9

9

In general, the combined character order is:

(ASCII characters) < (two-byte characters)

Some versions of localized BASIC use a slightly modified combined character
order to accomodate local custom. Refer to Using LanguageX with HP BASIC
for details, where LanguageX is a local language, such as Japanese.

Porting and Globalization
This section describes how to move BASIC programs between different versions
of BASIC. Specifically, this section describes how using two-byte characters
affects portability.

Understanding Porting and Localization

To accurately discuss portability, we must first define porting and portability in
the context of localized BASIC. There are different cases to consider:

Application Type

Globalized Application

Localized Application

Description

A BASIC program designed to run on a variety of
different localized BASIC systems. In the general
case, one or more local languages may use one-byte
characters and one or more may use two-byte
characters. Writing globalized applications is
relatively complex; only general guidelines are
presented here.

A single BASIC program designed to work with
only one specific localized version of BASIC. This
is the most common case. This section describes
common problems when porting from one-byte
BASIC to localized two-byte BASIC.

9·28 Features of Globalized BASIC

Globalization Portability Guidelines

Code Guideline

A Use two-byte display enhancement characters and eliminate one-byte display
enhancement characters. Refer to the preceding section "Display Enhancement
Characters."

B Avoid using two-byte characters, except when they are visible to the operator.
For example, do not use two-byte labels or variable names.

C Use one-byte characters for file names and eliminate two-byte characters. Avoid
special characters; use letters, numbers, and the underscore character.

D Determine the number of rows and columns on the display inside your program.
In particular, note that two-byte characters are twice as wide as one-byte
characters. Refer to the preceding sections "Character Size" and "Determining
Display Size" for more information.

E A void changing strings once they are input or defined. You must use FBTYE
and SBYTE to determine the byte length of each character in a string if it
contains a mixture of one- and two-byte characters. For more information on
FBYTE and SBYTE, refer to the preceding section "New Keywords" and the
HP BASIC Language Reference.

F Use only one-byte characters as punctuation characters in BASIC statements
and as data separators. For example, commas, semicolons, and quotes must be
one-byte characters.

G If you use two-byte characters in your program, you must load the proper
CRTD, LANGUAGE, FONT, and INPUT binaries. Certain keywords and
CONTROL/STATUS registers are not recognized until these binaries are loaded.
Refer to the appropriate keyword or register entries in the HP BASIC Language
Reference.

H Use string functions with two-byte characters very carefully. Some string
functions do not allow two-byte characters or ignore them. Other string
functions treat two-byte characters byte by byte instead of character by
character. Refer to the previous section "Changes in String Functions" for
details.

I Use only one-byte characters for numeric input. Use one-byte numeric
characters, decimal points, plus and minus signs, and E.

9
J Store message text containing two-byte characters in language specific

subprograms or text files.

Features of Globalized BASIC 9-29

9

Special Cases

It is important to note that if a program runs properly on a non-localized
BASIC system, it will run on an equivalent localized BASIC system with very
little modification. The only change required is the use of two-byte display
enhancements characters. The localized and non-localized systems must be of a
compatible BASIC software revision.

Conversely, a program that runs on a localized BASIC system and uses
two-byte characters generally will not run on a non-localized system.

Easily
Ported

Easily
Ported

9-30 Features of Globalized BASIC

Often
Not

Portable

Index

A

accessing files created on non-Series-
200/300 SRM workstations, 4-30

alpha and graphics planes, configuring
separate, 2-25

alpha color changes, 2-35
ALPHA OFF statement, 5-3
ALPHA ON statement, 5-3
alpha screen height and graphics scrolling,

2-35
APPEND, 7-10
ASCII file access, 4-19
ASSIGN statement, 4-7, 5-3
automatic display selection at system

boot, 2-31

B

BASIC 4.0 enhancements for Series 200
computers, 2-38

BASIC/DOS, 5-1
BASIC/UX, 5-1
BASIC/UX differences, 5-2
BASIC/UX enhancements, 5-19
BASIC/UX environment, entering and

exiting, 5-20
BASIC/UX mass storage differences, 5-17
BASIC/UX mass storage enhancements,

5-26
BASIC/WS, 5-1
battery-backed real-time clock, 2-7
binary files, HP-UX text and, 4-6
binary integers (HP-UX file access), 4-15

binary real values (HP-UX file access), 4-
12

binary strings (HP-UX file access), 4-17
BIN files, missing driver, 1-3
BNC video connectors, the relay and, 2-

28
built-in interfaces, 2-7
burst mode of I/O, 5-22

C

CALL, 7-13
case of I/O Transfers, special, 1-23
categories of new features (BASIC 5.0),

3-2
CAT statement, 5-3
changes, statement, 1-4
character codes

HP-15 and HP-16, 8-6
character conversions, 8-10
characters

size, 9-12
character width, 9-11
CHRX, 9-12
CHRY, 9-12
CLEAR WINDOW statement, 5-22
color changes, hidden, 2-37
common data types, 4-5
common file types, 4-4
compatibility, GLOAD/GSTORE, 2-35
compatibility interface capabilities, dis-

play, 2-29

Index-1

Index

Index

compatibility interface, using the display,
2-26

compatibility mode, 2-18
compatibility mode, enabling keyboard

(KBD CMODE ON), 2-17
compatibility mode, exiting keyboard

(KBD CMODE OFF), 2-24
compatibility mode, HP 98203 keyboard,

2-13
compatibility with preceding versions, 1-2
compatibility with previous revisions (BA

SIC6.x), 7-1
compatibility with previous versions (BA-

SIC 5.0), 3-1
composition of SRM file names, 4-26
configuration program, using a, 2-12
configurations possible, 2-29
<:onfiguring BASIC, 1-2
configuring separate alpha and graphics

planes, 2-25
copying files from a LIF disk, 6-2
copying files from a mounted HFS file

system, 6-3
copying files from an SRM disk, 6-3
copying item-by-item using ENTER and

OUTPUT, 4-29
CREATE statement, 4-6, 5-4
CREATE WINDOW statement, 5-22
CRTD, 7-12
CRTD binary, 9-9
CSIZE, 9-12
CSUB capabilities (BASIC 5.0), addi-

tional, 3-14
CSUBs, 1-4, 7-11
CSUBs, incompatible, 2-34
CSUB utility, 3-15
CVT$,9-22

o
data, textual numeric, 4-7

Index-2

data-type matching between BASIC and
C,4-6

data types, common, 4-5
default plotter, 1-11
description of Series 300 hardware, 2-3
DESTORY WINDOW statement, 5-22
device viewport, input, 1-12
DICTIONARY IS, 9-24
directory paths, allowing for SRM, 4-27
DISABLE EXT SIGNAL statement, 5-24
display compatibility interface capabili-

ties, 2-29
display compatibility interface, using the,

2-26
display drivers, removing, 2-32
display enhancement characters, 9-16
display ffnctions, 1-22
displays, 2-4

using with two-byte characters, 9-9
display selection at system boot, auto-

matic, 2-31
driver BIN fifes, missing, 1-3
DUMP ALPHA statement, 5-5
DUMP DEVICE IS statement, 5-5
DUMP GRAPHICS statement, 5-5

E

ENABLE EXT SIGNAL statement, 5-24
enabling keyboard compatibility mode, 2-

17
enhancements, 5.1, 3-14
ENTER statement, 5-6
ERRM$ statement, 5-6
ERRN statement, 5-6
EXCHANGE, 8-11, 9-19, 9-25
EXECUTE statement, 5-21
exiting keyboard compatibility mode, 2-

24
extend keys, 9-3

F

FBYTE, 9-23
file access, ASCII, 4-19
file dump utility, HP-UX, 4-23
files created on non-Series-200/300 SRM

workstations, accessing, 4-30
file specifiers, SRM, 4-26
file types, common, 4-4
fonts, 9-9
function, KNOBX, 1-6

G

galley characters, 8-9, 9-11
GCLEAR, implicit, 1-12
GESCAPE statement, 5-6,5-26
GET, 7-10
GFONT, 9-24
GLOAD/GSTORE compatibility, 2-35
GLOAD statement, 5-6
glo balization

BASIC architecture, 8-13
BASIC features, 9-1
BASIC support, 8-1
definition, 8-3
overview, 8-1
summary of BASIC features, 8-13

graphics buffering, 5-25
graphics features (BASIC 5.0), addi-

tional, 3-13
graphics fonts, 9-9
GRAPHICS INPUT IS statement, 5-6
GRAPHICS OFF statement, 5-7
GRAPHICS ON statement, 5-7
graphics planes, configuring separate al

pha and, 2-25
graphics scrolling, alpha screen height

and, 2-35
graphics tablet DIGITIZE, 1-12
GSTORE statement, 5-7

H

hardware description, 2-28
hardware, description of Series 300 hard

ware, 2-3
hardware support (BASIC 6.x), 7-2
hardware supported (BASIC 5.0), new, 3-

3
HFS binary, 7-12
HFS disks and data files, sharing, 4-2
HFS disk support, 3-5
HFS file buffering, 5-25
HFS files, locking, 5-26
HFS files, maximum number of open, 5-17
HFS file system, copying files from a

mounted, 6-3
HFS formatted disks, 5-7
hidden color changes, 2-37
Hierarchical File System (HFS), 3-5
HIL "system" menu labels, 2-16
HIL "typing-aid" soft key labels, 2-16
HP-15, 8-6, 8-11, 9-19
HP-16, 8-6, 8-11,9-19
HP 3630A (PaintJet™), 3-15
HP 98203 keyboard compatibility mode,

2-13
HP 98203 soft key labels, 2-15
HP 98203 specific key codes, 2-34
HP 98548A, 3-15
HP 98549A, 3-15
HP 98550A, 3-15
HP 98644 Serial Interface Configuration,

2-12
HP 98646A VME interface, 3-15
HP-HIL devices, selecting, 5-24
HP-HIL keyboard interface, 2-8
HP-HIL keyboards with mouse, 1-9
HP-HIL knob interval parameter, 2-37
HP-HIL support (BASIC 5.0), additional,

3-12
HP-UX binary files, 4-6
HP-UX file dump utility, 4-23

Index-3

Index I

I
Index

HP-UX file terminology, a note about, 4-2
HP-UX pipes, using, 5-23
HP-UX signals, trapping, 5-24
HP-UX text and binary files, 4-6
HP-UX text files, 4-6, 4-8
human interface enhancements (BASIC

5.0),3-6

ID PROM, 2-10
implicit GCLEAR, 1-12
incompatible CSUBs, 2-34
INITIALIZE statement, 5-8
INMEM, 7-13
input device viewport, 1-12
interface capabilities, display compatibil

ity, 2-29
Interface Configuration, HP 98644 Serial,

2-12
interface enhancements (BASIC 5.0), hu-

man, 3-6
interface, HP-HIL keyboard, 2-8
interface mapping, 5-23
interfaces, built-in, 2-7
interface, serial, 2-7
I/O transfers, special case of, 1-23
ITF keyboard, 2-15

K
keyboard compatibility mode, enabling,

2-17
keyboard compatibility mode, exiting, 2-

24
keyboard compatibility mode, HP 98203,

2-13
keyboard interface, HP-HIL, 2-8
keyboard layouts, brief comparison of, 2-

13
keyboards

any char entry method, 9-4
direct entry method, 9-2

Index-4

extended keyboard entry method, 9-3
non-ASCII key entry, 9-4
programmatic entry method, 9-5
special keys, 9-8
use with globalized BASIC, 9-1

keyboards with built-in knob, 1-8
key codes, HP 98203 specific, 2-34
keywords duplicating register operations,

3-8
keywords that duplicate register opera-

tions (BASIC 5.0), new, 3-8
KNB2_0, 1-10
knob, 1-6
knob interval parameter, HP-HIL, 2-37
knob, keyboards with built-in, 1-8
KNOBX function, 1-6
KNOBX statement, 5-8
KNOBY statement, 5-8

L

LABEL with PIVOT, 1-19
language extensions BIN files, missing, 1-

2
LIF disk, copying files from a, 6-2
LIF files to SRM, porting, 4-25
LIF media, accessing, 5-18
LIF protect codes, SRM passwords vs., 4-

28
LINK command, 3-15
linked files, 3-16
LIST BIN statement, 5-9
LIST statement, 5-9
LIST WINDOW statement, 5-22
LOAD BIN statement, 5-9
loading and running programs, Just, 2-11
loading a program, 6-4
localization

definition, 8-3
locking an interface, 5-22
locking SRM files, 5-17
LOCK statement, 5-26

long file names, 5-27

M

mapping, interface, 5-23
MASS STORAGE IS (MSI) statement, 4-

27
mass storage volume specification, SRM,

4-27
mass storage volume specifier, 5-10
memory volume, 5-10
methods of porting, 2-2
mode, compatibility, 2-18
Model 345, 7-2
Model 375, 7-2
Model V /360, 7-2
modifying the source program(porting to

4.0),2-33
MOVE WINDOW statement, 5-22
multi-tasking capabilities, 5-20
multi-user capabilities, 5-20

N

networked HFS file systems, accessing, 5-
26

numeric data, textual, 4-7

o
OFF EXT SIGNAL statement, 5-24
one-byte characters

definition, 8-4
detailed discussion, 8-5
fonts, 9-9
input methods, 9-1

ON EXT SIGNAL statement, 5-24
ON KNOB "interval" parameter, 2-38
ON/OFF CYCLE statement, 5-9
ON/OFF DELAY statement, 5-9
ON/OFF statement, 5-9
ON/OFF TIME statement, 5-9
OUTPUT statement, 5-9

p

PaintJet™ (HP 3630A), 3-15
PASS CONTROL statement, 5-10
PHYREC CSUB, 1-5
PHYREC routine, 1-5
pipes, HP-UX using, 5-23
PIVOT statement, 1-17
plotter, default, 1-11
PLOTTER IS changes, 2-36
PLOTTER IS statement, 5-11
porting

globalized BASIC, 9-28
porting and sharing files, 4-1
porting BASIC/WS programs to BA-

SIC/UX, 6-1
porting considerations, additional, 2-34
porting LIF files to SRM, 4-25
porting, methods of, 2-2
porting to 3.0, 1-1
porting to 5.0, 3-1
porting to 6.x, 7-1
porting topics covered, 1-1
porting to Series 300 and 4.0, 2-1
prerun on LOADSUB, 1-23
PRINTALL IS statement, 5-11
PRINTER IS statement, 5-11
printers

printing two-byte characters, 9-19
PRINT LABEL statement, 5-11
processor boards, 2-6
programming additions (BASIC 5.0), gen

eral, 3-10
PROTECT statement, 4-28
PURGE secondary keyword, 7-10

R

raster fonts, 9-9
READ KEY, 7-11
READ LABEL statement, 5-11
real-time clock, battery-backed, 2-7

Index-5

Index I

I
Index

relay and BNC video connectors, the, 2-
28

RE-SAVE statement, 5-11
RMBUX, 7-12
RPLOT with PIVOT, 1-17
run light, 5-11
RUNLIGHT ON/OFF, 7-11
running a program, 6-5
running programs, loading and, 2-11
run-time errors, correcting, 6-5
run-time errors, recognizing, 6-5

S

SAVE statement, 5-12
SBYTE, 9-23
SCRATCH, 7-13
SCRATCH BIN statement, 5-12
SCRATCH WINDOW statement, 5-22
SCSI, 7-3
SC statement, 5-12
SEPARATE ALPHA FROM GRAPH

ICS statement, 5-12
serial interface, 2-7
Serial Interface Configuration, HP 98644,

2-12
Series 300 display, switching back to the,

2-30
Series 300 hardware, description of, 2-3
SET ALPHA MASK statement, 5-12
SET DISPLAY MASK statement, 5-12
SET HIL MASK statement, 5-24
SET TIMEDATE statement, 5-13
SET TIME statement, 5-13
sharing files, porting and, 4-1
sharing HFS disks and data files, 4-2
SHIFT IN ... OUT, 9-20,9-25
silent errors, correcting, 6-6
silent errors, recognizing, 6-6
soft key labels, HP 98203, 2-15
source program(porting to 4.0), modify

ing the, 2-33

Index-6

SRM directory paths, allowing for, 4-27
SRM disk, copying files from an, 6-3
SRM file names, composition of, 4-26
SRM files, locking, 5-17
SRM files open, leaving, 5-17
SRM file specifiers, 4-26
SRM interface, 5-13
SRM mass storage volume specification,

4-27
SRM passwords vs. LIF protect codes,

4-28
SRM, porting LIF files to, 4-25
SRM security, 5-18
SRM workstations, accessing files created

on non-Series-200/300, 4-30
statement changes, 1-4
STATUS/CONTROL registers (BASIC

5.0), new, 3-11
STORE SYSTEM statement, 5-14
string functions

two-byte Characters, 9-26
strings, textual, 4-10
switching back to the Series 300 display,

2-30
SYSBOOT statement, 5-14
SYSTEM$, 7-13
SYSTEM$("AVAILABLE MEMORY"),

5-14
SYSTEM$("MASS MEMORY"), 5-14
SYSTEM$("MASS STORAGE IS"), 5-15
SYSTEM$("PROCESS ID"), 5-21
SYSTEM$("SERIAL NUMBER"), 5-15
SYSTEM$("SYSTEM ID") values, new,

2-35
SYSTEM$("VERSION:OS"),5-21
SYSTEM$("WINDOW SYSTEM"), 5-21

T

tablet DIGITIZE, graphics, 1-12
textual numeric data, 4-7
textual strings, 4-10

TIMEDATE statement, 5-15
TIMEZONE IS statement, 5-16
TRANSFER statement, 5-16
two-byte characters

character conversions, 8-10
combining with one-byte, 8-5
converting alphabets, 8-12
converting for printing, 8-11
converting phrases, 8-12
definition, 8-4
detailed discussion, 8-6
determining position, 9-13
fonts, 9-9
galley characters, 8-9, 9-11
hardware support, 9-9
input methods, 9-7
inserting and overwriting, 9-14
keyboard STATUS and CONTROL, 9-

8
related BASIC keywords, 9-21
string functions, 9-26

U

used in a graphics plot, 8-5
used in a program, 8-4
using displays with, 9-9
using keyboards, 9-7

UNLOCK statement, 5-26
utilities (BASIC 5.0), new, 3-4

V

VIEWPORT statement, 1-12
VME interface (HP 98646A), 3-15
volume specification, SRM mass storage,

4-27
VXI, 7-3

W

WAIT statement, 5-16
wildcards, 7-9
window management, 5-21

Index-7

Index I

HP Part Number
98616-90014

Printed in U.S.A. E0691

Flin- HEWLETT
a!aI PACKARD

11 11111 111/1111

98616-90631 Manufacturing Number

