
HP BASIC 6.2
Langua,ge Reference

Volu:me 1: A-N

~.'gw HEWLETT
~aI PACKARD

tiP Part No. 98616-90()04
Printed in USA

Notice
The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP MAKES NO WARRANTIES OF ANY KIND WITH
REGARD TO THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED.
HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this product are restricted.
Additional copies of the software can be made for security and backup purposes
only. Resale of the software in its present form or with alterations is expressly
prohibited.

Copyright © Hewlett-Packard Company 1987, 1988, 1990, 1991

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Copyright © AT&T Technologies, Inc. 1980, 1984, 1986

Copyright © The Regents of the University of California 1979, 1980, 1983,
1985-86

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California.

MS-DOS ® is a U.S. Registered trademark of Microsoft Corporation.

Printing History
First Edition - April 1990
Second Edition - June 1991

iv

1
Contents

This manual consists of two parts. Part I, the "Keyword Dictionary," is
divided between the two volumes. Part II, "Reference Information," provides
additional information in the back of Volume 2.

Volume 1

Part I - Keyword Dictionary

A through N

Volume 2

Part I - Keyword Dictionary (continued)

o through Z

Part II - Reference Information

1. Keyword Summary

2. Interface Registers

3. Error Messages

4. Useful Tables

G. Glossary

Contents 1-1

1

I
Part I - Keyword Dictionary

This reference presents all HP BASIC keywords alphabetically, giving a
detailed syntax description for each. Refer to part II, "Reference Information,"
in volume 2 of this manual for a summary of the keywords by category.

Keyword Dictionary. 1-1

BASIC Versions Supported
This reference documents the keywords supported by various implementations
of HP BASIC. Different versions exist to support different hardware and
operating systems. The keyword entries are coded with a two or three letter
abbreviation indicating which implementations support a particular keyword.
This coding is useful when you want to create an HP BASIC program on a
convenient development system and execute it on a different target system.

HP BASIC Support Codes

Support Code Meaning

WS Supported by HP BASIC/WS version 6.2 and above

UX Supported by HP BASIC/UX version 6.2 and above

DOS Supported by HP BASIC/DOS version 6.2 and above for the
Measurement Coprocessor

IN Supported by HP Instrument BASIC version 1.0 and above

Unless stated otherwise, the two or three letter support code refers to the
particular software version in the preceding table. For example, BASIC /WS
refers to the HP BASIC Workstation version 6.2. If the word "BASIC" appears
without a support code, it refers to all versions of BASIC.

If a support code is followed by an asterisk (e.g., DOS*), it indicates that some
special conditions or restrictions may apply. The syntax diagram, examples, or
discussion explain these special conditions.

1-2 Keyword Dictionary

Two-byte Languages and Characters

Two-byte Languages and Characters
Some versions of BASIC support the two-byte characters used by certain
nOR-Roman languages, sllch as Japanese. Two-byte characters are typically
used by Asian languages to describe their large, complex alphabets.

Some keyword entries explain details specific to two-byte languages. You do
not need understand these details unless you plan to write programs for a local
langlllage, such as Japanese.

Keyword Dictionary 1-3

Legal Usage Table
At the beginning of the entry for each keyword is a small table like this:

Supported On UX WS DOS*
Option Required PDEV
Keyboard Executable Yes
Programmable No
In an IF .. THEN.. No

Supported On

Option Required

Keyboard Executable

1-4 Keyword Dictionary

indicates which versions of BASIC support a
particular keyword.

• UX means that BASIC/UX supports the
keyword.

• WS means that BASIC /WS supports the
keyword.

• DOS* means that BASIC/DOS supports the
keyword, but some special conditions apply.
These special conditions are explained in the
keyword description or examples.

indicates what binary or binaries must be resident
in the computer in order to use the the basic
capabilities of the keyword. The syntax diagram or
description indicates what other binaries may be
required to use the extended features of a keyword.

BASIC lUX/IN automatically loads all applicable
binaries. You must manually configure
BASIC/WS/DOS to include the binaries required
by keywords in your programs. Refer to LOAD BIN
for details.

means that a properly constructed statement
containing that keyword can be typed into the
keyboard input line and executed by pressing
(EXECUTE), (ENTER), or §tUmJ.

Programmable

In an IF . .. THEN ...

Legal Usage Table

means that a properly constructed statement
containing that keyword can be placed after a line
number and stored in a program.

means that a properly constructed statement
containing that keyword can be placed after
"THEN" in a single-line IF ... THEN statement.
Keywords that are prohibited in a single-line
IF ... THEN are not necessarily prohibited in a
multiple-line IF ... THEN structure.

Keyword Dictionary 1-5

Syntax Diagrams Explained
Syntax is represented pictorially using syntax diagrams.

(DRAW)-.j x coordinate ~ y coordinate ~

All characters enclosed by a rounded envelope must be entered exactly as
shown. An example of this is the keyword DRAW. Single characters shown in
circular envelopes must also be entered exactly as shown.

You must substitute appropriate values for the named parameters enclosed by
rectangular envelopes. An example of a named parameter is x coordinate. A
description of each parameter and the range of allowed values is given either in
the table following the drawing, another drawing, or the Glossary.

Statement elements are connected by lines. Each line can he followed in
only one direction, as indicated by the arrow at the end of the line. Any
combination of statement elements that can be generated by following the lines
in the proper direction is syntactically correct. An element is optional if there
is a path around it. Optional items usually have default values. The table or
text following the drawing specifies the default value that is used when an
optional item is not included in a statement.

Comments may be added to any valid line. A comment is created by placing
an exclamation point after a statement, or after a line number or line label.

100 PRINT "Hello" ! This is a comment.
110 ! This is also a comment.

The text following the exclamation point may contain any characters in any
order.

The drawings do not necessarily deal with the proper use of spaces (ASCII
blanks). In general, whenever you are traversing a line, any number of spaces
may be entered. If two envelopes are touching, it indicates that no spaces are
allowed between the two items. However, this convention is not always possible
in drawings with optional paths, so it is important to understand the following
rules for spacing.

1-6 Keyword Dictionary

Syntax Diagrams Explained

Keywords and Spaces

The computer uses spaces, as well as required punctuation, to distinguish the
boundaries between various keywords, names, and other items. In general,
at least one space is required between a keyword and a name if they are
not separated by other punctuation. Spaces cannot be placed in the middle
of keywords or other reserved groupings of symbols. Also, keywords are
recognized whether they are typed in uppercase or lowercase. Therefore, to
lise the letters of a keyword as a name~ the name entered must contain some
mixture of uppercase and lowercase letters.

KeyWQFd Dictionary I· 7

Space Between Keywords and Names
The keyword NEXT and the variable Count are properly entered with a space
between them, as in NEXT Count. Without the space, the entire group of
characters is interpreted as the name Nextcount.

No Spaces in Keywords or Reserved Groupings

The keyword DELSUB cannot be entered as DEL SUB. The array specifier (*)
cannot be entered as (*). A function call to "A$" must be entered as FNA$,
not as FN A $. The I/O path name "@Meter" must be entered as COMeter, not
as <0 Meter. The "exceptions" are keywords that contain spaces, such as END IF
and OPTION BASE.

Using Keyword Letters for a Name

Attempting to store the line IF X=l THEN END will generate an error because
END is a keyword not allowed in an IF ... THEN. To create a line label called
"End", type IF X=l THEN ENd. This or any other mixture of uppercase and
lowercase will prevent the name from being recognized as a keyword.

Also note that names may begin with the letters of an infix operator (such as
MOD, DIV, and EXOR). In such cases, you should type the name with a case
switch in the infix operator portion of the name (e.g., MOdULE, DiVISOR).

1-8 Keyword Dictionary

Keyboards

Keyboards
Throughout the manuals which document HP BASIC, specific keys are
mentioned. Because many key labels are different on each keyboard, your
exact key labels may not be used in an example. For example, (ENTER) and
(RetU!O) normally have the same meaning, but only one of them appears on a
given keyboard. The keyboard chapter of Using HP BASIC/WS 6.2 or Using
HP BASIC/UX 6.2 discusses keyboards in more detail.

Keyword Dictionary 1-9

A
ABORT - AXES

ABORT - AXES A-1

ABORT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
10
Yes
Yes
Yes

This statement ceases activity on the specified interface.

Item

interface select
code

Description

numeric expression, rounded to an
integer

I/O path name name assigned to an HP-IB interface

Example Statements

ABORT 7
IF Stop_code THEN ABORT GSource

Semantics

Range

5, 7 through 31

Executing this statement ceases activity on the specified HP-IB interface; other
interfaces should not be specified. If the computer is the system controller but
not currently the active controller, executing ABORT causes the computer to
assume active control.

Note that ABORT interface_select is allowed, but ABORT primary_address is not.
For example:

ABORT 7 allowed

ABORT 721 not allowed

A-2 ABORT - AXES

ABORT

The details of interface select codes and primary addresses are introduced in
the "Data Flow" chapter of the HP BASIC 6.2 Programming Guide.

Summary of Bus Actions

System Controller Not System Controller

Active Controller IFC (duration ATN
2: 100 J-lsec) MTA

REN UNL
ATN ATN

Not Active Controller IFC (duration No
2:100 J-lsec)l Action

REN
ATN

1 The IFC message allows a non-active controller (which is the system
controller) to become active.

Data Communications Interfaces

Directing this statement to a Data Communications interface clears the buffers
and disconnects the interface.

ABORT - AXES A-3

ABORTIO

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
TRANS
Yes
Yes
Yes

This statement terminates a TRANSFER which is currently taking place
through an I/O path assigned to a device, group of devices, mass storage file,
or pipe (BASIC/UX).

Item Description

I/O path name name assigned to a device, a group of
devices, mass storage file, or pipe

Example Statements

!BORTIO GInterface
IF Stop_flag THEN ABORTIO GDevice

Semantics

Range

any valid name

This statement terminates a TRANSFER (in either direction) currently taking
place through the specified I/O path name. The I/O path name must be
assigned to an interface select code, device selector, mass storage file, or pipe; if
the I/O path name is assigned to a buffer, error 170 is reported.

An end-of-transfer (EOT) branch is initiated if an ON EOT branch is currently
defined for the I/O path name; however, no currently defined EOR branch will
be initiated.

A-4 ABORT - AXES

ABORTIO

ABORTIO has no effect if no TRANSFER is taking place through the I/O
path name.

If a TRANSFER to or from an I/O path name was terminated by an error,
executing ABORTIO on that I/O path name causes the error to be reported.

ABORT - AXES A-5

ABS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function returns the absolute value of its argument.

(ASS r01 argument r<l)-+t

Item Description/Default

argument numeric expression

Examples Statements

Magnitude=ABS(Vector)
PRINT "Value = ";ABS(CMPLX(2.45,-4»

Semantics

Range
Restrictions

within valid ranges of
INTEGER and REAL
data types for INTEGER
and REAL arguments;
see "Range Restriction
Specifics" for COMPLEX
arguments

To compute the absolute value of a COMPLEX value, the COMPLEX binary
must be loaded.

A-6 ABORT - AXES

ABS

Range Restriction Specifics

The formula for computing ABS for COMPLEX arguments is:

SQRT(Real_part*Real_part + Imag_part*Imag_part)

where Real_part is the real part of the COMPLEX argument and Imag_part
is the imaginary part of the COMPLEX argument in the ABS function. Some
values of a COMPLEX argument may cause errors in this computation. For
example:

ABS(CMPLX(MAXREAL,MAXREAL»

will cause error 22 due to the computation Real_part*Real_part.

The result returned when executing the ABS function for COMPLEX numbers
is always a positive REAL value.

Taking the ABS of the INTEGER -32768 will cause an error.

ABORT - AXES A-7

ACS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function returns the principle value of the angle which has a cosine equal
to the argument. This is the arccosine function.

(ACS r0-1 argument ~

Item Description/Default

argument numeric expression

Examples Statements

Angle=ACS(Cosine)
PRINT "Angle = ";ACS(CMPLX(2.67,-6»

Semantics

Range
Restrictions

-1 through + 1 for
INTEGER and REAL
arguments; see "Range
Restriction Specifics"
below for COMPLEX
arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the
argument is COMPLEX, the value returned is COMPLEX.

The angle mode (RAD or DEG) for REAL and INTEGER arguments indicates
whether you should interpret the value returned in degrees or radians. If the
current angle mode is D EG, the range of the result is OP to 1800

• If the current

A-a ABORT - AXES

ACS

angle mode is RAD, the range of the result is 0 to 7r radians. The angle mode
is radians unless you specify degrees with the DEG statement.

To compute the ACS of a COMPLEX value, the COMPLEX binary must be
loaded.

Range Restriction Specifics

The formula used for computing the ACS of a COMPLEX value is:

-i * LOG(Argument+SQRT(Argument*Argument-l»

where i is the COMPLEX value CMPLX(O, 1) and Argument is a COMPLEX
argument to the ACS function. Some values of a COMPLEX argument may
cause errors in this computation. For example,

ACS(CMPLX(KAXREALtO»

will cause error 22 due to the Argument*Argument computation.

The principle value, which has a real part between 0 and 7r, is returned for
COMPLEX arguments.

ABORT - AXES A-9

ACSH
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
COMPLEX
Yes
Yes
Yes

This function returns the hyperbolic arccosine of a numeric expression.

Item

argument

(ACSH r<D-1 argument ~

Range
Description/Default Restrictions

numeric expression INTEG ER and REAL arguments must
be ~1 and < 1.340 780 792 99 E 154;
see "Range Restriction Specifics" for
COMPLEX arguments

Example Statements

Result=ACSH(5.7089)
PRINT "Hyperbolic Arccosine = ";ACSH(E:x:pression)

Semantics

If an INTEGER or REAL argument is given, this function returns a REAL
value. If a COMPLEX argurnent is given, this function returns a COMPLEX
value.

A·10 ABORT - AXES

ACSH

Range Restriction Specifics

The formula for computing ACSH is as follows:

LOG(Argument+SQRT(Argument*Argument-1»

where Argument is the argument to the ACSH function. Some values of an
argument may cause errors in this computation. For example,

ACSH(MAXREAL)

will cause error 22 due to the computation Argument*Argument.

Note that the hyperbolic arccosine of a COMPLEX number returns a principle
value which has an imaginary part which falls in the range of 0 to +7r.

ABORT· AXES A·11

ALLOCATE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

This statement dynamically allocates memory for arrays and string variables
during program execution.

A·12 ABORT· AXES

Item

array name

lower bound

upper bound

string name

string length

Description

name of a numeric array

numeric expression, rounded to an
integer; Default = OPTION BASE
value (0 or 1)

numeric expression, rounded to an
integer

name of a string variable

numeric expression, rounded to an
integer

Example Statements

ALLOCATE Temp(Lov:High)
ALLOCATE R$[LEN(A$)+l]

Semantics

ALLOCATE

Range

any valid name

-32 768 through +32 767
(see "array" in Glossary)

-32 768 through +32 767
(see "array" in Glossary)

any valid name

1 through 32 767

Memory reserved by the ALLOCATE statement can be freed by the
DEALLOCATE statement. However, because of the stack discipline used
when allocating, the freed memory space does not become available unless
all subsequently allocated items are also deallocated. For example, assume
that A$ is allocated first, then B$, and finally C$. If a DEALLOCATE A$
statement is executed, the memory space for A$ is not available until B$
and C$ are deallocated. This same stack is used for setting up ON-event
branches, so subsequent ON-event statements can also block the availability of
deallocated memory.

The total number of elements that can be allocated for variables within any
one context or COM area (Le., any "value area") is limited to 224_1, or
16 777 215 bytes.

The variables in an ALLOCATE statement cannot have appeared in COM,
COMPLEX, DIM, INTEGER, or REAL declaration statements. If variable(s)
are to be allocated in a subprogram, the variable(s) cannot have been included
in the subprogram's formal parameter list. Implicitly declared variables cannot

ABORT· AXES A·13

A I

A

ALLOCATE

be allocated. Numeric variables which are not specified as INTEGER or
COMPLEX are assumed to be REAL. A variable can be re-allocated in its
program context only if it has been deallocated and its type and number of
dimensions remain the same.

ALLOCATE allows you to dynamically allocate memory for arrays. However,
the array dimensions are determined statically. Thus you can change the size of
the dimensions, but you cannot change the number of dimensions of an array
within a program context.

Exiting a subprogram automatically deallocates any memory space allocated
within that program context.

ALLOCATE can be executed from the keyboard while a program is running
or paused. However, the variable must have been declared in an ALLOCATE
statement in the current program context.

A-14 ABORT - AXES

ALPHA HEIGHT

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
CRTX
Yes
Yes
Yes

ALPHA HEIGHT

This statement is used to vary the number of lines in the alpha area of the
CRT.

ALPHA HEIGHT

number of lines

Item Description/Default

number of lines numeric expression

Example Statements

ALPHA HEIGHT Hum_of_lines
ALPHA HEIGHT 18
IF Total_lines = 10 THEN ALPHA HEIGHT 18
ALPHA HEIGHT

Semantics

Range Restrictions

(see Semantics)

ALPHA HEIGHT is used to restrict the alpha screen to the bottom n lines of
the display, leaving the upper part of the display for graphics. This can be used
to prevent alpha from interfering with graphics.

The number of lines available for alpha on the CRT depends on which display
is being used. The following are the upper limits for the ALPHA HEIGHT
statement: 22, 25, 26, 30, 42, 48, 51, and 56. The lower limit is 9 in all cases
(can be others in a windowing environment).

ABORT - AXES A-15

ALPHA HEIGHT

ALPHA HEIGHT without any parameters restores the default height (one of
the upper limits mentioned above). The minimum argument to this statement
is always 9; however, when you are in Edit mode the minimum alpha height is
14. Note that upon entering the Edit mode if the ALPHA HEIGHT is a value
in the range of 9 to 13 it will be changed to 14 (in BASIC lUX, it will not be
changed).

Note that the functionality of this statement can be achieved through CRT
CONTROL register 13; however, you cannot execute the CONTROL statement
without a parameter in order to get the default alpha height.

A·16 ABORT· AXES

ALPHA ON/OFF
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS*
GRAPH
Yes
Yes
Yes

This statement turns the alphanumeric raster on or off.

(ALPHA

Example Statements

ALPHA ON
IF Graph THEN ALPHA OFF

Semantics

ALPHA ON/OFF

Items sent to the printout area while the alphanumeric raster is disabled are
placed in the display memory even though they are not visible. Items sent to
the keyboard input line, the DISP line, or the system message line will turn on
the alphanumeric raster. The alphanumeric and graphic rasters can both be on
at the same time.

The alphanumeric area is enabled after power-on, RESET, and SCRATCH A.
Pressing the [ALPHA) key on the keyboard also enables the alphanumeric raster.

Bit-Mapped Alpha Displays

This statement has no effect on a bit-mapped alpha display when the alpha
write-enable mask specifies all planes. This is the default state on those
displays.

If ALPHA MASK <> 2~n-l, then planes enabled for alpha can be turned on
and off. See SET ALPHA MASK in this reference for more information.

ABORT - AXES A-17

ALPHA ON/OFF

BASIC/UX Specifics

ALPHA ON and ALPHA OFF have no effect in a windowing environment or
on single bit-plane terminals. It functions the same, however, on a bit-mapped
console.

BASIC/DOS Specifics

ALPHA ON and ALPHA OFF functions only in SEPARATE ALPHA mode,
which is supported only for VGA and EGA displays.

A-18 ABORT - AXES

ALPHA PEN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
CRTX
Yes
Yes
Yes

ALPHA PEN

This statement selects the alpha display color or gray scale value for the CRT.

(ALPHA PEN >1 pen value ~

Item Description/Default

pen value numeric expression

Example Statements

ALPHA PEN Pen_value
ALPHA PEN 142
IF Cyan THEN ALPHA PEN 140

Range Restrictions

(see Semantics)

ABORT - AXES A-19

ALPHA PEN

Semantics

The set of alpha colors for the Model 236C is given in the table below:

Value

< 16

16 to 135
136
137
138
139
140
141
142
143
144 to 255

Result
The number is evaluated
MOD 8 and resulting values
produce the following:

O-black
I-white
2-red
3-yellow
4-green
5-cyan
6-blue
7-magenta

Ignored
White
Red
Yellow
Green
Cyan
Blue
Magenta
Black
Ignored

This statement has no effect on single plane monochrome displays. On gray
scale (multi-plane monochrome) displays this statement changes the display
color to a different shade of gray.

For bit-mapped alpha displays, ALPHA PEN specifies the pen to be used for
subsequent alpha output. The range of values allowed with this statement are
o through 255; these values are treated as MOD 2n, where n is the number of
display planes.

A-20 ABORT - AXES

ALPHA PEN

ALPHA PEN n or CONTROL CRT, 5; n set the values of the CRT registers 15,
16, and 17 (or PRINT PEN, KEY LABELS PEN and KBD LINE PEN,
respectively), but the converse is not true. That is, STATUS CRT,5 may not
accurately reflect the CRT state if control registers 15, 16, and/or 17 have been
set.

Note that the functionality of this statement can be achieved through CRT
CONTROL register 5.

ABORT - AXES A-21

AND
Supported On
Option Required
Keyboard Executable
Programmable

UX WS DOS IN
None
Yes
Yes

In an IF . .. THEN ... Yes

This operator returns a 1 or a 0 based upon the logical AND of the arguments.

Example Statements

IF Flag AND Test2 THEN Process
Final=Initial AND Valid

Semantics

A non-zero value (positive or negative) is treated as a logical 1; only zero is
treated as a logical O.

A B AANDB

0 0 0

0 1 0

1 0 0

A-22 ABORT - AXES

APPEND

APPEND
See the ASSIGN, DUMP DEVICE IS, PLOTTER IS, PRINTALL IS, and
PRINTER IS statements.

ABORT - AXES A-23

AREA
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

UX WS DOS
GRAPHX
Yes
Yes
Yes

This statement defines or selects an area fill color. The fill color is used in all
subsequent graphics operations requiring area fill.

Item Description Range

hue numeric expression o through 1

saturation numeric expression o through 1

luminosity numeric expression o through 1

red numeric expression o through 1

green numeric expression o through 1

blue numeric expression o through 1

pen selector 1 ~umeric expression, rounded to an 1-32768 through +32 767
mteger

A-24 ABORT - AXES

Example Statements

AREA COLOR Hue,Saturation,Luminosity
AREA COLOR X*.3,RND,A~2
AREA INTENSITY Red(I),Green(I),Blue(I)
AREA INTENSITY X*.3,RND,A~2
AREA PEN 1
AREA PEN -Pen

Semantics

AREA

The default fill color is the color specified by Pen 1. This color is solid white
after power-up, SCRATCH A, GINIT, or LOAD BIN "GRAPH" (when this
binary is not already resident in memory).

A fill color remains in effect until the execution of an AREA, GINIT, or
SCRATCH A. Other statements which may alter the current fill color
(depending on the data passed to them) are SYMBOL, PLOT, RPLOT, or
IPLOT when used with an array. SET PEN affects pen colors, and therefore
can also affect fill colors specified with AREA statements.

Specifying color with the SET PEN and AREA PEN statements (resulting
in non-dithered color) results in a much more accurate representation of the
desired color than the same color requested with an AREA COLOR or AREA
INTENSITY statement. To see the difference, compare the five color plates for
this entry with the corresponding plates for the SET PEN statement in the
example program COLORS, found on the MANUAL EXAMPLES disk.

AREA PEN

A fill color specified with AREA PEN is guaranteed to be non-dithered, and
the AREA PEN statement executes much faster than AREA COLOR or
AREA INTENSITY.

The pen numbers have the same effect as described in the PEN statement for
line color except that in the alternate pen mode, negative pens erase as in the
normal pen mode; they do not complement. Pen 0 in normal pen mode erases;
it does not complement.

ABORT· AXES A-25

AREA

AREA COLOR

When AREA COLOR is executed on a machine with a color display, the HSL
parameters are converted to RGB values. Then, if the color requested is not
available in the color map, the computer creates the closest possible color in
RGB color space to the one requested by filling the 4x4 dither cell with the
best combination of colors from the color map.

In non-color map mode, there are eight colors total, and they cannot be
redefined. This simulates the operation of the HP98627 A.

In color map mode, there are 2n total colors (where n is the number of planes
in the graphics display), and they can be redefined with SET PEN.

The example program COLORS, on the MANUAL EXAMPLES disk, shows the
effects of the AREA command. It shows the changes brought about by varying
one of HSL parameters at a time. The bottom bar shows that when saturation
(the amount of color) is zero, hue makes no difference, and varying luminosity
results in a gray scale.

COLORS also displays a color wheel representing the colors selected as the hue
value goes from 0 through 1. Any value between zero and one, inclusive, can be
chosen to select color. The resolution (the amount the value can change before
the color on the screen changes) depends on what the value of the hue is as
well as the values of the other two parameters.

It then shows the effect that varying saturation and luminosity have on the
color produced. Each of the small color wheels is a miniature version of the
large one above, except it has fewer segments.

AREA INTENSITY

The example program COLORS, on the MANUAL EXAMPLES disk,
demonstrates the effect of varying the intensity of one color component when
the other two remain constant.

It also shows combinations of red, green and blue. The values are given in
fifteenths: 0 fifteenths, 5 fifteenths, 10 fifteenths, and 15 fifteenths-every fifth
value. The values for each color component are represented in that color.

A-26 ABORT· AXES

AREA

The HP98627 A

When an HP98627A is used, the HSL values specified in an AREA COLOR
statement are converted to RGB. The parameters of an AREA INTENSITY
statement are already in RGB. The RGB values specify the fraction of dots
per 4x4-pixel a:rea to be turned on in each memory plane. The red value
corresponds to memory plane 1, the green value to memory plane 2, and the
blue value to memory plane 3.

The AREA PEN selects one of the eight non-dithered colors available with no
intensity control on the color guns. See the PEN entry for the order of these
colors.

The HP98627 A dithers in a very similar way to the Model 236 with color
monitor when the color map is not enabled (see PLOTTER IS), using only
eight colors when calculating the closest combination.

Monochromatic Displays

When doing shading on a monochromatic display, dithering is always used.
Dithering takes place in a 4x4 cell, which allows zero through sixteen of the
dots to be turned on, for a total of seventeen shades of gray.

Since AREA PEN does not use dithering, only black and white are available. If
the pen selector is positive, the resulting fill color is white; if zero or negative,
the resulting fill color is black.

When an AREA COLOR is executed, the hue and saturation parameters are
ignored. Only the luminosity value is used to determine the fraction of pixels
to be turned on.

When an AREA INTENSITY is executed, the largest of the three values is
used, and it specifies the fraction of pixels to be turned on.

Gray Scale Displays

The HP Model 362/382 "internal" gray scale display provides various
intensities of gray by actually adjusting the luminosity of each pixel. See
PEN and PLOTTER IS for gray scale tables in non-color mapped mode or
color-mapped mode. For detailed information on the use of gray scale displays,

ABORT - AXES A-27

AREA

see the chapter "Color and Gray Scale Graphics" in the HP BASIC 6.2
Advanced Programming Techniques manual.

Alternate Pen Mode Fills

If the alternate drawing mode is in effect when the fill is performed, the area
will be filled with non-dominant color. See GESCAPE operation selectors 4
and 5.

In the alternate pen mode, negative pens erase as in the normal pen mode;
they do not complement.

BASIC/DOS Specifics

For a VGA color display, the fill color selections are the same as for a Series
300 display. For an EGA display, the fill color selections are limited.

A-28 ABORT - AXES

ARG
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
COMPLEX
Yes
Yes
Yes

ARG

This function returns the argument (or the angle in polar coordinates) of a
COMPLEX number.

(ARG r0-1 ar9ument ~

Item Description/Default

argument numeric expression

Example Statements

X=ARG(Complex_expr)
Y=ARG(Real_expr)
Z=ARG(Integer_expr)
Result=ARG(CMPLX(2.1,-8»

Semantics

Range
Restrictions

any valid
INTEGER,REAL, or
COMPLEX value

This is eqivalent to ATN2(CMPLX(Imag_part,Real_part)) in FORTRAN. The
value returned is REAL. If the current angle mode is DEG, the range of the
result is -1800 through + 1800

• If the current angle mode is RAD, the range of
the result is -1r thru +1r radians. The default mode is radians.

This function returns 0 when given an INTEGER or REAL argument.

ABORT· AXES A·29

ASCII
See the CREATE ASCII and LEXICAL ORDER IS statements.

A-30 ABORT - AXES

ASN

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

ASN

This function returns the principle value of the angle which has a sine equal to
the argument. This is the arcsine function.

(ASN r<D-1 argument ~

Item Description/Default

argument numeric expression

Examples Statements

Angle=ASN(Sine)
PRINT "Angle = ";ASN(CMPLX(-2.98,3»

Semantics

Range
Restrictions

-1 through + 1 for
INTEGER and REAL
arguments; see "Range
Restriction Specifics" for
COMPLEX arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the
argument is COMPLEX, the value returned is COMPLEX.

The angle mode (RAD or DEG) for REAL and INTEGER arguments indicates
whether you should interpret the value returned in degrees or radians. If the
current angle mode is DEG, the range of the result is -900 to 90°. If the

ABORT·· AXES A·31

ASN

current angle mode is RAD, the range of the result is -1r /2 to +1r /2 radians.
The angle mode is radians unless you specify degrees with the DEG statement.

To compute the ASN of a COMPLEX value, the COMPLEX binary must be
loaded.

Range Restriction Specifics

The formula for computing the ASN of a COMPLEX value is:

-i*LOG(i*Argument+SQRT(l-Argument*Argument»

where i is the COMPLEX value CMPLX(O, 1) and Argument is a COMPLEX
argument to the ASN function. Some values of a COMPLEX argument may
cause errors in this computation. For example:

ASN(CKPLX(MAXREAL.O»

will cause error 22 due to the Argument*Argument computation.

The principle value, which has a real part between -1r /2 and +1r /2, is returned
for COMPLEX arguments.

A·32 ABORT· AXES

ASNH
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
COMPLEX
Yes
Yes
Yes

ASNH

This function returns the hyperbolic arcsine of a numeric expression.

(,lSNH r<D-1 argument r<D-+t

Item Description/Default

argument numeric expression

Example Statements

Result=ASNH(-.2475)

Range
Restrictions

absolute value
< 1.340 780 792 99 E+ 154 and
> 1.491 668 146 24 E -154
for INTEGER and REAL arguments;
see "Range Restriction Specifics"
for additional restrictions.

PRINT "Hyperbolic Arcsine = ";ASNH(Expression)

Semantics

If an INTEGER or REAL argument is given, this function returns a REAL
value. If a COMPLEX argument is given, this function returns a COMPLEX
value.

ABORT· AXES A·33

ASNH

Range Restriction Specifics

The formula use for computing the ASNH is as follows:

LOG(Argument+SQRT(Argument*Argument+l»

where Argument is the argument to the ASNH function. Some values of a
COMPLEX argument may cause errors in this computation. For example:

ASNH(CMPLX(MAXREAL,O»

will cause error 22 (REAL overflow) due to the Argument*Argument
computation.

Note that the ASNH of a COMPLEX number returns a principle value which
has an imaginary part that falls in the range of -1r /2 to +1r /2.

A·34 ABORT· AXES

ASSIGN

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN*
None
Yes
Yes
Yes

ASSIGN

This statement is used to assign I/O path names to files or devices, change
attributes of existing I/O paths, or close I/O paths.

ABORT - AXES A-35

A

ASSIGN

literal form of file specifier:

HfS or SRM files only

literal form of DFS file specifier:

A-36 ABORT - AXES

literal form of attribute:

A

I ASSIGN

,

r

L

,

'LANClIAGE L __ _ _ ________________ J

ABORT· AXES A-37

ASSIGN

Item Description

I/O path name name identifying an I/O path

device selector numeric expression

file specifier string expression

string variable name of a string variable
name

numeric array name of a numeric array
name

buffer size (in
bytes)

attribute

directory path

file name

LIF protect
code

SRM password

volume specifier

conversion
string

end-of-line
characters

time period

numeric expression, rounded to an
integer

attribute to be assigned to the I/O
path

literal

literal

literal; first two non-blank characters
are significant

literal; first 16 non-blank characters
are significant

literal

name of a string variable

string expression; Default=CR and
LF

numeric expression, rounded to the
nearest 0.001 seconds; Default=O

A-38 ABORT - AXES

Range

any valid name

(see Glossary)

(see drawing)

any valid name (see Glossary)

any valid name

1 through available memory
minus 690

(see drawing)

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

> not allowed

> not allowed

(see MASS STORAGE IS)

up to 256 characters (with
INDEX);

even number of characters
(with PAIRS)

up to 8 characters

0.001 through 32 767

Item Description

return variable name of a numeric variable
name

exchange string string expression

shift in string string expression

shift out string string expression

Example Statements

ASSIGN GSource TO Isc;FORMAT OFF
ASSIGN GSource;FORMAT ON
ASSIGN GDevice TO 724
ASSIGN GListeners TO 711,712,715
ASSIGN GDest TO *

ASSIGN GFile TO File_name$
ASSIGN GFile TO Dir_path$tFile_name$tVol_spec$
ASSIGN GFile TO IWorkDir/File"
ASSIGN GFile TO "/RootDir/KyDir/KyFile:,70011

ASSIGN GFile TO "DIR_JOHN/dir_proj/file111
ASSIGN GSrm_file TO IIP1/FredsData<pass>:REMOTE"
ASSIGN GFile TO IFile_*";APPEND

ASSIGN GBuf_1 TO BUFFER String_variable$
ASSIGN GBuf_2 TO BUFFER Numeric_array(*)
ASSIGN GBuf_3 TO BUFFER [128]

Range

any valid name

choices depend on
LANGUAGE

ASSIGN

depends on printer used; six
bytes maximum

depends on printer used; six
bytes maximum

ASSIGN GResource TO Gpio;WORD,CONVERT IN BY INDEX In$
ASSIGN GResource;CONVERT OUT BY INDEX Out$
ASSIGN GResource TO Hpib;EOLEol$ END DELAY .05
ASSIGN GResource TO Rs_232;PARITY ODD

ASSIGN GPipe TO "I cat >file"
ASSIGN GPipe TO lipS -ef I"

outbound unnamed pipe, BASIC/UX only
inbound unnamed pipe, BASIC/UX only

ABORT - AXES A-39

ASSIGN

ASSIGN GAsian_prt TO 701;EICHANGE
ASSIGN GAsian_prt TO 701;EICHANGE "HP-16" SHIFT IN In$ OUT Out$
ASSIGN GAsian_prt TO 701;EICHANGE OFF

Semantics

The ASSIGN statement has three primary purposes. Its main purpose is
to create an I/O path name and assign that name to an I/O resource and
attributes that describe the use of that resource. The statement is also used to
change the attributes of an existing I/O path and to close an I/O path.

Associated with an I/O path name is a unique data type that uses 148 bytes of
memory. I/O path names can be placed in COM statements and can be passed
by reference as parameters to subprograms. They cannot be evaluated in a
numeric or string expression and cannot be passed by value.

Once an I/O path name has been assigned to a resource, OUTPUT, ENTER,
TRANSFER, STATUS, and CONTROL operations can be directed to that I/O
path name. This provides the convenience of re-directing I/O operations in a
program by simply changing the appropriate ASSIGN statement. The resource
assigned to the I/O path name may be an interface, a device, a group of
devices on HP-IB, a mass storage file, pipe, or a buffer. Note that the STATUS
and CONTROL registers of an I/O path are different from the STATUS and
CONTROL registers of an interface. All STATUS and CONTROL registers are
summarized in the "Interface Registers" section at the back of this book.

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with ASSIGN. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
Wildcard file specifiers used with ASSIGN must match one and only one file
name.

The FORMAT Attributes

Assigning the FORMAT ON attribute to an I/O path name directs the
computer to use its ASCII data representation while sending and receiving data
through the I/O path. Assigning the FORMAT OFF attribute to an I/O path
name directs the computer to use its internal data representation when using
the I/O path.

A-40 ABORT - AXES

ASSIGN

LIF ASCII format (similar to ASCII representation) is always used with ASCII
files; thus, if either FORMAT ON or FORMAT OFF is specified for the I/O
path name of an ASCII file, it will be ignored.

If a FORMAT attribute is not explicitly given to an I/O path, a default is
assigned. The following table shows the default FORMAT attribute assigned to
computer resources.

Resource Default Attribute

interface/ device FORMATON

ASCII file (always ASCII format)

BDAT file FORMAT OFF

DOS file FORMAT OFF

HP-UX file FORMAT OFF

buffer FORMATON

pipe FORMATON

The FORMAT OFF attribute cannot be assigned to an I/O path which
currently possesses any non-default CONVERT or PARITY attribute(s), and
vice versa.

Using Devices

I/O path names are assigned to devices by placing the device selector after the
keyword TO. For example, ASSIGN <ODisplay TO 1 creates the I/O path name
CODisplay and assigns it to the internal CRT display. The statement ASSIGN
IMeters TO 710 J 711 J 712 creates the I/O path name COMeters and assigns it to
a group of three devices on HP-IB. When multiple devices are specified, they
must be connected to the same interface.

When an I/O path name which specifies multiple devices is used in an
OUTPUT statement, all devices referred to by the I/O path name receive
the data. When an I/O path name which specifies multiple devices is used
in an ENTER statement, the first device specified sends the data to the

ABORT - AXES A-41

ASSIGN

computer and to the rest of the devices. When an I/O path name which
specifies multiple HP-IB devices is used in either CLEAR, LOCAL, PPOLL
CONFIGURE, PPOLL UNCONFIGURE, REMOTE, or TRIGGER statement,
all devices associated with the I/O path name receive the HP-IB message.

A device can have more than one I/O path name associated with it. Each I/O
path name can have different attributes, depending upon how the device is
used. The specific I/O path name used for an I/O operation determines which
set of attributes is used for that operation.

Using Files

Assigning an I/O path name to a file name associates the I/O path with a file
on the mass storage media (that is, it opens the file). The mass storage file
must be a data file (a file of type ASCII, BDAT, HP-UX, or DOS). The file
must already exist on the media, as ASSIGN does not do an implied CREATE.

Data files have a position pointer which is associated with each I/O path
name. The position pointer identifies the next byte to be written or read. The
position pointer is reset to the beginning of the file when the file is opened, and
updated with each ENTER or OUTPUT that uses that I/O path name. (It is
best if a file is open with only one I/O path name at a time.)

BDAT and HP-UX files have an additional physical end-of-file pointer. This
end-of-file pointer (which resides on the media) is read when the file is opened.
This end-of-file pointer is updated on the media at the following times:

• When the current end-of-file changes.

• When END is specified in an OUTPUT statement directed to the file.

• When a CONTROL statement directed to the I/O path name changes the
position of the end-of-file pointer.

Using APPEND (Requires MS)

Normally, opening a file with ASSIGN will reset the current position pointer
to the beginning of the file. Thus, an existing file is overwritten. If instead you
wish to append more data to an existing file, use ASSIGN with APPEND.

Note that APPEND only works with HPUX, and BDAT file types on SRM or HFS
File Systems. It will not work with LIF files.

A·42 ABORT· AXES

ASSIGN

HFS Permissions

ASSIGN opens any existing ASCII, BDAT, or HP-UX file if you currently
have R (read) or W (write) access permission on the file as well as X (search)
permission on the parent and all superior directories. Otherwise, error 183 will
be reported.

SRM Access Capabilities

ASSIGN opens any existing ASCII, BDAT, or HP-UX file, regardless of
protection on the file except when all access capabilities (MANAGER, READ
and WRITE) are taken from the public. Attempts to use ASSIGN with a
file whose capabilities are fully protected (without supplying the necessary
passwords) will result in error 62.

The file's specific access capabilities are not checked at ASSIGN time. A
subsequent operation on the file associated with the I/O path name is not
performed, however, unless you have the proper access capability for that
operation. For example, you may ASSIGN an I/O path name to a file that has
only the READ capability public; but attempting to perform an OUTPUT
operation generates error 62, since the WRITE access capability is not public
(this operation would be successful if you specify the WRITE password in the
ASSIGN statement).

Locked SRM Files

With SRM volumes, existing ASCII, BDAT, and HP-UX files opened via
ASSIGN are opened in shared mode, which means that several users can open
a file at the same time. If you lock a file (refer to LOCK) and subsequently
open that file via ASSIGN using the same (Qname (for example, to reset the file
pointer), the ASSIGN automatically unlocks the file (refer to UNLOCK). To
maintain sole access to the file, you must LOCK it again.

Closing an I/O path via ASSIGN (ASSIGN <OIo_path TO *) unlocks as well as
closes the file (regardless of the number of LOCKs in effect for the file at the
time).

ABORT· AXES A·43

ASSIGN

Using Buffers (Requires TRANS)

The ASSIGN statement is also used to create a buffer (called an "unnamed"
buffer) and assign an I/O path name to it or to assign an I/O path name to a
buffer (called a "named" buffer) which has been previously declared in a COM,
COMPLEX, DIM, INTEGER, or REAL declaration statement. Once assigned
an I/O path name, a buffer may be the source or destination of a TRANSFER,
the destination of an OUTPUT, or the source of an ENTER statement.

I/O path names assigned to buffers contain information describing the buffer,
such as buffer capacity, current number of bytes, and empty and fill pointers.
This information can be read from STATUS registers of the I/O path name;
some of this information may be modified by writing to CONTROL registers.
See the "Interface Registers" section at the back of this manual for I/O path
register definitions; the HP BASIC 6.2 Interface Reference provides tutorial
information about these interface registers.

The ASSIGN statement that assigns the I/O path name to a named buffer
(or creates an unnamed buffer) sets these registers to their initial values: the
buffer type is set to either 1 (named buffer) or 2 (unnamed buffer); the empty
and fill pointers are set to 1; the current-number-of-bytes register and all other
registers are set to o.
Named buffers can also be accessed through their variable names in the same
manner that other variables of that data type can be accessed. However,
with this type of access, the buffer registers are not updated; only the data in
the buffer changes. For example, using LET to place characters in a named
string-variable buffer does not change the empty and fill pointers or the
current-number-of-bytes register; only the buffer contents and string's current
length can be changed. It is highly recommended that the string's current
length (set to the string's dimensioned length by ASSIGN) not be changed in
this manner. Unnamed buffers can be accessed only through their I/O path
names.

Using ENTER, OUTPUT, or TRANSFER to access a named buffer through
its I/O path name updates the appropriate buffer registers automatically;
this is unlike accessing a named buffer through its declared variable name (as
above).

An I/O path name cannot be assigned to a buffer which will not exist
for as long as the I/O path name; this "lifetime" requirement has several

A-44 ABORT - AXES

ASSIGN

implications. Buffers cannot be declared in ALLOCATE statements. if a
buffer's I/O path name is to appear in a COM block, the buffer must appear
in the same COM block; thus, I/O path names assigned to unnamed buffers
cannot appear in COM. If a buffer's I/O path name is to be used as a formal
parameter of a subprogram, the buffer to which it will be assigned must appear
in the same formal parameter list or appear in a COM which is accessible to
that subprogram context. An I/O path name which is a formal parameter to a
subprogram cannot be assigned to an unnamed buffer in the subprogram.

Additional Attributes (Requires 10)

The BYTE attribute specifies that all data is to be sent and received as
bytes when the I/O path name is used in an ENTER, OUTPUT, PRINT, or
TRANSFER statement that accesses a device, file, or buffer, and when the
I/O path name is specified as the PRINTER IS or PRINTALL IS device. In a
TRANSFER, the attribute of BYTE or WORD associated with the non-buffer
I/O path name determines how the data is sent.

When neither BYTE nor WORD is specified in any ASSIGN statement for an
I/O path, BYTE is the default attribute. Once the BYTE attribute is assigned
(either explicitly or by default) to an I/O path name, it cannot be changed to
the WORD attribute by using the normal method of changing attributes (see
Changing Attributes below); the converse is also true for the WORD attribute.

The WORD attribute specifies that all data is to be sent and received as words
(in the same situations as with BYTE above). If the interface to which the
I/O path is assigned cannot handle 16-bit data, an error will be reported when
the ASSIGN is executed; similarly, if the buffer has a capacity which is an odd
number of bytes, an error will be reported. If the FORMAT ON attribute is in
effect, the data will be buffered to allow sending words. The first byte is placed
in a two-character buffer; when the second byte is placed in this buffer, the two
bytes are sent as one word. A Null character, CHR$(O), may be sent to this
buffer by BASIC to force alignment on word boundaries at the following times:
before the first byte is sent, before a numeric item is sent with a W image,
after an EOL sequence, or after the last byte is sent to the destination. These
Nulls may be converted to another character by using the CONVERT attribute
(see below). If WORD has been set explicitly, it remains in effect even when
the other defaults are restored (see Changing Attributes). The only way to
change the WORD attribute is to explicitly close the path name.

ABORT - AXES A-45

A

A

ASSIGN

The CONVERT attribute is used to specify a character-conversion table to
be used during OUTPUT and ENTER operations; OUT specifies conversions
are to be made during all OUTPUTs through the I/O path, and IN specifies
conversions with all ENTERs. The default attributes are CONVERT IN OFF
and CONVERT OUT OFF, which specify that no conversions are to be made
in either direction. No non-default CONVERT attribute can be assigned to an
I/O path name that currently possesses the FORMAT OFF attribute, and vice
versa.

CONVERT ... BY INDEX specifies that each original character's code is
used to index the replacement character in the specified conversion string,
with the only exception that CHR$(O) is replaced by the 256th character in
the string. For instance, CHR$(10) is replaced by the 10th character, and
CHR$(O) is replaced by the 256th character in the conversion string. If the
string contains less than 256 characters, characters with codes that do not
index a conversion-string character will not be converted.

CONVERT ... BY PAIRS specifies that the conversion string contains
pairs of characters, each pair consisting of an original character followed
by its replacement character. Before each character is moved through the
interface, the original characters in the conversion string (the odd characters)
are searched for the character's occurrence. If the character is found, it will
be replaced by the succeeding character in the conversion string; if it is not
found, no conversion takes place. If duplicate original characters exist in the
conversion string, only the first occurrence is used.

The conversion-string variable must exist for as long as the I/O path name (see
explanation of the "lifetime" requirement in the preceding section on Using
Buffers). Changes made to the value of this variable immediately affect all
subsequent conversions which use the variable.

When CONVERT OUT is in effect, the specified conversions are made after
any end-of-line (EOL) characters have been inserted into the data but before
parity generation is performed (if in effect). When CONVERT IN is in effect,
conversions are made after parity is checked but before the data is checked for
any item-terminator or statement-terminator characters.

The EOL attribute specifies the end-of-line (EOL) sequence sent after all data
during normal OUTPUT operations and when the "L" image specifier is used.
Up to eight characters may be specified as the EOL characters; an error is
reported if the string contains more than eight characters. The characters are

A-46 ABORT - AXES

ASSIGN

put into the output data before any conversion is performed (if CONVERT is
in effect). If END is included in the EOL attribute, an interface-dependent
END indication is sent with the last character of the EOL sequence (such as
the EOI signal on HP-IB interfaces); however, if no EOL sequence is sent,
the END indication is also suppressed. If DELAY is included, the computer
delays the specified number of seconds (after sending the last character) before
continuing. END and DELAY apply only to devices; both are ignored when a
file or buffer is the destination. The default EOL sequence consists of sending a
carriage-return and a line-feed character with no END indication and no delay
period. This default is restored when EOL is OFF.

The PARITY attribute specifies that parity is to be generated for each byte of
data sent by OUTPUT and checked for each byte of data received by ENTER.
The parity bit is the most significant bit of each byte (bit 7). The default mode
is PARITY OFF. No non-default PARITY attribute can be assigned to an I/O
path name which currently possesses the FORMAT OFF attribute, and vice
versa.

The following PARITY options are available:

Effect on Effect on
Option Incoming Data Outbound Data

OFF No check is performed No parity is generated

EVEN Check for even parity Generate even parity

ODD Check for odd parity Generate odd parity

ONE Check for parity bit set (1) Set parity bit (1)

ZERO Check for parity bit clear (0) Clear parity bit (0)

Parity is generated after conversions have been made on outbound data and
is checked before conversions on inbound data. After parity is checked on
incoming data, the parity bit is cleared; however, when PARITY OFF is in
effect, bit 7 is not affected.

If a PARITY attribute is in effect with the WORD attribute, the
most-significant bit of each byte of the word is affected.

ABORT - AXES A-47

ASSIGN

Determining the Outcome of an ASSIGN (Requires 10)

Although RETURN is not an attribute, including it in the list of attributes
directs the system to place a code in a numeric variable to indicate the
ASSIGN operation's outcome. If the operation is successful, a 0 is returned.
If a non-zero value is returned, it is the error number which otherwise would
have been reported. When the latter occurs, the previous status of the I/O
path name is retained; the default attributes are not restored. If more than one
error occurs during the ASSIGN, the outcome code returned may not be either
the first or the last error number.

If RETURN is the only item in an ASSIGN statement, the default attributes
are not restored to the I/O path (see Changing Attributes below). For
example, executing a statement such as ASSIGN COIo_path;RETURN Outcome
does not restore the default attributes.

Changing Attributes

The attributes of a currently valid I/O path may be changed, without
otherwise disturbing the state of that I/O path or the resource(s) to which it
is assigned, by omitting the TO resource clause of the ASSIGN statement. For
example, ASSIGN COFile;FORMAT OFF assigns the FORMAT OFF attribute to
the I/O path name COFile without changing the file pointers (if assigned to a
mass storage file). The only exception is that once either the BYTE or WORD
attribute is assigned to the I/O path name, the attribute cannot be changed in
this manner; the I/O path name must either be closed and then assigned to the
resource or be re-assigned to change either of these attributes.

A statement such as ASSIGN CODevice restores the default attributes to the I/O
path name, if it is currently assigned. As stated in the preceding paragraph,
the only exception is that once the WORD attribute is explicitly assigned to an
I/O path name, the default BYTE attribute cannot be restored in this manner.

ClOSing 1/0 Paths

There are a number of ways that I/O paths are closed and the I/O path names
rendered invalid. Closing an I/O path cancels any ON-event actions for that
I/O path. I/O path names that are not included in a COM statement are
closed at the following times:

A-48 ABORT - AXES

ASSIGN

• When they are explicitly closed; for example, ASSIGN ~File TO *
• When a currently assigned I/O path name is re-assigned to a resource, the

original I/O path is closed before the new one is opened. The re-assignment
can be to the same resource or a different resource. No closing occurs when
the ASSIGN statement only changes attributes and does not include the
"TO . .. " clause.

• When an I/O path name is a local variable within a subprogram, it is closed
when the subprogram is exited by SUBEND, SUBEXIT, ERROR SUBEXIT,
RETURN .. expression, or ON -event .. RECOVER.

• When SCRATCH, SCRATCH A, or SCRATCH C is executed; any form of
STOP occurs; or an END, LOAD, or GET is executed.

I/O path names that are included in a COM statement remain open and valid
during a LOAD, GET, STOP, END, or simple SCRATCH. I/O path names in
COM are only closed at the following times:

• When they are explicitly closed; for example, ASSIGN ~File TO *
• When SCRATCH A or SCRATCH C is executed

• When a LOAD, GET, or EDIT operation brings in a program that has a
COM statement that does not exactly match the COM statement containing
the open I/O path names

Additionally, when (Reset) is pressed, all I/O path names are rendered invalid
without going through some of the updating steps that are normally taken to
close an I/O path. This is usually not a problem, but there are rare situations
which might leave file pointers in the wrong state if their I/O path is closed by
a (Reset). Explicit closing is preferred and recommended.

When ASSIGN is used to close either the source or destination I/O path name
of a currently active TRANSFER, the I/O path is not actually closed until the
TRANSFER is completed. When I/O path names are closed in this manner,
any pending (logged but not serviced) EOR or EOT events are lost (they do
not initiate their respective branches). With buffers' I/O path names, the I/O
path name might not be closed until two TRANSFERs (one in each direction)
are completed.

ABORT· AXES A·49

ASSIGN

BASIC/UX Specifics

ASSIGN allows you to use HP-UX piping commands, such as IIp.

Assigning an I/O path name to a pipe associates the I/O path with an HP-UX
pipe. Outbound pipes allow direction of BASIC/UX output to an HP-UX filter
or utility, and inbound pipes allow BASIC/UX to read input from an HP-UX
filter of utility.

The pipe symbol I is used to specify a pipe. If this symbol appears at the
beginning of the string (as in IIp) an outbound pipe is opened. If this symbol
appears at the end of the string (as in ps -ef I) an inbound pipe is opened.

BASIC/UX treats output to a pipe as it would output to a file. The pipe
must be explicitly closed before any output becomes permanent (or takes
place). Output to a spooled device will not be sent to the spooler until the
pipe has been closed. The closing of pipes can be achieved with a subsequent
ASSIGN CGPipe to *, QUIT, or SCRATCH command.

Using EXCHANGE and SHIFT IN ... OUT (Requires LANGUAGE)

Some localized versions of BASIC, such as Japanese localized BASIC, support
two-byte characters. The secondary keyword EXCHANGE allows you to
automatically convert internal HP-15 character codes to the codes supported
by your two-byte printer. The available choices and default values for the
exchange string depend on the particular LANGUAGE localization binary
that you are using. You can turn the EXCHANGE function off by specifying
EXCHANGE OFF. If you specify EXCHANGE without an exchange string,
"HP-16" is assumed.

If you are using EXCHANGE with an ASSIGNed file, you must use a file
CREATEd with one of the following types:

• BDAT, FORMAT ON

• HP-UX, FORMAT ON

Note that EXCHANGE cannot be used with these combinations of ASSIGN
settings:

• CONVERT ...

• PARITY ...

A-50 ABORT - AXES

ASSIGN

• FORMAT OFF (whether set explicitly or set by default for an ASSIGNed
device or file).

The secondary keywords SHIFT IN and OUT are useful with certain printers
that use special control strings to turn two-byte printing on and off. BASIC
automatically sends the specified shift in string before two-byte characters.
BASIC also sends the specified shift out string before one-byte characters that
follow two-byte characters.

Note SHIFT IN and SHIFT OUT cause Error 257 if used with
HP-15 characters. Use EXCHANGE to convert HP-15
characters to your LANGUAGE two-byte characters.

For a general discussion of globalization and localization including printers,
refer to the HP BASIC 6.2 Porting and Globalization manual. For
LANGUAGE specific details, refer to Using LanguageX with HP BASIC, where
LanguageX is your local language.

ABORT - AXES A-51

ATN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function returns the principal value which has a tangent equal to the
argument. This is the arctangent function.

-(ATN XD-1 argument J-{D+i

Item Description/Default

argument numeric expression

Examples Statements

Angle=ATN(Tangent)
PRINT "Angle = ";ATN(CMPLX(-1.5 t 3.5»

Semantics

Range
Restrictions

within valid ranges of
INTEGER or REAL
data types for INTEGER
and REAL arguments;
see "Range Restriction
Specifics" for COMPLEX
arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the
argument is COMPLEX, the value returned is COMPLEX.

The angle mode (RAD or DEG) for REAL and INTEGER arguments indicates
whether you should interpret the value returned in degrees or radians. If the

A-52 ABORT - AXES

ATN

current angle mode is DEG, the range of the result is -900 to 900
• If the

current angle mode is RAD, the range of the result is -7r /2 to +7("/2 radians.
The angle mode is radians unless you specify degrees with the DEG statement.

To compute the ATN of a COMPLEX value, the COMPLEX binary must be
loaded.

Range Restriction Specifics

The formula for computing the ATN of a COMPLEX value is as follows:

(i/2)*LOG«i+Argument)/(i-Argument»

where i is the COMPLEX value eMPLI(O, 1) and Argument is a COMPLEX
argument to the ATN function. Some values of a COMPLEX argument may
cause errors in this computation. For example,

ATN(CMPLX(MAXREAL,MAXREAL»

will cause error 22 due to the computation of

(i+Argument)/(i-Argument)

ATN is not defined at i and -i and will generate error 623 given those
arguments.

The principle value, which has a real part between -7r /2 and +7r /2, is returned
for COMPLEX arguments.

ABORT - AXES A-53

ATNH
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
COMPLEX
Yes
Yes
Yes

This function returns the hyperbolic arctangent of a numeric expression.

(ATNH r<D-1 argument ~

Item Description/Default

argument numeric expression

Example Statements

Result=ATNH(-.4571)
PRINT "Hyperbolic Arctangent = ";ATNH(X1)

Semantics

Range
Restrictions

-1 through + 1 for INTEGER
and REAL arguments; see
"Range Restriction Specifics" for
COMPLEX arguments

If an INTEGER or REAL argument is given, this function returns a REAL
value. If a COMPLEX argument is given, this function returns a COMPLEX
value.

A-54 ABORT - AXES

ATNH

Range Restriction Specifics

The formula for computing ATNH is as follows:

LOG((1+Argument)/(1-Argument»/2

where Argument is the argument to the ATNH function. Some values of the
argument may cause errors in this computation. For example:

ATRH(CMPLX(KAXREAL,KINREAL»

will cause error 22 (REAL overflow) due to the divide operation in the formula.

Note that the hyperbolic arctangent of a COMPLEX number returns a
principle value, that has an imaginary part which falls in the range of -7r /2 to
+7r /2.

ABORT - AXES A-55

AXES
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

This statement draws a pair of axes, with optional, equally-spaced tick marks.

A-56 ABORT - AXES

Item

x tick spacing

y tick spacing

Description

numeric expression in current units;
Default = 0, no ticks

numeric expression in current units;
Default = 0, no ticks

y axis location numeric expression specifying the
location of the y axis in x-axis units;
Default = 0

x axis location numeric expression specifying the
location of the x axis in y-axis units;
Default = 0

x major count numeric expression, rounded to an
integer, specifying the number of tick
intervals between major tickmarks;
Default = 1 (every tick is major)

y major count numeric expression, rounded to an
integer, specifying the number of tick
intervals between major tick marks;
Default = 1 (every tick is major)

major tick size numeric expression in graphic display
units; Default = 2

Example Statements

AXES 10,10
AXES X,Y,Midx,Midy,Maxx/l0,Maxy/l0

Semantics

AXES

Range

(see text)

(see text)

1 through 32 767

1 through 32 767

The axes are drawn so they extend across the soft clip area. The tick marks
are symmetric about the axes, but are clipped by the soft clip area. Tick marks
are positioned so that a major tick mark coincides with the axis origin, whether
or not that intersection is visible. Both axes and tick marks are drawn with the

ABORT - AXES A-57

AXES

current line type and pen. Minor tick marks are drawn half the size of major
tick marks.

The X and Y tick spacing must not generate more than 32 768 tick marks in
the clip area (including the axis), or error 20 will be generated.

If either axis lies outside the current clip area, that portion of the tick mark
which extends into the non-clipped area is drawn.

Applicable Graphics Transformations

Scaling PIVOT CSIZE LDIR PDIR

Lines (generated by moves and draws) X X [4]

Polygons and rectangles X X X

Characters (generated by LABEL) X X

Axes (generated by AXES and GRID) X

Location of labels [1] [3] [2]

IThe starting point for labels drawn after lines or axes is affected by scaling.

2The starting point for labels drawn after other labels is affected by LDIR.

3The starting point for labels drawn after lines or axes is affected by PIVOT.

4RPLOT and IPLOT are affected by PDIR.

A-58 ABORT - AXES

B

B
BASE - BYTE

BASE - BYTE B-1

B BASE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
MAT
Yes
Yes
Yes

This function returns the lower subscript bound of a dimension of an array.
This value is always an INTEGER. (See also OPTION BASE.)

Item

array name

dimension

Description

name of an array

numeric expressior, rounded to an
integer

Example Statements

Lowerbound=BASE(Array$,l)
Upperbound(2)=BASE(A,2)+SIZE(A,2)-1

B-2 BASE - BYTE

Range

any valid name

1 through 6;
~ the RANK of the array

BOAT

BOAT B

See the CREATE BDAT statements.

BASE - BYTE B-3

B BEEP
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This statement produces one of 64 audible tones.

(BEEP
), I If 1 '"1 frequency t-01 seconds r

Item

frequency

seconds

Description

numeric expression, rounded to the
nearest tone; Default = 1220.7

numeric expression, rounded to the
nearest hundredth; Default = 0.2

Example Statements

BEEP 81.38*Tone,.5
BEEP

Semantics

Range

81 through 5208 (see
table)

The frequency and duration of the tone are subject to the resolution of the
built in tone generator. The frequency specified is rounded to the nearest
frequency shown in the table on the following page. For example, any specified
frequency from 40.7 to 122.08 produces a beep of 81.38 Hz. If the frequency
specified is larger than 5167.63, a tone of 5208.32 is produced. If it is less than
40.69, it is considered to be a 0 and no tone is produced.

Rounding is performed by the system to produce the number in the first
column of the following table. With an HP-HIL interface, the frequency

B-4 BASE - BYTE

BEEP

produced is the corresponding number in the second column. (Note that
the frequencies generated by a computer with a 98203A/B style keyboard
are slightly different than those generated by an HP-HIL keyboard/interface
combination.)

Rounding of BEEP Frequency Parameters

Series 200 HP-HIL Series 200 HP-HIL

81.38 81.45 2685.54 2688.16

162.76 162.12 2766.92 2777.77

244.14 244.37 2848.30 2873.55

325.52 324.25 2929.68 2976.18

406.90 408.49 3011.06 2976.18

488.28 496.03 3092.44 3086.41

569.66 578.70 3173.82 3205.12

651.04 651.03 3255.20 3205.12

732.42 744.04 3336.58 3333.32

813.80 833.33 3417.96 3472.21

895.18 905.79 3499.34 3472.21

976.56 992.06 3580.72 3623.17

1057.94 1096.49 3662.10 3623.17

1139.32 1157.40 3743.48 3787.86

1220.70 1225.49 3824.86 3787.86

1302.08 1302.08 3906.24 3968.24

BASE - BYTE B-5

B

B

BEEP

Rounding of BEEP Frequency Parameters (continued)

Series 200 HP-HIL Series 200 HP-HIL

1383.46 1388.88 3987.62 3968.24

1464.84 1461.98 4069.00 4166.65

1546.22 1543.20 4150.38 4166.65

1627.60 1633.98 4231.76 4166.65

1708.98 1700.67 4313.14 4385.95

1790.36 1773.04 4394.52 4385.95

1871.74 1851.84 4475.90 4385.95

1953.12 1937.98 4557.28 4629.61

2034.50 2032.51 4638.66 4629.61

2115.88 2136.74 4720.04 4629.61

2197.26 2192.97 4801.42 4901.94

2278.64 2252.24 4882.80 4901.94

2360.02 2380.94 4964.18 4901.94

2441.40 2450.97 5045.56 4901.94

2522.78 2525.24 5126.94 5208.31

2604.16 2604.16 5208.32 5208.31

The resolution of the seconds parameter is 0.01 seconds. Any duration shorter
than 0.005 seconds is treated as O. Any duration longer than 2.55 seconds is
treated as 2.55 seconds.

B·6 BASE· BYTE

BEEP

In a few cases with an HIL interface, the frequency produced will not be the
closest table entry. For example, BEEP 203.4,.5 will BEEP at 162.12 on an
HIL interface even though the specified frequency is closer to 244.37 (in the
HP-HIL column) because the closest Series 200 entry is 162.76.

Series 200 HP-HIL

162.76 162.12

244.14 244.37

BASE - BYTE B-7

B

B BIN
See the LOAD, LIST, and SCRATCH statements.

B·8 BASE· BYTE

BINAND

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

BINAND

This function returns the value of a bit-by-bit, logical AND of its arguments.

Item

argument

Description

numeric expression, rounded to an
integer

Example Statements

Lov_4_bits=BINAND(Byte,15)
IF BINAND(Stat,8) THEN Bit_3_set

Semantics

Range

-32 768 through +32 767

The arguments for this function are represented as 16-bit two's-complement
integers. Each bit in an argument is AND'ed with the corresponding bit in the
other argument. The results of all the AND's are used to construct the integer
which is returned.

For example, the statement Ctrl_word=BINAND{Ctrl_word, -9) clears bit 3 of
Ctrl_ word without changing any other bits.

12 = 00000000 00001100

-9 = 11111111 11110111

4 = 00000000 00000100

old CtrLword
mask to clear bit 3

new CtrLword

BASE - BYTE B-9

B

B BINCMP

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function returns the value of the bit-by-bit complement of its argument.

(BINCMP r0-1 argument ~

Item Description

argument numeric expression, rounded to an
integer

Example Statements

True=BINCKP(Inverse)
PRINT XtBINCKP(X)

Semantics

Range

-32 768 through +32 767

The argument for this function is represented as a 16-bit, two's-complement
integer. Each bit in the representation of the argument is complemented, and
the resulting integer is returned.

For example, the complement of -9 equals +8:

-9 = 11111111 11110111 argument

+8 = 00000000 00001000 complement of argument

B-10 BASE - BYTE

BINEOR

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

BINEOR

This function returns the value of a bit-by-bit, exclusive OR of its arguments.

-+C BINEOR)-.0-i argument t-01 argument ~

Item

argument

Description

numeric expression, rounded to an
integer

Example Statements

Toggle=BlNEOR(Toggle,l)
True_byte=BlNEOR(Inverse_byte,255)

Semantics

Range

-32 768 through +32 767

The arguments for this function are represented as 16-bit, two's-complement
integers. Each bit in an argument is exclusively OR'ed with the corresponding
bit in the other argument. The results of all the exclusive OR's are used to
construct the integer which is returned.

For example, the statement Ctrl_vord=BINEOR(Ctrl_vord,4) inverts bit 2 of
CtrLword without changing any other bits.

12 = 00000000 00001100

4 = 00000000 00000100

8 = 00000000 00001000

old GtrLword
mask to invert bit 2

new GtrLword

BASE - BYTE B-11

B

B BINIOR

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function returns the value of a bit-by-bit, inclusive OR of its arguments.

-+C BINIOR ~ argument t-01 argument ~

Item

argument

Description

numeric expression, rounded to an
integer

Example Statements

Bits_set=BINIOR(Valuel,Value2)
Top_on=BINIOR(All_bits,2-15)

Semantics

Range

-32 768 through +32 767

The arguments for this function are represented as 16-bit, two's-complement
integers. Each bit in an argument is inclusively OR'ed with the corresponding
bit in the other argument. The results of all the inclusive OR's are used to
construct the integer which is returned.

For example, the statement Ctrl_word=BINIOR(Ctrl_word,6) sets bits 1 & 2
of CtrLword without changing any other bits.

19 = 00000000 00010011
6 = 00000000 00000110

23 = 00000000 00010111

B-12 BASE - BYTE

old CtrLword
mask to set bits 1 & 2

new CtrLword

BIT
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

BIT

This function returns a 1 or 0 representing the value of the specified bit of its
argument.

Item

argument

bit position

Description

numeric expression, rounded to an
integer

numeric expression, rounded to an
integer

Example Statements

Flag=BIT(Info,O)
IF BIT(Word,Test) THEN PRINT "Bit #";Test;"is set"

Semantics

Range

-32 768 through +32 767

o through 15

The argument for this function is represented as a 16-bit, two's-complement
integer. Bit 0 is the least-significant bit, and bit 15 is the most-significant bit.

The following example reads the controller status register of the internal HP-IB
and takes a branch to "Active" if the interface is currently the active controller.

100 STATUS 7,3;S
110 IF BIT(S,6) THEN Active

Reg 3 = control status
Bit 6 = active control

BASE - BYTE B-13

B

B BREAK
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
10
Yes
Yes
Yes

This statement directs a serial or datacomm interface to send a Break
sequence.

Item Description

I/O path name name assigned to an interface select
code

interface select numeric expression, rounded to an
code integer

mux ds numeric expression, rounded to an
integer

Example Statements

BREAK 9
BREAK IData_comm

B·14 BASE· BYTE

Range

any valid name

8 through 31

1600 through 1603,
factory default
select code=16,
(BASIC/UX only)

BREAK

Semantics

A Break sequence is a signal sent on the Data Out signal line.

On an HP 98626, 98644 Serial Interface, 98628 Datacomm Interface, or 98642
MUX Interface, a logic High of 400-ms duration followed by a logic Low of
60-ms duration is sent. If an outbound TRANSFER is taking place through
this interface, the Break is sent after the TRANSFER is finished; the Break is
sent immediately if an inbound TRANSFER is taking place.

Note The HP 98642 MUX Interface is supported on BASIC/UX only.

If the interface is not a serial-type interface, error 170 is reported. If an 1/0
path name assigned to a device selector with addressing information, error 170
is reported. If the specified interface is not present, error 163 is reported.

BASE - BYTE B-15

B

B BUFFER
See the DIM, REAL, INTEGER, COMPLEX, COM, ASSIGN, SUB, and DEF
FN statements.

B·16 BASE· BYTE

BYE
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX DOS WS*
RMBUX Binary
Yes
Yes
Yes

This statement, an alias for QUIT, exits BASIC for BASIC/UX and
BASIC/DOS. The statement is accepted by the editor for BASIC/WS,
BASIC/UX, and BASIC/DOS, but it will only execute on BASIC/UX or
BASIC/DOS.

Example Statements

BYE
IF A$="DONE" THEN BYE

Semantics

When used within a program, this statement stops the program, and then
BASIC exits.

When used as a keyboard command while a program is running, an error
is given. You must first stop (or pause) the program before using the BYE
command.

If a program is not running, then BASIC is exited immediately.

BYE

BASE - BYTE B-17

B

B BYTE
See the ASSIGN statement.

B-18 BASE - BYTE

c
CALL - CYCLE C

CALL - CYCLE C-1

C

CALL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN*
None
Yes
Yes
Yes

This statement transfers program execution to the specified subprogram.

pass por<lmeters:

C-2 CALL - CYCLE

Passed by Reference t
Passed by V<llue

string expressions contoining monodic
operators, dyadic operators, or functions

CALL

Item Description Range

subprogram name of the SUB or CSUB any valid name
name subprograms to be called

string name a simple string variable containing loaded SUBs and CSUBS
the name of a user-defined
subprogram

I/O path name name assigned to a device, devices, or any valid name
mass storage file (see ASSIGN)

variable name

substring

name of a string or numeric variable any valid name

string expression containing substring (see Glossary)
notation

literal

numeric
constant

string constant composed of
characters from the keyboard,
including those generated using the
(ANY CHAR] key

numeric quantity expressed using
numerals, and optionally a sign, a
decimal point, and/or exponent
notation

Example Statements

CALL Process(Ref,(Value),GPath3211)
Process(Ref,(Value),GPath)
CALL Transform(Array(*»
IF Flag THEN CALL Special
CALL Mysub$
CALL Mysub$ WITH (X,Y,A$)

CALL - CYCLE C-3

C

C

CALL

Semantics

A subprogram may be invoked by a stored program line, or by a statement
executed from the keyboard. Invoking a subprogram changes the program
context. Subprograms may be invoked recursively. The keyword CALL may be
omitted if it would be the first word in a program line. However, the keyword
CALL is required in all other instances (such as a CALL from the keyboard
and a CALL in an IF ... THEN ... statement).

The pass parameters must be of the same type (numeric, string, or 110 path
name) as the corresponding parameters in the SUB or CSUB statement.
Numeric values passed by value are converted to the numeric type (REAL,
INTEGER, or COMPLEX) of the corresponding formal parameter. Variables
passed by reference must match the corresponding parameter in the SUB
statement exactly. An entire array may be passed by reference by using the
asterisk specifier.

If there is more than one subprogram with the same name, the
lowest-numbered subprogram is invoked by a CALL.

Program execution generally resumes at the line following the subprogram
CALL. However, if the subprogram is invoked by an event-initiated branch
(such as ON END, ON ERROR, ON KEY, etc.), program execution resumes at
the point at which the event-initiated branch was permitted.

When CALL is executed from the keyboard, the subprogram is executed in its
own separate context. Furthermore, the current state of the system determines
the system's state when the subprogram executes a STOP. If the computer was
paused or stopped when CALL was executed, its state does not change. If the
computer was running when the CALL was executed, the program pauses at
the program line which was interrupted by the CALL for the subprogram, and
resumes execution at that point after the subprogram is exited.

CALL Using String Names

You can specify the subprogram accessed by CALL using either the
subprogram name or a string expression that evaluates to the subprogram
name. All of the calls to Mysub in the following code segment are legal:

C-4 CALL - CYCLE

CALL

100 Rame$-"Kysub"
110 CALL Kysub (1) using subprogram name with CALL
120 Kysub(2) using subprogram name without CALL
120 CALL RaJle$ WITH (3) using string name with CALL
130 END
140
150 SUB Kysub(I)
160 PRINT "HELLO"; I
170 SUBERD

Note that the string name must match the subprogram name exactly, including
upper and lower case letters. Also note that you must use the keyword CALL
with string subprogram names.

CALL - CYCLE C-S

C

CASE
See the SELECT . .. CASE construct.

C

C-6 CALL - CYCLE

CAT
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN *
None
Yes
Yes
Yes

CAT

This statement lists all or specified portions of the contents of a mass storage
directory, or lists information regarding a specified PROG-type file.

CALL - CYCLE C-7

C

CAT

C
I MS
L _______________ _

literal form of directory specifier:

HFS or SRM files only

C-8 CALL - CYCLE

,

I
J ,
I MS &: SRM
I

~~------------------

CAT

literal form of DFS directory specifier:

C

CALL· CYCLE C-g

CAT

Item Description Range

directory string expression; Default=MASS (see MASS STORAGE IS)
specifier STORAGE IS directory

C volume specifier string expression; Default=MASS (see MASS STORAGE IS)
STORAGE IS volume

file specifier string expression specifying a (see drawing)
PROG-type file

directory path literal (see MASS STORAGE IS)

file name literal depends on volume's format
(see Glossary)

LIF protect literal; first two non-blank characters > not allowed
code are significant

SRM password literal; first 16 non-blank characters > not allowed
are significant

catalog device numeric expression, rounded to an (see Glossary)
selector integer; Default=PRINTER IS device

string array name of a string array (see text) any valid name
name

beginning string expression 1 to 10 characters (LIF);
character(s) 1 to 14 characters (HFS;

short file names); 1 to 255
characters (HFS; long file
names); 1 to 16 characters
(SRM)

number of files numeric expression, rounded to an 1 through 32 767
integer

return variable name of a numeric variable any valid name
name

C-10 CALL - CYCLE

Example Statements

CAT
CAT TO #701
CAT ":,700,1"
CAT ": REMOTE"
CAT ":REMOTE; LABEL Mastervol"
CAT "A/B/C:REMOTE"
CAT " .. / .. / •. "
CAT "Dir1/Dir2"
CAT "HFS_Dir" ; NAMES
CAT "PROG_File"
CAT;SELECT "D",SKIP Ten_files,NO HEADER
CAT TO String_array$(*)
CAT TO Hfs_dir$(*);EXTEND
CAT "My_File";PROTECT
CAT "A*"
CAT ":DOS,A"
CAT "\BLP:DOS,C"

Semantics

CAT

'(With WILDCARDS ON)

A directory entry is listed for each file in the specified directory. The catalog
shows information such as the name of each file, whether or not it is protected,
the file's type and length, and the number of bytes per logical record.

The file types recognized in BASIC are: ASCII, BDAT (BASIC data), BIN
(binary program), HP-UX, PROG (BASIC program), DOS (DFS), and
SYSTM (operating system). An ID number is listed for any unrecognized file
types.

See the WILDCARDS command for more information regarding the use of
wildcards with CAT and other commands.

CALL - CYCLE C-11

c

C

CAT

LIF Catalogs

The LIF catalog format is shown below. This catalog format requires that the
PRINTER IS device have the capability of displaying 65 or more characters. If
the printer width is less than 65, the DATE and TIME columns are omitted.

:CS80.700
VOLUME LABEL: B9836
FILE lAME PRO TYPE REC/FlLE BYTE/REC ADDRESS DATE TIME

MyProg PROG 14 256 16 23-May-87 7:58
VisiComp ASCII 29 256 30 8-Apr-87 6:00
GRAPH BIll 171 256 59 l-May-87 1:00
GRAPHX BIll 108 256 230 10-Aug-87 9:00

The first line of the catalog shows the volume specifier (: CS80 , 700 in this
example).

The second line shows the volume label-a name, containing up to 6
characters, stored on the media (B9836 in this example).

The third line labels the columns of the remainder of the catalog. Here is what
each column means:

FILE NAME

PRO

FILE TYPE

REC/FILE

BYTE/REC

ADDRESS

DATE

TIME

lists the names of the files in the directory (up to 10
characters) .

indicates whether the file has a protect code (* is listed in this
column if the file has a protect code).

lists the type of each file.

indicates the number of records in the file.

indicates the record size.

indicates the number of the beginning sector in the file.

indicates when the date the file was last modified.

indicates the time the file was last modified.

C-12 CALL - CYCLE

CAT

HFS Catalogs

In order to perform a CAT of an HFS directory, you need to have R (read) and
X (search) permissions on the directory to be cataloged, as well as X (search)
permissions on all superior directories.

In order to perform a CAT of an HFS file, you need to have R (read) C
permission on the file to be cataloged, as well as X (search) permissions on all
superior directories.

Here is a typical catalog listing of an HFS directory. Note that a 50 column
display truncates this catalog listing after the column with TIME in it.
Therefore, the PERMISSION, OWNER, and GROUP columns will be not be
listed.

:CS80, 700
LABEL: MyVol
FORMAT: HFS
AVAILABLE SPACE: 60168

FILE HUM REC MODIFIED
FILE NAME TYPE RECS LEN DATE TIME PERMISSION OWNER GROUP
================= ===== ====== ===== =============== ========== ===== =====
lost+found DIR 0 32 19-Nov-86 10:47 RWXRWXRWX 18 9
FILEIOD PROG 191 256 21-Nov-86 9:03 RW-RW-RW- 18 9
RBDAT BDAT 2 256 21-Nov-86 9:10 RW-RW-RW- 18 9
CATTOSTR PROG 2 256 1-Dee-86 8:02 RW-RW-RW- 18 9

The first line of the catalog shows the volume specifier (: CS80, 700 in this
example).

If the directory path specifier contains more characters than the display width,
the last 49 or 79 characters (depending on the display width) are shown. An
asterisk (*) as the left-most character in the path specifier indicates that
leading characters were truncated for the display. In BASIC lUX, the device
type is always HFS, and no device selector is shown.

The second line shows the volume label-a name, containing up to 6
characters, stored on the media (MyVol in this example). In BASIC lUX, the
label is not shown.

CALL - CYCLE C·13

CAT

The third line shows the format of the disk (HFS in this example). In
BASIC lUX, if the directory being displayed is on an HFS long file name
volume (LFN), then the format will be shown as:

HFS LFR

The fourth line lists the number of available 256-byte sectors on the disk
C (60168 in this example). If the sector size is 1024 bytes, then each 1024-byte

sector would count as 4 256-byte sectors.

The fifth line labels the columns of the remainder of the catalog. Here is what
each column means:

FILE NAME

FILETYPE

NUMRECS

RECLEN

Lists the name of the file. BASIC lUX truncates file names
longer than 14 characters and places an * at the end of the
name. Note that CAT; NAMES does display the full name, even
on long file name systems.

Lists the file's type (for instance, DIR specifies that the
file is a directory; PROG specifies a BASIC program file;
BDAT specifies a BASIC DATA file; etc.) if you have read
permission. If you do not have read permission, the file type
is left blank.

BASICIUX also has these file types in addition:

CDEV, character device file
BDEV, block device file
SLINK, symbolic link without a valid target
PIPE, named pipe
NET, RFA network special file
CDF, context dependent file (used in diskless clusters)
LOCKD, the file was locked by another user and its true
type could not be determined.

number of logieal records (the number of records allocated to
the file when it was created). For a DIR file, this indicates
the number of directory entries.

the logieal record size (default is 256 bytes; BDAT files
can have user-selected record lengths). For a DIR file, this
indicates the size of the directory entry. You eannot specify

C-14 CALL - CYCLE

CAT

record length for ASCII or HP-UX files. The record length
for HP-UX files is 1.

MODIFIED DATE the day and time when the file was last modified.
TIME

PERMISSION

OWNER

GROUP

specifies who has access rights to the file:

R indicates that the file can be read;
W indicates that the file can be written;
X indicates that the file can be searched (meaningful for
directories only).
S (BASIC/UX only) set-id bit is on, and the search bit is
off.
s (BASIC/UX only) set-id bit is on, and the search bit is
on.

There are 3 classes of user permissions for each file:

OWNER (left-most 3 characters);
GROUP (center 3 characters);
OTHER (right-most 3 characters).

See PERMIT for further information.

specifies the owner identifier for the file (for BASIC
Workstation files, the default owner identifier is always 18).
BASIC lUX shows the user id of the user that owns the file.

specifies the group identifier of the file or directory (for
BASIC Workstation, the default group identifier is always
9, which is used for "workstations" such as Series 200/300
BASIC and Pascal). BASIC/UX shows the group-id of the
group that the file belongs to.

DOS File System (DFS) Catalogs

The HP Measurement Coprocessor includes the DFS binary, which allows
direct access to the PC's DOS file system. The DFS binary provides many of
the same features as HFS.

CALL • CYCLE C·15

C

C

CAT

Here is a typical catalog listing of a DFS directory:

DIRECTORY: C:\PROJECTS\PROJECT.ONE
LABEL: HARD_DISK_C
FORMAT: DOS
AVAILABLE SPACE: 66776

FILE BUM REC
FILE NAME TYPE RECS LEN

MODIFIED
DATE TIME PERMISSION

ASCII_1
BDAT_1
MEMOS

ASCII
BDAT
DIR

100 256 15-Apr-91 18:06 RW-RW-RW-
5 256 15-Apr-91 18:10 RW-RW-RW
o 1 15-Apr-91 14:29 RWXRWXRWX

The first line of the catalog shows the path name of the directory to be
cataloged ("C:\PROJECTS\PROJECT _ONE" in this example).

The second line gives the volume label of the MS-DOS disk.

The third line gives the format of the mass storage medium, which is "DOS"
for any DFS volume.

The forth line lists the number of 256-byte sectors on the disk (66776 in this
example).

The fifth and sixth lines label the columns of the catalog. Let's look at each
column in turn:

FILE NAME Lists the name of the file. The standard MS-DOS file-name
conventions are used (up to eight characters followed by an
optional period and an extension of up to three characters).

FILE TYPE Lists the type of the file. DIR specifies a directory. ASCII,
BDAT, and PROG specify the standard HP BASIC data and
program file types. DOS specifies an "untyped" MS-DOS file,
which is analogous to an HP-UX file in the LIF, HFS, or SRM
systems.

NUM RECS Lists the number of logical records (the number of records
allocated to the file when it was created). For a DIR file, NUM
RECS is always O.

REC LEN The logical record size. The record length is always 256 for
an ASCII file, and always 1 for a DOS file. The default
record length for a BDAT file is 256, but you can specify a

C-16 CALL - CYCLE

CAT

user-defined record length. For a DIR file, REC LEN is always
1.

MODIFIED The date and time when the file was last modified.
DATE TIME
PERMISSION Specifies who has access rights to the file:

R indicates that the file can be read. W indicates that the file
can be written to. X indicates that the file can be searched
(meaningful for directories only).

There are three classes of user permissions for each file:

OWNER (left-most 3 characters). GROUP (center 3
characters). OTHER (right-most 3 characters).

By default, the DFS binary sets the permissions for all
new files to "RW -RW -RW -" and for all new directories to
"RWXRWXRWX". You can use the PERMIT statement to
make a file read-only. However, if you change the OWNER
bits, the GROUP and OTHER bits will also change. Refer to
the PERMIT statement for more details.

CAT of an SRM Directory

In order to perform a CAT of an SRM directory or file, you need to have
R (read) access capability on the directory to be cataloged, as well as R
capability on all superior directories.

The catalog listing format used by the SRM system depends upon the
line-width capacity of the device used for display.

CALL - CYCLE C-17

C

C

CAT

When cataloging a remote directory on a 50-column display, the SRM system
uses the following catalog format:

USERS/STEVE/PROJECTS/DIR1:REMOTE 21,0
LABEL: Diskl
FORMAT: SDF
AVAILABLE SPACE: 54096

PUB FILE NUMBER RECORD OPEN
FILE NAME ACC TYPE RECORDS LENGTH STAT
================ === =====

Common_data MRW ASCII 48 256 OPEN
Personal_data BDAT 33 256 LOCK
Program._alpha RW PROG 44 256
HP9845_DATA R DATA? 22 256
HP9845_STORE MRW PROG? 9 256
Pascal_file. TEXT MRW TEXT 37 256
Program._500 MRW PROG? 12 256

When cataloging an SRM directory on an 80-column display, the system uses
the following catalog format:

USERS/STEVE/PROJECTS/DIR1:REMOTE 21,0
LABEL: Diskl
FORMAT: SDF
AVAILABLE SPACE: 54096 SYS FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME LEV TYPE TYPE RECORDS LENGTH DATE TIME ACe STAT
=-================- === ==== ===== ======== ======== =============== ==== ====
Common_data 1 ASCII 48 256 2-Dec-83 13:20 MRW OPEN
Personal_data 1 98X6 BDAT 33 256 2-Dec-83 13:20 LOCK
Program_alpha 1 98X6 PROG 44 256 3-Dec-83 15:06 RW
HP9845_DATA 1 9845 DATA 22 256 10-0ct-83 8:45 R
HP9845_STORE 1 9845 PROG 9 256 10-0ct-83 8:47 MRW
Pascal_file. TEXT 1 PSCL TEXT 37 256 ll-Nov-83 12:25 MRW
Program._500 1 9000 PROG 12 256 13-Dec-83 9:54 MRW

The header gives you the following information:

line 1 Directory specifier, including volume specifier. The full path to the
specified directory is displayed. Passwords used in the path are not
displayed.

If the directory path specifier contains more characters than the
display width, the last 49 or 79 characters (depending on catalog
format) in the path specifier are shown. An asterisk (*) as the

C-18 CALL - CYCLE

line 2

line 3

line 4

lines 5
and 6

left-most character in the path specifier indicates that leading
characters were truncated for the display.

CAT

The system remembers a maximum of 160 characters for any
directory path specifier at a single time. If a path specifier contains
more than 160 characters, the excess characters are removed from
the beginning of the specifier and are not retained. This restriction C
does not affect movement wi thin the directory structure.

Volume label of the volume containing the directory being cataloged.

Directory format, such as SDF (Structured Directory Format).

Number of bytes available on the volume (given in increments of 256
bytes).

Labels for columns of information given for each file. The
information provided is summarized below.

Each column of the remaining catalog gives you the following information:

FILE NAME lists the names of the files and directories in the directory
being cataloged.

LEV (80-column format only) shows the level of the file relative to
the current working directory or specified directory. (The level
is always shown as 1 in directory listings for Series 200/300
workstations.)

CALL • CYCLE C-19

C

CAT

PUB ACC

SYS TYPE

FILE TYPE

lists the access capabilities available to all SRM system
users. The three capabilities are READ, (R) WRITE (W) and
MANAGER (M).

• Public MANAGER capability on a file or directory allows
any user on the SRM system to PURGE that file or
directory and to modify or add to its passwords (with
PROTECT). Password-protected MANAGER capability
gives users who supply the required password both READ
and WRITE capabilities as well as MANAGER capability.

• READ capability on a directory allows you to access any file
or directory in the directory. The READ capability on a file
allows you to read the contents of the file.

• WRITE capability on a directory allows you to create-or
delete a file or directory in that directory. The WRITE
capability on a file allows you to write information into that
file.

(80-column format only) shows the type of system used to
create the file. The system type is not shown for AS CII files
and directories. 98X6 denotes a Series 200/300 computer.
(If the system does not recognize the system type, a coded
identifier, obtained from the system being identified, appears in
this column.)

indicates the file's type. Directories are indicated as type
DIR. In the 50-column format, a question mark is appended
to the file type if the file was not created on a Series 200/300
computer and was a type other than ASCII or DIR. For
example, in the display illustrated earlier, DATA and PROG
files created on an HP 9845 are listed as such, but shown with
the question mark.

File types recognized by the BASIC system on SRM are:
ASCII, BDAT, BIN, DIR, HP-UX, PROG, and SYSTM, as
well as Series 200/300 Pascal and Series 500 file types.

If the system does not recognize a file's type, a coded file
type identifier (obtained from the system originating the file)
appears in the FILE TYPE column.

C-20 CALL - CYCLE

NUMBER
RECORDS

RECORD
LENGTH

MODIFIED

OPEN STAT

Note

indicates the number of records in the file.

indicates the number of bytes constituting each of the file's
records.

(80-column format only) show the date and time the file's
contents were last changed.

CAT

shows whether the file is currently open (OPEN), locked (LOCK)
or corrupt (CORR). OPEN indicates that the file has been opened,
via ASSIGN, by a user. An open file is available for access
from other workstations. LOCK means the file is accessible
only from the workstation at which the file was locked. CORR
indicates that the disk lost power while accessing the file,
possibly altering the file's contents. If the entry is blank, the
file is closed and available to any user.

If a file's status is shown as corrupt (CORR), you should run the
DSCK Utility program to check the directory structure and its
integrity on the SRM system disk. Refer to the SRM System
Administrator's Guide (or SRM Operating System Manual) for
details.

CAT of an SRM/UX Directory

To perform a CAT of an SRM/UX directory or file, you need R (read) and X
(search) permissions on the directory to be cataloged, as well as X (search)
permissions on all superior directories.

To perform a CAT of an SRM/UX file, you need R (read) permission on
the file to be cataloged, as well as X (search) permissions on all superior
directories.

The catalog format used by SRM/UX depends on the line-width capacity of
the display device.

CALL . CYCLE C-21

C

C

CAT

On SRM/UX, a catalog of a directory on a 50-column display has the following
format:

:REMOTE 21,0
LABEL: BOOT
FORMAT: SRM-UX
AVAILABLE SPACE: 123456789

FILE NUMBER REC OP
FILE HAME TYPE RECORDS LEH PERMS ST
=============== ===== ======= ==== ========= ==
SYSTEMS DIR 11 24 RWXR-XR-X
console CDEV 0 1 RW--W--W-
EDITTEST.TEXT TEXT 8 256 RW-R--R--
AUTOST PROG 2 256 RW-R--R--
srmdpipe PIPE 0 1 RW-------
EST ASCII 1 256 RW-RW-RW- LO
PTESTCAT HP-UX 984 1 RW-RW-R-- 90

On SRM/UX, a catalog of a directory on an 80-column display has the
following format:

:REMOTE 21,0
LABEL: BOOT
FORMAT: SRM-UX
AVAILABLE SPACE: 123456789

FILE NUMBER REC MODIFIED OPEN
FILE RAME TYPE RECORDS LER DATE TIME PERMS OWNER GROUP STAT
=============== ===== ======== ===== =============== ========= ===== ===== ====
SYSTEMS DIR 11 24 1-Mar-90 16:56 RWXR-XR-X 0 1
console CDEV 0 1 12-0ct-90 17:05 RW--W--W- 0 1
EDITTEST.TEXT TEXT 8 256 12-Dec-89 15:20 RW-R--R-- 175 54
AUTOST PROG 2 256 5-Jan-90 15:07 RW-R--R-- 175 54
srmdpipe PIPE 0 1 12-0ct-90 11:45 RW------- 0 1
PTEST ASCII 1 256 2-Jan-90 10:51 RW-RW-RW- 17 9 LOCK
PTESTCAT HP-UX 984 1 2-Mar-90 15:12 RW-RW-R-- 175 54 OPEN

C-22 CALL· CYCLE

CAT

The header gives you the following information:

line 1 Directory and volume specifier. The full path to the specified
directory is displayed.

If the directory path specifier contains more characters than
the display width, the last 49 or 79 characters (depending on
catalog format) in the path specifier are shown. An asterisk (*)
as the left-most character in the path specifier indicates that
leading characters were truncated for the display.

line 2 Label of the volume containing the directory being cataloged.

line 3 Directory format.

line 4 Number of bytes available on the volume in 256-byte
increments.

lines 5 and 6 Labels for columns of information given for each file.

The columns in the catalog give you the following information:

FILE NAME

FILE TYPE

NUMBER RECORDS

lists the names of the files and directories in the directory
being cataloged.

indicates the file type. File types recognized by BASIC on
SRM/UX are the following:

DIR - directory PROG - BASIC program file PIPE -
named pipe

The SRM/UX user can also see the following special
HP-UX files in a CAT listing, but cannot manipulate
them:

NET - network special file SOCK - HP-UX socket BDEV -
block special file CDEV - character special file

BASIC/WS on SRM/UX also recognizes TEXT and
ASCII files.

If the system does not recognize a file type, it prints a
numeric code or "OTHER".

indicates the number of records in a file.

CALL - CYCLE C-23

C

C

CAT

REC LEN

MODIFIED
DATE/TIME

PERMS

OWNER

GROUP

OPEN STAT

CAT to a Device

indicates the number of bytes in each file record (always
24 for directories (DIR), regardless of actual size).

(SO-column format only) shows the date and time when
the file's contents were last changed.

specifies who has access rights to a file.

R - indicates that a file can be read. W - indicates that a
file can be written. X - indicates that a directory can be
searched (meaningful for directories only).

Three classes of user permissions exist for each file:

OWNER - left-most three characters. GROUP - center three
characters. OTHER - right-most three characters.

See PERMIT for further information.

specifies the owner identifier for the file. BASIC /WS on
SRM/UX shows the user id of the user that owns the file.

specifies the group identifier of the file or directory.
BASIC/WS on SRM/UX shows the group id of the group
to which the file belongs.

shows whether the file is currently open (OPEN) or locked
(LOCK). OPEN indicates that the file has been opened, via
ASSIGN, by a user. An open file is available for access
from other workstations. LOCK means the file is accessible
only from the workstation at which the file was locked. If
the entry is blank, the file is closed and available to any
user.

When the symbol. is included in a CAT statement, the numeric expression
following this symbol must be a device selector. The catalog listing is sent to
the device specified by this expression.

C-24 CALL· CYCLE

CAT

CAT to a String Array (Requires MS)

The catalog can be sent to a string array. The array must be one-dimensional,
and each element of the array must contain at least 80 characters for a
directory listing or 45 characters for a PROG file listing. If the directory
information does not fill the array, the remaining elements are set to null
strings. If the directory information "overflows" the array, the overflow is not
reported as an error. When a CAT of a mass storage directory is sent to a
string array, the catalog's format is different than when sent to a device. This
format (the SRM directory format) is shown below. Protect status is shown by
letters, instead of an asterisk. An unprotected file has the entry MRW in the
PUB ACC (public access) column. A protected BDAT file has no entry in that
column. Other types of protected files show R (read access). In addition to the
standard information, this format also shows OPEN in the OPEN STAT column
when a file is currently assigned.

:CS80,702,O
VOLUME LABEL: B9836
FORMAT: LIF
AVAILABLE SPACE:

FILE NAME

11
SYS FILE NUMBER RECORD MODIFIED PUB OPEN

TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT
============= === === ==== ======= ======= =============== === ====

1 98X6 SYSTM
1 98X6 PROG

1024
38

256 29 Nov 86 15:24:55 MRW
256 29 Nov 86 09:25:07 MRW

CALL· CYCLE C·25

C

C

CAT

To aid in accessing the catalog information in a string, the following table gives
the location of some important fields in the string.

Field Position (in String)

File Name 1 through 21

File Type 32 through 36

N umber of Records 37 through 45

Record Length 46 through 54

Time Stamp 56 through 71

Public Access 73 through 75
Capabilities

Open Status 77 through 80

The EXTEND Option (Requires MS)

If EXTEND is specified in a CAT TO String_array$(*) operation, the
directory catalog will be in HFS format for an HFS disk, LIF format for a LIF
disk, and SRM/UX format for an SRM/UX directory.

With an HFS disk, each element of the array must contain at least 49
characters. If each element has less than 72 characters, the PERMISSION,
OWNER, and GROUP are omitted. With a LIF disk, each element of the
array must contain at least 47 characters. If each element has less than 65
characters, the DATE and TIME will be omitted. With an SRM or SRM/UX
directory, each element of the array must contain at least 80 characters.

NAMES takes precedence over EXTEND if both are given.

C-26 CALL - CYCLE

CAT

Catalogs of PROG Files (Requires MS)

If the file specifier is for a PROG file, the following information is included:

• a list of binary programs in the file,

• a list of all contexts in the program,

• and each context's type and size.

SAMPLE
NAME SIZE TYPE
====================== ===== ================
MAIN 692 BASIC
Esc 924 COMPILED UTILITY
FNDummy 166 BASIC

AVAILABLE ENTRIES = 0

If any binary programs have a version code different from the BASIC version
code, both a warning and the version codes of the binary program and BASIC
system are included with the listing. CAT of a PROG file uses the same
format, whether the destination is a device or a string.

Partial Catalogs (Requires MS)

Including the SELECT option directs the computer to list only the files that
begin with or match the value of the specified string expression.

CAT; SELECT "B21"

If the string expression contains more characters than are allowed in a file
name (10 for LIF, 14 for HFS, 255 for long file name systems, and 16 for
SRM), then only the first 10 characters if LIF, 14 characters if HFS, or 16
characters if SRM are used. If SELECT is not included, all files are sent to the
destination (if possible).

Including the SKIP option directs the computer to skip the specified number of
(selected) file entries before sending entries to the destination.

CAT; SKIP 12

If SKIP is not included, no files are skipped.

If an option is given more than once, only the last instance is used.

CALL - CYCLE C-27

C

CAT

How Many Entries? (Requires MS)

Including COUNT provides a means of determining the number of lines sent to
the destination, plus the number of files skipped, if any.

C The variable that follows COUNT receives the sum of the number of selected
files plus the number of lines in the catalog header (and trailer for PROG
files); keep in mind that the number of selected files includes the number of
files sent to the destination plus the number of files skipped, if any. Catalogs
sent to external devices in the LIF format have a five-line header; in SRM
and HFS formats they have seven-line headers. Catalogs to string arrays are
SRM format unless EXTEND is added. Catalogs of individual PROG files
have a three-line header and a one-line trailer. If an "overflow" of a string
array occurs, the count is set to the number of string-array elements plus the
number of files skipped. If no entries are sent to the destination (because the
directory is empty, or because not entries were selected, or because all selected
entries were skipped), the value returned depends on whether there is a header.
If there is no header, then zero (0) is returned. If there is a header, then the
value returned is the size of the header plus the number following the SKIP
option (the number of files to be skipped).

When using WILDCARDS, COUNT receives the sum of the number of files
matching the wildcard argument plus the number of lines in the catalog header
plus the number of files skipped.

If an option is given more than once, only the last instance is used.

Using the NAMES Option (Requires MS)

Using the NAMES option, as shown in the following statement, will produce a
multi-column listing of only the names of the files.

CAT ; NAMES (Return)

lost+found WORKSTATIONS

PROJECTS

C-28 CALL - CYCLE

CAT

Executing the following statement:

CAT TO A$(*);NAMES

will put one file name in each array element.

CAT TO string ; NAMES in BASIC/UX may cause a string overflow if a file name is
longer than 14 characters (since longer names are allowed in BASIC/UX), and C
the string array is not large enough to hold the entire name.

Suppressing the Heading (Requires MS)

Including the NO HEADER option directs the computer to omit the directory
header (and trailer) that would otherwise be included.

CAT ; NO HEADER

When NO HEADER is specified, the lines of the header (and trailer) are then
omitted from the COUNT variable.

When NAMES is specified, there is NO HEADER whether or not NO
HEADER is specified.

The PROTECT Option (SRM Only)

PROTECT is a CAT option available only on SRM volumes. This option
requires the SRM, DCOMM, and MS binaries. The PROTECT option displays
the password (s) and associated access capabilities for the specified file or
directory.

For example, the statement:

CAT "Test_file<MPASS> : REMOTE" ; PROTECT

might produce the display:

PASSWORD CAPABILITY
============= =============
MPASS
WASS
RPASS
PASSWORD

MANAGER.READ.WRITE
WRITE
READ
MANAGER

CALL· CYCLE C·29

CAT

Use of this option requires MANAGER access capability on the file or
directory. If the MANAGER capability is public, the PROTECT option may
be used by any SRM lIser.

PROTECT must be specified separately from other CAT options, and is
allowed only with SRM files and directories. Note that the PROTECT option

C is a no-op on SRM/UX. If you use this option on SRM/UX, you will see a
header with no passwords listed.

Using PROTECT with media other than SRM returns ERROR 1 Configuration
Error.

BASI'C/DOSSpeCifics

CAT functions the same as for BASIC /WS except that the HFS binary is not
included with the measurement coprocessor; it must be purchased separately
if desired. The DFS binary provides additional BASIC/DOS functionality
described earlier in this section.

C-3.0 CALL· CYCLE

CAUSE ERROR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

CAUSE ERROR

This statement simulates the occurrence of an error of the specified number.

(CAUSE ERROR >1 n~~~:r ~

Item

error number

Description

numeric expression, rounded to an
integer

Example Statements
CAUSE ERROR Err_num
IF Testing THEK CAUSE ERROR 80

Semantics

Range

1 through 999;
1001 through 1080

When this statement is executed, it initiates the normal error-reporting action
taken by the system when an error is encountered in a program line.

If ON ERROR is in effect and CAUSE ERROR is executed in a program line,
the appropriate branch is initiated-just as if an actual error occurred on that
line. When executed from a running program, CAUSE ERROR affects the
error indications ERRN, ERRM$, ERRL, and ERRLN; each is set to the value
appropriate for the specified error number and line number. However, ERRDS
is not affected.

If CAUSE ERROR is executed at the keyboard, or if executed in a running
program (while ON ERROR is not in effect), BASIC shows the error number
(and error message, if the ERR binary is present) in the system message line of

CALL • CYCLE C-31

C

C

CAUSE ERROR

the display. (Note that errors caused by executing statements at the keyboard
do not affect the error indications listed in the preceding paragraph.)

C-32 CALL - CYCLE

CDIAL

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
KBD
Yes
Yes
Yes

This function returns information about "control dial" devices.

Item

(CDIAL ~(dial l....J'7\....w) I ~~ 1 selector I ~'V ~,

Description Range

dial selector numeric expression, rounded to an
integer

o through 15

Example Statements

CDIAL(1)
IF BIT(CDIAL(O),3) THEN GOSUB Dia13_touched
Pulses_dial_9=CDIAL(9)

Semantics

Two different types of results can be returned by this function:

CDIAL

• If a value of 0 is passed to the CDIAL function, it returns a 16-bit status
word specifying which knobs have been rotated. Bit 1 set indicates that dial
1 has been rotated; bit 2 set indicates that dial 2 has been rotated; and so
forth through bit 15. (Bit 0 is not used.)

• If a value of 1 through 15 is passed, the function returns the number of
pulses accumulated for that particular dial (and clears the corresponding
pulse counter).

CALL· CYCLE C-33

C

C

CHANGE
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

UX WS DOS
EDIT and PDEV
Yes
No
No

This command allows you to search for and replace one character sequence
with another while editing a program.

Item

old text

new text

beginning line
number

beginning line
label

ending line
number

ending line
label

Description

literal

literal

integer constant identifying a
program line

name of a program line

integer constant identifying a
program line

name of a program line

C-34 CALL - CYCLE

Range

1 to 32 766

any valid name

1 to 32 766

any valid name

Example Statements

CHANGE "Row" TO "Column"
CHANGE "Row" TO "Column" IN 2560,3310
CHANGE "November" TO "December"jALL
CHANGE "TREE" TO ""
CHANGE "his car" TO "his ""car"ltll

Semantics

a "delete" function
quotes allowed

CHANGE

The CHANGE command allows you to find all occurrences of a specified
character sequence and replace it with another. This occurs whether they are
variable names, keywords, literals, or line numbers. Note that if line numbers
are changed, unexpected results may occur.

If ALL is specified, all legal changes are made automatically, without additional
keyboard intervention. If ALL is not specified, the computer finds each
occurrence, tentatively changes old text to new text, and asks you to confirm
the change.

• You confirm a particular change by pressing (Return) or (ENTER J .

• You may bypass a particular change by pressing (CONTINUE) (@ on an ITF
key board), or (Shift H Clear line) followed by (Return) ((CLR LN) followed by (ENTER)

on a 98203 keyboard).

(!) and (!) exit CHANGE mode. (EXECUTE) confirms a change, and exits
CHANGE mode.

When the specified range is exhausted or the end of the program is reached,
the CHANGE command is terminated and the message "old text" not found is
displayed.

During the course of a CHANGE, if a syntax error is caused by the altered
text, the appropriate error message is displayed. When the line is corrected
and entered, the CHANGE command continues.

If a change causes a line to become longer than the maximum length of a line
of code, a syntax error is generated, the erroneous change will not take place,
and the CHANGE command is aborted. The CHANGE command will also be
aborted if a replacement results in the alteration of a line number, although the
line whose number was changed now exists in two locations.

CALL - CYCLE C-35

C

CHANGE

If the starting line number does not exist, the next line is used. If the ending
line number does not exist, the previous line is used. If a line label doesn't
exist, an error occurs and the CHANGE is canceled.

If there were no occurrences found, the cursor is left at the end of the first line
searched. If one or more occurrences were found, the cursor is left at the end of

C the line containing the last occurrence.

CHANGE is not allowed while a program is running; however, it may be
executed while a program is paused. The program is continuable if it has not
been altered by pressing CRetUffi) or (Delete line) «(ENTER) or (DEL LNl).

While in the CHANGE mode, keyboard execution of commands is only
possible with the (EXECUTE) key on a 98203 keyboard. Using (ENTER) causes an
error.

C-36 CALL - CYCLE

CHECKREAD
Supported on

Option Required

Keyboard Executable

UX WS DOS

MS

Yes

Programmable Yes

In an IF ... THEN... Yes

CHECKREAD

This statement enables or disables optional read-after-write verification of data
sent to mass storage media.

Example Statements

IF Important_data THEN CHECKREAD ON
CHECKREAD OFF

Semantics

Executing CHECKREAD ON directs the computer to perform a
read-after-write verification of every sector of data sent to mass storage files by
any of the following statements (executed in any program context):

COPY
CREATE
CREATE ASCII
CREATE BDAT
OUTPUT

PRINT LABEL
PROTECT
PURGE
RENAME
RE-SAVE

RE-STORE
SAVE
STORE
TRANSFER

If the bit-by-bit comparison does not detect an exact match, an error is
reported.

Executing CHECKREAD OFF cancels this optional verification.

CALL - CYCLE C-37

C

C

CHECKREAD

Keep in mind that using this feature may increase data reliability, but at the
expense of reduced disk-access speed and increased disk wear.

CHECKREAD does not affect PRINTER IS file or PLOTTER IS file.

CHECKREAD of SRM Volumes

For SRM, CHECKREAD is implemented as a no-op, because the
CHECKREAD function is already performed (by the SRM system) for every
BASIC operation that reads or writ-es an SRM file.

CHECKREAD ofHFS Volumes with BASIC/UX

Because BASIC/UX uses the HP-UX operating system file system, buffer cache
for all HFS file I/O, it is not possible to verify the data on the physical media.
Therefore, CHECKREAD is not appropriate for HFS with BASIC/UX.

BASIC/DOS Specifics

For HFS, CHECKREAD functions the same as for BASIC/WS if the HFS
binary has been installed. CHECKREAD is not supported for D FS.

C-38 CALL - CYCLE

CHGRP
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

CHGRP

This statement modifies the group identifier of an HFS or SRMjUX file or
directory. (CHGRP is not supported for DFS.)

file or
directory specifier

literal form of HFS or SRM/UX file or directory specifier:

file or
diredory name

CALL - CYCLE C-39

C

C

CHGRP

Item Description

group identifier numeric expression, rounded to an
integer

Range

o through 32 767

file or directory string expression specifying a file on (see drawing)
specifier an HFS or SRM/UX volume

directory path literal

HFS directory literal
or file name

SRM/UX file literal
or directory
name

volume specifier literal

Example Statements

CHGRP Bell_group_id,"/DirPath/HFSfile"
CHGRP 10, "TheirFile"
CHGRP 15,"*"
CHGRP 16,"[a-z]?"

Semantics

(see MASS STORAGE IS)

1 to 14 characters (short file
name systems), 1 to 255
characters (long file name
systems)

1 to 16 characters

(see MASS STORAGE IS)

WILDCARDS UX only

To execute CRGRP, you must currently own the file or directory. For RFS files
and directories, the owner identifier must be 18. SRM/UX users should obtain
information about their owner identifier from their system administrator.

If you change the ownership with CROWN, then you cannot subsequently use
CRGRP to change the group identifier of the file.

If no directory path is specified, the current working directory is assumed. If no
volume is specified, the current default volume is assumed.

C-40 CALL - CYCLE

CHGRP

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with CHGRP. You must first enable wildcard recognition using
WILDCARDS. Refer to the keyword entry for WILDCARDS for details.

Major Objective: HP-UX Compatibility

This keyword is implemented primarily for compatibility with the HP-UX
operating system. Group identifiers allow files and directories to be accessed
by all users in the same group, while restricting access to users in all other
groups. Therefore, you can use CHGRP to give group permissions to a specific
HP-UX group. BASIC will no longer have group permissions on the file, but
it will retain owner permissions (unless ownership is changed-such as with
CHOWN).

For a list of group identifiers used on an HP-UX system, see your HP-UX
system administrator. or look at the identifiers listed in the letc/group file
on the HP-UX system. This file could contain the following entry, which
defines the relationship between the group named workstation and the group
identifier 9.

vorkstation::9:basic,pvs

If this group identifier is currently being used on an HP-UX system that is to
share a disk with BASIC, then the HP-UX system administrator may need to
change the I etcl group file so that BASIC is assigned this group identifier.
Otherwise, all other HP-UX users with this group identifier will have the
current group access permissions to all BASIC files and directories.

Note that the Series 200/300 BASIC and Pascal operating systems have the
same group identifier of 9; however, Pascal has an owner identifier of 17.

For a list of group identifiers used on SRM/UX, see your system administrator
or look at the identifiers listed in I etcl srmdconf .

CALL • CYCLE C-41

C

c

CHOWN
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

This statement modifies the owner identifier of an HFS or SRM/UX file or
directory. (CHOWN is not supported for DFS.)

file or
directory specifier

literal form of HFS or SRM/UX file or directory specifier:

Item

owner identifier

file or directory
specifier

directory path

HFS directory
or file name

SRM/UX file
or directory
name

volume specifier

file or
directory name

Description

numeric expression, rounded to an
integer

string expression specifying a file on
an HFS or SRM/UX volume

literal

literal

literal

literal

C-42 CALL - CYCLE

Range

o through 32 767

(see drawing)

(see MASS STORAGE IS)

1 to 14 characters
(see Glossary)

1 to 16 characters

(see MASS STORAGE IS)

Example Statements

CHOWI Other_ovner_id,"/DirPath/HFSfile"
CHOWI 23,"HerFile"
CHOWI 17,"1_*"

Semantics

CHOWN

To execute CROWN, you must currently own the file or directory. That is, the
owner id of the file must match your user-ide BASICjUX user-ids can be found
in the file /etc/passwd. For RFS files and directories on BASICjWS, the
user-id is always 18. SRMjUX users should obtain information about owner
identifiers from their system administrator or look at the owner identifiers
listed in / etc/ srmdconf .

If you change the ownership with CROWN, then you cannot subsequently use
CROWN to change the owner identifier of the file or directory.

If no directory path is specified, the current working directory is assumed. If no
volume is specified, the current default volume is assumed.

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with CROWN. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.

Major Objective: HP-UX Compatibility

This keyword is implemented primarily for compatibility with the RP-UX
operating system. Owner identifiers allow files and directories to have certain
access permissions only available to the owner, while restricting access to all
other users. Therefore, CROWN can be used to give an RP-UX user the owner
permissions of files and directories. The user, however, will still have group
permissions of the file (unless the group identifier is changed-such as with
CRGRP).

For a list of the owner identifiers used on an RP-UX system, see your RP-UX
system administrator or look at the identifiers listed in the / etc/passwd file
on the RP-UX system. It could contain the following entry, which defines the
relationship between the owner named basic and the owner identifier 18:

basic:*:18:9:#BASIC workstation user:/WORKSTATIONS:/bin/false

CALL· CYCLE C·43

C

CHOWN

If this owner identifier is currently being used on an HP -UX system that is to
share a disk with BASIC, then the HP-UX system administrator will need to
change the /etc/passwd file so that BASIC is assigned this owner identifier.
Otherwise, any HP-UX user with this owner identifier will have the current
owner access permissions to all BASIC files and directories.

C Note that the Series 200/300 Pascal system has an owner identifier of 17;
however, BASIC and Pascal operating systems have the same group identifier
of 9.

C-44 CALL - CYCLE

CHR$

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function converts a numeric value into a character.

(CHR$ ~ argument ~

Item Description

CHR$

Range

argument numeric expression, rounded to an
integer

o through 255

Example Statements

A$[Marker;1]=CHR$(Digit+128)
Esc$=CHR$(27)

Semantics

The low order byte of the 16-bit integer representation of the argument is used;
the high order byte is ignored. A table of ASCII characters and their decimal
equivalent values may be found in the back of this book.

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. You can use CHR$ to build two-byte
characters byte-by-byte. For example, the two-byte Roman letter A is
CHR$(130)&;CHR$(96) (using the Japanese LANGUAGE binary). For more
information about two-byte characters, refer to the globalization chapters of
the HP BASIC 6.2 Porting and Globalization manual.

CALL· CYCLE C-45

C

C

CHRX
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
CRTX
Yes
Yes
Yes

This function returns the number of columns (width) of a character cell (on
bit-mapped alpha/graphics displays) or 0 (on non-bit-mapped alpha displays).

-(CHRX r

Example Statements

CHax
ALLOCATE INTEGER Char_cell(l:CHRY,l:CHRX)

Semantics

Character cells are 20 (rows) by 10 (columns) for 1280 X 1024 resolution
bit-mapped alpha displays, 16 (rows) by 8 (columns) for 1024 X 768 resolution
bit-mapped alpha displays, 16 (rows) by 8 (columns) for 640 by 480 resolution
bit-mapped displays, 15 (rows) by 12 (columns) for medium-resolution
bit-mapped alpha displays, and 14 (rows) by 8 (columns) for DOS displays.

If the alpha display is not bit-mapped (that is, if the alpha is separate from the
graphics raster, and is generated by character-generator-ROM hardware), then
this function returns o.

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. Display systems operating in globalized
(two-byte) mode use different character cell sizes depending upon the localized
font. For more information about two-byte characters, refer to the globalization
chapters of the HP BASIC 6.2 Porting and Globalization manual.

C-46 CALL - CYCLE

CHRY
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
CRTX
Yes
Yes
Yes

CHRY

This function returns the number of rows (height) of a character cell (on
bit-mapped alpha/graphics displays) or 0 (on non-bit-mapped alpha displays).

Example Statements

CHRY
ALLOCATE INTEGER Char_cell(l:CHRY,l:CHRX)

Semantics

Character cells are 20 (rows) by 10 (columns) for 1280 X 1024 resolution
bit-mapped alpha displays,16 (rows) by 8 (columns) for 1024 X 768 resolution
bit-mapped alpha displays, 16 (rows) by 8 (columns) for 640 by 480 resolution
bit-mapped displays, 15 (rows) by 12 (columns) for medium-resolution
bit-mapped alpha displays, and 14 (rows) by 8 (columns) for DOS displays.

If the alpha display is not bit-mapped (that is, if the alpha is separate from the
graphics raster, and is generated by character-generator-ROM hardware), then
this function returns o.

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. Display systems operating in globalized
(two-byte) mode use different character cell sizes depending upon the localized
font. For more information about two-byte characters, refer to the globalization
chapters of the HP BASIC 6.2 Porting and Globalization manual.

CALL· CYCLE C-47

C

C

CLEAR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
10
Yes
Yes
Yes

This statement clears HP-IB devices or Data Communications interfaces.

Item Description Range

I/O path name name assigned to a device or devices any valid name
(see ASSIGN)

device selector numeric expression, rounded to an (see Glossary)
integer

Example Statements

CLEAR 7
CLEAR Isc*100+Address
CLEAR GSource

C-48 CALL - CYCLE

CLEAR

Semantics

HP-IB Interfaces

This statement allows the computer to put all or only selected HP-IB devices
into a pre-defined, device-dependent state. The computer must be the active C
controller to execute this statement. The bus messages sent are the same
whether or not the computer is the system controller. When primary addresses
are specified, the bus is reconfigured and the SDC (Selected Device Clear)
message is sent to all devices which are addressed by the LAG message.

Summary of Bus Actions

Interface Select Code Only Primary Address Specified

ATN ATN
DCL MTA

UNL
LAG
SDC

Data Communications Interfaces

CLEAR may also be directed to a Data Communications interface. The result
is to clear the interface buffers; if the interface is suspended, a disconnect is
also executed.

CALL· CYCLE C·49

C

CLEAR ERROR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN*
None
No
Yes
Yes

This statement resets most error indicators (ERRN, ERRM$, etc.) to their
power-up values.

(CLEAR ERROR)-.I

Example Statements

CLEAR ERROR
IF Done THEN CLEAR ERROR

Semantics

CLEAR ERROR affects the following error indications:

• ERRN-subsequently returns 0

• ERRM$-subsequently returns the null string (a string with length of 0)

• ERRL-subsequently returns 0

• ERRLN-subsequently returns 0

• ERRDS-not affected

C-50CALL- CYCLE

CLEAR LINE

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
CRTX
Yes
Yes
Yes

CLEAR LINE

This statement clears the keyboard input line. Executing this statement is
equivalent to pressing (Shift H Clear line) «(CLR LN) on a 98203 keyboard).

(CLEAR UNE }+t

Example Statements

CLEAR LINE
IF Flag THEN CLEAR LINE

CALL· CYCLE C-51

c

C

CLEAR SCREEN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
CRTX
Yes
Yes
Yes

This statement clears the contents of the alpha display.

Example Statements

CLS
CLEAR SCREEN
IF Loop_count=1 THEN CLEAR SCREEN

Semantics

When this statement is executed it clears alpha memory. It has the same
effect as executing OUTPUT KBD; CHR$ (255)&:"K"; or pressing the (Clear display)

((ClR SCR l) key.

. C-52 CALL - CYCLE

CLEAR WINDOW
Supported on
Option Required
Keyboard executable
Programmable
In an IF . .. THEN ...

UX WS * DOS*
RMBUX
Yes
Yes
Yes

CLEAR WINDOW

This statement clears the contents of the specified window.

(ClEAR WINDOW)-.fwindow number~

Item Description

window number numeric expression, rounded to
integer

Example Statements

CLEAR WINDOW Fred
CLEAR WINDOW 604

Semantics

Range

600 through 699

This statement is only valid when running BASICjUX under X Windows.
The window number must correspond to a window created with the CREATE
WINDOW statement, or root BASIC window (number 600). This statement
then to clears the specified window.

When not in a window system, this statement will cause an error. Note there
are three ways to clear the root BASIC window:

CLS
CLEAR SCREEN
CLEAR WINDOW 600

CALL· CYCLE C-53

C

C

CLIP

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

This statement redefines the soft clip area and enables or disables the soft clip
limits.

Item

left edge

right edge

bottom edge

top edge

Description

numeric expression in current units

numeric expression in current units

numeric expression in current units

numeric expression in current units

Example Statements

CLIP Left,Right,O,100
CLIP OFF

C-54 CALL - CYCLE

Range

CLIP

Semantics

Executing CLIP with parameters allows the soft clip area to be changed from
the boundary set by PLOTTER IS and VIEWPORT to the soft clip limits. If
CLIP is not executed, the area most recently defined by either VIEWPORT or
the PLOTTER IS statement is the clipping area. All plotted points, lines, or
labels are clipped at this boundary.

The hard clip area is specified by the PLOTTER IS statement. The soft clip
area is specified by the VIEWPORT and CLIP statements. CLIP ON sets the
soft clip boundaries to the last specified CLIP or VIEWPORT boundaries, or
to the hard clip boundaries if no CLIP or VIEWPORT has been executed.
CLIP OFF sets the soft clip boundaries to the hard clip limits.

CALL - CYCLE C-SS

C

CLS
See the CLEAR SCREEN statement.

C

C-56 CALL - CYCLE

CMD

CMD
See the SEND statement.

c

CALL - CYCLE C-57

C

CMPLX

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
COMPLEX
Yes
Yes
Yes

This function creates a complex number with the first argument representing
the real part and the second argument representing the imaginary part. The
arguments may be REAL, INTEGER, or COMPLEX expressions.

-.(Ct.APLX ~ argument ~ argument ~

Item Description/Default

argument numeric expression

Example Statements

C=CMPLX(-2,l)
Result=CMPLX(-2.356,.0012)
Complex~value=CMPLX(Real_part,Imaginary_part)

Semantics

Range
Restrictions

any valid INTEGER, REAL,
or COMPLEX expression

Arguments used by this function are converted to two 8-byte (64-bit)
floating-point values and handled accordingly. If arguments are COMPLEX,
then only the real part of that COMPLEX argument is used.

C-58 CALL - CYCLE

COLOR

COLOR
See the AREA and SET PEN statements. See the PLOTTER IS statement for
"COLOR MAP".

CALL - CYCLE C-59

c

C

COM

Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

UX WS DOS IN*
None
No
Yes
No

This statement dimensions and reserves memory for variables in a special
"common" memory area so more than one program context can access the
variables.

C-60 CALL - CYCLE

COM

Expanded dio9rom:

C

CALL • CYCLE C-61

C

COM

Item Description Range

block name name identifying a labeled COM area any valid name

numeric name name of a numeric variable

string name name of a string variable

any valid name

any valid name

lower bound integer constant; Default = OPTION -32 767 through +32 767
BASE value (0 or 1) (see "array" in Glossary)

upper bound integer constant

string length integer constant

I/O path name name assigned to a device, devices,
mass storage file, or buffer

Example Statements

COM X.Y.Z
COM COMPLEX Result
COM /Graph/ Title$,GDevice,INTEGER Points(*)
COM INTEGER I.J.REAL Array(-128:127)
COM INTEGER Buf(127) BUFFER.C$[256] BUFFER

Semantics

-32 767 through +32 767
(see "array" in Glossary)

1 through 32 767

any valid name (see
ASSIGN)

Storage for COM is allocated at prerun time in an area of memory which
is separate from the data storage used for program contexts. This reserved
portion of memory remains allocated until SCRATCH A, SCRATCH BIN, or
SCRATCH C is executed.

C-62 CALL - CYCLE

COM

Changing the definition of the COM space is accomplished by a full program
prerun. This can be done by:

• Pressing the (RUN) or (STEP) key when no program is running

• Executing a RUN command when no program is running

• Executing any GET or LOAD from a program

• Executing a GET or LOAD command that tells program execution to begin
(such as LOAD "File" t 1)

When COM allocation is performed at prerun, the new program's COM area is
compared to the COM area currently in memory. When comparing the old and
new areas, BASIC looks first at the types and structures declared in the COM
statements. If the "text" indicates that there is no way the areas could match,
then those areas are considered mismatched. If the declarations are consistent,
but the shape of an array in memory does not match the shape in a new COM
declaration, BASIC takes the effect of RED 1M into account. If the COM
areas could be matched by a REDIM, they are considered to be in agreement.
When this happens, the treatment of the arrays in memory depends upon
the program state. If the COM matching occurred because of a programmed
LOADSUB, the arrays in memory keep their current shape. If the COM
matching occurred for any other reason (such as RUN or programmed LOAD),
the arrays in memory are redimensioned to match the declarations. Any
variable values are left intact. All other COM areas are rendered undefined,
and their storage area is not recovered by BASIC. New COM variables are
initialized at prerun: numeric variables to 0, string variables to the null string.

Each context may have as many COM statements as needed (within the
limits stated below), and COM statements may be interspersed between other
statements. If there is an OPTION BASE statement in the context, it must
appear before COM statement. COM variables do not have to have the same
names in different contexts. Formal parameters of subprograms are not allowed
in COM statements. A COM mismatch between contexts causes an error.

The total number of COM elements is limited to a maximum memory usage of
224-1, or 16 777 215, bytes (or limited by the amount of available memory,
whichever is less).

CALL· CYCLE C-63

C

COM

If a COM area requires more than one statement to describe its contents, COM
statements defining that block may not be intermixed with COM statements
defining other COM areas.

Numeric variables in a COM list can have their type specified as either REAL,
INTEGER, or COMPLEX. Specifying a variable type implies that all variables

C which follow in the list are of the same type. The type remains in effect until
another type is specified. String variables and I/O path names are considered a
type of variable and change the specified type. Numeric variables are assumed
to be REAL unless their type has been changed to INTEGER or COMPLEX.

COM statements (blank or labeled) in different contexts which refer to
an array or string must specify it to be of the same size and shape. The
lowest-numbered COM satement containing an array or string name must
explicitly specify the subscript bounds and/or string length. Subsequent COM
statements can reference a string by name only or an array only by using an
asterisk specifier (*).

No array can have more than six dimensions. The lower bound value must
be less than or equal to the upper bound value. The default lower bound is
specified by the OPTION BASE statement.

Any LOADSUB which attempts to define or change COM areas while a
program is running generates ERROR 145.

Unlabeled or Blank COM

Blank COM does not contain a block name in its declaration. Blank COM (if
it is used) must be created in a main context. The main program can contain
any number of blank COM statements (limited only by available memory).
Blank COM areas can be accessed by subprograms, if the COM statements
in the subprograms agree in type and shape with the main program COM
statements.

C-64 CALL - CYCLE

COM

Labeled COM

Labeled COM contains a name for the COM area in its declaration. Memory
is allocated for labeled COM at prerun time according to the lowest-numbered
occurrence of the labeled COM statement. Each context which contains a
labeled COM statement with the same label refers to the same labeled COM
b~d. C

Declaring Buffers

To declare COM variables to be buffers, each variable's name must be followed
by the keyword BUFFER; the designation BUFFER applies only to the
variable which it follows. String arrays cannot be declared to be buffers.

CALL· CYCLE C-65

C

COMPILE

For details on this command when using BASIC/WS, BASIC/DOS, or
BASIC/UX, see Compiling HP BASIC 6.2 Programs.

C-66 CALL - CYCLE

COMPLEX
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
COMPLEX
No
Yes
No

COMPLEX

This statement declares COMPLEX variables and arrays and reserves storage
for them. (For information about COMPLEX as a secondary keyword, see the
ALLOCATE, COM, DEF FN, or SUB statements.)

Range
Item Description/Default Restrictions

numerIC name name of a numeric variable any valid name

lower bound integer constant;Default = OPTION -32 767 through +32 767
BASE value (0 or 1) (see "array" in Glossary)

upper bound integer constant -32 767 through +32 767
(see "array" in Glossary)

Example Statement

COMPLEX X,Y,Z
COMPLEX Array(-23:2,26)
COMPLEX A(512) BUFFER

CALL· CYCLE C-67

C

C

COMPLEX

Semantics

Each COMPLEX variable or array element consists of two floating-point
values, one for the real part and one for the imaginary part of the COMPLEX
number. Each complex value requires sixteen bytes of storage. The maximum
number of subscripts in an array is six, and no dimension may have more than
32 767 elements.

The total number of COMPLEX elements is limited by the fact that the
maximum memory usage for all variables-COMPLEX, INTEGER, REAL,
and string-within any context is 224_1, or 16 777 215, bytes (or limited by
the amount of available memory, whichever is less).

Declaring Buffers

To declare COMPLEX variables to be buffers, each variable's name must be
followed by the keyword BUFFER; the designation BUFFER applies only to
the variable which it follows.

C-68 CALL - CYCLE

CONJG
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
COMPLEX
Yes
Yes
Yes

CONJG

This function returns the complex conjugate of a COMPLEX number.

(COIW XD-1 argument r<i}+t

Item Description/Default

argument numeric expression

Example Statements

X=CONJG(Complex_expr)
Y=CONJG(Real_expr)
Z=CONJG(Integer_expr)
Result=CONJG(CKPLX(2.1.-8»

Semantics

Range
Restrictions

any valid INTEGER, REAL,
or COMPLEX value

The complex conjugate of a COMPLEX number CMPLX(X,Y) is
CMPLX(X,-Y). That is, the imaginary part of the argument is negated. An
INTEGER or REAL argument is returned unchanged.

CALL - CYCLE C-69

C

C

CONT

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
None
Yes
No
No

This command resumes execution of a paused program at the specified line.
(For information about CONT as a secondary keyword, see the TRANSFER
statement.)

Item

line number

line label

Description

integer constant identifying a
program line; Default = next
program line

name identifying a program line

Example Statements

CONT 550
CONT Sort

C-70 CALL - CYCLE

Range

1 through 32 766

any valid name

CONT

Semantics

Continue can be executed by pressing the (CONTINUE) key (@ in the System
menu of an ITF keyboard), or by executing a CONT command. Variables
retain their current values whenever CONT is executed. CONT causes the
program to resume execution at the next statement which would have occurred
unless a line is specified.

When a line label is specified, program execution resumes at the specified line,
provided that the line is in either the main program or the current subprogram.
If a line number is specified, program execution resumes at the specified line,
provided that the line is in the current program context. If there is no line in
the current context with the specified line number, program execution resumes
at the next higher-numbered line. If the specified line label does not exist in
the proper context, an error results.

CALL· CYCLE C-71

C

C

CONTROL
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

This statement sends control information to an interface or to the internal
table associated with an I/O path name. (This keyword is also used in PASS
CONTROL.)

Item Description

interface select numeric expression, rounded to an
code integer

I/O path name name assigned to a device, devices,
mass storage file, or buffer

register number numeric expression, rounded to an
integer; Default = 0

control word numeric expression, rounded to an
integer

Example Statements

CONTROL GRand_file,7;File_length
CONTROL l;Rov,Column
CONTROL 7,3;29

C-72 CALL - CYCLE

Range

1 through 32
(interface-dependent)

any valid name
(see ASSIGN)

interface-dependent

_231 through 231 _1
(interface-dependent)

CONTROL

Semantics

When the Destination is an I/O Path Name

The only time CONTROL is allowed to an I/O path name is when the I/O
path name is assigned to a BDAT or HPUX file or a buffer. I/O path names C
have an association table that can be accessed as a set of registers.

Control words are written to the association table, starting with the specified
"register" and continuing in turn through the remaining "registers" until all
control words are used. The number of control words must not exceed the
number of "registers" available. Register assignments can be found in the
"Interface Registers" section at the back of this book.

When the Destination is an Interface

Control words are written to the interface registers, starting with the specified
register number, and continuing in turn through the remaining registers until
all the control words are used. The number of control words must not exceed
the number of registers available. Register assignments can be found in the
Interface Registers section at the back of the book.

CALL - CYCLE C-73

CONVERT
See the ASSIGN statement

C

C-74 CALL - CYCLE

COpy

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN*
None
Yes
Yes
Yes

COpy

This statement allows copying of individual files or an entire disk.

literal form of file specifier:

HFS or SRM files only

literal form of DFS file specifier:

CALL· CYCLE C·75

C

C

COpy

Item Description

file specifier string expression

volume specifier string expression

directory path literal

Range

(see drawing)

(see MASS STORAGE IS)

(see MASS STORAGE IS)

file name literal depends on volume's format
(see Glossary)

LIF protect
code

literal; first two non-blank characters > not allowed
are significant

SRM password literal; first 16 non-blank characters > not allowed
are significant

volume specifier string expression

Example Statements

COpy "OLD_FILE" TO "Nev_file"
COPY "OLD_FILE" TO "Nev_file";PURGE
COPY File$ TO File$tOther_volume$

COPY "/Dir_1/File_1" TO "Dir_3/File_1"
COPY "File:INTERNAL" TO "File:REMOTE 21,0"
COPY Dir_path$tFile$tVol$t TO "File:,700"

COPY Left_disc$ TO Right_disc$
COpy ":,700" TO ":,700,1"
COpy ":,4, 1" TO ":,4,0"

COpy "Dir/*" TO "Nev_dir"
COPY "Type_[a-z]" TO "Dir"
COPY "File?" TO "archive"
COPY "*" TO ":,700,1"
COPY "\BLP*.*:DOS,C" TO ":,700,1"

C-76 CALL - CYCLE

(see MASS STORAGE IS)

WILDCARDS UX only

COpy

Semantics

The contents of the old file is copied into the new file, and a directory entry is
created. A protect code (LIF directories) may be specified for the new file, to
prevent accidental erasure, etc. BASIC will not replace existing files unless you
specify the PURGE option (BASICjWS only).

An error is returned if there is not enough room on the destination device, or if
the new file name already exists in the destination directory and the PURGE
option is not specified.

If the mass storage volume specifier (msvs) is omitted from a file specifier, the
MASS STORAGE IS device is assumed.

If the directory path is also omitted, the MASS STORAGE IS directory is
assumed.

Using Wildcards with COpy

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with COPY. You must first enable wildcard recognition using
WILDCARDS. Refer to the keyword entry for WILDCARDS for more details.

You may use wildcards in both the source and destination of the COPY. If
the wildcard specification for the source matches more than one file, then the
destination must be a directory or a LIF volume specifier.

Note that BASIC handles the command

in a different manner when wildcards are enabled than when they are disabled.

When wildcards are enabled, BASIC permits you to copy a file to a directory.
It interprets the above command as make a copy of file_name and place that
copy in a directory called dir _name.

When wildcards are disabled, BASIC interprets the above command as make
a copy of file_name and place it in the file called dir _name. If a file or a
directory already exists which uses the name dir _name, BASIC generates
ERROR 54, Duplicate file name.

CALL - CYCLE C-77

C

COpy

Using the PURGE Option

The PURGE option allows the COpy command to replace existing files. It can
be used regardless of the state of wildcards.

BASIC interprets the command COpy "file1" TO "file2"; PURGE as copy the
C file file1 to file2, replacing file2 if it exists.

BASIC interprets the command

COPY "file_name" TO "dir_name"; PURGE

in different ways depending on whether wildcards are enabled or disabled.

When wildcards are enabled, the preceding statement copies file_name into
the directory dir_name. If a file with the name file_name already exists in
that directory, COpy will replace it.

When wildcards are disabled, BASIC replaces the directory identified by
dir _name with the file specified by file_name. This works only if dir _name is
empty.

Copying an Entire LIF or HFS Volume

LIF and HFS volumes can be duplicated if the destination volume is as large
as, or larger than, the source volume. COpy from a larger capacity volume to
a smaller capacity volume is only possible when the amount of data on the
larger will fit on the smaller. The directory and any files on the destination
volume are destroyed. The directory size on the destination volume becomes
the same size as that on the source media.

When copying an entire volume, the volume specifiers must be unique. File
names are not allowed. Disk-to-disk copy time is dependent on media type and
interleave factors.

Also note that you will be prompted to continue when executing a volume copy
from the keyboard, thus providing safe volume copying. There is no continue
prompt when executing volume copy from a program.

BASIC lUX supports copying only of LIF volumes, not HFS volumes.

C·78 CALL· CYCLE

HFS Permissions

With HFS, COpy allows copying of individual files and volumes. HFS
directories cannot be copied.

In order to COpy a file on an HFS volume, you need to have R (read)

COpy

permission on the source file, as well as X (search) permission on the parent C
directory and all other superior directories. In addition, you will need W
(write) and X (search) permission on the destination file's parent directory, as
well as X (search) permission on all other superior directories.

HFS File Headers

When copying a file from LIF or SRM to HFS, a special header is added to
the beginning of that file. This action is taken because that is the only way to
"type" files (which would otherwise be "typeless"). When copying a file from
HFS to LIF or SRM volumes, this file header is removed (since these volumes
have typed files). Note that BASIC handles the file headers automatically and
requires no special treatment in programs that use these files.

When copying a SYSTM file from LIF or SRM volumes to HFS volumes, it
will be given a header and will remain a SYSTM file. However, it will not be
bootable. Conversely, copying a bootable HP-UX file from HFS to LIF or SRM
will result in an HP-UX file that is not bootable. (STORE SYSTEM will copy
the current BASIC system from memory onto an HFS volume only in the root
directory. STORE SYSTEM will error if the HFS directory is not the root
directory (/). If the destination file is in the HFS volume's root directory, it
will be a boot able system.)

SRM Passwords

With SRM, COpy allows copying of individual files. SRM directories and
volumes cannot be copied.

In order to COpy an SRM file, you need to have R (read) access capability on
the file, on the parent directory, and on all other superior directories. You must
also have W (write) access capability on the destination directory, as well as R
access capability on all superior directories.

CALL - CYCLE C-79

C

COpy

Although you may include a password in the new file specifier, the system
ignores the password. If you wish to protect access to the new file, you must
assign the password with PROTECT.

C-SO CALL - CYCLE

COPYLINES
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
EDIT and PDEV
Yes
No
No

COPYLINES

This command allows you to copy one or more contiguous program lines to
another location while editing a program.

Item Description Range

beginning line integer constant identifying program 1 to 32 766
number line

beginning line name of a program line any valid name
label

ending line integer constant identifying program 1 to 32 766
number line

ending line name of a program line any valid name
label

target line integer constant identifying program 1 to 32 766
number line

target line label name of a program line any valid name

CALL - CYCLE C-S1

C

COPYLINES

Example Statements

COPYLlNES 1200 TO 2350
COPYLlNES 100.230 TO Label1
COPYLlNES Util_start.Util_end TO 16340

C Semantics

If the beginning line identifier is not specified, only one line is copied.

The target line identifier will be the line number of the first line of the copied
program segment. Copied lines are renumbered if necessary. The code (if any)
which is "pushed down" to make room for the copied code is renumbered if
necessary.

Line number references to the copied code are updated as they would be for
a REN command, with these exceptions: line number references in lines not
being copied remain linked to the source lines rather than being renumbered;
references to non-existent lines are renumbered as if the lines existed.

If there are any DEF FN or SUB statements in the copied code, the target line
number must be greater than any existing line number.

If you try to copy a program segment to a line number contained in the
segment, an error will be reported and no copying will occur.

If the starting line number does not exist, the next line is used. If the ending
line number does not exist, the previous line is used. If a line label doesn't
exist, an error occurs and no copying occurs.

If an error occurs during a COPYLINES (for example, a memory overflow), the
copy is terminated and the program is left partially modified.

C-82 CALL - CYCLE

cos
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

cos

This function returns the cosine of the angle represented by the argument. The
range of the returned real value is -1 through + 1.

(cos r<D-1 argument ~

Item

argument

Description/Default

numeric expression in current units
of angle when INTEGER or REAL
argument

numeric expression in radians when
COMPLEX argument

Examples Statements

Cosine=COS(Angle)
PRINT COS(X+45)

Semantics

Range
Restrictions

absolute values less than
1.708 312 772 2 E+I0 deg.
or 2.981 568 244 292 04
E+8 rad. for INTEGER
and REAL arguments;
see "Range Restriction
Specifics" for COMPLEX
arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the
argument is COMPLEX, the value returned is COMPLEX.

To compute the COS of a COMPLEX value, the COMPLEX binary must be
loaded.

CALL - CYCLE C-83

C

cos

Range Restriction Specifics

The formula used for computing the COS of a COMPLEX argument is:

CKPLX(COS(Real)*COSH(Imag),-SIR(Real)*SIRH(Imag»

where Real is the real part the COMPLEX argument and Imag is the
C imaginary part of the COMPLEX argument.

Some values of a COMPLEX argument may cause errors in this computation.
For example,

COS(CKPLX(O,MAXREAL»

will cause error 22 due to the COSH(Imag) calculation.

Note that any COMPLEX function whose definition includes a sine or cosine
function will be evaluated in the radian mode regardless of the current angle
mode (Le. RAD or DEG).

C-84 CALL - CYCLE

COSH
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS
COMPLEX
Yes
Yes
Yes

This function returns the hyperbolic cosine of a numeric expression.

Item

(COSH)-(D-1 argument ~

Description/Default
Range

Restrictions

COSH

argument numeric expression -710 through 710 for INTEGER
or REAL arguments; see "Range
Restriction Specifics" for COMPLEX
arguments

Example Statements

Result=COSH(10.3499)
PRINT "Hyperbolic Cosine = ";COSH(Expression)

Semantics

If an INTEGER or REAL argument is given, this function returns a REAL
value. If a COMPLEX argument is given, this function returns a COMPLEX
value.

Range Restriction Specifics

The formula used for computing COSH is as follows:

(EXP(Argument)+EXP(-Argument»/2

where Argument is the argument of the COSH functi8n.

CALL - CYCLE C-85

C

C

COSH

Some arguments may cause errors in intermediate values computed during this
computation. For example,

COSH (MAXREAL)

will cause error 22 due to the EXP (MAXREAL) computation.

C-86 CALL - CYCLE

COUNT

COUNT
See the CAT and TRANSFER statements.

C

CALL· CYCLE C-87

C

CREATE
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS'" IN ...
HFS
Yes
Yes
Yes

This statement creates an HP -UX or D FS file.

literal form of file specifier:

HFS or SRM files only

literal form of DFS file specifier:

C-88 CALL· CYCLE

Item Description

file specifier string expression

directory path literal

file name literal

LIF protect literal; first two non-blank characters
code are significant

SRM password literal; first 16 non-blank characters
are significant

volume specifier literal

number of numeric expression, rounded to an
records integer

Example Statements

CREATE File_spec$,N_records
CREATE "HPUX_file", 12
CREATE "OnLIF<pc)",50*N

Semantics

CREATE

Range

(see drawing)

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

> not allowed

> not allowed

(see MASS STORAGE IS)

1 through 231 - 1

CREATE creates a new file of type HP-UX on the default or specified volume
or hierarchical directory. A corresponding directory entry is also made. The
name of the newly created file must be unique within its directory. CREATE
does not open the file; that is performed by ASSIGN. In the event of an error,
no directory entry is made and the file is not created.

The number of records parameter specifies how many logical records are to be
initially allocated to the file. The logical record size is always 1 for HP-UX
files. On LIF volumes, the number of records allocated for the file is fixed;
however, with HFS and SRM volumes, files are extensible (see the following
explanation of extensible files).

The data representation used in the file depends on the FORMAT option used
in the ASSIGN statement used to open the file. See ASSIGN for details.

CALL - CYCLE C-89

C

C

CREATE

Extensible Files (DFS, HFS and SRM Volumes Only)

If the file is created on a DFS, HFS, or SRM volume, the file is "extensible".
With HFS volumes, the initial size of the file is 0, but the file will
automatically be extended as many bytes as necessary whenever an OUTPUT
operation would otherwise overflow the file. On SRM volumes, the "number
of records" parameter determines the "extent size" of the file (that is, the
amount of space automatically appended to the file whenever it is extended).
"Preallocating" the file on SRM and HFS volumes (initially creating a file of
sufficient size) will improve the data transfer rate with extensible files, because
the file system will not have to extend the file during data transfer operations.

LIF Protect Codes

A protect code is not allowed on an HP-UX file.

HFS Permissions

In order to create a file on an HFS volume, you need to have W (write) and X
(search) permission of the immediately superior directory, as well as X (search)
permission on all other superior directories.

When a file is created on an HFS volume, access permission bits are set to
RW-RW-RW-. (You can modify them with PERMIT, if desired.) BASIC/UX
permissions may be altered by the user's umask. See the HP- UX Reference,
umask(1) entry, for more information.

SRM Access Capabilities

In order to CREATE an HP-UX file in an SRM directory, you need to have
READ and WRITE capabilities on the immediately superior directory, as well
as READ capabilities on all other superior directories.

When a file is created on an SRM volume, all access capabilities are public.
Including an SRM password in the file specifier does not protect the file. You
must use PROTECT to assign a password. You will not receive an error
message for including a password, but a password in the CREATE statement is
ignored.

C-90 CALL - CYCLE

CREATE

BASIC/DOS Specifics

For the LIF and HFS (if present) file systems, CREATE works the same as for
BASIC/WS. For the DFS file system, CREATE creates a DOS type file rather
than an HP -UX file.

CALL - CYCLE C-91

C

C

CREATE ASCII

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This statement creates an ASCII file.

CREATE ASCII

literal form of file specifier:

HFS or SRM files only

literal form of DFS file specifier:

C-92 CALL - CYCLE

Item

file specifier

number of
records

Description

string expression

numeric expression, rounded to an
integer

CREATE ASCII

Range

(see drawing)

1 through (231 - 1)/256

directory path literal (see MASS STORAGE IS)

file name literal depends on volume's format
(see Glossary)

SRM password literal; first 16 non-blank characters > not allowed
are significant

volume specifier literal

Example Statements

CREATE ASCII "TEXT",100
CREATE ASCII Rame$1":,700,1",Length
CREATE ASCII "/Dir1/Dir2/AsciiFile" ,25

Semantics

(see MASS STORAGE IS)

CREATE ASCII creates a new ASCII file and directory entry on the mass
storage media. The name of the newly created ASCII file must be unique
within its containing directory. CREATE ASCII does not open the new file;
that is performed by the ASSIGN statement. In the event of an error, no
directory entry is made and the file is not created.

The physical records of an ASCII file have a fixed length of 256 bytes; logical
records have variable lengths, which are automatically determined when the
OUTPUT, SAVE, or RE-SAVE statements are used.

CALL - CYCLE C-93

C

C

CREATE ASCII

Extensible Files (DFS, HFS and SRM Volumes Only)

If the file is created on a DFS, HFS or SRM volume, the file is "extensible".
With HFS volumes, the initial size of the file is the size specified in the
CREATE ASCII statement, but the file will automatically be extended as
many bytes as necessary whenever an OUTPUT operation would otherwise
overflow the file. On SRM volumes, the "number of records" parameter
multiplied by the record size (256 for ASCII files) determines the "extent size"
of the file (that is, the amount of space automatically appended to the file
whenever it is extended). "Preallocating" the file on an SRM or HFS volume
(initially creating a file of sufficient size) will improve the data transfer rate
with extensible files, because the file system will not have to extend the file
during data transfer operations.

LIF Protect Codes

On a LIF disk, a protect code is not allowed on an ASCII file. Including a
protect code in the CREATE ASCII statement will give an error.

HFS Permissions

In order to create a file on an HFS volume, you need to have W (write) and
X (search) permissions on the immediately superior directory, as well as X
(search) permissions on all other superior directories.

On HFS volumes, access permission bits are set to RW-RW-RW- when an
ASCII file is created. (You can modify them with PERMIT, if desired.) In
BASIC/UX, permissions may be altered by the users umask. See the HP-UX
Reference, umask(1) entry, for more information.

DFS and HFS File Headers

On a DFS or HFS volume, the first 512 bytes of an ASCII file are used by the
BASIC file system to describe the file's type (this is the only way for BASIC
to create a "typed" file on an HFS volume, since HFS files are otherwise
"typeless"). This file header is handled automatically by BASIC, but it should
be skipped when reading and writing the file with other HP-UX languages.
See the "Porting and Sharing Files" chapter of HP BASIC 6.2 Porting and
Globalization for details.

C-94 CALL - CYCLE

CREATE ASCII

SRM Access Capabilities

In order to create an ASCII file in an SRM directory, you need to have R
(read) and W (write) capabilities on the immediately superior directory, as well
as R capability on all other superior directories.

When an ASCII file is created on an SRM volume, all access capabilities are C
public. Including a password in the file specifier does not protect the file.
You must use PROTECT to assign passwords. You will not receive an error
message for including a password, but SRM passwords in the CREATE ASCII
statement are ignored.

CALL - CYCLE C-95

C

CREATE BOAT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This statement creates a BDAT file.

CREATE BOAT

literal form of file specifier:

HfS or SRM files only

literal form of DFS file specifier:

C-96 CALL - CYCLE

Item

file specifier

number of
records

Description

string expression

numeric expression, rounded to an
integer

CREATE BOAT

Range

(see drawing)

1 through
(231 - 769)/(record size)

record size numeric expression, rounded to 1 through 65 534
next even integer (except 1), which
specifies bytes/record; Default = 256

directory path

file name

literal (see MASS STORAGE IS)

literal depends on volume's format
(see Glossary)

LIF protect
code

literal; first two non-blank characters > not allowed
are significant

SRM password literal; first 16 non-blank characters > not allowed
are significant

volume specifier string expression

Example Statements

CREATE BDAT "File",Records,Rec_size
CREATE BDAT "George",48
CREATE BDAT "Protected<PC)",Length,128
CREATE BDAT Name$tVolume$,Bytes,l
CREATE BDAT "/Dirl/Dir2/BDATfile" ,25,128
CREATE BDAT "Dir/File:REMOTE" ,10

Semantics

(see MASS STORAGE IS)

CREATE BDAT creates a new BDAT file and directory entry on the mass
storage media. The name of the newly created BDAT file must be unique
within its containing directory. CREATE BDAT does not open the file; that
is performed by the ASSIGN statement. In the event of an error, no directory
entry is made and the file is not created.

CALL - CYCLE C-97

C

CREATE BOAT

A sector at the beginning of the file is reserved for system use. This sector
cannot be directly accessed by BASIC programs. This sector is not present on
SRM.

Extensible Files (DFS, HFS and SRM Volumes Only)

C If the file is created on a DFS, HFS or SRM volume, the file is "extensible".
With HFS volumes, the initial size of the file is the size specified in the
CREATE BDAT statement, but the file will automatically be extended as
many bytes as necessary whenever an OUTPUT operation would otherwise
overflow the file. On SRM volumes, the "number of records" parameter
multiplied by the record size determines the "extent size" of the file (that
is, the amount of space automatically appended to the file whenever it is
extended). "Preallocating" the file on an SRM volume (initially creating a
file of sufficient size) will improve the data transfer rate with extensible files,
because the file system will not have to extend the file during data transfer
operations.

LIF Protect Codes

On LIF volumes, an optional protect code may be specified; the first two
characters become the protect code of the file. (You can modify the protect
code with PROTECT, if desired.)

HFS Permissions

In order to create a file on a DFS or HFS volume, you need to have W (write)
and X (search) permission of the immediately superior directory, as well as X
(search) permission on all other superior directories.

When a file is created on an HFS volume, access permission bits are set to
RW-RW-RW-. (You can modify them with PERMIT, if desired.)In BASIC/UX,
permissions may be altered by the users umask. See the HP- UX Reference,
umask(1) entry, for more information.

On HFS volumes, the first 512 bytes of a BDAT file are used by the BASIC file
system to describe the file's type (this is the only way for BASIC to create a
"typed" file on an HFS volume, since HFS files are otherwise "typeless"). This
file header is handled automatically by BASIC, but it should be skipped when

C-98 CALL - CYCLE

CREATE BOAT

reading and writing the file with other HP-UX languages. See the "Porting and
Sharing Files" chapter of HP BASIC 6.2 Porting and Globalization for details.

SRM Access Capabilities

In order to create a file in an SRM directory, you need to have R (read) and
W (write) capabilities on the immediately superior directory, as well as R
capability on all other superior directories.

When a file is created on an SRM volume, all access capabilities are public.
Including an SRM password in the file specifier does not protect the file. You
must use PROTECT to assign a password. You will not receive an error
message for including a password, but a password in the CREATE BDAT
statement is ignored.

CALL - CYCLE C-99

c

C

CREATE DIR

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN *
SRM & DCOMM, or HFS
Yes
Yes
Yes

This statement creates a directory in either the current working directory or in
the specified directory of an SRM or HFS volume.

C-100 CALL - CYCLE

(CREATE OIR l-.I directory ~
"" - I specifier I - I

literal form of file specifier:

directory path:

CREATE OIR

r------------------------------,
literal form of directory specifier (DFS only):

directory path:

DFS

CALL - CYCLE C-10 1

C

C

CREATE DIR

Item

directory
specifier

Description

string expression

directory path literal

Range

(see drawing)

(see drawing)

directory name literal depends on volume's format
(14 characters for HFS; 255
characters for long file name
systems; 16 characters for
SRM; 8 + 3 characters
for DFS; see Glossary for
details)

SRM password literal; first 16 non-blank characters > not allowed
are significant

volume specifier literal

Example Statements

CREATE DIR "Under_work_dix"
CREATE DIR "Level1/Leve12/New_dir:REMOTE 21,3"
CREATE DIR "/Level1/Leve12/New_dix"
CREATE DIR "Levell <SRM_R\Cpass> /Nev_dix"
CREATE DIR "Dir3/Dir4:, 700"
CREATE DIR "DATA:DOS,C"

Semantics

(see MASS STORAGE IS)

This statement creates a directory and a corresponding directory entry in the
current working directory or specified directory. The DIR file, or directory,
keeps information on files and directories immediately subordinate to itself.
The name of the newly created directory must be· unique within its containing
directory.

If no directory path is included in the directory specifier, the directory is
created within the current working directory (the directory specified in the
latest MASS STORAGE IS statement). To specify a target directory other

C-102 CALL - CYCLE

CREATE DIR

than the current working directory, specify the directory path to the desired
directory.

HFS Permissions

In order to create a directory on an HFS volume, you need to have W (write)
and X (search) permission of the immediately superior directory, as well as X
(search) permission on all other superior directories.

When a directory is created on an HFS volume, access permission bits are
set to RWXRWXRWX. (You can modify them with PERMIT, if desired.) In
BASICjUX, permissions may be altered by the users umask. See the HP- UX
Reference, umask(l) entry, for more information.

As each directory or data file is created within an HFS directory, a 32-byte
record identifying the addition is added to the DIR file. The length of this
entry is variable for HFS long file name file systems.

SRM Access Capabilities

In order to create a directory in an SRM directory, you need to have R (read)
and W (write) capabilities on the immediately superior directory, as well as R
(read) capabilities on all other superior directories.

When a directory is created on an SRM volume, all access capabilities are
public. Including an SRM password in the directory specifier does not protect
the file. You must use PROTECT to assign a password. You will not receive
an error message for including a password, but a password in the CREATE
DIR statement is ignored.

As each directory or data file is created within an SRM directory, a 24-byte
record identifying the addition is added to the DIR file.

DFS Access Capabilities

In order to create a directory on a DFS volume, you need to have W (write)
and X (search) permission of the immediately superior directory, as well as X
(search) permission on all other superior directories.

When a directory is created on a DFS volume, access permission bits are set to
RWXRWXRWX.

CALL - CYCLE C-103

C

c

CREATE WINDOW

Supported On
Option Required
Keyboard executable
Programmable
In an IF . .. THEN ...

UX WS* DOS*
RMBUX
Yes
Yes
Yes

This statement creates or recreates a window for alpha and graphics displays.
A window is a portion of the CRT which is accessible independently of other
windows.

CREATE WINDOW

C-104 CALL - CYCLE

CREATE WINDOW

Item Description Range

window number numeric expression, rounded to 601 through 699
integer

xpos numeric expression, rounded to integer
integer in pixel units

ypos numeric expression, rounded to integer
integer in pixel units

width numeric expression, rounded to integer
integer in pixel units

height numeric expression, rounded to integer
integer in pixel units

scroll size numeric expression, rounded to range of integer, >=0
integer specifies scroll buffer size limited by available memory
DEFAULT=O (units=lines)

name string expression

Example Statements

CREATE WINDOW 602,20,50,80*CHRX,24*CHRY,Scrollsize
CREATE WINDOW Plot,Xval,Yval,400,400
CREATE WINDOW 609,100,100,Xsize,Ysize,Scrollbuf; LABEL "Fred"
CREATE WINDOW Graph,400,300,100,100; RETAIN, LABEL "Quarterly Report 4Q87"

Semantics

This statement is only valid when running under X Windows. When not in X
Windows, this statement will cause an error.It creates the window specified by
the window number with the given attributes.

The xpos and ypos parameters specify the location of the upper-left corner in
pixel coordinates. The upper-left corner of the CRT is 0,0. If the xpos and
ypos specified are greater than the size of the CRT, then the window is created
off the screen and is not be visible until moved onto the screen.

CALL - CYCLE C-105

C

CREATE WINDOW

The height parameter specifies the window height in pixels. To create a
window with a specified number of alphanumeric rows, multiply the desired
number of rows by the function CHRY (the pixel height of a character). The
width parameter specifies the width of the window in pixels. Again, to convert
alphanumeric columns to pixels simply multiply by the function CHRX.

C The scroll size defines how many additional lines (rows) of text can be saved
and scrolled within the specified window.

The window name attribute is not used for identifying the window within
BASIC programs. The window name appears in the output of the LIST
WINDOW command in the window title bar (if title bars are supported by
the window manager), and as an identifier when the window is iconized. If a
LABEL <name> is not specified, then the default name of xxx will be used
where xxx is the window number.

The RETAIN attribute specifies whether the raster image of the graphics in a
window is saved in memory. The default is not to retain the image, and thus
when the window is covered and uncovered, graphics can be lost. BASIC
ensures that alpha information is always redrawn. The RETAIN attribute can
only be specified at window create time. This attribute does have a significant
penalty in terms of memory usage. For most monitors with 8 or less planes it
requires one byte per pixel to save the image. Monitors with more planes will
require more storage. Some new monochrome monitors can store 8 pixels per
byte. Note that resizing a RETAINed window causes the window to be cleared,
thus all data in the window is lost.

Control statements allow overlapping windows to move to the top of the stack,
or be pushed to the bottom.

The CRT may be divided into several rectangular windows, each of which
behaves like an independent CRT.

When a window is created, its contents are defined to be blank. If a window
exists with the specified window number, an error message is returned.

Windows may be used for alpha, graphics, or both. When working within
a window system the alpha and graphics planes are ALWAYS merged. The
following statements work with window numbers:

C-106 CALL· CYCLE

ASSIGN Gprt to 614
DUMP ALPHA 604
DUMP DEVICE IS 613
DUMP GRAPHICS 605
OUTPUT 603 ...
PLOTTER IS 607,"WINDOW"
PRINTER IS 611
PRINTALL IS 612

CREATE WINDOW

(only for dumping ALPHA)

DESTROY WINDOW, MOVE WINDOW, and CLEAR WINDOW statements
affect the definitions of the windows.

CALL - CYCLE C-107

C

C

CRT

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This INTEGER function returns 1, the device selector of the alpha CRT
display.

Example Statements

PRINTER IS CRT
ENTER CRT;Array(*)

C·108 CALL· CYCLE

CSIZE

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...
Yes

UX WS DOS
GRAPH
Yes
Yes

CSIZE

This statement sets the size and aspect (width/height) ratio of the character
cell used by the LABEL and SYMBOL statements.

Item

height

width/height
ratio

Description

numeric expression; Default = 5

numeric expression; Default = 0.6

Example Statements

CSlZE 10
CSlZE Size,Width

Semantics

Range

At power-on, RESET, and GINIT, the height is 5 graphic-display-units
(GDUs), and the aspect ratio is 0.6 (width = 3 GDUs, or 0.6x5 GDUs). A
negative number for either parameter inverts the character along the associated
dimension. The drawing below shows the relation between the character cell
and a character.

CALL - CYCLE C-109

C

CSIZE

Character In a Character Cell

C H

C-110 CALL - CYCLE

CSUB

CSUB
This keyword stands for "Compiled SUBprogram". CSUB statements are
compiled BASIC or Pascal subprograms, linked to BASIC by using a special
CSUB preparation utility. They are loaded using the LOAD SUB statement
and can be deleted using the DELSUB statement. When viewed in BASIC's
edit mode, these subprograms look like SUB statements, except for the
keyword CSUB (instead of SUB). They are invoked with CALL, just like
normal SUB subprograms.

Because of their special nature, certain rules must be followed when editing a
program containing CSUB statements. These lines will not be recognized if
entered in BASIC (they must be created in Pascal or with the COMPILER
binary). Therefore, any operation which requires the line to be checked for
proper syntax will fail. This includes such operations as GET, MOVELINES,
or re-storing the line by pressing the (Return) or (ENTER) keys. Operations
which do not check syntax are allowed. This includes things like scrolling and
renumbering.

Sometimes a CSUB will appear as multiple CSUB statements because of
multiple entry points. In these cases, the group of statements cannot be
broken; you cannot insert a comment line between the statements, delete a
single statement in the group, or interfere with the order in any way. The only
statements which can be entered directly after a CSUB are SUB and DEF FN.
As always, these must be entered at the end of the program.

CALL .. CYCLE C .. 111

C

CSUM
See the MAT statement.

C

C-112 CALL - CYCLE

CVT$

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

WS
LANGUAGE
Yes
Yes
Yes

CVT$

This string function converts an input string character-by-character from one
alphabet to another.

Item

input string

conversion
specifier

Description

string expression

string expression

Example Statements

A$=CVT$(B$,"KATAKANA TO HIRAGANA")
A$=CVT$(B$,"ZENKAKU TO HANKAKU")

Semantics

Range

any valid expression

depends on LANGUAGE

Japanese LANGUAGE binary
Japanese LANGUAGE binary

The CVT$ function is used in certain localized versions of BASIC, such as
Japanese localized BASIC. These local languages often use more than one
alphabet. CVT$ converts the input string character-by-character from one
alphabet to another, according to the conversion specifier. The choices and
default values available for conversion specifers depend on the particular
LANGUAGE binary you are using.

For a general discussion of globalization and localization, refer to
HP BASIC 6.2 Porting and Globalization. For LANGUAGE specific details,

CALL • CYCLE C·113

C

c

CVT$

refer to Using LanguageX with HP BASIC, where LanguageX is your local
language.

C-114 CALL - CYCLE

CYCLE

CYCLE
See the OFF CYCLE and ON CYCLE statements.

C

CALL • CYCLE C·115

D
DATA - DVAL$

D

DATA· DVAL$ D·1

D

DATA
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
No
Yes
No

This statement contains data which can be read by READ statements. (For
information about DATA as a secondary keyword, see the SEND statement.)

Item

numerlc
constant

literal

Description

numeric quantity expressed using
numerals, and optionally a sign, decimal
point, or exponent notation

string constant composed of characters
from the keyboard, including those
generated using the (ANY CHAR) key
(@ in the system menu of an ITF
keyboard)

D·2 DATA· DVALS

Range

Example Statements

DATA 1 t 1.414 t 1.732 t 2
DATA vord1 t vord2 t vord3
DATA "ex-point (!)" t "quote("")" t "comma(t)"

Semantics

DATA

A program or subprogram may contain any number of DATA statements at
any locations. When a program is run, the first item in the lowest numbered
DATA statement is read by the first READ statement encountered. When a
subprogram is called, the location of the next item to be read in the calling D
context is remembered in anticipation of returning from the subprogram.
Within the subprogram, the first item read is the first item in the lowest
numbered DATA statement within the subprogram. When program execution
returns to the calling context, the READ operations pick up where they left off
in the DATA items.

A numeric constant must be read into a variable which can store the value it
represents. The computer cannot determine the intent of the programmer;
although attempting to read a string value into a numeric variable will
generate an error, numeric constants will be read into string variables with
no complaint. In fact, the computer considers the contents of all DATA
statements to be literals, and processes items to be read into numeric variables
with a VAL function, which can result in error 32 if the numeric data is not of
the proper form (see VAL).

Unquoted literals may not contain quote marks (which delimit strings),
commas (which delimit data items), or exclamation marks (which indicate
the start of a comment). Leading and trailing blanks are deleted from
unquoted literals. Enclosing a literal in quote marks enables you to include any
punctuation you wish, including quote marks, which are represented by a set of
two quote marks.

DATA - DVAL$ D-3

o

DATE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
CLOCK
Yes
Yes
Yes

This function converts the formatted date (DD MMM YYYY) into a numeric
value used to set the clock.

~ formatted date ~

literal form of formatted dote

Item Description

formatted date string expression

day integer constant

month literal (lettercase ignored)

year integer constant

Example Statements

PRINT DATE("26 MAR 1982")
SET TIMEDATE DATE("l Jan 1983")

Range

(see drawing and text)

1 through end-of-month

JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC

1900 through 2079

Days=(DATE("l JAN 1983")-DATE("11 NOV 1982"» DIV 86400

0-4 DATA - OVALS

DATE

Semantics

U sing a value from the DATE function as the argument for SET TIMEDATE
will set the clock to midnight on the date specified. Results from the DATE
and TIME functions must be combined to set the date and time of day.

If the DATE function is used as an argument for SET TIMED ATE to set the
clock, the date must be in the range: 1 Mar 1900 thru 4 Aug 2079.

Specifying an invalid date, such as the thirty-first of February, will result in an
error.

Leading blanks or non-numeric characters are ignored. ASCII spaces are D
recommended as delimiters between the day, month and year. However, any
non-alphanumeric character, except the negative sign (-), may be used as the
delimiter.

DATA· DVALS D·5

o

DATE$
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
CLOCK
Yes
Yes
Yes

This function formats a number of seconds as a date CD D MMM YYYY).

Item Description
. .

numerIC expreSSIOn seconds

Example Statements

PRINT DATE$(TIKEDATE)
DISP DATE$(2.112520608E+ll)

Semantics

Range

-4.623 683 256 E+ 13 through
4.653 426 335 039 9 E+ 13

The date returned is in the form: DD MMM YYYY, where DD is the day of
the month, MMM is the month mnemonic, and YYYY is the year.

The day is blank filled to two character positions. Single ASCII spaces delimit
the day, month, and year.

The first letter of the month is capitalized and the rest are lowercase
characters.

Years less than the year 0 are expressed as negative years.

0-6 DATA - OVALS

DEALLOCATE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

DEALLOCATE

This statement deallocates memory space reserved by the ALLOCATE
statement.

DEALLOCATE

Item Description Range

variable name name of an array or string variable any valid name

Example Statements

DEALLOCATE A$,B$,C$
DEALLOCATE Array(*)

Semantics

Memory space reserved by ALLOCATE exists in the same section of memory
as that used by ON-event statements. Since entries in this area are "stacked"
as they come in, space for variables which have been DEALLOCATED may
not be available immediately. It will not be available until all the space "above
it" is freed. This includes variables allocated after it, as well as ON-event
entries. Exiting a subprogram automatically deallocates space for variables
which were allocated in that subprogram.

DATA· DVALS D· 7

D

D

DEALLOCATE

Strings and arrays must be deallocated completely. Deallocation of an array is
requested by the (*) specifier.

Attempting to DEALLOCATE a variable which is not currently allocated in
the current context results in an error. When DEALLOCATE is executed from
the keyboard, deallocation occurs within the current context.

D-8 DATA - DVAL$

DEFFN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
No
Yes
No

OEF FN

This statement indicates the beginning of a function subprogram. It also
indicates whether the function is string or numeric and defines the formal
parameter list.

(FNEND }+I

Note: A user-defined function
may contain any number of
RETURN statements.

DATA - OVALS 0-9

o

o

OEFFN

required
parameters

optional
parameters

0·10 DATA· OVALS

Item

function name

numerIC name

string name

I/O path name

program
segment

Description

name of the user-defined function

name of a numeric variable

name of a string variable

name assigned to a device, devices, or
mass storage file

any number of contiguous program lines
not containing the beginning or end of a
main program or subprogram

Example Statements

DEF FNTrim$(String$)
DEF FNComplex(COMPLEX Real_part)

Range

any valid name

any valid name

any valid name

DEF FN

any valid name (see
ASSIGN)

DEF FNTransform(GPrinter,INTEGER Array(*) ,OPTIONAL Text$)

Semantics

User-defined functions must appear after the main program. The first line of
the function must be a DEF FN statement. The last line must be an FNEND
statement. Comments after the FNEND are considered to be part of the
function.

Parameters to the left of the keyword OPTIONAL are required and must be
supplied whenever the user-defined function is invoked (see FN). Parameters
to the right of OPTIONAL are optional, and only need to be supplied if they
are needed for a specific operation. Optional parameters are associated from
left to right with any remaining pass parameters until the pass parameter list
is exhausted. An error is generated if the function tries to use an optional
parameter which did not have a value passed to it. The function NPAR can be
used to determine the number of parameters supplied by the function call.

Variables in a subprogram's formal parameter list may not be declared in
COM or other declaratory statements within the subprogram. A user-defined
function may not contain any SUB statements or DEF FN statements.
User-defined functions can be called recursively and may contain local

DATA - DVALS D-11

D

D

DEFFN

variables. A unique labeled COM must be used if the local variables are to
preserve their values between invocations of the user-defined function.

The RETURN <expression> statement is important in a user-defined function.
If the program actually encounters an FNEND during execution (which can
only happen if the RETURN is missing or misplaced), error 5 is generated.
The <expression> in the RETURN statement must be numeric for numeric
functions, and string for string functions. A string function is indicated by
the dollar sign suffix on the function name. RETURN <integer expression>
yields a real function result. RETURN <complex expression> yields a complex
function result.

The purpose of a user-defined function is to compute a single value. While it is
possible to alter variables passed by reference and variables in COM, this can
produce undesirable side effects, and should be avoided. If more than one value
needs to be passed back to the program, SUB subprograms should be used.

If you want to use a formal parameter as a BUFFER, it must be declared as a
BUFFER in both the formal parameter list and the calling context.

D-12 DATA - DVAL$

DEG
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This statement selects degrees as the unit of measure for expressing angles.

(DEG }+i

Semantics

All functions which return an angle will return an angle in degrees. All
operations with parameters representing angles will interpret the angle in
degrees.

DEG

A subprogram "inherits" the angle mode of the calling context. If the angle
mode is changed in a subprogram, the mode of the calling context is restored
when execution returns to the calling context. If no angle mode is specified in a
program, the default is radians (see RAD).

DATA· DVALS D·13

D

o

DEL
Supported On
Option Required
Keyboard Executable
Programmable

UX WS DOS IN
None
Yes
No

In an IF ... THEN ... No

This command deletes program line(s).

Item

beginning line
number

beginning line
label

ending line
number

ending line
label

Description

integer constant identifying a program
line

name of a program line

integer constant identifying a program
line

name of a program line

Example Statements

DEL 15
DEL Sort,9999

0-14 DATA - OVALS

Range

1 through 32 766

any valid name

1 through 32 766

any valid name

DEL

Semantics

DEL cannot be executed while a program is running. If DEL is executed while
a program is paused, the computer changes to the stopped state.

When a line is specified by a line label, the computer uses the lowest numbered
line which has the label. If the label does not exist, error 3 is generated. An
attempt to delete a non-existent program line is ignored when the line is
specified by a line number. An error results if the ending line number is less
then the beginning line number. If only one line is specified, only that line is
deleted.

When deleting SUB and FN subprograms, the range of lines specified must
include the statements delimiting the beginning and ending of the subprogram
(DEF FN and FNEND for user-defined function subprograms; SUB and
SUBEND for SUB subprograms), as well as all comments following the
delimiting statement for the end of the subprogram. Contiguous subprograms
may be deleted in one operation.

DATA - DVAL$ D·15

D

D

DELAY
See the ASSIGN, OFF DELAY, ON DELAY, PRINTALL IS, and PRINTER
IS statements.

D-16 DATA - DVALS

DELIM

DELIM
See the TRANSFER statement.

D

DATA· DVAL$ D-17

D

DELSUB
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

This statement deletes one or more SUB subprograms or user-defined function
subprograms from memory.

Item . Description

subprogram
name

name of a SUB or CSUB subprogram

function name name of a user-defined function

Example Statements

DELSUB FNTrim$
DELSUB Speciall,Specia13

D-18 DATA - DVAL$

Range

any valid name

any valid name

DELSUB

Semantics

Subprograms being deleted do not need to be contiguous in memory. The order
of the names in the deletion list does not have to agree with the order of the
subprograms in memory. If there are subprograms with the same name, the
one occurring first (lowest line number) is deleted.

The lines deleted begin with the line delimiting the beginning of the
subprogram (SUB or DEF FN) and include the comments following the line
delimiting the end of the subprogram (SUBEND or FNEND). If TO END is
included, all subprograms following the specified subprogram are also deleted,
from the last subprogram to the specified subprogram. D

You cannot delete:

• Busy subprograms (ones being executed) .

• Subprograms which are referenced by active ON-event CALL statements.

If an error occurs while attempting to delete a subprogram with a DELSUB
statement, the subprogram is not deleted, and neither are subprograms listed
to the right of the subprogram which could not be deleted.

DATA • DVAL$ D·19

D

DESTROY WINDOW
Supported on
Option Required
Keyboard executable
Programmable
In an IF . .. THEN ...

UX WS*
RMBUX
Yes
Yes
Yes

This statement deletes a window and removes its contents from the display.

(DESTROY WINDOW >-1 window numbe~

Item Description Range

window number numeric expression, rounded to integer 601 through 699

Example Statements

DESTROY WINDOW 604
DESTROY WINDOW Fred

Semantics

This statement is only valid when running under X Windows. When not in X
Windows, this statement will cause an error. It deletes the window specified by
the window number. The specified window can only be a window created with
the CREATE WINDOW statement. Thus the root BASIC window (number
600) can not be deleted.

When a window is deleted, the contents of any windows it overlays are exposed.

D-20 DATA· DVALS

DET

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
MAT
Yes
Yes
Yes

This function returns the determinant of a matrix.

Item Description

matrix name name of a square, two-dimensional
numeric array; Default = (see text)

Example Statements

Determinant=DET
PRINT DET(A)

Semantics

DET

Range

any valid name

If you do not specify a matrix, D ET returns the determinant of the most
recently inverted matrix. This value is not affected by context switching. If no
matrix has been inverted since power-on, pre-run, SCRATCH or SCRATCH A,
o is returned.

The determinant is significant as an indication of whether an inverse is valid.
If the determinant of a matrix equals 0, then the matrix has no inverse. If the
determinant is very small compared with the elements of its matrix, then the
inverse may be invalid and should be checked.

DATA - DVALS D-21

D

D

DET

If the matrix is COMPLEX, the value returned is COMPLEX. Otherwise, the
value returned is REAL.

D-22 DATA - DVALS

DICTIONARY IS

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

WS
INPUT
Yes
Yes
Yes

DICTIONARY IS

This statement specifies which files contain the language dictionaries used by
certain versions of localized BASIC.

(DICnONARY IS >1 Sp!~7fier~
literal form of file specifier:

HFS or SRM files only

Item Description

type string expression

Example Statements

DICTIONARY IS IJPN_SYSDCTltISYSTEM"
DICTIONARY IS IJPN_USRDCTltIUSER"
DICTIONARY IS ""t"USER"
DICTIONARY IS ""t"SYSTEM"

Range

depends on INPUT

using Japanese INPUT binary
using Japanese INPUT binary
closes Japanese USER dictionary
closes Japanese SYSTEM dictionary

DICTIONARY IS "DCT_*" t "USER" using Japanese INPUT binary

DATA· DVAL$ D-23

D

DICTIONARY IS

Semantics

Certain localized versions of BASIC, such as Japanese localized BASIC, use
input methods that allow keyboard input translation. The translations are
carried out by the INPUT binary according to the definitions in dictionary
files. Before a word or phrase can be translated, the dictionaries must be
specified using DICTIONARY IS.

For a general discussion of globalization and localization, refer to the
HP BASIC 6.2 Porting and Globalization manual. For INPUT specific details,
refer to Using LanguageX with HP BASIC, where LanguageX is your local

o language.

If you are using a version of BASIC that supports wildcards, you can use
them in file specifiers with DICTIONARY IS. You must first enable wildcard
recognition using WILDCARDS. Refer to the keyword entry for WILDCARDS
for details. Wildcard file specifiers used with DICTIONARY IS must match
one and only one file name.

If the file specifer does not include a complete path or volume specifier, the
current MASS STORAGE IS volume and path are used.

0-24 DATA· OVALS

DIGITIZE
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPHX
Yes
Yes
Yes

DIGITIZE

This statement inputs the X and Y coordinates of a digitized point from the
locator specified by GRAPHICS INPUT IS.

Item

x coordinate

y coordinate
name

string name

Description

name name of a numeric variable

name of a numeric variable

name of a string variable

Example Statements

DIGITIZE XtY
IF Flag THEN DIGITIZE XPOStYpostStatus$

Semantics

Range

any valid name

any valid name string

any valid name string

The returned coordinates are in the unit-of-measure currently defined for the
PLOTTER IS and GRAPHICS INPUT IS devices. The unit-of-measure may
be default units or those defined by either the WINDOW or SHOW statement.
If an INTEGER numeric variable is specified and the value entered is out of
range, error 20 is reported.

DATA - DVALS D-25

D

DIGITIZE

If graphics input is from the keyboard, DIGITIZE is satisfied by pressing any
of the following keys:

(Return), (Enter), (ENTER), (EXECUTE), (PAUSE), (STEP), (CONTINUE), (ENTER), (EXEC),

(PSE), (STEP), and (caNT).

Note that if ON KBD is in effect while executing DIGITIZE when the
keyboard or mouse or knob is the GRAPHICS INPUT IS device, the keys
listed above will not be placed into KBD$. Once the DIGITIZE is complete,
these keys will be placed into KBD$.

The optional string variable is used to input the device status of the
D GRAPHICS INPUT IS device. This status string contains eight bytes, defined

as follows.

Byte

Meaning

Byte 1

1 2 3 4 5 6 7 I 8

Digitize , Point , Tracking , Button Number
Status Significance On/Off

Digitize status; If the locator device supports only single
point digitizing, this byte is always a "1". If the locator
device supports continuous digitizing, this byte is a "1" for all
points in a stream of continuous points except the last point,
which will be returned with a "0". The method of indicating
the beginning and ending of a continuous point stream is
device dependent. If the numeric value represented by this
byte is used as the pen control value for a PLOT statement,
continuous digitizing will be copied to the display device.

Bytes 2, 4, & 6 Commas; used as delimiters.

Bytes 3 Significance of digitized point; "0" indicates that the point

Byte 5

is outside the P1, P2 limits; "1" indicates that the point
is outside the viewport, but inside the P1, P2 limits; "2"
indicates that the point is inside the current viewport limits.

Tracking status; "0" indicates off, "1" indicates on.

D-26 DATA - DVAL$

DIGITIZE

Byte 7 and 8 The number of the buttons which are currently down. To
interpret the ASCII number returned, change the nUlnber
to its binary form and look at each bit. If the bit is "1",
the corresponding button is down. If the bit is "0", the
corresponding button is not down.

If the locator device (e.g., stylus or puck) goes out of
proximity, a "button 7" is indicated in the "button number"
bytes. Bytes 7 and 8 will be exactly "64" regardless of whether
any actual buttons are being held down at the time. Proximity
is reported only from HP-HIL locators; the HP 9111A always
returns "00" in bytes 7 and 8. On a 35723A TouchScreen, 0
going out of proximity (i.e., removing your finger from the
screen) will trigger a digitize. Coming into proximity on a
tablet with a button pressed will also trigger a digitize, even if
the button was originally pressed while in proximity.

BASIC/UX Specifics

When running in X Windows:

• Only the HP-HIL devices recognized by the window system (Le. those which
control the window pointer can be used for graphics input.

• All HP-HIL devices (including tablets) can be accessed only through the
KBD or ARROW KEYS digitizer specifier. TABLET is not a valid specifier
in X Windows.

• Any HP-GL devices specified in a GRAPHICS INPUT IS will be locked to
that window while DIGITIZE is being executed.

When running on a terminal:

• Only arrow keys can be used to provide input through the KBD select code.

DATA - DVAL$ 0·27

D

DIM
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN *
None
No
Yes
No

This statement dimensions and reserves memory for REAL numeric arrays,
strings and string arrays.

D-28 DATA - DVALS

Item Description

numeric array name of a numeric array
name

string name name of a string variable

lower bound integer constant; Default = OPTION
BASE value (0 or 1)

upper bound integer constant

string length integer constant

Example Statements

DIM String$[100],Hame$(12)[32]
DIM Array(-128:127,16)

DIM

Range

any valid name

any valid name

-32 767 through + 32 767
(see "array" in Glossary)

-32 767 through +32 767
(see "array" in Glossary)

1 through 32 767

DIM String_scalar[256] BUFFER, Real_array(127) BUFFER

Semantics

A program can have any number of DIM statements. The same variable cannot
be declared twice within a program (variables declared in a subprogram are
distinct from those declared in a main program, except those declared in
COM). The DIM statements can appear anywhere within a program, as long
as they do not precede an OPTION BASE statement. Dimensioning occurs at
pre-run or subprogram entry time. Dynamic run time allocation of memory is
provided by the ALLOCATE statement.

No array can have more than six dimensions. Each dimension can have a
maximum of 32 767 elements.

The total number of variables is limited by the fact that the maximum memory
usage for all variables-COMPLEX, INTEGER, REAL, and string-within
any context is 224_1, or 16 777 215, bytes (or limited by the amount of
available memory, whichever is less).

DATA· OVALS 0·29

o

D

DIM

All numeric arrays declared in a DIM statement are REAL, and each element
of type REAL requires 8 bytes of storage. A string requires one byte of storage
per character, plus two bytes of overhead.

An undeclared array is given as many dimensions as it has subscripts in its
lowest-numbered occurrence. Each dimension of an undeclared array has an
upper bound of ten. Space for these elements is reserved whether you use them
or not. Any time a lower bound is not specified, it defaults to the OPTION
BASE value.

Declaring Buffers

To declare variables to be buffers, each variable's name must be followed by a
keyword BUFFER; the designation BUFFER applies only to the variable which
it follows.

String arrays cannot be declared to be buffers.

D-30 DATA - DVAL$

DISABLE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

DISABLE

This statement disables all event-initiated branches currently defined, except
ON END, ON ERROR, and ON TIMEOUT.

(DISABLE)-.i

Sematics

If an event occurs while the event-initiated branches are disabled, only the first
occurrence of each event is logged; there is no record of how many of each type
of event has occurred.

If event-initiated branches are enabled after being disabled, all logged events
will initiate their respective branches if and when system priority permits.
ON ERROR, ON END, and ON TIMEOUT branches are not disabled by
DISABLE.

DATA - DVAL$ 0-31

o

o

DISABLE EXT SIGNAL

Supported on
Option Required
Keyboard executable
Programmable
In an IF . .. THEN ...

UX wS*
nla
Yes
Yes
Yes

This statement disables system generated signals by causing them to be
ignored by BASIC.

(DISABLE EXT SIGNAL >1 si9nal number ~

Item Description Range

signal number numeric expression, rounded to integer 1 through 32 (see ON
EXT SIGNAL)

Example Statements

DISABLE SIGNAL 4
DISABLE SIGNAL Sigsys

Semantics

This statement causes the specified EXT SIGNAL to be ignored by BASIC.
This does not allow an ON EXT SIGNAL to trigger, nor does it allow the
default action to take place. Also, it does not cause the EXT SIGNAL action
(default or user specified) to change.

Only supported system signals may be specified. See ON EXT SIGNAL for a
list of valid signal numbers.

0-32 DATA - OVALS

DISABLE INTR

Supported On
Option Required
Keyboard Executable
Programmable
In an IF. . .. THEN ...

UX WS DOS IN
10
Yes
Yes
Yes

DISABLE INTR

This statement disables interrupts from an interface by turning off the
interrupt generating mechanism on the interface.

(0 ~AO ")....I interface ~
I.;;JI"\gLE INTR 1 - ,select COde., . •

Example Statements

DISABLE INTR 7
DISABLE INTR Isc

DATA· DVAL$ 0-33

o

D

DISP

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This statement causes the display items to be sent to the display line on the
CRT.

D-34 DATA - DVAL$

OISP

imoge

o

disploy items

troili"9 punctuation
not ollawd with USING

tOb function not ollowed with USING

literol form of imo~ spe<:ifier

DATA - OVALS 0-35

OISP

Im(l~e specifier list

o

0-36 DATA - OVALS

Radix specif'oer connot
be u~ without 0

di9lt specifier

OISP

Item Description Range

image line label name identifying an IMAGE statement any valid name

image line integer constant identifying an IMAGE 1 through 32 766
number statement

image specifier string expression (see diagram)

string array name of a string array any valid name
name

numeric array name of a numeric array any valid name
name

column numeric expression, rounded to an 1 through screenwidth
integer

image specifier literal (see diagram)
list

repeat factor integer constant 1 through 32 767

literal string constant composed of characters quote mark not allowed
entered from the keyboard, including
those generated using the (ANY CHAR)

key

Example Statements

DISP Prompt$;
DISP TAB(5).First.TAB(20).Second
DISP USING "5Z.DD";Money

Semantics

DATA· OVALS 0·37

o

D

DISP

Standard Numeric Format

The standard numeric format depends on the value of the number being
displayed. If the absolute value of the number is greater than or equal to 1E-4
and less than 1E+6, it is rounded to 12 digits and displayed in floating point
notation. If it is not within these limits, it is displayed in scientific notation.
The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

COMPLEX numbers are treated like two REAL numbers separated by a
semicolon.

Automatic End-Of-Line Sequence

After the display list is exhausted, an End Of Line (EOL) sequence is sent to
the display line, unless it is suppressed by trailing punctuation or a pound-sign
image specifier.

Control Codes
Some ASCII control codes have a special effect in DISP statements:

Character Keystroke Name Action

CHR$(7) CTRL-G bell Sound the beeper

CHR$(8) CTRL-H backspace Move the cursor back
one character.

CHR$(12) CTRL-L form-feed Clear the display line.

CHR$(13) CTRL-M carriage-ret urn Move the cursor to
column 1. The next
character sent to the
display clears the
display line, unless it is
a carriage-return.

D-38 DATA - DVALS

OISP

CRT Enhancements

There are several character enhancements (such as inverse and underlining)
available on some CRTs. They are accessed through characters with decimal
values above 127. For a list of the characters and their effects, see the "Display
Enhancement Characters" table in "Useful Tables" at the back of this book.

Arrays

Entire arrays may be displayed using the asterisk specifier. Each element in an
array is treated as a separate item by the DISP statement, as if the items were
listed separately, separated by the punctuation following the array specifier. If 0
no punctation follows the array specifier, a comma is assumed. COMPLEX
array elements are treated as if the real and imaginary parts are separated by a
semicolon. The array is output in row major order (rightmost subscript varies
fastest).

Display Without USING

If DISP is used without USING, the punctuation following an item determines
the width of the item's display field; a semicolon selects the compact field, and
a comma selects the default display field. When the display item is an array
with the asterisk array specifier, each array element is considered a separate
display item. Any trailing punctation will suppress the automatic EOL
sequence, in addition to selecting the display field to be used for the display
item preceding it.

The compact field is slightly different for numeric and string items. Numeric
items are displayed with one trailing blank. String items are displayed with no
leading or trailing blanks.

The default display field displays items with trailing blanks to fill to the
beginning of the next 10-character field.

Numeric data is displayed with one leading blank if the number is positive, or
with a minus sign if the number is negative, whether in compact or default
field.

In the TAB function, a column parameter less than one is treated as one. A
column parameter greater than the screen width (in characters) is treated as
equal to the screen width.

DATA· OVALS 0-39

DISP

Display With USING

When the computer executes a DISP USING statement, it reads the image
specifier, acting on each field specifier (field specifiers are separated from each
other by commas) as it is encountered. If nothing is required from the display
items, the field specifier is acted upon without accessing the display list. When
the field specifer requires characters, it accesses the next item in the display
list, using the entire item. Each element in an array is considered a separate
item.

The processing of image specifiers stops when a specifier is encountered that
D has no matching display item (and the specifier requires a display specifier). If

the image specifiers are exhausted before the display items, they are reused,
starting at the beginning.

COMPLEX values require 2 REAL image specifiers (Le. each COMPLEX
value is treated like 2 REAL values).

If a numeric item requires more decimal places to the left of the decimal point
than are provided by the field specifier, an error is generated. A minus sign
takes a digit place if M or S is not used, and can generate unexpected overflows
of the image field. If the number contains more digits to the right of the
decimal point than specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost
characters are lost. If it is shorter than the specifer, trailing blanks are used to
fill out the field.

Effects of the image specifiers on the DISP statement are shown in the
following table:

D-40 DATA - DVALS

Image
Spec~er ~eaning

K Compact field. Displays a number or string in standard form with no
leading or trailing blanks.

-K Same as K.

DISP

H Similar to K, except the number is displayed using the European number
format (comma radix). (Requires 10)'

-H Same as H. (Requires 10)

S Displays the number's sign (+ or -).

M Displays the number's sign if negative, a blank if positive.

D Displays one digit character. A leading zero is replaced by a blank. If the
number is negative and no sign image is specified, the minus sign will occupy
a leading digit position. If a sign is displayed, it will "float" to the left of the
left-most digit.

Z Same as D, except that leading zeros are displayed.

* Same as Z, except that asterisks are displayed instead of leading zeros.
(Requires 10)

Displays a decimal-point radix indicator.

R Displays a comma radix indicator (European radix). (Requires 10)

E Displays an E, a sign, and a two-digit exponent.

ESZ Displays an E, a sign, ~nd a one-digit exponent.

ESZZ Same as E.

ESZZZ Displays an E, a sign, and a three-digit exponent.

A Displays a string character. Trailing blanks are output if the number
of characters specified is greater than the number available in the
corresponding string. If the image specifier is exhausted before the
corresponding string, the remaining characters are ignored. Use AA or 2A for
two-byte globalization characters.

DATA - DVALS D-41

D

DISP

wage
Specifier Meaning

X Displays a blank.

literal Displays the characters contained in the literal.

B Displays the character represented by one byte of data. This is similar to
the CHR$ function. The number is rounded to an INTEGER, and the
least-significant byte is sent. If the number is greater than 32 767, then 255
is used; if the number is less than -32 768, then 0 is used.

D W Displays two characters represented by the two bytes of a 16-bit,
two's-complement integer. The corresponding numeric item is rounded to an
INTEGER. If it is greater than 32 767, then 32 767 is used; if it is less than
-32 768, then -32 768 is used. The most-significant byte is sent first.

y Same as W. (Requires 10)

Suppresses the automatic output of an EOL (End-Of-Line) sequence
following the last display item.

% Ignored in DISP images.

+ Changes the automatic EOL sequence that normally follows the last display
item to a single carriage-return. (Requires 10)

- Changes the EOL automatic sequence that normally follows the last display
item to a single line-feed. (Requires 10)

/ Sends a carriage-return and a line-feed to the display line.

L Same as /.

@ Sends a form-feed to the display line.

D-42 DATA - DVALS

DISPLAY FUNCTIONS

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
CRTX
Yes
Yes
Yes

DISPLAY FUNCTIONS

This statement enables and disables the display functions mode. This mode
causes control characters sent to the CRT to be displayed.

Example Statements

DISPLAY FUNCTIONS ON
DISPLAY FUNCTIONS OFF
IF No_ctrl_char THEN DISPLAY FUNCTIONS OFF

Semantics

Except for the carriage-return character, all subsequent control characters sent
to the display (while in the display functions mode) do not invoke their defined
function, but are only displayed. The carriage-return is both displayed and
causes the print position to move to the beginning of the next line (both CR
and LF functions invoked).

Also available as CRT CONTROL register 4.

BASIC/UX Specifics

To enable and disable the display function mode while running BASIC/UX in
the XII Window environment, use CRT Control Register 4. For example, the
following command will allow you to turn on the display functions mode for
BASIC/UX window number 601:

CONTROL 601,4;1

DATA - DVAL$ D·43

D

D

DIV

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This operator returns the integer portion of the quotient of the dividend and
the divisor.

~dividend ~ divisor ~

Item Description

dividend numeric expression

divisor numeric expression

Example Statements

Quotient=Dividend DIV Divisor
PRINT "Hours =";Minutes DIV 60

Semantics

Range

not equal to 0

DIV returns a REAL value unless both arguments are INTEGER. In the latter
case the returned value is INTEGER. A DIV B is identical to SGN(A/B) X

INT(ABS(A/B)).

This operator is not defined for COMPLEX arguments.

See the discussion "Precision and Accuracy" in the section "Numeric
Computation" of the HP BASIC 6.2 Programming Guide for detailed
information on the effects of the computer's internal numeric representation.

D-44 DATA· DVALS

DOT

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS
MAT
Yes
Yes
Yes

DOT

This function returns the inner (dot) product of two numeric vectors.

Item Description

vector name name of a one-dimensional numeric
array

Example Statements

PRINT DOT(A,B)
B=DOT(A,A)

Semantics

Range

any valid name

The dot product is calculated by multiplying corresponding elements of the two
vectors and then summing the products. The two vectors must be the same
current size. If both vectors are INTEGER, the product will be an INTEGER.
If either vector is COMPLEX, the product will be COMPLEX. Otherwise, the
product will be of type REAL.

DATA· DVALS D-45

D

D

DRAW

Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
GRAPH
Yes
Yes
Yes

This statement draws a line from the pen's current position to the specified X
and Y coordinate position using the current line type and pen number.

S-1 x coordinate t-01 y coordinate ~

Item Description Range

x coordinate numeric expression, in current units

y coordinate numeric expression, in current units

Example Statements

DRAW 10,90
DRAW Rext_x,Rext_y

Semantics

The X and Y coordinate information is interpreted according to the current
unit-of-measure. DRAW is affected by the PIVOT statement.

A DRAW to the current position generates a point. DRAW updates the
logical pen position at the completion of the DRAW statement, and leaves the
pen down on an external plotter. The line is clipped at the current clipping
boundary.

If none of the line is inside the current clipping limits, the pen is not moved,
but the logical pen position is updated.

0-46 DATA· DVALS

DRAW

Applicable Graphics Transformations

Scaling PIVOT CSIZE LDIR PDIR

Lines (generated by moves and draws) X X [4]

Polygons and rectangles X X X

Characters (generated by LABEL) X X

Axes (generated by AXES and GRID) X

Location of labels [1] [3] [2]

IThe starting point for labels drawn after lines or axes is affected by scaling.
2The starting point for labels drawn after other labels is affected by LDIR.
3The starting point for labels drawn after lines or axes is affected by PIVOT.
4RPLOT and IPLOT are affected by PDIR.

DATA - OVALS 0-47

o

o

DROUND
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function rounds a numeric expression to the specified number of digits. If
the specified number of digits is greater than 15, no rounding takes place. If
the number of digits specified is less than 1, 0 is returned.

Item

argument

number of
digits

Description

numeric expression

numeric expression, rounded to an
integer

Example Statements

Test_real=DROUBD(True_real,12)
PRINT "Approx. Volts =";DROUBD(Volts,3)

Semantics

Range

COMPLEX numbers are not allowed as arguments to this function.

0-48 DATA· OVALS

DUMP

DUMP

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS
None
Yes
Yes
Yes

This statement copies the contents of the alphanumeric or graphics display to
the specified printing device.

source
device selector

GRAPH

destination
device selector

,

~----------------------------------~

Item

source device
selector

destination
device selector

Description

numeric expression, rounded to an
integer; Default = last CRT plotting
device

numeric expression, rounded to an
integer; Default = DUMP DEVICE IS
device

Example Statements

Range

(see Glossary)

external interfaces
and windows only (see
Glossary)

DUMP ALPHA
DUMP ALPHA #701
DUMP ALPHA 602
DUMP ALPHA 602 TO #604
DUMP GRAPHICS 602
DUMP ALPHA 1 TO #701

(BASIC/UX in X Windows only)
(BASIC/UX in X Windows only)
(BASIC/UX in X Windows only)
(BASIC/WS/UX only)

DATA· DVALS D·49

D

DUMP

Semantics

DUMP ALPHA copies the contents of the alphanumeric display to an output
device. With a bit-mapped alpha display, the alpha buffer is sent to the printer
as alphanumeric characters.

DUMP GRAPHICS copies the entire contents of the CRT or window, which
may contain bit-mapped alpha, to the current DUMP DEVICE IS device
(usually a printer). Performing DUMP GRAPHICS to a device which does
not support the HP Raster Interface Standard will produce unpredictable
results. The HP 2631G, HP 9876, and the ThinkJet printers are among devices

D that support this standard. Windows do not support this standard. (See the
Configuration Reference for a complete list of supported HP devices.)

If the destination device is not explicitly specified, it is assumed to be the
current DUMP DEVICE IS device.

If EXPANDED is specified in the DUMP DEVICE IS statement, the source
graphics image is doubled in both X and Y directions before being sent to
the destination device. However, if both source and destination devices are
explicitly specified, the image is sent without being expanded.

If a DUMP GRAPHICS operation is stopped by pressing the (Break) «(CLR I/O l)
key, the printer mayor may not terminate its graphics mode. Sending the
printer up to 192 null characters [CHR$(O)] can be used to terminate the
graphics mode on a printer such as the HP 9876.

If the source has multiple planes of graphics memory associated with a pixel,
an inclusive-OR is performed on all the bits corresponding to the pixel. This
determines whether to print it as black or white.

If a currently active CRT or window is explicitly specified as the source, the
CRT's contents are dumped to the printer. However, if the specified CRT has
not been "activated" (see following description), error 708 is reported.

Plotters are de-activated by power-up, GINIT, SCRATCH A, or (Reset). A
plotting device is activated when it is specified in a PLOTTER IS statement.
In addition, the internal CRT or window is also (implicitly) activated by any
of the following operations after de-activation: any pen movement; GCLEAR;
GLOAD (to the current default destination); GSTORE (from the current
default source); and DUMP GRAPHICS (from the current default source).

D-50 DATA - DVALS

DUMP

If a non-CRT source which is the current PLOTTER IS device is explicitly
specified, the DUMP GRAPHICS is not performed; however, if an non-CRT
source which is not the current PLOTTER IS device is explicitly specified,
error 708 is reported.

On multi-plane bit-mapped display devices, which use a graphics write-enable
mask, only the bits indicated by 1 's will be OR'ed together and dumped.

BASIC/UX Specifics

DUMP GRAPHICS from a window dumps the raster image, which includes
the displayed alpha text. DUMP ALPHA from a window dumps only the D
ASCII text contained in the window. There is no special case for non-square
pixels (Le. DUMP GRAPHICS with alpha on the display matches the image
on the CRT). DUMP GRAPHICS on a terminal is not performed. DUMP
GRAPHICS to a window is not permitted.

Both DUMP ALPHA and DUMP GRAPHICS are extended to support output
to unnamed pipes. DUMP ALPHA supports output only to windows.

Displays with Non-Square Pixels (BASIC Workstation Only)

For machines which have a display with non-square pixels (such as the HP
98542A and the HP 98543A), a non-expanded DUMP GRAPHICS will produce
an image that matches the CRT or window only if no alpha appears in the
graphics planes. Since most printers print square pixels, this routine treats
graphics pixel pairs as single elements and prints one square for each pixel
pair in the frame buffer. Because alpha works with individual pixels, and not
with pixel pairs, mixed alpha and graphics will appear blurred on a DUMP
GRAPHICS non-expanded output. Using the EXPANDED option causes the
vertical length (the height on the CRT or window) to be doubled as before, but
dumps each separate pixel. In this mode, mixed alpha and graphics will appear
the same on the dump as on the CRT or window.

Note Some printers are not capable of printing 1024 graphics dots
per line, so images dumped will be truncated to fit the printer.

DATA - DVALS D-51

D

DUMP DEVICE IS

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

This statement specifies which device, file, or pipe receives the data when either
DUMP ALPHA or DUMP GRAPHICS is executed without a device selector.

DUMP DEVICE IS

literal form of options:

L _____________________________________ ~

D·52 DATA· DVALS

Item Description

file specifier string expression

device selector numeric expression, rounded to an
integer; Default = 701

exchange string string expression

shift in string string expression

shift out string string expression

Example Statements

DUMP DEVICE IS 701
DUMP DEVICE IS 614

DUMP DEVICE IS "plot.out"
DUMP DEVICE IS "I conv IIp'', EXPANDED
DUMP DEVICE IS Printer,EXPANDED
DUMP DEVICE IS "prn_*"
DUMP DEVICE IS 721;APPEND
DUMP DEVICE IS 721;EXCHANGE "HP-16"
DUMP DEVICE IS 701;EXCHANGE "HP-16" SHIFf In$ OUT Out$

Semantics

DUMP DEVICE IS

Range

(See MASS STORAGE
IS)

external interfaces
or windows only (see
Glossary)

choices depend on
LANGUAGE

depends on printer used;
six bytes maximum

depends on printer used;
six bytes maximum

BASIC/UX in X Windows
only
BASIC/UX/WS only
BASIC/UX only

Doing a DUMP GRAPHICS to a printer which does not support the HP
Raster Interface Standard will produce unpredictable results. The HP 9876
and the HP 2631G are among the devices or files which support the standard.
(See the Configuration Reference for a complete list of supported HP devices or
files.)

DATA - DVAL$ D·53

D

DUMP DEVICE IS

Specifying EXPANDED results in graphics dumps that are twice as big on each
axis (except for displays with non-square pixels-see DUMP GRAPHICS for
details) and turned sideways. This gives four dots on the printer for each dot
on the display. The resulting picture does not fit on one page of an HP 9876 or
HP 2631 G printer.

DUMP DEVICE IS file

The file must be a BDAT or HP-UX file.

The DUMP DEVICE IS file statement positions the file pointer to the
D beginning of the file unless you specify the APPEND option. Thus, DUMP

DEVICE IS overwrites existing files unless you specify APPEND.

The file is closed when another DUMP DEVICE IS statement is executed and
at SCRATCH A.

You can read the file with ENTER if it is ASSIGNed with FORMAT ON.

An end-of-file error occurs when the end of a LIF file is reached.

If you are using a version of BASIC that supports wildcards, you can use
them in file specifiers with DUMP DEVICE IS. You must first enable wildcard
recognition using WILDCARDS. Refer to the keyword entry for WILDCARDS
for details. Wildcard file specifiers used with DUMP DEVICE IS must match
one and only one file name.

BASIC/UX Specifics

DUMP DEVICE IS supports output to windows or unnamed pipes.
BASIC/UX treats output to a pipe as it would output to a file. The pipe must
be explicitly closed before any output becomes permanent (or takes place).
Output to a spooled device will not be sent to the spooler until the pipe has
been closed. The closing of pipes can be achieved with a subsequent DUMP
DEVICE IS, QUIT, or SCRATCH A command.

For example:

DUMP DEVICE IS "lexpandlfoldl50rtlprllp -5"

No output takes place until another DUMP DEVICE IS statement is specified,
a SCRATCH A command is executed, or BASIC is exited.

D-54 DATA - DVALS

DUMP DEVICE IS

GRAPHICS data is in raw mode, therefore be sure to specify the "raw" mode
option when piping to the printer spooler, for example:

DUMP DEVICE IS "lIp -oraw"

otherwise the printer hangs. Also, it is advisable to use the -s option of Ip to
suppress any messages to stdout (standard output).

Using EXCHANGE and SHIFT IN . .. OUT (Requires LANGUAGE)

Some localized versions of BASIC, such as Japanese localized BASIC, support
two-byte characters. The secondary keyword EXCHANGE allows you to
automatically convert internal HP-15 character codes to the codes supported 0
by your two-byte printer. The available choices and default values for the
exchange string depend on the particular LANGUAGE localization binary
that you are using. EXCHANGE affects DUMP ALPHA only. If your specify
EXCHANGE without an exchange string, IHP-16" is assumed.

The secondary keywords SHIFT IN and OUT are useful with certain printers
that use special control strings to turn two-byte printing on and off. BASIC
automatically sends the specified shift in string before two-byte characters.
BASIC also sends the specified shift out string before one-byte characters that
follow two-byte characters.

Note SHIFT IN and SHIFT OUT cause Error 257 if used with
HP-15 characters. Use EXCHANGE to convert HP-15
characters to your LANGUAGE two-byte characters.

Also note that when the LANGUAGE binary is loaded, HP-16
Code Conversion is the default mode for the DUMP DEVICE
IS device.

For a general discussion of globalization and localization including printers,
refer to HP BASIC Programming Techniques, Volume 2: Porting and
Globalization. :For LANGUAGE specific details, refer to Using LanguageX with
HP BASIC, where LanguageX is your local language.

DATA - OVALS 0-55

o

OVAL
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function converts a binary, octal, decimal, or hexadecimal character string
into a REAL whole number.

Item Description Range

string argument string expression, 'containing digits valid (see tables)
for the specified base

radix numeric expression, rounded to an
integer

Example Statements

Address=DVAL("FF590004",16)
Real=DVAL("01010101010101010101010101010101",2)
Number=DVAL(Octal$,8)

Semantics

2, 8, 10, or 16

The radix is a numeric expression that will be rounded to an integer and must
evaluate to 2, 8, 10, or 16.

The string expression must contain only the characters allowed for the
particular number base indicated by the radix. Only one-byte ASCII characters
can be used as digits. ASCII spaces are not allowed.

0-56 DATA - OVALS

DVAL

Binary strings are presumed to be in two's-complement form. If all 32 digits
are specified and the leading digit is a 1, the returned value is negative.

Octal strings are presumed to be in the octal representation of two's
complement form. If all 11 digits are specified, and the leading digit is a 2 or a
3, the returned value is negative.

Decimal strings containing a leading minus sign will return a negative value.

Hex strings are presumed to be in the hex representation of the two's
complement binary form. The letters A through F may be specified in either
uppercase or lowercase letters. If all 8 digits are specified and the leading digit
is 8 through F, the returned value is negative. D

Radix Base String Range String Length

2 binary o through 1 to 32
11111111111111111111111111111111 characters

8 octal o through 37777777777 1 to 11
characters

10 decimal -2 147483 648 through 2 147483 647 1 to 11
characters

16 hexadecimal o through FFFFFFFF 1 to 8
characters

DATA· DVALS D·57

o

OVAL

Radix Legal Characters Conunents

2 +,0,1 -

8 +,0,1,2,3,4,5,6,7 Range restricts the leading
character. Sign, if used, must be
a leading character.

10 +,--,0,1,2,3,4,5,6,7,8,9 Sign, if used, must be a leading
character.

16 +,0,1,2,3,4,5,6,7,8,9, A/a = 10, B/b = 11, C/c = 12,
A,B,C,D,E,F,a,b,c,d,e,f D/d = 13, E/e = 14, F/f= 15

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. DVAL does not allow two-byte characters. The
string digits to be converted must be one-byte ASCII characters. For more
information about two-byte characters, refer to the globalization chapters of
HP BASIC 6.2 Porting and Globalization.

0-58 DATA· OVALS

OVALS
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function converts a whole number into a binary, octal, decimal, or
hexadecimal string.

Item Description Range

OVALS

"32-hit"
argument

numeric expression, rounded to an
integer

_231 through 231 -1

radix numeric expression, rounded to an
integer

Example Statements

F$=DVAL$(-l,16)
Binary$=DVAL$(Count DIV 256,2)

Semantics

2, 8, 10, or 16

The rounded argument must be a value that can be expressed (in binary) using
32 bits or less. The string digits returned are one-byte ASCII characters.

The radix must evaluate to be 2, 8, 10, or 16-representing binary, octal,
decimal, or hexadecimal notation, respectively.

If the radix is 2, the returned string is in two's-complement form and contains
32 characters. If the numeric expression is negative, the leading digit will be 1.
If the value is zero or positive, there will be leading zeros.

DATA - OVALS 0-59

o

o

OVALS

If the radix is 8, the returned string is the octal representation of the
two's-complement binary form and contains 11 digits. Negative values return a
leading digit of 2 or 3.

If the radix is 10, the returned string contains 11 characters. Leading zeros are
added to the string if necessary. Negative values have a leading minus sign.

If the radix is 16, the returned string is the hexadecimal representation of the
two's-complement binary form and contains 8 characters. Negative values
return with the leading digit in the range 8 thru F.

Radix Base Range of Returned String String Length

2 binary 00000000000000000000000000000000 32 characters
through
11111111111111111111111111111111

8 octal 00000000000 through 37777777777 11 characters

10 decimal - 2 147 483 648 through 11 characters
2 147483 647

16 hexadecimal 00000000 through FFFFFFFF 8 characters

0-60 DATA - OVALS

E
ECHO - EXPANDED

E

ECHO - EXPANDED E-1

ECHO
See the SET ECHO statement.

E

E-2 ECHO - EXPANDED

EDGE

EDGE
See the IPLOT, PLOT, POLYGON, RECTANGLE, RPLOT, and SYMBOL
statements.

ECHO· EXPANDED E-3

E

E

EDIT

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN *
EDIT
Yes
No
No

This command allows you to enter or edit either a program or typing-aid key
definitions.

Item Description

line number integer constant identifying program
line; Default (see Semantics)

line label name of a program line

increment integer constant; Default = 10

key number integer constant

Example Statements

EDIT
EDIT 1000,5
EDIT KEY 4

E·4 ECHO· EXPANDED

Range

1 through 32 766

any valid name

1 through 32 766

o through 23

EDIT

Semantics

The EDIT command allows you to scroll through a program in the computer
by using the arrow keys, (Prev), (Next), or the knob. Lines may be added to the
end of a program by going to the bottom of the program. A new line number
will be provided automatically. Lines may be added between existing program
lines by using the insert line key, and lines may be deleted by using the delete
line key. Lines may be modified by typing the desired characters over the
existing line, using the insert character and delete character keys as necessary.
(ENTER), (EXECUTE) or ('RetU;ii) are used to store the newly created or modified
lines.

Edit mode is exited by pressing (CONTINUE), (CLR SCR), (Clear display), (PAUSE),

@!i), (RESET), (RUN), or (STEP) or by executing CAT, LIST (if PRINTER IS
CRT), GET, or LOAD. In general any PRINT to the CRT (e.g., executing
DISP) will exit you from the EDIT mode. If the program was changed while
paused, pressing (CONTINUE) will generate an error, since modifying a program
moves it to the stopped state.

EDIT Without Parameters

If no program is currently in the computer, the edit mode is entered at line 10,
and the line numbers are incremented by 10 as each new line is stored. If a
program is in the computer, the line at which the editor enters the program is
dependent upon recent history. If an error has paused program execution, the
editor enters the program at the line flagged by the error message. Otherwise,
the editor enters the program at the line most recently edited (or the beginning
of the program after a LOAD operation).

EDIT With Parameters

If no program is in the computer, a line number (not a label) must be used
to specify the beginning line for the program. The increment will determine
the interval between line numbers. If a program is in the computer, any
increment provided is not used until lines are added to the program. If the
line specified is between two existing lines, the lowest-numbered line greater
than the specified line is used. If a line label is used to specify a line, the
lowest-numbered line with that label is used. If the label cannot be found, an
error is generated.

ECHO - EXPANDED E-5

E

E

EDIT

EDIT KEY (Requires KBD, but does not require EDIT)

To enter the EDIT KEY mode, type EDIT KEY, followed by the key number,
and press (EXECUTE), (ENTER), or (R'ettjT). Also, the desired soft key can be
pressed after typing or pressing EDIT. When EDIT KEY mode is entered,
the current key definition (if any) is displayed. You then edit the contents as
if it were any other keyboard line. Non-ASCII keys may be included in the
key definition by holding (CTRL) while pressing the desired key. Non-ASCII
keystrokes are represented by an inverse-video "K" followed by another
character associated with the key. The table Second Byte of Non-ASCII Key
Sequences in the "Useful Tables" section of this manual has a list of the
characters associated with the special keys.

Note On the HP 98203A keyboard, many non-ASCII keys cannot
be accessed by the method of holding (CTRL) while pressing
the desired key. However, any of the non-ASCII keys can be
entered into a soft key definition by pressing [ANY CHAR) 255,
followed by the character associated with that non-ASCII key.

To accept the modified key definition, press (ENTER) or (R'ettjT); to abort without
changing the current definition, press (PAUSE), (CLR SCR) or [Clear display).

When a program is waiting for a response to an INPUT, LINPUT or ENTER,
the typing aid definitions (defined with EDIT KEY) are in effect. When
a program is running but not waiting for user input, the active ON KEY
definitions supersede the typing aid definitions. Soft keys without ON KEY
definitions retain their typing-aid function.

E-6 ECHO - EXPANDED

ELSE

ELSE
See the IF ... THEN statement.

E

ECHO· EXPANDED E·7

E

ENABLE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This statement re-enables all event-initiated branches which were suspended by
DISABLE. ON END, ON ERROR, and ON TIMEOUT are not affected by
ENABLE and DISABLE.

(ENABLE)-.i

E·8 ECHO· EXPANDED

ENABLE EXT SIGNAL

Supported On
Option Required
Keyboard executable
Programmable
In an IF ... THEN ...

UX WS· DOS·
RMBUX
Yes
Yes
Yes

ENABLE EXT SIGNAL

This statement enables the specified system generated signal which can cause
end-of-statement branches or default actions.

(ENABLE EXT SIGNAL.)-1 signal number ~

Item Description

signal number numeric expression, rounded to
integer

Example Statements

ENABLE SIGNAL 4
ENABLE SIGNAL Sigsys

Semantics

Range

1 through 32
(see ON EXT SIGNAL)

EXT SIGNALS default to enabled, and thus this statement is only needed if a
DISABLE EXT SIGNAL statement has been executed. Note that the default
action will take place unless an ON EXT SIGNAL statement is executed (see
ON EXT SIGNAL).

Only supported system signals may be specified. See ON EXT SIGNAL for a
list of valid signal numbers.

ECHO - EXPANDED E·g

E

E

ENABLEINTR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
10
Yes
Yes
Yes

This statement enables the specified interface to generate an interrupt which
can cause end-of-statement branches.

ENABLE INTR

Item Description

interface select numeric expression, rounded to an
code integer

bit mask numeric expression, rounded to an
integer

Example Statements

ENABLE INTR 7
ENABLE INTR Isc;Mask

Semantics

Range

5, and 7 through 31

-32 768 through +32 767

If a bit mask is specified, its value is stored in the interface's interrupt-enable
register. Consult the documentation provided with each interface for the
correct interpretation of its bit mask values.

If no bit mask is specified, the previous bit mask for the select code is restored.
A bit mask of all zeros is used when there is no previous bit mask.

E·10 ECHO· EXPANDED

END
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
No
Yes
No

END

This statement marks the end of the main program. (For information about
END as a secondary keyword, see the OUTPUT and SEND statements.)

Semantics

END must be the last statement (other than comments) of a main program.
Only one END statement is allowed in a program. (Program execution may
also be terminated with a STOP statement, and multiple STOP statements
are allowed.) END terminates program execution, stops any event-initiated
branches, and clears any un serviced event-initiated branches. CONTINUE is
not allowed after an END statement.

Subroutines used by the main program must occur prior to the END
statement. Subprograms and user-defined functions must occur after the END
statement.

ECHO - EXPANDED E·11

E

END IF
See the IF . .. THEN statement.

E

E-12 ECHO - EXPANDED

END LOOP

END LOOP
See the LOOP statement.

E

ECHO· EXPANDED E·13

END SELECT
See the SELECT ... CASE construct.

E

E·14 ECHO· EXPANDED

END WHILE

END WHILE
See the WHILE statement.

E

ECHO· EXPANDED E·15

E

ENTER

Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN*
None
Yes
Yes
Yes

This statement is used to input data from a device, file, string, buffer, window
or pipe, and assign the values entered to variables.

E·16 ECHO· EXPANDED

Expanded diagram:

enter
items

source

literal farm of image specifier

ENTER

image ihms

E

ECHO· EXPANDED E·17

ENTER

Item Description Range
110 path name name assigned to a device, devices, any valid name (see

mass storage file, or buffer ASSIGN)
record number numeric expression, rounded to an 1 through 231 _1

integer
device selector numeric expression, rounded to an (see Glossary)

integer
source string name of a string variable any valid name
name
subscript numeric expression, rounded to an -32 767 through +32 767

integer (see "array" in Glossary)
image line integer constant identifying an 1 through 32 766
number IMAG E statement
image line label name identifying an IMAGE any valid name

statement
E image specifier string expression (see drawing)

numerIC name name of a numeric variable any valid name
string name name of a string variable any valid name
beginning numeric expression, rounded to an 1 through 32 767 (see
position integer "substring" in Glossary)
ending position numeric expression, rounded to an o through 32 767 (see

integer "substring" in Glossary)
substring numeric expression, rounded to an o through 32 767 (see
length integer "su bstring" in Glossary)
image specifier literal (see next drawing)
list
repeat factor integer constant 1 through 32 767
literal string constant composed of quote mark not allowed

characters from the keyboard,
including those generated using the
ANY CHAR key

E·18 ECHO· EXPANDED

Im(J~oI! ~ltIoI!r llet

Radix specifoer c(lnnot
boe u:soed without (I

di~lt ~ltloI!r

ENTER

ECHO· EXPANDED E·19

E

ENTER

Example Statements
ENTER 705;Number,String$
ENTER GFile;Array(*)
ENTER GSource USING Fmt5;Item(l),Item(2),Item(3)
ENTER 12 USING "#,6A";A$[2;6]

Semantics

The Number Builder

If the data being received is ASCII and the associated variable is numeric,
a number builder is used to create a numeric quantity from the ASCII
representation. The number builder ignores all leading non-numeric characters,
ignores all blanks, and terminates on the first non-numeric character, or the
first character received with EOI true. (Numeric characters are 0 through

E 9, +, -, decimal point, e, and E, in a meaningful numeric order.) If the
number cannot be converted to the type of the associated variable, an error is
generated. If more digits are received than can be stored in a variable of type
REAL or COMPLEX, the rightmost digits are lost, but any exponent will be
built correctly. Overflow occurs only if the exponent overflows. COMPLEX
numbers are treated like two real numbers, the first representing the real part
and the second representing the imaginary part. When an ENTER statement
contains a COMPLEX variable, that variable is satisfied with two REAL
values.

Arrays

Entire arrays may be entered by using the asterisk specifier. Each element in
an array is treated as an item by the ENTER statement, as if the elements
were listed separately. The array is filled in row major order (rightmost
subscript varies fastest). COMPLEX arrays are treated as if they were REAL
arrays with twice as many elements (i.e. instead of an n element array you
have a 2xn element array).

E-20 ECHO - EXPANDED

ENTER

Files as Source

If an I/O path has been assigned to a file, the file may be read with ENTER
statements. The file must be an ASCII, BDAT, DFS, or HP-UX file. The
attributes specified in the ASSIGN statement are used only if the file is a
BDAT, DFS, or HP-UX file. Data read from an ASCII file is always in ASCII
format (i.e., you cannot use ENTER .. USING); however, you can enter the
data into a string variable, and then use ENTER .. USIN G from the string
variable. Data read from a BDAT or HP-UX file is considered to be in internal
representation with FORMAT OFF, and is read as ASCII characters with
FORMAT ON.

Serial access is available for ASCII, BDAT, DFS, and HP-UX :files. Random
access is available for BDAT and HP-UX files. The file pointer is important to
both serial and random access. The file pointer is set to the beginning of the
file when the file is opened by an ASSIGN. The file pointer always points to the
next byte available for ENTER operations.

Random access uses the record number parameter to read items from a specific
location in a file. The record specified must be before the end-of-file pointer.
The ENTER begins at the beginning of the specified record.

It is recommended that random and serial access to the same file not be mixed.
Also, data should be entered into variables of the same type as those used to
output it (e.g. string for string, REAL for REAL, etc.).

In order to ENTER from a file on a DFS, or an HFS volume, you need to
have R (read) permission on the file, as well as X (search) permission on the
immediately superior directory and all other superior directories.

In order to read a file in an SRM directory, you need to have READ capability
on the immediately superior directory, as well as READ capabilities on all
other superior directories. If this capability is not public or if a password
protecting this capability was not used at the time the file was assigned an I/O
path name (with ASSIGN), an error is reported.

ECHO - EXPANDED E-21

E

E

ENTER

Devices as Source

An 110 path name or a device selector may be used to ENTER from a
device. If a device selector is used, the default system attributes are used (see
ASSIGN). If an I/O path name is used, the ASSIGN statement determines the
attributes used. If multiple devices were specified in the ASSIGN, the ENTER
sets the first device to be talker, and the rest to be listeners.

If FORMAT ON is the current attribute, the items are read as ASCII. If
FORMAT OFF is the current attribute, items are read from the device in the
computer's internal format. Two bytes are read for each INTEGER, eight
bytes for each REAL, and sixteen bytes for each COMPLEX value. Each
string entered consists of a four byte header containing the length of the string,
followed by the actual string characters. The string must contain an even
number of characters; if the length is odd, an extra byte is entered to give
alignment on the word boundary.

CRT as Source

If the device selector is 1, the ENTER is from the CRT. The ENTER reads
characters from the CRT, beginning at the current print position (print
position may be modified by using TABXY in a PRINT statement.) The
print position is updated as the ENTER progresses. After the last non-blank
character in each line, a line-feed is sent with a simulated "EOI". After the
last line is read, the print position is off the screen. If the print position is off
screen when an ENTER is started, the off-screen text is first scrolled into the
last line of the display.

Keyboard as Source

ENTER from device selector 2 may be used to read the keyboard. An entry
can be terminated by pressing (ENTER), (EXECUTE), ('Rei'U!i1), (CONTINUE], or (STEP].

Using (ENTER), (EXECUTE], (Return) or (STEP) causes a CR/LF to be appended to
the entry. The (CONTINUE) key adds no characters to the entry and does not
terminate the ENTER statement. If an ENTER is stepped into, it is stepped
out of, even if the (CONTINUE) key is pressed. An HP-IB EOI may be simulated
by pressing (CTRL] CD before the character to be sent, if this feature has been
enabled by an appropriate CONTROL statement to the keyboard (see the
Control and Status Registers in the back of this book).

E-22 ECHO - EXPANDED

ENTER

Strings as Source

If a string name is used as the source, the string is treated similarly to a file.
However, there is no file pointer; each ENTER begins at the beginning of the
string, and reads serially within the string.

Buffers as Source (Requires TRANS)

When entering from an I/O path assigned to a buffer, data is removed from the
buffer beginning at the location indicated by the buffer's empty pointer. As
data is received, the current number-of-bytes register and empty pointer are
adjusted accordingly. Encountering the fill pointer (buffer empty) produces
an error unless a continuous inbound TRANSFER is filling the buffer. In this
case, the ENTER will wait until more data is placed in the buffer.

Since devices are logically bound to buffers, an ENTER statement cannot
intercept data while it is traveling between the device and the buffer. If an
I/O path is currently being used in an outbound TRANSFER, and an ENTER
statement uses it as a source, execution of the ENTER is deferred until the
completion of the TRANSFER. An ENTER can be concurrent with an
inbound TRANSFER only if the source is the I/O path assigned to the buffer.

An ENTER from a string variable that is also a buffer will not update the
buffer's pointers and may return meaningless data.

Pipes as Source (BASIC/UX only)

If an I/O path has been assigned to a pipe, the pipe may be read with ENTER
statements. The attributes specified in the ASSIGN statement are used. Data
is considered to be in internal representation with FORMAT OFF, and is
read as ASCII characters with FORMAT ON. (See "Devices as Source" for a
description of these formats.) The pipe must be read serially.

ENTER With USING

When the computer executes an ENTER USING statement, it reads the image
specifier, acting on each field specifier (field specifiers are separated from each
other by commas) as it is encountered. If no variable is required for the field
specifier, the field specifier is acted upon without referencing the enter items.

ECHO - EXPANDED E-23

E

E

ENTER

When the field specifier references a variable, bytes are entered and used to
create a value for the next item in the enter list. Each element in an array is
considered a separate item.

The processing of image specifiers stops when a specifier is encountered that
has no matching enter item. If the image specifiers are exhausted before the
enter items, the specifiers are reused, starting at the beginning of the specifier
list.

Entry into a string variable always terminates when the dimensioned length
of the string is reached. If more variables remain in the enter list when this
happens, the next character received is associated with the next item in the
list.

When USING is specified, all data is interpreted as ASCII characters.
FORMAT ON is always assumed with USING, regardless of any attempt to
specify FORMAT OFF.

ENTER with USING cannot be used to enter data from an ASCII file. Instead,
enter the item(s) into a string variable, and then use ENTER with

USING to enter the item(s) from the string variable. For instance, use ENTER
<OFile; String$ then ENTER String$ USING "5A, X, 500"; Str2$, Number.

Effects of the image specifiers on the ENTER statement are shown in the
following table:

E-24 ECHO - EXPANDED

ENTER

hnage
Specifier Meaning

K Freefield Entry. Numeric Entered characters are sent to the number
builder. Leading non-numeric characters are ignored. All blanks are
ignored. Trailing non-numeric characters and characters sent with EOI
true are delimiters. Numeric characters include digits, decimal point, +,
-, e, and E when their order is meaningful.

String Entered characters are placed in the string. Carriage-return not
immediately followed by line-feed is entered into the string. Entry to a
string terminates on CR/LF, LF, a character received with EOI true, or
when the dimensioned length of the string is reached.

- K Like K except that LF is entered into a string, and thus CR/LF and LF
do not terminate the entry.

H Like K, except that the European number format is used. Thus, a
comma is the radix indicator and a period is a terminator for a numeric
item. (Requires 10)

-H Same as -K for strings; same as H for numbers. (Requires 10)

S Same action as D.

M Same action as D.

D Demands a character. Non-numerics are accepted to fill the character
count. Blanks are ignored, other non-numerics are delimiters.

Z Same action as D.

* Same action as D. (Requires 10)

Same action as D.

R Like D, R demands a character. When R is used in a numeric image, it
directs the number builder to use the European number format. Thus,
a comma is the radix indicator and a period is a terminator for the
numeric item. (Requires 10)

E Same action as 4D.

ESZ Same action as 3D.

ECHO· EXPANDED E·25

E

E

ENTER

Image
Specifier

ESZZ

ESZZZ

A

X

literal

B

W

Meaning

Same action as 4D.

Same action as 5D.

Demands a string character. Any character received is placed in the
string. Use AA or 2A for two-byte globalization characters.

Skips a character.

Skips one character for each character in the literal.

Demands one byte. The byte becomes a numeric quantity.

Demands one 16-bit word, which is interpreted as a 16-bit,
two's-complement integer. If either an I/O path name with the BYTE
attribute or a device selector is used to access an 8-bit interface, two
bytes will be entered; the most-significant byte is entered first. If an I/O
path name with the BYTE attribute is used to access a 16-bit interface,
the BYTE attribute is overridden and one word is entered in a single
operation. If an I/O path name with the WORD attribute is used to
access a 16-bit interface, one byte is entered and ignored when necessary
to achieve alignment on a word boundary. If the source is a file, string
variable, or buffer, the WORD attribute is ignored and all data are
entered as bytes; however, one byte will be entered and ignored when
necessary to achieve alignment on a word boundary.

Y Like W, except that pad bytes are never entered to achieve word
alignment. If an I/O path name with the BYTE is used to access a
16-bit interface, the BYTE attribute is not overridden (as with W
specifier above). (Requires 10)

Statement is terminated when the last ENTER item is terminated. EOI
and line-feed are item terminators, and early termination is not allowed.

% Like #, except that an END indication (such as EOI or end-of-file) is an
immediate statement terminator. Otherwise, no statement terminator is
required. Early termination is allowed if the current item is satisfied.

E-26 ECHO - EXPANDED

Image
Specifier

+

-

/

L

@

Note

ENTER

Meaning

Specifies that an END indication is required with the last character
of the last item to terminate the ENTER statement. Line-feeds are
not statement terminators. Line-feed is an item terminator unless that
function is suppressed by -K or -H. (Requires 10)

Specifies that a line-feed terminator is required as the last character
of the last item to terminate the statement. EOI is ignored, and
other END indications, such as EOF or end-of-data, cause an error if
encountered before the line-feed. (Requires 10)

Demands a new field; skips all characters to the next line-feed. EOI is
ignored.

Ignored for ENTER.

Ignored for ENTER.

Some localized versions of BASIC, such as Japanese localized
BASIC, support two-byte characters. When using this localized
language remember that the IMAGE, ENTER USING,
OUTPUT USING, and PRINT USING statements define a
one-byte ASCII character image with A. Use the image AA to
designate a two-byte character.

For a general discussion of globalization and localization, refer
to the HP BASIC 6.2 Porting and Globalization manual. For
LANGUAGE specific detalis, refer to Using LanguageX With
HP BASIC, where LanguageX is your local language.

ENTER Statement Termination

A simple ENTER statement (one without USING) expects to give values
to all the variables in the enter list and then receive a statement terminator.
A statement terminator is an EOI, a line-feed received at the end of the
last variable (or within 256 characters after the end of the last variable), an
end-of-data indication, or an end-of-file. If a statement terminator is received
before all the variables are satisfied, or no terminator is received within 256

ECHO - EXPANDED E-27

E

ENTER

bytes after the last variable is satisfied, an error occurs. The terminator
requirements can be altered by using images.

An ENTER statement with USING, but without a % or # image specifier,
is different from a simple ENTER in one respect. EOI is not treated as a
statement terminator unless it occurs on or after the last variable. Thus, EOI
is treated like a line-feed and can be used to terminate entry into each variable.

An ENTER statement with USING that specifies a # image requires no
statement terminator other than a satisfied enter list. EOI and line feed end
the entry into individual variables. The ENTER statement terminates when
the variable list has been satisfied.

An ENTER statement with USING that specifies a % image allows EOI as a
statement terminator. Like the # specifier, no special terminator is required.
Unlike the # specifier, if an EOI is received, it is treated as an immediate
statement terminator. If the EOI occurs at a normal boundary between items,

E the ENTER statement terminates without error and leaves the value of any
remaining variables unchanged.

When entering FORMAT ON text into string variables, care should be taken
to avoid unexpected interactions between terminating on dimensioned string
length and termination on line feeds in the text. It is recommended that the
string variable be dimensioned at least two characters longer than the text if
it will be terminated by a carriage return/line feed. See the HP BASIC 6.2
Progmmming Guide, "Entering Data" for more information.

E·28 ECHO· EXPANDED

EOl

EOL
See the ASSIGN, PRINTALL IS, and PRINTER IS statements.

E

ECHO - EXPANDED E-29

EOR
See the OFF EOR, ON EOR, and TRANSFER statements.

E

E-30 ECHO - EXPANDED

EOT

EOT
See the OFF EOT and ON EOT statements.

E

ECHO - EXPANDED E-31

E

ERRDS

Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

This function returns an INTEGER representing the device selector of the I/O
resource involved in the most recent I/O error.

-{ ERRDS r

Example Statements

IF ERRDS=701 THEN GOSUB Printer_fault
IF ERRN=163 THEN Missing=ERRDS

Semantics

The device selector will include a primary address if the interface addressed
allows it (Le. HP-IB). If the resource is a file, the device selector of the drive
containing the file is returned. If the resource is not a device, 0 is returned. If
no I/O error has occured in a running program since power-up, SCRATCH A,
or pre-run, 0 is returned.

If an error occurs in a TRANSFER statement without WAIT, the error number
is recorded in the assignment table associated with the I/O path name assigned
to the non-buffer end of the transfer instead of being reported immediately. It
is not reported until the next reference to the I/O path name, and ERRDS will
not be updated until this time.

E-32 ECHO - EXPANDED

ERRL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
No
Yes
Yes

This function returns a value of 1 if the most recent error occurred in the
specified line; otherwise, a value of 0 is returned.

Item Description Range

line number integer constant 1 through 32 766

line label name of a program line any valid name

Example Statements

IF ERRL(220) THEN Parse_error
IF NOT ERRL(Parameters) THEN Other

Semantics

ERRL

The specified line must be in the same context as the ERRL function, or an
error will occur.

If an error occurs in a TRANSFER statement without WAIT, the error number
is recorded in the assignment table associated with the non-buffer end of the
transfer instead of being reported immediately. It is not reported until the next
reference to the I/O path name, and ERRL will not be updated until this time.

ECHO - EXPANDED E-33

E

E

ERRL

Therefore, ERRL will actually refer to the line containing the new reference to
the 110 path name, not the line containing the TRANSFER statement that
caused the error.

CLEAR ERROR resets ERRL to O.

Data Communications

This function returns 0 for all Data Communications errors.

E-34 ECHO - EXPANDED

ERRLN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

ERRLN

This function returns the number of the program line on which the most recent
error occurred.

-+C ERRLN r

Example Statements

ERRLH
IF ERRLN=240 THEN GOSUB Fix_240

Semantics

CLEAR ERROR, LOAD, or GET, this function will return a value of O.

If an error occurs in a TRANSFER without WAIT, the error number is
recorded in the assignment table associated with the non-buffer end of the
TRANSFER instead of being reported immediately. It is not reported until the
next reference to the I/O path name, and ERRLN will not be updated until
this time. Therefore, ERRLN will actually refer to the line containing the
new reference to the I/O path name, not the line containing the TRANSFER
statement that caused the error.

Data Communications

This function returns 0 for all Data Communications errors (which occur while
using the HP 98628 Datacomm Interface).

ECHO· EXPANDED E·35

E

E

ERRM$

Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function returns the text of the error message associated with the most
recent program execution error.

Example Statements

PRINT ERRM$
Em$=ERRM$

-{ ERRM$ r-

ENTER Em$;Error_number,Error_line

Semantics

If no error has occurred since power on, prerun, SCRATCH, SCRATCH A,
CLEAR ERROR, LOAD, or GET, the null string will be returned. The line
number and error number returned in the ERRM$ string are the same as those
used by ERRN and ERRL, which may be surprising when a TRANSFER is in
effect. For details on the interaction, see ERRL and ERRN.

BASIC/UX Specifics

Additional error messages specific to BASIC lUX are returned.

E-36 ECHO - EXPANDED

ERRN
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

ERRN

This function returns the number of the most recent program execution error.
If no error has occurred, a value of 0 is returned.

Example Statements

IF ERRN=80 THEN Disk_out
DISP "Error NWDber"; ERRN

Semantics

--{ ERRN r

If an error occurs in a TRANSFER statement without WAIT, the error number
is recorded in the assignment table associated with the non-buffer end of the
transfer instead of being reported immediately. It is not reported until the next
reference to the I/O path name, and ERRN will not be updated until this time.

CLEAR ERROR resets ERRN to O.

BASIC/UX Specifics

ERRN returns additional error values specific to BASIC/UX.

ECHO - EXPANDED E-37

E

E

ERROR
See the CLEAR ERROR, CAUSE ERROR, OFF ERROR and ON ERROR
statements.

E-38 ECHO - EXPANDED

ERROR RETURN

Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
No
Yes
Yes

ERROR RETURN

This statement returns program control to the line following the line which
caused the corresponding GOSUB.

(ERROR RETURN}+t

Example Statements

ERROR RETURN
IF Dont_retry THEN ERROR RETURN

Semantics

When this statement is executed, it causes program execution to resume at the
line following the line that caused the most recent GOSUB (usually the line
whose error initiated the most recent ON ERROR GOSUB branch). If you
want to return to the line that caused the error, use RETURN.

If the error occurred in an END, SUBEND, or FN END statement, then
execution returns to that statement since there is no following executable line.
If the statement is used to return from a GOSUB then it will behave as a
RETURN.

ECHO - EXPANDED E-39

E

E

ERROR SUBEXIT
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
No
Yes
Yes

This statement returns program control to the line following the line which
invoked the subprogram.

(ERROR SU8EXI~

Example Statements

ERROR SUBEXIT
IF Dont_retry THEN ERROR SUBEXIT

Semantics

When this statement is executed, it causes program execution to resume at the
line following the line that caused the subprogram to be called (usually the line
whose error initiated the most recent ON ERROR CALL branch). If you want
to return to the line that caused the error, use SUBEXIT.

If the error occurred in an END, SUBEND, or FN END statement, then
execution returns to that statement since there is no following executable line.
If this statement is used from a CALL then it will behave as a SUBEXIT.

E-40 ECHO - EXPANDED

EXCHANGE

EXCHANGE
See the ASSIGN, DUMP DEVICE IS, PRINTALL IS, and PRINTER IS
statements.

ECHO· EXPANDED E·41

E

E

EXECUTE
Supported On
Option Required
Keyboard executable
Programmable
In an IF . .. THEN ...

UX DOS WS* IN*
nla
Yes
Yes
Yes

This statement allows access to the underlying operating system for executing
commands and programs.

Item Description

command string expression

return variable name of a numeric variable
name

Example Statements

EXECUTE
EXECUTE; SAVE ALPHA OFF. RETURN Success

Range

any valid name

EXECUTE "cat mydata I sed -e 's/real/Iongreal/' I myfilter >foo"; WAIT OFF
EXECUTE "cat 'Is data*' I sort >sdata" ; SAVE ALPHA OFF. RETURN Stat

EXECUTE "DIR > C:\TMP\DIRLST"
EXECUTE "BACKGROUND"

E·42 ECHO· EXPANDED

BASIC/DOS only
BASIC/DOS only

EXECUTE

Semantics (BASIC/UX)

This statement suspends the operation of BASIC and transfers control to the
operating system. If a command string is specified, then the operating system
executes that command string. If the command string is omitted, then control
is passed to the command specified in the user's SHELL environment variable
(this is usually a shell). If the user has no SHELL environment variable, then
control is passed to a Bourne shell (/bin/sh).

If the RETURN attribute is specified, then the return status from the
command is returned in the associated variable. The return status consists of
16 bits of information defined as:

15

return code

where:

terminating signal
cd
return code

cd terminating signal

is the signal causing process termination
indicates whether a core dump resulted

o

is the process exit code if the terminating signal
field is O.

Note that when a command is specified, a /bin/sh is used to control the
execution of the command. This shell translates certain return codes from the
command. Specifically, return codes indicating a signal has killed the process
returns as Ox8000+0xl00*signal number, rather than the expected signal
number. Thus a distinction cannot be made between a process terminated by
SIGTERM and one which exited with return code Ox8f, since both would be
received as ox8fOO.

If a simple command is executed (Le., a single command and no pipes), then
there is a workaround to this problem. The SHELL command exec can be
inserted before the actual command to indicate that the shell should exec the
command rather than forking a new process for it. The result of this is that
without the shell around to translate the return code, the expected return code
is received. For example, consider a "ps -ef" command. The statement:

ECHO - EXPANDED E-43

E

EXECUTE

EXECUTE lipS -ef "; WAIT OFF, RETURB A

would set A to Ox8fOO if terminated by SIGKILL. IF we wanted the
return code to be the same as the process actually returned (without shell
translation), we would use:

EXECUTE "exec ps -ef"; WAIT OFF ,RETURB A

which sets A to OxOf when terminated by SIGTERM. Note also that the most
significant bit of the return status is weighted as -32768, thus the status is
negative when this bit is set.

When running within a window system, the command is executed in the
window which started BASIC. Note that this is not the standard BASIC
window, as BASIC automatically spawns a new window for itself. All input
and output from the EXECUTEd process takes place in this original window.
BASIC spawns a new process from which to execute the command. During this
time, the BASIC process waits for the command to complete. A new runlight

E state "Execute" indicates when BASIC is waiting for a system command to
complete. BASIC continues to accept keys and echo them, but no keyboard
commands are executed until the system call completes. The "Reset" key
aborts the system call and returns BASIC to the idle state. Note that RESET
sends SIGHUP to the partially completed command and all of its subprocesses,
which causes them to die.

When this command is executed outside of a window system, BASIC first
clears the screen and then spawns a new process to execute the command. At
this point BASIC waits for the command to complete. BASIC relinquishes
control of the keyboard so the user's command may access it. To return to
BASIC the user must either wait for the process to complete, or kill it. To kill
the process the user must use either SIGTERM or SIGKILL, or possibly "exit"
for a shell. When the user process completes, BASIC first prompts the user
before resuming. The prompt "PRESS RETURN TO CONTINUE:" appears
at the bottom of the screen. This allows the user time to read any output from
the command before BASIC clears the screen. The cursor and paging keys are
not transmitted, and may be used to view text that has scrolled off the screen;
other keys are ignored. After receiving the response, BASIC continues. It first
clears the screen of the output from the command, and then repaints the alpha
screen.

E-44 ECHO - EXPANDED

EXECUTE

The WAIT OFF attribute disables the prompting after completion of the
command. In this case BASIC immediately resumes operation. This attribute
only affects operation outside a window system. If a command is not specified
in the EXECUTE statement, then BASIC does not prompt before resumming
control. It will continue as soon as the shell is exited.

The SAVE ALPHA OFF attribute only affects operation outside a window
system. In this case, the screen is not cleared before executing the command,
and it is not cleared and the alpha not repainted upon returning to BASIC.
This option thus allows any graphics information to be saved. It should
generally be used only when the command does not produce output to the
CRT. Otherwise the commands output can cause scrolling of the alpha and
graphics in an undesirable way. If the command does produce output, it should
be redirected to a file, or discarded in / dev /null as follows:

EXECUTE "rmbclean > / dev /null 2>1;1"; SAVE ALPHA OFF

The string "2>&1" causes the standard error output to also be discarded. Note
that the WAIT prompting also writes text to the screen (and possibly cause
scrolling). Thus this attribute should in general be used with the WAIT OFF
attribute.

Semantics (BASIC/DOS)

This statement suspends the operation of BASIC and transfers control
to a copy of COMMAND.COM. If a command string is specified, then
COMMAND.COM executes that command string. If a command string is
omitted, then COMMAND.COM accepts commands from the user. The user
returns to BASIC by typing EXIT at the prompt.

If the SAVE ALPHA OFF attribute is specified, then the screen is not
cleared before control is passed to COMMAND.COM, and it is not cleared
and repainted upon returning to BASIC. This option allows any graphics
information to be saved. It should generally be used only when the command
does not produce output to the CRT. Otherwise, undesireable scrolling of the
alpha and graphics may occur.

The WAIT OFF attribute disables prompting after completion of the
command or when the user exits COMMAND.COM. BASIC resumes operation
immediately after COMMAND.COM terminates.

ECHO· EXPANDED E-45

E

E

EXECUTE

If the RETURN attribute is specified, then the return status from
COMMAND.COM is returned in the associated variable. Note that this
indicates only if COMMAND.COM was successfully run. It does not indicate
whether or not COMMAND.COM was able to successfully execute the
command string.

If the command string is "BACKGROUND", then COMMAND.COM is not
run as described above. Instead, BASIC is put into background mode and
continues to run concurrently with MS-DOS. The WAIT OFF and ALPHA
OFF attributes are ignored, and the value returned by the RETURN attribute
is always 1. See the Installing and Using HP BASIC/DOS 6.2 manual for more
detailed information on background mode.

E-46 ECHO - EXPANDED

EXIT IF

EXIT IF
See the LOOP statement.

E

ECHO· EXPANDED E-47

E

EXOR
Su pported on
Option Required
Keyboard Executable
Programmable

UX WS DOS IN
None
Yes
Yes

In an IF . .. THEN ... Yes

This operator returns a 1 or a 0 based on the logical exclusive-or of its
arguments.

Example Statements

Ok=First_pass EXOR Old_data
IF A EXOR Flag THEN Exit

Semantics

A non-zero value (positive or negative) is treated as a logical 1; only a zero is
treated as a logical o.
The EXOR function is summarized in this table.

A B A EXOR B

0 0 0

0 1 1

1 0 1

1 1 0

E-48 ECHO - EXPANDED

EXP
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

EXP

This function raises e to the power of the argument. With this
system,N apierian e = 2.718 281 828 459 05.

(EXP r0-1 argument ~

Item Description/Default

argument numeric expression

Examples Statements

Y=EXP(-X A 2/2)
PRINT lie to the ";Z;"=";EXP(Z)

Semantics

Range
Restrictions

-708.396 418 532 264 through
+709.782 712 893 383 8 for
INTEGER and REAL arguments;
see "Range Restriction Specifics"
for COMPLEX arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the
argument is COMPLEX, the value returned is COMPLEX.

To compute the EXP of a COMPLEX value, the COMPLEX binary must be
loaded.

ECHO - EXPANDED E-49

E

E

EXP

Range Restriction Specifics

The formula used to compute the EXP of a COMPLEX argument is:

CMPLX(EXP(Real_part)*COS(Imag_part),EXP(Real_part)*SIN(Imag_part»

where Real_part is the real part of the COMPLEX argument and Imag_part
is the imaginary part of the COMPLEX argument. Some values of a
COMPLEX argument may cause errors in this computation. For example,

EXP(CMPLX(710,O»

will cause error 22 due to the EXP(Real_part) computation.

Note that any COMPLEX function whose definition includes a sine or cosine
function will be evaluated in the radian mode regardless of the current angle
mode (Le. RAD or DEG).

E-50 ECHO - EXPANDED

EXPANDED

EXPANDED
See the DUMP DEVICE IS statement.

E

ECHO· EXPANDED E·51

F
FBYTE - FRENCH

F

FBYTE • FRENCH F-1

FBYTE
Supported On WS
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This boolean function returns 1 (true) when the first byte of the string
argument is a valid first byte in the HP-15 character set.

Example Statements

IF FBYTE(A$) AND SBYTE(A$[2]) THEN Valid_Hp15

Semantics

F Certain localized versions of BASIC, such as Japanese localized BASIC,
use two-byte characters. Together, FBYTE and SBYTE allow you to
programmatically determine whether a character is one or two bytes long. Note
that FBYTE only checks the first byte of the string expression. If FBYTE
returns 1 (true), you must also test the second byte of the string using SBYTE
to determine if the second byte is in the valid range for HP-15 characters.

For a general discussion of globalization and localization including two-byte
characters, refer to HP BASIC 6.2 Porting and Globalization. To determine the
values returned by FBYTE for specific characters, refer to Using LanguageX
with HP BASIC, where LanguageX is your local language.

F·2 FBYTE· FRENCH

FILL

FILL
See the IPLOT, PLOT, POLYGON, RECTANGLE, RPLOT, and SYMBOL
statements.

FBVTE • FRENCH F·3

F

F

FIND
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
EDIT and PDEV
Yes
No
No

This command allows you to find a character sequence while editing a program.

Item Description Range

text literal

beginning line integer constant identifying program 1 to 32 766
number line

beginning line name of a program line any valid name
label

ending line integer constant identifying program 1 to 32 766
number line

ending line name of a program line any valid name
label

F-4 FBYTE - FRENCH

Example Statements

FIND"SUB Print"
FIND"Cost=" IN 250,Label1
FIND"Interval" IN 1550

Semantics

FIND

This command causes a search through the program currently in memory. It
compares the specified text to an internal "listing" of the program. Therefore,
line numbers, keywords, variables, and constants can be found.

If an the specified text is found, the line containing it is displayed with the
cursor under the first character of that occurrence. The line can be modified or
deleted if desired. If [ENTER], [Return] or the delete line key is pressed, the search
resumes with the next character. Alternately, the search is resumed without
modifying the program when [CONTINUE] is pressed. Overlapping occurrences
will not be detected; e.g., if you were looking for "issi", only one occurrence
would be found in "Mississippi".

If the Beginning Line Number is given, the search begins at that line number.
If the specified line number doesn't exist, the next line that does exist is used.
If the Beginning Line Number is not specified, the search begins at the line
currently being edited; or, (if you're not in edit mode), with the first line of the
program. If a specified label doesn't exist, an error occurs.

The search continues through the last character of the Ending Line; or (if
that was not specified) the end of the program. If you specify an Ending Line
Number that does not exist, the highest numbered line which occurs before
that line number is used.

If there were no occurrences found, the cursor is left at the end of the first line
searched. If one or more occurrences were found, the cursor is left at the end of
the line containing the last occurrence.

A FIND command is cancelled by entering a line after changing its line
number. Other keys which will cancel a FIND are [EXECUTE], [CLR I/O], (Break],

0, (!), or (INS LN]. Any of the keys which cancel EDIT mode will also cancel a
FIND (with the exception of (CONTINUE)).

FBYTE • FRENCH F-5

F

F

FIND

FIND is not allowed while a program is running; however, it may be executed
while a program is paused. The program is continuable if it has not been
al tered by pressing (ENTER), (Return), (EXECUTE) or (DEL LN).

While in the FIND mode, keyboard execution is only possible with the
(EXECUTE) key. Using (ENTER) or ('Retii!ii) causes an error.

F-6 FBYTE - FRENCH

FN
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

FN

This keyword transfers program execution to the specified user-defined function
and may pass items to the function. The value returned by the function is
used in place of the function call when evaluating the statement containing the
function call.

FBYTE • FRENCH F·7

F

F

FN

--{ FN ~ function II-T-----r-I-------~-)-r+t~ I '---- nomel@J l0+I po~~:.rs f'V""'
pass parameters:

Passed by Reference t
Passed by Value ~

string expressions containing monodic
operators, dyadic operators, or functions

F·8 FBYTE· FRENCH

Item Description Range

function name name of a user-defined function any valid name

I/O path name name assigned to a device, devices, or any valid name (see
mass storage file ASSIGN)

variable name name of a numeric or string variable any valid name

substring

literal

numerIc
constant

string expression containing substring (see Glossary)
notation

string constant composed of
characters from the keyboard,
including those generated using the
ANY CHAR key

numeric quantity expressed using
numerals, and optionally a sign,
decimal point, or exponent notation

Example Statements

PRINT X;FNChange(X)
Final$=FNTrim$(First$)
Result=FNPround(Item.Power)

Semantics

FN

A user-defined function may be invoked as part of a stored program line or as
part of a statement executed from the keyboard. If you type the function name
and then (EXECUTE], (ENTER) or press (Return), the value returned by the function
is displayed. The dollar sign suffix indicates that the returned value will be a
string. User-defined functions are created with the DEF FN statement.

The pass parameters must be of the same type (numeric or string) as the
corresponding parameters in the DEF FN statement. Numeric values passed by
value are converted to the numeric type (REAL, INTEGER, or COMPLEX) of
the corresponding formal parameter. Variables passed by reference must match
the type of the corresponding parameter in the DEF FN statement exactly. An
entire array may be passed by reference by using the asterisk specifier.

FBYTE • FRENCH F·9

F

F

FN

Invoking a user-defined function changes the program context. The functions
may be invoked recursively.

If there is more than one user-defined function with the same name, the lowest
numbered one is invoked by FN.

F-10 FBYTE - FRENCH

FNEND

FNEND
See the DEF FN statement.

F

FBYTE • FRENCH F·11

F

FOR ... NEXT
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
No
Yes
No

This construct defines a loop which is repeated until the loop counter passes a
specific value. The step size may be positive or negative.

Item

loop counter

initial value

final value

step size

program
segment

Description

name of a numeric variable

numeric expression

numeric expression

numeric expression; Default = 1

any number of contiguous program
lines not containing the beginning
or end of a main program or
subprogram, but which may contain
properly nested construct(s).

F-12 FBYTE - FRENCH

Range

any valid name

Example Program Segments
100 FOR 1-40 TO 0 STEP -1
110 PRINT I;SQR(I)
120 NEXT I

1220 INTEGER Point
1230 FOR Point-1 TO LEN(A$)
1240 CALL Convert(A$[Point;l])
1250 NEXT Point

Semantics

FOR ... NEXT

The loop counter is set equal to the initial value when the loop is entered.
Each time the corresponding NEXT statement is encountered, the step size
(which defaults to 1) is added to the loop counter, and the new value is
tested against the final value. If the final value has not been passed, the loop
is executed again, beginning with the line immediately following the FOR
statement. If the final value has been passed, program execution continues at
the line following the NEXT statement. Note that the loop counter is not equal
to the specified final value when the loop is exited.

The loop counter is also tested against the final value as soon as the values
are assigned when the loop is first entered. If the loop counter has already
passed the final value in the direction the step would be going, the loop is not
executed at all. The loop may be exited arbitrarily (such as with a GOTO), in
which case the loop counter has whatever value it had obtained at the time the
loop was exited.

The initial, final and step size values are calculated when the loop is entered
and are used while the loop is repeating. If you use a variable or expression for
any of these values, you may change its value after entering the loop without
affecting how many times the loop is repeated. However, changing the value of
the loop counter itself can affect how many times the loop is repeated.

The loop counter variable is allowed in expressions that determine the initial,
final, or step size values. The previous value of the loop counter is not changed
until after the initial, final, and step size values are calculated.

FBVTE • FRENCH F·13

F

F

FOR ... NEXT

Note Avoid using fractional values in a FOR ... NEXT statement.
Remember that some REAL fractional numbers cannot be
represented exactly by the computer. For example, if you use
a step size of 0.1, the loop may execute a different number of
times than you expect. Also, if the step size evaluates to 0, the
loop may repeat infinitely. In either case no error message is
given.

Refer to the "Numeric Computation" chapter of the
HP BASIC 6.2 Programming Guide for "detailed information on
the effects of the computer's internal numeric representation.

Nesting Constructs Properly

Each FOR statement is allowed one and only one matching NEXT statement.
The NEXT statement must be in the same context as the FOR statement.
FOR ... NEXT loops may be nested, and may be contained in other
constructs, as long as the loops and constructs are properly nested and do not
improperly overlap.

F·14 FBYTE .. FRENCH

FORMAT

FORMAT
See the ASSIGN statement.

F

FBYTE • FRENCH F·15

F

FRACT
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function returns a number greater than or equal to zero and less than 1,
representing the "fractional part" of the value of its argument. For all X:

X=IRT(X)+FRACT(X)

Example Statements

PRIRT FRACT(X)
Right_digits=FRACT(All_digits)

Semantics

This function does not allow COMPLEX arguments.

F-16 FBYTE - FRENCH

FRAME

Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

FRAME

This statement draws a frame around the current clipping area using the
current pen number and line type. After drawing the frame, the current pen
position coincides with the lower left corner of the frame, and the pen is up.

(FRAME }+f

FBYTE • FRENCH F·17

F

FRENCH
See the LEXICAL ORDER IS statement.

F

F-18 FBYTE - FRE-NCH

G
GCLEAR - GSTORE

G

GCLEAR - GSTORE G-1

G

GCLEAR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
GRAPH
Yes
Yes
Yes

This statement clears the graphics display or sends a command to an external
plotter to advance the paper. With bit-mapped displays, the memory is cleared
and the alpha is restored.

(GClEAR }+f

Multi-Plane Bit-Mapped Displays

The GCLEAR statement clears all planes designated as graphics planes with
the current graphics write-mask. This includes any planes which are both
alpha and graphics planes. See the "Multi-Plane Bit-Mapped Displays" section
in the HP BASIC 6.2 Programming Guide manual for information on enabling
and displaying specific frame buffer planes.

Note If any planes in the frame buffer are enabled by both the alpha
mask and the graphics mask, the common planes, as well as the
graphics planes, will be cleared. Then, the alpha data will be
redisplayed in the common planes. This may cause text which
was previously hidden or over-written by graphics to reappear.

G-2 GCLEAR - GSTORE

GERMAN

GERMAN
See the LEXICAL ORDER IS statement.

G

GCLEAR - GSTORE G-3

G

GESCAPE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPHX
Yes
Yes
Yes

This statement is used for communicating device-dependent information.

Item Description Range

device selector numeric expression, rounded to an (see Glossary)
integer

operation numeric expression, rounded to an (device dependent, see
selector integer Semantics)

parameter name of array which has a specific any valid name
array name rank and size, containing parameters

necessary for executing request

return array name of array which has a specific any valid name
name rank and size into which the returned

parameters are placed

G-4 GCLEAR - GSTORE

Example Statements

GESCAPE 28,5
GESCAPE 3,2;Color_map(*)
GESCAPE 604,10"
GESCAPE 28,6;Masks(*)

Semantics

Select alternate drawing mode)
Get the values in the color map)
BASIC/UX under X Windows only)
Get graphics write-mask and display-mask

GESCAPE

The parameter array and return array are for sending data to the device and
getting data from the device.

Color Map Information

The number of entries in the color map can be determined with a GESCAPE
operation selector 1. The return array must be one-dimensional with at least
one element. If this operation selector is used on a system with a monochrome
display (or an HP 98627A), error 733 will be reported.

The RGB values of the pens in the the color map can be obtained through
GESCAPE operation selector 2. The return array must be a two-dimensional
three-column array with at least one row. The values returned are in the range
of 0 to 1 and are multiples of 1/15 (one fifteenth) for the Model 236C and
multiples of 1/255 (one two-hundred fifty fifth) for other color displays. The
first row in the array always contains the values for PEN 0; if you want PEN
12, you must have at least thirteen rows in the array. Array filling occurs until
either the array or the color map is exhausted.

The color map affects the entire display. Thus in a windowing environment, the
color map is the same for all windows.

Determining Hard Clip Limits and GSTORE Array Size

The hard clip limits of the current plotting device can be obtained through
executing a GESCAPE with operation selector 3. The return array must be a
one-dimensional INTEGER array with at least four elements. Values will be
returned in the smallest resolvable units for that device. For a CRT, units are
pixels.

GCLEAR . GSTORE G·5

G

G

GESCAPE

Operation selector 3 also returns information useful for GSTORE and GLOAD
files. The fifth and sixth elements returned give the two array dimensions
to use (in conjunction with the ALLOCATE statement) to GSTORE the
contents of the specified display. For example, on a HP 98544A display with
all planes enabled for graphics, the dimensions returned would be 256 and
400-256 words for each of the 400 lines. That is, 1024 pixels wide, and four
pixels' worth of information in each 16-bit word. This allows the user to
programmatically determine the size of the integer array to allocate for storing
an image and thus avoid machine-dependent code.

In BASIC/UX, all displays are stored as 2 pixels/16-bit word (except for
monochrome, which are 16 pixels/16-bit word).

Drawing Mode Dominance

The normal drawing mode and the alternate drawing mode can be entered by
using GESCAPE operation selectors 4 and 5, respectively. Drawing in normal
mode "covers up" any previously drawn image. Drawing in alternate mode
with positive pen numbers causes the color-map entry number at each pixel to
be inclusively-ORed with the pen value currently being drawn with. Drawing
in alternate mode with negative pen numbers causes the color-map entry
number at each pixel to be exclusively-ORed with the pen value currently
being drawn with.

Drawing mode dominance affects the entire display. Thus in a windowing
environment, all windows have the same drawing mode.

Multi-Plane Bit-Mapped Displays

The Write Enable and Display-Enable Masks

If you have a multi-plane frame buffer and display, there are two user-definable
masks which control certain aspects of graphical operations. They are:

• The write-enable mask. This mask is an integer whose bits, from the
least-significant bit end, designate those frame buffer planes which will be
affected by graphics operations. Bit values of 1 denote enabled planes (planes
to be written to), and bit values of 0 denote disabled planes (planes which
will not be written to). For example, if you have a four-plane frame buffer,

G·6 GCLEAR· GSTORE

GESCAPE

and you set the write-enable mask to 3 (binary 0011), only values in frame
buffer planes 1 and 2 will be modified by graphical operations .

• The display-enable mask. This mask is an integer whose bits, from the
least-significant bit end, designate those frame buffer planes which are to
be displayed. These bits mayor may not indicate the same planes as the
write-enable mask indicates. That is, you can write to some planes, and
display others. Bit values of 1 denote planes which are to be displayed, and
bit values of 0 denote planes which are not to be displayed. For example, if
you have a four-plane frame buffer, and you set the display-enable mask to 5
(binary 0101), only values in frame buffer planes 1 and 3 will be displayed.

Note Both the write-enable mask and the display-enable mask are
initialized to all planes that exist in the machine at power up
and SCRATCH A time.

Operation selector 6, which works with all CRTs, allows the user to obtain the
current graphics write-enable and display-enable values. The first element of
the return array contains the write-enable mask; the second represents the
display-enable mask. The return array must be a one-dimensional integer array
with at least one element. Array filling occurs until either the array or the
masks are exhausted.

Operation selector 7, which works only with multi-plane Series 300 CRTs,
allows the user to set the graphics write-enable and display-enable values. The
first element of the parameter array contains the write-enable mask; the second
represents the display-enable mask. Again, the parameter array must be a
one-dimensional integer array with one or more elements. If only one element
exists, the write-enable mask is set as specified and the display-enable mask
remains unchanged.

Legal values for both masks are:

• 0 through 15 for 4-plane systems,

• 0 through 63 for 6-plane systems,

• 0 through 255 for 8-plane systems.

The write- and display-enable masks affect the entire display. In a windowing
environment, all windows are affected and have the same display mask values.

GCLEAR • GSTORE G· 7

G

GESCAPE

The write-mask cannot be changed in X Windows, so all planes are always
turned on.

Graphics Buffering (BASIC/UX Only)

In order to improve graphics performance, graphics buffering may be turned on
with operation selector 10. Operation selector 11 will turn buffering off. This
has the affect of storing graphics commands in a buffer until it is full, and then
sending all of the commands in one output sequence. Because the buffer must
fill up before it is sent to the display, it is possible that the output of the last
few graphics commands which were executed do not appear on the display. It
is advisable to flush the buffer (with operation selector 13) after each "picture"
has been drawn to ensure that all the graphics commands have been sent to the
display. It is NOT advisable to flush the buffer after every command, since this
is the same as turning off buffering. It is also not advisable to turn buffering on
while in interactive mode, since the output from any graphics commands will
not appear on the display until the graphics buffer is full, or the graphics buffer
is explicitly flushed. Operation selector 12 allows you to obtain the current
buffering mode. The return array must be a one-dimensional integer array with
at least one element.

The default graphics buffering mode may be specified in the configuration file
(rmbrc). BASIC/UX does not support graphics buffering for HPGL plotters.

Absolute Locator Hard Clip Limits

Operation selector 20 sets the hardclip limits for absolute HP-HIL locators.
G That is, it simulates, in software, the changing of the hardclip limits. These

limits must be inside the largest X and largest Y, taken individually, for all
absolute locators on the HP-HIL bus.

Operation selector 21 returns the current hardclip limits for absolute HP-HIL
locators. These are the values used in GRAPHICS INPUT IS scaling.
Operation selector 21 is diff~rent than operation selector 22 in that 22 always
returns the values "hardwired" into the device(s) on the HP-HIL bus, whereas
the values returned by operation selector 21 may have come from operation
selector 20 or from the device on the bus.

Operation selector 22 returns the hardware-defined \hardclip limits of all
absolute locators on the HP-HIL link.

G-8 GCLEAR - GSTORE

GESCAPE

For the three GESCAPE selectors above-20, 21, and 22-the parameter or
return array must be a one dimensional integer array. Only the first two entries
will be used for 20 and 21: X2 and Y2. No space is taken for the Xl and Y1
values, since the coordinates of P1 (the lower, left-hand corner) cannot be
changed on HP-HIL absolute locators; Xl and Y1 will always be zeroes. For
operation selector 22, entries will be made until the array is full or all devices
on the bus have been covered. If more array entries exist after the devices are
all represented, a -1 will be put in what would be the X coordinate entry of
the next device to indicate the end of valid data. (Hardclip limits for these
devices are limited to the range 0 through 32 767.)

Unlike other GESCAPES, selectors 20 through 22 do not require the device at
the specified select code to be currently active. Indeed, to be effective, GESCAPE
2,20, which sets hard clip limits, must be done before doing the GRAPHICS
INPUT IS KBD, "TABLET" statement. Operations 20 and 21 will give "DEVICE
NOT PRESENT" errors if no tablet (or HP-HIL interface) exists, but 22 will
return -1 for its first entry in that case. All will give a configuration error if
the KBD binary is not present.

GCLEAR . GSTORE G·9

G

GESCAPE

Functions Available Through GESCAPE

Operation
Selector Return (R) or Parameter (P) Array

1 (R) A(O): Number of entries in the color map

2 (R) A(O,O): Pen ° red color map value
A(O,I): Pen ° green color map value
A(0,2): Pen ° blue color map value
:
A(15,0): Pen 15 red color map value
A(15,1): Pen 15 green color map value
A(15,2): Pen 15 blue color map value

3 (R) A(O): X minimum hard clip value
A(I): Y minimum hard clip value
A(2): X maximum hard clip value
A(3): Y maximum hard clip value
A(4): Rows required for GSTORE integer array
A(5): Columns required for GSTORE integer array

4 Set normal drawing mode

5 Set alternate drawing mode

6 (R) A(O): Current graphics write-enable mask value
A(I): Current graphics display-enable mask value

7 (P) A(O): Graphics write-enable mask value to be set

G
A(I): Graphics display-enable mask value to be set

10 Turn graphics buffering on.

11 Turn graphics buffering off.

12 (R) A(O): Current buffering mode (0 = OFF; 1 = ON)

13 Flush graphics buffer.

G·10 GCLEAR· GSTORE

GESCAPE

Functions Available Through GESCAPE (continued)

Operation
Selector Return (R) or Parameter (P) Array

20 (P) A(O): X maximum hard clip value to be set
A(1): Y maximum hard clip value to be set

21 (R) A(O): Current X maximum hard clip value
A(1): Current Y maximum hard clip value

22 (R) A(O): X maximum hard clip value for first absolute locator
A(1): Y maximum hard clip value for first absolute locator
A(2): X maximum hard clip value for second absolute locator
A(3): Y maximum hard clip value for second absolute locator
:
A(n): A value of -1 indicates that there are no more
a 1_. 1 1

G

GCLEAR • GSTORE G·11

G

GET

Supported On
Option Required
Keyboard Ex~cutable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This statement reads the specified ASCII or HP-UX file and attempts to store
the strings into memory as program lines.

literal form of file specifier:

HFS or SRM files only

literal form of DFS file specifier:

G-12 GCLEAR - GSTORE

Item Description

file specifier string expression

append line integer constant identifying a
number program line

append line name of a program line
label

run line integer constant identifying a
number program line

run line label name of a program line

directory path literal

file name literal

GET

Range

(see drawing)

1 through 32 766

any valid name

1 through 32 766

any valid name

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

SRM password literal; first 16 non-blank characters > not allowed
are significant

volume specifier literal

Example Statements

GET "George"
GET Bext_prog$,180,10
GET "FileBame:REMOTE"
GET "/Dir1/Dir2/Dir3/File<SRM_READ_pass>"
GET "G*"

Semantics

(see MASS STORAGE IS)

The file must be an ASCII, DFS, or an HP-UX file (HP-UX files must contain
text written in FORMAT ON representation).

When GET is executed, the first line in the specified file is read and checked
for a valid line number. If no valid line number is found, the current program
stays in memory and error 68 is reported. If the GET was attempted from a
running program, the program remains active and the error 68 can be trapped
with ON ERROR. If there is no ON ERROR in effect, the program pauses.

GCLEAR - GSTORE G-13

G

G

GET

If there is a valid line number at the start of the first line in the file, the GET
operation proceeds. Values for all variables except those in COM are lost and
the current program is deleted from the append line to the end. If no append
line is specified, the entire current program is deleted.

As the file is brought in, each line is checked for proper syntax. The syntax
checking during GET is the same as if the lines were being typed from the
keyboard, and any errors that would occur during keyboard entry will also
occur during GET. Any lines which contain syntax errors are listed on the
PRINTER IS device. Those erroneous lines which have valid line numbers are
converted into comments and syntax is checked again. If the GET encounters
a line longer than 256 characters, the operation is terminated and error 128 is
reported. If any line caused any other syntax error, an error 68 is reported at
the completion of the GET operation. This error is not trappable because the
old program was deleted and the new one is not running yet.

Any line in the main program or any subprogram may be used for the append
location. If an append line number is specified, the lines from the file are
renumbered by adding an offset to their line numbers. This offset is the
difference between the append line number and the first line number in the file.
This operation preserves the line-number intervals that exist in the file. When
a line containing an error (or an invalid line number caused by renumbering)
is printed on the PRINTER IS device, the line number shown is the one the
line had in the file. Any programmed references to line numbers that would
be renumbered by REN are also renumbered by GET. If no append line is
specified, the lines from the file are entered without renumbering.

If a successful GET is executed from a program, execution resumes
automatically after a prerun initialization (see RUN). If no run line is specified,
execution resumes at the lowest-numbered line in the program. If a run line is
specified, execution resumes at the specified line. The specified run line must
be a line in the main program segment.

If a successful GET is executed from the keyboard and a run line is specified,
a prerun is performed and program execution begins automatically at the
specified line. If GET is executed from the keyboard with no run line specified,
RUN must be executed to start the program. GET is not allowed from the
keyboard while a program is running.

If you are using a version of BASIC that supports wildcards, you can use
them in file specifiers with GET. You must first enable wildcard recognition

G-14 GCLEAR - GSTORE

GET

using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
Wildcard file specifiers used with GET must match one and only one file name.

HFS Permissions

In order to GET a file on an HFS volume, you need to have R (read)
permission on the file, as well as X (search) permission on the immediately
superior directory and all other superior directories.

GET with SRM Files

In order to GET a file on an SRM volume, you need to have READ capability
on the file and its immediately superior directory, as well as READ capabilities
on all other superior directories. If this capability is not public or if a password
protecting this capability is not given, an error is reported.

You may use GET with any ASCII, DFS, or HP-UX file whose data is in
the format of a BASIC program (that is, having numbered lines). Although
you may also use GET with ASCII files created on non-Series 200/300 SRM
workstations (HP 9835, HP 9845, or Model 520), any line that is not valid
BASIC syntax for Series 200/300 computers is stored as a commented (!)
program line.

When used on SRM, GET is executed in shared mode, which means that
several users can get one file at the same time. Attempts to get a locked file
(see LOCK) result in Error 453. Additionally, you cannot get a file while it is
being saved. The SAVE and RE-SAVE operations open the file in exclusive
mode (shown as LOCK in a CAT listing) and enforce that status until the SAVE G
or RE-SAVE is complete. While in exclusive mode, the file is accessible only to
the SRM workstation executing the SAVE or RE-SAVE.

GCLEAR - GSTORE G-15

GFONTIS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

WS
LANGUAGE and GRAPH
Yes
Yes
Yes

This statement specifies which file contains the graphics fonts accessed by
LABEL. It is useful in certain localized versions of BASIC, such as Japanese
localized BASIC.

literal form of file specifier:

HFS or SRM files only

Example Statements

GFONT IS "JPICVECTOR" Japanese LANGUAGE binary
G GFONT IS "" closes the graphics font file

GFONT IS "JPN_ *" wildcards allowed for file name completion

Semantics

Certain localized versions of BASIC, such as Japanese localized BASIC, require
special files containing graphics fonts to display the characters used by LABEL.
You do not need to use GFONT IS unless you use these special fonts. If you
do need these special fonts, you must specify their location with GFONT IS
before using LABEL. If you close the GFONT file, the default font defined in
the GRAPH binary is used.

G·16 GCLEAR· GSTORE

GFONT IS

For a general discussion of globalization and localization including graphics
fonts, refer to the HP BASIC 6.2 Porting and Globalization manual. For details
conerning a particular font, refer to Using LanguageX with HP BASIC, where
LanguageX is your local language.

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with GFONT IS. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
Wildcard file specifiers used with GFONT IS must match one and only one file
name.

If the file specifier does not include a complete path or volume specifier, the
current MASS STORAGE IS volume and path are used.

GCLEAR • GSTORE G·17

G

GINIT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

This statement establishes a set of default values for variables affecting
graphics operations.

Semantics

The following operations are performed when GINIT is executed:

AREA PER 1
CLIP OFF
CSlZE 5,0.6

LDIR °
LIRE TYPE 1,5
LORG 1
MOVE 0,0

PDIR °
G PER 1

PIVOT °
GESCAPE CRT,4
VIEWPORT 0,RATIO*100,0,100
WIRDOW 0,RATIO*100,0,100

PEN MODE NORMAL

In addition, an active plotter or graphics input device is terminated. If the
plotter is a file, the file is closed.

After a GINIT a.nd before a PLOTTER IS statement is executed, the following
statements select a default plotter:

G-18 GCLEAR - GSTORE

GINIT

AXES IDRAW RECTANGLE

DRAW IMOVE RPLOT

DUMP GRAPHICS IPLOT SET ECHO

FRAME LABEL SET PEN

GCLEAR MOVE SYMBOL

GLOAD PLOT

GRID POLYGON

GSTORE POLYLINE

G

GCLEAR - GSTORE G-19

G

GLOAD
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

This statement loads the contents of an INTEGER array into a frame buffer
(the converse of GSTORE).

destination
device selector

Item Description

destination numeric expression, rounded to an
device selector integer; Default = last CRT plotter

integer array name of an INTEGER array.
name

Example Statements

GLOAD Picture(*)
IF Flag THEN GLOAD Array(*)
GLOAD CRT,Screen(*)
GLOAD 28,Screen(*)

Semantics

Range

(see Glossary)

any valid name

A frame buffer is an area of memory which contains the digital representation
of a raster image. A monochromatic image has a frame buffer one bit deep.
The Model 236 color display has a four-bit frame buffer which allows sixteen
colors. The HP 98627 A external color interface has a three-bit frame buffer
which allows eight colors. The HP 98543A and HP 98545A display boards have

G-20 GCLEAR - GSTORE

GLOAD

4 planes, allowing 16 colors, and the HP 98700 has 4 or 8 planes, allowi~g 16 or
256 colors, respectively. The HP 98547 A and HP 98549A display boards have
6 planes, allowing 64 colors. The HP 98550A and HP 98720 display boards
have 8 planes, allowing 256 colors. The HP Model 362/382 internal display
interfaces have 8 planes, allowing 256 colors.

If a destination device is not explicitly specified, the array's contents are loaded
into the current PLOTTER IS device (if it is a frame buffer) or into the last
'frame buffer device specified by a PLOTTER IS statement.

GLOAD operates on active plotting devices. A plotting device is active when it
is specified in a PLOTTER IS statement. In addition, the internal CRT is also
activated by any of the following operations: any pen movement; GCLEAR;
GLOAD to the current default destination; GSTORE from the current default
source; DUMP GRAPHICS from the current default source; and SET PEN.
Plotters are de-activated by power-up, GINIT, SCRATCH A or (RESET).

The array's contents are loaded into the specified frame buffer if a currently
active frame buffer (CRT) is explicitly specified as the destination. However, if
the specified frame buffer is not activated, error 708 occurs.

The GLOAD is not performed if a non-frame buffer destination which is the
current PLOTTER IS device is explicitly specified. However, if a non-frame
buffer destination which is not the current PLOTTER IS device is specified,
error 708 occurs.

Pixel Representation

A pixel is a picture element. Each pixel on a monochromatic display is G
represented by one bit in memory; a binary 1 represents a pixel that is on,
while a binary 0 represents a pixel which is off. Each INTEGER array element
represents 16 pixels on a monochromatic display.

Pixels on color and gray scale displays have different representation. The
Model 236 color display requires four bits to represent each pixel. The optional
color monitor (HP 98627) requires three bits to represent each pixel.

The number of pixels on the horizontal and vertical axes and the number of
INTEGER array elements necessary to represent the entire display is shown in
the following table for each model and display.

GCLEAR • GSTORE G·21

GLOAD

BASIC/WS BASIC lUX
Horizontal Vertical INTEGER INTEGER

Model Size Size Elements Elements
1-plane systems:
216 (HP 9816) 400 300 7500 nla
(monochromatic)
220 (HP 9920)
(monochromatic)
(HP 98204A) 400 300 7500 nla
(HP 98204B) 512 390 12480 nla
226 (HP 9826) 400 300 7500 nla
(monochromatic)
236 (HP 9836) 512 390 12480 nla
(monochromatic)
98546 512 390 12480 12480
(monochromatic)
237 (HP 9837) 1024 768 49 152 49 152
(bit-mapped,
monochromatic)
98542 1024 400 25600 12 800
(medium-resolution
bit-mapped,
monochromatic)
98544 1024 768 49 152 49 152
(high-resolution,
bit-mapped,

G monochromatic)
98548 1280 1024 163 840 81 920
(high-resolution,
bit-mapped,
monochromatic)
3-plane systems:
98627A 512 512 49 152 nla
(external color)

G·22 GCLEAR· GSTORE

GLOAD

BASIC/WS BASIC/UX
Horizontal Vertical INTEGER INTEGER

Model Size Size Elements Elements
4-plane systems:
236 (HP 9836C) (color) 512 390 49920 n/a
98543 (medium-resolution, 1024 400 102400 102400
bit-mapped, color)
98545 (high-resolution, 1024 768 196 608 393 216
bit-mapped, color)
6-plane systems:
98547 (high-resolution, 1024 768 393 216 393 216
bit-mapped, color)
98549 (high-resolution, 1024 768 393 216 393216
bit-mapped, color)
8-plane systems:
98700 (high-resolution, 1024 768 393 216 393 216
bit-mapped, color)
98550A (high-resolution, 1280 1024 655 360 655 360
hit-mapped, color)
98720A 1280 1024 n/a 655360
362/382 (color 1024 768 393 216 393 216
or gray scale)

640 480 153 600 153 600

The declared array size can be larger or smaller than the graphics memory size;
the operation stops when either graphics memory or the array is exhausted. G

Since anyone dimension of an array cannot be more than 32 767 elements,
for an array to be large enough to hold the entire graphics representation, the
array may have to be multi-dimensional. For example,

INTEGER Screen(1:390,1:64,1:2) for Model 236 Color
INTEGER Screen(1:512,1:32,1:3) for HP 98627A Color

GCLEAR • GSTORE G-23

G

GLOAD

Storage Format

The pixel representation on a monochromatic display is stored sequentially in
the array using GSTORE.

The pixel representation for color displays is stored in different formats using
GSTORE.

Model 236 color display: Consecutive pairs of 16-bit words are used, regardless
of the array structure. P in the diagram is the 4-bit representation of the pixel.

Word! Word2

P4

HP 98627 A color display: Each word contains the blue, green or red
representation for 16 pixels. P in the diagram is the I-bit color representation
of the pixel.

Word Pixel Color

I PI P2 P3 P4 ... PI6 BLUE

2 PI P2 P3 P4 ... PI6 GREEN

3 PI P2 P3 P4 ... PI6 RED

4 PI7 PI8 PI9 P20 ... P32 BLUE

5 PI7 PI8 PI9 P20 ... P32 GREEN

6 PI7 PI8 PI9 P20 ... P32 RED

etc.

G-24 GCLEAR - GSTORE

GLOAD

Storage Format on Multi-Plane Bit-Mapped Displays

GLOAD loads information from an array into the graphics planes in the frame
buffer. "Graphics planes" means those planes which have been write-enabled
for graphics operations via power up, SCRATCH A, or GESCAPE. You can
change the graphics write mask with GESCAPE.

In the following paragraphs, reference is made to the "highest graphics
plane." The "highest graphics plane" is that plane in the frame buffer whose
corresponding bit in the graphics write-enable mask has the highest number.
For example, the highest graphics plane with a write mask of binary 1000 is 4.
Also note that although bits in a byte are numbered from 0 through 7 (right to
left), planes in the frame buffer are numbered 1 through 8.

If the highest graphics plane currently enabled is 1 (or none), act like there is
1. The storage format is:

Word I PO PI P2 P3 000 PI5

Word2 PI6 PI7 PI8 PI9 000 P3I

If the highest graphics plane currently enabled is between 2 and 4, inclusive,
act like there are 4. The storage format is the same as the Model 236C format,
described above.

If the highest graphics plane currently enabled is between 5 and 8, inclusive,
act like there are 8. The storage format is: G

Word Each bit in most/significant byte Each bit in least/ significant byte

Word I PO PI

Word 2 P2 P3

Images should be GLOADed on the same display and with the same
write-enable mask that was used when the image was GSTOREd. If these
guidelines are not observed, the GLOADed image may bear no resemblance to
the GSTO REd image.

GCLEAR • GSTORE G·25

GLOAD

To determine the number of elements needed in an integer array to hold an
image, use the GESCAPE operation selector 3.

When using graphics and alpha write masks, you may prefer not to overlap the
masks; that is, have any planes which are simultaneously indicated by both
masks. If planes enabled for alpha overlap those enabled for graphics, some
alpha information will be stored along with the graphics information.

You can conserve space if you are using fewer than the maximum number of
planes. For example, on a 98700 with eight planes, if pens 0 through 15 only
are being used, the graphics write mask could be set to 15 (binary 00001111)
rather than the default of 255 (binary 11111111). In this way, only half the
memory would be required to GLOAD the image. You can change the graphics
write mask with GESCAPE.

Non-Square Pixel Displays (BASIC Workstation Only)

With non-square pixel displays, GSTORE stores all pixels (e.g., alll024x400
pixels), thus requiring over twice the amount of memory as with a Model 236C.
This is to insure that any image GSTOREd appears exactly the same when
GLOADed back into the frame buffer. Since alpha uses the non-square pixels
as separate elements-not as pairs as in graphics-it is possible to have pixel
pairs with different values in each pixel. If pixel pairs were stored, images with
mixed alpha and graphics could appear blurred when reloaded.

BASIC/UX Specifics

G Storage format for all multi-plane bit-mapped displays is byte/pixel, regardless
of the number of planes or value of the graphics write mask. For example:

Word Each bit in most/significant byte Each bit in least/significant byte

Word 1 PO PI

Word 2 P2 P3

Storage format for monochrome (I-plane) bit-mapped displays is the same for
BASIC/WS and BASIC/UX. For example:

G·26 GCLEAR - GSTORE

GLOAD

G

GCLEAR - GSTORE G-27

G

GOSUB
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
No
Yes
Yes

This statement transfers program execution to the subroutine at the specified
line. The specified line must be in the current context. The current program
line is remembered in anticipation of returning (see RETURN). (Also see the
ON ... statements.)

Item

line label

line number

Description

name of a program line

integer constant identifying a
program line

Example Statements

GOSUB 120
IF Numbers THEN GOSUB Process

G-28 GCLEAR - GSTORE

Range

any valid name

1 through 32 766

GOTO
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
No
Yes
Yes

GOTO

This statement transfers program execution to the specified line. The specified
line must be in the current context. (Also see the ON ... statements.)

Item

line label

line number

Description

name of a program line

integer constant identifying a
program line

Example Statements

GOTO 550
GOTO Loop_start
IF Full THEN Exit (implied GOTO)

Range

any valid name

1 through 32 766

GCLEAR • GSTORE G·29

G

G

GRAPHICS
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS*
GRAPH
Yes
Yes
Yes

This statement turns the graphics display on or off. This statement has no
effect on the contents of the graphics memory, it just controls whether it is
displayed or not. At power-on or after SCRATCH A, the graphics display is
off. (Also see DUMP.)

(GRAPHICS >Q-:-:-5T
Example Statements

GRAPHICS OR
IF Flag THER GRAPHICS OFF

Semantics

Multi-Plane Bit-Mapped Displays

If you do not understand the concept of write-enable masks or display-enable
masks, see GCLEAR before reading the following paragraphs.

GRAPHICS ON/OFF applies only to the graphics display which also is the
alpha display. For example, suppose your configuration consists of a display
which has both alpha and graphics, and another display which has only
graphics. In this case, there would be no way, with the GRAPHICS statement,
to turn graphics on or off on the display which has graphics exclusively.

With default alpha and graphics write-masks, the GRAPHICS ON and GRAPHICS
OFF statements have no effect on bit-mapped displays. If designated alpha and

G-30 GCLEAR - GSTORE

GRAPHICS

graphics write masks do not overlap, then the statements will enable/disable
graphics planes for displaying as with non-bit-mapped systems. When the
write masks overlap, planes that are used only for graphics (not alpha) are
enabled/disabled. For example, if the alpha write-enable mask is binary 1110
and the graphics write-enable mask is binary 0011, GRAPHICS ON and GRAPHICS
OFF would only affect plane 1. Plane 2 is not affected because it is indicated by
both the alpha and graphics write-enable masks, and planes 3 and 4 are not
affected because they are not indicated by the graphics write-enable mask.

Note Mixing ALPHA/GRAPHICS ON/OFF with explicit definition
of the display-enable mask may cause the [ALPHA) and/or
[GRAPHICS) keys to have unexpected results. The reason for
this is that explicit setting of the display mask is, in a manner
of speaking, working "behind the back" of the operating
system. Thus, you could turn off graphics by modifying the
display-enable mask, and the internal variables which keep
track of [ALPHA) and [GRAPHICS) key presses would not-indeed,
could not-have been updated. The reason these variables
cannot be updated is that you can set the display mask to a
state in which "alpha on" is only partially true; some alpha
planes are on, and some aren't. The same goes for graphics.

BASIC/UX Specifics

GRAPHICS ON/OFF has no effect in a windowing environment, since the
write-masks are always set to enable all planes.

BASIC/DOS Specifics

GRAPHICS ON/OFF functions only on SEPARATE ALPHA mode, which is
supported only for VGA and EGA displays.

GCLEAR • GSTORE G·31

G

G

GRAPHICS INPUT IS

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

UX WS DOS
GRAPHX
Yes
Yes
Yes

This statement defines which device is to be used for graphics input in
subsequent DIGITIZE, SET LOCATOR, TRACK IS ... ON/OFF, and READ
LOCATOR statements.

GRAPHICS INPUT IS

Item Description

device selector numeric expression, rounded to an
integer

digitizer string expression
specifier

Example Statements
GRAPHICS INPUT IS 706, "HPGL"
GRAPHICS INPUT IS Ds,Hp$
GRAPHICS INPUT IS KBD, "KBD"
GRAPHICS INPUT IS KBD, "TABLET"

Semantics

Range

(see Glossary)

(see semantics)

The specified device is defined to be the graphics input device for subsequent
graphics input statements (DIGITIZE, READ LOCATOR, SET LOCATOR,
and TRACK ... IS ON). This input device becomes undefined when a
power-up, [RESET), GINIT, or SCRATCH A is executed. The default input
device is KBD, "KBD".

G-32 GCLEAR· GSTORE

GRAPHICS INPUT IS

The operating system attempts to use the current VIEWPORT and WINDOW
(or SHOW) parameters for both the current PLOTTER IS device and the
specified GRAPHICS INPUT IS device, so that the usable areas of the input
and output devices correspond in a 1-to-1 mapping. If the aspect ratios of the
input and output devices are different, the input device limits are truncated to
match the output device's aspect ratio.

If the VIEWPORT statement specifies an area that does not exist on the input
device, error 705 will be reported.

If you specify the keyboard device selector, there are two possibilities for the
digitizer specifier. To specify relative pointing devices (e.g., the cursor keys,
knob, or mouse), use "KBD" or "ARROW KEYS". For a port path to the
Series 500, use the string "ARROW KEYS". To specify absolute pointing
devices (e.g., HP-HIL tablets or the Touchscreen), use the string "TABLET".
"HPGL" must be specified if the device selector is anything other than the
keyboard select code.

When doing a DIGITIZE, the relative pointing devices move the graphics
cursor. Otherwise, in addition to moving the graphics cursor, they perform
their normal "alpha" functions: scrolling text on the screen, and moving the
alpha cursor within the keyboard entry line.

HP-HIL Absolute Locators

This statement can specify HP-HIL absolute locators, which include graphics
tablets as well as the Touchscreen. As with relative locators, all devices of this
type are lumped together and processed as if they were a single device. This
could lead to interference if two or more of these devices were connected to
the HP-HIL bus. The intent is to support one active absolute locator on the
HP-HIL bus, although careful use will allow more than one. In particular, the
GESCAPE values of 20, 21, and 22 allow use of the HP-HIL Touchscreen on the
same bus as a Tablet, provided the stylus is removed from the Tablet when the
Touchscreen is in use.

GCLEAR • GSTORE G·33

G

G

GRAPHICS INPUT IS

Absolute Locator Hard Clip Limits

You can set the position of P2-the upper right corner of the digitizing area
on HP-HIL tablets by using GESCAPE with operation selectors 20 through 22.
This is conceptually similar to setting the P2 point with HPGL commands on
HPGL tablets. See GESCAPE for further information.

BASIC/UX Specifics

When running in X Windows:

• Only the HP-HIL devices recognized by the window system (ie., those which
control the window pointer) can be used for graphics input.

• All HP-HIL devices (including tablets) can be accessed only through the
KBD or ARROW KEYS digitizer specifier. TABLET is not a valid specifier
in X Windows.

• Any HP-GL devices specified in a GRAPHICS INPUT IS will be locked to
that window while a statement which accesses the device (e.g., DIGITIZE) is
being executed.

When running on a terminal:

• Only arrow keys can be used to provide input through the KBD select code.

G-34 GCLEAR - GSTORE

GRID

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

GRID

This statement draws a full grid pattern. The pen is left at the intersection of
the X and Y axes.

GCLEAR - GSTORE G-35

G

G

GRID

Item Description Range

x tick spacing numeric expression in current units; (see text)
Default = 0, no ticks

y tick spacing numeric expression in current units; (see text)
Default = 0, no ticks

y axis location numeric expression specifying the
location of the y axis in x-axis units;
Default =0

x axis location numeric expression specifying the
location of the x axis in y-axis units;
Default = 0

x major count numeric expression, rounded to an 1 through 32 767
integer, specifying the number of tick
intervals between major tick marks;
Default = 1 (every tick is major)

y major count numeric expression, rounded to an 1 through 32 767
integer, specifying the number of tick
intervals between major tick marks;
Default = 1 (every tick is major)

major tick size numeric expression in graphic display
units; Default = 2

Example Statements

GRID 10,10,0,0
GRID Xmin,Ymin,Xintercept,Yintercept,5,5

Semantics

Grids are drawn with the current line type and pen number. Major tick marks
are drawn as lines across the entire soft clipping area. A cross tick is drawn at
the intersection of minor tick marks.

G-36 GCLEAR - GSTORE

GRID

The X and Y tick spacing must not generate more than 32 768 grid marks in
the clip area, or error 20 will be generated. Only the grid marks within the
current clip area are drawn.

Applicable Graphics Transformations

Scaling PIVOT CSIZE LDIR PDIR

Lines (generated by moves and X X [4]
draws)

Polygons and rectangles X X X

Characters (generated by X X
LABEL)

Axes (generated by AXES & X
GRID)

Location of Labels [1] [3] [2]

1 The starting point for labels drawn after lines or axes is affected by scaling.
2The starting point for labels drawn after other labels is affected by LDIR.
3The starting point for labels drawn after lines or axes is affected by PIVOT.
4RPLOT and IPLOT are affected by PDIR.

GCLEAR· GSTORE G·37

G

GSEND
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

This statement is used to send HPGL commands to the current PLOTTER IS
device.

(GSENO >1 HPGL s~fn~mond ~

Item

HPGL
command
string

Description

string expression

Example Statements

IF Hpgl_device THEN GSEND "IP;"

G GSEND String$

Semantics

Range

device-dependent

This statement sends a string of characters to the current PLOTTER
IS device, which may be a file or a plotter. The string is to contain
Hewlett-Packard Graphics Language (HPGL) command(s). Note that BASIC
does not check the syntax of these HPGL commands.

GSEND is most useful when the PLOTTER IS device is a file (it is not
possible to OUTPUT an HPGL command to the file while it is the PLOTTER
IS device).

G-38 GCLEAR - GSTORE

GSEND

An error is reported if the current PLOTTER IS device is not an HPGL device
or a file.

After GSEND sends the specified string, it will send a carriage return/line feed
(as an EOL sequence). If your device does not recognize a carriage return/line
feed as a terminator for an HPGL command, you must include the correct
terminating sequence (normally a semicolon) as part of the HPGL command
string you are sending.

Note that you cannot split HPGL commands over more than one GSEND
statement, because of the carriage return/line feed sequence sent after each
GSEND statement. The following example will not work because it splits the
HPGL command over more than one GSEND statement. (Also, the command
is not properly terminated.)

GSElID "P"
GSEND "F"

The proper way to send this HPGL command is:

GSEND "PF;"

GCLEAR • GSTORE G·39

G

G

GSTORE
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

This statement stores the contents of the frame buffer into an INTEGER array
(the converse of GLOAD).

Item

source device
selector

integer array
name

source
device selector

Description

numeric expression, rounded to an
integer; Default = last CRT plotter

name of an INTEGER array

Example Statements

GSTORE Screen(*)
IF Done THEN GSTORE 28,Picture(*)

Semantics

Range

(see Glossary)

any valid name

A frame buffer is an area of memory which contains the digital representation
of a raster image. A monochromatic image has a frame buffer of one bit deep.
The Model 236 color display has a four-bit frame buffer which allows sixteen
colors. The HP 98627 A external color interface has a three-bit frame buffer
which allows eight colors. The HP 98543A and HP 98545A display boards have
4 planes, allowing 16 colors, and the HP 98700 has 4 or 8 planes, allowing 16 or

G-40 GCLEAR - GSTORE

GSTORE

256 colors, respectively. The HP 98547 A and HP 98549A display boards have
6 planes, allowing 64 colors. The HP 98550A and HP 98720 displays have 8
planes, allowing 256 colors. The HP Model 362/382 internal display interfaces
have 8 planes, allowing 256 colors.

If a source device is not explicitly specified, the array's contents are loaded
from the current PLOTTER IS device (if it is a frame buffer) or from the last
frame buffer device specified by a PLOTTER IS statement.

GSTORE operates on active plotting devices. A plotting device is active
when it is specified in a PLOTTER IS statement. In addition, the internal
CRT is also activated by any of the following operations: any pen movement;
GCLEAR; GLOAD to the current default destination; GSTORE from the
current default source; DUMP GRAPHICS from the current default source;
and SET PEN. Plotters are de-activated by power-up, GINIT, SCRATCH A or
[RESET).

The frame buffer's contents are loaded into the specified array if a currently
active frame buffer (CRT) is explicitly specified as the source. However, if the
specified frame buffer is not activated, error 708 occurs.

The GSTORE is not performed if a non-frame buffer source which is the
current PLOTTER IS device is explicitly specified. However, if a non-frame
buffer source which is not the current PLOTTER IS device is specified, error
708 occurs.

Pixel Representation and Storage

See the GLOAD statement for details about pixel representation and storage G
formats.

GCLEAR - GSTORE G-41

H
HELP - HIL SEND

H

HELP - HIL SEND H-1

H

HELP
The HELP keyword is implemented for the HP BASIC Compiler and for HP
BASIC Plus. Refer to your Compiler or HP BASIC Plus documentation for
details.

H-2 HELP - HIL SEND

HILBUF$

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
KBD
Yes
Yes
Yes

HILBUF$

This function receives data sent by an HP-HIL device (e.g Describe Records,
Poll Records, etc.).

Example Statement

HILBUF$
Temp_buf$=HILBUF$

--{ HILBuF1 r

IF Read_buf THEN Buffer$=HILBUF$

Semantics

This function receives data from HP-HIL devices which have had polling
enabled by the ON HIL EXT statement or which have been sent a command
by the HIL SEND statement. This data takes the form of 8-bit numbers
(bytes) packed into a string. When HILBUF$ is read, the internal buffer where
it accumulates this data is cleared, ready to receive more data.

The format of the string returned by the HILBUF$ function is as follows: lost
packet count, followed by zero or more data packets. The lost packet count
will normally be zero (the null character). If the internal buffer overflows
(because it is not read), the lost packet count is the total number of packets
lost (to a maximum count of 255 packets). Only whole packets are put into the
buffer. The format of a packet is: packet length, device address, data list. For
example, sending an HIL SEND 4;RSC statement to an ID Module would create
a packet of data similar to the following:

HELP· HIL SEND H·3

H

H

HILBUF$

Packet Device
Length Address

11 4

data list

where 11 is the packet length and 4 is the device address. The remaining
characters make up the data list (which in this example is a product/exchange
number and serial number). The first character of the packet is the packet
length. The packet length tells you how many string characters are left in the
packet (including this character). Packet lengths range from 3 to 19 characters.
The second character in the string is the device address. This tells you the
position of the device within the HP-HIL link. There can only be a total of 7
addresses in the HP-HIL link. The remaining characters in the packet make up
the data list. This list contains information which is dependent on the HP-HIL
device polled (ON HIL EXT) or on the HP-HIL device and the command sent
(HIL SEND). For more information on packets read the chapter "HP-HIL
Interface" found in the HP BASIC 6.2 Interface Reference.

If the HIL SEND statement results in data being returned from the device, the
data is put into HILBUF$ even if HP-HIL interrupts are not enabled (Le. ON
HIL EXT is not currently active). Note that no interrupt is generated, even if
HP-HIL interrupts are enabled (Le. ON HIL EXT is currently active), for data
placed in HILBUF$ as a result of HIL SEND. However, care should be taken in
this case, since executing ON HIL EXT clears HILBUF$.

H-4 HELP - HIL SEND

HIL SEND

Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
KBD
Yes
Yes
Yes

HIL SEND

This statement allows a selected subset of the HP-HIL Command Set to be
transmitted to specific devices in the HP-HIL link.

HELP· HIL SEND H·5

H

HIL SEND

H

H-6 HELP· HIL SEND

ASCII space
(sp<Jce bar)

HIL SEND

Range
Item Description/Default Restrictions

device address numeric expression representing the 1 through 7
HP-HIL device's position in the HP-HIL

rate

indicator

device specific
command

link

numeric expression indicating a keyswitch 1 or 2
auto-repeat rate of 20 or 40 milliseconds

numeric expression representing which of 1 through 7
several prompts/acknowledges on the
device to use

numeric expression whose meaning is 128 through 239
device dependent

register number numeric expression o through 127 (RRG)j

register data numeric expression

Example Statement

HIL SEND Dev_address;DKA PRM Led
HIL SEND 3; IDD
HIL SEND 7;ACK 6

Semantics

o through 255 (WRG)

o through 255

HP -HIL commands must be sent to a specific HP -HIL device, they may not be
sent to several devices at once.

The IDD (Identify and Describe) command can be sent to all HP-HIL devices.
For all other commands, HP-HIL devices which can use the HIL SEND
statement are those whose poll records are not being processed for another
purpose by the BASIC system. These devices are grouped into three categories:

• Absolute positioning devices which are not the current GRAPHICS INPUT
device. Examples of these devices are as follows: Touchscreen (RP 35723A),
A-size Digitizer (HP 46087 A), B-size Digitizer (HP 46088A).

HELP· HIL SEND H-7

H

H

HIL SEND

• HP-HIL devices with Device ID's less than hexadecimal 60. Examples of
these devices are as follows: Bar-code Reader (HP 92916A), ID Module (HP
46084A), Function Box (HP 46086A), Vectra Keyboard (HP 46030A).

• True keyboards which are not relative pointing devices, such as the HP
46020A and HP 46021A. (Poll records from these devices are processed by
the Keyboard controller, rather than by BASIC.)

The main HP-HIL devices which cannot use this function are:

• Relative pointing devices, such as the HP Mouse (HP 46060A) and Control
Dial Box (HP 46085A). Since the HP 98203C keyboard has a knob on it, it is
considered a relative pointing device and cannot be used with the HP-HIL
Command Set.

• Current GRAPHICS INPUT devices.

If the HIL SEND statement results in data being returned from the device, the
data is put into HILBUF$ even if HP-HIL interrupts are not enabled (Le. ON
HIL EXT is not currently active). Note that no interrupt is generated, even if
HP-HIL interrupts are enabled, for data placed in HILBUF$ as a result of HIL
SEND. However, care should be taken in this case, since executing ON HIL
EXT clears HILBUF$.

The system will report an error if an attempt is made to send an HP-HIL
command to an HP-HIL device at an address which was not present at the last
SCRATCH A or power-up, even if a device is now present at that address. The
system will not report an error if a command is sent to an address which had a
device present at power-up or SCRATCH A but is now empty.

The sections which follow cover the HP-HIL commands supported by BASIC.
For a detailed description of these commands, read the "HP-HIL Command
Reference" located in the "HP-HIL Appendix" of the HP BASIC 6.2 Interface
Reference.

IDD

Identify and Describe is used by the system to determine the type of HP-HIL
devices in the HP-HIL link, as well as some general characteristics of these
devices.

H-8 HELP - HIL SEND

HIL SEND

Sending an IDD to a relative pointing device, or to an absolute pointing device
which is currently the GRAPHICS INPUT device, will result in an IDD record
being reconstructed from the system's internal configuration record. This
pseudo-IDD record will be the actual IDD record stored by the system at
power-up or SCRATCH A time, but no HP-HIL bus access is made (Le. if the
device has been removed, it will still show up here).

RRG

Read Register provides a means for interaction with more complex devices via
HP-HIL, allowing for data transfers not generally supported by the HP-HIL
devices. Device support for this command is indicated in the Extended
Describe Record.

The numeric value listed after this HP-HIL command is the number of the
register that is to be accessed. The range of valid register numbers is 0 to 127.

WRG

Write Register provides a means of setting the contents of individual registers
in HP-HIL devices supporting this feature. Device support for this command is
indicated in the Extended Describe Record.

There are two types of Write Register Records: Write Register Type 1 and
Write Register Type 2. BASIC looks at both of these Types as functionally the
same (Le. they both write a single byte to a single register).

The numeric value listed after this HP-HIL command is the number of the
register that is to be accessed. The range of valid register numbers is 0 to 255.
Range 0 to 127 selects Write Register Type 1 and range 128 to 255 selects
Write Register Type 2. In either case, only one data item may be transmitted
per command (Le. this implementation limits the Type 2 data list to one
item).

HELP - HIL SEND H·9

H

H

HILSEND

RNM
Report Name is used to request a string of up to 15 characters (8-bit ASCII)
which aid in describing the device to the user. Devices indicate support of the
Report Name command in the Extended Describe Record.

RST

Report Status is used to extract device-specific status information from devices
configured on the HP-HIL link. Devices indicate support of the Report Status
command in the Extended Describe Record.

EXD
This command provides additional information concerning more advanced
device features which may not be required for basic operation. Support of the
Extended Describe command is indicated in the Describe Record Header.

RSC

The Report Security Code command is used to extract a unique
product/exchange number and serial number from the HP-HIL device. Support
of the command is indicated in the Describe Record Header.

Information returned when executing this command can also be obtained
using the SYSTEM$("SERIAL NUMBER") function. It should be noted that this
function will only return the product/exchange number and serial number
for the last HP 46084A ID Module in the HP-HIL link. If there are other
devices in the HP-HIL link with security code information, they are ignored by
the SYSTEM$("SERIAL NUMBER") function. This is not the case with the RSC
command when it is executed with the HIL SEND statement, as it will allow
you to select the device you want to report a security code.

DKA

This command is used to disable the "repeating keys" feature for the addressed
HP-HIL device, reducing returned data to one report per keyswitch transition.
Support of this command is not indicated in the Describe Record or Extended
Describe Record. Examples of devices which support it are the: Function

H-10 HELP - HIL SEND

HIL SEND

Box, Vectra Keyboard, ITF Keyboard. The default state for HP-HIL devices
supporting this command is AutoRepeat disabled.

Note

EKA 1

The auto-repeat for DKA, EKA 1, and EKA 2 is different and
independent of the keyboard auto-repeat which is controlled by
keyboard CONTROL registers 3 and 4. The repeated arrow
keys return a code which is not recognized by the keyboard
driver; hence they have no effect.

EKA 1 is used to enable the "repeating key" feature in the addressed device
(if the feature is supported). Support of this command is not indicated in
the Describe Record or Extended Describe Record. Examples of devices
which support it are the: Function Box, Vectra Keyboard, ITF Keyboard.
This command will cause the HP-HIL device's keys to repeat about every 40
milliseconds. Modifier keys «(Shift), (CTRL), (Extend char), etc.) will not repeat.
The cursor keys (0, (B, 0 and (!)) on an ITF Keyboard will send repeated
02 codes after the initial Keycode.

EKA2

EKA 2 is used to enable the "repeating key" feature in the addressed device
(if the feature is supported). Support of this command is not indicated in
the Describe Record or Extended Describe Record. Examples of devices
which support it are the: Function Box, Vectra Keyboard, ITF Keyboard.
This command will cause the HP-HIL device's keys to repeat about every 40
milliseconds. Modifier keys «(Shift), (CTRL), (Extend char), etc.) will not repeat.
The Cursor Keys (0, (B, 0 and (!)) on an ITF Keyboard will send repeated
02 codes at a faster rate than EKA 1.

PRM 1 .. 7

These Prompt commands are used to provide an audible or visual stimulus to
the user, perhaps indicating that the System is ready for a particular type of
input. Usually Prompts 1 through 7 are paired with Acknowledge 1 through
Acknowledge 7.

The Prompts supported by a device are indicated in the Describe Record.

HELP • HIL SEND H·11

H

Hil SEND

PRM

Prompt is intended to be a general-purpose stimulus to the user. This
command is usually paired with Acknowledge. An HP-HIL device indicates
support of Prompt in the Describe Record.

ACK 1 .. 7

These Acknowledge commands are used to provide an audible or visual
stimulus to the user, perhaps indicating that the System is ready for a
particular process to be performed. Usually Acknowledges 1 through 7 are
paired with Prompt 1 through Prompt 7.

The Acknowledges supported by a device are indicated in the Describe Record.

ACK

Acknowledge is intended to be a general-purpose stimulus to the user. This
command is usually paired with Prompt. An HP-HIL device indicates support
of Acknowledge in the Describe Record.

DDC 128 .. 239

This is a range of 112 commands which have been reserved for use as
"device-specific" commands. These commands are intended for use by devices
with special requirements which the remainder of the HP-HIL protocol does
not readily support.

BASIC/UX Specifics

Bad register read/write errors are no longer reported. IDD, RNM, EXD, RST,
and RSC may return a variable number of bytes in HILBUF$. This number is

H determined by truncating all trailing null characters from the packet obtained
by the device.

Devices to be addressed using HIL SEND must not have been opened by the
X Windows server. See the section "Opening Input Devices" in the chapter
"System-Level Customization" found in the Using the X Window System,
Version 11 manual, for details on how to prevent the X Window server from
opening specified HIL devices.

H-12 HELP - Hil SEND

I
ION - IVAL

IDN - IVAL 1-1

ION
See the MAT statement

1·2 IDN· IVAL

IDRAW
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

IORAW

This statement draws a line from the current pen position to a position
calculated by adding the X and Y displacements to the current pen position.

§-1 x displacement ~ y displacement ~

Item Description Range

x displacement numeric expression in current units

y displacement numeric expression in current units

Example Statements

IDRAW X+50,0
IDRAW Delta_x,Delta_y

Semantics

The X and Y displacement information is interpreted according to the current
uni t-of-measure.

The line is clipped at the current clipping boundary.

An IDRAW 0,0 generates a point. IDRAW updates the logical pen position
at the completion of the IDRAW statement, and leaves the pen down on an
external plotter. IDRAW is affected by the PIVOT transformations.

If none of the line is inside the current clipping limits, the pen is not moved,
but the logical pen position is updated.

ION· IVAL 1·3

IDRAW

Applicable Graphics Transformations

Scaling PIVOT CSIZE LDIR PDIR

Lines (generated by moves and X X [4]
draws)

Polygons and rectangles X X X

Characters (generated by X X
LABEL)

Axes (generated by AXES & X
GRID)

Location of Labels [1] [3] [2]

[1]The starting point for labels drawn after lines or axes is affected by scaling.
[2]The starting point for labels drawn after other labels is affected by LDIR.
[3]The starting point for labels drawn after lines or axes is affected by PIVOT.
[4]RPLOT and IPLOT are affected by PDIR.

1-4 ION - IVAL

IF ... THEN

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
No
Yes
No

This statement provides conditional branching.

(EN~ IF)-.I

Cannot be a statement
used during prerun

IF ... THEN

ION· IVAL 1·5

IF ... THEN

Item

boolean
expression

line label

line number

statement

program
segment

Description

numeric expression; evaluated as true
if non-zero and false if zero

name of a program line

integer constant identifying a
program line

a programmable statement

any number of contiguous program
lines not containing the beginning
or end of a main program or
subprogram.

Example Program Segments
150 IF Flag THEN Next_file
160 IF Pointer<l THEN Pointer=l

580 IF First_pass THEN
590 Flag=O
600 INPUT "Command?" ,Cmd$
610 IF LEN(Cmd$) THEN GOSUB Parse
620 END IF

1000 IF X<O THEN
1010 BEEP
1020 DISP "Improper Argument"
1030 ELSE
1040 Root=SQR(X)
1050 END IF

Semantics

Range

any valid name

1 through 32 766

(see following list)

If the boolean expression evaluates to 0, it is considered false; if the evaluation
is non-zero, it is considered true. Note that a boolean expression can be
constructed with numeric or string expressions separated by relational
operators, as well as with a numeric expression.

1-6 ION - IVAL

IF ... THEN

Single Line IF ... THEN

If the conditional statement is a GOTO, execution is transferred to the
specified line. The specified line must exist in the current context. A line
number or line label by itself is considered an implied GOTO. For any other
statement, the statement is executed, then program execution resumes at the
line following the IF ... THEN statement. If the tested condition is false,
program execution resumes at the line following the IF ... THEN statement,
and the conditional statement is not executed.

Prohibited Statements

The following statements must be identified at prerun time or are not executed
during normal program flow. Therefore, they are not allowed as the statement
in a single line IF ... THEN construct.

CASE END IF REM

CASE ELSE END IF IMAGE REPEAT

COM END LOOP INTEGER SELECT

COMPLEX END SELECT LOOP SUB

DATA END WHILE NEXT SUBEND

DEF FN EXIT IF OPTION BASE UNTIL

DIM FNEND REAL WHILE

ELSE FOR

When ELSE is specified, only one of the program segments will be executed.
When the condition is true, the segment between IF ... THEN and ELSE is
executed. When the condition is false, the segment between ELSE and END
IF is executed. In either case, when the construct is exited, program execution
continues with the statement after the END IF.

Branching into an IF ... THEN construct (such as with a GOTO) results in a
branch to the program line following the END IF when the ELSE statement is
executed.

ION - IVAL 1-7

IF ... THEN

The prohibited statements listed above are allowed in multiple-line IF ...
THEN constructs. However, these statements are not executed conditionally.
The exceptions are other IF ... THEN statements or constructs such as
FOR ... NEXT, REPEAT ... UNTIL, etc. These are executed conditionally,
but need to be properly nested. To be properly nested, the entire construct
must be contained in one program segment (see drawing).

1-8 ION - IVAL

IMAG

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
COMPLEX
Yes
Yes
Yes

IMAG

This function returns the imaginary part of a COMPLEX number.

(IMAG r<D-1 arqument ~

Item Description/Default

argument numeric expression

Example Statements

X=IMAG(Complex_expr)
Y=IMAG(Real_expr)
Z=IMAG(Integer_expr)
Result=IMAG(CMPLX(2.1,-8»

Semantics

Range
Restrictions

any valid INTEGER, REAL,
or COMPLEX value

If the argument is not a COMPLEX value, the result is o.

ION· IVAL 1·9

IMAGE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN*
None
No
Yes
No

This statement provides image specifiers for the ENTER, OUTPUT, DISP,
LABEL, and PRINT statements. Refer to the appropriate statement for details
on the effect of the various image specifiers.

Item Description

IMAGE
statement items

Range

IMAGE
statement items

literal (see drawing)

repeat factor integer constant 1 through 32 767

literal string composed of characters from quote mark not allowed
the keyboard, including those
generated using the ANY CHAR key.

Example Statements

IMAGE 4Z.DD,3X,K,/
IMAGE "Result = ",SDDDE,3(XX,ZZ)
IMAGE I,B

1-10 ION - IVAL

Im094l specifier list

R4dlx sp«1f~ cannot
bot uHd without 4
d~it specifier

IMAGE

ION· IVAL 1·11

IMAGE

Note Some localized versions of BASIC, such as Japanese localized
BASIC, support two-byte characters. When using this localized
language remember that the IMAGE, ENTER USING,
OUTPUT USING, and PRINT USING statements define a
one-byte ASCII character image with A. Use the image AA to
designate a two-byte character.

For a general discussion of globalization and localization, refer
to the HP BASIC 6.2 Porting and Globalization manual. For
LANGUAGE specific details, refer to Using LanguageX With
HP BASIC, where LanguageX is your local language.

1-12 ION - IVAL

IMOVE

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

IMOVE

This statement lifts the pen and moves it from the current pen position to
a position calculated by adding the specified X and Y displacements to the
current pen position.

@-1 x displacement ~ y displacement ~

Item Description Range

x displacement numeric expression in current units

y displacement numeric expression in current units

Example Statements

IMOVE X+50,O
IMOVE Delta_x,Delta_y

Semantics

The X and Y displacements are interpreted according to the current
unit-of-measure. IMOVE is affected by the PIVOT transformation.

If both current physical pen position and specified pen position are outside
current clip limits, no physical pen movement is made; however, the logical pen
is moved the specified displacement.

IDN • IVAL 1·13

IMOVE

Applicable Graphics Transformations

Scaling PIVOT CSIZE LDIR PDIR

Lines (generated by moves and X X [4]
draws)

Polygons and rectangles X X X

Characters (generated by X X
LABEL)

Axes (generated by AXES & X
GRID)

Location of Labels [1] [3] [2]

1 The starting point for labels drawn after lines or axes is affected by scaling.
2The starting point for labels drawn after other labels is affected by LDIR.
3The starting point for labels drawn after lines or axes is affected by PIVOT.
4RPLOT and IPLOT are affected by PDIR.

1-14 ION - IVAL

INDENT

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
PDEV
Yes
No
No

INDENT

This commands indents your program to reflect the structure that results from
its constructs.

Item Description

starting column integer constant; Default = 7

increment integer constant; Default = 2

Example Statements

IHDENT
IHDENT 8,4

Semantics

Range

o through Screen ·Width-8

o through Screen Width-8

The starting column specifies the column in which the first character of the
first statement of each context appears. The increment specifies the number
of spaces that the beginning of the lines move to the left or right when the
nesting level of the program changes. Note that a line label may override the
indentation computed for a particular line. The INDENT command does
not move comments which start with an exclamation point, but it does move
comments starting with REM. However, if a BASIC program line is moved to

ION· IVAL 1·15

INDENT

the right a comment after it may have to be moved to make room for it. In
both of these cases (line labels and comments), the text moves only as far as is
necessary; no extra blanks are generated.

Indenting a program may cause the length of some of its lines to become longer
than the machine can list. This condition is indicated by the presence of an
asterisk after the line numbers of the lines which are overlength. If this occurs,
the program will run properly, STORE properly and LOAD properly. If the
total length of a line exceeds 256 characters, you cannot do a SAVE, then a
GET. Doing an INDENT with smaller values will alleviate this problem.

Indentation occurs after the following statements:

FOR REPEAT

LOOP WHILE

SUB SELECT

IF ... THEN! DEF FN

IThis is only true for IF .. THEN statements where the THEN is followed by an
end-of-line or an exclamation point.

The following statements cause a one-line indentation reversal; that is,
indentation is reversed for these statements but re-indented immediately after
them:

1-16 ION - IVAL

CASE

CASE ELSE

ELSE

EXIT IF

FNEND

SUBEND

INDENT

Indentation is reversed before the following statements:

END IF END WHILE

END LOOP NEXT

END SELECT UNTIL

Indentation remains the same from line to line for all other statements.

Improperly matched nesting will cause improper indentation. Deeply nested
constructs may cause indentation to exceed Screen Width-8. However, visible
indentation is bounded by Starting Column and Screen Width -8. If a large
Increment is used, indentation may attempt to go beyond Screen Width -8.
This will not be allowed to occur, but an internal indentation counter is
maintained, so construct-forming statements will have matching indentation.

ION· IVAL 1·17

INITIALIZE

Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS * IN
None
Yes
Yes
Yes

This statement prepares (formats) mass storage media for use by BASIC,
and places a LIF (Logical Interchange Format) directory on the media. (To
format an HFS volume, use the DISC_UTIL program.) When INITIALIZE is
executed, any existing files on the media are destroyed.

literal form of RAM volume specifier:

1-18 IDN - IVAL

INITIALIZE

Item Description Range

volume specifier string expression (see MASS STORAGE IS)

interleave
factor

numeric expression, rounded to an 0 through 15
integer; Default = device dependent
(see table)

format option numeric expression Default = 0 device dependent

RAM volume
specifier

string expression (see drawing)

RAM unit size numeric expression, rounded to an
integer; specifies number of 256-byte
sectors; Default = 1056 (size of a 5
1/4 -inch or single-sided 3 1/2 -inch
disk)

Example Statements

INITIALIZE ":INTERNAL"
INITIALIZE Disc$,2
INITIALIZE ":,700",0,4
INITIALIZE ":MEMORY,O",Sectors

Semantics

4 through 32 767
memory-dependent

Any media used by the computer must be initialized before its first use.
Initialization creates a new LIF directory, eliminating any access to old data.
The media is partitioned into physical records. The quality of the media is
checked during initialization. Defective tracks are "spared" (marked so that
they will not be used subsequently).

Note that when executing INITIALIZE from the keyboard, BASIC prompts you
to continue, thus ensuring safe initialization. BASIC does not prompt you to
continue when executing INITIALIZE from a program.

ION·IVAL 1·19

INITIALIZE

Interleave Factor

The interleave factor establishes the distance (in physical sectors) between
consecutively numbered sectors. The interleave factor is ignored if the mass
storage device is not a disk. If you specify 0 for the interleave factor, the
default for the device is used.

Default
Device Type btterleave

INTERNAL 1

CS80 [a]

HP 9121 2

HP 913X (floppy) 4

HP 913X (hard) 9

HP 9895 3

HP 8290X 4

aCS80 disks use the current interleave as the default. If the disk is
uninitialized, the interleave recommended for that disk is used. Factory
shipped interleave is 1 for the HP 7908, HP 7911, HP 7912 and HP 7914 disks.
An uninitialized HP 9122 disk has a default interleave of 2.

Format Option

Some mass storage devices allow you to select the sector or volume size with
which the disk is initialized. Omitting this parameter or specifying 0 initializes
the disk to the default sizes. Refer to the disk drive manual for options
available with your disk drive. For example, when initializing a single-sided
flexible disk on the HP 9122 double-sided flexible disk drive, use a value of 4
(256-byte sectors, and 270K bytes total volume size).

1-20 ION - IVAL

INITIALIZE

Initializing EPROM (Requires EPROM)

In order to initialize an EPROM unit, it must be completely erased. The select
code specified in the INITIALIZE statement must be the select code of the
EPROM Programmer card currently connected to the EPROM memory card; if
not, error 72 is reported.

The unit number must be one greater than the greatest unit number of any
initialized EPROM unit currently in the system. For example, if the greatest
unit number of an EPROM unit in the system is 3, then the unit to be
initialized must be unit number 4.

INITIALIZE and HFS Volumes

Since INITIALIZE creates a LIF directory, it cannot alone be used to format
an HFS disk; it will still, however, scan the volume for bad sectors. To format
an HFS volume on the BASIC Workstation, use the System Disk Utility
(DISC_UTIL, which calls the "Mkhfs" compiled subprogram to place an
HFS-format directory on the disk volume). See the "BASIC Utilities Library"
chapter of Installing and Maintaining HP BASIC/WS 6.2 or Installing and
Maintaining HP BASIC/UX 6.2 for instructions on using this utility.

On BASIC/UX, use the HP-UX command newfs command. See the HP-UX
Reference, newfs(1m) entry.

INITIALIZE and SRM Volumes

Since INITIALIZE creates a LIF directory, it cannot be used with SRM (which
uses the Structured Directory Format, SDF). An error will be reported if you
attempt to initialize a REMOTE volume from a workstation.

Recovering MEMORY Volume Space

BASIC RAM disk memory can be reclaimed if no binaries have been loaded
after initializing the memory volume. To recover this memory, you would
execute a line similar to the following:

INITIALIZE " : ,0, unit number" ,0

Initializing the volume to 0 sectors removes it from memory.

ION· IVAL 1-21

INITIALIZE

Memory volumes are allocated in a mark and release stack. What this means
is, you get the memory back only when other subsequently created memory
volumes have been reclaimed. You can re-initialize a removed memory volume
in its original space provided the newly allocated space is no larger than the
original space that was allocated. Otherwise, new space will be allocated for it.

BASIC/UX Specifics

Only an unmounted disk may be initialized, in LIF format.

BASIC/DOS Specifics

For LIF media in external HP-IB disk drives, INITIALIZE works the same as
for Series 200/300.

INITIALIZE cannot be used to format LIF media in internal PC drives
(use the LIFINIT utility). In internal drives, INITIALIZE formats an HPW
(virtual-LIF) disk through select code 15.

INITIALIZE cannot be used to format a DFS disk (use the MS-DOS
"FORMAT" command).

1-22 ION - IVAL

INMEM
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

INMEM

This boolean function checks for the presence of a user subprogram (SUB) or
function (FN) in memory.

(INMEM)-.{D-1 ... _~_~m_·n~---,~

Item Description

name string string expression

Example Statements

Sub_loaded=INMEK(Subname$)

IF NOT INMEK(IMysub") THEN LOADSUB ALL FROM "Mysubs"
IF INMEK(IMysub") THEN DELSUB Mysub

Semantics

Range

This function works for subprograms (SUBs) and functions (FNs), both
compiled and non-compiled. It is particularly useful when you wish conserve
memory by programmatically loading and deleting subprograms.

Related Keywords

CALL, DEF FN, DELSUB, LOADSUB, SUB

ION - IVAL 1-23

INPUT

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
No
Yes
Yes

This statement is used to assign keyboard input to program variables.

input
items

Expanded diagram:

1-24 ION· IVAL

Item

prompt

string name

subscript

beginning
position

ending position

substring
length

numeriC name

Description/Default

a literal composed of characters
from the keyboard, including those
generated using the ANY CHAR
keYiDefault = question mark

name of a string variable

numeric expression, rounded to an
integer

numeric expression, rounded to an
integer

numeric expression, rounded to an
integer

numeric expression, rounded to an
integer

name of a numeric variable

Example Statements

INPUT IIName?II,N$,IIID Number?II,Id
INPUT Array(*)

Semantics

Range
Restrictions

any valid name

INPUT

-32 768 through +32 767
(see "array" in Glossary)

1 through +32 767 (see
"su bstring" in Glossary)

o through +32 767 (see
"substring" in Glossary)

o through +32 767 (see
"substring" in Glossary)

any valid name

Values can be assigned through the keyboard for any numeric or string
variable, substring, array, or array element.

A prompt, which is allowed for each item in the input list, appears on the CRT
display line. If the last DISP or DISP USING statement suppressed its EOL
sequence, the prompt is appended to the current display line contents. If the
last DISP or DISP USING did not suppress the EOL sequence, the prompt
replaces the current display line contents.

Not specifying a prompt results in a question mark being used as the prompt.
Specifying the null string ("") for the prompt suppresses the question mark.

ION - IVAL 1-25

INPUT

To respond to the prompt, the operator enters a number or a string. Leading
and trailing blank characters are deleted. U nquoted strings may not contain
commas or quotation marks. Placing quotes around an input string allows any
character(s) to be used as input. If II is intended to be a character in a quoted
string, use 1111. Note that when you are prompted to input a COMPLEX value,
you must input two REAL values (one representing the real part and another
representing the imaginary part) separated by a comma or a (Return] or (ENTER).

Multiple values can be entered individually or separated by commas. Press the
(CONTINUE], ('R';itj'ffi), (EXECUTE], (ENTER) or (STEP) after the final input response.
Two consecutive commas cause the corresponding variable to retain its original
value. Terminating an input line with a comma retains the old values for all
remaining variables in the list.

The assignment of a value to a variable in the INPUT list is done as soon as
the terminator (comma or key) is encountered. Not entering data and pressing
(CONTINUE), (ENTER), (EXECUTE), (Return), or (STEP) retains the old values for all
remaining variables in the list.

If (CONTINUE), (ENTER), (EXECUTE), or (Return) is pressed to end the data input,
program execution continues at the next program line. If (STEP) is pressed, the
program execution continues at the next program line in single step mode. (If
the INPUT was stepped into, it is stepped out of, even if (CONTINUE), (ENTER),

(EXECUTE], or ('R';itj'ffi) is pressed.)

If too many values are supplied for an INPUT list, the extra values are ignored.

An entire array may be specified by the asterisk specifier. Inputs for the array
are accepted in row major order (right most subscript varies most rapidly).

Live keyboard operations are not allowed while an INPUT is awaiting data
entry. (PAUSE) or (STOP) on an HP 46020 keyboard can be pressed so live
keyboard operations can be performed. The INPUT statement is re-executed,
beginning with the first item, when (CONTINUE) or (STEP) is pressed. All values
for that particular INPUT statement must be re-entered.

ON KBD, ON KEY and ON KNOB events are deactivated during an INPUT
statement. Errors do not cause an ON ERROR branch. If an input response
results in an error, re-entry begins with the variable which would have received
the erroneous response.

1-26 ION - IVAL

INT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

INT

This function returns the greatest integer which is less than or equal to the
expression. The result will be of the same type (REAL or INTEGER) as the
argument.

-(INT r<D-1 argument ~

Example Statements

Whole=INT(Number)
IF X/2=INT(X/2) THEN Even

Semantics

COMPLEX arguments are not allowed with this function.

See the discussion "Precision and Accuracy" in the section "Numeric
Computation" of the HP BASIC 6.2 Programming Guide for detailed
information on the effects of the computer's internal numeric representation.

ION - IVAL 1-27

INTEGER
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
No
Yes
No

This statement declares INTEGER variables, dimensions INTEGER arrays,
and reserves memory for them. (For information about INTEGER as a
secondary keyword, see the ALLOCATE, COM, DEF FN, or SUB statements.)

Item Description Range

numeric name name of a numeric variable any valid name

lower bound integer constant; Default = OPTION -32 767 through +32 767
BASE value (0 or 1) (see "array" in Glossary)

upper bound integer constant

Example Statements

INTEGER I,J,K
INTEGER Array(-128:255)
INTEGER A(4096) BUFFER

1-28 ION - IVAL

-32 767 through +32 767
(see "array" in Glossary)

INTEGER

Semantics

An INTEGER variable (or an element of an INTEGER array) uses two bytes
of storage space. An INTEGER array can have a maximum of six dimensions.
No single dimension can have more than 32 767 total elements.

The total number of INTEGER elements is limited by the fact that the
maximum memory usage for all variables-COMPLEX, INTEGER, REAL,
and string-within any context is 224_1, or 16 777 215, bytes (or limited by
the amount of available memory, whichever is less).

Declaring Buffers

To declare INTEGER variables to be buffers, each variable's name must be
followed by the keyword BUFFER; the designation BUFFER applies only to
the variable which it follows.

ION - IVAL 1-29

INTENSITY
See the AREA and SET PEN statements.

1-30 ION - IVAL

INTERACTIVE

INTERACTIVE
See the RESUME INTERACTIVE and SUSPEND INTERACTIVE
statements.

ION - IVAL 1-31

INTR
See the OFF INTR and ON INTR statements.

1-32 ION - IVAL

INV

INV
See the MAT statement.

ION· IVAL 1-33

I PLOT

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

UX WS DOS
GRAPH
Yes
Yes
Yes

This statement moves the pen from the current pen position to the point
specified by adding the specified X and Y displacements to the current pen
position. It can be used to move without drawing a line, or to draw a line,
depending on the pen control parameter.

I I L _________________________________ ~

Item Description Range

x displacement numeric expression, in current units

y displacement numeric expression, in current units

pen control

array name

1-34 ION - IVAL

numeric expression, rounded to an -32 768 through +32 767
integer; Default=l (down after move)

name of two-dimensional, two-column any valid name
or three-column numeric array.
Requires GRAPHX.

Example Statements
IPLOT X,Y,Pen
IPLOT -5,12
IPLOT Shape(*),FILL,EDGE

Semantics

Non-Array Parameters

IPLOT

The specified X and Y displacement information is interpreted according to the
current unit-of-measure. Lines are drawn using the current pen color and line
type.

The line is clipped at the current clipping boundary. IPLOT is affected by
PIVOT and PDIR transformations.

If none of the line is inside the current clip limits, the pen is not moved, but
the logical pen position is updated.

Applicable Graphics Transformations

Scaling PIVOT CSIZE LDIR PDIR
Lines (generated by moves and X X [4]
draws)
Polygons and rectangles X X X
Characters (generated by X X
LABEL)
Axes (generated by AXES & X
GRID)
Location of Labels [1] [3] [2]

IThe starting point for labels drawn after lines or axes is affected by scaling.
2The starting point for labels drawn after other labels is affected by LDIR.
3The starting point for labels drawn after lines or axes is affected by PIVOT.
4RPLOT and IPLOT are affected by PDIR.

IDN - IVAL 1-35

IPLOT

The optional pen control parameter specifies the following plotting actions; the
defaul t value is + 1 (down after move).

Pen Control Parameter

Pen Control Resultant Action

-Even Pen up before move

-Odd Pen down before
move

+Even Pen up after move

+Odd Pen down after
move

That is, even is up, odd is down, positive is after pen motion, negative is before
pen motion. Zero is considered positive.

Array Parameters

FILL and EDGE

When FILL or EDGE is specified, each sequence of two or more lines forms a
polygon. The polygon begins at the first point on the sequence, includes each
successive point, and the final point is connected or closed back to the first
point. A polygon is closed when the end of the array is reached, or when the
value in the third column is an even number less than three, or in the range 5
to 8 or 10 to 15.

If FILL and/or EDGE are specified on the IPLOT statement itself, it causes
the polygons defined within it to be filled with the current fill color and/or
edged with the current pen color. If polygon mode is entered from within
the array, and the FILL/EDGE directive for that series of polygons differs
from the FILL/EDGE directive on the IPLOT statement itself, the directive
in the array replaces the directive on the statement. In other words, if a
"start polygon mode" operation selector (a 6, 10, or 11) is encountered, any
current FILL/EDGE directive (whether specified by a keyword or an operation
selector) is replaced by the new FILL/EDGE directive.

1-36 ION - IVAL

IPLOT

If FILL and EDGE are both declared on the IPLOT statement, FILL must
occur first. If neither one is specified, simple line drawing mode is assumed;
that is, polygon closure does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled,
but will be edged, regardless of the directives on the statement.

When using an IPLOT statement with an array, the following table of
operation selectors applies. An operation selector is the value in the
third column of a row of the array to be plotted. The array must be a
two-dimensional, two-column or three-column array. If the third column exists,
it will contain operation selectors which instruct the computer to carry out
certain operations. Polygons may be defined, edged (using the current pen),
filled (using the current fill color), pen and line type may be selected, and so
forth. See the list below.

IPLOT Array Parameter Effects

Operation
Colunm 1 Colunm 2 Selector Meaning

X y -2 Pen up before moving
X y -1 Pen down before moving
X y 0 Pen up after moving (Same as +2)
X Y 1 Pen down after moving
X y 2 Pen up after moving

pen number ignored 3 Select pen
line type repeat value 4 Select line type

color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value
red value green value 14 Color
blue value ignored 15 Value

ignored ignored >15 Ignored

ION - IVAL 1-37

IPLOT

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exactly
the same manner as the third parameter in a non-array IPLOT statement. As
mentioned above, even means lift the pen up, odd means put the pen down,
positive means act after pen motion, negative means act before pen motion.
Zero is considered positive.

Selecting Pens

The operation selector of 3 is used to select pens. The value in column one is
the pen number desired. The value in column two is ignored.

Selecting Line Types

The operation selector of 4 is used to select line types. The line type (column
one) selects the pattern, and the repeat value (column two) is the length in
G D Us that the line extends before a single occurrence of the pattern is finished
and it starts over. On the CRT, the repeat value is evaluated and rounded
down to the next multiple of 5, with 5 as the minimum.

Selecting a Fill Color

Operation selector 13 selects a pen from the color map with which to do
area fills. This works identically to the AREA PEN statement. Column one
contains the pen number.

Defining a Fill Color

Operation Selector 14 is used in conjunction with Operation Selector 15. Red
and green are specified in columns one and two, respectively, and column three
has the value 14. Following this row in the array (not necessarily immediately),
is a row whose operation selector in column three has the value of 15. The first
column in that row contains the blue value. These numbers range from 0 to
32 767, where 0 is no color and 32 767 is full intensity. Operation selectors 14
and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on a monochromatic, gray scale, or a color display.

1-38 ION - IVAL

IPLOT

Operation Selector 15 actually puts the area intensity into effect, but only if an
operation selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is
through a Red-Green-Blue (RGB) color model. The first column is encoded in
the following manner. There are three groups of five bits right-justified in the
word; that is, the most significant bit in the word is ignored. Each group of five
bits contains a number which determines the intensity of the corresponding
color component, which ranges from zero to sixteen. The value in each field
will be sixteen minus the intensity of the color component. For example, if the
value in the first column of the array is zero, all three five-bit values would
thus be zero. Sixteen minus zero in all three cases would turn on all three color
components to full intensity, and the resultant color would be a bright white.

Assuming you have the desired intensities for red, green, and blue ranging from
zero to one in the variables R, G, and B, respectively, the value for the first
column in the array could be defined thus:

Array(Row,1)=SHIFT(16*(1-B),-10)+SHIFT(16*(1-G),-5)+16*(l-R)

If there is a pen color in the color map identical to that which you request
here, that non-dithered color will be used. If there is not a similar color, you
will get a dithered pattern.

If you are using a gray scale display, Operation selector 5 uses the five bit
values of the RGB color specified to calculate luminosity. The resulting gray
luminosity is then used as the area fill. For detailed information on gray
scale calculations, see the chapter "More About Color Displays" in the
HP BASIC 6.2 Advanced Programming Techniques manual.

Polygons

A six, ten, or eleven in the third column of the array begins a "polygon mode".
If the operation selector is 6, the polygon will be filled with the current fill
color. If the operation selector is 10, the polygon will be edged with the current
pen number and line type. If the operation selector is 11, the polygon will be
both filled and edged. Many individual polygons (series of draws separated by
moves) can be filled without terminating the mode with an operation selector
7. The first and second columns are ignored; therefore they should not contain
the X and Y values of the first point of a polygon.

ION • IVAL 1·39

IPLOT

Operation selector 7 in the third column of a plotted array terminates
definition of a polygon to be edged and/or filled and also terminates the
polygon mode (entered by operation selectors 6, 10, or 11). The values in the
first and second columns are ignored, and the X and Y values of the last data
point should not be in them. Edging and/or filling will begin immediately
upon encountering this operation selector.

Doing a FRAME

Operation selector 12 does a FRAME around the current soft-clip limits.
Soft clip limits cannot be changed from within the IPLOT statement, so one
probably would not have more than one operation selector 12 in an array to
IPLOT, since the last FRAME will overwrite all the previous ones.

Premature Termination

Operation selector 8 causes the IPLOT statement to be terminated. The
IPLOT statement will successfully terminate if the actual end of the array has
been reached, so the use of operation selector 8 is optional.

Ignoring Selected Rows in the Array

Operation selector 9 causes the row of the array it is in to be ignored. Any
operation selector greater that fifteen is also ignored, but operation selector
9 is retained for compatibility reasons. Operation selectors less than -2
are not ignored. If the value in the third column is less than zero, only
evenness/oddness is considered.

1-40 ION - IVAL

I VAL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function converts a binary, octal, decimal, or hexadecimal string
expression into an INTEGER.

Item Description

string argument string expression, containing digits
valid for the specified base

radix numeric expression, rounded to an
integer.

Example Statements

lumber=IVAL("FDFO",16)
I=IVAL("1111111111111110" ,2)
DISP IVAL(Octal$,8)

Semantics

Range

(see table)

2,8, 10 or 16

IVAL

The radix is a numeric expression that will be rounded to an integer and must
evaluate to 2, 8, 10, or 16.

The string expression must contain only the characters allowed for the
particular number base indicated by the radix. Only one-byte ASCII characters
can be used as digits. ASCII spaces are not allowed.

ION· IVAL 1·41

IVAL

Binary strings are presumed to be in two's-complement form. If all 16 digits
are specified and the leading digit is a 1, the returned value is negative.

Octal strings are presumed to be in the octal representation of two's
complement form. If all 6 digits are specified, and the leading digit is a 1, the
returned value is negative.

Decimal strings containing a leading minus sign will return a negative value.

Hex strings are presumed to be in the hex representation of the two's
complement binary form. The letters A through F may be specified in either
upper or lower case. If all 4 digits are specified and the leading digit is 8
through F, the returned value is negative.

Radix Base String Range String Length

2 binary ° through 1111111111111111 1 to 16 characters

8 octal ° through 177777 1 to 6 characters

10 decimal -32 768 through +32 768 1 to 6 characters

16 hexadecimal ° through FFFF 1 to 4 characters

Radix Legal Characters Conunents

2 +,0,1 -

8 +,0,1,2,3,4,5,6,7 Range restricts the leading character.
Sign must be a leading character.

10 +,-,0,1,2,3,4,5,6,7,8,9 Sign must be a leading character.

16 +,0,1,2,3,4,5,6,7,8,9, A/a=10, B/b=ll, C/c=12, D/d=13
A,B,C,D,E,F ,a,b,c,d,e,f E/e=14, F /f=15

1-42 ION - IVAL

IVAL

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. IVAL does not allow two-byte characters. The
string digits to be converted must be one-byte ASCII characters. For more
information about two-byte characters, refer to the globalization chapters of
the HP BASIC 6.2 Porting and Globalization manual.

ION·IVAL 1·43

IVAL$
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function converts an INTEGER into a binary, octal, decimal, or
hexadecimal string.

Item

"16-bit"
argument

radix

Description

numeric expression, rounded to an
integer

numeric expression, rounded to an
integer

Example Statements

F$=IVAL$(-1,16)
Binary$=IVAL$(Count DIV 256,2)

Semantics

Range

(see table)

2, 8, 10, or 16

The rounded argument must be a value that can be expressed (in binary) using
16 bits or less. The string digits returned are one-byte ASCII characters.

The radix must evaluate to be 2, 8, 10, or 16; representing binary, octal,
decimal, or hexadecimal notation.

If the radix is 2, the returned string is in two's-complement form and contains
16 characters. If the numeric expression is negative, the leading digit will be 1.
If the value is zero or positive, there will be leading zeros.

1-44 ION - IVAL

IVAL$

If the radix is 8, the returned string is the octal representation of the
two's-complement binary form and contains 6 digits. Negative values return a
leading digit of 1.

If the radix is 10, the returned string contains 6 characters. Leading zeros are
added to the string if necessary. Negative values have a leading minus sign.

If the radix is 16, the returned string is the hexadecimal representation of the
two's-complement binary form and contains 4 characters. Negative values
return a leading digit in the range 8 through F.

Radix Base Range of Returned String String Length

2 binary OOOOOOOOOOOOOOOOthru 16 characters
1111111111111111

8 octal 000000 through 177777 6 characters

10 decimal -32 768 through +32 768 6 characters

16 hexadecimal 0000 through FFFF 4 characters

IDN - IVAL 1-45

K

K
KBD - KNOBY

KBD - KNOBY K-1

KBD
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This INTEGER function returns a 2, the select code of the keyboard.

Example Statements

STATUS KBD; Kbd_status
OUTPUT KBD;Clear$;

K-2 KBD - KNOBY

KBD$

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

KBD$

This function returns the contents of the buffer established by ON KBD.

Example Statements

Keys$=KBD$
IF Active THEN Command$=Command$tKBD$

Semantics

When an ON KBD branch is in effect, all subsequent keystrokes are trapped
and held in a special "keyboard" buffer. The KBD$ function returns the
contents of this buffer and then clears it. A null string is returned if the buffer
is empty or no ON KBD branch is active.

Non-ASCII keys are stored in the buffer as two bytes; the first has a decimal
value of 255, and the second specifies the key. Pressing (CTRL) and a non-ASCII
key simultaneously generates three bytes; the first two have a decimal value of
255, and the third specifies the key. See the Second Byte of Non-ASCII Key
Sequences table in the "Useful Tables" section for a list of these keycodes.

The buffer can hold 256 characters. Further keystrokes are not saved and
produce beeps. An overflow flag is set after the buffer is full. This flag can be
checked by reading keyboard status register 5 and is cleared by reading the
status register, SCRATCH A, and a [RESET) operation.

The buffer is cleared by KBD$, OFF KBD, SCRATCH, SCRATCH A, INPUT,
LINPUT, ENTER 2, and a (RESET) operation.

KBD • KNOBY K·3

KBD CMODE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
KBD
Yes
Yes
Yes

This statement enables/disables the HP 98203A/B/C keyboard compatibility
mode on an ITF keyboard.

Example Statements

KBD CMODE ON
KBD CMODE OFF

KBD CMODE ~----..,.-+t

IF Change_mode THEN KBD CMODE ON

Semantics

Executing the KBD CMODE ON statement re-defines the softkeys of the
ITF keyboard so they are compatible with the HP 98203A/B/C keyboard
softkeys. This means that the eight function keys located at the top of the
ITF keyboard, as well as the (Menu) and (System) keys, emulate function keys
@ through @ of the HP 98203A/B / C Keyboard and their BASIC system
definitions.

The following are the ITF softkey definitions before executing KBD CMODE
ON:

K-4 KBD - KNOBY

KBD CMODE

KBD CMODE OFF

Function Softkey
Key Definition
f1 f1's label

f2 f2's label

fJ f3's label

f4 f4's label

Menu
System

f5 f5's label

f6 f6's label

f7 f7's label

f8 f8's label

The following are the ITF softkey definitions after executing KBD CMODE
ON:

KBD CMODE ON

Function Softkey
Key Definition
f1 kO's label

f2 k1's label

fJ k2's label

f4 k3's label

Menu k4's label

System k5's label

f5 k6's label

f6 k7's label

f7 k8's label

f8 k9's label

Executing the KBD CMODE OFF statement returns you back to the soft key
key definitions of the ITF Keyboard.

KBD - KNOBY K-5

KBD CMODE

The KBD CMODE statement does not affect KEY LABELS ON or OFF.
What this means is the definitions of the soft keys change, but the softkey labels
at the bottom of the display will not be turned on or off.

While in the Keyboard Compatibility mode, the System Function keys are
accessed by using the (Extend char) key with the softkeys @ through @. Note
that using (Extend char) along with the (Menu) key turns the keylabels on and off
in this mode. (Extend chad when pressed with the (used or (System) keys exits the
Keyboard Compatibility mode. Also, in the Keyboard Compatibility mode,
(Shift) can be used with the eight softkeys and the (Menu) and (System) keys (as on
an HP 98203AjBjC) to access keys @ijFi}@ through (SHIFT}-@.

Note that the functionality of this statement can be achieved through KBD
CONTROL register 15.

For further information on HP 98203AjBjC keyboard compatibility mode, read
the chapter called "Porting to Series 300" in the HP BASIC 6.2 Porting and
Globalization.

K-6 KBD - KNOBY

KBD LINE PEN

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
CRTX
Yes
Yes
Yes

KBD LINE PEN

This statement sets the pen color to be used for the keyboard line and other
associated areas of the CRT (see "Semantics" below).

ON EXT SIGNAL

Item Description/Default

pen value numeric expression

Example Statements

KBD LINE PEN Pen_value
KBD LINE PEN 143
IF Color_blue THEN KBD LINE PEN 141

Semantics

Range Restrictions

see semantics

Pen color areas of the CRT which are associated with the keyboard line are:

• the run indicator

• all of the edit screen except the key labels

KBD • KNOBY K·7

KBD LINE PEN

• the following annunciators:

o softkey menu (e.g System, User 1, User 2, and User 3)

o CAPS indicator

o system-activity indicator (e.g. Idle, Running, etc.)

• the system message area

The set of KBD line colors is given in the table below:

Value

< 16

16 to 135
136
137
138
139
140
141
142
143
144 to 255

Result
The number is evaluated
MOD 8 and resulting values
produce the following:
O-black
I-white
2-red
3-yellow
4-green
5-cyan
6-blue
7-magenta
Ignored
White
Red
Yellow
Green
Cyan
Blue
Magenta
Black
Ignored

This statement has no effect on single plane monochrome displays. On gray
scale (multi-plane monochrome) displays, this statement changes the display
color to a different shade of gray.

K-8 KBD - KNOBY

KBD LINE PEN

For displays with bit-mapped alpha, KBD LINE PEN specifies the graphics
pen to be used for subsequent alpha output. The range of values allowed with
this statement are 0 through 255; these values are treated as

value MOD (2An)

where n is the number of display planes.

KBD LINE PEN n and CONTROL CRT t 17; n set the value of CRT control register
17. These statements have no effect on control registers 15 and 16 which are
set using PRINT PEN and KEY LABELS PEN, respectively.

Note that the functionality of this statement can be achieved through CRT
CONTROL register 17.

KBD - KNOBY K-9

KEY
See the OFF KEY and ON KEY statements.

K-10 KBD - KNOBV

KEY LABELS

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
CRTX
Yes
Yes
Yes

This statement turns the soft key labels on and off.

(KEY LABElS

Example Statements

KEY LABELS ON
KEY LABELS OFF
IF Key_labels_on THEN KEY LABELS OFF

Semantics

KEY LABELS

With ITF keyboards, the default is KEY LABELS ON. (You can also turn the
key labels on and off by using the (Menu) key.) The default soft key menu that
appears with an ITF keyboard is the:

• System menu if the KBD binary has not been loaded .

• User 1 menu if the KBD binary has been loaded.

The times when key labels are displayed depends on the current value of CRT
STATUS register 12:

KBD - KNOBY K-11

KEY LABELS

Value oCCRT
Register 12 Effect on Key Labels

0 Typing-aid key labels are
displayed until the program is
run, at which time they are
turned off (until at least one ON
KEY is executed). For more
details on this mode, see the
next table.

1 Typing-aid and soft key labels are
not displayed at any time.

2 Typing-aid and soft key labels are
displayed at all times.

The default value of this register is 0 for systems using 98203 keyboards, and 2
for systems using an ITF keyboard. The default is restored at power-on and
when SCRATCH A is executed.

When the value of CRT register 12 is 0, soft key labels are ON or OFF as given
in the following table:

KBD Binary Not
Condition Loaded KBD Binary Loaded

No program running Key labels off Key labels on

Program running and Key labels off Key labels off
ON KEY is not active

Program running and Key labels on Key labels on
ON KEY is active

Executing a KEY LABELS ON or KEY LABELS OFF statement does not
change the current soft key definitions.

K-12 KBD - KNOBY

KEY LABELS PEN

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS
CRTX
Yes
Yes
Yes

KEY LABELS PEN

This statement sets the pen color to be used for the soft key labels of the CRT.

(KEY LABELS PEN>-1 pen value ~

Item Description/Default Range Restrictions

pen value numeric expression (see Semantics)

Example Statements

KEY LABELS PER Pen_value
KEY LABELS PER 143
IF Color_blue THER KEY LABELS PER 141

Semantics

The set of key labels colors is given in the table below:

KBD • KNOBY K·13

KEY LABELS PEN

Value

< 16

16 to 135
136
137
138
139
140
141
142
143
144 to 255

Result
The number is evaluated
MOD 8 and resulting values
produce the following:
O-black
I-white
2-red
3-yellow
4-green
5-cyan
6-blue
7-magenta
Ignored
White
Red
Yellow
Green
Cyan
Blue
Magenta
Black
Ignored

This statement has no effect on single plane monochrome displays. On gray
scale (multi-plane monochrome) displays, this statement changes the display
color to a different shade of gray.

For displays with bit-mapped alpha, KEY LABELS PEN specifies the pen to
be used for subsequent alpha output. The range of values allowed with this
statement are 0 through 255; these values are treated as

value MOD (2-n)

where n is the number of display planes.

KEY LABELS PEN n and CONTROL CRT t 16; n set the value of CRT control
register 16. These statements have no effect on control registers 15 and 17
which are set using PRINT PEN and KBD LINE PEN, respectively.

K·14 KBD - KNOBY

KEY LABELS PEN

Note that the functionality of this statement can be achieved through CRT
CONTROL register 16.

KBD • KNOBY K·15

KNOB
See the OFF KNOB and the ON KNOB statements.

K-16 KBD - KNOBY

KNOBX

Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

KNOBX

This function returns the net number of horizontal knob pulses counted since
the last time the KNOBX counter was zeroed.

-+C KNOBX r

Example Statements

Position=KNOBI
IF KNOBI <0 THEN Backwards

Semantics

Sampling occurs during the time interval established by the ON KNOB
statement. The counter is zeroed when the KNOBX function is called and at
the times specified in the Reset Table at the back of this manual. Clockwise
rotation gives positive counts; counter-clockwise rotation gives negative counts.
There are 120 counts for one revolution of the knob on an HP 98203A/B
keyboard. HIL Knobs return a greater number of counts for one revolution of
the Knob. If there is no active ON KNOB definition, KNOBX returns zero.

Counts are accumulated by the KNOBX function at the end of each ON
KNOB sampling interval. The pulse count during each sampling interval is
limited to - 127 through + 128 on an HP 98203A/B keyboard. HIL pulse
counts are limited to -32 768 through +32 767 per sampling period. The
limits of the KNOBX function are -32 768 through +32 767.

You can use a relative pointing device, such as the HP 46060A with an HP-HIL
interface, if the KBD BIN is loaded.

KBD • KNOBY K·17

KNOBX

Note KNOBX functions differently if BIN file KNB2_0 is loaded.
Refer to the Knob section of the "Porting to 3.0" chapter of
HP BASIC 6.2 Porting and Globalization for more information.

BASIC/UX Specifics

Knob support uses the HP BASIC version 3.0 definition. KNB2_0 binary
functionality is not supported.

BASIC/DOS Specifics

Knob support uses the HP BASIC 3.0 definition. KNB2_0 binary functionality
is not supported.

K-18 KBD - KNOBY

KNOBY
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

KNOBY

This function returns the net number of vertical knob pulses counted since the
last time the KNOBY counter was zeroed.

-{ KNOBY r

Example Statements

Position=KNOBY
IF KNOBY<O THEN Backwards

Semantics

Sampling occurs during the time interval established by the ON KNOB
statement. The counter is zeroed when the KNOBY function is called and at
the times specified in the Reset Table at the back of this manual. Clockwise
rotation gives positive counts; counter-clockwise rotation gives negative counts.
There are 120 counts for one revolution of the knob on an HP 98203A/B
keyboard. HIL Knobs return a greater number of counts for one revolution of
the Knob. If there is no active ON KNOB definition, KNOBY returns zero.

Counts are accumulated by the KNOBY function at the end of each ON
KNOB sampling interval. The pulse count during each sampling interval is
limited to -127 through + 128 on an HP 98203A/B keyboard. HIL pulse
counts are limited to -32 768 through +32 767 per sampling period. The
limits of the KNOBY function are -32 768 thru +32 767.

You can use a relative pointing device, such as the HP 46060A with an HP-HIL
interface, if the KBD BIN is loaded.

KBD· KNOBY K·19

KNOBY

Note KNOBY functions differently if BIN file KNB2_0 is loaded.
Refer to the Knob section of "Porting to 3.0" chapter of
HP BASIC 6.2 Porting and Globalization for mor.e information.

BASIC/UX Specifics

Knob support uses the HP BASIC 3.0 definition. KNB2_0 binary functionality
is not supported.

BASIC/DOS Specifics

Knob support uses the HP BASIC 3.0 definition. KNB2_0 binary functionality
is not supported.

K-20 KBD - KNOBY

L

L
LABEL - LWC$

LABEL - LWC$ L-1

L LABEL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

This statement produces alphanumeric labels on graphic devices. (For
information about LABEL as a secondary keyword, see the ON KEY
statement.)

L-2 LABEL - LWC$

Expanded diagram:

label
items

literal form of image specifier

LABEL

L

trailing punctuation
not allowed with USING

tab function not <lllowed with USING

LABEL· LWC$ L·3

L

LABEL

Item Description

image line integer constant identifying an
number IMAGE statement

image line label name identifying an IMAGE
statement

image specifier string expression

string array name of a string array
name

numeric array name of a numeric array
name

image specifier literal
list

repeat factor integer constant

literal string constant composed of
characters from the keyboard,
including those generated using the
[ANY CHAR) key

Example Statements

LABEL NumbertString$
LABEL USING "5Z.DD";Money

Semantics

Range

1 through 32 766

any valid name

(see drawing)

any valid name

any valid name

(see diagram)

1 through 32 767

quote mark not allowed

The label begins at the current logical pen position, with the current pen.
Labels are clipped at the current clip boundary. Other statements which affect
label generation are PEN, LINE TYPE, PIVOT, CSIZE, LORG, and LDIR.
The current pen position is updated at the end of the label operation.

L·4 LABEL· LWC$

LABEL

Standard Numeric Format

The standard numeric format depends on the value of the number being
output. If the absolute value of the number is greater than or equal to 1E-4
and less than 1E+6, it is rounded to 12 digits and displayed in floating-point
notation. If it is not within these limits, it is displayed in scientific notation.
The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

COMPLEX numbers are treated like two REAL numbers separated by a
semicolon.

Automatic End-Of-Line Sequence

After the label list is exhausted, an End-of-Line (EOL) sequence is sent to the
logical pen, unless it is suppressed by trailing punctuation or a pound-sign
image specifier. The EOL sequence is also sent after every 256 characters. This
"plotter buffer exceeded" EOL is not suppressed by trailing punctuation, but is
suppressed by the pound-sign specifier.

Control Codes

Character Keystroke Name Action

CHR$(8) (CTRL)-® backspace Back up the width of one
character cell.

CHR$(lO) (CTRL}-0 line-feed Move down the height of one
character cell.

CHR$(13) (CTRLHID carriage-return Move back the length of the
label just completed.

Any control character that the LABEL statement does not recognize is treated
as an ASCII blank [CHR$(32)].

LABEL - LWC$ L-5

L

LABEL

L Applicable Graphics Transformations

Scaling PIVOT CSIZE LDIR PDIR

Lines (generated by moves and X X [4]
draws)

Polygons and rectangles X X X

Characters (generated by X X
LABEL)

Axes (generated by AXES & X
GRID)

Location of Labels [1] [3] [2]

1 The starting point for labels drawn after lines or axes is affected by scaling.
2The starting point for labels drawn after other labels is affected by LDIR.
3The starting point for labels drawn after lines or axes is affected by PIVOT.
4RPLOT and IPLOT are affected by PDIR.

Arrays

Entire arrays may be output by using the asterisk specifier. Each element in
an array is treated as an item by the LABEL statement, as if the items were
listed separately, separated by the punctuation following the array specifier. If
no punctation follows the array specifier, a comma is assumed. COMPLEX
array elements are treated as if the real and imaginary parts are separated by a
semicolon. The array is output in row major order (rightmost subscript varies
fastest).

LABEL Without Using

If LABEL is used without USING, the punctuation following an item
determines the width of the item's label field; a semicolon selects the compact
field, and a comma selects the default label field. When the label item is an
array with the asterisk array specifier, each array element is considered a
separate label item. Any trailing punctation will suppress the automatic EOL

L-6 LABEL - LWC$

LABEL

sequence, in addition to selecting the label field to be used for the label item
preceding it.

The compact field is slightly different for numeric and string items. Numeric
items are output with one trailing blank. String items are output with no
leading or trailing blanks.

The default label field labels items with trailing blanks to fill to the beginning
of the next IO-character field.

Numeric data is output with one leading blank if the number is positive, or
with a minus sign if the number is negative, whether in compact or default
field.

LABEL With Using

When the computer executes a LABEL USING statement, it reads the image
specifier, acting on each field specifier (field specifiers are separated from each
other by commas) as it is encountered. If nothing is required from the label
items, the field specifier is acted upon without accessing the label list. When
the field specifier requires characters, it accesses the next item in the label list,
using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when there is no matching display item
(and the specifier requires a display item). If the image specifiers are exhausted
before the display items, they are reused, starting at the beginning.

COMPLEX values require two REAL image specifiers (Le. each COMPLEX
value is treated like two REAL values.)

If a numeric item requires more decimal places to the left of the decimal point
than provided by the field specifier, an error is generated. A minus sign takes
a digit place if M or S is not used, and can generate unexpected overflows of
the image field. If the number contains more digits to the right of the decimal
point than are specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the right-most
characters are lost. If it is shorter than the specifier, trailing blanks are used to
fill out the field.

Effects of the image specifiers on the LABEL statement are shown in the
following table:

LABEL· LWC$ L·7

L

L

LABEL

hnage
Specifier Meaning

K Compact field. Outputs a number or string as a label in standard form with
no leading or trailing blanks.

-K Same as K.

H Similar to K, except the number is output using the European number
format (comma radix). (Requires 10)

-H Same as H. (Requires 10)

S Outputs the number's sign (+ or -) as a label.

M Outputs the number's sign as a label if negative, a blank if positive.

D Outputs one-digit character as a label. A leading zero is replaced by a
blank. If the number is negative and no sign image is specified, the minus
sign will occupy a leading digit position. If a sign is output, it will "float" to
the left of the left-most digit.

Z Same as D, except that leading zeros are output.

* Same as Z, except that asterisks are output instead of leading zeros.
(Requires 10)

Outputs a decimal-point radix indicator as a label.

R Outputs a comma radix indicator as a label (European radix). (Requires
10)

E Outputs as a label: an E, a sign, and a two-digit exponent.

ESZ Outputs as a label: an E, a sign, and a one-digit exponent.

ESZZ Same as E.

ESZZZ Outputs as a label: an E, a sign, and a three-digit exponent.

L·8 LABEL· LWe$

LABEL

L
bnage

Specifier Meaning

A Outputs a string character as a label. Trailing blanks are output if the
number of characters specified is greater than the number available in
the corresponding string. If the image specifier is exhausted before the
corresponding string, the remaining characters are ignored. Use the specifier
AA or 2A for two-byte globalization characters.

X Outputs a blank as a label.

literal Outputs as a label the characters contained in the literal.

B Outputs as a label the character represented by one byte of data. This is
similar to the CHR$ function. The number is rounded to an INTEGER and

! the least-significant byte is sent. If the number is greater than 32 767, then
255 is used; if the number is less than -32 768, then 0 is used.

W Outputs as a label two characters represented by the two bytes of a 16-bit,
two's-complement integer. The corresponding numeric item is rounded to an
INTEGER. If it is greater than 32 767, then 32 767 is used; if it is less than
-32 768, then -32 768 is used. The most-significant byte is sent first.

y Same as W. (Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence
following the last label item.

% Ignored in LABEL images.

+ Changes the automatic EOL sequence that normally follows the last label
item to a single carriage-return. (Requires 10.)

- Changes the automatic EOL sequence that normally follows follows the last
label item to a single line-feed. (Requires 10)

/ Sends a carriage-return and a line-feed to the PLOTTER IS device.

L Same as /.

@ Sends a form-feed to the PLOTTER IS device; produces a blank.

LABEL - LWC$ L-9

L LDIR

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

This statement defines the angle at which a label or symbol is drawn. The
angle is interpreted as counterclockwise, from horizontal. The current angle
mode is used.

Item Description Range

angle numeric expression in current units of (same as COS)
angle; Default = 0

Example Statements

LDIR 90
LDIR ACS(Side)

Semantics

LDIR affects the appearance of LABEL, LABEL USING and SYMBOL
output.

The angle is interpreted as shown below.

L·10 LABEL· LWC$

LDIR

LDIR EXAMPLES (in Degrees)
L

0

~~
())

~~ / a::::

~O) 0 <}<¢---1
v

08~ ~IOl LDIR 0
~ (G)~ .:;y<:J r

0 -
1;1J :::u ~7
~

N S
-...-J
0

LABEL· LWC$ L·11

L LEN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function returns the current number of bytes in the argument. If you are
using ASCII characters, the number of bytes equals the number of characters.

Example Statements

Last=LEN(String$)
IF NOT LEN(A$) THEN Empty

Semantics

The length of the null string (1111) is o.

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. If you use LEN to determine the length of a
two-byte string in characters, you must divide the returned value by two. For
more information about two-byte characters, refer to the globalization chapters
of the HP BASIC 6.2 Porting and Globalization manual.

L-12 LABEL - LWe$

LET

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

LET

This is the assignment statement, which is used to assign values to variables.

LABEL - LWCS L-13

L

L

LET

Item

numeric name

string name

subscript

beginning
position

ending position

substring
length

Description

name of a numeric variable

name of a string variable

numeric expression, rounded to an
integer

numeric expression, rounded to an
integer

numeric expression, rounded to an
integer

numeric expression, rounded to an
integer

Example Statements

LET Number=33
Array (I+l) =Array (I)/2
String$="Hello Scott"
A$(7) [1;2]=CHR$(27)l"Z"

Semantics

Range

any valid name

any valid name

-32 767 through +32 767
(see "array" in Glossary)

1 through 32 767 (see
"su bstring" in Glossary)

o through 32 767 (see
"substring" in Glossary)

o through 32 767 (see
"substring" in Glossary)

The assignment is done to the variable which is to the left of the equals
sign. Only one assignment may be performed in a LET statement; any other
equal signs are considered relational operators, and must be enclosed in a
parenthetical expression (Le., A=A+(B=1)+5). A variable can occur on both
sides of the assignment operator (i.e., 1=1+1 or Source$=Source$&Temp$).

A real expression will be rounded when assigned to an INTEGER variable, if it
is within the INTEGER range. Out-of-range assignments to an INTEGER give
an error. If a REAL or INTEGER value is assigned to a COMPLEX variable,
the imaginary part receives the value O. If a COMPLEX value is assigned to a
REAL or INTEGER variable, the imaginary part is dropped.

The length of the string expression must be less than or equal to the
dimensioned length of the string it is being assigned to. Assignments may

L-14 LABEL - LWC$

LET

be made into substrings, using the normal rules for substring definition. The
string expression will be truncated or blank-filled on the right (if necessary) to
fit the destination substring when the substring has an explicitly stated length.
If only the beginning position of the substring is specified, the substring will be
replaced by the string expression and the length of the recipient string variable
will be adjusted accordingly; however, error 18 is reported if the expression
overflows the recipient string variable.

If the name of the variable to the left of the equal sign begins with AND,
DIV, EXOR, MOD or OR (the name of an operator) and the keyword LET is
omitted, the prefix must have at least one uppercase letter and one lowercase
letter in it. Otherwise, a live keyboard execution is attempted and fails, even
though the line number is present.

LABEL· LWC$ L·15

L

L LEXICAL ORDER IS

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
LEX
Yes
Yes
Yes

This statement defines the collating sequence for all string relational operators
and operations.

Item

array name

LEXICAL ORDER IS t--........-l~

Description

the name of a one-dimensional

I
INTEGER array, with at least 257
elements

L-16 LABEL - LWC$

Range

any valid name

Examples

LEXICAL ORDER IS FRERCH
LEXICAL ORDER IS Lex_table(*)

Semantics

LEXICAL ORDER IS

The STANDARD lexical order is determined by the internal keyboard jumper
preset to match the language on the keyboard. For example, with an English
language or Katakana keyboard, the STANDARD lexical order is the same as
the ASCII lexical order.

The default lexical order is STANDARD. This is also true after a SCRATCH
A. The most recent LEXICAL ORDER IS statement overrides any previous
definition and affects all contexts.

Lexical order allows languages to be properly collated. This includes such
treatments as ignoring characters, dealing with accents, and character
replacements. See HP BASIC 6.2 Programming Guide for the details of
pre-defined and user-defined lexical order tables.

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. LEXICAL ORDER definitions are not supported
for two-byte characters. For more information about two-byte characters, refer
to the globalization chapters of the HP BASIC 6.2 Porting and Globalization
manual.

LABEL -.LWC$ L-17

L

L LGT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function returns the logarithm (base 10) of its argument.

Item Description/Default

argument numeric expression

Examples Statements

Decibel=20*LGT(Volts)
PRINT "Log base 10 of ";X;"=";LGT(X)

Semantics

Range
Restrictions

> 0 for INTEGER and REAL
arguments; see "Range Restriction
Specifics" for COMPLEX arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the
argument is COMPLEX, the value returned is COMPLEX.

To compute the LGT of a COMPLEX value, the COMPLEX binary must be
loaded.

L-18 LABEL - LWC$

LGT

Range Restriction Specifics

The formula used for computing the LGT of a COMPLEX value is:

LOG(Argument)/LOG(10)

where Argument is a COMPLEX argument to the LGT function. Some values
of a COMPLEX argument may cause errors in this computation. For example,

LGT(CMPLX(MAXREAL,MAXREAL»

will cause error 22 due to the LOG(Argument) calculation.

LABEL· LWC$ L·19

L

L LINE TYPE

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

This statement selects a line type and repeat length for lines, labels, frames,
axes and grids.

Item

type selector

repeat length

Description

numeric expression, rounded to an
integer; Default = 1

numeric expression, rounded to an
integer; Default = 5

Example Statements

LINE TYPE 1
LINE TYPE Select,20

Semantics

Range

1 through 10

greater than 0

At power-up the default line type is a solid line (type 1), and the default repeat
length is 5 GDUs.

The repeat length establishes the number of GDUs required to contain an
arbitrary segment of the line pattern. When the plotter is the internal CRT,
the repeat length is evaluated and taken as the next lower multiple of 5, with a
minimum value of 5.

L-20 LABEL - LWC$

LINE TYPE

When the plotter is an external plotter, the line produced by the line identifier
is device dependent. Refer to your plotter's documentation for further
information.

The available CRT line types are shown here.

------1.. ___ _

------- L..-.. __

----. ---

................ t

. - . . -.

LINE TYPE 10

LINE TYPE 9

LINE TYPE 8

LINE TYPE 7

LINE TYPE 6

LINE TYPE 5

LINE TYPE 4

LINE TYPE 3

- LINE TYPE 2

LINE TYPE 1

LABEL - LWC$ L-21

L

L LINK

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

UX WS DOS
HFS or SRM
Yes
Yes
Yes

This statement links two file names on the same HFS or SRM volume to a
single physical file.

liter<J1 form of file specifier
,.....~--.

Item Description

file specifier string expression

volume specifier string expression

directory path literal

file name literal

L-22 LABEL - LWC$

Range

(see diagram)

(see MASS STORAGE IS)

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

Example Statements

LIBK "Sor_file" TO "Des_file"
LIBK "Letterl:CS80,700" TO "Letter2"
LIBK "/Home_dir/Filel:CS80,700" TO "/Home_dir/Sub_dir/File2"

LIBK "old" TO "ne1l";PURGE
LIBK "source/." TO "dest_dir"
LIBK "exists" TO "file_ [ABC]"

Semantics

WILDCARDS UX only

The LINK statement works only with HFS or SRM.

LINK

LINKing files that are on different volumes is not possible. Since the files that
are linked must be on the same volume, you need to give the volume specifier
only with the first file used by the link statement. For example,

LIBK "Filel:IRTERNAL,4" TO "File2"

is a legal statement because the second file specifier's default msvs is the first
file specifier's msvs. However, the following statement:

LIBK "Be1ls1:CS80,700,1" TO "Bews2:9133,702,O"

will give an error because the files are on different volumes.

If you RE-STORE or RE-SAVE to an HFS file that has links to it, the links
will be broken. (This is not true of SRM or SRM/UX files.)

If you OUTPUT to a file that has links to it, the linked files will all have the
same contents.

LABEL· LWC$ L·23

L

LINK

L Using LINK with PURGE

You must use LINK with the secondary keyword PURGE to redefine an
existing LINK, or an error will result. For example:

100 L111 "exists1" TO "new"

110 L111 "exists2" TO "new" this will cause an error

100 L111 "exists1" TO "new"

110 L111 "exists2" TO "new" ; PURGE executes without error

Note that line 110 in the second example breaks the link between new and
exists 1 and creates a link between new and exists2.

Using Wildcards with LINK

If you are using a version of BASIC that supports wildcards, you can use
them in file specifiers with LINK. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
While the old file specifier (source) may match more than one item, the new
file specifier (destination) must match one and only one item in all cases. If
the wildcard specification for the source matches multiple files, the destination
must be a directory.

Note that BASIC handles the command

in a different manner when wildcards are enabled than when they are disabled.

When wildcards are enabled, BASIC permits you to link a file to a directory. It
interprets the above command as link the file file_name to the directory called
dir_name.

When wildcards are disabled, BASIC interprets the above command as link the
file file_name to the file called dir _name.

The PURGE secondary keyword allows the LINK command to redefine existing
links. It can be used regardless of the state of wildcards.

L·24 LABEL· LWC$

LINPUT

Supported On
Option Required
Keyboard Executable
Programmable
[n an IF . .. THEN ...

UX WS DOS
None
No
Yes
Yes

L1NPUT

This statement accepts alphanumeric input from the keyboard for assignment
to a string variable. The LINPUT statement allows commas or quotation
marks to be included in the value of the string, and leading or trailing blanks
a.re not deleted.

LABEL - LWC$ L-25

L

L

LlNPUT

Item Description

prompt a literal composed of characters
from the keyboard, including those
generated using the ANY CHAR key;
Default = question mark

string name name of a string variable

subscript numeric expression, rounded to an
integer

beginning numeric expression, rounded to an
position integer

ending position numeric expression, rounded to an
integer

substring numeric expression, rounded to an
length integer

Example Statements

LIHPUT "Bext Command?",Response$
LIBPUT Array$(I) [3]

Semantics

Range

any valid name

-32 767 through +32 767
(see "array" in Glossary)

1 through 32 767 (see
"substring" in Glossary)

o through 32 767 (see
"substring" in Glossary)

o through 32 767 (see
"substring" in Glossary)

A prompt, which remains until the LINPUT item is satisfied, appears on
the CRT display line. If the last DISP statement suppressed its CR/LF, the
prompt is appended onto the current display line contents. If the last DISP
did not suppress the CR/LF, the prompt replaces the current display line
contents. Not specifying a prompt results in the question mark being used
as the prompt. Specifying the null string ("") for the prompt suppresses the
question mark.

(CONTINUE 1, (ENTER 1, (EXECUTE 1, (Return 1, or (STEP 1 must be pressed to indicate
that the entry is complete. If no value is provided from the keyboard, the null
string is used. If (CONTINUE 1, (ENTER 1, (EXECUTE 1, or (Return 1 is pressed to end the
data input, program execution continues at the next program line. If (STEP 1 is
pressed, the program execution continues at the next program line in single

L-26 LABEL - LWC$

LlNPUT

step mode. (If the LINPUT was stepped into, it is stepped out of, even if
(CONTINUE), (ENTER), (EXECUTE), or (Return) is pressed.)

Live keyboard operations are not allowed while a LINPUT is waiting for data
entry. (PAUSE) (or ~ on an ITF keyboard) can be pressed so live keyboard
operations can be performed. The LINPUT statement is re-executed from the
beginning when (CONTINUE) or (STEP) is pressed.

ON KBD, ON KEY and ON KNOB events are deactivated during an LINPUT
statement. Errors do not cause an ON ERROR branch. If an input response
results in an error, the LINPUT statement is re-executed.

LABEL - LWC$ L-27

L

L LIST

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN*
EDIT
Yes
Yes
Yes

This statement allows you to list the program or the key definitions currently
in memory.

L-28 LABEL - LWC$

Item

device selector

beginning line
number

beginning line
label

ending line
number

ending line
label

Description Range

numeric expression; is rounded to an (see Glossary)
integer. Default is PRINTER IS
device.

integer constant identifying program 1 through 32 766
line

name of a program line any valid name

integer constant identifying program 1 through 32 766
line

name of a program line any valid name

Example Statements

LIST
LIST #701
LIST 100,Labe11
LIST KEY

Semantics

LIST

LIST

When a label is used as a line identifier, the lowest-numbered line in memory
having that label is used. When a number is used as a line identifier, the
lowest-numbered line in memory having a number equal to or greater than the
specified line is used. An error occurs if the ending line identifier occurs before
the beginning line identifier or if a specified line label does not exist in the
program.

Executing a LIST from the keyboard while a program is running causes the
program to pause at the end of the current line. The listing is sent to the
selected device, and program execution resumes.

LABEL - LWC$ L-29

L

L

LIST

After the listing is finished, the amount of available memory, in bytes, is
displayed on the CRT.

Note that the default width of the PRINTER IS device is 80 characters, which
means that a carriage-return (CR) and line-feed (LF) character will be sent
after 80 characters are printed on anyone line. You can change this, however,
with the WIDTH attribute of the PRINTER IS statement.

LIST #device selector is always done as if the WIDTH OFF printer attribute
was in effect.

LIST KEY (Requires KBD and Does Not Require EDIT)

The LIST KEY statement lists the current typing-aid key definitions (not
the labels of ON KEY definitions) to the specified device. If a key does not
currently have a definition, it will not be listed.

LIST BIN (Does Not Require EDIT)

The LIST BIN statement lists the BINs currently loaded in memory. The
name, version and brief description of the BIN is listed. For example:

NAME

GRAPH

MAT

BASIC/UX Specifics

VERSION DESCRIPTION

5.0 Graphics

5.0 Matrix Statements

The "available memory" displayed at the end of a LIST, shows the available
BASIC/UX workspace (not the system memory available).

L·30 LABEL· LWC$

LISTEN

LISTEN L

See the SEND statement.

LABEL - LWC$ L-31

L LIST WINDOW

Supported On UX WS*
Option Required RMBUX
Keyboard executable Yes
Programmable Yes
In an IF . .. THEN ... Yes

This statement lists the currently defined windows and their attributes.

(UST WINDOW) l(i):j P -I
I dev-sel

Item Description Range

device...selector numeric expression, rounded to
integer. Default is PRINTER IS
device

(see Glossary)

Example Statements

LIST WINDOW

Semantics

This statement is only valid when running under X Windows. It then outputs
a table of all currently defined windows and their attributes to the specified
device, or if absent to the PRINTER IS device.

When not in a window system, this statement causes an error.

L~32 LABEL ~ LWC$

LOAD
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN*
None
Yes
Yes
Yes

LOAD

This statement allows you to load programs, BIN files, or typing-aid soft key
definitions.

..,
I

I KBD I L ___________________ ~

literal form of file specifier:

literal form of DFS file specifier:

LABEL - LWC$ L-33

L

L

LOAD

Item Description Range

file specifier string expression (see drawing)

directory path literal (see MASS STORAGE IS)

file name literal depends on volume's format
(see Glossary)

SRM password literal; first 16 non-blank characters > not allowed
are significant

volume specifier literal (see MASS STORAGE IS)

run line
number

integer constant identifying program 1 through 32 765
line

run line label name of a program line any valid name

Example Statements

LOAD File_name$lVolume$
LOAD "UTIL", 120
LOAD BIN "MAT"
LOAD KEY "KEYS:INTERNAL,4,1"

LOAD BIN Dir$lFile$lVolume$
LOAD "/Dir1/Dir2/Prog2" ,500
LOAD "Dir3/Prog_1: REMOTE"

LOAD BIN "dir1/dir2/bin_file<SRM_READ_pass>:REMOTE 21,5;LABEL Disc"

LOAD KEY "KEYS:REMOTE"
LOAD KEY "/Dir1/Dir2/Keyfile"

Semantics

The BASIC program and all variables not in COM are lost when a LOAD is
executed. Every COM block in the newly-loaded program is compared with the
COM blocks of the program in memory. If a COM area of the newly-loaded
program does not match an existent COM area, the values in the old COM
area are lost. Thus, some COM areas may be retained while others are lost. If

L-34 LABEL - LWC$

LOAD

a PROG file contains a binary program that is not compatible with the current
version of BASIC, the binary is skipped, a warning is printed, and the program
is loaded. If it contains a binary that is compatible with the current version of
BASIC, the binary is loaded.

LOAD is allowed from the keyboard if a program is not running. If no run line
is specified, (RUN) must be pressed to initiate program execution, and execution
will begin on the first line in the program. If a run line is specified, prerun
initialization (see RUN) is performed, and program execution begins at the line
specified. The line on which execution begins must exist in the main program
context of the newly-loaded program. If you specify a line number and it
doesn't exist, execution begins with the next higher-numbered line, provided
that line is in the main program context.

Executing LOAD from a program causes the new program file to be loaded,
prerun, and program execution to resume. Execution begins at the line
specified, or the lowest-numbered program line if a run line is not specified.

If you are using a version of BASIC that supports wildcards, you can use
them in file specifiers with LOAD. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
Wildcard file specifiers used with LOAD must match one and only one file
name. See also the section "LOAD BIN with WILDCARDS" below.

Autostart Program Files

BASIC automatically loads and runs a file called AUTOST if the file
exists on the boot mass storage device (and if it is of type PROG).
If the system is loaded from an HFS volume, the autostart file is
/WORKSTATIONS/AUTOST. If the system is loaded from SRM, the
autostart file is /SYSTEMS/ AUTOSTnn, where nn is the node number of the
SRM interface installed in the computer you are booting; if this file does not
exist, BASIC looks for / AUTOST.

BASIC/UX first checks if an autostart file (PROG, ASCII, or HP-UX) was
specified in the rmb command line. If not, it checks the rmbrc environment
file (s). If one is not found, it checks the current directory, and then the home
directory, for a file called AUTOST.

LABEL· LWC$ L·35

L

LOAD

L HFS Permissions

In order to LOAD a file from an HFS volume, you need to have R (read)
permission on the file, and X (search) permission on the immediately superior
directory as well as all other superior directories.

LOAD with SRM Volumes

In order to LOAD a file from an SRM volume, you need to have READ access
capability on the file, on the immediately superior directory, and on all other
superior directories.

LOAD from an SRM volume is executed in shared mode, which means that
several users can LOAD a file at the same time. Files being stored with the
STORE or RE-STORE statements are locked during that operation and cannot
be accessed for loading.

LOAD Requirements for Device Drivers

With HFS volumes, you must have all drivers for the disk from which you
are loading the program. For instance, if you are loading from a CS80-type
disk, you must have HPIB, CS80, and HFS binaries currently in memory.
(This is not like other volumes. It is required because the Boot ROM does not
contain drivers for HFS volumes, but it does contain drivers for LIF and SRM
volumes.)

BASIC lUX has binaries permanently loaded, but it is necessary to have the
correct drivers configured into the HP-UX kernel. For example, if you are
loading from a CS80-type disk, you must have the CS80 driver in the kernel.
Check by using the rmbconfig program with the -8 option.

LOAD BIN (BASIC/WS and BASIC/DOS only)

LOAD BIN is used to load BIN files. (A BIN file contains either language
extensions, such as MAT or GRAPH, or drivers, such as DISC and HPIB.) A
BIN file may contain more than one of the extensions or drivers; if so only the
entensions or drivers not already present in memory are loaded. Executing
a LOAD BIN does not affect the currently loaded BASIC program or any
variables.

L-36 LABEL - LWC$

BASIC lUX has permanently loaded binaries, so this statement is not
appropriate for BASIC lUX. It generates an error message.

LOAD BIN Requirements for Device Drivers (BASIC/WS and
BASIC/DOS only)

LOAD

BIN files can usually be loaded from a mass storage device even though the
BIN(s) to access that device are absent (as long as the Boot ROM has the
required drivers). Most Boot ROMs have drivers for LIF and SRM volumes
and HPIB interfaces, but not for HFS volumes. If the Boot ROM does not
have the drivers for the device from which you want to load a BIN file, then
you will need to first install all required drivers for that device (such as HFS,
CS80, and HPIB).

LOAD BIN with WILDCARDS

Before using a wildcard expression with LOAD BIN, you must load the
binaries required to access the file system. For example, before using LOAD
BIN with a wildcard on an SRM disk you must first load the SRM and
DCOMM binaries.

LOAD BIN with SRM Volumes (BASIC/WS and BASIC/DOS only)

LOAD BIN is executed in shared mode, which means that several users can
load a BIN file at the same time. BIN files can be loaded into a workstation
from the SRM without the SRM and DCOMM binaries present in the
workstation (as described in the preceding paragraph). However, you cannot
perform operations like STORE without these binaries.

LOAD KEY (Requires KBD)

LOAD KEY sets the typing-aid definitions of the softkeys according to the
contents of the specified BDAT file. If the file is not in the proper format, an
error occurs. The file containing the key definitions may be created by a user
program. See the STORE KEY statement for file format.

All existing key definitions are cleared before the file's key definitions are
loaded.

LABEL - LWC$ L-37

L

L

LOAD

If LOAD KEY is executed without a file specifier, the keys are reset to their
power-on values.

ON KEY definitions are not affected by LOAD KEY.

LOAD KEY with SRM Volumes

In order to LOAD KEY a file on an SRM volume, you need to have READ
access capability on the immediately superior directory, as well as READ
capability on all other superior directories.

LOAD KEY is executed in shared mode, which means that several users can
perform a LOAD KEY from a BDAT file at the same time. Files being stored
with the STORE KEY or RE-STORE KEY statements are locked during that
operation and cannot be accessed for loading.

BASIC/UX Specifics

LOAD BIN generates an error message as it is not appropriate for BASIC/UX
(binaries are permanently loaded).

L-38 LABEL· LWC$

LOADSUB
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes (See Semantics)
Yes (See Semantics)

LOADSUB

This statement allows you to load subprograms from a PROG file into memory.

literal form of file specifier:

literal form of DFS file specifier:

LABEL· LWC$ L·39

L

L

LOADSUB

Item Description

subprogram name of a SUB or CSUB subprogram
name

function name name of a user-defined function

file specifier string expression

directory path literal

file name literal

SRM password literal; first 16 non-blank characters
are significant

volume specifier literal

Example Statements

LOADSUB FROM "Subs_File"
LOADSUB FNReplace$ FROM IISubs_File ll

LOADSUB ALL FROM Subfile$
LOADSUB ALL FROM IIDir3/Progfile<SRM_READ_pass)1I
LOADSUB ALL FROM II/Dirl/Dir2/Prog23 11

Semantics

LOADSUB FROM (Requires PDEV)

Range

any valid name

any valid name

(see drawing)

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

> not allowed

(see MASS STORAGE IS)

(Not Programmable)

The command LOADSUB FROM (without a subprogram name) is not
programmable; it is used before a program is run. It looks through the program
and notices all the subprogram references which are unsatisfied. Unsatisfied
references are statements which reference subprograms that don't yet exist in
memory. It then accesses the specified file (which must be a PROG file), and
loads all the needed subprograms, appending them to the end of the current
program, renumbering as necessary. It also looks through the subprograms it
just loaded to see if they call anything which is not yet in memory. If so, those
references will be satisfied. This process repeats for each set of subprograms

L-40 LABEL - LWC$

LOADSUB

loaded until all the routines that are referenced are loaded or until it is
determined they are not in the specified file. At the end of the LOADSUB
FROM command, if there are still unsatisfied references, an error message and
a list of the subprograms names still needed is displayed.

LOADSUB ALL FROM

LOADSUB <subprogram name> FROM

LOADSUB, when a subprogram name or ALL is included, loads the specified
subprogram(s) from the specified file. This form is programmable. If either the
file name or the subprogram name specified is not found, or the file name is
not a PROG file, an error will occur. As the subprogram is loaded, it will be
renumbered to fit at the end of the program. LOADSUB does not cause the
program or any data currently in memory to be lost.

HFS Permissions

In order to LOADSUB from a file on an HFS volume, you need to have
R (read) access permission on the file, and X (search) permission on the
immediately superior directory and on all other superior directories.

LOADSUB with SRM Volumes

In order to LOADSUB from a file on an SRM volume, you need to have READ
access capability on the immediately superior directory, as well as READ
capability on all other superior directories.

With SRM, LOADSUB is executed in shared mode, which means that several
workstations can perform a LOADSUB of a file at the same time. PROG files
being stored with the STORE or RE-STORE statement are locked during that
operation and cannot be accessed for loading.

LABEL· LWC$ L·41

L

LOADSUB

L LOADSUB with WILDCARDS

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with LOADSUB. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
Wildcard file specifiers used with LOAD SUB must match one and only one file
name.

L·42 LABEL· LWC$

LOCAL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
10
Yes
Yes
Yes

This statement returns all specified devices to their local state.

Item Description Range

I/O path name name assigned to a device or devices any valid name (see
ASSIGN)

device selector numeric expression, rounded to an (see GLOSSARY)
integer

Example Statements

LOCAL GDvm
LOCAL 7

Semantics

LOCAL

If only an interface select code is specified by the 110 path name or device
selector, all devices on the bus are returned to their local state by setting REN
false. Any existing LOCAL LOCKOUT is cancelled.

If a primary address is included, the GTL message (Go To Local) is sent to all
listeners. LOCAL LOCKOUT is not cancelled.

LABEL· LWC$ L·43

L

LOCAL

L
Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary AddresE Interface Select Primary Addres~
Code Only Specified Code Only Specified

Active REN ATN ATN ATN
Controller MTA GTL MTA

UNL UNL
LAG LAG
GTL GTL

Not Active REN Error Error Error
Controller

L-44 LABEL - LWC$

LOCAL LOCKOUT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
10
Yes
Yes
Yes

LOCAL LOCKOUT

This HP-IB statement sends the LLO (local lockout) message, preventing an
operator from returning the specified device to local (front panel) control.

Item

I/O path name

interface select
code

LOCAl. LOCKOUT ~~

Description

name assigned to an interface select
code

numeric expression, rounded to an
integer

Example Statements

LOCAL LOCKOUT 7
LOCAL LOCKOUT GHpib

Semantics

Range

any valid name
(see ASSIGN)

7 through 31

The following conditions must be met to use LOCAL LOCKOUT without
error:

• The computer sending LOCAL LOCKOUT must be Active Controller

• Only an interface select code may be specified, not a primary address

LABEL· LWC$ L·45

L

L

LOCAL LOCKOUT

Either System Controllers or Non-system Controllers may send LOCAL
LOCKOUT.

If a device is in the LOCAL state when this message is sent, it does not
take effect on that device until the device receives a REMOTE message and
becomes addressed to listen.

LOCAL LOCKOUT does not cause bus reconfiguration, but issues a universal
bus command received by all devices on the interface whether addressed or not.
The command sequence is ATN and LLO.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addres~ Interface Select Primary Addres~
Code Only Specified Code Only Specified

Active ATN Error ATN Error
Controller LLO LLO

Not Active Error Error Error Error
Controller

L-46 LABEL - LWC$

LOCATOR

LOCATOR L

See the READ LOCATOR and SET LOCATOR statements.

LABEL· LWC$ L·47

L LOCK
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
SRM & DCOMM
Yes
Yes
Yes

This statement prevents other SRM workstations from accessing the SRM file
to which the I/O path name is currently assigned (see ASSIGN).

Item Description

I/O path name name identifying an I/O path

return variable name of a numeric variable

Example Statements

LOCK GFile;CONDITIONAL Result
LOCK GAscii_l;CONDITIONAL Error_number

Semantics

CONDITIONAL.

Range

any valid name (See
Glossary)

any valid name (See
Glossary.)

This statement establishes sole access to an SRM file that has been opened
with an ASSIGN statement. This exclusive access remains assigned to the
workstation (or SRM, orBASIC/UX process) executing the LOCK statement
until an UNLOCK statement is executed by that workstation. The UNLOCK
function is also a result of SCRATCH A, [RESET) and ASSIGN ... TO *
(explicitly closing an I/O path).

L-48 LABEL - LWC$

LOCK

A file may be locked several times. The system counts the number of LOCKs
on a file, and an equal number of UNLOCKs must be executed to unlock the
file. When an I/O path name is closed (for example, by ASSIGN ... TO *), all
LOCKs of that I/O path name are cleared.

If the LOCK is successful, the value of the return variable will be zero.
Otherwise, the return variable's value will be the error number corresponding
to the cause of the LOCK's failure.

BASIC/UX Specifics

BASIC/UX supports LOCK for HFS files: establishing exclusive access to a
file by the BASIC/UX process. In order to LOCK the file exclusively, you
must have write permission on the file. You may LOCK a file with read-only
permission if you have the LOCKRDONLY (see setprivgrp(lM)) kernel
privilege. In addition, you must either own the file, or the file must have the
set group-id bit on and the group search bit off. If this is not the case, an
attempt is made to set up an advisory lock.

BASIC/UX does not support locking of RFA, NFS or LIF files, although no
error is generated when the LOCK statement is executed. Locking of pipes is
not allowed; an attempt to LOCK a pipe generates a run-time error.

Also note that if two or more BASIC lUX processes are running on the same
workstation, commands such as ENTER and OUTPUT will not block waiting
for an SRM file to be unlocked. Instead, they generate an error.

BASIC/DOS Specifics

BASIC/DOS does not support LOCK for DFS files.

LABEL· LWC$ L·49

L

L LOG
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function returns the logarithm (base e) of its argument.

Item Description/Default

argument numeric expression

Examples Statements

Time=-l*Rc*LOG(Volts/Emf)
PRIlIT "Natural log of ";Y; "=" ;LOG(Y)

Semantics

Range
Restrictions

> 0 for INTEGER and REAL
arguments; see "Range Restriction
Specifics" for COMPLEX arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the
argument is COMPLEX, the value returned is COMPLEX.

To compute the LOG of a COMPLEX value, the COMPLEX binary must be
loaded.

L-50 LABEL - LWC$

LOG

Range Restriction Specifics

The formula used for computing the LOG of a COMPLEX value is:

CMPLX(LOG(ABS(Argument»,ARG(Argument»

where Argument is a COMPLEX argument to the LOG function. The
imaginary part of the result (ARG(Argument)) is always given in radians and is
between -7r and +7r. Some values of a COMPLEX argument may cause errors
in this computation. For example:

LOG(CMPLX(MAXREAL,MAXREAL»

will cause error 22 due to the ABS (Argument) computation.

LABEL· LWC$ L·51

L

L LOOP
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
No
Yes
No

This construct defines a loop which is repeated until the boolean expression in
an EXIT IF statement evaluates to be logically true (evaluates to a non-zero
value).

Item

boolean
expression

program
segment

(END lOOP}+l

Description

numeric expression; evaluated as true
if nonzero and false if 0

any number of contiguous program
lines not containing the beginning
or end of a main program or
subprogram, but which may contain
properly nested construct(s).

L-52 LABEL - LWC$

Range

Example Program Segments
460 LOOP
470 EXIT IF LEN(A$)<2
480 P=POS(A$,Delim$)
490 EXIT IF NOT P
500 A$=A$[1,P-1]lA$[P+2]
510 END LOOP

1200 LOOP ! Until an EOF branch
1210 ENTER GFile;Text$
1220 PRINT Text$
1230 END LOOP

Semantics

LOOP

The LOOP ... END LOOP construct allows continuous looping with
conditional exits which depend on the outcome of relational tests placed within
the program segments. The program segments to be repeated start with
the LOOP statement and end with END LOOP. Reaching the END LOOP
statement will result in a branch to the first program line after the LOOP
statement.

Any number of EXIT IF statements may be placed within the construct to
escape from the loop. The only restriction upon the placement of the EXIT IF
statements is that they must not be part of any other construct which is nested
within the LOOP ... END LOOP construct.

If the specified conditional test is true, a branch to the first program line
following the END LOOP statement is performed. If the test is false, execution
continues with the next program line within the construct.

Branching into a LOOP ... END LOOP construct (via a GOTO) results in
normal execution from the point of entry. Any EXIT IF statement encountered
will be executed. If execution reaches END LOOP, a branch is made back to
the LOOP statement, and execution continues as if the construct had been
entered normally.

Nesting Constructs Properly

LOOP ... END LOOP may be placed within other constructs, provided it
begins and ends before the outer construct can end.

LABEL· LWC$ L·53

L

L LORG
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
GRAPH
Yes
Yes
Yes

This statement specifies the relative origin of a label or symbol with respect to
the current pen position.

Item

label origin
position

Description

numeric expression, rounded to an
integer; Default = 1

Example Statements

LORG 4
IF Y>Limit THEN LORG 3

Semantics

Range

1 through 9

The following drawings show the relationship between a label and the logical
pen position. The pen position before the label is drawn is represented by a
cross marked with the appropriate LORG number.

L·54 LABEL· LWe$

LORG

3 6 9 L

+ + +
-EV-EN+

1 4 7

+ + +
3 6 9

+ + +
-0]]0+

1 4 7

+ + +

LABEL· LWC$ L·55

L LWC$
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function replaces any uppercase characters with their corresponding
lowercase characters.

Example Statements

L01fer$=LVC$(IUPPER")
IF LVC$(Yes$)=ly" THEK True_test

Semantics

The LWC$ function converts only uppercase alphabetic characters to their
corresponding lowercase characters and will not alter numerals or special
characters.

The corresponding characters for the Roman Extension alphabetic characters
are determined by the current lexical order. When the lexical order is a
user-defined table, the correspondence is determined by the STANDARD
lexical order.

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. The LWC$ function converts only one-byte
characters and does not change two-byte characters. For more information
about two-byte characters, refer to the globalization chapters of the
HP BASIC 6.2 Porting and Globalization manual.

L-56 LABEL - LWC$

M
MASS STORAGE IS - MTA M

MASS STORAGE IS • MTA M·1

M

MASS STORAGE IS

Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN*
None
Yes
Yes
Yes

This statement specifies the system mass storage device for DFS, HFS, LIF,
SRM, and SRM/UX.

HFS
or

SRM and
DCOMM or LAN

r--.
literal form of file specifier:

directory path:

HFS
or

SRM <l!!d i
•• DCOMM or LAN L __ ~

M-2 MASS STORAGE IS - MTA

MASS STORAGE IS

r------------------------------,
literal form of directory specifier (DFS only):

M

directory path:

DFS

MASS STORAGE IS - MTA M-3

MASS STORAGE IS

literol form of volume ~cifi~r:

~------------~r--------------------------'-----------------r~1I

M

SRM and DCOMM or LAN

literal form of DFS volume specifier:

DFS

M-4 MASS STORAGE IS - MTA

MASS STORAGE IS

Item Description Range

directory string expression (see drawing)
specifier

volume specifier string expression (see drawing) M

directory path literal (see drawing)

directory name literal depends on volume's format
(14 characters for HFS; 255
characters for HFS long file
name systems (BASIC/UX
only); 16 characters for
SRM; and SRM/UX; see
Glossary for details)

SRM password literal; first 16 non-blank characters > not allowed
are significant (Note: SRM/UX
ignores passwords.)

device type literal (see Semantics)

device selector integer constant (see Glossary)

unit number integer constant; Default = 0 o through 255
(device-dependent)

volume number integer constant; Default = 0 (device-dependent)

SRM or LAN integer constant identifying the SRM 8 through 31
interface select or LAN interface in the workstation
code

SRM server's literal o through 63
node number

SRM volume literal any valid SRM volume name
name (see Glossary)

SRM volume literal (Note: SRM/UX ignores any valid SRM volume
password passwords.) password (see Glossary)

DOS drive literal any valid DOS drive
designator designator in the range A

through Z (or a through z)
MASS STORAGE IS - MTA M-5

M

MASS STORAGE IS

Example Statements

MASS STORAGE IS Vol_specifier$
MSI ":,700"
MSI ":IIITERHAL,4,1"
MSI ":X,12"
MSI ": REMOTE"
MSI ":HFS" (BASIC/UX only)
MASS STORAGE IS Dir_path$tVol_specifier$
MSI "/Dir1/Dir2/MyDir"
MSI " . • 1 .. "
MSI ".<SRM_READ_pass>"
MSI ":DOS,C"
MSI "\BLP:DOS,C"

Semantics

All mass storage operations which do not specify a source or destination by
either an I/O path name or volume specifier in the file specifier use the current
system mass storage device.

MASS STORAGE IS can be abbreviated as MSI when entering a program line,
but a program)isting always shows the unabbreviated keywords.

If you are using a version of BASIC that supports wildcards, you can use them
in volume specifiers with MSI. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
Wildcard file specifiers used with MSI must match one and only one volume
name.

Device Type

The following table shows the valid device types. Most device types require an
optional BIN for the statement to execute.

M·6 MASS STORAGE IS • MTA

MASS STORAGE IS

Binary
Device Type Required

INTERNAL none
(Models 226 and 236 only)

M
MEMORY

HP 9121 DISK &
HP 9133A/B/V /XV HPIB or FHPIB
HP 9134A/B/XV
HP 9135 (5 1/4 -inch disk
requires HPIB not FHPIB)
HP 913X
HP 9895

HP 82901 DISK & HPIB
HP 82902
HP 8290X

All "CS/80" and "SS/80" CS80 &
drives, for instance: HPIB or FHPIB
HP 7908
HP 7914
HP 9122
HP 9133D/H/L
HP 9134D/H
HP 9153
HP 7946
etc.

MASS STORAGE IS • MTA M·7

M

MASS STORAGE IS

Binary
Device Type Required

REMOTE (SRM) SRM & DCOMM

REMOTE (SRM/UX) SRM & DCOMM
or SRM & LAN

BUBBLE BUBBLE

EPROM EPROM

SCSI SCSI

DOS drive DFS

Note The 98625 Card (which requires the FHPIB binary) cannot be
used with external 5 1/4 -inch disks.

If the device type specified is not valid, the system tests the device to
determine its type. There are two exceptions to this.

1. If the device selector is 0 and the device type is invalid, the device type is
assumed to be MEMORY.

2. If the device type is valid and the driver BIN for the device is not loaded,
the system considers the device an invalid device type.

If a valid device type is specified and the system finds a different device at the
device seiector, error 72 occurs.

M-8 MASS STORAGE IS - MTA

MASS STORAGE IS

Non-Disk Mass Storage

Memory volumes are created by the INITIALIZE statement. They are
removed by SCRATCH A or by turning off the power. The unit number for a
MEMORY volume may be 0 through 31.

The following is for BASIC Workstation only:

A bubble memory card may have an select code of 8 through 31. (Use of
this card requires the BUBBLE BIN.) A bubble memory card is always
unit number o. It is recommended that these cards be given a high
hardware-interrupt level to avoid error 314 in overlapped applications.

When writing data into EPROM (requires the EPROM BIN), specify the
select code of the EPROM Programmer card that is connected to the desired
EPROM memory card. When reading data from EPROM, specify a select code
of 0 or use the select code of the currently connected EPROM Programmer
card. If the programmer card at the specified select code is not connected to
the specified EPROM memory card, an error is reported. If the select code
of 0 is used, you must specify "EPROM" in the mass storage unit specifier;
otherwise, the system assumes MEMORY.

The unit numbers are given to the EPROM memory cards at power-up
according to relative memory addresses. The card with the lowest address
is given unit number 0, the card with the next greater address is given unit
number 1, and so forth.

MS. with SRM, SRM/UX, and HFS Volumes

With hierarchical volumes (such as SRM, SRM/UX, and HFS), MASS
STORAGE IS can also be used to specify the current working directory.

In order to specify an HFS directory as the current working directory, you need
to have X (search) permission of the immediately superior directory as well as
on all other superior directories.

In order to specify an SRM directory as the current working directory, you
need to have READ access capability on all superior directories.

If you specify an SRM volume password in an MSI statement, that password is
automatically applied to all accesses that use the default volume (that is, when

MASS STORAGE IS • MTA M·9

M

M

MASS STORAGE IS

no volume specifier is included in the file specifier) until a mass storage volume
specifier is included in a subsequent MSI. SRM/UX ignores passwords.

An SRM path name is limited to six levels. To MSI to a directory which is
more than six levels deep, you must execute two or more MSI statements.

BASIC provides an abbreviated form of the msvs to refer to the current SRM
directory. ":REMOTE" refers to the SRM directory you booted from, or if you
have performed an MSI to the SRM, : REMOTE refers to the last SRM directory
used in an MSI statement. If you did not boot from the SRM and you are
accessing it for the first time, you should specify the entire msvs.

MSI with DFS Volumes

The DFS binary provided with the HP Measurement Coprocessor provides
direct access to the PC's DOS drives. The DOS drive designator is included in
the volume specifier (for example: ":DOS,C"). Note that either the forward
sla.sh (/) or the back slash(\) may be used in the directory path.

MSI and Driver Binaries

With BASIC 6.2, executing MASS STORAGE IS requires accessing the volume
(since the system cannot determine whether a volume is a LIF or an HFS
format). This operation requires that all drivers for the interface, disk, and
directory format be present; for instance, you must have HPIB, CS80, and HFS
binaries currently loaded in order to MSI to an HFS directory. If media is not
present (hence cannot be accessed), BASIC assumes the volume is LIF format.

BASIC/UX Specifics

BASIC/UX provides an abbreviated form of the'msvs to refer to the current
directory for HFS. ": HFS" refers to the most recent HFS directory used in an
MSI command.

HFS is a valid logical device type, and if HFS is specified with a non-HFS
device selector, the device selector will be ignored (unless that device selector
has been mapped to an HFS directory in the rmbrc environment file; see
Installing and Maintaining HP BASIC/UX 6.2.).

M-10 MASS STORAGE IS· MTA

MAT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
MAT
Yes
Yes
Yes

MAT

MAT can be used to initialize string and numeric arrays to constant values
and copy string and numeric arrays. It can also be used to perform arithmetic
operations on numeric arrays and, through the use of secondary keywords, can
be used to perform special functions on numeric arrays.

Item

string array
name

array name

operator

vector name

matrix name

Description

name of a string array

name of a numeric array

Any of the following:
+ - • / < <= = <> >= > *
name of a one-dimensional
numeric array

name of a two dimensional
numeric array

Example Statements

MAT A= A*(Ref+I/3)
MAT A= A+B
MAT A= B«1)
MAT A= B<>C
MAT V= CSUM(A)
MAT I= IDI
MAT B= IIlV(A)
MAT Des_array(-1:0.2:4)= Sor_array
MAT Array_I= Array_2(-4:I)
MAT Destination(3.*.*)= Source(*.2.*)
MAT Result= REAL (Complex_array)

Range

any valid name

any valid name

. (period) can only appear
between two arrays

any valid name

any valid name

MASS STORAGE IS - MTA M-11

M

M

MAT

MAT Hev_array= lMAG(Complex_array)
MAT Return_ary= CMPLX(Arrayl,Array2)
MAT Des_ary= COHJG(Complex_array)
MAT Array= ARG(Complex_array)
MAT Matrix_l= (CMPLX(34.56,-23.78»
MAT Magnitudes= ABS(Complex_array)

Semantics

The MAT statement allows you to:

• Copy a string expression into a string array or copy the contents of one
string array into another string array.

• Copy a numeric expression into an array.

• Copy two REAL arrays into a COMPLEX array with the first REAL array
representing the real part of the COMPLEX elements and the second REAL
array representing the imaginary parts.

• Copy the contents of one array or subarray into another array or subarray.

• Add an array and a numeric expression, or two arrays.

• Subtract a numeric expression from an array, an array from a numeric
expression, or an array from an array.

• Multiply an array by a numeric expression or another array.

• Divide a numeric expression by an array, an array by a numeric expression,
or an array by an array.

• Compare an array to a numeric expression or to another array.

• Calculate the Identity, Inverse, Transpose, Sum of rows, and Sum of columns
of a matrix.

II Extract the real part or imaginary parts of a COMPLEX array.

• Compute the COMPLEX conjugate, argument or absolute value (magnitude)
of COMPLEX array elements.

• Calculate the absolute value of an INTEGER, REAL, or COMPLEX array.

M·12 MASS STORAGE IS - MTA

Note

MAT

If an error occurs during the calculations involved in a MAT
assignment the result array will contain only a partial result.
Since you will have no idea which entries are valid, the contents
of the array should be considered invalid.

Numeric Operations

In the case of operators, the specified operation is generally performed on every
array element, and the results are placed in corresponding locations of the
result array (the exception is the * operator, which is discussed under Matrix
Multiplication, below.) This means that the result array must have the same
"size" and "shape" (though not necessarily the same subscript ranges) as the
operand array(s). Note that "size" refers to the number of elements in the
array and "shape" refers to the same number of dimensions and elements in
each dimension, respectively (e.g. both of these subscript specifiers have the
same shape: (-2:1,-1:10) and (1:4,9:20)). If necessary, the system will
redimension the result array to make it the proper size. The redimensioning
can only take place, however, if the dimensioned size of the result array has at
least as many elements as the current size of the operand array(s).

When two arrays are operated on, they must be exactly the same size and
shape. If not, the computer returns an error. The specified operation is
performed on corresponding elements in each operand array and the result is
placed in the corresponding location of the result array. Multiplication of the
elements of two arrays is performed with a period rather than an asterisk. The
asterisk is reserved for matrix multiplication described below.

Relational Operators

Relational operations are performed on each element of the operand array(s).
If the relation is TRUE, a 1 is placed in the corresponding location of the
result array. If the relation is FALSE, a 0 is recorded. The result array,
therefore, consists of all O's and 1's. Note that the only comparison operators
allowed between COMPLEX expressions or arrays are: = and <>.

MASS STORAGE IS - MTA M-13

M

M

MAT

Complex Operations

Complex functions can be used by the MAT statement to:

• extract the real and/or imaginary parts of a COMPLEX array and assign
them to a resultant array,

• create a COMPLEX array from two REAL or INTEGER arrays,

• compute the COMPLEX conjugate, argument or absolute value (magnitude)
of COMPLEX array elements and assign them to a resultant array.

The complex functions available with the MAT statement are given below. The
arguments used with these functions can be INTEGER, REAL or COMPLEX
arrays.

REAL (Array)

IMAG(Array)

CMPLX(Arrayl,Array2)

CONJG(Array)

ARG(Array)

ABS(Array)

assigns the real parts of each array element to
the corresponding element in the resultant array.

assigns the imaginary parts of each array
element to the corresponding element in the
resul t array.

creates COMPLEX values from two numeric
arrays by assigning each element of the first
array (Arrayl) to the corresponding real part
of the result array element, and each element of
the second array (Array2) to the corresponding
imaginary part of the result array element (if it
is COMPLEX). If either of the array arguments
are COMPLEX arrays, only the real part of that
array is used in the creation of the values.

computes the conjugate of each COMPLEX
array element and assigns this result to the
corresponding element in the result array.

computes the argument of each COMPLEX
array element and assigns this result to the
corresponding element in the result array.

computes the absolute value of each COMPLEX
array element and assigns this result to the
corresponding element in the result array.

M-14 MASS STORAGE IS - MTA

MAT

Matrix Multiplication

The asterisk is used for two operations. If it is between an array and a numeric
expression, each element in the array is multiplied by the numeric expression.
If it is between two matrixes, it results in matrix multiplication. If A and Bare
the two operand matrices, and C is the result matrix, the matrix multiplication
is defined by:

n

Cij = L AikBkj

k=l

where n is the number of elements in a column in the matrix A. (This formula
assumes that the array subscripts run from 1 through N; in actuality, the
computer only requires that the two arrays be the correct size and shape, the
actual values of the subscripts are unimportant.)

Note that the subscript values of the result array correspond to the rows of
the first operand matrix and the columns of the second operand matrix. Note
also that the column subscript of the first operand array is equal to the row
subscript of the second operand array. We can summarize these observations in
two general rules:

• The result matrix will have the same number of rows as the first operand
matrix and the same number of columns as the second operand matrix.

• Matrix multiplication is legal if, and only if, the column size of the first
operand matrix is equal to the row size of the second operand matrix.

A third rule of matrix multiplication is:

• The result matrix cannot be the same as either operand matrix.

If either array is COMPLEX, the operation is done in COMPLEX math.
Otherwise, the calculation is done in REAL math unless both operands
are INTEGER, in which case the computation is also INTEGER. If the
result matrix and the operand matrixes are different types (Le., one is
REAL and the others are INTEGER), the computer makes the conversion
necessary for the assignment. However, the conversion is made after the
multiplication is calculated, so even if the matrix receiving the result is REAL,
the multiplication can generate an INTEGER overflow when the operands are
INTEGER matrixes.

MASS STORAGE IS • MTA M·15

M

M

MAT

The computer allows you to do matrix multiplication on vectors by treating the
vectors as if they were matrices. If the first operand is a vector, it is treated as
a I-by-N matrix. If the second operand is a vector, it is treated as an N-by-l
matrix.

Copying Sub arrays

A sub array is a subset of an array (an array within an array). A sub array is
indicated by a specifier after the array name as follows:

Array _naae (subarray-specifier)
Array _naae$ (subarray_specifier)

For example if you wanted to specify the entire second column of a 3x3
two-dimensional array, you would use the following subarray:

Array_naae{*,2)

Copying sub arrays is useful when you need to:

• Copy a Subarray into an Array

• Copy an Array into a Subarray

• Copy a Subarray into a Subarray

• Copy a Portion of an Array into Itself

For a complete discussion of this subject, read the section entitled "Copying
Subarrays" found in the "Numeric Arrays" chapter of the HP BASIC 6.2
Programming Guide manual. (Note that you can also copy subarrays of string
arrays.)

Before discussing the rules for sub arrays the concept of range needs to be
understood as it appears in this text. There are two types of ranges to be
considered when using subarrays they are the: subscript range and default
range. The subscript range is used to specify a set of elements starting with
a beginning element position and ending with a final element position. For
example, 5: 8 represents a range of four elements starting with element 5 and
ending at element 8. The default range is denoted by an asterisk (*) and
represents all of the elements in a dimension from the dimension's lower bound
to its upper bound. For example, suppose you wanted to copy the entire first
column of a two dimensional array, you would use the following subarray

M·16 MASS STORAGE IS· MTA

MAT

specifier: (*, 1), where * represents all the rows in the array and 1 represents
only the first column.

Some rules to follow when copying subarrays are as follow:

• Subarray specifiers must not contain all subscript expressions (i.e. (1,2,3) is
not allowed, it will produce a syntax error). This rule applies to all subarray
specifiers.

• Subarray specifiers must not contain all asterisks (*) or default ranges (Le.
(* ,* ,*) is not allowed, it will produce a syntax error). This rule applies to
all subarray specifiers.

• If two subarrays are given in a MAT statement, there must be the same
number of ranges in each sub array specifier. For example,

KAT Des_arrayl(1:10,2:3)= Sor_array(5:14,*,3)

is the correct way of copying a sub array into another subarray provided the
default range given in the source array (Sor_array) has only two elements in
it. Note that the source array is a three-dimensional array. However, it still
meets the criteria of having the same number of ranges as the destination
array because two of its entries are ranges and one is an expression.

• If two subarrays are given in a MAT statement, the subscript ranges in the
source sub array must be the same shape as the subscript ranges in the
destination subarray. For example, the following is legal:

KAT Des_array(1:5,O:1)= Sor_array(3,1:5,6:7)

however, the one below is not legal:

KAT Des_array(O:1,1:5)= Sor_array(1:5,O:1)

because both of its sub array specifiers do not have the same shape (i.e. the
rows and columns in the destination sub array do not match the rows and
columns in the source subarray).

MASS STORAGE IS • MTA M·17

M

M

MAT

CSUM

This secondary keyword computes the sum of each column in a matrix and
places the results in a vector. The result vector must have at least as many
elements as the matrix has columns. If the vector is too large or its current
size is too small (and there are enough elements in its original declaration
to allow redimensioning), the computer redimensions it. If the result vector
and the argument array are different types (Le., one is REAL and the other
is INTEGER), the computer makes the necessary conversion. However, the
conversion is made after the column sums are calculated, so even if the vector
receiving the result is REAL, CSUM can generate an INTEGER overflow when
the argument is an INTEGER array.

IDN

This secondary keyword turns a square matrix into an identity matrix. An
identity matrix has Is along the main diagonal and Os everywhere else. The
matrix must be square.

INV

This secondary keyword finds the inverse of a square matrix. A matrix
multiplied by its inverse produces an identity matrix. The inverse is found by
using the pivot-point method. If the value of the determinant (see DET) is 0
after an INV, then the matrix has no inverse-whatever inverse the computer
came up with is invalid. If the value of the determinant is very small compared
with the elements in the argument matrix, then the inverse may be invalid and
should be checked.

If the result matrix is not the same size and shape as the argument matrix,
the computer will attempt to redimension it. If it is too large, or its current
size is too small (and there are enough elements in its original declaration to
allow redimensioning) the computer redimensions it. An error is returned if the
computer cannot redimension the result array.

M-18 MASS STORAGE IS - MTA

MAT

RSUM

This secondary keyword computes the sum of each row in a matrix and places
the values in a vector. The result vector must be large enough to hold the
sums of each row. If it is too large, or its current size is too small (and there
are enough elements in its original declaration to allow redimensioning) the
computer redimensions it. If the result vector and the argument array are
different types (Le., one is REAL and the other is INTEGER), the computer
makes the necessary conversion. However, the conversion is made after the row
sums are calculated, so even if the vector receiving the result is REAL, RSUM
can generate an INTEGER overflow when the argument is an INTEGER array.

TRN

This secondary keyword produces the transpose of a matrix. The transpose is
produced by exchanging rows for columns and columns for rows. The result
matrix must be dimensioned to be at least as large as the current size of the
argument matrix. If it's the wrong shape, the computer redimensions it. The
result and argument matrices cannot be the same.

The transpose of an N-by-M matrix is an M-by-N matrix, and each element is
defined by switching the subscripts. That is, A(m,n) in the argument matrix
equals B(n,m) in the result matrix. (This description assumes that the array
subscripts run from 1 through M and 1 through N; in actuality, the computer
only requires that the array be the correct size and shape, the actual values of
the subscripts are unimportant.)

MASS STORAGE IS - MTA M-19

M

M

MAT REORDER

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
MAT
Yes
Yes
Yes

This statement reorders elements in an array according to the subscript list in
a vector.

NAT REORDER

Item

array name

vector name

dimension

Description

name of an array

name of a one-dimensional numeric
array

numeric expression, rounded to an
integer; Default=l

Example Statements

MAT REORDER A BY B
MAT REORDER A BY B,2

Semantics

Range

any valid name

any valid name

1 through 6; ~ the RANK of
the array

The dimension parameter is used to specify which dimension in a
multidimensional array is to be reordered. If no dimension is specified, the
computer defaults to dimension 1. The vector must be the same size as
the specified dimension and it should contain integers corresponding to the
subscript range of that dimension (no duplicate numbers, or numbers out of

M·20 MASS STORAGE IS • MTA

MAT REORDER

range). The vector used cannot be a COMPLEX vector, but COMPLEX
arrays can be re-ordered.

Vectors generated by a MAT SORT TO statement are of the proper form for
reordering (see MAT SORT).

MASS STORAGE IS· MTA M-21

M

M

MAT SEARCH
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS
MAT
Yes
Yes
Yes

This statement searches for user-defined conditions within a numeric or
string array and places information returned into a variable for recall and
examination.

string key specifier:

numeric key specifier:

you must include one,
on only one, asterisk

fl§1"

M·22 MASS STORAGE IS - MTA

MAT SEARCH

Range
Item Description/Default Restrictions

numerIC name of a numeric array any valid name
arrayname

string array name of a string array any valid name
M

name

subscript numeric expression, rounded to an -32 768 through +32 767
integer (see "array" in Glossary)

beginning numeric expression, rounded to an 1 through 32 767 (see
position integer "string" in Glossary)

ending position numeric expression, rounded to an o through 32 767 (see
integer "string" in Glossary)

substring numeric expression, rounded to an o through 32 767 (see
length integer "string" in Glossary)

return variable < name of a numeric or string see "Semantics"
variable(as appropriate)

starting starting location within the vector -32 768 through +32 767
subscript being searched (see "array" in Glossary)

MASS STORAGE IS • MTA M·23

M

MAT SEARCH

Example Statements

MAT SEARCH Number_array,LOC MAX;Loc_max
MAT SEARCH Source,LOC«3);Location,4
MAT SEARCH Array(l,*) DES,LOC MIN;Loc_.in,6
MAT SEARCH Vector,#LOC«>2);Non_two_values
MAT SEARCH String$(*,2,3) DES,MAX;Max_value$
MAT SEARCH Word$(*,2),MIN;Min_plus$[2;10],Start_pos

Semantics

Numeric searching comparisons are performed in the INTEGER mode for
integer-precision arrays, in the REAL mode for real-precision arrays, and in the
COMPLEX mode for complex arrays (which use real-precision for their real
and imaginary parts). Note that the only numeric comparisons allowed in the
COMPLEX mode are = and <> relational operators.

String arrays can be searched using all of the condition specifiers mentioned
above. (If you want to search a substring within each element, see the
subsequent discussion of searching substrings.)

The default search order for arrays is from the lower bound to the upper
bound. This is considered to be an ascending search order. You can search an
array in a descending search order (upper bound to lower bound) by using the
secondary keyword DES in the key specifier. The following table clarifies the
two types of search orders:

Starting Subscript No Starting Subscript
Search Order Given Given

ascending lower bound to upper bound
(default) starting subscript to upper bound

descending starting subscript to lower bound upper bound to lower bound

The remaining sections mainly talk about numeric arrays; however, these
sections also apply to searching string arrays.

M·24 MASS STORAGE IS • MTA

MAT SEARCH

DES
To search an array by descending subscript values, use the secondary keyword
DES in the array's key specifier:

MAT SEARCH Array(l t *) DES t MAX;Max_value t 6

This secondary keyword causes a search to begin at the upper subscript bound M
and proceed toward the lower bound of that same dimension. If a starting
subseript is specified in the MAT SEARCH statement, then the search will begin
at that specified location in the dimension being searched and proceed toward
the lower bound.

LOC(relational comparison)

LOC is used in the MAT SEARCH process for numeric and string arrays to scan the
specified locations until it finds the first value which makes the comparison
true. The relational comparison it uses is made up of two parts: an operator
and a string or numeric expression (e.g. (>10) or «>"CAT")). Operators
determine the type of comparisons made. The following operators may be used:
>, <, =, >=, <=, <>. The default relational operator is =.

When LOC is executed the value returned to the return variable is the subscript
of the first location found that satisfied the LOC condition.

#LOC(relational comparison)

The condition #LOC is used in the MAT SEARCH process for numeric and string
arrays to scan the specified locations and return a count of the number of
locations whose contents satisfy the condition. The explanation for the
relational comparison for this condition is the same as that given in the
previous section.

MAX

MAX is used in the MAT SEARCH process for numeric and string arrays to scan all
specified locations to find and return the maximum value found in the search.
If the array is a string array, a string value is returned.

MASS STORAGE IS • MTA M-25

M

MAT SEARCH

LOC MAX

LOC MAX is used in the MAT SEARCH process for numeric and string arrays to
scan all specified locations to find and return the subscript of the first location
in which the maximum value was found.

MIN

MIN is used in the MAT SEARCH process for numeric and string arrays to scan all
specified locations to find and return the minimum value found in the search.
If the array is a string array, a string value is returned.

LOC MIN

LOC MIN is used in the MAT SEARCH process for numeric and string arrays to
scan all specified locations to find and return the subscript of the first location
in which the minimum value was found.

Searching Substrings

To search a substring of each string array element, specify that substring (in
square brackets) as part of the key specifier. For example:

MAT SEARCH A$(*,1) [3,5] ,LOC("CAT") ;B$

searches the 3rd through 5th characters of each string for the string value CAT.
Note that a MAT SEARCH of string arrays allows you not only to define the
elements to be searched, but also to define substrings within each element.
Substrings may lie anywhere within the dimensioned size of the string. If a
substring lies outside the current string length, the null string is used as the
searching key.

M·26 MASS STORAGE IS· MTA

MAT SORT

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
MAT
Yes
Yes
Yes

MAT SORT

This statement sorts an array along one dimension according to lexical or
numeric order. In a string array, the current LEXICAL ORDER IS table is
used for the sorting comparisons.

MASS STORAGE IS . MTA M-27

M

M

MAT SORT

numeric key specifier:

you must include one,
an only one, asterisk

string key specifier:

M-28 MASS STORAGE IS - MTA

Item Description

numeric array name of a numeric array
name

string array name of a string array
name

vector name name of a one-dimensional numeric
array

subscript numeric expression, rounded to an
integer

beginning numeric expression, rounded to an
position integer

ending position numeric expression, rounded to an
integer

substring numeric expression, rounded to an
length integer

Example Statements

MAT SORT A(1,*,3)
MAT SORT A(1,*,3),(2,*,5) DES
MAT SORT B(*) TO v
MAT SORT A$(3,*)[1;2] TO v
MAT SORT A$(*,2) DES,(*,3)[4,7]

Semantics

MAT SORT

Range

any valid name

any valid name

any valid name

-32 768 through +32 767
(see "array" in Glossary)

1 through 32 767 (see
"su bstring" in Glossary)

o through 32 767 (see
"substring" in Glossary)

o through 32 767 (see
"substring" in Glossary)

The elements to be compared are defined by a key specifier. The dimension
to be sorted is marked with an asterisk, and the subscript values in the key
specifier define which elements in that dimension should be used as the
sorting values. Once (*), (*) DES, DES, or a blank specifier appears in the list
following the array name, no other items can be added. Note that COMPLEX
arrays cannot be MAT SORTed, because this statement's sorting routine uses
< and> relational comparisons and these comparisons are not allowed with
COMPLEX data types.

MASS STORAGE IS - MTA M-29

M

M

MAT SORT

In the case of ties, the computer leaves the elements in their current order.
However, you can define additional key specifiers to be used for ties. Whenever
the computer encounters a tie, it will look to the next (moving from left to
right) key specifier to break the tie. It will look at as many key specifiers as
necessary to resolve the tie. In theory, there is no limit to the number of key
specifiers you can have in one MAT SORT statement. In practice, it is limited
by the length of a stored line on the computer you are dealing with. Each key
must have an asterisk marking the same dimension.

Normally, the system sorts in ascending order. You can sort in descending
order by using the secondary keyword DES. DES applies only to the key
specifier which it follows. All others use the default ascending order.

MAT SORT of string arrays allows you not only to define the elements to be
sorted, but also to define substrings within each element. Substring specifiers
refer only to the key specifier that immediately precedes them. Substrings
may lie anywhere within the dimensioned size of the string. If a substring lies
outside the current string length, the null string is used as the sorting key.

In addition to actually sorting an array, you can use MAT SORT ... TO to
store the new order in a vector and leave the original array intact. If the vector
is too large, or its current size is too small (and there are enough elements in
its original declaration to allow redimensioning) the computer redimensions it.
After a MAT SORT TO statement, the array will be unchanged. The vector
will contain the subscript values of the sorted dimension in their new order.
You can then order the array or other parallel arrays using the REO RD ER
statement. You can also use the contents of the vector to access the original
array indirectly.

M·30 MASS STORAGE IS • MTA

MAX
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
MAT
Yes
Yes
Yes

MAX

This function returns a value equal to the largest value in the list of arguments
provided. If an array is specified as part of the list of arguments, it is
equivalent to listing all the values in the array. An INTEGER is returned if
and only if all arguments in the list are INTEGER.

Item Description

array name name of a numeric array

Example Statements

X=MAX(A(*»
X=MAX(A t3 tB)
X=MAX(FloortMIN(CeilingtArgument»

Range

any valid name

MASS STORAGE IS . MTA M-31

M

M

MAX

Semantics

COMPLEX arguments are not allowed with this function.

Note It is possible for the space needed for MAX to exceed the
temporary storage allocated for expression evaluation. If the
machine is close to overflowing memory this can be a fatal
error and can crash the machine. It is recommended that
statements including MAX not contain more than 20 variables
and constants. An array is counted as one variable.

M·32 MASS STORAGE IS • MTA

MAXLEN

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

MAXLEN

This function returns the maximum (declared) length of a string variable
in bytes. If you are using ASCII characters, the number of bytes equals the
number of characters.

Item Description

string variable any simple string variable or
subscripted string array element

Example Statements

MAXLER (String$)
R_columns=MAXLER(String_array$(O»

Semantics

Range

(see the "Semantics" section
given below)

If the length of a string variable is not explicitly declared (using COM,DIM,
or ALLOCATE) before it appears in a program, it will automatically have a
length of 18 characters. This function does not return the current length of the
variable; use the LEN function for that purpose.

MASS STORAGE IS • MTA M·33

M

M

MAXREAL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This function returns the largest positive REAL number available in the range
of the machine.

--{ MAXREAL r
Example Statements

A=MAXREAL
IF A*B<MAXREAL/(10 A H) THEN GOTO 100

Semantics

The value of MAXREAL is approximately 1.797 693 134 862 32 E+308.

M·34 MASS STORAGE IS • MTA

MERGE ALPHA WITH GRAPHICS

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

UX WS DOS*
GRAPH
Yes
Yes
Yes

MERGE ALPHA WITH GRAPHICS

This statement is used to merge the "simulated" separate alpha and graphics
rasters set up by the SEPARATE ALPHA FROM GRAPHICS statement.

(MERGE ALPHA) -I L.c WITH GRAPHICS Y

Example Statements

MERGE ALPHA

IF Done THEN MERGE ALPHA WITH GRAPHICS

Semantics

This statement is used to return the simulated separate alpha and graphics
rasters on multi-plane bit-mapped alpha displays to their "overlapped"
(default) mode. If the display is not a bit-mapped alpha display, an error will
be reported.

The statement performs the following actions:

1. PLOTTER IS CRT , "INTERNAL" is executed.

2. If the display is a multi-plane, bit-mapped alpha display, then the following
actions are also taken; however, note that these actions do not take place
when running in the X Window environment.

a. The alpha mask is set to its maximum value (2" n-l, where n is the
number of display planes).

b. The alpha pen is set to its default color.

MASS STORAGE IS - MTA M-35

M

MERGE ALPHA WITH GRAPHICS

c. The display is cleared (CLEAR SCREEN).

d. The graphics mask is set to its maximum value (2" n-l, where n is the
number of display planes).

e. The color map is re-initialized (to the default entries)

M Here is a BASIC program that performs similar configuration of a 4-plane,
bit-mapped alpha display:

100 PLOTTER IS CRT,"INTERNAL" ! To enable GESCAPE.
110 ALPHA HASK 15 ! Restore default.
120 CLEAR SCREEN
130 ALPHA ON ! Display alpha plane.
140 GRAPHICS ON ! Display graphics planes.
150 INTEGER Gm(O) ! Set up array for GESCAPE.
160 Gm(0)=15 !
170 GESCAPE CRT,7,Gm(*) ! Restore default.
180 PLOTTER IS CRT,"IBTERNAL" ! To reset color map.
190 ALPHA PEN 4 ! Restore default.
200 END

M-36 MASS STORAGE IS - MTA

MIN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
MAT
Yes
Yes
Yes

MIN

This function returns a value equal to the smallest value in the list of
arguments provided. If an array is specified as part of the list of arguments, it
is equivalent to listing all the values in the array. An INTEGER is returned if
and only if all arguments in the list are INTEGER.

Item Description

array name name of a numeric array

Example Statements

X=MIR(A(*»
X=MIR(A,3,B)
X=MIR(Ceiling,MAX(Floor,Argument»

Range

any valid name

MASS STORAGE IS - MTA M-37

M

M

MIN

Semantics

COMPLEX arguments are not allowed with this function.

Note It is possible for the space needed for MIN to exceed the
temporary storage allocated for expression evaluation. If the
machine is close to overflowing memory this can be a fatal
error and can crash the machine. It is recommended that
statements including MIN not contain more than 20 variables
and constants. An array is counted as one variable.

M-38 MASS STORAGE IS - MTA

MINREAL

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

MINREAL

This function returns the smallest positive REAL number available in the
range of the computer.

--{ MINREAL r

Example Statements

A=MINREAL
IF A-B>MINREAL*(10 A N) THEN GOTO 100

Semantics

The value of MINREAL is approximately 2.225 073 858 5072 4E-308.

MASS STORAGE IS - MTA M-39

M

M

MOD
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS In
None
Yes
Yes
Yes

This operator returns the remainder of a division.

-1divid~nd ~ divisor r

Item Description

dividend numeric expression

Range

divisor numeric expression not equal to 0

Example Statements

Remainder=Dividend MOD Divisor
PRINT "Seconds =" ; Time MOD 60

Semantics

MOD returns an INTEGER value if both arguments are INTEGER. Otherwise
the returned value is REAL.

For INTEGERs, MOD is equivalent to X - Y X (X DIV Y). This may return
a different result from the modulus function on other computers when negative
numbers are involved.

COMPLEX arguments are not allowed with this function.

M-40 MASS STORAGE IS - MTA

MODULO
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

This operator returns the integer remainder resulting from a division.

-1 dividend KMOOULO)-.JmOdutus r

Item Description

dividend numeric expression

modulus numeric expression

Example Statements

Remainder=Dividend MODULO Modulus
A=B MODULO C

Semantics

x MODULO Y is equivalent to X-YxINT(X/Y).

The result satisfies:

o <= (X MODULO Y) < Y if Y>O
Y < (X MODULO Y) <= 0 if Y<O

Range

range of REAL

range of REAL, =1= 0

MODULO

The type of the result is the higher of the types of the two operands. If the
modulus is zero error 31 occurs.

MODULO returns the remainder of a division.

COMPLEX arguments are not allowed with this function.

MASS STORAGE IS - MTA M-41

M

M

MOVE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS IN
GRAPH
Yes
Yes
Yes

This statement moves both the logical and physical pens from the current pen
position to the specified X and Y coordinates.

@-1x coordinate t-01 y coordinate ~

Item Description Range

x coordinate numeric expression in current units

y coordinate numeric expression in current units

Example Statements

MOVE 10,75
MOVE lext_x,lext_y

Semantics

The X and Y coordinates are interpreted according to the current
unit-of-measure. MOVE is affected by the PIVOT transformation.

If both current physical pen position and specified pen position are outside
current clip limits, no physical pen movement is made; however, the logical pen
position is moved to the specified coordinates.

M·42 MASS STORAGE IS • MTA

MOVE

Applicable Graphics Transformations

Scaling PIVOT CSIZE LDIR PDIR

Lines (generated by moves and X X [4]
draws)

Polygons and rectangles X X X

Characters (generated by X X
LABEL)

Axes (generated by AXES & X
GRID)

Location of Labels [1] [3] [2]

IThe starting point for labels drawn after lines or axes is affected by scaling.

2The starting point for labels drawn after other labels is affected by LDIR.

3The starting point for labels drawn after lines or axes is affected by PIVOT.

4RPLOT and IPLOT are affected by PDIR.

MASS STORAGE IS - MTA M-43

M

M

MOVELINES
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

UX WS DOS
EDIT and PDEV
Yes
No
No

This command allows you to move one or more program lines to another place
while editing a program.

Item Description Range

beginning line integer constant identifying program 1 to 32 766
number line

beginning line name of a program line any valid name
label

ending line integer constant identifying program 1 to 32 766
number line

ending line name of a program line any valid name
label

target line integer constant identifying program 1 to 32 766
number line

target line label name of a program line any valid name

M-44 MASS STORAGE IS - MTA

Example Statements

MOVELlRES 1200 TO 2350
MOVELlRES 100,230 TO Label1
MOVELlRES Util_start,Util_end TO 16340

Semantics

MOVELINES

If the ending line identifier is not specified, only one line is moved.

The target line identifier will be the line number of the first line of the moved
program segment. Moved lines are renumbered if necessary. The code (if any)
which is "pushed down" to make room for the moved code is renumbered if
necessary.

Line number references to the moved code are updated as they would be
by a REN command (except external references to non-existent lines are
renumbered).

If there are any DEF FN or SUB statements in the moved code, the target line
number must be greater than any existing line number.

If you try to move a program segment to a line number contained in the
segment, an error will result and no moving will occur.

If the starting line number does not exist, the next line is used. If the ending
line number does not exist, the previous line is used. If a line label doesn't
exist, an error occurs and no moving takes place.

If an error occurs during a MOVELINES (for example, a memory overflow),
the move is terminated and the program is left partially modified.

MASS STORAGE IS - MTA M-45

M

M

MOVE WINDOW

Supported On
Option Required
Keyboard executable
Programmable
In an IF . .. THEN ...

UXWS*
RMBUX
Yes
Yes
Yes

This statement moves windows from one location on the CRT to another.

MOVE WINDOW

Item Description

window number numeric expression, rounded to
integer

new xpos

new ypos

numeric expression, rounded to
integer in pixel units

numeric expression, rounded to
integer in pixel units

Example Statements

MOVE WINDOW 603,120,10
MOVE WINDOW Fred,nevy,20

Semantics

Range

600 through 699

integer

integer

This statement is only valid when running under X Windows. It then moves
the window specified by the window number to a new location on the CRT.
When not in a window system, this statement will cause an error. The
specified window must be one created with the CREATE WINDOW statement,
or be the root BASIC window (number 600).

M·46 MASS STORAGE IS - MTA

MOVE WINDOW

The new xpos and new ypos parameters specify the new upper left corner
position in pixel coordinates. The coordinates 0,0 specifies the upper left
corner of the CRT. If the xpos and ypos parameters are greater than the size of
the CRT then the window is moved of the screen and no longer visible.

The position of the window within the stack of windows remains the same.
The contents of the window are moved with the window. The window is not M
altered.

MASS STORAGE IS - MTA M-47

MSI
See the MASS STORAGE IS statement.

M

M-48 MASS STORAGE IS • MTA

MTA

MTA
See the SEND statement.

M

MASS STORAGE IS • MTA M·49

N
NEXT - NUM

N

NEXT - NUM N-1

NEXT
See the FOR ... NEXT construct.

N

N-2 NEXT - NUM

NOT

Supported On
Option Required
Keyboard Executable
Programmable

UX WS DOS IN
None
Yes
Yes

In an IF . .. THEN ... Yes

This operator returns 1 if its argument equals o. Otherwise, 0 is returned.

Example Statements

Invert_flag=NOT Std_device
IF NOT Pointer THEN Rext_op

Semantics

When evaluating the argument, a non-zero value (positive or negative) is
treated as a logical 1; only zero is treated as a logical o.
The logical complement is shown below:

A NOTA

0 1

1 0

NOT

NEXT - NUM N-3

N

N

NPAR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

UX WS DOS
None
Yes
Yes
Yes

This function returns the number of parameters passed to the current
subprogram. If execution is currently in the main program, NPAR returns o.

Example Statements

IF NPAR>3 THEK Extra
Factors=NPAR-2

N·4 NEXT - NUM

tUM
;,1"

~:: pported On
'I!'. R . d ~[)tIon equlfe
Byboard Executable
, ogrammable

an IF ... THEN ...

UX WS DOS IN
None
Yes
Yes
Yes

NUM

~.s function returns the decimal value of the character code of the first byte
he argument. If you are using ASCII characters, the first byte is the first
I·'-tcter.

, Item Description Range
:1,"----+--------------+-----------
I~nent string expression not a null string

J.nple Statements
:'!tter=RUM(String$)

,.$ [I; 1] =CHR$ (RUM (A$ [I]) +32)

lito-byte Language Specifics

. Otain localized versions of BASIC, such as Japanese localized BASIC,
:!~)port two-byte characters. The NUM function handles both one- and
ii;b-byte characters. Note that NUM operates only on the first byte of its
'tgument, so you must use substrings to identify each byte of a two-byte
.~laracter. For more information about two-byte characters, refer to the

l.obalization chapters of HP BASIC 6.2 Porting and Globalization.

NEXT· NUM N·5

N

