BASIC 5.0
Interfacing Techniques

Vol. 1: General Topics

HP 9000 Series 200/300 Computers

HP Part Number 98613-90022

ﬁﬁ HEWLETT

PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE

The information contained in this document 1s subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL. INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct. indirect. special. incidental or consequential damages in connection with the furnishing, performance
or use of this material

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Otfice

Copyright 1987 Hewlett-Packard Company

This document contains proprietary information which i1s protected by copynght. All rights are reserved No part of this document may be
photocopied. reproduced or translated to another language without the prior written consent of Hewlett-Packard Company. The information
contained in this document 1s subject to change without notice

Restricted Rignts Legend

Use. duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)Y3)B) of the Rights in Technical Data and
Software clause in DAR 7-104.9(a)

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional copies of the programs
can be made for security and back-up purposes only. Resale of the programs in their present form or with alterations. is expressly prohibited.

Copyright 1980. 1984. AT&T. Inc
Copyright 1979. 1980. 1983. The Regents of the University of Calformia

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University
of Calforrma

—e
o

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are

incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

January 1987...Edition 1

iii

Table of Contents

Chapter 1: Manual Overview

INtroduction. 1-1
Manual Organization oottt 1-1

WheretoBegin............ i 1-1
Chapter Previewsot e e e 1-2

Chapter 2: Interfacing Concepts

Terminologyot 2-1
Why Do You Need an Interface? i, 2-4
Electrical and Mechanical Compatibility 2-5
Data Compatibility 2-6
Timing Compatibility 2-6
Additional Interface Functions oo, 2-6
Interface OVErVIEWttt e e 2-7
The HP-IB Interfaceoiiiiei i, 2-7
The RS-232C Serial Interface P 2-8
The Datacomm Interface................. e e 2-9
The GPIO Interfaceo i e 2-10
The BCD Interface e 2-11
Data Representations.t 2-12
Bits and Bytes e 2-12
Representing Numbers. 2-13
Representing Characters ...t 2-14
Representing Signed Integers ..., 2-14
Representing Real Numbers 2-17
The I/O Processottt e 2-19
I/O Statements and Parameterscciiiiiiiiiea... 2-19
Data Handshake e 2-20
I/JO Exampleso e 2-21
Example Output Statementt 2-21
Example Enter Statement 2-23

Chapter 3: Directing Data Flow

Specifying a Resource 3-2
String-Variable Names 0ot 3-2
Device Selectorst 3-4

Table of Contents v

HP-IB Device Selectors oo o 3-6

/O Path Names ... oo BT
Assigning I/O Path Names ..o 0 oo oo 3-9
Re-Assigning [/O Path Names, 3-11
Closing I/O Path Names . ..o 3-11
[/O Path Names in Subprograms, cooe 3-12
Assigning I/0O Path Names Locally Within Subprograms 3-12
Passing 1/0O Path Names ax Parameters. 3-14
Declaring 1/0 Path Names in Common 3-14
Benefits of Using I/O Path Names oo, 3-15
Execution Speed ..o $-10
Re-Directing Data o 3-16
Attribute Control 3-17

Chapter 4: Outputting Data

Introduction. 4-1
Free-Field Outputs ... oo 4-2
The Free-Field Convention 4-2
Item Separators and Terminators o 4-3
Changing the ILOL Sequence (Requires IO). 4-6
Using END in Freefield OUTPUT 4-8
Additional Definition o 4-8
Outputs that Use Images 4-10
The OUTPUT USING Statement 4-10
[IACOSs 4-11
Example of Using an Image 4-12
Image Definitions During Outputs 4-13
Numeric lmages .o 4-14
String Images 4-17
Binary Imageso 4-18
Special-Character Images 4-20
Termination Images ... o o 4-21
Additional hmage Features ..o o o 4-22
Repeat Factors oo 0 4-22
Image Re-Use S PR 4-23
Nested Images .o 4-24
END with OUTPUTSs that Use Images 4-25
Additional END Definition 4-26

vi Table of Contents

Chapter 5: Entering Data

Free-Field Enters e e 5-1
Ttem Separators.t e 5-2
Ttem Terminators e 5-2
Entering Numeric Data with the Number Builder 5-3
Entering String Data e 5-8

Terminating Free-Field ENTER Statements 5-10
EOI Termination e 5-11

Enters that Use Images 5-13
The ENTER USING Statement.c..oueuuiiiineineeenn.n. 5-13

Iages .o 5-14
Example of an Enter UsinganImage 5-14

Image Definitions During Enter i i 5-16
Numeric Imagesooi i e 5-16
String Images 9-18
Ignoring Charactersoouvin et 5-19
Binary Images 5-20

Terminating Enters that Use Images. 5-21
Default Termination Conditions. i, 5-21
EOI Re-Definition e 5-22
Statement-Termination Modifiers, 5-23

Additional Image Features i 5-25
Repeat Factors 5-25
Image Re-Use 5-25
Nested Images e e 5-25

Chapter 6: Registers

Interface Registers 6-2
The STATUS Statementuiuuitiune e 6-2
The CONTROL Statementoiine i, 6-3

I/O Path Registers 6-5

Summary of I/O Path Registersc.oiiiiiiiiinnnns 6-9
For Al I/O Path Namest 6-9
I/O Path Names Assigned to a Device 6-9
I/O Path Names Assigned to an ASCIT File 6-9
I/O Path Names Assigned to a BDAT File 6-10
I/0 Path Names Assigned to an HP-UX File 6-10
1/O Path Names Assigned to a Buffer 6-11

Direct Interface Access o 6-12

Table of Contents vii

Chapter 7: Interrupts and Timeouts

Overview of Event-Initiated Branching. 7-1
Types of Events 7-1
A Simple Exampleo 7-2
(C'onditions Required for Initiating a Branch 7-5
Logging and Servicing Events. o o 7-6
Servicing Pending Events oo L 7-12
Interface Interrupts ... 7-14
Enabling Interrupt Events 7-15
Service Requests oo 7-17
Interrupt Conditlons ... 7-19
Interface Timeouts 7-20
Setting Up Timeout Events 7-20
Timeout Limitations 7-21

Chapter 8: I/0O Path Attributes

The FORMAT Attributes e 8-2
Two FORMAT Attributes Are Available ... o .o ... 8-2
Assigning Default FORMAT Attributes........... 8-4
Specifying [/O Path Attributes ... oo 8-5
Restoring the Default Attributes 8-5

Additional Attributes. 8-6
The BYTE and WORD Attributes o 3-6
Converting Characters 8-11
Changing the EOL Sequence e 8-15
Parity Generation and Checkingo oo o oo oo 8-16
Determining the Outcome of ASSIGN Statements. 8-18

Concepts of Unified I/O P 8-19
Data-Representation Design Criteria ... oo oo .. 8-20
[/JO Paths to Files 8-20
BDAT Files . ..o 8-21
Data Representation Summaryo, 8-24

Applications of Unified I/O ... o 8-25
[/O Operations with String Variables 0000000 o000 000000 R-25
Taking a Top-Down Approach 8-32
Conelusion 8-40

Chapter 9: Advanced Transfer Techniques

The Purpose of Transfers 9-1
Overview of Buffers and Transfers. ... o o 9-2
Inbound and Outbound Transfers 9-2

Supported Transfer Sources and Destinations 9-3

viii Table of Contents

Examples of Transfer 9-4

A Closer Look at Buffers. 9-5
Typesof Buffers 9-5
Creating Named Buffers 9-5
Assigning /0 Path Names to Named Buffers..................... ... 9-6
Assigning I/O Path Names to Unnamed Buffers 9-6
Buffer-Type Registers i i 9-7
Buffer Size Register 9-7
Buffer Pointers 9-8

A Closer Look at Transfers......... 9-12
Transfer Methods i e 9-12
OUTPUT and ENTER and Buffers 9-13
Transfer Formatting i 9-13
Transfer Terminationttt 9-13

Choosing Transfer Parameters i, 9-14
Continuing Transfers Indefinitely. i, 9-14
Waiting for a Transfer to End (Non-Overlapped Transfers) 9-15
Continuous Non-Overlapped Transfers 9-15
Transferring a Specified Number of Bytes 9-15
Delimiter Charactersottt 9-15
Using the END Indication with Transfers 9-16
Transferring Records i 9-16
Multiple Termination Conditions........... 9-16
TRANSFER Records and Termination 9-17
Transfer Event-Initiated Branching 9-18

Terminating a Transfer 9-20

More Transfer Examples i 9-22

Special Considerationst 9-26
Transfer with Care e 9-26
Error Reporting 9-29
Suspended Transfers i 9-30

Transfer Performance. i 9-31
Sector S1Ze 9-31
Internal Disc Drives of Models 226 and 236 Computers 9-31
Overlapped Transfers and Disc Drives 9-31
Transfer Methods and Rates........... 9-34

ReStrictions . ..ot 9-36

Interactions with Other Keywords........... i, 9-37
Changing Buffer Attributes 9-39

Buffer Status and Control Registers 9-40

Index

Table of Contents ix

Table of Contents

Chapter 1: Manual Overview

INtroduction.ot 1-1
Manual Organization i 1-1
Where to Begin 1-1

Chapter Previews o 1-2

Manual Overview

Introduction

This manual is intended to present the concepts of computer interfacing that are relevant
to programming the HP Series 200/300 computers. However, it is not a text dealing with
computer architecture or hardware in general. It is intended to present the topics that
will increase your understanding of interfacing devices to these computers. If you would
like a more detailed discussion of general hardware interfacing concepts, you may want
to consult a text on computer architecture.

Manual Organization

This manual is organized by topics. The text is arranged to focus your attention on
interfacing concepts rather than to present only a serial list of the BASIC-language
I/O statements. Once you have read this manual and are familiar with the general
and specific concepts involved, you can use either this manual or the BASIC Language
Reference when searching for a particular detail of how a statement works. Keep in
mind that this manual has been designed as a learning tool, not as a reference.

Where to Begin

This manual is designed for easy access by both experienced programmers and beginners.

e Less experienced users may want to begin with Chapter 2, “Interfacing Concepts”,
before reading about general or interface-specific techniques.

e Experienced users may decide to go directly to the chapter that describes the par-
ticular interface to be used (such as HP-IB or GPIO). It is also usually helpful to
become familiar with display and keyboard I/O operations, since these are helpful
in seeing results while testing 1/O programs.

e If more background is required, the information in chapters 3 through 8 will provide
further explanation.

The brief descriptions in the next section will help you determine which chapters you
will need to read for your particular application.

Manual Overview 1-1

Chapter Previews

Chapter 2: Interfacing Concepts

This chapter presents a brief explanation of relevant interfacing concepts and terminology.
This discussion is especially useful for beginners as it covers much of the *why™ and “how"
of interfacing. Experienced programmers may also want to skim this material to better
understand the terminology used in this manual.

Chapter 3: Directing Data Fiow

This chapter deseribes how to specify which compnter resource is to <end data to or
receive data from the computer. The use of device selectors. string variable names. and
“I/O path names™ in I/O statements are described.

Chapter 4: Outputting Data

This chapter presents methods of outputting data to devices. All details of this process
are discussed. and several examples of free-field output and output using images are
given. Since this chapter completely describes outputting data to devices. you may only
need to read the sections relevant to your application.

Chapter 5: Entering Data

This chapter presents methods of entering data from devices. All details of this process
are discussed. and several examples of free-field enter and enter using images are given.
As with Chapter 4. you may only need to read sections of this chapter relevant to your
application.

Chapter 6: Registers

This chapter describes the use and access of registers. The uses of registers are ex-
plained. and programming techniques used to examine and change register contents are
presented. Individual interface register definitions are not contained in this chapter. but
are discussed in the corresponding interface chapter.

Chapter 7: Interrupts and Timeouts

This chapter describes event-initiated branching from an interface’s point of view. The
uses of both interrupts and timeouts are discussed. and several examples are given.
Again. the interface-dependent details are not given in this chapter. but are covered in
the chapter dedicated to discussing programming techniques for each interface.

1-2 Manual Overview

Chapter 8: 1/O Path Attributes

This chapter presents several powerful capabilities of the I/O path names provided by
the BASIC language system. Interfacing to devices is compared to interfacing to mass
storage files, and the benefits of using the same statements to access both types of
resources are explained. This chapter is also highly recommended to all readers.

Chapter 9: Advanced Transfer Techniques

This chapter describes advanced 1/0 techniques which can be used when communicating
with devices. These techniques are generally used with devices which have data-transfer
rates either much faster or much slower than the computer’s normal transfer rate(s).

Chapter 10: Display Interfaces

This chapter describes accessing your CRT display through its interface to the computer.
Since these devices can be accessed like most other interfaces (via OUTPUT, ENTER,
CONTROL, and STATUS), most of the programming techniques presented in Chapters
3 through 9 are applicable to these devices. If you have no experience in programming
interfaces, you will find this chapter very useful; many tools are presented that will help
you program and understand the other interfaces.

Chapter 11: Keyboard Interfaces
As with the display chapter, this chapter describes several programming techmques ap-
plicable to interfacing to the keyboards available with Series 200/300 computers.

Chapter 12: The HP-IB Interface

This chapter describes programming techniques specific to the HP-IB interface. Details
of HP-IB communications processes are also included to promote better overall under-
standing of how this interface may be used.

Chapter 13: RS-232 Serial Interface

This chapter describes programming techniques specific to using the asynchronous-
protocol- capabilities of the HP 98626 and HP 98644 Serial Interfaces, as well as the
built-in serial interfaces of some computer models (Models 216, 217, 310, etc).

Chapter 14: The Datacomm Interface

This chapter describes the HP 98628 Data Communications Interface and presents pro-
gramming techniques for using the asynchronous or HP Data Link protocols provided by
this interface.

Manual Overview 1-3

Chapter 15: Powerfail Protection
This chapter describes programming techniques for achieving powerfail protection (Op-
tion 050. only available on Models 226 and 236. is required to use these capabilities).

Chapter 16: The GPIO Interface
This chapter describes programming techniques specific to using the HP 98622 GPIO
Interface.

Chapter 17: The BCD Interface
This chapter describes programming techniques specific to using the HP 98623 BCD
Interface. Using this interface requires AP2.0.

Chapter 18: EPROM Programming

This chapter describes how to program EPROMs (erasable programmable read only
memory) using the HP 98255 EPROM Memory Cards and HP 98253 EPROM Program-
mer Card.

Chapter 19: The HP-HIL Interface

This chapter describes how to access HP-HIL (Human Interface Link) devices from a low
level. The chapter lists the categories of HP-HIL devices, and shows which ones already
have BASIC drivers and which ones do not. For the devices that do not have BASIC
drivers. this chapter describes how to write device drivers.

1-4 Manual Overview

Table of Contents

Chapter 2: Interfacing Concepts

Perminologyo e 2-1
Why Do You Need an Interface? 2-4
Electrical and Mechanical Compatibility 2-5
Data Compatibility 2-6
Timing Compatibility 2-6
Additional Interface Functions 2-6
Interface Overview i e 2-7
The HP-IB Interface i 2-7
The RS-232C Serial Interface i 2-8
The Datacomm Interface. i 2-9
The GPIO Interface i . 2-10
The BCD Interface i e 2-11
Data Representations. i 2-12
Bitsand Bytes e 2-12
Representing Numbers. o i 2-13
Representing Characters i 2-14
Representing Signed Integers i 2-14
Representing Real Numbers e e . 2-17
The I/O Process e 2-19
I/O Statements and Parameters 2-19
Data Handshake 2-20
I/O Examples 2-21
Example Output Statement e, 2-21

Example Enter Statement 2-23

Interfacing Concepts

This chapter describes the functions and requirements of interfaces between the computer
and its resources. Concepts in this chapter are presented in an informal manner. All
levels of programmers can gain useful background information that will increase their
understanding of the why and how of interfacing.

Terminology

These terms are important to your understanding of the text of this manual. The purpose
of this section is to make sure that our terms have the same meanings.

computer is herein defined to be the processor, its support hardware, and the BASIC-
language operating system; together these system elements manage all
computer resources.

hardware describes both the electrical connections and electronic devices that make
up the circuits within the computer; any piece of hardware is an actual
physical device.

software describes the user-written, BASIC-language programs.

firmware refers to the pre-programmed, machine-language programs that are in-
voked by BASIC-language statements and commands. As the term implies,
firmware is not usually modified by BASIC users. The machine-language
routines of the operating system are firmware programs.

Interfacing Concepts 2-1

computer
resource

is herein used to describe all of the “data-handling™ elements of the system.
Computer resources include: internal memory. CRT display. keyboard. and
disc drive, and any external devices that are under computer control.

(includes operating

system and user
memory)

Internal
Memory

Connectors
Data and
Control Buses

CRT

Display Keyboard

Resource

Processor

1/0

output

input

bus

Backplane
Connectors

Disc Built-In
: HP-1B <: 25 >
Drive
Interface

HP-1B
Connector

Figure 2-1. Block Diagram of the Computer

is an acronym that comes from “Input and Output”; it refers to the process
of copying data to or from computer memory.

involves moving data from computer memory to another resource. During
output. the source of data is computer memory and the destination is any
resource. including memory.

is moving data from a resource to computer memory; the source is any
resource and the destination is a variable in computer memory. Inputting
data is also referred to as “entering data™ in this manual for the sake of
avoiding confusion with the INPUT statement.

refers to a common group of hardware lines that are used to transmit
information between computer resources. The computer communicates
directly with the internal resources through the data and control buses.

2-2 Interfacing Concepts

computer

is an extension of these internal data and control buses. The computer
backplane

communicates indirectly with the external devices through interfaces con-
nected to the backplane hardware.

1
Data Electronic A [-
Processor N Buffering 1) Connectors
Hardware |® in the Card Cage
°
m

The Processor Communicates with the Interfaces
through Backplane Hardware

Figure 2-2. Backplane Hardware

Interfacing Concepts 2-3

Why Do You Need an Interface?

The primary function of an interface is. obviously. to provide a communication path for
data and commands between the computer and its resources. Interfaces act as interme-
diaries between resources by handling part of the “bookkeeping™ work. ensuring that this
communication process flows smoothly. The following paragraphs explain the need for
interfaces.

First. even though the computer backplane is driven by electronic hardware that gen-
crates and receives electrical signals. this hardware was not designed to be connected
directly to external devices. The electronic backplane hardware has been designed with
specific electrical logic levels and drive capability in mind.

CAUTION

EXCEEDING BACKPLANE HARDWARE RATINGS WILL
DAMAGE THIS ELECTRONIC HARDWARE.

Second, you cannot be assured that the connectors of the computer and peripheral are
compatible. In fact. there is a good probability that the connectors may not even mate
properly. let alone that there is a one-to-oue correspondence between each signal wire's
function.

Third. assuming that the connectors and signals are compatible. you have no guarantee

that the data sent will be interpreted properly by the receiving device. Some peripherals
expect single-bit serial data while others expect data to be in 8-bit parallel form.

2-4 Interfacing Concepts

Fourth, there is no reason to believe that the computer and peripheral will be in agree-
ment as to when the data transfer will occur; and when the transfer does begin the
transfer rates will probably not match. As you can see, interfaces have a great responsi-
bility to oversee the communication between computer and its resources. The functions
of an interface are shown in the following block diagram.

r-r—---—--—------=--—-=-—--—==-=-—=-=-= "
l Interface]
I Computer |
| Compatible . |
Connector Logic |
| Level
| Interface Matcher
= Logic Cab! I
Computer = - - _‘a ° I Peripheral
— . I Device
| I Device
N Compatible |
Logic Connector
| |
Level
| Matcher |
I I
| |
e e e e e e e e e -

Figure 2-3. Functional Diagram of an Interface

Electrical and Mechanical Compatibility

Electrical compatibility must be ensured before any thought of connecting two devices
occurs. Often the two devices have input and output signals that do not match; if so,
the interface serves to match the electrical levels of these signals before the physical
connections are made.

Mechanical compatibility simply means that the connector plugs must fit together prop-
erly. All of the 9826 interfaces have 100-pin connectors that mate with the computer
backplane. The peripheral end of the interfaces may have unique configurations due to
the fact that several types of peripherals are available that can be operated with the
9826. Most of the interfaces have cables available that can be connected directly to the
device so you don’t have to wire the connector yourself.

Interfacing Concepts 2-5

Data Compatibility

Just as two people must speak a common language. the computer and peripheral must
agree upon the form and meaning of data before communicating it. As a programmer.
one of the most difficult compatibility requirements to fulfill before exchanging data is
that the format and meaning of the data being sent is identical to that anticipated by
the receiving device. Even though some interfaces format data. most interfaces have
little responsibility for matching data formats: most interfaces merely move agreed-upon
quantities of data to or from computer memory. The computer must generally make the
necessary changes. if any, so that the receiving device gets meaningful information.

Timing Compatibility

Since all devices do not have standard data-transfer rates. nor do they always agree as to
when the transfer will take place. a consensus between sending and receiving device must
be made. If the sender and receiver can agree on both the transfer rate and beginning
point (in time). the process can be made readily.

If the data transfer is not begun at an agreed-upon point in time and at a known rate. the
transfer must proceed one data item at a time with acknowledgement from the receiving
device that it has the data and that the sender can transfer the next data item: this
process is known as a “handshake”. Both types of transfers are utilized with different
interfaces and both will be fully described as necessary.

Additional Interface Functions

Another powerful feature of some interface cards is to relieve the computer of low-level
tasks. such as performing data-transfer Lu..ds.mk(‘s This distribution of tasks eases
some of the computer’s burden and also decreases the otherwise-stringent response-time
requirements of external devices. The actual tasks performed by cach type of interface
card vary widely and are described in the next section of this chapter.

2-6 Interfacing C'oncepts

Interface Overview

Now that you see the need for interfaces, you should see what kinds of interfaces are
available for the computer. Each of these interfaces is specifically designed for specific
methods of data transfer; each interface’s hardware configuration reflects its function.

The HP-IB Interface

This interface is Hewlett-Packard’s implementation of the IEEE-488 1978 Standard Dig-
ital Interface for Programmable Instrumentation. The acronym “HP-IB” comes from
Hewlett-Packard Interface Bus, often called the “bus”.

Data
8
HP-1B

Interface

Handshake
3

<
pa—
-

Shielded Cable
to Device(s)

(==

Data and

Control Hardware
Backplane m and
Connector Firmware

U N

25-Pin Connector

Logic and Shield

Grounds >

Figure 2-4. Block Diagram of the HP-IB Interface

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical,
data, and timing) with no additional modification. Just about all you need to do is
connect the interface cable to the desired HP-IB device and begin programming. All
resources connected to the computer through the HP-IB interface must adhere to this
IEEE standard.

The “bus” is somewhat of an independent entity; it is a communication arbitrator that
provides an organized protocol for communications between several devices. The bus
can be configured in several ways. The devices on the bus can be configured to act as
senders or receivers of data and control messages, depending on their capabilities.

Interfacing Concepts 2-7

The RS-232C Serial Interface

The serial interface changes 8-bit parallel data into bit-serial information and transmits
the data through a two-wire (usually shielded) cable: data is received in this serial format
and is converted back to parallel data. This use of two wires makes it more economical
to transmit data over long distances than to use 8 individual lines.

Backplane
Connector

Data and

Control |

i

Paralle! Data

Serial
Interface
Hardware

Bit-Serial Data

1

| Paraliel-Serial
Converter

1 (UART)

t

1

(in)

(Out) ‘
Handshake,

G

Special Purpose
6),

/l

V

Grounds
7 >

25-Pin Connector

Shielded Cable
to a Device

(=

Figure 2-5. Block Diagram of the Serial Interface

Data is transmitted at several programmable rates using either a simple data handshake
or no handshake at all. The main use of this interface is in communicating with simple

devices.

2-8

Interfacing Concepts

The Datacomm Interface

This interface also changes 8-bit parallel data into bit-serial data (and vice versa) in
a manner similar to the serial interface described above. However, the datacomm in-
terface is controlled by a Z-80A microprocessor resident or the interface board, which
implements high-level features such as inbound and outbound data buffers and the use
of control blocks. The datacomm interface is intended for general data communications

AL10ILS, ITOS

applications, most of which cannot b

Backplane
Connector

e adequately handled by the scrial interface.

Data and
Control

S

Parallel
Data

8

Bit—Serial Data

" Parallel t
Micro—
Data | X
Processor Parallel/Serial
Controlled 0 Converter —.H prar 5 Shielded Cabl
“ andshake ie able
Data | (UART) 3|7 © Do
Buffer 3 g o a Device
)
and o
Protoco! . £
Special Purpose a
Handler |
6 &
Datacomm
Grounds
Interface -
Hardware

Figure 2-6. Block Diagram of the Datacomm Interface

Interfacing Concepts

2-9

The GPIO Interface

This interface provides the most flexibility of all the interfaces. It consists of 16 output-
data lines. 16 input-data lines. two handshake lines. and other assorted countrol lines.
Data is transmitted using programmable handshake conventions and logic senses.

Parallel Data Out

Parallel Data In
16

/\T

Shielded Cable
to a Device

Data and Handshake

Control GPIO
Backplane m interface 2
Connector Hardware

Special Purpose

/J7 <‘r Grounds

Figure 2-7. Block Diagram of the GPIO Interface

50-Pin Connector

ZANPAN

2-10 Interfacing Concepts

The BCD Interface
This interface is designed to be used with peripheral devices that implement a binary-
coded decimal (BCD) data representation. Forty input lines allow up to ten BCD char-
acters to be entered with one handshake cycle. Eight lines are available for data output.
The interface provides great flexibility by allowing two peripheral devices to be connected
and by featuring a binary-data operating mode.

Backplane
Connector

Data and
Control!

A

BCD
Interface

Hardware

Parallel Dato Ou
8 t’\

V

Parallel Data In
—

Shielded Cable

to a Device

: Handshake :
4

: Special Purpose :

: Grounds :
7

64

64—Pin Connector

Figure 2-8. Block Diagram of the BCD Interface

Interfacing Concepts 2-11

Data Representations

As long as data is only being used internally, it really makes little difference how it is rep-
resented: the computer always understands its own representations. However. when data
is to be moved to or from an external resource. the data representation is of paramount
importance.

Bits and Bytes

Computer memory is no more than a large collection of individual bits (binary digits).
cach of which can take on one of two logic levels (high or low) Depending on how
the computer interprets these bits. they may mean on or not on (off). true or not true
(false). one or zero. busy or not busy. or any other bi-state condition. These logic levels
are actually voltage levels of hardware locations within the computer. The following
diagram shows the voltage of a point versus time and relates the voltage levels to logic
levels.

Voltage of
a Point
A
~5v . .
\/\‘—I/\’___ Logic High
Logic Ground » Logic Low
(0v) ty to ts Time

Figure 2-9. Voltage and Positive-True Logic

In some cases, you want to determine the state of an individual bit (of a variable in
computer memory, for instance). The logical binary functions (BIT. BINCMP. BINIOR.
BINEOR. BINAND, ROTATE, and SHIFT) provide access to the individual bits of data.

In most cases. these individual bits are not very useful by themselves. so the computer
groups them into multiple-bit entities for the purpose of representing more complex data.
Thus. all data in computer memory are somechow represented with binarv numbers,

The computer’s hardware accesses groups of sixteen bits at one time through the internal
data bus: this size group is known as a word. With this size of bit group, 65 536 (=2116)
different bit patterns can be produced. The computer can also use groups of eight bits at
a time: this size group is known as a byte. With this smaller size of bit group. 256 (=218)
different patterns can be produced. How the computer and its resources interpret these
combinations of ones and zeros is very important and gives the computer all of its utility.

2-12 Interfacing Concepts

A WU

Representing Numbers

The following binary weighting scheme is often used to represent numbers with a single
data byte. Only the non-negative integers 0 through 255 can be represented with this
particular scheme.

Most-Significant Bit Least-Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 0 1 0 1 1 0

Value=128 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1

Notice that the value of a 1 in each bit position is equal to the power of two of that
position. For example, a 1 in the Oth bit position has a value of 1 (=210), a 1 in the 1st
position has a value of 2 (=211), and so forth. The number that the byte represents is
then the total of all the individual bit’s values.

Determining the Number Represented

0x29=0

1x2t=2

1x2%2=4 Number represented =

3 _

?i;;?ﬁ 2444 16+ 128 = 150
0x2°=0

0x26=0

1x27 =128

The preceding representation is used by the “NUM” function when it interprets a byte
of data. The next section explains why the character “A” can be represented by a single
byte.

100 Number=NUM("A")

110 PRINT " Number = ";Number
120 END

Printed Result

Number = 65

Interfacing Concepts 2-13

—

Representing Characters

Data stored for humans is often alphanumeric-type data. Since less than 256 characters
are commonly used for general communication. a single data byte can be used to represent
a character. The most widely used character set is defined by the ASCII standard®. This
standard defines the correspondence between characters and bit patterns of individual
bytes. Since this standard only defines 128 patterns (bit 7=0). 128 additional characters
are defined by the computer (bit 7=1). The entire set of the 256 characters on the
computer is hereafter called the “extended ASCII™ character set.

When the CHRS$ function is used to interpret a byvte of data. its argument must be
specified by its binary-weighted value. The single (extended ASCILL) character returned
corresponds to the bit pattern of the function’s argument.

100 Number=65 ! Bit pattern is "01000001"
110 PRINT " Character is ";

120 PRINT CHR$(Number)

130 END

Printed Result

Character is A

Representing Signed Integers

There are two ways that the computer represents signed integers. The first uses a binary
weighting scheme similar to that used by the NUM function. The second uses ASCII
characters to represent the integer in its decimal form.

Internal Representation of Integers

Bits of computer memory are also used to represent signed (positive and negative) in-
tegers. Since the range allowed by eight bits is only 256 integers. a word (two bytes) is
used to represent integers. With this size of bit group. 65536 (=2116) unique integers
can be represented.

The range of integers that can be represented by 16 bits can arbitrarily begin at any
point on the number line. In the computer. this range of integers has been chosen for
maximum utility: it has been divided as symmetrically as possible about zero. with one
of the bits used to indicate the sign of the integer.

ASCII stands for “American Standard Code for Information Interchange”. See the Useful Tables ap-
pendix in the BASIC Language Reference for the complete table

2-14 Interfacing Coucepts

With this “2’s-complement” notation, the most significant bit (bit 15) is used as a sign
bit. A sign bit of 0 indicates positive numbers and a sign bit of 1 indicates negatives. You
still have the full range of numbers to work with, but the range of absolute magnitudes
is divided in half (—32768 through 32767). The following 16-bit, integers are represented
using this 2’s-complement format.

Binary representation Decimal equivalent

1111 1111 1111 1111 -1

0000 0000 0000 0001 1

1111 1111 0000 0001 - 255

1111 255

sign bit T—Z 10
21714 217
21713
218

Interfacing Concepts 2-15

The representation of a positive integer is generated according to place value. just as
when byvtes are interpreted as numbers. To generate a negative number’s representation.
first derive the positive number’s representation. Complement (change the ones to zeros
and the zeros to ones) all bits, and then to this result add 1. The final result is the two’s-
complement representation of the negative integer. This notation is very convenient
to use when performing math operations. Let's look at a simple addition of 2 two’s-
complement integers.

Example: 3+(—-3) = ?

First, + 3 is represented as: 0000 0000 0000 0011
Now generate — 3’s representation:

first complement + 3, 1111 1111 1111 1100
then add 1 + 0000 0000 0000 0001
—3’s representation: 1111 1111 1111 1101
Now add the two numbers: 1111 1111 1111 1101
+ 0000 0000 0000 0011

1 l< carry on

final carry 0000 0000 0000 0000 all places

not used

2-16 Interfacing Concepts

ASCIl Representation of Integers

ASCII digits are often used to represent integers. In this representation scheme, the
decimal (rather than binary) value of the integer is formed by using the ASCII digits 0
through 9 {CHR$(48) through CHR$(57), respectively}. An example is shown below.

Example

The decimal representation of the binary value “1000 0000 is 128. The ASCII-decimal
representation consists of the following three characters.

Character Decimal Code | Binary Code
1 49 00110001
2 50 00110010
8 56 00111000

Representing Real Numbers

Real numbers, like signed integers, can be represented in one of two ways with the
computers. They are represented in a special binary mantissa-exponent notation within
the computers for numerical calculations. During output and enter operations, they can
also be represented with ASCII-decimal digits.

Internal Representation of Real Numbers

Real numbers are represented internally by using a special binary notation!. With this
method, all numbers of the REAL data type are represented by eight bytes: 52 bits of
mantissa magnitude, 1 bit for mantissa sign, and 11 bits of exponent. The following
equation and diagram illustrate the notation; the number represented is 1/3.

Byte 1 2 3 4 8
Decimal value
of character 63 213 85 85 85
Binary value
of characters (20111117 11010101 | 01010101 | 01010101 01010101
IS . T . y
mantissa sign exponent mantissa

Real number = (_ 1)man||ssa sign 'zexponentf 1023 i~(1 mantissa)

1 The internal representation used for real numbers is the IEEE standard 64-bit floating-point notation.
For further details, consult the “Numeric Computation” chapter of the BASIC Programming Techniques
manual.

Interfacing Concepts 2-17

Even though this notation is an international standard. most external devices don’t use
it: most use an ASCII-digit format to represent decimal numbers. The computer provides
a means so that both types of representations can be used during 1/0 operations.

ASCII Representation of Real Numbers

The ASCII representation of real numbers is very similar to the ASCII representation
of integers. Sign, radix, and exponent information are included with ASCII-decimal
digits to form these number representations. The following example shows the ASCII
representation of 1/3. Even though. in this case. 18 characters are required to get the
same accuracy as the eight-byte internal representation shown above. not all real numbers
represented with this method require this many characters.

ASCIl characters 0

Decimal value
of characters

w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w

48 | 46 | 51 [51 | 51 |51 [51 |61 |51 [51 |51 |51 |51 51511515151

2-18 Interfacing Concepts

The 1/O Process

When using statements that move data between memory and internal computer re-
sources, you do not usually need to be concerned with the details of the operations.
However, you may have wondered how the computer moves the data. This section takes
you “behind the scenes” of 1/O operations to give you a better intuitive feel for how the
computer outputs and enters data.

I/O Statements and Parameters

The I/O process begins when an I/O statement is encountered in a program. The
computer first determines the type of I/O statement to be executed (such as, OUTPUT,
ENTER USING, etc.). Once the type of statement is determined, the computer evaluates
the statement’s parameters.

Specifying a Resource

Each resource must have a unique specifier that allows it to be accessed to the exclusion
of all other resources connected to the computer. The methods of uniquely specifying
resources (output destinations and enter sources) are device selectors, string variable
names, and [/O path names. These specifiers are further described in the next chapter.

For instance, before executing an OUTPUT statement, the computer first evaluates the
parameter which specifies the destination resource. The source parameter of an ENTER
statement is evaluated similarly.

OUTPUT Dest_parameter;Source_item

ENTER Sourc_parameter;Dest_item

Firmware

After the computer has determined the resource with which it is to communicate, it “sets
up” the moving process. The computer chooses the method of moving the specified data
according to the type of resource specified and the type of I/O statement. The actual
machine-language routine that executes the moving procedure is in firmware. Since
there are differences in how each resource represents and transfers data, a dedicated
firmware routine must be used for each type of resource. After the appropriate firmware
routine has been selected, the next parameter(s) must be evaluated (i.e., source items
for OUTPUT statements and destination items for ENTER statements).

Interfacing Concepts 2-19

Registers

The computer must often read certain memory locations to determine which firmware
routines will be called to execute the I/O procedure. The content of these locations.
known as registers. store parameters such as the type of data representation to be used
and type of interface involved in the I/O operation.

An example of register usage by firmware is during output to the CRT. Characters
output to this device are displayed beginning at the current screen coordinates. After
the computer has evaluated the first expression in the source-item list. it must determine
where to begin displaying the data on the screen. Two memory locations are dedicated to
storing the "X and "Y ™ screen coordinates. The tirmware determines these coordinates
and begins copying the data to the corresponding locations in display memory.

The program can also determine the contents of these registers. The statements that
provide access to the registers are described in Chapter 6. The contents of all registers
accessible by the program are described in the interface programming chapters.

Data Handshake

Each byte (or word) of data is transferred with a procedure known as a data-transfer
handshake (or simply “handshake™). It is the means of moving one byte of data at a
time when the two devices are not in agreement as to the rate of data transfer or as to
what point in time the transfer will begin. The steps of the handshake are as follows.

1. The sender signals to get the receiver’s attention.
2. The receiver acknowledges that it is ready.
3. A data byte (or word) is placed on the data bus.

4. The receiver acknowledges that it has gotten the data item and is now busy. No
further data may be sent until the receiver is ready.

. Repeat these steps if more data items are to be moved.

(@2

2-20 Interfacing Concepts

/O Examples

Now that you have seen all of the steps taken by the computer when executing an 1/0O
statement, let’s look at how two typical I/O statements are executed by the computer.

Example Output Statement

Data can be output to only one resource at a time with the OUTPUT statement (with
the exception of the HP-IB Interface). This destination can be any computer resource,
which is specified by the destination parameter as shown below.

/the destination parameter

OUTPUT Destinationi Strind$,CHR$(C+3Z),"That’s all"

the source items are expressions

The source of data for output operations is always memory. Either string or numeric
expressions can specify the actual data to be output. The flow of data during output
operations is shown below. Notice that all data copied from memory to the destination
resource by the OUTPUT statement passes through the processor under the control of
operating-system firmware.

Internal Memory

Source String

Expression(s) Variable
|
]
|
! Data Bus

Data Flow | To Other Resources

[}

-~
-

Processor

Figure 2-10. Data Flow During Output Operations

Interfacing Concepts 2-21

Source-item Evaluation

The source items. listed after the semicolon and separated by commas. can be any valid
numeric or string expression. As the statement is being executed. these expressions must
be individually evaluated and the resultant data representation sent to the specified
destination. The results of the evaluation depend on the type of expression (numeric or
string) and on which data representation (ASCII or internal) is to be used during the
1/0 operation.

If the expression is a variable and the internal data representation is to be used. the
data is ready to be copied byte-serially (or word-serially) to the destination: otherwise.
the expression must be completely evaluated. The representation generated during the
evaluation is stored in a temporary variable within memory. In both cases. once the
beginning memory location and length of the data are known. the copying process can
be initiated.

Copying Data to the Destination

The computer employs “memory-mapped™ 1/0O operations: all devices are addressable as
memory locations. All output operations involve a series of two-step processes. The first
step is to copy one byte (or word) from memory into the processor. The second step is
then to copy this byte (or word) iuto the destination location (a memory address). Each
item in the list is output in this serial fashion. The appropriate handshake firmware
routine is executed for each byte (or word) to be copied.

Since there may be several data items in the source list. it may be necessary to output
an item-terminator character after each item to communicate the end of the item to
the receiver. If the item is the last item in the source list. the computer may signal
the receiver that the output operation is complete. Ilither an item terminator or end-
of-line sequence of characters can be sent to the receiver to signal the end of this data
transmission. The OUTPUT statement is described i full detail in Chapter 4.

2-22 Interfacing Concepts

Example Enter Statement

Data can be entered from only one resource at a time. This source can be any resource
and is specified by the source parameter as shown in the following statement.

/—the source parameter

ENTER Source?ﬂumberpStringﬁ

destination items are program variables

The destinations of enter operations are always variables in memory. Both string and
numeric variables can be specified as the destinations. The flow of data during enter

operations is shown below.

Internal Memory

Source String
Expression(s) Variable
:
I
/} ; Data Bus
Data Flow !
i

U

_r
|
l
A

[

Processor

From Other Resources

Figure 2-11. Data Flow During Enter Operations

Destination-ltem Evaluation
The destination(s) of data to be entered is (are) specified in the destination list. Either
string or numeric variables can be specified, depending on the type of data to be entered.
In general, as each destination item is evaluated, the computer finds its actual memory
location so that data can be copied directly into the variable as the enter operation is
executed. However, if the ASCII representation is in use, numeric data entered is stored
in a temporary variable during entry.

Interfacing Concepts

2-23

Copying Data into the Destinations

As with output operations, entering data is a series of two-step processes. Iach data
byte (or word) received from the sender is entered into the processor by the appropriate
handshake firmware. It is then copied into either a temporary variable or a program
variable. If more than one variable is to receive data. each incoming data item must be
properly terminated. If the internal representation is in use. the computer knows how
many characters are to be entered for each variable. If the ASCII representation is in
use. a terminator character (or signal) must be sent to locate the end of each data item.
When all data for the item has been received. it is evaluated. and the resultant internal
representation of the number is placed into the appropriate program variable. Further
details concerning the ENTER statement are contained in Chapter 5.

2-24 Interfacing Concepts

Table of Contents

Chapter 3: Directing Data Flow

Specifying a Resourceooouiiiii i e 3-2
String-Variable Names 3-2
Device Selectorst e 3-4
HP-IB Device Selectors 3-6
I/O Path Namesoouii i 3-7

Assigning T/O Path Names e 3-9
Re-Assigning I/O Path Names i, 3-11
Closing I/OPath Names........... i i, 3-11

I/O Path Names in Subprograms, 3-12
Assigning I/0 Path Names Locally Within Subprograms.............. 3-12
Passing 1/O Path Names as Parameters............................. 3-14
Declaring I/O Path Names in Commoncoooieie.... 3-14

Benefits of Using I/O Path Names o .. 3-15
Execution Speed e 3-15
Re-Directing Dataoooiiniin i e 3-16

Attribute Control 3-17

Directing Data Flow

As described in the previous chapter, data can be moved between computer memory and
several resources, including:

e Computer memory (BASIC string variables)

o Internal devices (such as the display and keyboard)

e Mass storage files

e External devices (such as instruments and printers)

e Buffers (variables in memory with special capabilities for high-speed, background-

process transfers)

This chapter describes how string variables and devices are specified in I/O statements.
Specifying mass storage files in 1/O statements is briefly described in the “I/O Path
Attributes” chapter of this manual, and in the “Data Storage and Retrieval” chapter
of BASIC Programming Techniques. Buffers are described in the “Advanced Transfer
Techniques” chapter of this manual.

Directing Data Flow 3-1

Specifying a Resource

Each resource must have a specifier that allows it to be accessed to the exclusion of all
other computer resources. String variables are specified with their names. while devices
can be specified with either their device selector or with a new data type known as an

1/0O path name. This section describes how to specify these resources in OUTPUT and
ENTER statements.

String-Variable Names
Data is moved to and from string variables by specifving the string variable’s name in an
OUTPUT or ENTER statement. Examples of each are shown in the following program.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

DIM To_dest$[80],From_source$ [80]
DIM Data_out$[80]

!

From_source$="Source data"
Data_out$="0UTPUT data"

]

PRINTER IS CRT

PRINT "To_dest$ before OUTPUT = ";To_dest$

PRINT

!

OUTPUT To_dest$;Data_out$; ! ",;" suppresses CR/LF.
PRINT "To_dest$ after OUTPUT = ";To_dest$

PRINT

!

ENTER From_source$;To_dest$

PRINT "To_dest$ after ENTER = ";To_dest$
PRINT

!

END

Printed Results

To_dest$ before OUTPUT= (null string)

To_dest$ after OUTPUT= OUTPUT data

To_dest$ after ENTER= Source data

3-2 Directing Data Flow

As with I/O operations between the computer and other resources, the source and desti-
nation of data are specified in software (in an I/O statement within a BASIC program).
The data is then moved through a hardware path under operating-system firmware con-
trol. An overview of this process is illustrated in the following diagram.

Variables Area

e

of Computer Memory

[Variables(s) 'String Variable

Data Data

Operating Default

System :
A t
Hardware ttribute

ENTER 1 outpur

Operating System
Firmware

b
Control

BASIC Program

Figure 3-1. Diagram of the Default I/0 Path Used for String-Variable I/O Operations

Data is always copied to the destination string (or from the source string) beginning at
the first position of the variable; subscripts cannot be used to specify any other beginning
position within the variable.

The use of outputting to and entering from string variables is a very powerful method of
buffering data to be output to other resources. With OUTPUT and ENTER statements
that use images, the data sent to the string variables can be explicitly formatted before
being sent to (or while being received from) the variable. Further uses of string variables
are described in the section of the “I/O Path Attributes” chapter called “Applications
of Unified I/0”.

Directing Data Flow 3-3

Device Selectors

Devices include the built-in CRT and keyboard. external printers and instruments. and
all other physical entities that can be connected to the computer through an interface.
Each interface has a unique number by which it is identified. known as its interface select
code.

Select Codes of Built-In Interfaces
The internal devices are accessed with the following. permanently assigned interface
select codes.

Table 3-1. Internal Device Select Codes

Built-In Interface/Device Select Code
Alpha Display 1
Keyboard 2
Graphics Display 3
(non-bit-mapped alpha/graphics displays)
Flexible Disc Drive 4

(Models 226 and 236 only)

Powerfail Protection 5
(optional with Models 226 and 236 only)

Graphics Display 6
(bit-mapped alpha/graphics displays)

Built-in HP IB! 7
Built-in serial! 9
Parity-checking (memory). 32 (pseudo)

cache memory.
and floating-point math hardware

Nor all compnter models bave binle-in HP IR and soral snrertfnecs

3-4 Directing Data Flow

Select Codes of Optional Interfaces

Optional interfaces all have switch-setable select codes. The valid range of select codes
is 8 through 31 (they cannot use select codes 1 through 7, since these may be used by
built-in devices). The following settings on optional interfaces have been made at the
factory but can be reset to any unique select code between 8 and 31. See the interface’s
installation manual for further instructions.

Table 3-2. Factory Settings for Interface Select Codes

Built-In Interface/Device Select Code
HP-IB (HP 98624) 8
Serial (HP 98626, HP 98644) 9!
BCD (HP 98623) 11
GPIO (HP 98622) 12
High-Speed (HP-IB) Disc (HP 98625) 14
Data Communications (HP 98628) 20
Shared Resource Manager (HP 98629) 21
EPROM Programmer (HP 98253) 27
Color Output (HP 98627) 28
Bubble Memory (HP 98259) 30

Examples of using interface select codes to access devices are shown below.

OUTPUT 1;"Data to CRT"
ENTER CRT;Crt_line$

Int_sel_code=12
OUTPUT Int_sel_code;String$&"Expression",Num_expression
ENTER Int_sel_code;Str_variable$,Num_variable

Number=2
ENTER 7+Number;Serial_data$
OUTPUT 11-Number;"Data to serial card"

The device selector can be any numeric expression which rounds to an integer in the
range 1 through 31. If the interface select code specifies an HP-IB interface, additional
information must be specified to access a particular HP-IB device, since more than one
device can be connected to the computer through HP-IB interfaces.

1 Use another select code if there is already a built-in serial interface at this select code.

Directing Data Flow 3-5

HP-IB Device Selectors

Each device on the HP-IB interface has a primary address by which it is uniquely iden-
tified; each address must be unique so that only one device is accessed when one address
is specified. The device selector is then a combination of the interface select code and
the device's address!. Some examples are shown below.

Table 3-3. HP-IB Device Selector Examples

Device
Device Location Selector
interface select code 7 722
at primary address 22
interface select code 10 1013
at primary address 13
interface select code 10 1001
at primary address 01

! The HP-IB also has additional capabilities that add to this definition of device selectors. See the chapter
called »The HP-IB Interface” for further details

3-6 Directing Data Flow

Accessing devices with device selectors in BASIC statements is described in the following
diagram.

Variables Area
of Computer Memory -«——ENTER OUTPUT —

I Data Operating

Data
System Default Interface <:—>
Hardware Attribute Hardware Device

<<
o
=1
D
o
8
)

Operating System
Firmware

Control

BASIC Program

Figure 3-2. Diagram of the Default I/O Path Used when a Device Selector is Specified

Disc drives are also considered to be devices and are connected to the computer through
interfaces. However, files on the disc media cannot be uniquely accessed with only the
select code of its interface; additional information specifying which file is to be accessed
must be included. Accessing mass storage files is fully described in the “Data Storage
and Retrieval” chapter of the BASIC Programming Techniques manual; these tasks are
compared to accessing devices in the “I/O Path Attributes” chapter of this manual.

1/O Path Names

As shown in the previous diagrams, all data entered into and output from the computer
is moved through an “I/O path”. An I/O path consists of the hardware and operating-
system firmware used to carry out this moving process. When a string variable or device
selector is specified in an ENTER or OUTPUT statement, the operating system first
evaluates the expression that specifies a resource and then chooses the corresponding
default I/O path through which data will be moved.

With the I/O language of the computer, the I/O paths to devices and mass storage files
can be assigned special names; I/O paths to string variables can only be assigned names
if the variable is declared as a buffer. Assigning names to I1/O paths provides many
improvements in performance and additional capabilities over using device selectors,
described in “Benefits of Using 1/O Path Names” at the end of this chapter.

Directing Data Flow 3-7

The concept of using I/0O path names is shown in the following diagram: by comparing
it to the previous diagram. vou can see several major differences between using [/0 path
names and device selectors in 1/0O operations. These differences are described in the
section of this chapter called “Benefits of Using 1/O Path Names™.

Variables Area

of Computer Memory

Variable(s)
|

Data

-«——ENTER

OUTPUT ——

Operating
System
Hardware

Attribute
can be
specified

intertace
Hardware

Data
K::> Device

Operating System
Firmware

Control

Statement |

BASIC Program

Inciudes Internal Devices
and Disc Drive

Figure 3-3. I/0 Paths to Devices and Mass-Storage Files

3-8 Directing Data Flow

Assigning I/O Path Names

An I/0 path name is a new data type that can be assigned to either a device or a data
file on a mass storage device. Any valid name! preceded by the “@” character can be
used. Examples of the statement that makes this assignment are as follows.

Examples
ASSIGN @Display TO 1
ASSIGN QPrinter TO 701
ASSIGN @Serial TO 9

ASSIGN @Gpio TO 12

Now you can use the I/O path names instead of the device selectors to specify the resource
with which communication is to take place.

OUTPUT @Display;"Display message"
OUTPUT @Printer;"Message to the Printer"
ENTER @Serial;Variable,Variable$

ENTER @Gpio;Word1l,Word2

1 A “name” is a combination of 1 to 15 characters, beginning with an uppercase alphabetical character or
one of the characters CHR$(161) through CHR$(254) and followed by up to 14 lowercase alphanumeric
characters, the underbar character (_), or the characters CHR$(161) through CHR$(254). Numeric-
variable names are examples of valid names.

Directing Data Flow 3-9

Since an I/O path name is a data type. a fixed amount of memory is allocated. or
“reserved”, for the variable similar to the manner in which memory is allocated for other
program variables (INTEGER, REAL, and string variables). Since the variable does
not initially contain usable information, the validity flag. shown below. is set to false.
When the ASSIGN statement is actually executed, the allocated memory space is then
filled with information describing the 1/O path between the computer and the specified
resource, and the validity flag is set to true.

Table 3-4. I/0 Path Variable Contents

validity flag

type of resource

device selector
of resource

additional information,
if any, depends on the
type of resource

Attempting to use an 1/O path name that does not appear in any program line results
in error 910 (Identifier not found in this context). This error message indicates that
memory space has not been allocated for the variable. However. attempting to use an
I/O path name that does appear in an ASSIGN statement in the program but which
has not yet been executed results in error 177 (Undefined I/0 path name). This error
indicates that the memory space was allocated but the validity flag is still false; no valid
information has been placed into the variable since the I/O path name has not yvet been
assigned to a resource.

This I/O path information is only accessible to the context in which it was allocated.
unless it is passed as a parameter or appears in the proper COM statements!. Thus. an
I/0 path name cannot be initially assigned from the keyboard. and it cannot be accessed
from the keyboard unless it is presently assigned within the current context. However, an
1/0 path name can be re-assigned from the keyboard. as described in the next section.

This information describing the 1/() path is accessed by the operating system whenever
the I/O path name is specified in subsequent [/O statements. A portion of this infor-
mation can also be accessed with the STATUS and CONTROL statements described in
the “Registers” chapter. For now. the important point is that it contains a description
of the resource sufficient to allow its access.

See the BASIC Language Reference or the “Subprograms” chapter of BASIC Programming Techniques for
details

3-10 Directing Data Flow

Re-Assigning I/O Path Names

If an I/O path name already assigned to a resource is to be re-assigned to another
resource, the preceding form of the ASSIGN statement is also used. The resultant action
is that the validity flag is first set false, implicitly “closing” the I/O path name to the
device. A “new assignment” is then made just as if the first assignment never existed.
Making this new assignment places information describing the specified device into the
variable and sets the validity flag true. An example is shown below.

100 ASSIGN @Printer TO 1 ! Initial assignment.
110 OUTPUT @Printer;"Datal"
120 !

130 ASSIGN @Printer TO 701 ! 2nd ASSIGN closes 1st

140 OUTPUT QPrinter;"Data2" ! and makes a new assignment.
150 PAUSE

160 END

The result of running the program is that “Datal” is sent to the CRT, and “Data2” is
sent to HP-IB device 701. Since the program was paused (which maintains the program
context), the I/O path name @Printer can be used in an I/O statement or re-assigned
to another resource from the keyboard.

Closing 1/O Path Names

A second use of the ASSIGN statement is to explicitly close the name assigned to an I/0O
path. When the name is closed, the validity flag is set false, labeling the information
as invalid!. Attempting to use the closed name results in error 177 (Undefined I/0 path
name). Examples of statements that close path names are as follows.

Examples
ASSIGN QPrinter TO *
ASSIGN @Serial_card TO *

ASSIGN QGpio TO *

After executing this statement for a particular I/O path name, the name cannot be used
in subsequent I/O statements until it is re-assigned. This same name can be assigned
either to the same or to a different resource with a subsequent ASSIGN statement.
However, if it is used prior to being re-assigned, error 177 occurs.

1 Additional action may also be taken when the I/O path name assigned to a mass storage file is closed.

Directing Data Flow 3-11

I/O Path Names in Subprograms

When a subprogram (either a SUB subprogram or a user-defined function) is called.
the “context” is changed to that of the called subprogram!. The statements in the
subprogram only have access to the data of the new context. Thus, in order to use an
I/O path name in any statement within a subprogram, one of the following conditions
must be true.

e The I/O path name must already be assigned within the context (i.e.. the same
instance of the subprogram).

e The I/O path name must be assigned in another context and passed to this context
by reference (i.e.. specified in both the formal-parameter and pass-parameter lists).

e The 1/0 path name must be declared in a variable common (with COM statemnents)
and already be assigned within a context that has access to that common block.

The following paragraphs and examples further describe using I/O path names in sub-
programs.

Assigning 1/O Path Names Locally Within Subprograms

Any I/0 path name can be used in a subprogram if it has first been assigned to an 1/0
path within the same context of the subprogram. A typical example is shown below.

10 CALL Subprogram_x

20 END

30 !

40 SUB Subprogram_x

50 ASSIGN QLog_device TO 1 ! CRT.
60 OUTPUT QLog_device;"Subprogram"
70 SUBEND

! Subprograms and user-defined functions are fully discussed in the “Subprograms™ chapter of BASIC
Programming Techniques.

3-12 Directing Data Flow

When the subprogram is exited, all I/O path names assigned locally within the subpro-
gram are automatically closed. If the program (or subprogram) that called the exited
subprogram attempts to use the I/O path name, an error results. An example of this
closing local I/O path names upon return from a subprogram is shown below.

10 CALL Subprogram_x

11 QUTPUT QLog_device;"Main" ————— —TInsert into previous example.
20 END

30 !

40 SUB Subprogram_x

50 ASSIGN QLog_device TO 1 ! CRT.

60 OUTPUT QLog_device;"Subprogram"

70 SUBEND

When the above program is run, error 177, Undefined I/0 path name, occurs in line 11.

Each context has its own set of local variables, which are not automatically accessible to
any other context. Consequently, if the same I/O path name is assigned to I/O paths
in separate contexts, the assignment local to the context is used while in that context.
Upon return to the calling context, any I/O path names accessible to this context remain
assigned as before the context was changed.

1 ASSIGN @Log_device TO 701 <—:—Insert into previous example.
2 OUTPUT @Log_device;"First Main"

10 CALL Subprogram_x

11 OUTPUT QLog_device;"Second Main"<+——Change this line.

20 END

30 !

40 SUB Subprogram_x

50 ASSIGN @Log_device TO 1 ! CRT.

60 OUTPUT @Log_device; "Subprogram"

70 SUBEND

The results of the above program are that the outputs “First Main” and “Second Main”
are directed to device 701, while the output “Subprogram” is directed to the CRT. Notice
that the original assignment of @Log_device to device selector 701 is “restored” when the
subprogram’s context is exited, since the assignment of @Log_device made to interface
select code 1 was local to the subprogram.

Directing Data Flow 3-13

Passing I/O Path Names as Parameters

I/0O path names can be used in subprograms if they are assigned and have been passed
to the called subprogram by reference: they cannot be passed by value. The 1/O path
name(s) to be used must appear in both the pass-parameter and formal-parameter lists.

1 ASSIGN QLog_device TO 701

2 OUTPUT QLog_device;"First Main"
10 CALL Subprogram_x(@Log_device)
11 OUTPUT @Log_device;"Second Main"

20 END

30 !

40 SUB Subprogram_x{(QLog) Add formal parameter.
50 ASSIGN QLog TO 1 ! CRT.

60 OUTPUT QLog;"Subprogram"

70 SUBEND

Add pass parameter.

Upon returning to the calling routine, any changes made to the assigninent of the 1/0
path name passed by reference are maintained; the assignment local to the calling context
is not restored as in the preceding example, since the I/O path name is accessible to both
contexts. In this example, @Log_device remains assigned to interface select code 1; thus,
“Subprogram” and “Second Main" are both directed to the CRT.

Declaring I/O Path Names in Common

An I/O path name can also be accessed by a subprogram if it has been declared in a
COM statement (labeled or unlabeled) common to calling and called contexts. as shown
in the following example.

1 COM @Log_device Insert COM statement.
3 ASSIGN Q@Log_device TO 701
4 OUTPUT QLog_device;"First Main"

10 CALL Subprogram_x Parameters not necessary.
11 QUTPUT QLog_device;"Second Main"

20 END

30 !

40 SUB Subprogram_x Parameters not necessary.
41 COM QLog_device Insert COM statement.

50 ASSIGN @Log_device TO 1 ! CRT.
60 OUTPUT @Log_device;"Subprogram"
70 SUBEND

If an 1/0 path name in common is modified in any way. the assigninent is changed for all
subsequent contexts: the original assignment is not “restored” upon exiting the subpro-
gram. In this example. “First Main™ is sent to HP-IB device 701. but "Subprogram™ and
“Second Main™ are both directed to the CRT. This is identical to the preceding action
when the I/O path name was passed by reference.

3-14 Directing Data Flow

Benefits of Using I/O Path Names

Devices can be accessed with both device selectors and 1/O path names, as shown in
the previous discussions. With the information presented thus far, you may not see
much difference between using these two methods of accessing devices. This section
describes these differences in order to help you decide which method may be better for

your application.

Execution Speed

When a device selector is used in an I/O statement to specify the I/O path to a device,
the numeric expression must be evaluated by the computer every time the statement is
executed. If the expression is complex, this evaluation might take several milliseconds.

device selector expression

— al

QUTPUT Value.l+BIT(Value_253)%2°33"Data"

If a numeric variable is used to specify the device selector, this expression-evaluation time
is reduced; this is the fastest execution possible when using device selectors. However,
more information about the I/O process must be determined before it can be executed.

In addition to evaluating the numeric expression, the computer must determine which
type of interface (HP-IB, GPIO, etc.) is present at the specified select code. Once the
type of interface has been determined, the corresponding attributes of the I/O path must
then be determined before the computer can use the I/O path. Only after all of this
information is known can the process of actually copying the data be executed.

If an I/O path name is specified in an OUTPUT or ENTER statement, all of this
information has already been determined at the time the name was assigned to the I/O
path. Thus, an I/O statement containing an 1/O path name executes slightly faster than
using the corresponding I/O statement containing a device selector (for the same set of
source-list expressions).

Directing Data Flow 3-15

Re-Directing Data

Using numeric-variable device selectors, as with I/O path nawes, allows a single state-
ment to be used to move data between the computer and several devices. Simple examples
of re-directing data in this manner are shown in the following programs.

Example of Re-Directing with Device Selectors

100 Device=1
110 GOSUB Data_out

200 Device=9
210 GOSUB Data_out

410 Data_out: OUTPUT Device;Data$
420 RETURN

Example of Re-Directing with I/0 Path Names

100 ASSIGN @Device TO 1
110 GOSUB Data_out

200 ASSIGN @Device TO 9
210 GOSUB Data_out

410 Data_out: OUTPUT @Device;Data$
420 RETURN

The preceding two methods of re-directing data execute in approximately the same
amount of time. As a comparison of the two methods, executing the “Device=" statement
takes less time than executing the "ASSIGN @Device” statement. Conversely. execut-
ing the "OUTPUT Device” statement takes more time than executing the "~OUTPUT
@Device”. However. the overall time for each method is approximately equal.

There are two additional factors to be considered. First. device selectors cannot be used
to direct data to mass storage files: I/O path names are the only access to files. If the
data is ever to be directed to a file. you should use 1/O path names. A good example
of re-directing data to mass storage files is given in the “1/0 Path Attributes™ chapter.
The second additional factor is described below.

3-16 Directing Data Flow

Attribute Control

I/O paths have certain “attributes” which control how the system handles data sent
through the I/O path. For example, the FORMAT attribute possessed by an 1/0 path
determines which data representation will be used by the path during communications.
If the path possesses the attribute of FORMAT ON, the ASCII data representation will
be used. This is the default attribute automatically assigned by the computer when I/0O
path names are assigned to device selectors. If the I/O path possesses the attribute of
FORMAT OFF, the internal data representation is used; this is the default format for
BDAT files. Further details of these and additional attributes are discussed in the “I/O
Path Attributes” chapter.

The second additional factor that favors using I/O path names is that you can control
which attribute(s) are to be assigned to the I/O path to devices (and also to the I/O
paths to files and buffers). If device selectors are used, this control is not possible. The
“I/O Path Attributes” chapter describes how to specify the attributes to be assigned to
an I/O path and gives several useful techniques for using the available attributes.

Directing Data Flow 3-17

3-18 Directing Data Flow

Table of Contents

Chapter 4: Outputting Data

Introduction.o 4-1
Free-Field Outputs i i i 4-2
The Free-Field Convention 4-2
Item Separators and Terminators couiiiiiiiennnnn.. 4-3
Changing the EOL Sequence (Requires IO)........................... 4-6
Using END in Freefield OUTPUT 4-8
Additional Definition oo i 4-8
Outputs that Use Imagest 4-10
The OUTPUT USING Statementcoiiiiviieiininnen... 4-10
Images ..o e e e 4-11
Example of Using an Image iiiiiiiniiannnn.. 4-12
Image Definitions During Outputs i, 4-13
Numeric Images e 4-14
String Images 4-17
Binary Images e 4-18
Special-Character Images i, 4-20
Termination Images 4-21
Additional Image Features i 4-22
Repeat Factors i 4-22
Image Re-Use ... oo e e 4-23
Nested Imageso 4-24
END with OUTPUTSs that Use Images, 4-25

Additional END Definition, 4-26

Outputting Data

Introduction

The preceding chapter described how to identify a specific device as the destination of
data in an OUTPUT statement. Even though a few example statements were shown,
the details of how the data are sent were not discussed. This chapter describes the
topic of outputting data to devices; outputting data to string variables, buffers, and
mass storage files is described in the “I/O Path Attributes” and “Advanced Transfer
Techniques” chapters of this manual, in the “Data Storage and Retrieval” chapter of
BASIC Programming Techniques, and in the BASIC Language Reference.

There are two general types of output operations. The first type, known as “free-field
outputs”, use the computer’s default data representations!. The second type provides
precise control over each character sent to a device by allowing you to specify the exact
“image” of the ASCII data to be output.

1 The ASCIHI representation described briefly in the preceding chapter is the default data representation
used when communicating with with devices; however, the internal representation can also be used. See
the “I/O Path Attributes” chapter for further details.

Outputting Data 4-1

Free-Field Outputs

Free-field outputs are invoked when the following types of OUTPUT statements are
executed.

Examples

OUTPUT @Device;3.14*Radius”™2
OUTPUT Printer;"String data";Num_1
OUTPUT 9;Test,Score,Student$

OUTPUT Escape_code$;CHR$ (27)&"&A1S";

The Free-Field Convention

The term “free-field” refers to the number of characters used to represent a data item.
During free-field outputs, BASIC does not send a constant number of ASCII characters
for each type of data item, as is done during “fixed-field outputs” which use images
(described later in this chapter). Instead. a special set of rules is used that govern the
number and type of characters sent for each source item. The rules used for determin-
ing the characters output for numeric and string data are described in the following
paragraphs.

Standard Numeric Format

The default data representation for devices is to use ASCII characters to represent num-
bers. The ASCII representation of each expression in the source list is generated during
free-field output operations. Even though all REAL numbers have 15 (and INTEGERs
can have up to 5) significant decimal digits of accuracy, not all of these digits are out-
put with free-field OUTPUT statements. Instead. the following rules of the free-field
convention are used when generating a number’s ASCII representation.

All numbers between 1E—5 and 1E+6 are rounded to 12 significant digits and output in
floating-point notation with no leading zeros. If the number is positive. a leading space
is output for the sign: if negative. a leading =" iz output.

Examples

32767
-32768
123456.789012
-.000123456789012

4-2 Outputting Data

If the number is less than 1E—5 or greater than 1E+-6, it is rounded to 12 significant digits
and output in scientific notation. No leading zeros are output, and the sign character is
a space for positive and “—" for negative numbers.

Examples

-1.23456789012E+6
1.23456789012E-5

Standard String Format
No leading or trailing spaces are output with the string’s characters?.

String characters.
No leading or trailing spaces.

Item Separators and Terminators

Data items are output one byte (or word) at a time, beginning with the left-most item
in the source list and continuing until all of the source items have been output. Items
in the list must be separated by either a comma or a semicolon. However, items in the
data output may or may not be separated by item terminators, depending on the use of
item separators in the source lists.

The general sequence of items in the data output is as follows. The end-of-line (EOL)
sequence is discussed in the next section.

1st item 2nd item | last EOL
item | terminator | item | terminator item | sequence
— . v r ;
optional optional optional

! This statement describes the FORMAT ON attribute (ASCII data representation). When sending data
with the FORMAT OFF attribute, however, the internal representation of string data is used; for strings,
the data consists of a four-byte length header that contains the number of characters in the string,
followed by the string characters. With FORMAT ON, there is no length header; only the ASCII string
characters are sent.

Outputting Data 4-3

Using a comma separator after an item specifies that the item terminator (corresponding
to the type of item) will be output after the last character of this item. A carriage-return,
CHR$(13), and a line-feed, CHR$(10), terminate string items.

OUTPUT Device;"Item",-1234

ItemCHLF—1234‘EOL

sequence The default EOL sequence is a CR/LF.

A comma separator specifies that a comma. CHR$(44), terminates nuneric items.

OUTPUT Device;-1234,"Item"

EOL

-1 2131 4 , | t e | m
sequence

If a separator follows the last item in the list. the proper item terminator will be output
instead of the EOL sequence.

QOUTPUT Device;"Item", QUTPUT Device;-1234,
L[t [e[m[cR[LF] [-[1]2[3]a].]

Using a semicolon separator suppresses output of the (otherwise automatic) item’s ter-
minator.

OUTPUT 1;"Iteml";"Item2" OUTPUT 1;-12;-34

EOL \ _
sequence }

EOL
sequence

lt‘em1|tem2 112 -1314

If a semicolon separator follows the last item in the list. the EOL sequence and item
terminators are suppressed.

OUTPUT 1,;"Iteml";"Item2";

[| l t I e Im I 1 l | | t } e Im I 2 ‘ 'c:lftig:ﬁ.r of the item terminators nor the EOL sequence are

4-4 Outputting Data

If the item is an array, the separator following the array name determines what is output
after each array element. (Individual elements are output in row-major order.)

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

OPTION BASE 1
DIM Array(2,3)
FOR Row=1 TO 2
FOR Column=1 TO 3
Array(Row, Column)=Row*10+Column
NEXT Column

NEXT Row
]

OUTPUT CRT;Array(x) ! No trailing separator.

OUTPUT CRT;Array(*), ! Trailing comma.
!

OUTPUT CRT;Array(x) ! Trailing semi-colon.
'

OUTPUT CRT;"Done"
END

Resultant OQutput

1 1]2], 1131, 2 |1 2| 3| EOL
sequence
1 1 2], 13], 21|, 2 2 | 3
1 T2 13 2 | 1 2 | 2 2
blo £ | EoL
sequence

Outputting Data 4-5

Item separators cause similar action for string arrays.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

OPTION BASE 1
DIM Array$(2,3)[2]
FOR Row=1 TO 2
FOR Column=1 TO 3
Array$ (Row,Column)=VAL$ (Row*10+Column)
NEXT Column
NEXT Row
1

OUTPUT CRT;Array$(x) ! No trailing separator.
]

OUTPUT CRT;Array$(*), ! Trailing comma.
1

OUTPUT CRT;Array$(*) ! Trailing semi-colon.
!

OUTPUT CRT;"Done"

END

Resultant Output

A pad byte may be sent following the last character of the EOL sequence when using an
I/O path that possesses the WORD attribute. See the “I/O Path Attributes™ chapter

for further information.

Changing the EOL Sequence (Requires 10)

An end-of-line (EOL) sequence is normally sent following the last item sent with OUT-
PUT. The default EOL sequence consists of a carriage-return and line-feed (CR/LF),
sent with no device-dependent END indication. When the 10 binary is loaded. it is also
possible to define your own special EOL sequences that include sending special charac-
ters. sending an END indication, and delaying a specified amount of time after sending

the EOL sequence.

4-6 Outputting Data

111 |cRILF| 1|2]|cRrILF| 113 |cR|LF|2 |1 |CR|LF| 2| 2 |cR|LF EOL
sequence
111 |CRILF| 1|2 CR|LF| 1 |3 |CR|LF| 2|1 |CR|LF| 2 | 2 |cRILF EOL
sequence
11112 1|ale1]2]2]2]s
plo|N EOL
sequence

In order to define non-default EOL sequences to be sent by the OUTPUT statement, an
I/0O path must be used. The EOL sequence is specified in one of the ASSIGN statements
which describe the I/O path. An example is as follows.

ASSIGN @Device TO 12;EOL CHR$(10)&CHR$(10)&CHR$(13)

The characters following EOL are the new EOL-sequence characters. Any character in the
range CHR$(0) through CHR$(255) may be included in the string expression that defines
the EOL characters; however, the length of the sequence is limited to eight characters or
less. The characters are put into the output data before any conversion is performed (if
CONVERT OUT is in effect).

If END is included in the EOL attribute, an interface-dependent “END” indication is sent
with (or after) the last character of the EOL sequence. However, if no EOL sequence is
sent, the END indication is also suppressed. The following statement shows an example
of defining the EOL sequence to include an END indication.

ASSIGN @Device TO 20;EOL CHR$(13)&CHR$(10) END

With the HP-IB Interface, the END indication is an End-or-Identify message (EOI) sent
with the last EOL character. The individual chapter that describes programming each
interface further describes each interface’s END indication (if implemented).

If DELAY is included, the system delays the specified number of seconds (after sending
the last EOL character and/or END indication) before executing any subsequent BASIC
statement.

ASSIGN @Device;EOL CHR$(13)&CHR$(10) DELAY 0.1

This parameter is useful when using slower devices which the computer can “overrun” if
data are sent as rapidly as the computer can send them. For example, a printer connected
to the computer through a serial interface set to operate at 300 baud might require a
delay after receiving a CR character to allow the carriage to return before sending further
characters.

The default EOL sequence is a CR and LF sent with no END indication and no delay;
this default can be restored by assigning EOL OFF to the /O path.

EOL sequences can also be sent by using the “L” image specifier. See “Outputs that Use
Images” for further details.

Outputting Data 4-7

Using END in Freefield OUTPUT

The secondary keyword END may be optionally specified following the last source-item
expression in a freefield OUTPUT statement. The result is to suppress the End-of-Line
(EOL) sequence that would otherwise be output after the last byte of the last source item.
If a comma is used to separate the last item from the END keyword. the corresponding
item terminator will be output as before (carriage-return and line-feed for string items
and comma for numeric items).

Examples
ASSIGN @Gpio TO 12

OUTPUT @Gpio;-10,END

]
L] I 0 | . | ltemterminator, but no EOL sequence, is sent.

OUTPUT @Gpio;-10;END
OUTPUT QGpio;-10 END

- n Neither item terminator nor EOL sequence is sent.

OUTPUT @Gpio;"AB" ,END

{ A I B]LCR I LFj] Item terminator. but no EOL sequence. is sent.

OUTPUT @Gpio;"AB";END
OUTPUT QGpio;"AB" END

A1 B ! Neither item terminaior nor EGL sequence is sent.
L1 =

OUTPUT QGpio

EOL The EOL sequence is sent.
sequence

OUTPUT @Gpio;END No EOL sequence is sent.
OUTPUT @Gpio;"" END

The END keyword has additional significance when the destination is a mass storage
file. See the "Data Storage and Retrieval™ chapter of BASIC' Programming Techniques
for further details.

Additional Definition

BASIC defines additional action when END is specified in a freefield OUTPUT statement
directed to either HP-IB or Data Communications interfaces.

4-8 Outputting Data

END with HP-IB Interfaces

With HP-IB interfaces, END has the additional function of sending the End-or-Identify
signal (EOI) with the last data byte of the last source item; however, if no data are sent
from the last source item, EOI is not sent. For further description of the EOI signal, see
the “HP-IB Interface” chapter.

Examples

ASSIGN @Device TO 701

OUTPUT @Device;-10,END
EIEREN
S—~—’

EOI sent with the last character
(numeric item terminator).

OUTPUT @Device;"AB";END
OUTPUT @Device;"AB" END

AlB]
)
EOI sent with the last character of the item.

OUTPUT @Device;END
OUTPUT @Device;"" END Neither EOL sequence nor EOIl is sent, since no data is sent.

END with the Data Communications Interface

With Data Communication interfaces, END has the additional function of sending an
end-of-data indication to the interface. See the “Datacomm Interface” chapter for further
details.

Outputting Data 4-9

Outputs that Use Images

The free-field form of the OUTPUT statement is very convenient to use. However, there
may be times when the data output by the free-field convention is not compatible with
the data required by the receiving device.

Several instances for which you might need to format outputs are: special control char-
acters are to be output: the EOL sequence (carriage-return and line-feed) needs to be
suppressed; or the exponent of a number must have only one digit. This section shows
you how to use image speeifiers to create your own. unique data representations for
output operations.

The OUTPUT USING Statement

When this form of the OUTPUT statement is used. the data is output according to the
format image referenced by the “USING" secondary keyword. This image consists of one
or more individual image specifiers which describe the type and number of data bytes
(or words) to be output. The image can be either a string literal. a string variable. or
the line label or number of an IMAGE statement. Examples of these four possibilities
are listed below.

100 OUTPUT 1 USING "6A,SDDD.DDD,3X";" K= ",123.45

100 Image_str$="6A,SDDD.DDD,3X"
110 OUTPUT CRT USING Image_str$;" K

",123.45

100 OUTPUT CRT USING Image_stmt;" K= ";123.45
110 Image_stmt: IMAGE 6A,SDDD.DDD, 3X

100 OUTPUT 1 USING 110;" K= ";123.45
110 IMAGE 6A,SDDD.DDD,3X

4-10 Outputting Data

Images

Images are used to specify the format of data during I/O operations. Each image consists
of groups of individual image (or “field”) specifiers, such as 6A, SDDD.DDD, and 3X
in the preceding examples. Each of these field specifiers describe one of the following
things:

o It describes the desired format of one item in the source list. (For instance, 6A spec-
ifies that a string item is to be output in a “6-character Alpha” field. SDDD.DDD
specifies that a numeric item is to be output with Sign, 3 Decimal digits preceding
the decimal point, followed by 3 Decimal digits following the decimal point.)

o It specifies that special character(s) are to be output. (For instance, 3X specifies
that 3 spaces are to be output.) There is no corresponding item in the source list.

Thus, you can think of the image list as either a precise format description or as a
procedure. It is convenient to talk about the image list as a procedure for the purpose
of explaining how this type of OUTPUT statement is executed.

Again, each image list consists of images that each describe the format of data item to
be output. The order of images in the list corresponds to the order of data items in
the source list. In addition, image specifiers can be added to output (or to suppress the
output of) certain characters. The following example steps through exactly how BASIC
executes all of the preceding equivalent statements.

Outputting Data 4-11

Example of Using an Image

We will use the first of the four. equivalent output statements shown above. Don't worry
if you don't understand each of the image specifiers used in the image list; each will be
fully described in subsequent sections of this chapter. The main emphasis of this example
is that you will see how an image list is used to govern the type and number of characters

output.

OUTPUT CRT USING "6A,SDDD.DDD,3X";" K= ",123.45

The data stream output by the computer is as follows.

| [kf[=] T [[+«[+J2[a[.[afs[o[[[J[cR[LF]
[« ~ A ~ % v N p———
B6A S D D D . D D D 3X default EOL
sequence
Step 1. The computer evaluates the first image in the list. Generally. each group of

Step 2.

Step 3.

Step 4.

specifiers separated by commas is an “image”; the commas tell the computer
that the image is complete and that it can be “processed”. In general. each
group of specifiers is processed before going on to the next group. In this
case, 6 alphanumeric characters taken from the first item in the source list
are to be output.

The computer then evaluates the first item in the source list and begins
outputting it, one byte (or word) at a time. After the 4th character, the
first expression has been “exhausted”. In order to satisfy the corresponding

specifier, two spaces (alphanumeric “fill” characters) are output,

The computer evaluates the next image (note that this image consists of
several different image specifiers). The S specifier requires that a sign
character be output for the number. the “D” specifiers require digits of a
number, and the “.” specifies where the decimal point will be placed. Thus,
the number of digits following the decimal point have been specified. All of
these specifiers describe the format of the next item in the source list.

The next data item in the source list is evaluated. The resultant number is
output one digit at a time. according to its image specifiers. A trailing zero
has been added to the number to satisfy the “DDD” specifiers following the
decimal point.

4-12 Outputting Data

Step 5. The next image in the list (“3X”)is evaluated. This specifier does not “re-
quire” data, so the source list needs no corresponding expression. Three
spaces are output by this image.

Step 6. Since the entire image list and source list have been “exhausted”, the com-
puter then outputs the current (or default, if none has been specified) “end-
of-line” sequence of characters (here we assume that a carriage-return and
line-feed are the current EOL sequence).

The execution of the statement is now complete. As you can see, the data specified in
the source list must match those specified in the output image in type and in number of
items.

Image Definitions During Outputs

This section describes the definitions of each of the image specifiers when referenced by
OUTPUT statements. The specifiers have been categorized by data type. It is suggested
that you scan through the description of each specifier and then look over the examples.
You are also highly encouraged to experiment with the use of these concepts.

Outputting Data 4-13

Numeric Images

These image specifiers are used to describe the format of numbers.

Table 4-1. Sign, Digit, Radix and Exponent Specifiers

Image Specifier

Meaning

S

Specifies a “+” for positive and a “—” for negative numbers is to be output.

M

Specifies a leading space for positive and a *—” for negative numbers is to
be output.

Specifies one ASCII digit (“0” through “97) is to to be output. Leading
spaces and trailing zeros are used as fill characters. The sign character,
if any, “floats” to the immediate left of the most-significant digit. If the
number is negative and no S or M is used. one digit specifier will be used
for the sign.

Same as “D” except that leading zeros are output. This specifier cannot
appear to the right of a radix specifier (decimal point or R).

Like D. except that asterisks are output as leading fill characters (instead
of spaces). This specifier cannot appear to the right of a radix specifier
(decimal point or R).

Specifies the position of a decimal point radix-indicator (American radix)
within a number. There can be only one radix indicator per numeric image
item.

Specifies the position of a comma radix indicator (European radix) within
a number. There can be only one radix indicator per numeric image item.

Specifies that the number is to be output using scientific notation. The “E”
must be preceded by at least one digit specifier (D. Z. or *). The default
exponent is a four-character sequence consisting of an “E”. the exponent
sign, and two exponent digits. equivalent to an “ESZZ” image. Since the
number is left-justified in the specified digit field. the image for a negative
number must contain a sign specifier (see the next section).

ESZ

Same as “E” but only 1 exponent digit is output.

ESZZ7Z

Same as “E” but three exponent digits are output.

K. -K

Specifies that the number is to be output in a “compact™ format. similar to
the standard numeric format: however. neither leading spaces (that would
otherwise replace a “+7 sign) nor item terminators (commas) are output.
as would be with the standard numeric format.

H, -H

Like K, except that the number is to be output using a comma radix (Eu-
ropean radix).

4-14 Outputting Data

Numeric Examples

OUTPUT @Device USING "DDDD";-123.769

EOL
sequence

-11721|4

OUTPUT @Device USING "4D";-1.2

EOL
sequence

-1

OUTPUT @Device USING "ZZ.DD";1.675

EOL
sequence

0|1 .| 6|8

OUTPUT @Device USING "Z.D"; .35

EOL
sequence

o . | 4

OUTPUT @Device USING "DD.E";12345

EOL
sequence

112|.|E|+]|0{|3

OUTPUT @Device USING "2D.DDE";2E-4

EOL
sequence

2|]0|(.|0|0|E}|-|0]5

OUTPUT @Device USING "K";12.400

EOL
sequence

112 .14

OUTPUT CRT USING "MDD.2D";-12.449

EOL

- |1 2 . 4 |5
sequence

Outputting Data 4-15

OUTPUT CRT USING "MDD.DD";2.09

2

0

9

EOL
sequence

OUTPUT 1 USING

"SD.D";2.449

+ | 2

EOL
sequence

OUTPUT 1 USING

1

'SZ.DD"; .49

9

EOL
sequence

OUTPUT CRT USING "SDD.DDE";-2.35

-1 2

3

5

0

E| -0

EOL
sequence

OUTPUT @Device USING "**x.D";2.6

* | 2

6

EOL
sequence

OUTPUT @Device USING "DRDD";3.1416

31,

1

4

EOL

sequence

OUTPUT @Device USING "H";3.1416

31,

4

6

EOL
sequence

4-16 Outputting Data

String Images
These types of im

age specifiers are used to specify the format of string data items.

Table 4-2. Character Specifiers

Image Specifier Meaning
A Specifies that one character is to be output. Trailing spaces are used as fill
characters if the string contains less than the number of characters specified.
“literal” All characters placed in quotes form a string literal, which is output exactly

as is. Literals can be placed in output images which are part of OUTPUT
statements by enclosing them in double quotes.

K, -K, H,-H

Specifies that the string is to be output in “compact” format, similar to the
standard string format; however, no item terminators are output as with
the standard string format.

String Examples

OUTPUT @Device USING "8A";"Characters"

Clhj|a r al|c t e EOL
sequence
OUTPUT @Device USING "K,""Literal""";"AB"
AlB|L|i|t|e|r|al|| EOL
sequence
OUTPUT @Device USING "K";" Hello "
H| e | | o] EOL
sequence
QUTPUT @Device USING "5A";" Hello "
He EOL
sequence

Outputting Data 4-17

Binary Images

These image specifiers are used to output bytes (8-bit data) and words (16-bit data) to
the destination. Typical uses are to output non-ASCII characters or integers in their
internal representation.

Table 4-3. Binary Specifiers

Image Specifier Meaning

B Specifies that one byte (8 bits) of data is to be output. The source expres-
sion is evaluated. rounded to an integer. and interpreted MOD 256. If it is
less than —32 768, CHR$(0) is output. If is greater than 32 767, CHR$(255)
is output.

W Specifies that one word of data (16 bits) are to be sent as a 16-bit, two’s-
complement integer. The corresponding source expression is evaluated and
rounded to an integer. If it is less than —32 768, then —32 768 is sent; if it
is greater than 32 767, then 32 767 is sent.

If either an I/O path name with the BYTE attribute (see the “I/O Path
Attributes” chapter) or a device selector is used to access an 8-bit interface,
two bytes will be output; the first byte is most significant. If an 1/O path
name with the BYTE attribute is used to access a 16-bit interface, the
BYTE attribute is overridden and one 16-bit word is output in a single
handshake operation.

If an I/O path name with the WORD attribute is used to access a 16-bit
interface, a pad byte, CHR$(0), is output whenever necessary to achieve
alignment on a word boundary

‘o MRS

If the destination is a BDAT or HPUX file, string variable, or buffer. the
WORD attribute is ignored and all data are sent as bytes; however. pad
byte(s) will also be output whenever necessary to achieve alignment on a
word boundary. The pad byte may be changed by using the CONVERT
attribute (see the “I/O Path Attributes” chapter for details).

Y Like W, except that no pad bytes are output to achieve alignment on a
word boundary. If an I/O path with the BYTE attribute is used to access
a 16-bit interface. the attribute is not overridden (as with the W specifier).

4-18 Outputting Data

Binary Examples

OUTPUT @Device USING "B,B,B";65,66,67

AlBlC EOL
sequence
OUTPUT @Device USING "B";13
CR

OUTPUT @Device USING "W";256*65+66

Alg | EOL
sequence

For this example, assume that @Device possesses the WORD attribute and that the EOL
sequence consists of the characters “123” with an END indication.

OUTPUT @Device USING "K,W";"0Odd",h256%65+66

[o[d[daNufa]B]1]2]3[Nu
—,_/_,.__a_,—n—,_ﬂ__,_a\
Word1 Word2 Word3 Word4 Word5 END indication Sent Here

For this example, assume that @Device possesses the WORD attribute and that the EOL
sequence is the default (CR/LF).

OUTPUT @Device USING "K,Y";"0dd",h 256+65+66

[o[d]d]A]B][crR][LF]NuL|
! e et e ! e
Word1 Word2 Word3 Word 4

Outputting Data 4-19

Special-Character Images

These specifiers require no corresponding data in the source list. They can be used to
output spaces, end-of-line sequences. and form-feed characters.

Table 4-4. Special-Character Specifiers

Image Specifier Meaning
X Specifies that a space character, CHR$(32), is to be output.
/ Specifies that a carriage-return character. CHR$(13). and a line-feed char-
acter. CHR$(10). are to be output.
@ Specifies that a form-feed character, CHR$(12), is to be output.

Special-Character Examples

OUTPUT @Device USING "A,4X, A";"M", 6 "A"

EOL
sequence

M A

OUTPUT @Device USING "50X"

EOL
seqguence

—(50 spaces)—

OUTPUT @Device USING "@,/"

FF |cR|LF | EOL
sequence

QUTPUT @Device USING "/

EOL
sequence

CR|LF

4-20 Outputting Data

Termination Images
These specifiers are used to output or suppress the end-of-line sequence output after the

last data item.

Table 4-5. Termination Specifiers

Image Specifier

Meaning

L

Specifies that the current end-of-line sequence is to be output. The default
EOL characters are CR and LF; see “Changing the EOL Sequence” for
details on how to re-define these characters. If the destination is an I/O
path name with the WORD attribute, a pad byte will be output after each
EOL sequence when necessary to achieve word alignment.

Specifies that the EOL sequence that normally follows the last item is to
be suppressed.

%

Is ignored in output images but is allowed to be compatible with ENTER
images.

Specifies that the EOL sequence that normally follows the last item is to
be replaced by a single carriage-return character (CR).

Specifies that the EOL sequence that normally follows the last item is to
be replaced by a single line-feed character (LF).

Termination Examples

OUTPUT @Device USING "4A,L";"Data"

D

a

t

EOL EOL
sequence | sequence

a

OUTPUT Q@Device USING "#,K";"Data"

[0]aft]a]

OUTPUT @Device USING "#,B";12

Outputting Data 4-21

OUTPUT @Device USING "+,K";"Data"

‘Dla{t\alCR‘

OUTPUT @Device USING "-,L,K";"Data"

EOL
sequence

D

t

a

LF

Additional Image Features

Several additional features of outputs which use images are available with the computer.
Several of these features. which have already been shown. will be explained here in detail.

Repeat Factors

Many of the specifiers can be repeated without having to explicitly list the specifier as
many times as it is to be repeated. For instance, to a character field of 15 characters, you
do not need to use "AAAAAAAAAAAAAAA”; instead. you merely specify the number
of times that the specifier is to be repeated in front of the image (*15A™). The following
specifiers can be repeated by specifying an integer repeat factor: the specifiers not listed

cannot be repeated in this manner.

Repeatable Specifiers

Z.D.A.X. /. @. L

Examples

OUTPUT @Device USING "4Z.3D";328.03

0

3

2

8

0

3

0

EOL
sequence

OUTPUT @Device USING "6A";"Data bytes"

D

a

t

a

b

EOL
sequence

1

4-22 Outputting Data

OUTPUT @Device USING "5X,2A";"Data"

D | a

EOL
sequence

OUTPUT @Device USING "2L,4A";"Data"

EOL EOL
sequence | sequence

D | a

t a

EOL
sequence

OUTPUT @Device USING "8A,2Q@";"The End"

T

h|e E|n|d

FF

FF

EOL
sequence

OUTPUT @Device USING "2/"

CR

EOL
sequence

LF [CR|LF

Image Re-Use

If the number of items in the source list exceeds the number of matching specifiers in the
image list, the computer attempts to re-use the image(s) beginning with the first image.

110
120
130
140
150
160
170

ASSIGN @Device TO CRT
Num_1=1

Num_2=2

1

OUTPUT @Device USING "K";Num_1,"Data_1",6Num_2,"Data_2"
QUTPUT @Device USING "K,/";Num_1,"Data_1", Num_2,"Data_2"

END

Resultant Display

iData_12Data_2

1

Data_1

2

Data_2

Outputting Data 4-23

Since the “K™ specifier can be used with both numeric and string data. the above OUT-
PUT statements can re-use the image list for all items in the source list. If any item
cannot be output using the corresponding image item, an error results. In the following
example. “Error 100 in 150” occurs due to data mismatch.

110 ASSIGN @Device TO CRT
120 Num_1=1
130 Num_2=2

140 !
160 OUTPUT @Device USING "DD.DD";Num_1,Num_2,"Data_1"
160 END

Nested Images

Another convenient capability of images is that they can be nested within parentheses.
The entire image list within the parentheses will be used the number of times specified
by the repeat factor preceding the first parenthesis. The following program is an example
of this feature.

100 ASSIGN @Device TO 701

110 !
120 OUTPUT @Device USING "3(B),X,DD,X,DD";65,66,67,68,69
130 END

Resultant Output

EOL
sequence

A|lB|C 6 |8 6 |9

This nesting with parentheses is made with the same hierarchy as with parenthetical
nesting within mathematical expressions. Only eight levels of nesting are allowed.

4-24 Outputting Data

END with OUTPUTSs that Use Images

Using the optional secondary keyword END in an OUTPUT statement that uses an image
produces results which differ from those of using END in a freefield OUTPUT statement.
Instead of always suppressing the EOL sequence, the END keyword only suppresses the
EOL sequence when no data are output from the last source-list expression. Thus, the
“#” image specifier generally controls the suppression of the otherwise automatic EOL
sequence, while the END keyword suppresses it only in less common usages.

Examples

Device=12

OUTPUT Device USING "K";"ABC" ,END
QUTPUT Device USING "K";"ABC";END
OUTPUT Device USING "K";"ABC" END

EOL
sequence

A|B]|C The EOL sequence is not suppressed.

OUTPUT Device USING "L,/,""Literal"",X,Q"

EOL

EOL .
CRILF| L i t e|r | a | sequence

sequence

In this case, specifiers that require no source-item expressions are used to generate char-
acters for the output; there are no source expressions. The EOL sequence is output after
all specifiers have been used to output their respective characters. Compare this action
to that shown in the next example.

OUTPUT Device USING "L,/,""Literal"",X,@;END

[EOLCRLFLiteraI FF
sequence

The EOL sequence is suppressed because no source items were included in the state-
ment; all characters output were the result of specifiers which require no corresponding
expression in the source list.

Outputting Data 4-25

Additional END Definition

The END secondary keyword has been defined to produce additional action when in-
cluded in an OUTPUT statement directed to HP-IB and Data Communications inter-
faces.

END with HP-IB Interfaces

With HP-IB interfaces, END has the additional function of sending the End-or-Identify
signal (EOI) with the last character of either the last source item or the EOL sequence
(if sent). As with freefield OUTPUT. no EOI is sent if no data is sent from the last
source item and the EOL sequence is suppressed.

Examples

ASSIGN @Device TO 701

OUTPUT @Device USING "K";"Data",END

OUTPUT @Device USING "K";"Data","",END
D|a t a EOL
sequence
——

EOI sent with last character
of the EOL sequence.

OUTPUT @Device USING "#,K";"Data" END

(Dflaft]a]
——
EOI sent with this character.

EOI 1s sent with the last character of the last source item when the EOL sequence is
suppressed, because the last source item contained data which was used in the output.

OUTPUT @Device USING "#,K";"Data","" ,END
OUTPUT @Device USING """Data""",END

Dlaj|t)]a)]

The EOI was not sent in either case. since no data were sent from the last source item
and the EOL sequence was suppressed.

END with Data Communications Interfaces

With Data Communications interfaces, END has the additional definition of sending an
end-of-data indication to the interface in the same instances in which EOI would be sent
on HP-IB interfaces. See the “Datacomm Interface™ chapter for further details.

4-26 Outputting Data

Table of Contents

Chapter 5: Entering Data

Free-Field Enters i e 5-1
[tem Separators.ottt e 5-2
Item Terminatorst e 5-2
Entering Numeric Data with the Number Builder 5-3
Entering String Data 5-8

Terminating Free-Field ENTER Statements 5-10
EOI Terminationttt eie e 5-11

Enters that Use Images i 5-13
The ENTER USING Statement...............oi .. 5-13

Images . .o e 5-14
Example of an Enter UsinganImage 5-14

Image Definitions During Enter.......... 5-16
Numeric Images i 5-16
String Images 5-18
Ignoring Charactersu i 5-19
Binary Images oot 5-20

Terminating Enters that Use Images.............. 5-21
Default Termination Conditions., 5-21
EOI Re-Definition 5-22
Statement-Termination Modifiers 5-23

Additional Image Features 5-25
Repeat Factorsc.o i 5-25
Image Re-Use i e 9-25

Nested Images i 5-25

Entering Data

This chapter discusses the topic of entering data from devices. You may already be
familiar with the OUTPUT statement described in the previous chapter; many of those
concepts are applicable to the process of entering data. Earlier in this manual, you were
told that the data output from the sender had to match that expected by the receiver.
Because of the many ways that data can be represented in external devices, entering data
can sometimes require more programming skill than outputting data. In this chapter,
you will see what is involved in being the receiving device. Both free-field enters and
enters that use images are described, and several examples are given with each topic.

Free-Field Enters

Executing the free-field form of the ENTER invokes conventions which are the “converse”
of those used with the free-field OUTPUT statement. In other words, data output using
the free-field form of the OUTPUT statement can be readily entered using the free-field
ENTER statement; no explicit image specifiers are required. The following statements
exemplify this form of the ENTER statement.

Examples
100 ENTER QVoltmeter;Reading
100 ENTER 724;Readings(*)
100 ENTER From_string$;Average,Student_name$

100 ENTER @From_file;Data_code,Str_element$(X,Y)

Entering Data 5-1

Item Separators

Destination items in ENTER statements can be separated by either a comma or a semi-
colon. Unlike the OUTPUT statement. it makes no difference which is used: data will
be entered into each destination item in a manner independent of the punctuation sep-
arating the variables in the list. However. no trailing punctuation s allowed. The first
two of the following statements are equivalent, but an error is reported when the third
statement is executed.

Examples

ENTER @From_a_device;N1,N2,N3
These first two statements are equivalent.
ENTER Q@From_a_device;N1;N2;N3

ENTER @From_a_device;N1,N2,N3, Fxecuting this statement causes an error

(because of traing comma).

Item Terminators

Unless the receiver knows exactly how many characters are to be sent. each data item
output by the sender must be terminated by special character(s). When entering ASCII
data! with the free-field form of the ENTER statement, the computer does not know
how many characters will be output by the sender.

Item terminators must signal the end of each item so that the computer enters data into
the proper destination variable. The terminator of the last item may also terminate the
ENTER statement (in some cases). The actual character(s) that terminate entry into
each type of variable are described in the next sections.

In addition to the termination characters. each item can be terminated (only with selected
interfaces) by a device-dependent END indication. For instance, some interfaces use a
signal known as EOI (End-or-Identify). The EOI signal is only available with the HP-1B,
CRT, and keyboard interfaces. EOI termination is further described in the next sections.

When using an [/0 path that possesses the WORD attribute. an additional byte may be
entered (but ignored). See the “1/0 Path Attributes” chapter for further information.

The ASCII data representation described briefly in Chapter 2 is the default data representation used
with devices: however. the internal representation can also be used. See the “I/O Path Attributes”
chapter for further details

5-2 Entering Data

Entering Numeric Data with the Number Builder

When the free-field form of the ENTER statement is used, numbers are entered by a
routine known as the “number builder”. This firmware routine evaluates the incom-
ing ASCII numeric characters and then “builds” the appropriate internal-representation
number. This number builder routine recognizes whether data being entered is to be
placed into an INTEGER or REAL variable and then generates the appropriate internal
representation.

The number builder is designed to be able to enter several formats of numeric data.
However, the general format of numeric data must be as follows to be interpreted properly
by the computer.

Mantissa | Mantissa | E | Exponent | Exponent Terminator
sign digit(s) sign digit(s) (character or
END indication)

[— J J\ — —
v ~v- v v

Optional At least one Optional Required
digit is required

Numeric characters include decimal digits “0” through “9” and the characters “.”, “+”,
“=7, “E”, and “e”. These last five characters must occur in meaningful positions in the
data stream to be considered numeric characters; if any of them occurs in a position in
which it cannot be considered part of the number, it will be treated as a non-numeric
character.

’

Entering Data 5-3

The following rules are used by the number builder to construct numbers from incoming
streams of ASCII muneric characters.

1. All leading non-numerics are ignored; all leading and imbedded spaces are ignored.
Example

100 ASSIGN @Device TO Device_selector
110 ENTER @Device;Number ! Default is data type REAL.

120 END
Consumed
——
(NJuf[mJofe][r[=] [[1]2] [s]tF]
A v % ~ I’
Ignored Number Terminator (for both

item and statement)

The result of entering the preceding data with the given ENTER statement is that
Number receives a value of 123. The line-feed (statement terminator) is required since
Number is the last item in the destination list.

5-4 Entering Data

2. Trailing non-numerics terminate entry into a numeric variable, and the terminat-
ing characters (of both string and numeric items) are “consumed”. In this manual,
“consumed” characters refers to characters used to terminate an item but not en-
tered into the variable; “ignored” characters are entered but are not used.

Example

ENTER QDevice;Real_number,String$

Consumed Consumed
INJu[m[bJe[r[=] J[1]2[3].[4]Aa][B]c]D]LForcRrLA]
N . ~ - P > e -]
Ignored Real_number Numeric String$ Terminator (for both
item terminator item and statement)

The result of entering the preceding data with the given ENTER statement is that
Real_number receives the value 123.4 and String$ receives the characters “BCD”. The
“A” was lost when it terminated the numeric item; the string-item terminator(s) are also
lost. The string-item terminator(s) also terminate the ENTER statement, since String$
is the last item in the destination list.

Entering Data 5-5

3. If more than 16 digits are received. only the first 16 are used as significant digits.
However, all additional digits are treated as trailing zeros so that the exponent is
built correctly.

Example

ENTER @Device;Real_number_1

Consumed
——
t]2fa3fafsfe|7[8]9]of[1]2[3]4][5]6]LF]
- ~ e’
Real_number_1 Terminator (for both

item and statement)

The result of entering the preceding data with the given ENTER statement is that
Real_number_1 receives the value 1.234567890123456 E+15.

Example

ENTER @Device;Real_number_2

Used only to build
the exponent. Consumed

A Ay

[1]2]sfafs]ef7][s]ofo]r[2]a[4]s[6]7][8]LF]

- - e
Real_number_2 Terminator (for both

item and statement)

The result of entering the preceding data with the given ENTER statement is that
Real_number_2 receives the value 1.234567890123456 F+17.

5-6 Entering Data

4. Any exponent sent by the source must be preceded by at least one mantissa digit

and an “E” (or “e”) character. If no exponent digits follow the “E” (or “e”), no
exponent is recognized, but the number is built accordingly.
Example

ENTER @Device;Real_number

Consumed
——
(e[[e].[sfs] [e[-[t1]2fcfofull]tF]
—— ~ A v N
Ignored Real_number Numeric Ignored Terminator

item terminator

The result of entering the preceding data with the given ENTER statement is that
Real_number receives a value of 8.85 E—12. The character “C” terminates entry into
Real_number, and the characters “oul” are entered (but ignored) in search of the required
line-feed statement terminator. If the character “C” is to be entered but not ignored,
you must use an image. Using images with the ENTER statement is described later in
this chapter.

5. If a number evaluates to a value outside the range corresponding to the type of the
numeric variable, an error is reported. If no type has been declared explicitly for
the numeric variable, it is assumed to be REAL.

Example

ENTER @Device;Real_number

Consumed
——
(123 . [a]eE[+[3]o]7][LF] Evaluates to 1.234 E +309.
[~——) N ot
The resultant value cannot Terminator (for both items
be stored in Real_number. and statement)

The data is entered but evaluates to a number outside the range of REAL numbers.
Consequently, error 19 is reported, and the variable Real_number retains its former
value.

6. If the item is the last one in the list, both the item and the statement need to be
properly terminated. If the numeric item is terminated by a non-numeric character,
the statement will not be terminated until it either receives a line-feed character or
an END indication (such as EOI signal with a character). The topic of terminating
free-field ENTER statements is described later in this chapter in the section of the
same name.

Entering Data 5-7

Entering String Data

Strings are groups of ASCII characters of varying lengths. Unlike numbers. almost any
character can appear in any position within a string: there is not really any defined
structure of string data. The routine used to enter string data is therefore much simpler
than the number builder. It only needs to keep track of the dimensioned length of the
string variable and look for string-item terminators (such as CR/LF. LF. or EOI sent
with a character).

String-item terminator characters are either a line-feed (LF) or a carriage-return followed
by a line-feed (CR/LF). As with numeric-itew terminators characters. these characters
are not entered into the string variable (during free-field enters): they are “lost”™ when
they terminate the entry. The EOI signal also terminates entry into a string variable,
but the variable must be the last item in the destination list (during free-field enters).

All characters received from the source are entered directly into the appropriate string
variable until any of the following conditions occurs:
e an item terminator character is received.

e the number of characters entered equals the dimensioned length of the string vari-
able.

o the EOI signal is received.
The following statements and resultant variable contents illustrate the first two condi-

tions; the next section describes termination by EOL Assume that the string variables

Five_char$ and Ten_char$ are dimensioned to lengths of 5 and 10 characters. respectively.

5-8 FEntering Data

Example

ENTER @Device;Five_char$

Consumed
—~—
[A]lB]c[p|E]F]a]|H]crR]LF]
— -~ N g et
Five_char$ Ignored Terminator (for both

item and statement)

The variable Five_char$ only receives the characters “ABCDE”, but the characters
“FGH” are entered (and ignored) in search of the terminating carriage-return/line-feed
(or line-feed).

Example

ENTER @Device;Ten_char$

Consumed Consumed
—— r——
[alelciofe[F[eftr] or [A]B[c[D[E]F]G [cR[LF]
N — v yw_} (- -~ N V—J
Ten_char$ Terminator (for Ten_char$ Terminator (for both
both item and statement) item and statement)

The result of entering the preceding data with the given ENTER statement is that
Ten_char$ receives the characters “ABCDEFG” and the terminating LF (or CR/LF) is
lost.

Entering Data 5-9

Terminating Free-Field ENTER Statements

Terminating conditions for free-field ENTER statements are as follows.

1. If the last item is terminated by a line-feed or by a character accompanied by EOL.
the entire statement is properly terminated.

2. If an END indication is received while entering data into the last item, the statement
is properly terminated. Examples of END indications are encountering the last
character of a string variable while entering data from the variable, receiving EOI
with a character. and receiving a control block while entering data through the
Data Communications interface

3. If one of the preceding statement-termination conditions has not occurred but entry
into the last item has been terminated.up to 256 additional characters are entered
in scarch of a termination condition. If one is not found. an error occurs.

One case in which this termination condition may not be obvious can occur while entering
string data. If the last variable in the destination list is a string and the dimensioned
length of the string has been reached before a terminator is received, additional characters
are entered (but ignored) until the terminator is found. The reason for this action is that
the next characters received are still part of this data item, as far as the data sender
is concerned. These characters are accepted from the sender so that the next enter
operation will not receive these “leftover™ characters.

Another case involving numeric data can also occur (see the example given with “rule
4" describing the number builder). If a trailing non-numeric character terminates the
last item (which is a numeric variable). additional characters will be entered in search of
either a line-feed or a character accompanied by EOI. Unless this terminating condition
is found before 256 characters have been entered. an error is reported.

5-10 Entering Data

EOI Termination

A termination condition for the HP-IB Interface is the EOI (End-or-Identify) signal.
When this message is sent, it immediately terminates the entire ENTER statement,
regardless of whether or not all variables have been satisfied. However, if all variable
items in the destination list have not been satisfied, an error is reported.

Example

ENTER @Device;String$

[A]B]c[pJeE]F] or [A]B]c]D[E]FJLF] or [A][B]C[D]E]F]CR]LF]

—— [S— !
Sent with Sent with Sent with
EOQI EOI EOI

The result of entering the preceding data with the given ENTER statement is that String$
receives the characters “ABCDEF”. The EOI signal being received with either the last
character or with the terminator character properly terminates the ENTER statement.
If the character accompanied by EOI is a string character (not a terminator), it is entered
into the variable as usual.

Example

ENTER @Device;Number

Used to build Number Consumed Consumed
—— —~~— ——
[1[2]3[a]s] or [1]2]3[afs[a] or [t[2][3][a]s]LF]
M ! e et \ ~ e \ >) Nt
Number Sent with Number Sent with Number Sent with
EOI EOI EOI

The result of entering any of the above data streams with the given ENTER statement
is that Number receives the value 12345. If the EOI signal accompanies a numeric
character, it is entered and used to build the number; if the EOI is received with a
numeric terminator, the terminator is lost as usual.

Entering Data 5-11

Example

ENTER @Device;Number,String$

An error is reported
L1 I 2 l 3] 4] 5 [(Error 153 Insufficient data for ENTER).
| —
Number Sent with
EQI

The result of entering the preceding data with the given statement is that an error is
reported when the character =57 accompanied by EOI is received. However. Number
receives the value 12345, but String} retains its previous value. An error is reported
because all variables in the destination list have not been satisfied when the EOI is
received. Thus. the EOI signal is an immediate statement terminator during free-field
enters. The EOI signal has a different definition during enters that use images. as
described later in this chapter.

The EOI signal is implemented on the HP-IB Interface. described in the “HP-IB Inter-
face” chapter of this manual. Since it is often convenient to to use the keyboard and CRT
for external devices. these internal devices have been designed to simulate this signal.
Further descriptions of this feature's implementation in the CRT display and keyboard
are contained in the “Display Interfaces” and “Keyboard Interfaces” chapters of this
manual. respectively.

5-12 Entering Data

Enters that Use Images

The free-field form of the ENTER statement is very convenient to use; the computer auto-
matically takes care of placing each character into the proper destination item. However,
there are times when you need to design your own images that match the format of
the data output by sources. Several instances for which you may need to use this type
of enter operations are: the incoming data does not contain any terminators; the data
stream is not followed by an end-of-line sequence; or two consecutive bytes of data are
to be entered and interpreted as a two’s-complement integer.

The ENTER USING Statement

The means by which you can specify how the computer will interpret the incoming data
is to reference an image in the ENTER statement. The four general ways to reference
the image in ENTER statements are as follows.

1. 100 ENTER @Device_x USING "6A,DDD.DD";String_var$,Num_var

2. 100 Image_str$="6A,DDD.DD"
110 ENTER @Device_x USING Image_str$;String_var$,Num_var

3. 100 ENTER @Device USING Image_stmt;String_var$,Num_var
110 Image_stmt: IMAGE 6A,DDD.DD

4. 100 ENTER @Device USING 110;String_var$,Num_var
110 IMAGE 6A,DDD.DD

Entering Data 5-13

Images

Images are used to specify how data entered from the source is to be interpreted and
placed into variables: each image consists of one or more groups of individual image
specifiers that determine how the computer will interpret the incoming data bytes (or
words). Thus. image lists can be thought of as a description of either:

e the format of the expected data, or

e the procedure that the ENTER statement will use to enter and interpret the in-
coming data bytes.

The examples given here treat the image list as a procedure.

All of the image specifiers used in image lists are valid for both enters and outputs.
However, most of the specifiers have a slightly different meaning for cach operation. If
you plan to use the same image for output and enter, you must fully understand how
both statements will use the image.

Example of an Enter Using an Image

This example is used to show you exactly how the computer uses the image to enter
incoming data into variables. Look through the example to get a general feel for how these
enter operations work. Afterwards. you should read the descriptions of the pertinent
specifier(s).

Assume that the following stream of data bytes are to be entered into the computer.

[rlelm[p[. /=] [T+fofe[.[a] [rlaln[rfefalnfelit]
~ ~ - ~ et ~-
Ignored Degrees Units$ Ignored _T
Assume EOI is sent

with this character

5-14 Entering Data

Given the preceding conditions, let's look at how the computer executes the following
ENTER statement that uses the specified IMAGE statement.

300 ENTER @Device USING Image_1;Degrees,Units$
310 Image_1: IMAGE 8X,SDDD.D,A

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

The computer evaluates the first image of the IMAGE statement. It is a
special image in that it does not correspond to a variable in the destination
list. It specifies that eight characters of the incoming data stream are to be
ignored. Eight characters, “Temp.= 7, are entered and are ignored (i.e., are
not entered into any variable).

The computer evaluates the next image. It specifies that the next six char-
acters are to be used to build a number. Even though the order of the sign,
digit, and radix are explicitly stated in the image, the actual order of these
characters in the incoming data stream does not have to match this specifier
exactly. Only the number of numeric specifiers in the image, here six, is all
that is used to specify the data format. When all six characters have been
entered, the number builder attempts to form a number.

After the number is built, it is placed into the variable “Degrees”; the rep-
resentation of the resultant number depends on the numeric variable’s type

(INTEGER, REAL, or COMPLEX?!).

The next image in the IMAGE statement is evaluated. It requires that one
character be entered for the purpose of filling the variable “Units$”. One byte
is then entered into Units$.

All images have been satisfied; however, the computer has not yet detected a
statement-terminating condition. A line-feed or a character accompanied by
EOI must be received to terminate the ENTER statement. Characters are
then entered, but ignored, in search of one of these conditions. The statement
is terminated when the EOI is sent with the “t”. For further explanation, see
“Terminating Enters that Use Images”, near the end of this chapter.

The above example should help you to understand how images are used to determine the
interpretation of incoming data. The next section will help you to use each specifier to
create your desired images.

Entering Data 5-15

Image Definitions During Enter

This section describes the individual image specifiers in detail. The specifiers have been
categorized into data and function type.

Numeric Images

Sign. digit. radix. and exponent specifiers are all used identically in ENTER images. The
number builder can also be used to enter numeric data.

Table 5-1. Numeric Specifiers

Image Specifier Meaning

D Specifies that one byte is to be entered and interpreted as a numeric char-
acter. If the characters is non-numeric (including leading spaces and item
terminators), it will still “consume” one digit of the image item.

Z,* Same action as D. Keep in mind that A and * can only appear to the left
of the radix indicator (decimal point or R) in a numeric image item.

S. M Same action as D in that one byte is to be entered and interpreted as a
numeric character. At least one digit specifier must follow either of these
specifiers in an image item.

Same action as D in that one byte is to be entered and interpreted as a
numeric character. At least one digit specifier must accompany this specifier
in an image item.

R Same action as D in that one byte is to be entered and interpreted as a
numeric character: however. when R is used in a numeric image. it directs
the number builder to use the comma as a radix indicator and the period
as a terminator to the numeric item. At least one digit specifier must
accompany this specifier in the image item.

5-16 Entering Data

Table 5-1. Numeric Specifiers (Continued)

Image Specifier

Meaning

E Equivalent to 4D, if preceded by at least one digit specifier (Z, *, or D) in
the image item.
The following specifiers must also be preceded by at least one digit specifier.
ESZ Equivalent to 3D.
ESZZ Equivalent to 4D.
ESZZ7 Equivalent to 5D.
K, -K Specifies that a variable number of characters are to be entered and inter-
preted according to the rules of the number builder (same rules as used in
“free-field” ENTER operations).
H, -H Like K, except that a comma is used as the radix indicator, and a period

is used as the terminator for the numeric item.

Examples of Numeric Images

ENTER @Device
ENTER @Device
ENTER @Device
ENTER @Device
ENTER @Device

USING "SDD.D";Number

USING "3D.D";Number

USING "5D";Number These 5 are equivalent.
USING "DESZZ" ;Number

USING "*x .DD";Number

ENTER Device USING "K";Number Use the rules of the number builder.

ENTER @Device

ENTER QDevice

USING "DDRDD" ;Number Enter five characters,
using comma as radiz.

USING "H";Number Use the rules of the number
builder, but use the comma as radiz
and period as terminator.

Entering Data 5-17

String Images

The following specifiers are used to determine the number of and the interpretation of
data bytes entered into string variables.

Table 5-2. String Specifiers

Image Specifier Meaning

A Specifies that one byte is to be entered and interpreted as a string character.
Any terminators are entered into the string when this specifier is used.

K, H Specifies that “free-field” ENTER conventions are to be used to enter data
into a string variable; characters are entered directly into the variable until a
terminating condition is sensed (such as CR/LF, LF, or an END indication).

~K, —H Like K, except that line-feeds (LF's) do not terminate entry into the string:
instead, they are treated as string characters and placed in the variable.
Receiving an END indication terminates the image item (for instance, re-
ceiving EOI with a character on an HP-IB interface, encountering an end-
of-data, or reaching the variable’s dimensioned length).

L, @ These specifiers are ignored for ENTER operations; however, they are al-
lowed for compatibility with OUTPUT statements (that is, so that one
image may be used for both ENTER and OUTPUT statements). Note
that it may be necessary to skip characters (with specifiers such as X or
/) when ENTERing data which has been sent by including these specifiers
in an OUTPUT statement. Even greater care must be given to cases in
which pad bytes may be sent: see “The BYTE and WORD Attributes” in
the “I/O Path Attributes” chapter for further explanation.

Examples of String Images
ENTER QDevice USING "10A";Ten_chars$ Enter 10 characters.
ENTER QDevice USING "K":Any_string$ Enter using the free-field rules.
ENTER Q@Device USING "HA,K";String$,Number$ Lnter two strings.
ENTER @Device USING "5A,K";String$,Number FEnter a string and a number.

ENTER @Device USING "-K";All_chars$ Enter characters until string
ts “full” or END is received.

5-18 Entering Data

Ignoring Characters

These specifiers are used when one or more characters are to be ignored (i.e., entered
but not placed into a string variable).

Table 5-3. Specifiers Used to Ignore Characters

Image Specifier

Meaning

X Specifies that a character is to be entered but ignored (not placed into a
variable).
“literal” Specifies that the number of characters in the literal are to be entered but
ignored (not placed into a variable).
/ Specifies that all characters are to be entered but ignored (not placed into a

variable) until a line-feed is received. EOI is also ignored until the line-feed

is received.

Examples of Ignoring Characters

ENTER @Device USING "5X,5A";Five_chars$

Ignore first five and use

second five characters.

ENTER @Device USING "5A,4X,10A";S_1$,S_2$ Ignore 6th through 9th characters.

ENTER @Device USING "/,K";String2$

ENTER @Device USING """zz"" AA";S_2$

Ignore 1st item of unknown length.

Ignore two characters.

Entering Data 5-19

Binary Images
These specifiers are used to enter one byte (or word) that will be interpreted as a number.

Table 5-4. Binary Specifiers

Image Specifier

Meaning

B

Specifies that one byte is to be entered and interpreted as an integer in the
range 0 through 255.

w

Specifies that one 16-bit word is to be entered and interpreted as a 16-bit,
two's complement INTEGER. If either an [/O path name with the BYTE
attribute (see the “I/O Path Attributes” chapter) or a device selector is
used to access an 8-bit interface, two bytes will be entered; the first byte
entered is most significant. If an I/O path name with the BYTE attribute
is used to access a 16-bit interface. the BYTE attribute is overwritten and
one word is entered in a single operation. If an 1/O path name with the
WORD attribute is used to access a 16-bit interface, one byte is entered and
ignored when necessary to achieve alignment on a word boundary. If the
source is a file, string variable, or BUFFER, the WORD attribute is ignored
and all data are entered as bytes: however, one byte may still be entered
and ignored when necessary to achieve alignment on a word boundary.

Like W, except that pad bytes are never entered to achieve word alignment.
If an I/O path name with the BYTE attribute is used to access a 16-bit
interface, the BYTE attribute is not overwritten (as with the W specifier).

Examples of Binary Images

ENTER @Device USING "B,B,B";N1,N2,N3 FEnter three bytes, then look

for LF or END indication.

ENTER @Device USING "W,K";N,N$ Enter the first two bytes as an

INTEGER, then the rest as string data.

Assume that @Device possesses the WORD attribute.

ENTER @Device USING "B,W";Num_1,Num_2 FEnter one byte. ignore one (pad)

byte, enter one word, then search
for terminator.

5-20 Entering Data

@Device may possess either BYTE or WORD attribute.

ENTER @Device USING "B,Y";Num_1,Num_2 FEnter one byte, enter one word,
then search for terminator.

Terminating Enters that Use Images

This section describes the default statement-termination conditions for enters that use
images (for devices). The effects of numeric-item and string-item terminators and the
end-or-identify (EOI) signal during these operations are discussed in this section. After
reading this section, you will be able to better understand how enters that use images
work and how the default statement-termination conditions are modified by the #, %, +,
and - image specifiers.

Default Termination Conditions

The default statement-termination conditions for enters that use images are very similar
to those required to terminate free-field enters. Either of the following conditions will
properly terminate an ENTER statement that uses an image.

e An END indication (such as the EOI signal or end-of-data) is received with the byte
that satisfies the last image item or within 256 bytes after the byte that satisfied
the last image item.

o A line-feed is received as the byte that satisfies the last image item (exceptions are
the “B” and “W” specifiers) or within 256 bytes after the byte that satisfied the
last image item.

Entering Data 5-21

EOI Re-Definition

It is important to realize that when an enter uses an image (when the secondary keyword
“USING” is specified). the definition of the EOI signal is automatically modified. If the
EOI signal terminates the last image ttem. the entire statement is properly terminated. as
with free-field enters. In addition. multiple EOI signals are now allowed and act as item
terminators; however, the EOI must be received with the byte that satisfies each image
item. If the EQI is received before any image is satisfied. it is 1gnored. Thus, all images
must be satisfied, and EOI will not cause early termination of the ENTER-USING-image
statement.

The following table summarizes the definitions of EOI during several types of ENTER
statement. The statement-terminator modifiers are more fully described in the next
section.

Table 5-5. Effects of EOI During ENTER Statements

Free-Field ENTER ENTER ENTER
ENTER USING USING USING
Statements | without # or % with # with %
Definition of EOI |Immediate Item terminator |Item terminator |Immediate
statement or statement or statement statement
terminator terminator terminator terminator
Statement Yes Yes No No
Terminator
Required?
Early No No No Yes
Termination
Allowed?

5-22 Entering Data

Statement-Termination Modifiers

These specifiers modify the conditions that terminate enters that use images. The first
one of these specifiers encountered in the image list modifies the termination conditions
for the ENTER statement. If another of these specifiers is encountered in the image list,
it again modifies the terminating conditions for the statement.

Table 5-6. Statement-Termination Modifiers

Image Specifier Meaning

Specifies that a statement-termination condition is not required; the
ENTER statement is automatically terminated as soon as the last image
item is satisfied.

% Also specifies that a statement-termination condition is not required. In
addition, EOI is re-defined to be an immediate statement terminator,
allowing early termination of the ENTER before all image items have
been satisfied. However, the statement can only be terminated on a “legal
item boundary”. The legal boundaries for different specifiers are as follows.

Specifier Legal Boundary
K,-K With any character, since this specifies
a variable-width field of characters. -
S,M,D.E Only with the last character that satisfies
Z,., AX the image (e.g., with the 5th character
“literal” of a “5A” image). If EOI is received
B,W with any other character, it is ignored.
/ Only with the last line-feed character

that satisfies the image (e.g., with the
3rd line-feed of a “3/” image);
otherwise it is ignored.

+ Specifies that an END indication is required to terminate the ENTER state-
ment. Line-feeds are ignored as statement terminators; however, they will
still terminate items (unless a —K or —H image is used for strings).

— Specifies that a line-feed is required to terminate the statement. EOI is
ignored, and other END indications (such as EOF or end-of-data) cause an
error if encountered before the line-feed.

Entering Data 5-23

Examples of Modifying Termination Conditions

ENTER @Device USING
ENTER @Device USING

ENTER @Device USING

ENTER @Device USING

ENTER @Device USING

5-24 Entering Data

"#,B";Byte
"#,W";Integer

" K", Array (%)

"+, K";String$

"-,K",String$

Enter a single byte.
Enter a single word.

Enter an array, allowing
early termination by FOL

Enter characters into String$
until line-feed recerved,

then continue entering characters
until END recewed.

Enter characters until
line-feed recetved,
ignore EOI, if recetved.

Additional Image Features

Several additional image features are available with this BASIC language. Some of these
features have already been shown in examples, and all of them resemble the additional
features of images used with OUTPUT statements.

Repeat Factors

All of the following specifiers can be preceded by an integer that specifies how many
times the specifier is to be used.

Repeatable Specifiers
D, Z, A, X, /,0 L

Image Re-Use
If there are fewer images than items in the destination list, the list will be re-used,

beginning with the first item in the image list. If there are more images than there are
items, the additional specifiers will be ignored.
Examples

ENTER @Device USING "#,B";B1,B2,B3 The “B” is re-used.

ENTER QDevice USING "2A,2A,W";A$,B$ The “W?” 1s not used.

Nested Images
Parentheses can be used to nest images within the image list. The hierarchy is the same

as with mathematical operations; evaluation is from inner to outer sets of parentheses.
The maximum number of levels of nesting is eight.

Example

ENTER @Source USING "2(B,5A,/),/";N1,N1$,N2,N2$

Entering Data 5-25

5-26 Entering Data

Table of Contents

Chapter 6: Registers

Interface Registerst e e 6-2
The STATUS Statement, 6-2
The CONTROL Statement i 6-3

I/O Path Registersvvnnut i 6-5

Summary of I/O Path Registers e 6-9
For AI/OPath Names ... 6-9
I/O Path Names Assigned to a Device 6-9
I/O Path Names Assigned to an ASCIL File 6-9
I/O Path Names Assigned to a BDAT File 6-10
I/O Path Names Assigned to an HP-UX File 6-10
I/O Path Names Assigned toa Buffer 6-11

Direct Interface Access P PP 6-12

Registers

A register is a memory location. Some registers are memory locations on interface cards,
while others are memory locations in the computer which are maintained by BASIC to
keep track of various conditions related to interfaces. Some registers store parameters
that describe the operation of an interface, some store information describing the 1/0O
path to a device, and some are in locations at which interface cards reside (remember

that the computer implements “memory-mapped 1/0”).

Registers are accessed by the computer when executing I/O statements that specify an
interface select code, a device selector, or an I/O path name. Thus, each interface and
I/0O path has its own set of registers. The general programming techniques used to
access these registers and the specific definitions of all 1/O path registers are given in
this chapter; however, the specific definitions of the interface registers are given in the
chapter that describes each interface.

There are three levels of register access.

e Firmware register(s) are automatically accessed by BASIC when an I/0 statement
is executed.

OUTPUT QFile;Data$ Changes file pointer registers.
ENTER QBuffer;Numeric_item Changes buffer pointer registers.

e STATUS and CONTROL (firmware) registers are explicitly accessed by BASIC
statements:

100 STATUS CRT,13;Crt_height
110 CONTROL CRT,13;Crt_height+3

e Interface (hardware) registers are directly read or written.

100 READID 15,0;Card_id
110 WRITEIO 15,3;Intr_mask ! Write to Breadboard card reg. 3

Registers 6-1

Interface Registers

A simple example of an interface register being accessed explicitly by the program and
then automatically by I/O statements is shown in the following program. Register 0
of interface select code 1 is the “X” screen coordinate at which subsequent characters
output to the the CRT will begin being displayed: register 1 is the corresponding “Y”
coordinate.

100 STATUS CRT;Reg_O,Reg_1 ! Pgrm accessing X & Y coords.
110 OUTPUT CRT;"Print coordinates before 1st OUTPUT:"
120 OUTPUT CRT;"X=";Reg_0," Y=";Reg_1

130 OUTPUT CRT

140 !

150 OUTPUT CRT,;"1234567"; ! Note ";".

160 STATUS CRT;Reg_O,Reg_1

170 OUTPUT CRT

180 OUTPUT CRT;"Print coordinates after OUTPUTs:"

190 OUTPUT CRT;"X=";Reg_0," Y=";Reg_1

200 OUTPUT CRT;" "

210 !

220 END

The STATUS Statement

The contents of a STATUS register can be read with the STATUS statement. Typical
examples are shown below. A complete listing of each interface’s registers is given in the
chapter that describes programming each interface; the definitions of I/O path registers
are described later in this chapter.

Example

STATUS register 7 of the interface at select code 2 is read with the following statement.
The first parameter identifies the interface and the optional second parameter identifies
which register is to be read. The specified numeric variable receives the register’s current
contents.

Interface select code

STATUS 2 , 7 ; Reg.7

N\

Register number Numeric variable(s) to
(optional) receive register(s) contents

6-2 Registers

Example

I/0 path STATUS register 0 is read with the following statement. (Note that this is not
the same register as keyboard register 0.) Since the second parameter is optional and
has been omitted in this instance, register 0 is accessed.

100 STATUS @Keyboard;Re
Example

STATUS registers 4 and 5 of the interface at select code 7 are read with the following
statement.

100 STATUS 7,4;Reg_4,Reg_5

Since two numeric variables are to receive register contents, the next register (5) is
accessed. If more than two variables are specified, successive registers are read.

The CONTROL Statement

When some I/O statements are executed, the contents of some CONTROL registers
are automatically changed. For instance, in the above example registers 0 and 1 were
changed whenever the OUTPUT statements to the CRT were executed. The program
can also change some register’s contents with the CONTROL statement, as shown in the
following examples. Again, all of the CONTROL register definitions for each interface
are given in the chapter that describes programming each interface.

Registers 6-3

Example

Register 0 of interface select code 1 is modified with the following statement. This register
determines the “X” screen coordinate at which subsequent characters output to the CRT
display will appear.

Interface select code

CONTROL 1 ; X_pos

Numeric expression(s) to be sent
to the appropriate register(s)

Example
Register 1 of interface select code 1 is modified with the following statement. This
register’s contents determine the “Y” screen coordinate at which subsequent characters

output to the CRT display will appear: changing the contents of this register also allows
scrolling the display.

100 CONTROL 1,1;Line_pos

Register number

6-4 Registers

/O Path Registers

At this point you know how to access the registers associated with interfaces and I/O
path names, but you may not know much about the differences or about the interaction
between these two types of registers. Let’s first review the definition of an I/O path
name.

An I/O path name is a data type that contains a description of an I/O path between the
computer and one of its resources sufficient to allow accessing the resource. You learned
in the “Directing Data Flow” chapter that the computer uses this information whenever
the I/O path name is used in an I/O statement. Much of this information stored in this
I/O-path-name table can be accessed with the STATUS and CONTROL statements.

When an I/0O path name is used to specify a resource in an I/O statement, BASIC
accesses the first table entry (the validity flag) to see if the name is currently assigned.

e If the I/O path name is assigned, the computer reads I/O path register 0 which
tells the computer the type of resource involved.

o If the resource is a device, BASIC must also access the registers of the interface
specified by the device selector.

o If the resource is a file, the table contains additional entries that govern how
the I/O process is to be executed.

Registers 6-5

As you can see. the set of I/O path registers is not the same set of registers associated
with an interface. The following program is an example of using 1/0 path register 0 to
determine the type of resource to which the I/O path name has been assigned.

700 Find_type: STATUS @Resource;Reg_0
]

710 !

720 IF Reg_0=0 THEN GOTO Not_assigned
730 !

740 IF Reg_0=1 THEN GOTO Device

750 !

760 IF Reg_0=2 THEN GOTO File

770 !

780 PRINT "Resource type unrecognized"

790 PRINT "Program STOPPED."

800 STOP

810 !

820 Not_assigned: PRINT "I/0 path name not assigned"
830 GOTO Common_exit

840 !

850 Device: STATUS QResource,1;Reg_1

860 PRINT "QResource assigned to device"
870 PRINT "at intf. select code ";Reg_1
880 GOTO Common_exit

890 !

900 !

910 File: STATUS @Resource,1;Reg_1,Reg_2,Reg_3
920 !

930 PRINT "File type ",Reg_1

940 PRINT "Device selector ",Reg_2

950 PRINT "Number of sectors ";Reg_3

960 !

970 !

980 Common_exit: ! Exit point of this routine.

Once the type of resource has been determined. it can be further accessed with the 1/0
path registers or the interface registers. depending on the resource type.

o If the 1/O path name has been assigned to a device, the interface registers should
be accessed for further information.

o If the name has been assigned to a mass storage file. the I/0 path registers should
be accessed.

6-6 Registers

I/O path names can be assigned to device selectors, files, and buffers. The following
program shows an example of determining the interface select code of the resource to
which the I/O path name has been assigned.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

! Example of determining select code
! to which an I/0 path name is assigned.
!

Show_sc: IMAGE "’QIo_path’ assigned to " ,K,"; Select code = ",D,L

ASSIGN @Io_path TO 701 ! Device selector.
Device_selector=FNSc(@Io_path)
OUTPUT CRT USING Show_sc;"device 701" ,Device_selector
!
ASSIGN @Io_path TO "Datal" ! ASCII file.
Device_selector=FNSc(@Io_path)
OUTPUT CRT USING Show_sc;"ASCII file" , Device_selector
!
ASSIGN @Io_path TO "Chapil" ! BDAT file.
Device_selector=FNSc(@Io_path)
OUTPUT CRT USING Show_sc;"BDAT file",Device_selector
!
ASSIGN @Io_path TO BUFFER [1024] ! Buffer.
Device_selector=FNSc(@Io_path)
OUTPUT CRT USING Show_sc;"BUFFER",Device_selector
!
END
!
DEF FNSc(@Io_path) ! s#skkxkskkokkksokskskokokiokskokohsokdokdokkkkokkohokokok
! Read I/0 path register 0.
STATUS @Io_path;Resource_code
SELECT Resource_code
CASE 0 ! Not assigned.
RETURN -1 ! Return a select code out of range.
!
CASE 1 ! Assigned to a device selector.
STATUS QIo_path,1;Select_code
RETURN Select_code
!
CASE 2 ! Assigned to a file specifier.
STATUS QIo_path,2;Device_selector
RETURN Device_selector MOD 100 ! Remove addressing.
!
CASE 3 ! Assigned to a buffer.
RETURN O ! No error, but cannot determine source
! or destination of transfer to/from buffer.
END SELECT
!
FNEND | skskok ok sk ok sk sk sk sk sk sk ok ok sk sk ok ok 3k 3k s sk ok ok o ok ok ok ok oK ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok

Registers

The following printout shows a typical example of the program’s output.

’@Io_path’ assigned to device 701; Select code = 7
’@Io_path’ assigned to ASCII file; Select code = 7
’@Io_path’ assigned to BDAT file; Select code = 7

’QIo_path’ assigned to BUFFER; Select code = 0

The user-defined function called FNSc interrogates I/O path registers to find the select
code. If the T/O path name is currently not assigned. the function returns an arbitrary
value of —1 (an invalid value of select code). Since STATUS Register 2 of I1/O path
names assigned to files contains the entire device selector. which may include addressing
information, the function removes any addressing information (Device_selector MOD
100).

Notice that buffers have no select code associated with them, since they are a data type
resident in computer memory; thus the function returns a value of 0.

The SC function is a feature of the “Main” BASIC system. The following statements
show examples of using this function.

Select_code=SC(@Io_path)

IF SC(QFile)=4 THEN Device_type$="INTERNAL"

The only difference in this language-resident function and the preceding example is that
the SC function reports an error if the 1/0 path specified as its argument is not assigned.
rather than returning a select code out of range.

6-8 Registers

Summary of 1/O Path Registers

The following list describes the information contained in I/O path STATUS and CON-
TROL registers. Note that only STATUS register 0 is identical for all types of I/O paths;
the rest of the I/O path registers’ contents depend on the type of resource to which the
name is assigned.

For All I/O Path Names

STATUS Register 0 0 = Invalid I/O path name
1 = I/O path name assigned to a device
2 =1I/0 path name assigned to a data file
3 = I/O path name assigned to a buffer

I/O Path Names Assigned to a Device
STATUS Register 1 Interface select code
STATUS Register 2 Number of devices
STATUS Register 3 Address of 1st device

If assigned to more than one device, the addresses of the other devices are available
starting in STATUS Register 4.

I/O Path Names Assigned to an ASCII File
STATUS Register 1 File type =3

STATUS Register 2 Device selector of mass storage device
STATUS Register 3 Number of records

STATUS Register 4 Bytes per record = 256

STATUS Register 5 Current record

STATUS Register 6 Current byte within record

Registers 6-9

I/0 Path Names Assigned to a BDAT File

STATUS Register 1
STATUS Register 2
STATUS Register 3
STATUS Register 4
STATUS Register 5
CONTROL Register 5
STATUS Register 6
CONTROL Register 6
STATUS Register 7
CONTROL Register 7
STATUS Register 8
CONTROL Register 8

File type =2

Device selector of mass storage device
Number of defined records
Defined record length
Current record

Set record

Current byte within record
Set byte within record

EOF record

Set EOF record

Byte within EOF record
Set byte within EOF record

1/O Path Names Assigned to a Buffer

STATUS Register 0

0 = Invalid I/O path name

1 = 1/0 path assigned to a device

2 = I/O path assigned to a data file
3 = 1/0 path assigned to a buffer

When the status of register 0 indicates a buffer (3). the status and control registers have

the following meanings.

STATUS Register 1
STATUS Register 2
STATUS Register 3
CONTROL Register 3
STATUS Register 4
CONTROL Register 4
STATUS Register 5
CONTROL Register 5

6-10 Registers

Buffer type (1=named, 2=unnamed)
Buffer size in bytes

Current fill pointer

Set fill pointer

Current number of bytes in buffer
Set number of bytes

Current empty pointer

Set empty pointer

STATUS Register 6
STATUS Register 7
STATUS Register 8
CONTROL Register 8

CONTROL Register 9
STATUS Register 10

Interface select code of inbound TRANSFER

Interface select code of outbound TRANSFER
If non-zero, inbound TRANSFER is continuous
Cancel continuous mode inbound TRANSFER if zero

If non-zero, outbound TRANSFER is continuous

Cancel continuous mode outbound TRANSFER if zero
Termination status for inbound TRANSFER

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 TRANS- | TRANS- | TRANS- |Device Byte Record Match
FER FER FER Termi- Count Count Character
Active Aborted | Error nation
Value=0 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 |Value=2 |[Value=1
STATUS Register 11 Termination status for outbound TRANSFER
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 TRANS- | TRANS- | TRANS- |Device Byte Record 0
FER FER FER Termi- Count Count
Active Aborted |Error nation
Value=0 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 |Value=2 | Value=0

STATUS Register 12

STATUS Register 13

Total number of bytes transferred by last inbound TRANS-

FER

Total number of bytes transferred by last outbound TRANS-

FER

Registers 6-11

Direct Interface Access

The third level of register access provides direct access to interface hardware: this level
of access is identical to that possessed by the operating-system firmware. Consequently,
these interface-access techniques should only be used if you have a complete understand-
ing of both the specified register’s definition and of the consequences of reading from
or writing to these registers. The READIO and WRITEIO interface register definitions
and access methods are listed in the chapter that describes each interface.

6-12 Registers

Table of Contents

Chapter 7: Interrupts and Timeouts

Overview of Event-Initiated Branching......... 7-1
Types of Eventso 7-1
A Simple Example e 7-2
Conditions Required for Initiating a Branch 7-5
Logging and Servicing Events........ o i, 7-6
Servicing Pending Events i 7-12
Interface INterruptsottt i i e 7-14
Enabling Interrupt Events 7-15
Service Requests ot 7-17
Interrupt Conditionsc.oiiiiii i 7-19
Interface Timeouts i 7-20
Setting Up Timeout Events i ... 7-20

Timeout Limitations

Interrupts and Timeouts

The computer can sense and respond to the occurrence of several types of interrupt
events. This chapter describes programming techniques for handling the interface events
called “interrupts” and “timeouts” which can initiate program branches. For more de-
tails on event-initiated branches, consult the “Program Structure and Flow” chapter of
BASIC Programming Techniques, and the BASIC Language Reference descriptions of the
keywords described in this chapter.

Overview of Event-Initiated Branching

Event-initiated branches are very powerful programming tools. With them, the computer
can execute special routines or subprograms whenever a particular event occurs; the
program doesn’t have to take time to periodically check for each event’s occurrence.

This section describes the general topic of event-initiated branching. Subsequent sections
take a closer look at interrupt events.

Types of Events

The statements that enable events to initiate branches are summarized as follows:

ON CDIAL—occurs when one of the nine “knobs” (rotary pulse generators) of an
HP 46085 Control Dial Box is turned. (See the “Communicating with the Operator”
chapter of BASIC Programming Techniques for details.

ON END-—-occurs when the computer encounters the end of a mass storage file while
accessing the file. (See the “Data Storage and Retrieval” chapter of BASIC Programming
Techniques for details.)

ON ERROR—occurs when a program-execution error is sensed. (See the “Handling
Errors” chapter of BASIC Programming Techniques for details.)

ON KEY—occurs when a currently defined softkey is pressed. (See the “Program Struc-

ture and Flow” chapter of BASIC Programming Techniques or the “Keyboard Interfaces”
chapter of this manual for details.)

Interrupts and Timeouts 7-1

ON KNOB occurs when the “knob” (rotary pulse generator) is turned. (See the “Pro-
gram Structure and Flow” chapter of BASIC Programming Techniques and the “Key-
board Interfaces” chapter of this manual for details.)

ON INTR- occurs when an interrupt is requested by a device or when an interrupt
condition occurs at the interface. (Discussed in this chapter.)

ON TIMEOUT— occurs when the computer has not detected a handshake response from
a device within a specified amount of time. (Discussed in this chapter.)

A Simple Example

The following program shows how events are serviced by the computer. Subprograms
called “Key_1" and “Key_2" are the service routines for the events of pressing softkeys
and ((x1] and on 98203 keyboards) being pressed; the software priorities
assigned to these events are 3 and 4, respectively. Run the program and alternately
press these softkeys; the branch to each key’s service routine is initiated by pressing the
key. The system priority is “graphed” on the CRT display.

150 ON KEY 1,3 CALL Key_O ! Set up events and
160 ON KEY 2,4 CALL Key_1 ! assign priorities.
170 !

180 OUTPUT CRT;" System","Priority"

190 V$=CHR$(8)&CHR$(10) ! BS & LF.

200 QUTPUT CRT;" 4"&VEE"3"EVEL"2"EVEL" 1"&VEL"O"
210 !

220 Main: CALL Bar_graph(7,"#") ! Sys. prior. is
230 ! always >= 0.
240 BEEP 100, .1 i Low tone.

250 FOR Jiffy=1 TO 5000

260 NEXT Jiffy

270 !

280 GOTO Main ! Main loop.

2900 !

300 END

310 !

320 SUB Key_1

330 CALL Bar_graph(4,"*") ! Plot priority.
340 BEEP 300, .1 ! Middle tone.

350 FOR Iota=1 TO 2000
360 NEXT Iota

370 CALL Bar_graph(4," ") ! Erase.

380 SUBEND

390 !

400 SUB Key_2

410 CALL Bar_graph(3,"*") ! Graph priority.
420 BEEP 400, .1 ! High tone.

430 FOR Twinkle=1 TG 2000

7-2 Interrupts and Timeouts

440
450
460
470
480
490
500
510

NEXT Twinkle
CALL Bar_graph(3," ") ! Erase.

SUBEND
]
SUB Bar_graph(Line,Char$)
CONTROL 1,1;Line ! Locate line.
OUTPUT 1;Char$! Bar-graph character.
SUBEND

If is pressed after is pressed, but while the Key_1 routine is being executed,
execution of Key_1 is temporarily interrupted and the Key_2 routine is executed. When
Key_2 is finished, execution of Key_1 is resumed at the point where it was temporarily
interrupted. This occurs because was assigned a higher software priority than [f1).

O = N W »

Priority

System "Key_1" execution pre—empted.
time)
Main program's "Key_ 1" "Key_2" "Key_1" Main program's

lines being being
executed. executed.

being execution execution
executed. completed. continued.

pressed pressed

Figure 7-1. Events with Higher Software Priority Take Precedence

Interrupts and Timeouts 7-3

On the other hand. if is pressed while is being serviced. the computer finishes
executing Key_2 before executing Key_1. The event of pressing was “logged” but not
processed until after the routine having higher software priority was completed. This
is a very important concept when dealing with event-initiated branching. The action
of the computer in logging events and determining assigned software priority is further
described in the next section.

System
Priority
4
5 L
2
1 "
ime
U - A A p, L
Y Y Y
Main program's "Key_2" "Key_ 1" Main program's
execution being executed. being executed. lines being
continued. T executed.

pressed pressed

Figure 7-2. An Event with Lower Software Priority Must Wait

7-4 TInterrupts and Timeouts

Conditions Required for Initiating a Branch

In order for any event to initiate a branch, the following prerequisite conditions must be
met. The preceding section showed a simple example of softkey events, which are similar
to interface interrupts. This section describes the additional requirements for servicing
interface interrupts. Later sections show more details of meeting these requirements.

1. The branch must be set up by an ON-event-branch statement, and the service
routine must exist.

100 ON INTR GOSUB Check_device
920 Check_device: ! Service routine for interface interrupts.

The term service routine is any legal branch location for the type of branch specified
(GOSUB, GOTO, CALL!, or RECOVER) and current context. The “Program
Structure and Flow” chapter of BASIC Programming Techniques and the BASIC
Language Reference fully describe the differences between these types of branches.

2. Before an event (which is set up) can initiate a branch, it must first be enabled to
do so. With non-interrupt events (such as ON KEY, and ON KNOB), the event is
automatically enabled when the ON-event statement is executed. However, with ON
INTR, you must explicitly enable the interrupt to initiate its corresponding branch.
For example, to enable the interface at select code 7 to initiate an interrupt branch:

110 ENABLE INTR 7;Intr_mask N
Further details of enabling these events are described in the “Interface Interrupts”
and “Interface Timeouts” sections of this chapter.

3. The event must occur and be logged by the BASIC system. (For instance, the HP-
IB “Service Request” signal is sent from the device to the computer and is logged
by the BASIC operating system.)

4. The software priority assigned to the event must be greater than the current SYS-
TEM PRIORITY?.

When all of these conditions have been met, the branch is taken.

Parameters cannot be passed to the service routine in an ON INTR CALL statement; any variables
to be used jointly by the service routine and other contexts must be defined in common. See the
“Subprograms” chapter of BASIC Programming Techniques or the BASIC Language Reference for further
details.

Software priority is specified in the event’s set-up statement; the range of priorities that can be specified
in this statement is 0 through 15. Interfaces also have a “hardware” priority which is different from the
software priority. The following sections describe details of hardware and software priority.

Interrupts and Timeouts 7-5

Logging and Servicing Events

The preceding events may occur at any time; however, the computer is only “concerned”
if these events have been “set up” to initiate a branch. An example of the computer
ignoring an event is seen when an undefined softkey is pressed. Since the event has
not been set up, the computer beeps. No service routine is executed, even though the
computer was “aware” of the event. Thus, only when an event is first set up and then
occurs does the computer “service” its occurrence.

Software Priority

The computer first “logs™ the occurrence of an event which is set up.! After recording
that the event occurred, the computer then checks the event’s software priority against
that of the routine currently being executed. Thé priority of the routine currently being
executed is known as system priority. If no service routine is being executed, the system
priority is 0: otherwise the system priority is equal to the assigned software priority of the
routine currently being executed. The following table lists the software priority structure
of the BASIC system: priority increases from 0 to 17.

Table 7-1. Software Priorities of Events

Software Priority
(SYSTEM PRIORITY) Explanation

0 System priority when no service routine is being exe-
cuted (known as the “quiescent level™).

1 thru 15 Software-assignable priorities of service routines.

16 Effective software priority of ON END and ON TIME-
OUT: the software priorities of these events cannot be
changed.

i7 Effective software priority of ON ERROR; the software

priorities of these events cannot be changed.

In the above example, system priority was 0 before either of the events occurred. When
was pressed. the system priority became 3. When was subsequently pressed. the
system first logged the event and then checked its priority against the current syvstem
priority. Since had been assigned a priority of 4. it pre-empted [f1]'s service routine
because of its higher software priority.

The process of logging event occurrences is described in the section called "Hardware Priority™.

7-6 Interrupts and Timeouts

It is important to note that BASIC only services event occurrences when a program line
is exited. This change of lines occurs either:

e at the end of execution of a line, or

e when the line is exited when a user-defined function is called.

When the program line is changed, the computer attempts to service all events that have
occurred since the last time a line was exited. The next sections further describe logging
and servicing events.

When execution of Key_2 started, the system priority was set to 4. If any event was
to interrupt the execution of this service routine, it must have had a software priority
of 5 (or greater). When execution of Key_2 completed, the Key_1 service routine had
the highest software priority, so its execution was resumed at the point at which it was
interrupted.

If was pressed again while its own service routine was being executed, execution of
the first service routine was finished before the service routine was executed again. Thus,
if an event occurs that has the same software priority as the system priority, its service
routine will not interrupt the current routine. The service routine will only be executed
if the event’s software priority becomes the highest priority of any event which has been
logged (i.e., after all other events of higher software priority have been serviced).

Interrupts and Timeouts 7-7

Changing System Priority
Events are assigned a software priority to allow the computer to respond to occurrences
of events with high software priority before those with lower priorities. Occasionally.
service routines may contain code segments that should not be interrupted once their
execution begins. In such cases, the entire service routine may not require a high software
priority, even though a portion of the routine needs a high priority to ensure that it will
not be interrupted by most other processes.

The SYSTEM PRIORITY statement can be used in these cases to set the system priority
to a level higher than the BASIC system would otherwise set it when the branch to the
service routine is taken. The current system priority can also be determined by calling
SYSTEM$(“SYSTEM PRIORITY”), which returns a string value of the current system
priority in the range 0 through 15. Examples are shown in the following program.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

GINIT ! Use default
GRAPHICS 0N

VIEWPORT 0,131,30,100
WINDOW 0,2000,0,7

!

ON KEY 1 LABEL "Prior
ON KEY 2 LABEL "Prior

ON KEY 3 LABEL "Prior
!

plotter is CRT.

.1",1 GOSUB Key_1
.2",2 GOSUB Key_2
.2",3 GOSUB Key_3

Sys_prior$="SYSTEM PRIORITY" ! Define string for SYSTEM$.
!

Main_program: !

DISP "Quiescent system priority level = 0."

(Sys_prior$))

DISP "Key 1; priority 1."

Sys_prior=VAL (SYSTEM$ (Sys_prior$))

7-8 Interrupts and Timeouts

X=X+1
Sys_prior=VAL(SYSTEM$
GOSUB Plot_priority
GOTO Main_program
!
Key_1: FOR Iota=1 TO 100
X=X+1
GOSUB Plot_priority
NEXT Iota
RETURN
!

360 Key_2: FOR Twinkle=1 TO 100

370 DISP "Key 2; priority 2."

380 X=X+1

390 Sys_prior=VAL(SYSTEM$ (Sys_prior$))
400 GOSUB Plot_priority

410 NEXT Twinkle

420 !

430 ! Critical routine raise system priority.
440 SYSTEM PRIORITY 3

450 FOR Split_second=1 TO 100

460 DISP "Subroutine set system priority to 3."
470 X=X+1

480 Sys_prior=VAL(SYSTEM$ (Sys_prior$))
490 GOSUB Plot_priority

500 NEXT Split_second

510 !

520 ! System priority lowered when finished.
530 SYSTEM PRIORITY O

540 RETURN

550 !

560 Key_3: FOR Jiffy=1 TO 100

570 DISP "Key 3; priority 3."

580 X=X+1

590 Sys_prior=VAL(SYSTEM$ (Sys_prior$))
600 GOSUB Plot_priority

610 NEXT Jiffy

620 RETURN

630 !

640 Plot_priority: !

650 IF X>2000 THEN ! Draw new plot.
660 GCLEAR

670 MOVE 0,0

680 X=0

690 END IF

700 PLOT X,Sys_prior

710 RETURN

720 !

730 !

740 END

The subroutine called Key_2 raised the system priority from its current level, 2, to level 3
during the time that the second FOR..NEXT loop was being executed. During this time,
pressing will not interrupt the routine, since a priority of 4 or greater is required to
interrupt the Key_2 routine.

Interrupts and Timeouts 7-9

By setting the system priority level in this manner. routines can selectively allow and
disallow other routines from being executed: routines with higher software priority are
allowed to pre-empt the routine. while those with the same or lower priority are not. If
no other events are to interrupt the process. system priority can be set to 15. However,
keep in mind that END. ERROR. and TIMEOUT events have effective software priorities
higher than 15 and can therefore interrupt the service routine (if a branch for one of these
events is currently set up).

When the “critical” code has been executed. the program returns the system priority to
the value set by the BASIC system when the branch was taken (which was 2 since the
Key_2 event was being serviced). Of course, if an event with higher software priority
occurs while the code segment is being executed, its service routine will pre-empt the
critical code segment.

This technique can also be used within SUB and FN subprograms. Keep in mind that
when program control is returned from a context, the system priority is returned to the
value it had when the context was called.

Hardware Priority
There is a second event priority. hardware priority. that also influences the order in which
the computer responds to events.

e Hardware priority determines the order in which events are logged by the system.
e Software priority determines the order in which events are serviced.
The hardware priority of an interface interrupt is determined by the priority-switch

setting on the interface card itself'. Hardware priority is independent of the software
priority assigned to the event by the ON INTR statement.

1 Setting hardware priority on an optional interface is described in the interface’s installation manual.

7-10 Interrupts and Timeouts

All events have a hardware priority, but not all have hardware priorities that can be
changed. The following table lists the hardware-priority structure of Series 200/300
computers. Only the optional interfaces’ hardware priorities can be changed.

Table 7-2. Hardware Priorities of Interfaces

Hardware Interface(s) and Event(s)
Priority at This Priority

0 (Quiescent level; no interface is currently interrupting)

1 Built-in Keyboard
(KEY and KNOB events)

2 Built-in Disc Drive of 226/236
(END event)

3 Built-in HP-IB or Serial interfaces
(INTR and TIMEOUT events)

3-6 Optional Interface Cards

(INTR and TIMEOUT events)

7 Non-Maskable Interrupts, such as the ((Break))
key

In order to fully understand the differences between hardware and software priority, it
is helpful to first understand how the computer logs and services events. When any
event occurs, the interface (at which the event has occurred) signals it to the computer.
The computer responds by temporarily suspending execution of its current task to poll
(interrogate) the currently enabled interfaces.

When the computer determines which interface is interrupting, it records that it has
occurred on this interface (i.e., logs the event) and disables further interrupts from this
interface. This event is now logged and pending service by the computer. The computer
can then return to its former task (unless other events have occurred which have not
been logged).

If other events have occurred but have not yet been logged, they will be logged in order of
descending hardware priority. This occurs because events with hardware priority lower
than that of the event currently being logged are ignored until all events with the current
hardware priority are logged.

Interrupts and Timeouts 7-11

Servicing Pending Events

If BASIC was interrupted while executing a program line. execution of the line is resumed
(after logging all events) and continues until either the line is completely executed or a
user-defined function causes the line to be exited. When the line is exited. BASIC begins
servicing all pending events.

When servicing pending events. the following rules are used to determine the order in
which they are serviced:

1. Highest software priority first, lowest software priority last.

2. If two or more events have the same software priority. the BASIC services the events
in order of descending interface select codes.

3. If events have both the same software priority and interface select code (such as
softkeys with the same software priority). the events are serviced in the order in
which they occurred.

The process of logging of events is still taking place while events are being serviced. This
concurrent action has two major effects.

1. Events of higher hardware priority will interrupt the current activity to be logged
by the computer.

2. Events which also have higher software priority will interrupt the computer’s present
activity to be serviced.

Thus, events of high hardware and software priority can potentially occur and be serviced
many times between program lines.

For example. suppose that the following events have been set up and enabled to initiate
branches. Assume that the events have the hardware priorities shown in the program’s
comments.

100 ON INTR 8,15 CALL Serv_8 ! Hardware priority 6.
110 ON INTR 7,14 CALL Serv_7 ! Hardware priority 3.
120 ON KEY 0,5 CALL Serv_kO ! Hardware priority 1.

7-12 Interrupts and Timeouts

The following diagram shows the INTR event on interface select code 8 occurring and
being serviced several times after one program line has been exited.

Line
exited.

Program line
being Serv_8 Serv_7 Serv_8 Serv_k1 Serv_8 Serv_k1 Next line
executed. executed. executed. executed. begun. executed. finished. executed.
oo

b

These three events
occur and are logged.

4

INTR on interface
select code 8
occurs and

is logged.

INTR on interface

select code 8
occurs ond
is logged.

Figure 7-3. INTR Event Servicing Example

Hardware priority’s main function is to keep events of lower hardware priority from being
logged so that more “urgent” events can be serviced quickly. Decreasing the system’s
response time to these urgent events may also increase overall system throughput.

Interrupts and Timeouts 7-13

Interface Interrupts

All interfaces have a hardware line dedicated to signal to the computer that an interrupt
event has occurred. The source of this signal can be either the device(s) connected to the
interface or the interface hardware itself. These possibilities are shown in the following
diagram.

Logical OR of the Two Signals

Interface / Computer
Interrupt — 14— » Both types of interrupts are
from Device — signalled to the computer in
—_——
the same manner.

Interrupt
from
Interface
Hardware

Figure 7-4. Interface Interrupts

There are two general types of interrupt events.

¢ One type of event occurs when a device determines that it requires the computer
to execute a special procedure.

e The second type occurs when the interface itself determines that a condition exists
or has occurred that requires the computer’s attention.

The first type of interrupt event is usually called a service request. Service requests
originate at the device. An example is a voltmeter signaling to the computer that it
has a reading:; another is a printer generating a service request when it is out of paper.
The service routine takes the appropriate action. and the program (usually) resumes
execution.

The second type of interrupt event is used to inform the computer of a specific condition
at the interface. This type of event originates at the interface. An cxample of this
interrupt event is the occurrence of a parity error detected by the serial interface. This
error usually requires that the erroneous data just received be re-transmitted. The service
routine can often correct this error by telling the sender to keep sending the data until
the error no longer occurs, after which the computer can resume its former task.

7-14 Interrupts and Timeouts

The specific abilities of each interface to detect interrupt conditions and to pass on service
requests from devices are described in the interface programming chapters.

Enabling Interrupt Events

Before the INTR event can initiate its branch, it must be enabled to do so. The following
examples show how to enable interrupt events to initiate branches.

Example

Enable interrupts occurring at interface select code 7 to initiate the branch set up by an
ON-event-branch statement.

ENABLE INTR 7;Mask

The bit pattern of Mask is copied into the “interrupt-enable” register of the specified
interface; in this case, register 4 of the built-in HP-IB interface receives Mask’s bit
pattern. Individual bits of the mask are used to enable different types of interrupt
events for each interface. Each bit which is set (i.e., which has a value of 1) in the mask
expression enables the corresponding interrupt condition defined for that bit.

For instance, bit 1 of the HP-IB’s interrupt-enable register is used to enable and disable
service-request interrupts. To enable this event to initiate a branch, bit 1 must be set
to a “1”. Specifying a mask parameter of “2” causes a value of 2 to be written into this
register, thus enabling only service requests to initiate branches.

ENABLE INTR 7;2
Most Significant Bit

ast Significant Bit

Bit 15 Bit 14 Bit 3 Bit 2 Bit 0
. See
- Other interrupt causes Subsequent
described in subsquent sections Se cti?) ns
Value = Value = - _ —
32768 16 384 Value =8 | Value =4 Value = 1

Figure 7-5. HP-IB Interrupt-Enable Register

Interrupts and Timeouts 7-15

The mask parameter is optional.

e [f it is included. the specified value is written into the appropriate register of the
specified interface.

o If this parameter is omitted. the mask specified in the last ENABLE INTR is used.
If no ENABLE INTR statement has been executed for the specified interface. a
value of 0 is used (all interrupt events disabled).

Example
Re-enable a previously enabled interrupt event.
ENABLE INTR 7

Since no interrupt-enable mask is specified, the last mask used to enable interrupts on
this interface is used.

Enabling and Disabling Events with WRITEIO

This section shows how to use WRITEIO to perform the same functions as ENABLE
INTR and DISABLE INTR statements. The examples are shown for the HP 98630
Breadboard Interface, an interface for which no driver is installed (and therefore will not
permit ENABLE INTR and DISABLE INTR to be used).

ON INTR and OFF INTR statements may be executed for any I/O card plugged into
the computer. However. if there is no driver currently loaded for an interface card. all
other I/0 statements (CONTROL, STATUS., ENABLE INTR, OUTPUT, ASSIGN, etc.)
will generate an ERROR 163 I/0 interface not present message. Before an interrupt can
be generated by a “driverless” interface card. you must emulate the ENABLE INTR
statement by using WRITEIO. For example. if an HP 98630 Breadboard card is at select
code 17, the following statements set up the service routine “My_card_isr” and enable
interrupts for this card:

100 ON INTR CALL My_card_isr
110 WRITEIO 17 ,Mask_reg;Mask_value ! Set the mask.
120 WRITEIO 17,3;128 ! Enable interrupts.

The two WRITEIO statements simulate the function of the ENABLE INTR statement.

7-16 Interrupts and Timeouts

When the Breadboard card interrupts, BASIC clears bit 7 of WRITEIO register 3 (the
interrupt enable bit) and logs the interrupt so that the service routine will be called
the next end-of-line (if system priority permits). No other actions are taken during the
hardware interrupt-logging routine; however, the software service routine is free to do
whatever you want it to do.

To perform a DISABLE INTR function, execute this statement:
300 WRITEIO 17,3;0 ! Disable interrupts.

Use this information as required, especially if you wish to use the HP 98630 Breadboard
card for customized I/O.

Service Requests

You can program a service routine to perform any task(s) that is “requested” by the
device that initiated the branch. If this event can occur for only one reason, the service
routine just performs the specified action. However, with many devices, the service
request can occur for several different reasons. In this case, the program must have a
means of determining which event(s) occurred and then take action.

-

Example
The following program shows an example of using a service routine that can be initiated

by only one cause — a service request from a device at address 22 on the built-in HP-IB
interface.

Interrupts and Timeouts 7-17

100 ! Example of service routine for HP-IB service requests.
110 !

120 ON INTR 7,5 CALL Intr7
130

Set up interface, priority,
branch type, and location.

140

150 ENABLE INTR 7;2

Only service requests

170

180 Loop: GOTO Loop

Idle loop.

!
!
!
!
160 ! (bit 1) are enabled.
!
|
!

190

200 END

210 i
220 SUB Intr7

230 Z=SPOLL(722) ! Clear INTR cause first.

240 !

250 ENTER 722;Reading ! Take desired action.

260 !

270 ENABLE INTR 7 ! Re-enable service requests.
280 !

290 SUBEND

The program shows the sequence of steps required to set up and enable interrupt events.
These steps are as follows.

1.

7-18

The interrupt event is set up to be logged, as in line 120. This statement also
assigns the event’s software priority: in this case. the priority is 5.

The event must be enabled to initiate its branch. as in line 150. The mask value
specifies that only service requests (enabled by setting bit 1) can initiate branches.

When the event occurs it is logged. Any further interrupts from this interface are
automatically disabled until this interrupt event is serviced.

Determine the interrupt’s cause. On HP-IB interfaces. a serial poll (line 230) must
be performed by the service routine, clearing the interrupt-cause register so that the
same event will not cause another branch upon return to the interrupted context.
(The serial poll is particular to the HP-IB interface. but analogous actions can be
performed to determine interrupt causes on other interfaces.)

The actual requested action is performed (line 250).

If subsequent events are to also initiate branches. they must be re-enabled before
resuining execution of the previous program segment. as in line 270. Since no
interrupt-enable mask is explicitly specified. the previous mask is used.

Interrupts and Timeouts

Interrupt Conditions

The conditions that can be sensed by each type of interface are different. All interrupt
conditions signal to the computer that either its assistance is required to correct an error
situation or an operating mode of the interface has changed and must be made known
to the computer.

The following service routine demonstrates typical action taken when a receiver-line
status (“RLS”) interrupt condition is sensed by the serial interface.

100
110
120
130
140
150

600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840

! Example of interface-condition interrupt event.
ON INTR 9,4 CALL Intr_9 ! Set up for interface select
! code 9 and priority of 4.

! Bit 2 in mask enables

! "RLS"-type interrupts only.

ENABLE INTR 9:;4

.
o Main program.
°
SUB Intr_9
!
STATUS 9,10;Intr_cause ! Clear intr.-cause reg.
!
! Check errors and branch to "fix" routines.
!
IF BIT(Intr_cause,3)=1 THEN GOTO Framing error
IF BIT(Intr_cause,2)=1 THEN GOTO Parity_error
IF BIT(Intr_cause,1)=1 THEN GOTO Overrun_error
IF BIT(Intr_cause,0)=1 THEN GOTO Recv_buf_full
ENABLE INTR 9,4 ! Ignore others, re-enable
SUBEXIT ! INTRs, and return.
!
Framing_error: ! "Fix" and re-enable.
SUBEXIT
!
Parity_error: ! "Fix" and re-enable.
SUBEXIT
!
Overrun_error: ! "Fix" and re-enable.
SUBEXIT
1
Recv_buf_full: ! "Fix" and re-enable.
SUBEXIT
SUBEND

Interrupts and Timeouts

7-19

Interface Timeouts

A “timeout” occurs when the handshake response from any external device takes longer
than the specified amount of time. The time specified for the timeout event is usually
the maximum time that a device can be expected to take to respond to a handshake
during an I/O statement.

Setting Up Timeout Events

The following statements set up this event-initiated branch. The software priority of this
event cannot be assigned by the program; it is permanently assigned priority 15. The
maximum time that the computer will wait for a response from the peripheral can be
specified in the statement with a resolution of 0.001 seconds.

Example

Set up a timeout to occur after the Serial Interface has not detected a response from the
peripheral after 0.200 seconds. Branch to a subroutine called “Serial_down”.

ON TIMEOUT 9, .2 GOSUB Serial_down
Example
Set up a timeout of 0.060 for the interface at select code 8.

ON TIMEOUT 8, .06 GOTO Hp_ib_status

7-20 Interrupts and Thmeouts

Timeout Limitations

Timeout events cannot be set up for any of the internal interfaces except the built-in
HP-IB.

Event-initiated branches are only executed at certain times during program execution,
usually after a program line has been executed. Consequently, BASIC may wait up to
25% longer than the specified time to detect a timeout event; however, it will always
wait at least the specified amount of time before generating the interrupt.

There is no default timeout time parameter. Thus, if no ON TIMEOUT is executed for a
specific interface, the computer will wait indefinitely on the device to respond. The only
way that the computer can continue executing the program is for the operator to use the

CLR 170] ((Break)) key. This key aborts the I/O operation that was left “hanging” by the
failure of the device to respond to and complete the handshake.

The times specified for timeouts are passed to subprograms. Thus, unless the time for a
timeout event is changed in the subprogram, it remains the same as it was in the calling
routine. If the time parameter is changed by the subprogram, it is restored to its former
value upon return to the calling context.

Interrupts and Timeouts 7-21

7-22 Interrupts and Timeouts

Table of Contents

Chapter 8: I/0 Path Attributes

The FORMAT Attributes o 8-2
Two FORMAT Attributes Are Available 8-2
Assigning Default FORMAT Attributes.............................. 8-4
Specifying I/O Path Attributes i, 8-5
Restoring the Default Attributes 8-5

Additional Attributes......... ... 8-6
The BYTE and WORD Attributes 8-6
Converting Characters......... 8-11
Changing the EOL Sequence, 8-15
Parity Generation and Checking 8-16
Determining the Outcome of ASSIGN Statements.................... 8-18

Concepts of Unified I/O i i i 8-19
Data-Representation Design Criteria 8-20
I/OPathsto Files e 8-20
BDAT Fileso 8-21
Data Representation Summary o, 8-24

Applications of Unified I/O 8-25
I/O Operations with String Variables.ccoviiuuuo... 8-25
Taking a Top-Down Approach i .. 8-32

ConcluSIONot 8-40

/O Path Attributes

This chapter contains two major topics, both of which involve additional features pro-
vided by I/O path names.

e The first topic is that I/O path names can be given attributes which control the
way that the system handles the data sent and received through the 1/0O path.
Attributes are available for such purposes as controlling data representations, gen-
erating and checking parity, and defining special end-of-line (EOL) sequences.

e The second topic is that one set of I/O statements can be used to access most
system resources, including the CRT display, the keyboard, mass storage files, and
buffers (instead of using a separate set of BASIC statements to access each class of
resources). This second topic, herein called “unified I/0”, may be considered an
implicit attribute of I/O path names.

I/O Path Attributes 8-1

The FORMAT Attributes

All 1/O paths used as means to move data have certain attributes, which involve both
hardware and software characteristics. For instance. some interfaces handle 8-bit data.
while others can handle either 8-bit or 16-bit data. Some I/0 operations involve sending
ASCII data (for “human consumption”). while others may involve sending data in an “in-
ternal” form (that is easier for the computer to understand). This second characteristic,
data representation, is what the format attributes control.

Two FORMAT Attributes Are Available
All 1/O paths possess one of the two following attributes:

e FORMAT ON- means that the data are sent in ASCII representation®.
e FORMAT OFF- means that the data are sent in BASIC' internal representation!.

Before getting into how to assign these attributes to 1/O paths, let’s take a brief look at
each one.

FORMAT ON

With FORMAT ON, internally represented numeric data must be “formatted” into its
ASCII representation before being sent to the device. Conversely, numeric data being
received from the device must be “unformatted” back into its internal representation.
These operations are shown in the diagrams below:

internai-Form Data ASCH Data

Computer “F Computer

Memory ormatter Resource
Routine

Figure 8-1. Numeric Data Transformations with FORMAT ON

For more information about the ASCII data format. see the -Interfacing Concepts”
chapter. For details of how items and 1/0 statements are terminated. see the "Outputting
Data” and “Entering Data” chapters.

Complete descriptions of these data representations are given in the “Interfacing Concepts™ chapter.

8-2 1/0 Path Attributes

FORMAT OFF

With FORMAT OFF, however, no formatting is required. The data items are merely
copied from the source to the destination. This type of I/O operation requires less time,
since fewer steps are involved.

Internal-Form Data
Computer ! Computer
Memory Resource

Figure 8-2. Numeric Data Transfer with FORMAT OFF

The only requirement is that the resource also use the exact same data representations
as the internal BASIC representation.

Here
[)
[]
[

Here

are how each type of data item is represented and sent with FORMAT OFF:
INTEGER: two-byte (16-bit), two’s complement.

REAL: eight-byte (64-bit) IEEE floating-point standard.

COMPLEX: same as two REAL values.

String: four-byte (32-bit) length header, followed by ASCII characters. An addi-
tional ASCII space character, CHR$(32), may be sent and received with strings in
order to have an even number of bytes.

are the FORMAT OFF rules for OUTPUT and ENTER operations:

No item terminator and no EOL sequence are sent by OUTPUT.

No item terminator and no statement-termination conditions are required by EN-
TER.

No non-default CONVERT or PARITY attribute may be assigned to the I/O path
(discussed later in this chapter).

If either OUTPUT or ENTER uses an IMAGE (such as with OUTPUT 701 USING
“4D.D”), then the FORMAT ON attribute is automatically used.

I/O Path Attributes 8-3

Assigning Default FORMAT Attributes

As discussed in the “Directing Data Flow™ chapter, names are assigned to 1/O paths be-
tween the computer and devices with the ASSIGN statement. Here is a typical example:

ASSIGN Any_name TO Device_selector

This assignment fills a “table” in memory with information that describes the 1/O path.
This information includes the device selector, the path’s FORMAT attribute, and other
deseriptive information. When the I/O path name is specified in a subsequent 1/0
statement (such as OUTPUT or ENTER), this information is used by the system in
completing the I/O operation.

Different default FORMAT attributes are given to devices and files:

o Devices— since most devices use an ASCII data representation, the default attribute
assigned to devices is FORMAT ON. (This is also the default for ASCII files and
BUFFERs, as discussed later in this chapter and in the next chapter.)

e BDAT and HPUX files— the default for BDAT and HPUX files is FORMAT OFF.
(This is because for numeric quantities, the FORMAT OFF representation requires
no translation time for numeric data: this is possible because humans never see
the data patterns written to the file, and therefore the items do not have to be in
ASCII, or humanly readable, form.)

One of the most powerful features of this BASIC system is that you can change the
attributes of I/O paths programmatically.

8-4 1/0 Path Attributes

Specifying 1/O Path Attributes
There are two ways of specifying attributes for an I/O path:

e Specify the desired attribute(s) when the 1/O path name is initially assigned. For
example:

100 ASSIGN @Device TO Dev_selector; FORMAT ON
or
100 ASSIGN @Device TO Dev_selector ! Default for devices is FORMAT ON.

e Specify only the attribute(s) in a subsequent ASSIGN statement:

250 ASSIGN @Device; FORMAT OFF ! Change only the attribute.

The result of executing this last statement is to modify the entry in the I/O path name
table that describes which FORMAT attribute is currently assigned to this 1/O path.
The ¢mplicit ASSIGN @Device TO *, which is automatically performed when the “T0 ...”
portion is included, is not performed. Also, the 1/O path name must currently be assigned
(in this context), or an error is reported.

Restoring the Default Attributes

If any attribute is specified, the corresponding entry in the I/O path name table is
changed (as above); no other attributes are affected. However, if no attribute is assigned
(as below), then all attributes, except WORD, are restored to their default state (such
as FORMAT ON for devices.)

340 ASSIGN QDevice ! Restores ALL default attributes.

I/O Path Attributes 8-5

Additional Attributes

The first section discussed the FORMAT attributes of I/O path names. Several other
attributes are available to direct the BASIC system to perform the following operations
whenever data are moved through the I/O path possessing the attribute:

e specify that data are to be sent and received on a byte or word basis

e perform conversions on a character-by-character basis on inbound and/or outbound
data

e check for parity on inbound data. and generate parity on outbound data

e re-define the end-of-line sequence normally sent after the last data item in output
operations

It is also possible to direct the system to return a nuwmeric code to a variable which
describes the outcome of an attempted ASSIGN operation. This section describes im-
plementing these functions by using the additional I/O path attributes.

The BYTE and WORD Attributes

The HP Series 200/300 computers are capable of handling data as either 8-bit bytes or
16-bit words when using 16-bit interfaces. This section describes how to use the BYTE
and WORD attributes to determine which way the system will handle data when using
these interfaces.

Unless otherwise specified, the system treats data as bytes during I/0 operations. For
instance. when the following I/0 statement is executed:

OUTPUT Device_selector;Integer_array(*)

the 16-bit INTEGER values are normally sent one byte at a time. with the most signifi-
cant byte of each INTEGLER sent first. Executing the following statement:

OUTPUT Device_selector USING "W";Integer_array(x)

directs the system to send the data as words if the interface has the ability to handle data
as words. With a 16-bit interface. such as the HP 98622 GPIO Interface. the INTEGER
data are sent one word at a time (i.e.. one word per handshake cycle). If the interface
is not capable of sending one word in a single operation. the word is sent as two bytes
with the most significant byte first.

8-6 1/0 Path Attributes

When the BYTE attribute is assigned to an I/O path name, the system sends and receives
all data through the I/O path as bytes; one byte is sent (or received) per operation. Thus,
BYTE directs the system to treat a 16-bit interface as if it were an 8-bit interface. The
following statements show examples of assigning the BYTE attribute to an I/O path:

ASSIGN QPrinter TO 701; BYTE
ASSIGN @Device TO 12; BYTE

In the first statement, the BYTE attribute is redundant, because the WORD attribute
cannot be assigned to the HP-IB Interface (since it is an 8-bit interface).

When the I/O path name assigned to an interface possesses the BYTE attribute, the
system sends and receives all subsequent data through the interface one byte per hand-
shake operation. As an example, executing either of the following statements (when the
I/O path possesses the BYTE attribute):

OUTPUT @Device;Integer_array(*)
OUTPUT @Device USING "W";Integer_array(*)

directs the system to send the data as bytes, even though the interface is capable of
sending the data as words (and in the second example the “W” specifier was used).
Stated again, the BYTE attribute directs the system to treat 16-bit interfaces as if they
were 8-bit interfaces. With BYTE, only the 8 least significant bits of the interface are
used to send and receive data; the most significant bits are always zeros. Keep in mind
that the logic sense of the signal lines used to send and receive these bits is determined
by switch settings on the interface card.

The WORD attribute specifies that all data sent and received through the I/O path are
to be moved as words. In other words, this attribute directs the system to use all 16
data lines of a 16-bit interface for all subsequent I/0 operations that use the I/O path
name. This attribute is designed to improve performance in two types of situations (on
16-bit interfaces): when sending and receiving FORMAT OFF data, and when sending
and receiving INTEGERs with FORMAT ON. The WORD attribute can also be used
under other situations; however, results may show some unexpected “side effects,” which
are explained later in this section. The interface to which the I/O path name is assigned
must be capable of handling data words; if not, an error will be reported when the
ASSIGN is executed.

When an I/O path possesses the WORD attribute, an even number of data bytes will
always be sent or received by any one I/O statement that uses the 1/O path. Conse-
quently, when an operation involves an odd number of data bytes, the system will place
pad byte(s) in outbound data or enter (but ignore) additional byte(s) of inbound data.
These operations can be thought of as “aligning data on word boundaries.” This is the
main side effect that can occur with the WORD attribute.

1/0 Path Attributes 8-7

With the FORMAT OFF attribute. all data items are represented by an even number
of bytes (see the discussion in “The FORMAT OFF Attributes™ earlier in this chapter
for details). Since these representations use an even number of bytes. no pad bytes are
necessary.

When WORD is used with FORMAT ON. the data will be buffered (automatically by
the system) when necessary to allow sending all data as words. Sending INTEGERSs does
not usually require this type of buffering. because each INTEGER consists of two bytes
of data. However. sending strings of odd length often requires that the system perform
this automatic buffering. The first byte of each word is placed in a two-character buffer
(created by the system): when the second byte is placed in this buffer. the two bytes are
sent as one word, with the most significant eight bits representing the first byte. If an
odd number of data bytes would otherwise be sent, a Null character, CHR$(0), is placed
in the buffer to “flush™ the last byte.

The following statements show assigning the WORD attribute and using the I/O path
to send data through the GPIO Interface at select code 12. Remember that the default
FORMAT attribute assigned to 1/O paths to devices is FORMAT ON.

110 ASSIGN @Gpio TO 12;WORD
120 OUTPUT @QGpio;"0dd"
130 OUTPUT @Gpio USING "K,L,K";"0dd","Even"

The following diagrams show the characters that would be sent by the QUTPUT state-
ments in lines 120 and 130. respectively.

[o]d[d]cR]LF NuL|
M A e e e
Word1 Word2 Word3

lo]d[d[crR[LFNULJE [v [e[n [cR]LF]

Word1 Word2 Word3 Word4 Word5 Word 6
Figure 8-3. Characters Sent by OUTPUT Statements Shown Above

In the first statement. a Null was sent after the EOL characters to flush the buffer and
force word alignment for a subsequent OUTPUT. The second statement shows that a
pad byte will be sent after any EOL sequence when required to achieve word alignment:
the Null pad byte was not needed after the second EOL sequence. In addition. if a buffer
or file pointer currently has an odd value. a leading pad byte will be output to force word
alignment before any data are sent by the OUTPUT statement.

8-8 I/O Path Attributes

When executing an ENTER statement from an I/O path with the WORD attribute, the
system always reads an even number of bytes from the source device, since data are sent as
words. In cases where an odd number of data bytes are sent, such as when an odd number
of string characters are sent with an even number of statement-terminator characters, the
system enters (but ignores) the last byte sent (after the statement-terminator characters).
The following statements show an example of entering the data sent by the OUTPUT
statements in the preceding example.

ASSIGN @Device TO 12;WORD

ENTER @Device;String_vari$
ENTER @Device;String_var2$
ENTER @Device;String_var3$

The variables receive the following values:

String_vari$="0d4"
String_var2$="044"
String_var3$="Even"

Notice that three ENTER statements were used to enter the data sent by the two pre-
ceding OUTPUT statements. This method was used to handle the pad bytes generated
by the OUTPUT statement. If two ENTER statements would have been used, the pad
byte sent after the second “Odd” and EOL sequence would have to have been skipped
by an “X” image specifier. The following ENTER statements show how this could be
done.

ENTER @Device USING "K,X,K";String_vari$,String_var2$
ENTER @Device USING "K";String_var3$

If the “X” specifier would not have been used, a pad byte would have been placed in
String_var2$. Thus, a general recommendation for entering data OUTPUT through an
I/O path with the WORD and FORMAT ON attributes is to enter only one item per
ENTER statement.

I/O Path Attributes 8-9

When the WORD attribute is in effect. the W™ fmage specifier sends data that are
always aligned on word boundaries. For instance. the following statement shows how the
system defines “W™ with the WORD attribute during QOUTPUT.

OUTPUT @Device USING "B,W",;65,256%66+67

LA Nu| B [c[cr]LF]
N e) e !
Word1 Word2 Word 3

The Null (NUL)j pad byte was seut before the W™ hinage data to aligu the INTEGER
specified by the “W™ on a word boundary.

During ENTER. a pad byte is entered (but ignored) when necessary to align the W~
item on a word boundary. For instance. the following statement would enter the preceding
data items in the same manner as they were sent.

ENTER @Device USING "B,W";One_byte,One_word

Keep in mind that these examples have been provided only to show potential problems
that can arise when sending an odd number of data bytes while using the WORD at-
tribute. Tt would be more appropriate to use only images that send an even number of
bytes when using WORD during OUTPUT, and it will simplify matters to send only one
item per OUTPUT statement. Similarly, it is generally much simpler if only one item is
entered per ENTER statement.

Furthermore. if pad bytes pose a problem when working with INTEGER data (with
FORMAT ON). you can also use the “Y” specifier. During OUTPUT. the “Y” does not
force word alignment by sending a pad byte; during ENTER. the Y™ does not skip a
byte to achieve word alignment.

Note also that the Null character pad byte may be converted to another character by
using the CONVERT attribute: see the next section for further details.

The BYTE and WORD attributes affect any ENTER. OUTPUT. or TRANSFER state-
ments that use the I/O path name. However. only the attribute specified on the non-
buffer I/O path end of the TRANSFER is used: BYTE or WORD is ignored on the
buffer end.

8-10 I/0O Path Attributes

Unlike other attributes, the BYTE and WORD attribute cannot be changed once as-
signed to an I/O path name. For instance, executing:

ASSIGN @Printer TO 12

implicitly assigns the BYTE attribute to @Printer, since it is the default attribute.
Executing the following statement results in error 600 (Attribute cannot be modified):

ASSIGN @Printer;WORD

The converse situation is true for the WORD attribute. Furthermore, if WORD has been
assigned to the 1/O path, then BYTE is not restored when ASSIGN @evice is executed;
all other default attributes would be restored. For instance, executing:

ASSIGN @Device TO 12;WORD,FORMAT OFF
assigns the specified non-default attributes to the I/O path name @Device. Executing:
ASSIGN @Device

restores the default attribute of FORMAT ON (and also other default attributes, if
currently non-default), but it does not restore the default BYTE attribute.

Converting Characters

The CONVERT attribute is used to specify a character-conversion table which is to be
used for OUTPUT or ENTER operations. If data are to be converted in both directions,
a separate conversion table must be defined for each direction. Two conversion methods
are available—by index and by pairs. This section shows simple examples of each.

CONVERT...BY INDEX specifies that each original character’s code is used to index
a replacement character in the specified conversion string. For instance, CHR$(10) is
replaced by the 10th character in the conversion string. The only exception is that
CHR$(0) will be replaced by the 256th character in the conversion string. If the string
contains less than 256 characters, characters with codes that do not index a conversion-
string character will not be converted. If the string contains more than 256 characters,
error 18 is reported.

I/O Path Attributes 8-11

The following program shows an example of setting up a conversion by index for OUT-
PUT operations.

100 DIM Conv_string$[256]
110 INTEGER Index_val

120 !

130 ! Generate conversion string.

140 FOR Index_val=1 TO 255

150 SELECT Index_val

160 CASE NUM("a") TO NUM("z") ! Change to uppercase.
170 Conv_string$[Index_val]=UPC$(CHR$ (Index_val))
180 CASE ELSE ! No conversion.

190 Conv_string$[Index_vall=CHR$(Index_val)

200 END SELECT

210 NEXT Index_val

220 Conv_string$[266]=CHR$(0) ! 256th element has an

230 ! effective index of 0.

240 !

250 ! Set up conversions.

260 ASSIGN @Device TO 1;CONVERT OUT BY INDEX Conv_string$
270 !

280 OUTPUT @Device; "UPPERCASE LETTERS ARE NOT CONVERTED."
290 OQUTPUT @Device;"Lowercase letters are converted."

300 OUTPUT 1;"Conversions are made only "

310 OUTPUT 1;"when the I/0 path is used."

320 !

330 END

The program is designed to convert lowercase characters to uppercase characters. In
order to make the conversion. the program first computes the characters in the conversion
string: the characters are computed one at a time. If the character’s original code is not
in the range 97 to 122 (“a” to “z”). then no change is made. If it is in the range.
an uppercase character is placed in the string at the location indexed by the original
(lowercase character’s) code.

The example program’s output is as follows.

UPPERCASE LETTERS ARE NOT CONVERTED.
LOWERCASE LETTERS ARE CONVERTED.
Conversions are made only

when the I/0 path is used.

To perform the lowercase-to-uppercase conversion. it was not necessary to include char-
acters with codes 123 through 255 in the conversion string. since these characters are
not to be converted. They were included to emphasize that the 256th character must be
included in the string if CHR$(0) is to be converted with this method. The CONVERT

8-12 1/0O Path Attributes

attribute is then assigned to the I/O path, and all subsequent data sent through the 1/0
path (while CONVERT is in effect) will be converted.

CONVERT...BY PAIRS specifies that the conversion string contains pairs of characters,
each pair consisting of an original character followed by its replacement character. Before
each character is moved through the interface, the original characters in the conversion
string (the odd characters) are searched for the character’s occurrence. If the character is
found, it will be replaced by the succeeding character in the conversion string; if it is not
found, no conversion takes place. If duplicate original characters exist in the conversion
string, only the first occurrence is used. The string variable must contain an even number
of characters; if not, error 18 is reported.

The following program shows an example of setting up the same conversion as in the
preceding example, except that conversion by pairs is used.

100 DIM Conv_string$[512]

110 !

120 ! Define conversion string.

130 Conv_string$="aAbBcCdDeEfFgGhHilIjJkK1LmMnNoOpP"

140 Conv_string$=Conv_string$&"qQrRsStTulvVwWxXyYzZ"
]

150 !

160 ! Set up conversions.

170 ASSIGN @Device TO 1;CONVERT OUT BY PAIRS Conv_string$
180 !

190 OUTPUT @Device;"UPPERCASE LETTERS ARE NOT CONVERTED."
200 OUTPUT @Device;"Lowercase letters are converted."

210 OUTPUT 1;"Conversions are made only "

220 OUTPUT 1;"when the I/0 path is used."

230 !

240 END

The pairs method only requires that each character to be replaced (and its replacement)
is included in the conversion string. Note that the first character of each pair is the
original character and the second is the replacement. If a character does not appear in
the conversion string, it will not be converted.

Conversion of inbound characters can also be performed with both of these methods.
In the second example, for instance, the conversion is implemented with the following

statement.

ASSIGN @Device;CONVERT IN BY PAIRS Conv_string$

I/O Path Attributes 8-13

Conversions in both directions will continue until disabled. The following statement
could be used to disable conversions of outbound data.

ASSIGN @Device;CONVERT OUT OFF

It is important to note that the conversion string specified in the ASSIGN statement is
used for each OUTPUT or ENTER statement that uses the I/O path while the conversion
is enabled. Note that the conversion string’s contents are not contained in the 1/O path
data type: only a pointer to the string variable is maintained. Thus. any changes to
the string’s value will immediately affect any subsequent OUTPUT or ENTER that uses
that I/0O path.

It is also important to note that the string must be defined for at least as long as the
I/O path which references it: this “lifetime” requirement has several implications. If
the 1/0 path and conversion string are defined in different COM blocks. an error will
be reported. Tf the I/O path is to be used as a formal parameter in a subprogram. the
conversion string variable must either appear in the same formal parameter list or be
defined in a COM block accessible to that subprogram. If the I/O path name is passed
to subprogram(s) by including it as a pass parameter, the string variable must currently
be defined in the context which defined the I/O path.

When CONVERT OUT is in effect. the specified conversions are made after any end-
of-line (EOL) sequence has been inserted into the data. but before parity generation is
performed (with the PARITY attribute). When CONVERT IN is in effect, conversions
are made after parity is checked (if enabled), but before the data are checked for any
item- or statement-termination characters.

Keep in mind that no non-default CONVERT attribute can be assigned to an I/O path
that currently possesses the FORMAT OFT attribute. and vice versa.

8-14 1/0 Path Attributes

Changing the EOL Sequence

An end-of-line (EOL) sequence is normally sent following the last item sent with free-
field OUTPUT statements and when the “L” specifier is used in an OUTPUT that
uses an image. The default EOL characters are carriage-return and line-feed (CR/LF),
sent with no device-dependent END indication. With AP2.0, it is also possible to define
your own special EOL sequences that include sending special characters, sending an END

indication, and delaying a specified amount of time after sending the last EOL character.
In order to define non-default EOL sequences to be sent by the OUTPUT statement, an
I/0O path must be used. The EOL sequence is specified in one of the ASSIGN statements
which describe the I/O path. An example is as follows.

ASSIGN @Device TO 12;EOL CHR$(10)&CHR$(10)&CHR$ (13)

The characters following the secondary keyword EOL are the EOL characters. Any char-
acter in the range CHR$(0) through CHR$(255) may be included in the string expression
that defines the EOL characters; however, the length of the sequence is limited to eight
characters or less. The characters are put into the output data before any conversion is
performed (if CONVERT OUT is in effect).

If END is included in the EOL attribute, an interface-dependent “END” indication is sent
with (or after) the last character of the EOL sequence. However, if no EQL sequence is
sent, the END indication is also suppressed. The following statement shows an example
of defining the EOL sequence to include an END indication.

ASSIGN @Device TO 20;EOL CHR$(13)&CHR$(10) END

With the HP-IB Interface, the END indication is an End-or-Identify message (EOI) sent
with the last EOL character. The individual chapter that describes programming each
interface further describes each interface’s END indication (if implemented).

If DELAY is included, the system delays the specified number of seconds (after sending
the last EOL character and/or END indication) before executing any subsequent BASIC
statement.

ASSIGN @Device;EOL CHR$(13)&CHR$(10) DELAY 0.1

I/O Path Attributes 8-15

This parameter is useful when using slower devices which the computer can “overrun”
if data are sent as rapidly as the computer can send them. For example. a printer
connected to the computer through a serial interface set to operate at 300 baud might
require a delay after receiving a CR character to allow the carriage to return before
sending further characters. Note that the DELAY parameter is not exact: it specifies
the minimum amount of delay.

The default EOL sequence is a CR and LF sent with no end indication and no delay:
this default can be restored by using the EOL OFF attribute.

Parity Generation and Checking

Parity is an indication used to help determine whether or not a quantity of data has
been communicated without error. The sending device generates the parity indication,
which is then checked against the parity expected by the receiving device. If the two
indications don’t agree, a parity error is reported.

With this system, parity may be indicated by the most significant bit of a data byte. The
parity bit is generated (during OUTPUT) or checked (during ENTER) by the system
according to the current PARITY attribute in effect for the 1/O path through which the
data bytes are being sent or received.

Unless otherwise specified. the system will not generate or check parity (the default mode
is PARITY OFF). The following optional PARITY attributes are available:

8-16 1/0 Path Attributes

Table 8-1. Optional PARITY Attributes

Option Effect During ENTER Effect During OUTPUT
OFF No check is performed No parity is generated
EVEN Check for even parity Generate even parity
ODD Check for odd parity Generate odd parity
ONE Check for parity bit set (1)
Set parity bit (1)
ZERO Check for parity bit clear (0) Clear parity bit (0)

If PARITY EVEN is specified, the parity bit will be a 1 when required to make the total
number of 1’s in the byte an even number; for instance, a byte with a value of 1 will
have the parity bit set to 1 with even parity. Conversely, PARITY ODD specifies that
the parity bit will be a 1 when required to make the total number of 1’s odd. PARITY
ONE specifies that the parity bit will always be 1, while PARITY ZERO specifies that
it will always be 0. PARITY OFF disables parity generation and checking, if currently
enabled for the I/O path.

To enable parity generation during OUTPUT and ENTER operations, assign a PARITY
option to an I/O path. For example:

ASSIGN @Serial TO 9;PARITY ODD

specifies that all data sent through the I/O path @Serial will use the most significant
bit of each byte for parity. However, only 128 different characters will be available, since
one bit of the eight is not available for data representation.

If the system detects a parity error while executing an ENTER statement, error 152
(Parity error) will be reported. All characters entered up to (but not including) the
erroneous byte will be assigned to the appropriate variable, after which the system will
report the error.

If the receiving device detects a parity error, it will be responsible for communicating
the error to the computer. A typical means would be to enable the interface to signal
the error by generating an interrupt. See the chapters that describe interrupts in general
and interrupts for the specific interface.

Parity is generated after conversions have been made during OUTPUT and is checked
before conversions during ENTER. After parity is checked on inbound data, the parity
bit is cleared; however, when PARITY OFF is in effect, bit 7 is not affected.

I/O Path Attributes 8-17

Disabling parity generation and checking is accomplished by assigning the PARITY OFF
attribute to the 1/O path.

ASSIGN @Serial;PARITY OFF

Parity is also disabled when an 1/0 path name is explicitly closed and then re-assigned.
when an 1/0 path name is re-assigned without being closed. and when the default at-
tributes are restored with statements such as ASSIGN @Serial.

Keep in mind that a non-default PARITY attribute cannot be assigned to an 1/O path
that currently possesses the FORMAT OFF attribute. and vice versa.

Determining the Outcome of ASSIGN Statements

Although RETURN is not an attribute. including it in the list of attributes directs the
systewm to place a a numeric code that indicates the outcowe of the ASSIGN operation iuto
the specified numeric variable. The following statement shows an example of enabling
this error check:

ASSIGN @Device TO 12;RETURN Outcome

e If the operation is successful, a 0 is returned.

e If a non-zero value is returned. it is the error number which otherwise would have
been reported. For instance, if an interface was not present at select code 12, the
system would have placed a value of 163 in Outcome. This value is the error code
for 1/0 interface not present.

The following statement shows a method of determining the Open/Closed status of the
1/0O path.

ASSIGN @Device;RETURN Closed_status
If @Device is currently Open. then 0 is returned: if it is Closed. then 177 is returned (Un-
defined I/0 path name). When RETURN is used in this manner. the default attributes
are not restored.
When RETURN is used in this manner. ON ERROR is normally disabled during the

ASSIGN statement; however, there are certain errors which cannot be trapped by using
RETURN in the ASSIGN statement.

If more than one error occurred during the ASSIGN. there is no assurance that the error
number returned is either the first or the last error.

8-18 1/O Path Attributes

Concepts of Unified 1/O

This BASIC language system and hardware provide the ability to communicate with the
several system resources with the OUTPUT and ENTER statements.

This

The “Display Interfaces” and “Keyboard Interfaces” chapters describe how to com-
municate with the operator (through the CRT and keyboard) by using these 1/O
statements.

The next section of this chapter describes how data can be moved to and from
string variables with OUTPUT and ENTER statements.

The “Advanced Transfer Techniques” chapter describes how to use OUTPUT and
ENTER with buffers, which can also be used to communicate with several system
resources.

The “HP-IB Interface” chapter describes how these I/O statements are used to
communicate with HP-IB peripheral devices.

And, if you have read about mass storage operations (in the “Data Storage and
Retrieval” chapter of BASIC Programming Techniques), you know that the ENTER
and OUTPUT statements are also used to move data between the computer and
mass storage files.

ability to move data between the computer and all of its resources with the same

statements is a very powerful capability of the computer’s BASIC language.

Before briefly discussing I/O paths to mass storage files, the following discussion will
present some background information that will help you understand the rationale behind
implementing the two data representations used by the computer. The remainder of this
chapter then presents several uses of this language structure.

I/O Path Attributes 8-19

Data-Representation Design Criteria

As you know. the computer supports two general data representations the ASCIT and
the internal representations. This discussion presents the rationale of their design.

The data representations used by the computer were chosen according to the following
criteria.
e to maximize the rate at which computations can be made
e to maximize the rate at which the computer can move the data between its resources
e to minimize the amount of storage space required to store a given amount of data
e to be compatible with the data representation used by the resources with which

the computer is to communicate

The internal representations implemented in the computer are designed according to
the first three of the above criteria. However, the last criterion must always be met if
communication is to be achieved. If the resource uses the ASCII representation. this
compatibility requirement takes precedence over the other design criteria. The ASCII
representation fulfills this last criterion for most devices and for the computer opera-
tor. The first three criteria are further discussed in the following description of data
representations used for mass storage files.

I/O Paths to Files
There are three types of data files: ASCIL. BDAT. and HPUX.
e Only the ASCII data representation is used with ASCII files.
e But either the ASCII (FORMAT ON) or the internal (FORMAT OFF) represen-
tation can be used with BDAT and HPUX files.

I/0 paths to files are briefly described in this section to further justify the internal data
representations implemented with this system. and to preface the applications presented
in the last section of this chapter.

8-20 1/0 Path Attributes

BDAT Files

BDAT (BASIC Data) and HPUX files! have been designed with the first three of the
preceding design criteria in mind. Both numeric and string computations are much faster.
These internal data representations generally allow much more data to be stored on a disc
because there is no storage overhead (for numeric items); that is, there are no “record
headers” for numeric items.

The transfer rates for each data type has also been increased. Numeric output operations
are always much faster because there is no time required for “formatting”. Numeric
enter operations are also faster because the system does not have to search for item- and
statement-termination conditions.

In addition, I/O paths to BDAT and HPUX files can use either the ASCII (FORMAT
ON) or the internal (FORMAT OFF) representation.

The following program shows a few of the features of BDAT files. The program first
outputs an internal-form string (with FORMAT ON), and then enters the length header
and string characters with FORMAT OFF.

100 OPTION BASE 1

110 DIM Length$[4],Data$[256],Int_form$[256]

120 !

130 ! Create a BDAT file (1 record; 256 bytes/record.)
140 ON ERROR GOTO Already_created

150 CREATE BDAT "B_file",1

160 Already_created: OFF ERROR

170 !

180 ! Use FORMAT ON during output.

190 ASSIGN @Io_path TO "B_file";FORMAT ON
200 !

210 Length$=CHR$(0)&CHR$(0) ! Create length header.
220 Length$=Length$&CHR$ (0) &CHR$ (252)
230 !

! Examples of HPUX files are shown in the “Porting and Sharing Files” chapter of BASIC Programming
Techniques.

I/O Path Attributes 8-21

240 ! Generate 256-character string.
250 Data$="01234567"
260 FOR Doubling=1 TO 5

270 Data$=Data$&Data$

280 NEXT Doubling

290 ! Use only 1st 252 characters.

300 Data$=Data$[1,252]

310 !

320 ! Generate internal-form and output.

330 Int_form$=Length$&Data$
340 QUTPUT @Io_path;Int_form$;
350 ASSIGN @Io_path TO =*

|

360 !

370 ! Use FORMAT OFF during enter (default).
380 ASSIGN @Io_path TO "B_file"

390 !

400 ! Enter and print data and # of characters.

410 ENTER Data$

420 PRINT LEN(Data$) ;"characters entered."
430 PRINT

440 PRINT Data$

450 ASSIGN QIo_path TO = ! Close I/0 path.

460 !
470 END
ASCIi Files

ASCII files are designed for interchangeability with other HP computer systems. This
interchangeability imposes the restriction that the data must be represented with ASCII
characters. Each data item sent to these files is a special case of FORMAT ON repre-
sentation; each item is preceded by a two-byte length header (analogous to the internal
form of string data). In order to maintain this compatibility, there are two additional
restrictious placed on ASCII files:

o The FORMAT OFF attribute cannot be assigned to an ASCII file
e You cannot use OUTPUT..USING or ENTER..USING with an ASCII file.
The following program shows the I/0O path name @lo_path being assigned to the ASCII

file named ASC_FILE. Notice that the file name is in all uppercase letters: this is also a
compatibility requirement when using this file with some other systems.

8-22 1/0 Path Attributes

The program creates an ASCII file, and then outputs program lines to the file. The
program then gets and runs this newly created program. (If you type in and run this
program, be sure to save it on disc, because running the program will load the program
it creates, destroying itself in the process.)

100
110
120
130
140

DIM Line$(1:3)[100] ! Array to store program.
!

! Create if not already on disc.

ON ERROR GOTO Already_exists

CREATE ASCII "ASC_FILE",1 ! 1 record.

150 Already_exists: OFF ERROR

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

!

ASSIGN @Io_path TO "ASC_FILE"

STATUS @Io_path,6;Pointer

PRINT "Initially: file pointer=";Pointer
PRINT

!

Line$(1)="100 PRINT ""New program."" "
Line$(2)="110 BEEP"

Line$(3)="120 END"

!

OUTPUT @Io_path;Line$ (%)

STATUS Q@Io_path,6;Pointer

PRINT "After OUTPUT: file pointer=";Pointer
JPRINT

!

GET "ASC_FILE" ! Implicitly closes I/0 path.
!

END

I/O Path Attributes 8-23

Data Representation Summary

The following table summarizes the control that programs have on the FORMAT at-
tribute assigned to I/O paths.

Table 8-2. Program Control of the FORMAT Attribute

Type of Default FORMAT Can Default FORMAT
Resource Attribute Used Attribute Be Changed?
Devices FORMAT ON Yes (if an I/O path is nsed)*
BDAT files FORMAT OFF Yes
HPUX files FORMAT OFF Yes
ASCII files FORMAT ON? No
String variables FORMAT ON No
Buffers FORMAT ON Yes

L' FORMAT ON is always used whenever an OUTPUT..USING or ENTER.. USING statement is used.
regardless of the FORMAT attribute assigned to the 1/0 path.
Y Thie data representarion used with ASCIT files ix a special case of the FPORMAT ON representation

8-24 1/0 Path Attributes

Applications of Unified 1/0

This section describes two uses of the powerful unified-I1/O scheme of the computer. The
first application contains further details and uses of I/O operations with string variables.
The second application involves using a disc file to simulate a device.

I/O Operations with String Variables

Chapter 3 briefly described how string variables may be specified as the source or desti-
nation of data in I/O statements, but it described neither the details nor many uses of
these operations. This section describes both the details of and several uses of outputting
data to and entering data from string variables.

Outputting Data to String Variables

When a string variable is specified as the destination of data in an OUTPUT statement,
source items are evaluated individually and placed into the variable according to the
free-field rules or the specified image, depending on which type of OUTPUT statement
is used. Thus, item terminators may or may not be placed into the variable. The
ASCII data representation is always used during outputs to string variables; in fact,
data output to string variables is exactly like that sent to devices through I/O paths
with the FORMAT ON attribute.

Characters are always placed into the variable beginning at the first position; no other
position can be specified as the beginning position at which data will be placed. Thus,
random access of the information in string variables is not allowed from OUTPUT and
ENTER statements; all data must be accessed serially. For instance, if the characters
“1234” are output to a string variable by one OUTPUT statement, and a subsequent
OUTPUT statement outputs the characters “5678” to the same variable, the second
output does not begin where the first one left off (i.e., at string position five). The
second OUTPUT statement begins placing characters in position one, just as the first
OUTPUT statement did, overwriting the data initially output to the variable by the first
OUTPUT statement.

The string variable’s length header (4 bytes) is updated and compared to the dimensioned
length of the string as characters are output to the variable. If the string is filled before
all items have been output, an error is reported; however, the string contains the first n
characters output (where n is the dimensioned length of the string).

I/O Path Attributes 8-25

Example

The following program outputs string and numeric data items to a string variable and
then calls a subprogram which displays each character, its decimal code. and its position
within the variable.

100 ASSIGN @Crt TO 1 ! CRT is disp. device.

110 !

120 OUTPUT Str_var$;12,"AB",34

130 !

140 CALL Read_string(@Crt,Str_var$)

150 !

160 END

170 !

180 !

190 SUB Read_string(@Disp,Str_var$)

200 !

210 ! Table heading.

220 OUTPUT @Disp;"--------------------- "

230 OUTPUT @Disp;"Character Code Pos."

240 OUTPUT @Disp;"--------- ---- ----t

250 Dsp_img$="2X,4A,5X,3D, 2X, 3D"

260 !

270 ! Now read the string’s contents.

280 FOR Str_pos=1 TO LEN(Str_var$)

290 Code=NUM(Str_var$[Str_pos;1])

300 IF Code<32 THEN ! Don’t disp. CTRL chars.
310 Char$="CTRL"

320 ELSE

330 Char$=Str_var$[Str_pos;1i] ! Disp. char.
340 END IF

350 !

360 OUTPUT @Disp USING Dsp_img$;Char$, Code,Str_pos
370 NEXT Str_pos

380 !

390 ! Finish table.

400 OUTPUT @Disp;"--------=---=-------- "
410 OUTPUT @Disp ! Blank line.

420 !

430 SUBEND

8-26 1/0 Path Attributes

~)

Character Code Pos.
32 1
1 49 2
2 50 3
s 44 4
A 65 5
B 66 6
CTRL 13 7
CTRL 10 8

32 9
3 51 10
4 52 11
CTRL 13 12
CTRL 10 13

Figure 8-4. Final Display

Outputting data to a string and then examining the string’s contents is usually a more
convenient method of examining output data streams than using a mass storage file. The
preceding subprogram may facilitate the search for control characters, because they are
not actually displayed, which could otherwise interfere with examining the data stream.

1/O Path Attributes 8-27

Example

The following example program shows how outputs to string variables can be used to
reduce the overhead required in ASCII data files. The first method of outputting data to
the file requires as much media space for overhead as for data storage. due to the two-byte
length header that precedes each item sent to an ASCIH file. The second method uses
more computer memory. but uses only about half of the storage-media space required by
the first method. The second method is also the only way to format data sent to ASCII
data files.

100 PRINTER IS 1

110 !

120 ! Create a file 1 record long (=256 bytes).
130 ON ERROR GOTO File_exists

140 CREATE ASCII "TABLE", (1

150 File_exists: OFF ERROR

160 !

170 !

180 ! First method outputs 64 items individually..
190 ASSIGN @Ascii TO "TABLE"

200 FOR Item=1 TO 64 ! Store 64 2-byte items.

210 OUTPUT @Ascii;CHR$ (Item+31)&CHR$(64+RND*32)
220 STATUS QAscii,5;Rec,Byte
230 DISP USING Image_1;Item,Rec,Byte

240 NEXT Item

8-28 /0 Path Attributes

250 Image_1: IMAGE "Item ",DD," Record ",D," Byte "

260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

DISP
Bytes_used=256*(Rec-1)+Byte-1
PRINT Bytes_used;" bytes used with 1st method."
PRINT
PRINT
!
!
! Second method consolidates items.
DIM Array$(1:64)[2],String$[128]
ASSIGN @Ascii TO "TABLE"
!
FOR Item=1 TO 64
Array$ (Item)=CHR$ (Item+31) &CHR$ (64 +RND*32)
NEXT Item
!
OUTPUT String$;Array$(*); ! Consolidate.
OUTPUT @Ascii;String$! OUTPUT as 1 item.
!
STATUS @Ascii,5;Rec,Byte
Bytes_used=256*(Rec-1) +Byte-1
PRINT Bytes_used;" bytes used with 2nd method."
|

END

,3D

The program shows many of the features of using ASCII files and string variables. The
first method of outputting the data items shows how the file pointer varies as data
are sent to the file. Note that the file pointer points to the next file position at which a
subsequent byte will be placed. In this case. it is incremented by four by every QUTPUT
statement (since each item is a two-byte quantity preceded by a two-byte length header).

The program could have used a BDAT file. which would have resulted in using slightly
less disc-media space; however, using BDAT files usually saves much more disc space than
would be saved in this example. The program does not show that ASCII files cannot be
accessed randomly: this is one of the major differences between using ASCII and BDAT

files.

1/0O Path Attributes

8-29

Example

Outputs to string variables can also be used to generate the string representation of a
number. rather than using the VAL$ function (or a user-defined fuuction subprogram).
The main advantage is that yvou can explicitly specify the number’s iimage while still
using only a single program line. The following program compares the string generated
by the VAL$ function to that generated by outputting the number to a string variable.

100 X=12345678

110 !
120 PRINT VAL$(X)
i3 !

140 OQUTPUT Val$ USING "#,3D.E";X
150 PRINT Val$

160 !

170 END

Printed Results

1.2345678E+7
123 E+05

Entering Data From String Variables

Data are entered from string variables in mneh the same manner ax out put to the variable.
All ENTER statements that use string variables as the data source interpret the data
according to the FORMAT ON attribute. Data is read from the variable beginning at the
first string position: if subsequent ENTER statements read characters from the variable.
the read also begins at the first position. If more data are to be entered from the string
than are contained in the string. an error is reported: however. all data entered into
the destination variable(s) before the end of the string was encomuntered remain in the
variable(s) after the error occurs.

When entering data from a string variable. the computer keeps track of the number of
characters taken from the variable and compares it to the string length. Thus. statement-
termination conditions are not required: the ENTER statement automaticallv terminates
when the last character ix read from the variable. However. item terminators are still
required if the items are to be separated and the lengths of the items are not known. If
the length of cach item is known. an immage can be used to separate the items.

8-30 1/0 Path Attributes

Example

The following program shows an example of the need for either item terminators or
length of each item. The first item was not properly terminated and caused the second
item to not be recognized.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

OUTPUT String$;"ABC123"; ! OUTPUT w/o CR/LF.

! Now enter the data.
ON ERROR GOTO Try_again
!
First_try: !
ENTER String$;Str$,Num
OUTPUT 1;"First try results:"
OUTPUT 1;"Str$= ";Str$, "Num=";Num
BEEP ! Report getting this far.
STOP
!
Try_again: OUTPUT 1;"Error";ERRN;" on 1st try"
OUTPUT 1;"STR$=";Str$, "Num=";Num
OUTPUT 1

OFF ERROR ! The next one will work.

!
ENTER String$ USING "3A,3D";Str$,Num
OUTPUT 1;"Second try results:"
OUTPUT 1;"Str$= ";Str$,"Num=";Num
!
END

This technique is convenient when attempting to enter an unknown amount of data or
when numeric and string items within incoming data are not terminated. The data can
be entered into a string variable and then searched by using images.

Example

ENTERs from string variables can also be used to generate a number from ASCII nu-
meric characters (a recognizable collection of decimal digits, decimal point, and exponent
information), rather than using the VAL function. As with outputs to string variables,
images can be used to interpret the data being entered.

30
40
50
60
70

Number$="Value= 43.5879E-13"
!

ENTER Number$;Value

PRINT "VALUE=";Value

END

I/O Path Attributes

8-31

Taking a Top-Down Approach

Thix application shows Liow the computer’s BASIC-Liguage structure may help <implhifv
using a “top-down” programming approach. In this example. a simple algorithm is first
designed and then expanded into a program in a general-to-specific. stepwise manner.
The top-down approach shown here begins with the general steps and works toward the
specifie details of each step i an orderly fashion.

One of the first things vou should do when programming computers is to plan the proce-
dure before actually coding any software. At thix point of the design process. vou need
to have a good understanding of both the problem and the requirements of the program.
The general tasks that the program is to accomplish must be described before the order
of the steps can be chosen. The following simple example goes through the steps of
taking this top-down approach to solving the problem.

Problem: write a prograiu to mounitor the temperature of an experimental oven for one
hour.

Step 1. Verbally describe what the program must do in the most general terms.
You may want to make a chart or draw a picture to help visualize what is
required of the program.

[nitialize the monitoring equipment. Start the timer and turn the oven on. Begin mon-

itoring oven temperature and measure it every minute thereafter for one hour. Display
the current oven temperature. and plot the temperatures vs. time on the CRT.

8-32 1/0O Path Attributes

Step 2. Verbally describe the algorithm. Again, try to keep the steps as general as
posstble.

This process is often termed writing the “pseudo code”. Pseudo code is merely a written
description of the procedure that the computer will execute. The pseudo code can later
be translated into BASIC-language code.
Setup the equipment.
Set the oven temperature and turn it on.
Initialize the timer.
Perform the following tasks every minute for one hour.
Read the oven temperature.
Display the current temperature and elapsed time.
Plot the temperature on the CRT.
Turn the oven and equipment off.

Signal that the experiment is done.

Step 3. Begin translating the algorithm into a BASIC-language program.

The following program follows the general flow of the algorithm. As you become more
fluent in a computer language, you may be able to write pseudo code that will translate
more directly into the language. However, avoid the temptation to write the initial
algorithm in the computer language, because writing the pseudo code is a very important
step of this design approach!

I/O Path Attributes 8-33

100 ! This program: sets up measuring equipment,
110 ! turns an oven on, and initializes a timer.
120 ! The oven’s temperature is measured every
!
]
!

130 ! minute thereafter for one hour. The temp.

140 ! readings are displayed and plotted on the

150 ! CRT.

160 !

170 Rdgs_interval=60 ! 60 seconds between readings.
180 Test_length=60 ! Run test for 60 minutes.
190 !

200 CALL Equip_setup
210 CALL Set_temp
220 GOSUB Start_timer

230 !

240 Keep_monitoring: ! Main loop.
250 !

260 GOSUB Timer

270 !

280 IF Seconds<=Rdgs_interval THEN
290 GOTO Keep_monitoring
300 ELSE

310 Minutes=Minutes+1

320 CALL Read_temp

330 CALL Plot_temp

340 END IF

350 !

8-34 1/0 Path Attributes

360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620

IF Minutes<Test_length THEN

ELSE

GOTO Keep_monitoring

CALL 0ff_equip

PRINT "End of experiment"
END IF

!
STOP
!

!
! First the subroutines.
!

Start_timer: Init_time=TIMEDATE

Timer:

END
!

PRINT
PRINT
PRINT

RETURN
!

"Timer initialized."

Seconds=TIMEDATE-Minutes*60-Init_time
DISP USING Time_image;Minutes,Seconds
Time_image: IMAGE "Time: ",DD," min *",DD.D," sec"

RETURN
!

[/O Path Attributes

8-35

630 !

640 ! Now the subprograms.

650 !

660 SUB Equip_setup

670 PRINT "Equipment setup."

680 SUBEND

690 !

700 SUB Set_temp

710 PRINT "Oven temperature set."
720 SUBEND

730 !

740 SUB Read_temp

750 PRINT "Temp.= xx degrees F ";
760 SUBEND

770 !

780 SUB Plot_temp

790 PRINT "(plotted)."

800 PRINT

810 SUBEND

820 !

830 SUB 0ff_equip

840 PRINT

850 PRINT "Equipment shut down."
860 PRINT

870 SUBEND

At this point, you should run the program to verify that the general program steps are
being executed in the desired sequence. If not. keep refining the program flow until all
steps are executed in the proper sequence. This s also a very important step of your
design process: the sooner vou can verify the flow of the main program the better. This
approach also relieves you of having to set up and perform the actual experiment as the
first test of the program.

Notice also that some of the program steps use CALLs while others use GOSUBs. The
general convention used in this example is that subprograms are used only when a pro-
gram step is to be expanded later. GOSUBs are used when the routine called will
probablyv not need further refinement. As the subprograms are expanded and refined.
cach can be separately stored and loaded from disc files. as shown in the next step.

8-36 1/0 Path Attributes

Step 4. After the correct order of the steps has been verified, you can begin program-
ming and verifying the details of each step (known as stepwise refinement).

The computer features a mechanism by which the process of expanding each step can be
simplified. With it, each subprogram can be expanded and refined individually and then
stored separately in a disc file. This facilitates the use of the top-down approach. Each
subprogram can also be tested separately, if desired.

In order to use this mechanism, first save or store the main program; for instance, execute:
SAVE "MAIN1"

Then, isolate the subprogram by deleting all other program lines in memory. In this
case, executing:

DEL 10,650
and
DEL 700,900

would delete the lines which are not part of the “Equip_setup” subprogram currently in
memory.

660 SUB Equip_setup

670 PRINT "Equipment setup."
680 SUBEND
690 !

At this point, two steps can be taken:
e Write the temperature-measuring device’s initialization routine.

e Write a test routine that simulates the device by returning a known set of data.

I/O Path Attributes 8-37

The "Equip_setup” subprograni might be expanded as follows to create a disc file and fill
it with a known set of temperature readings so that the program can be tested without
having to write. verify. and refine the routine that will set up the temperature-measuring
device. In fact. you don’t even need the device at this point.

100 CALL Equip_setup(@Temp_meter, Temp)

110 END

120 !

130 SUB Equip_setup(@Temp_meter,Temp)

140 !

150 ! This subroutine will set up a BDAT file as
160 ! be used to simulate a temperature-measuring
170 ! device. Refine to set up the actual

180 ! equipment later.

190 !

200 ON ERROR GOTO Already
210 CREATE BDAT "Temp_rdgs",1
220 !

230 ! Output fictitious readings.

240 ASSIGN Q@Temp_meter TO "Temp_rdgs"

250 FOR Reading=1 TO 60

260 OUTPUT QTemp_meter;Reading+70

270 NEXT Reading

280 ASSIGN QTemp_meter TO * ! Reset pointer.
|

290 !

300 Already: OFF ERROR

310 !

320 ASSIGN @Temp_meter TO "Temp_rdgs"
330 !

340 PRINT "Equipment setup."

350 SUBEND

Notice that two pass paramneters have been added to the formal parameter list. These
parameters allow the main program (and and subprograms to which these parameters
are passed) to access this 1/O path and variable. The CALL statements in the main
program must be changed accordingly before the main program can be run with these
subprograms. These parameters can also be passed to the subprograms by declaring
them in variable comunon (that is. by including the appropriate COM statements).

After the subprogram has been expanded. tested. and refined. you should store it in a
file with the STORE statement (not SAVE). For instance. execute:

STORE "SETUP1"

8-38 I/0 Path Attributes

When the main program is to be tested again, the “Equip_setup” subprogram can be
loaded back into memory by executing:

LOADSUB ALL FROM "SETUP1"

Since this subprogram names an I/O path which is to be used to simulate the
temperature-measuring device, the “Read_remp” subprogram can also be expanded at
this point. The “Read_temp” subprogram only needs to enter a reading from the measur-
ing device (in this case, the disc file which has been set up to simulate the temperature-
measuring device.) The following program shows how this subprogram might be ex-
panded.

740 SUB Read_temp (QTemp_meter,Temp)

741 ENTER Q@Temp_meter;Temp
750 PRINT "Temp. =";Temp;" degrees F. "
760 SUBEND

This subprogram can also be stored in a disc file by executing:
STORE “"READ_T1"

Now that both of the expanded subprograms have been stored, the main program can
be retrieved and modified as necessary. Execute:

LOAD "MAIN1"
or
GET "MAIN1"

Add the pass parameters to the appropriate CALL statements (lines 200 and 320). Since
the main program still contains the initial versions of the expanded subprograms, these
two subprograms should be deleted. Executing these two statements:

DELSUB "Equip_setup"
and

DELSUB "Read_temp

will delete only these two subprograms and leave the rest of the program intact.

I/O Path Attributes 8-39

Now that the main program has been modified to CALL the expanded/refined subpro-
grams, you may want to store (or save) a copy of the program on the disc. This will
relieve you of the effort of deleting the old subprograms from the main program every
time it is retrieved. Execute:

STORE "MAIN2
or
SAVE "MAIN2"

Now load the subprograms into memory by executing:

LOADSUB ALL FROM "SETUP1"
and
LOADSUB ALL FROM "READ_T1"

Running the program first “sets up” the device simulation and then accesses the file as
it would access the actual temperature-measuring device.

Conclusion

As you can see, this approach can be used very easily with Series 200/300 BASIC.
In addition, the “Read_temp” subprogram does not have to be revised to access the
real device. Only “Equip_setup” needs to be changed to assign the I/O path name
“@Temp_meter” to the real device. This unified I/O scheme makes this system very
powerful and reduces “throw away” code when using this “top down™ approach.

8-40 1/0 Path Attributes

Table of Contents

Chapter 9: Advanced Transfer Techniques

The Purpose of Transfersccoiiiiiiin i 9-1
Overview of Buffers and Transfers........ 9-2
Inbound and Outbound Transfers 9-2
Supported Transfer Sources and Destinations 9-3
Examples of Transfer 9-4
A Closer Look at Buffers. i 9-5
Typesof Buffers i 9-5
Creating Named Buffers 9-5
Assigning 1/0O Path Names to Named Buffers....................... .. 9-6
Assigning 1/O Path Names to Unnamed Buffers 9-6
Buffer-Type Registers i i i 9-7
Buffer Size Registero 9-7
Buffer Pointers o 9-8
A Closer Look at Transfers......... ... i ... 9-12
Transfer Methods i 9-12
OUTPUT and ENTER and Buffers 9-13
Transfer Formatting 9-13
Transfer Termination i 9-13
Choosing Transfer Parameters 9-14
Continuing Transfers Indefinitely................................... 9-14
Waiting for a Transfer to End (Non-Overlapped Transfers) 9-15
Continuous Non-Overlapped Transfers 9-15
Transferring a Specified Number of Bytes 9-15
Delimiter Characters i 9-15
Using the END Indication with Transfers 9-16
Transferring Records 9-16
Multiple Termination Conditions. 9-16
TRANSFER Records and Termination 9-17
Transfer Event-Initiated Branching 9-18
Terminating a Transfer 9-20
More Transfer Examples 9-22
Special Considerations i 9-26
Transfer with Care 9-26
Error Reporting ... 9-29

Suspended Transfers 9-30

Transfer Performance 9-31

SECtOr SIZ0 . o oo 9-31
Internal Disc Drives of Models 226 and 236 Computers 9-31
Overlapped Transfers and Dise Drives 9-31
Transfer Methods and Rates. 9-34
Restrictions 9-36
Interactions with Other Keywords. 9-37
Changing Buffer Attributes 9-39

Buffer Status and Control Registers 9-40

Advanced Transfer Techniques

This chapter discusses data transfer techniques available with the TRANS binary. While
many applications will not need the specialized techniques presented here, these tech-
niques aid in communicating with very slow and very fast devices.

The Purpose of Transfers

When using OUTPUT and ENTER to communicate with peripheral devices, special
problems can arise. Normally, program execution does not leave the statement until all
data items are satisfied; therefore, a very slow device will keep the computer waiting
between each byte or word. A great amount of time may be wasted while the com-
puter waits for the device to be ready for the next item. Another problem exists when
communicating with a very fast device. The device may attempt to send data faster
than the computer can accept it. To overcome both problems, an alternate method of
communication has been implemented—the TRANSFER statement.

The TRANSFER statement allows you to exchange information with a device or file
through I1/O paths. The most important difference between using TRANSFER and the
regular methods of communication (OUTPUT and ENTER) is that a transfer can take
place concurrently with continued program execution. Thus a transfer can be thought
of as a “background” process or an “overlapped” operation. This has far-reaching con-
sequences that affect the behavior of the BASIC system.

Advanced Transfer Techniques 9-1

Overview of Buffers and Transfers

Before any transfer takes place, an area of memory is reserved to hold the data being
transferred (examples are shown on the following pages). This area of memory is called
a buffer. Defining a buffer is somewhat analogous to creating a high-speed device inside
the computer. Two advantages are gained by simulating a device in memory:

e The buffer is fast enough to accept incoming data from almost any device.

e The actual transfer operation can be handled concurrently with continued program
execution (that is. it is a “background process” which can be “overlapped™ with
concurrent processing of other BASIC program lines).

Inbound and Outbound Transfers

Every transfer will use a buffer as either its source or its destination. From the buffer's
point of view, there are two types of transfers.

An inbound transfer moves data from a device or file into the buffer.

device TRANSFER ENTER
or buffer praor?arglrg
file PARITY CONVERT Y
Figure 9-1. Inbound Transfer
An outbound transfer moves data from the buffer to a device or file.
TP
program QUTPUT buffer TRANSFER device
variable utte or
EOL CONVERT PARITY file

Figure 9-2. Outbound Transfer

9-2 Advanced Transter Techiniques

Data logging is the process of combining inbound and outbound transfers.

device TRANSFER TRANSFER device
or buffer or
file file

Figure 9-3. Data Logging

Supported Transfer Sources and Destinations
TRANSFER operations are allowed for the following types of interfaces and files:

Interfaces Files
HP-IB (98624, built-in) BDAT
GPIO (98622) HPUX

Serial (98626, 98644, built-in)
Datacomm (98628)

Restrictions
A transfer cannot involve a CRT display, a keyboard, a BCD interface, or a DC600
cartridge-tape drive.

One and only one buffer can be specified in a TRANSFER statement. Transfers from
buffer to buffer or from device to device are not allowed.

Transfers to and from files on volumes with 512-byte sectors (formatting option 2) is not
allowed.

Further restrictions are listed in the “Restrictions” section of this chapters.

Advanced Transfer Techniques 9-3

Examples of Transfer

Here are two complete programs that show the steps in creating and using buffers

following paragraphs describe the individual steps of the programs.

10 DIM Text$[1025] BUFFER
20 ASSIGN @Buff TO BUFFER Text$

30 ASSIGN @Print TO PRT ! "PRT’ returns 701 for printer
40 !

50 FOR I=1 TO 25

60 OUTPUT @Buff;"How many times do I need to print this?"
70 NEXT I

80 !

90 TRANSFER @Buff TO @QPrint ! Start the transfer

100 ! Transfer continues as
110 FOR I=1 TO 450 a "background" process.
120 PRINT TABXY(I MOD 15,0);"As many times as it takes."
130 NEXT I

140 END

. The

Lines 10 and 20 create a named buffer. Line 30 assigns a printer that will be used as
the destination for the transfer. The OUTPUT statement in line 60 fills the buffer with
data (25 lines of 41 characters. including the CR/LF EOL sequence). Line 90 contains
the TRANSFER statement that sends the data in the buffer to the printer. Running the
program shows the overlapped operation of transfers. Buffered data is being printed on

the printer while the program prints on the CRT.

A similar technique can be used for inbound transfers. as shown in the following example

program.

10 DIM Text$[256] BUFFER,A$(100) [80]
20 ASSIGN @Buff TO BUFFER Text$

30 ASSIGN @Device TO 12 ! Some device at select code 12

40 !

50 TRANSFER @Device TO @Buff;CONT ! Start the transfer
60 !

70 FOR I=1 TO 100

80 ENTER @Buff;A$(I) ! Enter the items

90 NEXT I

100 ABORTIO @Device | Terminate TRALSFER
110 !

120 END

A named buffer is created in lines 10 and 20. A device is assigned in line 30 that will
be used as the source for the transfer. The buffer is filled by the TRANSFER in line 50

and the ENTER statement in line 20 empties the buffer.

9-4 Advanced Transfer Technigues

A Closer Look at Buffers

A buffer is a section of computer memory reserved to hold the data being transferred.

Types of Buffers
Two types of buffers can be created and assigned to 1/O path names.
e A named buffer is a string scalar, or an INTEGER, COMPLEX, or REAL array.

100 DIM Num_array(1:512) BUFFER ! Named buffer.
110 ASSIGN @Buff TO BUFFER Num_array

e An unnamed buffer is a section of memory which has no associated variable name.

100 ASSIGN @Buff TO BUFFER [1024] ! Unnamed buffer.

A named buffer can also be accessed by its variable name (for instance, by using OUT-
PUT or assigning the variable). However, an unnamed buffer can only be accessed by
its I/O path name.

Creating Named Buffers

Named buffers are buffers which use variables declared in DIM, COM, COMPLEX,
REAL, or INTEGER statements. Note that a buffer cannot be allocated by an ALLO-
CATE statement. Named buffers are declared by placing the keyword BUFFER after
the variable name. For instance:

100 DIM A$[256] ,B$[256] BUFFER,C$
110 COM Block(1000),Temp(100) BUFFER,INTEGER X(10,10) BUFFER,Y,Z

120 REAL Fools_buff(1000), Real_buff(10) BUFFER, No_buff (10)

Only the variable name immediately preceding the keyword BUFFER becomes a buffer.
In the first example statement, B$ is a buffer while A$ and C$ are not buffers. Declaring
a variable as a buffer does not prevent it from being used in its normal manner, but care
must be taken not to corrupt the information in the buffer.

Advanced Transfer Techniques 9-5

Assigning 1/O Path Names to Named Buffers
Once a named buffer has been declared. an 1/0O path name can be assigned to it by an
ASSIGN statement. For instance:

ASSIGN @Path TO BUFFER B$

ASSIGN @Buff TO BUFFER X(*)

ASSIGN @Buffer TO BUFFER Real_buff (*)

The T/0 path name can now be used to access the buffer. The kevword BUFFER must
appear in both the variable declaration statement and the ASSIGN statement for named
buffers.

Assigning 1/O Path Names to Unnamed Buffers

Unnamed buffers are created in ASSIGN statements and can only be accessed by their
1/0 path names. The following statement shows a typical unnamed buffer assignment.

ASSIGN QBuff to BUFFER [65536]

The value in brackets indicates the number of bytes of memory to be reserved for the
buffer. This allows a buffer to be larger than the maximum length of 32 767 bytes for
a string variable. Named buffers using REAL. COMPLEX. and INTEGER arrays can
also be larger than 32 767 bytes.

Using unnamed buffers ensures data integrity since the buffer cannot he accessed by a
variable name. Closing an [/O path assigned to an unnamed buffer (ASSIGN @Path TO *)
releases the memory reserved for the buffer. This is similar to the behavior of allocated
variables.

9-6 Advanced Transter Techniques

Buffer-Type Registers

Assigning an I/O path name to a buffer creates a control table. This control table defines
STATUS and CONTROL registers which can monitor and interact with the operation
of the buffer.

All 1/O path names, including I/O path names assigned to buffers, use register 0 to
indicate the path type.

STATUS Register 0 0 = Invalid I/O path name
1 = I/0 path assigned to a device
2 = 1/0 path assigned to a data file
3 = I/0 path assigned to a buffer

Register 0 returns a 3 when the I/O path is associated with a buffer. Register 1 indicates
whether the buffer is named or unnamed.

STATUS Register 1 Buffer type (1=named, 2=unnamed)

Buffer Size Register

Once a buffer has been assigned an I/O path name, Status register 2 returns the buffer’s
capacity (maximum size, in bytes).

STATUS Register 2 Buffer size in bytes

When I/O path names are assigned to buffers, the buffer must exist as long as the I/O
path name is valid. Consider the example of a buffer created locally in a context and
then assigned an I/O path name declared in COM. When execution leaves the local
context, the I/O path name would still be valid but the buffer would no longer exist. If
this happens, an error is reported:

ERROR 602 Improper BUFFER lifetime.

This error also occurs if the buffer and the I/O path name being assigned are in different
COM areas.

Advanced Transfer Techniques 9-7

Buffer Pointers

In order to understand 1/0O involving buffers, it is essential to understand how a buffer
is set up and maintained.

When an ASSIGN statement associates an I/O path name with a buffer, it also creates
and initializes a buffer control table. Among the entries in the control table are two
pointers and a counter which are used to monitor and control all data transfer to and
from the buffer through the 1/O path.

e The buffer fill pointer points to the next byte of the buffer which can accept data.

e The empty pointer points to the next byte of data which can be read from the
buffer.

o The byte count shows the number of bytes currently in the buffer (usually equal to
fill pointer — empty pointer).

The current values of the pointers can be checked by using the STATUS statement with
the following registers.

STATUS Register 3 Current fill pointer
STATUS Register 4 Jurrent number of bytes in buffer
STATUS Register 5 Current empty pointer

9-8 Advanced Transfer Techniques

As data is written into the buffer (OUTPUT or TRANSFER), the fill pointer is advanced
as necessary to point to the next available byte of buffer storage, and the counter is
incremented by the number of bytes added to the buffer.

(inbound) TRANSFER QDevice TO @Buffer

\L fill pointer

..ata data data data data data data data data d..........

a
T empty pointer
(outbound) TRANSFER QBuffer to QFile

Similarly, when data is read from the buffer (ENTER or TRANSFER), the empty pointer
is advanced to point to the first unread byte, and the counter is decremented by the
number of bytes which have been read.

It is also important to realize that the buffers used with the TRANSFER statement are
circular. This means that when the last byte of buffer storage has been accessed, the
system will wrap around and access the first byte of buffer storage. The only thing which
prevents writing more data into the buffer is the byte count (Register 4) to become equal
to the buffer capacity (Register 2). Similarly, once the system has read the data from
the last byte of buffer storage, it will next read from the first byte, but reading must
cease when the byte count reaches zero.

Both full and empty buffers have the fill pointer and the empty pointer referencing
the same byte of buffer storage. The system distinguishes between full and empty by
examining the byte count. If it is zero, the buffer is empty. If it is equal to the buffer’s
capacity, the buffer is full.

It is impossible to perform any operation which would cause the byte count to take on a
value less than zero or greater than the buffer capacity. Attempting to OUTPUT more
data into a full buffer or ENTER data from an empty buffer produces:

ERROR 59 End of file or buffer found
Since fill and empty pointers are updated independently of each other and a TRANSFER

can execute concurrently with other statements, it is possible for one TRANSFER to be
putting data into the buffer while another TRANSFER is removing data.

Advanced Transfer Techniques 9-9

The amount of data which can be moved by a single transfer operation is not limited
by the buffer’s capacity. When two TRANSFER statements involving the same buffer
are of comparable speed and execute concurrently, the buffer's fill and empty pointers
may never reach the empty or full state. If the two TRANSIFER statements execute
at different speeds because of the transfer mode which must be used or because of the
throughput capacity of the devices involved. it is still possible to keep two TRANSFER
statements running concurrently by specifying the CONT parameter on both (discussed
in subsequent sections). CONT directs a transfer not to terminate when the buffer
becomes full or empty. Instead. the transfer “goes to sleep” until the buffer is again
ready for the transfer process to continue.

Accessing Named Buffers via Variable Names

If you plan to transfer data through a buffer without using the /O path name (such as by
using the string varible’s name or numeric array variable’s name). it will be necessary to
change the values of the pointers. CONTROL registers 3, 4, and 5 control the positioning
of the pointers.

If either the fill or empty pointer is changed the appropriate pointer is modified and
no other action is taken. Assuming no active transfer. if the byte count is changed.
the empty pointer is set to zero and the fill pointer is set to correspond to the length
specified. If a transfer is active in both directions, you cannot change the byte count or
either pointer. If an inbound transfer is active. the empty pointer will be adjusted to set
the byte count as specified. Similarly, if an outbound transfer is active. the fill pointer
will be adjusted to match the byte count specified.

When the byte count is set along with either the fill or empty pointer. the pointer is
moved to the position specified and the remaining pointer is adjusted to correspond to
the specified length.

If all three pointers are changed, they must be a consistent set to prevent the following
error:

ERROR 19 Improper value or out of range.

If both fill and empty pointers are set to the same value. the length must be either zero
(buffer empty) or the maximum buffer length (buffer full).

9-10 Advanced Transfer Techniques

Attempting to change a pointer used by an active TRANSFER will result in the error:

ERROR 612 Buffer pointer(s) in use

The fill pointer can be changed during an outbound transfer, but not during an inbound
transfer. Similarly, the empty pointer can be changed during an inbound transfer, but
not during an outbound transfer.

Note

When string variables are used as buffers, the length of the string
should not be changed. Although this does not affect the operation
of the buffer, it can prevent access to the contents of the buffer by
the variable name.

Advanced Transfer Techniques 9-11

A Closer Look at Transfers

Once a buffer has been created and an I/O path name assigned to it, data can be
transferred into or out of the buffer by a TRANSFER statement. Every TRANSFER
will need a buffer as either its source or destination. For example:

TRANSFER @Source TO @Buffer
or
TRANSFER @Buffer TO @Destination

From the buffer’s point of view, there are two types of transfers; inbound and outbound.

e An inbound transfer will move data from a device or file into the buffer, updating
a fill pointer and byte count as it proceeds.

e An outbound transfer will remove data from the buffer, updating an empty pointer

and byte count as necessary.

For a complete explanation, see the “Closer Look at Buffer Pointers” section near the
end of this chapter.

Transfer Methods

The actual method of transfer is device dependent and is chosen automatically by the
BASIC system (you cannot explicitly choose a method). The three possible transfer
methods are:

e DMA (direct memory access)
e I'HS (fast handshake)
e INT (interrupt)

Descriptions of each method and how the system chooses one for each TRANSFER are
covered in the section called “Transfer Methods and Rates™.

9-12 Advanced Transfer Techniques

OUTPUT and ENTER and Buffers

The OUTPUT and ENTER statements may be used to interact with the data sent
through the buffer. If the I/O path name of the buffer is used as the source for an
ENTER or the destination for an OUTPUT, the control table (pointers, size, etc.) will
be updated automatically.

Accessing the data in a named buffer by using the variable name will not update the

buffer pointers. This could easily lead to corruption of the data in the buffer.

at
au

Transfer Formatting

OUTPUT and ENTER statements can format data according to a given IMAGE list
and transform the data according to the attributes specified in the ASSIGN statement.
No data formatting or transformation occurs, however, when data are transferred by a
TRANSFER statement.

Transfer Termination

The ON EOT (End Of Transfer) statement allows you to define a branch to be taken
upon the completion of a transfer. When the data being transferred has been divided
into records, the ON EOR (End Of Recordr) statement can be used to define a branch
to be taken after each record is transferred.

Note

An active TRANSFER will not be terminated by stopping or paus-

ing a program. You may use ((ReSET]) or ABORTIO to
terminate a TRANSFER prematurely. The [Break] ([CLR 170]) key
will not terminate a TRANSFER.

Visually Determining Transfer Status

If a TRANSFER is active while a program is paused, the “I/O” indicator (I\0 or Trans-
fer) is displayed in the lower-right corner of the CRT instead of the “Pause” indicator (-
or Paused). See the chapter entitled “Introduction to the System” in Installing, Using,
and Maintaining the BASIC System for details of this status indicator.

Advanced Transfer Techniques 9-13

Choosing Transfer Parameters

For a standard inbound transfer. data from the device (or file) is placed in the buffer
and the TRANSFER is deactivated when the buffer is full. For an outbound transfer.
all data is removed from the buffer and the TRANSFER is deactivated when the buffer
is empty.

Continuing Transfers Indefinitely
To allow a TRANSFER to continue indefinitely. the CONT parameter can be specified.

TRANSFER @Source TO @Buffer;CONT

Several interesting things happen when a continuous TRANSFER is specified. Execution
cannot leave the current program context unless the buffer and I/0O path name are in
COM (or passed as parameters). and you will not be able to LOAD, GET, or EDIT a
program. During program development, you can terminate a transfer by [RESET] ([Reset])
or ABORTIO @Non_buff (use the I/O path name assigned to either the device or file).
ABORTIO can be used in a program or executed from the keyboard.

A continuous TRANSFER can also be canceled by writing to a CONTROL register (use
the I/O path name assigned to the buffer). Note that the CONTROL register only
cancels the continuous mode. The TRANSFER is still active until the buffer is full or
empty.

CONTROL @Buff,8;0 for inbound transfers
CONTROL @Buff,9;0 for outhound transfers

When the CONT parawcter is specified for an inbound trausfer. the transfer fills the
buffer and is then suspended while program execution continues. The suspended transfer
“sleeps™ until another operation removes some data from the buffer. The transfer then
“wakes up” and continues the transfer operation. When the CONT parameter is specified
for an outbound transfer. the transfer empties the buffer and is then suspended. As soon
as more data are available. the transfer “wakes up”™ and continues the transfer operation.
This process proceeds until the transfer is completed or the CONT mode is canceled.

9-14 Advanced Transfer Techniques

Waiting for a Transfer to End (Non-Overlapped Transfers)

By default, transfers take place concurrently with continued program execution. To defer
program execution until a transfer is complete, use the WAIT parameter. This allows
transfers to take place serially (non-overlapped).

TRANSFER @Source TO @Buffer;WAIT

Continuous Non-Overlapped Transfers

When the WAIT parameter is specified, the program statement following the TRANS-
FER will not be executed until the transfer has completed. By combining both the CONT
and WAIT parameters, a continuous non-overlapped TRANSFER can be defined. How-
ever, this is only legal if you already have an active TRANSFER for the buffer in the
opposite direction.

TRANSFER @Source TO QBuffer;WAIT,CONT

Transferring a Specified Number of Bytes

The COUNT parameter tells a transfer how many bytes are to be transferred. The
following TRANSFER specifies 32 bytes to be transferred. The transfer will terminate
after 32 bytes have been transferred (or when the buffer becomes full for non-continuous
transfers).

TRANSFER @Source TO @Buffer;COUNT 32

Delimiter Characters

The DELIM parameter can be used to terminate an inbound transfer when a specified
character is received. The following TRANSFER will terminate when the delimiter
(comma) is sent or when the buffer is full (unless the CONT parameter is specified).
The DELIM parameter is not allowed on outbound transfers or WORD transfers. If the
DELIM string is the null string, the DELIM clause is ignored. This allows programmatic
disabling of DELIM checking. An error results if the DELIM string contains more than
one character.

TRANSFER @Source TO @Buffer;DELIM ","

Advanced Transfer Techniques 9-15

Using the END Indication with Transfers

The END parameter can also be used to terminate a TRANSFER. On an outbound
transfer on an HP-IB interface, for example. specifying END causes an End-or-Identify
(EOI) signal to be sent with the last character of the transfer.

TRANSFER @Buffer TO @Device;END

The END parameter is discussed in detail following the introduction of the RECORDS
parameter.

Transferring Records

It is often desirable to divide the data into records. The RECORDS parameter is then
used to indicate the size of cach record.

Whenever RECORDS is used. there must be a parameter which signals the end of a
record. The EOR (End-Of-Record) parameter can use COUNT. DELIM. or END (dis-
cussed later) to signify the end of a record. For example. the following statement specifies
4 records of 15 bytes per record are to be transferred.

TRANSFER @Source TO @Buffer;RECORDS 4,EOR(COUNT 15)

Multiple Termination Conditions

When multiple termination conditions are specified. the transfer will terminate when any
one of the conditions occurs.

TRANSFER @Source TO @Buffer;COUNT 128,DELIM ";",END
TRANSFER @Source TO @Buffer;RECORDS 100,EOR(COUNT 15, END)

As in all transfer operations. unless the CONT parameter is specified. the TRANSFER
will also terminate when the buffer is full or empty.

The END parameter specifies an inbound transfer will be terminated by receiving an
interface-dependent signal (for devices) or by encountering the current end-of-file (for
files). Some devices on the HP-IB send an EOI concurrently with the last byte of data.
["nless the END parameter is specified. receiving an EOI will generate an error. For files.
cencountering the end-of-file will generate an error unless the LND parameter is specified.

Using the END parameter with an outbound transfer on the HP-IB will result in the
EOI signal being sent concurrently with the last byte of the transfer. If EOR(END) is
specified. EOI will be sent with the last byte of each record. For files. END will cause
the end-of-file pointer to be updated at the end of the transfer. Using EOR(END) will
cause the pointer to be updated at the end of each record.

9-16 Advanced Transfer Techniques

TRANSFER Records and Termination
The following tables show the different system responses to the END and EOR(END)

parameters.
Table 9-1. Inbound TRANSFER
Parameter File Device

No END Terminate prematurely. Terminate prematurely.
Bit 3 of Register 10 is set. | Bit 3 of Register 10 is set.
Error 59 waiting. Error 59 waiting.

END Terminate normally. Bit 3| Terminate normally. Bit 3
of Register 10 is set. of Register 10 is set.

EOR(END) Finish current record. ON [Terminate normally. Bit 3
EOR triggered. Start new | of Register 10 is set.
record.

END,EOR(END) | Terminate normally. Bit 3 [Terminate normally. Bit 3
of Register 10 is set. of Register 10 is set.

An error is logged when a transfer terminates prematurely. For overlapped transfers, this
error is “waiting” and will be reported the next time the non-buffer I/O path name is
referenced. At that time, any ON ERROR or ON TIMEOUT branches will be triggered.
(If the WAIT parameter is specified, the error is reported immediately.) See “Error
Reporting” for further explanation.

Advanced Transfer Techniques

9-17

An ON END branch will be triggered only if the END parameter is not specified.

Table 9-2. Outbound TRANSFER

Parameter File Device
No END No special action. No special action.
END Update EOF pointer after [Send an EOI with the last
TRANSFER is finished. byte of each record.
EOR(END) Update EOF pointer after | Send an EOI with the last
each record. byte of each record.

END,EOR(END) | Update EOF pointer after | Send an EOI with the last
each record and when the | byte of each record and
TRANSFER is finished. with the last byte of the
TRANSFER.

For an outbound transfer to a device, no special action is taken if the device does not
support EOIL. The Serial, Datacomm and GPIO interfaces do not support EOI.

Transfer Event-Initiated Branching

Two types of event-initiated branches can be defined for a transfer.

e The ON EOT statement defines and enables a branch to be taken upon completion
of a transfer.

e The ON EOR statement defines and enables a branch to be taken every time a
record is transferred.

ON EOT @Device CALL Process
ON EOR QFile GOTO Parse

No ON EOR branches will be triggered unless the EOR parameter is specified in the
TRANSFER statement and an item is transferred which satisfies one of the end-of-record
conditions (COUNT, DELIM, or END).

To ensure that a branch receives service, the transfer must complete before attempting
to leave the context in which the branches are defined. If the I/O path names are
local to a program context. encountering SUBEND. SUBEXIT. or RETURN before the
transfer has completed will cause the context switch to be deferred until completion of
the transfer. If this happens. any ON EOR or ON EOT branch will not be serviced.

9-18 Advanced Transfer Techniques

Certain statements wait until a transfer is completed before they are executed. A com-
plete list of these statements is provided later in this chapter. These statements can be
used to prevent overlapped operation or defer a context switch until completion of the
transfer. For example, if the following I/O path names were used in a TRANSFER,
either of the following statements will cause program execution to wait until the transfer
is finished.

ASSIGN QPath TO * (can be a device, file, or buffer)
WAIT FOR EOT @Non_buff (can be a device or file)

When a TRANSFER is used inside a loop, the entire loop may execute before the transfer
has completed. If this happens, the second execution of the TRANSFER statement
will wait until the completion of the first. Any event-initiated branch defined for the
TRANSFER (ON EOT or ON EOR) will be serviced.

While the WAIT parameter can be specified to ensure completion of a transfer before
proceeding with the next statement (thus ensuring a branch can be serviced), this defeats
any advantage of overlapped operation.

The WAIT FOR statement can be used to allow overlapped operation up to the point

where the WAIT FOR statement is encountered. The WAIT FOR statement ensures the
servicing of an event-initiated branch defined for the end-of-transfer or end-of-record.

Advanced Transfer Techniques 9-19

Terminating a Transfer

A transfer is usually terminated by satisfying the conditions specified by the transfer
parameters. There are times, especially during program development. when you may
wish to prematurely terminate (abort) a transfer.

A transfer can be aborted by pressing the ((RESET]) key. which will stop the
program, close all I/O paths. and destroy all buffer pointers.

To abort a transfer without stopping the program. the ABORTIO statement can be used
from the program or the keyboard. For example:

ABORTIO @Non_buff

This statement will terminate any active transfer associated with the 1/O path. ABOR-
TIO has no effect if a transfer is not in progress. Using ABORTIO does not easure all
data in the buffer is transferred. but it does leave the buffer pointers and byte count in
their correct state.

Note

If the destination of a TRANSFER is a mass storage file. aborting
a TRANSFER with ABORTIO will not cause data already placed
in the disc buffer to be written to the disc. Up to 255 bytes of data
could be lost.

While most transfers are terminated by fulfilling the conditions specified by the param-
eters, a continuous TRANSFER (using the CONT parameter) requires a bit more ettort
to terminate.

To terminate a continuous TRANSFER without leaving data in the buffer. first cancel
the continuous mode (with CONTROL). then wait for the transfer to complete. Use
register 8 for inbound transfers and register 4 for outbound transfers. The following two
methods are the safest ways of terminating a continuous TRANSFER.

CONTROL @Buff,8;0
WAIT FOR EOT @QPath

CONTROL @Buff,8;0
ASSIGN @QPath TO *

9-20 Advanced Transfer Techniques

Remember that the buffer pointers are not reset to the beginning of the buffer when the
transfer is finished. The RESET statement (RESET @Buff) can be used to reset the
buffer pointers to the beginning of the buffer and the byte count to zero.

Transfers are not terminated by pausing the program. The I/O indicator in the lower-
right corner of the CRT will indicate when a transfer is in progress.

While transfers may continue when the computer is in the paused state, all transfers must
terminate before entering the stopped state. Pressing [Return] or [ENTER], after editing
or adding a program line, will attempt to put the computer in the stopped state. If a
transfer is still in progress, the computer will “hang” until the transfer is completed. To
abort the transfer without performing a hardware reset, press [Break] ((CLR _1/0]) to clear
the [Return] or (ENTER] and then execute an ABORTIO on the non-buffer I/O path name
for each active TRANSFER. If a hardware reset can be tolerated, press ((RESET))
to terminate the transfer.

Advanced Transfer Techniques 9-21

More Transfer Examples

Here is a short program which sets up a continuous transfer from a device through the
buffer to a BDAT file. A program of this type is useful when the data being received
must be saved for later analysis.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

! Data Logging Example
!

! Buffer size should be a multiple of disc sector (256) size.

ASSIGN @Device TO 717 !
ASSIGN @Buf TO BUFFER [512] !
ASSIGN QFile TO "LOG_FILE" !
!

TRANSFER @Device TO @Buf;CONT !
TRANSFER @Buf TO QFile;CONT !
!

! Program execution continues

Assign source device on HPIB
Assign BUFFER
Assign destination file

Continuous TRANSFER
Continuous TRANSFER

! Data logging continues as a "background" task ...

PAUSE ! TRANSFER continues in paused state

END

9-22 Advanced Transfer Techniques

The following program creates and fills a BDAT file and then sends its contents to a
printer. Notice that the OUTPUT statement used to fill the file placed a CR/LF at the
end of each record. The TRANSFER statement (line 90) looks for the carriage-return
as a record delimiter.

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

ON ERROR CALL Makefile

ASSIGN QFile TO "BDAT_FILE" ! Test for file’s existence

OFF ERROR

ASSIGN @Buff TO BUFFER [2046] ! Assign buffer

ASSIGN @Print TO PRT ! Assign destination

!

Cr$=CHR$ (13) ! ASCII character for carriage return

PRINT "Start"
TRANSFER QFile TO ©@Buff;RECORDS 10,END,EOR (DELIM Cr$)
1
TRANSFER @Buff TO QPrint
FOR I=1 TO 10000
PRINT "TRANSFERS RUNNING",I
STATUS @Buff,11;Stat
IF NOT BIT(Stat,6) THEN 180
NEXT 1
!
OUTPUT @Print;CHR$(12) ! ASCII character for formfeed
PRINT "File is printed"
END
]
SUB Makefile
OFF ERROR
CREATE BDAT "BDAT_FILE",10,12
ASSIGN QFile TO "BDAT_FILE";FORMAT ON
FOR I=1 TO 10
DISP "Writing";I
READ Word$
OUTPUT QFile;Word$
NEXT I
DISP
DATA ONE,TWO, THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE, TEN
SUBEND

Advanced Transfer Techniques 9-23

The next program continually shows the activity of the buffer. Note that a continuous
TRANSFER is used (line 90). Data is placed in the buffer a few bytes at a time (line
130) and the status is displayed by the SUB called from line 140. After a few hundred
bytes are transferred, the continuous mode is canceled (line 180), the program waits for
the transfer to finish (line 190), and the final status is displayed.

20

30

40

50

60

70

80

90

100
120
130
140
150
160
180
190
200
210
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

9-24

PRINTER

IS CRT

PRINT USING "@" ! Clear Screen
COM @Buff,@Print,B$[47] BUFFER ! Declare variables

INTEGER

ASSIGN @Buff TO BUFFER B$!
ASSIGN @Print TO PRT !
DISP "printer is off line" ! Transfer hangs if no printer
TRANSFER Q@Buff TO @Print;CONT !
|

Characters
Assign I/0 path name to buffer
Assign I/0 path name to 701

Continuous transfer

DISP Clear display line
REPEAT
QUTPUT @Buff;"AB "; ! Fill buffer with data
CALL Buff_status
Times=Times+1
UNTIL Times>100
CONTROL @Buff,9;0 ! Cancel continuous mode
WAIT FOR EOT @Print ! Wait for buffer empty
CALL Buff_status ! Show final status
END

SUB Buff_status ! -------------=---=--=--------------——————— -
COM @Buff,Q@Print,B$ BUFFER
STATUS @Buff;RO

PRINT

TABXY(1,1) ;"Buffer Status: ";

STATUS @Buff,1;R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13

IF R1=
IF R1=

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
SUBEND

1 THEN PRINT "Named ";
2 THEN PRINT "Unnamed "“;

"Buffer[";VAL$(R2);"]"

TABXY(1,3) ;RPT$(" ",55)

TABXY(R3,3) ;"v" ! Show fill pointer position
TABXY(1,4);"""";B$,"""" | Show buffer contents
TABXY(1,5) ;RPT$(" ",55)

TABXY(R5,5) ;""" ! Show empty pointer position
"Fill pointer: ";R3

"Bytes in use: ";R4

"Empty pointer: ";Rb

" inbound/outbound”

"Select code: ".R6;"/";R7

"Continuous? : ":R8;"/":R9

"Term. status: ";R10;"/";R11

"Total bytes: ".R12;"/";R13

Advanced Transfer Techniques

Data currently in the buffer can be reused or ignored by manipulating the pointers (with
CONTROL). When it is necessary to move data through the buffer without using I/0
path names, the CONTROL statement can be used to modify the pointers, thus allowing
a TRANSFER to take place. The next program uses this technique. The array size used
in the next program is for the Model 236; change the array size in lines 50 and 60 for
other computer models.

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

GINIT

GCLEAR

GRAPHICS ON

PRINT CHR$(12)

INTEGER I,Graph(1:12480) BUFFER
Gbytes=2%12480

ASSIGN @Buff TO BUFFER Graph(*)
ON ERROR GOTO Record

ASSIGN QRead TO "PHOTOS"
ASSIGN QRead TO *

GOTO Playback

Record:0OFF ERROR
CREATE BDAT "PHOTOS",5,Gbytes
ASSIGN @Write TO "PHOTOS"
FOR I=1 TO 6§
GRID Ix4,Ix4
GSTORE Graph(*)
GCLEAR
DISP "SAVING #";I
CONTROL @Buff,b4;Gbytes
TRANSFER Q@Buff TO @Write;WAIT
NEXT I
ASSIGN QWrite TO =*
!
Playback:0FF ERROR
ASSIGN Q@Read TO "PHOTOS"
FOR I=1 TO 5
DISP "LOADING #";I
TRANSFER QRead TO @Buff;WAIT
GLOAD Graph (*)
CONTROL @Buff,4;0
NEXT I
DISP "DONE"
END

Uses graphics

Clear the screen
(1:7500) FOR 9826/9816
2 * 7500 FOR 9826/9816

Enable ERROR trap

Test if file exists

Close file

If file exists then Playback

5 "PHOTOS" of graphics screen
to be written to the BDAT file

Fill buffer with GSTORE

Tell TRANSFER "The buffer is full"

Tell TRANSFER "The buffer is empty"

The program creates five “photos” of the graphics raster and writes them to a disc file.
The file is then read and each picture is loaded back into the graphics raster.

Advanced Transfer Techniques 9-25

Special Considerations

Transfer with Care

Whenever possible. a transfer will take place concurrently with continued program ex-
ecution. You must carefully construct a program using transfers. A poorly designed
transfer may take longer to execute than using OUTPUT and ENTER.

A TRANSFER which uses a local 1/O path name must terminate before a SUBEXIT.
SUBEND. or RETURN (from a function) can return execution to the calling context.
The system will detect that such a transfer is in progress and will make the SUBEXIT
wait for the transfer to terminate. If this happens. the system will not process any ON
EOT (or ON EOR) branch which had been defined for the transfer. To allow servicing
of the branch. anv statement which cannot execute in overlap with the TRANSFER can
be inserted in the subprogram before the SUBEXIT. Two of the most sensible choices
are:

WAIT FOR EOT @Non_buff
or
ASSIGN QPath to *

A TRANSFER which uses only non-local 1/O path names can execute in overlap with a
SUBEXIT. One word of caution is necessary: if a local ON EOT (or ON EOR) statement
is used in the subprogram. its branch will not be serviced if the SUBEXIT is encoun-
tered before termination of the TRANSFER. To ensure the possibility of servicing the
branch. insert a statement that cannot execute in overlap with the TRANSFER. This is
essentially the same technique discussed in the preceding paragraph.

More than one 1/O path name can be assigned to a named buffer: however. each path
name will maintain its own set of pointers. Using multiple path names on the same buffer
could lead to corruption of the data in the butfer.

Special care should be taken when using REAL and COMPLEX arravs as buffers. since

a device may send a bit pattern that is not a valid real number. Accessing the data as a
REAL or COMPLEX value may produce an error.

9-26 Advanced Transfer Techniques

Statements Which Affect Concurrency

The following statements do net wait for the completion of a TRANSFER statement.
Buffer in Use Device in Use

STATUS @Buf STATUS @Dev

CONTROL @Buf ON EOR @Dev

SCRATCH A ON EOT @Dev
OFF EOR @Dev
OFF EOT @Dev

Statements which wait for completion of inbound transfers.

OUTPUT @Buf
TRANSFER @Dev TO @QBuf

Statements which wait for completion of outbound transfers.

ENTER @Buf
TRANSFER Q@Buf TO @Dev

Advanced Transfer Techniques 9-27

Statements which wait for completion of inbound and outbound transfers.

Buffer in Use

ASSIGN @Buf TO *

ASSIGN @Buf TO BUFFER[bytes]

ASSIGN @Buf TO BUFFER B$

ASSIGN @Dev

ASSTGN @Dev;

END
SUBEXIT
SUBEND
SCRATCH C
SCRATCH
LOAD "PROG"
GET "PROG"

STOP

9-28 Advanced Transfer Techniques

(new attributes)

Device in Use

ASSIGN @Dev TO *

ASSIGN @Dev

ASSIGN @Dev: (neu attributes)

WAIT FOR EOT @Dev
OUTPUT @Dev

ENTER @Dev

TRANSFER @Buf TO @Dev
TRANSFER @Dev TO @Buf

END
SUBEXIT
SUBEND
SCRATCH C
SCRATCH
LOAD "PROG"
GET "PROG"

STOP
CONTROL @Dev

Error Reporting

If an error is encountered during an overlapped transfer, the error is logged in the non-
buffer I/O path name and reported the next time the non-buffer I/O path name is
referenced. Thus, the error line reported will be the most recently executed line contain-
ing the I/O path name and usually not the line containing the TRANSFER statement.
For example:

10
20
30
40

50 Ok:

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

! This program shows delayed error reporting for TRANSFER
!

ON ERROR GOTO Ok

PURGE "bdat_file" ! Zap file if it already exists
OFF ERROR

!

CREATE BDAT "bdat_file",1 ! CREATE an empty file

ASSIGN @Non_buf TO "bdat_file"! ASSIGN I/0 path name to the file
INTEGER B(100) BUFFER ! Declare a variable as a buffer
ASSIGN @Buf TO BUFFER B(*) ! Assign I/0 path name to buffer
PRINT

!

WAIT 2

LIST 150,150

TRANSFER @Non_buf TO @Buf;CONT ! Error occurs in this line

!

WAIT 2

LIST 190,190

STATUS @Buf,10;Status_byte ! Error not reported with @Buf
!

WAIT 2

LIST 230,230

STATUS @Non_buf;Status_byte ! Error reported with @Non_buf
END

Advanced Transfer Techniques 9-29

Since a continuous TRANSFER was specified. the error that oceurs in line 150 is reported
in line 230 when the non_buffer I/O path name is referenced. For continuous transfers.
the error is always logged with the non-buffer I/O path name. Referencing the buffer’s
I/O path name (line 190) does not cause the error to be reported. After running the
program, change the CONT parameter in line 150 to WAIT. The program will now report
the error in line 150 since the WAIT parameter specified a serial TRANSFER.

At the time the error is reported. any ON END (for files). ON TIMEOUT (for devices),
or ON ERROR statements will be triggered. However. ON END is not triggered when
the END parameter is specified.

Suspended Transfers

When a TRANSFER statement is executed, that transfer is said to be “active”. The
transfer proceeds until either a termination condition is reached. or until there is nothing
else the transfer can do for the time being. An example of the latter is a continuous
TRANSIER. which does not terminate when the buffer is full and has not yet met any
other termination conditions.

This TRANSFER will be “suspended” to give some other TRANSFER operation a
chance to empty the buffer. It will not be reactivated until one of the following occurs:

1. The other TRANSFER operation reaches a record boundary, fills or empties the
buffer. terminates. or is suspended.

2. An OUTPUT or ENTER operation active in the other direction fills or empties the
buffer, or terminates.

3. A CONTROL statement is executed to change the fill or empty pointers. or butter’s
byte count.

1. A CONTROL statement is exeeuted to cancel continuons mode.

A TRANSFER cannot be suspended unless it has CONT as one of its transfer parameters.

9-30 Advanced Transfer Techniques

Transfer Performance

Sector Size
For the best performance when transferring BDAT and HP-UX files, the buffer size

should be a multiple of 256 or 1024 bytes (the size of a sector on the disc).! If the
buffer is not a multiple of 256 bytes, the system must do sector buffering; this is handled

automatically, but reduces the transfer rate.

Internal Disc Drives of Models 226 and 236 Computers

While a TRANSFER can be assigned to the internal disc drives in the Model 226 and
Model 236, no noticeable increase in speed (compared to OUTPUT or ENTER) will
result. Transfers to and from external mass storage (except the 9885) will show an
increase in speed, especially if a DMA card is present.

Overlapped Transfers and Disc Drives

Some of the discs are capable of overlapped operation. This means that other processing
can occur while a non-continuous TRANSFER to or from the disc is taking place. In
other words, the program can execute other statements before the transfer has completed.
Overlapped discs include:

e CS80 discs (such as the HP 9133 and 9153)

e SS80 discs (such as the HP 9122)

e “Amigo” discs (such as the HP 9895 and 82901)
Discs which are not capable of overlapped operation are called serial discs. When exe-
cuting a non-continuous TRANSFER to or from a serial disc, the program will not leave

the TRANSFER statement until it completes. Serial discs include the internal discs (of
Models 226 and 236 computers) and the HP 9885 8-inch flexible disc drive.

1 Discs with 512-byte sectors cannot be used with TRANSFER.

Advanced Transfer Techniques 9-31

The following example illustrates the difference between a serial dise and an overlapped
dise.

10 OPTION BASE 1

20 INTEGER B(128,10) ! A 10-sector buffer

30 LINPUT "Enter msus:", Msus$

40 CREATE BDAT "bdat"&Msus$, 10

50 ASSIGN @File TO "bdat"&Msus$

60 ASSIGN QBuffer TO BUFFER [2560] ;FORMAT OFF

70 QUTPUT @Buffer;B(*) ! Fill @Buffer’s with 10 sectors

80 ON EOT @File GOTO Serial_eot ! Branch taken if TRANSFER is serial
90 TRANSFER @Buffer TO QFile

100 ON EOT @File GOTO Overlapped_eot! Branch taken if TRANSFER is overlapped
110 LOOP

120 I=I+1

130 PRINT I,"OVERLAPPED"

140 END LOOP

150 Serial_eot: !

160 PRINT "SERIAL"

170 Overlapped_eot: !

180 ASSIGN QFile TO *

190 PURGE "bdat"&Msus$

200 END

If this program is used with a serial disc, the program stays in the TRANSFER statement
until the transfer is complete. Upon completion of the transfer. the ON EOT branch to
Serial_eot is taken.

If this program is used with an overlapped disc, the TRANSFER statement begins the
transfer, but the program executes the next statement before the transfer completes. In
this program, the next statement changes the ON EOT branch. During the transfer, a
count and the word *OVERLAPPED" are printed. When the transfer is complete, the
ON EOT branch to Overlapped_eot is taken.

If the CONT parameter is specified for a TRANSFER with a serial disc. the trans-
fer appears overlapped because the program executes any statements which follow the
TRANSFER statement before the transfer terminates. Here is what really happens in
thix case. The transfer proceeds until the buffer ix full (for inbound transfers) or empty
(for outbound transfers). The transfer is then suspended because CONT was specified.
The TRANSFER statement is exited and the next statement is executed. The transfer
will remain suspended until the continuous mode is terminated or until the buffer is filled
(for inbound transfers) or until the buffer is emptied (for outbound transfers). If there
is a second TRANSFER active for the buffer. an EOR or EOT condition for the second
TRANSFER can also wake up the suspended TRANSFER.

9-32 Advanced Transfer Techniques

In contrast to serial discs, overlapped discs would allow the statement following the
TRANSFER to execute before the buffer was full or empty.

The following program illustrates a transfer to a serial device which appears overlapped.

10 OPTION BASE 1

20 INTEGER B(128,10) ! A 10-sector buffer
30 LINPUT "Enter Qverlapped msus:",Overlapped$

40 CREATE BDAT "bdat"&Overlapped$,10

50 LINPUT "Enter Serial msus:",Serial$

60 CREATE BDAT "bdat"&Serial$,10

70 ASSIGN @Overlapped TO "bdat"&Overlapped$

80 OUTPUT Q@Overlapped;B(x)

90 RESET @Overlapped ! Position to beginning
100 ASSIGN @Buffer TO BUFFER [512] ;FORMAT OFF

110 ASSIGN @Serial TO "bdat"&Serial$

120 ON EOT QOverlapped GOTO Eof

130 TRANSFER Q@Overlapped TO @Buffer;END,CONT

140 TRANSFER @Buffer TO @Serial;CONT

150 LOOP

160 I=I+1

170 PRINT I,"OVERLAPPED"
180 END LOOP

190 Eof: !

200 CONTROL @Buffer,9;0

210 ASSIGN @Overlapped TO *
220 PURGE "bdat"&Overlapped$
230 ASSIGN @Serial TO =*

240 PURGE "bdat"&Serial$

250 END

In this example, an overlapped disc is used to fill the buffer while a serial disc empties the
buffer. Any overlapped device could have been used. After both TRANSFER statements
are executed, the program prints the count and the word “OVERLAPPED” while reading
from one disc and writing to the other disc. The inbound transfer is terminated when it
encounters the end of the file. The outbound transfer is terminated when the CONTROL
statement cancels the CONT mode.

Advanced Transfer Techniques 9-33

Transfer Methods and Rates

The BASIC system chooses the fastest possible transfer method when executing a
TRANSFER (you cannot explicitly choose the method).

Available Methods
There are three types of transfers available to the BASIC system.

e DMA (direct memory access)
e FHS (fast handshake)
e INT (interrupt)

DMA Mode
All transfers use DMA mode whenever possible. However. any one of the following
reasons will prevent a DMA transfer.

e The DMA card is not present
e Both DMA channels are busy
e The device involved is not HP-IB or GPIO

e The DELIM parameter is specified

If DMA cannot be used with the HP-IB or GPIO interfaces, the FHS mode will be used
if the WAIT parameter was specified and INT mode will be used if the WAIT parameter
was not specified.

INT Mode

The INT mode will always be used for the Serial and Datacomm interfaces. Note also
that the handshake lines are not used for Serial and Datacomm transfers. Therefore, on
inbound transfers through the Serial interface. it is easy to overrun the 1-byte hardware
buffer on the card. The maximum transfer rate with Serial interfaces is hard to specify.
because it may be affected by other operations that attempt to alter the BASIC interrupt-
logging structure (statements such as ON INTR and ON KEY). In general. using the
WAIT parameter will result in a higher transfer rate, with a lower potential for overrun
errors. than other methods. The WAIT parameter specifies that the TRANSFER is
to complete before the next BASIC statement is executed (that is. it specifies that the
transfer is to be performed in non-overlapped mode).

9-34 Advanced Transfer Techniques

If a very slow device is sending a few bytes at a time, the most efficient method of
transfer would be to interrupt the processor whenever data is ready. Both DMA and
INT modes operate in this way. The DMA hardware “steals” a single memory cycle
from the processor to transfer each byte. The INT mode must completely interrupt the
processor and therefore takes more time.

Either type of interrupt (DMA or INT) can occur at any time and will be handled
immediately by the system. The interrupt doesn’t have to wait for a statement to end
before it is serviced. This is not the same as event-initiated branches which are serviced
only at the end of a statement.

Burst interrupt Mode

The INT transfers implemented on the HP-IB and GPIO interfaces use a specialized
“burst interrupt” mode. When an interrupt occurs, the system’s interrupt service routine
will transfer the byte (or word) then wait approximately 20 us for another byte. If the
device is fast enough to accept or generate another byte each 20 us, the net transfer rate
will be much faster than if the system must exit the service routine and then re-enter
the routine for the next byte.

Approximate Transfer Rates for Devices
The following table shows the approzimate transfer rates of various devices.

Table 9-3. Device Transfer Rates

Burst Fast Burst

Device Interrupt Handshake DMA DMA
HP-IB (98624 and built-in)
inbound 55K 130K 350K —
outbound 75K 120K 290K —
(bytes/second)
GPIO (98622)
inbound 65K 115K 540K 930K
outbound 75K 115K 525K 1050K
(transfers/second)
Serial (98626, 98644, and 19 200 Baud® — — —
built-in)
Datacomm (98628) 19 200 Baud — — —

Note that the maximum rate for inbound transfers through a Serial interface is generally much lower
than this for two reasons: TRANSFER does not use the handshake lines, and there is only a 1-character
hardware buffer on Serial cards.

Advanced Transfer Techniques 9-35

Restrictions

All data must be buffered. This means every TRANSFER statement will have one 1/0
path assigned to a buffer and one I/0O path assigned to a device (or file). Additionally.
transfers are not permitted with:

e The CRT or keyboard

e The HP 98623 BCD Interface card

e The tape backup on CS80 disc drives
o ASCII type files

e Dises initialized with 512-byte sectors (formatting option 2)

In addition. TRANSFER to or from a mass storage device with hierarchical directories
(such as HFS and SRM volumes) will not operate in overlapped mode (because of the
“extensible” nature of files on these volumes).

A buffer can only have one inbound and one outbound I/0 operation (using I/O path
names) at any given time. The I/0 operation can use TRANSFER. OUTPUT. or EN-
TER statements. A second I/O operation in the same direction must wait until the
completion of the current operation. A second I/O operation in the opposite direction
does not have to wait,

The HP-IB and GPIO interfaces support only one 1/0 operation at any given time.
A second operation must wait until the completion of the first operation. The Serial
and Datacomm interfaces allow concurrent inbound and outbound transfer operations if
each TRANSFER has a unique 1/O path name assigned to the device. An OUTPUT
or ENTER must wait until completion of transfers in both directions. Thus. concurrent
operation requires using TRANSFER statements and not a mixture of TRANSFER.
OUTPUT. and ENTER statements.

The 1/0 path name assigned to a device can be used in only one I/O operation at a
time. However. the path name can be used with OUTPUT. ENTER. and TRANSFER
interchangeably. An OUTPUT or ENTER to the I/0 path name will be deferred until
completion of any active TRANSFER for that path name. All file operations (includ-
ing CAT. CREATE. OUTPUT. and ENTER) will be deferred until completion of any
TRANSFER using the same interface select code.

9-36 Advanced Transfer Techniques

Interactions with Other Keywords

The TRANSFER statement restricts some of the interrupts on various devices. If an ON
INTR statement and an ENABLE INTR statement have been executed for an interface,
not all possible ON INTR conditions will be triggered during a transfer.

GPIO

For the GPIO interface, the PFLG (data ready) interrupt is not triggered during a
transfer that uses the interface. The EIR (External Interrupt Request) interrupt is
triggered even if there is a transfer in progress.

Serial

For the Serial Serial interface, the Transmitter Holding Register Empty and Receiver
Buffer Full interrupts are not triggered during a transfer that uses the interface. The
Receiver Line Status and Modem Status Change interrupts are triggered even if there is
a transfer in progress.

Datacomm
For the Datacomm interface, all interrupt conditions are triggered even if a transfer is in
progress.

HP-IB

For the HP-IB interface, all interrupt conditions are triggered if they occur during a
transfer. However, certain interrupt conditions may occur which will cause the transfer
operation to be prematurely terminated.

With the exception of the Handshake Error, the majority of interrupt conditions only
occur when the HP-IB interface is configured as a non-controller. If any of the following
interrupt conditions are enabled and the given interrupt occurs during a transfer to
or from the interface, the user interrupt will be logged and the TRANSFER will be
prematurely terminated.

e Parallel Poll Configuration Change
My Talk Address Received

My Listen Address Received
Talker/Listener Address Change

Trigger Received

Advanced Transfer Techniques 9-37

Handshake Error

Unrecognized Universal Command

Secondary Command While Addressed

Clear Received

e Unrecognized Address Command

If one of these interrupt conditions occurs and the given interrupt condition has not been
enabled, the interrupt will be ignored and the TRANSFER will not be terminated.

Note
When an abortive interrupt condition is ignored. it is possible for
data to be corrupted. It is reconunended that abortive iuterrupt
conditions be enabled during a transfer.

The Active Controller and IFC Received interrupt conditions will always prematurely
terminate a TRANSFER. even if they have not been enabled.

Premature Termination

When an overlapped TRANSFER is prematurely terminated because of an abortive
interrupt condition, the following error is logged in the non-buffer I/O path name asso-
ciated with the given TRANSFER. The error will then be reported the next time the
1/O path name is referenced.

ERROR 167 I/0 interface status error

Note that if an ON INTR condition is triggered during a transfer, the ON INTR service
routine will be executed at the next end-of-line. However. if a TRANSFER is using the
interface specified in an ENABLE INTR statement. the ENABLE INTR statement will
wait for the transfer to complete. This means that only one interrupt condition can be
trigegered during a TRANSFER since the interface’s interrupts cannot be re-enabled until
completion of the transfer.

9-38 Advanced Transfer Techniques

Changing Buffer Attributes

You can change the I/O path name’s attributes without changing the current buffer
pointers. Just execute another ASSIGN statement with the new attributes. For example:

ASSIGN @Path;PARITY OFF

You will not be able to change all possible attributes in this manner. The BYTE and
WORD attributes cannot be changed once assigned.

By specifying just the I/O path name, the default attributes (except BYTE) can be
restored. For example:

ASSIGN @QPath

See the ASSIGN statement in the BASIC Language Reference for a complete list of
attributes.

Note

It is possible to assign more than one I/O path name to a single
named buffer. Using two I/O path names on the same buffer could
lead to the corruption of the data in the buffer. Although each path
name maintains a separate set of buffer pointers, they are pointing
to the same buffer.

Advanced Transfer Techniques 9-39

Buffer Status and Control Registers

STATUS Register 0

When the status of register 0 indicates a buffer (3). the status and control registers have

the following meanings.

STATUS Register 1
STATUS Register 2
STATUS Register 3
CONTROL Register 3
STATUS Register 4
CONTROL Register 4
STATUS Register 5
CONTROL Register 5
STATUS Register 6
STATUS Register 7
STATUS Register 8
CONTROL Register 8
STATUS Register 9
CONTROL Register 9
STATUS Register 10

0 = Invalid I/O path name

1 = I/O path assigned to a device

2 = I/O path assigned to a data file
3 = I/0O path assigned to a buffer

Buffer type (1=named. 2=unnamed)
Buffer size in bytes

Current fill pointer
Set fill pointer
Current number of bytes in buffer
Set number of bytes

Jurrent empty pointer

Set empty pointer
Interface select code of inbound TRANSFER
Interface select code of outbound TRANSFER
If non-zero. inbonnd TRANSFER is continuous
Cancel continuous mode inbound TRANSFER if zero
If non-zero, outbound TRANSFER is continuous
Cancel continuous mode outbound TRANSFER if zero
Termination status for inbound TRANSFER

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 TRANS- | TRANS- [TRANS- | Device Byte Record Match
FER FER FER Termi- Count Count Character
Active Aborted | Error nation
Value=0 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 |Value=2 |Value=1

9-40 Advanced Transfer Techniques

STATUS Register 11 Termination status for outbound TRANSFER

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 TRANS- | TRANS- | TRANS- |Device Byte Record 0
FER FER FER Termi- Count Count
Active Aborted | Error nation

Value=0 | Value=64 | Value=32 [Value=16 | Value=8 |Value=4 |Value=2 | Value=0

STATUS Register 12 Total number of bytes transferred by last inbound TRANS-
FER

STATUS Register 13 Total number of bytes transferred by last outbound TRANS-
FER

Advanced Transfer Techniques 9-41

9-42 Advanced Transfer Techniques

Index

ADOIE INESSAZE . ot i ettt et e e e e 12-20
ABORT statementiinirininie ittt 12-10, 14-52
ABORTIO statementttt 9-20
Above-Screen Lines o e 10-22
Absolute Positioners i e 19-24
Active controller 12-29
Additional Interface Functions i i 2-6
Address, PrimMAaryttt e e e e 3-6
Addressed to listen, HP-IB 12-7
Addressed to talk, HP-IB 12-7
Addressing multiple listeners on the HP-IBbus 12-8
Addressing, Non-Active HP-IB Controller 12-37
Addressing, Secondary 12-9
ALPHA HEIGHT statementc.oiuiueiiimiineiieanannn., 10-5
Alpha pen colors 10-10
ALPHA PEN statementt 10-8
ASCII and Non-ASCIT Keys . ..oooiii i i e 11-4
ASCII Data Transfers e 14-39
ASCILFiles . ..o 8-22
ASCII Representation of Integers 2-17
ASCII Representation of Real Numbers 2-18
ASCII representationsouniuiiii e 16-18
ASSIGN statementouniiiii 3-9, 8-4, 9-6
ASSIGN Statements, Determining the Outcome of 8-18
Assigning I/O Path Namesoiiiiiiiii i, 3-9
Assigning 1/0 Path Names Locally Within Subprograms 3-12
Async and Data Link Operation, BOTH 14-10
Async Operation ONLY 14-10
Asynchronous Communication Protocol 14-3
Asynchronous Data Communicationcuc. ... 13-2
Attention Line (ATN), HP-IB 12-47
Attribute, BY TE ... 8-6
Attribute control 3-17
Attribute, WORD 8-6

Index 1

Attributes. Additional ... R-6

Attributes, Changing Buffer e 9-39
Attributes. FORMAT .. o 3-2
Attributes. I/O Path 8-1
Attributes. Restoring the Default 3-5
Auto-poll on the HP 1000. Disabling 14-60
Auto-repeat, keyboard ..., ... 11-11
Automatic Answering Applications. Datacomm 14-64
Automatic Dialing with the HP 132656A Modem 14-27
b
Background Datacomm Program Routines 14-33
Backplane. computer ... 2-3
Bar Code Reader, Usiug a ... oo o 19-4%
Battery-backup 15-1
Baud rate (RS-232C) 13-10
Baud Rate, RS-232C Handshake and 13-6
Baud Rate Select Switches 13-8
BCD binary data representation 17-7
BCD binary mode 17-8
BCD binary mode entry 17-22
BCD cable configuration 17-17
BCD dataentry 17-19
BCD data output 17-10
BCD Data Representation 17-2
BCD ENABLE INTR .. o 17-36
BCD handshake configuration 17-15
BCD hardware priority e 17-14
BCD Interface 2-11. 17-1
BCD interface configuration 17-12
BCD Interface Interrupts ... o 17-36
BCD interface reset 17-18
BCD interface select code ... oo o oo o B I
BCD Interface Timeouts 17-33
BCD interrupt service routines 17-37
BCD interrupts. setting up and enabling 17-36
BCD operation 17-2
BCD optional format 17-5
BCD output routines using CONTROL and STATUS 17-30
BCD peripheral status switches 17-14
BCD Representation 16-27

2 TIndex

BCD standard format e 17-3

BCD STATUS and CONTROL Registers i ... 17-38
BCD STATUS statement entryiuit ettt e 17-26
BCD timeout service routinest e 17-34
BCD timeout time parameterottt 17-33
BCD type 1 tImingttt et e e e e 17-15
BOD type 2 timingttt e 17-16
BCD-Mode standard format 17-20
BDAT Files ... e 8-21
Binary Images e 5-20
BInary imagest e 4-18
Binary specifier 4-18
Bits and Bytes 2-12
Branch, Conditions Required for Initiating a 7-5
BREAK MeSSAge ... oottt e e 13-17
Break received e 13-15
Break Timing, Datacomm e 14-22
Buffer Attributes, Changing 9-39
Buffer, Named 9-5
Buffer Pointers 9-8
Buffer Size Register 9-7
BUFFER statement i st 84, 9-5
Buffer Status and Control Registers i i, 9-40
Buffer, Unnamed 9-5
Buffer-Type Registers e 9-7
Buffers, A Closer Look at e 9-5
Buffers and Transfers, Overview of i, 9-2
Buffers, Creating Named 9-5
Buffers, Types of 9-5
Burst Interrupt Mode 9-35
BUSs . 2-2
BYTE Attribute 8-6
BYTE attribute 8-7
Byte count i 9-8
C
Cable Options and Functions, Datacomm 14-69
Cable options, RS-232C 13-29
Caps Lock Modeo 11-9
CDIAL functioniouuii e 19-23
Chapter Previews oo iiii 1-2

Index 3

Character CONVersiONS 16-30

Character Format and Parity. RS-232C 13-11
Character Format Definition. Datacomm 14-21
Character Format Parameters. RS-232C 13-7
Character Length (RS-232C) ... o 13-7
Character specifier 4-17
Characters, Converting e 8-11
Characters. Ignoring 5-19
Characters, Representing ... 2-14
Circuit Driver/Receiver Functions. Optional 13-31
Clear Lockout/Local message i .. 12-20
Clear MeSSAZettt 12-19
CLEAR SCREEN statement 10-5
CLEAR statement 12-10
Clear to Send (CTS). RS-232C ... 13-6
Clearing the Screen 10-5
Closing I/O Path Names 3-11
Closure Keys ... e 11-23
CMD secondary keyword 12-27
Color Enhancements i e 10-19
Comma SePATALOT . ..ottt 4-4
Communicating with HP-IB devices oo 0o o0 o 12-3
Communication Between Desktop Computers, Datacomm 14-68
Computer As a Non-Active Controller on the HP-IB Bus 12-29
Computer backplane 0 2-3
CONCUITENCY © oo e e 9-27
Conditions, Interrupt e 7-19
Configuration Switches .00 0 13-47
Configuring Parallel Poll Responses 12-16
Continuous-Memory Registers 15-2
Control Block Contents. Datacomm 14-17
Control Characters 10-15
Control characters. generating o 11-6
Control. Passing 12-31
CONTROL statement e 6-3
Control-Character Functions i 10-17
Controller address. HP-IB 12-29
Controller status. HP-IB 12-29
Controller’s Address. Changing the HP-IB, 12-31
CONVERT IN statement e 8-14
CONVERT OUT statement R-14

4 Index

CONVERT statementt e e e 811

CONVERT...BY INDEX statementco ittt 8-11
CONVERT...BY PAIRS statementccoiuiiiiineeenneennnennnn. 8-13
Cooperating Programs i 14-44
Copying Data into the Destinations i ... 2-24
Copying Data to the Destination i .. 2-22
COUNT parameterttt e 9-15
CRT STATUS and CONTROL Registerscouiuiniiininnennnan... 10-36
CRTA display driver e e e e 10-2
CRTB display drivert e 10-2
d
Data Carrier Detect (DCD or CD), RS-232C 13-6
Data Communication Equipment (DCE), RS-232C 13-29
Data Compatibility e 2-6
Data, Entering 5-1
Data entry, RS-2320C e 13-13
Data Flow, Directing 3-1
Data Formats for Datacomm Transfers 14-39
Data Handshake 2-20
Data Link Communication Protocol 14-4
Data Link Connections, Datacomm, 14-26
Data Link Operation ONLY e 14-11
Data Loss Prevention on the HP 1000 14-59
Data messageo 12-7
DATA MESSAZES .« .o vttt ettt et e et e e e e 12-26
Data on the HP-IB bus, Sending 12-26
Data output, RS-232C 13-12
Data, Outputting ... e 4-1
Data, Re-Directing i 3-16
Data Representation SUMIMATYttt 8-24
Data Representationso i 2-12
DATA secondary keyword 12-27
Data Set Ready (DSR), RS-232C 13-6
Data Terminal Equipment (DTE), RS-232C 13-29
Data to the Keyboard, Sending 11-16
Data Transfers, RS-232C 13-12
Data Valid (DAV), HP-IB i 12-47
Data-Link Baud Rates 14-24
Data-Representation Design Criteria 8-20
Datacomm adapter options and functions 14-69

Datacomm automatic answering applications 14-64

Datacomm. Break Timing 14-22
Datacomm character format definition 14-21
Datacomm communication between desktop computers 14-68
Datacomm connection 14-10
Datacomm control block contents 14-23
Datacomm Data Transfers Between Computer and Interfd(€ 14-5
Datacomm ENABLE INTR 14-17
Datacomm Error Detection and Program Recovery 14-52
Datacomm error TecoVery 14-51
Datacomm Errors and Recovery Procedures ... o oo oo oL 14-4Y
Datacomm Exit Conditions 14-38
Datacomm handshake 14-24
Datacomm interface 2-9. 9-37. 14-1
Datacomm Interface Protocol o o o 14-3
Datacomm Interrupt Service Routines 14-34
Datacomm interrupt system. setting up the o 14-30
Datacomum Interrupts 14-31
Datacomm interrupts 14-30
Datacomm line connection 14-25
Datacomm Line Timeouts 14-17
Datacomm Options for Asvne Communication 14-16
Datacomm Options for Data Link Communication 14-22
Datacomin parity 14-25
Datacomm Parity option:
EVEN 14-3
NONE 14-3
ONE 14-3
2RO 14-3
Datacomm program operator inputs. setting upo ... 14-31
Datacomm Programming 114-9
Datacomm Programming Helps ... 0 14-59
Datacomim prompt recognition oo 14-20
Datacomm Protocol and Link Operating Parameters 14-10
Datacomumn Protocol Selection 115
Datacomm Service Routines for ON KEY Interrupts 14-43
Datacomun Start bits ... o 14-3
Dataconun STATUS and CONTROL Registers 0 0 .. 14-75
Datacomm Stop bits ... o 14-3
Datacomm Time Cap ... 14-3

6 Index

Datacomm timeouts 14-17

Datacomm Transfers, Data Formats for 14-39
Datacomm transmitted block size i 14-25
DCE cable option e 13-29
DCE Cable Optionsttt e 14-69
DCE cable options 13-31
DCE Cable, RS-2320 e 13-31
Declaring I/O Path Names in Common iiiiiena.. 3-14
Default protection time i 15-9
DELAY Statementottt ettt 8-15
DELIM parametert e e 9-15
Delimiter Charactersttt e 9-15
Device SeleCtorsot e 3-4
Dialing Procedure for Switched (Public) Modem Links 14-26
Digit Speciflero 4-14
DIGITIZE statement it 19-22
Direct Connection Links, Datacomm, 14-26
Direct Interface AcCCessttt 6-12
Direct memory access (DMA) ... i 9-12
Directing Data Flow 3-1
DISABLE INTR statementueuiiiinmiii i 7-16
Disabling Auto-poll on the HP 1000, 14-60
Disabling the Cursor Character 10-31
DISP Line ... 10-30
Display Features, Overview of 10-3
Display Functions Mode 10-20
DISPLAY FUNCTIONS statement, 10-20
Display interfaces 10-1
Display Line, Output Area and the 10-5
Display reglons 10-4
Display Regions Affected by Pen Color Statements 10-9
DiSplay tyDeS oottt 10-1
Display-Enhancement Characters 10-18
DMA Mode ... 9-34
DRS and SRTS Modem Lines, Programming the 13-18
DTE Cable Options i 14-69
DTE cable options i 13-31
DTE Cable, RS-232C 13-30

Index 7

Electrical and Mechanical Compatibility 2-5
Empty pointer ... 9-8
ENABLE INTR, BCD ... 17-36
ENABLE INTR. Datacomn 14-17
ENABLE INTR, GPIO e 16-32
ENABLE INTR statementiou.. 7-16. 12-14. 14-30
Enabling and setting up GPIO events 16-31
Enabling Local Control 12-12
Enabling the Insert Mode 10-32
END in Freefield OUTPUT e 4-8
End or Identify Line (EOL) 12-48
END parametert 9-16
END with Data Communications Interfaces 4-26
END with HP-1B Interfaces 4-9
END with OUTPUTSs that Use Images 4-25
END with the Data Communications Interface 4-9
End-of-line (EOL) 4-3
End-of-line Recognition. Datacomm 14-20
End-of-line sequence 4-6. 8-1
End-or-identify D22
End-or-identify signal 5-11
Enhanced Keyboard Control 11-28
ENTER and Buffers. OUTPUT and 9-13
ENTER images e 4-21
ENTER statement 2-19. 3-2. 5-1
ENTER USING statement D13
Entering Data o oo h
Entering Data from the Keyboard 11-13
Entering from the CRT 10-27
Entering String Data 5-8
Enters that Use Images 5-13
EOI Re-Definition H-22
EOI Signal. Sending the L1-15
EPROM Addresses and Unit Numbers ... oo 0o 0 18-3
EPROM Catalogs 18-9
EPROM data storage rates i 18-12
EPROM Directories 18-9
EPROM hardware operation 1%-4
EPROM memory initialization 18-3
EPROM memory overview 18-2

8 Index

EPROM memory, readingc.iiiinit e 18-19

EPROM memory which is unused i, 18-12
EPROM Programmer Select Code i i 18-3
EPROM programimingoiiununnniitiiiae e, 18-1
EPROM, Programming Individual Words and Bytesin 18-15
EPROM, reading data files stored in 18-19
EPROM, storing data inttt 18-10
EPROM to store programs, using theciiiiniinn... 18-15
EPROM unit initialization 18-8
ERRL function i e e 14-52
ERRN function e e 14-52
Error Detection and Program Recovery, Datacomm e 14-52
Error Detection, RS-232C 13-4
Error Recovery, Datacomm i 14-51
Error Reporting oo 9-29
Event-Initiated Branching 7-1
Events, Enabling Interrupt 7-15
Events, Logging and Servicing 7-6
Events, Servicing Pending 7-12
Events, Types of ... 7-1
Execution Speed 3-15
Exit Conditions, Datacomm 14-38
Explicitly close 3-11
Exponent specifier 4-14
External interrupt request 16-32
f
Fast handshake (FHS) 9-12
Files, ASCIL ... o 8-22
Files, BDAT ... oo 8-21
Files, I/O Paths t0oonuti i 8-20
Fill pointer 9-8
Firmware 2-19
FORMAT attributes i 8-2
FORMAT Attributes, Assigning Default 8-4
FORMAT OFF statementuiu e 3-17. 8-2
FORMAT ON statementooiuit e 3-17, 8-2
FORMAT statementt 8-2
Formatting, Transfer 9-13
Framing error (RS-232C) 13-4
Free-Field ENTER Statements 5-10

Index 9

Free-Tield Enters o0 0 0
Free-field output .
Freefield OUTPUT. END In ... o e
Function Box, Activating the
Function Box and Vectra Kevboard
Function Box key presses. Trapping
Funetion Box Keys. Assigning Functions to ..o o 0 oo oo o

GPIO control antpnt Tnes. driving the . S S
GPIO data handshake methods
GPTO data logle sence oo o
GPIO data-in clock source ...
GP1O ENABLE INTR v .
GPIO events. enabling and setting up o
GPIO Full Handshake Transfoer oo 0 o0 .
GPIO full-mode handshakes o000 0 0
GPIO handshake Hnes ..o o0
GPTO handshake logic =senece 000
GPIO handshake modes ..o o0

GPIO hardware interrupt priovity

GPTO interface © oo o0 o - 24100987,

GPIO interface configuration
GPIO interface reset o
GPTO Interface Select Code
GPIO interrnpt transfers o R o
GPIO INterrupts .. e
CPIO optional peripheral wtatne choek .

GPIO OUTPUT of data ..o
G:PIO. Outputs and Enters through the 0 o0 0 0 o
GPIO pulse-mode handshakes o000 000
GPIO ready interrupt transfers 00000 e

GPLIO <pecial-pirpose Tines

GPIO statements that enter data bytes o000 0
GPIO statements that enter data words ... o o o L L
GPIO statements that output data bytes ©oo o000 0 0000
GPIO statements that ontput data words .0 0 0 0L
GPIO STATUS and CONTROL Registers .00 oo ..
GPIO status input Lhines, interrogating the o0 000 0 000 Lo

GPIO Thmeouts ...

10 Index

GPIO, Types of Interrupt Events 16-31

Half-duplex telecommunications i, 14-61
Handshake 12-7
Handshake and Baud Rate, RS-232C 13-6
Handshake Character Assignment, Datacomm Protocol 14-20
Handshake, Data e 2-20
Handshake, Datacomm 14-18
Handshake Lines, HP-IB e 12-47
Hardware priority e 7-10
HIL Devices, Re-Configuring i, 11-3
HIL SEND statementttt e 19-4
HILBUFS functiono 19-5
HIL_ID programiiitit i e 19-7
HIL_ID program explanation ittt 19-8
HP 1000, Disabling Auto-poll onthe 14-60
HP 13264A Data Link Adapter 14-2
HP 13265 Modem 14-2
HP 13265A Modem, Automatic Dialing with the 14-27
HP 13266A Current Loop Adapter i 14-2
HP 92916A (Bar-Code Reader) i, 19-27
HP 98626 RS-232 Serial Interface 13-46
HP 98628 Data Communications Interface 14-1
HP 98644 RS-232 Serial Interface, 13-46
HP-HIL Device Characteristics 19-28
HP-HIL device previewo i i 19-3
HP-HIL devicest 19-20
HP-HIL Devices, Communicating with 19-28
HP-HIL Devices, Interaction Between Multiple 19-52
HP-HIL devices supported by the HIL Interface driver 19-6
HP-HIL ID Module Data, Interpreting 19-30
HP-HIL ID Modules, Note about Installing and Removing 19-31
HP-HIL initialization 19-2
HP-HIL Interface ... 19-1
HP-HIL Interface, Communicating through the 19-4
HP-HIL interface driver statements iieiinnoon... 19-4
HP-HIL Keyboards e 19-21
HP-HIL Link, Identifying All Deviceson the 19-6
HP-HIL. Other Devices 19-26
HP-HIL Security Device e 19-25

Index 11

HP-IB ABORT o 12-10

HP-IB active controller ... 12-6
HP-IB Address Commands and Codes 12-22
HP-IB addressed to listen 12-7
HP-IB addressed to talk ... 12-7
HP-IB attention line (ATN) .. 12-47
HP-IB attention signal line (ATN) ... o 12-6
HP-1B Bus Activity. Aborting o 12-13
HP-IB bus. Addressing multiple listeners onthe ..o oo o . L. 12-8
HP-1B Bus Commands and Codes 12-21
HP-IB Bus Management 12-10
HP-IB Bus Management, Advanced 12-19
HP-IB Bus Message Tvpes o 12-19
HP-IB Bus Messages. Explicit . 0o 12-24
HP-1B bus sequences ... 12-7
HP-IB Bus-Line States. Determining 0 o 12-50
HP-IB CLEAR 12-10
HP-IB Control Lines 12-46
HP-IB controller address 12-29
HP-IB controller status 12-29
HP-IB data movement 12-4
HP-1B Data Valid (DAVY) © oo 12-47
HP-IB Device Selectors oo 3-6. 12-3
HP-IB Devices. Clearing ... 12-13
HP-IB devices. Communicating with .0 . 0 . 12-3
HP-TB Devices, Polling ..o 12-16
HP-1B Devices. Triggering 12-12
HP-IB ENABLE INTR o o 12-14
HP-IB end-or-identify line (ISOT) o 12-48
HP-1B Handshake Lines 12-47
HP-IB Installation and Verification 12-2
HP-TIB Interface oo 2-7.12-1
HP-IB interface o O-37
HP-IB. Interface Clear Line (IFC) o .. 12-48
HP-1B Interface-State Information 12-42
HP-1B interlocking handshake ..o 0 0o 12-47
HP-1I3 Interrupts that Require Data Transfers. Servicing 12-43
HP-1B LOCAL 12-10
HP-1B LOCAL LOCKOUT o, 12-10
HP-TB Message Mnemonics ..o o 12-27
HP-IB mescages 000000 12-19

12 Index

HP-IB NDAC holdoff e 12-53

HP-IB Not Data Accepted (NDAC) ... i 12-47
HP-IB Not Ready for Data (NRFD) i i 12-47
HP-IB ON INTR .. e e 12-14
HP-IB PPOLL ... e 12-10
HP-IB PPOLL CONFIGURE 12-10
HP-IB PPOLL UNCONFIGURE i 12-10
HP-IB REMOTE e e 12-10
HP-IB remote enable line (REN) i 12-48
HP-IB Secondary Addressing it 12-9
HP-IB select code o 12-3
HP-IB SEND ..o 12-10
HP-IB Service requestouiiiit et 12-38
HP-IB service request line (SRQ) i 12-49
HP-IB Service Requests i 12-14
HP-IB SPOLL ... 12-10
HP-IB SRQ Interruptsoonii e e e e 12-14
HP-IB SRQ Interrupts, Servicingiiui ... 12-15
HP-IB STATUS and CONTROL Registers 12-51
HP-IB Structure o e 12-5
HP-1B system controller i 12-29
HP-IB TRIGGER ... e 12-10
HP-IB:
Abort message 12-20
Clear Lockout/Local messageiiiiiiiiiiiiniiiii... 12-20
Clear MeSSABE .. .ottt 12-19
Data messageoi 12-19
Local Lockout message i 12-20
Local message 12-20
Pass Control message it 12-20
Remote message 12-19
Service Request message 12-20
Status Bit message 12-20
Status Byte message 12-20
TrigEEr MESSAZE . . oo o e ettt e ettt e e e e e e 12-19
HP 35723A (HP-HIL/Touchscreen) oo, 19-25
HP 46020/21A Keyboard i 19-21
HP 46030A (Vectra Keyboard) i, 19-27
HP 46060A (HP-MOUSE) ...ttt e 19-22
HP 46083A (Rotary Control Knob) i 19-22
HP 46084A (HP-HIL ID Module) ... 19-25

Index 13

HP 46086A (Function Box) .. 19-26

HP 46087A (A-size Digitizer) 19-25
HP 46088A (B-size Digitizer) 19-25
HP 46094A (HP-HIL/Quadrature Port) 19-22
HP 98203C Keyboard 19-21
HP 98622 Interface 16-1
HP 98626 and HP 98644 Card 1D Register 13-46
HP 98626 Optional Driver Receiver Clircuits, 13-47
HP 98644 Baud-Rate and Line-Control Registers 13-50
HP 98644 Card ID Register 13-49
HP 98644 Coverplate COnnectort 13-48
HP 98644 Optional Driver/Receiver Registers 13-49

Image Definitions During Outputs i i 4413
Image OU T P U T . 4-1
Image outpul ... o 4-2
Image Re-Use 4-23. 5-25
Iinage Repeat Factors 4-22
Images ..o e 4-11. 5-14
Images, DInary 4-18
Images. ENTER . 4-21
Images. nested 4-24
Images, IUIMETIC e e e 4-14
Images, Outputs that Use ... 4-10
Images, Special-Character ..o o 1-20
Images. stringo 4-17
Iimages. Terminating Luters that Use ..o o oo o 521
Inbound and Outbound Transfers 9-2
Inbound Control Blocks, Datacomm 14-6
Inbound Datacomm Data Messages 14-8
Inbound transfer ... 9-2
Initiating the Datacomm Connection o000 00 000 14-29
I DUt . 2-2
INPUT statement e e 14-31
INT Mode .o 9-34
Integers. ASCII Representation of 2-17
Integers. Internal Representation of, 2-14
Integers. Representing Signed 2-14
Integral Keyboard 19-21

Interactive Kevboard

14 Index

Interface Access, DITeCtot 6-12

Interface Clear Line (IFC), HP-IB 12-48
Interface Functions, Additional i 2-6
Interface INtErruptso oot e 7-14
Interface, primary function of an 2-4
Interface ready oo 16-32
Interface Registerso e 6-2
Interface Reset, RS-232C o i 13-9
Interface TIMEOULS\ttt e e e e 7-20
Interfaces, Select Codes of Built-In 3-4
Interfaces, Select Codes of Optional 3-5
Interfacing Conceptsiiiii i e 2-1
Internal Representation of Integers 2-14
Internal Representation of Real Numbers 2-17
Internal representations i 16-18
Interrupt Conditions oot e 7-19
Interrupt events e 15-3
Interrupt (INT) ... o e 9-12
Interrupt Mask Bits for Async Operation iuin... 14-31
Interrupt Mask Bits for Data Link Operation 14-32
Interrupt service routine (ISR) 14-36
Interrupt service routines i e 16-33
Interrupt Service Routines, Datacomm 14-34
Interrupts and Timeoutsiiiiiii i e 7-1
Interrupts, Non-Active HP-IB Controller 12-32
L O o e 122
1/0, Applications of Unified 8-25
I/0, Concepts of Unified i 8-19
I/O Examplest 2-21
I/O Operations with String Variables 8-25
I/O Path Attributeso i 8-1
I/O Path Attributes, Specifying 8-5
I/O Path Benefitst 3-15
I/Opathnameo i e 3-10
I/OPath Names ... 3-7, 6-9, 8-1
I/O path nameso oiiiiiin 9-7
I/O Path Names as Parameters, Passing 3-14
I/O Path Names Assigned to a BDAT File, 6-10
1/O Path Names Assigned toa Buffer 6-11
I/O Path Names Assigned to a Devicecciiieieeoiiii... 6-9
I/O Path Names Assigned to an ASCII File 6-9

Index 15

I/O Path Names Assigned to an HP-UX File ..o 00 0 oo o 0 6-10)

[/O Path Names. Assiguing ..o 3-9
[/O Path Names. Closingo 3-11
I/O Path Names in Common. Declaring 3-14
[/O Path Names i Subprogralns 3-12
I/O Path Names Locally Within Subprograms. Assigning 3-12
I/O Path Names. Re-Assigningo 3-11
I/O Path Names to Named Buffers. Assigning 9-6
I/O Path Names to Unnamed Buffers. Assigning L. 9-6
T/0 Path Register Summary 6-9
I/O Path Registers ... 6-5
I/O Paths to Tiles oo 8-20
I/O Process ..o 2-19
I/O Statements and Parameters 2-19
[temn Separators e 4-3. 5-2
Itemn Terminators 4-3. 5-2
ITEF Keyboards 10-34
k
KBD$ function 11-27. 19-21
KBD LINE PEN statement 10-8
KBD Status and Control Registers ..o . 11-36
KEY LABELS ON/OFF statement 10-34
KEY LABELS PEN statement 10-8
Keyboard auto-repeat ... o 11-11
Keyboard CAPS LOCK mode 11-9
Keyboard ENTER 11-13
Keyboard features .o o oo e 11-4
Keyboard. Interactive 11-33
Keyboard Interfaces 11-1
Keyboard Interrupts. Servicing Datacomm 14-40
Kevboard. Locking Out the ... 0 0 11-34
Kevboard Operating Modes 0000 0 11-9
Keyboard OUTPUT ... 11-16
Keyboard types 11-1
Keyboards. Description of 11-1
Keystrokes. Trapping 11-29
Knob Rotation 11-26
KNOBX function ... 11-27

KNOBY function

16 Index

Line connection, Datacomm it 14-25
Line Speed (Baud Rate), Datacomm ccoiiiiiiiiiinna.. 14-18
Line Speed, Datacomm e 14-24
Line-Control Switches, RS-232C 13-9
LINPUT statementiiiiiiitet e 14-31
LOADSUB ALL FROM ... e e e 8-39
Local Control, Enabling i 12-12
Local Lockout messageooiiuiiiiiiiiiiiiiii i, 12-20
LOCAL LOCKOUT statementcoeeuuimtinneemnneennnennnnnnnnn 12-10
Local messageo 12-20
LOCAL statementouniinitii i e e e 12-10
Locking Out Local Controlttt 12-11
Locking Out the Keyboard i, 11-34
m
Manual Organization e 1-1
Mechanical Compatibility, Electrical and 2-5
Modem Control Register, RS-232C i 13-17
Modem Handshake Lines, RS-232C 13-17
Modem Line Handshaking, RS-232C i i, 13-13
Modem-initiated ON INTR Branching Conditions, Datacomm 14-17
Modem-Line Disconnect Switches 13-7
Modifiers, Statement-Termination it iniinnenn. .. 5-23
Monochrome Enhancements i 10-18
Mouse Keys ... 11-32
Multiple Termination Conditions it .. 9-16
n
Named buffer 9-5
Named Buffers, Assigning 1/O Path Names to, 9-6
Named Buffers, Creatingo 9-5
Named Buffers via Variable Names, Accessing 9-10
NDAC holdoff, HP-IB e e 12-53
Nested Images oot e 4-24, 5-25
Non-Active HP-IB Controller Addressing 12-37
Non-Active HP-IB Controller Interrupts i, . 12-32
Non-ASCII Data Transfersc.ooo i, 14-40
Non-ASCII Keystrokesoouniuinei e 11-16
Non-Data Datacomm Characters, Handling of 14-19

Index 17

Not Data Accepted (NDAC). HP-IB oo 12-47

Not Ready for Data (NRFD). HP-IB . oo oo 12-47
Number builder ... 5-3
Numbers. Representing 2-13
Numeric Format, Standard 4-2
Numeric [mages ... e 4-14. 5-16
Numeric OUtPULS . .ot 10-14
Numeric specifier e DT
o
OFF HIL EXT statement i 19-5
OFF INTR statement e e 7-17
OFF KBD statement 11-28
ON CDIAL statement ... 7-1
ON END statement i e 7-1
ON ERROR statement, 7-1, 13-16. 14-52
ON HIL EXT statement 0.t 19-4
ON INTR Branching Conditions, Datacomm 14-24
ON INTR Branching Conditions. Dataconim Modem-initiated 14-17
ON INTR statementt 7-2. 12-14, 14-30
ON KBD statement 11-27
ON KEY Interrupts, Datacomm Service Routines for 14-43
ON KEY statement e 7-1
ON KNOB statement i e 7-2, 11-26
ON TIMEOUT statement i 7-2, 17-33
One-Second-Left Interrupt 15-12
ON/OFF CDIAL statement i, 19-23
ON/OFF KBD statement ... 19-21
ON/OFF KEY statementiiiitiiiiii . 19-21
ON/OFT KNOB statementuueuruiuenieianeeannnanno.. 19-22
Operating Parameters, RS-232C 13-6
Outbound Control Blocks. Datacomm 14-5
Outbound Datacomm Data Messageso 14-8
Outbound transfer 9-2
Outbound Transfers. Inbound and 9-2
UL DUL o 2-2
OUTPUT and ENTER and Buffers 9-13
Output Area and the Display Line 10-5
OQUTPUT statement 2-19, 3-2. 4-2, 5-1
Output to the CRT e e 10-14
OUTPUT USING Statementt 4-10

18 Index

Output-Area MemOryottt e e e 10-22

Outputs that Use Images e 4-10
Outputting Data e 4-1
Overheat Protection TImMerttt 15-3
Overrun error (RS-232C) 13-4
P
PAIRS CONVEISIONS ...\ttt ettt e et e e e e e 8-13
Parallel Poll, Conducting aoiuiiiiiii i, 12-17
Parallel Poll Responses, Configuring i, 12-16
Parallel Poll Responses, Disabling 12-17
Parallel Polls, Responding to 12-39
Parity bit, RS-232C e 13-3
Parity, Datacomm e e 14-25
Parity Enable (RS-232C) e 13-7
Parity error (RS-232C) e 13-4
Parity Generation and Checking i i 8-16
Parity option:
EVEN 13-4
NONE o 13-4
O D o 13-4
ONE 13-4
ZER O e 13-4
Parity options, Datacomm 14-3
Parity, RS-232C Character Format and 13-11
Parity Sense (RS-232C) i 13-7
PARITY statementot 8-16
Pass Control messagecouiiiiiiiiii i 12-20
Passing Controlt e 12-31
Passing I/O Path Names as Parameters 3-14
Path name, I/O ... 3-10
Pen Colors, Changingotiiiiiii e 10-31
Pen Colors in Display Regions, Changing 10-8
Peripheral Status line (PSTS) i 16-42
Plotting Selected Locations on a Touchsereen 19-44
Pointers, Buffer 9-8
Power Back Delay i 15-3
Power Back Timer e 15-3
Power-Is-Back Interrupt 15-12
Powerfail protection 15-1
Powerfail protection capabilities 15-1

Index 19

Powerfail Status and Control Registers L 15-14

Powerfall Status register 15-6
Powerfail Timer 15-3
Powerfail Timer register 15-6
Powerfail-Protection Timers 15-3
PPOLL CONFIGURE statement, 12-10
PPOLL statement 12-10
PPOLL UNCONFIGURE statement 12-10
Premature Termination 9-38
Previews. Chapter 1-2
Primary address ... 3-6. 12-3
Primary function of an interface 2-4
Primary keyboard 11-3
PRINT ALL mode 11-10
Print All Mode .. 11-10
PRINT PEN statement it 10-8
PRINT position e e e 10-24
Priority, Changing System 7-8
Priority, Hardware 7-10
Priority, Software 7-6
Private Telecommunications Links 14-26
Program control (RS-232C) 13-9
Program flow (RS-232C) ... 13-12
Prompt Recognition, Datacomm 14-20
Protection time. default 15-9
Protection Timer, Overheat 15-3
Protocol Handshake Character Assigmunent, Datacomun, 14-20
r
Radix specifier 4-14
Re-Assigning I/O Path Nameso i, 3-11
Re-Directing Data 3-16
READ LOCATOR statement 19-22
Reading a Screen Line 10-27
Reading the Entire OQutput-Area Memory 10-28
READIO and WRITEIO Interface Hardware Registers 13-20
READIO and WRITEIO Registers 13-19
READIO statementttt 13-19
Real Numbers. ASCII Representation of 2-18
Real Numbers, Internal Representation of 2-17
Real Numbers. Representing 2-17

20 Index

Real-Time Clock .. ot e 15-2

Received BREAKS o e e 134
RECORDS parameterc.uiiunitit ittt 9-16
Records, Transferringooounineinnn et 9-16
Registers o e 2-20, 6-1
Registers, Buffer-Type i 9-7
Registers:

Interface 6-2

I/O Path ..o e 6-5
Relative PoSitionersoouiiiniii i e e 19-22
Remote Control of HP-IB Devicesot 12-11
Remote Enable Line (REN), HP-IB o i it 12-48
Remote message 12-19
REMOTE Statementuounttntene ettt 12-10
Repeat and Delay Intervals i 11-11
Repeat Factorsii e 5-25
Repeat Factors, Imageottt 4-22
Repeatable specifier L. e 4-22
Representing Real Numbers i 2-17
RESET statementouuioimtit it 9-21
Resetting the Datacomm Interface 14-14
Resource, Specifying a ... 3-2
RESUME INTERACTIVE statement 0 iiiiiniinannn.. 11-33
RETURN attributeo e 8-18
Ring Indicator (RI), RS-232C 13-6
Rotary Control Knob 11-32
RS-232C character format 13-2
RS-232C Character Format Parameters 13-7
RS-232C compatible cables 13-49
RS-232C Data Error Detection and Handling, Incoming 13-14
RS-232C Data Transfers Between Computer and Peripheral 13-5
RS-232C DTE and DCE cable configurations 13-29
RS-232C Error Detectionooueinii i 13-4
RS-232C framing errorsueeeunt e 13-4
RS-232C Handshake and Baud Rate 13-6
RS-232C Interface Defaults to Simplify Programming, Using 13-7
RS-232C, List of Signals ... 14-73
RS-232C Modem Control Register i, 13-17
RS-232C Modem Handshake Lines ui ... 13-17
RS-232C operating parameters 13-6
RS-232C Optional Circuit Driver/Receiver Functions 14-71

Index 21

RS-232C7 overriin errors ... 13-4
RS-232C" parity bit .. 13-3
RS-232C parity eIrors . ..o 13-4
RS-232C received BREAKS 13-4
RS-232C Serial Interface e 2-8.13-1
RS-232C" Serial Interface Self-test Operations 13-18
RS-232C" Serial STATUS and CONTROL Registers 13-36
RS-232C:
Clear to Send (CTS) oo 13-6
Data Carrier Detect (DCD or CD) oo 13-6
Data Set Ready (DSR) oo 13-6
Ring Indicator (RI) 13-6
S
Scereenwidth. determining 10-7
Scrolling. Disabling 11-10
Scrolling the Display o 10-25
Second Byte of Non-ASCII Key Sequenceso o i i 11-18
Secondary Addressing ... oL e 12-9
SECLOT SIZE . ottt 9-31
Select Codes of Built-In Interfaces 3-4
Select Codes of Optional Interfaces o000 00 0o 3-5
Selectors, Device ..o e 3-4
Selectors, HP-IB Device ..o 3-6
Sewicolon separator oo . -4
SEND statement oo 12-10
Separator. COLLINAo e e 4-4
Separator. semicolon o 1-1
Serial Interface ..o 13-1
Serial interface 9-37
Serial Interface Errors. Trapping 13-16
serial Interface Programming 13-6
Serial Interface. RS20207 . « . I
Serial Poll. Conducting a o 12-18
Serial Polls. Responding to 12-41
Series 300 Built-In 98644 Interface o 13-51
Service request. HP-1B3 ..o o0 o o 12-38
Service Request Line (SRQ). HP-IB o 12-49
Service Request message .o 12-20
Service Request (SRQ) oo 12-14
Service Requests 00 7-17

22 Index

SEIVICE TOULIIIE . o ottt e et e e e e e e e et et e e e e e e e e e e 7-5

SET TIME functionouuienmet it ittt et e et et e e 15-2
SET TIMEDATE functionttt iiian e 15-2
Shift and Control Keysot e 11-5
SN SPECIFIET .. i\ 4-14
Signal functions, RS-232C 13-29
Signed Integers, Representing i i i i, 2-14
Softkey Interrupts, Datacomm i i i i, 14-30
Softkey Label Colorst 10-35
Softkey Labelst e 10-32
SO RS . ottt e 11-25
Softkeys and Knob Rotation i 11-32
SOftWATe PIIOTILY oot vttt ettt ettt e e e e e 7-3
Special-Character Images e 4-20
Specifiers:
Binary ..o e 4-18
Character ... ot e 4-17
Dt .ot 4-14
Exponent ... 4-14
I 6 1<) (P 5-17
Radix ..o 4-14
Repeatable e 4-22
Il o e 4-14
Special-Characterot 4-20
Termination 4-21
Specifying a Resourceo..iiiiiin e 3-2
Speed, EXeCUtIONottt 3-15
SPOLL Statementttt et e e et e e e 12-10
SRQ Interrupts, HP-IB 12-14
SRQ Interrupts, Servicing HP-IB 12-15
Start bits, DatacomInttt 14-3
Statement-Termination Modifiers 5-23
Status Bit messageoo e 12-20
Status Byte message 12-20
STATUS statementt et 6-2
Stepwise refinement 8-37
Stop bits, Datacommm 14-3
Stop Bits (RS-232C) ... 13-7
String Data, Entering e 5-8
String Format, Standard 4-3
String IMages oo ittt 5-18

Index 23

SETING IMAZES . ..o 4-17

String Variables. Entering Data From 8-30
String Variables. Outputting Data to 8-25
String-Variable Names 3-2
SUSPEND INTERACTIVE statement i ... 11-33
SUSPENDED statement 14-50
Suspended Transfers 9-30
Switched (Public) Modem Links. Dialing Procedure for 14-26
Switched (Public) Telephone Links 14-25
System controller 12-5
SYSTEM PRIORITY statcinent oo e 7-8
SYSTEMS$(“CRT ID”) functioncoiierimmiiianaeeannn. 10-7
SYSTEM$("SERIAL NUMBER™) 19-25
t
Telecommunications Links, Private o 14-26
Telephone Links. Switched (Public) 14-25
Terminal Emulator 14-53
Terminal Identification. Datacomm o 14-24
Terminal Prompt Messages 14-59
Terminating a Transfer 9-20
Terminating Enters that Use Timages .~ 0000 0o o0 5-21
Termination Conditions. Default 3-21
Termination Conditions. Multiple 9-16
Termination. prematiive ... 9-2¢
Termination specifier ... 4-21
TerminOlOgY o 2-1
Time gap. Datacomm S . A e o143
TIMEDATE function 15-2
Timeout Events, Setting Up 7-20
Timeout Limitations 7-21
TINeOUt Service TOUTITIOS ..o e 16-25
TIMEOUT time parameter . ! S L o 16-24
Timeouts, Datacomm 14-17
Timeouts, Interface 7-20
Timeouts. Interrupts and 7-1
Timing Compatibility 2-6
Top-Down Approach. Taking a 8-32
Touchscreen., Using a0 oo 0 e 19-143
TRANS binaryo 9-1
Transfer Event-Initiated Branching 9-18

24 Index

Transfer eXamplesttt e 9-22

Transfer Formattinguiieiiiii i et e 9-13
Transfer methodscotoirir i e e e 9-12
Transfer Methods and Ratescoi i, 9-34
Transfer parametersootiiiiii it e 9-14
Transfer performanceueouune ittt et 9-31
B 0TS () o - P 9-35
TRANSFER Records and Termination i iivu... 9-17
Transfer reStrictionst e e 9-3
Transfer Sources and Destinations, Supported 9-3
TRANSFER statementcouiuiinniieii e, 9-1, 16-36
Transfer Statusottt e 9-13
Transfer techniques i i e 9-1
Transfer, Terminating attt ittt 9-20
Transfer Termination i e 9-13
Transfer tPes ..ottt e 9-34
Transferring a Specified Number of Bytes 9-15
Transferring Records i 9-16
Transfers and Disc Drives, Overlapped i i, 9-31
Transfers, Continuous Non-Overlapped i, 9-15
Transfers, Inbound and Outbound e 9-2
Transfers Indefinitely, Continuing e 9-14
Transfers, Non-Overlapped e 9-15
Transfers, RS-232C Data ...t et e 13-12
Transfers, Suspended’ ittt 9-30
Transfers, The Purpose of i, 9-1
Transmitted Block Size, Datacomm 14-25
Trapping Function Box key pressesc..iiiieiiniinininnnnannn. 19-35
Trapping Keystrokesooiiiii i e et 11-29
Trapping Serial Interface Errors i 13-16
TrigGETr MESSAGE . . . oottt ettt e e et e e e e 12-19
TRIGGER statementt 12-10
Types of Events e 7-1

Index 25

UART RegiSters e 13-22
Unified I/O ..o 8-25
Jnnamed buffer 9-5
Unnamed Buffers, Assigning I/O Path Namesto 9-6
w
WAIT FOR statement i 9-19
WAIT parameter 9-19
WORD attribute L. e 8-6
WRITEIO Registers, READIO and iia... 13-19
WRITEIO statement i i 7-16, 13-19

26 Tndex

MANUAL COMMENT CARD

BASIC 5.0
Interfacing Techniques
HP 9000 Series 200/300 Computers
HP Part No.98613-90022

Name:

Company:

Address:

Phone No:

Thank you for taking the time to respond.

Please note the latest printing date from the Printing History (page iii) of this manual
and any applicable update(s) so we know which material you are commenting on.

(bp HEWLETT

PACKARD

HP Part Number H“! I|||‘ |“|| “l “I I“ IIH' ‘mm“l

98613-90022
Microfiche No. 98613-99022 98b13-90Lk32

107 o 1 ~ -l
1/8, r ! el bl ol Iy

Dt nd i =~ s
P i OF iiiSiTiar ude

QA
Mnimeda in v.o.A.

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-00
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	09-001
	09-002
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	Index-24
	Index-25
	Index-26
	replyA
	xBack

