HP 3000 Computer Systems () ot

System Tables
reference manual

HP 3000 Computer Systiems

MPE IV
SYSTEM TABLES

Reference Manual

ﬁ/’ HEWLETT

PACKARD
19447 PRUNERIDGE AVENUE, CUPERTINO, CA 95014

Part No. 32002-90003 Printed in US.A. 1182
E1182

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or consequential damages in con-
nection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that 1s not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another
program language without the prior written consent of Hewlett-Packard Company.

Copyright (¢ 1882 by HEWLETT ~FACKARD COMPANY

i1

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition, and lists the dates of all
pages of that edition and all updates. Within the manual, any page changed since the last
edition is indicated by printing the date the changes were made on the bottom of the page.
Changes are marked with a vertical bar in the margin. If an update is incorporated when
an edition is reprinted, these bars and dates remain.” No information is incorporated into a
reprinting unless it appears as a prior update.

Third Edition........... November 1582

Effective Pages Date

ALL NOV 1982

1i1

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued be-
tween editions, contain additional and replacement pages to be merged into the manual by
the customer. The date on the title page and back cover of the manual changes only when
a new edition is published. When an edition is reprinted, all the prior updates to the edi-
tion are incorporated. No information is incorporated into a reprinting unless it appears as
a prior update. The edition does not change.

First Edition JAN 1979
Second Edition APR 1981
Update No. 1 OCT 1881

THIrG EQiTiONueirierierninissiessrenisssssasissesssssesssssssssns NOV 1882

PREFACE

The information included in this manual is provided by Hewlett Packard to describe the
internal organization of MPE. It is not intended to be a guide to the modification of MPE.

Any modification of the tables presented in this manual by HP 3000 users is strongly dis-
couraged as serious damage to the operating system may result. Furthermore,
Hewlett-Packard will not support, correct, or attend to any resulting modification of the
MPE Operating System Software.

It is not the intention of Hewlett-Packard to update this manual on any scheduled basis.
Hewlett-Packard is not responsible for problems arising from inaccuracies existing in this
manual, nor is it responsible for the correction of any inaccuracies.

MANUAL PLAN

INTRODUCTORY LEVEL:

GENERAL
INFORMATION
Manual
30000-80008

USING THE
HP 3000
03000-90121

USING
FILES

30000~-90102

STANDARD USER LEVEL:

COMMANDS ERROR MESSAGES SYSTEM INDEX TO MPE
Reference AND RECOVERY UTILITIES REFERENCE
Manual Reference Manual Manual DOCUMENTS
30000—-90009 30000-903015 30000—90044 30000-93045
FiLE SYSTEM INTRINSICS DEBUG/ SEGMENTER
Reference Reference STACK DUMP Reference
Manual Manual Reference Manual Manual
30000-90236 3000080010 30000~90012 30000-390011

ADMINISTRATIVE LEVEL:

CONSOLE
QPERATOR'S
GUIDE
32002~90004

SYSTEM MANAGER/
SUPERVISOR
Reference Manual
30000-30014

SUMMARY LEVEL:

SOFTWARE

30000—-80049

TABLE OF CONTENTS

CHAPTER 1 MEMORY LAYOUT
FIXED LOW MEMORY (SERIES II/III) .11
FIXED LOW MEMORY (SERIES 30/33) . . 1-2
FIXED LOW MEMORY (SERIES L) . . 1-25
SYSTEM GLOBAL AREA 1-6
SYSGLOB EXTENSION 1-17
SYSDB WORDS + « « « « & . . 1-19
ALLOW MASK FORMAT . . e e e . . . 1-20
LOGGING RELATED LOCATIONS e e e e .. 1-21
FLAGX . . e . 1-21
PROCESS STOP LIST GENERAL LAYOUT . . 1-22
Entry Format . . . 1-22
Preassigned Entries . 1-22
INITIAL MEMORY ALLOCATION . . 1-23
Initial Memory Layout 1-25
CHAPTER 2 MEMORY MANAGEMENT TABLES
SEGMENT TABLE STRUCTURE e . . 2-1
Pointers and DST #’s of Segment Table . 2-2
Components

Standard Segment Identifier Format . .

DST Entry Formats
DST Entry O Format . . .
DST General Entry Format .
CST Entry Formats .
CST Entry O Format . e e
CST General Entry Format . . .
CST Entry Field Descriptions . .
Table Format - CSTBLK .
Program Blocks and the CSTXMAP .

Entry Format - CST Extension B

Fixed DST Entry Assignments . .
SWAP TABLES + +« « « « « &
SWAPTAB . . .

SWAPTAB Entry O Format

SWAPTAB Unassigned Entry Format
Segment Locality Lists (SLL) .
SLL Header Format
SLL Entry Format .
Special Request Table
MAIN MEMORY REGION HEADERS AND TRAI

LERS

Available Region Headers and Trailers

Available Region Global Header Format

Available Region Subregion Header

CONTENTS-1

.

I\)l’\)NNNNNNNFOM'})NPONNNNNNNNNN

1
RPRPPPERPPRPRPREPPPONIAAVIVIVIWWWW

NNN AN EFWRD R PP

!

Available Region Subregion Trailer .
Available Region Global Trailer
Reserved Region Headers and Trailers .
Reserved Region Global Header Format
Reserved Region Subregion Header . . .
Reserved Region Subregion Trailer
Reserved Region Global Trailer .
Assigned Region Headers and Trailers . .
Assigned Region Global Header Format
Assigned Region Subregion Header
Assigned Region Subregion Trailer . .
Region Header and Trailer Field
Descriptions
SPACE ALLOCATION STRUCTURES e e e e
Available Region List (ARL) . . . 2-26
Available Region Size Bit Map (ARSBM) 2-27

NNI\)NMI\I)NNNNN
MNMPONDNNDNONDNNDRPR R PR
WMNHMNDNDEOOWO O

v
NN
(e)0 —f

CHAPTER 3 DISC LAYOUT

SYSTEM DISC LAYOUT . o v e
DISCLABEL . . . +. + v « « « + &
System Volume « ¢« « ¢« « ¢ « « o &
Serial Volume
Master Volume
Slave Volume . . . e e e e e e e e e e
DEFECTIVE TRACKS TABLE e e e e e e e e e
DEFECTIVE SECTOR TABLE « . « « &
RESERVED AREA BIT MAP .
DISC COLD LOAD INFORMATION TABLE .
INITIAL PROGRAM CST MAP . .
VIRTUAL DISC SPACE MANAGEMENT STRUCTURES .
Virtual Disc Space Management Table . .
General Structure .
VDMSTAB Entry 0 Format . .
VDMSTAB General Entry Format .
VOLUME TABLE . .
Typical Private Volume Entry .
Typical System Volume Entry

[R
E ol gl)

1
MMM NDNODPODNNDNNODERERRREERE 00O
ANV EFWNDDDMO AWM BN O

wwwwwwuww&»wuwuwwwww

OVERVIEW OF DIRECTORY G e e e v« .. b
DIRECTORY DATA SEGMENT 4
DIRECTORY POINTER AREA U4-
DIRECTORY SPACE DATA SEGMENT . Y
DIRECTORY STRUCTURE .
DIRECTORY DEFINITIONS +« « . « . . . &

CONTENTS-2

INDEX BLOCK PREFIX « « « « +« « . . . 4-8

INDEX ENTRY . « + v v v v « v o v o « « - . k-9

ACCOUNT ENTRY . . + « « v « + v o « « « « . b4-9

GROUP ENTRY R S e
FILE ENTRY . . & v + v v o o o o o o o o « . b-1Y
USER ENTRY . . . R 1 §
USER ATTRIBUTES/CAPABILITY 4-15
VOLUME SET DEFINITION ENTRY k16
GVS LINKAGE, INFO, VOLFLAGS, VOLINFO 4-17
VOLUME SET CLASS ENTRY 4-18
GVC LINKAGE,INFO « « v « « « « « . . 4-19
VOLUME MASK FORMAT 419
VOLUME TABLE (SEE CHAPTER 3)

CHAPTER 5 LOCK RESOURCES

- - R

SIR ALLOCATION e e e e e e e e

MULTIPLE SIR ALLOCATION e e e e e e e e e -
SIR TABLE INFORMATION -
SIR ENTRY FORMATS . . e vt e e e e e e -
RIN TABLE GENERAL LAYOUT .« e

ALLOCATION AND LOCKING OF LOCAL nI“" .« . .
ALLOCATION AND LOCKING OF FILE RINS .
ALLOCATION AND LOCKING OF GLOBAL RINS .

U’l\ﬂ\J’l\{!\ﬂU‘l\.ﬂ\ﬂ
O~ An WP

CHAPTER 6 FILE SYSTEM

FILE SYSTEM INTRODUCTION ¢« &« o « & 6-1
FILE SYSTEM OVERVIEW « « « & 6-1
Buffers . . . v v v v « o « o & 6-2

TABLE FORMATS . . . -3
File System Section of PCBX (PXFILE) . . -3
Overhead . e e e e e e e e e e -y
PXFILE Control Block Table 6-§
Avallable Block . . B N
Active File Table (AFT) .. e e e . . b=
File Control Block Table (CBTAB) -
Uverneaa o« o o . . e o e o o e
Vector Table . . .+ v &« v v ¢ ¢ ¢ o o o &
Control Block Area . . . e s e e e o o b6-

Access Control Block (ACB) .
Logical Access Control Block (LACB) .
Physical Access Control Block (PACB) .
File Control Block
File Label (FLAB)
File Multi-Access Vector Table (FMAVT) . .
Zero Entry Format

1
VUV EWRR PP PP
OCOMANOC W~ AWK O

050\0’\0\0\0\0\0\?\0\0\0\0\0\0\0\0\

CONTENTS-3

Typical Entry Format . .
System Global Area (SYSGLOB)
SIRs, Locks, and Deadlocks e e e

CHAPTER T PROCESS TABLES

PROCESS TABLES INTRODUCTION
PROCESS CONTROL BLOCK (PCB)
TABLE STRUCTURE AND FORMAT
Fixed Cells Related to PCB .
PCB Entry 0 Format .
Unassigned PCB Entry Format .
Assigned PCB Entry Format
PCB Assigned Entry Field Descrlptlons
PROCESS CONTROL BLOCK EXTENSION (PCBX)
STRUCTURE AND FORMAT . .
PCBX General Structue
PXGLOB Format .
PXFIXED Assignments .
PXFIXED Expansion Bitmap .

File System Section of PCBX (PXFILE)

Overhead (PXFILE) . .
Control Block Table (PXFILE)
Available Block Area (PXFILE) .
Available File Table (AFT) (PXFILE)
PCBX for Core Resident System Process
Stacks
PROCESS TO PROCESS COMMUNICATION TABLE
SUB-SYSTEM RESERVED DL AREA . .
FORTRAN LOGICAL UNIT TABLE (FLMT) .

CHAPTER 8 JOB TABLES

JMAT STRUCTURE (JOB MASTER TABLE)
JMAT ENTRY . e e e e

JOB STATES
JPCNT - JOB PROCESS COUNT TABLE .« .
GLOBAL RIN FLAG TABLE .

JCUT - JOB CUTOFF TABLE

JIT - JOB INFORMATION TABLE .
JDT ~ JOB DIRECTORY TABLE
JOB DATA SEGMENT DIRECTORY ENIRY .

JOB TEMPORARY FILE ENTRY .

FILE EQUATION FILE ENTRY .

JOB LINE EQUATION ENTRY

JOB CONTROL WORD TABLE . .
AOPTIONS AND FOPTIONS WORD BREAKDOWN .

. o

VNN NNNNNNSNNANSY NN NNNS S

(e NeNo:NeNeNoNecNoeoNoNoNooNocNooNel
1)
PRRPRREPGUVIVIEFWR

1
[

DU A [
NNOVPRPRPRRPREBEOYOO WEFWNOPRR

=~ O\ = PO OoONDT O

1
NN NN

CONTENTS -4

PMASK WORD BREAKDOWN .

UCOP REQUEST QUEUE (DST;Q;

UCOP ENTRY FORMAT

CHAPTER 9

.

USL FILES - GENERAL INFO .

RECORD 0 AND OVERALL USL FILE FORMAT e e e e
Data Descriptors, Passed Parameters . .

Entry Types 0,1

Entry Types 2,4-Notes for SPL and FORTRAN

Entry Type 2 . .
Entry Types 3,4
Entry Type 5
Entry Type 6 .
Entry Type 7 . .
Entry Type 8 . .

Entry Header Format

Header Types 0,1 .
Header Types 2,3 .
Header Types 4,5 .

Header Types 6,7
Header Type 8 .
Header Type 9

. o

.

Header Types 10,11 .

RL FILE FORMAT .

Storage Management .

Entry Point Directory
Typical Directory Entry

.

Procedure Info Block .

Headers

CHAPTER 10

PROGRAM FILE FORMAT
FLAGS
FLAGS2 .

CST Remapping Array

o o

.

.

.

Segment Descriptor Array .
Global Area Format .

External List

Entry Point List .

The Code Segment with Patch

Patch Area .
PMAP Info .
PMAP Type Table
PMAP Records .

o e

.

3

PREPARED OBJECT CODE

RELOCATABLE OBJECT CODE

e o . e .

[I R O
o whRrRoOoOOONVIEWNDERPOU &P

\O\O\Q\O\O\O\O\O\D\O\O\O\?\O\D\D\D\D\O\D\O\O\O\O\O
WwWwwWwwwmPmprPpmpmDONDNDRPRPREPEPEPR OO

'???OO?OCDOOO

1
S\O\O - AT\ W

BRRRBEBRPBRERERRR
o O -

CONTENTS-5

Type 0 Segment PMAP Record 10-10
Type 1 Procedure PMAP Record 10-10
Type 2 Secondary Entry PMAP Record 10-11

SL FILE FORMAT e+ + « « « o« 10-12
Storage Management 10-1h
Entry Point Directory 10-14

Typical Directory Entry 10-15

Code Segment Linkage Structure 10-16
REFERENCE TABLE STRUCTURE 10-18

Reference Table Entry . . . « « » o 10-19
The Code Segment With Patch Area « « » o+ 10-20
Patch Area ¢« « « « . « . 10-20
PMAP Info 10-21
PMAP Type Table 1l0-21
PMAP Records . . . e+ « o« o 1l0-22

Type O Segment PMAP Record « « « + o« 1l0-22
Type 1 Procedure PMAP Record 10-22
Type 2 Secondary Entry PMAP Record 10-23

GENERAL INFORMATION 11-1
LOADER SEGMENT ALLOCATION 11-2
LOADER SEGMENT TABLE PRIMARY DB 11-3
REFERENCE COUNT TABLE 11-4

SEGMENT TRANSFORM TABLE 11-4
ENTRY INDEX TABLE ¢« ¢« ¢ ¢« « + « . 11-5
DIRECTORY . . . ¢« v ¢« v v « o o o o « « « 11-5
ENTRY POINTER « « « .« . . 11-6
SBUFO b Y
DIRECTORY ENTRIES e e e e e e e e e e« . 11-8

Definitions « «. ¢« « . . . 11-10
LOADER CACHE O & % B
LOADER COMMUNICATION TABLE e 4 e e e e . . 11-13

CHAPTER 12 PRIVATE VOLUMES/SERIAL DISC

MOUNTED VOLUME TABLE « « « « . . . 12-1
PRIVATE VOLUME USER TABLE 12-h4

BIND NAMES DATA SEGMENT 12-6

SERIAL DISC TABLES AND DATA STRUCTURES .. 12-8
Data Record Format 12-8
End of File Format 12-9
Contiguous Block Format 12-10
Hole Format 12-10
Gap Table Format . . . e e e e e e . 12-11
SDISC Extra Data Segment e e e e e e .. 12-13

CONTENTS -6

Serial Disc Organization . . .

CHAPTER 13 1/0

- - - -

I/0 TABLE LINKAGE . .
DEVICE REFERENCE TABLE (DRT)
Series II/III
Series 33/b4
DRIVER LINKAGE TABLE (DLT)
LOGICAL-PHYSICAL DEVICE TABLE (LPDT)
LPDT Entry .
OVERVIEW OF DEVICE TABLES IN DST %16
LOGICAL DEVICE TABLE . e
Zero Entry Format
Typical Entry Format . e e e
DEVICE CLASS TABLE + « +
Typical Entry Format . . .
LOGICAL DEVICE TABLE EXTENSION (LDTX)

Zero Entry . e e e e e e e e e
Typical Entry « « ¢« « « « .« .

Terminal Entry « . « + « .+ .

Serial Disc Bntry

CIPER Entry .

System or Private Volume Dlsc Entry
INTERRUPT LINKAGE TABLE (ILT)

ILT for Series II/III .

ILT for Series 30/33/44 and

Series II/III (HP-IB) .

ILT Terminology . e e e
DEVICE INFORMATION TABLE (DIT) . .

DIT FOR SERIES II/III . . e

DIT Terminology (Series II/III)

DIT for Series 30/33/L4

DIT Terminology (Series 30/33)

DIT for SIO Devices .

DIT for Fixed Head Disc

DIT for T900A and 2888a Mov1ng Head D1sc
DIT for 7905/7906/7920/7925 . . s

asa s va

DIT for CS 80 Disc . .
DIT for 7970/71 Magnetic Tape

DIT for 7976 Magnetic Tape .
DIT for Series IIT Card Reader

mas AVe WL ATS

DIT for HPIB Card Reader . . e .

Line Printer DIT (Series II/III) .

2608 Line Printer DIT (HPIB Systems)

2608S (HIOCIPRO) Line Printer DIT

2631 or 2619A Line Printer DIT (for
HPIB Systems) . . e e

2680A DIT .

I/0 Status Block .

30119 Card Reader/Punch DIT

12-15

. 13-1

13-2
13-2
13-2
13-3
13-4
13-6
13-8
13-9
13-9
13-9
13-11
13-11
13-12
13-12
13-12
13-13
13-1%
13-15
13-15
13-16
13-16

13-17
13-18
13-19
13-19
13-20
13-21
13-22
13-23
13-25
13-26
13-28
13-30
13-33
13-36
13-39
13-41
13-43
13-47
13-50

13-53
13-55
13-57
13-60

CONTENTS-T

INP DIT .

DISC REQUEST TABLE AND DISC REQUESTS .
Disc Request Table . e
Disc Request Element Format .

IOQ TABLE LAYOUT ¢« « « « + .
IOQ Element . . e e e e e
IO System Status Returns . .

I0Q Element for T9T76A Magnetlc Tape
Series II/III Line Printer IOQ Element
2608 Line Printer I0Q Element - HPIB
Systems . . . o e s e e s
2608S (CIPER) IOQ Element e e e
2619A and 2631 Line Printer I0Q
Element - HPIB Systems . . .
Series III Card Reader IOQ e e e e .
I0Q Element for HPIB Card Reader
CS 80 Disc IOQ Element
CS 80 Integrated Cartridge Tape IOQ
Element

SBUF AND TBUF TABLE LAYOUT . ..

Table Element Allocation (TBUF and SBUF)
ICS GLOBAL . .
ICS Global CelIs, w1th Inltlal Values

CS80 Disc Interrupt Linkage Table (CILT)

CHAPTER 14 SPOOLING

INPUT DEVICE DIRECTORY/OUTPUT DEVICE
DIRECTORY . e e e e
XDD Subentry Format e e e e e e
SPOOK OUTPUT TAPE FORMAT
Label Record .
File Directory
Device and Class Dlrectory .
Logical Device Entry .
Device Class Entry .
Spoolfile Format . e
Spoclfile Block Format . .
Spoolfile Record Format
User Labels Information

CHAPTER 15 UNIFIED COMMAND LANGUAGE

REPLY INFORMATION TABLE
MESSAGE SYSTEM, GENERAL DESCRIPTION
Message Catalog
Makecat Program
CATALOG. PUB. SYS

13-62
13-70
13-71
13-72
13-75
13-77
13-79
13-81
13-83

13-86
13-89

13-92
13-96
13-99
13-101

13-104
13-108
13-109
13-111
13-113
13-11h

14-8

CONTENTS -8

MESSAGE SET DIRECTORY

HELP SUBSYSTEM .

Help Directory .

UDCs . . e e e e e e e
uDc D1rectory e e e e e e e
COMMAND.PUB.SYS

CI STACK DEFINITION
Field Definitions .

ASSOCIATION DST LAYOUT .

CHAPTER 16 SYSDUMP/INITIAL

CTABO (Memory Size Independent
Configuration Values)
Record 0 of CONFDATA File . .
CTAB (Memory Size Dependent
Configuration Values) . . .
Records 1-8 of CONFDATA File .
DRIVER TABLE
SYSDUMP FORMAT .
STORE TABLE FORMAT .
First Volume . .
Subsequent Volumes .
End of Volume

CHAPTER 17 MISCELLANEOUS

LABELED TAPE SUBSYSTEM .
Format of MPE Tape Labels
Voll
UVLn .
HDR1 .
HDR2 .
IBM .
EOVI« ¢ v v v ..
EOV2 o o 0.
EOF1« .« . ..
EQF2 s s s s s s s s
TAPE LABEL TABLE .
Tape Label Table Header Entry
Unitialized Table (INITIAL)
LCB Entry Format . .
VCB Entry Format . . .
BREAK POINT TABLE (DST %36)
General Layout .

PCB Breakpoint Exten51on Table .

m_o1

Breakpoint Entry Table .

15-9
15-11
. . 15-12
.« 15-13

BPRPRPBRRPBRPBPRERPEBRRRER

(S
NNNNNNANNNN NN
el I AR RS RS A

17-11
17-12

A an

Li=13

CONTENTS -9

Entry(0) 17-13

Free Entry 17-13
Last Entry 17-13
Active Entry . . . e e s 4+ e e & e . 1T7-13
TIMER REQUEST LIST (TRL) e e e e .. 1T7-16
MPE USER LOGGING « « « . « . 17-18
General Design Overview 17-18
Hardware Environment 17-18
Software Environment 17-18
Design Narrative . . . e e e+ . . 1T7-18
Error Recovery Descrlptlon e+ e e . . 1T7-19
Design Structures 17-20
User Logging Table (DST %33) . . 17-20
User Logging Buffer 17-26
Logging Identifier Table 17-35
Logging Record Format . . 17-39

MEASUREMENT INFORMATION TABLE (MEASINFOTAB)
(DST %u1) . C e e e e e e e e .. AT-N2

CHAPTER 18 MESSAGE FILES/IPC

FILE STRUCTURE . . e e e e . . . 181
File Label/FCB Extent Map e e e e e . . 18-1
Block Structure 18-2
Record Format 18-3
Header Format e e+« . . 18-3
Message Access Control Block v e e« . . 18-}
MMSTAT Definitions . . . e« . . . 18-11

FILE SYSTEM BASIC IPC DEFINITIONS . . + . 18-13

General Behavior 18-13
FCPORTOPEN Procedure 18-13

FCPORTSEND Procedure 18-13
FCPORTRECEIVE « . « « « « . . 18-13
FCPORTCLOSE« . 18-13

IPC File’s Use of IPC Mechanlsm . « . . 18-13
Reader and Writer Wait Queues . . 18-14
Completion Notification for NOWAIT I/O 18-14
Timeouts . . . e e e e e e e e e+ . 18-14
PORT DATA STRUCTURES e e e e e e e e e« . 18-15
Port Data Segment 18-15

Port with Two Outstandlng Messages . . . 18-15
Port Number 18-16
Port Data Segment Array 18-16

Port Data Segment Global Area 18-17
Port e « « « . . . 18-18
Message Queue Entry (MQE) e v e e« . . 18-19
FILE SYSTEM MESSAGE FILES 18-19
Timer List Entry (TLE) 18-20
MMSTAT Definitions 18-21

CONTENTS-10

CHAPTER 19 MPE MEMORY RESIDENT MESSAGE FACILITY

mS505,506. . . & ¢« v v 4 e e e e e e ... 19-1
MESSAGE INTRINSICS « « « « « « . 19-2
SENDMSG . + ¢ ¢ & o ¢ o ¢« o o o s o o o« 19-2
PORTSTATUS . . & & v & ¢« ¢« o o s &+ o« « « 19-2
RECEIVEMSG e e e e e v e« 19-3
SUPPORTING DATA STRUCTURES e e e e e« . 19-4
Message Harbor Table 19-4
Message Tables . . . e e e e e e e . 19-)
Message Port A551gnments e e e s e e . . 19-5

MMSTATS CATALOG INDEX 20-1
EVENT GROUP 0 - MEMORY MANAGER e e e e .. 20-2
EVENT GROUP 1 - MEMORY MANAGER 20-10
EVENT GROUP 2 - MEMORY MANAGER 20-11
EVENT GROUP 3 . . &+ +« « « « « o« « « « « . 20-13
EVENT GROUP 4 - SCHEDULING 20-14
EVENT GROUP 5 - MESSAGE FILES (SEE CHAPTER 18)
EVENT GROUP 6 - FILE SYSTEM 20-16
EVENT GROUP 7 - FILE SYSTEM 20-25
EVENT GROUP 8 - FILE SYSTEM 20-30
EVENT GROUP 9 - DISC I/O TRANSFER 20-31
EVENT GROUP 10 - DISC ERRORS 20-32
EVENTGROUP 11 - SI0O . . « +« « « « « « . . 20-33
EVENT GROUP 12 - SOFT'DEATH 20-34
EVENT GROUP 13 . . +. + « « « « « « « « . 20-35
EVENT GROUP 14 - ¢S/3000 20-35
EVENT GROUP 15 - €S/3000 20-39
EVENT GROUP 16 - CS/3000 20-142
EVENT GROUP 19 - DISC CONTROLLER INTERRUPT 20-43
EVENT GROUP 20 - PRIVATE VOLUMES . . 20-48
EVENT GROUP 21 - PROCESS CREATION AND

TERMINATION 20-49
EVENT GROUP 22 - MONITOR CONFIGURATION

INFORMATION 20-50
EVENT GROUP 23 - TERMINAL I/O 20-54

CHAPTER 21 DATA COMMUNICATIONS TABLES

LOW LEVEL DS/3000 TABLES . e e e
Data Communication IOQ Entry
DS Line Control Biock

N DN
Ll
W

CONTENTS-11

DSGLOBAL Data Segment . . 21-4
DSGLOBAL Information Table (DSGLOBINFO) 21-5

DSXREF Table . . + « « o« « o « « « + «» 21-6

DSDEVICE Table 21-10
DSLPDT Entry 21-11
IODSO DIT ¢« v « ¢ v v v o o » . 21-12
IODSX DIT . v v v v ¢ o ¢ & o« o o o o . 21-14
IODSTRMO DIT « « « « + o « . . 21-16
IODSTRMX DIT+ . . . 21-18

IOPADO DIT (PAD Term1nal DIT) e . . . 21-20
Pad Terminal Extra Data Segment . . . 21-3h4

IODSO IOQ &« v ¢ v v v 4 o o & o o« « » . 21-37
IODSE IOQ &+ v v v v v 4 v e v o o v o . 21-N2
IODSTRMO I0Q . . . + ¢« « v ¢« +« « « + + « 21-50
IODSTRMX I0Q . . . + « v v ¢« + o « &« + o« 21-52
IOPADO IOQ . . . e e e e e e e v . . 21-54
DS I/0 Table Llnkage e e e e e e . .. 21-60
Q-Relative Values for Drivers . . 21-61
DSMON/DSIOM Psuedo Header/Control Block 21-62
DSMON Request Formats e . . . 21-63
DSMONX Communication Buffers Format .. 21-T4

DSGETQ and DSPUTQ Buffer Format . . . 21-T4
DSMONG and DMONP Buffer Format 21-79

DSMONX User Channel Information Table 21-82
DSMONX Virtual Circuit Information Table 21-86
DSMONX Layout . . e e e e e e . . 21-89

UPPER LEVEL DS/3000 TABLES e e s e s+ . . 21-90
DS Info Data Segment 21-90
DS Available File Table (DS AFT)

(FSTYPE=1) 21-94
DS Available File Table (DS AFT)

(FSTYPE=2 or 3) . . . 21-95
Overall Session/Job DS Data Structure 21-96
DS-Related PCBX Structures 21-97
Job DS Extra Data Segment 21-98
Device/Process DS Extra Data Segment . . 21-100
DS Line Control Block (DSLCB) . . . 21-102

DS Line Control Block Extension (DSLCBX) 21-103
DS Control Block (DSCB) with Message

Header Format« . . 21-104
Pointer Linkage in Dev1ce/Process
DSXDS« . . . 21-106
Description of Se551on/Job DS
Data Structure . . . 21-108
Overall Session/Job DS Data Structure 21-108
AFT and PCBX Structures 21-109
Job DS Extra Data Segment 21-110
Device Process DS Extra Data Segment 21-110
DS Line Control Block (DSLCB) 21-110
DS Control Block (DSCB) 21-112
CS TABLES 21-113
Binary Synchronous Communlcatlon for
CSDIT . ¢« v ¢ ¢« o v o« o« s o & » o« 21-113
TERMINAL TABLES « + « « + + » « « 21-121
Terminal I0Q Element 21-121

CONTENTS-12

DIT for ATC/Series II/III . .
DIT for ADCC/Series 30/33/h0/hh
Multipoint Terminal DIT
Multipoint Supervisor DIT . . .

CHAPTER 22 DISC FREE SPACE MAP

DISC RESIDENT DATA STRUCTURES .
Bit Map . . . e e e e s s e e
Descriptor Table . e e

VIRTUAL MEMORY RESIDENT DATA STRUCTURES

Disc Free Space Data Segment

CHAPTER 23 CIPER TABLES

CIPER DATA SEGMENT (CDS) OVERVIEW . .
Segment Header Area ‘e s

Memory Allocation Manager Tvplcal Layout

Control Table Map (CTM) .
Control Table (CT) . e
CIPER Level N’ Control Block e .
Communication Queue Head
COMQUEUELEMENT . . . ¢ s e e
CONTROL BLOCK INFORMATION AREA . e e

e o

.
. e

23-10

Level 7 Control Block Information (CBI)

Level 4 Control Block Information .
CONTROL BLOCK INFORMATION EXTENSION .

General Entry Format
Level 7 Control Block Information
Extension (CBIX) . . . e .

Typical Record Buffer Area .

LOGICAL DEVICE TABLE EXTENSION (LDTX) .

Zero Entry« . s e

CIPER Entry . . . c e e s s e
HIOCIPRO DIT (HP2608$) e e e e e
CIPER IOQ ELEMENT « .« « . .

DEVICE REFERENCE TABLE
INTERRUPT LINKAGE TABLE

21-126
21-142
21-153
21-161

22-1
22-1
22-1
22-2
22-2

23-1
23-2
23-3

23-11
23-11
23-18
23-19
23-19

23-19
23-22
23-24
23-24
23-25
23-26
23-29
23-31
23-32

CONTENTS-13

CHAPTER 1 MEMORY LAYOUT

o v - - - - -

ABSOLUTE MEM LOC 0| CSTB (BASE OF CST TABLE) |0
| -mmmem oo s

1] CSTXB |1 --> CURRENTLY EXE-
| == mm e | CUTING CST EX-
2] DSTB |2 TENSION POINTER
| ===mmmmmmmmm oo I
3| PCBB 13

| =mmmmmmnocm oo oeoae |
4| CPCB (CURRENT PCB POINTER) |4

| = mmm oo oo u
5! QI (INITIAL Q FOR ICS) 15

| mmmemmmooeeooon oo |
6] ZI (INITIAL Z FOR ICS) |6

71 MASK WORD 17

R e DL L DL L L L LD E D) |

10} DRT BANK |8
=== i

11] DRT ADDRESS 9
R b DL S Il Sty I\

12| RESERVED j10 | RESERVED FOR
T TP I > LOADER MAPPING

13| RESERVED |11 | FIRMWARE
Rt R iaintete I/

1k| 0 |

U: set if clock interface has been used since colidload

NOTE: ALL POINTERS ARE ABSOLUTE ADDRESSES.

1-1

FIXED LOW MEMORY (SERIES 30/33)

YR e DEC

] CSTB (BASE OF CST TABLE)** |0

;I ----- é;;i;-;;-_---_--—---—-----------—-------Il --> CURRENTLY EX-

--- ECUTING CST
2| DSTB (BASE OF DST TABLE)** |2 EXTENSION BLOCK
--- POINTER

3] PCBB (BASE OF PCB TABLE)** I3

M| CPCB (CURRENT PCB POINTER)*™ |4

5| o (INITIAL Q FOR ICS)* |5

6] zI (INITIAL Z FOR Ics)™ 16

71 SYSTEM INTERRUPT MASK WORD* |7
10| DRTBANE (BANK OF THE DRT TABLE) |8
11| DRTADDR (BASE OF DRT TABLE) |9
12| DEBANE (FOR INTTIAL'S STACK)* |10
13| DB (FOR INITIAL'S STACK)* |11
1hi---------------_---------—~—---------------_-112
s 113
1SI"""““""“--“-““-“"-“""""""Ilh
1TI ----------------------------------- 115
201----—---__----—_---------‘--_-—--------------116
21| LR (INTERRUPT INTERVAL)+ |17
20| TEMPLR (TEMP STOREAGE OF LIMIT REG)+ |18
23] PCLC (PROCESS CLOCK LAST COUNT)*™* |19
24| | PCHI (PROCESS TIME - MSW)™ |20

1-2

FIXED LOW MEMORY (SERIES 30/33) (conT)

e o o - . = Ee - e A e s e e v e -

25| PCLO (PROCESS TIME - LSW)** 21

26| SCST (SYSTEM CLOCK STATUS)** |22

27| SCIC (STSTEM CLOCK LAST COUNI)** |23
30-371““"““““"""““-"""“"“""““-l-ﬂﬁl

- e o = = - " = - e S > me G D W T - e = = e -

NOTE: ALL POINTERS ARE ABSOLUTE ADDRESSES.
LEGEND: %* NEEDED BY FIRMWARE AND/OR BY SYSTEM, ALWAYS

* NEEDED DURING INITIAL
+ NEEDED BY MPE, SET UP BY INITIAL OR PROGENITOR.

1-3

FIXED LOW MEMORY (SERIES Lk)

= = = = e e DEC
0| CSTB (BASE OF CST TABLE)** |0
i; ----- ;;;Q;-;;--—----------------~------------Il ~--> CURRENTLY EX-
--- ECUTING CST
2| DSTB (BASE OF DST TABLE)** |2 EXTENSION BLOCK
e eeeceeeeedeceaeeoes POINTER
3| PCBB (BASE OF PCB TABLE)"* 13
M CPCB (CURRENT PCB POINTER)*™ |k
5| o (INITIAL Q FOR IG8)* |5
6] ZI (INITIAL Z FoR Ic8)** |6
7] SYSTEM INTERRUPT MASK WoRD™ |7
10| DRTBANK (BANK OF DRT TABLE) |8
11 DRTADDR (BASE OF DRT TABLE) I
12| DBBANK (FOR INITIAL'S STACK) |10
13] DB (FOR INITIAL'S STACK) |11
Wy
15| 13
€l T T
o I15
20i—---—_—-_----—-----_--_-—--_---——------------;16
21| LR (INTERRUPT INTERVAL)+ |17
22| TEMPLR (TEMP STOREAGE OF LIMIT REG)+ |18
23] LR (SYSTEM CLOCK LIMIT REGISTER) |19

1-4

26| SCST (SYSTEM CLOCK STATUS)** |22
27| SCLC (SYSTEM CLOCK LAST COUNT)** |23
30-37| |24-31

NOTE: ALL POINTERS ARE ABSOLUTE ADDRESSES.
LEGEND: ** NEEDED BY FIRMWARE AND/OR BY SYSTEM, ALWAYS

* NEEDED DURING INITIAL
+ NEEDED BY MPE, SET UP BY INITIAL OR PROGENITOR.

1-5

22|

23|
2k

25|

SYSTEM GLOBAL AREA

B e R N el
- - - - - - e S e e = S M e S G S AR e e =
- - - - - e > - - e S e an e W G e e e
e e T R e T e
- - - - - e e e e s S e e e S e e e
e e e L el e e
- - . - e o . = e e = e e e e E A e S e
- . - = = = = = e G e T e = T e e = e e S e S wm e G e
B e L L R e T Ll L L L L L L L T
- - . A - o o e e e = e e S e R e
- - . - = e = e e S e M En e G e mm e e e .
e e e e e e el

- - T S T e M S e A e e A m e e e = W

1-6

name

| SYSCST

I
| SYSDST

|
| SYSPCB

I
| SYSARSEM

I
|sYs10Q

|
| SYSBUF

I
|sYsIcs

I
| SYSLPDT

I
| SYSBPT

I
| SYSTRL

I
| SYSSIR

I
| SYSSDCTAB

I
| SYSTPCNT

|
|SYSBUF

I
| SMONBUF

| SYSSWAPTAB

VDSMTAB BASE- SYSBASE | VDSMTAB
___ |
‘ I
___ |

CURRENT CST BLOCK INDEX | CSTBX
... |
DISCREQTAB BASE - SYS BASE | SYSDISCREQTAB
___ l
DISPLACEMENT TO CODE =@CST(0)-8DST(0) IDFC

DISPLACEMENT TO SHARABLE = @CST(LAST)-€DST(0) |DFS
___ |

Not in use |

--- |
ABS ADDRESS (SYSDIT(8)) | SYSDIT8

SRTTAB BASE - SYS BASE | SRTTAB
___ |
SPECQ HEAD - SYS BASE | SYSSPECQHEAD
... I
ARL BASE - SYS BASE | SYSARLD

MAKE OVERLAY CANDIDATE INFORMATION | MOCINFO
""" v o wenans savis cameiama 1 |stovaams
-------- e
----------- POIVIER To COTSLK TABLE | |CSTESLOGKPODNTER
-------- AAKE To SCHEDULER MESSAE | AMAKETOSCHEDMSG
""""" e —————
-------- CURRENT ACTIVITY'S PRIGKITY |CURACTERI

SYSTEM GLOBAL AREA (cont)

octal name

/55[BUSY TABLE POINTER | BUSY
sl T ia> Tante pomemER S
ol T oais Tanis pomvmn _—
ool T 1 oF Sto PRoGRANS ExEeUTING | szocom
P eARTTT SRRom Piae G —

e |
|62] Impeded queue head for message buffer (PIN) |IOMSGPIN

| [mmmmmmmmmmmsmemommmecmmeee e e |
|63] 1/0 Message system error flags | IOLOGQX
| (0:1) - No SYSBUF avail for I/O error logging |
| (1:1) - No SYSBUF for IOMESSAGE (GENMSG) |

reserved |64 # OF TERMINALS READING | RDCOUNT
£or IO € |=mmmmmmm s |
system |65] # OF TERMINALS WRITING | WRTCOUNT
| J===mmmmmmm e |
|66] DSET B |CRIO
I R L B LI DT LD LR TR |
671 |CRIO
|] LAST TIMER |
| 70| |CRIO
IR e L b [
| 71] HIGHEST DRT NUMBER | HSYSDRT
| |-~ |
| 72] POWERFAIL | POWERFAIL
R b n L L |
| 731 SYSTEM UP FLAG | SYSUP
l l-_"_‘_.._____--.;.'.--‘-.__-—-------..----..--__.___-—--.a-ai o,
\74] SYS CONSOLE LOGICAL DEVICE NUMBER | CONSLDEV
- mmmmeemeeeccmreereeeeo- |
/ 751 COLD LOAD COUNT | CLOADID
I D D LD LI EEL L ELEL L |
| 76| SHARED FCB DST | SHFCBDST
| | =mmmmmmmm e e |
| 771 MONITORING FLAGS |
D e L el |
reserved [100] |
for file< | MAX # OF SPOOL SECTORS | MAXSSECT

system |101] |
I

1-8

127|
130]

131|

- s = " = - - e = e S = e = e e W e = e e S s mm e = e . .
- . . - —— " = = = = = = = e e e m = = e m .-
e e - an e - = = - . = S e e - e e e WS e = e e e
- - - - = e " - = = e e e e W = e Ae e = e me
D T A D e e = - = = " A Y " = = = = . e = = - = e e
- o e e on = . - = e m e = e = e = = e em = e e e e
o e e T S

o e o o

(DIREGTORY)

(DISC ADDRESS)

1-9

| NUMSSECT
|

I
| EXTSSECT

| UPDATEL

|
|FIXL

I
| VERSION

SYSTEM GLOBAL AREA (cont)

octal name

132] SPOOLINDEX |
sl T et LasEL Fom smoween |
7 |
| fmmmmmmm e o oo !
1135] CS IOWAIT PLABEL |

reserved< === oo |
for CS |136| | CS FIX LEVEL l

JO pr |
Vo) T conost poasen T |

pal T Loctons mrocess zaste omoamy ol

1142{///I

nal T odTeL PRocEss masLE (wooRy 2|

mal T Locion process mams ey T N

T LodToAL PRocESS TasLE mEmEe) il

nel T Loctens mrocnss masie omue ;|

Y Loctons mosss mate msa el

T Courons mocsss maie tony T "

T MoRTCAn PROCESS mapiE (o) ol

1ol outent, process TamE (1onmssrmos) sl
T ocienL Process TasiE svetompe | 10)

}ZZIZZIZIZIZZZZIZZIZZZZIZZZIZIZIZIZZIZZIIZIZIZZI{

15&! LOGICAL PROCESS TABLE MEMLOGP 11]

sl R ——— |

1-10

(D e e cm e s — — — " —— —— —— —

reserved
for

logging

174
175!
1161
177’

3 WORD I
"""""""""" toseme T
""""""""""" sk T
T T
e oo wmem

AVITN TTAT IV 1

AY
) - ZND HALF i

1-11

STATE:

0 EMPTY
1 CUR

2 FULL

|
|
|
I
I
|
logging
|
|
|
I
I
I
|
I

reserved
for
segment
trace

I

I

250]
251|
252|

253]

SYSTEM GLOBAL AREA (cont)

- - B T = AR = e S e S A e e e e = e e =

LOADER
MESSAGE
TABLE

1-12

name

reserved 254| |

for R i e |
segment 255| |
trace R ittt D i
I 256 |
i R ittt et |
| 2571 |
| - R e DL DL LI DL EE DL LR Lt b b i |
260 STMON |
R e e L P L L P L L L L e Dbt i
261 MEASINFOTABPTR |
R e L L DL L L L L e e D e |
262| MEASUREMENT STATISTICS CLASS MASK | GCLASSENABLEDMAS]
|-===mm e e ===
263 CLASS 0 STATISTICS BANK NUMBER | MEASSTATXDSBANK
[====mmmmmmmmmme e |
264 | CLASS O STATISTICS ADDRESS | MEASSTSTXDSBASE
[-====mm e |
265| |
| SCAN POINT |
266 | |
[====mmmmm e |
267| MEASFLAGS |
| === == mmmm e |
270] RESERVED i

271| Sysbase index of PCB at head of Dispatching Q |SYSDISQHEAD

|
I |

] 272| Sysbase index of PCB at tail of Dispatching Q |SYSDISPQTAIL
|

273 RESERVED |
! 1
i [T T T T T TS T T T T T T T T T e T T m e Em T |
I 274 RESERVED |
misc | omemm - |
| 275] RESERVED |
I ettt I
| 276] HELP LOGICAL DEVICE NUMBER |
I el et I
| 2771 CURRENT LOGON DST | DSTLOGON
----- el
| 300] (STOP) I
i 301 (BITS) (see p. 2-15) i
I R e ettt ettt I
| 302 # PROCESS ENTRIES |
I | ==-mmmmmm oo I
: 303] I

1-13

proces
stop
table

304
305]
306|
307]
310|
311|
312]
313|
314]
315]
316|
317|
320|
321|
322|
323|
32L|
325]
326
327|
330|
331|
332]
333|
334

DEVREC PIN | 2
"""""""""""" %20
""""" woePN | o
""""""""""" 2
"""" g PN |1
""""""""""" %20
""" roEss PN | 3
""""""""""""" %20
""" wemioce PN | &
""""""""""" %20
"""""""" RESERvED
"""""""" RESERED

———

———

1-14

LAST
DISC
SI0
ERROR

JOBPRI

336! DSOPEN PLABEL !
. seetoss mammn T |
wop T vanAcERRTTE ow. P |
W conspeiTie mammn |
Y cxmavors poamn T |
gl T coostove soammn T |
T iy |
Y bemaa o T |

350] |SD| Softdeath flag
| mm e |
351§ I
| LAST CYCLE DURATION |
352| |
== |
353| |
| CYCLE THRESHOLD |
|
355] BUG CATCH ENABLE CELL i
| -mmmmmmm e |
356| MONITOR BUFFER | TIMESTAMP | MONBUFTO
i |
3571 MONITOR BUFFER | TIMESTAMP | MONBUFT1
i |
360] DSBREAK PLABEL |
L |
361| Bank of last memory word | LAST MEMORY
=== o |
362| Base of last memory word | ADDRESS
| === e |
/363| PVPROC PIN |
| Jmmmm e |
136L4| PV RECOGNITION COUNT |
Private< | === e |
Volumes |365| VMOUNT FLAGS | AUTO| ALL | ON|

1-15

———

———

1-16

SYSGLOB EXTENSION (%200 LONG; POINTER AT SYSDB+%377)

% 0| Swap Queue Delay (*100ms) | SWAPQDELAY

s LSRR |

1| Bank of First Region in Linked Memory |FIRST
T s S S | MEMORY

2] Base of First Region in Linked Memory | REGION
| === |

3] Garbage Collection Enable Flag | GARBCOLLENAB
| === eeaee |

4] Move Threshold (in pages, for garb coll) |MOVETHRESH
RS St |

51 Main Memory Page Size (in words) |
| == e |

6| VDS PAGE SIZE |
T |

7l |
] LAST MAKE ROOM TIME i

8| |
T |

9| MEMORY PRESSURE DURATION THRESHOLD |
T SN |

1-17

B T iy VU ——

60| PLABEL USERLOG (EXTERNAL) |
al T PLAREL USERLOG (IvEmRmAL) |
6ol T PLAREL RECLOG (mxmEmEAL) |
P eLaneL nEcwos (L) |
Y R FianL RESTARD GmmmmaL) |
esl T PLAREL RESTAR (TwEmAL) |
P T |
P T |
N RESERVED FOR TAGE gg 1~ ot sk coatral bloc &
nl T oo ron mmaste 12) Wioont | ®
vl Toanen cachr seaaT wwEER |
o) pnaamn asto | pmemmemy |
Y e e T |
sl T e r T |
B vi vmRsToN T |
ot T eounT OF TAVE CoNTROLLERS USTNG MEASTO |

| " i
100| PORT DATA SEGMENT NUMBER |

| -emmo oo oooeenoee oo |
101] RESERVED FOR SECOND PORT DATA SEGMENT |

| = |
102| SYSTEM FPMAP OPTION FLAG | SYSFPMAP

* MIOCNT = MEASIOCOUNT (3 BITS)

##* MEASFLAGS (15:1) = 1 ==> MONITOR ENABLED
(14:1) = 1 ==> BUFFER FLIP/FLOP
(13:1) = 1 ==> EOT ON MONITOR TAPE

1-18

SYSDB WORDS

ADDRESS - NAME FUNCTION
DB+55 BUSY - SYSDB relative pointer to BUSY TABLE for
I/0 resources
DB+56 HEAD ~ SYSDB relative pointer to table containing
head pointers to I/0 resource queues
DB+57 TAIL - SYSDB relative pointer to table containing
head pointers to tail of I/0 resource queues
DB+60 SIO COUNT - Number of I/0 Programs currently executing
DB+T72 POWER FAIL -~ 0-no power fail
l-system disc recovery
2-all other disc recovery
3-all other device recovery
DB+T3 .SYSUP - System is up and operable
DB+Th4 CONSLDEVN - System console logical device number

JOBSYNCH job synchronization via jobsynch (sysglob+121(8))

(13:1) - JOBSREADY - set by DEVREC & MORGUE (via procedure STARTDEVICE)
indicating a ready job. This prevents UCOP from
going to a wait state when a job is just made
ready.

(15:1) - DEVFREED - set by DEALLOCATE when device count goes to 0.

NOTE - Both bits above used for synchronization of job-made-ready or
devicefreed when UCOP is running.

(14:1) - JOBSWAITING- set by UCOP just before waiting if any job is

waiting for list device. Signals DEALLOCATE to
awake UCOP when a device is freed.

1-19

WORD 1

WORD 2

WORD 3

ALLOW MASK FORMAT

ABORTIO
ACCEPT
DOWN

GIVE
HEADOFF
HEADON
REFUSE
REPLY
STARTSPOOL
TAKE

UP

MPLINE
DSCONTROL
ABORTJOB
ALLOW
ALTSPOOLFILE

ALTJOB
BREAKJOB
DELETESPOOLFILE
DISALLOW
JOBFENCE
LIMIT
STOPSPOOL
SUSPENDSPOOL
OUTFENCE
RECALL
RESUMEJOB
RESUMESPOOL
STREAMS
CONSOLE
WARN
WELCOME

MON

MOFF
VMOUNT
LMOUNT
LDISMOUNT
MRJECONTROL
JOBSECURITY
DOWNLOAD
MIOENABLE
MIODISABLE
LOG
FOREIGN
IMLCONTROL
SHOWCOM

1-20

LOGGING RELATED LOCATIONS

SYSDB

1 2 3 4 5 6 7 8 9101112 13 14 15
172 |--f--1--l--1-=l==le==]==1==]-=]==]==]--1--1]
or |////////|STATE| DST # |
173 |======---mmm e !

STATE = 0 if respective buffer empty
1 if respective buffer is current
2 if respective buffer is full

SYSDB
0 1 2 3 45 6 7 8 9101112131415

176 =////////////////////////////////|SFIHF|BUFISLISDI

SF = 1 if soft failure
HF = 1 if hard failure
BUF = 0 if current log buffer is buffer 0
= 1 if current log buffer is buffer 1
SL = 1 to indicate a switch in log buffers (from 0 to 1 or from 1
to 0)
SD = 1 to indicate shutdown in progress

1-21

PROCESS STOP LIST GENERAL LAYOUT

| STOP BITS REPRESENTING WHICH |
| PROCESSES TO STOP ON "SHUTDOWN" |

| 1ST PROCESS ENTRY |
| = l
| 2ND PROCESS ENTRY |
| == |
| |
! : |
a . |
| : |
| - mmmmmm oo a
] LAST PROCESS ENTRY |
| = |
ENTRY FORMAT

01 2 3 4% 5 6 7 8 910111213 1k 15

T e P e o P P e Py Py B P B Py
| PROCESS PIN # | STOP BIT # |
| - mmmmemmeme e mseocemoonocooeoooiioo |
| PROCESS WAIT STATE |

entry # process stop bit #
1 devrec 2
2 ucop 0
3 log 1

1-22

Initial Memory Allocation

This section is a description of the method used by INITIAL to allocate
memory for MPE tables and code segments in MPE IV. All memory allocated
by INITIAL is permanently allocated. All non-core resident code and
data is put on disc before exiting INITIAL.

At the most basic level INITIAL will try to build memory to look exactly
as diagrammed below. There are, however, several ways in which to de-
viate from this structure. Before going into the sources of these de-
viations, it is necessary to point out which portions of memory are used
by INITIAL during the restart and therefore cannot be used by MPE until
INITIAL has finished. Before INITIAL begins to allocate any memory
space, it relocates its core resident code, its code segment swapping
area and its stack to the highest configured memory space. Addition-
ally, it uses the last %240 words of bank O on a series III and the last
%326 words of bank O on series 30, 33 and LY for its I/O buffer area and
temporary code segment table. After INITIAL has built all of core res-
ident MPE (tables and code), it builds the disc resident MPE tables.
Since some of the disc resident tables may be too large to be built in
INITIAL’s stack, these tables are built in unused memory space. There-
fore, in addition to the memory space required for INITIAL’s code,
INITIAL’s stack and core resident MPE, there must be enough space left
in which to build the largest of the disc resident tables.

INITIAL will essentially build memory in the order shown below, however,
there may be an unused fragment of memory between the DRT’s and the sys-
tem global area which INITIAL will fill with the smaller tables. Nei-
ther the tables marked with an asterisk nor the code segments will ever
be put in this area.

Beginning with the B MIT, all bank O dependencies have been removed from
core resident MPE code. If there is insufficient space in bank 0 for
any core resident code segment, INITIAL will put it into bank 1. At the
present time core resident MPE is not large enough to occupy more than
all of bank 0 and part of bank 1. If the system being built by INITIAL
is configured with 128K words or 160K words of memory then INITIAL’s
stack will be in bank 1 (the code also on a 128K word memory size). If
INITIAL is occupying part of bank 1 and the space is needed for a core
resident MPE code segment or to build a disc resident table then INITIAL

will print the error message "ERROR #350 OUT OF MEMORY".

Except for the exceptions stated above, for every allocation of memory
INITIAL will first try to allocate any remaining space between the DRT’s
and SYSDB. It will then try the next available space in bank 0, then
the next available space in bank 1. If it were necessary it could con-

tinue searching until all all banks were checked for available space.

Immediately before exiting INITIAL, INITIAL lays down all the memory
region headers and trailers as shown below. For any one bank of memory
there will only be one block of core resident MPE, regardless of its
contents. The only block of core resident MPE that does not have a re-

1-23

served region global header is in bank 0. It does have the reserved
region global trailer though. Before placing any code outside bank 0O
the first %23 words of every bank (except bank 0) is reserved for the
region global header.

1-24

Initial Memory Layout

i
|//7//71111//] BANK © [/[]/1]1]1]/1])

|

| |
| |
| |
| |
| Core Resident CST’s in CST order |
| |
| |
| |
| |

|
|
|
|
|
Available Memory |
|
|
|
|

B e

1-26

|
|
|
|
| Core Resident CST’s that didn’t
] fit in BANK 0
|
|
!
|

| Reserved Region Global Trailer |

| Available Region Global Header |

I
|
|
|
I
| Available Memory
|
|
|
|

| Available Region Global Trailer |

Available Memory

1-27/1-28

CHAPTER 2

2.1 Segment Table Structure

Memory Management Tables

The current location and state of each data segment and loaded code segme

is maintained in the segment table.
parts, as shown in Figure 2-1.
a segment is a data segment, a segment is a system sl segment,

classes:

segment is part of a program.

This table is partitioned into three
The partitions are based on the segment

The structure and format of each partition

is described in the following.

(%2), (%1002)+SYSBASE --------
(%0), (%1001)+SYSBASE --------
CSTZMAP Fomm———-
e + i
(%1051) --> P
Fomm———a + |
| ----+
tmmmm——— + |
| | |
I I !
I | I
e m——— + |
| [-=-=--- +
Hommmeen +
| I
I I
oo +
Figure 2

Overall ST Structure

| First |
|Loaded |
| Program|
| |
------- +<-- (%3), current program pointer
| Next |
|Loaded |
|Program|

2-1

2.1.1 Pointers and DST #’s of Segment Table Components

i.

ii.

iii.

iv.

DST

% 2 absolute address of entry 0 of the DST
%1002 sysbase relative index of entry O of DST
DST# =2

CST

% 0 absolute address of entry 0 of system sl

%1001 sysbase relative index of entry 0 of system sl

%1032 displacement from DST base of entry 0 of system sl

DST# =1

CSTX

% 1 absolute address of entry 0 of current program

%1033 displacement from DST base to first CSTX entry sl
= @ CST (LAST) - @ DST (0) = DFS

DST# =L

CSTXMAP

%1051 sysbase relative index of entry 0 of CSTXMAP
DST# =43 (%71)

2-2

2.1.2 Standard Segment Identifier Format

SEGIDENTIFIER. (0:1)

= 1 ==> SEG IS PART OF A PROGRAM
==> (1:7) = PROGRAM INDEX INTO CSTXBLK,
(8:8) = LOGICAL SEG NUMBER (0-63)
SEGIDENTIFIER. (0:2) = 0 ==> SEG IS A DATA SEGMENT,

SEGIDENTIFIER. (0:2)

(2:14) = DST ENTRY NUMBER
1 ==> SEG IS AN SL SEGMENT,
(2:14) = SL ENTRY NUMBER

EQUATE SEGIDDATATYPE=0,

2.1.3 DST Entry Formats

DST Entry O Format

01 2 3 45 6 7 8 9101112131415
el B B Bt et EE Bl et B B B Rl R EEd BRI B

Word O|# OF CONFIGURED ENTRIES

Word

Word

w

DST General Entry Format

Case (i) DST Entry for a Present Data Segment

0 1 2 3 %5 6 7 8 91011 12 13 14 15
L T T P ey YIS [I P P

|A |0 IR | SIZE/4 | FIRMINFO
___ |
ID IR |I |S M IF |S |C [W] |
|[c |0 M |T |0 [W |Y |O |D| VMALLOC | FLAGS
[vIcITIKID I IS IR | | |
b1l e || {
BANK | MMBANK
___ |
BASE | MMBASE

2-3

Case (ii) DST Entry for an Absent Data Segment

01 2 3 45 6 7 8 9101112 13 14 15

FIRMINFO
FLAGS

HODA

SIZE/4

LODA

Ao |R |

2-4

2.1.6 CST Entry Formats
CST Entry O Format
0 1 2 3 4 5 6 7 8 910111

== 1= == | == ==] -] == == | == =] ==] == == !
Word O|# OF CONFIGURED ENTRIES |

| I\’J
l I-l
! w

CSTX ENtry O Format
01 2 3 45 6 7 8 9101112131415

o et e B B B B B B B B B B B B
Word O|UNUSED !

CST General Entry Format
Case (i) CST Entry for a Present SL Segment or CSTX Segment

0 1 2 3 4 5 6 7 8 91011 1213 1% 15
|--1--1--1--]--1--]-=1--==]-=|==}--|--]--1--]--]

Word 0 |A |[M IR |T | SIZE/4 } FIRMINFO
I ___ .
Word 1 |/ IRIT |/ W/ N/ As Nc | //7117177117111117111 |
|/ 1o M/ V/ | /1Yo ////1777111171/1/////] | FLAGS
W/ 1Cc T W/ W/ /ISR //I1777180117117777777)
:/ Vv W AR NIIT717771 1 :
Word 2 | BANK | MMBANK
et Uittt ittt i
Word 3 | BASE | MMBASE
| == |
Case (ii) CST Entry for an Absent Segment SL or CSTX Segment
01 2 3 45 6 7 8 9101112 13 14 15
|- 1==1==] == | =1 == == | ==]==] == | - [== | ==] == | == | -~
Word 0 |A |M |R |T | SIZE/Y4 | FIRMINFO

IS 1C | /7/11711111111111111] |
NY N0 V\///7111111111/11/71///// | FLAGS
IS IR |//71111111111111117171]

Word 1

2-5

A R VA VAR VA O VR VTP

2.1.7 CST Entry Field Descriptions

A = 1 ==> segment absent
M = 1 ==> segment privileged
R = 1 ==> segemnt has been referenced
T = 1 ==> segment is being traced
DCV = 1 ==> disc copy is valid
STK = 1 ==> segment is a stack
MOD = 1 ==> a segment modification (exp., contr.) is pending
FWIP= 1 ==> a forced write of this segment is in progress
VMPAGECNT = # of virtual memory pages allocated to this segment
ROC = 1 ==> segment is recoverable overlay candidate
IMI = 1 ==> segment is in motion in
SYS = 1 ==> segment is a system segment
CORE= 1 ==> segment is core resident
=1 ==> write disabled

TABLE FORMAT-CSTBLK

CSTBLK(0) ~=====mmmmsmmmmememme e e cmee e e ee
0 »*
* NUMBER OF ENTRIES IN TABLE .
. T .
* ANY UNASSIGNED ENTRY = -1 *
. e .
* ANY ASSIGNED ENTRY > 0 *
. T .
* REMAINING CSTBLK TABLE ENTRIES *
L] »

COMMENTS -

The table is initialized to minus one in each entry. When selected,
the entry is replaced by a DST-relative index into the CST extension
block.

2-6

2.1.8 Program Blocks and the CSTXMAP

Since programs can be dynamically loaded and unloaded, the segment table
must be kept packed or fragmentation would occur Thus, the block of ST
entries for a program segment begins at an ST entry number that changes
if a program which was loaded before it gets unloaded. To manage this
dynamic structure, an auxiliary structure, the CSTXMAP is used. A pro-
gram is identified by its index, CSTXEIX, into this map. The program’s
current Dbeginning physical ST entry number is equal +to CSTXMAP
(CSTXEIX).

ENTRY FORMAT-CST EXTENSION BLOCK

- - - = e = e =

CSTXMAP (CSTXEIX) -=>=============smmo=mcmmcoaooa-
O *M=#OF CST’S IN BLOCK *

1 * VALIDITY=%125252 *

3 * 0 *
%301 ----=-----—- > * HAS CST ENTRY FORMAT *
%302 —--===----n- > * HAS CST ENTRY FORMAT *
%300+M ---------- > * HAS CST ENTRY FORMAT *

COMMENT

The value of CSTXEIX is established when a CST extension block is
allocated. This index into the array CSTXMAP is maintained in the PCB
of each process sharing <the block.

2-7

2.1.9 Fixed DST Entry Assignments

OCTAL

-~ O v W

10
11

12

13
1y

15

16

17
20
21
22
23
24

| PROCESS-PROCESS
| COMMUNICATION TABLE

| LOGICAL-PHYSICAL
| DEVICE TABLE

| LOGICAL DEVICE
| AND CLASS TABLE

o 00 N N U W

DECIMAL

| o

| 10

| 11
| 12

| 13

T

| 15
| 16
| 17
| 18

| 19
| 20

TABLE NAME

CST

PCB
CSTX
SYS
CORE
ICs
SBUF

UCRQ

PPCOM
I0Q
TBUF

LPDT

LDT

DLT

BUSY, HEAD, TAIL
SECMSGTAB

LST

TRL

DDS

DST ALLOCATION (CONT.)

33
34

35
36
37
Lo
I
L2
43
Ly
L5
46

50
51

| TABLE |

| TABLE |

| VIRTUAL DISC SPACE i
| MANAGEMENT TABLE |

22
23
2k
25
26

27
28

2-9

RIN
SWAPTAB
JPCNT

JMAT

VDD

LOGTAB

RIT
VTAB

STOP

LIDTAB

CSTBLK
JCUT
SJIT

SRTTAB

VDSMTAB

ARSBMTAB

DST ALLOCATION (CONT.)

52
53
Sh
55
56
5T
60
61
62

| PROCESS-JOB |
| CROSS REFERENCE |

42
43
Ly
L5

L7

ILT

SIR

FMAVT

IDD

ODD
LOGONDSTN1
LOGONDSTN2
CSTAB

PJXREF

SYSJDT
CILOGDST
MVTAB
PVUSER
ARLDTAB
DISCREQTAB
MSGHARBTAB
PRIMMSGTAB

MEASINFOTAB

2-10

2.2 Swap Tables
2.2.1 SWAPTAB

The Swaptab is a core resident memory management table used to
keep track of the locality lists of the competing processes.

SWAPTAB DST# = 23 {%27)

%1025 Sysbase relative index of SWAPTAB entry O.

SWAPTAB ENTRY O FORMAT

01 2 3 4% 5 6 7 8 9101112 13 14 15
| ==l ==l==] == ==f ==] == | == [==] == | == | ==] == | == [==] -~

SWAPTABOO| # ENTRIES CONFIGURED |
et |
SWAPTABO1 | ENTRY SIZE (5) |
| =-=mmm oo |
SWAPTABO2| # FREE ENTRIES |

SWAPTABO3 | TABLE RELATIVE INDEX OF FIRST FREE ENTRY |

| e |
SWAPTABOY | 0 |
|

SWAPTAB UNASSIGNED ENTRY FORMAT

01 2 3 45 6 7 8 910111213 14 15
[==1-=1-=1==1-=1-=f==1==1-=]==] == =-=}==]-=]--|--]
SWAPTABOO | %100000 |

| = o oo ooooe oo |
SWAPTABO1 | TABLE RELATIVE INDEX OF NEXT FREE ENTRY |

SWAPTABO2 | 0 |
| === = e ee I
SWAPTABO3 | 0 |
i e EEE L L LS T EE |
SWAPTABOY | 0 |

An assigned entry in the swaptab is a process’ SLL header or a
member of a process’ SLL. These formats are now described.

2-11

ep

2.2.2 Segment Locality Lists (SLL)

The system maintains for each process a segment locality list
(SLL) of

the segments belonging to that process’ current working set. The
process’ SLL consists of a header and a list of entries.

The header and list entries are taken from the SWAPTAB.

A process’ SLL is located via the process’ pcbentry. PCBO1l
contains the sysbase relative index of the process’ SLL header.

SWAPTAB

R e L L LTI P LR S e L I

| . |

I . I

| . |
R e L L L T I
PCBO1--> | SLLHEADER |
+--| I
I R L L L L L LT I
| . I
P . I
I . |
I R et L L L L L PP |
+->| FIRST SLL ENTRY |
+--| |
| J--mmmmmm e |
(. . |
[. I
. . I
I R L I
+->| NEXT SLL ENTRY [
+=-| I
I e E L L L L L T I
|| . |
[. |
v | . |

2-12

SLL HEADER FORMAT

01 2 3 45 6 7 8 9101112 13 14 15
|==1==]==l==l==]==]==] == [==] == ==] == == | == == -]
IS is | |I |P S | | I

|W |w |A N [A|T | I I
SLLHEADOO|I |R |S |T |R IR | | IOCNT |SLL

|P IE M |L |T |T | | | SCHEDTOIOMSG

| 1Q {E [0 {I |0 | | i

I I IMc |n|v | I I

SLLHEADOO .(0:1) SWIP, Swap In Progress Flag
.(1:1) SWREQ, Swap Required Flag
.(2:1) HASMEM, Has Memory Flag
.(3:1) INTLOC, Initialize locality list
.(4:1) PARTIN, Process partially swapped in
.(5:1) STRTOV, Start swap over flag
.(6:2) Available
.(8:8) IOCNT, Segment read completions until awake

2-13

SLL ENTRY FORMAT

01 2 3 45 6 7 8 910111213 1415
e e T e o e e e ey i P e
SLLENTRYOO| PMPQPIN | NMPQPIN | SLLMPQLINK

| == m oo |
SLLENTRYO1| SYSBASE RELATIVE INDEX OF NEXT ENTRY IN LIST |SLLNEXTINX

| === ooeoceocoeooeooooeooeee |
SLLENTRY02| SYSBASE RELATIVE INDEX OF PREV ENTRY IN LIST |SLLPREVINX

I e — |

SLLENTRYO3| SEGIDENTIFIER | SLLSEGIDENT

T |
SLLENTRYOM|/ IS |/ |/ |/ 1/ |/ T |F L ISIDI////////]//] |SLLFLAGS

|/ 1T 1/ 171717 17 1o 1z IK ILITI//17177177117 |

|/ IR 17 1/ 1/ 1/ 17 IS IR IR ILISI///117/01717 |

1/ 1 1/ 171717 17 Is 1E [E ITiCI//1117117711 |

/1 1717 V07 AR IQ IMITIZZ/17711717 |

/0 0070707070 L L Tlol/ 11117117117 |

SLLENTRY0O .(0:8) PMPQPIN, previous make present deferred queue pin
.(8:8) NMPQPIN, next make present deferred queue pin

SLLENTRYO1 .(0:16) SYSBASE, relative index of next entry in list (=0=>
last entry)

SLLENTRY02 .(0:16) SYSBASE relative index of previous entry in list
(=0==> first entry)

SLLENTRY03 Has standard segment identifier format.

SLLENTRYOY4 .(1:1) STK ==> process’ stack entry
.(7:1) TOSS ==> Toss this entry
.(8:1) FRZREQ ==> Process requests a freeze on seg
.(9:1) LKREQ ==> Process requests a lock on seg
.(10:1) SLLIMI ==> process is queued for this segment
.(11:1) DISIOSEG ==> process waiting for disc i/fo against

this seg

2-1Y4

SPECIAL REQUEST TABLE

(USED FOR PASSING DATA SEGMENT SIZE CHANGE INFO AND FOR KEEPING
A LIST OF DEVICES WAITING FOR A SEGMENT TO ARRIVE IN MEMORY.)

ENTRY 0 O0j # entries in table i
e |

1 entry size (5) i
|=-mmmmmmmmm e |

2| # available entries |

[o |

3] first available entry |

| -mmmmmmm oo |

| last available entry |

I 4ttt 3+ttt 1t 13T 1ttt 3ttt 1ttt I

I |

| |

I S==ss-s=s=TssssSSSosSossSssSsSSsSsssssss=ss I
first---->0]| next assigned entry |
assigned |-----~m--emmemmecceeceeececeneaes |
entry 1] segidentifier |
(pointed |-------------memmemcee oo I
to by 2| new data seg size |
ALOU3) |=mmmmmmmmmmmmemmommmeeeooeeenees |
3] read displacement |

J==mmm e |

4] move count |
i====2====2===========E====§==“—’§=====l

i i

| |

2-15

2.3 Main Memory Region Headers and Trailers

Main memory is partitioned into regions. Each region is in one of
three states: available, reserved, or assigned.

An available region is available for consumption by the free space allo-
cation mechanism. An available region consists of neighboring subre-
gions, each of which is either a hole or an overlay candidate. An
available region is linked into the available region list of appropriate
size.

A reserved region is a main memory region which is in the transition
state from available to assigned. A reserved region has been cleaned,
and there is a pending disc read of a segment into the region.

Assigned regions are occupied by present segments. Available and re-
served regions consist of one or more adjacent subregions. Region
headers and trailers are partitioned into global and local components.
The global region header/trailer is only valid for the first/last sub-
region in regions consisting of more than one subregion.

The region headers and trailers of available, reserved, and assigned

regions contain the state and control information pertaining to the
current or planned contents of the region.

2-16

2.3.1 Available Region Headers and Trailers

RB-19

RB-18
RB-1T7
RB-16

RB-15
RB-1k

RB-13
RB-12

RB-11

RB-10
RB-9
RB-8
RB-T
RB-6

RB-5

RB-3
RB-2

RB-1

- - - - - - = - = e = e e e -

Available Region Global Header Format
(only valid for first subregion)

0 1 2 3 45 6 7 8 91011 12 13 14 15
[--[==1==]==1==1==1==]==]==l==f==i==]==]-=]==] -~
[A IR A |C IR IR IR IR I////I111771117711771R |
ISIE IV ILIEIE IEIE [///////771177/if7]//1E |
IsIs | INIsIs s s |///////111111/1]]]]]]s I

RSN
| REGION SIZE (IN MAIN MEMORY PAGES) |
|7 resmey T |
|7 sy T |

| REGION BASE OF PREVIOUS IN THIS AVAILABLE |
| REGION LIST |

| REGION BASE OF NEXT IN THIS AVAILABLE |
| REGION LIST I

Available Region Subregion Header
(Valid for All Subregions)

01 2 3 4 5 6 7 8 91011 12 13 14 15
|==l== ==l == | == == | == | == | == | == | == | == [== | == [==] =
| SUBREGION SIZE (IN MAIN MEMORY PAGES) |

- o = = - . = = e " - o = e = TR W - e e

PLINK

NLINK

ss

WREQP

SEGIDET

HODA

LODA

Available Region Subregion Trailer

0 1 2 3 45 6 7 8 9101112131k 15

V/ITHTITITIE T L0101 011117111711177

Available Region Global Trailer
(Valid Only for Last Subregion)

01 2 3 45 6 7 8 910111213 1415
T o o o P o e o ey I P R e P ey
\& IR 1A [////11111111111111171111111111/111/]1]] TRAS
IS 1E |V 1/7/11717111111171111111111111111111111]
s Is 1 i)

2-18

2.3.2

RB-19

RB-18

RB-17

RB-16

RB-15

RB-1}4

RB-13
RB-12

RB-11

Reserved Region Headers and Trailers

Reserved Region Global Header Format
(Only Valid for First Subregion)

01 2 3 4 5 6 7 8 910111213 1k 15
|--1--]--]--1--]--]--1--]--|--]--]-=1--| -] --]--|
(A IR A IC IS L IF I V////77/1117177771/7/M |
IS IE |V IL Ic |k (2 |0 V///1/1/1111111717/7/1T |
IS Is | IN| IDINIFV///1/1771/77/7/17]/]/IP |
VboL o L Nz 1 711107717111111117] :

E |0 IQ I IE |G M IRI/////111/11111111/IM |
XIN IS INIX |A IS |EV///1/1/111111111/]1s |
T |G IE [C [P IR |G ILI/////1/17///1/1]]]iG |
DIT |G IM IR B |AIRV/////1/171177111771V |
I o IR VIR I|CIBIEI//////1/1711/1711/1A |
SIDIE| IE O |0 ISI///////1/11/1/11/]]L |

T la | 1QIL IR IPV//////1117711717/71T |

Is 1tV | LT lal/////11111111111/71D |

H11117171717111111111

o]
e T e

2-19

IOCNT

INITMSG

INITINFO

COMPMSG

MPQLINK
PAGECNT

SPECREQTABPTR

RB-10

Reserved Region Subregion Header
(Valid for all Subregions)

01 2 3 45 6 7 8 91011 12 13 14 15
T L ey e ey oy e P B
| SUBREGION SIZE (IN MAIN MEMORY PAGES) |

]
1
1
]
1
]
]
]
]
1
1
]
t
]
1
]
1
)
1
)
1
¥
]
1
!
1
1
)
[}
t
]
1
1
1
]
]
}
1
1
}
1
1
]
1
t
[}
t

| I
I I
| I
IV | # PAGES THIS SUBREGION IS DISPLACED |
| FROM THE REGION BASE |
I I
I I
I I

RB ==> First Word of Segment

Reserved Region Subregion Trailer
(Valid for All Subregions)

01 2 3 45 6 7 8 9101112131415
== == ==] ==] =] == | == | == [==] ==] ==] ==] == | ==] ==] -2

R

| SUBREGION SIZE (IN MAIN MEMORY PAGES) i

2-20

SS

WREQP
SEGIDENT
LKFZCNTRS
WDIOFZCNT
HODA

LODA

TSS

Reserved Region Global Trailer
(Valid Only for Last Subregion)

0 1 2 3 45 6 7 8 9101112131415

S
IS AE \V \/////1177111771771771711777171171////]/| TRAS
Is Is | l//////////////////////////////////////:

2-21

2.3.3 Assigned Region Headers and trailers

RB-19

RB-18
RB-17
RB-16
RB-15
RB-14
RB-13
RB-12

RB-11

RB-10
RB-9
RB-8
RB-7
RB-6
RB-5
RB-U4
RB-3
RB-2

RB-1

Assigned Region Global Header Format

01 2 3 4 5 6 7.8 910111213 1415
o e o e o ey o [y P P Py
|A IR |A [C IS IL IF [T [/////1111111111111111M |
IS IE |V IL Ic IR |2 [0 [/////111/117/117/1711T |
IS IS | N1 BN |F 1/7///111/117111111111® |
LI Az 2
IR O N N RV e

Assigned Region Subregion Header

01 2 3 45 6 7 8 9101112 13 14 15
|==1==1==1==1==1==]==] ==] == == == == | == | ==} ==] = |
| SUB-REGION SIZE

| FREEZE COUNT | LOCK COUNT |
| === mmmmm e I
| WRITE DISABLED COUNT | I/0 FROZEN COUNT |
| ===mmmmmmm e I
| LDEV# | HODA |

. e e We S M G e e e e e e e e e em e e e e ee e e e - e e e S R S e e e

B e e e e T I

2-22

SS

SEGIDENT

LKFZCNTRS

WDIOFZCNT

HODA

RB==>

Assigned Region Subregion Trailer Format

0 1 2 3 45 6 7 8 910111213 14 15

VIIITITITIET 0TI 8001 TET17101111117)

0 1 2 3 45 6 7 8 910111213 1415
==l =] ==l =] == =2 = =n | =] == | =] == | == | == | ==] -
A IR I& 1///7101111011110111111111111111111111/] TSs

IS VE\V V///71117171117117111117111117111111//]]
Is Is | V/1/11171171700070177700171117171111111]

2-23

2.3.4 Region Header and Trailer Field Descriptions

RAS, Region Assignment State

.{(0:1) Region Assigned Flag

.(1:1) Region Reserved Flag

.(2:1) Region Available Flag

.(3:1) Region Cleaned Flag

.{4:1) Size Change Pending Flag

.(5:1) Region Locked Flag

.(6:1) Region Frozen Flag

.(7:1) Region I/O Frozen Flag

.(8:7) Available

.(15:1) Blocked Lock Migration in Progress Flag
IOCNT, On-Going I/0 Count

= # of on-going I/0’s in the region which must complete

before the initiation message can be processed.

INITMSG, Initiation Message
.(0:1) Message Processed Toggle Switch
.(1:1) Message Externally Disabled Flag
.(2:1) Message On-going I/0 Disabled Flag
.(3:1) Queue Segment Read Disc Request Flag
.(4:1) Incore Move Request Flag
.(5:1) Expansion Request Flag
.(6:1) Garbage Collection Flag
.(7:1) Message Aborted Flag
.(8:1) Release Residual Pages Flag
.(9:6) Available
.(15:1) Message Valid Flag
INITINFO, Initaition Message Auxiliary Information
= Sysbase relative index of segment read disc request if
INITMSG, QREADREQ=1
or
= +/- Displacement to initiation message for moves and
expansions.
COMPMSG, Completion Message

.(0:1) Message Processed Toggle Switch
.(1:1) Segment Modification Required
.(2:1) Block Lock Request

.(3:1) Send Scheduler A Message

.(4:1) Awaken A Device

.(5:1) Message Aborted

.(6:2) Available

2-24

MPQLINK, Make Present Deferred Queue Link

.(0:8) PIN Of First Process Waiting for this Segment
.(8:8) PIN of Last Process Waiting for this Segment
PAGECNT, Release Page Count
=# of extra pages to release before processing initiation
message.
SPECREQTABPTR, points into special request table to the list of
devices gqueried on this segment.
ss, Subregion Size
SD, Subregion Displacement
.(0:1) Displacement Count Valid Flag
.(1:15) # Pages to Base of Region
WREQP, Write Request Pointer
= Sysbase Relative Index of Disc Write Request when the
Data Segment in the Subregion is in Motion Out
SEGIDENT, Segment Identifier- has standard segment identifier format

2-25

Space Allocation Structures

Available regions in main memory are kept track of by multiple free
lists. All available regions of the same size are linked
into the same available region 1list (ARL). A Dbitmap is
maintained to indicate which lists are non-empty (ARSBM). A sys-
glob cell is maintained which contains the size of the largest cur-
rently available region. %1045 MAXAVAILREG, number of pages in
largest currently available region.

Available Region List (ARL)
%1044 SYSBASE index of base of ARL
ARL DST # = 55 (%67)

01 2 3 45 6 7T 8 91011 12 13 14 15
R R R R R R R R R e e R EL BRI B Ry
0

ARLD(0) | |
| == m e |
| 0 |
| == m oo oo l

ARLD(1) | BANK OF FIRST AVAIL REGION OF SIZE = 1 PAGE |
oS R e |
| BASE OF FIRST AVAIL REGION OF SIZE = 1 PAGE |
| == mmmo oo |

ARLD(2) | BANK OF FIRST AVAIL REGION OF SIZE = 2 PAGES |
| == |
| BASE OF FIRST AVAIL REGION OF SIZE = 2 PAGES |
N |
| === mmmmmmmoemseoooceoooeoocsoocceooioooeoa |

ARLD(N) | BANK OF FIRST AVAIL REGION OF SIZE = N PAGES |

maximum available region size
(2**16/2"*pagepower) pages

2-26

Available Region Size Bit Map (ARSBM)

%1004 SYSBASE index of base of ARSBM

ARSBM DST# = 41 (%51)

ARSBM(0)

01 2 3 45 6 7 8 910111213 14 15
e et R B R e e B B R R B BRI ER EE et |
N T Y [[N Y Y (Y TN N AN O N (N B

M = (# of available region sizes/16) +1

ARSBM (J) . (K:1) = 1 ==> the available region list of
size J*16+K Pages is non-empty.

2-27/2-28

CHAPTER 3 DISC LAYOUT

SECTOR # SECTOR #
T +
% 0} DISC LABEL |o
| =mmmmmmm e |
1| Defective Tracks Table or 11
| Defective Sector Table |
| e |
2| Cold Load Channel Program for /3X, /uX, /6X |2
| and for discs on Series III HPIB adapter |
[-mmmmmmmmmmmmmmerememenoennnoemoeeooeeee |
3| Mem Dump Channel Program for /3%, /UX, /6X |3
S |
4| Reserved Area Bit Map Iy \
[=mmm e |
51 5 |
|-mmmmmmmemeemms e 1
6| 16 |
ET— CODE FOR ~ ----===cm-mmmmn- I
71 INITIAL PROGRAMS ||
P "BOOTSTRAP" --------c-=-=-- |
10| SEGMENT I
[remmmmmmmmmnns e |
11| -
|mmesememeememmes mememeeeeeeeeoee B
o o
R |
.l I
R ||
. -
R |
| |
T EERREEEEERREREEE R |
| B,
T T

| remainder of SIO cold load program or
| cold load channel program

Follows
immediately
after
Bootstrap
Segment

SYSTEM

% I

DISC LAYOUT (CONT.)

3-2

SYSTEM DISC LAYOUT (CONT.)

I
I
|
I
| VIRTUAL MEMORY AREA
|
|
|

| INITIAL PROGRAM SEGMENTS
| (EXCEPT BOOTSTRAP SEG)

| SYSTEM FILES
| (FROM COLD LOAD TAPE)

SYSTEM TABLES
* LPDT
LDT
LDTX
VOLUME TABLE
* DEVICE CLASS TABLE
INITTAL PROGRAM STACK

* & %

USER FILES

.

3-3

---> Note: Initial
tries to allocate
directly after
the Free Space
Map. However,
this may vary
depending on
deleted or
reassigned tracks

DISC LABEL (Sector 0 of disc)

SYSTEM VOLUME

01 2 3 45 6 7 8 910111213 14 15
[==1-=]==]==]==1==1==]==1==]==1=-1==}==1==]==]--]

(o] CONTROL ORDER |o
| |
1| <<CYL/ARC #>> |1
R ean L e e L e L e e | DISC BOOTSTRAP
2] READ ORDER |2 SI0 PROGRAM
| | (SYSTEM DISC
3] <<MEM ADDRESS>> 13 ONLY)
e S |
4 SIO JUMP ORDER 4 Words 0-5 contain the
| | Ascii string
S| <<MEM ADDRESS>> IS "SYSTEM DISC" for
it L L | /3X, /uX, /6%
6l1//1/11117117117171 DISK TYPE | DISKSUBTYPE | 6 (system disc only)
... I
Ti COLD LOAD ID |7
SRR |
lol ll3.l I lloll '8
=== |
11} "o" | "o" 19 If word (%11)
R D L L T | contains a "1"
12| |10 a former system
| | volume has been
13| |11 scratched.
| VOLUME NAME |
14| |12
| |
15| 13
| = |
16| |
UNUSED .
24| |
| == |
25| : CYL | ICF wcs
|~ e e | IMAGE
26| HEAD | SECTOR | POINTER
| == |
27| |
. RESERVED
122] |

3-4

G e emr Gum tum

124 HEAD | SECTOR |
it b b bbb bt |
R et L I
170| |120
[oo |
171] Disc Free Space map OK flag 121

17| [124
|-- Disc Free Space descriptor table address --|
175: :125
176| |126
|------- Disc Free Space bitmap address ------- |
177! 127

3-5

DISC LABEL SECTOR O (CONT.)

SERIAL VOLUME

0] |0
| 0 (:STORE) |
1] 1
| or |
2] |2
| Cold-load SIO channel program (non-HPIB |
3] machines only). For HPIB machines, cold |3
| load channel program is in sector 2 and |
4| SOFTDUMP channel program is in sector 3. |4

|

1111 1 1|
50 1. 2 3 45 6 7T 8 9 01 2 3 4 5|5

6|SC|MV|SR| | TYPE | SUB-TYPE |6
e U, R |
7l |7
| |
10| 0 18
| |
11| 19
[==mm e |
12' nsu I uEu |10
[=mmmmmmmmmmm e mmommnmooeeemamoennneee |
13| uRu | an '11
[--mmrmmmm oo |
11" lIIII I .Isl| I12
[mm o |
15{ Ilc ' " " :13
16| Words Per Sector |1k
[== mmmemm oo memmmmmmmmmeeeneemeooeeeaa |
17| Sectors Per Track (Cartridge tape = 1) 115
R L L L e L L L it L LD L |
20| Sector Address of Beginning of Tape (BOT) |16
Rt - |
21| Double Address of 117
- |
22| End Of Tape (EOT) |18
[-mmmmmmm oo rmmmsneemmssseemmmmnnaeemneae |
23| Double Address of |19
|- y
24| End Of Data (EOD) |20
[-mmmmmmemmmm e mmmmmmmnmneemmmenenneeeees |
25| CYL |21
T |
26| HEAD | SECTOR |22

\
I
I
I
I
I
/
\
I
I
I
I
I
I
l
I
I
|
/

SC =1 ==>

Scratch volume
MV = 1 ==> Master

Volume of PV set.
SR =1 ==>

Serial disc

VOL NAME

"SERDISC "

Serial
Disc
Info

ICF WCS
IMAGE
POINTER

Serial volume (continued)

27|
122!
1231 CYL
12’4| HEAD

DISC LABEL (cont)

SECTOR 0

MASTER VOLUME

SC = SCRATCH 6|SC|MV|SR| |6 TYPE

VOLUME = =-=========mc=e = e e

MV = MASTER T/

VOLUME = 1 —=——=--mmmmmmmmmmmmmmm oo mommdmmmmm e memm e

SR = SERIAL 10|
VOLUME 11|

0 IF NOT
MASTER
VOLUME

MASTER VOLUME (CONT.)

. = - = e - - 4" W= n . e e e = - e

31| |25
32| VOLUME SET | 26
33| NAME |27
3L |28
VS VTAB 35| 129
HEADER + --—----——--===m--memececcec e e e
8 ENTRIES 36|0 VCOUNT 3| | VMASK |30
COPIED FROM =--===-==cccmmemceeecmcececcccccccccccemeeee
VSET DEFN 37| |31
IN SYSTEM Lo| VOLUME |32
DIRECTORY UL1| NAME 133
42| |34
43| I35
44| SUB-TYPE | VTABX 136
45| 137
[: [
| . |
116| |78
R e bt L LT LI P R |
170]| |120
B il D it |
171 Disc Free Space map OK flag |121

172 Dicec Free Smace descrintor table dirtv flaec 1122
N P R
174 124
| -- Disc Free Space descriptor table address -|
1751 {125
| ==mmm e |
176| 1126
|====n-- Disc Free Space bitmap address ------ |
177| |127

3-9

HEADER

VOLUME
ENTRY O

SC = SCRATCH
VOLUME
MV = MASTER
VOLUME = 0
SR = SERIAL
VOLUME

DISC LABEL (cont)

SECTOR 0
SLAVE VOLUME

]| lo
1] 11
2| 0 |2
3| 13

4| |

5 I
6|SC|MV|SR| |6 TYPE 11|12 SUB-TYPE 15]|6
71 GENERATION INDEX 17
| 0 |8
| I9
12| |10
13| VOLUME j11
14| NAME |12
15| |13
16| INITIAL DATE |14
17|] 15
20| |16
21| |17
22| ACCOUNT |18
23] NAME |19
24| |20
25| |22
26| GROUP |22
271 NAME |23
30| |2k
31 125
32] VOLUME SET |26
33] NAME |27
34| |28

3-10

173| Disc Free Space descriptor table dirty flag |123
s O M |

174| 124
| -~ Disc Free Space descriptor table address -|
175 { {125
176| |126
|------- Disc Free Space bitmap address ------ |
177] 127

3-11

0|
I
1]
I
2|
I
3

&

[y
o = A U

[
[

[
o o e N
U e o e o s S ——— —— ——— — — — —

165|
166 |

| ==l ==k=l == ==] =2 == == == | == == | == == | == [-] -]
OF DEFECTIVE TRACK ENTRIES (N) o
___ l
DEFECTIVE TRACK NUMBER | DTC |1
... l
DEFECTIVE TRACK NUMBER | DTC |2
---------------------------------- e
DEFECTIVE TRACK NUMBER | DTC 13
... |
DEFECTIVE TRACK NUMBER | DTC |4
___ l
I5
|
|16
|
|7
|
|18
|
. |9
|
j1
|
|.
.
.
|
|
|
|
. l
|
|
___ |
DEFECTIVE TRACK NUMBER | DTC |117
___ |
DEFECTIVE TRACK NUMBER | DTC |118
... |
DEFECTIVE TRACK NUMBER | DTC |119

167|

DEFECTIVE TRACKS TABLE (DTT -- Sector 1 of Disc)

(the DIT exists on device type 0, 1, & 2 discs)

01 2 3 4 5 6 7 8 9101112131415

3-12

120 DEFECTIVE
TRACKS MAXIMUM

DEFECTIVE TRACKS TABLE (CONT.)

170| DEFECTIVE TRACK NUMBER i DTC j120
171: --- {121
172: }122
| RESERVED FOR |
173| FUTURE USE 123
1Tk : = 124
175: :125
A vere mvaiims mmmars maex o6
vt T hearens pise pack svm wnmmmsy T her

OR # OF TRACKS IF FH DISC

DIC (DEFECTIVE TRACK CODE)
0 suspect
1 suspect alternate
2 deleted
3 reassigned

NOTE: The situation where there are two entries for the same
track, n, one having a DTC of 0 (suspect) and the other having
a DTC 3 (reassigned) results from a situation where the disc
driver could not "read” (unreadable) the address of the
particular track.

3-13

%1
%2
%3
%L
%5
%6

%10

%12

%176
%177

Unlike the DIT, entries in the DSCT are not permanent.
Once a suspect sector is handled by INITIAL or VINIT,
its entry is removed from the table.

DEFECTIVE SECTOR TABLE (DSCT -- sector 1 of disc)

(the DSCT exists on device type 3 (CS/80) discs)

0 1 2 3 45 6 7 8 9101112131415

L T L P [ey oy I ey oy e

number of entries in the table

first defective sector entry
(double-word logical sector address)

contains only unprocessed suspect sectors.

3-1k4

Thus this table

[« NN B i ¥

10

126
127

RESERVED AREA BIT MAP (sector U4 of the system disc)

e o o - e " S e e e e e G S e - A S e e S em

The first 400 sectors of the system disc are reserved for Initial’s
use. This area contains permanent data structures for the boot.

It is also used as a temporary storage area for data during
sparing. All other system volumes and private volumes reserve

only the first 10 sectors of the disc. They do not have a
reserved area bit map.

The bit map contains 1 bit per sector. A ’1’ means the sector
is free.

e e +
%0 | | o
| |
| reserved area |
| bit map i
I |
I |
| ' |
%30 | l 2Y
| == mmm e e e
%31 | | 25
| reserved for |
| future use |
I |
I i
| I
%177 | | 127
T T T PP +

3-15

23I
24|

DISC COLD LOAD INFORMATION TABLE (SECTORS 28-29)

--
--
--
--
——
--
__
——

directory disc
address

ldev 1 virtual memory

disc address

RIN table

disc address

- o . - e = e T e e e e e e e e e e e e e e e . -
- - - = " - T = = e e = e e - e e = e e e e = -
- e o - o - - e S = e T e G e G G R M en e e e ee e e e e
P L L R e e

3-16

TCSTPIR
NREAD
NVICST’
INITDB
INITDL

INITZ

INITQ

INITS
DISCTST
COLD’LOAD’ID’

LOG’FILE 'NUM’

DIRADR

VIRMEMADDR

RINADR

DIRSECT

SECTORS IN LDEV1 VM

RINSECT

RINS

DISC COLD LOAD INFORMATION TABLE (CONT.)

- e - > > - o= = - = = -

. L L e e R Y

B s e s e " o e - " > - . W S S S e e e

- > o - - - = S S T G e e e -

——— > W G TP T D D D D e e GF T e e e e e W= e W

Job Master Table

Disc Address

Welcome Message (DST 47
10)
Disc Address

Welcome Message (DST 48
10)
Disc Address

- e wn e o = S = e = e = e v e = e e S Em e e e S e = e am e

3-17

GRINS

TL=Tape cold load

LOAD MODE
RL=Reload

RY=recovery

H’VOL’
DISCENTRY

SYSDISCDRT

JMATLOC

IDDLOC

ODDLOC

LOGONLOC1

LOGONLOC2

- e -

DISC COLD LOAD INFORMATION TABLE (CONT.)

- e T o o o = e o e e e e ke -

| SIZE IN WORDS |
e b L e [
| MEMORY ADDRESS *CTABO |
| === e |
| DISC ADDRESS [
R i L E L T T T I
| SIZE IN WORDS |
|-===mmmmm el I
| MEMORY ADDRESS #CTAB I
e e L eI L L L Lt I
| DISC ADDRESS |
R e e I
| SIZE IN WORDS * [
[= e m e COMMUNICA- |
I MEMORY ADDRESS TION SUB- |
T LT T TS S SYSTEM [
| DRIVER |
| DISC ADDRESS TABLE |
| |
fmmm e e |
I SIZE IN WORDS . |
T COMMUNICA- |
| MEMORY ADDRESS TION SUB- |
Ty SYSTEM |
| DEFINITION|
| DISC ADDRESS TABLE |
| |
- |
| SIZE IN WORDS |
[=== mm e e COMMUNICA- |
| MEMORY ADDRESS SUBSYSTEM |
RS S TABLE |
I |
[DISC ADDRESS |
I [
R L DL L L L L e L e L b L DL |
| SIZE IN WORDS |
[=== = m e e e LOGICAL- |
| MEMORY ADDRESS PHYSICAL |
e DEVICE |
I TABLE |

|

I

3-18

FAEFTR+4

FAEFTR+8

FAEFTR+12

FAEFTR+16

FAEFTR+20

FAEFTR+24

SIZE IN WORDS | FAEFTR+28
------------------------------------ LOGICAL- |
MEMORY ADDRESS DEVICE |
------------------------------------ TABLE [
I
DISC ADDRESS [
[
.. |
SIZE IN WORDS | FAEFTR+32
------------------------------------ DEVICE |
MEMORY ADDRESS CLASS |
------------------------------------ TABLE |
I
|
I

3-19

DISC COLD LOAD INFORMATION TABLE (CONT.)

| SIZE IN WORDS | FAEFTR+36
R T TR VOLUME |
I MEMORY ADDRESS TABLE |
=== I
| |
| DISC ADDRESS |
| |
fmmmmmmmm e |
| SIZE IN WORDS | FAEFTR+L0
Jmm e e LOGICAL |
| . MEMORY ADDRESS DEVICE |
Jmm e e e e TABLE |
| EXTENSION |
| DISC ADDRESS |
| |
|===mmmmm e |
| STACK SIZE | FAEFTR+L4
Jmmm e e INITIAL’s |
| MEMORY ADDRESS STACK |
=== |
| |
| DISC ADDRESS |
| |
|======ommmmmmm e |
| SEGMENT SIZE | FAEFTR+48
e T L L L PP INITIAL’s |
| MEMORY ADDRESS SEGMENTS |
| === |
| |
| DISC ADDRESS |
| |
f === I
| |
. (MORE SEGMENTS OF INITIAL)
INITIAL PROGRAM CST MAP
LOGICAL PHYSICAL
CST# CST# SEGMENT NAME

0 1 ININ \

1 2 BOOTSTRAP |----> core resident

2 3 RESIDENT /

3 Y MAINSEG1 \

3-20

Y 5 MAINSEG1A |
5 6 CONFIGURE | |non-core resident
6 7 DEFCTRACKS | |but present in core
7 10 SETUP |------ |at completion of

i0 11 TAPEIC] lecld load

11 12 FILEIO |

12 13 DISKSPACE /

13 14 DIRECTORY1

ik i5 DIRECTORY?2

15 16 SL PROGRAM

16 17 PROCESS

17 20 MAINSEG1B

20 21 MAINSEG2

21 22 MAINSEG3

22 23 MAINSEGYH

*code segment swapping starts at completion of MAINSEG1

3-21

Virtual Disc Space Management Structures

Disc space for data segments is allocated from reserved regions of system
volumes which have been assigned the virtual memory supporting (VMS) attribute.
The data structure used for accounting and management of the virtual disc

space of the various VMS volumes is the Virtual Disc Space Management Table
(VDSMTAB). This structure consists of a circular list of entries, one for each
VMS volume. Each entry contains the information defining the state of the
virtual memory region on that volume.

Virtual Disc Space Management Table

VDSMTAB DST# = 39 (%47)
VDSMTABPTR= %1026

General Structure

e e +
%1026------ >| # VMS Volumes |
| first to look at|--+
i ttdabte + |
$ommmnoo] |
| +---] Next in list |
[P
T o
|+l <=t
| +---| Next in list |
[|
| I e e e L L +
| +-->] |
R | Next in list |
l |
Hmmmmmmmmm oo +

3-22

VDSMTAB Entry O Format

0 1 2 3 45 6 7 8 910111213 1415

I 1 1
VDSMTABOO | #WORDS IN VDSMT | TABLELENGTH
Tt |
VDSMTABO1| # SYSTEM VOLUMES WHICH HAVE VIRTUAL MEMORY | VMSVOLUMECNT

VDSMTABO2 | INDEX OF NEXT ENTRY TO ALLOCATE FROM ISTARTENTRY
wenmasos| o acn sim ey T | paESTZE
e ; smoTons e T N ———
VDSMTABOS| orreET FROR ENIRY T BiTMAR (R20) |OFFSETTOBM

DGR REIE e EE |
VDSMTABO6 | TOTAL # VM PAGES CONFIGURED IN SYSTEM |

| === m e ooeeooeoooooooooooiooooeo |
VDSMTABOT7| LEAST # OF VM PAGES THAT HAVE EVER BEEN AVAIL.|

|-____s_,,___.._--......_-........._..____________---___---|

3-23

VDSMTAB GENERAL ENTRY FORMAT

0 1 2 3 4 5 6 7 8 910111213 14 15
|- ==f ==l =] == | == | == == | ==] == | == | == | -] == | == | -]

Word O I INDEX OF NEXT ENTRY IN CIRCULAR LIST | NEXTINLIST
R fave T | iomv

wraz | STANTING SECTOR 0F DEvIGE'S N
R N | osTaRTsECTOR
wora s | T ¢ smorons n oviess —
word 5 | T vinTunL MEwoRY TN | o

Word 6 | § PAGES 1N DRVICE'S VIRTORL MENORY REGToN | TOTAL PAGECNT
Word 7 | B OF PAGES KVATLARLE TN DEVICE'S TM REQION | PAQESAVATLABLE
dord %101 F 0B VALID woRDS T3 DEVICGE'S BT WAP | mMuENGTH
word %11| Sim oF SwALizer mmemvE miss —
WORD %12| SWALLEST NOMEER OF PAGES EVER AVATLASLE |

P asstaEn T |

¥##COMMENT: A bit on in a device’s VMBIT MAP
==> Corresponding VM page is free.

3-24

VOLUME TABLE

SIR #22=%26
DST #29=5%35

zero entry

01 2 3 45 6 7 8 91011 12 13 1% 15

word|--|--|--|--|----]--1--|--]--]--]--]--]--]--]--|
! # OF ENTRIES |
0| (NOT COUNTING ZERO) | ENTRY SIZE=16(8) lo
[====mmmmmmmm e |
1] COLD LOAD ID |1
|=====mmmmm e e e |
2] SYSVOLNUM |
[====m=mmmmmm e .
3] VIRTUAL MEMORY INTEGRITY NUMBER |

3-25

N [ol o

B o B
M RBP O N oUW W

i
W

TYPICAL PRIVATE VOLUME ENTRY

LOGICAL DEVICE # | | VMS | UN|NS|SC]|
.

(=0 IF NOT MOUNTED) |

3-26

& W N |l [=]

o w &

@ =

I
I
19
I

1
I
I

1

indexed by
volume #

NS - NON-SYSTEM
DOMAIN

SC - SCRATCH

UN - UNREADABLE/
UNFORMATTED

14|

15§

TYPICAL SYSTEM VOLUME ENTRY

indexed by

|
] volume #
l
VOLUME |
NAME i
|
|
... |
|
|
|
0 |
|
|
{
STARTING SECTOR OF VOLUME’S VM (0 if none) |
|
|
... |
[10
NUMBER OF SECTORS RESERVED FOR VM ON VOLUME |
(0 if none) |1
... |
LOGICAL DEVICE # | |VMS|UN|NS|SC|{ NS - NON-SYSTEM
(=0 IF NOT MOUNTED) | | | DOMAIN
--- | SC - SCRATCH
| VSET VTABX | MVTABX | UN - UNREADABLE/
i i i UNFORMATTED
--- | VMS - VIRTUAL MEMORY
SUPPORTING

3-27/3-218

CHAPTER 4 DIRECTORY

Directory on disc consists of a contiguous area

SYSGLOB cells:

DIRBASE<-------- absolute disk addr of base [SYSGLOB+%130 AND %131]
DIRBASE------ > |mmmmmm s |
---] LASTWORD |
| [memmmmmmmnneees |
| 1 FIRSTAVAIL |--
(WORD ADDR) | |------------------ | |POINTS TO NEXT WORD TO BE EXAMINED
---- | 1
|| BITMAP <-
| - (DIRECTORY ~ The bitmap defines the available/
|->] SECTORS USED) | wused sectors in the directory.Bit
i 0, word O corresponds to DIRBASE;
LR PR R | bit 1 to DIRBASE+l;etc. 1=> avail-
| 0 | able 0=> used. [Note: BITMAP (0).
R | (0:4)=0 always.]
I —— |
| |
DIRBASE+3----> |--==m-mmemmmmmmnee |
- DIRECTORY ~ Directory entries contain pointers

which are sector displacements
| | relative to DIRBASE. Entries and
| | indices are grouped into "blocks"
j--mmmmmm e i (block = 3 sectors).

The capacities for accounts/groups/users/files are dependent on their

block sizes, described in the directory data segment.

* SYSSAIBSIZE System acct index block size (sectors)
SYSAUIBSIZE Acct. user index block size (sectors)
SYSAGIBSIZE Acct. group index block size (sectors)
SYSGFIBSIZE Group file index block size (sectors)
SYSGVSIBSIZE Group volume set definition ind. blk. size(sectors)

* SYSAEBSIZE Acct. entry block size (sectors)

SYSUEBSIZE User entry block size (sectors)

SYSGEBSIZE Group entry block size (sectors)

SYSFEBSIZE File entry block size (sectors)

SYSMAXBSIZE Maximum of above. (used to initialize DDS.)
SYSVSEBSIZE Volume set definition entry block size (sectors)

*These values are used once for the creation of the (root) system,
account index or new systems. This root index is always at address
DIRBASE+3.

4-1

OVERVIEW OF DIRECTORY

| SYSTEM |
/ /N
/ / O\
/ / O\
ACCOUNTS = —==== —eee-
I I
I I
/ \
/ \
/ \
/ \
| USERS| | GROUPS |
/! / A\ / 0\ 0\
!/ \ N
R oo
T I | 1 1 | | | GrouPs
\ / / \
------------ / \
USERS / \
/ \
| VSETS | | FILES |
/ / / \
/ / / \
/ / / \
VSETS/ | | I I | | FILE
KEY: VCLASSES | | I 1 1 | | POINTERS
l 1 /
---------- . /
INDEX ——-- /
ENTRY FILE

y-2

DIRECTORY DATA SEGMENT

177
200
201

202

211
212
213-2%0
241-266
267

| --mmmmmmmmomemmoooeenooes |
| SECTOR !
- BUFFER -

~ 128(10) WORDS -
I |

5
3
[on]
z
o
2
5
3
=
B

4-3

127
128
129
130
131
132
133
134
135
136
137
138
139-160 \
> SEE Directory
161-182 / Pointer Area
183
184
185

DIRECTORY DATA SEGMENT (CONT.)

UEB=2 IUSER ENTRY BLK SIZE | 192
B2 | an mvint mk s1zm) 103
FEB=2 | PILE Enewr mim orzE 1 1sh
VSEB=1 | vor Dar sNIRT Pk Sizm | 195

DDSBSIZE=3 | MAX.SIZE DIRECTORY BLOCK | 196

DDSBWSIZE=%600 | DDSBSIZE*128 | 197
R L LT L |
| DISTRIBUTION | 198
GOODPERCENT=.85 |- -1
307 | FACTOR | 199
e ee |
310 | BASE | 200
| -==remem e cccccceeeee | ---
311 | | 201
- DA AREA ~ DDSBWSIZE
| |
e e b L L L L L | ---
Rl L St LI L L LT | ---
| WORK AREA |
(SIZE OF LARGEST ENTRY) MAX
| |
f----=mmrmmmmm e | ---
R e e il | ---
1145 | | 613
- DB AREA ~ DDSBWSIZE
l |

b=

d————— —_——_—————e e) ————————— . e ———————————————_—)

DIRECTORY POINTER AREA [DA OR DB]

- o - - - = - > = e m e = - e M

| MAX # ELEMENTS/BLOCK |
|=1=]=| =] =mmmmmems e |
|I1|P| TY|ELEMENT SIZE|BLOCK SIZE|
| 111 (WoRDS) | (SECTORS)

R |--mmmeeev |
| NUMBER OF ELEMENTS |

| ENTRY TOTAL I

|=I=]-]=]===m=nne- |-==emmmenee |
|0|P| TY|ENTRY SIZE| BLOCK SIZE |

{-’-!-I-: (WORDS) I (SECTORS) }
| FATHER INDEX POINTER |
| =mmmmmmmmee oo |

DST=20(10)

-- SIR=8(10)

157/

| 158/

180

159/
181

DIRBASEL’
DIRBASE2’
CONTENTS
LPNTR
IOPNTR
NUMVALID

DIRTY

USED bl
BSIZE

*
BWSIZE
BFACTOR

MISCWD

XCOUNT
PCOUNT
ETOTAL

EMISCWD

PINDEXP

PNAME TY

INDEXES AND

ENTRIES

INDEXES ONLY

O-FILE
1-GROUP
2-ACCT

3-USER

4-vSD

0-ENTRY BLOCK
1-INDEX BLOCK
PURGE FLAG

DIRECTORY SPACE DATA SEGMENT (DIRSDS)

- - - - — - - " v e W Ne W A e e e e

BITMAP

——— e e e . A e e . e . e e

base address of parent directory

defines last word of bit map

defines next word to be examined

The bitmap defines the available/used
sectors in the directory. Bit 0 word O
corresponds to DIRBASE; bit 1 word 0 to
DIRBASE+1 etc. l=>available O=>used.
[NOTE: bitmap(0).(0:4)=0 always.]

4-6

DIRECTORY STRUCTURE

ENTRY BLOCK

W —— — ———— ———

INDEX BLOCK

4T

DIRECTORY DEFINITIONS

>PAGE - smallest allocatable record ('"phys.recd")-currently sector.

>BLOCK integral# of pages; contains contiguous indices or entries.

>INDEX pointer to entry block, containing name of 1lst entry.

>ENTRY - information-containing "object" may contain pointer to an
index block. ‘

>POINTER - 15-bit positive relative page number (relative to directory
base).
>DDS - directory data segment.
>ELEMENT - a generic name for index or entry.
INDEX BLOCK PREFIX (10 WORDS)
O-FILE \
1-GROUP| 3 bits = =------------ >| INDEX SIZE (WORDS)
2-ACCT |<-=--=----- | | T BITS
3-USER / | |
4-VSET | |
I | - >| BLOCK SIZE (SECTORS)
PURGE FLAG<---- | | | | 4 BITS
| I

|| =] -=mn] =mmmemee | ===
MISCWD o]1|P| TY | ZXSIZE IBSIZE|0 INDEX BLOCK INFO.

1] XCOUNT |1 NUMBER OF INDEX POINTERS
R e DL EEL DL |

2| IPCOUNT |2 NUMBER OF ACCESSORS*
---mmem e |

3] ETOTAL |3 ENTRY TOTALS

R |- |
EMISCWD L4|0|P| TY | EXSIZE |EBSIZE|4 ENTRY BLOCK INFO.

5| PINDEXP |5 INDEX POINTER OF FATHER
|=====mmmmmmmo oo I
6| 16\
I I
7l 17 1
[PNAME | >NAME OF FATHER
10| 18 |
I |1
11| 19 /

*The count is incremented by each access that uses and relies
upon a pointer to the index block, ie, it is guaranteed not
to be purged while the count is not = 0.

4-8

INDEX ENTRY (6 WORDS)

|
|0 1st NAME OF ENTRY BLOCK
I
1
IE1STNAME |
|2
|
I3
|
------------------------- | _
IEPNTR |4 POINTER TO ENTRY BLOCK
_________________________ '
IECOUNT |5 NUMBER OF ENTRIES IN e BLOCK
_________________________ |
ACCOUNT ENTRY (%36 WORDS)
R b L D !
]| |o
| |
1] |1 ACCT.NAME
| ANAME |
2| 2
| |
3} :3
4| AGIPNTR |4 ACCT.GROUP INDEX POINTER
R R L P |
5] AUIPNTR |5 ACCT.USER INDEX POINTER
R atale |
6| |~
| ACAP | CAPABILITY
71 7
R I
10| |8
| ALATTR | LOCAL ATTRIBUTES
11} |9
R et L LD L L L L L e !
12] |10 PASSWORD
| I
13} j12
| APASS |
14| |12
| |
15| 13

k-9

ACCOUNT ENTRY (CONT.)

16| |14
| ADFSCOUNT | DISC FILE SPACE COUNT (SECTORS)
17: |15
____________________ |
20| |16
| ADFSLIMIT | DISC FILE SPACE LIMIT (SECTORS)
21| |17
e |
22| |18 i
| ACPUCOUNT | CPU TIME COUNT (SECONDS)
23| |19
L - |
24| |20
| ACPULIMIT | CPU TIME LIMIT (SECONDS)
25] |21
- |
26| |22
| ACONTIMECOUNT | CONNECT TIME COUNT (MINUTES)
271 |23
e |
30| | 24
| ACONTIMELIMIT | CONNECT TIME LIMIT (MINUTES)
31| I25
[=mmmmmmmmmmmm e
-==321 I/1//1 | | ! } | : |26 FLAGS (SEE BELOW)
=1=1==1=1-1-1-1-1-1-]
331s81Al/////] |27 MAX.JOB PRIORITY
|=mmmmmmev | =mmmmmene | |
34|COMM FILE REC # ACCT|28 command file location of HARD CODED

|

|

|

[

| R s | account udc’s 0

35	COMM FILE REC # SYS	29 command file location of	
I et tatate	system ude’s (SYS acct only)		
-			
I | |
I |

I

|

|

o o L e ey B o R B P e e B B B
| BI//1/////) RIRl A LAl WiwW LIL X]|X S]s|
->ASECW| |//1/////|ANY |AC|ANY |AC|ANY |AC|ANY |AC|ANY |AC|ANY |AC|

e B B [o e B B B

P PURGE flag]
FILE SECURITY

] If 1, system level UDC’s exist (only in "SYS" account)
A If 1, account level UDC’s exist for account

4-10

GROUP ENTRY (%51 WORDS)

o] |0 GROUP NAME
| I
1) |1
| GNAME |
2] |2
| |
3] I3
| --ommmmmoomo oo |
4| GFIPNTR |4 GROUP FILE INDEX POINTER
|l |
5| 5
| |
6] j6 PASSWORD
i GPASS |
7l T
| I
10| |8
R e I
11| |9 DISC FILE SPACE COUNT (SECTORS)
| GDFSCOUNT |
12| [10
T el iinke I
13| |11 DISC FILE SPACE LIMIT (SECTORS)
| GDFSLIMIT |
14) |12
e by i
15| {13 CPU TIME COUNT (SECONDS)
| GCPUCOUNT |
16| |14
| === e ee |
17| |15 CPU TIME LIMIT (SECONDS)
| GCPULIMIT |
20| |16
R L DL I L Ll |
21| |17 CONNECT TIME COUNT (MINUTES)
| GCONTIMECOUNT |
22| |18
e b Bl |
231 |19 CONNECT TIME LIMIT (MINUTES)
| GCONTIMELIMIT |
24| |20
R b DU LD by I
25| ¥%P| |21 GROUP SECURITY (SEE BELOW)
I--1 GSEC |
26| | *P = PURGE FLAG

4-11

GROUP ENTRY (CONT.)

271 GCAPABILITY |23 GROUP CAPABILITY
30| uimae | |ob GROUP DIR. BASE LINKAGE
31= ----- &;égi;ﬁ;; ------ }25 GROUP VOL SET DEFN INDX
el amenmwE |26 HOME vor, SET NAE
33} -=27
3&}— GHVSANAME -=28 (Definition’s acct name)
355 E29
s 130
37I- -=31

|- GHVSGNAME -1 (Definition’s group name)
4o| [32
hl‘ —!33
h2’ -------------------- I3h
h3{- _{35

|- GHVSVSNAME -1 (Definition’s vol set name)
Ly |36
sl 157
6| GSAVEFIPNIR |38 SAVE CELL FOR GFIPNTR
wi| aHomNIREFGNTR |39 GROUP BIND couVTER
50{ --------- ; ---------- :hO GSPARE

4-12

GROUP ENTRY (CONT.)

] 1 1
1ZB1"8]
O 7T T
;=348
X0 ng !
1 < 1

W
ANY
S

] i '
<8195
N
<8 1%g !
R
1 <21%8
OO T
k- Rk K

A
ANY
X

o "

nm [
pr g Ve =
£ 0 [) [}
852 Biegi=g]
E RS i@ A
|)
tAN Bsd '
>0 o ET T
FES8 Blimolag!
[S < 1 1
SH&o m%lW%ild
A " m '] 1
wmn n v w_ \ 1
A~~~ O I ~~ 1 1
= « 00O O [R B N N S | i
. Py Yo~ ~ 1
888 " ==—=<

X
GL |ANY|AC |AL |GU |GL |ANY|AC |AL |GU |GL |ANY|AC |AL

P
W

25
26

GLINKAGE

4-13

UMAXJOBW

FILE ENTRY (FILE POINTER)(6 WORDS)

- - - -

- me - -

2|
3l

L
| UCAP
51

6|
| ULATTR
7

10|
11| UPASS
12|
13}

1k
15| UHGROUP
16|
171

20| ULOGCOUNT

21|*P|U| ©0 | JOBPRI

22|COMM FILE REC #

|0 FILE NAME
|
1
l
|2
l
13
- l .
|4 VOL TABLE INDX / FILE LABEL DISC
| ADDRESS
|5

|0 USER NAME

|4 CAPABILITY

|6 LOCAL ATTRIBUTES

|7

|8 PASSWORD
19
|10
|11
-1
|12 HOME GROUP (MAY BE NULL)
113
1L
115
-| LOG CNT (# OF USERS LOGGED ON)
|16 INIT TO 1 FOR MANAGER.SYS SO
-1 THIS USER CANNOT BE PURGED
|17 MAX.JOB PRI;*P=PURGE FLAG
-1 U=UDC EXIST FLAG
|18

| (command file loc of]|

| user udc’s)

4-14

USER ATTRIBUTES/CAPABILITY

/ SAVE FILES ------
FILE-ACCESS ATTRIBUTES <
: \ NON-SHARABLE DEVICES--

|

|

COMMUNICATIONS------ |

(I

O

] —mmmmmmm e SYSTEM MGR I

| | -------mmmm-- ACCOUNT MGR 1

1] ----------- ACCOUNT LIBRN i1 |

USER | | | | =---=---- GROUP LIBRN ' .

1 1 1+ 1 ----- DIAGNOSTICIAN 1o

| I I | | | --SYSTEM SUPVSR o

ATTR | | | | | | | CREATE VOLS 11 1

I I 1 I I | | | USE VOLS .

\l I I I | | | | USER LOGGING 1|

(1 [Y R N B B B I

[Y (R N N I R I

[-=1==1==1==1-=1==1==1-=1-=1--1-=1--1--1--1--1--|

|sM|aM|AL|GL|DI|OP|cV|UV|LG|//1//1//1//]|CS|ND|SF|

f==l==l==]==1==]==]==]==]==|=-1--]-=]--|-=1--]--]

01231456789101112131)415

[==1-=1-=1-=1-=1-=1=-=1--1-=1--1--}--1--1--1--]--]

L7177V 77 1V /7L 7 1 Bal 1Al PM / /1 //1MR] // | DS | PE|

P==t==t==1--1-=1=-1=--1-=1--1--1=--1--1--0--1--1--]

[| ||

/ batch access -1 1 | | ||

|interactive access --==] | | |

ACCESS | privileged mode ~ ------- | | I
TO <

GENERAL | multiple RINS ---------ooomnm- | -

RESOURCES |extra data segment = -------=---cecc-caca-- I
\ process handling ------------- ———————————- |

4-15

VOLUME SET DEFINITION ENTRY

MVTABX:
VOL COUNT:
VMASK:

VTABX:

= 1 VOLUME CLASS

MOUNTED VOLUME TABLE INDEX (IF MOUNTED)
NO. OF VOLUMES

VOLUME MASK

0 NOT MOUNTED

= 1 MOUNTED

VOLUME TABLE INDEX

4-16

o] |0
1] |1 VOLUME
2| GVSNAME |2 SET
3} |3 NAME
__ l
TY =0 4TY|1 71 MVTABX |4 GVSLINKAGE
5|VOL COUNT|4 71 VMASK |5 GVSINFO
/] 6] |6 MEMBER VOLUME
I 71l |7 NAME (1ST ENTRY
VOLUME | 10| GVSVOLUME |8 IS MASTER
ENTRY 0 < 11| |9 VOLUME)
(6 WORDS) | |-=====-emmmmmmmmm e |
| 12]0 14| M|10 GVSVOLFLAGS
R e LT |
\ 13| SUB-TYPE | VTABX |11 GVSVOLINFO
R e e L DL L L L L |
/ 14| |12
VOLUME | . i .
ENTRIES | . ~ . ~
1-7 <, " . ~ .
| . | .
\ 57: EMT
60| | 48
| |
61] | 49
| |
62| GVSVOLUME |50 MEM. VOL.
| | NAME
63{ :51
64| GVSVOLFLAGS (MEMBER VOLUME FLAGS) |52
| m==m e |
65| GVSVOLINFO (MEMBER VOLUME INFO) |53
R ettt LA L L DL DL LI LD L I
66| GVSDREFCNT (DEFN. REF. CNTR.) |5k
R e L L L L DL L LD LDt |
67l 0 |55 SPARE
R e e L L O L L L L DL L L I
= 0 VOLUME SET

GVSLINKAGE

| T | A | NOT | MVTABX
[T USED |
S
T - TYPE

1 = Volume Set Definition

0 = Volume Set Class
A - ALLOCATING FLAG

0 = not initialally allocating (not 1lst user of set)

1 = 1st user of set allocating resources (transitional)

MVTABX - Mounted Volume Table Index
0 if volume set not logically mounted

GVSINFO

VOLCNT - Number of members in set
VSMASK - Bit mask of volume member usage
Order is from right to left
i.e. bit 15 is 1st member, bit 14 is 2nd member ...

GVSVOLFLAGS

M - Member Mounted Flag
0 not mounted
1 mounted

GVSVOLINFO

5
2

Volume Table Index

4-17

VOLUME SET CLASS ENTRY

o] | o
|- -1
1] | 1
|- GVCNAME -1
2| | 2
|- -1
3{ : 3
4| GVCLINKAGE | 4
R e b iy |
5] GVCINFO [5
R I
6| GVCPNAME | 6
|- I
7l I
| - GVCPANAME -1
10| | 8
|- -1
11| | 9
R et LD L bty |
12| |10
|- -1
13| j11
|- GVCPGNAME -1
14| |12
|- -1
. y
16| |14
|- -1
17| |15
|- GVCPVSNAME -1
20] |16
|- -1
21 |17
R e bbby |
22] 0 |18
R it b bl |
23| 0 [19
e L e b E LD DSty |
671 0 [55

VOLUME CLASS NAME

VOLUME CLASS IDENTIFICATION
VOLUME CLASS INFORMATION

PARENT VOLUME SET DEFINITION

ACCOUNT OF PARENT DEFINITION

GROUP OF PARENT DEFINITION

VSNAME OF PARENT DEFINITION

4-18

GVCLINKAGE

0 1 2 3 4 5 6 T 8 9 10 11 12 13 14 15

1 = Volume Set Definition
0 = Volume Set Class

GVCINFO

0 1 2 3 4 5 6 T 8 9 10 11 12 13 14 15

VOLCNT - Number of members in set
VCMASK - Bit mask of volume member usage (VOLUME CLASS MASK)
Order is from right to left
i.e. bit 15 is 1st member, bit 14 is 2nd member ...

VOLUME MASK FORMAT

- USED IN MVTAB, PVUSER, FILE CONTROL BLOCK (FCB),
VOLUME SET/CLASS DEFINITION, VOLUME SET VTAB.
- 8-BIT MASK.

- - o = - = - = = = = - e = e e e e

- " e - = - - = e e = e =

(MASTER)

—_————
———)

]

]

S

:

o

-------------------------------- VOLUME 6

------------------------------------- VOLUME 7
0: NOT MOUNTED OR NON-MEMBER 1: MOUNTED OR MEMBER

4-19/4-20

CHAPTER 5 LOCK RESOURCES

SIR# ALLOCATION DST %53
decimal octal
SIR # SIR # SIR NAME
21 1 LOAD PROCESS SIR
2 2 LOCK SEGMENT SIR
3 3 IDD
4 4 oDD
5 5 PROCESS TREE STRUCTURE
6 6 SCHEDULING QUEUE
7 7 CST ENTRIES
8 10 SYSTEM DIRECTORY
9 11 LPDT
10 12 LDT
11 13 STORAGE IN OVERLAY AREA
12 1k DISC FREE SPACE TABLE
13 15 JPCNT
14 16 JCUT
15 17 JMAT
1 20 FMAVT
it 2> LOADER SEGMENT TABLE
18 22 VDD
19 23 SPOOL
20 24 MESSAGE CATALOGUE
21 25 RIT
22 26 VOLUME TABLE
23 27 WELCOME MESSAGE SIR
2k 30 ASSOCIATION TABLE
25 31 CS ALLOCATE SIR
26 32 LOGGING BUFFER
27 33 PV MVTAB
28 34 MEASSIR
29 35 PV USER TABLE
30 36 IMAGE
31 37 KSaM
32 L0 USER LOGGING
$ 33 41 DEBUG BREAKPOINT TABLE
$ 34 Y2 PCBSIR A
35 43 SUB-QUEUE MAPPING TABLE
26 4k CILOG
GT. T——— B FILE INTEGRITY
38 L6 RIN
39 47 TAPE LABELS
40 50 1st JOB

41 51 2nd JOB

MULTIPLE SIR ALLOCATION

The five conventional chains used by MPE for SIR allocation and
deallocation are:

LOWER->LOGICAL RANK->HIGHER
1. LDT(10)->LPDT(9)->VDD(18)
2. JMATSIR(15)->LPDT(9)->JPCNT(13)
/3) FMAVTSIR(16)->FILESIR(37)->DIRECT. (8)->DISC FREE SPACE TBLE (12)
\k;/ FMAVTSIR(16)->FILESIR(37)->RINTABLE(38)
$ 5. SEGTABSIR (%21)-> BKPTSIR(%U41)-> LOCKSIR(2)
6. JMATSIR(15)->LDT(10)->LPDT(9)->0ODD(4)

Multiple SIR allocation requires care to avoid process deadlock
situations. The rule that should be followed when working with
the above SIRs is as follows:

Never attempt a GETSIR of lower rank then the SIR currently held
(if any).

For example: suppose two processes, A and B, required the SIRs for
the LDT and LPDT. Deadlock would result if done as
below due to process A not following the convention

order.
incorrect order correct order
PROCESS "A" PROCESS "B"
GETSIR(9) [LPDT]<--- = =--==--- >GETSIR(10) [LDT]
. | | .
I I
_______ | ====--
I I
I |
. | | .
GETSIR(10)--- = =—--mmemmmmeemm- GETSIR(9)

DEADLOCK

5-2

SIR TABLE INFORMATION

The system internal resource table is 1located in non-linked memory
{resident table). The SIR table is used to protect critical system
elements against access by more than one process, i.e., it provides
a "lock out” mechanism. Each critical system resource (usually a
table) is assigned a specific SIR number. Procedures are provided
within MPE to lock (GETSIR) and unlock (RELSIR) the SIR. Processes
attempting to obtain a SIR that is not available are impeded by the
system. The SIR table entries form the head of a linked list in
this case. If more than one process becomes impeded, word 8 of the
PCB entry is used to add the "new" process to the growing list.
The method of disimpeding the process depends on the SIR type.

A SIR does not respect process priority and operates in a FIFO
manner. As processes become impeded on behalf of a SIR the new
entries are entered at the tail of the impeded 1list. When the
current holder of the SIR releases it, only the first process
in the 1list (pointed at by the head pointer) is dis-impeded.
The linked 1list head and all pointers are then updated and the
newly dis-impeded process will obtain the SIR.

5-3

SIR ENTRY FORMATS

01 2 3 45 6 7 8 910111213 1415

P = PIN#

R B N P ey e
0

PIN = PCB table entry number
SIR QUEUE LENGTH- number of processes gqueued for this SIR

|0 free

| mmmemmmeas
| (not locked)
I

|

|0 SIR locked

The SIR table is indexed by SIR#, each SIR# corresponding to a unique,

preassigned system internal resource.
are established by wusing the SIR table entry
head of +the list and PCB(8).
always

Impeded lists
(8:8) as the
Pin numbers
of list.

are

used as pointers,

5-4

with O

Entry #0 is not used.

(1)0
for elements.
indicating end

(8:8)

RIN TABLE GENERAL LAYOUT (Initialized State)

DST=%26 | == m e e e e e
| INDEX OF FIRST FREE ENTRY
I ...
e | (# LOCAL+GLOBAL RINS)*2
I e L
| | RT | INDEX OF NEXT FREE
I | === == mmmmm oo
I I 0
I | ==mmmm oo oo
| | RT | INDEX OF NEXT FREE
I e
| RT=RIN TYPE | 0
| (WHEN [=== oo
| ALLOWED) | RT | INDEX OF NEXT FREE
I | === === e
I | 0
| 1-LOCAL RIN |====m=m oo oo oo oo
| 2-GLOBAL | RT | INDEX OF NEXT FREE
| RIN | == m e e e
| 3-FILE RIN | 0
| | == oo
| | RT | INDEX OF NEXT FREE
| e
! ! 0
| | ==
I I
| ~
l ~
| |
I | === == mm s
i | RT | 0{EOL)
I = e
I | o
I | === mmmmm e oo
------------- >| FREE LIST POINTER
SECONDARY | = e e
TABLE OF 12- | TOTAL #OF ENTRIES
WORD ENTRIES |=-=======m = mm oo oo
FOR GLOBAL | NUMBER FREE ENTRIES
RIN’S ONLY R i T TR RIS
| RESERVED
............ l_..--_-_..--..-.._-______..__......__....__-_--___..____-_
| |IF FREE, PTT TO NEXT FREE|
| | ==-==mmmmmmmmmm oo I
I ~
LENGTH=
ALLOCATED
GLOBAL RINS
*12

55

——]} ———— ———
]

A

A e e e —

 —— e s i e e
- o

| o e o — ——— — |
¢« e

LAST
FREE
ENTRY

ALLOCATION AND LOCKING OF LOCAL RINS

RIN TABLE

JOB INFOR-| == ==== == === m oo oo e e oo |
|-- RIN #1

MATION | 0 1]
TABLE
----- |
(JIT) |
|--=---- I
| I
| .
| [43]
|------ I
| LOCK |->] 0 1]
| RIN |
|INDEX | |
|-=---- I
|
|
|
l
|
| 0 1]
| HEAD OF WAITING LIST
I I
I |
|
I
v
PCB# waiting processes

P = PIN#

linked through
PCB impeded queue
(PCB# pointers)

INDEX OF NEXT RIN

LOCAL

| (UNLOCKED)
|

|<- LOCAL

|--RIN #2
| = |

PIN OF HOLDER (P) |

PCB# PCB# of process
that "holds" rin

5-6

| (UNLOCKED)

LOCAL
RIN #3

| (LAST)
(LOCKED)

ALLOCATION AND LOCKING OF FILE RINS

RIN TABLE

|HEAD OF WAITING LIST(P)| PIN OF HOLDER |
| oo !
I I | |
I | I |
I |

v v

PCB# waiting processes PCB# process that

linked through PCB “"holds"” rin
impeded queue

P=pin#

>-T

ALLOCATION AND LOCKING OF GLOBAL RINS

DST22(10)=26(8)
RIN TABLE
R L LR R LI I LD |
| INDEX OF FIRST FREE ENTRY |
f === mm e |
| (NUMBER OF LOCAL+GLOBAL RINS)*2 |
e b L LD L |
I |
| |
I I
| I
| -mmmmem oo |
| 1 0] INDEX OF PASSWORD, USERNAME |-----------
I | |
HEAD OF WAITING LIST(P)	PIN OF HOLDER		
==			
		I [
PCB# <-	----ccmmmemee e	->PCB#	
waiting | | process |
processes | | that |
- ~ ’holds’ |
= - RIN]
| | |
| I |
[=== | I
| fe=-mmmmumm-
| |
| RIN PASSWORD |
| |
I |
I atattl bl |
| l
| USERNAME |
| (USER NAME AND ACCOUNT) |
| |
| ===== === I
P=pin#

5-8

CHAPTER 6 FILE SYSTEM

This document describes the MPE-IV file system. Section 2 describes the
basic concepts. Section 3 describes the table structures used.

2.0 File System Overview

I/0 to files is done by reference to file numbers, which are assigned by
calling the FOPEN intrinsic. This establishes an initial "point of
attachment”, which may be described as a connection between a program
(i. e., process) and that particular point in a particular file at which
the next FREAD or FWRITE would cause data to be transferred. A point of
attachment is described by a control block, of which there are several
different kinds (described later). Control blocks may exist in the
process’s own stack, in an extra data segment assigned by the file
system, or (because of file sharing) in some other process’ stack. In
order to find control blocks quickly, a pointer scheme called vectors is
used. A control block is uniquely described by a vector, which consists
of one word with the low ten bits containing a segment number, and the
upper six containing an index into a table (the "vector table") which
describes the location of the control block within that segment. The
entire assemblage, consisting of five overhead words, the vector table,
and all of the control blocks to which it points, comprises a contiguous
piece of storage called the "control block table". If it is in an extra
data segment, the control block table comprises the entire segment; if
in a stack, it occupies part of the PXFILE part of the PCBX, usually
beginning at segment-relative location 106 octal.

The point of attachment is described by a ‘“physical access control
block"”, or PACB, which will exist as a result of an FOPEN to any file
(except $NULL). Any required I/0 buffers are associated with the PACB;

.
see section 2.1,

All FOPENs specifying "multi-access" for all processes running under a
single job use a single PACB for references to a multi-access file.
Although 21l these are attached to a single point in the file, the type
of attachment (i. e., AOPTIONS) may be different. So, each FOPEN
specifying a multi-access file establishes a "logical access control
block"”, or LACB, which contains the point-of-attachment local values.
The use of a single buffer (i. e., PACB) insures that references by
various processes or against various FOPENs within one process are dealt
with in strict sequential order. Note that references to a file by
other jobs, or by other processes not specifying multi-access, will be
through other PACBs, whose buffers will be read or written at the

6-1

pleasure of the file system; in order to insure any sort of coherence to
such shared references, the Jjobs must use global RINS and FLOCK and
FUNLOCK the file. §$STDIN, $STDLIST, and spoolfiles are opened
multi-access automatically.

In the case of disk files, there is another kind of control block: the
file control block, or FCB. It contains copies of information read from
the file label, such as the end- of-file pointer, the extent map, and
the record and block structure. The EOF pointer is updated in the FCB
as the file is written, and all changes made to the FCB are posted to
the file label when the file is closed. An FCB is shared by all jobs in
the system which reference the file.

The file number assigned by an FOPEN is an index into the Available File
Table (AFT), a table of four-word entries which is at the end of the
PXFILE part of the PCBX. Two of these words are vectors to the PACB and
(if it exists) the LACB.

Because control blocks are shared among processes, it 1is necessary to
have a scheme for coordinating access +to them. A control block is
"locked" by a process which requires exclusive access to it for a time.
Other processes which attempt to lock the block will find it already
locked, and will be impeded and queued. It may also be necessary to
lock an entire control block table so that a process can create or
destroy a control block in it, or lock or unlock an existing control
block in the table.

Another +table wused by FOPEN is the File Multi-Access Vector Table
(FMAVT). This table exists in a system extra data segment and is used by
all jobs and processes in the system. When a file is being FOPENed with
multi-access specified, the FMAVT is searched; if the file is already
open, the FMAVT gives the PACB vector for the prior reference for each
Job.

2.1 Buffers

A bit in AOPTIONS specifies, when a file is opened, whether access is to
be buffered or unbuffered. If unbuffered, data is transferred directly
between the I/0 device and the user’s buffer (usually in his stack),
which will be frozen in memory for the duration of the transfer. If
buffered, the data is moved between the user’s buffer and a file system
buffer to which the I/0 is actually done.

Buffers are associated with the PACB, attached to it as an appendage.

6-2

3.0 Table Formats

This section gives a detailed discussion of the main tables constructed
and used by the file system. The location and overall structure of each
table is given, in addition to the table format and a discussion of each
field in the table. Table indices at the right of the table are in
octal. Index names apply to the entire word; if in parentheses, the
names are defined in the file system listing but not explicitly wused
there.

3.1 File System Section of PCBX (PXFILE)

The PXFILE area is a sub-section of +the PCBX. It is a contiguous,
expandable and contractable block of storage that is managed by the file
system primarily for its own use. Other subsystems, namely CS and DS,
also make use of the PXFILE section. In doing so they must conform to
the conventions of the file system.

The overall structure of the PXFILE area is:

| | 66

| Overhead | (fixed)

| |
[|

I | 106

| Control block | (variable)
| table |

| |
[|

| |

| Available | (variable)
| |

- memmmmm e mmmmnnnans |

| |

| Active File | (variable)
| Table]

I | DL-5

6-3

The part labeled Overhead contains information that pertains to the
entire section. It ordinarily begins at segment-relative location 66
octal, but is usually addressed via the pointer at DL-3.

0o 1 7 8 15
P PaPTiE sise tmwerds Tl o pasmz

| Taze DOPEN error mo. | Lase ConEN errer me. | 1

\w T | 2

| == e |

| Reserved for DS | 3 (PXFDSINFO)
| ame KOPEN error mambor | Last FOPEN ervor mber |
I AT sime imweraw T R
A o5 Teave Pile inga T | 6 (pxcTRINFO)
s S

| 1st user (NOBUF) control block table DST number | 10 PXFCBT1

| 2nd user (NOBUF) control block table DST number | 11 (PXFCBT2)
| 3rd user (NOBUF) control block table DST number | 12 (PXFCBT3)
| U4th user (NOBUF) control block table DST number | 13 (PXFCBTY4)
| 5th user (NOBUF) control block table DST number | 14 (PXFCBTS)
| 6th user (NOBUF) control block table DST number | 15 (PXFCBT6)
| Tth user (NOBUF) control block table DST number | 16 (PXFCBTT)

| 8th user (NOBUF) control block table DST number | 17 (PXFCBTS8)

Partial word field identifiers are:

PXFDOPEN = PXFILE(1).(0:8)#, 1last DOPEN error code

PXFCOPEN = PXFILE(1).(8:8)#, 1last COPEN error code

PXFNOCB = PXFILE(2).(0:1)#, no CB’s in PXFILE CBT?

PXFKOPEN = PXFILE(4).(0:8)#, 1last KOPEN error code

PXFFOPEN = PXFILE(4).(8:8)#, last FOPEN error code
Discussion:
PXFAFTSIZE This is +the size (in words) of the Active File Table

(AFT). The size is in words to simplify calculating the
size of the available block.

6-U4

PXFCBT1-8

PXFCOPEN

PXFCTRINFO

PXFDOPEN

PXFDSINFO

PXFFOPEN

PXFKOPEN

PXFLEFTOFF

PXFNOCB

PXFSIZE

These are the DST numbers of the user (NOBUF) control
block tables. A DST number of O indicates that no data
segment is allocated.

This contains the last COPEN error number. Not used by
the file system.

This contains information pertinent to the CS trace
file. Not used by the file system.

This contains the last DOPEN error number. Not used by
the file system.

Reserved for DS. Not used by the file system.

This contains the last FOPEN error number. If it is
zero then the last FOPEN completed successfully;
otherwise the last FOPEN was unsuccessful and the
number is the file system error number.

This contains the last KOPEN error number. KSAM is
partly imbedded in the file system, and an FOPEN
failure on a KSAM file can be caused by a failure to
open either the key file or the data file. This error
number is used in conjunction with PXFFOPEN +to
determine which file caused the KSAM open failure.
This error number is not used by the file system.

This is the AFT entry number of the last file/line that
completed a no-wait I/0; if zero then no no-wait I/0
has been completed. This cell is maintained solely by
and for the IOWAIT intrinsiec.

This bit signifies that control blocks are not to be
created in the PXFILE control block table. This bit is
set by the NOCB parameter to the CREATE intrinsic or
the :RUN command. This feature permits the user to
have as much stack space as possible; otherwise the
file system will take several hundred words of stack
for the PXFILE control block table.

This is the size (in words) of the complete PXFILE
area. 1t is the sum of the overhead block, the control

block table, the active file table and +the available
block.

6-5

3.1.2 PXFILE Control Block Table (PXFCBT)

Addressing within a PXFILE control block table is somewhat more
complicated than addressing an extra data segment CBT since the table
does not begin at DB+0. As a result all pointers within the table are
table relative; the starting address of the table must be added to a
pointer to generate a final DB-relative address. This addressing
convention is consistently applied to all control block tables.

When the control block table is expanded, space is +taken from the
AVAILABLE area. If no space is available then the PXFILE area is
expanded and the acquired space is added to the AVAILABLE area.

Refer to section 3.2 for a more detailed description of file control
block tables.

0 1l 2 15
| Table size in words | 20 (PXFCBTAB)
S |
| DST number containing table | 21 PEFDSTX
L |
| 0 | Vector table size in words | 22 PXFVTSIZE
| == |
| Lock word | 23 (PXFLOCK)
I |
| Impeded queue | 24 (PXFQUEUE)
LI |
] | 25 PXFVT
| |
| Vector table |
| |
| |
| === e |
| |
I I
I |
| |
| Control block area |
| |
| |
l |
l |
The following identifier is also used:
- PXFCBTSIZE = PXFILE(16)#, table size in words

Discussion:

PXFCBTAB This is the first word of the control block table; it
is used when referring to the entire table.

PXFCBTSIZE This is the size in words of the control block table.
It is used principally for calculating the size of the
available block.

PXFDSTX This is the DST number of the data segment that
contains the control bleck table. Thig is the same as
the DST number of the stack itself. The common
convention of referring to the DST number of the stack
as zero is not used, because the file system may refer
to a PXFILE control block table in another stack, which
would result in an ambiguity since that PXFILE control
block table would also have a DST number of zero.

PXFLOCK This is the lock word for the table and has the same
format as the lock word for a control block in the
table, i. e. lock bit, break bit, 1lock count, and
locking PIN.

PXFQUEUE This is the impeded queue for the table and has the
same format as the impeded queue for a control block in
the table.

PXFVT This is the first word of the vector table. It is used

when referring to the vector table in general.

PXFVISIZE This is the size, in words, of the vector table. This
is the 1length of the table and does not reflect the
number of entries used or unused.

3.1.3 Available Block

The part labeled Available is used to provide space when the Control
Block Table or the Active File Table is expanded. These two tables grow
towards each other, and when more space is needed it is simply taken
from the Available Block.

3 e

When <the Available area is exhausted, the PXFILE area is expanded, the
k.

amn
AFT is relocated and the new space is added to the Available Bloc

Currently the PXFILE area is only expanded; it 1is never contracted.

6-7

3.1.4 Active File Table (AFT)

The part labeled Active File Table contains information used by the file
system (or CS, DS, etc.) to grossly characterize the file access and,
most importantly, to give the location of the control blocks.

The overall structure of the AFT is:

| |

| Entry N | (fixed, 4 words)
| |

f-mmmmmm e |

| |

| |

| . |

| . |

| |
|==mmmmmmmeme e |

| | DL-8

| Entry 1 | (fixed)
| | DL-5

where N = PXFAFTSIZE/L.

The length of the AFT is specified by PXFAFTSIZE. Unused entries are
all =zeroes. When the table is full it is expanded by taking space from
the Available block.

The AFT is negatively indexed by file number: the entry at DL-8
corresponds to file number 1, the entry at DL-12 corresponds to file
number 2, etc.

The structure of a file system AFT entry is:

0 1 2 3 L4 5 b

| Entry type | N | | °
i pereions b vomrer T 2 oo
I logical ACB Vector | = wmacer
R Nowar 1/0 Tk | 3 arrsoas

6-8

The entry format depends on the entry type; the file system uses entry

type O.

The following partial word field identifiers are used:

AFTTYPE
AFTNULL

Discussion:

AFTIOQX

AFTLACBV

AFTNULL

AFTPACBV

AFTTYPE

AFT.(0:k4)#, entry type
AFT. (4:1)#, $NULL file

This is the IOQ index of the pending no-wait I/0 (if
any). This is applicable iff the file was opened with
the NOWAIT option specified. Also, CS and DS have the
same capability and use +this cell in a consistent
manner. This is because the IOWAIT intrinsic services
the file system as well as CS and DS, and is the prin-
cipal user of this cell. 1In the case of a message file
the accessor’s reply port (file system basic IPC port)
is stored in this cell. If this cell is zero there is
no no-wait I/0 pending.

This is the vector of the Logical ACB (LACB) (if any).
This is applicable iff the file was opened with the
multi-access option specified.

This bit signifies that the file is $NULL and that
there are no control blocks.

This is the vector of the Physical ACB (PACB). A PACB
exists for all files except $NULL.

This is the AFT entry type number. At present the
following entry types are defined:

- file system

- remote file

- DS (no-wait I/0 disallowed)
- DS (no-wait I/0 allowed)

cs

- Cs

- KSAM

- Message File

OO EFWN RO
|

3.2 File Control Block Table (CBTAB)

A file control block table can be located in two places: (a) as a
sub-part of the PXFILE area, as discussed in section 3.1.2; or (b) in a
data segment. Although putting control block tables in PXFILE has the
advantage of providing rapid access, it detracts from the space for the
user’s stack; so the larger control blocks (or optionally, all control
blocks) are put into extra data segments. On the other hand,
referencing extra data segments may result in an absence trap, which is
slow. Extra data segment control block tables are of <three kinds:
expandable, non-expandable, and shared FCB. Non-expandable CBT’s are
used for a single PACB with buffers, i. e. where the control block is
large, or where the control block can’t be local to a single process, i.
e., for multi-access. Expandable (or NOBUF) CBT’s are used for small
control blocks, to wit, LACB’s, PACB’s with no buffers, and FCB’s which
are local to a single process. A 1list of the expandable CBT’s
associated with a process is kept in the overhead area of PXFILE (cf.
section 3.1.1). When a small control block is needed, these CBT’s are
checked in order to see if one of them has room. Shared FCB CBT’s are
like expandable CBT’s except that they belong to the system rather than
to a single process; the system keeps a list of DST’s which it has
assigned for this purpose.

The overall structure of a control block table is:

| |

] Overhead | (fixed, 5 words)
| |

| === I

| |

| |

| Vector Table | (variable)
| |

| |

| === |

| |

| |

| |

| |

| ‘Control Block | (variable)
| area |

I |

I |

| |

6-10

3.2.1 Overhead

The part labeled Overhead contains information pertaining tc the entire

table.
0 1 2 6 T 15
| Table size in words | O CBTSIZE
== |
| DST Number containing table | 1 CBTDSTX
T |
| Type | | Vector table size in words |

Lock word | 3 CBTLOCK

Impeded queue | 4 (CBTQUEUE)

Other identifiers used:

CBTTYPE
CBTIVISIZE

Discussion:

CBIDSTX

CBTLOCK

CBTQUEUE

CBTSIZE

CBTAB(2).(0:2)#; control block table type
CBTAB(2).(7:9)#; vector table size

This is the DST number of the data segment that
contains the control block +able. If the table is
contained in a stack, i.e. in the PXFILE area, then
this is the DST number of the stack and not 0.

This is the lock word for the table and has the same
format as the lock word for a control block in the
table, i. e. 1lock bit, break bit, lock count, and
locking PIN. The table is locked, +thus insuring
exclusive access, whenever a control block is being
created or destroyed. It isn’t necessary to lock the
table while 1locking a control block within it because
control block locking is done pseudo-disabled.

This is the impeded queue for the table and has the
same format as the impeded queue for a control block in
the table. There is no second impeded queue because
that facility is wused exclusively for BREAK requests
against the PACB for $STDIN/$STDLIST.

This is the size in words of the table. It is
initialized when the table is created and changed when
the table is expanded. At present a table is never
contracted, even though this is possible.

6-11

CBTTYPE

CBTVTSIZE

This field is the type of the control block table.
Possible values are:

- stack [PXFILE]

NOBUF (expandable)

System shared FCB

Buffered (contains a single PACB)

wmnkHo
1

This is the size, in words, of the vector table area in
the control block table. It does not reflect the
number of entries used or unused.

6-12

The part labeled Vector Table contains information used to locate and
lock or unlock control blocks in the control block table.

The overall structure of the vector table is:

- - e o S e e

| |
| Entry 0 | (fixed, 4 words)
| |

| |
| Entry N | (fixed)
I |

where N = (CBTVISIZE/4)-1. Since only six bits are available for a
vector table index, the vector table can contain at most 64 entries.

An unused vector table entry will have zeroces in all the words of the
entry. A used vector table entry will have a non-zero value in the
first word of the entry ({the control block address is necessarily
non-zero).

The general structure of a vector table entry is:

0 15

o Control block address | 0 VIADR

I ot word | 1 vrcormmo

B High priority impeded queve | 2 (vrouEuE)

T Low priority impeded guose | 3 (visavebqueuE

Discussion:

VTADR Control block address is the table relative address of
the controcl block associated with the vector table

6-13

VICONTROL

VIQUEUE

VISAVEDQUEUE

entry. It is a word displacement from the beginning of
the control block table.

The control word is used to coordinate access to the
control block. It contains a bit which indicates that
the control block is being accessed, and therefore
"locked", and a byte which contains the PIN of the
process which has exclusive access to the control
block. Other processes attempting to access the block
will be impeded and queued.

The high priority impeded queue is a byte pair of PINs
that are the head and tail of the impeded gqueue of
processes waiting for access to the control block.
Processes are impeded and unimpeded by the file system
using the normal mechanisms available under MPE.

The low priority impeded queue is a byte pair of PINs
and has the same format as VIQUEUE. The only time this
word is used is when the control block is in BREAK
mode, which can only happen to an ACB corresponding to
$STDIN/$STDLIST. It is wused to save the current
VIQUEUE when the control block goes into BREAK mode and
to restore VIQUEUE when the control block goes back
into non-BREAK mode.

The 1last three words of a vector table entry comprise a sub-block for
the locking system that is used to coordinate access to a particular

control block.

The structure of the vector table entry control sub-block is:

0 1 2 T 8 15

I R e e T i T 6 cascontmor

| Hien priosiey taii PIN | High prioeity head PN | 1 CBLQUEUE
e L ——

The following partial word field identifiers are used: -

CBLLOCK = CBL.(0:1)#, lock bit

CBLBREAK = CBL.(1:1)#, break bit

CBLCOUNT = CBL.(2:6)#, lock count

CBLPIN = CBL.(8:8)#, PIN holding lock
CBLTAIL = CBL(1).(0:8)#, high priority tail PIN
CBLHEAD = CBL(1).(8:8)#, high priority head PIN
CBLSAVEDTAIL = CBL(2).(0:8)#, 1low priority tail PIN

6-14

CBLSAVEDHEAD = CBL(2).(8:8)#; low priority head PIN

Discussion:

CBLBREAK This is the BREAK bit and is used only for the ACB
corresponding to $STDIN/$SDTLIST.

CBLCONTROL This identifier is wused when referring to the first
word of the vector table control sub-block.

CBLCOUNT This is a count of the number of times that the control
block is 1locked by CBLPIN. It is 0 if the control
block is not locked and is greater than 0 if the
control block is locked.

CBLHEAD This 1is the PIN of the process at the head of the high
priority impeded queue.

CBLLOCK This is the lock bit for a control block; 1 denotes
locked.

CBLPIN This is the PIN of the process which has locked the
control block and has exclusive access to it. If the
control block is not locked then this field is 0.

CBLQUEUE This is the high priority impeded queue.

CBLSAVEDHEAD This is the PIN of the process at the head of the low
priority impeded queue.

CBLSAVEDQUEUE This is where CBLQUEUE is saved when creating a break
queue.

CBLSAVEDTAIL This is the PIN of the process at the tail of the low
priority impeded queue.

CBLTAIL This is the PIN of the process at the tail of the high

priority impeded queue.

6-15

3.2.3 Control Block Area

The part labeled CONTROL BLOCK AREA contains the control blocks used by
the file system.

To facilitate storage management, all control blocks have the same
overall structure:

0o 1 2 15
| Type | Size | O CBDESCRIP
I T PRERRRRRIREERE |
I | 1
| I
| |
| Data |
| I
I I
I | N
where N = Size-1.
Partial word field identifiers are:
CBTYPE = CB.(0:2)#, control block type no.
CBSIZE = CB.(2:14)#; control block size
Discussion:
CBDESCRIP This 1is the first word of a control block; the format
is common for all control blocks.
CBSIZE This is the size (in words) of the control block. The
size includes the descriptor word.
CBTYPE This 1is the type number of the control block. There
are four types of control blocks:
0 - Garbage
1 - FCB
2 - PACB
3 - LACB

When a control block table is created the initial control block area is
completely allocated to a single control block of type garbage. When
space is requested for a new control block the control block area is
scanned (using a first fit algorithm) for a garbage control block that
is as large as the size requested. The space for the new control block

6-16

is taken from this garbage control block and the space remaining becomes
the new garbage control block size.

When space is returned it becomes a new garbage control block. To
reduce fragmentation the new garbage control block is combined with
either of the two neighboring control blocks if they are of type
garbage.

If space is requested and no garbage control block is large enough to
contain the new control block then the control block area and control
block table are expanded by a sufficient amount. If expansion is not
possible, some other control block table must be used.

3.2.4 Access Control Block (ACB)

Virtually every file system intrinsic constructs an ACB as its first
action. When using the multi-access option, each accessor shares a
single PACB. However each accessor is permitted to view the shared file
in a slightly different manner than the other accessors. For example,
one accessor may access the file in a read-only mode while +the other
accessors may access the file in a read-write mode. To do this, each
accessor must, during his access, have a slightly different ACB.

The PACB holds information that is global to all accessors of the file.
The LACB holds information that is local to each accessor of the file.
At the beginning of a particular access, an ACB is constructed by
calling LOC’ACB, which copies information from both the LACB and the
PACB. At the end of the access, the ACB is released by calling
UNLOC’ACB; this updates the PACB and LACB from the ACB since some of the
fields may have been modified due to the access. This scheme nearly
eliminates EXCHANGEDB’s to access the various data segments.

6-17

3.2.5 Logical Access Control Block (LACB)

Partial word field identifiers are:

LACBSIZE = LACB.(2:14)#, size in words
LACBSTOPCHAR = LACB(2).(0:8)#, terminal stop character
Discussion:
LACBAOPTIONS See ACBAOPTIONS.
LACBBSIZE See ACBBSIZE.

6-18

N

~~ O v W

LACBCTL
LACBERROR
LACBFNUM
LACBFOPTIONS
LACEMODE
LACBNAME1-8

LACBPACB

LACBRSIZE

LACBSIZE

LACBSTATE
LACBSTOPCHAR

LACBTLOG

See

See

See

See

See

See

This

ACBCTL.

ACBERROR.

ACBFNUNM.

ACBFOPTIONS.

ACBMODE.

ACBNAME.

is the vector of the Physical ACB (PACB) for the

file.

See

This is the size, in words, of the LACB.
sixteen (decimal) words long.

See

See

See

ACBRSIZE.

ACBLSTATE.

ACBSTOPCHAR.

ACBTLOG.

6-19

All LACBs are

D . L e e e L T

| |

| Basic PACB] (fixed)

| |

|-mmmmmmmmmm e |

| |

| Buffering |

| | (variable)
| extension |

| |

The buffering extension is optional; it is present if and only if the
file is accessed with buffering. There are thus two possible formats
for an ACB:

1. No buffers; the buffering extension is not present.

2. PACB buffers; the buffering extension is present and the
buffers are in the buffering extension.

If multiple PACB buffers exist, there will be a buffering extension for
each, immediately preceding the buffer. The basic PACB (or NOBUF PACB)
is copied into the the ACB as words 0 thru 57 octal; an ACB "extension"
is then generated in words 60 thru 67. The resulting ACB thus has the
following format:

6-20

0o o0 ~N4 O v o W

11
12
13
1k
15
16
17
18
19
20
21
22
23
2y
25
26

0 1 2 3 4 5 6 T 8 9 10 11 12 13 14 15

e - e e . e e = o - - D S B D D e D N GD G D O3 G5 D G e D G0 D G5 %S M IS W S e e S e

*1j
e
[
o
g
]
[#3]
2]
[}
0
=
[
e
')
-
=
[}
:
(1]
|
=
ot
=
)
=3
[}
H

]
[
[
o
:
o®
]
ASA)
ct
=
0
B
[
al
]
[
=
(]
g
(1]
1
(oA
ct
o
[¢)
=2
o
e]

- - - - - = = —m e e " e G - A - e S P e e M MR G e e G e . M G e G G e S e e e e

R R R R e e e L

- - e - e e ae = v e S M e e SR e e s e e e B e M R S e e e e e e S e e e - e = -

- - - - e m s o e e S e e e - e R MR S SE M = - = e e e e = e e = e = =

-~ O U W

10
11
12
13
1y
15
16
17
20
21
22
23
24
25
26
27
30

(O8]
n

28
29
30
31
32
33
3y
35
36
37
38
39
40
¥1
¥2
43
uY
45

u7

| Spare

=== m m o e e e
| No. input LACB’S | Total no. LACB’S

[=== o m e e o e e
| |Bk | Device type | Last logical I/0 status

|AE |RW |ABR|NE | SEOFS | EOFS | Blocking factor
e
|PF |Hit| | Current buffer| Tape Displace.| No. buffers

[=== m e m e e e e
| Current record word index
e
| Buffer size
Sy
| Spare

| === = o o e o
| FMAVT index

| = = m m o
| Volume table index

f == o m o e o e e e
| Name type | File disposition

| == m e e
| Access bit map | Logical device number

| s M| Q] RI| D] | Virtual logical device no.

| Spooled device type | Spooled device record size
s
| Spooled device FOPTIONS
e
| Spooled device AOPTIONS

[=== m e m oo e e
| IDD or ODD Index
R
|

| No-Wait disk address

|
S
| Spare

| === = m o o e e
| Spare

+ ---

The above words, O0-%57, are physically located in the PACB of
the file. Below, words %60-%67, are used by file system intrin-
sics and are placed onto the stack by the procedure LOC’ACB when
locking the ACB. Therefore, the buffering extention, if pres-
ent, will immediately follow word %57 of the actual ACB in the
Control Block Table of the file.

| PACB offset (DST-rel.)

6-22

| 33
| 34
| 35
| 36
| 37
| 40
| w1
| 42
| 43
| 4y
| 45

| u7
| 50
| 51
| 52
| 53
| 54
| 55
| 56
| 57

50 | LACB DST nr. | 62

51 | LACB offset (DST-rel.) | 63
o ACB offset (Stack-DST-rel.) | 6
% DB offset (Stack-DST-rel.) | 65
sl T Stack-DST-rel location of PXFILE CBTAB | 66
o CBIAB-rel vector table entry address | 67

The following identifiers are used when referring to an ACB:

(ACBSIZE) = ACB. (2:14)#, size in words

ACBFNUM = ACB(1).(8:8)#, file number

ACBNAME = ACB(2)#, file name

ACBNAME1 = ACBDBL(1)#, file name - first half
ACBNAME2 = ACBDBL(2)#, file name - second half
ACBFOPTIONS = ACB(6)#, FOPTIONS

ACBAOPTIONS = ACB(7)#, AOPTIONS

ACBRSIZE = ACB(B)#, record size (bytes)
ACBBSIZE = ACB(9)#, block size (words)
ACBCTL = ACB(11)#, carriage control word
ACBLSTATE = ACB(12)#, local state flags
ACBEOF = ACBLSTATE. (1:1)#, end of file sensed
ACBLPCTL = ACBLSTATE.(2:2)#, ©page and line control
ACBPAGECTL = ACBLSTATE. (2:1)#, ©page control

ACBLINECTL = ACBLSTATE.(3:1)#, 1line control

ACBSTREAM = ACBLSTATE. (4:1)#, stream I/O

ACBFKEYS = ACBLSTATE. (5:1)#, restore function keys
ACBXMITCRLF = ACBLSTATE. (6:1)#, transmit CR,LF to user
ACBTBLOCK = ACBLSTATE. (T:1)#, disable block mode
ACBBINARYIO = ACBLSTATE.(8:1)#, 8-bit terminal transfers
ACBCARRIAGE = ACBLSTATE. (9:1)#, carriage control flag
(ACBDEFBLOCK) = ACBLSTATE. (10:1)#, default blocking
ACBREADCODE = ACBLSTATE. (11:4)#, input EOF check
ACBREADTYPE = ACBLSTATE.(11:2)#, input EOF type
ACBREADMODE = ACBLSTATE. (13:2)#; input EOF mode

ACBMODW = ACB(13)#, mode word

ACBMODE = ACBMODW. (0:8)#, mode setting
ACBTAPEERROR = ACBMODW. (4:1)#, report recovered tape error
ACBINHIBCRLF = ACBMODW. (S5:1)#, inhibit terminal CR/LF
ACBQUIESCE = ACBMODW. (6:1)#, critical output verify
ACBSTOPCHAR = ACBMODW. (8:8)#, terminal stop character
ACBERROR = ACB(1L)#, error code

ACBTLOG = ACB(15)#, last I/0 transmission log
ACBFPTR = ACBDBL(08)#, current record number
ACBBLK = ACBDBL{09)#, current variable block

6-23

ACBRTFRCT
ACBBTFRCT
ACBHIBLK
ACBFCB

ACBSHCNTS
ACBSHCNTIN
ACBSHCNT
ACBSTATW
ACBBREAK
ACBDTYPE
ACBACCCL
ACBSUBCL
ACBSTATUS
ACBQSTATUS
ACBGSTATUS
ACBGSTW

ACBNOWAITEOF
ACBNOWAITMODE
ACBABORTREAD

ACBNEWEOF

ACBSAVEEQFS

ACBECFS
ACBBLKFACT
ACBBUFX
ACBPRIV
ACBHIT
ACBCURRBUF

ACBTAPEDISP

ACBNUMBUF'S
ACBBUFUSED
ACBBUFSIZE
ACBXXXX
ACBFMAVTX
ACBVDADDR
ACBDNTD
ACBDNTYPE
ACBDISP
ACBAMLD
ACBACCESS
ACBDADDR

ACBSFPFL
ACBSPOOLED
ACBSPOOLIO
ACBSPSQ
ACBSPSQZ
ACBSPRSQ
ACBSPDSQ
ACBSPVDEV
ACBSPTYRC
ACBSPTYPE
ACBSPREC
ACBSPFOPT
ACBSPAOPT

Ionowownwnnnnnn

ACBDBL(10)#,
ACBDBL(11)#,
ACBDBL(12)#,
ACB(26)#,

ACB(28)#,

ACBSHCNTS. (0:8)#,
ACBSHCNTS. (8:8)#,

ACB(29)#,

ACBSTATW. (1:1)#,
ACBSTATW. (2:6)#,
ACBSTATW. (2:3)#,
ACBSTATW. (5:3)#,
ACBSTATW. (8:8)#,
ACBSTATW. (8:5)#,

ACBSTATW. (13:3)#,

ACB(30)#,
ACBGSTW. (0:1)#,

= ACBGSTW. (1:1)#,

ACBGSTW. (2:1)#,
ACBGSTW. (3:1)#,
ACBGSTW. (4:2)#,
ACBGSTW. (6:2)#,
ACBGSTW. (8:8)#,
ACB(31)#,
ACBBUFX. (0:1)#,
ACBBUFX. (1:1)#,
ACBBUFX. (4:4)#,
ACBBUFX. (8:8)#,
ACBBUFX. (12:4)#,
ACB(32)#,
ACB(33)#,
ACB(34)#,
ACB(35)#,
ACB(36)#,
ACB(37)#,
ACEDNTD. (0:8)#,
ACBDNTD. (8:8)#,
ACB(38)#,
ACBAMLD. (0:8)#,
ACBAMLD. (8:8)#,

ACB(39)#,

ACBSPFL. (0:1)#,
ACBSPFL. (0:2)#,
ACBSPFL. (2:2)#,
ACBSPFL. (2:1)#,
ACBSPFL. (3:1)#,
ACBSPFL. (4:1)#,
ACBSPFL. (8:8)#,
ACB(40)#,

ACBSPTYRC. (0:6)#,
ACBSPTYRC. (6:10)#,

ACB(41)#,
ACB(L42)#,

logical record tfr count
block transfer count
highest block started

FCB vector

LACB counts
of Read LACB’S
of LACB’S

access class, status, etc.

break ($STDIN/LIST only)

device type

device access class

device sub-class

last logical I/0 status
qualifying status part
general status part
global state flags

EOF advanced?

last I/0: 0 = read, 1
abort broken re-read?
EOF advanced - tape file
for saving ACBEOFS

EOF flags - :EOD/:

records/block

= yrite

buffer data & misc. flags

privileged access only

buffer hit flag

current buffer nr.

tape displacement

number of buffers less 1
used block word count
buffer size (words)

spare
FMAVT index

volume table index
type & disposition

name type for dir. search

file disposition

access mask & LDEV

access mask

logical device number

spool control flags
spooled device flag

spooled IN/OUT
squeeze flags
file squeezed
request to sqz

squeeze just done
spooled virtual device
spooled dev type/recsize

spooled dev type

spooled dev rec size
spooled dev FOPTIONS
spooled dev AOPTIONS

6-24

ACBSPXDDX = ACB(L3)#, IDD/ODD index
ACBNOWAITDA = ACBDBL{22)#, No-wait disk address
ACBNOWAITLDEV = ACB(2T7)#,

Discussion:

ACBABORTREAD This flag is used to abort a broken terminal re-read.
The flag is set via the ABORT parameter to FUNBREAK.
If the flag is set then the READ PENDING message will
be aborted along with the re-read. This feature is
needed to handle the BREAK...:ABORT, etc. situation.

ACBACCCL This is the access class part of the device type
number. The following are legal values:

0 - direct (e.g. disc)

1 - serial input (e.g. card reader)

2 - parallel input/output (e.g. terminal)
3 - serial input/output (e.g. mag tape)

4 - serial output (e.g. line printer)

ACBACCESS This is the access bit map for the file. The following

are the bit definitions of this eight-bit field:
(0:1) - unused
(1:1) - unused
(2:1) - read
(3:1) - append
(4:1) - write
(5:1) - lock
(6:1) - execute
{7:1) - save
This access security is determined by the ACCCHECK
intrinsic and enforced by the file system.

ACBAOPTIONS This is the AOPTIONS in effect for this file access.

ACBBINARYIO This bit controls full eight bit transfers on the 26Ll4
page mode terminal. It is adjusted by FCONTROL(26) and
FCONTROL(27). '

ACBBLK This is the block number of the current variable record
format block. Applicable iff the record format is
variable.

ACBBLKFACT This is +the blocking factor for the file. It is the
number of records in a block. Legal values range from
1 to 255.

ACBBREAK This is the break mode flag. It is applicable iff the

ACB is for $STDIN or $STDLIST. If set it means that
the BREAK key has been hit and that the CI should have
high priority access to the ACB. The flag will Dbe

6-25

ACBBSIZE

ACBBTFRCT

ACBBUFUSED

ACBCARRIAGE

ACBCTL

ACBCURRBUF

ACBDADDR

ACBDEFBLOCK

ACBDISP

ACBDNTYPE

ACBDTYPE

cleared when a RESUME or ABORT is issued.
This is the block size, in words, of the file.

This is the total number of blocks transferred to and
from the file. The initial wvalue is OD.

This is the word index, relative to the base of the
block, for the selected record within the block. This
is applicable iff the file access is buffered.

This bit signifies that the file has carriage control.
It 1is the same as the carriage control bit in
ACBFOPTIONS if the file is spooled. If not spooled,
the bit is 2zero, and IOMOVE will pass the FWRITE
carriage control parameter directly to the driver
rather than imbedding it as the first character of the
output record.

This is the CONTROL parameter from the 1last FWRITE.
This value is pertinent iff the file was opened with
carriage control.

This is the buffer number {0-relative) containing the
most recently referenced record. Applicable iff the
file access is buffered.

This is the logical device number of the file. For a
disc file this is the logical device number of the
first extent.

This bit signifies that the file is to be accessed with
default blocking. The bit is initialized from the
FOPEN stateword STATE. It does not need to he in the
ACB; it is mentioned here only to signify that the bit
is effectively used due to the way ACBLSTATE is
initialized from STATE.

This is the file close disposition derived from the
FOPEN call. The only way this can be specified is via
a file equation. The legal values are the same as
those for FCLOSE.

This is the file reference format type number and is
derived from the FOPEN call. The following are legal
values:

full name

account name absent

group and account name absent
null name

WNRE O
[

This information is needed by FRENAME.

This is the device type number of the file. The
following are legal values (octal):

6-26

ACBEOF

ACBEOFS

ACBERROR

ACBFCB

ACBFKEYS

0 - moving head disc

1 - fixed head disc

T - foreign disc
10 - card reader
11 - paper tape reader

20 - terminal
24 - card reader/interpreter/punch
26 - SSLC
27 - programmable controller
30 - magnetic tape
31 - serial disc
40 - line printer

41 - card punch
42 - paper tape punch
43 - CALCOMP 500 plotter
44 - CALCOMP 600 plotter
45 - CALCOMP 700 plotter

This bit is set when EOF has been sensed.

This is the type of EOF detected on $STDIN(X). This
field consists of two bits:

(0:1) - super colon (i.e. EOF for $STDINX)
(1:1) - regular colon (i.e. EOF for $STDIN)

Applicable for multi-access to $STDIN(X) only.

This is the error number for the file. It is used by
all intrinsics except FOPEN. When an error is detected
the error number is placed in this cell. The error
number is cleared at the beginning of each callable
intrinsic except FCHECK (which reads it).

This is the FCB vector for the file. Applicable only
to disc files.

This bit controls the definition of the f1 and f2
function keys on the 264}4 page mode terminal; it is
adjusted by FCONTROL(32) and FCONTROL(33). (Obsolete
function)

File number, range from 1 +to 255. Used mostly

calling routines that access things such as labels by
file number.

-
0
1

This is the FCPTIONS in
This is the sequential access record pointer; it
contains the next sequential record number. The
initial value is OD. This value is used only by the
FREAD, FWRITE and FUPDATE intrinsics. However the
value is maintained by all data transferring file
system intrinsics.

6-27

ACBFMAVTX

ACBGSTATE

ACBGSTATUS

ACBHIBLK

ACBHIT

ACBINHIBCRLF

ACBLINECTL

ACBLPCTL

ACBLSTATE

This is the entry index into the file multi-access
vector table (FMAVT). This 1is wvalid iff the file
access is multi-access.

These are miscellaneous state flags. These are
"global” in nature in that they are the same for all
accessors in a multi-access environment. The

constituent bits are described individually.

This is the general part of the last I/O status for the
file. The following are the legal values:

- pending

- successful

end of file

- unusual condition

- irrecoverable error

FWMORO
'

This is the highest block number for which an
anticipatory read has been issued, and is applicable
iff the file access is buffered. The initial value is
-1D.

This 1is the buffer hit flag. If set it indicates that
the last read or write request was serviced without any
physical I/0 required. This flag is used only for
performance measurement. The code which manipulates it
is optional to the file system, and is controlled by
compiler toggle X3.

This bit controls the termination of lines written to
the terminal. If not set then each line is terminated
with a CR and LF; if set then no line termination
characters are used. This bit is valid iff the file is
a terminal file; it is adjusted by FSETMODE.

This is the line control bit. If not set +then each
line is post-spaced; if set then each 1line is
pre-spaced. This bit is used by 1line printers and
terminals only. It is adjusted by FCONTROL(1) and
FWRITE with the appropriate carriage control.

This are the line and page control bits, which are
described separately.

These are miscellaneous state flags. They are "local"
in nature in that they may be different for each
accessor in a multi-access environment. Bits (9:6) are
initialized from the stateword 1local variable called
STATE in FOPEN; the ten remaining bits are initialized
individually. The constituent bits are described
individually.

6-28

ACBMODE

ACBNAME

ACENEWEOF

ACBNOWAITEQF

ACBNOWAITMODE

ACBNUMBUFS

ACBPAGECTL

ACBPRIV

ACBQSTATUS

ACBQUIESCE

ACBREADCODE

ACBREADMODE

These are miscellaneous mode flags. The constituent
bits are described individually.

This is the local file name. The name is eight bytes
in length with trailing blanks added.

This flag when set indicates +that a new tape mark
should be written before the tape is rewound or
ackspaced. Applicable only to mag tape files.

This bPit is wused +to save the value of the lccal EOF
advanced flag NEWEOF in IOMOVE between the I/O
initiation and I/O completion calls. This flag is
applicable iff the file is accessed in no-wait I/0
mode.

This cell is used to save the I/0 mode between no-wait
I/0 initiation and completion calls. If the bit is set
then the last I/0 request was a write; otherwise it was
a read. This cell 1is pertinent iff the file is
accessed in no-wait I/0 mode.

This is +the number of buffers, less one, used for the
file access. Applicable iff the file access is
buffered.

This 1is the page control bit. If not set then a page
is assumed to consist of 60 lines (auto page eject); if
set then a page is assumed to consist of 66 lines (no
auto page eject). This is wused primarily for 1line
printers but is also valid for terminals; these are the
only devices for which this is wvalid. This bit 1is
adjusted by FCONTROL(1) and FWRITE with the appropriate
carriage control.

This flag when set indicates that the file is
privileged in that it has a negative file code; the
user must be in privileged mode to access it.

This is the qualifying part of the last I/0 status for
the file. The values are unique for each general
status part. See I/0 System IMS for all legal values.

This bit controls critical output verification. If
set, buffered output is guaranteed to have been written
to the device when control is returned to the user.
This bit is adjusted by FSETMODE.

This field consists of the input EOF checking type and
mode, and is wused to generate the Pl parameter to
ATTACHIO. These fields are described individually.

This field controls the input EOF checking mode. It is

00 for reading $STDIN, 01 for reading $STDINX, and 10
for the command interpreter.

6-29

ACBREADTYPE

ACBRSIZE

ACBRTFRCT

ACBSAVEEOFS

ACBSHCNT

ACBSHCNTIN

ACBSHCNTS

ACBSIZE

ACBSPAOPT

ACBSPFOPT

ACBSPOOLED

ACBSPOOLIO

ACBSPREC

ACBSPTYPE

ACBSPTYRC

ACBSPVDEV

This field controls the input EOF checking type. It is
01 for JOBs, 10 for SESSIONs, and 00 for DATA.

This is the file’s record size in positive bytes.

This 1is the total number of records transferred to and
from the file. The initial value is OD.

This field is used to save the contents of ACBEOFS
during BREAK mode processing.

This is the total number of LACBs that exist for this
PACB. Valid iff the file access is multi-access.

This is the total number of input-only LACBs that exist
for this PACB. Valid iff the file access is
multi-access.

This is the total LACB and total input-only LACB
counts, each of which is described separately.

This is the size, in words, of the complete ACB. It
includes the buffering extension, if present.

This is the AOPTIONS for the spooled device.
Applicable iff the file access is to a spooled device.

This is the FOPTIONS for the spooled device.
Applicable iff the file access is to a spooled device.

This is the spooled device flag. If set then the file
access is to a spooled device.

This field is a combination of the spooled device flag
and the input/output mode of the spooled device. Legal
values are:

00 - not spooled

01 - illegal

10 - input spooling
11 - output spooling

This is the record size, in bytes, of +the spooled
device. Applicable iff the file access is to a spooled
device.

This is the device type (from the LDT) of the spooled
device. Applicable iff the file access is to a spooled
device.

This cell contains the spooled device type and record
size, which are described separately.

This is the logical device number of the spooled
device. Applicable iff the file access is to a spooled

6-30

ACBSPXDDX

ACBSTATUS

ACBSTOPCHAR

ACBSTREAM

ACBSUBCL

device.

This is the index into the IDD or ODD for a spoolfile.
Applicable iff the file access is to either a spooled
device or a spoolfile.

This is +the 1last I/0 status for the file. It comes
from the I/0 status part of the IOCB returned by
ATTACHIO. Not all ATTACHIO calls update this cell.

This is the record termination character used for
terminal reads. This character can be changed via
FCONTROL(25) .

This bit signifies inter-block garbage for disc files.
If set, the block size is a multiple of 128 words and
therefore there is no garbage data between blocks.
This fact is used to improve multi-record I/0 by
mapping the request into as few ATTACHIOs as possible.

This is the sub-class part of the device type number.
The sub-class is unique for each access class. The
following are the 1legal sub-class values for each
device class:

0 - direct

0 - moving head disc

1 - fixed head disc

T - foreign disc
1 - serial input

0 - card reader

1 - paper tape reader
2 - parallel input/output

0 - terminal

4 - card reader/punch

6 - SSLC

7 - programmable controller
3 - serial input/output

0 - mag tape

T - serial dise
4 - serial output

0 - line printer
- card punch
- paper tape punch
CALCOMP 500 plotter
- CALCOMP 600 plotter
- CALCOMP T0O plotter

VWD
1

ACBTAPEDISP This number is used to keep track of the difference or dis-

placement between the physical and logical tape locations.

The

tape could be mispositioned due to pre-reads and this variable

is used to properly backspace the tape before an FWRITE,
FSPACE, FCONTROL(6) or FCLOSE(DISP=3).

6-31

ACBTAPEERRCR

ACBTBLOCK

ACBTLOG

ACBVDADDR

ACBXMITCRLF

This bit controls the reporting of recovered mag tape
errors. If not set the recovered errors are not
reported to the user; if set then recovered errors are
reported to the user by returning CCL and error number
39. Valid iff the file is a mag tape file. This bit
is adjusted by FSETMODE.

This bit controls block mode transfers on the 2644 page
mode terminal. This bit is adjusted by FCONTROL(28) and
FCONTROL (29) .

This is the last I/0 transmission log for the file. It
comes from the I/O transmission log part of the IOCB
returned by ATTACHIO. Not all ATTACHIO calls update
this cell.

This is the volume table index for the file.
Applicable iff the file is a disc file.

This bit controls CR and LF insertion into the user

buffer on the 2644 page mode terminal. This bit is
adjusted by FCONTROL(30) and FCONTROL(31).

6-32

If present, the PACB buffering extension contains from one to sixteen
block buffers each having the following format:

0 7 10 11 12 13 14 15

- D - A S e e e = e o = e - e = - - -

| I0Q entry index | 0 BLKIOQX

| | Ul RID|W|M|P| 1 BLKFLAGW
I

| IOCB - Status | 2 BLKLSTAT

| === m e e |

| IOCB - Transmission log | 3 BLKTLOG
S |

| | 4 BLKBLOCK

| Block number |

I | 5

| == |

| Block log. device no.| | 6 BLKDADDR
|-mmmmmmmmmnemmneeea |

| Block sector number i 7

| = |

| | 8 BLKEXTBASE
| Block Extent Base |

| | 9

| == |

] Block Extent Size | 10 BLKEXTSIZE
| = e |

| Not Used | 11

12 BLKBUFFER

! |
| |
I |
| Buffer i
| I
| |
| |

Other identifiers used:
BLKIOCB = BLKDBL(1)#, 10CB
(BLKLDEV) = BLK(6).(0:8)#, block logical device number
BLKFLAGS = BLK(1).(8:8)#, ©block I/0 flags
BLKUNALLOCEXT = BLK(1).(10:1)#, block from un-allocated extent
BLKREVERSE = BLK(1).(11:1)#, block for tape FREADBACKWARDS
BLKDONTWAIT = BLK(1).(12:1)#, 1I/0 status not checked.
BLKIOOUT = BLK(1).(13:1)#, last I/0 was write?
BLKDIRTY = BLK(1).(14:1)#, buffer modified?
BLKIOPEND = BLK(1).(15:1)#, I/0O in progress?
BLKIOCOMP = BLK(1).(14:2)#, 1I/O complete - not dirty

6-33

Discussion:

BLKBLOCK

BLKBUFFER

BLKDADDR

BLKDIRTY

BLKDONTWAIT

BLKEXTBASE

BLKEXTSIZE

BLKFLAGS

BLKIOCB

BLKIOCOMP

BLKIOOUT

BLKIOPEND

BLKIOQX

BLKLDEV

in the
-1D indicates that the buffer is

This is the block number of the data contained
buffer. A value of
empty.

If ACB buffering is used, this is the buffer location.
When system buffers were used, the buffer location was
given by BLKSYSBUFX and BLKSYSBUFDISP.

This is the block’s logical device and sector number.

This flag is set if the contents of the buffer has been
modified. When the block buffer is reused this flag is
checked to see if the block needs to be written to the
device.

This bit is on if the buffer’s I/0 was

completed and the

BLKIOQX and pending bits cleared, but the status of the I/0 was

not checked.
the bdit
block.

This is the sector address of the base of the extents in
the block resides. It is used for I/0 disk caching.

This is the size, in sectors, of the extent in which the
resides. Also used for I/0 disk caching.
with

These are the miscellaneous flags associated

block, which are described separately.

This is the IOCB returned by the I/0 system when the
block I/0 has completed. On a blocked I/0 request this
is obtained from the ATTACHIO call; on an unblocked I/O
request this is obtained from WAITFORIO.

This is the buffer modified flag (BLKDIRTY) and the I/O
in progress flag (BLKIOPEND), which are described
separately. This field is usually interrogated to see
if it contains the value 2, which means that the buffer
has been modified but not yet written to the device.

This is the mode of the I/0 operation for the block.
It is set by a write and cleared by a read.

This is the I/0 in progress flag. It is set if the I/O
is pending; it is cleared when the I/0 has completed.

This is the IOQ index of the unblocked I/O request for
the block. It 1is used as the argument to WAITFORIO,
which insures the completion of the I/0 request.

This is the logical device number of the block.

6-34

This is done to free valuable DRQ entries.
is on, then BLKLSTAT must be checked before using the

If

which

block

the

BLKLSTAT The I/0 status part of the IOCB consists of the PCB
number and the error code for the completed I/0
request.

BLKREVERSE This bit is not currently used but has been reserved |
FREADBACKWARDS (reading a tape backwards) to a buffered fil
which is not currently supported.

BLEKTLOG The transmission log part of the IOCB is the number of
words or bytes transferred by the the I/0 request.

BLKUNALLOCEXT This bit is on if the block in this buffer was read from
unallocated extent. In this case, the extent was not allocai
and the buffer was simply flushed with fill characters. 1
block must be allocated before writing to i

6-35

3.2.7 File Control Block (FCB)

P e e e e

The FCB coordinates access to a file on a sharable device. At present
the only sharable device is a disc, so only disc files have FCBs.

The information contained in an FCB is derived from the file label. The
FCB is used to hold this information, rather than the file label, since
it can be accessed more quickly.

The FCB can be contained in a stack when first created. If another
process opens the file, the FCB will be moved to a system data segment
(which will be created if it doesn’t already exist) so that the first
process’ entire stack need not be present when the second process is
dealing with the file. The number of a data segment containing a 1list
of numbers of shared file system data segments is kept in system global
location 1076 octal. The size of the FCB depends on the maximum number
of extents specified at FOPEN; there are 44 (octal) words plus two per
extent. There will be at least one extent, since the file label always
exists in the first extent. The FCB extent map is in terms of logical
device and sector number. The extent map in the file label is in terms
of volume rather than logical device; the map is converted by VTABTOLDEV
when the label is read, and converted back by LDEVIOVTAB when the label
is written to disk.

The FCB has the following format:

0 1 2 3 7 8 12 13 1% 15

o 1 | Complete FCB size | o
T |

1 New FCB vector | 1 FCBNEWFCBV
e |

2 | FOPTIONS | 2 FCBFOP-
[== m e e e | TIONS

3| Device specification | 3 FCBDEVICE
RS shtaan |

Y4 | Prev. lock| Dev. type | C | |Device subtype | U4
S R |

5 | No. opens for output | No. opens for any mode | 5
R b hane st |

6 | Creator ACB vector | 6 FCBACB
T |

7 1 RIN number | T FCBRIN
o |

8 | Exclusive status | 10 FCBEXC-
e | STAT

9 | Private volume information | 11 FCBPVINFO
s |

10 | | 12 FCBFLIM
| File limit |

11 | | 13

12
13
14
15
16
17
18
19
20
21
22
23
2k
25
26
27
28
29
30
31
32
33
34
35
36
37

Reserved for IMAGE

- - = - = - - = = " o = s = - - v = = = = = - = e = = -

Group name - 1lst char | Group name - 2nd char.
‘Group name - 3rd char. | Group name - Mth char.
‘Group name - 5th char. | Group name - 6th char.
‘Group name - 7th cher. | Group name - 8th char.
" Acct name - 1st char. | Acct name - 2nd char.
" Acct mame - 3rd char. | Acct name - Mth char.
" Acct name - 5th char. | Acct name - 6th char.
" hcct name - Tth char. | Acct name - 8th char.

e e e e e e e e

- - = - - - " e = = = e e e e e Sm e e W e -

6-37

14
15
16
17
20
21
22
23
2y
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
4y
5

FCBIMAGE

FCBEOF

FCBUSERLBL

FCBEXTSIZE

FCBLAST-
EXTSIZE

FCBEGN

FCBAN

FCBSTART

FCBEND

FCBNUM-

OPENCLSREC

FCBEXTMAP

Other identifiers used:

FCBSIZE = FCB. (2:14)#, size in words

FCBLKST = FCB(4).(0:2)#, previous lock state
FCBDTYPE = FCB(Y4).(2:6)#, device type

FCBCRUNCH = FCB(k4).(8:1)#, pending crunch disposition
FCBSUBTYPE = FCB(4).(12:4)#, device subtype
FCBOCNTOUT = FCB(5).(0:8)#, no. accessors - output
FCBOCNT = FCB(5).(8:8)#, no. accessors
FCBLBLEOF = FCB(16).(0:8)#, no. labels written
FCBLBL = FCB(16).(8:8)#, no. labels available
FCBBLKFACT = FCB(18).(0:8)#, bYblocking factor
FCBSECTPBLK = FCB(18).(8:8)#, sectors per block
FCBSECTOFF = FCB(19).(0:8)#, sector offset to data
FCBDISP = FCB(19).(8:3)#, pending disposition
FCBNUMEXTS = FCB(19).(11:5)#, no. extents less 1
FCBOCNTIN = FCB(21).(8:8)#, no. acccessors - input
FCBLABEL = FCBDBL(18)#, label LDEV and sector
FCBLDEV = FCB(36).(0:8)#, label LDEV

Discussion:

FCBACB This is the vector of the ACB that was created at the
same time as the FCB. This is used in conjunction with
FCBNEWFCBV when relocating the FCB.

FCBAN This is the account name of the file. It is eight
bytes in length with trailing blanks added.

FCBBLKFACT This is the blocking factor of the file. It is the
number of logical records in a physical block. Legal
values range from 1 to 255.

FCBDEVICE This specifies the device on which the file resides.
If it is positive then it represents a logical device
number; if negative it represents a (negative) device
class index.

FCBDISP This is the pending FCLOSE disposition for the file.
Legal values are:

0 - no change

1 - save permanent

2 - save temporary and rewind

3 - save temporary but do not rewind
4 - release

6-38

FCBCRUNCH

FCBDTYPE

FCBEND

FCBECOF

FCBEXCLSTAT

FCBEXTMAP

FCBEXTSIZE

FCBFLIM

FCBFOPTIONS

FCBGN

FCBLABEL

FCBLASTEXTSIZE

7 - invalid file (file label access error)

This bit governs if space will be returned beyond the EOF uj

the last FCLOSE of the file.

0 - no change
1 - return space beyond EOF

This is the device type number of the first extent of
the file. See ACBDTYPE for a 1ist of legal values.

Block number of the file’s EOF, relative to FCBSTART.

This is the end-of-file pointer for the file. It is a
double integer representing the number of records in
the file. It can also be viewed as the record number
of the next record past EOF.

If -1
otherwise

This is the exclusive status of the file access.
then the file is being accessed exclusively;
it is the number of semi-exclusive accessors.

This 1is the
extents is
descriptor
allocated.

extent map of the file. The number of
specified by FCBNUMEXTS; a OD extent
indicates that the extent has not been

This is the extent size, in sectors, of the file. All
extents in the file except possibly the last have this
size. This is a logical value, and legal values range
from 1 to 65535 sectors. This restricts the maximum
file size to 2097120 sectors (268,431,360 words).

This is the end-of-space pointer for the file. It is a
double word integer representing the maximum number of

records (fixed length record format) or blocks
(undefined or variable length record format) in the
file.

This is the FOPTIONS in effect for the file.

This is the group name of the file.
long with trailing blanks added.

It is eight ©bytes

sector number of the
same as the first extent

This is the logical device and
file label, which is the
descriptor.

This is the size, in sectors, of the last extent in the
file. If the file has one extent then this is the same
as FCBEXTSIZE; otherwise this value may be different
from FCBEXTSIZE. This is the size of the last physical
extent for the file; it is not the size of the last
allocated extent.

6-39

FCBLBL

FCBLBLEOF

FCBLDEV

FCBLKST

FCENEWFCBV

FCBNUMEXTS

FCBNUMOPENCLSREC

FCBOCNT

FCBOCNTIN

FCBOCNTOUT

FCBRIN

FCBSECTOFF

This 1is the number of user labels allocated for the
file. Since each label is a sector long, this is also
the number of sectors allocated for user labels.

This 1is the end-of-data pointer for the user labels.
It is analogous to FCBEOF in that it represents the
number of labels written. The initial value is 0.

This is the logical device number of the first extent
of the file.

This is the previous lock state of the file and is
derived from the file label. Legal values are:

0 - no accessors
1l - read

2 - write

3 - read/write

This is the vector of the new FCB for the file. It is
used in conjunction with FCBACB to move the FCB to a
system (shared FCB) control block table when the second
accessor is established. If +this value is zero then
there is no new FCB; if non-zero then a new FCB has
been created.

This is the maximum number of extents, 1less one,
allowed for the file. It is not the number of extents
presently allocated, which is always determined by
counting non-zero entries in the extent map.

Number of open and close records in the message file.

This is the number of accessors for the file.
Alternatively it can be viewed as the number of PACBs
created for the file.

This is the number of file accessors having input
access.

This is +the number of file accessors having output
access.

This is the RIN number used to support dynamic locking
(i.e. FLOCK and FUNLOCK) for the file. If there is no
dynamic locking then this number is zero.

This is the sector offset from the file 1label to the
first block of the file. This is not necessarily equal
to FCBLBL+1 since an integral number of blocks are
allocated for the file and user labels.

6-40

FCBSECTPBLK

FCBSIZE

FCBSTART

FCBSUBTYPE

FCBUSERLBL

This is the number of sectors in a block for the file.

This 1is the size, in words, of the complete FCB. It
includes the extent map.

Block number of the file’s start, excluding the file
label block.

This is the device sub-type number of the first extent.

This field describes the user labels for the file. It
consists of FCBLBL and FCBLBLEOF, described separately.

6-41

3.3 File Label (FLAB)

0 1 2 3 T 8 12 13 1Yy 15
T
P WA
R T
e R
e R
| Grou mame — 3ea cham. | Grons svme - wn charn |
| crou mame 5tn e | Group nume. - 6vn e |
| Groum mame 1o char 1 Grouy wame - 8tn emare |
et e e e heer e o |
P
| hct e~ oeh char. 1 aect mame - 6n enar. |
P

| Lockword - 1st char | Lockword - 2nd char |
I R VA
e o e et e o
o e e s o el

N v W

10
11
12
13
1y
15
16
17
20
21
22
23
24
25

FLLOCNAME

FLGRPNAME

FLACCTNAME

FLUSERID

FLLOCKWORD

FLSECMX

Creation date

B e R e L T
L L L N e

B e e e e e e R N e e e

6-43

27
30
31
32
33
34
35
36
37
Lo
b1
42
43
4y
45

47
50
51
52
53
54
55

FLCREATE

FLLASTACC

FLLASTMOD

FLFILECODE

FLFCBVECT

FLLOCK

FLUSERLBL

FLFLIM

FLCHECKSUM

FLCLID

FLFOPTIONS

FLRECSIZE

FLBLKSIZE

FLLASTEXT-
SIZE
FLEXTSIZE

FLEOF

FLEXTMAP

| |154 FLALLOCTIME
| File allocation time |
| |155

| == e |
]156 FLALLOCDATE

| | 160 FLSTART
| Start of file block number |

| | 161

| === |

| | 162 FLEND

| Block number of end of file |

| | 163

164 FLNUMOPENCLSREC

| | 165
[ommmssmmmamons e oo |

| Device name - 1lst char. | Device name - 2nd char. |[1T4 FLDEVNAME
St s |

| Device name - 3rd char. | Device name - 4th char. |175

R b DL DL L L L L L DD DDy |

| Device name - S5th char. | Device name - 6th char. |176

[St e |

| Device name - 7th char. | Device name - 8th char. |177

Other identifiers used:

FLSECURE = FLAB(22).(15:1)#, file secure bit
(FLSRRELEASE)= FLAB(22).(14:1)#, STORE/RESTORE released bit
(FLSTORE) = FLAB(28).(0:1)#, file being stored
FLRESTORE = FLAB(28).(1:1)#, file being restored
(FLLOAD) = FLAB(28).(2:1)#, file loaded

FLEXCL = FLAB(28).(3:1)#, exclusive access

FLSR = FLAB(28).(0:2)#, S & R bits

FLSRL = FLAB(28).(0:3)#, S, R, & L bits
(FLSRLX) = FLAB(28).(0:4)#, S, R, L, & X bits
FLSUBTYPE = FLAB(28).(L4:4)#, device sub-type
FLDTYPE = FLAB(28).(8:6)#, device type

FLSTATUS = FLAB(28).(14:2)#, write/read status
(FLLBLEOF) = FLAB(29).(0:8)#, no. labels written
(FLLBL) = FLAB(29).(8:8)#, no. labels available
FLSECTOFF = FLAB(39).(0:8)#, sector offset to data
FLNUMEXTS = FLAB(39).(11:5)#, no. extents less 1
FLLABEL = FLABDBL(22)#, label VTAB and sector
FLVTAB = FLAB(4Y4).(0:8)#, label VTAB index

6-

LYy

Discussion:

FLACCTNAME

FLALLOCDATE

FLALLOCTIME

FLBLKSIZE

FLCHECKSUM

FLCLID

FLCREATE

FLDEVNAME

FLDTYPE

FLEXTMAP

This is the account name of the file. It is eight
bytes in length with trailing blanks added.

Date that the file was allocated on this system.

Doubleword containing the time <that the file was
allocated on this system.

This is the block size, in sectors, of the file.

This 1is +the exclusive-OR checksum of the file label
(excluding words 34, 42, and U3 octal) and is used for
error detection. Each time the file label is read from
disc the check sum is calculated and compared against
the value recorded in the file label. Similarly, each
time the file label is written to the disc the check
sum is calculated and inserted into the file label.

This is the cold load number in effect the last time
that the file was accessed. This should always be the
current cold load number. If it is not it means that
the system crashed while the file was open and that the
data in the file label should be "reset" (principally
the FCB vector FLFCBVECT).

This is the creation date of the file. It is in the
format defined by the intrinsic CALENDAR.

This is the FOPEN device specification that was used
when the file was created. This information is needed
when new extents are allocated.

This is the device type number of the first extent of
the file; see ACBDTYPE for a 1list of legal values.
This value is determined by configuration.

Number of current data blocks (that is, the end of file
block number relative to the start of file).

This 1is the end-of-file pointer for the file. It is a

Anssthl A et +4 .
double word integer representing the number of records

in the file. It can alsc be viewed as the record
number of the next record past EOF.

m. < <
This is the ile. f

<

1 <
it means that the file has been opened exclusiwv
single accessor. If not set then the file is
potentially accessible by others.

This 1is the extent map of the file. The number of
extents is specified by FLNUMEXTS; a 0D extent
descriptor indicates that the extent has not been
allocated.

6-U5

FLEXTSIZE

FLFCBVECT

FLFILECODE

FLFLIM

FLFOPTIONS

FLGRPNAME

FLLABEL

FLLASTACC

This is the extent size, in sectors, of the file. All
extents in the file, except the last, have this extent
size. This is a logical value, and legal values range
from 1 to 65535 sectors. This limits the maximum file
size to 2097120 sectors.

If non-zero, this is the vector of +the FCB for the
file. If zero, the file is not being accessed.

This is the file code of the file. Known values are:

-401 IMAGE data set

-400 IMAGE root file

1024 USL file

1025 BASIC data file

1026 BASIC program file
1027 BASIC fast program file

1028 RL file

1029 Program file

1030 STAR file

1031 SL file

1040 Cross Loader ASCII file (SAVE)
1041 Cross Loader relocatable binary file
1042 Cross Loader ASCII file (DISPLAY)
1050 EDITOR KEEPQ file (non-COBOL)
1051 EDITOR KEEPQ file (COBOL)

1060 RJE punch file

1069 RSAM (Bob Strand’s ISAM) file
1070 QUERY procedure file

1071 QUERY work file

1072 QUERY work file

1080 KSAM key file

1081

to Reserved for KSAM

1089

8000

to Reserved for APL

8099

This is the end-of-space pointer for the file. It is a
double integer representing the maximum number of
records (fixed length record format) or blocks
(undefined or variable length record format) in the
file.

This is the FOPTIONS of the file.

This is the group name of the file. It is eight bytes
long with trailing blanks added.

This is the volume table index and sector number of the
file 1label, which is the same as the first extent
descriptor.

This is the last access date of the file. It is in the
format defined by the intrinsic CALENDAR.

6-46

FLLASTMOD

FLLASTEXTSIZE

FLLBL

FLLBLEOF

FLLOAD

FLLOCK

FLLOCKWORD

FLLOCNAME

FLNUMEXTS

FLNUMOPENCLSREC

FLSECMX

This is the last modification date of the file. It is
in the format defined by the intrinsic CALENDAR.

This is the size, in sectors, of the last extent in the
file. If the file has one extent then this is the same
as FLEXTSIZE; if the file has more than one extent then
this value may be different from FLEXTSIZE. This is
the size of the last physical extent for the file; it
is not the size of the last allocated extent.

This is the number of user labels allccated for the
file. Since each label is a sector long, this is also
the number of sectors allocated for user labels.

This is the end-of-data pointer for the user labels.
It is analogous to FLEOF in that it represents the
number of labels written.

This is the LOADED flag for the file. If set it means
that the file is a loaded program or SL file and cannot
be modified except by a privileged accessor. This flag
is set and cleared by the loader, not the file system.

This identifies the word containing the lock bits,
which are described separately.

This is the lock word of the file. It is eight bytes
long with trailing blanks added. If it is all blanks
then the file does not have a lockword.

This is the local name of the file. It is eight bytes
long with trailing blanks added.

This is +the number of extents, less one, allowed for
the file. It is not the number of extents allocated.
Legal values range from 0 to 31, i. e., 1 to 32
extents.

Number of open and close records in the message file.

This is the record size of the file in negative bytes.
This is the RESTORE flag for the file. If set it means
that the file is being RESTOREd and cannot be accessed.
RESTORE also sets the STORE bit for the file (FLSTORE);
see FLSR for a full description of the use of these
bits. This flag is set and cleared by STORE/RESTORE,
not the file system.

This is the security matrix of the file.

The bits are organized into five groups of six bits
each. (Bits 0:2 are not used.) The groups correspond
to the access types: READ, APPEND, WRITE, LOCK, and
EXECUTE. Within each group, each bit specifies who
may have the access: ANY, ACCOUNT MGR, ACCOUNT LIB-

6-47

FLSECTOFF

FLSECURE

FLSR

FLSRL

FLSRLX

FLSRRELEASE

FLSTART

FLSTATUS

RARIAN, GROUP, GROUP LIBRARIAN, CREATOR.

This is the sector offset from the file label to the
first block of the file. This is not necessarily equal
to FLLBL+1 since an integral number of blocks are
allocated for the file and user labels.

This is the file security enforcement flag for the
file. If not set then the file has been RELEASEd and
the security matrix FLSECMX should be ignored. If set
then secured as specified by the security matrix.

This is the STORE and RESTORE flags for the file, which
are described separately. STORE and RESTORE decode the
two-bit field to indicate their operation. Legal
values are:

- file not in use by either STORE or RESTORE
- illegal value

- file being STOREd

- file being RESTOREQ

W ko

The file system interprets the leftmost bit as
indicating that the file is being accessed by either
STORE or RESTORE. The rightmost bit is interpreted as
indicating what access should be permitted: 0 (file
being STOREd) allows read access; 1 (file being
RESTOREd) allows no access. This field is set and
reset by STORE/RESTORE, not the file system.

This is the STORE, RESTORE and LOADED flags for the
file, which are described separately.

This is the STORE, RESTORE, LOADED and exclusive flags
for the file, which are described separately.

This flag is used by STORE/RESTORE. If a file is
STOREd with the ";RELEASE" keyword, STORE will set this
flag in the tape copy of the file label. RESTORE will
allow any user to access such files, regardless of the
file’s normal security. If this bit is off in the tape
copy of the file label, RESTORE applies normal security
checks (as defined by the information in FLSECMX and
FLSECURE). This bit is zero for files on disc.

Block number of the file’s start, excluding the file
label block.

This is the read/write status of the file. Legal
values are:

-~ no accessors
- read

- write
read/urite

WMo

6-48

FLSTORE

FLSUBTYPE

FLUSERID

FLUSERLBL

FLVTAB

This is the STORE/RESTORE flag for the file. If set it
means that the file is being either STOREd or RESTOREd.
The RESTORE bit (FLRESTORE) must be interrogated to
determine which operation is taking place; see FLSR for
a full description of the use of these bits. This flag
is set and cleared by STORE/RESTORE, not the file
system.

This 1is the device sub-type number of the first extent
of the file. This value is determined by
configuration.

This is the creating wuser name of the file. It is
eight bytes long with trailing blanks added.

This field describes the user labels of the file. It
consists of FLLBL and FLLBLEOF, which are described
separately.

This is the volume table index of the first extent of
the file.

3.4 File Multi-Access Vector Table (FMAVT) DST(%54)

The FMAVT is used to locate shared PACB’s for files opened multi-access. Whe
an o0ld disc file has been opened multi-access, the FMAVT is searched to deter
mine if the file has previously been opened. The JITDST and the DADDR found i
the FMAVT are compared to the JITDST of the job and the DADDR of the device o
disc file being opened multi-access. If an entry exists for the file, than th
PACB can be easily located for that file. If this is the first process openin
the file than an entry is created and inserted into the FMAVT for the file.

Spoolfiles are opened multi-access, therefore, they will have entries in th

FMAVT. $STDIN and $STDLIST also have entries in the FMAVT since they too ar
opened multi-access.

Zero Entry Format

| Current Table Size | 0 FM’CURR’SIZE
A Entry Size = & T —
. Maximm Table Size P —
T o T 3

Descriptions:

FM’CURR’SIZE The current size of the FMAVT in words. This value increases i1
increments of %200 words until FM’MAX’SIZE is reached.

FM’MAX’SIZE The maximum allowable size in words that the FM’CURR’SIZE can get.
The current value of this is %4000. FM’MAX’SIZE can be changec
only by changing the code in Initial. The FOPEN fails when the
maximum is reached.

FM’ENTRY’SIZE Size in words of an FMAVT entry, 4 words at present.

6-50

Typical Entry Format

o 1 2 3 6 7 8 12 13 14 15
l11G|D| l JIT DST | o
... |
i Logical Device | | 1 FM’DADDR
| - mmmm oo |
| Disk Address | 2
| o m oo |
| PACB Vector | 3 FM’PACBV

FM’DEVICE = FMAVT(0).(2:1)#, Device bit

FM’GLOBAL = FMAVT(0).(1:1)#, Global multi-access bit

FM’JITDST = FMAVT(0).(6:10)#, JIT DST number of job opening file

FM’LDEV = FM’DADDR(0).(0:8)#, Logical device number of file

Descriptions:

FM’DADDR The disc address of the file label for disc files. For devic
files, the disc address is zero.

FM’DEVICE This bit is 1 for device files and O for disc files.

FM’LDEV Locical device number of device files or the LDEV of the disc con:
taining the file label for disc files.

FM’JITDST The DST number of the JIT for the job that has the file open. I
this field is non-zerc, than only processes in the family tree o:
this particular job can open the file. This field is zero if th«
file was open global multi-access.

FM’GLOBAL This bit is 1 if the file was opened global multiaccess, this al:
lows multi-access to the file between jobs.

FM’PACBV The PACB vector for this multi-access file. Used to easily finc

the Physcial Access Control Block for files opened multi-access.

6-51

3.5 System Global Area (SYSGLOB)

The file system uses several words in the system global area for its own
use.

SHFCBDST = SYSDB+%T6, shared FCB DST no.

MONITOR = SYSDB+%TT, monitoring flag word
MAXSSECT = SYSDB+%100, max # spoolfile sectors
NUMSSECT = SYSDB+%102, current # spoolfile sectors
EXTSSECT = SYSDB+%104, # sectors/spoolfile extent
SPOOLINDEX = SYSDB+%132, class spool index

CSIOWAIT = SYSDB+%135, CSIOWAIT PLABEL
CCLOSEPLABL = SYSDB+%140, CS CCLOSE PLABEL - FPROCTERM
DSCHKPLABL = SYSDB+%335, DSCHECK PLABEL

DSOPENPLABL = SYSDB+%336, DSOPEN PLABEL

DSCLOSEPLABL = SYSDB+%337, DSCLOSE PLABEL
SDSLDEVLABEL = SYSDB+%323, PLABEL for SDSLDEV
MANWCPLABL = SYSDB+%340; MANAGEWRITECONV PLABEL

6-52

3.6 SIRs, Locks, and Deadlocks

The file system uses two SIRs: the File SIR, which is intended to
protect file label integrity, and the FMAVT SIR, which is to guarantee
the integrity of +the FMAVT. Since the file system locks these
resources, and also locks control blocks, deadlocks can occur if locking
is done in +the wrong order. Not only must the file system handle
locking correctly, but the entire ensemble of the file system, its
callers, and its callees must do so also. These include KSAM, which has
a SIR of its own, and SYSDUMP and STORE, which lock the File SIR because
they tweak bits in file labels. The presently accepted order is:

Get FMAVT SIR
Lock ACB

Get File SIR
Lock FCB

It may not be necessary to do all of these things in any particular
procedure. In modifying a procedure, you should be sure that any of
these locks which you change are consistent not only within your owmn
code, but also with its callers and callees.

6-53/6-54

T.1

7.2

CHAPTER T PROCESS TABLES

Introduction

The operating system maintains state, control, and accounting information
on each process. The data structures for this purpose are the process col
trol block table (PCB; core resident, 1 entry per process) and the proces
control block extension (PCBX; contained in the process’ stack below DL).
Process related information which must be accessible even when the proces
stack is not present in main memory is maintained in the process’ PCB
entry. All other process related information is maintained in the proces:
PCBX.

A process is identified in the system by its PCB entry number, referred t
as its PIN (process identification number), or by its PCBPT=(PIN)*(PCB
entry size).

The structure of the PCB table, PCB entry format, PCBX structure, and PCB
format are specified in this chapter.

Process Control Block Table Structure and Format
7.2.1 Fixed Cells Related to PCB

3 Absolute address of base of PCB table
4 Absolute address of current process’ PCB entry
%1003 Sysbase relative address ov PCB table base
%1271 Sysbase relative address of head of dispatching queue’s PCB
entry
%1272 Sysbase relative address of tail of dispatching queue’s PCB
entry

7-1

T.2.2 PCB Entry 0 Format

] 1 1] 1 1] 1 | 1]) 1 1 1] [
]] 1 - | 1 1] 1]] 1] ' [1
] [1] 1] 1 1] | 1] 1]]] 1
! 1 1] 1] 1 1] | 1)] 1] 1 I
]] 1] 1 s]] ' 1 1] 1 1 1 1 1
1 1 1 1]] 1 |] 1 1]] 1 1 1]
1 1 1]]] 1 1 [I [1 1 [1 1]
| |] 1]] 1] i 1 1 1 | 1 1 1]
)]] 1]] 1 1 ¥ 1] 1]]]])
] 1 1 1] 1 1] §] i 1 1]] 1 '
1 1 | 1 U]] 1 t 1] 1] ! | ' i
1 1 1 o]] 1 [l 1 i 1 1 1] 1 1
1] 1 (B I i ' 1 I 1] 1 1 1 1 1 1
1] 1] 1 1 1 1 1 1] 1] |]] [
1Mo .S.M. 1 i 1 1]] 1 1 1 1 ' 1
1L~ [} 1 1 [1 1]]] 1 1 1 1 |
T H 1O 141 1 ' 1 |] 1 1] 1 1 1 1]
] [YI 1 1] 1 1 1] 1] 1 1] 1)
1 .%_M_T. [}] 1 t] 1 1 1 |] 1 t
] 1~ 1 1] 1 1 i] 1]] 1] ' 1
] 1 | [1 1 1 |]] 1]]]] 1
1] 1 1ot 1) 1 t 1 1 1 1 1 1 1 1
.D.m_ [-] 1 | 1 I] i 1 1 1 1 1 1
1 t U) 1O 1 0101 010 I1IO0OI QIO IO1ITOI1O 1 O
] [1O]] 1 | 1 1 I 1] 1] 1
] [5 I POt 1] i ']] 1 1] 1 ']
(IR & 2 B I I I ' I) 1 |] 1] 1 1 1]]
1= [N | I 1] 1]] 1]] 1] 1
_M_Y.M_E. 1] 1 1 1]] 1] 1] 1
I 1 1 1] I 1 1 1 1 1]]] 1] 1
1O] _m.] 1 1 1] 1 1] 1 1] 1
[& 1 1 H 1 1 1 1 1 1 1 [l 1] 1 1
| (S 1 | 1 1] 1 1 1 1 1 1 1] 1
] 1 ! 1] 1 1] 1 1 i 1 1 1 1 1 1
w __W_W_ 1 1 I 1] 1 1 |]]] 1
]) 1 T I 1)] 1] 1 1 1 1]]]
["W .#.M. 1]] 1 1 1 1 1 1] [i
]]] 1] 1] 1 1] 1 1] i 1 1 1
['] 13 1] | ' 1 1 1 ! 1 1 1 1
| 1] 1 | 1]] 1] 1 1 | ! 1 1 [
1 1 | _m. 1]]]]] | 1 1 1] 1
1 1 1 i]] | 1 1] 1]]] 1] 1
1 1 1 1 [1]] 1 i 1 1]] 1 1 1
1] 1 [1 1 1] 1 1 1] i 1 1]
\] 1]] i 1]] 1 1 1] 1 1 1 1
1] 1 |] 1]]] } 1]]]] 1 \
[] 1 VO |]] ' 1 1] [} t '] 1
o Lo N [20 TP o n W0 ~ o)

7-2

T.2.3 Unassigned PCB Entry Format

%100000

0
1
2
3
4
>
6
7
8
9

7-3

[

7.2.3 Assigned PCB Entry Format
01 2 3 45 6 7 8 9101112131415
l-=1-=1-=1-=1-=1-=1-=-=]--]-=|-=]--1--|--]--]--]
PCBOO|S |IBIC |[H|P |[H|I [P DL |S|T |U |H |S [R |
|[AJF IRISII S|P |C IS W IW IR IS |I |T |I |
| W |E |P JO |T |
I
I

IR 1 [T |1 lofpP |E| O |
I 1 ITIRIVIRIX] [F] | | [DIR]|VIB
L IRIT e It | | 1QIT | K

PCBO1| SYSBASE RELATIVE ADDRESS OF PROCESS® SEGMENT |
[LOCALITY LIST |

(A | | I
D | XDS DST# | RESERVED I
PCBO2|B | | I
| ===mmmm e e {
| Al | S| I
PCBO3| O] STK DST# | C|RESERVED |

b b1 Bl L ul gl T M sl | Il s|TlM
PcBO4| M| R| R| M| 1| I| Cc| N| I| s| o|FA| M| I| I| E|
| | Gl Ll A] ol ol P| K| M| G| N| | P| R| M| M|

PCBOS | FATHER’S PIN | SON’S PIN |
| === e |
PCBO6| NEXT BROTHER’S PIN | BLKIDX
| ===mmm e I
PCBOT| PIMP PIN | BPTLINK |
[=======mmm e I
I W | | DI | I
PCBO8 | Is | | EIF | I
| PSIM |0 | oA | AlA | NIMPPIN |
| |F | | D|C | |
: T | 1| !
PCBO9|L | BMS | PPC |S | PTYPE |S |HK|SK|ST|HB|CY|BK|
|1 | o | T . I
:v I v I | I I :
PCB10| EVENT FLAGS [ws|
[====mmmmmmm e I
PCB11| SEGIDENTIFIER OF LAST REF. SWAPPABLE SEGMENT |
[===mmmm e I
PCB12| CSTX BLOCK MAP INDEX |
[===mmmmmm e I
PCB13|D |IL |C |D |E |I |C |A | |
T 1) | | INJO IS | |
Ist | | | T IR |0 | PRIORITY [
el | | | |EIE|F | I
Rl I | | IRIRIT| I

RESABORTINFO

SLLPTIR

DBXDSINFO

STKINFO

WAKEMASK

FATHERSONINFO

| BROTHERINFO

PIMPINBREAKLINK

PIINFONIMPPIN

PROCSTATE

EVENTFLAGS
LASTREFSWAPSEG
PBX

QUEUEINGINFO

NQPTR

PQPTR

(RN —

Gom Gem Gms Gmn Gem Sum fum G G

o— tum G = bmm

PCBOO

PCBO1

PCBG2

PCBO3

PCBOY4

T7.2.4 PCB Assigned Entry Field Descriptions

.(0:1)
.(1:1)
.{2:1)
.(3:1)
.(4:1)
.(5:1)
.(6:1)
AT:1)
.(8:1)

.(9:1)

.(10:1)
.(11:1)
.(12:1)
.(13:1)
.(1h4:1)
(15:1)

.(0:16)
.{0:1)
.(1:10)
.{(11:4)
.{0:1)
.(1:10)
.(11:1)
.(12:3)
.(0:1)

.(1:1)
.(2:1)

ooooooo

SAR ==> scheduling attention required

Bounds Flag -- Priv mode bounds check

CRIT ==> process is critical

HSIR ==> process has a sir

PIOVR ==> pending PI, process critical

HSPRI ==> hold sir priority

IPEXP ==> incore protect expired

PC ==> prempt capability

DSOFT ==> Delayed soft int processing. A pending
soft int cannot be processed because of sir
or critical state. PSEUDOINT will be invoked
when these condition(s) go away.

LW ==> long wait

SW ==> short wait

TRW ==> terminal read wait

USEDQ ==> used a quantum since transaction began

HIPRI ==> hold impeded priority

STOVA ==> processing abort due to stack overflow.

RITBK

SLLPTR, SYSBASE relative index to process’ segment
locality list

ADB, set if db pointing to an absolute address
XDS, DST entry number of extra data seg. to which
DB is set; zero if none.

Reserved for expansion of DST entry number field

STOVRALL FLAG ==> stack overflow is already allocated
DST entry number of process’ stack

SC, set if executing system code

Reserved

M, mourning wait.

RG, global RIN wait.

RL, local RIN wait.

MA, mail wait.

BIO, blocked I/0 wait.

10, I/0 wait.

UCP, UCOP wait and RIT wait.

JNK, junk wait.

TIM, timer wait.

MSG, file system basic ipc message wait.
SON, son wait.

FA, father wait,

IMP, process waiting to be unimpeded.
SIR, process waiting for a sir.

TIM, process waiting for a time out.
MEM, process waiting for memory.

7-5

PCBO5

PCB06

PCBOT

PCBO8

PCBO09

.(0:8)
.(0:8)
.(8:8)

.(0:8)
.(8:8)

.(0:3)

.(3:1)
.(4:2)

.(6:1)
.(7:1)

.(8:8)

.{(0:1)
.(1:2)

.(3:2)

.(9:1)

.(10:1)
.(11:1)

FPIN, father’s PCB entry number
SPIN, son’s PCB entry number

BPIN, brother’s PCB entry number
BLKIDX (reserved)

PIMPPIN, previous impeded pin.
BPTLINK, breakpoint link for process.

PSIM, pseudo - interrupt mode

1: hard kill
2: soft kill
3: stop

4: hibernate
5: escape

6: break

7: normal

ASOFT, OK for soft int to wake process
even though it is waiting on another event.
OA

0: other source
1: father

2: son

3.

reply done on RIT wait

DEAD, set during expiration.

FAC, if set, the father is to be activated on process
termination.

NIMPPIN, next impeded process’ pin

LIVE, set if process is alive.
BMS, block mail, valid if MA set
0: sent to father
1l: rec from father
2: send to son
3: rec from son
PPC, process to process communication, set with
respect to son.
0: null
l: son to father
2: father to son
3: blocked
STOV, stack overflow bit
PTYPE, process type
0: wuser
1 user, son of main
2: user, main
3: user, main, task
4: system
5
6

¢ system, UCOP
T:

SI, set when the Dispatcher (and PSEUDOINT)

should be aware of a pending soft interrupt.

HK, hard kill pseudo interrupt

SK, soft kill pseudo interrupt

7-6

—

(12:1) ST, stop pseudo interrupt
) HB, hibernate pseudo interrupt
.(14:1) CY, control-y pseudo interrupt
1) BK, break pseudc interrupt

PCB10 .(0:15) [EVENTFLAGS, one for each wait class in PCBOk4
.(15:1) WS, wake up waiting switch set if an awake is
missing.

PCBii .(0:16) LASTREFSWAPSEG, segment identifier of last
referenced swappable code segment.

PCB12 .(0:16) PBX, CSTX block map index of process’ program.

PCB13 (QUEUEING INFO)

.(0:1) DISPQ ==> on dispatching queue

.(1:1) L scheduling class

.(2:1) C scheduling class

{3:1) D scheduling class

(h:1) E scheduling class

.(5:1) INTER ==> process is interactive

.(6:1) CORER ==> process is core resident

A(7:1) ASOFT, Allow soft interrupt. A value of 1
implies that user soft interrupts will be
processed. A zero value inhibits user soft
ints (they are queued). This bit is managed
by FINTSTATE and FINTEXIT intrinsics.

.(8:8) Process’ scheduling priority

PCB14 .(0:16) NQPTR, sysbase index of PCB entry of next process in schedul-
ing queue

PCB15 . {0:16) PQPTR, sysbase index of PCB entry of previos process i
scheduling queue

T-7

7.3 PCBX Structure and Format

7.3.1 PCBX General Structure

| PXFIXED EXPANSION AREA |

| BIT MAP - |
i (4 words) |
s ik S - |
| |
- PXFIXED EXPANSION -
| |
| |
[-mmmmmmmmmmmm e |
c--->| d-c = PXFILE LENGTH |
[-mmmmmmme e e |
| |
| |
. |
| |

| DL-¢ |
e AR |
| DL-b |
st CEEERRERE |
| DL-a |
| =mmm e |
DL-->| |
| |
R |
DB-->| |

|
|
|
I
|
|
_____________ I
I
| |
| |
| |
| |
PXFIXED |
| |
I |
! |
| i
| |
I |
|

PCBX

-------------- SIZE
|
| I
| I
I |
I |
PXFILE |
| |
| |
| |
| [
_____________ |
|
|
|
|
|
|
I

\/

- - - = - e

7.3.2 PXGLOB FORMAT

The PXGLOB portion of the pcbx is for job information, and contains the
same job related information for all processes belonging to the same jo

01 2 3 5 6 7 8 9101112 13 14 15
|-=1==]==]==l==]==]==]==]==] == == | ==] == | == | == | -~

I DL.-a=SEG. REL DL VALUE lO
A S ———— N
A vom s T l,
e R | actuR 308 THEU oW 3

| STACK DUMP FLAGS| JDT DST INDEX |5
| oo |
1//1 Rl TY | D| I| JIT DST INDEX |6
: JCUT INDEX I**I//I”***"I///////////: A
R = restart bit Stack Dump Flags
I = job in/list interactive Bit 0 = Armed
D = job in/list duplicative Bit 1 = Suppress traceback
TY = job type Bit 2 = Suppress ASCII
0 = undefined Bit 3 = Q-63 to S
1 = session Bit 4 = QINIT to S
2 = job Bit 5 = DL to QINIT
3 = task
* = reserved:

7.3.3 PXFIXED ASSIGNMENTS

The PXFIXED portion of the pcbx contains specific information and control

‘ information.
| === |
ol c-b PXFIXED SIZE |o
| oo oo |
1| RELATIVE S(S-DB) |1
| == oo |
2| RELATIVE Z(Z-DB) |2
| === oo |
3| INITIAL Q(Q-DB) [3
R CTGGICIEErD |
4] INITIAL RELATIVE DL (DB-DL) |4
=== | Trap Modes
5] GENERAL RESOURCE CAPABILITY(FROM PROG-FILE) |5 .MAT(12:1)-Arith.
R bl L e LI L L LI LI L | .MLT(13:1)-Library
6| RESERVED |MAT |MLT|MST|MCY|6 .MST(1k4:1)-System
e e | .MCY(15:1)-Ctl-Y
7ILINK TO XDS ENTRIES IN EXPANSION AREA| XDS CNT |7 (XDS CNT- 12:4)
I I BAPREN |
10| P| S| EXTRA DATA SEGMENT DST INDEX |8
| == m oo |
11| P| S| EXTRA DATA SEGMENT DST INDEX |9
e R R |
12| P| S| EXTRA DATA SEGMENT DST INDEX |10 / 0:1 RESERVED FOR
fmmmmm e e e [| CST EXPANSION
13| P| S| EXTRA DATA SEGMENT DST INDEX |11 | 1:1 = 1 IF ABORT
[mm e e | | IN PROGRESS
14| X| A| ABORT Y |[RW| INITIAL CST INDEX |12 < 7:1 = 0 IF HAVE R/W
=== mm e | | ACCESS TO
15| MAXIMUM STACK SIZE(MAXDATA LIMIT) j13 | PROG FILE
| == e | | = 1 OTHERWISE
16| ARITHMETIC TRAP MASK |14 | 8:8 = CST # OF SEG
e L L L e | | INITIALLYEXECUTED !
17| ARITHMETIC TRAP PLABEL |15 \ AT PROC CREATION
[==mmmr oo e I
20| LIBRARY TRAP PLABEL |16
| === mmmmmm oo e |
21| SYSTEM TRAP PLABEL 117
| === - e |
22| CONTROL Y PLABEL |18
[mmm e e | JOB TYPE:
| JOB | | 1=SESSION
23| TYPE | JOB# |19 2=JOB

25| USER ABORT PLABEL |21

R L e | U user udcs exist
26| |L | ¢c|///////////1A | LOAD PROCEDURE I.D. |22 L logging

R e et b L | A acct udes exist
2T7|CUR.MAX STACK SIZE(largest value ever for Z-DL)|23 C process shares clock

I e e T T | 1 => clock shared

PXFIXED (CONT.)

30| PROCESS CPU TIME

31! (MSEC)

Y i S
Y ——
Y e ————————————
e
e

hol SET TO-1 WHEN IN BREAK MODE*

Mi """ CONITHIE FLAS (:CONTINUE ComD)=
Y A e Az T
T mrmoR feven T
T v mmors
T INmRINSTe ERRORS
Y Ivmmovste s
W IvmmivsTe EmRoRs
I Ivmmvste mors
o) T Ivmivste mors T

\n
w
|
[771
=]
o
<
H-
=
ot
[«
[\
[
ot
e
g
o®
2]
e
s
0
o
ot
:
[2]
o
0
ot
=de
[}
=}
o2
[
B

60|/|D|/|0| RESERVED FOR FUTURE SOFT INT USE
i/ici/isi '

7-11

(reserved)

[/1Y1/11]

61] TRLX INDEX FOR KERNEL TIMEOUT PROCEDURE I h9
6ol T amacom: TeRMINATION TRAP PLADEL | 50
el T P -
Y P -
65l T P -
o] T ¥ siowen pise 1ere temmn T | s
6r 4 metoom pise 1/o's ST | 55
rol Ty onmtouiEs pise 1w warmEy on | 56
o + wmoes Gueswsmg -
Y Py it e -
) P -
T | 6o
. cmmov oy T | 61
B rsmmv T | 62
T smsmED pom pRsa T | 63
sl poasemam T | 6
sl pmecqmsroron T | 65
102= __ : 66
I PROCSTOPTIME I

103] | 67
NOTES: P = 1 1t opened by weiv wmer T |

P = 1 if opened by priv user
= 1 if data seg is sharable

PCLASSMASK = BIT MASK OF CLASSES THIS PROCESS HAS ENABLED

PROCQUESTOPWORD. (0:4) = PROCESS PRIORITY: T

.(4:12)= REASON STOPPED:

PROCSTOPTIME = DBL WORD TIMESTAMP OF WHE

7-12

1l
2
3
y
5
6
N

g
&

> C QUEUE

> D QUEUE

> E QUEUE

STOP SEG FAULT

STOP DISC WAIT

BLOCKED 1/0, NON TERMINAL
TERMINAL READ

STOP IMPEDE

STOP ACTIVE

PROCESS STOPPED FOR

VvV V.V V V

n o nnkENDK

v

G G Gmn Gmm Gmm G Gmm Guw Gmr Gmm em G Gmm Gmm Gmm fum G Gmm Gem fem Gmm Gmm Gmm Smr G Gmm Gmm Smm G Sum G Sum Gan Cmw fue Gaw G Gem bum fem G Gum bum Smm Smm Gmm Gum Gmm bum Ge Gme Smm Smm S S

REASON GIVEN IN PROCQUESTOPWORD

DCY A DELAYED CONTROL Y IS PENDING (THIS BIT
IS CHECKED BY ININ ON BOUNDS VIOLATION TO
DETERMINE IF GOT: 1) TRUE BOUNDS VIOLATION
OR 2) AN INDUCED BOUNDS VIO THAT INDICATES
THAT THE CONTROL Y TRAP PROCEDURE MAY NOW
BE ENTERED).
OSI STATE OF THE "ASOFT” PCB BIT WHEN CONTROL Y
TRAP WAS ENTERED. ASOFT = 1 ALLOWS USER SOFT
INTERRUPTS AGAINST THE PROCESS. 1IT IS SET TO
ZERO WHEN THE CONTROL Y HANDLER IS ENTERED.
IT IS SET TO ITS PRIOR STATE WHEN THE USER
CALLS RESETCONTROL.
* SET TO COMMAND RECORD LENGTH WHEN COMMAND PENDING
(I.E. COMMAND ENTERED DURING BREAK OR ENCOUNTERED
DURING FLUSHING).

** CONTINUE FLAG VALUES

0 = NO CONTINUE IN EFFECT

1 = CONTINUE JUST ENCOUNTERED

2 = CONTINUE IN EFFECT FOR THIS COMMAND
CY FLAG

PCBXFIXED(61). (1:1) SET BY PSEUDOINT WHEN THERE IS A PENDING
CONTROL Y WHICH CANNOT BE PROCESSED BECAUSE
OF SYSTEM CODE OR PRIVILEGED CODE. ININ
CHECKS THIS BIT ON BOUNDS VIOLATION OR

TRACE TRAP.
SI FLAG

PCBXFIXED(61).(3:1) SPECIFIES THE STATE OF THE USER INTERRUPT

FLAG WHEN THE CURRENT CONTROL Y WAS PROCESSEL

n

7-13

7.3.4 PXFIXED EXPANSION BITMAP

The PXFIXED bitmap and expansion area is for use in accounting for
extra data segments acquired by the process.

The names of extra data segments allocated by and belonging to a
process are kept in the PXFIXED part of the PCBX. Up to four such
names (DST numbers) can be kept in cells that are permanently
allocated for this purpose at PXFIXED locations 8 through 11. If
more than four extra data segments are allocated, an expansion of
PXFIXED occurs in which it is enlarged by one sector (128 words)
Up to three such sectors can be allocated.

The expansion area is managed by a cumbersome scheme in which each
sector is divided up into "frames" of eight words. The first word
of each frame contains the frame size in the low 4 bits, and a
pointer to the next frame (or zero, if none) in the upper 12 bits.
The frames are allocated by a bitmap; one bitmap word is needed for
each expansion sector, and the words are stored at locations 76,77,
and 78 in PXFIXED. Although a procedure exists to de-allocate a
frame, it is never called. The original intent presumably was to
permit use of frame space by activities other than DST management,
but nothing of this sort has been done.

In order to permit the four PXFIXED words to be managed as a frame,
they are preceded by a word at PXFIXED(7) which is in the frame
header format described above; initially, the frame size field is
4 and the pointer is 0.

Pictorially, a frame looks like this:

! LINK TO NEXT FRAME | AVBL WORDS |
| P|s| DST NUMBER OF XDS |
| P S| DST NUMBER OF XDS |

(total 4 [first frame] or 7 [all add’l] DST words)

P=0 if DST is privileged; i.e., creator was in privileged mode.
Non-privileged DSTs are subject to a SYSGLOB limit on the number
of such DSTs per process. Also, non-privileged users of the extra
data segment intrinsics see only a "logical" index which is
basically the negative ordinal position of the PXFIXED slot containing
the DST number, but with the sign bit cleared. Privileged callers
get the actual DST number to use, so they can do privileged
instructions such as MFDS.

S=0 if DST is specified as sharable between processes within the job.
There is a list of shared DSTs in the JDT.

7-14%

File System Section of PCBX (PXFILE)

The PXFILE area is a sub-section of the PCBX. It is a contiguous, expandable
and contractable block of storage that is managed by the file system primarily
for its own use. Other sybsystems, namely CS and DS, also make use of the
PXFILE section. In doing so they must conform to the conventions of the file
system.

The overall structure of the PXFILE area is:

I |

| OVERHEAD | (fixed)

I |

|=emmmm e |

I |

| CONTROL BLOCK | (variable)
| TABLE |

| |
T — |

| ~ |

| AVAILABLE | {variable)

I v I
| AVAILABLE FILE | (variable)
| TABLE |
I |
VECTOR FORMAT
0 5 6 15
| == e e I
| ENTRY | DST NUMBER |

7-15

Overhead (PXFILE)

The part labeled OVERHEAD contains information that is
pertinent to the entire table.

In general the following identifiers are used when referring
the PXFILE area:

to this part of

DEFINE
PXFSIZE
PXDSOPENERR
PXCOPENER
PXFNOCB
PXLASTDSAFT
PXSLAVEAFT
PXFKOPEN
PXFFOPEN
PXFAFTSIZE
PXFCTRINFO

OVERHEAD (CONT.)

PXFILE#,

PXFILE(1).
PXFILE(1).
PXFILE(2).
PXFILE(3).
PXFILE(3).
PXFILE(4).
PXFILE(4).

PXFILE(5)#,
PXFILE(6)#,

<<PXFILE SIZE>>

(0:8)#,<<LAST DOPEN ERROR CODE>>
(8:8)#,<<LAST COPEN ERROR CODE>>
(0:1)#,<<NO CB’S IN PXFILE CBT?>>
(0:8)#,<<DSNUM OF LAST DS OPEN>>
(8:8)#,<<DSNUM OF SLAVE PTOP DSOPEN>>
(0:8)#,<<LAST KOPEN ERROR CODE>>
(8:8)#,<<LAST FOPEN ERROR CODE>>
<<AFT SIZE IN WORDS>>

<<CS TRACE FILE INFO>>

7-16

& W

o ~N O WU

o

10
11
12
13
14
15

PXFLEFTOFF = PXFILE(T)#, <<LAST RESPONDING AFT NR.>>
PXFCBT1 = PXFILE(8)#, <<1ST USER CBT DST NR.>>
PXFCBT2 = PXFILE(Q)#, <<2ND USER CBT DST NR.>>
PXFCBT3 = PXFILE(10)#, <<3RD USER CBT DST NR.>>
PXFCBTL = PXFILE(11)#, <<§TH USER CBT DST NR.>>
PXFCBTS = PXFILE(12)#, <<5TH USER CBT DST NR.>>
PXFCBTE = PXFILE(13)#, <<6TH USER CBT DST NR.>>
PXFCBTT = PXFILE(1k4)#, <<TTH USER CBT DST NR.>>
PXFCBTS = PXFILE(15)#; <<8TH USER CBT DST NR.>>

The following is an alphabetized list of the above identifiers
along with a discussion of their meaning.

PXFAFTSIZE

This is the size (in words) of the Available File Table. Note
that the size is in words and not in terms of number of
entries. The reason for this is that it simplifies the
calculation for the size of the available block.

PXFCBT1-8

These are the DST numbers of the user (NOBUF) control block
tables. A DST number of 0 indicates that no data segment is
allocated. Note that a DST number is representable with ten
bits; a full word is used to simplify the code.

PXFCOPEN
This contains the last COPEN error number. It is not used by
the file system; it is included here for completeness only.

PXFCTRINFO

This containg information pertinent to the CS trace file. It
is not used by the file system; it is included here for
completeness only.

PXFDOPEN
This contains the last DOPEN error number. It is not used by
the file system; it is included here for completeness only.

PXFDSINFO
This cell is reserved for DS. It is not used by the file
system; it is included here for completeness only.

PXFFOPEN

This contains the last FOPEN error number. If it is zero then
the last FOPEN completed successfully; if it is non-zero then
the last FOPEN completed unsuccessfully and the number
represents the file system error number. Note that only eight
bits are needed to hold the error number; a full word is used
to simplify the code.

T-17

OVERHEAD (CONT.)

PXFKOPEN

This contains the last "KOPEN" error number. Since KSAM is
imbedded in the file system, an FOPEN failure on a KSAM file
can be caused by a failure to open either the key file or

the data file. This error number is used in conjunction with
PXFFOPEN to determine which file caused the KSAM open failure.
Note that this error number is not used by the file system;
it is included here for completeness only.

PXFLEFTOFF

This is the AFT entry number of the last file/line that
completed a no-wait I/0; if zero then no no-wait I/0 has

been completed. This cell is maintained solely by and for the
IOWAIT intrinsic.

PXFNOCB
This bit is used to signify that no control blocks are to be created in the

PXFILE control block table. This bit is set by the NOCB parameter to the CREATE
intrinsic or the :RUN command. The reason for this feature is to permit the
3000/20 user to have as much stack space as possible; otherwise the MPE/30 file
system will take away several hundred words of stack for the PXFILE control
block table.

PXFSIZE

This is the size (in words) of the complete PXFILE area. It
is the sum of the overhead block, the control block table, the
available file table and the available block.

7-18

Control Block Table (PXFILE)

- e e o ——— A - - - e -

The part labeled CONTROL BLOCK TABLE contains a file control
block table. This is a new feature with MPE/30; it is not
present under MPE/20.

The format of the control block table is the same as any other file control
block table. The only difference is that addressing is slightly more compli-
cated since the table does not begin at DB+0. As a result all pointers within
the table are table relative; the starting address of the table must be added to
a pointer to generate a final DB-relative address. This addressing convention
is consistently applied to all file control block tables. When the control
block table is expanded, space is taken from

the AVAILABLE area. If no space is available then the PXFILE
area is expanded and the acquired space is added to the
AVAILABLE area.

The interested reader is referred to section 3.2 for a more
detailed description of file control block tables.

0 15
T oanie sz woros T 16
I vor wovmER covtamNiNG Tase | 7
A veoTon TAELE Size I wers T | 1
| roek worn T 1
|romrenom e nE> quEmE T 20
o~ mmm e e .

I I
I I
| VECTOR TABLE |
I |
| I

I I
I I
| I
| CONTROL BLOCK AREA |
I I
| |
I |

In general the following identifiers are used when referring
to this part of the PXFILE area:

DEFINE
PXFCBTAB = PXFILE(16)#, <<CONTROL BLOCK TABLE>>
PXFCBTSIZE = PXFILE(16)#, <<TABLE SIZE IN WORDS>>

CONTROL BLOCK TABLE (CONT.)

7-19

- m. - - —— = w- e— .————

PXFDSTX = PXFILE(17)#, <<TABLE DST NUMBER>>
PXFVISIZE = PXFILE(18)#, <<VECTOR TABLE SIZE IN WORDS>>
PXFLOCK = PXFILE(19)#, <<TABLE LOCK WORD>>

PXFQUEUE = PXFILE(20)#, <<TABLE IMPEDED QUEUE>>

PXFVT = PXFILE(21)#; <<VECTOR TABLE>>

The following is an alphabetized list of the above identifiers
along with a discussion of their meaning.

PXFCBTAB

This is the first word of the control block table. In general
this is used only when referring to the entire control block
table.

PXFCBTSIZE

This is the size in words of the control block table. In
general this is used only when calculating the size of the
available block.

PXFDSTX

This is the DST number of the data segment that contains the
control block table. This is the same as the DST number of
the stack. Note that the convention of referring to the DST
number of the stack as zero is not used. The reason for this
is that the file system may refer to a PXFILE control block
table in another stack. This would result in an ambiguity
since that PXFILE control block table would also have a DST
number of zero.

PXFLOCK
This is the lock word for the table and has the same format as
the lock word for a control block in the table.

PXFQUEUE
This is the impeded queue for the table and has the same format
as the impeded queue for a contrcl bl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>