
HP 3000 Computer Systems

KSAM/3000
reference manual

F/,flW HEWLETT
~~PACKARD

Part No. 30000-90079

HP 3000 Computer System

F//fl9 HEWLETT
~~PACKARD

KSAM/3000
Reference Manual

19420 HOMESTEAD RD., CUPERTINO, CALIFORNIA 95014

Printed in U.S.A. 5/79

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor
mance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied or reproduced without the prior written consent of
Hewlett-Packard Company.

Copyright© 1981 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

Thf' List of Efft>ctive Pages givl's the date of thl' currPnt t>dition and the dates when pages were changed in updates to that
Pdition. Within the manual, an\ pagP changrd sincr the last Pdition has the date the changes were made on the bottom of the
pagP. Changrs are marked with a wrtical bar in thP margin. When an update is incorporated in a subsequent reprinting of the
manuaL thPse bars an· rPmoVPd.

Second Edition May 1979
Update No. 1 May 1981

Changed Pages Effective Date Changed Pages Effective Date

iii to iv May 1981 3-38 to 3-39 May 1981
1-2 to 1-3 May 1981 3-41 to 3-43 May 1981
1-8 to 1-12 May 1981 4-41 May 1981
2-9 May 1981 4-43 May 1981
2-11 May 1981 4-46 to 4-46b May 1981
2-49a to 2-49b May 1981 4-57 May 1981
2-51 to 2-52 May 1981 4-91 May 1981
3-1 May 1981 5-8 May 1981
3-6 May 1981 6-4 May 1981
3-22 May 1981 6-7 May 1981
3-26 . May 1981 6-32 to 6-33 May 1981
3-29 May 1981 A-4 to A-5b May 1981
3-32 May 1981 A-13a to A-13b May 1981
3-33 May 1981 B-8 May 1981
3-36 . May 1981

lll

PRINTING HISTORY

New editions are complete rf'visions of the manual. UpdatP packagf's, which an• issued betwf'en editions, contain additional
and replacement pages to be mergPd into the manual by the l'Ustonwr. Tlw date on thP title page and back cover of thP
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition
are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change.

The soft ware product part number printed alongside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many product updates and fixes do not require manual changes, and
conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one
correspondence between product updates and manual updates.

First Edition. Jan 1977 32208.00
Update No. 1 May 1977 32208A.01
Updated No. 1 Incorporated Jun 1977
Update No. 2 Apr 1978 32208A.01
Update No. 2 Incorporated Jan 1979
Second Edition May 1979 32208A.02.04
Update No. 1 May 1981 32208A.03.01
Update No. 1 Incorporated Oct 1983

iv

PREFACE

This publication is the reference manual for KSAM/ 3000. KSAM stands for Keyed Sequential
Access Method, a method of accessing files indexed by keys. KSAM/3000 operates on the HP 3000
Computer System.

The methods used to access a KSAM/3000 file differ depending on the particular language used. A
COBOL user, an RPG user, a BASIC user, and an SPL user each has his own set of procedures with
which to access a KSAM file; a FORTRAN user can choose to access a KSAM file with either
COBOL or SPL procedures. All users can create, copy, purge, or perform other utility functions
with the KSAMUTIL and FCOPY programs.

This manual is organized so that the more general functions available to all users are described in the
first two sections followed by a section describing KSAM access from each of the four languages:
COBOL, SPL, FORTRAN, and BASIC. Access to KSAM files from an RPG program is not
described in this manual, but is included as part of the RPG manual:

RPG/3000 Compiler Application & Reference Manual (32104-90001, Second Edition, 2/77)

In orrler to use this manual effectively, you should be familiar with the MPE Operating System and
with FCOPY. Also, it is assumed that you are familiar with the language in which you are program
ming. The following manuals contain all the information you might need as a supplement to this
manual:

MPE Commands Reference Manual (30000-90009)
MPE Intrinsics Reference Manual (30000-90010)
FCOPY/3000 Reference Manual (03000-90064)
COBOL/3000 Reference Manual (32213-90001)
SPL/3000 Reference Manual (30000-90024)
EDIT/3000 Reference Manual (03000-90012)
FORTRAN/3000 Reference Manual (30000-90040)
BASIC/3000 Interpreter Reference Manual (30000-90026)
BASIC/3000 Compiler Reference Manual (32103-90001)
System Manager/System Supervisor Reference Manual (30000-90014)
Using Files (30000-90102)

SECOND EDITION
The second edition of the KSAM manual provides the following new information:

• Full syntax for and description of how to use the new KSAMUTIL commands:
KEYSEQ, KEYDUMP, and KEYINFO. (section II)

• Enhancements to the KSAMUTIL utility to allow abbreviated command names,
offline listing of displays, and entry of MPE commands from KSAMUTIL. (section II)

• Discussion of record pointer positioning in all languages; with special emphasis on
using the record pointers for shared access. (sections III, IV, VI)

• Description of how pointers are set internally. (appendix B)

• Discussion of recovery procedures in case of system failure. (appendix E)

In addition, there are minor corrections throughout the manual as well as documen
tation of minor enhancements.

This edition covers the version of KSAM number A.02.04 release on the 1918 IT.

v

NOTATION

[]

{ }

italics

underlining

CONVENTIONS USED IN THIS MANUAL I

DESCRIPTION

An element inside brackets is optional. Several elements stacked inside a pair of brackets means
the user may select any one or none of these elements.

Example: [~ J user may select A or B or neither

When several elements are stacked within braces the user must select one of these elements.

Example: { i} user must select A or B or C.

Lowercase italics denote a parameter which must be replaced by a user-supplied variable.

Example: CALL name
name one to 15 alphanumeric characters.

Dialogue: Where it is necessary to distinguish user input from computer output, the input is
underlined.

Example: NEW NAME? ALPHAl

A horizontal ellipsis indicates that a previous bracketed element may be repeated, or that elements
have been omitted.

vi

CONTENTS

Page Page

SECTION I INTBODUCING KSAM SAVE 2-23
Parameters 2-23

OVERVIEW 1-1 Saving a KSAM File 2-23
File Structure 1-1 VERIFY 2-24
File Access 1-2 Parameters 2-24

KSAM/ 3000 FEATURES 1-3 Display KSAM File Characteristics 2-24
Multiple Keys 1-3 Terminating the >VERIFY Command 2-26

Primary Key 1-3 Directing VERIFY Output to Line Printer 2-26
Alternate Keys 1-3 Using VERIFY for Recovery 2-27

Duplicate Keys 1-3 KEYSEQ 2-28
Generic Keys 1-4 Parameters 2-28
Approximate Match 1-4 Verify Key Sequence 2-29
Data Record Format 1-5 KEYDUMP 2-31

HOW TO USE KSAM FILES 1-6 Parameters 2-31
Creating a KSAM File 1-6 Dumping the Key File 2-33
Writing Records to a KSAM File 1-6 Dumping a Subset of the Key File 2-35
Retrieving Records From a KSAM File 1-6 By Key Number 2-35
Updating Records in a KSAM File 1-7 By Key Value 2-35
Positioning in a KSAM File 1-7 Sorting Dump by Record Pointer 2-36
Deleting Records From a KSAM File 1-7 KEYINFO 2-37
Reorganizing a KSAM File 1-7 Parameters 2-37
Shared Access to KSAM Files 1-8 Requesting Key File Information 2-38
Recovery and Analysis of KSAM Files 1-8 Recovery after System failure 2-40
Using File Equations with KSAM Files 1-8 Using RECOVER Option 2-42

HOW TO USE THIS MANUAL 1-9 USING KSAMUTIL IN BATCH MODE 2-43
RPG Programmer 1-9 FCOPY UTILITY 2-45
COBOL Programmer 1-9 Running FCOPY 2-45
SPL Programmer 1-9 Exiting From FCOPY 2-45
FORTRAN Programmer 1-11 FROM COMMAND 2-46
BASIC Programmer 1-11 Parameters 2-46
All Programmers 1-12 KSAM Options .2-46

KEY= Option 2-46
SECTION II USING KSAM UTILITIES NOKSAM Option 2-48

Using FCOPY 2-48
OVERVIEW 2-1 FCOPY With No Options 2-48
KSAMUTIL UTILITY 2-3 FCOPY With KEY= Options 2-50

Running KSAMUTIL 2-3 FCOPY With NOKSAM Option 2-51
Command Abbreviations 2-3 DISPLAY Copied Files on $STD LIST 2-52
Running MPE Commands from KSAMUTIL 2-3 :STORE AND RESTORE COMMANDS 2-55
Option to List Displays on Line Printer 2-3 :STORE 2-55
Optional Parameters 2-4 Parameters 2-55

Exiting from KSAMUTIL 2-4 Using the :STORE Command 2-56
HELP 2-5 : RESTORE 2-57

Requesting Help 2-5 Parameters 2-5 7
BUILD 2-8 Using the :RESTORE Command 2-58

Parameters 2-8
Key Description 2-15
Creating a KSAM File 2-16

SECTION III USING KSAM FILES IN COBOL
PROGRAMS

ERASE 2-19 OVERVIEW 3-1
Parameters 2-19 CALLING A KSAM PROCEDURE 3-3
Clearing a KSAM File 2-19 FILETABLE PARAMETER 3-4

PURGE 2-20 Example 3-5
Parameters 2-20 STATUS PARAMETER 3-6
Purging a KSAM File 2-20 Using Status 3-8

RENAME 2-21 KSAM LOGICAL RECORD POINTER 3-9
Parameters 2-21 Shared Access 3-10
Renaming a KSAM File 2-21

vii MAY 1981

CONTENTS (continued)

Page

SAMPLE KSAM FILE 3-11
CKCLOSE 3-12

Parameters 3-12
Using CKCLOSE 3-12
Examples 3-12

CKDELETE 3-13
Parameters 3-13
Using CKDELETE 3-13
Shared Access 3-13
Examples 3-14

CKERROR 3-1 7
Parameters 3-1 7
Using CKERROR 3-17

CKLOCK 3-18
Parameters 3-18
Using CKLOCK 3-18
Examples 3-19

CKOPEN 3-20
Parameters 3-20
Using CKOPEN 3-20

Input-Output Type 3-21
Access Mode 3-22

Examples 3-23
CKOPENSHR 3-25

Parameters 3-25
Using CKOPENSHR 3-25

CKREAD 3-26
Parameters 3-26
Using CKREAD 3-26

Shared Access 3-27
Examples 3-27

CKREADBYKEY 3-29
Parameters 3-29
Using CKREADBYKEY 3-29
Examples 3-30

CKREWRITE 3-32
Parameters 3-32
Using CKREWRITE 3-32

Rewrite in Sequential Mode 3-32
Rewriting Records With Duplicate Keys 3-32

Rewrite in Random Mode 3-33
Position of Pointer 3-33
Rewrite With Shared Access 3-33
Invalid Key 3-33

Examples 3-34
CKST ART 3-36

Parameters 3-36
Using CKSTART 3-37

Shared Access 3-37
Examples 3-37

CKUNLOCK 3-40
Parameters 3-40
Using CKUNLOCK 3-40
Examples 3-40

CKWRITE 3-4 2
Parameterrs 3-42

Vlll

Page

Using CKWRITE 3-42
Writing in Sequential Mode 3-42
Writing in Random Mode 3-43
Writing when Access Is Shared 3-43
Invalid Key 3-43

Examples 3-43

EXAMPLES OF KSAM FILE ACCESS
FROM COBOL PROGRAM 3-46
EXAMPl. SEQUENTIAL WRITE 3-46
EXAMP2. SEQUENTIAL READ 3-48
EXAMP3. RANDOM UPDATE 3-51

SECTION IV USING KSAM FILES IN SPL
PROGRAMS

KSAM FILE SYSTEM INTRINSICS 4-1
Calling Intrinsics From SPL 4-3
KSAM Intrinsic Summary 4-3
Intrinsic Format 4-3

Passing Parameters 4-4
Optional Parameters 4-4

KSAM RECORD POINTERS 4-5
Shared Access 4-6

FCHECK 4-7
Parameters 4-7
Condition Codes 4-8
Special Considerations 4-8

FCLOSE 4-12
Parameters 4-12
Condition Codes 4-13
Special Considerations 4-14
Using FCLOSE 4-14

Closing a New KSAM File 4-14
Closing an Existing KSAM File 4-14
Deleting a KSAM File 4-15

FCONTROL 4-17
Parameters 4-17
Condition Codes 4-18
Special Considerations 4-18
Using FCONTROL 4-18

Using Control Code 2 4-18
Using Control Code 5 4-19
Using Control Code 6 4-19
Using Control Code 7 4-19

FERRMSG 4-20
Parameters 4-20
Condition Codes 4-20
Using FERRMSG 4-20

FFINDBYKEY 4-22
Parameters 4-22
Condition Codes 4-23
Special Considerations -1-23
Using FFINDBYKEY ·1-23

CONTENTS (continued)

Page Page

Using Approximate Keys 4-23 Using FREADBYKEY 4-64
Using Partial (Generic) Keys 4-24 Shared Access 4-65
Shared Access 4-24 Duplicate Keys 4-65

FFINDN 4-26 FREADC 4-68
Parameters 4-26 Functional Return 4-68
Condition Codes 4-26 Parameters 4-68
Special Considerations 4-26 Condition Codes 4-68
Using FFINDN 4-26 Using FREADC 4-69
Shared Access 4-27 Shared Access 4-69

FGETINFO 4-28 FREADDIR 4-72
Parameters 4-28 Parameters 4-7 2
Condition Codes 4-31 Condition Codes 4-73
Using FGETINFO 4-31 Special Considerations 4-73

FGETKEYINFO 4-35 Using FREADDIR 4-73
Parameters 4-35 FREADLABEL 4-76
Condition Codes 4-35 Parameters 4-76
Using FGETKEYINFO 4-35 Condition Codes 4-76

FLOCK 4-38 Special Considerations 4-76
Parameters 4-38 Using FREADLABEL 4-77
Condition Codes 4-38 FREADSEEK 4-78
Special Considerations 4-39 FRELATE 4-79
Using FLOCK 4-39 FREMOVE 4-80

FOPEN 4-41 Parameters 4-80
Functional Return 4-41 Condition Codes 4-81
Parameters 4-41 Special Considerations 4-81
Condition Codes 4-44 Using FREMOVE · 4-81
Using FOPEN 4-45 Shared Access 4-82

FOPTIONS Parameter 4-45 FRENAME 4-85
AOPTIONS Parameter 4-46 FSETMODE 4-86
Key File Definition 4-4 7 Parameters 4-86

Opening a New File 4-50 Condi ti on Codes 4-86
Declarations for FOPEN 4-50 Special Considerations 4-86
Defining KSAMP ARAM 4-50 Using FSETMODE 4-87
Calling FOPEN 4-52 FSP ACE 4-88

Opening An Existing File 4-53 Parameters 4-88
Opening File for Read Access 4-53 Condition Codes 4-88
Opening File for Write Access 4-54 Special Considerations 4-88
Opening KSAM File as MPE File 4-55 Using FSP ACE 4-88
Opening File for Shared Access 4-56 Pointer Position 4-90

FPOINT 4-57 Shared Access 4-90
Parameters 4-57 FUNLOCK 4-91
Condition Codes 4-57 Parameters 4-91
Special Considerations 4-57 Condition Codes 4-91
Using FPOINT 4-58 Special Considerations 4-91

Shared Access 4-58 Using FUNLOCK 4-91
FREAD 4-59 FUPDATE 4-92

Functional Return 4-59 Parameters 4-92
Parameters 4-59 Condition Codes 4-92
Condition Codes 4-59 Special Considerations 4-93
Special Considerations4-59 Using FUPDATE 4-93
Using FREAD 4-60 Shared Access4-93

Shared Access 4-60 Updating Records with Duplicate Keys4-94
FREADBYKEY 4-63 FWRITE 4-97

Functional Return 4-63 Parameters 4-97
Parameters 4-63 Condition Codes 4-98
Condition Codes 4-64 Special Considerations 4-98

ix

CONTENTS (continued)

Page

Using FWRITE 4-98
Shared Access 4-98

FWRITEDIR 4-100
FWRITELABEL 4-101

Parameters 4-101
Condition Codes 4-101
Special Considerations 4-101
Using FWRITELABEL 4-102

HP32208 4-103
Functional Return 4-103
Condition Codes 4-103
Using HP32208 4-103

SECTION V USING KSAM FILES IN
FORTRAN PROGRAMS

OVERVIEW 5-1
CALLING FILE SYSTEM INTRINSICS 5-2
CALLING COBOL PROCEDURES 5-3
CREATING A KSAM FILE WITH A

CALL TO FOPEN 5-4
Defining KSAMP ARAM 5-4
Calling FOPEN 5-4

CREATING A KSAM FILE WITH
KSAMUTIL 5-7

OPENING A KSAM FILE WITH A COBOL
PROCEDURE 5-8

WRITING TO A KSAM FILE 5-9
READING A KSAM FILE IN KEY

ORDER 5-10
Primary Key Sequence 5-10
Alternate Key Sequence 5-10
Random Order 5-10

READING A KSAM FILE IN
CHRONOLOGICAL ORDER 5-13

SECTION VI USING KSAM FILES IN
BASIC PROGRAMS

OVERVIEW 6-1
CALLING A KSAM PROCEDURE 6-2

Optional Parameters 6-2
STATUS PARAMETER 6-4
KSAM Logical Record Pointer 6-7

Shared Access 6-7
BKCLOSE 6-8

Parameters 6-8
Using BKCLOSE 6-8

BKDELETE 6-10
Parameters 6-10
Using BKDELETE 6-10

Shared Access 6-11
BKERROR 6-12

Parameters 6-12
Using BKERROR 6-12

x

Page

BKLOCK 6-14
Parameters 6-14
Using BKLOCK 6-14

BKOPEN 6-16
Parameters 6-16
Using BKOPEN 6-18

Access Modes 6-18
Shared Access 6-19
Dynamic Locking 6-20
Sequence Checking 6-20

BKREAD 6-22
Parameters 6-22
Using BKREAD 6-22

Shared Access 6-24
BKREADBYKEY 6-26

Parameters 6-26
Using BKREADBYKEY 6-27

BKREWRITE 6-29
Parameters 6-29
Using BKREWRITE 6-29

Shared Access 6-30
Duplicate Keys 6-30

BKSTART 6-32
Parameters 6-32
Using BKSTART 6-33

BKUNLOCK 6-36
Parameters 6-36
Using BKUNLOCK 6-36

BKVERSION 6-38
Parameters 6-38
Using BKVERSION 6-38

BKWRITE 6-39
Parameters 6-39
Using BKWRITE 6-39

APPENDIX A ERROR MESSAGES AND
RECOVERY PROCEDURES

APPENDIX B INTERNAL STRUCTURES
AND TECHNIQUES

OVERVIEW B-1
KSAM FILE STRUCTURE B-1

B-Tree Structure B-2
Adding or Deleting Keys B-2
KSAM Key File Structure B-5
Control Block B-5
Key Descriptor Block B-5
Key Entry Blocks B-8

Relation of Key to Data File B-9
KSAM FILE SIZE B-11

Key Block Size B-11
Calculating Key Block Size B-12

Key File Size B-13
KSAM EXTRA DATA SEGMENTS B-17

Number of Extra Data Segments B-17

CONTENTS (continued)

Page Page

Extra Data Segment Size B-18
Number of Key Block Buffers B-20

Extra Data Segments with
Shared Access B-21

APPENDIX C ASCII CHARACTER SET IN
COLLATING SEQUENCE

APPENDIX D CONVERSION TO KSAM
FILES

USING KSAMUTIL AND FCOPY D-1
USING RTOKSAM D-1

xi

APPENDIX E RECOVERY FROM
SYSTEM FAIL URE

Overview E-1
End-of-File on KSAM Files E-1

Data File E-1
Key File E-2

End-of-File and Extra Data Segment E-4
Normal Operation-File is

Closed E-5
System Failure-File is Open E-5

Situations in Which Recover is Required E-6
Example of File Recovery E-7

Reloading a KSAM File E-11
Expand Key Block Buffer Area E-12

ILLUSTRATIONS

Figure Title Page

1-1

2-1

3-1
3-2

3-3
3-4
3-5
4-1
4-2
4-3
4-4
4-5

4-6

4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
5-1

5-2

5-3

5-4

6-1

6-2

Simplified View of KSAM File
Structure 1-5

EDITOR Listing of Job to be
Streamed 2-44

Filetable Structure 3-4
Representation of KSAMFILE

Used in COBOL Examples 3-11
Sequential Write Using COBOL 3-46
Sequential Read Using COBOL 3-48
Random Update With COBOL 3-51
FCLOSE Example 4-15
FFINDBYKEY Example 4-25
File Position With FFINDN 4-27
FGETINFO Example 4-33
FOPEN Example-Building a

KSAM File 4-51
FOPEN Example-Opening an

Existing File 4-53
FREAD Example 4-61
FREADBYKEY Example 4-66
FREADC Example 4-70
FREADDIR Example 4-7 4
FREMOVE Example 4-83
File Position with FSP ACE 4-89
FUPDATE Example 4-95
FWRITE Example 4-99
Creating and Writing to KSAM

File in FORTRAN 5-5
Opening a KSAM File With

CKOPEN 5-8
Reading KSAM File in Key

Sequence Using FORTRAN 5-11
Reading KSAM File in

Chronological Sequence
Using FORTRAN 5-13

Closing a KSAM File with
BKCLOSE 6-9

Deleting a Record with
BKDELETE 6-11

6-3 Dynamically Locking a
KSAM File with BKLOCK 6-15

xii

Figure Title Page

6-4 Opening KSAM File with
BKOPEN 6-21

6-5 Reading From a KSAM File
with BKREAD 6-25

6-6 Reading a Record Located
by Key Value with
BKREADBYKEY 6-28

6-7 Rewriting Record in KSAM
File with BKREWRITE 6-31

6-8 Positioning Pointer to
Least-Valued Record
with BKSTART 6-34

6-9 Positioning Pointer to
Particular Record with
BKSTART 6-35

6-10 Dynamically Unlocking a
KSAM File with BKUNLOCK 6-37

6-11 Writing to a KSAM File
with BKWRITE 6-42

B-1 Two-Level B-Tree Structure B-2
B-2 Split Causes New Levels

in Tree B-3
B-3 Tree Growth from Two to

Three Levels B-4
B-4 KSAM Key File Structure

with Two Keys B-6
B-5 Control Block and Key

Descriptor Block B-7
B-6 Key Entry Block Structure B-8
B-7 Data File/Key File Relation B-10
B-8 Formula to Determine File Space

Per Key B-15
B-9 Calculation of Total Key File

Size with Two Keys B-16
B-10 Extra Data Segments for

Shared Access B-18
B-11 KSAM Extra Data Segment B-19
E-1 KSAM File and an Extra

Data Segment E-4

TABLES

Table Title Page Table Title Page

2-1 Summary of KSAM Utilities 2-2 4-8 FOPEN ksamparam Parameter
2-2 Key Types 2-15 Format 4-4 7
2-3 Character Equivalent to Signed 6-1 KSAM Procedures for

Digit for NUMERIC Keys 2-16 BASIC Interface 6-3
2-4 FCOPY Functions With KSAM 6-2 Values Returned to

Files 2-4 7 status parameter 6-4
2-5 KSAM Options of FCOPY 2-48 6-3 Positioning the Logical
3-1 KSAM Procedures for COBOL Record Pointer 6-7

Interface 3-2 6-4 Procedures Allowed by
3-2 Valid status Parameter Character BKOPEN access Parameter 6-19

Combinations 3-6 6-5 Relation of exclusive
3-3 Positioning Logical Record Pointer 3-9 Parameter to access
3-4 Procedures Allowed for Input- Parameter 6-20

Output Type/Access Mode A-1 File System Error Codes A-2
Combinations 3-21 A-2 COBOL Status Parameter Return

4-1 KSAM File System Intrinsics 4-1 Values A-5
4-2 Positioning the Pointers 4-5 A-3 BASIC Status Parameter Return
4-3 FCHECK errorcode Parameter Values A-6

Format 4-8 A-4 KSAMUTIL Error Codes and
4-4 FCLOSE disposition Parameter Meanings A-8

Bit Settings 4-13 A-5 FCOPY Warning and Error
4-5 FGETKEYINFO ksamcontrol Messages A-14

Parameter Format 4-36 B-1 Number of Key Block Buffers
4-6 FOPEN {options Parameter Assigned by Default B-20

Format 4-45 B-2 Pointer Dependence B-22
4-7 FOPEN aoptions Parameter B-3 Record Pointer Summary B-23

Format 4-46 C-1 ASCII Characters in Sequence C-1

xiii

[[IMM/1
INTRODUCING KSAM/3000 :

1 1 I

OVERVIEW
The Keyed Sequential Access Method (KSAM) is a method of organizing records in a file according
to the content of key fields within each record. As implemented for the HP 3000 computer
system, KSAM/3000 is similar to and competitive with other indexed sequential access methods.

Every record in a KSAM file contains a primary key field whose contents determine the primary
logical sequence of records in the file. Other key fields can also be defined so that the file can be
sequenced in alternate orders. The order in which records are physically written to the file, the
chronological order, can be the same as the primary key sequence or it can be unrelated to any
logical sequence.

KSAM/3000 files can be accessed by programs written in any of these languages:

RPG/3000
COBOL/3000
SPL/3000
FORTRAN/3000
BASIC/3000

KSAM/3000 files can be copied, listed, and otherwise manipulated with the utility programs:

FCOPY/3000
KSAMUTIL

FILE STRUCTURE

A KSAM/3000 file is organized into two distinct MPE files, a data file and a key file. The key file
contains only key entries, the data file only data. Each record in the data file contains at least one
item that is designated as a key. The value of each key is duplicated in the key file where all keys
are ordered in ascending sequence. This organization allows records in the data file to be stored in
any order since the key file maintains the logical order of records according to key value.

Although it is not necessary to understand KSAM file structure in order to use a KSAM file, you
may want to refer to appendix B for a detailed discussion of the relation between data and key
files and the structure of the key file.

NOTE

In the total of 253 MPE files allowed for each process, one KSAM
file counts as three files; two files for the data and keys, one for inter
nal maintenance. If all files are KSAM files, a maximum of 84 are
allowed for each process.

1-1

FILE ACCESS

Although separate in fact, the two files that comprise a KSAM file are treated as one file by the
procedures that reference the file. The data file is the only file directly referenced by a user; the
key file is updated by the system to reflect any changes to the data file and is not directly accessed
by the user. Thus, from the user's point of view, accessing a KSAM file is very similar to accessing
any other MPE file.

KSAM/3000 provides the following ways to store and retrieve data:

• You can write records in logical sequence determined by primary key value or you can write
records without regard to key sequence.

• You can read records in logical sequence determined by either the primary or an alternate key
value.

• You can read a record selected at random by the value of its primary or alternate keys.

• You can read records in the order they were written, that is, in chronological sequence, unless
the program is written in COBOL or BASIC.

• You can read a record selected by the value of its chronological record number, unless the
program is written in COBOL or BASIC.

• You can update all the contents of an existing record including the contents of the primary
key field.

• You can position to a record in the file according to its key value, its chronological record
number, or its record number in key sequence.

NOTE

KSAM files are sequenced in ascending order only, not in descending
order. Character keys are ordered by the ASCII collating sequence
where numbers precede letters, not in the EBCDIC sequence where
letters precede numbers. Numeric keys are ordered in algebraic order.

1-2 MAY 1981

KSAM/3000 FEATURES
KSAM/3000 provides a number of features beyond the standard indexed sequential access method.
These include:

• Multiple Keys

• Duplicate Key Values

• Retrieval by Generic Key

• Retrieval by Approximate Match

• Fixed or Variable Length Data Records

MULTIPLE KEYS

Each data record can contain from one to sixteen keys. Of these keys, one is required, called the
primary key; any others are alternate keys. For example, in an employee record, the primary key
could be the employee's social security number; alternate keys might be the employee's name,
phone number, or zip code. The values in these key fields determine the orders in which data
records are sequenced.

PRIMARY KEY. One field in each data record is defined to contain the primary key. The value
in this field determines the primary sequence of records in the data file. Records are sequenced
according to this primary key unless sequencing by an alternate key or in chronological order is
specifically requested.

ALTERNATE KEYS. Other fields within each data record can be designated as alternate keys to
be used for alternate sequencing of records. Up to 15 alternate keys can be designated for each
record, however, each additional alternate key adds to the overhead and can affect performance
when accessing and maintaining a file. The file can be sequenced in a different order for each
alternate key defined for the file.

Note that alternate keys bear no hierarchical relation to each other or to the primary key. Each
key is ordered in sequence by its value and type with no relation to other keys. In KSAM, sequence
always means ascending sequence according to the ASCII collating sequence, (refer to appendix C.)

DUPLICATE KEYS

Sometimes it is essential that key values be unique (for example, a social security number), and at
other times duplicate key values should be allowed (for example, a zip code). To provide for both
cases, KSAM allows you to declare that any key may have a duplicate value while disallowing
duplicate key values as the default condition. Allowing or disallowing duplicate key values applies
to both primary and alternate keys. Duplicates can be allowed for one or more keys while being
disallowed for other keys.

MAY 1981

NOTE

Duplicate keys can greatly increase the time required to load or access
a record with a duplicated key value. This is particularly true when
there are a large number of duplicated key values in a large file. As a
result, duplicate keys should only be used when other methods are
not practical. For example, you should not make a key of an item
that can only have two values, such as "MALE" or "FEMALE."

1-3

GENERIC KEYS
During retrieval by key value you can choose to use part of a key rather than the entire key. Called
generic keys, such partial keys allow you to retrieve a set of records whose key values differ in their
entirety but share a common value at the beginning. Generic keys must begin at the first character
of the defined key field and be shorter, not longer, than the defined key length; also, the key type
must be BYTE, INTEGER, or DOUBLE. Suppose a key field containing a zip code is defined as five
characters long. By specifying only the first three characters for retrieval it is possible to read all rec
ords whose zip code begins with a particular group of numbers.

NOTE

Generic keys cannot be used when accessing KSAM files
through RPG.

Record
No.

2

3

4

5

6

APPROXIMATE MATCH

key field

90021

95060

95065

90291

90027

95050

records retrieved by

,.,.,;, kov~

95050

95060

95065

In this example of generic key retrieval, records
with first 3 characters of zip code key field = 950
are retrieved.

When retrieving by key value, you can specify that the key you are looking for have a value that
exactly matches a specified value, or you can specify that it bear a certain relation to a specified
value. The choices are: equal to, equal to or greater than, or greater than. The last two relations
let you search for an approximate match. For example, you can retrieve all records with a date
greater than or equal to a given date:

Record
key field

No.

01/26/76

2 01/28/76

3 01/30/76

4 02/02/76

5 02/02/76

6 02/05/76

7 02/06/76

records retrieved by
approximate match

02/02/76

02/02/76

02/05/76

02/06/76

In this example of approximate match, all
records with a key field date greater than or
equal to 01/31/76 are retrieved.

1-4

DATA RECORD FORMAT

Every key entry in the key file contains, in addition to the key value, a pointer to the corresponding
data record in the data file. The data records can be either fixed length or variable length. If they
are fixed, the data record pointer specifies a record number relative to the beginning of the file. If
the records are variable length, then the pointer indicates the start of the data record as a word off
set from the beginning of the file.

Data File Key File

~
Pointer from Primary Key to Data Record]_ l

STEVENS JOHN ~ M HOLLYWOOD CA ~///////~~
~!3~ ~

GORHAM MARY 516-37 -9272 F SANTAROSA CA

~~A'@'~ RALPH 214-77-3142 M BURBANK CA GORHAM

STEVENS SUSAN 334-27-0303 F HOLLYWOOD CA

STEVENS

STEVENS

~- --- - --

Pointer from Alternate Key to Record ~6~rt-~tf~ "Lil/ /.LL./ //.LL,_ z

214-77-3142

334-27-0303

516-37-9272

·- ~

Figure 1-1. A Simplified View of the KSAM File Structure

1-5

Primary
Keys

Alternate
Keys

HOW TO USE KSAM FILES
Although a KSAM file consists physically of two separate files, a data and a key file, it is treated as
one file for most purposes. For example, reading from a KSAM file in primary key sequence is
equivalent to reading sequentially from a non-KSAM file. Similarly, creating the data file portion of
a KSAM file is equivalent to creating a non-KSAM file.

CREATING A KSAM FILE

A KSAM file can be created in two ways: interactively with the > BUILD command of the utility
program KSAMUTIL, or programmatically with a call to the MPE file system intrinsic FOPEN. (A
COBOL or BASIC programmer can create a KSAM file only through the> BUILD command, not
FOPEN.) Whether> BUILD or FOPEN is used, file creation consists of creating a data file in very
much the same way you would create any HP 3000 file. The name assigned to the data file is the
name by which the KSAM file is known. Then, as part of the file creation procedure, a key file is
created and each of its keys defined by type, location in the data record, and size. If duplicate key
values are to be allowed, this is specified as part of the key definition.

WRITING RECORDS TO A KSAM FILE

You can write records to a KSAM file in either of two ways. In one, records are written in any
order regardless of primary key values. In the other, records are written in order according to the
value of the primary key in each record. In the first case, the chronological sequence in which
records are written differs from the logical record sequence determined by primary key. In the
second, the chronological and logical record sequence is the same. When you specify that records
are to be written in primary key sequence, KSAM checks to make sure that this sequence is fol
lowed and issues an error message if not.

You can specify that the file be cleared of any existing records before writing new records to the
file, or you can write records following any previously written records. The choice is made when
you open the file.

In any case, when records are written to the data file, the key file structure is modified automatically
in order to place all keys in the new record into their proper sequence.

Records cannot be written directly to a KSAM file according to a relative record number.

RETRIEVING RECORDS FROM A KSAM FILE

Records can be retrieved in a variety of ways:

• Sequentially in the order determined by key value; either the primary or an alternate key can
be selected to determine the order.

• At random according to the value of a specified key; either the primary or an alternate key can
be selected for the matching process.

1-6

• Chronologically in the order the data records were written.*

• At random by chronological record number.*

*The starred access methods are not available to a COBOL or BASIC programmer.

Whenever duplicate keys are used and retrieval is by key value, the first key encountered deter
mines the record read. When generic keys are used, the smallest key value is selected first. Again,
if there are duplicates in generic key values, the first key encountered is selected.

UPDATING RECORDS IN A KSAM FILE

You can change the contents of an existing record by program calls that read the record into
storage where you update it and then write it back to the file. The updated record overwrites
the existing record in its current location if the new record and the old record are the same length.
Otherwise, the new record is written to the end of the file and the old record is marked for
deletion.

POSITIONING IN A KSAM FILE

Record pointers can be positioned:

• To a record determined by key value using either the primary or an alternate key.

• To a record determined by its record number relative to the first record in key sequence,
where the key is either primary or an alternate.**

• To a record determined by its record number relative to the first record written to the file
(chronological sequence).**

**Not available in COBOL or BASIC program.

DELETING RECORDS FROM A KSAM FILE

Records are not deleted physically from the data file. In order to delete a record, you call a proce
dure that tags the record for deletion by writing a delete code in the first two characters of the
record. Any subsequent access skips such records as if they were not there. In addition, the key
file is reorganized automatically so that the keys in the deleted record are no longer in the path
that defines key sequence. Space in the key file from deleted key entries is re-used. In order to
maintain the file's chronological order, space from deleted data records is not re-used.

Because the data record is not physically deleted, it is possible to reconstruct a deleted record by
copying the data file using the NOKSAM option of FCOPY. This provides back-up in case a record
is deleted by mistake.

REORGANIZING A KSAM FILE

If many records have been deleted, thereby using a great deal of physical space in the file, you can
compact the file by using FCOPY /3000 to copy only the active records, those not tagged for dele
tion, to a new KSAM file. You can also use FCOPY to delete, add, or change alternate keys by

1-7

copying the file to a new KSAM file with a different key definition. When the key definition is dif
ferent, you must first create the new file with the >BUILD command of KSAMUTIL.

SHARED ACCESS TO KSAM FILES

Several programs can access the same KSAM file simultaneously. Shared access is assumed when
the file is only being read, exclusive access is assumed when the file is being written to or updated.
Thus, you can choose to make all your access shared or all exclusive. Note that shared access uses
more memory than exclusive access since each open KSAM file requires a separate extra data
segment.

When access to the file is shared, it is each user's responsibility to dynamically lock the file before
changing it in any way. The file must be locked before any records in the file are written, updated,
or deleted, and then unlocked immediately after such action. By requiring this action, the system
makes sure that the most recent values are brought into each user's buffer at each access. Any call
to read or position to a record for sake of subsequent access should be within the locked portion
of code that includes the actual update call.

(Refer to appendix E for a full discussion of shared access.)

RECOVERY AND ANALYSIS OF KSAM FILES
The utility program KSAMUTIL provides several commands that can be used to analyze KSAM
files. These commands allow you to check any key sequence to obtain a formatted dump of the
key file, and in the event of a system failure, to check key file structural damage, determine
whether key values are missing, and recover key values and data records by resetting end-of-file
pointers. The command, KEYINFO, that performs these recovery functions must be run in case
of a system failure while a KSAM file is open. (A full discussion of these commands is found in
section II; also refer to appendix E for a discussion of KSAM file recovery in the event of system
failure.)

USING FILE EQUATIONS WITH KSAM FILES

KSAM opens the key and data file allowing file equations for both. KSAM accesses the files in a
very specific way. Since file equations will override any aoptions that KSAM uses, it is possible to
specify access parameters on the file equation which will cause unpredictable results. The following
should not be used on a file equation which references a KSAM file:

BUF=numbers of buffers
NOMR
WAIT

Refer to "Dynamic Locking" and "Exclusive Access" in Table 4-7, and the section on using FCOPY
to add data to an existing file for further information.

1-8 MAY 1981

HOW TO USE THIS MANUAL
There are some differences in the way in which KSAM files can be accessed depending on the
language in which you are programming. You should read the paragraphs below appropriate to
your programming language and then turn to the last paragraph of this section, For All Program
mers.

RPG PROGRAMMER
This manual does not describe the code required to access a KSAM file using RPG. For this infor
mation, you must refer to:

RPG/3000 Compiler Applications & Reference Manual

COBOL PROGRAMMER
If you are programming in COBOL, you should read section II in order to learn how to:

• Create, purge, rename, clear the contents, display the status of, or save a KSAM file. These
functions are provided by the KSAMUTIL program.

• Copy a KSAM file to another KSAM file in any key ord~r.

• Display the contents of a KSAM file in any key order on the standard list device. These
functions are provided by the FCOPY program.

You should read section III in order to learn how to:

• Open and close the KSAM file.

• Open the file for shared access and dynamic locking.

• Write the records to the file in sequential key order or in random order.

• Read records from the file in sequential order by key value or at random by key value.

• Change the key in preparation for a sequential read.

• Rewrite or delete an existing record.

• Dynamically lock or unlock the file.

Note the following limitations for COBOL:

• You cannot programmatically create a KSAM file. You must use the> BUILD command
of the KSAMUTIL utility program in order to create the file.

• You cannot read a KSAM file in chronological sequence. You can, however, use FCOPY to
copy the file to a non-KSAM file and then read it in chronological sequence.

• For ANSII standard COBOL, only alternate keys, not primary keys, can be duplicated.

SPL PROGRAMMER

If you are programming in SPL, you should read section II in order to learn how to:

• Create, purge, rename, clear the contents, display the status of, or save a KSAM file. These
functions are provided by KSAMUTIL.

• Copy a KSAM file to another KSAM file in any key order.

MAY 1981 1-9

• Display the contents of a KSAM file in any key order on the standard list device. These func
tions are provided by FCO PY.

You may skip sections III, V, and VI, which apply to programming in COBOL, FORTRAN, and
BASIC respectively. You should read section IV to learn how to:

• Create, open, and close a KSAM file.

• Write records to the file in sequential primary key order or in random order.

• Read records from the file in primary or alternate key order or in chronological order.

• Read records at random by key value.

• Read records directly according to a record number relative to the first chronological record.

• Position record pointer forward or backward a specified number of records in any specified key
sequence.

• Position to a record defined by key value.

• Position to a relative record number in key sequence or in chronological sequence.

• Update or delete an existing record.

• Request access and status information on the KSAM file.

• Verify that input/output is completed, and verify that critical output is complete.

• Dynamically lock or unlock the file.

• Write or read user labels.

In general, SPL programmers can use all the file system intrinsics provided for HP 3000 standard
files with the following exceptions:

• A KSAM file cannot be renamed with the FRENAME intrinsic.

• A KSAM file cannot be positioned to a relative record number with FREADSEEK. (Similar
functions are performed by the KSAM intrinsics FFINDBYKEY and FFINDN).

• A record cannot be written to a KSAM file according to relative record number with
FWRITEDIR.

• The relation between two files (interactive or duplicative) cannot be determined with
FRELATE.

1-10 MAY 1981

FORTRAN PROGRAMMER

If you are programming in FORTRAN, you should read section II in order to learn how to:

• Create, purge, rename, clear the contents, display the status of, or save a KSAM file using
KSAMUTIL.

• Copy a KSAM file to another KSAM file in any key order with FCOPY.

• Display the contents of a KSAM file in any key order on the standard list device using
FCOPY.

As a FORTRAN programmer can call either the COBOL procedures described in section III (and
summarized above) or the intrinsics described in section IV (also summarized above). You should,
therefore, read both these sections. Depending on your program requirements, you can then
choose to use either the COBOL procedures or the file system intrinsics. Since these methods
differ significantly in how the file is created and accessed, you should not attempt to combine
calls to COBOL procedures with calls to the file system intrinsics. In general, the intrinsics
provide more capabilities than the COBOL procedures.

You should also read section V, which illustrates, by means of annotated examples, how to access
a KSAM file through FORTRAN calls to the file system intrinsics. The examples illustrate:

• Programmatically creating a KSAM file.

• Writing records to a new KSAM file.

• Reading the records in sequential order by primary key value and then by alternate key
value.

• Reading the records in chronological order.

BASIC PROGRAMMER

As a BASIC programmer you should read section II in order to learn how to:

• Create, purge, rename, clear the contents, display the status of, or save a KSAM file using
KSAMUTIL.

• Copy a KSAM file to another KSAM file in any key order with FCOPY.

• Display the contents of a KSAM file in any key order on the standard list device using
FCOPY.

Since a BASIC programmer, like the COBOL programmer, cannot create a KSAM file program
matically, it is especially important to note how files are created with the BUILD command of
program KSAMUTIL. Note also that BASIC programs cannot read a KSAM file in chronological
sequence. You can, however, use FCOPY to copy the data file to a non-KSAM file and then read
it in chronological sequence.

MAY 1981 1-11

You can skip sections III, IV, and V, which apply to COBOL, SPL, and FORTRAN programming
respectively, and read section VI, which describes the BASIC procedures to access KSAM files.
These procedures enable you to:

• Open and close a KSAM file.

• Write records to a KSAM file in primary key or in random order.

• Read records from the file in sequential order by key value, or at random by key value.

• Change the key in preparation for a sequential read.

• Rewrite or delete an existing record.

• Dynamically lock and then unlock the file during shared access.

ALL PROGRAMMERS

Programmers using any of the languages that access KSAM files will probably need to refer to
appendix A. This appendix contains an explanation of the error messages, condition codes, and
status returns that can result from file access.

Appendix B describes the internal structure of KSAM files. It illustrates how key entries are stored
in a special B-Tree structure, and how KSAM file size is determined. It also explains how files are
accessed through the extra data segments allocated to each open file. This appendix provides infor
mation for the sophisticated programmer who wants to know how KSAM files operate in order to
improve performance. For the average user, the information in appendix Bis not needed in order
to create and use KSAM files.

Appendix C provides the ASCII collating sequence used by KSAM/3000 to determine character key
sequence; (numeric key sequence is in algebraic order). Note that the KSAM key sequence is in as
cending order only, the order in which the ASCII characters are shown in appendix C.

Appendix D provides instructions that will help you convert your files to KSAM/3000 files. It tells
you how to convert any serially accessible file to a KSAM file. If you are already using INDEX files,
it describes use of the conversion program RTOKSAM for converting from INDEX to KSAM. Note
that INDEX files were previously called RSAM files.

Appendix E describes the recovery procedures to be used if the system fails when KSAM files are
open. It explains what happens when a file is closed normally as opposed to what happens when a
system failure prevents normal closing, and then tells the user exactly what to do when a system
failure affects open KSAM files.

1-12 MAY 1981

1111111.!IF USING KSAM UTILITIES·, 11 I

A pair of utility programs and a set of commands allow you to create and manipulate KSAM files.

OVERVIEW
The program KSAMUTIL provides MPE capabilities that allow you to manipulate KSAM files. With
KSAMUTIL commands, you can create a KSAM file, rename both the data and key files, save a
temporary file as a permanent file, clear all data from a file, purge a file, and verify the contents and
access history of an existing file.

The HP 3000 file copier, FCOPY, is adapted to copy KSAM files. FCOPY allows you to copy from
a KSAM file to another file (KSAM or non-KSAM), in primary or alternate key sequence; to copy
an entire file or a subset of a file, and to copy either the data or key file.

The MPE commands : STORE and : RESTORE can be used with KSAM files to transfer the files
from disc to magnetic tape and vice versa.

The utility functions that can be performed on KSAM files are summarized in table 2-1.

Both KSAMUTIL and FCOPY are programs resident in the system library that can be executed with
the MPE :RUN command. When run in a session, each program responds by issuing a greater-than
(>) prompt. You may then enter commands to control further operation of the program. Both pro
grams may be operated in batch mode as well as in a session. In batch mode, the greater-than prompt
is not required. :STORE and :RESTORE are commands directed to the MPE command interpreter
and can be included in either a job or a session.

2-1

Table 2-1. Summary of KSAM Utilities

UTILITY OPTION/COMMAND FUNCTION

KSAMUTIL >BUILD or >B Create KSAM file consisting of a data file and key

file.

>ERASE Clear contents of KSAM data file and reset key

file pointers.

>PURGE Remove KSAM file from system.

>RENAME or >R Change name of KSAM key or data file to a new

name.

>SAVE or >S Save session/job temporary KSAM file as a

permanent file.

>VER I FY or >V Display information on current status of data and
keys in KSAM file.

>HELP or >H Request description of KSAMUTI L commands.

>EXIT or >E Exit from KSAMUTI L program.

>KEYSEO or >KS Check the sequence of any key (primary or alter-

nate) in key file.

>KEYDUMPor>KD Display a formatted, structural key file dump.

>KEYINFO or >Kl Display information on current status of key file;

in case of system failure, attempt recovery.

FCOPY ;KEY=keylocation Copy KSAM file in key sequence by a key spec-

ified by its beginning location in record.

;NOKSAM Copy contents of key or data file in consecutive
(physical) order.

If both these parameters are omitted, the data file
is copied in sequence by primary key; the key file

is established with all links maintained. Other
FCOPY options apply to KSAM files with minor

exceptions (refer to table 2-4).

MPE : STORE datafile, keyfile Store KSAM data and key fiies from disc to

magnetic tape.

: RESTORE datafile, keyfile Restore KSAM data and key files from magnetic

tape to disc.

2-2

KSAM UTI L UTILITY
KSAMUTIL provides a number of capabilities, among which is the essential capability to create
KSAM files. For a COBOL, BASIC, or RPG programmer, KSAM files can be created only through
the BUILD command of the program KSAMUTIL. Although SPL and FORTRAN programmers can
create KSAM files with the FOPEN intrinsic (described in section IV), the BUILD command may
still provide these users with the simplest method for creating a KSAM file.

RUNNING KSAMUTIL

To pass control to KSAMUTIL, use the MPE command:

:RUN KSAMUTIL.PUB.SYS

In a session, KSAMUTIL prompts with the greater-than sign (>) in column 1 to which you respond
with the command you want to execute. In a job, you enter the command in column 1 of the
record following the RUN command. No prompt character precedes the KSAMUTIL commands in
batch mode.

Refer to table 2-1 for a list of the KSAMUTIL commands and their functions.

COMMAND ABBREVIATIONS. All KSAMUTIL commands, except ERASE and PURGE, can be
abbreviated. Most abbreviations allow the first letter of the command name. For example, >BUILD
can be specified as >B, and >EXIT can be specified as >E. The three command names beginning
with K (>KEYDUMP, >KEYSEQ, and >KEYINFO) are abbreviated to two letters to distinguish
one from the other. As shown in table 2-1, these abbreviations are, respectively, >KD, >KS, and
>KI.

RUNNING MPE COMMANDS FROM KSAMUTIL. Once you are running KSAMUTIL and you
want to use an MPE command, you need not exit from KSAMUTIL and return to MPE; simply type
the colon prompt (:) following the KSAMUTIL prompt (>) and then enter the MPE command. For
instance, if you want to list the files in your account and group from KSAMUTIL, enter the LISTF
command as shown:

>:LISTF

OPTION TO LIST DISPLAYS ON LINE PRINTER. Four KSAMUTIL commands display file infor
mation; these are VERIFY, KEYDUMP, KEYSEQ, and KEYINFO. Each of these has an option that
allows you to list the information on a line printer rather than display it on your terminal. If you in
clude the keyword 0 FFLINE as an option in any of these commands, the requested information is
sent to the line printer. If you want the list sent to a particular line printer, you can use a : FILE
command naming the KSAM list file "KSAMLIST" as the formal designator. For example, suppose
you are running KSAMUTIL and want to list the current information on a KSAM file and you want
this information listed on a particular line printer:

>:FILE KSAMLIST; DEV=SLOWLP select particular line printer
>VERIFY MYFILE; OFFLINE specify output to go to an offline device
WHICH (l=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)? .!_
all information__

request all information
The resulting output is sent to the line printer identified as SLOWLP.

2-3

OPTION AL PARAMETERS. Wherever a command parameter is shown with brackets, [] , that
parameter can be omitted. For certain commands, SAVE, VERIFY, KEYDUMP, KEYSEQ, and
KEYINFO, the filereference parameter is optional if no other parameters are specified. When this
parameter is omitted, it assumes a prior command has specified a filereference and it uses the last
filereference to identify the selected file. For example, assume you use the VERIFY command
twice in a row, once to list the requested output on the line printer, and then to display it at your
terminal. To do this, you can use the following command sequence:

: RUN KSAMUTIL
>VERIFY MYFILE; OFFLINE
WHICH (l=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?~

(output is sent to the line printer)

> Y previous file reference to MYFILE is assumed
WHICH (l=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)? i

(output appears at your terminal)

Note that you cannot issue these commands in reverse order because the filereference parameter
can be omitted only if there are no other parameters. Thus, it is not legal to use command
>VERIFY MYFILE followed by >VERIFY; OFFLINE.

EXITING FROM KSAMUTIL

When you have finished using KSAMUTIL in a session, you can return to the MPE operating
system with the command:

In a batch job, the EXIT command is specified in column 1 of the record that terminates the
program; the greater-than sign is not included. The keyword EXIT can be abbreviated as E.

2-4

HELP
Requests help using KSAMUTIL

This command returns a summary description of each of the KSAMUTIL commands when entered
at a terminal. The keyword "HELP" can be abbreviated to "H".

REQUESTING HELP

The HELP command lists all the valid KSAMUTIL commands and then asks if you need informa
tion on a particular command. When you enter the name of a KSAMUTIL command, HELP dis
plays the command syntax. HELP is terminated by entering Nin response to the prompt MORE
(Y /N)?.

The following example illustrates the HELP command. User input is underlined.

>ti
VALID COMMANDS AkE:
BUILDCBJ •••• ~ •• TO CREATE A FILF
ERASE •••••••••• ro RESET h FILE rO INITIAL CONDITIONS
EXITCEJ •••••••• ro LE.AVE THIS Rn11TIN~
PURGE •••••••••• TO DtlcTE A FILE
RENAME[R] •••••• 10 RENA~E A FILF
SAVECSi •••••••• 10 R~T~l~ A TEMPnRARY FILE
VtRIFY[V] •••••• !O OEScR!Qf FILF CHARACTE~T~Trcs
KE Y I NF O [K I 1 • • • • T 0 0 l:j T .\ I N K E Y F IL E I NF 0 HM A T l UN S
KEYDUMP[KDJ• ••• TO O~Tfl~ FOR~ATTED KEY FILt STRUCTURAL DUMP
KtYSEQCK~J ••••• ro CHECK THE sE~UtNC~ Of K~Y FILE

MORE <Y/N)?J_

ENTER COMMAf~D NAME: ~

~UILD <DATAFILEREF>
tiDEV=<DE.VlCE>l
C IOISC=C <NUMREC> l C, <N 1WEXTENTS>1 C, <INI TALt_OC>J 1 l
CkEC=C<RECSlZF>lCtC<~LOCKFACTOP>l[,CF\V]C,~lNARY\tASCill]]]
Cl TEMP]
CICODE=<FILECQDE>J
IKEY=<TYPE>,<POSITION>[•f<LfNGTH>lrtC<BLOc~lNG>JC,OUPLICATEll]

CtRDUPl
CIKEY=<TYPE>t<POSITlON>f ,{<LEN~rH>J[,[<HLnC~ING>l[t0lJPllCATEll1 ••• 1

CtROUPJ]] •••]
CJLABELS=<NUMBERLABELS>]
ClflRSTREC=O\ll
CIKEYDEV=<Utv1cE>l
IKEYFILE=FILEREFERENCE2
CJKEYENTRIES=<NUMBER>J

<TYPE>::=B\0\J\R\L\N\µ\~

2-5

HELP

MORE (Y/N)?Y

ENTER CO~MANO NAME: E

EXIT

MORE. (Y /N) ?'!_

ENTER CO~MAND NAME: E~ASE

ERASE <FILEREFEHENC~>

t.10RE (Y/N)?!_

ENTER COMMAND NAME: PuRGF

PURGE <FJLlREFERENCE>CtTFMPl

MORE (Y/N)?!_

ENTER COt~'4AND NAME:.: Ji

MORE CY /f\I > ?''!_

SAVE C<TEM~FJLEREF>J

MORE (Y /~J) ?Y_

ENTER CO~MANO NAMES Y

VERIFY C<FILERE~ERENCE>l
CJOFFLINF1
CINOCHECKl

MORE (Y/N)'/'!_

ENTER COMMAND NAM£: Kn

t<E YD UMP r <F lLERt.fEREN1:E>]
CISEQ=<KEYS~QUENCE>J
CISUBSET=CC:l<PUSITION>][.<NUMRER>]l

I I
["CHAR-STRING"]

CIFILE=<FILEREFt.RENCE1>J
I I
CIOFFLINE l
CISOHTJ

2-6

MORE (Y /to.I) 71.

ENTER CO~MAND NAME: _KI

KEYINFO [<FILEREFERENCE>]
[; OFFLINE]
[;RECOVER]
MORE < Y /~J > ?'!

ENTER CO~MANO NAM[: KS

KEVSEQ C<FILEREFERENCE>l
CISEQ=<KEYSEQENCE>l
CIOFFLINF.l
CINOLISTl

MORE (Y/N)7~ --------- terminate HELP display

>E

ENO OF PROGRAM

2-7

HELP

BUILD
Creates a KSAM file.

The BUILD command of the KSAMUTIL utility program is used to create a KSAM file and
allocate the file to a mass storage device. Although this command is similar to the MPE :BUILD
command, it has been modified for KSAM files. You can specify the BUILD command with
the abbreviation, B.

NOTE

You cannot create a KSAM file with the MPE :BUILD command.

If you are programming in COBOL, BASIC, or RPG, you must use the KSAMUTIL BUILD com
mand to create a KSAM file; in SPL or FORTRAN, you can create a KSAM file either with the
BUILD command or with the FOPEN intrinsic (described in section IV).

PARAMETERS

fileref ere nee 1 Actual file designator. This is the name that identifies the KSAM file
(both data and key files) and also identifies the data file when specified
independently of the key file. It has the form:

filename [/lockword] [.groupname [.accountname]

2-8

REC=recsize

block factor

F

MAY 1981

BUILD

All four sub-parameters are names that contain from 1 to 8 alphanu
meric characters, beginning with a letter.

NOTE

If specified, account name must be that of your log-on
account; you cannot create a file in another account.

If file has no lockword and belongs to your log-on group, only filename
is necessary.

(Required parameter.)

Size of logical records in file. If a positive number, this represents
words; characters are represented by a negative number. If the records
are variable length, recsize indicates the maximum length allowed for
a logical record.

Block size is determined by multiplying the specified recsize by
blockfactor. For binary files or ASCII files with fixed-length records,
an odd character count is rounded up to the next highest even number
to insure that the record starts on a word boundary. The rounded
number should be used in calculating block size since a block always
starts on a word boundary.

(Optional parameter.)

Default: The configured record size of the particular device is used
when recsize is omitted; for disc files, the value used is 256 characters
or 128 words.

An integer equal to the number of logical data records in each block.
This integer should result in a data block size smaller than 4096 (4K)
words. The blockfactor is used to calculate the buffer size established
for transfer of data to and from the file.

For fixed-length records, blockfactor is the actual number of records
in a block. For variable-length records, blockfactor is a multiplier
used with recsize to calculate block size:

block size= ((recsize+l) * blockfactor)+l

The calculation is performed in words, not characters.

(Optional parameter.)

Default: calculated by dividing the specified recsize into the configured
block size; the result is rounded down to an integer never less than 1.

Data file contains fixed-length records.

(Optional parameter.)

2-9

BUILD
v

BINARY

ASCII

TEMP

DEV=device

Data file contains variable-length records. Since KSAM performs its
own blocking and deblocking, a KSAM data file specified as variable
length is treated by MPE as a file with fixed-length records, each re
cord the size of a KSAM block (refer to blocl~factor above for calcu
lation of block size). Although the MPE LISTF command shows the
data file as fixed-length, the KSAMUTIL VERIFY command, option
3, shows DAT A FIXED as FALSE when the file is a variable-length
KSAM file.

(Optional parameter.)

Default: If both F and V are omitted, records are fixed-length.

Data file contains binary-coded records.

(Optional parameter.)

Data file contains ASCII-coded records.

(Optional parameters.)

Default: If both BINARY and ASCII are omitted, records are binary.

File is created as a session/job temporary file; when the session or
job terminates, the file is deleted from the session/job temporary
file directory.

(Optional parameter.)

Default: If TEMP is omitted, file is declared permanent and is saved
in the system file domain.

device designates the device on which the data file resides. (The key
file device is specified in the KEYDEV parameter.) device can be
specified as a device class name of up to 8 alphanumeric characters
beginning with a letter and terminated by any non-alphanumeric
character such as a blank, or as a logical device number consisting of
a three-character numeric string, or it can be a remote device identifier
consisting of the device class name or logical device number followed
by a pound sign (#) and a remote device class name or logical device
number.

Device class names and logical device numbers are assigned to devices
during system configuration. (See System Manager/System Supervisor
reference manual).

For KSAM files, the device must be a random access device such as the
disc. If the file is a newly-created disc file specified as a device class
name, then all extents to the file must be members of the same class.
Similarly, if the device is identified by a logical device number then
all extents must have the same logical device number.

(Optional parameter.)

Default: If omitted, the device class name DISC is used.

2-10

CODE=filecode

DISC=numrec

numextents

initalloc

BUILD
Code indicates that the data file is specially formatted. The code is
recorded in the file label and is available to processes through the
FGETINFO intrinsic. It must be specified as a positive integer in the
range 0 through 1023.

(Optional parameter.)

Default: If CODE is omitted, the file code is 0.

NOTE

The CODE parameter applies only to data files; the key file
code value is always 1080.

Total maximum file capacity, in terms of logical records (for files con
taining fixed-length records) or blocks (for files containing variable
length records). Maximum file capacity allowed is 2,097 ,120 sectors.

(Optional parameter.)

Default: If omitted, 1024 records is the default.

Number of extents (continguously-located disc sectors) that can be
dynamically allocated to the file as logical records are written to it.
The size of each extent (in terms of records) is determined by the
numrec parameter value divided by the numextents parameter value.
Extents can allocated on any disc in the device class specified in the
device parameter. If you want to ensure that all extents for a file re
side on the same disc, use the logical device number of that disc or a
device class name relating to a single disc device, in the device param
eter. If specified, numextents must be integer value from 1 to 32.

(Optional parameter.)

Default: 8.

Number of extents to be allocated to the file at the time it is opened.
Must be an integer from 1 to 32. If attempt to allocate requested space
fails, an error message appears.

(Optional parameter.)

Default: 1.

KEYFILE=filereference2 Actual file designator. This is the name that identifies the KSAM key
file. It has the format: filename, which is 1-8 alphanumeric characters
beginning with a letter. Unlike filereference1 (the data filename)
filereference2 may not be qualified by account or group names, nor
may it contain a lockword. The key file contains all the key entries and
key control information, whereas the data file contains the actual data.
A KSAM file is always referenced by the data file name, filereference1,
not the key file name, filereference2.

(Required parameter.)

MAY 1981 2-11

BUILD

KEY=

key type

key location

key size

key blocking

One KEY specification must be included for each key in the KSAM file.
The first occurrence of the KEY specification describes the primary
key; each subsequent KEY specification describes an alternate key.
There may be up to 15 alternate key descriptions in addition to the
primary key description.

(Required parameter.)

keytype is specified as~;I3YTE~J INTEGER, DOUBLE, REAL, LONG,
NUMERIC, PACKED, or--*PACKED. The whole word or only the
first letter need be specified (for example, B is equivalent to BYTE).
If more than the first letter is used, the word must be spelled correctly.
(Refer to table 2-2 for a full description of each key type.)

(Required parameter.)

Location of the first character of the key within the data record count
ing from the first character in t~ record. The first character in the
data record is always numbered i·." Only one key can start at the same
location.
(Required parameter.)

Length of the key in characters. The length depends on keytype as
follows:

BYTE 1 to 255 characters
INTEGER 1 to 255 characters (default= 2)
DOUBLE 1 to 255 characters (default= 4)
REAL 1 to 255 characters (default = 4)
LONG 1 to 255 charncters (default = 8)
NUMERIC 1 to 28 characters
PACKED 1 to 14 characters (odd number of digits)
*PACKED 2 to 14 characters (even number of digits)

(Required parameter for BYTE, NUMERIC, PACKED, and *PACKED
key types; defaults are provided for INTEGER, DOUBLE, REAL, and
LONG key types, as noted above.)

Number of lrnys per block. The J:ceyblocking value is an even number
greater than or equal to 4. It is used with the key entry size (heysize
parameter) to detenni:ne the ;:;iz~: of each key olock acc0rdi11g to the
fo1J0wing formula:

5 + (key~ze+l)+ 4) keyblockin{:{ =key block size in words
L.

Five words are used for control information in each block, keysize
specified in characters is divided by 2 to get the key size in words; and
4 words are added for the pointers in each key entry. This key entry
size in words is multiplied by the key blocking factor to determine key
block size. If the key blocking value generates a key block size greater
than 2048 (2K) words, the file cannot be created.

The resulting key block size is rounded up to a multiple of 128 words.
If the file has multiple keys, KSAM forces all key blocks to the same
size and adjusts the number of keys per block accordingly.

Note that the value you specify for key blocking may be, increased
(never decreased) by the system in order to produce a blocking factor
that does not waste disc space. Refer to appendix B for a discussion
of how the system determines the most efficient blocking factor based
on the value you enter for key blocking.

2-12

DUPLICATE
DUP

RDUPLICATE
RDUP

BUILD
Key blocking can affect access time in that the smaller the key block,
the more time it may take to retrieve a record using the key file. In
many cases, the default blocking factor produces the most efficient
key blocking.

(Optional parameter.)

Default: keyblocking is set to a value that produces a key block size of
1024 (1 K) words. (Maximum size is 2K.)

In order to allow duplicate key values, this word must be included in
the KEY specification. If DUPLICATE (or DUP) is not specified,
records with duplicate key values are rejected and an error message
issued when such records are written to the file. DUP is a legal abbre
viation of DUPLICATE. When you use this option to specify dupli
cate keys, each new duplicate key is inserted at the end of the dupli
cate key chain. This maintains the chronological order of duplicate
keys.

This option specifies that duplicate keys are allowed and are to be in
serted randomly in the duplicate key chain. This method makes in
sertion of such keys faster, but does not maintain the chronological
order of the duplicate key chain.

(Optional parameter.)

Default: If omitted, duplicate keys are prohibited.

KEYENTRIES=numentries The value of numentries is used to determine the key file size. The
value specified for numentries should be the maximum number of
primary key entries expected. When there are alternate keys, KSAM
automatically adjusts the key file size to accomodate each key in
addition to the primary key.

Normally, this parameter can be omitted since KSAM assigns it the
value of numrec (number of fixed-length data records or blocks of
variable-length records). If, however, the data records are variable
length and there are many small records, the value of numrec may
be too small. In this case, you should specify a value for numentries
greater than the value of numrec.

The number of key entries determines the size of the key file, the file
limit. When a new KSAM file is created, the MPE end-of-file marker
is set to this file limit rather than to the end-of-data as is normal for
MPE files. This allows any key block to be accessed in case of system
failure. To determine where the actual end-of-data is, use the KSAM
UTIL VERIFY command, option 3, and look at the heading KEY
FILE EOF. This shows the record number of the next available key
block (one record past the last used key block).

(Optional parameter.)

Default: the value of numrec in the DISC= parameter or its default
value 1024 if it too is omitted.

2-13

BUILD
LABELS=numla be ls

KEYDEV=device

FIRSTREC=recnum

The number of user label records to be created for the KSAM data
file. Up to 254 labels (l less than the MPE maximum) can be specified;
COBOL programmers are restricted to 8 labels.

(Optional parameter.)

Default: if omitted, numlabels is equal 0.

The device on which the key file resides, specified as a device class
name or a logical device number. A device class name indicates the
general type of the device as a string of one to eight alphanumeric
characters beginning with a letter and terminated by a non-alphanumeric
character such as a blank. The logical device number is the three
character numeric string identifying a particular device. If the data
file is created on a remote device, the key file is assigned to the same
machine, and the key file device is specified in the KEYDEV=
parameter.

Device class names and logical device numbers are assigned to devices
during system configuration.

For KSAM files, the device must be a random-access device such as the
disc.

(Optional parameter.)

Default: If omitted, the device class name DISC is used.

Determines whether record numbers in the data file are to start with
zero or one. If the integer 1 is specified, then records are numbered
beginning with 1; otherwise they will start with 0. The only accept
able values for recnum are 1 and 0.

Normally, record numbering in MPE files starts with zero, the default
value for recnum. In order to be consistent with most commercial
applications, you can specify FIRSTREC=l to change the record
numbering scheme so that data records are numbered starting with 1.

(Optional parameter.)

Default: if omitted, record numbering starts with zero.

2-14

BUILD

KEY DESCRIPTION
Each key is described by specifying key type, key position, key size, and, optionally, the blocking
factor and whether duplicates are allowed. Key type and size are defined in Table 2-2. Note that
default values are provided for: keysize when key type is specified as INTEGER, DOUBLE, REAL,
or LONG. Only BYTE, INTEGER, and DOUBLE type keys can be used as generic keys.

Table 2-2. Key Types

key type
keysize

Format
(In Characters)

BYTE 1-255 Each character requires 8 bits of a computer word. A character may
contain any of the HP ASCII character set consisting of letters of the
alphabet, numbers, and special characters. (Refer to appendix C.)

INTEGER 1-255 Single-word fixed-point format permits two's complement represen-
(default= 2) tation of positive and negative integers. Bit 0 is a sign bit and the

remaining 15 bits define a quantity ranging from -32768 through
+32767.

DOUBLE 1-255 Double-word fixed-point format is the same as the integer format

(default= 4) except that two words are linked together to allow a 32-bit quantity
with a range between approximately -2 billion and +2 billion.

REAL 1-255 Floating-point format with bit zero as a sign bit, an exponent

(default= 4) (biased by +256) in bits 1 through 9, and a positive fraction in the
remaining 22 bits of the double word. This type cannot be used
as a generic key.

LONG 1-255 Long floating-point format uses four words; an exponent (biased by

(default= 8) +256) in bits 1-9, as with the real number, and a positive fraction in
the remaining 54 bits. This type cannot be used as a generic key.

NUMERIC 1-28 External decimal format in which each decimal digit requires one
8-bit character and the sign is combined with the least significant
digit. (Refer to Table 2-3 for the list of characters representing the
digit/sign combinations.) This type cannot be used as a generic key.

PACKED 1-14 Packed decimal format in which each digit requires only 4 bits and
the sign is specified as a hexadecimal number in the least significant
4 bits (1100 or C is plus and 1101 or D is minus). This type cannot
be used as a generic key.

*PACKED 2-14 Same as PACKED except this key type contains an even number of
digits. This type cannot be used as a generic key.

2-15

BUILD
Table 2-3. Character Equivalent to Signed Digit for NUMERIC Keys

POSITIVE VALUES NEGATIVE VALUES

SIGNED DIGIT CHARACTER SIGNED DIGIT CHARACTER

+O { -0 }
+1 A -1 J

+2 B -2 K

+3 c -3 L

+4 D -4 M

+5 E -5 N

+6 F -6 0

+7 G -7 p

+8 H -8 Q

+9 I -9 R

CREATING A KSAM FILE

Creating a KSAM file with the KSAMUTIL BUILD command is very similar to creating a standard
HP 3000 file with the MPE command :BUILD except that a KSAM file includes a key file descrip
tion. As with standard files, the default values can be assumed for many of the file description
parameters.

To create a KSAM file from the KSAMUTIL program, you can start by simply naming the file as
the first parameter of the BUILD command. The file name defines the data file portion of the
KSAM file with the default options: fixed-length, 128-word, binary-coded records, blocked 1
record per block.

To fully define a KSAM file, you must also:

• name the key file

• define at least one key (the primary key) in terms of:

type
location in the data file
size

These parameters provide your minimum KSAM file description from which the file can be created.
To illustrate:

:RUN KSAMUTIL.PUB.SYS
>BUILD KSAMFILE;KEYFILE=KFILEJKEY=I,21,2

2-16

BUILD

This command assigns the name KSAMFILE to the KSAM data file; it names the key file KFILE,
and defines the primary key as an integer that starts in character 21 of the record, and is two char
acters long. By default, the blocking factor of the keyfile provides key blocks 1024 words long, the
maximum number of primary keys is set to 1023 (the same as the maximum number of data
records), duplicate keys are prohibited, and record numbering starts with zero.

File KSAMFILE is now created. Default values were used where possible so that the BUILD com
mand specification shown above is the minimum needed to create a KSAM file. You could create
the same file, KSAMFILE, with the following BUILD command in which default parameters are
specified.

recsize

I
>BUILD KSAMFILE; REC= 128,, F, 9 I NARY &----line continuation character
> ;oEV=DISC&
>

>

>

>

>

>

>

>

; c·oDE=0&
;LABELS=0&
; FIR STREC='/7 & ~,numextents
;n1sc=1023,8,1&

;KEYFILE=KFILE& ~_initialloc
; KEY= I, 21 , 2 & __ n_u_m_r_ec ______ key description

;KEYENT~IES=l023&

; KEYDE1J=DI SC \

nu men tries

This specification of the BUILD command, although initially more cumbersome, documents the
default values V\tith which the file is created. Since the default keyblocking factor is a value cal
culated from the key size so that each key block is lK words long, ~t is not specified here. You
can use the VERIFY command to find the value KSAM has assigned as a key blocking factor for
any file you create using a default for this value.

Only a primary key is defined for this file. Within the data file, this key is an integer that occupies
characters 21 and 22 (word 11) of each data record.

---- Primary Key

In the key file, the values in any key are ordered sequentially so that the next higher value can
always be located. The key should not begin in the first two characters of the data record since
these characters are set to all 1 's when the record is deleted. If the key value of deleted records
need never be recovered, then this restriction can be ignored.

For each alternate key in addition to the primary key, another KEY= clause must be included.
Suppose a personnel file with a primary key containing an employee number, an alternate key
containing a name, and another alternate key containing the person's age. The first two keys are
specified as BYTE keys, the third is an INTEGER. The key file is blocked with 10 keys per block
and the maximum number of primary keys expected is 3000:

BUILD

:RUN KSAMUTIL.PUB.SYS
>BUILD EMPLOYEE;REC=11,ASCII;KEYFILE=EMPKEY;KEYENTRIES=3000;&
> KEY=B1 3, l l / 1 '2H & primary key (employee number)
> KEY=B1 15,30 1 1 eH &-----alternate key (employee name)
> KEY=I1Sl12110-------

The keys are located in the data record as follows:

character

3-

15---+

alternate key (employee age)

word

1st alternate key

Note that the keys need not be contiguous. In this example, the primary key is located nearer to
the beginning of the record than the other keys. This is not a requirement; the primary key can
physically follow any alternate keys in the record, although the primary key is always the first
key specified in the BUILD command. For example, in the file FSAMPLE, the primary key starts
in character 21 following a secondary key in character 3:

:RUN KSAMUTIL.PUB.SYS
>BUILD FSAMPLEJKEYFILE=FKEY;&
>
>

data record

2-18

ERASE
Clears the contents of a KSAM file.

The contents of a KSAM file, both the data and key files, can be cleared to an empty state with the
KSAMUTIL ERASE command.

PARAMETERS

fileref ere nee Actual file designator that identifies the KSAM data file. It is specified
exactly like filereferencel in the> BUILD command.

(Required parameter.)

CLEARING A KSAMFILE

When ERASE is specified for a KSAM file, the end-of-file pointer that follows all data is reset to
point to the first record in the data file. This position of the pointer is identical to its position
when the file is created and before any data is written to the file.

All pointers and control words in the key file are reset to indicate that the data file is empty.

Note that the file is still created and new data may be written to it.

For example, to clear the contents from the file identified as KSAMFILE:

>ERASE KSAMFILE

2-19

PURGE
Purges a KSAM file from the system.

The KSAMUTIL PURGE command can be used to remove a KSAM file, both data and key files,
from the system. Although the MPE :PURGE command can also be used, it must be specified
twice, once for the data file and once for the key file. If you are programming in COBOL, BASIC,
or RPG, you should use the KSAMUTIL PURGE command to purge a KSAM file. In SPL or
FORTRAN you could also use the FCLOSE intrinsic (described in section IV) to purge a KSAM
file.

PARAMETERS

filereference

TEMP

Actual file designator identifying the KSAM data file. Specified
exactly like filereferencel in the> BUILD command.

(Required parameter.)

Must be specified if file is a temporary file in session/job temporary
file domain. If omitted, a permanent file is assumed.

(Optional parameter.)

PURGING A KSAM FILE

When PURGE is executed, the specified KSAM data file and its associated key file are removed
from the system and can no longer be referenced.

For example, to purge a temporary KSAM file called KTEMP:

>PURGE KTEMP,TEMP
KTEMP.KSAM.DATAMGT & KKEY PURGED·

To purge the permanent file KSAMFILE:

>PURGE KSAMFILE
KSAMFILE.KSAM.DATAMGT & KFILE PURGED.

The system prints the data and key file names of a successfully purged KSAM file. It also prints
the group and account names in which the file was created (in this case KSAM and DATAMGT).

2-20

RENAME
Renames either the data or key file of a KSAM file.

The KSAMUTIL RENAME command can be used to change either the KSAM data file name or the
KSAM key file name to a new name. Following execution of RENAME, the data and key files
retain their relation to each other. Note that if the MPE :RENAME command is used, this relation
is severed. The FRENAME intrinsic cannot be used to rename a KSAM file.

PARAMETERS

oldfileref ere nee

newfilereference

TEMP

Current actual file designator identifying the KSAM data file or the
KSAM key file, specified exactly like filereferencel or filereference2
in the BUILD command.

(Required parameter.)

New actual file designator in same format as oldfilereference. The file
named by oldfilereference will be given the name specified by
newfilereference.

(Required parameter.)

Indicates that old file was, and new file will be, a temporary file in the
session/job temporary file domain.

(Optional parameter.)

Default: If omitted, permanent file is assumed.

RENAMING A KSAM FILE
You may rename either the data file or the key file, not both, with one >RENAME command. To
rename the entire file, you must specify the RENAME command twice. Thus, to rename the data
file KSAMFILE and its associated key file KFILE:

>RENAME KSAMFILE1NEWDATA
>RENAME KFILE,NEWKEY

The relation between keys and data in the newly named files is the same as that in the files
KSAMFILE and KFILE.

If the data file being renamed was protected by a lockword, then this lockword must be specified
on both the old and new files if it is to be retained. If the lockword is omitted, it is removed when
the file is renamed. Note that a lockword is never specified when renaming the key file; the keyfile
is protected automatically by any lockword assigned to its associated data file. For example, to
assign a new lockword to the data file DATAFIL:

>RENAME DATAFIL/LOCKA, DATAFIL/LOCKB--------- new lockword

2-21

RENAME
Note that the new file name need not be in the same group as the old file name. RENAME provides a
way to move a file from one group to another. For example, to move the KSAM file DATAFILE
with its associated key file KEYFILE from GROUP A to GROUPE:

>RENAME DATAFILE.GROUP A,DAT AFILE.GROUPB

Note that only one REN AME command is used. This one command insures that both the data file
and the key file are in the same group.

2-22

SAVE
Saves a temporary KSAM file as a permanent file.

A temporary KSAM data file and its associated key file are made permanent with the KSAMUTIL
SAVE command. The keyword "SAVE" can be abbreviated to "S".

PARAMETERS

file ref ere nee Actual file designator identifying the session/job temporary file to be
saved, specified exactly like filereference 1 in the >BUILD command.

(Optional parameter.)
Default: If omitted, last filereference is assumed.

SAVING A KSAM FILE

Assume that KSAM data file KDATA and its associated key file was created as a session/job
temporary file; to save this file as a permanent file:

>SAVE KDATA

Both the data and key files are saved.

2-23

VERIFY
Displays access and status information about KSAM file.

With the VERIFY command, you can request a display of the characteristics of a KSAM data file,
both the static information defined at file creation and dynamic file access information. The ab
breviation V can be used instead of the keyword VERIFY.

PARAMETERS

fileref ere nee

OFF LINE

NOCHECK

Actual file designator identifying the file whose characteristics are to
be displayed. The actual designator can be a back reference to a file
name in an MPE :FILE command; in this case, the actual designator
must be preceded by an asterisk(*). Either the data file name or the
key file name may be used to identify the KSAM file.

(Optional parameter only if no parameters.)

Default: If omitted, last filereference is assumed.

Display output on line printer. An MPE : FILE command may be used
to specify a particular line printer.

(Optional parameter.)

Default: If omitted, display is sent to terminal.

Allows specified KSAM file to be opened for read-only access by the
VERIFY command; use when a system failure prevents the KSAM
file from being opened.

(Optional parameter.)

Default: If omitted, VERIFY cannot open file that was open when
system failed.

DISPLAY KSAM FILE CHARACTERISTICS

In a session, you will be asked to select one of four possible displays:

1. File information (definitions from file creation plus file access statistics)

2. KSAM parameters (definitions of keys from file creation)

3. KSAM control (key file access statistics)

4. All three of the above displays

In a job, the entire set of displays is printed exactly as if option 4 had been selected in a session.

2-24

VERIFY

To illustrate the interaction, the following VERIFY commands select each of the three separate
displays; if option 4 were selected, these displays would be printed consecutively with no halt
until they were finished. User entries are underlined:

select file information only
\

>RUN KSAMUTIL.PUB.SYS

HP3220BA.2.4 TUE, APR 17, 1979, 11:23 AM
>VERIFY TESTFILE

KSAMUTIL VER~:A.2,4
3:KSAM CONTROL, 4:ALLl?! WHICH C1=FILE INFO, 2:KSAM PARAMETERS,

TESTFILE.JOAN.MORRJS CREATOR=JOAN
FOPTIONSC004005):KSAM, :FILE, NOCCTL, F, FILENAME, ASCII, PERM
AOPTIONS(000400):DEFAULT, NOBUF, DEFAULT, NO FLOCK, NO MR, IN
RECSIZE:SUB:TYP:LDNUM:DRT:UN.: CODE:LOGICAL PTR: END OF FILE:FILE LIMIT

-128: 9: o: 2: 4: 1: o: o: 5: 1023
LOG. COUNT:PHYS. COUNT:BLK SZ:EXT SZ:NR EXT: LABELS:LDN: DISCADDR:

1: 1: -120: 129: e: o: 2:00000111160:

The information returned by selecting file information is the same as that returned by FGETINFO
(described in section IV).

select key file information only

I
WHICH Ct:FILE INFO, 2:KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?~

KEY FILE=TESTKEY KEY FILE DEVICE:3 SIZE= 386 KEYS= 2
FLAGWORO(OOOOOO):RANDOM PRIMARY, FIRST fiECORD:O, PERMANENT
KEY TY LENGTH LOC, 0 KEY BF LEVEL . k · 1. t d t· t

1 B 2 o 3 y 7 2 1 -- primary ey ts ts e zrs ,
2 B 8 2 4 R 12 6 1 ...- alternate keys follow

'"-------y
random insertion of duplicate key

corresponds to KEY= descriptions in BUILD command

The actual number of keys per block (the blocking factor) is listed in this display under the heading
KEY BF. Note that this number may be greater than the blocking factor you specified during file
creation. This occurs if KSAM adjusts the specified blocking factor to generate a block size that
makes optimum use of disc space. KSAM only increases the specified blocking factor, it never de
creases it. (Refer to appendix B for full particulars on the calculation of block size and the adjust
ment of the blocking factor.)

The maximum number of levels in the key file structure for each key is noted under the heading
LEVEL.

2-25

VERIFY
select dynamic KSAM file information

~
WHICH C1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?_!

DATA FILE : TESTFILE VERSION= A.2.4
KEY CREATED:107/'79 10:58:17.4 KEY ACCESS= 107/'79 11:23:35.9
KEY CHANGED=107/'79 11:21: 1.1 COUNT START:t07/'79 11:21: a.o
DATA RECS = 5 DATA BLOCKS: 4 END BLK WDS:: 64
DATA BLK SZ: 64 DATA REC SZ: 128 ACCESSORS: 0
FOPEN 1 FREAD 0 FCLOSE 1
FREADOIR 0 FREADC 0 FREADBYI<EY 0
FREMOVE 0 FSPACE 0 FFINDBYJ<EY 0
FGETINFO 3 FGETKEYINFO 1 FREADLABEL 0
FWRITELABEL 0 FCHECK 0 F'FINDN 0
FWRITE 5 FUPDATE 0 FPOINT 0
FLOCK 0 FUN LOCK 0 FCONTROL 0

FSETMODE 0
KEYBLK READ 3 KEYBLI< WROTE 2 KEYBLK SPLIT 0
KEY FILE EOF 18 FREE KEY HD 0 SYSTEM FAILURE 0
MIN PRI~E 3 MAX PRIME 1 RESET DATE
DATA FIXED TRUE DATA B/F 1 TOTAL KEYS 2
FIRST RECNUM 0 MIN RECSIZE 31

The dynamic key file information displayed by option 3 together with the static key file informa
tion displayed by option 2 comprise the information displayed by the FGETINFO intrinsic de
scribed in section IV. Note that the version number displayed by VERIFY is the version of KSAM
under which the file was created. The intrinsic HP32208 described in section IV can be used to
determine the current version of KSAM.

TERMINATING THE >VERIFY COMMAND

In order to terminate the VERIFY command in a session, you must press the RETURN key (CR)
in response prompt:

WHICH (l=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?

Any other response either causes a display followed by reiteration of this prompt or else causes this
prompt to be issued. For example:

WHICH Cl=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL>?6

\i1H I CH Cl=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL>?0

WHICH C 1 =FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL> ?CR

>EXIT

only response to terminate VERIFY I END OF PROGRAM

DIRECTING VERIFY OUTPUT TO LINE PRINTER

If you want a "hard copy" of the information displayed by VERIFY, you should use the OFFLINE
option. When included, OFFLINE directs the VERIFY information to a line printer. You can use
the : FILE command to specify a different output device or a particular line printer.

2-26

VERIFY

USING VERIFY FOR RECOVERY

In case of a system failure when a KSAM file is open, the VERIFY command provides the following
useful information:

• EOF marker on the data file (END OF FILE header in option 1)

• EOF marker on key file (KEY FILE EOF header in option 3)

• Flag indicating whether system failure occurred (SYSTEM FAILURE heading in option 3)

• Number of processes that had opened the file for non read-only access when the system
failure occurred (ACCESSORS heading in option 3).

Note that you must use the NOCHECK option in order to run VERIFY when a system failure pre
vents KSAM files from being opened. This option overrides the restriction on opening files after a
system failure and allows a file to be opened for read-only access in order to get the VERIFY infor
mation. (This access is not counted in the ACCESSORS count.)

(Refer to the KEYINFO command description for an example of how the VERIFY information
can be used for recovery after system failure.)

2-27

KEVSEQ
Verifies sequence of key values in KSAM file.

This command compares all the key values in a particular key (primary or alternate) to determine
whether they are in ascending sequence. If any values are out of sequence, a list of numbers ident
ifying such values is displayed, unless NOLIST is specified. In any case, the number of out-of-se
quence values is returned. Note that if key values are out of sequence, the key file is damaged and
the KSAM file must be reloaded.

The abbreviation KS may be used instead of the keyword KEYSEQ.

PARAMETERS
filere f erence

SEQ=keysequence

OFF LINE

NO LIST

Actual file designator identifying the KSAM file whose key values are
to be verified. Either the data file name or the key file name can be
used to identify a KSAM file. Also, a back reference to a file named
in an MPE : FILE command may be used.

(Optional parameter if no parameters are specified.)

Default: If omitted, the last file referenced is assumed.

Identifies particular key whose key values are to be checked. Keys are
numbered from 1. The first key (SEQ=l) is always the primary key;
subsequent keys are alternate keys numbered in the order they appear
in the record, such that the first alternate key in the record is SEQ=2,
the second alternate key is SEQ=3, and so forth.

(Optional parameter.)

Default: If omitted, the primary key is assumed.

Directs list of out-of-sequence keys to the line printer. An MPE : FILE
command may be used to indicate a different output device than the
line printer, or a particular line printer.

(Optional parameter.)

Default: If omitted, the list of out-of-sequence keys is displayed at
user's terminal.

Suppresses display of the particular key numbers whose values are out
of sequence. A count of the out-of-sequence values is displayed even
if NOLIST is specified.

(Optional parameter.)

Default: If omitted, list of key numbers for out-of-sequence key values
is displayed.

2-28

KEVSEQ

VERIFY KEY SEQUENCE

If you suspect that your key file has out of order key values in any key, you can run KEYSEQ. If
any key values are not in ascending sequence, the key numbers associated with those key values are
displayed. Note that the number of a key value refers to its position in the key file. For example, if
the third, fourth, and fifth key values of a particular key are out of sequence, the numbers 3, 4, and
5 are displayed.

If the list of out-of-sequence key numbers is long, you can terminate it by holding down the CNTL
key while typing Y (CNTL/Y). The total number of out-of-sequence key values will be displayed
even if you terminate the list with CNTL/Y or suppress it altogether with NOLIST.

Consider the following partial list of key values in the primary key of the KSAM file MY FILE:

Key Value No. Key Value

1 ADAMS

2 ADDISON

® ALAN
key values out of order

® ADLER

5 ADRIAN

6 AGEE

• •
• •
•

If you run KSAMUTIL and use the KEY SEQ command, as shown below, you can determine which
keys are out of order:

:RUN KSAMUTIL.PUB.SYS
> KEYSEQ MY FILE ;SEQ=l------- test primary key sequence

KEYSEQ displays the following:

KEY VALUE # (FOR KEY VALUE OUT OF SEQUENCE)

34: --------=--key numbers of keys with out-of-sequence values

TOTAL# OF KEY VALUES READ 30
OF KEY VALUES OUT OF KEY SEQUENCE ORDER 2
KEY FILE STRUCTURE DAMAGED, KSAM FILE HAS TO BE RELOADED

Regardless of the number of key values that are out of sequence, you should reload the KSAM file
to restore its integrity.

2-29

KEYSEQ

Consider a second example. Suppose MYFILE has two alternate keys, one starting in location 11
(11th character of record) and another starting in location 33. To verify the sequence of key values
in the second alternate key, execute KEYSEQ as follows:

>KS MYFILE ;SEQ=3 ;NO LIST suppress list of key numbers
\ second alternate key

TOTAL# OF KEY VALUES READ 30
#OF KEY V ALOES OUT OF KEY SEQUENCE ORDER o---key values in sequence

In this case all the key values were in correct sequence. Unless other keys in this file have values
that are out of sequence, you need not reload the file.

Note that NOLIST was specified. In general this is good practice. If any key values are not in
sequence, the file should be reloaded, so it is seldom important to know which keys are out of
sequence.

2-30

KEVDUMP
Provides formatted, structural dump of key file.

The key file dump consists of three items of information for each key value:

1. Key Value

2. Record Pointer

The actual value of each key in ascending order

The record number (fixed-length files) or word offset (variable
length files) of the data record to which the associated key vclue
points.

3. Key Block Address Relative record number of the first record in the key block con
taining the associated key value, followed within parentheses by
the number of key values in the block. The addresses of key
blocks at different levels are indented.

This dump is very useful for examing the contents of any key file. Since key blocks are physically
scattered throughout the key file, linked by pointers, it is difficult to follow an unstructured dump
of a key file. The KEYDUMP display shows the contents of the key file, not as they are actually
stored, but in a way that makes it much simpler to read than a dump of the actual file.

One key at a time is dumped by KEYDUMP. If there is more than a primary key, you must run
KEYDUMP for each key in order to dump the entire key file.

Note that you can use CNTL/Y (the CNTL key held down while pressing the Y key) to stop display
of this dump at any time. This is particularly useful if you display the dump at the terminal. Usually,
however, you will use the OFFLINE option to list the dump on a line printer (see Parameter
description, below).

You can choose to dump a subset of the key file contents based on the key number or a key value.
You can send the dump to a particular file and, if so, you can sort the key file contents by the re
cord number in the data file rather than by key value. You can also send the dump to a line printer.

PARAMETERS
filereference Actual file designator identifying the KSAM file whose key file is to be

dumped; either the data file name or the key file name can be specified.
The filereference can be a back reference to a file named in an MPE
: FILE command.

(Optional parameter if no parameters are specified.)

Default: If omitted, the last file referenced is assumed.

2-31

KEVDUMP

SEQ=keysequence

SUBSET=

[-] position

''string''

,number

FILE= filename

Specify a particular key whose contents are to be dumped. The
primary key, whatever its location in the data record, is always key
number 1 (SEQ=l). Alternate keys are numbered according to the
order in which they are specified in the BUILD command (or in
ksamparam at FOPEN). The first alternate key is specified as
SEQ=2, the next alternate key as SEQ=3, and so forth.

(Optional parameter.)

Default: If omitted, the primary key is selected.

Select a portion of the key file to dump, based on the numeric position
of the key or the key value, and the number of key values.

Start dump with key whose number is specified. This number is the
same as the key number issued by KEYSEQ. It corresponds to the
position of the key value in the file in ascending sequence. Thus the
first key value is position 1, the second is position 2, and so forth.

The optional minus sign suppresses the normal indentation by key
levels of the key block address display.

Start dump with first key value greater than or equal to the specified
string.

Indicates the number of key values to be dumped starting with the key
at the indicated position or whose value is indicated by "string".

(Optional parameter.)

Default: If omitted, all the key values for selected keys are dumped.

Direct key file dump to specified disc file. A disc file (filename) will
be created with a record size equal to the size of a key entry, that is
keylength (rounded up to full words)+ four words.

The four words are needed for the record pointer (2 words) plus the
key block address (2 words). Note that a new file is always created, so
do not name an exising file.

The file has a default block size of lK words. Any of the file charac
teristics except the record size can be changed by a :FILE statement.
For example:

>:FILE FILEDUMP ;REC=,100 ;DEV=TAPE
>KEYDUMP MYFILE ;FILE=*FILEDUMP

These commands dump the primary key sequence to a tape with 100
records per block.

(Optional parameter.)

Default: If omitted, key dump is sent to terminal.

2-32

OFF LINE

SORT

KEYDUMP
Direct output to a line printer. An MPE : FILE command can be used
to indicate a different output device or a particular line printer.

(Optional parameter.)

Default: If omitted, the dump is sent to the user's terminal.

Sort dump by record pointers rather than key values. The record
pointers indicate the record number of the records in a data file with
fixed length records or the word offset of the records in a data file
with variable-length records.

Note that this option can be used only when the dump is directed to a
specific file with the FILE= option.

(Optional parameter.)

Default: If omitted, key dump is in ascending sequence by key value.

DUMPING THE KEY FILE

The dump produced by KEYDUMP consists of three columns: the first contains the key value, the
second a pointer to a record number in the data file, and the third contains the key block address
and the number of key values in that block. The key block address is given as the record number of
the first record in any block.

For example, assume that TESTFILE contains an INTEGER type primary key whose values we
want to see. Run KEYDUMP as follows:

:RUN KSAMUTIL.PUB.SYS
> KEYDUMP TESTFILE

The resulting dump consists essentially of three columns: one contains the key values in ascending
sequence, another contains the record number (or word offset if record size is variable) of the as
sociated record in the data file, and the third gives the record address of the key block. A sample
dump is shown below:

key values in record # (counting from (/J)
\ascending sequence /,------------ of the data record in which

KEY REC. PTR. KEY BLOCK ADR. the key value is located

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014

3
5
6
2
1
0
4
9
7
8
10
11
12
13

2 (4 \relative record # of 1st
2 record in key block
2 (numbered from zero).
2

18 (5)
18
18
18
18

24 (3)
24
24

6 (2) Number of key values

6

2-33

in this block.

the block located at record
#6 contains 2 key values; it
is in a separate column because
it is at a higher level of the key
block structure.

KEYDUMP
This dump lists under the heading "KEY" 14 integer key values in ascending order from 0001
through 0014. The next column under "REC.PTR." lists the record number of the data record
associated with the key value - thus, key value 0001 is in record number 3 of the data file (the
fourth record in chronological sequence), and key value 0006 is in the first record in the data file,
record number 0. The third column under "KEY BLOCK ADR." shows the address of the key
block in which each key value resides. The key block address is shown as the record number of
the first record in the key block. (Note that KSAM key files use fixed length records each one
sector long -128 words. Thus, the record number is also the sector number. A keyblock consists
of more than one sectors - default is 8 sectors).

Key values are organized into blocks using a B-Tree structure (refer to appendix B for details). This
structure has one or more levels where the first or highest level, is known as the "root" and lower
levels are "leaves". This dump shows the level structure of the key file by indenting the key block
addresses to correspond to levels. The highest or root level address is in the rightmost column, lower
levels are listed to the left. By looking at the key block address, we see that the key block starting
at record (sector) 6 is the root block, and that there are three key blocks at a lower level whose ad
dresses start, respectively, at records 2, 18, and 24. This key file has two levels; a key file with more
levels would have correspondingly more columns under the key block address heading.

The first time a key block address is listed, it is followed in parentheses by the number of key val
ues in that block. Looking at the dump, we see that the block starting at record 2 has 4 key values,
the block at record 6 has 2 values, the block at record 18 has 5 values, and the block at record 24
has 3.

With this dump, we can picture the structure of the key file associated with the file TESTDUMP:

record 2 "Leaf" Blocks "Root" Block

record 6

0001 0002 0003 0004

________ +..---+---! 0-005-r--1 r1 o-011--r---r-1r 1--.--.-1 1---r--r1 1---,--,1 1

-------------- ____ J I
record 18

0006 0007 0008 0009 0010

record 24

r----------
0012 0013 0014

I
I
I
I
I

The key values are shown within their key blocks; the dashed lines show the pointers that link key
blocks in ascending sequence.

2-34

KEVDUMP
DUMPING A SUBSET OF THE KEY FILE

If you want to dump a selected number of key values rather th~m all the values in a key, you can
use the SUBSET option of KEYDUMP. The starting key value can be located in two ways: if you
know the key number of the first key value you want displayed, use the SUBSET=position format;
if you know the actual key value (or a value less than the key value), then you can use the SUB
SET="string" format. In either case, the second SUBSET parameter is always an integer that indi
cates the number of key values you want dumped.

BY KEY NUMBER

The key number is the sequential number associated with each key value in a particular key. If the
KEYSEQ command has listed key numbers that are out of sequence, you may want to dump only
these values. Suppose that TESTFILE has out of sequence values, the following example runs
KEYSEQ first and then runs KEYDUMP to dump the key values shown as out of sequence. (In
order to see the last value in correct sequence, the key preceding the first key out of sequence is
selected as the first key to dump.)

>KS TEST FILE
KEY VALUE# (FOR KEY VALUE OUT OF SEQUENCE)
@
7

~OTAL #OF KEY VALVES READ 14v~d for SUBSET= of KEYDUMP

OF KEY VALUES OUT OF KEY SEQUENCE OR~@)
KEY FILE STRUCTURE DAMAGED, KSAM FILE HAS TO BE RELOADED
>KD TESTFILE ;SUBSET=5~ number of key values out of sequence (plus 1)

key preceding first key #out of sequence

The following dump shows the last key value in sequence followed by the key values that are out
of sequence:

KEY

1st key out ooo5

of sequence---0008
0007
0009
0006

BY KEY VALUE

REC.PTR.

3
9
4
7
0

KEY BLOCK ADR.

18 (5)
18
18
18

12 (2)

The second version of SUBSET= specifies an actual key value followed by the number of key values.
You need not specify the exact key value; it can be a value less than an actual Integer or Double
type key value (approximate match) or only the first part of a Byte type key value (generic match).
For example, suppose TESTFILE has an alternate key that contains names in alphabetic order and
you want to look at the ten key values that start with "GI" or the next greater value. Specify the
following command:

> KD TESTFILE ;SEQ=2 ;SUBSET="GI" ,10

L -i-....... ____ dump 1st 1 0 values starting with or
1st alternate key greater than "GI"

2-35

KEVDUMP

The dump appears as follows:

KEY REC.PTR. KEY BLOCK ADR.

GIBBS 3 2 (4)
GILLESPIE 12 2
GLADSTONE 4 2
HERTZ 8 2
HIGGINS 0 8 (3)
JONES 7 16 (4)
LOOMIS 13 16
MORRIS 5 16
MYERS 6 16
NOLAN 1 8

SORTING DUMP BY RECORD POINTER

If you use the SORT option of KEYDUMP, you must also specify FILE=filename, where the spec
ified file name is that of a disc file. (Note that you must not name an existing file; a new file is cre
ated for the dump.) In this case, you might also want to suppress the indention of the key block
address levels. To do this, enter the following command:

/.. suppress key block address indentation

>KD TESTFILE ;FILE=MYFILE ;SUBSET=-1 ,500 ;SORT-sort by record pointer

~dump is sent to MYFILE, created with default values

The resulting dump is sent to a disc file MYFILE, created with a default block size of 10 words,
one record per key entry. The key entries are sorted by the pointers to the records in the data file.
Indentation of the key block address is suppressed. The key values, record pointers, and key block
addresses are not converted to ASCII but are dumped to the specified file in binary format. In case
of a file with 500 or fewer key values, the entire file is dumped.

The SORT option is useful if you want to look at key values in terms of the data records to which
the key values point. For example, in order to determine whether any key values are missing, you
can dump all the keys in a file using the SORT option, and compare the record numbers in each
dump to make sure each record has the same number of key values pointing to it.

2-36

KEVINFO
Displays information about the key file, and attempts recovery of a KSAM file in case of system
failure when the file is open.

KEYINFO performs two operations: it collects and displays information about the key file, and
it takes steps to recover the KSAM file in case a system crash occurred when the file was open. The
second operation is performed only after a system crash or if the RECOVER parameter is specified.

The key information displayed by KEY INFO consists of:

• Number of levels in key block structure:

• Number of key blocks

• Number of sectors per key block

• Number of keys in root block

• Number of keys in all blocks of the key file

• Percent of each key block used

• Largest key block address

The crash recovery performed by KEYINFO depends on the type of damage to the file.

• If MPE end-of-file does not match end-of-file for KSAM data file, KEYINFO resets the MPE
end-of-file to match the KSAM end-of-file.

• If key file contains values that point to records past the KSAM end-of-file, KEYINFO deletes
these key values.

• If the key file end-of-file marker does not match the actual end of the key file, KEYINFO cor
rects the key file end-of-file marker.

• If records in the data file do not have associated key values in the key file, KEYINFO issues a
warning that key values are missing.

PARAMETERS
fileref ere nee Actual file designator of the KSAM file; either the data file name or the

key file name may be specified. The filereference can be a back refer
ence to a file named in an MPE : FILE command.

(Optional parameter if no parameters are specified.)

Default: If omitted, the last file referenced is assumed.

2-37

KEYINFO

OFFLINE

RECOVER

Directs output to the line printer. An MPE : FILE command can be
used to indicate a different output device or a particular line printer.

(Optional parameter.)

Default: If omitted, output is sent to user's terminal.

Forces KEYINFO to perform recovery procedures even though no
system crash occurred.

(Optional parameter.)

Default: If omitted, recovery performed only if system crashed with
file open.

REQUESTING KEY FILE INFORMATION

Information is displayed by KEYINFO for each key in the key file, in key order starting with the
primary key. For example, request KEYINFO for the file DATAFIL which has three keys:

>KI DATAFIL

--------- INFO FOR KEY

OF LEVELS OF B•TREE
OF KEY BLOCKS
OF SEC TORS PER KEY Bl·OCK
OF KEYS IN ROOT KFY RLOCK
OF KEYS IN B•TREF.
% OF KEY BLOCK UTILIZATION
THE LARGEST KEY RLOCK AODRFSS

--------- INFO FOR KEY

OF LEVELS OF B•TRF.E
OF KEY BLOCKS
OF S~CTOPS ~ER KFY BLOC¥
OF KEYS IN ROOT KEY 8LOCK
OF KEYS IN B•TPEE
% OF KEY BLOCK UTILIZATION
THE LARGEST K~Y BLOC¥ ADDPESS

--------- INFO FOR KFY

OF LEVELS OF R·TPEE
OF KEY BLOCKS
OF SECTORS PER KEY BLOC~

OF KEYS IN ROOT KEY BLOCK
OF KEYS IN B•TREE
% OF KEY BLOCK UTILIZATION
THE LARGEST KEY BLOCK ADDPESS

1
8

20
20
38.4

2

2 ---------

1
1
ii

20
20
9.9

1 ()
3 _._ ______ _

l
1
8

20
20
1 3. 8
18

#OF LEVELS OF B-TREE - Key files are organized in a structure known as a "B-Tree". This
structure may have one or more levels (for details refer to appendix B). The file DATAFIL has
only one level.

2-38

KEYINFO
#OF KEY BLOCKS - Key values are stored in blocks; this entry gives the total number of key
blocks in the file. DA TAFIL has only one key block.

#OF SECTORS PER KEY BLOCK - A key block may require one or more 128-word sectors.
DATAFIL uses eight sectors for its key block (the default value).

OF KEYS IN ROOT BLOCK - This specifies the number of key values stored in the root block
(in this case the only block). If this number is equal to the key blocking factor (see KEY BF header
in VERIFY output), then the next key block split will increase the number of levels in the B-Tree
by one. DATAFIL has 20 key values in its root block, and the blocking factor allows 52, 202, or
144 (see VERIFY printout below).

>VERIFY DATAFIL

WHICH Ct=FILE INFO, 2:KSAM PAPAMETERS, J:KSAM CONTROL, 4;ALLl?l.

KEY FILE=KEYFIL KEY FILE DEVICE;2 SIZE= 50 KEYS= 3
FLAGWORDCOOOOOO):RANDOM PRIMARY, FIRST RECORO:O, PE~MANENT

KEY TY LENGTH LOC. D KEY BF\ LEVEL blocking Factor, keys/block
1 B 30 1 Y 52 1 1'

2 B 2 31 Y 202 1
3 B 6 33 Y 144 1

OF KEYS IN B-TREE - This is the total number of key values in the key file for each key. This
number should be the same for each key and should also be the same as the number of active re
cords in the data file (to determine this, use the FCOPY command >FROM=DATAFIL;TO=$NULL
;KEY=O. FCOPY is described later in this section). DATAFIL has 20 key values in each B-Tree,
and this is the same number as the number of active data records (see FCOPY output below).

:RUN FCOPY.PUB.SYS

HP32212A.3.08 FILE COPIER CC) HEWLETT•PACKARD CO. 1978

>FROM=DATAFIL;TO:SNULLsKEY:O
EOF FOUND IN FROMFILE AFTER RECORD 19--------records numbered from fJ

20 RECORDS PROCESSED *** 0 ERRORS

3 OF KEY BLOCK UTILIZATION - Average percent of use of all key blocks (percent of use means
how much of the block contains key values). Note that the root block of a multi-level tree is omitted
from this average. For multi-level trees the percent is between 50% and 100%, for single-level trees
between 0% and 100%. The higher the percentage, the faster the retrieval of data. But, also the high
er the percentage, the greater the chance of block splits when records are added. DATAFIL uses
38.4% for its primary key, 9.9% and 13.8% each for its two alternate keys.

THE LARGEST KEY BLOCK ADDRESS -This is the largest key block address found for each
key. The key file end-of-file should never be less than the largest block address for the file plus the
number of sectors per key block. The largest block address for DATAFIL is 18 (the largest block

2-39

KEYINFO
address for DATAFIL is 18 (the largest block address of key 3). Since the number of sectors per
block is 8, the key file end-of-file should be at least 26 (see VERIFY output below).

WHICH Ct=FILE INFO, 2:KSAM PARAMETERS, 3:KSAM CONTROL, 4=ALL)?l

DATA FILE = DATAFIL VFRSION= A.2.1
KEY CREATED=292/'78 10:19: 7.4 KEY ACCESS= 107/'79 12: O: 2.9
KEY CHANGED= 93/'79 14:18: 7.6 COUNT START=292/'78 10:19:53.6
DATA RECS = 20 DATA BLOCKS= 19 END BLK wos=
DATA BLK SZ: 19 DATA REC SZ: 38 ACCFSSORS=
FOPEN 2 FREAD 0 FCLOSE
FREADDIR 0 FREADC 0 FREADBYKEY
FREMOVE 0 FSPACE 57 FFINDBYKEY
FGETINFO 2 FGETKEYINFO 1 FREADLABEL
FWRITELABEL O FCHECK 0 FFINDN
FWRITE 20 FUPDATE 0 FPOINT
FLOCK 0 FUNLOCK 0 FCONTROL
FSETMODE 0
KEYBLK READ 7
KEY FILE EOF A
MIN PRIME 11
DATA FIXED TRUE
FIRST PECNUM 0

KEYBLK WROTE
FREE KEY HD
MAX PRIME
DATA B/F
MIN RECSIZE

key file end-of-file for DATAFIL

RECOVERING AFTER SYSTEM FAILURE

0 l<EYBLK SPLIT
0 SYSTEM FAILURE
5 RESET DATE
1 TOTAL KEYS

38

19
0
2
0
0
(l

3
0
0

0
0

67/'79
3

KEYINFO only performs the recovery operations if there has been a system failure or if you spec
ify the RECOVER parameter.

If there has been a system failure while the KSAM file is open for non-read access, a flag is set that
prevents the file from being opened. Whenever this occurs, KEYINFO must be used in order to re
set this flag so that the file can be opened. KEYINFO also recovers from any damage done to the
file as a result of the system failure. It resets end-of-file markers for both the data and key files, and
deletes any key values that point to records beyond the data file end-of-file. It also stores in the key
file the user, group, account, and home group of the user who runs KEYINFO to recover the file.
(When there has been a system failure or when KEYINFO is run with the RECOVER option, the
KSAM file is opened for exclusive access; otherwise it is opened for shared access.)

When KEYINFO is run after a system failure, the SYSTEM FAILURE count displayed by option 3
of VERIFY is incremented by 1. If there was no system failure but KEYINFO was run with the
RECOVER option, this count is not incremented.

When KEYINFO resets the "crash" flag, the date of this reset is saved and can be recovered through
the VERIFY command, option 3 under the heading RESET DATE. Note that the NOCHECK op
tion of VERIFY allows that command to open a KSAM file for read-only access even if a system
failure prevents the file from being opened for all other access.

For example, assume a file TEST that was open when a system failure occurred. In this case, KEY
INFO must be run. Also, assume the following:

• The data file end-of-file (at the end of the data) is beyond the MPE end-of-file (not yet written
to file when system failed).

• There are key values beyond the key file end-of-file (internal key file EOF).

• There are data values with no associated key values.

2-40

KEYINFO

Running KEYINFO will correct the end-of-file markers and, if any keys point to data records be
yond the data file end-of-file, it will delete these key values. KEYINFO cannot, however, restore
missing key values. To do this, you must reload the file with FCOPY. To illustrate, KEYINFO op
erates as shown below:

>Kl TEST
RECOVERY BEGINS

OATA FILE EOF DAMAGED

DATA FILE MPE EOF H~S BEEN RESET TO KSAM

--------- INFO FOR KEY 1 ---------
• OF LEVELS OF' B•TREE 2

• OF KEY BLOCKS 16
~ OF SECTORS PER KEY ~LOCK 8
OF KEYS IN ROOT KEY BL~CK 14

• OF KEYS IN B·TREE 1000
f, OF KEY BLOCK UTILIZ•TION s2.1
rHE LARGEST KEY BLOCK ADDRESS 210

·-------· INFO FOR KEY 2 ---------
' OF LEV'-LS OF B•TREE 2

• OF KEY BLOCKS 11 .. OF SECTORS PER KEY ~LOCK 8

• Of KEYS IN ROOT KEY BLnCK 9
• OF KEYS IN B•TREE 997
• OF KEY BLOCK UTILlZATIO~ 68e6
THE LARGEST KEY BLOCK ADDRESS 202

reset end-of-file
for data file

#of keys should
match

~ARNING& THERE ARE SOME RECORD<S) WITH KEV VALUECS) MISSING
OR KEY VALUE<S> POINTtN6 TO DATA RECORD BEYOND EOF

<EV FILE EOf CINTERNAL> DAMAGED }
reset key file end-of-file

<EV FILE CINTERNAL>EOF H4S B~EN RESET

--------- Kf y SEQUENCE 1 --------- } ~ OF INVALID KEY VALUES OELETEO 10

·-------- 1<Ey SEQUENCE 2 ·····---•
• OF INVALID KEY VALUES OELETED 10

keys pointing to non-existent
data records are deleted

~f COVERY ENOS

#ARNINGI THERE ARE SOME RECORD(S, WITH KEY VALUECS) ~ISSING
THE KSAM FILE HAS TO BE RELOADED

In this case, the file must be reloaded in order to add the missing key values to the key file. For
a full discussion of recovery procedures in case of system failure, including how to reload your file,
refer to appendix E.

2-41

KEYINFO

USING RECOVER OPTION

Even if a system failure does not occur, you can run KEYINFO with the RECOVER option in order
to check the file structure.

The RECOVER option forces KEYINFO to correct any end-of-file inconsistency, including the key
file end-of-file, and to delete any invalid key values. This option sets the RESET DATE field of the
VERIFY output to the current date, and saves your user name, account, group, and home group,
but does not increment the SYSTEM FAILURE count displayed by VERIFY.

Note that checking each record and key in a file with a lot of data is very time consuming. Therefore,
you should not use RECOVER unless it is necessary to reconstitute your file.

For example, use KEYINFO with RECOVER to validate file TEST:

>KI TEST;RECOVER
RECOVt~Y BEGINS

••••••••• INFO FOR KEY 1 ---------

OF LEVELS OF B•TREF. 1
OF KEY BLOCKS 1
OF SECTORS PER KEY BLOCK 8
OF KEYS IN ROOT KEY BLOCK to
OF KEYS IN B•TREE 10
\ OF KEY BLOCK UTILIZATION 4.9
THE LARGEST KEY BLOCK ADDFESS 2

••••••••• KEY SEQUENCE 1 ---··---
OF INVALID KEY VALUES DELETED 0

RECOVERY ENDS

If you now run VERIFY, using option 3, you will see that the date of recovery is displayed follow
ing the heading RESET DATE.

>V

WHICH Ct::FILE INFO, 2=KSAM PARAMETERS, 3:KSAM CONTROL, 4=ALL)?3

DATA FILE = TEST VERSION= A.2.4
KEY CREATED= 86/'79 13:55:23.6 KEY ACCESS= 114/'79 14: 1:14.9
KEY CHANGED=114/'79 13:55:48.8 COUNT START: 961'79 13:55:49.2
DATA RECS = 10 DATA BLOCKS= 9 END BLK WOS: 8
DATA BLK SZ= 8 DATA REC SZ: 16 ACCESSORS: 0
FOPEN 2 FREAD 0 FCLOSE 2
FREADDIR 0 FREADC 0 FREADBYKEY 0
FREMOVE 0 FSPACE 9 FF"INDBYKEY 0
FGETINFO 2 FGETKEYINFO 1 FREADLABEL 0
FWRITELABEL 0 FCHECK 0 FFINDN 1
FWIHTE 10 FUPOATE 0 FPO INT 0
FLOCK 0 F'UNLOCK 0 FCONTROL 0
FSETMODE 0
KEYBLK READ 3 KEYBLK WROTE 1 KEYALK SPLIT 0
KEY FILE EDF 10 FREE KEY HD 0 SYSTE:M FAILURE 0
MIN PRIME 0 MAX PRIME q RESET DATE 1141'79
DATA FIXED TRUE DATA B/F 1 TOTAL KEYS l
FIRST RECNUM 0 MIN RECSIZE 2

2-42

USING KSAMUTIL IN BATCH MODE
A batch job can be developed on the text editor (EDITOR) and then executed with the MPE
:STREAM command. In order to distinguish the MPE commands within a streamed batch job
from those external to the job, an exclamation point(!) is used as the command prefix rather than
a colon(:). KSAMUTIL commands have no command prefix when executed in a batch job.

In the job illustrated in figure 2-1, the first step after job initialization with the !JOB command is
to purge all KSAM and non-KSAM files that will be created within the job. This insures that there
are no files in the account with names duplicating files that will be created programmatically with
the job.

Following initialization, the first program in the job is run. Since this program uses a KSAM file,
MANPN, this file is created with the KSAMUTIL BUILD command before the program is executed.
Note that the program is purged immediately before calling BUILD to create it. This is done to
make sure that no duplicate key or data file exists in the account.

The newly created KSAM file is used in program MANl, which was previously compiled and is input
from the file CARDIN; output from the program goes to the file REPORT associated with the line
printer. An !EOD command follows the program. If data is entered here rather than from the input
file, then the !EOD follows the data. Any other programs in the job stream follow the !EOD each
with its own terminating !EOD. The entire job is terminated by an !EOJ command.

Figure 2-1 is an EDITOR listing of a job entered to a file through the EDITOR program. This
job could also have been punched on cards or any other device that accepts jobs, but in that case,
the standard command prefix, the colon (:), would be used. (Refer to the EDIT /3000 reference
manual for instructions on using the EDITOR.)

In order to run this job, you can enter the command:

: STREAM filename

where filename identifies the EDITOR file where the job was saved.

Batch jobs need not be streamed, but can be entered entirely as a card deck or through some other
input device. Streaming allows you to develop and execute the job interactively at your terminal.
For a full discussion of using the :STREAM command to introduce jobs in a session, refer to the
MPE Commands Reference Manual.

2-43

job
initialization / job name

{~~roduction / //account

'--!JOB BOMP,MGR.MANUF
.--!RUN KSAMUTIL

.....__

PURGE MANO NE]- purges KSAM files
PURGE MANTWO
EXIT
! PU'RGE MANSH~ purges non-KSAM files

L..--!PURGE MANSA~

! !COMMENT •• RUN MANI TO GENERATE PART NUMBER
!RUN KSAMUTIL.PUB.SYS
PURGE MANPN purge key and data file before creation
BUILD MANPN;REC=-256,1,F,ASCII;o1sc=s00;&

program KEYFILE=MANPNKEY;KEY=B,24,12;FIRSTREC=l
EXIT t

FILE, MANPN

!FILE CARDIN=#STDIN
!FILE REPORT;DEV=LPJCCTL
!TELLOP MANI BEGINNING EXECUTION

record in file
numbered from
1, not 0

! RUN MAN 1---- previously compiled program
<DATA>
!EOD

~--<OTHER PROGRAMS IN BATCH STREAM>

r!EOJ

job
termination

Figure 2-1. EDITOR Listing of Job to be Streamed

2-44

FCOPY UTILITY
FCOPY /3000 is the standard HP 3000 utility program that allows you to copy data from one file
to another, creating a new KSAM file is desired, to copy selected data, to make multiple copies of
the same file, or to display data in a variety of formats. With some exceptions, the same FCOPY
functions used to copy other HP 3000 files can be used to copy KSAM files.

Table 2-4 contains a summary of the FCOPY function parameters that apply to copying KSAM files.
The function parameters: SKIPEOF, IGNERR, and SUBSET alone, are not included in this list since
they are not applicable to KSAM files. Two functions are included that apply only to copying from
KSAM files: these are KEY= and NOKSAM. Otherwise, this table includes all the standard FCOPY
functions. Note that this summary is meant only to refresh your memory and that it assumes a
knowledge of FCOPY. (For a complete description of FCOPY and its operation, refer to the FCOPY /
3000 reference manual.)

RUNNING FCOPY

The FCOPY utility program is executed by the MPE command:

:RUN FCOPY.PUB.SYS

Program FCOPY prompts for command input with a greater-than sign(>) in column 1 of the next
line. You may then enter an FCOPY command in response to the prompt. If you are executing
FCOPY in a batch job rather than in a session, you enter the command (omitting the prompt) in
column 1 of the line following the :RUN FCOPY.PUB.SYS command.

EXITING FROM FCOPY

In order to terminate FCOPY and return to the MPE Operating System, enter the following
command:

>EXIT or >E

2-45

FCOPY

FROM COMMAND
Copies data from one file to another.

The FROM command specifies the file from which data is copied and the file to which it is copied.
It optionally includes one or more function specifications in the function list parameter.

PARAMETERS
from file

to file

functionlist

KSAM OPTIONS

Specifies the file to be copied. For a KSAM file this should be the
actual file designator. An asterisk(*), indicating the "from" file
designated in the immediately preceding FCOPY command should
not be used to copy KSAM files. If fromfile is omitted, the standard
input device $STDIN is assumed.

Specifies the file to receive the data. For a KSAM file this should be
the actual file designator. If tofile is specified as (dfile,kfile) where
dfile is a data file name and kfile is a key file name, a new KSAM file
is created with the same characteristics as the fromfile. The data and
key values are copied from the existing file to the new file excluding
any data records tagged for deletion.

If tofile is omitted, the standard list device $STDLIST is assumed.
Using this device as a "tofile" is a good way to display the contents
of a KSAM file at your terminal during a session and on the line
printer in a batch job.

One or more keyword parameters separated by semicolons that specify
particular FCOPY functions. (Refer to table 2-4 for a complete list.)

Two keyboard options may be used with FCOPY to copy KSAM files: the KEY= option and the
NOKSAM option. These two options are mutually exclusive; they cannot both be specified in the
same FCOPY FROM command. When neither option is specified, the KSAM fromfile is copied to
another file in primary key sequence. This is exactly like copying any HP 3000 file to another with
FCOPY.

Table 2-5 summarizes the results of using, or omitting, the KSAM options KEY= and NOKSAM.

KEY= OPTION. KEY= specifies a key whose value determines the sequence in which the file is
copied. The object of KEY= is a positive integer that identifies the key by its starting character
location in the data file. The indicated key may be either the primary or an alternate key. If the
object of KEY= is zero, then the file is copied in chronological sequence rather than in key sequence.

If KEY= and NOKSAM are both omitted, the KSAM file is copied in primary key sequence. In this
case and in the case where KEY= is specified, only active records, not those tagged for deletion are
copied.

2-46

FCOPY

Table 2-4. FCOPY Functions with KSAM Files

FUNCTION LIST ENTRY*

;KEY=nn

;NOKSAM

;NEW

l;EBCDICIN)
;BCDICIN

{
;EBCDICOUT)
;BCDICOUT

;UPSHIFT

;SUBSET= {"string" } [,[column]
#pattern#

[,EXCLUDE]]

;SUBSET= [first-record]
[{

,#records }]
: last-record

; VE RI FY [=#errors]

;COMPARE [=#errors]

ACTION PER FORMED

Copy active records from KSAM file in sequence by

key located at nn; if omitted, copy file in primary

key sequence; if nn is zero, copy file in chronological

order. The KSAM EOF is used.

Copy all records, including deleted records, from data

file of KSAM file to any other file. Copy is in chrono

logical sequence; records must be fixed length. The

data file being copied is opened as an MPE file and the

MPE end-of-file is used. Unless the TO file is an MPE

file created with 1 user label, specify NOUSE R LABELS.

Copy active records and associated key values from

KSAM file to new KSAM file specified as TO=

(dfile,kfile).

Translate copied data from EBCDIC or BCDIC code

to ASCII.

Translate copied data from ASCII code to EBCDIC
or BCDIC.

Convert any copied lower-case characters to upper

case.

Copy from data file only records containing speci

fied "string" or #pattern# starting search in specified

column or column 1. If EXCLUDE specified, copy

all data file records except those containing "string"

or #pattern#

Copy from data file as many records as are specified

in #records starting with first-record; or copy from

first-record through last-record inclusive. If first

record omitted, start at first sequential record in

file; if #records or last-record omitted, copy through

last sequential record in file.

Verify accuracy of copy where both files are on disc;

terminate if #errors exceeded;

Compare without copying the fromfile to the tofile;

terminate if differences exceed #errors. Comparison

applies only to KSAM data files.

;OCTAL [;CHAR] [; NORECNUM] [;TITLE="title"] Display contents of "from" file as octal images on a

word-by-word basis.

;HEX [;CHAR] [;NORECNUM] [;TITLE="tit/e"] Display contents of "from" file as hexadecimal

images on a word-by-word basis.

;CHAR [{~~~~AL)] [;NORECNUM]

[;TITLE="title"]

Display contents of "from" file as character images

on a word-by-word basis.

*IGNERR, SKIPEOF, and SUBSET without parameters do not apply to KSAM "from" files.

2-47

FCOPV

Table 2-5. KSAM Options of FCOPY

OPTION RESULT

KEY= omitted Copy KSAM file in primary key sequence.

KEY=n (n>O) Copy KSAM file in sequence by the key (primary or alternate) located starting

at character n of each data record (counting from first character= 1).

KEY=O Copy KSAM file in chronological sequence (the sequence in which records were

actually stored in the file); copy excludes records marked for deletion.

NOKSAM Copy the data file of a KSAM file to any file in chronological sequence; copy

includes records marked for deletion.

NOKSAM OPTION. NOKSAM allows you to copy the data file of a KSAM file with fixed-length
records to any MPE file, including KSAM files. All indicated records of the data file are copied, in
cluding those tagged for deletion. When you copy a file using the NOKSAM option, you should
also specify the NOUSERLABELS option. The only exception to this rule is if the TO file is an
MPE file that you have already created with one user label.

USING FCOPY

FCOPY is useful in order to compact a KSAM file that has many records tagged for deletion. When
a file has been used for a period of time, changes and deletions may result in a high percentage of
inactive records. In order to recover the space occupied by such records, you can copy the file to
a new file with FCOPY. Since FCOPY copies only active records, records that are not tagged for
deletion, the new KSAM file has no unused space embedded among the data records.

FCOPY can also be used to recover records tagged for deletion in a KSAM file. The FCOPY
NOKSAM option copies all records including those tagged for deletion. The first two characters
of such records will contain the delete code rather than their original values, but otherwise are
recovered intact. This can be a useful feature in order to recover records deleted by mistake.

Another use of FCOPY is to reload data from a damaged file to a new file. This may be required
as a result of a system failure. If you decide to reload a KSAM file following a system failure, you
should first run the KEYINFO command of KSAMUTIL to reset the end-of-file markers and delete
any invalid key values. If the file is still damaged and you choose to reload it, you should use
FCOPY to transfer existing records to a new undamaged KSAM file. In this case, you use the
KEY=O option rather than the NOKSAM option, unless you want to keep all the deleted records
or the key file was lost.

FCOPY WITH NO OPTIONS. Assume a file named KSAMFILE created with one primary key, an
integer located at character 21. Since many records were tagged for deletion in the file, it is time to
copy the active records to a new file. You may either create a new KSAM file with the BUILD com
mand as shown in example 1, or use FCOPY to create the new KSAM file as shown in example 2.
In either case, you should purge the original file (KS AM FILE in the examples) and then rename the
new file (KSAMFIL2) with the data and key file names of the original file so that any programmatic
references to the file need not be changed.

You may also use FCOPY to create an empty KSAM file with all the characteristics of an existing
file, but with no data. The method for doing this is shown in example 3.

2-48

1. Create new file with BUILD:

:RUN KSAMUTIL.PUB.SYS

FCOPY

>BUILD KSAMFI L2; KEYFI LE=KFI L2; KEY= I, 21 , 2 ----create ''to" file
>EXIT
:RUN FCOPY.PUB.SYS

>FROM=KSAMFI LE.: TO=KSAMFI L2--------- copy in primary key sequence
>EXIT
:RUN KSAMUTIL.PUB.SYS
>PURGE KSAMFI LE purge "from" file after copy
KSAMFILE.KSAM.DATAMGT & KFILE PURGED

>RENAME KSAMFIL2, KSAMFILE] rename copied file with old file names
>RENAME KFIL2,KFILE
>EXIT

2. Use FCOPY to create new file:

:RUN FCOPY,PUB,SYS
>FROM=KSAMFILE:TO:(KSAMFIL2,~FILE2)

>EXIT
:RUN KSA~UTIL,PUB,SYS
>PURGE KSAMFILE
KSAMFILE,KSAM,DATAMGT & KFILE PURGED
>RENAME KSAMFIL2,KSAMFILE
>RENAME KFILF.2,KFILE
>EXIT

You may specify the ;NEW function in the FCOPY FROM command for purposes of document
ation. Its inclusion or omission does not affect the command in any way.

This method not only creates the new KSAM file, but also copies all the data from the exising file
to the new file (except records marked for deletion). Example 3 below, shows how you can create
a KSAM file with exactly the same specifications as an existing file but with no data.

3. Use FCOPY to build a new file with no data:

:RUN FCOPY.PUB.SYS
> FROM=KSAMFILE; TO=(KSAMFIL3,KFILE3); SUBSET=l,O- copy 0 records
0 RECORDS PROCESSED *** 0 ERRORS

The new file, KSAMFIL3, is created with exactly the same specifications as the existing file
KSAMFILE, but with no data. This is easier than building the file with the BUILD command,
but should be used only if the new file is to have keys in the same position and the same length
as the existing file.

Following any of these operations, only active records are contained in the new KSAM files. These
records are stored in primary key sequence in the data file; that is, the new chronological and the
primary key sequences are the same. If you prefer to maintain the original chronological sequence,
then you can use the KEY=O option.

2-49

2-49a MAY 1981

FCOPY

4. Use FCOPY to add data to an existing file:

Before running FCOPY to add new records to a file that contains data, make sure that file
(the TO file) is opened for either APPEND or INOUT access. Otherwise, FCOPY will open the
TO file for write-only access causing the end-of-file to be reset to zero and any existing data to
be lost. For example:

:FILE A = KSAMFILE, OLD ;ACC = APPEND
or

ACC = INOUT
:RUN FCOPY.PUB.SYS
>FROM= NEWDATA;TO =*A

The data in the file NEWDATA is appended to the data in the existing file, KSAMFILE, in
primary key sequence (the default).

MAY 1981 2-49b

FCOPV

FCOPY WITH KEY = OPTIONS.

1. Assume that a company's employee records have been maintained in sequence by social
security-number in a KSAM file, EMPLOY, but a new policy requires that they be maintained
in sequence by employee number. FCOPY can be used to transfer the data to a new file,
EMPLOY2, in which all employees are re-ordered by their unique employee numbers.

Assume EMPLOY was created with the following command:

:qUN KSAMUTIL.PUB.SYS
>BUILD EMPLOYJREC=3000JKEYF'ILE=EMPKEY.:&
> KEY=B, 3, 1 1; & primary key (social-security-number)
~ KEY=B, I 4, s; & alternate key (employee number)
> KEY=B, 19.1 30.1,, Dm:>-alternate key (name)
>EXIT

Before copying and resequencing file EMPLOY, a new KSAM file is built:

:RUN KSAMUTIL.PUB.SYS
>BUILD EMPLOY2JREC=3000.:KEYFILE=EMPKEY2;&
> KEY=B, 1 4, s; & primary key (employee number)
> KEY=B, 19, 30,,, DUP-alternate key (name)
>EXIT

There is no need for the new key file to retain the same structure as the key file of the copied
file. The primary key in EMPLOY has been dropped from EMPLOY2; although the social
security-number remains in the data file, it is no longer a key. An alternate key in EMPLOY,
the employee's identification number, is the primary key in EMPLOY2.

Once the new KSAM file has been created, you can copy the old file EMPLOY to the new file
EMPLOY2 in the new sequence:

:qUN FCOPY.PUB.SYS
>FqQM=EMPLOY;TO=EMPLOY2.:KEY=14
>EXIT ~

~olumn number of key used to sequence EMPLOY2

To avoid changing programs that reference the file EMPLOY, you can rename EMPLOY2 with
the name EMPLOY, first purging the old file EMPLOY:

:RUN KSAMUTIL.PUB.SYS
>OTJRGE EMPLOY
KSAMFILE EMPLOY.KSAM.DATAMGT & EMPKEY PU~GED
>RENAME EM'PLOY2, EMPLOY------------ rename data file
>RENAME EMPKEY2, EMPKEY rename key file
>EXIT

2-50

FCOPV

2. Another use of FCOPY is to copy a selected portion of one KSAM file to another. For
example, using the same file EMPLOY used in previous examples, you can copy all the
employee records whose last names begin with the letter A into a new file sequenced by
employee name:

: PfJN KSAMUT IL. PTJB. SYS
>BUILD EMPLOYA; KSYFI LE=AI\EY; KEY=B, 19, 30,, DUD
>EXIT
:RUN FC0°Y.PUB.SYS
>F~OM=EM?LQY;TQ=EM0LOYA;KEY=l9;suBSET="A",19

>EXIT

The new file EMPLOY is sequenced by the key starting in column 19 (employee name) and
only contains records for employees whose last names start with A.

3. If you want to copy the KSAM file in chronological sequence, you can use the KEY=O option.
Since this option copies only active records, it can be used to compact a file in which many
records are tagged for deletion while retaining the chronological order in which the file was
created. It is also the preferred option for reloading a KSAM file after a system failure.

Assume the new file EMPLOYX has the identical structure to the file EMPLOY used in the
previous examples:

:t:HJN FCQPY.OTT~.SYS

>F~OM=EMPLQY;TO=EMPLQYX;KEY=0

>EXIT

The new file is identical in its chronological sequence to the old file, but contains only active
records.

4. To find out how many records are currently active in a KSAM file, you can use FCOPY as
follows:

: RUN FCOPY .PUB.SYS
> FROM=KSAMFILE ;TO=$NULL

N RECORDS PROCESSED*** 0 ERRORS (where N is the number of active records
in the KSAM file)

>EXIT

Only the active records (those not marked for deletion) will be listed as present in the file.
(You can also calculate the number of active records by looking at the VERIFY listing, option
3, and subtracting the number of FREMOVEs from the FWRITES.)

FCOPY WITH NOKSAM OPTION.

1. Using NOKSAM, you can copy the data file of a KSAM file to another file. The records are
copied in chronological sequence. Since NOKSAM copies records marked for deletion as well
as active records, it provides a method for recovering the data in any records marked for
deletion. For example, if certain records in file EMPLOY were incorrectly marked for
deletion, the NOKSAM option could be used to copy the entire data file to a new file includ
ing the inactive records.

Using the SUBSET parameter of FCOPY, you can copy only those records marked for deletion.
In the following example, all deleted records are listed on the line printer:

MAY 1981 2-51

FCOPY

:FILE x;DEV=L?
:RUN FCOPY. 0 UB.SYS

pattern of all 1 'sin 1st 2 characters

>FROM=EMPLOY;ro=*x;suBSET=# 3 03771,IJNOKSAMJOCTAL;CHAR;NQPECNUM;&
>TI TLE="RECO~DS DELETED FROM THE FI LE, EMPLOY"

When records are deleted from a KSAM data file, a pattern of all l's is written to the first two
characters of the deleted record. (In each character this pattern can be represented as the
octal value % 37 7.) If you want to be able to recover key data from deleted records in this
manner, you should avoid placing key data in the first two characters of a data record.

Note that you should not use the NOKSAM option to copy a KSAM file with variable-length re
cords to another KSAM file. Also, if NOKSAM must be used to reload a file after a system crash
(for instance, because the key file was lost), you should use the SUBSET option to copy only valid
records. Normally, you use the KEY=O option to reload KSAM files after a system failure.

(Refer to appendix E, Recovery From System Failure, for a full discussion of using FCOPY to re
load a KSAM file following a system failure.)

DISPLAY COPIED FILES ON $STDLIST. When you omit the "to" file from the TO= specifica
tion, the standard output device is assumed. This allows you to list the contents of the KSAM file
at your terminal in a session or on the line printer in a job.

Assume the file JN AMES with a primary key (last name) starting in character 11 and three alternate
keys: a phone number starting in character 21, a city name starting in character 53, and a zip code
starting in character 6 7.

1. If KEY= is omitted, the file is listed in primary key order:

>FROM=JNAMES;TO=)
JEANNE ALOGICAL 226-1?!~95 494~ COTJSIN CT SUNNYVALE 95051~

DOLLY CHROMATIC ?67-1413 1148 COLORFUL CT SAN JOSE 95030
ANNA FORA 253-5~46 9~83 TR.OCHA IC TRAIL SAN JOSE 951 31
ANNE HO'WE 37?.-4328 6547 EXU3ERANCE WY CAMPBELL 95112
HY KTJVERSE 267-8961 65?l LOTUS BLOSSOM WY SAN JOSE 95136
ANNA LOGUE 2?.4-8934 1707 I NVE~SE WY MOUNTAIN VIE'll! 95051
ARTHUR MOM I TE-CZ 443-5346 1 55.4 ME".CURY ST MIL 0 ITAS 94173
CU~RA NETTE 243-4493 2667 GOODMAN DP ALVISO 95143
qHEA PREYSELLE 365-8551 l V'l879 REV! EW POAD SAN JOSE 95'2170
KflliT PEMARllUE 243-1043 34 BPIEF ST MIL?ITAS 94062
MIKE RO METER 269-1712 l 6g 1 MACHINIST DR SUNNYVALE 95112
~UDY TEKTIF'f 255-l9!V'l5 l 71 55 POIROT PL CAM?BELL 95121
EOF' F'O UND IN F'ROMFI LE AF'TEli RECO~D 11

12 REC O'RDS PROCESSED *** 0 ERRORS

ascending order by primary key

Use SUBSET to list selected portions of the file, for example, to list the first two records in
primary key sequence:

>FROM=JNAMES;TQ=;KEY=11;suBSET=0,2
JEANNE ALOGICAL 226-0295 4942 COUSIN CT
POLLY CHROMATIC 267-1413 1148 COLORFUL CT

2 PECORDS PROCESSED *** 0 ERRORS

2-52

SUNNYVALE
SAN JOSE

95054
95030

MAY 1981

FCOPV

2. If KEY="primary key location", the file is listed in primary key order:

>FROM=JNAMES;To=;KEY=ll
JEANNE ALOGICAL 226-0295 4942 COUSIN CT SUNNYVALE 95054
POLLY CHROMATIC 267-1413 11 48 COLORFUL CT SAN JOSE 95030
ANNA FORA 253-5246 9283 TROCHAIC TRAIL SAN JOSE 95131
ANNE HOWE 372-4328 6547 EXUBEllANCE WY CAMPBELL 95112
HY KUVERSE 267-8961 650 LOTUS BLOSSOM WY SAN JOSE 95136
ANNA LOGUE 224-8934 1 707 INVERSE WY MOUNTAIN VIEW 95051
ARTHUR MOMITER 443-5346 1554 MERCURY ST MILPITAS 94173
CLARA NETTE 243-4493 2667 GOODMAN DR ALVISO 95143
RHEA PREYSELLE 365-8551 10879 REVIEW ROAD SAN JOSE 95070
KURT REMARQUE 243-1043 34 BRIEF ST MILPITAS 94062
MIKE ROMETE'R 269-1712 1 681 MACHINIST DR SUNNYVALE 95112
TRUDY TEKTIFF 255-1005 17155 POIROT PL CAMPBELL 95121
EOF FO~ND IN FROMFILE AFTER 'RECORD 1 1

12 RECORDS PROCESSED *** 0 ERRORS

byte location 11 (same sequence as previous example)

3. If KEY="alternate key location", the file is listed in sequence by that key:

>FROM=JNAMES;TO=;KEY=67
KURT REMARQUE 243-1043 34 BRIEF ST MILPITAS 94062
ARTHUR MOMITER 443-5346 1554 MERCURY ST MILPITAS 94173
POLLY CHROMATIC 267-1413 1148 COLORFUL CT SAN JOSE 95030
ANNA LOGUE 224-8934 1707 INVERSE YTY MOUNTAIN VIEW 95051
JEANNE ALOGICAL 226-0295 4942 COUSIN CT SUNNYVALE 9 50 54
RHEA ?REYSELLE 365-8551 10879 REV! EW ROAD SAN JOSE 95070
ANNE HOWE 372-4328 6547 EXUBERANCE WY CAMPBELL 95112
MIKE RO METER ~69-1712 1681 MACHINIST DR SUNNYVALE 95112
TRUDY TEKTIFF 255-1005 17155 POIROT PL CAMPBELL 95121
ANNA FORA 253-5246 9283 TROCHAIC TRAIL SAN JOSE 95131
HY K1!JVERSE 267-8961 65'21 LOTUS BLOSSOM WY SAN JOSE 95136
CLARA NETTE 243-4493 2667 GOODMAN DR ALVISO 95143
EOF FOUND IN FROMFILE AFTER RECORD 1 1

12 RECORDS PROCESSED *** 0 ERRORS

output in ascending order __
by key in byte location 67 ____ ___.

Use SUBSET= to list all the records with the characters "SUNNYVALE" starting in column 53;
sequence is by alternate key in location 67:

>FROM=JNAMES;TO=;KEY=67;SUBSET="SUNNYVALE",S3

JEANNE ALOGICAL 226-0295 4942 COUSIN CT
MIKE ROMETER 269-1712 1681 MACHINIST DR
EOF FOUND IN FROMFILE AFTER RECORD 11

2 RECORDS PROCESSED *** 0 ERRORS

2-53

SUNNYVALE
SUNNYVALE

95054
95112

FCOPV

Another example using SUBSET= lists five records starting with the fourth record; sequence
is by alternate key in location 6 7:

/records numbered from 0

>FROM=JNAMES;TQ=;KEY=67;suBSET=3,5
ANNA LOGUE 224-8934 1707 INVERSE WY MOUNTAIN VIEW
JEANNE ALOGICAL 226-0295 4942 COUSIN CT
RHEA PREYSELLE 365-8551 10789 REVIEW ROAD
ANNE HOWE 372-4328 6547 EXUBERANCE 'WY
MIKE ROMETER 269-1712 1681 MACHINIST DR
5 RECORDS PROCESSED *** 0 ERRORS

4. If KEY=O, the file is copied in chronological order:

>FROM=JNAMES;TQ=;KEY=0
ARTHUR MOMITER 443-5346 1554 MERCURY ST
TRUDY TEKTIFF 255-1005 17155 POIROT PL
ANNA LOGUE 224-8934 1707 INVERSE WY
CLARA NETTE 243-4493 2667 GOODMAN DR
ANNE HOWE 372-4328 6547 EXUBERANCE VlY
JEANNE ALOGICAL 226-0295 4942 COUSIN CT
HY KUVERSE 267-8961 650 LOTUS BLOSSOM
MIKE ROMETER 269-1712 1 681 MACHINIST DR
ANNA FORA 253-5246 9283 TROCHAIC TqAIL
POLLY CHROMATIC 267-1413 1148 COLORFUL CT
RHEA PREYSELLE 365-8551 U2l 8 79 REV! EW ROAD
KURT REMARQUE 243-1043 34 BRIEF ST
EOF FOUND IN FROMFILE AFTER RECORD 11

12 RECORDS PROCESSED *** 0 ERRORS

2-54

WY

SUNNYVALE
SAN JOSE
CAMPBELL
SUNNYVALE

MILPITAS
CAMPBELL
MOUNTAIN
ALVISO
CAMPBELL
SUNNYVALE
SAN JOSE
SUNNYVALE
SAN JOSE
SAN JOSE
SAN JOSE
MILPITAS

VIE\J

95051
95054
95070
95112
95112

94173
95121
95051
95143
95112
95054
95136
95112
95131
951330
95070
94062

:STORE

:STORE AND :RESTORE COMMANDS
The :STORE and :RESTORE commands are used primarily to provide back-up for user disc files.
The file or set of files is copied to magnetic tape or serial disc by the :STORE command in a special
format that permits the serial device to be read back onto disc with the : RESTORE command. The
use of these two commands for KSAM files is identical to their use with any HP 3000 files. (Refer to
the MPE Commands Reference Manual for a complete description of the :STORE and :RESTORE
commands.)

STORE
Stores KSAM file on magnetic tape or serial disc.

This command is used to store one or more disc files onto magnetic tape or serial disc. When used
to store KSAM files, both the data file and the key file must be specified.

PARAMETERS

fileref ere nee 1

fileref ere nee 2

store file

SHOW

Actual file designator of data file; specified in the following format:

filename [llockword] [.groupname [.accountname]]

where each subparameter is a name consisting of from 1 to 8 alpha
numeric characters beginning with a letter.

(Required parameter for KSAM files.)

Actual file designator of key file; specified in exactly the same format
as fileref ere nee 1.

(Required parameter for KSAM files.)

Name of destination device file onto which the stored files are writ
en. This can be any magnetic tape or serial disc file from the output
set. This file must be referenced in the back-reference(*) format;
this format references a previous : FILE command that identifies the
file as a magnetic tape or serial disc file.

(Required parameter.)

Request to list names of file stored. If SHOW is omitted, total number
of files stored, names of files not stored, and number of files not
stored are listed.

(Optional parameter.)

2-55

STORE

FILES=maxfiles Maximum number of files that may be stored. If omitted, 4000 is
specified by default.

(Optional parameter.)

USING THE :STORE COMMAND

Before issuing a :STORE command, you must identify the storefile as a magnetic tape or as a serial
disc with the :FILE command using the following format:

:FILE formaldesignator [=filereference] ;DEV=device

The device parameter must indicate the device class name or logical unit number of a magnetic tape
or serial disc unit. All other parameters for storefile are supplied by the :STORE command executor;
if you attempt to supply any of these yourself, MPE rejects the :STORE command.

If you press the BREAK key during the store operation, the operation stops after storing the cur
rent file and further output is suppressed.

For example, to copy KSAM file KSAMDAT A to a magnetic tape file named SA VE FILE

:FILE T=SAVEFILE;DEV=TAPE
:STORE KSAMDATA,KSAMKEY; *T

t t
data file key file

Note that both the data and key file must be specified in order to store the entire KSAM file.

If you want to copy this same file to a serial disc, use the following command sequence:

: FILE SD=SA VEFILE; DEV=SDISC
:STORE KSAMDATA, KSAMKEY; *SD

2-56

RESTORE
Restores KSAM file from magnetic tape or serial disc.

Restores to disc, one or more files stored off-line to magnetic tape or serial disc by the :STORE
command. To restore a KSAM file, both the data file and the key file names must be specified.

PARAMETERS
restoref ile

fileref ere nee 1

fileref ere nee 2

KEEP

DEV=device

Name of magnetic tape or serial disc file on which files to be re
trieved now reside. This file must be referenced in the back-refer
ence (*) format; this format references a previous : FILE command
that defines the file as a magnetic tape or serial disc file. A message
is output to the Console Operator requesting him to mount the
magnetic tape or serial disc platter identified by the filereference
parameter in the : FILE command, and allocate the tape unit or
disc platter to you.

(Required parameter.)

Actual file designator identifying the KSAM data file, specified in the
format:

filename [/lock word] [.groupname [. accoun tname]]

where each subparameter is a name consisting of from 1 to 8 alpha
numeric characters beginning with a letter.

(Required for KSAM files.)

Actual file designator identifying the KSAM key file, specified in the
same format as file ref ere nee 1.

(Required for KSAM files.)

Specification that if a file referenced in the :RESTORE command
currently exists on disc, the file on disc is kept and the corresponding
file on tape or serial disc is not copied into the system. If KEEP is
omitted, and an identically-named file exists in the system, that file
is replaced with the one on the tape or serial disc. If KEEP is omitted,
and a file on tape or serial disc is eligible for restoring and a file of the
same name exists on disc, and this disc file is busy, the disc file is kept
and the tape or serial disc file is not restored.

(Optional parameter.)

Device class name or logical number of device on which files are to be
restored. (This name is also written on the label of each file restored.)
If you omit this parameter, MPE attempts to replace the files on a de
vice of the same class (or logical device number) as that of the device
on which the file was created. If this attempt fails, perhaps because
the device class specified does not exist or the tape or serial disc was
created on a previous version of this computer, MPE attempts to

2-57

:RESTORE

SHOW

FILES=maxfiles

replace each file on a disc of the same type (fixed or moving -head)
and subtype as that on which it was created. If this fails, MPE attempts
to restore the file to a device of class name DISC. If this fails, the file
is not restored. If the KSAM file was created with the data file and the
key file on different devices, then RESTORE twice using different
DEV=device in each RESTORE.

(Optional parameter.)

Request to list names of restored files. If you omit SHOW, only total
number of files restored, list of files not restored (and the reason each
was not restored), and count of files not restored, are listed.

(Optional parameter.)

Maximum number of files that may be restored. If omitted, 4000 is
assigned by default.

(Optional parameter.)

USING THE :RESTORE COMMAND

Before issuing a :RESTORE command you must identify tapefile as a magnetic tape or serial disc
file with the : FILE command:

: FILE formaldesignator [=filereference] ;DEV=device

The device parameter must indicate the device class name or logical unit number of a magnetic tape
or a serial disc unit. No other parameters than these may be supplied. If you attempt to supply
more, the : RESTO RE command is rejected.

To retrieve from the magnetic tape file SA VEFILE, the KSAM file KSAMDAT A that includes data
file (KSAMDATA} and key file (KSAMKEY):

:FILE T=SAVEFILE;DEV=TAPE
:RESTORE *T;KSAMDATA,KSAMKEY;KEEP;DEV=DISC;SHOW

To retrieve this same file from the serial disc STORDISC, enter the commands:

: FILE SD=STORDISC; DEV=SDISC
:RESTORE*SD; KSAMDATA, KSAMKEY; KEEP; DEV=DISC; SHOW

Note that both the data file and the key file must be specified in order to restore the entire KSAM
file.

If the KSAM file currently saved on magnetic tape or serial disc was originally created with the
data file resident on one device and the key file resident on a different device, then this capabil
ity can be retained only if you RESTORE twice using different DEV= specifications in each
command.

For example:

:FILE T;DEV=TAPE
: RESTORE *T; KSAMDAT A; DEV= DISCO NE
:RESTORE *T;KSAMKEY;DEV=DISCTWO

Upon successful completion, KSAMDATA will be restored from tape file T to a device class identi
fied as DISCONE, and KSAMKEY will be restored from tape file T to a device class identified as
DISCTWO. You would do this only in the case where the file was originally created using the
BUILD command specification DEV=DISCONE for the data file, and KEYDEV=DISCTWO for the
key file.

2-58

USING KSAM FILES IN COBOL 1111111·111

PROGRAMS _I 111 I

OVERVIEW
KSAM files are accessed from COBOL programs through calls to a set of procedures. These proce
dures allow you to open, open for shared access, write records to, read records from, lock, unlock,
update, position, and close a KSAM file. (Refer to table 3-1 for a list of the procedures and their
associated functions.) The COBOL procedures provided with KSAM/3000 correspond to the
INDEXED I-0 module statements in COBOL 7 4.

Note: The following applies when using KSAM with COBOL.

• The KSAM file must be created with KSAMUTIL 's >BUILD command.

• To access a KSAM file in chronological order, the KSAM file must be copied to a non-KSAM
file.

• KSAM permits duplicate primary keys as an extension to the ANSII standards.

In HP COBOL/3000, the procedures that are used to access KSAM files differ in form from the
COBOL input/output statements used to access non-KSAM files. The KSAM interface procedures
use parameters for information that would otherwise be specified in the FILE-CONTROL para
graph and the FD entry of the DAT A DIVISION. These parameters are themselves defined in the
WORKING-STORAGE section of the DATA DIVISION. The main restriction on the KSAM inter
face call parameters is that they must start on word boundaries.

MAY 1981 3-1

Table 3-1. KSAM Procedures for COBOL Interface

PROCEDURE
PARAMETERS FUNCTION PAGE NAME

CKCLOSE filetable Terminates processing of KSAM file identified by 3-12
status filetable.

CKDELETE fi/etable Logically removes record from KSAM file; deleted 3-13
status record is identified by previous read.

CKERROR status, Converts numeric value returned in status to char- 3-17
result acter string result.

CK LOCK filetable Dynamically locks file opened for shared access, 3-18
status conditionally depending on /ockcond.
lockcond

CKOPEN filetable Initiates processing of file named in filetable; 3-20
status returns file number to first word of filetable.

CKOPENSHR filetable Initiates processing with dynamic locking and shared 3-25
status access of file named in filetable.

CK READ filetable Reads next sequential record from KSAM file iden- 3-26
status tified by filetable into record.
record

recordsize

CKREADBYKEY file table Reads into record first record with a key in location 3-29
status keyloc whose value matches that of key, from KSAM

record file identified by filetable.
key
keyloc
recordsize

CKREWRITE filetable Replaces last sequential record read by CKR EAD, 3-32
status or replaces record whose primary key matches the
record value of key item in record, with the contents of
recordsize record.

CKSTART filetable Positions record pointer in preparation for a sequen- 3-36
status tial read to the first record with a key in location

re/op keyloc whose value has the relation re/op to the

key value of key.
keyloc
keylength

CKUNLOCK filetable Unlocks file dynamically locked by CK LOCK.

I
3-40

I status

CKWRITE filetable Writes record of length recordsize from record to a 3-42
status KSAM file identified by filetable.
record

recordsize

3-2

CALLING A KSAM PROCEDURE
The KSAM interface procedures (refer to table 3-1 for a complete list) are called using a CALL
statement of of the following general form:

CALL "name" USING filetable,status [,parameter[, ...]

Where:

"name"

file table

status

parameter

identifies the procedure to which control is transferred.

an 8-word table that identifies the file by name and in which access
mode and input-output type are specified, and to which is returned
the file number on open, and a code identifying the previous operation.

one word to which a two-character code is returned that indicates the
status of the input/output operation performed on the file by the called
procedure.

one or more parameters, depending on the particular procedure called,
that further define operations to be performed on the file.

The first two parameters, filetable and status, are included in every KSAM procedure call except
CKERROR; other parameters may be specified depending on the particular procedure. If a param
eter is included in the procedure format, then it must be included in the procedure call. All param
eters are required.

Another characteristic of KSAM procedure call parameters is that they must always start on a word
boundary. In order to assure this, the parameters should be defined in the WORKING-STORAGE
SECTION as 01 record items, 77 level elementary items, or else the SYNCHRONIZED clause
should be included in their definition.

A literal value cannot be used as a parameter to these procedures. Any value assigned to a data
item used as a parameter is passed to the procedure, but a literal value causes an error.

Depending on the procedure, certain data items may be assigned values as a result of executing the
procedure.

NOTE

There are no COBOL procedures to read a KSAM file in chrono
logical order or to access a record by its chronological record
number. (Chronological order is the order in which the data rec
ords were written to the file.)

3-3

FILETABLE PARAMETER
The first parameter in every KSAM procedure call must be filetable, a table describing the file and
its access. This table is defined in the WORKING-STORAGE SECTION of the COBOL program.
It requires eight words as illustrated in Figure 3-1.

filenumber

filename

Word

2

3

4

5

6

7

8

filenumber

1--- ----- - - - - - ----- --
filename (8 characters)

I--- - - - - - --- ---------
~- - - - - - ------ -- - ---1

input-output type

access mode

lock/unlock I previous operation

Figure 3-1. Filetable Structure

A number identifying the file returned by the CKOPEN procedure
after the file named in words 2-5 has been successfully opened. After
the file is closed by CKCLOSE, filenumber is reset to 0. (This number
should be set to zero when the file table is initially defined.) It must
be defined as a COMPUTATIONAL item.

The name of the KSAM file. This name is the actual designator
assigned to the file when it is created with the KSAMUTIL BUILD
command; filename may be a formal designator if it is equated to
the actual designator in a : FILE command.

input-output type A code that limits the file access to input only, output only, or allows
both input and output:

access mode

0 =input only
1 = output only
2 = input-output

It must be defined as a COMPUTATIONAL item.

A code that indicates how the file will be processed: sequentially only,
randomly only, or either (dynamically):

0 =sequential only
1 = random only
2 =dynamic (sequential or random)

It must be defined as a COMPUTATIONAL item.

3-4

previous operation

lock/unlock

EXAMPLE

FILETABLE
A code in the right byte of word 8 of the file table indicating the
previous successful operation:
O = previous operation unsuccessful or there has been no previous

operation on this file
1 = CKOPEN successful
2 = CKSTART successful
3 = CKREAD successful
4 = CKREADBYKEY successful
5 = CKDELETE successful
6 = CKWRITE successful
7 = CKREWRITE successful
8 = CKCLOSE successful
9 = CKOPENSHR
This field should be set to zero when the file table is initially defined
and thereafter should not be altered by the programmer. It must be
defined as a COMPUTATIONAL item.

A code in the left byte of word 8 of the file table that indicates
whether a CKLOCK or CKUNLOCK has been performed success
fully since the operation specified in previous operation:

10 = CKLOCK successful
11 = CKUNLOCK successful

A sample file table definition might be:

WORKING-STORAGE SECTION.

01 KSAMFILE.

02 FILENUMBER
02 FILENAME
02 1-0-TYPE
02 A-MODE
02 PREV-OP

PIC S9(4) COMP VALUE 0.
PIC X(8) VALUE "K8AMFILE".
PIC S9(4) COMP VALUE 0.
PIC 89(4) COMP VALUE 0.
PIC 89(4) COMP VALUE 0.

The file table identifies a file created with the name KSAMFILE as a file to be opened for sequential
input only. The values of 1-0-TYPE and A-MODE can be changed following a call to CKCLOSE for
the file.

3-5

STATUS PARAMETER
The status parameter is a two-character item to which the status of the input-output operation is
returned. It is always the second parameter in a KSAM procedure call. The status parameter must
be defined in the WORKING-STORAGE SECTION of the COBOL program.

Status consists of two separate characters: the left character is known as status-key-1, and the right
is known as status-key-2.

~ left character -V--right character ~

I "status-key-1" I "status-key-2" 1----- status word

The possible combinations of the left and right characters of parameter status are shown in Table
3-2. The values of status-key-2 (the right character) shown in the table are the only valid values
for status-key-2.

Table 3-2. Valid status Parameter Character Combinations

If left character of status Then right character of status
(status-key-1) equals: (status-key-2) may equal:

''O'' (successful completion) ''O'' (no further information)

''2" (duplicate key)

'' 1 '' (at end) ''O'' (no further information)

''2'' (invalid key) ,, 1 '' (sequence error)

;'2'' (duplicate key)

''3'' (no record found)

''4" (boundary violation)

"3" (request denied) ''O'' (lock denied)

"1 '' (unlock denied)

"9" (file system error) "n" where n is the MPE file system

error code.

Combining status-key-1 with status-key-2, the following values may be returned to the status param
eter as a whole:

If status = "00"

"02"

Successful completion -

The current input/output operation was completed successfully; no
duplicate keys were read or written.

Successful completion; Duplicate key -

For a CKREAD or a CKREADBYKEY call, the current alternate key
has the same value as the equivalent key in the sequentially following
record; duplicate keys are allowed for the key. For a CKWRITE or
CKREWRITE call, the record just written created a duplicate key
value for at least one alternate key for which duplicates are allowed.

3-6 MAY 1981

If status "10"

"21"

"22"

"23"

= "24,,

= "30,,

= "31"

"9n"

STATUS

At End condition -

In a sequential read using CKREAD, no next logical record was in the
file.

Invalid key; Sequence error -

A call to CKWRITE attempted to write a record with a key that is not
in sequentially ascending order, to a file opened for sequential access.

A call to CKREWRITE was attempted but the primary key value was
changed by the program since the previous successful call to CKREAD.

Invalid key; Duplicate key -

An attempt was made to write or rewrite a record with CKWRITE or
CKREWRITE and the record would create a duplicate key value for a
key where duplicates are prohibited.

Invalid key; No record found -

An attempt was made with CKST ART or CKREADBYKEY to access
a record identified by key, but no record is found with the specified
key value at the specified location.

Invalid key; Boundary violation -

An attempt was made with a call to CKWRITE to write past the ex
ternally defined boundaries of the file; that is, to write past the
end-of-file.

Lock denied -

An attempt was made to lock a file already locked by another process;
or file was not opened with dynamic locking allowed.

Unlock denied -

An attempt was made to unlock a file with CKUNLOCK, but the file
had not been locked by CKLOCK.

File system error -

A call to an input/output procedure was unsuccessful as a result of a
file system error, not one of the error conditions defined for the other
status values. The value of status-key-2 (n) is a binary number between
0 and 255 that corresponds to an MPE file system error code (refer
to table A-1 in appendix A). To convert this binary value to numeric
display format, call the CKERROR routine (described next in this
section).

3-7

STATUS

USING STATUS

The value of status can be tested as a whole, or the two characters can be tested separately as
status-key-1 and status-key-2. In any case, the status of each call should be tested immediately
following execution of the call. Unless the first character of status = "O", the call was not
successful.

For example, a sample status parameter definition might be:

WORKING-STORAGE SECTION.

01 STAT.
02 STATUS-KEY-1 PIC X.
02 STATUS-KEY-2 PIC X.

These items can then be referenced in the PROCEDURE DIVISION. For example: to test only
the first character:

IF STATUS-KEY-1 NOT = "O" THEN
GO TO "ERROR-ROUTINE".

To test the entire status word:

IF STAT = "23" THEN
DISPLAY "RECORD NOT FOUND".

Note that the word STATUS is reserved.

3-8

KSAM LOGICAL RECORD POINTER
Many of the KSAM procedures use a logical record pointer to indicate the current record in the
file. This pointer points to a key value in the key file that identifies the current record in the data
file. The particular key used, if the file has more than one key, is the key specified in the current
procedure or the last procedure that referenced a key.

Procedures that use pointers are either pointer-dependent or pointer-independent. Pointer-depend
ent procedures expect the pointer to be positioned at a particular record in order to execute cor
rectly. Pointer-independent procedures, on the other hand, execute regardless of where the pointer
is positioned and, in most cases, they position the pointer. (Refer to table 3-3 for a summary of
those procedures that either position the pointer or are dependent on the pointer position.)

Table 3-3. Positioning the Logical Record Pointer

Procedure Pointer- Position of Pointer After
Name Dependent Execution of Procedure

CKSTART NO Points to key whose value was specified in call.

CKREADBYKEY NO Points to key whose value was specified in call.

CKWRITE NO Points to key whose value is next in key sequence to
key value in record just written.

CKREAD YES Pointer remains positioned to key value for record just
read; unless next call is to CKREAD, or to CKREWRITE
followed by CKREAD, in which case, next CKREAD
moves pointer to next key in key sequence before read-
ing the record.

CKDELETE YES Points to next key value in ascending sequence following
key value in record just deleted.

CKREWRITE YES
(sequential

Pointer remains positioned to key value for record just
mode)

modified; unless any key value in record was changed,

NO
in which case, it points to next key in ascending se-

(random or
quence after the key in the modified record.

dynamic mode)

3-9

SHARED ACCESS

Particular care must be taken when using the logical record pointer during shared access (the file
was opened with CKOPENSHR). Since the record pointer is maintained in a separate control block
for each open file, if more than one user opens the same file, one user may modify the key file
causing the record pointers of other users to point to the wrong key.

To avoid this problem, you should always lock the file in a shared environment before calling a
procedure that sets the pointer and leave the file locked until all procedures that depend on the
pointer have been executed. Thus, if you want to read the file sequentially, delete a record, or
modify a record, you should lock the file, call a procedure that sets the pointer (such as
CKSTART), and then call CKREAD, CKDELETE, or CKREWRITE. When the operation is com
plete, you can then unlock the file to give other users access to it.

3-10

SAMPLE KSAM FILE

The file KSAMFILE illustrated in figure 3-2 is used in all subsequent examples associated with the
COBOL procedure calls.

character

:RUN KSAMUTIL
>BUILD KSAMFILE;REC=-74,3,,ASCII;KEYFILE=KSAMKEY;KEY=B,3,20; &

KEY=B,23,8,,DUP

KSAMFILE Data Record word

~~~ ~ (reserved for delete code) 

3 ~ 
file creation command 

NAME (primary key) 

23 -+-
} PHONE l•lt"""" koy( 

31 ~ 

OTHERDATA 

file description in Working Storage 

/ 
73 +-- 37 WORKING-STORAGE SECTION. 

77 RECSIZE PIC S9(4) COMP VALUE 74. 
77 RESULT PIC 9(4) VALUE 0. 
01 REC. 

03 FILLER PIC XX VALUE SPACES. 
03 NAME PIC X(20). 
03 PHONE PIC X(8). 
03 OTHERDATA PIC X(44). 

01 DAT. 
03 NAME PIC X(20). 
03 PHONE PIC X(8). 
03 OTHERDATA PIC X(44). 

01 FILETABLE. 
03 FILENUMBER PIC S9(4) COMP VALUE 0. 
03 FILENAME PIC X(8) VALUE "KSAMFILE". 
03 1-0-TYPE PIC S9(4) COMP VALUE 0. 
03 A-MODE PIC S9(4) COMP VALUE 0. 
03 PREV-OP PIC 89(4) COMP VALUE 0. 

01 STAT. 
03 STATUS-KEY-1 PIC X. 
03 STATUS-KEY-2 PIC X. 

Figure 3-2. Representation of KSAMFILE Used in COBOL Examples 

3-11 



CK CLOSE 
A call to CKCLOSE terminates file processing for the specified file. 

When processing is completed, a KSAM file should be closed with a call to CKCLOSE. No further 
processing is allowed on the file until a CKOPEN procedure call opens the file. 

CKCLOSE can be executed only for a file that is open. 

PARAMETERS 

file table 

status 

USING CKCLOSE 

an 8-word record containing: the name of the file, its input-output 
type, access mode, the filenumber given the file when it was last 
opened, and a code indicating whether the previous operation on the 
file was successful and if so what it was. (Refer to Filetable Parameter 
discussion earlier in this section.) 

one-word (two 8-bit characters) set to a pair of values upon comple
tion of the call to CKCLOSE. It indicates whether or not the file was 
successfully closed and if not, why not. The left character is set to 
"O" if CKCLOSE is successful, to "9" if not. The right character is 
set to "O" if CKCLOSE is successful, to the file system error code if 
not. (Refer to Status Parameter discussion earlier in this section.) 

Upon successful completion of CKCLOSE, the file identified by filetable is no longer available for 
processing. Note that a KSAM file can be closed and then reopened in order to specify a different 
access mode or input-output type. 

EXAMPLES 
Assuming the same file table and status definitions used to define the sample file in figure 3-2: 

FINISH. 
CALL "CKCLOSE" USING FILET ABLE, STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKCLOSE ERROR NO.", RESULT; 

ELSE DISPLAY "CKCLOSE SUCCESSFUL". 

3-12 



CKDELETE 
This procedure logically deletes a record from a KSAM file. 

In order to logically delete records from a KSAM file, you can use the procedure CKDELETE. A 
logically deleted record is marked by a code of binary 1 's in the first two characters of the record, 
but is not physically removed from the file. The deletion mark makes such a record inaccessible 
but does not physically reduce the size of the file. The utility program FCOPY (described in 
section II) can be used to compact a KSAM file by copying only active records, excluding deleted 
records, to a new KSAM file. 

CKDELETE deletes the record at which the logical record pointer is currently positioned. There
fore, CKDELETE must be preceded by a call that positions the pointer (see table 3-3). 

PARAMETERS 

file table 

status 

USING CKDELETE 

an 8-word record containing the number and name of the file, its 
input-output type, access mode, and a code indicating whether the 
previous operation was successful and if so what it was. (Ref er to 
Filetable Parameter discussion earlier in this section.) 

one word (two 8-bit characters) set to a pair of values upon comple
tion of the call to CKDELETE indicating whether the call was 
successful and if not, why not. (Refer to Status Parameter discus
sion earlier in this section.) 

In order to delete a record, you should first read the record into the working storage section of 
your program with a call to CKREAD if in sequential mode, a call to CKREADBYKEY if in 
random mode, or a call to either if in dynamic mode. CKDELETE can be called only if the file is 
currently open for both input and output (input-output type =2). This allows the record to be 
read into your program's data area and then written back to the file with the delete mark. Follow
ing execution of CKDELETE, the deleted record can no longer be accessed. 

SHARED ACCESS. If the file was opened for shared access with CKOPENSHR, you must lock the 
file with CKLOCK before you can delete any records with CKDELETE. Because CKDELETE de
pends on the logical record pointer, the call to CKLOCK should precede the call that positions the 
pointer. The call to CKUNLOCK is then called after the call to CKDELETE. To illustrate, these
quence of calls in shared access should be: 

CKLOCK to lock file 
CKSTART or CKREADBYKEY--- to position pointer 

CKDELETE--- to delete record at which pointer is positioned 
CKUNLOCK to unlock file 

3-13 



CKDELETE 

Following the call to CKDELETE, the pointer is positioned to the next key following the key in 
the deleted record. 

EXAMPLES 

The following examples show the use of CKDELETE for sequential access using CKREAD and for 
random access using CKREADBYKEY. The WORKING-STORAGE SECTION from figure 3-2 and 
the FINISH procedure from the CKCLOSE example are assumed for these examples. 

1. Sequential Delete. 

In order to delete all records whose primary key begins with "P", first position the file to the start 
of these records with CKST ART and then read each record with CKREAD and delete it with 
CKDELETE. 

WORKING-STORAGE SECTION. 
77 RELOP PIC S9( 4) COMP. 
77 KEYV AL PIC X(20). 
77 KEYLOC PIC S9(4) COMP. 
77 KEYLENGTH PIC S9(4) COMP. 

PROCEDURE DIVISION. 
START. 

MOVE 2 TO I-0-TYPE. 
MOVE 0 TO A-MODE. 
CALL "CKOPEN" USING FILETABLE, STAT. 

------- check status 

FIND-REC. 
MOVE 0 TO RELOP. test for equality between primary key and KEY 
MOVE "P" TO KEYV AL. 
MOVE 3 TO KEYLOC. 
MOVE 1 TO KEYLENGTH. check first character only 
CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC, 

KEYLENGTH. 
IF STATUS-KEY-1 = "O" THEN 

GO TO READ-REC. 
IF STAT= "23" THEN 

DISPLAY "NO RECORD FOUND" 
GO TO FINISH. 

IF STATUS-KEY-1 = "9" THEN 
CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKERROR NO. = ", RESULT 
GO TO FINISH. 

3-14 



READ-REC. 
CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE. 
IF STATUS-KEY-1 = "1" THEN 

DISPLAY "END OF FILE REACHED" 
GO TO FINISH. 

IF STATUS-KEY-1 = "O" THEN 
IF NAME OF REC NOT LESS THAN "Q 

DISPLAY "DELETIONS COMPLETED" 
GO TO FINISH; 

ELSE GO TO DELETE-REC; 
ELSE 

DISPLAY "CKREAD ERROR, STATUS=", STAT 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKERROR NO.", RESULT. 

GO TO READ-REC. 

DELETE-REC. 
CALL "CKDELETE" USING FILETABLE, STAT. 
IF STATUS-KEY-1 = "O" THEN 

DISPLAY REC, " DELETED" 
GO TO READ:-REC; 

ELSE 
DISPLAY "CKDELETE ERROR, STATUS=", STAT 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKERROR NO.=", RESULT 

GO TO READ-REC. 

CKDELETE 

"THEN 

Note: If access is shared, the file must be opened with a call to CKOPENSHR and then locked be
fore the call to CKSTART that initially sets the pointer. The file should remain locked while the rec
ords to be deleted are read and then marked for deletion. If the file is not locked before CKST ART 
is called, other users can change the file so that the record pointer points to the wrong record. 

2. Random Delete. 

A file containing the primary keys of those records to be deleted from a KSAM file is read into the 
working storage area DAT. These key values are used by CKREADBYKEY to locate and read the 
items to be deleted by CKDELETE. 

PROCEDURE DIVISION. 
START. 

MOVE 2 TO 1-0-TYPE, A-MODE. 
CALL "CKOPEN" USING FILETABLE, STAT. 

. check status 

READ-KEY. 
READ DATA-FILE INTO DAT; 

AT END GO TO FINISH. 
CALL "CKREADBYKEY" USING FILETABLE, STAT, REC, NAME OF DAT, RECSIZE. 
IF STATUS-KEY-1 = "O" THEN 

GO TO DELETE-RECORD. 
DISPLAY "CKREADBYKEY ERROR, STATUS=", STAT. 

3-15 



CKDELETE 

IF STATUS-KEY-1 = "9" THEN 
CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKERROR NO.=", RESULT 
GO TO READ-KEY. 

DELETE-RECORD. 
CALL "CKDELETE" USING FILETABLE, STAT. 
IF STATUS-KEY-1 = "O" THEN 

DISPLAY REC, " DELETED" 
GO TO READ-KEY. 

DISPLAY "CKDELETE ERROR, STATUS=", STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKERROR NO. = ", RESULT. 

GO TO READ-KEY. 

Note: If access is shared, the file must be opened with a call to CKOPENSHR; a call to CKLOCK 
must precede the call to CKREADBYKEY and a call to CKUNLOCK must follow the CKDELETE 
error tests and should precede the return to READ-KEY. 

3-16 



CKERROR 
Converts file system error code returned in status to a display format number. 

Whenever a "9" is returned as the left character of the status parameter following any call to a 
KSAM procedure, you can call the procedure CKERROR to convert the MPE file system error 
code in the right character of status from a binary number to a display format number. This 
allows you to display the error code. 

PARAMETERS 

status 

result 

is the status para...T..eter to ·which a value was returned by a previous 
KSAM procedure call. The entire status parameter, both left and 
right characters, must be specified. 

is an item to which the error number is returned right justified in 
display format. The item must have a picture of 4 numeric characters 
(PIC 9( 4) ). 

USING CKERROR 

The following example shows the WORKING-STORAGE SECTION entries needed to check for 
errors and a call to CKERROR in the PROCEDURE DIVISION that checks for and displays the 
error number if a file system error occurred in a call to process a KSAM file. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 

77 RESULT PIC 9(4) VALUE ZERO. 
01 STAT. 

03 STATUS-KEY-1 
03 STATUS-KEY-2 

PROCEDURE DIVISION. 
START. 

PICX. 
PICX. 

IF STATUS-KEY-1 = "9" THEN 
CALL "CKERROR" USING STAT, RESULT. 
DISPLAY "ERROR NUMBER ", RESULT. 

3-17 



CKLOCK 
A call to CKLOCK dynamically locks a KSAM file. 

When access is shared, you must lock the file before calling CKWRITE, CKREWRITE, or CK
DELETE. This insures that another user cannot attempt to modify the file at the same time, and it 
guarantees that the most recent data is available to each user who accesses the file. 

In order to call CKLOCK, the file must have been opened with a call to CKOPENSHR, not 
CKOPEN. 

PARAMETERS 

file table 

status 

lockcond 

USING CKLOCK 

an 8-word record containing the number and name of the file, its input
output type, access mode, and a code indicating whether the previous 
operation was successful and if so, what it was. (Refer to Filetable 
Parameter discussion earlier in this section.) 

one-word (two 8-bit characters) set to a pair of values upon completion 
of the call to CKLOCK. It indicates whether or not the file was success
fully locked and if not, why not. The status word= "00" if the call was 
successful. It= "30" if the file was locked by another process; it= "9n," 
where n is a file system error code, if the call failed for some other 
reason. (Refer to the Status Parameter discussion earlier in this section.) 

one-word computational item whose value determines the action taken 
if the file is locked by another user when CKLOCK is executed. The 
value is either zero (0) or one (1). 

0 locking is conditional; if the file is already locked, control is 
returned to your program immediately with the status word set 
to "30." 

1 locking is unconditional; if the file cannot be locked immediately 
because another use has locked it, your program suspends until the 
file can be locked. 

In order to call CKLOCK, the file must be opened with dynamic access enabled. This can be done 
only with the CKOPENSHR procedure. CKOPEN will not open the file for shared access with 
dynamic locking. 

When users are sharing a file, it is essential to lock the file before modifying it. An error is returned 
if any user attempts to write, rewrite, or delete records without first locking the file. It is also impor
tant to avoid situations where one user locks the file and forgets to unlock it. If the file is already 
locked when you call CKLOCK with lockcond set to zero, the call will fail with "30" returned to 
status, and your process will continue. If, however, lockcond is set to 1, your process suspends until 
the other user unlocks the file or logs off. 

3-18 



CK LOCK 

EXAMPLES 

The following example opens file KSAMFILE for shared access with dynamic locking allowed. It 
then locks the file unconditionally. If another user has locked the file, the process suspends until 
the file is unlocked and then continues by locking your file. The status value is checked as soon as 
control returns to your process to insure that the file has been locked before continuing. 

DATA DIVISION. 

77 LOCK CO ND PICTURE S9(4) COMP VALUE 1. 
77 RESULT PICTURE 9(4) VALUE 0. 
01 STATUSKEY. 

02 STATUS-KEYl PICTURE X VALUE " ". 
02 STATUS-KEY2 PICTURE X VALUE " ". 

01 FILETABLE. 
02 FILENUMBER PICTURE S9(4) COMP VALUE 0. 
02 FILENAME PICTURE X(8) VALUE "KSAMFILE". 
02 1-0-TYPE PICTURE S9(4) COMP VALUE 0. 
02 A-MODE PICTURE S9(4) COMP VALUE 0. 
02 PREV-OP PICTURE S9(4) COMP VALUE 0. 

PROCEDURE DIVISION. 

START. 
CALL "CKOPENSHR" USING FILETABLE, STATUSKEY. 
IF STATUS-KEYl = "O" THEN GO TO LOCK-FILE. 
IF STATUS-KEYl = "9" THEN 

CALL "CKERROR" USING STATUSKEY, RESULT 
DISPLAY "ERROR NO. ",RESULT. 

LOCK-FILE. 

CALL "CKLOCK" USING FILETABLE, STATUSKEY, LOCKCOND. 
IF STATUSKEY = "00" 

THEN DISPLAY "CKLOCK IS OK" 
ELSE IF STATUSKEY = "30" 

THEN DISPLAY "FILE LOCKED BY ANOTHER PROCESS" 
ELSE IF STATUS-KEYl = "9" 

THEN CALL "CKERROR" USING STATUSKEY, RESULT 
DISPLAY "ERROR NO.", RESULT. 

3-19 



CK OPEN 
A call to procedure CKOPEN initiates file processing. 

In order to process a KSAM file, it must be opened with a call to the CKOPEN procedure. CKOPEN 
initiates processing, specifies the type of processing and the access mode; the file must have been 
created previously. You can create a KSAM file through the BUILD command of the KSAMUTIL 
program (refer to section II). 

To open a file means to make it available for processing, to specify the type of processing (input 
only, output only, or both), and to specify the access method (sequential, random, or dynamic). If 
a different type of processing or access method is needed, the file must be closed and opened again 
with the parameters set to new values. 

NOTE 

If you want to open the file for shared access, you must use a 
call to CKOPENSHR, rather than CKOPEN. 

PARAMETERS 

file table 

status 

USING CKOPEN 

an 8-word record containing the name of the file, its input-output type, 
and access mode. When the open is successful, the first word of this 
table is set to the file number that identifies the opened file. (Refer to 
Filetable Parameter discussion earlier in this section.) 

one word (two 8-bit characters) set to a pair of values upon completion 
of the call to CKOPEN to indicate whether or not the file was success
fully opened and if not why not. Left character is set to "O" if open 
is successful, to "9" if not. Right character is set to "O" if open is 
successful, to file system error code if not. (Refer to Status Parameter 
discussion earlier in this section.) 

Upon successful execution of CKOPEN, the file named in filetable is available for the type of 
processing specified in filetable. Before the file is successfully opened with CKOPEN, no operation 
can be executed that references the file either explicitly or implicitly. 

The input-output procedures that can be called to process the file depend on the value of the words 
in filetable that specify input-output type and access mode. (Refer to table 3-4 for the procedures 
allowed with the various combinations of input-output type and access mode.) 

A file may be opened for input, output, or input-output, and for sequential, random, or dynamic 
access in the same program by specifying a different call to CKOPEN for each change in input
output type or access mode. Following the initial execution of CK OPEN, each subsequent call to 
CKOPEN for the same file must fie preceded by a call to CKCLOSE for that file. 

When files are opened for input or input-output, the call to CKOPEN sets the current record pointer 
to the first record in the primary key chain. 

3-20 



CK OPEN 

Table 3-4. Procedures Allowed for Input-Output Type/Access Mode Combinations 

ALLOWED PROCEDURES ACCESS MODE INPUT-OUTPUT TYPE 

CK READ 0 

CKSTART (sequential) 
2 0 

1 
(dynamic) (open for input) 

CKREADBYKEY 
(random) 

0 
(sequential) 2 1 

CKWRITE (dynamic) (open for output) 
1 

(random) 

CK READ 
CKSTART 0 
CKREWRITE (sequential) 

CKDELETE 2 2 

CKREADBYKEY 
(dynamic) (open for input/output) 

CKWRITE 1 

CKREWRITE (random) 

CKDELETE 

INPUT-OUTPUT TYPE. Word 6 of filetable must be set to one of the following values before 
calling CKOPEN: 

0 input only 
1 output only 
2 input-output 

Input Only. In general, if you want to allow records to be read or the file to be positioned without 
allowing any new records to be written or any existing records to be changed, you should set the 
input-output type to 0. This input-output type allows you to call CKREAD or CKST ART in 
sequential processing mode, CKREADBYKEY in random mode, or all three in dynamic mode. 

Output Only. If you want to cause all existing records to be deleted when the file is opened and 
then allow new records to be written, you should set the input-output type to 1. This type of open 
deletes all existing records so that records are written to an empty file. When a file is opened for 
output only, you can call CKWRITE in any of the three access modes: sequential, random, or 
dynamic, but you cannot call any other of the KSAM procedures. 

Input-Output. If you want unrestricted file access, you should set the input-output type to 2. 
This access type allows records to be read, positioned, written, rewritten, or deleted. You may call 
CKREAD, CKSTART, CKREWRITE, and CKDELETE (but not CKWRITE) when opened in 
sequential mode; you may call CKREADBYKEY, CKWRITE, CKREWRITE, or CKDELETE (but 
not CKREAD or CKST ART) when opened in random mode. In dynamic mode, any of the KSAM 
procedures may be called. With this type of input-output, existing records are not cleared when 
you write a record with CKWRITE. 

3-21 



CK OPEN 

ACCESS MODE. Word 7 of filetable must be set to one of the following values before calling 
CKOPEN: 

0 sequential access 
1 random access 
2 dynamic access 

Sequential Access. With this type of access, records in the file are read in ascending order based 
on the value of a key within each record. The key is the primary key unless an alternate key was 
specified with CKST ART. Reading starts with the first record in sequence unless a particular 
record was specified with CKSTART. Each time a call to CKREAD is executed, the next record 
in sequence is read from the file. CKREAD and CKSTART are the only procedures that can be 
called in input mode. CKREADBYKEY cannot be specified for any input-output type if the 
access mode is sequential. 

In output mode, CKWRITE is the only procedure that can be called. When access is sequential, 
the record to be written must contain a unique primary key that is greater in value than the key of 
any previously written record. If it is not in sequence, an invalid key sequence error code, "21", 
is returned to status. 

In input-output mode, CKREWRITE and CKDELETE can be specified as well as CKREAD and 
CKSTART, but CKWRITE cannot. 

Random Access. This type of access allows you to read, write, replace, or delete a record with 
any value for its primary key. To read a record, the CKREADBYKEY procedure must be called 
in either input or input-output mode. CKREAD and CKSTART cannot be specified for any 
input-output type when access mode is random. 

When writing a record with CKWRITE in output or input-output mode, the value of the primary 
key in the record need not be greater than the keys of previously written records; that is, records 
can be written in any order. 

In input-output mode, CKREWRITE can be used to replace any record whose primary key matches 
the primary key in the record being written. CKDELETE can be used to delete a record specified 
in a previous CKREADBYKEY call. 

CKWRITE can be used to write a record following existing records in the file if you position to fol
low the last sequential record before writing. Use this input-output type if you want to save existing 
data in a file to which you are writing. 

Dynamic Access. Dynamic access allows you to use any call to process a file opened for input
output. When the file is opened in dynamic mode, and a call is made to CKREAD or CKST ART, 
the file can be read, but not updated, sequentially. For all other calls, dynamic mode is treated as if 
the file had been opened in random mode. See Random Mode discussion, above. The reason to oepn 
a file in dynamic mode is to allow both sequential and random processing on the same file without 
closing it and then opening it again each time access switches from sequential to random or vice versa. 

3-22 MAY 1981 



CK OPEN 

EXAMPLES 

To open a file initially for sequential read: 

WORKING-STORAGE SECTION. 
77 RESULT PIC 9(4) VALUE ZERO. 
01 FILETABLE. 

03 FILENUMBER PIC S9( 4) COMP VALUE ZERO. 
03 FILENAME PIC X(8) VALUE "KSAMFILE". 
03 1-0-TYPE PIC S9( 4) COMP VALUE ZERO.------ input only 
03 A-MODE PIC S9( 4) COMP VALUE ZERO. sequential access 
03 PREV-OP PIC S9( 4) COMP VALUE ZERO. 

01 STAT. 
03 STATUS-KEY-1 PIC X. 
03 STATUS-KEY-2 PIC X. 

PROCEDURE DIVISION. 
START. 

CALL "CKOPEN" USING FILETABLE, STAT. 
IF STATUS-KEY-1 = "O" THEN GO TO S-READ. 
IF STATUS-KEY-1 = "9" THEN 

S-READ. 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKOPEN FAILED ... ERROR NO.", RESULT 
STOP RUN. 

If you subsequently want to write in sequential order to the same file, you should close the file with 
a call to CKCLOSE (described below), move the value 1 (output to 1-0-TYPE and then re-open the 
file: 

CALL "CKCLOSE" USING FILETABLE, STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKCLOSE FAILED - ERROR NO. ", 
STOP RUN. 

MOVE 1 TO 1-0-TYPE. output only 
CALL "CKOPEN" USING FILETABLE, STAT. 

3-23 



CK OPEN 

Similarly, to update records in random order in the same file, first close the file, then use the fol
lowing MOVE statement to alter the input-output type and access mode in FI LET ABLE and re
open the file: 

CALL "CKCLOSE" USING FILETABLE, STAT. 

MOVE 2 TO I-0-TYPE. input-output 
MOVE 1 TO A-MODE. random access 
CALL "CKOPEN" USING FILETABLE, STAT. 

3-24 



CKOPENSHR 
A call to CKOPENSHR initiates file processing with dynamic locking and shared access allowed. 

In order to process a KSAM file with shared access and dynamic locking, the file must be opened 
with a call to CKOPENSHR. CKOPENSHR is exactly like CKOPEN in that it initiates processing, 
specifies the type of processing, and specifies the access mode. The file must have been created 
previously with the BUILD command of program KSAMUTIL (refer to section II). 

To open a file for shared access means to make it available for processing by more than one user. 
Shared access allows all users to read or position the file, but only one user at a time can modify 
the file by writing new records, or rewriting or deleting existing records. To insure that more than 
one user does not attempt to modify the file at the same time, you must call CKLOCK to dynami
cally lock the file before calling the procedures CKWRITE, CKREWRITE, or CKDELETE. After 
modifying the file, you should call CKUNLOCK so that it can be accessed by other users. 

PARAMETERS 

file table 

status 

an 8-word record containing the name of the file, its input-output 
type, and access mode. When the open is successful, the first word of 
this table is set to the file number that identifies the opened file. 
(Refer to Filetable Parameter discussion earlier in this section.) 

one word (two 8-bit characters) set to a pair of values upon comple
tion of the call to CKOPENSHR to indicate whether or not the file 
was successfully opened and if not why not. Left character is set to 
"O" if open is successful, to "9" if not. Right character is set to "O" 
if open is successful, to file system error code if not. (Refer to Status 
Parameter discussion earlier in this section.) 

USING CKOPENSHR 

Except that CKOPENSHR allows shared access and dynamic locking, and CKOPEN does not, a 
call to CKOPENSHR operates exactly like the call to CKOPEN. Upon successful execution of 
CKOPENSHR, the file named in filetable is available for the type of processing specified in file
table. Before the file is opened successfully, no operation can be performed that references the file 
either explicitly or implicitly. 

A file may be opened by CKOPENSHR for any of the access modes (sequential, random, or dy
namic) and for any input-output type (input only, output only, or input-output) allowed with 
CKOPEN. 

Refer to the description of using CKOPEN for the specific affects of opening a KSAM file with the 
various input-output types and access modes. 

3-25 



CKREAD 
A call to procedure CKREAD makes available the next logical record from a file. 

In order to read records in sequential order by key value, call procedure CKREAD. The file must 
have been opened in input or input-output mode with access mode specified as either sequential 
or dynamic. 

PARAMETERS 

file table 

status 

record 

recordsize 

USING CKREAD 

an 8-word record containing the number and name of the file, its 
input-output type, access mode, and a code indicating whether the 
previous operation was successful and if so, what it was. (Refer to 
Filetable Parameter discussion earlier in this section.) 

one-word (two 8-bit characters) set to a pair of values upon comple
tion of the call to CKREAD to indicate whether or not the record 
was successfully read and if not, why not. (Refer to Status Parameter 
discussion earlier in this section.) 

a record defined in the WORKING-STORAGE SECTION into which 
the contents of the next sequential KSAM record is read. 

an integer (S9( 4)COMP) containing the length in characters of the 
record being read. It must not exceed maximum record length established 
for the file when it was created. 

The file from which the record is read must be open for sequential or dynamic access (access 
mode = 0 or 2.) It may be opened for input only or input-output (input-output type= 0 or 2), 
but not for output only. 

When the file is opened initially for input or input-output, the logical record pointer is positioned 
at the first sequential record; that is, at the record with the lowest key value. The key used is the 
primary key unless a previous call to CKST ART has specified an alternate key. When a call to 
CKREAD is executed, the record at which the record pointer is currently positioned is read into 
the location specified by record. 

If, when CKREAD is executed, there is no next logical record in the file, the at end condition is 
returned to status; that is, status is set to "10". Note that a call to the procedure CKSTART can 
be used to reposition the pointer for subsequent sequential access according to primary or alternate 
key order. 

In order to update records in sequential order, CKREAD must be called before executing either of 
the update procedures CKREWRITE and CKDELETE. When access is shared, it is important to in
clude the call to CKREAD within the same locked portion of code that includes the call to 
CKREWRITE or CKDELETE. This insures that the correct record is modified or deleted. 

3-26 MAY 1981 



CKREAD 

SHARED ACCESS. Because CKREAD is a pointer-dependent procedure (refer to table 3-3), the 
actual record read depends on the current position of the logical record pointer. When access is 
shared, this pointer position can be made incorrect by other users without your program being a
ware of it. For this reason, you should lock the file, position the pointer with a pointer-indepen
dent procedure, and then call CKREAD. When the last record is read, you should then unlock the 
file so other users can access the file. Example 2 below illustrates how you should read the file se
quentially when access is shared. 

EXAMPLE 

Using the WORKING-STORAGE SECTION from figure 3-2 and the FINISH procedure in the 
CKCLOSE example, the following procedures read records in sequential order from file KSAMFILE 
and display them on the standard output device. 

1. Example of Sequential Read 

PROCEDURE DIVISION. 
START. 

MOVE 0 TO I-0-TYPE, A-MODE. 
CALL "CK OPEN" USING FILET ABLE, STAT. 
IF STATUS-KEY-1 = "9" 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKOPEN ERROR NO.", RESULT. 

IF STATUS-KEY-1 NOT= "O" 
DISPLAY "CKOPEN FAILED" 
STOP RUN. 

READ-NEXT. 
CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE. 
IF STATUS-KEY-1 = "l" GO TO NEW-POSITION. 
IF STATUS-KEY-1 = "O" 

DISPLAY REC; 
ELSE 

DISPLAY "CKREAD ERROR, STATUS=", STAT. 
IF STATUS-KEY-1 = "9" 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "FILE ERROR=", RESULT. 

GO TO READ-NEXT. 
NEW-POSITION. 

see CKST ART example 

3-27 



CK READ 

2. Example of Sequential Read with Shared Access 

PROCEDURE DIVISION. 
START. 

MOVE 0 TO 1-0-TYPE, A-MODE. 
CALL "CKOPENSHR" USING FILET ABLE, ST AT - open file for shared access 

----test status 

FIND-RECORD. 
MOVE 2 TO RELOP. 
MOVE "000-0000" TO KEYV AL. 
MOVE 23 TO KEYLOC, 
MOVE 8 TO KEYLENGTH. 
MOVE 1 TO LOCKCOND. 
CALL "CKLOCK" USING FILETABLE, STAT, LOCKCOND.-lock file unconditionally 
CALL "CKST ART" USING FILET ABLE, 

ST AT, RE LOP, KEYV AL, KEYLOC, KEYLENGTH.- position pointer to lowest key value 

--- test status 

READ-RECORD. 
CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE---read record 
IF STATUS-KEY-1 = "1" end of file 

GO TO END-OF-READ. 
IF STATUS-KEY-1 = "O" if successful, display record read 

DISPLAY REC. 

___ test status for errors 

TO TO READ-RECORD. 
END-OF-READ. 

CALL "CKUNLOCK" USING FILETABLE, STAT.--- unlock file 

3-28 



CKREADBYKEY 
A call to CKREADBYKEY makes available a record identified by key value from a KSAM file. 

Records can be read from a KSAM file in an order determined by key value. This order need not 
be sequential; in fact, it can be any order you specify. This type of access is used to access 
individual records in random order by key value. 

PARAMETERS 

file table 

status 

record 

key 

keyloc 

recordsize 

an 8-word record containing the number and name of the file, its 
input-output type, access mode, and a code indicating whether the 
previous operation was successful and if so what it was. (Refer to 
Filetable Parameter discussion earlier in this section.) 

one word (two 8-bit characters) set to a pair of values upon completion 
of the call to CKREADBYKEY indicating whether the call was success
ful and if not why not. (Refer to Status Parameter discussion earlier in 
this section.) 

a record defined in the WORKING-STORAGE SECTION into which 
the contents of a record located by key value is read. 

an item whose value is used by CKREADBYKEY to locate the record 
to be read. Key values in the file identified by filetable are compared 
to the value of key until the first record with an equal value is found. 

one-word integer (89( 4)COMP) set to the starting character position of 
the key in the KSAM data record (first position is character 1 ). keyloc 
identifies the file key to be compared with key. 

an integer (89( 4)COMP) containing the length in characters of the record 
being read; it must be less than or equal to the maximum record length 
established for the file at creation. 

USING CKREADBYKEY 

In order to use the CKREADBYKEY procedure, the file must be opened for either input or input
output. The access mode can be either random or dynamic, but must not be sequential. 

Execution of CKREADBYKEY causes the value of key to be compared to the value of the key at 
location keyloc in the K8AM file data records. When a key is found whose value is identical to that 
of key, the record pointer is moved to the beginning of that record and the record is read into the 
location record. 

If no record can be found whose key value equals that of key, an invalid key condition is diagnosed 
and status is set to the value "23". Successful execution of CKREADBYKEY is indicated by the 

MAY 1981 3-29 



CKREADBYKEY 
value "O" in the left byte of status, unsuccessful execution is indicated by either the invalid key 
return or by a value of "9" in the left byte of status. 

In order to delete records in random or dynamic mode, CKREADBYKEY must be called before 
executing CKDELETE. It is not required prior to CKREWRITE. 

EXAMPLES 

In the following examples, update information is read into the area called DAT in the WORKING
STORAGE SECTION. (Note that in this as in the preceding examples, the WORKING-STORAGE 
SECTION from figure 3-2 continues to be useful.) In the first example, the primary keys of records 
in KSAMFILE are searched for values matching the value read into NAME in the DAT record; in 
the second example, an alternate key at location 23 is searched for values matching the value read 
into PHONE in the DAT record. 

1. Read a record located by its primary key value: 

DATA DIVISION. 

WORKING-STORAGE SECTION. 
77 KEYLOC PIC S9( 4) COMP. 

PROCEDURE DIVISION. 
START. 

MOVE 2 TO I-0-TYPE, A-MODE.- prepare to open for input-output, dynamic access 
CALL "CKOPEN" USING FILETABLE, STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKOPEN ERROR NO.", RESULT. 

IF STATUS-KEY-1 NOT= "O" THEN 
DISPLAY "CKOPEN FAILED" 
STOP RUN. 

FIND-RECORD. 
READ NEW-DATA INTO DAT; read update records 

AT END GO TO FINISH. 
MOVE 3 TO KEYLOC. 
CALL "CKREADBYKEY" USING FILETABLE, STAT, REC, NAME OF DAT, 

KEYLOC, RECSIZE. 
IF STATUS= "00" THEN 

DISPLAY "RECORD FOUND", REC 
GO TO FIND-RECORD. 

IF STATUS= "23" THEN 
DISPLAY "RECORD NOT FOUND, KEY=", NAME OF DAT 
GO TO FIND-RECORD. 

IF STATUS-KEY-1 = "9" THEN 

3-30 



CALL "CKERROR" USING STAT, RESULT 
DISPLAY "ERROR NO.", RESULT 
GO TO FIND-RECORD. 

CKREADBYKEY 

To find a record by the value of an alternate key, simply change two statements in the preceding 
example so that KEYLOC contains the location of the alternate key and the key value for compari
son is found in item PHONE OF DAT rather than in NAME OF DAT: 

FIND RECORD. 
READ NEW-DATA INTO DAT; 

AT END GO TO FINISH. 
MOVE 23 TO KEYLOC. 
CALL "CKREADBYKEY" USING FILETABLE, STAT, REC, PHONE OF DAT, 

KEYLOC, RECSIZE. 

3-31 



CKREWRITE 
The procedure CKREWRITE replaces a record existing in a KSAM file with another record having a 
matching primary key. 

You can replace an existing record in a KSAM file with the procedure CKREWRITE. This proce
dure replaces a record previously read from the file with another record whose primary key matches 
the primary key of the record being replaced. 

PARAMETERS 

file table 

status 

record 

recordsize 

USING CKREWRITE 

an 8-word record containing the number and name of the file, its input
output type, access mode, and a code indicating whether the previous 
operation was unsuccessful and if so what it was. (Refer to Filetable 
parameter discussion earlier in this section.) 

one word (two 8-bit characters) set to a pair of values upon the comple
tion of the call to CKREWRITE indicating whether or not the call was 
successful and if not why not. (Refer to Status Parameter discussion 
earlier in this section.) 

a record defined in the WORKING-STORAGE SECTION containing 
data to be written as a logical record to the file replacing the record 
with a matching primary key. 

an integer (S9( 4)COMP) containing the length in characters of the record 
to be written. It must not exceed the maximum record length established 
for the file creation. 

In order to call procedure CKREWRITE, the file must be open for both input and output (input
output type=2). The access mode can be sequential, random, or dynamic. If access mode is sequential, 
CKREAD must have been executed successfully just prior to the call to CKREWRITE. In random or 
dynamic mode, no prior read is required; the system searches the file for the record to be rewritten. 

REWRITE IN SEQUENTIAL MODE. When the file is opened in sequential mode (access mode= 0), 
CKREAD must be executed before CKREWRITE. The primary key in the record to be written by 
CKREWRITE must be identical to the primary key in the record read by CKREAD. A simple way 
to insure that the keys match is to read a record into WORKING-STORAGE, modify it without 
altering the primary key, and then write it back tu the file using CKREWRITE. Since the primary 
key is not changed, the sequence of records in the file is not affected. 

Rewriting Records With Duplicate Keys. If you want to rewrite in sequential mode all the records in 
a chain of records with duplicate keys, use either CKST ART or CKREADBYKEY to position to the 
first record in the chain. Then call CKREWRITE to update the first record in the chain. Subsequent 
calls depend on whether you are changing any key value in the record (not necessarily the selected 
key). 

3-32 MAY 1981 



CKREWRITE 
If no key in the record is changed, the record pointer continues to point to the current record. 
Only a subsequent CKREAD advances the pointer to the next record in the duplicate key chain. 
In this case, you can issue CKREAD and CKREWRITE calls until all records with the duplicated 
key value have been rewritten. 

If any key in the record is changed, the new key is written to the end of the chain of duplicate keys 
in the key file. After the first call to CKREWRITE, the record pointer points to the record whose 
key value follows the changed key. Since this key is now at the end of the chain of duplicate keys, 
a subsequent call to CKREWRITE skips all records with keys in the duplicate key chain and re
writes the record with the next higher key value. In this case, you must precede each call to CKRE
WRITE with a call to CKSTART or CKREADBYKEY in order to update all subsequent records with 
duplicate keys. 

If you are updating a primary key value which is duplicated, it is good practice to use CKDELETE 
to delete the selected record and then rewrite it as a new record with CKWRITE. 

REWRITE IN RANDOM MODE. When the file is opened in random or dynamic mode (access 
mode= 1 or 2), no prior call to a read procedure is needed. You specify the record to be written 
in WORKING-STORAGE and then call CKREWRITE. However, you must use the primary key 
to position to the record to be modified. When the procedure is executed, the file is searched for a 
record whose primary key matches that of the record to be written. If such a record is found, it is 
replaced by the record specified in CKREWRITE. If not found, an invalid key condition is diagnosed 
and status is set to the value "23 ". 

A call to CKREWRITE in random mode only updates the first record with a key in the chain of 
duplicate keys. 

POSITION OF POINTER. Regardless of the mode, after any call to CKREWRITE that does not 
modify a key value, the record pointer is positioned to the key of the record just modified. How
ever, if any key in the modified record was changed, the record must be deleted and then rewritten 
by a write procedure. If the access mode is sequential and a key was modified, the pointer is moved 
to the record with the next key value in ascending sequence after the modified key. If the access 
mode is random or dynamic, and a key was modified, the pointer is moved to the record with the 
next key in ascending sequence after the primary key in the modified record. This means that in 
random or dynamic mode the key pointer may change if it was pointing to an alternate key before 
the call to CKREWRITE. 

REWRITE WITH SHARED ACCESS. If the file was opened for shared access with CKOPENSHR, 
then you must lock the file with a call to CKLOCK before rewriting any records with CKRE
WRITE. After the records are rewritten, you should unlock the file with CKUNLOCK. 

To insure that you are updating the correct record in sequential mode, you should call CKLOCK 
before positioning the pointer with CKSTART or CKREADBYKEY, then specify the sequential 
calls to CKREAD and CKREWRITE before unlocking the file with CKUNLOCK. This insures 
that no other users change the position of the pointer while you are sequentially updating the file. 

INVALID KEY. In sequential mode, the invalid key condition exists when the record just read by 
CKREAD and the record to be written by CKREWRITE do not have the same primary key value. 
In random or dynamic mode, an invalid key condition exists if no record can be found in the file 
whose primary key matches that of the record to be written by CKREWRITE. In either case, status 
is set to the value "23". 

Regardless of mode, an invalid key condition occurs if an alternate key value in the record to be 
written duplicates a corresponding alternate key for which duplicates are prohibited. When rewrit
ing a record, try to avoid specifying an alternate key value that may duplicate a value existing in 
the file unless duplicates are allowed for the key. A duplicate key condition where duplicates are 
not allowed causes status to be set to "22" and the procedure is not executed. 

MAY 1981 3-33 



CKREWRITE 
EXAMPLES 

The first example is of a sequential update that clears the value of an item in each record of the 
file. The second example searches the file for a record whose primary key has a particular value in 
order to change the alternate key for that record. Both examples assume the WORKING-STORAGE 
SECTION from figure 3-2 and the FINISH procedure from CKCLOSE. 
1. Sequential Update. 

Use CKST ART to position the current record pointer to the start of the file. Then read each record 
in sequence and set its non-key items to blanks: 

DATA DIVISION. 

WORKING-STORAGE SECTION. 
77 RELOP PIC S9( 4) COMP. 
77 KEYV AL PIC X(20). 
77 KEYLOC PIC S9( 4) COMP. 
77 KEYLENGTH PIC S9( 4) COMP. 

PROCEDURE DIVISION. 
START. 

MOVE 2 TO I-0-TYPE. 
MOVE 0 TO A-MODE. 
CALL "CKOPEN" USING FILETABLE, STAT. 

---------------------check status 

UPDATE-FILE. 
MOVE 1 TO RELOP. 
MOVE "000-0000" TO KEYV AL.-----
MOVE 23 TO KEYLOC. 
MOVE 8 TO KEYLENGTH. 

set up CKSTART parameters to start 
reading at lowest alternate key value 

CALL "CKSTART" USING FILETABLE,STAT,RELOP,KEYVAL,KEYLOC,KEYLENGTH. 
IF STATUS-KEY-1 = "O" THEN 

GO TO READ-RECORD; 
ELSE 

DISPLAY "CKSTART ERROR, STATUS=", STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKERROR NO. ", RESULT 

GO TO FINISH. 
READ-RECORD. 

CALL "CKREAD" USING FILET ABLE, ST AT, REC, RECSIZE. 
IF STATUS-KEY-1 = "l" THEN 

GO TO FINISH.----------
IF STATUS-KEY-1 = "O" THEN 

GO TO WRITE-RECORD 
ELSE 

end of file 

DISPLAY "CKREAD ERROR,STATUS =",STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKERROR NO. ", RESULT 

GO TO READ-RECORD. 

3-34 



WRITE-RECORD. 
MOVE SPACES TO OTHERDATA OF REC. 
CALL "CKREWRITE" USING FILETABLE, 
IF STATUS-KEY-1 = "O" THEN 

DISPLAY NAME OF REC, "DATA CLEARED" 
GO TO READ-RECORD. 

DISPLAY "CKREWRITE ERROR, STATUS=", 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT, 
DISPLAY "CKERROR NO.=", 
GO TO READ-RECORD. 

CKREWRITE 

Note: If the file was opened for shared access with a call to CKOPENSHR, then the file should be 
locked with a call to CKLOCK before the call to CKST ART. The file should be unlocked with a 
call to CKUNLOCK only when the final record is updated, probably in the FINISH procedure. 

2. Random Update. 

Find the record with the primary key "ECKSTEIN, LEO "and change the value of the secondary 
key to "257-5137": 

PROCEDURE DIVISION. 
START. 

MOVE 2 TO I-0-TYPE, A-MODE. 
CALL "CKOPEN" USING FILETABLE, STAT. 
IF STATUS-KEY-1 = "O" THEN 

GO TO F-UPDATE. 
DISPLAY "CKOPEN ERROR, STATUS=", STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKERROR NO.=", RESULT 

GO TO FINISH. 
F-UPDATE. 

MOVE "ECKSTEIN, LEO "TO NAME OF REC. 
MOVE "257-5137" TO PHONE OF REC. 
MOVE SPACES TO OTHERDATA OF REC. 
CALL "CKREWRITE" USING FILETABLE, STAT, REC, RECSIZE. 
IF STATUS-KEY-1 = "O" THEN 

DISPLAY REC, "UPDATED" 
GO TO FINISH. 

IF STAT= "23" THEN 
DISPLAY NAME OF REC," NOT FOUND" 
GO TO FINISH. 

DISPLAY "CKREWRITE ERROR, STATUS=", STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKERROR NO. = ", RESULT. 

GO TO FINISH. 

3-35 



CKSTART 
A call to procedure CKST ART allows you to position the record pointer to a particular record de
fined by its primary or alternate key value. 

In order to position the current record pointer to a location in the file defined by a key value, call 
CKSTART. Since CKSTART is used in preparation for sequential retrieval of records with 
CKREAD, the file must be open for sequential or dynamic access, not random, and for input or 
input-output, not output only. 

PARAMETERS 

file table 

status 

re.lop 

key 

keyloc 

key length 

an 8-word record containing the number and name of the file, its 
input-output type, access mode, and a code indicating whether the 
previous operation was successful and if so, what it was. (Refer to 
Filetable Parameter discussion earlier in this section.) 

one word (two 8-bit characters) set to a pair of values upon completion 
of the call to CKST ART to indicate whether or not the call was success
ful and if not why not. (Refer to Status Parameter discussion earlier in 
this section.) 

one-word integer (S9( 4)COMP) code that specifies a relation between 
the key value specified in the call to CKST ART and the key value in 
the record to which the record pointer is to be positioned: 

0 -- record key is equal to key 
<:__L> - record key is greater ~han key 

1' 2. )- - record key is greater than or equal to key 
'~ ... _ ,----

an item whose value is used by CKST ART to locate the record at 
which to position the record pointer. The values of a specified file 
key are compared in ascending order to the value of key according to 
the relation specified by relop. 

one-word integer (S9(4)COMP) set to the starting character location 
of a key in the KSAM file data record (first position is character 1). 
The key at keyloc is compared to key. 

one-word integer (S9(4)COMP) set to the length of key; the length 
must be less than or equal to the length of the key defined by keyloc. 

3-36 MAY 1981 



CKSTART 

USING CKSTART 

When CKST ART is executed, the key file is searched for the first key in the set of keys at location 
keyloc whose value when compared with key satisfies the comparison specified by relop. The 
current record pointer is positioned to the beginning of the record in the data file associated with 
the key found by CKSTART. 

The specified length of key (key length) may be less than the length of the key in the file; if so, the 
comparison proceeds as if the file key were truncated on the right to the same length as key length. 

If no record can be found whose key value satisfies the comparison, an invalid key condition is 
returned to status; that is, status is set to "23". 

SHARED ACCESS. If you use CKSTART to position the pointer before reading or updating the 
file sequentially in a shared environment, you must lock the file with a call to CKLOCK before 
calling CKSTART. Then, after you have completed the sequential operations, you can unlock the 
file with a call to CKUNLOCK. If you wait to lock the file until after the call to CKSTART, anoth
er user can change the structure of the key file so that the position of the pointer becomes invalid 
for any subsequent call to a procedure that depends on the pointer position. (Refer to table 3-3 
for a list of the pointer-dependent procedures.) 

EXAMPLES 

Four new items must be added to the WORKING-STORAGE SECTION in figure 3-2; otherwise, 
the same WORKINGSTORAGE SECTION is used. The new items are: 

77 
77 
77 
77 

RELOP PIC S9( 4) 
KEYV AL PIC X(20). 
KEYLOC PIC S9( 4) 
KEY LENGTH PIC S9( 4) 

COMP. 

COMP. 
COMP. 

Each of these items is assigned the value appropriate to the operation to be performed by statements 
in the PROCEDURE DIVISION. Note that the length of array KEYVAL can be made shorter by 
assigning a value less than 20 to KEYLENGTH but it cannot be made longer than 20 characters. 
Since there is no key in KSAMFILE longer than 20 characters, this allows comparison to be made 
on the longest key. 

The following example shows the statements needed to display the records in KSAMFILE in order 
by the alternate key PHONE that starts in location 23 and has a length of 8 characters. It assumes 
the file is open for input or input-output and that access mode is sequential. It also assumes the 
FINISH procedure from the CKCLOSE example. 

3-37 



CKSTART 

1. Position by alternate key sequence: 

NEW-POSITION. 
MOVE 2 TO RELOP. find key value greater than or equal to KEYVAL 
MOVE "000-0000" TO KEYV AL. 
MOVE 23 TO KEYLOC. 
MOVE 8 TO KEYLENGTH. 
CALL "CKSTART" USING FILETABLE, STAT, RE LOP, KEYV AL, KEYLOC, KEYLENGTH. 
IF STATUS= "23" THEN GO TO FINISH. no record found 
IF STATUS-KEY-1 = "O" THEN GO TO READ-BY-PHONE.- lowest key value found 
DISPLAY "CKSTART ERROR, STATUS=", STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "ERROR NUMBER=", RESULT. 

GO TO FINISH. 

READ-BY-PHONE. 
CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE. 
IF STATUS-KEY-1 = "1" THEN GO TO FINISH. end-of-file 
IF STATUS-KEY-1 = "O" THEN 

DISPLAY REC; 
ELSE DISPLAY "CKREAD ERROR,STATUS =",STAT 

IF STATUS-KEY-1 = "9" THEN 
CALL "CKERROR" USING STAT, RESULT 
DISPLAY "ERROR NUMBER=", RESULT. 

GO TO READ-BY-PHONE. 

In the next example, CKST ART is used to position to the beginning of the series of names beginning 
with the letter "T". The KSAM file key is located at character position 3 (NAME key); the param
eter KEYVAL is set to the value "T"; the key length for purposes of comparison is set to 1; and 
RE LOP is set to 0. Thus the record pointer is positioned at the first key found whose value (when 
the key is truncated to 1 character) is equal to "T". Note that this example reads not only all 
names beginning with "T", but also reads all names that begin with letters following "T". To 
read only the names beginning with "T", the program must add a test for the end of the "T" 
names. 

3-38 MAY 1981 



CKSTART 

2. Using a Generic Key 

POSITION. 
MOVE 0 TO RELOP. find key equal to KEY value 
MOVE "T" TO KEYV AL. 
MOVE 3 TO KEYLOC. 
MOVE 1 TO KEYLENGTH. 
CALL "CKSTART" USING FILETABLE,STAT,RELOP,KEYVAL,KEYLOC,KEYLENGTH. 
IF STATUS= "23" THEN GO TO FINISH. 
IF STATUS-KEY-1 = "O" THEN 

GO TO READ-NAMES. 
DISPLAY "CKSTART ERROR, STATUS=", STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "ERROR NUMBER=", RESULT. 

GO TO FINISH. 
READ-NAMES. 

CALL "CKREAD" USING FILET ABLE, ST AT, REC, RECSIZE. 
IF STATUS-KEY-1 = "1" THEN GO TO FINISH. 
IF STATUS-KEY-1 = "O" THEN 

DISPLAY REC; 
ELSE 

DISPLAY "CKREAD ERROR, STATUS=", STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "ERROR NUMBER=", RESULT. 

GO TO READ-NAMES. 

MAY 1981 3-39 



CK UNLOCK 
A call to CKUNLOCK unlocks a KSAM file dynamically locked by CKLOCK. 

A file locked by CKLOCK is released for use by other users with a call to CKUNLOCK. (If you log 
off from any connection with the system, the file is also unlocked.) Since dynamic locking takes 
place during shared access to the same file by more than one user, it is important that any file 
locked by CKLOCK be unlocked as soon as possible by CKUNLOCK. 

To use CKUNLOCK, the file must be opened for shared access with dynamic locking allowed. This 
can only be done by calling CKOPENSHR to open the file, not CKOPEN. 

PARAMETERS 

file table 

status 

an 8-word record containing the number and name of the file, its input
output type, access mode, and a code indicating whether the previous 
operation was successful and if so, what it was. (Refer to Filetable 
Parameter discussion earlier in this section.) 

one-word (two 8-bit characters) set to a pair of values upon completion 
of the call to CKUNLOCK. It indicates whether or not the file was suc
cessfully unlocked and if not, why not. The status word is set to "00" 
if the file was unlocked successfully; to "31" if the file was not locked; 
or to "9n" where n is a binary file system error code if the call fails for 
any other reason. (Refer to Status Parameter discussion earlier in this 
section.) 

USING CKUNLOCK 

After calling CKUNLOCK, you should always check the status parameter to make sure that the pro
cedure was executed successfully. When successful, the file locked by CKLOCK is again made avail
able for access by other users. If the file was not locked by CKLOCK, when CKUNLOCK is called, 
status is set to "31." 

EXAMPLES 

The following example unlocks a file previously locked by CKLOCK. (Refer to the CKLOCK 
example.) 

3-40 



CK UNLOCK 

DATA DIVISION. 

77 RESULT PICTURE 9(4) VALUE 0. 
01 STATUSKEY. 

02 STATUS-KEY! PICTURE x VALUE" " 
02 STATUS-KEY2 PICTURE x VALUE" " 

01 FILETABLE. 
02 FILENUMBER PICTURE S9( 4) COMP VALUE 0. 
02 FILENAME PICTURE X(8) VALUE "KSAMFILE". 
02 I-0-TYPE PICTURE S9(4) COMP VALUE 0. 
02 A-MODE PICTURE 89( 4) COMP VALUE 0. 
02 PREV-OP PICTURE S9( 4) COMP VALUE 0. 

PROCEDURE DIVISION. 

CALL "CKUNLOCK" USING FILETABLE, STATUSKEY. 
IF STATUSKEY = "00" 

THEN DISPLAY "CKUNLOCK IS OK" 
ELSE IF STATUSKEY = "31" 

MAY 1981 

THEN DISPLAY "FILE NOT PREVIOUSLY LOCKED BY THIS PROCESS" 
ELSE IF STATUS-KEY!= "9" 

THEN CALL "CKERROR" USING STATUSKEY, RESULT 
DISPLAY "ERROR NO.", RESULT. 

3-41 



CKWRITE 
Procedure CKWRITE copies a logical record from the program's data area to an output or an 
input-output file. 

A call to procedure CKWRITE may be used to write records to a KSAM file either in sequential 
order or randomly by key value. The file must have been opened for output or for input-output, 
but not for input only. 

PARAMETERS 

filetable 

status 

record 

recordsize 

USING CKWRITE 

an 8-word record containing the number and name of the file, its 
input-output type, access mode, and a code indicating whether the 
previous operation on the file was successful and if so what it was. 
(Refer to Filetable Parameter discussion earlier in this section.) 

one-word (two 8-bit characters) set to a pair of values upon completion 
of the call to CKWRITE to indicate whether or not the record was 
successfully written and if not why not. (Refer to Status Parameter 
discussion earlier in this section.) 

a record defined in the WORKING-STORAGE SECTION containing 
data to be written to the file by CKWRITE. 

an interger (S9( 4)COMP) containing the length in characters of the 
record to be written. It must not exceed the maximum record length 
established for the file when it was created, and it must be long enough 
to contain all the keys. 

The file to which the content of record is written must be open for output only if sequential mode 
is specified. It may be opened for output or input-output if the access mode at open is random or 
dynamic. 

WRITING IN SEQUENTIAL MODE. When the file is opened for sequential access (access 
mode= 0) and for output only (I-0 type= 1), then records must be written to the file in ascending 
sequential order by primary key value. The value of the primary key in the record to be written 
must be greater than the value of the primary key in any record previously written to the file. 
This insures that the records written to the file are initially in ascending order physically as well as 
logically. 

3-42 MAY 1981 



CKWRITE 

When I-0 type= 1, CKWRITE writes records starting at the beginning of the file, thereby effectively 
clearing any records previously written to the file. 

WRITING IN RANDOM MODE. In a file opened for random or dynamic access (access mode= 1 
or 2) and for output only or for input-output (I-0 type = 1 or 2), records can be written in any 
order; the value of the primary key need not be in any particular relation to the primary key values 
of previously written records. 

If you want to preserve existing records in the file, you should open the file with the input-output 
type equal to 2; when input-output type = 1, all existing records are cleared prior to the write. 

WRITING WHEN ACCESS IS SHARED. If the file was opened for shared access with 
CKOPENSHR, then you must lock the file with a call to CKLOCK before writing any records. 
After the records are written, you should unlock the file with a call to CKUNLOCK. 

INVALID KEY. The invalid key condition (left byte of status= "2") can occur as a result of the 
following circumstances: 

• File was opened for sequential access in output mode and the value of the primary key in the 
record being written is less than or equal to the value of the primary key in the record just 
written; status= "21". 

• File was opened for sequential or random access in output or input-output mode and the value 
of the primary key is equal to the value of the primary key in an existing record; status= "22". 

• File was opened for sequential or random access in output or input-output mode and the value 
of an alternate key for which duplicates are prohibited equals the value of a corresponding key 
in an existing record; status= "22". 

• File was opened for sequential or random access in output or input-output mode and an 
attempt was made to write a record beyond the physical bounds of the file; status= "24". 

EXAMPLES 

Assume a KSAM file called KSAMFILE with records containing 74 characters (72 characters of 
data following two characters reserved for the delete code), one primary key containing a name, 
and an alternate key containing a phone number. The data is read from an input file called 
DATA-FILE. (Refer to figure 3-2 for a diagram of the structure of this file.) 

The first example writes data to KSAMFILE in sequential order by the primary key. The second 
example, using the same DATA DIVISION and the same FINISH procedure, writes one record to 
the file containing the value "ADAMSON JOHN" as its primary key value. 

3-43 



CKWRITE 

1. Example of Sequential Write. 

DATA DIVISION 

WORKING-STORAGE SECTION. 
77 RECSIZE PIC S9(4) COMP VALUE 7 4. 
77 RESULT PIC 9(4) VALUE 0. 
01 REC. 

03 FILLER PIC XX VALUE SPACES. 
03 NAME PIC X(20). 
03 PHONE PIC X(8). 
03 OTHERDATA PIC X(44). 

01 DAT. 
03 NAME PIC X(20). 
03 PHONE PIC X(8). 
03 OTHERDATA PIC X(44). 

01 FILETABLE. 
03 FILENUMBER PIC S9( 4) COMP VALUE 0. 
03 FILENAME PIC X(8) VALUE "KSAMFILE". 
03 I-0-TYPE PIC S9( 4) COMP VALUE 0. 
03 A-MODE PIC S9( 4) COMP VALUE 0. 
03 PREY-OP PIC S9( 4) COMP VALUE 0. 

01 STAT. 
03 STATUS-KEY-1 PIC X. 
03 STATUS-KEY-2 PIC X. 

PROCEDURE DIVISION. 
START. 

MOVE 1 TO J-0-TYPE. set type to output only 
CALL "CKOPEN" USING FILETABLE, STAT. 
IF STATUS-KEY-1 = "O" THEN GO TO WRITE-F. 
DISPLAY "CKOPEN ERROR, STATUS= ",STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKERROR NO. ", RESULT. 

STOP RUN. 
WRITE-F. 

READ DATA-FILE INTO DAT; 
AT END GO TO FINISH. 

MOVE CORRESPONDING DAT TO REC. 
CALL "CKWRITE" USING FILETABLE, STAT, REC, RECSIZE. 
IF STATUS-KEY-1 = "O" THEN 

DISPLAY REC. 
GO TO WRITE-F. 

IF STAT= "21" THEN 
DISPLAY "SEQUENCE ERROR IN", NAME OF REC 
GO TO WRITE-F. 

3-4cf 



IF STAT= "22" THEN 
DISPLAY "DUPLICATE KEY", NAME OF REC 
GO TO WRITE-F. 

IF STAT= "24" THEN 
DISPLAY "END OF FILE" 
GO TO FINISH. 

FINISH 
CLOSE DATA-FILE. 
CALL "CKCLOSE" USING FILETABLE, STAT. 
IF STATUS-KEY-1 = "9" THEN 

CALL "CKERROR" USING STAT, RESULT 
DISPLAY "CKCLOSE ERROR NO.", RESULT. 

STOP RUN. 

2. Example of random write. 

PROCEDURE DIVISION. 
START. 

MOVE 1 TO I-0 TYPE. output only 
MOVE 2 TO A-MODE. random access 
CALL "CKOPEN" USING FILETABLE, STAT. 

check status 

FIND-REC. 
READ DATA-FILE INTO DAT; 

AT END GO TO FINISH. 
IF NAME OF DAT= "ADAMSON JOHN" THEN 

GO TO WRITE-REC; 
ELSE GO TO FIND-REC. 

WRITE-REC. 
MOVE CORRESPONDING DAT TO REC. 
CALL "CKWRITE" USING FILETABLE, STAT, REC, RECSIZE. 
IF STATUS-KEY-1 = "O" THEN 

DISPLAY REC," RECORD WRITTEN" 
GO TO FINISH. 

IF STAT= "22" THEN 
DISPLAY "DUPLICATE KEY" 
GO TO FINISH. 

IF STAT= "24" THEN 
DISPLAY "NO ROOM IN FILE" 
GO TO FINISH. 

3-45 

CKWRITE 



EXAMPES OF KSAM FILE ACCESS 
FROM COBOL PROGRAM 
The following three examples illustrate KSAM file access from a COBOL program. The file 
accessed in each example is called KSAMFILE. It was created previously by the KSAMUTIL 
>BUILD command with BYTE type keys: the primary key containing the name of a person and 
the alternate key containing his telephone number; the remaining data in each record is his 
address. 

EXAMP1. SEQUENTIAL WRITE 

The first example reads data from an input file into working storage and then writes it to a KSAM 
file. Access mode is sequential so that as each record is written, the keys are linked in sequential 
order although the records are not physically written in sequence. Input-output type is output 
only, the only type allowed for the procedure CKWRITE. The following procedures are illustrated: 

CK OPEN 
CKWRITE 
CKCLOSE 

Input to EXAMPl: 

l'\JuLAN JACt'\ 

HU SODA JOE 
q2~-41175 

227.,.f1dl4 
'i67 ~~EEO AVE. 
1180 5AI NT PETER er. 

£i..;KSlEIN LEO 287-Sl:H 5303 STEVEN~ CREEK 
C1-4f.IO IN RIC~ C,7~-7018 11100 WOL.FE qOAO 
PASt!Y LI i~LJ A 29~-1181 row~~ &. C'1TRY VILLnGE 
.;;t.t:.L y HEN•<Y ?93-4220 1144 LEBERTY ST. 
~IJt:.iERT GE:.R~Y 2SP_5535 l234i; TELEGt'<APH AVE. 
TUl-<1\if.WR I I/ ll N ']84-8498 22905 EMERSUN ST. 
.,m I TE GU~uON ~~ 9 Fl - f_d 0 1 '+35n ASHoY AVE. 
\'it.sn .. 1-1 ELUt.~ ;i!IJ 1-4~98 1256 Klr\lGF ISH~:~ ST. 
~;ut."-i[J Of T t'\IPU T FOR E:_XA~Pl*'lt 

Program EXAMPl: 

001000 
001100 
001200 
oolloo 
0011+00 

001soo 
001600 
001700 
oolsoo 
001900 
002000 
002100 
002200 
Q02300 
002400 
002500 
002600 
002700 

lO!NTIFICATlON DIVISION, 
PRoGRAM•IOt EXAMPl, 
ENVIRONMENT DIVISION, 
INPUT•OUTPUT SECTION, 
FIL.E•CONTROL., 

SEL.ECT SEQ.DATA ASSIGN TO "5EQ0ATA"• 
DATA OlVISION, 
FIL.E SECTION, 
FD SEQ•OATA 

L.ASEL. REcOROS ARE STANDARD, 
01 INJ)UT.AEc, 

05 REAL.CATA PIC XC12), 
WORKING•STORAGE SECTION, 
77 RECSIZE PIC 59(~) co~P VAL.UE 14, 
77 RESUL.T PIC 9C4) VAL.UE ZERO, 
01 OATA·REC, 

05 FIL.L.ER 
05 REAt..•OATA 

?IC XX VAL.UE SPACES. 
PIC )((72>, 

<;UNNVVALC. 
LOS ALTOS 
SAl\lTA CLARA 
CUPERTINO 
SAN JOSE 
EL CERRITO 
BEqKE.LEY 
OAKLAND 
BERKELEY 
SUNNYVALE 

Figure 3-3. Sequential Write Using COBOL 

3-46 

CA, 94087 
CA. 94022 
CA. 95050 
cA. 94053 
cA. 9410i 
cA. 9'+(153 
cA. 90871 
cA, 98;?34 
CA, 91234 
cA. 43096 



Q02800 01 FI~ETABL.E. 
n02900 02 FILENUMBFR PIC S9(4) co~P VALUE o. 
o03000 02 FILENAME PIC XC8) VALUE "GKSAMFlL"• 
003100 02 l·O·TYPE PIC 59(4) co~P VALUE 1• 
003200 02 A•MoOE PIC $9(4) COMP VALUE o, 
003300 02 PREV•OP PIC 59(4) COMP VAL.UE Ot 
o03400 01 STATUsKEy. 
oo3Soo Oc STATUS-K!Y•l PIC x, 
003600 Oc STATUS•l<EV~2 PtC X, 
003700 
003800 PROCEDURE DIVISION, 
003900 5TAR1', 
o04000 OPEN INPUT SEQ•OATA1 
o04l00 CALL. 11 CKOPEN 11 USING F'ILETABL.E, STATUSl<EV. 
004200 lF STATUS•t<EY•l s tt911 THEN 
o043oO CAl.L "C1<ERROR" USING STATUSKEV, RESULT 
l.'\04400 OlSPl.,AV ttCKOPEN ERROR NOt "• R!SUL..T. 
nO'+SOO IF' sTATUS•KEV•l NOT • "0 11 THEN 
o04600 0 I SPL.,AV 11 Cl<OPEN FA IL.E0 11 

o04700 sTop RUN, 
oo4800 L.ooP, 
oo'+900 READ SfQ-OATA 
o05000 AT £NO GO TO FINISH, 
005100 MOVE eORR INPUT.REC TO DATA.REC, 
!"05200 CALL "CKWRtTE" USING FILETABL.E, STAl'USKfV, DATA•RECt 
005300 RECSIZE, 
o05400 lF STATUSl<EV a "02" THEN 
o05500 DISPLAY "DUPLICATE KEV"• 
o05600 IF STATUS ... KEVwl • 11 0" THEN 
oo5700 DISPLAY DATA.REC 
oosaoo Go TO LOOP. 
005900 IF' STATUS•t<EY•l r: "9" THEN 
6 060 00 CALL ••CKERROR" US I NG STATUSl<EV, RESIJL. T 
o06lOO DISPLAY 11 Cl(WRITE ERROR NO, "• RESULT 
o06200 DISPLAY DATA.REC 
o06300 GO TO L.OOP, 
no6400 FINISH. 
006500 CLOSE SEQwOATA, 
n.06600 CALL "CKCLOSE" USING FlLETABLE, STATUSKEV, 
o06700 lF STATUS-t<EVwl • 11 9" THEN 
006800 CALL llCKERROR" USING sTATUSt<Ev, RESULT 
o06900 DISPLAY "C!<CL.OSE ERROR NO, ''• RESUL.Tt 
o07000 STOP RUN, 

Output from EXAMPl Execution: 

NOl,.AN 
'"40SOOA 
EC'<STEIN 
CA~OtN 

PASBV 
SEELY 
~09ERT 

TU~NEWR 

WHITE 
wESTER 

JACK 
JOE 
L.EO 
RICK 
LI NOA 
HENRY 
GERRY 
IVAN 
GO ROON 
ELDER 

END OF PROGRAM 

923.4975 
2c7•8il4 
287 .. 5137 
578 .. 7018 
295.1187 
293 .. 4220 
259 .. 5535 
984w8498 
398.olOl 
281.4599 

967 REED AVE, 
1180 SAINT PETER CT• 
5303 STEVENS CREEK 
11100 WOLFE ROAD 
TOWN & CNTRY VIL.~AGE 
11.44 L.EBERTY sr. 
12345 TELEGRAPH AVE• 
~~905 EMERSON ST, 
4350 ASHBY AVE, 
1256 KINGFISHER ST, 

SUNNYVALE 
L.OS ALTOS 
SANTA CLARl\ 
CUPERTINO 
SAN JOSE 
EL. CERRITO 
BERKELEY 
OAl<L.AND 
BERKELEY 
SUNNYVAL.E 

Figure 3-3. Sequential Write Using COBOL (continued) 

3-47 

CA, 
CA, 
CA, 
CA. 
CA, 
CA, 
CA, 
CA, 
CA, 
CA, 

9•on 
94022 
95050 
94053 
94102 
940!53 
90811 
98234 
91234 
43098 



EXAMP2. SEQUENTIAL READ 

The second example reads the file KSAMFILE in sequential order by primary key (NAME) and 
prints each record as it is read. It then repositions the file to the first sequential record according 
to the alternate key (PHONE) and prints each of the records as it is read in this order. The file is 
opened in sequential mode for input only .. The following procedures are illustrated: 

CKOPEN 
CKREAD 
CKSTART 
CK CLOSE 

Program EXAM2: 

oolooo 
601100 
1)01200 

lDENTIFICATloN DIVISION, 
PRoGRAMwIOe EXAMP2 1 
ENVIRONMENT DIVISION, 
INPUT-OUTPUT SECTION, 
FILE-CONTROL.. 

oolJoo 
nol400 
nolsoo 
ool6oo 
001700 
i'lOlBoo 
1)01900 

SELECT SEQ.DATA ASSIGN TO 11SEQDATA11, 
DA TA D l VIS I ON, 
WORKIN~.STORAGE SECTION. 
77 RECSIZE PIC 59(4) COMP VAL.UE 74. 

ZERO, 77 RESULT PIC 9(4) VALUE 
77 KEY•LOC PIC 59(4) COMP 002000 

no2100 
002200 
oo2Joo 
~02400 
oo~soo 
co26oo 
no2100 
no2aoo 
002900 
ooJooo 
003100 
00J200 
('03300 
003400 
n03500 01 
003600 
no37oo 
oo3aoo 
003900 
no4ooo 

VAl.,UE ?3, 
VAL.UE 2, 
VAL.UE B. 
•1000 .... 0000 11 , 

1104100 
n042oo 
no'+Joo 
o0'+400 
oo'+soo 
00'+600 
!)04700 
,.,01.teoo 
004900 
r.o5ooo 
oOSloO 
005200 
005300 

77 RELOP PIC 59(4) COMP 
77 KEVLENGTH PIC 59(4) COMP 
77 KEY~VALUE PIC X(8) VALUE 
01 OATA .. ~E.C, 

05 FILL.ER 
05 NAME 
05 PHONE 
05 OTHEF<wOATA 

PIC XX, 
PIC X<20), 
PIC X(8) 1 

PIC X(44), 
01 FIL.ETA~L.E. 

02 FILENUM~F~ PIC 
02 FILENAME PIC 
02 1.0-TYPE PIC 
02 A.MOOE PIC 
02 PREV.QP PIC 
STl-lTUSKEy. 
02 STATUS•l<'FY-1 
02 STATus-KEY ... 2 

PRoCEDURE DivtsioN. 
START, 

S9(4) COMP 
X(8) VALUE 
S9C4l CO~? 

59 < 4 l C0"4P 
59<4> co~P 

PIC x, 
PIC x, 

VALUE o, 
"Gt<SAMFIL", 
'IALUE o, 
VALLJE o. 
VALUE o, 

CALL 11 CKOPF.N' 1 USING FlL.ETABLE, STATUSl<EY, 
lF STATUS•KEY•l = 11 9" THE."'! 

LonPl. 

CAL.L 11CKERROR" USING STATU!=;KfV, RESULT 
D l SPU~ V 11 CKOPEN ERROR NO, '', RE SUL. T, 

lf STATUS•1<EY•l NOT : 11011 THEN 
OlSJ:'LAV 11C1<0?EN FAILED" 
STOP RUI\, 

JISPL.Ay ''ALPHABETICAL OROERI" 
UISPLAv " "• 

CALI.. 1'CKREA0" USING FILETABl.-E, STATUSKEV, DATA•REC, 
RECS!Zt::, 

1F STATUS-l<E"Y•l : 1'1 11 THEN GO Tn PART2. 

Figure 3-4. Sequential Read Using COBOL 

3-48 



(J 054 0 0 

.105500 
1)05600 

"05700 
005800 
"osqoo 
nu6ooo 
oobloo 
006200 
()06300 
oOb400 
no6soo 
006600 
006100 
00b800 
000900 
007000 
()071 oo 
007200 
(lo73QO 
007400 
oo7soo 
007600 
ou77oo 
107800 
007900 
oosooo 
()0~100 
ooe200 
ooBJoo 
008400 
ooesoo 
oOB6oO 
no87oo 
ooaeoo 
008900 
009000 
009100 
009200 

H srATUS•KFY-l = •1 011 iHEN 

otSl=>tAY DATA-REC 
ELSE 

PART2, 

LoriP2, 

DISl=>LAY "CKREAD ERROR, STATUS : ''• STATUSKEY 
IF" ~TATUS-KE'Y.,l = 11911 THEN 

CALL "CKERROR" USING STATUSKfV, 1-lfSULT 
oISPLAY "ERROR NOe ''• RESUl.T. 

llO ro LOOP]. 

OISPLAy 11 "• 

OISPLAy 11P1-10NE NO, ORDERS'' 
UISPLAv " "• 
CALL 1tCKSTt.Rf11 USING F'ILETABLE, STATU5KEV, REL.OP, 

KEY-VALUE, KEY•LOC, KEYLENGTH, 
IF sTATUSl<E'Y = "23 11 THEN GO To ~INJSH. 
lF STATUS-KEV•l = "O" THEN oO TO LOOP2, 
lJISPLAy 1tC1<START ERROR, STATUS : "• STATUSKEY1 
IF sTATUS .. ~EY .. l : "9 11 THEll.J 

CALL 11CKERROR11 USING STATUSl<EV, RESULT 
DJSPtAY "E"RROR 1\10, "• R~5ULT, 

"O ro FINISH. 

CALL ''CKREAo•• USING FILETABLEt STATUSKEV, DATA•REc, 
RECSJ7.E, 

If" srATuS ... KF:V•l = "l'' THEN GO TO Fil\JJSH, 
If'" STATus ... 1<e:v-1 = "0" THEN 

oISPLAY OATA ... REC 
ELSE 

DISPLAY 11 CKREAO ERROR, STATUS a "• STATUSKEY 
IF STA TUS•KEV ... 1 : •1911 THEN 

CALL 11C1<ERROR 11 USI~G STATUSKEV, RESULT 
DISPLAY "ERROR 1'\10, '', RESULT, 

~O TO LOOP2, 
FINISH• 

CAL.I. 11 CKCLoSE" USING FIL.ETABL.E, STHUSl<Ev. 
lF 5TATUS ... 1<EV ... l : 11 9" THE"I 

CALL 11 CKERROR 11 USING STATUSl<EVt RESULT 
DISPLAY "Ct<CLOSE ERROR NO, "• RESULT, 

STOP RUN, 

Figure 3-4. Sequential Read Using COBOL (continued) 

3-49 



Output from EXAMP2 Execution: 

ALPHABETICAL OROERI 

C4~DIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA, 94053 
~C<STEIN LEO 267 ... 5137 5~03 STEVENS CREEK SANTA CLARA CA, 95050 
~OSODA .JOE 2c1 .. ecl4 11eo SAINT PETER CT• LOS ALTOS CA, 94022 
NO\,.AN .JAC~ 9cJ .. 4975 967 REED AVE, SUNNYVALE CA, 9408T 
PASBY L.INDA 295-1187 ToWN ~ CNTRY VIL~AGE SAN JOSE CA, 94102 
ROSE RT GERRY 259 ... 5535 1?345 TELEGRAPH AVE• BERKE LEV CA, 90871 
SEELY HE"llRY Z~J.,.4220 1t44 LEBERTY ST, EL CERRITO CA, 94053 
TU~NEWR IVAN 984 ... 8498 ~~905 EMERSON ST, OAKLAND CA, 98234 
WF.STER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA, 43098 
wHITE GORDON J11e .. 0Jo1 4350 ASHBY AVE, BERK EL.EV CA, 91234 

P!-iONE NO. oRDE~S 

1-40SODA JOE 227 ... 8214 lt80 SAINT PETER CT, LOS ALTOS CA, 94022 
R03ERT GERRY 259-5535 12345 TELEGRAPH AVE, BERKELEY CA, 90871 
WESTER ELDER 287 ... 4598 1~56 KINGFISHER ST, SUNNYVAL.E CA, 43098 
EC<STEIN L.EO 287 .. 5137 5303 STEVENS CREEK SANTA CLA~A CA, 95050 
SF.ELY HENRV 293 .. 4220 l t '64 L.EBERTV ST. EL CERRITO CA. 94053 
PASBY l..INOA 295-1187 TOWN &. CNTRY VIL'-AGE SAN JOS! CA, 94102 
wHITE GORDON J<Je ... 0Jo1 4350 ASHBY AVE, BERKELEY CA, 91234 
CA~OIN RICK 578 .. 7018 11100 WOLFE ROAD CUPERTINO CA, 94053 
NOl.,AN JACK 9cJ-497s 967 REED AVE, SUNNVVAL.E CA, 94097 
TU~NEWR IVAN 984 .. 8498 22905 EMERSON ST. OAKL..~ND CA, 98231t 

ENO OF PROGRAM 

Figure 3-4. Sequential Read Using COBOL (continued) 

3-50 



EXAMP3. RANDOM UPDATE 

This example reads a set of new data containing update information into the WORKING-STORAGE 
SECTION. Each record read is followed by a U for update, a D for delete, or an A for add. Records 
to be added are written to the file KSAMFILE using CKWRITE in random mode. Records to be 
updated are copied to the appropriate record with CKREWRITE. Records to be deleted are first 
read in the WORKING-STORAGE SECTION with CKREADBYKEY and then deleted with 
CKDELETE. The file is opened in random mode for input-output. 

The procedures illustrated by this example are: 

CKOPEN 
CKREADBYKEY 
CKDELETE 
CKREWRITE 
CKWRITE 
CKCLOSE 

Program EXAMP3: 

001000 
001100 
001200 
001300 
001400 
ooisoo 
001600 
001100 
oolaoo 
001900 
002000 
ooiHoo 
002200 
002300 
002400 
002500 
002600 
002100 
002800 
o02900 
oolooo 
003100 
003200 
003300 
003400 
ooJsoo 
003600 
003100 
oolaoo 
003900 
004000 
001+100 
00'+200 
oot+Joo 
004400 

lOENTlFlCATlON DJVISION, 
PRcGRAM•lOt EXAMP3, 
ENVIRONMENT DIVISION, 
INPUT•OUTPUT SECTION, 
Ftt.E•CONTROI.., 

SEL.ECT NEW•DATA ASSIGN TO "~EWDATAtt 1 
DATA DIVISION, 
Fit.E SECTION, 
FD NEW•OATA 

LABEL. RECORDS ARE STANDARD, 
01 INPUT.REC PIC X(73l, 
WORKING•STORAGE SECTION, 
77 RECSIZE PIC 59(4) COMP VAL.UE 14. 
11 RESULT PtC 9(4) VALUE ZERO, 
11 KEY•LOC PIC 59(4) COMP VAL.UE 3, 
01 MASTER•RECe 

05 F"I l.L.ER 
OS NAME 
OS PHONE 
OS OTHER-DATA 

01 OATA•REC, 

PlC XX, 
PIC X C20> • 
PIC XC8), 
PIC XC44), 

OS NAME PIC XC20), 
05 PHONE PIC xca>. 
OS OTHER.DATA PIC XC44), 
05 TRANSACTIONwCODE PIC X, 

01 FlL.ETABL.E, 
02 FILENUMBF:R 
02 FIL.ENAME 
02 I•O•TVPE 
02 AwMOOE 
Oi pREv.oP 

01 STATUSKEY, 

PIC 59(4) co~P VAL.UE o. 
PIC X(8) VAl.UE "GKSAMFIL"• 
PIC 59(4) co~P VA~UE 2. 
PIC 59(4) COMP VALUE lt 
PIC 59(4) COMP VALUE 0 1 

02 STATUS•KEV•l PIC X, 
02 STATUS•KEY•2 PIC X, 

Figure 3-5. Random Update with COBOL 

3-51 



o04500 PRoCEOURE DIVISION· 
004600 START, 
o04700 OPEN INPUT NEW•OATA, 
004800 CAL.L "CKOl='EN" USING FIL.ETABL,.E, STATUSKEV. 
004900 IF sTATUS•KEY .. 1 a "9" THE~ 
o05000 CAL.L. 11CKERROR" USING STATUSKEY, RESULT 
o05l00 OISPL,.AY 11C1<0PEN ERROR '10, ''• RESULT, 
o 0 5 2 O 0 l. F ST AT US• I< E Y • l N 0 T .11 " 0 " THEN 
o053oO oISPL,.AY ttCKOPEN FAILED" 
o05400 sTOp RUN, 
oossoo LooP. 
005600 
005700 
1J058oO 
n05900 
n06000 
006100 
006200 
oo6Joo 
006400 
oo&soo 
006600 
('06700 
no6aoo 
006900 
007000 
007100 
007200 
oo7Joo 
007400 
oo7soo 
1)07600 
('107700 
oo7eoo 
007900 
ooeooo 
008100 
008200 
ooBJoo 
oOB4oO 
ooesoo 
no86oo 

HEAD NEW•DATA INTO OATA•RECJ 
AT ENO GO TO FINISH. 

IF TRANSACTION-CODE : "A" THEN GO TO AOO.REC, 
lF TRANSACTION•CODE NOT = "0 11 AND "U" TH~N 

DISPLAY "IL.L.EGAL. TRANSACTION CODE" 
DISPLAY DATA.REC 
GO TO L,OOP, 

CAL.L "CKR~AOBYKEY" USING FIL.ETABl..E, STATUSKEY, MASTER.REC, 
NAME OF OATA•REC, KEY~LOC, RECStZE, 

IF STATUS•1<EY•l NOT = 11 0 11 THEN 
DISPLAY "CKREAOBYKEY ERROR, STATUS 11 "• STATUSKEYt 

"' KEY = "• NAME OF DATA.REC 
IF STATUS•KEY•l :s "9" TREN 

CAL.L "CKERROR" USING STATusKe:v, RESUL.T 
DtSPL.AV "ERROR NO, ft t RESUI. T 
GO TO LOOP 

ELSE' 
Go TO L,.OOP. 

If' TRANSACTJON•COOE c "0" THEN GO TO OELETE ... REC, 
MOVE CORR DATA•REC TO MASTER•REC, 
CAL..L "Ct<REW~JTE" USING FILETABL.E, STATUSKEY, MASTER .. REc, 

RECS IZE • 
IF STATUS•l<'EV•l • "0" THEN 

DISPLAY MASTER.REC, " UPDATED" 
GO TO L.00P, 

OISPL.AY 1tCl<QEWRITE ERROR, STATUS : "• STATUSt<EYt ttf KEY c " 
NAME OF MASTER.REC, 

IF STATus-KEV•l .. 1t9tt THEN 
CALL ncl<ERROR" USING STATUSKEYt RESUL.T 
DISPLAY "ERROR NO, "• RESUL.T 
Go TO LOOP. 

008100 
ooeeoo 
ooB9oO 

DE1,.ETE"'REC1 

009000 
009100 
009200 
oo9Joo 
1)09400 
0 o9soo 
009600 
009100 
oo9eoo 
009900 
010000 
010100 
01oaoo 
010300 
010400 
olOSoO 
010600 
010100 
01oeoo 
010900 

CAL.L "CKDELETEtt USING FIL.ETABLE, STATUSKF.Y, 
IF STATUS .. KEY""l = "O" THEl\4 

0 I sPL.AV ""ASTER•REC' " oELE TEO•• 
GO TO LOOP, 

UISPl..Ay "Ct<OELETE ERROR, STATUS :: "' ST4TVS1<EY1 
IF sTATUS•KEY•l • 11 9 11 THE~ 

CAL,.L. 11 Cl<ERROR 11 USING STATUSl<EV, RESULT 
DISPLAY ''ERROR NOe "• RESUL.T, 

GO TO L..OOP. 
A011•REC, 

MOVE CORR DATA.REC TO MASTER•REC, 
(;ALL "CKWRITE 11 USING FILETABLE, STATUSt<EYe MAST[R•REC, 

REcstZF. 
IF 5TATUSKEV • 1102 11 THEN 

DISPLAY "OUPL.IC~TE KEV"• 
IF STATUS•t<EY•l • "0" THEN 

DISPL.AV MASTER•REC, " ADDED" 
GO TO LOOP, 

DISPL.Ay 11C1<WRITE ERROR, STATUS • "• STATUSKEV, 
IF' STATUS•KEY•l • 11 9" THEN 

CAL.L. "Cl<ERROR'' USING STATUSt<EY, RESULT 
DISPLAY "ERROR NOe "• RESU1,.T, 

Figure 3-5. Random Update with COBOL (continued) 

3-52 



UISPL.Ay MASTER-REC, 
GO TO L.OOP, 

ollooo 
011l00 
011200 
011300 
olhoo 
ollsoo 
011600 
oll 7oo 
olleoo 

F'INISM1 
CL.OSE NEW•OATA, 
CAt..L. "CKCLOSE" USING FlL.ETABL.E, STATUSl<!:Vt 
lF STATUS•t<EY•l • ugu THEN 

CALL. ttCKERROR" USING STATUSl<Ey, RESULT 
DISPLAY "Cl<CL.OS! ERROR NO• "• RESUL.Tt 

STOP RUN, 

Input to EXAMP3: 

NULAl\I JACK 
<;Ml TH JOrH~ 

El.:KSTt:.IN LEO 
C~f<L)Il\j ~!Ct\ 

Pi-ISBy L li\ll-1 A 

.Ji.t.NE MA~Y 

~ubERT GERl'(Y 

rURNcW I Vi.'1.i" 
FU~O GEl"(~LD 

•\/t:.STt_t-< ELlJt.h! 

':1?3-4Q75 
S55-l('l2 

.. ·•'·'·""' .• .. 
·.; .. 

565-90~0 
259-s:;S35 

SS!i-1970 
~g7_4r;;98 

lo~t FIRST 
StJ"11\1YV ALE 
OLJQ TOWN 

CUPF"RTINO 

CA. 940A7U 
CA. 94099A 

fj 

1776 BICE~TENNIAL ST.ANAHEIM 
1~345 TELEGRAP~ AVf 1 RE~KELEY 

CA· ~4014U 

u 
CA. 9l076A 
c A • ~~~~fi~P 

1600 PENNSVLVA~IA 
1256 KING~ISHE~ ~T. 

n 
NASHINGTON De. 20001u 
5UN~VVALE CA .Q4309A 

Output from Execution of EXAMP3: 

NO~AN JACt< 9z3 .. 4975 l ANV STREET. SllNNVVAL.E CA. 9408T UPDATED 
S114:TM ,JQj.fN sss .. 1i!l2 102 FIRST ST. OUR TOW~ CA. 9'9099 ADDEO 
EC<STEIN LEO 287-5137 S30J STEVENS CREEK SANTA CLAQA CA. 95050 OE LE TED 
CA~OIN P.!CK 2s1-1ooc 11100 lalOL.,.E ROAD CUPERTI~O CA, 94014 UPDATED 
PA~BY LI NOA Z9S .. 1l87 TOWN l CNTRV VILLAGE SAN JOSE CAe 94102 OEl.ETEO 
JA\IE 11ARY 565-9091} 1776 BICENTENNIAL. ST.A~AH[IM CA. 91076 AD DEC 
R03cRT GER~Y 2b9.5S35 lcJleS TELEGRAPH AVE. BE AKEL.EV CA. 9ttT04 11PD&TED 

C1<R!:A08Yl(EV EARORt STATUS a 2JJ KEV r: TURNEW IVAN 
C~~EAOBVKEV ERRORt STATUS • 2JJ 1<EV • FORD GEAALD 
CKwR?TE FqAoR, STATUS ; 22 

wESTER EL.DER 2a7.4~··s 1256 KINGFISHER ST, 9UNNVVlL.E CA. 94309 

Figure 3-5. Random Update with COBOL (continued) 

Note that the input contains data that results in error messages. The name IV AN TURNEWR is 
spelled incorrectly and cannot be found. The name GERALD FORD does not exist in the original 
file and also cannot be found. On the other hand, the name ELDER WESTER already exists in the 
file and cannot be added since it is a primary key for which duplicates are not allowed. 

3-53 



USING KSAM FILES IN SPL l!Uii(.Jli 
PROGRAMS I IV I 

The Multi-Programming Executive Operating System (MPE) provides a set of procedures, known 
as intrinsics. A subset of these intrinsics makes up the file system, a set of procedures used to 
manipulate files. KSAM files are processed using these same intrinsics with the following excep
tions: seven new intrinsics are added for KSAM files, and four of the file system intrinsics do not 
apply to KSAM files. (Refer to table 4-1 for a list of the KSAM file system intrinsics.) 

Table 4-1. KSAM File System Intrinsics 

INTRINSIC KSAM NOT USED 
DIFFERENCES IN FORMAT FUNCTION 

NAME ONLY BY KSAM 

FOP EN ksamparam replaces formmsg Opens a KSAM file for 
as sixth parameter. access and assign file num-

ber to file. 

FCLOSE none Closes a KSAM file to 
further access. 

[FRENAME] x - If called for KSAM file, re-
turns CCL error code. 

FREAD none Reads next record in se-
quential order by key. 

*FREADC x all new Reads next record in 
chronological sequence. 

*FREADBYKEY x all new Reads record identified by 
key value. 

FREADDIR none Reads record identified by 
chronological position. 

[FREADSEEK] x - If called for KSAM file, re-
turns CCL error code. 

FWRITE control parameter included Writes record to KSAM file. 
for compatibility only. 

[FWRITEDI R] x - If called for KSAM file, re-
turns CCL error code. 

*FREMOVE x all new Deletes current record from 
KSAM file. 

FUPDATE none Updates last referenced 
record. 

4-1 



Table 4-1. KSAM File System Intrinsics (continued) 

INTRINSIC KSAM NOT USED 
DIFFERENCES IN FORMAT FUNCTION 

NAME ONLY IN KSAM 

FSPACE none Spaces forward or backward 
in file. 

*FFINDBYKEY x all new Positions current record 
pointer to record located 

by key value. 

*FFINDN x all new Positions current record 
pointer to relative record 
number in key sequence. 

FPOINT none Positions current record 

pointer to relative record 
number in chronological 
sequence. 

FGETINFO none Requests file access and 

status information. 

*FGETKEYINFO x all new Requests access and status 
information on KSAM file. 

[FRELATE] x - If called for KSAM file, re-
turns CCE and false 
condition. 

FCHECK none Requests details of file 
input/output errors. 

FERRMSG none Prints message correspond-
ing to FCHECK error code. 

FCONTROL param parameter included Ensures that input/output 
for compatibility only is complete or positions to 

first sequential record by 
key value; other options not 
available for KSAM file. 

FSETMODE none Verifies critical output as 
part of write operation; 
other options not avail-
able for KSAM file. 

FLOCK none Dynamically locks file. 

FUN LOCK none Dynamically unlocks file. 

FREADLABEL none Reads user's file label. 

FWRITELABEL none Writes user's file label. 

*HP32208 x all new Identifies the KSAM version. 

4-2 



CALLING INTRINSICS FROM SPL 

An intrinsic used in an SPL program must be declared at the beginning of the program following 
all other declarations. There are two ways to declare an intrinsic: one is to make an external pro
cedure declaration, and the other is to use the INTRINSIC declaration. Since declaring an external 
procedure is a long process, you can save space and time by using the INTRINSIC declaration as 
follows: 

INTRINSIC intrinsicname, intrinsicname, ... ,intrinsicname; 

You name all the intrinsics used in your program in the intrinsicname list. When more than one 
intrinsic is named, the names must be separated by commas. 

You call an intrinsic by writing the intrinsic name followed by a list of parameters enclosed in 
parentheses. These parameters must be in the order established for each intrinsic as shown in the 
intrinsic formats later in this section. Every parameter that is specified as a variable or an array 
must be declared before the intrinsic is called. The formats that describe intrinsics define the 
variable or array type of each parameter; specify whether it can be passed by value or must be 
passed by reference; and indicate whether any parameters are optional and if so which ones. 

In summary, to call an intrinsic from an SPL program: 

1. Refer to the intrinsic format to determine the parameter type and position. 

2. Declare any variable or array names to be passed as parameters at the beginning of the program. 

3. Declare the intrinsic name in an INTRINSIC statement. 

4. Issue the intrinsic call where appropriate in your program. 

KSAM INTRINSIC SUMMARY 

Table 4-1 is provided to give an overview of the intrinsics available for accessing KSAM files. In 
this table, the intrinsics are organized into functional groupings. In the body of this section, how
ever, the intrinsic descriptions are in alphabetic order so that they may be referenced easily. 

In table 4-1, an asterisk(*) preceding an intrinsic name indicates that this intrinsic applies only to 
KSAM files. A bracket around an intrinsic name indicates that the intrinsic should not be used for 
KSAM files. 

INTRINSIC FORMAT 

Intrinsic format is illustrated below using FCHECK as an example. 

4-3 



Optional parameters are indicated by an underline under each option and by the superscript 0-V. 
The parameter type and whether it is passed by value is shown by the superscript over each param
eter. Possible parameter types are: 

BA Byte array 
BP Byte pointer 
D Double 
DA Double array 
DV Double by value 
I Integer 
IA Integer array 
IV Integer by value 
L Logical 
LA Logical array 
L V Logical by value 
R Real 

PASSING PARAMETERS. Integer, logical and double type parameters can be passed by value. 
This means that the actual value can be specified in the intrinsic call instead of a variable or array 
name. When a parameter is passed by reference (default for all parameter types), the address in 
the caller's data area of the named variable or array is made available to the intrinsic. If the 
variable or array is modified by execution of the intrinsic, the storage in the caller's data area is 
updated. When a parameter is passed by value, the corresponding variable in the calling routine is 
unchanged. 

OPTIONAL PARAMETERS. If any parameters can be omitted, the superscripts that describe 
individual parameters are followed by the superscript 0-V, option variable. 0-V means that at 
least one parameter in the list is optional. Since all parameters are recognized by their position 
in the list, a parameter may be omitted but its preceding comma must be included. If one or 
more parameters are omitted from the end of the list, this is indicated by placing the terminating 
parenthesis after the last specified parameter. 

For example: 

FCHECK(FILEX , , , , REC) - only the first and fifth parameters are included 
FCHECK(2,ERR) the last three parameters are omitted; note that filenum 

is passed by value. 

4-4 



KSAM RECORD POINTERS 
Certain KSAM procedures use pointers that indicate the current record position in the file. 
Depending on the procedure, either of two pointers may be used: 

• Logical Record Pointer Points to a key in the key file that identifies a 
particular record in the data file. 

• Chronological Record Pointer Points directly to a record in the data file based 
on its chronological record number. 

Procedures that use these pointers are either pointer-dependent or pointer-independent. Pointer
dependent procedures expect the pointer to be positioned in order to execute correctly. Pointer
independent procedures, on the other hand, execute regardless of where the pointer is positioned, 
and in most cases, they position the pointer. Because the position of the pointer is significant for 
pointer-dependent procedures, table 4-2 defines exactly where each pointer is located following 
successful execution of those procedures that either depend on or position the pointer. 

Table 4-2. Positioning the Pointers 

PROCEDURE POINTER POINTER- POSITION OF POINTER AFTER 
NAME TYPE DEPENDENT EXECUTION OF PROCEDURE 

FFINDBYKEY Logical NO Points to key whose value was specified in call. 

FFINDN Logical NO Points to key whose relative record number was 
specified in call. 

FREADBYKEY Logical NO Points to key whose value was specified in call. 

FWRITE Logical NO Points to key whose value is next in ascending key 
sequence to the key value in the record just written. 

FPO INT Chronological NO Points to record whose relative record number was 
specified in call. 

FREADDIR* Chronological NO Points to record whose relative record number was 
specified in call. 

FREAD Logical YES Pointer remains positioned to key for the record just 
read; unless next call is to FREAD or to FUPDATE 
followed by FR EAD, in which case, pointer is 
advanced to next key in sequence before the next 
FR EAD reads the record. (Th is permits sequential 
reads and updates.} 

FSPACE Logical YES Positioned forward or backward, in key sequence, 

the number of records specified in call. 

FREMOVE Logical YES Points to next key value, in ascending sequence, to the 
key value in the record just deleted. 

FUPDATE Logical YES Pointer remains positioned to key of the record just 
modified; unless any key value is changed, in which 
case, it points to next key in ascending sequence 
after the key in the modified record. 

FREADC Chronological YES Pointer remains positioned to the record just read; 
unless next call is to FREADC, in which case, it 
points to next record in ascending chronological 
sequence. 

* Except for FREADDI R, each of these procedures positions both pointers. That is, all procedures that position 
the logical pointer also position the chronological pointer, and all calls (except FR EADDI R) that position the 
the chronological poiner also position the logical pointer. 

(Refer to appendix B, Extra Data Segments With Shared Access, for details of how KSAM determines 

pointer position.) 

4-5 



SHARED ACCESS 

The position of the record pointers is crucial during shared access because the pointers are main
tained in separate control blocks (extra data segments) for each open file. Thus, if the same file 
is opened by different users, any user may change the key file structure by adding or deleting 
records so that other users' pointers become invalid. To avoid this problem, it is good practice 
to lock the file in a shared environment before calling a procedure that positions the pointer and 
leave the file locked until any pointer-dependent operation is complete. This means that you 
should lock the file, call a procedure that sets the pointer, and then call a procedure that reads 
the file sequentially or updates the file, and then unlock the file so other users may access it. 
Once the file is unlocked, no user should assume that his pointers will still be valid. Before using 
a pointer again, it must be re-established. 

4-6 



FCHECK 
INTRINSIC NUMBER 10 

Requests details about file input/output errors. 

When a file intrinsic returns a condition code indicating a physical input/output error, additional 
details may be obtained by calling FCHECK. This intrinsic applies to files on any device. 

FCHECK accepts zero as a legal filenum parameter value. When zero is specified, the information 
returned in errorcode reflects the status of the last call to FOPEN. When an FOPEN fails, there is 
no file number that can be referenced in filenum. Therefore, when an FOPEN fails, a filenum of 
zero can be used in the FCHECK intrinsic call to obtain the errorcode only. If the tlog, blknum, 
or numrecs parameters are specified, a zero value is returned to these parameters. If a filenum of 
zero is used for a file which has been opened but not yet closed, the returned errorcode is 
meaningless. 

PARAMETERS 
filenum 

errorcode 

tlog 

blknum 

numrecs 

integer by value (required) 
A word identifier supplying the file number of the file for which error 
information is to be returned. 

integer (optional) 
A word to which is returned the error code specifying the type of error 
that occurred. If no error occurred errorcode is set to zero. (Refer to 
table 4-3 for the errorcode values.) The intrinsic FERRMSG returns 
a displayable message that corresponds to the value of errorcode. 

Default: The error code is not returned. 

integer (optional) 
A word to which is returned the transmission log value recorded when 
an erroneous data transfer occurs. This word specifies the number of 
words not read or written (those left over) as the result of an input/ 
output error. 

Default: The transmission log value is not returned. 

double (optional) 
A double word to which is returned the relative number of the block 
involved in the error. 

Default: The block number is not returned. 

integer (optional) 
A word to which is returned the number of logical records in the bad 
block. 

Default: The number of logical records is not returned. 

4-7 



FCHECK 

CONDITION CODES 

CCE Request granted. 

CCG Not returned by this intrinsic. 

CCL Request denied because filenum was invalid and errorcode is 72, or a 
bounds violation occurred while processing this request and errorcode 
is 73. 

SPECIAL CONSIDERATIONS 

Split stack calls permitted. 

Table 4-3. FCHECK errorcode Parameter Format 

8 

Shaded bits are set to zeros. 

Bits 

0:8 unused (all zeros) 

8:8 error code =one of the following values: 

Code 
(Decimal) 

0 End of file. 

9 10 11 12 13 

FCHECK error code 

Meaning 

14 

Illegal DB register setting (typically, a request in split-stack mode when it is 
illegal). 

2 
8 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

1 llegal capability 
1 llegal parameter value. 
Invalid operation. 
Data parity error. 
Software time-out. 
End of tape. 
Unit not ready. 
No write ring on tape. 
Transmission error. 
Input/output time-out. 
Timing error or data overrun. 
Start input/output (SIO) failure. 
Unit failure. 
End of line (special character terminator). 
Software abort of input/output operation. 

Data lost 
Unit not on line. 

4-8 

15 



FCHECK 

Table 4-3. FCHECK errorcode Parameter (continued) 

Code 
Meaning 

(Decimal) 

35 Data set not ready. 

36 Invalid disc address. 
37 Invalid memory address. 

38 Tape parity error. 
39 Recovered tape error. 

40 Operation inconsistent with access type. 
41 Operation inconsistent with record type. 

42 Operation inconsistent with device type. 
43 The tcount parameter value exceeded the recsize parameter, but the multi-

record access aoption was not specified when the file was opened. 
44 The FUPDATE intrinsic was called, but the file was positioned at record zero. 

(FUPDATE must reference the last record read, but no previous record was 
read.) 

45 Privileged file violation. 
46 File space on all discs in the device class specified is insufficient to satisfy this 

request. 
47 Input/output error on a file label. 
48 Invalid operation due to multiple file access. 

49 Unimplemented function. 

50 The account referenced does not exist. 

51 The group referenced does not exist. 

52 The referenced file does not exist in the system (permanent) file domain. 

53 The referenced file does not exist in the job temporary file domain. 

54 The file reference is invalid. 

55 The referenced device is not available. 

56 The device specification is invalid or undefined. 

57 Virtual memory is not sufficient for the file specified. 

58 The file was not passed (typically, a request for $0LDPASS when there is no 
$0LDPASS). 

59 Standard label violation. 

60 Global RIN not available. 

61 Group disc file space exceeded. 

62 Account disc file space exceeded. 

63 Non-sharable device (ND) capability required but not assigned. 
64 Multiple RIN (MR) capability required but not assigned. 

66 Plotter limit switch reached. 

67 Paper tape error. 

68 System internal error. 

69 Miscellaneous (ATTACHIO) input/output error. 
71 Too many files opened for process. 

72 Invalid file number. 
73 Bounds check violation. 
77 NO-WAIT input/output operation is pending. 
78 There is no NO-WAIT input/output for any file. 
79 There is no NO-WAIT input/output for file specified. 
80 Configured maximum number of spoolfile sectors would be exceeded by this 

output request. 
81 No SPOOL class defined in system. 

4-9 



FCHECK 

Table 4-3. FCHECK errorcode Parameter (continued) 

Code 
Meaning 

(Decimal) 

82 Insufficient space in SPOOL class to honor this input/output request. 

83 Extent size exceeds maximum allowable. 

84 The next extent in this spoolfile resides on a device which is unavailable to 
the system (i.e., the device is =DOWN). 

85 Operation inconsistent with spooling; e.g., attempt to read hardware status. 

86 Spool process internal error. 

87 Offset to data is greater than 255 sectors. 

89 Power failure. 
90 The calling process requested exclusive access to a file to which another 

process has access. 
91 The calling process requested access to a file to which another process has 

exclusive access. 
92 Lockword violation. 
93 Security violation. 
94 Creator conflict in use of FRENAME intrinsic (user is not the creator). 

95 "BROKEN" terminal read. 

96 Miscellaneous disc input/output error (device may require HP Customer 
Engineer attention). 

97 CONTROL Y processing requested but no CONTROL Y Pl N exists. 

98 Input/output read time has overflowed. 

99 Magnetic tape error. Beginning of tape (BOT) found while requesting a back-
space record (BSR) or a backspace file (BSF). 

100 Duplicate file name in the system file directory. 

101 Duplicate file name in the job temporary file directory. 

102 Directory input/output error. 

103 System directory overflow. 
104 Job temporary directory overflow. 

105 Illegal variable block structure. 

106 Extent size exceeds maximum allowable. 

107 Offset to data is greater than 255 sectors. 

108 Inaccessible file due to a bad file label. 
109 1 llegal carriage control option. 
110 The intrinsic attempted to save a system file in the job temporary file 

directory. 
170 FPOINT intrinsic tried to position to a record that was flagged for deletion. 

171 Duplicate key value when duplicates not allowed. 
172 Key not found; no such key value. 

Codes 170- 173 tcount parameter larger than record size. 
200 174 Cannot get extra data segment for this file. 
Reserved 175 KSAM internal error. 
for KSAM 176 Illegal extra data segment length. 
File Errors 177 Too many extra data segments for this process. 

178 Not enough virtual memory for extra data segment. 
179 Undefined. 
180 Undefined. 
181 Invalid key starting position. 

182 File is empty. 

183 Record does not contain all the keys. 

4-10 



FCHECK 

Table 4-3. FCHECK errorcode Parameter (continued) 

Code 
Meaning 

(Decimal) 

184 Invalid record number in FFINDN intrinsic; record number is negative. 
185 Sequence error in primary key. 

186 Invalid key length; (numeric display and packed decimal type keys shorter 
than length specified at creation). 

187 Invalid key specification; keys illegal. 
188 Invalid device specification. 
189 Invalid record format. 

190 Invalid key blocking factor value. 
191 Incorrect record; as a result of a previous system failure, a key points to a record 

that has a different key value. 
192 System failure occurred when the KSAM file was open; run KEYi NFO of 

KSAMUTI L to recover. 
193 Undefined. 
194 Undefined. 
195 Undefined. 
196 Undefined. 
197 Undefined. 
198 Undefined. 
199 Undefined. 
200 Undefined. 

4-11 



FCLOSE 
INTRINSIC NUMBER 9 

Closes a file. 

The FCLOSE intrinsic terminates access to a file. This intrinsic applies to files on all devices. 
FCLOSE deletes the buffers and control blocks through which the user process accessed the file. 
It also deallocates the device on which the file resides and it may change the disposition of the file. 
If you do not issue FCLOSE calls for all files opened by your process, such calls are issued auto
matically by MPE when the process terminates. 

PARAMETERS 

filenum 

disposition 

seccode 

integer by value (required) 
A word identifier supplying the file number of the file to be closed. 

integer by value (required) 
Indicates the disposition of the file, significant only for files on disc. 
This disposition can be overridden by a corresponding parameter in a 
: FILE command entered prior to program execution. The disposition 
options are defined in table 4-4 

Default: disposition is zero for no change, no return of disc space. 

integer by value (required) 
Denotes the type of security initially applied to the file, significant 
only for new permanent files. The options are: 

0 - Unrestricted access - the file can be accessed by any user, unless 
prohibited by current MPE provisions. 

1 - Private file creator security - the file can be accessed only by its 
creator. 

Default: seccode is zero for unrestricted access. 

NOTE 

Both parameters are required when FCLOSE is specified in 
a program; the default values are used when MPE closes any 
open files at the end of a job or session. 

4-12 



FCLOSE 

Table 4-4. FCLOSE disposition Parameter Bit Settings 

13 14 15 

Domain 

Set shaded areas to zero for KSAM files. 

BITS 

13:3 

12: 1 

OPTION 

Domain 

Disc Space 
Disposition 

000 

SETTINGS 

No change. (default) The disposition code remains as it was before the 
file was opened. Thus, if the file is new, it is deleted by FCLOSE; other
wise, the file is assigned the domain to which it previously belonged. 

001 Permanent file. If a disc file, it is saved in the system file domain. If 
the file is a new or temporary file, an entry is created for it in the sys
tem file directory. An error code is returned if a file of the same name 

already exists in the directory. This disposition has no effect when the 
file is an old permanent file on disc. 

010 Temporary job file. The file is retained in the user's temporary (job/ 
session) file domain. It can be requested by any process within the job/ 
session. The uniqueness of the file name is checked and if a file of the 
same name already exists, an error code is returned. 

011 = Temporary job file. This option has the same effect as disposition code 

010. 

100 Released file. The file is deleted from the system. 

0 No return. (default) Any disc space allocated to the file that is 
beyond the end-of-file indicator is not returned to the system. This 

option is recommended for KSAM files. 

Return disc space. Any disc space allocated beyond the end-of-file 
indicator is returned to the system. This option is not recommended 
for KSAM users since the returned space cannot be recovered. 

CONDITION CODES 

CCE 

CCG 

CCL 

The file was closed successfully. 

Not returned by this intrinsic. 

The file was not closed, perhaps because an incorrect filenum was 
specified, or because another file with the same name and disposition 
exists in the system. 

4-13 



FCLOSE 

SPECIAL CONSIDERATIONS 

Split stack calls permitted. 

USING FCLOSE 

The FCLOSE intrinsic terminates access to a file so that it cannot be accessed again by the current 
program until it is re-opened. FCLOSE can also be used to change the disposition currently assign
ed to a file by a previous FOPEN. 

Because of the special structure of KSAM files, it is not good practice to set the disc space bit in 
the disposition parameter in an attempt to save disc space. For this reason, 4 is the largest value that 
should be assigned to the disposition parameter when using FCLOSE to close a KSAM file. 

When a file is opened by the FOPEN intrinsic, a file count maintained by the system is incremented 
by one. When the file is closed with FCLOSE, the file count is decremented by one. If more than 
one FOPEN is in effect for a particular file, its disposition is recorded by the FCLOSE call but is 
not put into effect until the file count is zero. The effective disposition at that time is the smallest 
non-zero disposition parameter specified among all the FCLOSE calls issued against the file. For 
example, a file XYZ is opened three successive times by a process. The first FCLOSE disposition 
is 1, the second FCLOSE disposition is 4, and the third and last FCLOSE disposition is 2. The 
final disposition of the file XYZ is 1, that is, it is saved as a permanent file with no return of disc 
space. 

The use of FCLOSE differs slightly in its application to new files or to existing files. 

CLOSING A NEW KSAM FILE. When a new file is created by FOPEN, the job temporary and 
system file domains are not searched to determine whether a file of the same name exists already. 
Only when a file is closed and saved as a permanent or temporary file with FCLOSE, is such a 
search conducted. The job temporary file domain is searched if the file is closed with the domain 
field of disposition set to 2 or 3 (save as temporary file); the system file domain is searched if the 
file is closed with domain set to 1 (save as permanent file). If a file of the same name is found in 
either directory, an error code is returned. Thus it is possible to open a new file with the same 
name as an existing file, but an error results if FCLOSE is used to save such a file in the same 
domain with a file of the same name. 

In general, unless you plan to use the file once and then delete it, a newly created file should be 
closed using FCLOSE with the disposition parameter set to 1, 2, or 3. There is no need to set 
disposition to 4 in order to delete a new file since a new file is deleted when it is closed with a 
disposition of 0. 

The security code parameter ( seccode) is set only when the disposition parameter is set to 1. If 
you want exclusive access to a file being saved as a new permanent file, you should set seccode to 
1 when you close the file for the first time. Otherwise, the file can be accessed by any other user. 

In figure 4-1, a new file is closed and saved as a permanent file in the system file domain 
(disposition= 1), and access is permitted to the file by other users (seccode = 0). 

CLOSING AN EXISTING KSAM FILE. Unless you plan to change the domain where a file is 
saved, you usually close an existing file with both FCLOSE parameters set to zero. There are two 
limitations: you cannot change an existing permanent file to a temporary file, and you cannot 
change the' security code that was assigned to a permanent file at creation. 

4-14 



<<*~0000*00•00000•00••**************>> 
<<* READ OATA FROM SSTUIN DEVICE *>> 
<<*0000000000000000o000000000o000000)) 

L 1: 
QEAD <INPUT ,•72) f 
IF > 
T~t:N BEGIN 

f. ND I 
t F' < 
T~EN P.EGI~ 

<<READ ONE RECORD FROM $ST01N>> 

<<ENO OF Fl~E ON SSTOIN>> 

FCLOSE 

MOVE ME.SSAGEt="E~ROR OCCURRFD WHILE ~EAOING lNPUT"t 
PRINT<MESSAGE,-34,0)J 
TERMlNATEJ 

ENOS 
?~INT(OUTPUTt•72,0> J <<ECHO CHECK>> 

Figure 4-1. FCLOSE Example 

Assume, for example, that a file was closed as a job temporary file. Should you want to make the 
file permanent, close the file with the following call: 

FCLOSE(FILENUM,1,0) close job temporary file as permanent file 

If, however, you want to maintain this file with its current disposition, you would close it with the 
following call; 

FCLOSE(FILENUM,0,0) close file with current disposition 

Regardless of the value assigned to seccode, the type of security initially applied to the file when it 
is closed as a new permanent file is not subsequently changed. 

DELETING A KSAM FILE. The FCLOSE intrinsic can be used to delete a KSAM file from the 
system. If you intend to use a new file once only, you can delete it at the same time you close it 
for the first time by setting the FCLOSE parameters to zero: 

FCLOSE(FILNUM,0,0) delete a new file 

In this case, because disposition is zero, the file is returned to its domain before FCLOSE is 
executed. Since the file is not assigned a domain until it is closed the first time, this effectively 
deletes the file. 

4-15 



FCLOSE 

A file that has been assigned to a domain by a previous FCLOSE, can be deleted by the call: 

FCLOSE( FILNUM,4,0) delete an existing file 

Note that the only other methods for deleting a KSAM file are to use the KSAMUTIL >PURGE 
command, or to issue two MPE :PURGE commands, one for the data file and one for the key file. 

4-16 



FCONTROL 
INTRINSIC NUMBER 13 

Performs control operations qn a KSAM file. 

The FCONTROL intrinsic performs various control operations on a KSAM file. When specified 
for a KSAM file, these control operations are limited to the following: 

• Complete input/output 

• Rewind the file 

PARAMETERS 
filenum 

controlcode 

integer by value (required) 
A word identifier supplying the file number of the file for which the 
control operation is to be performed. 

integer by value (required) 
An integer identifying the operation to be performed: 

2 = Complete Output. This insures that requested output has been 
physically completed; that is, that the key buffers, data buffers, and 
KSAM control information are all written to disc. 

When access is shared, you must lock the file with FLOCK before 
calling FCONTROL with control code 2. 

5 = Rewind File. This repositions the file at its beginning, so that the 
next record read or written is the first logical record in the file. When 
this code is used for KSAM files, the file is not repositioned to the 
first physical record but to the first logical record. The first logical 
record is the record with the lowest value in the current key (primary 
or al tern ate) 

6 = Complete Output/Write MPE EOF. This performs all the functions 
of control code 2 plus it writes the MPE end-of-file and the extent 
bit map to disc. (Note that the MPE end-of-file and the extent bit 
map are written to disc automatically whenever a new extent is 
allocated.) Writing the MPE end-of-file to disc periodically insures that 
it does not precede the KSAM end-of-file. Because the MPE end-of-file 
marker points to the next available block and the KSAM end-of-file 
marker points to the next available record within the last block, it is 
possible that the MPE mark is past the KSAM mark. 

In shared access, you must lock the file before calling FCONTROL with 
control code 6. 

7 =Clear Buffers. Clears the key and data buffers of all information, and 
then reads the KSAM control information (first two sectors of key file) 
from disc to the buffers. This forces data to be read from the disc to the 
buffers at the next read operation thereby insuring that the most up
to-date information is in the buffers. 

4-17 



FCONTROL 

pa ram 

CONDITION CODES 

CCE 

CCG 

CCL 

In shared access, FCONTRO L with control code 7 can be used 
immediately before a read operation, but this does not guarantee that 
the record read is not being modified or deleted by another user. For 
that purpose, you must use FLOCK (which also clears the buffers) 
before calling a read intrinsic. 

logical (required) 
This parameter may be specified as any variable or word identifier; it 
is needed by FCONTROL to satisfy internal requirements of the 
intrinsic, but serves no other purpose and is not modified by the 
instrinsic. 

Request granted. 

Not returned by this intrinsic. 

Request denied because an error occurred. Returned if any control 
code other than 2, 5, 6, or 7 is specified for a KSAM file; or the file 
was opened for shared access, but was not locked for control code 
2 or 6. 

SPECIAL CONSIDERATIONS 
Split stack calls permitted. 

USING FCONTROL 

FCONTROL provides four control functions for KSAM files. These allow you to write the key and 
data buffers and all KSAM control information to disc; to position the logical record pointer to the 
first logical record in the file; to write the buffers, KSAM control information, plus the MPE end
of-file and the latest extent bit map, to disc; and to clear all the data buffers and the latest control 
information from disc. 

The control functions that write the buffers to disc (2 and 6) require that you lock the file before 
calling them in a shared access environment. 

USING CONTROL CODE 2. When you use control code 2, the data block and key block buffers 
and the KSAM control information (including the KSAM end-of-file) are written to disc. (The 
data written is that contained in the Extra Data Segment for the open file - refer to figure B-11 for 
details.) This control code is particularly useful to make sure the KSAM file reflects current changes. 
Suppose, for instance, that you open a KSAM file exclusively for a long period of time and that 
your data buffer holds many records. In this casf!, you can call FCONTROL with code 2 after 
writing or updating a certain number of records to insure that no more than that number of records 
will be lost in case of a system failure. 

For example, you could call FCONTROL every 10 records: 

IF COUNT= 10 counter set by each FWRITE or FUPDATE 
THEN BEGIN 

FCONTROL(FILNUM,2,DUMMY); 
END; 

4-18 



FCONTROL 
Note that the parameter DUMMY has no function. It is supplied because all 
FCONTROL parameters are required. It should be declared in the program as a 
word variable: LOGICAL DUMMY; 

As a result of the call shown above, you can never lose more than 10 records in case of a system 
failure. When a system failure occurs with a KSAM file open, you must run the KSAMUTIL 
command KEYINFO to allow the file to be reopened. KEYINFO also sets the MPE end-of-file 
to the current position of the KSAM end-of-file. Control code 2 of FCONTROL makes sure that 
the KSAM end-of-file follows the last record written to your file. 

In a shared environment, be sure to lock your file before calling FCONTROL with control code 2. 
Otherwise, the call will fail. 

USING CONTROL CODE 5. This control code repositions the file to the first logical record, 
that is, the record with the lowest key value. The key that determines this position can be the 
primary key or an alternate key, depending on which key was accessed last. Suppose you want 
to read the KSAM file in sequence starting with the record containing the lowest primary 
key value, you can position to this record using FCONTROL as follows: 

FCONTROL(FILNUM,5,DUMMY);---positions to 1st record in primary key sequence 

USING CONTROL CODE 6. This control code performs the same functions as control code 2, 
except that it also writes the MPE end-of-files for the KSAM files and the latest extent bit map 
to disc. Because it must access the MPE control blocks as well as the KSAM control block, this 
code takes more time than code 2. Also, since the MPE end-of-files and the extent bit map are 
written to disc automatically whenever a new extent is allocated, this code is useful primarily 
when a series of updates changes the buffers but does not cause new extents to be allocated, 
and when access to the file is exclusive. If access is shared, you must lock the file before using 
control code 6. 

USING CONTROL CODE 7. This control code clears the buffers so that the next call to a read 
instrinsic must get the record from disc rather than from the buffers. It also forces the latest 
control information to be read from disc to the buffers. Note that a call to FLOCK will also 
clear the buffers. The advantage of FCONTROL with code 7 over FLOCK is that it saves time 
- the buffers are cleared without locking and then unlocking the file. Thus, you can call 
FCONTROL with code 7 immediately before calling a read instrinsic in a shared environment in 
order to get the latest information from disc. However, this does not guarantee that this latest 
information is not changed (modified or deleted) by other users while you are calling FCONTROL. 
The only complete safeguard is to lock the file before the read. In any case, if you are making 
modifications, you should lock the file. For example: 

FCONTROL(FILNUM, 7 ,DUMMY);---clear buffers 
FREAD(FILNUM,DATA,-72); read record from file 

FLOCK(FILNUM,TRUE);------lock file 
FREAD(FILNUM,DAT A,-72); 
FUPDATE(FILNUM,DATA,-72) ;·----rewrite record just read 
FUNLOCK(FILNUM); unlock file 

4-19 



FERR MSG INTRINSIC NUMBER 307 

Returns message corresponding to FCHECK error number. 

A call to FERRMSG causes a message to be returned to msgbuf that corresponds to an FCHECK 
error number. This makes it possible to display an error message from your program. The message 
describes the error associated with the error number provided in the parameter errorcode. 

PARAMETERS 

errorcode 

msgbuf 

msglgth 

CONDITION CODES 

integer (required) 
A word identifier containing the error code for which a message is to 
be returned. It should contain an error number returned by FCHECK. 

logical array (required) 
A logical array to which the message associated with errorcode is re
turned by FERRMSG. In order to contain the message string, msgbuf 
must be defined as at least 72 characters (36 words) long. 

integer (required) 
A word identifier to which is returned the length of the msgbuf string. 
The length is returned as a positive byte count. 

Condition codes are not returned by this procedure. 

USING FERRMSG 

This intrinsic is called usually following a call to FCHECK. The error code returned in the call to 
FCHECK can then be used as a parameter in the call to FERRMSG. 

For example, suppose a CCL condition is returned by a call to FCLOSE, a call to FCHECK requests 
the particular error code, then a call to FERRMSG can be used to retrieve a printable message asso
ciated with the code. 

4-20 



FCLOSE(FILNUM,1,0); 
IF< 
THEN BEGIN 

FCHECK( FILNUM,ERRNUM); 
FERRMSG(ERRNUM,MESSAGE,LENGTH); 
PRINT(MESSAGE,-LENGTH,O);. 

END 
TERMINATE; 

FERR MSG 

The message printed explains the FCHECK code. If the FCHECK code has no assigned meaning, 
the following message is returned: 

UNDEFINED ERROR errorcode 

4-21 



FFINDBVKEV INTRINSIC NUMBER 302 

Positions record pointer to record located by a key value. 

When FFINDBYKEY is executed, the logical record pointer is set to the beginning of a record 
located by this intrinsic. The particular key is defined by the keylocation parameter. The pointer 
is positioned to the first record containing a key value that bears the relation specified by relop to 
the value specified by keyvalue. A partial key can be specified by a keylength value less than the 
defined key length. If, however, the key type specified at file creation was numeric display or 
packed decimal, a type where the sign is stored in the least significant byte, partial keys cannot be 
specified. 

FFINDBYKEY also positions the chronological pointer. 

PARAMETERS 
filenum 

key value 

key location 

key length 

re lop 

integer by value (required) 
A word identifier supplying the file number of the file to be positioned. 

byte array (required) 
A byte array containing a value that is used to locate the record at 
which the pointer is positioned. The key value in the record must be 
in the relation specified by relop to the value in array keyvalue. 

integer by value (required) 
The keylocation parameter specifies the relative byte location of the 
key being used. Bytes are numbered starting with 1. If keylocation 
is zero, then the primary key is used. 

integer by value (required) 
This parameter specifies the length of the key in bytes. If it equals zero, 
the entire key is used. If less than the full key length (generic key), then 
only the length specified here is used in the comparison with relop. The 
keylength parameter must be equal to or less than the full length of the 
key when the file was created. For keys of type numeric display or 
packed decimal, the full key length must be used. 

integer by value (required) 
A relational operator that specifies the relation of the key value in the 
file to the value specified in key value. The record to which the file is 
positioned will have this relation to keyvalue following execution of 
FFINDBYKEY: 

0-equal 
1 - greater than 
2 - equal to or greater than 

When relop is set to 1 or 2, the search is for an approximate key. 

4-22 



CONDITION CODES 

CCE 

CCG 

CCL 

FFINDBYKEY 

Request granted. 

The requested position was beyond the logical end-of-file or beginning 
of file. 

Request denied because an error occurred. The error could be a disc 
input/output error; the relational operator (relop) could not be satis
fied; a keylength less than the full length was specified for a key 
with numeric display or packed decimal format; or a key is not 
found in the key file when the relational operator is equal. 

SPECIAL CONSIDERATIONS 

Split stack calls permitted. 

USING FFINDBVKEY 

The intrinsic FFINDBYKEY allows you to position the file to a record containing a particular key 
value. Usually, you will do this in order to read in ascending sequence from that particular record. 
If you simply want to locate and read a single record, you should use FREADBYKEY. 

In figure 4-2, FFINDBYKEY is used to position the file to the record containing the lowest value 
of an 8-byte alternate key in which a telephone number is stored. After FFINDBYKEY positions 
the file to this record, a series of FREAD statements read the records in ascending order according 
to the value of the key specified by FFINDBYKEY. (Refer to shaded portions of the program for 
the FFINDBYKEY declarations and statements). 

FFINDBYKEY can also be used prior to a call to FREADC in order to position the chronological 
pointer to the record located by the specified key. 

USING APPROXIMATE KEYS. In order to find the lowest-valued telephone number, keyvalue 
is set to the value "000-0000". The key to be searched for this value is identified by its position 
in the record. In this case, the alternate key containing the telephone number starts in byte posi
tion 21, and keylocation is set to the value 21. The full length of the key is specified in keylength 
as the value 8. In order to position to the record whose alternate key value is equal to or greater 
than "000-0000", the value of relop is set to 2. 

When executed, FFINDBYKEY will locate the record with an 8-byte value starting in byte 21 
that is either equal to "000-0000" or is the lowest value greater than "000-0000". Since the 
value "000-0000" is not a valid telephone number, the value of relop could be set to 1 indicating 
the lowest value greater than "000-0000". An error condition is returned if the value in keyvalue 
cannot be located. For this reason, relop should not be set to 0 unless it is expected that the 
value being sought exists. 

4-23 



FFINDBYKEY 

USING PARTIAL (GENERIC) KEYS. If the value of key length is less than the length of the key 
at creation, this allows a search for a partial (generic) key. For example, assume a file with a 20-
byte key starting in byte 2 of each record. This key contains a name entered last name first. If 
you want to find and read all records starting with the letter "R" through the last record in se
quence by key, you could assign the following FFINDBYKEY values: 

INTEGER 
BYTE ARRAY 
BYTE ARRAY 
INTEGER 
INTEGER 
INTEGER 

FILNUM; 
FILNAME(0:9):="KSAMFILE "; 
KEYVALUE(0:4):="R"; 
KEYLENGTH:=l; 
KEYLOCATION:=2; 
RELOP:=2; 

INTRINSIC FOPEN ,FCLOSE,FREAD,FWRITE,FFINDBYKEY; 

FFINDBYKEY(FILNUM,KEYVALUE,KEYLOCATION,KEYLENGTH,RELOP) 

When executed, FFINDBYKEY will position to the first record with a key value whose first (left
most) character is the letter "R". A subsequent series of FREADs will read that record and posi
tion to the next record in sequence by the same key. 

SHARED ACCESS. If you use FFINDBYKEY to position the pointer before calling another 
procedure to read or update the file in a shared environment, you must call FLOCK to lock the 
file before calling FFINDBYKEY. Then, after performing the read or update operation, you 
can unlock the file. If you call FFINDBYKEY and then lock the file before an operation that 
depends on the record pointer, another user could move the pointer between the call to 
FFINDBYKEY and FLOCK. 

4-24 



FFINDBVKEV 

<<000000000000000•00000•••0000000000000••••000•0•••*•••••••>> 
<<• •>> 
<<* EXAMPLE ~ •>> 
<<o fiEAD A K~AM FILE SF~UENTIALLV •>> 

AR~A't' 

AR...CAV 
A~~AV 

MESSAGF:(O&JS) I 

l"J~UTco1J"> J 
uuTPUT1•1=lNPUTJ 

FCLOSE, f' READ t . 

FCHE::.CK,FERRMSu,TERM{NATEJ 
<<ooooooooooooooo•oo•OOOOO>> 
<<~ OPEN THE KSAM FILE •>> 
<<0~0000000000000000000000>> 

F!LNJM:zFOP[NtFlLNAME,31 I <<OPEN THE KSAM FILE>> 
Ir F!LNU"'1=r 
T~E~ AEGJN <<CANNOT OPEN KSAM FILE>> 

MOVE MESSAGE:: 11 CANNOT OPEN KSAM FILE"I 
PPf~T!MESSAGE,~21,0I I 
FCHECK(FILNU~,ERNORCODE~I 
F~R~MSG(ERRORCODt,MESSAGEtLFNGTH) I 
PRt~TIMESSAGEt•LtNGTHtOI I 
TER"-1lNATEI 

ENDt 

<<GET THE ERROR NUMBER>> 
<<GET MESSAGE STP!NG>> 
<<~RINT ERROR MESSAGE>> 

<<*Oooooooooooooo•oooooooooooooooooooooooooooooooooOoooooo•>> 
<<o REAn DATA FROM K~AM FILE IN TELEPHONE • SEQUENCE •>> 
<coo~o•oooooo*ooooouooooooooooooooooooooooooooooooooooo~ooo>> 

L21 
lti'J:~:~~,;'~;~ji'JJ~tiff',~;t'~~~'\l;~~;!·V~~i.,u~;.~t#.Q~~~;!;~:9~}'.ttE:YL.e.~.(jtt-4;1'~t.L.·p?':j,.1; ,.,, 
MCVf MESSAGt::l: 11 00 LIST lN TELEPHONE NO. SEQUENCE"I 
?~I~f(MESS4~~,-J3t0l f 

Figure 4-2. FFINDBYKEY Example 

4-25 



FFINDN INTRINSIC NUMBER 301 

Positions the logical record pointer to relative record number according to key sequence. 

When FFINDN is executed, it positions the KSAM logical record pointer to the record whose 
relative record number is specified in the parameter number. Records are numbered from the 
record with the lowest key value in the key that starts at keylocation in each record. Record 
numbering starts with zero unless the flagword in the FOPEN ksamparam parameter specifies 
that record numbering starts with 1, or the FIRSTREC parameter in the >BUILD command is 
set to 1. 

PARAMETERS 

filenum 

number 

key location 

integer by value (required) 
A word identifier supplying the file number of the file to be positioned. 

double by value (required) 
Relative record number counting from the first logical record in the file. 
Record numbers start with zero or one depending on the record numbering 
scheme specified at file creation; the lowest numbered record applies to the 
record with the lowest value in the specified key field. A negative record 
number positions the file pointer to the record with the .smallest key value. 

integer by value (required) 
The relative byte location in the record of the key to be used. The first 
byte is byte 1. If keylocation is set to zero, the primary key is assumed. 

CONDITION CODES 

CCE Request granted. 

CCG The requested position was beyond the logical end-of-file. 

CCL Request denied because an error occurred. 

SPECIAL CONSIDERATIONS 

Split stack calls permitted. 

USING FFINDN 

When you specify the relative record number, it is important not to confuse this number with the 
chronological record number, the number of the record as it is stored in the file. To illustrate, 
assume a file in which records have been stored in chronological order from the beginning of the 
file (BOF). Each record has a key starting in byte 3 that contains a name. The relative record 

4-26 



FFINDN 

number is based on the value of this key, not the relative location of the record in the 
file. 

For example: 

FFINDN(FILNUM,4D,3) 

This call positions the logical record pointer (as shown in figure 4-3) to record number 4 of the 
key at location 3. Note that record number 4 is the fifth record in the sequence of key values: 

ABLE 
BAKER 
CHARLIE 
DOG 
EASY 
FOX 

relative record OD 
relative record lD 
relative record 2D 
relative record 3D 
relative record 4D 
relative record 5D 

If you want to position the chronological record pointer to the relative record number in chrono
logical sequence from the beginning of the file, you can use the intrinsic FPO INT, discussed later 
in this section. Chronological order is the order in which records are written. In figure 4-3, record 
number 4 in key order, to which FFINDN positioned the file pointer, is also record number 2 in 
chronological order. 

0 2 3 4 5 ChronologicalOrder 

BAKER ABLE EASY DOG CHARLIE FOX 

BOF- -EOF 

byte 3 logical record pointer 

0 4 3 2 5 Key Order 

Figure 4-3. File Position with FFINDN 

Note that FFINDN is useful to reset the pointer to an alternate key. For example, when you 
open the file, the primary key is selected by default. If you want to select another key starting 
in location 23 and position to the first record in key sequence, you can use the following 
command: 

FFINDN( FILNUM,-1,23) 

SHARED ACCESS. If you use FFINDN to position the pointer before calling another procedure 
that reads or updates the file in a shared environment, you must call FLOCK before calling FFINDN. 
Then, after performing the read or update operation, you should unlock the file so other users can 
access it. If you lock the file after calling FFINDN, another user can change the pointer position 
without your program being aware of it. 

4-27 



FGETINFO INTRINSIC NUMBER 11 

Requests access and status information about a file. 

Once a file is opened on any device, the FGETINFO intrinsic can be used to request access and 
status information about that file. 

PARAMETERS 

filenum 

filename 

{options 

integer by value (required) 
A word identifier supplying the file number of the file about which 
information is requested. 

byte array (optional) 
A byte array to which is returned the actual designator of the file 
being referenced, in this format: 
f .g.a 
where 

f = the local file name 
g =the group name (supplied or implicit). 
a= the account name (supplied or implicit). 

The byte array must be 28 bytes long. When the actual designator is 
returned, unused bytes in the array are filled with blanks on the right. 

Default: The actual designator is not returned. 

logical (optional) 
The {options parameter returns seven different file characteristics by 
setting corresponding bit groupings in a 16-bit word. Correspondence 
is from right to left. The file characteristics returned are the same as 
those specified for {options in the FOPEN intrinsic (refer to table 4-6, 
in the FOPEN description). Note that bit 4 is set to 1 to indicate a 
KSAM file. 

Default: Foptions are not returned. 

4-28 



aoptions 

recsize 

devtype 

ldnum 

hdaddr 

FGETINFO 

logical (optional) 
The aoptions parameter returns up to seven different access options 
represented by bit groupings in a 16-bit word, as described for the 
aoptions parameter of FOPEN (refer to table 4-7 in the FOPEN 
description). 

Default: Aoptions are not returned. 

integer (optional) 
A word to which is returned the logical record size associated with the 
file. If the file was created as a binary type, this value is positive and 
expresses the size in words. If the file was created as an ASCII type, 
this value is negative and expresses the size in bytes. 

Default: The logical record size is not returned. 

integer (optional) 
A word to which is returned the type and subtype of device being used 
for the file, where 

bits (0: 8) = device subtype, and 
bits (8:8) = device type. 

If the file is not spooled, which can be determined from hdaddr (0:8), 
the returned devtype is actual. The same is true if the file is spooled and 
was opened via logical device number. However, if an output file is 
spooled and was opened by device class name, devtype contains the 
type and subtype of the first device in its class, which may be different 
from the device actually used. 

Default: The device type and subtype are not returned. 

logical (optional) 
A word to which is returned the logical device number associated with 
the device on which the file resides. 

If the file is a disc file, then the logical device number will be that of the 
first extent. If the file is spooled, then ldnum will be a virtual device 
number which does not correspond to the system configuration I/0 
device list. 

Default: The logical device number is not returned. 

logical (optional) 
A word to which the hardware address of the device is returned, where 

bits (0:8) =the Device Reference Table (DRT) number, and 
bits (8:8) =the unit number. 

If the device is spooled, the DRT number will be zero and the unit 
number is undefined. 

Default: The hardware address is not returned. 

4-29 



FGETINFO 

file code 

rec pt 

eof 

{limit 

logcount 

physcount 

blksize 

integer (optional) 
A word to which is returned the value recorded with the file as its data 
file code (for disc files only). 

Default: The file code is not returned. 

double (optional) 
A double word to which is returned a double integer representing the 
current chronological record pointer setting. This is the displacement in 
chronological records from record number 0 in the file. This record 
number is counted from the first record stored in the file in chronologi
cal order; it is not the logical record number counting from the lowest 
key value in ascending sequence. The pointer setting (recpt) identifies 
the record that would be accessed next by an FREADC intrinsic. 

Default: The chronological record pointer setting is not returned. 

double (optional) 
A double word to which is returned a double positive integer equal to 
the number of logical records currently in the data file. If the file does 
not reside on disc, this value is zero. 

Default: The number of logical records in the file is not returned. 

double (optional) 
A double word to which is returned a double positive integer represent
ing the number of the last logical record that could ever exist in the 
data file because of the physical limits of the file. 

Default: The file limit information is not returned. 

double (optional) 
A double word to which is returned a double positive integer represent
ing the total number of logical records passed to and from the user 
during the current access of the file. 

Default: The logical record count is not returned. 

double (optional) 
A double word to which is returned a double positive integer represent
ing the total number of physical input/output operations performed 
within this process against the file since the last FOPEN call. 

Default: The number of l/O operations is not returned. 

integer (optional) 
A word to which is returned the block size associated with the file. If 
the file was created as a binary type, this value is positive and expresses 
the size in words. If the file was created as an ASCII type, this value is 
negative and shows the size in bytes. 

Default: The block size is not returned. 

4-30 



extsize 

FGETINFO 

logical (optional) 
A word to which is returned the disc extent size associated with the 
data file (in sectors). 

Default: The disc extent size is not returned. 

numextent 

userlabels 

creatorid 

labaddr 

CONDITION CODES 

CCE 

CCG 

CCL 

USING FGETINFO 

integer (optional) 
A word to which is returned the maximum number of disc extents 
allowable for the data file. 

Default: The maximum allowable number of extents is not returned. 

integer (optional) 
A word to which is returned the number of user header labels defined 
for the file when it was created. When an old file is opened for over
write output, the value of userlabels is not reset and old user labels 
are not destroyed. 

Default: The number of user labels is not returned. 

byte array (optional) 
A type array to which is returned the eight-byte name of the user who 
created the file. If the file is not a disc file, blanks are returned. 

Default: The user name is not returned. 

double (optional) 
A double word to which is returned the sector address of the label of 
the file. The high-order eight bits show the logical device number. 
The remaining 24 bits show the absolute disc address. 

Default: The label address is not returned. 

Request granted. 

Not returned by this intrinsic. 

Request denied because an error occurred. 

By calling FGETINFO you can return to your program any or all of the items listed as parameters. 
Except for the identifying filenumber, each of these parameters is optional. When omitted, em
bedded parameters are indicated by commas. Parameters omitted from the end of the list need not 
be so indicated. For example, to locate the number of records in the file by finding the end of file, 
you can call FGETINFO as follows: 

FG ETINFO( FILNUM , , , , , , , , , , LSTREC); 
"---------- eof parameter 

4-31 



FGETINFO 

The value returned to LSTREC is the number of records in the file. The value LSTREC is also 
the chronological number of the last record in the file. This number can be used to read the 
last chronological record with FREADC or FREADDIR. 

Another useful parameter of FGETINFO is recpt. This parameter returns the chronological record 
number of the record last read. The example in figure 4-4 illustrates both these parameters. First, 
FGETINFO is used to determine the total number of records in the file using the parameter eof. 
Then, each record in the file is read in sequential order by primary key. Following each sequential 
read, FGETINFO retrieves the chronological record number of the record just read. 

In the output from the program (refer to figure 4-4), note that the record number returned by 
FGETINFO is the chronological number. For instance, the first record written to the file was the 
record with record number 1. This record, which contains the primary key value "NOLAN JACK", 
is the fourth consecutive record in key sequence. 

4-32 



FGETINFO 

$CJ~T~OL ~nlN=JEXA~PL5 
<coooooou~o••~oDuOou••~•ooooo~oo~oo8~~Roo~~~~~o~oooou*•~~~~>> 

Ai:< ..C n y 

ARkA'I 

AF<;..i.4 v 

t:::Xt\MPt E 5 
~INu NUM~EH UF RlCoRD~ ~ RECORD NUMHE~ 

MESSAGi:co:j:>) I 
lNPUTCOl39> I 
OUTPUT1•>=lNPUTJ 

<<00000000000000000 0 000000>> 

<<o OPEN THE KSAM FILE o>> 

<<0•0000000000000000000000>> 

FIL~JM:=FOPENCFILNAME,3>1 <<OPEN THE KSAM FILE>> 

IF F ILNUM= 11 

T ... t~ REGIN <<CANNOT OPEN KSAM FILF.>> 

~OVE MESSAGE I :••C,H-JNOT OPEl\J l(SAM FILE" J 
PRINTIMESSAGE1-2110l J 
FCHECK(FlLNUM1ER~ORCODE1 I <<GET ERROR NUMRF.R>> 
FERRMSG1ERRORCOD~1MESSAGE 1 LF.NGTH) 1<<CONVERT !O STRING>> 
PRINTIMESSAGE,-L~NGTHtOl I <<PRINTOUT ERROR ~ESSAGE>> 
TERt-1lNATEI 

ENOI 

Lll 
<<000000000000000•000000000000000000000000000000000000>> 

<<o READ ~SAM SEQUEN!IALLV ~>> 
<<000000000000000•000000000000000000000000000000000•00>> 

F~£AJCFILNUMtlNPUT 1 -72> I 
IF > <<ENO OF DATA>> 
T.,_E"-i AEGI"l 

FCLOSE(FlLNUM,0,0)' <<CLnsE THE KSAM FILE>> 
IF <> THEN 

~fGIN 

~OVE MESSAGt.s=11CANNOT CLOSE THE KSAM FILE 11 1 
PRINTlMESSAbE,-22 1 01 I 
FCHECKIFILNUM,ERRQRCOOEIJ <<GET ERROR NUMBER>> 
FERRMSG1ERHORCOUE,ME~5AGE,LE~GTH) l<<CONVERT TO STRING>> 

PRINTCMESSA~E,-LENGTH,O)I <<PRINTOUT EPROQ ~ESSAGE>> 
ENUI 

TERMINATE.I 

fND1 

Figure 4-4. FGETINFO Example 

4-33 



FGETINFO 

IF' < 
'T'~EN REGI"·J 

MOVE MESSAGE::"E:.1-(RQR OCCURRED WHILE READI"ICi KSAM F'ILE"J 
PR Il'J T (MESSAGE, -31, O) f 
FCHECKCF1LNUM,ER~ORC00E)J <<GET ER~OR NUM8ER>> 
FERRMSG(ERRO~COOt,MESSAGE1LENGTH> l<<CONVERT TO STRING>> 
PRI~T(MESSAGE,-LtNGTHtO) I <<PRINTOUT ERROR MESSAGE>> 
TERMINATE• 

ENDJ 
<<~~00000000•0000000000•000••·········••0••••••••>> 

<<o WRITE THE DATA JUST READ FRO~ KSAM FILE o>> 

<<0000000~0000000•000000000••00000000000000000000>> 

PRp.iT(O~T~ur.-12,01 I 

'·;.·,· ,,. 

<< o o oo oo oo;'o iooi ooo 000000000 i';'*;#G,";.ct4t >> 
<<o GO B~CK TO GET ANOTHER RfCORO •>> 
<<0•0000000000000•000000000•0000•000•>> 

OC T :i L1 I 
E"r,J J 
!E0'1 

When Executed, the Following Output is Printed: 

Figure 4-4. FGETINFO Example (continued) 

4-34 



FGETKEVINFO 
INTRINSIC NUMBER 303 

Requests access and status information about a KSAM file. 

PARAMETERS 

filenum 

ksamparam 

ksamcontrol 

CONDITION CODES 

CCE 

CCG 

CCL 

integer by value (required) 
A word identifier supplying the filenumber of the file about which 
information is requested. 

array (required) 
An array of the same format and size as the byte array of the same 
name in FOPEN (refer to table 4-8), except that key file size is given 
as the number of sectors. The length of the array depends on the 
number of keys in the KSAM file; its length is 17 words plus 4 words 
for each key. Note that the device (words 6-14) is not returned as a 
device class name but as an ASCII string containing the logical device 
number. 

array (required) 
an array whose size is 128 words containing control information about 
the key file. Refer to table 4-5 for the definition of the array contents. 

Request granted. 

(not returned) 

Request denied because an error occurred such as: insufficient space 
declared for ksamparam or ksamcontrol; or an illegal file number; or 
the DB register is not set to the user stack. 

USING FGETKEYINFO 

Once a KSAM file is opened, you can request information about the key file through this intrinsic. 
The ksamparam return provides static information defined for the key file at the time it was 
created. The ksamcontrol parameter provides dynamic information about the use of the key file 
from the time it was created. In particular, it provides a count of the number of times the key file 
was referenced by various intrinsics, the date and time it was created, closed, updated or written 
to, and so forth. 

4-35 



FGETKEYINFO 

Table 4-5. FGETKEYINFO ksamcontrol Parameter Format 

BIT/ 
WORD O 

0 

4 

7 

10 

13 

16 

17 

18 

20 

22 

23 

24 

25 

27 

29 

31 

33 

35 

37 

39 

41 

43 

45 

47 

49 

51 

53 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Data File Name (8 bytes) 

year J day 

hour minute 
second second/10 

year I day 
hour minute 
second second/10 

year I day 
hour minute 
second second/10 

year 1 day 

hour minute 

second second/10 

Version (ASCII letter) Update no. (binary) 

Fix level (binary) 

Number of records in data file (double word) 

Number of blocks in data file (double word) 

Number of words in last block of data file 

Number of words in data file block 

Number of bytes in data file record 

FOPEN count (double word) 

FREAD count (double word) 

FCLOSE count (double word) 

FREADDI R count (double word) 

FREADC count (double word) 

FREADBYKEY count (double word) 

FREMOVE count (double word) 

FSPACE count (double word) 

FFINDBYKEY count (double word) 

FGETI N FO count (double word) 

FGETKEYINFO count (double word) 

FREADLABEL count (double word) 

FWRITELABEL count (double word) 

FCHECK count (double word) 

FF I NON count (double word) 

4-36 

14 15 

} 

Last key file creation (set 

by >BUILD) 

} 
Last key file close (set by 
FCLOSE) 

} 

Last key value change (set 

by FUPDATE or FWR ITE) 

} 

Last count reset (set at 
create or by >ERASE) 

} 
KSAM/3000 version number 

~t ti.le ~reation (use HP322?8 
mtnns1c to get current version 
of KSAM/3000) 

Counts reflect total number 
of times file has been 

accessed by each intrinsic 
since file was last created 
or erased (see words 4-6 for 
date and time of creation). 



FGETKEYINFO 

Table 4-5. FGETKEYINFO ksamcontrol Parameter Format (continued 

BITS/ 
WORDS O 1 2 3 4 5 6 7 8 9 

FWR I TE count (double word) 

FUPDATE count (double word) 

10 11 12 13 14 

55 

57 

59 

61 

63 

65 

67 

69 

71 

73 

75 

76 

77 

78 

Any key block read count (double word) 

80 

81 

82 

84 

86 

88 

90 

92 

94 

95 

96 

98 

100 

• 127 

Any key block write count (double word) 

Any key block split count (double word) 

Next available key block record number (double word) 

Reserved for future use (double word) 

Minimum primary key value record number (double word) 

Maximum primary key value record number (double word) 

Reserved for future use. 

Data file record type (fixed=TRUE) 

Data file blocking factor 

Total number of keys (always >O) 

Record numbering method (double word) 
(= -1 D if starts with 1, OD if 0) 

Minimum record size* 

Current accessors (+1 for open, -1 for close) 

FPOI NT count (double word) 

FLOCK count (double word) 

FUN LOCK count (double word) 

FCONTROL count (double word) 

FSETMODE count (double word) 

File Limit (double word) 

Keyblock size 

Key block buffer size in extra data segment 

Delete head for free key blocks (double word) 

Key file size (No. of sectors) (double word) 

~Reserved for future use 

15 

} 

Counts reflect total number 
of times file has been 
accessed by each intrinsic 
since file was created or 

erased. 

\ 

,I 

~ 
*The minimum record size is the minimum size in which all keys are contained; it is computed by taking the 

highest key location, adding the key length, and subtracting 1: 

min record = max key position+ keylength -1 

4-37 



FLOCK INTRINSIC NUMBER 15 

Dynamically locks a file. 

The FLOCK intrinsic dynamically locks a file and transfers the latest control information from 
disc to the buffers. A call to FLOCK is required before any attempt is made to read or modify a 
file opened for shared access. 

PARAMETERS 

filenum 

lockcond 

CONDITION CODES 

integer by value (required) 
A word supplying the file number of the file to be locked. 

logical by value (required) 
A word specifying conditional or unconditional locking: 

TRUE Locking will take place unconditionally. If the file 
cannot be locked immediately, the calling process 
suspends until the file can be locked. 

Bit 15 = 1 

FALSE - Locking will take place only if the file's Resource Identifi
cation Number (RIN) is not currently locked. If the RIN 
is locked, control returns immediately to the calling 
process, with condition code CCG. 

Bit 15 = 0 

The condition codes possible when lockcond = TRUE are 

CCE 

CCG 

CCL 

Request granted. 

Nat returned when lockcond = TRUE. 

Request denied because this file was not opened with the dynamic 
locking aoption specified in the FOPEN intrinsic, or the request was to 
lock more than one file and the calling process does not possess the 
Multiple RIN Capability. 

The condition codes possible if lockcond = FALSE are 

CCE 

CCG 

CCL 

Request granted. 

Request denied because the file was locked by another process. 

Request denied because: this file was not opened with the dynamic 
locking aoption specified in the FOPEN intrinsic; or the request was 
to lock more than one file and the calling process does not possess the 
Multiple RIN Capability. 

4-38 



FLOCK 

SPECIAL CONSIDERATIONS 

Split stack calls permitted. 

Standard Capability sufficient if only one file is to be locked dynamically. 

If more than one file is to be locked dynamically, the Multiple RIN Capability is required. 

USING FLOCK 
The dynamic locking and unlocking capability allows you to complete any update to a file when it 
is possible for other users to access the file. When dynamic locki...'1.g is allowed (bit 10 of FOPEN 
aoptions parameter is set to allow dynamic locking); then you must use the FLOCK intrinsic to lock 
the file before writing, rewriting, or deleting any records. This requirement insures that another user 
does not attempt to change the same record at the same time. FLOCK also insures that the most 
recent data is available in the file. A locked file can be unlocked following the update with the 
FUNLOCK intrinsic. 

When FLOCK is executed, it clears all the buffers and transfers the latest control information from 
the KSAM file to the buffers. This insures that any subsequent read of the file retrieves the latest in
formation from disc rather than from the buffers. (Note that FCONTROL control code 7 also clears 
the buffers.) 

If you use the Multiple RIN capability, a sequence of file locking should be agreed upon or you 
should use conditional locking (lockcond = FALSE). Otherwise, it is possible to lock other users 
from the file. Consider the situation where one program unconditionally locks file A and then 
attempts to lock file B. If another program unconditionally locks file Band then attempts to lock 
file A, both programs will wait indefinitely to lock the second file in sequence. To avoid this, both 
programs should agree to lock the files. in the sequence A first, then B; or both programs should 
use only conditional locks. 

For example, suppose you open a KSAM file called DAT Al for shared access in update mode and 
allow dynamic locking and unlocking: 

FILl:=FOPEN(DATAl, 7 ,%345); 

The parameters specified are: 

filenum 

f ormaldesigna tor 

{options 

aoptions 

File number of DATAl, which is assigned to FILl when the file is 
opened. 

Name identifying the file contained in DATAl. 

The value 7 specifies that this is ~m old user file (bits 14, 15 = 11) and 
that it is coded in ASCII (bit 13 = 1 ). 

The octal value 345 indicates that the file was opened for update 
(bits 12 through 15 = 0101), that dynamic locking/unlocking is allowed 
(bit 10 = 1), and that access is shared (bits 8 and 9 = 11). 

4-39 



FLOCK 

This file can then be locked as follows: 

FLOCK(FILl,1) 

The parameters specified are: 

filenum 

lockcond 

File number of file DAT Al contained in the variable FILL 

= 1 which means the file is to be locked unconditionally. If the file 
cannot be locked immediately, the calling process is suspended until 
the file can be locked. 

4-40 



FOP EN 
INTRINSIC NUMBER 1 

Opens a file. 

The FOPEN intrinsic makes it possible to access a KSAM file. In the FOPEN intrinsic call, a 
particular file may be referenced by its formal file designator. When the FOPEN intrinsic is exe
cuted, it returns to the user's process a file number by which the system uniquely identifies the 
file. This file number, rather than the file designator, then is used by subsequent intrinsics in 
referencing the file. 

FUNCTIONAL RETURN 

This intrinsic returns an integer file number used to identify the opened file in other intrinsic calls. 

PARAMETERS 

formaldesignator 

{options 

aoptions 

MAY 1981 

byte array (required) 
Contains a string of ASCII characters interpreted as a formal file 
designator. This string must begin with a letter, contain alphanumeric 
characters, slashes, or periods, and terminate with any non-alpha
numeric character except a slash or a period. If the string names a user
predefined file, it can begin with an asterisk(*). Note: The DEL, SAVE, 
or TEMP parameters should not be used to predefine a KSAM file in a 
: FILE command; they will cause deletion or duplication of the file. 

logical by value (optional) 
The {options parameter allows you to specify different file character
istics, by setting corresponding bit groupings in a 16-bit word. If the 
file is new, bit 4 must be set to 1 to indicate that this is a KSAM file. 
Refer to table 4-6 for the {option bit settings. 

Default: All bits are set to zero. 

logical by value (optional) 
The aoptions parameter permits you to specify the various access 
options established by bit groupings in a 16-bit word. These access 
options are defined in table 4-7. 

Default: All bits are set to zero. 

4-41 



FOPEN 

rec size 

device 

ksamparam 

integer by value (optional) 
An integer indicating the size of the logical records in the data file. 
If a positive number, this represents words; bytes are represented by a 
negative number. If the file is a newly-created file, this value is re
corded permanently in the file label. If the records in the file are of 
variable length, this value indicates the maximum logical record length 
allowed. 

Binary files are word oriented. A record size specifying an odd byte 
count for a binary file is rounded up by FOPEN to the next highest 
even number. 

ASCII files may be created with logical records which are an odd num
ber of bytes in length. Within each block, however, records begin on 
word boundaries. 

For either ASCII or binary files with fixed-length records, the record 
size is rounded up to the nearest word boundary. For example, a 
recsize specified as -106 for an ASCII file is 106 characters (53 words) 
in length. A recsize of -113 for a binary file is 114 characters (57 
words) in length. The rounded sizes should be used in computations 
for blockfactor or block size. 

Default: The default value is the configured physical record width of 
the associated device. 

byte array (optional) 
Contains a string of ASCII characters terminated by any non
alphanumeric character (except a slash or period) that designates 
the device on which the file is to reside. It may be a device class 
name of up to eight alphanumeric characters beginning with a letter; 
or a logical device number consisting of a three-byte numeric string; 
or a remote device identifier consisting of the device class name or 
logical device number followed by a pound sign(#) and a remote de
vice class name or logical device number. 

Device class names and logical device numbers are assigned to devices 
during system configuration. 

For KSAM files, the device must be a random access device such as 
the disc. If the file is a newly-created disc file specified as a device 
class name, then all extents to the file must be members of the same 
class. Similarly, if the device is identified by logical device number, 
then all extents must have the same logical device number. 

Default: Disc. 

byte array (optional) 
Contains information describing the key file of a KSAM file. It 
includes the key file name, size and device plus an entry for the 
primary key and up to 15 alternate keys. If the file is new (is being 
created by FOPEN) then this array must be included. If the file is 
an old file, it can be omitted. Note that if the parameter is included 

4-42 



user labels 

blockfactor 

numbuffers 

filesize 

MAY 1981 

FOP EN 

and the file is not a KSAM file, an error can result. Refer to table 
4-8 for a full description of ksamparam. 

Default: key file description is omitted. 

integer by value (optional) 
Specifies the number of user-label records to be written for the data 
file. If there are no user labels, this parameter .can be omitted. 

Default: The default number of user-label records is zero. 

integer by value (optional) 
Establishes the size of each block in the data file by specifying the 
number of logical records per block. It also establishes the size of the 
data file buffer in KSAM's extra data segment. For fixed-length records, 
blockfactor is the actual number of records in a block; for variable
length records, blockfactor is a multiplier used to compute block size 
from record size; ( (maximum recsize +l) * blockfactor) +1 =block
size. The value of blockfactor should be an integer that results in a 
block size less than 4K words. The blockfactor is from 1 through 255. 
If you specify a negative value or zero, the default value is used. Values 
greater than 255 are defaulted to the specified blockfactor modulo 256. 

Default: 1 

integer by value (optional) 
An integer between 1 and 20 that specifies the number of key block 
buffers in the extra data segment used by KSAM files for buffering 
data and key blocks. The number of buffers is specified in bits 4-10; 
the rest of the word must be set to zeros: 

bits 0 34 1011 15 

I a 0 

number of buffers 

This number should only be specified if the default number assigned 
by KSAM affects performance. Refer to appendix B, under KSAM 
Extra Data Segments for a discussion of how the key block buffers 
are used. 

Default: Between 1 and 20 buffers depending on access type, 
number of keys, and number of levels per key. (Refer 
to appendix B.) 

double by value (optional) 
A double-word integer specifying the maximum data file size as the 
number of logical records in the file. A zero or negative value results 
in the default filesize setting. The maximum file capacity is over two 
million (221) sectors; a sector contains 128 words. 

Default: 1024 logical records 

4-43 



FOP EN 
numextents 

initialloc 

file code 

CONDITION CODES 

CCE 

CCG 

CCL 

integer by value (optional) 
An integer specifying the number of extents (integral number of 
contiguously-located disc sectors) that can be dynamically allocated 
to the file as logical records are written to it. The number of extents 
applies equally to the data and key files on the assumption that there 
is a proportional expansion in each. The size of each extent is deter
mined by the filesize parameter value divided by the numextents 
parameter value. If specified, numextents must be an integer from 1 
to 32. A zero or negative value results in the default setting. 

Default: 8 extents. 

NOTE 

Extents are allocated on any disc in the device class specified 
in the device parameter when the file was created. If it is 
necessary to insure that all extents of a file are on a particular 
disc, a single disc device class or a logical device number must 
be used in the device parameter. 

integer by value (optional) 
An integer specifying the number of extents to be allocated to the 
data file when it is opened. (For a key file, this parameter is forced 
equal to the value of numextents.) This must be an integer from 1 to 
32. If an attempt to allocate the requested disc space fails, the FOPEN 
intrinsic returns an error condition code to the calling program. 

Default: 1 extent. 

integer by value (optional) 
An integer recorded in the file label and made available for general use 
to anyone accessing the file through the FGETlNFO intrinsic. This 
parameter is used for new data files only. The filecode applies to data 
files only; the key file code is always 1080 and need not be specified. 
For this parameter, any user can specify a non-negative integer. 

Default: 0 

Request granted. The file is open. 

Not returned by this intrinsic. 

Request denied. This may be because another process already has 
exclusive or semi-exclusive access for this file, or an initial allocation 
of disc space cannot be made due to lack of disc space. The file num
ber value returned by FOPEN if the file is not opened successfully is 
zero. The FCHECK intrinsic should be called for more details. 

4-44 



USING FOPEN 

FOPTIONS PARAMETER. 

Table 4-6. FOPEN {options Parameter Format 

BITS 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

KSAM DIS- CCTL RECORD DEFAULT FILE ASCII/ DOMAIN 

FILE ALLOW FORMAT DESIGNATOR BINARY 

:FILE 

Set shaded areas to zero for KSAM files. 

BITS 

14:2 

13: 1 

10:3 

8:2 

7: 1 

5:1 

4:1 

OPTION 

File Domain 

ASCII/Binary 

Default Fi le 

Designator 

Record Format 

CCTL 

Disallow :FILE 

KSAM 

SETTINGS 

00 = New file created by FOPEN call. No search is required. The ksamparam 
parameter must be present to define the file structure. (default) 

01 = Old permanent file; search system file domain. 

10 = Old temporary file; search job file domain. 

11 = 

0 = 

1 = 

000 = 

Old user file; search job file domain and, if not found, search system file 
domain.' 

Binary code used to record data; any dummy records are padded wtih 
zeros. (default) 

ASCII code used to record data; any dummy records are padded with 
blanks. 

Actual file designator is the same as the formal file designator. (default 
and only setting allowed for KSAM files.) 

00 = Fixed-length records. (default) 

01 = Variable-length records. (Other settings not allowed for KSAM files) 

0 = Carriage control directive not expected. (default and only setting 
allowed for KSAM files.) 

0 = Allow :FILE command to override FOPEN file specifications. Note that 

formal designator is the only : FI LE specification allowed for KSAM 
files. (default) 

1 = Disallow (ignore) : Fl LE command file equations when in conflict with 

FOPEN. 

0 = Not a new KSAM file. (default) 

1 = New KSAM file or exising KSAM file opened as an MPE file. 

4-45 



FOPEN 

AOPTIONS PARAMETER. 

Table 4-7. FOPEN aoptions Parameter Format 

BITS 

0 1 2 3 4 5 6 7 8 9 

EXCLUSIVE 
ACCESS 

10 

DYN
AMIC 
LOCK 

11 12 13 14 15 

ACCESS TYPE 

Set Shaded areas to zero for KSAM files. 

BITS OPTION 

12:4 Access Type 

10:1 Dynamic Locking 

8:2 Exclusive Access 

SETTINGS 

0000 Read only. (default). Allows access to all intrinsics except: 

FWRITE,FUPDATE, and FREMOVE. 

0001 Write only. Delete previously written data. Allows access to all 

intrinsics except: FREAD,FREADDIR,FREADC,FREADBYKEY, 

FUPDATE,F R EMOVE,FSPACE,FPOI NT,FF I NDBYKEY, and 

FFINDN. 

0010 Write only. Save previously written data. Allows access to same 

intrinsics as write only with delete. 

0011 Same as above. 

0100 Input/Output access. Allows access to all intrinsics except: FUPDATE 

and FREMOVE. 

0101 Update access. Allows access to all intrinsics. 

0 Disallow dynamic locking/unlocking. (default) 

* 1 = Allow dynamic locking/unlocking. Allows use of FLOCK and 

FUN LOCK intrinsics to permit or restrict concurrent access to file. 

00 Default access depending on access type: if access type= 0000 (read 

only) default is 11 (share access); if access type is any other, default 

is 01 (exclusive access). 

01 Exclusive access. Prohibits another FOPEN request to open the file 

until current process issues FCLOSE or terminates. 

10 Semi-exclusive access. Allows another process to open this file for 

read only but prohibits any output access until this process issues 

FCLOSE or terminates. 

* 11 = Share access. After file is opened, permits concurrent access to the 

file by any process in any access mode, subject only to MPE security 

provisions in effect. 

4-46 MAY 1981 



FOP EN 
Table 4-7. FOPEN aoptions Parameter Format (continued) 

BITS I OPTION SETTINGS 

4: 1 No Wait 0 = No Wait input/output. (default and only setting allowed for KSAM 
files.) 

3: 1 KSAM Access 0 = KSAM access expected. 
1 = Non-KSAM access expected; KSAM key file or data file is treated as 

standard MPE file. For this setting to be meaningful, file must be a 
KSAM file (foptions 4: 1 = 1 ). 

*If dynamic locking is enabled with share access, a call to FLOCK must precede any call to FREMOVE, 

FUPDATE, or FWR ITE. Note that a file equation that specifies shared access (FI LE filename;SH R), 

automatically sets the dynamic locking option, forcing users to lock for all access. Also, if you specify 

SHR (aoptions.(8:2)), KSAM will automatically set lock bit (aoptions.(10:1)) which will require that 

the file be locked before issuing any intrinsics. 

MAY 1981 4-46a 



4-46b MAY 1981 



FOPEN 

KEY FILE DEFINITION. The ksamparam array defines the key file for a new KSAM file. If the 
file has already been created, this parameter can be set to all zeros or omitted. Otherwise, it must 
be assigned values to define the key file as shown in table 4-8. 

When a new KSAM file is created, the MPE end-of-file for the key file is set to the file limit. The 
file limit is based on the key file size (see words 4-5 of ksamparam ). The location of the key file 
end-of-file can be determined by executing the VERIFY command of KSAMUTIL and looking 
at the heading KEY FILE EOF. A call to FGETKEYINFO returns the key file size as the number 
of sectors used by the file. 

Table 4-8. FOPEN ksamparam Parameter Format 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 Key File Name 

(8 bytes) 

2 

3 

4 Key File Size (maximum number of primary keys) 

5 (double word) 

6 

7 

8 

9 

10 

11 

Key Device 

(8 bytes) 

12 (reserved) 

13 

14 

15 Flagword ( 1 word) 

16 Number of Keys ( 1 byte) 

17 

18 

19 

20 

21 

22 

23 

24 

80 

Key Location 

D Minimum (Maximum) Number of Keys Per Block 

(reserved) R (reserved) 

Key Type Key Length 

Key Location 

D Minimum (Maximum) Number of Keys Per Block 

(reserved) R (reserved) 

4-47 

Basic Key File 

Definition 

(17 words) 

')} Primary Key 

Definition 

(4 words) 

1st Alternate 

Key Definition 

(4 words) 

Up to 14 More 

Alternate Key 

Definitions 

( 16 keys total) 



FOP EN 

This array defines the key file portion of a new KSAM file being created by the FOPEN call. The 
values are: 

Key File Name 

Key File Size 

Key Device 

Flagword 

Number of Keys 

Key Definitions 

8-byte file name that must be present if this is a new file. Only the 
name is specified; the account, group, and security are taken from the 
data file formal file designator. 

Double-word specifying the maximum number of primary keys expected 
from which the key file size is derived. If zero, the data file size is used. 

(Note that a call to FGETKEYINFO returns the key file size as the 
number of sectors in the file.) 

8-byte array that specifies the device on which the key file resides. 
Specified as a device class name of 1-8 alphanumeric characters begin
ning with a letter and terminated by a non-alphanumeric character such 
as a blank; or it is specified as a logical device number (3-byte numeric 
string) identifying a particular device. If the data file is assigned to a 
remote device the key file is automatically allocated to the same 
machine. Default is DISC. 

1-word that specifies file characteristics as shown below: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

SW RN JT 

JT { bit 15:1 

RN { 14:1 

1 if file is job temporary file 
0 if file is a permanent file (default) 
1 if record numbering starts with 1. 
0 if record numbering starts with 0. (default) 

SW { 

13:1 

0:13 

1 if only sequential writing by primary key value is 
allowed. 

0 if random writing by primary key value is allowed. 
(default) 

0 all reserved bits must be set to 0. 

1 byte providing the total number of keys for the file, specified as a 
numeric digit between 1and16. (left byte of word should be zero). 

Each key in the file requires a 4-word definition. The first definition 
is always of the primary key. Subsequent definitions describe any 
alternate keys. Up to 15 alternate keys are allowed in any one key file. 
The key definitions each contain the following information: 

btts 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Key Type l Key Length 

Key Location 

D l Minimum (Maximum) Number of Keys per Block 

(reserved) r R l (reserved) 

4-48 



Key Type 

Key Length 

Key Location 

D (Duplicate Flag) 

Minimum (Maximum) 
Number of Keys per 
Block 

R (Random Insert Flag) 

FOP EN 

The information for each key has the form shown above starting in 
word 17 of ksamparam. It is defined as follows: 

4 bits specifying the type of the key by the following code: 

bits 0:4 0001 (1) 
0010 (2) 
0011 (3) 
0100 (4) 
0101 (5) 
0110 (6) 
0111 (7) 

1000 (8) 

Byte key (1 to 255 bytes) 
Integer key (2 bytes) 
Double Integer key ( 4 bytes) 
Real key ( 4 bytes) 
Long key ( 8 bytes) 
Numeric Display key (1 to 28 bytes) 
Packed Decimal key, odd number of digits 
(1 to 14 bytes) 
Packed Decimal key, even number of digits 
(2 to 14 bytes) 

Refer to figure 2-2 in section II for a full description of key type. 

12 bits specifying length of the key in bytes. Length is a function of 
key type (see key type) but must never exceed 255 bytes. 

1 word specifying the location of the first byte of the key in the record. 
Bytes in a record are numbered starting with 1. (Note that it is good 
practice to leave the first two bytes of a record empty of keys since 
these bytes are used by FREMOVE for the record delete code.) 

1 bit that determines if duplicate values are allowed for this key: 
= 0 if duplicate key values are not allowed (def a ult) 
= 1 if duplicate key values are allowed. 

15 bits that specify the minimum number of keys allowed per key 
block. The value must be an even-numbered integer greater than or 
equal to 4. If the resulting key block size is greater than 2048 words, 
this number may be reduced automatically. In order to make optimum 
use of disc space, KSAM may increase the value specified here. If KSAM 
increases the number of keys per block, this new value is the maximum 
size of the key block. (Refer to appendix B for particulars on the cal
culation of block size and the adjustment of the blocking factor.) The 
default generates a block size of 1 K ( 1024) words. 

1 bit (8:1) that determines whether duplicate key is to be inserted ran
domly in duplicate key chain or is to be added to the end of the chain; 
the duplicate flag (D bit) must be set to 1 in order to use this flag. 

= 0 if duplicate key values are to be inserted at the end of the 
chain (default) 

= 1 if duplicate key values are to be inserted randomly. If inserted 
randomly, the chronological order of duplicate keys is no 
longer maintained, but the addition of keys is faster. 

4-49 



FOP EN 

OPENING A NEW FILE 

When FOPEN is used to open a new KSAM file, you must provide all the information needed to 
create the two files that make up a KSAM file: the key file and the data file. To inform the system 
that this is a KSAM file, the KSAM bit must be set in the {options parameter; and the ksamparam 
parameter must be included to define the key file. 

Figure 4-5 is a short SPL program that builds a KSAM file. The file has two keys; the primary key 
starting in column 1 is 20 characters long, and the alternate key starting in column 21 is 8 charac
ters long. The primary key will contain a name, the alternate a phone number. 

The first step is to declare all arrays and variables needed by the program followed by the intrinsic 
declaration for FOPEN. The shaded declarations in figure 4-5 show these required to open the 
file; others are used in parts of the program not shown in this figure. 

The next step is to move the necessary values to ksamparam in order to define the key file. 

The last step is to call the FOPEN intrinsic, passing any previously defined variables or arrays by 
reference and passing all others by value. 

DECLARATIONS FOR FOPEN. The array ksamparam is defined three different ways: as a 
numeric array containing 25 words (KSAMP ARAMA), as a byte array equivalenced to the numeric 
array (KSAMPARAM), and as a double array also equivalenced to the numeric array (KSAMPARAMD). 
These three definitions allow the array to be addressed by word, by byte, or by double word as required. 

The variable to which the file number is returned is declared to be an integer. 

The two arrays that will contain the formal designator and device parameter values are declared 
and assigned these values. In this case, the formal designator is assigned the value JEXAMFIL. 
This name identifies both the KSAM file in its entirety and the data file if referenced separately. 
The device class name assigned to the device parameter is DISC. 

Finally, the intrinsic itself is declared in an INTRINSIC statement. 

DEFINING KSAMP ARAM. The ksamparam parameter is assigned a variety of values that, for the 
sake of clarity, are assigned in separate statements. The values assigned to ksamparam define the 
key file. The statements that move values to ksamparam (refer to figure 4-5) tell the system every
thing it needs to know in order to build the key file. 

The first item moved to ksamparam is the key file name, up to 8 characters enclosed in quotes. In 
this case, the key file name is JKEYFILE. 

Next, the size of the key file is defined in terms of the maximum number of primary keys expected. 
The size is specified as a double word integer and is assigned to the third double word in the array, 
specified by an index of 2 counting from double word 0. The maximum number of primary keys 
should be the same as the maximum number of records specified in the filesize parameter of 
FOPEN. KSAM assigns a key file size based on this value. If there are alternate keys, the key file 
size is made proportionately larger. If the key file size is specified as zero, KSAM uses the value 
of the FOPEN filesize parameter as the key file size. 

The device class name is assigned in the 8 bytes starting in byte 12 that are allocated to device 
description. In this case, the device class name is DISC, the same as the device class name specified 
in the device parameter of FOPEN for the data file. 

4-50 



FOP EN 

SCONT~OL MAlN:JEXAMPL.l 
<<0000•0000••••**************000000000000000000000•*••••••*>> 
<<• •>> 
<<• 
<<• 
<<• 

EXAMPLE l 
BUILD A KSAM FILE 

MES GE(OI ) I 
ARMAV INPUTCOl39) I 
AA~AV OUTPUT<*>=lNPUTI 

~lllllttlill:~i~~llll!:~!iFct.oSE' ~WR I TE. READ. PR I NT. TERM I NATE' 
I~TRINSIC fCHECK,FERRMSGf 
<<****************••···········••>> 
c<o SETUP KSAMPARAM FOM FOPEN *>> 
<<00~000000******************•***>> 

L UMsn 
BEGIN <<CANNOT OPEN KSAM FILE>> 

MOVE MESSAGEs:ttCANNQT OPEN KSAM FILE"J 
PRINTCMESSAGEt•2l,O)f 
FCHECK<FILNU~,ERRORCODE> I 
FERRMSG(ERRORCOD~,MESSAGEtLENGTH) J 
PRINT(MESSAGE,-L.~NGTH,O) I 
TERMINATE I 

EN08 

<<GET THE ERRO~ NUMBER>> 
<<GET MESSAGE STRING>> 
<<PRINT ERROR ~E~sAGE>> 

Figure 4-5. FOPEN Example - Building a KSAM file 

4-51 



FOP EN 
Word 15, the flag word, is set next. It uses bits 13, 14, and 15 to define three conditions of the 
key file. In this example, bit 14 is the only bit set. This means that record numbers in the file start 
with 1 rather than 0 (bit 14=1), that the file is a permanent file saved in the system directory (bit 
13=0), and that records may be written to the file in random order rather than being restricted to 
ascending sequence by primary key (bit 15=0). In figure 4-5 the flag word is specified as a binary 
value for clarity; it could have been specified as octal 2 (2 or %2) for brevity. 

The right byte of the 16th word (byte 33) is set to 2 to specify that two keys are to be used: the 
primary key and one alternate. 

This completes the general description of the file. Its name, size, device type, special conditions, 
and number of keys are now specified. The remainder of ksamparam defines each key in 4-word 
entries. The first entry always describes the primary key. Subsequent entries define up to 15 
alternate keys. In this case, one primary and one alternate are defined. 

Starting in word 1 7, the primary key is defined as type ASCII, 20 bytes long, its location starting 
in the first character of each record, and duplicate values are not allowed. It is blocked with four 
keys per block. 

Starting in word 21, the alternate key is defined as type ASCII, 8 bytes long, located starting in 
character 21 of the record, duplicate values not allowed, and blocked four keys per block. 

Refer to table 4-8 for an illustration of the bit patterns used to define the ksamparam entries. 

CALLING FOPEN. When all the variables and arrays that pass values by reference have been de
fined, the intrinsic FOPEN can be called. In figure 4-5, each parameter is shown on a separate line 
and documented for clarity, but the call could also be specified as: 

FILNUM:=FOPEN(FILNAME,%4004,%10101,-72,DEVICE,KSAMPARAM,,lO,O,lOOD); 

This call is identical to the call in figure 4-5 except that octal values are used for {option and 
aoption. 

{options 

The value of {options is set to octal 4004, for which the bit pattern is: 

0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 1 0 0 0 0 0 0 

0 0 4 0 
This specification defines the following file options: 

New KSAM file (bit 4=1) 
Allow : FILE (bit 5=0) 
Fixed-Length Records (bits 8,9=00) 
ASCII code (bit 13=1) 
New file (bits 14,15=00) 

aoptions 

11 12 13 

0 0 1 

0 

The value of aoptions is set to octal 101, for which the bit pattern is: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 1 0 

4-52 

14 

0 

4 

14 

0 

1 

15 Bits 

0 Binary 

Octal 

15 Bits 

1 Binary 

Octal 



This specification defines the following access options: 

KSAM access expected (bit 3=0) 
Exclusive access (bits 8,9=01) 
Dynamic locking not allowed (bit 10=0) 
Access type is write only (bits 12-15=0001) 

OPENING AN EXISTING FILE 

FOP EN 

Once the file has been created, opening it again after it has been closed is a simple process. The 
record size, device, blocking, buffersize, and file size are all defined for the data file. Therefore 
these parameters need not be repeated. The key file has already been defined so that ksamparam 
need not be specified. This leaves the first three parameters to specify. Of these, only the formal 
designator and the domain option of the {options parameter are always required. The formal
designator provides the file name in order to identify the file. The domain option specifies where 
to locate the file; if domain is set to zeros, the system expects a new file. If the file is to be read 
only, the access mode parameter, aoptions, can be omitted. For any other type of access, aoptions 
should be specified. 

OPENING FILE FOR READ ACCESS. The example in figure 4-6 illustrates opening a file for read
only access. 

~CONTROL MA1N=~EXAMPL2 

<<*••••*oo***************************** 0 **************0 ****>> 
<<* •>> 
<<* •>> 
<<**•~···········································~·······••>> ::I ;~~E~, .. ··<·. ·. ·. ·· · ·;>·· .. 

~~i:i:J:~~?, ESSAGr (~~m7~5f~~ ~~,:::;i~ 
ARRAY lNPUT(0139)1 
~RRAV OUTPUrr•>=JNPUTI 
BY'TE ARRAV KEVVAL.UEI0:7>:=11000.-oooou, 
INTEGER KEVLENGTHl:AI 
JNTEGER KEYL0CATI0Nl=211 
INTEGER ~ELOPl:21 

l~TRIN$JC ·F9'~;r;~·:,:FCl.OSE, FREAO, FF I NDBYKE Y, Rf AO, PR I NT, 
FCH~CK 9 FERRMSG,PRINT•FILE•INFO,TER~INATEI 

<<************•••*********>> 
<<* OPEN THE KSAM FlLF *>> 
<<*••········~·········••*>> .F .. ~'.L"'t,JM • '~o·~~N~-:~;t:("~'j:Mt , 3l t 
iF FILNUM~O .. . ,.. .. . 

THEN BEGIN <<CANNOT OPEN KSAM FIL.E>> 
MOVE MESSAGE: =''CANNOT OPEN KSAM FI L.E 11 I 
PRtNTCMESSAGEt•21,0) I 
FCHECKCFIL.NUM,EPRO~COOE)I 
FERRMSGCERRORCOOE,MESSAGE,LENGTH>• 
PRINTCMESSAGE 1 •LENGTH,0)1 
TERM!NATEJ 

ENOJ 

<<GET THE ERROR NUMB!R>> 
<<GET MESSAGE STRING>> 
<<PRINT ERROR MEssAG~>> 

Figure 4-6. FOPEN Example - Opening an Existing File 

4-53 



FOP EN 

The file name is specified in the FILN AME array declaration as JEXAMFIL. This is the file that 
was created and opened for write-only access in figure 4-5. It is opened for read-only access with 
the call: 

FILNUM:=FOPEN(FILNAME,3); 

The value of {options is set to the value 3, for which the bit pattern is: 

0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 

This specification defines the following file options: 

Not a new KSAM file (bit 4=0) 
Old user file {bits 14-15=11) 

11 12 13 14 

0 0 0 1 

0 3 

15 Bits 

1 Binary 

Octal 

Because this is an existing (old) user file, other {options settings defined when the file was created 
need not be respecified. For example, at creation the file was defined as containing ASCII code 
{bit 13=1). In subsequent FOPEN calls this bit can be 0 without changing the code to binary. 

When an old user file is opened, the job file domain is searched first and then the system file domain 
is searched for the file specified in the formal designator. 

The access parameter, aoptions, is not specified, but by default it specifies the following access 
mode: 

KSAM access expected 
Share access (default for read-only) 
Read-only access 

OPENING FILE FOR WRITE ACCESS. To open an existing file for write access, you use the same 
{options values as you do to open the file for read-only access. The different access mode is speci
fied in the aoptions parameter. 

For example, assuming FILNUM and FILNAME have been declared: 

FILNUM:=FOPEN(FILNAME,3,1) 

The {options specification is the same as described above. The aoptions specification is: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bits 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Binary 

0 0 0 0 0 1 Octal 

4-54 



FOP EN 

This bit pattern defines the following access options: 

KSAM access expected (bit 3=0) 
Exclusive access (default for all access modes except read-only) (bits 8-9=00) 
Disallow dynamic locking (bit 10=0) 
Write only access (bits 12-15=0001) 

This opens the file for write-only access in which all previous data is_ deleted. It is the access mode 
to use when writing to a file for the first time. If you want to write to the end of an existing file 
then bits 12-15 should equal 0010 and aoptions could be specified as 2 if other aoptions values are 
defaulted. To open the file for both reading and writing, bits 12-15 should be set to 0100, or the 
value 4. For update, these bits are set to 0101, or the value 5. 

OPENING KSAM FILE AS MPE FILE. You may want to open either the key file or the data file 
as a standard MPE file. To do this, name the file you want to open in the formaldesignator param
eter, set {options bit 4:1to1, and then set aoptions bit 3:1to1. These settings indicate that the 
file is a KSAM file, but is to be treated as an MPE file. The remaining parameter settings depend 
on what you want to do with the open file. For example, if you want to read the key file, 
JKEYFILE, as an MPE file, you call FOPEN as follows: 

INTEGER 
BYTE ARRAY 

FILNUM; 
FILNAME(0:9):="JKEYFILE "; 

INTRINSIC FOPEN, ... ; 

FILNUM:=FOPEN(FILNAME,%4003,%10000); 

The value of {options defines the following file options: 

Specified as KSAM file (bit 4=1) 
Old user file (bits 14-15=11) 

The value of aoptions indicates the following: 

Non-KSAM access expected (bit 3=1) 
Share access (default for read only bits 8-9=00) 
Read-only access (default bits 12-15=0000) 

Normally, the only time you need to set bit 4 of {options to 1 is when you are originally creating 
a KSAM file. However, when you are opening an existing KSAM file for non-KSAM access, you 
must set this bit to 1 so that the system can distinguish the KSAM data or key file from an MPE 
file. 

4-55 



FOP EN 
OPENING FILE FOR SHARED ACCESS. When a file is opened for shared access (aoptions bits 
8,9 = 11), and you plan to modify the file in any way, you must enable dynamic locking (aoptions 
bit 10 = 1). This is necessary since you cannot call FWRITE, FUPDATE, or FREMOVE to modify a 
shared file without first calling FLOCK to lock the file. 

Even if you are not planning to modify the file, but only plan to read it sequentially, you should 
allow dynamic locking when you open the file. This is because FREAD (as well as FUPDATE and 
FREMOVE) is a pointer-dependent procedure. Any time you call a pointer-dependent procedure 
(refer to table 4-2), you must precede it with a call to a pointer-independent procedure that posi
tions the pointer. It is important to call FLOCK to lock the file before setting the pointer with the 
pointer-independent procedure and leave it locked until you have completed the sequential read or 
update. This insures that no other user changes the position of the pointer between the call that 
positions the pointer and the call that depends on the pointer. 

4-56 



FPO INT 
INTRINSIC NUMBER 6 

Sets the chronological (and logical) record pointer for a KSAM file. 

The FPOINT intrinsic sets the chronological record pointer for a KSAM disc file. The file may con
tain either fixed-length or variable-length records. When the next FREADC request is issued for 
this file, the record to which FPOINT positioned the pointer is read. Note that this intrinsic posi
tions the logical record pointer as well as the chronological pointer. 

PARAMETERS 

filenum 

recnum 

CONDITION CODES 

CCE 

CCG 

CCL 

integer by value (required) 
A word identifier supplying the file number of the file on which the 
pointer is to be set. 

double by value (required) 
A positive double integer representing the record number of a fixed
length file or the word pointer to a variable-length file. Word number
ing always starts with word 0, whereas record numbering starts with 0 
or 1 depending on how the file was created. In either case, the number 
is in terms of the chronological (consecutive) order in which the data 
file records were written. It has no relation to the logical record pointer 
that is based on key values. 

Request granted. 

Request denied. The chronological record pointer position is un
changed. Positioning was requested at a point beyond the physical 
end-of-file. 

Request denied. The chronological record pointer position is un
changed because of one of the following: 

Invalid filenum parameter. 

recnum parameter specified a record marked for deletion. 

A key value for specified record not found in key file. 

SPECIAL CONSIDERATIONS 

Split stack calls permitted. 

MAY 1981 4-57 



FPOINT 

USING FPOINT 

The FPOINT intrinsic is generally used prior to an FREADC intrinsic in order to read a record 
without reference to the key file. FPOINT sets the chronological record pointer to the position in 
the file specified by recnum. A subsequent FREADC reads the record (or portion of a record) to 
which the pointer is positioned. It then sets the pointer to the next record that was written to the 
file in chronological order. 

For example, in order to read the 39th record written to the file identified by FILENUM: 

FPOINT(FILNUM,39D); -------- set pointer 
FREADC(FILNUM,BUFFER,COUNT); read record 

Following execution of FREADC, the contents of the 39th record are transferred to the array 
BUFFER and the chronological pointer remains positioned at record 39. A flag is set so that the 
next call to FREADC moves the pointer forward to the beginning of record 40, the next record 
in chronological order. 

Note that the combination of FPOINT followed by an FREADC intrinsic is identical in effect to 
the FREADDIR intrinsic that positions to a chronological record number and then reads that 
record. The FGETINFO intrinsic can be used to recover the chronological record number of the 
record most recently accessed. (Refer to FGETINFO and FREADDIR for more information on 
accessing records by chronological record number.) 

Since the FPO INT intrinsic positions the logical pointer as well as the chronological pointer, it can 
be used prior to an FUPDATE or FREAD intrinsic to identify the record to be updated or read. 
FPOINT sets the logical record pointer to a key in the key file that points to the record it located 
by record number. The key is by default the primary key for that record, though an alternate key 
is used if such a key was selected by a prior call to FFINDBYKEY or FREADBYKEY. 

SHARED ACCESS. When you use FPOINT to position the chronological pointer in a shared access 
environment, you must lock the file with a call to FLOCK before calling FPO INT. You should 
leave the file locked until you have completed any calls that read or update the file in chronological 
sequence, and then call FUNLOCK to unlock the file for the other users. This insures that the 
pointer is not moved-by other users between the pointer-independent procedure FPOINT and any 
subsequent pointer-dependent procedure. (Refer to table 4-2 for a list of the pointer-independent 
and pointer-dependent procedures.) 

4-58 



FREAD 
INTRINSIC NUMBER 2 

Reads a logical record in key sequence from a KSAM file to the user's stack. 

FREAD reads a logical record in sequential order by key value. The primary key determines key 
sequence unless a prior call to FFINDN (or FFINDBYKEY or FREADBYKEY) has specified an 
alternate key. If the file is opened without KSAM access (FOPEN aoptions bit 3=1), then FREAD 
reads the data file as if it were not a KSAM file. 

The record read by FREAD depends on the current position of the logical record pointer. 

FUNCTIONAL RETURN 

The FREAD intrinsic returns a positive integer value to lgth showing the length of the information 
transferred. If the tcount parameter in the FREAD call is positive, the positive value returned 
represents a word count; if the tcount parameter is negative, the positive value returned represents 
a byte count. 

PARAMETERS 

filenum 

target 

tcount 

integer by value (required) 
A word identifier supplying the file number of the file to be read. 

logical array (required) 
An array to which the record is to be transferred. This array should 
be large enough to hold all of the information to be transferred. 

integer by value (required) 
An integer specifying the number of words or bytes to be transferred. 
If this value is positive, it signifies the length in words; if it is negative, 
it signifies the length in bytes; if it is zero, no transfer occurs. 

If tcount is less than the size of the record, only the first tcount words 
or bytes are read from the record. If tcount is larger than the size of 
the physical record, transfer is limited to the length of the physical 
record. 

CONDITION CODES 

CCE The information was read. 

CCG The logical end-of-data was encountered during reading. 

CCL The information was not read because an error occurred. 

SPECIAL CONSIDERATIONS 

Split stack calls permitted. 

4-59 



FREAD 
USING FREAD 
The FREAD intrinsic reads the record at which the logical record pointer is currently positioned. 
When a file is opened, this pointer is positioned to the beginning of the first record in primary key 
sequence. That is, it is positioned to the record containing the lowest value in those bytes con
taining the primary key. 

Following each FREAD , the record pointer remains positioned at the record just read. Any sub
sequent FREAD call positions the pointer to the next sequential record in ascending key sequence. 
Also, if an FREAD call is followed by an FUPDATE and another FREAD, the pointer is advanced 
before the second FREAD. 

A key other than the primary key can be selected as the basis of the sequential read by executing 
FFINDN, FFINDBYKEY, or FREADBYKEY before executing the FREAD intrinsic. 

When the logical end-of-data is encountered during reading, the CCG condition code is returned to 
your process. The end-of-data occurs when the last logical record of the file is passed. Note that the 
last logical record of a KSAM file is the record containing the maximum key value in the key on 
which the key sequence is based. 

SHARED ACCESS. In order to be sure that you are reading the record you want, you should call 
either FLOCK or FCONTROL with control code 7 before calling FREAD. FLOCK prevents other 
users from changing or deleting the record until the file is unlocked with FUNLOCK. FCONTROL 
with control code 7 clears the data and key block buffers so that the record must be read directly 
from the file, and also transfers the latest control information from the file to the extra data seg
ment. Because the logical pointer is part of this control information, you can be sure that is is set 
correctly by calling FCONTROL with code 7. 

FCONTROL uses less overhead than FLOCK, but it cannot prevent other users from modifying the 
record you want to read while you are calling FCONTROL. FLOCK, on the other hand, fully pro
tects the information to be read from changes by other users but requires more time. 

Because FREAD is a pointer-dependent procedure, you must call one of the procedures that posi
tion the pointer before calling FREAD. When you are reading the file in sequential key order, it is 
important to lock the file before calling the procedure that positions the pointer, and to leave it 
locked while you are reading the file. This insures that the pointer is not moved by another user 
between the call that positions the pointer and FREAD or between sequential FREAD calls. (Refer 
to table 4-2 for a list of the pointer-independent and pointer-dependent procedures.) 

For example, the following sequence of calls guarantees that you will read the file in sequential order 
starting with a specified key: 

FLOCK 
FFINDBYKEY----------sets logical pointer 

FREAD loop read records in key sequence 
FUNLOCK 

Note that FREAD advances the record pointer only if it is followed by another FREAD (or an 
FUPDATE followed by another FREAD). A single call to FREAD leaves the pointer at the record 
just read; a subsequent call to FREAD causes the pointer to be positioned to the next record in key 
sequence. This permits sequential reading of the file without calling a pointer-independent proce
dure before each FREAD. Also, in order to allow sequential updates, the pointer is advanced for 
each FREAD in an FUPDATE/FREAD sequence with no other intervening calls (see FUPDATE 
discussion). 

In the example in figure 4-7, FREAD is used first to read the KSAM file in sequence by primary 
key. When the end of data is reached, the program uses FFINDBYKEY to specify an alternate 
key and FREAD then reads the file in sequence by that alternate key. When the end of data is 
reached again, the file is closed. (Note that this program is opened for exclusive access so that 
locking is not necessary). 

4-60 



FREAD 

SCONTROL MAIN•JEXAMPL2 

<<••·············9······································••*>> <<• *>> <<* EXA~P~E 2 *>> <<* READ A KSAM FIL.E SEQUENTl~LLV ~>> 

Itz8t;Jt,;f;ff§:?'c FOPEN. FC!.OSE .~-l~'o~;f:;F:J:"N'oe~ii;v' RE AF)' PR I NT' 
FCHfCK,FERRMSG,PRt~T•FllE'lNFO,TE~MINATEJ 

<<•~····················••>> <<* OPEN THE KSAM FILE •>> 
<<••····················••>> 

*>> 

FILENUM:=FOPENCFILNAME,3,200): <<OPEN KSAM FILE FOR EXCLUSIVE READ•ONLY ACCESS>> 
IF f ILNUMaO 
THEN BEGIN <<CANNOT OPEN KSA~ FILE>> 

MOVE MfSSAGE;i="CANNOT OPEN KSAM FIL! 11 I 
PRtNTlMESSAGE,•21tO> I 
FCHECKrFILNUM,ERRORCOOE)J 
FERRM5G(ERRORC00E 1 MESSAGE,LENGTH> I 
PRINTCMESSAGE 1 •LENGTH 1 0>I 
TERMINATE I 

ENDt 
MOVE MESSAGEl•"LlST IN L..AST N~~E SEQUENCEttl 
PRINTCMESSAGE,~26,0)I 

<<**••····························••>> <<* READ KSAM IN NAME SEQUENCE *>> 

<<••······························••>> 
I.. I 

>::> 

IF < 
THEN BEGIN 

<<GET THE ERROR NUMBER>> <<GET MESSAGE STRING>> 
<<PRINT ERROR ~ESSAGE>> 

MOVE MESSAGE I s"ERROR OCCURRED WHIL..E ~EAOING INPUT•• t 
PRtNT<MESSAGE1•34,0)I 
TE?MINATEI 

ENDI 

<<••···········································••>> <<* WRITE THE DATA JUST READ FRO~ KSAM FILE •>> 
<<•••··········································••>> PRINTcoUTpur •• 12,0, I 

<<••·······························••>> <<* GO BACK TO GET ANOTHER RECORD •>> 
<<••·······························••>> GO TO L.lf 

Figure 4-7. FREAD Example 

4-61 



FREAD 

<<••·····················································••>> 
<<* READ DATA FROM KSAM FILE IN TELEPHO~~ # SEQUENCE *>> 
<<••·····················································••>> 

IF' < 

BEGIN 
FCLOSE1FILNUM,O,Oll 
IF <> THEN 

<<END OF FILE>> 
<<CLOSE TME KSAM FILE>> 

BEGIN <<CLOSE UNSUCCESSFUL>> 
MOVE MESSAGE1= 11 CANN0T CLOSE THE !<SAM FILE"I 
PRINTIMESSAGEt•?.9,0) I 
FCHECK<FILNUM,ERRORCODE>I <<GET THE ERROR NUMBER>> 
FFRRMSG<ERRQRCOOE,MESSAGE,LENATM) l<<GET MESSAGE STRING>> 
PRINT<~ESSAGE1•LENGTH,O>I <<PRINT ERROR MESSAGE>> 

ENOI 
TERMINATE I 

ENDI 

THEN BEGIN 
MOVE MESSAGE I ="ERROR OCCURRED WHILE i:?EADING INPUT 111 
PRINTIMESSAGE,•34,0)f 
TERMINATE I 

ENDI 
<<••··········································•••>> 
<<* WRITE THE UATA JUST READ FROM '<SAM FI~E o>> 
<<••···········································••>> 
PRINT(OUTpur •• 1~.01' 
IF <> 
THEN BEGIN <<ERROR OCCURREn WHI~F. PRINTING OUTPUT>> 

MOVE Me:SSAGE: •''ERROR OCCURRED WHil.E PRINTING ouTF>uT"' 
PRrNTIMESSAGE1•36,0)f 
FCHECKtFil..NUM,ERRORCODEll <<GET THE ERROR NUMBER>> 
FERRM~~fERRORCOOE,MESSAGE,LENGTHlt<<AET MESSAGE STRING>> 
PRINTIMESSAGE,•LENGTH,011 <<PRINT ERROR MESSAGE>> 
TERMINATE I 

ENDI 
<<•••••••ooo•o•••••••••••••••••••••••>> 
<<* GO BACK TO GET ANOTHER RECORD •>> 
<<••·······························••>> 
GO TO t..lf 
ENDI 

Output from Program Execution: 

END OF PROGRAM 

Figure 4-7. FREAD Example (continued) 

4-62 



FREADBVKEV 
INTRINSIC NUMBER 304 

Reads a logical record randomly from a KSAM file to the user's data stack. 

FREADBYKEY reads a logical record selected by key value. The record to be read must have the 
same value as keyvalue in the bytes that start at keylocation. Following execution, the logical 
record pointer is still positioned to the record in the file located through the value of the key at 
key location. 

FUNCTIONAL RETURN 

The FREADBYKEY intrinsic returns a positive integer value to lgth showing the length of the infor
mation transferred. If the tcount parameter in the FREADBYKEY call is positive, the positive 
value returned represents a word count; if the tcount parameter is negative, the positive value re
turned represents a byte count. 

PARAMETERS 

filenum 

target 

tcount 

key value 

key location 

integer by value (required) 
A word identifier supplying the file number of the file to be read 
randomly. 

logical array (required) 
An array to which the record is to be transferred. It should be large 
enough to hold all the information read. 

integer by value (required) 
An integer specifying the number of words or bytes to be transferred. 
If this value is positive, it signifies the length in words; if negative, it 
signifies the length in bytes; if zero, no transfer takes place. 

If tcount is less than the size of the record, only the first tcount words 
are read from the record. If tcount is larger than the physical record 
size, transfer is limited to the length of the physical record. 

byte array (required) 
A byte array containing the value that will determine which record is 
read. The first record found with this identical value in the key iden
tified by keylocation is the record read. 

integer by value (required) 
The relative byte location in the record of the key whose value deter
mines which record is read. The first byte is numbered 1; if a value of 
zero is specified, the primary key is used. 

4-63 



FREADBYKEY 
CONDITION CODES 

CCE The information specified was read. 

CCG The logical end-of-data or beginning-of-data was encountered during 
the read. 

CCL The information was not read because an error occurred, such as an 
input/output error, or the key could not be located. 

USING FREADBYKEY 

The intrinsic FREADBYKEY allows you to locate and read a single record according to a specified 
key value. Like FFINDBYKEY, it defines the key that is to be used for determining record se
quence and, following execution, remains positioned at the same record. Unlike FFINDB YKE Y, 
FREADBYKEY cannot specify a key length different from the full length of the key at creation, 
nor can it search for approximate key values. 

In the example in figure 4-8, the keylocation and keyvalue values are read from the standard input 
device. As each is read, it is printed to test the read. The first set of values read into the word 
array INFOW is: 

OlROBERT GERRY 
v------~---

key location key value 

The first two ASCII characters contain the key location; the characters· starting in byte 2 contain 
the keyvalue to be found at the specified keylocation. Since keylocation is an integer parameter, 
the first two bytes of the byte array INFO (equivalenced to the word array INFOW) must be con
verted to a binary value. This is done with the statement: 

KEYLOCATION:=BINARY(INF0,2); 

The value to be used for keyvalue is contained in the byte array INFO starting in the third byte 
(byte 2 numbered from byte 0). In the declarations at the beginning of the program, the byte array 
KEYVALUE is equivalenced to the portion of the byte array INFO that starts in byte 2. 

The intrinsic FREADBYKEY can be called with the following statement: 

FREADBYKEY ( FILNUM,INPUT ,-7 2,KEYV AL UE,KEY LOCATION); 

This locates and reads the first record with the value ROBERT GERRY in the key located starting 
in byte 1 of the record. The program prints this record and then returns to get the next pair of 
values input for keyvalue and keylocation. When there are no more values in the input file, the 
KSAM file is closed and the program terminates. 

4-64 



FREADBYKEY 
SHARED ACCESS. If you use FREADBYKEY to position the pointer for subsequent calls that 
read or update the specified record, you should lock the file with a call to FLOCK before calling 
FREADBYKEY. Then, after calling the read or update procedure, you should unlock the file so 
other users can access it. Locking the file before calling FREADBYKEY insures that other users 
do not change the position of the pointer between the call to FREADBYKEY and any subsequent 
procedure that depends on the pointer position. (Refer to table 4-2 for a list of the pointer-de
pendent procedures and also those that set the pointer.) 

To illustrate, the following sequence of calls makes sure that the correct record is updated: 

FLOCK----to lock the file 
FREADBYKEY to position the pointer 
FUPDATE to modify the record to which the pointer points 
FUNLOCK to unlock the file for other users 

DUPLICATE KEYS. FREADBYKEY always positions to the first key in a chain of duplicate keys. 
If you want to read or update the remaining keys in a duplicate key chain, you should use FREAD. 
For example, to update all the records with a particular key, use the following code sequence: 

FREADBYKEY to locate 1st key in chain of duplicates 
FUPDATE update that record 

C 
FREAD read next sequential record 
<test if this is correct key value> 
FUPDATE update record 
<return to read next record> 

4-65 



FREADBVKEV 

sCONTRO~ MAIN:JEXAMPL3 
<<*~*****0**********************•~~·•~*****•*•000•00000000•>> 
<<* U>> 
<<* EXAMP~E 3 ~>> 
<<* READ A KSAM FILE RANOOMLV *>> 

<<~•·••**•*******************************•·~··••**••••**•** 
'.\J:, :.. ..;:::· :'.':r;,-;~~~:\i~J.:::;t:~·;;~::f'·J;: ;;:::.. .••.. ·•·•<:•• >> :· ••• ;... ••..•• :.:'' •• .: •• 

·~~:·~:] ........... ·· ... . : ;i~: ~!::;.~,~~·qR~.~f)~··~~~:t~~·Tj~::1 ..•.. :·· , : .:; · ..... '. 
·~lr.;::.·~·.,~~Yli•'.:•" ;rrt:N:4~~ ce·r:9·.1:• • .• P*:Jt?~«AHft"t~: ..... :~.:. ···. 
ARRAY .. .. MESS.AGE(. 0 I 3S) ' ' .. 
ARRAV tNPUT(0139) I 
ARRAV 

;:!l;.~;f:@:.:: 

i.~,~~~ 
. i:N:f;§·ij·g£flt;'.:• .. :'. ............ ,l!ll!S: .. I•L•UL;M 

.. f·~.'J'.:fliJ'.NtSt~:~·:::. F OPEN , F CLOSE , FR EA 0 , ~!t\~:A,t>S~f'( ~ yiJR E t>. 0 , PR I NT , 
. . . . F CHECK , FERR MSG t B I NA FfY t TERM I N A TE I 

<<****•*******************>> 
<<* OPEN THE KSAM rILE •>> 
<<**********************••>> 

<.~!,~:tf~,ij~!.:~:~i&#iij::t.i:.i~:l:~~;~ ~e jf3.JJi~~.:::£.i ,) ;::::: .~:~<i~1~;~:::;:.·:~·f!~1~::~.~~~: :r:i~ ~!~:>: .: 
IF f'"ILNUM=O 
THEN BEGIN <<CANNOT OPE~ KSAM FILE>> 

MOvE MF.:SSAGEl="CANNOT OPt.N KSA~ FIL~"I 
PRtNTfMESSAGE,•21,0) I 
FCHECKf~lLNUM,ERRORCOOE>f <<GET THE ERROR NUMBER>> 
FERRMSG<ERRORCOOE,MESSAGE,LENGTH) l<<GET MESSAGE STRING>> 
PRINT<~ESSAGE,-LENGTH,O) I <<PRINT ERROR MESSAGE>> 
TERMINATE I 

ENDf 
<<********************************************•••>> 
<<• READ IN ~EYVALUE ANO KEY~OCATION INFO~ATION •>> 
<<****•***************************************•••>> 
L 11 
REAO C INF Ow, ·36 > f 
IF > 
THEN BEGIN 

IF < 

FCLOSEtFILNUM,O,O)J <<CLOSE THE KSAM FILE>> 
IF <> THEN 

BEGIN 
MOVE MESSAGEl•"CANNOT CLOSE THE l<SAM FIL,.E11I 
PRINT (MESSAGEt•26,0)1 
FCHECK<FILNUM,ERRORCODE> I <<GET THE ERROR NUMBER>> 
FERRMSGCERRORCOOE,MESSAGE,LE~GTM) l<<GET MESSAGE STRING>> 
PPlNT(MESSAGE,•LENGTH,O> I <<PRINT ERROR MESSAGE>> 

ENOI 
TERMINATE I 

EN0f 

THEN BEGIN 
MOvE MESSAGE I •"ERROR OCCURRED WHlt..E READING INPUT•• I 
PRJNTCMESSAGE,~34,0)J 
TER~INATEf 

Figure 4-8. FREADBYKEY Example 

4-66 



FREADBYKEY 

PRINT(INFow,-36,0) I <<TEST ~EAD>> 

<<o READ KSAM ACCORDING TO KEVVALUE AND KEvLOCATlON ~>> 

<<*****************************o*******************•••>> 
~:,;:e:,~~~~t::'f~;l>',,'.j:171:~~9M•\llf~ttt,•~t,:1r~,J;~:~~f.(J,~\i:~~ji:~t:~~'.~,A',!,~,0j~>*'',J•' 

IF <> 
THEN BEGIN <<ERROR OCCUR~EO JN F~EADBYKEY>> 

MOVE MESSAGE&="ERROR OCCURRED IN F'Rf.:AOBVKEV"1 
PRtNTfMESSAGE,•28,0)1 
FCHECK(FlLNUM,ERRORCOOE>t <<oET THE ERROR NU~BER>> 
FERRMS~<ERRORCOOE,MESSAGE,LENGTH> 1<<~ET MESSAGE STRING>> 
PRINT(MESSAGE,"LENGTH,O)f <<PRINT ERQOR MESS•GE>> 
GO TO L l S 

ENDI 
<<******************************••···~·········••>> 
<<* WRITE THE DATA JUST READ FRO~ KSAM ~ILf •>> 
<<****•**•••*•***********************•***********>> 
PRtNT(QUTPur •• 12,0,' 
<<****•****************************~*>> 
<<* GO BACK TO GET ANOTHER RECORD o>> 
<<*******•***************************>> 
GO TO L.ll 
ENOI 

Output from Program Execution: 

ENO OF PROGRAM 

Figure 4-8. FREADBYKEY Example (continued) 

4-67 



FR EA DC 
INTRINSIC NUMBER 305 

Reads a logical record in chronological sequence from KSAM file to user's stack. 

FREADC reads a logical record in chronological sequence. Chronological sequence means the se
quence in which the records were originally written to the data file. 

When FREADC is executed, the key file is not accessed. This read is similar to the standard FREAD 
for non-KSAM files except that FREADC skips any data records that are marked for deletion. Fol
lowing execution, the chronological pointer remains positioned at the same record. 

FUNCTIONAL RETURN 

The FREADC intrinsic returns a positive integer value to lgth showing the length of the information 
transferred. If the tcount parameter in the FREADC call is positive, the positive value returned 
represents a word count; if the tcount parameter is negative, the positive value returned is a byte 
count. 

PARAMETERS 

filenum 

target 

tcount 

CONDITION CODES 

CCE 

CCG 

CCL 

integer by value (required) 
A word identifier supplying the file number of the file to be read in 
chronological sequence. 

logical array (required) 
An array to which the record is to be transferred. This array should 
be large enough to hold all the information to be transferred. 

integer by value (required) 
An integer specifying the number of words or bytes to be transferred. 
If this value is positive, it signifies the length in words; if negative, it 
signifies the length in bytes; if zero, no transfer occurs. 

If tcount is less than the size of the record, only the first tcount words 
are transferred from the record. If tcount is larger than the physical 
record size, transfer is limited to the length of the physical record. 

The information was read. 

The logical end-of-data was encountered during reading. 

The information was not read because an error occurred. 

4-68 



FR EA DC 

USING FREADC 

This intrinsic allows you to read the records in the data file in the order in which they are physically 
stored in the file. The end-of-data is encountered following the last record in the file. If any records 
have been marked for deletion (refer to the FREMOVE intrinsic), these records are not read; other
wise, this intrinsic reads the data from the data file exactly as it was stored. 

Following execution of FREADC, the chronological pointer remains positioned at the record just 
read, unless it is followed by another call to FREADC. In a series of calls to FREADC, the pointer 
is advanced automatically so you can read the file in chronological sequence without resetting the 
pointer for each record. 

Because FUPDATE only checks the logical pointer, you cannot update a record located by 
FREADC or FREADDIR. To update a record located by its chronological record number, you 
must precede the call to FUPDATE with a call to FPOINT. Unlike FREADC or FREADDIR, 
FPOINT sets the logical pointer as well as the chronological pointer. 

In figure 4-9, the FREADC intrinsic is used to read the data from the KSAM data file in chronologi
cal order. Compare this order to the sequential order by primary key in which the same file is read 
by FREAD. (Refer to figure 4-10 for an example showing the chronological record number printed 
in association with each record listed in sequential key order.) 

SHARED ACCESS. Because FREADC is a pointer-dependent procedure, you must call one of the 
procedures that position the pointer before calling FREADC. (Refer to table 4-2 for a list of the 
pointer-dependent and pointer-independent procedures.) When access is shared, it is essential that 
you lock the file before calling the procedure that positions the pointer, and then leave the file 
locked while it is being read by FREADC. This insures that no other user changes the position of 
the pointer after the call that positions the pointer or between sequential calls to FREADC. 

For example, the following sequence of calls guarantees that you will read the file in chronologi
cal sequence starting with a specified record number: 

FLOCK----lock file 
FPOINT position the chronological pointer 

FREADC loop read records in chronological sequence 
FUNLOCK unlock file 

4-69 



FR EA DC 

SCONTRO~ MAINsJEXAMPL4 
<<******••··~······························~········•***•**>> 
<<• •>> <<* EXAMPLE 4 *>> 
<<* READ A KSA~ FILE CHRONOLOGICALLY *>> 
<<* ~>> 

<<••···········~·· 
·'}··~··,::·~· c:c ,; 

«· 

a,, . 2,'Fcil:l'Nlii, 
ARRAY MESSAGE(0135)S 
ARRAY JNPUT(Ol39) J 
ARRAY nuTPUT(o)•INPUTf 

,·· J."~''•~:*'~;~~¢': F 0 PEN , F C 1.. 0 SE , t:;·Ji¢;,p~·,· F' CHE" CK , ,:- ERR MS G t PR I NT , T ER M I N ATE ' 
<< ... io'f.oioo•••••*•••••••**•>> · 
<<* OPEN TM~ KSAM FILE •>> 
< < ~ ~ • .. • ... *;,*.~,~.* ·~ ** ~. *.* ~.t~;·~t*>,,>, 

'i~~,~~~iit:~:~·t:t·(J!;t~W·:dtiLN:AM·(.:,~~:t}:,t';:~::(.:·j; .. ;: ··· .· .....• · .. ·:•• Jc~:O~JN.•:;:';f:Rt~·:,·t,;s,~tti · ..• r::~:l•t..~~~:£;·::;,_::::· ;+•t::·.<+;:;, .. c•:: 
IF FILNUM:O 
THEl\I BEGIN 

L.11 

MOVE ~ESSAGEl•"CANNOT OPEN KSA~ FIL.E 11 f 
PRINTfMESSAGE,•21tO> I 
FCHECKfFlLNUM,ERRORCOOE> I <<GET THE fRROR NUMBER>> 
FERRMSGIERRORCOOE,MESSAGE,LENGTH) J<<GET MESSAGE STRING>> 
PRINTf~ESSAGE,•LENGTH,O) I <<ORINT ERROR MESSAGE>> 
TERMINATE I 

ENDt 

<<•••···············································••>> 
<<* READ KSAM ACCORDING TO CHRONOLOGICAL O~DER o>> 
<<•••oo•••••••*****************~** 
r~i~,tj:¢:..)~·i:f.)40~·;:;1:NPur::,~1~.)':«1<.:/:.:;:: · · ·· ·· 
IF > 
THEN BEGIN <<ENO OF FILE>> 

IF < 

FC~OSE<FI~NUM,OeO) I <<CLOSE THE KSAM FILE>> 
IF <> 
THEN a£GI~ 

MoVE MESSAGEl="CANNOT CLOSE KSAM FIL.E 11 1 
PRINT(MESSAGE,•22tO>f 
F'CHECK(FJLNUM,ERRORCOOE> I <<GET THE ERROR NUMBER>> 
F~R~MSGCERRORCOOE,MESSAGE,LENGT~>J<<GET MESSAGE STRING>> 
PRINT(~~SSAGE,•LENGTH,O>I <<PRINT ERROR MESSAGE>> 

END• 
TERMINATE' I 

ENOI 

THEN BEGIN 
MOVE MESSAGEl="ERROR OCCURRED WHILE QfAOING KSAM FILE"I 
PRINTfMESSAGE,•37tO>a 
TERM INA.TE I 

ENDI 
<<••···········································••>> 
<<• WRITE THE DATA JUST READ F~OM KSAM FILE •>> 
C(000000000000000000*00000000000o•••+oOOOOOOOO*OO>> 
PRINr(OUTPUT •• 1a,o,. 
<<********************••···········••>> 
<<* GO BACK TO GET ANOTHER RECORD •>> 
<<•*••·····························••>> 
GO TO Lll 
ENDi 

Figure 4-9. FREADC Example 

4-70 



FR EA DC 

Output from Program Execution: 

ENO OF P~OGRAM 

Figure 4-9. FREADC Example (continued) 

4-71 



FREADDIR 
INTRINSIC NUMBER 7 

Reads a logical record located by its chronological record number from a KSAM file to the user's 
stack. 

The FREADDIR intrinsic reads a specific logical record, or a portion of such a record, from a 
KSAM file to the user's data stack. The particular record read is specified by its chronological 
record number. This number is determined by the order in which the record was written to the 
file; it is not the logical record number determined by ascending key sequence. When the file has 
fixed-length records, recnum is the actual record number counting from the first record in the file. 
When the file has variable-length records, recnum is a word pointer to the first word in the record 
counting from the first word in the file, word zero. 

After FREADDIR has been executed, the chronological record pointer remains positioned at the 
record just read. FREADDIR does not change the position of the logical record pointer. 

PARAMETERS 

filenum 

target 

tcount 

recnum 

integer by value (required) 
A word identifier supplying the file number of the file to be read. 

logical array (required) 
An array to which the record is to be transferred. This array should be 
large enough to hold all of the information to be transferred. 

integer by value (required) 
An integer specifying the number of words or bytes to be transferred. 
If this value is positive, it signifies words; if negative, it signifies bytes; 
and if it is zero, no transfer occurs. 

If tcount is less than the size of the record, only the first tcount words 
or bytes are read from the record. If tcount is larger than the size of 
the logical record, the transfer is limited to the length of the logical 
record. 

double by value (required) 
A double-word integer indicating the relative chronological record 
number (or word number for variable-length records) to which the 
chronological pointer is positioned. Chronological record numbering 
for fixed-length records starts with zero or one, as specified in 
ksamparam or by FIRSTREC in BUILD. 

4-72 



FREADDIR 

CONDITION CODES 

CCE The specified information was read. 

CCG The end-of-data was encountered during reading. 

CCL The information was not read because an error occurred. 

SPECIAL CONSIDERATIONS 

Split stack calls permitted. 

USING FREADDIR 

The FREADDIR intrinsic can be used to position to a particular record in chronological sequence 
and then read that record. Following execution, the record pointer remains positioned at the same 
record. This intrinsic is thus identical in effect to the pair of intrinsics: FPOINT and FREADC. 
You might use FREADDIR to read one record and then reposition the pointer; you might use 
FPOINT and FREADC to position to a particular record and then continue reading in chronological 
order from that position. 

You can use the FGETINFO intrinsic to determine the relative chronological number of the record 
most recently accessed. This number is returned in the FGETINFO parameter recpt. The example 
in figure 4-10 determines the chronological record of each record as it is read in sequence by pri
mary key value. The chronological record number is printed, and then FREADDIR uses this num
ber to read the record to which it points. The output shows the chronological record number fol
lowed by the record to which it points. To see these records listed in chronological order, refer to 
the output in example 4-9 illustrating FREADC. 

Note that execution of those intrinsics that position the KSAM data file by means of the chrono
logical record pointer (FPOINT, FREADC, FREADDIR), do not access the key file. This type 
of access only affects the data file. It is, therefore, much faster than those intrinsics that use key 
sequence to position the data file and must access the key file. 

4-73 



FREADDIR 

sCONTROL MAINcJEXA~PL6 
<<*~#•0*0********•~······••0000*000000000~~·~··0•00000•00••>> 

<<* •>> 
<<* 
<<* 
((0 

EXAMPl.E 6 
READ A KSAM FILE ev CHRONOLOGICAL RECORD NUM~ER 

INTRINSIC FOPENtFC~OSE,FREAO,FGETINFO,FREAOOIR, 
PRINTtTERMINATE,D~SCII,FcHEcK,FE~QMSGJ 

<<'°***********************>> 
<<* OPEN THE KSAM FILE •>> 

IF FILNUM:sO 
THEN BEGIN <<CANNOT OPEN KSAM FILE>> 

MOVE MESSAGElc"CANNOT OPEN KSA~ FIL..f."f 
PRJNT<~ESSAGE,•21,0) I 
FCHECK(FlLNUM,ERRORCOOE>f <<GET FRROR NUMBER>> 
FERPMSG<ERRORCOOE,MESSAGE1LENGTH) l<<r.ONVERT TO STRING>> 
PRINTIMESSAGE,~LENGTH,O)f <<P~I~TOUT ERROR MEssAGE>> 
TERM IN" TEI 

ENDJ 
<<••·································•*****'°*******•••>> 
<<* READ KSAM SEQUENTIALLY o>> 
<<*********************************••o••~•••~*****•ooo>> 
l.11 
FREADCFI~NUMtINPUT,~72)1 

IF > 
THEN BEGIN 

IF < 

FCLOSE<FILNUM,O,O> I <<CLOSE THE KS~M FILE>> 
IF <> THEN 

BEGIN 
MOVE ME SSA GE I :a "CANNOT CLOSE Tl-f P.: I< SAM F I\..E11 I 
pPyNTCMESSAGEt•22,0)T 
FCMECKCFILNUM,ERRORC6oE>• <<GET ERROP NVMeER>> 
FERRMSGCERRORCOOE,MESSAGE,LENGTHt J<<CONVERT To ST~ING>> 
PRINTCMESSAGE,•LENGTH,O) I <<PRINTOUT ERROR MESSAGE>> 

ENO• 
TERMINATEJ 

ENDJ 

THEN BEGIN 
MOvE Me-SSAGES•"ERROR OCCURRED WHILE READING l<SAM ic-IL.E"f 
PRJNTCMESSAGE,w37,0)J 
FCHECK(FILNUM 1 ERRORCOOE)f <<GET ERROR NUMBER>> 
FERRMSGCERRORCOoE,MESSAGE,LENGTH>t<<cONVERT TO STRING>> 
PRINTCMESSAGE,•LENGTH 1 0)f <<PRINTOUT ERROR MESSAGE>> 

Figure 4-10. FREADDIR Example 

4-74 



FREADDIR 

TER~INATEt 
ENOI 

<<••················································••*>> <<• TO FIND our RECORD NUMBER OF THE RECORO JUST READ •>> 
<<••·················································••>> FG~'fl:N'~~·-ifr'.~ul,,ijlj~~~:"~:''i;~:~·~;~iE,'~p;:~~ij .. , ;.:¥':~: . ... ,(,' .... ·.i>:;· ;::c·:· <;I:;;;n/i{\ g:§: .. ::::f;;~:~.:;y: •w•.'A "'' ;:::;i;; 

MOVE MESSAGE&s 11 RECORO# = "I 
DASClICQfCPTR,10tMESSAGE(5l)J 
PRlNT<MESSAGE,•14tO>S 

<<•*•········································•~>> <<* READ THE KSAM rI~E BY USING RECORD NUMBER •>> 

<<••··········································· 2 tfR~:~.Pil'.~lf fftl;:~f.I:if11.t;.·s111~·ij:f i'i~ij';•.~t;j~lt~ 't]jl;~I ;t;f;:y'. ; 
IF <> 
THEN BEGIN MOVE MfSSAGEl:"ERROR OCCURRED nUR!~G fREADDIR 11 t 

PRINT(MESSAGE,-30,0) I 
FCHECKfFILNUM,ERRORCOOE)J <<GET ~RROR NUMBER>> 
FERRMSG<ERRORCOOE,MESSAGE,LENGTH)t<<CONVERT TO STRING~> 
PRINTl~ESSAGE,·~ENGTH,OIJ c<PRI~TOUT ERRO~ MESSAGE>> 
TERMINATE I 

ENDI <<••ooooooooooo•oooo•••••••ooo••oooooooooooo•••••>> <<• WRITE THE DATA JUST READ BY FREADDI~ o>> 
<<••············································•>> PRINTcoUTPUT1-72t0)1 

<<**••·····························••>> <<• GO BACK TO GET ANOTHER RECORD •>> 

<<••·······························••>> GO TO Llf 
ENOJ 

Output from Program Execution: 

.. ,: ~ ., ~~ ~ 

::,·:·:~ECQqo.# :11 4 .. \ ;. ·•··· ··· 
.'.'ihROlN Rl~~: ST:&'-1018 nt~~: ~Otf'E ROAO 
~ico~o• .. • 3 

:rE:ci<sTnN .~EJ>.: . . 2f7•5U! .. S3f>·'3; ;:~~T~;V:ENS CA~~K 

;]~~gs~#: • ~~s '.lia7-s2i~ il$:0: ;~tlNJ !'EYER CT. 
··t?;.;.:.,.tco~.o•• • i•.·.·:: .• .. . •· 
;·:~~LA'I JACl<. · ... 
nRt co ~1).# • S" : .. 

<(,~,\sav tlif!fQ.": . ·; 2f:!S•l:18:1 "row~ .. ·~·:~tijfR'Y vllt.AGE ::.~:~~·· ~q~E·· 
~;.~:c()~O# * 1·: :· £ : · 
·~Qii!ErfT GE~·~¥··· 
Re:eorto• c 6 . · .· 

.; ;$££L.\' H.C:NR:·t . 2~3·-'•210 1·1~• ~~~l~T.Y sr • 
. . R£COqD.# = ·~. ·:•;, .•...•.•.. ·· 

.. T\JJ~fii!WR . t 'o/ 4.~ · .. 
RE'coqo• = fO · ... 

· .~6sre:1:1 £L;Diei·<. • 2h·•s9e 
:":;REC0'-0# = q· ..... . 

.:·W:~'lTE . ~.~~~~~EJ··. ·39&•0$.Ql 

.lSStri ·~lt~~.ttSMER $r~ 
~~~* ~·~~.BY AVE. : :~E~~IJ~{ 

ENO OF PROGRAM

Figure 4-10. FREADDIR Example (continued)

4-75

FREADLABEL
INTRINSIC NUMBER 19
Reads a user file label.

The FREADLABEL intrinsic reads a user-defined label from a disc file. Before reading occurs, the
user's read-access capability is verified. Note that MPE automatically skips over any unread user
labels when the first FREAD intrinsic call is issued for a file; therefore the FREADLABEL intrinsic
should be called immediately after the FOPEN intrinsic has opened the file.

PARAMETERS

filenum

target

tcount

la be lid

integer by value (required)
A word identifier supplying the file number of the file whose label is to
be read.

logical array (required)
An array in the stack to which the label is to be transferred. This array
should be large enough to hold the number of words specified by
tcount.

integer by value (optional)
An integer specifying the number of words to be transferred from the
label. Tcount must not be greater than 128 words.

Default: 128 words.

integer by value (optional)
An integer specifying the label number where the first user label is
numbered 0.

Default: A default value of 0 is assigned.

CONDITION CODES

CCE The label was read

CCG The intrinsic referenced a label beyond the last label written on the file.

CCL The label was not read because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

4-76

FREADLABEL
USING FREADLABEL

If the KSAM file contains one or more user labels (written with FWRITELABEL), you can read
these labels with the FREADLABEL intrinsic. During the normal file reads with FREAD, FREADC,
FREADBYKEY, or FREADDIR, any user labels are ignored. The number of user labels that can
be written to the file is specified by the userlabels parameter of FOPEN, or in the BUILD command
of KSAMUTIL.

Since MPE checks to insure that you have opened the file with read access before executing
FREADLABEL, you must open the file with an FOPEN aoptions setting that permits reading. It
must be one of the following:

bits 12:4 0000 (octal 0) read only access
0100 (octal 4) input/output access
0101 (octal 5) update access

In addition, the FOPEN userlabels parameter must be set to a value of 1 or greater depending on
the number of labels that may be written to the file.

Suppose you have opened the file KDATA with the following call:

KFILNUM:=FOPEN(KDATA,3,4,,,, 2);

old user/ f lumber of labels
domain

input/output access

You might read the second label with the following call:

FREADLABEL(KFILNUM,LABELBUF, , 1)

This reads the second label into the array LABELBUF. Note that label numbering begins with O; if
the labelid parameter were zero or omitted, then the first label would be read. By default, the num
ber of words read from the label is 128.

4-77

FREADSEEK
INTRINSIC NUMBER 12

Moves a record from a disc file to a buffer in anticipation of a FREADDIR intrinsic call.

NOTE

This intrinsic may not be used for KSAM files. If called for a file
created as a KSAM file, the intrinsic returns a CCL condition code.

4-78

FRELATE

INTRINSIC NUMBER 18

Determines whether a file pair is interactive, duplicative, or both interactive and duplicative.

NOTE

This intrinsic may not be used for KSAM files. If called for a file
created as a KSAM file, the functional return is set to zero (FALSE)
and the condition code CCE is returned.

4-79

FREMOVE
INTRINSIC NUMBER 306
Marks the current record in KSAM file for deletion.

The intrinsic FREMOVE effectively removes the current record from the KSAM file. When exe
cuted, the first two characters of the current record in the data file is set to all 1 's, and all key
entries pointing to this record are deleted from the key file. Although the space required by the
record remains in the data file, it is no longer possible to access the record through KSAM intrinsics.

In order to position the file to the record to be deleted, FREMOVE must be preceded by one of
the intrinsics that positions the logical record pointer: FFINDN, FFINDBYKEY, FREADBYKEY,
FREAD, FPOINT, or a previous FREMOVE. Following execution of FREMOVE, the logical
record pointer is positioned at the next record in ascending key sequence.

FREMOVE checks only the logical record pointer, not the chronological pointer, to locate the
record to be deleted. Therefore, if you want to delete a record located by its chronological posi
tion in the file, precede the call to FREMOVE with a call to FPOINT. FPOINT locates the record
by its record number and sets the logical, as well as the chronological pointer, to that record. If
you try to locate a record for FREMOVE by calling FREADDIR or FREADC, which only set the
chronological pointer, you will delete the wrong record.

When FREMOVE is executed, a check is made to make sure the record to be deleted actually con
tains the key value to which the pointer is positioned. If the record does not contain that value,
then a condition code (CCL, error=191) is issued and the record is not deleted.

If the file was opened for shared access (aoptions bits 8,9 = 11) then you must call FLOCK before
calling FREMOVE. Note that the file must also have been opened with dynamic locking allowed
(aoptions bit 10 = 1).

PARAMETERS

filenum

NOTE

If you want to recover the data in deleted records through non
KSAM access (using FCOPY with the NOKSAM option), do not
place any data in the first two bytes since these bytes are over
written by FREMOVE.

integer by value (required)
A word identifier supplying the file number of the file from which the
record is to be deleted.

4-80

FREMOVE

CONDITION CODES

CCE

CCG

CCL

The current record is deleted.

The logical end-of-data was encountered.

An error was encountered or record does not contain requested key
value; the record is not deleted.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FREMOVE

When FREMOVE is executed, it sets the first word (bytes 1 and 2) of the current record to all l's.
It does not physically delete the record from the file. When the file is read by any of the KSAM
read intrinsics, the deleted records are skipped as if they were not there. Since all references to
them are deleted from the key file, the speed of execution is not ttsually affected by the records
physically remaining in the file. However, they do take up space and if a great many records are
deleted, then you might want to build a new KSAM file and copy the old file to the new file with
FCOPY. Since FCOPY does not copy records marked for deletion (except with the NOKSAM
option), the new file will be shorter and have no space used by deleted records. (Refer to section
II for a description of copying KSAM files with FCOPY.)

The example in figure 4-11 deletes all records with a telephone number in the alternate key field
that is equal to or greater than "500-0000". The FFINDBYKEY intrinsic positions the file to the
record containing the lowest alternate key value that is greater than or equal to "500-0000 ". This
record is then read and printed prior to being deleted by FREMOVE. Following FREMOVE, the
program loops back to read the next sequential record, print it, and then delete it. When an end of
data is reached, the program terminates. In all, the program deletes three records. You can check
the deleted records against the list of records printed in telephone number sequence by the program
illustrating FREAD in figure 4-7.

4-81

FREMOVE

In practice, an FREAD prior to an FREMOVE is useful because it allows you to test the record
contents prior to deleting the record. For example, you might want to delete only those records
with the zip code 90871 in bytes 7 5 through 79 of the record, assuming the same file as in
figure 4-11:

BYTE ARRAY INPUTB(*)=INPUT; ---- equate the byte array INPUTB to INPUT

Ll:
FREAD(FILNUM,INPUT,-72);
IF>

--- test for end of data

IF<

---- test for read error

IF INPUTB(75)="90871"
THEN BEGIN

FREMOVE(FILNUM);
IF<

--- test for delete error

END;
GO TO Ll; ----- return for next record

SHARED ACCESS. In a shared environment, you must always lock the file with a call to FLOCK
before calling FREMOVE. Furthermore, since the logical record pointer must be positioned before
the call to FREMOVE, you should lock the file before calling the procedure that positions the
pointer. This prevents other users from affecting the pointer position by adding or deleting records
between the time you position the pointer and call FREMOVE. The following sequence of calls
illustrates the correct method for deleting a record in a shared environment:

FLOCK-----lock the file
FREADBYKEY position pointer and read record
FREMOVE mark the record for deletion
FUNLOCK unlock file to allow access to other users

Remember to open the file for shared access and allow dynamic locking whenever you plan to
delete records from a file in a shared environment.

4-82

FREMOVE

$CONTROL MAINaJEXAMPL1

;:i~~;o:i•.~•••:·•4·•!~·• .. :i .i:.>;.,::•••·~.•~··••
INT~GER FILNUMS
INTEGER LENGTH I
INTEGER f~RORCODEI
;j'\''.fE .. ;AR'R:,¥ 'f:C).t9J:1.•1•;J.EXAM.F tL

~l.{~;Y' ·· .. ·.·••.. • :~~~~:~it:~:'.t.J .u'.:
··· OtfTP.\Jr:.·.(.tt:):cJNPU:Tl:

;;~·~.:t~·. ~~:RAy I(E y v A I... u E (0 I 7) l : "s Q Pi~O.<to:rf·• r
INTEGER KEYLENGTH1•81
INTEGER KEYLOCATION1=2lf
INTEGER RELOP1•2f << GREATER THAN O~ EQUA~ TO >>
I NTR I NS I c FOPE.N • .. Fc.~ •• os~. ,F •. R~AO,·F·R:MOVE 'F~I ND8~KEV •

. ~~AJ;l•:~~··I~;1:.i:J~.R~l·~.,T:t;;FQ.,..~CKtFER.R."'$~·1: •. ·
<<o••••***************••••>>
<<* OPEN THf. KSAM FILE •>>
<<••···················•••>>
FlLNUMa•FoPEN(FlLNAME,3,5)' <<OPEN THE KSAM FILE FOR UPDATE>>
IF f IL.NU Ms O
THEN BEGIN <<CANNOT OPEN KSAM FILf >>

MOVE MESSAGEl:a"CANNOT OPEN l<SAM FILE 11 1
PRINT<MESSAGE,•21,0> I
FCHECK(FILNUM 1 ERRORCOOE>f <<GET ERROR NU~BfR>>
FERRMSGfERRORCOOE,MESSAGt,~ENGTH)t<<cONVERT TO STRING>>
PRINT(MESSAGE 1 •LE~GTH,O)f <<PRINTOUT ERROR MESSAGE>>
IER.~.I.f\l~J'Jf

. EN.D.J> ,: .. • · > , : .· • \ :• :. /. .•.·.··. . . •. .. ·. · .. ·.. . . <. .J:: .:·)_··. ;,;:,., tl;,,.,.~.~.~'.· .. ~·~, ... ~-·~~-.~ ~ ... !·f·~·;,:·~· .. ·······>~··
:~~·~ •·· POS,~T'.l'?~i K$1U..t. ·:·f':ff...'~:,: :1~ TELEPHONE. 1' SEj;,.(1£~~!· .·. •>>
<.<. * ... ~. * .. * ••• 0 * •.••• *. *. * •.• ~ ••• *. * ••• * * •••• * ** * * ••••• * >)
FFINOBVKEY(FILNUM,KEYVALUE,KEYL0CATION 1 KEVL~NGTM,RELOP)I

MOVE MESSAGE I •••OEL.ETE FOL.LOW ING RECORDS t" J
PRINT(MESSAGE,•25,0)I

<<***••·························••••>>
<<* READ RECoRO BEFORE DELETING •>>
<<****•*••························••>>
L.2 I
FREADCFIL.NUMefNPUT,-72). <<READ RECORDS To 8E DELETED>>
IF >
THEN BEGIN <<END OF FlL.E>>

FCL,OS~tFILNUM,0,0)1 <<CLOSE THE ~SAM ~ILE>>
IF <> THEN

BEGIN <<CLOSE U~SUCCESSFUL>>
MOVE MESSAGE 1 •"CA~NOT CLOSE THE KSAM FI l.E'' I
PRINT<MESSAGEt•29,0) I
FC~ECKC~I~NUM,ERRORC0DE) I <<GET ERROR NUMBER>>
FERRMSG(ERRORCODE,MESSAGE,LENGTH)l<<CONVERT To STRING>>
PRINTCMESSAGE,•LE~GTH,0)1 <<PRINTOUT ERROR MESSAGE>>

ENO•
TERMINATEt

ENDI

Figure 4-11. FREMOVE Example

4-83

FREMOVE

IF <
THEN BEGIN

MOVE MESSAGEl•"ERROR OCCURREO WHIL.E READING INPUT 11 1
PRJNT(MESSAGE,•34,0)1
FCHECKfFl~NUM,ERRORCOOE)f <<GET f~ROR NUMBER>>
FERRMSG!ERRORCOOE,~ESSAGE,LENGTHl 1<<cONVERT TO STRING>>
PRINT(MESSAGE,•LENGTH 1 0>i <<PRINTOUT ERROR MESSAGE>>
TERMINATES

END a
<<••000•00000000000000000000000•0000000•00000000•>>
<<• WRITE THf RECORD JUST READ FROM KSAM FILE •>>
<<••···••>> PRINTcoUTPuT •• 72,0)I
<<**••·································•••>>
<<* REMOVE RECORD JUST READ FHOM FILE •~>

>>

IF<
THEN BEGIN

MOVE ~ESSAGEl="ERROR OCCUQREO oURlNG OELETE 11 ,

PRJNT(M~SSAGE1•28,0)f

FCHECKtFl~NUM 1 ERRORCOOE)J <<GET ~RROR NUMBER>>
FERRMSG(ERRORCOOE,MESSAGE,LE~GTH) l<<r.ONVERT TO STRING>>
PRINTfMESSAGE 1 •LENGTH 1 0)1 <<PRINTOUT ERROR MEsSAGE>>
TERMINATE.J

ENDI
<<***••····························••>>
<<* GO BACK TO GET ANOTHER RECORD •>>

<<••···············••*•*•••••••*•••••>>
GO TO L.21
ENOI

Output from Program Execution:

ENO OF PROGRAM

Figure 4-11. FREMOVE Example (continued)

4-84

Renames a disc file.

FRENAME
INTRINSIC NUMBER 17

NOTE

This intrinsic may not be used for KSAM files. If called for a
file created as a KSAM file, the intrinsic returns a CCL condition
code.

To rename a KSAM file, use the KSAMUTIL REN AME command.

4-85

FSETMODE
INTRINSIC NUMBER 14

Activates or deactivates critical output verification

The FSETMODE intrinsic activates or deactivates the access mode option that permits critical out
put verification. This means that all output must be verified as physically complete before control
returns from an output intrinsic (FWRITE,FUPDATE, or FREMOVE) to your program.

The access mode established by the FSETMODE intrinsic remains in effect until another
FSETMODE call is issued or until the file is closed.

PARAMETERS

filenum

mode flags

integer by value (required)
A word identifier supplying the file number of the file to which the
call applies.

logical by value (required)
A 16-bit value that denotes the access mode options in effect. For
KSAM files only bit 14 is used; all the remaining bits are set to zeros.

Bit 14=1 - Activate Critical Output Verification
When this bit is set, all output to the file is verified as
physically complete before an FWRITE, FUPDATE, or
FREMOVE intrinsic returns control to the user. As soon
as a logical record is written, a CCE condition is returned
to the user.

Bit 14=0 - Deactivate Critical Output Verification
When the bit is cleared, output is no longer verified.

CONDITION CODES

CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

4-86

FSETMODE

USING FSETMODE

When FSETMODE is executed with the modeflags parameter equal to 2 (bit 14=1), then each
logical record written by an output intrinsic is physically transferred to the file immediately. Con
trol is not returned to the user program until the transfer has been made. At that time a CCE con
dition code is returned to the program.

When FSETMODE is executed with the modeflags parameter equal to zero (bit 14=0), output is
treated in the standard manner. That is, when an output intrinsic writes a logical record, the record
is physically transferred to the file only when the entire physical record (block) of which it is a
part is transferred. (Calls to FWRITE, FUPDATE, and FREMOVE send output to the KSAM file.)

For example, the following intrinsic call activates critical output verification:

FSETMODE(FILNUM,2);

If you want to return to normal output mode, you can use the call:

FSETMODE(FILNUM,O);

When the file is first opened and when it is opened subsequently following an FCLOSE call, the
critical output verification mode is deactivated.

4-87

FSPACE
INTRINSIC NUMBER 5

Spaces forward or backward on a file.

The FPSACE intrinsic allows you to space forward or backward a specified number of records on
a KSAM file. The logical record pointer is repositioned by FSP ACE in key sequence. The spacing
is based on primary key sequence unless an alternate key has been specified in a prior call to
FFINDN, FFINDBYKEY, or FREADBYKEY.

PARAMETERS
filenum

displacement

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the file on which spac
ing is to be done.

integer by value (required)
An integer indicating the number of logical records to be
spaced over, relative to the current logical record pointer position.
Record sequence for spacing is based on key sequence. A positive
value signifies forward spacing, a negative value signifies backward
spacing; zero signifies no spacing, but sets a flag so that the next call
to FREAD does not move the logical record pointer before reading
the record. The maximum positive value is 32767; the maximum
negative value is -32768. The sign is optional for positive values.

Request granted.

A logical end-of-file indicator was encountered during spacing. The
logical record pointer is at the beginning-of-file if displacement was
negative, to the end-of-file if displacement was positive.

Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FSPACE

If you want to space back a particular number of records in key sequence, you would specify a
negative value for the displacement parameter in a call to FSP ACE. To space forward, you would
use a positive or unsigned integer as the displacement value. In either case, the displacement indi
cates the number of records to space over.

4-88

FSPACE

For example, suppose the following sequence of primary key values:

ABLE

BAKER----- @)pointer after FSPACE(FILNUM,-2);

CHARLIE

DOG------- G) current record pointer

EASY

FOX------- @pointer after FSPACE(FILNUM,4);

Suppose the current record pointer is at the beginning of the record whose primary key contains
the value DOG. To position the pointer to the beginning of the record with a primary key value
BAKER:

FSP ACE(FILNUM,-2);

To space forward from the beginning of the record with BAKER as the key value to the beginning
of the record with FOX as the key value:

FSP ACE(FILNUM,4);

figure 4-12 shows that the movement of the pointer bears no relation to the physical placement of
records in the file.

BOF--

FOX ABLE

marked for deletion

EASY DOG CHARLIE

2 FSPACE(FI LNUM,-2)

G) pointer before FSPACE calls

BAKER

.____ ______ @ FSPACE(FI LNUM,4) ---------J

Figure 4-12. File Position with FSP ACE

4-89

-EOF

FSPACE
POINTER POSITION. FSPACE checks a flag to determine whether to advance the pointer before
it moves the pointer the specified number of records. If FSP ACE follows a call that reads the file
(FREAD or FREADBYKEY) then it advances the pointer to the record in key sequence following
the record just read. After advancing the pointer, FSPACE positions the pointer as indicated in the
call. If, on the other hand, FSPACE follows FPOINT, FFINDBYKEY, or FFINDN, the pointer
remains positioned to the record specified in one of these calls until FSP ACE is executed.

To illustrate, consider the following calls:

FREAD----read record, set flag to advance pointer
FSPACE(-1) test flag, advance pointer, then move pointer back 1 record
FREAD reread record just read

SHARED ACCESS. Because FSP ACE is a pointer-dependent procedure (see table 4-2), it is essen
tial to lock the file before the call that determines the original pointer position, then call FSP ACE,
then call any other procedures that depend on where FSP ACE positioned the pointer. When all
the pointer-dependent procedures are complete, then unlock the file for other users. To illustrate:.

FLOCK-----lock file
FFINDBYKEY locate a particular key value
FSP ACE move pointer relative to that key position
FREAD read the record to which pointer is positioned
FUNLOCK unlock the file

4-90

FUN LOCK
INTRINSIC NUMBER 16

Dynamically unlocks a KSAM file.

The FUNLOCK intrinsic dynamically unlocks a KSAM file (Resource Identification Number) that
has been locked with the FLOCK intrinsic.

PARAMETERS

filenum

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word supplying the file number of the file to be unlocked.

Request granted.

Request denied because the file had not been locked by the calling
process.

Request denied because the file was not opened with the dynamic
locking aoption of the FOPEN intrinsic, or the filenum parameter is
invalid.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FUNLOCK

A file that has been locked with FLOCK in order to allow exclusive updating should be unlocked
with FUNLOCK as soon as the update is complete. Dynamic locking and unlocking apply to files
opened for this capability. In the aoptions parameter of FOPEN, bit 10 must be set to 1 in order
to use either FLOCK or FUN LOCK. (For more discussion of dynamic locking and unlocking,
refer to the FLOCK intrinsic description.)

Suppose a file has been locked to allow update of a record. To unlock the file following completion
of the update, use the call:

FUNLOCK(FILNUM);

When FUNLOCK is executed, all output written while the file was locked is transferred to the file
so that other users have the most recent data.

MAY 1981 4-91

FUPDATE
INTRINSIC NUMBER 4

Updates the contents of a logical record in a KSAM file.

The FUPDATE intrinsic can be used to update a logical record in a KSAM file. The entire record
including primary and any alternate keys can be updated with FUPDATE. The record to be updated
is the record last referenced by the intrinsics FREAD, FREADBYKEY, FFINDBYKEY, or FPO INT.
The new values for the record are moved from the user's stack into this record. The file containing
this record must have been opened with the aoption parameter of FOPEN set to update access.
FUPDATE can be used to update both fixed-length and variable-length records. FUPDATE can be
used to modify key values or to change record size, but if key values or the record size are changed,
the update operation causes the entire record to be deleted and then rewritten. After an update, a
subsequent call to F:READ will read the next record in ascending key sequence after the record just
written.

FUPDATE checks only the logical record pointer, not the chronological pointer, in order to de
termine which record to update. Therefore, if you want to update a record based on its chronologi
cal position, precede the call to FUPDATE by a call to FPO INT. FPO INT locates the record by its
record number and sets the logical, as well as the chronological, pointer. If you try to locate a record
for FUPDATE by calling FREADDIR or FREADC, which only set the chronological pointer, the
wrong record will be updated.

If the file was opened for shared access (aoptions bits 8,9 = 11), then you must call FLOCK to lock
the· file before calling FUPDATE. Note that the file must also have been opened with dynamic lock
ing allowed (aoptions bit 10 = 1).

PARAMETERS
filenum

target

tcount

CONDITION CODES
CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the file to be updated.

logical array (required)
Contains the record to be written in the updating.

integer by value (required)
An integer specifying the number of words or bytes to be written from
the record. If this value is positive, it signifies words; if it is negative,
it signifies bytes. If tcoun t is less than the recsize parameter associated
with the record, only the first tcoun t bytes or words are written.

Request granted.

An end-of-file condition was encountered during updating.

Request denied because of an error, such as tcoun t exceeds the record
size defined for the KSAM file; or tcount does not include all the keys;
or a disc input/output error.

4-92

FUPDATE

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FUPDATE

In order to update a record in a KSAM file, you must open the file for update. This access mode
is specified by setting bits 12 through 15 of the FOPEN aoptions parameter to the octal value 5
(binary value 0101). You must then access the record to be updated. Normally, you would read
the record with one of the read intrinsics and then modify the record just read.

The record to be updated by FUPDATE is the last record accessed. FUPDATE writes the contents
of a user buffer area (target) over the existing contents of the last record accessed. The record
written by FUPDATE must contain all the key values expected by the file. If only a portion of
the record is specified by a tcoun t parameter less than the original record size, then this portion
must contain all primary and alternate key values or a CCL condition is returned and the update
does not take place.

The example in figure 4-13 shows an update of an alternate key, the telephone number located in
bytes 21 through 28 of the record. In order to locate the record to be updated, FREADBYKEY
is executed before FUPDATE. The data input through the standard input device contains the
keylocation and keyualue values for FREADBYKEY as well as the new value for the update:

byW 10112

ke~location
(starting byte)

name

• key value
(primary key)

phone #

..
new value

(alternate key)

Note that bytes are numbered from zero in the standard input or output device, but bytes in the
KSAM record are numbered starting from 1 for the keylocation parameter.

SHARED ACCESS. When access is shared, it is essential to lock the file with a call to FLOCK be
fore rewriting any records. After the update, you should unlock the file with FUNLOCK. To make
sure you are updating the correct record, include both the intrinsic that locates the record and
FUPDATE between the same pair of FLOCK and FUNLOCK intrinsics.

4-93

FUPDATE

For example, suppose you use FREADBYKEY to examine the record to be updated, you should
lock the file before calling the intrinsic that locates the record to be updated and unlock if after
the update:

FLOCK
FREADBYKEY (or FFINDBYKEY)---- locate record to be updated

FUPDATE---- update record
FUNLOCK all key buffers, data buffers and control information written to disc

If you perform operations on a record between locating it and updating it, and you do not want
to lock the file during this process (between the read and the update), then you can use the fol
lowing code sequence:

FLOCK
FREADBYKEY (or FFINDBYKEY)----locate record
FUNLOCK

____________ while you decide whether to update record,
other users can modify or delete it

(decide to update)
FLOCK
FREADBYKEY (or FFINDBYKEY)-reread record
FUPDATE
FUN LOCK

UPDATING RECORDS WITH DUPLICATE KEYS. If you want to sequentially update all the
records in a chain of records with duplicate keys, locate the first record in the chain with FFIND
BYKEY, FREADBYKEY, or FPOINT. Then call FUPDATE to modify this record. If no key value
(the selected key or any other) is modified, subsequent calls to FUPDATE will modify the next se
quential records in the chain of records with duplicate keys. If, however, any key has been changed,
the modified key is written to the end of the chain and the next sequential record is one with the
next higher key value. In this case, to update all records with duplicate keys, precede each call to
FUPDATE with a call to FFINDBYKEY, FREADBYKEY, or FPOINT to position to the begin
ning of the chain.

If you are in the middle of a duplicate key chain and FUPDATE modifies a key value, you can
position back to the next duplicate key in the chain with the following sequence of calls:

FSPACE(FILNUM,1); position to next sequential record
FGETINFO(FILNUM,,,,,,,, ,RECPTR); retrieve current record number
FSPACE(FILNUM,-1); backspace to current record
FUPDATE(FILNUM,OUTPUT,-72);-modify key, positioning to end of key chain

FPOINT(FILNUM,RECPTR);-position to next duplicate key using record number
retrieved by FGETINFO

Note that if the KSAM file has fixed-length records or if the updated record is the same size as the
old record, the space in the data file is reused. Otherwise, the updated record is written to the end
of the data file.

4-94

FUPDATE

SCONTROL MAINsJEXA~PL.8

<<••ooooo 0 ooooooooooo••••••oooo•••••*•*****••••••••ooo#oo•*>>
<<• *>>
<<* EXAMPLE 8 *>>
<<* UPDATE A RECORD IN A KSAM FILE *>>
<<•

l~'\;.f:{fN$tC FOPE:N, FCL.OSE 9 FVP·t>:A;f'£.e FREA08vKEV, QEAO, PR INT,
BINARV,FCHECK,FERRMSGtTERMINATEt

<<••····················••>>
<<* OPEN THf KSAM FILE •>>

*>>

~.~~--~~~-~- .. ·~··~~.~~ >>
Flt::NVl4::1•'Fo:PENt .. FlfNAMEt3r5J.J (~()PEN. tME M:'$Ar4 FU .. E FQR,'QpOATE>>
IF FILNUM:O
THE~ BEGIN <<CANNOT OPEN l<SAM FILE>>

MOvE Me:SSAGE I •''CANNOT OPEN l<SAM F ILE 11 I
PRyNTt~ESSAGE,•21tO>J
FCHECKtFILNUM,ERRORCOOE>I <<GET ERROR NUMBER>>
FERRMSGtERRORCOOE,MESSAGE,LENGTH>1<<CONVERT TO STRING>>
PRJNTtMESSAGE,•LENGTH,0)1 <<PRINTOUT ERROR MESSAGE>>
TERMINATE I

ENOI
<<••···••>>
<<• READ IN KEVVALUE AND KEv~oCATION INFO~AflON •>>

<<••···••>> L.11
READ t INFOW,•36> I
IF >
THEN BEGIN

IF <

FCLOSEtFILNUM,0,011 <<CLOSE THE KSAM FILE>>
IF <> THEN

BEGIN
MOVE MESSAGEl•"CANNOT CLOSE THE KSAM FILE111
PRtNT CMESSAGEt•26e0)1
FCHECKCFILNUM,£RRORC00E>t <<GET ERROR NUMeER>>
FfRRMSGCERRORCODE,MESSAGE,t.ENGTHI J<<CONVERT To STRING>>
PRINTCMESSAGE,•LE~GTH,O)l <<~RINTOVT ERROR MESSAGE>>

ENOI TERMINATE I
ENDI

THEN B~GIN

MOVE MF.:SSAGEl•"ERROR OCCURRED WHil.E READING INPVT 11 J

Figure 4-13. FUPDATE Example

4-95

FUPDATE

IF <>

PRINTfMESSAGE,•34tO>t
TERMINATEt

ENDI
N

THEN BEGIN <<ERROR OCCURRED IN FREADBYKEY>>
MOyE MfSSAGEl•"ERROR OCCURRED IN F~EADBYKEY"I
PRJNTtMESSAGE,•28,0)f
FCHECKCFILNUM,ERRORCOOE>J <<GET ERROR NUMBER>>
FERRMS~(ERRORCOOE,MESSAGE,LENGTH>•<<CONVERT TO STRING>>
PRINTCMESSAGE,•LENGTH,0)1 <<PRINTOUT ERROR MESSAGE>>
GO TO Llf

ENDI

<<••··••••>> <<* UPDATE THE RECORD JUST RE•D •>>
<<••···•••>>
IF<>
THEN BEGIN

MOyE MESSAGEl•"ERROR OCCURRED DURING UPOATE"t
PRINTl~ESSAGEt•28,0)f
FCHECKtFILNUM,ERRORCOOE>I <<GET !RROR NUMBER>>
FERRMS~<ERRORCOOE,MESSAGE,LENGTH)t<<cONVERT TO ST~ING>>
PRINTfMESSAGE,•LENGTH,O>~ <<PqINTOUT ERROR MESSAGE~>
TERMINATE I

ENDt

<<••···••>> <<• PRINT THE RECORD JUST UPDATED •>>
<<•••··••>>
PRINTcoUTPUT,.72,Q)f

<<*••······························••>> <<* GO BACK TO GET ANOTHER RECORD •>>
<<••·······························••>>
GO TO L1'
ENOJ

Output from Program Execution:

read from $STDIN

Figure 4-13. FUPDATE Example (continued)

4-96

FWRITE
INTRINSIC NUMBER 3

Write a logical record from the user's stack to a KSAM file.

The FWRITE intrinsic writes a logical record from the user's stack to the KSAM file. The record
contents are contained in the array target in the user's program and include all key values.
FWRITE uses the primary key value to update the key file so that the new record is in sequence
by primary key value. Any alternate keys are also entered into their appropriate positions in the
key file. No separate key specification is required since all the key values are contained in the
record to be written.

Following execution of FWRITE, the logical record pointer is positioned at the next sequential
record in key sequence or at the end-of-file if the record is the last in sequence. The particular
key is the current key being used when FWRITE is called.

If sequential processing was specified for the file in the flagword of ksamparam when the file was
opened by FOPEN, then the records must be written in ascending order by primary key. If dupli
cate keys are not allowed, any record with a key duplicating a key in an existing record is not
written and a CCL condition code is returned.

When the physical bounds of either the data file or the key file prevent further writing (all allowable
extents are filled), an end-of-file condition code (CCG) is returned to the user's program.

If the file was opened for shared access (aoptions bits 8,9 = 11), then you must dynamically lock
the file with FLOCK before calling FWRITE. Nate that the file must also have been opened for
dynamic locking (aoptions bit 10 = I).

PARAMETERS

filenum

target

tcount

control

integer by value (required)
A word identifier supplying the file number of the file to be written on.

logical array (required)
Contains the record to be written.

integer by value (required)
An integer specifying the number of words or bytes to be written to the
record. If this value is positive, it signifies words; if it is negative, it
signifies bytes; if it is zero, no transfer occurs. If tcount is less than the
recsize parameter associated with the record, only the first tcount words
or bytes are written.

If tcount is larger than the recsize value, the write request is refused and
condition code CCL is returned.

logical by value (required)
A logical value representing a carriage control code. This parameter
has no meaning for KSAM files but must be included for compatibility.
Whatever value is specified will be ignored.

4-97

FWRITE

CONDITION CODES

CCE

CCG

CCL

Request granted.

The physical bounds of the file prevented further writing; all disc
extents are filled.

Request denied because an error occurred, such as: an input/output
error occurred; a duplicate key value occurred when duplicates are not
allowed; tcount does not include all keys; or sequential processing was
specified in the flagword of ksamparam in FOPEN and the primary key
is not the next in ascending order.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FWRITE

The FWRITE intrinsic writes records from an array in your program to a KSAM file. All the key
information is contained in this target array. The record is written to the data file and the keyfile
is updated to reflect the primary key and any alternate keys in the new record.

Depending on how the file was opened, you can write records at random regardless of primary key
order, or you may be constrained to write records in sequential order by primary key value. The
examples in this manual use the file JEXAMFIL that is created for writing at random. If you refer
to figure 4-5, the flagword of the ksamparam parameter is set to the binary value 0000000000000010.
Bit 14, indicating that record numbers start with 1, is the only bit set. If bit 13 had also been set
to 1 then all records written to the file would have to be in ascending order by primary key value.
In such a case, the chronological order of records and the sequential order would be the same.

When you write a record to a KSAM file, FWRITE either overwrites any records previously written
to the file or else writes new records following existing records. The choice is made when you open
the file. If you set bits 12 through 15 of the aoptions parameter of FOPEN to the binary value
0001 (octal or decimal 1), then all records written to the file before this open are deleted and
FWRITE writes records to a cleared file. If you set bits 12 through 15 of aoptions to 0010 or 0011
(octal or decimal 2 or 3), then any previously written data is saved. The example in figure 4-14
deletes any data written to file JEXAMFIL before it was opened. The file will have no data other
than that written by this program. If, after closing the file, you want to open it to write more data
without deleting existing data, then you must set the aoptions access type (bits 12-15) to 0010 or
0011.

SHARED ACCESS. When access is shared, it is essential that you lock the file before writing new
records. This means opening the file with dynamic locking allowed and calling FLOCK before call
ing FWRITE. You should also unlock the file with FUNLOCK after writing the records.

4-98

FWRITE

$CONTROL MAIN•EXAMPLE9
<<••···••>>
<<• •>>
<<•
<<•
<<•

EXAMPLE 9
WRITE TO EXISTING KSAM FIL~

•>>
•>>
•>>

<<••···••>>
INTEGER FILNUMJ
INTEGER EPRORCODE1
INTEGER LfNGTHI
B'<TE ARRAy FIL.NAMEC019Jl• 11 JEXAMFIL. 'if
N~.R.~'f ~.E~.~At3E,!0135, I
'~R~.v. tNPl,J!tOl.3.~.1·1
4R~AY .. ovtPUTt•>•INPOTJ
INT~INSIC FOPEN1FCL.0SE,FWRITE 1REAO,PRINT,FCMECK 1FERRM$GI
INTRINSIC TERMINATEI
<<•••···················••>>
<<• OPEN THE KSAM FtLE •>>
<<••····················••>>
F'H.;~.~~r:•f;"bP~NtFJl;iN~HE;3f2JI <(OPEN •Ftt.E FOR WRITb>
IF FILNUMsO
THEN BEGIN <<CANNOT OPEN KSAM FILE>>

MOVE ~ESSAGEl•"CANNOT OPEN KSAM FIL.E"I
PRINTIMESSAGE,•2ltO>I
FCHECK!FIL.NUM,ERRORCODEI I <<GET eRROR NUMBER>>
FERRMS~IERRORCOOE,MESSAGE1LENGTHll<<cONVfRT TO STRING>>
PRINTIMESSAGE,•LENGTH,Ol I <<PRINTOUT ERROR ME~SAGE>>
TERMINATE I

ENDI
<<••·······························•>>
<<* READ DATA FROM sSTDIN DEVICE •>>
<<•••·····························••>>
L.11
READ!INPUr,•7211 <<READ ONE REcORO ~ROM sSTDJN>>
IF >
THEN BEGIN <<ENO OF FILE ON sSTDIN>>

IF <

FCLOSE1FILNUM 1 1,0>I <<CLOSE THE KSAM FILE>>
IF <> THEN

BEGIN <<CANNOT CLOSE THE KSAM FILE>>
MOVE MESSAGEl• 11 CAl'>mot CLOSE THE 1<SAM FILE"•
PRtNTIMESSAGE1•29,0li
FCMECKCFILNUM 1 ERRORC00E) I <<BET ERROR NUMBER>>
FERRMSG(ERRORCODE,MESSAGE,LENOTH1 l<<CONVERT Ta STRING>>
PRJNT!MESSAGE 1 •L.ENGTH,Oll <<PRINTOUT ERROR MESSAGE>>

ENDI
TERMINATE I

ENDI

THEN BEGIN
MOyE MFSSAOE I ="ERROR OCCURRE'I'.> WM ILE RE AO ING tNPUT11 I
PRyNTIME5SAGE 1•34,0ll
TERM !NATE I

ENDI
PRINTcoUTPUT,.72,0)I <<ECHO CHECK>>
<<**••··•>>
<<* WRITE THE DATA JUST READ TO THE KSAM FILE o>>
<<••···••>>
FWRJf~~f\ii~~l)\M'';"~\~T'~tJT,•Tz;o,'1 .. ,, · ' , ········' , ,. ····· '
IF <>
THEN BEGIN <<ERROR OCCURRED WHILE WRITING KSAM>>

MOVE MESSAGE&•"ERROR OCCURRED WHll.E WRITING KSAM FIL..["I
PRJNTIMESSAGE1•3810I I
FCHECKtFlLNUM 1ERRORCOOEI I <<GET ERROR NUMBER>>
FERRMSGIERRORCOOE,MESSAGE,LENGTH) 1<<cONVERT TO STRING>>
PRJNTl~f5SAGE 1 •LENC.TH,OI; <<PRINTOUT ERROR MESSAGE>>
TERMINATE I

ENDI
<<••·······························••>>
<<* GO BACK TO GET ANOTHER REC0RO •>>
<<••·······························••>>
GO TO Lll
ENDI

Figure 4-14. FWRITE Example

4-99

FWRITEDIR
INTRINSIC NUMBER 8

Writes a specific logical record from the user's stack to a disc file.

NOTE

This intrinsic may not be used for KSAM files. If called for a file
created as a KSAM file, the intrinsic returns a CCL condition code.

4-100

FWRITELABEL
INTRINSIC NUMBER 20

Writes a user file label.

The FWRITELABEL intrinsic writes a user-defined label onto a disc file. This intrinsic overwrites
old user labels.

PARAMETERS

filenum

target

tcount

la be lid

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word identifier specifying the file numI?er of the file to which the
label is to be written.

logical array (required)
Contains the label to be written to the disc file.

integer by value (optional)
An integer specifying the number of words to be transferred from the
array.

Default: 128 words.

integer by value (optional)
An integer specifying the number of the label to be written. The first
label is 0.

Default: A default value of 0 is assigned.

Request granted.

Request denied because the calling process attempted to write a label
beyond the limit specified in FOPEN when the file was opened.

Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

4-101

FWRITELABEL

USING FWRITELABEL

You can write your own labels to a KSAM file with the FWRITELABEL intrinsic. Such labels are
useful to hold information related to the file but not part of it. For example, you might use a label
to contain the date and time of the last update to the file.

The number of labels that are allowed to be written to any file must be specified in the userlabels
parameter of the FOPEN intrinsic when the file was created. If an attempt is made to write more
labels than are specified for the file at creation, a CCG condition is returned.

In order to write labels, as with any other write request, the file must be opened for write access.
This means that the aoptions parameter of FOPEN must be set to one of the following:

bits 12:4 = 0001 (octal 1) } 0010 (octal 2) write only access
0011 (octal 3)
0100 (octal 4) input/output access
0101 (octal 5) update access

Suppose file KDATA has been created as follows:

KFILNUM:=FOPEN(KDATA,%4004,4,,,, 2);

new KSAM file,/ \ tumber of labels
ASCII coded input/output access

Then a total of two labels, each with a maximum of 128 words, can be written to this file with
FWRITELABEL. To write a second label consisting of 60 words stored in the array LABELBUF,
use the following call:

FWRITELABEL(KFILNUM,LABELBUF ,60,1);

Note that label numbering starts with zero, so the second label is identified by the number 1.

4-102

HP32208
INTRINSIC NUMBER 308

Returns current version, update, and fix level of KSAM/3000.

The double word result returned by HP32208 contains the version number in ASCII, the update
number in binary, and the fix-level number in binary of the KSAM/3000 version currently in use.

FUNCTIONAL RETURN

version Double word returned by HP32208 in the form:

0 7 8 15

Version, in ASCII 1 Update #, in binary word 1

Fix-level#, in binary word 2

CONDITION CODES

Condition codes are not affected by execution of this intrinsic.

USING HP32208

You may call this intrinsic in order to get the current version, update, and fix numbers of the
KSAM/3000 that is currently being used. The intrinsic FGETKEYINFO returns the version, up
date, and fix number of a KSAM file at the time the file is created (refer to words 16/17 of the
ksamcontrol parameter, table 4-4). The version, update, and fix number of a KSAM file at
creation is also returned by the VERIFY command (refer to section II). You can call HP32208
to get the KSAM version you are using in order to compare it with the version at file creation of a
file you are accessing.

Another reason for calling HP32208 is if you want to convert the version, update, and fix numbers
to display values so they can be listed for documentation purposes.

4-103

USING KSAM FILES IN FORTRAN ifilfrlii
PROGRAMS I v I

OVERVIEW
The FOR TRAN language has no input/output statements that can be used to access or create a
KSAM file directly. In order to reference KSAM files for input or output, the FORTRAN
programmer can choose between using MPE file system intrinsics (as described in section IV) or
using COBOL procedures (described in section III). He can create a KSAM file with the
KSAMUTIL utility program (described in section II) or with a call to the FOPEN intrinsic, but
not with a COBOL procedure.

If you are programming in FORTRAN, you can use the CALL statement to call any of the
COBOL procedures or any of the file system intrinsics that access KSAM files. In order to
determine which to use, you should refer to table 3-1 for a list of the COBOL procedures that
provide KSAM interface and to table 4-1 for a similar list of the file system intrinsics used for
KSAM interface. You will note that there are differences in the functions provided.

Since the COBOL procedures are described in detail in section III and the file system intrinsics
are described in detail in section IV, these descriptions are not repeated here. This section merely
describes how to call the COBOL procedures or the file system intrinsics, and provides examples
of file creation and access along with brief commentaries.

5-1

CALLING FILE SYSTEM INTRINSICS
To the FORTRAN user, some of the file system intrinsics are treated as functions and others as
subroutines. A function is called implicitly by being referenced in a FORTRAN statement. A
subroutine is called explicitly with the FORTRAN CALL statement. A further distin_ction is that
a function can return a value to the calling program as a functional return, whereas a subroutine
can return values only through the parameters (arguments) specified in the call.

To illustrate, the FOPEN intrinsic is called as a function:

FILNUM=FOPEN(FILENAME,%4004L,%101L,-72,DEVICE,KSAMPARAM,,10,,100J)

When this statement is executed, a value is returned to the integer variable FILNUM. Note that
the word CALL is not used. On the other hand, the FWRITE intrinsic is a subroutine that must be
called with the CALL statement:

CALL FWRITE(FILNUM,OUTPUT,-72,%0L)

In order to determine quickly which is which, look up the intrinsic definition in section III; if it
has a functional return it should be called as a function, if not it should be called as a subroutine.

MPE/3000 system intrinsics differ from FORTRAN/3000 language procedures: System
intrinsics can have optional parameters (arguments) whereas all parameters must be specified in
a call to a FORTRAN procedure. Another difference is that parameters can be passed by value
to a system intrinsic but they must be passed by reference to a FORTRAN procedure. To pass
a parameter by value, use the literal value as a parameter (the parameter -72 in the FOPEN call
above); to pass by reference, the value is assigned to a parameter specified as a variable or array
name (FILENAME in the FOPEN call).

In order to take advantage of the capabilities of the system intrinsics, you should declare the
names of any intrinsics you plan to use in a SYSTEM INTRINSIC statement. This statement
must appear as one of the declaration statements that precede executable statements in a
FORTRAN/3000 program. For example, if you plan to call FOPEN, FCLOSE, FWRITE, and
FCHECK then these intrinsics should be declared in the statement:

SYSTEM INTRINSIC FOPEN,FCLOSE,FWRITE,FCHECK

Declared in this way, you can then omit optional parameters from the call and pass parameters
by value. If you do not declare the intrinsics in a SYSTEM INTRINSIC call, then a function call
such as that illustrated above for FOPEN would generate an error because it omits some para
meters and passes others by value.

5-2

CALLING COBOL PROCEDURES
Like the FORTRAN/3000 procedures, COBOL/3000 procedures do not allow you to omit any
parameters from the parameter list or to pass parameters by value. Thus no special provisions
need be made in order to call COBOL procedures from a FORTRAN program. Since the COBOL
procedure call differs in format from the FORTRAN procedure call, you must translate from the
COBOL format when calling a COBOL procedure in a FORTRAN program. The translation
is simple:

CALL "CKOPEN" USING filetable, status. --------COBOL format

t "'I procedure parameters nr //
CALL CKOPEN (filetable, status) -----------FORTRAN format

5-3

CREATING A KSAM FILE WITH A CALL
TO FOPEN
A KSAM file can be created with the >BUILD command of the KSAMUTIL program or it can
be created programmatically through a call to the file system intrinsic FOPEN. Figure 5-1
contains a FOR TRAN program that uses the intrinsic FOPEN to create and open a file, and the
intrinsic FWRITE to write to the open file. It checks for errors with the FCHECK and FERRMSG
intrinsics, and closes the file with a call to FCLOSE.

The file is named FEXAMFIL and the associated key file is named FKEYFILE. Two keys are
used, a primary key of 20 characters starting in byte 1 of each data record, and an alternate key
of eight characters starting in byte 21 of the data record. The primary key contains a name, the
alternate key a phone number (refer to the input data in figure 5-1).

DEFINING KSAMPARAM

The parameter ksamparam describes the key file in an array that contains many different types
of data (refer to table 4-7). Because the data differs, the EQUIVALENCE statement is used to
equate the word-array KSAMP ARAMA to the byte-array KSAMP ARAM to the double-word-array
KSAMP ARAMD. The keyfile name is in the first eight bytes and this is equivalenced to the
beginning of the array. The key device is defined in word 7 of KSAMP ARAMA, and the key
descriptions begin in word 18.

The flag word (word 17) has the octal value 2. This means that only bit 14 is set to 1. The
flagword defines the following options for the KSAM file:

bit 13 = 0
bit 14 = 1
bit 15 = 0

file is permanently saved in system directory
record numbers in file start with 1, not zero
records can be written in random order

If you compare this ksamparam definition to that in the SPL sample program (figure 4-5), you
will note that the index values into the array differ. This is because, SPL arrays begin numbering
with zero whereas FORTRAN arrays begin numbering with one.

CALLING FOPEN

In the FOPEN call, the first parameter is the KSAM file name that identifies the data file and
the KSAM file as a whole. The second parameter specifies the file options ({options) parameter
as octal 4004:

0 1 2 3 4 5 6

0 0 0 0 1 0 0

0 0 4

This defines the following file

New KSAM file
Allow :FILE
Fixed-Length Records
ASCII code
New file

7 8 9 10 11

0 0 0 0 0

0 0

options:

(bit 4=1)
(bit 5=0)
(bits 8,9=00)
(bit 13=1)
(bits 14,15=00)

5-4

12 13 14 15

0 1 0 0 binary

4 octal

cuouoooOooOOO*oooOOooo*oOOOOOOOOooooooo•o*ooooOoOOOOOoOOO

c
c
c
c

ExO~PLE l
BUILD A KSAM FILE

*
...
0

~000••••••***

SYSTEM lNT~lNSJC FOPEN,FCLOSE,FWRlTE,FER~~~G,FCHECK
INTEGER KSAMPARAMM(d6) ~
INTEGER KEYUESCRTPT10N(8)
CHARACTtR KSAM?APA~(52)
INTEGER*~ KSAMPARAMOf 13)
CHARACTtRoR KEYFILENAME
CHARACTtR017 KEY0EV1Cl
EQUJVALtNCE CKSA~PA~AMA,~SAMPARAM,K~AMPARAMD,KEVFlLENAME)
EQUJVAL~~CE (KEYDEV1CE,KSAMPARAMA(7))
EQUIVALENCE (KSAMPARAMA(l8> ,KEVDESCR!PTION)
INTF,GER FILNUM
1NTE6ER LENGTH
CHAqACTtR FlLENAMEolO
CHARACTtR D~V1cE01n
CHARACTtRo7~ INPUT
LOG!CAL OUTPUT(J~)
CHARACT~R ME5SAGE(7~)

LOGICAL M~sSAGEwf~6)
EQUIVALtNCE (MES5A~E,MESSAGEW)
EQlJJVALl:.NCE (lNPUT,OUTPUT>
DATA FIL.ENAME1t1FF::°)CAMFIL 11 1----filename
DATJ\ Ut:.VJCEl"DISC 11 / _

DATA ~EYDE.VlCE/ttDTSC "I ;--device
DA-Ti' KEYFILt:.NAME/11FKEYFlLE"/
DAT A t< s AM p AR AM D (3) / l 0 0 JI file size
DATA KS~MPARAMA (16) / 2/ flagword
DATA KSA~PA~AMA (17) 12/ no. of keys
DATA KEYDESCRIPTION/~[4/1 9 12/20], lt~tl/0,1514),0,} key

l 'U4/ltl21 8J,2lt~rl/0,15/4J,O/ descriptions
C**o********************o********************************

* • c
OPEN THE <SAM FILE c •

C*********************o**********************************
FlLNU~:f0PENCFILFN~ME,~4004L 9 %l01Lt-721DEVICE,KSAMPARAM,

1 ,10,,lOOJ)
IF 1FlLNUM eEQ. 0> GO TO 400

C***
c

kEAn OATA FROM $STOIN

c *
C******************oooooooooooooooooooooo•oooooooooooo

20 READ (5t300tEN0=30,ER~::40> INPUT
c••oooo•oo•****O*******************************o******* •

• c
WRITE THE UATA JuST RE40 TO THE KSA~ FlLE c

r,
C***************************O************************O*

~O DISPLAY INPUT
CALL Fw~ITE(FILNUM,OUTPUf,-72,~0~)
IF (•(.;Ce> 70 9 20 1 70

Figure 5-1. Creating and Writing to KSAM File in FORTRAN

5-5

C*•>*****~*****~OoOOooooo*********************************
* c

c E.RROR Mf;SSAGE
,...

~************~*****{•**~**********************************
-· 7o STOP 11t:HRQF-c occuRoED WHILE wRITil\IG KS::.M FILE"

loo sTnP "ENO OF JOP1 1

Jo CALL FCLOSE<FILNU~,o,o>
IF (•~C.) JJ,100,::-3

33 STOP 11C~N NOT CLOc;E THE t<SAM FILE''
40 STOP llEHFlOR OCCUPREO WHILE READING 1NPUT 11

~oo CALL FCHECKlFILNUM,IERRNUM>
CALL FEK~MSGCIERPNU~tMESSAGEW,LENGTH)
wRITEC61200> (Mf.SSAGE.(l) ,I:l,LENGTH>
ST O !=> " c.; ~ N N 0 T OP n.i KS A M F' I LE "

3 O 0 f 0 RH A T (i\ 7 2)
200 FO~MAtc1x,12Al)

ENO

Output from Program Execution:

NCL/\\I .Jt\ (.;K 9?3-4~7~

Hc:::in)A)Ut. 227-d214
467 RtE.U AVE,
1 l B 11 SAINT PETER c r.

Ecl'(',5TE IN l,t:. 0 2df-5l31 ., 3 () 3 STE VE. r,15 CREEK
CA 1-11_> 1 "! ') l (.,t<, 57d-7Qltj l l 1 0 n WOLFF. ;<rJAO

Pt1~8Y L l 1'4DA 21:1::,-1 p~ ... , TOW~J r.. C,\if;:(Y VILLAGE
5£ELY lH_1\JJ..:y 21iis-4;:20 1144 LEdERTY sr.
Rc...;t =<T Gt:.krn 2~9-553:, 123'+~1 Tl:.L.E.GRAPH AVE.
Tt H~· ~ w ~ t 'OHJ 9 b '+ - f; 4 9 fi ?2q,..5 EME~SON ST,
w,._. IT~ r; JR:) CH .. J'Jd-(!;jQl 4 j!:i /) i~ SHB Y ~VE:•
Wf. ST~ r~ ~Ll.Jt.~ 2b7-4S9ti lC'Ci~ t<INGFIShE.~ ST,
ST ,)P ENr~ or .;Of,

S 1.P-1NYV .'lLE

Los ALTOS
~~'''TA CLARA
CUPERTINO
!:>l\ "·I JOSE
EL cnrntT'1
tiEPKF.:LEY
OAt<lANn
8Fl-JKE.LfY
:::tUf\INYVDLE

Figure 5-1. Creating and Writing to KSAM File in FORTRAN (continued)

The next parameter defines the access options (aoptions) as the octal value 101:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 binary

0 0 0 1 0 1 octal

This defines the following access options:

KSAM access expected (bit 3=0)
Exclusive access (bits 8,9=01)
No dynamic locking (bit 10=0)
Write only access (bits 12-15=0001)

5-6

A new file contains no information and is always opened for write access. Before accessing the file
for reading or update, it must be reopened. Such an open specifies that the file is an old file in
the {options parameter. Depending on the type of access expected, aoptions can be omitted
or can specify a particular access type.

CREATING A KSAM FILE WITH KSAMUTIL

Instead of using the file system intrinsic FOPEN to create the KSAM file, you can create the
file with the >BUILD command of the KSAMUTIL program. Once created, the file can be
opened with a call to FOPEN or CKOPEN. (Note that CKOPEN cannot be used to create a file.)

The same file created in figure 5-1 with FOPEN could be created in KSAMUTIL as follows:

: n~JN rCS:\tw''!'T'T' IL. ~TTB. ~YS
>BtJILD FEYAMFIL;QEC=-?~,1~,F,A~CII;DEV=DISC;DISC=l~0;&

KEYFILE=FKEYFILE;KEY=R,l,?0;KEY=H,?!,~;FI~STREC=l

5-7

OPENING A KSAM FILE WITH A COBOL
PROCEDURE
The CK OPEN procedure requires two parameters: one is a table that identifies the file and
specifies the type of access; the other is a two-byte item to which the status of the call is
returned. When calling this procedure from a FORTRAN program, the filetable parameter must
be defined as an eight-word array containing both integer and character values.

Any item that is defined as COMPUTATIONAL or COMP in a COBOL program is declared as
an INTEGER in a FORTRAN program when it contains four bytes or less. Thus, the following
are equivalent:

02 FILENUM PIC 89(4) COMP . ..__ ________ COBOL description

INTEGER FILENUM FOR TRAN description

Any data items defined with a picture of X in COBOL would be declared as CHARACTER items
in FORTRAN. Thus, the following are equivalent:

02 FILENAME PIC X(8). ------------COBOL description

CHARACTER *8 FILENAME FORTRAN description

Assuming that file FEXAMFIL has been created by the> BUILD command, the FORTRAN
statements in figure 5-2 open that file for output only and sequential access.

INTEGER FIL ET ABLE(8)
CHARACTER FILETABLC(16)
INTEGER FILENUM
CHARACTER*8 FILENAME
CHARACTER*2 FSTAT
INTEGERIOTYPE
INTEGER AMODE
INTEGER PREVOP
EQUIVALENCE (IFSTAT,FSTAT)
EQUIV ALEN CE (FI LET ABLE,FILET ABLC,FILENUM)
EQUIVALENCE (FILETABLC(3),FILENAME)
EQUIVALENCE (FILET ABLE(6),IOTYPE)
EQUIVALENCE (FILET ABLE(7),AMODE)
EQUIVALENCE (FILETABLE(8),PREVOP)
DATA FILENAME/"FEXAMFIL" / ,PREVOP /0/

C**
C OPEN KSAM FILE FOR SEQUENTIAL INPUT *
C**

IOTYPE=l
AMODE=O

J/0 type is output only
access mode is sequential

CALL CKOPEN(FILETABLE,IFSTAT)

Figure 5-2. Opening KSAM File with CKOPEN

5-8 MAY 1981

WRITING TO A KSAM FILE
Once a KSAM file has been created and opened for output access, you can write to the file with
a call to FWRITE or a call to CKWRITE. You may choose to write records in primary key
sequence and have that sequence checked. To do this, you can open the file for sequential
access with CKOPEN or else call FOPEN with bit 13 of the flagword in ksamparam set to 1. If
the sequence in which records are written doesn't matter, you can open the file for random
access in COBOL or open the file by calling FOPEN with bit 13 of the ksamparam flagword
cleared to zero.

The example in figure 5-1 uses FWRITE to write records to the KSAM file in the order in which
they are read from the standard input device; they are not written in primary key order.

Since duplicate primary keys are never allowed by the COBOL KSAM procedures, you should
use the file system intrinsics if you want to allow duplicate primary keys. Duplicate alternate
keys are allowed by both the file system and COBOL if so specified when the file was created.

5-9

READING A KSAM FILE IN KEY ORDER

PRIMARY KEY SEQUENCE

Reading a file in primary key order requires no other preparation than to open the file (file
system) or to open the file for sequential input (COBOL). In the file system, sequential logical
read is the default and the aoptions parameter can be omitted from the FOPEN call. In a COBOL
procedure, input type and sequential access are indicated by zero values in the appropriate words
of the filetable table.

Once opened for input, the file system FREAD intrinsic or the COBOL CKREAD procedure can
be called to read the file in sequence by primary key.

ALTERNATE KEY SEQUENCE

To read a file in sequence by an alternate key, that alternate key must be specified in a call prior
to the call to a read procedure or intrinsic. In COBOL, you would use a call to CKSTART; with
the file system intrinsics you would use FFINDBYKEY.

The example in figure 5-3 illustrates use of the file system intrinsics FREAD and FFINDBYKEY
to read a KSAM file in sequence first by primary key and then by alternate key.

RANDOM ORDER

A particular record in the file can be selected for access according to the value of a key field in
the record. This can be a primary or alternate key field. In COBOL, a call to CKREADBYKEY
reads a record specified by the key value parameters. The file system uses the intrinsic
FREADBYKEY for the same purpose. The main difference here is that the file must be opened
for random access before calling the COBOL procedure; no distinction is made by the MPE
file system between a file opened for sequential access and one opened for random access.

5-10

r.***************•***********************************
C EXAMPL2 o
r. RcAD KSAM FJLE SEQUENTIALLY *
C***

SYSTEM lNTRINSIC FOPEN,fCLOSE,FW~IT~,FE~R~SG,FCHECK
SYSTEM LNTRlNSIC F~~AO,FFINDBVKEV
INTEGE~ FILNUM
CHA~ACT~~ FlLENAMEttlO
CHARACT~R QUTPUT•72
CHA~ACT~R MES5AGE172>
LOGICAL INPUT 136>
LOGICAL M~ssAGFwf36)
~QUIVAL~NCE (MESSoGE,MESSAGEw)
EQUJVA~~NCE (OUTPUTtINPUTI
CHARACT~R KtVVAL*R
DATA FILENAME111FExAMFIL 11 1
DATA KEYVALl"ooo-0000111

C***
C UPEN KSAM FILE FOR INPUT o
C***

FlLNUM=~OPENCFJLFNAME,,7L)

IF CF1LNUM .EQ• r~> GO TO 200

coooooo•oo••••······································ C ~EAD DATA FROM FILE IN o
C SfQUENT!~L O~DER o

co••·· OISPL.AY 11 PRINT RECOl<OS IN NOME ORDE~''
20 ILENsfRtAO(fILNUM,tNPUT,-72)

IF 1.cc,, Joo,Jo,3:,
3u DISPLAY OUTPUT

Go TO co
c••••••*••******•*********~••••••••••••••*••••••••••
C REAO IN SEQUENCE BY ALTERNATE KEY o
c••••••*•••••••••••••••••••••••••••••••••*••••••••••

35 OLSPLAY 11Pl"(lNT RECORDS lN PHONE # 0RDEP 11

CALL FFlNOBVKEYCFtLNUM,KEYVAL,21,Bt~>
IF CeCC,> '+Oo,40 1 400

40 ILEN•FR~ADcFILNU~,INPUT,-12>
IF CeCC,) Son,45 9 50

'+S DISPLAY OUTPUT
GO TO 40

C********•********************************••••••••••
C CLOSE FILE o
c••••***********•*•••••••••••••••••••••••*••••••****

~o CALL FC~OSE<FILNU~,o,o>
IF (•CC.) 60o,s!5,600

55 STOP t1END OF JOB"
c•••••~·•••*******************************••••••••••
C ERROR MESSAGES •
c••*••••••••••

iOO CALL FCHECK(FIL.NUM,IERRNUM)
CALL FE~RMSGCIERRNUM,MESSAGEW,LENGTH)
WRITE1bt250) (MESSAGE CI> .I•l,LENGTH>
STOP "C~NNOT OPEN KSAM FIL.E"

Joo CALL FCHECKlFILNUM,IERRNUM)
CALL FE~RMSGCIER~NUM,MESSAGEW,LE~GTH)
WRITEC6t250> <MESSAGECI),I•l•LENGTH)

Figure 5-3. Reading KSAM File in Key Sequence Using FORTRAN

5-11

400 CALL fCrlECKCFILNUM,lERRNUM)
CALL FERRMSG<lERPNuM,MESSAGEW,LENGTH>
WRITE(6,250) (MESSAGE CI> ,IaltLENGTHJ
STOP ,, ~RROR occURRED WHIL.E USI"'G FlFINDBYKEV"

500 CALL FCHECKCF'lLNUM,lERRNUM>
CALL F~kRMSGClERRNUM,MESSAGEW,LE~GTH)
WR!TE(o,250) (Mf.SSAGt:.:Cl) ,I=l,LENGTH)
ST Op •tEhROR OCCU~REO READING BY AL. TE~NATE KEV••

600 CALL FCHECK<FILNUM,IERRNUM)
CALL FE~RMSG CI ER~Nlll'-1, MESSAGE w, LENGTH>
wRITE<b,250) (MfSSAGECI> tI=l,LENGTH)
STOP 11 C~NNOT CLOS~ FILE"

~50 FOR~AT(lX,72Al>

ENO

Output from Program Execution:

P~JNT REC04DS IN
C~1-1DIM Pl CK
ECKSTEIN L~O

HCSC1)A JOE:.
NOLA \J .J~CK

PASBY LINO A
Rc11E~T GER~y

SEt.LY HENF-?y
TvkNE:WR JVAl\i
WEST!:R ELDl:Q
W~Ir£ GO~OON

P~INT RErORUS IN
HOSO'.JA jQC:
RC8E~T Gt.R~y

WESTER ELlJER
Ect<STEIN LE.0
SEELY HENRY
PA SAY LINDA
W~Il'~
CAPO IN
NOLA\J

Tl.H~::wR

STOP ENn

GUHOOt-.
RICK
J~CK

IVAN
OF J08

NAME ()~LJER

578•7018 11100 WOLFE ROAD
287-5137 5303 STEVENS CREEK
227-6214 11~0 SAINT PETER er.
923•4975 967 PEED AVE.
295•1187 TOWN ~ C~TRY VILLAGE
~b~-5535 12345 TELEGRAP~ AVE.
293-4220 1144 LEBERTY ST,
984•84q8 ~2q05 EMERSON ST.
287-4598 125~ KINGFISHER ST,
J98-030l 43~n ASHBY AVE,

PHONE I:# ORDER
227-8214 11~0 SAINT PETER CT,
2b9•55JS 12345 TELEGRAPH AVE,
287-4598 1256 KINGFISHER sr.
287-~137 530~ ~TEVENS C~EEK

2~3-4220 1144 LEBERTY ST.
295•1187 TOWN ~ C~TRY VILLAGE
3~8-0301 4350 ASHSY AVE.
578-7018 11100 WOLFE ROAO
92J-497~ 967 QfED AVE,
984-8498 229nS EMERSON ST.

CUPERTINO
SANTA CL.ARA
L.OS ALTOS
SUl\JNYV.11LE
SAN JOSE
BERKELEY
l:.L CERRITO
OAK LANO
SUNNYVALE
t:SERl<ELEV

L.OS ALTOS
BEF-'KELEY
SUNNYVALE
~ANTA Cl.ARA
t:.L. CE:RRITO
SAN JOSE
BERl<EL.EY
CUPE~TINO

SUNNYVALE
UAKLANO

Figure 5-3. Reading KSAM File in Key Sequence Using FORTRAN (continued)

5-12

READING A KSAM FILE IN CHRONOLOGICAL
ORDER
The order in which records are physically written to a data file is called chronological order.
This order is not necessarily the same as a sequence by key value although it may be. In particular,
if the records were written by a COBOL procedure to a file opened for sequential access, then
the chronological sequence and the primary key sequence are the same. If, however, these orders
differ, then the file system provides an intrinsic that allows you to read a KSAM file in chrono
logical order.

Figure 5-4 is a program that uses the intrinsic FREADC to read the records in the order they were
stored in the file.

Other file system intrinsics allow you to position the file to a particular record number in
chronological order (FPOINT), to retrieve the current chronological record number (FGETINFO),
and to read a record located by its chronological record number (FREADDIR).

The COBOL procedures for KSAM interface do not provide the means to access records by
chronological record number.

roo***********•>•o•ooo*******************************
C EXAM~LJ u
r HtAO KSAM FTL~ CHRONOLOGICALLY o

C**~**********
SYSTEM lNTRlNSIC FOPEN,FCLOSE,FEQRM~G,FCHECK
SYSTEM INTRINSIC FP[AOC
INTFGEf.< FJLNUM
CHARACTt~ FlLENAM[olO
CHARA~TLR OUTPUT•72
CHARACT~R Mt~5AGE17~)

LOGICAL INPUT !36)
LOGTCAL MESSAGEw!1~1

EQUIVAL~NCE C~ES5oGl,MESSAGEWI

EWUtVAL~NCE (OUTPuT.INPUTl
DATA Fll..ENAME/ 11 F'E";.tf\f·1FIL 11 /

<'***
~ UPEN KSAM FILE FOR INPUT ~
~***

FILNUM:~OPEN(FtLF~AME,~7LI

IF lflLf\IUM ,EQ, O> GO TO 200
C***
C kEAD DATA FRUM FILE IN o
r. CHRONOLOGICAL ORDER •

C***•ooooooooo
DI SPLA y "PR I NT ~f coRDS IN CHRONOLOG le :1L ORDER"

~0 ILEN:FR~AOCIFILNUM,INPUT,-721

IF (eCC,) Joo,30,SO
Jo DISPLAY OUTPUT

GQ TO ~O
c••oooo•ooooooooooooooooooooooooooooooooo•oooooooooo
c CL05f FILE u
cooo

tiO CALL FC~OSEIFILNU~,0,01
IF !eCC,) 60o,SS,600

55 STOP 11 Ei\jD OF J08"

Figure 5-4. Reading KSAM File in Chronological Sequence Using FORTRAN

5-13

cooooo~OoooooooooOooooooooooooooooooooooOOoooooooooo

C ER~OR MESSAGES ~
coooooo•ooooooooooooooooooooooooooooooooo•oooooooooo

200 CALL FCHECKCFILNU~,lERRNUM)
CALL FEHRMSG(lERRNUM,MESSAGEW,LE~GTH>
wRITE(6t25ol H1ESSAGEC1) d=l,LENGTH)
STOP "CANNOT OPEN KSAM FILE"

Joo CALL FCHECK<FILNU~,IERRNUM)
CALL FERRMSG(IER~NUM,MESS~GEW,LENGTH)

wRITEC6t250I (MESSllGE<ll tl=l,LENGTHI
STop ttEHROR OCCURRED READING IN CHRONOLOGICAL OROER 11

600 CALL FCHECK<FILNUM,IERRNUM)
CALL FE~RMSGCIERRNU~,MESSAGEW,LENGTHI
WRITElbt250I (MESSAGE(Il 'I=l ,LENGTHI
STOP 11 CANNOT CLOSF. FILE"

2So FOR~ATC1X,72Al>
ENO

Output from Program Execution:

Pq Ir>. T REctl~us I i'J CHqOl\JULOGICAL O~DE~

NOL 'l \I JNCK

Hr, 3C)A JUE

ECK'HE. tN Lt.U

C!l ~·fl IN h' I CK

p ll ~,~ v l. l r._[) A

SEF_L Y HLi\i"'y

Hc,~E~T r,t.kRY

Tur<~\J :- WR t V Af\J

WI-- IT f r;OR[)Ol\J

WE ~T~fJ ~LuER

5TOP ENr.• o~ ,JOi:'>

92,j-1+975

227-ri2\4
C:~f-5137

S78-70ld
2'ii::J-ll!J"7
2~3-4220
2~<J-c.;53!:1

98 .. -8490

j~H-iJ30l

2tj7-459t3

9~7 PEEU AVE. SUNNYV~LE

11~0 SAINT PETE~ CT. Los ALTOS
SJO~ STEVEl'tS CREEK Sflt>JTA CLA4A
lllnn WOLFE ~OAD CUPERTyNO
TOWN ~ CNT~Y VILLOGE SAN JOSE
t 144 LEHEl-<TY ST, 1 EL C'ERRITfJ
12145 TELEGRAPH AVE, ~EPKELEY

;:>;:>qnc::, EMERSON ST. 0AKLANri

43~n A~rlBY AVE. ~E~KF.LEY

12~~ KINGFISHE~ ST, SUNNYVALE

Figure 5-4. Reading KSAM File in Chronological Sequence Using FORTRAN (continued)

5-14

USING KSAM FILES IN 1rn@.!ii
BASIC PROGRAMS I VI I

KSAM files are accessed from BASIC programs through calls to a set of input-output procedures.
These procedures allow you to open, write records to, read records from, update and delete
records, position, lock, unlock, and close KSAM files. (Refer to table 6-1 for a list of the
procedures and their associated functions.)

A KSAM file must already exist before it can be accessed from a BASIC program. It is usually
created with the KSAMUTIL program BUILD command. (Refer to section II for a description of
BUILD.) The BASIC procedures for accessing KSAM files do not provide a means to create a
KSAM file.

NOTE

The BASIC procedures to access KSAM files perform input-output
activities differently from the BASIC input-output commands. The
KSAM procedures read and write records in their entirety. Once
part of a record has been read or written by one of the KSAM file
access procedures, the entire record has, in actuality, been read or
written. A subsequent call will access another record.

6-1

CALLING A KSAM PROCEDURE
The KSAM interface procedures are called from a BASIC program with a CALL statement of
the following general form:

statement label CALL procedure name (filenumber, status [,parameterlist])

Where

statement label

procedure name

filenumber

status

para me terlist

is the number of the statement in the program.

identifies the KSAM access procedure to which control is
transferred. (Refer to table 6-1 for a complete list of the procedure
names.)

is a numeric variable whose value identifies an open KSAM file.
This parameter must be present. Its value is assigned by KSAM/ 3000
when the file is opened and must not be changed until the file is
closed.

is a 4-character string variable to which a code is returned that
indicates whether the current operation was successful or not, and
if not, the reason for failure.

is a set of one or more parameters that, if present, further define
input-output operations on this file.

The first two parameters, filenumber and status are included in every KSAM procedure call,
except BKERROR and BKVERSION. The parameters in parameterlist depend on the procedure
in which they are used. Some parameterlist parameters are optional and, if omitted, default
values are assigned by KSAM. Such parameters are indicated by brackets in the procedure call
format. The required parameters filenumber and status are both variables, the first numeric, the
second string. Other parameters are either variables or expressions. Expressions being either
variables, constants, or a combination of both. The data type of the parameter depends on its
definition in the procedure. The procedure call formats specify the data type of each parameter.

Depending on the procedure, certain variables can be assigned values as a result of executing the
procedure. The procedure itself is never assigned a value (unlike a function, which may be
assigned a value).

Refer to table 6-1 for a complete list of the KSAM interface procedures that can be called from
a BASIC program.

OPTIONAL PARAMETERS

When parameters in parameterlist are optional, those parameters are surrounded by brackets.
In a series of optional parameters, the enclosing brackets are nested. For example:

CALL name (filenum,status [,para ml [,param2 [,param3]]])

This notation tells you that parameters can be omitted only from the end of the optional list;
parameters cannot be omitted from the middle or beginning of the list. For example, if you want
to specify param3, you must also specify the preceding parameters, param1 and param2; if you
specify param2, you can omit the following parameter param3, but not the preceding param1.

6-2

Table 6-1. KSAM Procedures for BASIC Interface

PROCEDURE
PARAMETERS FUNCTION PAGE

NAME

BKCLOSE filenum, Terminates processing of KSAM file identified by filenum. 6-8

status

BKDELETE filenum, Logically removes record from KSAM file; the record to 6-10
status be deleted is the record at which the logical record

pointer is currently positioned.

BKERROR status, Converts numeric value returned in status parameter to 6-12
message character string message.

BK LOCK filenum, Dynamically locks KSAM file during shared access, con- 6-14

status ditionally depending on condition.
[,condition]

BKOPEN filenum, Initiates processing of file identified by filenum, named 6-16
status, by filename. Type of access, whether dynamic locking
filename is allowed, whether access is exclusive, and whether
[,access primary key sequence is checked are options of
[,dynamic lock BKOPEN.
[,exclusive
[,sequence]]]]

BK READ fi/enum, Reads data from current sequential record of file identi- 6-22

status fied by filenum into variables named in parameterlist.

[,parameterlist]

BKREADBYKEY filenum, Reads data from a record identified by keyvalue in the 6-26

status, key specifi~d by keylocation of the file identified by

keyvalue, filenum into variables named in parameterlist.

keylocation,

parameterlist

BKREWRITE filenum, Writes data from parameterlist to record at which pointer 6-29
status, is positioned in file identified by filenum.

parameterlist

BKSTART filenum, Positions file identified by fi/enum in preparation for a 6-32

status sequential read to the first record with a key in

[,keyvalue keylocation whose value bears the specified relation
[, keylocation to keyvalue.
[,relation]]]

BK UNLOCK filenum, Unlocks file identified by filenum that has been pre- 6-36
status viously locked by BKLOCK.

BKVERSION status, Identifies version of KSAM/3000 currently being used 6-38

message returns version number in message.

BKWRITE filenum, Writes data from parameterlist to record in file identi- 6-39

status, f ied by filenum.

parameterlist

6-3

STATUS PARAMETER
The status parameter is a four-character string variable to which the status of the input-output
operation is returned. It is the second parameter in every KSAM procedure call except BKERROR,
in which it is the first parameter. The first character of the status string determines its general
type. The other three characters supply specific codes to further define the status. The operation
of a called procedure is successful only if the first character returned in status is zero. Other
values returned to status indicate the reason an operation was not successful. You can convert
any status value to a printable message by calling BKERROR. (Refer to table 6-2 for possible
status values).

Table 6-2. Values Returned to status Parameter

FIRST CHARACTER REMAINING CHARACTERS

"O'' successful completion ''O'' no further information

''2'' duplicate key value

'' 1 '' at end or beginning of file ''O'' no further information

''2'' invalid key "1 '' sequence error

''2'' duplicate key error

''3'' no record found

''4'' boundary violation

"7'' request denied "1 '' file already locked

"8'' invalid call II 1 '' invalid number of parameters

''2'' invalid parameter

"3'' insufficient space for data in parameterlist

"9'' file system error "O" through "255"

corresponding to file system error codes
(Refer to complete list in appendix A.)

Combining the two parts of the status code, the following values may be returned to the status
parameter:

if status = "00"

= "02"

Successful completion -
The current input-output operation was completed successfully; no
duplicate keys read or written.

Successful completion; Duplicate key -

• In a call to BKREAD or BKREADBYKEY, the current key
has the same value as the equivalent key in the next sequential
record; duplicate keys are allowed for the key.

• In a call to BKWRITE or BKREWRITE, the record just written
created a duplicate key value for at least one key for which
duplicates are allowed.

6-4 MAY 1981

= "10"

="21"

= "22"

= "23"

= "24"

= "71"

= "81"

= "82"

= "83"

= "9xxx"

STATUS
At end condition -
A sequential read was attempted with BKREAD and there was no next
logical record in ascending sequence according to the primary key
value or the current alternate key value. Or an attempt was made by
BKST ART or ~KREADBYKEY to position to a record whose key
value was less than the lowest key value or higher than the highest
key value.

Invalid key; Sequence error -
• In a call to BKWRITE for a file opened with sequence checking,

the record being written contains a primary key that is less than
a key in a previously written record.

• In a call to BKREWRITE, the primary key value was changed in
the program since a successful execution of BKREAD defined the
record to be rewritten.

Invalid key; Duplicate key error -
An attempt was made to write or rewrite a record with BKWRITE
or BKREWRITE and the record would create a duplicate key value
in a key for which duplicates are not allowed.

Invalid key; No record found -
An attempt was made to locate a record by a key value with
BKSTAR T or BKREADBYKEY and the record cannot be found.

Invalid key; Boundary violation -
An attempt was made with BKWRITE to write beyond the
externally defined boundaries of the file; that is, to write past the
end-of-file.

Request denied; File already locked -
An attempt was made to lock a file with BKLOCK and the file is
already locked.

Invalid call; Invalid number of parameters -
Too many or too few parameters were specified in the procedure
call just made.

Invalid call; Invalid parameter -
The specified parameter is not the correct type. For example, a string
variable was selected where only a numeric variable or expression is
allowed.

Invalid call; Insufficient internal buffer space -
The data specified in the parameterlist to be read or written will not
fit into the configured internal buffer srace. You may need to have
certain operating system parameters re-valued.

File system error -
An MPE file system error occurred for which the three-character value,
xxx is the error code. (Refer to table A-1 for a list of these codes.)
You can call procedure BKERROR to convert the error code returned
here to a printable message.

6-5

STATUS
The value of status can be tested as a whole, or the first character can be tested separately from
the remaining characters. For example:

10 DIM S$(4) ----------------dimension status string S$

•
• ----------------- test first character only

50 IF S$(1;1) = "O" THEN PRINT "SUCCESS"
60 ELSE PRINT "ERROR CODE =";S$..-----print entire string

•
•
•

100 IF S$(1;1) = "9" THEN DO
110 PRINT "FILE ERROR= ";S$(2)

test first character

120 DOEND --------print remaining characters

•
•
• ...----------------test entire string

200 IF 8$ = "22" THEN DO
210 PRINT "DUPLICATE KEY ERROR"
220 DOEND
300 IF 8$(2) = "2" THEN PRINT "DUPLICATE KEY"

.......__ ________________ test only remaining characters

For any status value, you can call the BKERROR procedure and a message is returned that gives
the meaning of the status code. You can then print this message rather than writing your own.

6-6

KSAM LOGICAL RECORD POINTER
Many of the KSAM procedures use a logical record pointer to indicate the current record in the file.
This pointer points to a key value in the key file that identifies the current record in the data file.
The particular key used, if the file has more than one key, is the key last specified in the current or
a previous procedure call; by default it is the primary key.

Procedures that use pointers are either pointer-dependent or pointer-independent. Pointer-dependent
procedures expect the pointer to be positioned at a particular record in order to execute properly.
Pointer-independent procedures, on the other hand, execute regardless of where the pointer is posi
tioned and, in most cases, they position the pointer. (Refer to table 6-3 for a summary of those pro
cedures that either position the pointer or are dependent on that position.)

Table 6-3. Positioning the Logical Record Pointer

Procedure Pointer- Position of Pointer After

Name Dependent Execution of Procedure

BKSTART NO Points to key whose value was specified in call.

BKREADBYKEY NO Points to key whose value was specified in call.

BKWRITE NO Points to key whose value is next in ascending key
sequence to key value in record just written.

BK READ YES Pointer remains positioned to key value for record just
read; unless next call is to BKREAD, or to BKREWRITE
followed by BKREAD, in which case, the pointer is
moved to the next record in key sequence before the
read.

BKDELETE YES Points to next key value in ascending sequence follow-
ing key value in record just deleted.

BKREWRITE YES Pointer remains positioned to key value for record just
modified; unless any key value in record was changed,
in which case, it points to next key in ascending se-
quence after the key in the modified record.

Note: BASIC procedures do not access a KSAM file in chronological sequence or by record number; they ignore

the chronological pointer.

SHARED ACCESS

Particular care must be taken when using the logical record pointer during shared access. Since the
record pointer is maintained in a separate control block for each open file, one user may cause the
record pointer to be inaccurate without other users being aware of it. To avoid this problem, you
should always lock the file in a shared environment before calling any procedure that sets the
pointer and leave the file locked until all procedures that depend on that pointer have been exe
cuted. Thus, if you want to read the file sequentially, delete a record, or modify a record, you
should lock the file, call a procedure that sets the pointer (such as BKSTART), and then call
BKREAD, BKDELETE, or BKREWRITE. When the operation is complete, you can then unlock
the file to give other users access to it.

MAY 1981 6-7

BK CLOSE
A call to BKCLOSE terminates file processing for the specified file.

When processing is completed, a KSAM file should be closed with a call to BKCLOSE. No further
processing is allowed on the file until a BKOPEN procedure call re-opens the file.

BKCLOSE can be executed only for a file that is open.

PARAMETERS

filenum

status

USING BKCLOSE

A numeric variable containing the file number that identifies the file;
this number was returned by the last call to BK OPEN. It should not
be altered until the file is closed with a successfull call to BKCLOSE.
(Required parameter)

A four-character string variable to which is returned a code that
indicates whether or not the file was successfully closed and if not,
why not. The first character is set to "O" if the close is successful,
to another value if not. (Refer to the Status Parameter discussion
earlier in this section.)
(Required parameter)

After calling BKCLOSE, you should check the status parameter to determine if the file was
closed successfully. A successfully closed file is no longer available for processing until it is
re-opened. Note that a KSAM file can be closed and then re-opened in order to specify a different
access mode or type of processing.

The BKCLOSE procedure does not remove the file from the system. To do this, you should use
the PURGE command of the KSAMUTIL program.

The example in figure 6-1, closes a file identified by the filenumber in F. It then checks the
status and prints a message if the status shows any code except the zero for successful completion.

6-8

:J610
3620
3630
36'40
36Sl"I
3660
3670
369"
3691)
37!')('1
371('1
3120
37JO
3740
3750
37()0
3770
37.131)

BK CLOSE

REM ~*uoo****oooooooooooooooo•oooooo•oooooooooooooooo•ooooo
REM ~ CLOSE A KSAM FILE ~

REM ********************•**********************************
PEM
REM F IS THE FI~E NUMBER OF A KSAM FILE
REM nEFINED BV A CALL TO BK0PfN
REM
CALL AKCLQSECF,SS)
REM
REM NOW DETERMINE WHET~ER THIS CALL SUCCEEDED
REM
IF Sitlfl]<>"O" THt.N DO

REM NS CONTAINS THE NAME OF THE KSAM FILE
RE~ SS CONTAINS fHE STATU5 CODE SET BY THE PHECEDI~G CALL
PRI"-lT "UNABLE TO CL.OSE "INIJ:.S 11 ERROR 111sscull1 11 DETAIL. •1 155[2]
CALL ~KERROR(SS,MS)
PPINT M$

DOENf)

Figure 6-1. Closing a KSAM File with BKCLOSE

6-9

BKDELETE
Logically deletes a record from a KSAM file.

A call to BKDELETE logically deletes the last record read from or written to a KSAM file. A
logically deleted record is marked by two delete characters (ASCII code 255) in the first two
character positions in the record. The deletion characters indicate that the record is inaccessible,
although it is not physically removed from the file. The connection between a data record marked
for deletion and the key file is severed.

When a file with deleted records is copied by FCOPY to a new KSAM file, records marked for
deletion by BKDELETE are not copied. This use of FCOPY provides a means to compact a file
in which many records have been marked for deletion but physically use space in the file.

To use BKDELETE, the file must be open in the access mode that allows update. If access is shared,
the file must also be opened with dynamic locking allowed (lock= 1), and the file must be locked
by BKLOCK before records are deleted.

PARAMETERS

filenum

status

USING BKDELETE

A numeric variable containing the file number that identifies the
file; this number was returned by the last call to BKOPEN. It should
not be altered unless the file is closed with a successful call to
BK CLOSE.
(Required parameter)

A four-character string variable to which is returned a code that
indicates whether or not the call to BKREWRITE was successful and
if not, why not. The first character is set to zero if the call succeeds,
to another value if not. (Refer to Status Parameter discussion earlier
in this section.)

Before calling BKDELETE, you can read the record to be deleted from the KSAM file into the
BASIC program. (The record to be deleted can also be specified as the last record written or
rewritten.) Using either BKREAD or BKREADBYKEY, read record into variables named in the
read call. When BKDELETE is successfully executed, the first two characters of the record just
read are marked for deletion. Then the record is written back to the file. Any connections between
the record and key entries in the key file are severed. The associated key entries are physically
deleted from the key file although the data record remains in the data file. Data space is not re
used in mder to maintain the chronological order of the file. Because BKDELETE requires that
the record be both read and written, you must open the file for update (access = 4) before calling
this procedure.

After calling BKDELETE, you should check the status parameter to make sure that the delete was
successful.

6-10

BKDELETE
In the event that you deleted a record in error, you can recover the information in the data record
by copying the data file with the NOKSAM option of FCOPY. You can copy the data file to
another non-KSAM file or to the list device. With this FCOPY option, the deleted records as well
as active records are copied. In order to make use of this recovery procedure, you may want to
leave the first two characters of any KSAM record empty of data. In particular, you should not
specify keys in those two characters.

FCOPY can also be used to permanently remove any records that were logically deleted with
BKDELETE. When you use FCOPY to copy your KSAM file to a newly created KSAM file, only
active records are copied. Records marked for deletion are dropped from the data file during the
copy. The new file is more compact, particularly if many records had been deleted from the old
file. (Refer to FCOPY description in section II for more information.)

SHARED ACCESS. When access is shared, the call that positions the pointer to the record to be
deleted should be included in the same pair of BKLOCK/BKUNLOCK calls as the call to
BKDELETE. This insures that no other user alters the record position between the call that locates
the record and the call that deletes it. (Refer to table 6-3 for a list of the procedures that position
the pointer and those that depend on the pointer.)

Figure 6-2 contains an example illustrating the logical deletion of a record from a KSAM file.

3c40 PEM •ooo
32Sn REM o REMOVE A Rt~ORD FROM A KSAM FILE o

3c6n REM •• 3270 REM
3280 REM F IS THE FILE NUMBER OF A KSAM FILE QPE~ED BV A CALL TO BKOPEN
32iO REM ~oTE THAT FOH ~KDELETE, eKOPE~ ACCESS MODE MUST • 4 FnR UPDATE
3295 REM
3300 REM THE RECORD TO df DtLETED MUST FIRST BE REA~•••
3305 REM AN ASSUMPTION HAS ~EEN MADE THAT THE RECORU TO BE READ
3310 REM ANU DELETED CONTAINS THE SAME INFORMATION THAT WAS
33~0 REM WRITTEN IN THE BKWRITE F.XAMPLE,
3330 REM
33~0 CALL RKREAD1F,5S1BlS1B2S 1ASfo]1AJC•) 1A2C•ll
3350 REM
3360 REM NOW DETERMINE WHETHER THF CALL WAS SUCCESSFUL
33 70 REM
33130 IF SS[llll<> 11 0" THt:.N DO
3390 REM NS CONTAINS THE NAME OF THE KSAM FILE
3400 REM SS CONTAINS THE STATUS CODE SET BV THE P~ECEOING CALL
3410 PRINT "UNABLE TO READ "•NS111 ERROR "JSS[lllll" DETAIL •qc;SC2l
3420 CALL BKERROR1Ss1MS)
34)0 PRINT MS
31t'3S GOTO 3620
3440 DOEND
31t50 REM
llt60 CALL BKDELETECF1SSI
3471) REM
3480 REM NOW DETERMINE WHETHER TMtS CALL SUCCEEDED
3490 REM
l5oo IF SStlll]<>"O" THt:.N oo
351~ REM NS CONTAINS THE NAME OF THE KSAM FILE
35ao RF.M SS CONTAINS THE STATUS CUDE SET BV THE PkECEDING CALL
3530 PRil\lT "UNABLE TO DEl.fTE REcOkO FROM "JNSJ
JSJS PRINT" ERROR "l~St1'1H" DfTAil. "ISSC2l
3540 CALL BKERRORcSS,MS)
3550 PRINT MS
3560 GOTO 3620
3570 OOENO
3S7S PRINT 11 DELETEO RECORD CONTAINS 11 1BlSJB211
3576 MAT PRlNT AS
3577 ~AT PRINT A31A~
35SO REM
3590 REM THE PROGRAM CO~TINUES

Figure 6-2. Deleting a Record With BKDELETE

6-11

BKERROR
A call to BKERROR returns a message corresponding to the status value.

Call this procedure in order to get a printable string of characters that describes the condition that
corresponds to the value of the status parameter. The string of ASCII characters returned in
message can be printed as an error message.

PARAMETERS

status is a four-character string variable to which is returned a numeric
value in printable form following execution of any of the procedures
described in this section. The value in status is used to derive the text
in message.
(Required parameter)

message is a string variable which will contain the text describing the error
whose code has been returned to status. This parameter should be
dimensioned to at least 72 characters in length. If the message length
exceeds the dimensioned length of message, a truncated text is
provided.
(Required parameter)

USING BKERROR

The following example illustrates the use of BKERROR. Two strings are dimensioned for
message; one (M$) is sufficiently long, the other (N$) causes truncation of the message. Assume
that the status code in S$ is the value "22".

10 DIM S$(4),M$(72),N$(24)
20 REM .. S$ IS THE STATUS STRING
30 REM .. M$ IS A SUFFICIENTLY LARGE STRING
40 REM .. N$ IS TOO SMALL FOR THE MESSAGE
50 REM .. ASSUMES$ CONTAINS THE VALUE "22"
60 REM ..

•
•
•

100 CALL BKERROR (S$,MS)
110 PRINT "ERROR ";S$(1;1);" DETAIL ";S$(2);" ";M$
120 CALL BKERROR (S$,M$)
130 PRINT "ERROR "S$(1;1);" DETAIL ";S$(2);" ";N$

RUN
1

full message

ERROR 2 DETAIL 2 lNVALID KEY VALUE. DUPLICATED KEY VALUE
ERROR 2 DETAIL 2 INVALID KEY VALUE. DUPL

'---------truncated message

6-12

BKERROR

In another example, BKERROR is called to retrieve the message corresponding to the MPE file
system error code returned when the first character of status is "9 ".

10 DIM 8$(4),M$(72)

•
•
•
50 IF S$(1;1) = "9" THEN DO
60 CALL BKERROR(S$,M$)
70 PRINT "FILE ERROR ";8$(2);" MEANS ";M$
80 DOEND

Suppose the value returned in status is "91 72", then the routine above prints the following
message when the program is run:

FILE ERROR 172 MEANS KEY NOT FOUND; NO SUCH KEY VALUE

A list of the MPE file system error codes and their meaning is contained in table A-1 of appendix A.

6-13

BKLOCK
Dynamically locks KSAM file during shared access.

When more than one user accesses the same file, BKLOCK can be used to make access to the file
exclusive for one user while he writes to or updates the file. In order to use BKLOCK, the file
must be opened with dynamic locking allowed by all users who are sharing the file. When finished
with the changes that required exclusive access, the user who has locked the file with BKLOCK
should unlock it with BKUNLOCK.

Note that a file opened for shared access must be locked by BKLOCK before the file can be modi
fied by BKWRITE, BKREWRITE, or BKDELETE.

PARAMETERS

filenum

status

condition

USING BKLOCK

A numeric variable containing the file number that identifies the file;
this number was returned to filenum by the last call to BKOPEN. It
should not be altered unless the file is successfully closed by BKCLOSE.
(Required parameter)

A four-character string variable to which is returned a code that indi
cates whether or not the call to BKLOCK was successful and if not,
why not. The first character is set to zero when the call succeeds, to
another value if it fails. (Refer to the Status Parameter discussion earlier
in this section.)
(Required parameter)

A numeric expression whose value determines the action taken if the
file is locked by another user when BKLOCK is executed. If the value
of condition is:

zero-locking is unconditional; if the file cannot be locked immediately
because another user has locked it, your program suspends execution
until the file can be locked. (default value)

non-zero-locking is conditional; if the file is already locked, control
returns immediately to your program with status set to "71 ".

(Optional parameter)

Default: If omitted, locking is unconditional.

In order to call BKLOCK, the file must be opened with dynamic locking allowed. That is, the
parameter lock in the BKOPEN procedure must be set to 1. Also, since dynamic locking is useful
only when access is shared, probably the file will have been opened with the exclusive parameter
in BKOPEN set to 3.

6-14

BKLOCK

NOTE

All users who share access to the file must agree to allow dynamic
locking in order for any user to dynamically lock the file with
BKLOCK.

The note above points out that users who share the same file should cooperate on how they will
share the file. Unless they all agree to allow locking, no one will be able to lock the file. Also, it is
important to avoid situations where one user locks the file and forgets to unlock it. If this occurs
when condition is set to a non-zero value, the calling process is not halted. But if the file is locked
already and if you attempt to lock a file with condition omitted or set to zero your process is
halted until the other user either unlocks the file or logs off.

You should always check the status parameter immediately following a call to BKLOCK in order
to determine if the call was completed successfully. If you locked with condition set to a non
zero value, you should check if the file was locked before continuing. If it was locked, status will
have a "O" in the first character, but if another user had locked the file preventing your call to
BKLOCK from working, then status contains the value "71".

Figure 6-3 contains an example of locking a file with BKLOCK.

830 REM •0000000•000000000••0000000000000000000000•00000000000 0 0

840 REM o LOCK A KSA~ FILE *
850 REM ********************•***********************************
ass REM
860 REM F IS THE FILE NUMBER OF A KSAM FILE
870 REM OPENED BY A CA~L. TO BKOP~N
890 REM
900 REM THE THIRD PARAMETER INDICATES THAT LOCKING IS
910 REM TO TAKE PL.ACE UNCONDITIONAL.LY
920 REM
930 CALL eKL.OCKCF,ss,O)
940 REM
950 REM NOW DETERMINE WHETHER T~IS CALL HAS SUCCEEDED
960 REM
970 IF' SStlllJ<>"O" THt.N 00
980 REM NS CONTAINS THE NAME OF THE KSAM FILE
990 RE~ SS CONTAINS THE STATUS CODE SET BY THE P~ECEOING CALL

1000 PRINT "UNABLE TO-L.OCK "SNll'' ERROR "ISSClllll" DETAIL 11 1SSC2J
1010 CALL BKERRORcSSrMS)
1020 PRINT MS
1030 OOEND

Figure 6-3. Dynamically Locking a KSAM File with BKLOCK

6-15

/

BK OPEN
A call to procedure BKOPEN initiates file processing.

In order to process a KSAM file, it must be opened with a call to the BKOPEN procedure.
BKOPEN initiates processing, and optionally specifies how the file is to be processed. BKOPEN
does not create the file; it must have been created previously. You can create a KSAM file
through the BUILD command of the KSAMUTIL program (refer to section II).

To open a file means to make it available for processing. You can also specify how the file is to be
accessed (whether for input, output, input and output, or for update), whether dynamic locking
is allowed, whether access to the file can be shared, and whether records written to the file are to
be checked for primary key sequence. Default values are assigned for the optional parameters.
If you want to change the current processing or access method, you must close the file and then
open it again with the parameters set to new values.

PARAMETERS

filenum

status

name

access

A numeric variable whose value identifies the file opened by the call
to BKOPEN. Since the value of filenum identifies the file in other
CALL statements, it must not be changed while the file is open.
(Required parameter)

A four-character string variable to which is returned a code to indicate
whether or not the file was successfully opened and if not, why not.
The first character is set to "O" if the open is successful, to another
value if not. (Refer to Status Parameter discussion earlier in this
section.)
(Required parameter)

A string expression containing the name of the KSAM file to be
processed. This name is the actual designator assigned to the file when
it was created, or else it is a back reference to a formal designator
specified in a :FILE command, in which case, name has the form
*formal designator.
(Required parameter)

A numeric expression whose value indicates one of the permissible
access types:

0 Read only.

1 Write only.

2 Write only.

Use of procedures BKWRITE, BKREWRITE,
and BKDELETE are prohibited.

Deletes previously written data. Use of the
procedures BKREAD, BKREADBYKEY,
BKREWRITE, BKDELETE, and BKSTART
are prohibited.

Saves previously written data. Use of the
procedures prohibited by the access=l, above,
are also prohibited by access=2.

6-16

lock

exclusive

BK OPEN
3 Read and write. Use of procedures BKREWRITE and

BKDELETE prohibited. (Default value.)

4 Update access. Allows all procedures described in this section.
(Optional parameter)
Default: If omitted, or out of range, access is 3, read and write access.

A numeric expression whose value indicates whether dynamic locking
can take place. Acceptable values are:

0 Disallow dynamic locking and unlocking.
Use of procedures BKLOCK and BKUNLOCK
prohibited. (Default value.)

1 Allow dynamic locking and unlocking.

(Optional parameter)

Procedures BKLOCK and BKUNLOCK may
be used to permit or restrict concurrent access
to the file.

Default: If omitted, or out of range, lock = 0 to disallow dynamic
locking

A numeric expression whose value indicates the kind of exclusive
access desired for this file. If this parameter is omitted or is not one
of the following acceptable values, the default is assumed:

0 Depends on access parameter.

1 Exclusive.

If access= 0 (read only), then users share
access to this file as if exclusive were set to 3.
If access is not = 0, then access to this file is
exclusive as if exclusive were set to 1.

Prohibits other access to this file until either
the file has been closed or the process
terminated. Only the user who opened the
file can access it while it is currently open.

2 Semi-exclusive. Other users can access this file, but only for

3 Shared.

(Optional parameter)

read access. The file cannot be accessed to
write, rewrite, or delete records until it is
closed or the process is terminated. (Default
value.)

Once the file is opened, it can be accessed
concurrently by any user in any access mode,
subject only to the MPE security provisions
in effect.

Default: If omitted, or out of range, exclusive= 2, semi-exclusive
access.

6-17

BK OPEN

sequence

USING BKOPEN

A numeric expression whose value indicates whether records written
to the file will be checked for primary key sequence or not.
Acceptable values are:

0

1

No sequence
checking.

Sequence
checking.

(Optional parameter)

When records are written to the file, primary
key values can be in any order; their sequence
is not checked. (Default value.)

As each record is written to the file, KSAM
checks to insure that its primary key value is
greater than the primary key value of any
previously written records; if duplicates are
allowed for this key, then the primary key can
be equal to that of the previously written
record.

Default: If omitted, or out of range, sequence = 0, no sequence
checking

After calling BK OPEN, you should always check the status parameter to determine whether the
open was successful. Upon successful execution of BK OPEN, the file named in name is available
for processing; an identification number is assigned to this file and returned to filenum where it
is available to identify the open file in other calls. Until the file is successfully opened with
BK OPEN, no operation can be executed that references the file either explicitly or implicitly.

If only the first three parameters are specified, and the file is opened successfully, the file has the
following default characteristics:

• Read and Write access; you can read from and write to but not update the file.

• Semi-exclusive access; other users can read from but not write to or update the file.

• Dynamic locking not allowed; you cannot lock or unlock a file.

• No sequence checking; records can be written in any order without checking sequence of
primary key values.

ACCESS MODES. There are two types of write only access: one clears any existing records
before writing the specified records to the file (access = 1); the other saves existing records and
writes the new records after those already written (access= 2). Both thes·e access modes do not
permit any read or update access to the file.

Read-only access (access= 0) can be specified if you want to insure that the file is not changed.
This mode prohibits the writing of new records, and rewriting or deleting of existing records. In
read-only mode, you can position the file, and read records in either sequential or random order.

The default access mode (access= 3) allows you both to read records from and write records to a
file, but not to change or delete existing records. If you plan to read and write records during
the same process, but do not want to alter existing records, use this access mode.

6-18

BK OPEN
If you want to rewrite or delete existing records in a KSAM file, you must open with access= 4.
This mode allows you to use the BKREWRITE and BKDELETE procedures, as well as all the
other procedures described in this section.

Table 6-4 summarizes the procedures you may call depending on the access parameter value you
specify in BKOPEN.

Table 6-4. Procedures Allowed by BKOPEN access Parameter

BKOPEN access Parameter

Read-only
Write-only Write-only

Read/Write Update
with Clear with Save

(access=O) (access=1) (access=2)
(access=3) (access=4)

BKREAD BKREAD BKREAD
BKREADBYKEY BKREADBYKEY BKREADBYKEY
BKSTART BKSTART BKSTART

Procedures BKWRITE BKWRITE BKWRITE BKWRITE
Allowed BKREWRITE

BKDELETE

BKCLOSE BKCLOSE BKCLOSE BKCLOSE BK CLOSE
BKERROR BKERROR BKERROR BKERROR BKERROR

SHARED ACCESS. By default in a multi-user envornment, all users whose MPE security
restrictions allow them to access your file can read the file, but they cannot change the file or add
new records to it. This is the default specification of the exclusive parameter in BKOPEN
(exclusive=2). It is independent of the value of the access parameter.

If you want to prevent other users from reading the file as well as writing to it, you must specify
this by setting exclusive=l. This setting allows only you to read from, write to, or alter the
file.

Another alternative is to set exclusive=O, thereby allowing other users access to the file only when
it is opened for read only (access=O). This setting of the exclusive parameter prevents any access
by other users when the file is opened for any form of write or update (access'10) . This means that
you and other users share read access to the file, but only you can write to or change the file.

You can choose to completely share access to the file, reading and/or writing and updating, by
setting the exclusive parameter to 3.

(Refer to table 6-5 for a summary of the relation between the exclusive parameter and the
access parameter.)

6-19

BK OPEN

Table 6-5. Relation of exclusive Parameter to access Parameter

exclusive = 0 exclusive = 1 exclusive = 2 exclusive = 3
(default)

access= 0 shared exclusive semi-exclusive shared
(read only)

access =f 0 exclusive exclusive semi-exclusive shared
(write only,
read/write,
or update)

DYNAMIC LOCKING. When access is shared, it is good practice to allow dynamic locking so
that individual users can dynamically lock the file while performing any updates to the file.
The file can be unlocked as soon as the update is complete. An update to a file is when you
write a new record, delete a record, or rewrite an existing record. When access is exclusive or
semi-exclusive, there is no need for dynamic locking since only the user who has opened the
file can update the file.

Dynamic locking should also be allowed if access is shared and you plan to read the file sequentially.
This is because the sequential read procedure (BKREAD) is dependent on the position of the logical
record pointer and, in a shared environment, this pointer can be changed by other users unless the
file is locked (Refer to table 6-3 for a list of the pointer-dependent procedures.)

SEQUENCE CHECKING. When sequence checking is specified, you must write records to the
file in primary key sequence. An attempt to write a record out of sequence causes the write to
fail and the value "21" is returned to status following a call to BKWRITE. (Refer to the description
of Status earlier in this section.) As a result of sequence checking, the chronological and the
primary key sequence of records in your file is the same. Since the BASIC KSAM procedures have
no provision to read the file in chronological sequence, you may want to specify sequence checking
for any file that you will want to read in that order. With sequence checking, a file read in logical
order by primary key (the default for BKREAD) is also read in chronological order.

The example in figure 6-4 shows how to use BKOPEN to open a KSAM file for input and output
(default access), with dynamic locking (lock=l), for shared acce~s (exclusive=3), and without
sequence checking (default sequence).

6-20

BK OPEN

40 lNTfGE~ AtlOl
50 DIM B«tl2]
55 INTEGER J
60 DIM Bli[ll
65 OlM 8?,[2]
10 INTEGER A2C2l,A3t3l,A5[5]
ao
90

100
110
120
130
135
140
145
150

400
4 l (')

REM
REM
REM
REM
REM
REM
REM

THE KSAM/Jooo FILE WAS BUILT WITHS
REc=-ao,16,F,AsCII
KEv=e,2,2,,uup

so.RECORD LENGTH rs 2 BVTF.S, FI~EO, TYPE
TH£ KEY Is 2 CHARACTERS LONG,STARTING r~

ASCII, 16 REC/81.0Ct< •
CHARACTER ~ OF RECORD

REM ooooooooooooooooooo•ooooooooooooooooooo•oo•ooooooooooooo
REM o OPEN A KSAM FILE o
REM oooooooooooooooooooooooooooooo•oooooooooooo 0000000000000

REM
REM
REM
REM
REM
REM
REM

THE FILE NAME 15 IN N!
THE STATUS Of THE CALL IS RETURNED IN SS
WHEN SUCCESSFU~, BKOPEN RETURNS A FILE ~UMSER IN F
!~PUT.OUTPUT A~CESS rs SPECIFIED IN J
DYNAMIC LOCKING IS ALLOW~O IN 0
SEMI-EXCLUSIVE ACCESS JS INDICATED IN E

PROGRAM CONTINUES

Figure 6-4. Opening KSAM File with BKOPEN

6-21

BKREAD
Transfers the next logical record from a KSAM file to a BASIC program.

A call to BKREAD transfers the contents of a record from a KSAM file to a storage area defined
by a list of variables in a BASIC program. The record read is that at which the logical record pointer
is currently positioned. In a series of calls to BKREAD, records are read in ascending order by
key value. The primary key is used unless a previous call to BKST ART or BKREADBYKEY has
positioned the pointer to an alternate key. The file must have been opened with an access mode
that allows reading.

PARAMETERS

filenum

status

para me terlist

USING BKREAD

A numeric variable containing the file number that identifies the file;
this number was returned by the last call to BKOPEN. It should not
be altered unless the file is closed by a successful call to BKCLOSE.
(Required parameter)

A four-character string variable to which is returned a code that indicates
whether or not the call to BKREAD was successful and if not, why
not. The first character is set to zero when the call succeeds, to another
value if not. (Refer to the Status Parameter discussion earlier in this
section.)
(Required parameter)

A list of variables separated by commas into which the data in the
record is read. The contents of the record are read into the variable
(or variables) until the physical length (or combined physical lengths)
of parameterlist is exhausted, or the end of the record is reached.
(Optional parameter)
Default: If omitted, the logical record pointer is positioned to the

beginning of the next record in key sequence.

After calling BKREAD, you should always check the status parameter to determine whether the
read was successful. Upon successful completion of BKREAD, the variables specified in
parameterlist contain data read from the record at which the record pointer was positioned when
BKREAD was called. Note that if parameterlist is omitted, the record pointer is positioned to the
beginning of the next logical record, effectively skipping the current record.

In order to use BKREAD, the file must be opened for input. The BKOPEN access parameter
should be zero if you only plan to read or position a record. To both read from and write to the
same open file, you either omit the access parameter or set it= 3. If you want to rewrite or update
as well as read records, you must set access = 4.

6-22

BKREAD
Values are read from the current record into the variables specified in parameterlist according to
the type and length of the variable. For example, consider the following code:

status

If the record being read contains only the word SCRABBLE, this word .is read into the specified
variables as if they were assigned by the statements:

100 G$="SCR"
110 H$=" ABB"
120 L=NUM("LE") ----- assigns numeric equivalent of string "LE" to L

NOTE

Each variable in the parameterlist is filled to its current physical
length before proceeding to the next variable.

The following calls omit the parameterlist in order to skip forward two records:

210 CALL BKREAD(F,8$) -===========---skip two records
220 CALL BKREAD(F,8$) .-

The records skipped are not the next records physically placed on the file, but are the next two
in logical sequence according to the value of the current key. The particular key used for the read
sequence can be selected with a call to BKSTART or BKREADBYKEY. BKSTART can also be
used to position the file to the beginning of the record with the lowest key value in the selected
key (Refer to BKSTART following BKREAD discussion.)

The example in figure 6-5 assumes that the record pointer has been positioned to the beginning of
the first record in primary key sequence. Assume that the file being read was opened in the example
in figure 6-4, the records read were written in the example in figure 6-11.

Each record contains five integers followed by five undefined words (garbage) followed by a string
of three characters. The record is read into

A5 a 5-word integer array
A2 a 2-word integer array
A3 a 3-word integer array
Bl$ a 1-character string
B2$ a 2-character string

The five integers that were written to the beginning of each record are read into array A5. The
next two arrays A2 and A3 receive the undefined values that filled the next five words of the
record. The first string character is read into Bl$, the next two into B2$.

BK READ
SHARED ACCESS. If you open the file for read-only access (access=O), and the exclusive param
eter is allowed to default to zero, then more than one user can share read access to the file. In this
case, or if you specifically indicate shared access, you should also allow dynamic locking in order to
read records from the file in key sequence. This is necessary because BKREAD depends on the cur
rent position of the logical record pointer. (Refer to table 6-3 for a list of the pointer-dependent
procedures.)

For example, if you plan to read the file sequentially starting from a particular key value, use the
following sequence of calls:

BKOPEN----open file for read-only, shared access, allow dynamic locking
BKLOCK ~ckfi~

BKSTART position pointer
BKREAD loop read file in sequence from original pointer position
BKUNLOCK unlock file when last record read

6-24

BKREAD

10 01"'1 S-;[4]

20 DIM !\Je1:l261
30 DIM M~[72]
4f) INTEGEi-< Aclol
50 DIM ~i;[lcJ

~c; I NTEGEI"(J
60 DIM t3P>Ll)
65 DIM ~2~Lc2J

70 INTFGEK A2[2l,A3[Jl,A5CS1

1310
1320
1330
1340
lJSn.
1360
1370
1380
1391)
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1!10
1580
1590
1600
1610
UcO
1622
1630
1650
1660
1670
1680
1690

REM **
REM o READ FROM A KS~M FILE o
REM ••********•***
REM
REM F IS THE FILE NUMB~R OF A KSAM FILE
REM OPENED BY A CALL TO BK0PEN
REM
REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ
REM CONTAINS THE SAME INFORMATION THAT WAS wRifTEN To
RE~ THE FILE BV TH~ EXAMPLE TO wRJTE A KSAM FILE
REM
CALL 9KREAO(F,ss.s1s,s2s,AS[ol,A3C•J,A2C•l>
REM
REM NOW D.ETERMINE WHETHER THIS CALL HAS SUCCEEDED
REM
IF SstlHJ<>"O'' THt:N 00

REM NS CONTAINS THE NAME OF THE KSAM FILE
REM SS CONT~tNS THE STATUS CODE SET SY THE PHECEDING CALL
PRINT "UNABLE TO REAO "INS'" ER~OR "ISS[lfl]jtt DETAIL ''ISS[2]
CALL. BKERROR(SStMS)
PRINT MS
REM
REM TEST FOR ENO OF FILE
REM ANO POSITIUN TO LEAST VALUED PRIMARY KEY
IF. S5Cltll•"l" THEN 1080
GOTO 3620

DOE ND
REM
REM ECHO WHAT wAS HEAD
REM
PR INT ••RECORD CONT A I NS "1 Bl St B2S
MAT PRINT AS
MAT PRINT A3tA2
REM
REM THE CONTENTS OF BlSsn111, OF B2S•"23"
REM THE CONTENTS OF ASCl) THROUGH A5C5) ARE 1 THROUGH s.
REM THE CONTENTS OF Al ANO A2 ARE UNKNOWNe
REM
REM THE PROGRAM CONTINUES

Figure 6-5. Reading From a KSAM File with BKREAD

6-25

BKREADBYKEY
Transfers record identified by particular key value from KSAM file to BASIC program.

A call to BKREADBYKEY locates and reads a record into a storage area identified by a list of
variables in the BASIC program. The record to be read is located by matching the specified keyvalue
with an identical value stored in the record starting at keylocation. The record value and the value
specified in key value must match exactly, or an error code is returned to status. To use
BKREADBYKEY, the file must be open in an access mode that allows reading.

You cannot use BKREADBYKEY to locate a record by generic or approximate key values. For
this purpose you can call BKSTART followed by a call to BKREAD. (Refer to the discussion of
BKSTART.)

PARAMETERS
filenum

status

key value

key location

parameterlist

A numeric variable containing the file number that identifies the file;
this number was returned by the last call to BKOPEN. It should not
be altered unless the file is closed with a successful call to BKCLOSE.
(Required parameter)

A four-character string variable to which is returned a code that indi
cates whether or not the call to BKREADBYKEY was successful and
if not, why not. The first character is set to zero if the call succeeds,
to another value if not. (Refer to the Status Parameter discussion
earlier in this section.)
(Required parameter)

A string or numeric expression whose value is compared to a key value
in the record. The record pointer is positioned to the first record with
a key value at key location that is exactly equal to the specified keyvalue.
In order to match exactly, the record value and key value must have the
same logical length.
(Required parameter)

A numeric expression whose value indicates the starting character posi
tion in each record of the key used to locate the record to be read by
BKREADBYKEY. The characters in a record are counted starting with
1. If the value of keylocation is zero, the primary key is assumed. The
primary key also may be specifically indicated by its location in the
record.
(Required parameter)

A list of variables separated by commas into which the data in the
record is read. The contents of the record are read into the variable
(or variables) until the physical length (or combined physical lengths)
of parameterlist is exhausted, or until the end of the record is reached.
(Required parameter)

6-26

BKREADBVKEV
USING BKREADBYKEY

After calling BKREADBYKEY, you should always check the status parameter to determine
whether the read was successful. Upon completion of BKREADBYKEY, the variables specified
in parameterlist contain data read from the record located through the keyvalue and key location
parameters.

The key value in the record to be read must exactly match the specified key value. Unlike BKST ART,
the only relation between the value in the record and the value in the call is that of equality. If
duplicate key values are allowed in the key being sought, then the first record with a matching key
value is read by BKREADBYKEY. To read the remaining records with duplicate key values, you
should use BKREAD.

NOTE

Each variable in parameterlist is filled to its current physical
length before proceeding to the next variable.

The example in figure 6-6 uses BKREADBYKEY to read the first record found with the value "23"
starting in byte 2. Since this is the file written by BKWRITE in figure 6-11, the records in the file
are identical including the keys and only the first record is read.

6-27

BKREADBYKEY

~220

2230
2240
2250
2260
22 '7')

221.:30
229n
23ol'
2310
2320
2330
23 t+O
2350
2360
2370
23~0
2390
2400
2410
2420
2430

REM oooooooo•ooo•••ooooooooooooooooooooooooooo•oooooooooooo
REM u READ BY KEY FROM A KSAM FILE tt

REM ooo•oooooooooooo•ooooooooooooooooooooooooo•oooooooooooo
REM
REM F IS THE FILE NUMBE OF A KSAM FILE
REM OPENED BY A CA~L TO BKOPEN
REM
REM AN ASSUMPTION HAS BEEN MADE T~AT THE RECORD TO BE READ
REM CONTAINS THE SAME INFORMATION THAT WAS WRITTEN lN THE
REM W~lTE EXAMPLE•
REM
REM AN ADDITIONAL ASSUMPTION IS THAT THE DESIR~O KEY VALUE
REM STARTS AT CHARACTER 2 AND HAS THE VALUE "23"•
REM
CALL 13KREADBYKEY(F,ss, 11 2311,2,a1s,a2s,AS[•l,AJC*l,A2t•l>
REM
REM NOW DETERMINE WHETHER THJS CALL HAS SUCCEEDED
REM
IF S$[lfl)<>"O" THt:-.N DO

REM NS CONTAINS THE NAME OF THE KSAM FILE
REM 55 CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL
PRINT "UNABL.E TO REA08y1<EV 11 INSf" ERROR "fSS~lfllf•t DETAIL. "fSSC~

2]
2440 CALL BKERR0R(S$,M$)
2450 PRI"'JT MS
2460 GOTO 3620
2470 DOEND
2481'.1 REM
2490 REM
25!)0 REM
2511'.1 REM
2520 REM

THE CONTENTS Of BlS•"l"1 OF B2S• 11 23"•
THE CONTENTS O~ ASCl) T~~OUGH AS<S> ARE INTEGERS 1 THROUGH 5
T~E CONTENTS OF AJ ANO A? ARE UNKNOWN,

2SJO REM ECHO wHAT WAS ~EAD

25't0 REM
2550 PRINT 11 REC0RO READ :a nf81$tBeS
2560 MAT PRINT AS
2562 MAT PRINT A3,A2
2570 REM
25~0 REM THE PROGRAM CONTINUES

Figure 6-6. Reading a Record Located by Key Value with BKREADBYKEY

6-28

BKREWRITE
Changes the contents of a record in a KSAM file.

A call to BKREWRITE replaces the contents of an existing record with new values. The record to
be rewritten is the last record accessed by a call to BKREAD, BKREADBYKEY, or BKSTAR T. To
use BKREWRITE, the file must be open in the access mode that allows update. If access is shared,
it must also be opened with dynamic locking allowed, and the file locked by BKLOCK before rec
ords are rewritten.

PARAMETERS

filenum

status

parameter list

USING BKREWRITE

A numeric variable containing the file number that identifies the file;
this number was returned by the last call to BKOPEN. It should not
be altered unless the file is closed with a successful call to BKCLOSE.
(Required parameter)

A four-character string variable to which is returned a code that
indicates whether or not the call to BKREWRITE was successful
and if not, why not. The first character is set to zero if the call
succeeds, to another value if not. (Refer to the Status Parameter
discussion earlier in this section.
(Required parameter)

A list of variables or constants, separated by commas, that contain
the data to be written to the file replacing the last record read or
written. The total length of the new record is derived from the total
number, data type, and length in characters of each item in
parameterlist. Although this length need not be the same as the
record it replaces, it should be long enough to contain all the keys,
but not so long that it exceeds the defined record length.
(Required parameter)

After calling BKREWRITE, you should always check the status parameter to make sure that the
rewrite was successful. Upon successful completion of BKREWRITE, new values replace the
data in the last record read to or written from the BASIC program. The new data may change
every value in the previously read record including the primary key value.

If you want to replace a record with a particular key value, you should locate and read the record
with BKREADBYKEY or BKSTART. To rewrite a series of records you should read the records
with BKREAD.

When the data in the parameterlist of BKREWRITE is shorter in total length than the data in
the record being rewritten, there is less total data in the rewritten record. In order to maintain
the key sequence of all keys, defined values should be written to the location of all keys, both
the primary key and any alternate keys.

6-29

BKREWRITE

NOTE

Items written to a KSAM file with the BKREWRITE
procedure are concatenated; rounding to word boundaries
does not occur.

The example in figure 6-7 writes new values to a record originally written if figure 6-11 and read in
figure 6-5. The new values fill an array that had undefined values in the last five words, now defined
as two arrays A3 and A2 by the BKREAD call. The primary key value "23" in location 2 is un
changed.

The record read by BKREAD contained the following values:

Primacy Key
t

1 2 3 4 5

Bl$ A5 A3 A2

(undefined)

After being rewritten by BKREWRITE, it contains the following values:

1

Bl$ t A5 A3 A2
B2$ (Primary Key)

SHARED ACCESS. When access is shared, the call to BKREAD, BKREADBYKEY, or BKST ART
that locates the record to be rewritten should be included in the same pair of BKLOCK/BKUNLOCK
calls as the call to BKREWRITE. This insures that no other user alters the record pointer between
the call that locates the record and the call that rewrites it.

DUPLICATE KEYS. If you want to sequentially rewrite all records in a chain of records with du
plicate keys, locate the first record in the chain with BKREADBYKEY. Then call BKREWRITE to
modify this record. If no key value (the selected key or any other) is modified, subsequent calls to
BKREWRITE will modify the next sequential records in the chain of duplicate keys. If, however,
any key has been changed, the modified key is written to the end of the chain and the next se
quential record is one with the next higher key value. In this case, to rewrite all records with du
plicate keys, precede each call to BKREWRITE by a call to BKREADBYKEY.

6-30

26on.
c,, l 0
26ao
~630

2640
2650
266()
2610
2681)
2690
2700
2710
2720
2731)
274n
2750
27f)0
2770
2780
2790
2800
2810
2820
2e 30
2900
2910
2920
2930
29~0

2951'
2960
2970
2980
2990
3000
3010
3oco
3030
3041'
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210

BKREWRITE

Rt.Ill!

REM 00000000000•***
REM o REVISE THE CONTE~TS QF A RECORD READ ~ROM A KSAM FILE o
REM *•***************•**•*****************•••••00000000000000
REM
REM F IS THE FILE NUMBtR OF A KSA~ FILE OPE~ED BV A CALL TO BKOPEN
REM NoTE THAT FO~ ~KREWR1TE,BKOPE~ ACCESS MODE MUST:4 FOR uPDATE.
REM
REM A~ ASSUMPTION HAS BEEN ~ADE THAT THE RECORD TO BE READ
REM CONTAINS THE SAME INFORMATION THAT WAS WRI!TEN TO THE
REM KS~M FILE IN THE BKWRITF. EXAMPLE,,
i::lEM parameterlist
CALL ~KREAD(F,ss,b1s,e2s,AsC•ltAJC•l,A2[•])
REM
REM NOW DETERMINE ~HETHER THE CALL ~AS SUCCEED~O,
REM

IF SS[llll<>"O" THt:.N 00
RE~ N5 CONTAINS THE NAME OF THE KSAM FILE
REM S$ CONTAINS THE STATUS CALL SET BY THE PHECEOING CALL
PRINT "UNABLE TO READ ''IN'I'' ERROR "tSSCllllf" DETAIL "•SS(2J
CALL 8KERR0RfS$tM~)
PRINT MS
GOTO 3620

DOE NO
REM THE CONTENTS OF e1s:111, OF B2$&"23"
REM THE CONTENTS Of AS(l) THROUGH AS(S) ARE THROUGH 5
REM THE CONTENTS Of Al ANO A? ARE UNKNOWN
REM
REM STORE VALUES l THROUGH 3 INTO A3(ll THROUGH A313>
REM STORE VALUES l ANO 2 INTO A211) ANO A212), -
REM
FOR I:l TO 2

A2[ll=I
A3Cll•I

NEXT I
A3 [J h3
REM

parameterlist

CALL 0KREWRITE1F,ss,e1~.s2s,ASC•J,A3C•l,A2C•J>
REM
REM NOW DETERMINE WHETHER TH E CALL HAS SUCCEEDED
REM
IF SS[ltl]<>"O" THt.N DO

REM NS CONTAINS THE NAME OF THE KSAM FILE
REM SS CONTAINS THE STATUS CODE SET BY THE PHECEDING CALL
PRINT "UNABLE TO REWRITE "JNSf" ERROR "ISSCl~llt" DETAIL "ISSC2l
CALL BKERRORcss,M~)
PRINT MS
GOTO 36i0

DOE NO
REM
REM ECHO WHAT WAS UPDATED
REM
PRINT 11 REWRITTEN Rt.CORO • "f81'B2
MAT PRINT AStAJ,~2-
REM
REM THE PROGRAM CONTINUES

Figure 6-7. Rewriting Record in KSAM File with BKREWRITE

6-31

BKSTART
Positions a KSAM file to a particular record based on a key value.

By calling BKST ART, you can position the record pointer to any record in the file based on the
value of a key in that record. The key can be the primary key or any alternate key, since BKSTAR T
also allows you to select the key for positioning and for subsequent sequential reads. If you want
to read all the keys in a key sequence, you can use BKST ART to position to the record with the
lowest key value in the selected key

PARAMETERS

filenum

status

key value

key location

relation

A numeric variable containing the file number that identifies the file;
this number was returned by the last call to BKOPEN. It should not
be altered unless the file is closed with a successful call to BKCLOSE.
(Required parameter)

A four-character string variable to which is returned a code that indi
cates whether or not the call to BKST ART was successful and if not,
why not. The first character is set to zero when the call succeeds, to
another value when it fails. (Refer to the Status Parameter discussion
earlier in this section.)
(Required parameter)

A string or numeric expression whose value is compared to a key value
in this record. The record pointer is positioned to the first record with
a key value that bears the relation specified by relation to the value
in keyvalue. If the value is a string, its logical length is used for the
comparison; otherwise, the physical or dimensioned length is used. The
length of this value must be less than or equal to the length of the key
as specified when the file was created. If keyualue is a null string(" "),
the file is positioned to the beginning of the first logical record accord
ing to the value of the key in keylocation. (Optional Parameter)

Default: If omitted, the value assumed for keyvalue is the lowest
value for the specified key type.

A numeric expression whose value indicates the starting character loca
tion in each record of the key used for positioning by BKST ART. The
characters in a record are counted starting with 1. If set to zero, the
primary key is assumed.
(Optional parameter)

Default: If omitted, the primary key is assumed.

A numeric expression whose value specifies the relation between the
specified keyvalue and the value of the key at key location. The record
pointer is positioned to the first record with a key value satisfying this
relation:

0 - the value of the record key is equal to keyvalue
1 - the value of the record key is greater than keyvalue
2 - the value of the record key is greater than or equal to

keyvalue. (default)

6-32 MAY 1981

BKSTART

Any value greater than 2 is treated as if it were 2.
(Optional parameter)

Default: If omitted, the relation is assumed to be 2, record key is
greater than or equal to the keyvalue.

USING BKST ART

After calling BKST ART, you should check the status parameter to determine if the procedure was
executed successfully. If successfully executed, the record pointer is positioned at the beginning
of the first record with a value at keylocation that has the relation specified in relation to the value
specified in keyvalue.

If default values are assumed for all three optional parameters, the pointer is positioned to the
record with the lowest value for its type in the primary key location.

If the relation specified is equality (relation = 0), then a record must be located that has the exact
same key value as that specified in the BKSTART call. When found, the pointer is positioned to
that record. If duplicate values are allowed for the key, then the pointer is positioned at the first
record with the particular key value.

When the specified relation is greater than (relation = 1), the file is searched until a record is found
with a key value greater than the specified key value. The search passes over any record with a key
value equal to the specified value. This relation allows you to retrieve items by an approximate key.
Thus, if you specify a key value of "R", a call to BKSTART will position the pointer to the first
record with a key value that starts with the letter R. A subsequent series of calls to BKREAD
allows you to read the remaining records in the file or, by including a test, to read only the records
beginning with R.

When the specified relation is greater than or equal to (relation = 2), BKSTAR T looks for a record
containing a value equal to the specified value. If found, it positions the pointer to that record. If
not found, it continues looking and positions the pointer to the first record that is greater than the
specified value. This type of search can be used to locate records by generic key. A generic, or
partial, key is a value that matches characters at the beginning of the key, but not necessarily the
end. For example, in a key containing a date in the form yymmdd, by specifying only the first two
characters as keyvalue and a relation = 2, you can position to the first record with a key for that
year; by specifying the first four characters, you can position to the first record for a particular year
and month.

Whenever a record cannot be found with a key that satisfies the relation and value specified, the
value "23" for invalid key is returned to status.

BKSTART allows you to specify a key other than the primary key assumed by BKREAD. Called
prior to a series of calls to BKREAD, it prepares for a sequential read of the file in alternate key
order. For example, assuming a file with an alternate key in location 21, the following call positions
the pointer to thP first record in that key sequence:

100 DIM A$(10),S$(4)
150 A$=""--------- assign null string to keyvalue

--------------- alternate key location to keylocation 160 L = 21
170 CALL BKSTART(F,S$,A$,21)

MAY 1981 6-33

BKSTART

The default for relation is 2 (greater than or equal to) and need not be specified except for docu
mentation purposes.

Figure 6-8 illustrates the use of BKSTAR T with default values for all optional parameters. Speci
fied in this minimal form, it positions to the least valued primary key.

loao
1090
l 10,,
1110
112"
1130
11 '+()

1150
1160
11 70
1180
1190
12 •)0
1210
1220
123"
12 'tO
1250
1260
1270

REM 000000000000••••••••000•••••00000000000000•000000••••••

REM o POSITIUN TO LEAST VALUED PRIMARY KtY tt

REM 000000000000000000•00000000000000000000000•000000000000

REM
REM ~ IS THE FILE NUMBER OF A KSAM FILE
REM OPENED av 4 CALL TO BKOPEN
REM
CALL ~KSTART(F,SS>

REM
REM NOW DETERMINE wHETHER THIS CALL HAS SUCCEE0ED
REM
IF sscUlJ<>"O" THt.N oo

REM NS CONTAINS THE NAME OF THE KSAM FILE
REM SS CONTAINS THE STATUS CODE RETURNED BY THE PRECEDING CALL
PRINT "UNABLE TO.POSITION FILE TO LEAST VALUED PRIMARY KEY"
PRINT "ERROR "IS~CUlJ,11 DETAIL "•SSC2J
CALL BKERRORrss,MS)
PRINT MS
GOTO 3620

DOE ND
12i.3n REM
1290 REM T~t PROGRA~ CONTINUES
13"1" REM

Figure 6-8. Positioning Pointer to Least-Valued Record with BKST ART

The example in figure 6-9 positions the record pointer to a record containing a specific key value.
The value is "23"; it is located starting in the second character of each record. The value for relation
is zero indicating that the key must contain exactly the value "23," not a value larger than "23."

6-34

1920
lcno
1940
1950
1960
1970
1980
1990
2000
2010
2020
2060
2070
2080
2090
21(\,,
2110
2120
2130
2140
2150
2160
2170
21ao
2190
2200
2210

BKSTART

REM
REM •0*******•0••••000000000000000000000000000•000000000000

REM ~ POSITION A KSAM FILE o
REM 00•••••••000000000000000000000•00000000000•0000•0000000

REM
REM F IS THE FILE NUMBER OF A KSAM FILE
REM OPENED BY A CA~L TO BKOPEN
REM
REM AN ASSUMPTION ~AS BEEN MADE T~AT THE POSITIONING TO RE
REM DONE IS TO THE RECORD WRITTEN IN THE WRITE EXAMPLE,
REM ANO THAT THE O~SIREO KEV STARTS AT CHARACTER 2,
REM
CALL eKSTARTCF,SSt 11 23 11 t2,0>
REM
REM NOW DETERMINE WHETHER THIS CAL.L HAS SUCCEEOEO
REM
IF SS[lfll<>"O" THt.N DO

REM N5 CONTAINS THE NAME OF THE KSAM FILE
REM 55 CONTAINS THE STATUS CODE RETURNED BY !HE PRECEDING CALL
PRINT "UNABL.E TO START •'INSS'' ERROR •qSS[lJll"' DETAIL 111SS[2l
CALL. BKERROR(SStMS)
PRINT MS
GOTO 3620

DOE ND
REM
REM THE PROGRAM CONTINUES
REM

Figure 6-9. Positioning Pointer to Particular Record with BKSTART

6-35

BKUNLOCK
Unlocks a file dynamically locked by BKLOCK

CALL ·BKUNLOCK(filenum,status)

A file locked by BKLOCK is released for use by other users with a call to BKUNLOCK. (If you log
off from any connection with the system, the file is also unlocked.) Since dynamic locking takes
place during shared access to the same file by more than one user, it is important that any file
locked by BKLOCK be unlocked as soon as possible by BKUNLOCK.

To use BKUNLOCK, the file must be opened with dynamic locking allowed by all users who share
access to the file.

PARAMETERS

filenum

status

USING BKUNLOCK

A numeric variable containing the file number that identifies the file;
this number was returned to filenum by the last call to BKOPEN. It
should not be altered until the file is successfully closed by BKCLOSE.
(Required parameter)

A four-character string variable to which is returned a code that indi
cates whether or not the call to BKLOCK was successful and if not,
why not. The first character is set to zero when the call succeeds, to
another value if it fails. (Refer to Status Parameter discussion earlier
in this section.)
(Required parameter)

After calling BKUNLOCK, you should always check the status parameter to make sure that the
procedure was successfully executed. When successful, a file locked by BKLOCK is again made
available for access by other users. If the file is not locked by BKLOCK when BKUNLOCK is
called, the file is not affected.

Figure 6-10 illustrates the use of BKUNLOCK to unlock the file after it is updated.

6-36

BKUNLOCK

17oO PEM 00000000000000•00000000000*****************0000000000

111n REM o UNLOCK A KSAM FILE o
1720 REM 00*0000000000

1730 PEM
1740 REM F IS THE FILE NUMBER Of A KSAM FILE
1750 REM OPENED BY A CA~L TO BKOPEN
17~'.) PEM
1770 CALL ~KUNL0CK!FtS5)

1780 REM
17~0 REM NOW DETERMINE wHET~ER THE CALL HAS SUCCEED~D
leno REM
l.RlO IF 5S[lllJ<>"0 1• THt.N DO
ledO REM NS CONTAINS THE NAME OF THE KSAM FILE
1830 REM Si CONTAINS fHE STATUS CODE SET ~V THE PMECEDING CALL

1840
1850
1 at> n
18711
1880

PRI~JT "UNABLE TO UNLOCK "IN~f" ERROR 11 15SCltll•" DETAIL "fSSt2l
CALL BKERRORcSS,Mi)
PRINT MS
GOTO 3620

DOE ND
18·,0 REM
l~o~ REM THE PROGRAM CONTINUES

Figure 6-10. Dynamically Unlocking a KSAM File

6-37

BKVERSION
Retrieves the version, update number and fix number of the current KSAM/3000.

CALL BKVERSION(status,mes8age)~ -,

A call to BKVERSION retrieves a printable string of characters that identifies the current version
of the KSAM/3000 procedures used to process KSAM files. The string of characters returned by
BKVERSION can be printed.

PARAMETERS

status

message

USING BKVERSION

A four-character string variable to which is returned the code that
indicates whether or not the call to BKVERSION was successful and
if not, why not. The first character is set to zero when the call succeeds,
to another value if it fails. (Refer to the Status Parameter discussion
earlier in this section.)
(Required parameter)

A string variable to which is returned the identification of the current
KSAM/3000 procedures. It is in the form:

version. update. fix

where version is an ASCII letter, update is an ASCII integer, and fix is
also an ASCII integer. The three terms are separated by periods.
(Required parameter)

You may call BKVERSION in order to get the version, update, and fix numbers of the KSAM/3000
currently being used. This identification can be compared to the version, update, and fix numbers
that identify the version in which a KSAM file was created, as returned by the VERIFY command
of program KSAMUTIL (refer to section II). The following example illustrates use of BKVERSION.
Note that two strings are needed.

10 DIM S$(4) status
20 DIM V$(72) -message

100 CALL BKVERSION(S$,V$)
110 PRINT "THE CURRENT KSAM/3000 IS HP32208." ;V$

RUN
THE CURRENT KSAM/3000 IS HP32208.A.1.23

~
contents of V$

6-38

BKWRITE
Writes data from a BASIC program to a KSAM file.

A call to procedure BKWRITE writes a record to a KSAM file from a BASIC program. This call pro
vides the only way to create a KSAM record from a BASIC program. The file must have been opened
with an access mode that allows writing. If access is shared, the file also must be opened for dynamic
locking (lock= 1), and the file locked with BKLOCK before any records are written.

PARAMETERS

filenum

status

parameter list

USING BKWRITE

A numeric variable containing the file number value that identifies
the file; this number was returned by the last call to BKOPEN. It
should not be altered unless the file is closed by a successful call to
BK CLOSE.
(Required parameter)

A four-character string variable to which is returned a code that
indicates whether or not the call to BKWRITE was successful and if
not, why not. The first character is set to zero when the call succeeds,
to another value if not. (Refer to the Status Parameter discussion
earlier in this section.)
(Required parameter)

A list of variables or constants, separated by commas, that contain
the data to be written to the file as a record. The total length of the
record contents is derived from the total number, the type, and the
length in characters of the items in parameterlist. The parameterlist
must contain a value for each location defined as a key location in
the record.
(Required parameter)

After calling BKWRITE, you should always check the status parameter to insure that the write
was successful. Upon successful completion of BKWRITE, one record containing the values
specified in parameterlist is written to the opened KSAM file.

Two parameters that are set when the file is opened affect how BKWRITE operates. These are
the access and sequence parameters.

In order to write to a file, the file must be opened with access greater than 0. If the access
parameter is set to 1, all existing data in the file is cleared before the first record is written to the
file. If access is set to 2 or greater, the first record written by BKWRITE immediately follows
any existing records; the file is not cleared.

The sequence parameter determines whether records must be written in primary key sequence,
or not. If sequence is zero, records can be written in any order; no check is made on the sequence
of the primary key field. If sequence is set to 1, you must write each record with a value in the
primary key field that is greater than the primary key value in the previous record. Primary key
values may equal the previous primary key value only if the file was created with duplicate key
values permitted. To illustrate, assume that the record illustrated by the following example was

6-39

BKWRITE

the first record written to the file. It has the value 1 as its primary key. If the file was opened
with sequence= 1, the next record written must have a value of 2 or more in the primary key
field. It may have the same value only if duplicates are allowed for that key field, and must not
have a value less than the previous primary key.

The values written to the record depend on the type of the items in parameterlist. To illustrate,
consider the following statements:

10 DIM D$(20),E$(10),S$(4)
20 INTEGER I,J
30 D$="MITCHELL" ---------logical length = 8 characters
40 E$="JAMES" logical length = 5 characters

50 I=O ~-----60 J=i-------each integer requires 2 characters

70 CALL BKWRITE (F,S$,I,J,D$,E$)

/ \
' / I

filenum ~ parameterlist
status

This set of statements writes one record to the KSAM file. The record has the form:

characters
1 3 5 13 18

I 0 f 1 I MITCHELL,JAMES I

f t D$ E$ undefined value

I J(key)

80

Assuming a file created with one key starting in the third character, two characters long, the value
1 is the key value. Each integer requires 2 characters, the two strings use a total of 13 characters,
resulting in values that take up 1 7 characters of the record. The remainder of the record is
undefined. Record size is specified at file creation.

When writing from numeric arrays, the dimensioned length is used; when writing from strings
the logical length is used. The logical length of a string variable or string array element, is the
number of characters actually stored in the variable or element. It determines the length of the
item written to the record. A numeric array, on the other hand, uses the dimensioned length as
the length of the item written to the record. For example, suppose a numeric array A is added
to the parameterlist in the previous example:

6-40

BKWRITE

5 INTEGER A(lO)----------dimensioned length of A is 10 words
10 DIM D$(20),E$(10),S$(4)
20 INTEGER I,J ,F
30 D$="MARSHALL"
40 D$="MILLY"
50 FOR I=l TO 5 }
60 A(I)=l ------Move 5 words to array A
70 NEXT I
80 I=O
90 J=3

100 CALL BKWRITE(F,8$,I,J,A(*),D$,E$)

This set of statements results in a record with the following values:

characters
1 3 5 15 25 33 38

2 3 4 5 MARSHALL MILLY

I J
(key)

array A

undefined values

NOTE

Items written to a KSAM file from a BASIC program are
concatenated; rounding to word boundaries does not
occur.

80

Figure 6-11 is an example of writing one string and one integer array to each record of the KSAM
file opened in figure 6-4. The three records written contain the following daj;a:

B$ array A

!
I~ ~.__eJ--L.J 1_2_3_4_5-""-F"""-":,_' ,' -'-------'--~ 112sii 2 3 4 51 j ~ r23 J 1 2 3 4 51 ;'I ~
'------record 1---- '------record 2, ___ _, "-----record 3 ---

6-41

BKWRITE

l 1) 0 I M S "' ['t J
21"1 DIM f\Jc;(2bJ
.~O OIM "'1..;(72J

41.~ INTFGEK A[lol
'.)l'l DIM ~~~.tl2J

:.;c; INTF::Gt"R J
~"DIM 91:»Cll
"JS DIM B;:>:til2)
TO INTfGFR A2C2l,n3[3l,A5CS1
,-1n REM
':'·) REM

}'1n REM
11" REM
ldO REM
1 ~ n REM
135 REM

THt: KSAM/3000 FILE. WAS PtJILT wlTH:
REc=-so, lt>,r ,ASCII
KEyce,2,2, ,uUP

sn.~EcORO LENGTH IS 2 BYTES, FIXED, TYPE ASCII, 16 REC/BLOCK.
T~E KEY IS 2 CHA~ACTERS LONG,STARTING I~ CHARACTER ? OF RECORD

430 REM *•********************0•000000000000000000•0000000000000
440 REM o WRITE TO A KSAM FILE o
450 REM 0000000000**
460 REM
470 REM AsSlGN VALUES TO OUTPUT VARIABLES
48'1 REM
490 FOR I:l TO 5
501'.1 ACIP:I
510 NEXT I
520 BS="l23"
530 PEM
540 REM F IS THE FILE NUMBER OF A KSAM FILE
550 REM OPENED BV A CALL TO BKOPEN
560 REM

510 REM NOTE THAT ONLY THREE BYTES 11 123" ARE WRITTEN FROM BS
580 REM WHEREAS TEN WORDS ARE WRITTEN FROM NUMERIC-ARRAY A,
620 REM
630 REM THREE IDENTICAL RECORDS ARE BEING OUTPUT SO THAT
640 REM su~SEQUENT EXAMPLES OF THIS PROGRAM WILL EXECUTE
650 REM
660 FOR I•l TO 3
670 CAL~ BKWRITE(F,Si,BStA[o])
680 REM
690 REM NOW OETERMINt WHETHER THIS CALL SUCCEEOED
700 REM
710 IF sitltll<>H0 11 THEN Do
720 REM NS CONTAINS THE NAME OF THE KSAM FI~E
730 REM SS CONTAINS THE STATUS CODE SET av THE PRECEDING CODE
740 ?FUNT "UNABLE TO WRITE TO 11 1NS1t1ERROR ttfSSClfl]ltt DETAIL "f5S[g,

2]
750 CALL BKERRoRcS•,MS)
760 PRINT MS
770 GOTO 3620
780 DOE NO
790 NEXT I
eoo REM
810 REM THE PROGRA~ CONTINUES

Figure 6-11. Writing to a KSAM File with BKWRITE

6-42

ERROR MESSAGES AND an1:1.rn1
~~~~R_EC_O_V_ER_Y_P_R_O_C_ED_U_R_ES~I A I 
This appendix lists the error messages that may be issued as a result of errors encountered while 
accessing KSAM files. The messages are not limited to KSAM errors since other file system errors 
or language errors can occur while accessing a KSAM file. 

Whenever possible, the reason the message was issued is listed under "Meaning" and any action 
that can be taken to correct the error is listed under "Action." 

The messages are contained in the following tables: 

Table A-1 
Table A-2 
Table A-3 
Table A-4 
Table A-5 

File System Error Codes 
COBOL Status Returns 
BASIC Status Returns 
KSAMUTIL Error Codes and Messages 
FCOPY Warning and Error Messages 

A-1 



Table A-1. File System Error Codes 

CODE MEANING ACTION 

0 END OF Fl LE 
1 ILLEGAL DB REGISTER 
2 ILLEGAL CAPABILITY 
3 OMITTED PARAMETER 
4 INCORRECT S REGISTER 
5 PARAMETER ADDRESS VIOLATION 
6 PARAMETER END ADDRESS VIOLATION 
7 ILLEGAL PARAMETER 
8 PARAMETER VALUE INVALID 
9 INCORRECT QR EGISTER 

20 INVALID OPERATION 
21 DATA PARITY ERROR 
22 SOFTWARE Tl ME-OUT 
23 END OF TAPE 
24 UNIT NOT READY 
25 NO WRITE-RING ON TAPE 
26 TRANSMISSION ERROR 
27 1/0 TIME-OUT 
28 TIMING ERROR OR DATA OVERRUN 
29 SIO FAILURE 
30 UNIT FAILURE 
31 END OF LINE 
32 SOFTWARE ABORT 
33 DATA LOST 
34 UNIT NOT ON-LI NE 
35 DATA-SET NOT READY 
36 INVALID DISC ADDRESS 
37 INVALID MEMORY ADDRESS 
38 TAPE PARITY ERROR 
39 RECOVERED TAPE ERROR 
40 OPERATION INCONSISTENT WITH ACCESS TYPE 
41 OPERATION INCONSISTENT WITH RECORD TYPE 
42 OPERATION INCONSISTENT WITH DEVICE TYPE 
43 WRITE EXCEEDS RECORD SIZE 
44 UPDATE AT RECORD ZERO 
45 PRIVILEGED FILE VIOLATION 
46 OUT OF DISC SPACE 
47 1/0 ERROR ON FILE LABEL 
48 INVALID OPERATION DUE TO MULTIPLE FILE ACCESS 
49 UNIMPLEMENTED FUNCTION 
50 NONEXISTENT ACCOUNT 
51 NONEXISTENT GROUP 
52 NONEXISTENT PERMANENT FILE 
53 NONEXISTENT TEMPORARY FILE 
54 INVALID FILE REFERENCE 
55 DEVICE UNAVAILABLE 
56 INVALID DEVICE SPECIFICATION 
57 OUT OF VIRTUAL MEMORY 

A-2 



Table A-1. File System Error Codes (continued) 

CODE MEANING ACTION 

58 NO PASSED Fl LE 
59 STANDARD LABEL VIOLATION 
60 GLOBAL RIN UNAVAILABLE 
61 OUT OF GROUP DISC SPACE 
62 OUT OF ACCOUNT DISC SPACE 
63 USER LACKS NON-SHARABLE DEVICE CAPABILITY 
64 USER LACKS MULTl-RIN CAPABILITY 
71 TOO MANY Fl LES OPEN 
72 INVALID FILE NUMBER 
73 BOUNDS VIOLATION 
80 SPOOF LE SIZE EXCEEDS CONFIGURATION 
81 NO "SPOOL" CLASS IN SYSTEM 
82 INSUFFICIENT SPACE FOR SPOOFLE 
83 1/0 ERROR ON SPOOF LE 
84 DEVICE UNAVAILABLE FOR SPOOF LE 
85 OPERATION INCONSISTENT WITH SPOOLING 
86 NONEXISTENT SPOOF LE 
87 BAD SPOOF LE BLOCK 
89 POWER FAILURE 
90 EXCLUSIVE VIOLATION: Fl LE BEING ACCESSED 
91 EXCLUSIVE VIOLATION: FILE ACCESSED EXCLUSIVELY 
92 LOCKWORD VIOLATION 
93 SECURITY VIOLATION 
94 USER IS NOT CREATOR 

100 DUPLICATE PERMANENT FILE NAME 
101 DUPLICATE TEMPORARY FILE NAME 
102 1/0 ERROR ON DIRECTORY 
103 PERMANENT FILE DIRECTORY OVERFLOW 
104 TEMPORARY FILE DIRECTORY OVERFLOW 
106 EXTENT SIZE EXCEEDS MAXIMUM 
107 INSUFFICIENT SPACE FOR USER LABELS 
108 DEFECTIVE FILE LABEL ON DISC 
110 ATTEMPT TO SAVE PERMANENT Fl LE AS TEMPORARY 
111 USER LACKS SAVE Fl LE CAPABILITY 

112 
t RESERVED FOR FUTURE USE 

169 

170 THE RECORD IS MARKED DELETED. FPO INT POSITIONED 
POINTER TO A RECORD THAT WAS MARKED FOR DELE-
TION. 

171 DUPLICATE KEY VALUE WHEN DUPLICATES NOT 
ALLOWED. 

172 KEY NOT FOUND; NO SUCH KEY VALUE. 
173 tcount PARAMETER LARGER THAN RECORD SIZE. 
174 CANNOT GET EXTRA DATA SEGMENT FOR THIS FILE. 

175 KSAM INTERNAL ERROR. A KEY VALUE (NOT SEARCH 
KEY) FOR A RECORD TO BE DELETED IS NOT IN KEY 
FILE; RECORD CANNOT BE DELETED. 

176 ILLEGAL EXTRA DATA SEGMENT LENGTH. 
177 TOO MANY EXTRA DATA SEGMENTS FOR THIS 

PROCESS 

A-3 



Table A-1. File System Error Codes (continued) 

CODE MEANING ACTION 

178 NOT ENOUGH VIRTUAL MEMORY FOR EXTRA DATA INCREASE THE SIZE 
SEGMENT OF VIRTUAL MEMORY 

179 THE FILE MUST BE LOCKED BEFORE THIS INTRINSIC USE FLOCK TO LOCK 
ISSUED FILE OR OPEN FILE FOR 

EXCLUSIVE ACCESS. 

180 THE KSAM FILE MUST BE REBUILT BECAUSE THIS USE FCOPY TO REBUI LO 

VERSION OF KSAM DOES NOT HANDLE THE FILE FILE: 

BUILT BY PREVIOUS VERSION. > F ROM=oldksamfile 
;TO=(dfile,kfile) 

181 INVALID KEY STARTING POSITION. 
182 FILE IS EMPTY. 
183 RECORD DOES NOT CONTAIN ALL THE KEYS. 
184 INVALID RECORD NUMBER IN FFINDN INTRINSIC; RECORD NUMBER MUST 

RECORD NUMBER IS NEGATIVE. BE POSITIVE INTEGER. 
185 SEQUENCE ERROR IN PRIMARY KEY; ATTEMPT TO 

WRITE RECORD WITH PRIMARY KEY LESS THAN 
PREVIOUS KEY WHEN ASCENDING SEQUENCE 
EXPECTED. 

186 INVALID KEY LENGTH. 

187 INVALID KEY SPECIFICATION; KEYS ILLEGAL. 
188 INVALID DEVICE SPECIFICATION. 
189 INVALID RECORD FORMAT. 
190 INVALID KEY BLOCKING FACTOR VALUE. 

191 RECORD DOES NOT CONTAIN SEARCH KEY FOR 
DELETION. SPECIFIED KEY VALUE POINTS TO 
RECORD WHICH DOES NOT CONTAIN THAT VALUE. 

192 SYSTEM FAILURE OCCURRED WHILE KSAM FILE RUN KEYINFO OF 
WAS OPENED KSAMUTIL TO 

RESET FLAG. 

193 

i RESERVED FOR KSAM 
200 

201 

i RESERVED FOR FUTURE USE 
255 

A-4 MAY 1981 



Table A-2. COBOL Status Parameter Return Values 

STATUS 
VALUE 

"00" 

MEANING 

SUCCESSFUL COMPLETION - 1/0 operation was 
completed successfully. 

ACTION 

None. 

"02" SUCCESSFUL COMPLETION, DUPLICATE KEY - None required, returned for informa-
Read or Readbykey read a record whose key value tion only. 

"1 O" 

"21" 

"22" 

"23" 

was the same as the equivalent key in the next 
sequential record; this is not an error since dupli-
cate alternate keys are allowed. Write or rewrite 
operation was successful; a duplicate key was 
written for a key that is allowed duplicates. 

AT END - End-of-file or beginning-of-file reached 
during sequential or random read. There is no next 
logical record in ascending key order. 

INVALID KEY, SEQUENCE ERROR - Attempt 
was made to write a record with a primary key that 
is out of sequence when the file was opened for 
sequential access. 

INVALID KEY, DUPLICATE KEY - Attempt was 
made to write or rewrite a record with a key value 
that duplicates a key value in an existing record, 
and duplicates are not allowed. 

INVALID KEY, NO RECORD FOUND - Attempt 
to access record identified by a key with CKSTA RT 
or CKREADBYKEY, but no record is found with 
the specified key value at the specified key location. 

"24" INVALID KEY, BOUNDARY VIOLATION - An 
attempt was made to write beyond the externally 

defined end of file. 

"30" LOCK DENIED - File was locked by another 
process. 

A-6 

Usually none. This result is a signal 
to close the file or perform another 
end-of-file action. 

Check the primary key value in the 
record being written. If you don't 
want sequence checking, re-open the 
file for random or dynamic access. 

Check the key values. If possible 
change them to avoid the duplication. 
If duplicate keys must be written, 
create the file again allowing dupli
cates for the key and then copy the 
old file to the new file with FCOPY. 

Check the keyvalue, keylength, and 
key location parameters in the cal I. 
Correct if necessary. If record that 
cannot be found should be in the file, 
you may want to list the data file 
with FCOPY. 

Wait until process locking file unlocks 
it - try again or lock file with lockcond 
= 1. 



A-5a MAY 1981 



Table A-2. COBOL Status Parameter Return Values (continued) 

STATUS 
MEANING ACTION 

VALUE 

"31" UNLOCK DENI ED - File was not locked by call- Before calling CKUNLOCK to unlock a 
ing process. shared file it must have been locked by 

a call to CKLOCK. 

"9n" Fl LE SYSTEM ERROR - Where n is a binary Within your program you can call 
number between 0 and 255 corresponding to a CKERROR to convert the number to 
File System Error code (Refer to table A-1 ). a displayable value and then display 

it. Look up the value in table A-1 and 
perform any suggested action. 

Note that COBOL error messages 752 and 753 are issued for errors processing KSAM files. (Refer to 
table C-2 in the COBOL manual.) 

MAY 1981 A-5b 



STATUS 
VALUE 

"00" 

"02" 

"1 O" 

"21" 

"22" 

"23" 

"24" 

"71" 

Table A-3. BASIC Status Parameter Return Values 

MEANING 

SUCCESSFUL COMPLETION - The current 1/0 
operation was completed successfully. 

SUCCESSFUL COMPLETION, DUPLICATE KEY -
In a call to BKREAD or BKREADBYKEY, the cur
rent key has the same value cis the equivalent key in 
the next sequential record; duplicate keys are al
lowed. Or in a call to BKWRITE or BKREWRITE, 
the record just written created a duplicate key value 
for at least one key for which duplicates are allowed. 

AT END - A sequential read was attempted with 
BK READ, but there was no next logical record in 

ascending sequence by key value, or random read 
attempted to position to record with key value less 
than lowest value or greater than greatest value. 

INVALID KEY, SEQUENCE ERROR - BKWRITE 
attempted; record being written has primary key 
that is not in sequential order but file was opened 

for sequence checking. 

BKREWRITE attempted, but the primary key 

value was changed since the record being re
written was read. 

INVALID KEY, DUPLICATE KEY ERROR -
BKWRITE or BKREWRITE attempted to write 
record that contains a duplicate value for a key 
that is not allowed duplicate values. 

INVALID KEY, NO RECORD FOUND -
BKSTART or BKR EADBYKEY attempted to 
locate a record by a key value that could not be 
found. 

INVALID KEY, BOUNDARY VIOLATION -

BKWRITE attempted to write beyond the ex
ternally defined boundaries of the file. 

REQUEST DENIED, Fl LE ALREADY LOCKED -
BK LOCK was called with conditional locking and 

the file was already locked by another user. 

A-6 

ACTION 

None. 

None required. Returned for informa
tion only. 

Usually none. This result is a signal to 
close the file or perform some other 
end-of-file function. 

Check the primary key value in the 
record; if you don't want sequence 

checking, reopen the file with 
sequence = 0. 

Check the primary key value. Either 

change it back to the original value 
or read the record again before calling 

BKREWRITE. 

Check the key value. If possible 
change it to a unique value. If 
duplicate keys must be written, 
create the file again allowing dupl i
cate values for the key and then copy 
the old file to the new file. 

Check the key value, and key location 
parameters. Correct if necessary. If 
record that cannot be found should be 
in file, you may want to list data file 
with FCOPY. 

Re-enter command. 

Perform some action that does not re

quire exclusive access and then try 

BKLOCK again. As soon as the other 
user unlocks the file BK LOCK will 

work. 



Table A-3. BASIC Status Parameter Return Values (continued) 

STATUS 
MEANING ACTION 

VALUE 

"81" INVALID CALL, WRONG NUMBER OF PARAM- Check the call syntax and correct; if 
ETERS - A procedure call had too many or too not sure of error, consult manual. 
few parameters. 

"82" INVALID CALL, INVALID PARAMETER - Check the parameter and compare it 
Specified parameter is not the correct type. For to the rules specified in this manual 
example, a string variable was specified where only for the parameter format. 
numeric variables or constants are allowed. 

"83" INVALID CALL, INSUFFICIENT INTERNAL You can ask the system manager to 
BUFFER SPACE - The data to be written to the reconfigure the system, or you may 
file is too long for the configured internal buffer be able to reduce the amount of data 
space. being written from parameterlist. 

"9xxx" FILE SYSTEM ERROR - An MPE file system Within your program you can call 
error occurred for which the value xxx specifies BKER ROR to display a message with 
a 3-digit code between "O" and "255". the meaning of the code; you can 

consult table A-1 for the code meaning. 

A-7 



Table A-4. KSAMUTIL Error Codes and Messages 

CODE MESSAGE MEANING ACTION 

1000 COMMAND Fl LE READ 
ERROR. 

1001 COMMAND Fl LE END OF 
FILE. 

1002 UNKNOWN COMMAND. TYPE Command name not recognized. Type the correct name if 

HELP. you know it; else type 
HELP. 

1003 TOO MANY PARAMETERS More parameters specified than Check the command syn-

FOR THIS COMMAND. are allowed. tax and reenter correctly. 

1004 COMMAND FILE DATA 
TRANSMISSION ERROR. 

1005 COMMAND TOO LONG. 

1006 Fl LE NAME TOO LONG OR File name in BUI LO command Enter file name of 8 or 

ABSENT. incorrect. fewer alphanumeric char-
acters starting with a letter. 

1007 'REC' PARAMETER LIST Too many parameters specified Check syntax and reenter 
EXHAUSTED. after REC= in BUI LO command. with correct number of 

parameters. 

1008 'REC' RECORD SIZE VALUE Record size in BUILD command Check syntax and reenter 
INVALID. is not valid. with correct value for 

record size. 

1009 'REC' BLOCKING FACTOR Block factor in BUILD Check syntax and reenter 
VALUE INVALID. command is not valid. with correct value for 

blocking factor. 

1010 'REC' RECORD FORMAT Record format in BUILD Enter V for variable length 

VALUE INVALID. command is not For V. records, F for fixed length, 
or omit for fixed length. 

1011 'REC' RECORD TYPE VALUE Record code in BU I LO com- Enter ASCII for ASCII-

INVALID. mand is not ASCII or code records; BINARY or 
BINARY. omit for binary-coded 

records. 

1012 'DEV' DEVICE VALUE No device specification after Enter legal device name or 

ABSENT. DEV= in BUILD command. omit it device class is DISC. 

1013 'DEV' DEVICE VALUE Device specification in BUI LO Enter legal device class 

INVALID. command is not valid. name or legal logical device 
number. Refer to System 
Manager/System Supervisor 
Manual. 

A-8 



Table A-4. KSAMUTIL Error Codes and Messages (continued) 

CODE MESSAGE MEANING ACTION 

1014 'DEV' DEVICE VALUE TOO DEV= missing device specifica- Enter device name that is 
LONG OR ABSENT. tion or one that is too long. 1 to 8 alphanumeric char-

acters, begins with a letter, 
terminates with non-
alphanumeric character; 
or omit DEV= for DISC; 
or enter logical device 
number. 

1015 'KEY' SPECI Fl CATIONS Too many KEY= specifications Reduce number of keys to 
EXCEED LI MIT. in BUILD. a total of 16. 

1016 'KEY' CONT Al NS TOO More than 5 parameters fol low Parameters are: keytype, 
MANY PARAMETERS. KEY= in BUI LO. keylocation, keysize, and 

optionally, keyblocking, 
and DUP or DUPLICATE. 

1017 'KEY' TYPE VALUE INVALID. Invalid key type specified after Key types may be: B, I, D, 
KEY= in BUILD. R, L, N, P, *. Enter one of 

correct types. 

1018 'KEY' POSITION VALUE The key location is missing from Enter required keylocation 
ABSENT. KEY= in BUILD command. parameter following key-

type in KEY= specification. 

1019 'KEY' POSITION VALUE Invalid keylocation parameter Key location is specified as 
INVALID. specified after KEY= in BUILD. integer between 1 and num-

ber of bytes in record. 

1020 'KEY' SIZE VALUE RE- The key size is missing from Enter required keysize 
QUI RED AND ABSENT. KEY= in BUILD command. parameter after keylocation 

in KEY= specification. 

1021 'KEY' SIZE VALUE INVALID. Invalid keysize parameter Key size is specified as the 
specified after KEY= in BUILD. number of bytes in the key; 

refer to table 2-2 for legal 
sizes for each key type. 

1022 'KEY' BLOCKING FACTOR Invalid key blocking parameter Specify keyblocking as an 
VALUE INVALID. specified after KEY= in BUILD. even number equal to or 

greater than 4; or omit for 
key blocks with four keys 
per block. 

1023 CONFLICTING OPTIONS Check command syntax 

1024 MISSING CLOSING QUOTE Check command syntax 

1025 'KEY' 'DUPLICATE' Key word DUP or DUPLICATE Enter DUP or DUPLICATE 
EXPECTED. expected in KEY= specification. or remove terminating 

commas. 

A-9 



Table A-4. KSAMUTIL Error Codes and Messages (continued) 

CODE MESSAGE MEANING ACTION 

1026 'DISC' MUST BE FOLLOWED Key word DISC in BUILD com- Reenter DISC= followed 

BY'='. mand was specified without=. by up to 3 parameters 
describing disc file, or omit 
for defaults. 

1027 'DISC' NUMBER OF Value of numrecs parameter Enter maximum number of 
RECORDS VALUE INVALID. to DISC= not a positive integer. records as file size, or omit 

for default value of 1023 
records. 

1028 'DISC' NUMBER OF EX- Value of numextents not in Enter integer between 1 
TENTS VALUE INVALID. range 1-32. and 32, or omit for default 

value of 8 extents. 

1029 'DISC' INITIAL ALLOCA- Value of inital/oc not in range Enter integer between 1 
TION VALUE INVALID. 1-32. and 32, or omit for default 

value of 1 extent allocated 
when file is opened. 

1030 'LABELS' NOT FOLLOWED Key word LABELS in BUI LO Reenter LABELS= followed 
BY'=' OR BY TOO MANY command was specified with- by one parameter to specify 
PARAMETERS. out = or had more than 1 number of user labels, or 

parameter. omit for default of 0. 

1031 'LABELS' NUMBER OF 
LABELS VALUE INVALID. 

1032 'Fl RSTREC' NOT FOLLOWED Key word Fl RSTR EC in BUI LO Reenter FI RSTREC= fol-
BY'=' OR BY TOO MANY command was specified without lowed by starting record 
PARAMETERS. = or had more than 1 parameter. number, or omit to start 

numbering records with 
zero. 

1033 'Fl RSTREC' STARTING Value other than 0 or 1 entered Enter correct value or omit 
RECORD NUMBER MUST BE for first record number. for default of 0. 
0 OR 1. 

1034 'CODE' NOT FOLLOWED BY Key word CODE in BUILD Reenter CODE= followed 
'='OR BY TOO MANY command was specified with- by filecode, or om it for 
PARAMETERS. out = or had more than one file code of zero. 

parameter. 

1035 'CODE' FILE NUMBER Value not in range 0 through Enter positive integer 
VALUE INVALID. 1023 entered for file code. between 0 and 1023, or 

omit for default of 0. 

1036 'KEYDEV' FOLLOWED BY Key word KEYDEV= in Reenter with one parameter 
TOO MANY PARAMETERS. BUILD command was speci- to specify device class or 

f ied with more than 1 logical device number of 
parameter. key file, or omit for DISC. 

A-10 



Table A-4. KSAMUTIL Error Codes and Messages (continued) 

CODE MESSAGE MEANING ACTION 

1037 'KEYDEV' MUST BE FOL- "Key word KEYDEV not followed Reenter KEYDEV=, or 
LOWED BY'='. by=. omit for default device 

class DISC. 

1038 'KEYDEV' DEVICE PARAM- Key word KEYDEV= must be Reenter with device class 
ETERVALUETOOLONG followed by valid device specified as 1 to 8 alpha-

OR ABSENT. parameter. numeric characters begin-
ning with letter, terminated 
by non-alphanumeric char-
acter, or reenter with logical 
device number, or omit for 
default DISC. 

1039 'KEYFI LE' NOT FOLLOWED Key word KEYFI LE in BUILD Reenter KEYFI LE= fol-
BY '='OR BY TOO MANY command was specified with- lowed by actual file desig-
PARAMETERS. out = or had more than 1 nator of key file. 

parameter. 

1040 KEY Fl LE NAME TOO LONG File name specified as KEY- Reenter KEYFILE= with 
OR ABSENT. FILE= parameter is more than correct file name format. 

8 characters or was omitted. (Refer to BUILD descrip-
tion in manual.) 

1041 'KEYENTRI ES' NOT FOL- Key word KEYENTRIES in Reenter KEYENTR I ES= 
LOWED BY'=' OR BY TOO BUILD command was specified followed by the maximum 
MANY PARAMETERS. without =, or had more than 1 number of primary key 

parameter. entries expected in the key 
file, or omit for default 
of numrecs value from 
R EC=parameter. 

1042 'KEYENTRI ES' NUMBER OF 
ENTRIES VALUE INVALID. 

1043 KEYWORD SPECIFICATION A key word specified as a Check command syntax for 
IN THIS COMMAND IS IN- KSAMUTIL command correct key word and/or 

VALID. parameter is misspelled or spelling; reenter correctly. 
not in syntax. 

1044 DELIMITER AT THE END A delimiter follows command Remove delimiter or follow 
OF A SPECI Fl CATION IS specification in KSAMUTI L with rest of command. 
INVALID. command. 

1045 THE NUMBER OF PARAM- Too many or too few param- Check command syntax 
ETERS IN THIS COMMAND eters specified in a KSAMUl L and reenter with the cor-
IS INVALID. command. rect number of parameters. 

A-11 



Table A-4. KSAMUTIL Error Codes and Messages (continued) 

CODE MESSAGE MEANING ACTION 

1046 A PARAMETER VALUE IS The key word TEMP was ex- Check command syntax, 

INVALID. 'TEMP' WAS pected as a parameter in reenter with correct 

EXPECTED. PURGE or RENAME parameter value. 
commands. 

1047 LOCKWORD NOT Check command syntax; 

ALLOWED IN KEY FILE remove lockword from key 
file specification. 

1048 GROUP AND/OR ACCOUNT Check command syntax of 

NOT ALLOWED FOR BU I LD command. 

KEYFILE= 

1049 BACK REFERENCE NOT 
ALLOWED ON formal-
designator 

1050 SEO=SEOUENCE NUMBER Non-numeric sequence Check command syntax 

IS INVALID number specified for of KEYSEO or KEYDUMP 

SEO= parameter. commands. 

1051 SUBSET= VALUE Either the starting Check command syntax of 

INVALID position or the number KEYDUMP command 

of key values to be dumped 
is invaled. 

1052 SEO= SYNTAX ERROR Check command syntax of 
KEYSEQ or KEYINFO 
command. 

1053 SEO= PARAMETER LIST Not enough information in Enter parameter value for 

EXHAUSTED parameter I ist; key SEO= in KEYSEO or 

number missing. KEYDUMP commands. 

1054 FILE= PARAMETER Not enough information in Enter file name after 

LIST EXHAUSTED parameter list; file name FILE= in KEYDUMP 

missing. command. 

1055 FILE= SYNTAX ERROR Check command syntax of 
KEYDUMP command. 

1056 SUBSET= PARAMETER Not enough information in Check command syntax of 

LIST EXHAUSTED parameter list. KEYDUMP; enter correct 
number of parameters. 

1057 SUBSET= SYNTAX ERROR Check command syntax of 
KEYDUMP command. 

1058 INVALID KEY Key number specified in Key number is 1 for primary 

SEQUENCE SEO= parameter is greater key, 2 for first alternate key, 

SPECIFICATION than the number of keys etc. Use VERIFY command 

in file. to check number of keys 
in file. 

A-12 



Table A-4. KSAMUTIL Error Codes and Messages (continued) 

CODE MESSAGE MEANING ACTION 

1059 Fl LE SPECIFIED File name specified in Enter name of non-existent 

IN FILE= ALREAUY FI LE= parameter is an file, or rename permanent file. 

EXISTS existing permanent file; 

KEYDUMP always creates 

a new file. 

1060 B-TREE HAS MORE THAN KEYDUMP cannot dump more 

20 LEVELS than 20 levels of the key file 

structure. 

1061 INVALID DECIMAL DIGIT Packed decimal digit is not 

OR DIGIT COUNT >28 0-9, or there are more than 

28 digits. Cannot convert to 

ASCII for KEYDUMP. 

1062 THE REFERENCED FILE File reference in the Check file name and 

IS NOT A KSAM FILE command is not a KSAM file. correct it. 

1063 RECORD SIZE OF THE Record size of the file Check KEYDUMP syntax; 

SPECIFIED FILE HAS specified in FI LE= change : FI LE command so 

BEEN CHANGED parameter of KEYDUMP that record size is not 

has been changed by a specified. 

: FI LE command. 

1064 GENERIC OR APPROX I- Generic or approximate Use full key value in 

MA TE SEARCH NOT keys can be specified in SUBSET= or do not use 

ALLOWED FOR KEY SUBSET= parameter of SUBSET= parameter. 

TYPE KEYDUMP only if key 

type is BYTE, INTEGER, 

or DOUBLE. 

1065 ILLEGAL OR TOO Position value of SUBSET= Change position value, or 

MANY CHARACTERS parameter in KEYDUMP use quoted string for 
contains non-numeric SUBSET= parameter. 

characters, or is >9 digits. 

1066 REMOTE FILE ACCESS A : FI LE command specified Change : FI LE command 

NOT SUPPORTED a remote file, but this com- to specify local file. 

mand does not support 

remote access. 

1067 SORT ON RECORD Sort of keydump by record Check the reasons for 

POINTERS FAILS pointers (SORT option of failure in SORT error 
KEYDUMP) failed during message. 

sort by SORT /3000 program. 

1068 SYSTEM FAILURE KSAM file was open when a Run KEYINFO command 

OCCURRED WHILE system failure occurred, and to recover file and reset flag 

THE KSAM FILE WAS file may be damaged. so file can be opened, or run 

OPEN VERIFY with NOCHECK to 

examine file. 

A-13 



A-13a 
MAY 1981 



Table A-4. KSAMUTIL Error Codes and Messages (continued) 

CODE MESSAGE MEANING ACTION 

1069 UNEXPECTED The only non-alphanu- Check the file name 

CHARACTER IN meric characters allowed and correct it. 

FILE NAME; in a file name are "." or 

EXPECTED . or I ''/''. 

MAY 1981 A-13b 



Table A-5. FCOPY Warning and Error Messages 

CODE MESSAGE MEANING ACTION 

None <CONTROL Y> Acknowledges receipt of a None. 
CONTROL-Y entered during 
a session. 

None READ ERROR FROM An error occurred while read- In a job: 

COMMAND IMPUTFILE ing an FCOPY command from Re-submit the job. 
$STDIN. In a session: 

Re-enter the command. 

None WRITE ERROR TO COM- An error occurred while writ- More than likely nothing 

MAND LISTFI LE ing an FCOPY message to serious has occurred and 
$STDLIST. all FCOPY operations have 

been performed success-
fully. If you want to be 
sure, however, do the 
following: 

In a job: 
Re-submit the job. 

In a session: 
Re-enter the most recent 
FCOPY command. 

3 SYNTAX ERROR: IN The subset function was not 
SUBSET OPTION specified properly. 

4 SYNTAX ERROR: IN The title option of the display 
TITLE OPTION function was not specified 

properly. 

5 SYNTAX ERROR: IN The ignore errors function was 
IGNERR OPTION not specified properly. 

6 SYNTAX ERROR: IN The verify function was not 
VERIFY OPTION specified properly. 

In a job: 
7 SYNTAX ERROR: IN The skip end-of-file function Correct the command and 

SKIPEOF OPTION was not specified properly. re-submit the job. 

8 SYNTAX ERROR: IN The compare function was not In a session: 

COMPARE OPTION specified properly. Re-enter the command 

9 SYNTAX ERROR: IN The new file function was not 
using the correct format. 

NEW OPTION specified properly. 

10 SYNTAX ERROR: IN The display hexadecimal tune-
HEX OPTION tion was not specified properly. 

11 SYNTAX ERROR: IN The EBCDICOUT character 
EBCDICOUT OPTION translate function was not 

specified properly. 

A-14 



Table A-5. FCOPY Warning and Error Messages (continued) 

CODE MESSAGE MEANING ACTION 

12 SYNTAX ERROR: IN The display character function 

CHAR OPTION was not specified properly 

13 SYNTAX ERROR: IN OCTAL The display octal function was 

OPTION not specified properly. 

14 SYNTAX ERROR: IN UP- The upshift function was not 

SHIFT OPTION specified properly. 
In a job: 

15 SYNTAX ERROR: IN The BCD I Cl N character trans- Correct the command and 
BCDICIN OPTION late was not specified properly. resubmit the job. 

16 SYNTAX ERROR: IN The NOR ECNUM option of In a session: 

NORECNUM OPTION the display function was not Re-enter the command 

specified properly. using the correct format. 

17 SYNTAX ERROR: IN The EBCDICIN character trans-
EBCDIC! N OPTION late function was not specified 

properly. 

18 SYNTAX ERROR: IN The BCDICOUT character 
BCDICOUT OPTION translate function was not 

specified properly. 

19 SYNTAX ERROR: IN- The EXIT command was not None. FCOPY terminates. 

VALID FORM OF EXIT specified properly. 

COMMAND 

51 SYNTAX ERROR: IN The characterstring specified 

QUOTED STRING for the subset function is not 
valid. 

52 SYNTAX ERROR: IN BIT The patternlist specified for the 

PATTERN subset function is not valid. 

53 SYNTAX ERROR: IN- An integer specified is outside 

VALID INTEGER the range allowed for the 
particular FCOPY function. In a job: 

Correct the command and 
54 SYNTAX ERROR: UN- One of the specified functions resubmit the job. 

KNOWN OPTION NAME was unrecognizable. 
In a session: 

55 SYNTAX ERROR: IN FROM- The "from" file was not speci- Re-enter the command 

FILE SPECIFIER fied properly. using the correct format. 

56 SYNTAX ERROR: IN The "to" file was not specified 
TOFI LE SPECI Fl ER properly. 

57 SYNTAX ERROR: ILLEGAL Two or more functionlist entries 
COMBINATION OF OPTIONS conflict with one another. 

58 SYNTAX ERROR: FROM- FROM= and TO= were not both 

FILE AND TOFILE NOT specified in the FCOPY 
BOTH SPECIFIED command. 

A-15 



Table A-5. FCOPY Warning and Error Messages (continued) 

CODE MESSAGE MEANING ACTION 

59 SYNTAX ERROR: ILLEGAL The context used to specify a 
USE OF NEW new "to" file is not valid. 

The context used to specify* 
In a job: 

60 SYNTAX ERROR: ILLEGAL Correct the command and 
USE OF* as a "from" file or "to" file resubmit the job. 

is not valid. 
In a session: 

62 SYNTAX ERROR: FILE The "from" or "to" file name Re-enter the command 
NAME TOO LONG specified is longer than the 35 using the correct format. 

characters allowed in a fully-
qualified file name with 

lockword. 

102 CAN'T CLOSE FROM Fl LE MPE can't close the "from" 
file. This message is followed 
by an MPE file information 
display containing (among 
other things) an error Look up the error number 
number. in table A-1 and act 

103 CAN'T CLOSE TOFI LE MPE can't close the "to" file. accordingly. 

This message is followed by an 
MPE file information display 
containing (among other 
things) an error number. 

104 CAN'T SAVE NEW MPE can't close the "to" file If you don't have SF 
TOFILE as a permanent file. Either capability, you can't per-

you do not have SF capability form the operation. 
or there is not enough group If there is not enough fi I e 
account, or system file space. space, purge some un-

needed files to free some 
file space. 

105 CAN'T OPEN FROM Fl LE MPE can't open the "from" 

file. This message is followed 
by an MPE file information 
display containing (among 

other things) an error number. Look up the error number 
in table A-1 and act 

106 CAN'T OPEN TOFILE MPE can't open the "to" file. accordingly. 
This message is fol lowed by 
an MPE file information dis-

play containing (among other 
things) an error number. 

A-16 



Table A-5; FCOPY Warning and Error Messages (continued) 

CODE MESSAGE MEANING ACTION 

107 VERIFY OR COMPARE MPE can't get read access to Reset the particular :FILE 
OPTION: CAN'T GET the "to" file for a verify or command (using the MPE 

READ ACCESS TO compare operation. The read : RESET command) and 
TOFILE access specified in the file label retry the operation. 

has been overridden by an 
MPE : FI LE command contain-
ing ACC=APPEND, ACC=OUT, 
or ACC=OUTKEEP. 

108 ERROR IN CALLING An error prevented MPE from 

FGETINFO FOR FROMFI LE obtaining information from the 
"from" file's label. This mes-
sage is followed by an MPE 
file information display contain-
ing (among other things) an 

Look up the error number 
error number. 

in table A-1 and act 

109 ERROR IN CALLING An error prevented MPE from accordingly. 

FGETINFOR FOR TOFILE obtaining information from 
the "to" file's label. This mes-
sage is followed by an MPE 
file information display contain-
ing (among other things) an 

error number. 

110 IGNERR OPTION: The "from" file's device is not The ignore errors function 

FROM Fl LE NOT TAPE a magnetic tape unit. cannot be used in this case. 

111 CAN'T GET READ ACCESS MPE can't get read access to 
TO FROMFILE the "from'' file. The read access 

specified in the file label has 
been overridden by an MPE Reset the particular : FI LE 
: Fl LE command containing command (using the MPE 
ACC=APPEND, ACC=OUT, :RESET command) and 
or ACC=OUTKEEP. retry the operation. 

112 CAN'T GET WRITE MPE can't get write access to 

ACCESS TO TO FI LE the "to" file. The write access 
specified in the file label has 
been overridden by an MPE 
: Fl LE command containing 
ACC=IN. 

113 SKIPEOF OPTION: The skip end-of-file function 
FROM FILE NOT TAPE was specified for the "from" 

file and the "from" file device If the intended "from" or 

is not a magnetic tape unit. "to" file is on magnetic 
tape, check the associated 

114 SKIPEOF OPTION: The skip end-of-file function MPE :FILE command and 
TO FILE NOT TAPE was specified for the "to" file the back reference to it. 

and the "to" file device is not a 
magnetic tape unit. 

A-17 



Table A-5. FCOPY Warning and Error Messages (continued) 

CODE MESSAGE MEANING ACTION 

115 SUBSET OPTION: STRING The characterstring or patternlist Change the specified subset 
FALLS OUTSIDE OF specified is greater than the definition to a valid one 

FROMFI LE RECSIZE record size of the "from" file. and try the operation again. 

No such subset can exist in the 
specified "from" file. 

116 CAN'T GET LARGE There is not enough data space Ask the system manager 
ENOUGH BUFFER for the buffers needed by the what size data area was 

requested operation. FCOPY specified when FCO PY 
uses the DL-DB area for vari- was prepared and rerun 
able sized buffers. FCOPY specifying a larger 

MAXDATA= parameter. 

Also make sure that the 
system configuration will 
accommodate your record 
size in the maximum 
allowed data segment size. 

117 SKIPEOF OPTION: ERROR An error occurred while 
WHILE SKIPPING IN skipping end-of-file marks 
FROM FILE in the "from" file. 

118 SKIPEOF OPTION: ERROR An error occurred while 
WHILE SKIPPING IN skipping end-of-file marks Retry the operation. 
TOFILE in the "to" file. 

119 SUBSET OPTION: ERROR An error occurred while 
WHILE SPACING IN spacing through the "from" 

FROM FILE file. 

120 SUBSET OPTION: SUBSET The subset specified extends Change the specified subset 
STARTS OVER EOF over an end-of-file mark or a definition to a valid one 
BOUNDARY tape mark boundary. and try the operation again. 

123 SUBSET OPTION: THIS The specified subset requires Check the MPE : FI LE com-
INPUT DEVICE DOES NOT backspacing in the "from" file mand associated with the 
BACKSPACE but the device for that file is "from" file and the back 

not a disc or magnetic tape. reference to it. 

124 READ ERROR IN FROM- An error occurred while spac- Retry the operation. 
Fl LE AT RECORD recnum ing through the "from" file 

in search of the start of a 
subset. 

125 SUBSET OPTION: NUMERIC A subset specified by startin[t Change the specified subset 
SUBSET IS EMPTY record-number, number-of- definition to a valid one 

records, and/or last-record- and try the operation again. 
number does not exist or 

contains no data. 

A-18 



Table A-5. FCOPY Warning and Error Messages (continued) 

CODE MESSAGE MEANING ACTION 

126 VERIFY OPTION: ERROR An error occurred while spac- Retry the operation. 

WHILE REWINDING ing backward to the beginning 

FROMFI LE of the "from" file at the start 
of a verify operation. 

127 VERIFY OPTION: ERROR An error occurred while spac- Retry the operation. 

WHILE REWINDING ing backward to the beginning 
TOFILE of the "to" file at the start of 

a verify operation. 

128 EOF FOUND WHILE An end-of-file mark was en- Retry the operation specify-

SPACING IN FROMFILE countered while spacing ing block numbers instead 

through the "from" file in of record numbers. 

search of the start of a sub-
set. This most often occurs OR 

when the "from" file is a Reblock the tape so each 
blocked magnetic tape. For block contains one record 
a blocked magnetic tape, the and then retry the 
record numbers supplied in 
the SUBSET= parameter are 

operation. 

used as block numbers. 

129 EOF FOUND WHILE An end-of-file mark was en- Compare operation: 

SPACING IN TOFILE countered while spacing The "from" and "to" files 

through the "to" file in are not identical. Display 
search of the start of a sub- the "to" file to determine 
set during a compare or what it actually contains. 
verify operation Verify operation: 

The copy operation was 
not performed correctly. 
Retry the operation. 

131 ERROR WHILE WRITING An error occurred while 
EOF TO TO FILE writing an end-of-file mark 

in the "to" file. 

132 VERIFY OPTION: ERROR An error occurred while 
Retry the operation 

WHILE SPACING IN THE spacing through the "from" 
FROM FILE file during a verify 

operation. 

133 VERIFY OPTION: ERROR An error occurred while 
WHILE SPACING IN THE spacing through the "to" 
TOFILE file during a verify 

operation. 

A-19 



CODE 

134 

135 

136 

137 

138 

139 

Table A-5. FCOPY Warning and Error Messages (continued) 

MESSAGE 

WARNING: FOUND EOF 
IN TOFILE 

WRITE ERROR TO 
TOFILE 

READ ERROR FROM 
TOFILE 

WARNING: AN UNLABELLED 
TAPE OPERATION ENDS ON 
AN ERROR 

TITLE OPTION: TITLE TOO 

LONG 

DUMP OPTION: TOFI LE 
RECSIZE NOT WITHIN 
LEGAL LIMIT 

MEANING 

FCOPY has performed the 
specified ope; a1ion but has 

filled the "to" file before 

completing the operation. 

An error occurred while 
writing to the "to" file. 

An error occurred while read
ing from the "to" file during 
a compare or verify operation. 

An operation involving a mag
netic tape "from" file was 
terminated by reading beyond 

the end of valid data rather 
than by sensing an end-of-file 

mark. 

The title specified for the list 

function is longer than the 70 

characters al lowed or it ex
tended over more than one line 
(record). 

A file display was directed to 

an intermediate storage device 
with an incorrect record size. 
That record size must be ~ 60 
bytes ( 30 words). 

A-20 

ACTION 

The "to" file was not 

large enough. Use the 

MPE : LISTF filename,2 
command to determine 
the "to" file's size and 
then increase its size (using 

the MPE :PURGE and 
:BUI LO commands) and 
retry the operation. 

Retry the operation. 

Compare operation: 
Retry the operation. If 
the error persists, you 
must try to recreate the 
"to" file. 

Verify operation: 
Retry the operation. 

This is not an error. You 
can avoid this message by 
reading the "from" tape 

one file at a time and using 
the keyword SUBSET. 

In a job: 
Correct the command and 
resubmit the job. 

In a session: 
Re-enter the command 
using the correct format. 

Change the record size of 

the intermediate storage 
file (using the MPE 
:PURGE and :BUILD 

commands) so that it is 
within the allowed range 
and then retry the oper
ation. 



Table A-5. FCOPY Warning and Err6r Messages (continued) 

CODE MESSAGE MEANING ACTION 

140 COMPARE OR VERIFY The compare or verify operation Compare operation: 
OPTION: OPERATION was not attempted because the None. The compare oper-
FAILS; DIFFERENT record sizes of the "to" and ation revealed that the 
FIXED RECSIZES "from" files are not identical. fixed record sizes of the 

two files are not identical. 

Verify operation: 
Change the record size of 
the "to" file (using the 
MPE :PURGE and :BUILD 
commands) so that it is 
the same as that of the 
"from" file and then retry 
the operation. 

141 COMPARE BEGINS The comparison phase of a None. 
verify operation has begun. 

143 WARNING: FROMFILE IS The "from" file contained None. You may have acci-
EMPTY no data. Nothing was copied dentally specified the 

or compared. wrong file as the "from" 
file. 

144 NEW OPTION: FILE The "to" file named for the Change the name of the 
ALREADY EXISTS new file function already exists "to" file and try the oper-

in the specified (or implied) ation again. 
group and account. 

145 BACKSPACE ERROR IN An error occurred while spacing Retry the operation. 
FROMFILE backward to the beginning of 

the "from" file or a subset 
within it. 

200 WARNING: FROMFILE The record sizes of the "from" In a job: 
RECSIZE IS number type, and "to" files are not identical. FCOPY performs the speci-
TOFILE RECSIZE IS fied operation despite the 
number type conflict. 

In a session: 
You are given the choice 
whether or not to continue 
the operation. 

Note that if the "from" 
record size is larger than 
the "to" record size, the 
"from" records would be 
truncated. If the "to" 
record size is larger than 
the "from" record size, the 
content of the excess byte 
positions in the "to" 
records is unpredictable. 

A-21 



Table A-5. FCOPY Warning and Error Messages (continued) 

CODE MESSAGE MEANING ACTION 

201 WARNING: FROMFI LE IS The data formats of the "from" In a job: 
ASCII, TOFI LE IS Bl NARY and "to" files are not identical. FCOPY performs the oper-

or ation despite the conflict. 
WARNING: FROMFILE IS In a session: 
Bl NARY, TOFI LE IS ASCII You are given the choice 

whether or not to continue 
the operation. 

301 READ ERROR IN An error occurred while read- Retry the operation. If 
FROMFILE AT RECORD ing from the "from" file at the error persists, use the 
recnum the record number displayed subset function to copy 

(recnum). all of the file except the 
erroneous record. 

302 VERIFY OPTION: RAN The verify function was Retry the operation specify-
OUT OF VERIFY ERRORS terminated because the speci- ing a larger number-of-

AT FROMFI LE RECORD tied maximum number of errors parameter. 
recnum errors has been exceeded at 

the record number displayed 
(recnum). 

304 COMPARE OPTION: RAN The compare function was Retry the operation specify-
OUT OF COMPARE ERRORS terminated because the speci- ing a larger number-of-
AT FROMFILE RECORD tied maximum number of errors parameter 
recnum errors has been exceeded at 

the record number displayed 
(recnum). 

901 KSAM FROMFI LE The beginning or end of the 
BOUNDARY (EOF OR BOF) from file was reached during 

the copy operation. 

902 KSAM FROMFILE Could not position to desired Try again. 
POSITIONING ERROR place. 

903 ERROR; WRONG CONDI· From file is not a KSAM Create a KSAM file before 
TIONS FOR OPENING file, or NOKSAM was running FCOPY and copy 
NEW KSAM Fl LE specified. to that file. 

A-22 



KSAM/3000 INTERNAL MifoH§ 
STRUCTURE AND TECHNIQUES I e I 

OVERVIEW 
KSAM files can be used efficiently without any knowledge of how the files are structured or how 
file blocking and size is determined. The default values provided for file capacity, key blocking, num
ber of key entries, and so forth are effective in many applications. This appendix provides the sophis
ticated programming staff with information on how KSAM files are structured, how disc space is 
allocated to a KSAM file, and how memory space is allocated for the Extra Data Segments used when 
a KSAM file is modified or accessed. Such information may be useful for improving performance 
based on the particular application. 

KSAM FILE STRUCTURE 
A KSAM/3000 file is two physical files: a data file and a key file. The data file portion of a KSAM 
file contains all the data in the file and contains nothing but the data. Data records are written to the 
data file in the order in which they are received from a program. (The last record added is always 
written to the end of the file.) This chronological order is not necessarily in sequence by key value. 
At the time the file is opened, you can specify that records must be written in primary key sequence, 
but the default mode is to write records in any order. 

The key file portion of a KSAM file contains the key entries that maintain the sequence of the data 
records. As a data record is written to the data file, a key entry is added for each key defined for the 
file, and the sequential connections between key entries maintained. This means that if there is a pri
mary key and two alternate keys, three key entries are added with each new data record, and three 
sets of pointers are updated to reflect the new key sequence of each key. 

The structure of the data file is like that of any MPE file. Data records may be fixed or variable in 
length. If fixed, each record is the size specified when the file is created (default size is equivalent to 
one 128-word disc sector). If variable, the actual size of each record is included in the record itself, 
and the maximum size of any record is used to determine the blocking. By default, data records are 
blocked one record per block. 

The structure of the key file is more complex. The key file is organized so that locating a particular 
key requires the least number of accesses. For this purpose, the key files are organized in a particular 
structure known as a "B-Tree'~ 1 B-tree structure has two main advantages: 

• The number of file accesses is limited to the number of levels in the tree. If there are two levels, 
no more than two reads of the key file are needed to locate a particular key. 

• The key file is balanced. This means that each level pointer associated with a particular key value 
points to approximately as many higher key values as lower key values at the next level of the 
tree. 

B-tree structure in general is discussed below, followed by a discussion of how KSAM key files use 
this structure. 

1 
Described in "Organization and Maintenance of Large Ordered Indexes", Bayer and McCreight, Acta Informatica, Springer Verlag 
1972, pp 173-189. 

B-1 



B-TREE STRUCTURE 

In a B-tree, there is always one root level block that points to blocks at a lower level. At the lowest 
level, the blocks are called leaves and they do not reference another level. In a two-level structure (see 
figure B-1), the blocks at the second level are all "leaves". If the tree has more than two levels, inter
mediate blocks (nodes or branches) are referenced by a higher level and themselves reference a lower 
level. Unless this lower level is a leaf, it also references a lower level. This continues until the lowest 
(leaf) level is reached. 

The notion of higher and lower level does not refer to the key values. The root block key values are 
always central and point to blocks with lower values and blocks with higher values. Thus if there are 
two entries at the root or a branch level, there will be three pointers to the next level: one for key 
values less than the first key value, one for key values less than the second key value but greater than 
the first, and one for key values greater than the second. 

Within each block, values are stored in ascending order. Although not all blocks are filled with values, 
each block in a tree is the same size. Figure B-1 illustrates a simple 2-level tree with one root block 
and three leaf blocks. The root is a single block and each leaf is a block of the same size. (This example 
uses the KSAM minimum key block size consisting of four key entries per block.) 

•=Pointer 

.----Root 

.__ ________ • 14 • 16 • 

7. 8. 9 •10• 

• 3 • 

Figure B-1. Two-Level B-Tree Structure 

ADDING OR DELETING KEYS. When a key block is full and new keys are added, the root level 
block may need to be split, causing a new root block to be introduced and adding a new level to the 
tree. This process is illustrated in figure B-2 where the addition of one new key to a partially filled 
block does not affect the tree structure, but the addition of a second key to the full block causes 
the block to split. 

B-2 



Again, this example assumes the minimum key block size for the sake of simplicity. Note that all 
key file maintenance is performed in the KSAM extra data segment where space is allocated for one 
more key than the key block size. This allows the addition of a key to a "full" block. Before the 
block is read back into the key file, it is split so that the key block size is maintained. 

l·I H 3 1·1 5 1·~·1<~ initial root block 

1. Insert key value "411
: 

I ·I 11 3 11 4 11 s I I<.--------' root block full 

insert "4") ~'5" to right 

2. Insert key value "2" into full block: 

shift "3" & "4" to right 

shift "5" to special location 
insert "2" ~ 

I I 11 2 11 3 11 4 I I_~ l J 
\_ middle value selected for new root block 

3. Split block in order to maintain block size: 

new root block 

H 1 ll 2 l~~I <.------ new leaves 

Figure B-2. Split Causes New Level in Tree 

When the root block and all the leaves are full, another split becomes necessary. Figure B-3 illustrates 
a split caused when a new key is added to a full two-level tree structure, forcing it to a three-level 
structure. 

B-3 



2-Level Key 

Block Structure 

(all blocks full) 

Insertion of 

key value 9 

causes block 

split 

3-Level Key 

Block Structure 

(shaded entries 
empty) 

leaves (sons) 

.-..-- branch (father/son) 

Figure B-3. Tree Growth from Two to Three Levels 

Note that key blocks must always be defined with an even number of keys. As a result, when a key 
is added to a full block, there will be a middle value to form a block at a new level. This maintains 
the balance essential to B-tree structure. 

As records are deleted from the data file, two blocks at the same level (brothers) may be merged into 
one block. If sufficient records are deleted, the root block may be merged into a higher level, thereby 
contracting the number of levels in the key structure. 

B-4 



KSAM KEY FILE STRUCTURE 

A KSAM key file consists of three types of information: 

• Control 

• Key descriptor 

• Key entries 

contains general control information such as the KSAM file name, and 
the number of keys defined for the file. 

contains general key information for each key such as the starting loca
tion in the data record of the key field, and the location in the key file 
of the root key entry. 

Each key entry contains information about a key associated with a data 
record. This information consists of: 

• the key value 

• a pointer into a data record in the data file with the same key value. 

• pointers into other records within the key file. 

The control and key descriptor information is contained in two blocks (physical records) at the be
ginning of each file. Regardless of the number of keys in the file, each block is 128 words (1 sector) 
long. Thus, every key file is preceded by two sectors of control and key descriptor information. 

The key entries are also organized into blocks of a fixed size. However, the exact number of blocks 
and the size of each block is based on a variety of factors, such as the key size, the number of keys 
in the file, the number of key values for each key, the key blocking factor, and so forth. (Calculation 
of key block size is discussed later in this section.) These key entry blocks are organized into the B
tree structure discussed above. A separate key structure is maintained for each key defined for the 
file. Thus there may be up to 16 separate tree structures in a single KSAM file. 

Refer to figure B-4 for a simplified diagram of a KSAM key file with two keys each organized into 
a two level tree structure. For a detailed description of the three types of block, refer to figures B-5 
and B-6. 

CONTROL BLOCK. This 128-word block contains information on the data file associated with the 
key file, and keeps track of the number and type of access to the key file. It also specifies the number 
of keys (primary and alternate) defined for the KSAM file. The name of the data file and the number 
of keys are essential for associating the key file with the data file. The number of keys determines 
how many entries are in the Key Descriptor Block. (Refer to figure B-5.) 

KEY DESCRIPTOR BLOCK. This 128-word block contains one 8-word entry for each key defined 
for the KSAM file. The first entry describes the primary key, the next entry describes the first al
ternate key (if there is one), and each subsequent entry describes any additional alternate keys. The 
first word of each entry points to the root block for that key; another important item is the location 
of the key in the data file record. (Refer to figure B-5.) 

B-5 



Data File Name 

i ff No. of Keys 

_I F_l_LE_x_l'--~-2__._ ___ ~I-•-----Control Block 

to Alternate 
Key Root 
Block 

-,...--------Key Descriptor Block 

• ~ root (father) 

H 141·1 rn l·l 36 H 421·1 

H 7 1-1 11 l·~·~·I 
to Primary 
Key Root 
Block H 2 H 5 l·~·~·I 

~ 
• • root (father) 

L--___..,. JM • MX • NO • XT • 

H DC HEE l·~·~·I 

H AA H AC l·~·~·I 

Primary Key Sequence = AA AC BC DC EE GH JM MX NO XT 

Alternate Key Sequence = 2 5 6 7 11 12 14 18 36 42 

• = Pointer to next level in tree 

leaves (sons) 

shaded areas available 
for new entries 

Figure B-4. KSAM Key File Structure With Two Keys 

B-6 

Key 
Entry 
Blocks 



CONTROL BLOCK (first block in each key file) 

Word 
0-3 

4-15 

16-17 
18-19 
20-21 

22 
23 
24 

25-58 

59-60 
61-62 
63-64 

77 

128 

)> 

~ 

Data File Name 

Date/Time 

Ver!:ion/Fix 
#Records in Data File 

#Blocks in Data File 
# Words in Last Data File Block 

Data File Blocking Factor 
Data File Record Size 

Intrinsic Calls 
(each a double word) 

Key Block Read Counter 
Key Block Write Counter 
Key Block Split Counter 

#Keys 

..... 

' 

> 
.... 
~ 

< 

Total file access 
counts, used by 
VERIFY comm 

identifies data file 
associated with 
key file 

and 

· specifies number of 
keys defined for file 

KEY DESCRIPTOR BLOCK 

bits = 0 1 3 4 7 8 15 word 

pointer to primary -------,. Disc Address of Root Block 

keytype l key size 
key root block 

... location in data record ------ key starting location 

Dl key blocking factor 

I 
of primary key 

(D=Duplicate key flag) 

pointer to 1st alternate------.. 
key root block 

location in data record ------.... 
of 1st alternate key 

user name, account, group, 
& home group 
(4 words each) set by 
KEY INFO 

~ 

~ 

#of tree levels 

reserved 

] 

_I 
] 

additional entries for up 
to 15 alternate keys 

user who recovered file last 

Figure B-5. Control Block and Key Descriptor Block 

B-7 

1 

2 
3 
4 
5 
6 

7 

8 

9 

1 0 

1 1 
1 2 
1 3 

1 4 
1 5 
1 6 

1 7 

primary 
key 

Alternate 
Key 1 

) 80 

81- 96 

3> 97-128 



KEY ENTRY BLOCKS. Each block in the key file contains, in addition to the key values, pointers 
that link the key blocks to each other and pointers that link each key value to an associated data 
record. Preceding these entries, the first item in every key block is the address of the block on disc; 
the next item is the number of keys in the key block. 

All key block access for search and modification is performed in the KSAM extra data segment. 
The disc address in each key block insures that the block is returned to its correct lo cation on disc 
from the extra data segment. 

Figure B-6 illustrates the general layout of all key entry blocks. Each key value is followed by a 
pointer to a data record and a pointer to the block at the next level with higher key values. The first 
pointer in each block points to a block at the next level with lower key values. These pointers are set 
to zero for key blocks that have no next level (the leaves on a tree structure). 

KEY ENTRY BLOCK 

Disc Address of Block 

#of Keys in Block 

Pointer to Next Level in Tree 

+----- 2 words 

Extra 5 words I ---1 word 

---2words 
I 

Key Value 

Key Entry 

Pointer to Record in Data File ---2 words 

' 
Pointer to Next Level in Tree .--2words 

I 

Key Value 

Key Entry 

Pointer to Record in Data File ---2 words 

Pointer to Next Level in Tree ---2words 

' 

I 

Key Value 

Key Entry 

Pointer to Record in Data File ------2 words 

Pointer to Next Level in Tree ---2 words 

Figure B-6. Key Entry Block Structure 

B-8 MAY 1981 



RELATION OF KEY TO DATA FILE 

The purpose of the KSAM key file is to maintain the order of data records in the data file. In order 
to maintain sequential order for each key, the keys blocks are connected through pointers. In addition 
to these pointers, each key entry must also contain a pointer linking the key value to the data record 
containing the corresponding key value. 

When the KSAM file is created, each key is defined by its starting location in the data record, its 
length, and its type. The location is specified as the character position where the key value starts; 
the length is the maximum number of characters used by the key value; its type is the type of the 
value such as, an integer, a character string, or a double-word integer. 

Thus, if the primary key is defined as a character string that starts in character position 3 and is 20 
characters long, then KSAM expects that each data record will contain such a value in that location. 
Whatever is placed in the defined location is treated as the primary key and determines the order in 
which data records are sequenced. 

The order in which records are physically written to the date file is called chronological sequence. 
This sequence may or may not also be a key sequence. If the records were written to the file in pri
mary key sequence, then this sequence and the chronological sequence are the same. If there is an 
alternate key for the file, however, it is very unlikely that alternate key sequence is the same as the 
chronological sequence. 

NOTE 

Key sequence in KSAM files is always in ascending order by 
key value. 

Refer to figure B-7 for a simplified diagram of the relation between the primary keys in the key file 
and the associated data records in the data file. (A similar diagram could be set up for the alternate 
key.) The diagram shows the pointer in each key entry pointing directly to a record in the data file. 

When a data record is to be located by key value, the root block for the appropriate key is searched 
first, using a binary search method. If the key is in the root block, the search is over. If it is not, the 
key value is between two root block values or it is less than the lowest value or greater than the 
highest. Using the pointer in the appropriate location, a block at the next level is located. This block 
is then searched for the selected key. Again, if the key is found, the search is over. If the key is not 
found at this level, the appropriate pointer to the next level is used and the search continues. 

When the selected key value is found, the pointer to the data file associated with that key value is 
used to locate the record in the data file. 

B-9 



Data 

KEY FILE 
(KFILEX) 

t 
Filename No. of Keys 

t t 
..___F_l_L_E_x _ _._ _ ___._2 ______ ).-- Control Block 

Primary Key Alternate Key (key blocks not shown) 

Primary 
Key 

Location 

Pointer to 
Root Block 

Pointer to 
next level 
Key Block 

/ ' 
• 25 Key Descriptor 

Block 

Pointer to Data Record 

Primary key sequence: AA AC BC DC EE GH JM MX NO XT 

Chronological sequence: BC GH MX NO XT JM EE DC AC AA 

Alternate key sequence: 2 5 6 7 11 12 14 18 36 42 

Chronological sequence: 7 6 36 18 14 42 12 2 5 11 

Figure B-7. Data File /Key File Relation 

B-10 

DATA FILE 
(FILEX) 

t 

byte 3 byte 25 

Record 
No. 

0 

2 

3 

4 

5 

6 

7 

8 

9 



KSAM FILE SIZE 

The size of the data file is calculated from the maximum number of data records times the size of 
each record (for fixed length records). For variable length records, it is calculated from the maximum 
number of data blocks times the size of each block. By default, a KSAM data file contains 1024 rec
ords (or blocks) in which each record (or block) is 1024 words long. This default size fits each block 
into eight disc sectors (each sector is 128 words long), and results in a data file of 8192 sectors. 

Calculation of key file size is more complex. It is based on the total number of keys in the file (pri
mary and alternate), the size of each key entry (including overhead), the expected number of data 
records specified when the file is built, plus space to allow for block splitting when the number of 
key entries increases. 

The number of key entries per key is usually exactly the same as the number of data records expected. 
By default, KSAM uses the maximum number of data records specified, or the default value of 1024 
records. This number is multiplied by each key in addition to the primary key to arrive at the total 
number of key entries in the file. 

The size of each key entry and the number of key entries per block (the blocking factor) is used to 
determine key block size. Since all blocks in the key file must be the same size, KSAM adjusts the 
blocking factor so that all keys, regardless of entry size, use the same block size. Also, this blocking 
factor may be adjusted so that disc sector space is not wasted. (A block always starts on a sector 
boundary.) By default, the blocking factor is adjusted so that a block size of 1024 words is used for 
all key blocks for all keys in the file. 

Because of the nature of the B-tree structure, enough room must be left in the key file so that the 
file can be increased in a balanced manner. When block splitting occurs as a result of adding new key 
values, up to half of each key block may have empty slots. To allow for such expansion, the key file 
size is calculated, and then doubled. 

The following discussion describes exactly how KSAM calculates the key block size, and then the 
total key file size. These calculations are useful primarily if you do not use default values for the key 
blocking factor and for the number of key entries. In such a case, they may help you determine the 
most effective block size and file size for your application. 

KEY BLOCK SIZE 

Key block size can affect the complexity of the tree structure and this complexity can affect access 
time. In order to understand the relation between block size and access time, consider the following 
general rules: 

• The larger the block, the less often it has to split and the fewer the splits, the fewer levels to 
the tree. 

• The more levels to the tree, the more mass storage retrieval time is needed to locate a particular 
key value. 

From this it would follow that in order to reduce access time, you should define large blocks. This 
is true only up to a point. Depending on the total number of key values expected in the file, a large 
block size may result in a great deal of unused space in each block. Also, the blocking factor may 
result in unused disc space since all blocks must start on sector boundaries. 

B-11 



KSAM provides a default blocking factor that produces a block with 1024 (lK) words. This size has 
proved to be efficient for many files. You may, however, override this default blocking by specifying 
a value in the keyblocking parameter of the ;KEY= option in the BUILD command, or in word 19 
of the FOPEN ksamparam parameter. Note that any blocking factor you specify is a minimum value 
since KSAM may increase the blocking factor so that the least amount of disc space is wasted. 

After creating a KSAM file, you can use the VERIFY command of KSAMUTIL to determine the 
number of levels needed by the KSAM file. The VERIFY listing will also tell you the actual blocking 
factor used in creating the file so you can find out whether your specified blocking factor has been 
increased. 

CALCULATING KEY BLOCK SIZE. Key block size is based on a number of factors: 

• The key size is bytes (KS) 

• The key entry size in words (ES). 

• The number of key entries per block, the blocking factor (BF). 

Once the block size is determined, the number of sectors needed to hold one block is calculated. If 
this value (NB) wastes sector space, KSAM adjusts the blocking factor to produce a block size that 
uses the least number of sectors by filling each sector as completely as possible. Note that when KSAM 
uses the default block size of 1024, it calculates a blocking factor by the same method. 

The following steps show how KSAM determines block size based on a specified minimum blocking 
factor. 

NOTE 

The notation L _J means round down the result of the enclosed 
algorithm to the next whole number; 11 means round it up. 

1. Calculate the entry size (ES) in words from the key size (KS) in bytes, and then add two words 
for each pointer in the key entry (see figure B-6). KSAM uses the following algorithm to per
form this calculation: 

ES= L (KS+l)/2 _J + 4 

2. If the blocking factor (BF) was specified as an odd number, KSAM issues an error message. 
Otherwise, it uses the specified blocking factor to continue the calculation of block size. 

3. Determine block size (BS) by multiplying the key entry size by the blocking factor and adding 
5 words. (The five words are for the three words of control information at the beginning of 
each block, plus two words for the final pointer in the block. See figure B-6). KSAM uses the 
algorithm: 

BS = (ES x BF) + 5 

Since blocks always start on sector boundaries, this calculated block size may leave a lot of unused 
sector space. The following steps show how KSAM determines the most efficient block size and, if 
this size differs from the size calculated from the specified blocking factor, how KSAM adjusts this 
blocking factor upwards to produce the optimum block size. 

B-12 



4. Determine the number of sectors required to hold the block at its calculated size. If the result 
is not a whole number, round it up to the nearest whole sector. KSAM determines the number 
of sectors per block (NB) as follows: 

NB = I BS/128 I 

5. Multiply the number of sectors per block by 128 to determine the optimum block size: 

BS= NBx 128 

6. If the optimum block size calculated in step 5 differs from the block size calculated in step 3, 
or if the default block size 1024 is used, KSAM adjusts the blocking factor to one that produces 
the optimum block size. It uses the following algorithm to determine the number of key entries 
that fit in the block and, if this is an odd number, reduces it by one. (Blocking factor must be 
an even number.) 

BF= I ( L (BS-5)/ES _J -1)/21 x 2 

KEY FILE SIZE 
KSAM uses the blocking factor and the number of sectors per block to determine the maximum file 
size in sectors to allocate to the key file. In addition, KSAM needs to know the maximum number 
of key entries to expect, and the number of keys (primary and alternate) defined for the key file at 
creation. 

The maximum number of key entries for each key may be specified in the numentries parameter of 
the KEYENTRIES= option of the BUILD command, or in the ksamparam parameter of FOPEN. 
However, this file limit is usually based on the maximum number of data records. This value is spe
cified in the numrec parameter of the DISC= option of the BUILD command, or in the filesize 
parameter of FOPEN. If not specified in either of these places, KSAM assumes a default file limit 
of 1024 key entries. 

Since the number of records in the data file can be used to calculate the maximum number of keys 
for only one key, each additional key defined for the file causes the file sizes to be summed. 

When key file size has been calculated, KSAM uses this value to allocate that number of sectors on 
disc to the key file whenever the file is opened. 

Key file size is based on the following factors: 

• The number of key entries per block, or the blocking factor (BF). 

• The number of blocks per sector (NB). 

• The maximum number of key entries for one key (FL). 

• The number of keys defined for the key file. 

KSAM uses the following formula to determine key file size in sectors for a file with one key: 

FS = (I FL/BF Ix 2) x NB 

B-13 



This formula is derived through the following steps: 

1. The maximum number of key entries (FL) is divided by the number of key entries per block 
(BF) to find the number of blocks in the file. If not a whole number, it is rounded up to include 
all blocks. 

2. The resulting number of blocks is multiplied by 2. This doubling of the number of key blocks 
is done to allow room for expansion when the number of levels in a key file expands due to block 
splitting. 

3. Finally, the number of blocks is multiplied by the number of blocks per sector (NB) to find the 
total number of sectors needed to contain all key entries. 

NOTE 

The file size (FS) calculated by the above algorithm does not 
include the two sectors required for control information. 

If the file has only one key, add 2 to the file size (FS+2) to get the total file size. The value 2 repre
sents the two sectors at the beginning of each key file containing control and key descriptor informa
tion. 

If the key file has multiple keys, then the optimum block size of each key must be determined. The 
largest block size is then selected as the standard block size for all keys in the file (KSAM does not 
allow variable-length key blocks). Since the block size of some keys has changed, the blocking factor 
(BF) must be recalculated for these keys using the algorithm: 

BF= I ( L (BS-5)/ES _J - 1)/2 Ix 2 

A separate file size for each key is then calculated based on their various blocking factors. The total 
key file size is equal to the sum of all these file size (FS) values plus 2 for the two control sectors. 

Figure B-8 summarizes the steps KSAM uses to calculate file size for one key. Figure B-9 shows how 
KSAM calculates key file size for a file with two keys. Each key file size (FS) is calculated separately, 
and then the blocking factor and file size of the key with the smaller block size is recalculated. 

For a file with one key, KSAM simply adds 2 sectors to the file size (FS) calculated for the single key. 

B-14 



BS=1024 
(default) 

N 

KS = key size in bytes 
ES = key entry size in words 
BF = blocking factor (number of key entries per block) 
BS = key block size 
FL = data file limit in records 
NB = number of sectors per key block 
FS = key file size in sectors 
11 = round up L J = round down 

ES= L(KS + 1) /2J+4 • ..... --- 2 words/pointer 
...... ___ ,_,--~ l ~ fewest #words that contain key entry 

BF specified? 

ly N 

BF = even number? _____ ...... error 

lv 
BS= (ES X BF)+ 5 •----- 3 control words+ 2-word pointer 

1 
NB= IBS/1281 l f ..... _______ #words in sector 

BS= NB x 128 ...... ~------optimum block size 

1 
BF= I ( L (BS-5) /ESJ -1) /21 x 2 ............ _____ adjusted BF 

............. _ _,,,_ __ ,,, 
._____ #key entries in block 

/ 

l 
i: 
..______rounded to nearest even whole# 

N 
FL specified? -----.

1 1 Y FL~ 1014 (default) 

FS = ( IFL/BF l x 2) x NB 

f ..... ____ double #of blocks for block splitting 

Figure B-8. Formula to Determine File Space per Key 

B-15 



Assume a file with 2 keys defined as: 

KEY= B, 1,53,12 
KEY= B,54, 13,20 

For Key 1: 

KS=53 
FL=1024 (default) 
BF=12 

Calculation of FS: 

ES= L(53+1) /2J+4 = 27+4 = 31 

BS=(31x12)+5 = 377 

NB= 1377 /1281=12.91= 3 sectors 

BS= 3x128 = 384 

*BF= l(L(384-5)/31 J-1)/2lx2 

=I( L12.2J-1)/2lx2 

= I( 12-1) /21 x2 

= 15.5lx2 = 6x2 = 12 

FS=( 11024/121 x2) x3 

=( 185.3 lx2)x3 

= 516 sectors 

For Key 2: 

KS=13 
FL= 1024 (default) 
BF=20 

ES= L(13+1) /2J+ 4 = 7+4 = 11 

BS= (11x20)+5 = 225 

NB= 1225/1281=11 .751 = 2 sectors 

BS= 2x128 = 256 

*BF= I ( L(256-5) /1 U -1) /21 x2 

=I( L22.8J-1)/21 x2 

= 1(22-1) /21 x2 

= 110.51 x2 = 11x2 = 22 

FS=( 11024/221 x2) x2 

=( 146.51 x2) x2 

= 188 sectors 

Since key 1 has the largest block size (384 words in 3 sectors), its blocking factor is unchanged. The blocking 
factor for key 2 is adjusted so it has the same block size. The following values are used: 

ES= 11 • ..._ ____ entry size calculated for key 2 
BS=384 ..._ block size of key 1 (now used for key 2, also) 
FL=1024 ~ default file size in words 
NB=3 • number of sectors needed for each block of 384 words 

Calculate the new blocking factor for key 2: 

*BF= I( L (384-5/1 U -1) /21 x2 
=I( L34.4J -1) /21 x2 
= 116. 5 l x 2 = 1 7x2 = 34 

FS =( 11024/34 l x2) x3 
=( 130.11 x2) x3 = 186 sectors 

Summing the two file sizes and adding two sectors for control and key descriptor information, the total file 
size in sectors is: 

516 + 186 + 2 = 704 sectors 

*The algorithm to calculate BF can be expressed more simply if the result can be checked for an even 
number: 

BF=LBS-5/ESJ If BF is an odd number, set BF=BF-1 

Figure B-9. Calculation of Total Key File Size with Two Keys 

B-16 



KSAM EXTRA DATA SEGMENTS 

Another factor that may affect performance when KSAM files are used, is the number and size of 
KSAM extra data segments. An extra data segment (XDS) is an area in memory used as a buffer during 
KSAM file access. Each extra data segment contains: 

• Statistical information on file use (listed by VERIFY command); 

• Control Block and Key Descriptor Block data from the first two sectors of each KSAM key file; 

• A Working Storage area large enough to hold a data record and two key entries; 

• A data block buffer large enough to hold a block from the data file; 

• At least one, and up to 20, key block buffers each large enough to hold one key block. 

When the key file is searched for a particular data record, the root block and lower level blocks, as 
needed, are moved to key block buffers in the extra data segment. Key entries are compared in the 
working storage area. When the data block is located, it is moved to the data block buffer of the extra 
data segment, and when the particular data record is located, it is moved to the working storage area. 

Since each open KSAM file is allocated an extra data segment and each extra data segment can be up 
to 32K words long (32,767 words), KSAM files can use a lot of memory. When there is not enough 
room in memory for all the extra data segments, they must be swapped between memory and disc 
as needed. This swapping can slow access to KSAM files. 

In order to minimize swapping, you can reduce the number of KSAM files by combining several files 
into one file. This automatically reduces the number of extra data segments, and it can be a very 
effective way to improve performance, particularly when files are shared by a number of users. (Refer 
to Number of Extra Data Segments, below.) 

Decreasing the overall size of the extra data segment may reduce swapping of extra data segments. 
However, reducing the number of key block buffers in the extra data segment may increase swapping 
of key blocks between the key file and the extra segment during a file search. By default, KSAM 
allocates key block buffers according to a formula that takes into account the type of access for 
which the file is opened, the number of levels in the key file structure, and the number of alternate 
keys in the file. Since this formula (see table B-1) keeps the extra data segment size as small 
as is compatible with efficiency, the default number of key block buffers should be used except in 
special cases. (For details, refer to Extra Data Segment Size later in this section.) 

NUMBER OF EXTRA DATA SEGMENTS 

KSAM assigns an extra data segment to each KSAM file opened by an active process. Since more 
than one process can use the same file during shared access, one file may require a number of extra 
data segments. Thus, the number of extra data segments depends both on the number of KSAM 
files and the number of users concurrently using the file. (Refer to figure B-10.) 

B-17 



Data 
File 

KSAM FILE 
FILEX 

~I 

Key 
File 

XDS FILEX XDS FILEX XDS FILES 

[] []···[] 
I I I 

cJ cJ ... cJ 
Process 1 Process 2 Process n 

Figure B-10. Extra Data Segments for Shared Access 

EXTRA DATA SEGMENT SIZE 
The size of each extra data segment associated with an open KSAM file is determined by the number 
of key block buffers it contains, the size of each key block buffer, the size of the data block buffer, 
and to a lesser extent, the key entry size and the data record size. (Refer to figure B-11.) 

Initially (when a file is opened), 12K words are allocated to the extra data segment. If less actual 
space is needed, the extra space is not used, but remains in virtual memory. If more is needed, 
the original extra data segment is released and a new extra data segment is allocated with the 
actual size needed. 

The maximum size of any extra data segment is 32K words. The actual size is calculated from: 

• The total size of the overhead statistics and working storage area; 

• The size of the data block buffer; 

• The size of each key block buffer and the number of buffers allocated. 

B-18 



The overhead statistics and working storage area is approximately 11hK bytes long depending on 
variables such as the key entry size and the data entry size. The data block buffer size is based on 
the size of each data block in the data file. Each key block buffer must be large enough to contain 
all the key entries in a key block plus one key entry used when new keys are added to a full block 
(as described earlier, see figure B-2). 

The default key block size is 2K bytes (1024 words) and the maximum size of the key block buffer 
is 4K bytes (2048 words). If a key block is larger than 4K bytes, KSAM reduces the block size so 
that no block is larger than will fit in an extra data segment key buffer. Thus, the main variable in 
extra data segment size is the rumber of key block buffers. 

Data used 
by VERIFY 

Current data record, 
& key comparison area 

Current data block -----

1 key block per buffer 

KSAM 

Extra Data Segment 

STATISTICS 
CONTROL BLOCK 

& 
KEY DESCRIPTOR 

BLOCK 

Working Storage 

Data Block 
Buffer 

Key Block 
Buffer 

Key Block 
Buffer 

• • • 
up to 20 

Key Block 
Buffers 

A (approx. 1Y:zK bytes) 

B (maximum 4K words) 

C #of key block buffers 
x key block buffer size 
(maximum size per block 
=4K bytes) 

Total Extra Data Segment size= A+ B + C (maximum 32K words) 

Figure B-11. KSAM Extra Data Segment 

B-19 



NUMBER OF KEY BLOCK BUFFERS. The number of key block buffers depends on the type of 
access for which the file is opened, the number of keys in the file, and the number of levels in the 
tree structure for each key. (Refer to table B-1 for details.) The least number of buffers is allocated 
for read only access, unless the primary key has many levels in its structure. More buffers are usually 
required for write only, read/write, or update access. The number of buffers for read only access 
increases with the number of levels used by the key, but is never less than one. The number 
of buffers for write only access increases with the number of alternate keys in the file, but is never 
less than six. The number of buffers for all other types of access increases with the number of alter
nate keys and with the number of levels for each key, but is never less than four. 

Unless you specify a particular number of key block buffers, KSAM allocates buffers in the extra 
data segment according to the file characteristics as shown in table B-1. 

Table B-1. Number of Key Block Buffers Assigned by Default 

Access Type Buffers Assigned 

Read Only Access 
1 buffer per level in key with most levels 

(minimum of 1 buffer up to 20 buffers) 

Write Only Access 
3 buffers per primary key + 3 buffers per alternate key + 3 buffers 

(minimum of 3 buffers up to 20 buffers) 

Other Access 
(Read/Write or 

1 buffer per level in + 1 buffer per level + 3 buffers 

Update) 
primary key structure in alternate key structure 

(minimum of 3 buffers up to a maximum of 20 buffers) 

Note that you can determine the number of levels per key with the KSAMUTIL command, VERIFY. 

For example, if the file is opened for read only, and the only key needs two levels, two key block 
buffers are allocated. If the file is opened for write only, and there is one alternate key in the file, 
nine key block buffers are allocated. If this same file is opened for update access, the primary key 
uses two levels, and the alternate uses three, a total of eight buffers is allocated. 

If you want to override the number of key block buffers assigned by default, you can use the MPE 
:FILE command before opening the file, or set the numbuffers parameter of FOPEN when you open 
the file pro grammatically. 

The file equation is specified as follows: 

:FILE filename; DEV=,,#buffers 

The KSAM extra data segment will be allocated space for as many key block buffers as you specify, 
up to a maximum of 20. (Note that the third DEV= parameter is interpreted as the number of key 
block buffers only when the file name is a KSAM file; for standard MPE files, this parameter indicates 
the number of list copies of the file.) 

Another way to reduce the number of key block buffers is to use fewer alternate keys, or to adjust 
the blocking factor so that the key file structure uses fewer levels. Either of these methods is effective 
when the file is written to or updated more than it is simply read. 

B-20 



Note that when you are loading a KSAM file with large amounts of data, you should increase the 
number of key buffers. The more key buffers in the extra data segment, the more likely it is that, 
as new data is added, locations for the new key values will be found in memory. This cuts down on 
disc access and can significantly reduce the time it takes to load the file. 

For example, if you are reloading a KSAM file after a system failure, you should use the : FILE 
command to increase the number of buffers to maximum of 20 buffers. Then, after the file is 
loaded, you can allow it to revert to the default number of buffers established by KSAM for the 
particular file. 

EXTRA DATA SEGMENTS WITH SHARED ACCESS 

The extra data segment allocated to each open file acts as a control block for that file. The extra 
data segment contains not only the current data block and the current key block buffers, but also 
the latest control information for the file. This information includes the logical and chronological 
record pointers that indicate the current record being accessed. Because the current pointer posi
tion is not in a "common block", when several programs open the same file, each can alter the key 
file structure by adding or deleting records so that the pointers set by other programs may point 
to the wrong record without those other programs being aware of it. 

To make sure that the latest pointer position is stored with the file rather than in the separate 
extra data segments, programs that share the same KSAM file must use a locking scheme. When
ever a program locks a KSAM file, the control information is transferred from the file to the extra 
data segment; and when a program unlocks the file, the contents of the extra data segment is writ
ten back to the file. Thus, each program should lock a KSAM file before executing any procedure 
that positions a record pointer (pointer-independent procedures), and not unlock the file until all 
procedures that depend on this pointer position (pointer-dependent procedures) have completed 
execution. This is true regardless of whether the pointer is chronological (points to a record in the 
data file) or is logical (points to a key in the key file). Both types of pointer are maintained in the 
extra data segment for the open file. 

Table B-2 lists all the procedures that affect or are affected by the record pointers. 

B-21 



Table B-2. Pointer Dependence 

Pointer-Independent Pointer Pointer-Dependent Pointer 
Procedures Type Procedures Type 

FFINDBYKEY Logical FREAD Logical 
CKSTART CK READ 
BKSTART BK READ 

FFINDN Logical FSPACE Logical 

FREADBYKEY Logical FREMOVE Logical 
CKREADBYKEY CKDELETE 
BKREADBYKEY BKDELETE 

FWRITE Logical FUPDATE Logical 
CKWRITE CKREWRITE 
BKWRITE BKREWRITE 

FPO INT Chronological FREADC Chronological 

FREADDIR Chronological* 

* Each procedure that sets the logical pointer also sets the chronological pointer; but only FPOI NT sets 
the logical pointer as well as the chronological pointer. 

The pointer-independent calls position the pointer regardless of its current position. Pointer-de
pendent calls, on the other hand, must know to which record the pointer is currently positioned 
in order to operate correctly. 

All the procedures listed in table B-2 affect the pointer in some way. In order to use these pro
cedures correctly, it is important to understand how each moves the pointer, whether it positions 
the pointer directly or advances it from its current position. 

In general, when access to the file is random, the pointer is positioned directly. For example, a 
call to FFINDBYKEY (or CKSTART or BKSTART) positions the logical pointer to a particular 
key in the key file based on a key value specified in the call; and a call to FPOINT positions the 
chronological pointer to a particular record determined by its chronological record number. 

When access to a file is sequential or the file is being modified, pointer positioning is not direct but 
is relative to its previous position. Depending on the sequence in which procedures are executed, 
the pointer may or may not be advanced to the next record in key or chronological sequence. 
Internally, a flag is used to indicate whether or not to advance the pointer. This flag, the "Do Not 
Advance" flag, is set to FALSE if the pointer is to be advanced sequentially, to TRUE if it is not 
to be advanced. Some procedures never test the flag; these are, in general, the pointer-independent 
procedures that set the pointer directly. Other procedures test the flag and advance the pointer if 
the flag is FALSE; generally, these are procedures that read the file or position the pointer sequen
tially. Table B-3 summarizes when the pointer is set or advanced. (Note that only SPL procedures 
are listed; check table B-2 for the equivalent BASIC or COBOL procedures.) 

B-22 



Table B-3. Record Pointer Summary 

Beginning of Call End of Call 

Check Record 
Procedure 

Record Sets 
DNA Flag Pointer Pointer DNA Flag 

- - FFINDBYKEY Position TRUE 

- - FFINDN Position TRUE 

- Position FREADBYKEY - FALSE 

- - FWRITE Advance TRUE 

If TRUE - FREAD - FALSE 

If FALSE Advance 

If TRUE - FSPACE Position TRUE 

If FALSE Advance 

- - FREMOVE Advance TRUE 

- - FUPDATE - FALSE 

(key value 
changed) Advance TRUE 

- - FPOINT Position TRUE 

- Position FREADDIR - FALSE 

If TRUE - FREADC - FALSE 

If FALSE Advance 

Advance: Move logical pointer to next record in key sequence or move chronological 
pointer to next record in chronological sequence. 

Position: Set pointer to record specified in call. 

For example, if you call FREADBYKEY, it positions the pointer to a specified key value. After the 
call, the logical pointer remains positioned to this key and the Do Not Advance flag is set to FALSE. 
If the next call is to FREAD, FSP ACE, or FREADC, then the pointer is advanced to the next key 
in key sequence before these procedures perform their other functions. Thus, after FREADBYKEY, 
a call toFREAD will read the next record, not reread the same record, and a call to FSPACE will 
move the pointer relative to the record following the record just read. 

B-23 



ASCII CHARACTER SET IN @Hi!l.iti 
~~~~_C_OL_~_T_IN_G_S __ E_Q_UE_N_C~EI c I 

In the collating sequence for ASCII characters, unlike EBCDIC, numbers precede letters.

Table C-1. ASCII Characters in Sequence

DECIMAL CONTROL/
COMMENTS

VALUE GRAPHIC

0 NUL @C Null
1 SOH AC Start of heading
2 STX sc Start of text
3 ETX cc End of text
4 EQT DC End of transmission

5 ENO EC Enquiry
6 ACK Fe Acknowledge
7 BEL GC Bell
8 BS He Backspace

9 HT 1c Horizontal tabulation

10 LF JC Line feed
11 VT Kc Vertical tabulation
12 FF LC Form feed
13 CR MC Carriage return
14 so NC Shift out
15 SI oc Shift in

16 DLE pc Data link escape
17 DC1 QC Device control 1 (X-ON)
18 DC2 RC Device control 2
19 DC3 sc Device control 3 (X-OF F)
20 DC4 TC Device control 4
21 NAK uc Negative acknowledge
22 SYN vc Synchronous idle
23 ETB we End of transmission block
24 CAN xc Cancel

25 EM ye End of medium

26 SUB zc Substitute

27 ESC [C Escape
28 FS \C File separator

29 GS] c Group separator

30 RS /\ c Record separator

31 us c Unit separator

C-1

Table C-1. ASCII Characters in Sequence (continued)

DECIMAL CONTROL/
COMMENTS

VALUE GRAPHIC

104 h Lowercase h
105 Lowercase i
106 j Lowercase j
107 k Lowercase k
108 Lowercase I
109 m Lowercase m
110 n Lowercase n
111 0 Lowercase o

112 p Lowercase p

113 q Lowercase q
114 Lowercase r
115 Lowercases
116 t Lowercase t
117 u Lowercase u
118 v Lowercase v
119 w Lowercase w

96 Grave accent 120 x Lowercase x

97 a Lowercase a 121 y Lowercase y

98 b Lowercase b 122 z Lowercase z

99 c Lowercase c 123 { Left brace

100 d Lowercased 124 I Vertical line

101 e Lowercase e 125 } Right brace

102 Lowercase f 126 Tilde
103 g Lowercase g 127 DEL Delete

C-2

CONVERSION TO KSAM FILES l~H~M,

In order to convert from your existing files to KSAM files, you may want to take advantage of
utility programs provided with KSAM/ 3000. If your files are serially accessible, you can use the
KSAMUTIL command BUILD to create a KSAM file and then copy your files to the new file
with FCOPY. Another method only converts HP INDEX files. INDEX is the new name for RSAM
(or R'ISAM) files. This method uses the program RTOKSAM. Finally, if neither of these methods is
useful, you can write your own special purpose conversion program.

This conversion method can be used for any file that is serially accessible. First you create a
KSAM/ 3000 file using the BUILD command of KSAMUTIL. At this time you can define your
file with any legitimate specification of the BUILD command. Once the file is built (created),
you can run FCOPY to copy your existing file to the newly created file. No special FCOPY
commands are needed. You simply specify your existing file as the FROM= file and the newly
created KSAM file as the TO= file. All connections between the data file and the key file are
made automatically. (Refer to section II of this manual for a discussion of both the KSAMUTIL
BUILD command and FCOPY as applied to KSAM/ 3000 files.)

The RTOKSAM program will create a KSAM/3000 file from an existing INDEX file. The KSAM
file will have the same key structure as the INDEX file. Any number of INDEX files can be con
verted to KSAM/3000 files in one RTOKSAM run provided that you have sufficient disc space
within your group and account for all the files.

Program R TO KSAM is run as follows:

:RUN RTOKSAM.PUB.SYS.
HP32208.A.O.OO INDEX TO KSAM CONVERTER
ENTER INDEX KEY, KSAM DATA, AND KSAM KEY FILE NAMES
>indexkey ,ksamdata,ksamkey

The names of the INDEX key file, the KSAM data file, and the KSAM key file must be entered in
that order. Only the INDEX key file already exists; a new KSAM/3000 file wll be created with the
specified names.

After converting the INDEX file to the KSAM file, the program continues to prompt you for
additional file names for conversion. When you wish to stop processing, simply press the
carriage return key in response to the greater than(>) prompt. Or, if you are in a job, enter
an :EOD record.

D-1

Record numbering in INDEX files always starts with record number 1. The KSAM file created
by the RTOKSAM conversion program will also have record number starting with 1. Note that
this is not the standard KSAM file default. Key blocking, on the other hand, does follow the
KSAM file default. That is, the number of keys per block is determined by KSAM so that each
key block has 1024 (lK) words.

If errors occur during execution of RTOKSAM, the following error messages may be displayed:

INPUT/OUTPUT ERROR ON $STDIN/$STDLIST
COMMAND TOO LONG
DUPLICATED FILE NAME
INSUFFICIENT PARAMETERS
INDEX OPEN ERROR
INDEXFREADLABELERROR
UNABLE TO BUILD KSAM FILE
KSAM FILE WRITE ERROR
INDEX FILE READ ERROR

(detail line follows message)
(detail line follows message)
(detail line follows message)
(detail line follows message)
(detail line follows message)

The detail line that follows certain of the R TOKSAM messages explains in more detail the
input/output error that occurred.

The normal MPE security provisions for files apply when the INDEX file is specified in this
program. The KSAM file that is created must be within the same log on group.

NOTE

It is good practice to make a back-up copy of the INDEX
file on off-line storage such as magnetic tape before running
R TOKSAM to copy the file to a KSAM file. This allows
you to purge the INDEX file once it is copied.

D-2

RECOVERY FROM SYSTEM FAILURE [fH~H,

OVERVIEW
If the system fails when a KSAM file is open for any type of access except read-only, the file cannot
be reopened until it has been recovered. In such a circumstance, any attempt to reopen the file
causes the following message to be issued:

#192 -SYSTEM FAILURE OCCURRED WHILE THE KSAM FILE WAS OPENED

The file is easily recovered in most cases by running KSAMUTIL.PUB.SYS and then requesting
KEYINFO. This command resets any incorrect end-of-file marks and deletes any key values that
point to non-existent data records. If key values are missing or are out of sequence, the keys cannot
be recovered by KEYINFO and, in this case, the file must be reloaded. (You can refer to section II
for a discussion of KEYINFO; also an example of file recovery and reloading is provided later in
this appendix.) If you want to examine the file statistics, you can run the VERIFY command of
KSAMUTIL using the NO CHECK option. (If KEYINFO does not complete execution successfully,
then the KSAM file must be reloaded.)

For most purposes, this is all you need to know in order to recover a file when a system failure
prevents you from opening it. This appendix provides internal details that explain why recovery is
necessary and what KEYINFO does in order to recover. It is intended primarily for the sophisticat
ed programming staff.

END-OF-FILE ON KSAM FILES
The first step in understanding what KEYINFO does and why it is needed, is to understand how
KSAM end-of-files are set and maintained. Each of the two files that comprise a KSAM file (the
data file and the key file) has two end-of-file marks: an MPE end-of-file and a KSAM internal
end-of-file. Thus, there are four end-of-files to consider. The main characteristics of each of these
end-of-files are shown below:

DATA FILE
MPE End-Of-File:

• Number of records in fixed-length record file (or number of blocks in variable-length
record file).

• Stored in system file label of data file.

• Recorded on disc when file is closed (or when m SPL procedure calls FCONTROL with
control code 6) or when a new extent is allocated.

• Used by FCOPY with NOKSAM option (KSAM file is treated as an MPE file).

• Displayed by LISTF ,2:

:LISTF DATAFIL,2
ACCOUNT= MORRIS GROUP= JOAN

FILENAME CODE ----------·-LOGICAL RECORD--·-------- ---·SPACE·---
SIZE TYP EOF LIMIT R/B SECTORS #X MX

DATAFIL KSAM 38B FA 50-.... 20 1 23 8 8
~ ~PE end-of-file for data file

E-1

KSAM End-of-File:

• Address of next available logical record in the data file.

• Stored in control block of key file.

• Recorded on disc when file is unlocked or closed (or when an SPL procedure calls FCONTROL
with control code 2 or 6).

• Used by FCOPY when file is opened as a KSAM file (KEY=option)

• Displayed by VERIFY command (option 1) of KSAMUTIL:

:RUN KSAMUTIL.PUB.SYS

HP32208A.2.3 MON, APR 23, 1979, 1:11 PM
>VERIFY DATAFIL

KSAMUTIL VERSION:A.2.0

WHICH Cl=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?1

DATAFIL.JOAN.MORRIS CREATOR:JOAN
FOPTIONSC004005)=KSAM, :FILE, NOCCTL, F, FILENAME, ASCII, PERM
A0PTIONSC000400)=DEFAULT, NOBUF, DEFAULT, NO FLOCK, NO MR, IN
RECSIZE:SUB:TYP:LDNUM:DRT:UN.: CODE:LOGICAL PTR: END OF FILE:FILE LIMIT

-38: 3: O: 3: 5: O: O: o: O: 20
LOG. COUNT:PHYS. COUNT:BL~ SZ:EXT SZ:NR EXT: LABELS:LDN DISCADDR:

1: t: -38: 3: 8: :00000010135:

KSAM end-of-file for data file

Since this is a file that closed successfully, the two end-of-files coincide.

KEY FILE

MPE End-of-File:

• File limit - Number of records (sectors) allocated to file at time of creation

• Stored in system file label.

• Displayed by LISTF ,2:

:LISTF KEYFIL,2
ACCOUNT: MORRIS GROUP= JOAN

FILENAME CUDE ------------LOGICAL RErORD----------- ----SPACE----

KEY FIL KSAMK

S I Z E TY P E 0 F. L IM I f RIB SECT 0 RS # X M X

12BW F'H ~ 50 1 30

E-2

\MPE end-of-file on key file
(set to file limit)

5 8

KSAM End-of-File

• Address of 1st record in next available key block.

• Stored in Control Block of key file.

• Recorded on disc when file is unlocked or closed (or when SPL procedure calls FCONTROL
with control codes 2 or 6).

• Used by FCOPY and KSAM procedures.

• Displayed by VERIFY command, option 3, of KSAMUTIL:

wHICH Cl=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?3

DATA FILE = DATAFIL
KEY CREATED=292/'78
KEY CHANGED= 93/'79
DATA RECS =
DATA BLK SZ=
FOPEN
FREADDIR
FREMOVE
FGETINFO
FWRITELABEL
FWRITE
f LOCK
f SETMODE

VERSION: A. 2 .1
10:19: 7.4 KEY ACCESS= 113/'79 13:11:45.8
14:18: 7.6 COUNT START=292/'78 10:19:53.6

20 DATA BLOCKS: 19 END BLK WOS:
19 DATA REC SZ= 38 A:CESSORS:

2 FREAD 0 FCLOSE
0 FREADC 0 FREADBYKEY
0 FSPACE 57 FFINDBYKEY
3 FGETKEYINfO 1 FREADLABEL
0 FCHECK 0 ~FINDN

20 FUPDATE 0 FPOINT
0 FUNLOCK 0 F:ONTROL
0

KEYBLK READ
KEY FILE EDF'
~IN PRIME
DATA FIXED
f IRST RECNUM A

KEYBLK WROTE
FREE KEY HD
MAX PRIME
DATA B/F
"1IN RECSIZE

0 KEYBLK SPLIT
0 SYSTEM FAILURE
5 RESET DATE
1 TOTAL KE:YS

38

KSAM internal end-of-file on key file

19
0
2
0
0
0
3
0
0

0
0

3/'79
3

Since the MPE end-of-file is set to the file limit and the KSAM internal end-of-file to the next
available key block, these values never coincide until the key file is full.

E-3

END-OF-FILE AND THE EXTRA DATA SEGMENT
As described in appendix B, each open KSAM file uses an extra data segment (XDS) to hold the
control information for that particular open file. The extra data segment also contains a data
block buffer into which records are read from the file and from which records are written.
Finally, the extra data segment keeps key block buffers to hold key entries affected by the
data records being accessed. The control block in each extra data segment also maintains the
most up-to-date KSAM end-of-file markers for each open file.

Whenever a KSAM file is opened, the KSAM end-of-files for the data and key files are moved
(with all other information from the key file control block) to the control block of the extra
data segment for that file. When the file is closed or unlocked, the control block is written back
to disc. (Refer to figure E-1 for a diagram illustrating the end-of-file markers and their relation
to an extra data segment.)

last
data
block

MPE EOF

Data File

File Label
(MPE EOF)

(next available
record or block)

disc

Key File

Control Block
(key file EOF
data file EOF)

MPE EOF
(file limit)

KSAM EOF
(next available
logical record)

Open/Lock

Close/Unlock

KSAM EOF
(next available
key block)

XDS
for Open file

Control Block
(key file EOF
data file EOF)

l
3-20 key
block buffers

Figure E-1. KSAM File and an Extra Data Segment

E-4

key block
buffers

NORMAL OPERATION - FILE IS CLOSED

During normal operation, if a new record is written to the file by any user, the record is written
in the data block buffer of the extra data segment and the key entry for the record is inserted into
the key block buffer where it belongs. (Refer to appendix B for a discussion of how new key entries
are added.) The appropriate key block buffer is brought into the extra data segment automatically.
Then, whenever the data block or key block buffers are full or new blocks must be read into the
extra data segment, the key and data blocks are written back to disc. But the control block from the
extra data segment is not written to disc until the file is closed (or is unlocked, or FCONTROL with
code 2 or 6 is called).

Before considering what happens in case of a system failure, let's look at the normal steps taken
when the file is closed:

CD Key block buffers are written to the key file

@ Data block buffer is written to the data file (and, if a new extent is allocated, the MPE
end-of-file is written to the data file system label).

@ Control block with the KSAM end-of-file marks is written to the key file.

@ MPE end-of-file mark is written to the data file system label.

When a file is unlocked, the first three steps shown above are taken (except the MPE end of file
is not written). FCONTROL with control code 6 performs all four steps, and control code 2 per
forms the first three steps.

SYSTEM FAILURE - FILE IS OPEN

If the system fails when a KSAM file is open, the extent of the damage to the file depends on when
the failure occurred and whether the file was being modified. If all users opened the file for read
only, then the file is undamaged and can be reopened. If a user had just unlocked the file and no
other user has modified. it, the MPE end-of-file may need to be reset but otherwise, the file is un
damaged. But if the file was being modified, then the extent of the damage depends on whether
any of the steps listed above had been completed and, if so, which ones.

In the simplest case, all the steps except step 4 have been performed. This means that the KSAM
end-of-file is up-to-date, but the MPE end-of-file is still at its previous position. In the most com
plex case, caused by records being deleted, data records remain in the data file for which there are
no corresponding key entries, (error number 175).

E-5

SITUATIONS IN WHICH RECOVERY
IS REQUIRED
Whenever the file cannot be reopened (error #192 is issued), you must run KEYINFO to recover
the file. The following four cases are typical of the reasons for file damage. In each case, the sug
gested action is discussed.

1. Records were being added to the data file when the system failed. The KSAM end-of-file for
the data and key files are current, but the MPE end-of-file precedes the KSAM end-of-file
(steps 1-3 completed).

Solution: Run KEYINFO to reset the MPE end-of-file. You can then run the KSAMUTIL
command, VERIFY, to determine where the current KSAM end-of-file for the data file is posi
tioned, and then run the MPE command : LISTF 2 to compare the MPE end-of-file. If you run
VERIFY before running KEYINFO, use the NOCHECK option so the file can be opened.

2. Records being added to the KSAM file when the system failed were not written to the data
file, but some key entries for the new records had been written to the key file (key blocks
written to key file because buffer space in XDS was needed). This means that the key file
contains key values pointing to records not in the data file.

Solution: Run KEYINFO to delete the key values that point to records that were not writ
ten to the data file.

3. Records being added to the KSAM file when the system failed caused a key block split. As a
result, the key blocks are written, but the new internal KSAM end-of-file for the key file has
not been transferred to disc. This places certain key values past the old KSAM key file
end-of-file.

Solution: Run KEYINFO to reset the key file end-of-file to the correct location following
the existing key values. It still may have to delete any key values pointing to records past the
data file end-of-file.

4. Records were being deleted when the system failed. Some key block buffers have been written
to disc, but the data block buffer has not. Since some key entries were deleted from the file on
disc, but the deleted records remain, key values appear to be missing.

Solution: You must run KEYINFO to reset the crash flag so the file can be reopened. When
key values are missing, KEYINFO cannot fully recover from the file damage and issues the
following message:

WARNING: THERE ARE SOME RECORD(S) WITH KEY VALUE(S) MISSING THE
KSAM FILE HAS TO BE RELOADED

To reload the KSAM file, use FCOPY to copy the file to a new KSAM file. As it copies the
data records, it writes new key entries for each data record. Only in this way can missing key
values be recovered. (Refer to the discussion of Reloading a KSAM File later in this section.)

If you want to determine how many key values are missing and the file has more than one key, you
can compare the number of values in each B-Tree as listed by KEYINFO. These values should be
identical. When there is only one key in the file, you can use FCOPY to determine the number of
non-deleted records in the batch file. The number of key values for any key in the file should ex
actly match the number of valid data records. The FCOPY command to determine this value is:

> FROM=filename;TO=$NULL;KEY =O

E-6

If your file is very large, using this FCOPY command can be time consuming and you may prefer
to reload the file without checking the number of missing keys.

EXAMPLE OF FILE RECOVERY
Suppose you try to open file TEST and receive error message #192:

SYSTEM FAILURE OCCURRED WHILE KSAM FILE WAS OPENED

In order to have the most information about the file, first run KSAMUTIL and request VERIFY
to list all the file information.

HP32208Y.2.4 THUt ~A~ A• 197q, 12:53 PM
>V TEST

KSAMUTIL VEqSfON:A.3.0

WHICH (l•FlLf INFO, 2:KS4M PARAMETERS, 3:K~AM CONTROL• 4=ALL)?4

SYSTEM FAILURF. OCCUWMEO WMILE TMf KSA~ fJ1 t WAS OPENED <1~68)----~
KSAMUTIL
error message

Just like any other program, the VERIFY command cannot open the damaged file. So try again
using the NOCHECK option that allows such a file to be opened for read-only:

Option
1

Option
2

Option
3

>V TESTINOCHECK-----forces open

WHICH (l•FIL~ INFO, 2•KSAM PARAMETERS, 3:K~AM CONTROL• 4=ALL)?4

{

TEST.KSAM.UlILITY CREHOR:ONG
FOPTIONS<Oo•oo~>=KSAM, IFTLE. ~nCCTL, Ft FlLENAM~. ASCII• PERM
AOPTIONSf000400)•0EFAULT, NORUF, OEFAULlt NU FLOCKt NO MR, IN
RECSIZE1;uSITyPILONUM1DRTtUN.I cooE:LOGicAL PTR: ENO OF FTLEIFILE LIMJI

-eo1 31 ~~ 3: c;1 ol oz 01 rn]... io23
LOG. COtJNltPHYt::• COUNTIRLK SZ:fXT SZtNR F'XT: LABELS:LON: DISCADDHI

101 11 •800t 52: d: O: ~10000012~1731

KSAM
data file
end-of-file

{
KEY FlLE•TE~rK KE.Y FILF DEVrcE•4 SIZE= 1 KEV~= 2
FLAGWORO(OOOooo>=RANDOfol e>RIMARv, FIRST ~EcUt-cO:O, PERM-ANENT
KEY TY LFNGTH Loe. 1) KE'V BF LEVEL file limit

1 B 8 73 ~ 126 2
2 B 6 2u Y 144 2

#of non-read-only opens

DATA FILE • TEST VFRSION• Z.2.4
when system failed

KEY CREATED• 6f 1'79 l713f.129e8 KEY AcCt.ss= 67/'79 12154117.~
(EY CHANGED= 671'79 121c;n41.1 COUNT SfART= 67/•79 12151120.7
DATA RECS = 990 OATA BLOCKs= 99 E.NO BLK WDS= ·~ DATA BLK sz= 400 OATA REC S.t= 80 ACCESSOHS: ~

F'OPEN 3 FREAO 0 FCLOSE 3
F'REAOOIR 0 FC1EADC 0 fREADRYKEY n

F'REMOVE 0 FSPACE 0 FFINDBYl\EY "i

FGETINFO 3 F~ETKEYtNFO 2 FREADt ABEL 0
FWRITELAREL 0 FCHECK 0 Ff"INON n
FWRITE 1000 FUPDATF.: 0 FPO INT 'l
FLOCK 0 FllNLOCI< 0 FCONTROL n
FSETMOOE 0
KEYBLK REAL> 9 t<FYRLl< wROTE £49 KEYBLK SPLIT 23
KEY FILE EOf 0 f:Pf E KFy HD 0 SYSTE~ F"AILURE o/incremented
MIN PRl~F 0 l.lAX PRJ~E 999 ~E.SET DATE

:? after recovery DATA FIXED TRUE nATA B/F 10 TOTAL KEYS
FIRST RECNUM 0 '4JN REcsIZE ~o

KSAM internal end-of-file

E-7

The next step is to run LISTF,2 to see where the MPE end-of-file is positioned. Note that you can
request the MPE command without exiting from KSAMUTIL.

>ILISTF TE~T,2
ACCOUNT= UlrLITY

FILENAME CODE ------------LOAtCAL RECOqn----------- ----SPACE----
SIZ TVP ~OF LIMIT R/~ SECTORS #X ~X

~ }Oi3 10 416 A

MPE end-of-file on data file

TEST 8

LISTF shows the MPE end-of-file after the first 900 records, whereas option 1 of VERIFY showed
the KSAM end-of-file after 990 data records. This is a discrepancy of 90 records. These records
actually exist. You only have to run KEYINFO to reset the MPE end-of-file. When you run
KEYINFO, however, you may find that there are other problems.

>Kl TEST
RE.COVERY BEGINS

DATA FILE EOF OA~A~EU

DATA FILF: ~._,E EOF tots S BFFM RESFT TO KSAM FUt- ---MPE end-of-file recovered

After resetting the MPE end-of-file for the data file, KEYINFO continues. It next displays informa
tion on the two keys in the file TESTK.

--------- INFO FOR KEY
OF LEVELS OF B•TREE
OF KEY BLOCKS
OF SECTORS PER KEY ~LOCK
OF KEYS IN ROOT KEY BL~CK
OF KEYS IN B•TREE
I OF KEY BLOCK UTILlZ~TinN
THE LARGEST KEY BLOCK ADDRESS

1 ____ .. ___ _

--------- INFO FOR KEV 2
OF LEV~LS OF B-TREE
OF KEY BLOCKS
OF SECTORS PER KEY 4L0CK
OF KEYS IN ROOT KEY BLnCK
OF KEYS IN B•THEE
I OF KEY BLOCK UTILlZATio~
THE LARGEST KEY BLOCK AOD~ESS

KSAM end-of-file should
be at least 218

of key entries in two
keys do not match
each other; do not match
of data records

WARNINGS THERE ARE SO~E RFCORDfS) WITH KEY VALUECS) MISSING
OR KEY VALUECS) POINTING TO DATA REcoRU BEYOND EOF

KEY FILE EOf (INTERNAL> DAMAGED End-of-file moved forward
KEY FILE <INTERNAL> EOF H~S BFEN RESET------ so all key blocks are included

Looking at the key information displayed for the two keys, the first thing to check is where the
actual end of file should be. The largest key block address for key 1 is 210 and each block requires
8 records, therefore the key file end-of-file should be at least 218. If you look back to option 3 of
the VERIFY display, it is listed as 210. Since this is not the real end-of-file, KEYINFO resets the
KSAM internal end-of-file to the actual end of file (see VERIFY display, below).

E-8

Next, check the total number of key values for each key. The first thing to notice is that they do
not match each other. The number of key values for each key should always be the same, and each
should equal the number of records in the data file. But, if you look at option 1 of the VERIFY
display, the number of records in the data file is 990, less than the number of key values for either
key. (Note that if the file contains records marked for deletion, you can run FCOPY to determine
the number of active records).

In response to this discrepancy, KEYINFO deletes 10 key values from each key. The values delet
ed are those that have no matching data record. This completes the KEYINFO functions. Now that
it has deleted 10 key values from the key entries for key 2, only 987 are left (997 minus 10). This
is three fewer than the number of key values in key 1 (990 = 1000 -10). For this reason, KEYINFO
must issue the warning that the file needs to be reloaded:

··------- Kty SEQUENCE 1 ---------
OF INVALID KEY VALUES f"\F.LETEO 10/ 10 values deleted that

have no matching data record.
--------- ~~y SEQUENCf 2 ---------
OF INVALID KEY VALUES OELETEO 10

RECOVERY ENOS

WARNINGS THERE ARE so~E PECORDcs> WITH KEY ~ALUE<S> ~ISSING
THE KSAM FILE MAS TO BE RELOADED

Before reloading the file, as described below, use LISTF, 2 to check the current MPE end-of-file
(after recovery); run VERIFY to check the current KSAM end-of-file positions; and run
KEYINFO again to see the number of key values left in each key following the previous
KEYINFO recovery.

E-9

>ILISTF TE.ST,2
ACCOUNT• UTJLITY GROUP• l<'SAM

FlLENA~E CODE ------------LO~yCAL RECORn----------- ----SPACE----
Sil TYP EOF LIMIT RIB SECTORS #X MX

TEST

>V TEST

801'.l F/. rur-------.J1"-1.10~2.:::..3---!1L!Jo:..__ _ _::4.!..:I 6::_...:::~__:8::_ ______ New MPE EOF
matches

3:KSAM CONTROLt 4=ALL)?4

TEST.KSAM.UTJLITY CREATOR=ONG
FOPTIONSC00400~)•~SAM• IFTLEt NOCCTL, Ft FlLENAMtt ASCII, PERM
AOPTIONSC000400>•DEFAuLi, NOBUF, O~FAULTt NO FLOC~, NO MR, IN
AECSIZE1c;UBITYPILONUM10RTIUN.I COOEILOGICAL PTHI END Of FJLE:FJLE LIMIT

-801 3~ 'J!~ 31 151 OI Us 01 !9!0J; 1023
Lo&. couNTIPHY~. coUNTunK sl1EXT sz:NH FXT1 LAHELs1LoN: l...!...,,;,~o'TI~sc";A&ionio11R~:r-=:..::.. _______ KSAM EOF

101 1: -AOOI 521 d: 0: ~10000012~1731
KEY FILE•TE TK KEY FlLF DEVJcE•4 SIZE• 274 KEYS• 2
FLAGWORD<OOOciOO)•RANDo~ PRIMARY. FIHST HEcO~D=Ot PERMANENT
KEY TV LE'NGTH Loe. I) KEY BF LEVEL

1 B 8 73 ~ 126 2
2 B 6 20 v 144 2

DATA FILE • TEST VFRSJON• Z.2.4
KEY CREATED• 6t1•79 l 713fll2Q.8 KEY ACCtss• 67/'79 12156:19.,, For variable-length
KEY CHANGED• 671'79 12154152 0 3 COUNT SlART• 67/•79 12151120.7
DATA RECS 9YO nATA BLoCKc;• ~_.E..,N~p......._.a ... 1..:.1<:..._.,..:lwi.lolo:..o1s:.;;:= ____ 4:....:0~o:__ ___ files, MPE EOF must
DATA BLK SZ• 4o0 nATA REC sz. 80 ACCESSOHS• 0 equal the number of
FOPEN 7 FREAD 0 FCLOSE 7
FREADDIR 0 FREADC 0 FREAOBYKEV n data blocks+ 1
FREMOVE 0 FSPACE ~024 FFINQRYKEY 3
FGETINFO Fr,ETKEYtNFn 4 FREAOLA~EL
FWRITELAREL FCHECK 0 FFINO~
FWRITE FUPDATF 0 f POINT
FLOCK FUNLOC~ 0 FCONTROL

KFYRLK wROTE 96 KEYBLK SPLIT
~REE KFY HU 0 SVSTF.~ FAILURE
~AX PRTME 989 R~SET DATE
OATA B1; 10 TOTAL KEYS

n
4

" 0 system failure

2~------------ count
~11•1q recovery date

FSETMOOE
KEYBLK READ
KEY FILE EOF
MIN PRIM!='.
DATA FIXED
f'IRST RECNUM TN REc~IZE 80

~-------------------------Follows last
WHICH (l•FILE INFO, 2~KS4~ PARA~ETERS, 3:.K~AM CONTROL• 4•-LL)?

>Kl

--------- I~FO FOR KEy ---------
OF LEVFLS OF ~-T~fE 2
OF KEY BLOCKS lb
OF SECTORS PER KEY ~LOr,K
OF KEYS IN RonT KEY BLnr.K
OF KEYS IN B·TREE
I OF KEY BLOCK ~TILlZ~TION
THE LARGEST KEY BLOCK AOnRESS

--------- INFO FOR KEV 2

OF LEVELS OF B-TREE
OF KEY BLOCKS
OF SECTORS P~R KEY ~LO~~
OF KEY~ IN ROOT KEY BLOCK
OF KEYS IN B•TREE
I OF KEY BLOCK UTIL1Z4Tln~

THE LARGF.Sf KEY BLOCK AOORESS 20~

WARNING: THERE ARE ~O~E ~FCORDt~> WITH KEV VALUt(S) MISSING
o~ KEY VALuE1S> POJNTTNG TO DATA H~CORU BEYOND EOF

possible key
entry

after recovery, #of key values
do not match

The name of the user who runs KEYINFO to recover the file for the RESET DATE shown by
VERIFY is stored in the key file control block, along with his account, group, and home group
(refer to figure B-5).

E-10

RELOADING A KSAM FILE
You use FCOPY to reload a KSAM file when KEYINFO cannot recover the file. In general, you
should use the KEY=O option of FCOPY (see section II for a complete description of the FCOPY
options for KSAM files). KEY=O copies the file in chronological sequence so that the new file will
be an exact copy of the original file, except that records marked for deletion are physically deleted
from the file.

For example, to reload the file TEST to a new KSAM file, NEWTEST:

:RUN FCOPY.PUB.SYS
>FROM =TEST;TO=(NEWTEST ,NEWKEY) ;KEY =O ;NEW

After the file is successfully reloaded, you should purge the old file TEST and rename the file
NEWTEST. To do this, run KSAMUTIL and use the PURGE and RENAME commands as follows;

:RUN KSAMUTIL.PUB.SYS
HP32208V2.4 THU, MAR 8, 1979, 1:05 PM
>PURGE TEST
TEST,TESTKEY PURGED
>RENAME NEWTEST,TEST
>RENAME NEWKEY,TESTKEY

KSAMUTIL VERSION:A.3.0

Now you can run any existing programs that referenced the old file TEST.

The only time you might not want to use the KEY= option to reload a damaged file is if the key
file has been accidentally purged. In this case, and if the file has fixed-length records, you can use
the NOKSAM option. This option needs only the original data file. As it copies the data file in
chronological order to a new KSAM file, it creates a key file with key entries for the data records.
The NOKSAM option does not, however, allow you to copy a data file with variable-length records.

For example, to reload a KSAM file for which you have only a data file with fixed-length records,
you can use the following FCOPY command:

>FROM= DAT AFIL;TO=(NEWFIL,NEWKEY) ;NOKSAM ;NOUSERLABELS;
~UBSET=#%377,%377#, ,EXCLUD~ 1

\
to exclude records marked you must not copy

for deletion by -1 in user labels to a
first two characters KSAM file

This command copies only the non-deleted records; it creates a new KSAM file with only valid
records and a key file that has key entries for each data record.

After a system crash in which the key file is lost, it is possible that the MPE end-of-file follows the
KSAM end-of-file because it was written to disc just before the crash. If this is the case and you use
the NOKSAM option you should also use a SUBSET option to copy only the records up to the
KSAM end-of-file, not the undefined area between the KSAM and MPE end-of-files.

E-11

EXPAND KEY BLOCK BUFFER AREA

Depending on the length of the existing file, the reloading procedure can take a long time. One way
to shorten this time is to increase the number of key block buffers in the extra data segment for the
file. Since reloading is a write-only operation, the more buffers that can be allocated to key blocks,
the less swapping is needed between the extra data segment and disc as new key entries are added.

In order to increase the number of key block buffers, enter the following commands:

:RUN FCOPY.PUB.SYS
>FROM=TEST;TO=(NEW,NEWK);SUBSET=l,O create new file with 0 records
>:FILE F=NEW;DEV=, ,20 increase number of key block buffers
> FROM=TEST;TO=*F;KEY=O copy data in chronological order

L remember to back reference file

E-12

A

Abbreviations,KSAMUTIL commands 2-3
Access,

approximate match 1-4
duplicate keys 1-3
generic key 1-4
multiple key 1-3

Access mode,
BASIC 6-16,-17
COBOL 3-4
SPL 4-41,-46

Access options,FOPEN (see aoptions)
Accessing KSAM files 1-2
Add keys to B-tree B-2
Alternate key positioning,

BASIC 6-33
COBOL 3-38
SPL 4-22,-26,-63

Analysis of files capability 1-7
aoptions parameter,FOPEN 4-41,-46
Approximate key access

BASIC 6-32
SPL 4-22,-23

Approximate match capability 1-4
ASCII character set C-1
ASCII records,

BUILD 2-10
FOPEN 4-45

B

B command (see BUILD)
B-tree

number of levels 2-38
structure B-2

Backspace file,SPL 4-88
Backup files

to serial disc 2-55
to tape 2-55

BASIC
error messages A-6
features 1-11
interface 6-1
procedures,summary 6-3

Batch execution,KSAMUTIL 2-43
Binary records,

BUILD 2-10
FOPEN 4-45

BK CLOSE
call,BASIC 6-8
example 6-9

BKDELETE
call,BASIC 6-10
example 6-11

BKERROR call,BASIC 6-12

BKLOCK
call,BASIC 6-14
example 6-15

BK OPEN
call ,BASIC 6-16
example 6-21

BKREAD
call,BASIC 6-22
example 6-25

BKREADBYKEY
call,BASIC 6-26
example 6-28

BKREWRITE
call,BASIC 6-29
example 6-31

BKSTART
call,BASIC 6-32
examples 6-24,-35

BK UNLOCK
call,BASIC 6-36
example 6-37

BKVERSION call,BASIC 6-38
BKWRITE

call,BASIC 6-39
example 6-42

Block size,
BUILD 2-9
FOPEN 4-43

Blocking factor,
BUILD 2-9
FOPEN 4-43

Buffers,number of,FOPEN 4-43
BUILD command,

KSAMUTIL 2-8
use of 2-16

BYTE key type 2-15

c

Call KSAM intrinsics,
FORTRAN 5-2
SPL 4-3

Call KSAM procedures,
BASIC 6-2
COBOL 3-2
FORTRAN 5-3

CALL statement,
BASIC 6-2
COBOL 3-2
FORTRAN 5-2

Chronological read,
FORTRAN 5-13
SPL 4-68

Chronological record pointer,SPL 4-5
CK CLOSE

call,COBOL 3-12
examples 3-14,-4 7

1-1

INDEX I

CKDELETE
call,COBOL 3-13
examples 3-14,-52

CKLOCK
call,COBOL 3-18
example 3-19

CK OPEN
call,COBOL 3-20
examples 3-23,-4 7

CKOPENSHIR call,COBOL 3-25
CKREAD

call,COBOL 3-26
examples 3-27 ,-48

CKREADBYKEY
call,COBOL 3-29
examples 3-30,-51

CKREWRITE
call,COBOL 3-32
examples 3-34,-51

CKSTART
call,COBOL 3-36
examples 3-37,-48

CKUNLOCK call,COBOL 3-40
CKWRITE

call,COBOL 3-42
examples 3-43,-46

Qear file,ERASE 2-19
Oose file,

BASIC 6-8
COBOL 3-12
SPL 4-12

COBOL
error messages A-5
examples 3-46
features 1-9
interface 3-1
procedures from FOR TRAN 5-3
procedures,summary 3-2

Collating sequence C-1
Command abbreviations,KSAMUTIL 2-3
Complete input/output,SPL 4-17
Control block,key file B-5
Conversion to KSAM files D-1
Copy KSAM file,FCOPY 2-45
Crash recovery 2-27,-40;E-1
Create capabilities 1-6
Create file,

BUILD command 2-8
BUILD examples 2-16
FCOPY 2-49
FORTRAN 5-4,-7
SPL 4-50

D

Data buffers,FOPEN 4-43
Data file name,

BUILD 2-8
FOPEN 4-41

Data file /key file relation B-9
Data record format 1-5

1-2

Delete file,
PURGE 2-20
SPL 4-15

Delete keys from B-tree B-2
Delete record,

BASIC 6-10
capability 1-7
COBOL 3-13
COBOL example 3-51
SPL 4-80

Device specification,
BUILD 2-10
FOPEN 4-41

Display error message,
BASIC 6-12
COBOL 3-20
SPL 4-20

Display file,FCOPY 2-52
Display file characteristics, VERIFY 2-24
Display offline 2-3
DOUBLE key type 2-15
Dump key file 2-31
Duplicate key,

BUILD 2-13
capability 1-3
FOPEN 4-47,-49
random insertion 2-13;4-49

Dynamic access,COBOL 3-22
Dynamic access code,COBOL 3-4
Dynamic locking

BASIC 6-14
COBOL 3-18
SPL 4-38

E

E command (see ERASE)
End-of-file,

data file E-1
key file E-2

EOF,
data file 2-40;E-1
key file 2-40;E-2,-3
MPE 2-27 ,-40;E-1

ERASE command 2-19
Error checking

BASIC 6-4
COBOL 3-6
SPL 4-7

Error code translator,SPL 4-20
Error messages A-1
errorcode list 4-8;A-l
Exclusive access,

BASIC 6-17
SPL 4-46

EXIT command,
FCOPY 2-45
KSAMUTIL 2-4

Extent allocation,
BUILD 2-11
FOPEN 4-44

Extents,number of 2-11;4-49

Extra data segment size B-18
Extra data segments,

definition B-17
end-of-file marker E-4
shared access B-21

F

FCHECK call,SPL 4-7
FCLOSE call,SPL 4-12
FCONTROL call,SPL 4-17
FCOPY 2-45
FCOPY error messages A-14
FCOPY,

function summary 2-4 7
to list files 2-52
use with KSAM 2-48
using KEY= 2-50
using NOKSAM 2-51
without KSAM options 2-48

FERRMSG call, SPL 4-20
FFINDBYKEY

call,SPL 4-22
example 4-25

FFINDN call,SPL 4-26
FGETINFO

call,SPL 4-28
example 4-33

FGETKEYINFO call,SPL 4-35
File access capability 1-2
File analysis capability 1-7
F'ile capacity,

BUILD 2-11
FOPEN 4-43

File characteristics,
FGETINFO 4-28
FOPEN (see foptions)
VERIFY 2-24

File code,
BUILD 2-11
FOPEN 4-44

File error list 4-8;A-1
File errors,FCHECK 4-7
File equations 1-8
File label,read in SPL 4-76
File name,

BUILD 2-8
FOPEN 4-41

File sequence 1-2
File size,

BUILD 2-11
calculation of B-11
FOPEN 4-43

File status request,
SPL 4-28
VERIFY 2-24

File structure 1-1,B-1
diagram of 1-5
internal B-1

File system error codes A-2

MAY 1981 1-3

File system intrinsics,
FORTRAN 5-2
SPL 4-1

Filetable parameter,COBOL 3-4
Find key

BASIC 6-32
COBOL 3-36
SPL 4-22

Fixed length records,
BUILD 2-9
FOPEN 4-45

FLOCK call ,SPL 4-38
FOPEN

call,SPL 4-41
example,create file 4-51
example,open file 4-53

FORTRAN features 1-11
FORTRAN interface 5-1
Forward space file,SPL 4-88

FPOINT call,SPL 4-57
FREAD

call,SPL 4-59
example 4-61

FREADBYKEY
call 4-63
example 4-66

FREADC
call,SPL 4-68
example 4-70

FREADDIR
call ,SPL 4-7 2
example 4-7 4

FREADLABEL
call,SPL 4-76
example 4-77

FREADSEEK call 4-7 8
FRELATE call 4-79
FREMOVE

call 4-80
example 4-83

FRENAME call 4-85
FROM command, FCOPY 2-46
FSETMODE call,SPL 4-86
FSPACE call,SPL 4-88
FUNLOCK call,SPL 4-91
FUPDATE

call,SPL 4-92
example 4-95

FWRITE
call,SPL 4-97
example 4-99

FWRITEDIR call,SPL 4-100
FWRITELABEL call,SPL 4-101

G

Generic key access,
BASIC 6-32
COBOL 3-36
SPL 4-22

Generic key capability 1-4

H

H command (see HELP)
HELP command,KSAMUTIL 2-5
HP32208 intrinsic,SPL 4-103

I

Input only,
BASIC 6-16,-18
COBOL 3-4,-21
SPL 4-46,-53

Input-output,
BASIC 6-16,-18
COBOL 3-4,-21
SPL 4-46

Input/output verification,SPL 4-86
INTEGER key type 2-15
Internal structure,KSAM files B-1
Intrinsic format,SPL 4-3
Intrinsics,KSAM 4-1
Invalid key,

COBOL rewrite 3-33
COBOL write 3-43

K

KD command (see KEYDUMP)
Key block buffer size,during reload E-12
Key block buffers,number of B-20
Key block,

calculation of size B-12
size B-11
utilization,percent of 2-38

Key blocking,
BUILD 2-12
FOPEN 4-4 7,-49

Key blocks,number of 2-38
Key description,

BUILD 2-12
FOPEN 4-4 7

Key descriptor block,key file B-5
Key device,

BUILD 2-14
FOPEN 4-4 7 ,-48

Key entries,
number of,BUILD 2-13
number of,FOPEN 4-48

Key entry block,key file B-8
Key file characteristics,

FGETKEYINFO 4-35
KEYINFO 2-38

Key file/data file relation B-9
Key file definition,

BUILD 2-11
FOPEN 4-41,-47

Key file formatted dump 2-31
Key file information

FGETKEYINFO 4-35
KEYINFO 2-38

I-4

Key file name,
BUILD 2-11
FOPEN 4-41

Key file size,
BUILD 2-13
calculation of B-13
FOPEN 4-4 7 ,-4 8

Key file status request,
FGETKEYINFO 4-35
VERIFY 2-24

Key file structure B-5
diagrams B-6,-7

Key location,
BUILD 2-12
FOPEN 4-4 7,-49

Key sequence,verification 2-28
Key size,

BUILD 2-12
FOPEN 4-4 7,-49

Key type,
BUILD 2-12
FOPEN 4-47,-49

Key types 2-15
Key values,sequence check 2-28
KEY= option,FCOPY 2-50
KEYDUMP command,KSAMUTIL 2-31
KEYINFO command,KSAMUTIL 2-37
Keys,

number in B-tree 2-38
number in root block 2-38

KEYSEQ command,KSAMUTIL 2-28
KI command (see KEYINFO)
KS command (see KEYSEQ)
KSAM,

BASIC interface 6-1
COBOL interface 3-1
file system intrinsics 4-1
FORTRAN interface 5-1
internal file structure B-1
SPL interface 4-1
summary of FCOPY options 2-4 7
summary of features 1-3
utilities 2-1

ksamcontrol parameter,FGETKEYINFO 4-46
ksamparam,

format, FO PEN 4-4 7
parameter,FOPEN 4-41

KSAMUTIL 2-3
commands,summary 2-2
error messages A-8

L

Labels,
BCILD 2-14
FOPEN 4-43
read in SPL 4-76
write in SPL 4-101

Line printer display,
FCOPY 2-52
KSAMUTIL 2-3

Lock file,
BASIC 6-14
COBOL 3-18
SPL 4-38

Logical record pointer,
BASIC 6-7
COBOL 3-9
SPL 4-5

LONG key type 2-15

M

Modify record,
BASIC 6-29
COBOL 3-32
COBOL examples 3-34,-51
SPL 4-91

Multiple key capability 1-3

N

NEW option,FCOPY 2-4 7
NOCHECK option, VERIFY 2-24,-27
NOKSAM option,

description,FCOPY 2-51
syntax 2-47

NUMERIC key,
type 2-15
signed digit 2-16

0

Offline display 2-3
Open file after system failure,

KEYINFO 2-40
VERIFY 2-24,-27

Open file for shared access,COBOL 3-25
Open file,

BASIC 6-16
COBOL 3-20
FORTRAN 5-8
SPL 4-41,-53

Optional parameters,KSAMUTIL 2-4
Output only,

BASIC 6-16,-18
COBOL 3-4 .3-21
SPL 4-46,-54

p

PACKED key type 2-15
Parameter types,SPL 4-4
Permanent file,close as 4-13
Pointer dependence B-22
Pointer,logical record,

BASIC 6-7
COBOL 3-9

Pointers,SPL 4-5
Position by chronological record,SPL 4-57
Position by key sequence,SPL 4-26

1-5

Position by key value,
BASIC 632
COBOL 3-36
SPL 4-23

Position by key value and read,
BASIC 6-26
COBOL 3-29
SPL 4-63

Position file capability 1-7
Position to first record,SPL 4-17 ,-26
Position to lease-valued key,

BASIC 6-34
COBOL 3-37
SPL 4-23

Post buffer to disc,SPL 4-17
Previous operation,COBOL 3-5
PURGE command 2-20
Purge file,

FCLOSE 4-15
PURGE command 2-20

R

R command (see REN AME)
Random access code,COBOL 3-4,-21
Random access,COBOL 3-22
Random duplicate key insertion,

BUILD 2-13
FOPEN 4-49

Random read,
BASIC 6-26
COBOL 3-29
FORTRAN 5-10
SPL 4-63

Read by chronological record number ,SPL 4-7 2
Read chronologically,

FORTRAN 5-13
SPL 4-68

Read randomly,
BASIC 6-26
COBOL 3-29
SPL 4-63

Read sequentially,
COBOL 3-22
COBOL example 3-48
FORTRAN 5-10
SPL 4-59

Read user file label,SPL 4-76
REAL key type 2-15
Record numbering,

BUILD 2-14
FOPEN 4-48

Record pointer,
BASIC 6-7
COBOL 3-9
operation of B-23
SPL 4-5

Record size,
BUILD 2-9
FOPEN 4-41

Record type,
BUILD 2-9
FOPEN 4-45

RECOVER option,KEYINFO 2-42
Recover capability 1-7
Recovery from system failure 2-27,-40;E-1
Reload KSAM file E-11
RENAME command,KSAMUTIL 2-21
Rename file,RENAME command 2-21
Reorganize file capability 1-7
RESTORE command,MPE 2-57
Restore file

from magnetic tape 2-57
from serial disc 2-57

Retrieve record capability 1-6
Rewind file,SPL 4-17 ,-19
Rewrite record,

BASIC 6-29
COBOL 3-32
COBOL examples 3-34,-51
SPL 4-92

RPG interface 1-9
RSAM conversion D-1
RTOKSAM program D-1

s

S command (see SA VE)
SA VE command,KSAMUTIL 2-23
Save file

on magnetic tape 2-55
on serial disc 2-55
SA VE command 2-23

Save permanent file,SPL 4-45
Save temporary file,SPL 4-45
Sectors per key block 2-38
Security code,SPL 4-12
Sequence check of key values 2-28
Sequence checking,

BASIC 6-20,-40
COBOL 3-22,-42
SPL 4-97

Sequential access,COBOL 3-22
Sequential access code,COBOL 3-4
Sequential read,

BASIC 6-22
COBOL 3-26
COBOL example 3-48
FORTRAN 5-10
SPL 4-59

Sequential write,
BASIC 6-39
COBOL 3-42
COBOL example 3-46
SPL 4-97

Serial disc,backup to 2-55
Shared access,

BASIC 6-7
capability 1-8
COBOL 3-10
extra data segments B-21
SPL 4-6

1-6

Space f orward/backward,SPL 4-88
SPL

interface 4-1
summary of features 1-9

Status checking,
BASIC 6-4
COBOL 3-6

Status parameter,
BASIC 6-4
COBOL 3-6

Status parameter values,
BASIC A-6
COBOL A-5

STORE command,MPE 2-55
STREAM command,use of 2-43
Structure,KSAM files B-1
SUBSET option,FCOPY 2-4 7 ,-52
System failure,

count 2-27
recovery from 2-27,-40;E-1

SYSTEM INTRINSIC statement,FORTRAN 5-2

T

Tape backup 2-55
Temporary file

close as 4-13
creation,BUILD 2-9
creation,FOPEN 4-45
purging,FCLOSE 4-13
purging,PURGE 2-20
renaming,RENAME 2-21

Terminal display,FCOPY 2-52
Terminate FCOPY 2-45
Terminate KSAMUTIL 2-4

u

Unlock file,
BASIC 6-36
COBOL 3-40
SPL 4-91

Update record
BASIC 6-29
capability 1-7
COBOL 3-32
COBOL examples 3-34,-51
SPL 4-92

Utilities,
KSAM 2-1
summary of 2-2

v

V command (see VERIFY)
Variable length records,

BUILD 2-10
FOPEN 4-45

VERIFY command,KSAMUTIL 2-24
Version request,

BASIC 6-38
SPL 4-103

w

Write capability 1-6
Write record,

BASIC 6-39
COBOL 3-42
FORTRAN 5-9
SPL 4-97

Write sequentially ,COBOL example 3-46
Write user label,SPL 4-101

1-7

READER COMMENT SHEET

HP 3000 Computer System
KSAM/3000

Reference Manual

30000-90079 May 1981

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.

Please use additional pages if necessary.

Is this manual technically accurate?

Are the concepts and wording easy to understand?

Is the format of this manual convenient in size,
arrangement, and readability?

Comments:

FROM:

Name

Company

Address

Yes D No D (If no, explain under Comments, below.)

Yes 0 No 0 (If no, explain under Comments, below.)

Yes D No D (If no, explain or suggest improvements
under Comments, below.)

FOLD

BUSINESS REPLY MAIL
No Postage Necessary 1f Mailed in the United States. Postage will be paid by

Customer Information Products Manager
Hewlett-Packard Company
Information Systems Division
19420 Homestead Road
Cupertino, California 95014

FOLD

Fl RST CLASS
PERMIT NO. 102
SANTA CLARA
CALIFORNIA

FOLD FOLD

Part No. 30000-90079
Update No.1 Incorporated 10/83
Printed in U.S.A. 5/79

Ff/~ HEWLETT
~~PACKARD

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-49a
	02-49b
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	04-001
	04-002
	04-003
	04-004
	04-005
	04-006
	04-007
	04-008
	04-009
	04-010
	04-011
	04-012
	04-013
	04-014
	04-015
	04-016
	04-017
	04-018
	04-019
	04-020
	04-021
	04-022
	04-023
	04-024
	04-025
	04-026
	04-027
	04-028
	04-029
	04-030
	04-031
	04-032
	04-033
	04-034
	04-035
	04-036
	04-037
	04-038
	04-039
	04-040
	04-041
	04-042
	04-043
	04-044
	04-045
	04-046
	04-046a
	04-046b
	04-047
	04-048
	04-049
	04-050
	04-051
	04-052
	04-053
	04-054
	04-055
	04-056
	04-057
	04-058
	04-059
	04-060
	04-061
	04-062
	04-063
	04-064
	04-065
	04-066
	04-067
	04-068
	04-069
	04-070
	04-071
	04-072
	04-073
	04-074
	04-075
	04-076
	04-077
	04-078
	04-079
	04-080
	04-081
	04-082
	04-083
	04-084
	04-085
	04-086
	04-087
	04-088
	04-089
	04-090
	04-091
	04-092
	04-093
	04-094
	04-095
	04-096
	04-097
	04-098
	04-099
	04-100
	04-101
	04-102
	04-103
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	A-01
	A-02
	A-03
	A-04
	A-05
	A-05a
	A-05b
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-13a
	A-13b
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	replyA
	replyB
	xBack

