- RELOCATABLE SUBROUTINES

RELOCATABLE SUBROUTINES

11000 Wolfe Road
Cupertino, California 95014

September 1970

02116-91780

© Copyright, 1970, by
HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
be transmitted by any means, electronic, mechanical, photocopy, re-
cording or otherwise, without prior written permission from the
publisher.

Printed in the U.S.A.

PREFACE

Relocatable Subroutines is a programmer's reference to all the subroutines of the various
Hewlett-Packard Relocatable Libraries. It should be used in conjunction with the appropriate
language and system manuals.

The Introduction explains the Relocatable Libraries, their relationships, and their uses.
Section I contains all of the mathematical subroutines from all of the libraries, arranged
alphabetically by subroutine name. Section II provides a similar listing of the utility sub-
routines. Section III is dedicated entirely to the three versions of the Formatter.

There are also indices that give page referernces for each routine of each library and an index
of all the entry points mentioned in the book. /

111

iii

ix

1-1

2-1

3-1

3-3
3-3
3-4
3-6
3-7
3-7

3-9

3-10
3-11
3-11
3-14
3-15
3-16
3-17
3-19
3-19
3-20

CONTENTS

PREFACE
CONTENTS

INTRODUCTION

SECTION

I

MATHEMATICAL SUBROUTINES

SECTION
UTILITY

SECTION

II
SUBROUTINES

ITI

THE FORMATTER

FORMATTED INPUT/OUTPUT
Format Specifications

The
The
The
The
The
The
The
The
The
The
The
The
How
FREE FIE
Data
Floa

E Specification
F Specification
D Specification
G Specification
Scale Factor (FORTRAN IV ONLY)
I Specification
0,K,@ Specifications
L Specifications
A and R Specifications
X Specification
" ", H Specifications (Literal Strings)
/ Specification
To Put Formats Together
LD INPUT
Item Delimiters
ting Point Input

SECTION III (Cont.)
THE FORMATTER

3-20 Octal Input
3-21 Record Terminator
3-21 List Terminator
3-23 UNFORMATTED INPUT/OQUTPUT
3-23 Records
3-24 ASSEMBLY LANGUAGE CALLING SEQUENCES
3-25 Input: Selecting A Calling Sequence
3-26 Qutput: Selecting a Calling Sequence
3-27 Notes
3-28 Internal Conversion
3-29 Notes
3-30 Buffered I/0 With The Formatter
3-31 Example Calling Sequences
TABLES
2-31 Table 2-1 SYMBOL/CHARACTER TABLE
INDICES
I-1 INDEX I
IT-1 INDEX II
ITI-1 INDEX III
Iv-1 INDEX IV
V-1 INDEX V A1l Entry Points

VI

INTRODUCTION

INTRODUCTION

Every Hewlett-Packard operating system that has a relocating loader (BCS, RTE, DOS, DOS-M) also has
one or more Relocatable Libraries. The subroutines in these libraries perform mathematical and
utility functions for user programs. The Relocating Loader 1links each user program with the sub-
routines that it needs.

From the library point of view, an operating system has three characteristics:

1. The system is disc-based (RTE, DOS, etc.) or is not (BCS).
2. The system includes EAU (Extended Arithmetic Unit) or does not.

3. The system includes extended precision arithmetic and formatting (FORTRAN IV Tibrary) or
does not.

For each possible operating system there are two appropriate libraries: a standard library (BCS or
disc-based, EAU or non-EAU) and an optional FORTRAN IV Library. (There are also special libraries
for 4K BCS installations.) Each library has a five-character identifier. These libraries include:

K4N.n Non-EAU FORTRAN Library (4K)

K4E . N EAU FORTRAN Library (4K)

EAU.N EAU Relocatable Library (BCS)

LIB.N Non-EAU Relocatable Library (BCS)

FTN4 N BCS FTN IV Library

F2N.n Non-EAU RTE/DOS Relocatable Library (without HP FORTRAN Formatter)
F2E.N EAU RTE/DOS Relocatable Library (no Formatter)

F4D.n RTE/DOS FORTRAN IV Library (with FORTRAN IV Formatter)

RTE/DOS HP FORTRAN Formatter

where v is the revision letter (A,B,C...).

In addition there are two Plotter libraries that support the printing of graphs: a BCS version and
an RTE/DOS version.

The chart below shows the decision process for choosing the correct libraries for any possible
system configuration:

BEGIN

(RTE REQUIRES EAU) (4K NON-EAU USE KAN.A
RTE/DOS opP BCS 4K EAU USE K4E.A)
SYS
\?/

NO e YES NO o YES
F2N.A F2E.A LIB.A EAU.A

NO 0 YES NO @ YES

HP
FORTRAN F4D.A FTN4A
FORMATTER

EAU PHILOSOPHY

The Extended Arithmetic Unit provides hardware multiply, divide and double load-store. In order to
promote compatability between different systems, all compilers generate non-EAU code. That is, code
generated by the FORTRAN compiler calls the multiply subroutine rather than using the hardware in-
struction. At run-time, if the system contains an EAU library, these subroutine calls are replaced
by the corresponding EAU hardware instruction.

ORGANIZATION OF THIS BOOK

This book is organized into three sections plus several indices. Since many subroutines appear in
more than one library, each subroutine is documented only once. A1l mathematical subroutines are
grouped into Section I, ordered alphabetically by name. A1l utility subroutines are covered in
Section II, also ordered alphabetically. Section III covers all the Formatters.

For each 1ibrary, there is an index that lists the subroutines in the order they appear in the
library. With each subroutine is a page reference.

The final index provides an alphabetic Tist, with page references, of every entry point mentioned in
the book. This is provided in case you know the entry point of a routine, but not the name.

The Page Format

Each subroutine is documented on a page of standard format. (See the sample page.) The following
items may appear for each subroutine:

“NAME" The name of the routine record in the NAM record.
Purpose The use of the routine.
Entry Points The entry points to the routine. If these are centered,

they apply to both the BCS version and the DOS/RTE version
of the routine. An entry of "N/A" means the routine is
not available in that system. After the DOS/RTE entry
point, there is a letter in parentheses giving the type of
the routine: U for utility, P for privileged, and R for
re-entrant.

External References These are other subroutines that are called by the sub-
routine. If centered, they apply to both versions of the
routine; if divided into two columns, they are different
for the two versions. If the DOS/RTE version is type P
or R, then it also references $LIBR and $LIBX.

Calling Sequences This is the assembly Tanguage calling sequence for each
entry point. If there is only one calling sequence, it
is centered. The arrow {+) indicates a return point.
"A" and "B" indicate the A- and B- registers.

Method This gives the algorithm for producing the result and/or
the accuracy of the routine.

Attribute Chart For each entry point, this chart gives the following
information:

a. Parameters: their type (real, integer, double
real or complex) and whether they are loaded
into the A- and B- registers.

b. Result: the type of the result and the registers
(if any) where it is returned.

c. Basic FORTRAN: whether the routine is an intrinsic
function (i.e., ABS(x)), callable subroutine, or
uncallable in HP FORTRAN.

XI

SAMPLE PAGE FORMAT

“ NAME "

PURPOSE:

BCS

DOS/RTE (TYPE)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

ATTRIBUTES: ENTRY POINTS:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL :

Errors:

NOTES:

COMMENTS:

XII

d. FORTRAN IV: Whether the routine is an intrinsic
function callable subroutine, or uncallable in
HP FORTRAN IV.

e. ALGOL: whether the routine is an intrinsic,
callable or uncallable procedure in HP ALGOL.

f. Errors: This gives a summary of any error con-
ditions in this format:

condition + (message or code)

(1f the condition occurs, the message is printed.)

LOADING SEQUENCES

If two libraries are used with an operating system, they must be Toaded in a specific manner.
In BCS, the FORTRAN IV Library must be Toaded before the standard 1ibrary.

In disc-based systems, either the FORTRAN IV Library or the HP FORTRAN Formatter must be loaded in
addition to the standard 1ibrary.

XIII

SECTION |

MATHEMAT

ICAL SUBROUTINES

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

BCS

ABS

Calculate the absolute value of a real x.

DOS/RTE (TYPE)

ABS (P)

..FCM

DLD x
JSB ABS
> result in A & B

ENTRY POINTS:

ABS

Real: A & B

Real: A & B

Function: ABS (x)

Function: ABS (x)

Intrinsic: ABS (x)

None

1-1

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

AIMAG

Extract the imaginary part of a complex x.

BCS DOS/RTE (TYPE)
AIMAG (P)
LENTR .ENTP
JSB AIMAG
DEF *+2
DEF x

+ result in A &B

ENTRY POINTS:

AIMAG

Complex

Two-word imaginary: A & B

Callable as function

Intr. function: AIMAG (x)

Callable as real procedure

None

AINT

PURPOSE: Truncate a real x:
y = SIGN (x). (largest integer < | x |), or v = [x]

BCS DOS/RTE (TYPE)
ENTRY
POINTS: AINT (P)
EXTERNAL .FLUN
REFERENCES: .PACK
CALLING DLD x
SEQUENCES: JSB AINT
>y in A &B
ATTRIBUTES: ENTRY POINTS:
AINT
Parameters: Real: A&B
Result: Real: A&B
Basic FORTRAN: Not callable
FORTRAN 1V: Function: AINT (x)
ALGOL: Not callable
Errors: None

1-3

ALOG

PURPOSE: Calculate the natural Togarithm of a real x:
v = 1n (x)
BCS DOS/RTE (TYPE)
ENTRY LN (R)
POINTS: ALOG
EXTERNAL
REFERENCES: .FLUN, .MANT, FLOAT, .ERRR .FLUN, .MANT, FLOAT
CALLING DLD x DLD x
SEQUENCES: JSB ALOG (or LN) JSB ALOG (or LN)
+ return (v in A, B) JSB ERRP (error return)
+ return (v in A&B)
METHOD: ; Let F = mantissa (x) I = characteristic (x) c
(that is, x =2 xF) Theny = 1 + log,r . (log 2) = Tog 2/r + z[c, + 2
2 e e 1 2]-1/2
where €3 - 2
z =r- v 2/2
F+ /—Z—/Z
and
¢y = 1.2920070987
¢, = 2.6398577035
Cg = 1.6567626301
ATTRIBUTES: ENTRY POINTS:
ALOG LN
Parameters: Real: A & B Real: A & B
Result: Real: A & B Real: A & B
Basic FORTRAN: Function: ALOG(x) Not Callable
FORTRAN IV: Function: ALOG (x) Not Callable
ALGOL: Not Callabie Intrinsic Procedure
Errors: x 20~ (p2 UN) Same
NOTES: ALOG is the FORTRAN entry point; LN is the ALGOL entry point.

1-4

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

ALOGT

Calculate the common logarithm (base 10) of real x:

Yy = 1og]O X
BCS DOS/RTE (TYPE)
ALOGT (V)
ALOG
DLD x DLD x
JSB ALOGT JSB ALOGT

~ normal return (result in A&B)

+ error return
-~ normal return (result in A&B)

y = 10910 X = log]oe*1ogex
Accuracy depends on the accuracy of ALOG.

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

ENTRY POINTS:

ALOGT

Real

Real: A&B

Not Callable

Intr. Function: ALOGT (x)

Not Callable

If x 5 0> (P2 UN)

1-5

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

AMOD

z = x modulo v

Calculate the real remainder of x/v for real x and v:

BCS DOS/RTE (TYPE)
AMOD (P)
.ENTR .ENTP
AINT AINT
JSB AMOD
DEF * + 3
DEF x
DEF v
+~z in A& B

zZ=x - [x/v] % x

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1V:
ALGOL :

Errors:

ENTRY POINTS:

AMOD

Real

Real: A&B

Callable as Function

Intrinsic Function: AMOD (x,v)

Callable as Real Procedure

If vy =20, then z = x

1-6

ATAN

PURPOSE: Calculate the arctangent of a real x:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

NOTES: 1.

Yy = tan"](x)

BCS ' DOS/RTE (TYPE)

ARCTA (R)
ATAN

.CHEB

DLD x
JSB ATAN (or ARCTA)
+ return (v in A&B)

if abs (x) > 1 then v = 1/x else v = x
y = v * Cheby(2*u*y - 1)

if abs (x) < 1 then answer = v

else if x > 0 then answer = n/2-y
else answer = -n/2-vy

ENTRY POINTS:

ATAN ARCTA

Real: A & B Real: A & B

Real: A & B (radians) Real: A & B (radians)
Function: ATAN (x) Not Callable
Function: ATAN (x) Not Callable

Not Callable

Intrinsic Function: ARCTAN(x)

None

None

ATAN is the FORTRAN entry point and ARCTA is the ALGOL entry point.

2. Result ranges from -w/2 to w/2.

1-7

ATAN2

PURPOSE: Calculate the real arctangent of the quotient of two reals: z = arctan (v/x)
BCS DOS/RTE (TYPE)
ENTRY
POINTS: ATAN2 (R)
EXTERNAL .ENTR, SIGN, ATAN .ENTP, SIGN, ATAN
REFERENCES:
CALLING JSB ATAN2
SEQUENCES: DEF * + 3
DEF v
DEF x
+~z inA&B
METHOD: Ifx =0, z = sign (¥) #/2
If x > 0, z = arctan (¥/x)
If X <0, z = arctan (¥/x) + sign (¥) .=

Accuracy depends on accuracy of ATAN.

ATTRIBUTES: ENTRY POINTS:
ATAN 2

Parameters: Real

Result: Real: A& B
Basic FORTRAN: Callable as Function

FORTRAN 1IV: Intr. Function: ATANZ (v,x)
ALGOL: Callable as Real Procedure
Errors: None

1-8

CABS

PURPOSE: Calculate the real absolute value (modulus) of complex x: v = |x|
BCS DOS/RTE (TYPE)
ENTRY
POINTS: CABS (R)
EXTERNAL
REFERENCES: -ENTR, SQRT .ENTP, SQRT
CALLING JSB CABS
SEQUENCES: DEF *+2
DEF x
>y inA&B
METHOD: —_
vl = xptenl = O
Accuracy depends on the accuracy of SQRT.
ATTRIBUTES: ENTRY POINTS:
CABS
Parameters: CompTlex
Result: Real: A&B
Basic FORTRAN: Callable as Function
FORTRAN 1IV: Intr. Function: CABS (x)
ALGOL: Callable as Real Procedure
Errors: None

1-9

CADD

PURPOSE: Add complex x to complex v: z =x+ vy (z is complex)
BCS DOS/RTE (TYPE)
ENTRY .CADD (P)
POINTS: CADD
EXTERNAL GETAD
REFERENCES: ADRES .PCAD
CALLING JSB .CADD or JSB CADD
SEQUENCES: DEF z (result) DEF * + 4
DEF x DEF z (result)
DEF v DEF x
N DEF v
N
ATTRIBUTES: ENTRY POINTS:
.CADD CADD
Parameters: Complex Complex
Result: Complex Complex
Basic FORTRAN: Not Callable Callable
FORTRAN 1IV: Not Callable Callable
ALGOL: Not Callable Callable
Errors: None None

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

CDIV

Divide complex x by complex v: z = x/v

BCS DOS/RTE (TYPE)
.CDIV (P)
CDIV
GETAD .PCAD
ADRES
JSB .CDIV or JSB CDIV

DEF z (result)
DEF x
DEF v

-

DEF * + 4

DEF z (result)
DEF x

DEF v

>

ENTRY POINTS:

.CDIV CDIV
Complex Complex
Complex Complex
Not Callable Callable
Not Callable Callable
Not Callable Callable
None None

CEXP

PURPOSE: Calculate the complex exponential of a complex x.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

Accuracy:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

NOTES: 1.

If

- i - X -
Y =1 + Togy= " = ¢

BCS DOS/RTE (TYPE)
CEXP (R)
.ENTR, EXP, .ENTP, EXP,
SIN, COS SIN, COS
JSB CEXP JSB CEXP
DEF *+3 DEF *+3
DEF v {result) DEF v (result)
DEF x DEF x
- Normal return -+ Error return
+ Normal return

X

1+ i x5 = €51 (cos X, + 1.sin x2)
depends on the accuracy of EXP and SIN.

ENTRY POINTS:

CEXP

Complex

Complex

Not Callable

Intr. Function: CEXP(x)

Not Callable

Note 1

If xq + Togye > 124, ~ (p7 OF).

1 x2 . 1
3| 25+ 7 | so1n(ps op).

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

Answer

ATTRIBUTES:

Parameters:
Result:

‘Basic FORTRAN:
FORTRAN 1V:
ALGOL:

Errors:

NOTES: 1.

CHEBY

Evaluate the chebyshev series at a real x for a particular table of coefficients c.

BCS DOS/RTE (TYPE)
.CHEB (R)
None
DLD x
JSB .CHEB
DEF ¢ {table, note 1)
> result in A & B
i1 7 T2 P i (4 = 21, aneT)
= T-] = 0
number of coefficients
Th-1 ™ Thes
ENTRY POINTS:
.CHEB
Real
Real

Not Callable

Not Callable

Not Callable

TAN(x) for x close to n/2

Table ¢ consists of a series of real coefficients terminated by an

integer zero.

CLOG

PURPOSE: Calculate the complex natural logarithm of a compliex x.

BCS DOS/RTE (TYPE)
ENTRY
POINTS: cLoG (R)
EXTERNAL .ENTR, ALOG .ENTP, ALOG
REFERENCES: CABS, ATAN? CABS, ATAN2
CALLING JSB CLOG JSB CLOG
SEQUENCES: DEF *+3 DEF *+3
DEF v (result) DEF v (result)
DEF x DEF x
-+ Normal return + Error return
-+ Normal return

METHOD:
y=y+ i.yz = 1oge X = 1oge (x] + i_xz) = 1oge(r) +i.0
where
r = x.l2 + xg
0 = arctan(x2
<)
Accuracy depends on the accuracy of ALOG and SQRT.
ATTRIBUTES: ENTRY POINTS:
CLOG
Parameters: Complex
Result: Complex
Basic FORTRAN: Not Callable
FORTRAN IV: Intr. Function: CLOG(x)
ALGOL: Not Callable
Errors: If x =0~ (P2 UN)

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

CMPLX

Combine a real x and an imaginary v into a complex z.

BCS DOS/RTE (TYPE)
CMPLX (P)
.ENTR .ENTP
JSB CMPLX
DEF *+4
DEF z
DEF x
DEF v
-
ENTRY POINTS:

CMPLX

Real & Imaginary

Complex

Callable

Intr. Function: CMPLX (x,v)

Callable

None

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL :

Errors:

CMPY

Multiply complex x by complex v: 2z =Xx -

BCS DOS/RTE (TYPE)
.CMPY
CMPY (P)
GETAD .PCAD
ADRES
JSB .CMPY or JSB CMPY
DEF z (result) DEF * + 4

DEF x
DEF v
>

DEF z (result)
DEF x
DEF v

>

ENTRY POINTS:

.CMPY CMPY

CompTex Complex
Complex Complex
Not Callable Callable
Not Callable Caliable
Not Callable Callable
None None

CONJG

PURPOSE: Form the conjugate v of a complex x.

BCS DOS/RTE (TYPE)
ENTRY
POINTS: CONJG (P)
EXTERNAL .ENTR .ENTP
REFERENCES: ..FCM ..FCM
CALLING JSB CONJG
SEQUENCES: DEF * + 3
DEF v (result)
DEF x
N

METHOD: 17 ; - X, 1%, then v = x, - i-x,
ATTRIBUTES: ENTRY POINTS:
CONJG
Parameters: Complex
Result: Complex
Basic FORTRAN: Callable
FORTRAN 1V: Intr. Function: CONJG (x)
ALGOL: Callable
Errors: None

1-17

CSNCS

PURPOSE: Calculate the complex sine or cosine of complex x: v = sine (x)
v = cosine (x)
BCS DOS/RTE (TYPE)
ENTRY CSIN (R)
POINTS: CCoS
EXTERNAL .ENTR, SIN, COS .ENTP, SIN, COS
REFERENCES: EXP, ..FCM EXP, ..FCM
CALLING JSB CSIN (or CCOS)
SEQUENCES: DEF * + 3
DEF v
DEF x
JSB error routine
-+ Normal return
METHOD: qipe: v - Yo+ i, = sin (x) = sin (x) + i0xy) =
sin(x]) (X2 + e7%2) + i cos(xz) (e*2 - e7%2)
2 7
Cosine: y =Y, +Y,.i= cos(x) = cos’(x1 + 1'.x2) =
(cos(x]))(exz +e%2) +(1'-s1'n(x]))(ex2 - e %2)
. 2 2/
Accuracy depends on the accuracy of EXP and SIN.
ATTRIBUTES: ENTRY POINTS:
CSIN ccos
Parameters: Complex Complex
Result: Complex Complex
Basic FORTRAN: Not Callable Not Callable
FORTRAN IV: Intr. Function: CSIN (x) Intr. Function: CCOS (x)
ALGOL - Not Callable Not Callable
Errors: Note 1, Note 1.
NOTES: 1. % $-+%b2”»(¢50m

x,log,e > 124 » (g7 OF)

PURPOSE: Calculate the complex square root of complex x: v = vt 1-y2 = VXq+i.X

CSQRT

1 2
BCS DOS/RTE (TYPE)
ENTRY
POINTS: CSQRT (R)
EXTERNAL .ENTR, ..DLC, .ENTP, ..DLC,
REFERENCES: SQRT, CABS SQRT, CABS
CALLING JSB CSQRT
SEQUENCES: DEF * + 3
DEF v (result)
DEF x
>
METHOD:
If x = 0
If X] > 0; Y] = /X] + X, Y2 =_§g
2 ZY]
If X, <0; Y, = sign(Xz) Xyt [X] Y= X
2 —
2Y2
Accuracy depends on the accuracy of SQRT.
ATTRIBUTES: ENTRY POINTS:
CSQRT
Parameters: Complex
Result: Complex
Basic FORTRAN: Callable
FORTRAN 1IV: Intr. Function: CSQRT (x)
ALGOL : Callable
Errors: None

1-19

CSUB

PURPOSE: Subtract complex v from complex x: z =x - v
BCS DOS/RTE (TYPE)
ENTRY .CSUB (P)
POINTS: CcsuB
EXTERNAL GETAD .PCAD
REFERENCES: ADRES
CALLING JSB .CSUB or JSB CSUB
SEQUENCES: DEF z (result) DEF * + 4
DEF x DEF z (result)
DEF v DEF x
> DEF v
-
ATTRIBUTES: ENTRY POINTS:
.CSuB CSUB
Parameters: Complex Complex
Result: Complex Complex
Basic FORTRAN: Not Callable Callable
FORTRAN 1IV: Not Callable Callable
ALGOL: Not Callable Callable
Errors: None None

1-20

DABS

PURPOSE: Calculate the absolute value of a double real x: v = |x|
BCS DOS/RTE (TYPE)
ENTRY
POINTS: DABS (P)
EXTERNAL
REFERENCES: ..DCM, .XFER
CALLING JSB DABS
SEQUENCES: DEF %43
DEF v
DEF x
>
ATTRIBUTES: ENTRY POINTS:
DABS
Parameters: Double Real
Result: Double Real
Basic FORTRAN: Callable
FORTRAN 1IV: Function: DABS (x)
ALGOL: Callable
Errors: NOTE 1
NOTES: 1. If x = Smallest negative number (-2]27), then

y = Largest positive number [(]-2'39)- 2]27

and the overflow bit is set.

]

1-21

DATAN

PURPOSE: Calculate the double real arctangent of double real x: v = arctan (x)
BCS DOS/RTE (TYPE)
ENTRY
POINTS: DATAN (R)
EXTERNAL
REFERENCES: .XADD, .XSUB, .XMPY, .XDIV, .XFER, ..DCM, .FLUN
gé;blgNGCES' JSB DATAN
) DEF *+3
DEF v (result)
DEF x
If x < 0, v = -arctan(-x)
METHOD: If |x|>1, let z =1 , then ¥ = 1 - arctan(z)
|x 2
If |x|<1, let z = |x|
- m T
Ifz< /2= 1, set v = tang , wep
Ifz < V2 -1, set v = tan 5% , w = 3%
Tl setw 6"~ T6
Then T = _z-v
T+z°v
Arctan(z) = w + arctan(r)
Arctan(r) = | o | c][(T2+Bz) (T2+B3)+c3]
(T2+B1) [(T2+B2) (T2+B3)+c3]+02(T2+B3)
CO = ,208979591837
C] = 2.97061224490 B = 5.10299532839
C, = -3.35025248131 B, = 2.58417875505
C5 = -.128720995297 By = 1.21282591656
Accuracy: The relative error in vy = arctan(x+ax) is r = Ax
(x2+1) arctan(x)
where Ax represents the round-off error in x. Hence, at
x = +.001, the accuracy will be 9 significant digits due to
the round-off error in the 39th bit of x. As x diverges from
0, the accuracy becomes 11 significant digits.
ATTRIBUTES: ENTRY POINTS:
DATAN
Parameters: Double Real
Result: Double Real
Basic FORTRAN: Callable
FORTRAN 1V: Intrinsic Function: DATAN (x)
ALGOL: Callable
Errors: None

1-22

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:
Basic FORTRAN:

FORTRAN 1IV:
ALGOL:

Errors:

Calculate the double real arctangent of

DATN2

z = arctan {v/x)

the quotient of two double reals:

BCS DOS/RTE (TYPE)
DATNZ (R)

.ENTR, DSIGN, DATAN .ENTP, DSIGN, DATAN
.XADD, .XDIV, .XFER .XADD, .XDIV, .XFER
JSB DATN2
DEF *+4

DEF z (result)
DEF v
DEF x
N
If x=0, z=sign (v). «
2
If x>0, z = arctan (v/x)

If x <0, z = arctan (v/x

) + sign (¥) . o«

Accuracy depends on accuracy of DATAN.

ENTRY POINTS:

DATNZ

Double Real

Double Real

Callable

Intrinsic Function: DATN2 (¥, X)

Callable

None

1-23

DBLE

PURPOSE: Convert a real x to a double real v.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: DBLE (P)
EXTERNAL
REFERENCES: .FLUN, .XFER, .XPAK
CALLING JSB DBLE
SEQUENCES: DEF *+3
DEF v (result)
DEF x
N
ATTRIBUTES: ENTRY POINTS:
DBLE
Parameters: Real
Result: Double Real
Basic FORTRAN: Callable
FORTRAN IV: Intrinsic Function: DBLE (x)
ALEOL: Callable
Errors: None

1-24

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

DCOS

Calculate the double real cosine of double real x: v

cos (x)

BCS DOS/RTE (TYPE)
DCOS (R)
.ENTR, DSIN, .ENTP, DSIN,
.XFER, .XADD .XFER, .XADD
JSB DCOS
DEF *+3

DEF v (result)
DEF x

>

vy = cos (x) =

sin (x + n/2)

Accuracy depends on the accuracy of DSIN.

ENTRY POINTS:

DCOS

Double Real

Double Real

Callable

Intrinsic Function: DCOS (x)

Callable

None

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

v = sign (x).

DDINT

Truncate a double real x to a double real v:
(Largest integer < |x|), or v

[x]

BCS DOS/RTE (TYPE)

DDINT (P)

.ENTR, .XFER, .ENTP, .XFER

.FLUN, .XPAK .FLUN, .XPAK
JSB DDINT
DEF *+3
DEF v
DEF x

>

ENTRY POINTS:

DDINT

Double Real

Double Real

Callable

Intrinsic Function:

DDINT (x)

Callable

None

1-26

DEXP

PURPOSE: Calculate the double real exponential of a double real x: v = &
BCS DOS/RTE (TYPE)
ENTRY
POINTS: DEXP_(R)
EXTERNAL .ENTR,.ERRR,.XPAK,.XADD,.XSUB, . XMPY, .ENTP,.XADD,.XSUB, .XMPY,.XDIV,
REFERENCES: .XDIV,.FLUN,DDINT,SNGL,IFIX,.XFER DDINT,SNGL,IFIX,.FLUN,.XPAK,.XFER
CALLING JSB DEXP JSB DEXP
SEQUENCES: DEF *+3 DEF *+3
DEF v (result) DEF v (result)
DEF x DEF x
+ normal return -+ error return
-+ normal return

METHOD:
N 2
X=02 € where: z = 1n2 (Xlogze-N)
N = [XlogzejJ/ZJ (see DDINT)
2
e? = Co + C](Z(Z +C4)+C32)
2 2
(Z+B])(Z(Z +C4)+C3z)+02(z +C4)
Co=1.0 C2 = 138.0 C4 = 12.17391304348
C] = 40.0 C3 = 29,8260869565 B] = -20.0
. . _ X+ AX
Accuracy: The relative error in vy =e is R = AX where Ax represents
the error in the argument. THus for |x| <1, the accuracy will
be 11 significant digits, but for |x|near 100, the accuracy
will be 8 significant digits.
ATTRIBUTES: ENTRY POINTS:
DEXP
Parameters: Double Real
Result: Doubie Real
Basic FORTRAN: Not Callable
FORTRAN 1V: Intrinsic Function: DEXP (x)
ALGOL: Not Callable
Errors: 1f ¥ > (1-27%) 2'%7 . (1p of)

1-27

DIM

PURPOSE: Calculate the positive difference between real x and v: z =x - min (x,v)
BCS DOS/RTE (TYPE)
ENTRY
POINTS: DIM (P)
EXTERNAL .ENTR .ENTP
REFERENCES:
CALLING JSB DIM
SEQUENCES: DEF *+3
DEF x
DEF v
~>2zinA&B

ENTRY POINTS:

ATTRIBUTES:
DIM
Parameters: Real
Result: Real
Basic FORTRAN: Callable
FORTRAN TV: Intrinsic Function: DIM (x.¥)
ALGOL: | callable as Real Procedure
Errors: None

DIV

(non-EAU Libraries only)

PURPOSE: Divide a two-word integer 1 by the one-word integer J: k = 1/7
BCS DOS/RTE (TYPE)
ENTRY
POINTS: DIV (U)
EXTERNAL
REFERENCES: None
CALLING DLD or DLD
UENCES: I I
SEQUENCES DIV 7 JSB, DIV
> result in A, remainder in B DEF 7
-+ result in A, remainder in B
ATTRIBUTES: ENTRY POINTS:
.DIV
Parameters: Two-word integer (Note 1), integer
Result: Integer quotient and remainder in A&B
Basic FORTRAN: Not callable
FORTRAN 1V: Not callable
ALGOL: Not callable
Errors: -32768 > quotient > 32767 > overflow, quotient « 32767

NOTES:

1. B contains most significant bits, A least.

See MPY,

1-29

DLDST

(non-EAU Tibraries only)

PURPOSE: Store x, a two-word quantity in the A and B registers, into memory
BCS DOS/RTE (TYPE)
ENTRY .DLD (U)
POINTS: -DST
EXTERNAL
REFERENCES: GETAD, ADRES
CALLING JSB .DLD or DLD x
SEQUENCES: DEF x -
>
JSB .DLD or DST x
DEF x >
N
ATTRIBUTES: ENTRY POINTS:
Call: .DLD .DST
Parameters: Two-word quantity Two-word quantity: A&B
Result: Two-word quantity: A&B Two-word quantity
Basic FORTRAN: Not callable Not callable
FORTRAN 1IV: Not callable Not callable
ALGOL: Not callable Not callable
Errors: None None

1-30

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN 1V:
ALGOL:
Errors:

NOTES:

DLOG

Calculate the double real natural logarithm of a double real x:

Yy = 'loge X

BCS

DOS/RTE (TYPE)

DLOG (R)

.ENTR, .ERRR,
.XDIV, .XFER,

. XADD, .XSUB, .XMPY,
.FLUN, FLOAT, DBLE

.ENTP, .XADD, .XSUB .XMPY, .XDIV,
XFER, .FLUN, FLOAT, DBLE

JSB DLOG JSB DLOG

DEF *+3 DEF *+3

DEF v (result) DEF v (result)
DEF x DEF x

+ hormal return

-+ error return
-+ normal return

1 = (n-1/2)1n2 + Tn (142 \
n{x) = (n n n e

-2

where: n = EXPON(x)
m = MANT(x)
=m=- 2 /2
m+/2/ 2
2 2
In Itz =z ¢1[(2748,) (27+84)+C]
-2 (2°+8,) [(248, (2548,)+ 1+C, (2°4B;)
C1 = -18.4800000000 B.I = -15,8484848485
C2 = -23.643709825 B2 = -3.75400078147
C3 = -,246270037272 B3 = -1.39751437005
Accuracy: See NOTE 1.
ENTRY POINTS:
DLOG

Double real

Double real

Not callable

Intrinsic function:

DLOG (x)

Not callable

If x 20> (11 UN)

The relative error in v = In(x+ax) is R = Ax .

error increases as x approaches 1.

Hence, the relative
xInx

At x = 1.000 + .001 the accuracy

will be 9 significant digits due to an error in the 39th bit in the

representation of x.
significant digits.

As x diverges from 1 the accuracy becomes 11

1-31

DLOGT

PURPOSE: Calculate the double real comman logarithm of double real x:
Yy = logmx
BCS DOS/RTE (TYPE)
ENTRY
POINTS: DLOGT (U)
EXTERNAL .ENTR, DLOG, .XMPY .ENTP, DLOG, .XMPY
REFERENCES:
CALLING
SEQUENCES: JSB DLOGT JSB DLOGT
DEF *+3 DEF *+3
DEF v (result) DEF v (result)
DEF x DEF x
- normal return ~ error return
-+ normal return
METHOD: y =]og_lo X =]Oge X
Accuracy depends on the accuracy of DLOG.
ATTRIBUTES: ENTRY POINTS:
DLOGT
Parameters: Double Real
Result: Double Real
Basic FORTRAN: Not Callable
FORTRAN IV: Intrinsic Function: DIOGT (x)
ALGOL: Not Callable
Errors: If x <0 (11 lIN)

1-32

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
ResuTt:

Basic FORTRAN:
FORTRAN 1V:
ALGOL:

Errors:

DMOD

z=xmod v (z = x - [x/v]Y)

BCS

Calculate the double real remainder of two double real values:

DOS/RTE (TYPE)

DMOD (P}

.ENTR, .XSUB, .XMPY, .XDIV, DDINT

.ENTP, .XSUB, .XMPY, .XDIV, DDINT

JOB DMOD

DEF *+4

DEF z (result)
DEF x

DEF v

>

ENTRY POINTS:

DMOD

Double Real

Double Real

Callable

Intrinsic Function: DMOD (x.v)

Callable

If y=0, thenz = x

DSIGN

PURPOSE: Transfer the sign of a double real x to a double real v:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

z = sign (v) . |x|

BCS DOS/RTE (TYPE)

DSIGN (P)

.ENTR, .XFER, ..DCM .ENTP, .XFER, ..DCM

JSB DSIGN

DEF *+4

DEF z (result)
DEF x

DEF v

>

ENTRY POINTS:

DSIGN

Double Real

Double Real

Callable

Intrinsic Function: DSIGN (x,v)

Callable

Ifvr=0,2=0.

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

C] = -.166666666667 E+0 c
2 .833333331872 E-2 C

C

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

DSIN

BCS

Calculate the double real sine of double real x:
v = sin (x)

DOS/RTE (TYPE)

DSIN (R)

.ENTR, .XFER, .XPLY, .XADD,

.XSUB, .XMPY, .XDIV

.ENTP, .XFER, .XENT .XPLY,
. XADD, .XSUB, .XMPY, .XDIV

JSB DSIN
DEF *+3
DEF v
DEF x

-

x is reduced to the range -r < x <
2

If x <10'6, sin (x
Otherwise sin (x) =6

b CiX21+£> X
Ni=1

3 = =-198412663895 E-3 05 -.250294478915 E-7
4 = . 275569300800 E-5

When x is near a

) = x.

nof=

Ce . 154001500048 E-9

non-zero multiple of =, the accuracy of the

result is Timited by the accuracy of the subtraction nw -x.

ENTRY POINTS:

DSIN

Double Real

Double Real

Callable

Intrinsic Function:

DSIN (x)

Callable

None

1-35

DSQRT

PURPOSE: Calculate the double real square root of double real x: v = sqrt (x)

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN TIV:
ALGOL:

Errors:

BCS

DOS/RTE (TYPE)

DSQRT (R)

.ENTR, DBLE, SNGL, SQRT, .XDIV,
.XADD, .FLUN, .XPAK, .XFER

.ENTP, DBLE, SNGL, SQRT, .XDIV,
. XADD, .FLUN, .XPAK, .XFER

JSB DSQRT

DEF *+3

DEF v (result)
DEF x

-+ normal return

JSB DSQRT

DEF *+3

DEF v (result)
DEF x

~+ error return
-+ normal return

A first approximation is found using the
single precision SQRT: z = SQRT (x)

Then v = z+x/z
2
Accuracy is 11

significant digits.

ENTRY POINTS:

DSQRT

Double Real

Double Real

Not Callable

Intrinsic Function: DSQRT (x)

Not Callable

If x <0~ (@3 UN)

ENTIE

PURPOSE: 1) Calculate the greatest integer not algebraically exceeding a real x (ENTIE);
2) Round a real x to the nearest integer; for ties the algebraically larger integer

(.RND).
BCS DOS/RTE (TYPE)
ENTRY ENTIE (U)
POINTS: .RND
EXTERNAL None
REFERENCES:
CALLING DLD x DLD x
SEQUENCES: JSB ENTIE JSB .RND
> sign in A, integer in B + result in A
ATTRIBUTES: ENTRY POINTS:
ENTIE .RND
Parameters: Real Real
Result: Integer Integer
Basic FORTRAN: Not Callable Not Callable
FORTRAN IV: Not Callable Not Callable
ALGOL: Intr. Funct: ENTIER (x) Not Callable
Errors: None None

ENTIX

PURPOSE: Calculate ENTIER of double real x:
v = ENTIER (x) = greatest integer not algebraically exceeding x.

BCS DOSIRTE(TYPE)
ENTRY -XENT (P)
POINTS: ENTIX
EXTERNAL .ENTR, XFER, .FLUN, .XPAK .ENTP, .XFER, .FLUN, .XPAK
REFERENCES:
CALLING JSB .XENT(or ENTIX)
SEQUENCES: DEF * + 3
DEF v
DEF x
>
ATTRIBUTES: ENTRY POINTS:
ENTIX . XENT
Parameters: Double Real Double Real
Result: Double Real Double Real
Basic FORTRAN: Callable Not Callable
FORTRAN IV: Callable Not Callable
ALGOL: Callable Not Callable
Errors: None None

1-38

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

Let i=

where

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

NOTES: 1.

EN

2ix

EXP

Calculate eX, where x is real.

BCS DOS/RTE (TYPE)
EXP (R)
.ERRR, .IENT, .IENT, FLOAT,
FLOAT, .PWR2 .PWR2
DLD x DLD x
JSB EXP JSB EXP
+ (v in A & B) JSB ERRD (error)
+ (v in A & B)
TIER(x), and t=x*Togye - | (see .IENT)
B
1+ 2f
2
| cy ¥ c3f2 - f - cz/(L + c])

87.417497202

617.9722695

0.03465735903

= 9.9545957821
ENTRY POINTS:
EXP
Real: A& B
Real: A & B
Function: EXP (x)
Function: EXP (x)
Intr. Proc.: EXP (x)
X*]Ogee Z 124 ~ (@7 OF)

1-39

If the error condition occurs, the overflow bit is set.

FADSB

PURPOSE: Add real x to v: Subtract real v from x:
zZ=x+vY Z=X-Y
BCS DOS/RTE (TYPE)
ENTRY
POINTS: .FAD, .FSB (P)
EXTERNAL .FLUN, .PACK .FLUN, .PACK, .ZRLE
REFERENCES:
CALLING DLD x or DLD x
SEQUENCES: JSB .FAD (.FSB) FAD (FSB) v
DEF vy -+ result in A&B
> result in A&B

ENTRY POINTS:

ATTRIBUTES:
EAD .FSB
Parameters: Real Real
Result: Real Real
Basic FORTRAN: Not Callable Not Callable
FORTRAN 1IV: Not Callable Not Callable
ALGOL: Not Callable Not Callable
Errors: See Note 1 See Note 1
NOTES:
1. If the result is outside the range of representable floating point
numbers [-2127, 2127(142'23)] the overflow flag is set and the

result 2]28(1-2'23) is returned. If an underflow occurs, (result
within the range (-2']29(1+2'22), 2-]29)) the overflow flag is set*
and the result 0 is returned.

1-40

FDV

PURPOSE: Divide real x by v: z = x/v
BCS DOS/RTE (TYPE)
ENTRY
POINTS: .FDV (P)
EXTERNAL CFLU _PACK
REFERENCES: FLUN, .P .FLUN, .PACK, .ZRLB
CALLING
SEQUENCES: DLD x or DLD x
JSB .FDV FDV v
DEF v -+ quotient in A&B
~ quotient in A&B

ENTRY POINTS:

ATTRIBUTES:
Call: .FDV
Parameters: Real
Result: Real
Basic FORTRAN: Not callable
FORTRAN 1IV: Not callable
ALGOL: Not callable
Errors: See FADSB

1-41

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1V:
ALGOL:

Errors:

FLOAT

Convert integer I to real x

BCS DOS/RTE (TYPE)
FLOAT (P)
.PACK
LDA T
JSB FLOAT
+ (x in A & B)
ENTRY POINTS:

FLOAT

Integer: A

Real: A & B

Function: FLOAT (r)

Function: FLOAT (1)

Not Callable

None

1-42

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:
Call:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

Multiply real x by v: z = x*y

FMP

BCS DOS/RTE (TYPE)
.FMP (P)
.FLUN, .PACK .FLUN, .PACK, .ZRLB
DLD v or DLD v
JSB .FMP FMP x
DEF x -+ product in A&B

~+ product in A&B

ENTRY POINTS:

.FMP

Real

Real

Not callable

Not callable

Not callable

See FADSB

-43

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

IABS

Calculate absolute value of integer r.

BCS DOS/RTE (TYPE)
IABS (P)
None
LDA I
JSB IABS
+ (result in A)
ENTRY POINTS:
IABS
Integer: A
Integer: A
Function: IABS (I)
Function: IABS (I)
Not Callable
None

1-44

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN TIV:
ALGOL:

Errors:

IAND

BCS

Take the logical product of integers I and J.

DOS/RTE (TYPE)

IAND (V)

None

JSB IAND

DEF r

DEF 7

+ result in A

ENTRY POINTS:

IAND

Integer

Integer

Callable as function.

Callable as function

Not Callable

None

1-45

IDIM

PURPOSE: Calculate the positive difference between integers 1 & J:
¥ =1I-min (1,7)
BCS DOS/RTE (TYPE)
ENTRY
POINTS: IDIM (P)
EXTERNAL
REFERENCES: .ENTR L ENTP
DEF *+3
DEF I
DEF J.
-k in A
ATTRIBUTES: ENTRY POINTS:
IDIM
Parameters: Integer
Result: Integer
Basic FORTRAN: Callable
FORTRAN 1IV: Intr. function: IDIM (I1,7)
ALGOL : Callable as integer procedure
Errors: None

1-46

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

NOTES:

IDINT

BCS

Truncate a double real X to an integer g:
J = Sign (x) . (largest integer < | x |), orJ = | x |

DOS/RTE (TYPE)

IDINT (P)

SNGL, IFIX,
DDINT

JSB IDINT
DEF *+2
DEF x
g in A

ENTRY POINTS:

IDINT

Double real

Integer

Callable as function

Function: IDINT (x)

Callable as integer procedure

NOTE 1.

If IDINT (x) is out of range, then o = 32767 and the overflow bit is

set.

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

NOTES:

1.

IFIX

Convert a real x to an integer I.

BCS DOS/RTE (TYPE)
IFIX (P)
.FLUN
DLD x
JSB IFIX
- (1 in A)
ENTRY POINTS:

IFIX

Real: A& B

Integer: A

Function: IFIX (x)

Function: TFIX (x)

Not Callahle

None

portion is greater than or equal to 2

1-48

Any fractional portion of the result is truncated.
. the result is set to 32767.

15

If the integer

INT

PURPOSE: Truncate a real x to an integer o:
g = Sign (x) . (Targest integer < | x |), or g = | x |
BCS DOS/RTE (TYPE)
ENTRY
POINTS: INT (U)
EXTERNAL
REFERENCES: IFIX
CALLING
SEQUENCES: DLD x
JSB INT
= J1in A
ATTRIBUTES: ENTRY POINTS:
INT
Parameters: Real
Result: Integer
Basic FORTRAN: Not callable
FORTRAN 1IV: Function: INT (x)
ALGOL: Not callable
Errors: Note 1
NOTES:

1. If INT (x) is out of range, then g = 32767 and the overflow bit is set.

1-49

PURPOSE: Take logical inclusive - or of integers

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

IOR

BCS

I and 7.

DOS/RTE (TYPE)

I0R (U)

None

JSB IOR

DEF 1

DEF o

- result in A

ENTRY POINTS:

I0R

Integer

Integer

Callable as function

Callable as function

Not Callable

None

1-50

ISIGN

PURPOSE: Calculate the sign of z times the absolute value of z, where z is real or integer
and 7 is integer: y=sign(z)*|z|

BCS DOS/RTE (TYPE)
ENTRY
POINTS: ISIGN (P)
EXTERNAL
REFERENCES: None
CALLING JSB ISIGN
SEQUENCES: DEF
DEF z
> (v in A)

METHOD: g,ue as SIGN

ENTRY POINTS:

ATTRIBUTES:
ISIGN
Parameters: Real (or int) & integer
Result: Integer: A
Basic FORTRAN: Function: ISIGN (z1,z)
FORTRAN IV: Function: ISIGN (r,z)
ALGOL: Not Callable
Errors: None

1-51

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

Extract mantissa of a real x where x = MANT (x)* 2

MANT

EXP(x)

BCS DOS/RTE (TYPE)

.MANT (P)

None

DLD
JSB.MANT
~+ Real Mantissa in A & B

Accuracy is 23 bits.

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN TV:
ALGOL:

Errors:

ENTRY POINTS:

.MANT

Real

Real

Not Callable

Not Callable

Not Callable

None

1-52

PURPOSE:

MCD

K = I modulo J

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

BCS

Calculate the integer remainder of I/J for integer I & J;

DOS/RTE (TYPE)

MOD (P)

.ENTR

.ENTP

JSB MOD

DEF *+3

DEF I

DEF 7

- K in A & B

K =TI [1/J]*T

ENTRY POINTS:

MOD

Integer

Integer

Callable as function

Intrinsic function:

MOD (1,g)

Callable as integer procedure

If =0, thenk =1

1-53

MPY

(non-EAU 1ibraries only)

PURPOSE: Multiply integer r and g: k = 1*J
BCS DOS/RTE (TYPE)
ENTRY
POINTS: MPY (U)
EXTERNAL
REFERENCES: None
CALLING
. LDA 7 or LDA 7
SEQUENCES: JSB .MPY MPY T
DEF I + &k in A&B (Note 1)
~ k in A&B (Note 1)
ATTRIBUTES: ENTRY POINTS:
.MPY
Parameters: Integer
Result: Two-word integer (Note 1)
Basic FORTRAN: Not callable
FORTRAN 1V: Not callable
ALGOL: Not callable
Errors: None
NOTES: 1. B contains most significant bits of product;

A contains least significant bits.

MXMND

PURPOSE: Calculate the maximum or minimum of a series of double real values:
vy = max {(a,8,¢,....) v = min (&,B8,¢,....)
BCS DOS/RTE (TYPE)
ENTRY DMAX1 (R)
POINTS: DMINT
EXTERNAL .XSUB
REFERENCES: - XFER
CALLING JSB DMAX1(or DMIN1)
SEQUENCES: DEF *+n+2
DEF v (result)
DEF a (‘l)
DEF 5 (2)
DI:ZF X (1:7)
5
ATTRIBUTES: ENTRY POINTS:
DMAX1 DMIN1
Parameters: Double Real Double Real
Result: Double Real Double Real

Basic FORTRAN: Callable as Subroutinz Callable as Subroutine
FORTRAN 1IV: Note 1 Note 1
ALGOL: Note 2 Note 2
Errors: If v <2, theny =0 Ifv <2, theny =20
NOTES: 1. Intrinsic functions: DMAX1 (a,B,c,)

‘ DMIN1 (a,B,C,)
2. Callable, but only with a fixed number and parameters.

COMMENTS: Requires at Teast two parameters.

MXMNI

PURPOSE: Calculate the maximum or minimum of a series of integer values:
vy = MAX (2,B,C, +vuvun.) y = MIN (a,B,¢,)
BCS DOS/RTE (TYPE)
ENTRY
POINTS: AMAXD, MAX@, AMIN@, MINP (R)
EXTERNAL
REFERENCES: FLOAT
CALLING JSB Entry Point
SEQUENCES: DEF *+y+1
DEF a (1)
DEF B (2)
DEF x (w)
-+ Result in Aor A & B
ATTRIBUTES: ENTRY POINTS:
AMAX@ MAX@ AMING MING
Parameters: Integer Integer Integer Integer
Result: Real Integer Real Integer
Basic FORTRAN: Note 1 Note 1 Note 1 Note 1
FORTRAN 1IV: Note 1 Note 1 Note 1 Note 1
ALGOL: Note 2 Note 2 Note 2 Note 2
Errors: Note 3 Note 3 Note 3 Note 3
NOTES: 1. Functions: AMAX® (a,B,c), MAXp (a,B,c) AMNG (a,B,c), MING (a,B,c...

2. Callable as integer or real procedure, but only with a fixed number of parameters.
3. If the number of parameters is less than 2, v = 0.

COMMENTS: Requires at least two parameters.
AMAX@ provides a real maximum.
MAX@ provides an integer maximum.
AMIN@ provides a real minimum.
MIN@ provides an integer minimum,

1-56

MXMNR

PURPOSE: Calculate the maximum or minimum of a series of real values:

v = Max (a,B,c) vy = Min (a,B,c)
BCS DOS/RTE (TYPE)
ENTRY
POINTS: AMAXT, MAX1, AMIN1, MIN1 (R)
EXTERNAL IFIX
REFERENCES:
CALLING JSB Entry Point
SEQUENCES: DEF *+ v + 1
DEF a (1)
DEF B (2)
DEF x ()
~yinAor A&B

ATTRIBUTES: ENTRY POINTS:
AMAX1 MAX1 AMIN1 MIN1
Parameters: Real Real Real Real
Result: Real Integer Real Integer
Basic FORTRAN: Note 1 Note 1 Note 1 Note 1
FORTRAN IV: Note 1 Note 1 Note 1 Note 1
ALGOL: Note 2 Note 2 Note 2 Note 2
Errors: Note 3 Note 3 Note 3 Note 3
NOTES: 1, Functions: AMAX1 (a,B,c,), MAXT (a,B,C,),

AMINT (a,B,C,), MIN1 (a,B,C,).
2. Callable as integer or real procedure, but only with a fixed number or parameters.
3. If the number of parameters is less than 2, v = §.

COMMENTS: Requires at Teast two parameters.

AMAX1 provides a real maximum.
MAX1 provides an integer maximum.
AMINT provides a real minimum.
MIN1 provides an integer minimum.

1-57

PWR2

PURPOSE: Calculate x.2"” for real x and integer n: v = x.,2"
BCS DOS/RTE (TYPE)
ENTRY
POINTS: .PWR2 (P)
EXTERNAL
REFERENCES: .FLUN
CALLING DLD x
SEQUENCES: JSB .PWR2
DEC n
>Yyin A &B
METHOD: .
Exponent of x is increased by n.
Accuracy is 23 bits.
ATTRIBUTES: ENTRY POINTS:
.PWR2
Parameters: Real & Integer
Result: Real
Basic FORTRAN: Not Callable
FORTRAN 1V: Not Callable
ALGOL: Not Callable
Errors: None

1-58

REAL

PURPOSE: Extract the real part of a complex x.

BCS DOS/RTE (TYPE)
ENTRY
POINTS: REAL (P)
EXTERNAL
REFERENCES: .ENTR LENTP
CALLING JSB REAL
SEQUENCES: DEF *+2
DEF x
-+ result in A &B
REAL
Parameters: Complex
Result: Real
Basic FORTRAN: Callable as Function
FORTRAN 1IV: Intr. Function: REAL {x)
ALGOL: Callable as real procedure
Errors: None

1-59

SICOS

PURPOSE: Calculate the sine or cosine of a real x (radians): v = sine (x) or

y = cosine (x)
BCS DOS/RTE (TYPE)
ENTRY SIN (R)
POINTS: (0
EXTERNAL
REFERENCES: ..FCM, .IENT, .PWR2, FLOAT, .CHEB
CALLING
. DSD x DLD x
SEQUENCES: | 55 SIN (or COS) dsB SIN {or CO0S)
+ v in A&B JSB ERR@
+ vy in A&B
METHOD:
X = x *2/1 y = COS (x) = - SIN (x - =/2)
x = x -4 *ENTIER ((x+1)4) (See .IENT)
If x>1thenx=2-x
vy = x *CHEBY (2*x*x-1)
ATTRIBUTES: ENTRY POINTS:
SIN COS
Parameters: _Real Radians: A and B Real Radians: A and B
Result: Real: A and B Real: A and B
Basic FORTRAN: Function: SIN (x) Function: COS (x)
FORTRAN TV: Function: SIN (x) Function: COS (x)
ALGOL: Intr. Proc: SIN (x) Intr. Proc: COS (x)
Errors: See note 2. Same
NOTES: 1. If the error condition occurs, the overflow bit is set.

2.
1

Lix Lo
Slz 7 S1>2t (95 OR)

1-60

SIGN

PURPOSE: Calculate the sign of z times the absolute value of x, where z is real or integer
and x is real; if z = P, then the result equals 0.

BCS DOS/RTE (TYPE)
ENTRY
POINTS: SIGN (P)
EXTERNAL
REFERENCES: ..FCM
CALLING JSB SIGN
SEQUENCES: DEF x
DEF z
+ (result in A & B)
ATTRIBUTES: ENTRY POINTS:
SIGN
Parameters: Real or Integer and Real
Result: Real
Basic FORTRAN: Function: SIGN (x, z)
FORTRAN IV: Function: SIGN (x. z)
ALGOL: Not Callable
Errors: None

1-61

SNGL

PURPOSE: Convert a double real x to a real vy

BCS DOS/RTE (TYPE)
ENTRY
POINTS: SNGL (P)
EXTERNAL
REFERENCES: .XFER, .FLUN, .PACK
CALLING JSB SNGL
SEQUENCES: DEF *+2
DEF x
+~yinA &B
ATTRIBUTES: ENTRY POINTS:
SNGL
Parameters: Double Real
Result: Real
Basic FORTRAN: Callable
FORTRAN IV: Intr. Function; SNGL (x)
ALGOL: Callable as Real Procedure
Errors: Note 1
-23, 127 .
NOTES: 1. If x> (1-2777)#2 (the maximum real number),

then v = (1-2'23)*2127, and the overflow bit is set.

1-62

SQRT

PURPOSE: Calculate the square root of a real x: v =V x
BCS DOS/RTE (TYPE)
ENTRY
POINTS: SORT (R)
EXTERNAL
REFERENCES: .FLUN, .PWR2, .ERRR .FLUN, .PWR2
CALLING DLD x S:Lsg SQRT
SEQUENCES: JSB SQRT JSB ERR (error)
~ (v in A and B) =+ (v in A and B)
METHOD: —_
Choose £ such that x=222(f), 2% <f <1 qpen yx = 224 /2.
V£ s approximated by p, = CifFcy, where for .25 <f <.5, c]=.875, c2=.27863 and for
.5 <f <1, c1=.578125, 02=.421875
This approximation is improved by two Newton iterations: p, =(pl +f/pl)/2
py = (pyr£/p,)/2
py s the final result
ATTRIBUTES: ENTRY POINTS:
SQRT
Parameters: Real: A &B
Result: Real: A& B
Basic FORTRAN: Function: SOQRT (x)
FORTRAN 1IV: Function; SQRT (x)
ALGOL : Intr. Proc: SORT (x)
Errors: X < @~ (93 UN)
NOTES: 1. If the error condition occurs, the overflow bit is set.

1-63

TAN

PURPOSE: C(Calculate the tangent of a real x {radians): v = tangent (x)

BCS : DOS/RTE (TYPE)
ENTRY
POINTS: TAN (R)
EXTERNAL .PWR2, ..FCM, .IENT, .CHEB, FLOAT, | .PWR2, ..FCM, .IENT, .CHEB, FLOAT
REFERENCES: .ERRR
CALLING DLD x DLD x
SEQUENCES: JSB TAN JSB TAN
+ (¥ in A & B) JSB ERRD (error)
= (v in A & B)
METHOD: , _ 1uy/q
X = x-4* ENTIER((x+1)/4) (See .IENT)
If x>1 then w= 2-x else w = x
w = w *CHEBY (2*w*w-1)
If x>1 then vy = 1/w else v = w
ATTRIBUTES: ENTRY POINTS:
TAN
Parameters: Real: A and B
Result: Real: A and B
Basic FORTRAN: Function: TAN (x)
FORTRAN 1IV: Function: TAN (x)
ALGOL: Intr. Proc: TAN (x)
Errors: x2'" (P9 OR), tan (x) >2'°° » overflow
NOTES: 1. If the error condition occurs, the overflow bit is set.

1-64

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

o o X

o

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

TANH

Calculate the hyperbolic tangent of a real x:

y=TANH (x)

BCS DOS/RTE (TYPE)
TANH (R)
.PWR2, EXP, ..FCM, ABS, .FLUN
DLD x
JSB TANH
+ (v in A and B)
0
x> 16 TANH (x) =1
25 < x <16 TANH (x) = (EXP(2*x)-1)/(EXP(2*x) +]1)
.00005 < x < .125 TANH(x) = (é]+f2l}2+c3(c4+f2)-])
where:
£ = 4*x*logpe d. x < .00005 TANH(x) = x
¢y= 5.7707801636 2.x<0 TAWH (x) = -TANH (-x)
C,= .01732867951
c3=]4.1384114018
c4=349.6699888
ENTRY POINTS:
TANH
Real: A and B
Real: A and B
Function: TANH (x)
Function: TANH (X)
Intr. Proc: TANH (x)
None

1-65

XADSB

PURPOSE: Double real addition and subtraction: z = x + v Z=X-=-Y
BCS DOS/RTE (TYPE)
ENTRY -XADD (P)
POINTS: XADD .XSUB XSUB
EXTERNAL .XFER, .FLUN, .XPAK, .XCOM, GETAD, |.PCAD, .XFER, .FLUN, .XPAK, .XCOM
REFERENCES: ADRES
CALLING JSB(.XADD or ,XSUB) JSB(XADD or XSUB)
SEQUENCES: DEF z (result) or DEF*+4
DEF x DEF z (result)
DEF v DEF x
> DEF v
>
ATTRIBUTES: ENTRY POINTS:
. XADD XADD . XSUB XSuB
Parameters: Double Real Double Real Double Real Double Real
Result: Double Real Double Real Double Real Double Real
Basic FORTRAN: Not Callable Callable Not Callable Callable
FORTRAN 1V: Not Callable Callable Not Callable Callable
ALGOL: Not Callable Callable Not Callable Callable
Errors: Note 1 Note 1 Note 1 Note 1

2128 51274 ,-39,

NOTES: 1. If z is outside the range: [1, then the overflow bit is set and

z = 227 (1-27%9),

[.27129

If the result is within the range: (1+2'22), 2'129], then the overflow bit

is set and z = 0.

1-66

XDIvV

PURPOSE: Divide a double real x by double real v: z =x/v

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL :

Errors:

BCS DOS/RTE (TYPE)

.XDIV (P)
XDIV

.XFER, .XCOM, .FLUN, .XPACK, GETAD, .PCAD, .XFER, .XCOM, .FLUN, .XPAK

ADRES

JSB .XDIV or JSB XDIV
DEF z (result) DEF * + 4
DEF x DEF z (result)
DEF v DEF x
hd DEF v
>

ENTRY POINTS:

XDIV XDIV

Double Real Double Real
Double Real Double Real
Callable Not Callable
Callable Not Callable
Callable Not. Callable
See XADSB See XADSB

1-67

XMPY

PURPOSE: Muitiply double real x by double real v: 2z = x#y
BCS DOS/RTE (TYPE)
ENTRY .XMPY (P)
POINTS: XMPY
EXTERNAL .XFER, .FLUN, .XPAK, .XCOM, GETAD, .PCAD, .XFER, .FLUN, .XPAK, .XCOM
REFERENCES: |ADRES
CALLING JSB . XMPY or JSB XMPY
SEQUENCES: DEF z (result) DEF * + 4
DEF x DEF z (result)
DEF v DEF x
> DEF v
ATTRIBUTES: ENTRY POINTS:
XMPY XMPY
Parameters: Double Real Double Real
Result: Double Real Double Real
Basic FORTRAN: Callable Not Callable
FORTRAN TIV: Callable Not Callable
ALGOL: Callable Not_Callable
Errors: See XADSB See XADSB

1-68

XPOLY

PURPOSE: Evaluate double real polynomial: v =c, =1 4+ cz;f)'z *te X+ oo
BCS DOS/RTE (TYPE)
ENTRY LXPLY (R)
POINTS: XPOLY
EXTERNAL
REFERENCES: .ENTR, .XFER, .XADD, .XMPY
CALLING
. JSB .XPLY or XPOLY
SEQUENCES: DEF * + 5
DEF v
DEF n (degree + 1)
DEF x
DEF ¢, (first element of coefficient array)
ATTRIBUTES: ENTRY POINTS:
XPLY XPOLY
Parameters: Double Real,Integer Double Real, Integer
Result: Double Real Double Real
Basic FORTRAN: Not Callable Callable
FORTRAN 1V: Not Callable Callable
ALGOL: Not Callable Callable
Errors: Ifns 0, y=0 Ifns 0, v=0

1-69

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

Converts a complex x to real v

BCS

.CDBL

DOS/RTE (TYPE)

.CDBL (U)

REAL
DBLE

JSB .CDBL
DEF v (DP result)
DEF x (complex)

-

ENTRY POINTS:

.CDBL

Complex

Double real

Not callable

Not callable

Not callable

L_None

1-70

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

BCS

.CFER

Transfer a complex x to complex v

DOS/RTE (TYPE)

.CFER (U)

GETAD
ADRES

JSB .CFER
DEF v
DEF x

-+

ENTRY POINTS:

.CFER

Complex

Complex

Not callable

Not callable

Not callable

None

1-71

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

BCS

.CINT

Convert a complex x to an integer.

DOS/RTE (TYPE)

LCINT (U)

REAL
TFIX

JSB .CINT
DEF x
sresult in A

ENTRY POINTS:

LCINT

Complex

Integer in A

Not callable

Not callable

Not callable

None

1-72

.CTOI

PURPOSE: Raise a complex x to an integer power 1: z = x° (z is complex)
BCS DOS/RTE (TYPE)
ENTRY
POINTS: .CTOI (R)
EXTERNAL .ERRR, .CMPY, .CDIV, .CMPY, .CDIV,
REFERENCES: GETAD, ADRES .PCAD
CALLING JSB .CTOI JSB .CTOI
SEQUENCES: DEF z (result) DEF z (result)
DEF x DEF x
DEF 7 DEF o7
-+ Normal Return -+ Error Return
-+ Normal Return
METHOD:
See .RTOI
ATTRIBUTES: ENTRY POINTS:
.CTOI
Parameters: Complex & integer
ResuTlt: Complex
Basic FORTRAN: Not callable
FORTRAN TIV: Not callable
ALGOL : Not callable
Errors: x =0, I<0 > (14 UN)

1-73

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

BCS

.DCPX

Converts a double real x to a complex v.

DOS/RTE (TYPE)

.DCPX (U)

SNGL
CMPLX

JSB .DCPX
DEF v
DEF x

>

ENTRY POINTS:

.DCPX

Double real

Complex

Not callable

Not callable

Not callable

None

1-74

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

BCS

.DINT

Converts a double real x to an integer.

DOS/RTE (TYPE)

.DINT (U)

SNGL
IFIX

JSB .DINT
DEF x
+ result in A

ENTRY POINTS:

DINT

Double real

Integer in_A

Not callable

Not callable

Not callable

None

.DTOD

PURPOSE: Raise a double real x to a double real power v:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:
If x

Y

z=x (z is double real)

BCS DOS/RTE (TYPE)
.DTOD (R)
DEXP, DLOG
.XMPY, .XFER
JSB .DTOD JSB .DTOD
DEF z (result) DEF z (result)
DEF x DEF x
DEF v DEF v
+ pormal return - error return
+ normal return

0 and v>0, z =
Ifx#0and vy =0, z

0
P

1.
If x>0 and v#0, z = EXP(v*log(x))

Accuracy depends on the accuracy of DLOG and DEXP.

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

NOTES: 1. x =0, v<0
x<0, v#0

ENTRY POINTS:

.DTOD

Double real

Double real

Not callable

Not callable

Not callable

Note 1

+ (13 UN)
- (13 UN)

% (127392127, (10 oF)

.DTOI

PURPOSE: Calculate a double real x raised to an integer power I:
v = x* (v is double real)
BCS DOS/RTE (TYPE)
ENTRY '
POINTS: .DTOI (R)
EXTERNAL .ERRR, .XMPY, .XMPY, .XDIV,
REFERENCES: .XDIV, .XFER .XFER
CALLING JSB .DTOI JSB .DTOI
SEQUENCES: DEF v (result) DEF v (result)
DEF x DEF x
DEF 1 DEF 1
-+ Normal return + Error return
> Normal return
METHOD:
See .RT0I
ATTRIBUTES: ENTRY POINTS:
.DTOI
Parameters: Double real & integer
Result: Double real
Basic FORTRAN: Not callable
FORTRAN IV: Not callable
ALGOL: Not caltlable
Errors: If x=0, 1 <0 > (12 UN)

1-77

.DTOR

PURPOSE: Raise a double real x to a real power v:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

Y

x* (z is double real)

BCS DOS/RTE (TYPE)

.DTOR (U)
.DTOD
DBLE

JSB .DTOR JSB .DTOR

DEF z (result) DEF z (result)

DEF x DEF x

DEF v DEF v

+ normal routine

-+ ervor return
-+ normal return

Convert v to double precision and call

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

.DTOD.

ENTRY POINTS:

.DTOR

Real & double real

Double real

Not callable

Not callable

Not callable

See .DTOD

.EAU.

(EAU 1ibraries only)

PURPOSE: Replace calls to .MPY, .DIV, .DLD, and .DST with hardware
EAU instructions.
BCS DOS/RTE (TYPE)
ENTRY MPY (V)
POINTS: .DIV .DLD .DST
EXTERNAL
REFERENCES: None
CALLING

1-79

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

.FLUN

"Unpack" a real x; place exponent in A, Tower part of mantissa in B.

BCS DOS/RTE (TYPE)
FLUN (P)

None .ZRLB
DLD x
JSB .FLUN

+ exponent in A
Lower mantissa in B

ENTRY POINTS:

.FLUN

Real

A& B

Not callable

Not callable

Not callable

None

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

BCS

ACPX

Converts an integer 1 to a complex Y.

DOS/RTE (TYPE)

LICPX (V)

FLOAT
CMPLX

LDA 1
JSB .ICPX
DEF v

>

ENTRY POINTS:

. ICPX

Integer in A

Complex

Not callable

Not callable

Not callable

None

1-81

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:
Basic FORTRAN:

FORTRAN IV:
ALGOL:

Errors:

BCS

.IDBL

Converts an integer I to double real v.

DOS/RTE (TYPE)

.IDBL (V)

FLOAT
DBLD

.LDA 1
JSB .IDBL
DEF v

-

ENTRY POINTS:

. IDBL

Integer in A

Double

Not callable

Not callable

Not callable

None

1-82

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

BCS

JENT

Calculate ENTIER (x) for real x: r = ENTIER (x)

DOS/RTE (TYPE)

JIENT (P)

IFIX, .FLUN,
FLOAT

DLD x

JSB .IENT

JSB error routine
- I inA

ENTRY POINTS:

LIENT

Real

Integer

Not callable

Not callable

Not callable

EXPO (x)

> 14, user muyst supply error routine

1-83

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

NOTES: 1.

ATOI

Calculate 17 for integer r and J: k = I

BCS DOS/RTE (TYPE)
JITOI (P)
.ERRR None
JsB . ITOI JSB . ITOI
DEF 1 DEF 1
DEF 7 DEF o
+ Kk in A JSB ERR@ (error return)
+ K in A
ENTRY POINTS:
L1701
Integer
Integer

Not callable

Not callable

Not callable

See Note 1.

Condition Error Code
1=0,3<0 £8 UN
7 > 228 98 OF

On error return, overflow bit is set.

1-84

.PACK

PURPOSE: Convert signed mantissa of real x into normalized real format.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: .PACK (P)
EXTERNAL None .ZRLB
REFERENCES:
CALLING DLD x
SEQUENCES: JSB .PACK
BSS 1 (exponent)
- result in A & B
ATTRIBUTES: ENTRY POINTS:
PACK
Parameters: Mantissa in A & B
Result: Real
Basic FORTRAN: Not Callable
FORTRAN 1V: Not Callable
ALGOL : Not Callable
Errors: None

1-85

.RTOD

Yy

PURPOSE: Raise a real x to a double real power v: 2z=x (z is double real)

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

BCS DOS/RTE(TYPm

.RTOD (U)
.DTOD
DBLE

JSB .RTOD JSB .RTOD

DEF z (result) DEF z (result)

DEF x DEF x

DEF v DEF v

+ Normal Return -+ Error Return

-+ Normal Return

Convert x to double real and call .DTOD.

ENTRY POINTS:

RTON

Real and Double Real

Double Real

Not Callable

Not Callable

Not Callable

See .DTOD

1-86

.RTOI

PURPOSE: Calculate x* for real x and integer I: r=xL.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: .RTOI (R)
EXTERNAL
REFERENCES: -ERRR None
CALLING JSB .RTOI gEE_).(RTOI
SEQUENCES: DEF X DEF T
DEF I
>y in A& B IS8 CRRD s
METHOD: The only possibility of inaccuracy is that introduced by roundoff in the FMP or the
FDV routine if 1 < 0.
xt gives the same result as the expression:
XEXAXE, *X 1/X*KEXF o *%
I times or I times
— | S ———
ATTRIBUTES: ENTRY POINTS:
.RTOI
Parameters: Real & Integer
Result: Real
Basic FORTRAN: Not Callable
FORTRAN 1IV: Not Callable
ALGOL: Not Callable
Errors: See Note 1
NOTES: 1. Condition Error Code
x=0,1<0 6 UN
XlIl> o128 (floating point overflow)

On error return, overflow bit is set.

1-87

.RTOR

PURPOSE: Calculate x¥ for real x and v: =X
BCS DOS/RTE (TYPE)
ENTRY
POINTS: .RTOR (R)
EXTERNAL ALOG, EXP; ALOG, EXP
REFERENCES: .ERRR
CALLING JSB .RTOR SEE }.(RTOR
SEQUENCES: DEF x DEF &
DEF Y JSB ERRP
>z inA&SB Sz in A& B
ATTRIBUTES: ENTRY POINTS:
.RTOR
Parameters: Real
Result: Real
Basic FORTRAN: Not Callable
FORTRAN 1V: Not Callable
ALGOL: Not Callable
Errors: See Note 1
NOTES: 1. Condition Error Code
x<0,v<0 P4 UN
=0, # 0
|x*ALOG(x) | > 124 @7 OF

On error return, the overflow bit is set.

1-88

PURPOSE:

.XCOM

Complements a double real unpacked mantissa in place.

Upon return,

A-register = 1 if exponent should be adjusted; otherwise A = 0.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN TIV:
ALGOL:

Errors:

BCS

DOS/RTE (TYPE)

.XCOM (P)

.XFER

JSB .XCOM

DEF x

ADA (exponent)
STA (exponent)

ENTRY POINTS:

. XCOM

Double real

Double real

Not callable

Not callable

Not callable

None

1-89

XFER

PURPOSE: Double real transfer: v = x
BCS DOS/RTE (TYPE:)
ENTRY .XFER (P)
POINTS: .DFER
EXTERNAL None
REFERENCES:
CALLING
. LDA (address of x) JSB .DFER
SEQUENCES: LDB (address of v) OR DEF v
JSB . XFER DEF x
> -
ATTRIBUTES: ENTRY POINTS:
| .XFER .DFER
Parameters: Double real Double real
Result: Double real Double real
Basic FORTRAN: Not callable Not callable
FORTRAN 1IV: Not callable Not callable
ALGOL: Not callable Not callable
Errors: None None

1-90

PURPOSE:

result is double real.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

BCS

XPAK

Double real mantissa is normalized, rounded, and packed with exponent;

DOS/RTE (TYPE)

.XPAK (P)

.XFER

LDA exponent
JSB .XPAK

DEF x (3-word mantissa)

+ result in x

ENTRY POINTS:

XPAK

Double real, exponent

Double real

Not callable

Not callable

Not callable

See XADSB

1-91

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

BCS

..CCM

Complements a complex variable x in place.

DOS/RTE (TYPE)

..CCM (V)

GETAD
ADRES ..FCM

JSB ..CCM
DEF x
e

ENTRY POINTS:

.. CCM

Complex

Complex

Not callable

Not callable

Not callable

None

1-92

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

..DCM

Double real compliment.

BCS

DOS/RTE (TYPE)

..DCM (P)

JFLUN, .XCOM
.XPAK, .XFER

JSB ..DCM
DEF x

>

ENTRY POINTS:

.DCM

Double

Double real

Not callable

Not callable

Not callable

None

1-93

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL :

Errors:

BCS

..DLC

Load and complement a real x.

DOS/RTE (TYPE)

..DLC (P)

None

JSB ..DLC
DEF x

-+ compliment in A & B.

ENTRY POINTS:

..DLC

Real

Real

Not callable

Not callable

Not callable

None

1-94

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

Complement real x

BCS

..FCM

DOS/RTE (TYPE)

..FCM (P)

..DLC

DLD x
JSB ..FCM

-+ result in A & B

ENTRY POINTS:

..FCM

Real

Real

Not callable

Not callable

Not callable

None

1-95

AXIS

PURPOSE: Plots one axis (x or v) of a graph with a specified axis label,
a specified Tength, and specified values at each inch marker.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN TV:
ALGOL:

Errors:

NOTES:

BCS DOS/RTE (TYPE)

AXIS (U)

NUMB, SYMB, PLOT,
and numerous Tibrary subroutines

JSB AXIS

DEF *+9

DEF floating-point origin: x coordinate

DEF floating-point origin: Y coordinate

DEF axis label

DEF integer number of characters in label (positive to
place label counterclockwise to axis--as in Y axis--
and negative to place label clockwise--as in X axis)

DEF length of axis in floating-point inches

DEF angle of axis in floating-point degrees

DEF minimum value of axis (calculated by SCALE)

DEF incremental value (calculated by SCALE)

-+ normal return

ENTRY POINTS:

AXIS

Mixed

N/A

Callable as subroutine

Callable as subroutine

Callable as CODE procedure

None

1. SCALE must be called before AXIS.
2. AXIS calls SYMB to plot the labels 0.14 inches high.
3. Sample calls to AXIS:

Plot the X axis, starting at (0,0) with the label "POWER" on
the clockwise side, 6.5 inches long, at O degrees.
CALL AXIS (p.9,0.9,IPWR,-5,6.5,0.0,X(51),X(52))
Plot a similar Y axis with the label "PSI" on the counterclockwise
side, ten inches Tong at 90 degrees.

CALL AXIS (9.2.0.9,IPSI,3,10.9,90.8,Y(51),Y(52))

2-1

BINRY

PURPOSE: Reads or writes data at a specified location (logical unit number,
track, sector, and offset) of a disc.

BCS DOS/RTE (TYPE)
ENTRY
POINTS: N/A BREAD, BWRIT (U)
EXTERNAL
REFERENCES: EXEC, .OPSY
CALLING JSB BREAD (of BWRIT) (Note 1)
SEQUENCES: DEF *+7
DEF buffer
DEF buffer length (words)
DEF Togical unit
DEF track
DEF sector
DEF offset (Note 2)
ATTRIBUTES: ENTRY POINTS:
BREAD BWRIT
Parameters: Mixed Mi xed
Result: Mixed Mi xed
Basic FORTRAN: Callable callable
FORTRAN IV: Callable Callable
ALGOL : Callable Callable
Errors: None None

NOTES: . , . . .
1. BREAD is the read entry point and BWRIT is the write entry point.

2. Offset: If the offset equals @, the transfer begins on the sector

boundary; if the offset equals n, the transfer skips n words
into the sector before starting.

2-2

CLRIO

PURPOSE: Performs a system clear request which makes all I/0 devices available
for the initiation of a new operation, (In RTE/DOS, CLRIO is a dummy
compatibility routine.)

BCS DOS/RTE (TYPE)
ENTRY
POINTS: CLRIO (U)
EXTERNAL
REFERENCES: -10C. tone
CALLING JSB CLRIO
SEQUENCES: DEF *+1
N
ATTRIBUTES: ENTRY POINTS:
CLRIO
Parameters: Nohe
Result: None
Basic FORTRAN: Callable
FORTRAN 1IV: Callable
ALGOL: Callable
Errors: None

2-3

CODE

PURPOSE: Provides internal conversion according to a FORMAT from one core
area to another core area.

BCS DOS/RTE (TYPE)
ENTRY CODE (P)
POINTS: ACODE
EXTERNAL
REFERENCES: None
CALLING
. JSB CODE
SEQUENCES: SEF 1]
Read or write request
(see Note 1)
METHOD:

Utilizes the internal conversion capability of the Formatter.

ATTRIBUTES: ENTRY POINTS:

CODE ACODE
Parameters: None None
Result: None None

Basic FORTRAN: Callable Callable

FORTRAN 1IV: Callable Callable

ALGOL: Not callable (Note 2) Callable (Note 2)

Errors: None None

NOTES: 1. The call to CODE must immediately precede a READ or WRITE request where the
identifier of an ASCII record buffer replaces the logical unit number. Any
labels must be attached to the CODE call, as it and the READ/WRITE call are
treated as one statement.

In FORTRAN the calling sequences are:

CALL CODE CALL CODE
READ (v,n)L WRITE (v,n)L

where v is the unsubscripted identifier of an ASCII record buffer;
n is the number of a FORMAT Statement; and
z is an Input/Output List of variables.

On read, the contents of the ASCII record v are converted according to the
FORMAT n and are stored in the variables listed in z.

On write, the contents of the variables listed in r are converted to ASCII
according to FORMAT n and the ASCII characters are stored in v.

2. ALGOL programmers must use the entry point ACODE instead of CODE.

2-4

DBKPT

PURPOSE: Processes breakpoints for DOS/RTE DEBUG. Never called by user programs.
See DEBUG
BCS DOS/RTE (TYPE)
ENTRY
POINTS: N/A $DBP2, $MEMR (U)
EXTERNAL
REFERENCES: $DBP1, DEBUG

(3%
1
(2}

DEBUG

PURPOSE; Aids the user in debugging his relocatable assembly language programs.

METHOD:

The operator 1inks DEBUG to a program at load-time. See the
manual for your operating system.

COMMENTS:

The BCS DEBUG executes programs interpretively and allows the operator to
set values in memory and registers, dump memory, set relocation bases,
establish a breakpoint at an instruction or operand, and set up a trace.

The RTE/DOS DEBUG does not interpret programs; it places jump subroutine
instructions in each breakpoint location and allows the program to execute
normally until it reaches a breakpoint. The operator can set a relocation
base, set instruction breakpoints, dump memory, and set values in memory
or registers.

2-6

PURPOSE:

ENDIO

operations are completed.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

BCS

Delays further program execution until all current input/output

DOS/RTE (TYPE)

ENDIO

N/A

.10C.

JSB ENDIO
DEF *+1

-+ returns when all 1/0 is

completed.

Executes a system status request.

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

ENTRY POINTS:

ENDIQ

None

None

Callable

Callable

Callable

None

2-7

ERR®

PURPOSE: Prints a 4 character error code on the list device (the BCS version is a
dummy routine for compatability).
BCS DOS/RTE (TYPE)
ENTRY
POINTS: ERR (V)
EXTERNAL
REFERENCES: NONE EXEC, .OPSY
CALLING LDA
SEQUENCES: LDB xxf See below
JSB ERR@
N
METHOD: NNy is the routine identifier pairs of ASCII characters.
xx is the error type
Prints this on the 1ist device: name NN xx
where name is the name of the program.
ATTRIBUTES: ENTRY POINTS:
ERR@
Parameters:

Result:
Basic FORTRAN:

ASCII Cheracters

Printed

Not Callable

FORTRAN 1IV: Not Callable
ALGOL: Not Callable
Errors: None

2-8

EXEC

PURPOSE: Provides program termination for RTE/DOS compatable programs when run in BCS.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: EXEC N/A, part of system
EXTERNAL
REFERENCES: .STOP
CALLING
SEQUENCES: JSB EXEC
DEF *+2
DEF RCODE
-
RCODE DEC 6
METHOD: Calls .STOP,
ATTRIBUTES: ENTRY POINTS:
EXEC
Parameters: Integer
Result: None
Basic FORTRAN: Use END statement in main program.
FORTRAN 1IV: Use END statement in main program
ALGOL: Use END$
Errors: None

2-9

GETAD

PURPOSE: Determines the true address of a parameter passed to a subroutine and
places the address in ADRES.
BCS DOS/RTE (TYPE)
ENTRY GETAD, (U)
POINTS: ADRES
EXTERNAL
REFERENCES: NONE
CALLING JSB GETAD
SEQUENCES: DEF SUB,I
LDA ADRES
see below
METHOD: JSB SUB
DEF X[,I]
SUB NOP
JSB GETAD
DEF SUB,I
LDA ADRES
ATTRIBUTES: ENTRY POINTS:
GETAD ADRES
Parameters: Integer Address NA
Result: Address Integer
Basic FORTRAN: Not Callable Not Callable
FORTRAN TV: Not Callable Not Callable
ALGOL: Not Callable Not Callable
Errors: None None
NOTES: 1. May not be called by privileged or re-entrant routines;
see .PCAD.

INDEX

PURPOSE: Returns the address (.INDA) or value (.INDR) of an ALGOL array.

BCS DOS/RTE (TYPE)
ENTRY .INDA (U)
POINTS: . INDR
EXTERNAL
REFERENCES: .I0C. EXEC
CALLING
SEQUENCES: JSB .INDA (or .INDR)
DEF array table {see below)
DEF- number of indices
DEF subscript 1
DEF subscript »
+result in Aor A&B
METHOD: Array Table:
TABLE ABS number of indices (+ = real, - = integer)
ABS size of lst dimension
ABS -Tower bound of 1st dimension
AéS size of last dimension
ABS - Tower bound of last dimension
ATTRIBUTES: ENTRY POINTS:
. INDA . INDR
Parameters: Integer Integer
Result: Address: A Value: AorA&B
Basic FORTRAN: Not Callable Not Callable
FORTRAN 1IV: Not Callable Not Callable
ALGOL: Not Callable Not Callable
Errors: See Note 1 See Note 1
NOTES: 1. If array not properly defined:

A = Address of Call
Prints INDEX? on teleprinter.

When RUN is pushed, routine returns with result = O.

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL :

Errors:

ISSW

Sets the sign bit (15) of A-Register equal to bit v of the switch register.

BCS DOS/RTE (TYPE)
I1SSW (U)
NONE
LDA v
JSB ISSW
+ result in A
ENTRY POINTS:
I1SSW
Integer
Integer
Function: ISSW (w)

(o)

L v
Not callable directly; see ALGOL manual.

None

LEADR

PURPOSE: Produces consecutive feed frames (octal zeroes) on punched tape to serve as
leader.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: LEADR N/A
EXTERNAL .10C., .ENTR
REFERENCES:
CALLING
SEQUENCES: 058 LEADR
DEF v (see below)
DEF v (see below
METHOD: v is the octal unit-reference number of the punched tape unit;
N is the decimal number of inches of leader to be punched.
ATTRIBUTES: ENTRY POINTS:
LEADR
Parameters: Integer
Result: None
Basic FORTRAN: Callable
FORTRAN IV: Caliable
ALGOL: Callable
Errors: If v is not a paper tape device » computer halts (A = 0).

LINE

PURPOSE: Plots a line and/or symbols through the successive data points in
arrays previously scaled by the SCALE routine.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

BCS DOS/RTE (TYPE)

LINE (U)

SYMB, PLOT, numerous library routines

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

NOTES: 1.

JSB LINE

DEF *+7

DEF x (real array scaled for the abscissa)

DEF v (real array scaled for the ordinate)

DEF ~ (integer number of points to be plotted)

DEF x (repeat factor, same as in SCALEg

DEF s (integer control value)

DEF r (number of centered symbols to be plotted;
see SYMB for table)

.

where 5 = 0, for a line plot only;

1, for a symbol at every point; no line;

-1, for a line and a symbol at every point;

-2, for a line and a symbol at every second point;

-v, for a Tine and a symbol at every nth point.

ENTRY POINTS:

LINE

Mixed

N/A

Callable as subroutine

Callable as subroutine

Callable as CODE procedure

None

Since the LINE routine requires the adjusted minimum and delta values
produced by the SCALE routine, SCALE must be called before LINE for
each graph.
Sample calls to LINE:

CALL LINE (x, v, 59, 19, B)
(plots a line of 50 xv values)

CALL LINE (x, v, 50, 1, -5, 3)

(plots a line of 50 points with a "+" symbol at every fifth point)

MAGTP

PURPOSE: Performs utility functions on magnetic tape and other devices:
checks status, performs rewind/standby, writes a gap, issues a
clear request, and does blocked -input/output.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

CALLING
SEQUENCES:

BCS DOS/RTE (TYPE)
IEOF,IERR, IEOT,ISOT,LOCAL, IWRDS, IEOF,IERR,IEOT,ISOT,LOCAL,
RWSTB,GAP3,CLEAR, IUNIT,BFINP,BFOUT. IWRDS(N/A in RTE),RWSTB
.ENTR, .IOC. .ENTR, EXEC

ENTRY POINTS:

IEOF,IERR,IEOT,ISOT,LOCAL ,IWRDS,IUNIT RWSTB,GAP3,CLEAR,BFINP,BFOUT
Integer Integer

Integer: A N/A

Callable as function Callable as subroutine
Callable as function Callable as subroutine
Callable as integer procedure Callable as subroutine
Returns on illegal call Returns on 11legal call

The calling sequence and purpose of each entry point is:

JSB
DEF
DEF

>

JSB

IEOF
*42
unit

IERR

DEF*+2

DEF

>

JSB
DEF
DEF

>

JSB
DEF
DEF

-5

JSB
DEF
DEF

>

JSB
DEF
DEF

>

JSB
DEF
DEF

unit

IEOT
*+2
unit

I1S0T
*42
unit

LOCAL
*42
unit

IWRDS
*42
unit

IUNIT
*42
unit

Returns a negative value in A if an end-of-file
was encountered during last tape operation on
the logical unit specified.

Returns a negative value in A if a parity or
timing error was not cleared after three read
attempts during the last operation on the
specified unit (cannot occur if EOF occurs).

Returns a negative value in A if an end-of-tape
was encountered during the last forward movement
of the specified unit.

Returns a negative value in A if the start-of-tape
marker is under the tape head of the specified
unit.

Returns a negative value in A if the specified
unit is in local mode.

(Not available in RTE.) Returns the value of the
transmission Tog of the last read/write operation
on the specified unit. (In the formatter environ-
ment, this value is always a positive number of
characters.)

(Not available in DOS/RTE.) Returns the status
word (EQT word #2) of the specified logical unit.
If the unit is busy, the word is negative. If
the specified unit is @, the routine returns
system status.

CALLING
SEQUENCES:

JSB RWSTB
DEF *+2
DEF unit

>

JSB GAP3
DEF *+2
DEF unit

>

JSB CLEAR
DEF *+2
DEF unit

>

JSB BFINP
DEF *+4
DEF unit
DEF buffer
address
DEF buffer
Tength

>

JSB BFOUT
DEF *+4
DEF unit
DEF buffer
address
DEF buffer
length

>

MAGTP

Rewinds the specified logical unit and sets it
to LOCAL.

(Not available in DOS/RTE.} Writes a gap on the
specified logical unit.

(Not available in DOS/RTE.) Issues a clear
request to the specified unit.

Performs buffered input from the specified unit
to the specified buffer. (Not available in
DOS/RTE.g Unit is positive for binary, negative
for ASCII. Buffer length is positive for words,
negative for characters.

Performs buffered output from the specified
buffer to the specified unit. (Not available
in DOS/RTE.) Unit is positive for binary,
negative for ASCII. Buffer length is positive
for words, negative for characters.

The previous two calls should be followed by IUNIT tests
for completion of operation in systems which are not
using buffered .IOC..

PURPOSE:

MEMRY

Performs memory allocation for buffered .IOC.; user program requests

buffers to be allocated and released from the memory available
after program loading.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING
SEQUENCES:

BCS DOS/RTE (TYPE)

.ALC., .RTN., .CLR. N/A

.MEM., .IOC.

ATTRIBUTES:

To allocate a buffer:

JSB .ALC
DEC number of words
N

Upon return, if the buffer request is filled:
A=address of first word of buffer
B=number of words allocated

If the buffer is not allocated because sufficient
memory is temporarily unavailable:
A=0
B=maximum buffer lTength that can be allocated
without releasing some previous buffer space.

If the buffer is not allocated because sufficient
memory is not available even when all buffers are
released:

A=-1

B=maximum buffer length that can be allocated
if all other buffers are released.

To determine the largest possible buffer that can be allocated if all
other buffers are released:

JsB .ALC.
DEC 32767

>

The results are returned in the registers:
=-1
B=maximum buffer length

To release a specified area of buffer:

JSB .RTN.
DEF address of first word of buffer to be released

DEC number of words to be released
N

To release all storage allocated:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL :

Errors:

CLA
STA .CLR.

ENTRY POINTS:
.ALC. .RTN. .CLR.
Integer Integers N/A
Values: A&B N/A N/A

Not callable

Not callable

Not callable

Not callable

Not callable

Not callable

Not callable

Not callable

Not callable

None

None

None

NUMB

PURPOSE: Plots a floating-point number, with or without the decimal point, at
a specified height, location, and angle.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:
Basic FORTRAN:

FORTRAN IV:
ALGOL:

Errors:

NOTES: 1.

BCS DOS/RTE (TYPE)

NUMB (U)

SYMB and numerous library subroutines

JSB NUMB
DEF *+7
DEF floating-point x coordinate of
lower left corner where number
is to be plotted
DEF floating-point v coordinate
DEF height, in floating-point inches,
of number
DEF the floating-point number to be plotted
DEF the angle, in floating-point degrees,
at which the number is to be plotted
DEF »

>

where ¥ = 0, for print the decimal point of
an integer;

=1, for suppress decimal point of an
integer.

ENTRY POINTS:

NUMB

Mixed

N/A

Callable as subroutine

Callable as subroutine

Callable as CODE procedure

None

Sample call to NUMB:

Plot three numbers ,1 inches high, with decimal point
suppressed, at 8.79 inches above 0,0 and at 5.32, 6.3
and 7.16 inches to the right of 0,0.

CALL NUMB (5.32, 8.79, .19, FLOAT (1), 9.8, -1)
CALL NUMB (6.3p, 8.79, 9.19, FLOAT (s), 9.8, -1)
CALL NUMB (7.16, 8.79, P.1@, FLOAT (x), 8.8, -1)

OVF

PURPOSE: Returns value of overflow bit in bit 15 of the A-Register
and clears the overflow bit.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: OVF (U)
EXTERNAL
REFERENCES: None
CALLING
. JSB OVF
SEQUENCES: + result in A
METHOD: If overflow bit is set (on), the A-Register is set negative;
if the overflow bit is off, the A-Register is set positive.
ATTRIBUTES: ENTRY POINTS:
OVF
Parameters: None
Result: Integer: A
Basic FORTRAN: Not callable
FORTRAN 1IV: Not callable
ALGOL: Not callable
Errors: None

PAUSE

PURPOSE: Prints the following message on the teleprinter: name: PAUSE xxxx or
name: STOP xxxx where name is the calling program name and xxxx is the
specified integer 1.

BCS DOS/RTE (TYPE)
ENTRY
POINTS: N/A .PAUS, .STOP (U)
EXTERNAL
REFERENCES: EXEC
CALLING
. LDA 1
SEQUENCES: JSB .PAUS (or .STOP)
>
See Note 1.
ATTRIBUTES: ENTRY POINTS:
.PAUS .STOP
Parameters: Integer Integer
Result: None None
Basic FORTRAN: Not callable Not callable
FORTRAN 1IV: Not callable Not callable
ALGOL: Not callable Not callable
Errors: None None
NOTES: 1. When .PAUS is used, the program may be restarted using

GO (RTE) or :GO (DOS).

PLOT

PURPOSE: Moves the pen of a plotter to any location on the graph with the pen up
or down, establishes new origin points, sets the plotter Togical unit
(RTE/DOS), determines current position, varies the plot factor, and
allows external buffers to be established.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

BCS

DOS/RTE (TYPE)

PLOT,WHERE ,FACT,PLOTB

PLOT,PLTLU,WHERE ,FACT,PLOTB (U)

.ENTR,.IOC.,IFIX,FLOAT

.ENTR,EXEC,IFIX,FLOAT

ENTRY POINTS:

PLOT WHERE FACT PLOTB PLTLU
Mixed None Real Mixed Integer
N/A Real N/A N/A N/A
Callable Callable Callable Callable Callable
Callable Callable Callable Callable Callable
Callable Callable Callable Callable Callable
None None None None None

PLOT

CALLING SEQUENCES:

PLOT Calling Sequences

The PLOT routine is called by a FORTRAN CALL statement or an Assembly Language
calling sequence.
FORTRAN: CALL PLOT x, v, IC
x and v = the coordinates to which the pen is to be moved. Al11 X and Y
coordinates must be expressed as floating-point inches in
deflection from the origin.

Ic = an integer constant or variable name set equal to one of the following:

-2 = Move with the pen down; consider the point where the
pen stops (x,v) as the new origin.

-3 = Move with the gen up; consider the point where the

pen stops (x,vY) as the new origin.

+2 = Move with the pen down; origin unchanged.

+3 = Move with the pen up; origin unchanged.

ASSEMBLY LANGUAGE:

JSB PLOT

DEF *+4

DEF x (Defines address of x coordinate)
DEF v (Defines address of y coordinate)
DEF 1c (Defines address of pen command)

>

PLOT Coding Requirements

Before a call is made to PLOT in DOS/RTE, an initial call to the PLTLU entry point
must be made to insure that the logical unit number of the referenced plotter is
placed in the I/0 request.

A single FORTRAN statement moves the pen to the desired location.

A1l X and Y ,coordinates must be expressed as floating-point inches in deflection
from the origin.

2-22

PLOT

PLOT Example

To plot a rectangle 8.5" by 11" starting at the origin, four calls to the PLOT
routine must be made (assuming that the pen starts at the origin).

CALL PLTLU (ILU)
Initial call to PLTLU for plotter's logical unit number

CALL PLOT (11.,0.,+2)

Moves the pen from X,Y = (0,0) to X,Y = (11,0)
CALL PLOT (11.,8.5,+2)

Moves the pen from X,Y = (11,0) to X,Y = (11,8.5)
CALL PLOT (@.,8.5,+2)

Moves the pen from X,Y = (11,8.5) to X,7 = (0,8.5)
CALL PLOT (@.,0.,+2)

Moves the pen from X,Y = (0,8.5) to the origin

PLOT Associated Functions

The PLOT routine can perform additional functions when calls are made to the
following entry points: PLTLU, WHERE, FACT and PLOTB.

PLTLU ENTRY POINT (RTE/DOS ONLY)

A call to the PLTLU entry point allows the user to designate the logical unit number
for the plotter. The logical unit numbar must be designated before a call to the
PLOT routine. Otherwise, the user program will be terminated when an I/0 request
containing a logical unit value of zero is made by the PLOT routine. The logical
unit number may be varied by the user program to direct output to more than one
plotter. (In BCS, the PLOT routine examines the equipment table to find the first
plotter; all output is then made to that plotter.)

PLTLU Calling Sequences

The PLTLU function can be called by a FORTRAN CALL statement or an Assembly Language
calling sequence.

FORTRAN: CALL PLTLU (zzv)

ILu = An integer value representing the logical unit number. Refer to the
Rea]-TiTe Software and DOS reference manuals for discussion of logical
unit values.

ASSEMBLY LANGUAGE:

JSB PLTLU

DEF *+2

DEF v (Defines address of logical unit value)
>

2-23

PLOT

WHERE ENTRY POINT

A call to the WHERE entry point allows the user to determine the current plotter
pen position.

WHERE Calling Sequences

The WHERE function can be called by a FORTRAN CALL statement or an Assembly
Language calling sequence.

FORTRAN: CALL WHERE (x,¥)

x and v = The addresses in which the X and Y coordinates of the current
pen position are stored (in floating-point format) by the
WHERE function.

ASSEMBLY LANGUAGE:

JSB WHERE

DEF *+3

DEF x Define the locations where the current
DEF v pen positions are to be stored.

>

FACT ENTRY POINT

A call to the FACT entry point allows the user to vary the plot scale factor.

FACT Calling Sequences

The FACT function can be called by a FORTRAN CALL statement or an Assembly
Language calling sequence.

FORTRAN: CALL FACT (w)

¥ = The floating point number used to establish the new scaling factor.
Note that ~ is multiplied by 100.00 for the 100 plotter increments/
inch when the new scaling factor is established. The plot factor is
initialized at 1.

ASSEMBLY LANGUAGE:
JSB FACT

DEF *+2
DEF FCT (Defines the address of the factor modifier)

>

2-24

PLOT

PLOTB ENTRY POINT

A call to the PLOTB entry point allows the user to specify a "plot work" buffer
external to the PLOT routine. This entry point is initialized using an internal
ten-word buffer.

PLOTB Calling Sequences

The PLOTB function can be called by a FORTRAN CALL statement or an Assembly
Language calling sequence.

FORTRAN: CALL PLOTB (a,z)

A = The starting address of the external buffer. An address of zero

specifies the ten-word internal buffer.

ju
n

A positive decimal integer specifying the buffer length in words.

ASSEMBLY LANGUAGE:

JSB PLOTB

DEF *+3

DEF a (Defines the buffer starting address)
DEF r (Defines the buffer length)

>

2-25

PTAPE

PURPOSE: Positions a magnetic tape unit by spacing forward or backward a
number of files and/or records.

BCS DOS/RTE (TYPE)
ENTRY
POINTS: PTAPE (U)
EXTERNAL
REFERENCES: .10C., .ENTR EXEC, .ENTR
CALLING
SEQUENCES: ggg EIﬁPE
DEF logical unit
DEF file count
DEF record count see below
>
File count: positive for forward, negative for backward.
For example:
P means make no file movements.
-1 means backspace to the beginning of the current file.
1 means forward space to beginning of the next file.
-2 means backspace to the beginning of the previous file.
Record count: positive for forward, negative for backward.
The file count is executed first, then the record count.
EOF marks count as a record.
For example:
P,-1 means move back one record.
-1,0 means backspace to the first record of the current file.
See Note 1.
ATTRIBUTES: ENTRY POINTS:
PTAPE
Parameters: Integers
Result: None
Basic FORTRAN: Callabie
FORTRAN IV: Callable
ALGOL : Callable
Errors: None
NOTES: 1. The diagram below shows how the position of the magnetic tape would change
with several example file/record counts.
('1:'2) (‘] :‘1) (']sg) (Q:']) (+]s'1) (+.l ,¢)

S el e e e e M e e
where [] = record curlent

position
COMMENTS:
1. After using PTAPE, always check status with MAGTP.

2-26

PURPOSE:

RMPAR

resumed.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1V:
ALGOL:

Errors:

Retrieves parameters passed by operator when a suspended program is

BCS DOS/RTE (TYPE)
N/A RMPAR (U)
None
Suspend call
JSB RMPAR
DEF *+2
DEF ARRAY
>
ARRAY BSS 5
ENTRY POINTS:
RMPAR
Integer
Integer
Callable
Callable
Callable
None

2-27

SCALE

PURPOSE: Scales an array of floating-point numbers to fit a specified size graph;
the values generated are used by the LINE and AXIS routines.

BCS DOS/RTE (TYPE)
ENTRY
POINTS: SCALE (U)
EXTERNAL 1ib b .
REFERENCES: Numerous 1ibrary subroutines
CALLING (Separate calls required for X and Y axes)
SEQUENCES: JSB SCALE
DEF *+5
DEF array containing real values
DEF length of axis in floating-point inches
DEF integer number of points to be plotted
DEF x (integer which specifies the points to
> be scaled: K=1, every point; K=2, every
other point; K=3, every third point; etc.)
ATTRIBUTES: ENTRY POINTS:
SCALE
Parameters: Mixed
Result: N/A
Basic FORTRAN: Callable as subroutine
FORTRAN IV: Callable as subroutine
ALGOL: Callable as CODE procedure
Errors: None

NOTES:

1. The adjusted minimum value is a number less than or equal to the minimum data value.
The adjusted delta value is the result of subtracting the minimum data value from
the maximum data value, divided by the length of the axis and adjusted to provide
one-inch increments that will cover the data. The adjusted scale values are used
by the LINE and AXIS routines.

2. The adjusted values are stored following the array. The minimum value for v is
stored in v(vp*x+1), where NP is the number of points to be plotted; the delta
value is stored in y(p*k+2). Therefore, the array must be dimensioned (x+2)
locations larger than (np*x), which is the number of locations necessary for data
pointsi ?orma]]y, x=1, s0 an array ZIP of ten data points would be dimensioned
as ZIP(12).

3. Sample use of SCALE: Scale every point in a 50-point array, fitting X values on a
6.5-inch X axis and Y values on a 10-inch Y axis:

DIMENSION X(52),Y(52)

CALL SCALE (X,6.5,50,1)
CALL SCALE (Y.1¢.8,50,1)

2-28

SREAD

PURPOSE: Reads a record from a device specified by a logical unit number
(used only by system programs).

BCS DOS/RTE (TYPE)
ENTRY '
POINTS: N/A %READ, %JFIL, %RDSC, (U)
EXTERNAL
REFERENCES: .0PSY, EXEC

SYMB

PURPOSE: Plots a string of characters at a specified location on the plotter;
number, height, and angle of characters can be varied.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

NOTES:

1. Example:

BCS

DOS/RTE (TYPE)

SYMB (U)

PLOT,SIN,COS,.ENTR

PLOT,SIN,COS, .ENTR,ERR@

JSB SYMB
DEF *+7

DEF x (defines address of floating-point X coordinate)
DEF v (defines floating-point Y coordinate)

DEF size (defines
DEF 1ascr (defines
DEF ruETA (defines
DEF v (defines

height in floating-point inches)

address of ASCII array or special symbol number)
angle in degrees)

number or type of characters)

If ¥>0, N = number of ASCII characters to be plotted from array rascI.
n=0, plot only lower character from rascr.
n<0, plot special symbol #v (w=-1, move with pen up, mn<-1, pen down)

ENTRY POINTS:

SYMB

Mixed

N/A

Callable as subroutine

Callable as subroutine

Callable as CODE procedure

None

Plot a line of 39 symbols from IBUFF along the X axis,
starting 1 inch to the right and 9 inches above (0,0),
with characters 0.14 inches high.

CALL SYMB(1.9,p.9.p.14,IBUFF,0.0,39)

Plot a right-direction arrow (symbol #20) 4 inches above

and to the right of (0,0).

inches.

CALL SYMB(4.9,4.9,p.5,NUMB,P.0,-1)

where NUMB contains a decimal 20.

COMMENTS:

The desired height is 0.5

1. See Table SYMB-1 for a list of characters that the SYMB routine can plot.

Any program that calls SYMB in the RTE
to establish the plotter logical unit.

/D0S environment must call PLOTLU first
(See PLOT.)

SYMB

TABLE 2-1. SYMBOL/CHARACTER TABLE

SYMBOLS
Centered Symbo]s] Uncentered Symbo]s2
0@sdI0 I 15 20 » 25 +
106 + 11 * 16 ! 21 =
2A7X12X 17 v 22 >
3+82713" 18 < 23A
4X9Y 145 19 = 24 #

ASCIT CHARACTERSZ

126 @ 39 M 52 1 65 ' 78 4
27 A 40 N 53 [66 (79 5
28 B 410 54 \ 67) 80 6
29 C 42 p 55] 68 * 81 7
30 D 43 Q 56 + 69 82 8
31 E 44 R 57 <« 70 , 83 9
32 F 45 'S 58 pen up 71 - 84 :
336 46 T 59 | 72 . 85 ;
34 H 47 U 60 " 73 / 86 <
351 48 v 61 # 74 9 87 =
36 J 49 W 62 § 751 88 >
37 K 50 X 63 % 76 2 89 ?
38 L 51Y 64 & 77 3

]Centered symbols are centered with respect to their reference point;
they are useful in point plotting, with or without an accompanying
Tine plot.

2Uncentered symbols are plotted such that the lower left corner of the
symbol starts from the specified reference point; these symbols are
useful mainly in captions and notes on the graph. ASCII characters
are likewise plotted uncentered.

2-31

#COS

PURPOSE: Entry to CCOS with no error return.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: #C0S (V)
EXTERNAL
REFERENCES: .ENTR, CCOS ERRP, .ENTR, CCOS
CALLING
SEQUENCES: JSB #COS
DEF *+3
DEF v
DEF x
5
ATTRIBUTES: ENTRY POINTS:
#COS
Parameters: CompTex
Result: Complex
Basic FORTRAN: Not callable
FORTRAN IV: Not callable
ALGOL : Not callable
Errors: None

2-32

HEXP

PURPOSE: Entry to CEXP with no error return.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: #EXP (U)
EXTERNAL
REFERENCES: .ENTR, CEXP ERRP, ENTR, CEXP
CALLING
) . JSB #EXP
SEQUENCES: DEF *+3
DEF v
DEF x
-
ATTRIBUTES: ENTRY POINTS:
#EXP
Parameters: Complex
Result: Complex
Basic FORTRAN: Not callable
FORTRAN IV: Not callable
ALGOL: Not callable
Errors: None

2-33

#LOG

PURPOSE: Entry to CLOG with no error return.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: #LOG (U)
EXTERNAL
REFERENCES: .ENTR, CLOG ERRP, .ENTR, CLOG
CALLING
SEQUENCES: JSB #L0G
DEF *+3
DEF v
DEF x
#LOG
Parameters: Complex
Result: Comp]ex
Basic FORTRAN: Not callable
FORTRAN IV: Not_callable
ALGOL: Not callable
Errors: None

2-34

#SIN

PURPOSE: Entry to CSIN with no error routine.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: #SIN (U)
EXTERNAL
REFERENCES: -ENTR, CSIN ERRP, .ENTR, CSIN
CALLING
. JSB #SIN
SEQUENCES: o]
DEF ¥
DEF x
N
ATTRIBUTES: ENTRY POINTS:
#SIN
Parameters: Complex
Result: Complex
Basic FORTRAN: Not callable
FORTRAN 1IV: Not callable
ALGOL : Not callable
Errors: None

2-35

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1V:
ALGOL:

Errors:

$EXP

Entry to DEXP with no alternate error routine.

DOS/RTE (TYPE)

$EXP (U)

.ENTR, DEXP

ERR@, .ENTR, DEXP

JEB $EXP
DEF *+3
DEF v
DEF x

>

ENTRY POINTS:

$EXP

Double real

Douhle real

Not callable

Not callable

Not callable

None

2-36

$LOG

PURPOSE: Entry to DEXP with no error return.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: $LOG (V)
EXTERNAL
REFERENCES: .ENTR, DLOG ERRP, .ENTR, DLOG
CALLING
. JSB %EXP
SEQUENCES: DEF *+3
DEF v
DEF x
-
ATTRIBUTES: ENTRY POINTS:
$LOG
Parameters: Double real
Result: Double real
Basic FORTRAN: Not callable
FORTRAN 1V: Not callable
ALGOL: Not callable
Errors: None

37

$LOGT

PURPOSE: Entry to DLOGT with no error return.
BCS DOS/RTE(TYPE)
ENTRY
POINTS: $LOGT (V)
EXTERNAL
REFERENCES: .ENTR, DLOGT DLOGT, .ENTR, ERRP
CALLING
. JSB $LOGT
SEQUENCES: DEF %43
DEF v
DEF x
ATTRIBUTES: ENTRY POINTS:
$LOGT
Parameters: Double real
Result: Double real
Basic FORTRAN: Not callable
FORTRAN 1IV: Not callable
ALGOL : Not callable
Errors: None

2-38

$SQRT

PURPOSE: Entry to DSQRT with no error return.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: $SQRT (U)
EErAt o | DsRr, .ENTR DSQRT, ERR@, .ENTR
CALLING i JSB $SQRT
SEQUENCES: DEF *+3
DEF v
DEF x
.
ENTRY POINTS:
ATTRIBUTES:
$SQRT
Parameters: Double real
Result: Double real
Basic FORTRAN: Not callable
FORTRAN 1IV: Not callable
ALGOL: Not callable
Errors: None

2-39

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL :

Errors:

% ABS

Call-by-name entry to IABS(z)

BCS

DOS/RTE (TYPE)

%ABS (U)

IABS

JSB %ABS

DEF *+2

DEF 1

+ result in A

ENTRY POINTS:

%ABS

Integer: A

Integer: A

Not callable

Not callable

Not callable

None

2-40

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

Call-by-name entry to TAN(x).

BCS

%AN

DOS/RTE (TYPE)

%AN (U)

TAN

JSB %AN

DEF *+2

DEF x

+ result in A&B

ENTRY POINTS:

%AN

Real

Real: A&B

Not callable

Not callable

Not callable

None

2-41

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN TV:
ALGOL :

Errors:

%AND

BCS

Call-by-name entry to IAND(r1,J).

DOS/RTE (TYPE)

%AND (U)

IAND

JSB %AND

DEF *+3

DEF 1

DEF 7

-+ result in A

ENTRY POINTS:

%AND

Integer

Integer

Not callable

Not callable

Not callable

None

2-42

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

%ANH

Call-by-name entry to TANH(x).

BCS

DOS/RTE (TYPE)

%ANH (V)

TANH

JSB %ANH

DEF *+2

DEF x

-+ result in A&B

ENTRY POINTS:

%ANH

Real

Real: A&B

Not callable

Not callable

Not callable

None

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

Call-by-name entry to ABS(x).

BCS

°/o BS

DOS/RTE (TYPE)

%BS (U)

ABS

JSB %BS

DEF *+2

DEF x

> result in A3B

ENTRY POINTS:

%BS

Real

Real: A&B

Not callable

Not callable

Not callable

None

2-44

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

% FIX

BCS

Call-by-name entry to IFIX(x).

DOS/RTE (TYPE)

%FIX (U)

IFIX

JSB %FIX

DEF *+2

DEF x

+ result in A

ENTRY POINTS:

%FIX

Real

Integer: A

Not callable

Not callable

Not callable

None

2-45

%IGN

PURPOSE: Call-by-name entry to SIGN (x, z)
BCS DOS/RTE (TYPE)
ENTRY
POINTS: %IGN (U)
EXTERNAL
REFERENCES: SIGN
CALLING JSB %IGN
SEQUENCES: DEF %43
DEF x
DEF z
sresult in A& B
ATTRIBUTES: ENTRY POINTS:
216N
Parameters: Real or integer and real
Result: Real
Basic FORTRAN: Not callable
FORTRAN 1IV: Not callable
ALGOL : Not callable
Errors: None

2-46

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL :

Errors:

Call-by-name entry to SIN (x).

BCS

°/IN

DOS/RTE (TYPE)

%IN (U)

SIN

JSB %IN
DEF *+2
DEF x

+result in A & B

ENTRY POINTS:

%IN

Real

Real: A & B

Not callable

Not callable

Not callable

None

2-47

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

ohINT

Call-by-name entry to AINT (x).

BCS

DOS/RTE (TYPE)

%INT (U)

AINT

JSB %INT
DEF *+2
DEF x

»result in A & B

ENTRY POINTS:

ZINT

Real

Real

Not callable

Not callable

Not callable

None

2-48

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL :

Errors:

% LOAT

BCS

Call-by-name entry to FLOAT (1)

DOS/RTE (TYPE)

%LOAT (U)

FLOAT

JSB %LOAT

DEF *+2

DEF 1

+ result in A&B

ENTRY POINTS:

ZLOAT.

Integer

Real: A&B

Not callable

Not callable

Not callable

None

2-49

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

%LOG

Call-by-name entry to ALOG (x).

BCS

DOS/RTE (TYPE)

%L0G (V)

ALOG

JSB %L0G

DEF *+2

DEF x

-+ result in A&B

ENTRY POINTS:

210G

Real

Real: A&B

Not callable

Not callable

Not callable

None

2-50

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN TIV:
ALGOL:

Errors:

% LOGT

BCS

Call-by-name entry to ALOGT (x).

DOS/RTE (TYPE)

%LOGT (V)

ALOGT

JSB %LOGT

DEF *+2

DEF x

> result in A&B

ENTRY POINTS:

%LOGT

Real

Real

Not callable

Not callable

Not callable

None

2-51

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

Call-by-name entry to INT (x).

BCS

°/oN T

DOS/RTE (TYPE)

INT (V)

INT

JSB ZNT

DEF *+2

DEF x (real)
+ result in A

ENTRY POINTS:

ZNT

Real

Integer

Not callable

Not callable

Not callable

None

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:
Basic FORTRAN:

FORTRAN 1V:
ALGOL:
Errors:

BCS

°% OR

Call-by-name entry to IOR (z, J).

DOS/RTE (TYPE)

%0R (U)

IOR

JSB %0R

DEF *+3

DEF 1

DEF &

» result in A

ENTRY POINTS:

%0R

Integer

Integer: A

Not callable

Not callable

Not callable

None

2-53

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

BCS

% OS

Call-by-name entry to COS (x).

DOS/RTE (TYPE)

%05 (U)

cos

JSB %0S

DEF *+2

DEF x

+ result in A&B

ENTRY POINTS:

| 208

Real

Real: A&B

Not callable

Not callable

Not callable

None

2-54

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

BCS

% OT

Standard call-by-name subroutine for NOT function.

DOS/RTE (TYPE)

%0T (V)

None

JSB %0T

DEF *+2

DEF 1

+ result in A

Executes complement of r.

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

ENTRY POINTS:

%0T

Integer

Integer: A

Not callable

Not callable

Not callable

None

2-55

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:
FORTRAN TV:
ALGOL:

Errors:

%% QRT

Call-by-name entry to SQRT (x).

BCS

DOS/RTE (TYPE)

%QRT (U)

SQRT

JSB %QRT

DEF *+2

DEF x

> result in A&B

ENTRY POINTS:

%QRT

Real

Real: A&B

Not callable

Not callable

Not callable

None

2-56

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:
Basic FORTRAN:

FORTRAN 1IV:
ALGOL:

Errors:

% SIGN

Call-by-name entry to ISIGN (r, z).

BCS

DOS/RTE (TYPE)

%SIGN (U)

ISIGN

JSB %SIGN

DEF *+3

DEF 1

DEF z

+ vresult in A

ENTRY POINTS:

%SIGN

Real (or integer) & integer

Integer: A

Not callable

Not callable

Not callable

None

2-57

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

%% SSW

BCS

Call-by-name entry to ISSW (w).

DOS/RTE (TYPE)

%SSW (U)

ISSW

JSB %SSW

DEF *+2

DEF ¥ (integer)
+ result in A

ENTRY POINTS:

4SSH

Integer

Integer: A

Not callable

Not callable

Not callable

None

2-58

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

% TAN

BCS

Call-by-name entry to ATAN (x).

DOS/RTE (TYPE)

%TAN (U)

ATAN

JSB %TAN

DEF *+2

DEF x

+ result in A&B

ENTRY POINTS:

ZTAN

Real

Real: A&B

Not callable

Not callable

Not callabie

None

2-59

%WRIS

PURPOSE: Writes a disc source file (used only by system programs).
BCS DOS/RTE (TYPE)
ENTRY
POINTS: N/A %WRIS, %WRIN, ZWEOF, (U)
EXTERNAL 0PSY
REFERENCES: EXEC, .
COMMENTS: 1. This routine can only be called in the RTE System.

2-60

%bWRIT

PURPOSE: Writes a load-and-go file on disc (used only by system programs).
BCS DOS/RTE (TYPE)
ENTRY
POINTS: N/A YWRIT, %WRIF, (U)
EXTERNAL
REFERENCES: 4 .OPSY, EXEC

2-61

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL :

Errors:

BCS

% XP

Call-by-name entry to EXP (x).

DOS/RTE (TYPE)

%XP (U)

EXP

JSB %XP

DEF *+2

DEF x

-+ vesult in A&B

ENTRY POINTS:

%XP

Real

Real: A&B

Not callable

Not callable

Not callable

None

2-62

.ENTR

PURPOSE: Transfers the true addresses of parameters from a calling sequence
into a subroutine; adjusts return address to the true return point.

BCS DOS/RTE (TYPE)
ENTRY
POINTS: .ENTR .ENTR, .ENTP (P)
EXTERNAL
REFERENCES: None
CALLING
SEQUENCES: For all BCS subroutines, all DOS/RTE Utility routines:
PARAM BSS N (N = maximum number of parameters)
SUB NOP (entry point to subroutine)
JSB .ENTR
DEF PARAM
For all privileged routines:
PARAM BSS N (N = maximum number of parameters)
SUB NOP (entry point)
JSB $LIBR
NOP
JSB .ENTP
DEF PARAM
For all re-entrant routines:
TDB NOP (re-entrant processing table)
DEC Q+N+3 (size of table)
NOP
VARBL BSS Q (subroutine variables)
PARAM BSS N (parameter addresses)
SUB NOP (entry point)
JSB $LIBR
NOP
DEF TDB
JSB .ENTP
DEF PARAM
STA TDB+2 (sets return address)
ATTRIBUTES: ENTRY POINTS:
.ENTR .ENTP
Parameters: Address Address
Result: Address Address
Basic FORTRAN: Not callable Not callable
FORTRAN IV: Not callable Not callable
ALGOL: Not callable Not callable
Errors: None None
NOTES: 1. The true parameter address is determined by eliminating all

indirect references.
2. .ENTR assumes the subroutine call is of the form:

.JSB SUB
DEF *+nt]
DEF P,

DEF Pn

>

2-63

.ERRR

PURPOSE: Writes a specified ASCII error code on the 1ist device.
BCS DOSIRTE(TYPB
ENTRY
POINTS: .ERRR N/A
EXTERNAL
REFERENCES: .10C.
CALLING JSB .ERRR
SEQUENCES: ASC 1, xx
ASC 1, vy
xx and vy are error codes.
ATTRIBUTES: ENTRY POINTS:
.ERRR
Parameters: ASCII characters
Result: None
Basic FORTRAN: Not callable
FORTRAN 1IV: Not callable
ALGOL: Not callable
Errors: None

2-64

.GOTO

PURPOSE: Transfers control to the location indicated by a FORTRAN computed
GO TO statement: GO TO (Kl, Kys oo KN) J
BCS DOS/RTE (TYPE)
ENTRY
POINTS: .GOTO (U)
EXTERNAL
REFERENCES: None
CALLING
SEQUENCES: JSB .GOTO
DEF *+y+1
DEF 7
DEF K,
DEF Ky
>
ATTRIBUTES: ENTRY POINTS:
.GOTO
Parameters: Addresses
Result: None
Basic FORTRAN: Not callable
FORTRAN 1IV: Not callable
ALGOL: Not callable
Errors: None

2-65

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

BCS

.MAP.

Returns actual address of a particular element of a
two-dimensional FORTRAN array.

DOS/RTE (TYPE)

MAP. (U)

None

JSB .MAP.
DEF array

DEF first subscript
DEF second subscript
OCT first dimension, as below

> result in A

Length of first dimension is actual for a real array, two's complement
for an integer array.

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN TV:

ALGOL:

Errors:

ENTRY POINTS:

MAP.

Integer

Integer

Not callable

Not callable

Not callable

None

2-66

.OPSY

PURPOSE: Determines, for disc-based systems, which operating system
(RTE, DOS, DOS-M) is in control.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1IV:
ALGOL:

Errors:

BCS DOS/RTE (TYPE)

N/A .OPSY (P)

None

JSB .OPSY
result in A
0: DOS

1: DOS-M
-2: RTE

>
uonon

ENTRY POINTS:

.OPSY

None

Integer

Not callable

Not callable

Not callable

None

2-67

PURPOSE:

integer (1) in the A-Register.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN TIV:
ALGOL:

Errors:

NOTES: 1.

.PAUS

Prints PAUSE on the teleprinter and halts the computer with a specified
Returns to calling program when restarted.

In

BCS DOS/RTE (TYPE)
.PAUS . N/A, see PAUSE
.10C.
LDA 1
JSB .PAUS

-+ return when RUN is pushed.

ENTRY POINTS:

.PAUS

Integer

None

Not callabie (Note 1)

Not callable (note 1)

Not callable (Note 1)

None

FORTRAN and ALGOL use PAUSE statement.

2-68

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:
FORTRAN 1IV:

ALGOL:

Errors:

NOTES: 1
2.

.PCAD

Return the true address of a parameter passed to a subroutine.

BCS DOS/RTE (TYPE)
N/A .PCAD (P)
None
JSB .PCAD
DEF SuUB, I
+ result in A
(See below for context)
JSB SUB (call to subroutine; indirect bit is optional
DEF X[,I] on parameter)
SUB NOP (entry point to subroutine)
JSB .PCAD
DEF SUB, I

+ address of X in A

ENTRY POINTS:

.PCAD

Indirect Address

Direct Address: A

Not callable

Not callable

Not callable

None

.PCAD has the same purpose as GETAD.

.PCAD is used by re-entrant or privileged by subroutines because they
cannot use GETAD.

2-69

PURPOSE:

.PRAM

language subroutines by ALGOL programs.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN 1V:
ALGOL:

Errors:

COMMENTS:

BCS

Processes parameter values and/or addresses passed to Assembly

DOS/RTE (TYPE)

.PRAM (U)

None

JSB .PRAM
<code words>
<parameters>

See the ALGOL manual (HP 02116-9072).

ENTRY POINTS:

.PRAM

Integer

Integer & Real

Not callable

Not callable

Not callable

None

calling sequence inside the ALGOL calling program.

2-70

Used in Assembly language subroutines to retrieve parameters from

.STOP

PURPOSE: Prints STOP on the teleprinter and halts the computer with a specified
integer (r) in the B-Register.

BCS DOS/RTE (TYPE)

ENTRY
POINTS: .STOP N/A, see PAUSE
EXTERNAL
REFERENCES: - I0C.
CALLING

. LDA 1
SEQUENCES: JSB .STOP

{no return)

METHOD: Returns to entry point HALT in the BCS loader. In stand-alone mode the
HALT 77B is irrecoverable. In MTS mode control returns to .IPL..
ATTRIBUTES: ENTRY POINTS:
.STOP
Parameters: Integer
Result: None
Basic FORTRAN: Not callable (Note 1)
FORTRAN IV: Not callable (Note 1)
ALGOL: Not callable (Note 1)
Errors: None
NOTES: 1. In FORTRAN and ALGOL use the STOP statement.

2-71

PURPOSE:

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:
ALGOL:

Errors:

.SWCH

BCS

Switches execution control to the rth of a sequence of v labels
(implements ALGOL switch statement).

DOS/RTE (TYPE)

.SWCH (U)

None

¥ is the number of labels.

LDA 1
JSB S

+ return if 1 is out of range

NOP
JSB . SWCH

ABS n (see below)

DEF Label 1
DEF Label 2

DEF Label v

If r is out of range, .SWCH returns.

ENTRY POINTS:

. SWCH

Addresses

N/A

Not callable

Not callable

Not callable

If r is out of range, returns.

2-72

.TAPE

PURPOSE: Performs magnetic tape rewind, backspace or end-of-file operations
on a specified logical unit.

BCS DOS/RTE (TYPE)
ENTRY
POINTS: .TAPE (U)
EXTERNAL
REFERENCES: .1I0C. EXEC
CALLING LDA constant
SEQUENCES: JSB .TAPE
constant = see below
METHOD: Constant:
3Oxyy8
x = 4 for REWIND
= 2 for BACKSPACE
=1 for END FILE
vy = logical unit number
ATTRIBUTES: ENTRY POINTS:
.TAPE
Parameters: Integer
Result: None
Basic FORTRAN: Not callable (Note 1)
FORTRAN IV: Not callable (Note 1)
ALGOL : Not callable (Note 1)
Errors: None
NOTES: 1. In FORTRAN and ALGOL use utility statements.

2-73

.ZRLB

PURPOSE: Eliminates calls to $LIBR and $LIBX that are unnecessary in DOS and DOS-M.
.ZRLB is called by FADSB, FMP, FDV, .FLUN, and .PACK.
BCS DOS/RTE (TYPE)
ENTRY
POINTS: .ZRLB (P)
EXTERNAL
REFERENCES: $LIBR,$LIBX,.0PSY
SUB NOP
CALLING
SEQUENCES: JSB $LIBR
NOP
JSB .ZRLB
DEF EXIT
EXIT JSB $LIBX
DEF SUB
JMP_SUB.I
METHOD:
In RTE, DOS, and DOS-M, this routine replaces the instruction "JSB .ZRLB"
in the calling sequence with an "RSS". 1In DOS and DOS-M only, the
instructions "JSB $LIBR" and "JSB $LIBX" are both replaced by "RSS".
ATTRIBUTES: ENTRY POINTS:
.ZRLB
Parameters: None
Result: None
Basic FORTRAN: Not callable
FORTRAN IV: Not callable
ALGOL: Not callable
Errors: None

2-74

PURPOSE:

..MAP

returns the address in the A-Register.

ENTRY

POINTS:

EXTERNAL

REFERENCES:

CALLING

SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN. IV:
ALGOL:

Errors:

BCS

Computes the address of a specified element of a 2 or 3 dimension array;

DOS/RTE (TYPE)

..MAP (U)

None

For 2 dimensions:

LDA = D@

LDB ~» (see below)

JSB ..MAP

DEF base address

DEF 1st subscript

DEF 2nd subscript

DEF length of Tst dimension
+ address in A

¥ = number of words per variable.

For 3 dimensions:

LDA = D-1
LDB v (see below)
JSB ..MAP

DEF base address

DEF 1st subscript
DEF 2nd subscript
DEF 3rd subscript

DEF length of 1st dimension
DEF Tength of 2nd dimension

+ address in A

ENTRY POINTS:

. .MAP

Integer

Integer

Not callable

Not callable

Not callable

None

2-75

SECTION i

UTILITY SUBROUTINES

THE FORMATTER

The Formatter is a subroutine that is called by relocatable programs to perform formatted data trans-
fers, to interpret formats, to provide unformatted input and output of binary data, to provide free
field input, and to provide buffer-to-buffer conversion. The Formatter is first given a string of
ASCIT characters that constitutes a format code. This "format" tells the Formatter the variables

to transfer, the order, and the conversion (on input, ASCII characters are converted to binary values
and on output, binary values are converted to ASCII). Then the calling program gives the Formatter
a string of variables to be output or filled by input.

In FORTRAN and ALGOL programming, the programmer first defines a FORMAT string through FORMAT
statements.

For example:

FORTRAN: 1§ FORMAT (I5,A2,5F12.3)
\"\N
identifier actual format

ALGOL : FORMAT F23 (I5,A2,5F12.3);

N ————
identifier actual format

Then the programmer uses a READ or WRITE statement giving the logical unit number of the device to
be used, the format identifier, and a Tist of variables.

For example:
FORTRAN: 2 WRITE (2,1@) INT,LETR,ARRAY
S
logical format variable
unit identifier Tlist
ALGOL : WRITE (2,F23, INT, LETR, VARI) ;
} \\’\N

Togical format variable
unit identifier 1ist

The FORTRAN and ALGOL Compilers automatically generate the correct calls to the Formatter. In

assembly language, the programmer is responsible for all calls to the Formatter, as will be discussed
lTater.

There are three different formatters used in relocatable Hewlett-Packard software systems:

1. 4K Formatter
2. Basic FORTRAN Formatter
3. FORTRAN IV Formatter

The 4K Formatter is the simplest formatter, as it must operate in 4,096 words of memory. The Basic
FORTRAN Formatter inciudes all the features of the 4K Formatter, plus several more. The FORTRAN IV
Formatter is expanded even further to include double precision number conversion.

3-1

These three formatters are distributed as follows:
1. 4K Formatter:
a. Kai.v Non-EAU 4K FORTRAN Library
b. KA4E.w EAU 4K FORTRAN Library
2. Basic FORTRAN Formatter:
a. LIB.v non-EAU Relocatable Program Library
b. EAU.~v EAU Relocatable Program Library
c. RTE/DOS Basic FORTRAN Formatter (separate)
3. FORTRAN IV Formatter:
a. FTN4v BCS FORTRAN IV Library
b. F4D.v RTE/DOS FORTRAN IV Library
Where ~ is the revision letter (A,B,C, etc.).

FORMATTED INPUT/ OUTPUT

Formatted input/output is distinguished from unformatted input/output by the presence of a format
identifier in the READ or WRITE statement. The format identifier refers to a format that is a string
of ASCII characters bounded by parentheses. The ASCII characters consist of a series of format
specifications or codes. Each code specifies either a conversion or an editing operation. Conversion
specifications tell the formatter how to handle each variable in the data list.

To summarize:

Format specifications may be nested (enclosed in parenthesis) to a depth of one level. In FORTRAN IV
they may be nested to a depth of four Tevels.

Conversion specifications tell the formatter how to convert variables into ASCII output and how to
convert ASCII input into binary variable data.

Editing specifications tell the formatter what literal strings to put on output, when to begin new
records and when to insert blanks.

FORMAT SPECIFICATIONS

A format has the following form: (spec,...,r(spec,...),spec,...)

where:
spec is a format specification and r is an optional repeat factor which must be an integer.

Conversion Specifications

rEw.d Real number with exponent

rFw.d Real number without exponent

riw Decimal Integer

r@w }

rKw, row Octal Integer [Not available on 4K]

rAw, rRw ASCII character

FORTRAN IV FORMATTER ONLY:

srDw.d Double precision number with exponent
sréw.d Real number with digits
rlw Logical variable

Editing Specifications

nX Blank field
nH character string
r"character string"

r/ begin new record

where:
r is an integer repetition factor,
w and n are non-zero integer constants representing the width of a field in the external
character string,
d is an integer constant representing the digital fraction in the part of the string, and
s is an optional scale factor.

THE E SPECIFICATION

The E specification defines a field for a real number with exponent.

Qutput

On output, the E specification converts numbers (integers, real, or double precision) in memory into
character form. The E field is defined in a format by the presence of the E specification (Ew.d).
The field is w positions in the output record. The variable is printed out in floating-point form,
right justified in the field as

W
e Y
S Xy Xy Etee

d

where
x]...xd are the most significant digits of the value, the e's are the digits of the exponent
w is the width of the field, d is the number of significant digits, and the minus
sign is present if the number is negative.

The w must be large enough to contain the significant digits (d), the sign, the decimal point, E, and
the exponent. In general, w should be greater than or equal to d + 6.

If wis greater than the number of positions required for the output value, the quantity is right
justified in the field with spaces to the left. If w is not large enough (e.g., less than d + 6),
then the value of d is truncated to fit in the field. If this is not possible, the entire field is
filled with dollar signs ($).

EXAMPLES:
FORMAT DATA ITEM RESULT
E19.3 +12.34 . 123E+02
E19.3 -12.34 - 123E+92
£12.4 +12.34 e 1234E4+02
E12.4 -12.34 - 1234E402
E7.3 +12.34 J12E+P2
E5.1 +12.34 $$5$$

Input

The E specification on input tells the formatter to interpret the next w positions in the record as
a real number with exponent. The formatter then converts the field into a number and stores it into

the variable specified in the variable list.

The input field may consist of integer, fraction, and exponent subfields

integer fraction exponent
field field field
PN e
....n.n.. okt ee

where the format equals Ew.d.

Rules for E Field Input

1.

The width of the input item must not be greater than w characters.
Initial + and E are optional.

Example: 123, = +123., 12.46 = 12.E6

If E is present, the initial + of the exponent is optional.
Example: 123. 4606

If the decimal point is left out, the formatter inserts it by multiplying the integer
field by 1079,

Example: e eomat = E9.4, 123856E+6 = 12.3456E+6

Spaces are ignored in the Basic FORTRAN and 4K Formatter, but in the FORTRAN IV Formatter
blanks are evaluated as zeroes (0).

Any combination of integer field, fraction field, and exponent field is legal:

123.456E6
.456E6
.456
123.E6
123.
E6
(all blanks = @)

NOTE: Input to F, G, D and I fields is iInterpreted in the same way as the

E field.

3-5

THE F SPECIFICATION

The F Specification defines a field for a fixed point real number (no exponent).

Qutput

On output, the F specification converts numbers (integer, real, or double precision) in a format by
the presence of the F specification (Fw.d). The field is w positions in the output record. The
variable is printed out right-justified in fixed-point form with d digits to the right of the decimal
point:

integer fraction

field field (d)

P e
=Xe e e Xo XX. o X
S e g

w

Where w is the total width of the field, the negative sign (-) is optional (positive numbers are
unsigned), d is the length of the fraction field (empty if d=0).

If w is greater than the number of positions required for the output value, the quantity is right
Jjustified in the field with spaces to the left. If w is not large enough to hold the data item,
then the value of d is reduced to fit. If this is not possible, the entire field is filled with
dollor signs ($).

EXAMPLES:
FORMAT DATA ITEM RESULT
F19.3 +12.34 aaa12.348p
F19.3 -12.34 aa=12.349
F12.3 +12.36 12.340
F12.3 -12.3 . -12.34p
F4.3 +12,34 12.3
F4.3 +12345.12 $$$%

Input

Input to an F field is identical to an E field. A1l the rules under the E specification apply
equally to the F specification.

3-6

THE D SPECIFICATION

The D specification is available only on the FORTRAN IV formatter. The effect is exactly the same
as using an E specification with exception that on output "D" begins the exponent field instead
of "E".

EXAMPLES:
D19.3
D12.4
D7.3

THE G SPECIFICATION

The G specification defines an external field for a real number. The magnitude of the number deter-
mines whether or not there is an exponent field.

Qutput

On output, the G specification converts numbers (integer, real, or double precision) in memory into
character form. The G field is defined in a format by the presence of the G specification (Gw.d).
The field is w spaces wide, with d significant digits. The format of the output depends on the
magnitude of the number (N):

Magnitude Output Conversion
0.1 < N« F(W-4).d,4X
1 < N<10 F(W-4).(d-1),4X
104-2en<109"! F(W-4).1,4X
109 N0 F(W-4).0,4X
Otherwise sEw.d (s is scale factor)

NOTE: The scale factor is applied only when the G conversion
is done as E.

Example Output

The following real numbers are converted under a G10.3 specification:

Number Output Format
.@5234 ~~+B523E-P1
.5234 aneD23 00 nn
52.34 wnD2.3 00 nn
523.4 PO Y RN
5234, ~~+523E+P4

Input

Input processing of a Gw.d specification is identical to that of an Ew.d specification.

3-7

THE SCALE FACTOR (FORTRAN IV ONLY)

The optional scale factor for F,E,G, and D conversions is of the form:

nP

When n, the scale factor, is an integer constant or a minus followed by an integer constant. Upon
initialization of the formatter, the scale factor equals zero. Once a scale factor is encountered,
it remains in effect for all subsequent F,E,G and D fields until another scale is encountered.

The scale factor effects are as follows:

1.

F,E,G,D input (provided no exponent exists in the external field):

internally represented number equals externally represented number times ten raised to
the -nth power. That is, IN=XN*10"" where IN and XN represent internal and external
numbers, respectively.

F,E,G,D, input with exponent field in external field: no effect.

F output: external number equals internal number times ten raised to the nth power. ie,
XN = IN*10"

E,D output: mantissa is multiplied by 10" and the exponent is reduced by n. If n <0,
there will be -n leading zeroes and d + n significant digits to the right of the decimal
point. If n>o, there will be n significant digits to the left of the decimal point and
d-n + 1 to the right. The scale factor when applied to E and D output has the effect of
shifiting the decimal point to the left or right and édjusting the exponent accordingly.
Note that when n > 0, there are d + 1 significant digits in the external field.

G output: If F conversion is used, the scale factor has no effect. If E conversion is
used, the scale factor has the same effect as with E output.

For example,

Input conversion

External field Format Internal number
528.6 1PF12.3 52.86
.5286E+@3 1PG1Q. 3 528.6
528.6 -2PD1P.3 52860.

Output conversion

Internal number Format External field
528.6 1PF8.2 .5286.00

.5286 2PE1@.4 52.86QE-P2
5.286 -1019.4 ..0529D+@2
52.86 1PG18.3 A52.9...
-5286. 1PG10.3 -5.286E+p3

3-8

THE I SPECIFICATION

The I specification defines a field for decimal integer.

Qutput

On output, the I specification converts numbers (integer, real, or double precision) in memory into
character form. The I field is defined in a format by the presence of the I specification (Iw).
The field occupies w positions in the output record. The variable is converted to an integer, if
necessary, and printed out right-justified in the field (spaces to the left) as:

where
Xs «... Xd are the digits of the value, {max = 5), w is the width of the field in characters,
and the minus sign (-) is present if the number is negative.

If the output field is too short, the field is filled with dollar signs ($).

Format Data Item Result
15 -123 -1234
15 +12345 12345
14 +12345 $$$$

16 +12345 212345

Input
The I specification on input (Iw) is equivalent to an Fw.0 specifications. The input field is read
in, the number is converted to the form suitable to the variable (integer, real, double real), and

the binary value is stored in the variable location.

During input, if a value is less than -3276810, the value is converted to +32767.

EXAMPLES:
Format Input Field Internal Result
15 -.123 -123
15 12093 12093
14 Ap2 192
I1 3 3

0,K,@ SPECIFICATION

These three specification types (0,K,8) are equivalent; they are all used to convert octal (base eight)
numbers.

Qutput

On output, the octal specification (0,K,@) converts an integer value in memory into octal digits for
output. The octal field is defined in a format by the presence of the 0(Ow), K(kw), or @(@w)
specification. The field is w octal digits wide. The integer value is converted and right justified
in the field as:

RNdn
NI’
W

where
d,....dn are the octal digits (6 maximum), are lead spaces, and w is the width.

If w is less than 6, the w least significant octal digits are written.

Input
On input, the octal specification tells the formatter to interpret the next w positions in the input

record as an octal number. The formatter converts the digits into an octal integer and stores it
into an integer variable.

If w is greater than or equal to six, up to six octal digits are stored; non-octal digits with the
field are ignored.

If w is less than six or if less than six octal digits occur in the field, the result is right-
justified in the variable with zeroes (0) to the left.

If the value of the octal digits in the field is greater than 177777, the results are unpredictable.

EXAMPLES:
Format Input Field Internal Result
@6 123456 123456
e7 -123456 123456
2K5 2342342342 $23423 and p42342
264 »396E-P5 PPPP36 and PPPPRS5

3-10

L_SPECIFICATION

The L specification allows input or output of logical values:

TRUE = T (external), negative (internal)
FALSE = F (external), non-negative (internal)

Output

On output, the L specification converts numbers (integer, real, or double precision) in memory into
their external logical value (T or F). The L field is defined by the presence of the L specification
(Lw). The field is w spaces wide, consisting of w-1 blanks followed by a T or F.

Input

On input, the L specification converts an external character field into the internal true of false

of value. The L specification (Lw) specifies a field w spaces wide, consisting of optional blank,

a T or F and optional trailing characters. A T is converted to -32,768 (1000008) and an F is con-
verted to 0.

A AND-R SPECIFICATIONS

The A and R specifications define a field of one or two ASCII characters. ASCII characters are
stored as two 8-bit codes per integer variable.

Output

On output, the A and R specifications transfer ASCII character codes from memory to an external
medium. The field is defined by an A or R specification (Aw or Rw). The field is w positions wide
in the output record. For w > 2, A and R are equivalent: the field consists of w-2 blanks followed
by two characters (first the character in the left or high-order bits part of the variable, then the
character in the right part of the variable).

For example:

Variable Format OQutput Format
AB A2 AB
AB R4 ~~AB
AB A6 . ~~~AB

3-11

In order to output a string of characters, the repeat factor must be used.

For example:

Variable Format Output
AB, CD, EF, GH 472 ABCDEFGH

For w = 1, the FORTRAN IV and Basic FORTRAN formatters differ.

Basic FORTRAN Formatter

In Basic FORTRAN, the A specification is the same as the R. For w =1, A and R specify the character
in the right half of the variable.

For example:
Variable Format Qutput
XY Al or Rl Y

FORTRAN IV Formatter

The R specification is the same as in the Basic FORTRAN Formatter.
The Al specification takes the character from the left half of the variable.

For example:
Variable Format Output
XY Al X

Input
On input, the A and R specifications transfer ASCII character codes from an external medium to in-
ternal memory. The field is defined by an A or R specification (Aw or Rw). The field is w positions

wide. If w > 2, the right most two characters are taken from the input field.

For example:

Input Field Format Variable
MN A2 MN
MNOP R4 oP
MNOPQR A6 Qr

3-12

In order to read in a string of more than two characters, the repeat factor must be used.

For example:

Input Field Format Variable
MNOPQRSTUV 5A2 MN,OP,QR,ST,UV
FGHIJK 3A2 FG,HI,JK

For w = 1, the FORTRAN IV and Basic FORTRAN Formatter differ.

Basic FORTRAN Formatter

In Basic FORTRAN the A is the same as the R. For w =1, A and R read in one character and places it
in the right half of the variable with binary zeroes in the Teft.

For example:

Input Format Variable
X Al or Rl 000000002 X
left right

computer word

FORTRAN IV Formatter

The R spcification is the same as in the Basic FORTRAN Formatter.

For A1, one character is read in and placed in the left half of the computer word. An ASCII blank
is placed in the right half.

For example:
Input Format Variable
X Al X.

Compatability

The FORTRAN IV Formatter can be modified at run-time to interpret A as in Basic FORTRAN. This is
done by calling the OLDIO entry point:

CALL oOLDIO
To change back to a FORTRAN IV A specification call NEWIO:
CALL NEWIO

The FORTRAN IV Formatter always begins operation in the NEWIO state.

3-13

X_SPECIFICATION

The X specification produces spaces on output and skips characters on input. The comma (,) following
X in the format is optional.

Output

On output, the X specification causes spaces to be inserted in the output record. The X field is
defined by the presence of an X specification (nX) in the format, where n is the number of spaces
to be inserted. (X alone = 1X; @X is not permitted.)

Examples

Format
E8.3,5X,F6.2,5X,14

Data Values
+123.4, -12.34, -123

Output Field
L123E403.. ... -12.34, ... -123

Input

On input, the X specification causes characters to be skipped in the input record. The X field is
defined by the presence of an X specification (nX) in the format, where n is the number of characters
to be skipped. (X alone = 1X; #X is not permitted.)

Example
Format
8X,12,1PX,F4.2,1PX,F5.2
Input Field
WEIGHT ..1p..PRICE..$1.98,.TOTAL..$19.80
Internal Values

19, 1.98, 19.8p

"t H SPECIFICATIONS (Literal Strings)

The H and " " specifications provide for the transfer, without conversion, of a series of ASCII
characters (except that quotation marks -"- cannot be transferred using " "). A comma after this
specification is optional.

Qutput

On output, the ASCII characters in the format specification (there is no associated variable since

this is only an editing specification) are output as headings, comments, titles, etc. The specifi-
cations are of the form:

"HC1C2---Cn or "c1c2...cn"
where

n is the numbers of characters to be transmitted, C1€2...C, are the characters themselves,
and Hor ",.." are the specification types.

(H alone = .TH; PH is not permitted.)

Note that with " ", the field length is not specifiad; that is determined by the number of characters
between the quotation marks.

Examples:
Format Result
2@H THIS.IS.AN.EXAMPLE ATHIS IS AN EXAMPLE
"THIS.ALSO.IS AN _.EXAMPLE" THIS.ALSO.IS.AN, EXAMPLE
3"ABC" ABCABCABC

Input

If H is used on input, the number of characters needed to fill the specification is transmitted from

the input record to the format. A subsequent output statement will transfer the new heading to the
output record. In this way, headings can be altered at run-time.

If " " is used on input, the number of characters within the quotation marks is skipped on the input
field.
Example:

Format

BTH. inannnnnnnnnnnnannnnnanannna

Input

H.INPUT ,ALLOWS .VARIABLE .HEADERS

Result

31HH. INPUT (ALLOWS .VARIABLE .HEADERS

/_SPECIFICATION

Th / specification terminates the current record. The / may appear anywhere in the format and need
not be set off by commas. Several records may be skipped by preceding the slash with a repetition
factor (r-1 reocrds are skipped for r/).

On output, a new record means a new line (list device), a carriage return-linefeed (punch device),
or an end-of-record (magnetic tape). Formatted I/0 records can be up to 67 werds (134 characters)
long.

On input, a new record is a new "unit record" (card reader), is terminated by a carriage return-
Tinefeed (teleprinter), or is terminated by an end-of-record (magnetic tape).

NOTE: When the formatter reaches the end of a format and still
has values to output, it starts a new record.
Examples:
Format

22X,6HBUDGET/// 6HWEIGHT ,6X, SHPRICE,9X,
SHTOTAL ,8X

Result

(TiN€ 1) mrmmmmmnnnnnnnnnn ~nnnBUDGET

(line 2)

(1ine 3)

(Tine 4) WEIGHT PRICE nnmmnnn TOTAL canann s

HOW TO PUT FORMATS TOGETHER

When two specifications follow each other they are concatenated.

E field I field
Format: E9.4,I6 [9 characters |6 characters l
To leave space between numbers use X.

E field X I field
Format: E9.4,3X,16 [9 characters |3 characters 4]6 characters]
To start a new Line, use /

E field
Format: E9.4/16 ‘ 9 characters l

I field

I 6 characters:]

Specifications can be gathered together into groups and surrounded by parenthesis.

Example: (E9.3, 2X, 16) |E [x[1 |

These groups can be nested one level deep, except in the FORTRAN IV Formatter they can be four levels

deep. For example,

(E9.3,3(2X,16))

E X1 X| I]X I

(E9.3,3(2X,16)2X,2(18))
N 3 O S [N ER

Use the repetition factor to repeat single specifications (except nH) or groups of
specifications. This is done by preceding the specification or parenthetical groups

with a repeat count, r. THe conversion is repeated up to r times, unless the list of
variables is exhausted first.

3(E9.3,2X,16,2X)/
[S N 1) S 3 [NS
[S 3) S (1 R E S

Use the principle of unlimited groups -- when the formatter has exhausted the specifications
of a format and still has list items left, it inputs a new record for a READ or outputs

the present record for a WRITE and returns to the last, outer-most unlimited group within
the format. An unlimited group is a set of specifications enclosed In parenthesis. If

the format has no unlimited groups, the formatter returns to the beginning of the format.

X

Example: Format (15,%(3X,F8.4,8(12))-]
(15,2(3X,F8.4,8(1212)).4X,3(I6))]

(I15,3X,4F8.4,3X)
i]

Format

Format

Keep in mind the accuracy limitations of your data. Although the formatter will print
out or read in as many digits as specified, only certain digits are significant:

Integer variables can be between -32,768]0 and +32,767]0.
Floating-point numbers can guarantee 6 digits of accuracy (plus exponent).
Double precision can guarantee 11 digits of accuracy (plus exponent).

On input to the FORTRAN IV formatter blanks are interpreted as zero digits, while on
input to the other two formatters, blanks are not evaluated as part of the data item.

The FORTRAN IV Formatter can be made to act exactly as the other Formatters do by
calling entry point OLDIO. This condition can be reversed by calling entry point NEWIO.
These calls are made in FORTRAN as:

CALL OLDIO
CALL NEWIO

In Assembly Language as:

JSB 0LDIO JSB NEWIO
DEF *+1 DEF *+1]
> -

FREE FIELD INPUT

When free field input is used, a format is not necessary. Special symbols included within the data
direct the conversion process: ’

space or, Data item delimiters
/ Record terminator

+ - Sign of item
.E+-D Floating point number
@ Octal integer

"Lt Comments

A11 other ASCII non-numeric characters are treated as spaces (and delimiters). Free field input
may be used for numeric data only.

FORTRAN

In FORTRAN, a free field input operation has this form:

READ (unit, *) variable list

ALGOL

In ALGOL, a free field input operation has this form:

READ (unit, *, variable list);

Data Item Delimiters

Any contiguous string of numeric and special formatting characters occuring between two commas, a
comma and a space, or two spaces, is a data item whose value corresponds to a list element. A
string of consecutive spaces is equivalent to one space. Two consecutive commas indicate that no
data item is supplied for the corresponding list element; the current value of the Tist element
is unchanged. An initial comma causes the first Tist element to be skipped.

EXAMPLES:
1) 2)

READ(5,*)I,J,K,L READ(5,*)1,d,K,L
Input data: 1720, 1966, 1980, 1392 Input data: 1266,,1794,2000

Result: I contains 1720 Result:
J contains 1966
K contains 1980
L contains 1392

Floating Point Input

I contains
J contains
K contains
L contains

The symbols used to indicate a floating point data item are the same

floating point data for FORMAT statement directed input:

Integer Fraction Exponent
Field \ Field Field

\ /
A, e, e,

+h...n.n...ntee
n E
D (in FORTRAN IV only)

decimal point

1266
1966
1974
2000

as those used in representing

If the decimal point is not present, it is assumed to follow the last digit.

EXAMPLES :

READ(5,*)A,B,C,D,E
Input Data: 3.14, 314E-2, 3140-3, .0314+2, .314E1

A1l are equivalent to 3.14

Octal Input

An octal input item has the following format:

@x]...xd

The symbol @ defines an octal integer. The x's are octal digits each in the range of 0 through 7.
List elements corresponding to the octal data items must be type integer.

3-20

Record Terminator

A slash within a record causes the next record to be read as a continuation of the data 1ist; the
remainder of the current record is skipped as comments.

Example:

READ(5,*)II,JJd,KK,LL,MM

Input data: 987, 654, 321, 123/DESCENDING
456

Result: II contains 987
JJ contains 654
KK contains 321
LL contains 123
MM contains 456

List Terminator

If a line terminates (with a carriage return and linefeed) and a slash has not been encountered,
the input operation terminates even though all 1ist elements may not have been processed. The
current values of remaining elements are unchanged.

EXAMPLES :

READ(5,*)A,B,C,J,X,Y,Z

Input Data:

A=7.987 B=5E2 (=4.6859E-3 carriage return and linefeed
J=3456 carriage return and linefeed

Result: A contains 7.987
B contains 5E2
C contains 4.6859E-3

J,X,Y,Z are unchanged.

3-21

Comments

A1l characters appearing between a pair of quotation marks in the same line are considered to
be comments and are ignored.

EXAMPLES:

"6.7321" is a comment and ignored
6.7321 is a real number

3-22

UNFORMATTED INPUT /OUTPUT

Read and write operations can be unformatted as well as formatted. On an unformatted operation,
binary values are transferred to or from a specified logical unit without any conversion.

In FORTRAN, an unformatted READ statement has the form:

READ (unit) variable list
Binary records are read in from unit and assigned serially to the locations in the variable list.

In ALGOL, an unformatted READ statement has the form:

READ (unit,variable list)

In FORTRAN, an unformatted WRITE statement has the form:

WRITE (unit) variable list

The values in the variable 1ist are packed into physical records of 60 words each and are output
to the unit specified. The variable Tist which may consist of several physical records, is called
a logical record.
In ALGOL, an unformatted WRITE statement has the form:

WRITE (unit, variable list)
In Assembly Language, the program calls the formatter directly. (See "Assembly Language Calling
Sequences.")
Records
Unformatted I/0 through the formatter is limited to physical records of 60 words maximum. If a
variable 1ist contains more than 60 words of data, the data is broken into more than one record.

(For example, 100 words of data are broken into two records of 60 and 40 words each.)

When paper tape or unit record devices are used, (teleprinter, mark sense card reader etc.) how-
ever, only 59 words of each record contain data. The first word issued is for the record length.

ASSEMBLY LANGUAGE CALLING SEQUENCES

In FORTRAN and ALGOL, when the programmer uses a READ or WRITE statement the compiler generates
all the necessary calls to the Formatter.

In Assembly Language the programmer is responsible for all calls to the Formatter. For each 1/0
operation, the program must first make an "Initialization" call (entry points .DIO and .BIO). This
call establishes the format to be used (if any), and the logical unit and a way to say whether the
operation is input or output. Then, for each data item, the program must make a separate call which
depends on the type of data. Finally, for output only, the program must make a termination call
that tells the Formatter to output the last record.

Figure 3-1 flowcharts the process of selecting an input calling sequence. Figure 3-2 flowcharts
the output calling sequence.

Variable items in the calling sequences include:

unit is the Togical unit number of the desired I/0 device.

format is the label of an ASC psuedo-instruction that defines the format
specification.

end of list is the location following the last data call to the formatter. When an

error occurs in the format specification or the input data, the formatter
returns to this location.

real is the address of the real variable.

integer is the address of the integer variable.

double is the address of the double precision variable

length is the number of elements (not the number of memory locations) in the

array. Maximum length of an external physical record is 67 words for

formatted data and 60 words for binary data. Formatted data blocks can

be of any length if the format breaks the data in multiple records using

“/" and unlimited groups. If binary data exceeds 60 words, the record

is read in or written out and the formatter skips to the next record.

(Note: For this reason, binary data should be read in with the same
variable 1ist as that used to write it out.)

address is the first location of the array.

3-24

NO

START

FORM?TTED

SELECTING A CALLING SEQUENCE

INPUT

NO

\
INITIAL CALL INITIAL CALL INITIAL CALL
LDA unit LDA unit LDA unit
CLB, INB CLB, INB CLB, INB
JsB .BIO. JSB .DIO. JSB .DIO.
0CT @ DEF format
DEF end of list DEF end of list
/ S M S
P P
\
N ,////;&Y
<:: MORE DATA?
ARRAY?
REAL DOUBLE PREC. DOUBLE PREC.
INTEGER
/ N

DATA CALL DATA CALL DATA CALL DATA CALL DATA CALL DATA CALL

LDA Length LDA Length JSB . XAY. JSB .IOR. JdSB .I0I. JSB .XIO0.

LDB address LDA address DEF address DST Real STA Integer DEF pouble

JSB .RAR. JSB .IAR. DEC Length

\ \/)IL \

3-25

OUTPUT
SELECTING A CALLING SEQUENCE

FORMATTED?

INITIAL CALL INITIAL CALL

LDA unit LDA unit
CLB CLB

JSB .DIO. JSB .BIO
DEF format

DEF end of list

| P22

TERMINATION CALL
JSB .DTA.

ANY
MORE DATA?

ARRAY ?

DOUBLE PREC. DOUBLE PREC.

INTEGER

DATA CALL DATA CALL DATA CALL DATA CALL DATA CALL DATA CALL
LDA Length LDA Length JSB .XAY. DLD Real LDA Integer JsB .XIO.

LDB address LDA address DEF address JSB .IOR. JsB .I0I. DEF pouble
JSB .RAR. JSB .IAR. DEC Zength

L

|

3-26

NOTES

1. Double precision calls are available only in the FORTRAN IV Formatter.

2. In the FORTRAN IV Formatter, there are alternative calling sequences for data items:

Real Variable Real Arrays
JSB .RIO. JSB .RAY.
DEF real DEF address

DEC length

Integer Variables Integer Arrays
JSB .II0. JSB .IAY.
DEF integer DEF address

DEC length

3. Also in the FORTRAN IV Formatter, the statement "DEC lengtn" in array calling sequences can
be replaced by "DEF L,I" where L is defined elsewhere in the program as the array length.

3-27

INTERNAL CONVERSION

The Formatter provides the programmer with the option of using the conversion parts of the Formatter
only without any input or output. This process is called "internal conversion."

On "input", ASCII data is read from a buffer and converted according to a format (or free field)
into a variable 1ist. (This is known as decoding.)

On "output", binary data is converted to ASCII according to a format and stored in a buffer. (This
is known as encoding.)

Internal Conversion Calling Seguence

Qutput (Binary to ASCII Conversion): ENCODING

CLA

CLB

JSB .DIO.

DEF buffer (destination)
DEF Fformat

DEF end of list

Calls to define each variable
(Same as regular calls)

Termination Call
(Same as regular calls)

where buffer is a storage area for the ASCII "output" to be stored into.

Input (ASCII to Binary Conversion): DECODING

Formatter Free Field

CLA CLA

CLB, INB CLB, INB

JsB .DIO. JsB .DIO.

DEF buffer DEF buffer

DEF format ABS @

DEF end of list DEF end of list

Calls to define each variable
(Same as regular calls)

where buffer is a storage area containing ASCII characters which will be converted by the
Formatter into binary values.

3-28

NOTES

1. Internal conversion ignores "/" specifications or unlimited groups. The concept of records does
not apply during internal conversion.

2. In FORTRAN, internal conversion can be used through the subroutine CODE. A call to CODE must
jmmediately precede a READ or WRITE request where the identifier of an ASCII record buffer (array
name) replaces the logical unit number. Any labels must be attached to the CODE call, as it and
the READ/WRITE statement are treated as one statement.

The calling sequences are:

CALL CODE
READ (buffer, format) variable list

CALL CODE
WRITE (buffer, format) variable list

3. In ALGOL, the entry point ACODE is used for internal conversion (since CODE is a reserved
word). ACODE must be declared an "code" procedure before being called.

3-29

BUFFERED 1/0 WITH THE FORMATTER

Normally, when a program uses the Formatter, it can only execute one I/0 operation at a time.
However, the internal conversion feature of the Formatter can be used with direct calls to .IOC.
(through the MAGTP subroutine) to provide both buffered and formatter I/0.

The following flowchart shows how a program can read in data from two units (Ul and U2) into two

buffers (B1 and B2) at the same time by calling .IOC.. When unit Ul is complete, buffer Bl is
converted into Tist L1 by the Formatter (while input continues on unit U2).

(START)

.I0C. - Begin read
from U1 into Bl

~ \ No
(Ul = U2) 1
Yes .10C. - Begin read
} from U2 into B2

N
-I\F(.I0C. - U1 complete?) e
Yes jm;—(».IOC. - Ul complete 4)

Yes

.I0C. - Begin read
from U2 into B2

N

FRMTR - Convert BI

into L1
N
”~
- ?)
—N—o—(.I0C. -~ U2 complete?
Yes

FRMTR - Convert B2
into L2

()

3-30

EXAMPLE CALLING SEQUENCES

EXAMPLE 1: FORMATTED INPUT

Purpose

A 20 character double precision number and a 10 character integer are read and converted from the

first record. 80 characters are read from the second record and stored in ASCII form in the array
ALPHA. Execution continues with the instruction at ENDLS.

LDA INPUT Input unit number
CLB,INB Input flag
JSB .DIO. Initialization enterance
DEF FMT Location of format
DEF ENDLS End of list
JSB XIO0. Declare double precision variable
DEF DP Location of variable
JsB LII10. Declare integer variable
DEF I Location
JsB JIAY. Declare integer array
DEF ALPHA Location
DEC 80 Number of elements
ENDLS - (Continue program here)
INPUT DEC 1 Unit number
pp BSS 3 Double precision variable
I BSS 1 Integer variable
ALPHA BSS 80 Integer array
FMT ASC 9,(D20.12,110/80A1) Format specification

3-31

EXAMPLE 2: UNFORMATTED QUTPUT EXAMPLE

Purpose

1000 2-word elements in the array ARRAY are punched on the standard punch unit. The output will
consist of 60 word records (59 data words and 1 control word) until the entire array is punched.

LDA PUNCH
CLB

Jsg .BIO
LDA =D1pg¢
LDB ADRES
JSB .RAR.
JSB .DTA.

>

PUNCH DEC 4
ADRES DEF ARRAY
ARRAY BSS 2p@p

Qutput unit number

Qutput flag

Binary initialization enterance
Number of elements in array
Location of array

Real (2-word) array enterance
Qutput termination

Unit number
Location of ARRAY
Defines 1000 2-word elements.

EXAMPLE 3: INTERNAL CONVERSION AND FREE FIELD INPUT

Purpose

The ASCII data starting at BUFFR is converted in free field form to binary. R will contain the
binary representation of .@@@1234 and I will contain the binary representation of 28.

CLA
CLB,INB
JSB
DEF
ABS
DEF
JsB
DST
JsSB
STA
ENDLS -

R BSS
I BSS
BUFFR ASC

.DIO.
BUFFR

ENDLS
.IOR.

.I0I.

2
1
6,123.4E-6,28

Internal conversion flag

ASCIT to binary flag

Initialization enterance

Location of ASCII data

Specifies ASCII data is in free-field form
End of Tlist

Declare real variable

Store binary item in R

Declare integer variable

Store in I

Real variable
Integer variable
ASCII data to be converted to binary.

3-32

SECTION Iii
THE FORMATTER

INDICES

INDEX I

LIB.¥, K4N.n, EAU.n, KAE.N
¥ is the revision Tetter
In EAU.~ and K4E.~, .EAU. replaces MPY, DIV, DLDST.

Name Page Reference Name Page Reference
MEMRY 2-17 .RTOI 1-87
FRMTR 3-1 LITOI 1-84
CODE 2-4 .PRAM 2-70
MAGTP 2-15 FDV 1-41
%ANH 2-43 FMP 1-43
%XP 2-62 .MAP, 2-66
%IN 2-47 . IENT 1-83
%0S 2-54 FLOAT 1-42
%AN 2-41 .PACK 1-85
%BS 2-44 LEADR 2-13
%LOG 2-50 .ENTR 2-63
%QRT 2-56 ENTIE 1-37
%IGN 2-46 .EAU. (EAU libraries only) 1-79
%LOAT 2-49 MPY (Non-EAU Tibraries only) 1-54
%FIX 2-45 DIV (Non-EAU libraries only)} 1-29
%TAN 2-59 DLDST (Non-EAU 1ibraries only) 1-30
%ABS 2-40 GETAD 2-10
%SIGN 2-57 IFIX 1-48
%AND 2-42 ERR@ 2-8
%0R 2-53 EXEC 2-9
%0T 2-55 .PAUS 2-68
%SSW 2-58 .SToP 2-71
TANH 1-65 ISIGN 1-51
TAN 1-64 .ERRR 2-64
ATAN 1-7 PWR2 1-58
.RTOR 1-88 .GOTO 2-65
EXP 1-39 . SWCH 2-72
SQRT 1-63 -FLUN 1-80
ALOG 1-4 MANT 1-52
SICOS 1-60 IAND 1-45
CHEBY 1-13 I0R 1-50
SIGN 1-61 IABS 1-44
ABS 1-1 OVF 2-19
..FCM 1-95 ISSW 2-12
..DLC 1-94 ENDIO 2-7
FADSB 1-40 .TAPE 2-73
PTAPE 2-26 CLRIO 2-3
INDEX 2-11

I-1

INDEX I

FTN4v and F4D.n
x is the revision letter

Name Page Reference Name Page Reference
FMTIO (F4D.w~ only) 3-1 MOD 1-53
FRMTR 3-1 AINT 1-3
%INT 2-48 INT 1-49
NT 2-52 IDINT 1-47
%LOGT 2-51 DDINT 1-26
$SQRT 2-39 MXMNI 1-55
$LOGT 2-38 MXMNR 1-57
$LOG 2-37 MXMND 1-56
$EXP 2-36 DSIGN 1-34
#C0S 2-32 DIM 1-28
#SIN 2-35 IDIM 1-46
#L0G 2-34 .CFER 1-7
#EXP 2-33 ..CCM 1-92
.RTOD 1-86 . .MAP 2-75
.DTOR 1-78 .IDBL 1-82
.DTOD 1-75 . ICPX 1-81
DEXP 1-27 .DCPX 1-74
ALOGT 1-5 .DINT 1-75
DLOGT 1-32 .CINT 1-72
DLOG 1-31 .CDBL 1-70
DATN2 1-23 REAL 1-59
DATAN 1-22 AIMAG 1-2
DCOS 1-25 CMPLX 1-15
DSIN 1-34 CONJG 1-17
XPOLY 1-69 DBLE 1-24
ENTIX 1-38 SNGL 1-62
DSQRT 1-36 XADSB 1-66
CLOG 1-14 XMPY 1-68
ATAN2 1-8 XDIV } 1-67
CSQRT 1-19 CADD 1-10
CABS 1-9 csuB 1-20
CEXP 1-12 CMPY 1-16
CSNCS 1-18 CDIV 1-11
DMOD 1-33 ..DCM 1-93
.DT0I 1-77 . XPAK 1-91
.CT0I 1-73 . XCOM 1-89
DABS 1-21 .XFER 1-90
AMOD 1-6 .PCAD (F4D.n only) 2-69

INDEX Ili

F2E.~v and F2N.n
¥ is the revision letter
In F2E.~, .EAU. replaces MPY, DIV, DLDST.

Name Page Reference Name Page Reference
CLRIO 2-3 CHEBY 1-13
%ANH 2-43 MANT 1-52
%XP 2-62 PTAPE 2-26
%IN 2-47 MAGTP 2-15
%0S 2-54 LENTR 2-63
%AN 2-41 IFIX 1-48
%BS 2-44 FLOAT 1-42
%L0G 2-50 .FLUN 1-70
%QRT 2-56 .PACK 1-85
%IGN 2-46 ..DLC 1-94
%LOAT 2-49 .GOTO 2-65
%FIX 2-45 TAND 1-45
%TAN 2-59 I0R 1-50
%ABS 2-40 OVF 2-19
%SIGN 2-57 ISSW 2-12
%AND 2-42 .MAP. 2-66
%0R 2-53 RMPAR 2-27
%0T 2-55 CODE 2-4
%SSW 2-58 ENTIE 1-37
GETAD 2-10 . SWCH 2-72
TANH 1-65 . PRAM 2-70
.RTOR 1-88 INDEX 2-11
TAN 1-64 %WRIS 2-60
EXP 1-39 PAUSE 2-20
SICOS 1-60 ERR@ 2-8
SQRT 1-63 BINRY 2-2
SIGN 1-61 SREAD 2-29
ALOG 1-4 PWRIT 2-61
LIENT 1-83 .ZRLB 2-74
ABS 1-1 .OPSY 2-67
ATAN 1-7 .TAPE 2-73
PWR2 1-58 DEBUG 2-6
FDV 1-4 DBKPT 2-5
FMP 1-43 .EAU. (EAU libraries only) 1-79
..FCM 1-95 DLDST (Non-EAU libraries only) 1-30
FADSB 1-40 MPY (Non-EAU libraries only) 1-54
.RTOI 1-87 DIV (Non-EAU libraries only) 1-29
LITOI 1-84

ISIGN 1-51

II1I-1

INDEX IV

Plotter Libraries

Name Page Reference
LINE 2-14

AXIS 2-1

SCALE 2-28

NVMB 2-18

SYMB 2-30

PLDT 2-21

Iv-1

INDEX V

ALL ENTRY POINTS

NAME PAGE NAME PAGE NAME PAGE
ABS 1-1 DEXP 1-27 MINI 1-57
ACODE 2-4 DIM 1-28 MOD 1-53
ADRES 2-10 DLOG 1-31 NUMB 2-18
AIMAG 1-2 DLOGT 1-32 OVF 2-19
AINT 1-3 DMAX1 1-55 PLOT 2-22
ALOG 1-4 . DMIN1 1-55 PLOTB 2-25
ALOGT 1-5 DMOD 1-33 PLTLU 2-23
AMAXO 1-56 DSIGN 1-34 PTAPE 2-26
AMAX1 1-57 DSIN 1-35 REAL 1-59
AMINO 1-56 DSQRT 1-36 RMPAR 2-27
AMINI 1-57 ENDIO 2-7 RWSTB 2-15
AMOD 1-6 ENTIE 1-37 SCALE 2-28
ARCTA 1-7 ENTIX 1-38 SIGN 1-61
ATAN 1-7 ERRO 2-8 SIN 1-60
ATAN2 1-8 EXEC 2-9 SNGL 1-62
AXIS 2-1 EXP 1-39 SORT 1-63
BFINP 2-15 FACT 2-24 SYMB 2-30
BFOUT 2-15 FLOAT 1-42 TAN 1-64
BREAD 2-2 GAP3 2-15 TANH 1-65
BWRIT 2-2 GETAD 2-10 WHERE 2-24
CABS 1-9 IABS 1-44 XADD 1-66
CADO 1-10 IAND 1-45 XDIV 1-67
£cos 1-18 IDIM 1-46 XMPY 1-68
cDIV 1-1 IDINT 1-47 XPOLY 1-69
CEXP 1-12 IEQF 2-15 XSUB 1-66
CLEAR 2-15 IEOT 2-15 #C0S 2-32
cLOG 1-14 IERR 2-15 HEXP 2-33
CLRIO 2-3 IFIX 1-48 #L0G 2-34
CMPLX 1-15 INT 1-49 #SIN 2-35
CMPY 1-16 IOR 1-50 $DBP2 2-5

CODE 2-4 ISIGN 1-51 $EXP 2-36
CONJG 1-17 ISOT 2-15 $LOG 2-37
oS 1-60 ISSW 2-12 $LOGT 2-38
CSIN 1-18 IUNIT 2-15 $MEMR 2-5

CSQRT 1-19 IWRDS 2-15 $SQRT 2-39
CSuB 1-20 LEADR 2-13 %ABS 2-40
DABS 1-21 LINE 2-14 %AN 2-41
DATAN 1-22 LN 1-4 %AND 2-42
DATN2 1-23 LOCAL 2-15 %ANH 2-43
DBLE 1-24 MAXO 1-56 %B5 2-44
DCOS 1-25 MAX1 1-57 GFIX 2-45
DDINT 1-26 MINO 1-56 %IGN 2-46

V-1

INDEX

NAME PAGE NAME PAGE NAME PAGE
ZIN 2-47 .DTOD 1-76 SWCH 2-72
%INT 2-48 .DT01 1-77 .TAPE 2-73
IFIL 2-29 .DTOR 1-78 .XADD 1-66
%LOAT 2-49 (ENTP 2-63 XAY. 3-25
%L06 2-50 .ENTR 2-63 3-26
%L0GT 2-51 .ERRR 2-64 - XCOM 1-89
INT 2-52 .FAD 1-40 -XD1V 1-67
%0R 2-53 .FDV 1-41 -XENT 1-38
%08 2-54 .FLUN 1-80 -XFER 1-90
%0T 2-55 .FMP 1-43 -X10. 320
%RDSC 2-29 FSB 1-40 iy 168
IREAD 2-29 .60T0 2-65 oAk 101
%QRT 2-56 JIAR. 329 oLy 169
ASIGN - 2-57 IRLB 2-74
JIAY. 3-27
%SSH 2-58 ‘
OO 1-92
\ .ICPX 1-81
ATAN 2-59
. .DCM 1-93
. .1DBL 1-82
TWEQF 2-60
.OLC 1-94
) JIENT 1-83
IURTF 2-61
. .FCM 1-95
) .110. 3-27
ZWRIN 2-60
DA o1 . AP 2-75
IWRIS 2-60 :
WRIT 261 - INDR 2-11
. .101. 3-25
IXP 2-62 328
ALC. 2-17 0R. 205
.BI0. 3-25 3-26
7 3-26 1701 1-84
-CADD 1-10 MANT 1-52
- CDBL 1-10 MAP. 2-66
.CDIV 1-11 "y 154
.CFER 1-71 1-79
CHEB 1-13 .0PSY 2-67
.CINT 1-72 .PACK 1-85
CLR. 2-17 .PAUS 2-20
.CMPY 1-16 2-68
.CsUB 1-20 -PCAD 2-69
.CTOI 1-73 -PRAM 2-70
.DCPZ 1-74 -PWR2 1-58
.RAR. 3-25
.DFER 1-90 3-25
.DINT 1-75 Ay 327
.DI0. 3-25
328 RIO. 3-27
.DIV 1-29 -RND 1-37
1-79 RTN. 2-17
.DLD 1-30 .RTOD 1-86
1-79
RTOI 1-87
.DST 1-30
123 .RTOR 1-88
.STOP 2-20
2-71

V-2

02116 -91780

	0-000
	0-001
	0-002
	0-003
	0-005
	0-006
	0-007
	0-009
	0-010
	0-011
	0-012
	0-013
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	1-70
	1-71
	1-72
	1-73
	1-74
	1-75
	1-76
	1-77
	1-78
	1-79
	1-80
	1-81
	1-82
	1-83
	1-84
	1-85
	1-86
	1-87
	1-88
	1-89
	1-90
	1-91
	1-92
	1-93
	1-94
	1-95
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2_00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3_00
	I_0-00
	I_1-01
	I_2-01
	I_3-01
	I_4-01
	I_5-01
	I_5-02
	xBack

