I

HEWLETTﬁ PACKARD

ASSEMBLER /[0S

TRAINING MANUAL

ASSEMBLER / BCS

TRAINING MANUAL

I

HEWLETT (ho; PACKARD
11000 Wolfe Road

Cupertino, California
95014

HP 02116-9073

Bpril 1970

First Edition: December 1967
Revised: April 1970

© Copyrnight, 1970, by
HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Second Edition

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
transmitted by any means, electronic, mechanical, photocopy, re-

cording or otherwise, without prior written permission from the
publisher.

Printed in the U.S.A.

PREFACE

This training manual is an introduction to programming for the HP 2116 computer,
but the information also applies to the 2115 and 2114 computers. The book focuses
only on information pertinent to programming concepts; specific operating proce-
dures may be found in the manuals listed below.

The training manual describes number systems, general computer hardware char-
acteristics as well as the specific characteristics of the HP computers. The As-
sembler and Basic Control System are explained; flowcharting and program coding
are included in sections on problem analysis and instruction formats. Explanation
for coding machine instructions, assembler pseudo operations and input/output re-
quests is given.

Other computer publications provided by Hewlett-Packard include:

ALGOL Programmer's Reference Manual

Assembler Programmer's Reference Manual

Basic Control System Programmer's Reference Manual
FORTRAN Programmer's Reference Manual
Specifications and Basic Operation Manual

Standard Software Systems Operating Manual

Symbolic Editor Programmer's Reference Manual

NEW AND CHANGED INFORMATION

A1l known errors in this manual
have been corrected. Changes

in the text are marked by a ver-
tical line in the margin.

CONTENTS

L
INTRODUCTION

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

NUMBER SYSTEMS

1.1 Definition of Number Systems
1.1.1 Decimal Number System
1.1.2 Binary Number System
1.1.3 Octal Number System

1.2 Number System Conversion
1.3 Arithmetic Operations
1.3.1 Addition
1.3.2 Subtraction
1,3.3 Multiplication
1.3.4 Division
1.4 Computer Arithmetic

THE XYZ COMPUTER

2.1 Instruction Format
2.2 Accumulator

2.3 Instructions

2.4 Other Registers
2.5 Sample Program

THE HP 2116 COMPUTER

3.1 Instruction Format
3.1.1 Data Format
3.1.2 Memory Reference Instructions
3.1.3 Register Reference Instructions
3.1.4 Input#Output Instructions

3.2 egisters

3.3 Operation Sequence
3.3.1 Fetch Phase
3.3.2 Indirect Phase
3.3.3 Execute Phase
3.3.4 Interrupt Phase
3.3.5 Halt Phase

THE ASSEMBLER

Operation Codes

Labels

Operands

Absolute Programs
Relocatable Programs
Program Location Counters

:hbhbh»h:h»h
O U WD

[rgy
1
=

1

OO Lo LWL W W
1
b et e e ek |

iii

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

iv

4.7 Assembler Processing
4,7.1 Pass One
4,7.2 Pass Two
4,7.3 Pass Three

THE BASIC CONTROL SYSTEM
5.1 Loading Programs

5.1.1 Basic Binary Loader

5.1.2 Relocating Loader
5.1.3 Loading Process
Input/Output

Debugging Aids

g1 O
w N

PROBLEM ANALYSIS (FLOWCHARTING)

INSTRUCTION FORMAT

7.1 Label Field
7.1.1 Label Symbol
7.1.2 Asterisk

7.2 Op Code Field
7.3 Operand Field
7.3.1 Symbolic Term
7.3.2 Numeric Term
7.3.3 Asterisk
7.3.4 Combination Expressions
7.3.5 Literals
7.4 Comments Field
7.5 Manual Notation
7.6 Coding Conventions

MACHINE INSTRUCTIONS

8.1 Memory Reference
.1 LDA/LDB
2 STA/STB
3 ADA/ADB
4 AND

5 XOR

6 IOR
7

8

9

1

o

[Y el e
c . 4 e e s e

JMP

JSB

ISZ

.10 CPA/CPB

P PPPPXPO DX

- =3 =3
oo
[|

U
H O O=ITUITU WWDN N = =

-3 ~J T T T =TT I
]

00 00 00 00 OO 00 O 00 OO0 O GO ©o
i
OO UT IR WNDN M= =

CHAPTER 9

8.2

8.3

8.4

PSEUD

9.1

9.2

9.3

9.4

9.5

Register Reference
8.2.1 Shift-Rotate Group
.2 Alter-Skip Group
NOP
Output Instructions
STC
CLC
LIA/LIB
MIA/MIB
OTA/OTB
STF
CLF
SFC
SFS
.10 CLO, STO, SOC, SOS
.11 HALT
ended Arithmetic Unit Instructions
MPY
DIV
DLD
DST
Shift-Rotate Instructions

STRUCTIONS

bler Control
NAM
ORG
ORR
ORB
END
REP
IFN/IFZ
t Program Linkage
COM
ENT
EXT
ss and Symbol Definition
DEF
EQU
ABS

"c.[\QN

0

b 00 00 00 00 00 00 0 OO OO OO OO [t OO
©O-10 Ulixwb =T w

ﬁwwwwwwwwwww

B errae
Ul W DN =

S

w
=]

€

Qrvowwwowowoh O ®®wwowm
pb ek ek ok b ek ek

bje

Comd
WNHQ -I0 U AWM M

ol SR

U WO OO © OO
Q
]
)

o+ .
O wow w

O op=

T
BSS

ASC

DEC

OoCT

metic Subroutine Calls
MPY

DIV

FMP

FDV

FAD

FSB

Ll
=T QYU C

it

O©OVOWOWO L ©OOOo
R ~ S
[t

GrOo1 G101 1 Ol
DO W=

ge Allocation and Constant Definition

[e oo]

1
DODO DD DO DD DD b= b= b b b ek b 2 et b e

1
HOO-J-JUO PO OWLWOO-TOWWNMFROOO-ITOUITUUPRWNN = HRhWNHROOWOWOXXOORX-IJJ-IJOOOUIUIDNd OO

ooooooooooooooooooooc:ooooooooooooooooooo

[I B B B R | IQIOClDC'D(lDCIDQPCDCDCDCD ©

CDCOQDCDCDCDQOCDQPCDCDCDGDCD(DQDCDQO
OO DD DI DD DD D D) b ek ek ek ek ek ek ek ek

<

CHAPTER 10

CHAPTER 11

CHAPTER 12
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

9.6

9.5.7 DLD
9.5.8 DST
9.5.9 SWP
Assembly Listing Control
9.6.1 UNL
9.6.2 LST
9.6.3 SKP
9.6.4 SPC
9.6.5 SUP
9.6.6 UNS
9.6.7 HED

BCS INPUT/OUTPUT REQUESTS

10.1

10.2

10.3

10.4

Data Transfer Request

10.1.1 Function, Subfunction, and Unit-Reference
10.1.2 Reject Address

10.1.3 Buffer Address

10.1.4 Buffer Length

Magnetic Tape Control Request

10.2.1 Function, Subfunction, and Unit-Reference
10.2.2 Reject Address

Clear Request

10.3.1 Function and Unit-Reference

Status Request

10.4.1 Function and Unit-Reference

ASSEMBLER INPUT AND OUTPUT

11.1
11,2
11.3
11.4

11.5

Control Statement

Source Program

Binary Output

List Output

11.4.1 Assembly Listing
11.4.2 Symbol Table Listing
Error Messages

SAMPLE EXERCISES

Review Answers

ASCII Character Format

Binary Coded Decimal Formats

Input/Output Devices

I/O Record Formats

APPENDIX F Consolidated Coding Sheet

INDEX

vi

1
LWL WLWWWWWWwW
oMU hwwNn N

-t
?
-

10-1
10-2
10-4
10-5
10-5
10-6
10-7
10-8.
10-8
10-8
10-10
10-10

11-1
11-1

©11-2

11-2
11-2
11-2
11-3
11-4
12-1
A-1
D-1
C-1

D-1

F-1

HARDWARE

SOFTWARE

INTRODUCTION

The term computer usually calls to mind a huge box with
switches, dials, and blinking lights: an engineering marvel,
the electronic ‘‘brain’’. The computer, however, is virtu-
ally useless without two other vital elements: some method
of translation between the computer and its users, and a
person capable of stating the logical processes the computer
must perform to solve his problem.

These three elements of computing correspond to the terms
hardware, software, and programmer.

Computer hardware consists of four general elements:

1. Control -- directs transfer of data and controls operations
performed.

2. Arithmetic element --element in which computations are

performed.

3. Memory -- place where information to be processed is
stored.

4, Input/Output -- allows information to be transferred

between the computer memory and external devices
such as paper tape readers and punches, printers, and
so forth.

A greatly simplified illustration of the flow of information
between these elements is given on the following page.

Computer hardware recognizes information as patterns of
‘“‘off/on’’ current pulses, or bits. Since it would be difficult
for a person to easily express himself in the ‘‘off/on’’
language which is understood by the computer, a method of
translating was devised.

The term ‘‘software’’ originated to differentiate between
hardware, a physical device, and translators and control
systems, which are a sequence of computer instructions.
Software translators and control systems are usually stored

vii

viii

on a medium such as paper tape or magnetic tapé, from which
they are input to the computer and executed.

PERIPHERAL DEVICES

FAararo (e M e W
L L4 L.|J L|.| L4 l.l.l
i | | 1 1 i
1 1 1]]]
INPUT OUTPUT

INTERFACE INTERFACE

ARITHMETIC
CONTROL UNIT

MEMORY

Translators accept and translate readily understandable in-
structions into machine language. Translators are composed
of two general categories:

Assemblers allow expression of instructions as abbreviated
mnemonic codes. In general, one code is translated into one
machine instruction. However, most assemblers contain
pseudo instructions and subroutine calls, which generate a
number of machine instructions to perform a specific task.

Compilers allow expression in a language more nearly re-
sembling words and/or formulas. One instruction statement
may generate many machine instructions. Compilers are
usually designed with a certain type of problem in mind.
Thus, assemblers are machine-oriented languages; compilers
are problem-oriented languages. For example, FORTRAN,
or FORmula TRANslation, allows easy expression of complex

PROGRAMMING

mathematical formulas for scientific use. ALGOL, or ALGO-
rithmic Language, provides a concise language for expressing
a large class of numerical processes.

Another type of software is the control system (also called
monitor system or operating system). A control system

provides functions useful to translated programs produced by
assembler and compiler systems, for example, programloading
and error detection aids.

Programming, then, consists of:

(1) Analyzing a problem and determining the process nec-
essary to obtain a solution.

(2) Coding the solution process in the software language
which is most applicable.

NUMBER SYSTEMS 1

L

The ‘‘off/on’’ computer language can be related to a ‘‘zero/
one’’ number system called the binary number system.

1.1

DEFINITION

OF NUMBER

SYSTEMS Number systems are characterized by:

(1) radix, or base; the number of unique symbols used in
the system. In the decimal number system, the base
is ten, corresponding to the ten unique symbols O
through 9. In the binary number system, the base
is two, corresponding to the two unique symbols
0 and 1.

(2) modulus; the number of unique quantities or magni-
tudes a system can distinquish. The modulus of the
binary and decimal number systems is infinite; any
quantity can be expressed with either of these systems.
However, a machine with a physical limit to the num-
ber of digits it can hold has a modulus. For example,
a decimal adding machine with ten digits, or counting
wheels, would have a modulus of 1010, or
10,000,000,000. (0 to 9,999,999,999) A binary com-
puter which can hold a unit of 12 binary digits (or bits)
has a modulus of 212, or 4096 (in decimal). (The
formula for the modulus of a number system is bl
where b = base, n=number of digit positions available).

1.1.1
DECIMAL
NUMBER

SYSTEM The value which a digit assumes in a number system is
dependent upon its position. For example, in the decimal
number system:

1-1

1.1.2
BINARY
NUMBER
SYSTEM

1-2

decimal point

...thousands hundreds tens units tenths hundredths...

(103) (102) (10') (100) * (107') (102)

Positions to the left of the decimal point increase in value in
ascending powers of ten, beginning with zero. Positions to
the right of the decimal point decrease in value in ascending
negative powers of ten, beginning with -1.

Thus, the number 32,768.9 represents:

3x10%+2x103 +7%x102+6x10' +8x10°+9x10~"

Similarly, in the binary number system, positions relate to
ascending positive and negative powers of two:

binary point

Value (indecimal) 32 16 8 4 2 1 | 1/2 1/4

25 29 23 22 gt 90| 9t 92

Thus, the binary number 1011.01 represents:

1x2% +0x22+1x2' +1x2°+0x%x2" +1x22. or
8+2+1 +1/4 = 11 1/4 (in decimal)
Observe that this number, in binary, represents quite a
different magnitude than the same number in decimal. To
distinguish the number system in which a quantity is being

expressed, the base is appended as a subscript at the end
of a number.

1001010 (decimal number system)

100102 (binary number system)

1.1.3
OCTAL
NUMBER
SYSTEM

1.2

NUMBER
SYSTEM
CONVERSION

Another number system useful in computer terminology is
the octal number system, with a base of 8. The octal number
system is useful in that the unique symbols, O through 7,
correspond to all the quantities expressable in a 3-digit
group in the binary number system.

octal binary

0 000 (0x22+0x2' +0x2° = 0)
1 001 (0x22 +0x2' +1x20 = 1)
2 010 (0x2%2 +1x2' +0x2° = 2)
3 011 (0x22+1x2' +1x2° = 3)
4 100 (1x22+0x2" +0x2° = 4)
5 101 (1x22+0x2" +1x2° = 5)
6 110 (1x22 +1x2" +0x2° = 6)
7 111 (1x22+1x2 +1x2° = 1)

Thus, the octal number system can be used as a convenient
““shorthand’’ method of expressing binary numbers.

Octal to Binary and Binary to Octal

The simplest conversion is the binary to octal or octal to
binary conversion, because of the correspondence of one
octal digit to a triplet of binary numbers. The triplets
must be measured from the binary point.

1-3

1-4

Examples:

S S
5 6. 1g

\._VLQQQ 9—%}/ \9-3-2-/ (zero's are implied at each
1 0 3. 24 end to fill the triplet.)

Binary/Octal to Decimal

In previous sections of this chapter, we have used a process
for converting binary numbers to decimal. The process may
be stated more generally as follows:

The number a, ap.1. . .agajag. a.ja_p. . .a_y, Wwhere the
a’s represent the digits and the subscripts represent the
position of the digit from the binary or octal point, may be
converted by the following formula:
an XD +a, Xb" ... 42, Xb% +ay Xb'
+agXb’ +ay4xbt +. .aXxbm

where b = base from which conversion is being made.

Examples:

765.42g =

Tx8 +6x8 +5%x8%+4x8"' x2x82 =
448 + 48 + 5 + . 5 + .03125 = 501. 53125,

1101.012 =

1x23+1x22+0x2" +1x20+0x%x2" +1x2% =
8 + 4 + 0 + 1 +0+.25 =13.2510

010 111 001 100 011 = 27143, =
2x8% +Tx8 +1x8 +4x8 +3x8°=
8192 + 3584 + 64 + 32 + 3 = 11,8175,

(In this example, rather than work with the longer binary
number, we first convert to octal, then to decimal.)

Decimal to Octal/Binary

To convert decimal numbers to binary and octal involves a
slightly more complicated process: divide the decimal number
by the base to which conversion is to be made, attaining a
quotient (qj) plus a remainder (rj). Divide qj by the base,
again attaining a quotient (q9), plus a remainder (rz). Repeat
this process until a zero quotient plus a remainder (r,) is

obtained. The converted number is rpry_q. . .rgrory.
Examples:
To convert 1750 to octal:
’(q1)
21 R7T- (ry)
8 1175
base to which (a,)
conversion is o r5 —(r2)
to be made ~— 8)—2—1—
/
o"r2 — (¥s)
8)2
/
(a;)
175,= 2 5 17
10 e ‘s
(ryrp 1)

1-5

To convert 175,9 to binary:

g7 R1 —(T1)

2 J175

43 R1 —(T2)

2)87

, (r3)
21 R17°

2J4%

10 r1 —~(re)

2)21

_»(rs)
RO

5
2)10
2 R1 %)
2)5

RO ,—v(r7)

1
2)2
,o(re)
1

0
2)1

175, = 10101111, (Convert this to octal and compare with the answer
to the previous example.)

To convert 28, 76849 to binary:

3 596 RO

8 ’28 768 .
’ (rather than make numerous divisions by 2,

we first convert to octal, then to binary)

449 R4

8) 3596

56 R1

8) 449

RO

7
8)56

0 R7
8)7T

28,768, = 701405 = 111 000 001 100 000,

To convert fractional decimal numbers to octal or binary.

Multiply the fraction times the base to which conversion is to
be made, attaining an integer (i4) and a fraction (f;). Multiply
f, times the base, again attaining an integer (i,) and a fraction
(f5). Repeat this process until an integer (i,) and a zero
fraction is obtained, or until the desired degree of accuracy
is obtained. The converted number is .ijiiz. .i,.

Examples:

To convert . 7510 to octal:
(base) (iy)
P

.15 x8 = [6].[00] —(f,)

.50 = .6g

1-7

To convert . 357, to octal:
(base)
r(it)
.357 x8 = [2] !
({1) r(ia)
[856]x 8 = [6] !
({2) r(is)
[.848]x 8 - [6][.784]
(f3) [’(14)
x 8 =[6][.272]—— (fa)

and sc.> forth
.35T0 = .2666g (accurate to four places)

To convert .97, to binary:

97Tx2 = 1/,94]
iy
\94x2 = 1
(fz)
.88x2 = 1[.87]
(fa
16 x2 = 1[.52]
(fa)
5ix2 = 1[04]
(f;s) |
04 %x2 = 0
v

(fe)

.08 x2 =0.16

and s.o forth
.97 = .1111100, (accurate to 7 places)

To convert .97,5 to octal, then to binary:

.97 x8 = T/[.76]

.7l6x8 = 6
.olaxs = o
.6l4><8 = 5
v

.12 x8 = o
.9‘6><8 = 7.68

.97 = .760507g = .111 110 000 101 000 111,
(accurate to 18 places)

To convert a mixed decimal number to octal or binary, the
previous two processes are combined:

Example:
To convert 321,42y to octal:

40 R1

8 321 42 x8 = 3.36

5 RO
8)40 .36 x 8

2.88

5

0 R
8)5 .88 x8 = 7.04

321.42¢0 = 501.327g (accurate to 3 places)

1-9

1.3

ARITHMETIC
OPERATIONS

1.3.1
ADDITION

1-10

Arithmetic operations in the octal and binary number systems
follow the same rules as for the decimal number system.

In the decimal number system, a carry is generated each
time the addition in a column reaches the base (10) or an
integer multiple of the base. The difference between the
sum and the base multiple is then placed in the column
being added as part of the answer. The same is true in
octal and binary.

For example:
decimal

Carry—-2

7 The sum in the rightmost column is 22. The
+6 base has been reached twice, indicating a
+5 carry of 2. The difference between the sum
+4 and the base multiple is 2(22-20=2), which
22 is placed in the rightmost column as part
of the answer. Nothing but the carry is added

in the second column.

octal
Carry—2
7 The sum of the rightmost column is 22 in
+6 decimal. The base has been reached twice,
+5 indicating a carry of 2. The difference be-
+4 tween the sum and the base multiple is
26 6(22-16=6) which is placed in the rightmost
column as part of the answer. Nothing but
the carry is added in the second column.
binary
Carries—1

111 :

11 The sum of the rightmost column is 3 in
+11 decimal. The base has been reached once,
+11 indicating a carry of 1. The difference be-
1001 tween the sum and the base multiple is

1.3.2
SUBTRACTION

1.3.3
MULTIPLICATION

1(3-2=1), which is placed in the rightmost
column as part of the answer. The carry
is added in the second column for a partial
sum in decimal of 4. The base has been
reached twice, indicating a carry of two
1’s. The difference between the sum of the
second column and the base multiple is
0(4-4=0), which is placed in the second column
as part of the answer. The carries are
added in the third column for a decimal
answer of 2. The base has been reached
once, indicating a carry of 1. The difference
between the sum of the third column and the
base multiple is 0(2-2=0), which is placed
in the third column as part of the answer.
Only the carry is added in the fourth column.

Borrows from the preceding column have the value of the
system base. In the decimal system, the borrow is 10;
in octal, 8, and in binary, 2.

For example:

decimal

101010 # borrows
9123
-798

8325

octal

888 ¥ borrows
7123
-567

6334

binar

222 # borrows

1010

-101

101

As in addition, a carry is generated each time a product

reaches a multiple of the base.

The partial products are

added in the same system as the one in which multiplication

is taking place.
For example:

decimal

394
X5

550

142 —» multiplication
-_— carry

1970

octal

274
5

234

142 —» multiplication
- corry

1654

blnarx

111
x11

111

111 addition
- corry
1001!

11

10101

1-11

103.4
DIVISION

1.4
COMPUTER
ARITHMETIC

1-12

decimal octal binary

563 563 1111
x5 x15 _x11
505 167 1111
231 331 1111
521 ;: carries 325 \corrm T0001
342 452 111 —
4 414 01101 %gg:fii:‘n
2225 54147
L
101101

Binary or octal division is the same as decimal division
except that intermediate multiplications and subtractions
must be performed in the appropriate system. Borrows
for subtraction and carries for multiplication are not shown
below.

decimal octal binary
563 563 1111
75)42225 75) 54147 111)170700T
375 461 111
72 ~604 1100
450 ‘ 556 111
225 267 1010
225 267 111
- - 111

111

Addition is the basic arithmetic operation for the computer
The seventy basic instructions in the HP 2116 include an
‘“add’’ instruction, but not subtract, multiply, or divide. The
Assembler for the HP 2116 contains these instructions;
they are constructed from other basic computer instructions.
The following paragraphs deal with computer representation
of negative numbers and computer subtraction.

A negative number is represented in the computer as the
complement of the positive value. There are various kinds

of complements; the HP 2116A uses the base complement,
or two’s complement. For the decimal number system,
the base complement is the ten’s complement; for octal, the
eight’s complement.

These complements are formed by subtracting the numbers
from an integer power of the base.

decimal octal binary
1000 1000 100000
678 543 11011

322 -10's complement 235~ 8' complement 101 -2's complement
of 678, of 543, of 11011,

With the base complement, itis possible to subtract by comple-
menting the subtrahend and adding, disregarding the final
carry. The final carry is that which extends beyond the left-
most digit of the minuend or subtrahend, whichever is longer.

The base complement of the subtrahend is found by subtract-
ing the subtrahend from the integer power of the base which
is one digit position longer than the minuend or subtrahend,
whichever is longer.

For example:

decimal
968 minuend 968 minuend

-36'7T subtrahend +633 10's complement of subtrahend
601 601

33269 minuend
-249 subtrahend

——

33020

296 minuend
-3295 subtrahend

e ——

-2999

throw away final corry

33269 minuend
+99'751 10's complement of subtrahend

33020

throw away final carry

296 minuend
+6705 10's complement of subtrahend

7001 negative answer in 10's complement form.

No final carry.

1-13

1-14

In the last example, a larger number is subtracted from a
smaller number; the answer is negative.
is in 10’s complement form; by taking the 10’s complement
of 7001 (10,000 - 7001 = 2999), it is seen that the answer

is correct.

octal

6576 minuend
-325"7 subtrahend

——

3317

7777177 minuend
-555 subtrahend

777222

binary

101101 minuend
-1011 subtrahend

1010010

11001 minvend
-111 subtrohend

10010

101 minuend
-11001 subtrahend

-10100

In the last example, a larger number is subtracted from a
smaller number; the answer is negative.
is in two’s complement form; by taking the 2’s complement

of 1100(100000-01100 10100), it is seen that the answer

is correct.

6576 minuend
+4521 8's complement of subtrahend

1)3317

throw away final carry

777777 minuend

+7777223 8's complement of subtrahend
9777222

throw oway final carry

101 101 minuend
+110101 2' complement of subtrahend

9100010

throw away final carry

11001 minuend
+11001 2's complement of subtrahend

1)10010

throw awby final corry

101 minuend
+00111 2's complement of subtrahend

1100

The answer 7001

negative answer in 2's complement form

The answer 1100

Another type of complement useful in working with computers
is the one’s complement of a binary number. The one’s
complement is formed simply by changing 1’s to 0’s and
0’s to 1’s. For example, the 1’s complement of the binary
number 1001110119 is 0110001002. The one’s complement
is useful in that the two’s complement of a binary number

can be formed by taking the one’s complement of the number
and adding 1.

For example:

11011 original number

00100 one's complement
+ 1

00101 two's complement

1-15

REVIEW

1. The .computer recognizes information as patterns of

2. What are the two general types of software translators?

3. A number system is characterized by its

and its

4., What is the base of the (a) binary number system?

(b) octal number system?

(c) decimal number system?

5. Define ""complement' as applied to the computer.

Exercises

6. Convert:

(a) 1101112 to decimal (e) 51210 to binary
(b) 31210 to binary (f) 1110111002 to decimal
(c) 765810 to octal (g) 398. 7510 to octal

(d) 327'778 to decimal (h) 277.00538 to decimal

7. Find the solution for:

(a) 10110111, (@ 101110,
+ 111011, -1,
(b) 32767, (e) 10111,
+ 256, x 101,

(c) 31224-T77, (t) 26,)12472

8. Convert the following to their base complement:
(a) 11111102 (c) 9765410 (e) 1010101012
(o) 3778 (d) 52910 (f) 1010114

1-17

2.1
INSTRUCTION
FORMAT

THE XYZ COMPUTER 2

A general discussion of computer hardware was given in
the Introduction. To illustrate a few of these hardware
requirements more specifically, we shall examine the central
processor of a hypothetical device called the XYZ computer.

First, let us examine some of the properties we would like
the central processor to have:

1. The ability to recognize and execute a setof instructions.

2. The ability of these instructions to refer todata stored in
memory.

The computer is constructed to process information in units
of a specified number of bits. These units are called words.
To simplify this discussion, we shall define the XYZ computer
as constructed to process 5-bit words. By defining the size
of the word, we implicitly set a limit to the computer's
memory size (number of words in memory) and also to the
instruction repertoire (number of instructions or commands
which the computer can recognize).

Each instruction the computer will recognize mustbe contained
in five bits. Therefore, if each instruction is recognized as a
certain pattern of bits, thirty-two (29) different instructions
could be defined. However, most of the capabilities we would
like also involve operands, or data to be processed. For
example, the instruction ‘“add’’ is meaningless without quan-
tities to sum. So, part of the instruction word must be used
to give the operation and part must be used to refer to an
operand. Suppose the XYZ instruction word is defined as
follows:

X|x|x|x | x where each xisa O or 1.

———TN

N
operation] L+ operand reference
(address)

2-1

2.2
ACCUMULATOR

2-2

The number of commands is now 11m1ted to four (22) and the
number of operand references to eight (2) Since the operands
are stored in memory, this means that we may refer to eight
different words or memory locations. Thus the memory size
has been effectively limited to eight locations. References to
memory locations are made through binary addresses, per-
manently fixed by construction to each location as represented
by the diagram below:

Address Memory
000 X|x|x|x|x
001 X[(x|x|x|x
010 X|x|x|x|x
011 X|x|{x|x|x
100 X[x|x]|x|x
101 X|xX|x|x|Xx
where
110 x|xlIx!lx!|x each x
isa0
111 x| xIxIxIx or 1.
(5-bit
words)

In the previous section, the means of referring to one operand
in memory was discussed. For operations such as addition,
however, we need to refer to another operand. There is no
more room in the instruction word to refer to another operand.
Therefore, the XYZ computer contains a register called the
accumulator, or A-register, which can be used to hold an
operand. The ‘‘add’’ instruction obtains one operand from
memory and the other from the A-register, adds them and
stores the result back in the A-register. The A-register
is 6 bits in lengths; the high-order bit is used for overflow,
when an add or other operation creates a number longer
than 5 bits. For example, if 10112(23;¢) is added to 100009
(1610), the answer 1001112 (391p) cannot be contained in
5 bits. The 1 is carred into the 6th bit to indicate that

-overflow has occurred.

2.3
INSTRUCTIONS

2.4
OTHER
REGISTERS

The XYZ instruction repertoire is defined as follows:

Operation Code

binary octal Mnemonic Result

00 0 LDA load the A-register withthe con-
tents of the memory location
specified by the last 3 bits of the
instruction. The contents of the
memory location are unmodified.

01 1 ADA add the contents of the memory
location specified by the last 3
bits of the instruction to the con-
tents of the A-register; store the
result in the A-register. The
contents of the memory location
are unmodified.

10 2 HLT halt; stop processing.

11 3 STA store the contents of A in the
memory location specified by the
last three bits of the instruction.
The contents of A are unmodified.

Other registers in the central processor receive and process
instructions:

T-REGISTER

The T-register, or transfer register is a 5-bit register which
holds instructions and data as they are being transferred
between memory and the other registers.

I-REGISTER

The I-register, or instruction register, is a2-bit register which
receives, recognizes, and initiates execution of the instruction
code after an instruction has been transferred from memory
to the T-register.

2-3

2.5

SAMPLE
PROGRAM

2-4

M-REGISTER

The M-register, or memory address register, is a 3-bit
register which receives the address portion of an instruction
which has been transferred from memory to the T-register.

P-REGISTER

The P-register, or program counter, is a 3-bit register which
holds the memory address of the instruction which is cur-
rently being executed.

Instructions and data flow between registers in the following
manner:

1. Fetch instruction--transfer instruction from memory to
T-register; then to I and M registers. If operand is re-
quired, go to step 2; if not, to step 3.

2. Fetch operand--transfer operand to T-register.

3. Execute--perform the desired function.

4. Increment the P-register by 1, replace the contents
of M with the contents of P, go to step 1.

A simple program to add the contents of two memory locations
and store the result in a third location is given below.

Assume that the program and the values have been stored in
memory at some previous time.

Mnemonic Address Contents of memory before execution.
LDA 7 000 o{o0f1]1]1
ADA 6 001 0Ol1f{111]0
STA 5 010 1(1|1|0]1
HLT 011 1{0j0f0]O0
100 x|x|x|x|x | (x's maybe 1's
or 0's)
101 X|x|xXx[|x|x
110 0/0|1]0(1 |«_This is added
to location 7
111 0({1]1(1]1
Contents of memory after execution.
000 0j0j1f1]1
001 oOf1f{1]1]0
010 1{1(1]0 |1
011 10|00 |0
100 X|x |x |[x [x [(x's may be 1's
or 0's)
101 110]1 10 |0 N _now contains
result
110 0j0|1{0 |1
>unchanged
111 Oj1}|1j141

2-5

REVIEW

A computer is constructed to process information in units
of bits called

References to locations in memory are made through
binary

Certain patterns of bits are recognized by the computer
as

Operands may be located in or in the , or
both, depending upon the instruction.

Define ‘‘overflow’’.

A series of instructions resulting in the solution to a
particular problem may be termed a

A computer having a 12-bit word divided into a 5-bit
operation code field and a 7-bit operand address field
would be able to refer to memory locations.

2-7

THE HP 2116 COMPUTER 3

The XYZ computer illustrated important computer concepts:
the idea of word length, patterns of bits being recognized
as instructions, a program consisting of a series of instructions
stored in consecutive memory locations, execution of instruc-
tions one at a time from these memory locations, and so forth.

The underlying theory of memory addressing, instructionword
format, and registers are the same in the XYZ and the 2116.
The difference is primarily in size of the machine word and a
somewhat larger set of registers. However, these differences
expand the capabilities considerably.

3.1

INSTRUCTION

AND FORMAT

DATA The 2116 processes data in 16-bit words. An operand data
word is handled as shown below. The instruction word for-
mat varies according to the type of instruction.

3.1.1

DATA FORMAT Data used as an operand is formatted as follows:

15 14 13 12 Il 109 8 7 6 54 3 2 | O
joTe © oo oojo © oleo @ ole 00|

sign magnitude

The sign bit indicates positive (bit 15=0), or negative (bit 15=1).
Negative data is stored in two’s complement form. Thus, a
value may range from +327671(to -32768,.

15 2 9 6 3 O 15 2 9 6 3 O
O fritjrrrprrrprerpred | |0O00O|000|000|000|000

3-1

3.1.2

MEMORY
REFERENCE
INSTRUCTIONS

3-2

Instructions which refer to locations in memory are formatted
as follows:

5 14 13 12 1l 109 87 6 54 3210
loleo © o/]® oojo o o/o 0 oj0 00
D/1| operation |zy

code C memory address

Operation code and memory address have the same function
here as in the XYZ computer. Note that the memory address
field is 10 bits long; this implies that we can refer to
210 - 102479, memory locations. However, with the Z/C
bit it is possible to expand the number of addressable loca-
tions to 2048;3. With the D/1 bit, the number of addressable
locations is expanded to a maximum of 32,7681 (32K). The
minimum amount of memory space provided with the 2116A
is 4096 (4K) words.

A theoretical division of the basic 4K memory is made in
1,02419 - word blocks called pages. The zero page, or base
page, occupies locations 0-1777g. Pages 1, 2, and 3 occupy
locations 2000'37778, 4000-5777g, and 6000'77778, respec-
tively.

Base (Zero)/Current Page

The Z/C bit determines whether the instructionaddress refers
to a location in the base page (Z/C = 0) or the current page
(Z/C = 1). The current page is the page in which the instruc-
tion is located. For example, the diagram below represents
two instructions from a program located in page 3. The
first instruction refers to an address in the current page. The
second instruction refers to an address in the base page.
Thus, the Z/C bit doubles the number of directly addressable
memory locations.

Mnemonic

octal
address

(Base page))

r

B W N = O

1773
1774
1775
1776

LDA 7776

LDA 1776

\ 1777
2000

7787
7770
7771
7772
7773
7774
7775
7776
777

Op
D/1I Code 7/C Address

m
m

[JS PSR IR E SR

loaded by second instruction
I

T

W

1100 1 111111111 0

1100 0 111111111 0

loaded by first instruction

1 1 1

3-3

3-4

Direct/Indirect Addressing

The D/I indicates direct or indirect addressing. With direct
addressing, the contents of the instruction address is the
operand used. Direct addressing is indicated by D/I = 0.
With indirect addressing, the contents of the instruction
address is used as a 15-bit operand address. Indirect
addressing is indicated by D/I = 1.

In the example shown below, the notation (x) is used to de-
note the contents of x. For example, (A) means the contents
of the A-register; (77g) means the contents of location 77g.

3771 | N~
LDA 5 3772 0 | 1100 ! 0 ! 0000000 101
LDA 5,1 3773 1 | 1100 | 0 I 0000 000 101
| 3774 ; L
37175 | L |
3776 /,\\\‘_i/’___ﬂ/,/i/"\J___\\\‘__________

octal Op
Mnemonic address D/1 Code Z/C Address
0 : L
|

1 ! L

2 | !

I |

3 ! [!

4 E L
5 0 10001 |1 | 1111111111

I 1

]

773 /\/‘-/:/\———\—4

7174
7775
7776
777 0

1111 111 111

The first LDA instruction refers to the address
5. Since direct addressing is indicated by
D/1 = 0, (5), or 007777g is loaded into the
A-register.

The second LDA instruction also refers to the
address 5. However, since indirect addressing
is specified by D/I = 1, (5) is used as the
operand address, and (7777), or 001777g is
loaded into the A-register.

With indirect addressing, then, 15-bit addresses can be used
which allow us to refer to 215 = 32,7689 memory locations
with addresses from 0 to 77777g. This is done at the expense
of using 2 words for each instruction, one for the instruction
and one for the address.

If the contents of the instruction address (location 5 in the
above example) also contains a 1 in bit 15, the D/I bit, the
contents of the 15-bit address is used as an address, and
so on to any level.

Op
For example: D/I Code 7/C Address
octal .
address . '
! 1 I
1776 i L
1777 0 | 0001 !l ! 1 111111111
i T +
I
4774 /\:/w/‘/‘//\‘\:_f—\——__\,
4775 ; b
4716 § L
4777 1 10000 10 ! 1 111111111

|

(S

Mnemonic 4072
5073
LDA 4777,1 5074
5075
5076
7755
7766
777 1

ok
[u—ry
[y
o
o

0 111111111

SRR TSR S ——
_—t e — -

z

L -
I U

1

111

[y

1 101 010 111

3-5

3.1.3
REGISTER
REFERENCE
INSTRUCTIONS

3.1.4
INPUT/OUTPUT
INSTRUCTIONS

The LDA instruction refers to location 4777g.
Since indirect addressing is specified, location
4777g is assumed to be an address. However,
location 4777g contains a D/I bit which is set
to 1, and (4777g) is treated not as an address,
but as the address of an address. (4777g) =
1777g the address of the address of the operand.
(7777g) = T177g, the address of the operand.
(7777g) = 177527g, the actual operand which is
loaded into the A-register.

which manipulate registers are formatted as

Instructions
follows:
15
|®

4 13 12 11 109 8 76 543 2 1 0
o © o/ o eo(o e 0olo e 00 00
inJi)::%etor instruction code(s)

The type indicator is set to all zeros to indicate register
reference instructions. The other 12 bits specify the com-
mand or combination of commands.

Instructions

which control data transfer between the com-

puter and input/output devices are formatted as follows:

15

l®

4 13 12 11 109 87 6 54 32 1| 0
lo © o/ o oo o 0/l0o ® 0/ 00!
in;iyc%?or instruction select code

The type indicator is set to 1000 to indicate input/output
instructions.

The instruction portion of an I/O (input/output) command
defines the operation to be performed.

1/0 CHANNEL

Data transfer takes place through the I/O hardware system.
Up to this point, the discussion of computer hardware has
been centered around the manipulation of data between the
computer memory and the arithmetic registers. The I/O
hardware system provides interface (a common boundary,
or meeting point) between the central processor and ex-
ternal input/output devices; this interface allows transfer
of data between the computer and external devices.

Up to sixteen I/O devices may be connected to the HP 2116
main unit; an HP 2155A I/0 extender may be added to
increase the total capability to 48 devices. Each device is
connected to the computer through an interface component,
consisting of a card and cable which is plugged into a slot
in the main frame of the computer. Each interface card,
or channel, consists of:

(a) an I/O buffer for temporary storage of data as
it is being transferred. The buffer may be up
to 16 bits in length; the actual length depends
on the device being used. Since transfer of data
to or from an external device takes a comparatively
long time, the I/O buffer eliminates the necessity
of tying up one of the working registers while the
I/O operation is taking place. Thus, once an I/O
operation 1is initiated, other instructions may be
executed while the operation is taking place.

() a control bit which, in effect, ‘‘turns on’’ the I/O
channel. When set, it enables the connected device
to perform its I/O function and allows the flag to
cause an interrupt. ‘

3-7

3-8

(c)

an I/O flag bit. This bit is set to 1 by a signal from
an I/0 device when an operation has been completed.
When the interrupt system is enabled, setting the
flag causes an interrupt. The currently executing
instruction is interrupted and control is passed to
an interrupt location associated with the device.
The interrupt locations are in low order memory,
in locations 10g through 77g. The device having the
highest priority is assigned location 10, the device
having the next highest priority is assigned location
11, and so forth. Priority is determined by the slot
in which the interface card for the device is placed.

10 | Int. Address for Highest Pr. Dev.

170 |~ Phg-n L~ 11 | nt. Address for 2n¢/Highest Pr. D.
Device / 12 | int. Address for 3rd/Highest Pr. D
Plug-in
1/0 Card
Device "/
Plug-in
1/0 / Card
Device

Plug-in
1 { i?: Card

|

—

The flag bit, when set, inhibits all interrupts on lower
priority devices.

SELECT CODE

As shown in the input/output instruction format, bits 5-0 form
a select code. This code provides the necessary reference to
I/O device or function. The select codes correspond directly
to the interrupt addresses of the I/O devices, and also to
functions having interrupt addresses, such as Power Failure

Interrupt.

Select Code Assignments

Select Interrupt
Code_ Location Assignment
00 none Interrupt System Disable/Enable
01 none Switch Register or Overflow
02 none DMA Channel 1 Initialize
03 none DMA Channel 2 Initialize
04 4 Power Failure Interrupt
05 5 Memory Protect Interrupt
06 6 DMA Channel 1 Completion Interrupt
07 7 DMA Channel 2 Completion Interrupt
10 10 1/0 Device, highest priority
11 11 1/0 Device 2nd highest priority
77 77 I/O Device, lowest priority

As shown in the table above, some select codes are reserved
for specific uses while others are available for assignment to
any optional I/O device. The first five (octal codes 00-04)
are reserved for non-interrupting functions. Select code 00
is reserved for enabling or disabling the interrupt system,;
certain I/O instructions using this select code set or clear the
flag bit for all I/O devices. For certain input instructions,
select code 01 refers to the 16 toggle switches on the computer
console known as the Switch Register. Select codes 02, 03,
06, and 07 are reserved for use by Direct Memory Access,
Option M11l. Direct Memory Access is a hardware option
which allows the transfer of blocks of data directly between
an external I/O device and memory. As discussed above,
the transfer of data between external device/buffer/working
register takes place one element of data at a time. The
length of the element depends upon the I/O device. Select
code 05 is the highest priority interrupt, reserved for Power
Failure Control.

3-9

3.2
REGISTERS

3-10

The HP 2116 contains 7 working registers:
T-Register

The 16-bit transfer register holds all data as it is transferred
between memory and other registers in the control element.

P-Register

The 16-bit program counter holds the address of the instruc-
tion currently being executed. Only bits 0-14 are used. The
P-register is automatically incremented after execution of
each instruction.

M-Register

The 16-bit memory address register contains the address of
the memory location currently being read fromor written into.

A-Register

The 16-bit A-register is anaccumulator andholdsoperands and
the results of arithmetic and logical operations performed by
programmed instructions. This register may be addressed
by any memory reference instruction as location 00000,
permitting inter-register operations such as ‘‘add B to A”’
with a single word instruction.

B-Register

The 16-bit B-register is a second accumulator which can be
used in the same manner as the A-register, with the excep-
tions of the logical "and'", "inclusive or', and Exclusive or"
operations. The B-register may be referenced by any mem-
ory reference instruction as location 00001 for inter-register
operations with A.

E-Register

The 1-bit extend register indicates a carry from bit 15 of the
A or B-registers by any add or incrementinstruction. The E-
register can be set, complemented, or tested; it can also be
rotated in conjunction with the A- or B-registers.

OV-Register

The 1-bit overflow register indicates that an add or increment

instruction referring to the A- or B-register has caused one
of these accumulators to exceed the maximum positive or
negative number, +32,76719 to -32,768;.
numbers, this occurs when a carry is made from bit 14 to
bit 15, implying that the result of the addition of two positive
numbers is a negative number. For negative numbers, over-
flow occurs when a carry is not made from bit 14 to bit 15,
implying that the result of the additionoftwo negative numbers

is a positive number.

For positive

In both of the following examples, the OV-register would be set.
Inthelater example the carry from bit 15 causes the E-register

to be set.

Positive Overflow

(A or B) = 0 110 001 101 000 111
(memory) = 0 100 111 111 111 000
result in

AorB = 1 011 001 100 111 111
Negative Overflow

(A or B) = 1 001 110 000 111 101
(memory) = 1 011 000 000 000 000
result in

AorB = 0 100 110 000 111 101

(E-register)

The OV-register can be cleared, set, or tested; a second
overflow does not change the OV-register unless it has been

cleared first.

3-11

3.3
OPERATION
SEQUENCE

3.3.1
FETCH PHASE

3-12

The HP 2116 operates using any of the following machine
phases: Fetch, Indirect, Execute, Interrupt, and Halt. Each
phase takes 1.6 microseconds, called a machine cycle, with
the exception of the ISZ instruction, whose Execute phase
takes 2.0 microseconds, and the Halt phase, which may be
held indefinitely until the halt is terminated.

The M-register is set equal to the P-register. The instruc-
tion whose address is indicated by the contents of the M-register
is transferred to the T-register. Bits 15-10 of the instruction
are transferred to a special instruction register. Processing
continues according to the type of instruction:

Memory Reference Instructions

Bits 9-0 of the T-register are transferred to the M-register.
(In the case of the JMP instruction, bits 9-0 of the T-register
are transferred to bits 9-0 of the M- and P-register. The
Fetch phase is then re-initiated if the D/IDit of the instruction
=0; if D/I = 1, processing continues with the Execute phase.)
If the Z/C bit of the instruction=0, bits 15-10of the M-register
are cleared to zero; this causes reference to the zero (base)
page. If Z/C = 1, bits 15-10 remain the same as bits 15-10
of the P-register; this causes reference to the current page.
If the D/I bit of the instruction equals 1, the Indirect phase
is initiated; otherwise, the Execute phase is initiated.

Register-Reference and Input/Output Instructions

These instructions require only one machine cycle; they are
executed at this point. The P-register is incremented, and
the fetch phase re-initiated.

3.3.2

INDIRECT PHASE The contents of the location whose address is specified by the

3.3.3
EXECUTE PHASE

3.3.4
INTERRUPT
PHASE

3.3.5
HALT PHASE

contents of the M-register are transferred to the T-register,
then to the M-register. If bit 15 of the T-register =0, the
execute phase is initiated; if bit 15 = 1, the indirect phase is
re-initiated. (In the case of the JMP instruction, the contents
of the T-register are also transferred to the P-register when
bit 15 = 0, and the Fetch phase is re-initiated.)

The instruction is executed, the P-register is incremented,
and the Fetch phase re-initiated.

The machine enters the interrupt phase when an interrupt
occurs on an I/O device. The normal program sequence is
halted, and the computer fetches the next instruction from one
of the interrupt locations. The P-register is decremented by
1, and bits 15-6 of the M-register are cleared to zero. Bits
5-0 of the M-register are set to the select code of the in-
terrupting device. The Fetch phase is re-initiated.

The machine enters the halt phase when a HLT instruction
is executed, or when the HALT button on the computer console
is pushed. Machine processing is terminated and the inter-
rupt phase is inhibited. Processing continues when the
RUN button on the computer console is pushed.

3-13

REVIEW

The HP 2116 recognizes three basic types of instruc-
tions; these are:

The memory in the HP 2116A is divided into theoretical
1,024-word blocks called

What is this division of memory based upon?

The Z/C bit allows reference to memory locations in
the page or the page.

Indirect addressing is indicated by

Indirect addressing allows reference to
memory locations.

The I/O hardware system provides interface between
the and the

What are the three components of an I/O channel through
which a programmer communicates with an external
device?

What determines the interrupt priority of an I/O device?

3-15

4.1
OPERATION
CODES

THE ASSEMBLER 4

It has been illustrated that a computer program is a sequence
of instructions which, when executed by the computer, solves
a specific problem. The Assembler for the HP 2116 is itself
a program: a sequence of instructions solving the problem of
how to write computer programs more easily.

The assembler translates programs written in a symbolic
language consisting of mnemonic operation codes, operands,
and labels. The symbolic program which is input to the com-
puter to be translated by the Assembler is called the source
program. The translated binary program which is output as

a result of the assembly process is called the object program.

The object program may then be input to the computer for
execution.

Mnemonic operation codes are recognized by the Assembler to
be translated as machine instructions or pseudo instructions.

Machine instructions are those built into the computer - the
Assembler translates these instructions into the binary code
which can be directly executed by the computer. For example,
LDA is translated into the bit combination whichis interpreted
as ‘“‘load the A-register.”’ :

Pseudo instructions: (1) provide information to the Assembler
about the program being assembled, (2) allow definitionof stor-
age areas and constants, and (3) provide calls to arithmetic
subroutines which perform often-used functions not available
with any one machine instruction. For example:

(1) END tells the Assembler it has reached the end of
the source program.

(2) DEC allows the user to define one or more decimal
constants. '

BSS allows the user to reserve a block of storage
locations.

4.2
LABELS

4.3
OPERANDS

4-2

(3) FMP allows the user to multiply two values. This
function is not available as one machine instruc-
tion; however, this code calls a subroutine
(a group of instructions) which performs mul-
tiplication.

A label for an instruction provides the ability to refer to the
instruction or the value or storage area generated by the
instruction. For example:

instruction
label operand
VAL DEC 9

As instructions are input to be translated, the Assembler
assigns the instructions to consecutive memory locations in

‘the order they are input and maintains a table relating

symbolic labels to the location or address assigned. In the
above example, VAL would be related to the memory address
where the decimal 9 generated by the DEC 9 pseudo instruc-
tion is stored.

Some instructions require the designation of an operand. In
some cases, the operand value is specified in the instruction,
as the 9 is specified in the above example. In other cases,
an operand address is specified. Symbolic operand addresses
may be used, provided these symbols have been defined some-~
where within the program. For example:

VAL DEC 9
the symbolic operand,
VAL, is definedbythe
. label VAL in the DEC
LDA VAL instruction, above.

The Assembler searches the symbol table for the address
associated with VAL and uses this address in translating the
instruction.

4.4
ABSOLUTE
PROGRAMS

4.5
RELOCATABLE
PROGRAMS

An absolute program is one whose addresses are not modified
as a result of loading at object program execution time. For
the program to execute correctly, the object program must be
loaded into the same memory locations each time it is used.
Consider the previous example:

VAL DEC 9

LDA VAL

Suppose the starting location for the program had been set at
assembly time to be 100g, and the DEC 9 instruction trans-
lated to be at location 121g. The LDA VAL instruction, then,
has been translated as ‘‘load the A-register with the contents
of location 121g.”

If it were possible for the object program to be loaded for
execution starting at location 130g, the decimal 9 resulting
from the DEC 9 instruction would be at location 151g. There-
fore, the LDA VAL instruction, translated to load A with
121g, is incorrect.

Absolute programs, then, must be loaded into the locations
determined at assembly time, or all memory reference
instructions will be incorrect.

When the user requests a relocatableassembly, the Assembler

assigns relative addresses to instructions. The first instruc-

tion requiring memory space is assigned relative location 0,
the second, relative location 1, and soon. Then, at the time the

translated program is loaded into the machine for execution,

the BCS Relocating Loader (see Section 5.12) adds the relative

address to the starting address for each instruction using an

operand address. The first available locationis determined by

the Relocating Loader and used as the starting location.

For example:

4-3

Mnemonic Relative Mnemonic Relative
Label Address Opcode Operand Address Operand Address

0 LDA QUAN 5
1 ADA lE"I‘HEL" ' 6
2 AND MASK 7
3 STA QUAN 5
4 HLT

QUAN 5 BSS 1

ETHEL 6 DEC 7

MASK 7 OCT 771

Suppose that the first available starting address determined
by the loader is 20008. The Relocating Loader modifies the
operand addresses by adding 2000g.

Mnemonic Mnemonic Actual
Label Location Opcode ' Operand Operand Address

2000 LDA QUAN 2000 + 5 = 2005
2001 ADA ETHEL 2000+ 6 = 2006
2002 AND MASK 2000 + 7 = 2007

2003 STA QUAN 2000 + 5 = 2005

2004 HLT
QUAN 2005 BSS 1
ETHEL 2006 DEC T

MASK 2007 OCT 000777

No matter where the program is loaded, the modified operand
addresses always refer to the desired operands.

4-4

4.6

PROGRAM
LOCATION
COUNTERS

If the Relocating Loader encounters a Memory Reference
instruction referring to a location in a page other than the
current page, or page 0, a full 15-bit address is placed in
an available location in the base page. The relocatable
loader then provides an indirect reference to this location,
which is then used as the operand address of the instruction.
The same word in the base page is used if other similar
references are made to the same location.

The program location counter is an Assembler-maintained
counter which implements the absolute and relative address
assignment discussed in the previous two sections.

When an absolute assembly is requested by the user, the
value of the program location counter is set to the value
indicated by the user in his request for an absolute program
(See ORG, Section 9.1.2), The first instruction requiring
memory space is associated with this absolute address value;
the next instruction requiring memory space is associated
with this value plus one, and so forth.

When a relocatable assembly is requested by the user, the
program location counter is set to zero. The first instruction
requiring memory space is associated with relative address
zero, the next instruction requiring memory space with relative
address one, and so forth.

Two other counters, the base pagelocation counter, and the com-

mon location counter are maintained by the Assembler. The base
page location counter is maintained for assigning instructions

and data from a relocatable program to contiguous locations
base page, at the user’s request (see ORB, section 9.1.4).
The common location counter is maintained for assigning
data from a relocatable program to anareaof common storage.
Data in a common storage area maybe referred to by different
programs. (see COM, section 9.2.1)

4-5

4.7
ASSEMBLER
PROCESSING

4.7 1
PASS ONE

The source program, punched on paper tape or prepared on
some other medium, is input to the computer for translation.
The Assembler performs its translation in two or three
examinations of the source code. Each examination is called
a pass. If any errors are found during these passes, the
Assembler issues diagnostic messages. These messages
are listed in Section 11.5.

During the first pass, the symbol table is generated. Upon
request, the symbol table may be listed during the first pass.

The format of a symbol table entry in memory is as follows:

5 13 10 7 0

Word1l (00| n|type | char. 1
char. 2 char. 3
char. 4 char. 5
rel. or abs. address

00 not used
n number of words in entry

(2-4)

type 0 absolute
1 relocatable
2 base page relocatable
3 common
4 external

The length of the label symbol affects the size of the entry.
A one-character symbol requires only two words; a full five-
character symbol requires four words. There is a specific
amount of storage available for the symbol table. When the
number and length of the symbol table entries exceeds the
amount of storage available, the symbol table will overflow.
When this occurs, it isnecessary to reduce the size of the table
by reducing the number of labels or their length.

4.7.2
PASS TWO

4.7.3
PASS THREE

The Assembler is designed such that when an absolute assembly
is requested, the portion ofthe Assembler which provides relo-
catability is overlaid, or destroyed, by the symbol table. Thus,
an absolute assembly allows a larger symbol table than a relo-
catable assembly. Ifseveralabsolute and relocatable programs
are being assembled consecutively, without re-loading the
Assembler, the relocatable programs must be input before the
absolute programs.

After the first pass, the source program is reloaded and re-
examined. During the second pass, the assembly is completed,;
operation codes are translated, and operand addresses are gen-
erated where specified. A translated binaryobjectprogram or
a program listing may be requested as output. Both may be
requested if the necessary output devices are available.

If both a program listing and an object program are requested,
and only one punch output device is available, the object
program is punched on the second pass, and the source
program is input for a third pass. The program listing is
generated on this third pass. The following diagram illustrates
Assembler processing.

4-17

4-8

ASSEMBLY
LANGUAGE
SOURCE PROGRAM

ASSEMBLER
PASS |

SYMBOL |
TABLE :
LISTING

J—

RELOCATABLE
OR ABSOLUTE

ASSEMBLY
LANGUAGE

SOURCE PROGRAM

ASSEMBLER
PASS 2

OBJECT PROGRAM

I ADDITIONAL OR

ALTERNATE :
OUTPUT: |
PROGRAM LISTING;

-
-
kh—’

1.

ASSEMBLY
LANGUAGE

SOURCE PROGRAM

ASSEMBLER
PASS 3

PROGRAM
LISTING

ASSEMBLER PROCESSING

REVIEW

The Assembler converts a symbolic
program into a translated binary
program which may be executed by the computer.

What are the two general types of instructions available
to the Assembly-language programmer?

The Assembler creates a which is used
to relate symbolic labels to the address assigned to them.

Define an absolute program.
Define a relocatable program.
What is a ““pass’’?

The HP 2116 Assembler requires how many passes
to complete an Assembly?

4-9

5.1
LOADING
PROGRAMS

5.1.1
BASIC
BINARY
LOADER

BASIC CONTROL SYSTEM S

The Basic Control System (BCS) for the HP 2116 isa
computer program which provides capabilities of use to
both the assembly language programmer and the compiler
language programmer.7 BCS is constructed of several
separate programs, each of which may be modified to meet
the particular hardware requirements at an installation.

Some of the capabilities relating to the Assembler include
loading programs, simplified I/O (Input/Output), and de-
bugging (error detection) aids.

The manner in which programs of different types are brought
into memory and given control forms an important part of
the translation process. Two loader programs are used:
the Basic Binary Loader and the Relocating Loader.

The Basic Binary Loader is responsible for loading into
memory all translated (binary) absolute programs. In ad-
dition to user object programs, this includes standard soft-
ware systems that are in absolute form: BCS, FORTRAN,
the Assembler, and so forth.

The Basic Binary Loader is not a part of BCS; it is a binary
program which resides permanently in the last 64,q locations
in memory. The Basic Binary Loader is loaded directly into
memory, one location at a time, by manually setting the toggle
switches on the computer console.

If the Basic Binary Disc Loader is used instead of the Basic
Binary Loader, the operator must press PRESET before RUN.

T Only those aspects of BCS which relate to the Assembler

and particularly the novice assembly language programmer
are discussed in this manual. For a detailed description of
BCS with complete operating instructions, refer to the Basic
Control System Programmer’s Reference Manual.

5-1

5.1.2
RELOCATING
LOADER

5.1.3
LOADING
PROCESS

5.2
INPUT/
OUTPUT

5-2

The Relocating Loader is the portion of BCS which is res-
ponsible for loading translated (binary) relocatable programs
and in the process, modifying the relative addresses provided
by the Assembler such that they refer to the correct memory
locations once the program is loaded. Memory references
which cross page boundaries are also handled by the Relo-
cating Loader. A full 15-bit address is placed in the base
page and an indirect reference to the base page location is
inserted in the Memory Reference instruction.

A source program may be coded such that it is translated as
an absolute or relocatable program. The process of loading
and executing differs somewhat in each case. First, the
Assembler is loaded, using the Basic Binary Loader. When
the loaded Assembler is given control, through manipulation
of the console switches, it reads and translates the source
program, producing an object program. If absolute, the ob-
ject program may be loaded immediately into memory using
the Basic Binary Loader, and executed. If relocatable, BCS
must first be loaded, using the Basic Binary Loader. The Re-
locating Loader may then be requested to load the object
program and give it control for execution.

As illustrated by the previous sections, there are many
ways to transfer information to and from a computer. The
previous sections of this chapter described means of loading
computer programs. These computer programs may in turn
read data and write data to and from areas in the computer
for processing.

The difference between loading data and reading datais mainly
one of terminology, depending upon the purpose of the data.
A program is loaded into memory for the purpose of execu-
tion. Data is read into a computer to be manipulated by an
executing program. In short, data which is loaded acts; data
which is read is acted upon. For example, the Assembler is
loaded into the computer for execution;itthenreads the source
program and translates (manipulates) it, producing an object

B —

OBJECT PROGRAM

LOADING PROCESS

B —

ASSEMBLER

e —

SOURCE PROGRAM

BASIC BINARY
LOADER

OBJECT PROGRAM

J

ABSOLUTE OBJECT

PROGRAM

BASIC BINARY
LOADER

e —
BCS
e
OBJECT BASIC BINARY
PROGRAM(S) LOADER
B

-

PROGRAM
ANSWERS

BASIC BINARY

LOADER
(=S —»C BCS
DATA

!

RELOCATABLE OBJECT
PROGRAM

The Shaded Blocks Indicate The Executing Program

-
PROGRAM
ANSWERS

5-3

5.3
DEBUGGING
AIDS

5-4

program. The object program is thenloadedinto the computer
for execution. This object program may in turn read data
which it processes to form the results intended.

The Assembler contains input/output instructions which may
be used to transfer data between the computer and various in-
put/output devices. Input/output is a complicated process,
however, and many machine instructions must be usedto com-
plete an I/O operation. The Basic Control System simplifies
input/output by allowing the user to, in effect, tell BCS what
is to be done and ‘‘letting BCS do it’”’. This is accomplished
through calling sequences in assembly language. The Input/
Output Control program (.IOC.) of the Basic Control System
interprets the call, initiates the operation, and returns con-
trol to the program making the request.

BCS provides various facilities for program testing, error
detection, and error correction -- a process generally known
to programmers by the title ‘‘debugging’’. The portion of
BCS which provides these aids is the Debugging system, a
relocatable program which is loaded into memory along with
the user’s relocatable object program.

The Debugging system supervises the execution of the user’s
object program; it interprets each instruction, takes action
if indicated by a Debugging system control statement, and causes
the instruction to be executed.

With the control statements, the user may modify the con-
tents of storage locations and registers, stop execution of
the object program at a certain point, display contents of
registers and memory locations, and terminate the debugging
process.

REVIEW

What facilities does BCS provide to the Assembly-language
programmer ?

What are the two loading programs available to the
programmer to load object programs? What type programs
do each load?

Which of the above loading programs is a part of the
Basic Control System?

What is the difference between data that is read or
written and data which is loaded?

Define ‘‘debugging.’’

5-5

PROBLEM ANALYSIS (FLOWCHARTING) 6

The first and most important part of writing a computer pro-
gram is analysis: reducing a problem’s solution into logical
steps. Flowcharting provides a helpful tool for this purpose.
A flowchart is a graphical representation of a solution process.
Flowcharts illustrate logic; errors in program logic can be
found and corrected at the flowchart stage, saving wasted
coding efforts. Flowcharts not only aid in preliminary design
of a program, they provide valuable documentation after the
program has been written.

The basic flowchart symbols are given below:
Input/Output. This symbol represents the
transfer of data between the computer and
an input/output device. For example:

READ
HOURLY
FILE

Procedure. This symbol represents a
process or operation to be performed.
For example:

FIND
AVERAGE
TEMPERATURE

Decision. @ This symbol represents the
determination of a factor from which
several paths may be taken. Forexample:

TEM%:99°

NO

6-1

Annotation. This symbol provides expla-
natory or clarificationnotes. For example:

I

INOTIFY NURSE
| OF FEVERISH
| PATIENT

L

These and othér specialized symbols discussed below are
connected by directional lines to form a flowchart:

iNOTIFY NURSE]

| OF FEVERISH
PATIENT
|
READ 7 FIND WRITE (CONTINUE
HOURLY AVERAGE | FEVER IPROCESSING)
FILE [TEMP FILE

J

Normal flow direction is from left to right or top to bottom,;
however, when this is impossible or particularly cumbersome,
arrows may be used to clarify opposite flow directions. For
example, if we elaborate on the previous example:

1 ADD 10 MIN. U RinD ||NOTIFY NURSE]
TEMPS FOR | AVERAGE OF FEVERISH
| LAST HOUR | | “PATIENT |

READ
HOURLY jL—ADD Temps|—| DivIDE
FILE

(CONTINUE
PROCESSING)

Specialized symbols include:

(Punched card symbol.

Q Magnetic tape symbol.

6-2

@ Punched tape symbol.

Document symbol.

Predefined process symbol. e.g., a
subroutine used a number of times in
the same program, or alibrary program.

Connector symbol. When flowlines are
broken due to page limitations or for
other reasons, this symbol may be used

to indicate the separation. For example:

_@

PAGE 1

Flowcharts may be as simple or detailed as desired. The
programmer may start with a very general flowchart and, as
the problem’s solution becomes more clear, develop a very
detailed chart. The flowchart is a tool for the programmer’s
benefit, and may be used in whatever manner he sees fit.

6-3

REVIEW

Flowcharting is a helpful tool in problem

Which symbol represents a decision?

‘‘Long Shot’”’ Al, the inveterate horse racing enthusiast,
came to the track one day with $4.00 and a heart full of
hope. Scanning the program for the first race, he came to
the following plan: ‘‘If OrphanSandyis at 10-to-1 or better,
I’ll put $2.00 on her to win, and $2.00 on Shotgun to place.
If less than 10-to-1, I'll sink the whole $4.00 on Orphan
Sandy to win. If I lose the first race, I’ll walk home.
If T make more than $2.00 and less than $4.00, I’ll flip
a coin to see if I stay and bet again or go home. Heads,
I stay; tails, I go home. If I come out ahead, I’ll definitely
stay and bet some more.’”’

Draw a flowchart of the above plan.

Devise a flowchart illustrating the process of testing
200 quantities stored on a paper tape device for being
positive, negative, or zero. A count is to be kept of the
number of quantities in each group and this count is to be
printed on a teleprinter.

6-5

7.1

LABEL
FIELD

7.1.1
LABEL
SYMBOL

INSTRUCTION FORMAT 7

Source language instructions are recognized by the Assembler
in a certain format. An instruction may be specified in as
many as four fields, in the following order -- the Label,
Op Code, and Operand fields described in Chapter 4 and a
Remarks field allowing the user to specify explanatory com-
ments if he wishes.

Fields are separated by one or more spaces; the statement

is terminated by an end-of-statement mark. On paper tape,

the end-of-statement mark nsists of a carriage return,
‘ , and a line feed, @

A statement may contain up to 80 characters including blanks,
but excluding the end-of-statement mark. Fields beginning in
character positions 73-80 are not processed by the Assembler.

This field begins in character positionone, immediately follow-
ing the end-of-statement mark for the previous statement. A
space in character position one indicates the statement has no
label.

A label symbol may be constructed of from one to five alpha-
numeric characters, A through Z, 0 through 9, and the period.
The first character of a label must be alphabetic or a period.

Examples:
A[BICD <+——Valid label
J12B3e “——Valid label
NERREEET ::Valid label
lelolc -— Illegal label--exceeds five characters
AlBlc Illegal label--asterisk not allowed
No label--label must begin in col. 1

7-1

7.1.2
ASTERISK

7.2
OP CODE
FIELD

7-2

Each label must be unique within the program; no two state-
ments may have the same label

An asterisk in character position one indicates that the
entire statement is a comment. Positions 2through 80 are
then available for programmer’s remarks. Only positions
1 through 68 are printed as part'of the assembly listing on the
HP 2752A Teleprinter, however. An asterisk within the label
field is illegal in any character position other than one.

Comments are not translated by the Assembler as part of
the object program; that is, they do not take up memory space
at execution time.

Example:
Label Operation Operand Comments
1 5 10 15 20 25 30 35 40 45
«| [T[H[I[s] [1]s] [A] [cloMMEIN[T]-[-IN[o[T] [aN] [r]n[s[T[Rlulc]r[1]olN].]
#| [Elalc]H[[clomME(N[T] [LiTINE| IMuls[T] [H|AlVIE] [aN] [#] [I]N] IclojL].]]

The operation code field follows the label field and is sep-
arated from it by at least one space. If there is no label,
the operation code may begin anywhere after character position
one. The op code field is terminated by a space immediately
following an operation code. Specific operation codes are
discussed in Chapters 8 and 9.

Examples:

7.3
OPERAND
FIELD

7.3.1
SYMBOLIC
TERM

Both of these sequences of code
would be translated and executed
correctly. However, the first would
RALIPH | be much easier to read, bothonthe

coding sheet and on the assembly
listing.

The operand field follows the op code field and is separated
from it by at least one space. It is terminated by a space
(except when the space follows a plus sign, a minus sign, a
comma, or a left parenthesis) or by an end-of-statement
mark if the remarks field is omitted.

The operand field may contain an expression or a literal; an
expression consists of one of the following:

1) symbolic term
2) numeric term
3) asterisk

4) combination of symbolic terms, numeric terms, or
asterisk, joined by arithmetic operators + and -.

An operand expression may be absolute or relocatable. In
an absolute program all operand expressions are considered
absolute. A relocatable program may contain absolute or re-
locatable operand expressions; however, the absolute address
expressions must have a value less than 77g.

In some cases, an expression may be followed by an indicator.
For example, the operand field of Memory Reference instruc-
tions may be followed by a, I to specify indirect addressing.
These indicators are discussed with the instructions with which
they may be used.

A symbolic term is constructed using the same rules as for
a label -- one to five characters in length, consisting of A
through Z, 0 through 9, and the period. The first character
must be alphabetic or a period.

7-3

7-4

A symbol used in the operand field must be defined elsewhere
in the program as a label of a machine instruction or a BSS,
ASC, DEC, OCT, DEF, ABS, EQU, or arithmetic subroutine
pseudo instruction. In the special case of the COM and EXT
pseudo instructions, an operand term defines a symbol which
may be used as an operand term in other instructions.

A symbolic term may be preceded by a plus or minus sign. If
preceded by a plus or no sign, the associated value is used. If
preceded by a minus sign, the two’s complement of the
associated value is used. A single negative term may be used
only with the ABS pseudo operation.

Operand
10 15

'z:t:'A Valid symbolic terms, provided

clouingrl | | they have been defined.

SPEIC

B|!

NJAME

-WOHN| | Valid only with ABS pseudo, pro-
|| vided John has been defined.

Absolute or Relocatable Symbolic Terms

A symbolic term may be absolute or relocatable. If the program
is defined as absolute, or if a symbol has been defined as abso-
lute in an EQU pseudo instruction, the value assigned to the
symbol by the Assembler remains fixed; the term is absolute.
If the program is defined as relocatable, the actual value of
the symbol is established on loading; the term is relocatable.

A relocatable term may be program relocatable, base page
relocatable, or common relocatable. A symbol that names
an area of common storage (via the COM pseudo) is a common
relocatable term. A symbol that is allocated to the base page
(via the ORB pseudo) is a base page relocatable term. A
symbol that is defined in any other manner is a program re-
locatable term.

7.3.2
NUMERIC
TERM

7.3.3
ASTERISK

A numeric term may be decimal or octal. In an absolute pro-
gram, the maximum value of a single numeric operand depends
on the type of machine or pseudo instruction:

Pseudo instructions 32,76710 or 1777778
Memory Reference instructions 102310 or 17778

Input/Output instructions 6310 or 77 8

If a numeric term is preceded by a plus or no sign, the binary
equivalent of the number is used in the object code. If pre-
ceded by a minus sign, the two’s complement of the binary
equivalent is used. A single negative numeric term may
only be used with the ABS pseudo operation. An octal num-
ber is followed by the letter B; for example, 377B -177777B.

Examples:

] TTooA gm@. Valid for absolute program
sitla] [tdieizf | | Valid for absolute program
s[T/a| }rel £ | valid for absolute or relocatable program
algls %ﬁ%%I Valid for ABS pseudo instruction

An asterisk in the operand field refers to the value in the
program location counter (or base page location counter)
at the time the source program statement is encountered.
The asterisk is assigned a relocatable value in a relocatable
program, an absolute value in an absolute program.

Example:

el O = When this instruction is executed,
LD[a] e the A-register will be loaded with
the translated binary representa-
tion of the instruction itself.

7-5

7.3.4

COMBINATION
EXPRESSION

7-6

Numeric terms, symbolic terms, and the asterisk may be
combined using the arithmetic operators + and - to form
operands. These expressions are either absolute or re-
locatable depending upon the manner in which their absolute
and/or relocatable terms are combined.

Decimal and octal integers, and symbols defined as being
absolute in an EQU pseudo instruction are absolute terms.

The asterisk and all symbols that are defined in the program
are assigned relocatable or absolute values, depending on the
type of assembly.

Absolute Combinations

An abselute combination may be any arithmetic combination of
absolute terms. It may also containrelocatable terms alone or
in combination with absolute terms. If relocatable terms do
appear, there must be an even number of them; they must be
of the same type (program, common, or base page relocatable),
and they must be paired by sign (a negative term for each
positive term). The paired terms do not have to be contiguous,
that is, next to each other in the combination. The pairing of
terms by type cancels the effect of relocation; the value

represented by the pair remains constant.

An absolute expression reduces to a single absolute value.
The value of an absolute combination may be negative only
for ABS pseudo operations.

Examples:

If PR1 and PR2 are program relocatable terms; BS1 and
BS2, base page relocatable; COM1 and COM2, common re-
locatable; and ABS an absolute term, then the following
are absolute terms:

[}
3
ES

AB|S|-|cloMt [+/clom]2
B|s|+|a8ls

*-PR[I

B/S|!]-|#
ABls|- P|R 1 [+[P[R|2
PR[1 [-IP[R2

8|s|! |-|8|s[2]-|a[B|s

- PR [+|PR]2

Clojm[1 [=[clojmi2]+[Al8]s
-|aBs|-|PR]1 [+/P[R]2

7.3.5
LITERALS

The asterisk is base page relocatable or program relocatable
depending on the location of the instruction.

Relocatable Combinations

A relocatable combination is one whose value is changed by
the loader. All relocatable combinations must have a posi-
tive value.

A relocatable expression may contain any odd number of re-
locatable terms, alone, or in combination with absolute terms.
All relocatable terms must be of the same type. Terms must
be paired by sign with the odd term being positive.

A relocatable combination reduces to a single positive relocat-
able value, adjusted by the values represented by the absolute
terms and paired relocatable terms associated with it.

Examples:

If PR1, PR2, and PR3 are program relocatable terms; BS1,
BS2, and BS3, base page relocatable terms; COM1, COM2,
and COM3, common relocatable; and ABS an absolute term,
then the following are relocatable terms:

10 OP‘I’;”‘d 20 25 30
P[r[1]-|alBls

PRI |- P|R[2/+/P[R[3

#+|AB|S

alB|s|+[8ls|1

Bls|1 |-[B|s[2}+|B|s[3|-|aBls
-[clolm1]+|clomi2[+|clomM3

clom|1 -[clom[2]+|clom[3]-|alB]s
PRI [-lPlrl2l+/e [[][

Literals provide a simplified means of defining constants in
the source program. They are processed by the Assembler
provided for 8K or larger machines (8,192-word memory or
larger); literals may be used only in relocatable programs.

-1

7-8

Literals may be used in the operand field of certain instruc-
tions to specify an actual operand value, rather than an
operand address. The literal values specified in the source
program are preceded by an equal sign and an identifier.
The equal sign signifies that the value is a literal, and not
an address expression; the identifier defines the type of
literal:

=D one-word decimal integer within the range -32,76%7
through 32,767.

=F two-word floating point decimal number. Any positive
or negative real number within the approximate range
1038 to 1038, and zero. Decimal numbers with
fractional values must be specified with a decimal
point (32.75). Decimal numbers without fractional
values may be specified with or without a decimal
point (32 or 32.). (Section 9.4.3 describes the manner
in which floating point numbers are stored in memory).

=B octal integer; a signed or unsigned number consisting
of one to six octal digits bibgbgbgbsbg where by may
be 0 or 1, bg-bg may be 0-7.

=A two ASCII characters; blank fill is used for a @ or if
only one letter follows the A.

=L an expression which, when evaluated, will result in an
absolute value. All symbols used must be previously
defined.

The literal value is specified immediately after the identifier;
no spaces may intervene.

Literals may be used as operands with the following instruc-
tions only:

ADA ADB AND MPY
LDA LDB XOR DIV May use = D, =B, =A, andL only
CPA CPB IOR

DLD FAD FMP _
FDV FSB 5 May use = F only

NN 2
AON3
2024
2005
naR 6
Q007
008
0009
o010
2011

pn12

an13

P014

Only one literal may be specified in an operand field. The

‘Assembler translates the literal into its binary value, assigns

the value to a memory location, and translates the instruction
so that it refers to the location where the literal value is
stored. The Assembler assigns the literals to the memory
locations immediately following the last instruction of the
program. These locations are printed on the source program
listing during pass 2 of the assembly, unless the SUP pseudo
instruction is specified to suppress this listing. (See Example
below.)

If the same literal is used in more than one instruction,
only one value is generated, and all instructions using this
literal refer to the same location.

Examples:
A loaded with binary equivalent of
19840-
— — — Logical product of (A) and000077g.
! s w it =l A loaded with ASCII characters NO.
SRAmAATE (A) times -91¢.
ARENTR (AB) divided by 19.751(.
el -bl-ls (AB) multiplied by -21.9074.
Fovl EFliel 7ls A loaded with the result of value
eMP[[z[FI-12[1].[olgl7 of AD - value of B + 77g.
Lpla] |=|L]ajpl-[l+[7]7B

The listing segment shown below was produced from a source
program using the following literals:

ddaady) NAM START
AAA36 A EQU 30
Q0050 B EQU 40

NPR0e 00020d LOC BsSS 12
20014 @00A0@ START NOP

22015 D62012R LDA =D20
20016 BI2000R STA LOC
POB17 062013R LDA =B7S
29020 PT72001R STA LOC+1
nAR21 B16031X DLD =F1Q.0
20022 ARVA14R

89923 916002X DST LOC+2
P0024 00POO2R

20825 B16001X DLD =F-10.0
PPA26 0VAA16R

P8227 P16002X DST LOC+4

ARO30 BPPPB4R

7-9

7.4

2915
aN16

7A17
A1
72u19
A%2%
A21
ng22
DA23
D2y
Ay

A2 A

COMMENTS

FIELD

7-10

26831 216001X DLD =F3.7
A07A32 20A222R
APA33 216032X DST LUC+6
IRD34 AIDAB6R
ABBIS BAEA22R LDA =LA-8+100
BBA36 PT2010R STA LOC+S
BHt37 Q62923R LDA =APA
AAD40 AT72011R STA LUC+9
DAA4Y BE2023R LDA =359131
mra 42 3720128 STA LUC+1@
J62923R LDA =D22545
B724%13K STA LuC+11
126{14R JMP START » 1 = Last instruction requiring memory space
NgaE24 Octal representation of 20,,.
20047 DBBATS Octal representation of 75g.
ggg:? g;gg?g } 10.1 in floating point format
00052 132000 —10.1 in floating point format.
20053 2ABN14
ggggg g:}g;gi } 3.7 in floating point format.
#0356 @0G132 Octal value of expression: A — B + 100.
PPBS57 ¥53101 Octal value of PA, 50101g and 20545, ,.

NO ERROUWS*

END

The comments field allows the user to transcribe comments
on the list output produced by the Assembler. The field
follows the Operand field and is separated from it at
least one space. The end-of statement mark,

or the 80th character in the entire statement terminates the
field. If the listing is tobe produced on the 2752A Teleprinter,
the total statement length, excluding the end-of-statement mark,
should not exceed 52 characters, the width of the source lan-
guage portion of the listing. Statements consisting solely of
comments may containup to 68 characters including the asterisk
in the first position. On the list output, statements consisting
entirely of comments begin 16 positions to the left of the source
portion of statements containing instructions.

The. comments field should be omitted on the NAM and END
pseudo operations or in the following input/output statements
without operands; SOC, SOS, and HLT. If comments are used
the Assembler attempts to interpret them as an operand.

7.5
MANUAL
NOTATION

7.6
CODING
CONVENTIONS

Notation used in this manual to represent source language
instructions are as follows:

Symbols expressed in lower case are to be supplied by the
user. For example,

m memory address -- an expression
(Section 17.3).

sc select code -- an expression
lname a label symbol

Bracket [] indicate a field or portion of a field that is
optional.

Braces % indicate that one of the included set may be
selected.

To ensure maximum legibility, mostprogrammers code source
programs in capital letters on coding sheets provided for this
purpose. To distinguish between certain characters, the
following conventions have been established:

alphabetic I 1
numeric 1 1

alphabetic O 0
numeric zZero___¢

z
2

alphabetic Z
numeric 2

7-11

10.

11.

REVIEW

What are the four fields of an instruction, in the order
they are specified?

What is the permissible length of an operand symbolic
term?

What characters may be used to construct a valid label?
How do you specify an unlabeled instruction?

What is the method of coding a statement consisting
entirely of comments?

Which of the following labels are illegal?

(a) ABC

(b) A.B.C.
(¢) 2AB

(d .BC2

(e) BAX

(f) ROTATE

What characters terminate a statement?

What is the range for numeric operand terms in the
following instructions?

(a) Pseudo instructions
(b) Memory reference instructions
(¢) Input/Output instructions

What character may be appended to a numeric operand
term to distinguish the term as octal?

What is the function of the asterisk in the operand field?

Which of the following literals are illegal?

(a) =B927 (e) =L"77
(b) =D926 () =F32
(¢) =D9.35 (g) =B777
(d) =AAA (h) =329

7-13

MACHINE INSTRUCTIONS 8

These instructions are the machine's instruction repertoire; the
assembler translates mnemonic labels, operation codes, and
operands to the instruction format as described in Chapter 3.

8.1

MEMORY

REFERENCE Memory reference instructions are those which refer to loca-
tions in memory. They include instructions to perform arith-
metic and logical operations and instructions which alter the
sequence of execution.

8.1.1

LDA/LDB These instructions load the A or B register with the contents

of the specified address, or with the specified literal. The con-
tents of the address are unchanged.

Label Op Code Operand
LDA} fm[,1]]
{ LDB } 1 lit 5

m absolute or relative address ex-
pression

I indirect addressing indicator

lit literal value

Examples:
Before Execution After Execution
LDA ALFRE (A)=0123123 (A)=0017678
(ALFRE) =001767g (ALFRE) =001767g
LDB ALFRE, 1 (B)=0'765433 (B)=1555558
(ALFRE) =002316g (ALFRE) =002316g
(23168)=1555553 (23168)=1555558
LDA =T77B (A)=0157628 (A)=0000778

8-1

8.1.2
STA /STB

8.1.3
ADA /ADB

8-2

These instructions store the contents of the A or B register in
the specified address.

Label Op Code Operand
{ STA m[,I]
| STB

m absolute or relative address

I indirect addressing indicator

Examples:
Before Execution After Execution
STA PLACE (A)=017653g (A)=017653g
(PLACE)=05432"7g (PLACE)=017653g
STA PLACE,I (A)=153455g (A)=153455g
(PLACE)=100677g (PLACE)=10067"7g
(677g)=000534g (677g)=000534g
(534g)=17T7T714 (534g)=153455¢4

The 1 in bit 15 of loca-
tion PLACE means that
the contents of the loca-
tion specified by the
right-most 15 bits is to
be used as an indirect
address.

Adds the contents of the A or B register to the contents of the
specified address or to the literal, storing the result in the A
or B register. The contents of the address are unchanged.

Label Op Code Operand
ADA m[,I]
ADB lit

m absolute or relative address ex-
pression or literal

I indirect address indicator
lit literal value

8.1.4
AND

Examples:

ADA EGAD

ADA EGAD, I

ADA =D16

Before Execution

(A)=001702g
(EGAD)=000025g
(A)=001702¢
(EGAD)=001652g
(1652g)=00352"7g

(4)=005320g

After Execution
(A)=001727g
(EGAD)=000025 8

(A)=0054314
(EGAD)=001652g
(16525)=003527g

(A)=005340g

Forms the logical product of the contents of the A-register and
the specified address or literal and stores the result in the A-
register. The logical product of two bits is defined as follows:

Label

Examples:

AND MASK

AND MASK, I

AND =77B

OANO0=0
0A1=0
IN0=0
IN1=1

Op Code Operand

AND {m[,l]

lit

m absolute or relative address

I indirect address indicator

lit literal value

Before Execution
(A)=037654g
(MASK)=00077"7 8

(A)=0376545
(MASK)=000777g
(777)=177500g
(A)=053461g

After Execution

(A)=000654g
(MASK)=000777g
(A)=037400g
(MASK)=000777g

(177)=171500
(A)=000061g

8-3

8.1.5
XOR

8-4

Forms the logical "exclusive or' of the contents of the Aregister
and the specified address or literal and stores the result in the
Aregister. The "exclusiveor' operation for two bits is defined

as follows:

Label

Examples:

XOR ZELDA

XOR SCOTT, I

XOR =177B

0v0=0
Owv1l=1
1M0=1
1v1=0

Op Code Operand
XOR {m[B]}
lit
m absolute or relative address
I indirect address indicator
lit literal value

Before Execution After Execution

(A)= (A)=

0011 010 110 001 1119 1 100 101 001 110 0004
(ZELDA)= (ZELDA)=

1111111111 111 1119 1 111 111 111 111 1115

Note that by taking the exclusive or with a mask
of all 1's, the 1's complement is formed.

(A)= (A)=

0011 010 110 001 1115 0 110 000 011 011 0109
(SCOTT)= (scorT)=

0 000 001 010 011 1115 0 000 001 010 011 111,
(1237g)= (1237g)=

0 101 010 101 010 1015 0 101 010 101 010 101,

(A)=
0 010 011 100 101 110, 0 010 011 011 010 001,

8.1.6
IOR

Forms the logical "inclusive or' of the contents of the A register
and the specified memory location and stores the result in the
A register. The "inclusive or' operation for two bits is de-
fined as follows:

Label

Examples:

IOR CODE

IOR CODE, I

IOR =177777B

ovo
ovi
1vO
i1vl

nun nn
— O

Op Code
IOR {m[,l]}

Operand

lit

m absolute or relative address

I indirect address indicator

lit literal value

Before Execution

(A)=

0 000 000 111 101 111,
(CODE)=

1111 111 111 000 0004

(A)=

0 000 000 111 101 111,
(CODE)=

0 000 001 110 101 0004
(1650g)=

0 000 000 000 001 1115

(A)=
0 101 110 111 100 011y

After Execution

(A)=
1111 111 111 101 111,

1111 111 111 000 0009

(A)=

0 000 000 111 101 1114
(CODE)=

0 000 001 110 101 000
(1650g)=

0 000 000 000 001 1115

(4)=
1111 111 111 111 111y

8-5

8.1.7
JMP

8.‘.8
JSB

8-6

Alters sequence of execution. The next instruction to be exe-
cuted is located at the specified memory location.

Label Op Code Operand
JMP m[,I]

m absolute or relative address ex-
pression specifying next statement
to be executed.

I indirect address indicator; if spec-
ified, the contents of memory lo-
cation m are used as the address
containing the next statement to be

executed.
Examples:
Label Operation Operand Comments
5 10 15 20 25 30 35 40 45 50
NolTle| IrimlalT] IrlH1]s] Islelaluleln|cle] [olF
1Njs[T|RJulc|T]T|o|Nis| RIE[s|ulL|Ts| [zN] [A] IN|EIVIEIR]-
E[N[D|T|N[6| |L|ololr|-[-]T]H[E| [cloMPp|ulTE[R] [WI|L]L
kelele| [elx|elclultz|n] [TlnIE] [s|T|aT|EIM[EN|T]S
FIRloM [Liojo|P| [Tlo| lololrls| [TINDEEIF TIN{IITIEILlY
L THE| [v|umP| [1]s| ITlo| |T|HE| |L|oc|aT|T[oN
A s|Plelclz|F|z]eo] [Blv| |TIH|E[|cloN[T[ENT]S] |OfF
S Lio(cla|T|TloN! [FIERIN H|I|C|H| [H|A|S| BIEIEN
3N MoD|1,F[TEID] !B|Y| |THE| |CIOINTIEINT|S| [OF
Llojc|aT|z/o|N] |A|DRIM]

The jump subroutine instruction generates a return address by
adding 1 to the contents of the program location counter. This
address is stored in the specified address and control transfers
to the specified address+1. The user returns control to the
main program by a JMP indirect tothe first locationof the sub-
routine.

Label Op Code Operand

JSB m[,I]
m absolute or relative address
I indirect addressing indicator

This instruction is particularly useful for a utility subroutine
which may be called at several points in the main program.

Example:
Main Program Subroutine
Lobel Operation Operand Label Operatior Operand o
AlGHA| | |ioa] [NjoIN[E
L|pja| [Albjp|r
. AND| MAls|K
LpjA| [BRUICIE S[TIA| [PILIAICE
AlD JMP| |alG/Hal, |1
S
LD
X0

The first time the JSB to AGHA is executed, the address for
the LDA FREEN instruction is placed in AGHA and execution
transfers tolocation AGHA+1, the LDA ADDR instruction. The
LDA NONE instruction is never executed;it is destroyed when
the returnaddress isinserted inthatlocation. The JMP AGHA,I
at the end of the subroutine transfers control back to the main
program at the LDA FREEN instruction. The next time AGHA
is called, the address for the LDA FISBY instruction is placed
in AGHA and execution transfers to location AGHA+l. The
JMP AGHA, I then transfers control back to the main program
at the LDA FISBY instruction.

8-7

8.1.9
ISZ

8.1.10
CPA /CPB

8-8

Increment and skip if zero. ISZ adds one to the contents of the
specified address. If this quantity is then zero, the next in-
struction in memory is bypassed.

Label Op Code Operand

ISZ m[,I]

m absolute or relative address

I indirect addressing indicator

This instruction is particularly useful in executing a loop a
specific number of times before continuing with processing.

Example:

Label Operation © Operand ¢
5 10 15 20 25 30 35 40 45 50

|
IL| | [L[D/A[|QluAN ClouNT| [HlAls| [BEEEN| [PIRIEVI[OjUIS|L|Y
AD[A| |sluMm DEFFIIN[EDD] [T/o| [cloNT|A[TIN] -{7].] |TH[E| 1Sz
. IINsTIRlulc[T]T|o|n| [AlDD]s| [1] T[o| [clouNT
DURR|I|N|G| [E|A[C|H| |PlAS|s| |TIHR|ojulGH| [TIHIE[| | .
LiojojP|.| WHEN| 'THE| [siElQUE|NICIE] [H|AlS
BIE[EIN| [EX[E/CIU[TEID] A| [TOTAL| OF [SEVEN]|
T/IME's|,| |clou|NT=/@ |ajnD| TIHE| um[p EMI|L
IN[s|TRJulcT[Tlojn I's [Blv/Plas|s[ED - -|coNTR|oL
PAIS|SE[S| T0| [LDB| RIAL|PH.| | D
i SEEEEN R

This instruction compares the contents of the A-or B-register
and the contents of the specified address or the literal. If they
arenot equal, the next instruction is skipped. If they are equal,
the next instruction is executed.

Label Op Code Operand
CPA m[,I]
CPB lit

m absolute or relative address
I indirect addressing indicator
lit literal value

Lobel Operation Operond Commes
1 5 10 15 20 25 30 35]:c 45 50
L[] [slulo THE!| [clonTEEN|TS| [ofF| [LiolcialTiTion]| [Blulo| [aRIE
clplal [clojunT clompla[rlE|o] WI[TH| [T|HE| |clon[TIENT]S] lofF
JMP| [ZEILIL|A LioclaT|tlojn| [clolulniT].| [1[F| [T[HEY] [AlR[E
Apla] lo|NE eQulaLl,| [THE[[omp] |Z[ElLiL Al [1]N[s[T]RlulciT]T|oN
s(tla| [8lulo 1/s| [Elxjg/cu[TEED].| [1|F| [THEY]| [ARIE] |NoIT
. ElQulaL|,| [ymP| [ZELIL[a] 1]s| [NoT| [E[X[Elclu[TIEID
. -|-[EXE|cluT T/o|N| [cloN[T]T|NUE]s| W1|TH
. AD/A| O|NE/.
L THE| |cloN[TIEN(T]S| [ofF| Llo/ciAlT[1/oN] [HE[LIENN
Cip ARlE| [cloMpalrlelo] [Tlo] i]7].] [1]F| [Elafulal],
J THE| [J[MP| [TlojM [T|Ns|TR[u[ciT|t]oN [1]s| [EX[E]C]-
A ultiel].| [1FF| JuinElalulalL],| [eixfelclulT]T|oN
s clonjT|1|nJuls| WI|T]H] [alDla] [=|pls
JV I
8.2
REGISTER
REFERENCE The register reference instructions manipulate the working
registers A, B, and E. They include a Shift-Rotate group and
an Alter-Skip group.
8.2.1
SHIFT-
ROTATE
GROUP This group contains 19 basic instructions that can be combined

to produce more than 500 different single cycle operations.
CLE Clear E-register (set to zero).

ALS/BLS Shift A- or B-register left one bit, place a zero in
the least significant bit (bit 0). Sign bit (bit 15) is
unaltered.

Example, BLS:

(B) =1 011 100 010 110 100 (before exe-
b, cution)

(B) = 1 111 000 101 101 060 (after exe-

cution)

8-9

8-10

ARS/BRS Shift A- or B-register right one bit, extend sign bit.

Sign bit is unaltered:
Example, BRS:

(B) = 1 000 000 111 101 100 (before exe-
\ \ cution)
(B) = 1 100 000 011 110 110 (after exe-
cution)

RAL/RBL Rotate A- or B-register left one bit.

Example, RAL:

(A) =70 000 101 001 110 111 (before exe-
0/ cution

(A) =|0 001 010 011 101 110 (after exe-
, £ cution)

RAR/RBR Rotate A- or B-register right one bit.

Example, RBR:

(B) = 0 101 010 101 010 104y (before exe-
\ cution)

(B) = 1010 101 010 101 010|(after exe-
\ cution)

ALR/BLR Shift A- or B-register left one bit, clear the sign

bit, place a zero in the least significant bit.
Example, ALR:

(A)=1110 111 010 000 011 (before exe-
/ J cution)
(A) = 0 101 110 100 000 110 (after exe-
cution)

ERA/ERB Rotate E and A- or B-register right one bit.

Example, ERB:

(E) =1~_ (B)=0111 000 111 000 110y(before exe-

\ \ cution)
(E)=0 (B)=1011 100 011 100 011 |(after exe-
\ cution)

ELA/ELB Rotate E and A- or B-register left one bit.

Example, ELA:

V4 cution)
(E) =|1 (A) =1 111 100 110 011 000 (after exe-
cution)

(E) = Oyl 111 110 011 001 100 (before exe-

ALF/BLF Rotate A- or B-register left four bits.
Example, BLF:

(B)=0110 010 111 101 000 (before exe-

cution)
(B) = 0’1(111 010 000 110 (after exe-
P cution)

SLA/SLB Skip the next instruction if the least significant bit
of the A- or B-register is zero.

When combined, the instructions must be given in the order
shown below, separated by commas. Instructions for the A-
register may not be combined with instructions for the B-
register.

Label Op Code Operand
[(ALSY | [(ALSY |
ARS ARS
RAL ‘ RAL
RAR RAR
Y ALR([,CLE] [,SLA]|; ALR (
ALF ALF
ERA ERA
LELAJ LELA_J
S p— I pu—
[(BLSY | (BLS
BRS BRS
RBL RBL
RBR RBR
4 Bin(|CLE] [,SLBI{ 5Trt
BLF BLF
ERB ERB
L ELB, | \ELB.

8-11

Any combination as shown above requires only one machine cy-
cle for execution. For example:

ARS _
ARS (coded on two lines) requires two machine cycles,
but

ARS, ARS (coded on one line) requires one machine cycle.

Examples:

Label

m
Ke2
o
2
-
>

—
[2)
2
—
n
[
(2]
DB [&
F3
=
@
—
w[T[2
m

72l Il)
=[O[m[W
®
Z
IR

e
m
L]
F3
»
-

-
)

[=)
Z
1
[
m
2
(<]

(=2 1]

mlg] [Zlc[m[=<

DO [C |-

R APIE]
2
miz 42
— -

=
I

NIV [~ (<[

QpMom|—|-
M- 0>
<[-]

i
o>

[

o
olooleo[H
V(== [2[2]TM

Z»n
>
ol [C[m

= ZP0ClZ|4|m|D
OlH|A - < |H|O
cluj<mM &

MmwH NP2 M>
oXZ2ImZ2>p|lwn 2

P
o
-
>
—
m
[=)
c
>
Z
-
-
=
<
-
4
@
I
m
e
-
w
@
(=]
]
(7]

(=)
-
[ALY
o
n
M
ni>
2
o
[
[=
F 4
)
[7]
=
(=]

ofF

=
)
@
mn
B (—Ar|n
=/ojom
(2]
>l»n
P]
wiO|=|m
o
b4

> |
-
L]
(o]
2
@
| 1O e
m
n
—
n

8.2.2
ALTER-SKIP
GROUP This group contains 19 basic instructions that can be combined
to produce more than 700 different single cycle operations.
CLA/CLB Clear the A- or B-register to zeros.
Example, CLA:

(A) = 0010 111 001 110 101 (before exe-
cution)

(A) = 0 000 000 000 000 000 (after exe-
cution)

8-12

CMA/CMB Complement the contents of the A- or B-register,

CCA/CCB

CME
CLE
CCE
SEZ
SSA/SSB

INA/INB

SZA/SZB
SLA/SLB

RSS

one's complement form.

Example, CMB:

(B) = 0 000 010 101 111 000 (before exe-
cution)

(B) =1 111 101 010 000 111 (after exe-
cution)

Clear, thenone's-complement the A- or B-register
(set to one's).
Example, CCA:

(A) =1 111 000 010 101 011 (pbefore exe-
cution)

(A)=1111111 111 111 111 (after exe-
cution)

Complement the E-register.

Clear the E-register (set to zero).

Clear, then one's complement the E-register.
Skip next instruction if E is zero.

Skip next instruction if sign of A- or B-register is
positive; that is, if bit 15=0.

Increment the contents of the A- or B-register by
one.

Example, INB:
(B) = 0 001 101 110 010 111 (before exe-
cution)
(B) = 0 001 101 110 011 000 (after exe-
cution)

Skip the next instruction if the contents of the A-or
B-register is all zeros.

Skip the next instruction if the least significant bit
(bit 0) of the A- or B-register is zero.

Reverse the sense of the skip instructions preded-
ing the RSS in the statement. That is, the SSA/SSB,
SZA/SZB, SLA/SLB instructions skip on 1's when
followed in the same statement by an RSS instruc-
tion.

8-13

8-14

When combined, the instructions must be given in the order
shown below, separated by commas. Instructions for the A-
register may not be combined with instructions for the B-
register.

Label Op Code

- - -
SCLA2 CLE }

?CMAs [,SEZ]|,CME j|[,SSA][, SLA][,INA][,SZA][, RSS]

CCA CCE
S CLB CLE
. CMB; |[,SEZ]|,{ CME }|[,SSB][,SLB][,INB][,SZB][, RSS]
?CCB CCE

L - - -

Any combination as shown above requires only one machine cy-
cle for execution. If more than one skip instruction is used
in a statement, any true condition will cause the skip to occur.
The only exception is SSA, SLA, RSS or SSB, SLB, RSS. The
indicated register must contain a quantity whichis negative and
odd (bit 0=1) for the skip to occur. An RSS following more than
one skip instructionin a statement reverses the sense of all the
skip instructions.

Examples:

! 5 Opertion 10 Ow":\d 20 25 0 5 40 Comment 45 50
Lipla] JLjalN]1 s1[cIN] I[1]7] [olF[[L]aN[a] [T]ElsITIElD] [FlolR] Ig] lolr
1. 1| 18,1 ILlaNL| [1]s] IPlois|T|TIVIE|~|-|v MP
JMP| INElGlPIL polslPiL| l1ls| lelx|elcluiTlElD].| 1]F] I1],] [LlaiNT] [1]s
JMP| [plojslPiL NE[Ga[T]I|VIE]-|-[yMP NIEGPL 1/s| [e[x|e|c|ulTElD
Lpja| Iol1iclk TlEis|T|s| [(|pli|c|k])| |Flo[r| [olojp| |o|r| [ElVE|N
(si1|t| |gl=[1] [or] 8 [.| |1|F| lop[ol,| [yMP
JMP| lopp|r|T|N olplr[T|N| [1]s| [Elx|E|cluTlElp].] [1]F] EIVIEIN],| [vMlP!
JMP| [E[VIR[TIN E[VIRTIN| [1]s| [E[x|e|clu[T|elp
Liplal [clalriolL 1/F| [(|c|aRlolL)| [ARE| [NElclaTi1VIE],| |o| W]uMP
sislal,|Ris|s 1/s| Malole| [vlo| [x[viz[.| [1|F| lPlols|tiTl1lVIE],| [T|H[E
Tl AR VIAILIVE[|1|S| |ClON|VIEIR[TIE/D| [T|O| [NE|GIAT|IVIE
JMP] [xivlz AND| Al [ujuMP| 1]s }MIADE Tio| [x|viz|.
T ! l)

- T

8.2.3
NOP

8.3
INPUT /OUTPUT
INSTRUCTIONS

||
cloMP|A|RE|S| [ClON|TIEN[TS| [OFF| [L/OC|A[T|I]ON|S
ED| |AN|D| jQulaN.| [IF] [([EPD]| |LE[S|S| |T[HAN
(jQulainD|,] |al [ujuMp] [1|s| MalpE[|Tlo] [L|T[.R]T
I|F| |([E]o])]| [GIRIEATTIEIR] [T|HAN] |([QUAIND|,| |A
JuMP| [Tlo| l6T|.RIT| lolcicluRiS|.| |I|F| [([ED)
E|Q[ulalL|s| [([alulaN) [, [a] [vjuMP]| [To] [E[Q].RT
OCIClUR|S|-
TIE[STS| [(|V[0E]) | [FloR| INEE|GiAITITVIE| |aNID
BII|T| |#|=|1 .| 1|F [TIRIVE|,| CMB,INB| I|S
S|K|IP|PlEID~~E|X[E/CUTITION| [CONT|INVES

1)TH| [Lipla| [FlowL|.| [1|F| [FlalLislE],| [THIE
INuMBE[R] [1]s] [clomPILIEMEINTED] [aIN]D
EX[E|clu[TT|oIN| [clo|N[T|I|NU[ES| [WI |TH] [L|D]A]
FlowL|. 1] |

When a no-operation instruction is encountered in a program,
no action takes place; the computer goeson to the next instruc-
tion. A full memory cycle is used in executing a no-operation
instruction.

Label Op Code Operand

NOP (not used)

A subroutine to be entered by a JSB instruction should have a
NOP as the first statement. A NOP statement causes the as-
sembler to generate a word of zeros.

The input/output instructions: (1) allow the transfer of data
between the computer and an external device, (2) enable or
disable external interrupt, (3) check the statusof I/O devices,
and (4) check for arithmetic overflow condition.

Because of the variety of ordinary input/output devices and
specialized HP data acquisition devices which may be attached
to the HP 2116A, one particular instruction may have a num-
ber of different results.

Very generally speaking, the STC instruction "turns on'" the
control bit, transferring or enabling the transfer of one data

8-15

8.3.1
STC

8.3.2
CLC

8-16

element. The size and format of an element depends largely
on the type of data the device is expected to convey. For ex-
ample, a digital voltmeter provides a data element in the form
of a two-word binary representation of a decimal number, giv-
ing the number of volts measured. A teleprinter machine pro-
vides an element in the form of a binary representation of an
ASCII character. The size and format of a data element for
HP devices connectable to the HP 2116A is given in Appendix
D, with samples of coding.

The instructions LIA, LIB, MIA, MIB, OTA, and OTB control
the transfer of data between the channel buffer and the A- and
B-registers. The flag bit is set automatically when data trans-
mission between the device and the channel buffer is completed.
Instructions are also available to set, clear, or test the flag
bit. If the interrupt system is enabled, and the control bit is
set, setting the flag bit causes program interrupt tooccur; con-
trol transfers to the interrupt location related to the channel.
If the interrupt system is disabled, no interrupt can occur; in
this case the programmer may use the instructions which test
the flag to determine when transfer is completed. The flag bit
may be cleared by specifying the two characters ,C following
the select code in most I/0 instructions.

This instruction transfers or enables the transfer of one data
element between the channel buffer and the device.

Label Op Code Operand

STC sc[,C]

The set control instruction sets the control bit for the channel
indicated by the select code (sc). The C option clears the flag
bit before any transmission initiated by the STC is completed.

If sc=1, the statement is treated as a NOP (no-operation) in-
struction.

The clear control instruction clears (sets to zero) the control
bit for the channel specified by the select code (sc), effectively
disconnecting the device.

8.3.3
LIA/LIB

8.3.4
MIA/MIB

8.3.5
OTA /OTB

Label Op Code Operand
CLC sc [,C]

When the control bit is cleared, interrupt on the channel is dis-
abled, although the flag bit may still be set by the device. I«
sc=0, control bits for all channels are cleared, and all flags
are set; all devices are disconnected. I sc=1, this statement
is treated as a NOP (no-operation) instruction.

The C option clears the flag bit for the channel.

These instructions clear, then load the A- or B-register with
the contents of the I/O buffer indicated by sc.

Label Op Code Operand
{LIA} sc[,C]
LIB

If sc=1, the contents of the Switch Register are loaded into A
or B. If C is specified when sc=1, the Overflow bit is cleared
after transfer from the switch register is complete. Otherwise,
C clears the flag bit for the channel.

These instructions merge ('inclusive or') the contents of the
I/0 buffer indicated by sc into the A- or B-register.

Label Op Code Operand
{MIA} sc[,C]
\MIB

If sc=1, the contents of the Switch Register are merged into A
or B. I C is specified when sc=1, the Overflow bit is cleared
after the merge is complete. Otherwise, C clears the flag bit
for the channel.

Label Op Code Operand
{OTA} sc[,C]
OTB

This instruction causes the contents of the A-or B-register to
be output to the I/O buffer indicated by sc. The C optionclears
the flag bit for the channel.

8-17

8.3.6
STF

8.3.7
CLF

8.3.8
SFC

8.3.9
SFS

8.3.10
CLO,STO
SOC,SOS

8-18

Label Op Code Operand
STF sc

The set flag instruction sets the flag bit of the channel indicated
by sc. If sc=0, the entire interrupt system is enabled; if sc=1,
the overflow bit is set.

Label Op Code Operand
CLF sc

The clear flag instruction clears the flag bit of the channel indi-
cated by sc. If sc=0, the entire interrupt system is disabled;
if sc=1, the overflow bit is cleared to zero.

Label Op Code Operand
SFC sc

The skip if flag clear instruction skips the instruction immedi-
ately following if the flag bit for channel sc is zero.

Label Op Code Operand
SFS sc

The skip if flag set instruction skips the instruction immedi-
ately following if the flag bit for the channel indicated by sc is
one.

In addition to using a select code of 1, the overflow bit may be
accessed by the following instructions.

Label Op Code Operand
CLO (not used)

This instruction clears the overflow bit to zero.

8.3.1
HALT

Label Op Code Operand
STO (not used)

This instruction sets the overflow bit to one.

Label Op Code Operand
SOC [Cc]

The skip if overflow clear instruction skips the instruction im-
mediately following if the overflow bit is zero. The C option
clears the overflow bit after the test is made. If C is not used,
comments must be omitted.

Label Op Code Operand
SOS [c]

The skip if overflow set instruction skips the instruction imme-
diately following if the overflow bit isone. The C optionclears
the overflow bit after the test is made. If C is not used, com-
ments must be omitted.

The halt instruction stops computer processing.

Label Op Code Operand
HLT [sc[,C]]

The computer stops processing and holds the setting of the flag
bit for the channel designated by sc. If the C option is speci-
fied, the flag bit for the channel is cleared.

The HLT instruction is displayed in the T-register and the P-
register indicates the HLT location plus one.

If neither the sc nor the C option is used, the comments must
be omitted.

8-19

8.4
EXTENDED
ARITHMETIC

UNIT
INSTRUCTIONS

8.4.1
MPY

8-20

When the Extended Arithmetic Unit option is included in the
computer configuration, additional arithmetic and shift capabil -
itiesareavailable. Four of these instructions (MPY, DIV, DLD,
and DST) cause two computer words to be generated; the first
word is the instruction code, and the second, a 15-bit operand
address. When assembled for configurations without the EAU
option, thesefour instructions resultincalls to subroutines. The
remaining mnemonics, if used in a non-EAU Assembler, would
be considered as operation code errors.

This instruction multiplies the contents of the A-register by
the contents of a memory location and stores the product in
registers B and A,

Label Op Code Operand
MPY m[,1])]
lit 5
m absolute or relative address
expression
I Indirect addressing indicator
lit literal value

The result is stored right-justified in the combined B and A
registers:

: \ sign of product

8.4.2
DIV

For example:

Before Execution After Execution
MPY (4) = 0001'738 (B) = 000000

(VALUE) = 0000348 (A) = 0065648

(B) = any quantity (VALUE) = 0000348
MPY DANTE (A) = 1013255 (B) = 1'7’71038

(DANTE) = 061 1118 (4) = 1722758

(B) = any value (DANTE) = 0611118
MPY =D20 (A) = 0000’758 (B) = 000000

(A) = 002304

Note that in the second example, the negative answer (in
eight’s complement form) is really 1774354275, Split into
the two 16-bit registers and right-justified, it is represented
as shown above.

DIV divides the contents of B and A by the contents of a
memory location and stores the result; the quotient is stored
in A and the remainder in B.

Label OP Code Operand
DIV m[, 1] %
lit
m absolute or relative address.
I indirect addressing indicator.
lit Literal value

The Overflow bit is set if the divisor equals zero or if the
dividend exceeds the A-register, otherwise, exit with Overflow
bit cleared.

8-21

Initially, the dividend is stored right-justified in the combined
B- and A-registers:

B A

\sign of dividend

For example:

Before Execution After Execution
DIV ALAN (B) = 000000 (B) = 000000
(A) = 0541478 (A) = 0005638
(ALAN) = 0000758 (ALAN) = 0000758
DIV =B73 (B) = 000000 (B) = 0000028
(A) = 0000758 (A) = 0000018
8.4.3
DLD DLD loads the A and B registers with the contents of two
consecutive words in memory.
Label Op Code Operand
DLD fm[, 171
| 1it f
m location of first word---the
contents of this location is
loaded into the A-register.
Location m+1 is loaded into
B-register.
I indirect addressing indicator
1it literal value (F only)

8-22

For example:

DLD FLPT

DLD IND, I

8.4.4
DST

Before Execution

(A) = any quantity
(B) = any quantity
(FLPT) = 017717g
(FLPT+1) = 1774004
(A) = any quantity
(B) = any quantity

(IND) = 0021778

(2177 035467

g) = 8

054100

(2200) = o

consecutive memory locations.

Label

Op Code

DST

After Execution

(A) = 017777g

(B) = 1774004
(FLPT) = 0177774
(FLPT+) = 177400
(A) = 035467

(B) = 0541 008

(IND) = 0021778

(2177 035467

g) = 8

(2200,) = 054100

g = 8

DST stores the contents of the A and B registers into two

Operand
m[, I]

m location of first word--the
contents of the A-register
is stored in this location.
The contents of the B-reg-
ister is stored in location

m+l.

I indirect addressing indica-

tor.

8-23

For example:

DST TROUT

DST IVAN, I

8.4.5

SHIFT-ROTATE
INSTRUCTIONS

ASR n

Before Execution

(A) = 000042 8

(B) = 1774018
(TROUT) = any
quantity

(TROUT +1) = any
quantity

A) = 0175328
(Note 1 in
column 15)

(B) = 1525258

(IVAN) = 102027 3

(20278) = 0027778

(27778) = 000000

(30008) =01 70008

After Execution

(A) = 000042 8

(B) = 1'774018

(TROUT) = 0000428

(TROUT +1) = 1774018

(A) = 01’75328

(B) = 1525258

(IVAN) =10 20278
(20278) = 0027778
(27'778) = 175328

(30008) = 1525258

The EAU Shift-Rotate instructions provide the capability to
shift or rotate the B- and A-registers 1 to 16 bit positions.

Arithmetically shift the B- and A-registers right

n bits. Sign bit (bit 15 of B) is extended.

Example, ASR 5:

(BA) =1 011 000 101 000 101 0 101 101 011 100 111

" becomes

(BA) =1 111 110 110 001 010 0 010 101 011 010 111

8-24

ASL n

RRR n

RRL n

Arithmetically shift the B- and A-registers left n
bits. Place zeros into the least significant bits.
The sign bit (bit 15 of B) is unaltered. The Overflow
bit is set if bit 14 differs from bit 15 before each
shift, otherwise, exit with Overflow bit cleared.

Example, ASL 5:

(BA) =0101 000111 101 0001 101 101 000 110 111

becomes

(BA)=0011 110100 011 011 0 100 011 011 100 000
Rotate the B-and A-registers right n bits.

Example, RRR 8:

(BA)=0101 110111 000 010 0 100 010 110 000 111

becomes

(BA) =1 000 011 101 011 101 1 100 001 001 000 101
e

Rotate the B- and A-registers left n bits.

Example, RRL 7:

(BA) =0 110 011 101 111 000 0 110 011 010 000 111

becomes

(BA) =1 011 110 000 110 011 0 100 001 110 110 011
B —

8-25

8-26

LSR n

LSL n

Logically shift the B- and A-registers right n bits.
Place zeros into the most significant bits.

Example, LSR 5.
(BA) =1 011 000 101 000 101 0 101 101 011 100 111

becomes

(BA) = 0 000 010 110 001 010 0 010 101 011 010 111

Logically shift the B- and A-registers left n bits.
Place zeros into the least significant bits.

Example, LSL 5:

(BA) =0101 000111 101 0001 101 101 000 110 111

becomes

(BA) =0011 110100 011 011 0100 011 011 100 000

10.

11.

12.

13.

The CPA instruction skips on what condition?
The ISZ instruction skips on what condition?

To what location does the instruction JSB 227B (absolute)
pass control?

Assume the above instruction is executed at absolute lo-
cation 137B. What is placed in location 227B?

Assume that 50 values are stored in consecutive loca-
tions beginning at relative address TAG. What is the
relative address of the last value?

How many shift-rotate instructions can be combined in
one line of coding? Alter-skip instructions?

What is wrong with the following combinations?

(a) ALS,CLE,RBL

(b) CLA,ALS

(c) BLS,BLS,CLF

(d) ALF ALF

What is a good first instruction for a routine which is to
be entered by a JSB instruction?

Give an instruction which enables the interrupt system.

When the interrupt system is enabled, the control bit for
the device is set, and the device sets its associated flag
bit on, what happens?

An STC instructionis required to enable the transmission
of:

(a) an element of data

(o) one computer word

(c) a character

Data transfers between a channel buffer and a device are
controlled by which instructions?

The instruction HLT 11B,C is stored in absolute loca-
tion 3767g. What is displayed in the P-register when this
instruction is executed?

8-27

8-28

14.

15.

16.

17.

Write a sequence of code which will add the values stored
in CAT and DOG and store the result in SUM.

Calculate X = Y+ Z and compare X to Q. If unequal, cal-
culate X + W + Q and store the result in R2. K equal,
calculate X + W and store in R1.

Test bits 3, 5, and 9 of location TEST,; if all are on (=1),
jump to location ON. If not all are on, jump to location
OFF. Define any constants necessary by giving label and
value; for example, CONST = 191

Calculate X-Y,. If theresult is odd, jump to a subroutine
which tests the results for positive or negative. If the
result is negative, convert to positive and return to the
main program. If the result is positive, return to the
main program. If X - Y is even, the program is to con-
tinue in sequence.

PSEUDO INSTRUCTIONS 9

Pseudo instructions, as the name implies, are not ''real" in-
structions; they are commands to the Assembler rather than
commands to the machine which must be interpreted by the
Assembler.

Pseudo instructions may be classed in six general categories
according to their capabilities:

Assembler Control

Object Program Linkage

Address and Symbol Definition

Storage Allocation and Constant Definition
Arithmetic Subroutine Calls

Assembly Listing Control

The terms program, subprogram, routine, and subroutine all
refer to a set of instructions which are, by themselves, com-
plete. That is, they solve some specific problem or set of
problems. The distinction arises through the manner in which
these entities relate to the solution of the problem at hand.

With a complex problem, for example, it may be possible to
split the problem into separate smaller problems. Each of
these may be solved, coded, assembled and tested by adifferent
person or group of persons. Each of these separate problem
solutions may be considered a subprogram or subroutine; when
combined or linked by pseudo instructions, these form the whole
program or routine. Or, there may be a main program/routine
which calls various subprograms/subroutines during its execu-
tion.

The distinction between these terms is anabstract concept, de-
pending entirely on the way the programmer defines and codes
his problem, using pseudo instructions which define program/
subprogram boundaries, communication areas and linkage
points. '

9-1

9.1
ASSEMBLER
CONTROL

9.1.1
NAM

9-2

These instructions essentially define a set of instructions as a
separate entity, a program. They also provide information to
the Assembler about the program being assembled: whether it
is absolute or relocatable, for example.

The label field of this class of pseudo instruction is ignored by
the Assembler in all cases.

The NAM pseudo instruction defines a relocatable program.
Op Code Operand
NAM [name]

name One to five alphanumeric charac-
ters; the first must be alphabetic
or a period. This name is printed
on the output listing. If omitted,
remarks must be omitted also, or
they will be interpreted as the name.

If a program is to be assembled in relocatable form, the NAM
statement must immediately follow the ASMB control statement
(see Section11.1). Only statements consisting entirely of com-
ments (* in column 1) and/or an HED pseudo instruction may
intervene.

When a NAM instruction is encountered, the program location
counter is set to zero. The first instructionrequiring memory
space following the NAM is assigned relative locationzero;the
second, relative location one, and so forth.

For example:

MB
THE| |P|RIO|GIRIA|M| |L |O|CIA[T|I|ON] ICIOUNITIEIR] [I|S
SIE|T| |T|O] |RE|L|AT|I|VIE| |LIO|CIAIT|IION| [ZIE|R|O
FIOIR| [TIHE| [LDJA| [EMU] [I|N|SRUICITIT|ON| [I]| [FIOIR
TIHE| |X|OR| MJA[SK|I| IIIN|S|T|IRUICIT|II|ON],| [E|TIC|.

9.1.2

ORG ORG defines the origin address of an absolute program, or the
address at which portions of absolute or relocatable programs
are to begin.

Op Code Operand
ORG m

m WhenORG isused todefine the be-
ginning of an absolute program, m
is a decimal or octal integer spec-
ifying the initial setting of the pro-
gram location counter. When ORG
is used to define a beginning ad-
dress of a portion of a relocatable
program, m must be aprogramre-
locatable expression; for a portion
of an absolute program, any ex-
pression. Any symbols used in an
expression must be defined in the
coding previous to the ORG.

All instructions requiring memory space following an ORG are
assigned consecutive addresses starting with the value of the
operand. I used to define the origin address of an absolute
program, ORG must immediately follow the ASMB control
statement (see Section 11.1). Only statements consisting en-
tirely of remarks (* in column 1) and/or an HED pseudo in-
struction may intervene.

For example:

20 25 30 35 40 45 50
INEEE

T|HE| |P|RIO|GIRIAM| |L|O|CIAITIIION| |COUN[TIEIR] IS
SIE|T| |T]|O| [2|9|9|8| |(|O|CIT|A[L]|,| [I[MIPIL[Y|IN|G
TIHA|T| |AIT| TH|E| [L[DJA] |S|AM [IN|S|TIR|UIC|TII|ON
1/S| |A/S[S|I|G|N|E[D] |A|BIS[O|L|U|TIE{ |L|O|CIA|T|I|ON
2/@/@/@,| |ADA| |CIAT| [T|O| [2|9|@]!|,| |E|TIC]|.

T|HE| |F|TI|R|S|T| |AD|A| |P|LIC| |I|NIS|T|RU|C[T|I|ON| [I|S
A|S|S|I|GINE|D| |RIEIL|A|TII|VIE| |LIO|C|A|T|I|ON| |1
([OC|T|AIL) |-|-|T|HE| |L|D|A| |A|T| |FlOL|LIO/WIN|G
TIHE| |O|RIG| [P|S|E|UD|O| |1|S| |THIE|N| |A|S[S|I|G|NE[D
REILIAIT|TIVIE| |LIOICA[T|T|ION| [1|@]@| [(|O/CITIAIL] .

9-3

9.‘.3
ORR

ORR resets the program location counter to the value existing

when an ORG or ORB instruction was encountered.

Operand

Op Code

(not used)

ORR

More than one ORGor ORB statement may occur before an ORR

.

d. If so, the program location counter is reset to the value

it contained when the first ORG or ORB of the string occurred.

1suse

.
.

For example

nw| -[n . i
[O] = [2] 2 2 '

8 [+ 4 2 o 2|0 '

| |Z2|w|[=]0 a2 = Z|0] ~|O|m o] |
O|NJOo[n[Z uw|o | O[W[—~[m][KF wlo
- ~- olZzlo - olx|Z[a[F|Oo|Zz|lo|xcjw]
~lZ[-Z[~]Ola|®@[Sl-lola[a/D]ola|x|Z

2 Ololo|o|lF|[=[T[a|L rld|~[—lojx|~=T|Dv

IS d]o | Oln]o[o|+]| O =

£ x-S g|+- o n|ojn[old|ula+lo[vn

M || E]o[H] ~[J Z|J[]~ FARIESIr-I)
nolnol-lo w - wi~|Oo =

2 Z|O|Z|Oln[Jjw[o]w wln[o[> SW[O .
= d[=[a]Z o zZ|[> T[> =[—-[—]a Sle|n|w

~[(S| W Q|+ xS J]0-

Slwojw I J=[D]Zzjg|[O|aq|g 2
ol>al>lele[> 1 [« g -lola x|>+[—-{O0

g Y I N =30] lJn~=WW O N+
H ol+-[olojwlojw w Fla|T|ojlw[e[S|+
a|l g < x|T|x|lac qd|x|o[« Flx[xT[~|Ol«
o|lda Jwla]~|[O [=) olo| - al-lul-lO
Swl-lw[x [=) Jlald]o|S] - o

8 e~ wWwoww w [~WOjW || J -
[T-[T[2 =lZ|a ANIEICEdL
xlolax|al |+ o rlolwlw <[+ =lonlw
<w|alw|~ ['4 — qd|=c[>|o]|- 4 >
FlZl-lZ[Jdlnwwln =) —~olo|nwuw] [~

? NON O x|n D | (IO E W~
— =-lw|[Z|o[a g|ol« ~w[Z][olo|<
wlnwluno/w[Duw]| ., W x|ldlo woulZzid
I[n[T[un/cjw|olwn Tn|ww/Zzmwlojlww|w
la]-g]—|e[o[m][~ l~|N[e[lam[x][o/oT|a

¥ 3 e =

o 3 ololo ~nja Z +
FA (733 I]] Zlo Z| D[2SS | D =]
[d Ke) ajaia =dKe) =< - | <HI O ojw
e~ siwmiolxe|oc wlo o n oI n][O =4

s (el < <E oo =g o | O < <[<] o

H d o] IO+ o[-iEiala | Ololgic|oEio|oEi-13

S JZlalalx<iEmin sl vnia] I Jzlala@{ o<l I [<ke¥ »w]| >

wl . ™ . ™

_ | o o o ol

3 [= < < = <o]

[2) [[) = w

-[< [72) %) wnln 4

9-4

9.‘.4
ORB

9.1.5

ORB permits the assignment of a portion of a relocatable pro-
gram to the base page.

Op Code Operand
ORB (not used)

The ORB statement requires no operand;the assignment of base
page locations is made by the Assembler. All statements that
follow the ORB statement are assigned contiguous locations in
the base page; this assignment terminates when an ORG, ORR,
or END statement is encountered.

For example:

Comments

25 30 35 40 45 50
mBl.|.[.] [] L[o[A] [s[T]AR] [z]s[[a[s[s[t[c|N[ED] [RIELL[AJTIVIE
NAM| [RTIN[3 Liolclalv|tjoN] [z[eR[ol.| [T[H[E[lo]r]8| [c|aluls[Els
Lipla] [s[T]AR TIHE| 1|88 |S[T|oR|A/G|E| [Lo|c|a|T[T|ON|S| |AIN]D
Ap[a| [RE[L THE| DIECIIMAIL| |1 @] [GENERATIED| [B]Y| [TH|E
OIRE 1)NjPu[T] [B[s|s| |1|@l@] |aln[D] [TIE[N] [DlE/C] 1@
PluT| [8lsls| |i]olg INSTIR[U[cTIT/ON]S| [T/of |B[E| |AlS|s|L|GN|EID| |clo|N-
N DE/C] [I]@ Tl1]/6[ujojuls| [L|oc[alT[T|o]N[s| [TN[[TIHE[[BlAlS[E
GIRR plalGle[.| WHEN| [T[H[E| [oR|R] [1|s| [EN|c|ojulNT[E[RI-
sitla] [RIE[L[+[1 epp/,| [T[HE| [PIRlojc|RIAM| [Llojc/alT[T[olN] [cloluNiT[ER
AlLF[, [AlLF 1/s| |SE[T] [Tlo] [THE] |V|alL|u[E] [z[T] [H[A]D] [BIE-
AN[D| MA[s|K FlO[R[E| [THIE[[o[riB],| [A|N[D] [S[T[A] [REE[L[+[1] [T]s
s[Tlal [RE[L[+[2 Alss[1/G|nE[D] [RIE[LIA[TT|V[E| [L|o[c|AlT(T[o|N] [2].
GRE THE[N[E[X|T] [o|rB| [c|AlusiE|s| [THE| [ojc[T|alL [7]7
skl [olclT] [7]7 GIENER|ATIE[D| [BY| MA|S|K| oic[T| |7|7| [T|o| [BE
IR S[TIO|RE|D| |AF[TIER] [TH|E| Dleic[IMAL] 1g] [IN
LplA] [F[T|NE THE| B|ASE| IPlaGIE]. | [THE| [ORRR] |c[AJuis|E]s
. Loja| [F]INE| |T|o| [B[E| |A|s|s 1 GINED| |R[EIL |AIT|I{VIE
. Lojc|aT|zo|N] le].

END signifies the end of source language coding; the Assembler
terminates each translation pass for a program upon encounter -
ing this instruction.

Op Code Operand
END [m]

m name appearing as a statement la-
bel in current program. If speci-
fied, it identifies the location to
which the BCS loader transfers

9-5

9.1.6
REP

9-6

control after a relocatable pro-
gram is loaded. A NOP should be
stored in this location as control
is transferred to this location by
the loader with a JSB instruction.

If the operand field is blank, the remarks field must be blank
also; otherwise, the Assembler attempts to interpret the first
five characters of the remarks as the transfer address symbol.

For example:

11
N[AM[[PIR|OIG
AlLIUVE| [DIE[C| |3|5
T|ORIE| |B[S[S| [5]0
A|S K OIC|T| [V|7|7|7|7]|7 LIO|CAIT|IT/ON| BIEG|I|N| |(IDEN|T|I|F|I|E|D| B)Y
E/G|IN| [N|OP EIND| |I|N/S|TIR[UIC|T|I|ON|)| |I|S| |T|HIE| |P|O|S(I|T|I|O
L|DJA] |VIAILUVE AT H|I|CH MJAICH|INIEI-EXE|ICUTAB|LIE| |C/OD]-
AD|A] |I|N|P I|NG| |BIE|GII|NS|.| |THE| |P|RIO/GIRIAMME|R U|LID
. NIO|T| WII|SH| [T|O] |T|IRIAIN|SIFIERR| |CION|T|ROIL| |T|O
JVIAILIUE],| |S|I|NICIE| [THIE| |DIEICIIMAL| [3|5] |IN
T|IHAT| |LIO|C/AT{I|O|N| |I{S| [N|O[T| |[EIX|EIC|UTIABLIE|.
| THE| |[JMP| B|E[GIN|,|I| |IIN/S[T|RUCT I|ON
RE|TIUR|NS| |CIOINTR|O|L| [T|O| |THIE| |L/OJADER
P

The REP pseudo instruction causes the instruction immediately
following the REP to be repeated a specified number of times.
REP may be used only when the source program is translated
by the Assembler provided for 8K or larger machines (8,192-

word memory or larger).
Label Op Code

Operand Comments

REP

n

any absolute expression, specify-
ing the number of times the instruc-
tion following the REP is to bere-
peated. If symbolic terms are
used, they must be defined in the
source program previous to the
REP.

9.1.7
IFN/IFZ

A label, if used, is assigned to the first repetition of the in-
struction following the REP. A label should not be specified
in the instruction being repeated, since it would not then be
unique.

An REP pseudo instruction followed by another REP pseudo in-
struction is an error; the Assembler issues a diagnostic mes-
sage and no repetitions occur.

REP may not be used to repeat comment lines.

Example:

would be translated as:

AFT DEC45
DEC 45
DEC 45
DEC 45

The IFN and IFZ pseudo instructions cause the inclusion of
instructions in a program provided that either an '"N'" or "Z",
respectively, is specified asa parameter for the ASMB control
statement. The IFN or IFZ instruction precedes the set of
statements that are to be included. The pseudo instruction XIF
serves as a terminator. If XIF is omitted, END acts as a ter-
minator. IFN and IFZ may be used only when the source pro-
gram is translated by the assembler provided for 8K or larger
machines.

Label Op Code Operand Comments

IFN All source language statements

. appearing between the IFN and

the XIF pseudo instructions are

. included in the program if the

XIF character '""N" is specified on
the ASMB control statement.

9.2
OBJECT

PROGRAM
LINKAGE

9.2.1
COM

9-8

IFZ All source language statements

. appearing between the IFN and

the XIF pseudo instructionsare

. included in the program if the

XIF character "Z'" is specified on
the ASMB control statement.

‘When the particular letter is not included on the control state-
ment, the related set of statements appears only on the
Assembler output listing.

Any number of IFN-XIF andIFZ-XIF sets of coding may appear
in a program, however, they may not overlap. An IFZ interven-
ing between an IFN and XIF (or vice versa) results ina
diagnostic being issued during compilation; the second pseudo
instruction is ignored. When both pseudo instructions are used
in the program and both characters are entered on the control
statement, the character that appears last determines the set
of coding that is to be included in the program; both sets may
not be selected in the same assembly.

These pseudo instructions establish '"'links'', or means of com-
munication, between a main program and its subprograms or
between several subprograms which are to be run as a single
program.

Labels may be used, but are ignored by the Assembler. The
operand field is usually divided into many subfields, separated
by commas. The first space not preceded by a comma or left
parenthesis terminates the entire field.

The COM pseudo instruction reverses a block of storage loca-
tions which may be used by several relocatable subprograms.

Op Code Operand
COM nameq[(sizeq)] [, namey[(sizey)],

...,namey[(sizey)]]

Op Code Operand

name; Each name identifies a segment of
the block of common storage for
the program in which the COM ap-
pears. This name may be used in
the operand field of the DEF, ABS,
EQU pseudo instructions, or any
Memory Reference instruction.
When used, it refers to the first
word of the segment.

size; A decimal or octal integer speci-
fying the size (in words) of the re-
lated name portion of the block.
If size is omitted for a name, one
word is allocated.

To refer to the common block, other subprograms must also
include a COM statement. The segment names and sizes may
be the same or they may differ. Regardless of the names and
sizes specified in the separate subprograms, there is only one
common block for the combined set.

As a simple example, suppose that two subprograms are to use
the same data which isread into the computer from anexternal
device. The data consists of names of employees at a company.

These names are read one at a time into a common area. One
subprogram refers to the whole name, including the last name,
first name, and middle initial. Another subprogram refers to
these separately. This could be coded as follows:

[

9-9

Label Operation Operand
10

_‘
S
m
2

Any number of COM statements may appear in a subprogram.
Storage locations are assigned contiguously; the length of the
common block is equal to the length of all segments named in
all COM statements in the subprogram.

Example:

Label Operation Operand

9-10

9.2.2
ENT

Organization of the common block:

PROG1 PROG2
Segment Segment Common Block
Name Name Location
ADDR1 AAA Relative Location 0
1
AAB 2
3
AAD 4
ADDR2 5
6
7
8
9
ADDR3 10
11
12
13
14
ADDR4 15
16
17
18
19

The first common length declaration processed by the BCS loader
establishes the total common storage allocation. Subsequent
programs must contain common length declarations which are
less than or equal to the length of the first declaration.

The loader also establishes the origin address (common relo-
cation base) of the common block; the origin cannot be set by
the ORG or ORB pseudoinstruction. All references to the com-
mon area are relocatable.

ENT defines entry points to the program or subprogram.

Op Code Operand
ENT nameq[,names,...,name,]

name Each nameisa symbolassigned as
a label for some instruction in the
program.

9-11

9.2.3
EXT

9-12

Entry points allow another subprogram to refer to that speci-
fied point in the subprogram. A maximum of 14 entry points
may be specified for a subprogram. Symbols appearing in an
ENT statement may not also appear in EXT or COM statements
in the same subprogram.

EXT defines external points, labels in other subprograms ref-
erenced in this subprogram.

Op Code Operand
EXT nameq[,namey,...,name]

name Each name must be defined as an
entry point in some other sub-
program.

The names defined in the EXT statement may be used in Mem-
ory Reference instructions and the EQU and DEF pseudo in-
structions. An external symbol must appear alone in a Mem-
ory Reference instruction; it may not be in a multiple term ex-
pression or be specified as indirect. References to external
locations are processed as indirect addresses linked through

the base page in a manner similar to that described in Section
5.1.2.

Example:
Label Operation Operand Comme
5 10 15 20 25 30 35 40 5 50
[NJAM] [PR[o]clA
skl | Isjsls| 1]
sitl | [8[s]s]
G|z/N[[NolP
Lol |y
s[T/a| Mals|k J/AMA[L| [AND| [STIART| |ARE| [REIFIERIRE[D| [T|O
. 1N [P[Rloje[Al, | [Blu|T| |AlRIE| |AIClTUALIL]Y] [Liolc]a/-
T/1/oN[s| 1[N [P[RO[6[B].| HE[NICIE[,| [T HEY [AR]E
p[E[F|T|N[E[D] |As| [E[x[TIE[RN[a LS| [I[N[[P|R[0[G]a
J[siB| [S[T|ART AIND| [E[NTIRY] [Plo/z|N[T[s| [T|N] [P[Ri0/e]B
L(|D|A] [J|A|M|AIL
EIND| [BE[S[T]N

9.3
ADDRESS AND

SYMBOL
DEFINITION

9.3.1
DEF

Comments.

NJaM] [PIR[oj6[B

AIR|T] |N[OP
L[D/A] |CIN|S|T
A[D|A| [MAIS|K
. C|N|S|T| |A|N|D! M|AISIK| |AIRE| R[EIFIEIRRIEID| [T|O
i IN PROGW BUT| |JARIE| |A|C[T[UJAJLILIY
L[O|C/ATTIL/ONIS| I|N] |P|IRIOG|A|.| HEINICE
THIE|Y| |ARI|E| [DE|F|IINIED| [A|S| [EX[TIERNA|LIS
I|N| |P|RIO|G|B| |AN|D| [EIN|T|R[Y| |P|O|I|N[T|S| I[N
AMIAIL P|RIO[G|A .

The pseudo operations in this group assign a value or a word
location to a symbol used as an operand elsewhere in the pro-

gram.

The address definition (DEF) pseudo instruction provides the
means to define a direct or indirect address.

Operand

Label Op Code
Iname DEF

Iname

m

I

m[,I]

symbol used as an operand of a
Memory Reference instructionus-
ing indirect addressing.

any address expression valid for
type of program being assembled
(absolute or relocatable).

indirect addressing indicator. Sig-
nifies that the address specified by
m is used as an indirect address.
(For multiple level indirect ad-
dressing).

The Assembler generates a 15-bit address pointing to the loca-
tion specified by m. This address may be referred to in other

instructions by lname.

9-13

9-14

For example:

Label Operation Operand .
1 ‘5 10 15 20 25 30 35 40 45 50

L|D|A] [S|AILILIY],|T T|HE| |A|-|RE/G|I|S|TEIR |I|S| |LIOJAID[ED ITH
. TIHE| |D|EICIMAIL| |1 @ |GIEN|ERJAITEED| |BlY| [THIE
. MAR|GE| DIEIC| |I/@| [I|N[S|TIRUIC|TII/ON

EIND

The m parameter in the JSB statement may be a symbol which
appears as an operand in EXT or COM statements in the same
program.

For example:

Comments

L

J|s|B] |[JMPJ|AD|,|I THE| |J[S{B| [T|RIAN/SFIEIRS| |C/O|N[TROL| |T|O
. THHE| |S|UBR| [R|IOUT|I NIE
E|NID

The I option in the DEF statement may be used for multi-level

indirect addressing. For example:

Label Operation Operand
1 5 10 15 20 25 30 35

N[aM] [Blo[vTIN

J SB[{X|S|O|,|I THIE| |J|S|B| [TRJAIN/SIFIEIR|S OIN|TIRIOL| |T|O
L |O|C|AT|I|O|N| |SIO|R|T|,| |[DE|FIINJEID| |AIS| AN
EX|TER|NJAL

E|X|T| [SIOR|T

E N|D

The DEF statement allows address modification in relocatable
programs. Relocatable programs should not modify memory
reference instructions directly, as the example below illus-

trates.

Incorrect Example:

Absolute
Location Mnemonic Instruction

71

100 LINK DEF TBL
101 o \

. TBL BSS 100
37T .
--------------------- Page boundry —===-m - e
4000 LDTBL LDA TBL
4001 .

ISZ LDTBL
JMP LDTBL

LINK,I\

(Provided by the BCS
Relocatable Loader)

9-15

9.3.2
EQU

9-16

The "LDTBL LDA TBL'"and'"TBL BSS 10¢'" instructions are in
different pages; therefore, the BCSRelocating Loader provides
a 15-bit link address in the base page and modifies the address
of the LDTBL instruction to refer to this link address (see ar-
rows). The ISZ instruction, then, erroneously increments the
reference to the link address, so that the next time the LDTBL
instruction is executed, the A-register is loaded with the con-
tents of the location whose address is contained in absolute lo-
cation 101.

The following assures correct address modificationduring pro-
gram execution:

Label Operation Operand Comments

1 5 10 15 20 25 30 35 40 45 50
NJAM| [E[X|AMP
THIE| I|S|Z| |N|O]W |C|OR|RIE|C|T|L[Y| MODI|I|FIIES
THIE| [RIEFIERIEINCIE| |T|O| [T{BIL] [B]Y
INICIREE|IMEIN|TITING| (THE| [I |S/-[B[L|T
ADIDRIEE[S|S| |A|T| |[LIOIC/A|T|I|ON]| |I|TBIL

ND

EQU assigns to a symbol an address value other than the one
normally assigned by the program location counter.

Label Op Code Operand

Ilname EQU m

Iname symbol which may be used torefer
to the value represented by m.

m any expression, relocatable or ab-
solute; cannot be negative. Must
be previously defined in the source
program.

9.3.3
ABS

EQU may be used to equate two address symbols, such that both
symbols refer to the same location, or it may be used to give
an absolute address value to a symbol.

For example:

Label

1

5

Operation
10

Operan

15

N[AM] [RIE M|I
TIABILIE| |BIS|S| |1|@ (o T|N[ES| |Al [1]#] WOIR|D| [S|T|OIRIAIGIE[|A|RIEA|-I-
: TIABILIE| |I|S| |AISISIOICTIAITIED| WI|T[H |FII|RS|T
| WOR[D| |O|F| [TH|1[S| |S|T|O|RIA|GEE| |A[RE|A])
L|DIA] [TBIL2[+|3 L|OJADIS| |A-RE|G]I|STIE|R I/T|H 9]TH| WORD
OF| [TIABILIE| |ARIEIAl. | |LIDJA| [TIABILIE + ou(LD
PEIRIFIO|RM THIE| SIAME| [OPE|RATIIO
EIND
Lobel Operation Operand Comments
1 3 15 20 25 30 35 40 45 50
NJAM] |REIGL|S
A EQU| |9 TIHE| |S|Y|MBOL{ |A| |T|S| EIQUATIED| [T|O] |AB|S|O|LUITE
B ElQU| |1 Llocla|T|Tlo|N| 8] |([Ljo[cla[T|T|O|N| [RIEIFIE[RIRII|NG| |T|O
. A-RE|GII|S|TIEIR].| [SYMBIOL| |8 TS| E|QUATIEE|D |TO
. AB|SO|L|UTIE] |[L[O|ICIAITIT [ON (|RIEFE|RRIING| |T|O
THE| B|-IREGI[STIER|)|.
L|D|A| [B THE| |A[-RE|GI|STER| |I|S| [LOJADE|D| WI|TH| [THE
. CIONTIE|N[T|S| |O|F| |THE| B|-|RIE|GIS[TEIR.
END |

ABS defines a 16-bit absolute value.

Label Op Code Operand
Iname ABS m
Iname A label symbol, if used, refers to

the value represented by m.

9-17

Label Op Code Operand

m any absolute expression;if a single
symbol is used, it must be defined
as absolute elsewhere in the pro-

gram.
For example:
Label Operation Operand Comments
1 5 10 15 20 25 30 35 40 45 50
N[aM[[olafz]s[y
alg Elou| [3)5 pE[FlIin[Els| Is[yMilol] |alg] |Tlo| REFE]R] [T]o
algls|olL]ulT[E] ILlolc|alr]io[n] [3]s
M35 AlBls| [-ajs LlolclalT[tlo[n] m[3]s! Icoln[T]al1|N[s| |-[3]5
pl7lg alBs| [aBl+]alB Llolc/alT|tlo|n] [Pl7ig] Iclo|n|T|alINs| 7|0
P|310 ABiS| |AB|-|5 LioiciAIT|I|o|N| P{3/@] |CIOINTIAIINIS| 3|0
E[ND
9.4
STORAGE
ALLOCATION
AND CONSTANT
DEFINITION These pseudo instructions define blocks of storage locations and
constants.
9.4.1
BSS BSS reserves a block of consecutive memory locations for data

9-18

storage or for a work area.
Label Op Code Operand
Iname BSS m

Iname A label symbol, if used, refers to
the first word of the defined stor-
age area.

m apositive integer or any expression
whichresults in a positive integer.
If an expression is used, the sym-
bols must be previously defined in
the program. :

The program or base page location counter advances according
to the value of the operand. The initial content of the area re-
served by the statement is unaltered.

For example:

Label Operation Operond
1 5 10 is 20 25 30 35 40 45 50

NJAIM| [E[X|AM

Al 1 olo|-wWoRlp| ls[TlolralclE| |alrlElA] [1]S| ISEIT
als[tplEl.| [TlnlE[[F1]r|s[T| Wlolrlp] oF| [TlnE
siTlolRIa[GlE| [AR[EIA Malv] [BIE[REEFIEIRIRIE[D] [T|o

. slv| [Tialgl,] [TIH[el Islelcloinlp| Blv| [Tlalsle[1],] [€[Tlc
Elnjp
9.4.2
ASC ASC generates the binary representation of a string of ASCII

(American Standards Code for Information Interchange) char-
acters into consecutive computer words.

Label Op Code Operand
Iname ASC n, (2n characters)

Iname A label symbol, if used, refers to
the first word of characters gen-
erated by the operand.

n any expression resulting in an un-
signed decimal value in the range
1 through 28. Any symbol used
must be defined in the coding pre-
vious to the ASC.

(2n characters) ASCII characters to be generated.
Since the binary representation of
two ASCII characters may be stored
in one computer word, 2X(number
of words requested by n) is the
number of characters generated.
If less than 2n characters are de-
tected before the end-of-statement
mark, spaces are filled in the re-
maining spaces. If more than 2n
characters are specified, the ex-
cess characters are treated as re-
marks.

9-19

9.4.3
DEC

9-20

Each character generates seven binary bits; these bits are right-
justified in each half of the computer word.

For example:
TTYP ASC 2,ABC generates the following:

15 87 6 [0}

7 V/

Z 1000004100001 0] myg1apel TTYP refers
Z (binary code for A) /é (binary code for B) to the first word.

/1 0000 1 1,/01 00000

é (binary code for C) é(binory code for space)

The code for the ASCII symbols @ (carriage return) and
(line feed) cannot be generated by ASC. The OCT pseudo
instruction (Section 8. 4. 4) must be used.

DEC generates a string of decimal constants into consecutive
binary words.

Label Op Code Operand
Iname DEC dq[,dg,...,d,]

Iname A label symbol, if used, refers to
the first value generated by the
operand.

d; adecimal integer value or floating
point expression

INTEGER CONSTANTS

If d, is a decimal integer, it may be positive, negative, or zero,
in the range of 0 to 21°-1, or 32,76719. The integer constant
is converted into one binary word and appears as follows:

15 14 0
l sl number J

sign bit; 1 implies negative number
(in 2's complement form)

0 implies positive number

Examples:

Instruction Results

DEC 17,-17,32767 [0 _000 000 000 000 111
1 111 111 111 101 111
0 111 111 111 111 111

DEC -32767,8 1 000 000 000 000 o001
0 000 000 000 001 000

\ sign bit

FLOATING POINT CONSTANTS

The floating point capability expands the set of numbers which
can be expressed from whole numbers in the range -32767<int
< 32767 50 any real number in the approximate range 10~ 8 <
real <10°8,

This is accomplished through the conversionof these real num-
bers to binary floating point format.

These floating point numbers are expressed in the operand field
of the DEC pseudo instruction in any of the following forms,
where n is any whole number and e is the power of 10 to which
the n portion is multiplied.

Form Examples

:r_l._n— 6.7, -32.691, +91.75, 98.6
£n, 6., -713., +321764., 200.
£.n .75, +.000001, -.3
+tn.nEte 3.2E2, 517.9E-4, -21.53E-1

(3.2E2 expresses 3.2 X 102, or 4
320; 517.9E-4 expresses 517.9x10"
or .05179; -21.53E-1 expresses
-21.53x107%, or -2.153)

’

+.nEzte .21E3, .100975E-2, -.9E-5

(.21E3 expresses .21 x 103, or 210;
.100975E-2 expresses . 100975 x 10-2,
or .0010Q975; -.9E-5 expresses
-.9%x107Y, or -.000009)

9-21

9-22

Form Examples
+tn.Ezte -3.E-5, 700. E3, 121766. E-4

(-3. E-5 expresses -3 X 10-9= -.00003;
700. E3 expresses 700 X 103, or
700,000; 121766. E-4 expresses
121,766 x 10~%, or 12.1766)

tnEzte -321E5, T9E-2, T69E-7

(-321E5 expresses -321 X 105, or
32,100,000; 79E-2 expresses

79 x10-2, or .79; T69E-T expresses
769 x 10-7, or .0000769)

Any number expressed in one of theabove formats is converted
by the Assembler to floating point format; expressed asa 23-bit
binary fraction and a 7-bit binary exponent. The binary point
of the fractional portionis assumed to the immediate left of bit
14 in word 1. Both the fraction and the exponent carry a sign
bit indicating positive (0) or negative (1); thus a floating point
number occupies 32 bits, or two computer words:

15 14 0
word 1 [5.] fraction J

\ sign of fraction

15 8 7 1 0
word 2 l fraction exponent lszl

sign of exponent j

As illustrated by the expressions 2.5, 250E-2, .25E1, there
are many ways of expressing the same value. These expres-
sions are all converted to the same floating point format through
a convention called normalizing.

Normalizing consists of placing the point directly to the left of
the most significant digit and adjusting the exponent such that
the normalized number and the number specified have the same
value. For positive binary numbers, the most significant digit
is the left-most 1-bit. For negative binary numbers (in 2's
complement form) the most significant digit is the left-most
zero-bit. For example, to convert the expression 45E-1 to
normalized binary:

_ _ _ _ 3
45E-1=4. 510-—4. 48— 100. I,=. 10012 X2

The expressions 4.5, 4500E-3, .00045E4 all result in the same
normalized binary number . 10019 x 23,

To convert a decimal number tofloating point format, this pro-
cedure is followed:

(1)

)

3)

(4)

Convert the decimal number to binary

Examples: (a) 2.5;p=2.4g=10.1,

(b) -435E-2 = -4.35;0 = -4.2546314g =
~100.010101100110011001100, =
011.101010011001100110100,

(in 2's complement)
Normalize
(&) 10.1y=.101x 22
(b) 011.1010100110011001101004 =
.011101010011001100110100 x 2°

Convert the exponent to binary (if negative, convert
to 2's complement)

(b) 3y0=11,

Express in 2-word floating point format

(a) ,|0| 101 000 000 000 000
0 000 000 000 000 10/0

sign of fraction A sign of exponent

() J1}011 101 010 011 001/
1 001 101 000 000 110

9-23

9.4.4
ocCT

9-24

Examples of DEC:

Instruction

DEC -.695,400E-4

DEC 2.5,-1.0

word 1 |1010011100001010

word 1 |0101000000000000

Generated floating point values

2 10011110100000000
3 {0101000111101011
4 11000010111111001

2 10000000000000100
3 |1000000000000000
4 {0000000000000000

OCT generates one or more octal constants in consecutive words.

Label

Iname

Op Code

Operand

OCT

Iname

0i

01[,09,...,04]

A label symbol, if used, refers to
the first octal constant generated.

octal constant, one to six digits:
bibgbgbgbgbg, where b; may be 0
or 1, by-bg may be 0 -17. Constants
less than 6 characters are right-
justified in the computer word. If
no sign is given, the constant is
assumed positive. The letter B
must not be used after the con-
stants in the operand field; it is
used whendefining an octal termin
any instruction other than OCT.

9.5
ARITHMETIC
SUBROUTINE
CALLS

9.5.1
MPY

Examples:

Instruction Generated Words
15 0
OCT 171 [0000000000111111|
OCT 107642, -177,10101 1000111110100010
1111111110000001
0001000001000001
OCT 1976 (Illegal; octal constants only
include digits 0 through 17)
15 0
OCT -1777177 [1000000000000001]
OCT 177B (Illegal; B is not used to in-

dicate an octal number in
the OCT pseudo instruction.)

These pseudo instructions provide calls to arithmetic sub-
routines which perform often-used functions not available with
any one machine instruction.f This group of pseudo instructions
may only be used in relocatable programs; the operand field
may contain any relocatable expression or an absolute expres-
sion resulting in a value less than or equal to 77 8.1

This pseudo instruction calls a subroutine which multiplies the
contents of the A-register by the contents of a memory location
or a literal and stores the product in registers B and A.

Label Op Code Operand
MPY fm[,1]1
1 lit

m absoluteor relative address. If ab-
solute, must result in value less
than or equal to 77g.

T Each call generates two words of code:
JSB . <mnemonic>
DEF m[,I]
1If the configuration includes the Extended Arithmetic Unit
option, the mnemonics MPY, DIV, DLD, and DST result in
machine instructions; they may beused in absoluteas well as
relocatable programs.

9-25

9-26

Label Op Code Operand

I indirect addressing indicator
lit literal value

The result is stored right-justified in the combined B- and A-
registers:

|-<-—— B— REGISTER—»-"-—— A-REGISTER ——1

15 14 l3l2ll|0..7‘543!l0l IS413121110 98 7 65 43 2 10

18“ 8|O 89 87 86 85 84 83 82 8| 80

| J
v
|>SIGN OF PRODUCT VALUE OF PRODUCT

The lower blocks (8i) indicate the octal place value of the bit
positions. Negative numbers are in two's complement form.

For example:

Before Execution After Execution
MPY VALUE (A) = 000173g (B) = 000000

(VALUE) = 0000348 (A) = 0065648

(B) = any quantity (VALUE) = 000034g
MPY DANTE (A) = 1013254 (B) = 1477614

(DANTE) = 0611115 (A) = 154275

(B) = any value (DANTE) = 0611114
MPY D20 (A) = 0000754 (B) = 000000

(A) = 002304

Note that in the second example, the negative answer (in eight's
complement form) is really 1774354275. Split into the two 16-
bit registers and right-justified, it is represented as shown
above.

9.5.2
DIV

9.5.3
FMP

DIV divides the contents of B and A by the contents of a mem-
ory locationor a literal; the quotient is stored in A and there-
mainder in B.

Label Op Code Operand
DIV m[,I]
lit

m absolute or relocatable address.
If absolute, must result in value
less than or equal to 77g.

I indirect addressing indicator
lit literal value

Initially, the dividend is stored right-justified in the combined
B- and A-registers:

B A

Ll I 1 J
" sign of dividend

An attempt to divide by zero causes the overflow bit to be set.

For example:

Before Execution After Execution
DIV ALAN (B) = 000000 (B) = 000000

(A) = 0541478 (A4) = 000563g

(ALAN) = 000075g (ALAN) = 000075g
DIV = B73 (B) = 000000 (B) = 0000028

(A) = 0000758 (a) = 000001¢

This pseudoinstruction multiplies the floating point quantity in
registers A and B by a two-word floating point quantity in mem-
ory or a literal and stores the result in the A and B registers
in floating point format.

9-27

Label

For example:

FMP SOCK

FMP = F10.0

9-28

Op Code Operand
FMP 3 m[,I]
lit

m location of first word of two-word
floating point quantity

I indirect addressing indicator

lit literal value

Before Execution

(A) = 0500004

(B) = 000004g

Quantity in A and B
registers represents
2.51 in floating

point format.

(SOCK) = 100000g
(SOCK+1) = 000000

Quantity in two
memory locations

represents -1,04q in

floating point format.

(A) = 074000
(B) = 000004¢

Quantity in A and B
registers represents
3.751¢ in floating

point format.

After Execution

(A) = 1300004
(B) = 000004g

Quantity in A and B
registers represents
-2.510 in floating

point format.

(SOCK) = 100000g
(SOCK+1) = 000000

(A) = 0454004
(B) = 000014

Quantity in A and B
registers represents
37.51¢ in floating

point format.

9.5.4

FDV FDV divides the floating point quantity in registers A and B by
a two-word floating point quantity in memory or a literal and

stores the result in the A- and B-registers in floating point

format.
Label Op Code Operand
FDV m[,I]
lit

m location of first word of two-word
floating point quantity

For example:

FDV SOCK

FDV = F2.0

I indirect addressing indicator

lit literal value

Before Execution

(A) = 050000g

(B) = 000004g
Quantity in A and B
registers represents
2.5 in floating
point format.

(SOCK) = 100000g
(SOCK+1) = 000000
Quantity in two

memory locations
represents -1,0 in

floating point format.

(A) = 074000
(B) = 000004g

Quantity in A and B
registers represents
3.751¢ in floating
point format.

After Execution

(A) = 130000g

(B) = 000004g
Quantity in A and B
registers represents
-2.51¢ in floating
point format.

(SOCK) = 1000004
(SOCK+1) = 000000

(A) = 074000g

(B) = 000002g
Quantity in A and B
registers represents

1. 8751 in floating
point format.

9-29

9.5.5
FAD

This pseudo operation adds the floating point quantity in regis-
ters A and B to a two-word floating point quantity in memory
or a literal and stores the result in the A- and B-registers in
floating point format.

Label

For example:

FAD SOCK

FAD = F16.25

9-30

Op Code Operand
FAD m[,I]
lit

m location of first word of two-word
floating point quantity

I indirect addressing indicator

lit literal value

Before Execution

(A) = 0500004
(B) = 0000044

Quantity in A and B
registers represents
-2.51¢ in floating
point format,

(SOCK) = 100000g
(SOCK+1) = 000000
Quantity in two
memory locations
represents -1.0 in
floating point format.
(A) = 074000g

(B) = 000004g
Quantity in A and B
registers represents

3.75 in floating point
format.

After Execution

(A) = 060000g

(B) = 000002g
Quantity in A and B
registers represents
1.51¢ in floating
point format.

(SOCK) = 100000g
(SOCK+1) = 000000

(A) = 070000g
(B) = 0000104

Quantity in A and B
registers represents
1410 in floating point
format.

9.5.6
FSB

FSB subtracts a two-word floating point quantity in memory or

aliteral froma floating quantity in registers A and B and stores
the result in the A- and B-registers in floating point format.

Label

For example:

FSB SOCK

FSB = F3.5

Op Code Operand

FSB

m[,I]S

lit

m location of first word of two-word
floating point quantity

I indirect addressing indicator

lit literal

Before Execution

(A) = 050000¢

(B) = 000004¢
Quantity in A and B
registers represents
2.9510 in floating
point format.

(SOCK) = 100000g
(SOCK+1) = 000000
Quantity in two

memory locations
represents -1.0 in

floating point format.

(A) = 0740004
(B) = 000004

Quantity in A and B
registers represents
3.75 in floating point
format.

After Execution

(A) = 070000g

(B) = 000004g
Quantity in A and B
registers represents
3.510 in floating
point format.

(SOCK) = 100000g
(SOCK+1) = 000000

(A) = 040000g

(B) = 000377g
Quantity in A and B
registers represents

. 251 in floating
point format.

9-31

9.5.7
DLD

9.5.8
DST

9-32

DLD loads the A and B registers with the contents of two con-

secutive words in memory.

Label Op Code Operand
DLD m[,I]

m location of first word -- the con-
tents of this location is loaded into
the A-register. Location m+1 is
loaded into B-register.

I indirect addressing indicator

For example:

Before Execution After Execution
DLD FLPT (A) = any quantity (A) = 0177718

(B) = any quantity (B) = 177400g

(FLPT) = 017777g (FLPT) = 017777g

(FLPT+1) = 177400 (FLPT+1) = 1774004
DLD IND, I (A) = any quantity (A) = 035467g

(B) = any quantity (B) = 054100g

(IND) = 002177g (IND) = 002177g

(2177g) = 035467g (2177g) = 0354674

(2200g) = 0541004 (2200g) = 0541004

DST stores the contents of the A and B registers into two con-

secutive memory locations.

Label Op Code

Operand

DST

m[,I]

location of first word -- the con-
tents of the A-register is stored
in this location. The contents of
the B-register is stored in loca-
tion m+1,

indirect addressing indicator

9.5.9
SWP

9.6
ASSEMBLY
LISTING
CONTROL

For example:

Before Execution After Execution
DST TROUT (A) = 0000424 (A) = 000042g
(B) = 177401g (B) = 1774014

(TROUT) = any quantity (TROUT) = 000042g
(TROUT+1) = any quan- (TROUT+1) = 1774018
tity

DST IVAN,I (A) = 017532g (A) = 000000
(Note 1 in

(B) = 1525258 coumn15) (B) = 0170008
a—__
(IVAN) = 102027 (IVAN) = 1020275

8
(2027g) = 002777 (2027g) = 0027774
(2777g) = 000000 (2777g) = 000000

(3000g) = 017000 (3000g) = 017000g

This instruction exchanges the contents of the A and B
registers. The contents of the A register is shifted into
the B register and the contents of the B register, into the A
register. The SWP instruction may be used only in a con-
figuration which includes the Extended Arithmetic Unit option.

Label Op Code Operand

SWP
The instruction has no operand.

Assembly listing control pseudo instructions allow the user to
control the Assembly listing output during pass 2 or 3 of the
assembly process. These pseudo instructions may be used only
when the source program is translated by the Assembler pro-
vided for 8K or larger machines (8, 192-word memory or larger).

9-33

9.6.1
UNL

9.6.2
LST

9-34

UNL allows suppressionof selected portions of the source pro-
gram from the assembly listing.

Label Op Code Operand
UNL

All listable output following the UNL pseudo instruction is sup-
pressed until either an LST or END pseudo instruction is en-
countered. The UNL is also suppressed from the listing. The
source statement sequence numbers, printed incharacter posi-
tions 1-4 of the listing, are incremented to allow for the in-
structions encountered between a UNL and an LST or END.
Diagnostic messages for errors encountered in the suppressed
instructions will always be printed. The binary object pro-
gram is not affected.

LST re-initiates the listing of the sdurce program which was
suppressed by a previous UNL psuedo instruction.

Label Op Code Operand

LST
A UNL instructionfollowed by another UNL instruction, an LST
followed by an LST, or an LST not preceded by a UNL are not
considered errors by the Assembler.

Example:

The Assembler listing shownbelow was generated from the fol-
lowing source program segment:

Liola] lkinjT|Th

s[vla] [Plulr[Li2

UNIL

1/slz| [clolulniT

Jmp| RlED

Ls[T
P14 BUBL2 B62UF1R LDA KNIT1
YU1S Y9913 BT206 4r STA rurL2
G619 LST

Note that the UNL, ISZ, and JMP instructions are not listed,
but the source statement sequence number is increased from

9915 to PP19.

9.6.3
SKP

9.6.4
SPC

SKP causes the Assembly listing to be skipped to the bottom of
the current page.

Label Op Code Operand

SKP

The SKP instruction is not printed on the listing; however, the
source statement sequence numberis incremented to allow for
the SKP. Listing continues with the instruction following the
SKP at the top of the next page.

SPC causes the Assembly listing to be skipped a specified num-
ber of lines on the list output, or tothe bottom of the page (which-
ever occurs first) before printing the next instruction.

Label Op Code Operand

SPC n

n any absolute expression; specifies
the number of lines to be skipped.

The SPC instruction is not printed on the listing; however, the
source statement sequence numberis incremented to allow for
the SPC. Listing continues with the instruction following the
SPC.

For example:

The Assembler listing shown below was generated from the fol-
lowing source program segment:

1
LoA] FREEN
S|TiA] |FII|SB|Y
siplc[[3
Loja| [cloloc
sita] [plojolL
1
G021 GO01T 66200 6K LDA FREEN
0U22 YDY2D BT260 TR STA FISBY
P24 DOB21 B62002R LDA COOL
U255 VOB22 ¥T2003K STA POOL

Note that the SPC instructionis not listed, butthe source state-
ment sequence number is incremented from @022 to g024,

9-35

9.6.5
sUP

9.6.6
UNS

9-36

SUP suppresses the listing of all but the first code line gener-
ated by the following pseudo instructions:

ASC DIV FAD FSB
OCT DLD FDV MPY
DEC DST FMP

SUP also suppresses the listing of literal values generated by
the Assembler, if specified immediately before the END state-
ment in the source program.

Label Op Code Operand
SUP

UNS re-initiates the listing of extended code lines which were
suppressed by an SUP instruction.

Label Op Code Operand
UNS

An SUP instruction preceded byan SUP, UNS preceded by UNS,
or UNS not preceded by SUP is not considered an error by the
Assembler,

For example:

The listing segment shown below was generated from the fol-
lowing source program segment:

|
L{D/A] |L|I|NEI
S|T/A| [BABILE
S|UP
LIINE/I] [ASC] |1|5],|BLIE[S|S|I|NIG|S| ON|] [THIEIE],| |LII|T|TLIE[MAN
UIN|S
LIIINE[2] |AS|C| [!|5], BIARIE|FIO|O|T| [B|O]Y IITH CHHIEEEK OF| ITAN
I

guaT
0]
vB29
“DIP39
W31
By 32

9.6.7
HED

D23
o224

BPV2o

DI 44
Jin 45
B3 46
B3a a7
203 59
Q0351
ey sa
DYY 53
BB o4
BYY S5
256
20357
0oy 6w
By el
Wiy 62

B 6242 5R
DI12010R

Jalll4

Batlal
¥51105
D43117
B4a1524
pavloe
347531
ywan1217
044524
0440 40
¥41510
42585
BA45440
B4T506
p2Pvl124
Daps5lé

LDA LINEL
STA BABLE
SUP
LINEl ASC 15,BLESSING> ON THEE, LITILE MAN
UNS
LINE2 ASC 15, BAREFOOT BOY WITH CHEEK OF TAN

This pseudo instruction causes a specified heading tobe printed
at the top of a page.

Label

Op Code Operand
HED m

m a string of up to 56 ASCII charac-
ters to be printed as a heading

If HED is specified before the NAM or ORG pseudo instruction
at the beginning of a program, the heading m will be printed at
the top of the first page of the pass 2 list output and at the top
of every following pageuntil another HED instruction or the end
of the listing occurs.

If HED is specified elsewhere within the program, the Assem-
bler skips to the top of the next page, prints the heading, and
continues listing with the instruction following the HED.

The source statement containing the HED pseudo instruction is
not printed on the listing, but the source statement sequence
number is incremented to allow for the instruction,

9-37

9-38

Example:

The listing segment shown below was generated from the fol-
lowing source program segment:

Label Operation
5

10

Operand

15

20

25

30

Note that the HED pseudo instructionis not listed, but the source
statement sequence number is incremented from @01 to P03,

|
siMs|,[r],IL],|T
H|E|D TH|I[S S| |A| |RIE|LIE|V|AINT
njalv| [TlEls|T
clolulnT] Blsls| |1
KIN| I [T|I] |B|S|S] |!
clololc] { Islsls] |1
plololL| [[Bls]s| [i
PlulrlLi2| [Blsls] [i
PAGE ¢P¥2 #01 THIS IS5 A RELEVANT AND REVEALING EXAMPLE
PUo 1 ASMBs RabLs T
BUUS YPUYDY NAM TEST
YBY4 GUDPY BUBLAY COUNT BSS 1
BBBS YUYl PBYOYE KNITI BSS 1
PUO6 YIPVZ YPBPPE COOL 855 1
YOUT QYUYY3 BOBDLEY POOL B85S 1
PUUE GUYY4 VPVYOW PURLZ BSS 1

Which of the following are invalid?
(a) NAM PROG

(b) NAMPROG

() NAM .123

(d) NAM E.RASE

(e) NAM

(f) NAM 2016

When is the ORG pseudo not valid ina relocatable assembly ?

What is the significance of the Operand field in the END
statement of a relocatable program ?

Which of the following COM statements should be loaded
first? Why?

(a) COM A(5), B(8), C(15)
(b) COM A(4), B(3), C(10), D(20)
(c) COM E(6), A(7)

If the symbol CAT is used in PROGA to refer to a label in
PROGB, what must be specified to provide the necessary
linkage between the two programs ?

What pseudo is used to generate an indirect address ?
How many characters may be generated by ASC?

Write a routine which will find the 2's complement of the
25values placed in consecutive locations beginning at POS
and store the complements in the 25 locations beginning at
NEG. Assume the POS area as the first 25 locations in a
common area,

Given 50 quantities stored in locations TAB to TAB+49.
Write a routine to store in locations TAG to TAG+49 in re-
verse order. Assume the TAB area as the first 50 loca-
tions in a common area.

9-39

10.1

DATA
TRANSFER
REQUEST

BCS INPUT/OUTPUT REQUESTS 10

The Input/Output Control routine (.IOC.), a part of the Basic
Control System, provides a simplified method of performing
I/O operations. The user provides the information necessary,
and . IOC. interprets the call, initiates the operation, and re-
turns control to the user's program.

Several operatibns may be performed: (1) transferring data
between the computer and an I/O device, (2) positioning of a
reel of magnetic tape, (3) terminating a previously issued I/O
request before all data is transferred, and (4) determining the
status of an operation or a device.

Input/output operations are accomplished through a set of sub-
routines called drivers. The I/O request provides information
as to which device is to be used, whether data is to be trans-
ferred into or out of the computer, and the format of the data
(binary or ASCII). The .IOC. routine then checks an internal
equipment table, determining the channel to which the device
is connected, and gives control to the related driver. The
driver routine reads or writes the specified amount of data,
processing all interrupts that occur during the transfer.

Input/Output requests are specified as a series of Assembly-
language instructions. A JSB instruction to .IOC. is specified
first; thus .IOC. must be declared as an external point in the
program with the EXT pseudo instruction. The JSB is followed
by other instructions which form the call. .IOC. always re-
turns control to the instruction following the last instruction of
the I/0 request.

The general form of the data transfer request is:

JSB .I0C.
OCT <functiof> <Gubfunction> <{gnit-referencé>
JSB

JMP} reject address

DEF Dbuffer address

10-1

10.1.1

FUNCTION,
SUBFUNCTION,
AND UNIT-
REFERENCE

10-2

DEC

OCT} buffer length

EXT .IOC.

The second instruction of the data transfer request defines the
function to be performed and the unit of equipment for which
the action is to be taken. This information is supplied in the
form of anoctal constant. .IOC. interprets the bit combination
as follows:

15 121l 98765 0
|

[function 7////Ap|v|m| unit-reference
\ J

SUBFUNCTION

FUNCTION

Bits 15-12 define the funcfion to be performed; 0lg defines a
read operation, 02g defines a write operation.

SUBFUNCTION

The subfunction (bits 11-6) defines the options for certain in-
put/output operations:

p=1 Print input; the ASCII data read from the
2752A Teleprinter is to be printed as it is
received.

v=1 Variable length binary input: the value in
bits 15-8 of the first word onaninput paper
tape indicates the length of the record (in-
cluding the first word). If the value ex-
ceeds the length of the buffer (defined by
the fifth word of the Input/Output request),
only the number of words specified as the
buffer length are read. If v=0, the buffer
length always determines the length of the
record to be transmitted. If the device
does not read paper tape, the parameter
is ignored.

m=1 Mode: the data is transmitted in binary
form exactly as it appears in memory or
on the external device. If m=0, the data
is transmitted in ASCII format. (See Re-
cord Formats, Appendix E.)

Allowable combinations of functionand subfunction codes are as
follows:

Octal Value of

Operation Bits 15-6

Read ASCII or BCD record 0100
Read ASCII record and print 0104
Read binary record 0101
Read variable length

binary record 0103
Write ASCII or BCD record 0200
Write binary record 0201

Combinations considered illegal by .IOC. are rejected.

UNIT-REFERENCE

The value specified for the unit-reference field indicates the
unit of equipment on which the operation is to be performed.
The number may represent a standard unit assignment or an
installation unit assignment. Standard unit numbers are as fol-
lows:

Number Name Usual Equipment Type
1 Keyboard Input Teleprinter
2 Teleprinter Output Teleprinter
3 Program Library Punched Tape Reader
4 Punch Output Tape Punch
5 Input Punched Tape Reader
6 List Output Teleprinter

Installation unit numbers may be in the range 7g-74g with the
‘largest value determined by the number of units of equipment
available at the installation. The installationunit number spec-
ified in an I/Orequest is related to a specific device through a
BCS equipment table (EQT), defined at the time the computer
and related software is installed. This table defines the type
of equipment (Teleprinter, magnetic tape, and so forth), the
channel on which each unit is connected, and other related de-
tails. The first unit described in the table is referred to by

10-3

10.1.2
REJECT
ADDRESS

10-4

the number 7g; the second, 10g; the third, 11g; and so forth.
The entries for one possible equipment table might establish
the following relationships:

Installation Unit Number Device I/0 Channel
7 Teleprinter 12 and 13
10 Punched Tape
Reader 10
11 Tape Punch 11

The standard unit numbers are associated with physical equip-
ment via a standard equipment table (SQT) and the EQT. The
SQT is a list of references to the EQT. SQT is also created
at the time the computer and related software is installed. Each
standard unit may be a separate device, or a single device ac-
cessed by several standard unit numbers as well as aninstalla-
tion unit number.

.IOC. transfers control to the third instruction of the I/O re-
quest if the input/output operation cannot be performed. On
transfer, statusinformation is provided in the A-and B-regis-
ters which may be checked by the user's program. The third
word usually contains a reject address which is the starting
location of a user subroutine designed tocheck the cause of the
reject and take appropriate action.

15 14 13 87 0
A-register [_a | equipment type | status |

15 14 1 0

B-register [d1777777777777777777.77,2.27,7] ¢\

The contents of the A-register indicate the physical status of
the equipment (see Status Request, Section 10.4).

The contents of the B-register indicate the cause of the reject:

d=1 The device or driver subroutine is busy
and therefore unavailable, or, for Ken-
nedy 1406 Tape Unit, a broken tape con-
dition encountered.

c=1 A Direct Memory Access channel is not
available to operate the device.

10.1.3

BUFFER
ADDRESS

10.1.4
BUFFER
LENGTH

d=c=0 The function or subfunction selected is not
legal for the device.

For HP 2020A/B Magnetic Tape unit, de-
vice or driver is busy, or device is in
local status.

The buffer address specified in the fourth instructionis the lo-
cationof the first word of data to be writted on anoutput device
or the first word of a block reserved for storage of data read
from an input device. The block must have been reserved in
the program by a BSS or COM instruction.

The octal or decimal integer specified in the fifth instruction
is the number of words or 8-bit characters to be input or out-
put. If the length is givenas words, the specificationis a posi-
tive integer; if characters, a negative integer. For example,
either DEC 10 or DEC -20 would specify the same amount of
data to be transferred.

Characters may be specified only if the device is capable of
8-bit character transmission. The buffer length for data that
may be printed on the Teleprinter should be no more than 72
characters (36 words). The buffer length for data transmitted
via a Direct Memory Access channel may be up to 16K words;
character transmission is applicable, but only an even number
of characters will be transmitted.

10-5

10.2

MAGNETIC
CONTROL
REQUESTS

10-6

Examples:

Lobel Operotion Operend Comments.
1 5 10 15 20 25 30 35 40 5 50
N|A PIR|O|G
E[X|T| |./I|O[C DE|C|LIARE| |.|I]|O[C|.| |A[S| [EX|TIERRNAL
L|IINE B|S|S| |3|6 RIE[SIER|VE| |S|T|O|R|A|GIE| |AIRIE|A[S|-|-|3/6] W/OR|D|S
ClOM| [BK|B|(|!|8/@]) FIOR| [LIIINE| AND| |1[9|@] WOR[D|S| [([IN| THE
DEEF| |BK|B CIO[]MMO|N| |BILIO|CK|)| |FIO|R| BK|B
RIE|A|D|1] {J|S|B] |.|I|O(C|. RIEADD| |7]2] |AIS|C]L|I| |CIHAR|AC|TIER|S| [FRIO
olC|T| |1|@|@/@|5 THHE| [S|[TANDAIRD| |[IN|PUT| UINITIT| |AIND
JMP E|JAD S|TIOREE| |AT| IL|INE|.| |I|F| |REJQUIEIS|T] |I|S]
DEIF| |L|I|NE RE|JE|C|TIE|D|,| |T|R/AN|S|FIEIR| C[ONTRIO[L| T|O
DIEIC] |72 RIE|JJAD].
RII|T|!] [vs|B] [.|I|OC|. RIITIE| [1|@/@] |BINAR|Y| WOR|D/S| ON NII|T
OqT UL 11],| |THE| TH|I|RD| DIE|V|I|CE| IDIE|S|C|RI|BED
JMP WEJAB IN| TH|E| [EQT DA[T|A| [T|S| [CURRENT|L|Y
DIE|F ﬂUF S|TIORIE{D| |I|N| |THE| |ICIOMMION| BLOCIK
DIEIC| |I|@® S|TIAR|T[I|N|G| |A|T| [L|O|C|AT|IION| BIUF
END
TAPE

This request controls the positioning of a reel on a magnetic
tape device. The calling sequence is similar to the data trans-
mission request, but consists of only three words:

EXT .IOC.

JSB .IOC.

OoCT {function}> <¢ubfunction) <unit-reference)
JSB

[JMP] reject address

10.2.1
FUNCTION,
SUBFUNCTION,
AND UNIT-
REFERENCE

The second instructionof this request defines the function to be
performed and the unit of equipment for which the action is to
be taken. This information is supplied in the form of an octal
constant. .IOC. interprets the bit combination as follows:

15 12 11 9 8 6 5 0

function ///// ?&k\)cﬁ on| unit-reference

FUNCTION

A function code of 03g in bits 15-12 defines the calling sequence
as a tape positioning request.

SUBFUNCTION
The subfunction defines the type of positioning:
Octal Code Operation
1 Write end-of-file
2 Backspace one record
3 Forward space one record
4 Rewind
5 Unload

Write End-of-File

A standard EOF character (17g) is written on tape, Control
returns to the normal location. A three-inch gap is written
before the EOF mark. A status request will show the EOF bit
set in the status field.

Backspace one record

The tape is positioned at the beginning of the previous record.

Forward space one record

The tape is positioned at the beginning of the next record.
Rewind

This command initiates a rewind operation and then returns
control to the normal return location.

Rewind and Standby

This causes the tape to be positioned at load point and switches
the device to local status. Control returns to the normal re-
turn location after the operation is initiated.

UNIT-REFERENCE

The unit reference field is defined in the same manner as for
the data transmission request.

10-7

10.2.2
REJECT
ADDRESS

10.3
CLEAR
REQUEST

10.3.1
FUNCTION
AND UNIT-
REFERENCE

10-8

The reject address, which is usually specified in the third
instruction, is the starting location of a user subroutine de-
signed to check the cause of the reject and take appropriate
action. Statusinformationisprovidedin the A-and B-registers
as for the data transmission request.

The clear request terminates a previously issued input or out-
put operation before all data is transmitted.t The calling se-
quence is as follows:

EXT .I0C.
JSB .IOC.
OCT <lunction> <unit-referencg>

The second instruction of the clear request defines the function
to be performed and the unit of equipment for which the action
is to be taken. This information is supplied in the form of an

- octal constant. .IOC. interprets the bit combinationas follows:

12 1l 65

15 0
| function V7] unit-reference |

FUNCTION

A functioncode of 00gin bits 15-12 defines the calling sequence
as a clear request.

UNIT-REFERENCE

The unit-reference field is defined in the same manner as for
the data transmission request.

If the unit-reference number is specified as 00 (i.e., the second
word of the calling sequence is OCT @), all previously requested
input and output operations are terminated. This request, the
system clear request, makes all devices available for the initi-
ation of a new operation. On return from a sysiem clear re-
quest, the contents of the A- and B-registers are meaningless.

t The devices are not ready immediately; the driver, however,
is available on return.

Examples

©
w|Z[Z [=) <

8 Zlw(—=wn w 8 w

olT[rFle[T[a Il - '3 >
SaWo N+ < [
[T [Sl 4 - o <<
ol [Flwn[x[O 4 (= ul F4

2 N [EI |~ 2 D =) -

=410 wliwlzZ{g . Sid g|a ”n [l

Zln ol-mtE|~ola [y - f Z|z n (=

N 14 a|Z =loelwlw wio 8 = — Tz
w n|~=a Wi/ = w w ==

2 (=4 nelu[d[=|O Il 4 2 e > [C)
x| O wla[Flonrn[J/Jd FAE:S X|o] FALSY
™ Slwiu[>F[J/a w Wiw 7 W —

Jdl< ~|[<[2 nlojd =)]
wn on g W] [] -0 7K o |

8 =il=) Flo[T Wluwlo [y 3 == — W[—

3 [Z-|Z|S Wl @ > Jd|Z
gKe] 2 uax [l Ll 1] [-lo w @D
ol = | T[] ~|=[=|m a|[w [3) clnla
[«] el -FF[> wla k- o [N

8 O a w|n|Oow|o nlnln 8 - ne|o

ar) FREMEAES w w v Jlwgle
olo Sl s« Jo>w

ww FAAEIIF) 1] [<] wiw =iK<]

> dluoWwnnlo w{Zw x> wig[o] -

2 g cla x| T~ ? | o AR
Jlw ajulF g|Oo[n [Jlw =4 ool
oln a/zlz[w win W oln wlo[aqlol|«
Wi wi=o|T[o[x|w M=IES W w IJNww[o
olx | Jdo[F|F[o[s =3 olx BIEICAEALAE

Q {

- . = =

§2 . - [4 §el 2 - . - L=

o [w [3) oS] S Juw o [3) oM

= o o|ls|[»|o =) o o olslol«

- -0 H QW][O~ .m - — - -0

[[0 J=lE[Z[M[r =) M) . IS(Elx(n

5 [= (=2 o[F[alufo]o] [=) 5 |= =ln ® IR ™) o

= X [22K3) wwlon| . Z FES X [72) nlul=[wlw 2

s [Z w|m RIEIRIERERE] o [2 M) S 2o »[olo w

- 3 o <

- [=] _ 4

3 © A <

[72) w o

- = 3 - -4

10-9

10.4
STATUS
REQUEST

10.4.1
FUNCTION
AND UNIT-
REFERENCE

10-10

This request may be directed to .IOC. to determine the status
of previous input/output requests or to determine the physical
status of one or all units of equipment. The general form of
the request is as follows:

EXT .IOC.
JSB .IOC.
OCT <function> <unit-reference>

The second instructionof the status request defines the function
to be performed and the unit of equipment for which the action
is to be taken. This information is supplied in the form of an
octal constant. .IOC. interprets the bit combinationas follows:

12 11 6 5

15 0
| function V)7 /////////} unit-reference |

FUNCTION

A function code of 04g in bits 15-12 define the function as a
status operation.

UNIT-REFERENCE

The unit-reference field is defined in the same manner as for
the data transmission request.

If the unit-reference number is specified as 00 (i. e., the second
word of the calling sequence is OCT 40@@@), the request is in-
terpreted as a system request.

If information is requested for a single unit, .IOC. returns to
the location immediately following the request with the status
information in the A- and B-registers:

A-register | a | equipment type | status

B-register

equipment
type

15 14 13

8 7 0

15 14

{m| transmission log |

|

availability of device;

0 The device is available; the previous op-
eration is complete.

1 The device is not available; the previous
operation is complete but a transmission
error has been detected or the device
(tape) is in local status.

2 The device is not available; the operation
is in progress.

This field contains a 6-bit code identifying the
device referred to:

00-07

10-17
20-37

40-77

Paper tape devices

00 2752A Teleprinter

01 2737A Punched Tape Reader
02 2753A Tape Punch

Unit Record devices

Magnetic Tape and Mass Storage
devices

20 Kennedy 1406 Incremental
Tape Transport

21 HP 2020 Magnetic Tape Unit
Instrumentation devices

40 Data Source Interface

41 Integrating Digital Voltmeter
42 Guarded Crossbar Scanner
43 Time Base Generator

77 HP 2401C/HP 2911 Scanning
Driver (HP 2018 System)

10-11

status The status field indicates the actual status of
the device when the data transmission is com-
plete. The contents depend on the type of de-
vice referred to:

Teleprinter reader or Punched Tape reader:

Bits 7-0 Condition

XX 1XXXXX end-of-tape (10 feed frames)
Tape punch:

Bits 7-0 Condition

XX 1XXXXX tape supply low

Kennedy 1406 Incremental Tape Transport:

Bits 7-0 Condition

XX 1XXXXX end-of-tape mark sensed

XXxx1xxx broken tape; no tape on write
head

Xxxxxxx1 device busy

HP 2020 Magnetic Tape Unit

Bits 7-01 Condition

1XXXXXXX end-of-file record (17g) en-

countered while reading, for-
ward spacing, or backward

spacing
X1XXXXXX start-of-tape marker sensed
XX 1xXxXxxXX end-of-tape marker sensed
XXX1XXXX timing error on read/write
XXXX1XXX I/O request rejected:

a. tape motion required but
controller busy

b. backward tape motion re-
quired but tape at load point

c. writerequestgivenbutreel
does not have write enable

ring

t Hardware status bit 8 is not included in status field (similar
information in bit 0).

10-12

18

transmission

log

Bits 7-0 Condition

XXXXX1XxX Reel does not have write en-
able ring or tape unit is re-
winding

XXXXXX1x Parity error on read/write

XXXXXXX1 Tape in motionor unit in local
status

This bit defines the mode of the data trans-
mission.

0 ASCII or BCD
1 Dbinary

This field is a log of the number of characters
or words transmitted. The value is given as a
positive integer and indicates characters or
words as specified in the calling sequence. The
value is stored in this field only when the re-
quest is completed; that is, when all data is
transmitted or when a transmission error is
detected.

If a system status request is made, the information in the A
and B registers is as follows:

A-register

B-register

b

"

5,6 14 0
D,
@ 7]

System Status
0 no device busy

1 at least one device is busy

10-13

HP 2020A/B
Status
Information

10-14

If errors (timing or parity) are detected during input/output
operations, the HP 2020A/B subroutine will attempt to repeat
the operation four more times; a total of five Read or Write
operations will be initiated.

For an output operation, the sequence of instructions involves
a write, a backspace, writing a three inch gap, and then the
next write attempt. If the error persists after the five attempts,
control returns to the user program at the normal return
location. If a Status operation is performed at this point,
the word in the A-Register would contain a 1 in the ‘‘a”’
field and either the timing bit (4) or the parity error bit (1)
set in the status field. For a Write operation, the record
produced by the last attempt will be on tape. For a Read,
the buffer will contain the record read on the last attempt.

If the End-of-Tape marker is sensed on a Write operation,
the EOT bit is set in the status field and control returns to
the normal return location. If another Writeis then attempted,
the ‘‘a’’ field is set to 1 indicating a transmission error and
control returns to the normal return location; no data will be
written. If the End-of-Tape marker is sensed on a Read
operation, the EOT bit is set in the status field and control
returns to the normal return location. Another Read operation
may be attempted if it is known that another record exists on
the tape; if there is no record, reading continues through the
physical end of the tape. This could also occur if the last
record on the tape is placed before the EOT marker. (Forward
motion is terminated by an end-of-record gap.)

Timing Errors

All operations are performed with the interrupt systemactive;
data transfer is accomplished on interrupt command. Con-
sequently, the priority of the device and state of the interrupt
system are significant. When establishing the hardware con-
figuration, the tape device should be given the highest priority
channels. If not, the Library subroutine ENDIO should be called
before every Read and Write command. During the execution
of any input/output operation, the interrupt system may not be
inhibited for more than 5 machine cycles; otherwise, a timing
error may occur on high density (556 bpi) tapes.

Examples:

- wiitjl T8 [
1| = 10O n - (A4
2 [> olzla ©] w 2/x/o 8 > alw
- K% < w Folzlex|l D . uw | O wlm] 2 wiz
Zx [=1 LY H[F[Hww[~[Z[n =] I == ile)
2|0 oW ®n oo oluLjajw—o (s nix 2
. [W 2w JZnlel-[O O[Ol wig
g J 2 n olnzZzidadIx|olw= =1F3l:4 |0 <] Hiw| -l
< o gH2DF OO <jwiojoja O[] - = (> -
3 3 x|o W o+ WrFoaocziuo w wi =S| g w [72) F3
S [4 M A3 MEAE ol [Z] (= "J« 8 Wi ="
u| « P k) “ajo/ojlax ~O| 40O wi> o nadonlo
g < o [=) Wl [O[O & olH AIZIR={IC) 2 =1
xw c|n g ojwfwl-]o wirF[ojo|wli- =3 1) Oolu|d-|m
wla ol— winolrlonll[Zlec]/c|lw|ac < w o= —l=dl«
= [3) clZlwlw ugwwlin F3INIES) o o H[F[O
n wla Sle[Jlu|o wia =o[Jd[o (A D0
3 <w clw u a1 juon|/<l-lae[wald ww <] Wi |[»n
[0 o< O] ~{w[E|i1]|ojr|Z O|Oo/H|= nl> [o> =/a| |
< H| S| ool i[Zz]ld/dlwW[z|o[a{O]+ S| dla Hln|nw[S] |
3N 4 =D N J(WkF-x 2 gl Z2i0lg d|lx|=2 > oH(F[D2
[e][e] olz2iZ o2lnd - Ol - O+ w o n|-
8 |~) — [k2] [e1-3 [H[OIS| N[O F3 8 o wl>
3K <|w 0|0 H |- A JJrle[HZ wle[De Jlofn] -
o|Z | el) - O~ w - 2 Q0 w - >
wiw F3Fdle) [72) ZzlojJuwlwE|n|Jd|-|-|n - (= JH[>[0|n
x|> <<l nioio olZ2|n [2]Ke] 0nln =|Wln g/ FlWiZID
2 a4/ x|~ |- HixleliH clw e/ nww xlo[w| - a wloHo
J[w olwl<g [3) Q- o rFlFLlalorl=lDlo Wi Dlw [(=
oln qgjufo wi-o/qdjw/Z[DH[ololZz[x|C]|O [) nwwinlw
wiw wiw|o I H|ole|z[o[o] I [Zz|e|o|Oo|W|ax Wi |- Wi zwao
ol x| OloJdJw/ojo/e|l [uwajojuwria [=XI=14k3 ~la{o[+]«a
]]
(B3 - ol < ol = 7} o[- SiE| |i=[F Z=
S [=x o ol—Tr]a O — [[S) o ol S [» o -
[S] (o] ojo|d o= < »niolu Qo g|Oo [%2) o 4K
[HS H®[» 2D HS [wie|d Z| @ wi m > - Oluw| |
n = === g n o< W< x|l N . =4
s | =ln o/F|aju]o s ol Jd/alu|d[g]a]a ojaja s [= [e3) glalalo
H X[wo[Elww wlolnsdn[ZSddn[S[S . <[ZS|S g [2) ni=l=Z
o {2 uw o 2(0[2[0|o 20N |xin|[2d/xjln|>D ni2- s (2 S X[>][>[w
- =4 = 3 - Z
_ [+ < o |l | _ -
i < g < = [3) H <
r4 w o - (U]
- - ['4 [72) 1] ['4 - g

10-15

10-16

REVIEW

What is the name of the BCS routine which provides sim-
plified I/0?

The above name must be specified in an
pseudo when any BCS I/0O calling sequence is specified in
a routine.

Input/output operations are accomplished through a set of
subroutines called

Installation unit numbers are related to specific devices
through the

A request may be specified to terminate a
previously issued I/O operation.

Specify an I/Orequest toread a 10-word ASCII record from
the punched tape reader with installation unit assignment
10. Transfer control to location ERROR if the operation
cannot be performed.

Code the ERROR routine in the above question to check for
the cause of the error, print either ILL FN ON TR (in the
case of illegal function or subfunction)

or

TR DV BSY (in the case of the device or driver busy) on
the standard teletype device, and halt.

1.1
CONTROL
STATEMENT

ASSEMBLER INPUT AND OUTPUT 1

The Assembler accepts as input a paper tape containing a con-
trol statement and a source language program. A relocatable
source language program may be divided into several sub-
programs or into a main program and several subroutines;the
designation of these elements is optional. The output pro-
duced by the Assembler may include a punched paper tape con-
taining the object program, an object program listing, and di-
agnostic messages.

The control statement must be the first statement of the source
program; it directs the Assembler.

ASMB, plspz’ cee ypn

ASMB indicates the control statement;it must begin incharac-
ter positionone. Following the comma are two or more param-
eters, in any order, which define the output to be produced. No
spaces may be specified within the control statement. The con-
trol stat@ent must be terminated by an end-of -statement mark,

The parameters may be any legal combination of the following

starting in character position 6:

A Absolute: The addresses generated by the Assembler are
to be interpreted as absolute locations in memory. The

object program may be loadedby the Basic Binary Loader.

R Relocatable: The object program may be loaded by the
BCS Relocating Loader.

B Binary output: A program is to be punched according to
one of the above parameters.

N All coding segments starting with IFN are tobe assembled
into program. (Void if Z follows.)

Z All coding segments starting with IFZ are tobe assembled
into program. (Void if N follows.)

11-1

11.2
SOURCE
PROGRAM

11.3
BINARY
OUTPUT

11.4
LIST OUTPUT

11.4.1

ASSEMBLY
LISTING

11-2

L List output: A program listing is to be produced either
during pass twoor pass threeaccording to one of the above
parameters.

T Table print: List the symbol table at the end of the first
pass.

Either A or R must be specified with any combinationof B,
LorT.

The source program follows the control statement. Each state-
ment is followed by an end-of-statement mark. The first state-
ment of the program must be a NAM statement for a relocatable
program or an ORG statement indicating the origin of an abso-
lute program. The HED pseudo instructionand statements con-
sisting entirely of comments (indicated by the asterisk in posi-
tion one), however, may appear between the ASMB statement
and the NAM or ORG statement. The last statement must bean
END statement and usually contains the transfer address for the
start of a relocatable program.

The punch output includes the instructions translated from the
source program. It does not include system subroutines ref-
erenced within the source program (arithmetic subroutine calls,
input/output requests to BCS, etc.). These routines must be
loaded into memory at object program execution time.

List output as requested by the L and T parameters on the ASMB
statement has the following format:

The Assembler provides a listing of the Assembled source pro-
gram if requested by the L parameter on the ASMB statement
for the program. Each page of the listing is preceded by the
page number (PAGE xxxx).

If the source program is assembled by the Assembler provided
for 8K and larger machines, the number of the source tape cur-

11.4.2
SYMBOL
TABLE
LISTING

rently being processed by the Assembler is printed following
the page number (#xx). Headings requested by the HED pseudo
instruction are printed as specified.

The body of the listing has the following format:

Columns Content

1-4 Source statement sequence number generated by the
Assembler

5-6 Blank

7-11 Location (octal)

12 Blank

13-18 Object code word in octal

19 Relocation or external symbol indicator

20 Blank

21-72 First 52 characters of source statement

Lines consisting entirely of remarks are printed as follows:

Columns Content
1-4 Source statement sequence number
5-72 Up to 68 characters of remarks

The Assembler produces a listing of the symbol table during
pass 1, if requested by the T parameter on the ASMB statement
for the program. Each page of the listing is preceded by a page
number (PAGE xxxx).

A Symbol Table listing has the following format:

Columns Content

1-5 Symbol

6 Blank

7 Relocation or external symbol indicator
8 Blank

9-14 Value of the symbol

The characters that designate an external symbol or type of re-
location for the Operand field or the symbol are as follows:

11-3

Blank Absolute

R Program relocatable
B Base page relocatable
C Common relocatable
X External symbol

At the end of each pass, the following is printed:
** NO ERRORS *
or
** nnnn ERRORS *

The value nnnn indicates the number of errors.

1.5
ERROR

MESSAGES The Assembler recognizes certain coding errors in the source
program and produces a 1- or 2-letter mnemonic followed by
the sequence number and the first 62 characters of the state-
ment in error. The messages are printed on the Teleprinter
during the passes indicated:

Error
Code Pass Description

Cs 1 Control statement error:
a) The control statement contained
a parameter other than the legal
set.
b) Neither A nor R, or both A and
R were specified.

¢) There was no output parameter
(B, T or L).

DD 1 " Doubly defined symbol: A name de-
fined in the symbol table appears
more than once as:

a) A labelof a machine instruction.

b) A label of one of the pseudo op-

erations:
BSS EQU
ASC ABS
DEC OCT

DEF Arithmetic sub-
- routine call

11-4

Error
Code

EN

EN 0000
< symbol>

IF

IL

IL

Pass

2or 3

Description

¢) A namein the operand field ina
COM or EXT statement. .

An arithmetic subroutine mne-
monic appears in a program both
as a pseudo instruction and as a
label.

An entry point has been defined in
the operandfield of an EXT or COM
statement or has been equated to
an absolute value.

An entry point specified inan ENT
statement does not appear in the
label field of a machine or BSS
instruction.

An IFZ follows an IFN (or vice-
versa) without anintervening XIF.
The second pseudo instruction is
ignored.

Illegal instruction:

a) Instruction mnemonic cannot be
used with type of assembly re-
quested in control statement.
The following are illegal in an
absolute assembly:

NAM EXT

ENT COM

ORB Arithmetic sub-
routine calls

b) The ASMB statement has an R
parameter, but NAM is not de-
tected as the first op code.

Illegal character: A literal has
been specified with anillegal char -
acter for its type(e.g., A-Z, 8 or
9 in an = B literal).

Illegal character: Anumericterm
used in the operand field contains
anillegal character (e. g., anoctal
constant contains A-Z, 8 or 9).

Illegal instruction: ORB in abso-
lute assembly.

11-5

11-6

Error
Code

Pass

1,2, or 3

Description

Illegal operand:

a) An operand is missing for an op
code requiring one.

b) Operands are optional and omit-
ted but remarks are included for:

SOC SOS HLT

¢) An absolute expression in one of
the following instructions from
arelocatable program is greater
than 77B:

Memory Reference
DEF
Arithmetic subroutine calls

*

d) A negative operand is used with
an op code field other than ABS,
DEC, and OCT.

e) A character other than I follows
a comma in one of the following
statements:

ISZ ADA AND DEF
JMP ADB XOR Arithmetic
JSB LDA IOR subroutine
LDB CPA calls
STA CPB
STB

f) A character other than C follows
a comma in one of the following
statements:

STC LIB OTA
CLC MIA OTB
LIA MIB HLT

g) A relocatable expression in an
ABS or REP statement.

h) An illegal operator appears in
an operand field (e.g. + or - as
the last character).

Error
Code

NO

oP

Pass

Description

i) An ORG statement appearing in
a relocatable program includes
an expression that is base page
or common relocatable or abso-
lute.

j) A relocatable expression con-
tains an illegal mixture of pro-
gram, base page, and common
relocatable terms.

k) An external symbol appears in
an operand expression or is fol-
lowed by a comma and the let-
ter I.

1) The literal or type of literal is
illegal for the operation code
used.

m) Operand of EAU shift-rotatein-
struction = ¢ or > 16.

No origin definition: The first
statement in the assembly contain-
ing a valid op code following the
ASMB control statement and re-
marks, if any, is neither an ORG
nor NAM statement. If the A pa-
rameter was given on the ASMB
statement, the program is assem-
bled starting at 2000; if an R pa-
rameter was given, the program
is assembled starting at zero.

Illegal op code following control
statement. A valid op code has not
yet been encountered and the state-
ment being processed does not con-
tain an asterisk in position one.
The statement is assumed to con-
tainan illegal op code; it is treated
as a remarks statement.

11-7

Error
Code

(0]

ov

R?

SO

SY

11-8

Pass

1,2, or 3

1,2, or 3

Before 1

Description

Illegal op code: A mnemonic ap-
pears in the op code field which is
not one of the accepted machine or
pseudo codes. A word is generated
in the object program.

Numeric operand overflow: The
numeric value of a term or expres-
sion has overflowed its limit:

26_1 Input/Output, Overflow,

Halt

210-1 Memory Reference

215_1 DEF and ABS operands;
data generated by DEC;
expressions concerned
with program location
counter.

216_1 ocT

An attempt is being made to
assemble a relocatable program
following the assembly of an
absolute program. The Assem-
bler must be reloaded.

There are more symbols defined
in the program than the symbol
table can handle.

Illegal Symbol: A label field con-
tains an illegal character or is
greater than 5 characters. A label
with illegal characters may result
in an erroneous assembly if not
corrected. A long label is trun-
cated on the right to 5 characters.

Too many control statements: A
control statement has beeninputon
the teleprinter and the source tape.
The Assembler assumes that the
source tape control statement is a
label, since it begins in column 1.
Thus the commas are considered
as illegal characters and the ''la-
bel" is too long. The binary object
tape is not affected by this error,

Error
Code

SY

TP

UN

Examples:

Pass

2or 3

1,2, or 3

1,2, or 3

Description

and the control statement entered
via the teleprinter is the one used
by the Assembler.

Illegal Symbol: A symbolic term
in the operand field isgreater than
five characters;the symbol is trun-
cated on the right to 5 characters.

Too many control statements: see
above.

An error has occured while
reading or writing magnetic tape.
if the T-Register contains
102040, an irrecoverable error
has occured; restart the as-
sembly. Otherwise, correct con-
dition and resume.

Undefined Symbol:

a) A symbolic term in an operand
field is not defined in the Label
field of an instruction or is not
defined in the operand field of a
COM or EXT statement.

b) A symbol appearing in the oper-
and field of one of the following
pseudo operations was not de-
fined previously in the source

program:
BSS ORG
ASC END
EQU

The program shown below generates the error messages shown
in the listing following:

Label Operati Operand
alsmial, R, [L], [7]
e/n[T| WHERE
1[am olc[t| [oloole
Njo[T olop| [3]2
Tlolo plelc| [3l2[7]els
BRI [TE| |Lola] [
BlR1[TIE| Is|T|a] |Flo|RIGIE|T
JMP| lslrl1]TlE], IplulH
END

11-9

11-10

FAGE GUidl

YUYl
NI puguz ENT
Or @484 NOT Q0P

D ©Buwid7. BrITE STA
IAM R BPddnid
NOD T R BGUdil
100 X Aanin2
BRITE < 433
Kk 3 ERRO XS%

PAGE vup2

EN Y00 WHERE
RPPD 1D ERRIRS

PAGE WBU3 #01

Dl

NO puo2 EN
Wi

IL ©Yvu3 IAM oCT
Wou3 UUZBE BPBVIBY

J2 Bigwd NOT Jor
VWdg 4 DdPYl YU

oV v¥Yys 109 DEC
i s Wbdye vl

UN Buibé BrITE LDA
VU6 WYYUd3 B6zZbuY2

SY 6W@T BRITE STA
uN 9997 8rRITE STA
BaBT Wuhv4 Y2092

M (219153 Jp
DIy UYWL S Y26Y3R
YuwY9

**DJJE LRRORS*

ASMBs Robls T
WHERE
32

FUORGE S

ASMBs s ls |

WHeRE
ENT wHERE

9999
IAaM Jiil 9999

32
NO I Jaip 32

32768

100 DEC 32768

?

BRITE LDA ?

FORGE 1

FORGET

BrI (£ STA FOKGE(

BRI 1Es DUH
Jilr Bl TEs DUH
END

SAMPLE EXERCISES 12

Code a routine to check the answers to the examples for the
MPY, DIV, FMP, FDV, FAD, and FSB pseudo-instructions,
given in Section 9.5. That is, determine whether an MPY
instruction multiplying the two values 173g and 34g would
result in the A-register containing 006564g and the B-
register containing 000000, and so forth.

Code a routine to generate 15 fixed point integers, sort the
integers according to positive or negative, and print them
in octal on the teleprinter. Negative numbers are to be
complemented and preceded by a minus sign, and appro-
priate headings provided:

POSITIVE VALUES

XXXXX
XXXXX
XXXXX
(Indent positive values six spaces)

NEGATIVE VALUES

-XXXXX
-XXXXX
(Indent negative values five spaces
. and precede with minus sign)
-XXXXX

12-1

e
SAMPLE FLOW CHART -- EXERCISE NO. | |READ A AND
{ B FROM
L CONSOLE |
]
1
DEFINE PERFORM PERFORM
START NECESSARY - HALT =
-—— CONSTANTS MPYS DIV
 p— —
|READ A AND {READ A AND
1 B FROM | B FROM
CONSOLE CONSOLE
L—-—————- .-———__
! :
\
PERFORM HALT |=d PERFORM | HALT b=
FDV FMP
" [prepee—
1 READ_A AND ; READ A AND
1 B FROM | B FROM
| CONSOLE L_CONSOLE |
1 ! | READ A AND
: B FRO
| PERFORM | _ PERFORM I CONSOLE
HALT FAD HALT | FsB ;
|
|
|

SAMPLE SYMBOL TABLE OUTPUT -- HALT ==

EXERCISE NO. |

PAGE 4ol
a1 ASMBs RsBsL» T
AQUAN R 400900
VALUE Rr 000031
AWUAT R 40©Bvo2
DANTE R 0000083
e 75 R 00iB004
o R QBUBGS
« VAL R DYBYY6
«2¢5 R 0BBYBGT
SOCK R 0BB011
TEST R POYO13
BEGIN R 080815
«MPY X @00Bu1
DIV X 02pvY2
«DLD X 00839V3
«FMP X 0B0UG004
«FDV X 08000805
«FAD X WBRVO6
«FSB X 0008337

** NO ERRORS*

12-2

PAGE
151081
(19200
v
Dvv3
U0 4
bvouvs
vowveé
)
vowvs
VoYY
D10
o1l
9012
bJu13
Vo1 4
Dv15
©vo16
VU1t
V018
Bwo19
‘wv2e
21
vY22
6923
D24
o025
bvu26
b2
Bues

Y29
VY30

P31

byu32
B33

B34

BWU35
PY36

bau37

VY38
B0B39

D0 40

ba 41

pvae

YOBBD
BOVDB
VOOV 1
LR
20003
0900 4
20005
PVBD 6
BOOYT
0B 1Y
YoB11
0UB12
voY13
VOB 4
BPO15
2016
BYO17
VIY20
Pou21
VEB22
UPB23
POV 4
pouwes
POB26
BBB2T
bivY 30
0o031
VOB 32
VOV 33
0VB34
VB35
VBB36
20937
VOV 40
000 41
PU0 42
BY0 43
VoY 44
00 45
DV0 46
VYo 4T
600 50
20051
208 52
00053
VYD 54
29055
Bidw 56
BOY5T
YO0 60
P00 61
PV 62
00063
VOV 64
00065
VO 66
P00 67

#01

BUY1T3
BUI03 4
181325
B61111
BYvBLTS
VBIVLY
054147
15151417
YoBvo 4
100800
VYBYVYY
BT4400
PBowou 4
G151%)515]0]
YWeRUHNYR
V16UUY1X
VIVWY IR
102809
B62002R
B16001X
VUVYY 3R
182000
06231 4R
J16001X
Gdd115R
1020080
6200 6R
B66005SR
016002X
VULDY 4R
102000
Y6200 4R
B66005SR
B16002X
PUYA116R
102060
J16003X
BOYYBTR
81600 4X
PUoo11IR
182000
B16033X
BvPvY13Rr
B1601Y4X
BID117r
102000
0B160W3X
YUOBV TR
©16005X
YWD 11R
102010
V16003X
BYVB13R
B16035X
YYU121R
1820089

ASMBsRsBsLs T

NAM
AQUAN OCT
VALUE OCT
AQUAT OCT
DANTE OCT
«715 ocCT
) oCT
« VAL O0OCT
«2¢5 DEC

SO0CK DE

(@]

TEST DE

(@]

BEGIN NOPF
L DA
MPY
HL T
L DA
MPY
HLT
LDA
MPY
HLT
L DA

LDB
DIV

HLT
L DA
LDB
DIV

HLT
DLD

FMP

HLT
bLD

FMP

HLT
bLD

FDV

HLT
DL D

FDV

HLT

CHECK
173

34
191325
61111
75

/]

541 47
265

=10

375

AQUAN
VAL UE

AQUAT
DANTE

«75
=D29¢

« VAL
¥
« 75

« 75
0
=B75
«2e¢ 5

SOCK

TEST

=F1%.0

12-3

©12-4

PAGE D093 #82

B0 42

80643

2044
ba45

o466

Do 47
D048

0B 49

0050
4951

v 52

VB S3
BS54

0BS5
* %

DBBT0
Q0071
poBI2
BeB13
VBBT4
BOOTS
vPBT76
LB
P10
vo191
po102
00183
bo1o4
o105
V6106
0a187
po119
00111
poliz
o113
Boi1l4
0o11S
golle
Ba117
8120
gpl21
golaz
09123
0wa124
g@125
Vo126

v16003X
PYVBBTR
31600 6X
PBEV1IR
102000
B16803X
PEYA13R
21600 6X
BPWY123R
102090
016083X
POBYOTR
B16807X
WoBo11R
102000
216083X
028813R
B16007X
BBO125R
1820800
126015R
B0BY24
VBBBTS
B50YvBY
vYVvo10Y
040000
VVRYG 4
B510vY
VYY1
Q70800
DBLOB 4

NO ERRORS*

bLD
FAD

HLT
DLD

FAD

HLT
DLD

FSB

HLT
bLD

FSB

HLT
JMP

END

«e2e¢5

SOCK

TEST

=F1@.25

«2¢5

SOCK

TEST

=F3e 5

BEGINs I

DEFINE CONSTANTS, 1S
START | STORAGE AREAS, GENERATE VALUE CAO:DP;%E«ST
EXTERNALS, ETC. A VALUE POSITIVE ? THE VALUE
STORE THE
VALUE
!
15
VALUES
GENERATED,
STORED
?
PRINT JSB TO :ggl':fvé PRINT
NEGATIVE CONVERSION VALUE IN POSITIVE
ROUTINE
HEADING TEMP HEADING
STORE STORE A JSB TO ALL
MINUS SIGN _ NEGATIVE NEGATIVE
CONVERSION VALUES
INOUTPUT VALUE IN ROUTINE SRINTED
AREA TEMP >
NO
CONVERT RETURN
CONVERSION VALUE IN "TR':';T CONTROL
ROUTINE TEMP TO VALUE TO CALLING
OCTAL FORMAT ROUTINE

12-5

12-6

PAGE

01
VAL UE
COUNR
NEGPL
PO SPFL
NEGMD
NEGAD
POSMD
PO SAD
PCOUN
NCO UN
TEMP
L] IOC.
ouT

B
NEGS
NEG2
HEADI
HEADZ2
MASK
CONST
MINUS
OuUTPT
BEGIN
LOOP
CHECK
CAT
WRITE
NEXTP
NEXTN
FIN
CONVT
AGAIN
I19CHK

“ag1

AXAAXLAXLAXZALALXLILAA

A XA AXAXTAXXAALZXLAXZAXLXTALXXX

-
"

R

BV n
VRBBY1
oo
BEBYw21
VYYD 49
VOvD 41
2003 42
BODD 43
000 44
BoOBD 45
BoBO 46
BOvYY1
0800 47
BOYwvo 1
Ba1d 50
bBBS1
DoV 52
VYow 62
PBBO72
0YLvBT13
U074
BYVVTS
Wolv1B3
bvou104
BBO114
woB117
BoB122
PYY133
PYV1SS
Dvbl64
WbL165
Buui167
vigu21 4

¥k NO ERRORS*

ASMBsRsBsLs T

PAGE
oY1
Bl
wpye
Boo3
VG 4
BB S
bDooBé6
Qo7
Dvvs
2909
K10
gl
vuia
VY13
P14
@015
8016
vyl
o118

0wv19

a020
Bu21
pBuB22
vwB23

vo24
Bu25
wazeé
8021
LRFA]
2u29
D136
V31
KwY32
2033
Y034
PU35
PB36
@037
0Wa38

ppu2 #01

BovvY
515153410}
BoYo1
Dpwvra
pov21
DYV 40
b0 41
VOB 42
DY 43
Vv 44
0DOD 45
B0V 46

DoB 47
PBB91
Y0350
200651
vowv 52
BovS3
20054
YD S5
BB356
Dov ST
Vo060
YoB 6l
vvge2
20663
Vo264
BRA6S
BBY66
0067
DOBT3
OB T1
pvBI2
Bov73
BYOT4
woaBTsS
BoBT6
BRoTT
V109
20191
gu1@2
23183
2010 4
Bo105
Vo106
0107
Vo110
vwol111
po112
o113
w114
U115
¥wol11é6
vwoL1T
vo120
po121

154321
177761
VOVBBY
51414} 31010)
POVYY2R
PDBVDB2R
wovBa21r
BBWYI21R
ROBWBYY
151533610617
VBBYVYD

PYV1VBR

177773
177776
950117
B51511
952111
953195
g2u126
B4051 4
D52505
051440
47195
043591
952111
¥53145
B2p126
40514
052585
D51 449
DBOLVLT
DBYY6°
D2BB 55
D200 40
P200 49
D200 40
V21D 490
D200 49
D200 40
0oBYVY
062000R
Vo130V
DT72000R
BB2921
926117R
¥B300 4
1720 40R
¥36040R
P36W01R
v26104R
B26122R
1720 42R
0360 42R
226114R

ADMBsRsBsLs T

VAL UE
COUNK
NEGPL
PO SPL
NEGMD
NEGAD
POSMD
POSAD
PCOUN
NCO LN
TEMP

ouT
B
NEGS
NEG2
HEADI

HEAD2

MASK

CONST
MINUS
OUTPT

BEGIN
LOOP

CHECK

CAT

NAM «8CNV
OCT 154321
DEC =15
B5SS 15
BSs 15
DEF NEGPL
DEF NEGPL
DEF POSPL
DEF POSPL
Bss 1

BSS 1

B5S 1

EXT «I0C.

DEF OQUTPT+3

EQU 1
DEC -5
DEC -2

ASC 8,POSITIVE VALUES

ASC 8sNEGATIVE VALUES

OCT 7
0CT 69
ASC 1, -
ASC 6»

NOP

LDA VALUE
RAR

STA VAL UE
SSALRSS
JMP CAT
CMA, INA
STA NEGMD» I
I15Z NEGMD
ISZ COUNR
JMP LOOP

JMP WRITE

STA POSMDs 1
I15Z POSMD
JMP CHECK

LOAD A WITH VALUE--ROTATE TO
GENERATE NEW VALUE

STORE IN VALUE

IS THE VALUE NEGATI VE?

NO=-~-JWMP TO CAT

YES--CONVERT TO TWOS COMPLEMENT
STORE IN NEGPL AREA

INCREMENT INDIRECT ADDRESS

ALL 15 VALUES GENERATED, STORED?
NO--GO BACK FOR NEXT VALUE
YES~-~-JUMP TO WRITE

STORE POSITIVE VALUE IN POSPL AREA
INCREMENT INDIRECT ADDRESS

JUMP TO LOCATION CHECK

12-7

FPAGE 0903

BB39
B¢ a0
B4l
Bo 42
2143
2044
0B45
20 46
20 47
3048
Ba 49
B0 50
2951
21 52
28 53
2054
Bo55
B S6
B8 57
21058
2059
VY]
V61
P62
121063
PU64
BB65
BY66
0067
00 68
2069
0870
071
o2
2073
DLT4
BBT5
2376
@aaTT
vUT8
2079
PB8G
ve81
982
0B83
P08 4
QU85S
PU86
V81
0688
089
BB
VB9 1
vB92
V@93
0B 4
B9 S
0996

12-8

gs122
PE123
vo124
vvl1as
U126
Bu127
20136
PY131
o132
BY133
BB134
PB135
PB136
Y137
Vo149
BI141
001 42
B0 143
Be1 44
B3145
00146
o147
09159
88151
©vo152
BO153
0B154
20155
09156
@2157
29160
Po161
o162
0B163
0o164
PO165
bol166
o167
PB179
2E171
w172
o173
02174
93175
vB176
o177
00200
Y201
Vo202
bu203
DB20 4
22205
PB206
03207
vo210
vB211
gpz12
20213

#92

W16WB1X
P20BY06

w26122R
2000 52K
BEvv1Y

P 620 42R
QY334

D420 43R
D720 44R
1620 43R
001209

@720 46R
B16165R
B360 43R
B36044R
W26133R
B16601X
B20006

P26142R
DYOY62R
BBVY19

0620 40R
VO30 4

D420 41 R
B720 45R
D626 7 4R
@720 7T7TR
1620 41R
031200

D720 46R
816165R
0360 41R
B36045R
B26155R
126103R
alulalagay]

B66050R
0620 46R
NB1723

BT72946R
w12gi12r
0320 73R
VWO4910

po1I217

1320 47R
1720 47R
vB6d11

D36D04TK
B34801

026167R
P16001X
B20006

B2620 4R
VOB TSR
177765

D620 47R
042051R
@720 47R

WRITE JSB «I0C.

NEXTP

NEXTN

FIN
CONVT

AGAIN

OCT 208006
JMP WRITE
DEF HEADI1
DEC &

LDA POSMD
CMA, INA
ADA POSAD
STA PCOUN
LDA POSADs1I
RAL

STA TEMP
JSB CONVT
I5Z POSAD
I1S5Z PCOUN
JMP NEXTP
JSB «.I0C.
OCT 20vp6
JMP -2
DEF HEADZ2
bEC 8

LDA NEGMD
CMA, INA
ADA NEGAD
STA NCOUN
LDA MINUS
STA OUTPT+2
LDA NEGAD»I
RAL

STA TEMP
JSB CONVT
ISZ NEGAD
I1SZ NCOUN
JMP NEXTN
JMP BEGIN
NOP

LDB NEGS
LDA TEMP
ALF» RAR
STA TEMP
AND MASK
IOR CONST
SLB
ALFsALF
IOR OUT,I
STA OUT»1I
SLBsRSS
ISZ OUT
ISZ B

JMP AGAIN
JSB .I0C.
OCT 20006
JMP *-2
DEF QUTPT
DEC -11
LDA OUT
ADA NEG2
STA OUT

*CALL +I0C.
*DEFINE OUTPUT, DEVICE, FORMAT
*IF BUSY» KEEP TRYING

*START OF QOUTPUT AREA

*LENGTH OF OUTPUT AREA

LOAD ADDRESS OF LAST P0OS. VALUE+1
CONVERT TO TWOS COMPLEMENT

ADD ADDRESS OF FIRST POS. VALUE
STOKE =(NO. OF POS. VALS) IN PCOUN
LOAD A WITH A POSITIVE VALUE
POSITION FOR CONVT ROUTINE

STORE IN TEMPORARY LOCATION

JUMP TO CONVERT-WRITE ROUTINE
INCREMENT INDIRECT ADDRESS

ALL POSITIVE VALS. PRINTED?
NO--GO BACK FOR NEXT ONE
*YES--PRINT NEGATIVE HEADING
*DEFINE OUTPUT, DEVICEs FORMAT
*IF BUSY> KEEP TRYING

*START OF OUTPUT AREA

*LENGTH OF OUTPUT AREA

LOAD ADDRESS OF LAST NEG. VALUE+1
CONVERT TO TWOS COMPLEMENT

ADD ADDRESS OF FIRST NEG. VALUE
STORE =(NO. OF NEG. VALS) IN NCOUN
LOAD A WITH MINUS SIGN

STORE IN OUTPT AREA

LOAD A WITH NEGATIVE VAL UE
POSITION FOR CONVT ROUTINE

STORE IN TEMP

JUMP TO CONVERT-WRITE ROUTINE
INCREMENT INDIRECT ADDRESS

ALL NEGATIVE VALS. PRINTED?
NO--GO0 BACK FOR NEXT ONE

YES--

LOAD B WITH CHARACTER-COUNTER
LOAD A WITH OCTAL QUANTITY
POSITION (NEXT) DIGIT
RESTORE IN TEMP
MASK OUT ALL BUT ONE DIGIT
MAKE ASCII CHARACTER
IS THIS 18T, 3rRDs» OR S5TH DIGIT?
YES--LEFT JUSTIFY
MERGE WITH 2ND/ 4TH DIGIT OR BLANK
STORE IN OUTPT AREA
IS THIS 1ST, 3rDs OR STH DIGIT?
NO--INCREMENT INDIRECT ADDRESS
ALL OCTAL CHARACTERS PROCESSED?
NO=--G0 BACK FOR NEXT ONE
YES--CALL .I0OC. TO WRITE
*DEFINE OUTPUT, DEVICE, FORMAT
*IF BUSY> KEEP TRYING
*START OF OUTPUT AREA
*LENGTH OF OUTPUT AREA
RE-INITIALIZE THE

INDIRECT

ADDRESS

FAGE

B9 T
B9 s
B9 9
Blidig
v191
w12
0103
Dl 4
Y1y s
glvé

Noga #92

P21 4
A2l s
40216
b2l
0229
Wo221
222
223
W22 4

D166 1K TOCHK
9431796

Goen 2y

2621 4R
62075
DT12160R
4i2181r
972102
126165R

k% NO ERRORS*

POSITIVE VALUES

NEGATIVE VALUES

73064
35432
16615
43543
64354
32166
15073
61507

-116380
~70472
-56117
-2705@
-71343
-34562
-47135

JaB
OCT
SSA
JmMP
LDA
STA
STA
STA
JMP
END

«I0C.
4398 6

IOCHK
oulrT
ouUT2T+3
OuUirT+4
QuUIPT+5
CONVT, I

*CHECK THE 51ATUS
* OF IHE TELEPRINTER
BUSY?
YES--KEEP TESIING
NO--rE-INI TTALIZE

THE QUIPT

AREA T

ALL SLANKS
REVURN CONTROL TO CALLING

ROUTINE

12-9

Introduction and Chapter 1

Bits

Gl W W DN =

the computer.

6. (a) 55;0; (b) 1001110005; (c) 16752g; (d) 13823;;
(e) 1000000000,; (f) 476;,; (2) 616.6g; (h) 191.010439

27

7. (a) 111100105; (b) 333455 (c) 2123g; (d) 101011;

REVIEW ANSWERS

Assemblers and compilers
Radix, or base, and modulus
(@ 2 () 8 (c) 10
"Complement' may be defined as a method of representing a negative number in

(e) 1110011,; (f) 3674

8. (a) 102; (b) 4018;

(c) 234610; @) 47110;

(e) 101010112; (f) 67676’78

Chapter 2

Words
Addresses
Instructions

Memory A-register

Sl W W N =

Program
128

"Overflow'" may be defined as the condition arising when an operation produces
a result larger than can be contained in a computer register or word.

Chapter 3

1. Memory reference instructions, register reference instructions, input/output
instructions.
Pages
The division of memory intg pages iS based upon the 10-bit address field of the
memory reference instructions. 2+Y = 1,024.

4. Zero (base) page or the current page.

5. The D/Ibit = 1.

6. 32,768

7. Central processor (computer) and the external I/O devices.

8. Control bit, flag bit, and channel buffer.

9. The slot in which the interface card for the device is placed.

Chapter 4

1. Source, object

2. Machine instructions and pseudo instructions.

3. Symbol table

4. An absolute program is one whose addresses are translated permanently and
are not modified as a result of loading at object program execution time.

5. A relocatable program is assigned relative addresses at assembly time which
are modified as a result of loading at object program execution time.
A '"pass' is defined as one Assembler examination of the source code.
Two or three passes are required to complete an assembly, depending on the
assembly output selected and the number of devices available for the output.

Chapter 5

1. Method of loading programs, simplified input/output, debugging aids.

2. The Basic Binary Loader, which loads absolute programs, and the Relocating
Loader, which loads relocatable programs.

3. The Relocating Loader.

4, Data which is loaded is intended to be executed; data which is read or written
is to be acted upon.

5. '"Debugging' is a term used to mean program error detection and correction.

Chapter 6

1. Analysis

represents a decision

PUT $4.00 ON
ORPHAN SANDY AT
10-T0-1 ORBETTER? ORPHAN SANDY
TO WIN
$2.00 0N 0.5. TOWIN
AND $2.00 ON
SHOTGUN TO PLACE
| J
LOSE
FIRST RACE ? GO HOME
WIN MORE NO
THAN $4.00F FLIPCOIN

STAY AND

BET AGAIN

YES

NO

A-3

Chapter 6 (Cont'd)

4.

| INITIALIZE
| COUNTERS
|
:
FO-EH -O
START POS = 0 FROM TAPE NUMBER<O ADD 1 TO POS
ZERO = O
YES
ADD 1 TO NEG, ADD ' TO ZERO
HAVE ALL PRINT POS.
? _/
Chapter 7
1. Label, Op Code, Operand, Comments
2. 5 characters
3. 1-9, A-7Z, and the period (.).
4. Leave character position one blank.
5. Asterisk in character position 1 followed by remarks.
6. (c), (e), ()
7. CR LF carriage return and line feed.
9. B
10. Permits reference to the value of the program location counter at the time the
statement is encountered.
11. (a), (c), (e), (h)

A-4

Chapter 8

10.

11.
12.
13.

D U WD

When the contents of A and the contents of the specified address are not equal.
When the contents of the specified address plus one is equal to zero.

130
40g4
TAG+49

Four shift-rotate instructions may be combined; eight alter-skip instructions
may be combined.

8

(a) Instructions for A- and B-register are combined.

(b) Shift-rotate and alter-skip instructions are combined.
(c) Instructions are out of order.

(d) Comma separating instructions omitted.

NOP

STF O

The executing program is interrupted and control is transferred to the interrupt
location for the channel causing the interrupt.

(¢) a character
STC, CLC
0037708

The answers to the coding problems, shown below, represent one possible solution
for a problem. There may be other solutions, equally valid.

14.

15.

LDA CAT
ADA DOG
STA SUM

IDA' Y
ADA 7Z
CPA Q
JMP UNEQ
ADA W
STA RI1
JMP STOP

UNEQ ADA W

ADA Q
STA R2
JMP STOP

Chapter 8 (Cont'd)

16. MASK = 0001050g

LDA TEST
AND MASK
CPA MASK
JMP ON

JUM OFF

17. LDA Y ODD NOP
CMA, INA SSB, RSS
LDB X JMP ODD, I
ADB @pggg CMB, INB
SLB, RSS JMP ODD, I
JSB ODD

Chapter 9

(o), (d), (e), and (f) are invalid

2. If used as the first statement in the program or if the operand field contains an
absolute expression.

3. It provides the loader with the starting address of the object program to which
the loader transfers control.

4. (b) should be loaded first because the maximum size of the common area is
determined by the COM statement which is loaded first.

5. In PROGA, the pseudo EXT CAT must be specified.
In PROGB, the pseudo ENT CAT must be specified.

DEF
7. 56 characters

The following answers represent one possible solution to the problem. There may be
other equally valid solutions.

A-6

Chapter 9 (Cont'd)

8.

POSNG NOP
LOOP LDA POSA,I
XOR MASK

STA NEGA,I
ISZ NEGA,I

ISZ POSA
1SZ NEGA
1SZ COUNT
JMP LOOP

JMP POSNG,I
POSA DEF POS
NEGA DEF NEG
COUNT DEC -25
MASK OCT 177771

COM POS (25)
NEG BSS 25

REV NOP
LOOP LDA TABA,I
STA TAGA,I

ISZ TABA
LDA TAGA
ADA DECRM
STA TAGA
ISZ COUNT
JMP LOOP
JMP REV,I

TABA DEF TAB
TAGA DEF TAG+49
DECRM DEC -1

COM TAB (50)
TAG BSS 50

Chapter 10

1. .IOC

2. EXT

3. drivers

4. equipment table
5. Clear

Chapter 10 (Cont'd)

BUFA

ERROR

DVBUS

HALT

D1

D2

JSB

OCT
JMP
DEF

OoCT

EXT

BSS

SSB

JMP
JSB

OoCT
JMP
DEF
DEC
JMP
JSB

OoCT
JMP
DEF
DEC
JSB

oCT
SSA

JMP
HLT
ASC
ASC
EXT
ENT

. IOC.

010010
ERROR
BUFA

12

.I0C.
10

DVBUS
.IOC.
020002
HALT
D1

6
HALT
.IOC.
020002
HALT
D2

5
.IOC.
040002

*-3

6,ILL FN ON TR
5,TR DV BSY
.Ioc.

ERROR

ASCIl CHARACTER FORMAT B

b, 0) 0 0 ! ! ! !
be o] 0 [| 0 0 ! !
bs)) o 1 0] 0 |
bg
b3
bz
by

o{o|o|o|NULL|DCo | B 0 @ | P
ojfolo}t]sSomM|DC, 1 1 A Q | —d"I_‘
o|lo|1|o[EOA|DC2 | " 2 B R -_:-:u:
ojlol1{i|EOM:!DC3 | #- 3 ¢ S N
o|1jo|ofEOT [2| $ 4 D T _—U::/.s\:ﬁ
oOl1 /01| WRU| ERR| % 5 E U N
ol |rlolRuUs\Nc| & [6 | F | v | AT
o 1 [1] [BELL{LEM {(afoss| 7 | 6 | W s N
1fojo|o| FEg!| So (8 H X :é::::g:-
1{olo|1 (Mgl s) 9 I Y
1jojtjol LF | S | * : J z [e 0]
1ol vi1t|Vras | S3 + ; K C T
1{1]olo]| FF | Sa [comma) < L \ ._ _ | ACK
1l1{ofj1] CR | Ss - = M J @
t|i1{1]o]| sO | se > N + | lesc
vl ST | s, / ? 0 « |4 [oeC

Standard 7-bit set code positional order and notation are shown below with b, the high-order
and b, the low-order, bit position.

b, bg by b, by b, b,
EXAMPLE: The code for "R"is: 1 ¢ 1 0 0 1 O
LEGEND
NULL Null/Idle DC,-DC; Device Control
SCM Start of message DC4(Stop) Device control (stop)
ECA End of address ERR Error
ECM End of message SYNC Synchronous idle
EOT End of transmission LEM Logical end of media
WRU "Who are you?" So=Sr Separator (information)
RU "Are you...?" 5 Word separator (space, normally
BELL Audible signal non-printing)
FEo Format effector < Less than
HT Horizontal tabulation S Greater than
SK Skip (punched card)) Up arrow (Exponentiation)
LF Line feed - Left arrow (Implies/Replaced by)
V1as Vertical tabulation \ Reverse slant
FF Form feed ACK Acknowledge
CR Carriage return 0} Unassigned contirol
SO Shift out ESC Escape
Sl Shift in DEL Delete/Idle
DCo Device control reserved for

data link escape

BINARY CODED DECIMAL FORMAT C

Kennedy 1406/1506 ASCII-BCD Conversion

Symbol BCD ASCII Equivalent Symbol BCD ASCII Equivalent
4 (octal code) (octal code) Y (octal code) (octal code)
(Space) 20 p4g A 61 101
! 52 @41 B 62 192
" 13 043 c 63 193
$ 53 g44 D 64 104
% 34 P45 E 65 105
& 6 046 F 66 106
' 14 o47 G 67 107
(34 @50 H 78 g
) 74 @51 | 71 11
* 54 252 J 41 112
; & @53 K 42 13
, 33 254 L 43 114
- 49 @55 M 44 115
. 73 256 N 45 116
/ 21 g57 0O 46 117
/ P 47 120
g 12 ge Q 50 121
1 o 761 R 51 122
2 02 962 S 22 123
3 03 763 T 23 124
4 4 p64 U 24 125
5 25 265 Vv 25 126
6 96 966 W 26 127
7 o7 967 X 27 130
8 19 @70 Y 30 131
9 1 971 z 31 132
: 15 972 [75 133
; 56 273 \ 36 134
< 76 974] 55 135
= 13 @75
> 16 @76
? 72 @77
@ 14 100

Other symbols which may be represented in ASCI| are converted to spaces in BCD (20)

C-1

HP 2020A/B ASCII - BCD Conversion

Symbol ASCII BCD Symbol ASCII BCD
(Octal code) (Octal code) (Octal code) (Octal code)
(Space) 40 20 A 101 ‘ 61
! 41 52 B 102 62
" 42 37 . C 103 63
43 13 D 104 64
$ 44 | 53 E 105 85
% 45 34 F 106 66
& 46 60 f G 107 67
' 47 36 H 118 70
(50 75 : I 111 71
) 51 55 ¢ d 112 41
* 52 54 K 113 42
+ 53 60 L 114 43
R 54 33 M 115 44
- 55 40 N 116 45
. 56 73 0] 117 46
/ 57 21 P 120 47
Q 121 50
R 122 51
’f 2{’ g S 123 22
5 o 42 T 124 23
4 64 54 v 126 25
6 66 g6 X 130 Y
7 67 ¢7 Y 131 30
8 70 10 z 132 31
9 " 1 i 133 75 1
. i 135 55 ¥
. - = 1 136 77
‘ 74 76 - 137 32
= 75 35
> 76 16
? T T2
@ 100 14

¥ BCD code of 60 always converted to ASCII code 53 (+).
1 BCD code of 75 always converted to ASCII code 50 (() and
BCD code of 55 always converted to ASCII code 51 ()).

C-2

HP 2752A
TELEPRINTER

INPUT/OUTPUT DEVICES D

The following list contains HP devices which may be connected
tothe HP 2116 , the size and format of the element transferred,
and sample input/output subroutines which transfer one or more
elements of data, assuming interrupt system disabled.

The teleprinter transfers an 11-bit element; bits are trans-
mitted in serial fashion, one bit about every 9.1 msec. Each
bit is transferred into bit 7 of the A- or B-register, and out
from bit 0 of the A- or B-register. The flag bit is set after
transmission of each bit. The format of an element is as fol-
lows:

where the 1's and 0 are control

1 1 yxxxXxXXX0 characters meaningful tothe de-
l J 1 j J l l j l ‘ 1 vice and x's are the binary rep-
resentation of an ASCII charac-
D11P1gPgPgP7PgPsP4Psbob 1 ter. The bits are transferred
in order from b, to b, ..
1 11
Sample coding, input:
READ NOP
LDA K1 Set counter to -11.
STA CTR
CLA Clear the A-register.

STC TELIN,C Enables element transfer (sets
control bit){.

A RAR Rotate A right one bit.
SFS 13B Is transfer of one bit completed ?
JMP *-1 No--keep testing.

T The HP 2752A will actually begin to input a character when
(1) a key is punched (2) tape is placed in HP 2752A punched
tape reader and switch is moved to START position. The flag
will not be set until either of the former actions takes place
and the transfer of one element is completed.

D-2

MIA TELIN,C
ISZ CTR
JMP A
RAL, RAL
AND B
STA CHAR
CLC TELIN
JMP READ,I
CTR BSS 1
K1 OCT 177765
B OCT 000177
COM CHAR
TELIN EQU 13B

Sample coding, output:

TYPE NOP
LDA
STA
LDA

ALS

IOR
STC

D SFS

JMP
OTA

K1
CTR
CHAR

C
TLOUTY

TLOUT
D
TLOUT, C

Yes--place bit in A-register,
clear flag so that test for com-
pletion of transfer of next bit is
valid.

Have all 11 bits been trans-
ferred?

No--return for next bit.
Yes--rotate A left two bits.
Mask out control bits and 8th
character bit.

Store the element.
Turn off the device.
Exit from the routine.

Set counter to -11.

Load A-register with ASCII
character to be output. ‘

Shift left one bit (get 0 control
bit).

Add two 1-bits as control bits.
Enables data output (sets control
bit).

Is transfer of one bit completed?
No--keep testing.

Yes--output next bit and clear
flag so that test for completion
of transfer of next bit from buf-
fer to device is valid.

T Note that, C is not specified for the STC. The flag bit will be
set at the time this instruction is executed--the flag bit is set
automatically when the device is turned on-line, and the rou-
tine leaves the flag set when it exits. Thus, the first time the
loop from D to the ISZ is executed, control will pass to the
OTA. Otherwise, if C were specified and the flag cleared,
the two instructions beginning at D would be executed indefi-

nitely.

HP 2754A
TELEPRINTER

HP 2737A
PUNCHED TAPE
READER

RAR
ISz

JMP
CLC
JMP

C OCT
COM
TLOUT EQU

CTR

D
TLOUT
TYPE, I

003000
CHAR
12B

Position next bit for transfer.
Have all 11 bits been trans-
ferred?

No--transfer next bit.
Yes--turn off device.

Exit from subroutine.

Same as HP 2752A Teleprinter, above.

The punched tape reader transfers an 8-bit element to bits 7-0

of the A- or B-register.

The format is as follows:

Paper tape track 1 —»bit 0
Paper tape track 2—»bit 1

Paper tape track 8 —»bit 7

The binary representation of an ASCII character is transferred
to bits 6-0; the eighth track, going to bit 7, is always zero.

Sample coding (assume select code 108):

READ NOP
STC
SFS
JMP
LIA

STA

CLC
JMP
COM

PTRD, C
PTRD
*-1

PTRD

CHAR
PTRD
READ, I
CHAR

Set control bit, clear flag.
Transfer of element complete?
No--keep testing.

Yes--place the element in the
A-register.

Store the element.
Turn off the device.
Exit from the routine.

D-3

HP 27378
PUNCHED TAPE

READER-SPOOLER I/0 isthesame as for the HP 2737A Punched Tape Reader, above.

HP 2753A

TAPE PUNCH The tape punch transfers an 8-bit element from bits 7-0 of the
A- or B-register. The format is as follows:

bit 0— Paper tape track 1

bit 1—> Paper tape track 2

bit T—> Paper tape track 8

The binary representation of an ASCII character is transferred
from bits 6-0; bit 7, going to the eighth track, is always zero.

Sample coding:
WRITE NOP

LDA CHAR Load A with element tobe output.
OTA TPNCH Transfer element to channel buf-
fer and clear flag.
STC TPNCH Output element to device.
SFS TPNCH Is transfer from buffer to de-
vice complete?
JMP *-1 No--keep testing.
CLC TPNCH Yes--turn off device.
JMP WRITE,I Exit from routine.
CcOM CHAR
TPNCH EQU 11B
HP 2401C AND
HP 3460A
DIGITAL
VOLTMETERS The HP 2401C and 3460A Integrating Digital Voltmeters provide

data through the Digital Voltmeter Data Interface. Data is re-
quested by the user's program through the Digital Voltmeter
Programmer and the Crossbar Scanner Programmer.

Digital Voltmeter Programmer

Data is output to the Digital Voltmeter Programmer as an 8-bit
element from bits 7-0 of the A- or B-register.

The element, in effect, tells the voltmeter the sample period,
the type of reading to be taken, and the range. The format is
as follows:

0 O

Autorange

+ 10 Gain, 2411A
0.1V Range

1V Range

10V Range

100V Range
1000V Range

10 Megohm Range
AC Normal

AC Fast
Frequency

bt b e = O O O
= = O O == O
- O O M O -~ O

Period

DC Volts

Ohms

1 Sec. Sample Period

- = O O O O
O O M = O O
- O = O = O

0.1 Sec. Sample Period

= O O
o = O

0.01 Sec. Sample Period

Crossbar Scanner Programmer

An STC for the Crossbar Scanner Programmer initiates a read-
ing on the voltmeter.f Information may be transferred to the
Crossbar Scanner Programmer with OTA/OTB, giving informa-
tion as to the type of reading to be taken, without providing an
STC.

A sixteen-bit element is output to the Crossbar Scanner Pro-
grammer; however, not all the bits are significant. When the

T An STC causes the channel to be selected which in turn sends
an encode after the channel is reached.

D-5

flag bit is set to zero, the element supplies a delay time and
type of measurement:

15 43 2 0

/ /o f | delay

o = f = o Signifies volts measurement
o = 1 Signifies ohms measurement
f = 1 Signifies frequency measurement
delay Signifies delay before measurement
value delay
000 15 msec.
001 17.5 msec.
010 22 msec.
011 27 msec.
100 42 msec.
101 62 msec.
110 145 msec.
111 500 msec.

When the flag bit is set to 1, the element supplies 3 digit
BCD identification of which channel is to be read from the
2911A (Crossbar Scanner). The channel is automatically
incremented by each successive STC instruction for the
Crossbar Scanner Programmer after the first STC.

15 12 1l 87 43 0

% 102 |‘o' 10°

Digital Voltmeter Data Interface

The Digital Voltmeter Data Interface provides the reading from
the HP 2401C or 3460A Integrating Digital Voltmeter in the form
of a 32-bit element:

5 12 1l 87 43 o)
First word: range |function 10° 0%
15 12 11 87 43 0
- Second word: 103 102 10! 10°

range

function

10°-10°

RDVLT

LOOP

NOP
LDA

OTA

CLF

OTA
STF

OTB
STC

STC

SFS
JMP
LIB
LIA
DST
1SZ
ISz
ISZ
JMP
CLC

JMP

decimal 10°™ multiplier

the type of reading:

Function
Period
+Vdc
-Vdc

kilz

k

m
Overload
Vac

8-4-

I
-

H=EOOOOOOoON
OO HFHFOOOO
'—‘OOO'—""‘OOO
HEEEOoOROROO
&

A six BCD digit value
Sample coding--reading 200 inputs on the HP 2401C:

RDNG
DVMPR

DELAY

INP

SCANR
SCANR
SCANR

SCANR
DVMDI, C

SCANR

DVMDI
*-1
DVMDI
DVMDI
VPLC,I
VPLC
VPLC
CNTR
LOOP
DVMDI

RDVLT,I

Load A with data for Digital
Voltmeter Programmer.

Set up voltmeter to take reading
of DC volts.

Load A with ohms/frequency/
delay indicator; a delay of 27
msec, volts to be measured.
Load B with channel identifica-
tion for first measurement.
Clear flag and output ohms/fre-
quency/delay indicator.

Set flag to enable output of chan-
nel identification.

Output the channel identification.
Ready the Data Interface, clear
flag soit will indicate whenread-
ing has been taken.

Set control bit; initiate the mea-
surement. The channel identi-
fication is automatically incre-
mented at each successive STC.
Has reading been taken?
No--keep testing.

Yes--load B with first word.
Load A with second word.

Store the reading.

Modify storage address.

All 200 readings been taken?
No--return for next input.
Yes--turn off data interface de-
vice.

Exit from routine.

KENNEDY 1406
AND 1506
INCREMENTAL
TAPE
TRANSPORTS

CNTR DEC -200
DVMPR EQU 17B
SCANR EQU 20B
DVMDI EQU 21B
RDNG OCT 144
DELAY OCT 3
INP OCT 1
VLPC DEF VSTOR

COM VSTOR (400)

The Kennedy 1406 and 1506 Incremental Tape Transports record
BCD dataat 200 bpiat a recording speed of 0 to 400 characters
per second.

The following commands are available:

Octal Value

Bits 15-14 Command
0 Write (step)
1 Write file gap
2 Write record gap
3 Write file gap

A data character is transferred from bits 5-0 of the A- or B~
register.

Status bits may be transferred from the buffer to bits 6, 5, 3
and 1 of the A- or B-register. They are as follows:

bO busy This bit is one when the unit is
busy. When zero, the unit is
ready to accept a command.

bg broken tape There is no tape on the write
head. This bit is zero when the
tape is rethreaded.

bg end-of-tape This bit is set to one when the
end-of-tape reflective marker
is sensed. It remains set until
the tape is rewound (manual
control).

b6 load point

Sample coding:

The start-of-tape marker has
been sensed. This bit is set
only when this marker is oppo-
site the photosensor.

The following are samples for writing two characters on tape,
writing a record gap and a file gap on tape, and for testing

status.

a. Write (step):

WRIT1 LDA CHAR
OTA INCTP
STC INCTP,C
SFS INCTP
JMP *-1
WRIT2 LDA CHAR+1
OTA INCTP
STC INCTP,C
INCTP EQU 21B
CHAR ocT ¢
OCT 47
. Write record gap:
WRTRG CLA
CCE
ERA
OTA INCTP
STC INCTP,C
INCTP EQU 21B
. Write file gap:
WRTFG CLA
CCE
ERA,ERA
OTA INCTP
STC INCTP,C
INCTP EQU 21B

The unit is on channel 21.

Load character with zero com-
mand bits in A-register, output
A to buffer. Set control bit,
clear flag bit. Test if charac-
ter written; then write second
character.

BCD characters: HP. Bits 15
and 16 of each are zeros (write
command).

Clear A-register

Set E-register to one

Rotate 1-bit into bit 15 of A
(creating write record gap com-
mand). Output command to buf-
fer, set control bit, and clear
flag.

Clear A-register

Set E-register to one

Rotate 1-bits into bits 15 and 14
of A (creating write file gap
command). Output command to
buffer, set controlbit, and clear
flag.

HP 2020A /B

MAGNETIC
TAPE UNIT

D-10

d. Test status:

CKST LIA INCTP Load status bits into A-register.
SZA, RSS Any bits set?
JMP (cont.)

SLA, RSS Bit0=17?
JMP (cont.)

RAR,RAR

RAR Bit3=17?
SLA,RSS

JMP (cont.)

RAR,RAR Bit5=17
SLA,RSS

JMP (cont.)

The HP 2020A/B Magnetic Tape Unit is operated through two
channels, a command channel anda data channel. Requests and
status information are relayed through the command channel,;
data is transferred through the data channel.

Command Channel

A request element is transferred from bits 7-0 of the A- or
B-register:

Octal Value

Bits 7-0 Command
071 Write record, odd parity (Binary)
031 Write record, even parity (BCD)
015 Write end-of-file gap
063 Read record, odd parity (Binary)
023 Read record, even parity (BCD)
003 Forward space record
101 Backspace record
201 Rewind
241 Rewind and unload
300 Clear

The flag bit is set on the command channel when any tape mo-
tion operation is completed.

A status element is transferred from the command channel to
bits 7-0 of the A- or B-register:
5 8 7 6 5 4 3 2 1 0

7 be |b7 | bs| bs| ba| b3 | bab) | bg

bg busy This bit is one when the tape is
in motion or the transport is in
local status. When zero, the
tape unit is ready to accept a
command.

b1 parity error This bit is set toone if a verti-
cal or longitudinal parity error
occurs during a read or write
operation. Parityisnot checked
on forward space record and
backspace record operations.

b, Write not This bit is one when either the
enabled tape reel does not have a write
enable ring or the tape unit is

rewinding.
by reject A command will berejected (ig-

nored) and this bit set if:

(1) Tape motion is required and
the unit is busy.

(2) Backward tape motion is re-
quired and the tapeis at load
point. If a rewind and unload
command is given while the
tapeis at load point, the com-
mand will be ignored but the
reject bit will not be set.

(3) A write command is given
and the tape reel does not
have a write enable ring.

by timing This bit is set if the data chan-
nel flag has not been cleared or
the interrupt request not ac-
knowledged between data inter-
rupt requests while reading or
writing.

D-11

D-12

b5 end-of -tape This bit is set when the end-of-
tape reflective marker is sensed
while the tape is moving for-
ward. It remains set until a re-
wind command is given.

b6 start-of-tape This bit is one when the start of
tape marker is under the photo
sense head.

b.7 end-of-file This bit is set to one when a one-
character tape mark (17 8) re-
cord is detected while reading,
forward spacing or backspacing.

be local The device is in local status.
The parity error, reject, timing, and end-of-file bits are re-
set when a command resulting in tape motion is accepted. The

busy and start-of-tape bits are reset when the condition is no
longer true.

Data Channel

Datais transferred between the data channel and bits 5-0 of the
A- or B-register as a 6-bit element. Parity is generated (out-
put) or checked (input) as requested by the command channel
element.

The flag bit is set on the data channel when one character has
been transferred between the data channel buffer and the tape
device. Clearing the control bit on a write even or odd parity
operation causes an end-of-record gap to be generated.

Sample coding, input one record:

RDTAP NOP

LIA CcC Load status element.

SLA Test busy bit--unit busy ?

JMP *.2 Yes--keep testing.

CLF DC Clear flag on data channel so
test for completion of transfer
of element is valid.

LDA RRE Set command--read evenparity.

NEXT OTA CC,C Output command, clear flag so

SFC CC test for completion of transfer

JMP X of record is valid.

SFS DC One element transferred?

JMP *-3 No--keep testing.

CC
DC
RRE
BUF

LIA DC,C

STA BUF,I
ISZ BUF

JMP NEXT
JSB SCHEK

JMP RDTAP,I

EQU 15B
EQU 16B
OCT 23

DEF BUFR
COM BUFR(50)

Yes, load character, clear flag
sotestfor completion of transfer
of the record is valid.

Store element.

Modify storage address.

Has complete record beenread?
No--go back for next element.
Yes--transfer control to rou-
tine to check status word for
parity errors, etc.

Exit from routine.

The programmer should be
aware of the size of the records
being read so that an adequate
input buffer area can be pro-
vided.

D-13

ASCII
RECORDS
(PAPER TAPE)

1/O RECORD FORMATS E

An ASCII record is a group of characters terminated by an end-
of-record mark, consisting of a carriage return, ,and a
line feed,

For an input operation, the length of the record transmitted to
the buffer is the number of characters or words designated in
the request, or less if an end-of-record mark is encountered
before_the character or word count is exhausted. The codes
for and @ are not transmitted to the buffer. Anend-
of-record mark preceding the first data character is ignored.

For an output operation, the length of the record is determined
by the number of characters or words designated in the request.
Anend-of-record mark is supplied at the end of each output re-
cord by the input/output system.

If the last character of anoutput record is€—, however, the end-
of-record mark is omitted. This allows control of Teleprinter
line spacing. The user may write a message (the€—is not
printed) and expect the reply to be typed on the same line. The
reply must be terminated with the .

t, a (RUB OUT) codef followed by a @ @D is en-

countered on input from the Teleprinter or Punched Tape Reader,
the current record is ignored (deleted) and the next record trans-
mitted.

If less than ten feed frames (all zeros) are encountered before
the first data character from the Punched Tape Reader, they
are ignored. Ten feed frames are interpreted as an end-of-
tape condition.

i (iicUB OUT) which appears on the Teleprinter keyboard is
synonymous with the ASCII symbol,

BINARY
RECORDS
(PAPER TAPE)

BINARY
RECORDS
(MAGNETIC
TAPE)

E-2

A binary record is transmitted exactly as it appears in mem-
ory or on an 8-level paper tape. The record length is deter-
mined by the number of characters or words in the buffer, as
designated in the request.

Binary input records may be specified as variable in length.
The first word of the record contains a number in bits 15-8
specifying the length of the record in words, including the first
word. The entire record, including the word count, is trans-
mitted to the buffer. If the actual length exceeds the size of the
buffer, only the number of words equivalent to the buffer length
is transmitted.

On input operations, less than ten feed frames preceding the
first data character are ignored. Ten feed frames are inter-
preted as an end-of-tape condition. On output, the system
writes four feed framesto serve as a physical record separator.

A binary record on magnetic tape is a group of 6-level tape
"characters' recorded inodd parity and terminated by a record
gap. ' The record length is determined by the number of char-
acters or words in the buffer as designated in the request.

Each computer word is translated into three tape ''characters"
(and vice versa) as follows:

15 1110 65 0
T 1
| ! .
1 1
D - < I
5 0
Ist TAPE CHAR" (/)]

2nd TAPE CHAR. | ///

3rd TAPE CHAR.

T Odd parity: a seventh bit is recorded on tape if the total of the
bits in the six levels is an even number.
Even parity: a seventh bit is recorded on tape if the total of
the bits in the six levels is an odd number.

BINARY
CODED
DECIMAL
RECORDS

For output operations on the HP 2020, the minimum buffer
length is three computer words. If less are specified,
zeros are supplied to fill a three word record.

A BCD record on magnetic tape is a group of BCD characters
recorded in even parity and terminated by a record gap. (See
Appendix C for BCD character set.) A request to write a BCD
record results in the translation of each 7-level ASCII charac-
ter in the buffer area into a 6-level BCD character on magnetic
tape. The translation process does not alter the original con-
tents of the buffer. A request to read a BCD record results in
the translation of each BCD character into an ASCII character
after the block has been read.

The length of the record is determined by the number of
characters or words designated in the request. A record
gap is supplied at the end of each record by the input/output
system. For an Incremental Magnetic Tape operations,
the record gap is omitted if the last character in the buffer
isa =+ ;the <« is not written on tape.

A WRITE request for the Incremental Magnetic Tape speci-
fying a buffer length of zero causes a record gap only to
be written.

For the HP 2020 Magnetic Tape Unit, the maximum record
length is 120 tape characters or 120 ASCII characters. If a
buffer is specified greater then 120 characters, the first 120
aretransmitted and the remaining characters are skipped. For
output operations, the minimum buffer length is 7 characters.
If less are specified, spaces are supplied tofill to 7 characters.

E-3

INPUT/OUTPUT
FORMATS FOR

INSTRUMENT
REQUESTS

Use of the Data Source Interface driver subroutine requires
the specification of a ‘‘dummy’’ buffer for an binary output
(removal of ‘‘hold-off’’) operation and either a two-or-eight-
word buffer for an input operation. If a Read Binary operation
is requested, the 32 bits (8 BCD digits) of information are
read directly into the two-word buffer.f If a Read ASCII
operation is performed, the 8 BCD digits are converted into
16 ASCII characters in the following format:

r f d5 d4 d3 d2 d1 d0 E-ss, . g8

r range - a negative power of 10

f function T
d.-d six digit data value

E-ss range expressed as an exponent of two digits
A~ A two blanks

gg function expressed as a two-digit number

Example:
Ijo| |visls| |./TOlC|.
oicT| [2/0/1]4 REMOVIE[[plvM[["Hlo|L|p[-|o[FIF{"],] [DIVIM_ |olN
JMP| [REVIEK CH/ANNIELL] [1/5
olcT o DUMMY
olclT] |o BlUFFIEIR
. NO[RMAIL! [RET|URIN
1IN [JislB| [.]z]olc].
oc[t] [1olo[1]5 RIE/A[D| {AIND[[clo|N|VIEIR[T] [T]O] |AS[cI[T
JMP| [¥-[2 LlojolP] [uN[T]1 L] [Dja[TIA[[RIE|AD]Y
DIEIF| [BIFID|ST SIT|X[TIE[EIN] |[cIH|ARIAICITIE[R
pElc] {-[1]6 BlU[FIFE[R
JMP| [.l.] NORMA[L| REIT|URN
DiS|I| |BISIS| |8

T See Appendix D

When a Write request is made for Digital Voltmeter
Programmer, a one-word buffer must be specified. This
word contains the voltmeter program: sample period (bits
7-6), function (bits 5-3), and range (bits 2-0).1 If bit 15
contains a 1, an encode command is sent to the Voltmeter
(always 0 if the configuration includes a Scanner).

Example:
mo[T| {J/sB| [.|z[0/C].
o|CIT| [2011]4]3 P|R|O/G|R|AM] |DIV{M| |C/HJAININE|L| [1]3
JIMP| [REWIEK
DIEF| [BFV LT O|NIE[-WlolR[D] [BUIFIFIEIR] IS|P|ELC|! [FII[E|D
o|cT| |1
. N|ORMAIL| |RE|T[URIN
VIL|T| o[c[T] [1]0]0j24|4 1=|EIN[C|o]pIE] [DjvMI, [2]=].]0[1] IS[E[C] IS|AIMPILIE
. PEIR|1]0]D],4=ID|C| [VIOLIT|S|,|4=[1]0] VIOIL|T
. R|AN|GIE

T See Appendix D

When a Scanner Programmer output operation is performed,
the system requires a two-word buffer. The first word
contains the scanner program: the function (bits 4-3) and
the delay (bits 2-0).f The second word contains the channel
number for the start of the scan. The driver subroutine
converts the binary channel number value produced by the
Assembler to the BCD format required by the device.

Example:
NOIT] {J|SiB] [.|I|0|C|.
O[C|T| [2|0/1|1|4 SIEIN|D| |P|R[O|GIR[AM| |ANID| |C|HIAININIEIL! [TIO
JMP| |RE|JIEIK S|CIAININIE|R| |O|N] ICIHIAININIEIL| 114
DIE|F] |BIFISICIN
DIEIC| |2
JMP| [.1.1.
SIC|N| [O[C[T| 0|3 0= \VIOIL[TIS|, [3|=|2]7TMSE[C| DEL|AY
DIE|C| |1/0/0 S|TIAR|T| [CHAININEIL| |1]0l0 |
. |

t See Appendix D

CONSOLIDATED CODING SHEET F

5 [14 13 12| n w0 9 [8 7 sl 5 4 3 |2 1 o0
D/1 | AND 001 0 Z/C Memory Address >
D/1 | XOR 010 0o z/C
D/1 | IOR 011 0 z/C
D/1 | JSB 001 1 z/C
D/I | JMP 010 1 Z/C
D/1 | ISz o11 1 Z/C
D/l | AD* 100 A/B Z/C
D/1 | CP* 101 A/B Z/C
D/1 | LD* 110 A/B 2/C
D/1 | ST* 11 A/B Z/C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 | SRG 000 A/B 0 DJE | *LS 000 CLE D/E SL* | *LS 000
*RS 061 *RS 001
R*L 019 R*L 010
R*R 011 R*R o011
*LR 100 *LR 100
ER* 101 ER* 101
EL* 116 EL* 110
*LF 111 *LF 111
NOP 000 000 000 000
15 14 13 12 11 10 9 8] 6 5 4 3 2 1 0
0o | asG 000 A/B 1 |cL* o1 |CLE 01| SEZ s§S* SL* | IN+ SZ* RSS
CM* 10 | CME 10
cc* 11 | CcCE 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 | 10G 000 A/B 1 H/C HLT 0060 +—— Select Code ~——————+
1 0 STF i
1 1 CcLF 901
1 0 SFC G520
1 0 S¥F8 Rl
1 H/C MI* 106
1 H/C LI* 101
1 H/C OT* 110
0 1 H/C STC 1
1 1 H/C CLC 111
1 0 STO 001 000 001
1 1 CLO 001 000 001
i H/C soC 010 000 001
i H/C SOS 011 000 001
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1 | EAU 000 MPY** 000 010 000 000
DIV** 000 100 000 000
DLD** 100 610 000 000
DST** 160 100 000 000
ASR 001 000 0 1
ASL 000 000 0 1 b
LSR 001 000 1 0 "“g er
LSL 000 000 1 0 DA bi -
RRR 001 401 0 0 its
RRL 000 001 0 0
Notes: * = Aor B.

D/1, A/B, Z/C, D/E, H/C coded: 0/1.
**Second word is Memory Address.

INDEX

ABS 7-7,7-5,9-16
Absolute
Assembly 4-5
Expression 7-3, 7-6
Operand 7-3
Programs 4-3, 5-1,7-5,9-3,11-1
Terms 7-4,7-6
Value 7-5
Accumulator 2-2
ADA 17-8, 8-2
ADB 7-8, 8-2
Address, Instruction 3-10
Address modification 9-15, 9-16
Addressable locations 3-2
ALF 8-11
ALR 8-10
ALS 8-9
Alter-Skip Instructions 8-12
AND 7-8, 8-3
Arithmetic operators 7-3
Arithmetic subroutines 4-1,9-25
ARS 8-10
ASC 7-4,9-19
ASCII 7-8,9-19,10-1, 10-3,10-13, E-1
ASL 8-25
ASMB 11-1
ASR 8-24
Assembler viii, 4-1,5-1, 7-1
Assembler control instructions 9-2
Assembly listing 11-2
Asterisk 7-1,7-3,7-5,7-6
Availability, device 10-11

Backspace 10-7
Base (zero) page 3-2,3-12, 4-5,5-2, 9-5
Base page
Location counter 4-5,9-5
Relocatable 7-4, 7-7
Basic Binary Loader 5-1
Basic Control System (BCS) 5-1, 9-5, 10-1
Binary
Data 10-1, 10-3, 10-13, E-2
Number system 1-2
Binary Coded Decimal (BCD) 10-3, E-3
BLF 8-11
BLR 8-10
BLS 8-9
BRS 8-10
BSS 4-1,7-4,9-18
Buffer
Address 10-1, 10-5
Input/Output 3-7
Length 10-2, 10-5

CCA 8-13
CCB 8-13
CCE 8-13

Channel, Input/Output 3-7

Characters 7-1,7-3, 11-5

Character transmission 10-5

CLA 8-12

CLB 8-12

CLC 8-16

CLE 8-9,8-13

Clear Flag Indicator 8-16

Clear request 10-8

CLF 8-18

CLO 8-18

CMA 8-13

CMB 8-13

CME 8-13

COM 7-4,9-8,9-12

Comma 7-3, 8-11, 8-14, 8-16, 9-8

Comments 7-10

Common
Location counter 4-5,9-11
Relocatable 7-4, 7-7,9-11
Storage 4-5,9-8

Compilers viii

Complement 1-12

Configuration 10-14

Constants
ASCII 9-19
Decimal integer 9-20
Decimal floating point 9-21
Octal 9-24

Control statement
11-1,11-4,11-8

Control system ix

CPA 7-8,8-8

CPB 7-8,8-8

Current page 3-2, 3-12, 4-5, 5-2

Cycle, machine 3-12

Data storage 9-8,9-18
Debugging aids 5-4
DEC 4-1,7-4,9-20
Decimal
Number system 1-1
Constants 9-20
DEF 9-13
Diagnostic messages 4-6
Direct addressing 3-2, 3-4

Direct Memory Access (DMA) 3-9, 10-1, 10-5

DIV 7-8, 8-4,9-24
DLD 7-8, 8-22,9-32
Driver 10-1,10-4
DST 8-23, 9-32

ELA 8-11

ELB 8-11

END 4-1,7-10,9-5

End-of-file 10-7, 10-12
End-of-statement mark 7-1, 7-10

Index~1

End-of-tape 10-14

ENT 7-4,9-11

Entry point 9-11, 11-5

EQU 7-4,9-12,9-16

Equal sign 7-8

Equipment table (EQT) 10-3
Equipment type 10-4, 10-11
ERA 8-10

ERB 8-10

Error message 11-4
Expressions 7-3, 7-6, 7-8, 7-10
EXT 9-12

Extend bit 3-10, 3-16

Extended Arithmetic Unit Instructions 8-20
External references 9-12

FAD 7-8,9-30

FDV 7-8,9-29

Flag, Input/Output 3-7

Floating point 7-8, 9-27, 9-29, 9-30, 9-31
Flowchart 6-1

FMP 4-2,7-8,9-27

FSB 7-8,9-31

Function 10-1, 10-2, 10-7, 10-8, 10~10

Hardware
Definition vii
Input/Output 3-7
Registers 3-10
HED 9-2, 9-3, 11-3
HLT 7-10,8-19

IFN 9-7
IFZ 9-1
INA 8-13
INB 8-13
Indirect addressing 3-4, 3-13, 4-5, 7-3,9-12, 9-13,
9-15
Input/Output
Channel 3-7,10-4
Instructions 3-6, 3-12, 7-5, 8-15
Interrupt 3-8, 3-9
Operations 5-2
Select code 3-8,7-10
Input/Output Control (. IOC,) 10-1
Input/Output devices

Data Source Interface 10-11, D-6, E-4

Guarded Crossbar Scanner 10 11,D-5, E-6
Incremental Magnetic Tape 10-1, D-8, E-2, E-3
Integrating Digital Voltmeter 10-11, D-4, D-5,

E-5

Magnetic Tape 10-6, 10-11, 10-14, D-10, E-2,

E-3
Punched Tape Reader 10-3,10-11, D-3, D-4,
1

Tape Punch 10-3, 10-11,
Teleprinter 10-3, 10-11,

Index-2

Time Base Generator 10-11

Installation unit numbers 10-3

Instruction
Definition 2-1, 2-3
Tlegal 11-5
Input/Output 3-6

Memory Reference 3-2

Modification 9-15

Register Reference 3-6

Integer 7-8, 9-20
Interface 3-17

Interrupt 3-8, 3-9, 3-13, 10-1, 10-14, D-1

IOR 7-8, 8-5
ISZ 8-8

JMP 8-6
JSB 8-6

Label
Definition 4-2, 4-6
Field 7-1

Symbol 7-1,7-4, 7-10, 11-4

LDA 7-8,8-1

LDB 7-8, 8-1

LIA 8-17

LIB 8-17

List output 9-33,11-2
Literals 7-7

Location counters 4-5
LSL 8-26

LSR 8-26

LST 9-34

Memory reference instructions

Memory size 2-1, 7-17
MIA 8-117

MIB 8-17

Modulus 1-1

MPY 17-8, 8-20, 9-25

NAM 7-10, 9-2

NOP 8-15, 9-6
Normalizing 9-21
Number systems 1-1
Numeric terms 7-3, 7-5

Object program 4-1

Object program linkage 9-8

OCT 7-4, 9-20,9-24

Octal
Constant 9-24
Number 7-5
Number system 1-3

One's complement 1-15

Operand 2-1, 4-2,4-4,7-3,7-5,7-8,11-6, 11-9
Operation codes 4-1, 7-2, 11-17

ORB 9-4, 9-5

 Origin 9-2,9-3,11-17

ORG 9-3,9-4

ORR 9-4

OTA 8-117

OTB 8-117

Overflow 2-2, 3-10

Page

Current 3-2, 3-12, 4-5,5-2

Zero (base) 3-2, 3-12, 4-5,5-2, 9-5
Pass 4-6
Period 7-1
Priority 3-9
Program 9-1
Program location counter 4-5, 8-6, 9-3, 9-4
Program relocatable 7-4, 7-7
Programming ix
Pseudo instruction 4-1, 7-5,9-1

Radix 1-1
RAL 8-10
RAR 8-10
RBL 8-10
RBR 8-10
Record 10-3, E-1
Register 2-2, 2-3, 3-10
Register reference instructions 3-6, 3-12, 8-9, 8-24
Reject address 10-1, 10-4, 10-8
Relative address 4-3
Relocatable
Assembly 4-5
Operand 7-3
Programs 4-3, 9-3,9-8, 9-15, 9-25
Terms 7-4,7-6, 7-7
Value 7-5
Relocating Loader 4-3, 4-5,5-1,5-2,9-5
Remarks 9-3
REP 9-6
Routine 9-1
RRL 8-25
RRR 8-25
RSS 8-13

Select code 3-8

SEZ 8-13

SFC 8-18

SFS 8-18

Shift Rotate Instructions 8-9, 8-24

Sign bit 8-9, 8-10, 8-24, 8-25 9-20, 9-23, 9-26
SKP 9-35

SLA 8-11, 8-13

SLB 8-11, 8-13

SOC 7-10, 8-18
Software vii
SOs 7-10, 8-18
Source program 4-1, 4-6,11-2
Space 7-1, 7-2
SPC 9-35
SSA 8-13
SSB 8-13
STA 8-2
Standard equipment table (SQT) 10-4
Standard units 10-3
Starting location 4-3
Statement 7-1
Status
Field 10-12 ~
Magnetic Tape 10-14
Reply 10-4
Request 10-10
STB 8-2
STC 8-16
STF 8-18
STO 8-18
Subfunction 10-1, 10-2, 10-7, 10-8
Subprogram 9-1
Subroutine 9-1
SUP 9-36
Switch Register 3-9
SWP 9-33
Symbol Table 4-2, 4-6,11-2,11-3,11-8
Symbolic term 7-3,7-4,11-8,11-9
System
Clear 10-8
Status 10-13
SZA 8-13
SZB 8-13

Tape positioning 10-6, 10-7
Transfer address 9-5
Transmission 10-8, 10-13

Two's complement 1-13, 9-20, 9-23

Unit-reference 10-1, 10-3, 10-7, 10-10
UNL 9-34
UNS 9-36

Variable length record 10-2

XIF 9-7
XOR 17-8, 8-4

Zero (base) page 3-2,3-12, 4-5,5-2,9-5
Index-3

CUT ALONG LINE

I

HEWLETT ﬁ PACKARD

READER COMMENT SHEET
ASSEMBLER/BCS TRAINING MANUAL

HP 02116-9073 April, 1970

Hewlett-Packard welcomes your evaluation of this text.
Any errors, suggested additions, deletions, or general com-
ments may be made below. Use extra pages if you like.

FROM
NAME:

ADDRESS:

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE AND TAPE

FIRST CLASS
PERMIT NO.141
CUPERTINO

CALIFORNIA
L
R
L]
I
R
L]
L]
R
R
L
L]
L]
I
L}
]
]

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

SUPERVISOR, SOFTWARE PUBLICATIONS

HEWLETT - PACKARD

CUPERTINO DIVISION
11000 Wolfe Road
Cupertino, California
95014

e

NNMNA_0NT7

