
HEWLETT ~h ~ PACKARD

ASSEMBLER/ BCS
TRAINING MANUAL

HP 02116-9073

ASSEMBLER/ BCS
TRAINING MANUAL

HEWLETT D PACKARD

11000 Wolfe Road
Cupertino, California

95014

April 1970

© CopyJc),gh,t, 1970, by

HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Second Edition

First Edition: December 1967
Revised: April 1970

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
transmitted by any means, electronic, mechanical, photocopy, re­
cording or otherwise, without prior written pemission fran the
publisher.

Printed in the U .s.A.

PREFACE

This training manual is an introduction to programming for the HP 2116 computer, I
but the information also applies to the 2115 and 2114 computers. The book focuses
only on information pertinent to programming concepts; specific operating proce-
dures may be found in the manuals listed below.

The training manual describes number systems, general computer hardware char­
acteristics as well as the specific characteristics of the HP computers. The As­
sembler and Basic Control System are explained; flowcharting and program coding
are included in sections on problem analysis and instruction formats. Explanation
for coding machine instructions, assembler pseudo operations and input/ output re­
quests is given.

Other computer publications provided by Hewlett-Packard include:

ALGOL Programmer's Reference Manual
Assembler Programmer's Reference Manual
Basic Control System Programmer's Reference Manual
FORTRAN Programmer's Reference Manual
Specifications and Basic Operation Manual
Standard Software Systems Operating Manual
Symbolic Editor Programmer's Reference Manual

i

NEW AND CHANGED INFORMATION

A 11 known errors in this manual
have been corrected. Changes
in the text are marked by aver­
tical line in the margin.

CONTENTS

INTRODUCTION vii

CHAPTER 1 NUMBER SYSTEMS 1-1

1. 1 Definition of Number Systems 1-1
1. 1. 1 Decimal Number System 1-1
1. 1. 2 Binary Number System 1-2
1. 1. 3 Octal Number System 1-3

1. 2 Number System Conversion 1-3
1. 3 Arithmetic Operations 1-10

1. 3. 1 Addition 1-10
1. 3. 2 Subtraction 1-11
1. 3. 3 Multiplication 1-11
1. 3. 4 Division 1-12

1. 4 Computer Arithmetic 1-12

CHAPTER 2 THE XYZ COMPUTER 2-1

2.1 Instruction Format 2-1
2.2 Accumulator 2-2
2.3 Instructions 2-3
2.4 Other Registers 2-3
2.5 Sample Program 2-4

CHAPTER 3 THE HP 2116 COMPUTER 3-1

3. 1 Instruction Format 3-1
3. 1.1 Data Format 3-1
3. 1. 2 Memory Reference Instructions 3-2
3. 1. 3 Register Reference Instructions 3-6
3. 1. 4 Input/Output Instructions 3-6

3.2 Registers 3-10
3.3 Operation Sequence 3-12

3. 3. 1 Fetch Phase 3-12
3.3.2 Indirect Phase 3-13
3.3.3 Execute Phase 3-13
3.3.4 Interrupt Phase 3-13
3.3.5 Halt Phase 3-13

CHAPTER 4 THE ASSEMBLER 4-1

4.1 Operation Codes 4-1
4.2 Labels 4-2
4.3 Operands 4-2
4.4 Absolute Programs 4-3
4.5 Relocatable Programs 4-3
4.6 Program Location Counters 4-5

iii

4.7 Assembler Processing
4. 7. 1 Pass One
4. 7. 2 Pass Two
4. 7. 3 Pass Three

CHAPTER 5 THE BASIC CONTROL SYSTEM

5. 1

5.2
5.3

Loading Programs
5. 1. 1 Basic Binary Loader
5. 1. 2 Relocating Loader
5. 1. 3 Loading Process
Input/Output
Debugging Aids

CHAPTER 6 PROBLEM ANALYSIS (FLOWCHARTING)

CHAPTER 7 INSTRUCTION FORMAT

7. 1 Label Field
7. 1. 1 Label Symbol
7. 1. 2 Asterisk

7. 2 Op Code Field
7. 3 Operand Field

7. 3. 1 Symbolic Term
7. 3. 2 Numeric Term
7. 3. 3 Asterisk
7. 3. 4 Combination Expressions
7. 3. 5 Literals

7. 4 Comments Field
7. 5 Manual Notation
7. 6 Coding Conventions

<;HAPTER 8 MACIDNE INSTRUCTIONS

8. 1

iv

Memory Reference
8. 1. 1 LDA/LDB
8.1. 2 STA/STB
8. 1. 3 ADA/ ADB
8.1.4 AND
8.1. 5 XOR
8.1. 6 IOR
8.1. 7 JMP
8.1. 8 JSB
8. 1. 9 ISZ
8.1. 10 CPA/CPB

4-6
4-6
4-7
4-7

5-1

5-1
5-1
5-2
5-2
5-2
5-4

6-1

7-1

7-1
7-1
7-2
7-2
7-3
7-3
7-5
7-5
7-6
7-7

7-10
7-10
7-11

8-1

8-1
8-1
8-2
8-2
8-3
8-4
8-5
8-6
8-6
8-8
8-8

8.2 Register Reference 8-9
8.2.1 Shift-Rotate Group 8-9
8.2.2 Alter-Skip Group 8-12
8.2.3 NOP 8-15

8.3 Input/ Output Instructions 8-15
8. 3.1 STC 8-16
8.3.2 CLC 8-16
8.3.3 LIA/LIB 8-17
8.3.4 MIA/MIB 8-17
8.3.5 OTA/OTB 8-17
8.3.6 STF 8-18
8.3.7 CLF 8-18
8.3.8 SFC 8-18
8.3.9 SFS 8-18
8.3.10 CLO, STO, SOC, SOS 8-18
8. 3.11 HALT 8-19

8.4 Extended Arithmetic Unit Instructions 8-20
8.4.1 MPY 8-20
8.4.2 DN 8-21
8.4.3 DLD 8-22
8.4.4 DST 8-23
8.4.5 Shift-Rotate Instructions 8-24

CHAPTER 9 PSEUDO INSTRUCTIONS 9-1

9.1 Assembler Control 9-2
9. 1.1 NAM 9-2
9. 1. 2 ORG 9-3
9.1. 3 ORR 9-4
9.1. 4 ORB 9-5
9.1. 5 END 9-5
9.1. 6 REP 9-6
9. 1. 7 IFN/IFZ 9-7

9.2 Object Program Linkage 9-8
9.2.1 COM 9-8
9.2.2 ENT 9-11
9.2.3 EXT 9-12

9.3 Address and Symbol Definition 9-13
9.3.1 DEF 9-13
9.3.2 EQU 9-16
9.3.3 ABS 9-17

9.4 Storage Allocation and Constant Definition 9-18
9.4.1 BSS 9-18
9.4.2 ASC 9-19
9.4.3 DEC 9-20
9.4.4 OCT 9-24

9.5 Arithmetic Subroutine Calls 9-25
9.5.1 MPY 9-25
9.5.2 DIV 9-27
9.5.3 FMP 9-27
9.5.4 FDV 9-29
9.5.5 FAD 9-30
9.5.6 FSB 9-31

v

9. 5. 7 DLD
9. 5. 8 DST
9. 5. 9 SWP

9.6 Assembly Listing Control
9. 6.1 UNL
9. 6. 2 LST
9. 6. 3 SKP
9.6.4 SPC
9.6.5 SUP
9. 6. 6 UNS
9. 6. 7 HED

CHAPTER 10 BCS INPUT/OUTPUT REQUESTS

10. 1 Data Transfer Request
10. 1. 1 Function, Subfunction, and Unit-Reference
10. 1. 2 Reject Address
10.1. 3 Buffer Address
10. 1. 4 Buffer Length

10. 2 Magnetic Tape Control Request
10. 2.1 Function, Subfunction, and Unit-Reference
10. 2. 2 Reject Address

10.3 Clear Request
10. 3. 1 Function and Unit-Reference

10. 4 Status Request
10. 4.1 Function and Unit-Reference

CHAPTER 11 ASSEMBLER INPUT AND OUTPUT

CHAPTER 12

APPENDIX A

APPENDIX B

APPENDIX c

APPENDIX D

APPENDIX E

11.1
11. 2
11. 3
11. 4

11. 5

Control Statement
Source Program
Binary Output
List Output
11. 4. 1 Assembly Listing
11. 4. 2 Symbol Table Listing
Error Messages

SAMPLE EXERCISES

R-eview Answers

ASCII Character Format

Binary Coded Decimal Formats

Input/Output Devices

I/O Record Formats

APP E ND IX F Consolidated Coding Sheet

INDEX

vi

9-32
9-32
9-33
9-33
9-34
9-34
9-35
9-35
9-36
9-36
9-37

10-1

10-1
10-2
10-4
10-5
10-5
10-6
10-7
10-8
10-8
10-8

10-10
10-10

11-1

11-1
11-2
11-2
11-2
11-2
11-3
11-4

12-1

A-1

D-1

C-1

D-1

E-1

F-1

HARDWARE

SOFTWARE

INTRODUCTION

The term computer usually calls to mind a huge box with
switches, dials, and blinking lights: an engineering marvel,
the electronic "brain". The computer, however, is virtu­
ally useless without two other vital elements: some method
of translation between the computer and its users, and a
person capable of stating the logical processes the computer
must perform to solve his problem.

These three elements of computing correspond to the terms
hardware, software, and programmer.

Computer hardware consists of four general elements:

1. Control -- directs transfer of data and controls operations
performed.

2. Arithmetic element --element in which computations are
performed.

3. Memory
stored.

place where information to be processed is

4. Input/Output -- allows information to be transferred
between the computer memory and external devices
such as paper tape readers and punches, printers, and
so forth.

A greatly simplified illustration of the flow of information
between these elements is given on the following page.

Computer hardware recognizes information as patterns of
"off/on" current pulses, or bits. Since it would be difficult
for a person to easily express himself in the "off/.on"
language which is understood by the computer, a method of
translating was devised.

The term "software" originated to differentiate between
hardware, a physical device, and translators and control
systems, which are a sequence of computer instructions.
Software translators and control systems are usually stored

vii

viii

on a medium such as paper tape or magnetic tape, from which
they are input to the computer and executed.

PERIPHERAL DEVICES

r, r, r,
L.l.J L l.J LI .J

l I I

INPUT
INTERFACE

CONTROL

,, ,, r,
L 1-1 L 1.J L 1J

I I I

OUTPUT
INTERFACE

ARITHMETIC
UNIT

MEMORY

Translators accept and translate readily understandable in­
structions into machine language. Translators are composed
of two general categories:

Assemblers allow expression of instructions as abbreviated
mnemonic codes. In general, one code is translated into one
machine instruction. However, most assemblers contain
pseudo instructions and subroutine calls, which generate a
number of machine instructions to perform a specific task.

Compilers allow expression in a language more nearly re­
sembling words and/or formulas. One instruction statement
may generate many machine instructions. Compilers are
usually designed with a certain type of problem in mind.
Thus, assemblers are machine-oriented languages; compilers
are problem-oriented languages. For example, FORTRAN,
or FORmula TRANslation, allows easy expression of complex

mathematical formulas for scientific use. ALGOL, or ALGO­
rithmic Language, provides a concise language for expressing
a large class of numerical processes.

Another type of software is the control system (also called
monitor system or operating system). A control system
provides functions useful to translated programs produced by
assembler and compiler systems, for example, program loading
and error detection aids.

PROGRAMMING Programming, then, consists of:

(1) Analyzing a problem and determining the process nec­
essary to obtain a solution.

(2) Coding the solution process in the software language
which is most applicable.

ix

1.1

DEFINITION

OF NUMBER

SYSTEMS

1.1.1

DECIMAL

NUMBER

SYSTEM

NUMBER SYSTEMS 1

The "off/on" computer language can be related to a "zero/
one" number system called the binary number system.

Number systems are characterized by:

(1) radix, or base; the number of unique symbols used in
the system:-In the decimal number system, the base
is ten, corresponding to the ten unique symbols 0
through 9. In the binary number system, the base
is two, corresponding to the two unique symbols
0 and 1.

(2) modulus; the number of unique quantities or magni­
tudes a system can distinquish. The modulus of the
binary and decimal number systems is infinite; any
quantity can be expressed with either of these systems.
However, a machine with a physical limit to the num­
ber of digits it can hold has a modulus. For example,
a decimal adding machine with ten digits, or counting
wheels, would have a modulus of 1010, or
10,000,000,000. (0 to 9,999,999,999) A binary com­
puter which can hold a unit of 12 binary digits (or bits)
has a modulus of 212, or 4096 (in decimal). (The
formula for the modulus of a number system is bn,
where b =base, n=numberof digit positions available).

The value which a digit assumes in a number system is
dependent upon its position. For example, in the decimal
number system:

1-1

1.1. 2

BINARY

NUMBER

SYSTEM

1-2

decimal point

•.. thousands hundreds
(103) (102)

tens units ! tenths hundredths ..•
(10') (100) (10-t) (10-2)

Positions to the left of the decimal point increase in value in
ascending powers of ten, beginning with zero. Positions to
the right of the decimal point decrease in value in ascending
negative powers of ten, beginning with -1.

Thus, the number 32, 768.9 represents:

3 x 104 + 2 x 103 + 7 x 102 +ax lo' +a x 10° + 9 x 10-1

Similarly, in the binary number system, positions relate to
ascending positive and negative powers of two:

Value (in decimal) 32 16 8 4 2

binary point

1~4
20 L ~-f ~-2

Thus, the binary number 1011.01 represents:

1 x 23 + 0 x 22 + 1 x 21 + 1 x 2° + O x 2-1 + 1 x 2-2. or

8 + 2 + 1 + 1/4 = 11 1/4 (in decimal)

Observe that this number, in binary, represents quite a
different magnitude than the same number in decimal. To
distinguish the number system in which a quantity is being
expressed, the base is appended as a subscript at the end
of a number.

1001010 (decimal number system)

100102 {binary number system)

1.1. 3

OCTAL

NUMBER

SYSTEM

1.2

NUMBER

SYSTEM

CONVERSION

Another number system useful in computer terminology is
the octal number system, with a base of 8. The octal number
system is useful in that the unique symbols, 0 through 7,
correspond to all the quantities expressable in a 3-digit
group in the binary number system.

octal binary

0 000 (0 x 22 + 0 x 21 + 0 x 2° = 0)

1 001 (0 x 22 + 0 x 21 + 1x2° = 1)

2 010 (0 x 22 + 1 x 21 + 0 x 2° = 2)

3 011 (0 x 2 2 + 1 x 21 + 1x2° = 3)

4 100 (1 x 22 + 0 x 21 + 0 x 2° = 4)

5 101 (1 x 22 + 0 x 21 + 1x2° = 5)

6 110 (1 x 22 + 1 x 21 + 0 x 2° = 6)

7 111 (1 x 22 + 1 x 21 + 1x2° = 7)

Thus, the octal number system can be used as a convenient
"shorthand,, method of expressing binary numbers.

0 ctal to Binary and Binary to Octal

The simplest conversion is the binary to octal or octal to
binary conversion, because of the correspondence of one
octal digit to a triplet of binary numbers. The triplets
must be measured from the binary point.

1-3

1-4

Examples:

101 110. 0012
~ '-v-' \..y-l

5 6 . 18

~~~·~ 
1 0 3 . 2 8 

(zero's are implied at each 
end to fill the triplet.) 

,L),,L~,.i,· ~~~ 
111 110 101 011 100. 010 000 0012 

Binary/Octal to Decimal 

In previous sections of this chapter, we have used a process 
for converting binary numbers to decimal. The process may 
be stated more generally as follows: 

The number an an-1· .. a2a1ao. a_1a-2 ... a_m where the 
a' s represent the digits and the subscripts represent the 
position of the digit from the binary or octal point, may be 
converted by the following formula: 

n n-1 2 1 
an x b + an x b +. • • + a 2 X b + a 1 x b 

+ a 0 xb0 + a.1 x b-1 + ••• a..,,.Xb"'m 

where b =base from which conversion is being made. 

Examples: 

765.428 = 

7 x a2 + 6 x a1 + 5 x a0 + 4 x a·1 x 2 x a-2 = 

448 + 48 + 5 + • 5 + .03125 = 501. 5312510 



1 x 23 ... 1 x 22 + 0 x 21 + 1 x 2° + 0 x 2·1 + 1 x 2·2 = 

8 + 4 + 0 + 1 + 0 + . 25 = 13. 2510 

010 111 001 100 011z= 271438 = 

2 x 84 + 7 x 83 + 1 x 82 + 4 x 81 + 3 x 8° = 
8192 + 3584 + 64 + 32 + 3 = 11, 87510 

(In this example, rather than work with the longer binary 
number, we first convert to octal, then to decimal.) 

Decimal to Octal/Binary 

To convert decimal numbers to binary and octal involves a 
slightly more complicated process: divide the decimal number 
by the base to which conversion is to be made, attaining a 
quotient (q1) plus a remainder (r1). Divide ql by the base, 
again attaining a quotient (q2), plus a remainder (r2)· Repeat 
this process until a zero quotient plus a remainder (rn) is 
obtained. The converted number is rnrn-1· .. r3r2r1• 

Examples: 

To convert 17510 to octal: 
(q1) 

/ 

2( R7.-(rd 
8 )175 

base to which 
conversion is 
to be made .__ 

1-5 



1-6 

To convert 17510 to binary: 

43 Rl _.(rz) 
2)87 

_..(r5) 
5 RO 

2)i0 

_..(J6) 
2 Rl 

2)5 

_..(re) 
0 Rl 

2}T 

17510 = 101011112 (Convert this to octal and compare with the answer 

to the previous example.) 



To convert 28, 76810 to binary: 

3 596 RO 
8 )28, 768 

(rather than make numerous divisions by 2, 
we first convert to octal, then to binary) 

449 R4 
a) 3596 

56 Rl 
8) 449 

7 RO 
8)56 

0 R7 arr 
28, 76810 = 701409 = 111 000 001 100 0002 

To convert fractional decimal numbers to octal or binary. 

Multiply the fraction times the base to which conversion is to 
be made, attaining an integer (i•) and a fraction (f• ). Multiply 
f 1 times the base, again attaining an integer (i 2) and a fraction 
(f2). Repeat this process until an integer (in) and a zero 
fraction is obtained, or until the desired degree of accuracy 
is obtained. The converted number is .it i2 i3 •. i". 

Examples: 

To convert • 7510 to octal: 

,.(base),.. U1 ) 

• 75 x 8 = lfil.l]Q]-+(fd 

. 7510 = . 6a 

1-7 



1-8 

To convert . 35710 to octal: 

(base) r i(i1 > 
.357 x8 =[ID~ 

I 
(fd 
+ 

I. 856lx 8 

and so forth 

• 35710 = • 2666e (accurate to four places) 

To convert . 9710 to binary: 

. 97 x 2 = 1~ 
(f 1) 
+ 

l[#J • 94 x 2 = 
d2) 
+ 

1 Q1J • 88 x 2 = 
I 

(f3) 
+ 

1[@ • 76 x 2 = 

(!4) 

• 5~ x 2 = lc:gil 
I 

(f5) 

.ol x 2 = oc;gru 
• 

(f6) 

.08 x 2 = 0.16 

and so forth 

• 9710 = • 11111002 (accurate to 7 places) 



To convert . 9710 to octal, then to binary: 

• 97 x 8 = 7 qID 
l 

. 76 x 8 = 6cgID 

l 
.08 x 8 = oGJJ 
l 

. 64 x 8 = 5~ 
~ 

.12 x 8 = o~ 
l 

.96 x 8 = 7.68 

. 9710 = • 7605079 = .111 110 000 101 000 1112 

(accurate to 18 places) 

To convert a mixed decimal number to octal or binary, the 
previous two processes are combined: 

Example: 

To convert 321. 4210 to octal: 

40 Rl 
8) 321 

5 RO 
8}40 

0 R5 
8}5 

• 42 x 8 = 3. 36 

. 36 x 8 = 2. 88 

. 88 x 8 = 7. 04 

321. 4210 = 501. 327e (accurate to 3 places) 

1-9 



1.3 

ARITHMETIC 

OPERATIONS 

1.3.1 

ADDITION 

1-10 

Arithmetic operations in the octal and binary number systems 
follow the same rules as for the decimal number system. 

In the decimal number system, a carry is generated each 
time the addition in a column reaches the base (10) or an 
integer multiple of the base. The difference between the 
sum and the base multiple is then placed in the column 
being added as part of the answer. The same is true in 
octal and binary. 

For example: 

decimal 

Carry-2 

octal 

7 
+6 
+5 
+4 
22 

Carry-2 
7 

+6 
+5 

_.±.i_ 
26 

binary 

Carries-! 
111 

11 
+11 
+11 

1001 

The sum in the rightmost column is 22. The 
base has been reached twice, indicating a 
carry of 2. The difference between the sum 
and the base multiple is 2(22-20==2), which 
is placed in the rightmost column as part 
of the answer. Nothing but the carry is added 
in the second column. 

The sum of the rightmost column is 22 in 
decimal. The base has been reached twice, 
indicating a carry of 2. The difference be­
tween the sum and the base multiple is 
6(22-16==6) which is placed in the rightmost 
column as part of the answer. Nothing but 
the carry is added in the second column. 

The sum of the rightmost column is 3 in 
decimal. The base has been reached once, 
indicating a carry of 1. The difference be­
tween the sum and the base multiple is 



1.3.2 

SUBTRACTION 

1.3.3 

1(3-2=1), which is placed in the rightmost 
column as part of the answer. The carry 
is added in the second column for a partial 
sum in decimal of 4. The base has been 
reached twice, indicating a carry of two 
l's. The difference between the sum of the 
second column and the base multiple is 
0(4-4=0), which is placed in the second column 
as part of the answer. The carries are 
added in the third column for a decimal 
answer of 2. The base has been reached 
once, indicating a carry of 1. The difference 
between the sum of the third column and the 
base multiple is 0(2-2=0), which is placed 
in the third column as part of the answer. 
Only the carry is added in the fourth column. 

Borrows from the preceding column have the value of the 
system base. In the decimal system, the borrow is 10; 
in octal, 8, and in binary, 2. 
For example: 
dee imal octal binary 

101010 • bOrrows 

9123 
-798 

8325 

a a 8 • borrow• 
7123 
-567 

6334 

2 2 2 • b0rrow1 
1010 
-101 

101 

MULTIPLICATION As in addition, a carry is generated each time a product 
reaches a multiple of the base. The partial products are 
added in the same system as the one in which multiplication 
is taking place. 
For example: 

decimal 

394 
X5 

550 
142 

1970 

- multiplication 
carry 

octal 

274 
X5 

234 
142 - multiplication 

carry 
1654 

binary 

111 
Xll 

111 
111 addition 

carry 
1 

11 

10101 

1-11 



1.3.4 

DIVISION 

1.4 

COMPUTER 

ARITHMETIC 

1-12 

decimal octal binary 

563 563 1111 
X75 X75 xll -
505 167 1111 

231 --- 331--- 1111 

521 ----
carries 325 carries 10001 

342 452 ___. 111 
--- addition 

42225 54147 0110~ carries 

1 

101101 

Binary or octal division is the same as decimal division 
except that intermediate multiplications and subtractions 
must be performed in the appropriate system. Borrows 
for subtraction and carries for multiplication are not shown 
below. 

decimal octal binary 

563 563 1111 
75)42225 75) 54147 111)1101001 

375 461 111 
4'12 '"'"604 rroo 

450 556 111 
-n5 267 mo 

225 267 111 
ill 

111 

Addition is the basic arithmetic operation for the computer 
The seventy basic instructions in the HP 2116 include an 
"add" instruction, but not subtract, multiply, or divide. The 
Assembler for the HP 2116 contains these instructions; 
they are constructed from other basic computer instructions. 
The following paragraphs deal with computer representation 
of negative numbers and computer subtraction. 

A negative number is represented in the computer as the 
complement of the positive value. There are various kinds 



of complements; the HP 2116A uses the base complement, 
or two's complement. For the decimal number system, 
the base complement is the ten's complement; for octal, the 
eight's complement. 

These complements are formed by subtracting the numbers 
from an integer power of the base. 

decimal 

1000 
678 

3 22 -10'1 complement 
of 67810 

octal 

1000 
543 

235- e' complement 
of 54311 

binary 

100000 
11011 

101 -2'1 complement 
of 110112 

With the base complement, it is possible to subtract by comple­
menting the subtrahend and adding, disregarding the final 
carry. The final carry is that which extends beyond the left­
most digit of the minuend or subtrahend, whichever is longer. 

The base complement of the subtrahend is found by subtract­
ing the subtrahend from the integer power of the base which 
is one digit position longer than the minuend or subtrahend, 
whichever is longer. 

For example: 

decimal 

968 minuend 

-367 subtrahend 

601 

33269 minuend 

- 24 9 aubtrahend 

33020 

296 minuend 

-3295 subtrahend 

-2999 

968 minuend 

+633 10'1 complement of subtrahend 

)601 

throw owoy final carry 

33269 minuend 

+ 997 51 10'1 complement of subtrahend 

J33020 

throw away final carry 

296 minuend 

+6705 10°s complement of subtrahend 

7001 negative answer in 10'1 complement form. 

No final carry. 

1-13 



1-14 

In the last example, a larger number is subtracted from a 
smaller number; the answer is negative. The answer 7001 
is in lO's complement form; by taking the lO's complement 
of 7001 (10,000 - 7001 = 2999), it is seen that the answer 
is correct. 

octal 

6576 minuend 

- 3 25 7 subtrahend 

3317 

777777 minuend 

- 5 5 5 subtrahend 

777222 

binary 

101101 minuend 

-1011 subtrahend 

1010010 

11001 minuend 

-111 subtrahend 

10010 

101 minuend 

-11001 subtrahend 

-10100 

6576 minuend 

+4521 8 11 complement of subtrahend 

93317 

throw away final carry 

777777 minuend 

+777223 e's complement of subtrahend 

1)777222 

throw away final carry 

101101 minuend 

+ 110 101 2' complement of subtrahend 

,100010 

throw away final carry 

11001 minuend 

+11001 2's complement of subtrahend 

910010 

throw away final carry 

101 minuend 
+00111 2's complement af subtrahend 
--- neoatiile answer in 2's complement form 

1100 

In the last example, a larger number is subtracted from a 
smaller number; the answer is negative. The answer 1100 
is in two's complement form; by taking the 2's complement 
of 1100(100000-01100 = 10100), it is seen that the answer 
is correct. 



Another type of complement useful in working with computers 
is the one's complement of a binary number. The one's 
complement is formed simply by changing l1 s to 0' s and 
O's to l's. For example, the l's complement of the binary 
number 1001110112 is 0110001002. The one's complement 
is useful in that the two's complement of a binary number 
can be formed by taking .the one's complement of the number 
and adding 1. 

For example: 

11011 original number 

00100 one's complement 
+ 1 

00101 two's complement 

1-15 





REVIEW 

1. The .computer recognizes information as patterns of 

2. What are the two general types of software translators? 

3. A number system is characterized by its 
and its ------

4. What is the base of the (a) binary number system? 

(b) octal number system? 

(c) decimal number system? 

5. Define "complement" as applied to the computer. 

Exercises 

6. Convert: 

(a) 1101112 to decimal 

(b) 31210 to binary 

(c) 765810 to octal 

(d) 32777 8 to decimal 

7. Find the solution for: 

(a) 101101112 

+ 

(b) 

(c) 

+ 

327678 

2568 

(e) 51210 to binary 

(f) 1110111002 to decimal 

(g) 398. 7510 to octal 

(h) 277. 00538 to decimal 

(e) 

x 

(f) 268 )124728 

8. Convert the following to their base complement: 

(a) 11111102 
(b) 3778 

(c) 97654 10 

(ct) 52910 

(e) 101010101 2 
(f) 1010118 

.1-17 





2.1 

INSTRUCTION 

FORMAT 

THE XYZ COMPUTER 2 

A general discussion of computer hardware was given in 
the Introduction. To illustrate a few of these hardware 
requirements more specifically, we shall examine the central 
processor of a hypothetical device called the XYZ computer. 

First, let us examine some of the properties we would like 
the central processor to have: 

1. The ability to recognize and execute a set of instructions. 

2. The ability of these instructions to refer to data stored in 
memory. 

The computer is constructed to process information in units 
of a specified number of bits. These units are caffed words. 
To simplify this discussion, we shall define the XYZ computer 
as constructed to process 5-bit words. By defining the size 
of the word, we implicitly set a limit to the computer's 
memory size (number of words in memory) and also to the 
instruction repertoire (number of instructions or commands 
which the computer can recognize). 

Each instruction the computer will recognize must be contained 
in five bits. Therefore, if each instruction is recognized as a 
certain pattern of bits, thirty-two (25) different instructions 
could be defined. However, most of the capabilities we would 
like also involve operands, or data to be processed. For 
example, the instruction "add" is meaningless without quan­
tities to sum. So, part of the instruction word must be used 
to give the operation and part must be used to refer to an 
operand. Suppose the XYZ instruction word is defined as 
follows: 

I x I x I x I x I x I where each x is a 0 or 1. 
~--------

operation--l Loperand reference 

(address) 

2-1 



2.2 

ACCUMULATOR 

2-2 

The number of commands is now limited to four (22) and the 
number of operand references to eight (23). Since the operands 
are stored in memory, this means that we may refer to eight 
different words or memory locations. Thus the memory size 
has been effectively limited to eight locations. References to 
memory locations are made through binary addresses, per­
manently fixed by construction to each location as represented 
by the diagram below: 

Address 

000 

001 

010 

011 

100 

101 

110 

111 

Memory 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

~ 

(5-bit 
words) 

where 
each x 
is aO 
or 1. 

In the previous section, the means of referring to one operand 
in memory was discussed. For operations such as addition, 
however, we need to refer to another operand. There is no 
more room in the instruction word to refer to another operand. 
Therefore, the XYZ computer contains a register called the 
accumulator, or A-register, which can be used to hold an 
operand. The "add" instruction obtains one operand from 
memory and the other from the A-register, adds them and 
stores the result back in the A-register. The A-register 
is 6 bits in lengths; the high-order bit is used for overflow, 
when an add or other operation creates a number longer 
than 5 bits. For example, if 10112(2310) is added to 100002 
(1610), the answer 1001112 (3910) cannot be contained in 
5 bits. The 1 is carred into the 6th bit to indicate that 
overflow has occurred. 



2.3 

INSTRUCTIONS 

2.4 

OTHER 

REGISTERS 

The XYZ instruction repertoire is defined as follows: 

Operation Code 

binary octal Mnemonic 

00 0 LDA 

01 1 ADA 

10 2 HLT 

11 3 STA 

Result 

load the A-register with the con­
tents of the memory location 
specified by the last 3 bits of the 
instruction. The contents of the 
memory location are unmodified. 

add the contents of the memory 
location specified by the last 3 
bits of the instruction to the con­
tents of the A-register; store the 
result in the A-register. The 
contents of the memory location 
are unmodified. 

halt; stop processing. 

store the contents of A in the 
memory location specified by the 
last three bits of the instruction. 
The contents of A are unmodified. 

Other registers in the central processor receive and process 
instructions: 

T-REGISTER 

The T-register, or transfer register is a 5-bit register which 
holds instructions and data as they are being transferred 
between memory and the other registers. 

I-REGISTER 

The I-register, or instruction register, is a2-bit register which 
receives, recognizes, and initiates execution of the instruction 
code after an instruction has been transferred from memory 
to the T-register. 

2-3 



2.5 

SAMPLE 

PROGRAM 

2-4 

M-REGISTER 

The M-register, or memory address register, is a 3-bit 
register which receives the address portion of an instruction 
which has been transferred from memory to the T-register. 

P-REGISTER 

The P-register, or program counter, is a 3-bit register which 
holds the memory address of the instruction which is cur­
rently being executed. 

Instructions and data flow between registers in the following 
manner: 

1. Fetch instruction--transfer instruction from memory to 
T-register; then to I and M registers. If operand is re­
quired, go to step 2; if not, to step 3. 

2. Fetch operand--transfer operand to T-register. 

3. Execute--perform the desired function. 

4. Increment the P-register by 1, replace the contents 
of M with the contents of P, go to step 1. 

A simple program to add the contents of two memory locations 
and store the result in a third location is given below. 

Assume that the program and the values have been stored in 
memory at some previous time. 



Mnemonic Address 

LDA 7 000 

ADA 6 001 

STA 5 010 

HLT 011 

100 

101 

110 

111 

000 

001 

010 

011 

100 

101 

110 

111 

Contents of memory before execution. 

0 0 1 

0 1 1 

1 1 1 

1 0 0 

x x x 

x x x 

0 0 1 

0 1 1 

1 

1 

0 

0 

x 

x 

0 

1 

1 

0 

1 

0 

x 

x 

1 

1 

(x's may be l's 
or O's) 

~This is added 
to lo cat ion 7 

Contents of memory after execution. 

0 0 1 

0 1 1 

1 1 1 

1 0 0 

x x x 

1 0 1 

0 0 1 

0 1 1 

1 1 

1 0 

0 1 

0 0 

x x 

0 0 

0 1 

1 1 

(x' s may be l's 
O's) or 

~ 

C> 

now contains 
result 

unchanged 

2-5 





REVIEW 

1. A computer is constructed to process information in units 
of bits called 

2. References to locations in memory are made through 
binary 

~~~~~~~~ 

3. Certain patterns of bits are recognized by the computer
as

4. Operands may be located in or in the , or
both, depending upon the instruction.

5. Define "overflow".

6. A series of instructions resulting in the solution to a
particular problem may be termed a

7. A computer having a 12-bit word divided into a 5-bit
operation code field and a 7-bit operand address field
would be able to refer to memory locations.

2-7

3.1

INSTRUCTION

AND FORMAT

THE HP 2116 COMPUTER 3

The XYZ computer illustrated important computer concepts:
the idea of word length, patterns of bits being recognized
as instructions, a program consisting of a series of instructions
stored in consecutive memory locations, execution of instruc­
tions one at a time from these memory locations, and so forth.

The underlying theory of memory addressing, instruction word
format, and registers are the same in the XYZ and the 2116.
The difference is primarily in size of the machine word and a
somewhat larger set of registers. However, these differences
expand the capabilities considerably.

DATA The 2116 processes data in 16-bit words. An operand data
word is handled as shown below. The instruction word for­
mat varies according to the type of instruction.

3.1.1

DAT A F 0 RMA T Data used as an operand is formatted as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 I 0

l•I• • •I• ••I•• •I•• •I• ••I
magnitude

The sign bit indicates positive (bit 15==0), or negative (bit 15==1).
Negative data is stored in two's complement form. Thus, a
value may range from +3276710 to -3276810·

15 12 9 6 3 0 15 12 9 6 3 0

o I 1 I 1I1 I 1 I 1 1 I 1 I 1 ! 1 1 I j I loooloooloooloooloool

3-1

3.1. 2

MEMORY

REFERENCE

INSTR UC Tl 0 NS Instructions which refer to locations in memory are formatted
as follows:

3-2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 I 0

l•I• • •I• ••I•• •I•• •I• ••I
10111 operation

code
memory address

Operation code and memory address have the same function
here as in the XYZ computer. Note that the memory address
field is 10 bits long; this implies that we can refer to
210 = 102410, memory locations. However, with the Z/C
bit it is possible to expand the number of addressable loca­
tions to 204810. With the D/I bit, the number of addressable
locations is expanded to a maximum of 32, 76810 (32K). The
minimum amount of memory space provided with the 2116A
is 4096 (4K) words.

A theoretical division of the basic 4K memory is made in
1,02410 - word blocks called pages. The zero page, or base
page, occupies locations 0-17778. Pages 1, 2, and 3 occupy
locations 2000-37778 4000-5777 8, and 6000-77778 respec-
t . 1 ' ' ive y.

Base (Zero)/Current Page

The Z/C bit determines whether the instruction address refers
to a location in the base page (Z/ C = O) or the current page
(Z/C = 1). The current page is the page in which the instruc­
tion is located. For example, the diagram below represents
two instructions from a program located in page 3. The
first instruction refers to an address in the current page. The
second instruction refers to an address in the base page.
Thus, the Z/ C bit doubles the number of directly addressable
memory locations.

octal
Mnemonic address

(Base page)

0

1

2

3

4

1773

1774

1775

v

Op
DII Code

I
I
I

:
I

I
I
I

I
I

I
I

I

ZIC Address

l

j_

1776 loaded by second instruction

1777

2000

['-..__,- - I -
7767 i : T

I

LDA 7776 7770 0 i 1100
T

1 I 1 111 111 11 0
I I

7771
I ~ I

..1.

LDA 1776 7772 0
I

1100 0
I

1 111 111 11 0 j_ I
..1.

7773 I ! I
j_ _L I

7774

7775

I
I I

l I
I T I

l .i l.
7776 loaded by first instruction

7777 I I 1 I I

3-3

3-4

Direct/Indirect Addressing

The D/I indicates direct or indirect addressing. With direct
addressing, the contents of the instruction address is the
operand used. Direct addressing is indicated by D/I = 0.
With indirect addressing, the contents of the instruction
address is used as a 15-bit operand address. Indirect
addressing is indicated by D/I = 1.

In the example shown below, the notation (x) is used to de­
note the contents of x. For example, (A) means the contents
of the A-register; (778) means the contents of location 77a.

Mnemonic

LDA 5

LDA 5, I

octal
address

0

1

2

3

4

5

3771

3772

3773

3774

3775

3776

7773

7774

7775

7776

7777

Op
D/I Code ZIC Address

0 0001 1 1 111 111 111

0 1100 0 0 000 000 101

1 1100 0 0 000 000 101

0 0000 0 1 111 111 111

The first LDA instruction refers to the address
5. Since direct addressing is indicated by
D/I = 0, (5), or 007777s is loaded into the
A-register.

The second LDA instruction also refers to the
address 5. However, since indirect addressing
is specified by D/I = 1, (5) is used as the
operand address, and (7777), or 001777s is
loaded into the A-register.

With indirect addressing, then,: 15-bit addresses can be used
which allow us to refer to 21:> = 32, 76810 memory locations
with addresses from 0 to 77777s. This is done at the expense
of using 2 words tor each instruction, one for the instruction
and one for the address.

If the contents of the instruction address (location 5 in the
above example) also contains a 1 in bit 15, the D/I bit, the
contents of the 15-bit address is used as an address, and
so on to any level.

For example:
octal

address

1776

1777

4774

4775

4776

4777

Mnemonic 4072

5073

LDA 4777, I 5074

5075

5076

7755

7766

7777

Op
D/I Code

0 0001

1 0000

1 1100

1 111

ZIC Address

1 1 111 111 111

0 1 111 111 111

1 0 111 111 111

1 1 101 010 111

3-5

3.1.3

REGISTER

REFERENCE

The LDA instruction refers to location 4777a.
Since indirect addressing is specified, location
47778 is assumed to be an address. However,
location 4777a contains a D/I bit which is set
to 1, and (4777a) is treated not as an address,
but as the address of an address. (4777 a) =
1777 a the address of the address of the operand.
(7777$) = 77778, the address of the operand.
(7777a) = 177527a, the actual operand which is
loaded into the A-register.

INSTRUCT I 0 NS Instructions which manipulate registers are formatted as
follows:

3.1.4

INPUT /OUTPUT

INSTRUCTIONS

3-6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 I 0

l•I• • •I• ••I•• •I•• •l•••I
type

indicator instruction code(s)

The type indicator is set to all zeros to indicate register
reference instructions. The other 12 bits specify the com­
mand or combination of commands.

Instructions which control data transfer between the com­
puter and input/ output devices are formatted as follows:

15 14 13 12 11

l•I• • •I•
type

indicator

10 9 8 7 6 5 4 3 2 I 0

••I•• •I•• •I• ••I
instruction select code

The type indicator is set to 1000 to indicate input/output
instructions.

The instruction portion of an 1/0 {input/ output) command
defines the operation to be performed.

1/0 CHANNEL

Data transfer takes place through the 1/0 hardware system.
Up to this point, the discussion of computer hardware has
been centered around the manipulation of data between the
computer memory and the arithmetic registers. The 1/0
hardware system provides interface (a common boundary,
or meeting point) between the central processor and ex­
ternal input/output devices; this interface allows transfer
of data between the computer and external devices.

Up to sixteen 1/0 devices may be connected to the HP 2116
main unit; an HP 2155A 1/0 extender may be added to
increase the total capability to 48 devices. Each device is
connected to the computer through an interface component,
consisting of a card and cable which is plugged into a slot
in the main frame of the computer. Each interface card,
or channel, consists of:

(a) an 1/0 buffer for temporary storage of data as
it is being transferred. The buffer may be up
to 16 bits in length; the actual length depends
on the device being used. Since transfer of data
to or from an external device takes a comparatively
long time, the 1/0 buffer eliminates the necessity
of tying up one of the working registers while the
1/0 operation is taking place. Thus, once an 1/0
operation is initiated, other instructions may be
executed while the operation is taking place.

(b) a control bit which, in effect, "turns on" the 1/0
channel. When set, it enables the connected device
to perform its 1/0 function and allows the flag to
cause an interrupt.

3-7

3-8

(c) an 1/0 flag bit. This bit is set to 1 by a signal from
an 1/0 device when an operation has been completed.
When the interrupt system is enabled, setting the
flag causes an interrupt. The currently executing
instruction is interrupted and control is passed to
an interrupt location associated with the device.
The interrupt lpcations are in low order memory,
in locations 109 through 77 8· The device having the
highest priority is assigned location 10, the device
having the next highest priority is assigned location
11, and so forth. Priority is determined by the slot
in which the interface card for the device is placed.

I/O
Device

I/O
Device

l/O
Device

Plug-In
Card

Plug-in
Card

Plug-in
Cord

10 Int. Address for Highest Pr. Dev.

11 Int. Address for 2nd/Hiqhest Pr. D.

Int. Address for 3rd/Highest Pr. D

The flag bit, when set, inhibits all interrupts on lower
priority devices.

SELECT CODE

As shown in the input/output instruction format, bits 5-0 form
a select code. This code provides the necessary reference to
1/0 device or function. The select codes correspond directly
to the interrupt addresses of the 1/0 devices, and also to
functions having interrupt addresses, such as Power Failure
Interrupt.

Select Code Assignments

Select Interrupt
Code Location Assignment

00 none Interrupt System Disable/Enable

01 none Switch Register or Overflow

02 none DMA Channel 1 Initialize

03 none DMA Channel 2 Initialize

04 4 Power Failure Interrupt

05 5 Memory Protect Interrupt

06 6 DMA Channel 1 Completion Interrupt

07 7 DMA Channel 2 Completion Interrupt

10 10 I/O Device, highest priority

11 11 I/O Device 2nd highest priority

77 77 I/O Device, lowest priority

As shown in the table above, some select codes are reserved
for specific uses while others are available for assignment to
any optional I/O device. The first five (octal codes 00-04}
are reserved for non-interrupting functions. Select code 00
is reserved for enabling or disabling the interrupt system;
certain 1/0 instructions using this select code set or clear the
flag bit for all I/O devices. For certain input instructions,
select code 01 refers to the 16 toggle switches on the computer
console known as the Switch Register. Select codes 02, 03,
06, and 07 are reserved for use by Direct Memory Access,
Option Mll. Direct Memory Access is a hardware option
which allows the transfer of blocks of data directly between
an external I/O device and memory. As discussed above,
the transfer of data between external device/buffer/working
register takes place one element of data at a time. The
length of the element depends upon the I/O device. Select
code 05 is the highest priority interrupt, reserved for Power
Failure Control.

3-9

3.2
REGISTERS

3-10

The HP 2116 contains 7 working registers:

T-Register

The 16-bit transfer register holds all data as it is transferred
between memory and other registers in the control element.

P-Register

The 16-bit program counter holds the address of the instruc­
tion currently being executed. Only bits 0-14 are used. The
P-register is automatically incremented after execution of
each instruction.

M-Register

The 16-bit memory address register contains the address of
the memory location currently being read from or written into.

A-Register

The 16-bit A-register isanaccumulatorandholdsoperands and
the results of arithmetic and logical operations performed by
programmed instructions. This register may be addressed
by any memory reference instruction as location 00000,
permitting inter-register operations such as "add B to A"
with a single word instruction.

B-Register

The 16-bit B-register is a second accumulator which can be
used in the same manner as the A-register, with the excep­
tions of the logical "and", "inclusive or", and Exclusive or"
operations. The B-register may be referenced by any mem­
ory reference instruction as location 00001 for inter-register
operations with A.

E-Register

The 1-bit extend register indicates a carry from bit 15 of the
A or B-registers by any add or incrementinstruction. The E­
register can be set, complemented, or tested; it can also be
rotated in conjunction with the A- or B-registers.

OV-Register

The 1-bit overflow regist~r indicates that an add or increment

instruction referring to the A- or B-register has caused one
of these accumulators to exceed the maximum positive or
negative number, +32, 76710 to -32, 76810. For positive
numbers, this occurs when a carry is made from bit 14 to
bit 15, implying that the result of the addition of two positive
numbers is a negative number. For negative numbers, over­
flow occurs when a carry is not made from bit 14 to bit 15,
implying that the result of the addition of two negative numbers
is a positive number.

In both of the following examples, the OV-register would be set
In the later example the carry from bit 15 causes the E-register
to be set.

Positive Overflow

(A or B) = 0 110 001 101 000 111

(memory) = 0 100 111 111 111 000

result in
A or B = 1 011 001 100 111 111

Negative Overflow

(A or B) = 1 001 110 000 111 101

(memory) = 1 011 000 000 000 000

result in
A or B = 0 100 110 000 111 101

m/
(E-register)

The CV-register can be cleared, set, or tested; a second
overflow does not change the CV-register unless it has been
cleared first.

3-11

3.3
OPERATION

SEQUENCE

3.3.1

FETCH PHASE

3-12

The HP 2116 operates using any of the following machine
phases: Fetch, Indirect, Execute, Interrupt, and Halt. Each
phase takes 1.6 microseconds, called a machine cycle, with
the exception of the ISZ instruction, whose Execute phase
takes 2.0 microseconds, and the Halt phase, which may be
held indefinitely until the halt is terminated.

The M-register is set equal to the P-register. The instruc­
tion whose address is indicated by the contents of the M-register
is transferred to the T-register. Bits 15-10 of the instruction
are transferred to a special instruction register. Processing
continues according to the type of instruction:

Memory Reference Instructions

Bits 9-0 of the T-register are transferred to the M-register.
(In the case of the JMP instruction, bits 9-0 of the T-register
are transferred to bits 9-0 of the M- and P-register. The
Fetch phase is then re-initiated if the D/I bit of the instruction
=0; if D/I = 1, processing continues with the Execute phase.)
If the Z/C bit of theinstruction=O, bits15-10of the M-register
are cleared to zero; this causes reference to the zero (base)
page. If Z/C = 1, bits 15-10 remain the same as bits 15-10
of the P-register; this causes reference to the current page.
If the D/I bit of the instruction equals 1, the Indirect phase
is initiated; otherwise, the Execute phase is initiated.

Register-Reference and Input/Output Instructions

These instructions require only one machine cycle; they are
executed at this point. The P-register is incremented, and
the fetch phase re-initiated.

3.3.2

INDIRECT PHASE The contents of the location whose address is specified by the
contents of the M-register are transferred to the T-register,
then to the M-register. If bit 15 of the T-register = 0, the
execute phase is initiated; if bit 15 = 1, the indirect phase is
re-initiated. (In the case of the JMP instruction, the contents
of the T-register are also transferred to the P-register when
bit 15 = 0, and the Fetch phase is re-initiated.)

3.3.3
EXECUTE PHASE The instruction is executed, the P-register is incremented,

and the Fetch phase re-initiated.

3.3.4

INTERRUPT

PHASE

3.3.5
HALT PHASE

The machine enters the interrupt phase when an interrupt
occurs on an I/O device. The normal program sequence is
halted, and the computer fetches the next instruction from one
of the interrupt locations. The P-register is decremented by
1, and bits 15-6 of the M-register are cleared to zero. Bits
5-0 of the M-register are set to the select code of the in­
terrupting device. The Fetch phase is re-initiated.

The machine enters the halt phase when a HLT instruction
is executed, or when the HALT button on the computer console
is pushed. Machine processing is terminated and the inter­
rupt phase is inhibited. Processing continues when the
RUN button on the computer console is pushed.

3-13

REVIEW

1. The HP 2116 recognizes three basic types of instruc­
tions; these are:

2. The memory in the HP 2116A is divided into theoretical
1,024-word blocks called

~-----------~

3. What is this division of memory based upon?

4. The Z/C bit allows reference to memory locations in
the page or the page.

5. Indirect addressing is indicated by --------
6. Indirect addressing allows reference to -------memory locations.

7. The I/O hardware system provides interface between
the and the

8. What are the three components of an I/O channel through
which a programmer communicates with an external
device?

9. What determines the interrupt priority of an I/O device?

3-15

4.1

OPERATION

CODES

THE ASSEMBLER 4

It has been illustrated that a computer program is a sequence
of instructions which, when executed by the computer, solves
a specific problem. The Assembler for the HP 2116 is itself
a program: a sequence of instructions solving the problem of
how to write computer programs more easily.

The assembler translates programs written in a symbolic
language consisting of mnemonic operation codes, operands,
and labels. The symbolic program which is input to the com­
puter to be translated by the Assembler is called the source
program. The translated binary program which is output as
a result of the assembly process is called the object program.
The object program may then be input to the computer for
execution.

Mnemonic operation codes are recognized by the Assembler to
be translated as machine instructions or pseudo instructions.

Machine instructions are those built into the computer - the
Assembler translates these instructions into the binary code
which can be directly executed by the computer. For example,
LDA is translated into the bit combination which is interpreted
as "load the A-register."

Pseudo instructions: (1) provide information to the Assembler
about the program being assembled, (2) allow definition of stor­
age areas and constants, and (3) provide calls to arithmetic
subroutines which perform often-used functions not available
with any one machine instruction. For example:

(1)

(2)

END

DEC

tells the Assembler it has reached the end of
the source program.

allows the user to define one or more decimal
constants.

BSS allows the user to reserve a block of storage
locations.

4-1

4.2

LABELS

4.3

OPERANDS

4-2

(3) FMP allows the user to multiply two values. This
function is not available as one machine instruc­
tion; however, this code calls a subroutine
(a group of instructions) which performs mul­
tiplication.

A label for an instruction provides the ability to refer to the
instruction or the value or storage area generated by the
instruction. For example:

instruction

label

.__! - .. VAL
~ operand

9.. I DEC

As instructions are input to be translated, the Assembler
assigns the instructions to consecutive memory locations in
the order they are input and maintains a table relating
symbolic labels to the location or address assigned. In the
above example, VAL would be related to the memory address
where the decimal 9 generated by the DEC 9 pseudo instruc­
tion is stored.

Some instructions require the designation of an operand. In
some cases, the operand value is specified in the instruction,
as the 9 is specified in the above example. In other cases,
an operand address is specified. Symbolic operand addresses
may be used, provided these symbols have been defined some­
where within the program. For example:

VAL DEC 9
the symbolic operand,
VAL, is defined by the
label VAL in the DEC

LDA VAL instruction, above.

The Assembler searches the symbol table for the address
associated with VAL and uses this address in translating the
instruction.

4.4

ABSOLUTE
PROGRAMS

4.5

RELOCATABLE

PROGRAMS

An absolute program is one whose addresses are not modified
as a result of loading at object program execution time. For
the program to execute correctly, the object program must be
loaded into the same memory locations each time it is used.
Consider the previous example:

VAL DEC 9

LDA VAL

Suppose the starting location for the program had been set at
assembly time to be lOOs, and the DEC 9 instruction trans­
lated to be at location 121s. The LDA VAL instruction, then,
has been translated as "load the A-register with the contents
of location 121s."

If it were possible for the object program to be loaded for
execution starting at location 130s, the decimal 9 resulting
from the DEC 9 instruction would be at location 151s. There­
fore, the LDA VAL instruction, translated to load A with
121s, is incorrect.

Absolute programs, then, must be loaded into the locations
determined at assembly time, or all memory reference
instructions will be incorrect.

When the user requests a relocatableassembly, theAssembler
assigns relative addresses to instructions. The first instruc­
tion requiring memory space is assigned relative location 0, ·
the second, relative location 1, and so on. Then, at the time the
translated program is loaded into the machine for execution,
the BCS Relocating Loader (see Section 5.12) adds the relative
address to the starting address for each instruction using an
operand address. The first available location is determined by
the Relocating Loader and used as the starting location.
For example:

4-3

Mnemonic Relative Mnemonic Relative
Label Address Opcode Operand Address OperandAddress

0 LDA QUAN 5

1 ADA ETHEL 6

2 AND MASK 7

3 STA QUAN 5

4 HLT

QUAN 5 BSS 1

ETHEL 6 DEC 7

MASK 7 OCT 777

Suppose that the first available start:lng address determined
by the loader is 2000a. The Relocating Loader modifies the
operand addresses by adding 2000a.

Mnemonic Mnemonic Actual
Label Location Opcode Operand Operand Addr~ss

2000 LDA QUAN 2000 + 5 = 2005

2001 ADA ETHEL 2000 + 6 = 2006

2002 AND MASK 2000 + 7 = 2007

2003 STA QUAN 2000 + 5 = 2005

2004 HLT

QUAN 2005 BSS 1

ETHEL 2006 DEC 7

MASK 2007 OCT 000777

No matter where the program is loaded, the modified operand
addresses always refer to the desired operands.

4-4

4.6

PROGRAM

LOCATION

COUNTERS

If the Relocating Loader encounters a Memory Reference
instruction referring to a location in a page other than the
current page, or page 0, a full 15-bit address is placed in
an available location in the base page. The relocatable
loader then provides an indirect reference to this location,
which is then used as the operand address of the instruction.
The same word in the base page is used if other similar
references are made to the same location.

The program location counter is an Assembler-maintained
counter which implements the absolute and relative address
assignment discussed in the previous two sections.

When an absolute assembly is requested by the user, the
value of · the program location counter is set to the value
indicated by the user in his request for an absolute program
(See ORG, Section 9.1. 2). The first instruction requiring
memory space is associated with this absolute address value;
the next instruction requiring memory space is associated
with this value plus one, and so forth.

When a relocatable assembly is requested by the user, the
program location counter is set to zero. The first instruction
requiring memory space is associated with relative address
zero, the next instruction requiring memory space with relative
address one, and so forth.

Two other counters, the base page location counter, and the com­
mon location counter are maintained by the Assembler. The base
page location counter is maintained for assigning instructions
and data from a relocatable program to contiguous locations
base page, at the user's request (see ORB, section 9.1.4).
The common location counter is maintained for assigning
data from a relocatable program to anareaof common storage.
Data in a common storage area maybe referred to by different
programs. (see COM, section 9.2.1)

4-5

4.7

ASSEMBLER

PROCESSING

4.7.1

PASS ONE

4-6

The source program, punched on paper tape or prepared on
some other medium, is input to the computer for translation.
The Assembler performs its translation in two or three
examinations of the source code. Each examination is called
a pass. If any errors are found during these passes, the
Assembler issues diagnostic messages. These messages
are listed in Section 11.5.

During the first pass, the symbol table is generated. Upon
request, the symbol table may be listed during the first pass.

The format of a symbol table entry in memory is as follows:

Word 1
15 13 10 7 0

ooI nJ type char. 1

char. 2 char. 3

char. 4 char. 5

rel. or abs. address

00 not used

n number of words. in entry
(2-4)

type 0
1
2
3
4

absolute
relocatable
base page relocatable
common
external

The length of the label symbol affects the size of the entry.
A one-character symbol requires only two words; a full five­
character symbol requires four words. There is a specific
amount of storage available for the symbol table. When the
number and length of the symbol table entries exceeds the
amount of storage available, the symbol table will overflow.
When this occurs, it is necessary to reduce the size of the table
by reducing the number of labels or their length.

4.7.2
PASS TWO

4.7.3

PASS THREE

The Assembler is designed such that when an absolute assembly
is requested, the portion of the Assembler which provides relo­
catability is overlaid, or destroyed, by the symbol table. Thus,
an absolute assembly allows a larger symbol table than a relo­
catable assembly. If several absolute and relocatable programs
are being assembled consecutively, without re-loading the
Assembler, the relocatable programs must be input before the
absolute programs.

After the first pass, the source program is reloaded and re­
examined. During the second pass, the assembly is completed;
operation codes are translated, and operand addresses are gen­
erated where specified. A translated binary object program or
a program listing may be requested as output. Both may be
requested if the necessary output devices are available.

If both a program listing and an object program are requested,
and only one punch output device is available, the object
program is punched on the second pass, and the source
program is input for a third pass. The program listing is
generated on this third pass. The following diagram illustrates
Assembler processing.

4-7

4-8

ASSEMBLY
LANGUAGE

SOURCE PROGRAM

ASSEMBLY
LANGUAGE

SOURCE PROGRAM

ASSEMBLY
LANGUAGE

SOURCE PROGRAM

ASSEMBLER

PASS I

ASSEMBLER
PASS 2

ASSEMBLER

PASS 3

r--------,
I SYMBOL I
I TABLE I

- - -Jlllllooi LISTING I I _ _,

I

I .,,,-""' &... __ .,,,.,,,

RELOCATABLE
OR ABSOLUTE

OBJECT PROGRAM

I rADDITIDNALORl
: I ALTERNATE I
L ...,f OUTPUT: I

I PROGRAM LISTI~
. --1 .,,--a.. ___ __

PROGRAM
LISTING

ASSEMBLER PROCESSING

REVIEW

1. The Assembler converts a symbolic
program into a translated binary
program which may be executed by the computer.

2. What are the two general types of instructions available
to the Assembly-language programmer?

3. The Assembler creates a which is used
to relate symbolic labels to the address assigned to them.

4. Define an absolute program.

5. Define a relocatable program.

6. What is a "pass"?

7. The HP 2116 Assembler requires how many passes
to complete an Assembly?

4-9

5.1

LOADING

PROGRAMS

5.1.1

BASIC

BINARY

LOADER

BASIC CONTROL SYSTEM 5

The Basic Control System (BCS) for the HP 2116 is a
computer program which provides capabilities of use to
both the assembly language programmer and the compiler
language programmer. t BCS is constructed of several
separate programs, each of which may be modified to meet
the particular hardware requirements at an installation.

Some of the capabilities relating to the Assembler include
loading programs, simplified I/O (Input/Output), and de­
bugging (error detection) aids.

The manner in which programs of different types are brought
into memory and given control forms an important part of
the translation process. Two loader programs are used:
the Basic Binary Loader and the Relocating Loader.

The Basic Binary Loader is responsible for loading into
memory all translated (binary) absolute programs. In ad­
dition to user object programs, this includes standard soft­
ware systems that are in absolute form: BCS, FORTRAN,
the Assembler, and so forth.

The Basic Binary Loader is not a part of BCS; it is a binary
program which resides permanently in the last 6410 locations
in memory. The Basic Binary Loader is loaded directly into
memory, one location at a time, by manually setting the toggle
switches on the computer console.

If the Basic Binary Disc Loader is used instead of the Basic
Binary Loader, the operator must press PRESET before RUN.

t Only those aspects of BCS which relate to the Assembler
and particularly the novice assembly language programmer
are discussed in this manual. For a detailed description of
BCS with complete operating instructions, refer to the Basic
Control System Programmer's Reference Manual.

5-1

5.1.2

RELOCATING

LOADER

5.1.3

LOADING

PROCESS

5.2

INPUT I
OUTPUT

5-2

The Relocating Loader is the portion of BCS which is res­
ponsible for loading translated (binary) relocatable programs
and in the process, modifying the relative addresses provided
by the Assembler such that they refer to the correct memory
locations once the program is loaded. Memory references
which cross page boundaries are also handled by the Relo­
cating Loader. A full 15-bit address is placed in the base
page and an indirect reference to the base page location is
inserted in the Memory Reference instruction.

A source program may be coded such that it is translated as
an absolute or relocatable program. The process of loading
and executing differs somewhat in each case. First, the
Assembler is loaded, using the Basic Binary Loader. When
the loaded Assembler is given control, through manipulation
of the console switches, it reads and translates the source
program, producing an object program. If absolute, the ob­
ject program may be loaded immediately into memory using
the Basic Binary Loader, and executed. If relocatable, BCS
must first be loaded, using the Basic Binary Loader. The Re­
locating Loader may then be requested to load the object
program and give it control for execution.

As illustrated by the previous sections, there are many
ways to transfer information to and from a computer. The
previous sections of this chapter described means of loading
computer programs. These computer programs may in turn
read data and write data to and from areas in the computer
for processing.

The difference between loading data and reading data is mainly
one of terminology, depending upon the purpose of the data.
A program is loaded into memory for the purpose of execu­
tion. Data is read into a computer to be manipulated by an
executing program. In short, data which is loaded acts; data
which is read is acted upon. For example, the Assembler is
loaded into the computer for execution; it then reads the source
program and translates (manipulates) it, producing an object

LOADING PROCESS

~ ---­
ASSEMBLER

~-,:i!i·l
SOURCE PROGRAM

t
ABSOLUTE OBJECT

PROGRAM

OBJECT PROGRAM

[/D
t

RELOCATABLE OBJECT
PROGRAM

~- ~­
BCS OBJECT PROGRAM

DATA -~
PROGRAM
ANSWERS

v BASIC BINARY
LOADER, ______ --.-. ~

The Shaded Blocks Indicate The Executing Program

PROGRAM
ANSWERS

~

5-3

5.3

DEBUGGING

AIDS

5-4

program. The object program is then loaded into the computer
for execution. This object program may in turn read data
which it processes to form the results intended.

The Assembler contains input/ output instructions which may
be used to transfer data between the computer and various in­
put/ output devices. Input/output is a complicated process,
however, and many machine instructions must be used to com­
plete an I/O operation. The Basic Control System simplifies
input/ output by allowing the user to, in effect, tell BCS what
is to be done and "letting BCS do it". This is accomplished
through calling sequences in assembly language. The Input/
Output Control program (.IOC.) of the Basic Control System
interprets the call, initiates the operation, and returns con­
trol to the program making the request.

BCS provides various facilities for program testing, error
detection, and error correction -- a process generally known
to programmers by the title "debugging". The portion of
BCS which provides these aids is the Debugging system, a
relocatable program which is loaded into memory along with
the user's relocatable object program.

The Debugging system supervises the execution of the user's
object program; it interprets each instruction, takes action
if indicated by a Debugging system control statement, and causes
the instruction to be executed.

With the control statements, the user may modify the con­
tents of storage locations and registers, stop execution of
the object program at a certain point, display contents of
registers and memory locations, and terminate the debugging
process.

REVIEW

1. What facilities does BCS provide to the Assembly-language
programmer?

2. What are the two loading programs available to the
programmer to load object programs? What type programs
do each load?

3. Which of the above loading programs is a part of the
Basic Control System?

4. What is the difference between data that is read or
written and data which is loaded?

5. Define "debugging."

5-5

PROBLEM ANALYSIS (FLOWCHARTING) 6

The first and most important part of writing a computer pro­
gram is analysis: reducing a problem's solution into logical
steps. Flowcharting provides a helpful tool for this purpose.
A flowchart is a graphical representation of a solution process.
Flowcharts illustrate logic; errors in program logic can be
found and corrected at the flowchart stage, saving wasted
coding efforts. Flowcharts not only aid in preliminary design
of a program, they provide valuable documentation after the
program has been written.

The basic flowchart symbols are given below:

D

D

<>

Input/Output. This symbol represents the
transfer of data between the computer and
an input/output device. For example:

READ
HOURLY

FILE

Procedure. This symbol represents a
process or operation to be performed.
For example:

FIND
AVERAGE

TEMPERATURE

Decision. This symbol represents the
determination of a factor from which
several paths may be taken. For example:

YES

6-1

6-2

D Annotation. This symbol provides expla­
natory or clarification notes. For example:

I
I

fNOTIFY NURSE
I OF FEVERISH
I PATIENT

I
I

These and other specialized symbols discussed below are
connected by directional lines to form a flowchart:

!NOTIFY NURSE
I OF FEVERISH
I PATIENT

READ FIND
AVERAGE

TEMP

WRITE
FEVER
FILE

(CONTINUE
1----+PROCESSI NG} HOURLY 1---+

FILE

Normal flow direction is from left to right or top to bottom;
however, when this is impossible or particularly cumbersome,
arrows may be used to clarify opposite flow directions. For
example, if we elaborate on the previous example:

I ADD 10 MIN.
I TEMPS FOR

LAST HOUR

READ
HOURLY ADD TEMPS

FILE

FIND
: AVERAGE

DIVIDE
BY6

v s

(CONTINUE
PROCESSING)

Specialized symbols include:

(Punched card symbol.

Q Magnetic tape symbol.

1NOTIFY NURSE
OF FEVERISH

I PATIENT

WRITE FEVE
FILE

0

PAGE2

Punched tape symbol.

Document symbol.

Predefined process symbol. e.g., a
subroutine used a number of times in
the same program, or a library program.

Connector symbol. When flowlines are
broken due to page limitations or for
other reasons, this symbol may be used
to indicate the separation. For example:

PAGE 1

Flowcharts may be as simple or detailed as desired. The
programmer may start with a very general flowchart and, as
the problem's solution becomes more clear, develop a very
detailed chart. The flowchart is a tool for the programmer's
benefit, and may be used in whatever manner he sees fit.

6-3

REVIEW

1. Flowcharting is a helpful tool in problem -------
2. Which symbol represents a decision?

3. "Long Shot" Al, the inveterate horse racing enthusiast,
came to the track one day with $4.00 and a heart full of
hope. Scanning the program for the first race, he came to
the following plan: "If Orphan Sandy is at 10-to-1 or better,
I'll put $2.00 on her to win, and $2.00 on Shotgun to place.
If less than 10-to-1, I'll sink the whole $4.00 on Orphan
Sandy to win. If I lose the first race, I'll walk home.
If I make more than $2.00 and less than $4.00, I'll flip
a coin to see if I stay and bet again or go home. Heads,
I stay; tails, I go home. If I come out ahead, I'll definitely
stay and bet some more."

Draw a flowchart of the above plan.

4. Devise a flowchart illustrating the process of testing
200 quantities stored on a paper tape device for being
positive, negative, or zero. A count is to be kept of the
number of quantities in each group and this count is to be
printed on a teleprinter.

6-5

7.1

LABEL

FIELD

7 .1.1

LABEL

SYMBOL

INSTRUCTION FORMAT 7

Source language instructions are recognized by the Assembler
in a certain format. An instruction may be specified in as
many as four fields, in the following order -- the Label,
Op Code, and Operand fields described in Chapter 4 and a
Remarks field allowing the user to specify explanatory com­
ments if he wishes.

Fields are separated by one or more spaces; the statement
is terminated by an end-of-statement mark. On paper tape,
the end-of-statement mark ~sists o.f a carriage return,

@ , and a line feed, ~

A statement may contain up to 80 characters including blanks,
but excluding the end-of-statement mark. Fields beginning in
character positions 73-80 are not processed by the Assembler.

This field begins in character position one, immediately follow­
ing the end-of-statement mark for the previous statement. A
space in character position one indicates the statement has no
label.

A label symbol may be constructed of from one to five alpha­
numeric characters, A through Z, 0 through 9, and the period.
The first character of a label must be alphabetic or a period.

Examples:

Lab.ii

' 5

AB CD
12 34

AB CD EF
A~/ BC

ABC

Opetolion

to

GH

._-Valid label

.__Valid fabel

.__Valid label

.__Illegal label--exceeds five characters

...__Illegal label--asterisk not allowed

..___No label--label must begin in col. 1

7-1

7.1.2

ASTERISK

7.2

OP CODE

FIELD

7-2

Each label must be unique within the program; no two state­
ments may have the same label

An asterisk in character position one indicates that the
entire statement is a comment. Positions 2 through 80 are
then available for programmer's remarks. Only positions
1 through 68 are printed as part·of the assembly listing on the
HP 2752A Teleprinter, however. An asterisk within the label
field is illegal in any character position other than one.

Comments are not translated by the Assembler as part of
the object program; that is, they do not take up memory space
at execution time.

Example:

The operation code field follows the label field and is sep­
arated from it by at least one space. If there is no label,
the operation code may begin anywhere after character position
one. The op code field is terminated by a space immediately
following an operation code. Specific operation codes are
discussed in Chapters 8 and 9.

Examples:

Lobel Opeu1tiot.

7.3

OPERAND

FIELD

7.3.1

SYMBOLIC

TERM

Both of these sequences of code
ANN A tUM~ s TAR would be translated and executed

!Ht#; FERN correctly. However, the first would
t-+-+-+--t-+-+-+---+-i>-t=~-;t-1_ .• -+-+--+R--+A~L~P1-H+-1 be much easier to read, both on the

coding sheet and on the assembly
listing.

The operand field follows the op code field and is separated
from it by at least one space. It is terminated by a space
(except when the space follows a plus sign, a minus sign, a
comma, or a left parenthesis) or by an end-of-statement
mark if the remarks field is omitted.

The operand field may contain an expression or a literal; an
expression consists of one of the following:

1) symbolic term

2) numeric term

3) asterisk

4) combination of symbolic terms, numeric terms, or
asterisk, joined by arithmetic operators + and -

An operand expression may be absolute or relocatable. In
an absolute program all operand expressions are considered
absolute. A relocatable program may contain absolute or re­
locatable operand expressions; however, the absolute address
expressions must have a value less than 778.

In some cases, an expression may be followed by an indicator.
For example, the operand field of Memory Reference instruc­
tions may be followed by a , I to specify indirect addressing.
These indicators are discussed with the instructions with which
they may be used.

A symbolic term is constructed using the same rules as for
a label -- one to five characters in length, consisting of A
through Z, 0 through 9, and the period. The first character
must be alphabetic or a period.

7-3

7-4

A symbol used in the operand field must be defined elsewhere
in the program as a label of a machine instruction or a BSS,
ASC, DEC, OCT, DEF, ABS, EQU, or arithmetic subroutine
pseudo instruction. In the special case of the COM and EXT
pseudo instructions, an operand term defines a symbol which
may be used as an operand term in other instructions.

A symbolic term may be preceded by a plus or minus sign. If
preceded by a plus or no sign, the associated value is used. If
preceded by a minus sign, the two's complement of the
associated value is used. A single negative term may be used
only with the ABS pseudo operation.

.A
lE
co
SP
Bl
NA
-J

Operond

15

NA.
LOA
UNR
EC

ME
OHN

Valid symbolic terms, provided
they have been defined.

Valid only with ABS pseudo, pro­
vided John has been defined.

Absolute or Relocatable Symbolic Terms

A symbolic term may be absolute or relocatable. If the program
is defined as absolute, or if a symbol has been defined as abso­
lute in an EQU pseudo instruction, the value assigned to the
symbol by the Assembler remains fixed; the term is absolute.
If the program is defined as relocatable, the actual value of
the symbol is established on loading; the term is relocatable.

A relocatable term may be program relocatable, base page
relocatable, or common relocatable. A symbol that names
an area of common storage (via the COM pseudo) is a common
relocatable term. A symbol that is allocated to the base page
(via the ORB pseudo) is a base page relocatable term. A
symbol that is defined in any other manner is a program re­
locatable term.

7.3.2
NUMERIC
TERM

7.3.3
ASTERISK

A numeric term may be decimal or octal. In an absolute pro­
gram, the maximum value of a single numeric operand depends
on the type of machine or pseudo instruction:

Pseudo instructions 32, 76710 or 177777 8

Memory Reference instructions 102310 or 17778

Input/Output instructions 6310 or 778

If a numeric term is preceded by a plus or no sign, the binary
equivalent of the number is used in the object code. If pre­
ceded by a minus sign, the two's complement of the binary
equivalent is used. A single negative numeric term may
only be used with the ABS pseudo operation. An octal num­
ber is followed by the letter B; for example, 377B -177777B.

Examples:

Label o,..,rction Operand

15

Valid for absolute program
Valid for absolute program
Valid for absolute or relocatable program
Valid for ABS pseudo instruction

An asterisk in the operand field refers to the value in the
program location counter (or base page location counter)
at the time the source program statement is encountered.
The asterisk is assigned a relocatable value in a relocatable
program, an absolute value in an absolute program.

Example:

Operation
10 °"",~"' When this instruction is executed,

,__,_~~~L~D~A~~~~~ the A-register will be loaded with
the translated binary representa­
tion of the instruction itself.

7-5

7.3.4

COMBINATION

EXPRESSION

7-6

Numeric terms, symbolic terms, and the asterisk may be
combined using the arithmetic operators + and - to form
operands. These expressions are either absolute or re­
locatable depending upon the manner in which their absolute
and/ or relocatable terms are combined.

Decimal and octal integers, and symbols defined as being
absolute in an EQU pseudo instruction are absolute terms.

The asterisk and all symbols that are defined in the program
are assigned relocatable or absolute values, depending on the
type of assembly.

Absolute Combinations

An absolute combination may be any arithmetic combination of
absolute terms. It may also contain relocatable terms alone or
in combination with absolute terms. If relocatable terms do
appear, there must be an even number of them; they must be
of the same type (program, common, or base page relocatable),
and they must be paired by sign (a negative term for each
positive term). The paired terms do not have to be contiguous,
that is, next to each other in the combination. The pairing of
terms by type cancels the effect of relocation; the value
represented by the pair remains constant.

An absolute expression reduces to a single absolute value.
The value of an absolute combination may be negative only
for ABS pseudo operations.

Examples:

If PRl and PR2 are program relocatable terms; BSl and
BS2, base page relocatable; COMl and COM2, common re­
locatable; and ABS an absolute term, then the following
are absolute terms:

Operon<l

15

AB s - co Ml + c OM2
AB S+ A BS ·- PR I
BS I-*
AB s- PR I + PR2
PR I - P R2
BS I - BS 2- A BS
-P RI + p R2
co Ml -c OM 2+ ABS
-A BS -P RI +P R2

7.3.5

LITERALS

The asterisk is base page relocatable or program relocatable
depending on the location of the instruction.

Relocatable Combinations

A relocatable combination is one whose value is changed by
the loader. All relocatable combinations must have a posi­
tive value.

A relocatable expression may contain any odd number of re­
locatable terms, alone, or in combination with absolute terms.
All relocatable terms must be of the same type. Terms must
be paired by sign with the odd term being positive.

A relocatable combination reduces to a single positive relocat­
able value, adjusted by the values represented by the absolute
terms and paired relocatable terms associated with it.

Examples:

If PRl, PR2, and PR3 are program relocatable terms; BSl,
BS2, and BS3, base page relocatable terms; COMl, COM2,
and COM3, common relocatable; and ABS an absolute term,
then the following are relocatable terms:

Operand

JO 15 10 25 '°
PR I - ABS
PR I - PR 2+ PR3
~+ ABS
AB S+ BSI
BS I- BS 2+ BS 3- ABS
-c OM I+ co M2 +C o[~3
co M IJ- co M2 +C OM 3- ABS
PR I- PR 2+•

Literals provide a simplified means of defining constants in
the source program. They are processed by the Assembler
provided for SK or larger machines (8,192-word memory or
larger); literals may be used only in relocatable programs.

7-7

7-8

Literals may be used in the operand field of certain instruc­
tions to specify an actual operand value, rather than an
operand address. The literal values specified in the source
program are preceded by an equal sign and an identifier.
The equal sign signifies that the value is a literal, and not
an address expression; the identifier defines the type of
literal:

=D one-word decimal integer within the range -32, 767
through 32, 767.

=F two-word floating point decimal number. Any positive
or negative real number within the approximate range
10-38 to 1038, and zero. Decimal numbers with
fractional values must be specified with a decimal
point (32. 75). Decimal numbers without fractional
values may be specified with or without a decimal
point (32 or 32.). (Section 9.4.3 describes the manner
in which floating point numbers are stored in memory).

=B octal integer; a signed or unsigned number consisting
of one to six octal digits blb2b3b4b5b6 where bt may
be 0 or 1, b2-b6 may be 0-7.

=A two ASCII characters; blank fill is used for a ~ or if
only one letter follows the A.

=L an expression which, when evaluated, will result in an
absolute value. All symbols used must be previously
defined.

The literal value is specified immediately after the identifier;
no spaces may intervene.

Literals may be used as operands with the following instruc­
tions only:

ADA ADB AND MPY}
LDA LDB XOR DIV May use= D, =B, =A, andL only
CPA CPB IOR

DLD FAD FMP ~
FDV FSB J May use = F only

0f'1V12
001113
0004
0005
0006
0007
0008
0009
0010
001 I

0012

0013

0014

Only one literal may be specified in an operand field. The
·Assembler translates the literal into its binary value, assigns
the value to a memory location, and translates the instruction
so that it refers to the location where the literal value is
stored. The Assembler assigns the literals to the memory
locations immediately following the last instruction of the
program. These locations are printed on the source program
listing during pass 2 of the assembly, unless the SUP pseudo
instruction is specified to suppress this listing. (See Example
below.)

If the same literal is used in more than one instruction,
only one value is generated, and all instructions using this
literal refer to the same location.

Examples:

Label Operation
I ' 10

LOA =D
XOR =B
LOA =A
MPY =D
FDV =F
FMP = F

Operand

"
198
77
NO
-9
19 .75
- 2 I .9

20

07

A loaded with binary equivalent of
19810·
Logical product of (A) and0000778.
A loaded with ASCII characters NO.
(A) times -910·
(AB) divided by 19. 7510·
(AB) multiplied by -21.90710·
A loaded with the result of value
of AD - value of B + 778.

LOA =L AD -B +7 76

The listing segment shown below was produced from a source
program using the following literals:

00000 NAM START
0"1036 A EQU 31?1
00050 B EQU 40
00000 000000 LOC BSS 12
00014 000000 START NOP
00015 062012R LOA =020
00016 07200Ak STA LOC
00017 062013R LOA =875
00020 072001R STA LOC+I
001fl21 016001X OLD =F"l0·0
00022 000014R
80023 016002X DST LOC+2
00024 000002R
00025 01600JX OLD =F'-10.0
00026 000016R
00027 016002X DST LOC+4
00030 000004R

7-9

~rn IS

0(Ji l 6

0·017
~;_ir11 B
1-rn 19
002'.?J
~021

~rn22

ftHV~3
:I) !·.12.q

~i~'.? '.)

vH?f,
:.r: :+: i\!O

7.4

COMMENTS

FIELD

7-10

000:31 016001X OLD =F"3·7
00032 0C-10020R
00033 016002X DST LUC+6
00034 001'J006R
~0035 (162022R LDA =LA-t3+ I 00
00~336 0720 H1R STA LOC+B
Cj0C·l3 7 062023R LDA =APA
00040 072(iJ l lR STA LUC+9
~32J~J 4 I 0620~3R LDA =850101
001~42 f-J720 l 2R STA LUC+10
VlU043 062023R LUA =020545
[J0044 072013R STA LUC+ I 1
(.:)'7104 5 126014R J(V,p S HHn , I - Last instruction requiring memory space
00046 !YJ~H124 Octal representation of 2010•

00047 000075 Ottal representation of 758.
00050 050000 } 10.1 in floating point format
00051 012Jt'.112J 1 (1

00052 130000 } -10. 1 in floating point format.
00053 000010
00054 073146} 3. 7 in floating point format.
00055 0630!.)4
00056 000132 Octal value of expression: A - B + 100.
00057 0 50101 Octal value of PA, 501018 and 2054510•

END
ERRl..HS *

The comments field allows the user to transcribe comments
on the list output produced by the Assembler. The field
follows the Operand field and is separated ~m it~ at
least one space. The end-of statement mark, ~ ~. ,
or the 80th character in the entire statement terminates the
field. If the listing is to be produced on the 2752A Teleprinter,
the total statement length, excluding the end-of-statement mark,
should not exceed 52 characters, the width of the source lan­
guage portion of the listing. Statements consisting solely of
comments may contain up to 68 characters including the asterisk
in the first position. On the list output, statements consisting
entirely of comments begin 16 positions to the left of the source
portion of statements containing instructions.

The. comments field should be omitted on the NAM and END
pseudo operations or in the following input/ output statements
without operands; SOC, SOS, and HLT. If comments are used
the Assembler attempts to interpret them as an operand.

7.5
MANUAL

NOTATION

7.6

CODING

Notation used in this manual to represent source language
instructions are as follows:

Symbols expressed in lower case are to be supplied by the
user. For example,

m

SC

lname

memory address -- an expression
(Section 7. 3).

select code -- an expression

a label symbol

Bracket [J indicate a field or portion of a field that is
optional.

Braces { ~ indicate that one of the included set may be
selected.

C 0 NV ENT I 0 NS To ensure maximum legibility, most programmers code source
programs in capital letters on coding sheets provided for this
purpose. To distinguish between certain characters, the
following conventions have been established:

alphabetic I I

numeric 1

alphabetic o __ o
numeric zero_ Ill

alphabetic z i

numeric 2 2

7-11

REVIEW

1. What are the four fields of an instruction, in the order
they are specified?

2. What is the permissible length of an operand symbolic
term?

3. What characters may be used to construct a valid label?

4. How do you specify an unlabeled instruction?

5. What is the method of coding a statement consisting
entirely of comments?

6. Which of the following labels are illegal?

(a) ABC
(b) A.B.C.
(c) 2AB
(d) .BC2
(e) BA*
(f) ROTATE

7. What characters terminate a statement?

8. What is the range for numeric operand terms in the
following instructions?

(a) Pseudo instructions
(b) Memory reference instructions
(c) Input/Output instructions

9. What character may be appended to a numeric operand
term to distinguish the term as octal?

10. What is the function of the asterisk in the operand field?

11. Which of the following literals are illegal?

(a) =B927
(b) =D926
(c) =D9.35
(d) =AAA

(e) =L77
(f) =F32
(g) =B777
(h) =329

7-13

8.1

MEMORY

REFERENCE

8.1.1

LDA/LDB

MACHINE INSTRUCTIONS 8

These instructions are the machine's instruction repertoire; the
assembler translates mnemonic labels, operation codes, and
operands to the instruction format as described in Chapter 3.

Memory reference instructions are those which refer to loca­
tions in memory. They include instructions to perform arith­
metic and logical operations and instructions which alter the
sequence of execution.

These instructions load the A or B register with the contents
of the specified address, or with the specified literal. The con­
tents of the address are unchanged.

Label Op Code Operand

{~~})m[,I]l
l lit J

m absolute or relative address ex-
press ion

I indirect addressing indicator

lit literal value

Examples:

Before Execution

LDA ALFRE (A)=012312a

(ALFRE) =001767 8

LDB ALFRE, I (B)=076543a

(ALFRE) =002316a

{23168)=1555558

LDA =77B (A)=015762a

After Execution

(A)=001767a

(ALFRE) :001767 8

(B)=155555a

(ALFRE) =002316a

{23168)=1555558

(A)=000077 8

8-1

8.1.2

STA/STB

8.1. 3

ADA/ADI

8-2

These instructions store the contents of the A or B register in
the specified address.

Label

Examples:

STA PLACE

Op Code

~STA(
/STB\

Operand

m [,I]

m absolute or relative address

I indirect addressing indicator

Before Execution After Execution

(A)=Ol 7653g (A)=017653g

(PLACE)=054327 8 (PLACE)=Ol 7653a

STA PLACE,! (A)=153455g (A)=153455g

(PLACE)=l00677a\ (PLACE)=100677a

(677 8)=0005348 · (677 a)=0005348

(5348)=177777 8 · (5348)=1534558

The 1 in bit 15 of loca­
tion PLACE means that
the contents of the loca­
tion specified by the
right-most 15 bits is to
be used as an indirect
address.

Adds the contents of the A or B register to the contents of the
specified address or to the literal, storing the result in the A
or B register. The contents of the address are unchanged.

Label Op Code Operand

1:~~ 1m[,1];
lit

m absolute or relative address ex-
pression or literal

I indirect address indicator

lit literal value

8.1.4

AND

Examples:

Before Execution After Execution

ADA EGAD (A)=OOl 7028 (A)=OOl 727 8

(EGAD)=000025 8 (EGAD)=000025 8

ADA EGAD, I (A)=OOl 7028 (A)=0054318

(EGAD)=0016528 (EGAD)=0016528

(16528)=003527 8 (16528)=003527 8

ADA =D16 (A)=0053208 (A)=0053408

Forms the logical product of the contents of the A-register and
the specified address or literal and stores the result in theA­
register. The logical product of two bits is defined as follows:

Label

Examples:

AND MASK

AND MASK, I

AND =77B

01\0=0
0/\1=0
1/\0=0
1/\1=1

Op Code

AND

Operand

{~t[,r]}
m absolute or relative address

I indirect address indicator

lit literal value

Before Execution

(A)=0376548

(MASK)=000777 8

(A)=0376548

(MASK)=000777 8

(777)= 1775008

(A)=0534618

After Execution

(A)=0006548

(MASK)=000777 8

(A)=0374008

(MASK)=000777 8

(777)=1775008

(A)=000061 s

8-3

8.1.5

XOR

8-4

Forms the logical "exclusive or" of the contents of the A register
and the specified address or literal and stores the result in the
A register. The "exclusive or" operation for two bits is defined
as follows:

Label

Examples:

0¥0= 0
0¥1=1
1¥0 = 1
1¥1=0

Op Code

XOR

Operand

{m[,I]},
lit

m absolute or relative address

I indirect address indicator

lit literal value

Before Execution

XOR ZELDA (A)=

After Execution

(A)=

0 011 010 110 001 1112 1 100 101 001 110 0002

(ZELDA)= (ZELDA)=

1 111 111 111 111 1112 1 111 111 111 111 1112

Note that by taking the exclusive or with a mask
of all l's, the l's complement is formed.

XOR SCOTT, I (A)= (A)=

0 011 010 110 001 1112 0 110 000 011 011 0102

(SCOTT)= (SCOTT)=

0 000 001 010 011 1112 0 000 001 010 011 1112

(1237 a>= (1237 a>=
0 101 010 101 010 1012 0 101 010 101 010 1012

XOR =777B (A)=

0 010 011 100 101 1102 0 010 011 011 010 0012

8.1.6

IOR Forms the logical "inclusive or" of the contents of the A register
and the specified memory location and stores the result in the
A register. The "inclusive or" operation for two bits is de­
fined as follows:

ovo = 0
OVl = 1
1V0=1
1Vl=1

Label Op Code Operand

IOR
{ m[,I]}

lit

m absolute or relative address

I indirect address indicator

lit literal value

Examples:

Before Execution After Execution

IOR CODE (A)= (A)=

0 000 000 111 101 1112 1 111 111 111 101 1112

(CODE)=

1 111 111 111 000 0002 1 111 111 111 000 0002

IOR CODE, I (A)= (A)=

0 000 000 111 101 1112 0 000 000 111 101 1112

(CODE)= (CODE)=

0 000 001 110 101 0002 0 000 001 110 101 0002

(1650a)= (1650a)=

0 000 000 000 001 1112 0 000 000 000 001 1112

IOR =177777B (A)= (A)=

0 101 110 111 100 0112 1 111 111 111 111 1112

8-5

8.1.7

JMP

8.1.8

JSB

8-6

Alters sequence of execution. The next instruction to be exe­
cuted is located at the specified memory location.

Label Op Code Operand

Examples:

Leibel Operation

l 5 10

IOR GLAD
~~~I LOA FERN 

STA FERN+I 
AND jMASK 
STA FERN+2 

JMP m[,I] 

m absolute or relative address ex­
pression specifying next statement 
to be executed. 

I indirect address indicator; if spec­
ified, the contents of memory lo­
cation m are used as the address 
containing the next statement to be 
executed. 

J 
NOTE THAT THIS SEQUENCE OF 
INSTRUCTIONS RESULTS IN A NEVER-I 
ENDING LOOP--THE COMPUTER WILL I 
KEEP EXECUTING THE STATEMENTS I 
FROM LOOP TO OOPS IND'EFINITELY 

LOA FERN THE JUMP IS TO THE LOCATION 
~DA ADRM SPECIFIED BY THE CONTENTS OF 
STA FERN LOCATION FE_t!N ~HICH HAS BEEN 
~)~~q)~~i\hf:)J\ MODIFIED BY 'THE CONTENTS OF 

1--+-+--+-t--+--P"f ""Hf""P'l9'"'+9'"Pl--+--t--t-t--+-+--++-+-+--+--+-+-
L O CAT ION ADRM 

The jump subroutine instruction generates a return address by 
adding 1 to the contents of the program location counter. This 
address is stored in the specified address and control transfers 
to the specified address+ 1. The user returns control to the 
main program by a JMP indirect to the first location of the sub­
routine. 



Label Op Code Operand 

JSB m [,I] 

m absolute or relative address 

I indirect addressing indicator 

This instruction is particularly useful for a utility subroutine 
which may be called at several points in the main program. 

Example: 

Lobel 

Main Program 

Operotion Operand 

15 

LOA BRUCE 
ADA PLACE 
STA BRUCE 

LOA FREEN 
XOR EXCL 

LOA FISBY 

Lobel 

' 5 

AG HA 

Subroutine 

Operation Operand 

'° 15 '° 
LOA NO NE 
LOA AD DR 
AND MA SK 
STA PL ACE 
JiMP AG HA , I 

The first time the JSB to AGHA is executed, the address for 
the LDA FREEN instruction is placed in AGHA and execution 
transfers to locationAGHA+l, the LDA ADDR instruction. The 
LDA NONE instruction is never executed; it is destroyed when 
the return address is inserted in that location. The JMP AGHA, I 
at the end of the subroutine transfers control back to the main 
program at the LDA FREEN instruction. The next time AGHA 
is called, the address for the LDA FISBY instruction is placed 
in AGHA and execution transfers to location AGHA+l. The I 
JMP AGHA, I then transfers control back to the main program 
at the LDA FISBY instruction. 

8-7 



8.1.9 
ISZ 

8.1.10 

CPA/CPI 

8-8 

I 

EM 

Increment and skip if zero. ISZ adds one to the contents of the 
specified address. If this quantity is then zero, the next in­
struction in memory is bypassed. 

Label Op Code 

ISZ 

Operand 

m(,I] 

m absolute or relative address 

I indirect addressing indicator 

This instruction is particularly useful in executing a loop a 
specific number of times before continuing with processing. 

Example: 

Lobo I Operolion Ope•ond Comment< 

' 10 15 20 25 JO JS '° " "' j: 
li 
j: 

IL LOA QU AN co UNT HAS BE EN PR EV I 0 us LY I : 
ADA ~UM DE FI NED TO co NT AIN -7. THE I Si!! I: 

IN ST RU CT ION AD OS I J!O c.ou NT l l I 
I 

DU RI NG EA CH PA SS T HiR OU GH TH E i ' 
I 
I 

LO OP. l'A1H EN THE SE Q UiE NCE HASI : 
!~~ ~:!!! ~·· b~1f: .... Ii!, ....... ;u BE EN EX EC UTE D lA TO T'AL OF' S E1V EN I 

I 

JMP EM IL TI ME s ' co U N,T = ~. AND THE JIM Pi :EMIL I 
I 

LOB RA LPH IN ST RU CT IO N IS: BY P~S SE Ol-i- CON TR OU 
STB SA Ml PA SS ES T 0 LO B '.R AL PH:. I I il I 

I 

: I I 
I 

This instruction compares the contents of the A- or B-register 
and the contents of the specified address or the literal. If they 
are not equal, the next instruction is skipped. If they are equal, 
the next instruction is executed. 

Label Op Code 

CPA 
CPB 

Operand 

m[,I] 
lit 

m absolute or relative address 

I indirect addressing indicator 

lit literal value 



8.2 

REGISTER 

REFERENCE 

a.2.1 

SHIFT­

ROTATE 

GROUP 

Examples: 

Lobel Operotion 

1 5 10 

LOA BUD 

0,.erond 

" 

CPA COUNT 

JMP i!ELLA 
ADA ONE 
ST A BUD 

LCB HELEN 

J!MP TOM 
ADB =DI 

STB HELEN 

JMP •- ljgl 

Commenh 
40 45 

THE CONTENTS OF LOCATION BUD AREi 
c OMP A RE D I~ I TH THE c 0 NT ENT s 0 F I 

LOCATION clouNT. lF THEY ARE I 

EQUAL THE JMP lELL[A INSTRUCTlONI 
IS EXECUTE·D. IF.THEY ARE NOT I 

EQUAL, JMP lELLA IS NOT EXECU[TEDI 

- - E x!E cu T I 0 N c 0 NT I N u E s [w I T H I 

ADA ONE. 

THE CONTENTS OF LOCATION HELEN 

ARE COMPARED TO 17. IF EQUAL, I 
THE JMP TOM INSTRUCTION IS EXEC-I 

UTEO. IF UNEQUAL, EXECUTION i 
C 0 Nj_T I N U E S jw I T H AD A = D I . I 

The register reference instructions manipulate the working 
registers A, B, and E. They include a Shift-Rotate group and 
an Alter -Skip group. 

This group contains 19 basic instructions that can be combined 
to produce more than 500 different single cycle operations. 

CLE Clear E-register (set to zero). 

ALS/BLS Shift A- or B-register left one bit, place a zero in 
the least significant bit (bit 0). Sign bit (bit 15) is 
unaltered. 

Example, B LS: 

(B) = 1 011 100 010 110 100 (before exe-
t , cution) 

(B) = 1 111 000 101 101 000 (after exe­
cution) 

8-9 



8-10 

ARS/BRS Shift A- or B-register right one bit, extend sign bit. 
Sign bit is unaltered: 

Example, BRS: 

(B) = 1 000 000 111 101 100 (before exe-
~\ \ cution) 

(B) = 1 100 000 011 110 110 (after exe­
cution) 

RAL/RBL Rotate A- or B-register left one bit. 

Example, RAL: 

(A) = 0 000 101 001 110 111 (before exe-/i j cution 
(A) = 001 010 011 101 110 (after exe-

cution) 

RAR/RBR Rotate A- or B-register right one bit. 

Example, RBR: 

(B) = 0 101 010 101 010 10 (before exe-
\ \ cution) 

(B) = 1 010 101 010 101 010 (after exe-
,__ ________ cution) 

ALR/BLR Shift A- or B-register left one bit, clear the sign 
bit, place a zero in the least significant bit. 

Example, ALR: 

(A) = 1 110 111 010 000 011 (before exe-
/ I cution) 

(A) = 0 101 110 100 000 110 (after exe­
cution) 

ERA/ERB Rotate E and A- or B-register right one bit. 

Example, ERB: 

(E) = l~B) = 0 111 000 111 000 110 (before exe-
~ \ \ cution) 

(E) = 0 (B) = 1 011 100 011 100 011 (after exe-
------------~ cution) 



ELA/ELB Rotate E and A- or B-register left one bit. 

Example, ELA: 

(E) = 0 (~1 111 110 011 001 100 (before exe-
~ A\_ I I cution) 

(E) = 1 (A) = 1 111 100 110 011 000 (after exe-
cution) 

ALF /BLF Rotate A- or B-register left four bits. 

Example, BLF: 

(B) = 0 110 010 111 101 000 (before exe-
~ ~ cution) 

(B) = 0 101 111 010 001> 110 (after exe­
-- cution) 

~-----~ 

SLA/SLB Skip the next instruction if the least significant bit 
of the A- or B-register is zero. 

When combined, the instructions must be given in the order 
shown below, separated by commas. Instructions for the A­
register may not be combined with instructions for the B­
register. 

Label Op Code Operand 

ALS ALS 
ARS ARS 
RAL RAL 
RAR [,CLE] [, SLA] , RAR 
ALR ALR 
ALF ALF 
ERA ERA 
E ELA 

BLS BLS 
BRS BRS 
RBL RBL 
RBR [,CLE ] [, SLB] , RBR 
BLR BLR 
BLF BLF 
ERB ERB 
ELB ELB 

8-11 



8.2.2 

ALTER-SKIP 

GROUP 

8-12 

1 

Any combination as shown above requires only one machine cy­
cle for execution. For example: 

ARS 

ARS (coded on two lines) requires two machine cycles, 

but 

ARS, ARS (coded on one line) requires one machine cycle. 

Examples: 

Lobo I Op11ration 0""""' Comments 

' IO " 20 25 30 35 '° 45 50 

LOA AL ICE IF !ALICE CONTAINS A ~ IN THE 
:::144 LEAST SIGNIFICANT BIT,THE 
LOB ~N GLE LOB ANGLE INSTRUCTI~N IS 
STA NG LE SKIPPED. . 

R 0 T AT E Q U A NT I Tl_! I N ~ L E F T 0 NE 
BIT AND TEST BIT ~. lF NON-ZERp, 

JMP NEGTV THE ORIGINAL QUANTITY IN A ~AS 
JMP POSTV NEGATIVE AND JMP NEGTV IS EXEC-

UTED. IF ZERO, THE _jQRIGINAL 
QUANTITY IN A ~AS POSITIVE--JMP 
NEGTV IS SKIPPED AND JMP POSTV 
IS EXECUTED. 

ROTATE QUANTITY IN B LEFT 3 BITS 

S ET S BI T ~ 0 F F AN D J UMPS !rlol 
JMP BION LOCATION BION IF BIT 1=1-- l 
JIMP BI OFF TO LOCATION Bl~FF IF l 

BIT I=•· I 

This group contains 19 basic instructions that -can be combined 
to produce more than 700 different single cycle operations. 

CLA/CLB Clear the A- or B-register to zeros. 

Example, CLA: 

{A) = 0 010 111 001 110 101 (before exe:.. 
cu ti on) 

(A)= 0 000 000 000 000 000 {after exe­
cution) 



CMA/CMB Complement the contents of the A- or B-register, 
one's complement form. 

Example, CMB: 

(B) = 0 000 010 101 111 000 (before exe­
cution) 

(B) = 1 111 101 010 000 111 (after exe­
cution) 

CCA/ CCB Clear, then one's-complement the A- or B-register 
(set to one's). 

CME 

CLE 

CCE 

SEZ 

SSA/SSB 

INA/INB 

Example, CCA: 

(A) = 1 111 000 010 101 011 (before exe­
cution) 

(A) = 1 111 111 111 111 111 (after exe­
cution) 

Complement the E-register. 

Clear the E-register (set to zero). 

Clear, then one's complement the E-register. 

Skip next instruction if E is zero. 

Skip next instruction if sign of A- or B-register is 
positive; that is, if bit 15=0. 

Increment the contents of the A- or B-register by 
one. 

Example, INB: 

(B) = 0 001 101 110 010 111 (before exe­
cution) 

(B) = 0 001 101 110 011 000 (after exe­
cution) 

SZA/SZB Skip the next instruction if the contents of the A-or 
B-register is all zeros. 

SLA/SLB Skip the next instruction if the least significant bit 
(bit O} of the A- or B-register is zero. 

RSS Reverse the sense of the skip instructions preded­
ing the RSS in the statement. That is, the SSA/SSB, 
SZA/SZB, SLA/SLB instructions skip on 1 's when 
followed in the same statement by an RSS instruc­
tion. 

8-13 



I 

f-+-

8-14 

When combined, the instructions must be given in the order 
shown below, separated by commas. Instructions for the A­
register may not be combined with instructions for the B­
register. 

Label 

i~~{ 
(CCA~ 
( CLB 

'CMB 

f ccB 
\ 

Op Code 

CLE 

[,SEZ] , CME 

CCE 

l1 CLE 

[, SEZ] , CME 

CCE 

[,SSA][, SLA] [,INA][, SZA] [, RSS] 

[, SSB] [, SLB] [, INB] [, SZB] [, RSS] 

Any combination as shown above requires only one machine cy­
cle for execution. If more than one skip instruction is used 
in a statement, any true condition will cause the skip to occur. 
The only exception is SSA, SLA, RSS or SSB, SLB, RSS. The 
indicated register must contain a quantity which is negative and 
odd (bit 0=1) for the skip to occur. An RSS folloWing more than 
one skip instruction in a statement reverses the sense of all the 
skip instructions. 

Examples: 

"""' Op .. ati<in o,. ..... c-• 
' 10 15 .. 25 30 35 " 

., ,. 
LOA LA NI SI GN BIT OF LA NI TE ST ED FJQjR Ill IQR: 
1~·11 I. IF IJw LA NI IS PO SI TV E- -J MP ' ..... I 

Jjf,iP NE GPL PO SPL IS EX EC UT ED. I F I LL LA NI I Si 
J~P PO SPL NE GA TI VE - - JMP NE GPL IS EX EC u[!j ED I 

I• 

I 
I 

LOA DI CK TE STS ( D lC I~> FOR ODD OR EV EN ' I 
I iJi. ( B IT @:= I OR Ill ) • [F ~lo DLL J~P t 

I 

J~P loo RTN OD RirlN IS EX EC uJ! ED. I F EV EN, J~P I 
I 

J"91P EV RTN EV RTN 1 s E~ EC UT ED. I 

' I 
I 

LD IA cl~ ROL IF ( c l~R OL) ARE NE GA J! I ME' ~ ~u "1!P I 
I 

SSA~RSS IS MA DE TO XY g. IF PO SI Tl VE l.L OCH El 

-~'~ 
v~ LUE I S c!Q NV ER TED TO NE GA Tl J'llE I. 

I 

AND A JU ~p IS ~A DE TO XlY z. I 
I 

111 ! 
J...... 



8.2.3 
NOP 

8.3 

INPUT /OUTPUT 

INSTRUCTIONS 

LOA ED COMPARES CONTENTS OF LOCATIONS 
C]MA, I NA ED AND QUAN. IF (ED) LESS THAN 
ADA UAN (QUAN), A JUMP IS MADE TO LT.RT 

IF ( ED ) GREATER TH A~ ( QUAN ) 1, A 
JMP jLT.RT JUIMP TO GT.RT OCCURS. IF CEIO) 

EQUALS (QUAN), A JUjMP ffo EQ.RT 
jfMp GR.RT occu!R s. 
Jff.iP EQ.RT 

LOB JOE TES~S (JOE) FOR NEGATIVE ANID 
ij· ····'~§lj BIT ~:I . IF TRUELi. C~Bul NB IS 

~~::::;ra;;i;:;:i:llll; :::1::--=o-H:· ·:· · ~~~:s:K:I:P;P:E~o~-:-:=-iE=-i H.:..:ix~E:c:u:T;1;o:N::c:1o:N:T:1:N:u:FlE=1 Fl.::..is:::;: 
LOA FO~L ~ITh LOA FO~L. IF F~LSE1 1 1 THE 

NUMBER IS COMPLEMENIBEO AND 
EXECU~ION CONTINUES !WITH LOA 
FOIWL. 

When a no-operation instruction is encountered in a program, 
no action takes place; the computer goes on to the next instruc­
tion. A full memory cycle is used in executing a no-operation 
instruction. 

Label Op Code Operand 

NOP (not used) 

A subroutine to be entered by a JSB instruction should have a 
NOP as the first statement. A NOP statement causes the as­
sembler to generate a word of zeros. 

The input/output instructions: (1) allow the transfer of data 
between the computer and an external device, (2) enable or 
disable external interrupt, (3) check the status of 1/0 devices, 
and (4) check for arithmetic overflow condition. 

Because of the variety of ordinary input/ output devices and 
specialized HP data acquisition devices which may be attached 
to the HP 2116A, one particular instruction may have a num­
ber of different results. 

Very generally speaking, the STC instruction "turns on" the 
control bit, transferring or enabling the transfer of one data 

8-15 



8.3.1 

STC 

8.3.2 

CLC 

8-16 

element. The size and format of an element depends largely 
on the type of data the device is expected to convey. For ex­
ample, a digital voltmeter provides a data element in the form 
of a two-word binary representation of a decimal number, giv­
ing the number of volts measured. A teleprinter machine pro­
vides an element in the farm of a binary representation of an 
ASCII character. The size and format of a data element for 
HP devices connectable to the HP 2116A is given in Appendix 
D, with samples of coding. 

The instructions LIA, LIB, Iv.IIA, Iv.IIB, OTA, and OTB control 
the transfer of data between the channel buff er and the A- and 
B-registers. The flag bit is set automatically when data trans­
mission between the device and the channel buffer is completed. 
Instructions are also available to set, clear, or test the flag 
bit. If the interrupt system is enabled, and the control bit is 
set, setting the flag bit causes program interrupt to occur; con­
trol transfers to the interrupt location related to the channel. 
If the interrupt system is disabled, no interrupt can occur; in 
this case the programmer may use the instructions which test 
the flag to determine when transfer is completed. The flag bit 
may be cleared by specifying the two characters , C following 
the select code in most 1/0 instru'Ctions. 

This instruction transfers or enables the transfer of one data 
element between the channel buff er and the device. 

Label Op Code 

STC 

Operand 

SC(, C ] 

The set control instruction sets the control bit for the channel 
indicated by the select code (sc). The C option clears the flag 
bit before any transmission initiated by the STC is completed. 

If sc=l, the statement is treated as a NOP (no-operation) in­
struction. 

The clear control instruction clears (sets to zero) the control 
bit for the channel specified by the select code (sc), effectively 
disconnecting the device. 



8.3.3 

LIA/LIB 

8.3.4 

MIA/MIB 

8.3.5 

OTA/OTB 

Label Op Code 

CLC 

Operand 

SC (, C] 

When the control bit is cleared, interrupt on the channel is dis­
abled, although the flag bit may still be set by the device. If 
sc=O, control bits for all channels are cleared, and all flags 
are set; all devices are disconnected. If sc=l, this statement 
is treated as a NOP (no-operation) instruction. 

The C option clears the flag bit for the channel. 

These instructions clear, then load the A- or B-register with 
the contents of the I/O buffer indicated by sc. 

Label Op Code Operand 

{LIA} sc (, C ] 
LIB 

If sc=l, the contents of the Switch Register are loaded into A 
or B. If C is specified when sc= 1, the Overflow bit is cleared 
after transfer from the switch register is complete. Otherwise, 
C clears the flag bit for the channel. 

These instructions merge ("inclusive or") the contents of the 
I/O buff er indicated by sc into the A- or B-register. 

Label Op Code Operand 

{=} sc[,C] 

If sc=l, the contents of the Switch Register are merged into A 
or B. If C is specified when sc=l, the Overflow bit is cleared 
after the merge is complete. Otherwise, C clears the flag bit 
for the channel. 

Label Op Code 

{OTA} 
OTB 

Operand 

SC(, C] 

This instruction causes the contents of the A- or B-register to 
be output to the I/O buff er indicated by sc. The C option clears 
the flag bit for the channel. 

8-17 



8.3.6 
5TF 

8.3.7 

CLF 

8.3.8 

5FC 

8.3.9 

5F5 

8.3.10 
CL0,5TO 

50C,505 

8-18 

Label Op Code 

STF 
Operand 

SC 

The set flag instruction sets the flag bit of the channel indicated 
by sc. If sc=O, the entire interrupt system is enabled; if sc=l, 
the overflow bit is set. 

Label Op Code Operand 

CLF SC 

The clear flag instruction clears the flag bit of the channel indi­
cated by sc. If sc=O, the entire interrupt system is disabled;. 
if sc=l, the overflow bit is cleared to zero. 

Label Op Code Operand 

SFC SC 

The skip if flag clear instruction skips the instruction immedi­
ately following if the flag bit for channel sc is zero. 

Label Op Code 

SFS 

Operand 

SC 

The skip if flag set instruction skips the instruction immedi­
ately following if the flag bit for the channel indicated by sc is 
one. 

In addition to using a select code of 1, the overflow bit may be 
accessed by the following instructions. 

Label Op Code 

CLO 

Operand 

(not used) 

This instruction clears the overflow bit to zero. 



8.3.11 

HALT 

Label Op Code 

STO 

Operand 

(not used) 

This instruction sets the overflow bit to one. 

Label Op Code 

soc 
Operand 

[ c] 

The skip if overflow clear instruction skips the instruction im­
mediately following if the overflow bit is zero. The C option 
clears the overflow bit after the test is made. If C is not used, 
comments must be omitted. 

Label Op Code 

sos 
Operand 

[ c] 

The skip if overflow set instruction skips the instruction imme­
diately following if the overflow bit is one. The C option clears 
the overflow bit after the test is made. If C is not usedJ com­
ments must be omitted. 

The halt instruction stops computer processing. 

Label Op Code 

HLT 

Operand 

( SC (, C] ] 

The computer stops processing and holds the setting of the flag 
bit for the channel designated by sc. If the C option is speci­
fied, the flag bit for the channel is cleared. 

The HLT instruction is displayed in the T-register and the P­
register indicates the HLT location plus one. 

If neither the sc nor the C option is used, the comments must 
be omitted. 

8-19 



8.4 

EXTENDED 

ARITHMETIC 

UNIT 

INSTRUCTIONS 

8.4.1 

MPY 

8-20 

When the Extended Arithmetic Unit option is included in the 
computer configuration, additional arithmetic and shift capabil­
ities are available. Four of these instructions (MPY, DIV, DLD, 
and DST) cause two computer words to be generated; the first 
word is the instruction code, and the second, a 15-bit operand 
address. When assembled for configurations without the EAU 
option, these four instructions result in calls to subroutines. The 
remaining mnemonics, if used in a non-EAU Assembler, would 
be considered as operation code errors. 

This instruction multiplies the contents of the A-register by 
the contents of a memory location and stores the product in 
registers B and A. 

Label Op Code 

MPY 

m 

I 

lit 

Operand 

fm[,IJ( 
t lit f 
absolute or relative address 
expression 

Indirect addressing indicator 

literal value 

The result is stored right-justified in the combined Band A 
registers: 

B A 

I I 
'-- sign of product 



8.4.2 

DIV 

For example: 

MPY 

Before Execution 

(A)= 0001738 

(VALUE) = 0000348 

(B) = any quantity 

MPY DANTE (A) = 1013258 

(DANTE) = 0611118 

(B) = any value 

MPY =D20 (A)= 0000758 

After Execution 

(B) = 000000 

(A) = 0065648 

(VALUE) = 0000348 

(B) = 1771038 

(A) = 1722758 

(DANTE) = 061111 8 

(B) = 000000 

(A) = 002304 

Note that in the second example, the negative answer (in 
eight's complement form) is really 1774354275. Split into 
the two 16-bit registers and right-justified, it is represented 
as shown above. 

DIV divides the contents of B and A by the contents of a 
memory location and stores the result; the quotient is stored 
in A and the remainder in B . 

. Label OP Code Operand 

DIV ~ m [, I J ~ 
lit 

m absolute or relative address. 

I indirect addressing indicator. 

lit Literal value 

The Overflow bit is set if the divisor equals zero or if the 
dividend exceeds the A-register, otherwise, exit with Overflow 
bit cleared. 

8-21 



8.4.3 

DLD 

8-22 

Initially, the dividend is stored right-justified in the combined 
B- and A-registers: 

B A 

I I 
"-.sign of dividend 

For example: 

Before Execution After Execution 

DIV ALAN (B) == 000000 (B) == 000000 

(A) == 054147 8 (A) == 0005638 

(ALAN) == 00007 5 8 (ALAN) == 0000758 

DIV =B73 (B) == 000000 (B) == 0000028 

(A) == 0000758 (A) == 000001 8 

DLD loads the A and B registers with the contents of two 
consecutive words in memory. 

Label Op Code 

DLD 

m 

I 

lit 

Operand 

1fm[, 1]} 
lit 

location of first word---the 
contents of this location is 
loaded into the A-register. 
Location m+1 is loaded into 
B-register. 

indirect addressing indicator 

literal value (F only) 



8.4.4 

DST 

For example: 

Before Execution After Execution 

DLD FLPT (A) = any quantity (A) = 017777 8 

(B) = any quantity (B) = 1774008 

(FLPT) = 0177778 (FLPT) = 017777 8 

(FLPT+l) = 177 4008 (FLPT+l) = 1774008 

DLD IND, I (A) = any quantity (A) = 035467 8 

(B) = any quantity (B) = 0541008 

(IND) = 002177 8 {IND) = 002177 8 

(2177 8) = 035467 8 (2177 8) = 035467 8 

(22008) = 0541008 (22008) = 0541008 

DST stores the contents of the A and B registers into two 
consecutive memory locations. 

Label Op Code 

DST 

m 

I 

Operand 

m[, I] 

location of first word--the 
contents of the A-register 
is stored in this location. 
The contents of the B-reg­
ister is stored in location 
m+l. 

indirect addressing indica­
tor. 

8-23 



8.4.5 

SHIFT-ROTATE 

INSTRUCTIONS 

8-24 

For example: 

Before Execution After Execution 

DST TROUT (A) = 000042 8 (A) = 0000428 

(B) = 177401 8 (B) = 1774018 

(TROUT) = any (TROUT) = 000042 8 
quantity 

(TROUT + 1) = any (TROUT + 1) = 1774018 
quantity 

DST IVAN, I (A) = 0175328 (A) = 0175328 
(Note 1 in 

(B) = 1525258 (B) = 1525258 column15) 

,:..__; 
(IVAN) = 102027 8 (IVAN) =IO 2027 8 

(2027 8) = 002777 8 (2027 8) = 002777 8 

(2777 8) = 000000 (2777 8) = 175328 

(30008) = 0170008 (30008) = 1525258 

The EAU Shift-Rotate instructions provide the capability to 
shift or rotate the B- and A-registers 1 to 16 bit positions. 

ASR n Arithmetically shift the B- and A- registers right 
n bits. Sign bit (bit 15 of B) is extended. 

Example, ASR 5: 

(BA) = 1 011 000 101 000 101 0 101 101 011 100 111 

becomef"\ \ 
(BA) = 1 111 110 110 001 010 0 010 101 011 010 111 

I 

I 



ASL n Arithmetically shift the B- and A-registers left n 
bits. Place zeros into the least significant bits. 
The sign bit (bit 15 of B) is unaltered. The Overflow 
bit is set if bit 14 differs from bit 15 before each 
shift, otherwise, exit with Overflow bit cleared. 

Example, ASL 5: 

(BA) = 0 101 000 111 101 000 1 101 101 000 110 111 

beoome} I 7 
(BA) = 0 011 110 100 011 011 0 100 011 011 100 000 

RRR n Rotate the B-and A-registers right n bits. 

Example, RRR 8: 

:::~~e:~11 oeo 010 o 100 010 11~1 
(BA) = 1 000 011 101 011 101 1 100 001 001 000 101 

RRL n Rotate the B- and A-registers left n bits. 

Example, RRL 7: 

(BA) = 0 110 011 101 111 000 0 110 011 010 000 111 

become/ 7 
(BA) = 1 011110 000 110 011 0 100 001 110 110 011 

8-25 



LSR n Logically shift the B- and A-registers right n bits. 
Place zeros into the most significant bits. 

Example, LSR 5. 

(BA) = 1 011 000 101 000 101 0 101 101 011 100 111 

become~ \ 

(BA)= 0 000 010 110 001 010 0 010 101 011 010 111 

LSL n Logically shift the B- and A-registers left n bits. 
Place zeros into the least significant bits. 

Example, LSL 5: 

(BA) = 0 101 000 111 101 000 1 101 101 000 110 111 

become/ 7 
(BA) = 0 011 110 100 011 011 0 100 011 011 100 000 

8-26 



1. The CPA instruction skips on what condition? 

2. The ISZ instruction skips on what condition? 

3. To what location does the instruction JSB 227B (absolute) 
pass control? 

4. Assume the above instruction is executed at absolute lo­
cation 137B. What is placed in location 227B? 

5. Assume that 50 values are stored in consecutive loca­
tions beginning at relative address TAG. What is the 
relative address of the last value? 

6. How many shift-rotate instructions can be combined in 
one line of coding? Alter-skip instructions? 

7. What is wrong with the following combinations? 

(a) ALS, CLE,RBL 

(b) CLA,ALS 

(c) BLS, BLS, CLF 

(d) ALF ALF 

8. What is a good first instruction for a routine which is to 
be entered by a JSB instruction? 

9. Give an instruction which enables the interrupt system. 

10. When the interrupt system is enabled, the control bit for 
the device is set, and the device sets its associated flag 
bit on, what happens? 

11. An STC instruction is required to enable the transmission 
of: 

(a) an element of data 

(b) one computer word 

(c) a character 

12. Data transfers between a channel buffer and a device are 
controfled by which instructions? 

13. The instruction HLT llB, C is stored in absolute loca­
tion 3767 8• What is displayed in the P-register when this 
instruction is executed? 

8-27 



8-28 

14. Write a sequence of code which Will add the values stored 
in CAT and DOG and store the result in SUM. 

15. Calculate X = Y +Zand compare X to Q. If unequal, cal­
culate X + W + Q and store the result in R2. If equal, 
calculate X + W and store in Rl. 

16. Test bits 3, 5, and 9 of location TEST; if all are on (=1), 
jump to location ON. If not all are on, jump to location 
OFF. Define any constants necessary by giving label and 
value; for example, CONST= 1910· 

17. Calculate X-Y. If the result is odd, jump to a subroutine 
which tests the results for positive or negative. If the 
result is negative, convert to positive and return to the 
main program. If the result is positive, return to the 
main program. If X - Y is even, the program is to con­
tinue in sequence. 



PSEUDO INSTRUCTIONS 9 

Pseudo instructions, as the name implies, are not "real" in­
structions; they are commands to the Assembler rather than 
commands to the machine which must be interpreted by the 
Assembler. 

Pseudo instructions may be classed in six general categories 
according to their capabilities: 

Assembler Control 

Object Program Linkage 

Address and Symbol Definition 

Storage Allocation and Constant Definition 

Arithmetic Subroutine Calls 

Assembly Listing Control 

The terms program, subprogram, routine, and subroutine all 
refer to a set of instructions which are, by themselves, com­
plete. That is, they solve some specific problem or set of 
problems. The distinction arises through the manner in which 
these entities relate to the solution of the problem at hand. 

With a complex problem, for example, it may be possible to 
split the problem into separate smaller problems. Each of 
these may be solved, coded, assembled and tested by a different 
person or group of persons. Each of these separate problem 
solutions may be considered a subprogram or subroutine; when 
combined or linked by pseudo instructions, these form the whole 
program or routine. Or, there may be a main program/routine 
which calls various subprograms/subroutines during its execu­
tion. 

The distinction between these terms is an abstract concept, de­
pending entirely on the way the programmer defines and codes 
his problem, using pseudo instructions which define program/ 
subprogram boundaries, communication areas and linkage 
points. 

9-1 



9.1 

ASSEMBLER 

CONTROL 

9.1.1 

NAM 

9-2 

I 

AS 

These instructions essentially define a set of instructions as a 
separate entity, a program. They also provide information to 
the Assembler about the program being assembled: whether it 
is absolute or relocatable, for example. 

The label field of this class of pseudo instruction is ignored by 
the Assembler in all cases. 

The NAM pseudo instruction defines a relocatable program. 

Op Code Operand 

NAM [name] 

name One to five alphanumeric charac­
ters; the first must be alphabetic 
or a period. This name is printed 
on the output listing. If omitted, 
remarks must be omitted also, or 
they will be interpreted as the name. 

If a program is to be assembled in relocatable form, the NAM 
statement must immediately follow the ASMB control statement 
(see Section 11.1). Only statements consisting entirely of com­
ments (*in column 1) and/or an HED pseudo instruction may 
intervene. 

When a NAM instruction is encountered, the program location 
counter is set to zero. The first instructionrequiring memory 
space following the NAM is assigned relative location zero; the 
second, relative location one, and so forth. 

For example: 

Label Operation Opett1nd Comment. 
s 10 IS 20 2S 30 3S 40 4S so 

MB. I 
I 

"rA ~\\\\ ~'Ui~ THE PR OG RAM LO CA TI ON co UN TER I S I .. · .. I 

LOA EMU SET TO RE LA T I VE LO CA Tl ON ZE RO I 
I 

XOR IMA SKI FOR THE LOIA EMU IN SR UC Tl ON I FO RI 
STA AB LE THE XOR MA SKI IN ST RU CT IO N , ET c. I 

I 

I 
I 

I 
I 

I 
I 



9.1. 2 

ORG 

I 

AS 

AS 

FI 

ORG defines the origin address of an absolute program, or the 
address at which portions of absolute or relocatable programs 
are to begin. 

Op Code Operand 

ORG m 

m When ORG is used to define the be­
ginning of an absolute program, m 
is a decimal or octal integer spec­
ifying the initial setting of the pro­
gram location counter. When ORG 
is used to define a beginning ad­
dress of a portion of a relocatable 
program, m must be a program re­
locatable expression; for a portion 
of an absolute program, any ex­
pression. Any symbols used in an 
expression must be defined in the 
coding previous to the ORG. 

All instructions requiring memory space following an ORG are 
assigned consecutive addresses starting with the value of the 
operand. If used to define the origin address of an absolute 
program, ORG must immediately follow the ASMB control 
statement (see Section 11.1). Only statements consisting en­
tirely of remarks (* in column 1) and/or an HED pseudo in­
struction may intervene. 

For example: 

'""'' Operation Operand Comments 
5 10 15 ., 25 30 35 40 45 5-0 

MB I .. 
::·!!!! ~·m ~I~ li.'li'~ THE PR OG RAIM LO CA TI ON co UN TER IS 
LOA SAM SET TO 20 00 ( 0 CT AL) I lM PL Yl NG 
ADA CAT TH ~T AT THE LOA SAM IN ST RU CT I ON 

IS AS SI GN ED AB so LU TE LO CA TI ON 
20 f/10, ADA CAT TO 20 ~I, ET c. . 

MB. 

~I~ illli !!!Hilt .:. ~~!~' THE FI RST ADA PLC I\N ST RU CT ION IS 
LOA QI AS S! GN ED RE LA Tl VE L\O CA TI ON I 

R ST ADA PLC ( 0 CT AL ) - -T HE LOA AT FO LL Ol'IJ ING 
STA 02 THE ORG PS EU DO lS TH EN AS SI GN ED 
.:::1 I)\ Hi ~H· 1:u· t~ RE LA TI VE LO CA TI ON I C1 <1 ( 0 CT AL ) . 
LOA A7 

9-3 



9.1.3 

ORR 

9-4 

ORR resets the program location counter to the value existing 
when an ORG or ORB instruction was encountered. 

Op Code 

ORR 

Operand 

(not used) 

More than one ORG or ORB statement may occur before an ORR 
is used. If so, the program location counter is reset to the value 
it contained when the first ORG or ORB of the string occurred. 

For example: 

Lobel Operation Operand 

" I 5 10 

A SMB. 
NAM RTN 

START LOA TO~ 
ALF 
XOR MASK 

STAR STA QPLC 
ADA RPLC 

STA QPLC+I 

LOB FAN 

A DB DOG 

ASMB. 
NAM RTN2 

START LOA RALPH 
STOR ADA TOM 

REL LOB STU 
ADB DAN 

LOA SAM 
ADA COUNT 

STA TOM+ I 
JJMP REL 

Comments 
30 40 45 

THE START LOA TOM INSTRUCTION ISi 
ASSIGNED RELATIVE LOCATION ZERO.I 
THE STAR STA QPLC INSTRUCTION ISi 
ASSIGNED RELATIVE LOCATION 20 
(OCTAL l THE ORR I NSTRuc:T ION 
RESETS THE PROGRAM LOCATION 
COUNTER T!O THE VALUE IT HAD 
BEFORE THIE ORG--HENCE, LOB FAjN 

IS - AS SI G NE 0 REL AT I V1E L 0 CAT I 0 N 3. 

! l 
l 

l I J 
l 

THE START LOA RALPH INSTRUCTION 
IS ASSIGNED RELATIVE LOCATION 
ZERO. REL LOB STU :rs ASSIGNED 
RELATIVE LOCATION 16 (OCTAL1), I 
AND LOB SAM, RELATIVE1 LOCATION 
3 3 ( 0 CT AL l THE 01R R I INSTRUCT I 0 N 

RESETS THIE PROGRAM LO'CATION 
COUNTER TO THE VALUE IT, HAjD 
BEFORE THE FIRST iORG OC,CUR:RED!--1 
HENCE, STA TOM+I !rs AS'SIJGN_j_EO I 

RELATIVE LOCATION 2. : !j I 
I i 

l I i I l 
I I : 
! 'TI 



9.1.4 

ORB 

9.1.5 

END 

ORB permits the assignment of a portion of a relocatable pro­
gram to the base page. 

Op Code 

ORB 

Operand 

(not used) 

The ORB statement requires no operand; the assignment of base 
page locations is made by the Assembler. All statements that 
follow the ORB statement are assigned contiguous locations in 
the base page; this assignment terminates when an ORG, ORR, 
or END statement is encountered. 

For example: 

Lab.I Operation Operond Comment> 
1 5 10 15 20 25 30 35 .40 45 50 

ASMB ••• LOA STAR IS ASSIGNED RELAffIVE 
NAM RTN3 LOCATION ~ERO. THE ORB CAUSES 

L DA Sir AR THE l!il!il STORAGE LOCATIONS AND 
ADA REL THE DECl~AL I !ii GENERATED BY THE I 

INPUT BSS I !11!11 AND TEN DEC I !ii 
INPUT BSS I fl)!ll INSTRUCTIONS TO BE ASSIGNED CON-I 

jMA 

DEC I !ii TIGUOUS LOCATIONS IN THE BASE I 
PAGE. jwHEN THE ORR IS ENCOUNTER-I 

STA REL+I ED, THE PROGRAM LOCATION COUNTER/ 
ALF,ALF IS SET TO THE VALUE IT HAD BE- I 
AND ~ASK FORE THE ORB 1 AND STA REL+ I IS I 
S A REL+2 ASSI~NED RELATIVE LOCATION 2. I 
···· __ , ~HE NEXT ORB CAUSES THE OCTA~ 7~ 

GENERATED BY .\!!1_ASK OCT 77 TO BE I SK 0 CT 77 

· ..... J'~ Sl!JORED AFTER ]!_HE DECif.1]AL l!il IN I 
L DA FI NE THE BASE PAGE. THE ORR CAlu(slES I . L DA F I N E T 0 B E AS S I G N ED R EL AT l V El . LOCA!TION 6. I . 

END signifies the end of source language coding; the Assembler 
terminates each translation pass for a program upon encounter­
ing this instruction. 

Op Code 

END 

m 

Operand 

[m] 

name appearing as a statement la­
bel in current program. If speci­
fied, it identifies the location to 
which the BCS loader transfers 

9-5 



9.1.6 

REP 

9-6 

I 

AS 

VA 
ST 

IM A 
BE 

control after a relocatable pro­
gram is loaded. A NOP should be 
stored in this location as control 
is transferred to this location by 
the loader with a JSB instruction. 

If the operand field is blank, the remarks field must be blank 
also; otherwise, the Assembler attempts to interpret the first 
five characters of the remarks as the transfer address symbol. 

For example: 

Label Operation Operand Commenlo 
5 JO IS 20 25 JO l5 40 " so 

~B ... 
NAM PR olG 

LUE DEC 35 
ORE BSS 50 . . . 
SK OCT 17 77 77 LO CA TI ON BE GIN ( I DE NT IF IED BY 
GIN NOP END IN ST RU CT IO N) IS THE PO SI TI ON: 

LOA VA LUE AT )wH ICH ,,,,A CH IN E- EX EC UT AB LE co o-: 
ADA INP ING BE GI NS. THE PR OG RA MM ER rNP UL D' . NOT \wI SH TO TR AN SF ER co NT ROL TO . .v AL UE 1 SI NCE THE DE Cl MAL 35 IN . TH AT LO CA TI ON IS NOT EX EC UT AB LE. 
STB ST AR 
JIMP BE GI N,I THE JMP BE GI NI I IN sfr RU CT I ON 
IHI l.lil 

...... 
RE TU R NS ······=··· ... :. co NT ROL TO THE LO AD ER. 

The REP pseudo instruction causes the instruction immediately 
following the REP to be repeated a specified number of times. 
REP may be used only when the source program is translated 
by the Assembler provided for BK or larger machines (8, 192-
word memory or larger). 

Label Op Code Operand Comments 

REP n 

n any absolute expression, specify­
ing the number of times the instruc­
tion following the REP is to be re­
peated. If symbolic terms are 
used, they must be defined in the 
source program previous to the 
REP. 



9.1.7 
IFN/IFZ 

A label, if used, is assigned to the first repetition of the in­
struction following the REP. A label should not be specified 
in the instruction being repeated, since it would not then be 
unique. 

An REP pseudo instruction followed by another REP pseudo in­
struction is an error; the Assembler issues a diagnostic mes­
sage and no repetitions occur. 

REP may not be used to repeat comment lines. 

Example: 

Lobel Operotion Operand 

' 5 '° " 

AFT REP 4 

DEC 45 

would be translated as: 

AFT DEC 45 
DEC 45 
DEC 45 
DEC 45 

The IFN and IFZ pseudo instructions cause the inclusion of 
instructions in a program provided that either an "N" or "Z", 
respectively, is specified as a parameter for the ASMB control 
statement. The IFN or IFZ instruction precedes the set of 
statements that are to be included. The pseudo instruction XIF 
serves as a terminator. If XIF is omitted, END acts as a ter­
minator. IFN and IFZ may be used only when the source pro­
gram is translated by the assembler provided for 8K or larger 
machines. 

Label Op Code 

IFN 

XIF 

Operand Comments 

All source language statements 
appearing between the IFN and 
the XIF pseudo instructions are 
included in the program if the 
character "N" is specified on 
the ASMB control statement. 

9-7 



9.2 

OBJECT 

PROGRAM 

LINKAGE 

9.2.1 

COM 

9-8 

IF Z All source language statements 
appearing between the IFN and 
the XIF pseudo instructions are 
included. in the program if the 

XIF character "Z" is specified. on 
the ASMB control statement. 

When the particular letter is not included on the control state­
ment, the related set of statements appears only on the 
Assembler output listing. 

Any number of IFN-XIF andIFZ-XIFsets of coding may appear 
in a program, however, they may not overlap. An IFZ interven­
ing between an IFN and XIF (or vice versa) results in a 
diagnostic being issued during compilation; the second pseudo 
instruction is ignored. When both pseudo instructions are used 
in the program and both characters are entered on the control 
statement, the character that appears last determines the set 
of coding that is to be included in the program; both sets may 
not be selected in the same assembly. 

These pseudo instructions establish "links", or means of com­
munication, between a main program and its subprograms or 
between several subprograms which are to be run as a single 
program. 

Labels may be used, but are ignored by the Assembler. The 
operand field is usually divided into many subfields, separated 
by commas. The first space not preceded by a comma or left 
parenthesis terminates the entire field. 

The COM pseudo instruction reverses a block of storage loca­
tions which may be used by several relocatable subprograms. 

Op Code Operand 

COM name1[(size1)] [, name2[(size2)], 

•.• , namen[ (sizen)] ] 



Op Code Operand 

Each name identifies a segment of 
the block of common storage for 
the program in which the COM ap­
pears. This name may be used in 
the operand field of the DEF, ABS, 
EQU pseudo instructions, or any 
Memory Reference instruction. 
When used, it refers to the first 
word of the segment. 

A decimal or octal integer speci­
fying the size (in words) of the re­
lated name portion of the block. 
If size is omitted for a name, one 
word is allocated. 

To refer to the common block, other subprograms must also 
include a COM statement. The segment names and sizes may 
be the same or they may differ. Regardless of the names and 
sizes specified in the separate subprograms, there is only one 
common block for the combined set. 

As a simple example, suppose that two subprograms are to use 
the same data which is read into the computer from an external 
device. The data consists of names of employees at a company. 

These names are read one at a time into a common area. One 
subprogram refers to the whole name, including the last name, 
first name, and middle initial. Another subprogram refers to 
these separately. This could be coded as follows: 

Lab.of Operatloo Operand 

" 

NAM SBPRI 

. 75 OCT 75 

TEN DEC 10 

9-9 



9-10 

Label Oporatian Operand 

15 25 ]30 

NAM SBPR2 I 

TiwlEN DEC 2G 
MASK OCT 7777 

Any number of COM statements may appear in a subprogram. 
Storage locations are assigned contiguously; the length of the 
common block is equal to the length of all segments named in 
all COM statements in the subprogram. 

Example: 

Label Operation Operond 

" 

LOA ADDR2f+-il 

END 

Operotion Operand 

" 
NAM PROG2 

LOA AADl+2 

END 

LOADS A WITH 2ND WORD OF SEGMENT! 

ADDR2, 7TH WORD OF COMMON BLOCK.: 

Comments 

LOADS A WITH 2ND WORD OF SEGMENT! 

IAIAD, 7TH woRo oF col~MON BLOCK. 



9.2.2 

ENT 

Organization of the common block: 

PROG1 
Segment 
Name 

ADDR1 

ADDR2 

ADDR3 

ADDR4 

PROG2 
Segment 
Name 

AAA 

AAB 

AAD 

Common Block 
Location 

Relative Location 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

The first common length declaration processed by the BCS loader 
establishes the total common storage allocation. Subsequent 
programs must contain common length declarations which are 
less than or equal to the length of the first declaration. 

The loader also establishes the origin address (common relo­
cation base) of the common block; the origin cannot be set by 
the ORG or ORB pseudo instruction. All ref er enc es to the com­
mon area are relocatable. 

ENT defines entry points to the program or subprogram. 

Op Code Operand 

ENT name1[, name2, ••. , namen] 

name Each name is a symbol assigned as 
a label for some instruction in the 
program. 

9-11 



9.2.3 

EXT 

9-12 

Entry points allow another subprogram to refer to that speci­
fied point in the subprogram. A maximum of 14 entry points 
may be specified for a subprogram. Symbols appearing in an 
ENT statement may not also appear in EXT or COM statements 
in the same subprogram. 

EXT defines external points, labels in other subprograms ref­
erenced in this subprogram. 

Op Code Operand 

EXT name1[, name2, •.• , namenJ 

name Each name must be defined as an 
entry point in some other sub­
program. 

The names defined in the EXT statement may be used in Mem­
ory Reference instructions and the EQU and DEF pseudo in­
structions. An external symbol must appear alone in a Mem­
ory Reference instruction; it may not be in a multiple term ex­
pression or be specified as indirect. References to external 
locations are processed as indirect addresses linked through 
the base page in a manner similar to that described in Section 
5.1. 2. 

Example: 

Label Op11ration 

10 
Ope....,d 

" N M PROGA 
IMASK ass , . 

CNST BSS I 7 

BEGIN NOP 
LOA JAMAL 
STA jMASK 

JSB START 
LOA JAMAL 

END BEGIN 

Commenls 
20 

JAMAL AND START ARE REFERRED TO 
IN PROG~, BUT ARE ACTUALLY LOCA~ 
TIONS IN PROGB. HENCE, THEY ARE 
D E F I N E D AS EXT E RN A L S I N jP R 0 GA 
AND ENTRY POINTS IN PROGB. 

! 



9.3 

ADDRESS AND 

SYMBOL 

DEFINITION 

9.3.1 

DEF 

1 

ST 

JA 

,,.,., Operation Operand Comrnenh 
5 10 15 20 25 30 35 '° " 50 

N AIM PR OGB I 
I 

ART NOP I 
I 

LOA CN ST 1 
I 

ADA MA SK I 
I . I 
I . CN ST AND ~IA SK ARE RE FE RR ED TOI . IN PR OGB BUT ARE AC TU AL LY I 
I 

J]MP START I I LO CA TI ONS IN PR OG A. HE NCE I 
I 

L .. 

TH EY ARE DE FI NED AS EX TE RN AL Si 
IN I? R OGB AND EN TRY PO IN TS IN I 

I 

MA PR OG A. I 
I 

END I 
I 

The pseudo operations in this group assign a value or a word 
location to a symbol used as an operand elsewhere in the pro­
gram. 

The address definition (DEF) pseudo instruction provides the 
means to define a direct or indirect address. 

Label 

lname 

Op Code 

DEF 

Operand 

m [,I] 

lname symbol used as an operand of a 
Memory Reference instruction us­
ing indirect addressing. 

m any address expression valid for 
type of program being assembled 
(absolute or relocatable). 

I indirect addressing indicator. Sig­
nifies that the address specified by 
m is used as an indirect address. 
(For multiple level indirect ad­
dressing). 

The Assembler generates a 15-bit address pointing to the loca­
tion specified by m. This address may be referred to in other 
instructions by lname. 

9-13 



9-14 

For example: 

label Operatlon Opercnd 

" 
NAM PROG 

MARGE DEC 19J 

LOA SALLY,! 

END 

THE A-REGISTER IS LOADED ~ITH 
THE DECIMAL l!/J GENERATED BY THE 
jMARGE DEC 19J INSTRUCTION 

The m parameter in the JSB statement may be a symbol which 
appears as an operand in EXT or COM statements in the same 
program. 

For example: 

Label Operation Operand 

" NAM RTNI 
EXT SUBR 

I 
I 

1-+-+-+--+-+---+-+---+-+-+--1--+-+-+--+-+---+-+-+-1--+-+-+--+--+---+-+___,_,-+--+--+--+-+-+--+___,_,1-+-1--+-+--+--+--+---+-+-+-<-+-+-1 
• , I 

~4~M~R~~~P.~i~W.~g~~p$~::µ~!:~~::::~~~0~t-t-t-t-t-t-t-t-t-t--r--t--r-r--r--i----t-t--r--r---i--r--i--r--r-r--r-r--;--r---r-t-r--r-!J 
I 

t-+-+-+--+-+--+-t---+-i-+-t-+--+-+--+-+---+-t--t-t-+--..-+--+-+--+-t--+--+-+-t--+-+--+-t___,__,l-+-t-t-+-t--t-+--+-t-+-l--+-·I·~ 
i 

JSB JMPAD,I THE JSB TRANSFERS CONTROL TO 
THE SUBR ROUTl~E 

END 



The I option in the DEF statement may be used for multi-level 
indirect addressing. For example: 

L<>bel Operand 

" 
NAM BOVIN 

JSB XSO,I 

EXT SORT 

END 

l 
THE JSB TRANSFERS CONTROL TO 

LOCATION SORT, DEFINED AS AN 

EXTERN AL. 

The DEF statement allows address modification in relocatable 
programs. Relocatable programs should not modify memory 
reference instructions directly, as the example below illus­
trates. 

Incorrect Example: 

Absolute 
Location 

77 
100 
101 

3777 

Mnemonic Instruction 

LINK DEF TBL 

TBL BSS 

--------------------- pageboundry---------------------
4000 LDTBL LDA ~ LINK, I 
4001 

ISZ LDTBL 
JMP LDTBL 

(Provided by the BCS 
Relocatable Loader) 

9-15 



9.3.2 

EQU 

9-16 

' 

The "LDTBL LDA TBL" and "TBL BSS lflfl" instructions are in 
different pages; the ref ore, the BC S Relocating Loader provides 
a 15-bit link address in the base page and modifies the address 
of the LDTBL instruction to refer to this link address (see ar­
rows). The ISZ instruction, then, erroneously increments the 
ref ere rice to the link address, so that the next time the LDTBL 
instruction is executed, the A-register is loaded with the con­
tents of the location whose address is contained in absolute lo­
cation 101. 

The following assures correct address modification during pro­
gram execution: 

Lobol Operation Ope.orid Com""'nb 
5 ID 15 20 25 JO 35 " " 50 

NAM EX AMP I 
I 

' I 
I 

!i~ i~\!i.11 ~r ml ij~ li!i!iill ~iUE. 
TB 

bD 

L. BSS JOO THE I Sl Nolw co RR EC TLY MO DI FI ES 
THE RE FE RE NCE TO TBL BY 
IN CR EM EN TI NG THE I 5- BIT 
AD DR ESS AT LO CA TI ON IT BL 

TBL LµA IT BL, I 

I Si! IT BL 

~ND 

EQU assigns to a symbol an address value other than the one 
normally assigned by the program location counter. 

Label 

!name 

Op Code Operand 

EQU m 

!name symbol which may be used to ref er 
to the value represented by m. 

m any expression, relocatable or ab­
solute; cannot be negative. Must 
be previously defined in the source 
program. 

I 



9.3.3 

ABS 

EQU may be used to equate two address symbols, such that both 
symbols refer to the same location, or it may be used to give 
an absolute address value to a symbol. 

For example: 

label Operation 
Comment> 

l 5 10 

Opernnd 

15 40 45 

NAM REMI 

TABLE BSS I !1J (DEFINES A I~ WORD STORAGE AREA--1 

I 

A 
B 

TABLE IS ASSOCIATED ~ITH FIRST \ 
WORD OF THIS STORAGE AREA) \ 

LOA TBL2t3 LOADS A-REGISTER J'.'!ITH 9TH ")WORD I 
OF TABLE AREA. LOA TABLE+S IWOULDI 
PERFORM THE SAi"'1E OPERATION \ 

END 

Lobel Operation Operand Commenh 
5 10 15 " 25 '° 35 40 " 50 

NAM RE GIS I 
I 

I 
I 

I 
I 

I 
I 

EEju Ill THE SY MB OL A IS EO UA TED TO AB so LU TE I 
I 

EOU I LO CA TI ON Ill ( L oc AT I ON RE FE RR ING TO I 
I 

A- RE GI ST ER. SY MB OL I~ J!_ s EQ UA TED TO . AB sJQI LU TE LO CA TI ON I ( R EF ER RI NG TO 
THE B- RE GI ST ER ) . 

LOA B THE A- RE GI ST ER IS LP AD ED WI TH THE 
co NT EN TS OF THE ~- RE GI ST ER. 

END I 
I 

ABS defines a 16-bit absolute value. 

Label Op Code Operand 

lname ABS m 

lname A label symbol, if used, refers to 
the value represented by m. 

9-17 



Label 

For example: 
Leibel Operation OF"" rend 

I 5 JO 15 

NAM DA ISY 

AB EQU 35 

Op Code Operand 

20 

m any absolute expression; if a single 
symbol is used, it must be defined 
as absolute elsewhere in the pro­
gram. 

Comment. 
25 JO 35 '° " 50 

I 
I 

I 
I 

I 
I 

: 
DE FI N ES SY IM B OL AB TO RE FER TO I 

I 

AB so LU TE LO CA Tl ON 35 I 
I 

M35 ABS -AB LO CA TI ON M35 co NT AI NS -3 5 . 
p 7<;6 ABS AB +AB LO CA TI ON p 71/l c,o NT AI NS 7 0. 
P3Q' A BS AB -5 LO CA Tl ON P30 co NT Al NS 30. 

9.4 

STORAGE 

ALLOCATION 

AND CONSTANT 

DEFINITION 

9.4.1 

ass 

9-18 

l l 
l I 

END J i 

These pseudo instructions define blocks of storage locations and 
constants. 

BSS reserves a block of consecutive memory locations for data 
storage or for a work area. 

Label Op Code Operand 

lname BSS m 

lname A label symbol, if used, refers to 
the first word of the defined stor­
age area. 

m a positive integer or any expression 
which results in a positive integer. 
If an expression is used, the sym­
bols must be previously defined in 
the program. 



9.4.2 

ASC 

1 

The program or base page location counter advances according 
to the value of the operand. The initial content of the area re­
served by the statement is unaltered. 

For example: 
Label Operotion Operond Comment• 

5 '° " '° " 30 " '° " 50 

NAM EX AM 

TAB BSS 100 A 10 0- [wo RD ST OR AGE AR EA I S SET 
AS ID E. THE FI RST WO RD j<:>JF THE 
ST OR AGE AR EA MAY BE RE FE RR ED TO 
BY TA B, THE SE co ND lBY TA Bfi- I, ET c, 

END I 
I 

ASC generates the binary representation of a string of ASCII 
(American Standards Code for Information Interchange) char­
acters into consecutive computer words. 

Label 

lname 

Op Code 

ASC 

Operand 

n, (2n characters> 

lname A label symbol, if used, refers to 
the first word of characters gen­
erated by the operand. 

n any expression resulting in an un­
signed decimal value in the range 
1 through 28. Any symbol used 
must be defined in the coding pre­
vious to the ASC. 

<2n characters) ASCII characters to be generated. 
Since the binary representation of 
two ASCII characters may be stored 
in one computer word, 2 x(number 
of words requested by n) is the 
number of characters generated. 
If less than 2n characters are de­
tected before the end-of-statement 
mark, spaces are filled in the re­
maining spaces. If more than 2n 
characters are specified, the ex­
cess characters are treated as re­
marks. 

9-19 



9.4.3 

DEC 

9-20 

Each character generates seven binary bits; these bits are right­
justified in each half of the computer word. 

For example: 

TTYP ASC 2,ABC generates the following: 
15 8 7 6 0 

1000001 1000010 
(binary code for A) (binary code for B) 

The label TTYP refers 
to the first word. 

1 000011 0100000 
(binary code for C) (binary code for space) 

T~code for the ASCII symbols Q (carriage return} and 
(line feed} cannot be generat~y ASC. The OCT pseudo 

ins ruction (Section 8. 4. 4) must be used. 

DEC generates a string of decimal constants into consecutive 
binary words. 

Label 

!name 

Op Code 

DEC 

!name 

Operand 

d 1 [ ' d2 ' . . . ' dn ] 
A label symbol, if used, refers to 
the first value generated by the 
operand. 

a decimal integer value or floating 
point expression 

INTEGER CONSTANTS 

If ~i is a decimal inteftfr, it maybe positive, negative, or zero, 
in tne range of 0 to 2 -1, or 32, 76710· The integer constant 
is converted into one binary word and appears as follows: 

15 14 0 

Isl number 

sign bit; 1 implies negative number 
(in 2's complement form} 

0 implies positive number 



Examples: 

Instruction Results 

DEC 7, -17, 32767 0 000 000 000 000 111 
1 111 111 111 101 111 
0 111 111 111 111 111 

DEC -32767, 8 1 000 000 000 000 001 
0 000 000 000 001 000 

\_ sion bit 

FLOATING POINT CONSTANTS 

The floating point capability expands the set of numbers which 
can be expressed from whole numbers in the range -3276~~int 
~ 32767 ~o any real number in the approximate range 10- ~ 
real ~10 8. 

This is accomplished through the conversion of these real num­
bers to binary floating point format. 

These floating point numbers are expressed in the operand field 
of the DEC pseudo instruction in any of the following forms, 
where n is any whole number and e is the power of 10 to which 
the n portion is multiplied. 

Form 

±n. n 

±n. 

±.n 

±n.nE±e 

±.nE±e 

Examples 

6. 7' -32. 691, + 91. 75, 98. 6 

6.' -713.' + 321764.' 200. 

. 75, +. 000001, -. 3 

3.2E2, 517.9E-4, -21.53E-1 

{3. 2E2 expresses 3. 2 x 102, or 
320; 517. 9E-4 expresses 517. 9 x 10-4, 
or . 05179; -p. 53E-1 expresses 
-21. 53 x 10- , or -2. 153) 

. 21E3, .100975E-2, -. 9E-5 

(. 21E3 expresses . 21x103, or 210; 
. 100975E-2 expresses . 100975 x 10-2, 
or . 0010~975; -. 9E-5 expresses 
-. 9x10- , or -. 000009) 

9-21 



9-22 

Form 

±n. E± e 

±nE±e 

Examples 

-3. E-5, 700. E3, 121766. E-4 

(-3. E-5 expresses -3x10-5= -. 00003; 
700. E3 expresses 700 x 103, or 
700, 000; 121766. E-4 expresses 
121, 766x10-4, or 12.1766) 

-321E5, 79E-2, 769E-7 

(-321E5 expresses -321x105, or 
32, 100, 000; 79E-2 expresses 
79x10-2l. or . 79; 769E-7 expresses 
769 x 10-·1, or . 0000769) 

Any number expressed in one of the above formats is converted 
by the Assembler to floating point format; expressed as a 23-bit 
binary fraction and a 7-bit binary exponent. The binary point 
of the fractional portion is assumed to the immediate left of bit 
14 in word 1. Both the fraction and the exponent carry a sign 
bit indicating positive (O) or negative (1); thus a floating point 
number occupies 32 bits, or two computer words: 

15 14 0 

word 1\ ~s~1l~ __ ,_ro_c_,io_n _______ ~I 

'-- $ign of fraction 

15 8 7 1 0 

word 2 IL-..r_ro_c_tio_n ___ _,_I _ex_pon_en_, __ __._IS-:--'21 

sign of uponent _,} 

As illustrated by the expressions 2. 5, 250E-2, . 25El, there 
are many ways of expressing the same value. These expres­
sions are all converted to the same floating point for mat through 
a convention called normalizing. 

Normalizing consists of placing the point directly to the left of 
the most significant digit and adjusting the exponent such that 
the normalized number and the number specified have the same 
value. For positive binary numbers, the most significant digit 
is the left-most 1-bit. For negative binary numbers (in 2's 
complement form) the most significant digit is the left-most 
zero-bit. For example, to convert the expression 45E-1 to 
normalized binary: 

3 45E-1=4. 510=4. 48= 100. 12 = .10012 x 2 



The expressions 4. 5, 4500E-3, . 00045E4 all result in the same 
normalized binary number .10012 x 23. 

To convert a decimal number to floating point format, this pro­
cedure is followed: 

(1) Convert the decimal number to binary 

Examples: (a) 2. 510 = 2. 48 = 10. 12 

(b) -435E-2 = -4. 3510 = -4. 25463148 = 

-100.0101011001100110011002 = 

011.1010100110011001101002 

(in 2's complement) 

(2) Normalize 

10. 12 = . 101 x 2 2 (a) 

(b) 011.1010100110011001101002 = 

. 0111010100110011001101002 x 23 

(3) Convert the exponent to binary (if negative, convert 
to 2 's complement) 

(a) 210 = 102 

(b) 310 = 112 

(4) Express in 2-word floating point format 

(a)( 0 J 101 000 000 000 

0 000 000 0 00 000 

sign of fraction 

(b) 1 011 101 010 011 

1 001 101 000 000 

000 

10Jo 
1!.. sign of exponent 

001. I 
11 / 

9-23 



9.4.4 

OCT 

9-24 

Examples of DEC: 

Instruction Generated floating point values 

DEC -. 695, 400E-4 word 1 1010011100001010 

2 0011110100000000 

3 0101000111101011 

4 1000010111111001 

DEC 2. 5, -1. 0 word 1 0101000000000000 

2 0000000000000100 

3 1000000000000000 

4 0000000000000000 

OCT generates one or more octal constants in consecutive words. 

Label 

!name 

Op Code 

OCT 

Operand 

o1 [ ,02, ... ,on] 

!name A label symbol, if used, refers to 
the first octal constant generated. 

oi octal constant, one to six digits: 
blb2b3b4b5ba, where b1 may be O 
or 1, b2-b6 may be 0-7. Constants 
less than 6 characters are right­
justified in the computer word. If 
no sign is given, the constant is 
assumed positive. The letter B 
must not be used after the con­
stants in the operand field; it is 
used when defining an octal term in 
any instruction other than OCT. 



9.5 

ARITHMETIC 

SUBROUTINE 

CALLS 

9.5.1 

MPY 

Examples: 

Instruction 

OCT 77 

Generated Words 

15 0 

100000000001111111 

OCT 107642,-177,10101 1000111110100010 

1111111110000001 

0001000001000001 

OCT 1976 

OCT -177777 

OCT 177B 

(Illegal; octal constants only 
include digits 0 through 7) 

15 0 

110000000000000011 

(Illegal; B is not used to in­
dicate an octal number in 
the OCT pseudo instruction.) 

These pseudo instructions provide calls to arithmetic sub­
routines which perform often-used functions not available with 
any one machine instruction.t This group of pseudo instructions 
may only be used in relocatable programs; the operand field 
may contain any relocatable expression or an absolute expres­
sion resulting in a value less than or equal to 77 8· :j: 

This pseudo instruction calls a subroutine which multiplies the 
contents of the A-register by the contents of a memory location 
or a literal and stores the product in registers B and A. 

Label Op Code Operand 

MPY f m[,I]( 
t lit f 

m absolute or relative address. If ab­
solute, must result in value less 
than or equal to 77 8· 

t Each call generates two words of code: 
JSB . <mnemonic> 
DEF m(,I] 

:j: If the configuration includes the Extended Arithmetic Unit 
option, the mnemonics MPY, DIV, DLD, and DST result in 
machine instructions; they may be used in absolute as well as 
relocatable programs. 

9-25 



9-26 

Label Op Code Operand 

I indirect addressing indicator 

lit literal value 

The result is stored right-justified in the combined B- and A­
registers: 

B- REGISTER ,_ , .., A-REGISTER ... , 
IS 14 IS II II 10 9 e 7 e II 4 S I I 0 Ill 1411 II II 10 9 e 7 8 S 4 S I I 0 

SIGN OF PRODUCT VALUE OF PRODUCT 

The lower blocks (8i) indicate the octal place value of the bit 
positions. Negative numbers are in two's complement form. 

For example: 

Before Execution 

MPY VALUE (A)= 0001733 

(VALUE) = 0000348 

(B) = any quantity 

MPY DANTE (A) = 1013253 

(DANTE) = 0611113 

(B) = any value 

MPY D20 (A)= 0000753 

After Execution 

{B) = 000000 

(A) = 0065643 

(VALUE) = 0000343 

(B) = 1477613 

(A) = 1542753 

(DANTE)= 0611118 

{B) = 000000 

(A)= 002304 

Note that in the second example, the negative answer (in eight's 
complement form) is really 1774354275. Split into the two 16-
bit registers and right-justified, it is represented as shown 
above. 



9.5.2 

DIV 

9.5.3 

FMP 

DIV divides the contents of B and A by the contents of a mem­
ory location or a literal; the quotient is stored in A and the re­
mainder in B. 

Label Op Code Operand 

DIV 

m 

jm[,IH 
(lit \ 

absolute or relocatable address. 
If absolute, must result in value 
less than or equal to 77 8· 

I indirect addressing indicator 

lit literal value 

Initially, the dividend is stored right-justified in the combined 
B- and A-registers: 

B A 
I I 
"- sign of dividend 

An attempt to divide by zero causes the overflow bit to be set. 

For example: 

DIV ALAN 

DIV= B73 

Before Execution 

{B) = 000000 

(A) = 054147 8 

{ALAN} = 0000758 

(B) = 000000 

(A) = 0000758 

After Execution 

{B) = 000000 

(A} = 000563 8 

{ALAN) = 0000758 

{B) = 0000028 

(A) = 0000018 

This pseudo instruction multiplies the floating point quantity in 
registers A and B by a two-word floating point quantity in mem­
ory or a literal and stores the result in the A and B registers 
in floating point format. 

9-27 



Label 

For example: 

FMP SOCK 

FMP = FlO. 0 

9-28 

Op Code 

FMP 

Operand 

\m[,I] t 
/lit \ 

m location of first word of two-word 
floating point quantity 

I indirect addressing indicator 

lit literal value 

Before Execution After Execution 

(A) = 0500008 (A) = 1300008 

(B) = 0000048 (B) = 0000048 

Quantity in A and B Quantity in A and B 

registers represents registers represents 

2. 510 in floating -2. 510 in floating 

point format. point format. 

(SOCK) = 1000008 

(SOCK+l} = 000000 (SOCK) = 1000008 

Quantity in two (SOCK+l} = 000000 

memory locations 

represents -1. 010 in 

floating point format. 

(A) = 07 40008 (A) = 0454008 

(B) = 0000048 (B) = 0000148 

. Quantity in A and B Quantity in A and B 

registers represents registers represents 

3. 7510 in floating 37. 510 in floating 

point format. point format. 



9.5.4 

FDV FDV divides the floating point quantity in registers A and B by 
a two-word floating point quantity in memory or a literal and 
stores the result in the A- and B-registers in floating point 
format. 

Label 

For example: 

FDV SOCK 

FDV = F2.0 

Op Code 

FDV 

Operand 

~ m(,1] l 
I lit ~ 

m location of first word of two-word 
floating point quantity 

I indirect addressing indicator 

lit literal value 

Before Execution 

(A) = 0500008 

(B) = 0000048 

Quantity in A and B 
registers represents 
2. 510 in floating 
point format. 

(SOCK) = 1000008 

(SOCK+l) = 000000 

Quantity in two 
memory locations 
represents -1. 0 in 
floating point format. 

(A) = 0740008 

(B) = 0000048 

Quantity in A and B 
registers represents 
3. 7510 in floating 
point format. 

After Execution 

(A) = 1300008 

(B) = 0000048 

Quantity in A and B 
registers represents 
-2. 510 in floating 
point format. 

(SOCK) = 1000008 

(SOCK+l) = 000000 

(A) = 07 40008 

(B) = 0000028 

Quantity in A and B 
registers represents 
1. 87510 in floating 
point format. 

9-29 



9.5.5 

FAD 

9-30 

This pseudo operation adds the floating point quantity in regis­
ters A and B to a two-word floating point quantity in memory 
or a literal and stores the result in the A- and B-registers in 
floating point format. 

Label 

For example: 

FAD SOCK 

FAD= Fl~. 25 

Op Code 

FAD 

Operand 

~m(,I] ( 
(lit ~ 

m location of first word of two-word 
floating point quantity 

I indirect addressing indicator 

lit literal value 

Before Execution After Execution 

(A) = 0500008 (A) = 0600008 

(B) = 0000043 (B) = 0000023 

Quantity in A and B Quantity in A and B 
registers represents registers represents 
-2. 510 in floating 1. 510 in floating 
point format. point format. 

(SOCK) = 1000008 (SOCK) = 1000008 

(SOCK+l) = 000000 (SOCK+l) = 000000 

Quantity in two 
memory locations 
represents -1. 0 in 
floating point format. 

(A) = 0740008 (A) = 0700003 

(B) = 0000043 (B) = 0000103 

Quantity in A and B Quantity in A and B 
registers represents registers represents 
3. 75 in floating point 1410 in floating point 
format. format. 



9.5.6 

FSB FSB subtracts a two-word floating point quantity in memory or 
a literal from a floating quantity in registers A and B and stores 
the result in the A- and B-registers in floating point format. 

Label 

For example: 

FSB SOCK 

FSB = F3. 5 

Op Code 

FSB 

Operand 

\m[,I]( 
/lit ~ 

m location of first word of two-word 
floating point quantity 

I indirect addressing indicator 

lit literal 

Before Execution 

(A) = 0500008 

(B) = 0000048 

Quantity in A and B 
registers represents 
2. 510 in floating 
point format. 

(SOCK) = 1000008 

(SOCK+l) = 000000 

Quantity in two 
memory locations 
represents -1. 0 in 
floating point format. 

(A) = 0740008 

(B) = 0000048 

Quantity in A and B 
registers represents 
3. 75 in floating point 
format. 

After Execution 

(A) = 0700008 

(B) = 0000048 

Quantity in A and B 
registers represents 
3. 510 in floating 
point format. 

(SOCK) = 1000008 

(SOCK+l) = 000000 

(A) = 0400008 

(B) = 000377 8 

Quantity in A and B 
registers represents 
. 2510 in floating 
point format. 

9-31 



9.5.7 

DLD 

9.5.8 
DST 

9-32 

DLD loads the A and B registers with the contents of two con­
secutive words in memory. 

Label 

For example: 

DLD FLPT 

DLD IND,! 

Op Code Operand 

DLD m[,1] 

m location of first word -- the con­
tents of this location is loaded into 
the A-register. Location m+l is 
loaded into B-register. 

I indirect addressing indicator 

Before Execution 

(A) = any quantity 

(B) = any quantity 

(FLPT) = 017777 8 

(FLPT+l) = 1774008 

(A) = any quantity 

(B) = any quantity 

(IND)= 0021778 

(2177 8) = 035467 8 
(22008) = 0541008 

After Execution 

(A)= 0177773 

(B) = 1774003 

(FLPT) = 017777 8 

(FLPT+l) = 1774008 

(A) = 035467 8 

(B) = 0541003 

(IND) = 002177 8 

(2177 8) = 035467 8 

(22003) = 0541008 

DST stores the contents of the A and B registers into two con­
secutive memory locations. 

Label Op Code Operand 

DST m[,1] 

m location of first word -- the con­
tents of the A-register is stored 
in this location. The contents of 
the B-register is stored in loca­
tion m+l. 

I indirect addressing indicator 



9.5.9 

SWP 

9.6 

ASSEMBLY 

LISTING 

CONTROL 

For example: 

DST TROUT 

DST IVAN, I 

Before Execution 

(A) = 0000428 

(B) = 1774018 

After Execution 

(A) = 0000428 

(B) = 1774018 

(TROUT) =any quantity (TROUT) = 0000428 

(TROUT+!)= any quan- (TROUT+!)= 1774018 
tity 

(A)= 0175328 
(Note 1 in 

(B) = 1525258 column 15) 

~ 
(IVAN) = 102027 8 

(2027 8) = 002777 8 

(2777 8) = 000000 

(30008) = 0170008 

(A) = 000000 

(B) = 0170008 

(IV AN) = 102027 8 

(2027 3) = 002777 8 

(2777 8) = 000000 

(30008) = 0170008 

This instruction exchanges the contents of the A and B 
registers. The contents of the A register is shifted into 
the B register and the contents of the B register, into the A 
register. The SWP instruction may be used only in a con­
figuration which includes the Extended Arithmetic Unit option. 

Label Op Code 

SWP 

Operand 

The instruction has no operand. 

Assembly listing control pseudo instructions allow the user to 
control the Assembly listing output during pass 2 or 3 of the 
assembly process. These pseudo instructions may be used only 
when the source program is translated by the Assembler pro­
vided for 8Kor larger machines (8, 192-word memory or larger). 

9-33 



9.6.1 

UNL 

9.6.2 

LST 

9-34 

UNL allows suppression of selected portions of the source pro­
gram from the assembly listing. 

Label Op Code Operand 

UNL 

All listable output following the UNL pseudo instruction is sup­
pressed until either an LST or END pseudo instruction is en­
countered. The UNL is also suppressed from the listing. The 
source statement sequence numbers, printed in character posi­
tions 1-4 of the listing, are incremented to allow for the in­
structions encountered between a UNL and an LST or END. 
Diagnostic messages for errors encountered in the suppressed 
instructions will always be printed. The binary object pro­
gram is not affected. 

LST re-initiates the listing of the source program which was 
suppressed by a previous UNL psuedo instruction. 

Label Op Code 

LST 

Operand 

A UNL instruction followed by another UNL instruction, an LST 
followed by an LST, or an LST not preceded by a UNL are not 
considered errors by the Assembler. 

Example: 

The Assembler listing shown below was generated from the fol­
lowing source program segment: 

LOA KN IT I 
STA PU RL2 
UNL 
1 s i! co UNT 
JIMP RED 
LST 

0014 00012 062001~ 
U01S 00013 07:2004t< 
0019 

LOA KNI fl 
:::>TA <' Ur<L2 
L::iT 

Note that the UNL, ISZ, and JMP instructions are not listed, 
but the source statement sequence number is increased from 
,0,015 to ,0,019. 



9.6.3 

SKP 

9.6.4 

SPC 

SKP causes the Assembly listing to be skipped to the bottom of 
the current page. 

Label Op Code 

SKP 

Operand 

The SKP instruction is not printed on the listing; however, the 
source statement sequence number is incremented to allow for 
the SKP. Listing continues with the instruction following the 
SKP at the top of the next page. 

SPC causes the Assembly listing to be skipped a specified num­
ber of lines on the list output, or to the bottom of the page (which­
ever occurs first) before printing the next instruction. 

Label Op Code Operand 

SPC n 

n any absolute expression; specifies 
the number of lines to be skipped. 

The SPC instruction is not printed on the listing; however, the 
source statement sequence number is incremented to allow for 
the SPC. Listing continues with the instruction following the 
SPC. 

For example: 

The Assembler listing shown below was generated from the fol­
lowing source program segment: 

LIDA FR 
STA FI 
SPC 3 
LOA co 
STA PO 

0021 00017 062liJ06K 
0022 00020 072007ri 

0024 00021 062002R 
002~ 00022 072003K 

EEN 
SBY 

OL 
OL 

LDA F.KEEN 
~TA FI .'.:iBY 

LOA COOL 
.:STA POOL 

Note that the SPC instruction is not listed, but the source state­
ment sequence number is incremented from !3'!3'22 to !3'!3'24. 

9-35 



9.6.5 

SUP 

9.6.6 

UNS 

9-36 

SUP suppresses the listing of all but the first code line gener­
ated by the following pseudo instructions: 

ASC 
OCT 
DEC 

DIV 
DLD 
DST 

FAD 
FDV 
FMP 

FSB 
MPY 

SUP . also suppresses the listing of literal values generated by 
the Assembler, if specified immediately before the END state­
ment in the source program. 

Label Op Code 

SUP 

Operand 

UNS re-initiates the listing of extended code lines which were 
suppressed by an SUP instruction. 

Label Op Code 

UNS 

Operand 

An SUP instruction preceded by an SUP, UNS preceded by UNS, 
or UNS not preceded by SUP is not considered an error by the 
Assembler. 

For example: 

The listing segment shown below was generated from the fol­
lowing source program segment: 

LOA LI NEI 
STA BA BLE 
SUP 

LI NEI ASC 15 'B LE SS IN GS ON TH EE, LI TT LE jMAN 
UNS 

LI NE2 ASC 15 ' B AR EF OOT BOY ~I TH CH EEK OF TAN 



9.6.7 

HED 

0027 
(!) (:)2 8 
0029 
01-J:.M 
0iJ 31 
ili032 

~J0023 

G::J0Vi24 

00ro25 

000 IJ4 
\:'J0t'J 45 
IMHJ 46 
ViOftJ 47 
000 50 
C!M 0 .S l 
0V.M 52 
000 53 
00vJ S4 
(1VJ055 
i~MO 56 
001'.l 57 
[!)00 60 
0~.:H'.l 61 
0~)0 62 

0 6<202 5K 
W/20 HJR 

0 41 1 1 4 

&J 41 I it) I 
!,'J '.) 1 10 '.) 
0431 1 7 
047 '.:>24 
02l1102 
~147531 

020127 
0 44524 
0 440 4vJ 
0 41 5H1 
Vi 42 '.:JO 5 
0 4544vJ 
0 47 :,0 6 
020124 
vJ4t::i'.Sl6 

LI NEI 

LHJE2 

L DA L Ii'J El 
:.:i!A 8t::iBLE 
.':>UP 
A::iC 1 5, dL E.::i;:)l NG:::> ui\J THE!!:, LITTLE MA\\J 
UN::> 
A::iC l~BAREFOOf BOY WIIH CHEEK OF TAN 

This pseudo instruction causes a specified heading to be printed 
at the top of a page. 

Label Op Code Operand 

RED m 

m a string of up to 56 ASCII charac­
ters to be printed as a heading 

If RED is specified before the NAM or ORG pseudo instruction 
at the beginning of a program, the heading m will be printed at 
the top of the first page of the pass 2 list output and at the top 
of every following page until another RED instruction or the end 
of the listing occurs. 

If RED is specified elsewhere within the program, the Assem­
bler skips to the top of the next page, prints the heading, and 
continues listing with the instruction following the RED. 

The source statement containing the RED pseudo instruction is 
not printed on the listing, but the source statement sequence 
number is incremented to allow for the instruction. 

9-37 



I 

AS 

~o 
KN 
co 
PO 
PU 

9-38 

Example: 

The listing segment shown below was generated from the fol­
lowing source program segment: 

"'""' Operation Operond Comments 
s " " 20 " JO " " " so S5 

I 
I 

MB 'R 'L ' T 
I 
I 

HED l!_JH IS IS A RE LE VA NT AND RE VE AL ING EX AMlP LE 
~AM TE ST I 

I 

U NT BSS I I 
I 

IT I BSS I I 
I 

OL BSS I I 
I 

01. BSS I I 
I 

RL2 BSS I I 
I 

PAGE 0002 #01 THI.:> IS A KELEVANT AND KEVEALING EXAMPLE 

0001 ASMB,N,L,T 
0003 00000 NAM TE.:>I 
0004 00000 00(1000 COUNT B.::>.S 1 
0005 00001 000000 KNIT! 8.:5.S 1 
0006 00002 000000 COOL 8.S.S 1 
0007 00003 000000 POOL B.SS 1 
0008 00004 000000 PUKL2 B.S.S 1 

Note that the HED pseudo instruction is not listed, but the source 
statement sequence numbell is incremented from fOfOfOl to j0j0j03. 



1. Which of the following are invalid? 

(a) NAM PROG 

(b) NAMPROG 

(c) NAM . 123 

(d) NAM E.RASE 

(e) NAM 

(f) NAM 2016 

2. When is the ORG pseudo not valid in a relocatable assembly? 

3. What is the significance of the Operand field in the END 
statement of a relocatable program? 

4. Which of the following COM statements should be loaded 
first? Why? 

(a) COM A(5), B(8), C(15) 

(b) COM A(4), B(3), C(lO), D(20) 

(c) COM E(6), A(7) 

5. If the symbol CAT is used in PROGA to refer to a label in 
PROGB, what must be specified to provide the necessary 
linkage between the two programs ? 

6. What pseudo is used to generate an indirect address? 

7. How many characters may be generated by ASC? 

8. Write a routine which will find the 2's complement of the 
2 5 values placed in consecutive locations beginning at POS 
and store the complements in the 25 locations beginning at 
NEG. Assume the POS area as the first 25 locations in a 
common area. 

9. Given 50 quantities stored in locations TAB to TAB+49. 
Write a routine to store in locations TAG to TAG+49 in re­
verse order. Assume the TAB area as the first 50 loca­
tions in a common area. 

9-39 





10.1 

DATA 

TRANSFER 

REQUEST 

BCS INPUT/OUTPUT REQUESTS 10 

The Input/Output Control routine (. IOC. ), a part of the Basic 
Control System, provides a simplified method of performing 
I/O operations. The user provides the information necessary, 
and . IOC. interprets the call, initiates the operation, and re­
turns control to the user's program. 

Several operations may be performed: (1) transferring data 
between the computer and an I/O device, (2) positioning of a 
reel of magnetic tape, (3) terminating a previously issued I/O 
request before all data is transferred, and (4) determining the 
status of an operation or a device. 

Input/output operations are accomplished through a set of sub­
routines called drivers. The I/O request provides information 
as to which device is to be used, whether data is to be trans­
ferred into or out of the computer, and the format of the data 
(binary or ASCII). The .IOC. routine then checks an internal 
equipment table, determining the channel to which the device 
is connected, and gives control to the related driver. The 
driver routine reads or writes the specified amount of data, 
processing all interrupts that occur during the transfer. 

Input/Output requests are specified as a series of Assembly­
language instructions. A JSB instruction to . IOC. is specified 
first; thus . IOC. must be declared as an external point in the 
program with the EXT pseudo instruction. The JSB is followed 
by other instructions which form the call. . IOC. always re­
turns control to the instruction following the last instruction of 
the I/O request. 

The general form of the data transfer request is: 

JSB 
OCT 
JSB} 
JMP 
DEF 

. IOC. 
<lunctioi)> qubfunctioi}> 4init-referenc~ 

reject address 

buffer address 

10-1 



10.1.1 

FUNCTION, 

SUB FUNCTION, 

AND UNIT­

REFERENCE 

10-2 

DEC} OCT buffer length 

EXT .roe. 

The second instruction of the data transfer request defines the 
function to be performed and the unit of equipment for which 
the action is to be taken. This information is supplied in the 
form of an octal constant. . IOC. interprets the bit combination 
as follows: 

15 12 11 9 8 7 6 5 0 
l function ~A p I v Im L unit-reference I 

FUNCTION 
SUBFUNCTION 

Bits 15-12 define the function to be performed; 018 defines a 
read operation, 02a defines a write operation. 

SUBFUNCTION 

The subfunction (bits 11-6) defines the options for certain in­
put/output operations: 

p = 1 Print input; the ASCII data read from the 
2752A Teleprinter is to be printed as it is 
received. 

v = 1 Variable length binary input: the value in 
bits 15-8of the firstwordonaninput paper 
tape indicates the length of the record (in­
cluding the first word). If the value ex­
ceeds the length of the buff er (defined by 
the fifth word of the Input/Output request), 
only the number of words specified as the 
buffer length are read. If v= 0, the buffer 
length always determines the length of the 
record to be transmitted. If the device 
does not read paper tape, the parameter 
is ignored. 



m= 1 Mode: the data is transmitted in binary 
form exactly as it appears in memory or 
on the external device. If m = 0, the data 
is transmitted in ASCII format. (See Re­
cord Formats, Appendix E. ) 

Allowable combinations of function and subfunction codes are as 
follows: 

Operation 

Read ASCII or BCD record 
Read ASCII record and print 
Read binary record 
Read variable length 

binary record 
Write ASCII or BCD record 
Write binary record 

Oc.tal Value of 
Bits 15-6 

0100 
0104 
0101 

0103 
0200 
0201 

Combinations considered illegal by . IOC. are rejected. 

UNIT-REFERENCE 

The value specified for the unit-reference field indicates the 
unit of equipment on which the operation is to be performed. 
The number may represent a standard unit assignment or an 
installation unit assignment. Standard unit numbers are as fol­
lows: 

Number 

1 
2 
3 
4 
5 
6 

Name 

Keyboard Input 
Teleprinter Output 
Program Library 
Punch Output 
Input 
List Output 

Usual Equipment Type 

Teleprinter 
Teleprinter 
Punched Tape Reader 
Tape Punch 
Punched Tape Reader 
Teleprinter 

Installation unit numbers may be in the range 7a-74a with the 
largest value determined by the number of units of equipment 
available at the installation. The installation unit number spec­
ified in an I/O request is related to a specific device through a 
BCS equipment table (EQT), defined at the time the computer 
and related software is installed. This table defines the type 
of equipment (Teleprinter, magnetic tape, and so forth), the 
channel on which each unit is connected, and other related de­
tails. The first unit described in the table is ref erred to by 

10-3 



10.1. 2 

REJECT 

ADDRESS 

10-4 

the number 7a; the second, lOa; the third, lla; and so forth. 
The entries for one possible equipment table might establish 
the following relationships: 

Installation Unit Number Device 

7 Teleprinter 

I/O Channel 

12 and 13 
10 Punched Tape 

Reader 
11 Tape Punch 

10 
11 

The standard unit numbers are associated with physical equip­
ment via a standard equipment table (SQT) and the EQT. The 
SQT is a list of references to the EQT. SQT is also created 
at the time the computer and related software is installed. Each 
standard unit may be a separate device, or a single device ac­
cessed by several standard unit numbers as well as an installa­
tion unit number. 

. IOC. transfers control to the third instruction of the I/O re­
quest if the input/output operation cannot be performed. On 
transfer, status information is provided in the A- and B-regis­
ters which may be checked by the user's program. The third 
word usually contains a reject address which is the starting 
location of a user subroutine designed to check the cause of the 
reject and take appropriate action. 

15 14 13 8 7 0 
A-register I a I equipment type I status I 

15 14 I 0 
B-register ldf0/~//.acl 

The contents of the A-register indicate the physical status of 
the equipment (see Status Request, Section 10. 4). 

The contents of the B-register indicate the cause of the reject: 

d = 1 The device or driver subroutine is busy 
and therefore unavailable, or, for Ken­
nedy 1406 Tape Unit, a broken tape con­
dition encountered. 

c = 1 A Direct Memory Access channel is not 
available to operate the device. 



10.1. 3 

BUFFER 

ADDRESS 

10.1. 4 

BUFFER 

LENGTH 

d=c=O The function or subfunction selected is not 
legal for the device. · 

For HP 2020A/B Magnetic Tape unit, de­
vice or driver is busy, or device is in 
local status. 

The buffer address specified in the fourth instruction is the lo­
cation of the first word of data to be writted on an output device 
or the first word of a block reserved for storage of data read 
from an input device. The block must have been reserved in 
the program by a BSS or COM instruction. 

The octal or decimal integer specified in the fifth instruction 
is the number of words or 8-bit characters to be input or out­
put. If the length is givenas words, the specification is a posi­
tive integer; if characters, a negative integer. For example, 
either DEC 10 or DEC -20 would specify the same amount of 
data to be transferred. 

Characters may be specified only if the device is capable of 
8-bit character transmission. The buffer length for data that 
may be printed on the Teleprinter should be no more than 72 
characters (36 words). The buffer length for data transmitted 
via a Direct Memory Access channel may be up to 16K words; 
character transmission is applicable, but only an even number 
of characters will be transmitted. 

10-5 



10.2 

MAGNETIC 

CONTROL 

REQUESTS 

10-6 

Examples: 

Leibel Opercition c~nts 
I 5 10 

Operand 

15 20 .. " 
NA"1 PROG 

EXT . I oc. DE CL ARE . I oc. AS EX TE RN ~L. 
LI NE BSS 36 RE SE RVE ST OR AGE AR EA s - - 3 6 iwo RDS 

COM BK B ( I 0 0) FOR L I NE AND I 0 0 ~o RDS ( IN THE 
DEF BKB co MIM ON BL oc K) FOR B~ B. 

RE ADI JSB . I oc. RE AD 72 AS C 1 I CH AR AC TE RS FR OM 
OCT 10 005 THE ST AN DA RD IN PUT UN IT AND 
JiMP RE JAD ST ORE AT LI NE. IF RE QU EST IS 
DEF LI NE RE JE CT ED, TR AN SF ER co NT ROL TO 
DEC -72 RE JA D. 

J'.ARITI JSB .IOC. ~RITE 100 BINARY WORDS ON UNIT 

TAPE 

OCT 20111 I I, THE THIRD DEVICE DESCRIIBED 
JMP REJAB IN THE EQT. DATA IS CURRENTLY 
DEF BUF STORED IN THE CO~ON BLOCK 

l 
DEC 100 STARTING AT LOCATIO~ BUF. 

END 

This request controls the positioning of a reel on a magnetic 
tape device. The calling sequence is similar to the data trans­
mission request, but consists of only three words: 

EXT .IOC. 

JSB .IOC. 

.I
OCTi JSB 
JMP 

(function) 4;ubfunction) ~nit-reference) 

reject address 



1o.2.1 
FUNCTION, 

SUBFUNCTION, 

AND UNIT­

REFERENCE 

The second instruction of this request defines the function to be 
performed and the unit of equipment for which the action is to 
be taken. This information is supplied in the form of an octal 
constant. . IOC. interprets the bit combination as follows: 

15 12 11 9 8 6 5 0 

I function ~ sub I unit-reference! . ~function . 

FUNCTION 

A function code of 03 8 in bits 15-12 defines the calling sequence 
as a tape positioning request. 

SUB FUNCTION 

The subfunction defines the type of positioning: 

Octal Code Operation 

1 Write end-of-file 
2 Backspace one record 
3 Forward space one record 
4 Rewind 
5 Unload 

Write End-of-File 

A standard EOF character (178) is written on tape, Control 
returns to the normal location. A three-inch gap is written 
before the EOF mark. A status request will show the EOF bit 
set in the status field. 

Backspace one record 

The tape is positioned at the beginning of the previous record. 

Forward space one record 

The tape is positioned at the beginning of the next record. 

Rewind 

This command initiates a rewind operation and then returns 
control to the normal return location. 

Rewind and Standby 

This causes the tape to be positioned at load point and switches 
the device to local status. Control returns to the normal re­
turn location after the operation is initiated. 

UNIT-REFERENCE 

The unit reference field is defined in the same manner as for 
the data transmission request. 

10-7 



10.2.2 

REJECT 

ADDRESS 

10.3 

CLEAR 

REQUEST 

10.3.1 

FUNCTION 

AND UNIT­

REFERENCE 

10-8 

The reject address, which is usually specified in the third 
instruction, is the starting location of a user subroutine de­
signed to check the cause of the reject and take appropriate 
action. Status information is provided in the A- and B-registers 
as for the data transmission request. 

The clear request terminates a previously issued input or out­
put operation before all data is transmitted. t The calling se­
quence is as follows: 

EXT .IOC. 

JSB .IOC. 
OCT <!unctioi}> 4i.nit-ref er enc~ 

The second instruction of the clear request defines the function 
to be performed and the unit of equipment for which the action 
is to be taken. This information is supplied in the form of an 
octal constant. . IOC. interprets the bit combination as follows: 

15 12 II 6 5 0 
I function W ~,$' ,& unit-reference I 

FUNCTlON 

A function code of OOa in bits 15-12 defines the calling sequence 
as a clear request. 

UNIT-REFERENCE 

The unit-reference field is defined in the same manner as for 
the data transmission request. 

If the unit-reference number is specified as 00 (i.e., the second 
word of the calling sequence is OCT Sf), all previously requested 
input and output operations are terminated. This request, the 
system clear request, makes all devices available for the initi­
ation of a new operation. On return from a system clear re­
quest, the contents of the A- and B"".registers are meaningless. 
t The devices are not ready immediately; the driver, however, 

is available on return. 



Examples: 

Lobel Open:ili0t1 
Comments 

l 5 10 40 45 

NAM TIME'. 

EXT .IOC. DECLARE IOC. AS EXTERNAL 
MSG BSS 36 RESERVE 36 ~OROS FOR MSG. 

. . 
RE ADM J SB . I oc. READ AND PRINT A MESSAGE OF ONE 

OCT I 9J 4 {IJ I LINE FROM THE TELEPRINTER. )WHEN t 

JiMP REJ CONTROL RETURNS AFTER lNITIATINGl 
DEF fMSG THE REQUEST, THE JSB TRANSFERS 
DEC 36 TO A SUBROUTINE (Tl~ER) WHICH 
JSB TI MER CHECKS THE TIME ALLO~ED FOR A . MESSAGE TO BE COIMPLETED . 

[g p fflffi:~: :, li'e''::::µ::::Fl+••~+: *-'f\"'l)-1-1-1-++i!=+~'--+T-+-:l'-'~+::~:+--+~:.+E'-+'-~i-:..~+-~+:~+~:+F--+=-I~ -=-~1-+-~+~+~+E-+F=-R~ _:__:~!-'-~+. ~+~=+H-+, E=+::-Dl--i 

THE REQUEST IS CLEARED. 

END 

Label Operotioo Operond 
Comments 

' ' rn " 20 " 3C " '° " ;c 

NAM UR GE NT I 
I 

I 
I 

I 
I 

I 
I 

EXT . I oc. DE CL ARE . I oc . AS EX TE RN AL I 
I 

RD ARA BSS 5 9J RE SE RVE 5 9J ~o RDS FOR IN PUT AR EA I 
I 

: 
I 
I 

I 
I 

JSB . I oc. CL. EAR ALL PR EV 10 us LY I S SU ED I 
I 

9¢J: r:~ I /O RE QU ES TS I 
I 

JSB . I oc. RE AD A VA RI AB LE LE NG TH Bl NA RY I 
I 

OCT 9J I {/J3 I {IJ RE co RD FR OM UN IT I {IJ IN TO I 
I 

JJMP RJ CT RD AR A. I 
I 

DEF RD ARA I 
I 

DEC 5 9J I 
I 

I 
I 

I 
I 

J 
I 
I 

END I 
I 

J 

10-9 



10.4 

STATUS 

REQUEST 

10.4.1 

FUNCTION 

AND UNIT­

REFERENCE 

10-10 

This request may be directed to . IOC. to determine the status 
of previous input/output requests or to determine the physical 
status of one or all units of equipment. The general form of 
the request is as follows: 

EXT .IOC. 

JSB .IOC. 
OCT <functio~ ~nit-ref er enc~ 

The second instruction of the status request defines the function 
to be performed and the unit of equipment for which the action 
is to be t.aken. This information is supplied in the form of an 
octal constant. . IOC. interprets the bit combination as follows: 

15 12 II 6 5 0 
I function ~ M unit-reference I 

FUNCTION 

A function code of 04a in bits 15-12 define the function as a 
status operation. 

UNIT-REFERENCE 

The unit-reference field is defined in the same manner as for 
the data transmission request. 

If the unit-reference number is specified as 00 (i.e. , the second 
word of the calling sequence is OCT 4ftfftfftffJ), the request is in­
terpreted as a system request. 

If information is requested for a single unit, . IOC. returns to 
the location immediately following the request With the status 
information in the A- and B-registers: 



15 14 13 8 7 0 
A-register I a I equipment type l status 

15 14 0 
B-register l m I transmission log 

equipment 
type 

a availability of device; 

0 The device is available; the previous op­
eration is complete. 

1 The device is not available; the previous 
operation is complete but a transmission 
error has been detected or the device 
(tape) is in local status. 

2 The device is not available; the operation 
is in progress. 

This field contains a 6-bit code identifying the 
device ref erred to: 

00-07 

10-17 

20-37 

40-77 

Paper tape devices 

00 2752A Teleprinter 

01 2737A Punched Tape Reader 

02 2753A Tape Punch 

Unit Record devices 

Magnetic Tape and Mass Storage 
devices 

20 Kennedy 1406 Incremental 
Tape Transport 

21 HP 2020 Magnetic Tape Unit 

Instrumentation devices 

40 Data Source Interlace 

41 Integrating Digital Voltmeter 

42 Guarded Crossbar Scanner 

43 Time Base Generator 

77 HP 2401C/HP 2911 Scanning 
Driver (HP 2018 System) 

10-11 



10-12 

status The status field indicates the actual status of 
the device when the data transmission is com­
plete. The contents depend on the type of de­
vice ref erred to: 

Teleprinter reader or Punched Tape reader: 

Bits 7-0 

xxlxxxxx 

Tape punch: 

Bits 7-0 

xxlxxxxx 

Condition 

end-of-tape (10 feed frames) 

Condition 

tape supply low 

Kennedy 1406 Incremental Tape Transport: 

Bits 7-0 Condition 

xxlxxxxx 
xxxxlxxx 

end-of-tape mark sensed 
broken tape; no tape on write 

head 
xxxxxxxl device busy 
HP 2020 Magnetic Tape Unit 

Bits 7 -0 t Condition 

lxxxxxxx 

xlxxxxxx 

xxlxxxxx 

xxxlxxxx 

xxxxlxxx 

end-of-file record (17 8) en­
countered while reading, for­
ward spacing, or backward 
spacing 

start-of-tape marker sensed 

end-of-tape marker sensed 

timing error on read/write 

I/O request rejected: 

a. tape motion required but 
controller busy 

b. backward tape motion re­
quired but tape at load point 

c. writerequestgivenbutreel 
does not have write enable 
ring 

t Hardware status bit 8 is not included in status field (similar 
information in bit 0). 



Bits 7-0 

xxxxxlxx 

xxxxxxlx 

xxxxxxxl 

Condition 

Reel does not have write en­
able ring or tape unit is re­
winding 

Parity error on read/write 

Tape in motion or unit in local 
status 

m This bit defines the mode of the data trans­
mission. 

transmission 
log 

0 ASCII or BCD 

1 binary 

This field is a log of the number of characters 
or words transmitted. The value is given as a 
positive integer and indicates characters or 
words as specified in the calling sequence. The 
value is stored in this field only when the re­
quest is completed; that is, when all data is 
transmitted or when a transmission error is 
detected. 

If a system status request is made, the information in the A 
and B registers is as follows: 

15 14 0 
A-register = lb~,,01 

B-register = lj{j------"'I 

b System Status 

0 no device busy 

1 at least one device is busy 

10-13 



HP 2020A/B 
Status 
Information 

10-14 

If errors (timing or parity) are detected during input/output 
operations, the HP 2020A/B subroutine will attempt to repeat 
the operation four more times; a total of five Read or Write 
operations will be initiated. 

For an output operation, the sequence of ·instructions involves 
a write, a backspace, writing a three inch gap, and then the 
next write attempt. If the error persists after the five attempts, 
control returns to the user program at the normal return 
location. If a Status operation is performed at this point, 
the word in the A-Register would contain a 1 in the "a" 
field and either the timing bit (4) or the parity error bit (1) 
set in the status field. For a Write operation, the record 
produced by the last attempt will be on tape. For a Read, 
the buffer will contain the record read on the last attempt. 

If the End-of-Tape marker is sensed on a Write operation, 
the EOT bit is set in the status field and control returns to 
the normal return location. If another Write is then attempted, 
the "a" field is set to 1 indicating a transmission error and 
control returns to the normal return location; no data will be 
written. If the End-of-Tape marker is sensed on a Read 
operation, the EOT bit is set in the status field and control 
returns to the normal return location. Another Read operation 
may be attempted if it is known that another record exists on 
the tape; if there is no record, reading continues through the 
physical end of the tape. This could also occur if the last 
record on the tape is placed before the EOT marker. (Forward 
motion is terminated by an end-of-record gap.) 

Timing Errors 

All operations are performed with the interrupt system active; 
data transfer is accomplished on interrupt command. Con­
sequently, the priority of the device and state of the interrupt 
system are significant. When establishing the hardware con­
figuration, the tape device should be given the highest priority 
channels. If not, the Library subroutine ENDIO should be called 
before every Read and Write command. During the execution 
of any input/ output operation, the interrupt system may not be 
inhibited for more than 5 machine cycles; otherwise, a timing 
error may occur on high density (556 bpi) tapes. 



Examples: 

Label Operation 

1 5 10 
Op•ncind 

15 

N~M STCHK 

EXT . I 0 C. 
INARA BSS 1{6 

RE A DIM J s B . I 0 c. 
OCT 1!1Jflll5 
JIM P RJ CT 
DEF INARA 
DEC I {6 

STAT!M JSB . IOC. 
ocrr 40fll I 5 

JIMP STATM 
RAL 
SSA,RSS 
JMP PROCS 

EOT ALF,ALF 
RAL 
SSA 
JMP ENDPR 
JMP ABORT 

RJCT SSB 
JMP READM 
JMP ABORT 

Leibel Operation Operoncl 

I ' 10 15 

NAM SY SST . . 
. 

AG AIN JSB . I OC. 
igg ~-··'· ::·:·:·: (tj IJi.ri 
SSA 
JMP AG AIN 
JjMP BE GIN 
END 

20 

20 

Comments 
40 45 

DECLARE . IOC. AS EXTERNAL. 
RESERVE STORAGE AREIA. 

READ AN ASCII RECORD FROM UNIT-
REFERENCE NUMBER 15 AND STORE AT 
LOCATION !NARA 

CHECK S[TATUS OF READ REQUESfr. IF 
BI T I 5 I S S E T , UN I T I 5 I S B US Y - -I 
LOOP ON STATUS REQUEST UNTIL OP~ 
ERATION IS COMPLETE. ROTATE AND 
CHECK BIT 14--IF SETu TRANSFER 
CONTROL TO END-OF-TAPE CHECK 
ROUTINE. ROTATE AND CHECK BIT 5 
--IF SET, TRANSFER CONTROL TO 
ENDPR ROUTINE (PERFOR~S ENDING 
PROCESS).IF NOT SEh, TRANSFER 
CONTROL TO ABORT ROUTINE (PER-
FORMS frERMINATION Pj~OEEDURE). IF 
REQUEST IS CO~PLETED CONTINUE 
PROCESSING AT LOCATION PROCS. 

DETERjMINE CAUSE OF REJECT. IF 
DEVICE PR DRIVER BUSY, LOjOP ON 
RERUEST UNTIL AVAILABLE. OTHER-
l~ISE, TERMINATE PROGRAM AT ABORT 

Comm9nts 
25 JO 35 "' 45 50 

I 
I 

I 

TE ST ALL DE VI CES TO SEE IF ANY 
ARE ST ILL BU SY -- IF AT LE AST 
ONE DE VI CE IS ST ILL BU SY, KE EP 
TE ST I NG SY ST EM ST AT us. IF NO NE 
ARE BU SY, JU MP TO BE GI N. . 

10-15 



10-16 

REVIEW 

1. What is the name of the BCS routine which provides sim­
plified I/O? 

2. The above name must be specified in an ______ _ 
pseudo when any BCS I/O calling sequence is specified in 
a routine. 

3. Input/ output operations are accomplished through a set of 
subroutines called--------

4. Installation unit numbers are related to specific devices 
through the 

5. A request may be specified to terminate a 
previously issued I/O operation. 

6. Specify an I/Orequest to read alO-wordASCilrecord from 
the punched tape reader with installation unit assignment 
10. Transfer control to location ERROR if the operation 
cannot be performed. 

7. Code the ERROR routine in the above question to check for 
the cause of the error, print either ILL FN ON TR (in the 
case of illegal function or subfunction) 

or 

TR DV BSY (in the case of the device or driver busy) on 
the standard teletype device, and halt. 



11.1 

CONTROL 

STATEMENT 

ASSEMBLER INPUT AND OUTPUT 11 

The Assembler accepts as input a paper tape containing a con­
trol statement and a source language program. A relocatable 
source language program may be divided into several sub­
programs or into a main program and several subroutines; the 
designation of these elements is optional. The output pro­
duced by the Assembler may include a punched paper tape con­
taining the object program, an object program listing, and di­
agnostic messages. 

The control statement must be the first statement of the source 
program; it directs the Assembler. 

ASMB, p1,p2, ... ,pn 

ASMB indicates the control statement; it must begin in charac­
ter position one. Following the comma are two or more param­
eters, in any order, which define the output to be produced. No 
spaces may be specified within the control statement. The con­
trol sta~ent must be terminated by an end-of-statement mark, 

@~ 
The parameters may be any legal combination of the following 
starting in character position 6: 

A Absolute: The addresses generated by the Assembler are 
to be interpreted as absolute locations in memory. The 
object program may be loaded by the Basic Binary Loader. 

R Relocatable: The object program may be loaded by the 
BCS Relocating Loader. 

B Binary output: A program is to be punched according to 
one of the above parameters. 

N All coding segments starting with IFN are to be assembled 
into program. (Void if Z follows.) 

Z All coding segments starting with IFZ are to be assembled 
into program. (Void if N follows.) 

11-1 



11.2 

SOURCE 

PROGRAM 

11.3 

BINARY 

OUTPUT 

11.4 

LIST OUTPUT 

11.4.1 

ASSEMBLY 

LISTING 

11-2 

L List output: A program listing is to be produced either 
during pass two or pass three according to one of the above 
parameters. 

T Table print: List the symbol table at the end of the first 
pass. 

Either A or R must be specified with any combination of B, 
Lor T. 

The source program follows the control statement. Each state­
ment is followed by an end-of-statement mark. The first state­
ment of the program must be a NAM statement for a relocatable 
program or an ORG statement indicating the origin of an abso­
lute program. The HED pseudo instructionand statements con­
sisting entirely of comments (indicated by the asterisk in posi­
tion one), however, may appear between the ASMB statement 
and the NAM or ORG statement. The last statement must be an 
END statement and usually contains the transfer address for the 
start of a relocatable program. 

The punch output includes the instructions translated from the 
source program. It does not include system subroutines ref­
erenced within the source program (arithmetic subroutine calls, 
input/output requests to BCS, etc.). These routines must be 
loaded into memory at object program execution time. 

List output as requested by the L and T parameters on the ASMB 
statement has the following for mat: 

The Assembler provides a listing of the Assembled source pro­
gram if requested by the L parameter on the ASMB statement 
for the program. Each page of the listing is preceded by the 
page number (PAGE xxxx). 

If the source program is assembled by the Assembler provided 
for BK and larger machines, the number of the source tape cur-



11.4. 2 

SYMBOL 

TABLE 

LISTING 

rently being processed by the Assembler is printed following 
the page number {#xx). Headings requested by the HED pseudo 
instruction are printed as specified. 

The body of the listing has the following format: 

Columns 

1-4 

5-6 
7-11 
12 
13-18 
19 
20 
21-72 

Content 

Source statement sequence number generated by the 
Assembler 
Blank 
Location (octal) 
Blank 
Object code word in octal 
Relocation or external symbol indicator 
Blank 
First 52 characters of source statement 

Lines consisting entirely of remarks are printed as follows: 

Columns 

1-4 
5-72 

Content 

Source statement sequence number 
Up to 68 characters of remarks 

The Assembler produces a listing of the symbol table during 
pass 1, if requested by the T parameter on the ASMB statement 
for the program. Each page of the listing is preceded by a page 
number (PAGE xx.xx). 

A Symbol Table listing has the following format: 

Columns 

1-5 
6 
7 
8 
9-14 

Symbol 
Blank 

Content 

Relocation or external symbol indicator 
Blank 
Value of the symbol 

The characters that designate an external symbol or type of re­
location for the Operand field or the symbol are as follows: 

11-3 



11.5 

ERROR 

MESSAGES 

11-4 

Blank 
R 
B 
c 
x 

Absolute 
Program relocatable 
Base page relocatable 
Common relocatable 
External symbol 

At the end of each pass, the following is printed: 

** NO ERRORS * 
or 

** nnnn ERRORS * 
The value nnnn indicates the number of errors. 

The Assembler recognizes certain coding errors in the source 
program and produces a 1- or 2-letter mnemonic followed by 
the sequence number and the first 62 characters of the state­
ment in error. The messages are printed on the Teleprinter 
during the passes indicated: 

Error 
Code Pass 

cs 1 

DD 1 

Description 

Control statement error: 
a) The control statement contained 

a parameter other than the legal 
set. 

b) Neither A nor R, or both A and 
R were specified. 

c) There was no output parameter 
(B, T OF L). 

Doubly defined symbol: A name de­
fined in the symbol table appears 
more than once as: 

a) A label of a machine instruction. 

b) A label of one of the pseudo op-
erations: 

BSS EQU 
ASC ABS 
DEC OCT 
DEF Arithmetic sub­

routine call 



Error 
Code 

EN 

EN 0000 
<symbol> 

IF 

IL 

IL 

Pass 

1 

2 

1 

1 

2 or 3 

Description 

c) A namein the operand field ina 
COM or EXT statement. • 

An arithmetic subroutine mne­
monic appears in a program both 
as a pseudo instruction and as a 
label. 

An entry point has been defined in 
the operand field of an EXT or COM 
statement or has been equated to 
an absolute value. 

An entry point specified in an ENT 
statement does not appear in the 
label field of a machine or BSS 
instruction. 

An IFZ follows an IFN (or vice­
versa) without an intervening XIF. 
The second pseudo instruction is 
ignored. 

Illegal instruction: 

a) Instruction mnemonic cannot be 
used with type of assembly re­
quested in control statement. 
The following are illegal in an 
absolute assembly: 

NAM EXT 
ENT COM 
ORB Arithmetic sub­

routine calls 
b) The ASMB statement has an R 

parameter, but NAM is not de­
tected as the first op code. 

Illegal character: A literal has 
been specified with an illegal char­
acter for its type (e.g., A-Z, 8 or 
9 in an= B literal). 

Illegal character: A numeric term 
used in the operand field contains 
anillegal character (e.g., an octal 
constant contains A-Z, 8 or 9). 

Illegal instruction: ORB in abso­
lute assembly. 

11-5 



11-6 

Error 
Code 

M 

Pass 

1, 2, or 3 

Description 

Illegal operand: 

a) An operand is missing for an op 
code requiring one. 

b) Operands are optional and omit­
ted but remarks are included for: 

soc sos HLT 

c) An absolute expression in one of 
the following instructions from 
a relocatable program is greater 
than 77B: 

Memory Reference 
DEF 
Arithmetic subroutine calls 

d) A negative operand is used with 
an op code field other thanABS, 
DEC, and OCT. 

e) A character other than I follows 
a comma in one of the following 
statements: 

ISZ 
JMP 
JSB 

ADA 
ADB 
LDA 
LDB 
STA 
STB 

AND 
XOR 
IOR 
CPA 
CPB 

DEF 
Arithmetic 
subroutine 
calls 

f) A character other than C follows 
a comma in one of the following 
statements: 

STC 
CLC 
LIA 

LIB 
MIA 
MIB 

OTA 
OTB 
HLT 

g) A relocatable expression in an 
ABS or REP statement. 

h) An illegal operator appears in 
an operand field (e.g. + or - as 
the last character). 



Error 
Code 

NO 

OP 

Pass 

1 

1 

Description 

i) An ORG statement appearing in 
a relocatable program includes 
an expression that is base page 
or common relocatable or abso­
lute. 

j) A relocatable expression con­
tains an illegal mixture of pro­
gram, base page, and common 
relocatable terms. 

k) An external symbol appears in 
an operand expression or is fol­
lowed by a comma and the let­
ter I. 

I) The literal or type of literal is 
illegal for the operation code 
used. 

m) Operand of EAU shift-rotate in­
struction= f1 or > 16. 

No origin definition: The first 
statement in the assembly contain­
ing a valid op code following the 
ASMB control statement and re­
marks, if any, is neither an ORG 
nor NAM statement. If the A pa­
rameter was given on the ASMB 
statement, the program is assem­
bled starting at 2000; if an R pa­
rameter was given, the program 
is assembled starting at zero. 

Illegal op code following control 
statement. A valid op code has not 
yet been encountered and the state­
ment being processed does not con­
tain an asterisk in position one. 
The statement is assumed to con­
tain an illegal op code; it is treated 
as a remarks statement. 

11-7 



11-8 

Error 
Code 

OP 

ov 

R? 

so 

SY 

Pass 

1, 2, or 3 

1, 2, or 3 

Before 1 

1 

1 

Description 

Illegal op code: A mnemonic ap­
pears in the op code field which is 
not one of the accepted machine or 
pseudo codes. A word is generated 
in the object program. 

Numeric operand overflow: The 
numeric value of a term or expres­
sion has overflowed its limit: 

Input/Output, Overflow, 
Halt 
Memory Reference 
DEF and ABS operands; 
data generated by DEC; 
expressions concerned 
with program location 
counter. 
OCT 

An attempt is being made to 
assemble a relocatable program 
following the assembly of an 
absolute program. The Assem­
bler must be reloaded. 

There are more symbols defined 
in the program than the symbol 
table can handle. 

Illegal Symbol: A label field con­
tains an illegal character or is 
greater than 5 characters. A label 
with illegal characters may result 
in an erroneous assembly if not 
corrected. A long label is trun­
cated on the right to 5 characters. 

Too many control statements: A 
control statement has been input on 
the teleprinter and the source tape. 
The Assembler assumes that the 
source tape control statement is a 
label, since it begins in column 1. 
Thus the commas are considered 
as illegal characters and the "la­
bel" is too long. The binary object 
tape is not affected by this error, 



Error 
Code 

SY 

TP 

UN 

Examples: 

Pass 

2 or 3 

1, 2, or 3 

1, 2, or 3 

Description 

and the control statement entered 
via the teleprinter is the one used 
by the Assembler. 

Illegal Symbol: A symbolic term 
in the operand field is greater than 
five characters; the symbol is trun­
cated on the right to 5 characters. 

Too many control statements: see 
above. 

An error has occured while 
reading or writing magnetic tape. 
if the T-Register contains 
102040, an irrecoverable error 
has occured; restart the as­
sembly. Otherwise, correct con­
dition and resume. 

Undefined Symbol: 

a) A symbolic term in an operand 
field is not defined in the Label 
field of an instruction or is not 
defined in the operand field of a 
COM or EXT statement. 

b) A symbol appearing in the oper­
and field of one of the fallowing 
pseudo operations was not de­
fined previously in the source 
program: 

BSS ORG 
ASC END 
EQU 

The program shown below generates the error messages shown 
in the listing following: 

Lob.I Operotion Operond 
I ' 10 " 20 

AS MB [LR 'L ' T 
ENT ~H ERE 

IAM OCT 99 99 
Ni<> T OOP 32 
TOO DEC 32 7 68 

jl3_R I TE LOA ? 
BR I TE STA FO RG ET 

JjMP BR IT E' DUH 
END 

11-9 



11-10 

0001 A :::>MI:\, R., L, l 

U!J tH:M7 Btd fl:: ,';,IA FUr\GE:1 
I A>1 K iJ[>j[,J'!H'l0 
i\i;J T ,-;. 0 r,_; vJ 11! ,,; l 
J tJ J :-i: Vl 'Jl·j /J U 2 

tiJ"< I f E K v!\'} ii '/i'J 3 
**'''j 1JU3 EK'.r(O,~:::;* 

l-'AGE ~J0!tJ2 

EN ~J0k:J0 \\IHEt<t: 
**0U!Ll l EixK1J1'\.S* 

NO 0002 
ij!:J~'l2 

I L 0 0 0J 3 UH'l U C 1' 9 9 9 9 
0003 00900 000000 IAM OC1 9999 

0? ~:hJU 4 NO l UOP 32 
U~h) 4 !'.Jd :HJ l VJ\cJiJv)VJ0 NU i UJP 32 

0 V 0vjij S 1JJ DEC 32 '/ 68 
0005 00002 000000 lJJ UEC 32768 

UN 0006 BKIIE LOA? 
0006 00003 062002 BxIIE LDA? 

:::;y 0007 BRITE ::;TA FUKG~l 

UN 0007 clxIIE :::;rA FO~GEI 
00~J7 k:Jk:J004 072kJ02 8Kl n: ::ilA i''iJKGEf 

M 00k:Jd JMP UKl lE,UUH 
0008 00005 0~6003ri JN~ BKIIE,DUH 
0ui:J9 E:Nl) 
**0'.'.liJ6 t::Kt<Ji"<::i* 



SAMPLE EXERCISES 12 

1. Code a routine to check the answers to the examples for the 
MPY, DIV, FMP, FDV, FAD, andFSBpseudo-instructions, 
given in Section 9. 5. That is, determine whether an MPY 
instruction multiplying the two values 173a and 34a would 
result in the A-register containing 0065648 and the B­
register containing 000000, and so forth. 

2. Code a routine to generate 15 fixed point integers, sort the 
integers according to positive or negative, and print them 
in octal on the teleprinter. Negative numbers are to be 
complemented and preceded by a minus sign, and appro­
priate headings provided: 

POSITIVE VALUES 

xxxxx 
xxxxx 
xxxxx 

xxxxx 

NEGATIVE VALUES 

-xxxxx 
-xxxxx 

-xxxxx 

(Indent positive values six spaces) 

(Indent negative values five spaces 
and precede with minus sign) 

12-1 



c 

SAMPLE FLOW CHART -- EXERCISE NO. I 

DEFINE PERFORM 
START }- NECESSARY I-- r-

CONSTANTS MPYS 

fREAD A AND 
B FROM t CONSOLE 

l 

1READ A AND 
B FROM 

I CONSOLE 

._ 

HALT i--
PERFORM 

DIV 

PERFORM 
t-- HALT t-- PERFORM 

1--i HALT 
FDV FMP 

f READ A AND r READ A AND 
1 B FROM B FROM 
L CONSOLE ~ CONSOLE 

r _!_ 

HALT I-- PERFORM t-- HALT ~ 
PERFORM 

FAD FSB 

SAMPLE SYMBOL TABLE OUTPUT' -- c END )-1 HALT 

EXERCISE NO. I 

PAGE 0001 

0001 A.::>MB.t R .. B.t L.t T 
AQUAN R 000000 
VALUE R 000001 
Al:JUAT R 000002 
DANTE it 000003 
.75 R 000004 
.0 R 00iiJ00 5 
•VAL K 000006 
.2.5 R 000007 
SOCK K 000011 
TEST R 000013 
BEGIN R 000015 
.MPY x iiJ~J000 1 
•DIV x 000002 
•OLD x 01ZJIZJIZJIZJ3 
• F'MP x 000004 
.r-Dv x 00000 5 
• F'AO x 000006 
• F'SB x 000007 

** NO ERtWl'<.S* 

1READ A AND 
8 FROM 

I CONSOLE 

_ ... 

II READ A AND 
B FROM 

I CONSOLE 



PAGE 0002 #01 

0 0k11 ASMB, t-<, 8,, L .. T 
0001 00000 NAM CHECK 
0~102 vJ0v.H.il0 000173 A QUAN OCT 173 
0003 00001 000034 VAL UC: OCT 34 
0004 000(iJ2 10132 5 AGJUAT OCT 101325 
(')(10 5 00003 061111 OANTE OCT 61 1 l 1 
0006 00004 00kH17 5 .75 OCT 75 
0007 0000 5 '100000 • 0. OCT 0 
0·008 00006 0 541 47 •VAL OCT :i414"/ 
0009 00007 0 5k:H::H:H1 • 2. 5 DEC 2.5 

0kJ0 10 000004 
0010 00011 H:l0000 SOCK DEC - 1. 0 

00012 000000 
0011 00013 07 4000 Tb:ST DEC 3. 7 !:) 

00014 00000 4 
ra012 00015 fr:lk'.l0kJ0fj BEGIN NOP 
0013 0V.Hd 1 6 vJ 62\:rntat< LOA AGl UAN 
0014 000 l '/ 01 6001 x MPY VALUE 

000<::!0 0000011"( 
0015 [iJ0021 l 0<::!000 HLT 
'!tl0 l 6 00022 0 620021-< LDA AQUAT 
0017 00023 01 6l'l0 l x i'1r:'Y DANTE 

00024 000003R 
0018 00025 102000 HLT 
0k'Jl 9 00k:l26 0 6200 4R LDA .75 
0vJ20 00027 01 6001 x MPY =020 

00030 00011 5R 
0021 00031 102000 HLT 
0022 00032 062006R LOA •VAL 
0023 00033 0 6600 51-t LOB .0 
0024 00034 0 l 6002X DIV • 7 !:) 

00035 00000 4R 
0025 00036 102000 HLT 
0026 00037 062004R LOA .75 
0027 00040 066005R LDB .0 
0028 000 41 0 l 6002X DIV =875 

00042 00011 6R 
0029 00043 102000 HLT 
0030 00044 016003X DLD • 2. 5 

00045 000007R 
0031 00046 016004X FMP SOCK 

00047 000011R 
0032 00050 102000 HLT 
0033 00051 0 l 6003X DLD TEST 

000!:>2 000013r< 
0034 000 53 01600 4X f'MP =f'Hl·0 

0CJ0 S4 000117r< 
0035 000 55 102000 HL T 
0036 V.H10 56 016003X OLD • 2. 5 

00kl S7 0000k17R 
003'7 00060 01600 5X 1-~ov SOCK 

000 61 00001 1K 
0038 00062 102000 HLT 
0039 00063 016003X OLD TEST 

00064 000013R 
0040 0006!:) 01 600 !:>X FDV =1'2.0 

01'J0 66 000121K 
0041 00067 102000 HLT 

12-3 



PAGE 0003 #02 

0042 00070 0 l 6003X OLD .2.s 
00071 000007R 

0043 00072 01600 6X FAD SOCK 
00073 000011R 

0k'J44 00074 102000 HLT 
0045 00075 0 l 6003X OLD TE.ST 

00076 000013R 
0046 00077 01600 6X FAD =rt0.2s 

00100 000123R 
0047 00101 102000 HLT 
0048 00102 0 l 6003X DLD .2.5 

00103 000007R 
0049 00104 016007X FSB SOCK 

00105 000011 R 
0050 00106 102000 HLT 
00 51 00107 016003X OLD TEST 

00110 000013R 
0052 00111 016007X FSB =F3.5 

00112 000125R 
0053 00113 102000 HL T 
00S4 00114 12601 SR JMP BEGIN, I 

00115 000024 
00116 000075 
00117 050000 
00120 000010 
00121 040000 
00122 fc:l00004 
00123 0 51000 
00124 000010 
00125 070000 
00126 000004 

0055 END 
** NO ERRORS* 

12-4 



START 

PRINT YES 

NEGATIVE 
HEADING 

STORE 
MINUS SIGN 

IN OUTPUT 
AREA 

CONVERSION 
ROUTINE 

DEFINE CONSTANTS, 
STORAGE AREAS, 
EXTERNALS, ETC. 

STORE A 
NEGATIVE 

VALUE IN 
TEMP 

CONVERT 
VALUE IN 
TEMP TO 

OCTAL FORMAT 

GENERATE 

A VALUE 

JSB TO 
CONVERSION 

ROUTINE 

PRINT 
THE 

VALUE 

YES 

STORE THE 
VALUE 

NO 

RETURN 
CONTROL 

TO CALLING 
ROUTINE 

NO 

COMPLEMENT 
AND STORE 
THE VALUE 

END 

12-5 



t'AGE 0001 

f60fdl ASMB, i-t, 8, L, T 
VALUE i( 0~J0000 

CO LJNK K 000001 
NEGPL R k:H:J0002 
PO::>PL K 000021 
NEGMO !-< 000040 
NEGAD K 000041 
f'OSMD R 000042 
PO::iAD R 001'21043 
PCOUN R 0000 44 
NCO UN R 000045 
TEMP R 000046 
.1oc. x 000001 
OUT R 000047 
8 000001 
N EG5 R 000050 
NEG2 R 0000 51 
HEADl R 000052 
HEAD2 R 000062 
MASK R 000072 
CON~T R 000073 
MINU.::i R 000074 
OUTPT R 000075 
BEGIN R 000103 
LOOP R 000104 
CHECK R 000114 
CAT R 000117 
WRITE R 000122 
NEXTP R 000133 
NEXTN !-< 000 1 55 
nN k 000164 
GUNVl' ;-{ 00016!:5 
AGA-IN R 000167 
IuCHK R 000214 
** NO Er<ROR.::i* 

12-6 



PAGE 0002 #01 

0001 A~Ml:S, R, cl, L, T 
0001 00000 NAM • 8CNV 
0002 00000 l 54321 VALUE OCT 1 54321 
0003 00001 177761 COUNt<: DEC - 1 :> 
0itJ0 4 00002 000000 NEGPL B S.'::l 1 5 
000 5 00021 000000 PO.:>PL l:3 ::;.::; 1 5 
0006 00040 000002l-\ NEGMD DEF NEGPL 
0007 00041 000002R NEGAD DEF NEGPL 
k:1008 00042 000021r: PO:SM 0 DEF POSPL 
0009 00043 000021R PO.'.:>AO DEF POSPL 
0vJ 10 00044 000000 PCOUN B:S::> 1 
00 1 1 00045 000(100 NGOUN BSS 1 
0012 00046 000000 TEMP BSS 1 
0013 EXT • IOC • 
01J 14 00047 000100R OUT DEF 0 UTPT+3 
0015 00001 l:3 EQU 1 
0016 00050 177773 NEG5 DEC -5 
0017 000 51 177776 NEG2 DEC -2 
0018 000 52 0 501 l 7 HEADl ASC 8,POSI TI VE VALUES 

000 53 051511 
00054 0 521 J 1 
00055 0 5310 5 
00056 020126 
00057 040 51 4 
00060 0 5250 5 
00061 0 51 440 

0019 00062 0 4710::; HEAD2 ASC 8,NEGATI VE VALUES 
00063 0 43501 
00064 0 52111 
0006:> 0 5310 5 
1a00 66 020126 
00067 040514 
00070 0 5250 5 
00071 0 51 440 

0020 00072 000007 MASK OCT 7 
0~J2 l 00073 000060 CONST OCT 60 
0022 00074 0200:>5 MINUS ASC 1, -
0023 00075 020040 OUTPT ASC 6, 

00076 020040 
00077 0200 40 
00 lf00 0200 40 
00101 020040 
00102 020040 

0024 00103 000000 BEGIN NOP 
0025 00104 062000R LOOP LOA VALUE LOAD A WITH VALUE- - RO TATE TO 
0026 t/J0105 001300 RAR GENERATE NEW VALUE 
0027 00106 072000R STA VALUE STORE IN VALUE 
0028 00107 002021 S::JA,RSS IS THE VALUE NEGATIVE? 
0029 00110 026117R JMP CAT NO--JUVJP TO CAT 
0030 00 l l 1 00300 4 CMA, I NA Y ES--CON VERT TO T~S COMPLEMENT 
0031 00112 172040R STA N EGMD, I STOHE IN NEGPL AREA 
1a032 00113 0360 40R I SZ NEGMD INCKEMENT IND! RECT ADDRESS 
0033 00114 036001R CHECK I SZ COUNR ALL 1 5 VALUES GENERATED, STORED? 
0034 0011 5 026104R JMP LOOP NO--GO BACK F'OK NEXT VALUE 
0035 00116 026122R JMP WHITE YES- -JUMP TO WRITE 
0036 0011 7 1 72042R CAT STA POSMD .. I STOKE POSITIVE VALUE IN POSPL AHEA 
0037 00120 0360 42R I SZ POSMD INCREMENT INDIRECT ADDRESS 
0038 00121 0261 l 4R JMP CHECK JUMP TO LOCATION CHECK 

12-7 



PAGE 0003 #02 

0039 
0040 
0041 
0042 
0043 
0044 
004!:> 
0046 
0047 
0048 
0049 
0050 
00 51 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0!0 63 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
009S 
0096 

12-8 

00122 016001X \'J.rUTE J::il:3 .me. 
00123 020006 OCT 20006 
00124 026122R JMP WRITE 
00125 000052R DEF HEADl 
0~126 000010 DEC 8 
00127 062042R LDA POSMD 
00130 003004 CMA,INA 
00131 042043R ADA POSAD 
00132 072044R :::iTA PCOUN 
00133 162043R N EX TP L DA PO SAD.d 
00134 001200 RAL 
00135 072046R STA TEMP 
00136 016165R JSB CONVT 
00137 0360431'( ISZ POSAD 
001 40 0360 44R I SZ PCO UN 
00141 026133R JMP NEXTP 
00142 016001X JSB .Joe. 
00143 020006 OCT 20006 
00144 026142R JMP *-2 
00145 000062R DEF HEAD2 
00146 000010 DEC 8 
00147 062040R LOA NEGMD 
00150 003004 CMA,JNA 
00151 042041R ADA NEGAD 
00152 072045R STA NGOUN 
00153 062074R LDA MINUS 
00154 072077R STA OUTPT+2 
00155 162041R NEXTN LOA NEGAD,I 
00156 001200 RAL 
00157 072046R STA TEMP 
00160 016165R JSB CONVT 
00161 036041R ISZ NEGAD 
0 0 1 62 1213 60 4 SR I SZ NCO UN 
00163 026155R JMP NEXTN 
00164 1261f213R FIN JMP BEGIN 
00165 000000 CONVT NOP 
00166 066050R LDB NEGS 
00167 062046R AGAIN LDA TEMP 
00170 001723 ALF,RAR 
00171 072046R STA TEMP 
00172 012072R ANO MASK 
00173 032073R IOR CONST 
00174 004010 SLB 
00175 001727 ALf,ALF 
00116 132047R IOR ouT,1 
00177 172047R STA OUT,I 
00200 006011 SLS,RSS 
00201 036047R ISZ OUT 
00202 034001 I SZ B 
00203 026167R JMP AGAIN 
00204 016001X JSB .me. 
00205 020006 OCT 20006 
00206 026204R JMP *-2 
00207 000075R DEF OUTPT 
00210 17776S DEC -11 
00211 062047R LDA OUT 
00212 0420SlR ADA NEG2 
00213 072047R STA 0 UT 

*CALL • IOC. 
*DEFINE OUTPUT, DEVICE, FORMAT 
*If BUSY, KEEP TRYING 
*.START OF OUTPUT AREA 
*LENGTH OF' OUTPUT AREA 
LOAD ADDRESS OF LAST PQS. VALUE+ 1 
CONVERT TO TV.OS COMPLEMENT 
ADD ADDRESS OF FIRST Pas. VALUE 
STORE -<NO. OF POS. VALS> IN PCOl..N 
LOAD A WITH A POSITIVE VALUE 
~OSITION F'OR CONVT ROUTINE 
STORE IN TEMPORARY LOCATION 
Jl..MP TO CONVEHT-WRITE ROUTINE 
INCREMENT INDIRECT ADORES::> 
ALL POSITIVE VALS• PRINTED? 
NO--GO BACK FOR NEXT ONE 
*YES--PRINT NEGATIVE HEADING 
*UEFINE OUTPUT, DEVICE, FORMAT 
*IF Busy, KEEP TRYING 
*START OF OUTPUT AREA 
*LENGTH OF OUTPUT AREA 
LOAD ADDRESS OF LAST NEG. VALUE+ 1 
CONVERT TO TV.OS COMPLEMENT 
ADD ADDRESS OF FIRST NEG. VALUE 
STORE -CNO. OF' NEG. VALS> IN NGOUN 
LOAD A WI TH MINUS SIGN 
STORE IN OUTPT AREA 
LOAD A WITH NEGATIVE VALUE 
POSITION FOR CONVT ROUTINE 
STORE IN TEMP 
Jl..MP TO CONVERT- WR! TE ROUTINE 
INCREMENT INDI.KEGT ADDRESS 
ALL NEGATIVE VALS. PRINTED? 
NO-- GO BACK FOR NEXT ONE 
YES--

LOAD B WITH CHARACTER-CuUNTEH 
LOAD A WI TH OCTAL QUAN TI TY 
POSITION CNEXT> DIGIT 
RESTORE IN TEMP 
MASK 0 UT ALL BUT ONE DIGIT 
MAKE ASCII CHAKACTER 
IS THIS lST, 3tW, OR STH DIGIT? 
YES--LEF'T JUST! FY 
MEKGE WI TH 2ND/ 4TH DI GI l OR BLANK 
STORE IN 0 UTPT AREA 
IS THIS lST, 3RD, OR STH DIGIT? 
NO--INCREMENT INDIRECT ADDRESS 
ALL OCTAL CHARACTERS PROCESSED? 
NO- -GO BACK FOR NEXT ONE 
YES--CALL .IOC. TO WRITE 
*DEFINE OUTPUT, DEVICE:, rnRMAT 
*If Busy, KEEP TRYING 
*START OF OUTPUT AREA 
*LENGTH Or OUTPUT AREA 
RE-INITIALIZE THE 

INDIRECT 
ADDRESS 



0~)9 7 
(j(j98 

vHJ99 
kl 1i'.)1/j 

0 ViJ 1 
0 102 
0 1VJ3 
(-'.) ll14 
0 10 5 
0106 

** NO 

0U 2 l 4 01 60U lX IOCHK 
kJ~J21 s !j Ljij1,')C') 6 

;)02 1 6 :0112·112~j 

vL::l2 l 7 Vi2621 41\ 
00220 0 6;~0 7 S:-< 
00221 vi 721001-< 
(-);,] 2 2'~ 0n1ra1r< 
kH'.'!'223 ((J7;-!.1('.)2 r< 
00224 1261 65r\ 

Er<ri:OKS* 

POSITIVE VALUES 
7306-4 
35432 
16615 
"435.l!3 
64354 
32166 
t.5073 
61507 

NEGATIVE VALUES 
-11630 
-70472 
- 5611 7 
-27050 
-71343 
-3ll562 
-47135 

,J.:)8 . IO c;. 
OCl 4!'.J1JvJ 6 
.::i.SA 
.J('"'le I ;J L:HK 
LUA 0 U fr' T 
.::iTA OUTPT+3 
.STA UULciT+4 
.STA tJ UT(Jf+ 5 
JMP CON VT, I 
END 

*CHEGK THE S!AlUS 
* OF fHE TELErr<INIEk 
t3 u::; n 
YE.'S--KEEr TE::iiING 
NO--r<E-INIIIALilE 

!Ht: uUfrT 
AKEH. TO 
ALL .:!LAi'1~<S 

RE 1UKN CO>HKi)L TO CALLI NG KU UTI NE 

12-9 





REVIEW ANSWERS A 

Introduction and Chapter 1 

1. Bits 

2. Assemblers and compilers 

3. Radix, or base, and modulus 

4. (a) 2 (b) 8 (c) 10 

5. "Complement" may be defined as a method of representing a negative number in 
the computer. 

6. (a) 5510; (b) 1001110002; (c) 167528; (d) 1382310; 

(e) 10000000002; (f) 47610; (g) 616. 68; (h) 191. 01043910 
7. (a) 111100102; (b) 333458; (c) 21238; (d) 1010112; 

(e) 11100112; (f) 367 8 
8. (a) 102; (b) 4018; (c) 234610; (d) 47110; 

(e) 101010112; (f) 676767 8 

Chapter 2 

1. Words 

2. Addresses 

3. Instructions 

4. Memory A-register 

5. "Overflow" may be defined as the condition arising when an operation produces 
a result larger than can be contained in a computer register or word. 

6. Program 

7. 128 

A-1 



Chapter 3 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Memory reference instructions, register reference instructions, input/output 
instructions. 

Pages 

The division of memory into pages is based upon the 10-bit address field of the 
memory reference instructions. 210 = 1, 024. 

Zero (base) page or the current page. 

The D/I bit = 1. 

32,768 

Central processor (computer) and the external I/O devices. 

Control bit, flag bit, and channel buffer. 

The slot in which the interface card for the device is placed. 

Chapter 4 

1. Source, object 

2. Machine instructions and pseudo instructions. 

3. Symbol table 

4. An absolute program is one whose addresses are translated permanently and 
are not modified as a result of loading at object program execution time. 

5. A relocatable program is assigned relative addresses at assembly time which 
are modified as a result of loading at object program execution time. 

6. A "pass" is defined as one Assembler examination of the source code. 

7. Two or three passes are required to complete an assembly, depending on the 
assembly output selected and the number of devices available for the output. 

Chapter 5 

1. Method of loading programs, simplified input/output, debugging aids. 

2. The Basic Binary Loader, which loads absolute programs, and the Relocating 
Loader, which loads relocatable programs. 

3. The Relocating Loader. 

4. Data which is loaded is intended to be executed; data which is read or written 
is to be acted upon. 

5. "Debugging" is a term used to mean program error detection and correction. 

A-2 



Chapter 6 

1. Analysis 

2. <> 

$z.oo ON o.s. TOWIN 
AND $2 .00 ON 

SHOTGUN TO PLACE 

STAY ANO 
BET AGAIN 

represents a decision 

PUr$4.00 ON 
ORPHAN SANDY 

TO WIN 

YES 

NO 

A-3 



Chapter 6 (Cont'd) 

4. I INITIALIZE 
I COUNTERS 

SET NEG= 0 
POS = 0 ADD 1 TD POS 

ZERO= 0 

YES PRINT POS. 

NEG., ZERO 

Chapter 7 

1. Label, Op Code, Operand, Comments 

2. 5 characters 

3. 1 - 9, A - Z, and the period (.). 

4. Leave character position one blank. 

5. Asterisk in character position 1 followed by remarks. 

6. (c), (e), (f) 

7. CR LF carriage return and line feed. 

8. (a) 32, 76710 or 177777 8; (b) 102410 or 1777 8; (c) 6410 or 77 8 

9. B 

10. Permits reference to the value of the program location counter at the time the 
statement is encountered. 

11. (a), (c), (e), (h) 

A-4 



Chapter 8 

1. When the contents of A and the contents of the specified address are not equal. 

2. When the contents of the specified address plus one is equal to zero. 

3. 1308 

4. 408 

5. TAG+49 

6. Four shift-rotate instructions may be combined; eight alter-skip instructions 
may be combined. 

7. (a) Instructions for A- and B-register are combined. 

(b) Shift-rotate and alter-skip instructions are combined. 

(c) Instructions are out of order. 

(d) Comma separating instructions omitted. 

8. NOP 

9. STF 0 

10. The executing program is interrupted and control is transferred to the interrupt 
location for the channel causing the interrupt. 

11. (c) a character 

12. STC, CLC 

13. 0037708 

The answers to the coding problems, shown below, represent one possible solution 
for a problem. There may be other solutions, equally valid. 

14. LDA CAT 
ADA DOG 
STA SUM 

15. LDA y 
ADA z 
CPA Q 
JMP UNEQ 
ADA w 
STA Rl 
JMP STOP 

UNEQ ADA w 
ADA Q 
STA R2 
JMP STOP 

A-5 



Chapter 8 (Cont'd) 

16. MASK = 00010508 

LDA TEST 
AND MASK 
CPA MASK 
JMP ON 
JUM OFF 

17. LDA Y 
CMA, INA 
LDB X 
ADB ~~~~~ 
SLB, RSS 
JSB ODD 

Chapter 9 

1. (b), (d), (e), and (f) are invalid 

ODD NOP 
SSB, RSS 
JMP ODD, I 
CMB, INB 
JMP ODD, I 

2. If used as the first statement in the program or if the operand field contains an 
absolute expression. 

3. It provides the loader with the starting address of the object program to which 
the loader transfers control. 

4. (b) should be loaded first because the maximum size of the common area is 
determined by the COM statement which is loaded first. 

5. In PROGA, the pseudo EXT CAT must be specified. 
In PROGB, the pseudo ENT CAT must be specified. 

6. DEF 

7. 56 characters 

The following answers represent one possible solution to the problem. There may be 
other equally valid solutions. 

A-6 



Chapter 9 ~Cont'd) 

8. POSNG NOP 
LOOP LDA POSA, I 

XOR MASK 
STA NEGA,I 
ISZ NEGA,I 
ISZ POSA 
ISZ NEGA 
ISZ COUNT 
JMP LOOP 
JMP POSNG,I 

POSA DEF POS 
NEGA DEF NEG 
COUNT DEC -25 
MASK OCT 177777 

COM POS (25) 
NEG BSS 25 

9. REV NOP 
LOOP LDA TABA,I 

STA TAGA,I 
ISZ TABA 
LDA TAGA 
ADA DECRM 
STA TAGA 
ISZ COUNT 
JMP LOOP 
JMP REV,I 

TABA DEF TAB 
TAGA DEF TAG+49 
DECRM DEC -1 

COM TAB (50) 
TAG BSS 50 

Chapter 10 

1. .IOC 

2. EXT 

3. drivers 

4. equipment table 

5. Clear 

A-7 



Chapter 10 (Cont'd) 

6. JSB .IOC. 
OCT 010010 
JMP ERROR 
DEF BUFA 
OCT 12 

EXT . IOC. 
BUFA BSS 10 

7. ERROR SSB 
JMP DVB US 
JSB . IOC. 
OCT 020002 
JMP HALT 
DEF Dl 
DEC 6 
JMP HALT 

DVB US JSB . IOC. 
OCT 020002 
JMP HALT 
DEF D2 
DEC 5 

HALT JSB .IOC. 
OCT 040002 
SSA 
JMP *-3 
HLT 

Dl ASC 6, ILL FN ON TR 
D2 ASC 5, TR DV BSY 

EXT . IOC. 
ENT ERROR 

A-8 



ASCII CHARACTER FORMAT 

b1 0 0 0 0 I I I I -
bs 0 0 I I 0 0 I I 

bs 0 I 0 I 0 I 0 I 

b4 

j b3 

1 
bz 

i ~I 
0 0 0 0 NULL DCo t> 0 (ii) p 

- - -1-0 0 0 I SOM oc, ! l A Q -- -
0 0 I 0 EOA DC2 II 2 B R __ u_ 
0 0 I I EOM · DC3 # 3 c s N 

EOT '1~.fo1.1 
- -- --A-

0 I 0 0 $ 4 D T -U- __ 5_ 

0 I 0 I WRU ERR O/o 5 E u N s 
0 I I 0 RU SYNC a 6 F v -A--1 --,-

-S- --G -
0 I I I BELL LEM I 7 G w s N (APOS) - ,- --E-
I 0 0 0 FEo So ( 8 H x 

~ 
-G- - -D-

I 0 0 I S1 ) 9 I y 
-~--< - - -

I 0 I 0 LF S2 'It' : J z 
-D- -- -

I 0 I I VrAB S3 + ; K c:. - -~ 
I I 0 0 FF S4 !COMMA < L \ ACK - -~ I I 0 I CR S5 - = M ] - t-=---1 
I I I 0 so Ss > N t ESC - - toEL1 I I I I SI 57 I ? 0 ... 

Standard 7-bit set code positional order and notation are shown below with bT the high-order 
and b, the low-order, bit position. 

EXAMPLE: The code for "R" is: 

LEGEND 

NULL Null/Idle DC,-DC3 Device Control 
SOM Start of message DC4(Stop} Device control (stop} 
EOA End of address ERR Error 
EOM End of message SYNC Synchronous id le 
EOT End of transmission LEM Logical end of media 
WRU "Who are you?" So-S1 Separator (information} 
RU "Are you ... ?" 

ti 
Word separator (space, norma 11 y 

BELL Audible signal non-printing} 

FEo Format effector < Less than 

HT Horizontal tabulation > Greater than 

SK Skip (punched card) + Up arrow (Exponentiation} 

LF Line feed ,._ Left arrow (Implies/Replaced by) 

YrAe Vertical tabulation \ Reverse slant 

FF Form feed ACK Acknowledge 

CR Carriage return <D Unassigned control 

so Shift out ESC Escape 

SI Shift in DEL Delete/Idle 

DCo Device control reserved for 
data I ink escape 

B 

B-1 





BINARY CODED DECIMAL FORMAT c 

Kennedy 1406/1506 ASCII-BCD Conversion 

Symbol 
BCD ASCII Equivalent 

Symbol 
BCD ASCII Equivalent 

(octal code) (octal code) (octal code) (octa I code) 

(Space) 2% %4% A 61 lfJl 
! 52 %41 B 62 1%2 
# 13 fJ43 c 63 1%3 
$ 53 %44 D 64 1%4 
% 34 fJ45 E 65 lfJ5 
& 6fJ fJ46 F 66 lfJ6 
I 14 %47 G 67 1,07 
( 34 fJ50 H 7% 11% 
) 74 %51 I 71 111 
* 54 fJ52 J 41 112 
+ 6% fJ53 K 42 113 
I 33 %54 L 43 114 
- 4% fJ55 M 44 115 
. 73 %56 N 45 116 
I 21 fJ57 0 46 117 

p 47 12% 
% 12 %6% Q 50 121 
l 9'l fJ61 R 51 122 
2 92 %62 s 22 123 
3 P-3 %63 T 23 124 
4 fi4 %64 u 24 125 
5 P'S fJ65 v 25 126 
6 fJ6 fJ66 w 26 127 
7 ,07 fJ67 x 27 13,0' 
8 1% ,0'7,0' y 30 131 
9 11 ,071 z 31 132 

: 15 ,0'72 [ 75 133 
; 56 ,073 \ 36 134 
< 76 ,074 ] 55 135 
= 13 ,0'75 
> 16 fJ76 
? 72 ,077 
@ 14 1%% 

Other symbols which may be represented in ASCII are converted to spaces in BCD (20) 

C-1 



Symbol 

(Space) 
I . 
IT 

# 
$ 
% 
& 
I 

( 
) 

* 
+ 

' -
. 
I 

,0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

' 
< 
= 
> 
? 
@ 

C-2 

HP 2020A/B ASCII - BCD Conversion 

ASCII BCD Symbol ASCII BCD 
(Octal code) (Octal code) (Octal code) (Octal code) 

4,0 2,0 A 1,01 61 
41 52 B 1,02 62 
42 37 c 1,03 63 
43 13 D 1,04 64 
44 53 E 1,05 65 
45 34 F 1,06 66 
46 60t G 1,07 67 
47 36 H 11,0 70 
5,0 75 I 111 71 
51 55 ' J 112 41 
52 54 K 113 42 
53 6,0 L 114 43 
54 33 M 115 44 
55 4,0 N 116 45 
56 73 0 117 46 
57 21 p 12,0 47 

Q 121 50 

6,0 12 R 122 51 

61 ,01 s 123 22 

62 ,02 T 124 23 

63 ,03 u 125 24 

64 ,04 v 126 25 

65 ,05 w 127 26 

66 ,06 x 13,0 27 

67 ,07 
y 131 30 

7,0 1,0 z 132 31 

71 11 
[ 133 75 t 

72 15 J 135 55 t 
73 56 i 136 77 

137 32 74 76 ..... 

75 35 
76 16 
77 72 

1,0,0 14 

t BCD code of 60 always converted to ASCII code 53 ( +). 

t BCD code of 75 always converted to ASCII code 50 ( () and 

BCD code of 55 always converted to ASCII code 51 () ). 



HP 2752A 

TELEPRINTER 

INPUT/OUTPUT DEVICES D 

The following list contains HP devices which may be connected 
to the HP 2116 , the size and format of the element transferred, 
and sample input/output subroutines which transfer one or more 
elements of data, assuming interrupt system disabled. 

The teleprinter transfers an 11-bit element; bits are trans­
mitted in serial fashion, one bit about every 9. 1 msec. Each 
bit is transferred into bit 7 of the A- or B-register, and out 
from bit 0 of the A- or B-register. The flag bit is set after 
transmission of each bit. The format of an element is as fol­
lows: 

1 1 y x x x x x x x 0 

l l llll!llll 
bl 1b10b9b8b7b6b5b4b3b2b1 

where the l's and 0 are control 
· characte.rs meaningful to the de­
vice and x's are the binary rep­
resentation of an ASCII charac­
ter. The bits are transferred 
in order from b1 to b11 . 

Sample coding, input: 

READ NOP 

A 

LDA Kl Set counter to -11. 
STA CTR 
CLA Clear the A-register. 
STC TELIN, C Enables element transfer (sets 

RAR 
SFS 
JMP 

13B 
*-1 

control bit) t. 
Rotate A right one bit. 
Is transfer of one bit completed? 
No--keep testing. 

t The HP 2752A will actually begin to input a character when 
(1) a key is punched (2) tape is placed in HP 2752A punched 
tape reader and switch is moved to START position. The flag 
will not be set until either of the former actions takes place 
and the transfer of one element is completed. 

D-1 



D-2 

MIA TE LIN, C Yes--place bit in A-register, 

ISZ CTR 

JMP A 
RAL,RAL 
AND B 

STA CHAR 
CLC TE LIN 
JMP READ,I 

CTR BSS 1 
Kl OCT 177765 
B OCT 000177 

COM CHAR 
TE LIN EQU 13B 

Sample coding, output: 

TYPE 

D 

NOP 
LDA 
STA 
LDA 

ALS 

IOR 
STC 

SFS 
JMP 
OTA 

Kl 
CTR 
CHAR 

c 
TLOUTt 

TLOUT 
D 
TLOUT,C 

clear flag so that test for com­
pletion of transfer of next bit is 
valid. 

Have all 11 bits been trans­
ferred? 

No--return for next bit. 
Yes--rotate A left two bits. 
Mask out control bits and 8th 
character bit. 

Store the element. 
Turn off the device. 
Exit from the routine. 

Set counter to -11. 

Load A-register with ASCII 
character to be output. 

Shift left one bit (get 0 control 
bit). 
Add two 1-bits as control bits. 
Enables data output (sets control 
bit). 

Is transfer of one bit completed? 
No--keep testing. 
Yes--output next bit and clear 
flag so that test for completion 
of transfer of next bit from buf­
fer to device is valid. 

t Note that, C is not specified for the STC. The flag bit will be 
set at the time this instruction is executed--the flag bit is set 
automatically when the device is turned on-line, and the rou­
tine leaves the flag set when it exits. Thus, the fir st time the 
loop from D to the ISZ is executed, control will pass to the 
OTA. Otherwise, if C were specified and the flag cleared, 
the two instructions beginning at D would be executed indefi­
nitely. 



HP 2754A 

TELEPRINTER 

HP 2737A 

PUNCHED TAPE 

READER 

RAR 
ISZ 

JMP 
CLC 
JMP 

C OCT 
COM 

TLOUT EQU 

CTR 

D 
TLOUT 
TYPE, I 

003000 
CHAR 
12B 

Position next bit for transfer. 
Have all 11 bits been trans­
ferred? 
No--transfer next bit. 
Yes--turn off device. 
Exit from subroutine. 

Same as HP 2752A Teleprinter, above. 

The punched tape reader transfers an 8-bit element to bits 7-0 
of the A- or B-register. The format is as follows: 

Paper tape track 1--. bit 0 

Paper tape track 2 ----. bit 1 

Paper tape track s---. bit 7 

The binary representation of an ASCII character is transferred 
to bits 6-0; the eighth track, going to bit 7, is always zero. 

Sample coding (assume select code 108): 

READ NOP 
STC 
SFS 
JMP 
LIA 

STA 
CLC 
JMP 
COM 

PTRD,C 
PTRD 
*-1 
PTRD 

CHAR 
PTRD 
READ, I 
CHAR 

Set control bit, clear flag. 
Transfer of element complete? 
No--keep testing. 
Yes--place the element in the 
A-register. 

Store the element. 
Turn off the device. 
Exit from the routine. 

D-3 



HP 27371 

PUNCHED TAPE 

REA DER-SPOOLER I/O is the same as for the HP 2737APunched Tape Reader, above. 

HP 2753A 

TAPE PUNCH 

HP 2401C AND 

HP 3460A 

DIGITAL 

VOLTMETERS 

D-4 

The tape punch transfers an 8-bit element from bits 7-0 of the 
A- or B-register. The format is as follows: 

\ 

bit 0---+Paper tape track 1 

bit 1---+ Paper tape track 2 

bit 7----+ Paper tape track 8 

The binary representation of an ASCII character is transferred 
from bits 6-0; bit 7, going to the eighth track, is always zero. 

Sample coding: 

WRITE NOP 
LDA CHAR Load A with element to be output. 
OTA TPNCH Transfer element to channel buf-

fer and clear flag. 
STC TPNCH Output element to device. 
SFS TPNCH Is transfer from buff er to de-

vice complete? 
JMP *-1 No--keep testing. 
CLC TPNCH Yes--turn off device. 
JMP WRITE, I Exit from routine. 
COM CHAR 

TPNCH EQU llB 

The HP 2401 C and 3460A Integrating Digital Voltmeters provide 
data through the Digital Voltmeter Data Interface. Data is re­
quested by the user's program through the Digital Voltmeter 
Programmer and the Crossbar Scanner Programmer. 



Digital Voltmeter Programmer 

Data is output to the Digital Voltmeter Programmer as an 8-bit 
element from bits 7-0 of the A- or B-register. 

The element, in effect, tells the voltmeter the sample period, 
the type of reading to be taken, and the range. The format is 
as follows: 

b7 b5 b5 b4 b3 b2 bl bo Provides 

0 0 0 Autorange 

0 0 1 + 10 Gain, 2411A 

0 1 0 O. lV Range 

0 1 1 lV Range 

1 0 0 lOV Range 

1 0 1 lOOV Range 

1 1 0 lOOOV Range 

1 1 1 10 Megohm Range 

0 0 0 AC Normal 

0 0 1 AC Fast 

0 1 0 Frequency 

0 1 1 Period 

1 0 0 DC Volts 

1 0 1 Ohms 

0 0 1 Sec. Sample Period 

0 1 0. 1 Sec. Sample Period 

1 0 0. 01 Sec. Sample Period 

Crossbar Scanner Programmer 

An STC for the Crossbar Scanner Programmer initiates a read­
ing on the voltmeter.t Information may be transferred to the 
Crossbar Scanner Programmer with OTA/OTB, giving informa­
tion as to the type of reading to be taken, without providing an 
STC. 

A sixteen-bit element is output to the Crossbar Scanner Pro­
grammer; however, not all the bits are significant. When the 

t An STC causes the channel to be selected which in turn sends 
an encode after the channel is reached. 

D-5 



D-6 

flag bit is set to zero, the element supplies a delay time and 
type of measurement: 

15 4 3 2 0 

~oltldelayl 

o = f = o Signifies volts measurement 

o = 1 Signifies ohms measurement 

f = 1 Signifies frequency measurement 

delay Signifies delay before measurement 

value delay 

000 15 msec. 
001 17.5 msec. 
010 22 msec. 
011 27 msec. 
100 42 msec. 
101 62 msec. 
110 145 msec. 
111 500 msec. 

When the flag bit is set to 1, the element supplies 3 digit 
BCD identification of which channel is to be read from the 
2911A (Crossbar Scanner). The channel is automatically 
incremented by each successive STC instruction for the 
Crossbar Scanner Programmer after the first STC. 

15 12 I.I 8 7 4 3 0 

m102 I IOI I 100 I 

Digital Voltmeter Data Interface 

The Digital Voltmeter Data Interface provides the reading from 
the HP 2401C or 3460AintegratingDigital Voltmeter in the form 
of a 32-bit element: 

15 12 II 8 7 4 3 0 

First word: I range !function I 105 I 104 I 
15 12 II 8 7 4 3 0 

Second word: I 103. I 102 I 10 1 I IOO I 



range 

function 

decimal 10-n multiplier 

the type of reading: 

Function 8-4-2-1 Code 
Period 0 0 0 0 
+Vdc 0 0 0 1 
-Vdc 0 0 1 0 
kHz 0 0 1 1 
k 0 1 0 0 
m 0101 
Overload 1 0 0 1 
Vac 1 0 1 1 
A six BCD digit value 

Sample coding--reading 200 inputs on the HP 2401C: 

RDVLT NOP 

LOOP 

LDA 

OTA 

LDA 

LDB 

CLF 
OTA 
STF 

OTB 
STC 

STC 

SFS 
JMP 
LIB 
LIA 
DST 
ISZ 
ISZ 
ISZ 
JMP 
CLC 

RDNG 

DVMPR 

DELAY 

INP 

SCANR 
SCANR 
SCANR 

RCANR 
DVMDI,C 

SCANR 

DVMDI 
*-1 
DVMDI 
DVMDI 
VPLC,I 
VPLC 
VPLC 
CNTR 
LOOP 
DVMDI 

Load A with data for Digital 
Voltmeter Programmer. 
Set up voltmeter to take reading 
of DC volts. 
Load A with ohms/frequency/ 
delay indicator; a delay of 27 
msec, volts to be measured. 
Load B with channel identifica­
tion for first measurement. 
Clear flag and output ohms/fre­
quency /delay indicator. 
Set flag to enable output of chan­
nel identification. 
Output the channel identification. 
Ready the Data Interface, clear 
flag so it will indicate when read­
ing has been taken. 
Set control bit; initiate the mea­
surement. The channel identi­
fication is automatically incre­
mented at each successive STC. 
Has reading been ta.ken? 
No--keep testing. 
Yes--load B with first word. 
Load A with second word. 
Store the reading. 

Modify storage address. 

All 200 readings been ta.ken? 
No--return for next input. 
Yes--turn off data interface de-
vice. 

JMP RDVLT, I Exit from routine. 

D-7 



KENNEDY 1406 

AND 1506 

INCREMENTAL 

TAPE 

TRANSPORTS 

D-8 

CNTR 
DVMPR 
SCANR 
DVMDI 
RDNG 
DELAY 
INP 
VLPC 

DEC -200 
EQU 17B 
EQU 20B 
EQU 21B 
OCT 144 
OCT 3 
OCT 1 
DEF VSTOR 
COM VSTOR (400) 

The Kennedy 1406and1506 Incremental Tape Transports record 
BCD data at 200 bpi at a recording speed of 0 to 400 characters 
per second. 

The following commands are available: 

Octal Value 
Bits 15-14 

0 
1 
2 
3 

Command 

Write (step) 
Write file gap 
Write record gap 
Write file gap 

A data character is transferred from bits 5-0 of the A- or B­
register. 

Status bits may be transferred from the buffer to bits 6, 5, 3 
and 1 of the A- or B-register. They are as follows: 

b0 busy 

b3 broken tape 

b5 end-of-tape 

This bit is one when the unit is 
busy. When zero, the unit is 
ready to accept a command. 

There is no tape on the write 
head. This bit is zero when the 
tape is rethreaded. 

This. bit is set to one when the 
end-of-tape reflective marker 
is sensed. It remains set until 
the tape is rewound (manual 
control). 



b6 load point 

Sample coding: 

The start-of-tape marker has 
been sensed. This bit is set 
only when this marker is oppo­
site the photosensor. 

The following are samples for writing two characters on tape, 
writing a record gap and a file gap on tape, and for testing 
status. The unit is on channel 21. 

a. Write (step): 

b. 

c. 

WRIT! 

WRIT2 

INCTP 
CHAR 

LDA 
OTA 
STC 
SFS 
JMP 
LDA 
OTA 
STC 

EQU 
OCT 
OCT 

Write record gap: 

WRTRG CLA 
CCE 
ERA 
OTA 
STC 

INCTP EQU 

Write file gap: 

WRTFG CLA 
CCE 

CHAR 
INCTP 
INCTP,C 
INCTP 
*-1 
CHAR+! 
INCTP 
INCTP,C 

21B 
7~ 
47 

INCTP 
INCTP,C 

21B 

ERA, ERA 
OTA INCTP 
STC INCTP,C 

INCTP EQU 21B 

Load character with zero com­
mand bits in A-register, output 
A to buffer. Set control bit, 
clear flag bit. Test if charac­
ter written; then write second 
character. 

BCD characters: HP. Bits 15 
and 16 of each are zeros (write 
command). 

Clear A-register 
Set E-register to one 
Rotate 1-bit into bit 15 of A 
(creating write record gap com-
mand). Output command to buf-
fer, set control bit, and clear 
flag. 

Clear A-register 
Set E-register to one 
Rotate 1-bits into bits 15 and 14 
of A (creating write file gap 
command). Output command to 
buffer, set contrdlbit, and clear 
flag. 

D-9 



HP 2020A/B 

MAGNETIC 

TAPE UNIT 

D-10 

d. Test status: 

CKST LIA INCTP 
SZA,RSS 
JMP (cont.) 
SLA,RSS 
JMP (cont.) 
RAR,RAR 
RAR 
SLA,RSS 
JMP (cont.) 
RAR,RAR 
SLA,RSS 
JMP (cont.) 

Load status bits into A-register. 
Any bits set? 

Bit 0 = 1? 

Bit 3 = 1? 

Bit 5 = 1? 

The HP 2020A/B Magnetic Tape Unit is operated through two 
channels, a command channel and a data channel. Requests and 
status information are relayed through the command channel; 
data is transferred through the data channel. 

Command Channel 

A request element is transferred from bits 7 -0 of the A- or 
B-register: 

Octal Value 
Bits 7-0 

071 
031 
015 
063 
023 
003 
101 
201 
241 
300 

Command 

Write record, odd parity (Binary) 
Write record, even parity (BCD) 
Write end-of-file gap 
Read record, odd parity (Binary) 
Read record, even parity (BCD) 
Forward space record 
Backspace record 
Rewind 
Rewind and unload 
Clear 

The flag bit is set on the command channel when any tape mo­
tion operation is completed. 



A status element is transferred from the command channel to 
bits 7-0 of the A- or B-register: 

15 8 7 6 5 4 3 2 I 0 

~balb1lb6lb5lb4lb3lb2lb1 lbol 
bo busy 

b1 parity error 

b2 write not 
enabled 

b3 reject 

This bit is one when the tape is 
in motion or the transport is in 
local status. When zero, the 
tape unit is ready to accept a 
command. 

This bit is set to one if a verti­
cal or longitudinal parity error 
occurs during a read or write 
operation. Parity is not checked 
on forward space record and 
backspace record operations. 

This bit is one when either the 
tape reel does not have a write 
enable ring or the tape unit is 
rewinding. 

A command will be rejected (ig­
nored) and this bit set if: 

(1) Tape motion is required and 
the unit is busy. 

(2) Backward tape motion is re­
quired and the tape is at load 
point. If a rewind and unload 
command is given while the 
tape is at load point, the com­
mand will be ignored but the 
reject bit will not be set. 

(3) A write command is given 
and the tape reel does not 
have a write enable ring. 

This bit is set if the data chan­
nel flag has not been cleared or 
the interrupt request not ac­
knowledged between data inter­
rupt requests while reading or 
writing. 

D-11 



D-12 

b5 end-of-tape 

b6 start-of-tape 

b7 end-of-file 

b8 local 

This bit is set when the end-of­
tape reflective marker is sensed 
while the tape is moving for­
ward. It remains set until a re­
wind command is given. 

This bit is one when the start of 
tape marker is under the photo 
sense head. 

This bit is set toonewhenapne­
character tape mark (17 8) re­
cord is detected while reading, 
forward spacing or backspacing. 

The device is in local status. 

The parity error, reject, timing, and end-of-file bits are re­
set when a command resulting in tape motion is accepted. The 
busy and start-of-tape bits are reset when the condition is no 
longer true. 

Data Channel 

Data is transferred between the data channel and bits 5-0 of the 
A- or B-register as a 6-bit element. Parity is generated (out­
put) or checked (input) as requested by the command channel 
element. 

The flag bit is set on the data channel when one character has 
been transferred between the data channel buff er and the tape 
device. Clearing the control bit on a write even or odd parity 
operation causes an end-of-record gap to be generated. 

Sample coding, input one record: 

RDTAP NOP 
LIA 
SLA 
JMP 
CLF 

LDA 
NEXT OTA 

SFC 
JMP 
SFS 
JMP 

cc 

*-2 
DC 

RRE 
cc,c 
cc 
x 
DC 
*-3 

Load status element. 
Test busy bit--unit busy? 
Yes--keep testing. 
Clear flag on data channel so 
test for completion of transfer 
of element is valid. 
Set command--read even parity. 
Output command, clear flag so 
test for completion of transfer 
of record is valid. 
One element transferred? 
No--keep testing. 

I 



LIA DC,C Yes, load character, clear flag 
so test for completion of transfer 
of the record is valid. 

STA BUF,I Store element. 
ISZ BUF Modify storage address. 

Has complete record been read? 
JMP NEXT No--go back for next element. 

x JSB SCHEK Yes--transfer control to rou-
tine to check status word for 
parity errors, etc. 

JMP RDTAP,I Exit from routine. 
cc EQU 15B 
DC EQU 16B 
RRE OCT 23 
BUF DEF BUFR 

COM BUFR(50) The programmer should be 
aware of the size of the records 
being read so that an adequate 
input buffer area can be pro-
vided. 

D.,.13 





ASCII 

RECORDS 

(PAPER TAPE) 

1/0 RECORD FORMATS E 

An ASCII record is a group of characters terminate~ an end­
of-record mark, consisting of a carriage return, ~ , and a 
line feed, @ . 
For an input operation, the length of the record transmitted to 
the buffer is the number of characters or words designated in 
the request, or less if an end-of-record mark is encountered 
before the character or word count is exhausted. The codes 
for tCm and lL'F\ are not transmitted to the buff er. An end­
of-re~d mark)Jfeceding the first data character is ignored. 

For an output operation, the length of the record is determined 
by the number of characters or words designated in the request. 
An end-of-record mark is supplied at the end of each output re­
cord by the input/output system. 

If the last character of an output record is~, however, the end­
of-record mark is omitted. This allows control of Teleprinter 
line spacing. The user may write a message (the~is not 
printed) and expect the reply to be ty~ on the same line. The 
reply must be terminated with the ~ @ . 
If, a (RUB oui) codet followed by a @ @ is en­
countered on inpuf from the Teleprinter or Pun~ed Tape Reader, 
the current record is ignored (deleted) and the next record trans­
mitted. 

If less than ten feed frames {all zeros) are encountered before 
the first data character from the Punched Tape Reader, they 
are ignored. Ten feed frames are interpreted as an end-of­
tape condition. 

t @ua OUT) which appears on the Cele")inter keyboard is 
synonymous with the ASCII symbol, DEL . 

E-1 



BINARY 

RECORDS 

(PAPER TAPE) 

BINARY 

RECORDS 

(MAGNETIC 

TAPE) 

E-2 

A binary record is transmitted exactly as it appears in mem­
ory or on an 8-level paper tape. The record length is deter­
mined by the number of characters or words in the buffer, as 
designated in the request. 

Binary input records may be specified as variable in length. 
The first word of the record contains a number in bits 15-8 
specifying the length of the record in words, including the first 
word. The entire record, including the word count, is trans­
mitted to the buffer. If the actual length exceeds the size of the 
buffer, only the number of words equivalent to the buffer length 
is transmitted. 

On input operations, less than ten feed frames preceding the 
first data character are ignored. Ten feed frames are inter­
preted as an end-of-tape condition. On output, the system 
writes four feed frames to serve as a physical record separator. 

A binary record on magnetic tape is a group of 6-level tape 
"characters" recorded in odd parity and terminated by a record 
gap. t The record length is determined by the number of char­
acters or words in the buffer as designated in the request. 

Each computer word is translated into three tape "characters" 
(and vice versa) as follows: 

15 1110 6 5 0 

l v l ___ v_;._____Y_J 
2nd TAPE CHAR. 

i.-~~~~~~~~~-L..L...I.~ 

3rd TAPE CHAR. 

t Odd parity: a seventh bit is recorded on tape if the total of the 
bits in the six levels is an even number. 
Even parity: a seventh bit is recorded on tape if the total of 
the bits in the six levels is an odd number. 



BINARY 

CODED 

DECIMAL 

RECORDS 

For output operations on the HP 2020, the minimum buffer 
length is three computer words. If less are specified, 
zeros are supplied to fill a three word record. 

A BCD record on magnetic tape is a group of BCD characters 
recorded in even parity and terminated by a record gap. (See 
Appendix C for BCD character set.) A request to write a BCD 
record results in the translation of each 7-level ASCII charac­
ter in the buff er area into a 6-level BCD character on magnetic 
tape. The translation process does not alter the original con­
tents of the buff er. A request to read a BCD record results in 
the translation of each BCD character into an ASCII character 
after the block has been read. 

The length of the record is determined by the number of 
characters or words designated in the request. A record 
gap is supplied at the end of each record by the input/ output 
system. For an Incremental Magnetic Tape operations, 
the record gap is omitted if the last character in the buffer 
is a - ; the .... is not written on tape. 

A WRITE request for the Incremental Magnetic Tape speci­
fying a buffer length of zero causes a record gap only to 
be written. 

For the HP 2020 Magnetic Tape Unit, the maximum record 
length is 120 tape characters or 120 ASCII characters. If a 
buffer is specified greater then 120 characters, the first 120 
are transmitted and the remaining characters are skipped. For 
output operations, the minimum buffer length is 7 characters. 
If less are specified, spaces are supplied to fill to 7 characters. 

E-3 



INPUT /OUTPUT 

FORMATS FOR 

INSTRUMENT 

REQUESTS 

E-4 

Use of the Data Source Interface driver subroutine requires 
the specification of a "dummy" buffer for an binary output 
(removal of ''hold-off") operation and either a two-or-eight­
word buffer for an input operation. If a Read Binary operation 
is requested, the 32 bits (8 BCD digits) of information are 
read directly into the two-word buffer. t If a Read ASCII 
operation is performed, the 8 BCD digits are converted into 
16 ASCII characters in the following format: 

r f d5 d4 d3 d2 d1 d0 E - s s A A g g 

r range - a negative power of 10 

f function t 
d5-d0 six digit data value 

E-ss range expressed as an exponent of two digits 

A A two blanks 

gg function expressed as a two-digit number 

Example: 

lai>el Operation 

1 5 lO 
OF"' rend 

'5 

DSIOT JSB .roe. 
0 CT 2 0 1 1 5 
J MP RE J EK 
OCT 0 
OCT 0 

DSIIN JSB .roe. 
OCT 10015 

DEF BFDSI 
DEC -16 
J MP ••• 

BFDSI SSS 8 

t See Appendix D 

Comments 
40 45 

REMOVE DVM 1 "HOLD-OFF1 "~ DVM ON 
CHANNEL 15 
DUMMY 
BU FIFER 
NORMAL RETURN ' 

READ AND CONVERT TO ASCII 
LOOP UNTIL DATA READY 
SIXTEEN CHARACTER 
BUFFER 
NORMAL RETURN 



I 

DV 

BF 

When a Write request is made for Digital Voltmeter 
Programmer, a one-word buffer must be specified. This 
word contains the voltmeter program: sample period (bits 
7-6), function (bits 5-3), and range (bits 2-0). t If bit 15 
contains a 1, an encode command is sent to the Voltmeter 
(always 0 if the configuration includes a Scanner). 

Example: 

Label Operation Operand Comments 
5 10 15 20 25 30 35 '° " 50 . I 

I . I 
I . I 
I 

MOT JSB •I oc. I 
I 

OCT 20 1 1 3 PR OG RAM DVM CH AN NEL 1 3 I 
I 

J~P RE J EK I 
I 

DEF BFVL T ON E - WO RD BU FF ER SP EC IF IED I 
I 

OCT 1 I 
I . NO RM AL RE TU RN I 
I . I i I 

I I . I 
I 

VLT OCT 1 0 02 44 1 : EN co DE DV M, 2= • 01 SEC SA MP LE I 
I 

-+ . PE RI OD ,4 =DC VO LT s I 4= 1 0 VO LT l I 
I . RA NGE I 
I . I 
I 
I 

t See Appendix D 

E-5 



I 

SC 

BF 

E-6 

When a Scanner Programmer output operation is performed, 
the system requires a two-word buffer. The first word 
contains the scanner program: the function (bits 4-3) and 
the delay (bits 2-0). t The second word contains the channel 
number for the start of the scan. The driver subroutine 
converts the binary channel number value produced by the 
Assembler to the BCD format required by the device. 

Example: 

Lobol Operation Operand Comment< 
5 10 15 20 25 "' 35 " " 50 . . . 

NOT JSB • I oc .. 
OCT 20 1 1 4 SE ND PR OG RAM AND CH AN NEL TO 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

JMP RE JEK SC AN NER ON CH AN NEL 1 4 li 
DEF BF SCN I +: 
DEC 2 i I 

i I 

J MP l I ... I 

SCN IQ.CT 03 O= VO LT s. 3: 27 MS•EC DE LAY l 
j I 
' I 

DEC 100 ST ART CH AN NEL 100 T: . I l I 
I . i i I I 

I I . I 
I 

t See Appendix D 



CONSOLIDATED CODING SHEET F 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

D/l AND 001 0 Z/C Memory Address 
D/I XOR 010 0 Z/C 
D/I IOR 011 0 Z/C 
D/I JSB 001 1 Z/C 
D/I JMP 010 1 Z/C 
D/I ISZ 011 1 Z/C 
D/I AD* 100 A/B Z/C 
D/I CP* 101 A/B Z/C 
D/I LD* 110 A/B Z/C 
D/I ST* 111 A/B Z/C 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 SRG 000 A/B 0 D/E *LS 000 l CLE D/E SL* *LS 000 
*RS 001 *RS 001 
R*L 010 R*L 010 
R*R 011 R*R 011 
*LR 100 *LR 100 
ER* 101 ER* 101 
EL* 11(, EL* 110 
*LF 111 *LF 111 

NOP 000 000 000 000 

15 14 13 12 11 10 !) 8 7 6 5 4 3 2 1 0 

0 ASG oou A/B 1 CL* 01 CLE 01 SEZ SS* SL* IN* SZ* RSS 
CM* 10 CME 10 
CC* 11 CCE 11 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

l 

I 
IOG 000 A/B 1 H/C HLT 01,)0 T .. Select Code 

1 0 STF 001 ! 

I 

1 1 CLF 001 i 
1 0 SFC LJ~{) I 

I I 
1 0 SFS '.?11 I 

I 1 H/C MI* 100 I 

I 
I 

1 H/C LI* 101 I 

1 H/C OT* 110 
0 1 H/C STC 111 
1 1 H/C CLC 111 

1 0 STO 001 000 001 

I 
1 1 CLO 001 000 001 
1 H/C soc 010 000 001 
1 H/C sos 011 000 001 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 EAU 000 I MPY** 000 010 000 000 
DIV** 000 100 

I 
000 000 

OLD** 100 010 000 000 I DST*"' 100 HlO 000 000 
ASR 001 000 0 1 
ASL 000 000 0 1 number LSR 001 000 1 0 
LSL 000 000 1 0 

cj -RRR 001 001 0 0. bits 
RRL 000 001 0 0 

Notes: *~A or 8. 
D/I, A/B, Z/C, D/E, H/C coded: 0/1. 
**Second word is Memory Address. 

F-1 





ABS 7-7, 7-5, 9-16 
Absolute 

Assembly 4- 5 
Expression 7-3, 7-6 
Operand 7-3 
Programs 4-3, 5-1, 7-5, 9-3, 11-1 
Terms 7-4, 7-6 
Value 7-5 

Accumulator 2- 2 
ADA 7-8, 8-2 
ADB 7-8, 8-2 
Address, Instruction 3-10 
Address modification 9-15, 9-16 
Addressable locations 3-2 
ALF 8-11 
ALR 8-10 
ALS 8-9 
Alter-Skip Instructions 8-12 
AND 7-8, 8-3 
Arithmetic operators 7-3 
Arithmetic subroutines 4-1, 9-25 
ARS 8-10 
ASC 7-4, 9-19 
ASCII 7-8, 9-19, 10-1, 10-3, 10-13, E-1 
ASL 8-25 
ASMB 11-1 
ASR 8-24 
Assembler viii, 4-1, 5-1, 7-1 
Assembler control instructions 9-2 
Assembly listing 11-2 
Asterisk 7-1, 7-3, 7-5, 7-6 
Availability, device 10-11 

Backspace 10-7 
Base (zero) page 3-2, 3-12, 4-5, 5-2, 9-5 
Base page 

Location counter 4-5, 9-5 
Relocatable 7-4, 7-7 

Basic Binary Loader 5-1 
Basic Control System (BCS) 5-1, 9-5, 10-1 
Binary 

Data 10-1, 10-3, 10-13, E-2 
Number system 1-2 

Binary Coded Decimal (BCD) 10-3, E-3 
BLF 8-11 
BLR 8-10 
BLS 8-9 
BRS 8-10 
BSS 4-1, 7-4, 9-18 
Buffer 

Address 10-1,10-5 
Input/Output 3-7 
Length 10-2, 10-5 

CCA 8-13 
CCB 8-13 
CCE 8-13 

INDEX 

Channel, Input/Output 3-7 
Characters 7-1, 7-3, 11-5 
Character transmission 10-5 
CLA 8-12 
CLB 8-12 
CLC 8-16 
CLE 8-9, 8-13 
Clear Flag Indicator 8-16 
Clear request 10-8 
CLF 8-18 
CLO 8-18 
CMA 8-13 
CMB 8-13 
CME 8-13 
COM 7-4, 9-8, 9-12 
Comma 7-3, 8-11, 8-14, 8-16, 9-8 
Comments 7-10 
Common 

Locatfon counter 4-5, 9-11 
Relocatable 7-4, 7-7, 9-11 
Storage 4-5, 9-8 

Compilers viii 
Complement 1-12 
Configuration 10-14 
Constants 

ASCII 9-19 
Decimal integer 9-20 
Decimal floating point 9-21 
Octal 9-24 

Control statement 
11-1, 11-4, 11-8 

Control system ix 
CPA 7-8,8-8 
CPB 7-8,8-8 
Current page 3-2, 3-12, 4-5, 5-2 
Cycle, machine 3-12 

Data storage 9-8, 9-18 
Debugging aids 5-4 
DEC 4-1, 7-4, 9-20 
Decimal 

Number system 1-1 
Constants 9-20 

DEF 9-13 
Diagnostic messages 4-6 
Direct addressing 3-2, 3-4 
Direct Memory Access (DMA) 3-9, 10-1, 10-5 
DIV 7-8, 8-4, 9-24 
DLD 7-8, 8-2~, 9-32 
Driver 10-1, 10-4 
DST 8-23, 9-32 

ELA 8-11 
ELB 8-11 
END 4-1, 7-10, 9-5 
End-of-file 10-7, 10-12 
End-of-statement mark 7-1, 7-10 

Index-1 



End-of-tape 10-14 
ENT 7-4, 9-11 
Entry point 9-11, 11-5 
EQU 7-4, 9-12, 9-16 
Equal sign 7-8 
Equipment table (EQT) 10-3 
Equipment type 10-4, 10-11 
ERA 8-10 
ERB 8-10 
Error message 11-4 
Expressions 7-3, 7-6, 7-8, 7-10 
EXT 9-12 
Extend bit 3-10, 3-16 
Extended Arithmetic Unit Instructions 8-20 
External references 9-12 

FAD 7-8, 9-30 
FDV 7-8, 9-29 
Flag, Input/Output 3-7 
Floating point 7-8, 9-27, 9-29, 9-30, 9-31 
Flowchart 6-1 
FJ.V[P 4-2,7-8,9-27 
FSB 7-8, 9-31 
Function 10-1, 10-2, 10-7, 10-8, 10-10 

Hardware 
Definition vii 
Input/Output 3-7 
Registers 3-10 

HED 9-2, 9-3, 11-3 
HLT 7-10, 8-19 

IFN 9-7 
IFZ 9-7 
INA 8-13 
!NB 8-13 
Indirect addressing 3-4, 3-13, 4-5, 7-3, 9-12, 9-13, 

9-15 
Input/ Output 

Channel 3-7, 10-4 
Instructions 3-6, 3-12, 7-5, 8-15 
Interrupt 3-8, 3-9 
Operations 5-2 
Select code 3-8, 7-10 

Input/Output Control(. IOC.) 10-1 
Input/Output devices. 

Data Source Interface 10-11, D-6, E-4 
Guarded Crossbar Scanner 10-11, D-5, E-6 
Incremental J.V[agnetic Tape 10-1, D-8, E-2, E-3 
Integrating Digital Voltmeter 10-11, D-4, D-5, 

E-5 
J.V[agnetic Tape 10-6, 10-11, 10-14, D-10, E-2, 

E-3 
Punched Tape Reader 10-3, 10-11, D-3, D-4, 

E-1, E-2 
Tape Punch 10-3, 10-11, D-4, E-1, E-2 
Teleprinter 10-3, 10-11, D-1, D-3, E-1, E-2 

Index-2 

Time Base Generator 10-11 
Installation unit numbers 10-3 
Instruction 

Definition 2-1, 2-3 
Illegal 11-5 
Input/Output 3-6 
J.V[emory Reference 3-2 
J.V[odification 9-15 
Register Reference 3-6 

Integer 7-8, 9-20 
Interface 3-7 
Interrupt 3-8, 3-9, 3-13, 10-1, 10-14, D-1 
IOR 7-8, 8-5 
ISZ 8-8 

JJ.V[P 8-6 
JSB 8-6 

Label 
Definition 4-2, 4-6 
Field 7-1 
Symbol 7-1, 7-4, 7-10, 11-4 

LDA 7-8, 8-1 
LDB 7-8, 8-1 
LIA 8-17 
LIB 8-17 
List output 9-33,11-2 
Literals 7-7 
Location counters 4- 5 
LSL 8-26 
LSR 8-26 
LST 9-34 

J.V[emory reference instructions 3-2, 3-12, 4-5, 7-: 
7-5,8-1,9-12,9-

J.V[emory size 2-1, 7-7 
J.V[lA 8-17 
J.V[ffi 8-17 
Modulus 1-1 
MPY 7-8, 8-20, 9-25 

NAM 7-10, 9-2 
NOP 8-15, 9-6 
Normalizing 9-21 
Number systems 1-1 
Numeric terms 7-3, 7-5 

Object program 4-1 
Object program linkage 9-8 
OCT 7-4, 9-20, 9-24 
Octal 

Constant 9-24 
Number 7-5 
Number system 1-3 



One's complement 1-15 
Operand 2-1,4-2,4-4,7-3,7-5,7-8,11-6, 11-9 
Operation codes 4-1, 7-2, 11-7 
ORB 9-4, 9-5 
Origin 9-2, 9-3, 11-7 
ORG 9-3 9-4 

., ' 
ORR 9-4 
01'A 8-17 
OTB 8-17 
Overflow 2-2, 3-10 

Page 
Current 3-2, 3-12, 4-5, 5-2 
Zero(base) 3-2,3-12,4-5,5-2,9-5 

Pass 4-6 
Period 7-1 
Priority 3-9 
Program 9-1 
Program location counter 4-5, 8-6, 9-3, 9-4 
Program relocatable 7-4, 7-7 
Programming ix 
Pseudo instruction 4-1, 7-5, 9-1 

Radix 1-1 
RAL 8-10 
RAR 8-10 
RBL 8-10 
RBR 8-10 
Record 10-3, E-1 
Register 2-2, 2-3, 3-10 
Register reference instructions 3-6, 3-12, 8-9, 8-24 
Reject address 10-1, 10-4, 10-8 
Relative address 4-3 
Relocatable 

Assembly 4-5 
Operand 7-3 
Programs 4-3, 9-3, 9-8, 9-15, 9-25 
Terms 7-4, 7-6, 7-7 
Value 7-5 

Relocating Loader 4-3, 4-5, 5-1, 5-2, 9-5 
Remarks 9-3 
REP 9-6 
Routine 9-1 
RRL 8-25 
RRR 8-25 
RSS 8-13 

Select code 3-8 
SEZ 8-13 
SFC 8-18 
SFS 8-18 
Shift Rotate Instructions 8-9, 8-24 

, Sign bit 8-9, 8-10, 8-24, 8-25 9-20, 9-23, 9-26 
. SKP 9-35 

SLA 8-11, 8-13 
SLB 8-11, 8-13 

soc 7-10, 8-18 
Software vii 
sos 7-10, 8-18 
Source program 4-1, 4-6, 11-2 
Space 7-1, 7-2 
SPC 9-35 
SSA 8-13 
SSB 8-13 
STA 8-2 
Standard equipment table (SQT) 10-4 
Standard units 10-3 
Starting location 4- 3 
Statement 7-1 
Status 

Field 10-12 '-
Magnetic Tape 10-14 
Reply 10-4 
Request 10-10 

STB 8-2 
STC 8-16 
STF 8-18 
STO 8-18 
Subfunction 10-1, 10-2, 10-7, 10-8 
Subprogram 9-1 
Subroutine 9-1 
SUP 9-36 
Switch Register 3-9 
SWP 9-33 
Symbol Table 4-2, 4-6, 11-2, 11-3, 11-8 
Symbolic term 7-3, 7-4, 11-8, 11-9 
System 

Clear 10-8 
Status 10-13 

SZA 8-13 
SZB 8-13 

Tape positioning 10-6, 10-7 
Transfer address 9-5 
Transmission 10-8, 10-13 
Two's complement 1-13, 9-20, 9-23 

Unit-reference 10-1, 10-3, 10-7, 10-10 
UNL 9-34 
UNS 9-36 

Variable length record 10-2 

XIF 9-7 
XOR 7-8, 8-4 

Zero (base) page 3-2, 3-12, 4-5, 5-2, 9-5 

Index-3 





w· 
Z· 
::::i. 

~: 
o· 
...J. 
<( • 
I- . 
:::>. 
(.) . 

FROM 

HEWLETT PACKARD 

READER COMMENT SHEET 
ASSEMBLER/Bes TRAINING MANUAL 

HP 02116-9073 .A.pri 1, 1970 
Hewlett-Packard welcomes your evaluation of this text. 
Any errors, suggested additions, deletions, or general com­
ments may be made below. Use extra pages if you like. 

NAME:~~~~~~~~~~~~~~~~~~-

ADDRESS:~~~~~~~~~~~~~~~~~ 

NO POSTAGE NECESSARY IF MAILED IN U.S.A. 

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE AND TAPE 



FOLD 

FOLD 

BUSINESS REPLY MAIL 

No Postage Necessary if Mailed in the U n1ted States Postage will be paid by 

SUPERVISOR, SOFTWARE PUBLICATIONS 
HEWLETT - PACKARD 

CUPERTINO DIVISION 
11000 Wolfe Road 

Cupertino, California 
95014 

FIRST CLASS 
PERMIT N0.141 

CUPERTINO 
CALI FORNI A 

FOLD 

FOLD 




