
HEWLETT iP PACKARD

FORTRAN IV
REFERENCE MANUAL

5951-1321

FORTRAN IV

REFERENCE MANUAL

HEWLETT iP PACKARD

11000 Wo 1 fe Road
Cupertino, California 95014

October 1970

© CopyJtight, 1970, by

HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Copyright© 1970 by Hewlett-Packard Company, Cupertino, California.
All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
be transmitted by any means, electronic, mechanical, photocopy, re­
cording or otherwise, without prior written permission from the
publisher.

Printed in the U.S.A.

PREFACE

The Hewlett-Packard FORTRAN IV Reference Manual describes the language ele­

ments used to code source programs in the HP FORTRAN IV programming language.

The front matter includes a Table of Contents and an Introduction to the

manual. Sections I through III describe the form of source programs and the

types, identification and formats of data and expressions used in HP FORTRAN

IV. Sections IV through IX describe the language elements used to code a

source program, including the formats and uses of HP FORTRAN IV statements.

The Appendices describe the formats of data in core memory, the form of HP

FORTRAN IV jobs, departures from and extensions of ANSI FORTRAN IV specifi­

cations, features included in HP FORTRAN IV for compatibility with HP FORTRAN

and HP FORTRAN IV compiler error diagnostics.

NOTE: Throughout the manual are special boxed notes
that explain departures from ANSI FORTRAN IV
specifications or features for compatibility
with HP FORTRAN.

This manual is a reference text for programmers who have had FORTRAN pro­

gramming experience, either with HP FORTRAN or with other FORTRAN compilers.

iii

CONTENTS

iii PREFACE
xi INTRODUCTION

SECTION I
1-1 THE FORM OF A FORTRAN IV PROGRAM
1-1 FORTRAN IV SOURCE PROGRAMS

1-2 FORTRAN IV CHARACTER SET

1-3 SOURCE PROGRAM LINES

1-5 SOURCE PROGRAM STATEMENTS AND LABELS

1-6 ORDER OF STATEMENTS IN A SOURCE PROGRAM

SECTION II

2-1 DATA, CONSTANTS, VARIABLES AND ARRAYS
2-1 IDENTIFYING DATA TYPES

2-1 Data Type Association

2-2 Establishing Data Names

2-2 Using Data Names

2-3 WRITING CONSTANTS, VARIABLES AND ARRAYS

2-4 INTEGER CONSTANT

2-5 .REAL CONSTANT

2-6 DOUBLE PRECISION CONSTANT

2-7 COMPLEX CONSTANT

2-8 LOGICAL CONSTANT

2-9 HOLLERITH CONSTANT

2-10 OCTAL CONSTANT

2-11 SIMPLE VARIABLE

2-12 ARRAY

2-12 ARRAY ELEMENT

2-12 SUBSCRIPT EXPRESSIONS

2-13 SUBSCRIPT

2-13 DEFINING VARIABLES AND ARRAY ELEMENTS

2-14 SUBSCRIPTED VARIABLE

v

SECTION III
3-1 EXPRESSIONS
3-1 ARITHMETIC EXPRESSIONS

3-1 Arithmetic Operators

3-1 Arithmetic Elements

3-2 Combining Arithmetic Elements

3-3 Exponentiation of Arithmetic Elements

3-3 Evaluating Arithmetic Expressions

3-4 LOGICAL EXPRESSIONS

3-4 Logical Operators

3-5 Logical Elements

3-5 RELATIONAL EXPRESSIONS

3-6 Relational Operators

SECTION IV

4-1 SPECIFICATION STATEMENTS
4-1 ARRAY DECLARATOR

4-2 EXTERNAL

4-3 TYPE-

4-4 DIMENSION

4-5 COMMON

4-6 EQUIVALENCE

4-8 DATA

SECTION V
5-1 ASSIGNMENT STATEMENTS
5-1 ARITHMETIC ASSIGNMENT STATEMENT

5-3 LOGICAL ASSIGNMENT STATEMENT

5-4 ASSIGN TO STATEMENT

SECTION VI
6-1 CONTROL STATEMENTS
6-2 GO TO (UNCONDITIONAL)

6-3 GO TO (ASSIGNED)

6-4 GO TO (COMPUTED)

vi.

SECTION VI (cont.)
CONTROL STATEMENTS

6-5 IF (ARITHMETIC)

6-6 IF (LOGICAL)

6-7 CALL

6-8 RETURN

6-9 CONTINUE

6-10 STOP

6-11 PAUSE

6-12 DO

SECTION VII
7-1 INPUT/OUTPUT STATEMENTS
7-1 IDENTIFYING INPUT/OUTPUT UNITS

7-1 IDENTIFYING ARRAY NAMES OR FORMAT STATEMENTS

7-2 INPUT/OUTPUT LISTS

7-2 Simple Lists

7-2 DO-Implied Lists

7-3 FORMATTED AND UNFORMATTED RECORDS

7-4 READ (FORMATTED)

7-5 WRITE (FORMATTED)

7-6 READ (UNFORMATTED)

7-7 WRITE (UNFORMATTED)

7-8 REWIND, BACKSPACE, ENDFILE

7-9 FREE FIELD INPUT

7-9 Data Item Delimiters

7-10 Record Terminator

7-11 Sign of Data Item

7-11 Floating Point Number Data Item

7-11 Octal Data Item

7-12 Comment Delimiters

vii

SECTION VIII

8-1 THE FORMAT STATEMENT

8-2 FORMAT

8-3 FIELD DESCRIPTOR

8-5 REPEAT SPECIFICATION

8-6 I-TYPE CONVERSION (INTEGER NUMBERS)

8-8 SCALE FACTOR

8-10

8-12

8-14

8-16

8-17

8-18

E-TYPE CONVERSION

F-TYPE CONVERSION

G-TYPE CONVERSION

D-TYPE CONVERSION

COMPLEX CONVERSION

L-TYPE CONVERSION

(REAL NUMBERS)

(REAL NUMBERS)

(REAL NUMBERS)

(DOUBLE PRECISION

(COMPLEX NUMBERS)

(LOGICAL NUMBERS)

NUMBERS)

8-19 @-TYPE, K-TYPE AND 0-TYPE CONVERSIONS
(OCTAL NUMBERS)

8-21 A-TYPE CONVERSION (HOLLERITH INFORMATION)

8-23 R-TYPE CONVERSION (HOLLERITH INFORMATION)

8-25 WH EDITING (HOLLERITH INFORMATION)

8-26 " ... " EDITING (HOLLERITH INFORMATION)

8-27 X-TYPE CONVERSION (SKIP OR BLANKS)

8-28 FIELD SEPARATOR

SECTION IX

9-1 FUNCTIONS AND SUBROUTINES

9-1 FUNCTIONS

9-2 SUBROUTINES

9-2 DATA TYPES FOR FUNCTIONS AND SUBROUTINES

9-3 DUMMY ARGUMENTS

9-4 STATEMENT FUNCTION

9-5 Defining Statement Functions

9-5 Referencing Statement Functions

9-6 FORTRAN IV LIBRARY FUNCTION

9-10 FUNCTION SUBPROGRAM

9-11 Defining Function Subprograms

9-13 Referencing Function Subprograms

viii

SECTION IX (cont.)
FUNCTIONS AND SUBROUTINES

9-15 SUBROUTINE

9-16 Defining Subroutines

9-16 Referencing Subroutines

APPENDIX A
A-1 FORMATS OF DATA IN CORE MEMORY

APPENDIX B
B-1 COMPOSING A FORTRAN IV JOB DECK

APPENDIX C
C-1 SUMMARY OF CHANGES TO ANSI FORTRAN IV

APPENDIX D
0-1 COMPATIBILITY OF HP FORTRAN AND FORTRAN IV

APPENDIX E
E-1 FORTRAN IV COMPILER ERROR DIAGNOSTICS

I-1 INDEX

TABLES
Table 2-1. 2-13 The Value of a Subscript (in an Array)

3-2

3-3

5-2

9-7

E-3

Table 3-1.

Table 3-2.

Table 5-1.

Table 9-1.

Table E-1.

Results: Combining Arithmetic Elements

Results: Exponentiation of
Arithmetic Elements

Rules for Assigning e to v

FORTRAN IV FUNCTIONS

FORTRAN IV Compiler Error Diagnostics

ix

INTRODUCTION

The Hewlett-Packard FORTRAN IV Compiler is used to construct object language

programs from source language programs written according to the rules of the

HP FORTRAN IV language.

The user codes source language programs (using this manual as a reference),

creates a source language paper tape or punched card deck (called a job deck)

and loads the job deck into a HP operating system that features the Compiler.

When loaded, the HP FORTRAN IV Compiler automatically translates the source

programs into machine language and produces relocatable object programs on

punched paper tape.

The Compiler operates in two passes. During the first pass, the job deck is

read into core memory; a symbol table is constructed in core and a set of

intermediate machine code is generated and written to the system disc. Dur­

ing the second pass, the Compiler searches the symbol table for object code

references; completes translation of the intermediate object code on the

disc and produces a relocatable binary object program on punched paper tape.

Source and object listings may be produced, if the user specifies them in

the job deck.

The HP FORTRAN IV Compiler is available in three HP operating systems: Disc

Operating System (DOS), Real-Time Executive (RTE) and Moving-Head Disc Oper­

ating System (DOS-M). The hardware configurations required for compiling

and executing HP FORTRAN IV programs under the control of these systems are

the same as the minimum requirements for the systems, as described in these

manuals. (Except that 16K is required to compile under DOS control.)

Disc Operating System (HP 02116-91748)

Real-Time Software (HP 02116-9139)

Moving-Head Disc Operating System (HP 02116-91779)

xi

The libraries of relocatable subroutines available with HP FORTRAN IV are

described in the Relocatable Subroutines manual (HP 02116-91780).

NOTE: HP FORTRAN IV source programs cannot be compiled
under the control of the Basic Control System (BCS).
However, object programs produced by the HP FORTRAN IV
Compiler can be loaded and executed under BCS control
if the HP 2114A computer has 8,192 words of core memory
and the equipment configuration includes an HP 2752
Teleprinter.

xii

SECTION I

THE FORM OF A FORTRAN IV PROGRAM

The HP FORTRAN IV Compiler accepts as input a source program written accord­

ing to the specifications contained in this manual. Each source program is

constructed from characters grouped into lines and statements. T.he elements

used to construct a source language program are defined in the following

text.

FORTRAN IV SOURCE PROGRAMS

The following terms define FORTRAN IV Source Programs.

Executable Program: A program that can be used as a self-contained

computing procedure. An executable program consists

of precisely one main program and possibly one or

more subprograms.

Main Program:

Subprogram:

Program Unit:

A set of statements and conunents not containing

a FUNCTION or a SUBROUTINE statement.

A set of statements and comments containing a

FUNCTION or a SUBROUTINE statement. When defined

by FORTRAN statements and headed by a FUNCTION

statement, it is called a function subprogram.

When defined by FORTRAN statements and headed

by a SUBROUTINE statement, it is called a sub­

routine subprogram. Subprograms can also be

written in HP FORTRAN, HP ALGOL, or HP Assembly

Language.

A main program or a subprogram.

1-1

FORTRAN IV CHARACTER SET

A source language program is written using the following character set.

Letters:

Digits:

The twenty-six letters A through Z.

The ten digits O, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Unless specified otherwise, a string of digits

is interpreted in the decimal base number system

when a number system base interpretation is

appropriate.

Alphanumeric Character: A letter or a digit.

Blank Character: Has no meaning and may be used to improve the

appearance of a program with the following

exceptions:

a. A continuation line cannot contain a blank

in column 6.

b. A blank character is valid and significant

in Hollerith data strings.

c. In numeric input conversions, leading blanks

are not significant, but embedded blanks are

converted to zeros. A field of all blanks

is converted to all zeros.

1-2

Special Characters: Used for special program functions. They are:

SYMBOL

=

+

*
I

$

REPRESENTING

blank

equals

plus

minus

asterisk

slash

left parenthesis

right parenthesis

comma

decimal point

currency symbol

SOURCE PROGRAM LINES

Source program lines are written according to the following rules.

Lines:

Comment Line:

A line is a string of 72 characters. All charac­

ters must be from the HP ASCII character set.

The character positions in a line are called columns,

and are consecutively numbered 1, 2, 3, ••. , 72.

The number indicates the sequential position of a

character in the line, starting at the left and

proceeding to the right.

The letter C in column 1 of a line designates that

line as a comment line. A comment line must be

immediately followed by an initial line, another

comment line, or an end line. A comment line

does not affect the program in any way, and is

available as a convenience for the user.

1-3

Program Line:

Initial Line:

The first statement of a main program may be the

following:

name

0

l

PROGRAM name (P1 ,P2 , ..• ,P8)

An alphanumeric identifier of up to five

characters. The parenthesized parameter list

is optional; if present:

The program type, as follows:

System program

Real-Time, Core-Resident

2 = Real-Time, Disc-Resident

3 Background, Disc-Resident (main program)

4 = Background, Core-Resident

5 Background Segment (subprogram)

6 Library (re-entrant or privileged)

7 Utility

The program type is set to 3 if not given.

P2-P8 = Real-Time parameters. See Real-Time

Software manual.

An intial line is a line that is neither a comment

line nor an end line, and that contains the digit 0

or the character blank in column 6. Column l through

5 may contain a statement label or the character blank.

Continuation Line: A continuation line is a line that contains any charac-

ters other than the digit 0 or the character blank in

column 6, and does not contain the character C or $ in

column 1. Any other character may be placed in column 1.

Any characters may be placed in columns 2 through 5. A

continuation line may only follow an initial line or

another continuation line. A maximum of 19 continuation

lines can be used after one initial line.

1-4

End Line: An end line is a line with the character blank in

columns 1 through 6, the characters E, N and D

(preceded by, interspersed with, or followed by

blank characters) in columns 7 through 72. The

end line indicates to the compiler the end of the

written description of a program unit. Every pro­

gram unit must terminate with an end line.

SOURCE PROGRAM STATEMENTS AND LABELS

Source program statements and statement labels are written according to

the following rules.

Statements: A statement consists of an intial line optionally

followed by continuation lines. The statement is

written in columns 7 through 72 of the lines. The

order of the characters in the statement is columns 7

through 72 of the first continuation line, columns 7

through 72 of the next continuation line, etc.

Statement Labels: Optionally, a statement may be labeled so that it

may be referred to in other statements. A statement

label consists of from one to five digits. The value

of the integer represented is not significant but

must be greater than zero. The statement label may

be placed anywhere in columns 1 through 5 of the

initial line of the statement. The same statement

label may not be given to more than one statement in

a program unit. Leading zeros are not significant

in differentiating statement labels.

1-5

Symbolic Names: A symbolic name consists of from one to six alpha­

numeric characters (except that external names, i.e.,

main program, SUBROUTINE and FUNCTION names are

limited to five characters), the first of which must

be alphabetic.

ORDER OF STATEMENTS IN A SOURCE PROGRAM

When the source program is a main program:

PROGRAM LINE

SPECIFICATION STATEMENTS

DATA STATEMENTS

ARITHMETIC STATEMENT FUNCTIONS

EXECUTABLE STATEMENTS

END STATEMENT

When the source program is a subpro.gram:

FUNCTION or SUBROUTINE STATEMENT

SPECIFICATION STATEMENTS

DATA STATEMENTS (See Note 2.)

ARITHMETIC STATEMENT FUNCTIONS

EXECUTABLE STATEMENTS

END STATEMENT

NOTE: 1. FORMAT Statements can appear anywhere in a source program,
as long as they appear after the PROGRAM LINE (main pro­
gram) or FUNCTION or SUBROUTINE statement (subprogram).

2. Items in the DATA statement list are intialized at loading
and not at every entrance to a program or subprogram.

1-6

SECTION II

DATA, CONSTANTS, VARIABLES AND ARRAYS

There are six types of data in HP FORTRAN IV:

INTEGER

REAL

DOUBLE PRECISION

COMPLEX

LOGICAL

HOLLERITH

Each data type has a specific format in core memory and a unique mathema­

tical significance and representation.

IDENTIFYING DATA TYPES

A symbolic name, called a data name, is used to reference or otherwise

identify data of any type. The following rules are used when identifying

data:

a. Data is named when it is identified, but not necessarily made

available.

b. Data is defined when it has a value assigned to it.

c. Data is referenced when the current defined value of the data

is made available during the execution of the statement that

contains the data reference.

Data Type Association

The data name used to identify data carries the data type association,

subject to the following restrictions:

a. A data item keeps the same data type throughout the program

unit.

2-1

b. If a TYPE- statement is used to establish a data type association

(for integer, real, double precision, complex or logical data),

it overrides the implied association which occurs in integer and

real data types in variables and arrays. (See "Establishing Data

Names," below.)

Establishing Data Names

There are different ways of establishing a data name for a data type, depend­

ing upon the type of data and how the data is used.

The form of a string representing a constant defines both the value and the

type of the data. This definition is a function of how data is stored in

core memory. The type of a constant is implicit in its name.

A data name that identifies a variable or an array may have its data type

specified in a TYPE- statement. (See Section IV, "Specification Statements.")

In the absence of an explicit declaration in a TYPE- statement, the data type

is implied by the first character of the data name, as follows:

I, J, K, L, M, or N

any other letter

integer type data

real type data

Using Data Names

Data names are used to identify

VARIABLES

ARRAYS, or ARRAY ELEMENTS

FUNCTIONS (See Section IX.)

2-2

WRITING CONSTANTS, VARIABLES AND ARRAYS

The following pages describe how to write constants, variables and arrays

in HP FORTRAN IV. See Appendix A "Formats of Data in Core Memory," for

a description of how each data type is stored in core memory.

2-3

PURPOSE:

INTEGER CONSTANT

An integer constant is written as a string of digits interpreted

as a decimal number.

FORMAT:
±n

n

n =a decimal number with a range of -32,768 to 32,767

COMMENTS: An integer constant is signed when it is written immediately

following a + or - sign. If it is unsigned, an integer constant

is assumed to be positive.

EXAMPLES:

-32768

32767

0

-12

329

+5557

2-4

PURPOSE:

REAL CONSTANT

A real constant is written as a string of decimal digits con­

taining an integer part, a decimal point, a decimal fraction

and an exponent, in that order.

FORMAT:
+m • n Ex

m = an integer constant

a decimal point

n = a decimal constant representing a fraction

Ex = the character E followed by the exponent, a signed

or unsigned integer

COMMENTS: The decimal exponent is a multiplier (applied to the constant

written inunediately before it) that is equal to the number

EXAMPLES:

10, raised to the power indicated by the integer following the

E.

Either m or n (but not both) may be omitted; and either the

decimal point or the exponent (but not both) may be omitted

from a real constant.

1.29

.00123

-901.

256.177E2

0.18E+2

2E-3

l.E+l5

-256. l 77E-2

2-5

PURPOSE:

DOUBLE PRECISION CONSTANT

A double precision constant is written as a string of decimal

digits containing an integer part, a decimal point, a decimal

fraction and an exponent, in that order.

FORMAT:
+m • n Ox

m = an integer constant

= a decimal point

n = a decimal constant representing a fraction

Ox = the character O followed by the exponent, a signed or

unsigned integer

COMMENTS: The decimal exponent is a multiplier (applied to the constant

written immediately before it) that is equal to the number 10,

raised to the power indicated by the integer following the D.

EXAMPLES:

The O is an essential part of the expression, as it identifies

the number as a double precision constant. However, m, the

decimal point and n may be omitted, except that a decimal point

must separate m and n when both are specified

1. 2900

.01230-1

256.17702D02

-256.177020-2

20-3

2-6

PURPOSE:

COMPLEX CONSTANT

A complex constant is composed of a real part and an imaginary

part, and is written as an ordered pair of real constants, sep­

arated by a comma and enclosed in parentheses.

FORMAT:

(ml , m2)

m1 and m2 are real constants, signed or unsigned

COMMENTS: The first real constant is the real part; the second, the

imaginary part.

EXAMPLES:
(1.29, 256.177E-2)

(-901., o.)

(-.123E+Ol, -12.3E-4)

(0., O.)

2-7

LOGICAL CONSTANT

PURPOSE: A logical constant is a truth value, either true or false.

FORMAT:
.TRUE •

. FALSE.

COMMENTS: The periods must be used as shown.

EXAMPLES:
.TRUE •

• FALSE.

2-8

PURPOSE:

HOLLERITH CONSTANT

A Hollerith constant is written as an integer constant followed

by the letter H, followed by one or two characters from the

FORTRAN character set.

FORMAT:
n H x

n = an integer constant (either 1 or 2)

H = the Hollerith descriptor, which is the character H

x = one or two alphanumeric characters

COMMENTS: If n = 1, the character immediately following the H is placed

EXAMPLES:

in the left half of the computer word used to store the constant.

The right half of the word contains a blank character.

If n = 2, the first character after the H is put in the left

half of the word, the next character in the right half.

An error diagnostic occurs if n = 0 or n >2.

Hollerith constants are typed as integer.

lH@

lHA

2H A

2HBB

2H$$

2Hl2

2-9

PURPOSE:

OCTAL CONSTANT

An octal constant is written as a string of from one to six

octal digits terminating with a B octal descriptor. An octal

constant is an implied integer constant.

FORMAT:

n1 to n6 = octal digits

B = the octal descriptor, the character B

COMMENTS: If an octal constant has more than six digits or if the

leading digit in a six-digit constant is greater than one,

an error diagnostic occurs.

EXAMPLES:

Integers n1 up to n5 may be omitted if they equal 0. The

octal constant may carry a sign.

21B

+OOB

OB

177777B

-1705B

2-10

SIMPLE VARIABLE

PURPOSE: Is the symbolic name of a single value.

FORMAT:
One to six alphanumeric characters, the first of

which must be a letter.

COMMENTS: If the variable has a first character of I, J, K, L, M or N,

it is implicitly typed as an integer variable. All other

first letters imply that the variable is real.

EXAMPLES:

Implicit typing may be overridden for individual symbolic

names by declaring them in a TYPE- statement. (See Section IV.)

Integer

1125

JMAX

MREAL

K

Real

Al25

HMAX

REAL

x

2-11

ARRAY

An array is an ordered set of data of one, two or three dimensions. An array

is identified by a symbolic name called the array name. The size and nurober

of dimensions of an array must be defined in a DIMENSION, COMMON or TYPE-

statement.

ARRAY ELEMENT

An array element is a member of the array data set. The array element is

identified by a subscript immediately following the array name.

An array element may be defined and referenced.

SUBSCRIPT EXPRESSIONS

A subscript expression may be any arithmetic expression allowed in FORTRAN IV.

If the expression is of a data type other than integer, it is converted to

integer before being used as a subscript.

In a program unit any appearance of a symbolic name that identifies an array

must be immediately followed by a subscript, except in the following cases:

a. In the list of an input/output statement

b. In a list of dummy arguments

c. In the list of actual arguments in a function or subroutine

reference

d. In a COMMON statement

e. In a TYPE- statement

f. In a DATA statement

2-12

SUBSCRIPT

A subscript is written as a parenthesized list of subscript expressions.

Each subscript expression is separated by a comma from its successor, if

there is a successor.

The number of subscript expressions must be less than or equal to the num­

ber of dimensions declared for the array name in a DIMENSION, COMMON or

TYPE- statement. The value of a subscript is defined in Table 2-1, below.

The value refers to the number of array elements (stored in column order)

inclusively between the base entry and the one represented by the subscript.

ARRAY DI­
MENSION (S)

l

2

3

TABLE 2-1
THE VALUE OF AN ARRAY SUBSCRIPT

(IN AN ARRAY)

SUBSCRIPT SUBSCRIPT
DECLARATOR SUBSCRIPT VALUE

(A) (a) a

(A, B) (a,b) a+A* (b-1)

(A,B,C) (a,b,c) a+A* (b-1)

+A*B* (c-1)

MAXIMUM SUB­
SCRIPT VALUE

A

A*B

A*B*C

Usage of an unsubscripted array name always denotes the first element of

that array, except in an I/O statement or a DATA statement, where the

entire array is referenced.

DEFINING VARIABLES AND ARRAY ELEMENTS

Variables and array elements become initially defined (before execution

begins) if, and only if, their names are associated in a DATA statement

with a constant of the same data type as the variable or array in question.

Any entity not so defined is said to be "undefined" at the time the first

executable statement in a main program is executed.

2-13

PURPOSE:

SUBSCRIPTED VARIABLE

Refers to a particular element of an array of the same symbolic

name as that of the subscripted variable.

FORMAT:
s (a1 , a 2 , •.• , an

s = the symbolic name of the array

a= expression(s) which determine the values of the

subscript(s) of the subscripted variable

n = 1, 2, or 3

COMMENTS: Subscripted variables must have their subscript bounds specified

in a COMMON, DIMENSION, or TYPE- statement prior to their first

appearance in an executable statement or in a DATA statement.

EXAMPLES:

A subscript may be any arithmetic expression. If non-integer,

the subscript is evaluated and converted to integer (by truncating)

before being used as a subscript.

A subscripted variable is named and typed according to the same

rules as a simple variable.

A(3,5,2)

I(lO)

ARRAY(2,5)

MAX (I ,J)

MIN (I-J, (I-J)*K/A,4)

2-14

SECTION Ill

EXPRESSIONS

An expression is a constant, variable or function reference (see Section IX),

or combination of these, separated by operators, commas or parentheses.

Expressions are evaluated by the compiler.

There are three types of expressions: arithmetic, logical and relational.

ARITHMETIC EXPRESSIONS

An arithmetic expression, formed with operators and elements, defines a

numerical value. Both the expression and its elements identify integer,

real, double precision or complex values.

Arithmetic Operators

The arithmetic operators are:

Symbol Mathematic Function Example

** exponentiation A**B

I division A/B

* multiplication A*B

subtraction (or negative value) A-B or -A

+ addition (or positive value) A+B or +A

Arithmetic Elements

The arithmetic elements are defined as:

PRIMARY: An arithmetic expression enclosed in paren­

theses, a constant, a variable reference, an

array element reference or a function reference.

3-1

FACTOR:

TERM:

A primary, or a construct of the form:

PRIMARY**PRIMARY

A factor, or a construct of one of the

forms:

TERM/FACTOR

TERM.*TERM

SIGNED TERM: A term, immediately preceded by + or -

SIMPLE ARITHMETIC EXPRESSION: A term, or two simple arithmetic express­

ions separated by + or -

ARITHMETIC EXPRESSION:

Combining Arithmetic Elements

A simple arithmetic expression or a signed

term or either of the preceding forms

immediately followed by+ or -, followed by

a simple arithmetic expression.

When adding, subtracting, dividing or multiplying, the compiler combines

arithmetic elements according to the rules shown in Table 3-1.

FIRST
ELEMENT
TYPE

INTEGER

REAL

DOUBLE
PRECISION

COMPLEX

TABLE 3-1

RESULTS: COMBINING ARITHMETIC ELEMENTS (+,-,*,/)

SECOND ELEMENT TYPE
INTEGER REAL DOUBLE PRECISION

INTEGER REAL DOUBLE PRECISION

REAL REAL DOUBLE PRECISION

DOUBLE DOUBLE DOUBLE PRECISION
PRECISION PRECISION

COMPLEX COMPLEX COMPLEX

3-2

COMPLEX

COMPLEX

COMPLEX

COMPLEX

COMPLEX

Exponentiation of Arithmetic Elements

Arithmetic elements can be exponentiated according to the rules shown in

Table 3-2.

BASE TYPE

INTEGER

REAL

DOUBLE
PRECISION

COMPLEX

TABLE 3-2

RESULTS: EXPONENTIATION OF ARITHMETIC ELEMENTS (**)

INTEGER

INTEGER

REAL

DOUBLE
PRECISION

COMPLEX

EXPONENT TYPE
REAL

NOT ALLOWED

REAL

DOUBLE
PRECISION

NOT ALLOWED

DOUBLE PRECISION

NOT ALLOWED

DOUBLE PRECISION

DOUBLE PRECISION

NOT ALLOWED

COMPLEX

NOT ALLOWED

NOT ALLOWED

NOT ALLOWED

NOT ALLOWED

Evaluating Arithmetic Expressions

The compiler evaluates arithmetic expressions from left to right, according

to the following rules:

PRECEDENCE:

SEQUENCE:

() parentheses, for grouping expressions, then

** exponentiation, then

*,/ multiplication and division (whichever occurs

first) then

unary minus, then

+,- addition and subtraction (whichever occurs first).

Evaluation begins with the subexpression most deeply

nested within parentheses.

Within parentheses, subexpressions are evaluated from

left to right in the order of precedence above.

3-3

Function references are evaluated from left to right as

they occur.

No factor is evaluated that requires a negative valued primary to be raised

to a real or double precision exponent. No factor is evaluated that requires

raising a zero valued primary to a zero valued exponent. No element is

evaluated if its value has not been mathematically defined.

LOGICAL EXPRESSIONS

A logical expression is a rule for computing a logical value. It is formed

with logical operators and logical elements and has the value true or false.

Logical Operators

The logical operators and the logical result of their use in an expression

are:

Symbol

.OR.

.AND.

.NOT.

Mathematic Function

LOGICAL DISJUNCTION

LOGICAL CONJUNCTION

LOGICAL NEGATION

Logical Expression
(logical elements A and B) TRUE

A. OR. B If either A or

B is true

A .AND. B If both A and B

are true

.NOT. A If A is false

3-4

Example

A .OR. B

A .AND. B

.NOT.A

LOGICAL RESULT IS
FALSE

If both A and B

are false

If either A or B

is false

If A is true

Logical Elements

The logical elements are defined as:

LOGICAL PRIMARY:

LOGICAL FACTOR:

LOGICAL TERM:

A logical expression enclosed in parentheses, a

relational expression, a logical constant, a

logical variable reference, a logical array element

reference, or a logical function reference.

A logical primary, or .NOT. followed by a logical

primary.

A logical factor or a construct of the form:

LOGICAL TERM .AND. LOGICAL TERM

LOGICAL EXPRESSION: A logical term or a construct of the form:

LOGICAL EXPRESSION .OR. LOGICAL EXPRESSION

RELATIONAL EXPRESSIONS

A relational expression is a rule for computing a conditional logical ex­

pression. It consists of two arithmetic expressions separated by a re­

lational operator. The relation has the value true or false as the relation

is true or false. The operands of a relational operator must be of type

integer, real, or double precision, except that the operators .EQ. and .NE.

may have operands of type complex.

3-5

Relational Operators

The relational operators are:

Symbol Mathematic Function

.LT. less than

.LE. less than or equal to

.EQ. equal to

.NE. not equal to

.GT. greater than

.GE. greater than

EXAMPLE: If A = 5 and B = 3, then

(A .LT. B) is false

or equal to

((A .LE. B) .OR. (B .LE. A)) is true

3-6

Example

A .LT. B

A .LE. B

A .EQ. B

A .NE. B

A .GT. B

A • GE. B

SECTION IV

SPECIFICATION STATEMENTS

Specification statements are non-executable statements that specify variables,

arrays and other storage information to the compiler. There are six specifi­

cation statements in HP FORTRAN IV.

EXTERNAL

TYPE-

D IMEN S ION

COMMON

EQUIVALENCE

DATA

ARRAY DECLARATOR

DIMENSION, COMMON and TYPE- statements use array declarators to specify the

arrays used in a program unit. An array declarator indicates the symbolic

name of the array, the number of dimensions (one, two or three), and the

size of each array dimension. An array declarator has the following format:

v (i)

v the symbolic name of the array

i one, two or three declarator subscripts (for one, two or

three dimensional arrays). Each subscript must be an

integer constant or a dummy integer variable name. (See

Section IX.)

If a two or a three dimensional array is being specified, each declarator

subscript is separated from its successor by a comma.

The values given for the declarator subscripts indicate the maximum value

that the subscripts can attain in any array element name. The minimum

value is always one.

4-1

EXTERNAL

PURPOSE: To declare external function or subroutine names that will be

referenced in the program unit.

FORMAT:

v any external function or subroutine name

COMMENTS: If an external function or subroutine name is used as an argu-

EXAMPLES:

ment to another external function or subroutine, it must appear

in an EXTERNAL statement in the program unit in which it is so

used.

NOTE: EXTERNAL narres are limited to five characters in
length.

EXTERNAL FUN, IS, SIN

4-2

PURPOSE:

TYPE-

To declare the data type of variable names, array names, function

names or array declarators used in a program unit.

FORMAT:
INTEGER

REAL

DOUBLE PRECISION

COMPLEX

LOGICAL

\

I

>
I

'
v = a variable, array, function, or array declarator.

COMMENTS: Subroutine names cannot appear in a TYPE- statement.

EXAMPLES:

If the same symbolic name appears in more than one TYPE­

statement, the last use of the name states the data type.

A TYPE- statement can be used to override or confirm the implicit

typing of integer or real data and must be used to declare the

data type for double precision, complex or logical data.

A symbolic name in a TYPE- statement informs the compiler that

it is of the specified data type for all appearances in the

program unit.

INTEGER I,A,ARRAY(3,5,2)

REAL MAX, UNREAL, R(S)

DOUBLE PRECISION D, DOUBLE(2), DARRAY(3,3)

COMPLEX C, CPLEX, CARRAY(2,3,4), CAREA

LOGICAL T, FALSE, L(4), J

4-3

PURPOSE:

DIMENSION

To specify the symbolic names and dimension(s) of arrays used

in a program unit.

FORMAT:
... ,

v(i) an array declarator

v (i)
n n

COMMENTS: Every array in a program unit must be specified in a DIMENSION,

TYPE or COMMON statement.

EXAMPLES:
DIMENSION MATRIX(3,3,3)

DIMENSION I(4), A(3,2)

4-4

COMMON

PURPOSE: To provide a means for sharing core memory between a main program

and its subprograms, or for sharing core memory between subprograms.

FORMAT:
COMMON a

a a list of variable names, array names or array

declarators.

COMMENTS: A symbolic name that appears in a COMMON statement must be a vari­

able name, an array name or an array declarator. Once these names

are used in a COMMON statement, they cannot be used in another COM­

MON statement in the same program unit.

EXAMPLES:

All entities in the COMMON statement are declared to be in unlabeled

(blank) common.

The size of a common block is the sum of the storage required for

the elements introduced through COMMON and EQUIVALENCE statement

in a program unit. Entities are strung together in the order of

appearance.

NOTE: Named common blocks are not permitted in HP FORTRAN IV.

COMMON I, CAREA(2,3), J(3)

~5

PURPOSE:

EQUIVALENCE

Allows the sharing of core memory locations by two or more

entities.

FORMAT:
EQUIVALENCE (k1), (k2), •.. , (kn)

k = a list of two or more variable names, array names or

array element names with integer constant subscripts.

COMMENTS: A symbolic name which appears in an EQUIVALENCE statement must

be a variable, array or array element name.

EXAMPLES:

Equivalence can be established between different data types, but

the EQUIVALENCE statement cannot be used to equate two or more

entities mathematically.

The EQUIVALENCE statement can associate a variable in COMMON with

one or more variables not in COMMON, or may associate two or more

variables none of which are in COMMON.

No equivalence grouping is allowed between two entities in COMMON.

A variable not in COMMON, when equivalenced to a variable in

COMMON, becomes a part of the COMMON area. A COMMON area, how­

ever, only can be lengthened by equivalence groupings. If an

equivalence grouping causes an entity to be relocated before the

first entity in COMMON, an error diagnostic occurs.

See the following page for examples of correct equivalence

grouping.

4-6

INTEGER I, A, ARRAY

REAL R(4)

COMPLEX CAREA

LOGICAL L

DOUBLE PRECISION DOUBLE(2), DARRAY

DIMENSION DARRAY(2)

DIMENSION I(4),A(3,2), L(4)

COMMON CAREA(2,2), I, DOUBLE

EQUIVALENCE (CAREA(2,l),R), (DOUBLE(2),DARRAY)

EQUIVALENCE (A (3,2), L(4))

Results in this COMMON and l
equivalenced area of 29 words

(26 words in original COMMON,

3 added by EQUIVALENCE).

Results in this non-COMMON

equivalenced area of six words.

!
A(l,l)

A(2,l)

A (3, 1) L (1)

A(l,2) L(2)

A(2,2) L (3)

A(3,2) L(4)

4-7

CARE A
(1, 1)

CA REA
R(l)

(2, 1)

R(2)

CA REA
R(3)

(1,2)
R(4)

CAREA
(2, 2)

I(l)

I(2)

I(3)

I(4)

DOUBLE
(1)

DOUBLE DARRAY
(2) (1)

DARRAY
(2)

DATA

PURPOSE: To define the initial values of variables, single array elements,

portions of arrays or entire arrays.

FORMAT:

k lists of names of variables, array elements or arrays

d = lists of constants (optionally signed) which can be

immediately preceded by an integer constant (followed

by an asterisk) identifying the number of times the

constant is to be repeated.

/ = separators, used to bound each constant list

COMMENTS: Mixed mode assignments are not permitted. The DATA statement

may only assign values that agree in mode to their identifiers.

Hollerith data can be assigned only to integer type variables

EXAMPLES:

or arrays.

If a list contains more than one entry, the entries must be

separated by commas. An initially-defined variable, array ele­

ment or array may not be in common, nor can it be a dummy argu­

ment.

DATA statements must come after all other specification state­

ments in the program.

NOTE: Unsubscripted array names are allowed in DATA statements.
If the array has n elements, the next n constants from
the list are used to initialize the array (in column
order). If the remainder of the constant list has m<n
elements in it, then only the first m elements of the
array are initialized.

DATA A,CARRAY(2,3,l)/6*0, (l.0,-2.39E-l)/

DATA FALSE,ARRAY/.FALSE., 2HIA/,D/-2.39D-Ol/

4-8

SECTION V

ASSIGNMENT STATEMENTS

Assignment statements are executable statements that assign values to vari­

ables and array elements. There are three types of assignment statements:

Arithmetic assignment statements

Logical assignment statements

ASSIGN TO statement

ARITHMETIC ASSIGNMENT STATEMENT

PURPOSE: Causes the value represented by an arithmetic expression to be

assigned to a variable.

FORMAT:
v = e

v a variable name or an array element name of any data

type except logical

e = any arithmetic expression

COMMENTS: v is altered according to the rules expressed in Table 5-1,

A variable must have a value assigned to it before it can be

referenced.

EXAMPLES:
K = 2HAB

A(I,J,K)=SIN(X)*2.5-A(2,l,3)

I=l

5-1

Table 5-1.

RULES FOR ASSIGNING e to v

If v Type Is And e Type Is The Assignment Rule Is

Integer Integer Assign

Integer Real Fix & Assign

Integer Double Precision Fix & Assign

Integer Complex Fix Real Part & Assign

Real

Real

Real

Real

Double

Double

Double

Double

Complex

Complex

Complex

Complex

NOTES:

Integer

Real

Double Precision

Complex

Precision Integer

Precision Real

Precision Double Precision

Precision Complex

Integer

Real

Double Precision

Complex

Float & Assign

Assign

DP Evaluate & Real Assign

Assign Real Part

DP Float & Assign

DP Evaluate & Assign

Assign

DP Evaluate Real Part & Assign

}
Convert & Assign

as Real Part With

Imaginary Part = 0

Assign

1. Assign means transmit the resulting value, without change, to

the entity.

2. Real Assign means transmit to the entity as much precision of the

most significant part of the resulting value as a real datum can

contain.

3. DP Evaluate means evaluate the expression then DP Float.

4. Fix means truncate any fractional part of the result and transform

that value to the form of an integer datum.

5. Float means transform the value to the form of a real datum.

6. DP Float means transform the value to the form of a double pre­

cision datum, retaining in the process as much of the precision

of the value as a double precision datum can contain.

5-2

PURPOSE:

LOGICAL ASSIGNMENT STATEMENT

Causes the value represented by the logical expression to be as­

signed to a simple or subscripted variable.

FORMAT:

v = e

v = a logical variable name or a logical array element

name

e = a logical expression

COMMENTS: A variable must have a value assigned to it before it can be

referenced.

EXAMPLES:

T = .TRUE.

FALSE = .FALSE.

T = A.LT.B

5-3

PURPOSE:

ASSIGN TO STATEMENT

Initializes an assigned GO TO statement variable reference by

storing in it the location of a statement label.

FORMAT:
ASSIGN k TO i

k a statement label

i an integer variable name

COMMENTS: After the ASSIGN TO statement is executed, any subsequent exe­

cution of an assigned GO TO statement using the integer variable

causes the statement identified by the assigned statement label

to be executed next.

EXAMPLES:

The statement label must refer to an executable statement in the

same program unit in which the ASSIGN TO statement occurs.

Once mentioned in an ASSIGN TO statement, an integer variable

may not be referenced in any statement other than an assigned

GO TO statement until it has been redefined.

ASSIGN 1234 TO ILABEL

GO TO !LABEL, (100,1234,200) (or, GO TO ILABEL)

1234 I l

5-4

SECTION VI

CONTROL STATEMENTS

Normally, a program begins with the execution of the first executable state­

ment in the program. When the execution of that statement is completed, the

next sequential executable statement is executed. This process continues

until the program ends.

A subprogram, if referenced, starts with its first executable statement,

then executes the next sequential executable statement, and so on, until it

returns control to the program statement which referenced it.

Control statements are executable statements that alter the normal flow of

a program or subprogram. There are eleven control statements in HP FORTRAN

IV.

GO TO (Unconditional)

GO TO (Assigned)

GO TO (Computed)

IF (Arithmetic)

IF (Logical)

CALL

RETURN

CONTINUE

PAUSE

STOP

DO

6-1

PURPOSE:

GO TO

UNCONDITIONAL

Causes the statement identified by the statement label to be

executed next.

FORMAT:

G TO k

k a statement label

COMMENTS: The program continues to execute from the statement identified

by k.

EXAMPLE:

GO TO 1234

6-2

PURPOSE:

GO TO

ASSIGNED

Causes the statement identified by the current value of an in­

teger variable reference to be executed next.

FORMAT:
GO TO i, (kl, k 2 , .•. , kn)

GO TO i

i an integer variable reference

k a statement label

COMMENTS: The current value of i must have been assigned by a previous
execution of an ASSIGN TO statement.

EXAMPLE:

The compiler does not check if i contains one of the state­
ment labels in the list; the list is for programmer's docu­
mentation purposes only.

ASSIGN 1234 TO ILABEL

GO TO ILABEL, (1234,200,100) (or, GO TO ILABEL)

6-3

PURPOSE:

GO TO

COMPUTED

Causes the statement identified by an indexed label from a

list of labels to be executed next.

FORMAT:

k = a statement label

e = an arithmetic expression

COMMENTS: The expression is evaluated, and converted to integer, if

EXAMPLE:

necessary.

If the expression value is less than one, statement k1 is

executed. If the expression value is greater than n,

statement k is executed. If 1 < e < n, statement k is
n e

executed.

GO TO (100,200,300), k

100 CONTINUE

200 CONTINUE

300 CONTINUE

(if k < 1)

(if k 2)

(if k > 3)

6-4

PURPOSE:

IF

ARITHMETIC

Causes one of two or three statements to be executed next, depend­

ing upon the value of an arithmetic expression.

FORMAT:
IF (e) k 1 , k 2 , k 3

IF (e) k1 , k 2

e = an arithmetic expression of type integer, real or

double precision.

k = a statement label

COMMENTS: When the statement contains three statement labels, the state­

ment identified by the label k 1 , k 2 , or k 3 is executed next if

the value of e is less than zero, equal to zero, or greater than

zero, respectively.

EXAMPLES:

When the statement contains two statement labels, the statement

identified by k 1 is executed next when the value of e is less

than zero; k 2 is executed next when the value of e is equal to

or greater than zero.

IF (A - B) 100, 200, 300

IF (SIN{X) - A*B) 100,200

6-5

PURPOSE:

IF

LOGICAL

Causes a statement to be executed next if a logical expression is

true, or causes one of two statements to be executed, depending

upon the value of the logical expression.

FORMAT:
IF (e) s

IF (e) k1 , k 2

s = an executable statement (except a DO or a logical IF)

e = a logical expression

k a statement label

COMMENTS: If the logical expression is true (first format), statements

is executed. If s does not transfer control elsewhere, execu­

tion then continues with the statement following the IF. If

EXAMPLES:

e is false, the statement s is not executed, but the next

sequential statement after the IF is executed.

If the logical expression is true (second format), statement

k1 is executed. If the logical expression is false, state­

ment k2 is executed.

IF (A .EQ. B) A= 1.0

IF (SIN{X) .LE. (A-B)) 100,200

6-6

CALL

PURPOSE: Causes a subroutine to be executed.

FORM.A.T:

CALL s

s = the name of a subroutine

a an actual argUiilent

••• 1 a)
n

COMMENTS: When the subroutine returns control to th.e main program, exe­

cution resumes at the statement following the CALL.

EXAMPLES:

An actual argument is a constant, a variable name, an array

name, an array element name, expression or subprogram name.

Actual arguments in a CALL statement must agree in order,

type and number with the corresponding dummy parameters in

a subroutine. (See Section IX.)

CALL MATRIX

CALL SUBR (I, J)

SUBROUTINE MATRIX

RETURN

END

SUBROUTINE SUBR (I,J)

RETURN

END

6-7

PURPOSE

RETURN

Causes control to return to the current calling program unit, if

it occurs in a function subprogram or a subroutine. Causes the

program to stop if it occurs in a main program.

FORMAT:

RETURN

COMMENTS: When the RETURN statement occurs in a subroutine, control returns

to the first executable statement following the CALL statement

that referenced the subroutine.

EXAMPLES:

When the RETURN statement appears in a function subprogram, con­

trol returns to the referencing statement. The value of the

function is made available in the expression which referenced

the function subprogram.

The END statement of a function subprogram or a subroutine is

also interpreted as a RETURN statement.

CALL MATRIX

I MIX(L,M)/A*B

REW RN

6-8

SUBROUTINE MATRIX

RETURN

END

INTEGER FUNCTION MIX(I,J)

MIX = I + J

REW RN

END

CONTINUE

PURPOSE: Causes continuation of the program's normal execution sequence.

FORMAT:
CONTINUE

COMMENTS: The CONTINUE statement can be used as the terminal statement in a

DO loop.

EXAMPLE:

If used elsewhere, the CONTINUE statement acts as a dummy state­

ment which causes no action on the execution of a program.

DO 5 I l, 5

5 CONTINUE

6-9

STOP

PURPOSE: Causes the program to stop executing.

FORMAT:

STOP n

STOP

n = an octal digit string of one to four characters

COMMENTS: When this statement is executed, STOP is printed on the teleprinter

output unit. If n is given, its value is also printed, after the

word STOP.

EXAMPLES:

STOP 1234

STOP

6-10

PURPOSE:

PAUSE

Causes the program to stop executing. Execution is resumable in

sequence.

FORMAT:
PAUSE

PAUSE n

n an octal digit string of one to four characters

COMMENTS: When this statement is executed, PAUSE is printed on the tele­

printer output unit. If n is given, its value is also printed,

after the word PAUSE.

EXAMPLES:

The decision to resume processing is not under program control.

To restart, a system directive must be issued by the system

operator.

PAUSE 1234

PAUSE

6-11

PURPOSE:

DO

To initiate and control the sequence of instructions in a pro­

grammed loop.

FORMAT:
DO n i

DO n i

n the statement label of an executable statement (called

the terminal statement)

i = a simple integer variable name (called the control variable)

ml an arithmetic expression (called the initial parameter)

m2 an arithmetic expression (called the terminal parameter)

m3 an arithmetic expression (called the step-size parameter)

COMMENTS: The terminal statement must physically follow and be in the

same program unit as the DO statement. The terminal statement

may not be any form of a GO TO, an arithmetic IF, a two-branch

logical IF, a RETURN, STOP, PAUSE, DO or a logical IF statement

containing any of these statements.

The initial, terminal and step-size parameters can be any arith­

metic expressions. However, if these expressions are not of

type integer, they are converted to integer (by truncation)

after they are evaluated.

If the step-size parameter is omitted (format 2), a value of +l

is implied for the step size.

NOTE: The step-size may be positive or negative, allowing
either incrementing or decrementing to the terminal
parameter value.

6-12

COMMENTS: The range of a DO statement is from (and including) the first

(cont.) executable statement following the DO to (and including) the

terminal statement of the DO.

When the range of one DO statement contains another DO statement,

the range of the contained DO must be a subset of the range of the

containing DO.

Succeeding executions of the DO loop do not cause re-evaluation of

the initial, terminal or step-size parameters. Therefore, any

changes made within the DO loop to the values of variables occur­

ing in these expressions do not affect the control of the loop's

execution. Only changes to the control variable itself or to

the incrementation or step-size parameters (if they are unsigned

simple integer variables) affect the loop's execution.

NOTE: A DO statement is executed at least once regardless
of the relationship of the initial parameter to the
terminal parameter.

If a subprogram reference occurs in the range of a DO, the actions

of that subprogram are considered to be temporarily within that

range.

When a statement terminates more than one DO loop, the label

of that statement may not be used in any GO TO or arithmetic

IF statement that occurs anywhere but in the range of the

most deeply nested DO that ends with that terminal statement.

6-13

EXAMPLES:
DO SI=l,5 DO 20 I=l,10,2 DO 20 I=l,10,2

5 CONTINUE DO 20 J=l,5 DO 15 J=2,5

20 CONTINUE 15 CONTINUE

20 CONTINUE

The following occurs when a DO statement is executed:

a. The control variable is assigned the value represented by the

initial parameter. The DO loop is executed at least once regard­

less of the relationship of the initial parameter to the terminal

parameter value.

b. The range of the DO is executed.

c. If control reaches the terminal statement, then after execution

of the terminal statement, the control variable of the most re­

cently executed DO statement associated with the terminal state­

ment is modified by the value represented by the associated step­

size parn.meter.

d. If the value of the control variable (after modification by the

step-size parameter) has not gone past the value represented by

the associated terminal parameter, then the action described

starting as step b. is repeated, with the understanding that the

range is that of the DO whose control variable has been most re­

cently modified. If the value of the control variable has gone

past the value represented by its associated terminal parameter,

then the DO is said to have been satisfied.

6-14

e. At this point, if there were one or more other DO statements

referring to the terminal statement in question, the control

variable of the next most recently executed DO statement is

modified by the value represented by its associated step-size

parameter and the action in step d. is repeated until all DO

statements referring to the particular terminal statement are

satisfied, at which time the first executable statement follow­

ing the terminal statement is executed.

f. Upon exiting from the range of a DO by the execution of a GO TO

or an arithmetic IF statement (that is, by exiting other than by

satisfying the DO), the control variable of the DO is defined

and is equal to the most recent value attained as defined in

steps a. through e.

6-15

SECTION VII

INPUT/ OUTPUT STATEMENTS

Input/output statements are executable statements which allow the transfer

of data records to and from external files and core memory, and the position­

ing and demarcation of external files. The HP FORTRAN IV input/output state­

ments are:

READ (Formatted Records)

WRITE (Formatted Records)

READ (Unformatted Records)

WRITE (Unformatted Records)

REWIND

BACKSPACE

ENDFILE

NOTE: All external files must be sequential files.

IDENTIFYING INPUT/OUTPUT UNITS

An input or output unit is identified by a logical unit number assigned to

it by the operating system. (See the DOS, RTE and DOS-M manuals for a de­

cription of logical units.) The logical unit reference may be an integer

constant or an integer variable whose value identifies the unit. Any vari­

able used to identify an input/output unit must be defined at the time of

its use.

IDENTIFYING ARRAY NAMES OR FORMAT STATEMENTS

The format specifier for a record or records may be an array name or the

statement label of a FORMAT statement (see Section VIII). If the format

specifier is an array name, the first part of the information contained in

the array must constitute a valid FORMAT specification: a normal FORMAT

statement less the statement number and the word "FORMAT."

If the format specifier is a FORMAT statement label, the identified state­

ment must appear in the same unit as the input or output statement.

7-1

INPUT/OUTPUT LISTS

An input list specifies the names of the variables, arrays and array elements

to which values are assigned on input. An output list specifies the refer­

ences to variables, arrays, array elements and constants whose values are

transmitted on output. Input and output lists have the same form, except

that a constant is a permissable output list element. List elements consist

of variable names, array names, array element names and constants (output

only), separated by commas. The order in which the elements appear in the

list is the sequence of transmission.

There are two types of input/output lists in HP FORI'RAN IV: simple lists

and DO-implied lists.

Simple Lists

A simple list, n, is a variable name, an array name, an array element name,

a constant (output only) or two simple lists separated by a comma. It has

the form:

n

n,n

DO- Imp l i ed Lis ts

A DO-implied list contains a simple list followed by a comma and a DO-implied

specification, all enclosed by parentheses. It has the form:

(n , i = m1 , m2 , m3)

n = a simple list

i = a control variable (a simple integer variable)

ml = the initial parameter (an arithmetic expression)

m2 = the terminal parameter (an arithmetic expression)

m3 = the step-size parameter (an arithmetic expression)

7-2

Data defined by the list elements is transmitted starting at the value of

m1 , in increments of m3 , until m2 is exceeded. If m3 is omitted, the step­

size is assumed to be +l.

The step-size parameter may be positive or negative, allowing incrementing

or decrementing to the terminal parameter value.

The elements of a DO-implied list are specified for each cycle of the

implied DO loop.

EXAMPLES:
Simple List DO-Implied List

A,B,C ((ARRAY(I,J),J=l,5),I=l,5)

READ (5, lO)A,B,C READ (5, 10) ((ARRAY (I, J), J=l, 5), I=l, 5)

Note: For output lists, signed or unsigned
constants are permitted as list
elements.

FORMATTED AND UNFORMATTED RECORDS

A formatted record consists of a string of the characters that are permissi­

ble in Hollerith constants. The transfer of such a record requires that a

format specification be referenced to supply the necessary positioning and

conversion specifications. The number of records transferred by the exe­

cution of a formatted READ or WRITE statement is dependent upon the list

and referenced format specification.

An unformatted record consists of binary values:.

7-3

READ

FORMATTED

PURPOSE: To read formatted records from an external file into core memory.

FORMAT:

u = an input unit

READ (u,f) k

READ (u,*) k

READ (u,f)

f = an array name or a FORMAT statement label

k = an input list

* specification for free-field input (no format statement)

COMMENTS: The format statement or specification (in an array) can be any­

where in the program unit.

EXAMPLES:

If free-field input is specified, the formatting is directed by

special characters in the input records; a FORMAT statement or

specification is not required.

READ (5,100) (A(I), I= 1, 20)

READ (5,200) A,L,X

READ (5,*) (A(J), J=l, 10)

READ (5,ARRAY)

READ (5,100) ((A(I,J),I=l,5),J=l,20)

7-4

WRITE

FORMATTED

PURPOSE: To write formatted records from core memory to an external file.

FORMAT:
WRITE (u,f) k

WRITE (u, f)

u = an output unit

f = an array name or a FORMAT statement label

k an output list

COMMENTS: The format statement or specification (in an array) can be any­

where in the program unit.

EXAMPLES:
WRITE (2,200) A, L, X

WRITE (2, ARRAY)

7-5

READ

UNFORMATTED

PURPOSE: To read one unformatted record from an external file.

FORMAT:
READ (u) k

READ (u)

u = an input unit

k = an input list

COMMENTS: The sequence of values required by the list may not exceed the

sequence of values from the unformatted record.

EXAMPLES:

READ (u) causes a record to be skipped.

READ (5) A, L, X

READ (5)

7-6

WRITE

UNFORMATTED

PURPOSE: To write one unformatted record from core memory to an external

file.

FORMAT:
WRITE (u) k

u = an output unit

k = an output list

COMMENTS: This statement transfers the next binary record from core memory

to unit u from the sequence of values represented by the list k.

EXAMPLES:
WRITE (2) A, L, X

7-7

REWIND, BACKSPACE, ENDFILE

PURPOSE: These statements are used for magnetic tape files. REWIND is

used to rewind a tape to the beginning of tape. BACKSPACE is

used to backspace a tape file one record. ENDFILE is used to

write an end-of-file record on a tape file.

FORMAT:
REWIND u

BACKSPACE u

ENDFILE u

u = an input/output unit

COMMENTS: If the magnetic tape unit is at beginning of tape when a REWIND

or a BACKSPACE statement is executed, the statement has no effect.

EXAMPLES:
BACKSPACE 2

ENDFILE I

REWIND 5

7-8

FREE FIELD INPUT

By following certain conventions in the preparation of his input data, a HP

FORTRAN IV programmer can write programs without using an input FORMAT state­

ment. The programmer uses special characters included within input data

items to direct the formatting of records.

Data records composed this way are called free field input records, and can

be used for numeric input data only. Free field input is indicated in a

formatted READ statement by using an asterisk (*) instead of an array name

or a FORMAT statement label.

The special characters used to direct the formatting of free field input

records are:

space or ,

I
+ or -

E + -

@

II II

Data Item Delimiters

data item delimiters

record terminator

sign of item

floating point number

octal integer

comments

A space or a comma is used to delimit a contiguous string of numeric and

special formatting characters (called a data item), whose value corresponds

to a list element. A data item must occur between two commas, a comma and

a space or between two spaces. (A string of consecutive spaces is equiva­

lent to one space.) Two consecutive commas indicate that no data item is

supplied for the corresponding list element, i.e., the current value of the

list element is unchanged. An initial comma causes the first list element

to be skipped.

7-9

EXAMPLES:
100 READ (5,*) I, J, K, L

Input data items:

1720,1966,1980,1492

Result:

I

J

K

L

1720

1966

1980

1492

200 READ (5,*) I, J, K, L

Input data items:

,,1794,2000

Result:

I = 1720

J 1966

K = 1794

L = 2000

Record Terminator

A slash within a record causes the next record to be read immediately; the

remainder of the current record is skipped.

EXAMPLE:
READ (5,*) I, J, K, L, M

Input data items:

987,654,321,123/DESCENDING

456

Result:

I 987

J = 654

K = 321

L 123

M 456

NOTE: If the input list requires more than one
external input record, a slash (/) is
required to terminate each of the input
records except the last one.

7-10

Sign of Data Item

Data items may be signed. If they are not signed, they are assumed to be

positive.

Floating Point Number Data Item

A floating point data item is represented in the same form as E-TYPE con­

version of an external real number on input. (See Section VIII.) If the

decimal point is not present, it is assumed to follow the last digit of

the number.

Octal Data Item

The symbol @ is used to indicate an octal data item. List elements

corresponding to the octal items must be type integer.

EXAMPLE:

READ (5,*) I, J, K

Input Data Items:

@177777, @O, @5555

Result:

I = l 77777B

J 0

K = 5555B

7-11

Comment Delimiters

Quotation marks (" ••• ") are used to bound comments; characters appearing

between quotation marks are ignored.

EXAMPLE:

READ (5,*) I, J, K, L

Input Data Items:

123, 456, "ASCENDING"l23, 456

Result:

I = 123

J = 456

K = 123

L = 456

7-12

SECTION VIII

THE FORMAT STATEMENT

There are three ways a user can transfer data records to and from core

memory using READ and WRITE statements (described in Section VII).

a. As "free field input" when the input data itself contains

special characters that direct the formatting of the records

in core memory. (See "Free Field Input.")

b. As unformatted input or output records containing strings of

binary values. (See "READ (Unformatted)" and "WRITE

(Unformatted) • ")

c. As formatted input or output records.

and "WRITE (Formatted).")

(See "READ (Formatted)"

When a formatted READ or WRITE statement is executed, the actual number of

records transferred depends upon:

a. The elements of an input/output list (if present), which

specify the data items involved in the transfer, and

b. A format specification for the list element(s), which

defines the positioning and conversion codes used for the

string of characters in a record.

A format specification for a formatted READ or a formatted WRITE list

element can be defined in either:

a. A FORMAT statement, or

b. An array, the first elements of which contain a valid format

specification constructed according to the rules of a FORMAT

statement (minus the FORMAT statement label and the "FORMAT").

The FORMAT statement and its components are described in the following

pages.

8-1

PURPOSE:

FORMAT

The FORMAT statement is a non-executable statement that provides

format control for data records being transferred to and from

core memory by defining a format specification for each record.

FORMAT:
label FORMAT (q t z t z

1 1 1 2 2

label = a statement label.

t z
n n

q = a series of slashes (optional)

t a field descriptor, or a group of field descriptors

z = a field separator

COMMENTS: A FORMAT statement must be labeled.

EXAMPLES:

When a formatted READ statement is executed, one record is read

when format control is initiated; thereafter, additional records

are read only as the format specification(s) demand. When a for­

matted WRITE statement is executed, one record is written each

time a format specification demands that a new record be started.

READ(5,100)A,B,C WRITE(2,200)A,L,X

100 FORMAT (2F5.l, F6.2) 200 FORMAT (FS.l, IlO, F6.4)

The components of a format specification (field separators, field descriptors,

scale factor, repeat specification and conversion codes) are described in

the following pages.

8-2

FIELD DESCRIPTOR

PURPOSE: To provide the elements that define the type, magnitude and

method of conversion and editing between input and output.

FORMAT: One of the following conversion and editing codes:

Integer data: riw Octal data: r@w

Real data: srEw.d
rKw

srFw.d
row

srGw.d Hollerith

Double pre-
data: rAw

cision data: srDw.d
rRw

Logical data: rLw
wHh1h 2 h w

Blank data: wx r"h h h
1 2 w

Complex data: sEw.d,Ew.d

w a positiye integer constant, representing the length of

the field in the external character string.

s = a scale factor designator (optional for real and double

precision type conversions).

II

r = a repeat specification, an optional positive integer

constant indicating the number of times to repeat the

succeeding field descriptor or group of field descriptors.

h = any character in the FORTRAN character set.

d = an non-negative integer constant representing the number

of digits in the fractional part of the external charac­

ter string (except for G-type conversion codes).

a decimal point.

The characters F, E, G, I, @, K, O, L, A, R, H, ", and X

indicate the manner of conversion and editing between the

internal and external character representations, and are

called the conversion codes.

8-3

COMMENTS: For all field descriptors, except "h1 h 2 • • . hw" the field length

(w) must be specified, and must be greater than or equal to d.

EXAMPLES:

For field descriptors of the form w.d, the d must be specified,

even if it is zero.

A basic field descriptor is a field descriptor unmodified by the

scale factor (s) or the repeat specification (r).

The internal representation of external fields corresponds to the

internal representation of the corresponding data type constants.

A numeric input field of all blanks is treated as the number zero.

The use of a decimal point in the input data field overrides the

d portion of a floating point conversion format.

Negative numbers are output with a minus sign.

If the output field is larger than that required by the datum

being written, the datum is right-justified in the output field.

The number of characters produced by an output conversion must

not exceed the field width (w). If the characters produced do

exceed the field width, the field is filled with the currency

symbol $.

2!10 2@2

E20.l0 2K2

FS.l 202

G20.10 2A2

Dl0.2 2R2

El0.4, El0.4 2HAB

2X "ABCD"

8-4

PURPOSE:

RE PEAT SPECIFICATION

Allows repetition of field descriptors through the use of a

repeat count preceding the descriptor. The specified con­

version is interpreted repetitively, up to the specified

number of times.

FORMAT:
r (basic field descriptor)

r an integer constant, called the group repeat count.

COMMENTS: All basic field descriptors may have group repeat counts,

except these codes: wH or wx.

EXAMPLES:

A further grouping may be formed by enclosing field descriptors,

field separators, or basic groups within parentheses, and by

specifying a group repeat count for the group. The depth of

this grouping is limited to the fourth level.

The parentheses enclosing the format specification are not

group deliniating parentheses.

2Il0

6El4.6

4(El0.4, El0.4)

3/

8-5

PURPOSE:

I-TYPE CONVERSION

INTEGER NUMBERS

Provides conversion between an internal integer number and an

external integer number.

FORMAT:

COMMENTS:

EXAMPLES:

r I w

r = a repeat specification (optional)

w = length of external field

Input: The external input field contains a character string

in the form of an integer constant or a signed integer

constant. Blank characters are treated as zeros.

Output: The external output field consists of blanks, if

necessary, a minus (if the value of the internal

datum is negative), and the magnitude of the internal

value converted to an integer constant, right­

justified in the field.

If the output field is too short, the field is

filled with the currency symbol $.

See the next page.

8-6

EXAMPLES: (Cont.)

INPUT:

External Field Format Internal Number

-Al23 IS -123

12003 IS 12003

Al02 I4 102

3 Il 3

OUTPUT:

Internal Number Format External Field

-1234 IS -1234

+12345 IS 1234S

+12345 I4 $$$$

+1234S I6 Al2345

8-7

PURPOSE:

SCALE·FACTOR

Provides a means of normalizing the number and exponent parts of

real or double precision numbers specified in a FORMAT statement.

FORMAT:
nP

n = an integer constant or a minus sign followed by

an integer constant.

P = the scale factor indi.cator, the character P

COMMENTS: When format control is initialized, a scale factor of zero is

established. Once a scale factor has been established, it

applies to all subsequent real and double precision conversions

until another scale factor is encountered.

Input:

Output:

EXAMPLES:

When there is no exponent in the external field, the relation­

ship between the externally represented number (E) and the

internally represented number (I) is this:

I = E * 10-n

When there is an exponent in the external field, the scale

factor has no effect.

For E- and D- type output, the basic real constant part (I) of

the output quantity is multiplied by !On and the exponent is

reduced by n. For G-type output, the effect of the scale factor

is suspended unless the magnitude of the datum to be converted

is outside the range that permits effective F-type conversion.

See the next page.

8-8

EXAMPLES: (Cont.)

INPUT:

External Field Format Internal Number

528.6 lPFl0.3 52.86

.5286E+03 lPGl0.3 528.6

528.6 -2PD10.3 52860.

OUTPUT:

Internal Number Format External Field

528.6 1PF8. 2 A5286.00

. 5286 2PE10.4 52.860E-02

5. 286 -lPDl0.4 A.0529D+02

52.86 lPGl0.3 AA52.9AAAA

-5286. lPGl0.3 -5.286E+03

8-9

PURPOSE:

E-TYPE CONVERSION

REAL NUMBERS

Provides conversion between an internal real number and an

external floating-point number.

FORMAT:

COMMENTS:

EXAMPLES:

s r E w. d

s = a scale factor (optional)

r = a repeat specification (optional)

w = the length of the external field

the decimal point

d = the total number of digits to the right of the

decimal point in the external field.

Input: The external input field may contain an optional sign,

followed by a string of digits optionally containing

a decimal point, followed by an exponent, in one of

the following forms: a signed integer constant; or

E followed by an integer constant or a signed integer

constant.

Output: The external output field may contain a minus sign (or

a blank, if the number is positive), a zero, a decimal

point, the most significant rounded digits of the internal

value, the letter E and a decimal exponent (which is

signed if it is negative).

See the next page.

8-10

EXAMPLES: (Cont.)

INPUT:

External Field Format Internal Number

123.456E6 E9.3 123456000

.456E6 E6.5 456000

• 456 E4.3 .456

123E6 E5.0 123000000

123 E3.l 12.3

E6 E9.3 0

E9.3 0

OUTPUT:

Internal Number Format External Field

+12.34 El0.3 A A .123E+02

-12.34 El0.3 A-.123E+02

+12. 34 El2.4 AAA•l234E+02

-12.34 El2.4 AA-.1234E+02

+12.34 E7.3 .12E+02

+12. 34 E5.l $$$$$

8-11

PURPOSE:

F-TYPE CONVERSION

REAL NUMBERS

Provides conversion between an internal real number and an

external fixed-point number.

FORMAT:

COMMENTS:

EXAMPLES:

s r F w . d

s = a scale factor (optional)

r = a repeat specification (optional)

w = the length of the external field

= the decimal point

d = the total number of digits to the right of the

decimal point in the external field

Input: The external input field is the same as for E-TYPE

conversion.

Output: The external output field may contain blanks, a minus

(if the internal value is negative), a string of digits

containing a decimal point (as modified by the scale

factor) rounded to d fractional digits.

See the next page.

8-12

EXAMPLES: (Cont.)

INPUT: Same as in E-TYPE conversion, except "F" replaces "E"
in the format specification.

OUTPUT:

Internal Number Format External Field

+12. 34 Fl0.3 AAAA12,340

-12.34 Fl0.3 AAA-12.340

+12.34 Fl2.3 AAAAAA12.340

-12.34 Fl2.3 AAAAA-12,340

+12.34 F4.3 12.3

+12345.12 F4.3 $$$$

8-13

G-TYPE CONVERSION

REAL NUMBERS

PURPOSE: Provides conversion between an internal real number and an

external floating-point or fixed-point number.

FORMAT:

COMMENTS:

Input:

Output:

EXAMPLES:

s r G w . d

s = a scale factor (optional)

r a repeat specification (optional)

w = the length of the external field

the decimal point

d the total number of digits to the right of the

decimal point in the external field.

The external input field is the same as for E-TYPE conversion.

The external output field depends upon the magrtitude of the

real data being converted, and follows these rules:

Magnitude Of Data

0.1 < N <l

1 <N <10 -

lOd-2 < N < lOd-1

lOd-1 < N < lOd

otherwise

See the next page.

8-14

Equivalent Conversion

F(w-4).d,4X

F (w-4). (d-1) ,4X

F(w-4).l,4X

F(w-4).0,4X

SEw.d

EXAMPLES: (Cont.)

INPUT: Same as for E-TYPE conversion, except

OUTPUT:

Format

Gl0.3

that "G" replaces "E" in the format specification.

Internal Number

.05234

.5234

52.34

523.4

5234.

8-15

External Field

AA.523E-01

AAo523AAAA

AA523.AAAA

AA.523E+04

PURPOSE:

D-TYPE CONVERSION

DOUBLE PRECISION NUMBERS

Provides conversion between an internal double precision number

and an external floating-point number.

FORMAT:

COMMENTS:

EXAMPLES:

s r D w . d

s = a scale factor (optional)

r a repeat specification (optional)

w the length of the external field

the decimal point

d = the total number of digits to the right of the

decimal point in the external field.

Input: The external input field is the same as for E-TYPE

conversion.

Output: The external output field is the same as for E-TYPE

conversion, except that the character D replaces the

character E in the exponent.

INPUT: Same as in E-TYPE conversion except "D" replaces "E. "

OUTPUT: Same as in E-TYPE conversion except "D" replaces "E."

8~16

PURPOSE:

COMPLEX CONVERSION

COMPLEX NUMBERS

Provides conversion between an internal ordered pair of real

numbers and an external complex number.

FORMAT:

COMMENTS:

EXAMPLES:

A complex datum consists of a pair of separate real data.

The total conversion is specified by two real field de­

scriptors, interpreted successively. The first descriptor

supplies the real part; the second, the imaginary part.

Input: Same as for any pair of real data.

Output: Same as for any pair of real data.

See E-, F- and G-TYPE conversions.

8-17

PURPOSE:

L-TYPE CONVERSION

LOGICAL NUMBERS

Provides conversion between an external field representing a

logical value and an internal logical datum.

FORMAT:

COMMENTS:

EXAMPLES:

L w

w the length of the external field.

Input: The external input field consists of optional blanks

followed by a T or an F followed by optional characters,

representing the values true or false, respectively.

Output: The external output field consists of w - 1 blanks

followed by a T or an F as the value of the internal

logical datum is true or false, respectively.

INPUT:

External Field Format Internal Number

A TRUE LS lOOOOOB

A AAA.AF L6 0

OUTPUT:

Internal Number Format External Field
0 (or positive) L3 AAF
(negative) Ll T

8-18

PURPOSE:

@-TYPE, K-TYPE AND 0-TYPE CONVERSIONS

OCTAL NUMBERS

Provides conversion between an external octal number and an

internal octal datum.

FORMAT:
r @ w

rKw

r O w

r = a repeat specification (optional)

w = the width of the external field in octal digits.

COMMENTS: List elements must be of type integer.

Input: If w ~ 6, up to six octal digits are stored; non-octal digits

are ignored. If the value of the octal digits within the field

is greater than 177777, results are unpredictable. If w < 6 or

if less than six octal digits are encountered in the field, the

number is right-justified with zeros to the left.

Output:

EXAMPLES:

If w ~ 6, six octal digits are written right-justified in the

field with blanks to the left. If w < 6, the w least significant

octal digits are written.

See the next page.

8-19

EXAMPLES: (Cont.)

INPUT:

External Field Format Internal Number

123456 @6 123456

-123456 07 123456

2342342342 2K5 023423 and 042342

,396E-05 2@4 000036 and 000005

OUTPUT:

Internal Number Format External Field

99 K6 AAA143

99 02 43

-1 @8 AA! 77777

32767 @6 A 77777

8-20

PURPOSE:

A-TYPE CONVERSION

HOLLERITH INFORMATION

Allows a specified number of Hollerith characters to be read

into, or written from, a specified list element.

FORMAT:

COMMENTS:

EXAMPLES:

r Aw

r = a repeat specification, (optional)

w the length of the Hollerith character string.

Input: If w : 2, the rightmost two characters are taken from

the external input field. If w = 1, the character

appears left-justified in the word, with a trailing

blank.

Output: If w > 2, the external output field consists of w - 2

blanks, followed by two characters from the internal

representation. If w = 1, the character in the left

half of the word is written.

See the next page.

8-21

EXAMPLES: (Cont.)

INPUT:

External Field

XYZ

XYZ

x

OUTPUT:

Internal Value

XY

XY

XY

Format

A2

A3

Al

Format

A2

A4

Al

8-22

Internal Value

XY

YZ

x,,,

External Field

XY

,,,,,,XY

x

PURPOSE:

R-TYPE CONVERSION

HOLLERITH INFORMATION

Allows a specified number of Hollerith characters to be read

into, or written from, a specified list element.

FORMAT:

COMMENTS:

rRw

r = a repeat specification (optional)

w = the length of the Hollerith character string.

The Rw descriptor is equivalent to the Aw descriptor, except

that single characters are right-justified in the word with

leading binary zeros (on input); and on output, if w = 1,

the character in the right half of the word is written.

NOTE: The HP FORTRAN conversion Aw is replaced by the HP
FORTRAN IV conversion Rw: a single character
stored in a word under R format control is placed
in the right half of the word with zeroes to the
left half. On output, using the Rw format, the
right half of the word is written.

EXAMPLES: see the next page.

NOTE: The FORTRAN IV program can be modified at run-time
to interpret A as in HP FORTRAN if the user calls
the OLDIO entry point:

CALL OLDIO

To change back to a HP FORTRAN IV A conversion,
the user calls the NEWIO entry point:

CALL NEWIO

8-23

EXAMPLES: (Cont.)

INPUT:

External Field Format Internal Value

XYZ R2 XY

XYZ R3 YZ

x Rl OX

OUTPUT:

Internal Value Format External Field

XY R2 XY

XY R4 AAXY

XY Rl y

8-24

PURPOSE:

wH EDITING

HOLLERITH INFORMATION

Allows Hollerith information to be read into, or written from,

the characters following the wH descriptor in a format specifi-

cation.

FORMAT:

COMMENTS:

EXAMPLES:

w a nonzero positive integer constant equal to the total

number of h's

h any character in the HP ASCII character set.

Input: The characters in the external field (h1 to hw) replace

the characters in the field specification.

Output: The characters in the field specification are written

to an output file.

INPUT:

External Field

PACKARD

OUTPUT:

Format

7HHEWLETT

Format

7HPACKARD

8-25

Resulting Internal Value
of Formatted Item

7HPACKARD

External Field

PACKARD

PURPOSE:

" ... " EDITING

HOLLERITH INFORMATION

Allows Hollerith information to be written from the characters

enclosed by the quotation marks in a format specification.

FORMAT:
11 h h h II

r 1 2 • · • w

h any character in the FORTRAN character set,

except 11

r = a repeat count.

COMMENTS: Input: The number of characters within the quotation

marks is skipped (equivalent to wX).

EXAMPLES:

Output: Is equivalent to wH, with a repeat specification

capability added.

OUTPUT:

Format External Field

11 ABZ 11 ABZ

II II

211***11 ******

8-26

PURPOSE:

X-TYPE CONVERSION

SKIP OR BLANKS

Allows a specified number of characters to be skipped (input)

or allows a specified number of blanks to be inserted (output).

FORMAT:

COMMENTS:

EXAMPLES:

w x

w a positive integer constant

Input: In the external input field, w characters are skipped.

Output: In the external output field, w blanks are inserted.

14X

2X

8-27

FIELD SEPARATOR

PURPOSE: To separate each field descriptor, or group of field descriptors

in a FORMAT statement.

FORMAT:
I or ,

COMMENTS: A repeat count can be specified immediately preceding the slash

(/) field separator. Each slash terminates a record. A series

of slashes causes records to be skipped on input, or lines to

be skipped on an output listing.

EXAMPLES:
READ (5,lOO)A,B

100 FORMAT (F5.l,F7.3)

READ (5I101) A,B

101 FORMAT (F5.l/F7.3)

READ (5,102)A,B

102 FORMAT (//A///B//)

WRITE (6,lOO)A,B

WRITE (6,lOl)A,B

WRITE (6,102) A,B

}
}

}

}

Causes A and B to be read from one record.

Causes A and B to be read from two

consecutive records.

Causes two records to be skipped, A to be

read from the third record, two more

records to be skipped, B to be read from

the sixth record and one additional record

to be skipped.

Causes A and B to be printed on the same

line.

Causes A and B to be printed on two con­

secutive lines.

Causes two lines to be skipped, A to be

printed on the third line, two more lines

to be skipped, B to be printed on the

sixth line and one more additional line

to be skipped.

8-28

SECTION IX

FUNCTIONS AND SUBROUTINES

An executable FORTRAN IV program consists of one main program with or with­

out subprograms. Subprograms, which are either functions or subroutines,

are sets of statements that may be written and compiled separately from the

main program.

A main program calls or references subprograms; subprograms can call or

reference other subprograms as long as the calls are non-recursive. That is,

if subprogram A calls subprogram B, subprogram B may not call subprogram A.

Furthermore, a program or subprogram may not call itself. A calling program

is a main program or subprogram that refers to another subprogram.

Main programs and subprograms communicate by means of arguments (parameters) .

The arguments appearing in a call or a reference are cailed actual argu­

ments. The corresponding parameters appearing within the called or refer­

enced definition are called dummy arguments.

FUNCTIONS

If the value of one quantity depends on the value of another quantity,

then it is a function of that quantity. Quantities that determine the

value of the function are called the actual arguments of the function.

In HP FORTRAN IV, there are three types of functions (collectively called

function procedures); they supply a value to be used at the point of refer­

ence.

a. A statement function is defined and referenced internally in

a program unit.

b. A FORTRAN IV library function is processor-defined externally

to the program unit that references it. The FORTRAN IV functions

are stored on an external disc or tape file.

9-1

c. A function subprogram is user-defined externally to the program

unit that references it. The user compiles function subprograms,

loads them with his calling program unit and references them the

same way he references FORTRAN IV library functions.

SUBROUTINES

The HP FORTRAN IV user can compile a program unit and store the resultant

object program in an external file. If the program unit begins with a

SUBROUTINE statement and contains a RETURN statement, it can be called as

a subroutine by another program unit.

DATA TYPES FOR FUNCTIONS AND SUBROUTINES

All functions are identified by symbolic names.

A symbolic name that identifies a statement function may have its data type

specified in a TYPE- statement. In the absence of an explicit declaration

in a TYPE- statement, the type is implied by the first character of the name:

I, J, K, L, Mor N

any other letter

integer type data

real type data

A symbolic name that identifies a FORTRAN IV function has a predefined data

type associated with it, as explained in Table 9-1.

A symbolic name that identifies a function subprogram may have its data type

specified in the FUNCTION statement that begins the subprogram. In the ab­

sence of an explicit declaration in the FUNCTION statement, the data type is

implied by the first character of the name, as for statement functions. A

function subprogram which has been explicitly typed in its FUNCTION statement

must also have its name identically typed in each program unit which calls it.

The symbolic names which identify subroutines are not associated with any

data type.

9-2

DUMMY ARGUMENTS

Dwnrny arguments are identified by symbolic name. They are used in functions

and subroutines to identify variables, arrays, other subroutines or other

function subprograms. The dummy arguments indicate the type, order and

number of the actual arguments upon which the value of the function depends.

When a variable or an array reference is specified by symbolic name, a dummy

argument can be used, providing a value of the same type is made available

through argument association.

When a subroutine reference is specified by the symbolic name, a dummy argu­

ment can be used if a subroutine name is associated with that dummy argument.

When a function subprogram reference is specified by symbolic name, a dummy

argument can be used if a function subprogram name is associated with that

dummy argument.

9-3

PURPOSE:

STATEMENT FUNCTION

To define a user-specified function in a program unit for later

reference in that program unit.

FORMAT:
f (a 1 , a 2 , .•. , an) = e

f the user-specified function name, a symbolic name

a = a distinct variable name (the dummy arguments of the

function)

e = an arithmetic or logical expression

COMMENTS: The statement function is referenced by using its symbolic name,

with an actual argument list, in an arithmetic or logical ex­

pression.

EXAMPLES:

In a given program unit, all statement function definitions must

precede the first executable statement of the program unit and

must follow any specification statements used in the program

unit.

The name of a statement function must not be a variable name or

an array name in the same program unit.

ISUM(I,J,K) I+J+K

ff

ROOTl(A,B,C) = (-B+SQRT(B**2-4.0*A*C))/(2.0*A)

L = ISUM(M**2,1,M-l)

ff

R = ROOTl (X,Y,Z)

9-4

Defining Statement Functions

The names of dummy arguments may be identical to variable names of the same

type that appear elsewhere in the program unit, since they bear no relation

to the variable names.

The dummy arguments must be simple variables; they represent the values

passed to the statement function. These values are used in an expression

to evaluate the user-specified function. Dummy arguments cannot be used to

represent array elements or function subprograms.

Aside from the dummy arguments, the expression may contain only these values:

Constants

Variable references (both simple and subscripted)

FORTRAN IV library function references

External function references

References to previously-defined statement functions in the

same program

Referencing Statement Functions

When referenced, the symbolic name of the statement function must be immedi­

ately followed by an actual argument list.

The actual arguments constituting the argument list must agree in order,

number and type with the corresponding dummy arguments. An actual argument

in a statement function reference may be an expression of the same type as

the corresponding dummy argument.

When a statement function reference is executed, the actual argument values

are associated with the corresponding dummy arguments in the statement

function definition and the expression is evaluated. Following this, the

resultant value is made available to the expression that contained the state­

ment function reference.

9-5

PURPOSE:

FORTRAN IV LIBRARY FUNCTION

To reference a processor-defined function by specifying its sym­

bolic name in an arithmetic or logical expression. The value is

made available at the point of reference.

FORMAT:

An arithmetic or logical expression that

contains the symbolic name of the FORTRAN

IV function (together with an actual argument list)

as a primary.

COMMENTS: Table 9-1 contains the FORTRAN IV library functions available

with the HP FORTRAN IV Compiler.

EXAMPLES:

The symbolic name for the function cannot appear in a TYPE- state­

ment which defines the name as a data type different from that

specified for the function in Table 9-1 unless the user supplies

his own version of the FORTRAN IV library function.

NOTE: HP FORTRAN IV makes no distinction between "intrinsic"
and "external" functions.

X SIN (Y)

I = IFIX (X)

9-6

TABLE 9-1

FORTRAN IV LIBRARY FUNCTIONS

Number of symbolic Type of:
FORTRAN IV Function Definition Arguments Name Argument Function

Absolute Value [a[1 ABS Real Real+

IABS Integer Integer+

DABS Double Double

Truncation Sign of a times 1 AINT Real Real+

largest integer INT Real Integer+

< [a[- IDINT Double Integer

Remaindering* al (mod a2) 2 AMOD Real Real*

MOD Integer Integer*

Choosing Largest Value Max (al' a2, ...) >2 AMAX!ii Integer Real

AMAXl Real Real

MAX!il Integer Integer

MAXl Real Integer

DMAXl Double Double

Choosing Smallest Value Min (al' a2, ...) >2 AMINJ<1 Integer Real

AMINl Real Real

MIN!il Integer Integer

MINl Real Integer

DMINl Double Double

Float Conversion from 1 FLOAT Integer Real+

integer to real

Fix Conversion from 1 IFIX Real Integer+

real to integer

Transfer of Sign Sign of a 2 times 2 SIGN Real Real+

I a 1 l I SIGN Integer Integer+

DSIGN Double Double

Positive Difference a 1 - Min (al' a2) 2 DIM Real Real

IDIM Integer Integer

Obtain Most Significant 1 SNGL Double Real

Part of Double Precision

Argument

Obtain Real Part of Complex 1 REAL Complex Real

Argument

Obtain Imaginary Part of 1 AIMAG Complex Real

Complex Argument

Express Single Precision 1 DBLE Real Double

Argument in Double

Precision Form

9-7

FORTRAN IV Function

Express Two Real Arguments

in Complex Form

Obtain Conjugate of a

Complex Argument

Exponential

Natural Logarithm

Common Logarithm

Trigonometric Sine

Trigonometric Cosine

Trigonometric Tangent

Hyperbolic Tangent

Square Root

Arctangent

Remaindering*

Modulus

Logical Product

Logical Sum

Complement

Sense Switch Register

Switch (n)

TABLE 9-1 (cont.)

FORTRAN IV LIBRARY FUNCTIONS

Definition

al + a2 •. /:l

a
e

loge (a)

log10 (a)

sin(a)

cos (a)

tan(a)

tanh(a)

(a)l/2

arctan(a)

arctan (a /a)
1 2

al (mod a 2)

i.j

i+j

i

Number of
Arguements

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

1

2

2

1

1

9-8

Symbolic
Naine

CMPLX

CON JG

EXP

DEXP

CEXP

ALOG

DLOG

CLOG

ALO GT

DLOGT

SIN

DSIN

CSIN

cos

DCOS

ccos

TAN

TANH

SQRT

DSQRT

CSQRT

ATAN

DATAN

ATAN2

DATN2

DMOD

CABS

IAND

IOR

NOT

ISSW

Type of:
Argument Function

Real Complex

Complex Complex

Real Real+

Double Double+

Complex Complex+

Real Real+

Double Double+

Complex Complex+

R~al Real+

Double Double+

Real Real+

Double Double

Complex Complex+

Real Real+

Double Double

Complex Complex+

Real Real+

Real Real+

Real Real+

Double Double+

Complex Complex

Real Real+

Double Double

Real Real

Double Double

Double Double*

Complex Real

Integer Integer+

Integer Integer+

Integer Integer+

Integer Integer+

*The functions MOD, AMOD and DMOD are defined as a 1-[a1/a2]a2

where [X] is the largest integer whose magnitude does not exceed

the magnitude of X and whose sign is the same as the sign of x.

+ These FORTRAN IV functions have different entry points when

called by value and called by name. See the Relocatable

Subroutines manual for a complete description of each entry

point.

9-9

PURPOSE:

FUNCTION SUBPROGRAM

To define a user-specified subprogram that supplies a function

value when its symbolic name is used as a reference.

FORMAT:
t FUNCTION f (a1 , a 2 , ... , an)

t = omitted, or one of the following data type identifiers

REAL

INTEGER

DOUBLE PRECISION

COMPLEX

LOGICAL

f the symbolic name of the function

a = a dununy argument.

COMMENTS: The FUNCTION statement must be the first statement of a function

EXAMPLES:

subprogram. A function subprogram is referenced by using its

symbolic name (together with an actual argument list) as a prim­

ary in an arithmetic or logical expression in another program unit.

A function subprogram may not be called recursively.

VAR= USERl(X,Y,Z)**USER2(X,Y) REAL FUNCTION USERl(A,B,C)

9-10

USERl A+B/C

RETURN

END

REAL FUNCTION USER2(VARR1, VARR2)

USER2

RETURN

END

VARR1-VARR2

Defining Function Subprograms

The symbolic name of the function subprogram must also appear as a variable

name in the defining subprogram. During every execution of the subprogram,

this variable must be defined, and, once defined, may be referenced or re­

defined. The value of the variable at the time of execution of any RETURN

statement in this subprogram is called the value of the function.

The symbolic name of the function subprogram must not appear in any non­

executable statement in this program unit, except as a symbolic name of the

function subprogram in the FUNCTION statement.

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,

COMMON or DATA statement in the function subprogram.

A dummy parameter can be used to dimension an array name, which also appears

as a dummy parameter of the function. An array which is declared with dummy

dimensions in a function must correspond to an array which is declared with

constant dimensions (through some sequence of argument association) in a

calling program unit. An array declared with dummy dimensions may not be

in COMMON.

The symbolic name of a dummy argument may represent a variable, array, a

subroutine or another function subprogram.

The function subprogram may contain any statements except PROGRAM, SUBROUTINE,

another FUNCTION statement, or any statement that directly or indirectly

references the function being defined.

The function subprogram may define or redefine one or more of its arguments

to return results as well as the value of the function. Therefore, the user

must be aware of this when writing his programs. For example, a function

subprogram that defines the value of GAMMA as well as finding the value of

ZETA could be coded:

9-11

FUNCTION ZETA (BETA, DELTA, GAMMA)

A = BETA**2 - DELTA**3

GAMMA = A*5.2

ZETA = GAMMA**2

RETURN

END

Then, a program referencing the function could be:

GAMMB = 5.0

RSLT = GAMMB+7. 5 + ZETA (.2,. 3 ,GAMMB)

which results in the following calculation:

RSLT = 5.0 + 7.5 + ZETA, where ZETA is determined

A= .2**2 - .3**3 = .04 - .027 = .013

GAMMA .013*5.2 = .0676 (GAMMB is not altered)

ZETA = .0676**2 .00456976

RSLT = 5.0 + 7.5 + .0046976 12.50456976

However, the program:

GAMMB = 5.0

RSLT = ZETA (.2,.3,GAMMB) + 7.5 + GAMMB

as:

would result in the following calculations for ZETA and GAMMB:

A .2**2 - .3**3 = .04 - .027 = .013

GAMMA = .013*5.2 = .0676 = GAMMB

ZETA = .0676**2 = .00456976

RSLT = .00456976 + 7.5 + .0676 = 7.57216976

9-12

Referencing Function Subprograms

The actual arguments of a function subprogram reference argument list must

agree in order, number and type with the corresponding dummy arguments in

the function subprogram.

When referenced, the symbolic name of the function subprogram must be

irrunediately followed by an actual argument list, except when used in a

TYPE- or EXTERNAL statement, or as an actual argument to another subprogram.

An actual argument in a function subprogram reference may be one of the

following:

A constant

A variable name

An array element name

An array name

Any other expression

The name of a FORTRAN IV library function

The name of a user-defined FUNCTION or SUBROUTINE subprogram.

If an actual argument is a function subprogram name or a subroutine name,

the corresponding dummy argument must be used as a function subprogram

name or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument defined or redefined

in the referenced function subprogram, the actual argument must be a

variable name, an array element name, or an array name.

9-13

Execution of a function subprogram reference results in an association of

actual arguments with all appearances of dummy arguments in executable

statements and adjustable dimensions in the defining subprogram. If the

actual argument is an expression, this association is by value rather than

by name. Following these associations, the first executable statement of

the defining subprogram is executed.

An actual argument which is an array name containing variables in the sub­

script could, in every case, be replaced by the same argument with a con­

stant subscript containing the same values as would be derived by computing

the variable subscript just before the association of arguments takes

place.

If a dununy argument of a function subprogram is an array name, the corres­

ponding actual argument must be an array name or an array element name.

9-14

PURPOSE:

SUBROUTINE

To define a user-specified subroutine, which may be compiled

independently from a program unit which references it.

FORMAT:
SUBROUTINE s

SOUBROUTINE s (a1 , a 2 , .•. , an)

s = the symbolic name of the subroutine

a = dummy argument

COMMENTS: To reference a subroutine, a program unit uses a CALL statement.

EXAMPLES:

The SUBROUTINE statement must be the first statement in a

subroutine subprogram.

The SUBROUTINE statement cannot be used in a function subprogram.

CALL MATRIX

ff

CALL SUBR(I,J)

SUBROUTINE MATRIX

ff

RETURN

END

SUBROUTINE SUBR(I,J)

ff

RETURN

END

9-15

Defining Subroutines

The symbolic name of the subroutine must not appear in any statement except

as the symbolic name of the subroutine in the SUBROUTINE statement itself.

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,

COMMON, or a DATA statement in the subroutine.

A dummy parameter can be used to dimension an array name, which also appears

as a dummy parameter of the subroutine. An array which is declared with

dummy dimensions in a subroutine must correspond to an array which is de­

clared with constant dimensions (through some sequence of argument associ­

ation) in a calling program unit. An array declared with dummy dimensions

may not be in COMMON.

The symbolic name of a dummy argument may be used to represent a variable,

array, another subroutine or a function subprogram.

The subroutine defines or redefines one or more of its arguments to return

results.

The subroutine may contain any statements except a FUNCTION statement,

PROGRAM statement, another SUBROUTINE statement, or any statement that

directly or indirectly references the subroutine being defined.

Referencing Subroutines

The actual arguments which constitute the argument list must agree in

order, number and type with the corresponding dummy arguments in the de­

fining subroutine. (A Hollerith constant must correspond to an integer type

dummy argument.)

9-16

An actual argument in a subroutine reference may be one of the following:

A constant

A variable name

An array element name

An array name

Any other expression

A FORTRAN IV library function name

A user-defined function or subroutine subprogram name

If an actual argument is a function subprogram name or a subroutine name,

the corresponding dummy argument must be used as a function subprogram

name or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument defined or redefined

in the referenced subroutine, the actual argument must be a variable name,

an array element name, or an array name.

Execution of a subroutine reference results in an association of actual

arguments with all appearances of dummy arguments in executable statements

and adjustable dimensions in the defining subroutine. If the actual argu­

ment is an expression, this association is by value rather than by name.

Following these associations, the first executable statement of the de­

fining subroutine is executed.

An actual argument which is an array name containing variables in the sub­

script could, in every case, be replaced by the same argument with a con­

stant subscript just before the association of arguments takes place.

If a dummy argument of a subroutine is an array name, the corresponding

actual argument must be an array name or an array element name.

9-17

APPENDIX A

FORMATS OF DATA IN CORE MEMORY

The six types of data used in HP FORTRAN IV (integer, real, double precision,

complex, logical and Hollerith) have the following formats when stored in

core memory.

INTEGER FORMAT

PURPOSE: An integer datum is always an exact representation of a positive,

negative or zero valued integer, occupies one 16-bit word and
15 15 has a range of -2 to 2 -1.

FORMAT:

Usign bit
number bits

A-1

REAL FORMAT

PURPOSE: A real datum is a processor approximation to the positive, neg-

ative or zero valued real number, occupies two consecutive
-38 16-bit words in core memory and has an approximate range of 10

to 1038 •

FORMAT:

I r
~--~~~implied binary point

15 14

hs
fraction bits

of exponent

COMMENTS: A real number has a 23-bit fraction and a 7-bit exponent.

word 1

word 2

Significance (to the user) is to six or seven decimal digits,

depending upon the magnitude of the leading digit in the

faction.

A-2

DOUBLE PRECISION FORMAT

PURPOSE: A double precision datum is a processor approximation to a

positive, negative or zero valued double precision number,

occupies three consecutive 16-bit words in core memory and
-38 38

has an approximate range of 10 to 10 •

FORMAT:

I r•1--~-implied binary point
15 14

fraction bits

fraction bits
sign of exponent

0

a I

COMMENTS: A double precision number has a 39-bit fraction and a 7-bit

exponent.

word 1

word 2

word 3

Significance (to the user) is to eleven or twelve decimal

digits, depending upon the magnitude of the leading digit in

the fraction.

A-3

COMPLEX FORMAT

PURPOSE: A complex datum is a processor approximation to the value of a

complex number and occupies four consecutive 16-bit words in core

memory. Both the real and imaginary parts have an approximate

range of lo- 38 to 1038 •

FORMAT:

real
part

imaginary
part

.----implied binary point

l~:gn of fraction bits
fraction

a I

exponent bitJ I fraction bits
of exponent sign

.-...------implied binary point

l~:gn of fraction bits
fraction

fraction bits
of exponent

0

word 1

word 2

word 3

word 4

COMMENTS: Both the real part and the imaginary part have 23-bit fractions

and 7-bit exponents; both have the same significance as a real

number.

A-4

LOGICAL FORMAT

PURPOSE: A logical datum occupies one 16-bit word in core memory. The

sign bit determines the truth value: 1 = true, 0 = false.

FORMAT:

0 ~1 = .TRUE.
0 0 0 0 0 0 0 0 0 0 0 0

0 ~ I . FALSE.
0 0 0 0 0 0 0 0 0 0 0 0

HOLLERITH FORMAT

PURPOSE: A Hollerith datum is a one or two character string taken from

the HP ASCII character set; it occupies one 16-bit word in

core memory.

FORMAT:

11 s
HOLLERITH 1 HOLLERITH 2

A-5

APPENDIX 8

COMPOSING A FORTRAN IV JOB DECK

After a source program has been written, it is submitted as a FORTRAN IV

job deck. A job deck is input in the form of punched cards or a source

paper tape or through a teleprinter. The job deck has the following form:

FORTRAN CONTROL STATEMENT

MAIN PROGRAM

ff

END STATEMENT

SUBPROGRAM (1)

ff

END STATEMENT

SUBPROGRAM(n)

ff

END STATEMENT

FORTRAN END JOB STATEMENT

FORTRAN END JOB STATEMENT

A FORTRAN end job statement is a source statement that contains the currency

symbol ($) in column one or END$ in columns 7-72.

The FORTRAN control statement is described on the following page.

B-1

FORTRAN CONTROL STATEMENT

PURPOSE: To describe the type of output to be produced by the compiler.

FORMAT:

FTN, p 1 , p2 , p 3 , p 4 , P5

FTN4, p1 , p2 , p 3 , p 4 , P5

P1 - P5 =optional parameters, in any order, chosen from the follow­

ing set:

/B =Binary Output. An object program is to be punched in re­

locatable binary format suitable for loading by any of

the operating system loaders.

/ L List Output. A listing of the source language program is

to be produced as the source program is read in.

·A Assembly Listing. A listing of the object program in
J

assembly level language is to be produced in the second

pass.

M Mixed Listing. A listing of both the source and object

program is produced; each source line is included with

the object code it generated in the compilation pro­

cess. This listing is produced during the second pass,

and therefore it is necessary to store the source

language program on the disc when it is read in during

the first pass. (Sufficient disc space must be avail­

able for storing both the source and intermediate code

in order for this parameter to be used.)

i T Table Listing. A listing of the symbol table for each

main or subprogram is produced during the second pass.

B-2

COMMENTS: Undefined source program statement numbers are printed when an

END Statement is encountered.

If both M and A are specified, M is used. Both A and M will

generate the symbol table listings automatically.

B-3

APPENDIX C

SUMMARY OF CHANGES TO ANSI FORTRAN IV

The HP FORTRAN IV Compiler conforms to the American National Standards

Institute FORTRAN IV specifications as described in the ASA publication

X3.9-1966, with the following exceptions and extensions.

EXCEPTIONS TO STANDARD

Program, subprogram and external names are limited to five characters.

Named COMMON blocks are not allowed.

BLOCK DATA subprograms are not allowed. (With the elimination of named

COMMON blocks, BLOCK DATA subprograms have no function.)

Intrinsic functions are treated as external functions.

EXTENSIONS OF STANDARD

A subscript expression may be any arithmetic expression allowed in HP

FORTRAN IV. However, if an expression is of a type other than integer,

it is converted to type integer after it has been evaluated.

The initial, terminal and step-size parameters of a DO statement (or an

implied .DO in an input or output list) may be any arithmetic expressions.

If the expressions are not of type integer, they are converted to type

integer after they have been evaluated. The step-size parameter may be

either positive or negative, thereby allowing either incrementing or

decrementing to the terminal parameter value.

C-1

The integer variable reference in a computed GO TO can be replaced by any

arithmetic expression. Non-integer expressions are converted to type in­

teger before the GO TO statement is executed. If the value of the express­

ion is less than one, the first statement in the computed GO TO list is

executed. If the value is greater than the number of statements listed in

the GO TO, the last statement in the computed GO TO list is executed.

The Hollerith constant nHc1 c 2 ••• cn may be used in any arithmetic expression

where an integer constant or an integer-valued expression is permitted.

Note, however, that if n >2, only the first two characters in the constant

are used, that n = 0 is not permitted, and that if n = 1, the character C

is stored in the left half of the computer word, with a blank character in

the right half. Characters are stored in a single word in ASCII form.

Any two arithmetic types may be mixed in any relational or arithmetic oper­

ation except exponentiation.

Additional types of exponentiation are permitted. (See Table 3-2.)

An unsubscripted array name is an admissible list element in a DATA state­

ment. In this case, the correspondence with constant values is as follows:

If the array has n elements, then the next m constants from the list are

used to initialize the array in the order in which it is stored (column

order). If the remainder of the constant list (at the time the array name

is encountered) has m < n elements in it, then only the first m elements

of the array are initialized.

C-2

APPENDIX D

COMPATIBILITY OF HP FORTRAN AND FORTRAN IV

HP FORTRAN IV contains some language extensions to provide compatibility

with HP FORTRAN. These features are:

Special characters included with ASCII input data can direct its formatting

(free field input); a FORMAT statement need not be specified in the source

program.

Alphanumeric data can be written without giving the character count by speci-

fying heading and editing information in the FORMAT statement through 11 II

entries.

The Aw conversion code of HP FORTRAN is equivalent to the Rw conversion code

in HP FORTRAN IV. A single character stored in a word under R format control

is placed in the right half of the word with zeros in the left half. On out­

put, using the Rw format, the right half of the word is written. A HP FORTRAN

program using an Al FORMAT specification may have to be changed to use the

Rl specification. The user may also use calls to OLDIO.

Subroutines manual.)

(See the Relocatable

The END statement is interpreted as a RETURN statement (in a subprogram) or

as a STOP statement (in a main program) . A RETURN statement in a main pro­

gram is interpreted as a STOP statement.

The HP FORTRAN External Functions which perform masking (Boolean) operations

(IAND, IOR, NOT) and test the sense switches (ISSW) are retained as FORTRAN IV

library functions.

The two-branch arithmetic IF statement (IF (e) n 1 , n 2) is retained in FORTRAN

IV.

Octal constants are valid in FORTRAN IV.

D-1

Using an unsubscripted array name always denotes the first element of that

array, except in an I/O statement or a DATA statement, where the entire array

is referenced. A single subscript, i, with a multiply-dimensioned array,

denotes the ith element of the array as it is stored (in column order).

D-2

APPENDIX E

FORTRAN IV COMPILER ERROR DIAGNOSTICS

TYPES OF COMPILER DIAGNOSTICS

There are four types of FORTRAN IV compiler diagnostics:

COMMENT: The compiler continues to process the source statement

containing the error. Executable object code is pro­

duced, even though the program's logic may be faulty.

WARNING: The compiler continues to process the statement, but

the object code may be erroneous. The program should

be recompiled.

STATEMENT TERMINATED: The compiler ignores the remainder of the

erroneous source statement, including any continuation

lines. The object code is incomplete, and the program

must be recompiled.

COMPILATION TERMINATED: The compiler ignores the remainder of

the FORTRAN IV job. The error must be corrected before

compilation can proceed.

NOTE: If an error occurs in a program, the object code will
contain a reference to the non-system external name
.BAD. This prevents loading of the object tape, un­
less forced by the user. It is strongly recommended
that a program with compilation errors not be executed.

E-1

FORMAT OF COMPILER DIAGNOSTICS

When an error is detected, the erroneous source statement is printed, follow­

ed by a message in this format:

** pname ** ERROR nn DETECTED AT COLUMN cc

pname the program name

nn the diagnostic error number

cc column number of source line being scanned when error

detected.

NOTE: If cc = 01, the error is in the source line pre­
ceding the last one printed. If cc = 00, there
is an error in an EQUIVALENCE group.

E-2

ERROR
CODE

01

02

03

04

05

06

07

TABLE E-1

HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

COMPILER CONTROL STATEMENT MISSING

There is no FTN or FTN4 directive
preceding the FORTRAN IV job.

ERROR IN COMPILER CONTROL STATE­
MENT

Incorrect syntax or illegal para­
meter in FTN or FTN4 directive.

SYMBOL TABLE OVERFLOW

Insufficient core memory exists
for continuing compilation.

LABELED COMMON NOT ALLOWED

Only unlabeled (blank) COMMON
is allowed in HP FORTRAN IV.

NO DISC SOURCE FILE ASSIGNED

The logical unit for input of the
FORTRAN IV source program is 2, but
the address of source file on disc
has not been assigned.

END OF FILE OCCURRED BEFORE "$"

Source input file ended before the
"$" or END$ statement ending the
FORTRAN IV job was encountered.

RETURN IN MAIN PROGRAM

A RETURN statement occurs in a
main program. It is interpreted
as a STOP statement.

E-3

EFFECT

Compilation
terminated

Compilation
terminated

Compilation
terminated

Statement
terminated

Compilation
terminated

Compilation
terminated

Comment

ACTION

Reduce number of
symbols (constants,
variable names and
statement numbers)
in program and short­
en lengths of vari­
able names and state­
ment numbers.

Convert labeled
COMMON blocks to
blank COMMON.

Precede compilation
by a :JFILE (DOS) or
LS (RTE) directive
to operating system

Example: no "$" or
END$ statement at
end of source file

ERROR
CODE

08

09

10

11

12

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

ILLEGAL COMPLEX NUMBER

A complex number does not con­
form to the syntax:
(+ real constant, + real constant)

MISMATCHED OR MISSING PARENTHESIS

An unbalanced parenthesis exists
in a statement or an expected
parenthesis is missing.

ILLEGAL STATEMENT

The statement in question cannot
be identified.

ILLEGAL DECIMAL EXPONENT

Non-integer constant exponent
in floating point constant.

INTEGER CONSTANT EXCEEDS MAXIMUM
INTEGER SIZE

An integer constant is not in the
range of -32768 to 32767.

E-4

EFFECT

Warning

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

ACTION

Example: non-real
constant as part
of complex number:
(1.0,2)

Examples: The first
72 columns of a
statement do not
contain one of the
following: (a) the
'=' sign if it is a
statement function
or an assignment
statement, (b) the
',' following the
initial parameter
if it is a DO state­
ment, (c) 'IF (' for
an IF statement or
(d) the first four
characters of the
statement keyword
for all other state­
ments (e.g. DIME,
WRIT). A statement
keyword may also be
misspelled in the
first four charac­
ters (e.g. RAED).

ERROR
CODE

13

14

15

16

17

18

TABLE E~l (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

HOLLERITH STRING NOT TERMINATED

In the use of 'nH', less than n
characters follow the H before
the end of the statement occurs.
In a FORMAT statement, an odd
number of quotation marks sur­
round literals.

CONSTANT OVERFLOW OR UNDERFLOW

The binary exponent of
point constant exceeds
i.e., lexponentl > 38.
flow, the value is set

a floating
the maximum,
If under­

to 0.

ILLEGAL SIGN IN LOGICAL EXPRESSION

An arithmetic operator precedes
a logical constant.

ILLEGAL OCTAL NUMBER

An octal number has more than six
digits, is greater than 177777B or
is non-integer.

MISSING OPERAND - UNEXPECTED DE­
LIMITER

Missing subscript in an array
declarator in a DIMENSION
statement or missing name in
an EQUIVALENCE group.

EFFECT

Statement
terminated

Warning

Warning

Statement
terminated

ACTION

Examples: -.FALSE.,
+.TRUE.

Examples: 0000012B,
2777778, .12 34B

Statement Examples:
terminated DIMENSION A (2, 4,)

EQUIVALENCE (B(2))

ILLEGAL CONSTANT USAGE Warning Examples:

A constant is used as a subprogram
or statement function name, as a
parameter of a subprogram or state­
ment function, or as an element
of an EQUIVALENCE group.

E-5

SUBROUTINE 1234
FUNCTION NAME(X,12,A)
EQUIVALENCE (I,5)

ERROR
CODE

19

20

21

22

23

24

25

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

INTEGER CONSTANT REQUIRED

An integer variable is used
where an integer constant is
required.

EMPTY HOLLERITH STRING

In an 'nH' specification, n=O.

NON-OCTAL DIGIT IN OCTAL CONSTANT

A digit > 7 occurs in an octal
constant.

ILLEGAL USAGE OF NAME

A variable is used as a sub­
program name or an array name
is used as a DO statement
index variable.

DO TERMINATOR DEFINED PREVIOUS TO
DO STATEMENT

The terminating statement of a DO

loop comes before the DO statement
or is the DO statement itself.

ILLEGAL CONSTANT

A variable name is expected
but a constant appears.

ILLEGAL SUBPROGRAM NAME USAGE

A subprogram name is used where
a variable name or constant is
expected.

E-6

EFFECT

Statement
terminated

Statement
terminated

Warning

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

ACTION

Examples: A non­
dununy integer vari­
able is used in an
array declarator or
an integer variable
is used as a sub­
script in an
EQUIVALENCE group.

Example: 1289B

Example:
10 DO 10 I=l,5

Examples: A subpro­
gram name occurs on
the left-hand side
of an assignment
statement. A FUNCTION
or statement function
name occurs as an op­
erand in an expression
but no argument list
is given.

ERROR
CODE

26

27

28

29

30

31

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

INTEGER VARIABLE OR CONSTANT
REQUIRED

Non-integer value is used where
an integer quantity is required.

STATEMENT NUMBER PREVIOUSLY
DEFINED

The same statement number appears
on two statements.

UNEXPECTED CHARACTER

Syntax of statement is
incorrect.

ONLY STATEMENT NUMBER ON SOURCE
LINE

Some source code must appear
within the first 72 columns of
a numbered statement.

IMPROPER DO NESTING OR ILLEGAL
DO TERMINATING STATEMENT

The ranges of nested DO loops
overlap or a statement such as
a GO TO, IF, RETURN or END ter­
minated a DO loop.

STATEMENT NUMBER STARTS WITH
NON-DIGIT

A statement number must be a
1-5 digit integer.

E-7

Statement
terminated

Statement
terminated

Statement
terminated

Warning

Statement
terminated

Statement
terminated

Examples: A sub­
script in an
EQUIVALENCE group
element is a non­
integer constant.
A READ or WRITE
statement has a
non-integer logical
unit reference.

Example: Statement
source code appears
in columns 1-5 of
first line of a
statement.

ERROR
CODE

32

33

34

35

36

37

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

INVALID STATEMENT NUMBER

A statement Number has more than
five digits or it contains a non­
digit character.

VARIABLE NAME USED AS SUBROUTINE
NAME

A name which has been previously
used as a variable is now used
in a subprogram reference.

STATEMENT OUT OF ORDER

Source statements must be in
the order 1. Specification,
2. DATA, 3. Statement Functions,
and 4. Executable statements.

NO PATH TO THIS STATEMENT OR UN­
NUMBERED FORMAT STATEMENT

The statement can never be executed
since it is not numbered and it
follows a transfer of control state­
ment. A FORMAT statement is not
numbered and therefore it cannot
be used by the program.

DOUBLY DEFINED COMMON NAME

A name occurs more than once in
a COMMON block.

ILLEGAL USE OF DUMMY VARIABLE

A subprogram parameter occurs
in a COMMON statement.

E-8

EFFECT

Statement
terminated

Statement
terminated

Statement
terminated

Corrunent

Statement
terminated

Statement
terminated

ACTION

Example: A=SIN
B=SIN(X)

Examples: A sub­
program name oc­
curring, with an
argument list, on
the left-hand side
of an assignment
statement may also
generate this
error message.

ERROR
CODE

38

39

40

41

42

43

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

MORE SUBSCRIPTS THAN DIMENSIONS

An array name is referenced using
more subscripts than dimensions
declared for it.

ADJUSTABLE DIMENSION IS NOT A
DUMMY PARAMETER

The variable dimension used with
a dummy array name must also be
a dummy parameter.

IMPOSSIBLE EQUIVALENCE GROUP

Two entries in COMMON appear in
an EQUIVALENCE group or two
EQUIVALENCE groups conflict.
Further EQUIVALENCE groups are
ignored.

ILLEGAL COMMON BLOCK EXTENSION

An EQUIVALENCE group requires
the COMMON block base to be
altered. Further EQUIVALENCE
groups are ignored.

FUNCTION HAS NO PARAMETERS OR
ARRAY HAS EMPTY DECLARATOR
LIST

A function must have at least
one parameter. There is in­
sufficient information to
dimension an array name.

PROGRAM, FUNCTION OR SUBROUTINE
NOT FIRST STATEMENT

A PROGRAM statement, if present,
must come first. A FUNCTION or
SUBROUTINE statement is required
for subprograms.

E-9

EFFECT

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

ACTION

ERROR
CODE

44

45

46

47

48

49

50

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

NAME IN CONSTANT LIST IN
DATA STATEMENT

A constant list in a DATA state­
ment contains a non-constant.

ILLEGAL EXPONENTIATION

Exponentiation is not permitted
with data types used.

FUNCTION NAME UNUSED OR SUB­
ROUTINE NAME USED

In a FUNCTION subprogram, the
name of the FUNCTION is not de­
fined or a SUBROUTINE name is
used within the subroutine.

FORMAT SPECIFICATION NOT AN
ARRAY NAME, STATEMENT NUMBER
OR *
The FORMAT reference in an
I/O statement is invalid.

DO MISSPELLED

Keyword DO misspelled.

IMPROPER USE OF NAME

A variable is used as a sub­
program name.

DO STATEMENT IN LOGICAL IF

A DO statement is illegal as
the "true" branch of a logical
IF.

E-10

EFFECT

Statement
terminated

Statement
terminated

Warning

Statement
terminated

Comment

Statement
terminated

Warning

ACTION

Example: D¢

ERROR
CODE

51

52

53

54

55

56

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

CONTROL VARIABLE REPEATED IN
DO NEST

A variable occurs as the index
of two DO loops or implied DO's
or a combination of these which
are nested.

LOGICAL IF WITHIN LOGICAL IF

A logical IF statement is
illegal as the "true" branch of
another logical IF.

ILLEGAL EXPRESSION OR
ILLEGAL DELIMITER

Arithmetic or logical express­
ion has invalid syntax or a
delimiter is invalid in state­
ment syntax.

DOUBLY DEFINED ARRAY NAME

An array name has dimensions
defined for it twice.

LOGICAL CONVERSION ILLEGAL

Conversion of logical data to
arithmetic or arithmetic to
logical is not defined.

OPERATOR REQUIRES LOGICAL
OPERANDS

An operand of type INTEGER, REAL,
DOUBLE PRECISION or COMPLEX has
been used with .AND., .OR., .NOT.

E-11

EFFECT

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

ACTION

Examples:
The expression con­
tains an illegal op­
erator or delimiter,
has a missing opera­
tor (adjacent oper­
ands) or a missing
operand (adjacent
operators). A READ
or WRITE statement
list has a delimiter
syntax error.

ERROR
CODE

57

58

59

60

61

62

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

OPERATOR REQUIRES ARITHMETIC
OPERANDS

A logical operand has been used
in an arithmetic operation, i.e. +,

*, /, **, or a relational opera­
tor.

COMPLEX ILLEGAL

One of the relational operators
.LT., .LE., .GT. or .GE. has a
COMPLEX operand or an IF statement
has a COMPLEX expression.

INCORRECT NUMBER OF ARGUMENTS
FOR SUBPROGRAM

One of the library routines SIGN,
ISIGN, IAND or IOR is called with
the number of arguments less or
greater than two or a library
routine which is called by value is
called with more than one argument.

ARGUMENT MODE ERROR

A library routine which is called
by value is called with an argu­
ment that is DOUBLE PRECISION,
COMPLEX or LOGICAL.

LOGICAL IF WITH THREE BRANCHES

The expression in an IF statement
is of type logical and there are
three statement numbers specified
in the IF statement.

ARITHMETIC IF WITH NO BRANCHES

No statement numbers in an arith­
metic IF statement.

E-12

EFFECT

Statement
terminated

Statement.
terminated

Statement
terminated

Statement
terminated

Warning

Warning

ACTION

ERROR
CODE

63

64

65

66

67

68

69

TABLE E-1 (Cont.} HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

REQUIRED I/O LIST MISSING

The I/O list required for a free
field input or unformatted out­
put statement has not been
specified.

FREE FIELD OUTPUT ILLEGAL

An '*' in place of a format
designation is illegal in a
WRITE statement.

HOLLERITH COUNT GREATER THAN 2

In an 'nH' specification, n > 2.

PROGRAM UNIT HAS NO BODY

A main program, SUBROUTINE or
FUNCTION requires no object
program.

END$ OR $ OCCURS BEFORE END
STATEMENT

The end of the FORTRAN job was
encountered before the END state­
ment terminating the current pro­
gram unit.

EXTERNAL NAME HAS MORE THAN FIVE
CHARACTERS

The name of a PROGRAM, SUBROUTINE
or FUNCTION has more than five
characters. The first five
characters are used.

OCTAL STRING IN STOP OR PAUSE
STATEMENT IS TOO LONG

In the statement STOP n or PAUSE n,
n has more than four digits.

E-13

EFFECT

Statement
terminated

Statement
terminated

Corrunent

Warning

Compilation
terminated

Warning

Warning

ACTION

Only the first two
characters after
the H are used.

Example: END state­
ment co~tains syn­
tax error or it is
missing.

ERROR
CODE

70

71

72

73

74

75

76

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

EQUIVALENCE GROUP SYNTAX

An EQUIVALENCE group does not
start with a left parenthesis.
All further groups are ignored.

DUMMY VARIABLE IN DATA LIST

Dummy parameters of a subprogram
cannot be initialized in a DATA
statement.

COMMON VARIABLE IN DATA LIST

Entities of a COMMON block can­
not be initialized with a DATA
statement.

MIXED MODE IN DATA STATEMENT

A name and its corresponding
constant in a DATA statement
do not agree in type.

ILLEGAL USE OF STATEMENT FUNCTION
NAME

The name of a statement function
also occurs in its dummy parameter
list.

RECURSION ILLEGAL

The current program unit name
has been used in a CALL state­
ment.

DOUBLY DEFINED DUMMY VARIABLE

The same dummy variable name
occurs twice in a subprogram
or statement function para­
meter list.

E-14

EFFECT

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Warning

Statement
terminated

Warning

ACTION

ERROR
CODE

77

78

79

80

81

82

83

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

STATEMENT NUMBER IGNORED

A statement number on a specifi­
cation or DATA statement or on a
statement function is ignored.

PROGRAM UNIT HAS NO EXECUTABLE
STATEMENTS

A program unit has only specifi­
cation or DATA statements or
statement functions.

FORMAT DOES NOT START WITH
LEFT PARENTHESIS

FORMAT DOES NOT END WITH
RIGHT PARENTHESIS

ILLEGAL EQUIVALENCE GROUP
SEPARATOR

EQUIVALENCE groups are not
separated by a comma or a non­
array name has subscripts in an
EQUIVALENCE group. All further
EQUIVALENCE groups are ignored.

ILLEGAL USE OF ARRAY NAME IN AN
EQUIVALENCE GROUP

An array name in an EQUIVALENCE
group is not followed by '(', ','
or ') '. All further EQUIVALENCE
groups are ignored.

SUBPROGRAM NAME RETYPED

The type declared for a sub­
program name within its body
does not agree with the type
established in the SUBROUTINE
or FUNCTION statement.

E-15

EFFECT

Warning

Warning

Warning

Warning

Statement
terminated

Statement
terminated

Warning

ACTION

ERROR
CODE

84

85

86

87

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

OBJECT CODE MEMORY OVERFLOW

Object program size is greater
than 32K.

POSSIBLE RECURSION MAY RESULT

The use of one of the library
names REAL, SNGL, DBLE, CMPLX,
FLOAT, CLRIO, IFIX, ERRO or
EXEC as the name of a PROGRAM,
may produce recursion if the
body of the subprogram so named
requires an implicit call to one
of these names.

DUMMY VARIABLE IN STATEMENT
FUNCTION CANNOT BE SUBSCRIPTED

A dummy variable in a statement
function cannot represent an
array or a subprogram name.

TOO MANY CONTINUATION LINES

More than 19 continuation lines
for a statement.

E-16

EFFECT

Compiler
terminated

Comment

Warning

Compilation
terminated

ACTION

The user is advised
to change the name
of the subprogram
or to make certain
that no mixed mode
exists in the pro­
gram and that no
library subprogram
used requires a
call to ERR¢.

Example:
ASF(A)=A(l,l)+A(2,2)

INDEX

A
Actual argument 6-7 ,9-3
Addition 3-1
Alphanumeric character ..•........ 1-2
ANS I FORTRAN IV C-1
Argument, actual. 6-7 ,9-3
Argument, dummy•..... 9-3,6-7
Arithmetic assignment

statement•... 5-1
Arithmetic element 3-1
Arithmetic expression•. 3-1
Arithmetic IF•..... 6-5
Arithmetic operator 3-1
Array•....•.. 2-12,8-1
Array declarator•.•..... 4-1
Array element•....•....• 2-12
Assignment statement,

arithmetic••.••.......•. 5-1
Assignment statement, logical •... 5-3
ASSIGN TO•..•.........•....• 5-4
Assigned GO TO•.•.....•.....• 6-3
A-Type conversion ..•...........• 8-21

B
BACKSPACE•................ 7-8
BCS•...•.•......• xii
Blank character 1-2

c
CALL•.. 6-7
Character, alphanumeric ...•...... 1-2
Character, blank•............ 1-2
Character, special. 1-3
Comment line•..•. 1-3
COMMON•............ 4- 5
COMMON, named•........ 4-5
COMMON, unlabeled 4-5
Complex constant 2-7
Complex conversion 8-17
Complex data format.•...... A-4
Computed GO TO 6-4
Constant, complex 2-7
Constant, double precision 2-6
Constant, Hollerith 2-9
Constant, integer•...... 2-4,2-9
Constant, logical•......... 2-8
Constant, octal•..• 2-10
Constant, real .•....•........ 2-5,2-7
CONTINUE•.........••... 6-9

I-1

Continuation line•..•.•..... 1-4
Control statement, FORTRAN .••... B-2
Control variable .•....••••. 6-12,7-2
Conversion, A-Type•.•..... 8-21
Conversion, complex•..•.... 8-17
Conversion, D-Type•....... 8-16
Conversion, E-Type•....•.. 8-10
Conversion, F-Type•.•.•... 8-12
Conversion, G-Type••..... 8-14
Conversion, I-Type•.... 8-6
Conversion, K-Type•....... 8-19
Conversion, L-Type•..... 8-18
Conversion, 0-Type••....... 8-19
Conversion, R-Type ..•.....•.... 8-2 3
Conversion, X-Type ...••..••.••. 8-27
Conversion, @-Type•....• 8-19

D
Data ••••...........••.....• 4-8,2-13
Data item•....•...•.•.... 7-9
Data item delimiter•..... 7-9
Declarator, array ...•..•.•...... 4-1
Delimiter, data item•..•.•.. 7-9
Descriptor, field ..•...•..••.... 8-3
Digits•.... 1-2
DIMENSION•.... 4-4
Division•...... 3-1
DO•.....•.. 6-12
DO-implied list•... 7-2
DOS••..•.•... xi
DOS-M xi
Double precision constant 2-6
Double precision data format A-3
Dummy argument•......... 9-3,6-7
D-Type conversion•....••... 8-16

E
Editing, wH•.• 8-25
Edi ting, 11 11 ••••••••••••••• 8-26
Element, arithmetic .••......•..• 3-1
Element, array•..•......•.• 2-12
Element, logical••.......•. 3-5
END••••.•••..•.••... 6-8
ENDFILE ...••...•...•..•..•....•. 7-8
End job statement, FORTRAN B-1
End 1 ine .••...•..••••.••....•..• 1-5
EQUIVALENCE •...•.....•...•...•.. 4-6
E-Type conversion •.•.••.•.....• 8.,-10

Evaluating arithmetic
expressions ..•..••.••.....•..•. 3-3

Executable program •.•.•..•••...•. 1-1
Exponentiation ..•.••••••.••••..•• 3-1
Exponentiation of

arithmetic elements .•.••.•.•... 3-3
Expression •••...•••..•••.•...•... 3-1
Expression, arithmetic .•.•.•.•.•• 3-1
Expression, logical ..••.•••.•••.• 3-4
Expression, relational ...•••..•.• 3-5
Expression, subscript .••......•• 2-12
EXTERNAL .•.....•••••••••••.•..... 4-2
External files .•...•.......•...•. 7-1

F
Factor .•..•••..•...••.•.••......• 3-2
Factor, scale•.•...••. 8-8
Field descriptor .•.••....••...... 8-3
Field separator ..•..••..••••..•• 8-28
Files, external ...•..••..•••..... 7-1
FORMAT•..•••.....•. 8-2,1-6, 7-1
Format specification •........ 8-1,7-3
Format, complex data .•........... A-4
Format, double precision data ..•. A-3
Format, Hollerith data ..•......•. A-5
Format, integer data .•......•..•. A-1
Format, logical data•...•. A-5
Format, real data .•.....••...•.•. A-2
Formatted READ .•.•.•.••.•.••. 7-4,8-1
Formatted records•.....•. 7-3,8-1
Formatted WRITE•......... 7-5,8-1
FORTRAN control statement .••...•. B-2
FORTRAN end job statement•.. B-1
FORTRAN IV library function •..•.. 9-6
FORTRAN IV job deck ..•.....•..... B-1
Free field input ..••..••. 7-9,7-4,8-1
F-Type conversion••....... 8-12
Function ..•...•.•.•......•..•.•.. 9-1
Function, statement ..•........••. 9-4
Function subprogram ..••...•. 1-1,9-10

G
GO TO, assigned ...•..•.••....•..• 6-3
GO TO, computed .••...••...•...... 6-4
GO TO, unconditional.•.•.... 6-2
G-Type conversion ..•.•.......... 8-14

H
Hollerith constant ..•..•..•.•.... 2-9
Hollerith data format .••..•...... A-5
HP FORTRAN iii,8-23,D-l

I-2

I
IF, arithmetic .•...•.••...••.... 6-5
IF, logical .•..•.•••.•.••.•.••.. 6-6
Initial line .•.•.........•••..•• 1-4
Initial parameter 6-12,7-2
Input/output list ...••..•... 7-2,8-1
Input/output unit ...•.......•..• 7-1
Input, free field .••...• 7-9,7-4,8-1
Integer constant .•.....•.•.• 2-4,2-9
Integer data format .•.....••.... A-1
Item, data 7-9
I-Type conversion ••.....•..•..•• 8-6

J
Job deck, FORTRAN IV .••••....•.. B-1

K
K-Type conversion ...••.••.•.... 8-19

L
Label, statement ..•..•........•. 1-5
Letter .•.•.•.....•.••....•.•.... 1-2
Library Function, FORTR~N IV ..•. 9-6
Lines •..•......•.•....•...•.•.•• 1-3
Line , comment • • •1-3
Line, continuation••.•..•. 1-4
Line, end•.••.•.•....•..... 1-5
Line, initial. .•..•..••......... 1-4
Line, program .•.•••..•....•.•... 1-4
List, DO-implied •.•...••.••..... 7-2
List, input/output .•.•.•.... 7-2,8-1
List, simple •.......••.•.•...... 7-2
Logical assigrunent statement 5-3
Logical constant••••. • .. ·· .2-8
Logical data format .••.•. • ·. • · · .A-5
Logical element ..•••...•• · · .. · • .3-5
Logical expression ••••••.•.•.•.. 3-4
Logical IF .••••..•....••••...•.• 6-6
Logical operator •..•.•.•••.•.... 3-4
Logical unit .•.••.•.•..•..•.•... 7-1
L-Type conversion •••.••...••... 8-18

M
Magnetic tape unit .••..•••••.•.• 7-8
Main program .•..•.••.•••.•.• 1-1,1-6
Mixed mode ...•..••••••••.••.•• • .4-8
Multiplication ...•..•••••••.•• · 3-1

N
Named COMMON ••••••.•••••••••••••• 4-5
Name, symbolic •.••••.••.••.•. 1-6,2-1

0
Octal constant •••••••••••••••••• 2-10
Operator, arithmetic ••••••••••••• 3-1
Operator, logical .•.•••••••..•••• 3-4
Operator, relational •.••.••••.•.• 3-6
0-Type conversion ••••••••••••••• 8-19

p
Parameter, initial •••••••.•• 6-12,7-2
Parameter, step-size •••.•••• 6-12,7-2
Parameter, terminal ••••••••• 6-12,7-2
Parentheses •••••••••••••.•••.•••• 3-3
PAUSE ••••••••••••••••••••••••••• 6-11
Primary •••••••••••••••••••••.•.•. 3-1
Program, executable •••••••••••.•• 1-1
Program line .•••••••••••••••.•••• 1-4
Program, main •••••••••••••••• 1-1,1-6
Program unit ••••••••••••••••••••• 1-1

R
READ, formatted •••••••••••••• 7-4,8-1
READ, unformatted •.•.•••••••. 7-6,8-1
Real constant ••.••••••••••••• 2-5,2-7
Real data format ••••••••••••••••• A-2
Record, formatted •.•••••••••. 7-3,8-1
Record terminator ••••.•••.•••••• 7-10
Record, unformatted •••••••••• 7-3,8-1
Relational expression •••••••••••• 3-5
Relational operator •••••••••••••• 3-6
RELOCATABLE SUBROUTINES •••••• xii,9-9
Repeat specification ••••••••.••.• 8-5
RETURN •.••.•••.•...•••••••••••••• 6-8
REWIND .••••••••••••••••••••••••.. 7-8
RTE ••.••••.••••••••••••••••••••••• xi
R-Type conversion ••••••••••••••• 8-23

s
Scale factor ••••••••••••••••••••• 8-8
Separator, field •••••••.•••••••• 8-28
Simple list ••••.•••.•••••.••••••• 7-2
Simple variable ••••••••••••••••• 2-11
Special character •.•.•••••••••••. 1-3
Specification, format •••••••• 8-1,7-3
Specification, repeat •••••••••••• 8-5
Statement ••••••.••••.•••••••••••• 1-5
Statement function .•••••••••••••• 9-4

I-3

Statement label •••.•••••••••••.• 1-5
Statement, terminal .••••••• 6-12,6-9
Step-size parameter •.••.••• 6-12,7-2
STOP .•.••••.••.••••••••••.••••. 6-10
Subprogram •••••.•••••••••••• 1-1, l-6
Subprogram, function ••••••• 1-1,9-10
Subprogram, subroutine .•.•••••.. 1-1
Subroutine ••.•.••.•.•••••.• 9-2, 9-15
Subroutine subprogram •••••.••••• 1-1
Subscript ••.•••.••••..•••.•.••• 2-13
Subscript expression .•••••••••• 2-12
Subscripted variable ••••••••••. 2-14
Subtraction .••.•••••••••...•.•.• 3-1
Symbolic names ••••.••••••••• 1-6, 2-1

T
Tape unit, magnetic ..•.•••..•••• 7-8
Term .••.•••••••.••••••••••••••.• 3-2
Terminal parameter .•••.•••• 6-12,7-2
Terminal statement •.••..••• 6-12,6-9
Terminator, record •••••.•••...• 7-10
TYPE- •••••••.••••••••. 4-3,2-2,2-11

u
Unconditional GO T0 •.••••••••••• 6-2
Unformatted READ •••••••••••••••• 7-6
Unformatted records ••••••••••••• 7-3
Unformatted WRITE ••••••••••••••• 7-7
Unit, input/output •••••.•••.•••. 7-1
Unit, logical .••••.••.•••••••••• 7-1
Unit, program ••••••••••••••••••. 1-1
Unlabeled COMMON •••••.•••••••••• 4-5

v
Variable, control .•••.•.••• 6-12,7-2
Variable, simple .••••••.••••••• 2-11
Variable, subscripted ••••••.••• 2-14

w
wH editing .•••••••••••••••••••. 8-25
WRITE, formatted •••••••••••• 7-5,8-1
Write, unformatted •••••••••• 7-7,8-1

x
X-Type conversion •••••••••••••• 8-27

" ••• " editing .•••••••••••.••••• 8-26
@-Type conversion ••••....•.•.•• 8-19

It!

!ill
i l

Ii
fl !

I

SOF'TV/ ARE rviAN LIAL CHt\NGES

FORTRAN IV REFERENCE MANU/l.L

{HP 5951- 1321)

Dated October 1970

Some of the it-ems belo'" pert ain not onl y to the FORTRAN I 1!

REFERENCE Mll.NUAL but also t.o t h e Man ual Change Shee t i ts e lf. 'The tu: ghest­
nunwered entry is the most curren t. Therefore , .these changes shoul d b e
recorded first . This ens ures that earlier en tries which h ave been modi f:i ed
are upda t ed on this sheet . Ear_lier entri es which no longer apply are super­

c eded by later entries.

6- 71

Ch ange
Nu 1rb er .!:M_~ Instructions

2

3

4

2-6 Del ete t he l ast si=n tence of ~he rast paragraph, - and r·e·

place with:

6-7

6·- 8

...

8-21

Either m or n (but not both) can be omi t t ed. A decima ~

point must separate m and n ~hen both are specified. Hhe11
mis pres ent, both the decimal po in t and n can be omit t ed.

In the examples, replace both occurrences of the t erm

MATRIX v1ith:

MAT RX

In the examp les , repl ace both occurrences of the term

MATRIX with :

MAl RX

Add the fo llowi ng no te :

NOTE: Inpu t /o utpu_t of A- format el eme nts mus t be to/ from
type in teger vari able·s or arrays .

JJ EWLETT ihiJ , F-'A CJ<.4H D
.~i

Change
Nu mb er Page

5 8- 28

6 9-15

7 9-15

8 E-2

9 E- 16

10 6-16

Instruc tions

Replace the exan1ple line:

102 FO RMAT (//A///8//)

with:

102 FOR~AT (//FS. 1///F7.3/)

Page 2
(HP 5951-1321)

Replace the term SO UBROUTI NE in the second fonnat with:

SU BROUT INE

In the examples, replace bo t h occurrences of the t erm

MATRIX with:

MAT RX

In the note, replace the second sentence with the f ollow­

ing:

If cc = 00, there is an error in an EQUIVALENCE g roup~

and the group (or a portion of the group) is prin ted

before the error me ssage is printed.

Add the followin g note:

NOTE: Undefined source program sta teme nt numbers are

printed when an END sta t ement is encountered.

For example,

@100 UNDEFINED

me ans that the s ta t e1 nen t number 100 did not appear

in columns 1-5 of any of the initial lines of the

program just comp iled.

Remove the current page 6-1 5, ~nd replace with the

foll ow ing pages: 6-15 and 6~16. A pag e 6-16, describing

the END statement , has been added to the manual.

Change
Number

11

12

13

-14

Change

vii

6-1

8-29

viii

Nu mb er Pa_ge

15 8-29

16 3-4

Instru ctions

Add the foll ow i ng to the end of Section VI:

6- 16 END

Page 3
(HP 5951 -- 1321)

Chan ge the l ast sentence of the last paragraph to:

Th ere are twelve control stateme nts in HP FORTRAN IV.

Add END to the li s t of con trol statements.

Add page 8-29 to the manual.

Add
1

the followin g to end of Section VIII:

8-29 CA RR IAGE CO NTROL

l 0- 71

Instructions

Stateme nt numbe r 140 comment should read: a page i s

ejected then a line is skip pe_d

At the bottom of the first paragraph add: Integer over-

flow resulti ng from arithmetic op~rations is not detec ted

~t execution time .

Change
Number Page

17 3-6

18 6-12

Ins t ruc t ions

Add the following information:

Page 4
(H P 5951 -13 21)

NOTE: Integer overflow resu l ting from arithmetic opera-

tions is not detected at execution time. Care mu s t be

taken when the relational operators .LT ., .LE., . GT. and

.GE . are used with integer operands. The object codes

generated by thi s compi l er fo~ relationai operators on

integers are : •

I .LT. J I . LE . J I .. EQ. J

LOA J LOA I LOA I

CMA, I NJ\ CMA,INA CPA J

ADA I ADA J CCA, RRS

CMA CLA

I . NE. J E .GT . J I . GE. J - ----- ---- - -·
LOA I LOA I LOA I

CP,I\ J CMA, INA CMA, INA

CLA,RSS ADA J ADA T
i

CC/.\. CMA

Add to the bottom of the page:

Integer overflow re~ulting from arithmetic operations is

not detected at execution tim2.

Change
Number Pa ge

19 F-1

20 3-6

...

5-72

Ins tructions

Add pag e F-1 to t he manua l.

July 1972

Pa ge 5
(HP 5951- 1321)

Add the followin g· information (corrects change 17):

NOTE: Integer overflow resulting from arithmetic operations is
not detec ted at execution time. Care must be taken when the
relational operators.LT.,. LE.,. GT., and. GE. are used with in teger
operands. The object codes generated by this compiler for
relational operators on in tegers are as follows:

I .LT. J I .LE. J I .EO. J I .NE. J I .GT. J I .GE. J

LOA J LO A I LOA I LOA I LOA I LOA I

CMA,INA CMA,INA CPA J CPA J CMA,INA CMA,INA

A DAI AD A J CCA,R SS CLA,RSS ADAJ ADAI

CM/\ CLA CCA CMA

e. At this point, if there were one or more other DO stat.ements

referring to the t erminal statement in question, the control

variable of the next most recently execut~d DO statement is

modified by the value represented by its associated step-size
I

parameter and the action in step d. is repeated until a ll DO

statements re ferring to the particular termina l statement are

satisfied, at which time the first executable statement follow-

ing the terminal statement is executed.

f. Upon exiting from the range of a DO by the e xe cution of a GO •ro

or an arithmetic IF &tatement (that is, by exiting other than by

satisfying the DO) , the control variable of the DO is defined

and is equal to the most recent value attained as defined in

steps a. through e.

~.

6-15

PURPOSE:

FORMAT:

COMM ENTS:

EXAMPLES:

END

Indicates to the compiler t ha t this is the last statement in a

program . unit.

END

Every program unit must terminate with a:n END statement.

The cha racters E, N and D (once each -and in that order in

columns 7 through 72) can be preceded by, interspersed

with, or followe d by blank char acters; colurrm 6 must con­

tain a blank cha r acter. Colwnns 1 through 5 may contain

either a statement label or blank characters.

,..,.. ,..,..,..E,.."'N ,,,... ,..D

..,

6-16

'• ')

., _,

CA RRIAGE CONT ROL-

PWRPOSE: To indicate the line spacing used wh e n p rinting an output

record on a l ine printer or a teleprinter .

FO RMAT:

0

l as the first character in the record

*

any other character

singl e space (print on every line).

O doubl e space (p .rint o n eve ry other line).

1 e j ect page

* suppress spacing (overprint current lin e) .

any othe r character sing l e space (prin t on every line) .

EXAMPLES:

When the s e

100 FORMAT

120 FORll1AT

1 40 FORMAT

160 FORMAT

180 FORMAT

999 FORMAT

r ecords are printe d ...

(" APR INT ON EVERY LINE")

("OPRINT ON EVERY OTHER LINE ")

("l")

(" *PRU.J T ON CURRENT LINE ")

(" PRINT ON EVERY LINE ")

(ln l I J.:;16. 8 , IS)

8-29

they look like this:

PRINT ON ~VERY LINE

PRINT ON EVERY OTHER LINE

(a page is e j ec ted)

(an overprint of c urrent line)

RINT ON EVERY LINE

(A page is ejected , and a

fl oating po int number and a n

intege r are the n printe d.)

APPENDIX F

OBJECT PROGRAM DIAGNOSTIC MESSAGES

During execution of the object program, diagnostic messages may be prini:ed ·

on til e output unit by the inp ut/outp ut system s upplied for FORTRAN programs.

Whe n a halt occ urs, the A-r egister c ontai.ns a code which furth e r 'defines the

nature of the e rror:

Message A-register

*FMT 000001

*FMT 000002

*FM'l' 000003

*FM'r 000004

*FMT 000005

Explanation

FORMAT error:
a) w or d field does not

conta in proper digits.
b) No decimal point.after

w fi e ld.
c) w - d <4 for E sp~cification.

a) FORMAT specificati ons are
nested more than one level
deep.

bl A FORMAT statement contains
more right parentheses than
left parentheses.

a) Illegal ~haracter in FORMAT
statement.

b) Format repetition factor of
zero.

c) FORMAT statement defines
more characte r positions
than possibl e for·device.

Illegal character in fixed field
input item or nwnber not right­
justifie d in field.

A nwnber has an illegal form
(e.g., two.Es , two decimal
points, two ~ign~, etc.).

F-1

Action

Irrecoverable
error; program
must be
recompiled.

Irrecoverable
error; program

·must be
recompiled.

Irrecoverable
error; program
must be
recompiled.

Verify data.

Verify data.

•

UNITED STATES
ALABAMA
P .0. Box 4207
2003 Byrd Spring Road S.W.
Huntsville 35802
Toh (205) 881-459'.
TWX1 810·726·2204

ARIZONA
2336 E. Ma1nolla St.
Pbo1n11 85034
Tel: (602) 252·5061
TWX· 910-951·1330

5737 East Broadway
Tucson 85716
Tel• (602) 298·2313
TWX, 910·952·1162

CALIFORNIA
1430 East Orangethorpe Ave.
Fullerton 92631
Tel, (714) 870-1000

3939 Lankershlm Boulevard
North Hollywood 91604
Teh (213) 877-1282
rwx, 910.499.2110

1101 Embarcadero Road
Palo Alto 94303
Tel, (415) 327·6500
TWX, 910·373-1280

2220 Watt Ave.
Sacramento 95825
Tel• (916) 482-1463
TWX, 910-367-2092

9606 Aero Drive
San 01110 92123
Teh (714) 279·3200
TWX, 910-335-2000

COLORADO
7965 East Prentice
Englewood 80110
Teh (303) 771-3455
rwx, 910-935-0705

CANADA
ALBERTA
Hewlett-Packard (Canada) Ltd.
11745 Jasper Ave.
Edmonton
Teh (403) 482·5561
TWX: 610-831-2431

CONNECTICUT
508 Tolland Street
EHi Hlrtford 06108
Teh (203) 289-9394
TWX1 7lo-425·3416

111 East Avanue
Norw1lk 06851
Teh (203) 853-1251
TWX, 710,468-3750

FLORIDA
P .o. Box 24210
2806 W. Oakland Park Blvd.
Ft. lauderdale 33307
Tel, (305) 731·2020
TWX, 510-955·4099

P.O. Box 20007
Herndon Station 32814
621 co·mmonwealth Avenue
Orlando
Teh (305) 841-3970
TWX, s10.a50.0113

Effective April 1, 1972
P.O. Box 13910
6177 Lake Ellenor Dr.
Orlando, 32809
Teh (305) 859·2900
TWX, 810-850-0113

GEORGIA
P.O. Box 28234
450 Interstate North
Atlanta 30328
Teh (404) 436·6181
TWX, 810-766-4890

ILLINOIS
5500 Howard Street
Skokie 60076
Teh (312) 677-0400
TWX, 910-223.3513

IN DIANA
3839 Meadows Drive
lndlanapolls 46205
Tel: (317) 546-4891
TWX, 810-341·3263

BRITISH COLUMBIA
Hewlett-Packard (Canada) Ltd.
4519 Canada Way
North Burnaby 2
Tel: (604) 433-8213
rwx, 610-922-5059

ELECTRONIC

SALES a SERVICE OFFICES

LOUISIANA
P.O. Box 856
1942 Wiiiiams Boulevard
Kenner 70062
Tel: (504) 721·6201
rwx, 810-955-5524

MARYLAND
6707 Whitestone Road
B11t1more 21207
Tel: (301) 944-5400
TWX: 710·862·9157

P .0. Box 1648
2 Choke Cherry Road
Rockville 20850
Tel: (301) 948-6370
TWX, 710-828-9684

MASSACHUSETIS
32 Hartwell Ave.
Lexlneton 02173
Tel: (617) 861-8960
TWX, 710·326·6904

MICHIGAN
21840 West Nine Mlle Road
Soutblleld 48075
Teh (313) 353·9100
Twx, 810·224-4882

MINNESOTA
2459 University Avenue
St. Paul 55114
Tel, (612) 645-9461
TWX• 910·563·3734

MISSOURI
11131 Colorado Ave.
Kansas City 64137
Teh (816) 763-8000
TWX, 910-111-2081

2812 South Brentwood Blvd.
St. Louis 63144
Tel, (314) 962·5000
TWx, 910-160-1610

NEW JERSEY
W. 120 Century Road
Paramus 07652
Tel: (201) 265·5000
TWX: 710·990·4951

MANITOBA
Hewlett-Packard (Canada) Lid.
511 Bradford Ct.
Wlnnlpe1
Tel: (204) 786-7581
TWX: 610·671-3531

1060 N. Kings Highway
Cherry Hiii 08034
Tel, (609) 667-4000
TWX: 710·892-4945

NEW MEXICO
P.O. Box 8366
Station c
6501 Lomas Boulevard N.E.
Albuquerque 87108
Teh (505) 265·3713
TWX, 910·989·1665

156 Wyatt Drive
las Cruc11 88001
Tel: (505) 526·2485
TWX, 910-983·0550

NEW YORK
1702 Central Avenue
Albany 12205
Tel: (518) 869·8462
TWX, 710-441·8270

1219 Campvllla Road
Endicott 13760
Tel: (607) 754-0050
TWX: 510·252·0890

82 Washington Street
Pou1hk11psla 12601
Tel, (914) 454-7330
TWx, 510-248-0012

39 Saginaw Drive
Rochester 14623
Teh (716) 473-9500
TWX, 510-253-5981

5858 East Molloy Road
Syracuse 13211
Tel: (315) 454-2486
TWX: .710-541·0482

1 Crossways Park West
Woodbury 11797
Tel: (516) 921-0300
TWX: 510·223·0811

NORTH CAROLINA
P.O. Box 5188
1923 North Main Street
Hl1h Point 27262
Tel: (919) 885-8101
TWX, 510-926-1516

NOVA SCOTIA
Hewlett-Packard (Canada) Ltd.
2745 Dutch Village Rd.
Suite 206
Halifax
Teh (902) 455·0511
TWX: 610·271·4482

CENTRAL AND SOUTH AMERICA
ARGENTINA
Hewlett-Packard Argentina
S.A.C.e.I
Lavalle 1171 • 3°
Buenos Aires
Tel: 35-0436, 35-0627, 35-0431
Telex: 012·1009
Cable. HEWPACKARG

BRAZIL
Hewletl·Packard Do Brasil
l.e.C Lida.
Rua Frei Caneca 1119
Sao Paula • 3, SP
Tel: 288-7111, 287·5858
Cable: HEWPACK Sao Paulo

Hewlett-Packard Do Brasil
Praca Dom Feliciano 78
Salas 806/808
Porto Alegre
Rio Grande do Sul (RS)-Brasll
Teh 25-8470
Cable: HEWPACK Porto Alegre

Hewlett·Packard Do Brasil
1.e.c. Lida.
Rua da Malrlz 29
Botafogo ZC·02
Rio di Janeiro, GB
Tel: 246-4417
Cable: HEWPACK Rio de Janeiro

CHILE
H6ctor Calcagni y Cla, Lida.
Bustos, 1932-3er Plso
Casilla 13942
Santiago
Teh 423 96
Cable• CALCAGNI Santiago

COLOMBIA
lnstrumentaclon
Henrik A. Langebaek & Kier

Lida.
Carrera 7 No. 48-59
Apartado Aereo 6287
Bogota, 1 D.E.
Tel: 45-78-06, 45·55·46
Cable: AARIS Bogota
Telex: 44400 INSTCO

COSTA RICA
Lie. Alfredo Gallegos GurdlAn
Apartado 10159
San Jos6
Tel: 21-86·13
Cable: GALGUR San Jos6

ECUADOR
Laboratorlos de Radlo-lngenlerla
Calle Guayaquil 1246
Post Office Box 3199
Quito
Tel, 212-496; 219-185
Cable: HORVATH Quito

EL SALVADOR
Electronic Associates
Apartado Postal 1682
Centro Comercial Gigante
San Salvador, El Salvador
Paseo Escalon 4649-4th Piso
Tel: 23-44-60, 23-32-37
Cable. ELECAS

MEXICO
Hewlett-Packard Mexicana, S.A.
de c.v.
622 Adolfo Prieto
Col. del Valle
Mexico 12, D.F.
Tel: 543:4232; 523-1874
Telex. 0017-74507

NICARAGUA
Roberto Teran G.
Aparlado Postal 689
Edlflcio TerAn
Managua
Teh 3451, 3452
Cable. ROTERAN Managua

PANAMA
Electr6nlco Balboa, S.A.
P.O. Box 4929
Ave. Manuel Espinosa No. 13·50
Bldg. Alina
Panama City
Tel: 230833
Telex, 3481003, Curundu,
Canal Zone
Cable: ELECTRON Panama City

PARAGUAY
Z.T. Melamed S.R.L.
Division: Aparatos y Equipos
Medicus
Salon de Exposicion y Escritorio:
Chile 482
Edificio Victoria-Planta Baja
Asuncion, Paraguay
Tel: 4·5069, 4-6272
Cable, RAMEL

OHIO
25575 Center Rld11 Road
Clnel1nd 44145
Tel: (216) 835-0300
TWX: 810-427·9129

3460 South Dixie Drive
Dlyton 45439
Tel: (513) 298·0351
TWX• Slo-459·1925.

1120 Morse Road
Columbus 43229
Tel: (614) 846·1300

OKLAHOMA
2919 United Founders Boulevard
Okl1homa CltJ 73112
Tel: (405) 848-2801
TWX, 910·830·6862

OREGON
Wasthllls Mall, Suite 158
4475 S.W. Scholls Ferry Road
Portland 97225
Teh (503) 292·9171
TWX• 910-464-6103

PENNSYLVANIA
2500 Moss Side Boulevard
Monroavllle 15146
Tel: (412) 271-0724
TWX, 710-797·3650

1021 8th Avenue
Kine of Prussia Industrial Park
Kini of Prussl1 19406
Tel: (215) 265-7000
TWX: 510-660-2670

RHODE ISLAND
873 Waterman Ave.
East Providence 02914
Tel: (401) 434·5535
TWX: 710·381-7573

*TENNESSEE
Memphis
Teh (901) 274-7472

TEXAS
P.O. Box 1270
201 E. Arapaho Rd.
Richardson 75080
Tel: (214) 231·6101
TWX: 910-867-4723

ONTARIO
Hewlett·Packard (Canada) Lid.
880 Lady Ellen Place
Ottawa 3
Tel: (613) 255-6180, 255-6530
TWX: 610-562-1952

Hewlett-Packard (Canada) Ltd.
50 Galaxy Blvd.
Rexd1le
Tel: (416) 677·9611
TWX: 610-492-4246

PERU
Compafiia Electro Medica S.A.
Ave. Enrique Canaual 312
San Isidro
Casilla 1030
Lima
Teh 22·3900
Cable. ELMED Lima

PUERTO RICO
San Juan Electronics, Inc.
P.O. Box 5167
Ponce de Leon 154
Pda. 3-PTA de Tierra
San Juan 00906
Teh (809) 725·3342, 722·3342
Cable: SATRONICS San Juan
TeleX: SATRON 3450 332

SURINAME
Surtel-Radlo Holland N.V.
P.O. Box 155
Paramaribo
Tel: 72118
Cable: Treurniet Paramaribo

P.O. Box 22813
6300 Wastpark Drlva
Suite 100
Houston 77027
Tai: (713) 781-6000
TWX: 910-881·2645

231 Biiiy Mitchell Road
Sin Antonio 78226
Tel: (512) 434-4171
TWX: 910-871-1170

UTAH
2890 South Main Streat
Salt Like City 84115
Teh (801) 487-0715
TWX1 910-925·5681

VERMONT
P.O. Box 2287
Kennedy Ori.a
south Burllneton 05401
Tel: (802) 658-4455
rwx, 510-299.0025

VIRGINIA
P .0. Box 6514
2111 Spencer Road
Richmond 23230
Tel: (703). 285·3431
TWX, 710·956·0157

WASHINGTON
433·108th N.E.
Bellevue 98004
Tel: (206) 454-3971
TWX: 910-443·2303
0 WEST VIRGINIA
Charlesten
Tai: (304) 768·1232

FOR U.S. AREAS NOT
LISTED:
Contact the regional office near­
est you, Atlanta, Georgia •••
North Hollywood, California •••
Paramus, New Jersey •.. Skokie,
Illinois. Their complete ad·
dresses are listed above.
*Service Only

QUEBEC
Hewlett-Packard (Canad•) Ltd.
275 Hymus Boulevard
Pointe Claire
Tel: (514) 697-4232
TWX: 610-422·3022
Telex: 01·20607

FOR CANADIAN AREAS NOT
LISTED:
Contact Hewlett-Packard (Can­
ada) Ltd. In Pointe Claire, at
the complete address listed
above.

URUGUAY
Pablo Ferrando S.A.
Comerclal e Industrial
Avenlda Italia 2877
Casilla de Correo 370
Montevideo
Tel: 40-3102
Cable, RADIUM Montevideo

VENEZUELA
Hewlett-Packard De Venezuela
C.A.
Apartado 50933
Caracas
Tel, 71.88.05, 71.88.69, 71.99.30
Cable, HEWPACK Caracas
Telex: 39521146

FOR AREAS NOT LISTED,

CONTACT:
Hewlett-Packard

INTERCONTINENTAL
3200 Hiiiview Ave.
Palo Alto, California 94304
Tel: (415) 493·1501
TWX: 910·373-1267
Cable. HEWPACK Palo Alto
Telex. 034-8461

E 11·71

EUROPE
AUSTRIA
Hewlett-Packard Ges.m.b.H
lnnstrasse 23/2
Postfach 45
A· 1204 Vienna
Tel< (0222) 33 66 06·09
Cable, HEWPAK Vienna
Telex, 75923 hewpak a

BELGIUM
Hewlett-Packard Benelux
S.A./N.V.
Avenue du Col-Vert, 1
8-1170 Brussels
Tel, (02) 72 22 40
Cable, PALOBEN Brussels
Telex, 23 494

DENMARK
Hewlett-Packard A/S
Datavej 38
DK-3460 Birkerod
Teh (01) 81 66 40
Cable, HEWPACK AS
Telex, 16640 hp as

Hewlett-Packard A/S
Torvet 9
DK-8600 Silkeborg
Tel, (06)-82-71-66
Telex: 16640 hp as
Cable, HE'NPACKAS

FINLAND
Hewlett-Packard Oy
Bulevardi 26
P.O. Box 12185
SF-00120 Helsinki 12
Tel< 13-730
Cable, HEWPACKOY-Helsinki
Telex, 12-1563

FRANCE
Hewlett-Packard France
Quartler de Courtaboeuf
Bolte Postale No. 6
F-91 Orsay
Tel< (!) 907 78 25
Cable, HEWPACK Orsay
Telex, 60048

Hewlett-Packard France
4 Quai des Etroits
F-69 Lyon 5~me
Tel, (78) 42 63 45
Cable, HEWPACK Lyon
Telex, 31617

Hewlett-Packard France
29 rue de la Gare
F-31 Blagnac
Tei' (61) 85 B2 29
Telex, 51957

GERMAN FEDERAL
REPUBLIC
Hewlett-Packard Vertrlebs-GmbH
Berliner Strasse 117
Postfach 560/40
D-6 Nieder-Eschbach/Ffm 56
Teh (0611) 50·04·1
Cable, HEWPACKSA Frankfurt
Telex, 41 32 49 FRA

Hewlett-Packard Vertrlebs-GmbH
Herrenbergerstrasse 110
D-7030 Boblingen, Wurttemberg
Teh (07031) 66 72 B6
Cable, HEPAK Boblingen
Telex, 72 65 739

Hewlett-Packard Vertrlebs-GmbH
Vogelsanger Weg 38
D-4 DUsseldorf
Tel, (0211) 63 Bo 31/35
Telex, 85/86 533

Hewlett-Packard Vertriebs-GmbH
Wendenstr. 23
D-2 Hamburg 1
Teh (0411) 24 05 51/52
Cable, HEWPACKSA Hamburg
Telex, 21 53 32

Hewlett-Packard Vertrlebs·GmbH
Unterhachinger Strasse 28
ISAR Center
0-8012 Ottobrunn
Tel, (0811) 60 13 061-7
Telex, 05-24985
Cable, HEWPACKSA MUchen

(West Berlin)
Hewlett-Packard Vertriebs-GmbH
Wilmersdorfer Strasse 113/114
D·!OOO Berlin w. 12
Teh (0311) 3137046
Telex, 18 34 05

GREECE
Kostas Karayannls
18, Ermou Street
Athens 126
Tel, 230301,3,5
Cable, RAKAR Athens
Telex, 21 59 62 RKAR GR

IRELAND
Hewlett-Packard Ltd.
224 Bath Road
Slough, SL! 4 DS, Bucks
Tel< Slough 753-33341
Cable, HEWPIE Slough
Telex, 84413

ITALY
Hewlett-Packard ltallana S.p.A.
Via Amerigo Vespucci 2
1·20124 Milan
Teh (2) 6251 (10 lines)
Cable, HEWPACKIT Milan
Telex, 32046

Hewlett-Packard ltaliana S.p.A.
Via Marocco, 7
1-00144 Rome· Eur
Tei< (6) 5912544/5, 5915947
Cable, HEWPACKIT Rome
Telex: 61514

AFRICA, ASIA, AUSTRALIA
ANGOLA
Telectra Empresa Tecnia

de Equipamentos Electricos
SAR

Rua de Barbosa Rodrigues
42-1°

Box 6487
Luanda
Cable: TELECTRA Luanda

AUSTRALIA
Hewlett-Packard Australia

Ply. Ltd.
22·26 Weir Street
Glen Iris, 3146
Victoria
Tei, 20.1371 (6 lines)
Cable, HEWPARD Melbourne
Telex: 31024

Hewlett-Packard Australia
Pty. Ltd.

61 Alexander Street
Crows Nest 2065
New South Wales
Tel' 43.7866
Cable, HEWPARD Sydney
Telex, 21561

Hewlett-Packard Australia
Ply. Ltd.

97 Churchill Road
Prospect 5082
South Australia
Tel, 65.2366
Cable, HEWPARD Adelaide

Hewlett Packard Australia
Ply. Ltd.

2nd Floor, Suite 13
Casablanca Buildings
196 Adelaide Terrace
Perth, W.A. 6000
Teh 2!·3330
Cable, HEWPARD Perth

Hewlett-Packard Australia
Pty. Ltd.

10 Woolley Street
P:O. Box 191
Dickson A,C.T. 2602
Tei, 49-8194
Cable, HEWPARD Canberra ACT

Hewlett-Packard Australia
Ply. Ltd.
6 Harvard Street
P.O. Box 135
Kenmore 4069 Queensland
Teh 78 6069

CEYLON
United Electricals Ltd.
P.O. Box 681
Yahala Building
Staples Street
Colombo 2
Tel: 5496
Cable, HOTPOINT Colombo

CYPRUS
Kypronics
19 Gregorios & Xenopoulos Road
P.O. Box 1152
Nicosia
Tel, 6282·75628
Cable, HE-1-NAMI

ETHIOPIA
African Salespower & Agency

Private Ltd., Co.
P. o. Box 718
58/59 Cunningham St.
Addis Ababa
Teh 12285
Cable, ASACO Addisababa

Blue Star, Ltd.
96 Park lane
Secunderabad 3, India
Tel, 7 63 91
Cable, BLUEFROST

Blue Star, Ltd.
23/24 Second line Beach
Madras 1, India
Tel, 2 39 55
Telex: 379
Cable, BLUESTAR

Blue Star, Ltd.
lB Kaiser Bungalow
Dind1i Road
Jamshedpur, India
Tel, 38 04

HONG KONG Cable, BLUESTAR
~'.~.m~~~ &2gr (Hong Kong) Ltd. INDONESIA
1511, Prince's Building 15th Floor Bah Bolon Trading Coy. N.V.
10, Chater Road Ojalah Merdeka 29
Hong Kong Bandung
Teh 240168, 232735 Tel, 4915; 51560
Cable, SCHMIDTCO Hong Kong ~;~~;: ~~~~9
INDIA IRAN
Blue Star Ltd. Telecom, Ltd.
Kasturi Buildings P. o. Box 1812
Jamshedji Tata Rd. 240 Kh. Saba Shomali
Bombay 20BR, India Teheran

~::~;,9 :i1°5~ 1 Tel, 43850, 48lll
Cable, BLUEFROST ~:I~~' :s~~COM Teheran

Blue Star Ltd.
Band Box House
Prabhadevi
Bombay 25DD, India
Tel, 45 73 01
Telex, 2156
Cable, BLUESTAR

Blue Star Ltd.
14/40 Civil Lines
Kanpur, India
Tel, 6 B8 B2
Cable, BLUESTAR

Blue Star, Ltd.
7 Hare Street
P.O. Box 506
Calcutta 1, India
Tel, 23-0\31
Telex, 655
Cable, BLUESTAR

Blue Star Ltd.
Blue Star House,
34 Ring Road
Lajpat Nagar
New Delhi 24, India
Tel, 62 32 76
Telex, 463
Cable, BLUESTAR

Blue Star Ltd.
17-C Ulsoor Road
Bangalore-a

ISRAEL
Electronics & Engineering

Div. of Motorola Israel Ltd.
17 Amlnadav Street
Tel-Aviv
TeJ, 36941 (3 lines)
Cable, BASTEL Tel-Aviv
Telex, Baste! Tv 033-569

JAPAN
Yokogawa-Hewiett-Packard Ltd.
Ohashi Building
1-59-1 Yoyogi
Shlbuya-ku, Tokyo
Tel, 03-370-2281/7
Telex, 232·2024YHP
Cable, YHPMARKET TOK 23-724

Yokogawa-Hewiett-Packard Ltd.
Nisei lbaragl Bldg.
2-2·8 Kasuga
lbaragi-Shl
Osaka
Tel, (0726) 23-1641
Telex, 385·5332 YHPOSAKA

Yokogawa-Hewlett-Packard Ltd.
Ito Building
No. 59, Kotorl·cho
Nakamura-ku, Nagoya City
Tel, (052) 551-0215

LUXEMBURG
Hewlett-Packard Benelux
S.A./N.V.
Avenue du Col-Vert, 1
B-1170 Brussels
Teh (03/02) 72 22 40
Cable, PALOBEN Brussels
Telex, 23 494

NETHERLANDS
Hewlett-Packard Benelux, N.V.
Weerdesteln 117
P.O. Box 7B25
Amsterdam, Z 11
Teh 020·42 77 77
Cable, PALOBEN Amsterdam
Telex, 13 216

NORWAY
Hewlett-Packard Norge A/S
Box 149
Nesveien 13
N-1344 Haslum
Tel< (02)·53 B3 60
Telex, 16621

PORTUGAL
Telectra-Empresa Tecnlca de

Equipamentos
Electricos S.a.r.I.
Rua Rodrigo da Fonseca 103
P.O. Box 2531
Lisbon 1
Tel, 68 60 72
Cable' TELECTRA Lisbon
Telex, 1598

SPAIN
Hewlett-Packard Espaf'iola, S.A.
Jerez No 8
Madrid 16
Tel, 458 26 00

Yokogawa-Hewlett-Packard Ltd.
Nitto Bldg.
2300 Shinohara-cho,
Kohoku-ku
Yokohama 222
Tel, (405) 432·1504/5

JORDAN
Constantin E. Macrldis
Clemenceau Street
P.O. Box 7213
Beirut, Lebanon
Tel, 220846
Cable, ELECTRONUCLEAR Beirut

KENYA
Kenya Kinetics
P.O. Box !B311
Nairobi, Kenya
TeJ, 57726
Cable, PROTON

KOREA
American Trading Co.,
Korea, ltd.
Seoul P.O. Box 1103
7th & 8th floors, DaeKyung Bldg.
107 Sejong Ro
Chongro-Ku, Seoul
Tel, 75-5841 (4 lines)
Cable, AMTRACO Seoul

LEBANON
Constantin E. Macridls
Clemenceau Street
P.O. Box 7213
Beirut
Tel, 220846
Cable, ELECTRONUCLEAR Beirut

MALAYSIA
MECOMB Malaysia Ltd.
2 Lorong 13/6A
Section 13
Petaling Jaya, Selangor
Cable, MECOMB Kuala Lumpur

MOZAMBIQUE
A. N. Goncalves, LOA.
4.1 Apt. 14 Av. 0. Luis
P.O. Box 107
Lourenco Marques
Cable, NEGON

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
94-96 Dixson St.
P.O. Box 9443
Wellington, N.Z.
Tel, 56-559
Cable, HEWPACK Wellington

Hewlett Packard (N.Z.) Ltd.
Box 51092
Pukuranga
Tel, 569-651
Cable, HEWPACK, Auckland

PAKISTAN (EAST)
Mushko & Company, Ltd.
1, Jinnah Avenue
Dacca 2
Tel• 280058
Cable, NEWDEAL Dacca

SWEDEN
Hewlett-Packard Sverlge AB
Enighetsvagen 1-3
Fack
S-161 20 Bromma 20
Teh (08) 98 12 50
Cable, MEASUREMENTS

Stockholm
Telex, 10721

Hewlett-Packard Sverige AB
Hagakersgatan 9C
S-431 41 Millndal
Teh (031) 27 68 00/01
Tele>< 21 312 hpmindls

SWITZERLAND
Hewlett Packard (Schweiz) AG
ZOrcherstrasse 20
CH·B952 Schlieren Zurich
Tel< (01) 98 18 21/24
Cable' HPAG CH
Tele>< 53933

Hewlett-Packard (Schweiz) AG
Rue du Bois-du-Lan 7
P.O. Box B5
1'217 Meyrin 2 Geneva
Tel, (022)415400
Cable, HEWPACKSA Geneva
Telex, 27333 HPSA CH

TURKEY
Telekom EngLneering Bureau
P.O. Box 376
KarakOy
Istanbul
Teh 49 40 40
Cable, TELEMATION Istanbul

PAKISTAN (WEST)
Mushko & Company, Ltd.
Oosman Chambers
Abdullah Haroon Road
Karachi 3
Teh 511027, 512927
Cable< COOPERATOR Karachi

Mushko & Company, Ltd.
38B, Satellite Town
Rawalpindi
Tel, 41924
Cable: FEMUS Rawalpindi

PHILIPPINES
Electromex Inc.
5th Floor, Architects
Center Bldg.
Ayala Av~ .• Makatl, Rizal
C.C.P.O. Box 1028
Makati, Rizal
Tel, 86-18·87, 87-76-77
Cable, ELEMEX Manila

SINGAPORE
Mechanical and Combustion

Engineering Company ltd.
9, JaJan Klfang
Red Hill Industrial Estate
Singapore, 3
Tel, 642361-3; 632611
Cable, MECOMB Singapore

Hewlett-Packard Far East
Area Office
P.O. Box 87
Alexandra Post Office
Singapore 3
Teh 633022
Cable, HEWPACK SINGAPORE

SOUTH AFRICA
Hewlett Packard South Africa

(Ply.), Ltd.
P.O. Box 31716
Braamfontein Transvaal
Milnerton
30 De Beer Street
Johannesburg
Tel, 725-2080, 725·2030
Telex' 0226 JH
Cable< HEWPACK Johannesburg

Hewlett Packard South Africa
(Ply.), Ltd.

Breecastle House
Bree Street
Cape Town
Tel, J.6019, 3·6545
Cable, HEWPACK Cape Town
Telex, 5-0006

Hewlett Packard South Africa
(Ply.), Ltd.

641 Ridge Road, Durban
P.O. Box 99
Overport, Nata I
Tel, B8·6102
Telex: 567954
Cable, HEWPACK

UNITED KINGDOM
Hewlett-Packard Ltd.
224 Bath Road
Slough, SL! 4 OS, Bucks
Tel, Slough (0753) 33341
Cable, HEWPIE Slough
Telexc B4413

Hewlett-Packard Ltd.
"The Graftons"
Stamford New Road
Altrincham, Cheshire
Tel, (061) 928·B626
Telex, 668068

YUGOSLAVIA
Belram S.A.
83 avenue des Mimosas
Brussels 1150, Belgium
Teh 34 33 32, 34 26 19
Cable, BELRAMEL Brussels
Telex, 21790

SOCIALIST COUNTRIES
PLEASE CONTACT:
Hewlett-Packard Ges.m.b.H
lnnstrasse 23/2
Postfach 45
A-1204 Vienna, Austria
Teh (0222) 33 66 06-09
Cable, HEWPACK Vienna
Telex, 75923 hewpak a

ALL OTHER EUROPEAN
COUNTRIES CONTACT:
Hewlett-Packard S.A.
Rue du Bois-du-Lan 7
1217 Meyrin 2 Geneva

Switzerland
Tel, (022) 41 54 00
Cable, HEWPACKSA Geneva
Telex, 2.24.86

TAIWAN
Hewlett Packard Taiwan
39 Chung Shlao West Road
Sec. 1
overseas Insurance
Corp. Bldg. 7th Floor
Taipei
Tel< 389160,1,2, 375121,
Ext. 240
Telex, TP824 HEWPACK
Cable, HEWPACK Taipei

THAILAND
The International

Engineering Co., ltd.
P. 0. Box 39
614 Sukhumvlt Road
Bangkok
Tel, 910722 (7 lines)
Cable, GYSOM
TLX INTENCO BK-226 Bangkok

UGANDA
Uganda Tele-Electric Co., Ltd.
P.O. Box 4449
Kampala
Tel, 57279
Cable, COMCO Kampala

VIETNAM
Peninsular Trading Inc.
P.O. Box H-3
216 Hien-Vuong
Saigon
Tel, 20805, 93398
Cable, PENTRA, SAIGON 242

ZAMBIA
R. J. Tilbury (Zambia) Ltd.
P.O. Box 2792
Lusaka
Zambia, Central Africa
Tel, 73793
Cable, ARJAYTEE, Lusaka

MEDITERRANEAN AND
MIDDLE EAST COUNTRIES
NOT SHOWN PLEASE
CONTACT:
Hewlett-Packard
Co·ord ination Office for
Mediterranean and Middle
East Operations
Via Marocco, 7
1-00144 Rome-Eur, Italy
Tel, (6) 59 40 29
Cable, HEWPACKIT Rome
Telex, 61514

OTHER AREAS NOT
LISTED, CONTACT:
Hewlett-Packard

INTERCONTINENTAL
3200 Hillview Ave.
Palo Alto, California 94304
Tel, (415) 326-7000

(Feb. 71 493-1501)
Twx, 910-373·1267
Cable, HEWPACK Palo Alto
Telex, 034·8461

E 11-71

5951-1321

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	I-01
	I-02
	I-03
	u-01
	u-02
	u-03
	u-04
	u-05
	u-06
	u-07
	u-08
	u-09
	x-01
	x-02
	xBack

