
LEVEL 6
f HARDWARE

TYPE CPF9509
WRITABLE
CONTROL STORE
USER'S GUIDE

('
/

c

TYPE CPF9509
WRITABLE CONTROL STORE

USER'S GUIDE

Document No.: 71010620-100 Order No.: FQ4l, Rev. 0

System Integrity Disclaimer

Honeywell normally assumes responsibility for assuring the 'y

compatible coexistence of the total computer system, including
hardware and software modules, as specified in appropriate
Honeywell literature. The assumption of this responsibility is
based on extensive planning, specification, stability, and
qualification testlng of each component and of the integrated
system.

The Writable Control Store allows a user to control the underly­
ing hardware base of a Model 43 or higher system. Because user
microprogramming can bypass both the normal hardware and software
integrity controls, Honeywell cannot ensure system integrity,
compatibility, or performance once the WCS is utilized to execute
user generated firmware.

PREFACE

This manual describes how to use the Writable Control Store
(WCS) feature, enabling a user to successfully generate and exe­
cute firmware routines in the Central Processing Unit (CPU), and
includes a description of the Model 43/53 cpu. It is written to
provide a microprogrammer with an understanding of the micro­
instruction codes, the assembler, and the loading procedures to
perform the above tasks. It assumes that the reader has a work­
ing knowledge of the Level 6 architecture, the CPU, the asso­
ciated system software, and the applicable operation procedures.
For those who are unfamiliar with this information, it is recom­
mended that they familiarize themselves with the material con­
tained in the following support documentation.

• Honeywell Level 6 Minicomputer Handbook (Order No. AS22)

• GCOS 6 Program Preparation (Oruer No. CBul)

• GCOS 6 Commands (Order No. CB02)

• GCOS 6 Assembly Language Reference (Order No. CB07)

• GCOS 0 MOD 400 Program Execution and Checkout
(Order No. CB21)

• GCOS 6 MOD 400 System Building (Order No. CB23)

• GCOS 6 MOD 400 Operator's Guide (Order No. CB24)

Copyright. © 1978 Honeywell Information Systems Inc.

Section

!

II

III

CONTENTS

INTRODUCTION
1.1 General Characteristics
1.2 Using the WCS

HARDWARE
2.1 Microprocessor Area
2.2 Internal Bus Area
2.3 Megabus Interface Area
2.4 Miscellaneous Hardware Area
2.5 Firmware Sequencing Area
2.6 Master Clock Area and Timing Considerations
2.7 Entering and Leaving the WCS
2.8 Use of CPU Elements

2.8.1 Software Visible
2.8.2 Firmware Dedicated
2.8.3 Working Stor~ge
2.8.4 Autonomous

MICROINSTRUCTIONS
3.1 Microprocessor Area

3.2

3.1.1 Syntax
3.1.2 Microprocessor Sources and

Desti.nations
3.1. 3
3.1. 4
3.1. 5
Internal
3.2.1
3.2.2

3.2.3

Microprocessor
Microprocessor
Microprocessor
Bus Area

Functions
Shift Operands
Examples

Syntax
Internal
3.2.2.1

3.2.2.2
3.2.2.3
3.2.2.4
3.2.2.5

Internal
3.2.3.1

3.2.3.2
3.2.3.3
3.2.3.4

Bus Sources
Sources from the
Microprocessor Area
RAM Locations
~1egabus Buffers
Constants
Other Internal Bus
So urces

Bus Destinations
Megabus Address
Registers
RAM Locations
Indicator Register
Other Destinations

Page

1-1
1-1
1-2

2-1
2-3
2-4
2-5
2-6
2-7
2-7
2-9
2-11
2-11
2-12
2-15
2-18

3-1
3-1
3-3

3-3
3-6
3-8
3-11
3-12
3-14
3-14

3-15
3-15
3-16
3-17

3-18
3-25

3-25
3-25
3 26
3-26

iii

Section

IV

iv

3.3

3.4

3.5

3.6

3.7

CONTENTS

3.2.4 Internal Bus Examples
Megabus Interface Area
3.3.1 Syntax
3.3.2 Megabus Interface Functions
3.3.3 Megabus Interface Operands
Miscellaneous Hardware Area
3.4.1 Syntax
3.4.2 Indicator Register (I) Bits
3.4.3 Counter Register
3.4.4 MMU Controls
3.4.5 Other Hardware
3.4.6 FLOPS Operands and Restrictions
3.4.7 Miscellaneous Hardware Examp1~s
Firmware Sequencing Area
3.5.1 Transparent and Sequential Mode

Differences
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
Master
3.6.1
3.6.2

Transparent Mode Syntax
Sequential Mode Syntax
Cond it ions
Address Values
Firmware Sequencing EX3mples

Clock Area
Syntax
Usage of Master Clock
Microinstructions

Examples of Firmware Routines

WCS ASSEMBLY L~NGUAGE
4.1 Elements of WC5 Assembly Language

4.1.1 Mnemonic Codes
4.1.2 Symbolic NJmes
4.1.3 Constants
4.1.4 Statement References
4.1.5 Punctuation

4.2 Source Statement Formats

4.1

4.2.1 Firmware Statement
4.2.2 Pseudo-Op Statement
4.2.3 Blank Lines
4.2.4 Comment Lines
Control
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10

Stat0ments
DEFAULT Statement
END Statement
EQU Statement
LABEL Statement
LIST Statement
NATIVE Statement
NLST Statement
NO LIST Statement
SEQUENTIAL Statement
TITLE Statement

Page

3 28
3-29
3-33
3-33
3-34
3-38
3-38
3-38
3-39
3-40
3-40
3-42
3-48
3-49

3-49
3-5U
3-52
3-53
3-61
3-61
3-63
3-63

3-63
3-63

4-1
4-3
4-4
4-4
4-5
4-6
4-7
4-8
4-8
4-9
4-10
4-10
4 10
4-11
4-11
4-11
4-12
4-13
4-13
4-13
4-13
4-13
4-13

c

Section

v

VI

4.4
4.5
4.6

CONTENTS

Interpreting WCS Assembly Listings
WCS Assembler Object Deck Format
Assembler Output Listing Error Messages

OPERATING AND SYSTEM DEBUGGING PROCEDURES
5.1 Using the WCS Assembler
5.2 Loading the WCS

5.3

5.4
5.5

5.2.1 Writable Control Store LOud
(WCSLD) Command

5.2.2 Error Handling
Debugging WCS Microprograms
5.3.1 User Generic Not Invoked
5.3.2 Instruction Does Not Exit
5.3.3 Instruction Exits Via Unexpected

5.3.4
Trap
Instructions Executes and Produces
Unexpected Results

WCS Patch Procedure
Microcode Analyzer
5.5.1 Front Panel

5.5.2

5.5.1.1 Front Panel Keys
5.5.1.2 Front Panel Indicators
5.5.1.3 Internal Bus Display
5.5.1.4 Address Display
Normal Operation
5.5.2.1 Operate in Single Step

5.5.2.2

5.5.2.3
5.5.2.4

5.5.2.5
5.5.2.6

5.5.2.7
5.5.2.8

Mode
Return to Continous
Operation
Set Up a Halt Address
Halt at a Particular
Address
Disable Address Halt
Display the Current
Data
Display History
Synchronize Oscilloscope

PROGRAMMING CONSIDERATIONS
6.1 Logical and Physical Layout
6.2 Loading Firmware Image into WCS
6.3 Relationship of User Generics to WCS

Entry Points

Page

4 --14
4-14
4-15

5-1
5-1
5-3

5-4
5-5
5-6
5-6
5-7

5-8

5-9
5-9
5-10
5-10
5-11
5-12
5-12
5-12
5 -- 13

5-13

5-13
5-13

5-14
5-14

5-14
5-14
5-15

6-1
6-1
6-1

6-4

Appendix A Writable Control Store Assembler Abort Codes A-I

Appendix B Firmware Word Formut 8-1

Appendix C Reser~ed Word List and Encodings C-1

v

Section

Appendix

Appendix

Figure

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8

3-1
3-2
3-3
3-4

4-1

4-2
4-3

5-1

6-1

B-1

vi

CONTENTS

D Summary of Restrictions

E Instruction Register Maps

ILLUSTRATIONS

Hardware Configuration
Central Processor Area
Microprocessor Area
Internal Bus Area
Megabus Interface Area
Miscellaneous Hardware Area
Firmware Sequencing Area
Master Clock Area

Microprocessor Area
Internal Bus Area
Mcgabus Interface Area
Link Register Operands

Relationship of Source File, Assembler, and
Object File
Sample Output Listing
Sample File Dump

Front Panel

Typical Loaning Procedure

Firmware Worj Format

Page

D-l

E-l

Page

2-1
2-3
2-3
2-4
2-5
2-6
2-7
2-8

3-2
3-13
3-30
3-51

4-2
4-14
4-15

5-11

6-3

B-2

/' ... "'\

\".J

Table

2-1

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13

6-1

B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-l1
B-12
B-13
8-14
B-15

C-l
C-2
C-3

D-l
D-2
D-3

D-4
D-5

E-1
E-2
E-3
E-4
E-5
E-6

TABLES

Use of CPU Elements

ALU Source and Destination Operands
ALU Functions
Internal Bus Sources
Internal Bus Destinations
Megabus Interface Microinstructions
Miscellaneous Hardware Operands
Permissible GP Combinations
Transparent Mode Branch Address Operands
Firmware Sequencing Conditions
!FBCND Test Function
Data Field Size Tests
Source Statements for Transparent Mode
Source Statements for Sequential Mode

WCS Entry Points

RALU Destination (AD) Field Decodes
RALU Function (AF) Field Decodes
RALU Sourc~ (AS) Field Decodes
Legal Combinations of AS and AF Fields
Internal Bus Selector (B16) Decodes
Branch Type (BR) Field Decodes
Branch Type CBR) Field Decodes
Bus Control (BS) Field Decodes
CPU Clock Speed (CK) Field Decodes
Internal Bus Control (01) Field Decodes
General Purpose (GP) Field Decodes
RALU Left Sel~ct (LS) Field Decodes
RALU Right Select (RS) Field Decodes
Select Modify (SM) Field Decodes
Test Condition (TC) Field Decodes

Register File Operand Encodings
RAM Location Operand Encodings
LS/RS and SM Encoding Values

Register File/RAM Locations Legal Groups
Register File "Restricted Selection" Criteria
Register File/RAM Location Operand
Correspondence
Permissible GP Combinations
Operands Affecting AUZ, CRY, and OVFL

Main Splatter Map
Key to XR
Key to XW
XA Variations
XB Variations
T.est Conditions

Page

2-19

3-5
3-8
3-21
3-27
3-37
3-43
3-47
3-52
3-54
3-59
3-60
3-62
3-62

6-5

B-3
B-4
B-5
B-5
B-6
B-a
B-9
B-I0
B-12
B-13
B-14
B-18
B-19
B-20
B-2l

C-21
C-22
C-22

0-7
D-7

D-S
0-8
0-10

E-J
E-4
E-4
E-5
E-6
E-8

vii/viii

SECTION 1 - INTRODUCTION

Today's continued advancement of computer technology has pro­
duced a user-accessible control store extension within a Central
Processor Unit (CPU) called Writable Control Store (WCS). This
WCS feature provides a user with extremely powerful hardware in­
structions that extend as well as enhance the standard CPU soft­
war~ instruction set to achieve optimum CPU performance for soft­
ware routines critical to a particular application, and allows
them to execute at speeds comparable to the native CPU instruc­
tions. They accomplish this by en~bling a user to write custom­
ized microprograms (firmware) into a CPU to replace repetitive
software routines. Much of the speed enhancement derives from
the ability of the firmware to perform several simultaneous oper­
ations in a single firmware step.

The application for the WCS feature varies considerably from
one user to another. It enables a microprogrammer to enhance and
augment the native CPU firmware to produce the equivalent of a
customer built, specialized central processor. Software routines
(or programs) designed to run without the.WCS feature are unaf-

(~ fected by its presence.

The closeness of the firmware to hardware requires that the
microprogrammer have a solid understanding of all the CPU func­
tions, char~cteristics, and limitations. The key to effective
custom-microprogramming lies in identifying the most frequently
used algorithms for a particular application, and coding only
those functions into microprogram routines. With effective
microprogramming, a user can increase the overall performance of
the CPU with a minimum conversion of software programs to micro­
programs.

1.1 GENERAL CHARACTERISTICS

The WCS feature augments the control store facility in the
CPU with additional storage capacity that is alterable by the
user. Its basic functional characterictics are:

• Capacity of lK or 2K o4-bit words.

• WCS assembler to assemble firmware routines.

• Loader to load the assembled routines into the WCS.

• Facility for a Microcode Analyzer to display and monitor
firmware sequencing and key data with the execution of
ea~h firmware step.

1-1

This feature does NOT replace the standard firmware, but provides ;/~
a micorprogrammer with the opportunity to add to it.,,)

1.2 USING THE WCS

All microprograms (firmware routines) are initially processed
through the WCS assembler, which accepts mnemonic source input
and creates object files suitable for loading into control store.
The WCS loader accepts the assembler generated object code and
loads it into the WCS. When User Generic instructions are pro­
cessed in the CPU, control is passed from the standard firmware
to the user firmware in the WCS, where control of the CPU is
maintained until completion of the user microroutine. Upon
~ompletion, the user firmware returns CPU control to the standard
firmware. The entry point into the standard firmware is normally
at the starting location of a microroutine used to fetch the next
procedure word (i.e., next instruction). However, the user can
specify any return address. It should be noted that while user
firmware is in control of the CPU, the user is responsible for
maintaining software service routines, such as polling for inter­
rupts, testing for traps, etc.

Writing mi:roprograms should be performed in a systematic and
orderly manner. The user should:

1-2

1. Define t~e function of each new instruction.

2. Acquire a good working knowledge of CPU functions, char­
acteristics, and limitations.

3. Define the task(s) the hardware must perform, such as
drawing a cycle on a screen, and design a hardware algo­
rithm to perform the task(s).

4. Determine the firmware steps required to implement the
subject algorithm.

NOTE

A firmware step can perform several parallel operations.
Hence, a microprogrammer who may t~nd to think in terms
of sequential programming operations, can save consider­
able steps and timing in the microprogram by combining
the applicable operations into one step, thus taking
maximum advantage of the parallel operation, as well as
writing a more efficient microprogram. For example, an
Add and a Branch operation can be combined into a single
firmware step instead of two steps.

5. Enter each firmware step as a source statement on a suit­
able coding form.

.;(~.

\~j

c

(

"\ C·.~

6. Transcribe each source statement onto punched cards, or
enteL each statement directly onto a disk file via an on­
line terminal.

7. Process the source file through the WCS assembler to ob­
tain a machine-language object file, and output the ob­
ject file to disk or magnetic tape. This operation also
produces a combined listing of the source file, object
file, and assembler diagnostic messages for use during
debugging.

8. Load the object file into the CPU for analysis and
debugging.

A Microcoae Anaylzer is available that selectively displays
pertinent CPU and WCS information for use in debugging micropro-
9rams. Included are the control facilities to single step the
CPU through a microprogram, to set up a halt address that halts
the CPU at any specified address, and to display the last 16
steps executed by the CPU.

1-3/1-4

tf'"',
\~

· (~' SECTION 2 - HARDWARE

The microprogrammer must know the hardware configuration in
use to properly program the firmware. An understanding of the
function of each unit and its relation to the entire system will
make the task easier.

The hardware required to implement user generated micropro­
grams consists of two basic units (see Figure 2-1); the Central
Processor Unit (CPU) and the Writable Control Store (WCS). The
Microcode Analyzer is a tool to aid microprogram debugging.

WRITABLE
CONTROL

STORE

MICRO·
CODE

ANALYZER

CENTRAL
PROCESSOR

Figure 2-1 Hardware Configuration

2-1

The CPU is the computing and control portion of the Level 6
system, which processes the data and address information required
by the microprogram. It controls not only the flow of informa­
tion within the CPU but also the flow of data between the CPU and
other units of the Level 6 system. Control over system opera­
tions is accomplished by selecting, interpreting, and controlling
execution of all software instructions.

The WCS provides a variable extension of the native control
store, which manipulates the central processor hardware. The WCS
firmware functions as an extension of the native control store
firmware, manipulating the CPU hardware in exactly the same man­
ner as the native firmware. The WCS firmware is not a replace­
ment for the standard firmware used to implement the base in­
struction set, but provides the user with the opportunity to add
to it.

Key features of the CPU in the microprogramming environment,
in addition to the 26 software-visible registers, are a number of
data paths, firmware registers, and control flops; some of which
are dedicated to specific functions, either by hardware structure
or by native firmware usage. The CPU registers uiffer in length,
functionality (shifting, counting, etc.) and ability to communi­
cate with other CPU elements and the Level 6 system. Regardless
of length, the bits of each register or data path are numbered
from left (most significant bit) to right (l~ast significant
bit), starting with zero. Thus, a 4-bit register would have bits
numbered 0 through 3, while a 2U-bit register or data path would
have bits numbered 0 through 19.

All addresses and many other values in this manual are ex­
pressed in hexadecimal (base 16) notation, using the digits 0, 1,
2, 3,4,5,6,7,8,9, A, B, C, D, E, and F. When there is any
danger of ambiguity between hexadecimal and decimal numbers, the
hexadecimal number is written in this manual using the pound sign
(#) as a suffix.

The registers, flops, data paths, and processing elements
that comprise the CPU are divided into six functional areas:
microprocessor, internal bus, Megabus* interface, miscellaneous
hardware, firmware sequencing, and master clock (see Figure 2-2).
Each of these areas is controlled by a distinct set of microin­
structions, which are described in detail in Section Three.

The remainder of this section describes:

• The six areas of the CPU
• Entering and leaving the WCS
• Use of the CPU registers, counters, and control flops.

*Trademark of Honeywell Informations Systems, Inc.

2-2

./ '\ o

(~

(

c

CENTRAL PROCESSOR

MICRO·
PROCESSOH

INTERII.AL
BUS

MEGABUS
INTERFACE

MISCE LLANEOUS
HARDWARE

FIRMWARE
SEOUENCING

MASTER
CLOCK

Figure 2-2 Central Processor Area

2.1 MICROPROCESSOR AREA

The microprocessor area (se€ Figure 2-3) performs the arith­
metic, logical, and· shift operations required by the Level 6 sys­
tem, including storage of operands for subsequent use by the
microprogram and over half of the software visible registers.

CENTRAL PROCESSOR

MICRO· ~ MISCELLANEOUS'
PROCESSOR HARDWARE

Jl . tL1
INTERNAL

BUS

MEGABUS
INTERFACE'

FIRMWARE
'SEOUENCING

"

; MASTE R ;:: '.
CLOCK :' ".'

________ > DATA AND ADDRESS LINES

Figure 2-3 Microprocessor Area

2-3

The interface to the microprocessor area from the internal
bus area enables processing of operands from CPU areas that are
external to the microprocessor area. The microprocessor area in­
cludes a register file that provides storage for sixteen 20-bit
registers. Among these are software visible registers RI through
R7 and Bl through B7. Results of the microprocessor operations
can (optionally) be stored within the microprocessor area, but
regardless of whether or not these storage facilities are used,
the results are available for testing and/or distribution (via
the internal bus) to destinations outside the microprocessor
area.

2.2 INTERNAL BUS AREA

rhe internal bus area (see Figure 2-4) selects data from any
one of several sources, and makes the data available to destina­
tions both inside and outside the internal bus area.

2-4

EXTERNAL
SOURCES

CENTRAL PROCESSOR

MICRO" "MISCELLANEOUS
PROCESSOR HARDWARE

~ }>

INTERNAL ~ FIRMWARE :;

~ BUS 10- • SEOUENCING';,

~ ~ fL-
MEGABUS ..:: MASTER ':.:.

INTERFACE; CLOCK

_______ > DATA AND ADDRESS LINES

Figure 2-4 Internal Bus Area

,

Elements that functions as internal bus sources include:

• Microprocessor outputs
• Sixteen additional 20-bit registers (RAM)
• Megabus buffer registers
• Constant-generation facilities
• Other sources.

o

Elements (within the internal bus area) that may serve as
destinations for the internal bus data include:

• 16 RAM registers
• Memory address register and program counter
• Indicator register
• Other registers.

In general, the internal bus microinstruction permits select­
ing a single source and optionally delivering copies to one des­
tination in each of the four categories previously listed.
Internal bus data are also available for use by the other CPU
areas.

2.3 MEGABUS INTERFACE AREA

Megabus cycles originating from the CPU are processed by the
Megabus interface area (see Figure 2-5). For example, if the CPU
wants to store a word in main memory, it sends the word together
with its memory address (~ia the Megabus interface area) down the
Megabus to main memory.

EXTERNAL
SOURCES

CENTRAL PROCESSOR

MICRO· MISCELLANEOUS
PROCESSOR HARDWARE

INTERNAL FIRMWARE
BUS SEOUENCING

U \J
MEGABUS 'MASTER,

INTERF ACE CLOCK

_______ > DATA AND ADDRESS LINES

Figure 2-5 Megabus Interface Area

The six types of communication permitted over the Megabus
are: (1) memory read request, (2) I/O read request, (3) read
response, (4) memory write, (5) I/O write, and (6) interrupt.
The microprograrnrner can use combinations of these Megabus opera­
tions depending on the type of communication desired with other
units of the Level 6 system.

2-5

NO'IE

Communication types (1), (2), (4), and (5) are subject
to control by the Megabus interface area, while types
(3) and (6) are controlled by the internal bus area.

The interfaces among the internal bus, miscellaneous hard­
ware, and Megabus interface areas enables the sending of data,
address, and control information to the Level 6 Megabus from CPU
areas that are outside the Megabus interface area.

2.4 MISCELLANEOUS HARDWARE AREA

The m i scell aneous hardwa re a rea (see Fig ure 2-6) incl udes the
remaining control flops and registers required by the CPU.

EXTERNAl---------...... -----...................

SOURCES --T--:::;:::=========~ ~ t-­
\> .' ·1)<i;>;

MICRO·
" PROCESSOR~'.

I
; INTERNALi;

'. BUS .

.. ' MEGABUS
·1,1.':'I!~~F~SE

. ,

MISCELLANEOUS ~
HARDWARE

. FIRMWARE,;;
1SEOUENCING, .•.•. _ •...••.. ., .. '

....... ,

........ \.

_______ > DATA AND ADDRESS LINES

Figure 2-6 Miscellaneous Hardware Area

The interface to the miscellaneous hardware area from the
microprocessor, internal bus, and Megabus interface areas permit
the microprogrammer to alter the state of the various control
elements using sources both internal and external to the miscel­
laneous hardware area.

2-6

c

These control elements modify the actions of other CPU areas,
and can also be used to save signals generated in the current
firmware step for use in subsequent firmware steps. For example,
if the ~icroprogrammer wants to postpone a firmware branch based
on whether or not an arithmetic operation produced overflow, the
overflow signal from the microprocessor area can be used to alter
the state of a control flop within the miscellaneous bardware
area. The state of the control flop can later be used as the
test conditon for a firmware branch operation.

2.5 FIRMWARE SEQUENCING AREA

The firmware sequencing area (see Figure 2-7) provides the
next firmware address for the control store. Every firmware step
specifies a test condition that interrogates various flops and
signals from other CPU areas to determine which of two alternate
addresses is the next firmware address. Unconditional branching
is supported by a test condition that always evaluates "false".

CENTRAL PROCESSOR

MICRO MISCE L LANE OUS
PROCESSOR HARDWARE

I
\} {j

INTERNAL ~ FIRMWARE
BUS SEOUENCING

J
f)

MEGABUS MASTER
INTERFACE CLOCK

------~> UA1A ANUAlJllH£SS LINES

EXTERt-.AL
SOURCES

Figure 2-7 Firmware Sequencing Area

There are two addressing modes; Transparent and Sequential.
In the Transparent mode, the mode used by the native firmware,
every firmware step explicitly specifies the address of its suc­
cessor. The Sequential mode appears more like typical software
in that control generally proceeds to the next sequential loca­
tion. The Transparent mode makes it possible to produce more
compact code, whereas the Sequential mode is easier to learn.

2.6 MASTER CLOCK AREA AND TIMING CONSIDERATIONS

The master clock area (see Figure 2-8) generates the timing
signals necessary for proper operation of the cpu.

2-7

CENTRAL PROCESSOR!

~--------~ ~--------~
MISCEllANEOUS I

HARDWARE
MICRO·

PROCESSOR.

INTERNAL
BUS

MEGABUS
INTERFACE

I

I

FIRMWARE t
SEOUENCING

MASTER
CLOCK

Figure 2-8 Master Clock Area

The timing signals distributed throughout the CPU provide
four clock cycles that differ only in the duration of the cycle.
The duration of the clock cycle for each firmware step is select­
ed by the firmware assembler to provide the fastest performance
consistent with reliable operation of the hardware. In rare cir­
cumstances, it will be necessary for the microprogrammer to over­
ride the assembler clock controls. This action will be required
when the duration of a clock cycle must be increased to accommo­
date conditions arising from the actions of a prior firmware
step.

All firmware controlled registers and flops in all areas of
the CPU, with the sole exception of the 12-bit instruction regis­
ter (F), are loaded, cleared, incremented, and/or shifted syn­
chronously at the end of the firmware step calling for such
action(s). Any testing, copying, etc., dependent on the content
of a register that is being altered in the same firmware step,
may be assumed to operate on the current contents of the register
(i.e., the register contents before being altered by the current
firmware step), except as explicitly noted.

Special timing considerations apply to firmware steps in­
volving Megabus read request or Megabus write operations. Read
requests are not generally completed until well into the next
firmware step, imposing some restrictions on the microprogrammer.
If the read request is not immediately followed by a firmware
step that uses the response, the address selection must be main­
tained during the first step following the read request step.
The acknowledge signal from the Megabus may be copied and/or
tested during the firmware step immediately following the read
request step.

2-8

(

c

During Megabus write operations, the acknowledge signal from
the Megabus is received in time to be copied within the same
firmware step, but not early enough to affect firmware sequencing
reliably (refer to subsection 3.3).

A different situation exists regarding read responses (via
the Megabus) to a CPU request. If the response arrives before
the firmware is ready to use it, the data are buffered until re­
quested. If the firmware attempts to use the data before the
response has been received, the interface hardware automatically
stalls the CPU master clock until the data arrives. The micro­
programmer must avoid requesting data from a Megabus buffer if
the read request was rejected: there is no limit to the patience
of the master clock awaiting data that will not be received.

2.7 ENTERING AND LEAVING THE WCS

To minimize timing problems when transferring microprogram
control from native control to the WCS, or vice versa, advantage
is taken of the synchronization capability already designed into
the Megabus interface area. Control is transferred by causing
the CPU to issue a Megabus cycle (I/O write) addressed to the
WCS. By properly timing its acceptance of this command, the WCS
hardware automaticlly assures a clean transfer of control.

Native firmware performs the above operation whenever the
first word of an instruction lies in the r~nge 0080# through
OOBP#. The location to which control is transferred is one of
the first 16 locations in the WCS: the specific location is iden­
tified by the least significant hexadecimal digit of the instruc­
tion word. The content of the various CPU registers und flops at
the time of entry into the WCS is described in subsection 2.8.

When it is desired to return control from the WCS to the na­
tive control store, the user must create the appropriate I/O con­
trol word (with the WCS channel number and a function code of
251) and transmit this command to the Megabus, simultaneously
specifying the native control store address to which control
should return (refer to examples 6 and 7 in subsection 3.7).
Normally, return is to location 0201 for the next instruction
fetch operation.

Trap conditions of two kinds can occur:

• Conditions detected by hardware during Megabus cycles.

• Conditions detected by firmware test and branch opera­
tions.

2-9

The first category includes:

1. Bus parity errors, memory parity errors, and uncorrect­
able errors detected by the memory Error Detection and
Correction (EDAC) logic. These are sensed by the CPU
when the bus data are sourced to the internal bus.

2. References to unavailable resources. These are sensed by
the CPU during a write cycle, or during the firmware step
following a read request cycle.

3. Illegal addresses. These are detected by WR~P testing
(refer to subsection 2.8.2 - WRAP Control Flop), or by
the Memory Management Unit (MMU); sensing of illegal ad­
dresses by the CPU is timed similarly to that of unavail­
able resource references.

When any of the above trap conditions are encountered, hard­
ware forces the firmware to location 000 in the native control
store: this is the starting address for the native firmware se­
quence that analyzes the trap condition and generates an appro­
priate trap.

All other trap conditions are considered under the second
category, i.e., they are detected by conditional firmware
branches as required by the functional specification applicable
to the instruction being executed. When such a trap is detected,
the firmware should exit to the location TRAP (33B#) in the na­
tive firmware, after first ensuring that:

1. RAM location 0 contains the instruction word to be re­
ported*.

2. The XB and CTR register contents are appropriate for the
Z-word* •

3. The Q register contains the address (if any) to be re­
portea in the A-word*.

4. Register BU contains a trap vector code equal to 40#
minus the desired trap number*.

*Refer to Honeywell Level 6 Minicomputer Handbook (Order Number
AS22) for a description of Trap Save Area contents. The fol­
lowing subsection defines all CPU registers, counters, and con­
trol flops. that are visible to the microprogrammer, including
those registers and counters mentioned above.

2-10

(

(-'

2.8 USE OF CPU ELEMENTS

The CPU registers, counters, and control flops that are visi­
ble to the microprogrammer can be classified into four catego­
ries:

• Software Visible (SWV)
• Firmware Dedicated (DEDIC)
• Working Storage (WORK)
• Autonomous (AUTO).

The possible uses for elements in the above categories are
described in the following subsections and summarized in Table
2-1.

2.8.1 Software Visible

The registers in this category should not be altered except
as explicitly required by the functional definition of the cur­
rent instruction.

Registers Dl through D7

Registers 01 through D7 reside in bits 4 through 19 of micro­
processor register file locations 1 through 7 (bits 0 through 3
of each register are not software visible, but are not usually
useful as working storage).

Registers Bl through B7

Registers BI through B7 reside in microprocessor register
file locations 9 through F.

Register Ml through M7

Registers Ml through M7 reside in bits 12 through 19 of in­
ternal bus RAM locations 1 through 7 (refer to subsection 2.8.2 -
RAM locations 4 and 6 and subsection 2.8.3 - RAM locations 1, 3,
5, and 7 for the use of other bits in these locations).

T and RDB Registers

The T and ROB registers reside in RAM locations A and B
(respect i vely) •

Sand 1 Registers

The S register contains the system status and security codes
for use within the CPU. The I register contains the CPU indic~­
tors.

2-11

P Register

The P register normally functions as a program counter, but
can he freed for use as a working register (refer to subsection
2. 8.3 - P reg is te r) •

2.8.2 Firmware Dedicated

The registers and flops in this category contain control in­
formation and/or trap context. They should be loaded only with
the information described herein so that the native functionality
is preserved. They can also be used as sources for this informa­
tion.

RAM Location 0

This RAM location contains the instruction word to be report­
ed when a trap occurs.

RAM Locations 4 and 6 (bits 4 through 11)

Bits 4 through 11 of these RAM locations contain the mode in­
formation for:

1. Enabling the Real Time Clock (RTC).
2. Enabling the Watch Dog Timer (WDT).

RAM locations C and D

RAM locations C and D contain pointers to the most recently
accepted Commercial Instruction Processor (CIP) and Scientific
Instruction Processor (SIP) instructions, respectively. Each
location must remain NULL if the corresponaing external processor
is not configured.

RAM location F

This RAM location must be NULL except when it points to the
next word of procedure, freeing the P register for use as a work­
ing register (refer to subsection 2.~.3 - P Register).

CTR Register

The CTR register is a 4-bit counter that indicates the number
of procedure words consumed in the processing of the current in­
struction. It is incremented (or cleared) every time the P reg­
ister is incremented (refer to subsection 2.8.3 - P register).

XB Register

The XB register is a 4-bit shift register that supplies trap
context information regarding indexing of bit or byte operations
(refer to s~bsection 2.8.3 - XB register).

2-12

()

WRAP Control Flop ,-
, The WRAP control flop facilitates the checking of address-

arithmetic firmware to detect attempts to exceed the 20-bit
capacity of the address registers. If the WRAP control flop is
on, any access to the Megabus (read request or write operation)
will result in the transmission of an illegal address or I/O
channel number. This action results in no response via the
Megabus, which is interpreted as an "unavailable resource".

Whenever an index value or other displacement is to be added
to a base address, the algebraic sign of the displacement should
first be copied into the SIGN control flop. Then, the address
modification can be performed, using the sign-extension capabili­
ties of the microprocessor area (refer to subsection 3.1). Si­
multaneously, the carry signal from the most significant end of
the microprocessor should be compared with the state of the SIGN
control flop, and the comparison result copied to the WRAP con­
trol flop.

Read-Modify-Write Control Flop (RMWF)

RMWF is set to One when memory has been locked for the dura­
tion of a read-modify-write operation. RMWF is set and cleared
by the Megabus interface area CHGLOCK operand (refer to subsec­
tion 3.3) if the F register contains one of the following
instruction codes (refer to subsection 2.8.3 - FISEL Instruction
Register):

F = 002, 003, OU6, 007#, or
880# $. F ~ 897#, or
8AO# ~ F ~ 837#.

LOAD, TRAFFIC, and PANOK Control Flops

These flops communicate control information between firm­
ware and the operator. Although they are described here for com­
pleteness, it is not anticipated that normal user firmware will
involve any of them.

The LOAD flop can be set and cleared both by the operator and
by firmware in the miscellaneous hardware area. During the sys­
tem startup operations, LOAD is normally set by the operator and,
when bootload action is completed, cleared by firmware. There­
after, this flop usually remains off, but is sometimes set brief­
ly by firmware as a means of preventing a trap to location OUU
when a Megabus cycle is addressed to a possibly unavailable re­
source. LOAD must never be left on at the end of an instruction.

The TRAFFIC flop is loaded by firmware in the miscellaneous
hardware area to control the corresponding indicator on the con­
trol panel. However, the flop is held off by hardware unless the
control pa~l is in the Run mode. As the native firmware
extracts the first word of each instruction, the word is tested

2-13

to determine if the instruction op-code is HLT. The result of
this test is transferred (via the ZERO flop) to the TRAFFIC flop
(subject to hardware override if the Run mode is not in effect).

The PANOK flop synchronizes the servicing of operator
requests. It is set to Zero whenever the CLEAR or EXECUTE push­
button is depressed and when in Register-Change mode, a hexa­
decimal key is depressed. This flop is set to One by the firm­
ware that services the request, and is used to prevent multiple
servicing of a single key-stroke.

EFFRING, NONPROC, NOCHEK, SEGERR, and PROV Controls

These signals and flops support normal MMU operations, permit
temporary alteration of access rules, and reports errors detected
by the MMU.

EFFRING is a 2-bit register containing the "effective ring
number", which the MMU uses to determine the degree of privilege
appropriate to the current instruction, and against which memory
access requests are tested. Native firmware loads EFFRING from
the 5 register RI~G field at the start of each instruction.
Correct procedure requires that EFFRING be modified to decrease
its privilege level whenever, in the course of formulating an ad­
dress, it uses data that might have been generated by a less
privileged program.

NONPROC establishes a temporary change in the rules of ac­
cess. Memory references which use the P register as the address
source normally require "Execute" permission: when NONPROC has
been set, they require only "Read" permission (refer to sub­
section 2.8.3 - P register).

NOCHEK establishes a temporary suspension of the rules of ac­
cess (it does not affect the mapping of segmented virtual addres­
ses to physical, nor the detection of illegal, non-existent ad­
dresses). The intent of this functionality is to remove restric­
tions on memory access by system firmware (interrupt and trap
handler, RTC/WDT service, panel routine, etc.).

SEGERR signals that the MMU has detected an error in a vir­
tual address: the referenced segment is not valid, its size has
been exceeded, or a protection violation has been detected. If
SEGERR occurs during a memory reference, it causes the transmis­
sion of an illegal physical address. This action results in no
response via the Megabus, which is interpreted as an "unavailable
resource". If no memory reference or access-rights test (refer
to subsection 3.3.3. - MMURDACC, MMUWRACC) is requested, the
SEGERR signal is ignored.

PROV signals that the MMU has detected a protection violation
(failure of access rights check) on an otherwise legal address
(i.e., an a9dress in a valid segment and within the segment
size). If a protection violation occurs during a memory

2-14

reference, the PROV flop is locked in the set state until cleared
by the firmware function NOCHEK (this function is normally issued
by the trap generation firmware). If a protection violation
occurs during a firmware step that explicitly requests an access­
rights test, the next firmware step may copy PROV to the MISC
control flop.

NEWXR Control Flop

The NEWXR flop is used in the Transparent mode to distinguish
between reentrant invocations of the XR "splatter" branch. This
flop is set when the SEL register is loaded from the internal bus
(e.g., during instruction fetch)~ it is cleared when a branch is
performed to XR, XE, XW, or XF (refer to subsection 3.5), and
when the WRAP flop is set or cleared (refer to subsection 3.4).
The effect of NEWXR is shown in Appendix E.

2.8.3 Working Storage

These are the registers and flops available to the micropro­
gra~ner for temporary storage of operands, imtermediate results,
control information, etc., during execution of each instruction.
Their contents cannot generally be depended on to retain infor­
mation between instructions, especially in the presence of asyn­
chronous actions such as interrupts, unexpected traps, and
RTC/WDT service requirements.

RAM Location 8

This RAM location initially* contains a pointer to the next
word of procedure (copy of P register), but may be altered as
desired.

RAM Locations 9 and E

These RAM locations initially contain no predictable informa­
tion.

RAM Locations 1, 3, 5, and 7 (bits 0 through 11)

Bits 0 through 11 of these RAM locations normally contain
zeros, and are unused by the native firmware. These fields are
not easily altered because bits 12 through 19 of these locations
contain software visible data (M registers) that must be pre­
served. They do, however, have the advantage of being able to
retain formation between instructions and for prolonged periods.

·In this context, "initially" refers to the instant when the na-...
tive firmware transfers control of the User Generic execution to
WCS f irmwa're.

2-15

Register File Locations 0 and 8

Register file locations 0 and 8 are called registers DO and
BO, respectively, and initially contain no predictable informa­
tion.

Q Register

The Q register initially contains a pointer to the first word
of the current instruction, but may be altered as desired.

F/SEL Instruction Register(s)

The F/SEL register initially contains the first word of the
current instruction, but may be altered as desired. Specific­
ally, it may be useful to copy all or a portion of subsequent in­
struction words into the instruction register to facilitate de­
coding and/or branch control.

NOTE

Numerous mappings of the contents of the instruction
register are available as listed in Tables 3-8, 3-9,
and Appendix E. These instructions are designed for
the native repertoire~ their utility to the WCS micro­
programmer will depend to a large extent on the func­
tional specification of the new instructions, and on
their similarity to the native instructions.

Y Register

The Y register initially contains no predictable informa­
tion. This register is primarily designed to hold nonprocedural
addresses (or I/O control words) for transmission to the Megabus;
however, during periods of inactivity in the Megabus interface
area, the Y register may be used for other tasks.

H Register

The H register initially contains no predictable information.
The principal functions of this register are to:

2-16

• Facilitate the handling of halfwords (bytes) by accepting
l6-bit quantities from the internal bus, and later deliv­
ering them back to the internal bus with the two halves
inter-changed.

• Assist the expansion of a 8-bit algebraic quantities to
16 bits.

• Retrieve 2u-bit addresses from two adjacent words in
memory.

(
LIB Reg ister

The LINK register initially contains no predictable informa­
tion. Loaded from the internal bus, this register is usable only
by the firmware sequencing area: Transparent mode XL, XLO, and
XLI or Sequential mode LBRANCH.

MISC, SHINI, SHIN2, SIGN, and ZERO Control Flops

These flops are initially cleared to zero.

DDLEQO Control Flop

This flop initially contains no predictable information.

XB Register

The XB register is initially cleared to zero. Depending on
the functional definition of the current instruction, the contri­
bution of this register to the Z-Word* may include no useful
information. In this event, the XB register may be used for
working storage.

P Register

As previously indicated, the P register can be freed of its
normal procedure-pointing duties, and used for any purpose de­
sired. To accomplish this the user must first copy the content
of P into RAM location F (RAMF) and must notify the MMU to treat
subsequent procedure references as data read operations for the
purpose of checking access rights. The P register may then be
loaded and used as desired. If an unexpected trap should occur
(e.g. a parity fault), the native firmware will report the
content of RAMF in the trap context in lieu of P. Similarly, the
Z-word* will report an instruction size of one, rather than the
content of CTR. Before returning control to native firmware
(e.g., at the end of the instruction), the user must copy the
procedure pointer from RAMF back to the P register, and then
clear RAMF to NULL.

The user may find it worthwhile to invest the overhead re­
quired by the previous paragraph if the User Generic instructions

, to be implemented involves reading a long consecutive nonproce­
dural data string from memory. The relative economy of time and
code space possible when using P as the address register for such
an operation can quickly repay the investment.

*Refer to the Honeywell Level 6 Minicomputer Handbook (Order
Number AS22) for a description of Trap Save Area contents.

2-17

2.8.4 Autonomous

These buffer registers and flops are set by external agencies
(i.e., agencies which are not firmware controlled), and supply
information for firmware use.

Acknowledge (ACK) Control Flop

The ACK control flop remembers whether the most recent
Megabus action was accepted or rejcted: if ACK is ON, the action
was accepted, if ACK is off, the action was rejected.

Megabus Data Buffer (BD)

The Megabus data buffer retains the data received from memory
or an I/O channel in response to the most recent CPU read re­
quest. The content of BD remains valid, and may be reused, until
the firmware issues the next read request or references the
Megabus procedure buffer.

Megabus Procedure Buffer (BP)

The Megabus procedure buffer supplies the next procedure
word from memory (i.e., the word pointed to by the P register).
BP can be read only once per word because this read operation in­
crements the P register.

Megabus Interrupt Buffer (RUP)

The Megabus interrupt buffer retains the latest external in­
terrupt received (i.e., one not involved with RTC, WDT, or LEV
actions). The content of RUP is valid while the Interrupt Busy
(INTBSY) flop is on.

YELLOW and PARER Megabus Data Error Flops

The YELLOW and PARER flops signal detection of an error in
memory or on the Megabus. YELLOW remembers if at least one data
error was corrected by memory EDAC hardware since the last inter­
rogation of this flop; YELLOW is cleared each time it is interro­
gated by the firmware. PARER remembers if the most recent
Megabus buffer reference (SO or SP) reported either a Megabus
parity error or a data error not correctable by memory EDAC hard­
ware. Unless the control panel is in Load, Read, or Write mode,
the setting of PARER forces the firmware to native location 000
for suitable trap generation (refer to subsection 2.7).

EXTRAP, INTSSY, and TICK Service Request Flops

The EXTRAP, INTBSY, and TICK service request flops are set by
hardware to signal a requirement for a break in firmware flow.

(~
, \

'--./'

If execution of the current instruction is lengthy, as defined C.' >;'

below, the user is responsible for polling these flops frequently
enough to a~oid degradation of system performance. The native

2-18

firmware performs this polling while extracting the first word of
each instruction. It is recommended that, when polling detects
such a request, the user should execute a branch to suitable
firmware which will prepare the current instruction to be resumed
or restarted, as appropriate, then exit to native firmware (loca­
tion 020#).

EXTRAP is true when one or more external processors (CIP or
SIP) has detected a trap condition. User firmware that does not
communicate with CIP or SIP need not poll EXTRAP. If a Megabus
request to such a processor is rejected, the firmware should test
EXTRAP to determine whether the rejection might have been caused
by a trap. If not, the Megabus request can be repeated; other­
wise, a return to native firmware is recommended. EXTRAP becomes
false when all external processors with trap conditions have
delivered their trap words.

INTBSY is set when an external interrupt of high enough pri­
ority is received and accepted by the CPU hardware. No further
interrupts, regardless of priority, can be accepted until firm­
ware services buffer RUP, reloads the level field in the S regis­
ter, and clears INTBSY. This flop must be polled often enough to
ensure the interrupt response perfomance appropriate to the ap­
plication.

TICK is set every 8-1/3 milliseconds by a crystal-controlled
oscillator in the CPU, signalling the need for service of the
YELLOW logic, the RTC and/or WDT, and the control panel. TICK
must be polled at least 120 times per second.

Table 2-1 Use of CPU Elements (Sheet 1 of 4)

PRIMARY NATIVE
ELEMENT LENGTH TYPE AREA FIRMWARE USAGE

ACK 1 AUTO Megabus Megabus Cycle Acknowl-
gement Storage

BO 20 WORK Microprocessor

Bl-B7 20 SW Microprocessor Base Registers

BD 16 AUTO Internal Bus Megabus Data Read
Buffer

BP 16 AUTO Internal Bus Megabus Procedure Read
Buffer

CTR 4 DEDIC Miscellaneous Count Instruction
Hardware Length

DO 20 WORK Microprocessor

01-07 !r 20 SWV Microprocessor Data Registers (Rl-R7)

2-19

ELEMENT

DDLEQO

EFFRING

EXTRAP

F

H

I

INTBSY

LINK

LOAD

MISC

NEWXR

NOCHEK

NONPROC

P

PANOK

PARER

PROV

2-20

Table 2-1 Use of CPU Elements (Sheet 2 of 4)

LENGTH TYPE

1 WORK

2 DEDIC

1 AUTO

12 WORK

16 WORK

8 SWV

1 AUTO

8 WORK

1 DEDIC

1

1

1

1

20

1

1

1

WORK

DEDIC

DEDIC

DEDIC

SWV

DEDIC

AUTO

DEDIC

AREA

Miscellaneous

Megabus

*

Internal Bus

Internal Bus

Internal BUs/
Miscellaneous
Hardware

*
Internal Bus

Miscellaneous
Hardware

Miscellaneous
Hardware

Firmware
Sequencing

Miscellaneous
Hardware

Miscellaneous
Hardware

Internal Bus

Miscellaneous
Hardware

Megabus

Megabus

PRIMARY NATIVE
FIRMWARE USAGE

CIP Descriptor Length
Hardware

MMU Effective Ring
Number

External-Processor
Trap

Instruction MSB

Byte Swapping

Indicator Register

Interrupt Busy Signal

Firmware Sequencing

Inhibit Missing - Re­
source Recognition

Distinguish Reentrant
XR Branch

Inhibit MMU Access
Rights Checking

Inhibit MMU Execute
Checking

Program Counter

Acknowledge Panel
Request

Bus Parity Error or
EDAC Uncorrectable
Error.

MMU Protection Viola­
tion

(

Table 2-1 Use of CPU Elements (Sheet 3 of 4)

PRIMARY NATIVE
ELEMENT LENGTH TYPE AREA FIRMWARE USAGE

Q 20 WORK Microprocessor 32-bit Shifts

RAMO 20 DEDIC Internal Bus Holds Copy of Instruc­
tion Word

RAMI-RAM7 20 SWV Internal Bus Mode Registers (MI-M7)

R.~M8-RAM9

RAMA

RAHB

RAMC

RAMD

RAME

RAMF

RMWF

RUP

S

SEGERR

SEL

SHIN 1,
SHIN2

SIGN

TICK

TRAFFIC

20

20

20

20

20

20

20

1

16

16

1

4

2

1

1

1

+DEDIC Plus Control Informa­
tion

WORK

SWV

SWV

DEDIC

DEDIC

WORK

DEDIC

DEDIC

AUTO

SWV

DEDIC

WORK

WORK

WORK

AUTO

DEDIC

Internal Bus

Internal Bus

Internal Bus

Internal Bus

Internal Bus

Internal Bus

Internal Bus

Megabus

Internal Bus

Internal Bus

Megabus

Internal Bus

Miscellaneous
Hardware

Miscellaneous
Hardware

*
Miscellaneous
Hardware

Stack Pointer (T)

Remote Descriptor Base
Register (RDB)

CIP Instruction
Pointer

SIP Instruction
'Pointer

Usually Must Be Null

Remember That CPU
Locked Memory

Interrupt Word

System Status Register

MMU Segment Error

Instruction LSB

Control Shift End
Effects

8.3 MS Interval Mark

Control Panel
Indicator

2-21

Table 2-1 Use of CPU Elements (Sheet 4 of 4)

PRIMARY NATIVE
ELEMENT LENGTH TYPE AREA FIRMWARE USAGE

WRAP 1 DEDIC Miscellaneous Address-Wrap-Around
Hardware Storage

XB 4 DEDIC Miscellaneous Subword Indexing, Hex
Hardware Decoder

Y 20 WORK Internal Bus Megabus Address
Register

YELLOW 1 AUTO Megabus EDAC-Corrected
Errors

ZERO 1 WORK Miscellaneous ALU Zero Result
Hardware Storage

*Not controlled by firmware.

c
2-22

(
SECTION 3 - MICROINSTRUCTIONS

The CPU hardware is controlled by firmware words (steps),
each step consisting of several microinstructions that manip­
ulate the hardware to perform desired operations. The CPU can
execute up to six microincstrucions simultaneously during any
given firmware step, permitting simultaneous control over the
six functional CPU areas: microprocessor, internal bus, Megabus
interface, miscellaneous hardware, firmware sequencing, and
master clock.

3.1 MICROPROCESSOR AREA

The principal elements of the microprocessor area (see Figure
3-1 include:

• Register File (RF)
• Q Register
• Arithmetic/Logic Unit (ALU)
• Shift Logic.

The register file is a memory consisting of sixteen 2U-bit
locations, numbered a through F. The first eight locations are
designated as registers DO through 07, while the last eight
locations are designated as registers BO through B7. Up to two
of these registers may be addressed simultaneously to serve as
sources and/or destination for the ALU. Simultaneously, the con­
tents of one register file location may be made available to the
internal bus area.

The Q register is an additional 20-bit register that is
available as an ALU source and/or destination.

The ALU performs all CPU arithmetic and logical functions.
It has two 20-bit inputs and one 20-bit output. The ALU output
may be directed to a destination within the microprocessor and/or
made available to the internal bus area. Three auxiliary signals
are generated based on the ALU results: Carry (CRY), Overflow
(OVFL), and Zero detect (AUZ). For the purpose of generating
these signals, the ALU function may be treated as a lb-bit or a
20-bit operation as shown in the following listing; however, the
actual arithmetic or logical operation is always 20 bits wide.

3-1

3-2

DATA FROM
INTERNAL

BUS

CENTRAL PROCESSOR

LEFT
SHIFT

MICRO­
PROCESSOR

REGISTER
FILE
(RF)

'fO"

RIGHT
SHIFT

ARITHMETIC/LOGIC
UNIT

REGISTER
FILE

(ALU)

ALU RESULT

MISCELLANEOUS
HARDWARE

LEFT
SHIFT

RIGHT
SHIFT

Q

REGISTER

1--- CRY

1--_ OVFL

AUZ

Figure 3-1 Microprocessor Area

o

o

f

l6-BIT 20-BIT 16-BIT 20-BIT
SIGNAL ARITHMETIC ARITHMETIC LOGICAL LOGICAL

CRY Carry from bit Carry from bit Undefined* Undefined*
4 0

OVFL Overflow from ALU result bit Undefined* ALU result
bit 4 0 in 1iew of bit 0 in lieu

overflow of overflow

AUZ =1 if ALU =1 if ALU =1 if ALU =1 if ALU
result bits result bits result bits result bits
4-19 = 0 0-19 = 0 4-19 = 0 U-19 = 0

*Except for the logical AND function as described in subsection
3.1.3.

The shift logic is designed to perform single-bit left or
right shifts on the 16 least significant bits of the ALU result
before they are written into the register file. The Q register
can be shifted simultaneously to facilitate operations on 32-bit
quantities (refer to subsection 3.1.4).

3.1.1 Syntax

The microinstructlons that affect this functional area con­
trol the Register File Arithmetic and Logic Unit (RALU). These
microinstructions contain a function and up to four operands as
follows:

function ~ SRC1, SRC2, DEST, SHIFT

function ~ SRC1, DEST, SHIFT

where:

SRCI is an input source.

SRC2 is an additional input source.

DEST is the destination for results (optional operand) •

SHIFT is the shift operand for results (optional operand).

3.1.2 Microprocessor Sources and Destinations

Sources to the ALU may be anyone (or two) of the following:

• Internal Bus (refer to subsection 3.2).
• Q Register
• Register File Location
• Another (or the same) Register File Location
• ZERO (20 bits, all zeros).

3-3

Destinations, if any, in the microprocessor may be to the
following:

• Q Register
• Register File location.

Whether or not a microprocessor destination is specified, the
ALU result, CRY, OVFL, and AUZ are available for simultaneous
use by microinstructions in other areas. If SRCl, SRC2, and DEST
all specify register file locations, DEST must be the same as
either SRCI or SRC2.

The possible sources and destinations for the microprocessor
area are summarized in Table 3-I.Register file locations may be
specified explicitly or as a function of fileds in the F/SEL in­
struction registers. The mnemonics are derived from the B-field
(SEL register bits 1 through 3), the M-field (F register bits 9
through 11), and the N-field (F register bits 1 through 3). If
the firmware step just previously executed altered the contents
of SEL, those operands that depend on fields in SEL will use its
previous contents (i.e., the contents before SEL was altered
at the end of the firmware step just previsously executed) •

If two reg ister file locations are selected
SRC2, and/or DEST, they must both be members of

by operands SRCl,
the same group,

where the available groups are:

• DO, 03, 06, 07, BU, B3, B6, and B7.
• DO, 01, D4, OS, BO, Bl, B4, and B5.

• DO, D2, 06, BO, B2, and B6.
• DO, ON, DN3, DNE, BO, BN, BN3, and BNE.

• DO, DB, DB3, DBE, BO, BB, BB 3, and BBE.

• DO DB, DB3, DBE, and REGSEL.
• DO, OM, DM3, DME, BO, BM, BM3, and BME.

Other restrictions on the selection of one of the micropro­
cessor source operands are imposed occasionally by the simulta­
neous action of microinstructions in other areas. To facilitate
cross-referencing, it is necessary to introduce the concept of
"restricted selection." A microprocessor source operand is
designated a restricted selection if it specified a register file
location, and:

3-4

• it is the second operand of microinstruction ANDC, ADDSE,
orA DD 1 S E, 0 r

• it is also the internal bus source (refer to subsection
3.2.2 - Register File Locations), or

• the destination is a different register file operand, or

• the other source is the Q register, or

• the other source is the internal bus, or

(

• the other source is a register file operand that does not
satisfy the restricted-selection rule(s) in question
(i.e., if both sources are register file locations, at
least one must satisfy the restricted-selection rule).

NOTE

The restricted selection concept applies only when a
simultaneous microinstruction defines a restricted
selection rule.

When 20-bit versions of CRY, OVFL, and AUZ are used, and the
function is neither ADDSE nor ADDISE, the restricted-selection
source must be a D register (except as selected by REGSEL).

Table 3-1 ALU Source and Destination Operands
(Sheet 1 of 2)

OPERAND

BO-B7

BB

BB3

BBE

BI

BM

BM3

BME

BN

BN3

BNE

DO-D7

EXPLANATION

RALU Base Registers BO through B7 (register
file locations 8-F)

RALU Base Register (BO through B7) specified
by SEL (1-3) •

RALU Base Register (BO through B3) specified
by SEL(2-3).

RALU Even Base Register (BO, B2, B4, or B6)
specified by SEL(l-2).

Internal BUS (source only).

RALU Base Register (BU through B7) specified
by F(9-ll).

RALU Base Register (80 through B3) specifiefd
by F(lO-l1).

RALU Even Base Register (Bu, B2, B4, or B6)
specified by F(9-10).

RALU Base Register (BO through B7) specified
by F (1-3) •

RALU Base Register (BO through B3) specified
by F (2-3) •

RALU Even Base Register (BO, B2, B4, or B6)
specified by F(1-2).

RALU Data Registers DO through 07 (register
file locations 0-7)

3-5

Table 3-1 ALU Source and Destination Operands
(Sheet 2 of 2)

OPERAND EXPLANATION

DB RALU Data Register (DO through D7) specified
by SEL(1-3).

DB3 RALU Data Register (DO through 03) specified
by SEL(2-3).

DBE RALU Even Data Register (DO, D2, D4, or D6)
specified by SEL(1-2).

DM RALU Data Register (DO through D7) specified
by F (9-11) •

DM3 RALU Data Register (DO through D3) specified
by F(lO-ll).

DME RALU Even Data Register (DO, 02, 04, or D6)
specified by F(9-l0).

DN RALU Data Register (DO through D7) specified
by F (1- 3) .

DN3 RALU Data Register (DO through D3) specifled
by F (2-3) •

DNE RALU Even Data Register (DO, 02, D4, or D6)
specified by F(1-2).

Q RALU Q Register

REGSEL RALU Register DO through DB (register file
locations O-F) specified by SEL(O-3).

ZERO Zero (source only).

3.1.3 Microprocessor Functions

The 14 microprocessor arithmetic and logical functions are
described in the following paragraphs and summarized in
Table 3-2.

ADD

SRCI is added to SRC2.

ADDI

SRCI is added to SRC2 plus 1.

3-6

/~ ~
/ \

ADDSE (add sign extended)

SRC2 must be a D register. The SIGN flop is assumed to con­
tain a copy of bit 4 of that D register. The SIGN flop is copied
to the four most significant bits of SRC2 which sign-extends SRC2
from 16 to 20 bits. The extended value is added to SRCI. SCRI
must specify the Q register or a register file location. SRCI
and DEST cannot be different register file operands. This opera­
tion is useful, for example, when employing a D register as an
index register.

ADDISE (add One sign extended)

The description of ADDISE is identical to that of ADDSE,
except:

• SRCI must specify the Q register.
• The sign extended SRC2 is added to SRCI plus One.

AND

SRCI is ANDed with SRC2. CRY and OVFL are forced to One.

ANDC (AND with complement)

·SRCI is ANDed with the One's complement of SRC2. SRCI may
not be BI, SRC2 may not specify the Q register, and DEST and
SRCI may not specify different register file operands.

COpy

SRCI appears as the ALU output.

DECR

One is subtracted from SRCI. SRCI may not be ZERO.

INCR

One is added to SRCI. SRCI may not be ZERO.

OR

SRCI is inclusive-ORed with SRC2.

SUB

SRC2 is subtracted from SRCI. The ALU carry and overflow
signals act as if the One's complement of SRC2 was added to SRCI
plus One.

3-7

SUBl

SRC2 is subtracted from SRCl minus One. The ALU carry and
overflow signals act as if the One's complement of SRC2 was added
to SRCl.

XOR

SRCl is exclusive-ORed with SRC2.

XORC (Exclusive OR with Complement)

SRCl is exclusive-ORed with SRC2 and the result inverted.

Table 3-2 ALU Functions

FUNCTION ALU OUTPUT

ADD SRCl + SRC2

ADDl SRCl + SRC2 + 1

ADDSE SRCl + SRC2 sign extended

ADDlSE SRCl + SRC2 sign extended + 1

AND SRCl /\ SRC2

ANDC SRCl /\ SRC2

COpy SRCl

DECR SRCl - 1

INCR SRCl + 1

OR SRCI V SRC2

SUB SRCl - SRC2

SUBl SRCl - SRC2 - 1

XOR SRCl y. SRC2

XORC SRCl y. SRC2

3.1.4 Microprocessor Shift Operands

Shift operands are used to shift the ALU result left or right
by one bit position. A shift operand may be specified only if
DEST is a register file location. The shift operations are opti­
mized for 16- or 32-bit quantities. Although the shifts operate
on 20-bit registers, the operation on the most significant four
bits is generally not useful, especially for right shifts.

3-8

C, : ./

(
In most shift operations, the bit shifted into the vacated

bit position is designated as SHIN (shift input), and is control­
led by three flops; SHIN1, SHIN2, and MISC (refer to subsection
3.4). The SHIN function is selected as follows:

MISC SHINI SHIN2 SHIN

0 0 0 Internal bus bit 4

0 0 1 Internal bus bit 4 inverted

0 1 0 U

0 1 1 Q register bit 19*

1 0 0 XB register bit 1 (refer to subsection
3.4) •

1 0 1 Y register bit 4 (refer to subsection
3.2) •

1 1 0 0

1 1 1 Q register bit 19*

*During shift right operations; otherwise undefined.

SL (Single Left Shift)

Bits 1 through 19 of the ALU result are placed in bits 0
through 18 of the selected register file location; bit 19 of
the selected register file location receives a copy of Q regis­
ter bit 4.

ALU
RESULT

o 1 19

I I '-..... ----v------"'" r
~ ---A ---,
o 18 19

I I
DL (Double Left Shift)

o 345 19

~--~~------------~Q REGISTER

REGISTER FILE
LOCATION

Bits 1 through 13 of the ALU result are placed in bits 0
through 18 of the selected register file location; bit 19 of the
selected register file location receives a copy of Q register

3-9

bit 4. Q register bits 1 through 19 are placed in Q register
bits 0 through 18: Q register bit 19 receives a copy of the SHIN
function.

a 1 19 a 1 3 4 5 19

I I I I ALU I I Q REGISTER
RESULT I (Before)

'- 'V ~ ...

1
~

.--J I { SHIN r- FUNCTION
/

A ,#

REGISTER 0 18 19 a 18 19 Q REGISTER
FILE I (After)

LOCATION

Conceptually, the rigthmost 16 bits of the ALU result are
concatenated with the rightmost 16 bits of the Q register and
shifted l~ft one bit position with the SHIN function shifted in
on the right. The result is placed in the rightmost bit posi­
tions of the register file location and the Q register,
respectively.

SR (Single Right Shift)

Bits 4 through 18 of the ALU result are placed in bits 5
through 19 of the selected register file location: bit 4 of the

/',""

~

selected register file location receives a copy of the SHIN func- ~~.
tion. Bits 1 through 3 of the ALU result are placed in bits a
through 2 of the selected register file location: bit 3 of the
selected register flle location receives a copy of the SHIN func-
tion.

a 1 3 4 18 19

J ALU RESULT

..---+------- SHIN FUNCTION

........................... ~ r _A "
o 2 3 4 5 19

I I I REGISTER FILE
LOCATION

Conceptually, the rightmost 16 bits of the ALU result are
shifted right one bit position with the SHIN function shifted
in on the left. The result is placed in the 16 rightmost bit
positions of the register file location.

3-10

{-

(.....
"

DR (Double Right Shift)

Bits 4 through 18 of the ALU result are placed in bits 5
through 19 of the selected file location~ bit 4 of the selected
register file location receives a copy of the SHIN function.
Q register bits 4 through 18 are placed in Q register bits 5
through 19; bit 19 of the ALU result is placed in Q register bit
4. Bits 1 through 3 of the ALU result are placed in bits 0
through 2 of the selected register file location~ bit 3 of the
selected register file location receives a copy of the SHIN func­
tion. Q register bits 1 through 3 are placed in Q register bits
o through 2~ bit 19 of the ALU result is placed in Q register
bit 3.

ALU
RESULT

SHIN
FUNCTION

REGISTER
FILE

LOCATION

o 1 3 4 18 19

------~ o 2 3 4 5 19

I I I

o 1 3 4 18 19

I I I
v-

--...--.. ~
U 2 3 4. ~ 19

I I I I

Q REGISTER
(Before)

Q REGISTER
(Afte r)

Conceptually, the least significant 16 bits of the ALU result
and the least significant 16 bits of the Q register are conca­
tenated, shifted right one bit position with the SHIN function
filling the most significant bit, and the result placed in the
least significant 16 bits of the register file location and the
Q register, respectively.

3.1.5 Microprocessor Examples

The following are examples of source statements for the
microprocessor area.

3-11

r-----------------------r--~
STATEMENT MEANING

ADD DO, BO, Q Q -- ALU resul t- BO+DU

SUBI BO, DO ALU result-- BO-DO-l

COpy BU, BO, SR ALU resul t - BU

BO __ ALU resul t shifted right

XORC DO, DO, DO DO -- ALU resul t-- FFFFF#

INCR Q, B3 B3 --ALU result-- Q+l

ADD BI, 82, B3 Invalid (DEST must be same as SRCI or
SRC2)

ADD DO, BO, Q, DR Invalid (SHIFT operand may only be
specified if DEST is register file 10-
ca t ion)

ADDSE BO. BO, 80 Invalid (SRC2 must be D reglster for
ADDSE)

ADDISE BO, Du, BU Invalid (SRCI must be Q for AODSE)

INCR ZERO, DO Invalid (SRCI cannot be ZERO for INCR)

OR 01, 02, 01 Invalid (Dl and D2 are incompatible)

ANDC Dl, Q, 01 Invalid (Q may not be SRC for ANDC)

3.2 INTERNAL BUS AREA

The internal bus area (See Figure 3-2) provides a 2U-bit
wide data path that transfers data among elements of the CPU as
directed by the firmware. This data path is defined as the CPU
Internal Bus (81).

3-12

o

(

EXTERNAL-------~~
SOURCES

FROM
MEGABUS

INTERFACE
AREA .

FI~OM
MISCELL·
ANEOUS
HARDWARE
AREA

XB

CENTRAL PROCESSOR

" MICRO- MISCELLANEOUS
PROCESSOR HARDWARE

INTERNAL
BUS

BD

H REGISTER

I REGISTER

RAM

TRAP
STATUS
(Zl

HEX
DECODER

REGISTER FILE

I
N
T
E
R
N
A
L

B
U
S

S
o
U
R
C
E

S
E
L
E
C
T
o
R

FIRMWARE
SEQUENCING

INTERNAL
BUS

LINK
REGISTER

INSTRUCTION
REGISTER

(FiSELl

'~7g~o. {
PROCESSOR ALU AESUL T

AREA ~~-t================~==~ __ ~
Figure 3-2 Internal Bus Area

3-13

The internal bus selects a source from one of the following
five categories.

• Sources from microprocessor (RALU)
• RAM locations
• Megabus buffers
• Constants
• Other sources.

The data on the internal bus are simultaneously available to
destinations in each of the following four categories:

• Megabus address registers
• RAM locations
• Indicator register (I)
• Other destinations.

3.2.1 Syntax

BI 1S the microinstruction which controls the sources and
destinations of the internal bus. The BI microinstruction con­
tains up to six operands as follows:

BI SRC, DEST, ••••• ,DEST

BI SRC, SRCMOD, DEST, .•.•• ,DEST

where:

SRC specifies the internal bus source.

SRCMOD specifies a source modifier - may be spec1fied only if
SRC 1S a microprocessor source (ALU or a register file loca­
tion) .

DEST spec1fies an internal bus destination. Destinations, if
any, may be specified in any order, but at most one destina­
tion may be specified from each of the four destination cate­
gories.

3.2.2 Internal Bus Sources

The following are available as internal bus sources:

• Sources from the microprocessor area
• RAM locations
• Megabus buffers
• Constants
• Other internal bus sources.

These sources are described below and summarized in Table
3-3.

3-14

o

c

3.2.2.1 Source~ from the Microprocessor Area
£
, The internal bus sources from the microprocessor area are:

(1) the ALU result and (2) register file locations.

ALU

The entire ALU result (refer to subsection 3.1) may be placed
on the internal bus. If SRCMOD is specified, only part of the
ALU result will be used.

Register File Locations

An entire register file location (refer to subsection 3.1)
may be placed on the internal bus. If SRCMOD is specified, only
part of the register file location will be used. Refer to sub­
section 3.1.2 for possible selection restrictions. When a regis­
ter file location is the internal bus source, the microprocessor
destination may not be null, but must also be a register file
location (although not, in general, the same location) and no
shift modifier may be specified. When no microprocessor area
microinstruction is specified, the assembler automatically satis­
fies this requirement by copying an arbitrarily selected location
back into itself.

SRCMOD Operand

(The optional SRCMOD operand specifies that only part of the

(

20-bit source from the microprocessor area will be placed on the
internal bus. The two SRCMOD operands are L4 and R8.

If L4 is specified, internal bus bits 0 through 3 and also
bits 16 through 19 receive copies of bits 0 through 3 of the se­
lected source from the microprocessor area: internal bus bits 4
through l~ are forced to Zeros.

If R8 is specified, internal bus bits 12 through 19 receive
a copy of bits 12 through 19 of the selected source from the
microprocessor area; internal bus bits 4 through 11 receive eight
copies of bit 8 of the H register; internal bus bits 0 through 3
are forced to Zeros.

3.2.2.2 RAM locations

The RAM is a random access memory consisting of sixteen 2U­
bit locations, numbered 0 through F. Locations 1 through 7 are
also called MI through M7. Any of these locations may be placed
on the internal bus, although RAM locations cannot serve simulta­
neously as an internal bus source and destination.

A RAM location may be specified explicitly or as a function
of the fields in the F/SEL instruction registers. If the firm­
ware step just previously executed altered the contents of SEL,
those op~rands that depend on fields in SEL will use its previous

3-15

contents (i.e., the contents before SEL was altered at the end of
the firmware step just previously executed).

If, simultaneously, a register file location is used as a
restricted selection source (refer to subsection 3.1.2) for the
microprocessor, any RAM location referenced must correspond, in
the sense indicated below, to the restricted-selection register­
file source:

• DO:: RAMO
• Dl-D7:: RAMI-RAM7 = MI-M7
• BO-B7:: RAM8-RAMF
• REGSEL:: RAMSEL
• DB:: MB
• DB3 :: MB3
• DBE:: MBE
• DM:: MM
• DM3 :: MM3
• DME:: MME
• DN:: MN
• DN 3 :: MN 3
• DNE:: MNE

3.2.2.3 Megabus Buffers

The Megabus buffers that serve as internal bus sources are:

• Data buffer
• Procedure buffer
• Interrupt buffer.

Data Buffer (BD)

The Megabus data buffer 1S a l6-bit register containing the
response to the most recent non-procedure read request (RDREQ,
refer to subsection 3.3) issued either to memory or to a periph­
eral device. When this buffer is used as the internal bus
source, bits 0 through 3 receive either four Zero's or a copy of
H register bits 12 through 15, depending on the SRC operand spec­
ified.

Procedure Buffer (BP)

The Mebagus procedure buffer is a l6-bit register that con­
tains the next word in the procedure stream, pointed to by the
P register. The P register is incremented each time the buffer
is used as a soruce. When this buffer is used as an internal bus
source, bits 0 through 3 receive either four Zero's or a copy of
H register bits 12 through 15, depending on the SRC operand spec­
ified.

3-16

c

Interrupt Buffer (RUP)

The Megabus interrupt buffer is a 16-bit register that con­
tains the most recently accepted interrupt word (interrupting
channel number in bits 0 through 9 and interrupt level in bits 10
through 15). When RUP is used, bits 0 through 3 of the internal
bus are forced to Zero's.

NOTE

Servicing of interrupts requires a complex algorithm,
and the user is advised to return control to the na­
tive firmware if/when this is required.

3.2.2.4 Constants

Constants that are available as internal bus sources are:

• Numeric constants
• Operands IOCy and IOSy.

Numeric Constants

A numeriC constant may be specified as an internal bus
source. The least significant nine bits of the constant are
considered to be a signed integer, which is sign extended to
16 bits and placed on the least significant 16 bits of the inter­
nal bus; the most significant four bits of the bus are forced to
Zero·s. Numeric constants are thus of the form Oxxyz#, where x
equals 0 or F. The second least significant digit of the next
firmware address (refer to subsection 3.5) must equal y.

Operands IOCy and IOSy

These operands are intended to facilitate the creation of
Megabus control words for communicating with external processors
(CIP, WCS, etc.), and function as follows:

• Internal bus bits 0 through 3, 5 through lU, and IS are
forced to Zeros.

• Internal bus bit 4 receives a copy of Y register bit 4.

• Internal bus bits 11 through 14 receive the channel number
of the associated external processor (bits 11 and 12 re­
ceive 01 if IOSy is sepcified and 10 if IOCy is specified;
bits 13 and 14 receive the CPU 10).

• Internal bus bits 16 through 19
hexadecimal digit, 0 through F.
cant digit of the next firmware
section 3.5) must equal y.

receive y, where y is any
The second least signifi­

address (refer to sub-

3-17

These operands are optimized for constructing Megabus I/O
control words for the CIP and SIP. They may be modified as re­
quired if it is necesssary to address other processors. Example
6 in subsection 3.7 shows the modification necessary to address
the Wcs.

3.2.2.5 Other Internal Bus Sources

The other internal bus sources are:

• Control panel
• H reg iste r
• Indicator register (I)
• Trap Status Z-word
• Status register (S)
• P register
• Y register
• MMU physical address
• HEX decode r.

Control Panel

The internal bus can receive control and status information
from the Level 6 control panel. If the control panel is speci­
fied as a soruce, the internal bus receives the following
"request word".

o 3 4 7 8 9 lU 11 12 13 14 15 16 17 19

H(12-l5) HEX R 9 P P C W R A LOW ORDER

3-18

DIGIT U B L A D R 0 / B REGISTER
N D U N E I W E SELECT

F S 0 F T F DIGIT
K E

NOTES

1. Bits 0 through 3 receive H register bits 12 through
15, bit 14 is always Zero.

2. Bits 4 through 7 receive the value of the hexadeci­
mal key currently being depressed, Zero if no key
is depressed. Bit 11 receives a Zero when any hexa­
decimal key has been actuated. Refer to subsection
3.4 for firmware acknowledgement and setting of this
bit (FLOPS operand PANOK).

3. Bits 12, 16, and 9 receive the least significant 3
bits of the leftmost register selection hexadecimal
digit. Bits 17 through 19 receive the least signifi­
cant 3 bits of the rightmost register selection digit.

(

4. The rema1nlng 4 bits receive mode information. Bit
g is Zero only if the panel RUN indicator is illumi­
nated. Bit 10 is Zero only if the panel PLUS indic~­
tor is illuminated. Bit 13 is One only if the panel
WRITE indicator is illuminated. Bit 15 is One only
if either the panel WRITE or READ indicator is
ill urn ina ted •

For example, assume the internal bus receives the following
hit p'attern from the control panel:

0000 1110 1110 1001 0110

then:

B register bits 12 through 15 are Zero.

!'h.e nE" key is currently being depressed and has not yet
been acknowledged.

Register D6 has been selected.

%he panel is in Read mode, and 1S not in Plus or Run mode.

B Register

The H register is a 16-bit register primarily used for swap­
ping halfwords (bytes). There are two ways the internal bus can
receive the H register. Either the two halves of the H register
can be interchanged, i.e., internal bus bits 0 through 3 are
forced to Zero, bits 4 through 11 receive H(8-l5), and bits 12
through 19 receive H(O-7), or the left half of the H can be sign­
extene'ed, i. e., internal bus bi ts 0 through 3 are forced to Zero,
bits 4 through 11 receive eight copies of H(O), and bits 12
through 19 receive H(O-7).

Indicator Register (I)

The I register is 8 bits
ware-visible indicator bits.
bus receive the I register.
Zero.

TraE Status Z-Word

wide and conta1ns the seven soft­
Bits 4 through 11 of the internal

The other 12 bits are forced to

The trap status Z-word consists of pertlnent hardware infor­
mation that is delivered to the Memory Trap Save Area (TSA) when
an exception condition is detected in the cPU. The information
for the Z-word is brought together from several areas to serve as
a source to the internal bus.

When the Z-word is specified as the internal bus source, in­
ternal bus bits 8 through 11 receive the XB register, bits 12 and
13 receive S register bits 1 and 2 (ring number), bits 16 through

3-19

19 receive the CTR counter, and bit 4 receives a Zero unless F
register bit 0 is a Zero, or unless F register bits 9 through 11
= 101 and the SEL register does not contain Zero. All other bits
are forced to Zero.

Status Register (S)

The S register contains the software-visible system status
and security codes. When this register is an internal bus
source, either internal bus bits 4 through 19 receive the S reg­
ister content with bits 0 through 3 forced to Zeros, or bit 0
through 11 and bit 13 receive Zero, bit 12 receives a One and
bits 14 through 19 receive S(10-15). S(10-15) is also called
Level (L VL) •

P Register

The P register is a 2U-bit software-visible counter that is
primarily used to address memory during procedural reads (refer
to subsection 3.3).

Y Register

The Y register is a 2u-bit counter primarlly used to supply
addresses to the Megabus during non-procedural reads and writes
(refer to subsection 3.3).

MMU Physical Address

When this source is chosen, the internal bus receives the
20-bit physical address calculated by the MMU during the pre­
vious firmware step. MMU implies Y as an internal bus destina­
tion. Refer to subsection 3.3.3 (MMUSELECT).

Hexadecimal Decoder

The hexadecimal decoder logic produces a l6-blt mask, con­
sisting of 15 One's surrounding a Zero in the bit location cor­
responding to the 4-bit value in the XB register. Internal bus
bits 4 through 19 receive the 16-bit mask; bits 0 through 3 are
forced to Zeros.

3-20

(

c

Table 3-3 Internal Bus Sources (Sheet I of 4)

MNEMONIC CATEGORY

ALU RALU

BO through B7 RALU

BB RALU

BB3 RALU

BBE RALU

BM RALU

BM3 RALU

BME RALU

BN RALU

BN3 RALU

BNE RALU

DO through D7 RALU

DB RALU

DB3 RALU

OBE RALU

OM RALU

OM3 RALU

DATA RECEIVED BY INTERNAL BUS

ALU Result

Base Register BO through B7 (regis­
ter flle locations 8-F)

Base Register BO through B7 specified
by SEL(I-3)

Base Register BO through B3 specified
by SEL{2-3)

Even Base Register BO, B2, B4, B6
specifled by SEL(I-2)

Base Register BO through B7 specified
by F(9-ll)

Base Register BO through B3 specified
by F(lO-ll)

Even Base Register BO, B2, B4, B6
specified by F(9-10)

Base Register BO through B7 specified
by F(I-3)

Base Register BO through B3 specified
by F(2-3)

Even Base Register BO, B2, B4, B6
specified by F(1-2)

Data Register DO through 07 (register
file locations 0-7)

Data Register DO through 07 specified
by SEL(I-3)

Data Register DO through 03 specified
by SEL{2-3)

Even Data Register DO, 02, 04, D6
specifled by SEL(I-2)

Data Register DO through 07 specified
by F(9-11)

Data Register DO through 03 specified
by F(lO-ll)

3-21

Table 3-3 Internal Bus Sources (Sheet 2 of 4)

MNEMONIC CATEGORY

OME RALU

ON RALU

ON3 RALU

ONE RALU

REGSEL RALU

L4 SRCMOO

R8 SRCMOO

MI through M7 RAM

MB RAM

MB3 RAM

MBE RAM

MM RAM

MM3 RAM

MME RAM

MN RAM

MN3 RAM

MNE RAM

3-22

OATA RECEIVEO BY INTERNAL BUS

Even Oata Register 00, 02, 04, 06
specified by F(9-10)

Oata Register 00 through 07 specified
by F(1-3) .
Oata Register 00 through 03 specified
by F(2-3)

Even Oata Register 00, 02, 04, 06
specified by F(l-2)

Register File location specified by
SEL(0-3)

BI (0-3) - SRC (0-3)
BI{4-l5)- 0
BI(16-19)~ SRC{0-3)
where SRC must be a source from the
RALU category

BI (0-3) - 0
BI (4-11) - H (8)
BI(12-19)~ SRC{12-19)
where SRC must be a source from the
RALU category

RAMx where x = 1-7

RAMO through RAM7 specified by SEL{l-3)

RAMO through RAM3 specified by SEL(2-3)

Even RAM location (RAMO, RAM2, RAM4, or
RAM6), specified by SEL{l-2)

RAMu through RAM7, specified by F(9-ll)

RAMO through RAM3, specified by
F(lO-ll)

Even RAM location (RAMO, RAM2, RAM4, or
RAM6), specified by F{9-l0)

RAMO through RAM7, specified by F(1-3)

RAMO through RAM3, specified by F(2-3)

Even RAM location (RAMO, RAM2, RAM4, or
RAM6) , specified by F(l-2)

(

(~

~able 3-3 Internal Bus Sources (Sheet 3 of 4)

MNEMONIC

RAMO through
RAMF

RAMSEL

BO

BOH

BP

BPH

RUP

lOCO through
IOCF

IOSO through
ISDF

KO--

K--O through
K--F

CATEGORY DATA RECEIVED BY INTERNAL BUS !

RAM

RAM

BUS

BUS

BUS

BUS

BUS

RAMx where x = O-F

RAMO through RAMF, specified by
SEL (0-3)

Bl (0-3) _ 0
BI (4-19) -- BO
BI (0-3) - H (12-15)
B I (4 -19) -- BO

B1 (0-3) - 0
BI (4-1~) - BP
Bl (0-3) - H (12-15)
BI (4-19) - BP

BI (0-3) -- 0
BI(4-19)- RUP

CONSTANT BI (0-3) __ 0
BI(4)--Y(4)
BI (5-12) __ Oq000010
BI (13-14) -- S(8-9)
B1 (15) _ 0
BI(16-19)-Y
where y = O-F

CONSTANT BI (0- 3) - 0
B1(4)-Y(4)
BI (5-12) -- 00000001
BI(13-14)_ S(8-9)
B1(15)- 0
Bl(16-19)- Y
where Y = O-F

CONSTANT Bl{0-11)- 0
B1{12-19)_ unrestricted

CONSTANT B1(0-3)- 0
B1 (4-11) - FF
Bl (12-19) -- unres"tr icted

CONSTANT Bl(0-3) - 0
Bl(4-15)- unrestricted
Bl (16-19) -- z
where z = O-F

3-23

Table 3-3 Internal Bus Sources (Sheet 4 of 4)

MNEMONIC CATEGORY

Numeric Value CONSTANT
=xyz#

H OTHER

HL8 OTHER

1 OTHER

LVL OTHER

MHU OTHER

P OTHER

PANEL OTHER

S OTHER

XBHEX OTHER

Y OTHER

z OTHER

3-24

DATA RECEIVED BY INTERNAL BUS

Oxxyz
where x = 0 or F

y = 0 through F
z = 0 through F

B1 (0-3) __ 0
B1 (4-11)- H (8-1S)
81(12-19)--- H(0-7)

B1(0-3)-0
B1(4-11)- H(O)
B1 (12-19) - H (0-7)

B1 (0-3) __ U
B1(4-11)_ I
B1 (l2-19)_ 0

00080# + S(10-1S)

Physical address (implies Y as inter­
nal bus destination).

P

B1(0-3) ~ H(12-15)
B1(4-19)- Panel Request Word

B1 (0-3) - 0
B1{4-19)- S

B1 (0-3) _ 0
BI{XB+4)- 0
other 15 bits receive One's

Y

BI(u-3)- 0
BI(4)- f(F,SEL)
B1 (S-7)- 0
B1 (8-11) _ XB
B1{12-13) - S{1-2)
B1 (14-1S) _ U
B1 (16-19) _ CTR
where:
f{F,SEL) = F(O) F(9) F{lO) F(ll)
(SEL{O) V SEL(l) V SEL(2) V SEL(3)

('

3.2.3 Internal Bus Destinations

Internal bus destinations are divided into four categories:
(1) Megabus address registers, (2) RAM locatlons, (3) indicator
register, and (4) other destinations. These destinations are
described below and are summarized in Table 3-4. At most, one
register from each category may be selected simultaneously, ex­
cept as noted.

3.2.3.1 Megabus Address Registers

The Megabus address registers that are available as internal
bus destinations include:

• P reg ister
• Y register

P Register

The P register may be loaded with the 2u bits from the inter­
nal bus.

CAUTION

This register is software visible.

Y Register

The Y register may be loaded from the internal bus in three
ways. First, the entire 20 bits of the internal bus can be
copied to Y. Second, bits 4 through 19 can be copied to the cor­
responding bits of the Y register, leaving Y(0-3) unchanged.
Third, the two-bit CPU ID, 5(12-13), can be substituted for
internal bus bits 10 and 11, and the 20-bit result copied to the
Y register.

3.2.3.2 RAM Locations

When a RAM location is specified as a destination, the entire
20 bits of the internal bus are copied into the specified loca­
tion. A RAM location may be specified either explicitly or as a
function of fields in the F/SEL instruction registers. If the
firmware step just previously executed altered the contents of
SEL, those operands that depend on fields in SEL will use its
previous contents (i.e., the contents before SEL was altered at
the end of the firmware step just previously executed). If a RAM
location is specified as an internal bus source, none can be
simultaneously specified as a destination.

If, simultaneously, a register file location is used as a
restricted selection source (refer to subsection 3.1.2) for the
microprocessor and/or the internal bus, any RAM location refer­
enced must correspond, in the sense indicated below, to the
restrict~d-selection register-file source:

3-25

• DO · . RAMO · .
• 01-07 ::RAMI-RAM7 = MI-M7
• BU-B7 .. RAMS-RAMF . .
• REGSEL . . RAMSEL . .
• DB · . MB · .
• OB3 · . MB3 · . • OBE · . MBE · .
• OM · . MM · .
• OM3 · . MM3
• OME · . MME · .
• DN · . MN · .
• DN3 · . MN3 · .
• DNE · . MNE · .

3.2.3.3 Indicator Register (I)

When the I register is specified as a destination, 1(0) re­
ceives internal bus bit 12: 1(2-7) receives bits 14 through 19.
I (1) is always Zero. Individual bits of this register can also
be modified by microinstructions in the miscellaneous hardware
area (refer to subsection 3.4). When the I register is a desti­
nation, the internal bus source must be from the microprocessor
area, the RAM, or the Megabus buffers.

3.2.3.4 Other Destinations

Other internal bus destinations include:

• Control Panel
• Status Register
• LINK Register
• H Register
• Instruction Registers.

Control Panel

The internal bus contents can be stored in the control panel
displays. One operand causes internal bus bits 4 through 19 to
be stored in the rightmost four hexadeclma1 digits. Another op­
erand causes internal bus bits 16 through 19 to be stored in the
leftmost hexadecimal digit of the display.

Status Register (5)

Internal bus bits 5 and 6 can be copied into the ring number
field, 5(1-2), or internal bus bits 14 through 19 can be loaded
into the level fleld, 5(10-15). If F(5) is Zero when the level
field is loaded, the interrupt busy flop is cleared.

LINK Register

Internal bus bits 11 through 18 can be copied into the 8-bit
LINK register. The LINK register is referenced by the firmware
sequencil!g area.

3-26

r'\
""-.-/

(~
, /

H Register

Internal bus bits 4 through 19 can be copied into the 16-bit
H register. SEL may be specified as a simultaneous destination.

Instruction Registers (F and SEL)

The F and SEL registers can be loaded from the internal bus
in three ways. First, internal bus bits 4 through 15 can be
copied into the l2-bit F register and bits 16 through 19 into the
4 bit SEL register. Second, internal bus bits 12 through 15 can
be copied into F(8-11} and bits 16 through 19 into SEL. Third,
internal bus bits 16 through 19 can be copied into the SEL regis­
ter. In the last case, the H register may be specified as a
simultaneous destination.

Table 3-4 Internal Bus Destinations (Sheet 1 of 2)

MNEMONIC

P

Y

YR16

YRELOC

M1-M7

MB

MB3

MBE

MM

MM3

MME

MN

MN3

CATEGORY ACTION

MEGABUS P-- Bl

MEGABUS Y - Bl

MEGABUS Y(4-19) ___ B1(4-19)

MEGABUS

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

Y(O-9)- Bl(O-9)
Y (lO-ll) --- S (12-13)
Y (12-19)-Bl (12-19)

Mx-B1(O-19) where x = 1 to 7

RAMO through RAM7, specified by
SEL (1-3) ,-Bl

RAMO through RAM3, specified by
SEL(2-3) ,_BI

Even RAM register (RAMO, RAM2, RAM4,
or RAM6), specified by SEL(1-2),--B1

RAMO through RAM7, specified by
F(9-11), _BI

RAMO through RAM3, specified by
F(10-11), _Bl

Even RAM register (RAMO, RAM2, RAM4,
or RAM6), specified by F(9-1lJ), _ B1

RAMO through RAM7, specified by
F(1-3),_B1

RAMO through RAM3, specified by
F(2-3),_B1

3-27

Table 3-4 Internal Bus Destinations (Sheet 2 of 2)

MNEMONIC CATEGORY

MNE RAM

RAMO-RAMF RAM

RAMSEL RAM

I I

F OTHER

FR8 OTHER

.H OTHER

LINK OTHER

LVL OTHER

PANEL OTHER

PANEL4 OTHER

RING OTHER

SEL OTHER

ACTION

Even RAM register (RAMO, RAM2, RAM4,
or RAM6), specified by F(1-2), -81

RAMx~ Bl where x = 0 to F

RAMO through RAMF, specified by
SEL, _ BI

1(0)- Bl(12)
1(1) -- 0
I(2-7)~ Bl(14-19)

F- Bl (4-15)
SEL -- B1 (16-19)

F (8-11) _ BI (12-15)
SEL- B1(16-1~)

H-B1(4-l9)

LINK- 81(11-18)

S(10-l5)- BI(14-19)
if F(5) = 0, INTBSY_ a

4 Least Significant Display
Digits-B1(4-19)

Most Significant Display
Digit - Bl (16-19)

S(1-2)- Bl(5-6)

SEL -- BI (16-19)

3.2.4 Internal Bus Examples

The following are examples of source statements for the in­
ternal bus area.

3-28

(

(~:

STATEMENT MEANING

BI ALU,R8 BI (0-3) - 0
BI(4-11)_ H(8)
BI(12-19)~ ALU result (12-19)

BI RAMC,P P_ BI -- BAMC

BI BP,F BI(0-3)- 0
BI (4-19)- BP
F- BI (4-15)
SEL- BI (16-19)

BI FCO#,M6 M6 _ BI _ OFFCOt

3.3 MEGABUS INTERFACE AREA

The following activities may occur on the Megabus:

• Memory Write
• I/O (non-memory) Write
• Memory Read Request
• I/O (non-memory) Read Request
• Read Response
• Interrupt

To avoid Megabus bottlenecks, reud requests are considered
complete when they have been accepted (or rejected) by the
addressed unit, and a separate Megabus cycle 1S used for the read
response. Various kinds of read requests originating in the CPU
are "tagged" so that the corresponding responses will be deliv­
ered to the appropriate buffer (BD, BP).

The microinstructions in the Megabus interface area (see
Figure 3-3) are designed to request reads, perform writes, and
maintain associated address registers and flops. In general,
the operation of the cache and Memory Management Unit (MMU) is
transparent: however, occasional firmware control is necess~ry.

3-29

3-30

FROM
INTERNAL

BUS

CENTRAL PROCESSOR

MICRO. MISCELLANEOUS
PROCESSOR HARDWARE

./ ./

A

BD

INTERNAL FIRMWARE
BUS SEQUENCING

MEGABUS MASTER
INTERFACE CLOCK

MEGABUS

CACHE

BP RUP

PHYSICAL
ADDRESS

r --,
, P I
I I
I- __ ...J

,---,
I Y ,
I I
L __ .J

VIRTUAL
ADDRESS

Figure 3-3 Megabus Interface Area
c

,-
"

(---

- /

Perform Memory Write

When data is to be written to memory, the Y register is first
made to contain the address of the desired word. If a byte
rather than a word is to be written, XB register bit 0 (refer to
subsection 3.4) is made to contain the byte offset (0 for left,
1 for right). The firmware may then perform the write, SupplYing
the data to be written on the internal bus (bits 4 through 19 for
word writes, bits 4 through 11 for left-byte writes, and bits 12
through 19 for right-byte writes). The MMU translates t'he virtu­
al address in the Y register to the corresponding physical ad­
dress and checks for "write" permission.

The Acknowledge (ACK) flop is set to One if the memory write
is accepted and Zero if it is rejected. It may be copied into
MISC and/or 1(1), either simultaneously or anytime thereafter
prior to the next Megabus read request or write operation. It
may be tested, starting in the next firmware step, anytime prior
to the next Megabus read request or write operation. A simulta­
neous test has undefined results. Almost all memory writes are
accepted, so it is usually unnecessary to copy or test ACK.

Perform I/O (Non-Memory) Write

When data is to be written to I/O (non-memory) devices, the
Megabus address lines must be made to contain the appropriate
control word (IO-bit channel number, 6-bit function code). To
achieve this, Y register bits 5 through 19 must be made to con­
tain the most significant 15 bits of the control word, and XB
register bit 0 must be made to contain the least significant
bit. The firmware may then perform the write. If the data to be
sent is 16 bits wide, it is supplied on internal bus bits 4
through 19. If it is 21 bits wide (as is the case when supplying
a device controller with a memory address), data bits 0 through
4 are supplied by Y bits 0 through 4 and data bits 5 through 20
are supplied by internal bus bits 4 through 19. The firmware
is responsible for converting any virtual addresses to physical
for the controller by using the MMU as an internal bus source.
The MMU does neither translation nor checking during I/O writes.

The ACK flop is set to One if the write is accepted and Zero
if it is rejected. It may be copied into MISC and/or 1(1),
either simultaneously or anytime prior to the next Megabus read
or write operation. It may also be tested in the next firmware
step or anytime thereafter prior to the next Megabus read request
or write operation. A simultaneous test has undefined results.
It is good practice on I/O writes to check ACK or copy it to 1(1)
for testing by the software.

Request Memory Read

Memory reads are called "procedural" when P supplies the ad­
dress and "data" when Y supplies the address.

3-31

When a data read request is to be performed, the Y register
is first made to contain the address of the desired word. The
firmware may then send a read request to the memory subsystem.
The MMU translates the virtual address in Y to the corresponding
physical address and checks for "read" permission. The next (or
any subsequent) firmware step may use SD as an internal bus
source to retrieve the requested data. The ACK flop is set to
One if the memory read request is accepted and Zero if it is
rejected. ACK may be copied and tested in the next flrmware step
or anytime thereafter prior to the next Megabus read request or
write operation. Almost all memory data read requests are
accepted, so it is usually unnecessary to copy or test ACK.

Reading procedural words from memory is, from the firmware's
viewpoint, simplified by the inclusion of extra hardware to expe­
dite this common operation. Unlike data reads, it is never nec­
essary to include an explicit procedure read request: the proce­
dure buffer (SP) can be treated as always containing the memory
word addressed by P. This is true because the hardware automat­
ically performs read requests whenever necessary. The MMU trans­
lates the virtual address in P to the corresponding physical
address and checks for "execute" permission. When SP is speci­
fied as an internal bus source, P is automatically incremented so
as to pOint to the next procedural word. These automatic actions
actions facilitate creation of compact firmware code for reading
procedure. For higher performance, an explicit procedural read
request may be specified in advance of the step which uses SP as
an internal bus source. To facilitate the firmware coding of
branch instructions, if an explicit procedural read request is
specified simultaneously with Y as an internal bus source and P
as an internal bus destination, the memory address is supplied by
Y.

Request I/O (Non-Memory) Read

When an I/O (non-memory) read request is to be performed, the
Megabus address lines must be made to contain the approprlate
control word (IO-bit channel number, 6-bit function code). To
achieve this, Y register bits 5 through 9 must be made to contain
the most significant 15 bits of the control word, and XS register
bit 0 must be made to contain the least significant bit. The MMU
does neither translation nor checking during I/O read requests.
The next (or any subsequent) firmware step may use SD as an in­
ternal bus source to retrieve the requested data. The ACK flop
is set to One if the read request is accepted and Zero if it is
rejected. ACK may be copied and tested in the next firmware step
or anytime thereafter prior to the next Megabus read request or
write operation. It is good practice on I/O read requests to
check ACK or copy it to 1(1) for testing by the software.

3-32

{- 3.3.1 Syntax

"' The microinstructions in this area specify the firmware con­
trol on the Megabus interface. These microinstructions contain a
function with from zero to two operands as follows:

Function operand, operand

No Megabus interface microinstruction should be specified if
the internal bus calls for BD, BDH, BP, BPH, P, Y, or MMU as a
source, or for P, Y, YRI6, or YRELOC as a destination, except as
noted.

3.3.2 Megabus Interface Functions

The Megabus interface functions are described below and sum­
marized in Table 3-5.

WRTWORD

WRTWORD performs a word write to memory or I/O. The only
valid operand combinations are:

• CHGLOCK
• INCY
• 1-0
• 1-0, INCY.

The short form WRT is synonymous with WRTWORD. WRTWORD or
WRT may be specified even when Y is an internal bus source.

WRTBYTE

WRTBYTE performs a byte write to memory or I/O. The only
valid operand combinations are:

• CHGLOCK
• INCY
• 1-0
• 1-0, INCY.

WRTBYTE may be specified even when Y is an internal bus source.

RDREQP

RDREQP initiates a procedural read request. No operands may
be specified. RDREQP may be specified even if Y is an internal
bus source and P is an internal bus destination, in which case
the memory address is specified in Y rather than P (refer to
subsection 3.3.3 - PURGE). RDREQP may also be specified even
when P is an internal bus source.

3-33

RDREQ

RDREQ initiates an I/O or memory data read request. The
only valid operand combinations are:

• NORMAL
• 1-0
• CHGLOCK
• NOCACHE
• CHGLOCK, NOCACHE.

RDREQ (with any of the above operand combinations) may be
specified even when Y is an internal bus source.

BUS

BUS performs auxiliary operations when no read request or
write operation is desired. The only valid operands for BUS
are:

• YSELECT
• PSELECT
• MMUSELECT

• INCY
• INCP

• PURGE
• MMURDACC
• MMUWRACC.

3.3.3 Megabus Interface Operands

The Megabus interface operands (described belowO are used to
modify the basic functions.

NORMAL

A memory data read request is performed.

1-0

A non-memory read request or write operation is performed.
If this operand is omitted, any read request or write operation
is directed to memory.

INCP

The P register is incremented at the end of the current firm­
ware step. Note that when BP or BPH is specified as an internal
bus source, P is automatically incremented. INCP may be speci­
fied even when P is an internal bus source.

3-34

(

INCY

The Y register is incremented at the end of the current firm­
ware step. Even when BD, BDH, or Y is an internal bus source,
INCY may be specified as a BUS operand.

PSELECT

If the previous firmware step initiated a procedural read
request (RDREQP), and the current step does not use the requested
data (by specifying BP or BPH as an internal bus source), then
PSELECT (or 1NCP or PURGE) must be specified to ensure correct
operation of the hardware. PSELECT may be specified even when P
is an internal bus source.

YSELECT

If the previous firmware step initiated a non-procedural read
request (RDREQ), and the current step does not use the requested
data (by specifying BD or BDH as an internal bus source), then
YSELECT (or 1NCY) must be specified to ensure correct operation
of the hardware. Furthermore, no RDREQP should be performed in
any step between an RDREQ and the step that uses the data.
YSELECT may be specified even when Y is an internal bus source
and/or when P is an internal bus destination.

PURGE

Notifies hardware that BP is obsolete. This notification is
neces.sary only in the case where Y is to be copied to P (e.g.,
software jump) during a procedural read request (refer to sub­
section 3.3.1 - RDREQP). This action must be preceded by a BUS
PURGE.

JiOCACHE

The cache, if installed, is bypassed during the memory read.
The only time it is necessary to use this operand is when the
requested data is to be directly copied from BD to P (i.e., B1
BDH ,P) •

CHGLOCK

Allows the implementation of selected software instructions
that facilitate intercommunication and synchronizing in multi­
processor systems. The intent is to protect against overlap and
consequent interference between "test-and-set" operations initia­
ted independently by two or more CPU's on a common memory loca­
tion.

Since the "lock" mechanlsm is implemented in the main memory
subsystem, use of this argument unconditionally implies NOCACHE,
(the latter argument, though redundant, may be included for
clarity) '.

3-35

All other effects of CHGLOCK are conditional on the content
of the F register. If F = 002, 003, 006, or 007, or if 880#<F
<897# or if 8AO#<F< 8B7# the current instruction is classifed as
a Read-Modify-WrTte (RMW) operation, and the interlock operates;
otherwise, CHGLOCK has no further effect.

The operation of the interlock is dependent on CPU control
flop RMWF, which is assumed to be initally cleared. The operand
CHGLOCK causes the read request or write cycle on the Megabus to
be accompanied by a Set-Lock code. The memory, if it is not
already locked, accepts the transmission and the memory module
becomes locked. If the memory had already been locked, it would
have rejected the transmission (ACK = 0); CPU firmware, sensing
the rejection, could repeat the request or take other appropriate
action.

When the Set-Lock request is acknowledged, CPU hardware sets
the RMWF control flop. As a result, the next CHGLOCK occurrence
causes a Megabus cycle accompanied by an UNLOCK code. The memory
unconditionally accepts the code, and the module involved reverts
to (or remains in) the unlocked state.

It is imperative that any firmware algorithm which locks any
memory module not be permitted to terminate without unlocking the
same module. Failure to observe this requirement can produce
unrecoverable system deadlocks, which can be very elusive to
diagnose.

MMURDACC, MMUWRACC

Modifies the access rights checking performed in preparation
for MMUSELECT (refer to subsection 3.3.3 - MMUSELECT). MMURDACC
or MMUWRACC may be specified even when Y is an internal bus
source.

MMUSELECT

It it is necessary to check the validity of a virtual memory
addrress or the program's access rights to that location, the
following actions are taken. The Y register is flrst made to
contain the address. The virtual address is then transmitted to
the MMU by specifying MMURDACC (for a read access check) or
MMUWRACC (for a write access check) as a BUS operand. In the
next firmware step, the physical address may be selected as an
internal bus source (BI MMU). If the physical address is not
needed and the internal bus can profitably be used for another
purpose, then the microinstruction BI MMU can be replaced by BUS
MMUSELECT. Simultaneously, the address validity can be tested
using the condition IFADRER (refer to subsection 3.5) and any
protection violation can be copied into control flop MISC (FLOPS
MSPROV) • If either 81 MMU or BUS MMUSELECT is specified, the Y
register will be loaded from the internal bus whether or not Y is
specified as an internal bus destination.

3-36

(~:

Table 3-0 Megabus Interface Microinstructions
(Sheet 1 of 2)

MICROINSTRUCTION

BUS

BUS

BUS

BUS

BUS

BUS

BUS

BUS

RDREQ

RDREQ

RDREQ

RDREQ

RDREQP

INCP

INCY

MMURDACC

MMUSELECT

MMUWRACC

PSELECT

PURGE

YSELECT

NORMAL

CHGLOCK

1-0

NOCA.CHE

WRT CHGLOCK

WRT 1-0

WRT 1-0, INCY

WRT INCY

WRTBYTE CHGLOCK

WRTBYTE· 1-0

P-- P+l
CRT-CTR+l

MEANING

Map Y address and request read permis­
sion.

Make available SEGERR and PROVo

Map Y address and request write permis­
sion.

Finish preceding RDREQP.

Refresh BP.

Finish preceding RDREQ.

Initial memory data read request.

Initate memory data read request.
Set/clear lock in memory.
Bypass cache.

Initiate non-memory data read request.

Initiate memory data read request.
Bypass cache.

Initiate procedural read request.

Perform memory word write.
Clear/set lock in memory.

Perform non-memory word write.

Perform non-memory word write.
Y -- Y+l

Perform memory word write.
Y-- Y+l

Perform memory byte write.
Clear/set lock in memory.

Perform non-memory byte write.

3-37

Table 3-S Megabus Interface Microinstructions
(Sheet 2 of 2)

MICROINSTRUCTION MEANING

WRTBYTE 1-0, INCY Perform non-memory byte write.
Y __ Y+l

WRTBYTE INCY Perform memory byte write.
Y __ Y+l

WRTWORD CHGLOCK Perform memory word write.
Clear/set lock in memory.

WRTWORD 1-0 Perform non-memory word write.

WRTWORD 1-0, INCY Perform non-memory word write.
Y __ Y+l

WRTWORD INCY Perform memory word write.
Y_Y+l

3.4 MISCELLANEOUS HARDWARE AREA

The miscellaneous hardware area controls a number of auxil­
iary flops and registers. There are four categories of miscel­
laneous hardware:

• I - Indicator Register
• CTR - Counter Register
• MMU - MMU Controls
• GP - Other Hardware.

3.4.1 Syntax

The syntax of microinstructions in the miscellaneous hardware
area is:

FLOPS operand, •••• ,operand

where:

Each operand specifies a flop or register and the value used
to load it.

Multiple operands may be used to specify simultaneous actions
on the flops and registers.

3.4.2 Indicator Register (I) Bits

The 8 bits of the I register may be loaded from the internal
bus bits of I using the FLOPS microinstruction. If one or more

3-38

(

(

operands in this category are used, the internal bus source, if
any, must be from the microprocessor area, the RAM, or the Mega­
bus buffers.

The Overflow indicator (OV) may be set from:

• OVFL (ALU overflow signal, refer to subsection 2.1).

• Internal bus bits 4 and 5 (refer to Table 3-6 for exact
function) •

The Carry indicator (C) may be set from:

• CRY (ALU carry signal, refer to subsection 3.1).
• Internal bus bit 4.
• Internal bus bit 19.
• Q register bit 19 just prior to rightshift in this step.

The Bit indicator (B) may be set from:

• AUZ (ALU zero detect, refer to subsectgion 3.1).
• Internal bus bit 4.

The Input/Output indicator (I) may be set from the Megabus
acknowledge signal (refer to subsection 3.3.).

The Greater Than indicator (G) may be set from:

• Internal bus bit 2 and AUZ (ALU zero detect) - refer to
Table 3-6 for exact function.

• Complement of SIGN flop (refer to subsection 3.4.5).

The Less Than indicator (L) may be set from:

• Internal bus bit 4.
• ALU result bit O.
• SIGN flop (refer to subsection 3.4.5) .

The Unlike Signs indicator (U) may be set from internal bus
bit 4.

3.4.3 Counter Register (CTR)

The 4-bit CTR counter is used by the native firmware to count
the instruction length. It is made available to the internal bus
when the trap status Z-word is an internal bus source. It is
incremented each time BP is specified an an internal bus source
(operands BP or BPH, refer to subsection 3.2), or INCP is speci­
fied in the BUS microinstruction (refer to subsection 3.3), un­
less a FLOPS operand specifies it is to be initialized to a Zero
or One.

3-39

3.4.4 MMU Contro~s

The MMU controls modifying and restoring the MMU function­
ality as summarized below (refer to subsection 3.3).

• Calculate effective ring number: EFFRING is loaded with
the less priviledged of the previous value of the effec­
tive ring number and the write permission ring number as­
sociated with the address Y (generally used during in­
direct references).

• Check procedure as data: NOCHEK is set to One, meaning
that until further notice (see below), procedural read
requests need only "read" permission, not "execute"
permission.

• Suppression access rights checking: until further notice
(see below), no access rights will be checked. Address
mappiing and boundary checks are unaffected.

• Check data descriptor length: loads control flop DDLEQO
to remember whether internal bus bits 8 through 12 are
Zero.

• Initialize effective ring number: EFFRING is restored
from S register (bits 1-2). NOPROC and NOCHEK are
cleared to Zeros, restoring normal access rights checking.

• Validate range: test that the range specified on the
internal bus, added to the address in the Y register, does
not exceed the size of the segment defined by the latter
address. The results of the test are reported in two
testable flops, Segment Error (SEGERR) and Protection
Violation (PROV); refer to subsection 3.3.3 - MMUSELECT.

3.4.5 Other Hardware

The other flops and registers, and the functions from which
they can be set are as follows:

LOAD Flop

The LOAD flop is normally set and cleared by the control
panel. It can also be set and cleared by firmware. If LOAD is
set, the CPU will not automatically cause a trap if it detects an
unavailable resource.

MISC Flop

The MISC flop may be set from:

• Complement of internal bus bit 19.

• In~ernal bus bits 4 through 9 equal to Zero.

3-40

c

(

(

•
•

CRY - ALU Carry signal (refer to subsection 3.1).

ACK Megabus Acknowledge signal (refer to subsection
3.3) •

• PROV - MMU Protection Violation signal (refer to sub­
section 3.3).

• Zero

• One

PANOK Flop

The PANOK flop is cleared by the control panel hardware when
a hexadecimal keypad pushbutton is being depressed; it must be
set by firmware when the control panel request has been serviced.
When PANEL is an internal bus source (refer to subsection 3.2), a
copy of this flop appears as internal bus bit 11.

SHINI Flop

The SHINI flop may be set from:

• I(B) - I register Bit Test indicator
• Zero
• One.

SHIN2 Flop

The SHIN2 flop may be set from:

• Complement of SIGN flop
• Zero
• One.

SIGN Flop

The SIGN flop may be set from:

• Internal bus bit 0

• Internal bus bit 4

• Internal bus bit 19

• One
• Zero (by using the firmware sequencing condition IFRPTR).

TRAFFIC Flop

The TRAFFIC flop may be set from the complement of the ZERO
flop.

3-41

WRAP Flop

The WRAP flop may be set from the inequality of the ALU Carry
signal (CRY) and the SIGN flop.

XB Register

The XB register may be cleared to Zero or may be shifted
right by one bit, receiving either 0, 1, or bit 19 of the ALU
result.

ZERO Flop

The ZERO flop may be set from:

• AUZ - ALU zero detect signal (refer to subsection 3.1).

• QLT active flop from control panel - equals One only if
the last CPU Quality Logic Test (QLT) execution failed.

• Zero.

• One.

3.4.6 FLOPS Operands and Restrictions

The FLOPS operands are specified in Table 3-6. In general,
only one operand from each of the four categories may be spec­
ified except as noted. When a specific operand implies other op­
erands, it is recommended that the implied operands be coded
explicitly, to improve listing clarity.

Table 3-7 lists the only legal combinations of internal bus
destinations (refer to subsection 3.2) and GP category FLOPS op­
erands. For example, if H is an internal bus destination, then
SGBI4 must be specified, and no other GP category operands are
permitted. If none of the listed internal bus destinations are
specified, then SGBI4 may be used by itself or in combination
with several other GP category operands, as shown. If an incom­
plete combination is specified in the source code, the WCS Assem­
bler might choose a combination with undesired side effects.

All operands which are functions of the ALU signals AUZ,
OVFL, and CRY may be used simultaneously only with other operands
which force the same length (16 or 20 bits). Thus, ICRY20 may
be used with ZRAUZ20 but not ZRAUZ. This restriction also ap­
plies to test conditions (refer to subsection 3.5.4) which are
functions of AUZ, OVFL, or CRY.

4-42

r~

~~

(~/

Table 3-6 Miscellaneous Hardware Operands (Sheet 1 of 4)

OPERAND CATEGORY

lACK I

ISSI4 I

IBNAZ I

IBNAZ20 I

·ICBI4 I

ICBI19 I

ICQSR I

ICRY I

ICRY20 I

IGL I

IGL20 I

IGLU I

104NE5 I

IOVFL I

ACTION

1(1)-- Megabus ACK
flop

I(B)-B1(4)
I (C) -- CRY
I (OV)~ OVFL

I (B)-- AUZ

I (B)-- AUZ

I{C)_BI(4)

I(C)-BI(19)

I (C)-- Q (19)

I (C)- CRY

I (C)_ CRY

I(G)- BI(4) V AUZ
I(L)_BI(4)

NOTES AND RESTRICTIONS

Refer to Note 2a.

Refer to Note 2b.

Microprocessor must
specify right shift.

May also specify IOVFL
w/wo I3BI4.
Refer to Note 2A.

May also specify IOVFL
w/wo IBBI4.
Refer to Note 2b.

I(G)~ALU result (0) Refer to Note 2b.
V AUZ (20 bits)
I (L)-- ALU result (0)

I (G) __ SIGN
I (L) _ SIGN
I(U)_BI(4)

I (OV)- BI(4) V BI(5)

I (OV) __ OVFL

3-43

Table 3-6 Miscellaneous Hardware Operands (Sheet 2 of 4)

OPERAND CATEGORY

CTRO CTR

CTRI CTR

DDLEQu MMU

NOCHEK MMU

NONPROC MMU

RING CALC MMU

RINGINIT MMU

3-44

ACTION

CTR-O

CTR-l

Check data descriptor
length. Calculate
effective ring num­
ber.

Suppress access
rights checking.

Check procedure as
data.

Calculate effective
ring number.

Initialize effective
ring number.

Check data descrip­
tor length.

NOTES AND RESTRICTIONS

1. Implies INCP as a
BUS operand unless BP
or BPH is internal bus
source.

2. Implies XBSR un­
less XBSRO, XBSR1, or
XBO is specified.

3. Bit 1 of the 11-
bit branch address
must equal Zero.

1. Implies INCP as a
BUS operand unless BP
or BPH is internal bus
source.

2. Implies XBSR un­
less XBSRO, XBSR1, or
XBO is specified.

3. Bit 1 of the 11-
bit branch address
must equal One.

Implies microprocessor
function XORC.

1. Implies RINGCALC
unless microprocessor
function INCR, ADD1,
AND, or SUB specified.

2. No FLOPS operand
in CTR or GP groups
may be specified.

Implies microprocessor
function ANDC.

Implies microprocessor
function XOR.

Implies microprocessor
function OR unless
COpy (with non ZERO
SRC1) is specified.

Table 3~6 Miscellaneous Hardware Operands (Sheet 3 of 4)

(OPERAND CATEGORY ACTION NOTES AND RESTRICTIONS

VALIDB MMU Validate range. 1. Implies micropro-
cessor function SUB
unless DDLEQO,
NONPROC, or RINGINIT
is also specified.

2. No FLOPS operand
in CTR or GP groups
may be specified.

LOADO GP LOAD- 0

LOADI GP LOAD --1

MSO GP MISC-- 0

MS1 GP MISC --1

MS4-9EQO MISC-BI(4) V BI (5) V
BI (6) V BI (7) V
B I (8) V BI (9)

MSACK GP MISC- Megabus ACK
flop

MSCRY GP MISC_ CRY Refer to Note 2a.

MSCRY20 GP MISC-- CRY Refer to Note 2b.

MSNBI19 GP MISC-BI(19)

MSPROV GP MISC - MMU protect ion
violation signal

PANOK GP PANOK-l

SGI GP SIGN --1

SGBIO GP SIGN-BI(O)

SGBI4 GP SIGN- BI (4)

SGBI19 GP SIGN--BI (19)

SHOO GP SHINl-- 0
SHIN2-- 0

SH01 GP SHIN1-- 0
SHIN2- 1

3-45

Table 3-6 Miscellaneous Hardware Operands (Sheet 4 of 4)

OPERAND CATEGORY ACTION NOTES AND RESTRICTIONS

SHIO

SHll

SHIIB

SH2NSG

TRAFNZR

WRAP

XBO

XBSR

XBSRO

XBSRI

ZRO

ZRl

ZRAUZ

ZRAUZ20

ZRQLT

3-46

GP SHIN1-l
SHIN2 -- 0

GP SHINl-l
SHIN2 --1

GP SHIN1_ I (B)

GP SHIN2- SIGN

GP TRAFFIC- ZERO

GP WRAP-- SIGN V CRY Refer to Note 2b.

GP XB __ 0

GP XB(O)-ALU result If right shift not
(19) specified in micro-

XB (1-3)_ XB (0-2) processor area,
results are undefined.
Refer to Note 2a.

GP XB(O)- 0 Refer to Note 2b.
XB(1-3) __ XB(0-2)

GP XB (0) - 1 Refer to Note 2b.
XB(1-3)- XB(0-2)

GP ZERO- 0

GP ZERO_ 1

GP ZERO- AUZ Refer to Note 2a.

GP ZERO- AUZ

GP ZERO __ QLT active
flop

NOTES

1. For restrictions and permissible combinations
in the GP category, refer to Table 3-7.

2a. Forces AUZ, CRY, and OVFL to 16-bit versions.

2b. Forces AUZ, CRY, and OVFL to 20-bit versions
(refer to subsection 3.1.2).

C

(

Table 3-7 Permissible GP Combinations
(Sheet 1 of 2)

DESTINATION(S) OF
INTERNAL BUS GP CATEGORY OPERANDS

PANEL None

PANEL4 None

LVL None

RING None

LINK None

H,SEL None

H SGBI4

SEL SH11

FRS SG1

FRS SGBI19, MS4-9EQO

F XBO

F XBO, MSO, SHOO, ZRAUZ

F SBO, MSO, SHOO, ZRAUZ20

None of the above SGBI4, MSNBI19, ZRAUZ

None of the above SGBI4, MSNBI19, ZRAUZ20

None of the above SGBI4, SH2NSG

None of the above SGBI4, MS1

None of the above SBGI19, MSl

None of the above SGBI19, ZRQLT

None of the above SGBI4, XBSR

None of the above SGBI4, XBSRO

None of the above SGBI4, XBSR1

None of the above ZRO, XBSR

None of the above ZRO, XBSRO

3-47

Table 3-7 Permissible GP Combinations
(Sheet 2 of 2)

DESTINATION(S) GP CATEGORY OPERANDS

None of the above ZRO, XBSRI

None of the above ZRl, XBSR

None of the above ZRl, XBSRO

None of the above ZRI, XBSRI

None of the above SHOO, XBSR

None of the above SHOO, XBSRO

None of the above SHOO, XBSRI

None of the above SHIO, XBSR

None of the above SHIO, XBSRO

None of the above SHIO, XBSRI

None of the above Any single GP-category operand,
except ZRQLT,
or MS4-9EQO'

XBO, MSNBII9,

3.4.7 Miscellaneous Hardware Examples

The following are examples of source statements for the
miscellaneous hardware area.

STATEMENT MEANING

FLOPS IGL20, CTRO, NONPROC, XBSR

FLOPS IOVFL, ICRY

FLOPS lACK, IBBI4 Invalid - cannot choose to
operands from same category
except as noted.

FLOPS NOCHEK, CTRI Invalid - NOCHEK incompatible
with operands from CTR and GP
categories.

FLOPS NOCHEK, NONPROC Invalid - NOCHEK and NONPROC
require different microproces-
sor functions.

3-48

'-

(

c

STATEMENT MEANING

FLOPS SHOO

FLOPS SHOO, MSO Incomplete specification - may
result in undesired side
effects.

FLOPS SHOO, MSl Invalid - illegal combination
of GP category operands.

3.5 FRIMWARE SEQUENCING AREA

The firmware sequencing area generates the address of the
next firmware step to be executed. Both conditional and uncon­
ditional branching are supported.

3.5.1 Transparent and Sequential Mode Differences

The two firmware sequencing modes supported by WCS, Trans­
parent and Sequential, are mutually exclusive. The WCS option
hardware must be set by a manually operated switch, into one mode
or the other. The following discussion assumes that the setting
of this switch is established when the system is installed, and
that all user firmware intended for one installation will execute
in the same mode. The assembler must be told which mode applies
to the firmware being processed (refer to Section four), to pro­
duce objec~ code consistent with this mode, as well as appropri­
ate diagnostics when the restrictions applicable to this mode are
violated.

The obvious difference between the two modes appears in the
assignment of control store addresses to successive steps of a
firmware routine. In this respect, Sequentlal mode looks more
like typical software, and hence will seem more familiar to most
readers. The microporgrammer assigns an initial address
(origin), after which the assembler automatically increments the
address for each new step. Conditional branches represent a
choice between continuing in sequence and taking some other
action (branch to a specified location, or "call" a subroutine,
or "return").

In contrast, the microprogrammer working with transparent
code will rarely allow the assemblei to assign the address of
the next step, even when the values are adjacent. Every step in
Transparent mode explicitly specifies the address of its succes­
sor, which may equally reside anywhere in the 2048-location firm­
ware bank. Conditional branches represent a choice between the
address thus specified and an alternate address (produced either
by a fixed modification of the specified address, or by reference
to the LINK register, or by hardware dedicated to analyis of the
FISEL instruction register).

3-49

In either mode, when no branching is required, the assembler
generates the necessary code to progress from step to step.
Nevertheless, it should be noted that, in transparent object
code, the bits responsible for specifying the next address are
occupied at almost every step, whereas in sequential object code,
these bits are unused except where branching is called for. This
destinction is important because some of these same bits are in­
volved in the generation of constants (refer to subsection
3.2.2.4 and 3.7) by the firmware.

Therefore, when a particular constant needs to be generated,
a restriction is imposed on the value of the next-address bits.
In Transparent mode, this restriction requires some extra book­
keeping to keep track of address assignments. In Sequential
mode, the restriction vanishes when no simultaneous branching is
involved; otherwise, it usually requires insertion of an extra
firmware step.

Thus, the choice between the two modes should be based on the
expected frequencies of branching and of constant usage, and the
consequent likelihood of their interfering with each other.

Secondary considerations include: (1) the relatively greater
ease of subroutine calling in Sequential mode, (2) the greater
freedom with which three or more decision steps can select be­
tween the same two destinations in Transparent mode, and (3) the
fact that the native CPU firmware is written and executed in
Transparent mode. In summary, Transparent mode makes it possible
to produce more compact code, whereas Sequential mode is easier
to learn.

3.5.2 Transparent Mode Syntax

The Transparent mode firmware sequencing microinstruction
takes one of the following forms:

GOTO addr

condition true, false

where:

addr is the unconditional-branch address.

true is the branch address if condition is true.

false is the branch address if condition is false.

In Transparent mode, the branch address operands (true,
false, and addr) may be an address value (refer to subsection
3.5.5) or a reserved word (LINK register operand or "splatter"
operand). An address value is used if the branch address is a
fixed location. A LINK register operand is used to specify the
II-bit branch address as a function of the B-bit LINK register

3-50

;--\.

(refer to subsection 3.2.4) as shown in Figure 3-4. A splatter
operand is used to generate a branch address based on the value
of the FiSEL instruction register (refer to Appendix E). The
legal Transparent mode address operands are summarized in Table
3-8) •

OPERAND BRANCH ADDRESS

XLO a 11 I LINK REG VALUE a

XLI 1 11 I LINK REG VALUE a

XL (x 11 I LINK REG VALUE a

x = high order bit of alternate
branch address (One if none)

Figure 3-4 Link Register Operands

The only valid unconditional branch is GOTO, where control is
transferred to the specified branch address. In conditional
branching, either the "true" or "false" operand must specify a
value or reserved word, and the other must specify a value or be
null. If this latter operand is null it represents the address
of the next firmware statement in the source. If neither operand
is spec i f ie,d as a reserved word, one of' the addresses must be
equal to the other address ORed with 3.

3-51

Table 3-8 Transparent Mode Branch Address Operands

OPERAND GENERATED BRANCH ADDRESS

value

XL

Specified address **

Function of LINK register and of alternate branch ad­
dress.

XLO Function of LINK register (most significant bit = 0).

XLI Function of LINK register (most significant bit = 1).

XA* Fixed location based on FISEL (Address Syllable).

XB* Fixed location based on FISEL (Commercial Address
Syllable) •

XE* Fixed location based on FISEL (Execute).

XR* Fixed location based on F/SEL (Read Operand Data).

XW* Fixed location based on FISEL (Write Result).

XF Fixed location = 020# (Fetch Instruction).

*F may not be loaded (refer to subsection 3.2) simultaneously
with specifying these branch address operarids (refer to Appen­
dix E for maps of locations addressed as functions of F/SEL).

**If internal bus source is a constant (refer to subsection
3.2.2.4), the second least significant hexadecimal digit of
"value" must equal digit "y" of the constant.

3.5.3 Sequential Mode Syntax

The Sequential mode firmware sequencing microinstruction
takes one of the following forms:

GOTO addr

CALL addr

LBRANCH addr

RETURN

Condition true

Condition true,RETURN

Condition true, ,CALL

3-52

(;
.'

Condition ,false
.,...

Condition RETURN,false

Condition ,false,CALL

where:

addr is the unconditional branch address.

true is the branch address if the test condition is true.

false is the branch address if the test condition is false.

Unconditional branches in Sequential mode include:

• GOTO - Control is transferred to the specified branch
address.

• CALL - Control IS transferred to the specified branch
address after saving the address of the current firmware
step plus one in the "return-address" register. Nested
calls are not supported.

• RETURN - Control is transferred to the firmware step
pointed to by the return address register.

• LBRANCH - Control is transferred to one of 256 locations
based on the three most significant bits of the II-bit
operand "addr", concatenated with the LINK register value.

The operand "addr" must be an address value (refer to sub­
section 3.5.6) greater than 001. If the internal bus source is a
constant (refer to subsection 3.2.2.4), the second least signifi­
cant digit of the "value" must equal digit y of the constant.

In Sequential mode conditional branching, either the "true"
or "falseR operand must specify an address value, and the other
must be null or the reserved word RETURN. If null is used, a
conditional CALL may be specified by using the three operand
fonna t.

3.5.4 Conditions

Table 3-9 summarizes the list of permissible test conditions,
divided into six categories:

• Microprocessor Tests
• Internal Bus Tests
• Instruction Register (F/SEL) Tests
• Megabus Interface Tests
• Miscellaneous Hardware Tests
• Other Tests

3-53

Conditions that test a single bit or flop (or a logical func­
tion of several) result in "true" if the value is One and "false"
if the value is Zero. Conditions that test a relational expres­
sion (e.g., F(l-3) = 7) result in "true" if the relation is sat­
isfied and "false" if it is not.

If a register or flop is being loaded and tested simulta­
neously, the test applies to the value before the load. The F
register may not be loaded and tested simultaneously.

Microprocessor tests which are functions of AUZ, OVFL, or CRY
may not force these signals to detect on different lengths (16 or
20 bits) than any simultaneous FLOPS operands (refer to subsec­
tion 3.4) which are functions of these signals.

Table 3-9 Firmware Sequencing Conditions (Sheet 1 of 5)

CONDITION SIGNAL OR FUNCTION TESTED NOTES & RESTRICTIONS

MICROPORCESSOR TESTS

I FALU 0 ALU(O) Refer to Note 1.

IFAUZ AUZ Refer to Note 1.

IFAUZ20 AUZ Refer to Note 2.

IFCRY CRY Refer to Note 1.

IFCRY20 CRY Refer to Note 2.

IFOVFL OVFL Refer to Note l.

IFQSR Q (19) Microprocessor area
must specify DR or SR.

I FSHIN SHIN

IFSHZ SHIN V AUZ Refer to Note 1.

IFSHZ20 SHIN V AUZ Refer to Note 2.

INTERNAL BUS TEST

IF4EQ5 BI(4) = BI(5)

IFBI4 BI(4)

IFB1l2 B1(12)

IFBI19 BI(19)

3-54

,-- ".

('

Table 3-9 Firmware Sequencing Conditions (Sheet 2 of 5)

CONDITION

IFBINUM

IFPMUX

IFPRIV

IFTRACE

IFBCND

IFBINUM

SIGNAL OR FUNCTION TESTED

Internal bus bit determined
by the register number field,
F (1- 3), as follow s :

F Resister
Bits 1-3 Bit Tested

a a 0 I (I)
a a 1 BI(13)
0 1 a BI(14)
a 1 1 BI (15)
1 a a BI(16)
1 a 1 BI(17)
1 1 0 BI(18)
1 1 1 BI(19)

Previous firmware step had
P, BP or BPH as internal bus
source, or previous step had
BUS operand PURGE, INCP,
RDREQP, or PSELECT and did
not have P as internal bus
destination.

Privilege bit of S register,
5(1)

M1(a)

INSTRUCTION REGISTER
(F/SEL) TESTS

Branch condition (appropri­
ate to branch instruction
in F register - refer to
Table 3-10).

Bit determined by register
number field, F(1-3), as
follows:

F (1-3) Bit Tested

a a a I (I)
a a 1 BI(13)
0 1 a BI(14)
a 1 1 BI (15)
1 a a BI(16)
1 a 1 BI(17)
1 1 a BI(18)
1 1 1 B1(19)

NOTES & RESTRICTIONS

3-55

Table 3-9 Firmware Sequencing Conditions (Sheet 3 of 5)

CONDITION

IFDSELEQO

IFFII

IFF4

IFF5

IFF6

IFF7

lFFB

IFF9

IFGTWD

IFHALF

IFNUM7

IFOUAD

IFREGAD

IFSCISTR

IFSELO

IFSELI

IFSEL3

IFSELEQO

IFSLI-3EQ7

I FfliORD

3-56

SIGNAL OR FUNCTION TESTED

SEL = 0

F (11)

F(4)

F(5)

F (6)

F(7)

F(8)

F(9)

Instruction data field size>
16 bits (function of F -
refer to Table 3-11).

Instruction data field size
= 8 bits (function of F -
refer to Table 3-11).

F(1-3} = 7

Instruction data field
size = 64 bits (function of
F - refer to Table 3-11).

Address syllable calls for
register addressing, i.e.,
[F(O) = 0] V [F(9-l1) = 5
1\ SEL ~ 0]

Instruction has SIP Store
op-code

SEL(O}

SEL(l)

SEL (3)

SEL = 0

SEL(1-3) = 7

Instruction data field size
= 16 bits (function of F -
refer to Table 3-11).

NOTES & RESTRICTIONS

SEL-SEL-1

~'\
I
\. ,
~'

(

(

Table 3-9 Firmware Sequencing Conditons (Sheet 4 of 5)

CONDITION

IFACK

IFPARER

IFPMUX

IFRMWF

IFRPTRP

IFRUP

I FYELLOW

IFADRER

IFIC

IFII

IFDDLEQO

IFLOAD

IFMISC

IFMIZR

IFSHIN

SIGNAL OR FUNCTION TESTED

MEGABUS INTERFACE AREA TESTS

Megabus acknowledge flop.

Parity error indicator.

Previous firmware step had
P, BP, or BPH as internal
bus source, or previous
step had BUS operand PURGE,
INCP, RDREQP, or PSELECT and
did not have P as internal
bus destination.

A previous firmware step
successfully performed a
lock, and no unlock has yet
been performed.

INTBSY V EXTRAP

INTBSY

YELLOW flag

MISCELLANEOUS HARDWARE TESTS

Address error (= WRAP V
SEGERR)

I (C)

I (I)

DDLEQO flop

LOAD flop

MISC flop

MISC V ZERO

SHIN

NOTES & RESTRICTIONS

SIGN- 0

TICK-- 0
YELLOW-O
Set when any EDAC­
corrected memory reads
were encountered since
last test.

Microprocessor destin­
ation must be Q or
null.

3-57

Table 3-9 Firmware Sequencing Conditions (Sheet 5 of 5)

CONDITION

IFSHINI

IFSHlN2

IFSHZ

IFSHZ20

IFSlGN

IPXBO

lFZERO

IFCACHE

IFCIP

IFEXEC

IFLAF

IFLOCK

IFSIP

IFTICK

IFWCS

3-58

SIGNAL OR FUNCTION TESTED NOTES & RESTRICTIONS

SHINl flop

SHIN2 flop

SHIN V AUZ Refer to Note l.

SHIN V AUZ Refer to Note 2.

SIGN flop

XB(O)

ZERO flop

OTHER TESTS

Cache present

ClP present

Control panel Execute
pushbutton

LAF - Long address form

Control panel lock function

SIP present

TICK flop Set every 8-1/3 ms

WCS present

NOTES

1. Forces CRY, OVFL, and AUZ to l6-bit versions

2. Forces CRY, OVFL, and AUZ to 20 bit versions
(refer to subsection 3.1.2)

('"
',,/

Table 3-10 IFBCND Test Function

~ F(4-7) 0,8 1-7, 9-F

0 * SIGN

1 X ZERO

2 I (L) SIGN V ZERO

3 I (G) MISC

4 I (OV) SIGN

5 I(B) ZERO

6 I (C) SIGN V ZERO

7 I (I) MISC

B I(L 11 U) SIGN

9 I(L V G) ZERO

A I(G V- U) SI9N V ZERO

B I (U) MISC

C 1 X

0 1 X

E 1 X

F 1 X

X = Undefined

* True unless power is failing

c

3-59

Table 3-11 Data Field Size Tests (Sheet 1 of 2)

F{O-3) I F(4-7) I F(8-11) IFHALF I FWORD IFGTWD IFQUAD

0 0 0-1 0 1 I-M 0
0 0 2-3 0 1 1-M 0
0 0 4-5 0 1 1-M 0
0 0 6-7 0 1 1-M 0
U 1-E O-F 0 1 I-M U
0 F 0-7 0 1 0 0
0 F 8-F 0 1 I-M 0

1-7 0 O-F 0 0 0 0
1-7 1-2 O-F 0 1 1-M 0
1-7 3-6 O-F 0 0 0 0
1-7 7-B O-F 0 1 1-M 0
1-7 C-F O-F 0 0 0 0

8 0 U-F 0 1 0 0
8 1 O-F I-M M 0 0
8 2 0-7 0 1 0 0
8 2 8-F 0 0 0 U
8 3 U-F 0 1 0 0
8 4 O-F 0 a 1 0
8 5 O-F 0 1 u 0
8 6 O-F 0 1 0 a
8 7 0-7 0 1 0 0
8 7 8-F 1 0 a 0
8 l3 0-7 0 U 0 0 /' '.

I '

8 8 8-F 0 1 0 0
8 9 0-7 0 0 0 a
8 9 8-F 0 1 a a
8 A 0-7 0 0 0 0
8 A 8-F 0 1 0 0
8 B 0-7 0 0 0 0
8 B 8-F 0 1 0 0
8 C 0-7 a 1 0 0
8 C 8-F 0 0 1 0
8 D 0-7 0 0 1 0
8 D 8-F 0 l-L L a
8 E-F O-F 0 1 a 0

9-F 0-2 0-7 0 1 0 0
9-F 0-2 8-F 1 0 0 0
9-F 3 O-F a 1 a 0
9-F 4-7 0-7 0 1 0 a
9-F 4-7 8-F 1 0 0 0
9-F 8-9 0-7 0 1 0 0
9-F 8-9 8-F 0 a 1 S
9-F A-B O-F 0 1 0 0
9-F C-D 0-7 0 a 1 S
9-F C-D 8-F 0 l-L L 0
9-F E-F 0-7 0 1 0 0
9-F E-F 8-F 0 l-L L 0

()

3-60

('

('

Table 3-11 Data Field Size Tests (Sheet 2 of 2)

where:
L = 1 if LAF; otherwise, L = a
M = 1 if MIse v ZERO; otherwise, M = 0
S = selected bit of scientiflc mode register (M4) or F:

F(0-3) = 9 ABe 0 E F
S = M4(2) M4(4) M4(6) F(5) M4(2) M4(4) M4(6)

3.5.5 Address Values

The wes consists of a maximum of 2048 locations, making it
possible to specify addresses in 11 bits. In fact, the next
address field of the firmware word (refer to Appendix B) is in­
deed 11 bits. However, to differentiate wes firmware locations
from native firmware locations, a high order One is often append­
ed to wes location values (e.g., Microcode Analyzer and wes
1 oad~r) •

An address value may be specified to the assembler as a lit­
eral, symbol, or statement reference (refer to Section 4). When
encoding the value of the next address field, the assembler will
use the low order 11 bits. When printing the location of a par­
ticular firmware step, the assembler will use 12 bits. At the
user's discretion the high order bit can be specified as a or 1.

In Sequential mode, an address value may not be equal to
000#, 001#, 800#, or 801#. If any of these locations is speci­
fied, a hardware trap will result, causing the firmware to branch
to native firmware location 000 (refer to subsection 2.7.1). The
assembler will issue a diagnostic message if any of these address
values is specified.

3.5.6 Firmware Sequencing Examples

Tables 3-12 and "3-13 are examples of source statements for
both Transparent and Sequential modes.

3-61

3-62

Ta.ble 3-12 Source Statements for Transparent Mode

STATEMENT

GOTO TAG

GOTO XA

IFF5 802#,803#

IFF5 TAG,XL

IFF5 XA,XB

IFF5 805#,803#

MEANING

-TAG

~XA splatter based on F/SEL

If F(50 = 1,-802#: else 803#

If F(5) = 1, -TAG: else -
location which is function of
LINK register.

Invalid - at least one operand
must speclfy value.

Invalid - 805# V 003# = 803# and
also 803# V 003# = 8U5#

Table 3-13 Source Statements for Sequential Mod~

STATEMENT MEANING

GOTO TAG

CALL TAG

RETURN

LBRANCH 900#

IFF5 TAG

IFF5 TAG

IFF5 TAG, RETURN

IFF5 TAG, ,CALL

IFF5 ,RETURN

IFF5 802#,803#

CALL TAG
Return address reg ister -­
current address + 1

Return to address in return
address register.

~location in LINK register +
9UO#

If F (5) = l, -TAG

IfF (5) = 0, -TAG

If F(5) = 0, -address in return
address reg ister: else -T.l\G

If F(5) = 1, CALL TAG

Invalid - one operand must be a
branch address.

Invalid - both operands may not
specify a branch address in Seq­
ential mode.

(

3.6 MASTER CLOCK AREA

There are four clock speeds that control the duration of each
firmware step. The assembler selects, for each step, the fastest
clock speed permissible based on the actions specified in the
step. In rare circumstances, the selected clock speed must be
overridden based on the actions of a previous step.

3.6.1 Syntax

The microinstructions in the master clock area take one of
two forms:

where:

HL
VL

HL specifies a "half long" clock speed.

VL specifies a "very long" clock speed.

3.6.2 Usage of Master Clock Microinstructions

VL must be specified if:

• The current step specifies IFHALF, IFWORD, IFGTWD, or
IFQUAD and the previous step altered the MISe or ZERO
flops.

• The current step specifies IFREGAD and the preViOUS step
altered SEL.

HL must be specified if:

• A microprocessor shift modifier (SL, SR, DL, or DR) is
specified, BI is a microprocessor source, and the shift
input (SHIN) comes from the internal bus (SHIN depends on
the previous setting of MISe, SHIN1, and SHIN2).

NOTE

Neither HL nor VL should be specified
during a Megabus "write" step.

3.7 EXAMPLES OF FIRMWARE ROUTINES

This subsection provides examples of several firmware rou­
tines, illustrating the effective utilization of various micro­
instructions in accomplishing common tasks. The coding of the
first five examples is extracted from actual native firmware.
They therefore contain some irrelevant material, which has been
retained here to illustrate the parallelism permitted in the
firmware.

3-63

Exampl€ 1 Procedure and Read from Memory

020 f82~ FE31 D23'1 020A

2
3
4
5
I>
7
1\
1/

10
II
12
13
14
15
H
17
18
1'1
20
21
22

TITLE EXAMPL.E I
• P~OCEDURE READ F~O~ ~E~ORY

• T~IS EXA~PLE FETCMES THE FIRST ~ORD OF THE NEXT I~STRUCTION A~O OEPDSITS
• COPIES IN RAM LOCATION 0, IN REGISTER 00, AND IN REGISTER F/SEL. IT ALSO
• SI~ULTA~EOUSLY:

A) SETS CONTROL FLOP ZE~~ TO INDICATE IF THE RECEIVED INSTRUCTION IS A~ HLT
• ~) CLEARS REGISTER ~B A~D FLOPS SHNI, SHNZ, MISC, AND SIGN
• C) INITIALIZES THE RING ~FFECTIVE LOGIC OF THE M~U
• 0) TESTS FOR THE PRESENCE OF A~ EXTERNAL INTERRUPT O~ THAP PENDING

I ~IT 0 EyU 20U
I 'liTE EQU 20£\.

FETe ... 020. £II BP,QA"O,F COpy PROCEDURE WORD TO RAMO,F/SEL
OR BI,ZER(),OO AND TO 00

("OR" loOn ~E REPLACED 11' "COPY·
• IN wCSA REv 03.00)

FLOPS ZI<AU1,SHOO,XBO, PERFOR" A), ij),

"SO,"I"GI~IT AND C)
IFRPTRP INTE,I'IITfJ I POLL FnR I"TERPUPT OR TRAP

Example 2 - Non-Procedure Read from Memory

23 TITLE EXA"PLE 2
24 "O~-PROCEO~HE READ FRO~ MEMO~Y
2S
?~ • THIS EXA~PLE FETCHES A~ AOOPESS FRO~ THE "E~ORY LOCATIO~(S) PDI~TED TO
27 • ., THE Y-PEGISTFH CONTENT, A~n 'EPOSITS A COpy IN T~E p-REGISTER. IT ALSO
?e • SI~ULTA~ECUSLY SETS REGISTER 00 EQUAL TO THE CO~PLEME~T O~ ~EGISTER Q.
2'1

104 OOIlC 11'01 IBOA 8Q'IS 3~ 10"" CUPY ZERI) GE~ERATE CONSTANT: 0
31 III ALU,~ H c- 0
32 IID"E~ P;OCACHE REQUEST ~AIN MEMORY LOCATIO~
33 IFLlF •• 1,·.3 I TEST FOR LONG ADDRESS FORM
34

OilS e013 CElO elloo OlC!> 35 095. ~I 9D,'; I H c- FIRST HALF OF LAF ADDRESS
3~ FlUS I"-CY I Y c- hI
37

lCt> 00'13 CFOI 1000 00117 3f. 3eo. RDREg "OeAeHE I REQUEST SECO~D HALF OF ADDRESS
3'1

0'17 e027 AE50 EOOO 024C 40 0'17. kO~C Q,ZE"O,OO I DEPOSIT CO~PLEMENT OF Q I", DO
41 III 8U",P I PUT HALVES TOGETHER I~ P

3-64

()

(

Example 3 - Write Into Memory

1.12 TITLE EXA~PLE 3
1.13 * IIIR ITE INTO '~E~OHY
1.11.1
"5 * THI S EXAMPLE wRITES THE ADDRESS CONTAINED I~ REGISTER DO INTO THE
1.1& * "'EMORY lOCATION(S) POI~TED TO ElY RA~ LOCATION e.
1.17

21.1C CII'13 CFOO ~OOA B2511 I.I~ 21.1CI BI PA~8,y , V c- RAM8
1.1'1 IFlAF *+1,*+2 I TEST FOR lONG ADDRESS FORM
50

2Sb 0023 CIIbl 1.1000 0257 51 25111 BI DO,lo , LEFT 4 BITS OF DO VIA Bl TO
52 I'o~T INCV I FIRST ,..OIlD OF lAF STORE
53 * v c- Y+l
51.1

257 00A3 C701 4000 937F 55 257. III DO , (REST OF) DO vIA III
511 WilT INCY I TO "EMORY
57 * Y c- V+l

Example 4 I/O Read

37F 01.103 CFOO Z134 n3bll

3b~ 1.I0A3 C300 8014 OOAII

Oll~ 04AC IIFOI 2~CO 03bA

0118 •• '7 .FOI zeto 03611

lilA CCD3 C750 8510 F370

310 81.123 FII30 FOOO n7FF

S!
~II
1b0
to1
112
113
64
65
6b
67
bB
611
70
71
72
73
71.1
75
76
77
7A
71/
80
81
62
83
~4

"5
6b
~7
fjA

fill
~O

'/I

.. EU~PLE 4
1/0 READ

* T~lS EXA~PLE PEQUESTS INPUT FPO~ T~E 1/0 SUeSYSTE"', USING THE CHA~NEL
.. ~UM~E~ AND FUNCTIO~ CODE CO~TAINE~ IN REGISTEQ DO, A~D (IF THE REQUEST
* IS AtK~OnLEOGEDI COPIES THE wEPLY INTO REGISTfR BO. IT THEN EXITS TO STORE
* T~E REPLY AS REGuIREO. THE I/O I~OItATOR IS SET/CLEAREO IF THE REQUEST
* IS/ISN'T AC~NOnLEnGf~. NOTE THAT THE CHANNEL NUMBER/FU~CTION CODE ~UST
• BE PLACED IN V(S-I'1I/KB(O) FO~ TRANSMISSION TO T~E "'EGA~US.

37F'

103E

370.

COpy
FLOPS
IFSIGN

BI
tFSHI~

COPY
RDRE~
FLOPS
GOTO

_OPt
ROREQ
FLOPS

BI
COPY
FLOPS
IFAC~

BI
COPY
GOTO

00,80,5.
~BSR.SoiOO

I030,t03E

ZERO,PO
1-0
"50
*+2

eO,ilO,RO
1-0
"SO

R4"a,y
QO,'10,S~

lIlSQ.IAtK
·+I,XF

liD
dl.SO
X"

, SHIFT C~A~NEL/FU~tTIO~ TO BO
, AND _8(0), CLEAR SH~I AND S~~2

/ 1030 FOR 110 ~RITE (SEE E_A~PLE 5)

, SHIFTED I~FOR~ATIO~ I~TO Y(4-111)
/ TEST X8(1) VIA S~IN

, _8(1)=0 SO 80 c_ ZERO'S
, REQUEST 1-0 IlEAO
, "I SC c- 0
/ SKIP NEXT STEP

, lB(I):1 SO dO c- ONE'S
, REQUEST 1-0 RElO
/ "ISC c_ 0

RESTORE Y FROM MA"8
S'1IFT 80 TO

RESTORE XII(OI' 1(1) c- 4C~
IF AC~=O, EXIT TO NEXT FETCH

COpy READ RESPONSE
TO BO

/ GO TO STORE RESPONSE

3-65

Example 5

37F 04D3 CFOC eno

3b~ 0~03 CF v P 2~OO

3Ar oOA3 H,'O BOOO

3-e 00A3 C751 70Z"

Example 6

3·, ~41?3 F(IC; 200"

230 eGG! CFO" 2oGI)

HC C"'23 7E C;qj 25c"

fF" ~"2e "C~O HOO

HE 00A3 CFCO F.oon

FFF H\3 CI>41 7035

3-66

I/O Write
QZ
q3

~" 0<;
qb
07
qe
~o

100
101

~3"q 10Z
H'3
IvlJ
105

"3AO lOb
107

('30e IO~
l(1Q

110
F3"(> III

lIZ
113
110

TITLE EUMPLE 5
lIn ~RITE

• T~IS E"~PLE TRA"S.YTS nATA T~ T~F lIn SUBSYSTEM, USING THE C~A'.EL
~J~~Eo A~D FU~CTIO~ CODr CO~TAI'ED IN wEGISTE~ 00. THE 1/0 I~OIeATnk IS
SET/CLEA~EO IF T"E PEOUEST IS/IS~'T Ar'~O~LrDGED. THE EXAMPLE ~EGI~S ~YT~

• THE F1RSI STEP 07Fo) OF EXAMPLE ", BIlT .r"E FIwST bPANCH LEADS TO A "IET.O'"
• r. STEP~ Rf~ULTING Y~ THE COP'IO' O. THE APPRDPRIATE DATA TO "EGISTE~ ~.

37F. COpy oo,el),s~ SHIFT CHA~"IEL/FU~CTIO. TO 80
FLOPS XBSR,SHOO AND XB(O); CLtAk S~'.I A~O S><',Z
IFSI'\ 1030,IOlE I03E FO~ 110 HEAt' (SEE EU"PLE "I

103~ 3bB. I FI~".ARE SEQUENt(TO ~~vE DATA TO 0EGISTEw W

XLI nuT 3A(I' CUP, Q,DO (10 c_ Q
61 "0,YRI6 SHIFTED INFORMATIO~ 1',TlI Y(4-IO)

30C. "I DO DO ~ lA BI
~RT 1-(TO 1-0 C,;A~~EL
FLOPS "SI,IlC' "ISC e- II 1(1) c_ AC.
IFFS l,XF IF NOT IOLD INSTQUCTlu'., DlT TO HTC~

Exit From WCS Transparent Mode

~23Q

"7Fe

07FC

Q7FE

07H

F!3b

115
1 I'
117
II~
II Q

120
PI
122
123
12"
12S
12'
IZ7
12~

120
130
131
13?
\33
\3.
13S
!3e
137
\38
\30
I" 'J
1" I
I.Z
143

I""
145
1"~
147
I. g

14Q
1';(1

I~I
152
153
IS.
ISS
ISh

T ITL£ fU"PLE e
EXIT FRO" .CS TRA~SPA~ENT ~ODE

• T-IS E~'.PLE I~LUSTPATES THE SE?u!~CE ~EQUIREO TO RETURN F~OJ T~E ftCS I~
• T;A1SPAOENT '"DE TO NATIVE FIR •• ARE. I~ GENERAL, hHE~ A USFR HAS COMPLETED
• A I~ST·~CTIO' ON HAS SENSED A QE~UEST FOR SERVICE RY AN I~T~Q~u~T, REAL-TIME
• CLOC', ETC., THE 0ETU"N IS TD TH~ ~ATIVE FI~M~APE LOCATION LA~ELLFO "FETCH"
o (SEE EXAuPLE I). U~DEP E.(EPTIO~AL CIRCUMSTA~CES (E.G., THAP CO~~ITIDN
• OETECTIO~), RETuR~ ~AY PE Tn GTHE~ ~ATIVE FIRM~ARE LOCATID~S.

• T" I'OD<E THE "NLPAAL" QETUR~, Ah ALGORITH~ MIGHT END ~ITH THE FU~CTIONAL

• E~UIV'LE~T OF:
F L(!p~
r.nTO

'·'SO
OITTR~

; ~ISC c_ 0 (NO T~AP)

I Gu TC EXIT R~UTI~E

• .~EN A TRAP CC,nITln~ IS DETECTED, O~E -IGHT E~PLOY THE fu-CTIO'AL
• nUIVALP,T OF:

· T~E AC T 'JAL ElIT

EXITTR,. . HC.

rrfJ.

HE.

HFO

~I
CflPY
FL~PS

GJTO

I<OUTI\E

~l
CQPY
FLOPS

BI
XQR

BI

PI
~RT

IF"I SC

T V- (
FldO
"51

EXI TT~~

LuO~S AS 'OLL~'S:

IDCF
BI,J~
XRS~I

OF~ •• Y
·I,ilO.'~

~·O,Y.lb

y

I-Q
TRAP,XF

~ATlvE TRAP FIRM.ARE
F0" TVI5 IOT~ER VALUES FOk OT~EM TRlPS)

CWEATE TRAP vECTOR .X
A~n SAVE I~ ~O

"ISC c- I (TRAP)

GO TO EXIT ROUTI~~

START ~IT~ CIP CMA~~EL,
FU~CTInN IF I~ 00

I ~eIO) c_ I

YIO-Q) c_ 0; USE OOOFO. TO
~ODIFY CHA~NEL TD wCS,
Fu>;CTIOlv TO 25

I Y(5-19) c_ CO~TROL _ORO/2

I ~UST SPECIFY NO~-ALU ~I SRC FOR ~RT
I TRANSMIT EIIT CODE TO ~CS
I RFTu~~ OEPENnl~G 0" MISC

C"'" '. ,

,~ ... --."~~ -- ." --..-~ .. -"-

(/
Example 7

12S ~4Z3 F411 7000 6338

~fC C023 7£'10 2S00 07FF

~'O e~26 oeoo 8~00 07FF

(H£ OOA' C1300 e03S .7H

fFF eOI] C641 7000 ~020

Exit From WCS Sequential Mode

IS7
I~e
15'1
11>0
11>1
Ib2
11>3
II>"
II>S
I~b

11>7
II>A
Ibq
170
171
172
173
\T4
175
170
177
17~
\7'1
1M
181
162
183
Ie.
185
leI>
IP7
!e@
16'1
1'10
I'll
1'12
1'13
1'14
1'15
I'lb
1'17
1'16
l'Iq
200
201
202
203

TITLE EU"PLE 7
EXIT FRO" wes SEQUE~TIIL MODE

• THIS EXAMPLE ILLUSTRATES THE SE~UE~CE ~EQUIRED TO PETUR~ FRO" THE wes IN
• SEQUENTIAL MODE TO ~ATIVE FIR~~I~E. IN GENERAL, WHEN A USER HAS CO"PLETED
• A_ INSTRUCTION OR ~AS SENSE~ A ~EGUEST FUR SEPVICE BY A~ INTERRUPT, REAL-TI~E
• CLOCK, ETC., THE RETUP~ IS TO T~E NATIVE FIRM~ARE LOCATION LABELLED "FETCH"
• (SEE EXI~PLE I). UNOE~ EXCEPTID~AL CIHCU~STANCES (E.G., THAP CO~OITION
• DETECTION), RETURN MAY BE TO nT~Eq ~ATIVE fIR~~ARE LOCATIONS.

SEQuE"TUL

• TO INVOKE THE "~OR~AL" RETURN, lh ALGORITHM MIGHT END WITH THE FU~CTIONAL
• EQUIVALENT OFI

123. FLOPS "50 I "Ise c- 0 (N~ TRIP)
GOTO EXITSEQ I GO TO EXIT ROUTINE

• ~HE~ A TRIP CONDITION IS DETECTED, ONE ~IGHT EMPLOY THE Fu~eTIO~IL
• E~uIVALENT OF:

T'IAP EQll 338. ~ATIVE TRAP FIRMWARE
TV-X EQU 00310 FOR TVI5 (OT~ER VALUES FOR OTHER TAlPS)

FLOPS "51 I "ISC c_ I (TRAP)
C4LL EXlTSE7 I INVOKE EXIT SUBROUTINE

BI TV-~ I CREATE TRAP VECTOR oX
COpy ~1,30 I 'NO SAVE I'" BO
wRT 1-0 I TRANSMIT EXIT eOOE TO WCS
GOTO TRIP I GO TO NATIVE TRAP FIR~wARE

• T~E ACTUAL EXIT HOUTI~E LOOKS A~ FOLLO .. S:

EXITSEQ FFC. 81 IoeF I SURT ~ITH C IP CMAI'NEL,
COpy ~I, i)O I FUNCTIOt-. IF IN 00
FLOPS XbS~1 I X8(0) c- I

BI OFOo,Y YIO-4) c- 0; USE OOOFD TO
XOR 8I,()O,DO I MODIFY C~ANNEL TO oCS,

FUNCTIOr. TO 25

BI oo.r~lb I Y(S-Iq) c- CONTROL wORO/2
IF"1$C RE1UQN,·.1 I RETURN IF T~AP

III Y I MUST SPECIFY NON-ALU 81 SAC FOR WRT
"RT 1-0 , TRANS~IT EXIT CODE TO wCS
GOTO FETCH I GO TO ~ATIVE FETCH FIR ARE

3-67/3-68

(

SECTION 4 - WCS ASSEMBLY LANGUAGE

Preparution of microprograms is simplified using the WCS as­
sembly language. It relieves the microprogrammer of muny time­
consuming duties associated with writing a microprogram in actual
machine-language. For example, it allows the microprogrammer to
employ meaningful symbolic tags rather than absolute control
store addresses to specify firmware locations.

The assembly system can be divided into two parts: the WCS
assembly language and the WCS microinstruction assembler. The
WCS assembly language is used to write a microprogram (source
file), and the assembler translates the source file into the
actual machine-language microprogram (object file).

The microprogrammer can use any type of coding form to write
a microprogram because of the free form used for coding source
statements. The desired microinstructions and associated oper­
ands are entered onto the coding form, with each statement rep­
resenting one firmware word. These source statements may then be
transcribed onto punched cards or entered into a disk file via a
teletype or other terminal using the MDT editor. In either case,
the data constitutes the source file that will be processed by
the assembler.

The assembler reads the source file and produces a machine­
language object file. It converts mnemonic codes (microinstruc­
tions) into machine-language codes, assigns absolute control
store addresses to symbolic names, and completely assembles the
final microprogram, storing it onto a disk file or magnetic tape.
Another output from the assembler is a listing of the source file
and corresponding object codes, plus diagnostic messages. Figure
4-1 illustrates the relationship among the input source file, the
assembler, and the output object file.

4-1

4-2

SYMBOLIC
SOURCE CODING
PUNCHED ONTO

CARDS

SOURCE
STATEMENTS

(CODING FORM)

ASSEMBLER

PROGRAM THAT TRANSLATES
SYMBOLIC SOURCE CODING
INTO MACHINE·LANGUAGE

TERMINAL

LISTING OF
SYMBOLIC AND

CORRESPONDING
LANGUAGE CODE

Figure 4-1 Relationship of Source File, Assembler,
and Object File

Descriptions and examples within this section use the follow­C' ing conventions:

(

{ } - Indicates that one of the options enclosed in the
braces must be selected.

[] - Indicates that the enclosed option mayor may not be
selected.

- Indicates that the immediately preceding option may be
repeated.

h - Indic~tes a hexadecimal digit.

d - Indicates a decimal digit.

o - Indicates an octal digit.

b - Indicates a binary digit.

A - Indicates that one or more spaces or horizontal tab
characters are required.

The following special characters must be coded exactly as
shown:

• comma • ,
• left parenthesis ... (

• right parenthesis ...)

• asterisk ., *
• slash .. /
• plus sign • +

• hyphen or minus sign---
• quote • I

4.1 ELEMENTS OF WCS ASSEMBLY LANGUAGE

The principal elements of the WCS assembly language are:

• Mnemonic codes
• Symbolic names
• Constants
• Statement references
• Punctuation

These elements are combined to form a source file that con­
sists of: (1) microinstruct ions, (2) assembler control state­
aents that direct assembler operations, and (3) statements that
define constants used by the microprogram.

4-3

4.1.1 Mnemonic Codes

The mnemonic codes combine to specify the microinstructions
to be created. These codes are also called reserved words be­
cause they are only recognized for their meanings as described
in Section Three. Mnemonic codes can be any length, although
only the first six characters are recognized by the assembler.
For example, the test condition mnemonic IFRPTRP may also be
coded as !FRPTR for a six-character identification, or IFRPTRAP
to further clarify its meaning. Also, any spelling errors beyond
the sixth character are ignored by the assembler.

4.1.2 Symbolic Names

Symbolic n~mes are mnemonics that are not recognized as re­
served words (refer to subsection 4.1.1). These names are speci­
fied by the microprogrammer and may be used to label firmware
statements, operand v~lues, and constants. Regardless of their
use, the symbolic names must conform to the following rules.

1. Names may consist of cny number of characters, but the
first six characters uniquely identify the name (the
assembler will ignore all characters after the sixth).
Por example) the symbolic names ADDRSS and ADDRSSOO are
recognized by the assembler as the same name.

2. Names may be composed of alphabetic characters, decimal
digits, and/or special characters as defined below:

alphabetic characters - A through Z

decimal digits - 0 through 9

speciul characters - dollar sign ($),
underscore (), and
hyphen (-). -

3. The first character of each name may be anyone of the
above ch~racters except a hyphen or decimal digit.

4. Lowercase alphabetic characters are considered equivalent
to the corresponding uppercase characters. However, the
assembler does preserve the case of each character in the
output listing.

5. A name may not be ~quivalent to a reserved mnemonic code.

Symbolic names are divided into two categories: firmware
statement labels and EQU symbols. Firmware statement labels may
each be defined only once in a microprogram and have addresses
assigned as their values. EQU symbols, on the other hand, may be
defined any number of times by EQU statements which equate the
symbol to diffGrent values.

4-4

(--

4.1.3 Constants

Numeric constants permit the microprogrammer to express val­
ues within the range 0 through 2 64 -1. The assembler recognizes
numeric constants in hexadecimal, decimal, octal, or binary form
as indicated below.

Hexadecimal

Hexa~ecimal constants must be in one of the following two
formats:

X'[[h][~]J ••• ' or hll1] ••• #

where:

x specifies a hexadecimal constant.
h equals any digit within the range U through F.
specifies the end of a hexadecimal constant string.

Decimal

Decimal constants must be in the following format:

d [d] •••

where:

d equ~ls any digit within the range U through ~.

Octal

Octal constants must be in one of the following two formats:

C'[[O][.6]J .•• ' or o[o] .•• C

where:

C specifics an octal constunt or the end of an octal
constant string.

o equals any digit within the range U through /.

Binary

Binary constants must be in one of the following two formats:

a' [(b) [.6]J ••• ' or b[bJ ••• B

where:

B specifies a binary constant or the end of a binary
constant string.

b equals 0 or 1.

4-~

All constants coded in the above formats are converted by the as­
sembler into a 64-bit value that is right justified and either
zero filled or truncated from the left to fit into the receiving
field. For exemple, if a hexadecimal address is coded as
X'123~', the address is actually interpreted as X'234', retaining
the low order eleven bits.

NOTE

No warning message is issued when One bits are truncated.

The following are examples of numeric constants with all val­
ues being equal.

1234Sif }
t ----~ __ Hexadecimal

X'l 2345'

74565 ---___ -Dec imal

221505C} __ __
- Octal

C'2215lJ5'

UOUlOUlOOOlIOl0001UlB} ___ __
.. Binary

B'OOOI 0010 0011 0100 UIOl'

Numeric constants coded in the format X' " C' " or B" are con­
sidered zero values by the assembler.

4.1.4 Statement References

Statement references permit the microprogramrner to reference
firmware statements that are a specific number of steps away from
the current firmware statement, without using a label. The "off­
set" portion of the reference is the count of firmware statements
to the referenced firmware statement. The proper format for
statement references is:

* [{ ±} [offset]]

where:

4-6

offset is either an EQU symbol or a numeric constant (refer
to subsections 4.3.3 and 4.1.3, respectively).

+ indicates a forward referenc~.

- indicates a backward reference.

*, *+, *- indicates the address of the current firmware
statement.

(-~.
/

(

Thus, the "offset" is used to count steps forward or backward
from the current firmware statement to locate the referenced
firmware statement. This is generally not equivalent to auding
or subtracting the offset and the current address. For example,
assume that the following two statements appear consecutively in
a source file.

LABELl
LABEL2

S
10

GOTO
GOTO

*+1
*-1

The statement tagged LABELl is loaded at location 8051 and
the statement tagged LABEL2 at location HOAI. The argument *+1
references location 80AI, while the argument *-1 references loca­
tion 8051. This is in contrast to many other assembly languages
where *+1 would reference location 806i, and *-1 would reference
location 809#.

If a statement reference exceeds the boundaries of a micro­
program (i.e., refers to a statement prior to the first or after
the last statement), the assembler considers the reference equal
to zero and generates an appropriate error message. In all other
cases, the reference equals the address of the referenced
statement.

4.1.5 Punctuation

Recognized punctuation for the WCS assembly language in­
cludes:

Comma [,] - Separates multiple arguments for a
single op-code.

Left parenthesis [(] - Optional marker of an argument list.

Right parenthesis f)] - Optional terminator of an argument
list.

Semicolon [i) - Links the current line of coding and
the following line into one statement.
A line terminated with a ; indicates
that the statement continues on the
following line. It also separates
comments from a microinstruction.

Blank - Separates the various language units
when no other punctuation is used.

Slash [/1 - Separates comments from the micro­
instruction on the last line of a
step. It is also used to cause page
ejection in printed output.

4-7

4.2 SOURCE STATEMENT FORMATS

Source line formats are classified into four main groups:
firmware statements, pseudo-op (or control) statements, blank
lines, and comment lines. Firmware statements generate object
code to control the CPU hardware, whereas pseudo-op statements
direct assembler operations. When coding WCS assembly language
source statements, the user must conform to the formatting con­
ventions described herein.

Source code for the assembler is loaded into a sequential
file which, if contained on a disk, may be edited using the text
editor. Each line of coding may be up to 255 characters in
length and can contain a line number; however, only the first 92
characters appear in the assembly listing. If a line number is
used, it must start in the first character position of the line,
and must be comprised of all decimal characters. Ignoring the
line number, the assembler begins processing the line with the
leftmost nondecimal character. The types of source lines avail­
able to the microprogrammer include:

• Firmware statements
• Pseudo-op statements
• Blank lines·
• Comment lines

The descriptions of these source statements refer to the cur­
rent address counter. This counter is internal to the assembler
and contains the address of the current firmware statement. The
counter is incremented by one at the end of each firmware state­
ment and may also be loaded from the address field of any
statement.

4.2.1 Firmware Statement

The proper format for the firmware statement is:

[label] [~addressl [~microinstructionsl

The "address", if present, is either an EQU symbol or a con­
stant. The current address counter is made to equal the contents
of this field.

The "label" or symbolic name, if present, is made to equal
the contents of the current address counter, after the counter
has been modified by the address field of the statement. This
label is referred to as the firmware statement label and must
start in the first character position after the line number, if
any.

The "microinstructions" have the form:

micro opcode [operand list] ~micro opcode [operand listJ] •••

4-8

(.. \, 1 .'

c , /

(

c

where micro opcoJe is any of the reserved words that represent
microoperations.

The "operand list" has the form:

{~}operand ••• ,operand{~}
where operand is either a symbolic name, mnemonic, constant,
or statement reference. The use of any particular type of
operand is restricted by the particular type of micro op-code
being used. Micro op-codes and their operands are described in
detail in Section Three.

Examples of legal forms for an operand list are:

FORM DESCRIPTION

operand single operand
operand,) two operands, the second being null
(,) two null operands
operand"operand three operands, the seconu being null.

An operand list is terminated by a right parenthesis, an end
of statement, or an operand not followed by a comma (ignoring
spaces and semicolons). Thus, in the following incorrect firm­
ware statement:

ADD BI,DO Dl

D0 is the last operand and D1 is interpreted as a micro op-code.

A firmware statement must have at least a label, an address,
or a microinstruction. When no microinstructions are present,
the statement is assembled as the default value (refer to subsec­
tion 4.3.1).

4.2.2 Pseudo-Op Statement

The pseudo-op statement provides only control information for
the assembler; no object code is produced. Although the pseudo­
op statement must conform to the following format, it may occupy
any number of lines by using the semicolon. The proper format
for the pseudo-op statement is:

[label] [Aaddress] apseudo opcode[Apseudo op information] [comment]

The "address" is loaded into the current address counter.

•
4-9

The "'label" is a user suppl ied symbol ic name and, except for
EQU statements, the label is treated as a firmware statement la- r~
bel for the next firmware step. The symbolic nelme is made to ,-----"J

equal the current address counter after modification by the
address field. The label must start in the first character posi-
tion after the line number, if any.

The following is an example of a pseudo-op statement:

BETA IF# NO LIST TURN OFF~
ASSEMBLER LISTING

where BETA is the label which, along with the current address
counter, is made to equal the address (IFf). NO LIST is the
pseudo-oPe The comment starts with TURN and ends on the second
line with LISTING. The comment is continued on the second line
because of the semicolon (~) after OFF. The following example is
equivalent to the example given above, except it illustrates how
the semicolon (~) can be used to extend a pseudo-op statement
across sev€ral lines.

BETA
IF#
NO
LIST
TURN

; . ,
;

OFF ASSEMBLER LISTING

The pseudo-ops that are available to the microprogrammer are
described in detail in subsection 4.3.

4.2.3 Blank Lines

The blank line permits spacing of the listing and is other­
wise ignored by the assembler. Blank lines contain no informa­
tion other than an optionell line number. A blank line imbedded
in a firmware statement does not terminate the statement.

4.2.4 Comment Lines

A line containing a slash (/) or an asterisk (*) as the first
character of the line is treated as a comment line and has no af­
fect on the continuation of the current statement. The comment
line beginning with a / causes the output listing to slew to the
top of form before printing the comment, whereas the comment line
beginning with an * is merely printed on the next line.

4.3 CONTROL STATEMENTS

Control statements (or pseudo-ops) are not assembled into the
object file, but rather provide the assembler with listing con­
trol, assembly control, and background information. Only the
first six characters are used by the assembler to distinguish
among the pseudo-ops; however, the full mnemonic names are given
to improve readability in the source listing. The pseudo-ops
available to the microprogrammer include:

4-10

o

,-,
~- -

• DEFAULT
• END
• EQU
• LABEL
• LIST
• NATIVE
• NLST
• NO
• SEQUENTIAL
• TITLE

4.3.1 DEFAULT Statement

The presence of DEFAULT as the first micro op-code in a firm­
ware statement results in the firmware image not being placed at
the current address, but is used to fill in firmware image bits
that have not been set by the microinstructions. The bits not
set by the microinstructions in the DEFAULT statement are set by
the previous default value. The original default value used by
the assembler is:

X'0093 B700 2000 07FF'

The DEFAULT statement is used most frequently to modify the
automatic clock speed setting feature of the assembler (refer to
subsection 3.6). The assembler will not select a clock speed any
higher than the speed specified in the current default value.
If, during firmware debug operations, a timing problem is sus­
pected, the following DEFAULT statement can be specified:

DEFAULT VL

The above statement always causes the assembler to select the
very long clock speed.

4.3.2 END Statement

The END statement may be used to mark the termination of var­
ious firmware routines, and may appear anywhere in the source as
often as desireu. This statement has no effect on the assembly
process.

4.3.3 EQU Statement

The proper format for an EQU statement

label[6addreSS]~EQU6{COnstant }
EQU symbol

is:

[6commentj

The EQU statement equates the statement label and EQU symbol
to the value of the constant or EQU symbol name that follows.
The EQU symbol name must have been previously defined in an EQU
statement. Jhe statement address (if present) is used only to
load the current address counter.

4-11

EQU symbols may be defined more than once, but remain unde­
fined until the first EQU statement is encountered. When the EQU
symbol is defined, it retains this definition until it is rede­
fined in a subsequent EQU statement (i.e., the value assigned to
an EQU symbol is retained by the symbol for all subsequent firm­
ware steps until the end of the source coding or until another
EQU statement changes the value ussigned to the symbol).

An EQU symbol must be defined in an EQU statement before it
is referenced. Any reference to an EQU symbol before it is in­
itially defined will be interpreted as a reference to a firmware
statement label, resulting in a diagnostic message.

EQU statements may be used throughout the source coding as
illustrated in the following example.

(1) ALPHA EQU 1

(2) B1 ALPHA

(3) ALPHA EQU 2

(4) B1 ALPHA

At line 1, in the above example, the EQU symbol (ALPHA) is de­
fined as being equal to a constant of 1. This permits the B1 mi­
croinstruction located on line 2 to source this constant (ALPHA)
onto the internal bus. At line 3, ALPHA is redefined to equal a
constant of 2, permitting the B1 microinstruction located on line
4 to source this constant onto the internal bus using the same
EQU symbol (ALPHA).

4.3.4 LABEL Statement

The LABEL statement defines it~ "label" and "address" fields
without performing any other special functions. Thus, this
statement may be interpreted as the statement label for the next
firmware statement as illustrated in the following example.

(1)
(2)
(3)
(4)

LABELA

LABELB

83E#

84E#
85E#

LABEL
microcode
LABEL
microcode

LABELA (located on line 1 in the above example) and the con­
tents of the current address counter are made to equal address
83E#. Thus, LABELA is referred to as the statement label for the
microcode on line 2. This microcode is assembled at address
83E#.

4-12

'~",
"

'",

(

LABELB (located on line 3 in the above example) and the con­
tents of the €urrent address counter are made to equal address
84E#. However, in this case, the microcode on line 4 is assem­
bled at address 85E# rather than 84E# because it has its own ad­
dress. This prevents LABELB from being referred to as the state­
ment label for the microcode on line 4.

4.3.5 LIST Statement

The LIST statement instructs the assembler to restart the
output listing with the LIST statement~ the default mode is LIST.
Therefore, LIST is unnecessary until it is desired to resume the
output listing after the NLST or NO LIST statements.

4.3.6 NATIVE Statement

The NATIVE statement invokes the native (transparent) firm­
ware branching mode for subsequent firmware statements. The
default mode is NATIVE~ therefore, NATIVE is unnecessary except
for documentation purposes.

4.3.7 NLST Statement

The NLST statement suspends the source listing starting with
the NLST statement~ the default mode is LIST. Subsequent lines
are not listed unless they are in error or until the next LIST
statement.

4.3.8 NO LIST Statement

This statement is equivalent to NLST. Source statements
starting with the NO LIST statement up to but not including the
following LIST statement are not listed unless they are in error.

4.3.9 SEQUENTIAL Statement

The SEQUENTIAL statement invokes the sequential firmware
branching scheme for subsequent firmware statements. The default
mode is NATIVE; therefore, this statement must be used for se­
quential mode assemblies.

4.3.10 TITLE Statement

The TITLE statement names the coae, provides a revision num­
ber, and specifies the text for the heading field on the first
line of each page in the output listing. The TITLE statement
takes two forms.

TITLE name,rev,titl~

This form specifies the name of the source, the revision num­
ber, and the text for the heading line, and may appear anywhere
in the sourc~ file as the first TITLE statement. All subsequent
TITLE statements will use the second form described below.

4-13

"TITLE title

This form specifies only the text for the heading line (i.e.,
it replaces the text supplied by the initial TITLE statement).

The above forms for the TITLE statement cause a slew to the
top of form, and may be used as many times as desired. Also, the
TITLE statement is not required. If there is no TITLE statement,
the assembler assumes the source name is WCSRTN and the revision
and title fields are all spaces. All fields for the TITLE state­
ment are optional, null sets the respective fields to blanks.

4.4 INTERPRETING WCS ASSEMBLY LISTINGS

The assembler output listing provides the user with a printed
copy of the source file, the corresponding machine-language code,
and diagnostics. Figure 4-2 is a sample output listing that de­
fines the various areas of the printed output.

LABEl ADDRESS MICRO OP CODE ERAORJNDJCATOR COMMENTS

Figure 4-2 Sample Output Listing

Included with most error messages in an output listing is the
caret (A) symbol. This symbol appears below the source character
or firmware woru in error. In cases of null operands, the caret
may point to a seemingly irrelevant position.

4.5 WCS ASSEMBLER OBJECT DECK FORMAT

The assembler object deck file is used as input by the WCS
loader to load the WCS. Figure 4-3 is a sample file dump of an
object deck produced by the assembler. There are six types of
object deck records as indicated below.

4-14

! :
',,- ---"-'

(

00001 0017 0103 SIOO 0000 OO~S S~4q S420 2020 20S4 S20E S3S0 S20E 54

00002 00 IS 0331 3q37 382F 3033 2F32 3720 3130 3231 3_34 332E 37

00003 ootr O~SQ S241 4ES3 S041 S24S 4ES4 2040 4F4Q QS20 4SS8 QQS4 2020 2020 2020 20

00005 Oooq Deco 237E 0025 0007 FO

OOOOb 0000 oeeo 2bOC 0060 0007 FE

00007 0000 oeoo q3eF OO~O 0007 FF

ooooe Oooq OC~o 13Cb 4170 3SF3 3b

OOOOq OOOS FF~O onoo 00

[OF

Figure 4-3 Sample File Dump

RECORD TYPE BYTE POSITIONS DEFINITION

Progrc:lm ID 0-6 0103510000UOOO#
7-12 Program Name

13-14 Spaces
15-22 Revision

Date 0 03#
1-18 Date and time

Title 0 04,
1-28 Title field from

TITLE statement

Origin 0 OA#
1-4 Address

Data 0 oct

•• Il •••• ExIT

.T~ANSPARENT MODE EXIT

•• a-.x •••

•• & ••••••

•••• AoS.'

first

1-8 Assembler firmware
image

End of file 0 FF#
1-4 Reserved for future use

4.6 ASSEMBLER OUTPUT LISTING ERROR MESSAGES

All of the error messages that are produced on the output
listing by the assembler are defined herein. These messages de­
scribe the nature of the problem, its possible causes, and sug­
gested solutions. The following error messages are presented ex­
actly as they appear in the output listing (see Figure 4-2).

EOI MISSING SYMBOL FOR EQU DEFINITION

(: The EQU statement is missing a statement label.

4-15

E02 MISSING VALUE FOR EQU DEFINITION

The EQU statement requires a constant or previously defined
EQU symbol after the EQU mnemonic.

E03 SYMBOL PREV USED - REMAINS UNDEFINED

An EQU symbol may not be used before it is defined. The la­
bel of this EQU statement has been previously referenced and is
assumed to be 3 firmwure statement label in that reference.

E04 SYMBOL PREVIOUSLY USED AS LABEL

The EQU statement's label is already a label for a previous
non-EQU statement. The label definition for this EQU statement
is ignored.

E05 MULTIPLY DEFINED LABEL

This statement's label definition is ignored because it has
been defined in a previous firmware statement.

E06 ILLEGAL MICRO OP

The indicated reserved word is only used as an operano. It
cannot (by itself) specify a microoperation.

E07 TOO MANY OPERANDS

The indicated micro op-code cannot accommodate the number of
arguments used.

E08 PSEUDO OP CANNOT BE OPERAND

The indicated reserved word is a pseudo-op and cannot be used
as an operand for a micro op-code.

E09 MISPLACED VALUE

The statement already has an address or the previous operand
list has been completed. A comma might be missing.

EIO MISPLACED SYMBOL

The assembler is expecting a microinstruction but has de­
tected a nonreserved word. Either the symbol was intended for
the previous operand list, in which case a comma might be miss­
ing, or a reserved word might have been misspelled.

Ell MISPLACED STATEMENT REFERENCE

The assembler expects a microinstruction at the indicated po­
sition but has encountered a statement reference. There might be
a comma mi.ssing.

4-16

~.'." i , '

J'

c

(

c

El2 PSEUDO OP IN FIRMWARE STATEMENT

The indicated pseudo-op cannot be used in a firmware
statement.

El3 MISPLACED PUNCTUATION

The assembler is expecting a microinstruction but has encoun­
tered a stray punctuation mark. Operands might have been inten­
ded for the previous microinstruction but it should not have any.

El4 LABEL PREVIOUSLY DEFINED IN EQU STATEMENT

The indicated firmware statement label has been previously
defined in an EQU statement. The label is ignored.

El5 REQUIRED OPERAND MISSING

The operand list does not have the mlnlmum number of required
operands for the associated microinstruction, or an illegal null
argument has been encountered.

El6 ILLEGALLY FORMED STRING

Some character is probably missing.

El7 SYMBOL TABLE FULL

The assembler cannot save any more symbols. The indicated
definition or reference will go unresolved. An increase in the
size using the -SIZE argument in the command line will alleviate
the problem (refer to Section Five).

El8 ILLEGAL CHARACTER

The indicated character is not in the assembler's set of le­
gal characters.

El9 ILLEGAL DIGIT

The indicated character is not legal for the radix type spec­
ified at the beginning or end of the constant.

E20 QUOTE MISSING

The terminating quotation mark (') for the indicated constant
was not found; however, the constant has been accepted.

E2l ILLEGAL LEX STATE

The state number for the lexical analysis routine has been
inadvertently changed. The current string, up to and including
the indicat€d character, is ignored; the routine will try to rec­
ognize the next string starting with the next character.

4-11

Reattempt the assembly and, if the error persists, report the
problem and retain the source that caused it.

E22 ILLEGAL LEX NEXT STATE

The lexical analysis routine's calculation of its next state
is out of range. The current string, up to and including the in­
dicated character, is ignored; the routine will try to recognize
the next string starting with the next character. Reattempt the
assembly and, if the error persists, report the problem and
retain the source that caused it.

E23 EOF ENDED STATEMENT

The previous line of the indicated statement ends with a
semicolon, but addition~l lines have not been found.

E24 SYMBOL IS ILLEGAL OPERAND

The symbol at the indicated operand position is illegal for
the current microinstruction.

E25 MISPLACED + OR -

The indicated + or - is not part of a statement reference.
There might be two of these characters in a row, the * may be
missing, or the - might be used as the first character of a sym­
bolic name.

E26 NA FIELD = 0 or 1

In Sequential Branching mode, the branch address cannot be
equal to 0 or 1 becaus~ the hardware will inadvertently detect
a disaster condition and branch to native firmware location 000.

E27 UNDEFINED SYMBOL

The indicated user symbol has not been defined as either an
EQU symbol or a firmware statement label.

E2~ IMAGES LIST OVERFLOW

The assembler cannot accommodate any more temporary firmware
images in the remainder of the symbol table. Increase work space
using the -SIZE option in the command line.

E29 VALUE ASSIGNMENT CONFLICT

The assembler cannot assemble the value of the indicated ele­
ment without changing the value of at least one other bit in the
firmware image. In this manner, the assembler detects illegal
coding combinations. This error occurs when one or more of the
restrictions summarized in Appendix D have been violated. If it
is not obvious which restrictions have been violated, the user

4-18

rf "." ~)

("OUld reference Appendix C to determine the firmware image bits
4at are in conflict.

E30 REFERENCED STATEMENT DOES NOT EXIST

The referenced statement (i.e., the current statement plus
the specified offset) is before the first or after the last firm­
ware statement number. This message may also appear for the last
statement in the Transparent mode when the assembler attempts to
set the next address field to *+1 in the absence of an explicit
firmware sequencing microinstruction.

E3l F REGISTER SET AND TEST

CPU timing cycles do not permit both the copying of data into
the F/SEL register and testing the data in the same firmware
step.

E32 F REGISTER SET AND SPLATTER BRANCH

Splatter branching based upon the contents of the F register
cannot be reliably performed if the contents of the F register
are changed in the same firmware step.

E33 ALU OUTPUT TO MEGABUS

(There is insufficient time in the current CPU cycle to trans-
fer the output of the ALU (via the internal bus) to the Megabus
and initiate a write cycle.

E34 AXXX DOUBLING OPe LS NOT = RS (See Appendix C)

For the basic microinstruction AXXX, the left select and
right select fields must have the same values.

E36 ILLEGAL NO OPTION

The only option that may appear with pseudo-op NO is LIST.

E37 START BIT POSITION NOT BETWEEN 0 AND 63

The starting bit position for the indicated SET microinstruc­
tion is not between 0 and 63 (refer to Appendix C).

E38 INVALID BIT RANGE

The field size of the indicated SET microinstruction extends
the field range beyond bit position 63 (refer to Appendix C).

E39 ONE SEQ MODE OPERAND MUST BE VALUE

(- One of the f,lrst two operands of a condition in the
~equential mode must specify a branch address (literal, statement
reference, or symbol).

4-19

E40 ONE OPERAND MUST BE NOLL OR RETURN

One of the first two operands of a condition in the
Sequential mode must be either null or the mnemonic RETURN.

E41 ONE NATIVE OPERAND MUST BE VALUE

Botb operands of a condition in the Transparent mode may not
specify XL or splatter branching.

E42 ILLEGAL BRANCH IN SEQUENTIAL MODE

The branch type specified may be used only in the Transparent
branching mode.

E43 ILLEGAL BRANCH IN NATIVE MODE

The branch type specified may be used only in the Sequential
br anch ing mode.

E44 INCOMPATIBLE BRANCH ADDRESS

In the Transparent branching mode, the low order two bits for
either of the two address values do not equal three, or the upper
nine bits of the two address values do not equal each other.

E45 MNEMONIC IS ILLEGAL OPERAND

The indicated reserved word is not a legal operand for the
current microinstruction.

E46 VALUE IS ILLEGAL OPERAND

The use of an EQU symbol, constant, or statement reference in
the indicated position is illegal for the current micro op-code.

E47 STATEMENT REF IS ILLEGAL OPERAND

A statement reference cannot be used as an operand in the in­
dicated pOSition for the current micro op-coae.

E48 MISSPELLED OPCODE

The indicated op-code was not recognized as a reserved mne­
monic by' the assembler.

E49 LABEL IS A RESERVED MNEMONIC

The indicated reserved mnemonic is in the label field (i.e.,
the first character after the line number).

4-20

o

(~'

'j

E50 SYNTAX STATE ERROR

(The state number for the syntax analysis routine has been in-

(

advertently changed. The current statement is ignored; the rou­
tine will attempt to process the next statement. Reattempt the
assembly and, if the error persists, report the problem and
retain the source that caused it.

E5l CANNOT GENERATE GOTO *+1

In the absence of a firmware sequencing microinstruction in
the Transparent mode, the assembler attempted to generate code
for a GOTO *+1 statement. The attempt failed because bits in the
next address field had already been set to values different than
the address of *+1. Microinstructions that affect the next
address field include: (1) a constant as an internal bus source,
and (2) the FLOPS operands CTRO and CTRI.

4-21/4-22

SECTION 5 - OPERATING AND SYSTEM
(DEBUGGING PROCEDURES

(

To complete development of user-generated firmware, the mi­
croprogrammer must perform three tasks: (l) assemble the source
file to produce a machine-language object file, (2) load the ob­
ject file or microprogram into the wes, and (3) execute and debug
the microprogram.

The information contained herein describes the procedures
that are necessary to perform these tasks and includes:

• Using the wes assembler.
• Loading the wes.
• Debugging wes microprograms.
• wes patch procedure.
• Microcode Analyzer.

These procedures are written with the assumption that the
reader has read and is familiar with the material contained in
Sections One through Four. If not, it is recommended that the
reader review this material before proceeding with Section Five.

5.1 USING THE wes ASSEMBLER

Before a user-generated microprogram can be executed, the
source file must first be assembled to produce machine-language
object code that can be loaded into the wes.

The assembly process is initiated using the Writable Control
Store Assembler (WeSA) command. This command invokes the GeOS 6
writable control store assembler component, which assembles the
wes source program unit, applying the specified options.

The proper format for the WCS~ command is:

weSA path [ctl_arg]

where:

path specifies the name of the file containing the source
unit to be assembled.

rctl arg) represents one or more control arguments chosen
from-the following:

-NO_OBJ or -NO indicates that the generation of the object
text unit is to be suppressed. If this argument is omitted,
the object text unit is written to the file path.WO.

5-1

-NO LIST or -NL indicates that the source listing is to be
suppressed. If this argument is omitted, the source listing
is written to file path.L.

-LIST ERRS or -LE specifies that the list file shall contain
only those statements which have assembly errors and their
associated error messages.

-SIZEnn or -SZnn specifies the number (01 through 63
decimal) of 1024-word memory blocks that are to be used for
the assembler's work tables. If this argument is omitted,
the assembler will request 1024 words from the task's groups
memory pool.

-COUT out path indicates that the listing which would other­
wise be written to the file path.L is to be written to file
out_path.

-OBJECT obj_path or -OBJ obj_path indicates that the object
text unit which would otherwise be written to the file
path.WO is written to file obj_path.

The path parameter can assume any of the acceptable forms of
a path name; a simple name indicates that a source program unit
residing in the working directory is to be assembled. The assem­
bler appends a .W~ suffix to path if it is not provided in the
command line. The assembler then gets the source file path.WA.
Should the search fail, the assembler drops the .WA and reat­
tempts finding the file. In this manner, the assembler may ac­
cept input from a peripheral device such as a card reader or tape
drive.

If the -COUT control argument is not specified, the source
listing (if requested) is written to a file created by the assem­
bler in the working directory, having a file name of path.L. The
file can be subsequently listed by using the PRINT utility com­
mand. If a different file is specified by using the -COUT argu­
ment, out path is the name of the file containing the listing.
The assembler appends nothing to out_path.

If the -OBJECT or -OBJ arguments are not specified, the ob­
ject text unit, when not suppressed, is written to a file created
by the assembler in the working directory. The file name is
path.WO where path is the last or only element in the path param­
eter. If either -OBJECT or -OBJ is given, the object text unit's
file name is obj_path. No suffix is appended to obj_path.

If the listing and object files already exist, they are over­
written by the output produced by the assembler.

The following are examples illustrating the use of the WCS~
command.

5-2

/r~
~)

(

Example 1

WCSA EXTOP -SIZE 5 -COUT>SPD>LPTOu

The writable control store assembly language source program
EXTOP.WA residing in the current working directory is to be as­
sembled. The source listing and errors are to be printed on line
printer 00. The object text unit is to be written to the file
EXTOP.WO in the working directory. If EXTOP.WO already exists,
its contents will be overwritten by the new object text unit
data. A maximum of five 1024-word blocks of memory are to be
used for working tables during the assembly.

Example 2

weSA > SPD>eDROU -OBJ WeSDeK. WO

The card deck in card reader 00 is to be assembled. The
source listing with errors is to be written to CDROO.L in the
current working directory. The object text unit is to be written
to file WeSDCK.WO, also in the current working directory. The
card deck must be terminated by an EOF card (11-9-8-5 multipunch)
and reloaded for the second pass.

~.2 LOADING THE wes

The object code created by the WCS assembler and stored on a
disk can be loaded into the wes using the WCS loader. The loader
is capable of loading multiple firmware files into the wes, fill­
ing unused locations with an operator-supplied firmware word,
dumping the contents of the wes, and disabling the WCS (effec­
tively disengaging the WCS from the system). It is also possible
to select any wes connected to the Megabus by specifying the
channel number of the associated cpu. Each of these functions
may be requested either independently of or concurrently with any
other function. However, it must be understood that if "filling"
the WCS is requested, it is performed after all firmware text
files have been loaded and, if "dumping" is requested, it is per­
formed after loading and filling. Disabling the wes, if
requested, will be the last option executed.

Multiple firmware files are loaded in the order in which they
are named in the parameter list. No attempt is made to prevent
multiple loading of the same location, but any location written
to more than once during a single pass through the loader will be
identified in a warning message.

Automatic loading of the wes with a certain set of firmware
text files, or automatic disabling of the WCS can be performed at
startup. The operator need only modify the START UP.EC for the
system to include the canned request. -

5-3

5.2.1 Writable Control Store Load (WCSLD) Command

The WCS loader is invoked using the WCSLD command, which is
of the form:

WCSLD [pathl] [path2] ••. [-DUMP [([XXX], [YYY] n]
[-FILL (xxxx, xxxx, xxxx, XXXX)] [-OFF] [-CPU (X)]

where:

pathl is the full or relative path name of an object text
file.

-FILL (xxxx,xxxx,xxxx,xxxx) or -FL (xxxx,xxxx,xxxx,xxxx)
indicates that all locations not written to in the course of
loading firmware files are to be filled with the firmware
word (16 hexadecimal characters separated into groups of four
by commas) within the parentheses.

-DUMP [([xxx] , [yyy])] or -D [([xxx] , r :lyy])J indicates that the
contents of the WCS within the range xxx to yyy, inclusive,
are to be dumped to the USER-OUT system file after loading is
~omplete: the default range is all of the addresses in the
WCS.

-CPU (X) or -CP (X) indicates that all other parameters to
the loader apply to the WCS associated with the CPU on
Channel X.

-OFF indicates that after all other options are performed,
the WCS is to be set off-line (disabled).

~OTE

All numeric arguments are enclosed within par­
entheses and expressed in hexadecimal. Optional
arguments are enclosed in braces.

The argument -DUMP may be followed by an optional range qual­
ification enclosed in parentheses and of the form:

([x xx] , [yyy])

where:

xxx specifies the "Start" of the range in hexadecimal.

yyy specifies the "End" of the range in hexadecimal.

Start defaults to the low address for RAMs in the indicated
control store, while End defaults to the high address. For the
largest possible WCS the low address is 800 and the high address
is FFF. Range is specified in terms of 64-bit firmware words.

5-4

c

Each argument is optional, but at least one argument must be
passed to the loader. The order of the arguments is immaterial,
and each argument is considered independent of every other argu­
ment. For example, -DUMP might be passed as an argument more
than once, each time with a different range or no range at all.
If a range is used, it will be the last explicit range
encountered.

5.2.2 Error Handling

The error codes that can be generated by the loader are:

ERROR
CODE

lE07

lE12

lE13

lE14

lEIS

1E16

1E17

1E18

MEANING

• Illegal parameter (accompanied by the parameter)

No parameter.

Invalid wes status (accompanied by the status)

No RAMs in wes

Attempt to output out-of-range address
(accompanied by the address)

Attempt to write to nonexistent address
(accompanied by the address)

Fill option not honored, because format of firm­
ware word illegal or word omitted (accompanied
by the firmware word)

Text file parameter invalid, does not end in ".WO"
(accompanied by the parameter)

Firmware files are assumed to have been generated by the wes
assembler, and therefore must have names ending in the suffix
.WO. Loaded files are reported to the operator by the name in
the title statement revision, assembly date, and 20 characters of
the secondary identification; files are not identified by exter­
nal name (i.e., name in directory entry). It is possible that
the wes may contain PROMs insteud of RAMs, in which case the
-DUMP option can be used to dump the contents of the PROM and
disable the wes. However, regardless of whether the wes contains
PROMs, or RAMs, or nothing at all, the -OFF option can be used to
disable the wes.

Since addresses may range from 800 to FFF, the loader turns
on the most significant bit of any wes address passed as part of
a dump range or as an address within a firmware file. To detect
an address that is out of range the loader polls the two slots on
the wes to de-termine the occupant of each. The loader then
establishes the low and high addresses for the wes depending on
whether if finds a RAM, PROM, or neither in the slot.

5-5

ErJ!'or lEIS results from an attempt to output en out-of-range
address to the WCS. Instead of outputting a bad address the
loader reports the error and leaves the WCS's internal address
register unchanged.

Error IEl6 results from an attempt to write to an out-of­
range address, (i.e., an address beyond the highest address in
the WCS). Upon encountering this error while loading firmware,
the loader terminates the firmware file currently being loaded
and goes on to the next firmware file.

5.3 DEBUGGING WCS MICROPROGRAMS

This subsection suggests methods for finding and correcting
errors in user-generated firmware~ The principal test tool for
this activity is the Microcode Analyzer (refer to subsection
5.5). The techniques described herein are intended to help the
user get started in the debugging activity. The detailed actions
taken after this initial effort depend heavily on the precise na­
ture of the user firmware and the fault being pursued, and are
necessarily left to the ingenuity of the user.

It is asssumed that the user has assembled and loaded his
firmware, has exercised it by embedding appropriate User Generic
instructions in the software, and suspects that one of the fol­
lowing conditions exists:

• The User Generic firmware has not been entered.

• The User Generic firmware has been entered, and does not
exit.

• The User Generic firmware has exited to report an unex­
pected trap condition.

• The User Generic firmware produces unexpected results.

5.3.1 User Generic Not Invoked

If the user suspects this is the case, he can confirm or
eliminate the possibility by setting into the Microcode Analyzer
a firmware-address halt at the entry ("splash") point for the
instruction in question. This address is 800# plus the least
significant digit of the instruction word. If, when the program
is run, the CPU does not stop at the splash point. attention
should be directed to the software to determine the reason.

5-6

(-

c

NOTE

When a firmware-address halt is invoked, the central
CPU clock stops after execution of the specified step.
The "current" display on the Microcode Analyzer will
contain the internal bus value generated in the next
step and the address of the step after that. When
selecting the firmware address at which to set the
halt, it is important to choose one that is not fol­
lowed by a Megabus read request or write operation
that might address an unavailable resource because
the Megabus time-out could override the address halt.

A firmwar~-address halt set at native firmware splatter loca­
tion ICO# stops the CPU upon recognition of every user generic
instruction, if this is desired. Stepping the CPU clock forward
from this point permits examination of the splash action. If the
native firmware branches to the trap algorithm (location 33B#)
instead of entering the WCS code, the user should consider the
possibility that the WCS is not on-line (i.e., has not been writ­
ten into since its last initialization).

5.3.2 Instruction Does Not Exit

If the control panel becomes unresponsive (register selection
ineffective, etc.), the firmware has probably encountered one of
three situations:

• The clock is "stalled", waiting for a response to a
Megabus read request.

• Execution of the native trap firmware has triggered the
unavailable resource response, resulting in an infinitely
recursive trap.

• The user firmware has entered a loop in which exit condi­
tions cannot be satisfied.

To distinguish among these situations, the user should place
the Microcode Analyzer in the Step mode. If the RUN indicator on
the Microcode Analyzer remains illuminated, the clock is stalled.
In this case, the hexadecimal displays on the Microcode Analyzer
are not meaningful. To determine the firmware location of the
stall (and the firmware flow which led to it), first depress the
Stall Examine (E) key to extinguish the RUN indicator. The firm­
ware history can then be explored for possible occurrences of:

• Use of data from Megabus without a prior request.

• Use of data from Megabus when the preceding request was
rejected.

5-7

If the RUN indicator extinguishes when the Step mode is
entered, a loop condition exists. Repeated actuation of the ,r~
Execute key on the Microcode Analyzer will permit exploration of ~
the nature and extent of the loop. The user must consider that
the failure of the firmware to exit from the loop is probably due
to some action or condition established prior to entering the
loop. Further investigation might benefit from restarting the
program after establishing a firmware address halt at or near the
entry to the loop. When the CPU stops at this point, firmware
history should help explain the cause of the problem. In select-
ing the firmware address at which to set this halt, the following
considerations may be helpful. If the loop is contained in WCS
firmware, the user should employ his knowledge of that firmware
to choose a point near the loop entry, avoiding (if possible)
those shared by any prior, nonfaulty, executions of the code.

If the loop includes native location 338#, a recursive trap
is involved. Location 338# can then be used as the firmware­
address halt location, but this should be avoided, if possible,
because of the frequency with which various traps are normally
invoked by the operating system. Usually, native location 003#
is also included in the firmware loop and can be used as a more
selective point at which to set the firmware-address halt.

5.3.3 Instruction Exits Via Unexpected Trap

If the instruction causes an unexpected trap, the techniques
described in the preceding subsection can be used to facilitate
retracing the steps leading to the trap exit. Note th~, in gen­
eral, when the firmware history of 16 steps is inadequQ~e to
identify the beginning of the problem, it can be used to select
another firmware-address halt setting 16 steps earlier. Follow­
ing a restart of the program, this will provide 16 steps of
earlier history, and so on back to the original fetch of the
instruction.

Unexpected (i.e., hardware-detected) traps generally result
from anyone of the following five causes:

I
1. Reference to a resource which is not available on the

Megabus.

2. Reference to a non-existent or invalid memory location.

3. Violation of memory protection.

4. Detection of a parity error in data received via the
Megabus.

5. Receipt of data from memory with an error not correctable
by EDAC.

5-8

It should be obvious that the first three causes may arise
from either software or firmware errors, as well as from delib­
erate actions. It is less obvious that uncorrectable memory er­
rors can also be induced by improper firmware coding, which vio­
lates timing requirements in the CPU - Megabus interface when the
memory is being written into. Such mistakes are flagged by the
WCS Micro Assembler, and should always be corrected before at­
tempting to execute the assembled code.

5.3.4 Instruction Executes and Produces Unexpected Results

If the instruction and the program containing it appear to
execute and exit normally, but the results are not those that
were anticipated, the user must devise techniques for analyzing
the problem. These will depend on the functional definition of
the instruction, the algorithm used to implement it, and the na­
ture of the fault syndrome. In this case, the internal bus dis­
play on the Microcode Analyzer, as well as the firmware address
pattern, will be useful. To obtain maximum information from this
display, it is good microprogramming practice to employ the in­
ternal bus in all firmwure steps. When use of the internal bus
is not required by the functional activity in a given firmware
step, a source should be used which is likely to assist the de­
bugging effort. For this reason, the default code generated by
the Assembler in such firmware steps is defined to display the
activity within the microprocessor.

(Another technique that may prove useful in debugging firmware

("/

./

functionality is the modification of the firmware and/or inser­
tion of firmware patches to test or display register contents and
other conditions of interest. For this purpose, the user is re­
ferred to descriptions of the On-Line Editor, the WCS Assembler,
and the WCS Loader for the tools necessary to modify, reassemble,
ana load firmware patches.

5.4 WCS PATCH PROCEDURE

The WCS user, while debugging his microprogram, may want to
alter (patch) the contents of selected firmware words. This
patching is most easily accomplished by exiting WCS execution and
invoking the text editor. The source file is then corrected and
reassembled. The new object code is loaded into the WCS, replac­
ing only those addresses specified in the source. An Execute
Command (EC) file might be created to run through the Editor, WCS
Assembler, and Loader while permitting interactive update in the
editor. Given relatively short source files, this turnaround is
fairly quick.

Care should be taken in the above procedure during loading.
In a situation where multiple object files are loaded, the design
may rely upon the loader's loading all references to a firmware
word. Therefore, the last reference for each firmware word is
used. If the updated selected source is overlapped by other rou­
tines in ~he total load, a full reload may be required.

5-9

For those applications where the source size adversely af­
fects turnaround time, a second procedure may be adopted. Here,
as before, the corrections are noted in the source listing. The
editor is invoked and the corrected statements are entered from
the keyboard or removed selectively from the source. The
addresses for these statements must be specified to guarantee
proper firmware modification. Labels used in branching may now
be undefined and should either be replaced by constants or de­
fined by LABEL statements. A special file may be added to the
edit file to provide the correct DEFAULT statement and Branching
mode. The edited file is then written to a new file.

After exiting the editor, the source file must be assembled,
with all errors being either noted or corrected. Acceptable ob­
ject code is then loaded into the WCS by the WCS loader, affect­
ing only those locations specified in the source file. The WCS
is now loaded and testing may continue.

NOTE

The WCS loader accepts multiple object files.
Thus, if the WCS memory has been altered or its
contents are at least questionable, the update
may still take place, with the new object file
being appended to the list of object files pre­
viously loaded. Since the new obje~t file will
be loaded last, its changes will be'used.

5.5 MICROCODE ANALYZER

The Microcode Analyzer is a tool designed to assist the user
during microprogram debug activities as previously described in
subsection 5.3. It allows the user to display addresses and
other useful data, while providing addditional facilities to as­
sist the debugging effort. The material contained herein de­
scribes these facilities.

5.5.1 Front Panel

The front panel, shown in Figure 5-1, consists of a hexa­
decimal keyboard, eight HEX displays, and several miscellaneous
switches and indicators. The keyboard input (shown at the right)
is a regular hexadecimal keyboard.

5-10

(

f

MICRD CDDE ANAlYZER
·RESERVED FOR FUTURE USE

Figure 5-1 Front Panel

5.5.1.1 Front Panel Keys

The front panel provides the user with a total of lu keys
(excluding the keypad) that control various analyzer functions.
The function of each k2Y is as follows:

1. S key - places the CPU master clock in Single Step mode
and illuminates the STOP indicator.

2. R key - readies the CPU master clock and illuminates the
RUN indicator.

3. + key - if the STOP indicator is illuminated, it produces
a single clock pulse; otherwise, it starts the
master clock for continuous operation (or until
the next address halt).

4. C key - displays the current internal bus value in the
five rightmost hexadecimal displays, the next
address in the three leftmost hexadecimal dis­
plays, and illuminates the CURRENT indicator.

5. D key - displays one of the previous 16 current addresses
and illuminates the DISP indicator; selection of
the previous address is performed using the
keypad.

6. L key displays the halt address in the three leftmost
hexadecimal displays.

7. E key - if the STOP indicator is illuminated, it
releases the clock stall to allow the display to
function.

5-11

8. A key - causes the analyzer to halt when the current
address equals the halt address and illuminates
the ADDR HALT indicator.

9. CLR - terminates the operation invoked by the A key
(hal t) descr ibed prev iously.

key

5.~.l.2 Front Panel Indicators

The front panel provides the user with a total of 11 indica­
tors that specify the current mode of operation. Each of these
indicators is defined below.

1. ADDR HALT indicator - indicates that the A key has been
depressed.

2. LOAD indicator

3. DISPLACED
(DISP)
indicator

4. CURRENT
indicator

5. STOP indicator

6. RUN indicator

7. DISPLACEMENT
indicators

- indicates that the L key has been
depressed.

- indicates that the D key has been
depressed.

- indicates that the C key has been
depressed.

indicates that the S key has been
depressed.

- indicates that the R key has been
depressed.

- indicates the displacement of a
previous next address from the cur­
rent next address.

5.5.1.3 Internal Bus Display

The rightmost five hexadecimal displays show the 20 bits from
the internal bus.

In addition to the current B1 field display, it is possible
to display previous history. To permit this, the last 16 firm­
ware steps are stored and may be displayed by front panel
manipulation.

5.5.1.4 Address Display

The leftmost three hexadecimal displays show the address of
the firmware step to be executed next. This could be from the
nati ve PROM or from the WCS. These three displays are also used ,'f"
to display hal t addresses. "-j'

5-12

(: Native PROM Display

When this is displayed, the leftmost digit of the address
hexadecimal displays is seven or less. The maximum number in
this case is 7FF.

Nes Display

When this is displayed, the number shown is a minimum of 800
and a maximum of FFF.

Halt Address

To displ~y a Halt address, depress the L key, and the LOAD
indicator should illuminate. The halt address may now be changed
by entering the desired value, digit by digit, using the keypad.

5.5.2 Normal Operation

During normal operation the displays are continuously being
updated at approximately six megacycles.

5.5.2.1 Operate in Single Step Mode

To operate in Single Step mode, perform the following steps:

1. Depress the S key (the CLOCK STOP indicator should
illuminate).

2. Depress the + key for each clock cycle.

5.5.2.2 Return to Continuous Operation

To return to continuous operation perform the following
steps:

1. Depress the R key (the CLOCK RUN indicator should
i 11 urn ina t e) •

2. Depress the + key to start the clock.

5.5.2.3 Set Up a Halt Address

To set up a halt address perform the following steps:

1. Stop the clock.

2. Depress the L key (the LOAD indicator should illuminate).

3. Load the address using the hexadecimal keypad. As each
digit is loaded the register content is shifted left.

4. Restart the clock by first depressing the R key, then the
+ key.

5-13

NOTE

Steps 1 and 4 may be omitted at the expense
of not visibly displaying the address entered.

5.5.2.4 Halt at a Particular Address

To halt at a particular address, perform the following steps:

1. Set up the address (refer to subsection 5.5.2.3).

2. Depress the A key (the AD DR HALT indicator should
illuminate) •

3. The system halts after execution of the firmware step at
the halt address.

NOTE

When a firmware-address halt is invoked, the central
CPU clock stops after execution of the specified step.
The "current" display on the Microcode Analyzer will
contain the internal bus value generated in the next
step and the address of the step after that. When

. selecting the firmware address at which to set the
halt, it is important to choose one that is not fol­
lowed by a Megabus read request or write operation
that might address an unavailable resource because
the Megabus time-out could override the address halt.

5.5.2.5 Disable Address Halt

To disable address halt, depress the CLR key (located under
the A key).

5.5.2.6 Display the Current Data

To display the current data, depress the C key.

5.5.2.7 Display History

5-14

To display history perform the following steps:

1. Depress the D key (the DISP indicator should illuminate).

2. Set up the required displacement using the hexadecimal
keypad (the displacement indicators will confirm the
entry in binary code).

The hexadecimal display will show the next address and
the B1 bits corresponding to the displacement. A dis­
placement of zero causes the sixteenth previous history
step to be displayed.

I ,

(

5.5.2.8 Synchronize Oscilloscope

To synchronize an oscilloscope perform the following steps:

1. Set up address (refer to subsection 5.5.2.3).

2. Depress CLR key (located under the A key).

3. Coaxial connector (located at rear of analyzer) supplies
a sync pulse every time the selected step is accessed.

5-15/5-16

o

(

C-- _.

,

SECTION 6 - PROGRAMMING CONSIDERATIONS

Those users that do not wish to use the Honeywell operating
system for loading the WCS must develop their own software
loader. The material presented in this section is intended to
provide the user with the background information necessary to
perform this task, and includes:

• A description of the logical and physical layout of a WCS
assembler object deck.

• A description of the program steps required to load the
firmware image into the WCS.

• A definition of User Generics and their relationship to
WCS entry points.

6.1 LOGICAL AND,PHYSICAL LAYOUT

A description of the logical layout for the WCS assembler
object deck is contained in subsection 4.5. The description of
the physical layout for files is contained in the GCOS 6 Data
File Organizations and Formats Manual (Order Number CB05).

6.2 LOADING FIRMWARE IMAGE INTO WCS

Loading the firmware into the WCS requires communication over
the Megabus to the WCS from its associated CPU. During these
Megabus transfers, the Megabus address lines will carry the chan­
nel number of the WCS.

The channel number assignment is directly related to the CPU
to which the WCS is attached because of their committed associa­
tion. The channel number of the WCS for each CPU is:

CHANNEL NUMBER

CPU WCS

0000 03CO
0040 0380
0080 0340
OOCO 0300

Since the WCS channel numbers are less than 04001, the I/O
instructions used to communicate with the WCS must employ a non­
procedural form for the channel-control word (refer to the
Honeywell Level 6 Minicomputer Handbook - Order Number AS22).

6-1

The two instructions necessary to load the firmware image
into the WCS are the Output WCS Address and Output WCS Data
instructions.

Output WCS Address

This instruction selects the WCS RAM starting location for
data to be loaded into the WCS. The format of the Megabus
address and data lines during the Output WCS Address instruction
are:

o 7 8 1718 23

NOT USED WCS CHANNEL NUMBER 10 0 0 1 a 1

ADDRESS BUS

o 15

IADDRESS IN WCS - 08004 TO OFFF#

DATA BUS

The information for the address bus is pointed to by the Control
Address Syllable, while the information for the data bus is
pointed to by the Data Address Syllable.

Each 64-bit word in the WCS is divided into four l6-bit seg- ~~
ments. When an add ress is transfer red to the WCS, the fir st seg-, __ '
ment (i.e., the most significant 16 bits) is selected to receive
the data from the next succeeding Output WCS Data instruction.
Subsequent Output Data instructions increment the segment pointer
and the control store address so that only the Output WCS Address
instruction is necessary to load any number of contiguous loca-
tions in the WCS. Four Output Data instructions are necessary to
load each 64-bit firmware word.

Output WCS Data

This instruction loads a l6-bit segment of the WCS location
selected by the Output WCS Address instruction. The format of
the Megabus address and data lines during the Output WCS Data
instruction are:

o

6-2

7 8 1718 23

l~OT USED WCS CHANNEL NUMBERlo 0 1 1 1 1

ADDRESS BUS

o 15

j16-BIT SEGMENT OF 64-BIT WCS WORD I
DATA BUS

,If"
~::

(

The information for the address bus is pointed to by the Control
Address Syllable, while the information for the data bus is
pointed to by the Data Address Syllable.

The segment pointer is incremented after each data transfer
so that a subsequent data transfer loads the next l6-bit segment
of the same WCS location. When four data transfers have occur­
red, the control store address is incremented to select the next
WCS location. Noncontiguous WCS locations can be loaded by issu­
ing intermediate Output WCS Address instructions at the beginning
of the data transfer for each firmware word.

Typical Loading Sequence

Figure 6-1 illustrates a typical loading sequence. The four
Output Data I/O instructions are identical and are shown only to
illustrate the necessity of testing for completion after every
fourth transfer.

R~ -1

WCS - WORD (AT ADDRESS BI

LEFT-MOST 16 BITS OF
FIRST 64-BIT MICRO­
WORD SELECTED

SELECT SECOND GROUP OF 16 BITS

SELECT THIRD GROUP OF 16 BITS

SELECT LAST (RIGHT - MOST I GROUP OF
16 BITS

SELECT FIRST GROUP OF 16 BITS IN
NEXT WCS LOCATION

R '-1 ---{" DONE)
Figure 6-1 Typical Loading Procedure

6-3

The memory addresses for the microcode transfers are unre­
stricted with regard to sequence or contiguity. Address forms
need only comply with the restrictions imposed by the Data
Address Syllable (DAS) forms permitted in the I/O instructions of
the CPU.

6.3 RELATIONSHIP OF USER GENERICS TO WCS ENTRY POINTS

The transfer of control from a user's program in memory to a
user-generated firmware routine in the WCS is accomplished using
the WCS Generic instruction. When the CPU encounters a WCS
Generic instruction while processing a program, it sends the fol­
lowing Output Task Word command to the WCS via the Megabus.

o 7 8 1718 23

NOT USED CHANNEL NUMBER \0 0 0 1 1 1

ADDRESS BUS

a 15

I WCS GENERIC INSTRUCTION

DATA BUS

The first word of the Generic instruction from the program in
memory is transferred, over the Megabus data lines, to the WCS,
and is of the form:

where:

a 7 8 9 101112 15

10 0 0 0 0 0 0 E E E I

Bits 0 through 7 are not used (all Zeros).

Bit 8 equals One.

Bit 9 (R) equals Zero and is reserved for future use.

Bits 10 and 11 (GG) are the auxiliary command code
bits. These bits are not decoded but can be tested
by the microprogram.

Bits 12 through 15 (EEEE) select one of the first 16
locations in the WCS.

This instruction word selects a specific entry pOint within
the first 16 WCS locations. The selected entry point is the
starting address of the user-generated firmware routine.

6-4

(

The Generic instruction codes (op-codes) range from OOSO
through OOBF. Table 6-1 lists each of the available op-codes and
the corresponding WCS entry point. The op-code is also stored in
RAM location 0 and the F/SEL register (refer to subsections 2.S.2
and 2.S.3, respectively). RAMO and the F/SEL register can be
used for further firmware branching to distinguish among up to
four op-codes per WCS entry point.

Table 6-1 WCS Entry Points

GENERIC INSTRUCTION WCS
(OP-CODE) ENTRY POINT

0080, 0090, OOAO, OOBO 800

0081, 0091, OOAl, OOBI 801

0082, 0092, 00A2, 00B2 S02

0083, 0093, 00A3, 00B3 S03

0084, 0094, 00A4, 00B4 804

0085, 0095, 00A5, 00B5 805

0086, 0096, 00A6, 00B6 806

00S7, 0097, 00A7, 00B7 807

0088, 009S, OOt>.S, OOBS 808

0089, 0099, 00A9, 00B9 S09

OOSA, 009A, OOAA, OOBt>. SOA

008B, 009B, OOAB, OOBB 80B

00 SC, 009C, OOAC, OOBC 80C

OOSD, 009D, OOAD, OOBD SOD

DOSE, 009E, OOAE, OOBE SOE

OOSF, 009F, aOAF, OOBF 80F

6-5/6-6

c

c

C:

Appendix A

Writable Control Store Assembler Abort Codes (xxID)

When the assembler detects an error that prevents completion
of the assembly process, an appropriate "abort" code is gener­
ated, informing the operator of the error condition. The abort
codes currently in use are as follows:

xxlD07

xxlDOB

xxlDOC

xxlDl3

xxlD14

xxlD17

arg INVALID CONTROL ARGUMENT

The specified control argument is unrecognized.
Reenter the command using a valid control argument.

INVALID -SIZE ARGUMENT

The value specified in -SIZE (-SZ) is zero, greater
than 63, or nonnumeric.

FILE NAME NOT DESIGNATED

The source file name is missing. Reenter the com­
mand using the file name.

OBJ PATH ARGUMENT IS MISSING

The OBJ PATH ARGUMENT (object unit name) following
-OBJECT (-OBJ) is missing or the argument 1 ist is
too short. Reenter the command using the correct
argument.

OUT PATH ARGUMENT IS MISSING

The OUT PATH ARGUMENT (output listing file name)
following -COUT is missing or the argument is too
short. Reenter the command using the correct
argument.

SOFTWARE ERROR - PLEASE RERUN

An illegal pseudo-op-code number has been received.
Rerun the Assembler. If the error persists, please
contact Honeywell.

A-I

xxlDlB

A-2

SOFTWARE ERROR - PLEASE RERUN

An illegal nonencoding token type has been
detected. Rerun the Assembler. If the error per­
sists, please contact Honeywell.

c

c

Appendix B

Firmware Word Format

The format of the 64-bit firmware word is illustrated in
Figure B-1.

As shown in Figure B-1, the firmware word is divided into 15
fields: AD, AF, AS, BI6, BR, BS, C, CK, 01, GP, LS, NA, RS, SM,
and TC. Combinations of these fields control different portions
of the CPU hardware.

AD Field (Bits 9 through 11)

The AD field controls:

• The destination of the ALU result within the microproces­
sor area

• The microprocessor area shift logic

• The availability of microprocessor area elements to the
internal bus.

When the AD field specifies a destination within the register
file, the RS/SM fields interact to select the specific register
file location that receives the ALU result - RF(R). When the AD
field makes a register file location available to the Internal
Bus (BI), the LS/SM fields interact to select the specific regis­
ter file location that is made available - RF(L). Table B-1
lists the operations performed for each decode of the AD field.

B-1

IXf
I

IV

INTERNAL BUS CONTROLS MEGABUS INTERFACE CONTROLS

I . I
I
I
I

MICAOfI'AOC£~ CONTROL_S ____ --L FIRMWARE SEQUENCING CONTROLS

I
I , ,
I ,

-------,

""ASTER CLOCK
CONTROLS

MISCELLANEOUS
HARDWARE CONTROLS

~8a[]~888BD80000Q
I

\-, .-, 9-11 12-1!to 16-19 20-21 11---71 ,. '0 JI---JO '6---<\ <2---<, <.-- .. .2

Figure B-1 Firmware Word Format

(~- \

[---]
0' , ~

r~ \
~)

(/

Table B-1 RALU Destination (AD) Field Decodes

AD DECODE OPERATION PERFORMED

0 Q- ALU resul t
ALU result made available to BI

1 ALU result made available to BI

2 RF (R)- ALU resul t
RF(L) made ava il abl e to BI

3 RF (R) -ALU resul t
ALU result made available to BI

4 DR (double word right shift)
ALU result made available to BI

5 SR (single word right shift)
ALU result made available to BI

6 DL (double word left shift)
ALU result made available to BI

7 SL (single word left shift)
ALU result made available to BI

AF Field (Bits 12 through 15)

The AF field controls:

• The function performed by the ALU
• Changes in MMU operation.

The ALU has two input ports called J and K. The data avail­
able to these ports is controlled by the AS field. Table B-2
lists the operations performed for each decode of the AF field.

B-3

B-4

Table B-2 RALU Function (AF) Field Decodes

AF DECODE OPERATION PERFORMED

o

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

AS Field (Bits 16 through 19)

The AS field controls:

• The inputs to the ALU

J+K

K-J-l

J-K-l

J V K

Undefined

K 1\ J

J ¥ K

J ¥ K

J+K+l

K-J

J-K

J V K
RINGINIT

J 1\ K

K 1\ J
NONPROC

J V K
RING CALC

J ¥ K
DDLEQO
RING CALC

• Whether CRY, OVFL, and AUZ are generated on 16- or 20-bit
results

• XB(O) when shifting the XB register.

:1
~/

(

(

(/

AS bits 1 through 3 control the data made available to the
ALU input ports (J and K). If data is sourced from the register
file, the specific register file location is selected by the
interaction of the LS/SM fields and/or the RS/SM fields. Table
B-3 lists the data made available to these ports for each decode
of AS bits 1 through 3.

Table B-3 RALU Source (AS) Field Decodes

AS DECODE ALU INPUT SOURCE
(B I'r S 1 7 -1 ~) J PORT K PORT

0 RF(L) 0
1 RF(L) RF(R)
2 ZERO 0
3 ZERO RF(R)
4 ZERO RF(L)
5 BI RF(L)
6 BI 0
7 BI ZERO

Definitions

RF(R) - Denotes RS/SM Field Interaction
RF(L) - Denotes LS/SM Field Interaction

If AS(O) equals One, functions CRY, OVFL, and AUZ are gener­
ated on a l6-bit result. If AS(O) equals Zero, functions CRY,
OVFL, and AUZ are ge~erated on a 20-bit result.

If AS(O) and LS(O) both equal Zero, RF(L) is treated as a
l6-bit quantity sign-extended to 20 bits, and functions CRY,
OVFL, and AUZ are generated on a 20-bit result. Table B-4 lists
the only legal combinations of the AS and AF fields for this
case.

Table B-4 Legal Combinations of AS and AF Fields

AS DECODE AF DECODE OPERATION PERFORMED

1 6 ALU resul t - RF (L)SE *2

2 0 ALU resul t - RF (L) SE +0

2 8 ALU resul t - RF (L) SE +0+1

3 0 ALU result - RF(L)SE +RF(R)

NOTE

RF(L)SE = RF(L) sign-extended to 20 bits by
replacing the four most significant bits with
copies of the SIGN flop.

B-5

When sh i ft ing the KB reg ister (GP Field = 04, OS,
or 15), AS(O) controls what is received in XB(O). If
equals One, XB(O) receives bit 19 of the ALU result.
equals Zero, XB(O) receives the complement of RS(O).

09, OA, 14
AS(O)
If AS(O)

BI6 Field (Bits 22 through 27)

The BI6 field controls:

• Most internal bus sources
• Data received by I register (or bits thereof).

Table B-5 lists the data received by the internal bus (BI) or
the I register for each decode of the BI6 field.

Table B-5 Internal Bus Selector (BI6) Decodes
(Sheet 1 of 2)

BI6 DECODE OPERATION PERFORMED

B-6

Oz BI (0-11)-- 0

lz

20

21

22

23

24

25

26

27

28

29

2A

2B.

81 (13-15)-NA(3-6)
BI (16-19) -- Oz

BI (0-3)-0
BI (4-l1)- FF
BI (12-l5)-NA(3-6)
BI (16-19)- z

BI srcmod = R8 (01 field must = 5)

BI~IDSy where y = NA(3-6)

81-- HL8

BI-BD or BP (if made available by BS field)
BI--RUP (if BD, BP not made available)

BI-- P or Y or MMU (as made available by BS field)

BI--BDH or BPH (if made available by BS field)
BI-Panel (if BD and BP not made available)

BI srcmod = L4 (DI field must = 0)

BI-LVL

Undefined

BI--IDCy where y = NA(3-6)

Bl- H (bytes swapped)

BI-Z

BI6

(-

Table B-5 Internal Bus Selector (BI6) Decodes
(Sheet 2 of 2)

DECODE OPERATION PERFORMED

2C Undefined

2D BI- X'8HEX

2E BI-I

2F B1-'3

30 No action

31 -, I-BI (12-19)

32 I (OV}-l if BI(4) = BI(5): else, unchanged

33 I (OV)-OVFL

34 Undefined

35 I (I) :.--ACK

-36 I (B) -AUZ

37 I(B)-8I(4)
I (C) -CRY
1(0) -OVFL

38 I(G)-BI(4) V AUZ
I(L)-Bl(4)

39 I (G) -- ~LU Resul t (0) V ~UZ
I (L) -:\LU Resu1 t (0)

3A I (G) - SIGN
I (L) - 3IGN
I(U)--81(4)

3B I(C)-CRY
1(0) -OVFL

3C I (C)-Q(19) - AD field must be 4 or 5

3D I(C)-B1(19)

3E I(C)-BI(4)

3F I (C) -- CRY

B-7

BR Field (Bits 48 throug~ 51)

The BR field controls the type of branching to be performed,
depending on the current addressing mode (Transparent or Sequen­
tial). However, in either case, the effect of this field depends
on the contents df the Test Condition (TC) and Next Address (NA)
fields, Tables B-6 and B-7 list the types of branching performed
in Transparent mode and Sequential mode (respectively) for each
decode of the BR field.

Table B-6 Branch Type (BR) Field Decodes (Transparent Mode)

BRANCH TYPE

BR DECODE TEST CONDITION TRUE TEST CONDITION FALSE

0 --NA V 3 --NA

1 -XL --NA

2 --XA Splatter --NA

3 --XB Splatter --NA

4 --XR Splatter --NA
NEWXR--O

5 --XW Splatter --NA
NEWXR --0

6 --XE Splatter --NA
NEWXR--O

7 --XF (location 020) --NA
NEWXR--O

8 --NA --NA V 3

~ 9 --NA --XL

A --NA --XA Splatter

B --NA --XB Splatter

C --NA --XR Splatter
NEWXR-O

D --NA -XW Splatter
NEWXR ----- 0

E --NA -XE Splatter
NEWXR--O

F --NA --XF (location 020)
NEWXR--O

8-8

f

BR DECODE

0

2

4

8

A

C

Table 8-7 Branch Type (BR) Field
Decodes (Sequential Mode)

BRANCH TYPE

TEST CONDITION TRUE TEST CONDITION

--NA --CSAC

--NA --CSRAR

--NA --CSAC
CSRAR-CSAC

--CSAC --NA

--CSRAR -NA

--CSAC --NA

FALSE

CSRAR-CSAC

F (TC must = 0) LBRANCH

NOTE

The Control Store Address Counter (CSAC) contains
the address of the current firmware step + 1. The
Control Store Return Address Register (CSRAR) con­
tains the address for subroutine returns.

BS Field (Bits 31 through 35)

The BS field controls:

• The Megabus interface area

• The availability of BD, BP, P, Y, and MMU as internnl bus
sources

• P and Y as internal bus destinations

• CTR.

Table B-8 lists the operations performed for each decode of
the BS field.

8-9

Table B-8 Bus Control (BS) Field Decodes
(Sheet 1 of J) , -"',

-,--cY'-

BS DECODE OPERATION PERFORMED

00 BUS PSELECT
P available as BI source

01 BUS PURGE
P available as BI source

02 BUS YSELECT or BUS MMURDACC
Y available as BI source

03 BUS INCY
Y available as BI source

04 BUS PSELECT
P available as BI source
Y--- BI

05 BUS INCP
P available as BI source
IF GP field = 4, 5, 6, 8, 9, A, 14, or 15
CTR-NA (1) ; else, CTR - CTR+l

06 BUS MMUSELECT
MMU available as BI

I~ ,

source
Y--- BI

07 BUS MMUWRACC
Y available as BI source

-----~
08 BUS YSELECT

Y available as BI source
Y-BI

09 BUS YSELECT
Y available as BI source
P-BI

OA BUS YSELECT
Y available as BI source
YRELOC-BI

OB BUS YSELECT
Y available as B1 source -- ", -. YR16-BI ~--

OC BD is BI source
Y-BI

00 BUS INCY !'f'
BD is BI source \~/

B-10

(

(\

Table B-8 Bus Control (BS) Field Decodes
(Sheet 2 of 3)

BS DECODE OPERATION PERFORMED

OE BD is BI source
P -BI

OF BD available as BI source

10 RDREQ CHGLOCK
Y available as BI source

11 RDREQ NORMAL (if C = 1)
RDREQ NOCACHE (if C = 0)
Y available as BI source

12 RDREQ 1-0
Y available as BI source

13 Undefined

14 WRTWORD INCY (if CK(O) = 0)
WRTBYTE INCY (if CK(O) = 1)
Y available as BI source

15 WRTWORD CHGLOCK (if CK(Ot = 0)
WRTBYTE CHGLOCK (if CK(O) = 1)
Y available as BI source

16 WRTWORD 1-0 ,l1!CY_J, i f CK (0) = 0)
WRTBYTE 1-0, tNCY (if CK(O) = 1)
Y available as BI source

17 WRTWORD 1-0 (if CK(O) = 0)
WRTBYTE 1-0 (if CK(O) = 1)
Y available as BI source

18 Undefined

19 RDREQP
P available as BI source

lA RDREQP
Y available as BI source
P-BI

IB Undefined

lC BP is BI source
P-P + 1
Y- BI
If GP field = 4, 5, 6, 8, 9, A 14, or 15
CTR - NA(l): else, CTR- CTR+l

B-l1

BS

Table B-8 Bus Control (BS) Field Decodes
(Sheet 3 of 3)

DECODE OPERATION PERFORMED

10 BP is B1 source
P_ P+l
If GP field = 4, 5, 6, 8, 9, A, 14
CTR_ NA (1); else, CTR_- CTR+l

IE Undefined

IF Undefined

C Field (Bit 52)

or 15

The C field controls whether or not the Cache, if installed,
is to be used during read operations. In general, this bit must
be Zero. For procedural read requests (BS field equals 19, lA,
lC, or ID), bit 52 must be a One. For data read requests (BS
field equals 11), bit 52 will be a One if the Cache is being
used, and Zero if it is being bypassed.

CK Field (Bits 20 and 21)

The CK field controls:

• The firmware clock speed during nonwrite operations
• Whether a byte or word is written during write operations.

Table B-9 lists the clock speeds for each decode of the CK
f i el d.

B-12

Table B-9 CPU Clock Speed (CK) Field Decodes

CK DECODE CLOCK SPEED

0 Very Long

1 Half Long

2 Half Fast

3 Very Fast

NOTES

1. If bit 20 equals Zero during a Megabus
write operation, a word is written.

2. If bit 20 equals One during a Megabus
write operation, a byte is written.

1,0 '\
!

\-;J

(

DI Field (Bits 0, 4, and 8)

The DI field controls:

• The RAM as an internal bus source and destination

• Whether the microprocessor area output made available to
the internal bus by the AD field is used as an internal
bus source.

When the RAM is an internal bus source or destination, the
specific RAM location is selected by the interaction of the LS/SM
fields. Table B-lO lists the operations performed by each decode
of the DI field.

Table B-IO Internal Bus Control (DI) Field Decodes

DI DECODE OPERATION PERFORMED

0 BI SRCMOD is L4 (BI6 field must

I BI - microprocessor output

2 BI -- microprocessor output
RAM (L) --BI

3 Undefined

4 No action

5 BI SRCMOD is R8 (BI6 field must

6 RAM (L) - BI

7 BI -- RAM (L)

GP Field (Bits 36 through 42)

The GP field controls:

• The GP category of miscellaneous hardware
• Certain internal bus destinations.

= 26)

= 20)

Table B-Il lists the operations performed for each decode of
the GP field.

B-13

B-14

Table B-ll General Purpose (GP) Field Decodes
(Sheet 1 of 4)

GP DECODE OPERATION PERFORMED

00 No action

01 H-BI
SIGN-BI (4)

02 SIGN-BI(4)
ZERO-AUZ
MIS C -;;'B;;':I :;...(1 9)

03 F(8-1l)~BI(12-l5)
SEL-BI (16-19)
SIGN-1
NEWXR-}

04 XB(1-3)~XB(02)
XB(O) controlled by AS(O)
SHIN2-0
SHINl-O

05 XB(1-3)~XB(O-2)
XB(O) controlled by AS(O)
ZERO-1

06 F-BI(4-l5)
SEL-BI (16-19)
XB-O
NEWXR-1

07 SEL-BI(16-19)
SHIN2-1
SHIN1-1
NEWXR-l

08 F-BI(4-15)

09

SEL-BI (16-19)
ZERO-AUX
SHIN2-0
SHIN1-0
XB-O
MISC-O
NEWXR-1

XB (1- 3) - XB (0- 2)
XB(O) controlled by AS(O)
SHIN2-0
SHINl~l
MISC-O

(
Table B-ll General Purpose (GP) Field Decodes

(Sheet 2 of 4)

GP DECODE OPERATION PERFORMED

OA XB(1-3)~XB(0-2)
XB(O) controlled by AS(O)
ZERO-O

OB F(8-11}_BI(l2-15)
SEL-BI (16-19)
MISC-[BI (4-9) = 0]
SIGN --BI (19)
NEWXR-1

OC SIGN-BI (4)
MISC -1

00 SIGN -BI (19)
MISC -I

OE SIGN---BI(19)
ZERO~QLT active flop

OF Undefined

10 SHIN2~SYGN

11 SHIN2-SIGN
SIGN -BI (4)

12 SHIN1~I(B)

13 SIGN-l

14 XB(I-3)-XB(O-2)
XB(O) controlled by AS(O)

15 XB(1-3)~XB(O-2)
XB(O) controlled by AS(O)
SIGN -BI (4)

16 ZERO-O

17 ZERO-1

18 ZERO--AUZ

19 SIGN--BI (4)

lA SIGN---BI(O)

1B SIGN-BI (19)

B-15

GP

B-16

Table B-11 General Purpose (GP) Field Decodes
(Sheet 3 of 4)

DECODE OPERATION PERFORMED

1C SHIN2~O

SHIN1-- 0

1D SHIN2--0
SHIN1-1

IE SHIN2--1
SHINl-- 0

IF SHIN2 -- 1
SHINl-- 1

20 F-BI (4-15)
SEL_BI (16-19)
NEWXR --1

21 Undefined

22 F(8-11)-BI(12-15)
SEL- BI (16-19)
NEWXR-1

23 MISC-- 0

24 MISC--1

25 MISC-CRY

26 MISC -ACK

27 MI5C-MMU protection violation signal

28 Undefined

29 Undefined

2A 5EL-BI (16-19)
NEWXR-1

2B H-BI
5EL- B1 (16-19)
NEWXR --1

2C H-BI

2D Undefined

2E Undefined

\, .

GP

r-

(

Table B-ll General Purpose (GP) Field Decodes
(Sheet 4 of 4)

DECODE

2F

30

31

32

33

34

35

36

37

313

39

3A

3B

3C

3D

3E

3F

OPERATION PERFORMED

Undefined

Undefined*

Undefined*

WRAP --CRY ¥ SIGN
NE\iXR--O

S (1-2)-BI (5-6)

S(10-l5)~BI(14-19)

if F(5) = 0, INTBSY-'-O

LINK-BI (11-18)

Undefined*

If AF = 9, B, 0, or F, MMU validates
range
If AF = 8, A, C, or E, suppress MMU
access rights check (NOCHEK)

Panel (most significant digit of display)
..-BI(16-19)

Panel (least significant four digits of
display)~BI(4-19)

Undefined*

LOAD-l

Undefined

TRAFFIC-ZERO

LOAD-O

*Used by native firmware

B-17

LS Field (Bits 1 through 3)

The LS field controls:

• The register file address when the AS field specifies
RF(L) as an ALU input

• The register file address when the AD field makes a reg­
ister file location available to the internal bus

• The RAM address when the DI field specifies the RAM as an
internal bus source or destination

• The interpretation of AS(O) equals Zero (refer to descrip­
tion of AS Field).

The LS field interacts with the SM field to select specific
register file and/or RAM locations. The three-bit LS field spec­
ifies a four-bit constant that is logically ANDed with the four­
bit value specified by the SM field to calculate the register
file and/or RAM address. Table B-12 lists the constants gener­
ated from each decode of the LS field.

Table B~12 RALU Left Select (LS) Field Decodes

LS DECODE

0

1

2

3

4

5

6

7

NA Field (Bits 53 through 63)

The NA field controls:

RESULTING
CONSTANT

0

3

6

7

8

B

E

F

• The next address for firmware sequencing
• Constant generation on the internal bus
• CTR initialization.

The NA field, in conjunction with the TC and BR fields, con- C""~\'" '
troIs the next firmware address. In general, the entire NA field
specifies one of the alternative branch addresses. In

B-18

Transparent mode, if an XL or a splatter branch is being used (BR
field * a br 8), NA(O) determines the high order bit of the 11-
bit address. In Sequential mode, if an LBRANCH command is being
used (TC Field = a and BR Field = F), NA(0-2) determines the high
order three bits of the address.

A constant is generated on the internal bus when BI6(0)
equals Zero, or when BI6 equals 21 or 29. In all of these cases,
four bits of the constant are derived from NA(3-6).

When the BS field increments the P register (BS Field = OS,
IC, or lD) and the GP field is controlling the XB register (GP
Field = 04, as, 06, 08, 09, OA, 14, or 15), then CTR is set to
NA (l) •

RS Field (Bits 5 through 7)

The RS field controls:

• The register file address when the AS field specifies
RF(R) as an ALU input

• The register file address when the AD field specifies a
register file location as the destination for the ALU
result

• XB(O) when shifting the XB register.

The RS field interacts with the SM field to select specific
register file locations. The three-bit RS field specifies a
four-bit constant that is logically ANDed with the four-bit value
specified by the SM field to calculate the register file address.
Table B-13 lists the constants generated from each decode of the
RS field.

Table B-13 RALU Right Select (RS) Field Decodes

RESULTING
RS DECODE CONSTANT

0 0

1 3

2 6

3 7

4 8

5 B

6 E

7 F

B-19

,/""

When shifting the XB register (GP Field = 04, OS, 09, OA, 14, ~/
or 15) and AS(O) equals Zero, XB(O) receives the complement of
RS (0) •

SM Field (Bits 28 through 30)

The SM field interacts with the LS and RS fields to select
specific register file and/or RAM addresses. The three-bit SM
field specifies a four-bit value that is logically ANDed with the
four-bit constant specified by the LS field to calculate
addresses controlled by LS. The four-bit value specified by the
SM field is also logically ANDed with the four-bit constant
specified by the RS field to calculate addresses controlled by
RS. The value specified by the SM field is either a constant or
a function of the F/SEL register. Table B-14 lists the four-bit
value resulting from each decode of the SM field.

Table B-l4 Select Modify (SM) Field Decodes

SM DECODE RESULTING 4-BIT VALUE

0 B'llll' (constant of all l's)

I l,F(1-3)

2 1,F(9-11)

3 B'llIO'

4 Undefined

5 BillOl'

6 l, SEL (1-3)

7 SEL(0-3)

TC Field (Bits 42 through 47)

The TC field specifies the test condiiion to be used during
firmware sequencing. Table B-15 lists the test conditons for
each decode of the TC field.

B-20

(

(

Table B-15 Test Condition (TC) Field Decodes
(Sheet 1 of 3)

TC DECODE CONDITION

00 0 (always false)

01 I FSCISTR

02 IFSIP

03 IFCIP

04 IFHALF

05 I FWORD

06 IFGTWD

07 IFQUAD

08 IFBCND

09 IFEXEC

OA IFLAF

OB IFLOAD

OC IFMIZR

OD IFSHINI

OE IFSHIN2

OF IFPMUX

10 IFBINUMi !FIT when F{l-3) = 0

11 IFCRY - AS(O) = 1
IFCRY20 - AS(O) = 0

12 IFWCS

13 IFBI4

14 IFSHIN

15 IF4EQ5

16 IFSHZ - AS(O) = 1
IFSHZ20 - AS(O) = 0

B-21

B-22

Table B-15 Test Condition (TC) Field Decodes
(Sheet 2 of 3)

TC DECODE CONDITION

17 IFAUZ - AS(O) ::: 1
IFAUZ20 - AS(O) ::: 0

18 IFCACHE

19 IFRMWF

1A IFLOCK

1B IFTRACE

1C IFIC

1D IFACK

IE IFPRIV

IF IFPARER

20 IFSELEQO

21 Undefined

22 IFNUM7

23 IFXBO

24 IFF4

25 IFF5

26 IFF6

27 IFF7

28 IFF8

29 IFDSELEQO (SEL-SEL-1)

2A IFF9

2B IFF11

2C IFSELO

2D IFSEL1

2E IFSLl-3EQ7

("

-/

Table B-15 Test Condition (TC) Field Decodes
(Sheet 3 of 3)

'rc DECODE CONDITION

2F IFSEL3

30 IFTICK

31 IFYELLOW (YELLOW, TICK-a)

32 IFREGAD

33 IFZERO

34 IFSIGN

35 IFMISC

36 IFSEL2

37 IFADRER

38 IFRUP

39 IFRPTR (SIGN-a)

3A IFBI12

3B I FOVFL - AS (a) = 1
IFALua - AS(O) = a

3C Undefined

3D Undefined

3E IFQSR (AD = 4, 5)
IFDDLEQO (AD = 0, 1)

3F IFBI19

B-23/B-24

o

(

Appendix C

Reserved Word List and Encodings

This appendix contains an alphabetical list of reserved
words, and the values they cause to be encoded into the bits of
the firmware word. The ARE~ column indicates the area with which
the reserved word is associated and may be interpreted as
follows:

• BI - Internal Bus Area

• BUS - Megabus Interface Area

• CK - Master Clock Area

• FLOPS - Miscellaneous Hardware Area

• PRV Included to maintain compatibility with a previ-
ous assembler

• PSEUDO - Pseudo op-code

• RALU - Microprocessor Area

• SEQ - Firmware Sequencing Area.

The ENCODING column indicates the fields affected (refer to
Appendix B) and the corresponding hexadecimal values. When mul­
tiple values are specified, they are listed in their order of
preference by the assembler.

WORD AREA ENCODING

AD PRV -
ADD RALU AF = 0

ADDI RALU AF = 8

ADDIS!: RALU AF = 8: LS(O) = 0

ADDL PRV -

WORD AREA ENCODING

ADDR PRV -

ADDSE RALU AF = 0, 6; LS(O) = 0

ADFN PRV -

ADFQ PRV -
ADFR PRV -
ADLR PRV -

ADSL PRV -

ADSR PRV -
AF PRV -
AFADD PRV -

AFAND PRV -
AFINC PRV -
AFIOR PRV - /~\

AFJ-l PRV -
AFJ-K PRV -
AFK-l PRV -
AFK-J PRV -

AFKNJ PRV -

AFXNR PRV -

AFXOR PRV -
ALU BI AD = 1, 0, 3, 4, 5, 6, 7 :

BS(1-2) = 0, 1, 2;
[BI6 (0-1) = 3; DI = 1,2, or
BI6 = 26, 20; DI (1) = 0]

AMIOR PRV -
AMKNJ PRV -
AMXNR PRV -

AMXOR PRV -

C-2

WORD . AREA ENCODING

AND RALU AF = C

ANDC RALU AF = 5 or D

AS PRV -

ASIL PRV -
ASIQ PRV -

ASIZ PRV -
ASLQ PRV -
ASLR PRV -
ASZL PRV -
ASZQ PRV -
ASZR PRV -

AWIL PRV -
AWIQ PRV -
AWIZ PRV -

AWLQ PRV -
AWLR PRV -
AWZL PRV -

AWZQ PRV -

AWZR PRV -

AXLP PRV -
AXLQ PRV -
AXLR PRV -
AXXX PRV -
BO RALU, BI Refer to Table C-l
through
B7

BB RALU, B1 Refer to Table C-l

C-3

WORD AREA ENCODING

BB3 RALU, BI Refer to Table C-l

BBE RALU, BI Refer to Table C-l

BD BI DI = 4, 6 ; BS = OF, OD, OC, OEi
[BI6 = 23 or BI6(0-1) = 3]

BDH BI DI = 4, 6 ; BS = OF, DD, DC, DE;
BI6 = 25

B1 RALU AS{1-3) = 5, 6, 7 ; may also
affect setting of AF, depending
on microprocessor function

BI BI -
BI6 PRV -
BIA PRV -
BIB PRV -
BIH PRV -
BII PRV -
BIL PRV -
BIN PRV -
BIP PRV -
BIR PRV -
BIS PRV -
BITC PRV -

BITS PRV -
BIV PRV -
BIX PRV -
BIZ PRV -
BM RALU Refer to Table C-l

BM3 RALU Refer to Table C-l

BME RALU Refer to Table C-l

C-4

WORD AREA ENCODING
"

BN RALU Refer to Table C-l

BN3 RALU Refer to Table C-l

BNE RALU Refer to Table C-l

BP BI 01 = 4, 6 ; BS = lD, lC;
[BI6 = 23 or BI6(0-l) = 3]

BPH BI DI = 4, 6 ; BS = 10, lC;
BI6 = 25

BR PRV -
BS PRV -
BUS BUS -
CALL SEQ-OP-CODE BR = C; TC = 0

SEQ-OPERAND BR(1-3) = 4

CHGLOCR BUS BS = 10, 15 ; C = 0

CK PRV -
CRHF PRV -

CKHL PRV -
CKVF PRV -
CKVL PRV -
COpy RALU AF = 3, B, C

CTRO FLOPS GP = 14, 6 , 8, 15, OA, 5, 4, 9 ;
BS = 5, lD, lCi NA (1) = 0

CTRI FLOPS GP = 14, 6, 8, 15, OA, 5, 4, 9 ;
BS = 5, lD, lCi NA(1) = 1

DO RALU, B1 Refer to Table C-l
through
D7

DB RALU, BI Refer to Table C-l

DB3 RALU, 81 Refer to Table C-l

DBE RALU, BI Refer to Table C-l

DDLEQO FLOPS AF = F, B

C-5

WORD AREA ENCODING

DECR RALU [AS (1-3) = 2, 3, 4 ; AF = l] , or
[AS(l-3) = 7 ; AF = 2]

DEFAULT PSEUDO -
DI PRV -

DIA PRV -
DIC PRV -
DIN PRV -

DIPE PRV -
DIPF PRV -
DIR PRV -
DIW PRV -
DL RALU AD = 6

DM RALU, BI Refer to Table C-l

DM3 RALU, BI Refer to Table C-l

DME RALU, BI Refer to Table C-l

DN RALU, BI Refer to Table C-l

DN3 RALU, BI Refer to Table C-l

DNE RALU, BI Refer to Table C-l

DR RALU AD = 4

DRCB PRV -
DRCI PRV -
DRCL PRV -
DSHL PRV -
DSHP PRV -
DSHU PRV -
DSHY PRV -
DSTL PRV -

C-6

WORD
,~r

AREA ENCODING .
DSTU PRV -
DSTY PRV -
DWHL PRV -
DWHU PRV -

DWWL PRV -
DWWU PRV -
END PSEUDO -
EQU PSEUDO -

F BI GP = 20, 06, 08

FLOPS FLOPS -
FR8 BI GP = 22, 03, OB

GOTO SEQ TC = a : BR = 8

(GP PRV -

GP4 PRV -
H BI-SRC DI = 4, 6 : BI6 = 2A:

BS (1-2) = 0, 1 , 2

BI-DEST GP = 2C, 01, 2B

HL CK CK(O) = a
HL8 BI 01 = 4, 6 : BI6 = 22:

BS(1-2) = 0, 1, 2

I BI-SRC 01 = 4, 6: BI6 = 2Ei
BS(1-2) = 0, 1, 2

BI-DEST BI6 = 31

1-0 BUS BS = 12, 17, 16: C = a
lACK FLOPS BI6 = 35

IBB14 FLOPS BI6 = 37

(lBNAZ FLOPS BI6 = 36: AS(O) = 1

C-7

WORD AREA ENCODING
~.

IBNAZ20 FLOPS BI6 = 36: AS(O) = 0: \ .
~

LS(O) = a - refer to Note

ICBI4 FLOPS BI6 = 3E

ICBI19 FLOPS BI6 = 3D

ICQSR FLOPS BI6 = 3C: AD = 4, 5

ICRY FLOPS BI6 = 3F, 3B, 37: AS(O) = 1

ICRY20 FLOPS BI6 = 3F, 3B, 37: AS(O) = 0:
LS(O) = 1 - refer to Note

lOCO BI DI = 4, 6: BI6 = 29:
through BS (1-2) = 0, 1, 2: NA(3-6) = Y
IOCF where y = a through F

IOSO BI 01 = 4, 6 : BI6 = 21:
through BS(1-2) = 0, 1, 2: NA(3-6) = Y
IOSF where y = 0 through F

IF4EQ5 SEQ TC = 15

IFACK SEQ TC = ID

IFADRER SEQ TC = 37

IFALUO SEQ TC = 3B: AS(O) = 0:
LS(O) = 1 - refer to Note

IFAUZ SEQ TC = 17: AS(O} = 1

IFAUZ20 SEQ TC = 17: AS(O) = 0:
LS(O} = 1 - refer to Note

IFBCNO SEQ TC = 08

IFBI4 SEQ TC = 13

IFBI12 SEQ TC = 3A

IFBI19 SEQ TC = 3F

IFBINUM SEQ TC = 10

IFCACHE SEQ TC = 18

IFCIP SEQ TC = 03

IFCRY SEQ TC = 11: AS(O} = 1

C-8

WORD AREA ENCODING

« IFCRY20 SEQ TC = 11: AS(O) = 0:
LS(O) = 1 - refer to Note

IFDDLEQO SEQ TC = 3E: AD = 0, 1

IFDSELEQO SEQ TC = 29

IFEXEC SEQ TC = 09

IFF4 SEQ TC = 24

IFF5 SEQ TC = 25

IFF6 SEQ TC = 26

IFF7 SEQ TC = 27

IFF8 SEQ TC = 28

IFF9 SEQ TC = 2A

IFFll SEQ TC = 2B

IFGTWD SEQ TC = 06

(IFHALF SEQ TC = 04

IFIC SEQ TC = lC

IFII SEQ TC = 10

IFLAF SEQ TC = OA

IFLOAD SEQ TC = OB

IFLOCK SEQ TC = lA

IFMISC SEQ TC = 35

IFMIZR SEQ TC = OC

IFNUM7 SEQ TC = 22

IFOVFL SEQ TC = 3B: AS(O) = 1

IFPARER SEQ TC = IF

IFPMUX SEQ TC = OF

IFPRIV SEQ TC = lE

IFQSR SEQ TC = 3E: AD = 4, 5

C-9

WORD AREA ENCODING

IFQUAD SEQ TC = 07

IFREGAD SEQ TC = 32

IFRMWF SEQ TC = 19

IFRPTRP SEQ TC = 39

IFRUP SEQ TC = 38

IFSCISTR SEQ TC = 01

IFSELO SEQ TC = 2C

IFSELI SEQ TC = 2D

IFSEL2 SEQ TC = 36

IFSEL3 SEQ TC = 2F

IFSELEQO SEQ TC = 20

IFSHIN SEQ TC = 14

IFSHIN1 SEQ TC = OD

IFSHIN2 SEQ TC = OE

IFSHZ SEQ TC = 16; AS(O) = 1

IFSHZ20 SEQ TC = 16; AS(O) = 0;
LS(O) = 1 - refer to Note ~

IFSIGN SEQ TC = 34

IFSIP SEQ TC = 02

IFSLI-3EQ7 SEQ TC = 2E I

IFTICK SEQ TC = 30

IFTRACE SEQ TC = IB

IFWCS SEQ TC = 12

I FWORD SEQ TC =. 05

IFXBO SEQ TC = 23

IFYELLOW SEQ TC = 31

IFZERO SEQ TC = 33

C-10

WORD AREA ENCODING

(IGL FLOPS BI6 = 38; AS(O) = 1

IGL20 FLOPS BI6 = 39; AS(O) = 0;
LS(O) = 1 - refer to Note

IGLU FLOPS BI6 = 3A

INCP BUS BS = 05

INCR RALU AF = 8

INCY BUS BS = 03, 00, 14, 16; C = 0

I04NE5 FLOPS BI6 = 32

lORe PRV -
IOVFL FLOPS BI6 = 33, 3B, 37

IOWH PRV -
IOWU PRV -

IOWW PRV -
K PRV -
K--O BI 01 = 4, 6 ; BI6(0-1) = 0, 1 ;
through BI6(2-5) = Y
K--F where y = 0 through F

BS(1-2) = 0, 1, 2

PRV -
KO-- BI 01 = 4 , 6 ; BI6(0-1) = o ;

BS(1-2) = 0, 1 , 2

PRV -
KF-- BI 01 = 4 , 6 i BI6(0-1) = 1 ;

BS(1-2) = 0, 1, 2

PRV -
L4 BI 01 = 0; BI6 = 26

LABEL PSEUDO -
LBRANCH SEQ BR = Fi TC = 0

LINK BI GP = 35

C-ll

WORD AREA ENCODING

LIST PSEUDO -
LOAD 0 FLOPS GP = 3E

LOADI FLOPS GP = 3B

LS PRV -
LSAO PRV -

LSAI PRV -
LSA2 PRV -

LSA3 PRV -
LSA4 PRV -

LSA5 PRV -
LSA6 PRV -
LSA7 PRV -
LSBO PRV -
LSBI PRV -
LSB2 PRV -

LSB3 PRV -

LSB4 PRV -
LSB5 PRV -
LSB6 PRV -

LSB7 PRV -
LSBB PRV -
LSBB3 PRV -
LSBN PRV -
LSBX7 PRV -
LSDO PRV -
LSDI PRV -

C-12

WORD AREA ENCODING .. '
LSD2 PRV -

LSD3 PRV -

LSD4 PRV -

LSD5 PRV -

LSD6 PRV -

LSD7 PRV -

LSDB PRV -

LSDB6 PRV -
LSDN PRV -
LSDN6 PRV -

LSDX PRV -

LSDX7 PRV -

LSMO PRV -
LSMl PRV -
LSM2 PRV -
LSM3 PRV -
LSM4 PRV -
LSM5 PRV -
LSM6 PRV -
LSM7 PRV -
LSMB PRV -
LSMB6 PRV -
LSMN PRV -
LSMN6 PRV -
LSSEL PRV -

c LVL B1 -

C-l3

WORD AREA ENCODING

Ml BI Refer to Table C-2
through
M7

MB BI Refer to Table C-2

MB3 BI Refer to Table C-2

MBE BI Refer to Table C-2

MM BI Refer to Table C-2

MM3 BI Refer to Table C-2

MME BI Refer to Table C-2

MMU BI DI = 4, 6 ; BI6 = 24; BS = 06

MMURDACC BUS BS = 02; C = 0

MMUSELECT BUS BS = 06; C = 0

MMUWRACC BUS BS = 07; C = 0

MN BI Refer to Table C-2

MN3 BI Refer to Table C-2

MNE BI Refer to Table C-2

MSO FLOPS GP = 23, 09, 08

MSI FLOPS GP = 24, OC, OD

MS4-9EQO FLOPS GP = OB

MSACK FLOPS GP = 26

MSCRY FLOPS GP = 25; AS(O) = 1

MSCRY20 FLOPS GP = 25; AS(O) = 0;
LS(O) = 1 - refer to Note

MSNBI19 FLOPS GP = 02

MSPROV FLOPS GP = 27

NA PRV -
NATIVE PSEUDO -
NLST PSEUDO -

C-14

(WORD AREA ENCODING ...
NO PSEUDO -
NOCACHE BUS BS = 11, 10; C = 0

NOCHEK FLOPS GP = 37; AF = E, 8, A, C

NONPROC FLOPS AF = D

NORMAL BUS BS = 11; C = 1

OR RALU AF = 3, B

P BI-SRC DI = 4, 6 ; BI6 = 24; BS = 00, 01,
04, OS, 19

BI-DEST BS = 09, OE, lA

PAGJ PRV -
PANEL BI-SRC DI = 4 , 6 ; BI6 = 25;

BS(1-2) = 0, 1

BI-DEST GP = 39

(PANEL4 BI GP = 38

PANOK FLOPS GP = 3F

PINC PRV -

PLOD PRV -
PMUX PRV -

PRCI PRV -

PRCP PRV -

PSELECT BUS BS = 00, 04; C = 0

PSHL PRV -

PSHY PRV -

PST! PRV -
PSTL PRV -
PSTY PRV -
PURG PRV -

C-15

WORD AREA ENCODING

PURGE BUS BS = 01; C = 0

Q RALU-SRC 1, SRC 2 AS(1-3) = 0, 2, 6 ; may also
affect setting of AF, depending
on microprocessor function

RALU-DEST AD = 0

R8 B1 DI = 5 ; BI6 = 20

RAMO BI Refer to Table C-2
through
RAMF

RAMSEL BI Refer to Table C-2

RDREQ BUS -
RDREQP BUS BS = 19, lA; C = 1

REGSEL RALU Refer to Table C-l

RETURN SEQ-OP-CODE BR = 2 ; TC = 0

SEQ-OPERAND BR = 2, A

RI PRV -
RING BI GP = 33

RINGCALC FLOPS AF = E

RINGINIT FLOPS AF = B

RS PRV -
RSBO PRV -
RSBl PRV -
RSB2 PRV -
RSB3 PRV -
RSB4 PRV -
RSBS PRV -
RSB6 PRV -
RSB7 PRV - ,r ..

I ' I~

\\...."

C-16

(WORD AREA ENCODING

RSBB PRV -

RSBB3 PRV -
RSBN PRV -
RSDO PRV -

RSDI PRV -
RSD2 PRV -
RSD3 PRV -

RSD4 PRV -
RSD5 PRV -
RSD6 PRV -

RSD7 PRV -
RSDB PRV -

(RSDB6 PRV -

RSDN PRV -

RSDN6 PRV -

RSDX PRV -
RSDX7 PRV -

RSSEL PRV -
RUP BI DI = 4, 6; BS(I-2) = 0, 1 , 2 ;

[BI6 = 23 or BI6(0-1) = 3]

S BI DI = 4, 6 ; BI6 = 2F;
BS (l-2) = 0, 1 , 2

SEL BI GP = 2A, 2B, 07

SEQUENTIAL PSEUDO -
SET PRV -
SGI FLOPS GP = 13, 03

(~ SGBIO FLOPS GP = lA

C-17

i
WORD AREA

,
ENCODING 1

SGBl4 FLOPS GP = 19, 15, OC, 11, 01, 02

:SGBI19 FLOPS GP = 1B, OE, 00, OB

. SHOO FLOPS GP = lC, 04, 08

·SH01 FLOPS GP = 10, 09

SHIO FLOPS GP = IE

SHll FLOPS GP = IF, 07

SHlIB FLOPS GP = 12

SH2NSG FLOPS GP = 10, 11

SL RALU AD = 7

SM PRV -
SMa PRV -

SMD PRV -

!SME PRV -
SMN PRV -

SMR PRV -
SMS PRV -

.SMX PRV -
SR RALU AD = 5

SUB RALU AF = 9, A

'SUBI RALU AF = 1, 2 ,
TC PRV -

'TITLE PSEUDO -
;

TRAFNZ FLOPS GP = 3D

UNUSED PSEUDO -
:VALID8 FLOPS GP = 37; AF = 9, B, 0, F

VL CK CK = 0 ('" f •

.. ,,)

C-18

WORD AREA ENCODING

WRAP FLOPS GP = 32: AS(O) = 0:
LS(O) = 1 - refer to Note

WRT BUS CK (0) = 0

WRTBYTE BUS CK(O) = 1

WRTWORD BUS CK (0) = 0

X-F PRV -
XOF PRV -
XOT PRV -
XA SEQ BR = 2, A

XAF PRV -

XAT PRV -

XB SEQ BR = 3 , B

XBO FLOPS GP = 06, 08

XBF PRV -
XBHEX BI DI = 4, 6 : BI6 = 2D:

BS(I-2) = 0, 1, 2

XBSR FLOPS GP = 14, 15, OA, OS, 04, 09:
AS(O) = 1 : AD = 4, 5

XBSRO FLOPS GP = 14, 15, OA, OS, 04, 09;
AS(O) = 0: RS(O) = 1 :
LS(O) = 1 - refer to Note

XBSRI FLOPS GP = 14, 15, OA, OS, 04, 09
AS(O) = 0: RS(O) = 0:
LS(O) = 1 - refer to Note

XBT PRV -
XE SEQ BR = 6, E

XEF PRV -

XET PRV -
XF SEQ BR = 7, F

XFF PRV -

C-19

WORD AREA

XFT PRY

XL SEQ

XLO SEQ

XLI SEQ

XLF PRY

XLT PRY

XOR RALU

XORC RALU

XR SEQ

XRF PRY

XRT PRY

XW SEQ

XWF PRY

XWT PRY

Y BI-SRC

BI-DEST

YBAY PRY

YGJW PRY

Y1NC PRY

YLOD PRY

YMUX PRY

YOLD PRY

YR16 B1

YREL PRY

YRELOC BI

C-20

ENCODING

-

BR = I, 9

BR = I, 9; NA(O) = 0

BR = I, 9 ; NA(O) = I

-
-

AF = 6, E

AF = 7, F

BR = 4, C

-
-

BR = 5, D

-

-
DI = 4, 6 ; BI6 = 24;
[BS = 02, 03, 07, 08,
lA or BS(O-I) = 2]

BS = 08, 04, 06, OC,

-
-
-
-
-
-

BS = OB

-
BS = OA

09, OA,

lC

OB,

'f \
l'-l

(

WORD AREA ENCODING

YSELECT BUS BS = 02, 08, 09, OA, OB
C = 0

Z BI DI = 4, 6 : BI6 = 2B:
BS(1-2) = 0, 1 , 2

ZERO RALU AS(1-3) = 2, 3, 4, 7: may also
affect setting of AF depending
microprocessor function

ZRO FLOPS GP = 16, OA

ZRl FLOPS GP = 17, 05

ZRAUZ FLOPS GP = 18, 02, 08: AS(O) = 1

ZRAUZ20 FLOPS GP = 18, 02, 08: AS(O) = 0:
LS(O) = 1 - refer to Note

ZRQLT FLOPS GP = OE

•

NOTE

If ADDSE or ADDISE is the microprocessor function,
then LS(O) = 0

Table C-l Register File Operand Encodings

When a register file location is specified as SRCI or
SRC2 in the microprocessor area:

1. AS(1-3) equals 0, 1, 4, or 5: LS and SM are set
according to Table C-3, or

2. AS(1-3) equals 1 or 3: RS and SM are set according
to Table C-3.

• When a register file location is specified as DEST in
the microprocessor area, AD equals 3, 2, 4, 5, 6, or
7: RS and SM are set according to Table C-3.

• When a register file location is specified as the
internal bus source, AD equals 2: LS and SM are set
according to Table C-3, and

1. DI equals 1 or 2, or

2. BI6 equals 26 and D1 equals 0 (L4) , or

3. BI6 equals 20 and DI equals 5 (R8) •

on

C-21

C-22

Table C-2 RAM Location Operand Encodings

• LS and SM are set according to Table C-3.

• If a RAM location is specified as the internal bus
source, 01 equals 7, BI6(0-l) equals 3, and BS(1-2)
equals 0, 1, or 2.

• If a RAM location is specified as the internal bus
destination, 01 equals 6 or 2.

Table C-3 LS/RS and SM Encoding Values (Sheet 1 of 2)

REGISTER RAM
FILE LOCATION LS/RS SM

BO RAMS 4 -
B1 RAM 9 5 5
B2 RAMA 5 3
B3 RAMB 5 a
B4 RAMC 6 5
B5 RAMO 7 5
B6 RAME 6 0 or 3
B7 RAMF 7 a
BB - 7 6
BB3 - 5 6
BBE - 6 6
BM - 7 2
BM3 - 5 2
BME - 6 2
BN - 7 1
BN3 - 5 1
BNE - 6 1
00 RAMO 0 -
01 RAMI, Ml 1 5
02 RAM2, M2 1 3
03 RAM3, M3 1 0
04 RAM4, M4 2 5
05 RAMS, M5 3 5
06 RAM6, M6 2 0 or 3
07 RAM7, M7 3 0
OB MB 3 6
OB3 MB3 1 6
OBE MBE 2 6
OM MM 3 2
OM3 MM3 1 2
OME MME 2 2
ON MN 3 1
ON3 MN3 1 1
ONE MNE 2 1
REGSEL RAMSEL 7 7

---~---~--------

(

(-

Appendix D

Summary of Restrictions

This appendix provides a list of firmware coding restrictions
for each CPU area. For a number of these restrictions, viola­
tions will result in an "E29 VALUE ASSIGNMENT CONFLICT" diagnos­
tic message. An asterisk (*) specifies that the assembler might
not diagnose violations of the indicated restriction (i.e.,
restrictions that depend on the step just previously executed, or
that include operands which imply other operands).

Microprocessor Area

1. If SRCl, SRC2, and DEST all specify register file loca­
tions, then DEST must be the same as either SRCI or SRC2.

2. If two register file mnemonics are used among SRCl, SRC2,
and DEST, then both mnemonics must be from the same
group, as shown in Table D-l.

3. If SRCI or SRC2 is a "restricted selection" register file
operand (refer to Table D-2) and a FLOPS operand or firm­
ware sequencing condition forces AUZ, CRY, and OVFL to
detect on 20 bits (refer to Table D-5), the restricted
selection operand must be a B register or REGSEL. This
restriction does not apply if ADDSE or ADDlSE 1S
specified.

4. If a shift modifier (SL, DL, SR, or DR) is specified,
DEST must specify a register file location.

*5. If a register file operand is specified as a function of
fields in the F/SEL instruction registers, and the firm­
ware step just previously executed altered the contents
of SEL, those operands that depend on SEL will use its
previous contents (i.e., the contents before SEL was
altered at the end of the firmware step just previously
executed) •

6. The following microprocessor functions have special
restrictions on their operands.

D-l

D-2

FUNCTION SRCI SRC2 DEST

ADDSE RF or Q only D register only If DEST and SRCI
both RF, DEST
must = SRCI.

ADDISE o only D register only

ANDC Not B1 Not 0 If SRCl, SRC2, and
If SRCI = ZERO, DEST all RF, DEST
SRC2 must be BI. must = SRC 1.

DECR Not ZERO - -
INCR Not ZERO - -

Definition

RF = Register file location.

7. SRCI and SRC2 must not both be ZERO, nor both 0, nor both
BI.

Internal Bus Area

1. When a register flle location is specifled as the inter­
nal bus source, there are restrictions on the micropro­
cessor area microinstruction, if specified. OEST must be
a register file location from the same group, as shown in
Table 0-1. No shift modlfier may be specified. If a
"restricted selection" register file operand (refer to
Table 0-2) is present, the internal bus source must be
the same operand.

2. A SRCMOO operand (R8 or L4) may be speclfied only when
the source is from the microprocessor area.

3. If a RAM locatlon is specifled as an internal bus source
or destination, the following restrictions apply:

• A RAM location may not be an internal bus source and
destination simultaneously.

• If any register flle operand is specified in the
microprocessor microinstruction, the RAM location must
corne from the same group, as shown in Table D-l.

• If a "restricted selection" register file operand
(refer to Table 0-2) is present in the microprocessor
microinstruction or a register file location is speci­
fied as the internal bus source, the RAM location must
"correspond" to the register file operand as shown in
Table 0-3.

(

(

r

4. "I" may not be an internal bus destination if any of the
follo~ing is the internal bus source:

• BDH
• BPH
• H
• HLB
• I
• LVL
• MMU
• P
• PANEL
• S
• XBHEX
• Y

• Z

• Constant category
• Microprocessor source with SRCMOD operand.

5. When a constant of the form xxyz#, IDCy, or IDSy is
specified as the internal bus source, there are restric­
tions on the firmware sequencing microinstruction. The

. second least significant hexadecimal digit of all address
value operands (bits 3 through 6 of an 11 bit value) must
equal y. In the Transparent mode, if no firmware
sequencing microlnstruction is specified, the second
least significant hexadecimal digit of *+1 must equal y.

*6. FLOPS operands in the GP or CTR categories, NOCHEK, and
VALIDB may not be specified if any operand from the other
internal bus destinations category is used, except as
noted in Table D-4 and under Miscellaneous Hardware Area,
Item 5.

*7. If BD, BP, or RUP is the internal bus source, and I is an
internal bus destination or a FLOPS operand from the
indicator register (I) category is speclfied, bits 0
through 3 of the internal bus are undefined.

*8. If a register file or RAM location is specified as a
function of fields in the F/SEL instruction registers and
the firmware step just previously executed altered the
contents of SEL, those operands that depend on SEL will
use its previous contents (i.e., the contents before SEL
was altered at the end of the firmware step just previ­
ouslyexecuted).

*9. Use of BP or BPH as an internal bus source automatically
causes P to be incremented.

D-3

D-4

Megabus Interface Area '

1. A Megabus interface area microinstruction may not be ~J
specified if BD, BDH, BP, BPH, MMU, P, RUP, or Y is the
internal bus source or if P, Y, YR16, or YRELOC is an
internal bus destinatlon, except as follows:

MICROINSTRUCTION

BUS INCP
BUS INCY
BUS MMURDACC
BUS MMUSELECT
BUS MMUWRACC
BUS PSELECT
BUS PURGE
BUS YSELECT
RDREQ NORMAL
RDREQ CHGLOCK
RDREQ 1-0
RDREQ NOCACHE
RDREQP.
WRT CHGLOCK
WRT 1-0
WRT 1-0, INCY
WRT INCY
WRTBYTE CHGLOCK
WRTBYTE 1-0
WRTBYTE 1-0, INCY
WRTBYTE INCY
WRTWORD CHGLOCK
WRTWORD 1-0
WRTWORD I-a, INCY
WRTWORD INCY

PERMISSIBLE
BI SOURCES PERMISSIBLE BI DESTINATIONS

P
BD, BDH, Y

Y
MMU

Y
P
P
Y
Y
Y
Y
Y

P, Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

*Implies Y as BI destlnation

Y
P, Y, YR16, YRELOC

P (requires Y as source)

2. An internal bus source must be specified in any step in
which a WRT, WRTBYTE, or WRTWORD is specified.

3. The ALU result may not be the internal bus source in the
same step in which a WRT, WRTBYTE, or WRTWORD is
specified.

*4. BUS PURGE must be specified in some step prior to one
which includes both RDREQP and BI, Y, P.

Miscellaneous Hardware Area

1. If a FLOPS operand from the indicator register (I) cate­
gory is used, the following internal bus sources may not
be specified.

• BDH
• BPH

/'

• H
• HL8
• I

• LVL
• MMU
• P
• PANEL
• S
• XBHEX
• Y
• Z
• Constant Category
• Microprocessor source with SRCMOD operand.

*2. At most one FLOPS operand from the following group may be
specified in a single step: CTRO, CTRl, NOCHEK, VALIDB,
or GP category (except as noted in Table D-4 and in Item
5 below).

*3. FLOPS operands from the GP category and internal bus
destinations from the "other destinations" category may
only be combined as shown in Table D-~.

4. FLOPS operands or firmware sequencing conditions which
force microprocessor signals, AUZ, CRY, and OVFL to
detect on 16 bits may not be specified simultaneously

(with FLOPS operands or firmware sequencing conditions
-' which force AUZ, CRY, and OVFL to detect on 20 bits

(refer to Table D-5).

*5. CTRO and CTRI imply XBSR unless XBO, XBSRO, or XBSRI is
specified. P is incremented when these operands are
used. CTRO restricts bit 1 (assuming II-bit values) of
flrmware sequencing address value operands to 0 and CTRI
restricts bit 1 to 1.

*6. ICQSR or XBSR may be specifled only when a rlght shift
(SR or DR) is specified in the microprocessor micro­
instruction.

7. Use of XBSRO requires any register file microprocessor
operand that is not a "restricted selection" (refer to
Table D-l) to be a B register. Use of XBSRI requires any
register file operand that is not a restricted selection
to be a D register.

*8. Operands in the MMU category imply other firmware func­
tions as follows:

D-5

D-6

OTHER FUNCTIONS WHICH OVERRIDE
OPERAND IMPLIED FUNCTION IMPLIED FUNCTION

DDLEQO XORC
NOCHEK RING CALC INCR, ADDl, AND, SUB
NONPROC ANDC
RINGCALC XOR
RINGINIT OR COPY
VALIDa SUB DDLEQO, NONPROC, RINGINIT

Firmware Sequencing Area

1. When a constant of the form xxyz#, IDCy, or IDSy is
specified as the internal bus source, there are restrlc­
tions on the firmware sequencing microinstruction. The
second least significant hexadecimal digit of all address
value operands (bits 3 through 6 of an II-bit value) must
equal y. In the Transparent mode, if no firmware
sequencing microinstruction is specified, the second
least significant hexadecimal digit of *+1 must equal y.

2. FLOPS operand CTRO restricts bit 1 (assuming II-bit
values) of address value operands to 0, and CTRI
restricts bit I to 1.

·3. If both operands of a condition specify address values
(legal in Transparent mode only). one operand must equal
the other operand ORed with 3.

4. Firmware sequencing conditions or FLOPS operands which
force microprocessor signals AUZ, CRY, and OVFL to detect
on 16 bits may not be specified simultaneously with con­
ditions or FLOPS operands which force AUZ, CRY, and OVFL
to detect on 20 bits (refer to Table D-5) •

5. When XLO is used as an operand of a condition, bit 0
(assuming II-bit values) of the other operand must be O.

When XLI is used, bit 0 must be 1.

*6. IFQSR may be used only when a right shift (SR or DR) is
specified in the microprocessor microinstruction.

7. IFDDLEQO may be used only when DEST in the microprocessor
area microinstruction is Q or null.

*8. XA, XB, XE, XF, XR, or XW may not be specified simulta­
neously with F or FR8 as an internal bus destination.

9. At most, one of the following group may be an operand of
a Transparent mode condition: XA, XB, XE, XF, XL, XLO,
XLI, XR, or XW.

(....

Table 0-1 Register File/RAM Locations Legal Groups

• DO, 03, 06, 07, BO, B3, B6, B7, M3, M6, M7, RAMO,
RAM3, RAM6, RAM7, RAMS, RAMB, RAME, RAMF.

• 00, 01, 04, OS, BO, Bl, B4, B5, Ml, M4, M5, RAMO,
RAMI, RAM4, RAMS, RAMS, RAM9, RAMC, RAMO.

• DO, 02, 06, BO, B2, B6, M2, M6, RAMO, RAM2, RAM6,
RAMS, RAMA, RAME.

• 00, ON, ON 3, ONE, BO, BN, BN3, BNE, MN, MN3, MNE,
RAMO, RAMS.

• 00, DB, OB3, OBE, BO, BB, BB3, BBE, MB, MB3, MBE,
RAMO, RAMB.

• 00, OB, OB3, OBE, REGSEL, MB, MB3, MBE, RAMO, RAMSEL.

• 00, OM, OM3, OME, BO, BM, BM3, BME, MM, MM3, MME,
RAMO, RAMS.

Table 0-2 Register File "Restricted Selection" Criteria

A Register file operand which is microprocessor SRCI or
SRC2 or internal bus SRC is a "restricted selection"
operand if:

• It is the internal bus source

• It is SRC2 for the functions ANOC, AOOSE, or AOOISE

• The microprocessor OEST is a different register file
operand

• The other microprocessor source is Q

• The other microprocessor source is B1

• The other microprocessor source is another register
file operand which does not satisfy the restriction{s)
(i.e., if SRCI and SRC2 are both register file
operands, one must be a "restricted selection"
operand) •

0-7

Table 0-3 Register File/RAM Location
Operand Correspondence

REGISTER FILE CORRESPONDING RAM
OPERAND LOCATION OPERAND

DO RAMO
01-07 RAMI-RAM7 or MI-M7
BO-B7 RAM8-RAMF
REGSEL RAMSEL
DB MB
DB3 MB3
DBE MBE
OM MM
DM3 MM3
DME MME
ON MN
DN3 MN3
ONE MNE

Table 0-4 Permissible GP Combinatlons (Sheet 1 of 2)

DCSTINATION(S) OF INTERNAL BUS GP CATEGORY OPERANDS

PANEL None

PANEL4 None

LVL None

RING None

LINK None

H,SEL None

H SGBI4

SEL SHll

FRS SGI

FR8 SGBI19, MS4-9EQO

F XBO

F XBO, MSO, SHOO, ZRAUZ

F XBO, MSO, SHOO, ZRAUZ20

None of the above SGB14, MSNBI19, ZRAUZ

None of the above SGBI4, MSNBI19, ZRAUZ20

D-8

/('\
'''\ •.)

Table 0-4 Permissible GP Combinations (Sheet 2 of 2)
(

OESTINATION(S) OF INTERNAL BUS GP CATEGORY OPERANDS

None of the above SGBI4, SH2NSG

None of the above SGBI4, MSl

None of the above SGBIl9, MSl

None of the above SGBIl9, ZRQLT

None of the above SGBI4, XBSR

None of the above SGBI4, XBSRO

None of the above SGBI4, XBSRl

None of the above ZRO, XBSR

None of the above ZRO, XBSRO

None of the above ZRO, XBSRl

None of the above ZRl, XBSR

None of the above ZRl, XBSRO

None of the above ZRl, XBSRl

None of the above SHOO, XBSR

None of the above SHOO, XBSRO

None of the above SHOO, XBSRl

None of the above SHlO, XBSR

None of the above SHlO, XBSRO

None of the above SHlO, XBSRl

None of the above Any single GP-category operand,
except ZRQLT, XBO, MSNBIl9, or
MS4-9EQO

0-9

Table 0-5 Operands Affecting AUZ, CRY, and OVFL

FORCE FORCE
OPERAND TYPE 16-BIT DETECT 20-BIT DETECT

FLOPS Operands IBNAZ IBNAZ20
ICRY ICRY20

IGL20
MSCRY MSCRY20

WRAP
XBSR XBSRO

XBSRI
ZRAUZ ZRAUZ20

Conditions IFAUZ IFAUZ20
IFCRY IFCRY 20
IFOVFL IFALUO
IFSHZ IFSHZ20

"\

0-10

(

Appendix E

Instruction Register Maps

The maps supplied in this appendix represent the decoding
patterns available to the microprogrammer via the firmware se­
quencing conditions and reserved operands. The patterns were
selected to facilitate interpretation of the native instruction
set: their utility for user firmware will depend on the similar­
ity of structure between the user-defined instructions and those
of the native set.

The first group of maps (see Tables E-I through E-5) define
the ·splatter" branches available in the Transparent mode. Each
splatter, when it is used, generates a specific lO-bit address as
a function of the instruction regist~r ,.content (and a few other
bits of context). ~eiTiOst significant bl..L_andtne-least slgnLf­
icant bit of each such address are always zero. The IO-bit ad-I
dress is relative to the lK bank of the firmwware which contai~
the alternate next address. Thus, for example, if register F/
conta ined 888#, the code: !' _ /

IFF5 (-1;.&# ,XW

would transfer control to location 964#.

In the native firmware, the five splatter branches function
as follows:

XA - decode the Address syllable of those instructions that
use one, and the op-code of others. Column XA of Table
E-l represents either the generated lU-bit address, or a
note directing the reader to a subsequent table for
further information. XA normally is used with SIGN = o.

XB - decode the address syllable of data descriptors in com­
mercial (Business) instructions. Column XB of Table E-l
represents either the generated lO-bit address or a note
directing the reader to a subsequent table for further
information. XB normally is used with SIGN = 1.

E-l

XE - decode the o'p-code of most single-operand and double- f -~.
operand instructions for Execution. Column XE of Table ,_~
E-l represents the generated lO-bit address (modifiers
Land M are defined in the notes.

XR - classify the op-code/address syllable as to operand
type, and Read the operand, after completing any indi­
rect addressing and indexing actions necessary. Table
E-2 defines, as a function of address syllable type,
which column of Table E-l represents the generated lU­
bit address (the control flop NEWXR helps distinguish
between reentrant XR references).

XW - classify the op-code/address-syllable as to operand
type, and Write the result accordingly. Table E-3
defines, as a function of address syllable type, which
column of Table E-1 represents the generated 10 bit
address.

Table E-6 defines four testable "conditions" which (in the
native firmware) categorize instructions as to data field size:
bit, ha1fword, word, double-word, or quadruple-word (the only
native quadruple-word operands are scientific data, which depend
on the values of bits 2,4, and 6 of register M4). Also shown in
the last column of Table E-6 is the set of instructions for which
t.he "memory lock" (CHGLOCK) funct ional ity is invoked.

E-2

,. (.

Table E-l

f' REGISTER BITS

0-3 4-7 8-11

a
o
o
o
o

1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

-t
9-F
9-F
9-f'
9-f'
9-f'
9-f'
9-f'
9-f'
9-f'
9-f'
9-f'
9-F
9-f'
9-F
9-F
9-f'
9-F
9-F
9-F
9-F
9-F
9-F
9-F
9-F
9-F
9-F
9-F
9-F
9-F
9-F
9-F
9-F

o O-F
1 O-f'

2-B O-F
C-E O-F

f' O-F
o O-F

1-2 U-F
3-6 O-F

7 O-F
8-B O-F
C 0-7
C 8-F
o 0-7
o 8-F
E 0-7
E 8-F
F 0-7
F 8-F
o 0-7
o 8-F
1 0-7
1 8-F
2 0-7
2 8-F
3 0-7
3 8-F
4 0-7
4 8-F
5 0-7
5 8-F
6 0-7
6 8-F
7 0-7
7 8-F
8 0-7
8 8-F
9 O-F
9 8-F
A 0-7
A 8-F
B 0-7
B 8-F
C 0-7
C 8-F
o 0-7
o 8-F
E 0-7
E 8-F
F 0-7
F 8-F
a 0-7
a 8-F
1 0-7
1 8-F
2 0-7
2 8-F
3 0-7
3 8-F
4 0-7
4 8-F
5 0-7
5 8-F
6 0-7
6 8-F
7 0-7
7 8-F
8 0-7
8 8-F
9 0-7
9 8-F
A 0-7
A 8-F
a 0-7
a 8-F
C 0-7
C 8-F
o 0-7
o 8-F
E 0-7
£ 8-F
F 0-.
F 8-1'

XA

note AG
lEO

note 1010
lEO

note AID
note AH

lEO
note AI3
note All
note 1'.12

1i10
lAO
180
lAO
180
lAO
180
lAO

note AS1
note 1'.50
note AS1
note 1050
note 1051
note 1'.50
note ASO
note 1'.53
note ASO
note 1050
note ASO
note ASO
note AS1
note 1'.50
note AS1
note AS1
note AS1
note As1
note AS1
note 1050
note AS1
note 1'.51
note AS1
note AS3
note 1'.51
note 1'.50
note Asl
note 1'.52
note ASO
note 1'.51
note AsO
note 1'.50
note ASO
note 1'.50
note ASO
note 1'.50
note ASO
note ASO
note AsO
note AS3
note 1050
note 1.50
note ASO
note 1.50
note 1.50
note ASO
note ASI
note 1.51
note ASO
note ASO
note 1.50
note AsO
note ASO
note 1051
note ASO
note 1.53
note 1050
note 1052
note 1050
note AS2
note 1051
note 1053
note AS1
note 1053

Main Splatter Map (Sheet 1 of 2)
Table £-1 Maln Splatter Map

XB X£ XR1

note BG 018 11.8
lCO 018 11'.8

note aIO 018 11'.8
lCO 018 11.8

note BIO 01a 11'.8
note aH 018 11'.8

1CO 018 11'.8
note all 018 11'.8
note Bl1 018 11.8
note all 018 11.8

lCO 03C 11'.8
lCO 03C 11.8
1CO 11C 11.8
lCO llC 11'.8
lCO OBI. 11.8
lCO OBI. 11'.8
lCO OFA 11.8
lCO OFA 11.8

note aSl 194 11.8
note aso 038 11.8
note aSl 194 1A8+2M
note aso 194 1A8+2M
note aSl 191'. 11.8
note aso 13C 11'.1.
note aso 038 11'.8
note aS3 058 11'.8
note BSO 156 11.6
note aso 196 11.6
note aso 038 11.8
note aso 038 1108
note aSl OSlo 11.8
note aso 038 11.8
note BS1 OBE 11'.8
note aSl OaE 11'.1'.
note aSl 19C 11.1.
note aS1 171'. 11.8
note as 1 17C 11.10
note aso 008 11.8
note aSl 15C 11.1.
note aSl lSI. 11.8
note aSl 1BC 11.1.
note aS3 058 11.8
note aSl OFE 11.8
note aso 176 11.6
note aS1 17E 11'.6
note aS2 006 lA8-2L
note aso 13d 11.8
note aS1 031'. 1108
note aso 05E 1108
note aso 05E 11.8
note aso I;t~., 1108
note aso i03C \ 1101.
note asu 038, ; 1108
note SSO 11C . 11.1.
note aso DOlo' 1108
note aso OSC 1AA
note aso i 111. 11.8
note BS3 058 11.8
note aso aBC 11.8
note aso aBC 1AA
note aso DOC 1108
note aso DOC 11.10
note aso DEC 1108
note aso· DEC 1AA
note aSl lIE i 11.8
note aS1 DOE . lAA
note aso; 03C· 11.8
note aso: 15E 11.6
note aso I 11C· 11'.8
note aso, 15E 11.6
note asol OBA 11'.8
note aSl' OF8 1A8
note BSOI OFA, lAS
note as), 058' 1108
note 8soi 15E' 11.6
note 8S21 036· 1A8-2L
note 850: 18E,1 1106
note aS2: 116: lA8-2L
note aSl! 018,,1 11'.8
note aS3! 016! 1AS-2L
note as 1: OD£" 1AE
note as~ 136! 1AS-2L

XR2 XR3 XR4 XW1

1AE
1AE
1AE
lAE
1AE
1AE
1AE
1AE
1AE
1AE
1A2
1102
11.2
11.2
11'.2
11'.2
1102
11'.2
1B4
11.2
IB4
1B4
11'.2
11.2
1102
laO
11.2
11.2
11.2
11.2
1102
11.2
1a6
1B6
1B8
1a8
1a8
11.2
1a8
1B8
188
180
1B6
1102
1B6
lA2
11.2
11.2
186
186
11.2
11'.2
1102
1102
11.2
lA2
11.2
lAE
11'.2
1102
11.2
11.2
11'.2
1102
IB6
186
11.2
186
11.2
186
1102
11.2
11.2
182
186
11.2
186
1102
11'.2
1102
186
186

lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
1AU
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
1AU
lAO
lAO
11'.0
lAO
lAU
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAU
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO
lAO

1104
11'.4
1A4
lA4
lA4
1104
lA4
1104
lA4
1104
1104
11'.4
1104
11'.4
1104
11.4
1104
1104
1104
11'.4
1104
11'.4
1104
11'.4
1104
11'.4
lA4
11'.4
lA4
11'.4
1104
11'.4
11'.4
11'.4
11'.4
11'.4
11'.4
11'.4
11'.4
11'.4
1104
11.4
1104
11'.4
11'.4
11'.4
11'.4
11'.4
11'.4
11.4
1104
1104
1A4
11'.4
11'.4
1104
1104
1104
1104
1A4
1104
11.4
1104
1104
lA4
1104
1104
11'.4
lA4
1104
1104
1104
11.4
11'.4
1104
11'.4
11.4
lA4
1104
11.4
lA4
11'.4

160
160
160
160
160
160
160
160
IOU
160
160
160
160
160
164
164
164
164
164
164

164+2M
164+2M

164
164
164
160
168
168
164
164
164
164
164
166
H4
164
164
164
164
164
164
160
164
168
164

164+4L
164
164
164
164
164
164
1b4
164
164
164
164
160
16U
164
160
164
160
164
164
166
160
164
160
164
lb4
164
164
160
164

164+4L
164

164+4L
164

164+4L
164

164+4L

XW2

160
160
160
160
160
160
160
160
160
160
160
160
160
160
16C
16C
loC
16C
16C
16C

16C+2M
16C+2M

16C
16C
16C
160
16A
161.
HC
16C
16C
16C
16C
16E
16C
16C
lOC
16C
16C
16C
16C
160
16C
16A
16C
16A
16C
16C
16C
16C
16C
16C
16C
16C
lOC
16C
16C
160
160
16C
160
16C
16U
16C
16C
16E
160
16C
160
16C
16C
16C
16C
160
16C
16A
16C
16A
16C
1610
16C
16A

E-3

Table E-l Main Splatter Map (Sheet 2 of 2)

where:

L = 1 if LAF; otherwise, L = 0

M = 1 if MIse v ZERO; otherwise, M = 0

NOTES

AG - refer to Table E-4, variation XAG
AH - refer to Table E-4, variation XAH
AID - refer to Table E-4, variation XAI, column 0
All - refer to Table E-4, variation XAI, column 1
AI2 - refer to Table E-4, variation XAI. column 2
AI3 - refer to Table E-4, variation XAI, column 3
ASO - refer to Table E-4, variation XAS, R=O, Z=O
ASI - refer to Table E-4, variation XAS, R=O, Z=l
AS2 - refer to Table E-4, variation XAS, R=l, Z=O
AS3 - refer to Table E-4, variation XAS, R=l, Z=l
BG - refer to Table E-5, variation XBG
BH - refer to Table E-5, variation XBH
BIO - refer to Table E-5, variation XBI, column 0
811 - refer to Table E-5, variation XBI, col umn 1
BSO - refer to Table E-5, variation XBS, R=O, Z=O
BSI - refer to Table E-5, variation XBS, R=O, Z=l
BS2 - refer to Table E-5, variation XBS, R=l, z=o
BS3 - refer to Table E-5, variation XBS, R=l, Z=l

Table E-2 Key to XR

~I SEL 0 1-3 4 5 6 7

0 XR2 XRl XR2 XR2 XR2 XR2
1-7 XR2 XRl XR2 XR3 XR2 XR2

8 XR4 XR4 XR4 XR2 XR2 XR2
9-B XR4 XR4 XR4 XRl XRl XRl

C XR4 XR4 XR4 XR4 XR4 XR4
D-F XR4 XR4 XR4 XRl XRl XRl

NOTE

If XRNEW = 0, use XR2 instead of XR1.

Table E-3 Key to XW

~I S'EL 0-4 5 6-7

0 XWI XWI XWI
1-7 XWI XW2 XWl

8 XWI XWl XWI
9-F XWI XW2 XWl

:£-4

:'~!
\~",,-

Table E-4 XA Variations (Sheet 1 of 2) -
~) SEL a 1 2 3 4-5 6 7 8-F

a lE2 lFC lF2 lFO lEO lFE lEO lCO
1 lE4 lFE lFO lFO lEO lFE lEO ICO
2 IE6 lEA IEC lFO lEO lFE lEO lCO
3 lE8 lEA lF2 lFO lEO lFE lEO lCO
4 lEA lEO lF2 lFO lEO lEO lEO lCO
5 lEA lEO IFO lFO lEO lEO lEO lCO
6 lEA lEO lF2 lEC lEO lEO lEO lCO
7 lEA lEO lFO lEC lEO lEO lEO lCO
8 lEE lEO lF2 lEC lEO lEO lEO lCO
9 lEO lEO lFO IF4 lEO lEO lEO lCU

;;A lF8 lEO lFO IF2 lEO lEO lEO lCO
B lFA lEO lF4 lF2 lEO lEO lEO lCO
C lFC lEO lFO lF2 lEO lEO lEO lCO
D lFE lEO lFO lF2 lEO lEO lEO lCU
E lEO lEO lF6 lF6 lEO lEO lEO lCO
F lEO lEO lEC lF6 lEO lEO lEO lCU

VARIATION XAG (SIGN = 0)

~ SEL 0 1-3 4 5-6 7 8 9~B C D-E F

(~ I 0 lE8 lE8 lE8 lE8 lE8 lC8 lC8 lC8 lC8 lca
1-7 lF8 lFA lFA lFA lFA 108 IDA IDA IDA IDA

8 lE2 lE4 lE2 lE8 lEC lC2 lC4 lC2 lC8 ICC
9-F lF8 lFA lFA lFA lFA 108 IDA IDA IDA IDA

VARIATION XAG (SIGN = 1)

F(8-11) 0 1 2 3 4 5 6 7 8 9 A B C D E F

XAH OAO OA2 OA4 OA6 OA8 OAA OAC OAE OCO OC2 OC4 OC6 OCB OCA OCC OCE

VARIATION XAH·

~ F (9-11) , SE 0 1 2 3

00 OE4 120 l4U 160
01 OE2 120 140 160

02-3F OEO 122 142 162
40-7F OE6 122 142 162

VARIATION XAI

Table E-4 XA Variations (Sheet 2 of 2) (, .. .,.\
_~~;'

~ SEL a 1-3 4 5 6 7

a 090 092 084 09E 09E 094+2Z
1-7 080 082 086 098+2R 0118 OBA

8 090 092 084 09E 09E 084
9-B 080 082 086 08C 08C 08C
C 080 082 086 09E 09E 09E

D-F 080 082 086 08E 08E U8E

VARIATION XAS

Table E-5 XB Variations (Sheet 1 of 2)

~ SEL a 1 2 3 4-5 6 7 8-F

a lC2 lDC lD2 IDa lCO IDE lCO lCO
1 lC4 IDE 100 lDO lCO IDE lCO lCO
2 lC6 lCA ICC IDa lCO IDE lCO lCO
3 lC8 lCA lD2 lDO lCO IDE lCU lCO
4 lCA lCO lD2 IDa lCO lCO lCu lCO
5 lCA lCO IDa 100 lCO lCO lCO lCO
6 lCA lCO lD2 ICC lCO lCO lCO lCO
7 lCA lCO IDa ICC lCO lCO lCO lCO
8 ICE lCO lD2 ICC lCO lCO lCO lCO
9 lCO lCO lDO lD4 lCO lCO lCO lCO
A lD8 lCO IDa lD2 lCO lCO lCO lCO
B IDA lCO lD4 lD2 lCO lCO lCO lCO
C lDC lCO lDO lD2 lCO lCO lCO lCO
D IDE lCO IDa lD2 lCO lCO lCO lCO
E lCO lCO ID6 lD6 lCO lCO lCO lCO
F lCO lCO ICC lD6 lCO lCO lCO lCO

VARIATION XBG (SIGN = 0)

~ SEL a 1-3 4 5-6 7 8 9-B C D-E F

a lC8 lca lC8 lC8 lC8 lca lca lC8 lca lca
1-7 lD8 IDA IDA IDA IDA lD8 IDA IDA IDA IDA

a lC2 lC4 lC2 lC8 ICC lC2 lC4 lC2 lca ICC
9-F lD8 IDA IDA IDA IDA lD8 IDA IDA IDA IDA

VARIATION XBG (SIGN = 1)

E-6

Table E-5 XB Variations (Sheet 2 of 2)

F(B-II) 0 I 2 3 4 5 6 7 8 9 A B C 0 E F

XBH ICO IC2 IC4 IC6 ICB ICA ICC ICE ICO IC2 IC4 IC6 ICB ICA ICC ICE

VARIATION XBH

0 1

00 lC4 lCO
01 lC2 lCO

02-3F lCO lC2
40-7F lC6 lC2

VARIATION XBI

~ SEL 0 1-3 4 5 6 7

0 lDO lD2 lC4 IDE IDE lD4+2Z
1-7 lCO lC2 lC6 lD8+2R lC8 lCA

8 lDO lD2 lC4 IDE IDE lC4
9-B ICO IC2 lC6 ICC ICC ICC

C lCO lC2 lC6 IDE IDE IDE
D-F lCU lC2 lC6 ICE ICE ICE

VARIATION XBS

E-7

Table E-6 Test Conditions

ENABLE
F (0- J) F(4-7) F(8-11) IFHALF IFWORD IFGTWD IFQUAD CHGLOCK

0 0 U-l 0 1 1-M 0 0
0 0 2-3 0 1 I-M 0 1
0 0 4-5 0 1 I-M 0 0

0 0 6-7 0 1 1-M 0 1
0 l-E O-F 0 1 I-M 0 0
0 F U-7 0 1 0 0 0
0 F 8-F 0 1 1-M 0 0

1-7 0 O-F 0 0 0 0 0
1-7 1-2 O-F 0 1 1-M 0 0
1-7 3-6 O-F 0 0 0 0 0
1-7 7-B O-F 0 1 1-M 0 0
1-7 C-F O-F 0 0 0 0 0

8 0 O-F 0 1 0 0 0
8 1 O-F 1-M M 0 0 0
8 2 0-7 0 1 0 0 0
8 2 8-F 0 0 0 0 0
8 3 O-F 0 1 0 0 0
8 4 O-F 0 0 1 0 0
8 5 O-F 0 1 0 U 0
8 6 O-F 0 1 0 0 0
8 7 0-7 0 1 0 0 0
8 7 8-F 1 0 0 0 0
8 8 0-7 0 0 0 0 1
8 8 8-F 0 1 0 0 1
8 9 0-7 0 0 0 0 1
8 9 8-F 0 1 0 0 0
8 A 0-7 0 0 0 0 1
8 A 8-F 0 1 0 0 1
8 B 0-7 0 0 0 0 1
8 B 8-F 0 1 0 0 0
8 C 0-7 0 1 0 0 0
8 C 8-F 0 0 1 0 0
8 D 0-7 0 0 1 0 0
8 D 8-F 0 1-L L 0 0
8 E-F O-F 0 1 0 0 0

9-F 0-2 0-7 0 1 0 0 0

9-F 0-2 8-F 1 0 0 0 0
9-F 3 O-F 0 1 0 0 0
9-F 4-7 0-7 0 1 0 0 0
9-F 4-7 8-F 1 0 0 0 0
9-F 8-9 0-7 0 1 0 0 0
9-F 8-9 8-F 0 0 1 S 0
9-F A-B O-F 0 1 0 0 0
9-F C-D 0-7 0 0 1 S 0
9-F C-D 8-F 0 1-L L 0 0
9-F E-F 0-7 0 1 0 0 0
9-F E-F 8-F 0 1-L L 0 0

E-8

where:

L = 1 if LAF: otherwise, L = 0

M = 1 if MIse v ZERO; otherwise, M = 0

S = selected bit of scientific mode register (M4) or F:

F(O-3) = 9 ABe D E F

S = M4(2) M4(4) M4(6) F(5) M4(2) M4(4) M4(6)

E-9/E-IO

\

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

M&TO HARDWARE PUBLICATIONS
USER COMMENTS FORM

DOCUMENTTITLE: _______________________ _

PART NO.: __________ _

ORDER NO.: __________ _

ERRORS:

HOW DO YOU USE THIS DOCUMENT?

THEORY ____ 0
MAINTENANCE _0
TROUBLESHOOTING..D

OTHER: ______________________________________ __

DOES THIS MANUAL SATISFY YOUR REQUIREMENTS?

YES 0
IF NOT, PLEASE EXPLAIN ___________________________________ _

FROM: NAME DATE

TITLE

COMPANY

ADDRESS

I
I
I
I ,

·-------------------------------------1
FIRST CLASS

Permit No. 39531

Waltham, Ma.

I11IIIIIIIIIIIIIIIIIIIIIIIlJIIIIIIIIIIIIIIIIIIIIIIIIIIIII111111111111111111

Business Reply Mail NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTA G E WILL BE PAID BY 11

MAlL STATION 872A
HARDWARE PUBLICATIONS, BILLERICA

HONEYWELL INFORMA TlON SYSTEMS INC.
200 SMITH STREET
WALTHAM, MA. 02154

I
I
I
I
I
I ,
r I -
I
I
I
I
I
I
I
I
I --------------------------------------.

Honeywell

I
I
I
I
I
I
I
I
I
I . I ~

\
I ". I

I
I
I
I

'\

PLEASE fOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

M&TO HARDWARE PUBLICATIONS
USER COMMENTS FORM

DOCUMENT TITLE: _______________________ _

PART NO.: __________ _

ORDER NO.: __________ _

ERRORS:

HOW 00 YOU USE THIS DOCUMENT?

THEORY ____ D
MAINTENANCE __ 0
TROUBLESHOOTINGD

OTHER: ______________________________________ _

DOES THIS MANUAL SATISFY YOUR REQUIREMENTS?

YES 0
IF NOT, PLEASE EXPLAIN __ _

FROM: NAME DATE

TITLE

COMPANY

ADDRESS

I
I
I
I
I
~~ -
a' _
I
I
I
I
I
I
I
I
I
I

--------------------------------------1
FIRST CLASS

Permit No. 39531

Waltham. Ma.

II1III11I11J111111111111111111111111111111I111111111111111I

Business Reply Mail NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WI LL BE PAID BY 11

MAIL STATION 872A
HARDWARE PUBLICATIONS, BILLERICA

HONEYWELLINFORMA TlON SYSTEMS INC.
200 SMITH STREET
WALTHAM, MA. 02154

I
I
I
I
I
I
I

• I
I
I
I
I
I
I
I

.-------------------------------------~

Honeywell

~--

Honeywell
Honeywell Information Systems

In Ihe USA 200 Smith Sireet. MS 486 Waltham. Massachusens 02154
tn Canada 2025 Sneppard Avenull Eas1. W,llOwdale. Ontario M2J 1 W5

In MeXIco Avenlda Nuevo Leon 250 MexIco 11. 0 F

•
. .

FQ41 Rev. 0

