w
o &=
S Ouw
8,05
plEY 2B

TYPE CPF9509
WRITABLE CONTROL STORE
USER'S GUIDE

Document No.: 71010620-100 Order No.: FQ41, Rev. O

System Integrity Disclaimer

Honeywell normally assumes responsibility for assuring the e
compatible coexistence of the total computer system, including
hardware and software modules, as specified in appropriate
Honeywell literature. The assumption of this responsibility 1is
based on extensive planning, specification, stability, and
gualification testing of each component and of the integrated
system.

The Writable Control Store allows a user to control the underly-
ing hardware base of a Model 43 or higher system. Because user
microprogramming can bypass both the normal hardware and software
integrity controls, Honeywell cannot ensure system integrity,
compatibility, or performance once the WCS is utilized to execute
user generated firmware.

PREFACE

This manual describes how to use the Writable Control Store
(WCS) feature, enabling a user to successfully generate and exe-
cute firmware routines in the Central Processing Unit (CPU), and
includes a description of the Model 43/53 CPU. It 1is written to
provide a microprogrammer with an understanding of the micro-
instruction codes, the assembler, and the loading procedures to
perform the above tasks. It assumes that the reader has a work-
ing knowledge of the Level 6 architecture, the CPU, the asso-
ciated system software, and the applicable operation procedures.
For those who are unfamiliar with this information, 1t is recom-
mended that they familiarize themselves with the material con-
tained i1n the following support documentation.

e Honeywell Level 6 Minicomputer Handbook (Order No. AS22)
e GCOS 6 Program Preparation (Order No. CBUl)

® GCOS 6 Commands (Order No. CBO02) .

e GCOS 6 Assembly Language Reference (Order No. CBO07)

e GCOS o MOD 400 Program Execution and Checkout
(Order No. CB21)

e GCOS 6 MOD 400 System Building (Order No. CB23)

@ GCOS 6 MOD 4U0 Operator's Guide (Order No. CB24)

Copyright (©) 1978 Honeywell Information Systems Inc.

EN

Section

I

11

III

INTRODUCTION
1.1 General Characteristics
1.2 Using the WCS
HARDWARE
2.1 Microprocessor Area
2.2 Internal Bus Area
2.3 Megabus Interface Area
2.4 Miscellaneous Hardware Area
2.5 Firmware Sequencing Area
2.6 Master Clock Area and Timing Considerations
2.7 Entering and Leaving the WCS
2.8 Use of CPU Elements
2.8.1 Software Visible
2.8.2 Firmware Dedicated
2.8.3 Working Storage
2.8.4 Autonomous
MICROINSTRUCTIONS
3.1 Microprocessor Area
3.1.1 Syntax
3.1.2 Microprocessor Sources and
Destinations
3.1.3 Microprocessor Functions
3.1.4 Microprocessor Shift Operands
3.1.5 Microprocessor Examples
3.2 Internal Bus Area
3.2.1 Syntax
3.2.2 Internal Bus Sources
3.2.2.1
3.2.2.2 RAM Locations
3.2.2.3
3.2.2.4 Constants
3.2.2.5
Sources
3.2.3 Internal Bus Destinations
3.2.3.1
Registers
3.2.3.2 RAM Locations
3.2.3.3
3.2.3.4

CONTENTS

Sources from the
Microprocessor Area

Megabus Buffers

Other Internal Bus

Megabus Address

Indicator Register
Other Destinations

o
V]
Q
0]

1

[} [
N =

(I T T T T B
[l R el N Vo IR IR IV ARNS 2 I~ O I =
O UV =

[}

PPN NDNDND NN DD N —

|

www
|
W

LWWwwwwuww
[}
== oW

CE S S R)

w w
1o
—
LRY

Section

v

iv

CONTENTS

3.2.4 Internal Bus Examples

Megabus Interface Area

3.3.1 Syntax

3.3.2 Megabus Interface Functions
3.3.3 Megabus Interface Operands
Miscellaneous Hardwarc Area

3.4.1 Syntax

3.4.2 Indicator Register (I) Bits
3.4.3 Counter Register

3.4.4 MMU Controls

3.4.5 Other Hardware

3.4.6 FLOPS Operands and Restrictions
3.4.7 Miscellaneous Hardware Examples
Firmware Sequencing Area

3.5.1 Transparent and Sequential Mode

Differences

3.5.2 Transparent Mode Syntax
3.5.3 Sequential Mode Syntax

3.5.4 Conditions

3.5.5 Address Values

3.5.6 Firmware Sequencing Examples
Master Clock Ares

3.6.1 Syntax

3.6.2 Usage of Master Clock

Microinstructions
Examples of Firmware Routines

ASSEMBLY LANGUAGE

Elements of WCS Assembly Language
4.1.1 Mnemonic Codes
Symbolic Nomes
Constents
Statement References
Punctuation
Statement Formats
Firmware Statement
Pseudo-Op Statement
Blank Lines
Comment Lines
0l Statements
DEFAULT Statement
END Statement
EQU Statement
LABEL Statement
LIST Statement
NATIVE Statement
NLST Statement
NO LIST Statement
SEQUENTIAL Statement
TITLE Statement

e D e o o
. he S J
D

¥ N N N N Y g TRV SN N S ¢ TR S N S
e o & o o o o o e o D e o o .

. « 0 . o o . « o t o . o -
HOOONOWUMEd WNDHS B WO B WN

o

0

¥ S S S Y SN S S B S = T N SN S SN
!
HiE= O WO U & W

¢

C

Section

VI

CONTENTS

4.4 Interpreting WCS Assembly Listings
4.5 WCS Assembler Object Deck Format
4.6 Assembler Output Listing Error Messages
OPERATING AND SYSTEM DEBUGGING PROCEDURES
5.1 Using the WCS Assembler
5.2 Loading the WCS
5.2.1 Writable Control Store Load
(WCSLD) Command
5.2.2 Error Handling
5.3 Debugging WCS Microprograms
5.3.1 User Generic Not Invoked
5.3.2 Instruction Does Not Exit
5.3.3 Instruction Exits Via Unexpected
Trap
5.3.4 Instructions Executes and Produces
Unexpected Results
5.4 WCS Patch Procedure
5.5 Microcode Analyzer
5.5.1 Front Panel
5.5.1.1 Front Panel Keys
5.5.1.2 Front Panel Indicators
5.5.1.3 Internal Bus Display
5.5.1.4 Address Display
5.5.2 Normal Operation
5.5.2.1 Operate in Single Step
Mode
5.5.2.2 Return to Continous
Operation
5.5.2.3 Set Up a Halt Address
5.5.2.4 Halt at a Particular
Address
5.5.2.5 Disable Address Halt
5.5.2.6 Display the Current
Data
5.5.2.7 Display History
5.5.2.8 Synchronize Oscilloscope
PROGRAMMING CONSIDERATIONS
6.1 Logical and Physical Layout
6.2 Loading Firmware Image into WCS
6.3 Relationship of User Generics to WCS

Entry Points

Appendix A Writable Control Store Assembler Abort Codes

Appendix B Firmware Word Format

Appendix C Reserved Word List and Encodings

>
|

—

w

[GANE,1N0)]
[| [

|
~N oY Oy U W= =

[SANULNVANC, IS]

w
I R B I | |
[o o]

1
= s O WO
WNONNMHO O

ot LuUTL LT UT W

Section

CONTENTS

Appendix D Summary of Restrictions

appendix E Instruction Register Maps

Wwwww
LU
L VO S

>
|
Pt

|
w N

Vi

ILLUSTRATIONS

Hardware Configuration
Central Processor Area
Microprocessor Area
Internal Bus Area

Megabus Interface Area
Miscellaneous Hardware Area
Firmware Sequencing Area
Master Clock Area

Microprncessor Areea
Internal Bus Area
Megabus Interface Area
Link Register Operands

Relationship of Source File, Assembler,
Object File

Sample Output Listing

Sample File Dump

Front Panel

Typical Loading Procedure

Firmware Word Format

and

Page

D-1

‘o
2]
Q
o

NN DN DN
|
WOV W W

w v
|
Ll]
w

3-30
3-51

W/

e

-

N

—

O 0N W N

W= O

LWwWwuwwwwuwwww ww

(e}

[N I TR FN N A T N T Y R B |
b

Hi =2 =000 oUW N

]
UV W= O

| [| [|
AU B WN (S0 =3 w N = (VO S

L R A B |

mEmmMEmEMm OUD DOUOUDU 000 oo womowoo oo w o

TABLES

Use of CPU Elements

ALU Source and Destination Operands
ALU Functions

Internal Bus Sources

Internal Bus Destinations

Megabus Interface Microinstructions

Miscellaneous Hardware Operands
Permissible GP Combinations

Transparent Mode Branch Address Operands
Firmware Sequencing Conditions

IFBCND Test Function

Data Field Size Tests

Source Statements for Transparent Mode
Source Statements for Sequential Mode

WCS Entry Points

RALU Destination (AD) Field Decodes
RALU Function (AF) Field Decndes

RALU Source (AS) Field Decodes

Legal Combinations of AS and AF Fields
Internal Bus Selector (Bl6) Decodes
Branch Type (BR) Field Decodes ‘
Branch Type (BR) Field Decodes

Bus Control (BS) Field Decodes

CPU Clock Speed (CK) Field Decodes
Internal Bus Control (DI) Field Decodes
General Purpose (GP) Field Decodes
RALU Left Select (LS) Field Decodes
RALU Right Select (RS) Field Decodes
Select Modify (SM) Field Decodes

Test Condition (TC) Field Decodes

Register File Operand Encodings
RAM Location Operand Encodings
LS/RS and SM Encoding Values

Register File/RAM Locations Legal Groups
Register File "Restricted Selection” Criteria
Register File/RAM Location Operand
Correspondence

Permissible GP Combinations

Operands Affecting AUZ, CRY, and OVFL

Main Splatter Map
Key to XR

Key to XW

XA Variations

XB Variations
Test Conditions

Page

N
|
—
O

|

WWWwuwwwwuwww www
| '

SOOI s WD Do U

NN OWER N W IJ -

[e))
|
w

[I B | |
> wNNo

wmwmmmt}swmmmw
Hi OO B W

|
—
[e2)

|
~N

I
— OC
o

I
OOy U BB W

mmmmmr? Ooou oo

vii/viii

w,,/‘

vt

«

«_

SECTION 1 - INTRODUCTION

Today's continued advancement of computer technology has pro-
duced a user-accessible control store extension within a Central
Processor Unit (CPU) called Writable Control Store (WCS). This
WCS feature provides a user with extremely powerful hardware in-
structions that extend as well as enhance the standard CPU soft-
ware instruction set to achieve optimum CPU performance for soft-
ware routines critical to a particular application, and allows
them to execute at speeds comparable to the native CPU instruc-
tions. They accomplish this by enabling a user to write custom-
ized microprograms (firmware) into a CPU to replace repetitive
software routines. Much of the speed enhancement derives from
the ability of the firmware to perform several simultaneous oper-
ations in a single firmware step.

The application for the WCS feature varies considerably from
one user to another. It enables a microprogrammer to enhance and
augment the native CPU firmware to produce the equivalent of a
customer built, specialized central processor. Software routines
(or programs) designed to run without the WCS feature are unaf-
fected by 1its presence.

The closeness of the firmware to hardware requires that the
microprogrammer have a solid understanding of all the CPU func-
tions, characteristics, and limitations. The key to effective
custom-microprogramming lies in identifying the most frequently
used algorithms for a particular application, and coding only
those functions into microprogram routines. With effective
microprogramming, a user can increase the overall performance of
the CPU with a minimum conversion of software programs to micro-
programs.

1.1 GENERAL CHARACTERISTICS

The WCS feature augments the control store facility in the
CPU with additional storage capacity that is alterable by the
user. Its basic functional characterictics are:

® Capacity of 1K or 2K 64-bit words.

® WCS assembler to assemble firmware routines.

® Loader to load the assembled routines into the WCS.

e Facility for a Microcode Analyzer to display and monitor

firmware sequencing and key data with the execution of
each firmware step.

1-1

This feature does NOT replace the standard firmware, but provides
a micorprogrammer with the opportunity to add to it.

1.2 USING THE WCS

All microprograms (firmware routines) are initially processed
through the WCS assembler, which accepts mnemonic source input
and creates object files suitable for loading into control store.
The WCS loader accepts the assembler generated object code and
loads it into the WCS. When User Generic instructions are pro-
cessed in the CPU, control is passed from the standard firmware
to the user firmware in the WC5, where control of the CPU is
maintained until completion of the user microroutine. Upon
completion, the user firmware returns CPU control to the standard
firmware. The entry point into the standard firmware is normally
at the starting location of a microroutine used to fetch the next
procedure word (i.e., next instruction). However, the user can
specify any return address. It should be noted that while user
firmware is in control of the CPU, the user is responsible for
maintaining software service routines, such as polling for inter-
rupts, testing for traps, etc.

Writing microprograms should be performed in a systematic and
orderly manner. The user should:

1. Define tne function of each new instruction.

2. Acquire a good working knowledge of CPU functions, char-
acteristics, and limitations.

3. Define the task(s) the hardware must perform, such as
drawing a cycle on a screen, and design a hardware algo-
rithm to perform the task(s).

4. Determine the firmware steps required to implement the
subject algorithm.

NOTE

A firmware step can perform several parallel operations.
Hence, a microprogrammer who may tend to think in terms
of sequential programming operations, can save consider-
able steps and timing in the microprogram by combining
the applicable operations into one step, thus taking
maximum advantage of the parallel operation, as well as
writing a2 more efficient microprogram. For example, an
Add and a Branch operation can be combined into a single
firmware step instead of two steps.

5. Enter each firmware step as a source statement on a suit-
able coding form.

1

6. Transcribe each source statement onto punched cards, or

enter each statement directly onto a disk file via an on-
line terminal.

7. Process the source file through the WCS assembler to ob-
tain a machine-language object file, and output the ob-
ject file to disk or magnetic tape. This operation also
produces a combined listing of the source file, object
file, and assembler diagnostic messages for use during
debugging.

8. Load the object file into the CPU for analysis and
debugging.

A Microcode Anaylzer is available that selectively displays
pertinent CPU and WCS information for us2 in debugging micropro-
grams. Included are the control facilities to single step the
CPU through a microprogram, to set up a halt address that halts
the CPU at any specified address, and to display the last 1lo
steps executed by the CPU.

1-3/1-4

SECTION 2 - HARDWARE

The microprogrammer must know the hardware configuration in
use to properly program the firmware. An understanding of the
function of each unit and its relation to the entire system will
make the task easier.

The hardware required to implement user generated micropro-

grams consists of two basic units (see Figure 2-1); the Central
Processor Unit (CPU) and the Writable Control Store (WCS). The

Microcode Analyzer is a tool to aid microprogram debugging.

WRITABLE
CONTROL
STORE

CENTRAL
PROCESSOR

MICRO-
CODE
ANALYZER

Figure 2-1 Hardware Configuration

The CPU 1s the computing and control portion of the Level o
system, which processes the data and address information required
by the microprogram. It controls not only the flow of informa-
tion within the CPU but also the flow of data between the CPU and
other units of the Level 6 system. Control over system opera-
tions is accomplished by selecting, interpreting, and controlling
execution of all software instructions.

AN
N

The WCS provides a variable extension of the native control
store, which manipulates the central processor hardware. The WCS
firmware functions as an extension of the native control store
firmware, manipulating the CPU hardware in exactly the same man-
ner as the native firmware. The WCS firmware is not a replace-
ment for the standard firmware used to implement the base in-
struction set, but provides the user with the opportunity to add
to it.

Key features of the CPU in the microprogramming environment,
in addition to the 26 software-visible registers, are a number of
data paths, firmware registers, and control flops; some of which
are dedicated to specific functions, either by hardware structure
or by native firmware usage. The CPU registers differ in length,
functionality (shifting, counting, etc.) and ability to communi-
cate with other CPU elements and the Level 6 system. Regardless
of length, the bits of each register or data path are numbered
from left (most significant bit) to right (least significant
bit), starting with zero. Thus, a 4-bit register would have bits o
numbered 0 through 3, while a 20-bit register or data path would -
have bits numbered 0 through 19.

All addresses and many otner values in this manual are ex-
pressed in hexadecimal (base 16) notation, using the digits 0, 1,
2, 3, 4, 5,06, 7, 8, 9, A, B, C, D, E, and F. When there is any
danger of ambiguity between hexadecimal and decimal numbers, the
hexadecimal number is written in this manual using the pound sign
(#) as a suffix.

The registers, flops, data pathe, and processing elements
that comprise the CPU are divided into six functional areas:
microprocessor, internal bus, Megabus* interface, miscellaneous
hardware, firmware sequencing, and master clock (see Figure 2-2).
Each of these areas 1is controlled by a distinct set of microin-
structions, which are described in detail in Section Three.

The remainder of this section describes:
®¢ The six areas of the CPU

® Entering and leaving the WCS
® Use of the CPU registers, counters, and control flops.

>
\“\—,//

*Trademark of Honeywell Informations Systems, Inc.

2-2

CENTRAL PROCESSOR

MICRO- MISCELLANEQUS
PROCESSOR HARDWARE

[

INTERNAL FIRMWARE
BUS SEQUENCING

MASTER
CLOCK

MEGABUS
INTERFACE

Figure 2-2 Central Processor Area

2.1 MICROPROCESSOR AREA

The microprocessor area (see Figure 2-3) performs the arith-
metic, logical, and shift operations required by the Level & sys-
tem, including storage of operands for subsequent use by the
microprogram and over half of the software visible registers.

CENTRAL PROCESSOR

MICRO-
PROCESSOR

MISCELLANEOUS
HARDWARE

FIRMWARE
<SEQUENCING

INTERNAL
BUS

MEGABUS
INTERFACE

iMASTER ;-
CLOCK !

> DATA AND ADDRESS LINES

Figure 2-3 Microprocessor Area

The interface to the microprocessor area from the internal
bus area enables processing of operands from CPU areas that are
external to the microprocessor area. The microprocessor area in-
cludes a register file that provides storage for sixteen 20-bit
registers. Among these are software visible registers Rl through
R7 and Bl through B7. Results of the microprocessor operations
can (optionally) be stored within the microprocessor area, but
regardless of whether or not these storage facilities are used,
the results are available for testing and/or distribution (via
the internal bus) to destinations outside the microprocessor
area.

2.2 INTERNAL BUS AREA

The internal bus area (see Figure 2-4) selects data from any
one of several sources, and makes the data available to destina-
tions both inside and outside the internal bus area.

CENTRAL PROCESSOR !
‘MISCELLANEOUS
HARDWARE 1

FIRMWARE
SEQUENCING .

MICRO-
PROCESSOR

INTERNAL
BUS

MEGABUS
INTERFACE{ |

EXTERNAL
SOURCES =y

EMASTER® *
CLOCK

> DATA AND ADDRESS LINES

Figure 2-4 Internal Bus Areca
Elements that functions as internal bus sources include:

Microprocessor outputs

Sixteen additional 20-bit registers (RAM)
Megabus buffer registers
Constant-generation facilities

Other sources.

-

Elements (within the internal bus area) that may serve as
destinations for the internal bus data include:

16 RAM registers

Memory address register and program counter
Indicator register

Other registers.

In general, the internal bus microinstruction permits select-
ing a single source and optionally delivering copies to one des-
tination in each of the four categories previously listed.
Internal bus data are also availeable for use by the other CPU
areas.

2.3 MEGABUS INTERFACE AREA

Megabus cycles originating from the CPU are processed by the
Megabus interface area (see Figure 2-5). For example, if the CPU
wants to store a word in main memory, it sends the word together
with its memory address (via the Megabus interface area) down the
Megabus to main memory.

CENTRAL PROCESSOR
MICRO- . §B MISCELLANEOUS
PROCESSOR | HARDWARE

INTERNAL FIRMWARE
B8uUS SEQUENCING

MEGABUS iMASTER: ;

EXTERNAL INTERF ACE cLock

SOURCES

Bl

> DATA AND ADDRESS LINES

Figure 2-5 Megabus Interface Area

The six types of communication permitted over the Megabus
are: (1) memory read request, (2) I/O read request, (3) read
response, (4) memory write, (5) I/O write, and (6) interrupt.
The microprogrammer can use combinations of these Megabus opera-
tions depending on the type of communication desired with other
units of the Level 6 system.

2-5

ware,
address,

2.4

The miscellaneous hardware area

NOTE

Communication types (1), (2), (4), and (5)
to control by the Megabus interface area, while types
are controlled by the internal bus area.

MISCELLANEOUS HARDWARE AREA

(see Figure 2-6)

are suhject

The interfaces among the internal bus, miscellaneous hard-
and Megabus interface areas enables the sending of data,

and control information to the Level 6 Megabus from CPU
areas that are outside the Megabus interface area.

includes the

remaining control flops and registers required by the CPU.

L

~ MICRO.] MISCELLANEOUS
“*PROCESSORY . |} HARDWARE

“HINTERNALS] FIRMWARE '
©oBUS uif SEQUENCING +%

v’ . ‘\ /' v,-:-:::».::.:,i 3

I

. mecasus . -] B imasTer:c .}
wwtereace ¢ | @ clock

{CENTRAL PROCESSOR®

™> DATA AND ADDRESS LINES

Figure 2-6

Miscellaneous Hardware Area

The interface to the miscellaneous hardware area from the

microprocessor,

internal bus, and Megabus interface areas permit

the microprogrammer to alter the state of the various control
elements using sources both internal and external to the miscel-

laneous hardware area.

o

These control elements modify the actions of other CPU areas,
and can also be used to save signals generated in the current
firmware step for use in subsequent firmware steps. For example,
if the microprogrammer wants to postpone a firmware branch based
on whether or not an arithmetic operation produced overflow, the
overflow signal from the microprocessor area can be used to alter
the state of a control flop within the miscellaneous hardware
area. The state of the control flop can later be used as the
test conditon for a firmware branch operation.

2.5 FIRMWARE SEQUENCING AREA

The firmware sequencing area (see Figure 2-7) provides the
next firmware address for the control store. Every firmware step
specifies a test condition that interrogates various flops and
signals from other CPU areas to determine which of two alternate
addresses is the next firmware address. Unconditional branching
is supported by a test condition that always evaluates "false".

CENTRAL PROCESSOR

MICRO MISCELLANEOQUS
PROCESSOR HARDWARE

INTERNAL FIRMWARE EXTERNAL
BUS SEQUENCING SOURCES

At

MEGABUS MASTER
INTERFACE CLOCK

N
> DATA AND ADDRESS LINES
>

Figure 2-7 Firmware Sequencing Area

There are two addressing modes; Transparent and Seguential.
In the Transparent mode, the mode used by the native firmware,
every firmware step explicitly specifies the address of its suc-
cessor. The Sequential mode appears more like typical software
in that control generally proceeds to the next sequential loca-
tion. The Transparent mode makes it possible to produce more
compact code, whereas the Sequential mode is easier to learn.

2.6 MASTER CLOCK AREA AND TIMING CONSIDERATIONS

The master clock area (see Figure 2-8) generates the timing
signals necessary for proper operation of the CPU.

2-7

AN

W

CENTRAL PROCESSOR ¢

MICRO- .
PROCESSOR -

MISCELLANEOUS
HARDWARE 1

INTERNAL
BUS

FIRMWARE
SEQUENCING

MEGABUS
INTERFACE

MASTER
CLOCK

Apu

=
—

Figure 2-8 Master Clock Area

The timing signals distributed throughout the CPU provide
four clock cycles that differ only in the duration of the cycle.
The duration of the clock cycle for each firmware step is select-
ed by the firmware assembler to provide the fastest performance
consistent with reliable operation of the hardware. 1In rare cir-
cumstances, it will be nccessary for the microprogrammer to over-
ride the assembler clock controls. This action will be required
when the duretion of a clock cycle must be increased to accommo-
date conditions arising from the actions of a prior firmware
step.

All firmware controlled registers and flops in all areas of
the CPU, with the sole exception of the 12-bit instruction regis-
ter (F), are loaded, cleared, incremented, and/or shifted syn-
chronously at the end of the firmware step calling for such
action(s). Any testing, copying, etc., dependent on the content
of a register that is being altered in the same firmware step,
may be assumed to operate on the current contents of the register
(i.e., the register contents before being altered by the current
firmware step), except as explicitly noted.

Special timing considerations apply to firmware steps in-
volving Megabus read request or Megabus write operations. Read
requests are not generally completed until well into the next
firmware step, imposing some restrictions on the microprogrammer.
If the read request is not immediately followed by a firmware
step that uses the response, the address selection must be main-
tained during the first step following the read request step.

The acknowledge signal from the Megabus may be copied and/or
tested during the firmware step immediately following the read

request step. -

A~

During Megabus write operations, the acknowledge signal from
the Megabus is received in time to be copied within the same
firmware step, but not early enough to affect firmware sequencing
reliably (refer to subsection 3.3).

A different situation exists regarding read responses (via
the Megabus) to a CPU request. If the response arrives before
the firmware is ready to use it, the data are buffered until re-
quested. If the firmware attempts to use the data before the
response has been received, the interface hardware automatically
stalls the CPU master clock until the data arrives. The micro-
programmer must avoid requesting data from a Megabus buffer if
the read request was rejected; there is no limit to the patience
of the master clock awaiting data that will not be received.

2.7 ENTERING AND LEAVING THE WCS

To minimize timing problems when transferring microprogram
control from native control to the WCS, or vice versa, advantage
is taken of the synchronization capability already designed into
the Megabus interface area. Control is transferred by causing
the CPU to issue a Megabus cycle (I/0 write) addressed to the
WCS. By properly timing its acceptance of this command, the WCS
hardware automaticlly assures a clean transfer of control.

Native firmware performs the above operation whenever the
first word of an instruction lies in the range 0080# through
O0BF#. The location to which control is transferred is one of
the first 16 locations in the WCS; the specific location is iden-
tified by the least significant hexadecimal digit of the instruc-
tion word. The content of the various CPU registers and flops at
the time of entry into the WCS is described in subsection 2.8.

When it is desired to return control from the WCS to the na-
tive control store, the user must create the appropriate I/0 con-
trol word (with the WCS channel number and a function code of
254) and transmit this command to the Megabus, simultaneously
specifying the native control store address to which control
should return (refer to examples 6 and 7 in subsection 3.7).
Normally, return is to location (G20# for the next instruction
fetch operation.

Trap conditions of two kinds can occur:
e Conditions detected by hardware during Megabus cycles.

® Conditions detected by firmware test and branch opera-
tions. ‘

The first category includes: N

1. Bus parity errors, memory parity errors, and uncorrect-
able errors detected by the memory Error Detection and
Correction (EDAC) logic. These are sensed by the CPU
when the bus data are sourced to the internal bus.

2. References to unavailable resources. These are sensed by
the CPU during a write cycle, or during the firmware step
following a read request cycle.

3. 1Illegal addresses. These are detected by WRAP testing
(refer to subsection 2.8.2 - WRAP Control Flop), or by
the Memory Management Unit (MMU); sensing of illegal ad-
dresses by the CPU is timed similarly to that of unavail-
able resource references.

When any of the above trap conditions are encountered, hard-
ware forces the firmware to location 000 in the native control
store; this is the starting address for the native firmware se-
quence that analyzes the trap condition and generates an appro-
priate trap.

All other trap conditions are considered under the second
category, i.e., they are detected by conditional firmware
branches as required by the functional specification applicable
to tha instruction being executed. When such a trap is detected,
the firmware should exit to the location TRAP (33B#) in the na-
tive firmware, after first ensuring that:

1. RAM location 0 contains the instruction word to be re-

ported*.

2. The XB and CTR register contents are appropriate for the
Z-word*,

3. The Q register contains the address (if any) to be re-
ported in the A-word*..

4. Register BU contains a trap vector code equal to 4U#%
minus the desired trap number*.

*Refer to Honeywell Level 6 Minicomputer Handbook (Order Number
AS22) for a description of Trap Save Area contents. The fol-
lowing subsection defines all CPU registers, counters, and con- P
trol flops that are visible to the microprogrammer, including W

those registers and counters mentioned above.

2-10

2.8 USE OF CPU ELEMENTS

The CPU registers, counters, and control flops that are visi-
ble to the microprogrammer can be classified into four catego-
ries:

Software Visible (SWV)
Firmware Dedicated (DEDIC)
Working Storage (WORK)
Autonomous (AUTO).

The possible uses for elements in the above categories are
described in the following subsections and summarized in Table
2-1.

2.8.1 Software Visible

The registers in this category should not be altered except
as explicitly required by the functional definition of the cur-
rent instruction.

Registers D1 through D7

Registers D1 through D7 reside in bits 4 through 19 of micro-
processor register file locations 1 through 7 (bits 0 through 3
of each register are not softwars visible, but are not usually
useful as working storage).

Registers Bl through B7

Registers Bl through B7 reside in microprocessor register
file locations 9 through F.

Register M1l through M7

Registers M1 through M7 reside in bits 12 through 19 of in-
ternal bus RAM locations 1 through 7 (refer to subsection 2.8.2 -
RAM locations 4 and 6 and subsection 2.8.3 - RAM locations 1, 3,
5, and 7 for the use of other bits in these locations).

T and RDB Registers

The T and RDB registers reside in RAM locations A and B
(respectively).

S and 1 Registers

The S register contains the system status and security codes
for use within the CPU. The I register contains the CPU indica-
tors.

2-11

P Register

The P register normally functions as a program counter, but
can be freed for use as a working register (refer to subsection
2.8.3 - P register).

2.8.2 Firmware Dedicated

The registers and flops in this category contain control in-
formation and/or trap context. They should be loaded only with
the information described herein so that the native functionality
is preserved. They can also be used as sources for this informa-

tion.

RAM Location 0

This RAM location contains the instruction word to be report-
ed when a trap occurs.

RAM Locations 4 and 6 (bits 4 through 11)

Bits 4 through 11 of these RAM locations contain the mode in-
formation for:

1. Enabling the Real Time Clock (RTC).
2. Enabling the Watch Dog Timer (WDT).

RAM locations C and D

RAM locations C and D contain pointers to the most recently
accepted Commercial Instruction Processor (CIP) and Scientific
Instruction Processor (SIP) instructions, respectively. Each
location must remain NULL 1if the corresponding external processor
is not configured.

RAM location F

This RAM location must be NULL except when it points to the
next word of procedure, freeing the P register for use as a work-
ing register (refer to subsection 2.8.3 - P Register).

CTR Register

The CTR register 1is a 4-bit counter that indicates the number
of procedure words consumed in the processing of the current in-
struction. It is incremented (or cleared) every time the P reg-
ister is incremented (refer to subsection 2.8.3 - P register).

XB Register

The XB register is a 4-bit shift register that supplies trap
context information regarding indexing of bit or byte operations
(refer to subsection 2.8.3 - XB register).

2-12

am

WRAP Control Flop

The WRAP control flop facilitates the checking of address-
arithmetic firmware to detect attempts to exceed the 20-bit
capacity of the address registers. If the WRAP control flop is
on, any access to the Megabus (read request or write operation)
will result in the transmission of an illegal address or 1/0
channel number. This action results in no response via the
Megabus, which is interpreted as an "unavailable resource".

Whenever an index value or other displacement is to be added
to a base address, the algebraic sign of the displacement should
first be copied into the SIGN control flop. Then, the address
modification can be performed, using the sign-extension capabili-
ties of the microprocessor area (refer to subsection 3.1). Si-
multaneously, the carry signal from the most significant end of
the microprocessor should be compared with the state of the SIGN
control flop, and the comparison result copied to the WRAP con-
trol flop.

Read-Modify-Write Control Flop (RMWF)

RMWF is set to One when memory has been locked for the dura-
tion of a read-modify-write operation. RMWF 1is set and cleared
by the Megabus interface area CHGLOCK operand (refer to subsec-
tion 3.3) if the F register contains one of the following
instruction codes (refer to subsection 2.8.3 - F/SEL Instruction
Register): ‘

F = 002, 003, 0u6, 007%#, or
880% < F < 897#, or
8A0# < F < 8B7#.

LOAD, TRAFFIC, and PANOK Control Flops

These flops communicate control information between firm-
ware and the operator. Although they are described here for com-
pleteness, it is not anticipated that normal user firmware will
involve any of them.

The LOAD flop can be set and cleared both by the operator and
by firmware in the miscellaneous hardware area. During the sys-
tem startup operations, LOAD is normally set by the operator and,
when bootload action is completed, cleared by firmware. There-
after, this flop usually remains off, but is sometimes sct brief-
ly by firmware as a means of preventing a trap to location 000U
when a Megabus cycle is addressed to a possibly unavailable re-
source. LOAD must never be left on at the end of an instruction.

The TRAFFIC flop is loaded by firmware in the miscellaneous
hardware area to control the corresponding indicator on the con-
trol panel. However, the flop is held off by hardware unless the
control panel is in the Run mode. As the native firmware
extracts the first word of each instruction, the word is tested

2-13

to determine if the instruction op-code is HLT. The result of
this test is transferred (via the ZERO flop) to the TRAFFIC flop
(subject to hardware override if the Run mode is not in effect).

The PANOK flop synchronizes the servicing of operator
requests. It 1s set to Zero whenever the CLEAR or EXECUTE push-
button is depressed and when in Register-Change mode, a hexa-
decimal key is depressed. This flop is set to One by the firm-
ware that services the request, and is used to prevent multiple
servicing of a single key-stroke.

EFFRING, NONPROC, NOCHEK, SEGERR, and PROV Controls

These signals and flops support normal MMU operations, permit
temporary alteration of access rules, and reports errors detected
by the MMU.

EFFRING 1s a 2-bit register containing the "effective ring
number"”, which the MMU uses to determine the degree of privilege
appropriate to the current instruction, and against which memory
access requests are tested. Native firmware loads EFFRING from
the S register RING field at the start of each instruction.
Correct procedure regquires that EFFRING be modified to decrease
its privilege level whenever, in the course of formulating an ad-
dress, it uses data that might have been generated by a less
privileged program.

NONPROC establishes a temporary change in the rules of ac-
cess. Memory references which use the P register as the address
source normally require "Execute" permission; when NONPROC has
been set, they require only "Read" permission (refer to sub-
section 2.8.3 - P register).

NOCHEK establishes a temporary suspension of the rules of ac-
cess (it does not affect the mapping of segmented virtual addres-
ses to physical, nor the detection of illegal, non-existent ad-
dresses). The intent of this functionality is to remove restric-
tions on memory access by system firmware (interrupt and trap
handler, RTC/WDT service, panel routine, etc.).

SEGERR signals that the MMU has detected an error in a vir-
tual address; the referenced segment is not valid, its size has
been exceeded, or a protection violation has been detected. If
SEGERR occurs during a memory reference, it causes the transmis-
sion of an illegal physical address. This action results in no
response via the Megabus, which is interpreted as an “unavailable
resource”. If no memory reference or access-rights test (refer
to subsection 3.3.3. - MMURDACC, MMUWRACC) is requested, the
SEGERR signal is ignored.

PROV signals that the MMU has detected a protection violation
(failure of access rights check) on an otherwise legal address
(i.e., an address in a valid segment and within the segment
size). If a protection violation occurs during a memory

N

2-14

reference, the PROV flop is locked in the set state until cleared

by the firmware function NOCHEK (this function is normally issued
by the trap generation firmware). If a protection violation

occurs during a firmware step that explicitly requests an access-
rights test, the next firmware step may copy PROV to the MISC
control flop.

NEWXR Control Flop

The NEWXR flop is used in the Transparent mode to distinguish
between reentrant invocations of the XR "splatter" branch. This
flop is set when the SEL register is loaded from the internal bus
(e.g., during instruction fetch); it is cleared when a branch is
performed to XR, XE, XW, or XF (refer to subsection 3.5), and
when the WRAP flop is set or cleared (refer to subsection 3.4).
The effect of NEWXR is shown in Appendix E.

2.8.3 Working Storage

These are the registers and flops available to the micropro-
grammer for temporary storage of operands, imtermediate results,
control information, etc., during execution of each instruction.
Their contents cannot generally be depended on to retain infor-
mation between instructions, especially in the presence of asyn-
chronous actions such as interrupts, unexpected traps, and
RTC/WDT service requirements.

RAM Location 8

This RAM location initially* contains a pointer to the next
word of procedure (copy of P register), but may be altered as
desired.

RAM Locations 9 and E

These RAM locations initially contain no predictable informa-
tion.

RAM Locations 1, 3, 5, and 7 (bits 0 through 11)

Bits 0 through 11 of these RAM locations normally contain
zeros, and are unused by the native firmware. These fields are
not easily altered because bits 12 through 19 of these locations
contain software visible data (M registers) that must be pre-
served. They do, however, have the advantage of being able to
retain formation between instructions and for prolonged periods.

*In this coh;ext, "initially" refers to the instant when the na-

tive firmware transfers control of the User Generic execution to
WCS firmware.

2-15

Register File Locations 0 and 8

Register file locations 0 and B are called registers DO and
BO, respectively, and initially contain no predictable informa-
tion.

Q Register

The Q register initially contains a pointer to the first word
of the current instruction, but may be altered as desired.

F/SEL Instruction Register (s)

The F/SEL register initially contains the first word of the
current 1instruction, but may be altered as desired. Specific-
ally, it may be useful to copy all or a portion of subsequent in-
struction words into the instruction register to facilitate de-
coding and/or branch control.

NOTE

Numerous mappings of the contents of the instruction

register are available as listed in Tables 3-8, 3-9,

and Appendix E. These instructions are designed for

the native repertoire; their utility to the WCS micro-

programmer will depend to a large extent on the func- o
tional specification of the new instructions, and on ‘
their similarity to the native instructions.

Y Register

The Y register initially contains no predictable informa-
tion. This register is primarily designed to hold nonprocedural
addresses (or I/0 control words) for transmission to the Megabus;
however, during periods of inactivity in the Megabus interface
area, the Y register may be used for other tasks.

H Register

The H register initially contains no predictable information.
The principal functions of this register are to:

e Facilitate the handling of halfwords (bytes) by accepting
16-bit quantities from the internal bus, and later deliv-
ering them back to the internal bus with the two halves
inter-changed.

® Assist the expansion of a 8-bit algebraic quantities to
16 bits.

® Retrieve 2U-bit addresses from two adjacent words in -
memory. q ,

-,

LIRK Register

The LINK register initially contains no predictable informa-
tion. Loaded from the internal bus, this register is usable only
by the firmware sequencing area: Transparent mode XL, XL0O, and
XLl or Sequential mode LBRANCH.

MISC, SHIN1l, SHIN2, SIGN, and ZERO Control Flops

These flops are initially cleared to zero.

DDLEQO Control Flop

This flop initially contains no predictable information.

XB Register

The XB register is initially cleared to zero. Depending on
the functional definition of the current instruction, the contri-
bution of this register to the Z-Word* may include no useful
information. In this event, the XB register may be used for
working storage.

P Register

As previously indicated, the P register can be freed of its
normal procedure-pointing duties, and used for any purpose de-
sired. To accomplish this the user must first copy the content
of P into RAM location F (RAMF) and must notify the MMU to treat
subsequent procedure references as data read operations for the
purpose of checking access rights. The P register may then be
loaded and used as desired. If an unexpected trap should occur
(e.g. a parity fault), the native firmware will report the
content of RAMF in the trap context in lieu of P. Similarly, the
Z-word* will report an instruction size of one, rather than the
content of CTR. Before returning control to native firmware
(e.g., at the end of the instruction), the user must copy the
procedure pointer from RAMF back to the P register, and then
clear RAMF to NULL.

The user may find it worthwhile to invest the overhead re-
quired by the previous paragraph if the User Generic instructions
‘" to be implemented involves reading a long consecutive nonproce-
dural data string from memory. The relative economy of time and
code space possible when using P as the address register for such
an operation can quickly repay the investment.

*Refer to the Honeywell Level 6 Minicomputer Handbook (Order
Number A3522) for a description of Trap Save Area contents.

2.8.4 Autonomous

These buffer registers and flops are set by external agencies
(i.e., agencies which are not firmware controlled), and supply
information for firmware use.

Acknowledge (ACK) Control Flop

The ACK control flop remembers whether the most recent
Megabus action was accepted or rejcted: 1if ACK is ON, the action
was accepted, if ACK is off, the action was rejected.

Megabus Data Buffer (BD)

The Megabus data buffer retains the data received from memory
or an I/0 channel in response to the most recent CPU read re-
quest. The content of BD remains valid, and may be reused, until
the firmware issues the next read request or references the
Megabus procedure buffer.

Megabus Procedure Buffer (BP)

The Megabus procedure buffer supplies the next procedure
word from memory (i.e., the word pcinted to by the P register).
BP can be read only once per word because this read operation in-
crements the P register.

Megabus Interrupt Buffer (RUP)

The Megabus interrupt buffer retains the latest external in-
terrupt received (i.e., one not involved with RTC, WDT, or LEV

actions). The content of RUP is valid while the Interrupt Busy
(INTBSY) flop is on.

YELLOW and PARER Megabus Data Error Flops

The YELLOW and PARER flops signal detection of an error in
memory or on the Megabus. YELLOW remembers if at least one data
error was corrected by memory EDAC hardware since the last inter-
rogation of this flop; YELLOW is cleared each time it is interro-
gated by the firmware. PARER remembers if the most recent
Magabus buffer reference (BD or BP) reported either a Megabus
parity error or a data error not correctable by memory EDAC hard-
ware. Unless the control panel is in Load, Read, or Write mode,
the setting of PARER forces the firmware to native location 000
for suitable trap generation (refer to subsection 2.7).

EXTRAP, INTBSY, and TICK Service Request Flops

The EXTRAP, INTBSY, and TICK service request flops are set by
hardware to signal a requirement for a break in firmware flow.
If execution of the current instruction is lengthy, as defined
below, the user is responsible for polling thesc flops frequently
enough to avoid degradation of system performance. The native

2-18

€

firmware performs this polling while extracting the first word of
each instruction. It is recommended that, when polling detects
such a reguest, the user should execute a branch to suitable
firmware which will prepare the current instruction to be resumed
or restarted, as appropriate, then exit to native firmware (loca-
tion 020%).

EXTRAP is true when one or more external processors (CIP or
SIP) has detected a trap condition. User firmware that does not
communicate with CIP or SIP need not poll EXTRAP. If a Megabus
reguest to such a processor is rejected, the firmware should test
EXTRAP to determine whether the rejection might have been caused
by a trap. If not, the Megabus request can be repeated; other-
wise, a return to native firmware is recommended. EXTRAP becomes
false when all external processors with trap conditions have
delivered their trap words.

INTBSY is set when an external interrupt of high enough pri-
ority is received and accepted by the CPU hardware. No further
interrupts, regardless of priority, can be accepted until firm-
ware services buffer RUP, reloads the level field in the S regis-
ter, and clears INTBSY. This flop must be polled often enough to
ensure the interrupt response perfomance appropriate to the ap-
plication. ’

TICK is set every 8-1/3 milliseconds by a crystal-controlled
oscillator in the CPU, signalling the need for service of the
YELLOW logic, the RTC and/or WDT, and the control panel. TICK
must be polled at least 120 times per second.

Table 2-1 Use of CPU Elements (Sheet 1 of 4)

PRIMARY NATIVE
ELEMENT LENGTH TYPE AREA FIRMWARE USAGE
ACK 1 AUTO Megabus Megabus Cycle Acknowl-
gement Storage
BO 20 WORK Microprocessor
B1-B7 20 SW Microprocessor | Base Registers
BD 16 AUTO Internal Bus Megabus Data Read
Buffer
BP 16 AUTO Internal Bus Megabus Procedure Read
Buffer
CTR 4 DEDIC Miscellaneous Count Instruction
Hardware Length
DO 20 WORK Microprocessor
D1-D7 T 20 SWV Microprocessor | Data Registers (R1-R7)

2-19

Table 2-1 Use of CPU Elements

(Sheet 2 of 4)

PRIMARY NATIVE

ELEMENT LENGTH TYPE AREA FIRMWARE USAGE
DDLEQO 1 WORK Miscellaneous CIP Descriptor Length
Hardware
EFFRING 2 DEDIC Megabus MMU Effective Ring
Number
EXTRAP 1 AUTO * External-Processor
Trap
F 12 WORK Internal Bus Instruction MSB
H 16 WORK Internal Bus Byte Swapping
I 8 SWV Internal Bus/ Indicator Register
Miscellaneous
Hardware
INTBSY 1 AUTO * Interrupt Busy Signal
LINK 8 WORK Internal Bus Firmware Sequencing
LOAD 1 DEDIC Miscellaneous Inhibit Missing - Re-
Hardware source Recognition
MISC 1 WORK Miscellaneous
Hardware
NEWXR 1 DEDIC Firmware Distinguish Reentrant
Sequencing XR Branch
NOCHEK 1 DEDIC Miscelianeous Inhibit MMU Access
Hardware Rights Checking
NONPROC 1 DEDIC Miscellaneous Inhibit MMU Execute
Hardware Checking
P 20 SwWv Internal Bus Program Counter
PANOK 1 DEDIC Miscellaneous Acknowledge Panel
Hardware Request
PARER 1 AUTO Megabus Bus Parity Error or
EDAC Uncorrectable
Error.
PROV 1 DEDIC Megabus MMU Protection Viola-

tion

&

Table 2-1 Use of CPU Elements (Sheet 3 of 4)
PRIMARY NATIVE
ELEMENT LENGTH TYPE AREA FIRMWARE USAGE
Q 20 WORK Microprocessor | 32-bit Shifts
RAMO 20 DEDIC Internal Bus Holds Copy of Instruc-
tion Word
RAM1-RAM7 20 SWV Internal Bus Mode Registers (M1-M7)
+DEDIC Plus Control Informa-
tion
RAMB8-RAMI 20 WORK Internal Bus
RAMA 20 SWV Internal Bus Stack Pointer (T)
RAMB 20 SWV Internal Bus Remote Descriptor Base
Register (RDB)
RAMC 20 DEDIC Internal Bus CIP Instruction
: Pointer
RAMD 20 DEDIC Internal Bus SIP Instruction
"Pointer
RAME 20 WORK Internal Bus
RAMF 20 DEDIC Internal Bus Usually Must Be Null
RMWF 1 DEDIC Megabus Remember That CPU
Locked Memory
RUP 16 AUTO Internal Bus Interrupt Word
S 16 SWV Internal Bus System Status Register
SEGERR 1 DEDIC Megabus MMU Segment Error
SEL 4 WORK Internal Bus Instruction LSB
SHIN1, 2 WORK Miscellaneous Control Shift End
SHIN2 Hardware Effects
SIGN 1 WORK Miscellaneous
Hardware
TICK 1 AUTO * 8.3 MS Interval Mark
TRAFFIC 1 DEDIC Miscellaneous Control Panel
Hardware Indicator

Table 2-1 Use of CPU Elements (Sheet 4 of 4)
PRIMARY NATIVE
ELEMENT LENGTH TYPE AREA FIRMWARE USAGE
WRAP 1 DEDIC Miscellaneous Address-Wrap-Around
Hardware Storage
XB 4 DEDIC Miscellaneous Subword Indexing, Hex
Hardware Decoder
Y 20 WORK Internal Bus Megabus Address
Register
YELLOW 1 AUTO Megabus EDAC-Corrected
Errors
ZERO 1 WORK Miscellaneous ALU Zero Result
Hardware Storage

*Not controlled by firmware.

Ll

SECTION 3 - MICROINSTRUCTIONS

The CPU hardware is controlled by firmware words (steps),
each step consisting of several microinstructions that manip-
ulate the hardware to perform desired operations. The CPU can
execute up to six microincstrucions simultaneously during any
given firmware step, permitting simultaneous control over the
six functional CPU areas: microprocessor, internal bus, Megabus
interface, miscellaneous hardware, firmware sequencing, and
master clock.

3.1 MICROPROCESSOR AREA

The principal elements of the microprocessor area (see Figure
3-1 include:

Register File (RF)

Q Register
Arithmetic/Logic Unit (ALU)
Shift Logic.

The register file is a memory consisting of sixteen 20-bit
locations, numbered 0 through F. The first eight locations are
designated as registers DO through D7, while the last eight
locations are designated as registers BO through B7. Up to two
of these registers may be addressed simultaneously to serve as
sources and/or destination for the ALU. Simultaneously, the con-
tents of one register file location may be made available to the
internal bus area.

The Q register is an additional 20-bit register that is
available as an ALU source and/or destination.

The ALU performs all CPU arithmetic and logical functions.
It has two 20-bit inputs and one 20-bit output. The ALU output
may be directed to a destination within the microprocessor and/or
made available to the internal bus area. Three auxiliary signals
are generated based on the ALU results: Carry (CRY), Overflow

(OVFL), and Zero detect (AUZ). For the purpose of generating
these signals, the ALU function may be treated as a l6-bit or a

20-bit operation as shown in the following listing; however, the
actual arithmetic or logical operation is always 20 bits wide.

3-1

CENTRAL PROCESSOR

MICRO-
PROCESSOR

o

DATA FROM
INTERNAL
BUS

INTERNAL
BUS

MEGABUS
INTERFACE

MISCELLANEOUS
HARDWARE

MASTER
CLOCK

LEFT
SHIFT

RIGHT
SHIFT

REGISTER
FILE
(RF)

—e

7

o

2 4
LEFT RIGHT
SHIFT SHIFT
|
Q
REGISTER

ARITHMETIC/LOGIC

p—- CRY

et OVFL

UNIT
(ALY) - AUZ
REGISTER ALU RESULT
|
Figure 3-1 Microprocessor Area

"
)

AT,

16-BIT 20-BIT 16-BIT 20-BIT

SIGNAL ARITHMETIC ARITHMETIC LOGICAL LOGICAL
CRY Carry from bit | Carry from bit Undefined* | Undefined*
4 0
OVFL |Overflow from ALU result bit | Undefined* ALU result
bit 4 0 in liew of bit 0 in lieu
overflow of overflow
AUZ =1 if ALU =1 if ALU =] if ALU =1 if ALU
result bits result bits result bits | result bits
4-19 = 0 0-19 =0 4-19 = 0 0-19 = 0

*Except for the logical AND function as described in subsection
3.1.3.

The shift logic is designed to perform single-bit left or
right shifts on the 16 least significant bits of the ALU result
before they are written into the register file. The Q register
can be shifted simultaneously to facilitate operations on 32-bit
guantities (refer to subsection 3.1.4).

3.1.1 Syntax

The microinstructions that affect this functional area con-
trol the Register File Arithmetic and Logic Unit (RALU). These
microinstructions contain a function and up to four operands as
follows:

function A SRC1l, SRC2, DEST, SHIFT
function A SRC1l, DEST, SHIFT
where:

SRC1 is an input source.

SRC2 is an additional input source.

DEST is the destination for results (optional operand).

SHIFT is the shift operand for results (optional operand).

3.1.2 Microprocessor Sources and Destinations

Sources to the ALU may be any one (or two) of the following:

Internal Bus (refer to subsection 3.2).

Q Register

Register File Location

Another (or the same) Register File Location
ZERO (20 bits, all zeros).

Destinations, if any, in the microprocessor may be to the o
following: o

® (O Register
® Register File location.

Whether or not a microprocessor destination is specified, the
ALU result, CRY, OVFL, and AUZ are available for simultaneous
use by microinstructions in other areas. If SRC1l, SRC2, and DEST
all specify register file locations, DEST must be the same as
either SRC1 or SRC2.

The possible sources and destinations for the microprocessor
area are summarized in Table 3-1. Register file locations may be
specified explicitly or as a function of fileds in the F/SEL in-
struction registers. The mnemonics are derived from the B-field
(SEL register bits 1 through 3), the M-field (F register bits 9
through 11), and the N-field (F register bits 1 through 3). 1If
the firmware step just previously executed altered the contents
of SEL, those operands that depend on fields in SEL will use its
previous contents (i.e., the contents before SEL was altered
at the end of the firmware step just previsously executed).

If two register file locations are selected by operands SRC1,
SRC2, and/or DEST, they must both be members of the same group,
where the available groups are:

po, b3, b6, D7, BU, B3, B6, and B7.

puv, D1, b4, D5, BO, Bl, B4, and B5.

po, p2, b6, BO, B2, and B6.

DO, DN, DN3, DNE, B0O, BN, BN3, and BNE.
po, DB, DB3, DBE, B0, BB, BB3, and BBE.
DO DB, DB3, DBE, and REGSEL.

po, DM, DM3, DME, BO, BM, BM3, and BME.

Other restrictions on the selection of one of the micropro-
cessor source operands are imposed occasionally by the simulta-
neous action of microinstructions in other areas. To facilitate
cross-referencing, it is necessary to introduce the concept of
"restricted selection." A microprocessor source operand 1is
designated a restricted selection i1if it specified a register file
location, and: '

e it 1s the second operand of microinstruction ANDC, ADDSE,
or ADD1SE, or

® it is also the internal bus source (refer to subsection
3.2.2 - Register File Locations), or

® the destination is a different register file operand, or
e the other source is the Q register, or £

‘L, '
@ the other source is the internal bus, or

—~~

the other source is a register file operand that does not
satisfy the restricted-selection rule(s) in question

(i.e., if both sources are register file locations, at
least one must satisfy the restricted-selection rule).

NOTE

The restricted selection concept applies only when a

simultaneous microinstruction defines a restricted
selection rule.

When 20-bit versions of CRY, OVFL, and AUZ are used, and the
function is neither ADDSE nor ADD1SE, the restricted-selection

source must be a D register (except as selected by REGSEL).

Table 3-1 ALU Source and Destination Operands
(Sheet 1 of 2)

OPERAND EXPLANATION

BO-B7 RALU Base Registers BO through B7 (register
file locations 8-F)

BB RALU Base Register (BO through B7) specified
by SEL(1-3).

BB3 RALU Base Register (BO through B3) specified

BBE RALU Even Base Register (B0, B2, B4, or B6)
specified by SEL(1-2).

BI Internal Bus (source only).

BM RALU Base Register (BU through B7) specified
by F(9-11).

BM3 RALU Base Register (BO through B3) specifiefd
by F(10-11).

BME RALU Even Base Register (BU, B2, B4, or B6)
specified by F(9-10).

BN RALU Base Register (B0 through B7) specified
by F(1-3).

BN3 RALU Base Register (BO through B3) specified
by F(2-3).

BNE RALU Even Base Register (B0, B2, B4, or B6)

specified by F(1-2).

D0-D7 RALU Data Registers DO through D7 (register
file locations 0-7)

3.1.3

Table

3-1 ALU Source and Destination Operands
(Sheet 2 of 2)

OPERAND EXPLANATION
DB RALU Data Register (DO through D7) specified
by SEL(1-3).
DB3 RALU Data Register (DO through D3) specified
by SEL(2-3).
DBE RALU Even Data Register (DO, D2, D4, or D6)
specified by SEL(1-2).
DM RALU Data Register (DO through D7) specified
by F(9-11).
DM3 RALU Data Register (DO through D3) specified
by F(10-11).
DME RALU Even Data Register (DO, D2, D4, or D6)
specified by F(9-10).
DN RALU Data Register (DO through D7) specified
by F(1-3).
DN3 RALU Data Register (D0 through D3) specified
by F(2-3).
DNE RALU Even Data Register (DO, D2, D4, or D6)
specified by F(1-2).
Q RALU Q Register
REGSEL | RALU Register DO through D8 (register file
locations 0-F) specified by SEL(0-3).
ZERO Zero (source only).

Microprocessor Functions

The 14 microprocessor arithmetic and logical functions are

described in the following paragraphs and summarized in
Table 3-2.

3-6

ADD

SRC1l is added to SRC2.

ADD1

SRC1 is added to SRC2 plus 1.

S

AN

ADDSE (add sign extended)

SRC2 must be a D register. The SIGN flop is assumed to con-
tain a copy of bit 4 of that D register. The SIGN flop is copied
to the four most significant bits of SRC2 which sign-extends SRC2
from 16 to 20 bits. The extended value is added to SRCl. SCRI1
must specify the Q register or a register file location. SRCl
and DEST cannot be different register file operands. This opera-
tion is useful, for example, when employing a D register as an
index register.

ADD1ISE (add One sign extended)

The description of ADDISE is identical to that of ADDSE,
except:

® SRC1 must specify the Q register.
e The sign extended SRC2 is added to SRC1l plus One.

AND
SRC1 is ANDed with SRC2. CRY and OVFL are forced to One.

ANDC (AND with complement)

SRC1 is ANDed with the One's complement of SRC2. SRC1l may
not be BI, SRC2 may not specify the Q register, and DEST and
SRC1 may not specify different register file operands.

copy

SRC1 appears as the ALU output.

DECR _

One 1is subtracted from SRC1l. SRCl may not be ZERO.

INCR

One is added to SRCl. SRC1 may not be ZERO.

OR

SRC1 is inclusive-ORed with SRC2.

SUB

SRC2 is subtracted from SRCl, The ALU carry and overflow
signals act as if the One's complement of SRC2 was added to SRC1
plus One.

SUB1

SRC2 is subtracted from SRC1 minus One. The ALU carry and
overflow signals act as if the One's complement of SRC2 was added
to SRCl.

XOR

SRC1 1is exclusive-ORed with SRC2.

XORC (Exclusive OR with Complement)

SRC1 1is exclusive-ORed with SRC2 and the result inverted.

Table 3-2 ALU Functions

FUNCTION ALU OUTPUT

ADD SRC1 + SRC2

iADDl SRC1 + SRC2 + 1

ADDSE SRC1 + SRC2 sign extended
ADD1SE SRC1 + SRC2 sign extended + 1
AND SRC1 A SRC2

ANDC SRC1 A SRC2

COPY SRC1

DECR SRC1 -1

INCR SRC1 + 1

OR SRC1 v SRC2

suB SRC1 - SRC2

SUB1 SRC1 - SRC2 -1

XOR SRC1 ~ SRC2

XORC SRC1 ¥ SRC2

3.1.4 Microprocessor Shift Operands

Shift operands are used to shift the ALU result left or right
by one bit position. A shift operand may be specified only if
DEST is a register file location. The shift operations are opti-
mized for 16- or 32-bit quantities. Although the shifts operate
on 20-bit registers, the operation on the most significant four
bits is generally not useful, especially for right shifts.

3-8

AN

N

In most shift operations,

the bit shifted into the vacated

bit position is designated as SHIN (shift input), and is control-

led by three flops; SHINI,

SHINZ,

and MISC (refer to subsection

3.4). The SHIN function is selected as follows:
MISC | SHIN1 | SHIN2 SHIN

0 0 0 Internal bus bit 4

0 0 1 Internal bus bit 4 inverted

0 1 0 0

0 1 1 Q register bit 19%*

1 0 0 XB register bit 1 (refer to subsection
3.4).

1 0 1 Y register bit 4 (refer to subsection
3.2).

1 1 0 0

1 1 -1 Q register bit 19*

*During shift right operations;

SL (Single Left Shift)

Bits 1 through 19 of the

through 18 of the selected register file location;

otherwise undefined.

ALU result are placed in bits 0
bit 19 of

the selected register file location receives a copy of Q regis-

4 19

Q REGISTER

ter bit 4.

01 19
ALU
RESULT

0 18 19

DL (Double Left Shift)

REGISTER FILE
LOCATION

Bits 1 through 13 of the ALU result are placed in bits 0
through 18 of the selected register file location; bit 19 of the

selected ragister file locati

on receives a copy of Q register

3-9

bit 4. Q register bits 1 through 19 are placed in Q register .
bits 0 through 18; Q register bit 19 receives a copy of the SHIN |
function.

01 19 01 345 19
ALU Q REGISTER
RESULT , - (Before)
~ ~ | -~
' SHIN
l I FUNCTION
REGISTER 0 18 19 0 18 19 Q REGISTER
FILE (After)

LOCATION

Conceptually, the rigthmost 16 bits of the ALU result are
concatenated with the rightmost 16 bits of the Q register and
shifted left one bit position with the SHIN function shifted 1in
on the right. The result is placed in the rightmost bit posi-
tions of the register file location and the Q register,
respectively.

SR (Single Right Shift)

Bits 4 through 18 of the ALU result are placed in bits 5
through 19 of the selected register file location; bit 4 of the S
selected register file location receives a copy of the SHIN func- \
tion. Bits 1 through 3 of the ALU result are placed in bits 0
through 2 of the selected register file location; bit 3 of the
selected register file location receives a copy of the SHIN func-
tion.

01 3 4 18 19

| | aLu REsuLT
_/

— N . o

l_J SHIN FUNCTION ‘
P —— N\ '
0 2

]
e ———
5

3 4

REGISTER FILE
LOCATION

Conceptually, the rightmost 16 bits of the ALU result are
shifted right one bit position with the SHIN function shifted
in on the left. The result is placed in the 16 rightmost bit
positions of the register file location.

3-10

-~

DR (Double Right Shift)

Bits 4 through 18 of the ALU result are placed in bits 5
through 19 of the selected file location; bit 4 of the selected

register file location receives a copy of the SHIN function.

Q register bits 4 through 18 are placed in Q register bits 5
through 19; bit 19 of the ALU result is placed in Q register bit
4. Bits 1 through 3 of the ALU result are placed in bits 0
through 2 of the selected register file location; bit 3 of the
selected register file location receives a copy of the SHIN func-
tion. Q register bits 1 through 3 are placed in Q register bits
0 through 2; bit 19 of the ALU result is placed in Q register

bit 3.

01 34 18 19 01 3 4 18 19
ALU Q REGISTER
RESULT (Before)
SHIN
FUNCTION
A —— A e, S ————
REGISTER O 2 3 5 19 0 2 3 4.5 19 Q REGISTER
FILE (After)
LOCATION

Conceptually, the least significant 16 bits of the ALU result
and the least significant 16 bits of the Q register are conca-
tenated, shifted right one bit position with the SHIN function
filling the most significant bit, and the result placed in the
least significant 16 bits of the register file location and the
Q register, respectively.

3.1.5 Microprocessor Examples

The following are examples of source statements for the
microprocessor area.

3-11

N
NS

STATEMENT MEANING

ADD DO, BO, Q Q =— ALU result-=—B0+DU

SUB1 BO, DO ALU result-= BO-DU-1

COPY BU, BO, SR ALU result-= B0
BO - ALU result shifted right

XORC D0, DO, DO DO = ALU result-- FFFFF#

INCR Q, B3 B3 = ALU result - Q+1

ADD BI, B2, B3 Invalid (DEST must be same as SRC1l or
SRC2)

aADD DO, BO, Q, DR | Invalid (SHIFT operand may only be
specified if DEST is register file lo-
cation)

ADDSE BO. BO, BO Invalid (SRC2 must be D register for
ADDSE)

ADD1SE BO, Du, BU Invalid (SRC1 must be Q for ADDSE)

INCR ZERO, DO Invalid (SRC1 cannot be ZERO for INCR)

OR Dl, D2, D1 Invalid (D1 and D2 are incompatible)

ANDC Dl, Q, D1 Invalid (Q may not be SRC for ANDC)

3.2 INTERNAL BUS AREA

The internal bus area (See Figure 3-2) provides a 2U-bit
wide data path that transfers data among elements of the CPU as
directed by the firmware. This data path is defined as the CPU
Internal Bus (BI).

CENTRAL PROCESSOR

MICRO- MISCELLANEOUS
PROCESSOR HARDWARE
/
@
INTERNAL FIRMWARE
EXTERNAL
SOURCES BUS SEQUENCING
MEGABUS
INTERFACE
CONSTANT
GENERATORS
% 8D
P d
FROM - BP |
MEGABUS > N
INTERFACE \ RUP N
AREA Z PHYSICAL ADDRESS e
v
CONTROL N
PANEL A | INTERNAL
L
H REGISTER s 4 -
B
| REGISTER S
RAM : LINK
o) o— -
S REGISTER u REGISTER
P REGISTER ‘E:
Y REGISTER s
£ INSTRUCTION
L r— Rs(scls*re)n
F/SE
TRAP g /SEL
STATUS
FROM (2) T
MISCELL- o
ANEOUS X8 R
HARDWARE HEX
AREA DECODER
, REGISTER FILE
FROM G
MICRO-
PROCESSOR ALU RESULT
AREA
Figure 3-2 1Internal Bus Area

3-13

The internal bus selects a source from one of the following
five categories.

Sources from microprocessor (RALU)
RAM locations

Megabus buffers

Constants

Other sources.

The data on the internal bus are simultaneously available to
destinations in each of the following four categories:

Megabus address registers
RAM locations

Indicator register (I)
Other destinations.

3.2.1 Syntax

BI 1s the microinstruction which controls the sources and
destinations of the internal bus. The BI microinstruction con-
tains up to six operands as follows: '

BI SRrRC, DEST,.....,DEST
BI SRC, SRCMOD, DEST,.....,DEST
where:

SRC specifies the internal bus source.

SRCMOD specifies a source modifier - may be specified only if

SRC 1s a microprocessor source (ALU or a register file loca-

tion).

DEST specifies an internal bus destination. Destinations, if
any, may be specified in any order, but at most one destina-
tion may be specified from each of the four destination cate-
gories.

3.2.2 Internal Bus Sources

The following are available as internal bus sources:

Sources from the microprocessor area
RAM locations

Megabus buffers

Constants

Other internal bus sources.

These sources are described below and summarized in Table
3-3.

3-14

LN

3.2.2.1 Sources from the Microprocessor Area

The internal bus sources from the microprocessor area are:
(1) the ALU result and (2) register file locations.

ALU

The entire ALU result (refer to subsection 3.1) may be placed
on the internal bus. If SRCMOD is specified, only part of the
ALU result will be used.

Register File Locations

An entire register file location (refer to subsection 3.1)
may be placed on the internal bus. If SRCMOD is specified, only
part of the register file location will be used. Refer to sub-
section 3.1.2 for possible selection restrictions. When a regis-
ter file location 1s the internal bus source, the microprocessor
destination may not be null, but must also be a register file
location (although not, in general, the same location) and no
shift modifier may be specified. When no microprocessor area
microinstruction is specified, the assembler automatically satis-
fies this requirement by copying an arbitrarily selected location
back into itself.

SRCMOD Operand

The optional SRCMOD operand specifies that only part of the
20-bit source from the microprocessor area will be placed on the
internal bus. The two SRCMOD operands are L4 and RS8.

If L4 is specified, internal bus bits 0 through 3 and also
bits 16 through 19 receive copies of bits 0 through 3 of the se-
lected source from the microprocessor area; internal bus bits 4
through 15 are forced to Zeros.

If R8 is specified, internal bus bits 12 through 19 receive
a copy of bits 12 through 19 of the selected source from the
microprocessor area; internal bus bits 4 through 11 receive eight
copies of bit 8 of the H register; internal bus bits 0 through 3
are forced to Zeros.

3.2.2.2 RAM locations

The RAM is a random access memory consisting of sixteen 20U-
bit locations, numbered 0 through F. Locations 1 through 7 are
also called M1 through M7. Any of these locations may be placed
on the internal bus, although RAM locations cannot serve simulta-
neously as an internal bus source and destination.

A RAM location may be specified explicitly or as a function
of the fields in the F/SEL instruction registers. If the firm-
ware step just previously executed altered the contents of SEL,
those operands that depend on fields in SEL will use its previous

’

3-15

contents (i.e., the contents before SEL was altered at the end of
the firmware step just previously executed).

If, simultaneously, a register file location is used as a
restricted selection source (refer to subsection 3.1.2) for the
microprocessor, any RAM location referenced must correspond, in
the sense indicated below, to the restricted-selection register-
file source:

DO :: RAMO

D1-D7 :: RAM1-RAM7 = M1-M7
B0-B7 :: RAM8-RAMF
REGSEL :: RAMSEL
DB :: MB

DB3 :: MB3

DBE :: MBE

DM :: MM

DM3 :: MM3

DME :: MME

DN :: MN

DN3 :: MN3

DNE :: MNE

3.2.2.3 Megabus Buffers
The Megabus buffers that serve as internal bus sources are:
e Data buffer
® Procedure buffer
e Interrupt buffer.

Data Buffer (BD)

The Megabus data buffer is a 16-bit register containing the
response to the most recent non-procedure read request (RDREQ,
refer to subsection 3.3) issued either to memory or to a periph-
eral device. When this buffer is used as the internal bus
source, bits 0 through 3 receive either four Zero's or a copy of
H register bits 12 through 15, depending on the SRC operand spec-
ified.

Procedure Buffer (BP)

The Mebagus procedure buffer is a 16-bit register that con-
tains the next word in the procedure stream, pointed to by the
P register. The P register is incremented each time the buffer
is used as a soruce. When this buffer is used as an internal bus
source, bits 0 through 3 receive either four Zero's or a copy of
H register bits 12 through 15, depending on the SRC operand spec-
ified.

3-16

Interrupt Buffer (RUP)

The Megabus interrupt buffer is a 16-bit register that con-
tains the most recently accepted interrupt word (interrupting
channel number in bits 0 through 9 and interrupt level in bits 10
through 15). When RUP 1is used, bits 0 through 3 of the internal
bus are forced to Zero's.

NOTE
Servicing of interrupts requires a complex algorithm,
and the user 1is advised to return control to the na-
tive firmware if/when this is required.
3.2.2.4 Constants

Constants that are avallable as internal bus sources are:

e Numeric constants
e Operands IDCy and IDSy.

Numeric Constants

A numeric constant may be specified as an internal bus
source. The least significant nine bits of the constant are
considered to be a signed integer, which is sign extended to
16 bits and placed on the least significant 16 bits of the inter-
nal bus; the most significant four bits of the bus are forced to
Zero's. Numeric constants are thus of the form Oxxyz#, where x
equals 0 or F. The second least significant digit of the next
firmware address (refer to subsection 3.5) must equal y.

Operands IDCy and IDSy

These operands are intended to facilitate the creation of
Megabus control words for communicating with external processors
(CIP, WCS, etc.), and function as follows:

® Internal bus bits 0 through 3, 5 through 10, and 15 are
forced to Zeros.

e Internal bus bit 4 receives a copy of Y register bit 4.

® Internal bus bits 11 through 14 receive the channel number
of the associated external processor (bits 11 and 12 re-
ceive 01 if IDSy is sepcified and 10 if IDCy is specified;
bits 13 and 14 receive the CPU ID).

® Internal bus bits 16 through 19 receive y, where y is any
hexadecimal digit, 0 through F. The second least signifi-
cant digit of the next firmware address (refer to sub-
section 3.5) must equal y.

3-17

These operands are optimized for constructing Megabus I/O N
control words for the CIP and SIP. They may be modified as re- N
quired if it is necesssary to address other processors. Example
6 in subsection 3.7 shows the modification necessary to address

the WCS.

3.2.2.5 Other Internal Bus Sources
The other internal bus sources are:

Control panel

H register

Indicator register (I)
Trap Status Z-word
Status register (S)

P register

Y register

MMU physical address
HEX decoder.

Control Panel

The internal bus can receive control and status information
from the Level 6 control panel. If the control panel is speci-
fied as a soruce, the internal bus receives the following
"request word". -

0 3 4 7 8 9 10 11 12 13 14 15 16 17 19
H(12-15) | HEX R|9 P P C W R A | LOW ORDER
DIGIT | U | B L A D R 0 / B | REGISTER
N |D U N E I W E | SELECT
F S 0] F T F | DIGIT
K E
NOTES

1. Bits 0 through 3 receive H register bits 12 through
15, bit 14 is always Zero.

2. Bits 4 through 7 receive the value of the hexadeci-
mal key currently being depressed, Zero if no key
is depressed. Bit 11 receives a Zero when any hexa-
decimal key has been actuated. Refer to subsection
3.4 for firmware acknowledgement and setting of this
bit (FLOPS operand PANOK).

3. Bits 12, 16, and 9 receive the least significant 3
bits of the leftmost register selection hexadecimal
digit. Bits 17 through 19 receive the least signifi-

cant 3 bits of the rightmost register selection digit.
AN

A

4. The remaining 4 bits receive mode information. Bit
8 is Zero only if the panel RUN indicator is illumi-
nated. Bit 10 is Zero only if the panel PLUS indice-
tor is illuminated. Bit 13 is One only if the panel
WRITE indicator is illuminated. Bit 15 is One only

if either the panel WRITE or READ indicator is
illuminated.

For example, assume the internal bus receives the following

bit pattern from the control panel:
0000 1110 1110 1001 0110

then:

B register bits 12 through 15 are Zero.

The "E" key is currently being depressed and has not yet

been acknowledged.

Register D6 has been selected.

The panel is in Read mode, and 1s not in Plus or Run mode.

B Register

The H register 1is a 16-bit register primarily used for swap-
ping halfwords (bytes). There are two ways the internal bus can
receive the H register. Either the two halves of the H register

can be interchanged, i.e., internal bus bits 0 through 3 are

forced to Zero, bits 4 through 11 receive H(8-15), and bits
throuwgh 19 receive H(0-7), or the left half of the H can be
extended, i.e., internal bus bits 0 through 3 are forced to
bits 4 through 11 receive eight copies of H(0), and bits 12
through 19 receive H(0-7).

Indicator Register (I)

The I register is 8 bits wide and contains the seven sof

12
sign-
Zero,

t-

ware-visible indicator bits. Bits 4 through 11 of the internal

bus receive the I register. The other 12 bits are forced to
Zero.

Trap Status Z-Word

The trap status Z-word consists of pertinent hardware in

for-

mation that is delivered to the Memory Trap Save Area (TSA) when

an exception condition is detected in the CPU. The informat

ion

for the Z-word is brought together from several areas to serve as

a source to the internal bus.

¥When the Z-word is specified as the internal bus source,

in-

ternal bus bits 8 through 11 receive the XB register, bits 12 and
13 receive S register bits 1 and 2 (ring number), bits 16 through

3-19

19 receive the CTR counter, and bit 4 receives a Zero unless F o
register bit 0 is a Zero, or unless F register bits 9 through 11 ik/)
= 101 and the SEL register does not contain Zero. All other bits

are forced to Zero.

Status Register (S)

The S register contains the software-visible system status
and security codes. When this register is an internal bus
source, either internal bus bits 4 through 19 receive the S reg-
ister content with bits 0 through 3 forced to Zeros, or bit U
through 11 and bit 13 receive Zero, bit 12 receives a One and
bits 14 through 19 receive S(10-15). S(10-15) is also called
Level (LVL).

P Register

The P register is a 2U-bit software-visible counter that is
primarily used to address memory during procedural reads (refer

to subsection 3.3).

Y Register

The Y register 1is a 2U-bit counter primarily used to supply
addresses to the Megabus during non-procedural reads and writes
(refer to subsection 3.3).

MMU Physical Address

When this source is chosen, the internal bus receives the
20-bit physical address calculated by the MMU during the pre-
vious firmware step. MMU implies Y as an internal bus destina-
tion. Refer to subsection 3.3.3 (MMUSELECT).

Hexadecimal Decoder

The hexadecimal decoder logic produces a l1l6-bit mask, con-
sisting of 15 One's surrounding a Zero in the bit location cor-
responding to the 4-bit value in the XB register. Internal bus
bits 4 through 19 receive the 16-bit mask; bits 0 through 3 are

forced to Zeros.

£
L S

3-20

Table 3-3 1Internal Bus Sources (Sheet 1 of 4)
MNEMONIC CATEGORY DATA RECEIVED BY INTERNAL BUS

ALU RALU ALU Result

B0 through B7 | RALU Base Register BO through B7 (regis-
ter file locations 8-F)

BB RALU Base Register B0 through B7 specified
by SEL(1-3)

BB3 RALU Base Register BO through B3 specified
by SEL(2-3)

BBE RALU Even Base Register B0, B2, B4, Bo
specified by SEL(1-2)

BM RALU Base Register BO through B7 specified
by F(9-11)

BM3 RALU Base Register B0 through B3 specified
by F(10-11)

BME RALU Even Base Register BO, B2, B4, Bb6
specified by F(9-10)

BN RALU Base Register BO through B7 specified
by F(1-3)

BN3 RALU Base Register BO through B3 specified
by F(2-3)

BNE RALU Even Base Register BO, B2, B4, Bb®
specified by F(1-2)

DO through D7 | RALU Data Register D0 through D7 (register
file locations 0-7)

DB RALU Data Register DO through D7 specified
by SEL(1-3)

DB3 RALU Data Register DO through D3 specified
by SEL(2-3)

DBE RALU Even Data Register DO, D2, D4, D6
specified by SEL(1-2)

DM RALU Data Register DO through D7 specified
by F(9-11)

DM3 RALU Data Register DO through D3 specified

by F(10-11)

3-21

Table 3-3 Internal Bus Sources (Sheet 2 of 4)
MNEMONIC CATEGORY DATA RECEIVED BY INTERNAL BUS

DME RALU Even Data Register DO, D2, D4, Do
specified by F(9-10)

DN RALU Data Register D0 through D7 specified
by F(1-3)

DN3 RALU Daﬁa Register DO through D3 specified
by F(2-3)

DNE RALU Even Data Register DO, D2, D4, D6
specified by F(1-2)

REGSEL RALU Register File location specified by
SEL (0-3)

L4 SRCMOD BI(0-3) =— SRC(0-3)
BI(4-15) = 0
BI(16-19)=— SRC(0-3)
where SRC must be a source from the
RALU category

R8 SRCMOD BI(0-3) =« 0
BI(4-11) =— H(8)
BI(12-19) «— SRC(12-19)
where SRC must be a source from the
RALU category

M1l through M7 | RAM RAMx where x = 1-7

MB RAM RAMO through RAM7 specified by SEL(1-3)

MB3 RAM RAMO through RAM3 specified by SEL (2-3)

MBE RAM Even RAM location (RAMO, RAM2, RAM4, or
RAM6), specified by SEL(1-2)

MM RAM RAMU through RAM7, specified by F(9-11)

MM3 RAM RAMO through RAM3, specified by
F(10-11)

MME RAM Even RAM location (RAMO, RAM2, RAM4, or
RAM6), specified by F(9-10)

MN RAM RAMO through RAM7, specified by F(1-3)

MN3 RAM RAMO through RAM3, specified by F(2-3)

MNE RAM Even RAM location (RAMU, RAM2, RAM4, or

RAM6), specified by F(1-2)

3-22

"\{L&”/

-~

Table 3-3 1Internal Bus Sources (Sheet 3 of 4)
MNEMONIC CATEGORY DATA RECEIVED BY INTERNAL BUSj
RAMO through RAM RAMx where x = 0-F
RAMF
RAMSEL RAM RAMO through RAMF, specified by
SEL (0-3)
BD BUS BI(0-3) = 0
BI(4-19) ==— BD
BDH BUS BI(0-3) =— H(12-15)
BI(4-19) =—BD
BP BUS BI(0-3) == 0
BI(4-19Y)—=— BP
BPH BUS BI(0-3) ==— H(12-15)
BI(4-19)-=— BP
RUP BUS BI(0-3) =— 0

IDCO through
IDCF

IDS0 through
ISDF

K--0 through

BI(4-19)-=— RUP

CONSTANT | BI (0-3) =— 0

BI(4) =— Y (4)

BI (5-12) —— 00000010
BI(13-14) -— S(8-9)
BI(15) - O
BI(16-19) =—Y

where y = 0-F

CONSTANT | BI (0-3) =— 0

BI(4) = Y(4)
BI(5-12) -=— 00000001
BI(13-14) -— S(8-9)
BI(15)==— 0
BI(16-19) - Y

where Y = 0-F

CONSTANT | BI (0-11)=— O

BI(12-19)-=— unrestricted

CONSTANT | BI(0-3) =— 0

BI(4-11) == FF
BI (12-19) =— unrestricted

CONSTANT | BI (0-3) =— 0

BI(4-15)-— unrestricted
BI(16-19) = 2z
where z = 0-F

Table 3-3 1Internal Bus Sources (Sheet 4 of 4)
MNEMONIC CATEGORY DATA RECEIVED BY INTERNAL BUS
Numeric Value | CONSTANT | Oxxyz
=Xyz# where x = 0 or F
y = U0 through F
z = 0 through F
H OTHER BI(0-3) =« 0
BI(4-11)=—H(8-15)
BI(12-19)=— H(0-7)
HL8 OTHER BI(0-3)==— 0
BI(4-11)-w—H(O0)
BI(12-19) «—— H(0-7)
I OTHER BI(0-3)a— U
BI(4-11)=— I
BI(12-19)=— O
LVL OTHER 00080# + S(10-15)
‘MMU OTHER Physical address (implies Y as inter-
nal bus destination).
P OTHER P
PANEL OTHER BI(0-3) ==— H(12-15)
BI (4-19)=-— Panel Request Word
S OTHER BI(0-3) =— 0
BI(4-19)=-— S
| XBHEX OTHER BI(0-3) a— 0
BI(XB+4)-=— 0
other 15 bits receive One's
Y OTHER Y
2 OTHER BI(u=3)=— (

BI(4)=-— f(F,SEL)

BI(5~7)=— 0

BI(8-11) = XB

BI(12-13) ==— S(1-2)

BI(14-15) == U

BI(16-19) ««— CTR

where:

f(F,SEL) = F(0) F(9) F(10) F(l1l)
(SEL(0) V SEL(1l) V SEL(2) V SEL(3)

3-24

P

-

3.2.3 1Internal Bus Destinations

Internal bus destinations are divided into four categories:
(1) Megabus address registers, (2) RAM locations, (3) indicator
register, and (4) other destinations. These destinations are
described below and are summarized in Table 3-4. At most, one
register from each category may be selected simultaneously, ex-
cept as noted.

3.2.3.1 Megabus Address Registers

The Megabus address registers that are available as 1internal
bus destinations include:

e P register
e Y register

P Register

The P register may be loaded with the 2U bits from the inter-
nal bus.

CAUTION
This register is software visible.

Y Register

The Y register may be loaded from the internal bus in three
ways. First, the entire 20 bits of the internal bus can be
copied to Y. Second, bits 4 through 19 can be copied to the cor-
responding bits of the Y register, leaving Y (0-3) unchanged.
Third, the two-bit CPU ID, S(12-13), can be substituted for
internal bus bits 10 and 11, and the 20-bit result copied to the
Y register.

3.2.3.2 RAM Locations

When a RAM location 1is specified as a destination, the entire
20 bits of the internal bus are copied into the specified loca-
tion. A RAM location may be specified either explicitly or as a
function of fields in the F/SEL instruction registers. If the
firmware step just previously executed altered the contents of
SEL, those operands that depend on fields in SEL will use 1its
previous contents (i.e., the contents before SEL was altered at
the end of the firmware step just previously executed). If a RAM
location is specified as an internal bus source, none can be
simultaneously specified as a destination.

If, simultaneously, a register file location is used as a
restricted selection source (refer to subsection 3.1.2) for the
microprocessor and/or the internal bus, any RAM location refer-
enced must correspond, in the sense indicated below, to the
restricted-selection register-file source:

3-25

e DO :: RAMO

e D1-D7 ::RAM1-RAM7 = M1-M7
e BU-B7 :: RAM8S8-RAMF
e REGSEL :: RAMSEL

e DB :: MB

e DB3 :: MB3

e DBE :: MBE

e DM :: MM

e DM3 : MM3

e DME : MME

e DN :: MN

e DN3 :: MN3

e DNE :: MNE

3.2.3.3 Indicator Register (I)

When the I register is specified as a destination, I(0) re-
ceives internal bus bit 12; I(2-7) receives bits 14 through 19.
I(l1) is always Zero. Individual bits of this register can also
be modified by microinstructions in the miscellaneous hardware
area (refer to subsection 3.4). When the I register is a desti-
nation, the internal bus source must be from the microprocessor
area, the RAM, or the Megabus buffers.

3.2.3.4 Other Destinations
Other internal bus destinations include:

Control Panel

Status Register

LINK Register

H Register

Instruction Registers.

Control Panel

The internal bus contents can be stored in the control panel
displays. One operand causes internal bus bits 4 through 19 to
be stored in the rightmost four hexadecimal digits. Another op-
erand causes internal bus bits 16 through 19 to be stored in the

leftmost hexadecimal digit of the display.

Status Register (S)

Internal bus bits 5 and 6 can be copied into the ring number
field, S(1-2), or internal bus bits 14 through 19 can be loaded
into the level field, S(10-15). 1If F(5) is Zero when the level
field is loaded, the interrupt busy flop is cleared.

LINK Register

Internal bus bits 11 through 18 can be copied into the 8-bit
LINK register. The LINK register is referenced by the firmware
sequencing area.

3-26

P

H Register

Internal bus bits 4 through 19 can be copied into the 16-bit
H register. SEL may be specified as a simultaneous destination.

Instruction Registers (F and SEL)

The F and SEL registers can be loaded from the internal bus
in three ways. First, internal bus bits 4 through 15 can be
copied into the 12-bit F register and bits 16 through 19 into the
4 bit SEL register. Second, internal bus bits 12 through 15 can
be copied into F(8-11) and bits 16 through 19 into SEL. Third,
internal bus bits 16 through 19 can be copied into the SEL regis-
ter. In the last case, the H register may be specified as a
simultaneous destination.

Table 3-4 1Internal Bus Destinations (Sheet 1 of 2)

MNEMONIC | CATEGORY ACTION
P MEGABUS | P——BI

Y MEGABUS | Y =— BI

YR16 MEGABUS | Y(4-19)=— BI(4-19)
YRELOC MEGABUS | Y (0-9) =— BI(0-9)

Y(10-11) ==— S(12-13)
Y(12-19)=BI(12-19)

M1-M7 RAM MX -«— BI (0-19) where x =1 to 7

MB RAM RAM0O through RAM7, specified by
SEL(1-3) ,~—BI

MB3 RAM RAMO through RAM3, specified by
SEL(2-3) , = BI

MBE RAM Even RAM register (RAMO, RAM2, RAM4,
or RAM6), specified by SEL(1-2), -=—BI

MM RAM RAMO through RAM7, specified by
F(9-11), ««—BI

MM3 RAM RAMO through RAM3, specified by
F(10-11), <— BI

MME RAM Even RAM register (RAMO, RAM2, RAM{4,
or RAM6), specified by F(9-1U), == BI

MN RAM RAMO through RAM7, specified by
F(1-3), «— BI

MN3 RAM RAMO through RAM3, specified by
F(2-3), «—BI

3-27

Table 3-4 1Internal Bus Destinations (Sheet 2 of 2)
MNEMONIC CATEGORY ACTION
MNE RAM Even RAM register (RAMU, RAM2, RAM4,
or RAM6), specified by F(1-2), -—BI
RAMO-RAMF | RAM RAMXx-«— BI where x = 0 to F
RAMSEL RAM RAMO through RAMF, specified by
SEL, ««—— BI
I I I(0)=— BI(12)
I(l)=— 0
I(2-7)~— BI(14-19)
F OTHER F-— BI (4-15)
SEL -«— BI(16-19)
FR8 OTHER F(8-11) -— BI(12-15)
SEL -— BI(16-19)
H OTHER H —=— BI(4-19)
LINK OTHER LINK =— BI(11-18)
LVL OTHER S(10-15)=— BI(14-19)
if F(5) = 0, INTBSY = 0
PANEL OTHER 4 Least Significant Display
Digits -=—BI(4-19)
PANEL4 OTHER Most Significant Display
Digit -=— BI(16-19)
RING OTHER S(1-2) =— BI(5-6)
SEL OTHER SEL -=— BI(16-1Y)
3.2.4 1Internal Bus Examples

The following are examples of source statements for the in-

ternal bus area.

3-28

e

P
L

STATEMENT MEANING

BI ALU,RS8 BI(0-3) =— U
BI(4-11)-=— H(8)
BI(12-19) -— ALU result (12-19)

BI RAMC,P P-<w— BI -«— BAMC
BI BP,F BI(0=3)=— 0
BI(4-19)=— BP
F =— BI (4~15)
SELL-— BI (16-19)

Bl FCO#,M6 | M6 -— BI -— OFFCO#

3.3 MEGABUS INTERFACE AREA

The following activities may occur on the Megabus:

Memory Write

I/0 (non-memory) Write

Memory Read Request

I1/0 (non-memory) Read Request
Read Response

Interrupt

To avoid Megabus bottlenecks, read requests are considered
complete when they have been accepted (or rejected) by the

addressed unit, and a separate Megabus cycle 1s used for the read

response. Various kinds of read requests originating in the CPU
are "tagged" so that the corresponding responses will be deliv-
ered to the appropriate buffer (BD, BP).

The microinstructions in the Megabus interface area (see
Figure 3-3) are designed to request reads, perform writes, and

maintain associated address registers and flops. 1In general,
the operation of the cache and Memory Management Unit (MMU) 1is

transparent; however, occasional firmware control 1s necessary.

3-29

| -

3-30

FROM
INTERNAL
BUS

CENTRAL PROCESSOR
MICRO- MISCELLANEOUS -
PROCESSOR HARDWARE !
INTERNAL FIRMWARE
BUS SEQUENCING
MEGABUS MASTER
INTERFACE CLOCK

MEGABUS

DATA

CACHE

BD BP

RUP

PHYSICAL
ADDRESS

MMU

r——=_ rr——"
| | | |
S T R
e — | R |

VIRTUAL
ADDRESS

Figure 3-3

Megabus Interface Area

LY

Perform Memory Write

When data is to be written to memory, the Y register is first
made to contain the address of the desired word. 1If a byte
rather than a word is to be written, XB register bit 0 (refer to
subsection 3.4) is made to contain the byte offset (0 for left,

1 for right). The firmware may then perform the write, supplying
the data to be written on the internal bus (bits 4 through 19 for
word writes, bits 4 through 11 for left-byte writes, and bits 12
through 19 for right-byte writes). The MMU translates the virtu-
al address in the Y register to the corresponding physical ad-
dress and checks for "write" permission.

The Acknowledge (ACK) flop is set to One if the memory write
is accepted and Zero if it is rejected. It may be copied into
MISC and/or I(I), either simultaneously or anytime thereafter
prior to the next Megabus read request or write operation. It
may be tested, starting in the next firmware step, anytime prior
to the next Megabus read request or write operation. A simulta-
neous test has undefined results. Almost all memory writes are
accepted, so it is usually unnecessary to copy or test ACK.

Perform 1/0 (Non-Memory) Write

When data is to be written to I/O (non-memory) devices, the
Megabus address lines must be made to contain the appropriate
control word (10-bit channel number, 6-bit function code). To
achieve this, Y register bits 5 through 19 must be made to con-
tain the most significant 15 bits of the control word, and XB
register bit 0 must be made to contain the least significant
bit. The firmware may then perform the write. 1If the data to be
sent is 16 bits wide, it is supplied on internal bus bits 4
through 19. If it is 21 bits wide (as is the case when supplying
a device controller with a memory address), data bits 0 through
4 are supplied by Y bits 0 through 4 and data bits 5 through 20
are supplied by internal bus bits 4 through 19. The firmware
is responsible for converting any virtual addresses to physical
for the controller by using the MMU as an internal bus source.
The MMU does neither translation nor checking during I/O writes.

The ACK flop is set to One if the write is accepted and Zero
if it is rejected. It may be copied into MISC and/or I(I),
either simultaneously or anytime prior to the next Megabus read
or write operation. It may also be tested in the next firmware
step or anytime thereafter prior to the next Megabus read request
or write operation. A simultaneous test has undefined results.
It is good practice on I/0 writes to check ACK or copy it to I(I)
for testing by the software.

Request Memory Read

Memory reads are called "procedural" when P supplies the ad-
dress and "data" when Y supplies the address.

3-31

When a data read request is to be performed, the Y register P
is first made to contain the address of the desired word. The L
firmware may then send a read request to the memory subsystem.
The MMU translates the virtual address in Y to the corresponding
physical address and checks for "read" permission. The next (or
any subsequent) firmware step may use BD as an internal bus
source to retrieve the requested data. The ACK flop is set to
One if the memory read request is accepted and Zero if it is
rejected. ACK may be copied and tested in the next firmware step
or anytime thereafter prior to the next Megabus read request or
write operation., Almost all memory data read requests are
accepted, so it is usually unnecessary to copy or test ACK.

Reading procedural words from memory is, from the firmware's
viewpoint, simplified by the inclusion of extra hardware to expe-
dite this common operation. Unlike data reads, it is never nec-
essary to include an explicit procedure read request; the proce-
dure buffer (BP) can be treated as always containing the memory
word addressed by P. This is true because the hardware automat-
ically performs read requests whenever necessary. The MMU trans-
lates the virtual address in P to the corresponding physical
address and checks for "execute" permission. When BP is speci-
fied as an internal bus source, P is automatically incremented so
as to point to the next procedural word. These automatic actions
actions facilitate creation of compact firmware code for reading
procedure. For higher performance, an explicit procedural read
request may be specified in advance of the step which uses BP as -
an internal bus source. To facilitate the firmware coding of -
branch instructions, if an explicit procedural read request 1is
specified simultaneously with Y as an internal bus source and P
as an internal bus destination, the memory address is supplied by
Y.

Request I/0 (Non-Memory) Read

When an I/0O (non-memory) read request is to be performed, the
Megabus address lines must be made to contain the appropriate
control word (10-bit channel number, 6-bit function code). To
achieve this, Y register bits 5 through 9 must be made to contain
the most significant 15 bits of the control word, and XB register
bit 0 must be made to contain the least significant bit. The MMU
does neither translation nor checking during I1/0 read requests.
The next (or any subsequent) firmware step may use BD as an in-
ternal bus source to retrieve the requested data. The ACK flop
is set to One if the read request is accepted and Zero if it is
rejected. ACK may be copied and tested in the next firmware step
or anytime thereafter prior to the next Megabus read request or
write operation. It is good practice on I/0 read requests to
check ACK or copy it to I(I) for testing by the software.

N

3.3.1 Syntax

The microinstructions in this area specify the firmware con-
trol on the Megabus interface. These microinstructions contain a
function with from zero to two operands as follows:

Function operand, operand

No Megabus interface microinstruction should be specified if
the internal bus calls for BD, BDH, BP, BPH, P, Y, or MMU as a
source, or for P, ¥, YR16, or YRELOC as a destination, except as
noted.

3.3.2 Megabus Interface Functions

The Megabus interface functions are described below and sum-
marized in Table 3-5.

WRTWORD

WRTWORD performs a word write to memory or I/0. The only
valid operand combinations are:

CHGLOCK
INCY

1-0

1-0,. INCY.

The short form WRT is synonymous with WRTWORD. WRTWORD or
WRT may be specified even when Y is an internal bus source.

WRTBYTE

WRTBYTE performs a byte write to memory or I/O. The only
valid operand combinations are:

e CHGLOCK

o INCY

e I-O

e I-O0, INCY.

WRTBYTE may be specified even when Y is an 1internal bus source.
RDREQP

RDREQP initiates a procedural read request. No operands may
be specified. RDREQP may be specified even if Y is an internal
bus source and P is an internal bus destination, in which case
the memory address is specified in Y rather than P (refer to
subsection 3.3.3 - PURGE). RDREQP may also be specified even
when P is an internal bus source.

3-33

RDREQ

P
RDREQ initiates an I/0 or memory data read request. The N
only valid operand combinations are:
e NORMAL
e 1I-0O
e CHGLOCK
e NOCACHE
e CHGLOCK, NOCACHE.
RDREQ (with any of the above operand combinations) may be
specified even when Y is an internal bus source.
BUS
BUS performs auxiliary operations when no read request or
write operation is desired. The only valid operands for BUS
are:
e YSELECT
e PSELECT
e MMUSELECT
® INCY
e INCP
e PURGE
e MMURDACC N
e MMUWRACC.
3.3.3 Megabus Interface Operands
The Megabus interface operands (described below0O are used to
modify the basic functions.
NORMAL
A memory data read request is performed.
I1-0
A non-memory read request or write operation is performed.
If this operand is omitted, any read request or write operation
is directed to memory.
INCP
The P register is incremented at the end of the current firm-
ware step. Note that when BP or BPH is specified as an internal
bus source, P is automatically incremented. INCP may be speci-
fied even when P is an internal bus source.
£
N

3-34

LN

INCY

The Y register is incremented at the end of the current firm-
ware step. Even when BD, BDH, or Y is an internal bus source,
INCY may be specified as a BUS operand.

PSELECT

If the previous firmware step initiated a procedural read
request (RDREQP), and the current step does not use the requested
data (by specifying BP or BPH as an internal bus source), then
PSELECT (or INCP or PURGE) must be specified to ensure correct
operation of the hardware. PSELECT may be specified even when P
is an internal bus source.

YSELECT

If the previous firmware step initiated a non-procedural read
request (RDREQ), and the current step does not use the requested
data (by specifying BD or BDH as an internal bus source), then
YSELECT (or INCY) must be specified to ensure correct operation
of the hardware. Furthermore, no RDREQP should be performed in
any step between an RDREQ and the step that uses the data.
YSELECT may be specified even when Y is an internal bus source
and/or when P is an internal bus destination.

PURGE

Kotifies hardware that BP is obsolete. This notification is
necessary only in the case where Y is to be copied to P (e.g.,
software jump) during a procedural read request (refer to sub-
section 3.3.1 - RDREQP). This action must be preceded by a BUS
PURGE.

NOCACHE

The cache, if installed, is bypassed during the memory read.
The only time it is necessary to use this operand is when the
requested data is to be directly copied from BD to P (i.e., BI
BDH,P).

CHGLOCK

Allows the implementation of selected software instructions
that facilitate intercommunication and synchronizing in multi-
processor systems. The intent is to protect against overlap and
consequent interference between "test-and-set" operations initia-
ted independently by two or more CPU's on a common memory loca-
tion.

Since the "lock" mechanism is implemented in the main memory
subsystem, use of this argument unconditionally implies NOCACHE,
(the latter argument, though redundant, may be included for
clarity)..

3-35

All other effects of CHGLOCK are conditional on the content
of the F register. If F = 002, 003, 006, or 007, or if 880#<F

<8974 or if BAO#<F< B8B7# the current instruction is classifed as
@ Read-Modify-Write (RMW) operation, and the interlock operates;

otherwise, CHGLOCK has no further effect.

The operation of the interlock is dependent on CPU control
flop RMWF, which is assumed to be initally cleared. The operand
CHGLOCK causes the read request or write cycle on the Megabus to
be accompanied by a Set-Lock code. The memory, if it is not
already locked, accepts the transmission and the memory module
becomes locked. 1If the memory had already been locked, it would
have rejected the transmission (ACK = 0); CPU firmware, sensing
the rejection, could repeat the request or take other appropriate
action.

When the Set-Lock request is acknowledged, CPU hardware sets
the RMWF control flop. As a result, the next CHGLOCK occurrence
causes a Megabus cycle accompanied by an UNLOCK code. The memory
unconditionally accepts the code, and the module involved reverts
to (or remains in) the unlocked state.

It is imperative that any firmware algorithm which locks any
memory module not be permitted to terminate without unlocking the
same module. Failure to observe this requirement can produce
unrecoverable system deadlocks, which can be very elusive to
diagnose.

MMURDACC, MMUWRACC

Modifies the access rights checking performed in preparation
for MMUSELECT (refer to subsection 3.3.3 - MMUSELECT). MMURDACC
or MMUWRACC may be specified even when Y is an internal bus
source.

MMUSELECT

It it is necessary to check the validity of a virtual memory
addrress or the program's access rights to that location, the
following actions are taken. The Y register 1s first made to
contain the address. The virtual address is then transmitted to
the MMU by specifying MMURDACC (for a read access check) or
MMUWRACC (for a write access check) as a BUS operand. In the
next firmware step, the physical address may be selected as an
internal bus source (BI MMU). 1If the physical address is not
needed and the internal bus can profitably be used for another
purpose, then the microinstruction BI MMU can be replaced by BUS
MMUSELECT. Simultaneously, the address validity can be tested
using the condition IFADRER (refer to subsection 3.5) and any
protection violation can be copied into control flop MISC (FLOPS
MSPROV). 1If either BI MMU or BUS MMUSELECT is specified, the Y
register will be loaded from the internal bus whether or not Y is
specified as an internal bus destination.

3-36

Table 3-5 Megabus Interface Microinstructions

(Sheet 1 of 2)

MICROINSTRUCTION MEANING

BUS INCP Pes— P+1
CRT =—CTR+1

BUS INCY Y-—Y+1

BUS MMURDACC Map Y address and request read permis-
sion.

BUS MMUSELECT Make available SEGERR and PROV.

BUS MMUWRACC Map Y address and reguest write permis-
sion.

BUS PSELECT Finish preceding RDREQP.

BUS PURGE Refresh BP.

BUS YSELECT Finish preceding RDREQ.

RDREQ NORMAL Initial memory data read request.

RDREQ CHGLOCK Initate memory data read request.
Set/clear lock in memory.
Bypass cache.

RDREQ I-0 Initiate non-memory data read request.

RDREQ NOCACHE Initiate memory data read request.
Bypass cache.

RDREQP Initiate procedural read request.

WRT CHGLOCK Perform memory word write.
Clear/set lock in memory.

WRT I-0 Perform non-memory word write.

WRT I-0, INCY Perform non-memory word write.
Y -—Y+1

WRT INCY Perform memory word write.
Y- Y+1

WRTBYTE CHGLOCK Perform memory byte write.
Clear/set lock in memory.

WRTBYTE - I-0 Perform non-memory byte write.

37

Table 3-5 Megabus Interface Microinstructions
(Sheet 2 of 2)

MICROINSTRUCTION MEANING
WRTBYTE I-0, INCY Perform non-memory byte write.
Y -Y+1
WRTBYTE INCY Perform memory byte write.
Y eY+1
WRTWORD CHGLOCK Perform memory word write.

Clear/set lock in memory.
WRTWORD I-O Perform non-memory word write.

WRTWORD I-O, INCY Perform non-memory word write.
Y- Y+1

WRTWORD INCY Perform memory word write.

3.4 MISCELLANEOUS HARDWARE AREA

The miscellaneous hardware area controls a number of auxil-
iary flops and registers. There are four categories of miscel-
laneous hardware:

I - Indicator Register
CTR - Counter Register
MMU - MMU Controls

GP - Other Hardware.

3.4.1 Syntax

The syntax of microinstructions 1in the miscellaneous hardware
area 1s:

FLOPS operand,....,operand
where:

Each operand specifies a flop or register and the value used
to load it.

Multiple operands may be used to specify simultaneous actions
on the flops and registers.

3.4.2 Indicator Register (I) Bits

The 8 bits of the I register may be loaded from the internal
bus bits of I using the FLOPS microinstruction. 1If one or more

3-38

-

operands in this category are used, the internal bus source,

i1f

any, must be from the microprocessor area, the RAM, or the Mega-

bus buffers.

ovi-|C|B|I|G|L|U

The Overflow indicator (OV) may be set from:

e OVFL (ALU overflow signal, refer to subsection 2.1).

@ Internal bus bits 4 and 5 (refer to Table 3-6 for exact

function).
The Carry indicator (C) may be set from:

CRY (ALU carry signal, refer to subsection 3.1).
Internal bus bit 4.
Internal bus bit 19.

The Bit indicator (B) may be set from:

® AUZ (ALU zero detect, refer to subsectgion 3.1).
e Internal bus bit 4.

Q register bit 19 just prior to rightshift in this step.

The Input/Output indicator (I) may be set from the Megabus

acknowledge signal (refer to subsection 3.3.).

The Greater Than indicator (G) may be set from:

e Internal bus bit 2 and AUZ (ALU zero detect) - refer to

Table 3-6 for exact function.
e Complement of SIGN flop (refer to subsection 3.4.5).
The Less Than indicator (L) may be set from:
e Internal bus bit 4.

e ALU result bit 0.
e SIGN flop (refer to subsection 3.4.5).

The Unlike Signs indicator (U) may be set from internal bus

bit 4.

3.4.3 Counter Register (CTR)

The 4-bit CTR counter is used by the native firmware to count
the instruction length. It is made avallable to the internal bus
when the trap status Z-word is an internal bus source. It is
incremented each time BP is specified an an internal bus source
(operands BP or BPH, refer to subsection 3.2), or INCP is speci-

fied in the BUS microinstruction (refer to subsection 3.3),

un-

less a FLOPS operand specifies it is to be initialized to a Zero

or One.

3-39

3.4.4 MMU Controls

The MMU controls modifying and restoring the MMU function-
ality as summarized below (refer to subsection 3.3).

@ Calculate effective ring number: EFFRING is loaded with
the less priviledged of the previous value of the effec-
tive ring number and the write permission ring number as-
sociated with the address Y (generally used during in-
direct references).

e Check procedure as data: NOCHEK is set to One, meaning
that until further notice (see below), procedural read
requests need only "read" permission, not "execute"
permission.

® Suppression access rights checking: until further notice
(see below), no access rights will be checked. Address
mappiing and boundary checks are unaffected.

@ Check data descriptor length: 1loads control flop DDLEQO
to remember whether internal bus bits 8 through 12 are
Zero.

e 1Initialize effective ring number: EFFRING is restored
from S register (bits 1-2). NOPROC and NOCHEK are
cleared to Zeros, restoring normal access rights checking.

e Validate range: test that the range specified on the
internal bus, added to the address in the Y register, does
not exceed the size of the segment defined by the latter
address. The results of the test are reported in two
testable flops, Segment Error (SEGERR) and Protection
Violation (PROV); refer to subsection 3.3.3 - MMUSELECT.

3.4.5 Other Hardware

The other flops and registers, and the functions from which
they can be set are as follows:

LOAD Flop

The LOAD flop is normally set and cleared by the control
panel. It can also be set and cleared by firmware. If LOAD 1is

set, the CPU will not automatically cause a trap if it detects an
unavailable resource.

MISC Flop
The MISC flop may be set from:
e Complement of internal bus bit 19.

® Internal bus bits 4 through 9 equal to Zero.

3-40

“_

3

@ CRY - ALU Carry signal (refer to subsection 3.1).

e ACK - Megabus Acknowledge signal (refer to subsection
3.3).

e PROV - MMU Protection Violation signal (refer to sub-
section 3.3).

e Zero
® One
PANOK Flop

The PANOK flop is cleared by the control panel hardware when
a hexadecimal keypad pushbutton is being depressed; it must be
set by firmware when the control panel request has been serviced.
When PANEL is an internal bus source (refer to subsection 3.2), a
copy of this flop appears as internal bus bit 11.

SHIN1l Flop

The SHIN1 flop may be set from:

e¢ I(B) - I register Bit Test indicator
® Zero

e One.

SHIN2 Flop

The SHIN2 flop may be set from:

e Complement of SIGN flop
® Zero
® One.

SIGN Flop
The SIGN flop may be set from:

Internal bus bit 0

Internal bus bit 4

Internal bus bit 19

One

Zero (by using the firmware sequencing condition IFRPTR).

TRAFFIC Flop

The TRAFFIC flop may be set from the complement of the ZERO
flop.

3-41

WRAP Flop

The WRAP flop may be set from the inequality of the ALU Carry s
signal (CRY) and the SIGN flop.

XB Register

The XB register may be cleared to Zero or may be shifted

right by one bit, receiving either 0, 1, or bit 19 of the ALU
result.

ZERO Flog
The ZERO flop may be set from:
| e AUZ - ALU zero detect signal (refer to subsection 3.1).

e QLT active flop from control panel - equals One only if
the last CPU Quality Logic Test (QLT) execution failed.

e Zero.
® One.

3.4.6 FLOPS Operands and Restrictions

The FLOPS operands are specified in Table 3-6. 1In general,
only one operand from each of the four categories may be spec-
ified except as noted. When a specific operand implies other op-
erands, it 1s recommended that the implied operands be coded
explicitly, to improve listing clarity.

Table 3-7 lists the only legal combinations of internal bus
destinations (refer to subsection 3.2) and GP category FLOPS op-
erands. For example, if H is an internal bus destination, then
SGBI4 must be specified, and no other GP category operands are
permitted. If none of the listed internal bus destinations are
specified, then SGBI4 may be used by itself or in combination
with several other GP category operands, as shown. If an incom-
plete combination is specified in the source code, the WCS Assem-
bler might choose a combination with undesired side effects.

All operands which are functions of the ALU signals AUZ,
OVFL, and CRY may be used simultaneously only with other operands
which force the same length (16 or 20 bits). Thus, ICRY20 may
be used with ZRAUZ20 but not ZRAUZ. This restriction also ap-
plies to test conditions (refer to subsection 3.5.4) which are
functions of AUZ, OVFL, or CRY.

4-42

Table 3-6 Miscellaneous Hardware Operands (Sheet 1 of 4)
OPERAND CATEGORY ACTION NOTES AND RESTRICTIONS
IACK I I(I)==— Megabus ACK

flop
IBBI4 I I(B)=-=— BI (4)
I(C)-= CRY
I (OV)==— OVFL
IBNAZ I I(B)==— AUZ Refer to Note 2a.
IBNAZ20 I I(B)==— AUZ Refer to Note 2b.
 ICBI4 I I(C)=-— BI(4)
ICBI19 I I(C)-——BI(19)
ICQSR I I(C)=—Q(19) Microprocessor must
specify right shift.
' ICRY I I(C)==— CRY May also specify IOVFL
w/wo IBBI4.
Refer to Note 2A.
ICRY20 I I(C)== CRY May also specify IOVFL
w/wo IBBIA4.
Refer to Note 2b.
IGL I I(G)= BI(4) V AUZ
I(L)=—BI(4)
IGL20 I I(G) = ALU result (U)]| Refer to Note 2b.
V AUZ (20 bits)
I(L)== ALU result (0)
IGLU I I (G)==— SIGN
I(L) - SIGN
I(U) - BI(4)
IO4NES I I(OV)=— BI(4) ¥ BI(5)
IOVFL I I (OV) = OVFL

3-43

Table 3-6 Miscellaneous Hardware Operands (Sheet 2 of 4)

OPERAND

CATEGORY

ACTION

NOTES AND RESTRICTIONS

CTRO

CTR1

DDLEQU

NOCHEK

NONPROC

RINGCALC

RINGINIT

CTR

CTR

MMU

MMU

MMU

MMU

MMU

CTR =0

CTR =1

Check data descriptor
length. Calculate
effective ring num-
ber.

Suppress access
rights checking.

Check procedure as
data.

Calculate effective
ring number.

Initialize effective
ring number.

Check data descrip-
tor length.

l. Implies INCP as a

BUS operand unless BP
or BPH is internal bus

source.

2. Implies XBSR un-
less XBSRO, XBSR1l, or
XB0 is specified.

3. Bit 1 of the 11-
bit branch address
must equal Zero.

1. Implies INCP as a
BUS operand unless BP
or BPH is internal bus
source.

2. Implies XBSR un-
less XBSRO, XBSR1l, or
XB0 is specified.

3. Bit 1 of the 11-
bit branch address
must equal One.

Implies microprocessor
function XORC.

1. Implies RINGCALC
unless microprocessor
function INCR, ADD1,
AND, or SUB specified.

2. No FLOPS operand
in CTR or GP groups
may be specified.

Implies microprocessor
function ANDC.

Implies microprocessor
function XOR.

Implies microprocessor
function OR unless
COPY (with non ZERO
SRC1l) is specified.

3-44

N

Table 3-6 Miscellaneous Hardware Operands (Sheet 3 of 4)
OPERAND CATEGORY ACTION NOTES AND RESTRICTIONS
VALIDS MMU Validate range. l. Implies micropro-

cessor function SUB
unless DDLEQQO,
NONPROC, or RINGINIT
is also specified.
2. No FLOPS operand
in CTR or GP groups
may be specified.
LOADO GP LOAD == 0
LOAD1 GP LOAD == 1
MSO GP MISC== 0
MS1 GP MISC =1
MS4-9EQO MISC-=-BI (4) V BI(5) V
' BI(6) V BI(7) V
BI(8) V BI(9)
MSACK GP MISC -=— Megabus ACK
flop
MSCRY GP MISC - CRY Refer to Note 2a.
MSCRY20 GP MISC == CRY Refer to Note 2b.
MSNBI19 GP "MISC == BI(19)
MSPROV GP MISC - MMU protection
violation signal
PANOK GP PANOK ==—1
SG1 GP SIGN =1
SGBIO GP SIGN-=- BI(0)
SGBI4 GP SIGN -= BI (4)
SGBI19 GP SIGN==—BI (19)
SHOO GP SHIN]l = 0
SHIN2 = 0
SHO1 GP SHIN]l==— 0
SHIN2 == 1

3-45

Table 3-6 Miscellaneous Hardware Operands (Sheet 4 of 4)

i
\

OPERAND CATEGORY ACTION NOTES AND RESTRICTIONS
SH10 GP |SHINl=—1
SHIN2 =0
SH11 GP SHIN] =1
SHIN2 =1
SH1IB GP SHIN] —— I (B)
SH2NSG GP SHIN2-= SIGN
TRAFNZR GP TRAFFIC == ZERO
WRAP GP WRAP -« SIGN ¥ CRY Refer to Note 2b.
XBO GP XB=- 0
XBSR GP XB(0)-=— ALU result If right shift not
(19) specified in micro-
XB(1-3)=— XB(0-2) processor area,
results are undefined.
Refer to Note 2a.
XBSRO GP XB(0)=— 0 Refer to Note 2b.
XB(1-3) - XB(0-2)
XBSR1 GP XB(0) == 1 Refer to Note 2b.
XB(1l-3) = XB(0-2)
ZRO GP ZERO = 0
ZR1 GP ZERO - 1
ZRAUZ GP ZERO = AUZ | Refer to Note 2a.
ZRAUZ20 GP ZERO-=- AUZ
ZRQLT GP ZERO -« QLT active
flop
NOTES
l. For restrictions and permissible combinations
in the GP category, refer to Table 3-7.
2a. Forces AUZ, CRY, and OVFL to 16-bit versions.
2b. Forces AUZ, CRY, and OVFL to 20-bit versions
(refer to subsection 3.1.2).

3-46

N

<

Table 3-7 Permissible GP Combinations

(Sheet 1 of 2)

DESTINATION (S) OF
INTERNAL BUS

GP CATEGORY OPERANDS

PANEL
PANEL4
LVL
RING
LINK
H,SEL
B

SEL
FR8

FR8

None of the above
None of the above
None of the above
None of the above
None of the above
None of the above
None of the above
None of the above
None of the above
None of the above

None of the above

None

None

None

None

None

None

SGBI4

SH1l1

SG1

SGBI1Y9, MS4-9EQO

XBO ‘

XB0, MSO, SHOU, ZRAUZ
SBO, MSO, SHOU, ZRAUZ20
SGBI4, MSNBI19, ZRAUZ
SGBI4, MSNBI19, ZRAUZ2U
SGBI4, SH2NSG

SGBI4, MS1

SBGI19, MS1

SGBI1l9, ZRQLT

SGBI4, XBSR

SGBI4, XBSRO

SGBI4, XBSR1

ZR0O, XBSR

ZR0O, XBSRO

3-47

3.4.7

Table 3-7

Permissible GP Combinations
(Sheet 2 of 2)

DESTINATION (S)

GP CATEGORY OPERANDS

None
None
None
None
None
None
None
None
None
None

None

of
of
of
of
of
of
of
of
of
of
of

the
the
the
the
the
the
the
the
the
the

the

above
above
above
above
above
above
above
above
above
above

above

ZR0, XBSR1
ZR1, XBSR
ZR1, XBSRO
ZR1, XBSR1
SHOO, XBSR
SH0O0, XBSRO
SHOO, XBSR1
SH10, XBSR
SH10, XBSRO
SH10, XBSR1
Any single GP-category operand,

except. ZRQLT, XBO, MSNBI19,
or MS4-9EQO

Miscellaneous Hardware Examples

The following are examples of source statements for the
miscellaneous hardware area.

STATEMENT

MEANING

FLOPS

FLOPS

FLOPS

FLOPS

FLOPS

IGL20, CTRO,

IOVFL, ICRY

IACK, IBBI4

NOCHEK, CTR1

NOCHEK, NONPROC

NONPROC, XBSR

Invalid - cannot choose to
operands from same category
except as noted.

Invalid - NOCHEK incompatible
with operands from CTR and GP
categories.

Invalid - NOCHEK and NONPROC
require different microproces-
sor functions.

3-48

=
N

A

STATEMENT MEANING

FLOPS SHO00

FLOPS SHO00, MSO Incomplete specification - may
result in undesired side
effects.

FLOPS SHO0O0, MS1 Invalid - illegal combination

of GP category operands.

3.5 FRIMWARE SEQUENCING AREA

The firmware sequencing area generates the address of the
next firmware step to be executed. Both conditional and uncon-
ditional branching are supported.

3.5.1 Transparent and Sequential Mode Differences

The two firmware sequencing modes supported by WCS, Trans-
parent and Sequential, are mutually exclusive. The WCS option
hardware must be set by a manually operated switch, into one mode
or the other. The following discussion assumes that the setting
of this switch is established when the system is installed, and
that all user firmware intended for one installation will execute
in the same mode. The assembler must be told which mode applies
to the firmware being processed (refer to Section four), to pro-
duce object” code consistent with this mode, as well as appropri-
ate diagnostics when the restrictions applicable to this mode are
violated.

The obvious difference between the two modes appears in the
assignment of control store addresses to successive steps of a
firmware routine. 1In this respect, Sequential mode looks more
like typical software, and hence will seem more familiar to most
readers. The microporgrammer assigns an initial address
(origin), after which the assembler automatically increments the
address for each new step. Conditional branches represent a
choice between continuing in sequence and taking some other
action (branch to a specified location, or "call" a subroutine,
or "return").

In contrast, the microprogrammer working with transparent
code will rarely allow the assembler to assign the address of
the next step, even when the values are adjacent. Every step in
Transparent mode explicitly specifies the address of its succes-
sor, which may equally reside anywhere in the 2048-location firm-
ware bank. Conditional branches represent a choice between the
address thus specified and an alternate address (produced either
by a fixed modification of the specified address, or by reference
to the LINK register, or by hardware dedicated to analyis of the
F/SEL instruction register).

In either mode, when no branching is required, the assembler T
generates the necessary code to progress from step to step. N
Nevertheless, it should be noted that, in transparent object
code, the bits responsible for specifying the next address are
occupied at almost every step, whereas in sequential object code,
these bits are unused except where branching is called for. This
destinction is important because some of these same bits are in-
volved in the generation of constants (refer to subsection
3.2.2.4 and 3.7) by the firmware.

Therefore, when a particular constant needs to be generated,
a restriction 1s imposed on the value of the next-address bits.
In Transparent mode, this restriction requires some extra book-
keeping to keep track of address assignments. In Sequential
mode, the restriction vanishes when no simultaneous branching is
involved; otherwise, it usually requires insertion of an extra
firmware step.

Thus, the choice between the two modes should be based on the

expected frequencies of branching and of constant usage, and the
consequent likelihood of their interfering with each other.

Secondary considerations include: (1) the relatively greater
ease of subroutine calling in Sequential mode, (2) the greater
freedom with which three or more decision steps can select be-
tween the same two destinations in Transparent mode, and (3) the
fact that the native CPU firmware is written and executed in
Transparent mode. 1In summary, Transparent mode makes it possible
to produce more compact code, whereas Sequential mode is easier
to learn.

3.5.2 Transparent Mode Syntax

The Transparent mode firmware sequencing microinstruction
takes one of the following forms:

GOTO addr
condition true, false
where:

addr is the unconditional-branch address.

true is the branch address if condition is true.

false i1s the branch address if condition is false.

In Transparent mode, the branch address operands (true,
false, and addr) may be an address value (refer to subsection
3.5.5) or a reserved word (LINK register operand or "splatter"
operand). An address value is used if the branch address is a P

fixed location. A LINK register operand is used to specify the K
11-bit branch address as a function of the 8-bit LINK register

3-50

L

(refer to subsection 3.2.4) as shown in Figure 3-4. A splatter
operand is used to generate a branch address based on the value
of the F/SEL instruction register (refer to Appendix E). The
legal Transparent mode address operands are summarized in Table
3-8).

OPERAND BRANCH ADDRESS
XLO {o]1] LINK REG VALUE | 0 |
XL1 [1]1] Link REG vaLUE | 0 |
XL [x [1] LINK REG VALUE | 0 |

Xx = high order bit of alternate
branch address (One if none)

Figure 3-4 Link Register Operands

The only valid unconditional branch is GOTO, where control 1is
transferred to the specified branch address. 1In conditional
branching, either the "true" or "false" operand must specify a
value or reserved word, and the other must specify a value or be
nezll. If this latter operand is null it represents the address
of the next firmware statement in the source. 1If neither operand
is specified as a reserved word, one of the addresses must be
equal to the other address ORed with 3.

3-51

Table 3-8 Transparent Mode Branch Address Operands

OPERAND GENERATED BRANCH ADDRESS

value Specified address **

XL Function of LINK register and of alternate branch ad-
dress.

XLO Function of LINK register (most significant bit = 0).

XL1 Function of LINK register (most significant bit = 1).

XA* Fixed location based on F/SEL (Address Syllable).

XB* Fixed location based on F/SEL (Commercial Address

Syllable).

XE* Fixed location based on F/SEL (Execute).

XR* Fixed location based on F/SEL (Read Operand Data).
Xw* Fixed location based on F/SEL (Write Result).

XF Fixed location = 020#%# (Fetch Instruction).

*F may not be loaded (refer to subsection 3,2) simultaneously
with specifying these branch address operands (refer to Appen-
dix E for maps of locations addressed as functions of F/SEL).

**If internal bus source is a constant (refer to subsection
3.2.2.4), the second least significant hexadecimal digit of
"value" must equal digit "y" of the constant.

3.5.3 Sequential Mode Syntax

The Sequential mode firmware segquencing microinstruction
takes one of the following forms:

GOTO addr
CALL addr
LBRANCH addr
RETURN

Condition true
Condition true,RETURN

Condition true,,CALL

3-52

AR

R

Condition false
Condition RETURN, false
Condition ,false,CALL
where:
addr is the unconditional branch address.
true is the branch address if the test condition is true.

false is the branch address if the test condition is false.
Unconditional branches in Sequential mode include:

® GOTO - Control is transferred to the specified branch
address.

e CALL - Control 1s transferred to the specified branch
address after saving the address of the current firmware
step plus one in the "return-address" register. Nested
calls are not supported.

® RETURN - Control is transferred to the firmware step
pointed to by the return address register.

® LBRANCH - Control is transferred to one of 256 locations
based on the three most significant bits of the 1l1-bit
operand "addr", concatenated with the LINK register value.

The operand "addr" must be an address value (refer to sub-
section 3.5.6) greater than 001. If the internal bus source is a
constant (refer to subsection 3.2.2.4), the second least signifi-
cant digit of the "value" must equal digit y of the constant.

In Sequential mode conditional branching, either the "true"
or "false" operand must specify an address value, and the other
must be null or the reserved word RETURN. If null is used, a
conditional CALL may be specified by using the three operand
format.

3.5.4 Conditions

Table 3-9 summarizes the list of permissible test conditions,
divided into six categories:

Microprocessor Tests

Internal Bus Tests

Instruction Register (F/SEL) Tests
Megabus Interface Tests
Miscellaneous Hardware Tests

Other Tests

3-53

Conditions that test a single bit or flop (or a logical func-
tion of several) result in "true" if the value is One and "false"
if the value is Zero. Conditions that test a relational expres-
sion (e.g., F(1-3) = 7) result in "true" if the relation is sat-
isfied and "false" if it is not.

If a register or flop is being loaded and tested simulta-

neously, the test applies to the value before the load. The F
register may not be loaded and tested simultaneously.

Microprocessor tests which are functions of AUZ, OVFL, or CRY
may not force these signals to detect on different lengths (16 or
20 bits) than any simultaneous FLOPS operands (refer to subsec-
tion 3.4) which are functions of these signals.

Table 3-9 Firmware Sequencing Conditions (Sheet 1 of 5)

CONDITION SIGNAL OR FUNCTION TESTED NOTES & RESTRICTIONS

MICROPORCESSOR TESTS

IFALUO ALU (0) Refer to Note 1.

IFAUZ AUZ Refér to Note 1.

IFAUZ20 AUz Refer to Note 2.

IFCRY CRY Refer to Note 1.

IFCRY20 CRY Refer to Note 2.

IFOVFL OVFL Refer to Note 1.

IFQSR Q(19) Microprocessor area

must specify DR or SR.

IFSHIN SHIN

IFSHZ SHIN V AUZ Refer to Note 1.

IFSHZ20 SHIN V AUZ Refer to Note 2.
INTERNAL BUS TEST

IF4EQS5 BI(4) = BI(5)

IFBI4 BI (4)

IFBI12 BI(12)

IFBI19 BI(19)

3-54

N

e

Table 3-9

Firmware Sequencing Conditions (Sheet 2 of 5)

CONDITION

SIGNAL OR FUNCTION TESTED

NOTES & RESTRICTIONS

IFBINUM

IFPMUX

IFPRIV

IFTRACE

IFBCND

IFBINUM

Internal bus bit determined

by the register number field,
F(1-3), as follows:

F Register

Bits 1-3 Bit Tested

I(I)

BI(13)
BI(14)
BI(15)
BI(16)
BI(17)
BI(18)
BI(19)

-~ OC OO0
HHFOOHKFOO
HOHFFOFOHO

Previous firmware step had
P, BP or BPH as internal bus
source, or previous step had
BUS operand PURGE, INCP,
RDREQP, or PSELECT and did
not have P as internal bus
destination.

Privilege bit of S register,
S(l)

M1(0)

INSTRUCTION REGISTER
(F/SEL) TESTS

Branch condition (appropri-
ate to branch instruction
in F register - refer to
Table 3-10).

Bit determined by register
number field, F(1-3), as
follows:

F (1-3) Bit Tested
000 I(I)
001 BI(13)
010 BI(14)
011 BI(15)
100 BI(16)
101 BI(17)
110 BI(18)
111 BI(19)

Table 3-9 Firmware Sequencing Conditions (Sheet 3 of 5)
CORDITION SIGNAL OR FUNCTION TESTED NOTES & RESTRICTIONS
IFDSELEQO SEL = 0 SEL-=—SEL-1
IFF11 F(11)

IFF4 F(4)

IFF5 F(5)

IFF6 F(6)

IFF7 F(7)

IFF8 F(8)

IFF9 F(9)

IFGTWD Instruction data field size>
16 bits (function of F -
refer to Table 3-11).

IFHALF Instruction data field size
= 8 bits (function of F -
refer to Table 3-11).

IFNUM7 F(1-3) = 7

IFQUAD Instruction data field
size = 64 bits (function of
F - refer to Table 3-11).

IFREGAD Address syllable calls for
register addressing, i.e.,
[F(O0) = 0] V [F(9-11]) = 5
A SEL # 0]

IFSCISTR Instruction has SIP Store
op-code

IFSELO SEL (0)

IFSEL1 SEL (1)

IFSEL3 SEL (3)

IFSELEQQO SEL = 0

IFSL1-3EQ7 SEL(1-3) = 7

IFWORD Instruction data field size

= 16 bits (function of F -
refer to Table 3-11).

3-56

-,

Table 3-9 Firmware Sequencing Conditons

(Sheet 4 of 5)

CONDITION SIGNAL OR FUNCTION TESTED NOTES & RESTRICTIONS
MEGABUS INTERFACE AREA TESTS

IFACK Megabus acknowledge flop.

IFPARER Parity error indicator.

IFPMUX Previous firmware step had

P, BP, or BPH as internal
bus source, or previous

step had BUS operand PURGE,
INCP, RDREQP, or PSELECT and
did not have P as internal
bus destination.

IFRMWF A previous firmware step
successfully performed a
lock, and no unlock has yet
been performed.

IFRPTRP INTBSY V EXTRAP SIGN == 0

IFRUP INTBSY

IFYELLOW YELLOW flag TICK== 0
YELLOW =0
Set when any EDAC-
corrected memory reads
were encountered since
last test.

MISCELLANEOUS HARDWARE TESTS

IFADRER Address error (= WRAP V
SEGERR)

IFIC I(C)

IFII I(1)

IFDDLEQO DDLEQO flop Microprocessor destin-
ation must be Q or
null.

IFLOAD LOAD flop

IFMISC MISC flop

IFMIZR MISC V ZERO

=1
IFSHIN SHIN

3-57

Table 3-9 Firmware Sequencing Conditions (Sheet 5 of 5)
CONDITION SIGNAL OR FUNCTION TESTED NOTES & RESTRICTIONS
IFSHIN1 SHIN1 flop
IFSHIN2 SHIN2 flop
IFSHZ SHIN V AUZ Refer to Note 1.
IFSHZ20 SHIN V AUZ Refer to Note 2.
IFSIGN SIGN flop
IFXBO XB(0)

IFZERO ZERO flop
OTHER TESTS
IFCACHE Cache present
IFCIP CIP present
IFEXEC Control panel Execute
pushbutton
IFLAF LAF - Long address form
IFLOCK Control panel lock function
IFSIP SIP present
IFTICK TICK flop Set every 8-1/3 ms
IFWCS WCS present
NOTES
l. Forces CRY, OVFL, and AUZ to 16-bit versions
2. Forces CRY, OVFL, and AUZ to 20 bit versions

(refer to subsection 3.1.2)

TN

N/

¢

A,

Table 3-10

IFBCND Test Function

F (0-3)
F(4-7) 0,8 1-7, 9-F

0 * SIGN

1 X ZERO

2 I(L) SIGN V ZERO
3 I(G) MISC

4 I(0V) SIGN

5 I(B) ZERO

6 I(C) SIGN V ZERO
7 I(I) MISC

8 I(L ¥ U)|SIGN

9 I(L V G)|ZERO

A I1(G ¥ U)|SIGN V ZERO
B I(U) MISC

C 1 X

D 1 X

E 1 X

F 1 X

X = Undefined

* True unless power is failing

Data Field Size Tests (Sheet 1 of 2)

Table 3-11

A

(a]

<<

D] OO D000 ODOOD OO0 DODOODOOODOOOODOOODODOO0OOCODNONDO O
(@]

(o9

-

[a]

= S E=E== = = =

(= L1 1) 1O0O1 010 100000 DHDODODO00D0000000HH,JO00O0ODD0O0HO~HJO0W
O] A4~~~ —~ ~

m

-

[a]

24 1 [| [
Ol AAAAAA1 0100 SO AOAODHODA0AD~Ar1O0D I 1O A1O0OAO~NO | — |
= — — —
<9

-

I

[=

C] OO DODODODOO I DOOOOOODHHDOODODOODIDDOOOCOHOOHDOODODOO
jan] -

<5

-

4

— e Bt T B PR R ¢ P ¢ P PO P C SR PR P PR o N TR C P ¢ TR PR ¢ TR o N TR o ¢ PR o N PN o S ¢ PR o N € PR O ¢ TR ¢ R T TRt TI C TR e PR N P o ¢ P
\ I T T T T S T T T T e T T T T T T I T T T N O A T N Y T I Y I Y Y T R T T R Y A N N R T I B |
D] ONTOVODDVDOOOODODDOOWDODODODVONVDIDNVDOVDONVNDDVDOMODVODVODDVO DD D ®
N

o

r~

| [Ss ey cH N0 MK N N ~~ovovMm A0 QR
| Dcoo00 | Sl 1l loANANMMguOnOUNR~DOoaLCOmMOLOLAALL L PO b b
~ — — N~ MO <LITOOL OO0 MM
fx

—

™M

| ~r~r~~S~ [TR TR PRy PR c PR P PR e P e M c R s M P
Ol Do OCDDOO T 1 I | DMV EODOMOO DVOWMMOMMMODOOGWPVO®MO |+ &+ t Lttt
~ — AN NN O O
e

3-60

Table 3-11 Data Field Size Tests (Sheet 2 of 2)

where:
L =1 1if LAF; otherwise, L = 0
M =1 if MISC V ZERO; otherwise, M = 0
S = selected bit of scientific mode register (M4) or F:

F(0-3)
S

9 a B C D E F
M4 (2) M4(4) M4(6) F(5) M4(2) M4(4) M4 (6)

3.5.5 Address Values

The WCS consists of a maximum of 2048 locations, making it
possible to specify addresses in 11 bits. 1In fact, the next
address field of the firmware word (refer to Appendix B) is in-
deed 11 bits. However, to differentiate WCS firmware locations
from native firmware locations, a high order One is often append-
ed to WCS location values (e.g., Microcode Analyzer and WCS
loader). :

An address value may be specified to the assembler as a lit-
eral, symbol, or statement reference (refer to Section 4). When
encoding the value of the next address field, the assembler will
use the low order 11 bits. When printing the location of a par-
ticular firmware step, the assembler will use 12 bits. At the
user's discretion the high order bit can be specified as 0 or 1.

In Sequential mode, an address value may not be equal to
000%#, 001%#, 800#%, or B80l#. If any of these locations is speci-
fied, a hardware trap will result, causing the firmware to branch
to native firmware location 000 (refer to subsection 2.7.1). The
assembler will issue a diagnostic message if any of these address
values is specified.

3.5.6 Firmware Sequencing Examples

Tables 3-12 and 3-13 are examples of source statements for
both Transparent and Sequential modes.

3

61

3-62

Table 3-12 Source Statements for Transparent Mode
STATEMENT MEANING
GOTO TAG — TAG
GOTO XA — XA splatter based on F/SEL
IFF5 8024%,803% If F(50 = 1, = 802#; else 803%
IFF5 TAG,XL If F(5) = 1, == TAG; else —
location which is function of
LINK register.
IFF5 XA,XB Invalid - at least one operand
must specify value.
IFF5 805#,803% Invalid - 805%# V 003# = 803# and
also 803# V 003# = 8054
Table 3-13 Source Statements for Sequential Mode
STATEMENT MEANING
GOTO TAG —=TAG
CALL TAG CALL TAG
Return address register —=—
current address + 1
RETURN Return to address in return
address register.
LBRANCH 900# — location in LINK register +
900#
IFFS TAG If F(5) = 1, —=TAG
IFF5 TAG If F(5) = 0, —TAG
IFF5 TAG,RETURN | If F(5) = 0, —=address in return
address register; else —TAG
IFF5 TAG, ,CALL If F(5) = 1, CALL TAG
IFF5 , RETURN Invalid - one operand must be a
branch address.
IFF5S 8024#,803¢% Invalid - both operands may not

specify a branch address in Seg-
ential mode.

PLY

3.6 MASTER CLOCK AREA

There are four clock speeds that control the duration of each
firmware step. The assembler selects, for each step, the fastest
clock speed permissible based on the actions specified in the

step. In rare circumstances, the selected clock speed must be
overridden based on the actions of a previous step.

3.6.1 Syntax

The microinstructions in the master clock area take one of
two forms:

HL
VL

where:
HL specifies a "half long" clock speed.
VL specifies a "very long" clock speed.

3.6.2 Usage of Master Clock Microinstructions

VL must be specified if:

@ The current step specifies IFHALF, IFWORD, IFGTWD, or
IFQUAD and the previous step altered the MISC or ZERO
flops.

@ The current step specifies IFREGAD and the previous step
altered SEL.

HL must be specified if:
® A microprocessor shift modifier (SL, SR, DL, or DR) is
specified, BI is a microprocessor source, and the shift
input (SHIN) comes from the internal bus (SHIN depends on
the previous setting of MISC, SHINl, and SHINZ2).
NOTE

Neither HL nor VL should be specified
during a Megabus "write" step.

3.7 EXAMPLES OF FIRMWARE ROUTINES

This subsection provides examples of several firmware rou-
tines, illustrating the effective utilization of various micro-
instructions in accomplishing common tasks. The coding of the
first five examples is extracted from actual native firmware.
They therefore contain some irrelevant material, which has been
retained here to illustrate the parallelism permitted in the
firmware. '

3-63

Example 1 - Procedure and Read from Memory N
S
2 TITLE EXAMPLE 1
3 * PROCEDURE READ FROM MEMORY
]
S * THIS EXAMPLE FETCHES THE FIRST WORD OF THE NEXT INSTRUCTION AND DEPOSITS
6 * COPIES IN RAM LOCATION 0, IN REGISTER DO, AND IN REGISTER F/SEL. IT ALSO
7 % SIMULTANEOUSLY:
a * A) SETS CONTROL FLOP ZERD TO INDICATE IF THE RECEIVED INSTRUCTION IS AN HLT
9 * 8) CLEARS REGISTER X& AND FLOPS SHN1, SHN2, MISC, AND SIGN
10 * C) INITIALIZES THE RING EFFECTIVE LOGIC OF THE MMy
11 * D) TESTS FOR THE PRESENCE NF AN EXTERNAL INTERRUPT OR TRAP PENDING
12
13 InT0 EGU 20as
14 INTE EQu 208
15
020 €82R FE31 D239 0204 16 FETCH 020s Bl BP,RAMO,F : COPY PROCEDURE WORD TO RAMO,F/SEL
17 OR 81,2ERC,DO H AND TG DO
18 » ("OR"™ MAY BE REPLACEC bkY *"COPY"
19 » IN WCSA REV 03,.00)
20 FLOPS © IRAYZ,8H00,XB0, 3 PERFOR™ A), 3),
21 450,RINGINIT H AND C)
22 IFRPTRP INTE,INTO / POLL FOR INTERRUPT OR TRAP
Example 2 - Non-Procedure Read from Memory

104

095

3Ce
087

009C aF(01 1802

B013 CE30 CROO

0093 CFO1 1000

8027 AESH E000

3-64

8095

63Ce

0097

024cC

23
24
25
26

»

TITLE EXAMPLE 2

NON=PROCEDURE READ FRUM MEMORY

THIS EXAMPLE FETCHES AN ADDPESS FROY THE MEMORY LOCATIOM(S) POINTED TO
AtD DEPOSITS A COPY IN THE P-REGISTER. IT ALSO
SIMULTANECUSLY SETS REGISTER N0 EQuUAL TO THE COMPLEMENT OF REGISTER Q.

8Y THE Y=REGISTFR CONTEMT,

1Dus coPY
Al
RDREQ
IFLAF

09Sw Rl
RUS

3Cos RDRER

097s XOFC
Rl

ZERQ
ALU,H
NOCACHE
*el, 243

8D,
InCY

MOCACHE

G,ZERD,00
8L+, P

N~ N ve e e

~

GENERATE CONSTANT = 0

H <= 0

REQUEST MAIN MEMORY LOCATION Y
TEST FOR LONG ADDRESS FORM

H <= FIRST HALF OF LAF ADDRESS
Y <= Yei

REQUEST SECOND HALF OF ADDRESS

DEPOSIT COMPLEMENT OF O IN DO
PUT HALVES TOGETHER IN P

Example.3 - Write Into Memory

A,

24C CAR93 CFCO BOOA B256

256 0023 Ces1 4000 0257

257 00A3 C701 4000 037F

Example 4 - I/0

« THIS EXAMPLE wRITES THE ADDRESS CONTAINED IWN REGISTER DO INTO THE

‘ 37F 04D3 CFO0O0 2134 0369

369 40A3 C300 BO14 00A9

0A9 CUAC AFO1 2RCO 036A

OAB QgAY 9F01 28C0 0364

364 CCD3 C7S0 6S1D F37D

370 8423 FA3D FO0OO0 NPTFF

}
H
/

N sese N

. ..

3 Y <= RAMB
/ TEST FOR LONG ADDRESS FORM

LEFT 4 BITS OF DC VIA BI TO
/ FIRST WORD OF LAF STORE
Y <= Yol

~

3 (REST OF) DO VIA BI
/ TO MEMORY
Y <= Y4i

THIS EXAMPLE REQUESTS INPUT FRO¥ THE 1/0 SUBSYSTEM, USING THE CHAMNEL
NUMBER AND FUNCTION CODE COMTAINED IN REGISTER DO, AND (IF THE REGQUEST

1S ACKNOALEDGED) COPIES THME REPLY INTO REGISTER BO. IT THEN EXITS TO STORE
THE 1/0 INDICATOR IS SET/CLEARED IF THE REQUEST
NOTE THAT THE CHANNEL NUMBER/FUNCTION CODE #MuST

SHIFT CHANNEL/FUKCTION TO BO
AND XB(0)7 CLEAR SHN1 AND SHN2
1030 FOR 1/0 wRITE (SEE EXAMPLE S)

SHIFTED INFORMATION INTO Y(4=19)
TEST XB(1) VIA SHIN

XB(1)s0 SO B0 <=~ ZERD'S
REQUEST 1-0 READ

MISC <= 0

SKIP NEXT STEP

XB(1)=1 SO B0 <= ONE'S
REQUEST I-0 READ

/ MISC <= 0

N e e w

RESTORE Y FROM RAMB
SHIFT B0 TO

RESTORE XB(0); I(1) <= ACK
IF ACKk=0, EXIT TO NEXT FETCH

COPY READ RESPONSE
T0 B0

4?2 TITLE EXAMPLE 3
u3 * WRITE INTO MEMORY
uy
4S
Lo * MEMORY LOCATION(S) POINTED YO BY RAM LOCATION 8,
a7
ue 24Cw Bl RAMB, Y
49 IFLAF wel, %42
50
St 256# Bl Do,L4
S2 WRY INCY
S3 *
Su
sS 2S7s BI 00
Se WRY INCY
s7 -
Read
Se TITLE EXAMPLE 4
59 - 170 READ
60
61 *
62 *
63 *
64 = THE REPLY AS REGUIRED.,
65 ® IS/ISN'T ACKNOALENGED,
66 « BE PLACED IN Y(5=19)/XB(0) FOR TRANSMISSION TO THE MEGARUS.
67
68 37Fn corPy 00,80, SR
69 FLOPS XBSR,S$H00
70 IFSIGN 1030, 103E
71
72 103e 369 8l BO,YR16
73 IFSHIN *e2,74]
T4
15 0AGN CoPY 2ERO, RO
76 ROREN 1=0
7 FLOPS NS0
748 GOTO0 *e2
79
80 0ABs X0RC 80,80,R0
81 RDREG 1-0
82 FLOPS “S0
83
84 l6Ax BI RAMB, Y
BS copy R0,80,SK
66 FLOPS XBSR, IACK
&7 IFACK w41, XF
&R
&9 370 Bl RD
90 coepy 81,80
91 GoTo Xw

N ve s

GO TO STORE RESPONSE

3-65

Example 5 - I/0 Write

365

3a0

04D3 CFoOC

0093 CFuO

anp3 eFaQ

0043 €751

2134

2200

Booo

7020

1369

A3AQ

034C

F3dD

@2
93
94
o5
96
Q7
Q8
Q0
100
101
162
103
104
105
108
107
108
109
110
111
112
113
114

TITLE

THIS EXAMPLE TRAMSMITS NATA TO THE I/0 SUBSYSTEM,

EXAMPLE S
1/0 aRITE

1:UM3EQ AND FUNCTIOV CODE COMTAINED

USING THE CHASNEL

IN REGISTER DO, THE 1/0 INDICATNK IS

THE EXAMPLE REGINS wlTw

THE FIRSY STEP (37Fs) OF EXAMPLE 4, BT THE FIRST HRANCH LEADS TO & NETAURK
0F STEPS RESULTING I THE COPYING OF THE APPROPRIATE DATA TO REGISTER 4,

*
*
* SET/CLEARED IF THE PEQUEST IS/ISM'T ACKNOWLEDGED,
*
-

37Fe

1032 l6Bs

XLINuT 3a0m

34Cs

carPy
FLOPS

IFSIGN

CuPY
Bl

RI
wRY
FLOPS
IFFB

00,80,SR
XBSR, S0
1030,103

H
0 B
3 /

SHIFT CHANNEL/FUNCTION TO 80
AND XB(0): CLEAW SHwl AND Sk'i2
TO3E FOR /0 READ (SEE EXAMPLE 4)

/ FIPMeARE SEQUENCE TU MNVE DATA YO REGISTE~ o

3,00
HO, YR16

00

I=C

V81, TACK
®+1,XF

i
/

N ve ve e

Example 6 - Exit From WCS Transparent Mode

340

234

FFC

FEm

FFE

FEE

€093 CFLO

€423 FCIC

€h93 CFOU

en2e NCNY

00A3 CFOC

€013 Cedl

3-66

28Cn

290¢

20606

2sca

8¢09

£000

7035

07FC

nela

ATFC

J7F0

GTFE

07FF

F33b

115
114
117
1le
119
120
121
122
123
124
125
124
127
12R
129
130
131
132
133
134
135
136
117
138
139
162
161
1a42
143
14U
145
146
147
1uf
1uQ
159
151
152
152
154
155
156

TITLE

»

4. INST=JCTION

(SEE EXAVPLE 1

LRI R Y

»

T INVOKE THE
« ESUIVALEANT OF:

ExampL
EXIT F

£ 6
ROV 2CS TRAN

SPARENT MUDE

00 «= 9
SRIFTED INFORMATION 1wTU Y(4=19)
DG vIA BI
TO I-0 CHANNEL
¥ISC <= 1; I(I) <= ACK
IF NCT IOLD INSTRUCTION, EXIT TO FETCH

T=1S ExevPLE JLLUSTRATES THE SEJUENCE REWQUIREC TO RETURN FROM TmE wCS IN
TRBGSPARENT “0DE TO NATIVE FIRVAARE, IN GENERAL,

WHEN & USFR wAS COMPLETED

OR HAS SENSED A RENUEST FOR SEQRVICE RY AN INTERRUFT, REAL=TIME

CLOCk, ETC,, THE RETURN IS T0 THE NATIVE FIFMAARE LOCATION LASELLFED "FETCH"

). UNDER EXCEPTIOnNAL CIRCUMSTANCES (E.G., TRAP CONDITION
RE TN GOTHER NATIVE FIRM&ARE LOCATIONS.

CETECTION), RETURN NaY

"NOF AAL®

FLOPS
GN10

RETURY, &t ALGORITHM MIGHT END wITH THE FUNCTIOWAL

1180
EXITTRN

® AE“~ A TRAP CCNPITION 1S OETVECTED,

* EYUIVALENT OF:

TRAP (3]
Tveyx €30
23us

33es
0031=

Bl
corPy
FLOPS

GOT0

Tvex
81,30
vMS1

EXITTRN

H
/

¥ISC <= 0 (NO TRAP)
GO TC EXIT RIUTINE

ONE VIGHT EmMPLOY THE FuUunCTIO™AL

MATIVE TRAP F]RMWARE
FOR TVIS (OTHER VALUES FOk OTnER TRAPS)

N v s

» THE ACTUAL ExIT KROUTINE LUGOXS AS FOLLO#S:

EXITTRN "Ff(sm

FFhs

FFEx

FFFs

el
coPY
FLNPS

BI
XOR
81
Bl

wRY
IFvISC

IDCF
BI,o0
XBSR1

OFCs, Y
RI,00,N0
20,YR16
A

I-C
TRAP, XF

N e

N ve e

CKEATE TRAP VECTOR #X
AND SAVE IN RO
MISC <= 1 (TRAP)

GO TO EXIT ROUTINE

START wWITH CIP CHANNEL,
FUNCTION 1F IN DO
XB(0) <= 1

Y(0=4) <= 0; USE 000FDs TO
MODIFY CHANNEL TO wCS,
FUNCTION TO 25

Y(S5=19) <= COwTROL wORD/2
MUST SPECIFY NON=ALU 81 SRC FOR wRT

TRANSMIT EXIT CODE TO WCS
RETURN DEPENDING ON MISC

123

124

125

fFC

FFD

FFF

Example 7 - Exit From WCS Sequential Mode

0083

0093

8423

£oz23

an2e

0043

8013

CFOO0

cs8oo

Fa1l

7E90

oCoo

CROO

cedat

28C0

2900

7000

2500

8000

8035

7000

87FC

CIFC

€318

0TFF

OTFF

ATFF

A020

157
158
159
160
161
162
163
164
165
166
167
16R
169
170
171
172
173
174
175
176
177
178
179
1R0
181
182
183
184
185
186
1R7
168
189
190
194
192
193
194
195
196
197
198
199
200
2014
202
203

TITLE

(SEE EXAMPLE 1),

LIRS N)

SEGQUENTIAL

» »

EQUIVALENT OF
123«

= AHEN A TRAP CONDITION IS DETECTED,

= EQUIVALENT OF:

TRaP EQu
TveXx EQu

EXAMPLE 7

EXIT FROM wCS SEQUENTIAL MODE

IN GENERAL,

THIS EXAMPLE ILLUSTRATES THE SEQUENCE REQUIRED TO RETURN FROM THE wCS IN
SEQUENTIAL MODE TO NATIVE FIR“wWARE,
AN INSTRUCTION OR HAS SEWSED 4 REQUESY FOR SERPVICE BY AN INTERRUPT, REAL=TIME
CLOCK, ETC., THE RETURN IS TO THME NATIVE FIRMAARE LOCATION LABELLED “FETCH®

WHEN A USER HAS COMPLETED

UNDER EXCEPTIONAL CIRCUMSTANCES (EJG., TRAP CONDITION

TO INVOXE THE "NQORMAL® RETURN,

FLOPS
GoTOo

338s
0031w

FLOPS
CALL

8l
copPy
WRT
6070

~S0
EXITSEQ

sy
EXITSER

TV=x
RI,30
I1-0
TRAP

i
/

DETECTION), RETURN MAY BE TO GTHER NATIVE FIRMWARE LOCATIONS,

AN ALGORITHM MIGHT END WITH THE FUNCTIOWAL

MISC <= 0 (ND TRAP)
GO TO EXIT ROUTINE

DNE MIGHT EMPLOY THE FUNCTIONAL

NATIVE TRAP FIRMWARE
FOR TV1S (OTHER VALUES FOR OTHER TRAPS)

H
/

N S e e

« THE ACTUAL EXIT ROUTINE LOOKS AS FOLLOWS:

EXITSEQ FFCw

[:2¢
coPY
FLOPS

81
XOR

2]
IFMISC

Bl
WRT
GOTO

IDCF
RI,D0
XbSR1

OFD®,Y
81,50,00

00,YR16
RETURN, »¢}

Y
1-0
FETCH

MISC <= | (TRAP)
INVOKE EXIT SUBROUTINE

CREATE TRAP VECTOR =X

AND SAVE IN B0
TRANSMIT EXIT CODE TO WCS
GO TO NATIVE TRAP FIRMwARE

START wITH CIP CHAMNEL,
FUNCTION 1F IN DO
XB(0) <= 1

Y(0=4) <= 0; USE 000FD TO
MODIFY CHANNEL TO wCS,
FUNCTION TO 25

Y(S=19) <= CONTROL WORD/2
RETURN IF TRAP

MUST SPECIFY NON-ALU B1 SRC FOR WRT

TRANSMIT EXIT CODE TO »CS
GO TO NATIVE FETCH FIRMWARE

3-67/3-68

SECTION 4 - WCS ASSEMBLY LANGUAGE

Preparation of microprograms is simplified using the WCS as-
sembly language. It relieves the microprogrammer of many time-
consuming duties associated with writing a microprogram in actual
machine-language. For example, it allows the microprogrammer to
employ meaningful symbolic tags rather than absolute control
store addresses to specify firmware locations.

The assembly system can be divided into two parts: the WCS
assembly language and the WCS microinstruction assembler. The
WCS assembly language is used to write a microprogram (source
file), and the assembler translates the source file into the
actual machine-language microprogram (object file).

The microprogrammer can use any type of coding form to write
a microprogram because of the free form used for coding source
statements. The desired microinstructions and associated oper-
ands are entered onto the coding form, with each statement rep-
resenting one firmware word. These source statements may then be
transcribed onto punched cards or entered into a disk file via a
teletype or other terminal using the MDT editor. 1In either case,
the data constitutes the source file that will be processed by
the assembler.

The assembler reads the source file and produces a machine-
language object file. It converts mnemonic codes (microinstruc-
tions) into machine-language codes, assigns absolute control
store addresses to symbolic names, and completely assembles the
final microprogram, storing it onto a disk file or magnetic tape.
Another output from the assembler is a listing of the source file
and corresponding object codes, plus diagnostic messages. Figure
4-1 illustrates the relationship among the input source file, the
assembler, and the output object file.

SOURCE
STATEMENTS
(CODING FORM)

TERMINAL
SYMBOLIC
SOURCE CODING
PUNCHED ONTO
CARDS

SOURCE
FILE
(DISK)

ASSEMBLER

PROGRAM THAT TRANSLATES
SYMBOLIC SOURCE CODING
INTO MACHINE-LANGUAGE

LISTING OF
SYMBOLIC AND
CORRESPONDING
LANGUAGE CODE

OBJECT
FILE
(TAPE)

OBJECT
FILE
(DISK)

Figure 4-1 Relationship of Source File, Assembler,
and Object File :

4-2

Descriptions and examples within this section use the follow-
§ ing conventions:
A Y

{ } - Indicates that one of the options enclosed in the
braces must be selected.

[] - Indicates that the enclosed option may or may not be
selected.

..« = Indicates that the immediately preceding option may be
repeated.

h - Indicates a hexadecimal digit.
d - Indicates a decimal digit.
o - Indicates an octal digit.
b - Indicates a binary digit.

A - Indicates that one or more spaces or horizontal tab
characters are required.

The following special characters must be coded exactly as

shown:

: ® comma —_ ,
(e left parenthesis — = (
: @ right parenthesis —)
e oasterisk *

e slash -/

e plus sign — +

e hyphen or minus sign-— -

e guote '

4.1 ELEMENTS OF WCS ASSEMBLY LANGUAGE
The principal elements of the WCS assembly language are:

Mnemonic codes
Symbolic names
Constants

Statement references
Punctuation

These elements are combined to form a source file that con-
sists of: (1) microinstructions, (2) assembler control state-
ments that direct assembler operations, and (3) statements that
define constants used by the microprogram.

4.1.1 Mnemonic Codes

The mnemonic codes combine to specify the microinstructions
to be created. These codes are also called reserved words be-
cause they are only recognized for their meanings as described
in Section Three. Mnemonic codes can be any length, although
only the first six characters are recognized by the assembler.
For example, the test condition mnemonic IFRPTRP may also be
coded as IFRPTR for a six-character identification, or IFRPTRAP
to further clerify its meaning. Also, any spelling errors beyond
the sixth character are ignored by the assembler.

4.1.2 Symbolic Names

Symbolic names are mnemonics that are not recognized as re-
served words (refer to subsection 4.1.1). These names are speci-
fied by the microprogrammer and may be used to label firmware
statements, operand values, and constants. Regardless of their
use, the symbolic names must conform to the following rules.

l. Names may consist of any number of characters, but the
first six characters uniquely identify the name (the
assembler will ignore all characters after the sixth).
For example, the symbclic names ADDRSS and ADDRSSUU are
recognized by the assembler as the same name.

N
S

Names may be composed of alphabetic characters, decimal
digits, and/or special characters as defined below:

alphabetic characters - A through Z
decimal digits - 0 through 9

special characters - dollar sign (§$),
underscore (_), and
hyphen (-).

3. The first character of each name may be any one of the
above characters except a hyphen or decimal digit.

4. Lowercase alphabetic characters are considered equivalent
to the corresponding uppercasce characters. However, the
assembler does preserve the case of each character in the
output listing.

5. A name may not be cquivalent to a reserved mnemonic code.

Symbolic names are divided into two categories: firmware
statement labels and EQU symbols. Firmware statement labels may
each be defined only once in a microprogram and have addresses
assigned as their values. EQU symbols, on the other hand, may be
defined any number of times by EQU statements which equate the
symbol to different values.

R4

£

4.1.3 Constants

Numeric constants permit the microprogrammer to express val-
ues within the range 0 through 26%-1. The assembler recognizes
numeric constants in hexadecimal, decimal, octal, or binary form
as indicated below.

Hexadecimal

Hexadecimal constants must be in one of the following two
formats:

X' [(h1(a]]..." or hinl...4
where:
X specifies a hexadecimal constant.
h equals any digit within the range U through F.
specifies the end of a hexadecimal constant string.
Decimal
Decimal constants must be in the following format:
afd]...
where:
d equzls any digit within the range U through 3.
octal
Octal constants must be in one of the following two formats:
C'[[o][a]]...' or o[o]...C
where:

C specifies an octal constant or the end of an octal
constant string.

o equals any digit within the range U through 7.
Binary
Binary constants must be in one of the following two formats:
B' [(b)[&]] ..." or b[b]...B
where:

B specifies a binary constant or the end of a binary
constant string.

b equals 0 or 1.

Bll constants coded in the above formats are converted by the as-
sembler into a 64-bit value that is right justified and either
zero filled or truncated from the left to fit into the receiving
field. For exazmple, if a hexadecimal address is coded as
X'1234', the address is actually interpreted as X'234', retaining
the low order eleven bits.

NOTE
No warning message is issued when One bits are truncated.

The following are examples of numeric constents with all val-
ues being equal.

123453
l — —»Hexadecimal
X'1 2345"

74565 ———-Decimal
221505C
—=Q0Octal
C'221505"
U0U1l0u100011010001U1B
- ———Binary
B'0001 0010 0011 0100 Ul01"

Numeric constants coded in the format X'', C'', or B'' are con-
sidered zero values by the assembler.

4.1.4 Statement References

Statement references permit the microprogrammer to reference
firmware statements that are a specific number of steps away from
the current firmware statement, without using a label. The "off-
set" portion of the reference is the count of firmware statements
to the referenced firmware statement. The proper format for
statement references is:

*[{#) [offset]]
where:

offset 1s either an EQU symbol or a numeric constant (refer
to subsections 4.3.3 and 4.1.3, respectively).

+ indicates a forward reference.
- indicates @ backward reference.

*, *+, *- jndicates the address of the current firmware
statement.

Thus, the "offset" is used to count steps forward or backward
from the current firmware statement to locate the referenced
firmware statement. This is generally not equivalent to adding
or subtracting the offset and the current address. For example,
assume that the following two statements appear consecutively 1in
a source file.

/

LABEL] 5 GOTO *+]
LABEL?2 10 GOTO *-1

The statement tagged LABEL1l is loaded at location 805%# and
the statement tagged LABEL2 at location 80A#. The argument *+1
references location 8UA#, while the argument *-1 references loca-
tion B05#. This is in contrast to many other assembly languages
where *+1 would reference location 806%, and *-1 would reference
location 809#.

If a statement reference exceeds the boundaries of a micro-
program (i.e., refers to a statement prior to the first or after
the last statement), the assembler considers the reference equal
to zero and generates an appropriate error message. In all other
cases, the reference equals the address of the referenced
statement.

4.1.5 Punctuation

Recognized punctuation for the WCS assembly language in-
cludes:

Comma [,] - Separates multiple arguments for a
single op-code.

Left parenthesis [(] - Optional marker of an argument list.

Optional terminator of an argument
list.

Right parenthesis [)]

Links the current line of coding and
the following line into one statement.
A line terminated with a ; indicates
that the statement continues on the
following line. It also separates
comments from a microinstruction.

Semicolon [;]

Blank - Separates the various language units
when no other punctuation is used.
Slash [/] - Separates comments from the micro-

instruction on the last line of a
step. It is also used to cause page
ejection in printed output.

4.2 SOURCE STATEMENT FORMATS

Source line formats are classified into four main groups:
firmware statements, pseudo-op (or control) statements, blank
lines, and comment lines. Firmware statements generate object
code to control the CPU hardware, whereas pseudo-op statements
direct assembler operations. When coding WCS assembly language
source statements, the user must conform to the formatting con-
ventions described herein.

Source code for the assembler is loaded into a sequential
file which, if contained on a disk, may be edited using the text
editor. Each line of coding may be up to 255 characters in

length and can contain a line number; however, only the first 92
characters appear in the assembly listing. If a line number is
used, it must start in the first character position of the line,
and must be comprised of all decimal characters. 1Ignoring the
line number, the assembler begins processing the line with the
leftmost nondecimal character. The types of source lines avail-
able to the microprogrammer include:

Firmware statements
Pseudo-op statements
Blank lines
Comment lines

The descriptions of these source statements refer to the cur-
rent address counter. This counter is internal to the assembler
and contains the address of the current firmware statement. The
counter is incremented by one at the end of each firmware state-
ment and may also be loaded from the address field of any
statement.

4.2.1 Firmware Statement

The proper format for the firmware statement is:
[label] [caddress] [amicroinstructions]

The "address", if present, is either an EQU symbol or a con-
stant. The current address counter is made to equal the contents
of this field.

The "label" or symbolic name, if present, is made to equal
the contents of the current address counter, after the counter
has becen modified by the address field of the statement. This

label is referred to as the firmware statement label and must
start in the first character position after the line number, if
any.

The "microinstructions" have the form:

micro opcode (operand list][@micro opcode [operand 1istJ]...

4-8

AT,

where micro opcode is any of the reserved words that represent
microoperations.

The "operand list" has the form:

{Z}operand...,operand{g}

where coperand is either a symbolic name, mnemonic, constant,

or statement reference. The use of any particular type of
operand 1is restricted by the particular type of micro op-code
being used. Micro op-codes and their operands are described in
detail in Section Three.

Examples of legal forms for an operand list are:

FORM DESCRIPTION
operand single operand
operand,) two operands, the second being null
(r) two null operands
operand, ,operand three operands, the second being null.

An operand list is terminated by a right parenthesis, an end
of statement, or an operand not followed by a comma (ignoring
spaces and semicolons). Thus, in the following incorrect firm-
ware statement:

ADD BI,DU D1
DU is the last operand and Dl is interpreted as a micro op-code.
A firmware statement must have at least a label, an address,
or a microinstruction. When no microinstructions are present,
the statement is assembled as the default value (refer to subsec-
tion 4.3.1).

4.2.2 Pseudo-Op Statement

The pseudo-op statement provides only control information for
the assembler; no object code is produced. Although the pseudo-
op statement must conform to the following format, it may occupy
any number of lines by using the semicolon. The proper format
for the pseudo-op statement is:

[label] [anaddress] apseudo opcode[apseudo op information] [comment]

The "address" is loaded into the current address counter.

The "label" is a user supplied symbolic name and, except for
EQU statements, the label is treated as a firmware statement la- ~
bel for the next firmware step. The symbolic name is made to .
equal the current address counter after modification by the
address field. The label must start in the first character posi-
tion after the line number, if any.

The following is an example of a pseudo-op statement:

BETA 1F# NO LIST TURN OFF;
ASSEMBLER LISTING

where BETA is the label which, along with the current address
counter, is made to equal the address (1lF#). NO LIST is the
pseudo-op. The comment starts with TURN and ends on the second
line with LISTING. The comment is continued on the second line
because of the semicolon (;) after OFF. The following example is
equivalent to the example given above, except it illustrates how
the semicolon (;) can be used to extend a pseudo-op statement
across several lines.

BETA :
1F# ;
NO H
LIST H
TURN OFF ASSEMBLER LISTING

The pseudo-ops that are available to the microprogrammer are
described in detail in subsection 4.3.

4.2.3 Blank Lines

The blank line permits spacing of the listing and is other-
wise ignored by the assembler. Blank lines contain no informa-
tion other than an optional line number. A blank line imbedded
in 2 firmware statement does not terminate the statement.

4.2.4 Comment Lines

A line containing a slash (/) or an asterisk (*) as the first
character of the line is treated as a comment line and has no af-
fect on the continuation of the current statement. The comment
line beginning with a / causes the output listing to slew to the
top of form before printing the comment, whereas the comment line
beginning with an * is merely printed on the next line.

4.3 CONTROL STATEMENTS

Control statements (or pseudo-ops) are not assembled into the
object file, but rather provide the assembler with listing con-
trol, assembly control, and background information. Only the
first six characters are used by the assembler to distinguish
among the pseudo-ops; however, the full mnemonic names are given L
to improve readability in the source listing. The pseudo-ops W/
available to the microprogrammer include:

4-10

DEFAULT
END =~

EQU

LABEL

LIST
NATIVE
NLST

NO
SEQUENTIAL
TITLE

4.3.1 DEFAULT Statement

The presence of DEFAULT as the first micro op-code in a firm-
ware statement results in the firmware image not being placed at
the current adcdress, but is used to fill in firmware image bits
that have not been set by the microinstructions. The bits not
set by the microinstructions in the DEFAULT statement are set by
the previous default value. The original default value used by
the assembler is:

X'0093 B700 2000 O7FF'

The DEFAULT statement is used most frequently to modify the
automatic clock speed setting feature of the assembler (refer to
subsection 3.6). The assembler will not select a clock speed any
higher than the speed specified in the current default value.

If, during firmware debug operations, a timing problem is sus-
pected, the following DEFAULT statement can be specified:

DEFAULT VL

The above statement always causes the assembler to select the
very long clock speed.

4.3.2 END Statement

The END statement may be used to mark the termination of var-
ious firmware routines, and may appear anywhere in the source as
often as desired. This statement has no effect on the assembly
process.

4.3.3 EQU Statement:

The proper format for an EQU statement 1is:

label[Aaddress]AEQUA{constant [acomment)
EQU symbol}

The EQU statement equates the statement label and EQU symbol
to the value of the constant or EQU symbol name that follows.
The EQU symbol name must have been previously defined in an EQU
statement. Jhe statement address (if present) is used only to
load the current address counter.

4-11

EQU symbols may be defined more than once, but remain unde-
fined until the first EQU statement is encountered. When the EQU
symbol is defined, it retains this definition until it is rede-
fined in a subsequent EQU statement (i.e., the value assigned to
an EQU symbol is retained by the symbol for all subsequent firm-
ware steps until the end of the source coding or until another
EQU statement changes the value assigned to the symbol).

An EQU symbol must be defined in an EQU statement before it
is referenced. Any reference to an EQU symbol before it is in-
itially defined will be interpreted as a reference to a firmware
statement label, resulting in a diagnostic message.

EQU statements may be used throughout the source coding as
illustrated in the following example.

(1) ALPHA EQU 1
(2) BI ALPHA
(3) ALPHA EQU 2
(4) BI ALPHA

At line 1, in the above example, the EQU symbol (ALPHA) is de-
fined as being equal to a constant of 1. This permits the BI mi-
croinstruction located on line 2 to source this constant (ALPHA)
onto the internal bus. At line 3, ALPHA is redefined to equal a
constant of 2, permitting the BI microinstruction located on line
4 to source this constant onto the internal bus using the same
EQU symbol (ALPHA).

4.3.4 LABEL Statement

The LABEL statement defines its "label" and "address" fields
without performing any other special functions. Thus, this
statement may be interpreted as the statement label for the next
firmware statement as illustrated in the following example.

(1) LABELA 83E# LABEL
(2) microcode
(3) LABELB 84E# LABEL
(4) 85E# microcode

LABELA (located on line 1 in the above example) and the con-
tents of the current address counter are made to equal address
83E#. Thus, LABELA is referred to as the statement label for the

microcode on line 2., This microcode is assembled at address
83E#.

4-12

AT

-

LABELB (located on line 3 in the above example) and the con-
tents of the ecurrent address counter are made to equal address
84E#. However, in this case, the microcode on line 4 is assem-
bled at address BS5E# rather than 84E# because it has its own ad-
dress. This prevents LABELB from being referred to as the state-
ment label for the microcode on line 4.

4.3.5 LIST Statement

The LIST statement instructs the assembler to restart the
output listing with the LIST statement; the default mode is LIST.
Therefore, LIST is unnecessary until it is desired to resume the
output listing after the NLST or NO LIST statements.

4.3.6 NATIVE Statement

The NATIVE statement invokes the native (transparent) firm-
ware branching mode for subsequent firmware statements. The
default mode is NATIVE; therefore, NATIVE is unnecessary except
for documentation purposes.

4.3.7 NLST Statement

The NLST statement suspends the source listing starting with
the NLST statement; the default mode is LIST. Subsequent lines
are not listed unless they are in error or until the next LIST
statement.

4.3.8 NO LIST Statement

This statement is equivalent to NLST. Source statements
starting with the NO LIST statement up to but not including the
following LIST statement are not listed unless they are in error.

4.3.9 SEQUENTIAL Statement

The SEQUENTIAL statement invokes the sequential firmware
branching scheme for subsequent firmware statements. The default
mode 1is NATIVE; therefore, this statement must be used for se-
guential mode assemblies.

4.3.10 TITLE Statement

The TITLE statement names the code, provides a revision num-
ber, and specifies the text for the heading field on the first
line of each page in the output listing. The TITLE statement
takes two forms.

TITLE name,rev,title

This form specifies the name of the source, the revision num-
ber, and the text for the heading line, and may appear anywhere
in the source file as the first TITLE statement. All subsequent
TITLE statements will use the second form described below.

// \\

TITLE title

This form specifies only the text for the heading line (i.e.,
it replaces the text supplied by the initial TITLE statement).

The above forms for the TITLE statement cause a slew to the
top of form, and may be used as many times as desired. Also, the
TITLE statement is not required. If there is no TITLE statement,
the assembler assumes the source name is WCSRTN and the revision
and title fields are all spaces. All fields for the TITLE state-
ment are optional, null sets the respective fields to blanks.

4.4 INTERPRETING WCS ASSEMBLY LISTINGS

The assembler output listing provides the user with a printed
copy of the source file, the corresponding machine-language code,
and diagnostics. Figure 4-2 is a sample output listing that de-
fines the various areas of the printed output.

PROGRAM NAME PROGRAM RE VISION TITLE FIELD
NUMBER

ExIv TRNSPRLT Lo/u0 WCS ASSEMBLER REV (1.00 'TRANSPARENT “GDE EXIT PAGE 1 1978/03/27 1021:4
AWCSA>ORJECT>EXIT,ra “wCSA>OBJECTIEXIT, a0

SOURCE /‘

FILE PATH
FFC €023 T7EQN 2500 OTFD

NAME
—————————*::7-’ I A
#T26 NCDO B80CH OTFE

HEX
ADDRESS fFr

TITLE EXIT,TINSPRNT, TRANSPARENT WODE EXTY :l‘LE PATH

ME
START CIP CHANNEL, PSUEDO-OP R
. — i .

TRaP ECu 338

E¥1T FFCa el
—— —— coPy
FLOPS

ON 1F IN DO INFORMATION
XB(0) <=

PSUEDO
OP-CODE

n"bﬂo\ncmm—-)

FFPos a1 0fPs,
10 X0 ®1,20,30/
HEX 11 -
VALUE OF 12
ASSEMBLED FFE 0093 CFOC BCOG OTFF 13 FFEw Al Co,YR16/ Y(5-19) <=

FIRMWARE ore
E27 UNDEFIHEL SYMROL
WORD IMAGE RAND

—_—
/ FE ©13 Coul 7035 F33b 15 File 81 2 usT
ERROR 1o wRT 1=03 TRANSMIT EXIT CODE TO «CS
CODE 1ﬂ 1FM1SC TRaP, XF/ SPECTFY NATIVE RETURN POINT
ERROR ONE E®RNF FOU.D 0. PAGE 1

MESSAGE N\

RELATIVE
ERROR SUMMARY LINE NUMBER LABEL ADDRESS MICRO OP.CODE SOURCE STATEMENTS ERROR INDICATOR COMMENTS

Y(0=4) <= 0, USE 000FOD®
VODIFY CHANNEL TO aCS,
£UCTION TO 25

Figure 4-2 Sample Output Listing

Included with most error messages in an output listing is the
caret (n) symbol. This symbol appears below the source character
or firmware word in error. In cases of null operands, the caret
may point to a seemingly irrelevant position.

4.5 WCS ASSEMBLER OBJECT DECK FORMAT

The assembler object deck file is used as input by the WCS
loader to load the WCS. Figure 4-3 is a sample file dump of an

object deck produced by the assembler. There are six types of
object deck records as indicated below.

00001 0017 0103 S100 0000 0045
00002 0015 0331 3937 382F 3033
00003 001N 0454 S241 4ES3 S04}
00004 000S 0400 000F FC

00005 0009 0CCC 237E 9025 0007
00006 0009 0C&0 26CC D0BO 0007
00007 0009 0C00 93CF 00RO 0007
00008 0009 0CRO0 13C6 4170 3S5F3

00009 000S FFOO 000C 00

EOF

SBU9 S420 2020 2054 S24E 5350 S24E 54
2F32 3720 3130 3233 3A34 332E 37
S524S WES4 204D 4F4U 4520 4558 4954 2020 2020 2020 20

FD
FE
FF

38

eeDaeadEXIT

ooooooooo

.....

Figure 4-3 Sample File Dump

RECORD TYPE BYTE POSITIONS DEFINITION
Program ID 0-6 010351000000G0%
7-12 Program Name
13-14 Spaces
15-22 Revision
Date 0 03#
1-18 Date and time
Title 0 044
1-26 Title field from first
TITLE statement
Origin 0 OA#
1-4 Address
Data 0 OC#
1-8 Assembler firmware
image
End of file 0 FF#
1-4 Reserved for future use

4.6 ASSEMBLER OUTPUT LISTING ERROR MESSAGES

All of the error messages that are produced on the output

listing by the assembler are defined herein.

scribe the nature of the problenm,

gested solutions.

its possible causes,
The following error messages are presented ex-

actly as they appear in the output listing (see Figure 4-2).

EQOl MISSING SYMBOL FOR EQU DEFINITION

The EQU statement 1is missing a statement label.

«1978/03/727 1021:43.7

«TRANSPARENT MODE EXIT

These messages de-
and sug-

EO2 MISSING VALUE FOR EQU DEFINITION

PR
\

The EQU statement requires a constant or previously defined

EQU symbol after the EQU mnemonic. e
E03 SYMBOL PREV USED - REMAINS UNDEFINED
An EQU symbol may not be used before it is defincd. The la-
bel of this EQU statement has been previously referenced and is
assumed to be a1 firmware statement label in that reference.
EO4 SYMBOL PREVIOUSLY USED AS LABEL
The EQU statement's label is already a label for a previous
non-EQU statement. The label definition for this EQU statement
is ignored.
EO5 MULTIPLY DEFINED LABEL
This statement's label definition is ignored because it has
been defined in a previous firmware statement.
£06 ILLEGAL MICRO OP
The indicated reserved word is only used as an operand. It
cannot (by itself) specify a microoperation.
EQ7 TOO MANY OPERANDS s
The indicated micro op-code cannot accommodate the number of h
arguments used.
EO8 PSEUDO OP CANNCT BE OPERAND
The indicated reserved word is a pseudo-op and cannot be used
as an operand for a micro op-code.
E09 MISPLACED VALUE
The statement already has an address or the previous operand
list has been completed. A comma might be missing.
E10 MISPLACED SYMBOL
The assembler is expecting a microinstruction but has de-
tected a nonreserved word. Either the symbol was intended for
the previous operand list, in which case a comma might be miss-
ing, or a rescrved word might have been misspelled.
E1l MISPLACED STATEMENT REFERENCE
The assembler expects a microinstruction at the indicated po-
sition but has encountered a statement reference. There might be
a comma missing. Q‘r'

4-16

B

E12 PSEUDO OP IN FIRMWARE STATEMENT

The indicated pseudo-op cannot be used in a firmware
statement.

E13 MISPLACED PUNCTUATION

The assembler is expecting a microinstruction but has encoun-
tered a stray punctuation mark. Operands might have been inten-
ded for the previous microinstruction but it should not have any.

El4 LABEL PREVIOUSLY DEFINED IN EQU STATEMENT

The indicated firmware statement label has been previously
defined in an EQU statement. The label is ignored.

E15 REQUIRED OPERAND MISSING

The operand list does not have the minimum number of required

operands for the associated microinstruction, or an illegal null
argument has been encountered.

El16 ILLEGALLY FORMED STRING

Some character is probably missing.

E17 SYMBOL TABLE FULL

The assembler cannot save any more symbols. The indicated
definition or reference will go unresolved. An increase in the
size using the -SIZE argument in the command line will alleviate
the problem (refer to Section Five).

E18 ILLEGAL CHARACTER

The indicated character is not in the assembler's set of le-
gal characters.

E19 ILLEGAL DIGIT

The indicated character is not legal for the radix type spec-
ified at the beginning or end of the constant.

E20 QUOTE MISSING

The terminating quotation mark (') for the indicated constant
was not found; however, the constant has been accepted.

E2]1 ILLEGAL LEX STATE

The state number for the lexical analysis routine has been
inadvertently changed. The current string, up to and including
the indicatéd character, is ignored; the routine will try to rec-
ognize the next string starting with the next character.

4-17

Reattempt the assembly and, if the error persists, report the
problem and retain the source that caused it.

E22 ILLEGAL LEX NEXT STATE

The lexical analysis routine's calculation of its next state
is out of range. The current string, up to and including the in-
dicated character, is ignored; the routine will try to recognize
the next string starting with the next character. Reattempt the
assembly and, if the error persists, report the problem and
retain the source that caused it.

E23 EOF ENDED STATEMENT

The previous line of the indicated statement ends with a
semicolon, but additional lines have not been found.

E24 SYMBOL IS ILLEGAL OPERAND

The symbol at the indicated operand position is illegal for
the current microinstruction.

E25 MISPLACED + OR -

The indicated + or - is not part of a statement reference.
There might be two of these characters in a row, the * may be
missing, or the - might be used as the first character of a sym-
bolic name.

E26 NA FIELD = 0 or 1

In Sequential Branching mode, the branch address cannot be
equal to 0 or 1 becausc the hardware will inadvertently detect
a disaster condition and branch to native firmware location 000.

E27 UNDEFINED SYMBOL

The indicated user symbol has not been defined as either an
EQU symbol or a firmware statement label.

E28 IMAGES LIST OVERFLOW

The assembler cannot accommodate any more temporary firmware
images in the remainder of the symbol table. 1Increase work space
using the -SIZE option in the command line.

E29 VALUE ASSIGNMENT CONFLICT

The assembler cannot assemble the value of the indicated ele-
ment without changing the value of at least one other bit in the
firmware image. In this manner, the assembler detects illegal
coding combinations. This error occurs when one or more of the
restrictions summarized in Appendix D have been violated. If it
is not obvious which restrictions have been violated, the user

4-18

J

(

rould reference Appendix C to determine the firmware image bits
{Mmt are in conflict.

E30 REFERENCED STATEMENT DOES NOT EXIST

The referenced statement (i.e., the current statement plus
the specified offset) is before the first or after the last firm-
ware statement number. This message may also appear for the last
statement in the Transparent mode when the assembler attempts to
set the next address field to *+1 in the absence of an explicit
firmware sequencing microinstruction.

E31 F REGISTER SET AND TEST

CPU timing cycles do not permit both the copying of data into
the F/SEL register and testing the data in the same firmware
step.

E32 F REGISTER SET AND SPLATTER BRANCH

Splatter branching based upon the contents of the F register
cannot be reliably performed if the contents of the F register
are changed in the same firmware step.

E33 ALU OUTPUT TO MEGABUS

There is insufficient time in the current CPU cycle to trans-
fer the output of the ALU (via the internal bus) to the Megabus
and initiate a write cycle.

E34 AXXX DOUBLING OP. LS NOT = RS (See Appendix C)

For the basic microinstruction AXXX, the left select and
right select fields must have the same values.

E36 ILLEGAL NO OPTION

The only option that may appear with pseudo-op NO is LIST.

E37 START BIT POSITION NOT BETWEEN 0O AND 63

The starting bit position for the indicated SET microinstruc-
tion is not between 0 and 63 (refer to Appendix C).

E38 INVALID BIT RANGE

The field size of the indicated SET microinstruction extends
the field range beyond bit position 63 (refer to Appendix C).

E39 ONE SEQ MODE OPERAND MUST BE VALUE

One of the fjrst two operands of a condition in the
~3equential mode must specify a branch address (literal, statement
reference, or symbol).

E40 ONE OPERAND MUST BE RULL OR RETURN

One of the first two operands of a condition in the
Sequential mode must be either null or the mnemonic RETURN.

E41 ONE NATIVE OPERAND MUST BE VALUE

Both operands of & condition in the Transparent mode may not
specify XL or splatter branching.

E42 ILLEGAL BRANCH IN SEQUENTIAL MODE

The branch type specified may be used only in the Transparent
branching mode.

E43 ILLEGAL BRANCH IN NATIVE MODE

The branch type specified may be used only in the Sequential
branching mode.

E44 INCOMPATIBLE BRANCH ADDRESS

In the Transparent branching mode, the low order two bits for
either of the two address values do not equal three, or the upper
nine bits of the two address values do not equal each other.

E45 MNEMONIC IS ILLEGAL OPERAND

The indicated reserved word is not a legal operand for the
current microinstruction. ‘

E46 VALUE IS ILLEGAL OPERAND

The use of an EQU symbol, constant, or statement reference in
the indicated position is illegal for the current micro op-code.

E47 STATEMENT REF IS ILLEGAL OPERAND

A statement reference cannot be used as an operand in the in-
dicated position for the current micro op-code.

E48 MISSPELLED OPCODE

The indicated op-code was not recognized as a reserved mne-
monic by the assembler.

E49 LABEL IS A RESERVED MNEMONIC

The indicated reserved mnemonic is in the label field (i.e.,
the first character after the line number).

ey

E50 SYNTAX STATE ERROR

The state number for the syntax analysis routine has been in-
advertently changed. The current statement is ignored; the rou-
tine will attempt to process the next statement. Reattempt the
assembly and, if the error persists, report the problem and
retain the source that caused it.

E51 CANNOT GENERATE GOTO *+1

In the absence of a firmware sequencing microinstruction in
the Transparent mode, the assembler attempted to generate code
for a GOTO *+1 statement. The attempt failed because bits in the
next address field had already been set to values different then
the address of *+1. Microinstructions that affect the next
address field include: (1) a constant as an internal bus source,
and (2) the FLOPS operands CTRO and CTRl.

4-21/4-22

AN

e

SECTION 5 - OPERATING AND SYSTEM
DEBUGGING PROCEDURES

To complete development of user-generated firmware, the mi-
croprogrammer must perform three tasks: (1) assemble the source
file to produce a machine-language object file, (2) load the ob-
ject file or microprogram into the WCS, and (3) execute and debug
the microprogram.

The information contained herein describes the procedures
that are necessary to perform these tasks and includes:

Using the WCS assembler.
Loading the WCS.

Debugging WCS microprograms.
WCS patch procedure.
Microcode Analyzer.

These procedures are written with the assumption that the
reader has read and is familiar with the material contained in
Sections One through Four. If not, it is recommended that the
reader review this material before proceeding with Section Five.

5.1 USING THE WCS ASSEMBLER

Before a user-generated microprogram can be executed, the
source file must first be assembled to produce machine-language
object code that can be loaded into the WCS.

The assembly process 1is initiated using the Writable Control
Store Assembler (WCSA) command. This command invokes the GCOS 6

writable control store assembler component, which assembles the
WCS source program unit, applying the specified options.

The proper format for the WCSA command 1is:
WCSA path [ctl_arg]
where:

path specifies the name of the file containing the source
unit to be assembled.

[ctl_arg] represents one or more control arguments chosen
from the following:

-NO_OBJ or -NO indicates that the generation of the object
text unit is to be suppressed. If this argument is omitted,
the object text unit is written to the file path.WO.

-NO_LIST or -NL indicates that the source listing is to be
suppressed. If this argument is omitted, the source listing
is written to file path.L.

-LIST_ERRS or -LE specifies that the list file shall contain
only those statements which have assembly errors and their
associated error messages.

-SIZEnn or -SZnn specifies the number (01 through 63
decimal) of 1024-word memory blocks that are to be used for
the assembler's work tables. 1If this argument is omitted,
the assembler will request 1024 words from the task's groups
memory pool.

-COUT out_path indicates that the llstlng which would other-
wise be written to the file path.L 1s to be written to file
out_path.

-OBJECT obj_path or -OBJ obj_path indicates that the object
text unit which would otherwise be written to the file
path.WO is written to file obj_path.

°* The path parameter can assume any of the acceptable forms of
a path name; a simple name indicates that a source program unit
residing in the working directory is to be assembled. The assem-
bler appends a .WA suffix to path if it 1s not provided in the
command line. The assembler then gets the source file path.WA.
Should the search fail, the assembler drops the .WA and reat-
tempts finding the file. In this manner, the assembler may ac-
cept input from a2 peripheral device such as a card reader or tape
drive.

If the -COUT control argument is not specified, the source
listing (if requested) is written to a file created by the assem-
bler in the working directory, having a file name of path.L. The
file can be subsequently listed by using the PRINT utility com-
mand. If a different file is specified by using the -COUT argu-
ment, out path is the name of the file containing the listing.
The assembler appends nothing to out _pbath.

If the -OBJECT or -OBJ arguments are not specified, the ob-
ject text unit, when not suppressed, is written to a file created
by the assembler in the working directory. The file name 1is
path.WO where path is the last or only element in the path param-
eter. If either -OBJECT or -OBJ is given, the object text unit's
file name is obj_path. No suffix is appended to obj_path.

If the listing and object files already exist, they are over-
written by the output produced by the assembler.

The following are examples illustrating the use of the WCSA
command.

,/ \\

N

LN

Example 1
WCSA EXTOP -SIZE 5 ~-COUT>SPD>LPTOUV

The writable control store assembly language source program
EXTOP.WA residing in the current working directory is to be as-
sembled. The source listing and errors are to be printed on line
printer 00. The object text unit is to be written to the file
EXTOP.WO in the working directory. If EXTOP.WO already exists,
its contents will be overwritten by the new object text unit
data. A maximum of five 1024-word blocks of memory are to be
used for working tables during the assembly.

Example 2
WCSA > SPD>CDROU -0BJ WCSDCK.WO

The card deck in card reader 00 is to be assembled. The
source listing with errors is to be written to CDROO.L in the
current working directory. The object text unit is to be written
to file WCSDCK.WO, also in the current working directory. The
card deck must be terminated by an EOF card (11-9-8-5 multipunch)
and reloaded for the second pass.

5.2 LOADING THE WCS

The object code created by the WCS assembler and stored on a
disk can be loaded into the WCS using the WCS loader. The loader
is capable of loading multiple firmware files into the WCS, fill-
ing unused locations with an operator-supplied firmware word,
dumping the contents of the WCS, and disabling the WCS (effec-
tively disengaging the WCS from the system). It is also possible
to select any WCS connected to the Megabus by specifying the
channel number of the associated CPU. Each of these functions
may be requested either independently of or concurrently with any
other function. However, it must be understood that if "filling"
the WCS is requested, it is performed after all firmware text
files have been loaded and, if "dumping" is requested, it is per-
formed after loading and filling. Disabling the WCS, if
requested, will be the last option executed.

Multiple firmware files are loaded in the order in which they
are named in the parameter list. No attempt is made to prevent
multiple loading of the same location, but any location written
to more than once during a single pass through the loader will be
identified in a warning message.

Automatic loading of the WCS with a certain set of firmware
text files, or automatic disabling of the WCS can be performed at
startup. The operator need only modify the START_UP.EC for the
system to include the canned request.

5.2.1 Writable Control Store Load (WCSLD) Command

The WCS loader is invoked using the WCSLD command, which is
of the form:

WCSLD [pathl] {pach] .o [-DUMP [Crxxx], [YYY])]]
[-FILL (xxxx,xxxx,xxxx,xxxx)][-OFF][-CPU (X)]
where:

pathl is the full or relative path name of an object text
file.

-FILL (XXXX,XXXX,XXXX,XXXX) Or -FL (XXXX,XXXX,XXXX,XXXX)
indicates that all locations not written to in the course of
loading firmware files are to be filled with the firmware
word (16 hexadecimal characters separated into groups of four
by commas) within the parentheses.

-pUMP [([xxx],[yyy])] or -D [(Ixxx],[ryyl)] indicates that the
contents of the WCS within the range xxx to yyy, inclusive,
are to be dumped to the USER-OUT system file after loading is
complete; the default range 1is all of the addresses in the
WCS.

-CPU (X) or -CP (X) indicates that all other parameters to
the loader apply to the WCS associated with the CPU on
Channel X.

-OFF indicates that after all other options are performed,
the WCS is to be set off-line (disabled).

NOTE
All numeric arguments are enclosed within par-
entheses and expressed in hexadecimal. Optional
arguments are enclosed in braces.

The argument -DUMP may be followed by an optional range qual-
ification enclosed in parentheses and of the form:

([xxx], [yyy])
where:
xxx specifies the "Start" of the range in hexadecimal.
yyy specifies the "End" of the range in hexadecimal.
Start defaults to the low address for RAMs in the indicated
control store, while End defaults to the high address. For the

largest possible WCS the low address is 800 and the high address
is FFF. Range is specified in terms of 64-bit firmware words.

5-4

-

Each argument is optional, but at least one argument must be
passed to thé loader. The order of the arguments is immaterial,
and each argument is considered independent of every other argu-
ment. For example, -DUMP might be passed as an argument more
than once, each time with a different range or no range at all.
If a range is used, it will be the last explicit range
encountered.

5.2.2 Error Handling

The error codes that can be generated by the loader are:

ERROR

CODE MEANING

1E07 *Illegal parameter (accompanied by the parameter)

1E12 No parameter.

1E13 Invalid WCS status (accompanied by the status)

1E14 No RAMs in WCS

1E15 Attempt to output out-of-range address
(accompanied by the address)

1E16 Attempt to write to nonexistent address
(accompanied by the address)

1E17 Fill option not honored, because format of firm-
ware word illegal or word omitted (accompanied
by the firmware word)

1E18 Text file parameter invalid, does not end in ".WO"
(accompanied by the parameter)

Firmware files are assumed to have been generated by the WCS
assembler, and therefore must have names ending in the suffix
.WO. Loaded files are reported to the operator by the name in
the title statement revision, assembly date, and 20 characters of
the secondary identification; files are not identified by exter-
nal name (i.e., name in directory entry). It is possible that
the WCS may contain PROMs instead of RAMs, in which case the
-DUMP option can be used to dump the contents of the PROM and
disable the WCS. However, regardless of whether the WCS contains
PROMs, or RAMs, or nothing at all, the -OFF option can be used to
disable the WCS.

Since addresses may range from 800 to FFF, the loader turns
on the most significant bit of any WCS address passed as part of
a dump range or as an address within a firmware file. To detect
an address that is out of range the loader polls the two slots on
the WCS to determine the occupant of each. The loader then

establishes the low and high addresses for the WCS depending on
whether it finds a RAM, PROM, or neither in the slot.

5-5

Error lE1l5 results from an attempt to output an out-of-range
address to the WCS. Instead of outputting a bad address the
loader reports the error and leaves the WCS's internal address
register unchanged.

Error 1E16 results from an attempt to write to an out-of-
range address, (i.e., an address beyond the highest address in
the WCS). Upon encountering this error while loading firmware,
the loader terminates the firmware file currently being loaded
and goes on to the next firmware file.

5.3 DEBUGGING WCS MICROPROGRAMS

This subsection suggests methods for finding and correcting
errors in user-generated firmware. The principal test tool for
this activity is the Microcode Analyzer (refer to subsection
5.5). The techniques described herein are intended to help the
user get started in the debugging activity. The detailed actions
taken after this initial effort depend heavily on the precise na-
ture of the user firmware and the fault being pursued, and are
necessarily left to the ingenuity of the user.

It is asssumed that the user has assembled and loaded his
firmware, has exercised it by embedding appropriate User Generic
instructions in the software, and suspects that one of the fol-
lowing conditions exists:

e The User Generic firmware has not been entered.

® The User Generic firmware has been entered, and does not
exit.

@ The User Generic firmware has exited to report an unex-
pected trap condition.

@ The User Ceneric firmware produces unexpected results.

5.3.1 User Generic Not Invoked

If the user suspects this is the case, he can confirm or
eliminate the possibility by setting into the Microcode Analy:zer
a firmware-address halt at the entry ("splash") point for the
instruction in gquestion. This address is 800# plus the least
significant digit of the instruction word. If, when the program
is run, the CPU does not stop at the splash point, attention
should be directed to the software to determine the reason.

//'\1

N

w NOTE

When a firmware-address halt is invoked, the central
CPU clock stops after execution of the specified step.
The "current" display on the Microcode Analyzer will
contain the internal bus value generated in the next
step and the address of the step after that. When
selecting the firmware address at which to set the
halt, it is important to choose one that is not fol-
lowed by a Megabus read request or write operation
that might address an unavailable resource because

the Megabus time-out could override the address halt.

A firmware-address halt set at native firmware splatter loca-
tion 1CO# stops the CPU upon recognition of every user generic
instruction, if this is desired. Stepping the CPU clock forward
from this point permits examination of the splash action. If the
native firmware branches to the trap algorithm (location 33B#)
instead of entering the WCS code, the user should consider the
possibility that the WCS is not on-line (i.e., has not been writ-
ten into since its last initialization).

5.3.2 1Instruction Does Not Exit

If the control panel becomes unresponsive (register selection
ineffective, etc.), the firmware has probably encountered one of
three situations:

® The clock is "stalled", waiting for a response to a
Megabus read request.

e Execution of the native trap firmware has triggered the
unavailable resource response, resulting in an infinitely
recursive trap.

® The user firmware has entered a loop in which exit condi-
tions cannot be satisfied.

To distinguish among these situations, the user should place
the Microcode Analyzer in the Step mode. If the RUN indicator on
the Microcode Analyzer remains illuminated, the clock is stalled.
In this case, the hexadecimal displays on the Microcode Analyzer
are not meaningful. To determine the firmware location of the
stall (and the firmware flow which led to it), first depress the
Stall Examine (E) key to extinguish the RUN indicator. The firm-
ware history can then be explored for possible occurrences of:

@ Use of data from Megabus without a prior regquest.

® Use of data from Megabus when the preceding request was
rejected.

If the RUN indicator extinguishes when the Step mode is
entered, a loop condition exists. Repeated actuation of the N
Execute key on the Microcode Analyzer will permit exploration of S
the nature and extent of the loop. The user must consider that
the failure of the firmware to exit from the loop is probably due
to some action or condition established prior to entering the
loop. Further investigation might benefit from restarting the
program after establishing a firmware address halt at or near the
entry to the loop. When the CPU stops at this point, firmware
history should help explain the cause of the problem. 1In select-
ing the firmware address at which to set this halt, the following
considerations may be helpful. If the loop is contained in WCS
firmware, the user should employ his knowledge of that firmware
to choose a point near the loop entry, avoiding (if possible)
those shared by any prior, nonfaulty, executions of the code.

If the loop includes native location 33B#, a recursive trap
is involved. Location 33B# can then be used as the firmware-
address halt location, but this should be avoided, if possible,
because of the frequency with which various traps are normally
invoked by the operating system. Usually, native location 003#
is also included in the firmware loop and can be used as a more
selective point at which to set the firmware-address halt.

5.3.3 Instruction Exits Via Unexpected Trap

If the instruction causes an unexpected trap, the techniques
described in the preceding subsection can be used to facilitate
retracing the steps leading to the trap exit. Note that, in gen-
eral, when the firmware history of 16 steps is inadequa.e to
identify the beginning of the problem, it can be used to select
another firmware-address halt setting lo steps earlier. Follow-
ing a restart of the program, this will provide 16 steps of
earlier history, and so on back to the original fetch of the
instruction.

Unexpected (i.e., hardware-detected) traps generally result
from any one of the following five causes:

1. Reference to a resource which is not available on the
Megabus.

2. Reference to a non-existent or invalid memory location.
3. Violation of memory protection.

4. Detection of a parity error in data received via the

Megabus.
5. Receipt of data from memory with an error not correctable
by EDAC.
c/‘f B
\‘«L/)’

It should be obvious that the first three causes may arise
from either software or firmware errors, as well as from delib-
erate actions. It is less obvious that uncorrectable memory er-
rors can also be induced by improper firmware coding, which vio-
lates timing requirements in the CPU - Megabus interface when the
memory is being written into. Such mistakes are flagged by the
WCS Micro Assembler, and should always be corrected before at-
tempting to execute the assembled code.

5.3.4 Instruction Executes and Produces Unexpected Results

If the instruction and the program containing it appear to
execute and exit normally, but the results are not those that
were anticipated, the user must devise techniques for analyzing
the problem. These will depend on the functional definition of
the instruction, the algorithm used to implement it, and the na-
ture of the fault syndrome. 1In this case, the internal bus dis-
play on the Microcode Analyzer, as well as the firmware address
pattern, will be useful. To obtain maximum information from this
display, it is good microprogramming practice to employ the in-
ternal bus in all firmware steps. When use of the internal bus
is not required by the functional activity in a given firmware
step, a source should be used which is likely to assist the de-
bugging effort. For this reason, the default code generated by
the Assembler in such firmware steps is defined to display the
activity within the microprocessor.

Another technique that may prove useful in debugging firmware
functionality is the modification of the firmware and/or inser-
tion of firmware patches to test or display register contents and
other conditions of interest. For this purpose, the user is re-

ferred to descriptions of the On-Line Editor, the WCS Assembler,
and the WCS Loader for the tools necessary to modify, reassemble,
and load firmware patches.

5.4 WCS PATCH PROCEDURE

The WCS user, while debugging his microprogram, may want to
alter (patch) the contents of selected firmware words. This
patching is most easily accomplished by exiting WCS execution and
invoking the text editor. The source file is then corrected and
reassembled. The new object code is loaded into the WCS, replac-
ing only those addresses specified in the source. An Execute
Command (EC) file might be created to run through the Editor, WCS
Assembler, and Loader while permitting interactive update in the
editor. Given relatively short source files, this turnaround is
fairly quick.

Care should be taken in the above procedure during loading.
In a situation where multiple object files are loaded, the design
may rely upon the loader's loading all references to a firmware
word. Therefore, the last reference for each firmware word is
used. If the updated sclected source is overlapped by other rou-
tines in the total load, a full reload may be required.

For those applications where the source size adversely af-
fects turnaround time, a second procedure may be adopted. Here, o
as before, the corrections are noted in the source listing. The o
editor is invoked and the corrected statements are entered from
the keyboard or removed selectively from the source. The
addresses for these statements must be specified to guarantee
proper firmware modification. Labels used in branching may now
be undefined and should either be replaced by constants or de-
fined by LABEL statements. A special file may be added to the
edit file to provide the correct DEFAULT statement and Branching
mode. The edited file is then written to a new file.

After exiting the editor, the source file must be assembled,
with all errors being either noted or corrected. Acceptable ob-
ject code is then loaded into the WCS by the WCS loader, affect-
ing only those locations specified in the source file. The WCS
is now loaded and testing may continue.

NOTE

The WCS loader accepts multiple object files.
Thus, if the WCS memory has been altered or its
contents are at least questionable, the update
may still take place, with the new object file
being appended to the list of object files pre-
viously loaded. Since the new object file will
be loaded last, its changes will be used.

5.5 MICROCODE ANALYZER

The Microcode Analyzer is a tool designed to assist the user
during microprogram debug activities as previously described in
subsection 5.3. It allows the user to display addresses and
other useful data, while providing addditional facilities to as-

sist the debugging effort. The material contained herein de-
scribes these facilities.

5.5.1 Front Panel

The front panel, shown in Figure 5-1, consists of a hexa-

decimal keyboard, eight HEX displays, and several miscellaneous
switches and indicators. The keyboard input (shown at the right)
is a regular hexadecimal keyboard.

5-10

4,

CURRENT, TRAP, OR WCS INTERNAL BUS
ADDRESS DISPLAY DISPLAY

*RESERVED FOR FUTURE USE

MICRO CODE ANALYZER

5.5.1.1

Figure 5-1 Front Pancl

Front Panel Keys

The front panel provides the user with a total of lu keys
(excluding the keypad) that control various analyzer functions.
The function of each key is as follows:

1. s
2. R
3. +
4. C
5. D
6. L
7. E

key

key

key

key

key

key

key

places the CPU master clock in Single Step mode
and illuminates the STOP indicator.

readies the CPU master clock and illuminates the
RUN indicator.

if the STOP indicator is illuminated, it produces
a single clock pulse; otherwise, it starts the
master clock for continuous operation (or until
the next address halt).

displays the current internal bus value in the
five rightmost hexadecimal displays, the next
address in the three leftmost hexadecimal dis-
plays, and illuminates the CURRENT indicator.

displays one of the previous lb current addresses
and illuminates the DISP indicator; selection of
the previous address is performed using the
keypad.

displays the halt address in the three leftmost
hexadecimal displays.

if the STOP indicator is illuminated, it

releases the clock stall to allow the display to
function.

5-11

B. A key - causes the analyzer to halt when the current

address equals the halt address and illuminates
the ADDR HALT indicator.

9. CLR - terminates the operation invoked by the A key
(halt) described previously.
key

5.5.1.2 Front Panel Indicators

The front panel provides the user with a total of 11 indica-
tors that specify the current mode of operation. Each of these
indicators is defined below.

1. ADDR HALT indicator - indicates that the A key has been

depressed.
2. LOAD indicator - indicates that the L key has been
depressed.
3. DISPLACED - indicates that the D key has been
(DISP) depressed.
indicator
4. CURRENT - indicates that the C key has been
indicator depressed.
5. STOP indicator - indicates that the S key has been
' depressed.
6. RUN indicator - indicates that the R key has been
depressed.
7. DISPLACEMENT - indicates the displacement of a
indicators previous next address from the cur-

rent next address.

5.5.1.3 »Internal Bus Display

The rightmost five hexadecimal displays show the 20 bits from

the internal bus.

In addition to the current BI field display, it is possible
to display previous history. To permit this, the last 16 firm-
ware steps are stored and may be displayed by front panecl
manipulation.

5.5.1.4 Address Display

The leftmost three hexadecimal displays show the address of
the firmware step to be executed next. This could be from the
native PROM or from the WCS. These three displays are also used
to display halt addresses.

5-12

N

Native PROM Display

When this is displayed, the leftmost digit of the address
hexadecimal displays is seven or less. The maximum number in
this case is 7FF.

WCS Display

When this is displayed, the number shown is a minimum of 800
and a maximum of FFF.

Halt Address

To display a Halt address, depress the L key, and the LOAD
indicator should illuminate. The halt address may now be changed
by entering the desired value, digit by digit, using the keypad.

5.5.2 Normal Operation

During normal operation the displays are continuously being
updated at approximately six megacycles.

5.5.2.1 Operate in Single Step Mode
To operate in Single Step mode, perform the following steps:

1. Depress the S key (the CLOCK STOP indicator should
illuminate).

2. Depress the + key for each clock cycle.
5.5.2.2 Return to Continuous Operation

To return to continuous operation perform the following
steps:

1. Depress the R key (the CLOCK RUN indicator should
illuminate).

2. Depress the + key to start the clock.
5.5.2.3 Set Up a Halt Address
To set up a halt address perform the following steps:
1. Stop the clock.
2. Depress the L key (the LOAD indicator should illuminate).

3. Load the address using the hexadecimal keypad. As each
digit is loaded the register content is shifted left.

4. Restart the clock by first depressing the R key, then the
+ key.

5-13

NOTE

Steps 1 and 4 may be omitted at the expense
of not visibly displaying the address entered.

5.5.2.4 Halt et a Particular Address
To halt at a particular address, perform the following steps:
1. Set up the address (refer to subsection 5.5.2.3).

2. Depress the A key (the ADDR HALT indicator should
illuminate).

3. The system halts after execution of the firmware step at
the halt address.

NOTE

When a firmware-address halt is invoked, the central
CPU clock stops after execution of the specified step.
The "current" display on the Microcode Analyzer will
contain the internal bus value generated in the next
step and the address of the step after that. When
-selecting the firmware address at which to set the
halt, it is important to choose one that is not fol-
lowed by a Megabus read request or write operation
that might address an unavailable resource because

the Megabus time-out could override the address halt.

5.5.2.5 Disable Address Halt

To disable address halt, depress the CLR key (located under
the A key).

5.5.2.6 Displey the Current Data
To display the current data, depress the C key.
5.5.2.7 Display History
To display history perform the following steps:
1. Depress the D key (the DI5P indicator should illuminate).
2, Set up the required displacement using the hexadecimal
keypad (the displacement indicators will confirm the
entry in binary code).
The hexadecimal display will show the next address and
the BI bits corresponding to the displacement. A dis-

placement of zero causes the sixteenth previous history
step to be displayed.

it

5.5.2.8 Synchronize Oscilloscope
To synchronize an oscilloscope perform the following steps:
1. Set up address (refer to subsection 5.5.2.3).

2. Depress CLR key (located under the A key).

3. Coaxial connector (located at rear of analyzer) supplies
a sync pulse every time the selected step is accessed.

5-15/5-16

AT,

SECTION 6 - PROGRAMMING CONSIDERATIONS

Those users that do not wish to use the Honeywell operating
system for loading the WCS must develop their own software
loader. The material presented in this section is intended to
provide the user with the background information necessary to
perform this task, and includes:

e A description of the logical and physical layout of a WCS
assembler object deck.

@ A description of the program steps required to load the
firmware image into the WCS.

@ A definition of User Generics and their relationship to
WCS entry points.

6.1 LOGICAL AND PHYSICAL LAYOUT

A description of the logical layout for the WCS assembler
object deck is contained in subsection 4.5. The description of
the physical layout for files is contained in the GCOS 6 Data
File Organizations and Formats Manual (Order Number CBO05).

6.2 LOADING FIRMWARE IMAGE INTO WCS

Loading the firmware into the WCS requires communication over
the Megabus to the WCS from its associated CPU. During these
Megabus transfers, the Megabus address lines will carry the chan-
nel number of the WCS.

The channel number assignment is directly related to the CPU
to which the WCS is attached because of their committed associa-
tion. The channel number of the WCS for each CPU is:

CHANNEL NUMBER

CPU WCS

0000 03CO
0040 0380
0080 0340
00Co 0300

Since the WCS channel numbers are less than 0400%#, the I/O
instructions used to communicate with the WCS must employ a non-
procedural form for the channel-control word (refer to the
Honeywell Level 6 Minicomputer Handbook - Order Number AS22).

6-1

The two instructions necessary to load the firmware image
into the WCS are the Output WCS Address and Output WCS Data

. . P
instructions.

“
OQutput WCS Address

This instruction selects the WCS RAM starting location for
data to be loaded into the WCS. The format of the Megabus
address and data lines during the Output WCS Address instruction
are:

0 78 1718 23

NOT USED WCS CHANNEL NUMBER|0 0 0 1 0 1

ADDRESS BUS

0 15

ADDRESS IN WCS - 0800%# TO OFFF#

DATA BUS

The information for the address bus is pointed to by the Control
Address Syllable, while the information for the data bus is
pointed to by the Data Address Syllable.

Each 64-bit word in the WCS is divided into four 16-bit seg- o
ments. When an address is transferred to the WCS, the first seg- :
ment (i.e., the most significant 16 bits) is selected to receive

the data from the next succeeding Output WCS Data instruction.
Subsequent Output Data instructions increment the segment pointer

and the control store address so that only the Output WCS Address
instruction is necessary to load any number of contiguous loca-

tions in the WCS. Four Output Data instructions are necessary to

load each 64-bit firmware word.

Output WCS Data

This instruction loads a 16-bit segment of the WCS location
selected by the Output WCS Address instruction. The format of

the Megabus address and data lines during the Output WCS Data
instruction are:

0 7 8 1718 23

NOT USED WCS CHANNEL NUMBER|0O 0 1 1 11

ADDRESS BUS

0 15

16-BIT SEGMENT OF 64-BIT WCS WORD

DATA BUS

6-2

LY

The information for the address bus is pointed to by the Control
Address Syllable, while the information for the data bus is
pointed to by the Data Address Syllable.

The segment pointer is incremented after each data transfer
so that a subsequent data transfer loads the next 16-bit segment
of the same WCS location. When four data transfers have occur-
red, the control store address is incremented to select the next
WCS location. Noncontiguous WCS locations can be loaded by issu-
ing intermediate Output WCS Address instructions at the beginning
of the data transfer for each firmware word.

Typical Loading Seguence

Figure 6-1 illustrates a typical loading sequence. The four
Output Data I/0 instructions are identical and are shown only to
illustrate the necessity of testing for completion after every

fourth transfer.
‘IIEHHHIII'
LEFT—-MQOST 16 BITS OF

10 WCS—=— ADDRESS FIRST 64—BIT MICRO-
j WORD SELECTED

R-=— WCS SIZE

!

B —=— MEMORY ADDRESS OF FIRST WORD
|

[

10: WCS =— WORD (AT ADDRESS B)

B —~——B+1

SELECT SECOND GROUP OF 16 BITS

10 WCS =—WORD (AT ADDRESS B)

B ——r B+1

SELECT THIRD GROUP OF 16 BITS

10 WCS-=— WORD (AT ADDRESS B)
B = B+1

SELECT LAST (RIGHT-MOST) GROUP OF
16 BITS

[} WCS==— WORD (AT ADDRESS B)

B —-— B+1

SELECT FIRST GROUP OF 16 BITS IN
} NEXT WCS LOCATION

R=—mFR 1

- o

Figure 6-1 Typical Loading Procedure

The memory addresses for the microcode transfers are unre-
stricted with regard to sequence or contiquity. Address forms
need only comply with the restrictions imposed by the Data
Address Syllable (DAS) forms permitted in the I/O instructions of
the CPU.

6.3 RELATIONSHIP OF USER GENERICS TO WCS ENTRY POINTS

The transfer of control from a user's program in memory to a
user-generated firmware routine in the WCS is accomplished using
the WCS Generic instruction. When the CPU encounters a WCS
Generic instruction while processing a program, it sends the fol-
lowing Output Task Word command to the WCS via the Megabus.

0 7 8 1718 23

NOT USED CHANNEL NUMBER 000111

ADDRESS BUS

WCS GENERIC INSTRUCTION

DATA BUS
The first word of the Generic instruction from the program in
memory is transferred, over the Megabus data lines, to the WCS,
and is of the form:

0 7 8 9 101112 15

000O0O0O0OOGOIIIRGGIEETETE

where:
Bits 0 through 7 are not used (all Zeros).
Bit 8 equals One.
Bit 9 (R) equals Zero and is reserved for future use.
Bits 10 and 11 (GG) are the auxiliary command code
bits. These bits are not decoded but can be tested

by the microprogram.

Bits 12 through 15 (EEEE) select one of the first 16
locations in the WCS.

This instruction word selects a specific entry point within

the first 16 WCS locations. The selected entry point is the
starting address of the user-generated firmware routine.

AT,

The Generic instruction codes (op-codes) range from 0080
through 00BF. Table 6-1 lists each of the available op-codes and

the corresponding WCS entry point. The op-code is also stored in
RAM location 0 and the F/SEL register (refer to subsections 2.8.2

and 2.8.3, respectively). RAM0O and the F/SEL register can be
used for further firmware branching to distinguish among up to
four op-codes per WCS entry point.

Table 6-1 WCS Entry Points

GENERIC INSTRUCTION wCS
(OP-CODE) ENTRY POINT
0080, 0090, 00AO, 00BO 800
0081, 0091, 00Al, 00Bl 801
0082, 0092, 00A2, 00B2 802
0083, 0093, 00A3, 0OB3 803
0084, 0094, 00A4, 00B4 804
0085, 0095, 00A5, 00BS 805
0086, 0096, 00A6, 00B6 806
0087, 0097, 00A7, 00B7 | 807
0088, 0098, 00Aa8, 00BS8 808
0089, 0099, 00A9, 00BS 809
008a, 009a, 00AA, OOBA 80A
008B, 009B, 00AB, 0UBB 80B
oos8Cc, 009C, 00AC, 00BC 80C
oo8p, 009D, OCAD, 0O0BD 80D
00BE, O009E, OOAE, OOBE 80E
008F, 009F, OOAF, OOBF 80F

6-5/6-6

-

Appendix A

Writable Control Store Assembler Abort Codes (xx1D)

When the assembler detects an error that prevents completion
of the assembly process, an appropriate "abort" code is gener-
ated, informing the operator of the error condition. The abort
codes currently in use are as follows:

xx1DO07

xx1DOB

xx1DOC

xx1D13

xx1D1l4

xx1D17

arg INVALID CONTROL ARGUMENT

The specified control argument is unrecognized.
Reenter the command using a valid control argument.

INVALID -SIZE ARGUMENT

The value specified in -SIZE (-SZ) is zero, greater
than 63, or nonnumeric.

FILE NAME NOT DESIGNATED

The source file name is missing. Reenter the com-
mand using the file name.

OBJ_PATH ARGUMENT IS MISSING

The OBJ_PATH ARGUMENT (object unit name) following
-OBJECT (-OBJ) 1is missing or the argument list 1is
too short. Reenter the command using the correct
argument.

OUT_PATH ARGUMENT IS MISSING

The OUT_PATH ARGUMENT (output listing file name)
following -COUT is missing or the argument is too
short. Reenter the command using the correct

argument.
SOFTWARE ERROR - PLEASE RERUN

An illegal pseudo-op-code number has been received.
Rerun the Assembler. 1If the error persists, please
contact Honeywell.

xx1D18

SOFTWARE ERROR - PLEASE RERUN

An illegal nonencoding token type has been
detected. Rerun the Assembler. If the error per-

sists, please contact Honeywell.

L~

Appendix B

Firmware Word Format

The format of the 64-bit firmware word is illustrated in
Figure B-1.

As shown in Figure B-1, the firmware word is divided into 15
fields: AD, AF, AS, BI6, BR, BS, C, CK, DI, GP, LS, NA, RS, SM,
and TC. Combinations of these fields control different portions
of the CPU hardware.

AD Field (Bits 9 through 11)
The AD field controls:

® The destination of the ALU result within the microproces-
sor area

e The microprocessor area shift logic

e The availability of microprocessor area elements to the
internal bus.

When the AD field specifies a destination within the register
file, the RS/SM fields interact to select the specific register
file location that receives the ALU result - RF(R). When the AD
field makes a register file location available to the Internal
Bus (BI), the LS/SM fields interact to select the specific regis-
ter file location that is made available - RF(L). Table B-1
lists the operations performed for each decode of the AD field.

INTERNAL BUS CONTROLS

——— e - - —— ———— - ——

MICROPROCESSOR CONTROLS

S R S R ——

MASTER CLOCK

— e —— > o o o —— - —

MEGABUS INTERFACE CONTROLS

MISCELLANEOUS

[}
|
|
]
C

FIRMWARE SEQUENCING CONTROLS

—— e — e —— — ——

l ’ l I CONTROLS l HARDWARE CONTROLS
o . AF AS cx 816 . 8s GP TC B8R c NA
" o 1
0 1 —3 4 5§ — 7 8 9 — 11 12 — 15 16 —— 19 20— 21 2 —2n 28— 30 N 35 36 4 42 a7 48 —— 51 52 §3 ————————————————— 63
Ot FIELD AD FIELD AS FIELD BI6 FIELD 8S FIELD TC FIELD CFIELD
RAM/RALU RALU RALU INTERNAL BUS MEGABUS TEST CACHE
INTERNAL DESTINATION SOURCE CONTROL CONTROL CONDITION ADDRESSING
BUS CONTROL CONTROL
LSS:(LIL)U RS FIELD AF FIELD CK FIELD SM FIELD GP FIELD 8R FIELD m:':le’!.u
RAM/RA RALU RALU PROCESSOR SELECT GEN. PURPOSE BRANCH x
LEFT SELECY RIGHT SELECT FUNCTION CLOCK SPEFD MODIFY MICRO-OP TYPE ADDRESS
» Y
. .
Figure B-1 Firmware Word Format

/.n:

Table B-1 RALU Destination (AD) Field Decodes

AD DECODE OPERATION PERFORMED
0 Q-=— ALU result
ALU result made available to BI
1 ALU result made available to BI
2 RF (R)=— ALU result

RF (L) made available to BI

3 RF(R) =—ALU result
ALU result made available to BI

4 DR (double word right shift)
ALU result made available to BI

5 SR (single word right shift)
ALU result made available to BI

6 DL (double word left shift)
ALU result made available to BI

7 SL (single word left shift)
ALU result made available to BI

AF Field (Bits 12 through 15)

The AF field controls:

e¢ The function performed by the ALU
e¢ Changes in MMU operation.

The ALU has two input ports called J and K. The data avail-
able to these ports is controlled by the AS field. Table B-2
lists the operations performed for each decode of the AF field.

AS Field

Table B-2

RALU Function (AF) Field Decodes

AF DECODE

OPERATION PERFORMED

0
1

J+K

K-J-1
J-K-1

J V K
Undefined

KAJ

K-J
J-K

J VK
RINGINIT

J A K
KAJ
NONPROC

J VK
RINGCALC

J ¥ K
DDLEQO
RINGCALC

(Bits 16 through 19)

The AS field controls:

The inputs to the ALU

Whether CRY, OVFL, and AUZ are generated on 16- or 20-bit

results

XB(0) when shifting the XB register.

A

L S

AS bits 1 through 3 control the data made available to the
ALU input ports (J and K). 1If data is sourced from the register
file, the specific register file location is selected by the
interaction of the LS/SM fields and/or the RS/SM fields. Table
B-3 lists the data made available to these ports for each decode
of AS bits 1 through 3.

Table B-3 RALU Source (AS) Field Decodes

AS DECODE ALU INPUT SOURCE
(BITS 17-19) J PORT K PORT
0 RF (L) Q
1 RF (L) RF (R)

2 ZERO Q

3 ZERO RF (R)

4 ZERO RF (L)

5 BI RF (L)

6 BI Q

7 BI ZERO
Definitions

RF(R) - Denotes RS/SM Field Interaction
RF(L) - Denotes LS/SM Field Interaction

If AS(0) equals One, functions CRY, OVFL, and AUZ are gener-
ated on a 16-bit result. 1If AS(0) equals Zero, functions CRY,
OVFL, and AUZ are generated on a 20-bit result.

If AS(0) and LS(0) both equal Zero, RF(L) is treated as a
l16-bit quantity sign-extended to 20 bits, and functions CRY,
OVFL, and AUZ are generated on a 20-bit result. Table B-4 lists
the only legal combinations of the AS and AF fields for this
case.

Table B-4 Legal Combinations of AS and AF Fields

AS DECODE | AF DECODE OPERATION PERFORMED
1 6 ALU result =-— RF(L)sg *2
2 0 ALU result =— RF(L)se +Q
2 8 ALU result =— RF(L)sg +Q+1
3 0 ALU result ==— RF(L)sg +RF(R)
NOTE

RF(L)sg = RF(L) sign-extended to 20 bits by
replacing the four most significant bits with
copies of the SIGN flop.

Wwhen shifting the XB register (GP Field = 04, 05, 09, 0A, 14
or 15), AS(0) controls what is received in XB(0). If AS(0)
equals One, XB(0) receives bit 19 of the ALU result. If AS(0)
equals Zero, XB(0) receives the complement of RS(0).

BI6 Field (Bits 22 through 27)

The BI6 field controls:

® Most internal bus sources
e Data received by I register (or bits thereof).

Table B-5 lists the data received by the internal bus (BI) or
the I register for each decode of the BI6 field.

Table B-5 1Internal Bus Selector (BI6) Decodes
(Sheet 1 of 2)

BI6 DECODE OPERATION PERFORMED

0z BI(0-11)=— 0
BI(13-15)=—NA(3-6)
BI(16-19)—= 0z

lz BI(0-3)=—20
BI(4-11)=—FF
BI(12-15)=—NA(3-6)
BI(16-19)=—2z

20 BI srcmod = R8 (DI field must = 5)

21 BI=—1IDSy where y = NA(3-6)

22 BI=—HL8

23 BI- BD or BP (if made available by BS field)
BI-=— RUP (if BD, BP not made available)

24 BlI-=— P or Y or MMU (as made available by BS field)

25 BI-— BDH or BPH (if made available by BS field)
BI-—Panel (if BD and BP not made available)

26 BI srcmod = L4 (DI field must = 0)

217 BI-=—LVL

28 Undefined

29 BI-— IDCy where y = NA(3-6)

2A BI-=—H (bytes swapped) |

2B. Bl=—2172

€

Table B-5 1Internal Bus Selector (BI6) Decodes

(Sheet 2 of 2)

BI6 DECODE OPERATION PERFORMED
2C Undefined
2D Bl - XBHEX
2E Bl=—1
2F Bl =5
30 No action
31 I-=—BI(12-19)
32 I(OV)=—1 if BI(4) = BI(5); else, unchanged
33 I (OV)=-=—OQOVFL
34 Undefined
35 I(I)=-—ACK
36 I(B)=-=—AUZ
37 I(B) =-—BI(4)
I(C)-=—CRY
I(0) =—O0OVFL
38 I(G)=-—BI(4) V AUZ
I(L)=-—BI(4)
39 I (G)-=— ALU Result (0) V aUZ
I(L)-=—ALU Result (0)
3A I(G)=-=—SIGN
I(L)-=— SIGN
I(U)-=—BI(4)
3B I(C)-=—CRY
I(0)-—OQOVFL
3C I(C)=—Q(19) - AD field must be 4 or 5
3D I(C)-—BI(19)
3E I(C)=—BI(4)
3F I(C)==—CRY

BR Field (Bits 48 through 51)

The BR field controls the type of branching to be performed,
depending on the current addressing mode (Transparent or Sequen-
the effect of this field depends
on the contents of the Test Condition (TC) and Next Address (NA)
fields, Tables B-6 and B-7 list the types of branching performed
in Transparent mode and Sequential mode (respectively)

tial). However,

in either case,

decode of the BR field.

Table B-6 Branch Type (BR)

Field Decodes (Transparent Mode)

for each

BRANCH TYPE
BR DECODE{ TEST CONDITION TRUE| TEST CONDITION FALSE
0 —NA V 3 —= NA
1 - XL —=NA
2 — XA Splatter —NA
3 ——XB Splatter —=NA
4 —=XR Splatter —NA
NEWXR <=0
5 —XW Splatter - NA
NEWXR ==
6 —XE Splatter - NA
NEWXR ~=—0
7 —+XF (location 020)| —=NA
NEWXR == 0
8 —NA —NA V 3
\ 9 —=NA - X7,
A —NA — XA Splatter
B —=NA —XB Splatter
C —=NA —=XR Splatter
NEWXR == (
D —NA —=XW Splatter
NEWXR ~-=—(
E -=NA —=XE Splatter
NEWXR ==
F —=NA -=XF (location 020)
NEWXR == (

AT
S

Table B-7 Branch Type (BR) Field
Decodes (Sequential Mode)

BRANCH TYPE
BR DECODE | TEST CONDITION TRUE | TEST CONDITION FALSE

0 —= NA —= CSAC

2 —=— NA —= CSRAR

4 —= NA —=CSAC

CSRAR-=—CSAC

8 — CSAC —=NA

A — CSRAR - NA

c —= CSAC - NA

CSRAR=—CSAC
F (TC must = 0) LBRANCH
NOTE

The Control Store Address Counter (CSAC) contains

the address of the current firmware step + 1. The
Control Store Return Address Register (CSRAR) con-
tains the address for subroutine returns.

BS Field (Bits 31 through 35)

The BS field controls:
® The Megabus interface area

® The availability of BD, BP, P, Y, and MMU as internal bus
sources

® P and Y as internal bus destinations

o CTR.

Table B-8 lists the operations performed for each decode of
the BS field.

Table

B-8 Bus Control (BS) Field Decodes
(Sheet 1 of 3)

BS DECODE OPERATION PERFORMED
00 BUS PSELECT
P available as BI source
01 BUS PURGE
P available as BI source
02 BUS YSELECT or BUS MMURDACC
Y available as BI source
03 BUS INCY
Y available as BI source
04 BUS PSELECT
P available as BI source
Y-—o> BIJ
05 BUS INCP
P available as BI source
IF GP field = 4, 5, 6, 8, 9, A, 14, or 15
CTR -=—NA (1); else, CTR =«=—— CTR+1
06 BUS MMUSELECT B
MMU available as BI source
Y-—RBI
07 BUS MMUWRACC
Y available as BI source
08 BUS YSELECT
Y available as BI source
Y -—BI
09 BUS YSELECT
Y available as BI source
P ~— BI
0):Y BUS YSELECT
Y available as BI source
YRELOC -=—BI1
0B BUS YSELECT
Y available as BI source
- YR16-=—BI
0cC BD is BI source
Y-=— BI
0D BUS INCY

BD is BI source

=

Table B-8 Bus Control (BS) Field Decodes
(Sheet 2 of 3)
BS DECODE OPERATION PERFORMED

OE BD is BI source
P =-—BI

OF BD available as BI source

10 RDREQ CHGLOCK
Y available as BI source

11 RDREQ NORMAL (if C = 1)
RDREQ NOCACHE (if C = 0)
Y available as BI source

12 RDREQ I-0O
Y available as BI source

13 Undefined

14 WRTWORD INCY (if CK(0) = 0)
WRTBYTE INCY (if CK(0) = 1)
Y available as BI source

15 WRTWORD CHGLOCK (if CK(0)y = 0)
WRTBYTE CHGLOCK (if CK(0) = 1)
Y available as BI source

16 WRTWORD I-O, INCY (if CK(0) = 0)
WRTBYTE I-O, INCY (if CK(0) = 1)
Y available as BI source

17 WRTWORD I-O (if CK(0) = 0)
WRTBYTE I-O (if CK(0) = 1)
Y available as BI source

18 Undefined

19 RDREQP
P available as BI source

1A RDREQP
Y available as BI source
P -—BI

1B Undefined

1C BP is BI source
P=—>P + 1
Y ~=— BI

If GP field = 4, 5, 6, 8, 9, A 14,
CTR ==— NA(l); else, CTR -==— CTR+1

or 15

Table B-8 Bus Control (BS) Field Decodes
(Sheet 3 of 3)

BS DECODE OPERATION PERFORMED

1D BP is BI source

P < P+1

If GP field = 4, 5, 6, 8, 9, A, 14 or 15
CTR = NA(l); else, CTR we— - CTR+1

1E Undefined

1F Undefined

C Field (Bit 52)

The C field controls whether or not the Cache, if installed,
is to be used during read operations. In general, this bit must
be Zero. For procedural read requests (BS field equals 19, 1a,
1C, or 1D), bit 52 must be a One. For data read requests (BS
field equals 11), bit 52 will be a One if the Cache is being
used, and Zero if it is being bypassed.

CK Field (Bits 20 and 21)

The CK field controls:

e The firmware clock speed during nonwrite operations
® Whether a byte or word is written during write operations.

Table B-9 lists the clock speeds for each decode of the CK
field.

Table B-9 CPU Clock Speed (CK) Field Decodes

CK DECODE CLOCK SPEED
0 Very Long
1 Half Long
2 ' Half Fast
3 Very Fast
NOTES

1. If bit 20 equals Zero during a Megabus
write operation, a word is written.

2. If bit 20 equals One during a Megabus
write operation, a byte is written.

AN

L

-

DI Field (Bits 0, 4, and 8)

The DI field controls:
@ The RAM as an internal bus source and destination

e Whether the microprocessor area output made available to
the internal bus by the AD field is used as an internal
bus source. .

When the RAM is an internal bus source or destination, the
specific RAM location is selected by the interaction of the LS/SM
fields. Table B-10 lists the operations performed by each decode
of the DI field.

Table B-10 1Internal Bus Control (DI) Field Decodes

DI DECODE OPERATION PERFORMED
0 BI SRCMOD is L4 (BI6 field must = 26)
1 BI ==— microprocessor output
2 '| BI «— microprocessor output

RAM (L) -=—BI

3 Undefined

4 No action

5 BI SRCMOD is R8 (BI6 field must = 20)
6 RAM (L) =— BI

7 BI ««— RAM(L)

GP Field (Bits 36 through 42)

The GP field controls:

e The GP category of miscellaneous hardware
@ Certain internal bus destinations.

Table B-11 lists the operations performed for each decode of
the GP field.

Table B-11

(Sheet 1 of 4)

General Purpose (GP) Field Decodes

GP DECODE

OPERATION PERFORMED

00

0l

02

03

04

05

06

07

08

09

No action

H=—BI
SIGN-=—BI (4)

SIGN~=—BI (4)
ZERO =—AUZ
MISC=—BI (19)

F(8-11)=~—BI (12-15)
SEL-—BI(16-19)
SIGN ==—1

NEWXR-=—1

XB(1-3)=—XB(02)

XB(0) controlled by AS(0)
SHIN2=—20

SHIN1=—0

XB(1-3) =—XB(0-2)
XB(0) controlled by AS(0)
ZERQ =]

F=—BI (4-15)
SEL-~—BI(16-19)
XB-=—0
NEWXR=—1

SEL-—BI (16-19)
SHIN2 =—1
SHIN] ~—1
NEWXR —=—1

F-—BI (4-15)
SEL=—BI(16-19)
ZERO==—AUX
SHIN2 =—Q
SHIN1=—20
XB=—0
MISC=—0
NEWXR=—1

XB(1-3)=—XB(0-2)

XB(0) controlled by AS(0)
SHIN2=—0

SHIN]=-=—1

MISC=-=—0

0

A,

Table B-11

(Sheet 2 of 4)

General Purpose (GP) Field Decodes

GP DECODE OPERATION PERFORMED
oA XB(1-3)=—XB(0-2)
XB(0) controlled by AS(0)
ZERO =—0
0B F(8-11)=—BI(12-15)
SEL-=—BI(16-19)
MISC -=—[BI (4-9) = 0]
SIGN=—BI (19)
NEWXR~=—1
0cC SIGN =—BI (4)
MISC =—1
0D SIGN =—BI (19)
MISC =—1
0E SIGN=—BI (19)
ZERO=-=—QLT active flop
OF Undefined
10 SHIN2-=—SIGN
11 SHIN2 =—SIGN
SIGN =—BI (4)
12 SHINl1-=—T1 (B)
13 SIGN =—1
14 XB(1-3)=—XB(0-2)
XB(0) controlled by AS(0)
15 XB(1-3)-=—XB(0-2)
XB(0) controlled by AS(0)
SIGN =«—BI (4)
16 ZERO ==—0
17 ZERO ==—]
18 ZERO-=—AUZ
19 SIGN =-—BI (4)
1a SIGN=-=—BI (0)
1B SIGN=—BI (19)

Table B-11 General Purpose (GP) Field Decodes

(Sheet 3 of 4)

GP DECODE OPERATION PERFORMED

1C SHINZ2 ==
SHIN1 =0

1D SHIN2 == (
SHIN]1 =1

1E SHIN2 =]
SHIN]l == 0

1F SHIN2 == 1
SHIN] == 1

20 F-=—BI (4-15)
SEL=«—BI(16-19)
NEWXR =-=—1

21 Undefined

22 F(8-11) =—BI(12-15)
SEL-=—BI(16-19)
NEWXR =]

23 MISC==—0

24 MISC~-=—1

25 MISC -«=—CRY

26 MISC -=—ACK

27 MISC -«—MMU protection violation signal

28 Undefined

29 Undefined

2A SEL-=—BI(16-19)
NEWXR =-=—1

2B H-=—BI
SEL-=—BI(16-19)
NEWXR =1

2C H-=—BI

2D Undefined

2E Undefined

A

<~

Table B-11

General Purpose (GP) Field Decodes
(Sheet 4 of 4)

GP DECODE

OPERATION PERFORMED

2F
30
31
32

33

34

35
36
37

38

39

3a
3B
3C
3D
3E

3F

Undefined
Undefined*

Undefined*

WRAP =—CRY ¥ SIGN
NEWXR-=—10

S(1-2)=—BI(5-6)

5(10-15)=—BI(14-19)
if F(5) = 0, INTBSY-=—0

LINK-—BI (11-18)

Undefined*

If AF = 9, B, D, or F, MMU validates
range

If AF = 8, A, C, or E, suppress MMU

access rights check (NOCHEK)

Panel
-«+—BI(16-19)

Panel
display) ==—BI (4-19)

Undefined*
LOAD ==—1
Undefined
TRAFF IC=~—ZERO
LOAD==—(

PANOK =—1

(most significant digit of display)

(least significant four digits of

*Used by native firmware

17

LS Field (Bits 1 through 3)

AN

The LS field controls: k),

@ The register file address when the AS field specifies
RF(L) as an ALU input

@ The register file address when the AD field makes a reg-
ister file location available to the internal bus

® The RAM address when the DI field specifies the RAM as an
internal bus source or destination

e The interpretation of AS(0) equals Zero (refer to descrip-
tion of AS Field).

The LS field interacts with the SM field to select specific
register file and/or RAM locations. The three-bit LS field spec-
ifies a four-bit constant that is logically ANDed with the four-
bit value specified by the SM field to calculate the register
file and/or RAM address. Table B-12 lists the constants gener-
ated from each decode of the LS field.

Table B-12 RALU Left Select (LS) Field Decodes

RESULTING
LS DECODE CONSTANT \
0 0
1 3
2 6
3 7
4 8
5 B
6 E
7 F

NA Field (Bits 53 through 63)

The NA field controls:

® The next address for firmware sequencing

e Constant generation on the 1nterna1 bus
e CTR initialization.

The NA field, in conjunction with the TC and BR fields, con- e
trols the next firmware address. 1In general, the entire NA field '
specifies one of the alternative branch addresses. 1In

B-18

#0,

Transparent mode, if an XL or a splatter branch is being used (BR
field # 0 or 8), NA(0) determines the high order bit of the 11-
bit address. 1In Sequential mode, if an LBRANCH command is being
used (TC Field = 0 and BR Field = F), NA(0-2) determines the high
order three bits of the address.

A constant is generated on the internal bus when BI6(0)

equals Zero, or when BI6 equals 21 or 29. 1In all of these cases,
four bits of the constant are derived from NA(3-6).

When the BS field increments the P register (BS Field = 05,
1C, or 1D) and the GP field is controlling the XB register (GP
Field = 04, 05, 06, 08, 09, OA, 14, or 15), then CTR is set to
NA(l).

RS Field (Bits 5 through 7)

The RS field controls:

@ The register file address when the AS field specifies
RF(R) as an ALU input

e The register file address when the AD field specifies a
register file location as the destination for the ALU
result

e XB(0) when shifting the XB register.

The RS field interacts with the SM field to select specific
register file locations. The three-bit RS field specifies a
four-bit constant that is logically ANDed with the four-bit value
specified by the SM field to calculate the register file address.
Table B-13 lists the constants generated from each decode of the
RS field.

Table B-13 RALU Right Select (RS) Field Decodes

RESULTING
RS DECODE CONSTANT
0 0
1 3
2 6
3 7
4 8
5 B
% 6 E
7 F

B-19

When shifting the XB register (GP Field = 04, 05, 09, 0A, 14,
or 15) and AS(0) equals Zero, XB(0) receives the complement of
RS(0).

SM Field (Bits 28 through 30)

The SM field interacts with the LS and RS fields to select
specific register file and/or RAM addresses. The three-bit SM
field specifies a four-bit value that is logically ANDed with the
four-bit constant specified by the LS field to calculate
addresses controlled by LS. The four-bit value specified by the
SM field is also logically ANDed with the four-bit constant
specified by the RS field to calculate addresses controlled by
RS. The value specified by the SM field is either a constant or
a function of the F/SEL register. Table B-14 lists the four-bit
value resulting from each decode of the SM field.

Table B-14 Select Modify (SM) Field Decodes

SM DECODE RESULTING 4-BIT VALUE

0 B'1111' (constant of all 1's)
1 1,F(1-3)

2 1,F(9-11)

3 B'1110'

4 Undefined

5 B'1101"

6 1,SEL(1-3)

7 SEL (0-3)

TC Field (Bits 42 through 47)

The TC field specifies the test condition to be used during
firmware sequencing. Table B-15 lists the test conditons for
each decode of the TC field.

Table B-15 Test Condition (TC) Field Decodes
(Sheet 1 of 3)

TC DECODE CONDITION

00 0 (always false)

01 IFSCISTR

02 IFSIP

03 IFCIP

04 IFHALF

05 IFWORD

06 IFGTWD

07 IFQUAD

08 IFBCND

09 IFEXEC

0A IFLAF

0B IFLOAD

0c IFMIZR

0D IFSHIN1

OE IFSHIN2

OF IFPMUX

10 IFBINUM; IFII when F(1-3) = 0

11 IFCRY - AS(0) =1
IFCRY20 - AS(0) = 0

12 IFWCS

13 IFBI4

14 IFSHIN

15 IF4EQ5

16 IFSHZ - AS(0) =1
IFSHZ20 - AS(0) = 0

B-21

Table B-15 Test Condition (TC) Field Decodes

(Sheet 2 of 3)

TC DECODE CONDITION
17 IFAUZ - AS(0) =1
IFAUZ20 - AS(0) = 0
18 IFCACHE
19 IFRMWF
1A IFLOCK
1B IFTRACE
1C IFIC
1D IFACK
1E IFPRIV
1F IFPARER
20 IFSELEQO
21 Undefined
22 IFNUM7
23 IFXBO
24 IFF4
25 IFF5S
26 IFF6
27 IFF7
28 IFF8
29 IFDSELEQO0 (SEL-=—SEL-1)
2A IFF9
2B IFF11
2C IFSELO
2D IFSEL1
2E IFSL1-3EQ7

)
J

Table B-15 Test Condition (TC) Field Decodes

(Sheet 3 of 3)

TC DECODE CONDITION
2F IFSEL3
30 IFTICK
31 IFYELLOW (YELLOW, TICK-=—0)
32 IFREGAD
33 IFZERO
34 IFSIGN
35 IFMISC
36 IFSEL2
37 IFADRER
38 IFRUP
39 IFRPTR (SIGN=-=—0)
3Aa IFBI12
3B IFOVFL - A3(0) =1
IFALUO - AS(0) =0
3C Undefined
3D Undefined
3E IFQSR (AD = 4, 5)
IFDDLEQO (AD = 0, 1)
3F IFBI19

B-23/B-24

™
C
v

Appendix C

Reserved Word List and Encodings

This appendix contains an alphabetical list of reserved
words, and the values they cause to be encoded into the bits of
the firmware word. The AREA column indicates the area with which
the reserved word is associated and may be interpreted as
follows:

e BI - Internal Bus Area

e BUS - Megabus Interface Area

e CK - Master Clock Area

® FLOPS - Miscellaneous Hardware Area

e PRV - Included to maintain compatibility with a previ-
ous assembler

e PSEUDO - Pseudo op-code

e RALU - Microprocessor Area

e SEQ - Firmware Sequencing Area.

The ENCODING column indicates the fields affected (refer to
Appendix B) and the corresponding hexadecimal values. When mul-
tiple values are specified, they are listed in their order of
preference by the assembler.

WORD AREA ENCODING
AD PRV -
ADD RALU AF =0
ADD1 "RALU AF = 8
ADDI1SE RALU AF = 8; LS(0) =0
ADDL PRV =

WORD AREA ENCODING
ADDR PRV -
ADDSE RALU 6; LS(0) =0
ADFN PRV -
ADFQ PRV -
ADFR PRV -
ADLR PRV -
ADSL PRV -
ADSR PRV -

AF PRV -
AFADD PRV -
AFAND PRV -
AFINC PRV -
AFIOR PRV -
AFJ-1 PRV -
AFJ-K PRV -
AFK-1 PRV -
AFK-J PRV -
AFKNJ PRV -
AFXNR PRV -
AFXOR PRV -
ALU BI 3, 4, 5,
1, 2;
[BI6(0-1) 3; DI =
BI6 = 26, 20; DI(1)
AMIOR PRV -
AMKNJ PRV -
AMXNR PRV -
AMXOR PRV -

c-2

WORD R AREA ENCODING
AND RALU AF = C
ANDC RALU AF = 5 or D
AS PRV -
ASIL PRV -
ASIQ PRV -
ASIZ PRV -
ASLQ PRV -
ASLR PRV -
ASZL PRV -
ASZ0Q PRV -
ASZR PRV -
AWIL PRV -
AWIQ PRV -
AWIZ PRV -
AWLQ PRV -
AWLR PRV -
AWZL PRV -
AWZQ PRV -
AWZR PRV -
AXLP PRV -
AXLQ PRV -
AXLR PRV -
AXXX PRV -
BO RALU, BI Refer to Table C-1
through
B7
BB RALU, BI Refer to Table C-1

WORD AREA ENCODING

BB3 RALU, BI Refer to Table C-1

BBE RALU, BI Refer to Table C-1

BD BI DI = 4, 6; BS = OF, 0D, 0C, OE;
[BI6 = 23 or BI6(0-1) = 3]

BDH BI DI = 4, 6; BS = OF, 0D, 0C, OE;
BI6 = 25

BI RALU AS(1-3) =5, 6, 7; may also
affect setting of AF, depending
on microprocessor function

BI BI -

BI®6 PRV -

BIA PRV -

BIB PRV -

BIH PRV -

BII PRV =

BIL PRV -

BIN PRV =

BIP PRV -

BIR PRV =

BIS PRV -

BITC PRV -

BITS PRV -

BIV PRV -

BIX PRV -

BIzZ PRV -

BM RALU Refer to Table C-1

BM3 RALU Refer to Table C-1

BME RALU Refer to Table C-1

WORD AREA ENCODING

BN RALU Refer to Table C-1

BN3 RALU Refer to Table C-1

BNE RALU Refer to Table C-1

BP BI DI = 4, 6; BS = 1D, 1C;
[BI6 = 23 or BI6(0-1)

BPH BI DI = 4, 6; BS = 1D, 1C;
BI6 = 25

BR PRV -

BS PRV -

BUS BUS -

CALL SEQ-OP-CODE BR =C; TC = 0

SEQ-OPERAND BR(1-3) = 4

CHGLOCK BUS BS = 10, 15; C = 0

CK PRV -

CKHF PRV =

CKHL PRV -

CKVF PRV -

CKVL PRV -

COoPY RALU AF = 3, B, C

CTRO FLOPS Gp = 14, 6, 8, 15, 0A,
BS = 5, 1D, 1C; NA(1)

CTR1 FLOPS Gp = 14, 6, 8, 15, 0A,
BS = 5, 1D, 1C; NA(1)

DO RALU, BI Refer to Table C-1

through

D7

DB RALU, BI Refer to Table C-1

DB3 RALU, BI Refer to Table C-1

DBE RALU, BI Refer to Table C-1

DDLEQO FLOPS AF = F, B

WORD AREA ENCODING

DECR RALU [AS(1-3) = 2, 3, 4; AF = 1], or
[AS(1-3) = 7; AF = 2]

DEFAULT PSEUDO -
DI PRV -
DIA PRV -
DIC PRV -
DIN PRV -
DIPE PRV -
DIPF PRV -
DIR PRV -
DIW PRV -
DL RALU AD = 6
DM RALU, BI Refer to Table C-1
DM3 RALU, BI Refer to Table C-1
DME RALU, BI Refer to Table C-1
DN RALU, BI Refer to Table C-1
DN3 RALU, BI Refer to Table C-1
DNE RALU, BI Refer to Table C-1
DR RALU AD = 4
DRCB PRV -
DRCI PRV -
DRCL PRV -
DSHL PRV -
DSHP PRV -
DSHU PRV -
DSHY PRV -
DSTL PRV -

-

WORD AREA ENCODING
DSTU PRV -
DSTY PRV -
DWHL PRV -
DWHU PRV -
DWWL PRV -
DWWU PRV -

END PSEUDO -

EQU PSEUDO -

F BI Gp = 20, 06, 08

FLOPS FLOPS -

FR8 BI Gp = 22, 03, OB

GOTO SEQ TC = 0; BR = 8

GP PRV -

GP4 PRV -

H BI-SRC DI = 4, 6; BI6 = 2A;
BS(1-2) = 0, 1, 2

BI-DEST Gp = 2C, 01, 2B

HL CK CK(0) =0

HLS8 BI DI = 4, 6; BI6 = 22;
BS(1-2) = 0, 1, 2

I BI-SRC DI = 4, 6; BI6 = 2E;
BS(1-2) =0, 1, 2

BI-DEST BI6 = 31

I-0 BUS BS =12, 17, 16; C =

IACK FLOPS BI6 = 35

IBBI4 FLOPS BI6 = 37

IBNAZ FLOPS BI6 = 36; AS(0) =1

WORD AREA ENCODING

IBNAZ20 FLOPS BI6 = 36; AS(0) = 0;
LS(0) = 0 - refer to Note
ICBI¢4 FLOPS BI6 = 3E
ICBI1O FLOPS : BI6 = 3D
ICQSR FLOPS BI6 = 3C; AD = 4, 5
ICRY FLOPS BI6 = 3F, 3B, 37; AS(0) =
ICRY20 FLOPS BI6 = 3F, 3B, 37; AS(0) =
LS(0) = 1 - refer to Note
IDCO BI DI = 4, 6; BI6 = 29;
through BS(1-2) = 0, 1, 2; NA(3-6)
IDCF where y = 0 through F
IDSO BI DI = 4, 6; BI6 = 21;
through ' BS(1-2) = 0, 1, 2; NA(3-6)
IDSF where y = 0 through F
IF4EQS SEQ TC = 15
IFACK SEQ TC = 1D
IFADRER SEQ TC = 37
IFALUO SEQ TC = 3B; AS(0) = 0;
LS(0) = 1 - refer to Note
IFAUZ SEQ TC = 17; AS(0) =1
IFAUZ20 SEQ TC = 17; AS(0) = 0;
LS(0) =1 - refer to Note
IFBCND SEQ TC = 08
IFBI4 SEQ TC = 13
IFBI12 SEQ TC = 3A
IFBI19 SEQ TC = 3F
IFBINUM SEQ TC = 10
IFCACHE SEQ TC = 18
IFCIP SEQ TC = 03

IFCRY SEQ TC = 11; AS(0) =1

n

WORD AREA ENCODING
IFCRY20 SEQ TC = 11; AS(0) = 0;
LS(0) = 1 - refer to Note

IFDDLEQO | SEQ TC = 3E; AD = 0, 1
IFDSELEQO | SEQ TC = 29

IFEXEC SEQ TC = 09

IFF4 SEQ TC = 24

IFF5 SEQ TC = 25

IFF6 SEQ TC = 26

IFF7 SEQ TC = 27

IFF8 SEQ TC = 28

IFF9 SEQ TC = 2A

IFF11 SEQ TC = 2B

IFGTWD SEQ TC = 06

IFHALF SEQ TC = 04

IFIC SEQ TC = 1C

IFII SEQ TC = 10

IFLAF SEQ TC = 0A

IFLOAD SEQ TC = OB

IFLOCK SEQ T™C = 1A

IFMISC SEQ TC = 35

IFMIZR SEQ TC = 0C

IFNUM7 SEQ TC = 22

IFOVFL SEQ TC = 3B; AS(0) = 1
IFPARER SEQ TC = 1F

IFPMUX SEQ TC = OF

IFPRIV SEQ TC = 1E

IFQSR | SEQ TC = 3E; AD = 4, 5

WORD AREA ENCODING

IFQUAD SEQ TC = 07

IFREGAD SEQ TC = 32

IFRMWF SEQ TC = 19

IFRPTRP SEQ TC = 39

IFRUP SEQ TC = 38

IFSCISTR SEQ TC = 01

IFSELO SEQ TC = 2C

IFSEL1 SEQ TC = 2D

IFSEL2 SEQ TC = 36

IFSEL3 SEQ TC = 2F

IFSELEQO SEQ TC = 20

IFSHIN SEQ TC = 14

IFSHIN1 SEQ TC = 0D

IFSHIN2 SEQ TC = 0E

IFSHZ SEQ TC = 16; AS(0) =1
IFSHZ20 SEQ TC = 16; AS(0) = 0;

LS(0) =1 - refer to Note

IFSIGN SEQ TC = 34

IFSIP SEQ TC = 02

IFSL1-3EQ7 | SEQ TC = 2E ’
IFTICK SEQ TC = 30

IFTRACE SEQ TC = 1B

IFWCS SEQ TC = 12

IFWORD SEQ TC = 05

IFXBO SEQ TC = 23

IFYELLOW SEQ TC = 31

IFZERO SEQ TC = 33

c-10

.-

WORD AREA ENCODING
IGL FLOPS BI6 = 38; AS(0) =1
IGL20 FLOPS BI6 = 39; AS(0) = 0;
LS(0) = 1 - refer to Note
IGLU FLOPS BI6 = 3A
INCP BUS BS = 05
INCR RALU AF = 8
INCY BUS BS = 03, 0D, 14, 16; =0
I04NES FLOPS BI6 = 32
IORC PRV -
IOVFL FLOPS BI16 = 33, 3B, 37
IOWH PRV -
IOWU PRV -
IOWW PRV -
K PRV -
K--0 BI DI = 4, 6; BI6(0-1) = 0, 1;
through BI6 (2-5) =y
K--F where y = 0 through F
BS(1-2) = 0, 1, 2
PRV -
KO0-- BI DI = 4, 6; BI6(0-1) = 0;
BS(1-2) =0, 1, 2
PRV -
KF-- BI DI = 4, 6; BI6(0-1) = 1;
BS(1-2) = 0, 1, 2
PRV -
L4 BI DI = 0; BI6 = 26
LABEL PSEUDO | -
LBRANCH SEQ BR = F; TC = 0
LINK BI GP = 35

WORD AREA ENCODING
LIST PSEUDO -
LOADO FLOPS GP = 3E
LOAD1 FLOPS GP = 3B
LS PRV -
LSAQ PRV -
LSAl PRV -
LSA2 PRV -
LSA3 PRV -
LSA4 PRV -
LSaS5 PRV -
LSA6 PRV -
LSA7 PRV -
LSBO PRV -
LSB1 PRV -
LSB2 PRV -
LSB3 PRV -
LSB4 PRV -
LSB5 PRV -
LSB6 PRV -
LSB7 PRV -
LSBB PRV -
LSBB3 PRV -
LSBN PRV -
LSBX7 PRV -
LSDO PRV -
LSD1 PRV -

C-12

)

WORD AREA ENCODING
LSD2 PRV -
LSD3 PRV -
LSD4 PRV -
LSD5 PRV -
LSD6 PRV -
LSD7 PRV -
LSDB PRV -
LSDB6 PRV -
LSDN PRV -
LSDN6 PRV -
LSDX PRV -
LSDX7 PRV -
LSMO PRV -
LSM1 PRV -
LSM2 PRV -
LSM3 PRV -
LSM4 PRV -
LSM5 PRV -
LSM6 PRV -
LSM7 PRV -
LSMB PRV -
LSMB6 PRV -
LSMN PRV -
LSMN6 PRV -
LSSEL PRV -
LVL BI -

c-13

WORD AREA ENCODING
M1 BI Refer to Table C-2
through
M7
MB BI Refer to Table C-2
MB3 BI Refer to Table C-2
MBE BI Refer to Table C-2
MM BI Refer to Table C-2
MM3 BI Refer to Table C-2
MME BI Refer to Table C-2
MMU BI DI = 4, 6; BI6 = 24; BS = 06
MMURDACC BUS BS = 02; C =0
MMUSELECT BUS BS = 06; C =0
MMUWRACC BUS BS = 07; C =0
MN BI Refer to Table C-2
MN3 BI Refer to Table C-2
MNE BI Refer to Table C-2
MSO FLOPS Gp = 23, 09, 08
MS1 FLOPS GP = 24, 0C, OD
MS4-9EQO FLOPS Gp = 0B
MSACK FLOPS GP = 26
MSCRY FLOPS GP = 25; AS(0) =1
MSCRY20 FLOPS GP = 25; AS(0) = 0;

LS(0) = 1 - refer to Note

MSNBI19 FLOPS GP = 02
MSPROV FLOPS GP = 27
NA PRV -
NATIVE PSEUDO -
NLST PSEUDO -

Cc-14

WORD AREA ENCODING
NO PSEUDO -
NOCACHE BUS BS = 11, 10; C = 0
NOCHEK FLOPS GP = 37; AF = E, 8, A, C
NONPROC FLOPS AF = D
NORMAL BUS BS = 11; C = 1
OR RALU AF = 3, B
P BI-SRC DI = 4, 6; BI6 = 24; BS = 00, 01,
04, 05, 19
BI-DEST BS = 09, OE, 1A
PAGJ PRV -
PANEL BI-SRC DI = 4, 6; BI6 = 25;
BS(1-2) =0, 1
BI-DEST GP = 39
PANEL4 BI GP = 38
PANOK FLOPS GP = 3F
PINC PRV -
PLOD PRV -
PMUX PRV -
PRCI PRV -
PRCP PRV -
PSELECT BUS BS = 00, 04; C = 0
PSHL PRV -
PSHY PRV -
PSTI PRV -
PSTL PRV -
PSTY PRV -
PURG PRV -

WORD AREA ENCODING
PURGE BUS BS = 01; C =0
Q RALU-SRC1,SRC2 | AS(1-3) = 0, 2, 6; may also
affect setting of AF, depending
on microprocessor function
RALU-DEST AD = 0
R8 BI DI = 5; BI6 = 20
RAMO BI Refer to Table C-2
through
RAMF
RAMSEL BI Refer to Table C-2
RDREQ BUS -
RDREQP BUS BS =19, 1A; C =1
REGSEL RALU Refer to Table C-1
RETURN SEQ-OP-CODE BR = 2; TC = 0
SEQ-OPERAND BR = 2, A
RI PRV -
RING BI GP = 33
RINGCALC FLOPS AF = E
RINGINIT FLOPS AF = B
RS PRV -
RSBO PRV -
RSB1 PRV -
RSB2 PRV -
RSB3 PRV -
RSB4 PRV -
RSB5 PRV -
RSB6 PRV -
RSB7 PRV -

C-16

WORD AREA ENCODING
RSBB PRV -
RSBB3 PRV -
RSBN PRV -
RSDO PRV -
RSD1 PRV -
RSD2 PRV -
RSD3 PRV -
RSD4 PRV -
RSD5 PRV -
RSD6 PRV -
RSD7 PRV -
RSDB PRV -
RSDB6 PRV -
RSDN PRV -
RSDN6 PRV -
RSDX PRV -
RSDX7 PRV -
RSSEL PRV -

RUP BI DI = 4, 6; BS(1-2) =0, 1, 2;
[BI6 = 23 or BI6(0-1) = 3]

S BI DI = 4, 6; BI6 = 2F;
BS(1-2) =0, 1, 2

SEL BI Gp = 2A, 2B, 07

SEQUENTIAL | PSEUDO -

SET PRV -

SG1 FLOPS Gp = 13, 03

SGBIO FLOPS GP = 1A

Cc-17

WORD AREA ENCODING
 SGBI4 FLOPS GP = 19, 15, oc, 11, 01, 02
' SGBI19 FLOPS GP = 1B, OE, 0D, OB
SHOO FLOPS GP = 1C, 04, 08
 SHO1 FLOPS GP = 1D, 09
 SH10 FLOPS GP = 1E
SH11 FLOPS GP = 1F, 07
 su11s FLOPS GP = 12
| SH2NSG FLOPS GP = 10, 11
SL RALU AD = 7
SM PRV -
Esmo PRV -
SMD PRV -
sME PRV -
;SMN PRV -

' SMR PRV -
| SMS PRV -
SMX PRV -
SR RALU AD = 5

SUB RALU AF = 9, A

| SUB1 RALU AF =1, 2

rc PRV -
'TITLE PSEUDO -
‘TRAFNZ FLOPS GP = 3D

'UNUSED PSEUDO -
VALIDS FLOPS GP = 37; AF = 9, B, D, F
VL CK CK = 0

C-18

-

WORD AREA ENCODING

WRAP FLOPS GP = 32; AS(0) = 0;
LS(0) = 1 - refer to Note

WRT BUS CK(0) =0

WRTBYTE BUS CK(0) =1

WRTWORD BUS CK(0) =0

X-F PRV =

XO0F PRV -

X0T PRV -

XA SEQ BR = 2, A

XAF PRV -

XAT PRV -

XB SEQ BR = 3, B

XBO FLOPS Gp = 06, 08

XBF PRV -

XBHEX BI DI = 4, 6; BI6 = 2D;
BS(1-2) = 0, 1, 2

XBSR FLOPS Gp = 14, 15, 0a, 05, 04, 09;
AS(0) = 1; AD = 4, 5

XBSRO FLOPS Gp = 14, 15, 0a, 05, 04, 09;
AS(0) = 0; RS(0) = 1;
LS(0) = 1 - refer to Note

XBSR1 FLOPS Gp = 14, 15, 0a, 05, 04, 09
AS(0) = 0; RS(0) = 0;
LS(0) = 1 - refer to Note

XBT PRV -

XE SEQ BR = 6, E

XEF PRV -

XET PRV -

XF SEQ BR =7, F

XFF PRV -

19

WORD AREA ENCODING
XFT PRV -
XL SEQ BR =1, 9
XLO0 SEQ BR =1, 9; NA(O) =0
XL1 SEQ BR =1, 9; NA(O) =1
XLF PRV -
XLT PRV -
XOR RALU AF = 6, E
XORC RALU AF = 7, F
XR SEQ BR = 4, C
XRF PRV -
XRT PRV -
XW SEQ BR =5, D
XWF PRV -
XWT PRV -
Y BI-SRC DI = 4, 6; BI6 = 24;
[BS = 02, 03, 07, 08, 09, 0a, OB,
1A or BS(0-1) = 2]
BI-DEST BS = 08, 04, 06, 0C, 1C
YBAY PRV -
YGJIW PRV ~
YINC PRV -
YLOD PRV -
YMUX PRV -
YOLD PRV -
YR16 BI BS = 0B
YREL PRV -
YRELOC BI BS = 0OA

C-20

N’

WORD AREA ENCODING

YSELECT BUS BS = 02, 08, 09, OA, OB
cC=0 '

pA BI DI = 4, 6; BI6 = 2B;
BS(1-2) = 0, 1, 2

ZERO RALU AS (1-3) = 2, 3, 4, 7; may also
affect setting of AF depending on
microprocessor function

ZRO0 FLOPS GpP = 16, OA

ZR1 FLOPS Gp = 17, 05

ZRAUZ FLOPS Gp = 18, 02, 08; AS(0) =1

ZRAUZ20 FLOPS Gp = 18, 02, 08; AS(0) = 0;
LS(0) = 1 - refer to Note

ZRQLT FLOPS GP = 0OE
NOTE

I1f ADDSE or ADD1SE is the microprocessor function,
then LS(0) = 0

Table C-1 Register File Operand Encodings

@ When a register file location is specified as SRC1 or
SRC2 in the microprocessor area:

1.

2.

e When a register file location is specified as DEST in
the microprocessor area, AD equals 3, 2, 4, 5, 6, or
7; RS and SM are set according to Table C-3.

® When a register file location is specified as the
internal bus source, AD equals 2; LS and SM are set
according to Table C-3, and

1.

2.
3.

AS(1-3) equals 0, 1, 4, or 5; LS and SM are set
according to Table C-3, or

AS(1-3) equals 1 or 3; RS and SM are set according
to Table C-3.

DI equals 1 or 2, or

BI6 equals 26 and DI equals 0 (L4), or

BI6 equals 20 and DI equals 5 (R8).

Cc-21

Table C-2 RAM Location Operand Encodings

LS and SM are set according to Table C-3.

If a RAM location is specified as the internal bus
source, DI equals 7, BI6(0-1) equals 3, and BS(1-2)
equals 0, 1, or 2.

If 2 RAM location is specified as the internal bus
destination, DI equals 6 or 2.

Table C-3 LS/RS and SM Encoding Values (Sheet 1 of 2)

REGISTER RAM
FILE LOCATION LS/RS SM

BO RAMS 4 -
Bl RAM9Y 5 5
B2 RAMA 5 3
B3 RAMB 5 0
B4 RAMC 6 5
B5 RAMD 7 5
B6 RAME 6 0 or 3
B7 RAMF 7 0
BB - 7 6
BB3 - 5 6
BBE - 6 6
BM - 7 2
BM3 - 5 2
BME - 6 2
BN - 7 1
BN3 - 5 1
BNE - 6 1
DO RAMO 0 -
D1 RAM1, M1 1 5
D2 RAM2, M2 1 3
D3 RAM3, M3 1 0
D4 RAM4, M4 2 5
D5 RAM5, M5 3 5
D6 RAM6, M6 2 0 or 3
D7 RAM7, M7 3 0
DB MB 3 6
DB3 MB3 1 6
DBE MBE 2 6
DM MM 3 2
DM3 MM3 1 2
DME MME 2 2
DN MN 3 1
DN3 MN3 1 1
DNE MNE 2 1
REGSEL RAMSEL 7 7

-

Appendix D

Summary of Restrictions

This appendix provides a list of firmware coding restrictions
for each CPU area. For a number of these restrictions, viola-
tions will result in an "E29 VALUE ASSIGNMENT CONFLICT" diagnos-
tic message. An asterisk (*) specifies that the assembler might
not diagnose violations of the indicated restriction (i.e.,
restrictions that depend on the step just previously executed, or
that include operands which imply other operands).

Microprocessor Area

1. 1If SRC1l, SRC2, and DEST all specify register file loca-
tions, then DEST must be the same as either SRC1l or SRC2.

2. If two register file mnemonics are used among SRC1l, SRC2,
and DEST, then both mnemonics must be from the same
group, as shown in Table D-1.

3. If SRC1 or SRC2 is a "restricted selection" register file
operand (refer to Table D-2) and a FLOPS operand or firm-
ware sequencing condition forces AUZ, CRY, and OVFL to
detect on 20 bits (refer to Table D-5), the restricted
selection operand must be a B register or REGSEL. This
restriction does not apply if ADDSE or ADDI1SE 1s

specified.

4, If a shift modifier (SL, DL, SR, or DR) 1is specified,
DEST must specify a register file location.

*5. If a register file operand is specified as a function of
fields in the F/SEL instruction registers, and the firm-
ware step just previously executed altered the contents
of SEL, those operands that depend on SEL will use 1its
previous contents (i.e., the contents before SEL was
altered at the end of the firmware step just previously
executed).

6. The following microprocessor functions have special
restrictions on their operands.

FUNCTION SRC1 SRC2 DEST

ADDSE RF or Q only| D register only | If DEST and SRCl "

ADD1SE Q only D register only

ANDC

both RF, DEST
must = SRC1.

Not BI Not Q If SRC1l, SRC2, and
If SRCl1 = ZERO, DEST all RF, DEST
SRC2 must be BI.| must = SRCl.

DECR Not ZERO : - -
INCR Not ZERO - -
Definition
RF = Register file location.
7. SRC1 and SRC2 must not both be ZERO, nor both Q, nor both

BI.

Internal Bus Area

l.

When a register file location is specified as the inter-
nal bus source, there are restrictions on the micropro-
cessor area microinstruction, 1if specified. DEST must be
a register file location from the same group, as shown in
Table D-1. No shift modifier may be specified. 1If a
"restricted selection" register file operand (refer to
Table D-2) 1is present, the internal bus source must be
the same operand.

A SRCMOD operand (R8 or L4) may be specified only when
the source is from the microprocessor area.

If a RAM location 1s specified as an internal bus source
or destination, the following restrictions apply:

¢ A RAM location may not be an internal bus source and
destination simultaneously.

e If any register file operand is specified in the

microprocessor microinstruction, the RAM location must
come from the same group, as shown in Table D-1.

e If a "restricted selection" register file operand
(refer to Table D-2) is present in the microprocessor
microinstruction or a register file location is speci-
fied as the internal bus source, the RAM location must
"correspond" to the register file operand as shown in
Table D-3. ' - -

*7.

*8.

*9.

"I" may not be an internal bus destination if any of the
following is the internal bus source:

BDH

BPH

H

HL8

I

LVL

MMU

P

PANEL

S

XBHEX

Y

2

Constant category
Microprocessor source with SRCMOD operand.

When a constant of the form xxyz#, IDCy, or IDSy is

specified as the internal bus source, there are restric-
tions on the firmware sequencing microinstruction. The

- second least significant hexadecimal digit of all address

value operands (bits 3 through 6 of an 11 bit value) must
equal y. In the Transparent mode, if no firmware
sequencing microinstruction is specified, the second
least significant hexadecimal digit of *+1 must equal y.

FLOPS operands in the GP or CTR categories, NOCHEK, and
VALID8 may not be specified if any operand from the other
internal bus destinations category is used, except as
noted in Table D-4 and under Miscellaneous Hardware Area,
Item 5.

If BD, BP, or RUP is the internal bus source, and I is an
internal bus destination or a FLOPS operand from the
indicator register (I) category is specified, bits 0
through 3 of the internal bus are undefined.

If a register file or RAM location is specified as a
function of fields in the F/SEL instruction registers and
the firmware step just previously executed altered the
contents of SEL, those operands that depend on SEL will
use its previous contents (i.e., the contents before SEL
was altered at the end of the firmware step just previ-
ously executed).

Use of BP or BPH as an internal bus source automatically
causes P to be incremented.

Megabus Interface Area

1.

A Megabus interface area microinstruction may not be
specified 1f BD, BDH, BP, BPH, MMU, P, RUP, or Y is the
internal bus source or if P, ¥, YR16, or YRELOC is an
internal bus destination, except as follows:

MICROINSTRUCTION

PERMISSIBLE

BI SOURCES PERMISSIBLE BI DESTINATIONS

BUS INCP

BUS INCY

BUS MMURDACC
BUS MMUSELECT
BUS MMUWRACC
BUS PSELECT
BUS PURGE

BUS YSELECT
RDREQ NORMAL
RDREQ CHGLOCK
RDREQ I-O
RDREQ NOCACHE
RDREQP .

WRT CHGLOCK
WRT I-O

WRT I-O, INCY
WRT INCY

WRTBYTE CHGLOCK

WRTBYTE I-O
WRTBYTE I-O,
WRTBYTE INCY

WRTWORD CHGLOCK

WRTWORD I-0O
WRTWORD I-0,
WRTWORD INCY

P

BD, BDH, Y
Y
MMU

}<0<P<0<'<'U sl o4

KRR KK KRGS

*Implies Y as BI destination

Y

P, Y, YR16, YRELOC

P (requires Y as source)

2.

3.

*4.

An internal bus source must be specified in any step 1n
which a WRT, WRTBYTE, or WRTWORD is specified.

The ALU result may not be the internal bus source 1in the
same step in which a WRT, WRTBYTE, or WRTWORD 1is
specified.

BUS PURGE must be specified in some step prior to one
which includes both RDREQP and BI, Y, P.

Mjiscellaneous Hardware Area

l‘

If a FLOPS operand from the indicator register (I) cate-
gory is used, the following internal bus sources may not
be specified. :

e BDH
e BPH

*2.

*3.

*5.

*8.

H

HL8

I

LVL

MMU

P

PANEL

S

XBHEX

Y

Z

Constant Category
Microprocessor source with SRCMOD operand.

At most one FLOPS operand from the following group may be
specified in a single step: CTRU, CTR1l, NOCHEK, VALIDS,

or GP category (except as noted in Table D-4 and in Item

5 below).

FLOPS operands from the GP category and internal bus

destinations from the "other destinations" category may
only be combined as shown in Table D-4.

FLOPS operands or firmware sequencing conditions which
force microprocessor signals, AUZ, CRY, and OVFL to
detect on 16 bits may not be specified simultaneously
with FLOPS operands or firmware sequencing conditions
which force AUZ, CRY, and OVFL to detect on 20 bits
(refer to Table D-5).

CTRO and CTR1l imply XBSR unless XB0O, XBSRO, or XBSRl is
specified. P is incremented when these operands are

used. CTRO restricts bit 1 (assuming ll-bit values) of
firmware sequencing address value operands to 0 and CTR1

restricts bit 1 to 1.

ICQSR or XBSR may be specified only when a right shift
(SR or DR) 1is specified in the microprocessor micro-
instruction.

Use of XBSRO requires any register file microprocessor

operand that is not a "restricted selection" (refer to
Table D-1) to be a B register. Use of XBSR]l requires any

register file operand that is not a restricted selection
to be a D register.

Operands in the MMU category imply other firmware func-
tions as follows:

OTHER FUNCTIONS WHICH OVERRIDE
OPERAND IMPLIED FUNCTION IMPLIED FUNCTION
DDLEQO XORC
NOCHEK RINGCALC INCR, ADD1l, AND, SUB
NONPROC ANDC
RINGCALC XOR
RINGINIT OR COPY
VALIDS SUB DDLEQO, NONPROC, RINGINIT

Firmware Sequencing Area

l‘

When a constant of the form xxyz#, IDCy, or IDSy is
specified as the internal bus source, there are restric-
tions on the firmware sequencing microinstruction. The
second least significant hexadecimal digit of all address
value operands (bits 3 through 6 of an 1ll-bit value) must
equal y. In the Transparent mode, if no firmware
sequencing microinstruction is specified, the second
least significant hexadecimal digit of *+1 must equal y.

FLOPS operand CTRO restricts bit 1 (assuming 1l1l-bit
values) of address value operands to 0, and CTR1
restricts bit 1 to 1.

If both operands of a condition specify address values
(legal in Transparent mode only). one operand must equal
the other operand ORed with 3.

Firmware sequencing conditions or FLOPS operands which
force microprocessor signals AUZ, CRY, and OVFL to detect
on 16 bits may not be specified simultaneously with con-
ditions or FLOPS operands which force AUZ, CRY, and OVFL
to detect on 20 bits (refer to Table D-5).

When XLO is used as an operand of a condition, bit 0
(assuming 1l-bit values) of the other operand must be 0.
When XL1 is used, bit 0 must be 1.

IFQSR may be used only when a right shift (SR or DR) 1is
specified in the microprocessor microinstruction.

IFDDLEQO may be used only when DEST in the microprocessor
area microinstruction is Q or null.

XA, XB, XE, XF, XR, or XW may not be specified simulta-
neously with F or FR8 as an internal bus destination.

At most, one of the following group may be an operand of
a Transparent mode condition: XA, XB, XE, XF, XL, XLO,
XL1l, XR, or Xw.

Table D-1 Register File/RAM Locations Legal Groups

po, o3, b6, D7, BO, B3, B6, B7, M3, M6, M7, RAMO,
RAM3, RAM6, RAM7, RAM8, RAMB, RAME, RAMF.

po, n1, o4, D5, BO, Bl, B4, B5, M1, M4, M5, RAMO,
RAM1, RAM4, RAM5, RAM8, RAM9, RAMC, RAMD.

po, n2, 6, BO, B2, Bo, M2, M6, RAMO, RAM2, RAMS6,
RAM8, RAMA, RAME.

D0, DN, DN3, DNE, BO, BN, BN3, BNE, MN, MN3, MNE,
RAMO, RAMS.

po, bB, DB3, DBE, BO, BB, BB3, BBE, MB, MB3, MBE,
RAMO, RAMS.

D0, pB, DB3, DBE, REGSEL, MB, MB3, MBE, RAMO, RAMSEL.

D0, DM, DM3, DME, BU, BM, BM3, BME, MM, MM3, MME,
RAMO, RAMS.

Table D-2 Register File "Restricted Selection" Criteria

A Register file operand which is microprocessor SRC1l or
SRC2 or internal bus SRC is a "restricted selection"
operand 1if:

It is the internal bus source
It is SRC2 for the functions ANDC, ADDSE, or ADDISE

The microprocessor DEST is a different register file
operand

The other microprocessor source is Q
The other microprocessor source 1is BI

The other microprocessor source is another register
file operand which does not satisfy the restriction(s)
(1.e., 1f SRC1 and SRC2 are both register file
operands, one must be a "restricted selection”
operand) .

Table D-4

Table D-3 Register File/RAM Location
Operand Correspondence

REGISTER FILE CORRESPONDING RAM
OPERAND LOCATION OPERAND
DO RAMO
D1-D7 RAM1-RAM7 or M1-M7
B0-B7 RAM8-RAMF
REGSEL RAMSEL
DB MB
DB3 MB3
DBE MBE
DM MM
DM3 MM3
DME MME
DN MN
DN3 MN3
DNE MNE

Permissible GP Combinations (Sheet 1 of 2)

s

DESTINATION (S) OF INTERNAL BUS

GP CATEGORY OPERANDS

PANEL
PANEL4
LVL
RING
LINK
H,SEL
H

SEL
FR3
FR8

F

F

F
None of the above

None of the above

None

None

None

None

None

None

SGBI4

SH11

5Gl1

SGBI1Y, MS4-9EQU

XBO

XB0O, MSO, SHO0O0, ZRAUZ
XB0, MSO, SHOU, ZRAUZ20
SGB14, MSNBI1l9, ZRAUZ

SGBI4, MSNBI1l9, ZRAUZ2U

)

Table D-4

Permissible GP Combinations (Sheet 2 of 2)

DESTINATION (S)

OF INTERNAL BUS

GP CATEGORY OPERANDS

None of
None of
None of
None of
None of
None of
None of
None of
None of
None of
None of
None of
None of
None of
None of
None of
None of
None of
None of

None of

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

the

above
above
above
above
above
above
above
above
above
above
above
above
above
above
above
above
above
above
above

above

SGBI4, SH2NSG
SGBI4, MS1
SGBI19, MS1
SGBI1Y9, ZRQLT
SGBI4, XBSR
SGBI4, XBSRO
SGBI4, XBSR1
ZR0O, XBSR
ZR0, XBSRO
ZR0, XBSR1
ZR1, XBSR
ZR1l, XBSRO
ZR1, XBSR1l
SHO0O, XBSR
SH00, XBSRO
SHOO, XBSR1
SH10, XBSR
SH10, XBSRO

SH10, XBSR1

Any single GP-category operand,

except ZRQLT, XBO,

MS4-9EQO

MSNBI19,

or

Table D-5 Operands Affecting AUZ, CRY, and OVFL

OPERAND TYPE

FORCE
16-BIT DETECT

FORCE
20-BIT DETECT

FLOPS Operands

Conditions

IBNAZ
ICRY

MSCRY
XBSR

ZRAUZ
IFAUZ

IFCRY

IFOVFL
IFSHZ

IBNAZ20
ICRY20
IGL20
MSCRY20
WRAP
XBSRO
XBSR1
ZRAUZ20

IFAUZ20
IFCRY 20
IFALUO
IFSHZ20

-

Appendix E

Instruction Register Maps

The maps supplied in this appendix represent the decoding
patterns available to the microprogrammer via the firmware se-
guencing conditions and reserved operands. The patterns were
selected to facilitate interpretation of the native instruction
set; their utility for user firmware will depend on the similar-
ity of structure between the user-defined instructions and those
of the native set.

The first group of maps (see Tables E-1 through E-5) define
the "splatter" branches available in the Transparent mode. Each
splatter, when it 1s used, generates a specific 1lU-bit address as
a function of the instruction register content (and a few other
bits of context). Thé most significant bit and the least signif-
icant bit of each such address are always zero. The 10-bit ad-,
dress is relative to the 1K bank of the firmwware which contains
the alternate next address. Thus, for example, if register F;‘
contained 888#%#, the code: - o

IFF5 ~ ABC#,XW
would transfer control to location 964#%.

In the native firmware, the five splatter branches function
as follows:

XA - decode the Address syllable of those 1nstructions that
use one, and the op-code of others. Column XA of Table
E-1 represents either the generated 1lU-bit address, or a
note directing the reader to a subsequent table for
further information. XA normally is used with SIGN = 0.

XB - decode the address syllable of data descriptors in com-
mercial (Business) instructions. Column XB of Table E-1

represents either the generated 10-bit address or a note
directing the reader to a subsequent table for further

information. XB normally is used with SIGN = 1.

XE - decode the op-code of most single-operand and double- ¢ Tm
operand instructions for Execution. Column XE of Table e
E-1 represents the generated 10-bit address (modifiers
L and M are defined in the notes.

XR - classify the op-code/address syllable as to operand
type, and Read the operand, after completing any indi-
rect addressing and indexing actions necessary. Table
E-2 defines, as a function of address syllable type,
which column of Table E-1 represents the generated 10-
bit address (the control flop NEWXR helps distinguish
between reentrant XR references).

XW - classify the op-code/address-syllable as to operand
type, and Write the result accordingly. Table E-3
defines, as a function of address syllable type, which
column of Table E-1 represents the generated 10 bit
address.

Table E-6 defines four testable "conditions" which (in the
native firmware) categorize instructions as to data field size:
bit, halfword, word, double-word, or quadruple-word (the only
native quadruple-word operands are scientific data, which depend
on the values of bits 2, 4, and 6 of register M4). Also shown in
the last column of Table E-6 is the set of instructions for which
the "memory lock" (CHGLOCK) functionality is invoked.

Table E-1 Main Splatter Map (Sheet 1 of 2)
Table E-1 Main Splatter Map
F REGISTER BITS
0-3 [4-7 | 8-11 XA XB XE XR1 XR2 | XR3 | XR4 XW1 XW2
0 0 0-F note AG |note BG 018 1Aa8 1AE | 1A0 | 1A4 160 160
0 1 0-F 1E0 1co 018 1A8 1AE | 1A0 | 1A4 160 160
0 2-B | 0-F note AIO |note BIO | 018 1A8 1AE | 1A0 | 1A4 160 160
0 C-E | O-F 1EQ 1Co 018 la8 1AE | 1A0 | 1A4 160 160
0 F 0-F note AIO |note BIO | 018 1a8 1AE | 1A0 | 1A4 160 160
1-7 0 0-F note AH note BH 018 1A8 1AE | 1A0 | 1A4 160 160
1-7 |1-2 | u-F 1E0 1Co 018 1a8 1AE | 1A0 | 1A4 160 160
1-7 | 3-6 | O-F note AI3 |note BI1l | 018 1A8 1AE | 1A0 | 1A4 160 160
1-7 7 0-F note AIl |note BI1 | 018 1a8 1AE | 1A0 | 1A4 le60 160
1-7 | 8-B | 0-F note AI2 |note BIl | 018 1a8 1AE | 1A0 | 1A4 160 160
1-7 C 0-7 180 1co 03¢ 1A8 1A2 | 1A0 | 1A4 160 160
1-7 C 8-F 1A0 1C0 03C 1AB 1a2 | 1A0 | 1A4 160 160
1-7 D {0-7 180 1co l1¢ 1A8 1A2 | 1A0 | 1A4 160 160
1-7 D 8-F 1A0 1C0 11C 1a8 1A2 | 1A0 | 1A4 160 160
1-7 E 0-7 180 1co 0BA 1a8 1A2 | 1A0 | 1A4 164 l6C
1-7 E 8-F 1A0 1co 0BA 1A8 1A2 | 1A0 | 1A4 164 16C
1-7 F |0-7 180 1co OFA 1A8 1A2 { 1A0 | 1A4 164 16C
1-7 F | 8-F 1A0 1C0 OFa 1A8 1A2 | 1A0 | 1A4 164 16C
8 0 {0-7 note AS1 |note BS1 {194 1a8 1B4 | 1A0 | 1A4 164 16C
8 0 8-F note ASO | note BSO | 038 1A8 1A2 | 1A0 | 1A4 164 16C
8 1 0-7 note AS1 |[note BS1 | 194 |1A8+2M | 1B4 | 1A0 | 1A4 | 164+42M | 16C+2M
8 1 8-F note ASO | note BSO | 194 |1A8+2M | 1B4 | 1A0 | 1A4 | 164+2M | 16C+2M
8 2 0-7 note AS1 |note BS1 | 19A 1A8 1A2 | 1A0 | 1A4 164 16C
8 2 8-F note ASO | note BSO | 13C 1aA 1A2 | 1A0 | 1A4 l64 16C
8 3 0-7 note ASO |note BSO | 038 1A8 1A2 | 1A0 | 1A4 164 16C
8 3 8-F note AS3 |note BS3 | 058 1A8 1BO | 1A0 | 1A4 160 160
8 4 0-7 note ASO |[note BSO | 156 1a6 1A2 | 1A0 | 1A4 168 16A
8 4 8-F note ASO |note BSO | 196 1A6 1A2 | 1A0 | 1A4 168 16A
8 5 -7 note ASO |note BSO | 038 1a8 1A2 | 1A0 | 1A4 164 16C
8 5 8-F note ASO |note BSO | 038 1a8 1A2 | 1A0 | 1A4 164 16C
8 6 16-7 note AS]l |note BS1 | 05A 1A8 1A2 | 1A0 | 1A4 164 16C
8 6 B-F note ASO | note BSO | 038 1A8 1A2 { 1A0 | 1A4 164 16C
8 7 -7 note AS1l |note BS1 | UBE 1a8 1B6 | 1A0 | 1A4 164 l16C
8 7 8-F note AS1l | note BS1 | OBE 1AA 1B6 | 1A0 | 1A4 166 16E
8 8 0-7 note AS1l |note BS1 |19C 1AA 1B8 | 1A0 | 1A4 164 16C
8 8 8-F note AS1l | note BS1 | 17A 1A8 1B8 | 1A0 | 1A4 164 16C
8 9 0-F note AS1l |note BS1 |17C 1AA 1B8 | 1A0 | 1A4 164 16C
8 9 B-F note ASO | note BSO | 0D8 1A8 1A2 | 1A0 | 1A4 164 16C
8 A 0-7 note AS1 |note BS1 |15C 1AA 1B8 | 1A0 | 1A4 164 l6C
8 A 8-F note AS1l |note BS1 | 15A 1a8 1B8 | 1A0 | 1A4 164 16C
8 B 0-7 note AS1l |note BS1 | 1BC 1AA 1B8 | 1A0 | 1A4 164 l6C
8 B 8-F note AS3 |note BS3 | 058 1Aa8 1BO | 1A0 | 1A4 160 160
8 C 0-7 note AS] |note BS1 | OFE 1A8 1B6 | 1A0 | 1A4 164 l6C
8 C 8-F note ASO |note BSO | 176 1A6 1A2 | 1A0 | 1A4 168 16A
8 D 6-7 note AS1 {note BS1 {17E 1A6 1B6 | 1A0 | 1A4 164 16C
8 D 8-F note AS2 | note BS2 | UD6 |1AB8-2L | 1A2 | 1A0 | 1A4 | 164+4L 16A
8 E 0-7 note ASO |note BSO | 133 1A8 1A2 | 1A0 | 1A4 164 16C
8 E 8-F note AS1 | note BS1 | 03A 1A8 1A2 | 1A0 | 1A4 164 16C
8 F 0-7 note ASO |note BSO | OSE 1a8 1B6 | 1A0 | 1A4 164 16C
-8 F 8-F note ASO |note BSO | 05F 1A8 1B6 | 1A0 | 1A4 164 16C
9-F 0 0-7 note ASO |note BSO {1183 1a8 1A2 | 1A0 | 1A4 164 16C
9-F 0 8-F note ASO |note BSO [03C | laa 1A2 | 1A0 | 1A4 164 16C
9-F 1 0-7 note ASO |note BSU | 038. [1A8 1A2 | 1A0 | 1R4 lo4 16C
9-F 1 8-F note ASO | note BSO {11C | 1AA 1A2 | 1A0 | 1A4 164 16C
9-F 2 0-7 note ASO |note BSO | ODA | 1A8 1A2 [1A0 | 1A4 164 16C
9-F 2 8-F note ASO | note BSO | 05C 1AA 1A2 | 1A0 | 1A4 164 16C
9-F 3 0-7 note ASO |note BSO | 11lA 1a8 1A2 | 1A0 | 1A4 164 l6C
9-F 3 B-F note AS3 | note BS3 | 058 1a8 1AE | 1A0 | 1A4 160 160
9-F 4 0-7 note ASO |[note BSO | 0BC 1A8 1A2 | 1A0 | 174 160 160
9-F 4 8-F note ASO | note BSO | OBC 1AA 1A2 | 1A0 | 1A4 164 16C
9-F S 0-7 note ASO | note BSO | 0DC 1a8 1A2 | 1A0 | 1A4 160 160
9-F S 8-F note ASO | note BSO | ODC 1AA 1A2 [1A0 | 1A4 164 16C
9-F 6 0-7 note ASO |note BSO | 0EC 1A8 1A2 | 1A0 | 1A4 160 160
S-F | € 8-F note ASO | note BSO‘| OEC | 1AA 1A2 | 1A0 | 1A4 164 16C
9-F 7 0-7 note AS] |note BS1 |11E | 1AS8 1B6 | 1A0 | 1A4 l64 l6C
9-F 7 8-F note AS1 | note BS1 | ODE 1AA 1B6 | 1A0 | 1A4 166 16E
9-F 8 0-7 note ASO |note BSO | 03C: | 1A8 1A2 | 1A0 | 1A4 160 160
9-F 8 8-F note ASO | note BSO:| 15E 1A6 1B6 | 1A0 | 1A4 164 16C
9-F 9 |0-7 note ASO |note BSO!|11C | 1A8 1A2 | 1A0 | 1A4 160 160
9-F 9 8-F note ASO | note BSO:| 15E 1A6 1B6 | 1AU | 1A4 164 16C
9-F | A 0-7 note ASO |note BSO:| O0BA 1A8 1A2 | 1A0 | 1A4 le4 16C
9-F | A 8-F note AS1 | note BSl | OF8 1A8 1A2 | 1A0 | 1A4 164 16C
9-F | B | 0-7 note ASO |note BSO: | OFA | 1lA8 1A2 | 1A0 | 1A4 164 16C
9-F | B 8-F note AS3 | note BS3:| 058 ‘| 1A8 1B2 | 1A0 | 1A4 160 160
9-F | C 0-7 note ASO |note BSO | 15E:| 1lA6 1B6 | 1A0 | 1A4 164 16C
9-F | C | 8-F note AS2 |note BS2/| 036 |1AB-2L | 1A2 | 1A0 | 1A4 | 164+4L | 16A
9-F D 0-7 note ASO |note BSO | 1BE.| 1lA6 1B6 | 1A0 | 1A4 164 16C
9-F | D 8-F note AS2 |note BS2 | 116 {1AB8-2L | 1A2 | 1A0 | 1A4 | 164+4L 16A
9-F E 0-7 note AS1 |note BS1/'|018-| 1A8 1A2 | 1A0 | 1A4 164 l6C
9-F E | 8-F note AS3 | note BS3/| 016 ‘| 1A8-2L | 1A2 | 1A0 | 1A4 | 164+4L 16A
9-F F 0-7 note AS1 | note BSl | ODE -| 1lAE 1B6 | 1A0 | 1A4 164 l6C
9-F | F | 8-F note AS3 |note BS3 | 136 |1A8-2L | 1B6 | 1A0 { 1A4 | 164+4L | 16A

Table E-1 Main Splatter Map (Sheet 2 of 2)

where:
L =1 if LAF; otherwise, L = 0
M =1 if MISC V ZERO; otherwise, M = 0

NOTES

AG - refer to Table E-4, variation XAG
AH - refer to Table E-4, variation XAH
AIOQO - refer to Table variation XAI, column 0
AII - refer to Table variation XAI, column 1
AI2 - refer to Table variation XAI. column 2
AI3 - refer to Table variation XAI, column 3

mmmr:ammmm
N

ASO - refer to Table variation XAS, R=0, Z=0
AS]1 - refer to Table E- variation XAS, R=0, ZI=1
AS2 - refer to Table E- variation XAS, R=1, Z=0
AS3 - refer to Table variation XAS, R=1l, Z=1

. W W W W N W ow

BG - refer to Table E- 5, variation XBG
BH - refer to Table E-5, variation XBH
BI0O - refer to Table variation XBI, column 0
BI1l - refer to Table variation XBI, column 1
BSO - refer to Table variation XBS, R=0, Z=0
BS1 - refer to Table variation XBS, R=0, Z=1

mmmMmmm
[} [|

. wm e e W o«

5
5
5
-5
5
5

BS2 - refer to Table variation XBS, R=1, Z=0
BS3 - refer to Table variation XBS, R=1l, Z=1
Table E-2 Key to XR

(9-11)
SEL 0 1-3 4 5 6 7
0 XR2 | XR1 | XR2 | XR2 | XR2 | XR2
1-7 XR2 | XR1 | XR2 | XR3 | XR2 | XR2
8 XR4 | XR4 | XR4 | XR2 | XR2 | XR2
9-B XR4 | XR4 | XR4 | XR1 | XR1 | XR1
C XR4 | XR4 | XR4 | XR4 | XR4 | XR4
D-F XR4 | XR4 | XR4 | XR1 | XR1 | XR1

NOTE

If XRNEW = 0, use XR2 instead of XRl.

Table E-3 Key to XW

F(9-11)
SEL 0-4 5 6-7

0 XWl | XWl | xwl
1-7 XW1 [XW2 | XwWl |
8 XW1 | XWl | xwl
9-F XW1l | XW2 | XWl

Table E-4 XA Variations (Sheet 1 of 2)
(8-11)
SEL 0 1 2 3 4-5 6 7 8-F
0 1E2 | 1FC | 1F2 | 1F0O | 1EO | 1FE | 1EQ | 1COL
1 1E4 | 1FE | 1F0 | 1FO | 1EO | 1FE | 1EO | 1CO
2 1E6 | 1EA | 1EC | 1FO | 1EO | 1FE | 1EO0 | 1CO
3 1E8 | 1EA | 1F2 | 1FO | 1EO | 1FE | 1EO | 1CO
4 1EA | 1E0 | 1F2 | 1FO | 1EO0 | 1EO | 1EO | 1CO
5 1EA | 1EO | 1FO | 1FO | 1EO j 1EO | 1EO | 1CO
6 1EA | 1E0 | 1F2 {1EC | 1EO | 1EO | 1EO | 1CO
7 1EA | 1EO | 1FO | 1EC | 1EO | 1EO | 1EO | 1CO
8 1EE | 1E0 | 1F2 | 1EC | 1EO | 1EO | 1EQO | 1CU
9 1E0O | 1E0 | 1FO | 1F4 | 1E0 | 1EO | 1EO | 1CUO
v A 1F8 | 1E0 | 1F0 { 1F2 | 1E0 | 1EO | 1EO | 1CO
B 1FA | 1E0 | 1F4 | 1F2 | 1EO [1EO | 1EO | 1CO
C 1FC { 1E0O | 1F0 | 1F2 | 1E0 | 1EO | 1EO | 1CO
D 1FE | 1E0 | 1FO | 1F2 | 1EO | 1EO | 1EO | 1CUO
E 1E0 {1EO | 1F6 | 1F6 | 1EO | 1EO | 1EQ | 1CO
F 1E0 | 1EO | 1EC | 1F6 | 1EO | 1EO | 1EO | 1CO
VARIATION XAG (SIGN = 0)
F(8-11)
SEL 0 1-3 4 5-6 7 8 9-B C D-E F
0 1E8 | 1E8 | 1E8 | 1E8 | 1E8 | 1C8 | 1C8 | 1C8 | 1C8 | 1C3
1-7 1F8 | 1FA | 1FA | 1FA | 1FA | 1D8 | 1DA | 1DA | 1DA | 1DA
8 1E2 | 1E4 | 1E2 | 1E8 | 1EC | 1C2 | 1C4 | 1C2 | 1C8 | 1CC
S-F 1F8 | 1FA | 1FA | 1FA | 1FA | 1D8 |{ 1DA | 1DA | 1DA | 1DA
VARIATION XAG (SIGN = 1)
F(8-11)| 0 1 2 3 4 5 1 6 7 8 9 A B c D E F
XAH | OAO | 0A2 | 0A4 | 0AG | OAS | OAA | OAC | OAE | 0CO| 0C2 | 0C4 | 0C6 | OC8 | OCA | OCC | OCE
VARIATION XAH
Column
F(9-11),SE 0 1 2 3
00 OE4 | 120 | 140 | 160
01 OE2 | 120 | 140 | 160
02-3F OE0 | 122 | 142 | 162
40-7F OE6 | 122 | 142 | 162

VARIATION XAI

Table E-4

XA Variations (Sheet 2 of 2)

F(9-11)
SEL 0 1-3 4 5 6 7
0 090 | 092 | 084 | O9E 09E | 094+22Z
1-7 080 | 082 | 086 | 098+2R | 088 | 08A
8 090 | 092 | 084 | O9E 09E | 084
9-B 080 | 082 | 086 | 08C 08C | 08C
C 080 | 082 | 086 | O9E 09E | OSE
D-F 080 | 82 | 086 | O8BE U8BE | UBE
VARIATION XAS
Table E-5 XB Variations (Sheet 1 of 2)
(8-11)
SEL 0 1 2 3 4-5 6 7 8-F
0 1C2 | 1pCc | 1D2 {1DO | 1CO | 1DE | 1CO | 1CO
1 1C4 | 1DE | 1D0O | 1DO | 1CO |1DE | 1CO | 1cCO
2 1c6 | 1ca | 1cC {1D0O | 1CO |1DE | 1CO | 1CO
3 1C8 | 1cA | 1D2 | 1DO | 1CO |1DE | 1CUL | 1CO
4 1CA | 1C0 | 1p2 | 1DO | 1CO |1CO | 1Cu | 1cCU
5 1ca | 1CO0 | 1Dp0 |1DO | 1CO |j1CO [1cCcO | 1co
6 1ca | 1C0 | 1D2 |1CC | 1CO |1cCO [1CcO | 1cCO
7 1ca [1CO | 1D0O |1CcC | 1CO |1co {1cO |1coO
8 1CE | 1C0 | 1D2 {1CC | 1CO |1CO |1CO | 1cCoO
9 1C0 | 1Cc0 | 1DO |{1D4 | 1CO |1CO |1CO | 1cO
A 1p8 | 1c0 {1D0O | 1D2 | 1CO |1CO | 1CO | 1cCO
B 1pA | 1CO | 1D4 | 1D2 | 1CO |1CO |1CO | 1cu
C 1DpC | 1C0 |1DO | 1D2 | 1CO |1CO | 1CO | 1cO
D 1DE | 1C0 | 1DO |1D2 { 1CO |1CO |[1CO | 1coO
E 1C0 | 1c0 | 1D6 |1D6 | 1CO | 1CO |1CO | 1cCO
F 1C0 { 1c0o {1CcC | 1D6 | 1CO {1CO J1CcO | 1cCO
VARIATION XBG (SIGN 0)
F(8-11)
SEL 0 1-3 4 5-6 7 8 9-B | C D-E F
0 1C8 | 1c8 | 1c8 | 1C8 |1c8 | 1c8 | 1C38 j1C8 | 1C8 | 1C8
1-7 1Dp8 | 1DpA | 1DA | 1DA |1DA | 1D8 | 1DA | 1DA | 1DA | 1DA
8 1C2 | 1C4 |1c2 | 1c8 |1lcCc | 1Cc2 | 1Cc4 |1C2 | 1c8 | 1cCC
9-F 1D8 | 1DA | 1DA | 1DA | 1DA | 1D8 | 1DA | 1DA | 1DA | 1DA
VARIATION XBG (SIGN 1)

E-6

\v ~

Table E-5 XB Variations (Sheet 2 of 2)

F(8-11) | 0 1 2 3 4 5 6 7 8 9 A B c D E F
XBH 1C0 | 1c2 [1c4 | 1ce [1c8 | 1ca | 1cc |1cE | 1co |1c2 | 1ca | 1ce | 1c8 | 1cA | 1cC | ICE
VARIATION XBH
Column
F(9-11),SEL 0 1
00 1c4 | 1CO
01 1C2 | 1CO
02-3F 1C0 | 1C2
40-7F 1C6 | 1C2
VARIATION XBI
F(9-11)
SEL 0 1-3 4 5 6 7
0 1D0 | 1D2 | 1C4 | 1DE 1DE | 1D4+27Z
1-7 1CO0 | 1C2 | 1C6 | 1D8+2R | 1C8 | 1CA
8 1D0O | 1D2 | 1C4 | 1DE 1DE | 1C4
9-B 1C0 | 1C2 | 1Cé6 | 1CC 1CC | 1CC
C 1C0 | 1C2 | 1Cé6 | 1DE 1DE | 1DE
D-F 1CU | 1C2 | 1C6 | 1CE 1CE | 1CE
VARIATION XBS

Test Conditions

Table E-6

ENABLE

O D100 DO 000D OO0 MerdDAr OO0 00DO0DDOO0ODDODODOO0DO0O0O

IFQUAD | CHGLOCK

OO0 D000 ODOOOOOOODOODODOODOOOIOOIDODNOMOOO

[a]

=

= sSE=ss== = = =

w T 1L 1T I I DI O1lO0 |l 00000 H0O000000000O0DDHH JOO0ODO0D0DAHOALOM
x4 — o~ -~ — —~ — .

-

[a]

(14

O [[[
=z A AAAAOOAO~AOHASESE 410H OO0 OO0 O OO |l A DAAOAHDHO | —~ |
[— — -
]

(9

2 =

o] OO0 OO OO ODDOOOO |l OO 100000000000 HODOAOODDO0ODOD
[—

-

—

—

| N T N T TR e TR c TR c PR P e TR P c TR N T TR TR PN e TR N P N TR TR N TR L T o ¢ PR O ¢ PR PR ¢ SR P T T T TR <)
@® I D e D D D D O T T T O T T T O e O O S e O O R O Ry T T I T T I A O A A
~ DN OO DD OOODOO0OOODWMOOODODOMODVOXOWIODDVOOVMOVIDOVOOVMOMOO MO
e

7

1 m No MM LANN I~~~ mMmA Q&
<t SCooOoO Il IO I I | lOoOMANANMmMISNOSN~oOoOOLCmMMoOoOLUAAQA L L Pt bbbt
N. — —~ o~ QO moo IO OL OO MM
™ .

] ~~S~e~ e~ [c TR TR P IR ¢ P TR < T < PRy < PRy < PRy ST e
o OO0 OOOO | | || | 0000MMOOOMAMAEOOMMMOMOOMowaeweoaeooaow | e 1|
o

~ e [e W2 We We W We N W W Yo Be el

«

where:
L

M
S

1l if LAF; otherwise, L = 0
1 if MISC V ZERO; otherwise, M = 0
selected bit of scientific mode register (M4)

F(0-3) =9 A B C D E

or F:

F

S = M4(2) M4(4) M4(6) F(5) M4(2) M4(4) M4(6)

E-9/E-10

-~

PLEASE FOLD AND TAPE —
NOTE: U. S. Postal Service will not deliver stapled forms

M&TO HARDWARE PUBLICATIONS
USER COMMENTS FORM

DOCUMENT TITLE:

PART NO.:

ORDER NO.:

ERRORS:

HOW DO YOU USE THIS DOCUMENT?

a

MAINTENANCE _D

THEORY

TROUBLESHOOTING_D

OTHER:

DOES THIS MANUAL SATISFY YOUR REQUIREMENTS?

YES D NO D

IF NOT, PLEASE EXPLAIN

FROM: NAME DATE

TITLE

COMPANY

ADDRESS

FIRST CLASS
Permit No. 39531
Waltham, Ma,

LU T EEEEVEEEREEEEE R FEEERREEEEL L LT

Busi Repl i
usiness ep y Mall NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES
POSTAGE WILL BE PATD BV TN TN T T T T T T T T

HONEYWELL INFORMATION SYSTEMS INC.
200 SMITH STREET
WALTHAM, MA. 02154

MAIL STATION B72A
HARDWARE PUBLICATIONS, BILLERICA

Honeywell

L—————————-——_——

- A

|

J——_—_—_———_—_——_—.———'——-————————-—-—-,' J mn e enm wee

PLEASE FOLD AND TAPE —
NOTE: U. S. Postal Service will not deliver stapled forms

M&TO HARDWARE PUBLICATIONS

USER COMMENTS FORM

DOCUMENT TITLE:

PART NO.:

ORDER NO.:

ERRORS:

HOW DO YOU USE THIS DOCUMENT?

O

MAINTENANCE __D

THEORY

TROUBLESHOOTING.D

OTHER:

DOES THIS MANUAL SATISFY YOUR REQUIREMENTS?

YES D NO D

IF NOT, PLEASE EXPLAIN

FROM: NAME DATE

TITLE

COMPANY

ADDRESS

FIRST CLASS
Permit No. 39531
Waltham, Ma,

T
Busi Repl 1

usIiness ep y Ma]l NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES
POSTAGE WILL BE PAID BY

HONEYWELL INFORMATION SYSTEMS INC.
200 SMITH STREET
WALTHAM, MA. 02154

MAIL STATION 872A
HARDWARE PUBLICATIONS, BILLERICA

Honeywell

—————-:———'—————-——J——-————-—_——-v.\'——._.——-———J—-——————'————73:-———-——

- Honeywell

Honeywell information Systems
Inthe US A 200 Smith Street, MS 486 Waltham. Massachusetts 02154
inCanada 2025 Sheppard Avenue East. Willowdale. Ontario M2J 1TW5
InMexico Averuda Nuevo Leon 250 Mexico 11. D F

FQ41 Rev. 0

13

.-,

