

C

c

(>
/

MAC Firmware Component Specification
Page
July

17
26 1985

/*
* Message types for use with the MAREGM8G Message
*/

{fdefine MU_REG_RQ Ox2010 /* MAC user reg msg type */
tfdefine MU REG AK Ox20 11 /* Ack for above msg type */ -

. {fdefine IR_REG_RQ Ox2 0 12 /* Immediate Resp reg msg type */
Ifdefine IR REG AK Ox2013 /* Ack for above msg type */

"define 8M REG RG Ox2014 /* Systems Mngmnt reg msg type */ - -(Idefine 8M REG AK Ox2015 /* Ack for above msg type */

(fdefine LM_REG_RQ Ox2016 /* Layer Mngmnt reg msg type */
(;define LM REG AK Ox2017 /* Ack for above msg type */

2.4

2.5

The registration message will be sent to the particular MAC's
well-known layer management mailbox ide These well known
names are "MAC LMO"t "MAC LMl"t "MAC LM2"t "MAC LM3" and can
be accessed by-including an external-declaration to the
structure:

char *mmwkn [];

Termination

This module and its associated sub-modules will always exist
and should never terminate.

Environment

The MAC module operates as a specialized �e�~�t�e�n�s�i�o�n� of the
kernel operating system environment. The TX procedures should
execute at a priority higher than all other protocol's TX
procedures. The RX procedures should execute at a priority
lower than all other protocol's RX procedures. The MAC
modules must run with supervisor CPU privilege as they will
disable and enable interrupts.

HONEYWELL CONFIDENTIAL AND PROPRIETARY

MAC Firmware Component Specification
Page 18
July 26 1985

2.6 Timing and Size Requirements

Since the speed of this module is directly related to data
throughput, it should be as fast as possible. The transmit
module will append the MAC header and queue the packet for
transmission as fast as possible. Other responsibilities
related to the transmission will be done after queuing the
message for transmission. The receive module will process the
RXINT, strip the MAC header and send the packet off to the
MAC-user (N+1 layer) as fast as possible thereby relinquishing
control of the CPU. Other responsibilities related to packet
reception will be handled when control is passed back to the
module, presumably after the packet has left the highest on
board layer. The size of the MAC lead task is approximately
1,980 bytes. The total size for the Ethernet specific MAC is
approximately 15,880 bytes with the debug flag on.

2.7 Compilation/Assembly and Linking

The source module name for the MAC lead task is mac.c. The
source module names for the Ethernet specific MAC code are:
eth lm.c, eth rx.c and eth tx.c. There are two header files
containing constants and data structure definitions. They are
called mac.h and ether.h. All modules will be developed in
the /usr/dvlp/mac directory. Once they have become stable
they will be moved by the unix system administrator to the
/usr/rlse/mac directory. The file "makefile" controls
compilation and includes all details for each particular
compilation. Object files are created by typing "make lsts"
in the /usr/dulp/mac directory. For users wishing to write
code that interfaces with the MAC firmware they must include
the following statement at the top of their source file:

II include" •• /mac/mac. h"
When then the loadable bound unit is created, the user must
link 1n the files /usr/dvlp/*.b or /usr/rlse/*.b in order to
pick up the MAC object modules.

HONEYWELL CONFIDENTIAL AND PROPRIETARY

---- -----, --

/ "
\',,- - ,/

MAC Firmware Component Specification
Page 19
July 26 1985

C 2.8 Testing Considerations

c

In the Ethernet specific MAC firmware provisions have been
made to facilitate a software loopback. The user will compose
an MA req message with type TXLOOP. This message will cause
the TX module to perform some basic error checks on the
request, compose and send back a confirmation, and simulate an
internal RXINT. The RXINT simulation will cause the RX module
to compose an indication consisting of the data initially sent
to the TX module and then to send this indication to the
MAC-user's mailbox.

2.9 Documentation Considerations

Since this module is written in commented "c" and intended for
internal use, the code itself in conjunction with this
specification will serve as documentation.

2.10 Operating Procedures

None

2.11 Error Messages

The only error message that will be returned to the user will
be in the form of a status word contained in the MA conf
message. These are enumerated below.

/* .Confirm message return status error constants */
#define CER TIMEOUT Ox80 /* no tx interrupt from chip */
#define CER-CHIPFAIL Ox81 /* chip specific failure */
Hdefine CER NOT SENT Ox82 /* could not get msg onto medium */
Hdefine CER SHUTDOWN Ox83 /* MAC out of service, shutdown */

Hdefine CER ALLOC
11 de fine CER-HEAD
tldef ine CER LEN
#define CER PAD
fldef i ne CER STRT
*/

Ox90
Ox91
Ox92
Ox93
Ox94

/* could not alloc work space */
/* no space for mac header */
/* packet too long for this mac */
/* could not pad to min length */
/* chip would not take start cmmnd

Other possible errors will be handled by the protocol as per
the 802 family of standards. When appropriate an error
counter will be incremented. These error counters are
readable via the systems management interface.

HONEYWELL CONFIDENTIAL AND PROPRIETARY

MAC Firmware Component Specification
Page 20
July 26 1985

3.0 INTERNAL SPECIFICATIONS

3.1 Overview

The MAC firmware has been designed to handle up to four MACs
of the same or different type. The MAC function itself will
vary only minimally from access method to access method and
will not vary at all with respect to the MAC-user interface.
At the current time only the Ethernet MAC is supported, .
however, the concept will remain the same as more MAC specific
handlers are generated to control other access method daughter
boards.

3.2 Subcomponent Description

3.2.1 macinit()

The macinit task is the lead task spawned by the kernel and is
always the first to run. It will determine which ports are
used and what type of MAC is present on each of the used
ports. It will then spawn a layer management task for the
specific MAC type. This ends its involvement into' the
particulars of that MAC.

The only other critical task that this module performs is to
register a generic MAC interrupt handler with the kernel. Due
to hardware design considerations there is only one interrupt
from all the daughter boards, thus there can be only one
interrupt handler. This handler will determine which of the

·four daughter boards has generated an interrupt. It will then
perform a "C" subroutine call to the particular interrupt
handler responsible for the details of this particular MAC
chip set. The method by which this linkage occurs is
contained in the only data structure created by macinit. The
structure is called the MAC HEAD global data structure. It
contains a pointer to the MAC's unique data structure and a
pointer to the MAC specific interrupt handler for each of the
four possible ports. These pointers must be placed in the
data structure as part of the MAC-specific initialization
procedure. It is the only means by which the generic MAC can
make use of code tailored to a specific MAC.

HONEYWELL CONFIDENTIAL AND PROPRIETARY

!I.~'

(~

MAC Firmware Component Specification
Page 21
July 26 1985

3.2.2

3.2.3

This is the local layer manager for the Ethernet specific MAC
daughter board. It will allocate space for the ecb from
PRIVATE memory and place a pointer to it in the MAC"HEAD
structure indexed by port number. It will then place a
pointer to the 7990-Ethernet interrupt handler in the MAC HEAD
structure, again indexed by port number. Next it will spawn a
copy of the TX and RX modules for this port and create a data
mailbox for itself. Finally it will initialize the ecb
structure.

As part of the ecb initialization, SHARED memory must be
allocated for the LANCE. The LANCE will use this memory for
its initialization block, receive descriptor ring and transmit
descriptor ring. When all initialization is 'complete the
layer manager will lower its running priority and wait on
incoming messages. "

The messages that this module will receive are: MAC-user
registration requests, system management exchange requests,
non-RX/non-TX Lance interrupts (error condition) and reset
requests generated by the TX or RX modules upon detecting a
fatal error related to quirks in Lance operation requiring the
chip to be reset.

The Ethernet RX module is responsible for processing incoming
data packets from the LAN. It is a shared stack process due
to the nature of the function it performs. It makes use of
the ecb structure for this port, a pointer to which is .
obtained from the MAC HEAD structure indexed by port number.
After performing some-basic initialization which includes
allocating a data mailbox, it waits for incoming message.

The message types that this module expects to receive are:
RXHALT and RXRESUME generated by the local layer management as
part of its reset procedure, LOOPBACK which is a TX generated
receive interrupt simulation, and most importantly, a genuine
RXINT sent to it by the Ethernet specific interrupt handler.

HONEYWELL CONFIDENTIAL AND PROPRIETARY

MAC Firmware Component Specification
Page 22
July 26 1985

Upon receiving an RXINT, the RX module will inspect the
Lance's status register supplied in the message for errors.
It pulls the used receive descriptors from the Lance's receive
message descriptor ring and temporarily stores them in the
ecb. It then replaces the used descriptors (an implicitly the
data buffers) with fresh pre-allocated descriptors. It now
inspects the descriptor status words for errors. If any
errors are detected the packet is discarded. If the packet is
error free the RX module will transform the RXINT message into
an MA ind message. It will place in the message a pointer to
the (Kernel) data buffer descriptor, the packets destination
and source addresses as well as the Ethernet type field (802.3
length field). Next it strips or "unprepends" the MAC header
from the packet, shortens or "unappends" the buffer to the
actual packet size and places the size in the indication
message. At this point it sends the MA ind message to the
mailbox id which the MAC-user has registered with the local
layer manager. Lastly it preallocates new buffers to replace
the ones just used.

The RX module contains 4 subroutines to simplify the code
flow. They are: "retrieve rxdesc()" used to move valid
descciptors from the Lance's-receive message descriptor ring
to the ecb. It takes a pointer to the ecb as input and
returns the number of desciptors moved; "replenish_rxdesc()"
used to replace the most recently used descriptors in the
Lance's receive message descriptor ring with fresh descriptors
preallocated and stored in the ecb. It takes ~ pointer to the
ecb and the number of descriptors to replenish as input and
returns nothing; "allocaOte rxdescO" used to proeallocate
buffer space-and generate fresh descriptors. It gets the
buffer space via the getbuf kernel call and stores the fresh
descriptors in the ecb. It takes a pointer to the ecb and the
number of descri~tors to allocate as input ~nd returns
nothing; and "reallocate rxdesc()" used to recycle descriptors
that pointed to a receive packet that was in error. This
routine saves a freebuf and getbuf kernel call. It takes a
pointer to the ecb and the number of descriptors to replenish
as input and returns nothing.

HONEYWELL CONFIDENTIAL AND PROPRIETARY

----- - ---~----- ---~-

MAC Firmware Component Specification
Page 23
July 26 1985

3.2.4

The Ethernet TX module is responsible for processing outgoing
data packets on behalf of the MAC-user. It also contains the
Ethernet specific interrupt handler. It is a shared stack
process due to the nature of the function it performs. It
makes use of the ecb structure for this port, a pointer to
which is obtained from the MAC-HEAD data structure indexed by
port number. After performing some basic initialization which
includes allocating a data mailbox and allocating a permanent
alarm message, it awaits incoming messages.

The message types this module expects to receive are: TXHALT
and TXRESUME generated by the local layer management as part
of its reset procedure, LOOPBACK which is a MAC-user generated
debug function, MA req which is the normal means by which the
MAC-user initiates-a transmission, TXINT which is sent to the
TX module by the ethernet specific interrupt handler in
response to a Lance transmit interrupt and finally ALARM which
is sent to it by the kernel's alarm facility to indicate that
a TXINT is overdue.

Upon receiving an MA req from a MAC-user, the TX module will
allocate PRIVATE memory for building the transmit
descriptors. It will store the pointer to this area in the
MA req message. It will grow or "prepend" space onto the
beginning of the data-unit for the MAC header and then install
the destination address, source address and Ethernet type
field (802.3 length field) from information contained in the
MA req message. It will pad the data-unit out to 64 bytes
total using nulls if the length was less than 64 bytes. It
then creates a Lance descriptor for each segment of the
data-unit indicated by the number of kernel buffer'
descriptors. It next queues this MA req message (complete
with descriptors) at the end of a private mailbox-like data
structure in the ecb called the pending queue. Finally, it
checks the activity-flag for this port.

If the activity flag is false, the descriptors will be copied
into the Lance's transmit message descriptor ring, the
activity flag set true, a timeout alarm set, and finally, the
Lance is commanded to start transmission. If the activity
flag were true the TX module would exit back to the kernel
where it awaits the next mailbox message. Thus message
transmission is fully interrupt driven once messages are
queued.

HONEYWELL CONFIDENTIAL AND PROPRIETARY

MAC Firmware Component Specification
Page 24
July 26 1985

Upon receiving a TXINT from the Ethernet specific interrupt (~

handler, the TX module will first stop the timeout alarm and ~ ~

then process the interrupt. It will inspect the Lance's
status register supplied in the TXINT message for errors. It
will take the message from the top of the pending queue which
was the original MA_req for this packet and transform it into
an MA.conf message. It then retrieves the descriptors from
the Lance's transmit message descriptor ring and temporarily

-stores them in the ecb for inspection. It now inspects the
descriptor status words for error conditions, any of which
would indicate that the transmission failed. The status
information is coded and placed in the confirmation message.
The confirmation message i$ finally sent ·back to the return
mailbox id called out in the original MA req message. Lastly,
it inspects the pending queue of MA reg messages previously
queued by the MA req code handler. -If the queue is empty, the
activity flag is-set false. If the queue is not empty, the
top entry will be started. The pre-formed descriptors will be
copied into the Lance's transmit message descriptor ring, a
timeout alarm set and the Lance commanded to start
transmission.

Upon receiving an alarm message from the kernel's alarm
facility the TX module will assume the worst. It will locate
the MA req at the top of the pending queue, return the memory
containing the descriptors back to the free pool and transform
the MA req into a confirmation. It will set the appropriate
status-value and return the message to the indicated return
mailbox ide Finally, it causes the Lance to be reset by'
making a TXREST request on the local layer manager. The layer
manager will request that the RX module halt and cleanup. When
the RX module has halted the layer manager will perform a
drastic reset. The drastic reset is equivalent to
initialization with the exception that no new memory is
allocated for an ecb or Lance control blocks and the error
statistics are not reset.

HONEYWELL CONFIDENTIAL AND PROPRIETARY

c

(' .. ".'
. /

MAC Firmware Component Specification
Page 25
July 26 1985

3.2.5

The TX module also contains four subroutines to simplify the
code flow. They are: "retrieve txdesc()" used to recover the
used descriptors from the Lance's transmit message descriptor
ring and place them in the ecb for inspection. It takes a
pointer to the ecb as input and returns the number of
descriptors moved; "fill_desc()" used to create a Lance
transmit descriptor from the information contained in the
kernel buffer descriptor. It takes a pointer to the kernel
buffer descriptor and a pointer to the build location as input
and returns nothing; "padpkt()" used to extend data-units to
the legal minimum size for ethernet (64 bytes). It pads with
nulls (OxOO). It takes a pointer to the kernel buffer
descriptor as input and returns -1 if the operation could not
be accomplished, 0 otherwise; "start_xmitO" used to command
the Lance to begin transmitting a packet. It will set the
timeout alarm, copy the indicated preformed descriptors into
the Lance's transmit message descriptor ring, command the
Lance to begin transmission and set the activity flag. It
takes a pointer to the ecb for this port as input and returns
-1 if it could not perform the function, 0 otherwise.

int_ethernet()

The int ethernet routine is the ethernet specific interrupt
handler-bound to the generic MAC interrupt handler by virtue
of a pointer to it installed in the MAC HEAD data structure
for this port. This routine is a subro~tine called by the
generic MAC interrupt handler and together both routines run
at interrupt level. The source for this module is contained
in the eth tx.c source file.

This routine takes the port number as input and returns
nothing. It makes use of the ecb structure for this port, a
pointer to which is obtained from the MAC. HEAD structure
indexed by port number. It will read and reset the Lance's
control and status register (csrO), and reset the hardware
interrupt. It allocates PRIVATE memory to compose an
interrupt message. The message will contain the port number
and the value of the Lance's csrO register. It then inspects
the status register for a receive or transmit interrupt and
sends the interrupt message to either the RX or TX process
respectively. If neither type interrupt is indicated in the
status register the message is sent to the local layer
management for this port where a decision is made as to the
cause of the interrupt.

HONEYWELL CONFIDENTIAL AND PROPRIETARY

MAC Firmware Component Specification
Page 26
July 26 1985

3.3 Future Development and Maintenance·

Future development will be necessary as new MAC specific
daughter boards are designed. The existing MAC firmware
modules have been designed with this in mind. The ethernet
specific modules should act as a template for future
development. In general the programmer should design a layer
manager and a TX and RX module which would be spawned by the
layer manager. This will allow a certain degree of freedom in
the specifics of spawning the TX and RX modules. Any data
structures used by the three modules must be gotten from free
memory (PRIVATE). This is due to the fact that from zero to
three copies of the modules may be spawned, each needing a
unique data structure.

Any new modules must use the MAC-user message structure called
out in the mac.h~der file. Finally, the programmer must go
in and edit the macinit routine in the mac.c source file to
include the line which will spawn the MAC specific layer
manager.

As part of the layer manager, the programmer must install
pointers to his/her MAC specific. data structure and MAC
specific interrupt handler in the MAC HEAD data structure.
After that, all he/she has to do is code the specifics
necessary to handle the particular MAC (if it has any
peculiarities ie. 802.4 immediate response) and the chip set /~,
and hardware implementing the access method.

HONEYWELL CONFIDENTIAL AND PROPRIETARY

(,

c'

MAC Firmware Component Specification
Page 27
July 26 1985

4 PROCEDURAL DESIGN

4.1 Generic MAC Subsytem Initialization, macinit()

register (generic interrupt);
for (1 = 0; i <= 3; i++)

lower

get daughter board id (i);

switch (daughter board id)
case (ETHERNET):

case

case

case

procreate (layer manager);
register (default mailbox id);
prorun (layer manager);
break;

(TOKENBUS):
/* TBD */
break;

(TOKENRING) :
/* TBD */
break;

(STARLAN):
/* TBD */
break;

running priority (4) ;

HONEYWELL CONFIDENTIAL AND PROPRIETARY

MAC Firmware Component Specification
Page 28
July 26 1985

4.2 Ethernet Layer Managment procedure,· elminit()

MAC HEAD.int proto[port] = int ethernet;
ecb-= allocate (sizeof (ecb), PRIVATE);
MAC HEAD.data[port] = ecb;
procreate (etxinit) /* start the TX procedure */
prorun (etxinit)
procreate (erxinit) /* start the RX procedure */

-prorun (erxinit)
create (data mailbox);
ecb initialize (ecb);
reset status (ecb);
lower-running priority (4);

for EVER
breceive (message, mboxid); /* await message */

switch (message. type)
case (MU REG RQ):

ecb7mu did = message.muser id;
message.mdata id = ecb.tx did;
sendmsg (message, message7return id);
break; -

case (LM REG RQ):
ecb7event did = message.muser id;
message.mdata id = eCb.lm did;
sendmsg (message, message7return_id);
break;

case (LMINT):
/* TBD */
break

case (RESET):
if (RXRESET)

sendmsg (TXHALT, ecb.tx_cid);
else

sendmsg (RXHALT, ecb.rx_cid);
break;

cas e (HALTED):
ecb reset (ecb);
load block (ecb);
chip-reset (ecb);
sendmsg (RESUME, ecb.tx cid);
sendmsg (RESUME, ecb.rx-cid);
break; -

HONEYWELL CONFIDENTIAL AND PROPRIETARY

- - ------- -----

MAC Firmware Component Specification
Page 29
July 26 1985

(~, 4.3 Ethernet Transmit Procedure, etxmain()

(/

c

etxmain (message, mboxid);

switch (message. type)
case (TXHALT):

tx cleanup (ecb);
sendmsg (TXHALTED, ecb.lm_cid);
break;

case (ALARM):
conf msg = top of queue;
mfree (desc buIld-area);
conf msg.status =-CER TIMEOUT;
sendmsg (conf msg, conf msg.return-id);
tx cleanup (ecb); -
message = allocate (48, PRIVATE);
message. type = TXRESET;
sendmsg (message, ecb.lm_cid);
break;

case (MA_req):
tx msg = MA req message; /* reuse message */
allocate (48, PRIVATE); 1* to build descriptors */
bd = tx msg.m bufdes;
unprependbuf (bd, 14); 1* make room for header */
move DA into header;
move SA into header;
if (packet length) 1500)

/* packet too big */
tx error (CER LEN);

if (packet length < 64)
1* packe t too small * /
padpkt 0;

if (packet type == 0) /* 802.3 if 0 */
type -= leng th;

frame type field = type;
for (; bd 1= NULL; bd = bd-)bd next)

fill desc (bd); /* create a desc for each bd */
set STP in first descriptor;
set OWN in all descriptors;
set ENP in last descriptor;
disable interrupts;
queue MA reg at end of pending queue;
if (activity flag)

enable interrupts;
else

enable interrupts;
s tar t xm it (e c b) ;

break; -

HONEYWELL CONF IDENT IAL AND PROPRIETARY

MAC Firmware Component Specification
Page 30
July 26 1985

cas e (T X I NT) :
stop alarm();
conf-msg = top of queue;
mfree (descriptor-build area);
num descriptors =-retrieve rxdesc (ecb);
if (first descriptor has bad status)

sendmsg (conf msg, conf msg.return id);
sendmsg (TXRESET, ecb.lm cid); -

if (subsequent descriptor has-bad status)
status = CER NOTSENT;

if (status != 0) -
conf_msg.type = MA_cerr;

else
conf msg.type = MA_conf;

sendmsg (conf msg, conf msg.return id);
if (pending queue not empty) -

start_xmit (ecb);
else

activity flag = false;
bre~k; -

HONEYWELL CONFIDENTIAL AND PROPRIETARY

! '\
'",. /

MAC Firmware Component Specification
Page 31
July 26 1985

(4.4 Ethernet Receive Procedure, erxmain()

(

erxmaln (message, mboxid);

switch (message.type)
case (RXHALT):

rx cleanup (ecb);
sendmsg (RXHALTED, ecb.lm_cid);
break;

case (RXLOOP):
bd = message.m bufdesc;
move DA into ind_msg;
move SA into lnd msg;
unprependbuf (bd~ 14) 1* strip mac header *1
ind msg.type = MA_ind;
sendmsg (ind_msg, ,ecb.mu_did);
break;

case (RXINT):
if (csrO indicates ERROR)

if (c s r 0 i n d i cat e s II ME R R" 0 r "M ISS II)
rx cleanup (ecb);
sendmsg (RXREST, ecb.lm cid);

num desc = retrieve rxdesc (ecb);­
replenish rxdesc (ecb, num desc);
for (; num desc > 0; num desc--)

check-all descriptors for errors;
if (bad status)

update ring pointers;
reallocate_rxdesc (ecb, num_desc);
break;

get bd from retrieve descriptor;
ind msg • RXINT .essage /* reuse message */
move DA into ind_msg;
move SA into ind msg;
move type field to ind msg;
unprependbuf (bd, 14);- /* strip header */
unapendbuf (bd, (buffer length - packet_length»;
ind msg.type = MA ind; -
sendmsg (ind_msg,-ecb.mu_did);
update receive ring pointers;
allocate_rxdesc (ecb, num_desc);
break;

HONEYWELL CONFIDENTIAL AND PROPRIETARY

MAC Firmware Component Specification
Page 32
July 26 1985

5 ISSUES

Removing restrictions imposed on the ethernet firmware by
problems in the Lance is of great concern. The fact that
these problems have been remedied by AMD must first be
verified before the restrictions are removed. If the
conditions go unchecked they could be very hard to track down.

A strict requirement should be established to only allow
ethernet version 2.0 or 802.3 tranceivers to be used with the
LACS. Early ethernet tranceivers do not have heartbeat and
this fact is reported by the Lance as a "late-collision"
error. If this cannot be done, code must be added to ignore
this error. This will add extra overhead on every packet
transmitted as it causes the Lance's general error bit to be
asserted causing the ethernet firmware to imm:ediately take a
more time consuming error handling path.

The requirement for the LACS to use ethernet 2.0 or 802.3
tranceivers pertains only to the LAC's connection to the
network. It has no bearing on any other nodes on the network.

The layer management to systems management interface has not
yet been fully defined. A requirement from the systems
management designer must be forthcoming before code can be
generated tG handle systems management requests.

The in-line T&V must be designed and integrated into the
current ethernet firmware. The T&V designers have been made
aware of the most optimum means by which to realize this
integration.- However, as with anything, debug and checkout
could reveal some surprises. .

A substantial time savings may be realized if the confirmation
message theory of operation is deleted from the MAC firmware.
There have been some interesting discussions on this topic
with Ron Dhondy. He should be consulted for further details.
Basically, there seems to be no good reason to have such a
mechanism in an implementation that uses type I LLC services
under a class 4 transport layer. If the MAC-user is operating
a connectionless unidata service, it will by definition ignore
the contents of an MA.confirmation. Furthermore, even with a
connection oriented type II LLC service, the confirmation it
is looking for will be coming from its remote peer entity.
The MAC's confirmation is only signifying that the packet left
the local node

Finally there is the issue of future MAC-specific hardware and
the design of firmware to control it. If one is careful to
observe the hooks and handles purposely designed in for this
purpose it should be relatively easy for the various
MAC-specific modules to co-exist.

HONEYWELL CONFIDENTIAL AND PROPRIETARY

