FRONEYWELL PROBRIETARY . SENEITIVE

o prelifimery copy ' Dote: June 13, 1969
- cipéulating For COMMENTS S Doc. No: = SYy2¥-00
w0 | / - - Rew. Drafe -

FUNCTIONAL SPECIFICATION

FOR LEVEL 2

COMPUTATIONAL PROCESSES K

) (}7..
e,
N e
Y O el
eI A e
AL il
-)
R Tt
- g e
% et
g
B F e
A
=

Approved by,

Prepored byw Bean

reicTolA| a—

M Firdman
SYSTEMS GROUP

E. McrFPaden

MR R A
i

PUBLICATIONS

ELECTYHONIC DATA PROCESSIHG

TEQHE Y 3 .
ﬁﬁﬁ ﬁL@i’ﬁ' CEnTER MASIE Y 1| BRADSIDTADY . Ofeiervises

HONEYWELL PROBRIETARY . BENSITIVE

The informatiop and design of the system
described hexdin were originated by and

are the property of Electronic Data Proces~
sing Division, Honeywall, Inc. The content
of this document is Hopnevwall Propristary .
Ssnaitive and is for intarnal use only., Such
information may not be reproduced, disclosad
ty others, or wvaszd by othere for any purptsse
without written permission from an suthorized
Honeywell official.

RQIE

The demands of expediency in publishing
this prelininary documsnt have precluded
the sditorial attention usually given

to such documenta. Tha reader ahould con-
sider this if inconsistencles, redundancies,
ox errcys bectme eavident herein.

ii
HONEYWELL PROPRIETARY - SENSITIVE

HONIYWELL PROPRILTALY . SENSITIVE

TABLE OF CONTENTS

Paragraph - Ijtle ‘Pagis

SECTION 1Y . FORMAT REPRESENTATIONS AND DESCRIFTIONS

iii

HONEYWELL PROPRIETARY - SENSITIVE

2.1 DATA REPRESENTATIONS AND DATA CONTROL DESCRIPTIONS -1
2.2 DATA REPRESENTATIONS o
2.2.1 Variable -~ Length Deca Reprasenta%immé gon]
2.2.2 Fixed - Length Tagged Date Represeatatvions 2eb
2.3 ' DATA DESCRIPTION ' 2%
2.3.1 Structers J w3
2.3.1.1 Implicit - Lengti Scructor Ly
2.3.1.2 Explicit - Lersth Structox -} 7
2.3.2 Ministrueror« S kT
2.3.2.1 Singuiar Ministructor fan?
2.3.2.2 Dual Ministructor o i
2.3.2.3 Array Ministructor R
2.3.2.4 String Miniscruictor 220
2.3.3 Microstructors I]
2.3.3.1 Bit/Binary String Microstoactod 223
2.3.3.2 Byte String Microstructcr dwdd
2.3.3.3 Implicit Microstractos 2~34%
2.4 CONTROL INFORMATION REPRESENTATION 2«2%
2.4.1 Syster Concrd. Structors 225
2.4.1.1 Procedure Indexs &7
2.4.1.2 TSB Identifiers 228
2.4.1.3 Protected Elementas 2.-28
2.4.1.4 Trap Effectors 229
2.4.2 System Base 2~29
2.4.3 Task Status Elock 2~31
2.4.4 Task Priority Array 2-3%
2.4.5 1/0 Start Array 2-3%
2.4.6 External Start Array 2~36
2.4.7 Processor Status Array 237
2.5 1/0 INFORMATION REPRESENTATION 2-38
2,5.1 1,0 Structors 2-38

Paragraph

2.5.1.1
2.5.1.2
2.5.1.3
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6

3.1
3.2
3.2.1
3.2.2

3.2.3
3.2.4
3.2.5
3.3

3.3.1
3.3.2

3.3.2.1
3.3,2.2
3.3.2.3
3.3.2.4
3.3.2.5
3.3.,2.6

3.3.2.7

303.26&
3.3.2.9

HONEYWELL PROPRIETARY . SENSITIVE

TABLE OF CONTENTS (Cont,)
Title

Device ldentifier Structor
I/0 Conmand Structor

'1/0 Control Cormmand Specifier
I/0 Operands

Device Specificatior Tsable
Traffic Registecs
Simultaneity Table
Input/Output Status Word

SECTION II3 - INSTRUCTION FORMATS
AND TNSTRUCTIUN EXTRACT ION

GERERAL
IRSTRUCTION FORMATS
Register-Register {RR) Format

Register-Selector (RS and RL) and saxectosm
Register (SR and LR} Formats

Selector-Selsctor (S8, 81, LS, LL} Formats
Relative Displacement {RD) Format
Control Variant (CV} Format
INSTRUCTION EXTRACTION
Register-Register (RR) Formabt Excraction

Register-Selector (RS, RL) and Selector-
Register (SR, LR) Format Excraction

Literal Value Case

Implicit-Length Base Reference Cage
Explicit-Length Base Reference Case

Indexed Implicit-Length Base Reference Case

Indexed Explicit-Length Base Reference Case

Auto-indexed Implicit-length Base
Reference Case

Auto~indexed Explicit.-Length Basge
Reference Case

Aute-Qualified Bass Reﬁﬁﬁaneﬁ Case
MthipLe Seﬁaetion Case

iv
HONEYWELL PROPRIETARY - SENSITIVE

Pass

2-39
239
2-40
2-40
242
1-42
2-43
2-43

36

3-8
3.8
38
3-8
3-11
3-13

3-16

3.17
3-2%
3-23

Paxagraph
3.3.3

3.3.4
3.3.5

4»1'
4.2
4.2.1

4.2.2.1
4.2.2.2
4.2.3
4.2.3.1
§.2.4

4.2.5
4.2.6

HONEYWELL PROPRIETARY - SENSITIVE

TABLE OF CONTENTS {Cont,)
\ CTitle

. Selector-Selector (55, sSL, LS, LL)
Format Extraction

Relative Displacement {(RD} Format BExtraction
Control Variant (CV) Format Extraction

SECTION IV -~ AUTOFETCH/AUTOSTORE

GENERAL

AUTOFETCH/AUTOSTORE CONVERS ION

Autofetch/Autostore Conversion For
Tagged Doublewords

Autofetch/Autcstore Converasion For
Ministructors

Autofatch of Minisrtructor Operands
Autostore Inte Ministructor Operands
Autofetch Convérsicn For Microstructure
Autofetch of Microstructor Operands

Autofetch/Avtostore Conversion for Deferred
Selection Structors

Autofetch/Autostore Conversion for Bit Strings

Antofetch/Autostore Conversion for
Binary Strings

Autcfetch/Autostore Convers.ion for Floating
Poipt Strings

AUTOFETCH EVALUATOR
AUTOSTORE EVALUATOR

SECTION V .. AUTOCONVERSION

INTRODUCTION
CONVERSION CONVENTIONS
Tagged Logical Word to Tagged Binary Integer

Tagged Binary Integer to Tagged Floating
foint Number

Tagged Floating Point to Decimal String
Decimal String to Tagged Floating Point

k'

 HONEYWELYL PROPRIDTARY - SENSTYIVE

Fage

330
330
3-35

4-1
4-1

4-2

4-2
43
4-5
4--9

- 4-G

4-11
§-12

416
418
4~-21

5.1

5-2

53"
G
56

5,2.5
5,2.6

6.1
6.1.1
6.1.1.1
6.1.1.2
6,1.1.3
6.1.1.4
6.1.2
6.1.2.1
$.,1.2.2
6.,1.2.3
6.1.2.4
6.1.3
6.1.3.1
6.1.3.2
6.1.3.3

6.1.3.4

S.1.4
6b.l.4.1
6.1.4.2
S.1.4.3
6.1.4.4
6.1.4.5
6.1.5
6.1.5.1
6.1.5.2
5.1.5.3
6.1.6

6.1.6.1

TABLE OF CONTENTS t,
Title

Floating Point Number to Tagged Binary Integer

Tagged Binary Integer to Tagged Logical Word

SECTION VI - INSTRUCTIONS

DATA MANIPULATION ISTRUCTIONS

Add/Subtract
Logical Binary Additiqp/&ubtractioﬁ
Twos Complament Binary Addition/Subtraction

Hexmdecimal Floating Point Addition/Subtraction

Dacimal String Addition/Subtraction
Multiply
Logical Binary Multiplication

' Twoeg Complement Binary Multiplication

Hexadecimal Floating Point Multiplication
Decimal String Multiplication

Divide

logical Binaiy Division

Twos Complement Binary Division

- Hexadecimsl Floating Point Division

Decimal String Division

Compare

Logical Binary Comparision

Twos Conplement Binary Comparison
Hexadecimal Floatinq Point Comparison
Decimal String Comparison

Byte String/Translated Byte String Comparison
Move

Byte String/‘ranslated Byte String Move
Decimal String to Decimal String Move
Autostore Moves

And/Or/Exclusive OR

Logical Word And/Or/Exclusive OR

t

vi
HONEYWELL éRO?RIETARY - BENSITIVE

5-7

5-8

61

6-2

6-3

6-4

6-4

6-6
6-10
611
6-12
6-13
6-16
6-18
6-19
6-20
6.21
6-24
627
6--27
6-28
6-28
65-28
6-.29
6-31
6-31
6-32
6-33
6-33
5-33

Paraazah
6.1.6.2

6.1.7
6.1.7.1
6.1.7,2
6.1.7.3
6.1.7.4
6.1.7.5
6.1.7.6
6.1.7.7
6.1.7.8
6.1.7.9
6.1.8
6.1.8.1
6.1.8,2
6.1.9
6.1.9.1
6.1.9.2
6.1.9.3
6.1.10
6.1.10.1
6.1.10.2
6.1.11
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
65.2.8
6.2.9

PR

HONEYWELL PROPRIETARY - “SENSITIVE

‘TABLE OF CONTENTS .
Iixle

Byte String/Translated Byte String AND,
OR, EXCLUSIVE OR

© Shift

Single Precision Logical Left Shift
Single Precision Logical Right Shift
Single Precision Aritihmetic Left Shift
Single Precision Arithmetic Right Shift
Double Precision Logicsl Left Shift
Double Precision Logical Right Shift
Double Precisgion Arithmetic Left Shaft
Double Precision Arithmetic Right Shift
Single Precision Rotational Shift

Load Positive/load Negative

Twos Complement Binary Loading
Hexadecimal Floating Point Loading

Load Complement

logical Binary Negation

Twos Complement Binary Negation
Hexadecumal Floating Point Negation
Load and Test

Logical Binary Testing

TwOos Cmmplamént Binary Teating

Edit

GENERAL REGISTER LOADING/STORING INSTRUCTIONS

Copy
Load

Fetch

Convert to Logical
Convart to Binary
Convert to Floating
Dump Multiple
Undump Multiple
Dump

= vii
HOKEYWELL‘$30PRIETARY - SENSITIVE

5-34
635
6-36
636
6-37
637
6-38
6-38
€-39
€-39
6-40
640
6-40
6-41
6-41
6-42
6-42
6-42
6-42
6-43
6-43
6-43
6-43
6-44
6-44
6-44
6-45
6-45
6-46
6-46
6-48
6-49

HONEYWELE PROBRIETARY . SENSITIVE

| TABLE OF CONTENTS (Cont,)

6.2.10 Dump ~ | 6-50
6.2.11 Store 6~50
6.2.12 Deposit ' 650
6.3 BRANCHING INSTRUCTIONS §-51
6.3.1 Test and Branch 651
6.3.2 Conditional Branch , 652
65.3.3 Branch aﬁd Link 6-53
6.3.4 Branch ﬁn Incremented Lount/Branch on
Decrmmented Count 6.53
6.4 STRUCTOR MANIPULATION INSTRUCTIONS 6-54
&.4.1 Salect 634
G.d.2 Lower Subarray 635
G.4.3 ' Upper Subarray 615
6.4, 4 Point ‘ 6~%5
G.4.5 Initial Substring 658
H.h,6 Tarninal Substring 6-57
G.5 TASK CONTROL INSTRUCTIONS 653
6.5.1 Stop 6513
6,52 Start BB
.5, 3 Suspand ‘ 6561
o4 Conditional 8Stop ' 661
6.5.5 I/0 Externsl Conditional Stop 661
6.5.6 Load Status ‘ 6-64
6.5%.7 Test and Set 668
6.%.8 Set Mode - Reseb Mode 666
1 6.5.9 Field Extract 6-57
£.5.10 Field Bubsgtitute 668
6.6 INPUT/OUTPUT INSTRUCTIONS 6-70
6.6.1 Initial Device Operation 6-70
G.56.2 Halt Device COperation 670

SECTION VII . TASK MULTIPLEXING
1.1 INTRODUCTION = | 7l

vidli
HOREYWELL PROPRIBTARY - SENSITIVE

Paragraph
7.2
?-3

7.4
7!‘5

8.1
8.2
8.3
8.4

WA
» 3
&3 [

L
s

. 2.1.3
10.2.2
10,2.3
0.3
10,3.1
16.3.2

10,33

" TABLE OF CONTENTS (Cont.)

Ticl
Dbz s

LOCK AND UNLOCK FUNCTIORS
DISPATCH OPERATICN

/0 INITIATED STARTSH
EXTERNALLY INITIATED STARTS

SECTION VIIL . TRAPPING

INTROGDUCTION
TRAFPING IFORMATION STRUUTURE

THRAY CRUBEE

CTRAP MECHANIZATION

SECTION IX . TIMING FACILITIES

SYSTEM CLOCK

- BYBTEM TIMER

TASK. TIMER

SECTION K ~ INPLT/CGUTPUL FACILITIES

INPUT/OUTPUT OPIRATIONS
CENTRAL PROCESSCR I/0 INSTRUCTIONS
anitiate Device Operation Jastruction

Extraccion of IDO Oprders Specifying
Cominsnsd Array

fxtraceion of IO COrders Specifyving
A Slogle Control Command

The I/0 Status Informavion

Malt Device Operatiopn (HDO] Instruction
Allowable Struotor Forrats for 1/90 Instruaction
CINPUT/OUTPUT INTEIRUPTS

The I/0 Stape Arrav
The L/0 Staturs Word

Swecution of I/0 Interrupts

ix
HONBYWELL PROPRIETARY « SENSITIVE

Page

T2

B8-1
8.1
8-
B4

W oo W
H
b b ot

10-1
103
10-4

109

1014
10-15
1015
1017
1018
1018
1018
1021

Parauraph

HONBYWELL PROPRIETARY . SENSITIVE

TABLE OF CONTENTS (Cont.)
ITiclie

AERENDIX
DECTMAL STRING SIGN OODES

*
HONEYWELL PROPRIETARY - SENSITIVE

Eage

HONEYWﬁ}.E PROPRIETARY - SENSITIVE

EM:11 Copy No.
No. of Pgs. Doc. No. FTL-003
Issued to)
> . Date September 8, 1969
The content of this document 1s Draft 2
HONEYWELL PROPRIETARY SENSITIVE Rev. ra

and is not to be reproduced.
. N Ry
/](]CW _ M ~;/ﬁﬁﬁ?

. B
j[,\/ RN gt
Id ‘; h)";; f" f‘g

o

HONEYWwg(
TECHNOLoGs op
K:" CENTER
ik

FUNCTIONAL SPECIFICATION
FOR LEVEL 2
COMPUTATIONAL PROCESSES

Prepared by: Approved by:

W. Bean
SYSTEMS GROUP
M. Ferdman
SYSTEM GROUP
G. Holt
SYSTEM GROUP
E. McFaden
PUBLICATIONS

H

ELECTRONIC DATA PROCESSING
TECHNOLOGY CENTER

HONEYWELL PROPRIETARY ~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

PROPRIETARY NOTICE

The information and design of the system des-
cribed herein were originated by and are the
property of Electronic Data Processing Divi-
sion, Inc. The content of this document is

Honevywell Proprietary - Sensitive and is for

internal use only. Such information may not
be reproduced, disclosed to others, or used
by others for any purpose without written per-

mission from an authorized Honeywell official.

HONEYWELL PROPRIETARY - SENSITIVE

2.1

2.2

HONEYWELL PROPRIETARY - SENSITIVE

SECTION II
FORMAT REPRESENTATIONS AND DESCRIPTIONS

DATA REPRESENTATIONS AND DATA AND CONTROL DESCRIPTIONS

The following sections describe the data representation
formats, as well as the formats for data and control
structors. Structors are used to describe collections of
data elements, control sequential and parallel instructiom
sequencing, and initiate input/output operatious.

It should be noted that throughout the following sections
any field designated RESERVED must contain binary zeros.

TAGGED INFORMATION REPRESENTATIONS

Tagged information consists of self-descriptive data
representations and structors. This information is self-
descriptive in the sense that its format includes a 4-bit
field that specifies the interpretation appropriate to
the remainder of the format. This 4-bit field is called
a TAG field and is assigned the interpretations specified
in Table 2-1.

All tagged information is 64-bits in leungth, with the
leftmost 4 bits assigned to the TAG field. The format
of the remaining 60 bits depends on the particular
type of inforwmation being represented. These formats
are specified in succeeding subsections.

All information stored in general registers is tagged
information. Tagged information may also be stored in
main storage. In the latter case, each tagged informatiom
unit wmust originate at a storage address that is a multiple
of 8 (doubleword boundary alignment). Arrays containing
tagged items are called tagged doubleword arrays.

2-1
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

TABLE 2-1
TAG ASSIGNMENTS
TAG INTERPRETATION
0 Tagged Logical Word
1 Tagged Binary Integer
2 Tagged Hexadecimal Floating Point Number
3 Unassigned*
4 Explicit-Length, Modifier, Alterable Structor
5 Explicit-Length, Modifier, Nonalterable Structor
6 Explicit-Length, Specifier, Alterable Structor
7 Explicit-Length, Specifier, Nonalterable Structor
8 Tmplicit-Length, Baselink, Structor
9 Implicit-Length, Baselink, Structor
A Implicit-Length, Data link, Alterable Structor
B Implicit-Length, Data link, Nonalterable Structor
E Unassigned¥*
F System Control Structor

*Unassigned TAG codes are reserved for future functional extensious.

2.2.1

2.2.1.1

Tagged Data Representations

The tagged data representations consist of a TAG field
and a fixed-length data field. The available tagged data
representations are: tagged logical words, tagged binary
integers, and tagged hexadecimal floating point numbers.

Tagged Logical Word

A tagged logical word is a 64-bit quantity, comnsisting

of a TAG field (which is hexadecimal 0), a 28-bit reserved
field, and a 32-bit value that is treated as a bit string
of fixed-length (see Figure 2-1). This quantity must be
aligned on a doubleword boundary in storage. It may also
appear in a general purpose register.

2-2
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

1-16-70
! 4 RESER vED yaLuE
i I - |
o 3 37 32 63

FIGURE 2-1. TAGGED LOGICAL WORD

The value field of a tagged logical word way be interpreted
as either a 32-bit logical quantity or as a 32-bit
unsigned binary integer.

2.2.1.2 Tagged Binary Integer

A tagged binary integer is a 64-bit quantity, cousisting
of a TAG field (which is hexadecimal 1), a 28-bit reserved
field, and a 32-bit value that is treated as a binary twos
complement integer of a fixed-length (see Figure 2-2).
This quantity must be aligned on a doubleword boundary

in storage. It may also appear in a general purpose

register. L . o
/ KESELYFD VALYE
o 3Y¥ ¥ 32 <3

FIGURE 2-2. TAGGED BINARY INTEGER

2.2.1.3 Tagged Hexadecimal Floating Point Number

A tagged hexadecimal floating point nuwmber is a 64-bit
quantity, consisting of a TAG field (which is 2), a sign
bit, a seven-bit excess 64 exponent field, and a 13

digit hexadecimal mantissa (see Figure 2-3). A sign bit
of O indicates that the mantissa is positive. This quan-
tity must be aligned on a double word boundary in storage.
It may also appear in a general purpose register.

VZ \SLéxﬂun;&V SRy TS sl

6 3#5 4, B
FIGURE 2-3. TAGGED HEXADECIMAL FLOATING POINT NUMBER

2-3
HONEYWELL PROPRIETARY

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

2.2.2 Data Structors

Data Structors are entities used for structural description
There are two basic forms of data structors, called impli-
cit-length structors and explicit-length structors, that
are used to describe arrays of fixed-length items and
arrays of variable-length items, respectively. Data
structors are tagged quantities and may be stored in gen-
eral purpose registers or in storage. The number of
storage accesses required to access an operand described

by a data structor can be minimized by placing the structor
in a general purpose register.

Explicit-length structors can assume one of two forums,
called the modifier form and the specifier form. A mod-
.ifier/specifier (M/S) indicator is included in the explicit-
length structor TAG field to distinguish between these

two forms. The M/S indicator is used to signal whether
the structor épecifies a particular data structure at a
fixed main storage location or is used only to modify
descriptions of areas of storage to conform to a desired
data structure specification. Implicit-length structors
can also assume one of two forms, called the baselink form
and the data link form. The implicit-length structor

TAG field distinguishes between these two forms and is

used to specify whether the structor can be used as an
indirection link for base reference creation or for effec-
tive operand formation, respectively.

Data structors specify several other important attributes
of an information structure. In particular, the type of
information described, the alterability of the information,
and the number of items of information of the designated
type are described by structors. Other attributes are
given for certain types of information units. The attributes
given in the data structor apply to all items in the array
described by the structor. One type of array, called

-

2-4
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

2.2.2 tagged doubleword, allows any tagged quantity to be assigned
(Cont.) to any item in the array, so that some of the attributes
of this array item are associated with it, indepeundeunt of
the attributes of other array iteus.

The location field in data structors is 24 bits in length
and identifies one of as many as 1,048,576 (220) 8-bit
bytes of storage. The addressiﬁg resolution required to
locate a particular bit is achieved by use of an offset
field contained in certain data structors. The location
field, together with this offset field, always identifies
the position of the leftmost (lowest numbered) bit of a
particular array of itewms in storage.

The general format for data structors is presented in

Figure 2-4.
frz TWPE| LoChTyew 2Ssrron ‘ EXTEN 7
o 3y 7## = 33 ” €3

FIGURE 2-4. DATA STRUCTOR (GENERAL FORMAT)

The descriptions of the individual fields of data structors
are specified as follows:

a. TAG field -- this 4 bit field distinguishes between
the implicit -- and explicit modifier and specifier
or baselink and data link forms, and alterable and
nonalterable cases of data structors. (See Table 2-1).
These cases are specified as follows:

i. Implicit-length/Explicit-length-Implicit-Length
items always have a fixed bit length, which is
determined by their TYPE field. Explicit-length
items have a specified bit length, which is
derived from the POSITION field of their describing
data structor.

2-5
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

2.2.2. ii. 'Modifier/Specifier and Baselink/Data link -- For

(Cont.) explicit-length modifier structors, the LOCATION
field is interpreted as a relative byte displace-
went from an implied base location. TFor explicit-
length specifier structors, the LOCATION field is
interpreted as an absolute storage location at
which the associated data structure originates.
An implicit-length baselink or data link structor
LOCATION field is always interpreted as the
absolute storage location of a tagged doubleword
or ministructor array origin. The modifier/specifier
and baselink/datalink indicator is the third bit
of the TAG field of a data structor.

iii. Alterable/Nonalterable -- An alterable structor
specifies that items in its associated array are
alterable when the structor is used to access them,
while a nounalterable structor prevents alteration
of items in its associated array. Alterability
indicator is the fourth bit of the TAG field
of a data structor.

b. TYPE Field -- This 4-bit field is used to identify
the type of implicit -- or explicit -- length array
items described by the structor. TFor implicit-length
structors, the length of each item is specified by
this field. The interpretatioun of the POSITION Field,
which contains the item length, is specified by the
TYPE Field for explicit-leungth structors. The avail-
able TYPE codes are presented in Table 2-2 and Table 2-3.

c. LOCATION Field -- This 24-bit field specifies the byte
location (0 - 1,048,575 with values greater than
1,048,575 illegal) in which the first array item
has its origin. TFor explicit-length modifier structors,
this field specifies the number of bytes of relative
displacement from an implied base reference location
as the location of the array described by the structop.

2-6
HONEYWELL PROPRIETARY - SENSITIVE

2.2.2.1

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

For explicit-length specifier structors and for
implicit-length structors, this field specifies the
absolute storage address of the byte in which the
array associated with the structor originates. For
bit and binary strings, the bit offset subfield of
the POSITION field of the structor 1s also required
to establish the array origin.

POSITION Field -- The interpretation of this 16-bit
field depends on the TAG and TYPE field codes. The
specifie interpretations are counsidered in subsection
2.2.2.1 below.

EXTENT Field -- This 16-bit field specifies the unumber
of itewms of the designated TYPE in the array described
by the data structor. Extents 1 to 65,536 are assoc-

iated with values of all zero bits to all one bits in

this field.

Data structors must be aligned on doubleword boundaries.
The entire array of items described by the data structor
must be placed in contiguous storage locations. Every
item in the array is a data representation with the

same attributes, except for storage locatiom.

The modifier form of explicit-length structor cannot
be used to access an operand in storage, since it

does not describe any particular collection of items
in storage. The use of data structors to fetch or
store operands is discussed in Subsections 3.2 and 3.3
Autofetch/Autostore.

POSITION Field of Data Structors

The interpretation of the POSITION field of data structors
depends on the values of the TAG and TYPE fields of the
structor. For explicit-length structors, the idterpretations

are specified in the subsections defining the explicit-

length items. For implicit-length structors, the fallowing

2-17
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWEL OPRIETARY -
L PR Y SENSITIVE 1-16-70

TABLE 2-2
TYPE CODES FOR EXPLICIT-LENGTH STRUCTORS

TYPE ITEM UNIT SIZE
CODE DESCRIPTION (BITS)
0 Bit String 1

1 Binary String 1

2 Hexadecimal Floating Point String 8

3 Unassigned* -

4 Zoned Decimal String 8

5 Unsigned Zoned Decimal String 8

6 Packed Decimal String 8

7 Unsigned Packed Decimal String 8

8 Byte String 8

9 Translated Byte String 8

A Unformatted Region 8

B Edit Coutrol String 8
C-D Unassigned* 8
E-F Software Assignable*

*An attempt to use an explicit-length structor with this TYPE
code will normally result in a trap.

TABLE 2-3
TYPE CODES FOR IMPLICIT-LENGTH STRUCTORS
TYPE ITEM ITEM SIZE
DESCRIPTION (BITS)

0 Tagged Doubleword 64

1 Tagged Doubleword, LIFO Access 64

2 Tagged Doubleword, FIFO Access 64

3 Ministructor 32
4-D Unassigned* n.a.
E-F Software Assignable n.a.

¥An attempt to use an implicit-length structor with this TYPE
code will normally result in a trap.

2-8
HONEYWELL PROPRIETARY - SENSITIVE

2.2.3

HONEYWELL PROPRIETARY -~ SENSITIVE

interpretations are specified:
a. Tagged Doubleword -+ the POSITION Field is RESERVED.

b. Tagged Doubleword, LIFO Access -- the POSITION field
is interpreted as an unsigned binary integer in the
range 0 to 65,535. This integer, multiplied by 8
and added to the value of the LOCATION field of the
structor, selects a particular tagged doubleword in the
array of tagge doublewords described by the structor.
The POSITION field value must be not greater than
the EXTENT field value. When an item in a tagged
doubleword, LIFO access array is retrieved or updated,
the value of the POSITION field in the associated data
structor may be decrémented or incremented, respectively.

c. Tagged Doubleword, FIFO Access -- The POSITION field
is interpreted as a pair of 8-bit unsigned binary
integers in the range 0 to 255. These integers multi-
plied by 8 and added to the value of the LOCATION
field of the structor, select a pair of tagged double-
words in the array of tagged doublewords described by
the structor. Each of these integers must be not
greater than the EXTENT field value. When an item
in a tagged doubleword, FIFO array is retrieved, the
leftmost 8-bits of the POSITION field, called the
FIFO tail, may be used to select an item and may be
incremented. When an item in a tagged doubleword,
FIFO array is updated, the rightmost 8-bits of the
POSITION fiéld, called the FIFO head, wmay be used to
select an item and may be incremented.

d. Ministructor -- the POSITION field is RESERVED.

System Control Structors

System control structors are tagged information items

used for system control operations. These structors are
specified in Sections 2.5 (Control Information Representation)
and Section 2.6 (I/0 Information Representatiom).

2-9
HONEYWELL PROPRIETARY - SENSITIVE

2-3

2.3.1

2.3.1.1

HONEYWELL PROPRIETARY - SENSITIVE

COMPACT INFORMATION REPRESENTATIONS

The cowmpact information representations are used to mini-
mize the amount of storage required to store arrays of
information containing items with certain homogeneous
attributes. ZEXach compact representation is equivalent

to one of the tagged representations specified in Sectiom
2,2.

Compact Data Representations

There are three compact data representations: bit strings,
binary strings, and hexadecimal floating point strings.
These data representations possess values over the same
range as tagged logical words, taggéd binary integers,

and tagged hexadecimal floating point numbers, respectively.

Bit Strings

A bit string comsists of a sequence of bits of specified
length treated as a varilable precision logical word or
unsigned binary integer (see Figure 2-5). The maximun
length for bit strings is 32 bits. The leftmost bit of

a bit string may be any bit position in any byte of storage.
Alignment and string length for bit strings affect their

access time.
VALYE WJ

FIGURE 2-5. BIT STRING

Bit strings are described by explicit-length structors
The interpretation of the POSITION field of bit string
structors is as follows. (See Figure 2-6).

2-10
HONEYWELL PROPRIETARY -~ SENSITIVE

2.3.1.2

HONEYWELL PROPRIETARY - SENSITIVE

y~ Feser veD
7
.
3 < 3 S
A A ymmmenr ocrser
T ; LENG Ly
Or 7 OFLSET"

FIGURE 2-6. POSITION FIELD FOR BIT AND BINARY STRINGS

The bit offset field specifies the bit position within
the byte addressed by the LOCATION field of the structor
that is associated with the leftmost bit of an array of
bit strings. The bit offset has a range O to 7. The
length field specifies the nuwmber of bits in each bit
string item in the array. The length has a range 1 to
32, 1 to 31 associated with binary values 00001 to 11111,
and 00000 associated with a length of 32 bits. The align-
ment offset field specifies the offset of the bit string
in a tagged logical word and is used in Autofetch/Auto-
store conversion for bit strings. This field has a raunge
of O to 31, associated with binary values 00000 to 1111ll.

Binary Strings

A binary string consists of a sequence of bits of speci-
fied length treated a a variable precision twos complement
binary integer (see Figure 2-7). The maximum leungth for
binary strings is 32 bits. The leftwmost bit of a binary
string wmay be any bit position of any byte of storage.
Alignment and string length for binary strings may affect
their access time.

[VALUE

P) W

FIGURE 2-7. BINARY STRING

2-11
HONEYWELL PROPRIETARY - SENSITIVE

20301-3

HONEYWELL PROPRIETARY -~ SENSITIVE

Binary strings are described by explicit-leungth structors.
The interpretation of the POSITION field of binary string
structors is identical to the interpretation for bit
strings (see subsection 2.3.1.1) except the binary string
alignment offset specifies the offset of the binary string
within a tagged binary integer value.

Hexadecimal Floating Point Strings

A hexadecimal floating point string counsists of an 8-bit
sign exponent byte followed by a sequence of from O to
1 contiguous bytes, which form a O to 14 hexadecimal
digit mantissa. (See Figure 2-8.) The leftmost bit of
the string is the sign of the manissa, encoded as O plus
and 1 minus. The next seven bits contain the exponent.

- The exponent is encoded as an excess 64 number with a range

of -64 through +63 and is interpreted as a power of six-
teen. The remainder of the string consists of the hexa-
decimal digits used to encode the mantissa.

The minimum length of a hexadecimal floating point string
(including the sign/exponent byte) is ome byte, which
corresponds to a zero digit mantissa. The maximum length
is 8 bytes, which corresponds to a 14 digit mantissa.

A hexadecimal floating point string must be aligned on a
byte boundary in storage. Boundary alignwment and string
length for hexadecimal floating point strings may affect
their access time.

S|EX Ponrvr
0/ 70 303 o030
—~— e
MBVTISSM DiG-/7S MANTISESA DiF: TS

FIGURE 2-8. FLOATING POINT HEXADECIMAL STRING

Hexadecimal floating point gtrings are described by
explicit-length structors. The interpretation of the

2-12
HONEYWELL PROPRIETARY - SENSITIVE

2.3.2

ELL 0] -
HONEYW PROPRIETARY SENSITIVE 1-16-70

POSITION field of hexadecimal floating point string struc-
tor is as follows. (See Figure 2-9.)

‘f”AﬁESAUQMIZ
! ! ReSERY S l
s 3 4 oy
4
i
L S/Gi, T Al T THINAT N
L&

FIGURE 2-9. POSITION FIELD FOR HEXADECIMAL
FLOATING POINT STRINGS

The length field specifies the number of bytes in each
hexadecimal floating point string in the array described
by the structor. The length has a range of 1 to 7 and

8, encoded as 001l to 1lll and 000. The significance
truncation field specifies the effective mantissa precision
when the hexadecimal floating point string is manipulated
in significance arithmetic mode. If this field is 1,
significance truncation applies; otherwise, it does not.

Ministructors

A reduction in the number of bits required to describe a
particular information strucure is possible if the attri-
buts of the structure are limited. The most important
limitations are on the location and extent of arrays and
on string length. Location information is reduced by re-
quiring the data structure to be located a fixed relative
displacement from the location of the descriptive quantity.

Arrays of less than a given extent and striungs of less
than a given length will require fewer bits in their
associated descriptive quantities. The descriptive quan-
tities assuming these abbreviated forms of description are
called ministructors. Ministructors are norumally stored
in arrays and are counverted into equivalent forms of data

2-13
HONEYWELL PROPRIETARY - SENSITIVE

2.3.2.1

HONEYWELL PROPRIETARY - SENSITIVE

structors when used. Ministructors must be word boundary
aligned and may reside only in main storage. The four
distinct forms of wministructors are described below. In
each case, the equivalent form of data structor is
specified. This equivalent form is the form into which
the ministructor is converted when, for example, it is
placed in a general register.

Singular Ministructor

The singular ministructor is a 32-bit quantity consisting
of a two-bit classifier (which is 00), a one-bit modifier/
specifier enibaselink/datalink indicator a onecbit alter-
ability or reproducability indicator, a four-bit type code
field, and a 24-bit location field. (See Figure 2-10.)

A singular wministructor is equivalent to a data structor
with the following attributes:

a. Modifier/specifier or baselink/datalink indicator and
alterability indicator identical to the ministructor
"indicators.

b. LOCATION field idemntical to the ministructor location
field.

c. EXTENT field set to zero (single item).

d. the TAG, TYPE, and POSTION fields of the data structor

are determined by the typecode field of the ministruc-
tor, according to Table 2-4.

This form of ministructor is convenient for printing of

a single fixed-length item.
AEKVFmsm/saéuﬂaasc oR ¢34531ﬁg(y45',?zﬂ“(

o0 Z0Cp oM

o/ aﬁif*éflrynrzzas ¥

ALTEL L By T
FIGURE 2-10. SINGULAR MINISTRUCTOR

2-14
HONEYWELL PROPRIETARY - SENSITIVE

2.3.2.2

HONEYWELL PROPRIETARY - SENSITIVE

Dual Ministructor

The dual ministructor is a 32-bit quantity consisting of
a two-bit classifier (which is 01), a oune-bit modifier/
specifier or baselink/datalink indicator, a one-bit alter-
ability indicator, a four-bit typecode field, and a 24-
bit location field. (See Figure 2-11.)

PODIFTER [SPECIF7ER OR BASEL k) DT Lsnk

o/ Lo ChTION

d/<2u£fﬂjﬁlwrxnecza£9 =
ALTERRN LI TY

FIGURE 2-11. DUAL MINISTRUCTOR
A dual wministructor is equivalent to a data structor with
the following attributes:

a. Modifier/specifier or baselink/datalink indicator
and alterability indicator identical to the mini-
structor iundicators.

b. LOCATION field identical to the ministructor locatiom
field.

c. EXTENT field set to one (two items).

d. the TAG, TYPE, and POSITION fields of the data structor

are determined by the typecode field of the wministructors,

according to Table 2-4.

This form of ministructor is useful in constructing binary

tree structures, including chained lists and ring structures.

2-15
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

TABLE 2-4
MINISTRUCTOR EQUIVALENT STRUCTOR ATTRIBUTES

TYPE
CODE TAG* TYPE POSITION**

0 Implicit Tagged doubleword n.a.

1 Tmplicit Ministructor n.a.

2-7 Unassigned nmn.a. n.a.

8 Explicit Bit String (0) B=0, L=8, A=0

9 Explicit Bit String (0) B=0, L=16, A=0
A Explicit Bit String (0) B=0, L=32, A=0
B Explicit Binary String (1) B=0, L=8, A=24
C Explicit Binary String (1) B=0, L=16, A=16
D Explicit Binary String (1) B=0, L=32, A=0
E Explicit Hex.fip. String (2) L=4, S=0
F Explicit Hex.f.p. String (2) L=8, S=0

*The TAG field is also generated to include modifier/specifier or
baselink/datalink and alterability on indicators.

**¥The following abbreviations are used: B-bit offset, L-length,
A-alignment offset, S-significaunce truncation.

2.3.2.3 Array Ministructor

The array ministructor is a 32 bit quantity consisting of
a two-bit classifier (which is 10), a one-bit modifier/
specifier or baselink/datalink indicator, a one-bit alter-

ability indicator, a four-bit type field, a sixteen-bit
relative displacement field, and a eight-bit extent field.
(See Figure 2-12.)

MDIFIER [SPECIER oR BASE Lrnncy/ B rmemke

e - 5

"o f ngPLAC{? ¥ EXTENT

ar a&iyldfln¢vcza€'<4539' E%
ﬂ‘fZ%%M&znfy

FIGURE 2-12. ARRAY MINISTRUCTOR

2-16
HONEYWELL PROPRIETARY - SENSITIVE

2.342.4

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

An array ministructor is equivalent to a data structor
with the following attributes:

a. Modifier/specifier indicator or baselink/datalink
and alterability indicator identical to the mini-
gstructor indicators.

b. LOCATION field equals the value of the relative dis-
placement field of the ministructor in bytes, if the
ministructor is an explicit-length modifier or im-
plicit-length baselink or the sum of the storage
address of the ministructor plus the relative dis-
placement field of the ministructor, when the mini-
structor is an explicit-length specifier or implicit-
length datalink type.

c. EBEXTENT field set to the value of the extent field
of the array ministructor.

d. The TAG, TYPE, and POSITION fields of the data
structor are determined by the typecode field of the
ministructor, according to Table 2-4.

String Ministructor

The string ministructor is a %2-bit quantity consisting

of a two bit classifier (which is 11), a one-bit modifier/
specifier indicator, a one-bit alterability indicator, a
four-bit type code field, a sixteen bit relative displace-
ment field, and an eight-bit position fieldﬂ (See Figure

2.1%).

Maauvae/SF?c79£? R Zﬁﬂzﬁ“&77¥VW¢#*(

e

”; RELR y e VE s
‘ /444c5n¢5~7

AM7£*%%W 7y

FIGURE 2-13. STRING MINISTRUCTOR
2-17

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

A string ministructor is equivalent to an explicit-length

structor with the following attributes:

a.

b.

Modifier/specifier indicator and alterability in-
dicator identical to the ministructor indicators.

LOCATION field equals the value of the relative dis-
placement field of the ministructor in bytes, if the
ministructor is a modifier, or the sum of the storage
address of the ministructor plus the relative dis-
placement field of the ministructor, when the mini-
structor is a specifier.

EXTENT field set to zero (single item).

TYPE field set to the value of the typecode field of
the ministructor.

POSITION field determined by the position field of

the string ministructor, as a function of the typecode
field of the ministructor. The manner in which this
is accomplished is discussed below.

The POSITION field of the equivalent structor is determined
as a function of the typecode of the string ministructor.

Table 2-5 presents the alternatives.

2-18
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE
11-26-69

TABLE 2-5
POSITION FIELD EQUIVALENTS FOR STRING MINISTRUCTORS

TYPECODE OF EQUIVALENT POSTITION
MINISTRUCTOR TYPE FIELD
EQUIVALENT*

Bit String

Binary String

Hexadecimal Floating Point String
Unassigned

3

P O O QW W WW o W e

Zoned Decimal String

Unsigned Zoned Decimal String
Packed Decimal String

Unsigned Packed Decimal String
Byte String

Translated Byte String
Unformatted Region

Edit Control String

Unassigned

Wb e WO 003 O0yuUul &~ W DN+ O

3

B B

.

7
=

*The alternatives for position field equivalents are as follows:

A- The POSITION field contains the position field of the mini-
structor as its leftmost eight bits. The rightmost eight bits
of the POSITION field are set to zero. This allows bit and
binary strings with offsets 0-7, lengths 1-%32, and O alignment
offset string ministructors.

B- The POSITION field consists of 4 zero bits, followed by the
leftmost 4 bits of the position field of the winistructor,
followed by 4 zero bits, followed by the rightmost 4 bits of
the ministructor position field. This allows zoned decimal
strings with byte lengths 1-15 and 32 and zouned decimal strings
with byte lengths 1-16, and both with scale factors 0-15, and
hexadecimal floating point strings with byte lengths 1-8 with
or without significance truncation to be described by string
ministructors.

C- The POSITION field consists of 8 zero bits, followed by the 8
bits of the position field of the ministructor. This allows
byte strings, translated byte strings, and unformatted regiouns
with lengths 0-255 to be described by string ministructors.

2-19
HONEYWELL PROPRIETARY - SENSITIVE

2.4

2.4.1

HONEYWELL PROPRIETARY - SENSITIVE

BYTE SEQUENCE INFORMATION REPRESENTATIONS

The byte sequence information representations consist of
a sequence of essentially identical units, each of which
occupied a byte of storage. Information in the byte se-
quence is normally processed as an entity; that is, the
entire sequence is considered to be a single operand value
of variable length.

String Data Representations

2.4.1.1

The string data representations are used to encode data
that is of highly variable length such that it is im-
possible to place this information in general registers.

Byte String

A byte string is a sequence of contiguous eight-bit bytes
that are normally interpreted as logical values (see
Figure 2-14). The maximum length for byte strings is
65,5%5 bytes. A byte string may originate at any byte
boundary in storage. A byte string may have zero length.

VAL VE | VALUE |VRLGE | il WVALUE YARLUE

/]

70 70 Jo 7¢© 7 o 7
FIGURE 2-14. BYTE STRING
Byte strings are described by explicit-length structors.

The interpretation of the POSITION field of byte string
structors is as follows. (See Figure 2-15).

r .
t___~___ LENVSTW

FIGURE 2-15. POSITION FIELD FOR

BYTE AND TRANSLATED BYTE STRINGS

2-20
HONEYWELL PROPRIETARY - SENSITIVE

2.4.1.2

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

The length field specifies the number of bytes in each
byte string in the array of byte strings described by
the data structor. This field has a range O to 65,535
and is interpreted as an unsigned binary integer.

Translated Byte String

A translated byte string is a sequence of contiguous
eight-bit bytes that are translated using as implicit
translation table and are normally treated as logical
values. (See Figure 2-16). The maximum length for
translated byte strings is 65,535 bytes. A translated
byte string may originate at any byte boundary in storage.
The translation tables used to map from and to a trans-
lated byte string are called the load and store trans-
lation tables, respectively, and are located by means of
the Task Code Map Description in the Task Status Block
(see Section 2.5).

VAL oS | VRLUEIVALWE | VALUFE [yMAUKI

0

70 70 70 7 | e 7

FIGURE 2-16. TRANSLATED BYTE STRING

Translated byte strings are described by explicit-length
structors. The interpretation of the POSITION field

of translated byte string structors is as follows. (See
Figure 2-15). The length field specifies the number of
bytes in each translated byte string in the array of
translated byte strings described by the data structor.
This field has a range O to 65,535 and is interpreted

as an unsigned integer.

2-21
HONEYWELL PROPRIETARY - SENSITIVE

2.4.1.3

HONEYWELL PROPRIETARY - SENSITIVE

Zoned Decimal String

A zoned decimal string is a sequence of contiguous eight-
bit bytes, each containing an encoding of a decimal digit,
the rightmost byte of which contains a signed digit (see
Figure 2-17). The sign is stored as a zone field in the
rightmost byte. The zone bits in the remaining digit
positions are not interpreted by instructions manipulating
zoned decimal strings, but are preserved by execution

of these instructions. The numeric bits in each digit
position are interpreted as follows: 0000 to 1001 corres-
pond to decimal digits O to 9 and 1010 to 11lll are in-
terpreted as illegal and generate a trap when encountered.
The interpretation of the sign field is specified in
Appendix A. Each zoned decimal string has an associated
scale factor, which is used to specify the position of an
implied decimal point for the string. The maximum length
for zoned decimal strings is 32 digits, and the maximum
scale factor is 128 digit positions to the left, and 127
digit positions to the right of the leftmost digit of the
zoned decimal string. A scale factor of O places the
implied decimal point to the left of the leftmost digit

of the string. See Appendix A for sign encoding details.
A zoned decimal string may originate at any byte boundary
in storage.

1617 |\ Drery \Drsyr | NG A

o 70 76 19 7 /377
FIGURE 2-17. ZONED DECIMAL STRING > ¢, ~

Zoned decimal strings are described by explicit-léngth
structors. The interpretation of the POSITION field of
zoned decimal string structors is as follows. (See Figure
2-18).

2-22
HONEYWELL PROPRIETARY - SENSITIVE

2.4.1.4

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

ReSER Vi)

NN

K 2
T Y Scare mmernm
LenGT Iy

FIGURE 2-18. POSITION FIELD FOR ZONED AND UNSIGNED

ZONED DECIMAL STRING STRUCTORS.

The length field specifies the number of bytes in each
zoned decimal string in the array of zoned decimal strings
described by the structor. This field has a range 1 to

31 and %2, which is encoded as 00001 to 11111 and 0000O0.
The scale factor field specifies the position of an im-
plied decimal point for the zoned decimal string. This
field has a range -128 to +127 and is encoded as a twos
complement binary integer.

Unsigned Zoned Decimal String

An unsigned zoned decimal string consists of a sequence
of contiguous eight-bit bytes, each containing an en-
coding of a decimal digit. (See Figure 2-19).

V/ {2e]D’&?r o6, - | DIG)/G-/rl

é 70 70 70 7 e 7

FIGURE 2-19. UNSIGNED ZONED DECIMAL STRING

The interpretation of unsigned zoned decimal strings is
identical to the interpretation of zoned decimal strings,
except that the zone of the rightmost byte of the string

is not interpreted as a sign, but is preserved. A positive
value is always implied for unsigned zoned decimal strings.

2-23%
HONEYWELL PROPRIETARY - SENSITIVE

2.4.1.5

HONEYWELL PROPRIETARY -~ SENSITIVE

Packed Decimal String

A packed decimal string is a sequence of contiguous eight-
bit bytes, each containing an encoding of a pair of
decimal digits, except the rightmost byte, which contains
an encoding of a decimal digit and of a sign. (See

Figure 2-20). The sign code is the rightmost 4-bit field
of the rightmost byte of the packed decimal string. The
encoding of the sign code is specified in Appendix A,

Each digit field in the string is interpreted as follows:
0000 to 1001 correspond to decimal digits O to 9, 1010

to 1111 are interpreted as illegal digits and generate
traps when encountered. FEach packed decimal string has

an associated scale factor, which is used to specify the
position of an implied decimal point for the string. The
maximum precision for packed decimal strings is 31 decimal
digits, and the maximum scale factor is 128 digit positions
to the left or 127 digit positions to the leftmost digit
of the packed decimal string. A packed decimal string
may originate at any byte boundary in storage.

R . 1
0 34 70 34 7 @/5¢27
s g Prér7 [geqy

FIGURE 2-20. PACKED DECIMAL STRING.

Packed decimal strings are described by explicit-length
structors. The interpretation of the POSITION field of
packed decimal strings is as follows. (See Figure 2-21).

2=-24
HONEYWELL PROPRIETARY - SENSITIVE

2.4.1.6

HONEYWELL PROPRIETARY - SENSITIVE

1-16-70
‘f'REKERHﬁﬁ
o,
%
y ¥ g
T t———SCﬂé&:- FACTras”l
LECNG T

FIGURE 2-21. POSITION FIELD FOR PACKED AND
UNSIGNED PACKED DECIMATL STRING STRUCTORS

The length field specifies the number of bytes in each
packed decimal string in the array of packed decimal
strings described by the structor. This field has a range
1 to 15 and 16, which is encoded as 0001 to 1111 and 0000.
The scale factor field specifies the digit position of an
implied decimal point for the packed decimal string. This
field has a range -128 to +127 and is encoded as a twob
complementary binary integer.

Unsigned Packed Decimal String

An unsigned decimal string consists of a sequence of con-
tiguous eight-bit bytes, each containing an encoding
of a pair of decimal digits. (See Figure 2-22).

o 3% 70 3f 793¢¥ 1 e 37 2

XGrrs G178
FIGURE 2-22. UNSIGNED PACKED DECIMAL STRING

The interpretation of unsigned packed decimal strings is
identical to the interpretation of packed decimal strings,
except that the rightmost 4 bit field of the rightmost
byte in the string is interpreted as a decimal digit. A
positive sign is always implied for unsigned packed
decimal strings.

2-25
HONEYWELL PROPRIETARY - SENSITIVE

2.4.2

HONEYWELL PROPRIETARY - SENSITIVE

Edit Control String

An edit control string consists of a sequence of con-
tiguous eight-bit bytes that are interpreted as either
edit control function codes or as immediate operand bytes
(see Figure 2-23). The maximum length of an edit control
string is 65,536 bytes. An edit control string may
originate at any byte boundary in storage.

o 70 790 70 7 o 7
— ~" et S——

FIGURE 2-23. EDIT CONTROL STRING

The édit control string structor (explicit-length) has a
format identical to that for zoned or packed decimal
strings. The interpretation of the position and extent
fields of this structor differ, however, from the inter-
pretation appropriate to decimal string structors. In
particular, the following interpretation applied to edit
control string structors:

a. The location field is used to identify the byte ori-
gin of the edit control string in storage.

b. The length and scale factor fields may be used to
imply the precision and scale appropriate to the des-
tination string, if the source string is a decimal
string.

c. The extent field specifies the number of bytes in the
edit control string and is used to terminate execution
of the Edit instruction unless otherwise terminated.

An edit control string structor is valid as an operand
only for the EDIT instruction. (See Section V).

2-26
HONEYWELL PROPRIETARY - SENSITIVE

2.4.3

HONEYWELL PROPRIETARY - SENSITIVE

Unformatted Region

An unformatted region consists of a sequence of eight-

bit bytes for which no interpretation is implied. (See Figure
2-24). An unformatted region structor cannot be the
effective operand of an instruction (see Section V), but

can be used to represent an array of areas of storage
allocated for a specific purpose. In this latter role,

i1t is used in the Unformatted Region Qualification oper-
ation performed during instruction extraction. (See Sub-
section 3.5).

The maximum length for each unformatted region in an
array of unformatted regions is 65,535 bytes. An un-
formatted region may originate at any byte boundary in
storage, and may have zero length.

|
{
I
i
|

mcseamsinanme o e bae e w1 e b e a) e e c— —— ——

o7 o7 e7 » g 7
FIGURE 2-24. UNFORMATTED REGION

Unformatted regions are described by explicit-length
structors. The interpretation of the POSITION field
of unformatted region structors is as follows. (See
Figure 2-25).

/6
A lEweTH

FIGURE 2-25. POSITION FIELD FOR UNFORMATTED REGION STRUCTORS

2-27

HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

The length field specifies the number of bytes in each
unformatted region in the array.of unformatted regions
described by the structor. This field has a range O to
65,535 and is interpreted as an unsigned binary integer.

2.5 CONTROL INFORMATION REPRESENTATION

The operation of the task multiplexing and control
facilities is dependent on the presence in main storage
of information describing the current control structure
of the system. This section is devoted to a description
of this required information. The instructions which
operate on the control information are described in
subsection 5.6 and the operation of the task multiplexing
and control facility is described in Section VI. The
overall organization of the control information is shown
in Figure 2-26.

2.5.1 System Control Structors

The format of the structors used for system control and
I/0 purposes is shown in Figure 2-27.

Xx»tx)n{ VARIAQLE INICRIMNT /oA

o ‘i“ e ru ¢3
796

FIGURE 2-27. SYSTEM CONTROL STRUCTOR

The types applicable to system control are listed in
Table 2-6.

2-28
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

TABLE 2-6
CONTROL STRUCTOR TYPES

3
=

PURPOSE

Procedure Index

Relative Procedure Index
TSB Identifier

STOP Protected TSB Identifier
I/0 Status Word

External Status Word

Type I Trap Effector

Type II Trap Effector
Reserved

Reserved

Reserved

Device Specifier
Alternate Array Specifier
Control Command Specifier
Reserved

I/0 Command Structor

H &H Y Q@ k> 0w 030U &~ W - O

205.1-1

The formats and purposes of these structors are discussed
in the following subsections.

Procedure Index

A Procedure Index has the format shown in Figure 2-28.
Procedure indices are used to describe the state of
execution of a procedure. Each task has a Current
Procedure Index as part of its TSB. The Current Procedure
Index describes the state of the procedure which the

task is executing. There may be many procedure indices
associated with a single procedure.

2-29
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

LoCArrcew Co
THé- VSTV LochTr / e |wn
Comwre o -

[V LECE Mok
SGayLpe e & mopE”
o DlE gl Amed ModE
I Ll 7 IntG Sy Lospadd MBYTE
———— WM Colprs ModZ
—_— ‘/ AN T MEDE™

FIGURE 2-28. PROCEDURE INDEX FORMAT

2.5.1.2 Relative Procedure Index

A Relative Procedure Index is identical to a Procedure
Index except that the Instruction Location Counter field
contains a displacement relative to the location of the
Relative Procedure Index in main storage. A Relative
Procedure Index is converted into a Procedure Index when-
ever it is loaded into a register. (See Subsection
Autofetch Conversion).

2.5.1.3 TSB Identifiers

TSB identifiers are used as operands of the task control
instructions which operate on the state of tasks. They .
are also used as elements of the I/0 and External Start

Arrays. (See subsections 7.6 and 7.7).

Two types of TSB identifiers are used. A TSB identifier
is normally a legitimate operand for any task control
instruction. A STOP Protected TSB identifier is a legiti-
mate operand only for the START instruction. If an
attempt is made to use a STOP Protected TSB identifier

as the operand of a STOP, CONDITIONAL STOP, ISTOP, or
SUSPEND instruction a illegal operand trap occurs.

2-30
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

e |rwme| 738, Qs et :////////////////

FIGURE 2-29. TSB IDENTIFIER

2.5.1.4 Status Words

There are two types of status words: I/0 and External.
The se tagged doublewords are used to transfer information
from an I/0 device or External source to a task. (See
subsections 7.6 and 7.7).

TAG |7y Ale] STATUIS /A LR AT AN

FIGURE 2-30. STATUS WORDS

2.5.1.5 Trap Effectors

Whenever an instruction references a trap effector either
as an operand or during autofetch or autostore a trap
occurs. The effects of these traps are described in
subsection 8-1. The Trap Effector format is shown in
Figure 2-31.

TAG |Tyas RESER VSD FO0R ST WrAE JSE

FIGURE 2-31. TRAP EFFECTORS

2.5.2 System Base

The System Base is an area in memory which contains in-
formation, or descriptions of information, concerning

the state of the system as a whole. It acts as a fixed
base through which the remainder of the system control

2-31

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE

11-26-69

information may be accessed. It is always located in

words 0-31 of main storage. The format of the System

Base is shown in Figure 2-32.

—
0 Priority Array Structor d

2 I/0 Start Array Structor

4 External Start Array Structor

6 Processor Status Array Structor

8 Reserved

10 I/0 Status Array Structor RS

12 Device Specification Array Structor

14 Traffic Register Array Structor

16 Simultaneity Table Structor

18 |/l

20 Table Array Structor

22 Pl UK ES

30 Reserved

The allocation of space in the System Base is as follows:

FIGURE 2-3%32. SYSTEM BASE ORGANIZATION

Words O-1:

Words 2-%:

Words 4-5:

Words 6-7:

Words 8-9:

The Priority Array Structor: This explicit-

length bit-string structor describes the
Priority Array. (See subsection 2.5.4).

The I/0 Start Array Structor: This tagged

double-word array structor describes the I/0

Start Array.

The External Start Array Structor: This
tagged doubleword array structor describes
the External Start Array.

The Processor Status Array Structor: This
explicit length byte string array structor
describes the Processor Status Array.

Reserved.

2-32

HONEYWELL PROPRIETARY - SENSITIVE

2.5.3

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

Words 10-11: The I/O Status Array Structor: This
explicit length byte string array structor
describes the I/0 Status Array.

Words 12-17: Three array structors used to identify
tables required by the I/O0.

Word 18: This word contains two lock bytes: P is
the priority structure lock, and Q is the
Queue lock.

Words 20-21: The Table Array Structor: This byte string
array structor describes an array of 252
byte strings, each of length 256, used for
translation tables.

Words 22-25: These words are reserved.

Task Status Block

The existance and current status of a task is specified

by a Task Status Block (TSB). TSB's are stored in main
storage and must be located on a double word boundary.
They are up to 32 double words long. The exact length

is determined by the operating system. Certain portions
of the TSB must be accessible to the hardware. TFor this
reason the low order portion of the TSB has a fixed format
as shown in Figure 2-33.

The allocation of the TSB is as follows:

(In the following descriptions all unused bits are re-
quired to be zero).

a. Doublewords 0-15:

Sixteen general purpose registers which may be used
to hold tagged data or structors.

b. Doubleword 16:

A Ring Pointer which is used to link all Tasks at a
given priority level into a circular chain. (See .
Figures 2-33 and 2-3%4.)

Bits O and 1 specify the current state of the task.
They are encoded as follows:

2-35
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

1-16-70
o GENELCHAL
~ T REG/S7Es
15
2 RGO CESH - 3€
/ w2 < . i N ‘ K ‘_-
’7 Fl 2 ,g;éé%’?é;:é” mapE | MASK 2owp | PROCEDURS /”? A
F T7MER S7Arvs TIMER /S 7875
TR TS
V4 F o Ao‘_s&&‘?‘;\cx‘w MoPE AR Cew D, | TRAL [NOEX |
- Souns 76 /8
20
2 7R,
74 REG /(575705
2ol
23| TyrPE TVRE SAECUTC SN BN TRAP I'D
SPRECT S rus
%
-~ Lk Sy, @OE MAL
25 TRANSLATE TABUE LED A1 v, ;. ggté‘ By
26 REsSaRVED
3 1‘ SS/GuABLE

00 Running:

Ol Ready:

FIGURE 2-33.

processor.

TSB FORMAT

A ready task is one which, while not
currently using a processor, is prepared

to do so.

2-34 "

HONEYWELL PROPRIETARY -~ SENSITIVE

A running task is currently utilizing a

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

10 Blocked: A blocked task is not prepared to run
and is waiting for some event external to
itself.

11 Available: An available task is one which is not
prepared to run and which must be modified
by the operating system before it may run.

Bits 8-31 contain the address of the next TSB in the
chain. Bit 32 is a Start Flag which is set whenever an
External of I/O Start is directed to the task. Bits 40-47
are a lock for the Start Status Word. Bits 48-55 specify
the processor executing the task if it is in the running
state. Bits 56-63 specify the priority of the task.

i

s%},ﬁ ADDRs - oF ASxr P H IME@T J
é(/ /<i/ 'sfj.u #” ’**”“'7
o/ V€ f? 32 33 5 5T é3
B ___j ADPRESS oF NEXT ’ T T TASK (RIC.Ty
S7ATE TSE MINE CHaw e SURAEAT FRALESS s
a
|

OF THis [RreR/Ty
LEVEL

S74 s AN LG

——— MR Fihe

FIGURE 2-34. RING POINTER

c. Doubleword 17:

The current procedure index. This represents the
state of the procedure which the task 1s currently
executing.

d. Doubleword 18:

This word contains a 32 bit task timer and a 32 bit
status field the task timer is discussed in subsection
9.3. The status field is allocated as shown in Figure
2-35 .

2-35
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE .
1-16-70

B |) | W////// /l;/ / ‘ /
T AMEL /47 // /?wxxr
T_ 7men
TRAL
Ot DM
S Ar o
CLONF/eULRT IV
FIGURE 2-35.
The emulation configuration field (bits 27-29) are

used to indicate whether or not the task reguires a

non-native instruction set for its execution.

e.

Doubleword 19:

The Trap Index is a procedure index with the format
shown in Figure 2-28. Its contents exchanged with the
contents of the current procedure index when a trap
occurs.

Doublewords 20, 21, 22:

Three general purpose register images used for trap
handling.

Doubleword 2%:

A trap ID field where information about a trap may
be stored.

Doubleword 24:

This doubleword contains either a status field used
to store an External or I/0 Status Word, or a FIFO
structor used to point to an area where status words
may be stored.

Doubleword 25:

This double word contains three one-byte indices used
to select the Load Translate, Store Translate, and
Non-Binary Collate Tables. The Tables are selected

by using the index byte. to 1index the Table Array
Structor in the system base. This doubleword also con-
tains all numeric and alphea numeric fill bytes.

2-36
HONEYWELL PROPRIETARY - SENSITIVE

2.5.4

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

? o~ 3 3¢ 7 35 c3

If any of these indices is set to all ones
or exceed the extent of the Table Array
Structor the corresponding table is not present.

FIGURE 3-36.

j. Doublewords 26-27:

These words are reserved.

k. Doublewords 28-31: ’

These words are assignable by the operating system.

Task Priority Array

The Task Priority Array (TPA) is a doubleword aligned array
of 32 bit(binarE)strings identified by "the Priority Array
Structor in the System Base. There is one entry in the
Task Priority Array for each priority level in the system.
(The maximum number of levels is 255). Each of the entries
in the array points to a ring structure of all the TSBs

in the system at the corresponding priority level.

The format of a TPA entry is shown in Figure 2-37. Bits
8-31 are the location field and specify the address of the
ring pointer of a TSB in the ring structure.

P

(X acr:s;g Lo CR7/ON e Mpf7 | g
7p / 7¢ 3/ \‘“J\ﬁy

FIGURE 2-37. TASK PRIORITY ARRAY ENTRY FORMAT

2=-37
HONEYWELL PROPRIETARY - SENSITIVE

2.5.5

HONEYWELL PROPRIETARY - SENSITIVE

Bit O is a Level Blocked Indicator which is set whenever
the system discovers that none of the tasks in the corres-
ponding level are in the ready state. The Level Blocked
Indicator is reset whenever a task in the corresponding
level makes a transition to the ready state.

Bits 1 through 7 specify the number of tasks in the ring
structure at the corresponding level.

I/0 Start Array

The I/0 Start Array is an array of tagged doublewords
identified by the I/0 Start Array structor in the System
Base. The number of entries in the I/0 Start Array is

a function of the I/0 complement of the system and the
software. FEach entry may be one of the three types shown
in Figure 2-38.

746

i — W,

K. TS rOENTIF7ER

TAG

i

Jb./vuu.£n7%7

746

THE| KecATIN / /////// EXTEN T

e, INDEX AR Ry SIRUCTIR

FIGURE 2-38. I/0 AND EXTERNAL START ARRAY ENTRIES

The first allowable type of entry in the ISA is a TSB
identifier ((b) in Pigure 2-38). The location field in
this entry addresses the ring pointer location in a TSB.

2-38
HONEYWELL PROPRIETARY - SENSITIVE

2.5.6

2.507

HONEYWELL PROPRIETARY - SENSITIVE -
N 11-26-69

The second type of entry is a doubleword with a O tag

field, ((b) in Figure 2-38). This entry is used as a
null element.

The final type of entry is an implicit length tagged
doubleword structor ((c) in Figure 2-38). This structor
describes an Index Array which in turn may contain any
one of these three types of entries. (See subsection

I/0 Starts).

External Start Array

The External Start Array is an array of tagged doublewords
identified by the External Start Array Structor in the
System Base. The number of entries in the array is a
function of the size of the system and the operating
system requirements. Each entry may be one of the three
types described in subsection 2.5.5. The formats of these
entries are identical with those described for the I/O
Start Array in subsection 2.5.5.

Processor Status Array

The Processor Status Array (PSA) is a doubleword aligned
array of byte strings identified by the Processor Status
Array Structor in the System Base. There is a 16 byte
string in the array for each processor attached to the sys-
tem. The organization of these strings is shown in Figure
2-39.

The first four bytes of a PSA entry has a oune-byte command
field and a three-byte location field. Both of these fields
are used to convey information from the system to the as-
sociated processor. '

2-39

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 11-26-69

CoMMaR| NEw rsP <LoCsrion

CoRREN
Ptem&/;y CurReny 736 KIckzron ko cesso R 8

Byre S/RNG flRAY TRVCTOR

Frescessor [/

(44

(o E550 € N

FIGURE 2-39. PROCESSOR STATUS ARRAY

The second four bytes of a PSA entry is divided into two
fields: the first byte specifies the priority of the task
which is being executed by the processor. The other three
bytes contain the address of the Ring Pointer of the task
being executed by the processor. If the processor is in
the wait state then the first byte is set to all omes and
the other three bytes are unspecified.

The last eight bytes of a PSA entry is a byte string array
structor used to point to an area of storage reserved for
the use of the associated processor. The size of this area
depends on the implementation of the processor.

NOTE

The first entry in the PSA (pro-

cessor zero) is reserved for the

DCS. Its priority field will al-
ways be set to zero.

2-40

HONEYWELL PROPRIETARY - SENSITIVE

2.5.8

2.6

2.6.1

ELL PROPRIETARY - SENSITIVE
HONEYW 11-26-69

I/0 Status Array

The I/0 Status Array is a doubleword aligned array of

byte strings identified by the I/0 Status Array Structor
in the System Base. Each entry in the array consists of a
16 byte string. The first eight bytes are used as a com-
munications buffer between the processors and the I/0. The
other eight bytes form a string reserved for the use of the
I/0.

The number of entries in the array depends on the im-
plementation of the I/0 subsystem.

I/0 INFORMATION REPRESENTATION

The execution of Input/Output instructions will require
the use of information stored in main memory. Only the
description and modification of this information will be
specified in this section. A detailed explanation of
how this information is to be used, the execution of I/O
instructions and the I/O0 facilities, is presented in
Section X.

I/0 Structors

Tag F structors are used for system control and I/0 pur-
poses. The general format is shown in Figure 2-27.

The types applicable to Input/Output structors are listed
in Table 2-7.

TABLE 2-7
I/0 STRUCTOR TYPES

TYPE PURPOSE

Device Specifier
Alternate Array Specifier
Contrcl Command Specifier
Reserved

I/0 Command Structor

HEHOQW

2-41
HONEYWELL PROPRIETARY -~ SENSITIVE

2.6.1—.1

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

Device Identifier Structor

This structor is used to specify the logical device to be
used in the peripheral operation. It is formatted as
shown in Figure 2-40.

1

| Funerion KOGrCA «
101 \ow| Dhra Airw \DEVES | mase |RESEXD i

O 3¢ 2 pu RI2E 3L 3% po FTH e3>

2.6.1‘2

FIGURE 2-40. DEVICE IDENTIFIER STRUCTOR

The eight-bit device and 13-bit data path fields define

a device and routing information. The eight-bit Function
Mask and 16-bit Logical Mask fields, which are used in pro-
tection are explained in Section IX.

Alternate Array Specifier Structor

This structor will point to an array of I/0O Command
structors. It is to be used as the A operand in certain
types of Initiate Device Operation Order. Its formats
is shown in Figure 2.41,

[

/0| Lo eA7T7om RESSRYED 00003030 £XTeNT

0 3 ¥ 7f 3/ 32 7 YF S5 56 43

FIGURE 2-41. ALTERNATE ARRAY SPECIFIER

The 24-bit LOCATION field points to the first double
word of an I/0 Command Array, whose extent is specified
in the EXTENT field.

This structor is used in the IDO order to initiate I/O
operations on a busy device. Its application is
further explained in Section X.

2-42
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

2.6.1.3 I/0 Control Command Specifier

The I/0 command defines a control operation. It is to be
used as the A operand in the IDO instruction which speci-
fies the execution of a single control command. Its
format is shown in Figure 2-42.

AR RANLY) LolAT oM KESERVE? JIS1819 & X:T¢

¢ 3¢ 77 A A

FIGURE 2-42. I/0 CONTROL COMMAND SPECIFIER

It is similar to the implicit-length structor with the
exception that the extent field is all zeros (it points
to a single command).

2.6.1.4 T/0 Command Structor

The elementary I/0 operations in a chain of peripheral
commands is specified by a member of an array of I/O
Command Structors. These structors are formatted as shown
in Figure 2-43.

ey <ocAarron] AENGFH] v g
o/ ' of Jr 32 YL N
TRONS FER T_ DEVRE
VAR Rm T T CommAanp
Ca s

FIGURE 2-43. 1I/0 COMMAND STRUCTOR

The 24-bit LOCATION field will specify a byte in main
storage, where the data transfer will start. The 16-bit
LENGTH field specifies the number of bytes to be trans-
ferred (up to 65,535 bytes). The Transfer Variant and
Device Command Code specifies the function or operation
to the performed, as well as information concerning the
monitoring and sequencing of commands. The contents of
those fields will be specified in Sectdion X.

2-43
HONEYWELL PROPRIETARY - SENSITIVE

2.6.2

2.603

HONEYWELL PROPRIETARY -~ SENSITIVE

Device Specification Table
This table, whose initial address is in the System Base
and contains an entry per physical device attached to the
system, is formatted as shown in Figure 2-44.
2R Euxn AF TMNSFE& D G A
FLaes Commanrp ARLA i LA7E Ajmrmﬁ
7§ 3/ 2a ¥) wx¢t £3

FIGURE 2-44. DEVICE SPECIFICATION TABLE FORMAT

It will contain the pertinent device status information,
which is needed to effect the necessary protection and the
allocation of the peripheral device, during extraction and
execution of an IDO instruction. The eight-bit Flags
field will be used by the central processor in determining
the feasibility of execution of the order being extracted.
A 24-pit field, the Address of the Command Array, points
to the initial location of the Commend Array currently
active in the device. The device's current transfer rate
is included in a 16-bit field. The 16-bit logical status
will specify which logical device is currently assigned to
the physical device. It is to be used with the logical
mask of the device identifier structor as described in
Section X.

Traffic Regisgsters

This table, with an entry per system resource in which an
overrun can occur, and an additional entry for the whole
system is formatted as shown in Figure 2-45.

w"’"‘“\v_ R e e
G ALENT AT
TRANSLER RRTE | TRAMSFER RATE
¢ ¢S re 37
ikﬁm - o T /«"“"‘"’

FIGURE 2-45. TRAFFIC REGISTER FORMAT

2-44
HONEYWELL PROPRIETARY - SENSITIVE

2.604

2.6.5

2.7

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

The transfer rate is measured in units, each unit being

64 transfers/second (i.e., the maximum representable number
is 4,194,304 transfers/sec.). During transfer rate allo-
cation (in the extraction of an IDO order), the traffic
registers will be tested in order to anticipate a po-
tential overrun situation.

Simultaneity Table
This table is used during the extraction of the IDO order
to check for busy status of a resource with a fixed level
of simultaneity. The table will be composed of an entry
for each one of those resources. The contents of the
entry will be the number of I/0 operations currently being
simultaneously executed.
Input/Output Status Word
The Input/Output Status Word (IOSW) is used in conjunction
with I/0 initiated starts. It contains the reason and the
parameters associated with an I/0 start. It is formatted
as shown in Figure 2-46.
9 ' oara | ARAAY 7
RESEoy &) l?nycé'xwwl prosky Sepue STATUS
0 7¢ /51¢ 93 23y &I Jyeo (s
QUAL/F7ER,
S/remMAL CodE
FIGURE 2-46. IOSW FORMAT
Further specification of the IOSW is provided in Section IX.
INSTRUCTION FORMATS

Instructions are two, four, or six bytes in length and must
be aligned on halfword boundaries. The operation to be
performed is specified by an eight-bit operation code field,
the encoding of which also specifies the particular format
that is applicable to the instruction. The two operands

2-45
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

of the instruction, which are called the A and B operands,
are identified by one of several forms of operand spec-
ification. The forms of operand specification relevant to

a particular instruction are characteristics of the in-
struction format. The formats included are discussed

below. The encoding of the operation code field is specified
in Appendix B.

2.7.2.1 Operand Specification Syllables

The operands of instructions are specified by instruction
subfields called syllables. The available forms of
syllables are considered in succeeding subsections.

2.7.2.1.1 R - Syllable

The R - Syllable consists of a 4-bit field that is inter-
preted as a general register address or as control in-
formation. (See Figure 2547). When interpreted as a
general register address, the field selects one of sixteen
general purpose registers as the source or destination

of an operand. If interpreted as control information, the
field is utilized in a manner dependent upon the particular
operation being performed.

2.7.2.1.2 S =-Syllable

The S - Syllable consists of a 4-bit field, called the base
register address, a 4-bit field, called the index register
address, and a 12-bit immediate selection value field.

(See Figure 2-48). The two register address fields are
interprsted as general register addresses, selecting one of
fifteen general purpose registers, unless the field con-
tains a hexadecimal zero, which selects no general register.
The immediate selection value field is interpreted as a
twos complement binary integer in the range -2048 to
+2047. The source or destination of the operand specified
by the S - Syllable is determined by combination of the
selected general register contents and the immediate
selection value.

2-46
HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

1-16-70
y 4
A REGISTER ADOEsS
FIGURE 2-47. R - SYLLABLE
¢ ¥ "
T {————— IMMELYATE SELEQTIIN \JAUE
! IAMDEX REGISTER ADDOEID
BAsE RECIS7ER BODCESS
FIGURE 2-48. S - SYLLABLE
4 /f_____.,_ RELQTIVE DISPCACLoM ENY
4 FYAE CaDE - JNOEX

FIGURE 2-49. D - SYLLABLE

2-47
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

2.7.2.1.3 D _- Syllable

The D - Syllable consists of a 4-bit field, called the
typecode-index field, and a 16-bit field, called the rela=
tive-displacment field. (See Figure 2-49). The typecode-
index field is interpreted as either: 1) a general regis-
ter address, which selects one of fifteen general purpose
registers, unless the field contains a hexadecimal zero,
which selects no general register, or 2) a typecode,
which is used to ascribe certain attributes to the assoc-
iated operand. The relative-displacement field is inter-
preted as a twos complement binary integer.

20702.1-4- V - Syllable

The V - Syllable consists of a 24-bit field that is inter-
preted as control information. The specific interpretation
of this information depends on the particular operation being
performead.

2.7.2.2 Instruction Encoding

Conceptually, an instruction consists of a sequence of
operation and operand specification syllables. Instruction
encoding, however, differs slightly from a linear con-
catenation of syllables.

The first byte of an instruction is the operation syllable,
which contains an encoding of the operation specified, and
of the instruction format, as specified in Appendix B.

The second byte of an instruction always consists of a
pair of 4-bit fields that normally countain an encoding

of a general register address or control information. For
instruction formats containing S-, D-, or V-Syllables, the
remaining one or two halfwords are formatted as either a
concatenated 4-bit index register address and 12-bit im-
mediate selection value or a 16-bit binary value.

The available instruction formats, presented in both con-
ceptual and actual forms, are shown in Figure 2-50.

2-48
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE
11-26-69

Instructions are required to be halfword boundary aligned.

Format/Bit Length/Conceptual Syllable Sequence
RR/16 bits/Op, R, R

OPCODE | Bp | By
8 L4

RS/32 bits/Op, R, S

OPCODE By Bp Iy ISVg
8 4 4 4 12

SR/32 bits/ Op, S, R

OPCODE By Bp Ip ISVy
8 4 4 4 12

SS/48 bits/Op, S, S

OPCODE | By | Bp| Ian | ISVy | Ip | Isvg
8 4 4 4 12 4 12

RD/32 bits/Op, D, R

OPCODE TTp Ry RDp
8 4 4 16

CV/32 bits/Op, V

OPCODE CONTROL
8 24

FIGURE 2-50. INSTRUCTION FORMATS

(In Figure 2-50, By, Ix, ISVx, TIx, and RDy are abbrev-
iations for base register, index register, immediate sel-
ection value, typecode-index, and relative displacement for

the X-operand.)

~-END OF SECTION--

2-49
HONEYWELL PROPRIETARY - SENSITIVE

3.1

HONEYWELL PROPRIETARY - SENSITIVE

SECTION III
SELECTION PRIMITIVES

GENERAL

The selection primitives are a set of four operations that
can be utilized in the process of selecting operands for
instructions. These primitives are performed with one or
two tagged quantities provided as inputs, one of which is

always a data structor that serves as an operand description.

The four primitives are: Autofetch/Autostore Conversion,
Autofetch/Autostore Evaluation, Array Indexing, and Unfor-
matted Region Qualification. These primitives are specified
in the following subsections and are utilized by operations

discussed in succeeding sections.

AUTOFETCH/AUTOSTORE CONVERSION

Autofetch/Autostore Conversion is a collection of operations
that are performed in order to transform operands from a com-
pact or tagged doubleword form into a tagged form and from
a tagged form into a compact or tagged doubleword form.
Autofetch Conversion requires a data structor as an input
and produces a tagged quantity as a result. Autostore Con-
version requires a data structor and a tagged quantity as
inputs. 1In either case, the type of Autofetch/Autostore
Conversion operation selected depends on the TYPE field of
the input data structor.

In the following discussion, the data structor used by Auto-
fetch/Autostore conversion is referred to as the operand
description, while the quantity fetched from or placed in

storage is called the operand.

Autofetch/Autostore Conversion for Bit Strings

The bit string operand is described by an explicit-length
specifier structor, the TYPE field of which indicates bit
string. The LOCATION field of this structor contains the
storage address of the byte within which the bit string

3-1
HONEYWELL PROPRIETARY - SENSITIVE

3.2.1
(Cont.)

N N

HONEYWELL PROPRIETARY - SENSITIVE

originates.. The bit offset subfield of the POSITION fiel.
of the structor specifies the bit position of the first bit
of the bit string within the initial byte. The length sub-
field of the POSITION field of the structor indicates the
number of bits in the bit string. The alignment offset sub-
field of the POSITION field of the structor indicates the

desired offset of the bit string in the tagged logical word
created or used.

Autofetch conversion for bit strings involves the creation
of a tagged logical word. The value of the tagged logical
word consists of S zero bits, followed by the L bits of the
bit string, followed by 32-L-S zero bits, where S is the
alignment offset field value and L the length field value
from the bit string structor.

The bit string originates at bit offset F within the byte
addressed by the LOCATION field of the bit string structor
and occupies the succeeding L bits of storage. Autofetch.
Conversion for bit strings is shown in Figure 3-1.

¢ /. < /(,7 Ao s (?C. SC ,{‘i LA

N

;1<’ E '}
AN

i
% O | BYTE LIILTION l,?

A Y o) B SR
A SE l | orerAns
’.4.,,.4/_,__ ~/ . .‘1 /} “ - . - e e o

i
<
-

AUTO LETCl QUrs7 [/ Rums s=usy Vi,

FIGURE 3-1. BIT STRING AUTQFETCH/AUTOSTORE CONVERSION

3-2
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

Autostore Conversion for bit strings is accomplished by sub-
stitution of bits 32 + S to 32 + L + S of a tagged logical
word Autostore input into the bytes in storage containing the
bit string. The bit string originates at bit offset F with-
in the byte addressed by the LOCATION field of the structor
and occuplies the next L pbits of storage. I1If L + S is
greater than 32, right truncation occurs. An attempt to
perform Autostore Conversion with other than a tagged logical
word input causes an operand selection exception trap (0104)
to be generated or masked. If the bit string is nonalterable
(TAG of operand description is hex 7), an attempt to perform
Autostore Conversion causes an operand selection exception
trap (0lU4) to be generated or masked. Autostore Conversion

for bit strings is shown in Figure 3-1.

Autofetch/Autostore Conversion time for bit strings depends
on the bit offset, length, and alignment offset of the bit
string. Byte alignment, byte multiple length, and no align-

ment offset produces the minimum Conversion time.

Autofetch/Autostore Conversion for Binary Strings

The binary string operand is described by an explicit-length
specifier structor, the TYPE field of which indicates binary
string. The LOCATION field of this structor contains the
storage address of the byte within which the binary string
originates. The bit offset subfield of the POSITION field
of the structor specifies the bit position of the first bit
of the binary string within the initial byte. The length
subfield of the POSITION field of the structor indicates the
number of bits in the binary string. The alignment offset
subfield of the POSITION field of the structor indicates the
desired offset of the binary string in the tagged binary in-

teger created or used.

Autofetch Conversion for binary strings involves the creation
of a tagged binary integer. The value of the tagged binary
integer consists of S bits identical to the leftmost bit of

3-3
HONEYWELL PROPRIETARY - SENSITIVE

3.2.2

(Cont.

HONEYWELL PROPRIETARY - SENSITIVE

binary string (sing bit), followed by the L bits of the

binary string, followed by 32-L-S zero bits, where L is the
length field value and S the alignment offset field value of
the binary string structor. If L + S is greater than 32, =

rightmost bits are trucated.

OPERAMD OEILLIOT e
' i S N e
\ / §F‘A\1 o i
(j / E U U - 1. N . ‘..,_L)':Lg,. RS [,
¢ g ————— L —-————-—-b—8
FF%/ ///1'//1 CPERAL
nary . e -
trlng T~
, KSR 7 R !/ 7
‘>?;f9” {{‘*<% SIGN ///i////‘OOO

AR, "I puprfur e— S s

FIGURE 3-2., BINARY STRING AUTOFETCH CONVERSION

The binary string originates at the bit offset F within the
byte addressed by the LOCATION field of the binary string
structor and occupies the succeeding L bits of storage.
Autofetch Conversion for binary strings is shown in Figure
3-2.

Autostore Conversion for binary strings is accomplished by sub-
stitution of bits 32+L to 32+L+S of a tagged binary integer
Autostore input into the bytes in storage containing the
binary string. The binary string originates’at bit offset
F within the byte addressed by the LOCATION field of the
structor and occupies the next L bits of storage. If the
leftmost S bits of the tagged binary integer are not equal
to the bit 32 + S of the tagged binary integer, then an

to bit 32 + S of the tagged binary integer, then an

An attempt to perform Autostore Conversion with other than
a tagged binary integer input causes an operand selection

exception trap (0104) to be generated or masked. Finally,

3-4
HONEYWELL PROPRIETARY - SENSITIVE

3.2.2

(Cont.

HONEYWELL PROPRIETARY -~ SENSITIVE

if the binary string is nonalterable (TAG of operand des-

) cription is hex 7), and attempt to perform Autostore Conver-
sion causes in an operand selection exception trap (0104) to be
generated or masked., Autostore Conversion for binary strings
is shown in Figure 3-3.

Autofetch/Autostore conversion time for binary strings de-
pends on the bit offset , length, and alignment ocffset of
the binary string. Byte alignment, byte multiple length,

and no alignment offset produces the minimum Conversion time.

This description of binary string Autofetch/Autostore Con-
version is consistent with the interpretation of binary
strings as twos complement binary integers of specified pre-

cision and scale.

ars L~ = >Ca e
2k egdsl
S R E
S —
4/}///% ||
pd
Binary \;M“Q” ~
String~ — __ ™~

AROTOSTOLE NPT r‘- S -——~4*Ft-- £ '—~*4

ALL 75 /KQEf
BE FIENT AL

FIGURE 3-3. BINARY STRING AUTOSTORE CONVERSION

3-5
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

Autofetch/Autostore Conversion for Floating Point Strings

The floating point string operand is described by an explic-
it-length specifier structor, the TYPE field of which indi-
cates floating point string. The LOCATION field of this
structor contains the storage address of the byte at which
the floating point string originates, The length subfield
of the POSITION field of the structor indicates the number
of bytes in the floating point string. The significance
truncation indicator in the POSITION field is used to con-
trol significance truncation when Autofetch/Autostore Con-

version for floating point strings is performed in signifi-
¢cance mode..

Autofetch Conversion for floating point strings involves the
creation of a tagged hexadecimal floating point number.

This is achieved by concatenating the TAG for a tagged hexa-
decimal floating point number (hex 2) with the floating
point string and extending the string right with zeros until
the precision of the mantissa is 13 digits. If the length
of the floating point string is 8 bytes, the rightmost hexa-
decimal digit is truncated.

When the significance mode indicator is set and the signifi-
cance truncation indicator in the operand description data
structor is reset, the mantissa formed above is shifted

right by a number of hexadecimal digit positions equal to

fifteen minus two times the length of the floating point
string in bytes. If the length of the floating point string
is eight bytes, no mantissa shift is performed. If the man-
tissa shift is performed, the number of digit positions
shifted is added to the exponent. If the exponent overflows,
an operand selection exception trap (0105) is shown in

Figure 3-4.

Autostore Conversion for hexadecimal floating point strings
is the inverse of the above process. If the significance

mode indicator is set, and the significance trunction

3-6
HONEYWELL PROPRIETARY - SENSITIVE

3.2.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

indicator in the data structor is reset, the mantissa is
shifted left until its leftmost digit is nonzero or until
14 - (2*[L-1]) digit positions have been shifted. The num-
ber of positions shifted is subtracted from the exponent.
If the exponent under flows, an operand selection exception
trap (0104) is generated or masked.

Independent of the setting of the significance mode indica-
tor, the sign/exponent and leftmost L-1 pairs of digits of
the mantissa are substituted into the byte addressed by the
LOCATION field of the operand description data structor and
the next L-1 bytes to its right where L is the value of the
length subfield of the POSITION field of the structor. If

L is 8 then the rightmost digit of the rightmost byte is
zero. An attempt to perform Autostore Conversion with other
than a tagged hexadecimal floating point input causes an op-
erand selection exception trap (0104) to be generated or
masked.

When the floating point round mode indicator is set, a hexa-
decimal eight is added to digit position (2*[L-1]) + 1 of
the mantissa and hexadecimal zero to another digit positions
of the mantissa, where L is the floating point string byte
length. This action is performed after the significance
shift step of Autostore Conversion. If L is 8, this step

is not performed.

If the floating point string is nonalterable (TAG of operand
description if hex 7), an attempt to perform Autostore Con-
version causes an operand selection exception trap to be

generated or masked.

Autostore Conversion for floating point strings is shown in
Figure 3-5.

Autofetch/Autostore Conversion time for floating point
strings depends on boundary alignment, byte length, and the
significance mode and significance truncation indicator

settings, and the round mode indicator setting.

3-7
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELI, PROPRIETARY - SENSITIVE
GrOGHEARN G DESCA AT o0y

N ”-__..,..,..m.}, U

S| Exe M»M}f'/& sS4 J

S

- T

[L o e e e et < e

: Autofetch
SARL 7 S 54 3 , 1 oOutput:

o e - - i . Case 1

%o
n
™
D

T ' N S Autofetch
J 5 e I N MANZT 7S5 A Output:
: Case II

[] . . o <
7w,s AN LL T S Y
”4: -) LN , VN ALrsw s . r o

-~ v ’

I L‘.‘\J/.

FIGURE 3-4, FLOATING POINT STRING AUTOFETCH CONVERSION
OFLry A AR Lo,

RS B ‘-»Sf

P i T
ls f/\//o' i‘h AT /‘J (j/\.’iﬁﬁf.
i e

N AS
- — N
\ ~
. | UGV WU [— J
218l A | AT A
N - 1 —
: Au7os 4 e e !
i
1
2 S| Rk sl ~ 1
: AT ST ,.«mw- 8'{ \/#u.) F 7 Drnsm o sim o ,['Qx(,__,)jg/ﬂ
L_A L - - O MAA T, b /«» /‘= :1 Asuns AMoDE
L' E f R i Autostore
A VP B g AT
< : | ~ iInput
k_.—_‘:j‘“ I T N - . Qs
»’f:-s!/.’ P f‘?/' PN R RN PV S Tt
vl"‘

FIGURE 3-5. FLOATING POINT STRING AUTOSTORE CONVERSION

3-8
HONEYWELL PROPRIETARY - SENSITIVE

3.2.5

HONEYWELL PROPRIETARY - SENSITIVE

Autofetch/Autostore Conversion for Tagged Doublewords

The tagged doubleword operand is described by an implicit-
length structor with a TYPE field specifying tagged double-
word and a LOCATION field identifying the storage address

of a tagged doubleword. Any tagged quantity may be re-
trieved or stored into this tagged doubleword operand.

Aytofetch Conversion for tagged doublewords consists of
forming a tagged quantity identical to the contents of the
eight consecutive bytes of storage originating at the byte
addressed by the LOCATION field of the tagged doubleword
structor. 1If the rightmost three bits of the LOCATION field
are not all zero, an operand selection exception trap (0105)
is generated or masked. Autofetch Conversion for tagged

doublewords is shown in Figure 3-6.

Autostore Conversion for tagged doublewords consists of
substituting a tagged input quantity into the eight con-
secutive bytes of storage originating at the byte addressed
by the LOCATION field of the tagged doubleword structor. If
the rightmost three bits of the LOCATION field are not all
zero, an operand selection exception trap (0104) is generated or
masked. When the tagged doubleword item is nonalterable
(TAG of operand description is 9 or B), an attempt to per-
form Autostore Conversion causes an operand selection ex-
ception trap (0103) to be generated or masked. Autostore
Conversion for tagged doublewords is shown in Figure 3-6.

Autofetch/Autostore Conversion for Ministructors

The ministructor operand is described by an implicit-length
structor with a TYPE field specifying ministructor and a
LOCATION field identifying the storage address of a mini-

structor.

Autofetch Conversion for ministructors consists of seversl
steps, starting with retrieval of the four consecutive bytes
of storage originating at the byte address specified by the

3-9
HONEYWELL PROPRIETARY - SENSITIVE

3.2.5
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

QP AN, (v ~r o L

RN

T (Cbuﬂ“~w DY SN SN VP IY
e A R S
*—qum N = A e

»_-w_....__.

TG

FIGURE 3-6. TAGGED DOUBLEWORD AUTOFETCH/AUTOSTORE CONVERSION

structor LOCATION field that contain the ministructor oper-
and. If the rightmost two bits of the structor LOCATION
field are not both zero, an operand selection exception trap
(0105) _structor identify it as either a singular, dual, array,
structor identify it as either a singular, dual, array, or
string class ministructor. The next bit in the ministructor
identifies the modifier/specifier and baselink/datalink
forms. The next bit specifies the alterability attribute
associated with the ministructor, and the next four bits
constitute a typecode field.. These leftmdst eight bits of
the ministructor control the formation of the structor that
is output. The following steps describe the process for

constructing the ministructor-equivalent structor:

a. The third and fourth bits of the ministructor (modifier/
specifier or baselink/datalink and alterability indica-
tors) become the rightmost two bits of the TAG field

of the structor.

3-10
HONEYWELL PROPRIETARY - SENSITIVE

or

3.2.5
(Cont.)

ii)

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

When the classifier field indicates a singular or dual
ministructor, the LOCATION field of the structor has

the same value as the ministructor location field.

When the classifier field indicates an array or string
ministructor, then depending on the value of the third
bit of the ministructor (modifier/specifier or baselink/
datalink indicator), the LOCATION field of the structor
is formed as follows:i)If the third bit is reset (modi-
fier, baselink), then the structor LOCATION field equals
the value of the relative displacement field of the

ministructor,

If the third bit is set (specifier, datalink), then the
structor LOCATION field equals the value of the mini-
structor relative displacement field plus the value of
the LOCATION field of the operand description structor.

The latter contains the byte address of the ministructor.

When the classifier field indicates a singular, dual,
or array ministructor, the typecode field of the mini-
structor is used to form the first two bits of the TAG
field, the TYPE field, and the POSITION field of the

output structor in accordance with Table 2-4,

The structor EXTENT field is set to zero, one, the value
of the ministructor extent field, or zero, depending on
whether the classifier field indicates a singular, dual,
array, or string ministructor, respectively.

When the classifier field indicates a string ministruc-
tor, the leftmost two bits of the structor TAG field are
set to indicate an explicit-length structor. The struc-
tor TYPE field equals the ministructor typecode field,
and the typecode field value is used to control forma-
tion of the output structor POSITION field. In partic-
ular, if the typecode indicates bit, or binary string
(values 0 and 1), then the position field of the mini-
structor becomes the leftmost eight bits of the struc-
tor POSITION field, and the rightmost eight bits of the

structor POSITION field are set to zero.

3-11
HONEYWELL PROPRIETARY - SENSITIVE

3.2.5
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

If the type code indicates floating point string, or packed

or zoned signed or unsigned decimal string (values 2, 4,
5, 6, 7,), then the structor POSITION field consists of
four zero bits, followed by the leftmost four bits of the
ministructor position field, followed by four zero bits,
followed by the rightmost four bits of the ministructor
position field. Finally, if the typecode indicates byte
or translated byte string or unformatted region, then

the ministructor position field becomes the rightmost

eight bits of the structor POSITION field, and the left-
most eight bits of the POSITION field are set to zero.

The Autofetch Conversion process for ministructors is shown
in Figure 3-7.

Autostore Conversion for ministructors is also a multistep
process, consisting of storage of a ministructor in the four
consecutive bytes of storage originating at the byte address
specified by the structor LOCATION field. If the rightmost
two bits of the structor LOCATION field are not both zero,
an operand selection exception trap (0104) is generated or
masked. An attempt to perform Autostore Conversion into a
nonalterable ministructor operand causes an operand selec-

tion exception trap (0103) to be generated or masked.

The steps performed in Autostore Conversion are controlled
by various fields in the tagged quantity provided as Auto-
store input. These steps are specified as follows:

a. The TAG field of the Autostore input must indicate a
structor (TAG values hex 4 to B). If not, then an oper=
and selection exception trap (0104) is generated or
masked.

b. If the TAG field indicates an implicit-length structor,

then the following steps are performed.

i. When the EXTENT field is zero or one, the mini-
structor consists of a classifier value 00 (singular)
or 01 (dual), baselink/datalink and alterability

indicators identical to the input structor indica-

3-12
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

3.2.5
(Cont.)

GPERL . ES L AT, I
. - A
§ g
70 | 3 vo!

R Nt L WY Fowak il
- —— Alrgamenyr K &@uidd

operand

|
z
i

|| o) |

ALTUTE I GurPar ROpaS ToRE LAY

+

TAG [TyAE

a. SINGULAR, DUAL MINISTRUCTORS

CAERAND DES CRIPTTON

P |

OPERARL D

@O oD ’
L fF OFSC, TN

: e e ".'-.,_‘.I'_ = | I -
%\r 7//}'! PO S/ re nd] !
U I ! f

‘+

AU fercsm OurPuy [RUresronts [meour
b. ARRAY, STRING MINISTRUCTORS
FIGURE 3-7. MINISTRUCTOR AUTOFETCH/AUTOSTORE CONVERSION

3-13
HONEYWELL PROPRIETARY - SENSITIVE

3.2.5
(Cont.)

ii.

HONEYWELL PROPRIETARY - SENSITIVE /
11-26-69

tors, a typecode field formed as specified below,
and a location field value identical to the LOCATION

field in the input structor.

If the EXTENT field is not zero or one, but is less
255, the ministructor consists of a classifier
value 10 (array), baselink/datalink and alterability
indicators identical to the input structor jindica-
tors, a typecode field formed as specified below,
and an extent field set equal to the value of the
EXTENT field of the input structor. The relative
displacement field of the array ministructor is com-
puted as follows. If the TAG field indicates a base-
link structor, and if the value of the structor
LOCATION field is less than 65,536, then the mini-
structor relative displacement field is assigned
this value. If the TAG field indicates a datalink
structor, and if the difference between the oper-
and déscription structor LOCATION field and the. in
put structor LOCATION field is less than 65,536,

then the ministructor relative displacement field

is assigned the value of the difference.

The typecode field of the ministructor is set to 0, if

the TYPE field of the input structor indicates tagged
doubleword (TYPE value O), or is set to 1, if the TYPE
field indicates ministructor (TYPE value 3). If the

constraints specified cannot be satisfied, an operand

selection exception trap (0104) is generated or masked.

If the TAG field indicates an explicit-length structor,
the following steps are performed.

i, If the TYPE field indicates bit, or binary
string, and if the rightmost byte of the POSITION
field is zero, a string ministructor is form-
ed with modifier/specifier and alterability in-

dicators identical to the input structor indica-

3-14
HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 11226-69

3.2.5 tors, a typecode field identical to the TYPE field
(Cont.) of the input structor, and a position field equal
to the leftmost byte of the POSITION field of the

input structor,.

ii. If the TYPE field indicates floating point string or
zoned or packed, signed or unsigned decimal string,
and if bits 0-3 and 8-11 of the POSITION field of the
structor are all zero, a string ministructor is form-
ed with modifier/specifier and alterability indica-
tors identical to the input structor indicators, a
typecode field identical to the TYPE field of the in-
put structor and a position field composed of bits 4-7
followed by bits 12-15 of the structor POSITION field.

iii. If the TYPE field indicates byte or translated byte
string or unformatted region, and if the leftmost
byte of the structor position field is zero, a
string ministructor is formed with modifier/specifier
and alterability indicators identical to the input
structor indicators, a typecode field identical to
the TYPE field of the input structor, and a posi-
tion field equal to the rightmost byte of the
structor POSITION field.

The relative displacement field of the string ministruc-
tor is computed as follows. If the TAG field indicates
a modifier structor, and if the value of the structor
location field is less than 65,536, then the ministruc-
tor relative displacement field is assigned this value.
If the TAG field indicates a specifier structor, and if
the difference between the operand description structor
LOCATION field and the input structor location field is
less than 65,536, then the ministructor relative dis-
placement field is assigned the value of the difference.
If the constraints specified cannot be satisfied, an
operand selection exception trap (0104) is generated

or masked.

3-15
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

Whenever a ministructor cannot be produced by any of the
above steps, an operand selection exception trap (0104)
is generated or masked. Autostore Conversion for ministruc-

tors is shown in Figure 3-7.

Note that it is not always possible to perform Autofetch
Conversion for a ministructor and then subesquently perform

Autostore Conversion for the resulting structor.

AUTOFETCH/AUTOSTORE EVALUATION

Autofetch/Autostore Evaluation consists of a procedure for
computing a structor value by means of indirection through

a chain of data structors. Autofetch Evaluation must be
supplied with a tagged quantity as an input and produces a
tagged quantity as an output. Auto store evaluation must be
supplied with two tagged input quantities. Items in the in-
direction chain must be data structors or ministructors, ex-
cept the final item may be any tagged quantity. The maximum
number of items in an indirection chain is sixteen. This
limitations guarantees that the Autofetch/Autostore Evalua-

tion process will terminate in a finite number of steps.

The steps describing Autofetch Evaluation are specified be-
low. These steps must be performed in the order specified.
The steps are defined in terms of an indirection count,
which is used to record the number of indirection steps
performed, and an old and current tagged value, used as
working locations and initialized to zero. Autofetch Eval-
uation is provided with a tagged input value, and produces

a tagged output value. The steps defining Autofetch Evalua-

tion are a follows:

a. The tagged input quantity becomes the current tagged

value, and the indirection count is set to zero.

b. The TAG field of the current tagged value is used to
select an action to be performed, as specified in Table
3-1. If Autofetch Evaluation is terminated, no further

3-16
HONEYWELL PROPRIETARY - SENSITIVE

3.3
(Cont.)

HONEYWELL PROPRIETARY -~ SENSITIVE

steps are performed, and the current tagged value is
the output of Autofetch Evaluation., If it is not termi-

nated, step c. is performed.

c. Increment the indirection count by one. If it is equal
to sixteen, an operand selection exception trap (0106)
is generated or masked. Otherwise, go to step b.

Step c. is only performed in the case where the current tag-
ged value is an implicit-length datalink structor, This
structor is used to indirectly access operands.

The steps for performing Autostore Evaluation are similar to
those for Autofetch Evaluation. Autostore Evaluation may
be applied in conjunction with Autofetch Evaluation or in-
dependently. If both Autofetch and Autostore Evaluation
apply to an operand of an instruction, then Autostore Eval-
uation consists only of the action of storing a quantity

in the location from which the same operand was retrieved
by Autofetch Evaluation. The following two rules apply in

this case:

a. If the quantity output by Autofetch Evaluation was re-
trieved from a general register, then Autostore Evalua-
tion consists of restoring the result to the same gener-
al register.

b. If the quantity output by Autofetch Evaluation was re-
trieved from storage, then Autostore Evaluation consists
of utilizing the data structor in the o0ld tagged value
generated by Autofetch Evaluation to perform Autostore
Conversion the input quanitiy. The form of Autostore
Conversion selected depends on the TAG and TYPE fields
of the old tagged value data structor.

When only Autostore Evaluation is applied to an instruction
operand, Autostore Evaluation consists of the steps pre-
sented below. The steps are defined in terms of an indirec-
tion count, which is used to record the number of indirec-

tion steps performed, and an old and current tagged value,

3-17
HONEYWELL PROPRIETARY - SENSITIVE

3.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

used as working locations and initialized to zero. Auto-

store Evaluation is provided with a tagged input value

which may serve as an operand description. The steps de-

fining Autostore Evaluation are as follows:

a.

The tagged operand description quantity becomes the
current tagged value, and the indirection count is set

to zero.

The TAG field of the current tagged value is used to
select an action to be performed, as specified in Table
3-2,

If the indirection count is zero, the current tagged
value must have been retrieved from a general register,
and the Autostore input is placed in this general regis-

ter. Autostore Evaluation terminates.

If the indirection count is nonzero, and if the current
tagged value is produced by action B in Table 3-2, then
the o0ld tagged value is used as an operand description
to restore the result of an instruction execution. If
the TAG and TYPE fields indicate bit, binary, or float-
ing point string, or an implicit-length type, then the
result is restored using the corresponding form of
Autostore Conversion. Other TAG and TYPE field combina-
tions result in using the old tagged value to restore
byte sequence results during instruction execution.

Autofetch Evaluation terminates.

If the indirection count is nonzero, and if the current
tagged value is produced by action C in Table 3-2, then
the indirection count is incremented by one. If it is

equal to sixteen, an operand selection exception trap is

generated or masked. Otherwise, go to step b.

Restoration of results of instruction execution takes place

during instruction execution.

3-18
HONEYWELL PROPRIETARY - SENSITIVE

TAG

W P O 0O I3 O U1 » W N H O

(@]
o
=

HONEYWELL PROPRIETARY - SENSITIVE

TABLE 3-1
AUTOFETCH EVALUATION ACTIONS

NAME ACTION*

B

Tagged Logical Word

Tagged Binary Integer

Tagged Hexadecimal Floating Point Number
Unassigned

Explicit, Modifier, Alterable Structor
Explicit, Modifier, Nonalterable Structor
Explicit, Specifier, Alterable Structor
Explicit, Specifier, Nonalterable Stfuctor
Implicit, Baselink Structor

Implicit, Baselink Structor

Implicit, Datalink, Alterable Structor
Implicit, Datalink, Nonalterable Structor
Unassigned

o N e I T B I v v B v+ B~ cs B -

System Control Structor

*The actions performed are as follows:

A

B-

The current tagged value is the output of Autofetch Evaluation.
Autofetch Evaluation is terminated.

The current tagged value is an explicit-length specifier struc-
tor. The TYPE field of this structor is examined to determin

the appropriate action. If the TYPE field indicates bit, binary,
or floating point string, (TYPE values O, 1, 2), then bit, bin-
ary, or floating point string Autofetch Conversion is performed,
using the current tagged value as an operand description. (See
Subsection 3.2.) The Autocfetch Conversion output then becomes
the current tagged value. If the TYPE field indicates some

other explicit-length type, then the current tagged value remains
unaltered. In either case, Autofetch Evaluation is terminated.

The current tagged value is an implicit-length datalink structor,
The TYPE field of this structor is examined to determine the ap-
propriate action. If the TYPE field indicates tagged doubleword,
tagged doubleword - LIFO access, tagged doubleword - FIFO access,
or ministructor (TYPE values 0, 1, 2, 3), then the corresponding
form of Autofetch Conversionis performed, using the current tag-
ged value as operand description. (See Subsection 3.2.) The
Autofetch Conversion output then becomes the current tagged

3-19
HONEYWELL PROPRIETARY - SENSITIVE

D—

HONEYWELL PROPRIETARY - SENSITIVE

value. The next step is then performed. Any other TYPE field

value causes an operand selection exception trap (0106) to be gen-

erated or masked. The operand description for Autofetch Conver-
sion is preserved as the old tagged value.

The current tagged value is a system control structor. The TYPE
field of this structor is examined to determine the appropriate
action. If the TYPE field indicates relative procedure index
(TYPE value 1), then the LOCATION field of the old tagged value
(see C- above) is added to the LOCATION field of this relative
procedure index, and its TYPE field is set to procedure index
(TYPE value 0). This modified quantity then becomes the current
tagged value. Other TYPE field values leave the current tagged

value unaltered. In either case, Autofetch Evaluation is term-

inated.

An operand selection exception trap (0105) is generated or mask-
ed.

3-20
HONEYWELL PROPRIETARY - SENSITIVE

H
WP O 0390 G p W N H O l%

P
=

HONEYWELL PROPRIETARY - SENSITIVE

TABLE 3-2
AUTOSTORE EVALUATION ACTIONS

NAME ACTION*

>

Tagged Logical Word

Tagged Binary Integer

Tagged Hexadecimal Floating Point Number
Unassigned

Explicit, Modifier, Alterable Structor
Explicit, Modifier, Nonalterable Structor
Explicit, Specifier, Alterable Structor
Explicit, Specifier, Nonalterable Structor
Implicit, Baselink Structor

Implicit, Baselink Structor

Implicit, Datalink, Alterable Structor
Implicit, Datalink, Nonalterable Structor
Unassigned

Doy Yo wy r o>

System Control Structor

*The actions performed are as follows:

A~

B—

D-

The current tagged value is the output of Autostore Evaluation.

The current tagged value is an explicit-length, specifier struc-
tor. The indirection count is incremented by one and the cur-
rent tagged value becomes the old tagged value.

The current tagged value is an implicit-length, datalink struc-
tor. The TYPE field of this structor is examined to determine
the appropriate action. If the TYPE field indicates tagged
doubleword, tagged doubleword-LIFO access, tagged doubleword
FIFO access, or ministructor (TYPE values 0, 1, 2, 3), then the
corresponding form of Autofetch Conversion is performed, using
the current tagged value as operand description. (See Subsection
3.2) The Autofetch Conversion output then becomes the current
tagged value. The next step is then performed. Any other TYPE
field value causes an operand selection exception trap (0104) to
be generated or masked. The operand description for Autofetch
Conversion is preserved as the old tagged value.

An operand selection exception trap (0104) is generated or
masked.

3-21
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

ARRAY INDEXING

The Array Indexing operation computes a value consisting

of a data structor describing theitem in an array of

items with a specified index value. The array of items

is described by a base reference data structor, while

index value consists of a tagged logical word or a tagged

binary integer. The data structor resulting from the

Array Indexing operation is identical to the base reference

structor, with the exception that its LOCATION, EXTENT,

and bit offset subfield of its POSITION Field (if appro-
priate) are altered. These fields are computed using

the following procedures:

a. The value of the tagged logical word or tagged binary
integer index value must be not less than zero and not
greater than the EXTENT field of the base reference
data structor. Otherwise, an operand selection ex-

ception trap (0100) is generated or masked.

b. The index value is multiplied by the item length speci-
fied by the base reference structor. For explicit-
length structors, the item length is contained in the
POSITION field of the base reference structor, as
specified in Table 3-3. For implicit-length structors,
the item length is determined by the TYPE field of
the base reference structor. This length is 8 bytes,
except for ministructors, which have a length of 4
bytes. The displacement value resulting from this
multiplication specifies the number of bits or bytes
the desired item is displaced from the location speci-

fied in the base reference structor.

c. If the displacement value specifies a bit displacement,
it is added to the value of the concatenated LOCATION
and bit offset fields of the base reference structor,
and the result becomes the value of the concatenated
LOCATION and bit offset fields of the data structor
resulting from the Array Indexing operation. When

3-22
HONEYWELL PROPRIETARY - SENSITIVE

TYPE

B

C-D

E-F

HONEYWELL PROPRIETARY- SENSITIVE

TABLE 3-3

ITEM LENGTH FIELD IN EXPLICIT-LENGTH STRUCTORS

NAME
Bit String
Binary String
F.P. String
Unassigned

Zoned Decimal
String

Unsigned Zones
Decimal String

Packed Decimal
String

Unsigned Packed
Decimal String

Byte String

Translated Byte
String

Unformatted Region

Edit Control String

Unassigned

Software Assignable

BIT POSITIONS

IN DATA
STRUCTOR INTERPRETATION

35 - 39 Number of bits in string*

35 - 39 Number of bits in string*

37 - 39 Number of bytes in string¥*¥

N. A.

35 - 39 Number of bytes in string*
35 - 39 Number of bytes in string*
35 - 39 Number of bytes in string***
35 - 39 Number of bytes in string**x
32 - 47 Number of bytes in string

32 - 47 Number of bytes in string

32 - 47 Number of bytes in string

N. A, N. A,

N. A, N. A,

N. A, N. A,

*The code 00000 in the length field signifies a length of 32 bits or

bytes.

**¥The code 000 in the length field signifies a length of 8 bytes.
***¥The code 0000 in the length field signifies a length of 16 bytes.

3-23

HONEYWELL PROPRIETARY - SENSITIVE

3.4
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE
) 1-16-70

the displacement value specifies a byte displacement,
it is added to the value of the LOCATION field of the
base reference structor, and the result becomes the
value of the LOCATION field of the data structor re-
sulting from the Array Indexing operation. In either
case, the LOCATION field specifies the byte containing
the leftmost bit of the item with the desired index
value.

d. The EXTENT field of the result structor is set to zero.

A data structor with the above characteristics is generated

as a result of the Array Indexing operation. Figure 3-8

shows the steps performed by the Array Indexing operation.

| .
i i
o | ! VaLUE SNDEX
VFOl“M e ‘_V,w“”"imﬂﬁM“ S vAaLuE
Ve —~— J
U
] R BASE
:_,i i /\’E’E:')Cd'NCgf
3 | ! | VALUE
& R J —
| | T Yy »
| b —] N |
' L s B3>0
| AN L EN T
|]r l
l T ;
MV'\;’/#‘?&. < N, i
! By LShg T)7“’ -
t —
| |
5 |
‘ — S S . , 7F or
“ g : i j TR
7o Assuer
8 - . ,__L - l e I Vs -’..u»‘“

FIGURE 3-8. ARRAY INDEXING OPERATION

3-24
HONEYWELL PROPRIETARY - SENSITIVE

3.5.

HONEYWELL PROPRIETARY - SENSITIVE

1-16-70

UNFORMATTED REGION QUALIFICATION

The Unformatted Region Qualification operation computes
a value consisting of a data structor describing an item

with attributes identical to a given modifier structor,

called the qualitier, with the exception that the LOCATION
and TAG fields of the result structor are derived by

utilizing an unformatted region structor. The data structor

resulting from the Unformatted Region Qualification opera-

tion is computed as follows:

a. The TAG field of the result structor is derived
from the TAG fields of the unformatted region and
qualifier structors. 1In particular, the result
structor is explicit-length, since the qualifier
structor is explicit-length. The result structor
is a modifier or specifier, depending on whether the
unformatted region structor is a modifier or speci-
fier, respectively. The result structor alterability
indicator is set (read-only) if either of the un-
formatted region or qualifier structor alterability

indicators is set.

b. The TYPE field of the result structor is identical
to the TYPE field of the qualifier structor.

c. The LOCATION field value of the qualifier structor
is added to the value of the LOCATION field of the
unformatted region structor, and the result becomes
the LOCATION field value of the result structor.

d. The POSITION field of the result structor is identical

to the POSITION field of the qualifier structor.
e. The EXTENT field of the result structor is zero.

In the process of computing the result structor, certain
checks are performed to insure that the result structor
describes an item within the unformatted region.

3-25
HONEYWELL PROPRIETARY - SENSITIVE

3.5
(Cont.)

- T
HONEYWELL PROPRIETARY SENSITIVE 1-16-70

In the process of computing the result structor it is neces-

sary to insure that the result structor describes an item

within the unformatted region. This is done as follows:

a.

The maximum byte displacement of the item is calculated.
For explicit length structors the item length is con-
tained in the POSITION field of the qualifier structor,
as specified in Table 3-3,.

If the item length specifies a bit length, it is added
to the value of the concatenated LOCATION and bit offset
fields of the qualifier structor, and the result is de-
cremented by one to produce the maximum bit displacement.
The rightmost 3-bits of the maximum bit displacement are
then truncated to produce the maximum byte displacement.

When the item length specifies a byte displacement, it
is added to the value of the LOCATION field of the qual-
ifier structor, and the result is decremented by one to

produce the maximum byte displacement.

The maximum byte displacement is then compared with the
value of the POSITION (unformatted region length) field
of the unformatted region structor. If it is greater
than the POSITION field value, then an operand selection
exception trap (0102) is generated or masked.

If the above steps do not result in a trap, the result

structor computed by the previous set of steps is the result

of the Unformatted Region Qualification operation. Figure

3-9 shows the steps performed by the Unformatted Region

Qualification operation.

3-26
HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

1-16-70
3.5
(Cont.)
‘ﬂ —— e e N
| f—L_\
: o TV T y"
i ! ITEM N e
' cy . T V. AT d/:,
: o REL. DISP. % J LENGTH| . | QuAcs

e e s e e e i . - - ‘

e —— T e e S N o
N A i P

S TLENSTH TN
*
LEe ds

\

o s T s

o sl . R ! wrokmarrep
o Tl A . LENGTH A€ ¢r0n
] Sl 1 . B o _ SRuc7a
! i S ——
] j I 1
|
; [P
cm__X;:: — I e W .
s | [: Lossver
57R 7ol
| i , 9_” ™

FIGURE 3-9. UNFORMATTED REGION QUALIFICATION OPERATION

—-—END OF SECTION--

3-27
HONEYWELL PROPRIETARY - SENSITIVE

4.1

HONEYWELL PROPRIETARY - SENSITIVE

SECTION IV
INSTRUCTION EXTRACTION

GENERAL

Instruction Extraction is the process of interpreting
an instruction format toc determine the cperation to be
performed and to select the cperands toc be utilized.

The operation syllable of an instruction identifies the
instruction format (instruction syllable sequence) for
each instruction. It also contains an encoding of the
operation to be performed. The operand specification
syllables of an instruction are used to determine the
attributes of operands to which the specified operation
is to be applied.

The process of Instruction Extraction consists of the
following steps. The input to Instruction Extraction
is the current procedure index in the TSB. The overall
process 1is shown in Figure 4-1.

a. The instruction location counter in the current
procedure index locates an operation syllable in
storage. This operation syllable is fetched and
deccded.

b. The instruction format appropriate to the instruction

is determined, and the operand syllable extraction
process applicable tc the A operand is performed.

The operand syllable extraction processes are described
in succeeding subsections.

¢c. The operand syllable extraction process applicable
to the B operand is performed.

The result of performing Instruction Extraction is normally
an operation description and two operand descriptions,
called the initial A and initial B operands. In some
instructions, only one operand is required or a special

4-1
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

interpretation is placed on an operand specification
syllable.

The instruction location counter is incremented by the
instruction format byte length after an instruction is
executed. '

T UARENT
% ST s - oo
IVSTR I hd JR o EDULE
LOCATICN —sdf LA SNDENX
o
/ ’

QPECAT/ N | A OfFs #n J G SO R A TN

SYLLABT | Spiemd B E SyLLABE

| NG
ks \ N

S yt;;: ~ 4;»4: .-—«z_,j\
' AN

CATH e \\\\\~

JOELE T oS A TIRE A OEOA l lm TR B OPELC AN

MORMAL. CwT T L ST 0l X Tpf 8 L, s

FIGURE 4-1. INSTRUCTION EXTRACTION

4-2
HONEYWELL PROPRIETARY - SENSITIVE

4.2

HONEYWELL PROPRIETARY - SENSITIVE

R-SYLLABLE EXTRACTION

The extraction sequence for R-Syllable Extraction consists

of selecting the general register specified in the R-Syllable
and using this register as the source or destination of

an operand or as the source of a structor describing an
operand in storage. If the R-Syllable is used to specify

the source of an operand, the initial operand formed by
R-Syllable extraction is a copy of the contents of the
selected general register. If the R-Syllable is used to
specify the destination of an operand, then one of the
following two cases applies:

a. When the contents of the selected general register
are an explicit-length, specifier structor or an
implicit-length, datalink structor and Autostore
Evaluation (see section 3.3) applies to the operand
described by the R-Syllable, Autostore Evaluation
restores the result of instruction execution to storage.

b. In all other cases, the result of instruction exec-

ution is restored to the selected general register.

The formation of an initial operand by R-Syllable Extrac-
tion is shown in Figure 4-2.

-
SYZ ZAB§~:

GENERAL
N PorPosE
LECISTELE

S

W A OPEL AN D

¢

FIGURE 4-2. R-SYLLABLE EXTRACTION

4-3
HONEYWELL PROPRIETARY - SENSITIVE

4.3

HONEYWELL PROPRIETARY -~ SENSITIVE
1-16-70

S-SYLLABLE EXTRACTION

The extraction sequence for S-Syllable Extraction depends
on the values of the base register address field, index
register address field, and immediate selection value

field of the S-Syllable. (See Figure 4-3). When either
the base or index register address field is zero, the

field is not used to select a general register but is

used instead to perform a special type of operand selection.
The flow of S-Syllable Extraction is shown in Figure 4-4.

The S-Syllable Extraction process depends primarily on
the value of the base register address field If the
value of this field is zero, then the following steps are
performed:

a. If the index register address field is zerc, then
the immediate selection value field, interpreted as
a twos complement number, is used to form a tagged
binary integer of equal value, which becomes the initial
operand generated by S-Syllable Extraction. This case
is shown in Figure 4-5.

b. If the index register address field is nonzero, then
the contents of the addressed general register are
examined. When the index register contains a tagged
logical word or a tagged binary integer, its value
is added to the immediate selection value, and

o IMMED/IATE SELECT/ON VALUE

o [NVDEX LEGISTEL

- BASE LSS58

FIGURE 4-3. S-SYLLABLE FORMAT
4-4
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE

START
/W
REG/S7ER2
Ao GPoRESS

S AE
~ =0

;
S TNOER. P TR QSR

S RES STEL ™ /S 7RG &2 Lompn
y - ~_YES 7 /
A /fifzf ““_“—‘ﬂ ATEGER EQuA. T ™ pove)

LD SMAERR T
SELECT o0 WAL B

S REG s 7i

CONTR/AS A
74G6cCD LoGreqe
WORD O 7AGGES 7
Lrim K
N 7EGE

ADD W ES
SERECTT I Y ALVE 2 D";)m'

— MNE
70 JINOE) REGIS 75/ v -
VALUE , Suam .S
N T DR

e Cd ;

l

g ~. i i
ReGis=s7 . _Y&s L SELECT un VALIE @
ADDRESS — ot ST)

. D t EQuRLs - A »,0/41-3 ’

~,

i

-c . i S€ECTran Sl sE

—

N

O

Na)

FIGURE 4-4. S-SYLLABLE EXTRACTION

4-5
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

A

DBRANCEH ON
JADEX KEGLS 7L
TAG FrELD Yaglws
i

| CrRaee «-2) |
e

AT TAMED/AE
CSELE TN VALLS
o,/ INDE,
= e TO INOEN REGISTesT > (Q
? SRAE, Sum S
| COAMPurn SELECT

A&

\

4

VAL UE

- 2 - A
AT T e A T

TAG =%, 5 L MAD S L 57x’ugrd£

5 - \ ’
Sfm T 0l v A

[

S ATAVCTE A e
!;jg : f:f’t;:‘;ﬂc,\: Bl ALRARS
S CTAB | IIENATE N JALTER A MES T
29C 2 QA wuTiop W-CE As s (NPT RO
/Jﬂ-x VAV SRV VS AT CE T
v AR A //v(/__ AL Ay . vy ¥ PTat

v

’2,(,(!,, o N TAE

S 77 o) N AT AT
2, s a1 ! L. aA A i
— L, e f
t.‘»,uﬁj - j

Us& Asue

A (dM/«N/,"ﬁ") —-@
TAS = O/ ¥ 35 > 5\2 Lf':zmv
’ V&

,q'\f)/ 3Tl TR/ 7KAP

(6/02)

FIGURE 4-4. S-SYLIABLE EXTRACTION (Cont.)

4-6
HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

SE7 /mDRECTI ON

Couny 7o REAO

| BRANCH SN 7HG

fhe -8 7

v
i
i

|

T 456148

D O~ Bhse

S5, P

i FIEL
!
|

T er) (a703)

S
— - i ey Y
| USE STRVCITLA VI CREM G T ;
L 7D PRyl VY 7Y RNV Y TNDIRECT 0N ..
Rl VO I A S i CaunT h

AU, = T~ CAN = " oonE ' = /o
VEASop JPI/TAT s |

. 1w

_________ ,
7R LA
USELD As .ff C ‘

OATE KEER0E T

AL THER TH&S,

,-‘l

N CYTEY

o e e

BRAn s « A
TAGC ©OF

-

i
A .

AI7T "

"l

~

FIGURE 4-4.

CON AE/ o 0 s “/L,M'

|

S-SYLLABLE EXTRACTION (Cont.)

4-7
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

o

BRArCH ON

SELECT /0N
VAL -

PR

TAG or CamPu—=t

7RG O/ /, RPN

. -

i
[

| /S& BASET
Kq»:’/:'%f,b\&”, T,
SELTLTI MW VALUE
INVOEX LT SV
ARLRY A TENAG

from ceen o

T

ARRRy (MISK Ao

oo - ;
;", [t \.7 }
T A M s RAD
f
i

f},\u s

1
i
i
i
i

N A4

. "y"’ .‘"’ [I" -

I
1

FIGURE 4-4.

VALUIE Mo =7
pé./(” Pae? G Ve

Y YRRy o1V R
KE Glon

| GIARCAT AT I

4-8

7D
. KE G |
I JuAii R o |

RESULT /5
S TR M

S-SYLLABIE EXTRACTION (Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

4.
(c

3
ont.)

HONEYWELL PROPRIETARY - SENSITIVE

the result value is used to form the initial operand
derived from S-Syllable Extraction. The initial
operand is a tagged binary integer. Unless the sum
is within the range of tagged binary integers, an

operand selection exception trap (0102) is generated or

masked. When the index register contains any other
tagged quantity, an operand selection exception trap
(0102) is generated or masked. This case is shown in
Figure 4-6.

The effect of these steps is to form an integer initial
operand value from a literal value in the S-Syllable or
from the sum of a literal value and the contents of a
specified general register.

When the base register address field is nonzerc, the S-
Syllable Extraction process computes an initial operand
structor using the base register contents as a base
reference and the index register and immediate selection
value fields as a description of a computed selection
value. In this case, the extraction process proceeds
according to the following steps:

a. If the index register address field is zerc, the
computed selection value is a tagged biniary integer

equal in value to the immediate selection value field.

This mode of extraction allows a known element of an
array to be specified as the operand.

b. If the index register address field is nonzero, the
action taken depends on the TAG field of the selected
general register. The possible actions are presented

in Table 4-2. These actions always result in either a
tagged logical word, tagged binary integer, or explicit-

length modifier structor that is used as a computed
selection value.

4-9
HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

SRS <SP i
7AS

GEMEL L. ol tos.
Vs \fr/)f}?' A

[TAGGee BINAL Y (ATEF w‘*n:‘j
TAQRES KCG 2 eMam NILD

TAG

]

FIGURE 4-6. MODIFIED LITERAL VALUE EXTRACTION

4-10
HONEYWELL PROPRIETARY ~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

~¢. The contents of the general register specified by

the base register address field of the S-Syllable

are examined. The action taken depends on the TAG
field of the general register as specified in Table
4-%3. This action must result in either an explicit-
length structor or an implicit-length datalink structor
that is used as a base reference value.

d. If the computed selection value is a tagged binary
integer or tagged logical word, and if the base
reference value is a data structor, then these quan-
tities are used as index value and base reference
value, respectively, and the Array Indexing operation
(see Subsection 3.4) is performed. The result value
becomes the initial operand formed by S-Syllable Extrac-
tion.

e. If the computed selection value is an explicit-length
modifier structor, and if the base reference value
is an unformatted region structor, then these
quantities are used as qualifier and base reference
value, respectively, and the Unformatted Region
Qualification operation (see Subsection 3.5) is performed.
The result value becomes the initial operand formed
by S-Syllable Extraction.

The last two steps above allow utilization of the computed
selection value to derive the initial coperand description
from the base reference structor.

4-11
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

TABLE 4-2
INDEX REGISTER DETERMINED ACTIONS

TAG

NAME : ACTION*

W0 > 0 00130 Ul W N HO

WQ
1
s

Tagged Logical Word

Tagged Binary Integer

Tagged Floating Point

Unassigned

Explicit, Modifier, Alterable Structor
Explicit, Meocdifier, Nonalterable Structor
Explicit, Specifier, Alterable Structor
Explicit, Specifier, Nonalterable Structor
Implicit, Baselink Structor

Implicit, Baselink Structor

Implicit, Datalink, Alterable Structor
Implicit, Datalink, Nonalterable Structor
Unassigned

=

Do Qugaautd gy ke

System Control, Structor

*The
A-

actions are specified as follows:

The value of the tagged logical word or tagged binary
integer is added to the immediate selection value field
of the S-Syllable, and the result value is used to form
a tagged binary integer of equal value, which becomes
the computed selection value. This moée of extraction
allows indexed operand selection. '

The explicit-length modifier structor becomes the
computed selection value, and the immediate selection
value field is not used. This mode of extraction
allows a general register contained modifier structor
to be used for Unformatted Region Qualification (see
Subsection 3.5). ' ' '

The explicit-length specifier or implicit-length
datalink structor is used as a base reference structor,
and the immediate selection value field of the S-Syllable
is used to form a tagged binary integer index wvalue.
These two quantities are used by the Array Indexing
ocperation %see Subsection 3.4) to compute a structor
result. The result structor is then used as input to
Autofetch Evaluation (see Section 3,3), which produces

(Continued)
4-12
HONEYWELL PROPRIETARY ~ SENSITIVE

(Table 4-

HONEYWELL PROPRIETARY - SENSITIVE

2 cont.)

C-
(Cont.)

a tagged quantity as a result. If the result is a
tagged logical word, tagged binary integer, cr explicit-
length modifier structor, it becomes the computed
selection value. If the output is any other tagged
quantity, an operand selection exception trap (0102) is

~ generated or masked. This mode of S-Syllable Extraction
allows the selection value to be Autofetched from storage.

An operand selection exception trap (0102) is generated
or masked.

TABLE 4-3
BASE REGISTER DETERMINED ACTIONS

H
>
[<p]

NAME ACTION*

—— — |

W O 0 30U SN O

Q
eS|
=

¥The

A-

B-

Tagged Logical Word C
Tagged Binary Integer

Tagged Floating Point

Unassigned

Explicit, Modifier, Alterable Structor
Explicit, Modifier, Nonalterable Structor
Explicit, Specifier, Alterable Structor
Explicit, Specifier, Nonalterable Structer
Tmplicit, Baselink Structor

Implicit, Baselink Structor

Implicit, Datalink, Alterable Structor
Implicit, Datalink, Nonalterable Structor
Unassigned

System Control Structor

QQPF>UWEERERQaaAa

actions are specified as follows:

The structor is used as the base reference quantity

The implicit-length, baselink structor is used as input
to the appropriate form of Autofetch Conversion (Sub-
section 3.2), which is selected by the structor TYPE
field. The output of Autofetch Conversion is a tagged

(Continued)

4-13
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE 1-16-70

\

(Table 4-3 cont.) .

B- quantity. The indirection count is incremented by one
(Cont.) If it is equal to sixteen, an operand selection
exception trap is generated or masked. Otherwise, the
TAG field of the Autofetch Conversion output is used to
select the next action to be performed in accordance with
table 4-3. This mode of S-Syllable extraction allows a
base reference value to be Autofetched "from storage.

C- An operand selection exception trap (0102) is generated ox
masked.

4.4 D-SYLLABLE EXTRACTION

Twoe forms of extraction of the D-Syllable are defined,
each form being associated with a particular class of
operations. The appropriate form of extraction is
identified by the opcode field of the instruction. The
two primary classes of instructions are data manipu-
lation and branching instructions.

When the D-Syllable occurs in a data manipulation
instruction, the initial operand structor formed by
instruction extraction has the following attributes:

a. The TAG, TYPE, and POSITION fields of the initial
cperand structor are determined by the typecode-
index field of the D-Syllable, as specified in
Table 4-4.

4-14
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

1-16-70
4.4 (Cont.) TABTE 4-4
D-SYLLABLE INITIAL OPERAND STRUCTOR ATTRIBUTES
TYPECODE TAG* TYPE POSITION**
INDEX /

0 B Tagged Doubleword (O) n.a.

1 B Ministructor (3) n.a.

2-T7 n.a. n.a. n.a.

8 7 Bit String (0) B=0, I=8, A=0

9 7 Bit String (0) B=0, IL=16, A=0

A 7 Bit String (0) B=0, IL=3%2, A=0

B 7 Binary String (1) B=0, I=8, A=24

C 7 Binary String (1) B=0, I=16, A=16

D 7 Binary String (1) B=0, L=3%2, A=0

E 7 Hex.f.p. String (2) L=4, S=0

F 7 Hex.f.p. String (2) I=8, 5=0
*The values in the TAG field correspond to the following cases:
[- explicit-length, specifier, nonalterable; B - implicit-
length, datalink, nonalterable.

**The following abbréviations are used: B - bit offset, L -

, length, A - alignment offset, S - significance truncation.

b. Location field equal to the sum of the instruction
location counter plus the value of the relative-
displacement field of the instructuion. The instruc-
tion location counter value used is the location of
the opcode field of the instruction in which the
D-Syilable occurs.

c. The extent field is set to zero. This mode of
extraction allows certain quantities located a
fixed relative byte displacement from the instruction
location to be specified as an operand of the in-
struction. This case is shown in Figure 4-7.

4-15

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

TyeE
+
coas| L S
‘—.——\ P \-—h\ ettt |
NS TRV T ON
+— | LQ CA 7 ron
Counvrerl
DETERMINE S
72;;777§;A~®
[POSI7TION
f"l 4_/!__\, A -
CTAG TYPE | LORTTON LOS/ 7/ QN o

INIT/ARL OPERAND

FIGURE 4-7.

D-SYLLABLE EXTRACTION FOR
DATA MANTPULATION INSTRUCIIONS

4-10

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

4.4 (Cont.)

When the D-Syllable occurs in a branching instruction,

the typecode-index field and the relative-displacement
field are used to specify the branch destination, which
is always relative to the instruction location counter.

In this case, the initial cperand is a procedure index
control structor identical to the current procedure index,
except the instruction location counter has the following
value:

a. If the typecode-index field is a hexadecimal zero,
the value equals the instruction location counter
value plus the relative-displacement field wvalue,
the latter interpreted as a two's complement number.
The instruction location counter value used is the
location of the opcode field of the instruction in
which the D-Syllable occurs.

b. If the typecode-index field is non-zerc, it is in-
terpreted as a general register address. In this
case, the contents of the selected general register
are extracted and tested. If this quantity is not
a tagged binary integer not less than zero or a
tagged logical word, then an operand selection
exception trap (0102) is generated or masked. Other-
wise, the following actions take place:

i. The halfword at the location resulting from adding
the relative-displacement field to the instruction
location counter is extracted. This halfword
value .is used as the EXTENT field of an explicit-
length specifier structor of type binary string.
The LOCATION field of this structor equals the
instruction location counter value plus the
relative displacement field value plus two. The
POSITION field describes binary strings with
zero bit offset, 16-bit length, and 16-bit

4-17
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

4.4 (Cont.)

alignment offset.

ii. The tagged binary integer or tagged logical
word from the selected general register is used
to index the binary string array described by
the structor constructed in step i. This is
accomplished according to the rules for Array
Indexing as specified in Section 3.4.

iii. Autofetch Conversion (see Section 3.2) is applied
to the binary string structor produced by step
ii. This results in a tagged binary integer,
the value of which is treated as a new relative
displacement.

iv. The binary integer value derived in step iii is
added to the sum of the current instruction
location counter and the relative displacement
field of the instruction.

The value used as location field in the new procedure
index is the value computed in step iv.

This mode of extraction allows branching relative to the
instruction location counter or relative to a fixed
location in a procedure. If INDEX # O, then the relative
displacement is selected from a table under control of

an index number in the general register specified by INDEX.
This case is shown in Figure 4-8.

In either case, the data or control structor formed by
D-Syllable Extraction becomes an initial operand of

the instruction in which the D-Syllable occcurs.

4-18
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

InoEy | + $
N ~—)
i] /NI TIA L PRICEDIRE INOEX
Gerverac
Pug PosE
ASGrISTERS
_____ — . Y ’ - + s e
_____ 1y
;f -
T .
-
HALE w ok
LOSAT/ N
“ARAAY
A EXTENT | !
/MM/
4
. ’T“ZTf?TTTTT“ _ e >
' ! ALRA RALA Br7 S7Rmw G
J 719 I{ Lo cA770N 7049 F;cre‘zr SrRICy Il
y] B
0 /'/ /A/ D?X
ARRA - - .
/u%)owyc- o /7€M Joro ARy ELTENT| r7em
O 7 LoCATION WK S7Ru<7fR
kﬁﬂwmﬁyrgyfnﬂy*
AVTORETCH QUrrPGT
i S T
& //,/.«'_j/ VALeF (/:fz}
Sum OF 17BM YALOGL % .
‘Mb 79&0 lgogrluczwl r' ™ <
ok ATION COUNTE
V1t “")"‘ -
RR— o ! NeE W
° | PROCSDYLE /MOSX

FIGURE 4-8.

4-19

D-SYLLABLE EXTRACTION FOR BRANCING INSTRUCTIONS.

HONEYWELL PROPRIETARY - SENSITIVE

5’1

HONEYWELL PROPRIETARY - SENSITIVE

SECTION V
INSTRUCTIONS

GENERAL

Instructions are the primitive operations performed by
the processor. Instruction formats are specified in
Subsection 2.7 and are referenced in this section using

the mnemonics used in Subsection 2.7.
Every instruction is performed in two steps:

a. Instruction Extraction, which is specified in Section
IV, identifies the operation to be performed and the
operands to which the operation is applied.

b. Instruction Execution, which depends on the particular
operation applied, consists of the actions required
to perform the operation and restore a result, if

necessary.

This section discusses the second step classified in terms

of the operations available..

The following subsections specify the instruction set,
which consists of Data Manipulation, General Register
Loading/Storing, Branching, Structor Manipulation, Task
Control, and Input/Output Control Instructions.

Each instruction is specified to operate on a defined set
of operand types. If the operand actually presented is not
one of the defined types, an illegal operand trap (0200)

is generated or is masked.

DATA MANTIPULATION INSTRUCTIONS

The data manipulation instructions are used to perform
certain arithmetic and logical transformations on operand
values. In general, the type of transformation performed
depends on a function implied by the operation code and

on the data attributes associated with the operands. A
specific function can normally be applied to more than one

type of data representation. For example, the ADD function
5-1

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

can be applied to two's complement binary integers, hexa-
decimal floating point numberé, and decimal strings., The
type of operand used in a data manipulation instruction
is derived either from a tag appended to the data repre-

sentation or from a structor describing it.

Operations are defined in terms of compatible data types.
Two operands are considered to have compatible data types
if they both fall into the same class as listed below:

a. Tagged logical words and tagged binary integers.

b. Tagged floating point numbers.

c. Signed and unsigned zoned and packed decimal strings.
d. Byte and translated byte strings.

The high, low, equal, high-order truncation, low-order
truncation, and overflow indicators may be set by the
execution of a data manipulation instruction. These indi-
cators are always reset prior to the execution of a data
manipulation instruction. Furthermore, in any case where
a result operand is not alterable, an operand selection
exception trap (0103) is generated.

Add
Formats: RR, RS, SR, SS, RD

The effective A operand is added to the effective B operand,
and the result replaces the B operand. The effective A and
B operands are both derived by applying Autofetch Evalua-
tion to both the initial A and B operands. The operand de-
scription from B operand Autofetch application is used to
replace the result. The type of addition performed de-
pends on the type of effective operands produced by Auto-
fetch Evaluation., The valid operand combinations are dis-
cussed below, The high, low, or equal condition indicator
is set, depending on the result of the ADD instruction

being positive, negative, or zero, respectively.

5-2

HONEYWELL PROPRIETARY - SENSITIVE

5.2.1.1

HONEYWELL PROPRIETARY — SENSI;D

Binary Addition

If the effective A and B operands are either tagged logical
words or tagged binary integers in any combination, the
value portions of these operands are treated as 32-bit
binary integers, and a binary addition is performed on these
values. The result value generated is used to form either

a tagged logical word or a tagged binary integer, de-
pending upon whether the effective B operand is a tagged
logical word or tagged binary integer, respectively. The
resulting tagged quantity is then restored to the effective
B operand location.

A binary addition is performed by taking bits of equal
weight (identical position) in the two operand values
and computing a result bit of equal weight according to
the following table: ’

A operand bit 00001111
B operand bit 00110011
Carry from last position 01010101
Result bit =0 T1l0l001—ScA~
Carry to next position 00010111 C‘.ar/\,

The last position refers to the bit position of next lower
weight, and next position refers to the bit position of
next higher weight. The carry into the bit postion of
least weight is always zero.

The result of the binary addition is formed by performing
the following actions. The A and B operand values are
effectively extended to 33 bits, depending upon the type
of value:

a. If the operand is a tagged logical word, then the
leftmost bit of the extended value is set to O.

b. If the operand is a tagged binary integer, then the
leftmost bit of the extended value is identical to the

leftmost bit of the original operand value.

5-3
HONEYWELL PROPRIETARY - SENSITIVE

5'2.1'2

HONEYWELL PROPRIETARY -~ SENSITIVE

c¢. The remaining 32 bits of the extended value are equal
to the 32 corresponding bits of the original operand
value.

A binary addition is then performed on the two extended
operand values, generating a 33 bit result with a possible
carry from the leftmost bit position. If this carry and
the carry from the bit position of next lower weight

are not identical, an overflow occurs, and the overflow
condition indicator is set.

If the B operand is a tagged logical word, then the result

is used to form a tagged logical word. If the leftmost

bit of the extended result and the leftmost bit of the ex-
tended A operand are 1, then the result is not restored,

and an arithmetic exception trap (0400) is generated. Other-
wise the value of the resulting tagged logical word is

equal to the rightmost 32 bits of the extended result.

If the B operand is a tagged binary integer, then the re-
sult is used to form a tagged binary integer. If the left-
most two bits of the extended result are not identical,
then the overflow condition indicator is set. The value

of the resulting tagged binary integer is equal to the
rightmost 32 bits of the extended result. If the overflow
condition indicator is set, an arithmetic exception trap
(0400) is generated or masked, depénding on the arithmetic
exception trap mask indicator.

In either case, the high, low, or equal condition indicator
is set as a function of the result value being greater

than, less than or equal to zero.

Hexadecimal Floating Point Addition

If the effective A and B operands are tagged floating

point quantities, a hexadecimal floating point add is
performed. The result value is formed as a tagged floating
point quantity and restored to the effective B operand
location.

5-4

HONEYWELL PROPRIETARY - SENSITIVE

5.2.1.2
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

Hexadecimal floating point addition is described in the

following steps:

a,

b.

Step One - The mantissa of the operand with the smaller
exponent is shifted right by a number of digit posi-
tions equal to the difference between the larger and
smaller exponent. (The rightmost shifted 13 digits are

saved for the secondary result.)

Step Two - The aligned mantissae of A and B operands are
combined. A hexadecimal add of the two mantissae is
performed if the signs of the two operands are the
same. The result sign is the same as the operand

sign:

If the signs of the A and B operands differ, a hexa-
decimal subtract of the A from the B operand is per-
formed. The result will assume the sign of the A or
B operand, depending on which is the larger.

With the floating point round mode indicator set, a
hexadecimal eight is added to the digit position im-
mediately to the right of the rightmost operand digit
with the larger exponent.

When these operations result in a mantissa overflow,
the result mantissa is shifted right one hexadecimal
position and the exponent is increased by one. If
this results in an exponent overflow, an arithmetic
exception trap (0401) is generated or masked.

Step Three - The result is normalized. This step is
performed only if the significance mode indicator is
reset. Normalization consists of shifting the result's
mantissa left one digit at a time until the high order
digit is nonzero. The exponent is decreased by one
each time the mantissa is shifted. If this operation
causes the exponent to underflow, an arithmetic ex-

ception trap (0401) is generated or masked.

5-5

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

d. Step Four - The leftmost.60 bits (including the
sign and exponent) of the result form the primary re-
sult, and are stored in the B operand location. The
remaining digits of the result are the secondary re-
sult. With the secondary result mode indicator set,
the secondary result is stored as a tagged floating
point quantity in general purpose register zero.
The exponent of the secondary result is 13 less
than the exponent of the primary result., If
decreasing the primary result exponent by 13 causes
it to underflow and the secondary result mode indicator
is set, an arithmetic exception trap (0401) is generated
or masked.

5.2.1.3 Decimal String Addition

When the effective A and B operands are explicit-length
specifier structors of the following types:

a. Unsigned zoned decimal string.
b. Zoned decimal string.
c. Packed decimal string.

d. Unsigned packed decimal string.

The values of the associated strings are treated as signed
or unsigned decimal numbers with stated scale and precision.
A scaled decimal addition may then be performed on these
values, The result value generated replaces the B operand
string if it is alterable.

Scaled decimal addition is performed by taking digits of
equal weight in the two operand values and computing a re-
sult digit of equal weight. The: result depends on the
operand values and their signs. The overall sequencing

of scaled decimal addition and subtraction is described

in the following steps and. shown in Figure 5-1.

a. Step One - The first operation is to locate and decode

the sign code of each operand. The manner in which

5-6

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

A Field

May be sign position

B Field

P P

B
(position of implied decimal point)

Ly = location of A operand (to byte or half-byte
resolution)

Ly = location of B operand (to byte or half-byte
resolution)

SA = scale of A operand

SB = scale of B operand

Py = length of A operand

Py = length of B operand

FIGURE 5-1. ADDITION OF SCALED DECIMAL STRINGS

5-7
HONEYWELL PROPRIETARY - SENSITIVE

b.

HONEYWELL PROPRIETARY - SENSITIVE

this is accomplished depends on the type of decimal

string involved. The type possibilities are:

l. An unsigned zoned decimal string operand - the sign
code is always positive, and the class is always

one,

2. A zoned decimal string operand - the sign code is
located in the zone position of the rightmost byte
of the string. This is located at the byte posi-
tion in storage La + Pp or Lg + Pp (refer to Figure
5-1). The sign code is decoded according to the
conventions stated in Appendix A,

3. A packed decimal string operand - the sign code is
located in the rightmost four-bit field of the
rightmost byte of the string. This is located at
the byte location in storage Lp + Pp or Lg + Pg.
The sign code is decoded according to the conventions
stated in Appendix A,

The sign and class code of the B operand, and the sign
of the A operand result from this step.

St T - The second operation is to align digits in

the A and B operands. of equal weight. This is accomp-

lished by allowing the digits at Lp + Sp and Lg + Sp

to establish the alignment. Equivalently, it is necessary

to align the digits at Lp + Sp + min (Pp - Sp, Pp -~ Sp)

in the A operand with the digits at L + S + min

(P - Sa, Pg - Sg) in the B operand, where min is the

minimum of the two values in parentheses. A pairing

of A and B operand digits exists from the pair established

in this latter way and in digits of increasing signi-

ficance up to the pair of digits at L, + S, - min (5,,

Sg) in the A operand, and at Lz + S - min (5., Sp) in

the B operand. This alignment is shown by asterisks in

Figure 5-1. Note that such a pairing will not exist if

S, - Py > Sg or if Sg - Py > S,.
5-8

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE

Step Three - The third operation depends on the setting

of the decimal round mode indicator. If this indicator
is set and Py - Sg < P, - 55, then the A operand digit

at position SA + P, - SB is added to a digit

B
value of five. The result is discarded, but the re-

sulting carry is saved for the next step.

Step Four - The fourth operation is the combining of
aligned digits in the A and B operands. The digits are
combined by decimally adding if the A and B operand
signs are the same, and by decimally subtracting the A
operand digit from the B operand digit if the signs
differ. Carries from less significant digit positions
and from the rounding operation in step three are taken
into consideration when performing the addition, while
borrows from more significant digit positions are taken
into consideration when performing the subtraction. If
S5 < Spy the carries are made into or borrows made from
the most significant B operand digits. When a carry is
made out of the leftmost B operand digit, the decimal
overflow indicator is set, and an arithmetic exception
trap (0400) takes place if the arithmetic exception
trap mask bit is not set. When a borrow is made out of
the leftmost B operand digit, a recomplement cycle is
initiated. If Sy, > Sy @ high-order truncation of the
A operand takes place, and the high-order truncation
indicator is set, If the B operand is a signed or un-
signed zoned decimal string, the zone portion of each
byte processed is preserved by the decimal addition
operation. The interpretation of digit codes for this
step is specified in Appendix A,

Step Five - The final step generates a new result sign
code in the B operand, if necessary. Replacement of
the sign code is necessary only if the signs of the
operands were different and a recomplementation cycle

5-9
HONEYWELL PROPRIETARY - SENSITIVE

502.2

5.2.2.1

HONEYWELL PROPRIETARY - SENSITIVE

of the result was required. The sign code is generated
as a function of the result sign and the class code de-
rived from the B operand, as specified in Appendix A,
If the result has a negative sign and the B operand is
an unsigned zoned or packed decimal string, an arith-
metic exception trap (0403) is generated or masked,

The recomplementation cycle consists of taking the
ten's complement of the result computed in step four.
This is accomplished by subtracting every digit from
nine and adding one to the result.

Subtract
Formats: RR, RS, SR, SS, RD.

The effective A operand is subtracted from the effective B
operand, and the result replaces the B operand. The effec~
tive A and B operands are both derived by applying Autofetch
Evaluation to both the initial A and B operands. The oper-
and description from B operand Autofetch application is

used to replace the result. The type of subtraction per-
formed depends on the type of effective operands produced

by Autofetch Evaluation. The valid operand combinations are
discussed below. The high, low or equal condition indicator
is set, depending on the result of the SUBTRACT instruction

being positive, negative, or zero, respectively.

Binary Subtraction

If the effective A and B operands are either tagged logical
words or tagged binary integers in any combination, the
value portions of these operands are treated as 32-bit bin-
ary integers, and a binary subtraction is performed on these
values. The result value generated is used to form either

a tagged logical word or a tagged binary integer, depending
upon whether the effective B operand is a tagged logical

5-10
HONEYWELL PROPRIETARY -~ SENSITIVE

5.2.202

5.2.2.,3

HONEYWELL PROPRIETARY - SENSITIVE

word or a tagged binary integer, respectively. The result-
ing tagged quantity is then restored to the effective B
operand location.

A binary subtraction is performed in a fashion identical to
a binary addition, with the exception that a fourth step is
included in the creation of an extended A operand value

(see subsection 5.2.1.1) This step is as follows:
d. The Two's complement of the operand value is taken.

Taking the two's complement of a value is accomplished by
inverting every bit in the value, and then performing an
addition of 1 to the bit position of least weight in the
result (with carries propagated to bit positions of higher
weight).

The condition indicators are set and arithmetic exception

traps are generated as for binary addition.

Hexadecimal Floating Point Subtraction

If the effective A and B operands are tagged floating point
quantities, a hexadecimal floating point subtraction is per-
formed. The result value is formed as a tagged floating
point quantity and is restored to the effective B operand

location.

The procedure for hexadecimal floating point subtraction is
identical to the procedure for hexadecimal floating point
addition, with the exception that the A operand sign is in-
verted before step two (see subsection 5.2.1.2).

The condition indicators are set and arithmetic exception
traps are generated as for hexadecimal floating point addi-
tion,

Decimal String Subtraction

When the effective A and B operands are explicit-length
specifier structors of the following types:

5-11
HONEYWELL PROPRIETARY - SENSITIVE

5.2.3.1

HONEYWELL PROPRIETARY - SENSITIVE

a. Unsigned zoned decimal string.
b. 2Zoned decimal string.
c. Packed decimal string.
d. Unsigned packed decimal string.

the values of the associated strings are treated as signed
or unsigned decimal numbers with stated scale and precision.
A scaled decimal subtraction may then be performed on these
values. The result value generated replaces the B operand
string, if it is alterable.

Scaled decimal subtraction is accomplished in a fashion
identical to decimal string addition, with the exception of
a step inserted following Step One of decimal addition (see
subsection 5.2.1.3). This step inverts the A operand sign
value,

The condition indicators are set and arithmetic exception

traps are generated as for decimal string addition.

Multiply
Formats: RR, RS, SR, SS, RD.

The effective B operand is multiplied by the effective A
operand, and the product replaces the B operand value. The
effective A and B operands are derived by applying Auto-
fetch Evaluation to the initial A and B operands. The
operand description from B operand Autofetch application is
used to replace the product., The type of multiplication
performed depends on the type of effective operands produced
by Autofetch Evaluation. The valid operand combinations are
described in the following subsections.

Binary Multiplication

When the effective A and B operands are either tagged logi-
cal words or tagged binary integers in any combination, the

value portions of these operands are treated as 32-bit

5-12
HONEYWELL PROPRIETARY - SENSITIVE

5.2.3.1
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

binary integers, and a binary multiplication is performed on
these values. The result value generated is a 64-bit binary
integer. If the effective B operand is a tagged logical
word, then the leftmost 32 bits of the result value (high-
order product) are used to form a tagged logical word. When
the MULTIPLY instruction is executed in secondary result
mode, the tagged logical word high-order product is placed
in general register RO. Otherwise, it is discarded. The
rightmost 32 bits of the result value (low-order product)
are used to form a tagged logical word, which is restored

to the effective B operand location. If the effective B
operand is a tagged binary integer, the 64-bit result value
is used to form two tagged binary integers, consisting of a
high- and low-order product. These quantities are restored
to general register RO (secondary result mode) and the ef-
fective B operand location, respectively.

A binary multiplication is performed as a process of repeti-
tive binary addition. The multiplier and the multiplicand
are derived from the A and B operand values, respectively,

as follows:

If the operand is a tagged binary integer and is
negative, the two's complement of the operand value
is taken, and the result is used. Otherwise, the

unaltered value is used.

The repetitive addition process is described with reference
to Figure 5-2,.

The product workspace is 64 bits in length and is initially
set to all zero bits. The multiplication is performed by
considering the Kth bit from the left end of the multiplier,
for K from 31 to 0 (bit positions 31 to 0). The multiplier
bit for each K is examined. If the bit is 1, the multipli-
cand, offset by K + 1 bit positions from the left end of

the product workspace, is added to the product workspace,

5-13
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY . SENSITIVE

T
Multiplier ! A operand value
1

«—— K >

1 1

Product workép%ce (64 bits) |

7
o s
———x1 —T)
e
e s
e -
Pt
Multiplicand B operand value

FIGURE 5-2., MULTIPLICATION OF BINARY VALUES

This addition is a binary addition as described in Subsec-
tion 5,2,1.1. The 64 bits of the product workspace form
the result value, from which the high- and low-order product
are formed.

If only one operand was complemented previous to the above
addition process, the twos complement of the result in the
product workspace is taken. In all cases, the 64 bits of
the product workspace forms the result value from which the
high- and low-order products are taken.

When the B operand is a tagged binary integer, the high-
order product is examined to determine whether it consists
of all zero or one bits. If not, the overflow and high-
order truncation indicators are set. If so, but the left-
most bit of the low-order product is different from the
bits of the high-order product, then the overflow indicator
is set., With overflow indicated and the arithmetic excep-
tion trap mask bit not set, an arithmetic exception trap
(0400) is generated.

5-14
HONEYWELL PROPRIETARY - SENSITIVE

5.2.3'2

HONEYWELL PROPRIETARY -~ SENSITIVE

Hexadecimal Floating Point Multiplication

If the effective A and B operands are tagged hexadecimal
floating point quantities a hexadecimal floating point

multiplication is performed. The result has a maximum

mantissa length of 26 digits. The most significant 13 digits
are used to form a tagged floating point quantity which is
delivered to the B operand location. The remaining digits
form a secondary result which is delivered to general re-
gister RO, if the secondary result mode indicator is set.

The hexadecimal floating point multiplication is described

in the following steps:

a. Step One - The first step of the multiplication is per-
formed only if the significance mode indicator is off,
It consists of prenormalizing the A and B operands by
shifting them left until the high-order digit is non-
zero, and decreasing the exponent by one for each
hexadecimal digit position shifted.

b. Step Two - The second step is to form the product of
the mantissae of the A and B operands. The multiplica-
tion is performed in a 104-bit workspace which is in-
itially set to zeros. The product is formed by consid-
ering the Kth bit from the rightmost bit of the A
operand mantissa, for all K from 0 to 52. For each K,
the A operand bit is examined and, if the bit is 1, the
B operand mantissa, offset by K bit positions from the
right end of the workspace, is added to the workspace
(See Figure 5-3).

The exponent associated with this product is the sum of

the exponents of the A and B operands less 64.

5-15
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

5.2.3.2
(Cont.)
|
i A operand
| mantissa
e— x —|
Workspace

Z o lexH
. / !

B operand mantissa

FIGURE 5-~-3., HEXADECIMAL FLOATING POINT MULTIPLICATION

Step Three - The third step depends on the setting of

the floating point mode indicators. If the Signifi-
cance mode indicator is not set, the result is shifted
left in the workspace until the high-order hexadecimal
digit is nonzero (postnormalization). The exponent is
decreased by the number of hexadecimal digit positions
shifted. If the exponent underflows an arithmetic ex-
ception trap (0401) is generated. If the result is

zero, the exponent and sign are also set to zero.

If the significance mode indicator is set, the result

is shifted right or left until the number of significant
hexadecimal digits in the high order 13 digit positions
is equal to the number of significant digits originally
in the operand which contained the smaller number of
significant digits (significance correction). (The
number of significant digits in a field is the number

of digits in the field less the number of leading zero
digits). The exponent is adjusted by an amount equal

to the number of hexadecimal digit positions shifted.

5-16
HONEYWELL PROPRIETARY - SENSITIVE

5.2.3.3

HONEYWELL PROPRIETARY - SENSITIVE

d. Step Four - The fourth step is performed only if the
significance mode indicator is on. This process con-
sists of shifting the result left one hexadecimal digit
position if the leftmost of the significant digits of
the A operand was less than hexadecimal four. If the
shift takes place the exponent is decremented by one.
(NOTE: the purpose of this step is to maintain a sta-
tistically correct number of significant digits during
a series of operations).

e. Step Five - The fifth step is performed only if the
floating point round mode indicator is set. The pro-
cess consists of adding a hexadecimal eight to the 1l4th
digit from the left of the result field.

f. Step Six - The sixth step delivers the result. The 13
high-order hexadecimal digits of the result together
with the sign and exponent are used to form a tagged
floating point quantity which is stored in the B operard
location. If the secondary result mode indicator is
set, the remaining 13 hexadecimal digits of the result,
together with the sign and the exponent decremented by
13, are used to form another tagged floating quantity
which is stored in general register RO, If decrement-
ing by 13 causes the exponent to underflow an exponent,

sign, and mantissa of zero are stored in register RO,

Decimal String Multiplication

If the effective A and B operands are explicit-length spec-
ifier structors of the following types:

a. 2Zoned decimal string.
b. Unsigned zoned decimal string.
c. Packed decimal string.

d. Unsigned packed decimal string.

5-17
HONEYWELL PROPRIETARY - SENSITIVE

5.2.3.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

the values of the associated strings are treated as signed
or unsigned decimal numbers with stated scale and precision,
and a scaled decimal multiplication is performed on these
values., The result value generated has a maximum precision
of 64 decimal digits. A portion of the result value with
precision and scale equal to the precision and scale of the
B operand replaces the B operand string if it is alterable.

If the MULTIPLY instruction is executed in secondary result
mode, a decimal string structor must be contained in gen-
eral register RO, The high-order portion of the result
value not placed in the B operand string is placed in this
secondary result string. If the instruction is not executed
in secondary result mode, the portion of the result value
not placed in the B operand string is examined to determine
whether it consists of all zero digits. If not all zeros,
the overflow and high-order truncation indicators are set.
With a overflow indicated and the arithmetic exception trap
mask bit not set, an arithmetic exception trap (0400) is
generated. The low-order truncation indicator is set if

least significant result digits are lost.

A scaled decimal multiplication is performed by a process
of repetitive addition. The multiplier and multiplicand
are the A and B operand values as shown in Figure 5-4.

Multiplier (A operand)

64 digit product workspace

K+1 ,’,' e

Multiplicand (A operan

FIGURE 5-4., MULTIPLICATION OF SCALED DECIMAL STRINGS

5-18
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

The product workspace is 64 digits in length and is init-
ially set to all zero digits. The multiplication is per-
formed by considering the Kth digit from the leftmost digit
of the multiplier for all K from the precision of the multi-
plier to 0. For each K, the multiplier digit extracted has
a value N (0 < N < 9). The multiplicand, offset by K + 1
digit positions from the left end of the product workspace
is added N times to the product workspace. The addition
performed is a decimal addition, as described in Subsection
5.2.1.3.

The precision of the product is equal to the sum of the
precisions of the A and B operand strings. The scale of
the product is equal to the sum of the scales of the A and
B operand strings. The scale and precision of the product
are used to properly align and restore the result to the

B operand string and to the secondary result string, if
required. If the B operand is a zoned decimal string, re-

storation of the result preserves zones.

The result sign code is generated from the result sign and

B operand sign class code as specified in Appendix A, The
result sign is negative if the A and B operand signs differ.
The A and B operand signs and the B operand sign class code
are derived from the A and B operand sign codes as specified
in Appendix A,

If the result sign is negative and the B operand an unsigned
zoned or packed decimal string, the quantities in the pro-
duct workspace are not placed in the B operand string and
secondary result string. An arithmetic exception trap
(0403) is then generated or masked, depending on the setting
of the arithmetic exception trap mask bit.

Divide
Formats: RR, RS, SR, SS, RD,

The effective B operand is divided by the effective A oper-
and, and the quotient replaces the B operand value. The

5-19
HONEYWELL PROPRIETARY - SENSITIVE

5‘2.4.1

HONEYWELL PROPRIETARY - SENSITIVE

effective A and B operands are derived by applying the Auto-
fetch Evaluation to the initial A and B operands. The oper-
and description from B operand Autofetch application is

used to replace the quotient. The type of division performed
depends on the type of effective operands produced by the
Autofetch Evaluator. An attempt to divide by zero is moni-
tored and an arithmetic exception trap (0404) is generated

if a zero divisor is detected and the arithmetic exception
trap mask indicator is set.

Binary Division

If the effective A and B operands are tagged logical words
or tagged binary integers in any combination, the value
portions of these operands are treated as 32-bit binary
integers, and a binary division is performed using these
values. The result values computed are a 32-bit binary in-
teger quotient and a 32-bit binary integer remainder. A
tagged logical word or tagged binary integer equal in value
to the quotient is formed, depending on the B operand type,
and this quantity is restored to the effective B operand
location. If the DIVIDE instruction is executed in second-
ary result mode, a tagged logical word or tagged binary
integer equal in value to the remainder is formed, depending
on the B operand type, and this quantity is placed in gen-
eral register RO, If the DIVIDE instruction is not executed

in secondary result mode, the remainder is discarded.

A binary division is performed by a process of repetitive
subtraction. The divisor (A operand) is tested for zero,
and if it is zero, an arithmetic exception trap is generated
or masked. The divisor and the dividend are derived from

the A and B operand values, respectively, as follows:

If the operand is a tagged binary integer and is
negative, the two's complement of the operand value
is taken, and the result is used. Otherwise, the

unaltered value is used.

5-20
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

5.2.4.1 The repetitive subtraction process is described with refer-
ence to Figure 5-5. The quotient/remainder workspace is 64
bits in length and is initially set to all zero bits.

Divisor A operand value

/

/
-y /
/ : /
dquotient/remainder wor%épace (64 bits)

Dividend A operand value

FIGURE 5-5., DIVISION OF BINARY VALUES

The dividend is placed (added) into the rightmost 32 bits
of the quotient/remainder workspace. The division process
is then accomplished by performing the following steps,
offsetting the divisor by K bits from the left end of the
quotient/remainder workspace, for K from 1 to 32.

a. Step One - The divisor is subtracted from bits K to
K + 31 in the quotient/remainder workspace, where the
leftmost bit in the workspace is bit 0. This is equi-
valent to adding the two's complement of the divisor to
bits K to K + 31 of the workspace (See Subsection 5.2.1.1).

b. Step Two - If a carry out of bit position K is produced
in step 1, then bit K - 1 in the workspace is set to 1,
K is increased by 1, and step 1 is repeated if K < 32.

c. Step Three - If a carry out of bit position K is not

produced in step 1, then the divisor is added to bits
K to K + 31 in the quotient/remainder workspace, K is
increased by 1, and step 1 is repeated if K £ 32.

5-21
HONEYWELL PROPRIETARY - SENSITIVE

5.2.4.2

HONEYWELL PROPRIETARY - SENSITIVE

When the division process is complete, the leftmost 32 bits
of the quotient/remainder workspace contain the absolute
value of the quotient. The rightmost 32 bits of the work-
space contain the absolute value of the remainder, If only
one of the A and B operands was complemented, the two's com-
plement of the quotient value is taken to obtain the actual
quotient value, Otherwise, the quotient value remains un-
altered. If the B operand was complemented, the two's com-
plement of the remainder value is taken to obtain the actual

remainder. Otherwise, the remainder value is unaltered.

Hexadecimal Floating Point Division

If the A and B operands are tagged hexadecimal floating
point quantities, a hexadecimal floating point divide of the
A operand into the B operand is performed. The result is a
quotient with a maximum length of 13 hexadecimal digits and
a remainder. The gquotient is stored in the B operand loca-
tion and the remainder in general register RO, if the
secondary result mode indicator is set. Hexadecimal float-

ing point division is performed by the following steps:

a. Step One - The first step is performed only if the sig-
nificance mode indicator is off. It consists of pre-
normalizing the A and B operands by shifting them left
until the high-order hexadecimal digit is non-zero and
decreasing the exponent by one for each digit shifted.
If the A operand is zero an arithmetic exception trap
is generated or is masked.

b. Step Two - The second step divides the A operand man-
tissa into the B operand mantissa. If the significance
indicator is off, then 14 hexadecimal digits of quotient
are generated. If the significance mode indicator is
on, then the number of hexadecimal digits generated is
equal to one more than the number of significant digits

5-22
HONEYWELL PROPRIETARY - SENSITIVE

|
I

HONEYWELL PROPRIETARY -~ SENSITIVE

in the operand which originally contained the smaller
number of significant digits. (The number of signifi-
cant digits in a field is the number of digits in that
field less the number of leading zero digits.) The
remainder from this division is preserved. The sign
of the result is positive if the signs of the A and B

operands were the same. Otherwise, the sign is minus.

The value of the result exponent is the exponent of the
B operand minus the exponent of the A operand. The ex-
ponent of the remainder is the dividend exponent minus
the number of hexadecimal digits produced in the quo-

tient.

Step Three - The third step depends on the setting of
the floating point mode indicators. If the significance
mode indicator is not set, the quotient is shifted left
until the high order hexadecimal digit is non-zero.

The exponent is decreased by one for each digit position
shifted. If the exponent underflows an arithmetic ex-
ception trap (0401) is generated or is masked.

If the significance mode indicator is set then the quo-
tient is shifted right by a number of hexadecimal digit
positions equal to the number of leading zero digits in
the operand which originally contained the smaller num-
ber of significant digits. The exponent is increased

by the number of digit positions shifted. If the ex-

ponent overflows an arithmetic exception trap (0401) is

generated or is masked.

Step Four - The fourth step is performed only if the
significance mode indicator is set. It consists of
shifting the quotient right one digit if the most sig-
nificant digit of the A operand was less than hexadeci-
mal four. (NOTE: The purpose of this step is to ensure
that a statistically correct number of significant

5-23

HONEYWELL PROPRIETARY - SENSITIVE

5.2.4.3

e.

f.

HONEYWELL PROPRIETARY -~ SENSITIVE

digits are maintained during a series of operations.)
If the shift takes place the exponent is increased by
one. If the last significant digit is lost during this
shift an arithmetic exception trap (0402) is generated
or is masked.

Step Five - The fifth step is performed only if the
floating round mode indicator is set. The step consists
of adding a hexadecimal eight to the 1l4th digit position
of the quotient.

Step Six - The sixth step delivers the result. The 13
high-order digits of the quotient together with the
associated sign and exponent are used to form a tagged
floating point quantity which is delivered to the B
operand location. If the secondary result mode indica-
tor is set, the remainder together with its sign and
exponent are used to form a tagged floating point quan-
tity which is stored in general register RO,

Decimal String Division

If the effective A and B operands are explicit-length spec-

ifier structors of the following types:

d.

Zoned decimal string.
Unsigned zoned decimal string.
Packed decimal string.

Unsigned packed decimal string.

then the values of the associated strings are treated as

signed or unsigned decimal numbers with stated scale and

precision, and a scaled decimal division is performed on

these values. The result values computed are a quotient

5-24

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

and a remainder, each with a maximum precision of 32 decimal
digits. The quotient value resulting from the division re-

places the B operand string value, if it is alterable.

If the DIVIDE instruction is executed in secondary result
mode, a decimal string structor must be contained in gen-
eral register RO, The remainder value resulting from the
division is placed in this secondary result string. The

high-order and low-order truncation indicators are set if
most significant or least significant quotient digits are
lost, respectively, when the quotient is restored to the

B operand string.

A scaled decimal division is performed by a process of re-
petitive subtraction. The dividend and the divisor are the

A and B operand values as shown in Figure 5-6.

. T T
éivisor (preJision M) A operand value
] i]]
\
\
\ \
K e \\ 64 digit quotient/remainder
workspace
|
| |
| l
i }
T T .
dividend (pfec131on N) B operand value
L b ! l

FIGURE 5-6, DIVISION OF SCALED DECIMAL STRINGS

The quotient/remainder workspace is 64 digits in length

and is initially set to all zero digits. The leftmost
digit in the workspace is digit 0 and the rightmost digit
is digit 63, The dividend value is placed in digits 1 to N

5-25
HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

of the workspace, where N is the stated precision of the

dividend. The divisor is then tested for a zero value in
which case a zero divide arithmetic exception trap (0404)

is generated, or masked, depending on the setting of the

trap mask bit. Simultaneously, any high-order zero digits

in the divisor are detected, and the scale and precision

of the divisor are decreased and its location increased
appropriately. The resulting quantity is called the modified
divisor. The A operand structor is not altered by this action.

The division process is then accomplished by performing
the following steps, offsetting the modified divisor by

K digits from the left end of the quotient/remainder work-
space, for K from 1 to the dividend precision (N).

a. Step One - The modified divisor is repetitively sub-
tracted from digits K to K + M of the workspace, until
the result is negative, which is detected by a borrow
from the K - 1lst digit position. The quantity M is the
precision of the modified divisor. A count is main-
tained of the number of subtractions performed. The
modified divisor is then added once to digits K to
K + M of the workspace.

b. Step Two - The count computed in step 1 is decremented
by 1 and placed in digit position K - 1 of the work-
space.

c. Step Three - The workspace offset K is incremented by

1, and steps a and b are repeated if K { N. At the end
of this process, the leftmost N digits of the quotient/
remainder workspace contain the quotient digits, and
the next M digits contain the remainder digits. The
precision of the quotient equals the precision of the

B operand (dividend) string, and the precision of the
remainder equals the modified divisor precision. The
scales of the quotient and the remainder equal the

5-26
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

scale of the B operand (dividend) minus the scale of

the modified divisor, plus one. The scale and precis-
ion of the quotient are used to properly align and place
the quotient value in the B operand string. The scale
and precision of the remainder are used to properly
align and place the remainder value in the secondary
result string, if the division is done in secondary

result mode.

The sign code for the quotient is generated from the quo-
tient sign, and the B operand sign class code generated as
specified in Appendix A. The remainder sign code is gen-
erated from the B operand sign and sign class code. The
guotient sign is negative if the A and B operand signs were
different. The A and B operand signs and sign class codes
are derived from the A and B operand sign codes as speci-
fied in Appendix A.

If the quotient sign is negative and the B operand is an
unsigned zoned or packed decimal string, the quotient value
is not placed in the B operand string. An arithmetic ex-
ception error trap (0403) is then generated or masked, de-
pending on the setting of the arithmetic exception trap
mask bit. If the remainder sign is negative and the secon-
dary result string is an unsigned zoned or packed decimal
string, the remainder value is not placed in the secondary
result string. An arithmetic exception error trap (0403)
is then generated or masked, depending on the setting of the
arithmetic exception trap mask bit.

Compare

Formats: RR, RS, SR, SS, RD,

The effective A and B operands are compared and depending
upon the relationship between the operand values, the high,
low, or equal condition indicator is set. The effective A
and B operands are both derived by applying Autofetch Eval-
uation to the initial A and B operands. The type of

5-27
HONEYWELL PROPRIETARY -~ SENSITIVE

5.2.5.1

5.2.5.2

HONEYWELL PROPRIETARY -~ SENSITIVE

comparison performed depends on the type of effective
operands produced by Autofetch Evaluation.

Binary Comparison

If the effective A and B operands are tagged logical words
or tagged binary integers in any combination, the value
portions of these operands are treated as 32-bit binary
integers, and a binary comparison is performed on these
values.

A binary comparison is accomplished by performing a binary
subtraction of the A operand value from the B operand value
(See Subsection 5.2.2.1) and testing, but not restoring the
result. The high, low, or equal condition indicator is set,
depending on whether the A operand value is less than,
greater than, or equal to the B operand value. This corres-
ponds to the result of the subtraction being positive, nega-

tive, or zero.

Hexadecimal Floating Point Comparison

If the effective A and B operands are both tagged floating
point quantities, a hexadecimal floating point comparison

is performed on their values.

A hexadecimal floating point comparison is accomplished by
performing a hexadecimal floating point subtraction of the
A operand value from the B operand value (see Subsection
5.2.2.2) , without restoring the result. If the sign of the
result is negative, the A operand value is greater than or
equal to the B operand value. If the high order result
mantissa is zero, the A and B operands are equal. The high,
low, or equal condition indicator is set depending on
whether the A operand value is less than, greater than, or
equal to the B operand value.

5-28
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

5.2.5.3 Decimal String Comparison

If the effective A and B operands are explicit-length
specifier structors of the following types:

a. Zoned decimal string.
b. Unsigned zoned decimal string.
c. Packed decimal string.
d. Unsigned packed decimal string.

then the values of the associated strings are treated as
signed or unsigned decimal numbers with stated scale and
precision., A scaled decimal comparison is then performed

on these values.

A scaled decimal comparison is accomplished by performing

a scaled decimal subtraction of the A operand value from

the B operand value, without restoring the result (see |
Subsection 5.2,2.3). If the sign of the result is negative, |
the A operand value is greater than or equal to the B oper-
and value. If the result is zero, the A and B operands are
equal., The high, low, or equal condition indicator is set
depending on whether the A operand value is less than,

greater than, or equal to the B operand value.

5.2.5.4 Bvte String/Translated Byvte String Comparison

If the effective A and B operands are explicit-length
specifier structors of type byte string or translated byte
string (in any combination), the values of the associated
strings are treated as bit strings of length eight times
the byte length. A byte string/translated byte string com-

parison is then performed on these values.

The leftmost bytes in the two operand strings are aligned
and establish the alignment of succeeding pairs of bytes

in the two strings. This alignment establishes the pairing
of bits used in performing the comparison. If the two

5-29
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

operands are not of equal length, the shorter operand is
extended to the right by appending a sequence of alpha-
numeric £ill bytes from the Task Code Map Description
(Doubleword 25) in the Task Status Block (TSB).

If either operand of the instruction is a translated byte
string, then bytes from this type of string are translated
using the Load Translation Table located by the Task Code
Map Description in the TSB. If the Load Translation Table
is not present, an operand selection exception trap is
generated or masked. The byte values resulting from the
translation are used in the comparison in place of the
original bytes.

Operation of the comparison also depends on the non-binary
collate mode indicator. If the COMPARE instruction is ex-
ecuted in non-binary collate mode, each byte from the A

and B operand strings, or its translated value (if from a
translated byte string) is translated using the Non-Binary
Collating Sequence Translation Table. This is located by
the Task Code Map Description in the TSB. If the Non-Binary
Collating Sequence Translation Table is not present, an
operand selection exception trap (010A) is generated or
masked. When the COMPARE instruction is executed in binary
collate mode, the above operation is not performed.

The byte values resulting from the above translation pro-
cesses, if applied, are used in the comparison. The com-
parison is performed by considering aligned bytes from
left-to-right in the two operands. Each byte is treated as
an unsigned binary integer. If the two bytes are equal,
then the next byte in succession is considered. If all
bytes are equal, then the operands are equal. If the two
bytes are not equal, the one with the larger binary value
is associated with the operand of greater value. The high,
low, or equal condition indicator is set depending on
whether the A operand value is less than, greater than, or

equal to the B operand value.

5-30
HONEYWELL PROPRIETARY - SENSITIVE

5.2.6.1

HONEYWELL PROPRIETARY - SENSITIVE

Move
Formats: RR, RS, SR, SS, RD,

The effective A operand value is assigned to the B operand
location. The effective A operand is derived by applying
Autofetch Evaluation to the initial A operand. Autostore
Evaluation is applied to the initial B operand of the in-
struction and must produce an operand description as an
effective B operand. The type of move performed depends
on the type of effective operands produced by Autofetch
and Autostore Evaluation.

Byte String/Translated Byte String Move

If the effective A and B operands are explicit-length spec-
ifier structors of type byte string or translated byte
string (in any combination), then a byte string/translated

byte string move is performed.

The move is performed by aligning the leftmost bytes in the
two operand strings, together with succeeding pairs of
bytes in the two strings. If the destination string is
shorter than the source string, the source string is trun-
cated on the right. With the destination string longer
than the source string, the source string is extended to
the right with the alphanumeric f£ill byte in the Task Code
Map Description in the TSB.

If the A operand is a translated byte string, then bytes
from this string are translated using the Load Translation
Table located by the Task Code Map Description. If a Load
Translation Table is not present, an Autotranslation error
trap is generated or masked. The byte values resulting
from the translation are then used in the move operation in
place of the original bytes.

If the B operand is a translated byte string, then bytes

to be placed in this string are translated using the Store

5-31
HONEYWELL PROPRIETARY - SENSITIVE

5.2,6.2

HONEYWELL PROPRIETARY -~ SENSITIVE

Translation Table located by the Task Code Map Description.
If a Store Translation Table is not present, an operand
selection exception trap (010A) is generated or masked.

The byte values resulting from the translation are stored

in the destination string in place of the original bytes.

The move operation is performed by transmitting aligned
bytes from the source to the destination string, including
the above translation processes if appropriate and the
alphanumeric f£ill if necessary.

Decimal String to Decimal String Move

If the effective A and B operands are explicit-length
specifier structors of the following types:

a. 2Zoned decimal string.
b. Unsigned zoned decimal string.
c, Packed decimal string.
d. Unsigned packed decimal string.

the value of the A operand string, treated as a signed or
unsigned decimal number with stated scale and length, is
assigned to the B operand string. Consideration is given

to its sign, scale, and length. The value is assigned only
if the B operand string is alterable. Otherwise, an operand
selection exception trap is generated or masked. A scaled
decimal move is performed as a zero and add operation. In
particular, the rules for decimal string addition as spec-
ified in Subsection 5.2.1.3 are followed with the exceptions
noted below. The primary exception is that every digit in
the B operand string is assumed to be a decimal zero init-
ially, and the sign of the B operand string is always
assumed to be positive. The high- and low-order truncation
condition indicators are set, zones are set using the zone
part of the numeric fill byte, in the TSB, and signs are gen
ated as discussed in Subsection 5.2.1.3. The high, low, or e!:!q

5-32
HONEYWELL PROPRIETARY - SENSITIVE

5.2.6.3

HONEYWELL PROPRIETARY - SENSITIVE

condition indicator is set depending on whether the value
moved is positive, negative, or zero, respectively.

Autostore Moves

If the effective B operand is an implicit-length specifier
structor or an explicit-length specifier structor of the
following types:

a. Bit String.

b. Binary String.

c. Hexadecimal floating point string.

The move is performed by Autostore Conversion.

A move by Autostore Conversion is accomplished by using

the effective B operand as the operand description, and the
effective A operand as the Autostore input for the appro-
priate type of Autostore Conversion operation. An Autostore
Conversion error operand selection trap may occur while per-
forming the Autostore Conversion operation, as specified in
Subsection 3.2,

And
Formats: RR, RS, SR, SS, RD,

The logical product of the effective A and B operands is
computed bit-by-bit, and the result replaces the B operand.
The effective A and B operands are derived by applying
Autofetch Evaluation to both the initial A and B operands.
The operand description from B operand Autofetch application
is used to replace the result. The operation performed is
dependent on the type of effective operands produced by
Autofetch Evaluation. The high or equal condition indica-
tor is set depending on the result of the AND instruction
being non-zero or Zzero, respectively.

5-33
HONEYWELL PROPRIETARY - SENSITIVE

5.207.1

5.2.7.2

HONEYWELL PROPRIETARY -~ SENSITIVE

Logical Word AND

If the effective A and B operands are both tagged logical
words, the value portions of these operands are treated as
32-bit logical quantities, and the logical connective AND
is applied to these logical values. The result value gen-
erated is used to form a tagged logical word of equal value.
This tagged logical word is then restored to the effective
B operand location.

The AND operation is performed by taking bits in identical
positions in the two operand values and computing a result

bit of identical position according to the following table:

A operand bit 0O 0 1 1
B operand bit 0 1 o0 1
Result bit 0O 0 0 1

Byte String AND

If the effective A and B operands are explicit-length spec-
ifier structors of type byte string, the values of the
associated strings are treated as bit strings of length
eight times the byte length. The logical operation AND

is then performed on these logical values. The result value

generated replaces the B operand string, if it is alterable.

The leftmost bytes in the two operand strings are aligned
and establish the alignment of succeeding pairs of bytes in
the two strings. This alignment establishes the pairing of
bits used in performing the logical operation. The AND
operation performed on these bits is described in Subsection
5.2.7.1. If the A operand is shorter than the B operand,
the A operand is extended on the right to the length of the
B operand, filling with zero bytes. If the A operand is
longer than the B operand, it is truncated to the length of
the B operand.

5-34
HONEYWELL PROPRIETARY -~ SENSITIVE

5.2.8.1

HONEYWELL PROPRIETARY - SENSITIVE

If the B operand string is not alterable, an alterability
operand selection exception trap (0103) is generated or
masked, depending on the setting of the operand selection
trap mask bit.

Or

———

Formats: RR, RS, SR, SS, RD.

The logical sum of the effective A and B operands is com-
puted bit-by-bit, and the result replaces the B operand.

The effective A and B operands are derived by applying
Autofetch Evaluation to both the initial A and B operands.
The operand description from B operand Autofetch application
is used to replace the result. The operation performed is
dependent on the type of effective operands produced by
Autofetch Evaluation. The high or equal condition indica-
tor is set depending on the result of the OR instruction

being non-zero or zero, respectively.

Logical Word OR

If the effective A and B operands are both tagged logical
words, the value portions of these operands are treated as
32-bit logical quantities, and the logical connective OR is
applied to these logical values. The result value generated
is used to form a tagged logical word of equal value. This
tagged logical word is then restored to the effective B
operand location,

The OR operation is performed by taking bits in identical
positions in the two operand values and computing a result

bit of identical position according to the following table:

A operand bit 0O 0 1 1

B operand bit 0 1 0 1

Result bit 0O 1 1 1
5-35

HONEYWELL PROPRIETARY - SENSITIVE

5.2.8.2

HONEYWELL PROPRIETARY - SENSITIVE

Byte String OR

If the effective A and B operands are explicit-length
specifier structors of type byte string, the values of the
associated strings are treated as bit strings of length
eight times ‘the byte length. The logical operation OR is
then performed on these logical values. The result value
generated replaces the B operand string, if it is alterable.

The leftmost bytes in the two operand strings are aligned
and establish the alignment of succeeding pairs of bytes

in the two strings. This alignment establishes the pairing
of bits used in performing the logical operation. The

OR operation performed on these bits is described in
Subsection 5.2.8.1. If the A operand is shorter than the
B operand, the A operand is extended on the right to the
length of the B operand, filling with zero bytes. If

the A operand is longer than the B operand, it is truncated
to the length of the B operand.

If the B operand string is not alterable, an alterability
operand selection exception trap (0103) is generated or
masked, depending on the setting of the operand selection
trap mask bit,

Exclusive OR

Formats: RR, RS, SR, SS, RD

The modulo-2 sum of the effective A and B operands is com-
puted bit-by-bit, and the result replaces the B operand.
The effective A and B operands are derived by applying
Autofetch Evaluation to both the initial A and B operands.
The operand description from B operand Autofetch applica-
tion is used to replace the result. The operation per-
formed is dependent on the type of effective operands pro-
duced by Autofetch Evaluation. The high or equal condition
indicator is set, depending on the result of the EXCLUSIVE

OR instruction being non-zero or zero, respectively.

5-36
HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

5.2.9.1 Logical Word EXCLUSIVE OR

If the effective A and B operands are both tagged logical
words, the value portions of these operands are treated

as 32-bit logical quantities, and the logical connective
EXCLUSIVE OR is applied to these logical values. The re-
sult value generated is used to form a tagged logical word
of equal value. The tagged logical word is then restored
to the effective B operand location.

The EXCLUSIVE OR operation is performed by taking bits in
identical positions in the two operand values and computing
a result bit of identical position according to the

following table:

A operand bit

H = O
O
I

0
B operand bit 0
Result bit 0]

5.2.9.2 Byte String EXCLUSIVE OR

If the effective A and B operands are explicit-length
specifier structors of type byte string, the values of

the associated strings are treated as bit strings of length
eight times the byte length., The logical operation EXCLUSIVE
OR is then performed on these logical values. The result
value generated replaces the B operand string, if it is

alterable.

The leftmost bytes in the two operand strings are aligned
and establish the alignment of succeeding pairs of bytes

in the two strings. This alignment establishes the pairing
of bits used in performing the logical operation. The
EXCLUSIVE OR operation performed on these bits is described
in Subsection 5.2.9.1. If the A operand is shorter than the
B operand, the A operand is extended on the right to the
length of the B operand, filling with zero bytes. I1If the

A operand is longer than the B operand, it is truncated

to the length of the B operand.

5-37
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

If the B operand string is not alterable, an alterability
operand selection exception trap (0103) is generated or
masked, depending on the setting of the operand selection
trap mask bit.

5.2.10 Shift
Formats: RR, SR

The contents of the general register specified by the B
operand field of the instruction and, optionally the con-
tents of general register RO are shifted a number of bit
positions specified by the effective A operand. The
effective A operand is derived by applying Autofetch Ev-
aluation to the initial A operand. The effective A operand
must be a tagged binary integer or tagged logical word.

If it is not a tagged binary integer or tagged logical word, an
illegal operand trap (0200) is generated. The sign (left-
most bit) of the tagged binary integer is used to determine
the direction of shift, with positive values associated

with left shifts and negative values associated with

right shifts. If the effective A;operand is a tagged logical
word, a left shift is performed. The contents of the gen-
eral register specified by the B operand field of this
instruction must be a tagged binary integer or a tagged
logical word. If general register RO participates in the
shift, it must contain the same type of data representation.

The type of shift performed depends on the data representa-
tion of the B operand value. If the B operand value is a
tagged logical word, a logical shift is performed. If the
B operand value is a tagged binary integer, an arithmetic
shift is performed. After shifting, the result is restored
to the general register specified by the B operand and,
optionally, to general register RO.

5.2.10.1 Logical Shift

If the effective B operand is a tagged logical word, a
logical shift is performed. When the SHIFT instruction is

5-38
HONEYWELL PROPRIETARY - SENSITIVE

5.2.10.2

HONEYWELL PROPRIETARY - SENSITIVE

executed in secondary result mode, general register RO
must also contain a tagged logical word, the value of which
is concatenated to the left of the effective B operand
value. The resulting value to be shifted is either 32 bits
(single precision) or 64 bits (double precision) in length.
If the A operand value is positive, a logical left shift

is performed; otherwise a logical right shift is performed.
The number of bits shifted is equal to the magnitude of

the A operand value. The leftmost (rightmost) bits shifted
are truncated, and the rightmost (leftmost) bit positions

are filled with zeros.

If a single precision shift is performed, the shifted

value is restored to the B operand location. When a double
precision shift is performed, the leftmost 32 bits of the
shifted value are restored to general register RO, followed
by restoration of the rightmost 32 bits to the effective B
operand location. The shifted value is restared in the

form of tagged logical words.

NOTE: 1If general register RO is specified as the effective
B operand location, and the SHIFT instruction is executed
in secondary result mode, the result is identical to a
single precision rotational shift of the tagged logical

word in general register RO,
Arithmetic Shift

If the effective B operand is a tagged binary integer,

an arithmetic shift is performed. When the SHIFT instruc-
tion is executed in secondary result mode, general register
RO must also contain a tagged binary integer, the value of
which is concatenated to the left of the effective B

operand value. The resulting value to be shifted is either
a 32-bit two's complement integer (single precision) or a 64
bit two's complement integer (double precision). If the A oper-
and value is positive, an arithmetic left shift is performed;
otherwise, an arithmetic right shift is performed. The number
of bit: positions shifted is equal to the magnitude of_ the A

operand value. In arithmetic left shifts, the rightmost 31
5-39
HONEYWELL PROPRIETARY - SENSITIVE

5.2.11

5.2.11.1

HONEYWELL PROPRIETARY - SENSITIVE

or 63 bits are shifted, preserving the leftmost (sign) bit.
The leftmost bits shifted are truncated and the rightmost bit
are filled with zeros, In arithmetic right shifts, all 32 or
64 bits are shifted, with the rightmost bits shifted being
truncated and the leftmost bit positions being filled with
the leftmost (sign) bit of the initial value.

If a single precision shift is performed, the shifted

value is restored to the B operand location. When a double
precision shift is performed, the leftmost 32-bits of the
shifted value are restored to general register RO, followed
by restoration of the rightmost 32-bits to the effective

B operand location. The shifted value is restored in the
form of tagged binary integers.

Load Positive
Formats: RR, SR

The absolute value of the effective A operand value is
placed in the general register specified by the B operand
field of the. instruction. The effective A operand is de-
rived by applying Autofetch Evaluation to the initial A
operand. The operation is performed in a fashion dependent
upon the type of effective A operand produced by Autofetch
Evaluation., The high, low, or equal condition indicator

is set depending on the value of the result being positive,

negative, or zero.

Two's Complement Binary Loading

If the effective A operand is a tagged binary integer,
its absolute value is placed in the general register speci-

fied by the B operand field of the instruction.

The absolute value of a two's complement binary integer
is obtained by examination of the leftmost (sign) bit of
its value. If this bit is 1, the value is negative, and the
two's complement of the value is taken. Otherwise, the
value remains unaltered. If the two's complement of the

maximum negative number is taken, the binary overflow

5-40
HONEYWELL PROPRIETARY - SENSITIVE

5.2,11.2

5.2.12,

5.2.12.1

HONEYWELL PROPRIETARY - SENSITIVE

indicator is set. Depending on the setting of the arithmetic
exception trap mask bit, an arithmetic exception trap (0400)
occurs or is masked.

Hexadecimal Floating Point Loading

If the effective A operand is a tagged hexadecimal floating
point number, its absolute value is placed in the general

register specified by the B operand field of the instruction.

The absolute value of a hexadecimal floating point number

is obtained by setting its sign to plus.

Load Negative

Formats: RR, SR.

The negative (complement) of the absolute value of the ef-
fective A operand value is placed in the general register
specified by the B operand field of the instruction. The
effective A operand is derived by applying Autofetch Eval-
uation to the initial A operand. The operation is performed
in a fashion dependent upon the type of effective A operand
produced by Autofetch Evaluation. The high, low, or equal
condition indicator is set depending on the value of the

result being positive, negative or zero.

Twos Complement Binary Loading

If the effective A operand is a tagged binary integer, the
negative of its absolute value is placed in the general
register specified by the B operand field of the instruction.

The negative of the absolute value of a twos complement
binary integer is obtained by examination of the leftmost
(sign) bit of its value. If this bit is zero, the value

is positive, and the two's complement of the value is taken..
Otherwise, the value remains unaltered.

5-41
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

5.2.12.2 Hexadecimal Floating Point Loading

If the effective A operand is a tagged hexadecimal floating
point number, the negative of its absolute value is placed

in the general register specified by the B operand field of
the instruction.

The negative of the absolute value of a hexadecimal float-
ing point number is obtained by setting its sign to minus.

5.2.13 Load Complement

Formats: RR, SR,

The negation of the effective A operand value is placed in
the general register specified by the B operand field of
the instruction. The effective A operand is derived by
applying Autofetch Evaluation to the initial.

A operand produced by Autofetch Evaluation. The high, low
- or equal condition indicator is set depending on the result

of the operation being positive, negative, or zero.

5.2.13.1 Logical Binary Negation

If the effective A operand is a tagged logical word, its
negation is placed in the general register specified by
the B operand field of the instruction.

The negation of a logical binary value is obtained by tak-
ing the one's complement of the value, that is, by inverting
every bit in the value.

5.2.13.2 Twos Complement Binary Negation

If the effective A operand is a tagged binary integer, its
negation is placed in the general register specified by the
B operand field of the instruction.

The negation of a twos complement binary value is obtained
by taking the two's complement of the value. If the two's

5-42
HONEYWELL PROPRIETARY - SENSITIVE

5.2.13.3

5.2.14

5.2.14.1

5.2.14.2

5.2'14'3

HONEYWELL PROPRIETARY - SENSITIVE 12-4-69

complement of the maximum negative value is taken, the
overflow indicator is set. Depending on the setting of
the arithmetic exception mask bit, an arithmetic exception
trap (0400) occurs or is masked.

Hexadecimal Floating Point Negation

If the effective A operand is a tagged hexadecimal floating
point number, its negation is placed in the general regis-
ter specified by the B operand field of the instruction.
The negation of a hexadecimal floating point number is
obtained by inverting its sign bit.

Load and Test

Formats: RR, SR,

The effective A operand value is placed in the general reg-
ister specified by the B operand field of the instruction.
The effective A operand is derived by applying Autofetch
Evaluation to the initial A operand. The high, low, or
equal condition indicator is set depending on the effective

‘A operand value being positive, negative or zero. The test

for sign and magnitude is dependent on the type of effec-
tive A operand produced by Autofetch Evaluation.

Logical Binary Testing

If the effective A operand is a tagged logical word, the
value is zero if all bits are zero, and positive otherwise.

Twos Complement Binary Testing

If the effective A operand is a tagged binary integer, the
value is zero if all bits are zero, negative if the left-

most bit is one, and positive otherwise.

Hexadecimal Floating Point Testing

If the effective A operand is a tagged hexadecimal floating

point number, the value is zero if the mantissa is zero,

5-43
HONEYWELL PROPRIETARY - SENSITIVE

5.2.15

5.2.15.1

5.2,15.2

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

positive if the sign is plus and the mantissa non-zero,

and negative if the sign is minus and the mantissa non-
zero,

CONVERT TO LOGICAL

Formats: RR, SR

The effective A operand value is converted to a tagged

logical word and placed in the general register specified

by the B operand field of the instruction. The effective

A operand is derived by applying Autofetch Evaluation to
the initial A operand.

The following data types are. legal effective A operands:

a.
c.
d.
e.
f.
g.

Tagged Logical Word

Tagged Binary Integer

Tagged Hexadecimal Floating Point Number
Zoned Decimal String

Unsigned Zoned Decimal String

Paéked Decimal String

Unsigned Packed Decimal String

An illegal operand trap (0200) is generated or masked if the

effective A operand is any other type.

The process of conversion is defined below.

Tagged Logical Word to Tagged Logical Word Conversion

No change takes place.

Tagged Binary Integer to Tagged Logical Word Conversion

The sign bit (bit 32) of the tagged binary integer is tested.

If it is ohe the binary integer is negative and can not be

represented by a tagged logical word. An arithmetic excep-

tion trap (0403) is generated or masked. If the sign bit

is zero a tagged logical word is assembled by setting the

TAG field (bits 0-3) to zero (indicating a tagged logical

word) , setting the reserved field (bits 4-31) to zero, and
by setting the VALUE field (bits 32-63) equal to bits 32-63
of the tagged binary integer as shown in the following

figure.

5-43.1
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE 1-16-70

VA LvE 746.6 €O
000/ o ‘ Bavasy
0000 0 VARL(VE 72662
LOG e,

J9 2 ¥ 3L 3 Wa®Rd

5.2.15.3 Tagged Hexadecimal Floating Point Number to Tagged
Logical Word Conversion

The sign bit (bit 4) of the floating point number is tested.
If it is one, the floating point number is negative and can
not be represented by a tagged logical word. An arithmetic
exception trap (0403) is generated or masked. If the sign
bit is zero the mantissa of the floating point number is
shifted left or right one hexadecimal digit at a time in-
creasing or decreasing the exponent by one for each right
or left shift until the exponent is equal to 1001101
(implied radix point is to the right of bit 63). If any
ones are shifted out of the left end of the mantissa, or if
any of bit positions 12-31 of the mantissa contain ones
after the shift, the floating point number cannot be repre-
sented as a tagged logical word and an arithmetic exception
trap (0400) is generated or masked. If any ones are shifted
out of the right end of the mantissa the number contains a
fractional part and the floating point round mode indicator
(bit 44 of the current procedure index) is examined. A

one indicates that the mantissa should be rounded off and
the last bit shifted out of the right end is added to the
mantissa. In this case bit 31 must again be examined for

a possible arithmetic exception trap. If the round mode

5-43.2
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE 1-16-70

indicator is zero the bits shifted out the right end are

dropped. The tagged logical word is then assembled by setting
the TAG field (bits 0<3) to zero (indicating a tagged logical
word) , setting the reserved field (bits 4<31) to zero, and by

setting the VALUE field (bits 32-63) equal to bits 32-63

the shifted mantissa of the floating point number as shown

in the following figure.

of

EXPap- 7AGGED
IO/O'SASVf' MANT Y S5A A&SXAJ?t/
e 3¥S /2 o3 SCoerpNG
oo
N umaér,
9600 o vacos 746 6&0
’ ww:’«:.
0 3% A 32 €3 wor2
5.2.15.4 Decimal String to Tagged Logical Word Conversion

The following steps describe the process of converting a

decimal string to a tagged logical word:

a. The sign is examined. If it is negative an arithmetic

exception trap (0403) is generated or masked.

b. The scale factor is examined to determine the position
of the implied decimal point. If there are any digits to
the right of the decimal point the number contains a frac-

tional part and the decimal round mode indicator (bit

of the current procedure indéx) is examinéd. If it is

set the decimal quantity 0.5 is added to the decimal

string to round off the integral portion., If the round

mode indicator is not set the low-order truncation indi-

cator (bit 59 of the current procedure index) is set,

5-43.3

HONEYWELL PROPRIETARY - SENSITIVE

45

5.2.16

5.2.16.1

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

c. The value of the integer portion of the decimal string is
converted to a positive binary integer. If the binary
integer is more than 32 bits long an arithmetic excep-
tion trap (0400) is generated or masked.

d. The tagged logical word is then assembled by setting the
TAG field (bits 0-3) to zero (indicating a tagged logi-
cal word), setting the reserved field (bits 4-31) to
zero, and by placing the bimary result in the VALUE
field (bits 32-63).

CONVERT TO BINARY

Formats: RR, SR

The effective A operand value is converted to a tagged
binary integer and placed in the general register specified
by the B operand field of the instruc¢tion. The effective

A operand is derived by applying Autofetch Evaluation to the

initial A operand.
The following data types are legal effective A operands:

a. Tagged Logical Word

b. Tagged Binary Integer

c. Tagged Hexadecimal Floating Point Number
d. Zoned Decimal String

e. Unsigned Zoned Decimal String

f. Packed Decimal String

g. Unsigned Packed Decimal String

An illegal operand trap (0200) is generated or masked if the
effective A operand is any other type.

The process of conversion is defined below.

Tagged Logical Word to Tagged Binary Integer Conversion

Bit 32 of the source word is tested. If it is one then the

31

logical word is greater than or equal to 2 and cannot be

represented as a tagged binary integer. 1In this case an

5-43.4

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

arithmetic exception trap (0400) is generated or masked. If
bit 32 is zero a binary integer is assembled by setting the
TAG field (bits 0-3) to 0001 (indicating a tagged binary
integer), setting the reserved field (bits 4-31) to zero,
and by setting the VALUE field (bits 32-63) equal to bits
32-63 of the tagged logical word as shown in the following

1-16-70

figure.
746G ¢E&D
0000 4 YALvE KO ErcHé.
wae)
d 3 ¥ 37 32 €3
voof o Vheu& T46G-€2
B £,
06 3¢ I 32 k3 wreceLl
5.2.,16.2 Tagged Binary Integer to Tagged Binary Integer Conversion
No change takes place.
5.2.16.3 Tagged Hexadecimal Floating Point Number to

Tagged Binary Integer Conversion

The mantissa of the floating point number is shifted left or
right one hexadecimal digit at a time increasing or decreas-
ing the exponent by one for each right or left shift until
the exponent is equal to 1001101 (implied radix point is to
the right of bit 63). If any ones are shifted out of the
left end of the manitssa, or if any of bit positions 12-31 of
the mantissa contain ones after the shift, the floating point
number cannot bé represented as a tagged binary integer and
an arithmetic exception trap (0400) is generated or masked.
If any ones are shifted out of the right end of the mantissa

5—4305

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16="J

the number contains a fractional part and the floating point
round mode indicator (bit 44 of the current procedure index)
is examined. A one indicates that the mantissa should be
rounded off and the last bit shifted out of the right end is
added to the mantissa. If the round mode indicator is zero
the bits shifted out the right end are dropped.

The sign bit (bit 4) is then examined. If it is negative

the mantissa is complemented and a one is added to the low-
order position. Bits 12-32 should then contain all ones if
the number is negative and zeros if it is positive. If not,
an arithmetic exception tfép (0400) is generated or masked,

The tagged binary integer is then assembled by setting the
TAG field (bits 0-3) to 0001 (indicating a tagged binary
integer), setting the reserved field (bits 4-31) tc zero,
and by setting the VALUE field (bits 32-63) to bits 32-63
of the mantissa value calculated above as shown in the
following figure.

ExponEnr TAGG &

00, MAN T IS S ,

/ °| 4 4 Al KA D 1t
ALoRr/NG

e 3K / ra 63 Do s r
Auag 2
TAGGCED

oooy/ 7] VALVE BnAly
N

'Y ¥ 3 oy NTEHR

5.2.16.4 Decimal String to Tagged Binary Integer Conversion

The following steps describe the process of converting a

decimal string to a tagged binary integer:

5-43.6

HONEYWELL PROPRIETARY - SENSITIVE

5.2.17

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

The scale factor is examined to determine the
position of the implied decimal point. If there are
any digits to the right of the decimal point the
number contains a fractional part and the decimal
round mode indicator (bit 45 of the current pro-
cedure index) is examined. If it is set the decimal
quantity 0.5 is added to the magnitude of the decimal
string to round off the integral portion. If the
round mode indicator is not set the low-order trun-
cation indicator (bit 59 of the current procedure
index) is set.

The value of the integer portion of the decimal

string is converted to a binary integer. The sign

of the decimal string is examined. If it is negative
the binary integer is complemented and a one is added

to the low-order position.

The rightmost 31 bits of the binary integer are

saved for the result. Every bit to the left of these
31 bits should be zero for positive numbers and one
for negative numbers. If not, the magnitude of the
number is too great to be represented as a tagged
binary integer and an arithmetic exception trap (0400)

is generated or masked.

The tagged binary integer is assembled by setting the
TAG field (bits 0-3) to 0001 (indicating a tagged
binary integer), setting the reserved field (bits 4-31)
to zero, setting the sign bit (bit 32 one if negative)

and placing the above result integer in bits 33-63.

CONVERT TO FLOATING

Formats: RR, SR

The effective A operand value is converted to a tagged hex-

adecimal floating point number and placed in the general

5-43.7

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE 1-16-70

register specified by the B operand field of the instruction.
The effective A operand is derived by applying Autofetch

Evaluation to the initial A operand.
The following data types are legal effective A operands:

a. Tagged Logical Word
b. Tagged Binary Integer
c. Tagged Hexadecimal Floating Point Number

An illegal operand trap (0200) is generated or masked if the
effective A operand is any other type.

The process of conversion is defined below:

5.2.17.1 Tagged Logical Word to Tagged Hexadecimal Floating Point

Number Conversion

A tagged hexadecimal floating point number is assumbled by
setting the TAG field (bits 0-3) to 0010 (indicating a
floating point number), setting the sign bit (bit 4) to

zero (positive), setting the exponent (bits 5-11) to 1001101

(indicating radix point to the right of bit 63), setting
bits 12-31 to zero, and setting bits 32-63 equal to bits
32-63 of the tagged logical word.

The significance mode indicator (bit 46 of the current pro-
cedure index) is examined. If it is ONE the conversion is com-
plete. If it is zero the mantissa of the floating point

number (bits 12-63) is shifted left one hexadecimal digit at

a time until the high-order hexadecimal digit is nonzero.

The exponent (bits 5-11) is decremented by one for each
hexadecimal position shifted. Once this shift is performed

the conversion is complete as shown in the following figure.

5-43.8

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

7AG €D
0000 0 VA LuE Ld GscAL

waee D

0 2% s 32 - L3

Gorsalolyeorsror MAYN T+ S S4

¢ 3«5 v re

5.2.17.2 Tagged Binary Integer to Tagged Hexadecimal Floating
Point Number Conversion

A tagged floating point number is assembled by setting the
TAG field (bits 0~3) to 0010 (indicating a floating point
number) , setting the sign bit (bit 4) to the sign bit of the
binary integer (bit 32), setting the exponent (bits 5-11) to
1001101 (indicating radix point to the right of bit 63), set-
ting bits 12-32 all equal to the sign bit, and setting bits
33-63 equal to bits 33-63 of the tagged binary integer. If
the sign bit is one (negative) the mantissa of the floating
point number (bits 12-63) is complemented and one is added
to the low-order position.

The significance mode indicator (bit 46 of the current pro-
cedure index) is examined. If it is ONE the conversion is
complete., If it is zero the mantissa of the floating point
number (bits 12-63) is shifted left one hexadecimal digit

at a time until the high-order hexadecimal digit is nonzero.
The exponent (bits 5-11) is decremented by one for each
hexadecimal position shifted. Once this shift is performed

the conversion is complete as shown in the following figure.

5-43.9

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

1-16-70

7A46¢&D

006/ 0 i VALuveE B/Am.e/e:
r I 7E FEC

6 3¥ 373 33 é3

mwsé
oonlsl/oor’or MAKNT/SSA HHEXAPE/MAC

FLOATIN O~
0 J3KS /7 l2 i3 Pomy

Aupn BT

5.2.17.3 Tagged Hexadecimal Floating Point Number to Tagged

5.2.18

5.2.18.1

CONVERT TO DECIMAL

Hexadecimal Floating Point Number Conversion

No change takes place.

Formats: RR, RS

The value in the general register specified by the A operand
field is converted to a decimal string and stored in the effec-
tive B operand location. The effective B operand location is

derived by applying Autostore Evaluation to the initial B operand.

The following data types are legal A operands:

a. Tagged Logical Word
b. Tagged Binary Integer

An illegal operand trap (0200) is generated or masked if the
effective A operand is any other type.

The process of conversion is defined below.

Tagged Logical Word to Decimal String Conversion

The binary value contained in bits 32-63 of the logical
word is converted to a decimal integer. The POSITION field
of the decimal string structor is examined to determine the
length and scale factor of the decimal field (see 2.4.1.3

5-43.10

HONEYWELL PROPRIETARY - SENSITIVE

5.2.18.1

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

through 2.4.1.6 for decimal field formats). The decimal
integer obtained above and the destination field are aligned
by decimal point. Zeros are added where necessary to fill
the destination field.

If truncation will occur on the high-order end of the integer

an arithmetic exception trap (0401) is generated or masked.

If truncation will occur on the low-order end the decimal
round mode indicator (bit 45 of the current procedure index)
is examined. If the round mode indicator is set the decimal
number is rounded off to fit the field. The digit imme-
diately to the right of the least significant digit position
of the destination field is examined. A value of decimal
five or more causes the value one to be added to the decimal
number in the digit position corresponding to the least
significant digit of the destination field. If the round
mode indicator is not set the decimal number is truncated
and the low-order truncation indicator (bit 59 of the current

procedure index) is set.

The decimal number is then placed in the destination field

in the appropriate format.

Tagged Binary Integer to Decimal String Conversion

The sign bit (bit 32) of the tagged binary integer is ex-
amined. If it is negative bits 32-63 are complemented and
incremented by one (twoé complement is taken) to determine
the magnitude. The magnitude of the binary integer is then
converted to a decimal integer.

The POSITION field of the decimal string structor is examined
to determine the length and scale factor of the decimal de-
stination field (see Paragraphs 2.4.1.3 through 2.4.1.6 for
decimal field formats). The decimal integer obtained above
and the destination field are aligned by decimal point. 2Zeros

are added where necessary to fill the destination field.

5-43.11

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

If truncation will occur on the high-order end of the integer
an arithmetic exception trap (0400) is generated or masked.

If truncation will occur on the low-order end the decimal
round mode indicator (bit 45 of the current procedure index)
is examined. If the round mode indicator is set the decimal
number is rounded off to fit the field. The digit imme-
diately to the right of the least significant digit position
of the destination field is examined. A value of decimal
five or more causes the value 1 to be added to the decimal
number in the digit position corresponding to the least
significant digit of the destination field. If the round
mode indicator is‘not set the decimal number is truncated
and the low-order truncation indicator (bit 59 of the current
procedure index) is set.

The decimal number is then placed in the destination field
in the appropriate format. The sign of the binary integer
is placed in the sign field.

5-43.12
HONEYWELL PROPRIETARY - SENSITIVE

5.3

HONEYWELL PROPRIETARY - SENSITIVE

GENERAL REGISTER LOADING/STORING INSTRUCTIONS

The general register loading/storing instructions are used
to transmit tagged quantities to and from the general reg-
isters.

The condition indicators are not altered by execution of

these instructions.

Copy
Formats: RR, SR

A copy of the initial A operand is placed in the general
register specified by the B operand syllable. In the RR
format, this operation provides a facility for replicating
the contents of one general register in another. In the

SR format, it provides a facility for generating a structor
from S-Syllable Extraction (See subsection 4.3) and placing
it in a selected general register.

Fetch

Formats: RR, SR, RD,
/
The effective A operand is placed in the general register

specified by the B operand syllable of the instruction.
The effective A operand is derived by applying Autofetch
Evaluation to the initial A operand. The tagged quantity
resulting from Autofetch Evaluation is then placed in the
B operand general register.

Load
Formats: RR, SR, RD,

The A operand value is placed in the general register
specified by the B operand syllable of the instruction.

5-44
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE

The A operand value is derived by applying a special form

of Autofetch Evaluation that terminates when the indirection
count is equal to one. (See subsection 4.3). In particular,
step c. of the description of Autofetch Evaluation is re-
placed by the following step:

Increment the indirection count by one. If it
is equal to one, Autofetch Evaluation is ter-
minated.

The tagged quantity resulting from this special form of
Autofetch Evaluation is then placed in the B operand gen-
eral register.

The LOAD instruction provides a facility for placing an
item in an implicit-length array in a general register
without interpretation of the item and without further

indirection.

Deposit

Formats: RR, RS,

The tagged quantity in the general register specified by
the A operand syllable is placed in the location specified
by the effective B operand. Autostore Evaluation is ap-
plied using the initial B operand as an operand description

and the initial A operand as Autostore Evaluation input.

In RR format, the B operand general register is a valid
destination. In either format, the only other valid des-
tination is a bit, binary, or floating point string or
implicit-length array.

Store

Formats: RR, RS,

The tagged quantity in the general register specified by
the A operand syllable of the instruction is placed in the
B operand location. The B operand location is derived by
applying a special form of Autostore Evaluation that

5-45
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

terminates when the indirection count is one. (See sub-
section 4.3). In particular, step e. of the description
of Autostore Evaluation is replaced by the following step:

If the indirection count is nonzero, and if the
current tagged value is produced by action c. in
Table 3-2, then Autostore Evaluation terminates.

The initial B operand is used as operand description and
the initial A operand is used as Autostore input for this

special form of Autostore Evaluation.

Dump Multiple

Formats: CV,

Cy Co Cj V-syllable

4 4 16

The general purpose registers specified by the third con-
trol field are stored into the array specified by the first
control field, which is interpreted as a general register
address. The registers to be stored correspond to the bits
in the third control field that are set to one, where the
leftmost bit corresponds to register RO and the rightmost
bit to register RF., The second control field contains the
number of bits set to one in the third control field, minus
one. Register RA must contain an implicit-length structor
of type tagged doubleword, LIFO array, or FIFO array.

If the structor identifies a tagged doubleword array, the
first n elements of the array are used to store the cor-
responding general registers, where n is the number of
registers to be stored.

If the structor describes a LIFO array, the position field
of the structor is used to determine the location into
which the first register is stored. The value of the posi-
tion field, times eight, added to the value of the location
field of the structor, is the desired location. Other reg-
isters are stored into succeeding higher number doublewords
of storage. The position field is then incremented by n.
5-46
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

If the structor describes a FIFO array, the leftmost 8 bits
of the position field, called the FIFO tail, are used to
determine the storage address into which the first register
is stored. The value of this field, times eight, added to
the value of the location field of the structor is the re-
quired storage address. Other registers are stored into
succeeding higher numbered doublewords of storage, until
the last element in the FIFO array is used, at which point
doublewords are used starting at the FIFO array origin,

The FIFO tail field is incremented by n (if the extent is
not exceeded) or is set to n minus the difference between
the extent and FIFO tail field values (if the extent is ex-
ceeded) .

For tagged doubleword arrays, the number of registers to

be stored must be less than the array extent. For LIFO
arrays, the difference between the extent and position
field values must be greater than the number of registers
to be stored. For FIFO arrays, the interval defined by the
incremented value of the FIFO tail field and its old value
must not include the value of the FIFO head field (right-
most 8 bits of position field).

Registers are stored into the array in the order of low-to-

high numbered registers.

An operand selection exception (0107) occurs if insufficient
array elements are available to execute the DUMP MULTIPLE
instruction and the operand selection trap mask bit is not
set,

Dump
Formats: RR

The general register specified by the A operand syllable of
the instruction is stored into the array specified by a
structor in the general register identified by the B oper-
and syllable of the instruction. The action of this in-
struction is identical to executing a DUMP MULTIPLE

5-47
HONEYWELL PROPRIETARY - SENSITIVE

5.3.8

HONEYWELL PROPRIETARY - SENSITIVE

instruction with a one bit in the bit position of the third
control field corresponding to the general register speci-
fied by the A operand syllable of the DUMP instruction and
with a first control field identical to the B operand syl-
lable of the DUMP instruction.

{37 240

Undump Multiple

I2D
CownrRoc fr5td

4 & /%o

The general purpose registers specified by the third con-

Formats: CV, V SYLLABLE

trol field are loaded from the array specified by the first
control field, which is interpreted as a general register
address. The registers to be loaded correspond to the bits
in the third control field of the instruction that are set
to one, where the leftmost bit corresponds to register RO
and the rightmost bit to register RF., The second control
field contains the number of bits set to one in the third
control field, minus one. Register Ra must contain an
implicit-length structor of type tagged doubleword, LIFO
array, or FIFO array.

If the structor identifies a tagged doubleword array, the
first n elements of the array are placed in the correspond-
ing registers, where n is the number of registers to be
loaded.

If the structor describes a LIFO array, the position field
of the structor is used to select the first element to be
loaded. The value of the position field, decremented by
one, the quantity multiplied by eight, added to the value
of the location field of the structor is the storage address
of the first element. Other registers are loaded from suc-
ceeding lower numbered doublewords of storage. The posi-
tion field is then decremented by n.

5-48
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

If the structor describes a FIFO array, the rightmost 8
bits of the position field, called the FIFO head, are used
to obtain the first element to be loaded. The value of
this field, times eight, added to the value of the location
field of the structor is the storage address of this first
element. Other registers are loaded from succeeding higher
numbered doublewords of storage, until the last element in
the FIFO array is fetched, at which point doublewords are
obtained starting at the FIFO array origin. The FIFO head
field is incremented by n (if the extent is not exceeded)
or is set to n minus the difference between the extent and
FIFO head field values (if the extent is exceeded).

For tagged doubleword arrays, the number of registers to
be loaded must be less than the array extent. For LIFO
arrays, the position field value must be greater than the
number of registers to be loaded. For FIFO arrays, the
interval defined by the incremented value of the FIFO head
field and its o0ld value must not include the value of the
FIFO tail field (leftmost 8 bits of position field).

Registers are loaded from the array in the order of low-to-
high numbered registers if the array is a tagged doubleword
or FIFO array. If the array is a LIFO array, registers are
loaded from the array in the order high-to-low numbered
registers,

An operand selection trap (0107) occurs if insufficient
array elements are available to execute the UNDUMP MULTIPLE
instruction and the operand selection trap mask bit is not
set,

Undump
Formats: RR.
The general register specified by the B operand syllable of

the instruction is loaded from the array specified by a

structor in the general register identified by the A operand

5-49
HONEYWELL PROPRIETARY - SENSITIVE

5.3.10

HONEYWELL PROPRIETARY - SENSITIVE

syllable of the instruction.. The action of this instruc-
tion is identical to executing an UNDUMP MULTIPLE instruc-
tion with a one bit in the bit position of the third control
field corresponding to the general register specified by
the A operand syllable of the UNDUMP instruction and with a
first control field identical to the B operand syllable of
the UNDUMP instruction.

Point

Formats: RR, SR, RD

The operand description used to produce the effective A
operand is placed in the general register specified by the
B operand syllable. The effective A operand is derived by
applying Autofetch Evaluation to the initial A operand.

If the indirection count when Autofetch Evaluation termi-
nates is zero, an operand selection exception trap (0105)
is generated or masked. Otherwise the operand description
utilized in the Autofetch Conversion operation that termi-

nated Autofetch is placed in the B operand general register.

This instruction is similar to the FETCH instruction, except
that a structor describing an operand, rather than the oper-

and value, is placed in the specified general register.

BRANCHING INSTRUCTIONS

The branching instructions are used to alter the current
procedure index in the TSB in order to transfer control
from one sequence of instructions to another. The branch-
ing methods are:

a. Conditional Branching - based on the state of the con-
dition indicators.

b. Return Branching - which preserves the updated proced-

ure index.

c. Loop Control Branching - which uses a count value to

control iteration.

5-50
HONEYWELL PROPRIETARY - SENSITIVE

5.4.1

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

The condition indicators are not altered by execution of
branching instructions. In particular replacement of the
current procedure index in the following subsection does
not include alteration of the current condition indicators.

Test _and Branch
Formats: RR, SR, RD

The B operand of this instruction specifies a test to be
performed on one of the condition indicators. If the test
is successful, a branch is performed to the A operand loca-
tion. Otherwise, instructions are executed in sequence.
The test indicated by the B operand field is specified by
the following diagram:

L« econdition indicator number (0-7)

+test for indicator reset (0)/set (1)

In the RR, and SR formats, the effective A operand is de-
rived by applying Autofetch Evaluation to the initial A
operand. If the effective A operand is a procedure index
control structor, branching is accomplished by replacing
the current procedure index with the Autofetched procedure
index. Otherwise, an illegal operand trap (0200) is gen-

erated or masked.

In the RD format, branching is accomplished by replacing the
current value of the instruction location counter with the
new instruction location value derived from RD instruction

format extraction.

2

The condition indicators that may be tested by the TEST AND
BRANCH instruction are assigned according to the following
set of tables.

a. Each Data Manipulation instruction sets the indicators

according to the following table:

5-51
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

1-16-70
5.4.1
(Cont.) Indicator Meaning
= 0 both resét by Data Manipulation

instructions

High-Order Truncation Indicator
Low-Order Truncation Indicator
Overflow Indicator

High Indicator

Low Indicator

Equal Indicator

N oW N

b. Each Task Control instruction sets the indicators
according to the following table:

Indicator Meaning

0 Reset by Task Control Instruction
Set by Task Control Instruction
Test Condtion Indicator

Empty Indicator

Full Indicator

Available Condition Indicator

S Flag

N OO O W NN

c. Each Input/Output Control instruction sets the indica-
tors according to the following table:

Indicator Meaning
0 Set by I/0 Control Instruction
Reset by I/O0 Control Instruction
2 -
3 Logical Protection Indicator
4 -

5-52

HONEYWELL PROPRIETARY - SENSITIVE

5.4.2

HONEYWELL PROPRIETARY - SENSITIVE

5 - ‘
6 Facility Busy Indicator
7 Device Malfunction Indicator

Conditional Branch
Formats: RR, SR, RD,

The B operand syllable of this instruction specifies a test
to be performed. If the test is successful, a branch is

performed to the A operand location. Otherwise instructions
are executed in sequence. The test indicated by the B oper-

and syllable is specified by one of the following codes:

0000 - test never successful (no branch)

0001 - test successful if any condition indicators
2-7 set

0010 - test successful if any condition indicators
2-7 reset

0011 - test successful if all condition indicators
2-7 set

0100 - test successful if all condition indicators
2-7 reset

0101 to 1110 - reserved
1111 - test always successful (unconditional branch)

In the RR, and SR formats, the effective A operand is de-
rived by applying Autofetch Evaluation to the initial A
operand, If the effective A operand is a procedure index
control structor, branching is accomplished by replacing
the current procedure index with the Autofetched procedure
index. Otherwise, an illegal operand trap (0200) is gen-

erated or masked.

In the RD format, branching is accomplished by replacing
the current value of the instruction location counter with
the new instruction location value derived from RD instruc-

tion format extraction.

The assignment of condition indicators is specified under
the TEST AND BRANCH instruction. (see subsection 5.4.1).

5-53
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

Branch and Link
Formats: RR, SR, RD,

The updated value of the current procedure index (location
of next instruction in sequence) is placed in the general
register specified by the B operand syllable. A branch is
then taken to the A operand location.

In the RR, and SR formats, the effective A operand is de-
rived by applying Autofetch Evaluation to the initial A
operand. If the effective A operand is a procedure index
control structor, branching is accomplished by replacing
the current procedure index with the Autofetched procedure
index. Otherwise, an illegal operand trap (0200) is gen-
erated or masked.

In the RD format, branching is accomplished by replacing
the current value of the instruction location counter with
the new instruction location value derived from RD instruc-
tion format extraction.

Branch on Decremented Count
Formats: RR, SR RS, SS, RD

The effective B operand is examined to determine whether

it is a tagged logical word or a tagged binary integer.

If so, the value of the tagged logical word or tagged bin-
ary integer is tested for zero., When the value is zero,

no branching takes place, and instructions continue to be
executed in sequence. If the value is non-zero, the value
is decremented by one, a tagged logical word or tagged
binary integer with this value is restored to the effective
B operand location, and a branch is taken to the effective
A operand location. If the effective B operand is not a
tagged logical word or a tagged binary integer, or if the
effective A operand is not a procedure index control struc-
tor, an illegal operand error trap (0200) is generated or
masked.

5-54
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

The effective B operand is derived by applying Autofetch
Evaluation to the initial B operand. In the RR, SR, RS,
and SS formats, the effective A operand is derived by ap-
plying Autofetch Evaluation to the initial A operand. The
decremented B operand is restored by applying Autostore
Evaluation to the B operand.

In the RR, RS, SR, and SS formats, branching is accomplished
by replacing the current procedure index with the Auto=-
fetched A operand procedure index. In the RD format,
branching is accomplished by replacing the current value

of the instruction location counter with the new instruc-
tion location value derived from RD instruction format

extraction,

STRUCTOR MANIPULATING INSTRUCTIONS

The structor manipulating instructions are used to form
and modify structors in the non-privileged mode so that
descriptions of new data structures and substructures of
0ld ones can be generated. The condition indicators are

not modified by the execution of these instructions.

Initial Substring

Formats: RR, SR,

The initial B operand resulting from instruction extraction
must be an explicit-length structor. The length field of
this structor is modified by the value of the effective A
operand. The effective A operand is derived by applying
Autofetch Evaluation to the initial A operand. The effec-
tive A operand must be a tagged binary integer with non-
negative value, or a tagged logical word. If the A operand
value is not greater than the value of the length field of
the B operand structor, the A operand value replaces the
previous value of the length field. The modified structor
is then restored to the general register specified by the

B operand syllable of the instruction.

5-55
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

If the effective A operand is not a non-negative tagged
binary integer or tagged logical word or if the B opérand
is not an explicit-length structor, an operand specifica-
tion exception trap (0200) is generated or masked.

Terminal Substring
Formats: RR, SR,

The initial B operand resulting from instruction extraction
must be an explicit-length structor. The location, offset,
scale, and length fields of this structor are modified by
the value of the effective A operand. The effective A
operand is derived by applying Autofetch Evaluation to the
initial A operand. The effective A operand must be a tagged
binary integer with non-negative value or a tagged logical
word, If the type of string described by the B operand

structor is byte string, translated byte string, unformatted |

region, or any form of decimal string, then the following
steps are performed:

a. The value of the length field of the structor must not
be less than the value of the effective A operand. If
it is less, then an operand selection exception trap
(0100) is generated or masked.

b. The A operand value is added to the location field and
is subtracted from the length field of the B operand

structor, replacing the previous values of these fields.

c. The A operand value is subtracted from the values of
the scale and length fields of the structor, replacing
the previous values of these fields.

If the type of string described by the B operand structor
is bit string or binary string, the following steps are
performed:

a. The value of the length field of the structor must
not be less than the value of the effective A operand.

5-56
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

If it is less, an operand selection exception trap (0100)

is generated or masked.

The A operand value is aligned with the concatenated
location and bit offset fields of the structor and
added to the aligned bit positions in these fields,
replacing their previous value. The alignment adjust-

ment is made to account for bit offset.

The A operand value is subtracted from the values of
the length and alignment offset fields of the structor,

replacing the previous values of these fields.

If the type of string described by the B operand structor

is edit control or floating point string, an illegal oper-

and trap (0200) is generated or masked.

The modified structor is restored to the general register

specified by the B operand is not an explicit-length

structor, an illegal operand trap (0200) is generated or

masked.

Lower Subarray

Formats: RR, SR, RD,

The effective A operand is used to select the lower sub-

array of the array of items described by the B operand

structor. The lower subarray of an array is the set of

items in the array with indices running from zero to a

value not greater than the extent of the array. The ef-

fective A operand is derived by applying Autofetch Evalua-

tion to the initial A operand. The effective A operand

must be a tagged logical word or tagged binary integer not

less than zero. If not, an illegal operand trap (0200) is

generated or masked. The initial B operand must be a data

structor., If not, an illegal operand trap (0200) is gen-

erated or masked.

The lower subarray is selected by subtracting the A operand
value from the EXTENT field of the B operand structor. If

5-57
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70
the result is negative, an operand selection exception
trap (0100) is generated or masked. Otherwise, the result
replaces the EXTENT field value,

Upper Subarray

Formats: RR, SR, RD,

The effective A operand is used to select the upper sub-
array of the array of items described by the B operand
structor. The upper subarray of an array is the set of
items in the array with indices running from a value
greater than zero and less than the extent of the array to
the extent of the array. The effective A operand is de-
rived by applying Autofetch Evaluation to the initial A
operand. The effective A operand must be a tagged logical
word or tagged binary integer not less than zero. If not,
an illegal operand trap is generated or masked. The in-
itial B operand must be a data structor. If not, an illegal
operand trap (0200) is generated or masked.

The upper subarray is selected by applying the Array In-
dexing operation (See subsection 3.4) to the B operand
structor, using the effective A operand as index value.
The resulting structor is then restored to the B operand

general register.

SYSTEM CONTROL INSTRUCTIONS

The Test Condition, Empty, Full Available Condition, and
S Flag indicators (ref. subsection 5.4.1) maybe set by the

System Control indicators. These indicators are always

reset prior to the execution of a System Control instruction.

Processor Control (PCON)

Formats: RR

The PCON instruction causes the processor specified by the
B operand to respond to a command specified by the A oper-
and. The actual performance of the command is, in general,
asynchronous with respect to the execution of the PCON

instruction itself.
5-58

HONEYWELL PROPRIETARY - SENSITIVE

5.6.1
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

Autofetch applies to both operands. Both the final A
operand and the final B operand are required to be tagged
binary integers or tagged logical words. The A operand is
a command word encoded as shown in Figure 5-7. The B operand
specifies a processor.

The PCON instruction performs a test and set to the Prior-
ity Structure Lock. If the test fails the sequence counter
is set to the location of the op-code of the instruction,
and the instruction terminates. (This has the effect of
re-trying the instruction after testing for any external
signals; see Figure 6-1 Processor Control Flow).

If the test and set to the Priority Structure Lock succeeds
then the A operand is stored in the first word of the PSA
entry of the processor specified by the B operand. This
processor (the object processor) is then notified that it

should examine its PSA entry and the instruction terminates.

When the object processor recognizes that it has been sig-
nalled (see Figure 6-1 Processor Control Flow) it examines
its PSA entry and executes the action specified by the com-
mand word. In all cases the object processor is responsible
for resetting the Priority Structure Lock.

Action PSA Command PSA Address
Field Field

Store Current

Task and Dis- 00 cee
patch
Store Current
Task and Enter 01l o
Wait State
Store Current Address of Ring
Task and Load 02 Pointer of new
new Task task.
(Continued)
5-59

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

Action PSA Command PSA Address
Field : Field

Store Current
Task and Dis- 03 cee
patch skipping
current task,.

Change 04 Address of ROM

Identity image or other
required infor-
mation.

FIGURE 5-7 COMMAND WORD ENCODING

If either operand is not a tagged binary integer or a
tagged logical word then an illegal operand trap (0200)
occurs or is masked.

Stop

Formats: RR

The STOP instruction places the task identified by the se-
cond operand in the blocked state. Autofetch applies to
the B operand and must result in a TSB Identifier. The

A operand syllable is required to be zero.

The STOP instruction performs a test and set to the Priority
Structure Lock. If the test fails the sequence counter is
set to the location of the op-code of the instruction and
the instruction is terminated. (This has the effect of re-
trying the instruction after testing for any external sig-
nals; See Figure 6-1 Processor Control Flow).

If the test and set to the Priority Structure Lock succeeds
then the state of the task identified by the B operand is
changed as shown in Table 5-1. In the case of the transi-
tion from the Running to Blocked states the processor ex-
ecuting the STOP instruction (the executing processor) con-
structs a Store Current Task and Dispatch command (See
Figure 5-7 Command Word Encoding) and stores it in the PSA

5-60
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

entry of the processor executing the task to be blocked.
(The object processor). The executing processor then sig-
nals the object processor that it should examine its PSA
entry and the instruction terminates.

In the case of the transitions from ready to blocked, and
from blocked to blocked the executing processor changes
the state bits of the TSB, resets the Priority Structure

Lock and terminates the instruction.

In the case of the transition from available to available,
the Available Condition Indicator is set, an illegal operand
trap (0200) occurs or is masked, the Priority Structure Lock

is reset and the instruction is terminated.

TABLE 5-1
STATE TRANSITIONS FOR STOP INSTRUCTION
Condition

0l1d state New State Comments Indicators Set
Running Blocked Dispatch occurs
Ready Blocked
Blocked Blocked
Available Available Trap occurs Available

If Autofetch applied to the B operand does not result in a .

TSB Identifier then an illegal operand trap (0200) occurs

or is masked.

Start

Formats:

The START instruction places the task identified by the

B operand in the ready or running state.

The task

is placed in the running state if it is higher in priority

than the lowest priority task currently in the running

state; Otherwise it is placed in the ready state.

5-61

HONEYWELL PROPRIETARY - SENSITIVE

5.6.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

Autofetch applies to the B operand and must result in a TSB
Identifier or a STOP Protected TSB Identifier. The A oper-
and syllable is reserved and must be set to zero.

The START instruction performs a test and set to the Prior-
ity Structure Lock. If the test fails the sequence counter
is set to the location of the op-code of the instruction
and the instruction is terminated. (This has the effect of
re-trying the instruction after testing for any external
signals; See Figure 6-1 Processor Control Flow).

If the test and set to the Priority Structure Lock succeeds
then the state of the task identified by the B operand is
changed as shown in Table 5-2, In the case of the transi-
tions from Ready to Running and Blocked to Running the pro-
cessor executing the START instruction (the executing
processor) constructs the appropriate command word (See
Figure 5-7 Command Word Encoding) and stores it in the PSA
entry of the processor executing the task to be started.
(The object processor). The executing processor then sig-
nals the object processor that it should examine its PSA

entry and the instruction terminates.

In the case of the transition from available to available
the Available Condition Indicator is set, an illegal operand
trap (0200) occurs or is masked, the Priority Structure

Lock is reset and the instruction is terminated.

In the case of the transitions from Running to Running,
Ready to Ready, and Blocked to Ready the executing proces-
sor changes the state bits of the TSB as appropriate, resets
the Priority Structure Lock and terminates the instruction.

The current priority fields of the PSA are used to determine
whether the task being started is higher in priority than the

tasks which are already running.

5-62
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

STATE TRANSITIONS FOR START INSTRUCTION

TABLE 5-2

Condition
014 State Priority Priority Comments Indicators
High Low Set
Running Running oo
Ready Running Ready
Blocked Running Ready
Available Available Available Trap Available

If Autofetch applied to the B operand does not result in a TSB,
Identifier or a STOP Protected TSB Identifier then an illegal

operand trap (0200) occurs or is masked.

Suspend

Formats: RR,

The SUSPEND instruction places the task identified by the

second operand in the ready state.

Autofetch applies to the B operand and must fetch a TSB

Identifier. The A operand syllable is required to be zero.

The SUSPEND instruction performs a test and set to the
Priority Structure Lock. If the test fails the sequence
counter is set to the location of the op-code of the in-
(This has

the effect of re-trying the instruction after testing for

struction and the instruction is terminated.
any external signals; See Figure 6-1 Processor Control
Flow).

If the test and set to the Priority Structure Lock succeeds
then the state of the task identified by the B operand is
changed as shown in Table 5-3. In the case of the transi-

tion from Running to Ready the processor executing the

5-63
HONEYWELL PROPRIETARY - SENSITIVE

5.6.4
(Cont.)

HONEYWELL PROPRIETARY -~ SENSITIVE

SUSPEND instruction (the executing processor) constructs

a "Store Current Task and Dispatch Skipping Current Task"
command (See Figure 5-7 Command Word Encoding) and stores
it in the PSA entry of the processor executing the task
which is to be placed in the ready state. (The object pro-
cessor). The executing processor then signals the object
processor that it should examine its PSA entry and the
instruction terminates.

In the case of the transition from ready to ready, the ex-
ecuting processor resets the Priority Structure Lock and

terminates the instruction.

In the case of the transitions from Blocked to Blocked, and
from Available to Available,the Available Condition Indica-
tor is set, and illegal operand trap (0200) occurs is
masked, the Priority Structure Lock is reset and the in-
struction is terminated.

If Autofetch applied to the B operand does not result in a
TSB Identifier, an illegal operand trap (0200) occurs or is

masked.

TABLE 5-3
STATE TRANSITIONS FOR SUSPEND INSTRUCTION

Condition

014 State New State Comments Indicators

Running Ready Dispatch

Ready

Set

Occurs

Ready

Blocked Blocked Trap Occurs Available

Available Available Trap Occurs Available

5-64
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

Conditional Stop (CSTOP)

Formats: RR,

The CSTOP instruction performs a test of a bit in main
storage and, depending on the result of the test, may
place the task identified by the second operand in the
blocked state.

Autofetch applies to both operands. The final A operand
must be a Byte String Array Structor; the final B operand
must be a TSB Identifier. If either operand is incorrect
an illegal operand trap (0200) occurs or is masked and the
instruction terminates.

The CSTOP instruction performs a test and set to the
Priority Structure Lock. If the test fails the sequence
counter is set to the location of the op-code of the in-
struction and the instruction terminates. (This has the
effect of re-trying the instruction after testing for any

external signals; see Figure 6-1 Processor Control Flow).

If the test and set to the Priority Structure Lock succeeds
then the leftmost bit of the leftmost byte of the first
string in the array specified by the A operand is used to
set the Test Condition Indicator. If the test fails then
the Priority Structure Lock is reset and the instruction

is terminated.

If the test to the A operand succeeds then the state of the
task specified by the B operand is tranformed according to
Table 5-4.

In the case of the transition from the Running to Blocked
states the processor executing the CSTOP instruction (the
executing processor) constructs a "Store Current Task and
Dispatch" command (See Figure 5-7 Command Word Encoding)

and stores it in the PSA entry of the processor executing
the task to be blocked. (The object processor). The ex-

ecuting processor then signals the object processor that

5-65
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

it should examine its PSA entry, and terminates the in-

struction.

In the case of the transitions from ready to blocked, the ex-
ecuting processor changes the state bits of the TSB, resets
the Priority Structure Lock and terminates the instruction.

In the case of transition from blocked to blocked the ex-
ecuting processor resets the Priority Structure Lock and

terminates the instruction.

In the case of the transition from available to available the
Available Condition Indicator is set, an illegal operand trap
(0200) occurs or is masked, the Priority Structure Lock is

reset and the instruction terminates.

TABLE 5 -4
STATE TRANSITIONS FOR CSTOP INSTRUCTION
014 State New State Comments Condition
Indicators Set

Running Blocked Dispatch Occurs

Ready Blocked

Blocked Blocked

Available Available Trap Occurs Available

5.6.6 I/0 and External Conditional Stop (ISTOP)

Formats: RR.

The ISTOP instruction performs a raceless test of the Start
Flag in the TSB of the task identified by the second operand.
Depending on the result of the test, the instruction may
place the task in the blocked state.

Autofetch applies to the B operand and must result in a TSB
Identifier. If it does not, an illegal operand trap (0200)
occurs or is masked and the instruction terminates. The A

operand syllable must be zero.

5-66
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE

The ISTOP instruction performs a test and set to the
Priority Structure Lock. If the test fails the sequence
counter is set to the location of the op-code of the in-
struction and the instruction terminates. This has the
effect of re-trying the instruction after testing for any
external signals; see Figure 6-1 Processor Control Flow.

If the test and set to the Priority Structure Lock succeeds
then the Start Flag of the task identified by the B operand
is used to set the Test Condition Indicator. If the Start
Flag is set then the Priority Structure Lock is reset and
the instruction terminates. If the Start Flag is reset
then the state of the task is transformed according to
Table 5-5.

In the case of the transition from the Running to blocked
states the processor executing the ISTOP instruction (the
executing processor) constructs a "Store Current Task and
Dispatch" command (See Figure 5-7 Command Word Encoding

and stores it in the PSA entry of the processor executing
the task to be blocked (the object processor). The execut-
ing processor then signals the object processor that it

should examine its PSA entry, and terminates the instruction.

In the case of the Transitions from ready to blocked the ex-
ecuting processor changes the state bits of the TSB, resets

the Priority Structure Lock and terminates the instruction.

In the case of the transition from blocked to blocked the
executing processor resets the Priority Structure Lock and
terminates the instruction.

In the case of the transition from available to available
the Available Condition Indicator is set, an illegal operand
trap (0200) occurs or is masked, the Priority Structure Lock
is reset and the instruction terminates.

5-67

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

TABLE 5-5 .
STATE TRANSITIONS FOR ISTOP INSTRUCTION
014 state New State Comments Condition
Indicators Set

Running Blocked Dispatch Occurs

Ready Blocked

Blocked Blocked

Available Available Trap Occurs Available

5.6.7 Set Priority (SETP)

Formats: RR,

The SETP instruction stores a new value in the priority
field of the Processor Status Array entry of the processor
executing the instruction. This modifies the effective
priority of the task executing the instruction until it is
swapped out by the processor. Autofetch applies to the

A operand and must result in a tagged binary integer. The
B operand syllable is required to be zero.

The SETP instruction performs a test and set to the Priority
Structure Lock. If the test fails the sequence counter is
set to the location of the op-code of the instruction and
the instruction is terminated. (This has the effect of
re-trying the instruction after testing for any external
signals; see Figure 6-1 Processor Control Flow).

If the test and set to the Priority Structure Lock succeeds
then the rightmost eight bits of the effective A operand
are stored in the current priority field of the Processor
Status Array entry of the processor executing the instruc-
tion. The Priority Structure Lock is reset and the in-
struction terminates.

5-68
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

If the effective A operand is not a tagged binary integer
then an illegal operand trap (0200) occurs or is masked.

This instruction may only be executed in the privileged
mode. If an attempt to execute it in non-privileged mode
an operand selection (0108) trap occurs.

Undump Interlocked

Formats: RR.

The UNDUMP interlocked instruction performs a raceless
load of a tagged doubleword from a FIFO or LIFO array.

Autofetch does not apply to either operand. The A operand
must be a tagged doubleword array structor. The first
element of the array identified by the A operand must be
either a FIFO or a LIFO structor. If the A operand fails
to conform to these requirements then an illegal operand
trap (0200) occurs or is masked.

The UNDUMP INTERLOCKED instruction performs a test and set
to the Queue Lock in the System Base. If the test fails
then the sequence counter is set to the location of the
op-code of the instruction and the instruction terminates.
(This has the effect of re-trying the instruction after
testing for any external signalss see Figure 6-1 Processor
Control Flow).

If the test and set to the Queue Lock succeeds then a
tagged doubleword is loaded from the array described by
the structor identified by the A 6perand and placed in the
B operand register. The load conventions conform to those
described for the UNDUMP MULTIPLE instruction. Once the
A operand has been loaded the Queue Lock is reset and the
instruction terminates.

If the FIFO or LIFO Array is empty then the Empty Condition
Indicator is set.

5-69
HONEYWELL PROPRIETARY - SENSITIVE

5.6.9

5.6.10

HONEYWELL PROPRIETARY - SENSITIVE

Dump Interlocked

Formats: RR,

The DUMP INTERLOCKED instruction performs a raceless store
of a tagged doubleword into a FIFO or LIFO array.

Autofetch does not apply to either operand. The A operand
must be a tagged double word and the B operand must be a
tagged doubleword array structor. The first element of the
array identified by the B operand must be either a FIFO or
a LIFO structor.

The DUMP INTERLOCKED instruction performs a test and set
to the Queue Lock in the System Base, If the test fails
then the sequence counter is set to the location of the
op-code of the instruction and the instruction terminates.
(This has the effect of re-trying the instruction after
testing for any external signals; see Figure 6-1 Proces-
sor Control Flow).

If the test and set to the Queue Lock succeeds then the

A operand is stored in the array described by the structor
identified by the B operand, The store conventions con-
form to those described for the DUMP MULTIPLE instruction.
Once the A operand has been stored the Queue Lock is reset
and the instruction terminates. If the FIFO or LIFO array
is full the Full Condition Indicator is set. If any of
the operands fail to conform to the requirements described

above an illegal operand trap (0200) occurs or is masked.
Load Status

Formats RR,

The LOAD STATUS instruction loads an external or I/0

status word from the status word in the TSB of the task
executing the instruction or from the FIFO array identified
by the status word in the TSB, into the B operand register.

The A operand syllable must be zero.

5-70
HONEYWELL PROPRIETARY - SENSITIVE

5.6.11

HONEYWELL PROPRIETARY - SENSITIVE
12-4-69

The LOAD STATUS instruction performs a test and set to the
Status Word Lock in the TSB. If the test fails the sequence
counter is set to the location of the op-code of the in-
struction and the instruction terminates. (This has the
effect of re-trying the instruction after testing for any

external signals; see Figure 6-1 Processor Control Flow.)

If the test and set to the Status Word Lock succeeds then
the status word of the TSB is accessed. If it is either an
I/0 or an External Status word it is placed in the B operand
register, the Start Flag in the TSB is reset, the Status
Word Lock is reset, and the instruction terminates.

If the status word in the TSB contains a FIFO array struc-
tor, then the top element in the array is accessed and
stored in the B operand register. If the array is empty
then the Empty Condition Indicator is set, and an operand
selection trap occurs or is masked. In either case the
Start Flag in the TSB is reset, the Status Word Lock is
reset, and the instruction terminates.

Test and Set
Formats: RR, RS,

The TEST AND SET instruction performs a raceless test of
a bit in main storage.

Autofetch applies to the initial B operand and must result
in a byte string array structor. The A operand syllable
is required to be zero.

The TEST AND SET instruction accesses the leftmost byte of
the first string in the array described by the B operand.
It uses the high-order bit of this byte to set the Test
Condition Indicator, sets the entire byte to ones and re-
stores it to main storage. No access is permitted to the
byte between the time the inétruction accesses it and the
time it is restored.

5-71
HONEYWELL PROPRIETARY - SENSITIVE

5.6.12

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

If Autofetch does not result in a byte string array
structor then an illegal operand trap (0200) occurs or

is masked.

Note that if this instruction is used to establish
locks to protect access to asynchronously shared data
structures, then the boundary between the structures
must not occur in the middle of a word in storage.

Set Mode - Reget Mode

Formats : CV

SET M
RSETM

0 7 11 15 31

When the Set Mode instruction is executed, bits 42-55
of the Current Procedure Index of the task executing the
instruction are set under control of the V field. The A

and B fields are ignored and should be set to zero.

If the instruction is executed in the privileged mode, bits
2-15 of the V field are aligned with bits 42-55 of the
current procedure index. Each bit in the V field containing
a one causes the corresponding bit in the procedure index

to be set to one. The remaining bits in the procedure index
retain their old values. Bits O and 1 of the V field should
be zero.

If the instruction is executed in the normal mode then its
operation is the same except that the following bits in

the procedure Index field will not be set:

a. Privilege mode.
b. Instruction Exception Mask
c. Operand Selection Exception Mask

d. Illegal Operand Exception Mask
5-72
HONEYWELL PROPRIETARY - SENSITIVE

5.6.13

HONEYWELL PROPRIETARY - SENSITIVE

e. Timer Mask
f. Program Controlled Type I Mask
g. Program Controlled Type II Mask

The operation of the Reset Mode is the same except that
the bits in the procedure index field are reset rather than
set.

Field Extract

Formats: CV

Op Code <y C, C,y

8 4 4 le

A field up to 32 bits in length or a 64 bit tagged double-
word is placed in the general register specified by the
first control field of the instruction (Cl) in the form

of a tagged doubleword. The source of the field or double-
word is any one of the 32 doublewords of the Task Status
Block associated with the task executing the FIELD EXTRACT
instruction.

The interpretation placed in the third control field (C3)

of the instruction is as shown in the following diagram:

C, Field: k\\

e e

field length (5 bits)
field offset (6 bits)

extraction control (2 bits)

reserved (2 bits)

general registers/control
registers (1 bit)

5-73

HONEYWELL PROPRIETARY - SENSITIVE

5.6.13
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

The first bit in the C3 field identifies the first sixteen
(general purpose) registers or the second sixteen (control)
registers of the Task Status Block as the source of the
desired field or doubleword. The C2 field of the instruc-
tion selects one of sixteen doublewords within the portion
of the Task Status Block identified by the first bit of
the C3 field. The next two bits of the C3 field are re-
served. The following two bits are an extraction control
field. The interpretation of the extraction control field

is as follows:

Code Meaning
00 Form a tagged logical word with a value con-

sisting of the desired field, left justified,
and zero filled on the right.

01 Form a tagged logical word with a value con-
sisting of the desired field, right justified,
and zero filled on the left.

10 Form a tagged binary integer with a value
equal to the value of the field, interpreted
as a twos complement integer, filling the
appropriate sign bit.

11 Form a tagged doubleword identical to the
selected doubleword of the Task Status Block.

The following two subfields of the C3 field are used to
specify the offset (6 bits) and length (5 bits) of the de-
sired Task Status Block field. These two subfields are

used only for extraction control codes 00, 01, and 10.

The use of extraction control code 11 (doubleword extrac-
tion) is available only in privileged mode. An operand selec-
tion trap (0108) is generated if this control code is used

in non-privileged mode and the operand selection trap

mask bit is not set.

5-74

HONEYWELL PROPRIETARY - SENSITIVE

5.6.14

HONEYWELL PROPRIETARY - SENSITIVE

Field Substitute

Formats: CV

Op Code c C2 C

8 4 4 16

The contents of the general register specified by the first
control field of the instruction (Cl) may replace the value
of a field up to 32 bits in length or a 64 bit doubleword.
The destination field or doubleword is any one of the 32
doublewords in the Task Status Block associated with the
task executing the FIELD SUBSTITUTE instruction.

The interpretation of the third control field (C3) of the
instruction is similar to the interpretation for the FIELD
EXTRACT instruction. The C2 field, together with the first
bit of the C, field selects the destination in the Task
Status Block. The interpretation of the substitution
control field (extraction control field for FIELD EXTRACT)

is as follows:

Code Meaning
00 If the general register specified by the Cl

field contains a tagged logical word, the
leftmost n bits of its value are placed in
the designated field, where n is the length
of the field.

01 If the general register specified by the Cl
field contains a tagged logical word, the
rightmost n bits of its value are placed in
the designated field, where n is the length
of the field,

10 If the general register specified by the Cl
field contains a tagged binary integer, the

5-75

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

rightmost n bits of its value are placed in
the designated field, where n is the length
of the field.

11 The contents of the general register specified
by the Cl field replace the contents of the
designated doubleword of the Task Status Block.

The last two subfields of the C3 field specify the offset
and length of the desired Task Status Block field for sub-
stitution codes 00, 01, 10.

This instruction may be executed only in privileged mode.
An operand selection trap (0108) is generated if this
instruction is executed in non-privileged mode, and the
operand selection trap mask bit is not set.

5.6.15 Trap Return

Formats: RR

The TRAP RETURN instruction causes a trap to occur regard-
less of the setting of the trap mask bits in the Current
Procedure Index. Both the A operand syllable and the B
operand syllable are required to be zero.

The TRAP RETURN instruction causes the contents of General
Purpose registers zero, one, and two to be exchanged with
the contents of Trap Registers zero, one, and two.

The sequence counter in the Current Procedure Index is

set to the address of the next instruction and the
contents of the Current Procedure Index are exchanged with
the contents of the Trap Index. The Trap ID is not altered.

5.6.16 Read Clock

Formats: RR

The READ CLOCK instruction causes the current value of the

system clock to be converted to a tagged floating point
5-76

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

number and stored in register Rb, The A operand syllable

is required to be zero.

5.6.17 Set Clock

Formats: RR

The SET CLOCK instruction is used to insert a value into
the system clock. Autofetch does not apply to either
operand. The initial A operand must be a tagged floating
point number. The B operand syllable is reserved and must
be set to zero.

The mantissa of the A operand is used to set the clock.

The sign and exponent fields of the A operand are ignored.

This instruction may only be executed in the privileéed l
mode. If an attempt is made to execute it in non-
privileged mode an operand selection trap occurs (0108) or I
is masked.

5.6.18 Set Timer

Formats: RR

The SET TIMER instruction is used to insert a value

into the VR of the system timer (see Subsection 8.2). The ‘
initial A operand is required to be a tagged floating

point number; The B operand syllable is reserved and must l
be set to zero. Autofetch does not apply to either operand.

Bits 20-35 of the mantissa of the A operand are used to

set the value register of the system timer. The sign and
exponent fields of the A operand are ignored. This instruction
may only be executed in the privileged mode. l

If an attempt is made to execute it in non-privileged mode I

an operand selection trap (0108) occurs or is masked.

5-77

HONEYWELL PROPRIETARY - SENSITIVE

5.6.19

HONEYWELL PROPRIETARY -~ SENSITIVE

Set and Zero Timer

Formats: RR

The SET AND ZERO TIMER instruction is used to insert a
value into the VR of the system timer (see Section 9.3)
and simultaneously to set the CR to zero., The initial A
operand is required to be a tagged floating point number:;
the B operand syllable is reserved and must be set to
zero, Autofetch does not apply to either operand.

Bits 20-35 of the mantissa of the A operand are used

to set the value register of the system timer. The clock
register is set to zero. The sign and exponent fields of
the A operand are ignored. This instruction may only be
executed in the privileged mode. If an attempt is made
to execute it in non-privilege mode an operand selection
trap (0108) occurs or is masked.

INPUT/OUTPUT INSTRUCTIONS

There are two Input/Output (I/O) instructions: Initiate
Device Operation (IDO) and Halt Device Operation (HDO),

Initial Device Operation

Formats: RR, RS, SR, SS

The B operand resulting from application of Autofetch

must be Device Identifier Structor. This structor is used
to identify the peripheral device to or from which the data
transfer will occur, or to which the control operation will
be derected.

The A operand must be one of three structors: A tagged
doubleword array structor, (which should point to an array
or I/0 command structor), a Single Control Command specifier
structor, or an Alternate Array specifier structor.

5-78

HONEYWELL PROPRIETARY - SENSITIVE

5.7.2

HONEYWELL PROPRIETARY - SENSITIVE

This instruction will initiate the execution of the I/0
Command Array specified in A operand, using the peripheral
device specified in B operand.

The Condition Code in Procedure index is set depending
whether the initiation was successfully performed or not.

A more complete discussion of the execution of the IDO
instruction is included in Subsection 9.3.2.1.

Halt Device Operation

Formats: RR, RS

The B operand resulting from application of Autofetch must
be a Device Identifier Structor. The A operand is not
used in this instruction., This instruction will cause a
halt of any peripheral operation currently in progress in

the device specified in the B operand.

—-~END OF SECTION--

5-79

HONEYWELL PROPRIETARY - SENSITIVE

6.1

HONEYWELL PROPRIETARY - SENSITIVE

SECTION VI
TASK MULTIPLEXING

INTRODUCTION

Tasks are time multiplexed on physical processors. This
multiplexing is a hardware function and is controlled by
the Task Control instructions (see Subsection).

The creation and deletion of tasks from the system is

a scftware function.

The two situations which cause the task multiplexing
mechanism to be used are:

a.~When a processor is free. In this case the multi-
plexing mechanism selects the next task for the
processor to run. This situation can only occur
after the execution of a STOP;=SUSPEND, CONDITIONAL
STOP, ISTOP, or PROCESSOR CONTROL instruction.

b. The occurence of an I/0 or External start (see
Subsections 6.6 and 6.7).

LOCK AND UNLOCK FUNCTIONS

In order to prevent race conditions during system control
operations a number of locks have been defined. ZEach

of these locks consists of a byte in main storage and

is associated with a data structure or process which

it is designed to protect. If the high crder bit of

the lock is one then access is prohibited toc the asso-
ciated structure except by the processor which set the
lock. This is the locked state. If the bit is zero

then the associated structure is unlocked and a processor
is free to lock it by setting the bit to one and then
using the structure.

In order to set the lock bit a processor must access
it, test to determine if it is zero and, if it is,

6-1

HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE

6.2 (Cont.)

set it to one and restore it to memory. During the
time the processor is performing thése operations,
access to the byte of main storage containing the

lock bit is prohibited. The process of setting the
lock bit is referred to as "locking the structure".
This process is the same as the one which is available
to the programmer through the TEST AND SET instruction.

It is possible for one processor to lock a facility
and then to transfer its priviledged status with respect
tc the facility to another processor.

The locks used for system control are:

a.. The Priority Structure Lock: This lock controls
the System Base and all of the arrays associlated
with it. It ensures that only one processor will
be able to perform a task control instruction at
a time. '

b. The Status Word ILock: There is one such lock in
each TSB. It controls the Status Word in the TSB.

¢. The Queue Lock: This lock is used to ensure that
only one processor will‘eXeoute a Dump Interlocked
or Undump Interlocked instruction at a time.

6-2

HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE

! DECYRE AnD , PRoKESS
L X ECUTE I}‘ e LB ST s Chan
. Com m AND

| ;

| — NO

-y
Lessy]
PRIOR(TY
;‘ STRACTURE
‘ £0 GK
|
v/ & 1 // 77 .
g ; T A NE AN
: TRARP . pe W_}/
E ‘g AS<E,
O o

.

Lxecure /S \
; 0K S S5k
SISTR ST O L.,_,,__._m_fj_@_ WAy >

-————— -
5?4“6/
\\//
T ' :Yé”.>
? ,
! |

FIGURE 6-1. PROCESSOR CONTROL FLOW

6-3

HONEYWELL PROPRIETARY - SENSITIVE

6.3

6.4

HONEYWELL PROPRIETARY - SENSITIVE 11-26-69

TASK T.OAD

When a processor determines that it is to run a task it
loads some portions of the TSB for the task into its local
registers. The portions of the TSB which are loaded may

vary from one implementation to another. For this reason

the contents of the TSB in memory can only be relied on in

the following cases:

a.

b.

If,

The facility accessing the TSB must first have success-
fully performed a Test and Set of the Status Word lock.
The Ring Pointer and Start Status Word are always cor-
rect in memory with one exception: The current pro-
cessor field of the Ring Pointer is correct only when
the task is in the running state.

If the Task is in the ready, blocked, or available states
the memory copy of the TSB is correct (except the cur-
rent processor field of the Ring Pointer).

Information obtained from the TSB by means of the Field
Extract instruction is always correct.

while loading a task a processor finds that the task re-

quires an identity which it does not possess, it restores

the TSB to memory and generates an external start to loca-

tion one of the External Start Array. The processor
then places itself in the wait state.

DISPATCH OPERATION

When a processor discovers that it has no task to run, it

selects a task by searching the Priority Array Structure.
This search is known as the Dispatch Operation. Note that
since the STOP, CSTOP, ISTOP, and SUSPEND instructions all
lock the Priority Structure, it is always locked when the
need for the Digspatch operation is recognized. The search
proceeds as follows:

a.

b.

A register in the processor is set to zero for use as

a Level Index Counter.

The Level Index Counter is used in conjunction with the
Priority Array Structor in the System Base to select an
entry in the Priority Array.

6-4
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 11-26-69

6.4 c. The Level Blocked Indicator of the entry selected
(Cont.) from the Priority Array is tested. If it is set,
the Level Index Counter is incremented and the process
returns to step b. If the ILevel Blocked Indicator
is reset, a register is loaded with the field of the
Priority Array entry which specifies the number of
tasks in the ring for use as a Task Counter. The
location field of the Priority Array entry is used
to access the Ring Pointer of the first TSB in the
ring.

d. If the status bits of the task whose ring pointer
was accessed in step c. are set tc ready then:

1.\ The lccation field of the Ring Pointer is
laced in the location field of the Priocrity
-:>T(Array Entry.

™~ The address of the Ring Pointer and the priority
‘:>_{;)_1 f the task are placed in the second word of
the processor's entry in the Processor Status array.

3. The status bits of the Ring Pointer are set to running.

W
4. The processor's number is placed in the current
processor field of the Ring Pointer.
5. The necessary portions of the TSB are loaded into
15 the processor. (See Section 6.3)

6. The Priority Structure is unlocked, and the Dispatch
Operation terminates.

If the status bits are set to any other value, the Task
Counter is decremented and tested for all ones. If it

is all ones the process goes to step e. If it is mnot all
ones then the location field of the Ring Pointer is used
to access the Ring Pointer of the next TSB in the field

and step d. is repeated.
6-5

HONEYWELL PROPRIETARY - SENSITIVE

6.5

HONEYWELL PROPRIETARY -~ SENSITIVE
11-26-69

e. The last used entry in the Priority Array is accessed
and its Level Blocked Indicator is set. The Level
Index Counter is incremented and the process returns
to step b.

If the process overruns the Priority Array then the

processor sets the first byte of the second word of its
entry in the Processor Status Array to ones, unlocks the
Priority Structure, and places itself in the Wait state.

PROCESSOR CONTROL FLOW

Each central processor follows the flow shown in Figure
6-1. A single cycle of this flow may be considered to
begin at point A and to terminate a point A. Starting
at point A the processor determines whether any of three
classes of operation are required. These classes are:

a. Processor Contrcl Operations: Processor Control
operations are described in subsection 6.8. The
need for a Processor Contrcl Operation is recognized
by the presence of a Processor Status Change Signal.

b. Timer Trap: The Timer Trap is described in subsection
7.3. The need for a timer trap is indicated by the
setting of the timer trap pending flag in the TSB.

c. Instruction Execution: If the processor is running
a task, and none of the above coperations are required
then it will execute the next instruction for the
task.

The need for each of these operations is tested in
sequence; if none of these operations are required the
processor starts again at point A.

If the Processor Status Change Signal is present then

6-6

HONEYWELL PROPRIETARY - SENSITIVE

6.6

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

a processor Control Operation is required. The processor
examines the command field of its PSA entry and performs
whatever action is specified there. Once this has been
done the Priority Structure Lock is reset and the process
returns to point A.

If a timer trap is pending and not masked then it is
serviced as described in subsection 7.3.

If a task is being run then the next instruction is
executed for it.

I/0 INITTATED STARTS

An I/0 start is a process whereby an I/0 device may
transfer a double word of status infeormation to a task
and cause the task tc be placed in the ready or running
state.

The sequence of operations performed by the I/0 in order
to store a status word is shown in Figure 6-2. The
ocperation is as follows:

a. The Priority Structure Iock is set.

b. I/0 resources are deallocated, if required (see Sub-
section 9.6).

c. Bits 8-15 of the I/O0 Status Word are used to index the
I/0 Start Array. If the index value exceeds the extent
of the array the last entry in the array is used. The
entry in the array determines what further action is to
be taken; if the I/O Start Array entry is a TSB
Identifier the process continues with step f; if the
I/0 Start Array entry is a tag zero structor then the
process terminates; if the I/O Start Array entry is a
tagged doubleword array structor then the array which it
identifies is called an Index Array and the process con-
tinues with step 4.

6-7

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

6.6 (Cont.)

d. Bits 16-19 of the I/O Status Word are used to index
the Index Array Structor. If the index value exceeds
the extent of the array the last entry in the array
is used. The entry in the array determines what further
action is taken; if the Index Array entry is a TSB
Identifier the process continues with step f; if the
Index Array entry is a tag zero structor then the
process terminates; if the Index Array entry is a
tagged doubleword array structor then the array which
it identifies is also called an Index Array an the
process continues with step e.

e. Bits 20-23 of the I/O Status Word are used to index
the second Index Array Structor. If the index value
exceeds the extent of the array the last entry in the
array is used. The entry in the array determines what
further action is taken; if the Index Array entry is
a TSB Identifier the process continues with step e.

If the Index Array entry is a tag zero structor then
the process terminates. No other entries are allowed
in the second Index Array.

f. A test and set is performed to the Status Word Lock
in the TSB. If the test fails then step f. is
repeated. If the test succeeds the Start Flag in
the TSB is set and the Start Status Word is accessed.
If the Start Status Word is a FIFO Array Structor then
the I/0 Status Word is stored in the array. If the
array is full then the last word in the array is
overwritten. If the Start Status Word is not a FIFO
Array Structor then the I/O0 Status Word is deposited
in the Start Status Word.

g. In either case the Status Word Lock is reset and the
state of the task is transformed as shown in Table 6-1.

6-8

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

<

SET.
PRI T Y
STRUCTURE

LG TR

SUCCEED

P PEALLOCATE |
0 RESOULES
T LEQuRED

i 1
| |
|

P

[DELrysH |
S7AT IS WOIRY

Eru TSE a9k
i‘ 758 Queus

YES
- 1
| ser 7sé S7uRE Command
70 REAOY j0 PSR ENTRy
AND SIGNA-
PROLE I
T ; T
R E5 R
. AR Ty
PSS ALC TURE
: Lecs !
. '
ff:\:","
N

S e e -

FIGURE 6-2. I/0 START

6-9

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
) 11-26-69

The Level Blocked Indicator in the corresponding
Priority Array entry is reset, and the Priority Structure
is unlocked.

TABLE 6-1
TASK STATE TRANSFORMATION FOR I/O AND EXTERNAL STARTS

OLD STATE NEW STATE

PRIORITY HIGH* PRIORITY LOW*
Running Running .o
Ready Running Ready
Blocked Running Ready
Available Available Available

*Priority High indicates that the priority of the task being
started is higher than that cf the lowest priority task currently
in the running state. Priority Low indicates the reverse situ-
ation.

6.7

6.8

EXTERNALLY INITTATED STARTS

An External Start is process where by a scurce external

to the system may transfer a doubleword of status informa-
tion to a task and cause the task to be placed in the ready
or running state. The mechanigzation for external starts

is identical to that for I/0 starts except that the External
Start Array is substituted for the I/0 Start Array, and an
External Status Word is formed in place of an I/O Status
Word.

PROCESSOR _CONTROL OPERATIONS

Individual central processors are controlled by means

of a communications buffer in their PSA entries, and

an interprocessor signalling facility. Every processor

has the capability of signaling eaclh of the other processors
in order to notify them that there is a message in their

6-10
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

6.8 (Cont.)
communications buffer.

When a processor (the command processor) wishes to cause
another processor (the object processor) to perform some
action it locks the Priority Structure, stores a command
word in the PSA entry of the object processor and signals
the object processor. The command proceéssor does not
attempt to reset the Priority Structure Lock.

When the cobject processor recognizes that it has been
signalled (see Section 6.5) it examines its PSA entry
and performs whatever action is required. The object
processor 1s responsible for resetting the Priority
Structure ILock.

The encoding of the command words is shown in Figure 5-7.
The action taken in response to the various command
words is as follows:

STORE CURRENT TASK AND DISPATCH: The TSB of the task
being run by the object processor (if any) is restored
to memory and the processor executes a Dispatch operation.

STORE CURRENT TASK AND ENTER WAIT STATE: The TSB of
the task being run by the object processor (if any) is
restored to memory and the processor does not load a
new task. The current priority field of it's PSA entry
is set ot ones and it continues toc test for Processor
Control signals (see Section 6.5).

STORE CURRENT TASK AND LOAD NEW TASK: The TSB cf the
task being run by the object processor (if any) is
restored to memcry and the processor loads a new task
from the address specified in the command word.

6-11
HONEYWELL PROPRIETARY - SENSITIVE

~ HONEYWELL PROPRIETARY - SENSITIVE

6.8 (Cont.)

CHANGE IDENTITY: The object processor assumes a new
identity. The exact mechanism depends on the individual
processor implementations.

STORE CURRENT TASK AND DISPATCH SKIPPING CURRENT TASK:
The TSB of the task being run by the object processor
(if any) is restored to memory and the processor
performs a Dispatch operation. During the course of
this operation the task which was restored to memoxry
is skipped over. That is it will not be run even if
it is the highest priocrity task in the ready state.

This facility is made available to the programmer via
the PROCESSOR CONTROL instruction.

6-12
HONEYWELL PROPRIETARY -~ SENSITIVE

7.1

7.

2

HONEYWELL PROPRIETARY - SENSITIVE

SECTION VII
TRAPPING

INTRODUCTION

A trap is a control transfer initiated by a hardware de-
tected exception condition. Traps are internal to the
task in which they occur.

TRAPPING INFORMATION STRUCTURE

The parts of the TSB used for trapping are:

a Trap Index: This doubleword must contain a procedure
index. When a trap occurs the contents of this
location are exchanged with the contents of the up-
dated current procedure index.

b. Trap Registers: Three general purpose register images
the contents of which are exchanged with the contents
of GPR's @, 1, and 2 when a trap occurs.

¢. Trap ID (see Figure 7-1): A doubleword which, after
a trap, identifies the cause of the trap.

N N

7_}//.‘:_ 7‘/,05 SOEC/EL S EGR ARG N

g

G}

6

FIGURE 7-1. TRAP ID FORMAT

d. Trap Mask: An eight bit status field which allows
each of the types of traps to be individually masked.
This field is a part of the procedure Index.

7-1

HONEYWELL PROPRIETARY - SENSITIVE

7.3

HONEYWELL PROPRIETARY -~ SENSITIVE

TRAP CAUSES

There are eight types of traps:

a.

Instruction Exception: This class includes all error
conditions which are recognizable from examination of
the instruction alone. These include illegal opcodes
and instruction formats.

Operand Selection Exception: This class includes all
error conditions recognized during the operand ex-
traction process and during Autofetch/Autostore.

Illegal Operand Exception: This c¢lass includes all
traps generated when a operand is recognized as being
illegal, given the instruction and the state of the
machine. |

Machine Check: This occurs whin a hardware failure
is detected.

Arithmetic Exception: This class includes all traps
generated during the actual manipulation of the data.

Timer: This trap is genrated when the task timer is
decremented through zero. |

Program Controlled Type I: This trap is generated
when a Type I Trap Effector is used as an operand or -
during operand selection.

Program Controlled Type II: This trap is generated
when a Type II Trap Effector is used either as an
operand or during operand selection.

These types of traps are mutually exclusive so that only

ocne type can occur at a time.

When a trap occurs the type

is used to set bits O0-7 of the Trap ID.

T-2

HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

7.3 (Cont.)

Within each of these types there may be a number of
different specific causes. These will set some or all
of bits 8-63 of the Trap ID. The conditions which may

cause traps are discussed along with the instructions or
functions where they occur.

These are also shown in
Table 7-1.

7-3

HONEYWELL PROPRIETARY -~ SENSITIVE

AAILISNAS - AYVIIIYJO¥Yd TTIMAEINOH

Y=L

TABLE 7-1
TRAP CONDITIONS

TRAP TYPE CAUSES SETTING OF SETTING OF SETTING OF BIT% 16-63
BITS 0O-7 BITS 8-15 OF THE TRAP ID .
OF TRAP ID | OF TRAP ID (Zero If Unspecified)
Instruction 1) Illegal Opcode 00 00 Unspecified
Exception
Operand: 1) Excess Extent Address of Array structor
Selection during selection 0l 00
Exception and substring
operations
2) Qualification 01 Address of modifier
structor
3) Extraction 02
4) Alterability 03 Address of nonalterable
structor
5) Autostore 04 Address of structor
conversion causing trap
6) Autofetch 05 Address of structor
. conversion causing trap
7) Excess 06 Address of last structor
indirection used for indirection
8) Full/Emty LIFO/ 07 Address of Array structor
FIFO Array
9) Privilidge 08 Unspecified
violation
10) I/0 09 Unspecified

#See footnote, page 7-6.

(Continued)

JATILISNAS = A¥VIIIYdO¥d TTIMAINOH

HAILISNAS = AYVLEIYAO¥d TTIMAHINOH

G-L

Table 7-1 (Cont)

TRAP TYPE CAUSES SETTING OF SETTING OF SETTING OF BITS 16-63
BITS 0-7 BITS 8-15 OF THE TRAP ID7
OF TRAP ID OF TRAP ID (Zero If Unspecified)
11) Non Binary OA
collate or
translation
Table not present
Tllegal 1) Incompatible 02 00 Unspecified
Operand Operand types
Error
Machine 1) Hardware error 03 * Implementation dependent
Check
Arithmetic 1) Overflow 04 00 Address of result structor
Exception or register
2) Exponent over 01 Address of result structor
or underflow or register
3) Significance loss 02 Address of result structor
or register
4) Negative result 03 Address of result structor
generated for an or retister
unsigned field
5) Zero 04 Address of zeroc cperand or
the structor describing it
Timer 1) Timer decremented 05 00 Unspecified
through zero

#See footnote, page 7-6.
*See footnote, page 7-6.

(Continued)

FATLIISNIS — A¥YYIIIYAOYd TIIMAINOH

HATLISNES = AYVIATYJOUd TTIMXINOH

]
1
(o))

Table 7-1 (Cont.)

TRAP TYPE CAUSES SETTING OF SETTING OF SETTING OF BIT% 16-63
BITS O-7 BITS 8-15 OF THE TRAP ID
OF TRAP ID| OF TRAP ID| (Zero If Unspecified)
Program 1) Access of Type I 06 00 Address of trap effector
Controlled trap effector
Type T
Program 2) Access of Type II 07 00 Address of trap effector
Controlled trap effector
Type II

*Depends on machine implementation

#Where an address is supplied it will be supplied as shown in Figure 7-1.

HATLISNES — A¥YIAIYJO¥d TTIMAINOH

HONEYWELL PROPRIETARY - SENSITIVE

7.3 (Cont.)

TRAS
873

TRAF

SUBCLA S, FreaT: s -

7.4

L/wemoAbrAwéﬁFSK

OGS TR AOVESS

j/:gaﬂmoazzvcﬂwﬁ

(0:5.7x¢663
Doul & v Y

((/ D MEMURy ADDOESS
10 D ReGis7R MPesSs

FIGURE 7-1. TLAYOUT OF TRAP ID

Figure 7-1 shows the layout of the Trap ID. All unused
bits are set to zeroc.

TRAP MECHANIZATION

When a trap condition is recognized the location counter
in the current procedure index is set to point te the in-
struction causing the trap. The cause of the trap is
stored in the Trap ID field of the TSB. The appropriate
trap mask bit is tested tc see if the trap is allowed.

If the trap is masked the location counter is updated, the
instruction terminates, and processing continues. If the
trap is allowed to trap registers are swapped with GPR's
#, 1, and 2, the current procedure index is swapped with
the trap index, and the instruction terminates.

NOTE

The numbers appearing in brackets after
the mention of a trap are a hexadecimal
representation of the setting of bits
0-15 of the trap ID after the trap occurs.

=1
HONEYWELL PROPRIETARY - SENSITIVE

8.3

HONEYWELL PROPRIETARY - SENSITIVE

SECTION VIIX
TIMING FACILITIES

SYSTEM CLOCK

The system clock measures actual time of day. The
clock is a 52 bit binary integer whiéh is accessed
by the Read Clock and Set Clock instructions (see
Section 6. and 6.).

The system Clock is incremented at bit position 35
every millisecond.

SYSTEM TIMER

The system timer facility consists of two 16 bit
registers: The value register (VR) and the clock
register (CR). The clock register is incremented
every millisecond.

The clock register is continuocusly compared with the
value register. Whenever the contents fo the CR

are found toc be greater than or equal to the contents
of VR the clock register is reset to zerc and an
external start directed to location zero of the
external start array occcurs.

TASK TIMER

Each task has a task timer which measures the amount

of time the task is in the running state. The task
timer is in doubleword 18 of the TSB. It is %2 bits
long and has a resoluticn of one microsecond. Its
precision may, however, be less on some systems. The
task timer is treated as a twos complement number which
is decremented at the interval required by its precision,
while the task is in the running state. It is not
decremented if the processor is stalled waiting for

a memory access and it is not decremented during any

8-1
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

8.3 (Cont.)

time the processor spends performing task control
operations.

When the timer is decremented trhough zero a trap (0500)
results. The trap occurs after the end of the current
instruction, and before the beginning of the next
instruction. If a timer trap is masked it is held pending
until the mask bit is reset. During the time the trap

is pending the timer continues to be decremented. This

is the only trap which may be held pending.

8-2
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

SECTION IX
INPUT/OUTPUT FACILITIES

INPUT/OUTPUT OPERATIONS

Input/Output (I/O) operations involve the use of certain
system facilities or resources. This set of resources,
which is referred to as the Input/Output or Peripheral Sub-
system, is defined as those system resources whose purpose
is to initiate, monitor, sustain or terminate data transfers,

or to execute control operations in a peripheral device.

Conceptually, the I/O subsystem can be viewed as a differ-
ent area of funtionality. This is illustrated in Figure -
9‘—]-0

CENTRAL
futc53$a<
/
MEmor ‘? “ar) 7O peermpeei
/) orpor DEVICES
: Sussysrem|)
\"‘*—«..
% \O
FIGURE 9-1. 1I/0 FACILITIES

This does not imply, however, that in certain implementa-

tions or configurations the central processor and I/0 sub-
systems cannot share common resource, e.g., control logic,

control memory, etc. For the purposes of definitions, and
only from a functional point of view, we will consider the
I/0 sybsystem as a separate entity. It will be capable of
executing I/0 operations without intervention from the cen-

tral processor task that originated them.

9-1
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPIETARY - SENSITIVE

A peripheral device is a single addressable data source or
data sink. It may be a unit producing thsical media, such
as a disk or tape drive or an electronic imedia such as a
communications channel.

The I/0O operations, as defined by the I/O commands, are
classified in the following categories:

a. Data Transfer Commands:

These commands involve the transfer of data to/from

peripheral devices, and from/to memory.

b. Control Commands:

These commands involve the transfer to the device of
control information only, e.g., setting’a parameter or
condition in a peripheral device, rewinding a tape,
seeking a sylinder on a disk drive, etc.

c. Inquire Commands:

These commands are used to retrieve pertinent status
information from the peripheral Subsystem;

The I/O commands can be grouped into an array defining a
series of I/O operations to be performed by the peripheral
subsystem. The execution of the array is triggered by the

central processor issuing an I/0 instruction.

It is important to note the difference between an I/0 oper-

ation and an I/0 instruction. An I/0 operation is the min-

imum command for the peripheral subsystem. The I/Q instruc-
tion, which is a central processor native mode instruction,

can indicate the execution of a whole array of I/O opera-

tions. This difference is presented in Figure 9-2..

I/0 operations are executed in sequence by the peripheral
subsystem, until the completipn of the array.

Since some of the I/O commands in the array may specify data
transfer operations, and since some fesources in the periph-
eral subsystem have a limited transfer rate capacity, the
central processor will protect against the issuing of I/O

9-2
HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

o i
26 commmai \\
giﬁg oA ALY i:::::ﬁ LAl DELINES
:Zﬂb;hﬁ4ﬁﬁaﬁs PMJ~4»> 4*’173
| T oPeRATIN
! ﬁ'@ S IR L |~ //)
AU

FIGURE 9-2. I/O INSTRUCTIONS AND OPERATIONS

instructions which can potentially create an "over run"

condition in those resources.

Also, since many arrays con be simultanecusly under execu-
tion (the maximum number determined by the number of levels
of simultaneity of the peripheral subsystem) the central
processor will protect the issuing of I/0 instructions
whose requirements exceed the number of levels of simulta-

neity available.

The peripheral subsystem will execute the array of I/0
commands, (or sequence of I/0O operations) without direct

intervention of the task that originated it.

Upon completion of the array, (or during its execution if
programmed to do 80 in the I/0O commands), the Peripheral
Subsystem will signal the Central Processor(s) to indicate

this fact, as described in Paragraph 9.6.

INPUT/OUTPUT COMMAND STRUCTORS

The Input/Output Command Structor contains information di-
recting a device to carry out a single operation. The struc-
tor is meaningful only to the Peripheral Subsystem. When
several I/0 command structors are grouped together, they
form an I/0 command array which in itself is a program ex-

ecutable by the Peripheral subsystem.
9-3
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY ~ SENSITIVE

The format of an I/O command structor is as shown in Figure

9-3.
T4G
I zocam aw | LewsTi | |
LIl L I *
[- PRVSUURIVI SO e s . } s 3
0 3¢ 7% ¥ n 7{?{’_;,, S 63
TR ANS, L-szwmé?
VAR CoMn Avd
’ CodE

FIGURE 9-3. I/O COMMAND STRUCTOR FORMAT

The eight-bit DEVICE COMMAND CODE (DCC) field will define
the particular I/0 operation. Up to 255 DCC's can be speci-
fied for each type of peripheral device. One DCC (All zeros)
is reserved for a No-Operation code. The particular bit
configuration for the Device Command Code can be found in
the corresponding Peripheral Devices/Processors specificé—

tions.

The Device Command Codes (and consequently the I/0 command

structors) are classified in the following categories:

» Data Transfer Commands.
Control Commands.

Inquiring Commands.

The Data Transfer Commands will initiate transfer of data
to/from peripheral devices, and from/to memory. The Control
Commands will initiate a control operation such as rewinding
a tape, seeking a cylinder on a disk drive, etc. The data
to be transfered (if any) will be cohtrol information only.

The Ingquire Commands retrieves status information.

The 24-bit LOCATION and the 16-bit LENGTH fields, will de-
fine a main memory area or buffer. If the DCC indicates a
Data Transfer command the buffer will contain (or will be
the destination of) the data. If the DCC implies a Control
Operation command, the buffer will include all the addition-
al control information, such as the cylinder address to

9-4 .
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITLVE

perform a seek, etc. If the DCC indicates an Inquire Com-

mand, the status information will be stored in the buffer.

The LENGTH field specifies the number of bytes to be trans-
fered. The maximum length for a single command is 65,535
bytes.

The LOCATION field is a byte address, pointing to the first
byte to be transfered. Since data transfers always start
in the high-order byte of a word, the lower order two bits
should be zeros. There is no similar restriction in the

length of the transfer.

An exception to the above mentioned restriction in the lo-
cation field is when the DCC indicates a Read Backward op-
eration. If this is the case, the location field is not re-
stricted to have its two lower order bits as zeros. 1I.e.,

the data transfer can start in any byte position in the word.

The 8-bit TRANSFER VARIANT contains information to be used
by the Peripheral subsystem in maintaining the peripheral
operation and in sequencing through the I/O command struc-
tors in the array. The Transfer Variant is formatted as
shown in Figure 9-4., The functions to be performed are ex-

plained with the individual bit configuration.

The signals to the Central Processor(s) caused by a residue
storage or programmable signal will be explained in Para-

graph 9.6.

The branching capabilities as described in Figure 9-4, are
not complete and they will be further descussed in next

paragraph.

The I/0 Command Array

The I/O command structors can be grouped in an array, which

is executed by the Input/Output subsystem.

Upon satisfactory completion of an individual command, the

Input/Output subsystem will issue the next one in sequence

9-5
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

Transfer Variant

0O 1

2

3 4 5 6 7

——

Residue bit: it will indicate that

the residual count (the difference
between the length of the record and
the buffer) should be saved. An I/0
interrupt will occur at the end of
this command if this difference is
other than zero., The next command
will be executed normally., See
Paragraph 9.6 for further details.

Programmable Signal bit: if a one,
a signal to the CP will be gener-
ated, on completion of the execu-
tion of the I/O command. The next
I/0 command will proceed normally.

or

Branch bit: if a one, it will spec-
ify that on sensing the correspond-
ing bit of the status at termina-
tion (sent at the completion of the
command) as a one, it should not
execute the next command in se-
quence, but rather branch forward

or backward, a number of double
word I/O command structors, as spec-
ified in bits O to 4. The complete
branding operation is described in
Paragraph 9.2,1. ‘

If the branch bit is a one:

* It will provide a branching
argument to be used in the
branching operation. The argu-
ment is coded as a two's com-
plement number (Range: -15 to
+16) indicating the number of
I/0 Commands to be skipped for-
ward or backward.

———\\\\\\N* If the branch bit is a zero:

FIGURE 9-4.

* Bits 1, 2, 3 and 4 will indicate
special flags (not yet defined).

.+ Bit O: It will indicate (if a
one), that the I/0 command is’
the last in the array.

TRANSFER VARIANT FORMAT

9-6

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

until completion of the array, the last I/0 command in the
array being indicated by a ONE in Bit O of the Transfer
Variant.

Normally, an I/O command will specify a peripheral operation
such as reading or writing a record of date. 1In addition,
and using bits O to 5 of the Transfer Vairant, the I/0 com-
mand 1is provided with a conditional branching mechanism.

This branching process works as follows:

Upon completion of an I/0 Command, if the Branch bit (bit 5)
of the Transfer Vairant is a ONE, the corresponding bit in
the status send at the completion of the command is sensed,
and if a 1, the branching argument of the Transfer Vairant
is extracted (bits 0-4) and its value added to the argument
send as a second byte of status. (This later argument is
an 8-bit two's complement number.) The result of the addi-
tion referents the number of I/0 commands to be skipped [
forward (if the resulting number is positive) or backward in
in the array. The extent field is checked toc protect for
the issuing of commands outside the boundaries of the I/O
Comménd Array.

At the completion of the array, a signal is generated to a
pertiment task, as described in Paragraph 9.6. Abnormal
situation such as errors or illegal commands will cause the
immediate termination (abnormal termination) of the array

and a signal generated.

INPUT/OUTPUT INSTRUCTIONS

The I/O instruction repertoire consists of the following

instructions:

a. Initiate Device Operation (IDO)
b. Halt Device Operation (HDO)

The IDO instruction has two operands associated with it.
The B operand will always identify a logical device, and
the A operand which will point to an array of I/0 Commands

HONEYWELL PROPé&ﬁ&ARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE

to be executed by the specified device. Both operands
will be used in the assembling of an I/O operand, which
will describe to the Peripheral Subsystem, which device to

use, and where the array of I/0 commands is located.

The HDO instruction has only one operand, the B operand,
which identifies a logical deviqe. It will also assemble

an I/0 operand to be used by the peripheral subsystem. (I/0
operands are described in the following subsections.)

Protection and Allocation Tables

In order to execute a Peripheral operation, three basic re-
sources are needed: a peripheral device, a level of simul-
taneity of the I/O subsystem and transfer rate available in
all those shared resourced which will transfer either con-
trol information or data.

Each one of those resources is checked by the Contral Pro-
cessor before issuing an I/0 instruction to the Peripheral
Subsystem. The availability of the device énd its logical
assignment is checked in the Device Specification Table.
The level of simultaneity in the Simultaneity Table and the
transfer rate in the corresponding entries in the Traffic
Registers. 1In order to avoid simultaneous accesses to the
table from more than one process, there is a common lock in
the system base, which should be "tested and setted" when
accessing the table to allocate or deallocate resources.

a. Device Specification Table: This table is located in

main storage, its starting location is contained in the
System Base,

There is an entry per device and each entry is 2-word
long. 1Its format is shown in Figure 9-5.

The first byte contains flags which indicate a series
of device status bits and actions to be performed during
extraction of the order that reference that physical

device. Its format is shown in Figure 9-6.

9-8
HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

ADORESS OF | TRAys R P
ComMAand A:«‘d/ 453’%&? STArUS
77 ¥ 7 7 <3

FIGURE 9-5. DEVICE SPECIFICATION TABLE ENTRY FORMAT

The Device Status Table also includes a 24-bit ADDRESS
OF COMMAND ARRAY field. This field will indicate the
initial address of the array under execution, if the

device is currently executing a data transfer operation.

The Table also includes a 16-bit current device TRANS-
FER RATE ASSIGNMENT, and the 16-bit LOGICAL STATUS
field which includes the logical assignment of the

peripheral device, as determined by the software.

All entries in this table are maintained by software
with the exception of the busy device flag and the ad-
ress of the Command array, which are dynamically main-
tained by the hardware, upon successful initiation of
an IDO order.

The detailed use of the Device Specification Table will
be further clarified in describing the extraction of the
IDO order in Paragraph 9.3.2.1.

Simultaneity Table: This table is located in main stor-

age with the starting location contained in the System

Base.

There is an entry per each resource which can poten-
tially have multiple levels of simultaneity. Each entry
is one byte wide and it is formatted as shown in Figure
9-7.

The entry contains initially a binary number equal to
127 minus the levels of simultaneity of the resource.

It is originally set up by the software and it is

9-9
HONEYWELL PROPRIETARY - SENSITIVE

Flags byte
2131415
FIGURE 9-6.

HONEYWELL PROPRIETARY - SENSITIVE

— Unconditional Trap: Any reference

to this physical device will cause
a trap.

Compare Logical Mask: If a 1, it
will indicate that the Logical Mask
field in the Device Identifier
Sturctor, and the Logical Status
field in the Device Specification
Table, should be compared for equal.

If a 1, and the logical comparison
was not successful, the order will
be trapped, If a g, and the logical
comparison was not succesgsful, the
order will be rejected.

If a 1, it will indicate that no
level of Simultaneity check will
be performed for IDO instructions
specifing a single control command.
(See Paragraph 9.3.2.1.2.)

If @ 1, it will indicate that the

device is capable of executing al-
ternate arrays IDO's. (See Para-

graph 9.3.2.1.3.)

Device Busy Status: Indicates (if
1) that the device is currently ex-
ecuting an array of I/0 commands.

If a 1, and the Device is busy, the
order will be trapped. If a @, and
the device is busy, the order will
be rejected.

Reject due to Device Malfunction:

If this bit is a 1, it will indicate
that there is a malfunction in the
device and the order should be re-
jected. (It must be noted that if

a trap because of malfunction is
desired, bit 7 can be set to 1.)

FLAGS IN DEVICE SPECIFICATION TABLE

9-10
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

X

-+

COMNTRING A NUMPBEL. FQUARL 7a fRY H/Nin JTHE L5VELS
0 Srreeratwvs 7y 0F THE ATReuRCE FUUS THE vy 38

fromovaersees.

e/

9T SIMULTANE 7Y OFTHE KESQLRCE CUzeﬂc'mrc.y ASED

W T

ts INECAFE S P8 S0 LCE /S ﬁus}y

FIGURE 9-7. SIMULTANEITY TABLE FORMAT

dynamically maintained by the CP when issuing or ter-

minating peripheral instructions.

If in attempting to initiate an IDO instruction, the in-
dexing of the entry forces bit zero to be a ONE, it will
indicate that the resource is busy, i.e., does not have
any further level of simultaneity available,

The table is used during extractions of IDO orders.

Traffic Registers: There is one traffic register per

resource in which overrun can occur and one traffic re-
gister for the total system. The traffic registers are
located in main storage starting in the location speci-
fied in the System Base.

Each entry is a word long, and its format is shown in

Figure 9-8.
CYRREMT R 2y
TRAN S FER AATE fmme At
%, 1576 3/

FIGURE 9-8. TRAFFIC REGISTER FORMAT

9-11
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE

The two low order bytes contain the maximum allowable trans-
fer rate in the resource, as set up by the software. Upon
initiation of an IDO order, the hardware will add the trans-
fer rate specified in the Device Specification Table to the
two high order bytes, and then compare the result with the

maximum, in order to check for potential overruns.

The transfer rates are represented as a 16-bit binary in-
tegers, in which the least significant bit corresponds to a
frequency of 64 transfers/record. This implies that the

maximum representable transfer rate is 4,194,304 transfer/

sec.
9.3.2 Central Processor Input/Output Instructions
There are two Input/Output instructions: Initiate Device
Operation (IDO) and Halt Device Operation (HDO).
9.3.2.1 The INITIATE DEVICE OPERATION Instruction
The formats of the IDO instruction are shown in Figure 9-9.
oo R |R KR FormaT
g U W
Ipo £/< s S FoRmar
Py Ty 7773 3/
P00 s £ SR foRmar
6 78 I 3
Zbo 5 ‘ S Ss FoaRmer
o 75 37 1 4

FIGURE 9-9, IDO INSTRUCTION FORMATS
(See Section III for details on Central Processor instruction
formats.)

The B operand will be a Device Identifier Structor. Its

format is shown in Figure 9-10.

S-12

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

L/
Hij\jlo % a7 Parn | DEVreE "7’%”«“/// LoG/cAL MASK
w.

V.
IR3¥ 75880/ 23 2% 37 32 I Ko %7 #& 3
9 RESERVED t RESERVED ¢

FIGURE 9-10. DEVICE IDENTIFIER STRUCTOR FORMAT

Starting from the right, the 16-bit LOGICAL MASK field will
be used during extraction of the IDO order, and it will be
compared for equal with a 16-bit Logical Status field in

the Device Specification Table. The IDO orders will then
be restricted to access the device, only if its logical
status is the same as the Device Identifier Structor Logical
Mask.

The 8-bit Function Mask field defines restrictions in the use
of the device, as specified in the peripheral device specifi-
cations (e.g., no seek allowed, no control operations, etc.)

The éight—bit DEVICE field specifies the actual device ad-
dress to be used.

The 13-bit DATA PATH field describes any required routing
information.

Upon extraction of the Device Specifier Structor, (or B
operand), the protection and allocation of the peripheral
resources will be effected, using the corresponding table

entries.

Information defining which resources to protect or allocate
is included in the A operand, which can specify different
types of command arrays, each with different protection re-

quirements.

There are three types of A operand, which will define three

kinds of IDO instructions as follows:

A Operand = Implicit length. tagged double word struc-
tor: IDO's initiating a Data Transfer Array. (DTA).

9-13
HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

* A Operand = Type Hex D Control Structor: 1IDO is initi-
ating a Single Control Command. (SCC).

*+ A Operand = Type Hex C Control Structor: IDO is initi-
ating an Alternate Array. (ALT).

Each type will be separately described including the extrac-

tion of the IDO instruction in each case.

a. Data Transfer Array: The A operand consist of an inplicit

length, tagged double word structor, whose format is as
shown in Figure 9-11.

RESERVED ~ |
e
7AG AoCrrroN 000 ////////aaooooao ExTenr
78 A P ¥V 47 &% S é3

FIGURE 9-11. IMPLICIT LENGTH STRUCTOR FORMAT

The 24-bit LOCATION field will point to an array of I/O
command structors or "chain" of I/O commands, and the extent
of the array is limited to 256 commands (the high-order
eight bits of the extent field must be zeros). The position
field is not used.

The I/0 command structor array is the actual list of the I/O
operations or "I/O Program". An individual I/O Command struc-

tor is formatted as shown in Figure 9-3.

The complete set of facilities or resources needed to perform
a Data Transfer operation will be checked and allocated dur-
ing the extraction of the IDO instruction with this A oper-
and, and they will remain busy during the execution of the a
array. Those facilities are: a peripheral device, a level
of simultaneity of the I/O subsystem and transfer rate.

Control commands can be included in the array, but it should
be noted that resources such as transfer rate, will be tied
up during the execution of these commands.

9-14
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

The extraction path for this type of A operand will be
as follows: (The complete Central Processor extraction
of a Data Transfer Array IDO order is shown in Figure
9-12).

As mentioned, the central processor extracts the Device
Identifier Structor, and the entry in the Device Spec-
ification table is selected. The first byte of the
entry is extracted and the actions indicated by the
Flags are performed. If no trapping or reject-

ion occurs, the transfer rate is extracted and the
overrun protection is effected by using the Traffic
Registers.

If the Traffic Register indicate a potential overrun
condition, the order is rejected; if not, the level of
simultaneity is checked and allocated,

If the simultaneity table indicates that all levels of
simultaneity of the resource are busy, the order will
be rejected (by setting the condition code register
with the corresponding information and extracting the
next order).

If all the preceding checks are satisfied, the I/0
operand is assembled. The I/0 operand is used by the
peripheral subsystem in initiating the execution of the
array. 1/0 operands are formatted as described in
Paragraph 9-4. The location field is also stored in
the Device Specification Table and the busy status bit
in the flags field is set to one.

The execution of the IDO instruction terminates at
this point, and the next central processor instruction
in sequence is extracted.

9-15
HONEYWELL PROPRIETARY - SENSITIVE

Z 0o A Vi
A OCERAND

ABRAAY SPECIIER STRUCTSA

8 CPERAND
DEVICE ZDENTIFIER STRUCTOL

916

HATLISNAS — A¥YVIdI¥dOdd TTIAMATNOH

> y —_ — — = - —— - - - - == : 4 7
De 7% ' 0 7AG| AocAaIrON ExrEN
TAG % Ay | VL KFYW Arfryrd 77 A XTENT
\ ~ [)
RESERVED AN \\ RESERVEDS l {
R
: | DEv/CE 7
I
' THANSFEL | AOG/CAL
| t- L »lfiaG | «OCAT70W RarE ‘sraros
: ‘ ‘ e S ned
| L - -i- p—— C omARRE |
|
l 7%AL | : | Y rerecr
i : @‘ - * TRAp :
e wan e e —— ?_ — ___‘ — —— —— — ”l) ’
ZE OROER
t_ —_ ._* TRAFFA o]
\ 8 by 7‘/9645 ’7' t-.!. s s " was succEssAUL }

' zllif"r

{OOO A %Vfl{ké)! Locarion |EXTENT

PATH

FIGURE 9-12. EXTRACTION OF AN IDO INSTRUCTION

IATIISNAS — XYVIATYJO¥d TIIMXINOH

0O 1 2

HONEYWELL PROPRIETARY - SENSITIVE

The condition code register contents (In the Procedure
Index), after the execution of an IDO order, is for-
matted as shown in Figure 9-13,

3 4 5 6 7

————— Device Malfunction (or device non-
existant or not attached as indi-
cated by DsST).

Facility busy (Device, transfer
rate, etc.) as indicated by DST.

Reserved.

— Reserved.

— Logical protection (the Logical
Mask did not compre with the Device
Logical Status, as required in the
DST).

+« Reserved.

7A G

Order Satisfactorily Initiated.

FIGURE 9-13., CONDITION CODE REGISTER FORMAT

Single Control Command: The IDO instruction will spec-

ify the execution of a single control command if the
A operand is a type Hex D structof, formatted as shown

in Figure 9-14.

Lol

Lacarson Woo

o 3% 7%

3/ 3 &7 48 63

FIGURE 9-14. SINGLE CONTROL COMMAND SPECIFIER STRUCTOR

9-17
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

The 24-bit LOCATION field points to a single I/0 com-
mand, which must specify a Control Operation. The
extent field must be all zero, indicating an "array" of
a single element. The position field is not used.

The extraction path is similar to the case in which the
A operand was a Data Transfer array structor, with the
exception that the simultaneity table check will not be
made, if so specified in bit 4 of the Flags field in the
Device Specification Table.

This bit, if a 1, indicates that the corresponding per-
ipheral device is attached to facilities which can
execute control commands, even in those cases in which
all levels of simultaneity are busy.

An I/0 operand will be generated for the I/0 subsystem.

A different I/0 operand is used for this kind of opera-
tion because it will allow an early release of resources
(transfer rate, level of simultaneity) before the actual
completion of the I/0 operation. All I/0 operands are
described in Paragraph 9-4.

After assembling the I/0 operand and signalling the
I/0 subsystem, the execution of the IDO instruction
terminates and the next central processor instruction
in sequence is extracted.

The condition code contents in the Procedure Index,
after execution of the IDO ordef, is similar to the
previous case and it is shown in Figure 9-13.

Alternate Array: ‘The A operand consist of a type Hex
C structor, which is formatted as shown in Figure 9-15..

Iy ijroo

LOCATION // / 7100000000 FATENT

0

I¥ 17

J/ 32 4’7 5 oty] 63
@Es&(vf’b

FIGURE 9-15. ALTERNATE ARRAY SPECIFIER STRUCTOR

9-18
HONEYWELL PROPRIETARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

The 24-bit LOCATION field points to an array of I/0
commands similar in all respects to the Data Transfer
Command array.

The difference is that an IDO with this type of A oper-
and will be issued to a busy peripheral device. The
device will stop execution of the previous array (even
in those cases in which it is tranfering data), it will
proceed to execute the alternate array up to its com-
pletion, then resume execution of the previous array,

without any loss of data or control information.

Not all the devices will be able to execute the alter-
nate array, because it is required that the facilities
to which the device is attached, be prepared to do so.
Bit 3 in flags field in the Device Specification Table
will indicate (if a 1), that the device is capable of
executing an alternate array. This bit will be checked
during the extraction of an IDO order with this type of
A operand.

The extractiqn path is similar to the case in which the
A operand specifies a Data Transfer Array, with the ex-
ecution of action to take after the busy test on the
device. If the device is busy, no transfer rate will
be allocated (The I/0 subsystem will stop execution of
previous array, which used the same amount of transfer
rate) . If the device is not busy, the order will be
automatically converted as if the A operand specified

a Data Transfer Array.

I/0 operands will be generated for the I/0 subsystem.
(All formats of I/0 Operands are presented in Paragraph
9-4).

The execution of the IDO instruction terminates at this
point, and the next central processor instruction in

sequence 1is extracted.

9-19
HONEYWELL PROPRIETARY - SENSITIVE

9.3.2.2

HONEYWELL PROPRIETARY - SENSITIVE

The Condition Code in the Procedure Index, after ex-
ecution of the IDO order, is similar tp the previous
case, (as shown in Figure 9-13), with the exception
that the device busy bit can be set to one at the same
time that indicating an order satisfactorily initiated.

The Halt Device Operation Instruction

The formats of the HDO instruction are shown in Figure 9-16,

4Do 2 | 2 RR FORMAFr

' o £ S RS Fermar

FIGURE 9-16. HDO INSTRUCTION FORMATS

(See Section III for details in Central Processor instruc-
tion formats).

The A operand is not used in an HDO ordér, and the contents
of the register in the R syllable is not affected by its
execution,

The B operand must be a Device Specifier Structor, as in
the IDO instruction,

The HDO order will cause an abnormal termination to occur

in the peripheral device specified in the B operand.

No access to the Device Specification Table will be per-
formed. (The corresponding facilities are released on
signal from the peripheral device.)

After the I/0 operand is formatted, the execution of the
HDO instruction terminates, and the next instruction in

sequence is extracted.

9-20
HONEYWELL PROPRIETARY - SENSITIVE

9.4

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

INPUT/OUTPUT OPERANDS

The Input/Operands are the result of the extraction of an
I/0 order, and they convey to the I/0O subsystem the nec-
essary information to execute the peripheral order. The
formats of I/0 operand and their corresponding codes are

shown in Figure 9-17.

a. I/0 Operand indicating execution of a Data Transfer

Array:
00| ORTA PATH |DEVICE FUMW LOCART /0N EXTENTT
Mask
0 23 /516 <3 a¥ v/ 3a JSFSE €3

b. I/0 Operand indicating execution g a Single Control

Command :
vot| Dara parw |vEVICE f‘;““’?’" 20 CA Y 10N EXTENT
A
0 23 Y Y A VAT] 3

c. I/0 Operand indicating execution of an Alternate Array:

lom ORTA PATH | DEVICE ‘7}’ zé/ﬁw Lo CA7 /0N EXTENT
o a3 75 /6 3 24 37 3a S S &3

d. I/0 Operand indicating execution of a Halt Device

Operation:

o11| D#7a Parw | DEWCE FZA;?E} 7///////////////////4

o a3 /576 23a% S 3a. 63

FIGURE 9-17. INPUT/OUTPUT OPERAND FORMATS

9-21
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

The LOCATION field points to an I/0 command or array of

commands.

The 4 low order bytes and the code of an I/0 operand are

assembled with information from the A operand of a Central

Processor peripheral instruction.

The high order 4 bytes

contains information specified in the B operand of the

same instruction.

SUMMARY OF EXTRACTION AND FORMATS

9.5
Table 9-1. contains a summary of all I/0 formats, as well
as the allocation features.
TABLE 9-1
VALID FORMATS RESULT OPERANDS AND
RESOURCE ALLOCATION IN I/0 INSTRUCTIONS
IDO Order IDO Order IDO Order | HDO
(Data Trans- (Single Con- (Alternate | Order
fer Array) trol Command) Array)
A Implicit length | Type Hex D Con- Type Hex C
Operand Double Word trol Structor Control -
Structor Structor
B Device Speci- Device Speci- Device Device
Operand fier Structor fier Structor Specifier Specifier
Structor Structor
Resulting I/0| Code O Code 1 Code 2 Code 3
Operand (Device
busy)
Code O
(Device
not busy)
Device Busy Yes Yes Yes, but No
Check not re-
jection
Transfer Rate| Yes Yes No No
Allocation
Simultaneity Yes Conditional Yes No
Allocation
9-22

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

INPUT/OUTPUT TERMINATIONS

The sequencing of I/0 commands in the array will proceed

until the last one in the array or 'chain" is executed.

The last command is defined to be the command in which the

end bit in its tranfer wvariant is a one.

After execution of this command is completed, the I/0 sub-
system will send a normal termination signal, which will be

directed by the Central Processor to a preassigned task.

There are other reasons for signalling the Central Proces-
sor, and they will be described in Paragraph 9.6.2.

The I/0 Initiated Starts

The effect of any signal from the I/0 subsystem is to start
a prespecified task. The task to be started is selected on
the basis of which device originated the signal and on the
various types of signal available to the device and the

I/0 subsystem.

This hardware steering mechanism is implemented with the
use of the I/0 Start Array (See Section II), This array
contains a potential entry representing a specific device,
a specific type of signal (termination, residuye storage,
attention etc.) and a third level of indexing qualifying
the type of start. Each I/0 start will cause transfer of
the I/0 Status Word (See Paragraph 9.6.2). It contains
the device address and signal code (indicating type of
start) as well as the qualifier.

When the signal code of the I/0 Status word indicates a
termination condition, the resources (transfer rate, level
of simultaneity, device) will be deallocated from the cor-
responding tables.

The execution of I/0 initiated starts will be discussed in
Paragraph 9.6.3.

9-23
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

9,6.2 The I/0 Status Word

There are five main reasons for generating an I/0 start
(of a CP task):

a.

Normal Termination

The termination of an I/0 operation will cause an I1/0
interrupt. A normal termination for a data tfansfer

operation is defined to occur at that point in time in
which the data and status information for the last I/0

command in the array or chain are available.

The normal termination of a control operation can in-
dicate one of two things: 1) The device is ready to
execute a new order. 2) Certain fécilities can be used
to initiate another I/0 operation to a different device.
(e.g., An I/0 operation indicating a seek cylinder in

a disk drive will be able to release transfer rate and
the level of simultaneity very early, leaving in a

busy status only the disk drive).

In the later case, the termination of the seek, or
device not busy signal will be indicated with an at-
tention signal.

Abnormal Termination

Meaning that the I/0 operation could not be completed,
or it was completed with an error.
Programmable Signal

During execution of an I/0 command array, an I/0 start
is generated if so specified in the transfer variant,

after execution of any operation in the chain.

Residue Storage

The transfer variant can specify that the residual
count, or the difference between the length field in

9-24
HONEYWELL PROPREITARY -~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

9.6.2 the order and the length of the physical record, be
Cont.
(Cont.) saved, if different from zero. A signal will be gen-

erated to effect this.
e. Attention Signals

An attention signal is defined to be all those signals
coming from a device not presently associated with a
level of simultaneity or an I/0 command array.

Each type of I/0 Status Word will have an assigned code,
specifying the type of signals. The IOSW's are formatted
as shown in Figure 9-18.

- SteaMml. COHE

AR 4"55(veD 7 & QUALIF 1-ER

// / D&ieE [sc | qum WIRIARBLE INFaAM BT ety g
876 730 RG)
TEmmariw (o 25T ‘MQ STATUS
B o B ¥33 9o 63
aawvormp | | | s | ARk
TR Ay | QLE| perw |SEGub STATUS
R 1330 ¥ 3 3a 39 Yo &3
SRERAVVIBLE | 7
sova |2 &r) ///W““*l7// ///// //
/5% 19 -13 .D RO Reseryah
AESpuE pou|ar] 7 | e 1 ace iy //) pEsiouE
V7 T FVETE 1 3a Yo ; ¥ ‘
7~ ‘‘‘‘‘ “ f 3& e ﬁ 'f7 &3
ATTENTION
SI6M AL Vo Qu"- // // / STATLS
TSk My 53 5 f 3/32. 39%e -3

FIGURE ¢-18, I/0 STATUS WORD FORMATS

9-25
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY -~ SENSITIVE
11-26-69

Bits 0-7, shown as reserved in Figure 10-18, includes de-
allocation information, and it will represent which type
of IDO order initiated the I/0 command array.

The 4-bit QUALIFIER field will allow the peripheral device
to selectively start one of up to 16 different task per

each condition. (e.g., several types of attention signals).

The 8-bit DATA PATH field includes part of the routine in-
formation used in the 13-bit Data Path field associated
with the I/0 instruction. It is to be used to specify

which resources to deallocate.

The 8-bit ARRAY SEQUENCE field, indicates the position in
the array of the I/0 command which caused the signal.

The 24-bit STATUS field will include pertinent status in-
formation (not yet defined).

The 16-bit RESIDUE field, will include the residual count
or the difference between the length of the buffer and the
length of the physical record. If the physical record was
longer than the main memory buffer, it will include all
zeros,

The I/0 status word is stored in a queue pointed by an
entry in the system base, and then moved to the location
specified in the I/0 start array.

Execution of I/0 Initiated Starts

The central processor servicing the interrupt will fetch
the IOSW, and sense if the cause of the interrupt is an I/0
command array termination.

If the IOSW indicates a termination, normal or abnormal, of
an array, the I/O subsystem will proceed to deallocate

the resources used in the execution of the array, as des-
cribed in Paragraph 9.6.4.

9-26
HONEYWELL PROPRIETARY - SENSITIVE

9.6.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

The I/0 start array entry in the System Base will indicate
in which location the IOSW should be stored.

The Central Processor will sequence through the I/0 start
array in the following way, depending on the structors

stored in the corresponding entries in the array.

The first entry can indicate one of three conditions:
a. Ignore all I/0 starts (null entry).

b. Start a particular task.

c. Index with device number.

If the last condition is found, the device number in the

IOSW is used to extract a new entry which can specify:
a. Ignore I/0 starts to specified device (null entry).
b. Start a particular task.

c. Store the IOSW in a particular queue and then start

a particular task.
d. Index with signal code.

If the last condition occurs, the signal code in the IOSW

is used to extract a new entry which will specify:

a. Ignore I/0 starts specifying a particular condition
(null entry)

b. Start a particular task.

c. Store the IOSW in a particular queue and then start a
particular task. '

d. Index with qualifier code.

If the last condition occurs, the qualifier code is used to
extract a new entry, which will again specify a null entry,

point to a task, or point to a queue and a task.

9-27
HONEYWELL PROPRIETARY - SENSITIVE

9.6.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

The I/0 Start will cause in most cases the chénge of a task
status from BLOCKED to READY, and if the task is of higher
priority than the task presently running,'it will be
swapped and its status changed to RUNNING,

If the task was already in the running state, a flag will
be set in the task status block.

A complete description of the start operation appears in
Section 7 (Task Multiplexing).

Termination Conditions

Terminations can be classified in the following ways:
a., According to the checking results in:

l. Normal Termination

2. Abnormal Termination
b. According with the nature of the last or éingle command :

1. Termination of data transfer.
2. Termination of Control Operation.

c. According with the original CP I/0 instruction.

1. Order originated in a Data Transfer Array 1DO,
2, Order originated in a Single Control Command IDO,
3. Order originated in an Alternate Array IDO,

d. According to which facilities should be released:

1. Termination of transfer rate usage, level of simul-
taneity, but device still busy.

2., Termination of device.
3. Simultaneous termination of all facilities.

Those termination conditions can occur in many different
combinations. (e.g., Normal termipation of a control opera-
tion of an Alternate Array in which device is still busy:
abnormal termination of Control Operation initiated by a
Single Control Command IDO, in which all facilities simul-
taneously terminated, etc.). |

9-28 ' ’
HONEYWELL PROPRIETARY -~ SENSITIVE

9.6.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

The releasing of facilities, during execution of the I/0
start, takes in account all these different conditions.

All possible combinations are presented in Table 9-2,

The entries in that table marked as CONDITIONAL refers to
the fact that during initiation of an IDO order pointing
to a Single Control Command, the level of simultaneity
may or may not have been allocated (depending in bit 4 in

the Device Specification Table)., The deallocation mechan-
ism should do the inverse operation.

Entries marked as NOT APPLICABLE refers to the fact that
IDO executing Alternate Array were directed to a busy
device. Consequently, termination of the array should not
release the device in any case, If an abnormal situation
occurs, such as a recoverable error, the device should
abnormally terminate both arrays, the alternate and the
original, sending two I/0 starts. The second one will in-

dicate release of the device.

9-29
HONEYWELL PROPRIETARY - SENSITIVE

TABLE 9-2
SUMMARY OF TERMINATION CONDITIONS

T AXENOH
0€-6

FATLISNAS = AUVIEIIO¥a

Operations initiated with |Operations initiated with |Operations initiated with
IDO-Data Transfer Array IDO-Single Control Channel|IDO-Alternate Array
Transfer |Level of |Device |[Transfer |Level of|Device Transfer |Level of |Device
Rate "Simul- |[Deallo- Rate Simul- |Deallo- Rate Simul- |Deallo-
Deallo-| tauneity|cation Deallo-| taneity|cation Deallo-| taneity |cation
cation |Deallo- cation Deallo- cation Deagllo-
| cation cation cation
Lgvel of : :
= %;gu%:apelty Yes Yes No Yes |Condi- No Not Applicable
H| Mad-Jevice tional ; :
2 still busy] |
E Level of
OE Simultaneity
=1 Egg—Dev1ce Yes Yes Yes Yes Condi- |Yes No Yes No
: \ : tional
Level of _ : : : 1
| Simultanelity| yogq Yes No Yes |Condi- [No Not Applicable’
S EM@—Dev1ce tional . I
*qﬁ still busy |
%E Level of ,
o Simultaneity Condi-
ﬁé Fnd-Device Yes Yes Yes Yes |tional Yes No Yes No
<& End
1
8 | Device End No Nc Yes No No- Yes Not Applicable’
SHE I |
== | |
B4 5
B H I
<t 0 I ‘
I

ADVANCED COMPUTER SYSTEM
DOCUMENT CHANGE NOTICE

DOC. NO. XTL-003 REV._DRAFT 2
TITLE _FUNCTIONAL SPECIFICATION FOR LEVEL 2 COMPUTATIONAL
PROCESSES
PREPARED BY_R. Keys CHANGE NOTICE NO 4
E. McFaden DATE_2/13/70

Insert attached pages A-1 through A-3 into the subject

document after Section IX.

REF. 544

Al

HONEYWELL PROPRIETARY

APPENDIX A
DECIMATL STRING ENCODINGS

SIGN CODES

The rightwmost four-bit field of a signed packed decimal

string and the zone portion of the rightmost byte of a signed
zoned decimal string countain a sign code. This code specifies
the sign of the value and is associated with one of four
classes. The code that is generated for a result (destina-
tion) string is determined by the sign of the result value
together with the class of the sign code that it replaces.
Table A-1 specifies the interpretation of the sign code.

TABLE A-1

INTERPRETATION OF SIGN CODE
CODE SIGN CLASS
0000 + 0
0001 + 0 (preferred S-200 encoding)
0010 - 0 (preferred S-200, 1400 euncoding)
0011 + 0 (preferred 1400 encoding)
0100 + 1*
0101 + 1*
0110 + 1*
011l + 1*
1000 + 1*
1001 + 1*
1010 + 2 (preferred S360 ASCII encoding)

*If any sign code in class 1 is used,an illegal operand
trap (0201) will be generated or masked following instruc-
tion execution.

(Continued)

A-1
HONEYWELL PROPRIETARY

HONEYWELL PROPRIETARY

Table A-1 (Cout.)

CODE SIGN CLASS

1011 - 2 (preferred S360 ASCII encoding)
1100 + 3 (preferred S360 EBCDIC encoding)
1101 - 3 (preferred S360 EBCDIC encoding)
1110 + 3

1111 + 3

Table A-2 specifies the sign code that is gemnerated for a
given sign and class:

TABLE A-2
SIGN CODE FOR GIVEN SIGN AND CLASS

SIGN CLASS CODE
+ 0 0001
- 0 0010
+ 1 0100
- 1 0100
+ 2 1010
- 2 1011
+ 3 1100
- 3 1101

Facilities for sign decoding/encoding must be capable of
alteration to accept future sign code conventions.

DIGIT CODES

Each four-bit digit field of packed and zoned decimal strings
contains an encoding for a decimal digit according to Table
A"B-

A-2
HONEYWELL PROPRIETARY

HONEYWELL PROPRIETARY

TABLE A-3

INTERPRETATION OF DIGIT CODE
SOURCE RESULT
OPERAND INTERPRETATION OPERAND
CODE CODE
0000 0 0000
0001 1 0001
0010 2 0010
0011 3 0011
0100 4 0100
0101 5 0101
0110 6 0110
0111l 7 0111
1000 8 1000
1001 9 1001
1010* 0 0000
1011%* 0 0000
1100%* 0 0000
1101* 0 0000
1110* 0 0000
1111* 0 0000

*Use of these digit codes in a decimal instruction
operand will cause an illegal operand trap (0201)
to be generated or masked, following instruction
execution.

A-3
HONEYWELL PROPRIETARY

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-001
	1-002
	2-01_Format_Representations
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	3-01_Selection_Primitives
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-01_Instruction_Extraction
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01_Instructions
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43.00
	5-43.01
	5-43.02
	5-43.03
	5-43.04
	5-43.05
	5-43.06
	5-43.07
	5-43.08
	5-43.09
	5-43.10
	5-43.11
	5-43.12
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	5-79
	5-80
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	8-01
	8-02
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	A-00
	A-01
	A-02
	A-03
	A-04

