
"
"

" p-:~~irit'~;,irlary. ~opy ",'
:"Ci;~Erl-!d'tIfig 'F()r" dOJJMENTS,'"

£Lltr~,* H~ O~'f A ,\lOC£'SHIltG
TECH~OlC~V Cl~rEI

Dote:: '
Doc. No.:
Rev.

,
~t\~"fV4.v./~"'-"""""'"

Approved by~ ___ , __ _

r

pagPlllRMY Jf~

The 1l1fo.r:Mt;100 -r.ws c!.eiQa of th4t _yet_
dftCri~ ~ ware or:t.Qlnated by and
~. ~be property of Electronic Data Proc •• -
_in; D1v1.1oI\, tloneywell t Inc. The cont.ent

of thU cloCUlD.n:. ia MAlYVa1J. PEPK&1tN:r .:
1JD.&tm and 1. for 1ftternal u •• : only. SU~h

j.,.,fQC'Mt.loD 'MY ~t ~ reproduced, discl0 ... J

to ot.hers" or Ul'!$d by {Jthe:r.· ,:£017 an:l l~ .. U:PCUV~
without written ~iaslon fram an autborized
~.yw.ll offle1al~

The d .. nde of expediency in publish,in;

thi. preliminary doCtunent have precluded

the editorial attention usually given
to such documents.. The reader ahould con­

aJider. thi8 if inoona1stenc.te8, redundancies,
or errors becanta eviden·t llerein"

. 11
HONEYWELL PROPRIE'rAAY - SQiSITlVE

Pa,agrARh

2 .. 1

2.2

2.2.1

2.2.2

2.3

2.3 .. 1

2.3.1.1

2 .. 3.1.2

2.3.2

2.3.2.1

2.3~2.2

2.3.2.3

2 .. 3.2.4

~.3.3

2u3.3.1

2 .. 3 .. 3.2

2 .. 3.3.3

2 .. 4

204.1

2 .. 4 .. 1.1

2.4.1.2

2.4.1.3

2.4.1.4

2 .. 4.2

2.4.3

2.4.4

2.4.5
2 .. 4.6

2.4.7

2 .. 5
2,,5.1

SECTION 1.1 - ~~ORMAT J1EPRES!f~T.~TIONS AND L'ESCRIPTIONS ~, -,~ .. --.....-- , _,.... ...-.- _ _. - - .. ----.-- ... - '" .. ~.....-----~~ ... ---.. ~ ~
DATA REPRESENTATIOtl:: AND DATA CC'N":'ROL DESCRIP1~JONS 2-1

DATA REPREs&rrATtoNs

Var l~ble -. !..,eng~~h :~td Re'pl"e\')f:~tr1i:" iClr~3

Fixed , ... Length Taqged Date .R~pt'e3>e~tf~~:'ion,s

DATA OESC.:.Rl'PTION

Structoz"S

Implicit - Lengtb S~:ru,:·:tot'

Expl i.Cl t - !.,.len,-th St!'uct:,~:t

.s it!;.4u :i..ar M.i~l i~t.ruct.:::\r

Dual Mini:::--;tI'uct,Ot'"

tv:ray Min :ttltructol­

String Min~str~ctJr
M1crostructor~

Bit/Binary Str ing M.1.crost"'~lC'tOl.

Byte Strln~ Microstruc~cr

Impl ic it 1I.i.crostr .lcto.{'

CONT.ROL INFO~TION RgpR'€'SEN:rA1t lON

Sys'ten. Con'cr .)... StrLc t.o":' s

Procedure InG:e..('

TSB :dent!fie.rs

Protected Elanenta
Trap EffectCtTS

System Base
Task Status Block

Task Priority Array

I/O Start Arra,y

External Start Axray
Processor Stat,u8 Array

I/O INFORMAtrION REPRESEl>tTATION

I/O Structors

111

HONEYWELL PROPRIETARY - SENSITIVE

2--29

2, .. 28

2--29

2-29

2-31

2-35

2-35
2-36

2-37

2-38

2·-38

2.5.1.1
2.5.1 .. 2

2.5.1.3

2.5.2

2eS.3

2.5.4
2 .. 5 .. 5

265.6

3.1

3.2

3 .. 2.1

3.2 .. 3

3.2.4

302 .. 5

3 .. 3

3.3.1

3.3.2

3.3.2.1

3.3.2.2

3.3.243
3&3.2.4

3.3.2.5

3.3.2,.6

3.3 .. 2.8

l~3.2M9

HON,E¥WELL 4?ROPRIITARY - smSITlVE

TAItt. or £2..!i!~! .. S (Coll..t..l

T..1tltt.

Device Identifier Structor
I/O Command Struetor
I/O Control Command Specifier

I/O Operands
Device Spec:lf1cat1on Table

Traffic Regi8t$C~
S~ult.neity Table

Input/Output Status Word

GmERAL

INSTRUCTION FORMATS

Register-Register {P~) Format
R8f11ster-·Selector (RS and RL) ana Selector­
Register (SR and LR) Formats

Selector-Sel,actor (So:; ~ SL't LS'b LIJ) FOTmlits

Relet.ive Displacement (RD) FOI'mat

Centrol Vi!r.iant ((;V) jFormat.

INS"i'RUC'I'ION E'A'TRACTION

R~3 ist,er-Reg ister (RR) F'or:m.a t. Extract l{)fl

, Register-Selector (RS, RL) ant:! Select .. or-·
Re;ister (SR., LR) Form.at E'Jc.tract.ltln

Literal Value Case
Implicit-Length Ba8~ Reference Case
~plic1t-l .. engt.:.h Base r~eferencf(?! Case

Indexed Implicit-! .. erM;Jth Base Reference Caee

Indexed Exp11clt-l)ength Base Reference Case

Auto-indexed 'J.mplicit-L1ength Baae
Reference Ca.Sf'l

Aut~Ot-·!l\dexed Expl1..cit Lengt.h Base
Referen.ce Case
Auto ·Qualified B~uJe Ref~,xence Crase

Multipl.e Selec!t.ion Case

iv

HONEYWEIJL PRClPRIE"'l"ARY -- SENSITIVE

2-39

2-39

2,,·40

2'-40

2-42
2-42

2-43

2-43

3-1
3-3

3-3

3 ... ·3

3-4

3-5

3· 6

3--6

3-6

3-8

3-8

3-·8

3-9
3, .. 11

3-13

3-16

3-.17

3-21

3-23

3.3.3

3.3.4

3.3.5

4.2 .. 1

4.2 .. 2 .. 1

4.2.2.2

4 .. 2.3

4.2.3.1

4.2.4

4~2 .. 7

5.1

5.2

5.2.1
5,,2 .. 2

.5\.2 •. 3 ,.
,1\ ~ J

IM~E P'F' C,Ut!TgtTS (. Cgn t .1

T~ta

. Se~eetor-Selector (ss. Sla, LS, LL)
For-mat Extracti.on

Relative Displacement (Rn) Format !!Ktraction

Control Variant (CV') Format Extraction

S~lO. IV. - AUTOI'ETgtlApTOSTOltt;

p .~

3-30

3-30

3-35

GIHBRAL 4-1

AtrrOFETClVAUTOSTORE CONVERSION "-1

Autofeteh/Autostore Conversion For
Taqged Doublewords 4--2

Autofet.ch/Au~o5torc Conversion For
Min1structors 4-2
Autofetch of Ministructor Operands 4·-3

Autoatore Into Min1st:cuctor Operands 4, ... 5

Autofetch Conversion For Ml.crostructure 4~-9

Autofetch of Micros'trilctoz: Oper.ands 4-9

Autofetch/A\J. tostore C.ooverslon for Deferx'oo
Selection Structors 4-11
Autofetc'h/Aut.ostore Conversion for Bi.t St,rin'~:s 4-12'

Autofetcn/Aut,ostore Convex-sion for
Binary Strings 4-14

Autofetch/Aut.ostore C<.'>nv.erSl,Ofl for Floa.ting
Po int~ 5'tr .ing s 4 .. ",16

A.L'TOFETCH EVALUATOR 4-18

cA,tJTOSTORE EVALUAmR 4-21

LEggQ~ ,V ,- .Al!.IQ...~VER .. ~~Q~

INTRODUCTION
CONVERSION CON'IENTIONS

'rag-qed Loq1eal Word tt) Tagged Binary Integer

Tagged Binary Integer to Tagqed Floating
Point Number
Tagged FloatJ.ng Polnt to Decimal String

Decimal String to Tagged Floating Point

v

5,-2

6.1
6.1.1
6.1,,1.1

6.1.1 .. 2
6al.l .. 3

6.1.1,,4

6.1.2
6.1.2!il

6.1 .. 2.2

6.1.2 .. 3

6.132.4

6 .. 1.,3

6.,1.:1.1

f~ .. 1,,3.3

6Ql.3,,4t

6., 1. ·4" 1.

6 .. 1,,4,,2

6.1D4 .. ,~

0,,1<)4 .. 5

6 .. 1.5

6401.5 .. 1

6 .. 1 .. 5,,2

6.1 .. 5.3

6 .. 1.6

6.,1 .. 6 .. 1

iMLB .Or: CONT_Sf ,£got,.)

1~tll ~

Floating Point Number to Taqqed Binary Integer '5-7

~aqqed Binary Integer to Ta09ed Logical word 5-8

'§EItQ.!! .. J!.I, - mSTR~crION~

DATA MARIPtlLATICB 'ISTRucrIONS

Add/SUbtract

Logical Binary Addition/SUbtraction
I

~~a Complement Binary Addition/Subtraction
ae.a"ecimAl Ploating Point Addlt.1on/SUbtract1on

Dectmal String Addition/Subtraction
Multiply

Logical Binary Multiplication
'TwoB Complement Binary Multiplication

Hexadec~al Flo~t1nq Point Multiplication
Decimal String Multiplication

Divide

Logical B:1.nary Division

Twos Complement Binary Division

Hex4dec~al Floating Point Division

Decimal String Divi,sion

Compare

Logical Binary Comparision
Twos Cort\plement Binary Comparison

l-!.p"xadecUnal Floatinq Point Cornparison

Pecimal String Compar ison

Byt,e String/Translat.ed Byte String Comparison

Move
Byte St.ring/translated Byte Stri.ng Move

Decimal String to Decimal String- Move

Autost.ore Moves
And/Or/Exclusive OR

)

,Logical Word And/Or/Exclus1ve OR

vi
HONEYWELL PROPRIETARY - SmSITIVE

6-1
6-2
6-~

6·-4

6-4

6-6

6-10

6-11

6-12

6-13

6-16

6-18

6-19

6-20

6-21

6-·24

6-,27

6-27

6-28

6-28

6-28

6'''M29

6 31

6-31

6-32
6-33
6-33

6-33

ParagraRb

6.1.6.2

6.1.1

6.1.7.1

6.1.1.2

6.1.7.3

6.1.7.4
6.1.7.5
6.1.7.6
6.1.7.7

6.1.7,,9

6.1,,8

6.1.8.1

6.1 .. 8.2

6.1.9

6.1.9.1

0 .. 1.9.2

6 .. 1.9,,3

601.10

6,,1.10.1

6 .. 1 e 10 .. 2

6.1 .. 11

6.2

6.2.1

6.202

6.2.3

6412 .. 4

6",2 .. 5

6.2.6
6.2.7

6.2.8

6 .. 2.9

'TA§t.J!' 01', 9Q.N-1P~'f.§ '{C&>nt.l

I~~l.

Byte Strln9/Translated Byte String AND,
OR, EXCLUSIVE OR

. Shift

Single Precision Logical Left Shift
Single Precision Logical Right Shift
Single Prec1.lon Arithmetic Left Shift
Single Precision Arithmetic Right Shift
Double Prec1a1on Logieal Left Shift
Doub~. Precision Logical Right Shift
Double Pree1s1onArithmetic Left Sh1ft
Double Precision Arithmetic Riqht Shift
Single Precision Rotational Shift
Load Pos1tiv.tLoad Negative
1~os Complement Binary Loading
Hexadecimal Float.ing Po.int Loading
Load Complement
1~1cal Binary Negation
'!'woo Complement Bina,ry Negation

liexadecunal Floating Po-1nt Negation

Load and Test

Logical Binary Testing
Twos Complement B1tlar.y 'festl.ng

Edit

GENERJ\L R!nIST:e;R LOADING/STORlNG INSTRUCTI('')NS

Copy

lJOad

Fetch

Convert to I~ical

C.onvert t.o Binary
Convert to Floating
Dump Multiple
Unaump Mult.iple

Dump

V'l.i

HONEYWELL PROPRIETARY - SmSITIVE

5-34
6 ... 35

6,·36

6",,36

6m37
6&··37

6-38

6 .. ,38

6-39

6-39

6-40

6-40
6-40

6-41

6"';'41

6-,42

6-42

6-42

6-42

6-43

6-43

6-43

6-43
6-44

6-4'
6-4'

6-45

6-45

6-46

6-46

6-'8

6-49

6'12.10

6.2!,11

6.2,,12

6.3

6.3.1'

6.3.2
6.3.3

6.3.4

6,,4.1

, 6~,4,,4

6.,~·(.. 5

511,41\16

6 ri.S,.9

6,,5 ... 10

!.~~ O,!. '.cq~t~tQiI.S_ ... L"!2Dt ,1

Uw

Dump

Store
Deposit

BRANCHING D1STRUCTla~S

Test and Brll,nct~

Conditional. Bra.ncb

Branch. ~,ria L'in'k.

Branch On Incremented Count/Branch On
Decr·lllRient.ed Count

&"'l'RUCl.'OR MANIPUI~'rION l~lNST.R.UCTIONS

Select
Lower Suber ray
Upper SUt)ilu:'r a. y

Point
Initi.al SUbstring

Term,inftl Su~bstr ing

I].~ASK Oj~i"l'R.OL INSTRf]C'l~ :ro:n S

Stt.,p

Sta .. lrt.

SUsr>end

Cond:itional Sito,p

I/O External Con,a 1 t, iOr.Lul St.op

Load Status
Test aru:1 Set

Set Mode - Reset Mode
Field Extract.

;t"ield Stlbstlt:u'te

lNPUT/OOTP'UT IN~rrRUCTIONS

Initial Device 0p·e.t\ftt1on

Halt. Device Opm:8.t.1()n

vl.i1
~Ol~BnrELL PR()l?R!E":t~Af{~ SENSITIVE

6-50

6-50
6-50

6-51
6: 51

6 .. ,,52

6" .. 53

6 .. 53

6··54

6-,4
6-',)5

6-!:5

6-~S

6 ~l'1

6-51'3

6-511

6-5:)

6-6)

6-6:'

6-6J

6,-64

6-6~

6-66

6-67

6,-68'

6-70
6-,70

6-10

7-.1

7.2

7.3

8 .. 1

iOm 3 e

10;. 3.,1

10" 3 .. "2

I.,(jC!(AND UNLOCK i~UN<"~IONS

DlSP~rcH OPERATION
I/O iBrrI.ATED srAR'l'l,f

rXrERN,ALLY INI!~lATEr~ SrARTS

.§..~;:~!~ ~.klL.:J~ mg

INTR.ODUCTION

TRA.PPDlO lFORMA'l'ION STRUCTURE

SYSTEM l~rIMEn

'TA.SF: TIMER

I~~PU'1,,/c.n;'l~trr OI·~l:RA.TIO:r..iS

CE~1'ft?'~L PR"OCr~SE~C;R, I/O JNS'I)RU(":J:l()NS

.in:ttj at~e D~~'''li(,~~e Opera i:lt)1'l Jnst:ruct.ion.

h'xt,.rec~~ion of 100 Or·d~::;r.s Specj,fy1ng
C;c~rr!:li~u.tn~' j.\r:ray

ri~t,.r.:act::.ion. C).;f IJ.:;Q Orders Specifying
. .A ~~:h1.9'le Cr.)n t.l~'O J. Coron\.;u'H]

'rh«~ l/e Sta'tJ..lS Inform.a.t.ion

~·lalt. n.~'?ovic\$ Operat:l.cn (HOO) In~truC't::l()n

7· ... 1

7-2

8-1

8-1
8-1

li-·4

':}-l

9-1

10-1

1(')· ... 3

10·-4

10 1·4

10 1.5

10-:15

A,11t..'"!~ble St,l"'\.tc.:tOr. F·~.ft:r(l(~ tss; f()r I/O In!~t.t uct~ ion 10· ... ·17

. IN?Urr./'QUTPUT IN~rEl:(lUJPTS .to,-li:l

ix
HClt~rEYWEJ.JL PR.O:PUIE/'li/ulY .",' smSlrrIVE

10·-18

10-18

10~-21

!M~.I_9.I","f .. :OR!~_...i£2uI-..t.l

~

~tII.1R1J!

DSCIMAL SfADltJ SIGN conES

X

HONEi~EI~i PROPR!~rARY - SENSITr/E

r-""'""---::-:--___ ----:~~:...;...;.:~~~~P.-:.R.:..:O:..:..P R IETARY - SENSI TI VE
EM:11

Issued to

The content of this docu~ent is
HONEYWELL PROPRIETARY SENSITIVE
and is not to be reproduced.

Doc. No.: FTL-003

Date September 8, ,1969

Rev. Draft 2

r--------~~~----------------------------~---

Prepared by:

w. Bean

FUNCTION.~ SPECIFICATION

FOR LEVEL 2

COMPUTATIONAL PROCESSES

A pproved by:

SYSTEMS GROUP
M. Ferdman

H

SYSTEM GROUP
G. Holt
SYSTEM GROUP

E. McFaden
PUBLICATIONS

ELECTRONIC DATA PROCESSING

TECHNOLOGY CENTER

HONEYWELL PROPRIETARY - SENSITIVE

~~-- '-,--

HONEYWELL PROPRIETARY - SENSITIVE

PROPRIETARY NOTICE

The information and design of the system des­

cribed herein were originated by and are the

property of Electronic Data Processing Divi­

sion, Inc. The content of this document is

Honeywell Proprietary - Sensitive and is for

internal use only. Such information may not

be reproduced, disclosed to others, or used

by others for any purpose without written per­

mission from an authorized Honeywell Official.

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

SECTION II
FORMAT REPRESENTATIONS AND DESCRIPTIONS

2.1 DATA REPRESENTATIONS AND DATA AND CONTROL DESCRIPTIONS

The following sections describe the data representation
formats, as well as the formats for data and control
structors. Structors are used to describe collections of
data elements, control sequential and parallel instruction
sequencing, and initiate input/output operations.

It should be noted that throughout the following sections
any field designated RESERVED must contain binary zeros.

2.2 TAGGED INFORMATION REPRESENTATIONS

Tagged information consists of self-descriptive data
representations and structors. This information is self­
descriptive in the sense that its format includes a 4-bit
field that specifies the interpretation appropriate to
the remainder of the format. This 4-bit field is called
a TAG field and is assigned the interpretations specified
in Table 2-1.

All tagged information is 64-bits in length, with the
leftmost 4 bits assigned to the TAG field. The format
of the remaining 60 bits depends on the particular
type of information being represented. These formats
are specified in succeeding subsections.

All information stored in general registers is tagged
information. Tagged information may also be stored in
main storage. In the latter case, each tagged information
unit must originate at a storage address that is a multiple
of 8 (doublewora boundary alignment). Arrays containing
tagged items are called tagged doubleword arrays.

2-1

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

TABLE 2-1
TAG ASSIGNMENTS

TAG INTERPRETATION

o Tagged Logical Word
1 Tagged Binary Integer
2 Tagged Hexadecimal Floating Point Number
3 Unassigned*

1-16-70

4 Explicit-Length, Modifier, Alterable Structor
5 Explicit-Length, Modifier, Nonalterable Structor
6 Explicit-Length, Specifier, Alterable Structor
7 Explicit-Length, Specifier, Nonalterable Structor
8 Implicit-Length, Baselink, Structor
9 Implicit-Length, Baselink, Structor
A Implicit-Length, Data link, Alterable Structor
B Implicit-Length, Data link, Nonalterable Structor
E Unassigned*
F System Control Structor

*Unassigned TAG codes are reserved for future functional extensions.

2.2.1

2.2.1.1

Tagged Data Representations

The tagged data representations consist of a TAG field
and a fixed-length data field. The available tagged data
representations are: tagged logical words, tagged binary
integers, and tagged hexadecimal floating point numbers.

Tagged Logical Word

A tagged logical word is a 64-bit quantity, consisting
of a TAG field (which is hexadecimal 0), a 28-bit reserved
field, and a 32-bit value that is treated as a bit string
of fixed-length (see Figure 2-1). This quantity must be
aligned on a doubleword boundary in storage. It may also
appear in a general purpose register.

2-2

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

I,~~~
~£SE~V~/) V'ALU~

----_ .. _----_ .. _-_._-,._-----._-_._-[--------~---_ ..

''- i i I

2.2.1.2

_. 4 ___ ~ ______ ,...- ________ ~_ • ___ ~ _. __ ~_~ __ • ____ ______ ..

31 3~ '.3
FIGURE 2,-1. TAGGED LOGICAL WORD

The value field of a tagged logical word may be interpreted
as either a 32-bit logical quantity or as a 32-bit
unsigned binary integer.

Tagged Binary Integer

A tagged binary integer is a 64-bit quantity, consisting
of a TAG field (which is hexadecimal 1), a 28-bit reserved
field, and a 32-bit value that is treated as a binary twos
complement integer of a fixed-length (see Figure 2-2).
This quantity must be aligned on a doubleword boundary
in storage. It may also appear in a general purpose
register. IT ;; 5:~' ~_iJ ____ --'-____ V"._L_I.IE_-_·---_ .. . _.---_--._---_ .. -._-_--_l---l

o 3'1' ~~~

2.2.1.3

FIGURE 2,-2. TAGGED BINARY INTEGER

Tagged Hexadecimal Floating Point Number

A tagged hexadecimal floating point number is a 64-bit
quantity, consisting of a TAG field (which is 2), a sign

bit, a seven-bit excess 64 exponent field, and a 13

digit hexadecimal mantissa (see Figure 2-3). A sign bit
of 0 indicates that the mantissa is positive. This quan­
tity must be aligned on a double word boundary in storage.
It may also appear in a general purpose register.

-

01~ X ~~/,~~~~I~~~.~:~/~~:~~-~:~-~--.~ •• _ _.~~~-~~ ____ ---:-'1

b 3V.r 1/ /.J. ~
FIGURE 2-3. TAGGED HEXADECIMAL FLOATING POINT NUMBER

2-3

HONEYWELL PROPRIETARY

2.2.2

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

Data Structors

Data Structors are entities used for structural description
There are two basic forms of data structors, called impli­
cit-length structors and explicit-length structors, that
are used to describe arrays of fixed-length items and
arrays of variable-length items, respectively. Data
structors are tagged quantities and may be stored in gen­
eral purpose registers or in storage. The number of
storage accesses required to access an operand described
by a data structor can be minimized by placing the structor
in a general purpose register.

Explicit-length structors can assume one of two forms,
called the modifier form and the specifier form. A mod-

,ifierlspecifier (MiS) indicator is included in the explicit­
length structor TAG field to distinguish between these
two forms. The MiS indicator is used to signal whether
the structor specifies a particular data structure at a
fixed main storage location or is used only to modify
descriptions of areas of storage to conform to a desired
data structure specification. Implicit-length structors
can also assume one of two forms, called the baselin~ form
and the data link form. The implicit-length structor
TAG field distinguisheS between these two forms and is
used to specify whether the structor can be used as an
indirection link for base reference creation or for effec­
tive operand formation, respectively.
Data structors specify several other important attributes
of an information structure. In particular, the type of
information described, the alterability of the information,
and the number of items of information of the designated
type are described by structors. Other attributes are
given for cer~ain types of information units. The attributes
given in the data structor apply to all items. In .. t~e, ar~a;w
described by the structor. One type of array, called

2-4
HONEYWELL PROPRIETARY - SENSITIVE

2.2.2
(Con t.)

HONEYWELL PROPRIETARY - SENSITIVE

tagged doubleword, allows any tagged quantity to be assigned
to any item in the array, so that some o£ the attributes
of this array item are associated with it, independent of
the attributes of other array items.

The location field in data structors is 24 bits in length
and identifies one of as many as 1,048,576 (220) 8-bit
bytes of storage. The addressing resolution required to
locate a particular bit is achieved by use of an offset
field contained in certain data structors. The location
field, together with this offset field, always identifies
the position of the leftmost (lowest numbered) bit of a
particular array of items in storage.

The general format for
Figure 2-4.

data structors is presented in

EE±[
-------- ------------

Tf/'E LtJC 4 r/eN
-~~ - -~ ~ -- - - -

(J .J Y ",

FIGURE 2-4. DATA STRUCTOR (GENERAL FORMAT)

The descriptions of the individual fields of data structors
are specified as follows:

a. TAG field this 4 bit field distinguishes between
the implicit -- and explicit modifier and specifier
or baselink and data link forms, and alterable and
nonalterable cases of data structors. (See Table 2-1),

These cases are specified as follows:

i. Implicit-length/Explicit-length-Implicit-Length
items always have a fixed bit length, which is
determined by their TYPE field. Explicit-length
items have a specified bit length, which is
derived from the POSITION field of their describing
data structor.

2-5
HONEYWELL PROPRIETARY - SENSITIVE

2.2.2
(Cant.)

HONEYWELL PROPRIETARY - SENSITIVE

ii. ;Modifier/Specifier and Baselink/Data link ~- For
explicit-length modifier structors, the LOCATION
field is interpreted as a relative byte displace­
ment from an implied base location. For explicit­
length specifier structors, the LOCATION field is
interpreted as an absolute -storage location at
which the associated data structure originates.
An implicit-length baselink or data link structor
LOCATION field is always interpreted as the
absolute storage location of a tagged doubleword
or ministructor array origin. The modifier/specifier
and baselink/datalink indicator is the third bit
of the TAG field of a data structor.

iii. Alterable/Nonalterable -- An alterable structor
specifies that items in its associated array are
alterable when the structor is used to access them,
while a nonalterable structor prevents alteration
of items in its associated array. Alterability
indicator is the fourth bit of the TAG field
of a data structor.

b. TYPE Field -- This 4-bit field is used to identify
t~e type of implicit -- or explicit -- length array
items described by the structor. For implicit-length
structors, the length of each item is specified by
this field. The interpretation of the POSITION Fiead,
which contains the item length, is specified by the
TYPE Field for explicit-length structors. The avail~
able TYPE codes are presented in Table 2-2 and Table 2-3.
, -

c. LOCATION Field -- This 24-bit field specifies the byte
location (0 - 1,048,575 with values greater than
1,048,575 illegal) in which the first, array item
has its origin. For explicit-length modifier structors,
this field specifies the number of bytes of relative
displacement from an implied base reference location
as the location of the array described by the structor.

2-6
HONEYWELL PROPRIETARY - SENSITIVE

2.2.2.1

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

For explicit-length specifier structors and for
implicit-length structors, this field specifies the
absolute storage address of the byte in which the
array associated with the structor originates. For
bit and binary strings, the bit offset subfield of
the POSITION field of the structor is 'also required
to establish the array origin.

d. POSITION Field -- The interpretation of this 16-bi~
field depends on the TAG and TYPE field codes. The
specific interpretations are considered in subsection
2.2.2.1 below.

e. EXTENT Field -- Thill 16-bit field specifies the number
of items of the designated TYPE in the array described
by the data structor. Extents 1 to 65,536 are assoc­
iated with values of all' zero bits to all one bits in
this field.

Data structors must be aligned on doubleword boundaries.
The entire array of items described by the data structor
must be placed in contiguous storage locations. Every
item in the array is a data representation with the
same attributes, except for storage location.

The modifier form of explicit-length structor cannot
be used to access an operand in storage, since it
does not describe any particular collection of items
in storage. The use of data structors to fetch or
store operands is discussed in Subsections 3.2 and 3.3
Autofetch/Autostore.

POSITION Field of Data Structors

The interpretation of the POSITION field of data structors
depends on the values of the TAG and TYPE fields of the
structor. For explicit-length structors, the ~nterpretations
are specified in the subsections defining the explicit­
length items. For implicit-length structors, the following

2-7
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

TABLE 2-2
TYPE CODES FOR EXPLICIT-LENGTH STRUCTORS

TYPE ITEM UNIT SIZE
CODE DESCRIPTION (BITS)

0 Bit String 1

1 Binary String 1

2 Hexadecimal Floating Point Strine 8

3 Unassigned* -
4 Zoned Decimal String 8

5 Unsigned Zoned Decimal String 8

6 Packed Decimal String 8

7 Unsigned Packed Decimal String 8

8 Byte String 8

9 Translated Byte String 8

A Unformatted Region 8

B Edit Control String 8

C-D Unassigned* 8

E-F Software Assignable*

*An attempt to use an explicit-length structor with this TYPE
code will normally result in a trap.

TABLE 2-3
TYPE CODES FOR IMPLICIT-LENGTH STRUCTORS

-
TYPE ITEM ITEM SIZE

DESCRIPTION (BITS)

0 Tagged Doubleword 64
1 Tagged Doubleword, LIFO Access 64
2 Tagged Doubleword, FIFO Access 64
3 Ministructor 32

4-D Unassigned* n.a.
E-F Software Assignable n.a.

*An attempt to use an implicit-length structor with this TYPE
code will normally result in a trap.

2-8

HONEYWELL PROPRIETARY - SENSITIVE

1-16-70

2.2.3

HONEYWELL PROPRIETARY - SENSITIVE

interpretations are specified:

a. Tagged Doubleword -~, the POSI~ION Field is RESERVED.

b. Tagged Doubleword, LIFO Access -- the POSITION field
is interpreted as an unsigned binary integer in the
range 0 to 65,535. This integer, multiplied by 8
and added to the value of the LOCATION field of the
structor, selects a particular tagged doubleword in the
array of tagge doublewords described by the structor.
The POSITION field value must be not greater than
the EXTENT field value. When an item in a tagged
doubleword, LIFO access array is retrieved or updated,
the value of the POSITION field in the associated data
structor may be decremented or incremented, respectively.

c. Tagged Doubleword, FIFO Access -- The POSITION field
is interpreted as a pair of 8-bit unsigned binary
integers in the range 0 to 255. These integers multi­
plied by 8 and added to the value of the LOCATION
field of the structor, select a pair of tagged double­
words in the array of tagged doublewords described by
the structor. Each of these integers must be not
greater than the EXTENT field value. When an item
in a tagged doubleword, FIFO array is retrieved, the
leftmost 8-bits of the POSITION field, called the
FIFO tail, may be used to select an item and may be
incremented. When an item in a tagged doubleword,
FIFO array is updated, the rightmost 8-bits of the
POSITION field, called the FIFO head, may be used to
select an item and may be incremented.

d. Ministructor -- the POSITION field is RESERVED.

System Control Structors

System control structors are tagged information items
used for system control operations. These structors are
specified in Sections 2'.5 (Control Information Representation)
and Section 2.6 (I/O Information Representation).

2-9
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

2.3 COMPACT INFORMATION REPRESENTATIONS

2.3.1.1

The compact information represent~tions are used to mini­
mize the amount of storage required to store arrays of
information cuntaining items with certain homogeneous
attributes. Each compact representation is 'equivalent
to one of the tagged representations specified in Section
2.2.

Compact Data Representations

There are three compact data representations: bit strings,
binary strings, and hexadecimal floating point strings.
These data representations possess values over the same
range as tagged logical words, tagged binary integers,
and tagged hexadecimal floating point numbers, respectively_

Bit Strings

A bit string consists of a sequence of bits of specified
length treated as a variable precision logical word or
unsigned binary integer (see Figure 2-5). The maximun
length for bit strings is 32 bits. The leftmost bit of
a bit string may be any bit position in any byte of storage.
Alignment and string length for bit strings affect their
access time.

'-----_ ... _-_. __ ... _-

FIGURE 2-5. BIT STRING

Bit strings are described by explicit-length structors
The interpretation of the POSITION field of bit string
structors is as follows. (See Figure 2-6).

2-10

HONEYWELL PROPRIETARY - SENSITIVE

2.3.1.2

HONEYWELL PROPRIETARY - SENSITIVE

..J 3

r ~T~
------- LENG-rH

....... -------___ 6/7" t2P~

FIGURE 2-6. POSITION FIELD FOR BIT AND BINARY STRINGS

The bit offset field specifies the bit position within
the byte addressed by the LOCATION field of the structor
that is associated with the leftmost bit of an array of
bit strings. The bit offset has a range 0 to 7. The
length field specifies the number of bits in each bit
string item in the array. The length has a range 1 to
32, 1 to 31 associated with binary values 00001 to 11111,
and 00000 associated with a length of 32 bits. The align­
ment offset field specifies the offset of the bit string
in a tagged logical word and is used in Autofetch/Auto­
store conversion for bit strings. This field has a range
of a to 31, associated with binary values 00000 to 11111.

Binary Strings

A binary string consists of a sequence of bits of speci­
fied length treated a a variable precision twos complement
binary integer (see Figure 2-7). The maximum length for
binary strings is 32 bits. The leftmost bit of a binary
string may be any bit position of any byte of storage.
Alignment and string length for binary strings may affect
their access time.

r "'-------_. ------ - -

FIGURE 2-7. BINARY STRING

2-11

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

Binary strings are described by explicit-length structors.
The interpretation of the POSITION field of binary string
structors is identical to the interpretation for bit
strings (see subsection 2.3.1.1) except the binary string
alignment offset specifies the offset of the binary string
within a tagged binary integer value.

Hexadecimal Floating Point Strings

A hexadecimal float-ing point string consists of an 8-bi t
sign exponent byte followed by a sequence of from 0 to
7 contiguous bytes, which form a 0 to 14 hexadecimal
digit mantissa. (See Figure 2-8.) The leftmost bit of
the string is the sign of the manissa, encoded as 0 plus
and 1 minus. The next seven bits contain the exponent.
The exponent is encoded as an excess 64 number with a range
of -64 through +63 and is interpreted as a power of six­
teen. The remainder of the string consists of the hexa­
decimal digits used to encode the mantissa.

The minimum length of a hexadecimal floating point string
(including the sign/exponent byte) is one byte, which
corresponds to a zero digit mantissa. The maximum length
is 8 bytes, which corresponds to a 14 digit mantissa.

A hexadecimal floating point string must be aligned on a
byte boundary in storage. Boundary alignment and string
length for hexadecimal floating point strings may affect
their access time.

FIGURE 2-8. FLOATING POINT HEXADECIMAL STRING

Hexadecimal floating point ~trings are described by
explicit-length structors. The interpretation of the

2-12
HONEYWELL PROPRIETARY - SENSITIVE

2.3.2

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

POSITION field of hexadecimal floating point string struc­
tor is as follows. (See Figure 2-9.)

,y- ifESFA¥I~

J-___ I ~e:;~~~ I
.s-.3 7 I i t_ S/G-/', =,_AI"'_~'

'---------- L£/.lr:;.;'-,.,;"

FIGURE 2-9. POSITION FIELD FOR HEXADECIMAL
FLOATING POINT STRINGS

The length field specifies the number of bytes in each
hexadecimal floating point string in the array described
by the structor. The length has a range of 1 to 7 and
8, encoded as 001 to III and 000. The significance
truncation field specifies the effective mantissa precision
when the hexadecimal floating point string is manipulated
in significance arithmetic mode. If this field is 1,
significance truncation applies; otherwise, it does not.

Ministructors

A reduction in the number of bits required to describe a
particular information strucure is possible if the attri­
buts of the structure are limited. The most important
limitations are on the location and extent of arrays and
on string length. Location information is reduced by re­
quiring the data structure to be located a fixed relative
displacement from the location of the descriptive quantity.

Arrays of less than a given extent and strings of less
than a given length will require fewer bits in their
associated descriptive quantities. The descriptive quan­
tities assuming these abbreviated forms of description are

called ministructors. -Ministructors are normally stored
in arrays and are converted into equivalent forms of data

2-13
HONEYWELL PROPRIETARY - SENSITIVE

2.3.2.1

HONEYWELL PROPRIETARY - SENSITIVE

structors when used. Ministructors must be word boundary
aligned and may reside only in main storage. The four
distinct forms of ministructors are described below. In
each case, the equivalent form of data structor is
specified. This equivalent form is the form into which
the ministructor is converted when, for example, it is
placed in a general register.

Singular Ministructor

The singular ministructor is a 32-bit quantity consisting
of a two-bit classifier (which is 00), a one-bit mOdifier/
specifier an~baselink/datalink indicator a onegbit alter­
ability or reproducability indicator, a four-bit type code
field, and a 24-bit location field. (See Figure 2-10.)

A singular ministructor is equivalent to a data structor
with the following attributes:

a. Modifier/specifier or baselink/datalink indicator and
alterability indicator identical to the ministructor

, . indicators.

b. LOCATION field identical to the ministructor location
field.

c. EXTENT field set to zero (single item).

d. the TAG, TYPE, and POSTION fields of the data structor
are determined by the typecode field of the ministruc­
tor, according to Table 2-4.

This form of ministructor is convenient for printing of
a single fixed-length item.

M(J~ RI)t./~P/r~ CJ~ ,,~tJlIM:/ ;;"r~N'.(,

2-14
HONEYWELL PROPRIETARY - SENSITIVE

2.3.2.2

HONEYWELL PROPRIETARY - SENSITIVE

Dual Ministructor

The dual ministructor is a 32-bit quantity consisting of
a two-bit classifier (which is 01), a one-bit mOdifier/
specifier or baselink/datalink indicator, a one-bit alter­
ability indicator, a four-bit typecode field, and a 24-
bit location f~eld. (See Figure 2-11.)

0/

~ I ~~ 7T ._TY,D#C~~'"
~4/JI'L'ry

FIGURE 2-11. DUAL MINISTRUCTOR

A dual ministructor is equivalent to a data structor with
the following attributes:

a. Modifier/specifier or baselink/datalink indicator
and alterability indicator identical to the mini­
structor indicators.

b. LOCATION field identical to the ministructor location
field.

c. EXTENT field set to one (two items).

d. the TAG, TYPE, and POSITION fields of the data structor
are determined by the typecode field of the ministructors,
according to Table 2-4.

This form of ministructor is useful in constructing binary
tree structures, including chained lists and ring structures.

2-15
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

TABLE 2-4
MINISTRUCTOR EQUIVALENT STRUCTOR ATTRIBUTES

TYPE
CODE TAG* TYPE POSITION**

0 Implicit Tagged doubleword n'~a •
1 Implicit Ministructor n.a.

2-7 Unassigned n.a. n.a.
8 Explicit Bit String (0) B=O, L=8',' A=O
9 Explicit Bit String (0) B=O, L=lQ, A=Q
A Explicit Bit String (0) B=O, L=j2, A=O
B Explicit Binary String (1) B=O, L=8, A=24
C Explicit Binary String (1) B=O, L=16, A=16
D Explicit Binary String (1) B=O, L=32, A=O
E Explicit Hex.f~p. String (2) L=4, S=O
F Explicit Hex.f.p. String (2) L=8, s=o

*The TAG field is also generated to include modifier/specifier or
baselink/datalink and alterability on indicators.

**The following abbreviations are used: B-bit offset, L-length,
A-alignment offset, S-significance truncation.

Array Ministructor

The array ministructor is a 32 bit quantity consisting of
a two-bit classifier (which is 10), a one-bit mOdifier/

specifier or baselink/datalink indicator, a one-bit alter­
ability indicator, a four-bit type field, a sixteen-bit
relative displacement field, and a eight-bit extent field.
(See Figure 2-12.)

~~/~/'1/~fib~ c:M(JI"1S~~~/~~/N~

#eLAnvG FXrFNr ,
/(J "J)I$P4AC'£/I)S

IJ I ~¥ ry~CtIJ/)~ .b;lY 3/
;#l1..T1!!' ~ /l8/L/ ry

FIGURE 2-12. ARRAY MINISTRUCTOR

2-16
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

An array ministructor is equivalent to a data structor

with the following attributes:

a. Modifier/specifier indicator or baselink/datalink
and alterability indicator identical to the mini­
structor indicators.

b. LOCATION field equals the value of the relative dis­
placement field of the ministructor in bytes, if the
ministructor is an explicit-length modifier or im­
plicit-length baselink or the sum of the storage
address of the ministructor plus the relative dis­
placement field of the ministructor, when the mini­
structor is an explicit-length specifier or implicit­
length datalink type.

c. EXTENT field set to the value of the extent field
of the array ministructor.

d. The TAG, TYPE, and POSITION fields of the data
structor are determined by the typecode field of the
ministructor, according to Table 2-4.

String Ministructor

The string ministructor is a 32-bit quantity consisting
of a two bit classifier (which is 11), a one-bit mOdifier/
specifier indicator, a one-bit alterability indicator, a
four-bit type code field, a, sixteen bit relative displace­
ment field, and an eight-bit position field. (See Figure

2 -13) ~

ptohp/e;(/s~FClI9'1(~A(~NJ</'/)I97A-~
...... ~'~ \

FIGURE 2-13. STRING MINISTRUCTOR

2-17

HONEYWELL PROPRIETARY - SENSITIVE

2.3.2.4
(Cont.)

HONEYWELL .PROPRIETARY - SENSITIVE

A string ministructor is equivalent to an explicit-length
structor with the following attributes:

a. Modifier/specifier indicator and alterability in­
dicator identical to the ministructor indicators.

b. LOCATION field equals the value of the relative dis­
placement field of the ministructor in bytes, if the
ministructor is a modifier, or the sum of the storage
address of the ministructor plus the relative dis­
placement field of the ministructor, when the mini­
structor is a specifier.

c. EXTENT field set to zero (single item).

d. TYPE field set to the value of the typecode field of
the ministructor.

e. POSITION field determined by the position field of
the string ministructor, as a function of the typecode
field of the ministructor. The manner in which this
is accomplished is discussed below.

The POSITION field of the equivalent structor is determined
as a function of the typecode of the string ministructor.
Table 2-5 presents the alternatives.

2-18
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

TABLE 2-5
POSITION FIELD EQUIVALENTS FOR STRING MINISTRUCTORS

TYPECODE OF EQUIVALENT POSITION
MINISTRUCTOR TYPE FIELD

EQUIVALENT *

0 Bit String A

1 Binary String A

2 Hexadecimal Floating Point String B

3 Unassigned n.a.

4 Zoned Decimal String B

5 _Unsigned Zoned Decimal String B

6 Packed Decimal String B

7 Unsigned Packed Decimal String B

8 Byte String C

9 Translated Byte String C

A Unformatted Region C

B Edit Control String n.a.

C-F Unassigned n.a.

*The alternatives for position field equivalents are as follows:

A- The POSITION field contains the position field of the mini­
structor as its leftmost eight bits. The rightmost eight bits
of the POSITION field are set to zero. This allows bit and
binary strings with offsets 0-7, lengths 1-32, and 0 alignment
offset string ministructors.

B- The POSITION field consists of 4 zero bits, followed by the
leftmost 4 bits of the position field of the ministructor,
followed by 4 zero bits, followed by the rightmost 4 bits of
the ministructor position field. This allows zoned decimal
strings with byte lengths 1-15 and 32 and zoned decimal strings
with byte lengths 1-16, and both with scale factors 0-15, and
hexadecimal floating point strings with byte lengths 1-8 with
or without significance truncation to be described by string
ministructors.

C- The POSITION field consists of 8 zero bits, followed by the 8
bits of the position field of the ministructor. This allows
byte strings, translated byte strings, and unformatted regions
with lengths 0-255 to be described by string ministructors.

2-19

HONEYWELL PROPRIETARY - SENSITIVE

2.4. 1 •. 1

HONEYWELL PROPRIETARY - SENSITIVE

BYTE SEQUENCE INFORMATION REPRESENTATIONS

The byte sequence information representations consist of
a sequence of essentially identical units, each of which
occupied a byte of storage. Information in the byte se­
quence is normally processed as an entity; that is, the
entire sequence is considered to be a single operand value
of variable length.

String Data Representations

The string data representations are used to encode data
that is of highly variable length such that it is im­
possible to place this information in general registers.

Byte String

A byte string is a sequence of contiguous eight-bit bytes
that are normally interpreted as logical values (see
Figure 2-14). The maximum length for byte strings is
65,535 bytes. A byte string may originate at any byte
boundary in storage. A byte string may have zero length.

VALl/€ v4,,~ VAL"~T-=-.l-'-IV/jL(/;----_-_-~ ~.~]Vh'W," I
o fa 70 7 0 7 Q 7 () ?

FIGURE 2-14. BYTE STRING

Byte strings are described by explicit-length structors.
The interpretation of the POSITION field of byte string
structors is as follows. (See Figure 2-15).

-l
FIGURE 2-15. POSITION FIELD FOR
BYTE ANTI TRANSLATED BYTE STRINGS

2-20
HONEYWELL PROPRIETARY - SENSITIVE

o

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

The length field spe.cifies the number of bytes in each
byte string in the array of byte strings described by
the data structor. This field has a range 0 to 65,535
and is interpreted as an unsigned binary integer.

Translated Byte String

A translated byte string is a sequence of contiguous
eight-bit bytes that are translated using as implicit
translation table and are normally treated as logical
values. (See Figure 2-16). The maximum length for
translated byte strings is 65,535 bytes. A translated
byte string may originate at any byte boundary in storage.
The translation tables used to map from and to a trans­
lated byte string are called the load and store trans­
lation tables, respectively, and are located by means of
the Task Code Map Description in the Task Status Block
(see Section 2.5).

V~LJ .. ::- VI'l L vr; 'V'4.:.. v':"-- VIU. .. (..J~

----------- '--

70 7° 7 o 1
FIGURE 2-16. TRANSLATED BYTE STRING

Translated byte strings are described by explicit-length
structors. The interpretation of the POSITION field
of translated byte string structors is as follows. (See
Figure 2-15). The length field specifies the number of
bytes in each translated byte string in the array of
translated byte strings described by the data structor.
This field has a range 0 to 65,535 and is interpreted
as an unsigned integer.

2-21

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

Zoned Decimal String

A zoned decimal string is a sequence of contiguous eight­
bit bytes, each containing an encoding of a decimal digit,
the rightmost byte of which contains a signed digit (see
Figure 2-17). The sign is stored as a zone field in the
rightmost byte. The zone bits in the remaining digit
positions are not interpreted by instructions manipulating
zoned decimal strings, but are preserved by execution
of these instructions. The numeric bits in each digit
position are interpreted as follows: 0000 to 1001 porres­
pond to decimal digits 0 to 9 and 1010 to 1111 are in­
terpreted as illegal and generate a trap when encountered.
The interpretation of the sign field is specified in
Appendix A. Each zoned decimal string has an associated
scale factor, which is used to specify the position of an
implied decimal point for the string. The maximum length
for zoned decimal strings is 32 digits, and the maximum
scale factor is 128 digit positions to the left, and 127
digit positions to the right of the leftmost digit of the
zoned decimal string. A scale factor of a places the
implied decimal point to the left of the leftmost digit
of the string. See Appendix A for sign Jencoding ~'etails.
A zoned decimal string may originate at any byte boundary
in storage.

I i>16-IT I /)/~q I DI6f r IIJrGn-1 ~ - - - - -
() 1- 7' 111 7

FIGURE 2-17. ZONED DECIMAL STRING

- --r--~--.

'$'~ 7
\

VICr-IT

Zoned degimal strings are ~esc~ibed by explicit-length
structors. The interpretation of the POSITION field of
zoned decimal string structors is as follows. (See Figure
2-18) •

2-22
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

~ t SCA'" Atk~~
~----------- ~~~

FIGURE 2-18. POSITION FIELD FOR ZONED ANTI UNSIGNED
ZONED DECIMAL STRING STRUCTORS.

1-16-70

The length field specifies the number of bytes in each
zoned decimal string in the array of zoned decimal strings
described by the structor. This field has a range 1 to
31 and 32, which is encoded as 00001 to 11111 and 00000.

The scale factor field specifies the position of an im­
plied decimal point for the zoned decimal string. This
field has a range -128 to +127 and is encoded as a twos
complement binary integer.

Unsigned Zoned Decimal String

An unsigned zoned decimal string consists of a sequence
of contiguous eight-bit bytes, each containing an en­
coding of a decimal digit. (See Figure 2-19).

FIGURE 2-19. UNSIGNED ZONED DECIMAL STRING

The interpretation of unsigned zoned decimal strings is
identical to the interpretation of zoned decimal strings,
except that the zone of the rightmost byte of the string
is not interpreted as a sign, but is preserved. A positive
value is always implied for unsigned zoned decimal strings.

2-23
HONEYWELL PROPRIETARY - SENSITIVE

2.4.1.5

HONEYWELL PROPRIETARY - SENSITIVE

Packed Decimal String

A packed decimal string is a sequence of contiguous eight­
bit bytes, each containing an encoding of a pair of
decimal digits, except the rightmost byte, which contains
an encoding of a decimal digit and of a sign. (See
Figure 2-20). The sign code is the rightmost 4-bit field
of the rightmost byte of the packed decimal string. The
encoding of the sign code is specified in Appendix A.
Each digit field in the string is interpreted as follows:
0000 to 1001 correspond to decimal digits 0 to 9, 1010
to 1111 are interpreted as illegal digits and generate
traps when encountered. Each packed decimal string has
an associated scale factor, which is used to specify the
position of an implied decimal point for the string. The
maximum precision for packed decimal str±ngs is 31 decimal
digits, and the maximum scale factor is 128 digit positions
to the left or 127 digit positions to the leftmost digit
of the packed decimal string. A packed decimal string
may originate at any byte boundary in storage.

Packed decimal strings are described by explicit-length
structors. The interpretation of the POSITION field of
packed decimal strings is as follows. (See Figure 2-21).

2-24
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

¥ ¥ r

t tl-----.s c.1I/ i..."': r-A c r...;/:

'--~ ------ L.. ~JV(rr ri

FIGURE 2-21. POSITION FIELD FOR PACKED AND
UNSIGNED PACKED DECIMAL STRING STRUCTORS

1-16-70

The length field specifies the number of bytes in each
packed decimal string in the array of packed decimal
strings described py the structor. This field has a range
1 to 15 and 16, which is encoded as QOOI to 1111 and 0000.
The scale factor field specifies the digit position of an
implied decimal point for the packed decimal string. This
field has a range -128 to +127 and is encoded as a two~
complementary binary integer.

Unsigned Packed Decimal String

An unsigned decimal string consists of a sequence of con­
tiguous eight-bit bytes, each containing an encoding
of a pair of decimal digits. (See' Figure 2-22).

l:vGI'.s
FIGURE 2-22. UNSIGNED PACKED DECIMAL STRING

The interpretation of unsigned packed decimal strings is
identical to the interpretation of packed decimal strings,
except that the rightmost 4 bit field of the rightmost
byte in the string is interpreted as a decimal digit. A
positive sign is always implied for unsigned packed
decimal strings.

2-25
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

Edit Control String

An edit control string consists of a sequence of con­
tiguous eight-bit bytes that are interpreted as either
edit control function codes or as immediate operand bytes
(see Figure 2-23). The maximum length of an edit control
string is 65,536 bytes. An edit control string may
originate at any byte boundary in storage.

-...&..----,-----,------,J ~ ~ ~ ~ ~ 0
D 10 7 d 1 (J 7
L'"-_______ ~_---,-..• -.1

FuNC TI;jN> FUN c..fl <.lAl

FIGURE 2-23. EDIT CONTROL STRING

The edit control string structor (explicit-length) has a
format identical to that for zoned or packed decimal
strings. The interpretation of the position and extent
fields of this structor differ, however, from the inter­
pretation appropriate to decamal string structors. In
particular, the following interpretation applied to edit
control string structors:

a. The location field is used to identify the byte ori­
gin of the edit control string in storage.

b. The length and scale factor fields may be used to
imply the precision and scale appropriate to the des­
tination string, if the source string is a decimal
string.

c. The extent field specifies the number of bytes in the
edit control string and is used to terminate execution
of the Edit instruction unless otherwise terminated.

An edit control string structor is valid as an operand
only for the EDIT instruction. (See Section V).

2-26
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

Unformatted Region

An unformatted region consists of a sequence of eight-
bit bytes for which no interpretation is implied. (See Figure
2-24). An unformatted region structor cannot be the
effective operand of an instruction (see Section V), but
can be used to represent an array of areas of storage
allocated for a specific purpose. In this latter role,
it is used in the Unformatted Region Qualification oper­
ation performed during instruction extraction. .eSee Sub­
section 3.5).

The maximum length for each unformatted region in an
array of unformatted regions is 65,535 bytes. An un­
formatted region may originate at any byte boundary in
storage, and may have zero length. . ..[-_. ---_ ... -- -----0"

J 1

1---J~r'- --;g, 1------. - - - - --. '0 7

FIGURE 2-24. UNFORMATTED REGION

Unformatted regions .are described by explicit-length
structors. The interpretation of the POSITION field
of unformatted region structors is as follows. (See
Figure 2-25).

FIGURE 2-25. POSITION FIELD FOR UNFORMATTED REGION STRUCTORS

2-27

HONEYWELL PROPRIETARY - SENSITIVE

2.5

2.5.1

HONEYWELL PROPRIETARY - SENSITIVE

The length field specifies the number of bytes in each
unformatted region in the array, of l1nformatted regions
described by the structor. This field has a range 0 to
65,535 and is interpreted as an unsigned binary integer.

CONTROL INFORMATION REPRESENTATION

The operation of the task multiplexing and control
facilities is dependent on the presence in main storage
of information describing the current control structure
of the system. This section is devoted to a description
of this required information. The instructions which
operate on the control information are described in
subsection 5.6 and the operation of the task multiplexing
and control facility is described in Section VI. The
overall organization of the control information is shown
in Figure 2-26.

System Control Structors

The format of the structors used for system control and
I/O purposes is shown in Figure 2-27.

- - .. -.. - -------_._- --------- .. - -- -------- ----.----'----~----.--

V/fIt,,,au;- /NhA'AllltrllJAI
- --- - ,-, --- ----------_ ... -.-----

FIGURE 2-27. SYSTEM CONTROL STRUCTOR

The types applicable to system control are listed in
Table 2-6.

2-28
HONEYWELL PROPRIETARY - SENSITIVE

,3

2.5.1.1

TYPE

o
1

2

3

4
5
6

7
8

9
A

J3
C

D

E

F

HONEYWELL PROPRIETARY - SENSITIVE

TAJ3LE 2-6
CONTROL STRUCTOR TYPES

PURPOSE

Procedure Index
Relative Procedure Index
TSJ3 Identifier
STOP Protected TSB Identifier
I/O Status Word
External Status Word
Type I Trap Effector
Type II Trap Effector
Reserved
Reserved
Reserved
])evice Specifier
Alternate Array Specifier
Control Command Specifier
Reserved
I/O Command Structor

1-16-70

The formats and purposes of these structors are discussed
in the following subsections.

Procedure Index

A Procedure Index has the format shown in Figure 2-28.
Procedure indices are used to describe the state of
execution of a procedure. Each task has a Current
Procedure Index as part of its TSJ3. The Current Procedure
Index describes the state of the procedure which the
task is executing. There may be many procedure indices
associated with a single procedure.

2-29
HONEYWELL PROPRIETARY - SENSITIVE

2.5.1.2

2.5.1.3

HONEYWELL PROPRIETARY - SENSITIVE

/III11I'/1It;., ,.,....
~C;~~A:~" ~
OE ~III'JL.J".11 tf{~~*

'----- AM TIIWi-~~~MaIITF

---~=-:
FIGURE 2-28. PROCEDURE INDEX FORMAT

Relative Procedure Index

A Relative Procedure Index is identical to a Procedure
Index except that the Instruction Location Counter field
contains a displacement relative to the location of the
Relative Procedure Index in main storage. A Relative
Procedure Index is converted into a Procedure Index when­
ever it is loaded into a register. (See Subsection
Autofetch Conversion).

TSB Identifiers

TSB identifiers are used as operands of the task control
instructions which operate on the state of tasks. Thet­
are also used as elements of the I/O and External Start
Arrays. (See subsections 7.6 and 7.7).

Two types of TSB identifiers are used. A ~SB identifier
is normally a legitimate operand for any task control
instruction. A STOP Protected TSB identifier is a legiti­
mate operand only for the START instruction. If an
attempt is made to use a STOP Protected TSB identifier
as the operand of a STOP, CONDITIONAL STOP, ISTOP, or
SUSPEND instruction a illegal operand trap occurs.

2-30
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

"""8 If/IV t;. Pt:VIY r~-I't.
~~ C;1T/6;lJ

6 t

2.5.1.4

2.5.1.5

2.5.2

FIGURE 2-29. TSB IDENTIFIER

Status Words

There are two types of status words: I/O and External.
These tagged doublewords are used to transfer information
from an I/O device or External source to a task. (See
subsections 7.6 and 7.7).

FIGURE 2-30. STATUS WORDS

Trap Effectors

Whenever an instruction references a trap effector either
as an operand or during autofetch or autostore a trap
occurs. The effects of these traps are described in
subsection 8-1. The Trap Effector format is shown in
Figure 2-31.

FIGURE 2-31. TRAP EFFECTORS

System Base

The System Base is an area in memory which contains in­
formation, or descriptions of information, concerning
the state of the system as a whole. It acts as a fixed
base through which the remainder of the system control

2-31

HONEYWELL PROPRIETARY - SENSITIVE

/

!

b

\

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

information may be accessed.
words 0-31 of main storage.
Base is shown in Figure 2-32.

It is always located in
The format of the System

0 Priority Array Structor .,.",.. ~

2 I/O Start Array Structor

4 External Start Array Structor
6 Processor Status Array Structor
8 Reserved

10 I/O Status Array Structor
12 Device Specification Array Structor

14 Traffic Register Array Structor
16 Simultaneity Table Structor
18 I~q~
20 Table Array Structor
22 (VV'>r (\...- fI, vv. eS . } 30 Reserved

FIGURE 2-32. SYSTEM BASE ORGANIZATION

The allocation of space in the System Base is as follows:

Words 0-1: The Priority Array Structor: This explicit­
length bit-string structor describes the
Priority Array. (See subsection 2.5.4).

Words 2-3: The I/O Start Array Structor: This tagged
double-word array structor describes the I/O
Start Array.

Words 4-5: The External Start Array Structor: This
tagged doubleword array structor describes
the External Start Array.

Words 6-7: The Processor Status Array Structor: This
explicit length byte string array structor
describes the Processor Status Array.

Words 8-9: Reserved.

2-32
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

Words 10-11: The I/O Status Array Structor: This
explicit length byte string array structor
describes the I/O Status Array.

Words 12-17: Three array structors used to identify
tables required by the I/O.

Word 18: This word contains two lock bytes: P is
the priority structure lock, and Q is the
Queue lock.

Words 20-21: The Table Array Structor: This byte string
array structor describes an array of 252
byte strings, each of length 256, used for
translation tables.

Words 22-25: These words are reserved.

Task Status Block

The existance and current status of a task is specified
by a Task Status Block (TSB). TSB's are stored ili main
storage and must be located on a double word boundary.
They are up to 32 double words long. The exact length
is determined by the operating system. Certain portions
of the TSB must be accessible to the hardware. For this
reason the low order portion of the TSB has a fixed format
as shown in Figure 2-33.

The allocation of the TSB is as follows:

(In the following descriptions all unused bits are re­
quired to be zero).

a. Doublewords 0-15:

Sixteen gen.eral purpose registers which may be used
to hold tagged data or structors.

b. Doubleword 16:

A Ring Pointer which is used to link all Tasks at ,a
given priority level into a circular chain. (See
Figures 2-33 and 2-34.)

Bits a and 1 specify the current state of the task.
They are encoded as follows:

2-33
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

~IY~.I?I'/(.

"'- 'I"'-

PU~~~'

I'?Gc;./.s7.:...~.::r -
/r

5T V:;; NEXT 7.5t!J IW . tW 4Jl ~,f~~~ V~ >,
~,-

! F ~
/AI~"i(?vr;;..,.,.~1V

~a{)E /V;4sk, .t.. ,- :"7~ i -~~~~. ~

T//VIE!e sT4rvS
1----- I '''.5 r~·\J ~ "" V'/ 11"11'l~ ~"'" F o ~~7/{;)1V M~lJ~

~~I,.IN7"(::1:: -
-.

r-----..... ' ..

ry,e:J€ .,...y~<?' ~~c;t'r/C ;''''y/':-4-4 /-11'/7/!AJ4.,1

""-R;IIK5.t:.~r.;..':" rllSU::- .rt> / ,cll..L. /~) I -~: .'.

-' .. ---------_ .. ---- -.---

-. -~.------.- -

('
/"IC'.;J.('/ ')

'~-,)I',/~

'- '.; tv".

A'l'~ ,oO/AJr~~

C
~
U~~AJ"'- ,_

~() C4,];~..,:rf IN' f'''';A
~

17

~eA:/sT~r(/.$

')eifP / ,.y~K I

-n leN'rp
oS r~ /(';- .57"9 TfwIS
~

r
T}I-SI<. <:11>1>' ""NP
~,p",OtJ

If#FssttAUJ

';~ t} 3/

00 Running:

01 Ready:

F]GURE 2-33. TSB FORMAT

A running task is currently utilizing a
processor.

A ready task is one which, while not
currently using a processor, is prepared
to do so.

2-34 :-
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

10 Blocked: A blocked task is not prepared to run
and is waiting for some event external to
itself.

11 Available: An available task is one which is not
prepared to run and which must be modified
by the operating system before it may run.

Bits 8-31 contain the address of the next TSB in the

chain. Bit 32 is a Start Flag which is set whenever an
External of I/O Start is directed to the task. Bits 40-47
are a lock for the Start Status Word. Bits 48-55 specify
the processor executing the task if it is in the running
state. Bits 56-63 specify the priority of the task.

---- - - -ADD~::,"" Or A/~ xr IJ
1 ;-."'~ tl

'7f --- t3. J~ ~ 1

,..lJP/feSSal= AlF)tT ') I i
1"118 I¥ TN~ CHAIN ~ J

,,~ TH/& ~.I't,ry (I
£4:VEJ...)!

FIGURE 2-34. RING POINTER

c. Doubleword 17:

The current procedure index. This represents the
state of the procedure which the task is currently
executing.

d. Doubleword 18:

This word contains a 32 bit task timer and a 32 bit
status field the task timer is discussed in subsection
9.3. The status field is allocated as shown in Figure
2-35.

2-35

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

.. 1 _____ -_, _/_/11_.:£_1':_' _-_--, -. - -- --- -

FIGURE 2-35.

The emulation configuration field (bits 27-29) are
used to indicate whether or not the task requires a
non-native instruction set for its execution.

e. Doubleword 19:

The ~rap Index is a procedure index with the format
shown in Figure 2-28. Its contents exchanged with the
contents of the current procedure index when a trap
occurs.

f. Doublewords 20, 21, 22:

Three general purpose register images used for trap

handling.

g. Doubleword 23:

A trap ID field where information about a trap may
be stored.

h. Doubleword 24:

This doubleword contains either a status field used
to store an External or I/O Status Word, or a FIFO
structor used to point to an area where status words
may be stored.

i. Doubleword 25:

This double word contains three one-byte indices used
to select the Load Translate, Store Translate, and
Non-Binary Collate Tables. The Tables are selected
by using the index byte. to index the Table Array
Structor in the system base. This doubleword also con­
tains all numeric and alpha numeric fill bytes.

2-36
HONEYWELL PROPRIETARY - SENSITIVE

2.5.4

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

If any of these indices is set to all ones
or exceed the extent of the Table Array
Structor the corresponding table is not present.

FIGURE 3-36.

j. Doublewords 26-27:

These words are reserved.

k. Doublewords 28-31:

These words are assignable by the operating system.

Task Priority Array

The Task Priority Array (TPA) is a doubleword aligned array
of 32 bit~n~stringS identified by~the Priority Array
Structor in the System Base. There is one entry in the
Task Priority Array for each priority level in the system.
(The maximum number of levels is 255). Each of the entries
in the array points to a ring structure of all the TSBs
in the system at the corresponding priority level.

The format of a TPA entry is shown in Figure 2-37. Bits
8-31 are the location field and specify the address of the
ring pointer of a TSB in the ring structure.

H=I
'II

FIGURE 2-37. TASK PRIORITY ARRAY ENTRY FORMAT

2-37
HONEYWELL PROPRIETARY - SENSITIVE

2.5.5

HONEYWELL PROPRIETARY - SENSITIVE

Bit a is a Level Blocked Indicator which is set whenever
the system discovers that none of the tasks in the corres­
ponding level are in the ready state. The Level Blocked
Indicator is reset wheneyer a task in the corresponding
level makes a transition to the ready state.

Bits 1 through 7 specify the number of tasks in the ring
structUre at the corresponding level.

I/O Start Array

The I/O Start Array is an array of tagged doublewords
identified by the I/O Start Array structor in the System
Base. The number of entries in the I/O Start Array is
a function of the I/O complement of the system and the
software. Each entry may be one of the three types shown
in Figure 2-38.

FIGURE 2-38. I/O AND EXTERNAL START ARRAY ENTRIES

The first allowable type of entry in the ISA is a TSB
identif~er ((b) in Figure 2-38). The location field in
this entry addresses the ring pointer location in a TSB.

2-38
HONEYWELL PROPRIETARY - SENSITIVE

2.5.6

2.5.7

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

The second type of entry is a doubleword with a a tag
field, ((b) in Figure 2-38). This entry is used as a
null element.

The final type of entry is an implicit length tagged
doubleword structor ((c) in Figure 2-38). This structor
describes an Index Array which in turn may contain any
one of these three types of entries. (See subsection
I/O Starts).

External Start Array

The External Start Array is an array of tagged doublewords
identified by the External Start Array Structor in the
System Base. The number of entries in the array is a
function of the size of the system and the operating
system requirements. Each entry may be one of the three
types described in subsection 2.5.5. The formats of these
entries are identical with those described for the I/O
Start Array in subsection 2.5.5.

Processor Status Array

The Processor Status Array (PSA) is a doubleword aligned
array of byte strings identified by the Processor Status
Array Structor in the System Base. There is a 16 byte
string in the array for each processor attached to the sys­
tem. The organization of these strings is shown in Figure

2-39.

The first four bytes of a PSA entry has a one-byte command
field and a three-byte location field. Both of these fields
are used to convey information from the system to the as­

sociated processor.

2-39

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 11-26-69

c O~ J'I1Jil"uJ> N4If W .,.., tJ .(,0 e"9 'r/ dAJ

C"A.Ad'~r C!.v~teeN/ 756 NJCA-f/ON Pit;, .A.ITti

~'tre Silf!t'A/(). /+,e,eA r .$r,e vc. 1'"0 R...

....... ,...~

FIGURE 2-39. PROCESSOR STATUS ARRAY

The second four bytes of a PSA entry is divided into two
fields: the first byte specifies the priority of the task
which is being executed by the processor. The other three
bytes contain the address of the Ring Pointer of the task
being executed by the processor. If the processor is in
the wait state then the first byte is set to all ones and

the other three bytes are unspecified.

The last eight bytes of a PSA entry is a byte string array
structor used to point to an area of storage reserved for
the use of the associated processor. The size of this area

depends on the implementation of the processor.
NOTE

The first entry in the PSA (pro­
cessor zero) is reserved for the
DCS. Its priority field will al­
ways be set to zero.

2-40

HONEYWELL PROPRIETARY - SENSITIVE

2.5.8

2.6

2.6.1

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

I/O Status Array

The I/O Status Array is a doubleword aligned array of
byte strings identified by the I/O Status Array Structor
in the System Base. Each entry in the array consists of ,a
16 byte string. The first eight bytes are used as a com­
munications buffer between the processors and the I/O. The
other eight bytes form a string reserved for the use of the
I/O.

The number of entries in the array depends on the im­
plementation of the I/O subsystem.

I/O INFORMATION REPRESENTATION

The execution of Input/Output instructions will require
the use of information stored in main memory. Only the
description and modification of this information will be
specified in this section. A detailed explanation of
how this information is to be used, the execution of I/O
instructions and the I/O facilities, is presented in
Section X.

I/O Structors

Tag F structors are used for system control and I/O pur­
poses. The general format is shown in Figure 2-27.
The types applicable to Input/Output structors are listed
in Table 2-7.

TABLE 2-7
I/O STRUCTOR TYPES

TYPE PURPOSE

B Device Specifier
C Alternate Array Specifier
D Control Command Specifier
E Reserved
F I/O Command Structor

2-41

HONEYWELL PROPRIETARY - SENSITIVE

2.6.1.1

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

Device Identifier structor

This structor is used to specify the logical device to be
used in the peripheral operation. It is formatted as
shown in Figure 2-40.

(II/ IOfl O~ p",.", ~"II ~1I1&d' l~~,e.~~l~ ?~~A"
o .J 'f 7t ID II' ~:J "f JI .) 2.. .J9 yo ~7 ~t

2.6.1.2

FIGURE 2-40. DEVICE IDENTIFIER STRUCTOR

The eight-bit device and l3-bit data path fields define
a device and routing information. The eight-bit Function
Mask and l6-bit Logical Mask fields, which are used in pro­
tection are explained in Section IX.

Alternate Array Specifier Structor

This structor will point to an array of I/O Command
structors. It is to be used as the A operand in certain
types of Initiate Device Operation Order. Its formats
is shown in Figure 2.41,

FIGURE 2-41. ALTERNATE ARRAY SPECIFIER

The 24-bit LOCATION field points to the first double
word of an I/O Command Array, whose extent is specified
in the EXTENT field.

This structor is used in the IDO order to initiate I/O
operations on a busy device. Its application is
further explained in Section X.

2-42
HONEYWELL PROPRIETARY - SENSITIVE

2.6.1.3

2.6.1.4

HONEYWELL PROPRIETARY - SENSITIVE

Ilo Control Command Specifier

The I/O command defines a control operation. It is to be
used as the A operand in the IDa instruction which speci­
fies the execution of a single control command. Its
format is shown in Figure 2-42.

FIGURE 2-42. I/O CONTROL COMMAND SPECIFIER

It is similar to the implicit-length structor with the
exception that the extent field is all zeros (it points
to a single command).

I/O Command Structor

The elementary I/O operations in a chain of peripheral
commands is specified by a member of an array of I/O
Command Structors. These structors are formatted as shown
in Figure 2-43.

FIGURE 2-43. I/O COMMAND STRUCTOR

The 24-bit LOCATION field will specify a byte in main
storage, where the data transfer will start. The 16-bit
LENGTH field specifies the number of bytes to be trans­
ferred (up to 65,535 bytes). The Transfer Variant and
Device Command Code specifies the function or operation
to the performed, as well as information concerning the
monitoring and sequencing of commands. The contents of
those fields will be specified in Section X.

2-43
HONEYWELL PROPRIETARY - SENSITIVE

2.6.2

2.6.3

HONEYWELL PROPRIETARY - SENSITIVE

Device Specification Table

This table, whose initial address is in the System Base
and contains an entry per physical device attached to the
system, is formatted as shown in Figure 2-44.

~"A(,S
A~/)~~,~~" 00lC' ,-M "" S 1=&;.-12... ':"':J~ I'<A-.
C.OM t\I\ 1'11' /) /~/(At' Y ~Arq' r.5rA!:nJ> -

?/

FIGURE 2-44. DEVICE SPECIFICATION TABLE FORMAT

It will contain the pertinent device status information,
which is needed to effect the necessary protection and the
allocation of the peripheral device, during extraction and
execution of an IDO instruction. The eight-bit Flags
field will be used by the central processor in determining
the feasibility of execution of the order being extracted.
A 24-bit field, the Address of the Command Array, points
to the initial location of the Command Array currently
active in the device. The device's current transfer rate
is included in a l6-bit field. The l6-bit logical status
will specify which logical device is currently assigned to
the physical device. It is to be used with the logical
mask of the device identifier structor as described in
Section X.

Traffic Registers

This table, with an entry per system resource in which an
overrun can occur, and an additional entry for the whole
system is formatted as shown in Figure 2-45.

~.v \ /:':.104 ? 1ft IIIf iC I"" tJ M

r~~/V$~~~ ~",r'" "'~4I'-1sr~~ '<Ar('"~
~a IS 1',. J I
le,___ '. ".' ... _"<"«>'"_,, .. __ ~

FIGURE 2-45. TRAFFIC REGISTER FORMAT

2-44
HONEYWELL PROPRIETARY - SENSITIVE

2.6.5

2.7

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

The transfer rate is measured in units, each unit being
64 transfers/second (i.e., the maximum representable number
is 4,194,304 transfers/sec.). During transfer rate allo­
cation (in the extraction of an IDO order), the traffic
registers will be tested in order to anticipate a po­
tential overrun situation.

Simultaneity Table

This table is used during the extraction of the IDO order
to check for busy status of a resource with a fixed level
of simultaneity. The table will be composed of an entry
for each one of those resources. The contents of the
entry will be the number of I/O operations currently being
simultaneously executed.

Input/Output Status Word

The Input/Output Status Word (IOSW) is used in conjunction
with I/O initiated starts. It contains the reason and the
parameters associated with an I/O start. It is formatted
as shown in Figure 2-46.

~ ? t I$I/. ~~ :I) Lf rk)a.. J) ~
+ LQtJA'lh~
L-.. .s/~NAL. Co~~
FIGURE 2-46. IOSW FORMAT

Further specification of the IOSW is provided in Section IX. I
INSTRUCTION FORMATS

Instructions are two, four, or six bytes in length and must
be aligned on halfword boundaries. The operation to be
performed is specified by an eight-bit operation code field,
the encoding of which also specifies the particular format
that is applicable to the instruction. The two operands

2-45
HONEYWELL PROPRIETARY - SENSITIVE

2.7.2.1

HONEYWELL PROPRIETARY - SENSITIVE

of the instruction, which are called the A and B operands,
are identif~ed by one of several forms of operand' spec­
ification. The forms of operand specification relevant to
a particular instruction are characteristics of the in­
struction format. The formats included are discussed
below. The encoding of the operation code field is specified
in Appendix B.

Operand Specification Syllables

The operands of instructions are specified by instruction
subfields called syllables. The available forms of
syllables are considered in succeeding subsections.

2.7.2.1.1 R - Syllable

The R - Syllable consists of a 4-bit field that is inter­
preted as a general register address or as control in­
formation. (See Figure 2~47). When interpreted as a
general register address, the field selects one of sixteen
general purpose registers as the source or destination
of an operand. If interpreted as control information, the
field is utilized in a manner dependent upon the particular
operation being performed.

2.7.2.1.2 S -Syllable

The S - Syllable consists of a 4-bit field, called the base
register address, a 4-bit field, called the index register
address, and a 12-bit immediate selection value field.
(See Figure 2-48 1). The two register address fields are
interpreted as general register addresses, selecting one of
fifteen general purpose registers, unless the field con­
tains a hexadecimal zero, which selects no general register.
The immediate selection value field is interpreted as a
twos complement binary integer in the range ,-2048 to
+2047. The source or destination of the operand specified
by the S .. - Syllable is determined by combination of the
selected general register contents and the immediate
selection value.

2-46
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
'1.-16-70

o
~"---- ~~r;.I.$ 'rIA. IfliOIf'~S

FIGURE 2-47. R - SYLLABLE

I I I
y V '4"-

t t ... ___ -___ I"""'i!/;y""~ J~'~t:.r;'N V"'<'''~
- 1;f,I~JC ~~/~;£~ ~~

..... ------- B4s~ ~£,'_S,~~ "'/}~4's.s

FIGURE 2-48. S - SYLLABLE

I I
+- !J .. l ___ ,,!,",", ~"47";v~ j)1.si#'-Ac.e.-M.i'Nr

.'---------, TVA: c4b~ - /N/)n'

FIGURE 2-49. D - SYLLABLE

2-47
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

2.7.2.1.3 TI - Syllable

The TI - Syllable consists of a 4-bit field, called the
typecode-index field, and a 16-bit field, called the rela­
tive-displacment field. (See Figure 2-49). The typecode­
index field is interpreted as either: 1) a general regis­
ter address, which selects one of fifteen general purpose
registers, unless the field contains a hexadecimal zero,
which selects no general register, or 2) a typecode,
which is used to ascribe certain attributes to the assoc­
iated operand. The relative-displacement field is inter­
preted as a twos complement binary integer.

2.7.2.1.4 V - Syllable

The V - Syllable consists of a 24-bit field that is inter­
preted as control information. The specific interpretation
of this information depends on the particular operation being
performed.

2.7.2.2 Instruction Encoding

Conceptually, an instruction consists of a sequence of
operation and operand specification syllables. Instruction
encoding, however, differs slightly from a linear con­
catenation of syllables.

The first byte of an instruction is the operation syllable,
which contains an encoding of the operation specified, and
of the instruction format, as specified in Appendix B.
The second byte of an instruction always consists of a
pair of 4-bit fields that normally contain an encoding
of a general register address or control information. For
instruction formats containing S-, TI-, or V-Syllables, the
remaining one or two halfwords are formatted as either a
concatenated 4-bit index register address and l2-bit im­
mediate selection value or a l6-bit binary value.

The available instruction formats, presented in both con­
ceptual and actual forms, are shown in Figure 2-50.

2-48

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

Instructions are required to be halfword boundary aligned.

Format/Bit Length/Conceptual Syllable Sequence

RR/16 bits/Op, R, R

IOPCODE I BA I BB I
844

RS/32 bits/Op, R, S

I OPCODE I BA I BB I
8 4 4

SR/32 bits/ Op, S, R

I OPCODE I BA BB I
8 4 4

SS/48 bits/Op, S, S

IOPCODE I BA I BB
8 4 4

RD/32 bits/Op, D, R

IOPCODE I TI~ RBI
8 4 4

CV/32 bits/Op, V

10PCODE CONTROL
8 24

IB ISVB
4 12

IA ISVA
4 12

IA ISVA IB ISVB
4 12 4 12

RDA
16

FIGURE 2-50. INSTRUCTION FORMATS

(In Figure 2-50, BX, IX, ISVX, TIX, and RDxare abbrev­
iations for base register, index register, immediate sel­
ection value, typecode-index, and relative displacement for
the X-operand.)

--END OF SECTION--

2-49

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

SECTION III
SELECTION PRIMITIVES

3.1 GENERAL

The selection-primitives are a set of four operations that

can be utilized in the process of selecting operands for

instructions. These primitives are performed with one or

two tagged quantities provided as inputs, one of which is

always a data structor that serves as an operand description.

The four primitives are: Autofetch/Autostore Conversion,

Autofetch/Autostore Evaluation, ArrQY Indexing, and Unfor­

matted Region Qualification. These primitives are specified

in the following subsections and are utilized by operations

discussed in succeeding sections.

3.2 AUTOFETCH!AUTOSTORE CONVERSION

3.2.1

Autofetch/Autostore Conversion is a collection of operations

that are performed in order to transform operands from a com­

pact or tagged doubleword form into a tagged form and from

a tagged form into a compact or tagged doubleword form.

Autofetch Conversion requires a data structor as an input

and produces a tagged quantity as a result. Autostore Con­

version requires a data structor and a tagged quantity as

inputs. In either case, the type of Autofetch/Autostore

Conversion operation selected depends on the TYPE field of

the input data structor.

In the following discussion, the data structor used by Auto­

fetch/Autostore conversion is referred to as the operand

description, while the quantity fetched from or placed in

storage is called the operand.

Autofetch/Autostore Conversion for Bit Strings

The bit string operand is described by an explicit-length

specifier structor, the TYPE field of which indicates bit

string. The LOCATION field of this structor contains the

storage address of the byte within which the bit string

3-1

HONEYWELL PROPRIETARY - SENSITIVE

3.2.1
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

origihates.o The bit offset subfield of the POSITION fiel,

of the structor specifies the bit position of the first bit

of the bit string within the initial byte. The length sub­

field of the POSITION field of the structor indicates the

number of bits in the bit string. The alignment offset sub­

field of the POSITION field of the structor indicates the

desired offset of the bit string in the tagged logical word

created or used.

Autofetch conversion for bit strings involves the creation

of a tagged logical word. The value of the tagged logical

~ord consists of S zero bits, followed by the L bits of the

bit string, followed by 32-L-S zero bits, where S is the

alignment offset field value and L the length field value

from the bit string structor.

The bit string originates at bit offset F within the byte

addressed by the LOCATION field of the bit string structor

and occupies the succeeding L bits of storage. Autofetch

Conversion for bit strings is shown in Figure 3-18

~ ----- L --~

;:--.. //[).? /~I< / /,'
-- _ -_ A_ ~ . +- _ L~ __ _ _ I _

l__ _......_.._ _____ _
f

/!-

/

/

~----~~-

,,--

~ / ~ ,,,I -:
r-- -
I

I ~ 0J

I
I ,
I
L _____ _

/ / /1; /

/ ,I / / / J:j'
,I ,/ ,/ /'./ ...;

-_ I' _ / . _ ./ _ /.. / _ J ~ J ~

/
- ,L-. -----1

A()ro;e..E rc/:-' ()v1'~r / ~(J~:J _, "1"";;.;(' ' .r(",L~-).- .,'

FIGURE 3-1. BIT STRING AUTOFETCH/AUTOSTORE CONVERSION
\

3-2

HONEYWELL PROPRIETARY - SENSITIVE

3.2.2

HONEYWELL PROPRIETARY - SENSITIVE

Autostore Conversion for bit strings is accomplished by sub­

stitution of bits 32 + S to 32 + L + S of a tagged logical

word Autostore input into the bytes in storage containing the

bit string. The bit string originates at bit offset F with­

in the byte addressed by the LOCATION field of the structor

and occuples the next L DltS of storage. If L + S is

greater than 32, right truncation occurs. An attempt to

perform Autostore Conversion with other than a tagged logical

word input causes an operand selection exception trap (0104)

to be generated or masked. If the bit string is nonalterable

(TAG of operand description is hex 7), an attempt to perform

Autostore Conversion causes an operand selection exception

trap (UIU4) to be generated or masked. Autostore ConverSlon

for bit strings is shown in Figure 3-1.

Autofetch/Autostore Conversion time for bit strings depends

on the bit offset, length, and alignment offset of the bit

string. Byte alignment, byte multiple length, and no align­

ment offset produces the minimum Conversion time.

Autofetch/Autostore Conversion for Binary Strings

The binary string operand is described by an explicit-length

specifier structor, the TYPE field of which indicates binary

string. The LOCATION field of this structor contains the

storage address of the byte within which the binary string

originates. The bit offset subfield of the POSITION field

of the structor specifies the bit position of the first bit

of the binary string within the initial byte. The length

subfield of the POSITION field of the structor indicates the

number of bits in the binary string. The alignment offset

subfield of the POSITION field of the structor indicates the

desired offset of the binary string in the tagged binary in­

teger created or used.

Autofetch Conversion for binary strings involves the creation

of a tagged binary integer. The value of the tagged binary

integer consists of S bits identical to the leftmost bit of

3-3

HONEYWELL PROPRIETARY - SENSITIVE

3.2.2
(Cont. '

HONEYWELL PROPRIETARY - SENSITIVE

binary string (sing bit), followed by the L bits of the

binary string, followed by 32-L-S zero bits, where L is the

length field value and S the alignment offset field value of

the binary string structor. If L + S is greater than 32, .~

rightmost bits are trucated. - -

kt-- s

FIGURE 3-2. BINARY STRING AUTOFETCH CONVERSION

The binary string originates at the bit offset F within the

byte addressed by the LOCATION field of the binary string

structor and occupies the succeeding L bits of storage.

Autofetch Conversion for binary strings is shown in Figure

3-2.

Autostore Conversion for binary strings is accomplished by sub­

stitution of bits 32+L to 32+L+S of a tagged binary integer

Autostore input into the bytes in storage containing the

binary string. The binary string originates at bit offset

F within the byte addressed by the LOCATION field of the

structor and occupies the next L bits of storage. If the

leftmost S bits of the tagged binary integer are not equal

to the bit 32 + S of the tagged binary integer, then an

to bit 32 + S of the tagged b1nary integer, then an

An attempt to perform Autostore Conversion with other than

a tagged binary integer input causes an operand selection

exception trap (0104) to be generated or masked. Finally,

3-4

HONEYWELL PROPRIETARY - SENSITIVE

3.2.2
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

if the binary string is nonalterable (TAG of operand des­

cription is hex 7), and attempt to perform Autostore Conver­

sion causes in an operand selection exception trap (9104) to be

generated or masked: Autostore Conversion for binary strings

is shown in Figure 3-3.

Autofetch/Autostore conversion time for binary strings de­

pends on the bit offset , length, and alignment offset of

the binary string. Byte alignment, byte multiple length,

and no alignment offset produces the minimum Conversion time.

This description of binary string Autofetch/Autostore Con­

version is consistent with the interpretation of binary

strings as twos complement binary integers of specified pre­

cision and scale.

[I ~ fY//~~~~rJ ~ _____ m_ --__ m ___ _
'". -

A l. L. &" ..-"".,5 1"1 ",-S'r
e~ ,;j~~·7. ~A'-

FIGURE 3-3. BINARY STRING AUTOSTORE CONVERSION

3-5

HONEYWELL PROPRIETARY - SENSITIVE

3.2.3

HONEYWELL PROPRIETARY - SENSITIVE

Autofetch/Autostore Conversion for Floating Point Strings

The floating point string operand is described by an explic­

it-length specifier structor, the TYPE field of which indi­

cates floating point string. The LOCATION field of this

structor contains the storage address of the byte at which

the floating point string originates, The length subfield

of the POSITION field of the structor indicates the number

cf bytes in the floating pOint string. The significance

truncation indicator in the POSITION field is used to con­

trol significance truncation when Autofetch/Autostore Con­

version for floating point strings is performed in signifi­

cance mode ..

Autofetch Conversion for floating point strings involves the

creation of a tagged hexadecimal floating point number.

This is achieved by concatenating the TAG for a tagged hexa­

decimal floating point number (hex 2) with the floating

point string and extending the string right with zeros until

the precisio~ of the mantissa is 13 digits. If the length

of the floating point string is 8 bytes, the rightmost hexa­

decimal digit is truncated.

When the significance mode indicator is set and the signifi­

cance truncation indicator in the operand description data

structor is reset, the mantissa formed above is shifted

right by a number of hexadecimal digit positions equal to

fifteen minus two times the length of the floating point

string in bytes. If the length of the floating point string

is eight bytes, no mantissa shift is performed. If the man­

tissa shift is performed, the number of digit positions

shifted is added to the exponent. If the exponent overflows,

an operand selection exception trap (0105) is shown in

Figure 3-4.

Autostore Conversion for hexadecimal floating point strings

is the inverse of the above process. If the significance

mode indicator is set, and the, significance trunction

3-6

HONEYWELL PROPRIETARY - SENSITIVE

3.2.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

indicator in the data structor is reset, the mantissa is

shifted left until its leftmost digit is nonzero or until

14 - (2*[L-l]) digit positions have been shifted. The num­

ber of positions shifted is subtracted from the exponent.

If the exponent under flows, an operand selection exception

trap (0104) is generated or masked.

Independent of the setting of the significance mode indica­

tor, the sign/exponent and leftmost L-l pairs of digits of

the mantissa are substituted into the byte addressed by the

LOCATION field of the operand description data structor and

the next L-l bytes to its right where L is the value of ~he

length subfield of the POSITION field of the structor. If

L is 8 then the rightmost digit of the rightmost byte is

zero. An attempt to perform Autostore Conversion with other

than a tagged hexadecimal floating point input causes an op­

erand selection exception trap (0104) to be generated or

masked.

When the floating point round mode indicator is set, a hexa­

decimal eight is added to digit position (2*[L-l]} + 1 of

the mantissa and hexadecimal zero to another digit positions

of the mantissa, where L is the floa~ing point string byte

length. This action is performed after the significance

shift step of Autostore Conversion. If L is 8, this step

is not performed.

If the floating point string is nonalterable (TAG of operand

description if hex 7), an attempt to perform Autostore Con­

version causes an operand selection exception trap to be

generated or masked.

Autostore Conversion for floating point strings is shown in

Figure 3-5.

Autofetch/Autostore Conversion time for floating point

strings depends on boundary alignment, byte length, and the

significance mode and significance truncation indicator

settings, and the round mode indicator setting.

3-7

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWEL~ PROPRIETARY - SENSITIVE

I
,-.' '-I M ,i/)v T /:5 .. s A

A~tofetch
O·..ltput:
Case I

Autofetch
Output:
Case II

FIGURE 3-4. FLOATING POINT STRING AUTOFETCH CONVERSION

I ---1--- --.-- --'---.. - ---.-.....
..2 ,,\, e ,,;; I /' d', ;, ,,'

_ -+.I..-J.L, _ - " . -, ""'--

,-; "'-:-J ..$..TV,,!:- jlVP""r
I --

L_, __ ',.-.

OJ i.'
..<: ~

~ ...
, .

-___ L_. ____ . ___ . ____ . __ _
-1 1-.--.- -. --_._-_.---

t - -1'9 ..)I)_? 7.~' /),"''>1, - 1<.,.> ' .. " .I[~":"~, (t.-I)-I.,:. I ...
Q o,c ;'11.t11V :iJ", >~ A -I.=-- ,,'1'\ tt((Jut.;i.. ~c;;)o,-.o:' 'j

"

---~ .. - ¥.~

I Autostore
I Input

_ J

:,,;~.,~ I" " I"~/' '. ,,' /'v" (..),".,: /. ,'f " / ••) ,<;, "'" .. ,,,,/l '. "

"'I.'"

FIGURE 3-5. FLOATING POINT STRING AUTOSTORE QONVERSION

3-8

HONEYWELL PROPRIETARY - SENSITIVE

3.2.4

3.2.5

HONEYWELL PROPRIETARY - SENSITIVE

Autofetch/Autostore Conversion for Tagged Doublewords

The tagged doub1eword operand is described by an imp1icit­

length structor with a TYPE field specifying tagged doub1e­

word and a LOCATION field identifying the storage address

of a tagged doubleword. Any tagged quantity may be re­

trieved or stored into this tagged doubleword operand.

Autofetch Conversion for tagged doublewords consists of

forming a tagged quantity identical to the contents of the

eight consecutive bytes of storage originating at the byte

addressed by the LOCATION field of the tagged doubleword

structor. If the rightmost three bits of the LOCATION field

are not all zero, an operand selection exception trap (0105)

is generated or masked. Autofetch Conversion for tagged

doublewords is shown in Figure 3-6.

Autostore Conversion for tagged doublewords consists of

substituting a tagged input quantity into the eight con­

secutive bytes of storage originating at the byte addressed

by the LOCATION field of the tagged doubleword structor. If

the rightmost three bits of the LOCATION field are not all

zero, an operand selection exception trap (0104) is generated or

masked. When the tagged doubleword item is nonalterable

(TAG of operand description is 9 or B), an attempt to per­

form Autostore Conversion causes an operand selection ex­

ception trap (0103) to be generated or masked. Autostore

Conversion for tagged doublewords is shown in Figure 3-6.

Autofetch/Autostore Conversion for Ministructors

The ministructor operand is described by an implicit-length

structor with a TYPE field specifying ministructor and a

LOCATION field identifying the storage address of a mini­

structor.

Autofetch Conversion for ministructors consists of seversl

steps, starting with retrieval of the four consecutive bytes

of storage originating at the byte address specified by the

3-9

HONEYWELL PROPRIETARY - SENSITIVE

3.2.5
(Cont.)

HONEYWELL PROPRIETAR~ - SENSITIVE

-----, -l--.--~ ---- ----.--.-.. ----.-- -.­
/// ;.

. .~ • .l __ ._~.

,~1; . ~ ,

FIGURE 3-6. TAGGED DOUBLEWORD AUTOFETCH/AUTOSTORE CONVERSION

structor LOCATION field that contain the ministructor oper-

and. If the rightmost two bits of the structor LOCATION

field are not both zero, an operand selection exception trap

10105) _structor identify it as either a singular, dual, array, or

structor identify it as either a singular, dual, array, or

string class ministructor. The next bit in the ministructor

identifies the modifier/specifier and baselink/datalink

forms. The next bit specifies the alterability attribute

associated with the ministructor, and the next four bits

constitute a typecode field.- These leftmost eight bits of

the ministructor control the formation of the structor that

is output. The following steps describe the process for

constructing the ministructor-equivalent structor:

a. The third and fourth bits of the ministructor (modifier/

specifier or baselink/dat,alink and alterability indica­

tors) become the rightmost two bits of the TAG field

of the structor.

3-10

HONEYWELL PROPRIETARY - SENSITIVE

3.2.5
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

b. When the classifier field indicates a singular or dual

ministructor, the LOCATION field of the structor has

the same value as the ministructor location field.

c. When the classifier field indicates an array or string

ministructor, then depending on the value of the third

bit of the ministructor (modifier/specifier or baselink/

datalink'indicator), the LOCATION field of the structor

is formed as follows:i)If the third bit is reset (modi­

fier, baselink), then the structor LOCATION field equals

the value of the relative displacement field of the

ministructor.

ii) If the third bit is set (specifier, datalink) , then the

structor LOCATION field equals the value of the mini­

structor relative displacement field plus the value of

the LOCATION field of the operand description structor.

The latter contains the byte address of the ministructor.

d. When the classifier field indicates a singular, dual,

or array ministructor, the typecode field of the mini­

structor is used to form the first two bits of the TAG

field, the TYPE field, and the POSITION field of the

output structor in accordance with Table 2-4.

e. The structor EXTENT field is set to zero, one, the value

of the ministructor extent field, or zero, depending on

whether the classifier field indicates a singular, dual,

array, or'string'ministructor, respectively.

f. When the classifier field indicates a string ministruc­

tor, the leftmost two bits of the structor TAG field are

set to indicate an explicit-length structor. The struc­

tor TYPE field equals the ministructor typecode field,

and the typecode field value is used to control forma­

tion of the output structor POSITION field. In partic­

ular, if the typecode indicates- bit, or binary string

(values 0 ~nd 1), then the position field of the mini­

structor becomes the leftmost eight bits of the struc­

tor POSITION field, and the rightmost eight bits of the

structor POSITION field are set to zero.
3-11

HONEYWELL PROPRIETARY - SENSITIVE

3.2.5
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

If the type ·code indicates floating point string, or packed]

or zoned signed or unsigned decimal string (values 2, 4,

5, 6, 7,), then the structor POSITION field consists of

four zero bits, followed by the leftmost four bits of the

ministructor position field, followed by four zero bits,

followed by the rightmost four bits of the ministructor

position field. Finally, if the typecode indicates byte

or translated byte string or unformatted region, then

the ministructor position field becomes the rightmost

eight bits of the structor POSITION field, and the left­

most eight bits of the POSITION field are set to zero.

The Autofetch Conversion process for ministructors is shown

in Figure 3-7.

Autostore Conversion for ministructors is also a multistep

process, consisting of storage of a ministructor in the four

consecutive bytes of storage originating at the byte address

specified by the structor LOCATION field. If the rightmost

two bits of the structor LOCATION field are not both zero,

an operand selection exception trap (0104) is generated or

masked. An attempt to perform Autostore Conversion into a

nonalterable ministructor operand causes an operand selec­

tion exception trap (0103) to be generated or masked.

The steps performed in Autostore Conversion are controlled

by various fields in the tagged quantity provided as Auto­

store input. These steps are specified as follows:

a. The TAG field of the Autostore input must indicate a

structor (TAG values hex 4 tp B). If not, then an oper~

and selection exception trap (0104) is generated or

masked.

b. If the TAG field indicates an implicit-length structor,

th~n the following steps are performed.

i. When the EXTENT field is zero or one, the mini­

structor consists of a classifier value 00 (singular)

or 01 (dual), baselink/datalink and alterability

indicators identical to the input structor indica-

3-12

HONEYWELL PROPRIETARY - SENSITIVE

3.2.5
(Cant.)

I
I

HONEYWELL PROPRIETARY - SENSITIVE

operand

/mu IrY~~I __ j /"c;,), - ...;/.; li 0 (I)
-_.-- ---.----- - .. ------_.---------- -_ .. --_. ----

a. SINGULAR, DUAL MINISTRUCTORS

[IL-~ ____ r--- OPc~Ah~
\r --.-,~'\ .. ~,,,.-j

;: :: ;/~~:~~-:~} -= _~:: __ .--::"_c:± ~ ..
r~: :~~I-~f ~/;/v ~

t4uTojt:"e;-~:H .Jur/"'7 / Av,rtJ.s7a~ /N/Ovr

b. ARRA Y, STRING MINISTRUCTORS

FIGURE 3-7. MINISTRUCTOR AUTOFETCH/AUTOSTORE CONVERSION

3-13

HONEYWELL PROPRIETARY - SENSITIVE

3.2.5
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

tors, a type.code field formed as specified below,

and a location field value identical to the LOCATION

field in the input structor.

ii. If the EXTENT field is not zero or one, but is less

255, the ministructor consists of a classifier

value 10 (array), baselink/datalink and alterability

indicators identical to the input structor indica­

tors, a typecode field formed as specified below,

and an extent field set equal to the value of the

EXTENT field of the input structor. The relative

displacement field of the array ministructor is com­

puted as follows. If the TAG field indicates a base­

link structor, and if the value of the structor

LOCATION field is less than 65,536, then the mini­

structor relative displacement field is assigned

this value. If the TAG field indicates a datalink

structor, and if the difference between the oper-

and description structor LOCATION field and the. in­

put structor LOCATION field is less than 65,536,

then the ministructor relative displacement field

is assigned the value of the difference.

The typecode field of the ministructor is set to 0, if

the TYPE field of the input structor indicates tagged

doubleword (TYPE value 0), or is set to 1, if the TYPE

field indicates ministructor (TYPE value 3). If the

constraints specified cannot be satisfied, an operand

selection exception trap (0104) is generated or masked.

c. If the TAG field indicates an explicit-length structor,

the following steps are performed.

i. If the TYPE field indicates bit, or binary

string, and if the rightmost byte of the POSITION

field "is zero, a string ministructor is form-

ed with modifier/specifier and alterability in­

dicators identical to the input structor indica-

3-14

HONEYWELL PROPRIETARY - SENSITIVE

3.2.5
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE
11~26-69

tors, a typecode field identical to the TYPE field

of the input structor, and a position field equal

to the leftmost byte of the POSITION field of the

input structor.

ii~ If the TYPE field indicates floating point string or

zoned or packed, signed or unsigned decimal string,

and if bits 0-3 and 8-11 of the POSITION field of the

structor are all zero, a string ministructor is form­

ed with modifier/specifier and alterability indica­

tors identical to the input structor indicators, a

typecode field identical to the TYPE field of the in­

put structor and a position field composed of bits 4-7

followed by bits 12-15 of the structor POSITION field.

iii. If the TYPE field indicates byte or translated byte

string or unformatted region, and if the leftmost

byte of the structor position field is zero, a

string ministructor is formed with modifier/specifier

and alterability indicators identical to the input

structor indicators, a typecode field identical to

the TYPE field of the input structor, and a posi­

tion field equal to the rightmost byte of the

structor POSITION field.

The relative displacement field of the string ministruc­

tor is computed as follows. If the TAG field indicates

a modifier structor, and if the value of the structor

location field is less than 65,536, then the ministruc­

tor relative displacement field is assigned this value.

If the TAG field indicates a specifier structor, and if

the difference between the operand description structor

LOCATION field and the input structor location field is

less than 65,536, then the ministructor relative dis­

placement field is assigned the value of the difference.

If the constraints specified cannot be satisfied, an

operand selection exception trap (0104) is generated

or masked.

3-15

HONEYWELL PROPRIETARY - SENSITIVE

3.3

HONEYWELL PROPRIETARY - SENSITIVE

Whenever a ministructor cannot be produced by any of the

above steps, an operand selection exception trap (0104)

is generated or masked. Autostore Conversion for ministruc­

tors is shown in Figure 3-7.

Note that it is not always possible to perform Autofetch

Conversion for a ministructor and then subesquently perform

Autostore Conversion for the resulting structor.

AUTOFETCH!AUTOSTORE EVALUATION

Autofetch/Autostore Evaluation consists of a procedure for

computing a structor value by means of indirection through

a chain of data structors. Autofetch Evaluation must be

supplied with a tagged quantity as an input and produces a

tagged quantity as an output. Auto store evaluation must be

supplied with two tagged input quantities. Items in the in­

direction chain must be data structors or ministructors, ex­

cept the final item may be any tagged quantity. The maximum

number of items in an indirection chain is sixteen. This

limitations guarantees that the Autofetch/Autostore Evalua­

tion process will terminate in a finite number of steps.

The steps describing Autofetch Evaluation are specified be­

low. These steps must be performed in the order specified.

The steps are defined in terms of an indirection count,

which is used to record the number of indirection steps

performed, and an old and current tagged value, used as

working locations and initialized to zero. Autofetch Eval­

uation is provided with a tagged input value, and produces

a tagged output value. The steps defining Autofetch Evalua­

tion are a follows:

a. The tagged input quantity becomes the current tagged

value, and the indirection count is set to zero.

b. The TAG field of the current tagged value is used to

select an action to be performed, as specified in Table

3-1. If Autofetch Evaluation is terminated, no further

3-16
HONEYWELL PROPRIETARY - SENSITIVE

3.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

steps are performed, and the current tagged value is

the output of Autofetch Evaluation. If it is not termi­

nated"step c. is performed.

c. Increment the indirection count by one. If it is equal

to sixteen, an operand selection exception trap (0106)

is generated or masked. Otherwise, go to step b.

Step c. is only performed in the case where the current tag­

ged value is an implicit-length datalink structor~ This

structor is used to indirectly access operands.

The steps for performing Autostore Evaluation are similar to

those for Autofetch Evaluation. Autostore Evaluation may

be applied in conjunction with Autofetch Evaluation or in­

dependently. If both Autofetch and Autostore Evaluation

apply to an operand of an instruction, then Autostore Eval­

uation consists only of the action of storing a quantity

in the location from which the same operand was retrieved

by Autofetch Evaluation. The following two rules apply in

this case:

a. If the quantity output by Autofetch Evaluation was re­

trieved from a general register, then Autostore Evalua­

tion consists of restoring the result to the same gener­

al register.

b. If the quantity output by Autofetch Evaluation was re­

trieved from storage, then Autostore Evaluation consists

of utilizing the data structor in the old tagged value

generated by Autofetch Evaluation to perform Autostore

Conversion the input quanitiy. The form of Autostore

Conversion selected depends on the TAG and TYPE fields

of the old tagged value data structor.

When only Autostore Evaluation is applied to an instruction

operand, Autostore Evaluation consists of the steps pre­

sented below. The steps are defined in terms of an indirec­

tion count, which is used to record the number of indirec~

tion steps performed, and an old and current tagged value,

3-17

HONEYWELL PROPRIETARY - SENSITIVE

3.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

used as working locations and initialized to zero. Auto­

store Evaluation is provided with a taggeq input value

which may serve as an operand description. The steps de­

fining Autostore Evaluation are as follows:

a. The tagged operand description quantity becomes the

current tagged value, and the indirection count is set

to zero.

b. The TAG field of the current tagged value is used to

select an action to be performed, as specified in Table

3-2.

c. If the indirection count is zero, the current tagged

value must have been retrieved from a general register,

and the Autostore input is placed in this general regis­

ter. Autostore Evaluation terminates.

d. If the indirection count is nonzero, and if the current

tagged value is produced by action B in Table 3-2, then

the old tagged value is used as an operand description

to restore the result of an instruction execution. If

the TAG and TYPE fields indicate bit, binary, or float­

ing point string, or an implicit-length type, then the

result is restored using the corresponding form of

Autostore Conversion. Other TAG and TYPE field combina­

tions result in using the old tagged value to restore

byte sequence results during instruction execution.

Autofetch Evaluation terminates.

e. If the indirection count is nonzero, and if the current

tagged value is produced by action C in Table 3-2, then

the indirection count is incremented by one. If it is

equal to sixteen, an operand selection exception trap is

generated or masked. Otherwise, go to step b.

Restoration of results of instruction execution takes place

during instruction execution.

3-18

HONEYWELL PROPRIETARY - SENSITIVE

o
1

2

3

4

5

6

7

8

9

A

B

C-E

F

HONEYWELL PROPRIETARY - SENSITIVE

TABLE 3-1
AUTOFETCH EVALUATION ACTIONS

Tagged Logical Word

Tagged Binary Integer

Tagged Hexadecimal Floating Point Number

Unassigned

Explicit, Modifier, Alterable Structor

Explicit, Modifier, Nonalterable Structor

Explicit, Specifier, Alterable Structor

Explicit, Specifier, Nonalterable Structor

Implicit, Baselink Structor

Implicit, Baselink Structor

Implicit, Datalink, Alterable Structor

Implicit, Datalink, Nonalterable Structor

Unassigned

System Control Structor

ACTION*

A

A

A

E

A

A

B

B

A

A

C

C

E

D

*The actions performed are as follows:

A- The current tagged value is the output of Autofetch Evaluation.
Autofetch Evaluation is terminated.

B- The current tagged value is an explicit-length specifier struc­
tor. The TYPE field of this structor is examined to determin
the appropriate action. If the TYPE field indicates bit, binary,
or floating point string, (TYPE values 0, 1, 2)"then bit, bin­
ary, or floating point string Autofetch Conversion is performed,
using the current tagged value as an operand description. (See
Subsection 3.2.) The Autofetch Conversion output then becomes
the current tagged value. If the TYPE field indicates some
other explicit-length type, then the current tagged value remains
unaltered. In either case, Autofetch Evaluation is terminated.

C- The current tagged value is an implicit-length datalink structor.
The TYPE field of this structor is examined to determine the ap­
propriate action. If the TYPE field indicates tagged doubleword,
tagged doubleword - LIFO access, tagged doubleword - FIFO access,
or ministructor (TYPE values 0, 1, 2, 3~, then the corresponding
form of Autofetch Conversionis performed, using the current tag­
ged value as operand description. (See Subsection 3.2.) The
Autofetch Conversion output then. becomes the current tagged

3-19

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

value. The next step is then performed. Any other TYPE field
value causes an operand selection exception trap (0106) to be gen­
erated or masked. The operand description for Autofetch Conver­
sion is preserved as the old tagged value.

D- The current tagged value is a system control structor. The TYPE
field of this structor is examined to determine the appropriate
action. If the TYPE field indicates relative procedure index
(TYPE value 1), then the LOCATION field of the old tagged value
(see C- above) is added to the LOCATION field of this relative
procedure index, and its TYPE field is set to procedure index
(TYPE value 0). This modified quantity then becomes the current
tagged value. Other TYPE field values leave the current tagged
-value unaltered. In either case, Autofetch Evaluation is term­
inated.

E- An operand selection exception trap (0105) is generated or mask­
ed.

3-20

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

TABLE 3-2
AUTOSTORE EVALUATION ACTIONS

ACTION*

o
1

2

3

4

5

6

7

8

9

A

B

C-E

F

Tagged Logical Word

Tagged Binary Integer

Tagged Hexadecimal Floating Point Number

unassigned

Explicit, Modifier, Alterable Structor

Explicit, Modifier, Nonalterable Structor

Explicit, Specifier, Alterable Structor

Explicit, Specifier, Nonalterable Structor

Implicit, Baselink Structor

Implicit, Baselink Structor

Implicit, Datalink, Alterable Structor

Implicit, Datalink, Nonalterable Structor

Unassigned

System Control Structor

*The actions performed are as follows:

A

A

A

D

A

A

B

D

A

A

C

C

D

A

A- The current tagged value is the output of Autostore Evaluation.

B- The current tagged value is an explicit-length, specifier struc­
tor. The indirection count is incremented by one and the cur­
rent tagged value becomes the old tagged value.

C- The current tagged value is an implicit-length, datalink struc­
tor. The TYPE field of this structor is examined to determine
the appropriate action. If the TYPE field indicates tagged
doubleword, tagged doubleword-LIFO access, tagged doubleword
FIFO access. or rninistructor (TYPE values 0, 1, 2, 3), then the
corresponding form of Autofetch Conversion is performed, using
the current tagged value as operand description. (See Subsection
3.2) The Autofetch Conversion output then becomes the current
tagged value. The next step is then performed. Any other TYPE
field value causes an operand selection exception trap (0104) to
be generated or masked. The operand description for Autofetch
Conversion is preserved as the old tagged value.

D- An operand selection exception trap (0104) is generated or
masked.

3-21

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

3.4 ARRAY INDEXING

The Array Indexing operation computes a value consisting

of a data structor describing theitem in an array of

items with a specified index value. The array of items

is described by a base reference data structor, while

index value consists of a tagged logical word or a tagged

binary integer. The data structor resulting from the

Array Indexing operation is identical to the base reference

s'tructor, with the exception that its LOCATION, EXTENT,

and bit offset subfield of its POSITION Field (if appro­

priate) are altered. These fields are computed using

the following procedures:

a. The value of the tagged logical word or tagged binary

integer index value must be not less than zero and not

greater than the EXTENT field of the base reference

data structor. Otherwise, an operand selection ex­

ception trap (0100) is generated or masked.

b. The index value is multiplied by the item length speci­

fied by the base reference structor. For explicit­

length structors, the item length is contained in the

POSITION field of the base reference structor, as

specified in Table 3-3. For implicit-length structors,

the item length is determined by the TYPE field of

the base reference structor. This length is 8 bytes,

except for ministructors, which have a length of 4

bytes. The displacement value resulting from this

multiplication specifies the number of bits or bytes

the desired item is displaced from the location speci­

fied in the base reference structor.

c. If the displacement value specifies a bit displacement,

it is added to the value of the concatenated LOCATION

and bit offset fields of the base reference structor,

and the result becomes the value of the concatenated

LOCATION and bit offset fields of the data structor

resulting from the Array Indexing operation. When

3-22
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY- SENSITIVE

TABLE 3-3
ITEM LENGTH FIELD IN EXPLICIT-LENGTH STRUCTORS

BIT POSITIONS
IN DATA

TYPE NAME STRUCTOR INTERPRETATION

a Bit String 35 39 Number of bits in string*

1 Binary String 35 39 Number of bits in string*

2 F.P. String 37 - 39 Number of bytes in string**

3 Unassigned N. A.

4, Zoned Decimal
35 - 39 Number of bytes in string* String

5 Unsigned Zones 35 39 Nuinber of bytes in string* Decimal String -

6 Packed Decimal 35 39 Number of bytes in string*** String -

7 Unsigned Packed 35 39 Number of bytes in string*** Decimal String

8 Byte String 32 47 Number of bytes in string

9 Translated Byte 32 47 Number of bytes in string String

A Unformatted Region 32 - 47 Number of bytes in string

B Edit Control String N. A. N. A.

C-D Unassigned N. A. N. A.

E-F Software Assignable N. A. N. A.

*The code 00000 in the length field signifies a length of 32 bits or
bytes.

**The code 000 in the length field signifies a length of 8 bytes.

***The code 0000 in the length field signifies a length of 16 bytes.

3-23

HONEYWELL PROPRIETARY - SENSITIVE

3.4
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

the displacement value specifies a byte displacement,

it is added to the value of the LOCATION field of the

base reference structor, and the result becomes the

value of the LOCATION field of the data structor re­

sulting from the Array Indexing operation. In either

case, the LOCATION field specifies the byte containing

the leftmost bit of the item with the desired index

value.

d~ The EXTENT field of the result structor is set to zero.

A data structor with the above characteristics is generated

as a result of the Array Indexing operation. Figure 3-8

shows the steps performed by the Array Indexing operation.

,..----_._- --- - -------- ---- ---- -

o I
(I) I

__ _ ,_ l ____ _

----- -- - -T- --- --
I V~ i v':

__ . _____ 1 ____ -_, ,
-... "' -.. -------......,r-­

I"N/)$X
VAl..v~

L ... -- -.,. '''''--_ .. -__ .. _ ... ,_ .. _-.--...

I ,--- ,-,'

/i?VI. • .-; I/:'~, ':"':,.-'
a' y :... ~- /'t i,J' ,-,~

------- ----

--------------11----- - --- ---------- r- .-- .-- ~

! I
___ L-- __ 1. . _______ - -____ -_ ... ____________ -o.

FIGURE 3-8. ARRAY INDEXING OPERATION

3-24
HONEYWELL PROPRIETARY - SENSITIVE

I 8,!s~.. ._
, ;::'<:::: r.:i<'.:;:.NC ... ~

V,qL<I(:-

I /(~~'--")i..,<I"
~t'~4 ~v--

HONEYWELL PROPRIETARY - SENSITIVE

1-16-70

3.50 UNFORMATTED REGION QUALIFICATION

The Unformatted Region Qualification operation computes

a value consisting of a data structor describing an item

with attributes identical to a given modifier structor,

called the qualitier, with the exception that the LOCATION

and TAG fields of the result structor are derived by

utilizing an unformatted region structor. The data structor

resulting from the Unformatted Region Qualification opera­

tion is computed as follows:

a. The TAG field of the result structor is derived

from the TAG fields of the unformatted region and

qualifier structors. In particular, the result

structor is explicit-length, since the qualifier

structor is explicit-length. The result structor

is a modifier or specifier, depending on whether the

unformatted region structor is a modifier or speci­

fier, respectively. The result structor alterability

indicator is set (read-only) if either of the un­

formatted region or qualifier structor alterability

indicators is set.

b. The TYPE field of the result structor is identical

to the TYPE field of the qualifier structor.

c. The LOCATION field value of the qualifier structor

is added to the value of the LOCATION field of the

unformatted region structor, and the result becomes

the LOCATION field value of the result structor.

d. The POSITION field of the result structor is identical

to the POSITION field of the qualifier structor.

e. The EXTENT field of the result structor is zero.

In the process of computing the result structor, certain

checks are performed to insure that the result structor

describes an item within the unformatted region.

3-25
HONEYWELL PROPRIETARY - SENSITIVE

3.5
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

In the process of computing the result structor it is neces­

sary to insure that the result structor describes an item

within the unformatted region. This is done as follows:

a. The maximum byte displacement of the item is calculated.

For explicit length structors the item length is con­

tained in the POSITION field of the qualifier structor,

as specified in Table 3-3.

If the item length specifies a bit length, it is added

to the value of the concatenated LOCATION and bit offset

fields of the qualifier structor, and the result is de­

cremented by one to produce the maximum bit displacement.

The rightmost 3-bits of the maximum bit displacement are

then truncated to produce the maximum byte displacement.

When the item length specifies a byte displacement, it

is added to the value of the LOCATION field of the qual­

ifier structor, and the result is decremented by one to

produce the maximum byte displacement.

b. The maximum byte displacement is then compared with the

value of the POSITION (unformatted region length) field

of the unformatted region structor. If it is greater

than the POSITION field value, then an operand selection

exception trap (0102) is generated or masked.

If the above steps do not result in a trap, the result

structor computed by the previous set of steps is the result

of the Unformatted Region Qualification operation. Figure

3-9 shows the steps performed by the Unformatted Region

Qualification operation.

3-26

HONEYWELL PROPRIETARY - SENSITIVE

3.5
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

.. ,...----------------- ---------------

r

I i ,- - . - --
I _ i I ,,,,,,,I Ii :
2L ______ I ______________ _

LENGTH
I

-! - - - . ___ -- _______ --J

~---+-~----+-----------------i:-----------,

FIGURE 3-9. UNFORMATTED REGION QUALIFICATION OPERATION

--END OF SECTION--

3-27
HONEYWELL PROPRIETARY - SENSITIVE

1-16-70

----/

~£~
-,(~

VfN'd~~4rncp
ttc fS-ld ,.J

S 7A!.c.Je;, 7"0 ~

4.1 GENERAL

HONEYWELL PROPRIETARY - SENSITIVE

SECTION IV
INSTRUCTION EXTRACTION

Instruction Extraction is the process of interpreting
an instruction format to determine the operation to be
performed and to select the operands to be utilized.

The operation syllable of an instruction identifies the
instruction format (instruction syllable sequence) for
each instruction. It also contains an encoding of the
operation to be performed. The operand specification
syllables of an instruction are used to determine the
attributes of operands to which the specified operation
is to be applied.

The process of Instruction Extraction consists of the
following steps. The input to Instruction Extraction
is the current procedure index in the TSB. The overall
process is shown in Figure 4-1.

a. The instruction location counter in the current
procedure index locates an operation syllable in
storage. This operation syllable is fetched and
decoded.

b. The instruction format appropriate to the instruction
is determined, and the operand syllable extraction
process applicable to the A operand is performed.
The operand syllable extraction processes are described
in succeeding subsections.

c. The operand syllable extraction process applicable
to the B operand is performed.

The result of performing Instruct~on Extraction is normally
an operation description and two operand description$,
called the initial A and initial B operands. In some
instructions, only one operand is required or a special

4-1

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY ~ SENSITIVE

interpretation is placed on an operand specification
syllable.

The instruction location counter is incremented by the
instruction format byte length after an instruction is
executed.

O~ERA:')I'"/dN'

S'lJ."-AB'-~

rt o,,c?(- /,t<',;.', i) 6 - o""~·,1";,<:J<,t·':'·1

..51''-1-14 p"".: 5y ;:.~~ 7R ... ~;:

FIGURE 4-1. INSTRUCTION EXTRACTION

4-2
HONEYWELL PROPRIETARY - SENSITIVE

"",I V /: ~ £,,/1,/./ '

/~..:; -:..,C:-{)(.IR£~
/NP.;..=)(

HONEYWELL PROPRIETARY - SENSITIVE

4.2 R-SYLLABLE EXTRACTION

The extraction sequence for R-Syllable Extraction consists
of selecting the general register specified in the R-Syllable
and using this register as the source or destination of
an operand or as the source of a structor describing an
operand in storage. If the R-Syllable is used to specify
the source of an operand, the initial operand formed by
R-Syllable extraction is a copy of the contents of the
selected general register. If the R-Syllable is used to
specify the destination of an operand, then one of the
following two cases applies:

a. When the contents of the selected general register
are an explicit-length, specifier structor or an
implicit-length, datalink structor and Autostore
Evaluation (see section 3.3) applies to the operand
described by the R-Syllable, Autostore Evaluation
restores the result of instruction execution to stor~ge.

b. In all other cases, the result of instruction exec­
ution is restored to the selected general register.

The formation of an initial operand by R-Syllable Extrac­
tion is shown in Figure 4-2.

~-
SYt.LA3l...~

GeNEJ(!.Al

--- ,tt!'u~(J5E --
ACG-IS re

--*

[,41.',-,' 14_ ()/>(!II':.,qA<';-- - - -----]

FIGURE 4-2. R-SYLLABLE EXTRACTION

4-3

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

4.3 S-SYLLABLE EXTRACTION

The extraction sequence for S-Syllable Extraction depends
on the values of the base register address field, index
register address field, and immediate selection value
field of the S-Syllable. (See Figure 4-3). When either
the base or index register address field is zero, the
field is not used to select a general register but is
used instead to perform a special type of operand selection.
The flow of S-Syllable Extraction is shown in Figure 4-4.

The S-Syllable Extraction process depends primarily on
the value of the base register address field If the
value of this field is zero, then the following steps are
performed:

a. If the index register address field is zero, then
the immediate selection value field, interpreted as
a twos complement number, is used to form a tagged
binary integer of equal value, which becomes the initial
operand generated by S-Syllable Extraction. This case
is shown in Figure 4-5.

b. If the index register address field is nonzero, then
the contents of the addressed general register are
examined. When the index register contains a tagged
logical word or a tagged binary integer, its value
is added to the immediate selection value, and

'------------.-.......... /NP€X /?e=(i/~Tf!:-/2,

-----------------·-"----........ 13A$c ~<:G--ISi-.::-,e

FIGURE 4-3. S-SYLLABLE FORMAT

4-4

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSIT~E

) (0/0:<)

FIGURE 4 -4 . S -SYLLABLE EXTRACTION

4-5

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

l3 /< /f N crt ;-:-1
/A.Jl)t: X ;(.'~(j~5 /c/.I

T-4G- ,c/EL,<.) V4':V ... ::-,'

(rAd'-~" .y-.2) I

..... -. --_- -______ ---1

~ Al)2J /,M/l1sl)74;-:::­
. .5,-::- £ c.. -.to,AJ v"i I. (.,/ .::-

?/.{<t,. : __ ~L I __ ~ 10 iI1tJE)" ,q~(,.15T.;::/. ~---_____ \ 8
/t-qiv":. 5 \.-Itvl /S ' --"~

Co",," /',..);': S~t£c..'?".;)Y
v,q~ U~_

7A~= .? 3, ~ ~.IC ,,----
~-- 4 £, ,c "-----~__.I T~,AP

r;".,' ".) r ~ j ,",It,~ ,-r
,,, ~I ~ '- u If? ? /,.'./V

J ;t:),"',_l, -....:~ ,"'';'',k' ,

~·VAr. ;,tp':' .¥,,,;

,'_ ,'1-"/)',' ~"

/lNY ,J-~,f~ ,-;<;Ir ~ 71f:"I1')

(o/,j:l..)

FIGURE 4-4. S-SYLLABLE EXTRACTION (Cont.)

4-6

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

I~
I

I
i

5£ T / ""IJ/£tE" C. 7/ oAi

Co vN/ fO ,cf""A?o

r--· J
! 13~/fIf}C# ON T~\..;- :
I

I H~'-,'~ .. ~/~, l3/-t~~,-
I A.:~' v: ~ /,
!
I

i U5~ ;T~vc..7~K I
:fA& ',~ f, 9 ,ro /J.;; ,..c./'~J/ 1 ,

~ __ ---4...~_"'." A/'/'~ .. JjtJ~.,A,,:'" ~
j .44"'r./.::::, '"t.,.,/ CON'-

I Vli./;'.;KO/V d!? :/":A;-: DA/ :

!

ST/2 - '-.:., J,.(',-'

IN c /;:e::- /1-'1 .;,;' /1/ ;'"

I /v tJ/ /! ... :::...: ""; -..);1./

vst:,O As .(C
/J,<fst: 1\/)'::;-, '-:t-"<:EA' ... ~

8 RA/l.! c~./ .: It

..-., _______ ,__ rA<r ur j

FIGURE 4-4. S-SYLLABLE EXTRACTION (Cant.)

4-7
HONEYWELL PROPRIETARY - SENSITIVE

",.----~
r'£;c ;::' I

-= Ire

J

I

I
! t1l" tf ~.

HONEYWELL PROPRIETARY - SENSITIVE

,
1...

8te-4NL. II ON :

rAG o/-' COoMA; =4'
Sc(.£C.7/4~ Ii

'v,4/ (;,E'

....... _. __ J

1 '/[5

I ..--__ .--Jt ___ _
--'.">"": /',r.­

j .:"'. ~ .~. A .:..- ." ,.1

v4l.uE (;)~ , "::' ..;:/M
~ If? ;e-r:.wC 1",,/\

..,I1\I/-,j/C/ir,;tJ . {,"'~

AtE (;/,vN :

:'jJA (. /,r. ~.~I."" J / . I
~ __ ~ ,.~ •• ~., ... __ ~.~_~ 4

--I
'- 'A .'~(i/('ft·,4 7';:-~!,")

FIGURE 4-4. S-SYLLABLE EXTRACTION (Cont.)

4-8
HONEYWELL PROPRIETARY - SENSITIVE

4.3
(cont.)

HONEYWELL PROPRIETARY - SENSITIVE

the result value is used to form the initial operand
derived from S-Syllable Extraction~ The initial
operand is a tagged binary integer. Unless the sum
is within the range of tagged binary integers, an
operand selection exception trap (0102) is generated or
masked. When the index register contains any other
tagged quantity, an operand selection exception trap
(0102) is generated or masked. This case is shown in
Figure 4-6.

The effect of these steps is to form an integer initial
operand value from a literal value in the S-Syllable or
from the sum of a literal value and the contents of a
specified general register.

When the base register address field is nonzero, the S­
Syllable Extraction process computes an initial operand
structor using the base register contents as a base
reference and the index register and immediate selection
value fields as a description of a computed selection
value. In this case, the extraction prooess proceeds
according to the following steps:

a. If the index register address field is zero, the
computed selection value is a tagged biniary integer
equal in value to the immediate selection value field.
This mode of extraction allows a known element of an
array to be specified as the operand.

b. If the index register address field is nonzero, the
action taken depends on the TAG field of the selected
general register. The possible actions are presented
in Table 4-2. These actions always result in either a
tagged logical word, tagged binary integer, or explicit­
length modifier structor that is used as a computed
selection value.

4-9

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

~L~.-l ... vi
i "

..........
,

, '".

"-
, , ,

"- ,
"- ,

"- "
1_I---I'---~;.7 ~~/;;as I ~I/ . ··-~r ~ ... -~ .. ~-~

FIGURE 4-5. LITERAL VALUE EXTRACTION

" ""V

I

"""'---1 G-2/lJ :;/~ ~.. ~...J/ I ") ~~.'
/!'£~/..>·71.:"" .

I
I L_

.-.. - _. .. / ~--
r/{cr .

FIGURE 4-6. MODIFIED LITERAL VALUE EXTRACTION

4-10

HONEYWE~L PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

c. The contents of the general register specified by
the base register address field of the S-Syllable
are examined. The action taken depends on the TAG
field of the general register as specified in Table
4-3. This action must result in either an explicit­
length structor or an implicit-length datalink structor
that is used as a base reference value.

d. If the computed selection value is a tagged binary
integer or tagged logical word, and if the base
reference value is a data structor, then these quan­
tities are used as index value and base reference
value, respectively, and the Array Indexing operation
(see Subsection 3.4) is performed. The result value
becomes the initial operand formed by S-Syllable Extrac­
tion.

e. If the computed selection value is an explicit-length
modifier structor, and if the base reference value
is an unformatted region structor, then these
quantities are used as qualifier and base reference
value, respectively, and the Unformatted Region
Qualification operation (see Subsection 3.5) is performed.
The result value becomes the initial operand formed
by S-Syllable Extraction.

The last two steps above allow utilization of the computed
selection value to derive the initial operand description
from the base reference structor.

4-11
HONEYWELL PROPRIETARY - SENSITIVE

TAG

o
1

2

3
4
5
6

7
8

9
A

B

C-E
F

HONEYWELL PROPRIETARY - SENSITIVE

TABLE 4-2
INDEX REGISTER DETERMINED AOTIONS

NAME

Tagged Logical Word
Tagged Binary Integer
Tagged Floating Point
Unassigned
Explicit, Modi£ier, Alterable Structor
Explicit, Modi£ier, Nonalterable Structor
Explicit, Speci£ier, Alterable Stru6tor
Explicit, Speci£ier, Nonalterable Structor
Implicit, Baselink Structor
Implicit, Baselink Structor
Implicit, Datalink, Alterable Structor
Implicit, Datalink, Nonalterable Structor
Unassigned
System Control, Structor

ACTION*

A

A

D

D

B

B

C

C

D

D

C

C

D

D

*The actions are speci£ied as £ollows:

A- The value of the tagged logical word or tagged binary
integer is added to the immediate selection value Tield
o£ the S-Syllable, and the result value is used to torm
a tagged binary integer of equal value~ which becomes
the computed selection value. This mode ot extraction
allows indexed operand selection. '

B- The explicit-length modifier structor becomes the
computed selection value, and the immediate seleotion
value £ield is not used. This mode of extraction
allows a general register contained modi£ier st~uctor
to be used for Unformatted Region Qualification (see
Subsection 3.5).' "

0- The explicit-length specifier or implicit-length
datalink structor is used as a base reference structor,
and the immediate selection value field of the S .. Syllable
is used to form a tagged binary integer index value.
These two quantities are used by the Array Indexing
operation (see Subsection 3.4) to comp~te a structor
result. The r~sult structor is then used as input to
Auto£etch Evaluation (see Section 3.3), which p~oduces

(Continued)
4-12

HONEYWELL PROPRIETARY ~ SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

(Table 4-2 cont.)

C­
(Cont.)

D-

TAG

o
1

2

)

4
5
6

7
8

9
A

B

C-E
F

a tagged quantity as a result. If the result is a
tagged logical word, tagged binary integer, or explicit­
length modifier structor, it becomes the computed
selection value. If the output is any other tagged
quantity, an operand selection exception trap ,(0102) i.s
~enerated or masked. This mode of S-Sy11able Extraction
allows the selection value to be Autofetched from storage.

An operand selection exception trap (0102) is generated
or masked.

TABLE 4-3
BASE REGISTER DETERMINED ACTIONS

NAME

Tagged Logical Word
Tagged Binary Integer
Tagged Floating Point
Unassigned
Explicit, Modifier, Alterable Structor
Explicit, Modifier, Nonalterable Structor
Explicit, Specifier, Alterable Structor
Explicit, Specifier, Nonalterable Structor
Implicit, Baselink Structor
Implicit, Baselink Structor
Implicit, Datalink, Alterable Structor
Implicit, Datalink, Nonalterable Structor
Unassigned
System Control Structor

ACTION*

C

C

C

C

A

A

A

A

B

B

A

A

C

C

*The actions are specified as follows:

A- The structor is used as the base reference quantity

B- The implicit-length, baselink structor is used as input
to the appropriate form of Autofetch Conversion (Sub­
section 3.2), which is selected by the structor TYPE
field. The output of Autofetch Conversion is a tagged

(Continued)

4-13

I

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

(Table 4-3 cont.) "

B­
(Cont.)

C-

4.4

quantity. The indirection count is incremented by one
If it is equal to sixteen, an operand selection
exception trap is generated or masked. Otherwise, the
TAG field of the Autofetch Conversion output is used to
select the next action to be performed in accordance with
table 4-3. This mode of S-Syllable extraction allows &
base reference value' to be' Autofetched "from' stora'ge.

An operand selection exception trap (0102) is generated or
masked.

D-SYLLABLE EXTRACTION

Two forms of extraction of the D-Syllable are defineq,
each form being associated with a particular class ot
operations. The appropriate form of extraction is
identified by the opcode field of the instruction. The
two primary classes of instructions are data manipu­
lation and branching instructions.

When the D-Syllable occurs in a data manipulation
instruction, the initial operand structor formed by
instruction extraction has the following attributes:

a. The TAG, TYPE, and POSITION fields of the initial
operand structor are determined by the typecode­
index field of the D-Syllable, as specified in
Table 4-4.

4-14
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

4.4 (Cont.) TABLE 4-4
D-SYLLABLE INITIAL OPERAND STRUCTOR ATTRIBUTES

TYPECODE
INDEX

o
1

2-7
8

9
A

B

C

D

E

F

TAG*

B

B

n.a.

7
7
7

7
7
7
7

7

TYPE

Tagged Doubleword (0)
Ministtuctbr (3)

n.a.
Bit String (0)

Bit String (0)

Bit String (0)

Binary String (1)
Binary String (1)
Binary String (1)
Hex.f.p. String (2)
Hex.f.p. String (2)

POSITION**

n.a.
n.a.
n.a.

B=O, L=8, A=O
B=O, L=16, A=O
B=O, L=32, A=O
B=O, L=8, A=24

B=O, L=16, A=16
B=O, L=32, A=O

L=4, s=o
L=8, S=O

*The values in the TAG field correspond to the following cases:
7 - explicit-length, specifier, nonalterable; B - implicit~
length, datalink, nonalterable.

**The following abbrSviations are used: B - bit offset, L -
,length, A - alignment offset, S - significance truncation.

b. Location field equal to the sum of the instruction
location counter plus the value of the relative­
displacement field of the instructuion. The instruc­
tion location counter value used is the location of
the opcode field of the instruction in which the
D-Syllable occurs.

c. The extent field is set to zero. This mode of
extraction allows certain quantities located a
fixed relative byte displacement from the instruction
location to be specified as an operand of the in­
struction. This case is shown in Figure 4-7.

4-15

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

~ '--....... _-'v""---) ,

I

/A/.5T~VCT/ON

.(.(J CA 7/0/v
(J{jN T€,I'{Z r

r-----~~

~'_~ ___ ~ ______ --~---.~~----------~I-P--O~/T/ON-·~I--O------~
INl'rlA £.

FIGURE 4-7. D-SYLLABLE EXTRACTION FOR
DATA MANIPULATION INSTRUC:IONS

4-16

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

4.4 (Cont.)

When the D-Syllable occurs in a branching instruction,
the typecode-index field and the relative-displacement
field are used to specify the branch destination, which
is always relative to the instruction location counter.
In this case, the initial operand is a procedure index
control structor identical to the current procedure index,
except the instruction location counter has the following
value:

a. If the typecode-index field is a hexadecimal zero,
the value equals the instruction location counter
value plus the relative-displacement field value,
the latter interpreted as a two's complement number.
The instruction location counter value used is the
location of the opcode field of the instruction in
which the D-Syllable occurs.

b. If the typecode-index field is non-zero, it is in­
terpreted as a general register address. In this
case, the contents of the selected general register
are extracted and tested. If this quantity is not
a tagged binary integer not less than zero or ~
tagged logical word, then an operand selection
exception trap (0102) is generated or masked. Other­
wise, the following actions take place:

i. The halfword at the location resulting from adding
the relative-displacement field to the instruction
location counter is extracted. This halfword
value ,is used as the EXTENT field of an explicit­
length specifier structor of type binary string.
The LOCATION field of this structor equals the
instruction location counter value plus the
relative displacement field value plus two. The
POSITION field describes binary strings with
zero bit offset, 16-bit length, and 16-bit

4-17

HONEYWELL PROPRIETARY - SENSITIVE

4.4 (Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

alignment offset.

ii. The tagged binary integer or tagged logical
word from the selected general register is used
to index the binary string array described by
the structor constructed in step i. This is
accomplished according to the rules for Array
Indexing as specified in Section 3.4.

iii. Autofetch Conversion (see Section 3.2) is applied
to the binary string structor produced by step
ii. This results in a tagged binary integer,
the value of which is treated as a new relative
displacement.

iv. ,The binary integer value derived in step iii is
added to the sum of the current instruction
location counter and the relative displacement
field of the instruction.

The value used as location field in the new procedure
index is the value computed in step iv.

This mode of extraction allows branching relative to the
instruction location counter or relative to a fixed
location in a procedure. If INDEX f 0, then the relative
displacement is selected from a table under control of
an index number in the general register specified by INDEX.
This case is shown in Figure 4-8.

In either case, the data or control structor formed by
D-Syllable Extraction becomes an initial operand of
the instruction in which the D-Syllable occurs.

4-18
HONEYWELL PROPRIETARY - SENSITIVE

GeNe'teA '-
1'1JA:,I"aSe
~~G.ISTe7<S

HONEYWELL PROPRIETARY - SENSITIVE

817'" S?~ /N <!­
sr~ G}"Q)A!

-~---~--~/:l-;:-/o---- l~a:1E,d ;;;~
A \/TQ;::-eT Te/l '" '" ~V,-

FIGURE 4-8. D-SYLLABLE EXTRACTION FOR BRANCING INSTRUCTIONS.

4-19

HONEYWELL PROPRIETARY - SENSITIVE

5.1 GENERAL

HONEYWELL PROPRIETARY - SENSITIVE

SECTION V

INSTRUCTIONS

Instructions are the primitive operations performed by

the processor. Instruction formats are specified in

Subsection 2.7 and are referenced in this section using

the mnemonics used in Subsection 2.7.

Every instruction is performed in two steps:

a. Instruction Extraction, which is specified in Section

IV, identifies the operation to be performed and the

operands to which the operation is applied.

b. Instruction Execution, which depends on the particular

operation applied, consists of the actions required

to perform the operation and restore a result, if

necessary.

This section discusses the second step classified in terms

of the operations available ••

The following subsections specify the instruction set,

which consists of Data Manipulation, General Register

Loading/Storing, Branching, Structor Manipulation, Task

Control, and Input/Output Control Instructions.

Each instruction is specified to operate on a defined set

of operand types. If the operand actually presented is not

one of the defined types, an illegal operand trap (0200)

is generated or is masked.

5.2 DATA MANIPULATION INSTRUCTIONS

The data manipulation instructions are used to perform

certain arithmetic and logical transformations on operand

values. In general, the type of transformation performed

depends on a function implied by the operation code and

on the data attributes associated with the operands. A

specific function can normally be applied to more than one

type of data representation. For example, the ADD function

5-1

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

can be applied to two's complement binary integers, hexa­

decimal floating point numbers, and decimal strings. The

type of operand used in a data manipulation instruction

is derived either from a tag appended to the data repre­

sentation or from a structor describing it.

Operations are defined in terms of compatible data types.

Two operands are considered to have compatible data types

if they both fall into the same class as listed below:

a. Tagged logical words and tagged binary integers.

b. Tagged floating point numbers.

c. Signed and unsigned zoned and packed decimal strings.

d. Byte and translated byte strings.

The high, low, equal, high-order truncation, low-order

truncation, and overflow indicators may be set by the

execution of a data manipulation instruction. These indi­

cators are always reset prior to the execution of a data

manipulation instruction. Furthermore, in any case where

a result operand is not alterable, an operand selection

exception trap (0103) is generated.

5.2.1 Add

Fo~mats: RR, RS, SR, SS, RD

The effective A operand is added to the effective B operand,

and the result replaces the B operand. The effective A and

B operands are both derived by applying Autofetch Evalua­

tion to both the initial A and B operands. The operand de­

scription from B operand Autofetch application is used to

replace the result. The type of addition performed de­

pends on the type of effective operands produced by Auto­

fetch Evaluation. The valid operand combinations are dis­

cussed below. The high, low, or equal condition indicator

is set, depending on the result of the ADD instruction

being positive, negative, or zero, respectively.

5-2

HONEYWELL PROPRIETARY - SENSITIVE

5.2.1.1 Binary Addition

If the effective A and B operands are either tagged logical

words or tagged binary integers in any cqmbination, the

value portions of these operands are treated as 32-bit

binary integers, and a binary addition is performed on these

values. The result value generated is used to form either

a tagged logical word or a tagged binary integer, de­

pending upon whether the effective B operand is a tagged

logical word or tagged binary integer, respectively. The

resulting tagged quantity is then restored to the effective

B operand location.

A binary addition is performed by taking bits of equal

weight (identical position) in the two 9perand values

and computing a result bit of equal weight according to

the following table:

A operand bit 0 0 0 0 1 1 1 1

B operand bit 0 0 1 1 0 0 1 1

Carry from last position 0 1 0 1 '0 1 0 1

Result bit 0 1 1 o 1 0 0 1- cs. c." ~

Carry to next position 0 0 0 1 0 1 1 1-- C..a rf1
The last position refers to the bit position of next lower

weight, and next position refers to the bit position of

next higher weight. The carry into the bit postion of

least weight is always zero.

The result of the binary addition is formed by performing

the following actions. The A and B operand values are

effectively extended to 33 bits, depending upon the type

of value:

a. If the operand is a tagged logical word, then the

leftmost bit of the extended value is set to O.

b. If the operand is a tagged binary integer, then the

leftmost bit of the extended value is identical to the

leftmost bit of the original operand value.

5-3

HONEYWELL PROPRIETARY - SENSITIVE

5.2.1.2

HONEYWELL PROPRIETARY - SENSITIVE

c. The remaining 32 bits of the extended value are ~ual

to the 32 corresponding bits of the original operand

value.

A binary addition is then performed on the two extended

operand values, generating a 33 bit result with a possible

carry from the leftmost bit position. If this carry and

the carry from the bit position of next lower weight

are not identical, an overflow occurs, and the overflow

condition indicator is set.

If the B operand is a tagged logical word, then the result

is used to form a tagged logical word. If the leftmost

bit of the extended result and the leftmost bit of the ex­

tended A operand are 1, then the result is not restored,

and an arithmetic exception'trap (0400) is generated. Other­

wise the value of the resulting tagged logical word is

equal to the rightmost 32 bits of the extended result.

If the B operand is a 'tagged binary integer, then the re­

sult is used to form a tagged binary integer. If the left­

most two bits of the extended result are not identical,

then the overflow condition indicator is set. The value

of the resulting tagged binary integer is equal to the

rightmost 32 bits of the extended result. If the overflow

condition indicator is set', an arithmetic exception trap

(0400) is generated or masked, depending on the arithmetic

exception trap mask indicator.

In either case, the high, low, or equal condition indicator

is set as a function of the result value being greater

than, less than or equal to zero.

Hexadecimal Floating Point Addition

If the effective A and B operands are tagged floating

point quantities, a hexadecimal floating point add is

performed. The result value is formed as a tagged floating

point quantity and restored to the effective B operand

location.

5-4

HONEYWELL PROPRIETARY - SENSITIVE

5.2.1.2
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

Hexadecimal floating point addition is described in the

following steps:

a. Step One - The mantissa of the operand with the smaller

exponent is shifted right by a number of digit posi­

tions equal to the difference between the larger and

smaller exponent. (The rightmost shifted 13 digits are

saved for the secondary result.)

b. Step Two - The aligned mantissae of A and B operands are

combined. A hexadecimal add of the two mantissae is

performed if the signs of the two operands are the

same. The result sign is the same as the operand

sign:

If the signs of the A and B operands differ, a hexa­

decimal subtract of the A from the B operand is per­

formed. The result will assume the sign of the A or

B operand, depending on which is the larger.

With the floating point round mode indicator set, a

hexadecimal eight is added to the digit position im­

mediately to the right of the rightmost operand digit

with the larger exponent.

When these operations result in a mantissa overflow,

the result mantissa is shifted right one hexadecimal

position and the exponent is increased by one. If

this results in an exponent overflow, an arithmetic

exception trap (0401) is generated or masked.

c. Step Three - The result is normalized. This step is

performed only if the significance mode indicator is

reset. Normalization consists of shifting the result's

mantissa left one digit at a time until the high order

digit is nonzero. The exponent is decreased by one

each time the mantissa is shifted. If this operation

causes the exponent to underflow, an arithmetic ex­

ception trap (0401) is generated or masked.

5-5

HONEYWELL PROPRIETARY - SENSITIVE

5.2.1.3

HONEYWELL PROPRIETARY - SENSITIVE

d. Step Four - The leftmost.60 bits (inciuding the

sign and exponent) of the result form" the primary re­

sult, and are stored in the B operand location. The

remaining digits of the result are the secondary re­

sult. With the secondary result mode indica~'or set,

the secondary result is stored as a tagged floating

point quantity in general purpose register zero.

The exponent of the seco~dary result is 13 less

than the exponent of the primary result. If

decreasing the primary result exponent by 13 causes

it to underflow and the secondary result mode indicator

is set, an arithmetic exception trap (0401) is generated

or masked.

Decimal String Addition

When the effective A and B operands are explicit-length

specifier structors of the following types:

a. Unsigned zoned decimal string.

b. Zoned decimal string.

c. Packed decimal string.

d. Unsigned packed decimal string.

The values of the associated strings are treated as signed

or unsigned decimal numbers with stated scale and precision.

A scaled decimal addition may then be performed on these

values. The result value generated replaces the B operand

string if it is alterable.

Scaled decimal addition is performed by taking digits of

equal weight in the two operand values and computing a re­

sult digit of equal weight. The: result depends on the

operand values and their signs. The overall sequencing

of scaled decimal addition and subtraction is described

in the following steps and. shown in Figure 5-1.

a. Step One - The first operation is to locate and-decode

the sign code of each operand. The manner in which

5-6

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

r- PA -4
I I I A Field

LA

~SA

'* I

~

*1

I I

May be sign

1,-------L----1--.----1.I----l--1 .--L------'---~I I B Field

LBr -- SB ___ ~ P

B

~
(position of implied decimal point)

LA = location of A operand (to byte or half-byte
resolution)

~ = location of B operand (to byte or half-byte
resolution)

SA = scale of A operand

SB = scale of B operand

P
A = length of A operand

PB = length of B operand

FIGURE 5-1. ADDITION OF SCALED DECIMAL STRINGS

5-7

HONEYWELL PROPRIETARY - SENSITIVE

positiotr

5.2.1.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

this is accomplished depends on the type of decimal

string involved. The type possibilities are:

1. An unsigned zoned decimal string operand - the sign

code is always positive, and the class is always

one.

2. A zoned decimal string operand - the sign code is

located in the zone position of the rightmost byte

of the string. This is located at the byte posi­

tion in storage LA + PA or LB + PB (refer to Figure

5-1>. The sign code is decoded according to the

conventions stated in Appendix A.

3. A packed decimal string operand - the sign code is

located in the rightmost four-bit field of the

rightmost byte of the string. This is located at

the byte location in storage LA + PA or LB + PB·
The sign code is decoded according to the conventions

stated in Appendix A.

The sign and class code of the B operand, and the sign

of the A operand result from this step.

b. Step Two - The second operation is to align digits in

the A and B operands, of equal weight. This is accomp­

lished by allowing the digits at LA + SA and LB + SB

to esmblish the alignment. Equivalently, it is necessary

to align the digits at LA + SA + min (PA - SA, PB" - SB)

in the A operand with the digits at LB + SB + min

(PA - SA, PB - SB) in the B operand, where min is the

minimum of the two values in parentheses. A pairing

of A and B operand digits exists from the pair established

in this latter way and in digits of increasing signi­

ficance up to the pair of digits at LA + SA - min (SA'

SB) in the A operand, and at LB + SB - min (SA' SB) in

the B operand. This alignment is shown by asterisks in

Figure 5-1. Note that such a pairing will not exist if

SA - PA > SB or if SB - PB > SA·

5-8

HONEYWELL PROPRIETARY - SENSITIVE

5.2.1.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

c. Step Three - The third operation depends on the setting

of the decimal round mode indicator. If this indicator

is set and PB - SB < PA - SA' then the A operand digit

at position SA + PB - SB is added to a digit

value of five. The result is discarded, but the re­

sulting carry is saved for the next step.

d. Step Four - The fourth operation is the combining of

aligned digits in the A and B operands. The digits are

combined by decimally adding if the A and B operand

signs are the same, and by decimally subtracting the A

operand digit from the B operand digit if the signs

differ. Carries from less significant digit positions

and from the rounding operation in step three are taken

into consideration when performing the addition, while

borrows from more significant digit positions are taken

into consideration when performing the subtraction. If

SA < SB' the carries are made into or borrows made from

the most significant B operand digits. When a carry is

made out of the leftmost B operand digit, the decimal

overflow indicator is set, and an arithmetic exception

trap (0400) takes place if the arithmetic exception

trap mask bit is not set. When a borrow is made out of

the leftmost B operand digit, a recomplement cycle is

initiated. If SA > SB' a high-order truncation of the

A operand takes place, and the high-order truncation

indicator is set. If the B operand is a signed or un­

signed zoned decimal string, the zone portion of each

byte processed is preserved by the decimal addition

operation. The interpretation of digit codes for this

step is specified in Appendix A.

e. Step Five - The final step generates a new result sign

code in the B operand, if necessary. Replacement of

the sign code is nec'essary only if the signs of the

operands were different and a recomplementation cycle

5-9

HONEYWELL PROPRIETARY - SENSITIVE

5.2.2

5.2.2.1

HONEYWELL PROPRIETARY - SENSITIVE

of the result was required. The sign code is generated

as a function of the result sign and the class code de­

rived from the B operand, as specified in Appendix A.

If the result has a negative sign and the B operand is

an unsigned zoned or packed decimal string, an arith­

metic exception trap (0403) is generated or masked.

The recomplementation cycle consists of taking the

ten's complement of the result computed in step four.

This is accomplished by subtracting every digit from

nine and adding one to the result.

Subtract

Formats: RR, RS, SR, SS, RD.

The effective A operand is subtracted from the effective B

operand, and the result replaces the B operand. The effec­

tive A and B operands are both derived by applying Autofetch

Evaluation to both the initial A and B operands. The oper­

and description from B operand Autofetch application is

used to replace the result. The type of subtraction per­

formed depends on the type of effective operands produced

by Autofetch Evaluation. The valid operand combinations are

discussed below. The high, low or equal condition indicator

is set, depending on the result of the SUBTRACT instruction

being positive, negative, or zero, respectively.

Binary Subtraction

If the effective A and B operands are either tagged logical

words or tagged binary integers in any combination, the

value portions of these operands are treated as 32-bit bin­

ary integers, and a binary subtraction is performed on these

values. The result value generated is used to form either

a tagged logical word or a tagged binary integer, depending

upon whether the effective B operand is a tagged logical

5-10

HONEYWELL PROPRIETARY - SENSITIVE

5.2.2.2

5.2.2.3

HONEYWELL PROPRIETARY - SENSITIVE

word or a tagged binary integer, respectively. The result­

ing tagged quantity is then restored to the effective B

operand location.

A binary subtraction is performed in a fashion identical to

a binary addition, with the exception that a fourth step is

included in the creation of an extended A operand value

(see subsection 5.2.1.1) This step is as follows:

d. The Two's complement of the operand value is taken.

Taking the twols complement of a value is accomplished by

inverting every bit in the value, and then performing an

addition of 1 to the bit position of least weight in the

result (with carries propagated to bit positions of higher

weight).

The condition indicators are set and arithmetic exception

traps are generated as for binary addition.

Hexadecimal Floating Point Subtraction

If the effective A and B operands are tagged floating point

quantities, a hexadecimal floating point subtraction is per­

formed. The result value is formed as a tagged floating

point quantity and is restored to the effective B operand

location.

The procedure for hexadecimal floating point subtraction is

identical to the procedure for hexadecimal floating point

addition, with the exception that the A operand sign is in­

verted before step two (see subsection 5.2.1.2).

The condition indicators are set and arithmetic exception

traps are generated as for hexadecimal floating point addi­

tion.

Decimal String Subtraction

When the effective A and B operands are explicit-length

specifier structors of the following types:

S-ll

HONEYWELL PROPRIETARY - SENSITIVE

5.2.3

5.2.3.1

HONEYWELL PROPRIETARY - SENSITIVE

a. Unsigned zoned dec~al string.

b. Zoned decimal string.

c. Packed decimal string.

d. Unsigned packed dec~al string.

the values of the associated strings are treated as signed

or unsigned decimal numbers with stated scale and precision.

A scaled decimal subtraction may then be performed on these

values. The result value generated replaces the B operand

string, if it is alterable.

Scaled decimal subtraction is accomplished in a fashion

identical to decimal string addition, with the exception of

a step inserted following Step One of decimal addition (see

sUbsection 5.2.1.3). This step inverts the A operand sign

value.

The condition indicators are set and arithmetic exception

traps are generated as for decimal string addition.

Multiply

Formats: RR, RS, SR, SS, RD.

The effective B operand is multiplied by the effective A

operand, and the product replaces the B operand value. The

effective A and B operands are derived by applying Auto­

fetch Evaluation to the initial A and B operands. The

operand description from B operand Autofetch application is

used to replace the product. The type of multiplication

performed depends on the type of effective operands produced

by Autofetch Evaluation. The valid operand combinations are

described in the following subsections.

Binary Multiplication

When the effective A and B operands are either tagged logi­

cal words or tagged binary integers in any combination, the

value portions of these operands are treated as 32-bit

5-12

HONEYWELL PROPRIETARY - SENSITIVE

5.2.3.1
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

binary integers, and a binary multiplication is performed on

these values. The result value generated is a 64-bit binary

integer. If the effective B operand is a tagged logical

word, then the leftmost 32 bits of the result value (high­

order product) are used to form a tagged logical word. When

the MULTIPLY instruction is executed in secondary result

mode, the tagged logical word high-order product is placed

in general register RO. Otherwise, it is discarded. The

rightmost 32 bits of the result value (low-order product)

are used to form a tagged logical word, which is restored

to the effective B operand location. If the effective B

operand is a tagged binary integer, the 64-bit result value

is used to form two tagged binary integers, consisting of a

high- and low-order product. These quantities are restored

to general register RO (secondary result mode) and the ef­

fective B operand location, respectively.

A binary multiplication is performed as a process of repeti­

tive binary addition. The multiplier and the multiplicand

are derived from the A and B operand values, respectively,

as follows:

If the operand is a tagged binary integer and is

negative, the two's complement of the operand value

is taken, and the result is used. Otherwise, the

unaltered value is used.

The repetitive addition process is described with reference

to Figure 5-2.

The product workspace is 64 bits in length and is initially

set to all zero bits. The multiplication is performed by

considering the Kth bit from the left end of the multiplier,

for K from 31 to 0 (bit positions 31 to 0). The multiplier

bit for each K is examined. If the bit is 1, the multipli­

cand, offset by K + 1 bit positions from the left end of

the product workspace, is added to the product workspace.

5-13
HONEYWELL PROPRIETARY - SENSITIVE

5.2.3.1
(Cont'.)

HONEYWELL PROPRIETARY - SENSITIVE

I Multiplier !

Product worlt~~ce (64 bits)

;>

A operand value

/'

/'
,/

7

/ /'

rJ.. ___ M_U_l_t_l_' P_l_i_c_a_n_d ___ ----'r B operand value

FIGURE 5-2. MULTIPLICATION OF BINARY VALUES

This addition is a binary addition as described in Subsec­

tion 5.2.1.1. The 64 bits of the product workspace form

the result value, from which the high- and low-order product

are formed.

If only one operand was complemented previous to the above

addition process, the twos complement of the result in the

product workspace is taken. In all cases, the 64 bits of

the product workspace forms the result value from which the

high- and low-order products are taken.

When the B operand is a tagged binary integer, the high­

order product is examined to determine whether it consists

of all zero or one bits. If not, the overflow and high­

order truncation indicators are set. If so, but the left­

most bit of the low-order product is different from the

bits of the high-order product, then the overflow indicator

is set. With overflow indicated and the arithmetic excep­

tion trap mask btt not set, an arithmetic exception trap

(0400) is generated.

5-14

HONEYWELL PROPRIETARY - SENSITIVE

5.2.3.2

HONEYWELL PROPRIETARY - SENSITIVE

Hexadectmal Floating Point Multiplication

If the effective A and B operands are tagged hexadecimal

floating point quantities a hexadecimal floating point

multipli~ation is performed. The result has a maxtmum

mantissa length of 26 digits. The most significant 13 digits

are used to form a tagged floating point quantity which is

delivered to the B operand location. The remaining digits

form a secondary result which is delivered to general re­

gister RO, if the secondary result mode indicator is set.

The hexadectmal floating point multiplication is described

in the following steps:

a. Step One - The first step of the multiplication is per­

formed only if the significance mode indicator is off.

It consists of prenormalizing the A and B operands by

shifting them left until the high-order digit is non­

zero, and decreasing the exponent by one for each

hexadecimal digit position shifted.

b. Step Two - The second step is to form the product of

the mantissae of the A and B operands. The multiplica­

tion is performed in a l04-bit workspace which is in­

itially set to zeros. The product is formed by consid­

ering the Kth bit from the rightmost bit of the A

operand mantissa, for all K from 0 to 52. For each K,

the A operand bit is examined and, if the bit is 1, the

B operand mantissa, offset by K bit positions from the

right end of the workspace, is added to the workspace

(See Figure 5-3).

The exponent associated with this product is the sum of

the exponents of the A and B operands less 64.

5-15
HONEYWELL PROPRIETARY - SENSITIVE

5.2.3.2
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

IA operand
~ __________________ ~ __________ ~mantlssa

I Workspace

~---------/-/~"---------+-)'~-------/-/~/~--K-~~

/ /

~/_/----------------~;I ________ ~//
I~ ________________________________ ~I B operand mantissa

FIGURE 5-3. HEXADECTIMAL FLOATING POINT MULTIPLICATION

c. Step Three - The third step depends on the setting of

the floating point mode indicators. If the Signifi­

cance mode indicator is not set, the result is shifted

left in the workspace until the high-order hexadecimal

digit is nonzero (postnormalization). The exponent is

decreased by the number of hexadecimal digit positions

shifted. If the exponent underflows an arithmetic ex­

ception trap (0401) is generated. If the result is

zero, the exponent and sign are also set to zero.

If the significance mode indicator is set, the result

is shifted right or left until the number of significant

hexadecimal digits in the high order 13 digit positions

is equal to the number of significant digits originally

in the operand which contained the smaller number of

significant digits (significance correction) • (The

number of significant digits in a field is the number

of digits in the field less the number of leading zero

digits). The exponent is adjusted by an amount equal

to the number of hexadecimal digit positions shifted.

5-16

HONEYWELL PROPRIETARY - SENSITIVE

5.2.3.3

HONEYWELL PROPRIETARY - SENSITIVE

d. Step Four - The fourth step is performed only if the

significance mode indicator is on. This process con­

sists of shifting the result left one hexadecimal digit

position if the leftmost of the significant digits of

the A operand was less than hexadecimal four. If the

shift takes place the exponent is decremented by one.

(NOTE: the purpose of this step is to maintain a sta­

tistically correct number of significant digits during

a series of operations).

e. Step Five - The fifth step is performed only if the

floating point round mode indicator is set. The pro­

cess consists of adding a hexadecimal eight to the 14th

digit from the left of the result field.

f. Step Six - The sixth step delivers the result. The 13

high-order hexadecimal digits of the result together

with the sign and exponent are used to form a tagged

floating point quantity which is stored in the B operand

location. If the secondary result mode indicator is

set, the remaining 13 hexadecimal digits of the result,

together with the sign and the exponent decremented by

13, are used to form another tagged floating quantity

which is stored in general register RO. If decrement­

ing by 13 causes the exponent to underflow an exponent,

sign, and mantissa of zero are stored in register RO.

Decimal String Multiplication

If the effective A and B operands are explicit-length spec­

ifier structors of the following types:

a. Zoned decimal string.

b. Unsigned zoned decimal string.

c. Packed decimal string.

d. Unsigned packed decimal string.

5-17
HONEYWELL PROPRIETARY - SENSITIVE

5.2.3.3
(Cant.)

HONEYWELL PROPRIETARY - SENSITIVE

the values of the associated strings are treated as signed

or unsigned decimal numbers with stated scale and precision,

and a scaled decimal multiplication is performed on these

values. The result value generated has a maximum precision

of 64 decimal digits. A portion of the result value with

precision and scale equal to the precision and scale of the

B operand replaces the B operand string if it is alterable.

If the MULTIPLY instruction is executed in secondary result

mode, a decimal string structor must be contained in gen­

eral register RO. The high-order portion of the result

value not placed in the B operand string is placed in this

secondary result string. If the instruction is not executed

in secondary result mode, the portion of the result value

not placed in the B operand string is examined to determine

whether it consists of all zero digits. If not all zeros,

the overflow and high-order truncation indicators are set.

With a overflow indicated and the arithmetic exception trap

mask bit not set, an arithmetic exception trap (0400) is

generated. The low-order truncation indicator is set if

least significant result digits are lost.

A scaled decimal multiplication is performed by a process

of repetitive addition. The multiplier and multiplicand

are the A and B operand values as shown in Figure 5-4.

Multiplier (A operand)

64 digit product workspace

I]]
~ ~ wr'.-------K+l----~I~~~

/ /
~ /

/ /

/
/

It------,r-----,------r----t-----tl Mul tiplicand (A operan

FIGURE 5-4. MULTIPLICATION OF SCALED DECTIMAL STRINGS

5-18

HONEYWELL PROPRIETARY - SENSITIVE

5.2.4

HONEYWELL PROPRIETARY - SENSITIVE

The product workspace is 64 digits in length and is init­

ially set to all zero digits. The multiplication is per­

formed by considering the Kth digit from the leftmost digit

of the multiplier for all K from the precision of the multi­

plier to O. For each K, the multiplier digit extracted has

a value N (0 ~ N < 9). The multiplicand, offset by K + 1

digit positions from the left end of the product workspace

is added N times to the product workspace. The addition

performed is a decimal addition, as described in Subsection

5.2.1.3.

The precision of the product is equal to the sum of the

precisions of the A and B operand strings. The scale of

the product is equal to the sum of the scales of the A and

B operand strings. The scale and precision of the product

are used to properly align and restore the result to the

B operand string and to the secondary result string, if

required. If the B operand is a zoned decimal string, re­

storation of the result preserves zones.

The result sign code is generated from the result sign and

B operand sign class code as specified in Appendix A. The

result sign is negative if the A and B operand signs differ.

The A and B operand signs and the B operand sign class code

are derived from the A and B operand sign codes as specified

in Appendix A.

If the result sign is negative and the B operand an unsigned

zoned or packed decimal string, the quantities in the pro­

duct workspace are not placed in the B operand string and

secondary result string. An arithmetic exception trap

(0403) is then generated or masked, depending on the setting

of the arithmetic exception trap mask bit.

Divide

Formats: RR, RS, SR, 55, RD.

The effective B operand is divided by the effective A oper­

and, and the quotient replaces the B operand value. The

5-19
HONEYWELL PROPRIETARY - SENSITIVE

5.2.4.1

HONEYWELL PROPRIETARY - SENSITIVE

effective A and B operands a~e derived by applying the Auto­

fetch Evaluation to the initial A and-B operands. The oper­

and description from B operand Autofetch application is

used to replace the quotient. The type of division performed

depends on the type of effective operands produced by the

Autofetch Evaluator. An attempt to divide by zero is moni­

tored and an arithmetic exception trap (0404) is generated

if a zero divisor is detected and the arithmetic exception

trap mask indicator is set.

Binary Division

If the effective A and B operands are tagged logical words

or tagged binary integers in any combination, the value

portions of these operands are treated as 32-bit binary

integers, and a binary division is performed using these

values. The result values computed are a 32-bit binary in­

teger quotient and a 32-bit binary integer remainder. A

tagged logical word or tagged binary integer equal in value

to the quotient is formed, depending on the B operand type,

and this quantity is restored to the effective B operand

location. If the DIVIDE instruction is executed in second­

ary result mode, a tagged logical word or tagged binary

integer equal in value to the remainder is formed, depending

on the B operand type, and this quantity is placed in gen­

eral register RO. If the DIVIDE instruction is not executed

in secondary result mode, the remainder is discarded.

A binary division is performed by a process of repetitive

subtraction. The divisor (A operand) is tested for zero,

and if it is zero, an arithmetic exception trap is generated

or masked. The divisor and the dividend are derived from

the A and B operand values, respectively, as follows:

If the operand is a tagged binary integer and is

negative, the two's complement of the operand value

is taken, and the result is used. Otherwise, the

unaltered value is used.

5-20
HONEYWELL PROPRIETARY - SENSITIVE

5.2.4.1
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

The repetitive subtraction pr~cess is described with refer­

ence to Figure 5-5. The quotient/remainder workspace is 64

bits in length and is initially set to all zero bits.

J
Divisor

,
I

) A operand value

quotient/remainder worWspace (64 bits)

~ ~ , , , , ,
~

~ ~ ,;

" ;' -, -"
,

Dividenti rA operand value

FIGURE 5-5. DIVISION OF BINARY VALUES

The dividend is placed (added) into the rightmost 32 bits

of the quotient/remainder workspace. The division process

is then accomplished by performing the following steps,

offsetting the divisor by K bits from the left end of the

quotient/remainder workspace, for K from 1 to 32.

a. Step One - The divisor is subtracted from bits K to

K + 31 in the quotient/remainder workspace, where the

leftmost bit in the workspace is bit O. This is equi­

valent to adding the two's complement of the divisor to

bits K to K + 31 of the workspace (See Subsection 5.2.1.l).

b. Step Two - If a carry out of bit position K is produced

in step 1, then bit K - 1 in the workspace is set to 1,

K is increased by 1, and step 1 is repeated if K < 32.

c. Step Three - If a carry out of bit position K is not

produced in step 1, then the divisor is added to bits

K to K + 31 in the quotient/remainder workspace, K is

increased by 1, and step 1 is repeated if K < 32.

5-21
HONEYWELL PROPRIETARY - SENSITIVE

5.2.4.2

HONEYWELL PROPRIETARY - SENSITIVE

When the division process is. complete, the leftmost 32 bits

of the quotient/remainder workspace contain the absolute

value of the quotient. The rightmost 32 bits of the work­

space contain the absolute value of the remainder. If only

one of the A and B operands was complemented, the two's com­

plement of the quotient value is taken to obtain the actual

quotient value. Otherwise, the quotient value remains un­

altered. If the B operand was complemented, the two's com­

plement of the remainder value is taken to obtain the actual

remainder. Otherwise, the remainder value is unaltered.

Hexadecimal Floating Point Division

If the A and B operands are tagged hexadecimal floating

point quantities, a hexadecimal floating point divide of the

A operand into the B operand is performed. The result is a

quotient with a maximum length of 13 hexadecimal digits and

a remainder. The quotient is stored in the B operand loca­

tion and the remainder in general register RO, if the

secondary result mode indicator is set. Hexadecimal float­

ing point division is performed by the following steps:

a. Step One - The first step is performed only if the sig­

nificance mode indicator is off. It consists of pre­

normalizing the A and B operands by shifting them left

until the high-order hexadecimal digit is non-zero and

decreasing the exponent by one for each digit shifted.

If the A operand is zero an arithmetic exception trap

is generated or is masked.

b. Step Two - The second step divides the A operand man­

tissa into the B operand mantissa. If the significance

indicator is off, then 14 hexadecimal digits of quotient

are generated. If the significance mode indicator is

on, then the number of hexadecimal digits generated is

equal to one more than the number of significant digits

5-22

HONEYWELL PROPRIETARY - SENSITIVE

5.2.4.2
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

in the operand which originally contained the smaller

number of significant digits. (The number of signifi­

cant digits in a field is the number of digits in that

field less the number of leading zero digits.) The

remainder from this division is preserved. The sign

of the result is positive if the signs of the A and B

operands were the same. Otherwise, the sign is minus.

The value of the result exponent is the exponent of the

B operand minus the exponent of the A operand. The ex­

ponent of the remainder is the dividend exponent minus

the number of hexadecimal digits produced in the quo­

tient.

c. Step Three - The third step depends on the setting of

the floating point mode indicators. If the significance

mode indicator is not set, the quotient is shifted left

until the high order hexadecimal digit is non-zero.

The exponent is decreased by one for each digit position

shifted. If the exponent underflows an arithmetic ex­

ception trap (0401) is generated or is masked.

If the significance mode indicator is set then the quo­

tient is shifted right by a number of hexadecimal digit

positions equal to the number of leading zero digits in

the operand which originally contained the smaller num­

ber of significant digits. The exponent is increased

by the number of digit positions shifted. If the ex­

ponent overflows an arithmetic exception trap (0401) is

generated or is masked.

d. Step Four - The fourth step is performed only if the

significance mode indicator is set. It consists of

shifting the quotient right one digit if the most sig­

nificant digit of the A operand was less than hexadeci­

mal four. (NOTE: The purpose of this step is to ensure

that a statistically correct number of significant

5-23

HONEYWELL PROPRIETARY - SENSITIVE

5.2.4.3

HONEYWELL PROPRIETARY - SENSITIVE

digits are maintained du~ing a series of operations.)

If the shift takes place the exponent is increased by

one. If the last significant digit is lost during this

shift an arithmetic exception trap (0402) is generated

or is masked.

e. Step Five - The fifth step is performed only if the

floating round mode indicator is set. The step consists

of adding a hexadecimal eight to the 14th digit position

of the quotient.

f. Step Six - The sixth step delivers the result. The 13

high-order digits of the quotient together with the

associated sign and exponent are used to form a tagged

floating point quantity which is delivered to the B

operand location. If the secondary result mode indica­

tor is set, the remainder together with its sign and

exponent are used to form a tagged floating point quan­

tity which is stored in general register RO.

Decimal String Division

If the effective A and B operands are explicit-length spec­

ifier structors of the following types:

a. Zoned decimal string.

b. Unsigned zoned decimal string.

c. Packed decimal string.

d. Unsigned packed decimal string.

then the values of the associated strings are treated as

signed or unsigned decimal numbers with stated scale and

precision, and a scaled decimal division is performed on

these values. The result values computed are a quotient

5-24

HONEYWELL PROPRIETARY - SENSITIVE

5.2.4.3
(Cant.)

HONEYWELL PROPRIETARY - SENSITIVE

and a remainder, each with a maximum precision of 32 decimal

digits. The quotient value resulting from the division re­

places the B operand string value, if it is alterable.

If the DIVIDE instruction is executed in secondary result

mode, a decimal string structor must be contained in gen­

eral register RO. The remainder value resulting from the

division is placed in this secondary result string. The

high-order and low-order truncation indicators are set if

most significant or least significant quotient digits are

lost, respectively, when the quotient is restored to the

B operand string.

A scaled decimal division is performed by a process of re­

petitive subtraction. The dividend and the divisor are the

A and B operand values as shown in Figure 5-6.

A operand value

, \

\ \

~ K ~ \\ 64 digit quotient/remainder ,r--r-r--"--, -'--~--r-------1----;-'1 ---r-----., workspace

I ,
I ,
I I
I a

D ~~V~~~~-}~,_C_~_S_i_0.i-!n __ 1:_~_) _II--_--_-_j~ B operand value

FIGURE 5-6. DIVISION OF SCALED DECTIMAL STRINGS

The quotient/remainder workspace is 64 digits in length

and is initially set to all zero digits. The leftmost

digit in the workspace is digit 0 and the rightmost digit

is digit 63. The dividend value is placed in digits I to N

5-25

HONEYWELL PROPRIETARY - SENSITIVE

5.2.4.3.
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

of the workspace, where N is. the stated precision of the

dividend. The divisor is then tested for a zero value in

which case a zero divide arithmetic exception trap (0404)

is generated, or masked, depending on the setting of the

trap mask bit. Simultaneously, any high-order zero digits

in the divisor are detected, and the scale and precision

of the divisor are decreased and its location increased

appropriately. The resulting quantity is called the modified

divisor. The A operand structor is not altered by this action.

The division process is then accomplished by performing

the following steps, offsetting the modified divisor by

K digits from the left end of the quotient/remainder work­

space, for K from 1 to the dividend precision (N).

a. Step One - The modified divisor is repetitively sub­

tracted from digits K to K + M of the workspace, until

the result is negative, which is detected by a borrow

from the K - 1st digit position. The quantity M is the

precision of the modified divisor. A count is main­

tained of the number of subtractions performed. The

modified divisor is then added once to digits K to

K + M of the workspace.

b. Step Two - The count computed in step 1 is decremented

by 1 and placed in digit position K - 1 of the work­

space.

c. Step Three - The workspace offset K is incremented by

1, and steps a and b are repeated if K < N. At the end

of this process, the leftmost N digits of the quotient!

remainder workspace contain the quotient digits, and

the next M digits contain the remainder digits. The

precision of the quotient equals the precision of the

B operand (dividend) string, and the precision of the

remainder equals the modified divisor precision. The

scales of the quotient and the remainder equal the

5-26

HONEYWELL PROPRIETARY - SENSITIVE

5.2.5

HONEYWELL PROPRIETARY - SENSITIVE

scale of the B operand (dividend) minus the scale of

the modified divisor, plus one. The scale and precis­

ion of the quotient are used to properly align and place

the quotient value in the B operand string. The scale

and precision of the remainder are used to properly

align and place the remainder value in the secondary

result string, if the division is done in secondary

result mode.

The sign code for the quotient is generated from the quo­

tient sign, and the B operand sign class code generated as

specified in Appendix A. The remainder sign code is gen­

erated from the B operand sign and sign class code. The

quotient sign is negative if the A and B operand signs were

different. The A and B operand signs and sign class codes

are derived from the A and B operand sign codes as speci­

fied in Appendix A.

If the quotient sign is negative and the B operand is an

unsigned zoned or packed decimal string, the quotient value

is not placed in the B operand string. An arithmetic ex­

ception error trap (0403) is then generated or masked, de­

pending on the setting of the arithmetic exception trap

mask bit. If the remainder sign is negative and the secon­

dary result string is an unsigned zoned or packed decimal

string, the remainder value is not placed in the secondary

result string. An arithmetic exception error trap (0403)

is then generated or masked, depending on the setting of the

arithmetic exception trap mask bit.

Compare

Formats: RR, RS, SR, SS, RD.

The effective A and B operands are compared and depending

upon the relationship between the operand values, the high,

low, or equal condition indicator is set. The effective A

and B operands are both derived by applying Autofetch Eval­

uation to the initial A and B operands. The type of

5-27

HONEYWELL PROPRIETARY - SENSITIVE

5.2.5.1

5.2.5.2

HONEYWELL PROPRIETARY - SENSITIVE

comparison performed depends 9n the type of effective

operands produced by Autofetch Evaluation.

Binary Comparison

If the effective A and B operands are tagged logical words

or tagged binary integers in any combination, the value

portions of these operands are treated as 32-bit binary

integers, and a binary comparison is performed on these

values.

A binary comparison is accomplished by performing a binary

subtraction of the A operand value from the B operand value

(See Subsection 5.2.2.1> and testing, but not restoring the

result. The high, low, or equal condition indicator is set,

depending on whether the A operand value is less than,

greater than, or equal to the B operand value. This corres­

ponds to the result of the subtraction being positive, nega­

tive, or zero.

Hexadecimal Floating Point Comparison

If the effective A and B operands are both tagged floating

point quantities, a hexadecimal floating point comparison

is performed on their values.

A hexadecimal floating point comparison is accomplished by

performing a hexadecimal floating point subtraction of the

A operand value from the B operand value (see Subsection

5.2.2.2), without restoring the result. If the sign of the

result is negative, the A operand value is greater than or

equal to the B operand value. If the high order result

mantissa is zero, the A and B operands are equal. The high,

low, or equal condition indicator is set depending on

whether the A operand value is less than, greater than, or

equal to the B operand value.

5-28

HONEYWELL PROPRIETARY - SENSITIVE

5.2.5.3

5.2.5.4

HONEYWELL PROPRIETARY - SENSITIVE

Decimal String Comparison

If the effective A and B operands are explicit-length

specifier structors of the following types:

a. Zoned decimal string.

b. Unsigned zoned decimal string.

c. Packed decimal string.

d. Unsigned packed decimal string.

then the values of the associated strings are treated as

signed or unsigned decimal numbers with stated scale and

precision. A scaled decimal comparison is then performed

on these values.

A scaled decimal comparison is accomplished by performing

a scaled decimal subtraction of the A operand value from

the B operand value, without restoring the result (see

Subsection 5.2.2.3). If the sign of the result is negative,

the A operand value is greater than or equal to the B oper­

and value. If the result is zero, the A and B operands are

equal. The high, low, or equal condition indicator is set

depending on whether the A operand value is less than,

greater than, or equal to the B operand value.

Byte String/Translated Byte String Comparison

If the effective A and B operands are explicit-length

specifier structors of type byte string or translated byte

string (in any combination), the values of the associated

strings are treated as bit strings of length eight times

the byte length. A byte string/translated byte string com­

parison is then performed on these values.

The leftmost bytes in the two operand strings are aligned

and establish the alignment of succeeding pairs of bytes

in the two strings. This alignment establishes the pairing

of bits used in performing the comparison. If the two

5-29

HONEYWELL PROPRIETARY - SENSITIVE

5.2.5.4
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

operands are not of equal length, the shorter operand is

extended to the right by appending a sequence of alpha­

numeric fill bytes from the Task Code Map Description

(Doubleword 25) in the Task Status Block (TSB).

If either operand of the instruction is a translated byte

string, then bytes from this type of string are translated

using the Load Translation Table located by the Task Code

Map Description in the TSB. If the Load Translation Table

is not present, an operand selection exception trap is

generated or masked. The byte values resulting from the

translation are used in the comparison in place of the

original bytes.

Operation of the comparison also depends on the non-binary

collate mode indicator. If the COMPARE instruction is ex­

ecuted in non-binary collate mode, each byte from the A

and B operand strings, or its translated value (if from a

translated byte string) is translated using the Non-Binary

Collating Sequence Translation Table. This is located by

the Task Code Map Description in the TSB. If the Non-Binary

Collating Sequence Translation Table is not present, an

operand selection exception trap (OIOA) is generated or

masked. When the COMPARE instruction is executed in binary

collate mode, the above operation is not performed.

The byte values resulting from the above translation pro­

cesses, if applied, are used in the comparison. The com­

parison is performed by considering aligned bytes from

left-to-right in the two operands. Each byte is treated as

an unsigned binary integer. If the two bytes are equal,

then the next byte in succession is considered. If all

bytes are equal, then the operands are equal. If the two

bytes are not equal, the one with the larger binary value

is associated with the operand of greater value. The high,

low, or equal condition indicator is set depending on

whether the A operand value is less than, greater than, or

equal to the B operand value.

5-30

HONEYWELL PROPRIETARY - SENSITIVE

5.2.6

5.2.6.1

HONEYWELL PROPRIETARY - SENSITIVE

Formats: RR, RS, SR, SS, RD.

The effective A operand value is assigned to the B operand

location. The effective A operand is derived by applying

Autofetch Evaluation to the initial A operand. Autostore

Evaluation is applied to the initial B operand of the in­

struction and must produce an operand description as an

effective B operand. The type-of move performed depends

on the type of effective operands produced by Autofetch

and Autostore Evaluation.

Byte String/Translated Byte String Move

If the effective A and B operands are explicit-length spec­

ifier structors of type byte string or translated byte

string (in any combination), then a byte string/translated

byte string move is performed.

The move is performed by aligning the leftmost bytes in the

two operand strings, together with succeeding pairs of

bytes in the two strings. If the destination string is

shorter than the source string, the source string is trun­

cated on the right. With the destination string longer

than the source string, the source string is extended to

the right with the alphanumeric fill byte in the Task Code

Map Description in the TSB.

If the A operand is a translated byte string, then bytes

from this string are translated using the Load Translation

Table located by the Task Code Map Description. If a Load

Translation Table is not present, an Autotranslation error

trap is generated or masked. The byte values resulting

from the translation are then used in the move operation in

place of the original bytes.

If the B operand is a translated byte string, then bytes

to be placed in this string are translated using the Store

5-31

HONEYWELL PROPRIETARY - SENSITIVE

5.2.6.2

HONEYWELL PROPRIETARY - SENSITIVE

Translation Table located by the Task Code Map Description.

If a Store Translation Table is not present, an operand

selection exception trap (OIOA) is generated or masked.

The byte values resulting from the translation are stored

in the destination string in place of the original bytes.

The move operation is performed by transmitting aligned

bytes from the source to the destination string, including

the above translation processes if appropriate and the

alphanumeric fill if necessary.

Decimal String to Decimal String Move

If the effective A and B operands are explicit-length

specifier structors of the following types:

a. Zoned decimal string.

b. Unsigned zoned decimal string.

c. Packed decimal string.

d. Unsigned packed decimal string.

the value of the A operand string, treated as a signed or

unsigned decimal number with stated scale and length, is

assigned to the B operand string. Consideration is given

to its sign, scale, and length. The value is assigned only

if the B operand string is alterable. Otherwise, an operand

selection exception trap is generated or masked. A scaled

decimal move is performed as a zero and add operation. In

particular, the rules for decimal string addition as spec­

ified in Subsection 5.2.1.3 are followed with the exceptions

noted below. The primary exception is that every digit in

the B operand string is assumed to be a decimal zero init­

ially, and the sign of the B operand string is always

assumed to be positive. The high- and low-order truncation

condition indicators are set, zones are set using the zone

part of the numeric fill byte, in the TSB, and signs are genlr\

ated as discussed in Subsection 5.2.1.3. The high, l?w, or ~ll

5-32

HONEYWELL PROPRIETARY - SENSITIVE

5.2.6.3

HONEYWELL PROPRIETARY - SENSITIVE

condition indicator is set depending on whether the value
moved is positive, negative, or zero, respectively.

Autostore Moves

If the effective B operand is an implicit-length specifier

structor or an explicit-length specifier structor of the

following types:

a. Bit String.

b. Binary String.

c. Hexadecimal floating point string.

The move is performed by Autostore Conversion.

A move by Autostore Conversion is accomplished by using

the effective B operand as the operand description, and the

effective A operand as the Autostore input for the appro­

priate type of Autostore Conversion operation. An Autostore

Conversion error operand selection trap may occur while per­

forming the Autostore Conversion operation, as specified in

Subsection 3.2.

5.2.7 And

Formats: RR, RS, SR, SS, RD.

Irhe logical product of the effective A and B operands is

computed bit-by-bit, and the result replaces the B operand.

The effective A and B operands are derived by applying

Autofetch Evaluation to both the initial A and B operands.

The operand description from B operand Autofetch application

is used to replace the result. The operation performed is

dependent on the type of effective operands produced by

Autofetch Evaluation. The high or equal condition indica­

tor is set depending on the result of the AND instruction

being non-zero or zero, respectively.

5-33

HONEYWELL PROPRIETARY - SENSITIVE

5.2.7.1

5.2.7.2

HONEYWELL PROPRIETARY - SENSITIVE

Logical Word AND

If the effective A and B operands are both tagged logical

words, the value portions of these operands are treated as

32-bit logical quantities, and the logical connective AND

is applied to these logical values. The result value gen­

erated is used to form a tagged logical word of equal value.

This tagged logical word is then restored to the effective

B operand location.

The AND operation is performed by taking bits in identical

positions in the two operand values and computing a result

bit of identical position according to the following table:

A operand bit

B operand bit

Result bit

Byte String AND

o 0 1 1

o 1 0 1

000 1

If the effective A and B operands are explicit-length spec­

ifier structors of type byte string, the values of the

associated strings are treated as bit strings of length

eight times the byte length. The logical operation AND

is then performed on these logical values. The result value

generated replaces the B operand string, if it is alterable.

The leftmost bytes in the two operand strings are aligned

and establish the alignment of succeeding pairs of bytes in

the two strings. This alignment establishes the pairing of

bits used in performing the logical operation. The AND

operation performed on these bits is described in Subsection

5.2.7.1. If the A operand is shorter than the B operand,

the A operand is extended on the right to the length of the

B operand, filling with zero bytes. If the A operand is

longer than the B operand, it is truncated to the length of

the B operand.

5-34

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

If the B operand string is not alterable, an alterability

operand selection exception trap (0103) is generated or

masked, depending on the setting of the operand selection

trap mask bit.

5.2.8 Or

5.2.8.1

Formats: RR, RS, SR, SS, RD.

The logical sum of the effective A and B operands is com­

puted bit-by-bit, and the result replaces the B operand.

The effective A and B operands are derived by applying

Autofetch Evaluation to both the initial A and B operands.

The operand description from B operand Autofetch application

is used to replace the result. The operation performed is

dependent on the type of effective operands produced by

Autofetch Evaluation. The high or equal condition indica­

tor is set depending on the result of the OR instruction

being non-zero or zero, respectively.

Logical Word OR

If the effective A and B operands are both tagged logical

words, the value portions of these operands are treated as

32-bit logical quantities, and the logical connective OR is

applied to these logical values. The result value generated

is used to form a tagged logical word of equal value. This

tagged logical word is then restored to the effective B

operand location.

The OR operation is performed by taking bits in identical

positions in the two operand values and computing a result

bit of identical position according to the following table:

A operand bit

B operand bit

Result bit

001 1

010 1

011 1

5-35
HONEYWELL PROPRIETARY - SENSITIVE

5.2.8.2

5.2.9

HONEYWELL PROPRIETARY - SENSITIVE

Byte String OR

If the effective A and B operands are explicit-length

specifier structors of type byte string, the values of the

associated strings are treated as bit strings of length

eight times ·.the byte length. The logical operation OR is

then performed on these logical values. The result value

generated replaces the B operand string, if it is alterable.

The leftmost bytes in the two operand strings are aligned

and establish the alignment of succeeding pairs of bytes

in the two strings. This alignment establishes the pairing

of bits used in performing the logical operation. The

OR operation performed on these bits is described in

Subsection 5.2.8.1. If the A operand is shorter than the

B operand, the A operand is extended on the right to the

length of the B operand, filling with zero bytes. If

the A operand is longer than the B operand, it is truncated

to the length of the B operand.

If the B operand string is not alterable, an alterability

operand selection exception trap (0103) is generated or

masked, depending on the setting of the operand selection

trap mask bit.

Exclusive OR

Formats: RR, RS, SR, SS, RD

The modulo-2 sum of the effective A and B operands is com­

puted bit-by-bit, and the result replaces the B operand.

The effective A and B operands are derived' by applying

Autofetch Evaluation to both the initial A and B operands.

The operand description from B operand Autofetch applica­

tion is used to replace the result. The operation per­

formed is dependent on the type of effective operands pro­

duced by Autofetch Evaluation. The high or equal condition

indicator is set, depending on the result of the EXCLUSIVE

OR instruction being non-zero or zero, respectively._

5-36

HONEYWELL PROPRIETARY - SENSITIVE

5.2.9.1

5.2.9.2

HONEYWELL PROPRIETARY - SENSITIVE

Logical Word EXCLUSIVE OR

If the effective A and B operands are both tagged logical

words, the value portions of these operands are treated

as 32-bit logical quantities, and the logical connective

EXCLUSIVE OR is applied to these logical values. The re­

sult value generated is used to form a tagged logical word

of equal value. The tagged logical word is then restored

to the effective B operand location.

The EXCLUSIVE OR operation is performed by taking bits in

identical positions in the two operand values and computing

a result bit of identical position according to the

following table:

A operand bit 0 0 1 1

B operand bit 0 1 0 1

Result bit 0 1 1 0

Byte String EXCLUSIVE OR

If the effective A and B operands are explicit-length

specifier structors of type byte string, the values of

the associated strings are treated as bit strings of length

eight times the by~e length. The logical operation EXCLUSIVE

OR is then performed on these logical values. The result

value generated replaces the B operand string, if it is

alterable.

The leftmost bytes in the two operand strings are aligned

and establish the alignment of succeeding pairs of bytes

in the two strings. This alignment establishes the pairing

of bits used in performing the logical operation. The

EXCLUSIVE OR operation performed on these bits is described

in Subsection 5.2.9.1. If the A operand is shorter than the

B operand, the A operand is extended on the right to the

length of the B operand, filling with zero bytes. If the

A operand is longer than the B operand, it is truncated

to the length of the B operand.

5-37

HONEYWELL PROPRIETARY - SENSITIVE

5.2~10

HONEYWELL PROPRIETARY - SENSITIVE

If the B operand string is no~ alterable, an alterability

operand selection exception trap (0103) is generated or

masked, depending on the setting of the operand selection

trap mask bit.

Shift

Formats: RR, SR

The contents of the general register specified by the B

operand field of the instruction and, optionally the con­

tents of general register RO are shifted a number of bit

positions specified by the effective A operand. The

effective A operand is derived by applying Autofetch Ev­

aluation to the initial A operand, The effective A operand

must be a tagged binary integer or tagged logical word.

If it is not a tagged binary integer or tagged logical word, an

illegal operand trap (0200) is generated. The sign (left­

most bit) of the tagged binary integer is used to determine

the direction of shift, with positive values associated

with left shifts and negative values associated with

right shifts. If the effective A;operand is a tagged logical

word, a left shift is performed. The contents of the gen­

eral register specified by the B operand field of this

instruction must be a tagged binary integer or a tagged

logical word. If general register RO participates in the

shift, it must contain the same type of data representation.

The type of shift performed depends on the data representa­

tion of the B operand value. If the B operand value is a

tagged logical word, a logical shift is performed. If the

B operand value is a tagged binary integer, an arithmetic

shift is performed. After shifting, the result is restored

to the general register specified by the B operand and,

optionally, to general register RO.

5.2.10.1 Logical Shift

If the effective B operand is a tagged logical word, a

logical shift is performed. When the SHIFT instruction is

5-38

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

executed in secondary result ~ode, general register RO

must also contain a tagged logical word, the value of which

is concatenated to the left of the effective B operand

value. The resulting value to be shifted is either 32 bits

(single precision) or 64 bits (double precision) in length.

If the A operand value is positive, a logical left shift

is performed; otherwise a logical right shift is performed.

The number of bits shifted is equal to the magnitude of

the A operand value. The leftmost (rightmost) bits shifted

are truncated, and the rightmost (leftmost) bit positions

are filled with zeros.

If a single precision shift is performed, the shifted

value is restored to the B operand location. When a double

precision shift is performed, the leftmost 32 bits of the

shifted value are restored to general register RO, followed

by restoration of the rightmost 32 bits to the effective B

operand location. The shifted value is restored in the

form of tagged logical words.

NOTE: If general register RO is specified as the effective

B operand location, and the SHIFT instruction is executed

in secondary result mode, the result is identical to a

single precision rotational shift of the tagged logical

word in general register RO.

5.2.10.2 Arithmetic Shift

If the effective B operand is a tagged binary integer,

an arithmetic shift is performed. When the SHIFT instruc­

tion is executed in secondary result mode, general register

RO must also contain a tagged binary integer, the value of

which is concatenated to the left of the effective B

operand value. The resulting value to be shifted is either

a 32-bit two's complement integer (single precision) or a 64

bit two~ complement integer (double precision). If the A oper­

and value is positive, an arithmetic left shift is performed;

otherwise, an arithmetic r~ght shift is performed. The number

of bit~: positions shifted is equal to the magnitude 9f_the A

operand value. In arithmetic left shifts, the rightmost 31
5-39

HONEYWELL PROPRIETARY - SENSITIVE

5.2.11

HONEYWELL PROPRIETARY - SENSITIVE

or 63 bits are shifted, preserving the leftmost (sign) bit.

The leftmost bits shifted are truncated and the rightmost bi~

are filled with zeros. In arithmetic right shifts, all 32 or

64 bits are shifted, with the rightmost bits shifted being

truncated and the leftmost bit positions being filled with ,

the leftmost (sign) bit of the initial value.

If a single precision shift is performed, the shifted

value is restored to the B operand location. When a double

precision shift is performed, the leftmost 32-bits of the

shifted value are restored to general register RO, followed

by restoration of the rightmost 32-bits to the effective

B operand location. The shifted value is restored in the

form of tagged binary integers.

Load Positive

Formats: RR, SR

The absolute value of the effective A operand value is

placed in the general register specified by the B operand

field of the. instruction. The effective A operand is de­

rived by applying Autofetch Evaluation to the initial A

operand. The operation is performed in a fashion dependent

upon the type of effective A operand produced by Autofetch

Evaluation. The high, low, or equal condition indicator

is set depending on the value of the result being positive,

negative, or zero.

5.2.11.1 Two's Complement Binary Loading

If the effective A operand is a tagged binary integer,

its absolute value is placed in the general register speci­

fied by the B operand field of the instruction.

The absolute value of a two's complement binary integer

is obtained by examination of the leftmost (sign) bit of

its value. If this bit is 1, the value is negative, and the

two's complement of the value is taken. Otherwise, the

value remains unaltered. If the two's complement of the

maximum negative number is taken, the binary overflow

5-40
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

indicator is set. Depending ~n the setting of the arithmetic

exception trap mask bit, an arithmetic exception trap (0400)

occurs or is masked.

5.2.11.2 Hexadecimal Floating Point Loading

5.2.12.

If the effective A operand is a tagged hexadecimal floating

point number, its absolute value is placed in the general

register specified by the B operand field of the instruction.

The absolute value of a hexadecimal floating point number

is obtained by setting its sign to plus.

Load Negative

Formats: RR, SR.

The negative (complement) of the absolute value of the ef­

fective A operand value is placed in the general register

specified by the B operand field of the instruction. The

effective A operand is derived by applying Autofetch Eval­

uation to the initial A operand. The operation is performed

in a fashion dependent upon the type of effective A operand

produced by Autofetch Evaluation. The high, low, or equal

condition indicator is set depending on the value of the

result being positive, negative or zero.

5.2.12.1 Twos Complement Binary Loading

If the effective A operand is a tagged binary integer, the

negative of its absolute value is placed in the general

register specified by the B operand field of the instruction.

The negative of the absolute value of a twos complement

binary integer is obtained by examination of the leftmost

(sign) bit of its value. If this bit is zero, the value

is positive, and the two's complement of the value is taken.,

Otherwise, the value remains unaltered.

5-41
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

5.2.12.2 Hexadecimal Floating Point L~ading

5.2.13

If the effective A operand is a tagged hexadecimal floating

point number, the negative of its absolute value is placed

in the general register specified by the B operand field of

the instruction.

The negative of the absolute value of a hexadecimal float­

ing point number is obtained by setting its sign to minus.

Load Complement

Formats: RR, SR.

The negation of the effective A operand value is placed in

the general register specified by the B operand field of

the instruction. The effective A operand is derived by

applying Autofetch Evaluation to the initial.

A operand produced by Autofetch Evaluation. The high, low

~ or equal condition indicator is set depending on the result

of the operation being positive, negative, or zero.

5.2.13.1 Logical Binary Negation

If the effective A operand is a tagged logical word, its

negation is placed in the general register specified by

the B operand field of the instruction.

The negation of a logical binary value is obtained by tak­

ing the one's complement of the value, that is, by inverting

every bit in the value.

5.2.13.2 Twos Complement Binary Negation

If the effective A operand is a tagged binary integer, its

negation is placed in the general register specified by the

B operand field of the instruction.

The negation of a twos complement binary value is obtained

by taking the two's complement of the value. If the two's

5-42
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 12-4-69

complement of the maximum negative value is taken, the

overflow indicator is set. Depending on the setting of

the arithmetic exception mask bit, an arithmetic exception

trap (0400) occurs or is masked.

5.2.13.3 Hexadecimal Floating Point Negation

5.2.14

If the effective A operand is a tagged hexadecimal floating

point number, its negation is placed in the general regis­

ter specified by the B operand field of the instruction.

The negation of a hexadecimal floating point number is

obtained by inverting its sign bit.

Load and Test

Formats: RR, SR.

The effective A operand value is placed in the general reg­

ister specified by the B operand field of the instruction.

The effective A operand is derived by applying Autofetch

Evaluation to the initial A operand. The high, low, or

equal condition indicator is set depending on the effective

'A operand value being positive, negative or zero. The test

for sign and magnitude is dependent on the type of effec­

tive A operand produced by Autofetch Evaluation.

5.2.14.1 Logical Binary Testing

If the effective A operand is a tagged logical word, the

value is zero if all bits are zero, and positive otherwise.

5.2.14.2 Twos Complement Binary Testing

If the effective A operand is a tagged binary integer, the

value is zero if all bits are zero, negative if the left­

most bit is one, and positive otherwise.

5.2.14.3 Hexadecimal Floating Point Testing

If the effective A operand is a tagged hexadecimal floating

point number, the value is zero if the mantissa is zero,

5-43
HONEYWELL PROPRIETARY - SENSITIVE

5.2.15

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

positive if the sign is plus and the mantissa non-zero,

and negative if the sign is minus and the mantissa non-

zero.

CONVERT TO LOGICAL
Formats: RR, SR

The effective A operand value is converted to a tagged

logical word and placed in the general register specified

by the B operand field of the instruction. The effective

A operand is derived by applying Autofetch Evaluation to

the initial A operand.

The following data types are. legal effective A operands:

a. Tagged Logical Word

b. Tagged Binary Integer

c. Tagged Hexadecimal Floating Point Number

d. Zoned Decimal String

e. Unsigned Zoned Decimal String

f. Packed Decimal String

g. Unsigned Packed Decimal String

An illegal operand trap (0200) is generated or masked if the

effective A operand is any other type.

The process of conversion is defined below.

5.2.15.1 Tagged Logical Word to Tagged Logical Word Conversion

No change takes place.

5.2.15.2 ,Tagged Binary Integer to Tagged Logical Word Conversion

The sign bit (bit 32) of the tagged binary integer is tested.

If it is ohe the binary integer is negative and can not be

represented by a tagged logical word. An arithmetic excep­

tion trap (0403) is generated or masked. If the sign bit

is zero a tagged logical word is assembled by setting the

TAG field (bits 0-3) to zero (indicating a tagged logical

word), setting the reserved field (bits 4-31) to zero, and

by setting the VALUE field (bits 32-63) equal to bits 32-63

of the tagged binary integer as shown in the following

figure.
5-43.1

HONEYWELL PROPRIETARY - SENSITIVE

()OOI

() J~

(JOOQ

HONEYWELL PROPRIETARY - SENSITIVE

(!) V~I..V~

31 3.2...

~~ -
a VA,vF

1-16-70

,
rA6-'e~
(J"AltIf~r

.3 1N'?~~1It!

5.2.15.3 Tagged Hexadecimal Floating Point Number to Tagged
Logical Word Conversion

The sign bit (bit 4) of the floating point number is tested.

If it is one, the floating point number is negative and can

not be represented by a tagged logical word. An arithmetic

exception trap (0403) is generated or masked. If the sign

bit is zero the mantissa of the floating point number is

shifted left or right one hexadecimal digit at a time in­

creasing or decreasing the exponent by one for each right

or left shift until the exponent is equal to 1001101

(implied radix point is to the right of bit 63). If any

ones are shifted out of the left end of the mantissa, or if

any of bit positions 12-31 of the mantissa contain ones

after the shift, the floating point number cannot be repre­

sented as a tagged logical word and an arithmetic exception

trap (0400) is generated or masked. If any ones are shifted

out of the right end of the mantissa the number contains a

fractional part and the floating point round mode indicator

(bit 44 of the current procedure index) is examined. A

one indicates that the mantissa should be rounded off and

the last bit shifted out of the right end is added to the

mantissa. In this case bit 31 must again be examined for

a possible arithmetic exception trap. If the round mode

5-43.2

HONEYWELL PROPRIETARY - SENSITIVE

10/0

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

indicator is zero the bits shifted out the right end are

dropped. The tagged logical word is then assembled by setting

the TAG field (bits O~3) to zero (indicating a tagged logical

word), setting the reserved field (bits 4~31) to zero, and by

setting the VALUE field (bits 32-63) equal to bits 32-63 of

the shifted mantissa of the floating point number as shown

in the following figure.

~
I!')(/J(JIIJ.

1M4IIr/.s$14
~Nr

D " If$' f/l.2- '..3

dOOO 0

JI .I~

~P

V~ (.(1" r4(1.G-lFd
~c;,~~4£..

,~ w.Q;eJ>

5.2.15.4 Decimal String to Tagged Logical Word Conversion

The following steps describe the process of converting a

decimal string to a tagged logical word:

a. The sign is examined. If it is negative an arithmetic

exception trap (0403) is generated or masked.

b. The scale factor is examined to determine the position

of the implied decimal point. If there are any digits to

the right of the decimal point the number contains a frac­

tional part and the decimal round mode indicator (bit 45

of the current procedure index) is examined. If it is

'set the decimal quantity O. 5 is added to the decimal

string to round off the integral portion. If the round

mode indicator is not set the low-order truncation indi­

cator (bit 59 of the current procedure index) is set.

5-43.3

HONEYWELL PROPRIETARY - SENSITIVE

5.2.16

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

c. The value of the integer portion of the decimal string is

converted to a positive binary integer. If the binary

integer is more than 32 bits long an arithmetic excep­

tion trap (0400) is generated or masked.

d. The tagged logical word is then assembled by setting the

TAG field (bits 0-3) to zero (indicating a tagged logi­

cal word), setting the reserved field (bits 4-31) to

zero, and by placing the binary result in the VALUE

field (bits 32-63).

CONVERT TO BINARY

Formats: RR, SR

The effective A operand value is converted to a tagged

binary integer and placed in the general register specified

by the B operand field 6f the instruction. The effective

A operand is derived by applying Autofetch Evaluation to the

initial A operand.

The following data types are legal effective A operands:

a. Tagged Logical Word

b. Tagged Binary Integer

c. Tagged Hexadecimal Floating Point Number

d. Zoned Decimal String

e. Unsigned Zoned Decima,l String

f. Packed Decimal String

g. Unsigned Packed Decimal String

An illegal operand trap (0200) is generated or masked if the

effective A operand is any other type.

The process of conversion is defined below.

5.2.16.1 Tagged Logical Word to Tagged Binary Integer Conversion

Bit 32 of the source word is tested. If it is one then the

logical word is greater than or equal to 231 and cannot be

represented as a tagged binary integer. In this case an

5-43.4

HONEYWELL PROPRIETARY - SENSITIVE

d

0000

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

arithmetic exception trap (0400) is generated or masked. If

bit 32 is zero a binary integer is assembled by setting the

TAG field (bits 0-3) to 0001 (indicating a tagged binary

integer), setting the reserved field (bits 4-31) to zero,

and by setting the VALUE field (bits 32-63) equal to bits

32-63 of the tagged logical word as shown in the following

figure.

fI y"., (. "Ii'
,,4 c;. r;.el)

~~/C;,(..
w<J~~

3)€ 31.JL ~ 3

i

~r

QtJO(0 VAl (..(.J~

5.2.16.2 Tagged Binary Integer to Tagged Binary Integer Conversion

No change takes place.

5.2.16.3 Tagged Hexadecimal Floating Point Number to
Tagged Binary Integer Conversion

The mantissa of the floating point number is shifted left or

right one hexadecimal digit at a time increasing or decreas­

ing the exponent by one for each right or left shift until

the exponent is equal to 1001101 (implied radix point is to

the right of bit 63). If any ones are shifted out of the

left end of the manitssa, or if any of bit positions 12-31 of

the mantissa contain ones after the shift, the floating point
I

number cannot be represented as a tagged binary integer and

an arithmetic exception trap (0400) is generated or masked.

If any ones are shifted out of the right end of the mantissa

5-43.5

HONEYWELL PROPRIETARY - SENSITIVE

DOlO

HONEYWELL PROPRIETARY - SENSITIVE l-16-~j J

the number contains a fractional part and the floating point

round mode indicator (bit 44 of the current procedure index)

is examined. A one indicates that the mantissa should be

rounded off and the last bit shifted out of the right end is

added to the mantissa. If the round mode indicator is zero

the bits shifted out the right end are dropped.

The sign bit (bit 4) is then examined. If it is negat.ive

the mantissa is complemented and a one is added to the low­

order position. Bits 12-32 should then contain all ones if

the number is negative and zeros if it is positive. If not,
an arit-hmetic exception trap (0400) is generated or masked.

The tagged binary integer is then assembled by setting the

TAG field (bits 0-3) to 0001 (indicating a tagged binary

integer)., setting the reserved field (bits 4-31) to zero,

and by setting the VALUE field (bits 32-63) to bits 32-63

of the mantissa value calculated above as shown in the

following figure.

~J(~QIfI~r JI1'fN rlS$J1IIf

.3~ II /~ (.

~,

0001 d VAL.ulr

5.2.16.4 Decimal String to Tagged Binary Integer Conversion

The following steps describe the process of converting a

decimal string to a tagged binary integer:

5-43.6

HONEYWELL PROPRIETARY - SENSITIVE

5.2.17

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

a. The scale factor is examined to determine the

position of the implied decimal point. If there are

any digits to the right of the decimal point the

number contains a fractional part and the decimal

round mode indicator (bit 45 of the current pro­

cedure index) is examined. If it is set the decimal

quantity 0.5 is added to the magnitude of the decimal

string to round off the integral portion. If the

round mode indicator is not set the low-order trun­

cation indicator (bit 59 of the current procedure

index) is set.

b. The value of the integer portion of the decimal

string is converted to a binary integer. The sign

of the decimal string is examined. If it is negative

the binary integer is complemented and a one is added

to the low-order position.

The rightmost 31 bits of the binary integer are

saved for the result. Every bit to the left of these

31 bits should be zero for positive numbers and one

for negative numbers. If not, the magnitude of the

number is too great to be represented as a tagged

binary integer and an arithmetic exception trap (0400)

is generated or masked.

c. The tagged binary integer is assembled by setting the

TAG field (bits 0-3) to OOOY (indicating a tagged

binary integer), setting the reserved field (bits 4-31)

to zero, setting the sign bit (bit 32 one if negative)

and placing the above result integer in bits 33-63.

CONVERT TO FLOATING

Formats: RR, SR

The effective A operand value is converted to a tagged hex­

adecimal floating point number and placed in the general

5-43.7

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

register specified by the B operand field of the instruction.

The effective A operand is derived by applying Autofetch

Evaluation to the initial A operand.

The following data types are legal effective A operands:

a. Tagged Logical Word

b. Tagged Binary Integer

c. Tagged Hexadecimal Floating Point Number

An illegal operand trap (0200) is generated or masked if the

effective A operand is any other type.

The process of conversion is defined below:

5.2.17.1 Tagged Logical Word to Tagged Hexadecimal Floating Point

Number Conversion

A tagged hexadecimal floating point number is aSB~mbled by

setting the TAG field (bits 0-3) to 0010 (indicating a

floating point number), setting the sign bit (bit 4) to

zero (positive), setting the exponent (bits 5-11) to 1001101

.(indicating radix point to the right of bit 63), setting

bits 12-31 to zero, and setting bits 32-63 equal to bits

32-63 of the tagged logical word.

The significance mode indicator (bit 46 of the current pro­

cedure index) is examined. If it is ONE the conversion is com­

plete. If it is zero the mantissa of the floating point

number (bits 12-63) is shifted left one hexadecimal digit at

a time until the high-order hexadecimal digit is nonzero.

The exponent (bits 5-11) is decremented by one for each

hexadecimal position shifted. Once this shift is performed

the conversion is complete as shown in the following figure.

5-43.8

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

(JOO(j 0 V4t...u~

1-16-70

rA~J;>
~(J ~'C""
WO~~

fJ J~ .1/ .).t. ,

"
()()IO O/fOllOI ".., 4A.1 rl's >4

5.2.17.2 Tagged Binary Integer to Tagged Hexadecimal Floating
Point Number Conversion

A tagged floating point number is assembled by setting the

TAG field (bits 0-3) to 0010 {indicating a floating point

number), setting the sign bit (bit 4) to the sign bit of the

binary integer (bit 32), setting the exponent (bits 5-11) to

1001101 (indicating radix pOint to the right of bit 63), set­

ting bits 12-32 all equal to the sign bit, and setting bits

33-63 equal to bits 33-63 of the tagged binary integer. If

the sign bit is one (negative) the mantissa of the floating

point number (bits 12-63) is complemented and one is added

to the low·order position.

The significance mode indicator (bit 46 of the current pro­

cedure index) is examined. If it is ONE the conversion is

complete. If it is zero the mantissa of the floating point

number (bits 12-63) is shifted left one hexadecimal digit

at a time until the high-order hexadecimal digit is nonzero.

The exponent (bits 5-11) is decremented by one for each

hexadecimal position shifted. Once this shift is performed

the conversion is complete as shown in the following figure.

5-43.9

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

)3

1/ 1,,2.

1-16-70

/A (i.(i:.t!' /)
'8/AlA ,('X
IAlT~vce

r~tf.(i.4~
#~~~A,"
r /.. d t477(.1 t:i­'J I"'CJ ~Allj
N<lM 6i:!1I!

5.2.17.3 Tagged Hexadecimal Fleating Peint Number to, Tagged

Hexadecimal Floating Peint Number Cenversien

5.2.18

No, change takes place.

CONVERT TO DECIMAL

Formats: RR, RS

The value in the general register specified by the A eperand

field is converted to a decimal string and stored in the effec­

tive B operand location. The effective B operand location is I
derived by applying Autostore Evaluation to the initial B operand.

The fellewing data types are legal A eperands:

a. Tagged Legical Werd

b. Tagged Binary Integer

An illegal operand trap (0200) is generated er masked if the

effective A eperand is any ether type.

The precess ef cenversien is defined belew.

5.2.18.1 Tagged Legical Werd to, Decimal String Cenversien

The binary value centained in bits 32-63 ef the legical

werd is cenverted to, a decimal integer. The POSITION field

ef the decimal string structer is examined to, determine the

length and scale facter ef the decimal field (see 2.4.1.3

5-43.10

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

through 2.4.1.6 for decimal field formats). The decimal

integer obtained above and the destination field are aligned

by decimal point. Zeros are added where necessary to fill

the destination field.

If truncation will occur on the high-order end of the integer

an arithmetic exception trap (0401) is generated or masked.

If truncation will occur on the low-order end the decimal

round mode indicator (bit 45 of the current procedure index)

is examined. If the round mode indicator is set the decimal

number is rounded off to fit the field. The digit imme­

diately to the right of the least significant digit position

of the destination field is examined. A value of decimal

five or more causes the value one to be added to the decimal

number in the digit position corresponding to the least

significant digit of the destination field. If the round

mode indicator is not set the decimal number is truncated

and the low-order truncation indicator (bit 59 of the current

procedure index) is set.

The decimal number is then placed in the destination field

in the appropriate format.

5.2.18.1 Tagged Binary Integer to Decimal String Conversion

The sign bit (bit 32) of the tagged binary integer is ex­

amined. If it is negative bits 32-63 are complemented and

incremented by one (two~ complement is taken) to determine

the magnitude. The magnitude of the binary integer is then

converted to a decimal integer.

The POSITION field of the decimal string structor is examined

to determine the length and scale factor of the decimal de­

stination field (see Paragraphs 2.4.1.3 through 2.4.1.6 for

decimal field formats). The decimal integer obtained above

and the destination field are aligned by decimal point. Zeros

are added where necessary to fill the destination field.

5-43.11

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

If truncation will occur on the high-order end of the integer

an arithmetic exception trap (0400) is generated or masked.

If truncation will OCcur on the low-order end the decimal

round moae indicator (bit 45 of the current procedure index)

is examined. If the round mode indicator is set the decimal

number is rounded off to fit the field. The digit imme­

diately to the right of the least significant digit position

of the destination field is examined. A value of decimal

five or more causes the value 1 to be added to the decimal

number in the digit position corresponding to the least

significant digit of the destination field. If the round

mode indicator is not s~t the decimal number is truncated

and the low-order truncation indicator (bit 59 of the current

procedure index) is set.

The decimal number is then placed in the destination field

in the appropriate format. The sign of the binary integer

is placed in the sign field.

5-43.12

HONEYWELL PROPRIETARY - SENSItIVE

HONEYWELL PROPRIETARY - SENSITIVE

5.3 GENERAL REGISTER LOADING/STORING INSTRUCTIONS

5.3.1

5.3.2

5.3.3

The general register lo~ding/storing instructions are used

to transmit tagged quantities to and from the general reg­

isters.

The condition indicators are not altered by execution of

these instructions.

Forma ts : RR, SR

A copy of the initial A operand is placed in the general

register specified by the B operand syllable. In the RR

format, this operation provides a facility for ~eplicating

the contents of one general register in another. In the

SR format, it provides a facility for generating a structor

from S-Syllable Extraction (See SUbsection 4.3) and placing

it in a selected general register.

Fetch

Formats: RR, SR, RD.
(

The effective A operand is placed in the general register

specified by the B operand syllable of the instruction.

The effective A operand is derived by applying Autofetch

Evaluation to the initial A operand. The tagged quantity

resulting from Autofetch Evaluation is then placed in the

B operand general register.

Formats: RR, SR, RD.

The A operand value is placed in the general register

specified by the B operand syllable of the instruction.

5-44
HONEYWELL PROPRIETARY - SENSITIVE

5.3.4

5.3.5

HONEYWELL PROPRIETARY - SENSITIVE

The A operand value is deri~ed by applying a special form

of Autofetch Evaluation that terminates when the indirection

count is equal to one. (See subsection 4.3). In particular,

step c. of the description of Autofetch Evaluation is re­

placed by the following step:

Increment the indirection count by one. If it

is equal to one, Autofetch Evaluation is ter­

minated.

The tagged quantity resulting from this special form of

Autofetch Evaluation is then placed in the B operand gen­

eral register.

The LOAD instruction provides a facility for placing an

item in an implicit-length array in a general register

without interpretation of the item and without further

indirection.

Deposit

Formats: RR, RS.

The tagged quantity in the general register specified by

the A operand syllable is placed in the location specified

by the effective B operand. Autostore Evaluation is ap­

plied using the initial B operand as an operand description

and the initial A operand as Autostore Evaluation input.

In RR format, the B operand general register is a valid

destination. In either format, the only other valid des­

tination is a bit, binary, or floating point string or

implicit-length array.

Store

Formats: RR, RS.

The tagged quantity in the general register specified by

the A operand syllable of the instruction is placed in the

B operand location. The B operand location is derived by

applying a special form of Autostore Evaluation that

5-45
HONEYWELL PROPRIETARY - SENSITIVE

5.3.6

HONEYWELL PROPRIETARY - SENSITIVE

terminates when the indirection count is one. (See sub­

section 4.3). In particular, step e. of the description

of Autostore Evaluation is replaced by the following step:

If the indirection count is nonzero, and if the

current tagged value is produced by action c. in

Table 3-2, then Autostore Evaluation terminates.

The initial B operand is used as operand description and

the initial A operand is used as Autostore input for this

special form of Autostore Evaluation.

Dump Multiple

Formats: CV •

V-syllable

4 4 16

The general purpose registers specified by the third con­

trol field are stored into the array specified by the first

control field, which is interpreted as a general register

address. The registers to be stored correspond to the bits

in the third control field that are set to one, where the

leftmost bit corresponds to register RO and the rightmost

bit to register RF. The second control field contains the

number of bits set to one in the third control field, minus

one. Register RA must contain an implicit-length structor

of type tagged doubleword, LIFO array, or FIFO array.

If the structor identifies a tagged doubleword array, the

first n elements of the array are used to store the cor­

responding general registers, where n is the number of

registers to be stored.

If the structor describes a LIFO array, the position field

of the structor is used to determine the location into

which the first register is stored. The value of the posi­

tion field, times eight, added to the value of the location

field of the structor, is the desired location. Other reg­

isters are stored into succeeding higher number doublewords

of storage. The position field is then incremented by n.

5-46
HONEYWELL PROPRIETARY - SENSITIVE

5.3.7

HONEYWELL PROPRIETARY - SENSITIVE

If the structor describes a FIFO array, the leftmost 8 bits

of the position field, called the FIFO tail, are used to

determine the storage address into which the first register

is stored. The value of this field, times eight, added to

the value of the location field of the structor is the re­

quired storage address. Other registers are stored into

succeeding higher numbered doublewords of storage, until

the last element in the FIFO array is used, at which point

doublewords are used starting at the FIFO array or1g1n.

The FIFO tail field is incremented by n (if the extent is

not exceeded) or is set to n minus the difference between

the extent and FIFO tail field values (if the extent is ex­

ceeded) •

For tagged doubleword arrays, the number of registers to

be stored must be less than the array extent. For LIFO

arrays, the difference between the extent and position

field values must be greater than the number of registers

to be stored. For FIFO arrays, the interval defined by the

incremented value of the FIFO tail field and its old value

must not include the value of the FIFO head field (right­

most 8 bits of position field).

Registers are stored into the array in the order of low-to­

high numbered registers.

An operand selection exception (0107) occurs if insufficient

array elements are available to execute the DUMP MULTIPLE

instruction and the operand selection trap mask bit is not

set.

Formats: RR

The general register specified by the A operand syllable of

the instruction is stored into the array specified by a

structor in the general register identified by the B oper­

and syllable of the instruction. The action of this in­

struction is identical to executing a DUMP MULTIPLE

5-47
HONEYWELL PROPRIETARY - SENSITIVE

5.3.8

HONEYWELL PROPRIETARY - SENSITIVE

instruction with a one bit i~ the bit position of the third

control field corresponding to the general register speci­

fied by the A operand syllable of the DUMP instruction and

with a first control field identical to the B operand syl­

lable of the DUMP instruction.

Undump Multiple

Formats: 01.
':t1.i:1

r& OS r:- =i!~~o~r/~
t'.y If;.

The general purpose registers specified by the third con­

trol field are loaded from the array specified by the first

control field, which is interpreted as a general register

address. The registers to be loaded correspond to the bits

in the third control field of the instruction that are set

to one, where the leftmost bit corresponds to register RO

and the rightmost bit to register RF. The second control

field contains the number of bits set to one in the third

control field, minus one. Register Ra must contain an

implicit-length structor of type tagged doubleword, LIFO

array, or FIFO array.

If the structor identifies a tagged doubleword array, the

first n elements of the array are placed in the correspond­

ing registers, where n is the number of registers to be

loaded.

If the structor describes a LIFO array, the position field

of the structor is used to select the first element to be

loaded. The value of the position field, decremented by

one, the quantity multiplied by eight, added to the value

of the location field of the structor is the storage address

of the first element. Other registers are loaded from suc­

ceeding lower numbered doublewords of storage. The posi­

tion field is then decremented by n.

5-48

HONEYWELL PROPRIETARY - SENSITIVE

5.3.9

HONEYWELL PROPRIETARY - SENSITIVE

If the structor describes a FIFO array, the rightmost 8

bits of the position field, called the FIFO head, are used

to obtain the first element to be loaded. The value of

this field, times eight, added to the value of the location

field of the structor is the storage address of this first

element. Other registers are loaded from succeeding higher

numbered doublewords of storage, until the last element in

the FIFO array is fetched, at which point doublewords are

obtained starting at the FIFO array origin. The FIFO head

field is incremented by n (if the extent is not exceeded)

or is set to n minus the difference between the extent and

FIFO head field values (if the extent is exceeded).

For tagged doubleword arrays, the number of registers to

be loaded must be less than the array extent. For LIFO

arrays, the position field value must be greater than the

number of registers to be loaded. For FIFO arrays, the

interval defined by the incremented value of the FIFO head

field and its old value must not include the value of the

FIFO tail field (leftmost 8 bits of position field).

Registers are loaded from the array in the order of low-to­

high numbered registers if the array is a tagged doubleword

or FIFO array. If the array is a LIFO array, registers are

loaded from the array in the order high-to-low numbered

registers.

An operand selection trap (0107) occurs if insufficient

array elements are available to execute the UNDUMP MULTIPLE

instruction and the operand selection trap mask bit is not

set.

Un dump

Formats: RR.

The general register specified by the B operand syllable of

the instruction is loaded from the array specified by a

structor in the general register identified by the A operand

5-49

HONEYWELL PROPRIETARY - SENSITIVE

5.3.10

HONEYWELL PROPRIETARY - SENSITIVE

syllable of the instruction.. The action of this instruc­

tion is identical to executing an UNDUMP MULTIPLE instruc­

tion with a one bit in the bit position of the third control

field corresponding to the general register specified by

the A operand syllable of the UNDUMP instruction and with a

first control field identical to the B operand syllable of

the UNDUMP instruction.

Point

Formats: RR, SR, RD

The operand description used to produce the effective A

operand is placed in the general register specified by the

B operand syllable. The effective A operand is derived by

applying Autofetch Evaluation to the initial A operand.

If the indirection count when Autofetch Evaluation termi­

nates is zero, an operand selection exception trap (0105)

is generated or masked. Otherwise the operand description

utilized in the Autofetch Conversion operation that termi­

nated Autofetch is placed in the B operand general register.

This instruction is similar to the FETCH instruction, except

that a structor describing an operand, rather than the oper­

and value, is placed in the specified general register.

5.4 BRANCHING INSTRUCTIONS

The branching instructions are used to alter the current

procedure index in the TSB in order to transfer control

from one sequence of instructions to another. The branch­

ing methods are:

a. Conditional Branching - based on the state of the con­

dition indicators.

b. Return Branching - which preserves the updated proced­

ure index.

c. Loop Control Branching - which uses a count value to

control iteration.

5-50
HONEYWELL PROPRIETARY - SENSITIVE

5.4.1

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

The condition indicators are not altered by execution of

branching instructions. In particular replacement of the

current procedure index in the following subsection does

not include alteration of the current condition indicators.

Test and Branch

Formats: RR, SR, RD

The B operand of this instruction specifies a test to be

performed on one of the condition indicators. If the test

is successful, a branch is performed to the A operand loca­

tion. Otherwise, instructions are executed in sequence.

The test indicated by the B operand field is specified by

the following diagram:

I I I I I
'--y-J \ """"" " I ~'------------~.:condition indicator number (O-7)

.·---------------------test for indicator reset (O)/set (l)

In the RR, and SR formats, the effective A operand is de­

rived by applying Autofetch Evaluation to the initial A

operand. If the effective A operand is a procedure index

control structor, branching is accomplished by replacing

the current procedure index with the Autofetched procedure

index. Otherwise, an illegal operand trap (0200) is gen­

erated or masked.

In the RD format, branching is accomplished by replacing the

current value of the instruction location counter with the

new instruction location value derived from RD instruction

format extraction.

The condition indicators that may be tested by the TEST AND

BRANCH instruction are assigned according to the following

set of tables.

a. Each Data Manipulation instruction sets the indicators

accordinq to the following table:

5-51

HONEYWELL PROPRIETARY - SENSITIVE

5.4.1
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

Indicator

o

1

2

3

4

5

6

7

Meaning

both reset by Data Manipulation
instructions

High-Order Truncation Indicator

Low-Order Truncation Indicator

Overflow Indicator

High Indicator

Low Indicator

Equal Indicator

b. Each Task Control instruction sets the indicators

according to the following table:

Indicat.or

o
1

2

3

4

5

6

7

Meaning

Reset by Task Control Instruction

Set by Task Control Instruction

Test Condtion Indicator

Ehlpty Indicator

Full Indicator

Available Condition Indicator

S Flag

c. Each Input/Output Control instruction sets the indica­

tors according to the following table:

Indicator

o
1

2

3

4

Meaning

Set by I/O Control Instruction

Reset by I/O Control Instruction

Logical Protection Indicator

5-52

HONEYWELL PROPRIETARY - SENSITIVE

5.4.2

5

6

7

HONEYWELL PROPRIETARY - SENSITIVE

Facility Busy Indicator

Device Malfunction Indicator

Conditional Branch

Formats: RR, SR, RD.

The B operand syllable of this instruction specifies a test

to be performed. If the test is successful, a branch is

performed to the A operand location. Otherwise instructions

are executed in sequence. The test indicated by the B oper­

and syllable is specified by one of the following codes:

0000 - test never successful (no branch)

0001 - test successful if any condition indicators
2-7 set

0010 - test successful if any condition indicators
2-7 reset

0011 - test successful if all condition indicators
2-7 set

0100 - test successful if all condition indicators
2-7 reset

0101 to 1110 - reserved

1111 - test always successful (unconditional branch)

In the RR, and SR formats, the effective A operand is de­

rived by applying Autofetch Evaluation to the initial A

operand. If the effective A operand is a procedure index

control structor, branching is accomplished by replacing

the current procedure index with the Autofetched procedure

index. Otherwise, an illegal operand trap (0200) is gen­

erated or masked.

In the RD format, branching is accomplished by replacing

the current value of the instruction location counter with

the new instruction location value derived from RD instruc­

tion format extraction.

The assignment of condition indicators is specified under

the TEST AND BRANCH instruction, (see subsection 5.4.1).

5-53

HONEYWELL PROPRIETARY - SENSITIVE

5.4.3

5.4.4

HONEYWELL PROPRIETARY - SENSITIVE

Branch and Link

Formats: RR, SR, RD.

The updated value of the current procedure index (location

of next instruction in sequence) is placed in the general

register specified by the B operand syllable. A branch is

then taken to the A operand location.

In the RR, and SR formats, the effective A operand is de­

rived by applying Autofetch Evaluation to the initial A

operand. If the effective A operand is a procedure index

control structor, branching is accomplished by replacing

the current procedure index with the Autofetched procedure

index. Otherwise, an illegal operand trap (0200) is gen­

erated or masked.

In the RD format, branching is accomplished by replacing

the current value of the instruction location counter with

the new instruction location value derived from RD instruc­

tion format extraction.

Branch on Decremented Count

Formats: RR, SR RS, SS, RD

The effective B operand is examined to determine whether

it is a tagged logical word or a tagged binary in~eger.

If so, the value of the tagged logical word or tagged bin­

ary integer is tested for zero. When the value is zero,

no branching takes place, and instructions continue to be

executed in sequence. If the value is non-zero, the value

is decremented by one, a tagged logical word or tagged

binary integer with this value is restored to the effective

B operand location, and a branch is taken to the effective

A operand location. If the effective B operand is not a

tagged logical word or a tagged binary integer, or if the

effective A operand is not a procedure index control struc­

tor, an illegal operand error trap (0200) is generated or

masked.

5-54

HONEYWELL PROPRIETARY - SENSITIVE

5.5

5.5.1

HONEYWELL PROPRIETARY - SENSITIVE

The effective B operand is d~rived by applying Autofetch

Evaluation to the initial B operand. In the RR, SR, RS,

and SS formats, the effective A operand is derived by ap­

plying Autofetch Evaluation to the initial A operand. The

decremented B operand is restored by applying Autostore

Evaluation to the B operand.

In the RR, RS, SR, and SS formats, branching is accomplished

by replacing the current procedure index with the Auto~

fetched A operand procedure index. In the RD format,

branching is accomplished by replacing the current value

of the instruction location counter with the new instruc­

tion location value derived from RD instruction format

extraction.

STRUCTOR MANIPULATING INSTRUCTIONS

The structor manipulating instructions are used to form

and modify structors in the non-privileged mode so that

descriptions of new data structures and substructures of

old ones can be generated. The condition indicators are

not modified by the execution of these instructions.

Initial Substring

Formats: RR, SR.

The initial B operand resulting from instruction extraction

must be an explicit-length structor. The length field of

this structor is modified by the value of the effective A

operand. The effective A operand is derived by applying

Autofetch Evaluation to the initial A operand. The effec­

tive A operand must be a tagged binary integer with non­

negative value, or a tagged logical word. If the A operand

value is not greater than the value of the length field of

the B operand structor, the A operand value replaces the

previous value of the length field. The modified structor

is then restored to the general register specified by the

B operand syllable of the instruction.

5-55

HONEYWELL PROPRIETARY - SENSITIVE

5.5.2

HONEYWELL PROPRIETARY - SENSITIVE

If the effective A operand i~ not a non-negative tagged

binary integer or tagged logical word or if the B operand

is not an explicit-length structor, an operand specifica­

tion exception trap (0200) is generated or masked.

Terminal Substring

Formats: RR, SR.

The initial B operand resulting from instruction extraction

must be an explicit-length structor. The location, offset,

scale, and length fields of this structor are modified by

the value of the effective A operand. The effective A

operand is derived by applying Autofetch Evaluation to the

initial A operand. The effective A operand must be a tagged

binary integer with non-negative value or a tagged logical

word. If the type of string described by the B operand

structor is byte string, translated byte string, unformatted

region, or any form of decimal string, then the following

steps are performed:

a. The value of the length field of the structor must not

be less than the value of the effective A operand. If

it is less, then an operand selection exception trap

(0100) is generated or masked.

b. The A operand value is added to the location field and

is subtracted from the length field of the B operand

structor, replacing the previous values of these fields.

c. The A operand value is subtracted from the values of

the scale and length fields of the structor, replacing

the previous values of these fields.

If the type of string described by the B operand structor

is bit string or binary string, the following steps are

performed:

a. The value of the length field of the structor must

not be less than the value of the effective A operand.

5-56

HONEYWELL PROPRIETARY - SENSITIVE

5.5.3

HONEYWELL PROPRIETARY - SENSITIVE

If it is less, an operand selection exception trap (0100)

is generated or masked.

b. The A operand value is aligned with the concatenated

location and bit offset fields of the structor and

added to the aligned bit positions in these fields,

replacing their previous value. The alignment adjust­

ment is made to account for bit offset.

c. The A operand value is subtracted from the values of

the length and alignment offset fields,of the structor,

replacing the previous values of these fields.

If the type of string described by the B operand structor

is edit control or floating point string, an illegal oper­

and trap (0200) is generated or masked.

The modified structor is restored to the general register

specified by the B operand is not an explicit-length

structor, an illegal operand trap (0200) is generated or

masked.

Lower Subarray

Formats: RR, SR, RD.

The effective A operand is used to select the lower sub­

array of the array of items described by the B operand

structor. The lower subarray of an array is the set of

items in the array with indices running from zero to a

value not greater than the extent of the array. The ef­

fective A operand is derived by applying Autofetch Evalua­

tion to the initial A operand. The effective A operand

must be a tagged logical word or tagged binary integer not

less than zero. If not, an illegal operand trap (0200) is

generated or masked. The initial B operand must be a data

structor. If not, an illegal operand trap (0200) is gen­

erated or masked.

The lower subarray is selected by subtracting the A operand ,
value from the EXTENT field of the B operand structor. If

5-57

HONEYWELL PROPRIETARY - SENSITIVE

5.5.4

5.6

5.6.1

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

the result is negative, an operand selection exceptio~

trap (0100) is generated or masked. Otherwise, the result

replaces the EXTENT field value.

Upper Subarray

Formats: RR, SR, RD.

The effective A operand is used to select the upper sub­

array of the array of items described by the B operand

structor. The upper subarray of an array is the set of

items in the array with indices running from a value

greater than zero and less than the extent of the array to

the extent of the array. The effective A operand is de­

rived by applying Autofetch Evaluation to the initial A

operand. The effective A operand must be a tagged logical

word or tagged binary integer not less than zero. If not,

an illegal operand trap is generated or masked. The in­

itial B operand must be a data structor. If not, an illegal

operand trap (0200) is generated or masked.

The upper subarray is selected by applying the Array In­

dexing operation (See subsection 3.4) to the B operand

structor, using the effective A operand as index value.

The resulting structor is then restored to the B operand

general register.

SYSTEM CONTROL INSTRUCTIONS

The Test Condition, Empty, Full Available Condition, and

S Flag indicators (ref. subsection 5.4.1) maybe set by the

System Control indicators. These indicators are always

reset prior to the execution of a System Control instruction.

Processor Control (PCON)

Formats: RR

The PCON instruction causes the processor specified by the

B operand to respond to a command specified by the A oper­

and. The actual performance of the command is, in general,

asynchronous with respect to the execution of the PCON

instruction itself.
5-58

HONEYWELL PROPRIETARY - SENSITIVE

5.6.1
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

Autofetch applies to both op~rands. Both the final A

operand and the final B operand are required to be tagged

binary integers or tagged logical words. The A operand is

a command word encoded as shown in Figure 5-7. The B operand

specifies a processor.

The PCON instruction performs a test and set to the Prior­

ity Structure Lock. If the test fails the sequence counter

is set to the location of the op-code of the instruction,

and the instruction terminates. (This has the effect of

re-trying the instruction after testing for any external

signals; see Figure 6-1 Processor Control Flow).

If the test and set to the Priority Structure Lock succeeds

then the A operand is stored in the first word of the PSA

entry of the processor specified by the B operand. This

processor (the object processor) is then notified that it

should examine its PSA entry and the instruction terminates.

When the object processor recognizes that it has been sig­

nalled (see Figure 6-1 Processor Control Flow) it examines

its PSA entry and executes the action specified by the com­

mand word. In all cases the object processor is responsible

for resetting the Priority Structure Lock.

Action PSA Command PSA Address
Field Field

Store Current
Task and Dis- 00 . . .
patch

-.

Store Current
Task and Enter 01 . . .
Wait State

Store Current Address of Ring
Task and Load 02 Pointer of new
new Task task.

(Continued)

5-59
HONEYWELL PROPRIETARY - SENSITIVE

5.6.2

HONEYWELL PROPRIETARY - SENSITIVE

Action PSA Command PSA Address
Field Field

Store Current
Task and Dis- 03 . . .
patch skipping
current task.

Change
04 Address of ROM

Identity image or other
required infor-
mation.

FIGURE 5-7 COMMAND WORD ENCODING

If either operand is not a tagged binary integer or a

tagged logical word then an illegal operand trap (0200)

occurs or is masked.

Formats: RR

The STOP instruction places the task identified by the se­

cond operand in the blocked state. Autofetch applies to

the B operand and must result in a TSB Identifier. The

A operand syllable is required to be zero.

The STOP instruction performs a test and set to the Priority

Structure Lock. If the test fails the sequence counter is

set to the location of the op-code of the instruction and

the instruction is terminated. (This has the effect of re­

trying the instruction after testing for any external sig­

nals~ See Figure 6-1 Processor Control Flow).

If the test and set to the Priority Structure Lock succeeds

then the state of the task identified by the B operand is

changed as shown in Table 5-1. In the case of the transi­

tion from the Running to Blocked states the processor ex­

ecuting the STOP instruction (the executing processor) con­

structs a Store Current Task and Dispatch command (See

Figure 5-7 Command Word Encoding) and stores it in the PSA

5-60
HONEYWELL PROPRIETARY - SENSITIVE

5.6.3

HONEYWELL PROPRIETARY - SENSITIVE

entry of the processor executing the task to be blocked.

(The object processor). The executing processor then sig­

nals the object processor that it should examine its PSA

entry and the instruction terminates.

In the case of the transitions from ready to blocked, and

from blocked to blocked the executing processor changes

the state bits of the TSB, resets the Priority Structure

Lock and terminates the instruction.

In the case of the transition from available to available,

the Available Condition Indicator is set, an illegal operand

trap (0200) occurs or is masked, the Priority Structure LoCk

is reset and the instruction is terminated.

TABLE 5-1
STATE TRANSITIONS FOR STOP INSTRUCTION

Condition
Old State New State Comments Indicators Set

Running Blocked Dispatch occurs

Ready Blocked

Blocked Blocked

Available Available Trap occurs Available

If Autofetch applied to the B operand does not result in a

TSB Identifier then an illegal operand trap (0200) occurs

or is masked.

Start

Formats: RR

The START instruction places the task identified by the

B operand in the ready or-running state. The task

is placed in the running state if it is higher in priority,

than the lowest priority task currently in the running

state; Otherwise it is placed in the ready state.

5-61
HONEYWELL PROPRIETARY - SENSITIVE

5.6.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

Autofetch applies to the B operand and must result in a TSB

Identifier or a STOP Protected TSB Identifier. The A oper­

and syllable is reserved and must be set to zero.

The START instruction performs a test and set to the Prior­

ity Structure Lock. If the test fails the sequence counter

is set to the location of the op-code of the instruction

and the instruction is terminated. (This has the effect of

re-trying the instruction after testing for any external

signals; See Figure 6-1 Processor Control Flow).

If the test and set to the Priority Structure Lock succeeds

then the state of the task identified by the B operand is

changed as shown in Table ~2. In the case of the transi­

tions from Ready to Running and Blocked to Running the pro­

cessor executing the START instruction (the executing

processor) constructs the appropriate command word (See

Figure 5-7 Command Word Encoding) and stores it in the PSA

entry of the processor executing the task to be started.

(The object processor). The executing processor then sig-

nals the object processor that it should examine its PSA

entry and the instruction terminates.

In the case of the transition from available to available

the Available Condition Indicator is set, an illegal operand

trap (0200) occurs or is masked, the Priority Structure

Lock is reset and the instruction is terminated.

In the case of the transitions from Running to Running,

Ready to Ready, and Blocked to Ready the executing proces­

sor changes the state bits of the TSB as appropriate, resets

the Priority Structure Lock and terminates the instruction.

The current priority fields of the PSA are used to determine

whether the task being started is higher in priority than the

tasks which are already running.

5-62
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

TABLE 5-2
STATE TRANSITIONS FOR START INSTRUCTION

Condition
Old State Priority Priority Comments Indicators

High Low Set

Running Running . . .
Ready Running Ready

Blocked Running Ready

Available Available Available Trap Available

5.6.4

If Autofetch applied to the B operand does not result in a TSB;

Identifier or a STOP Protected TSB Identifier then an illegal

operand trap (0200) occurs or is masked.

Suspend

Formats: RR.

The SUSPEND instruction places the task identified by the

second operand in the ready state.

Autofetch applies to the B operand and must fetch a TSB

Identifier. The A operand syllable is required to be zero.

The SUSPEND instruction performs a test and set to the

Priority Structure Lock. If the test fails the sequence

counter is set to the location of the op-code of the in­

struction and the instruction is terminated. (This has

the effect of re-trying the instruction after testing for

any external signals~ See Figure 6-1 Processor Control

Flow) •

If the test and set to the Priority Structure Lock succeeds

then the state of the task identified by the B operand is

changed as shown in Table 5-3. In the case of the transi­

tion from Running to Ready the processor executing the

5-63
HONEYWELL PROPRIETARY - SENSITIVE

. ,

5.6.4
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

SUSPEND instruction (the exe~uting processor) constructs

a "Store Current Task and Dispatch Skipping Current Task"

command (See Figure 5-7 Command Word Encoding) and stores

it in the PSA entry of the processor executing the task

which is to be placed in the ready state. (The object pro­

cessor). The executing processor then signals the object

processor that it should examine its PSA entry and the

instruction terminates.

In the case of the transition from ready to ready, the ex­

ecuting processor resets the Priority Structure Lock and

terminates the instruction.

In the case of the transitions from Blocked to Blocked, and

from Available to Available,the Available Condition Indica­

tor is set, and illegal operand trap (0200) occurs is

masked, the Priority Structure Lock is reset and the in­

struction is terminated.

If Autofetch applied to the B operand does not result in a

TSB Identifier, an illegal operand trap (0200) occurs or is

masked.

TABLE 5-3
STATE TRANSITIONS FOR SUSPEND INSTRUCTION

Condition
Old State New State Comments Indicators

Set

Running Ready Dispatch
Occurs

Ready Ready

Blocked Blocked Trap Occurs Available

Available Available Trap Occurs Available

5-64
HONEYWELL PROPRIETARY - SENSITIVE

5.6.5

HONEYWELL PROPRIETARY-- SENSITIVE

Conditional Stop (CSTOP)

Formats: RR.

The CSTOP instruction performs a test of a bit in main

storage and, depending on the result of the test, may

place the task identified by the second operand in the

blocked state.

Autofetch applies to both operands. The final A operand

must be a Byte String Array Structor; the final B operand

must be a TSB Identifier. If either operand is incorrect

an illegal operand trap (0200) occurs or is masked and the

instruction terminates.

The CSTOP instruction performs a test and set to the

Priority Structure Lock. If the test fails the sequence

counter is set to the location of the op-code of the in­

struction and the instruction terminates. (This has the

effect of re-trying the instruction after testing for any

external signals; see Figure 6-1 Processor Control Flow).

If the test and set to the Priority Structure Lock succeeds

then the leftmost bit of the leftmost byte of the first

string in the array specified by the A operand is used to

set the Test Condition Indicator. If the test fails then

the Priority Structure Lock is reset and the instruction

is terminated.

If the test to the A operand succeeds then the state of the

task specified by the B operand is tranformed according to

Table 5-4.

In the case of the transition from the Running to Blocked

states the processor executing the CSTOP instruction (the

executing processor) constructs a "Store Current Task and

Dispatch" conunand (See Figure 5-7 Command Word Encoding)

and stores it in the PSA entry of the processor executing

the task to be blocked. (The object processor). The ex­

ecuting processor then signals the object processor that

5-65
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

it should examine its PSA entry, and terminates the in­

struction.

In the case of the transitions from ready to blocked, the ex­

ecuting processor changes the state bits of the TSB, resets

the Priority Structure Lock and terminates the instruction.

In the case of transition from blocked to blocked the ex­

ecuting processor resets the Priority Structure Lock and

terminates the instruction.

In the case of the transition from available to available the

Available Condition Indicator is set, an illegal operand trap

(0200) occurs or is masked, the Priority Structure Lock is

reset and the instruction terminates.

TABLE 5-4
STATE TRANSITIONS FOR CSTOP INSTRUCTION

Old State New State Conunents Condition
Indicators Set

Running Blocked Dispatch Occurs

Ready Blocked

Blocked Blocked

Available Available Trap Occurs Available

5.6.6 I/O and External Conditional Stop (ISTOP)

Formats: RR.

The ISTOP instruction performs a raceless test of the Start

Flag in the TSB of the task identified by the second operand.

Depending on the result of the test, the instruction may

place the task in the blocked state.

Autofetch applies to the B operand and must result in a TSB

Identifier. If it does not, an illegal operand trap (0200)

occurs or is masked and the instruction terminates. The A

operand syllable must be zero.

5-66

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

The ISTOP instruction performs a test and set to the

Priority Structure Lock. If the test fails the sequence

counter is set to the location of the op-code of the in­

struction and the instruction terminates. This has the

effect of re-trying the instruction after testing for any

external signals~ see Figure 6-1 Processor Control Flow.

If the test and set to the Priority Structure Lock succeeds

then the Start Flag of the task identified by the B operand

is used to set the Test Condition Indicator. If the Start

Flag is set then the Priority Structure Lock is reset and

the instruction terminates. If the Start Flag is reset

then the state of the task is transformed according to

Table 5-5.

In the case of the transition from the Running to blocked

states the processor executing the ISTOP instruction (the

executing processor) constructs a "Store Current Task and

Dispatch" command (See Figure 5-7 Command Word Encoding

and stores it in the PSA entry of the processor executing

the task to be blocked (the object processor). The execut­

ing processor then signals the object processor that it

should examine its PSA entry, and terminates the instruction.

In the case of the Transitions from ready to blocked the ex­

ecuting processor changes the state bits of the TSB, resets

the Priority Structure Lock and terminates the instruction.

In the case of the transition from blocked to blocked the

executing processor resets the Priority Structure Lock and

terminates the instruction.

In the case of the transition from available to available

the Available Condition Indicator is set, an illegal operand

trap (0200) occurs or is masked, the Priority Structure Lock

is reset and the instruction terminates.

5-67

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

TABLE 5-5 ,
STATE TRANSITIONS FOR ISTOP INSTRUCTION

Old State New State Comments Condition
Indicators Set

Running Blocked Dispatch Occurs

Ready Blocked

Blocked Blocked

Available Available Trap Occurs Available

5.6.7 Set Priority (SETP)

Formats: RR.

The SETP instruction stores a new value in the priority

field of the Processor Status Array entry of the processor

executing the instruction. This modifies the effective

priority of the task executing the instruction until it is

swapped out by the processor. Autofetch applies to the

A operand and must result in a tagged binary integer. The

B operand syllable is required to be zero.

The SETP instruction performs a test and set to the Priority

Structure Lock. If the test fails the sequence counter is

set to the location of the op-code of the instruction and

the instruction is terminated. (This has the effect of

re-trying the instruction after testing for any external

signals1 see Figure 6-1 Processor Control Flow).

If the test and set to the Priority Structure Lock succeeds

then the rightmost eight bits of the effective A operand

are stored in the current priority field of the Processor

Status Array entry of the processor executing the instruc­

tion. The Priority Structure Lock is reset and the in­

struction terminates.

5-68
HONEYWELL PROPRIETARY - SENSITIVE

5.6.8

HONEYWELL PROPRIETARY - SENSITIVE

If the effective A operand ~s not a tagged binary integer

then an illegal operand trap (0200) occurs or is masked.

This instruction may only be executed in the privileged

mode. If an attempt to execute it in non-privileged mode

an operand selection (0108) trap occurs.

Undump Interlocked

Formats: RR.

The UNDUMP interlocked instruction performs a raceless

load of a tagged doubleword from a FIFO or LIFO array.

Autofetch does not apply to either operand. The A operand

must be a tagged doubleword array structor. The first

element of the array identified by the A operand must be

either a FIFO or a LIFO structor. If the A operand fails

to conform to these requirements then an illegal operand

trap (0200) occurs or is masked.

The UNDUMP INTERLOCKED instruction performs a test and set

to the Queue Lock in the System Base. If the test fails

then the sequence counter is set to the location of the

op-code of the instruction and the instruction terminates.

(This has the effect of re-trying the instruction after

testing for any external signals, see Figure 6-1 Processor

Control Flow).

If the test and set to the Queue Lock succeeds then a

tagged doubleword is loaded from the array described by

the structor identified by the A operand and placed in the

B operand register. The load conventions conform to those

described for the UNDUMP MULTIPLE instruction. Once the

A operand has been loaded the Queue Lock is reset and the

instruction terminates.

If the FIFO or LIFO Array is empty then the Empty Condition

Indicator is set.

5-69
HONEYWELL PROPRIETARY - SENSITIVE

5.6.9

5.6.10

HONEYWELL PROPRIETARY - SENSITIVE

Dump Interlocked

Formats: RR.

The DUMP INTERLOCKED instruction performs a raceless store

of a tagged doubleword into a FIFO or LIFO array.

Autofetch does not apply to either operand. The A operand

must be a tagged double word and the B operand must be a

tagged doubleword array structor. The first element of the

array identified by the B operand must be either a FIFO or

a LIFO structor.

The DUMP INTERLOCKED instruction performs a test and set

to the Queue Lock in the System Base. If the test fails

then the sequence counter is set to the location of the

op-code of the instruction and the instruction terminates.

(This has the effect of re-trying the instruction after

testing for any external signals; see Figure 6-1 Proces­

sor Control Flow).

If the test and set to the Queue Lock succeeds then the

A operand is stored in the array described by the structor

identified by the B operand. The store conventions con­

form to those described for the DUMP MULTIPLE instruction.

Once the A operand has been stored the Queue Lock is reset

and the instruction terminates. If the FIFO or LIFO array

is full the Full Condition Indicator is set. If any of

the operands fail to conform to the requirements described

above an illegal operand trap (0200) occurs or is masked.

Load Status

Formats RR.

The LOAD STATUS instruction loads an external or I/O

status word from the status word in the TSB of the task

executing the instruction or from the FIFO array identified

by the status word in the TSB, into the B operand register.

The A operand syllable must be zero.

5-70
HO~EYWELL PROPRIETARY - SENSITIVE

5.6.11

HONEYWELL PROPRIETARY - SENSITIVE
12-4-69

The LOAD STATUS instruction performs a test and set to the

Status Word Lock in the TSB. If the test fails the sequence

counter is set to the location of the op-code of the in­

struction and the instruction terminates. (This has the

effect of re-trying the instruction after testing for any

external signals; see Figure 6-1 Processor Control Flow.)

If the test and set to the Status Word Lock succeeds then

the status word of the TSB is accessed. If it is either an

I/O or an External Status word it is placed in the B operand

register, the Start Flag in the TSB is reset, the Status

Word Lock is reset, and the instruction terminates.

If the status word in the TSB contains a FIFO array struc­

tor, then the top element in the array is accessed and

stored in the B operand register. If the array is empty

then the Empty Condition Indicator is set, and an operand

selection trap occurs or is masked. In either case the

Start Flag in the TSB is reset, the Status Word Lock is

reset, and the instruction terminates.

Test and Set

Formats: RR, RS.

The TEST AND SET instruction performs a raceless test of

a bit in main storage.

Autofetch applies to the initial B operand and must result

in a byte string array structor. The A operand syllable

is required to be zero.

The TEST AND SET instruction accesses the leftmost byte of

the first string in the array described by the B operand.

It uses the high-order bit of this byte to set the Test

Condition Indicator, sets the entire byte to ones and re­

stores it to main storage. No access is permitted to the

byte between the time the instruction accesses it and the

time it is restored.

5-71
HONEYWELL PROPRIETARY - SENSITIVE

5.6.12

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

If Autofetch does not result in a byte string array

structor then an illegal operand trap (0200) occurs or

is masked.

Note that if this instruction is used to establish

locks to protect access to asynchronously shared data

structures, then the boundary between the structures

must not occur in the middle of a word in storage.

Set Mode - Reset Mode

Formats . CV .

~ETM I SET M a I b V

0 7 11 15 31

When the Set Mode instruction is executed, bits 42-55

of the Current Procedure Index of the task executing the

instruction are set under control of the V field. The A

and B fields are ignored and should be set to zero.

If the instruction is executed in the privileged mode, bits

2~15 of the V field are aligned with bits 42-55 of the

current procedure index. Each bit in the V field containing

a one causes the corresponding bit in the procedure index

to be set to one. The remaining bits in the procedure index

retain their old values. Bits 0 and 1 of the V field should

be zero.

If the instruction is executed in the normal mode then its

operation is the same except that the following bits in

the procedure Index field will not be set:

a. Privilege mode.

b. Instruction Exception Mask

c. Operand Selection Exception Mask

d. Illegal Operand Exception Mask

5-72

HONEYWELL PROPRIETARY - SENSITIVE

5.6.13

HONEYWELL PROPRIETARY - SENSITIVE

e. Timer Mask

f. Program Controlled Type I Mask

g. Program Controlled Type II Mask

The operation of the Reset Mode is the same except that

the bits in the procedure index field are reset rather than

set.

Field Extract

Formats: CV

lop Code Cl
C2

C3

8 4 4 16

A field up to 32 bits in length or a 64 bit tagged double­

word is placed in the general register specified by the

first control field of the instruction (Cl) in the form

of a tagged doubleword. The source of the field or double­

word is anyone of the 32 doublewords of the Task Status

Block associated with the task executing the FIELD EXTRACT

instruction.

The interpretation placed in the third control field (C3)

of the instruction is as shown in the following diagram:

5-73

. field length (5 bits)

field offset (6 bits)

extraction control (2 bits)

reserved (2 bits)

general registers/control
registers (1 bit)

HONEYWELL PROPRIETARY - SENSITIVE

5.6.13
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

The first bit in the C3 fiel~ identifies the first sixteen

(general purpose) registers or the second sixteen (control)

registers of the Task Status Block as the source of the

desired field or doubleword. The C2 field of the instruc­

tion selects one of sixteen doublewords within the portion

of the Task Status Block identified by the first bit of

the C3 field. The next two bits of the C3 field are re­

served. The following two bits are an extraction control

field. The interpretation of the extraction control field

is as follows:

00

01

10

11

Meaning

Form a tagged logical word with a value con­

sisting of the desired field, left justified,

and zero filled on the right.

Form a tagged logical word with a value con­

sisting of the desired field, right justified,

and zero filled on the left.

Form a tagged binary integer with a value

equal to the value of the field, interpreted

as a twos complement integer, filling the

appropriate sign bit.

Form a tagged doubleword identical to the

selected doubleword of the Task Status Block.

The following two subfields of the C3 field are used to

specify the offset (6 bits) and length (5 bits) of the de­

sired Task Status Block field. These two subfields are

used only for extraction control codes 00, 01, and 10.

The use of extraction control code 11 (doubleword extrac­

tion) is available only in privileged mode. An operand selec­

tion trap (0108) is generated if this control code is used

in non-privileged mode and the operand selection trap

mask bit is not set.

5-74

HONEYWELL PROPRIETARY - SENSITIVE

5.6.14

HONEYWELL PROPRIETARY - SENSITIVE

Field Substitute

Formats: CV

lop Code

8 4 4 16

The contents of the general register specified by the first

control field of the instruction (Cl) may replace the value

of a field up to 32 bits in length or a 64 bit doubleword.

The destination field or doubleword is anyone of the 32

doublewords in the Task Status Block associated with the

task executing the FIELD SUBSTITUTE instruction.

The interpretation of the third control field (C3) of the

instruction is similar to the interpretation for the FIELD

EXTRACT instruction. The C2 field, together with the first

bit of the C
3

field selects the destination in the Task

Status Block. The interpretation of the sUbstitution

control field (extraction control field for FIELD EXTRACT)

is as follows:

00

01

10

Meaning

If the general register specified by the Cl
field contains a tagged logical word, the

leftmost n bits of its value are placed in

the designated field, where n is the length

of the field.

If the general register specified by the Cl
field contains a tagged logical word, the

rightmost n bits of its value are placed in

the designated field, where n is the length

of the field~

If the general register specified by the Cl
field contains a tagged binary integer, the

5-75

HONEYWELL PROPRIETARY - SENSITIVE

5.6.15

5.6.16

HONEYWELL PROPRIETARY - SENSITIVE

11

rightmost n bit~ of its value are placed in

the'designated field, where n is the length

of the field.

The contents of the general register specified

by the Cl field replace the contents of the

designated doubleword of the Task Status Block.

The last two subfields of the C3 field specify the offset

and length of the desired Task Status Block field for sub­

stitution codes 00, 01, 10.

This instruction may be executed only in privileged mode.

An operand selection trap (OlOS) is generated if this

instruction is executed in non-privileged mode, and the

operand selection trap mask bit is not set.

Trap Return

Formats: RR

The TRAP RETURN instruction causes a trap to occur regard­

less of the setting of the trap mask bits in the Current

Procedure Index. Both the A operand syllable and the B

operand syllable are required to be zero.

The TRAP RETURN instruction causes the contents of General

Purpose registers zero, one, and two to be exchanged with

the contents of Trap Registers zero, one, and two.

The sequence counter in the Current Procedure Index is

set to the address of the next instruction and the

contents ,of the Current Procedure Index are exchanged with

the contents of the Trap Index. The Trap ID is not altered.

Read Clock

Formats: RR

The READ CLOCK instruction causes the current value of the

system clock to be converted to a tagged floating point

5-76

HONEYWELL PROPRIETARY - SENSITIVE

5.6.17

5.6.18

HONEYWELL PROPRIETARY - SENSITIVE

number and stored in regist~r Rb. The A operand syllable

is required to be zero.

Set Clock

Formats: RR

The SET CLOCK instruction is used to insert a value into

the system clock. Autofetch does not apply to either

operand. The initial A operand must be a tagged floating

pOint number. The B operand syllable is reserved and must

be set to zero.

The mantissa of the A operand is used to set the clock.

The sign and exponent fields of the A operand are ignored.

This instruction may only be executed in the privileged

mode. If an attempt is made to execute it in non­

privileged mode an operand selection trap occurs (0108) 9r

is masked.

Set Timer

Formats: RR

The SET TIMER instruction is used to insert a value

into the VR of the system timer (see Subsection 8.2). The

initial A operand is required to be a tagged floating

point number; The B operand syllable is reserved and must

be set to zero. Autofetch does not apply to either operand.

Bits 20-35 of the mantissa of the A operand are used to

set the value register of the system timer. The sign and

exponent fields of the A operand are ignored. This instruction

may only be executed in the privileged mode. I

If an attempt is made to execute it in non-privileged mode I
an operand selection trap (OlOS) occurs or is masked.

5-77

HONEYWELL PROPRIETARY - SENSITIVE

5.6.19

5.7

5.7.1

HONEYWELL PROPRIETARY - SENSITIVE

Set and Zero Timer

Formats: RR

The SET AND ZERO TIMER instruction is used to insert a

value into the VR of the system timer (see Section 9.3)

and simultaneously to set the CR to zero. The initial A

operand is required to be a tagged floating point number;

the B operand syllable is reserved and must be set to

zero. Autofetch does not apply to either operand.

Bits 20-35 of the mantissa of the A operand are used

to set the value register of the system timer. The clock

register is set to zero. The sign and exponent fields of

the A operand are ignored. This instruction may only be

executed in the privileged mode. If an attempt is made

to execute it in non-privilege mode an operand selection

trap (0108) occurs or is masked.

INPUT/OUTPUT INSTRUCTIONS

There are two Input/Output (I/O) instructions: Initiate

Device Operation (IDa) and Halt Device Operation (HDO).

Initial Device Operation

Formats: RR, RS, SR, SS

The B operand resulting from application of Autofetch

must be Device Identifier Structor. This structor is used

to identify the peripheral device to or from which the data

transfer will occur, or to which the control operation will

be derected~

The A operand must be one of three structors: A tagged

doubleword array structor, (which should point to an array

or I/O command structor), a Single Control Command specifier

structor, or an Alternate Array specifier structor.

5-78

HONEYWELL PROPRIETARY - SENSITIVE

5.7.2

HONEYWELL PROPRIETARY - SENSITIVE

This instruction will initiate the execution of the I/O

Command Array specified in A operand, using the peripheral

device specified in B operand.

The Condition Code in Procedure index is set depending

whether the initiation was successfully performed or not.

A more complete discussion of the execution of the 100

instruction is included in Subsection 9.3.2.1.

Halt Device Operation

Formats: RR, RS

The B operand resulting from application of Autofetch must

be a Device Identifier Structor. The A operand is not

used in this instruction. This instruction will cause a

halt of any peripheral operation currently in progress in

the device specified in the B operand.

--END OF SECTION--

5-79

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

6.1 INTRODUCTION

SECTION VI
TASK MULTIPLEXING

Tasks are time multiplexed on physical processors. This
multiplexing is a hardware function and is controlled by
the Task Control instructions (see Subsection).
The creation and deletion of tasks from the system is
a software function.

The two situations which cause the task multiplexing
mechanism to be used are:

a. -\,When a processor is free. In this case the mul ti­
plexing mechanism selects the next task for the
processor to run. This situa~ion can only occur

\

after the execution of a STOP,"SUSPEND, CONDITIONAL
STOP, ISTOP, or PROCESSOR CONTROL instruction.

b. The occurence of an I/O or External start (see
Subsections 6.6 and 6.7).

6.2 LOCK AND UNLOCK FUNCTIONS

In order to prevent race conditions during system control
operations a number of locks have been defined. Each
of these locks consists of a byte in main storage and
is associated with a data structure or process which
it is designed to protect. If the high order bit of
the lock is one then access is prohibited to the asso­
ciated structure except by the processor which set the
lock. This is the locked state. If the bit is zero
then the associated structure is unlocked and a processor
is free to lock it by setting the bit to one and then
using the structure.

In order to set the lock bit a processor must access
it, test to determine if it is zero and, if it is,

6-1

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

6.2 (Cant.)

set it to one and restore it to memory. During the
time the processor is performing these operations,
access to the byte of ,main storage eontaining the
lock bit is prohibited. The process of setting the
lock bit is referred to as "locking the structure".
This process is the same as the one which is avai+able
to the programmer through the TEST A~ SET inst+uction.

It is possible for one processor to lock a facility
and then to transfer its p.riviledged status w~th respect
to the facility to another processor.

The locks used for system control are:

a., The Priority Structure Lock: This lock controls
the System Base and all 'of the arrays associated
with it. It ensures that only one processor will
be able to perform a task control instruction at
a time.

b. The Status Word Lock: There is one such lock in
each TSB. It controls the Status Word in the TSB.

c. The Queue Lock: This lock is used to ensure that
only one processor will 'exeoute a Dump Interlocked
or Undump Interlocked instructipn at a time.

6-2

HONEYWELL PROPRIETARY - qeNSlTIVE

l
I

I~

HONEYWELL PROPRIETARY - SENSITIVE

()t:ca{)~ Alft/)

~~4c~rt;' re,-
eo~~ANlJ

_________ ----L

---~--- --- ------1
~tE:St:T '
;f:?I(I'O~/7'y !

- .5r~~c.., ru~E

~oG:k

EXecvrE
/~'T/(Jl:.,n CV'-I 1 ... ___ -

I

- ----_._----

.............. ------ ------ ---- -- -- --- ------ -- ---y

FIGURE 6-1. PROCESSOR CONTROL FLOW

6-3

HONEYWELL PROPRIETARY - SENSITIVE

NO

HONEYWELL PROPRIETARY - SENSITIVE 11-26-69

6.3 TASK LOAD

When a processor determines that it is to run a task it
loads some portions of the TSB for the task into its local
registers. The portions of the TSB which are loaded may
vary from one implementation to another. For this reason
the contents of the TSB in memory can only be relied on in
the following cases:

a. The facility accessing the TSB must first have success­
fully performed a Test and Set of the Status Word lock.

b. The Ring Pointer and Start Status Word are always cor­
rect in memory with one exception: The current pro­
cessor field of the Ring Pointer is correct only when
the task is in the running state.

c. If the Task is in the ready, blocked, or available states
the memory copy of the TSB is correct (except the cur­
rent processor field of the Ring Pointer).

d. Information obtained from the TSB by means of the Field
Extract instruction is always correct.

If, while loading a task a processor finds that the task re­
quires an identity which it does not possess, it restores
the TSB to memory and generates an external start to loca-
tion one of the External Start Array. The processor
then places itself in the wait state.

6.4 DISPATCH OPERATION

When a processor discovers that it has no task to run, it
selects a task by searching the Priority Array Structure.
This search is known as the Dispatch Operation. Note that
since the STOP, CSTOP, ISTOP, and SUSPEND instructions all
lock the Priority Structure, it is always locked when the
need for the Dispatch operation is recognized. The search
proceeds as follows:

a. A register in the processor is set to zero for use as
a Level Index Counter.

b. The Level Index Counter is used in conjunction with the
Priority Array Structor in the System Base to select an
entry in the Priority Array.

6-4
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 11-26-69

6.4 c.
(Cont.)

The Level Blocked Indicator of the entry selected
from the Priority Array is tested. If it is set,
the Level Index Counter is incremented and the process
returns to step b. If the Level Blocked Indicator
is reset, a register is loaded with the field of the
Priority Array entry which specifies the number of
tasks in the ring for use as a Task Counter. The
location field of the Priority Array entry is used
to access the Ring Pointer of the first TSB in the
ring.

d. If the status bits of the task whose ring pointer
was accessed in step c. are set to ready then:

The location field of the Ring Pointer is
laced in the location field of the Priority

Array Entry.

The address of the Ring Pointer and the priority
f the task are placed in the second word of

the processor's entry in the Processor Status array.

3. The status bits of the Ring Pointer are set to running.

4. The processor's number is placed in the current
processor field of the Ring Pointer.

5. The necessary portions of the TSB are loaded into
the processor. (See Section 6.3)

6. The Priority Structure is unlocked, and the TIispatch
Operation terminates.

If the status bits are set to any other value, the Task
Counter is decremented and tested for all ones. If it
is all ones the process goes to step e. If it is not all
ones then the location field of the Ring Pointer is used
to access the Ring Pointer of the next TSB in the field
and step d. is repeated.

6-5

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

e. The last used entry in the Priority Array is accessed
and its Level Blocked Indicator is set. The Level
Index Counter is incremented and the process returns
to step b.

1£ the process overruns the Priority Array then the
processor sets the £irst byte o£ the second word o£ its
entry in the Processor Status Array to ones, unlocks the
Priority Structure, and places itsel£ in the Wait state.

6.5 PROCESSOR CONTROL FLOW

Each central processor £ollows the £low shown in Figure
6-1. A single cycle o£ this £low may be considered to
begin at point A and to terminate a point A. Starting
at point A the processor determines whether any o£ three
classes o£ operation are required. These classes are:

a. Processor Control Operations: Processor Control
operations are described in subsection 6.8. The
need £or a Processor Control Operation is recognized
by the presence o£ a Processor Status Change Signal.

b. Timer Trap: The Timer Trap is described in subsection
7.3. The need £or a timer trap is indicated by the
setting o£ the timer trap pending £lag in the TSB.

c. Instruction Execution: 1£ the processor is running
a task, and none o£ the above operations are required
then it will execute the next instruction £or the
task.

The need £or each o£ these operations is tested in
sequence; i£ none of these operations are required the
processor starts again at point A.

1£ the Processor Status Change Signal is present then

6-6

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

a processor Control Operation is required. The processor
examines the command field of its PSA entry and performs
whatever action is specified there. Once this has been
done the Priority Structure Lock is reset and the process
returns to point A.

If a timer trap is pending and not masked then it is
serviced as described in subsection 7.3.

If a task is being run then the next instruction is
executed for it.

6.6 I/O INITIATED STARTS

An 1/0 start is a process whereby an I/O device may
transfer a double word of status information to a task
and cause the task to be placed in the ready or running
state.

The sequence of operations performed by the I/O in order
to store a status word is shown in Figure 6-2. The
operation is as follows:

a. The Priority Structure Lock is set.

b. I/O resources are deallocated, if required (see Sub­
section 9.6).

c. Bits 8-15 of the I/O Status Word are used to index the
I/O Start Array. If the index value exceeds the extent
of the array the last entry in the array is used. The
entry in the array determines what further action is to
be taken; if the I/O Start Array entry is a TSB
Identifier the process continues with step f; if the
I/O Start Array entry is a tag zero structor then the

~rocess terminates; if the I/O Start Array entry is a
tagged doubleword array structor then the array which it
identifies is called an Index Array and the process con­
tinues with step d.

6-7

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

6.6 (Cont.)

d. Bits 16-19 of the I/O Status Word are used to index
the Index Array Structor. If the index value exceeds
the extent of the array the last entry in the array
is used. The entry in the array determines what further
action is taken; if the Index Array entry is a TSB
Identifier the process continues with step f; if the
Index Array entry is a tag zero structor then the
process terminates; if the Index Array ~ntry is a
tagged doubleword array structor then the array which
it identifies is also called an Index Array an the
process continues with step e.

e. Bits 20-23 of the I/O Status Word are used to index
the second Index Array Structor. If the index value
exceeds the extent of the array the last entry in the
array is used. The entry in the array determines what
further action is taken; if the Index Array entry is

a TSB Identifier the process continues with step e.
If the Index Array entry is a tag zero structor then
the process terminates. No other entries are allowed
in the second Index Array.

f. A test and set is performed to the Status Word Lock
in the TSB. If the test fails then step f. is
repeated. If the test succeeds the Start Flag in
the TSB is set and the Start Status Word is accessed.
If the Start Status Word is a FIFO Array Structor then
the I/O Status Word is stored in the array. If the
array is full then the last word in the array is
overwritten. If the Start Status Word is not a FIFO
Array Structor then the I/O Status Word is deposited
in the Start Status Word.

g. In either case the Status Word Lock is reset and the
state of the task is transformed as shown in Table 6-1.

6-8

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

i j}~ Ai. '- () CA 1<:

.L/~ ~ 6'>01.)'< w:3. ~ ;

/' r- /?c:'\),;//2:::.) .

[)tSL/vcE/t!.

$7AiI.tiS wMj;

T0 :-S!3 o/!

"/58 QVe.r...JI:

r--·---
! ~~r /'si;

. r-.
1£;\/:
'--- -------

FIGURE 6-2. I/O START

6-9

ST(J~t: CoMN;~~

/,AJ PSI9 £~Ttey
/JAib .S/G-/IIAt....

I'~u lc .. ··.~.j/<-

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

11-26-69

The Level Blocked Indicator in the corresponding
Priority Array entry is reset, and the Priority Structure
is unlocked.

TABLE 6-1
TASK STATE TRANSFORMATION FOR I/O AND EXTERNAL STARTS

OLD STATE NEW STATE

PRIORITY HIGH* PRIORITY LOW*

Running Running ...
Ready Running Ready
Blocked Running Ready
Available Available Available

*Priority High indicates that the priority of the task being
started is higher than that of the lowest priority task currently
in the running state. Priority Low indicates the reverse situ­
ation.

6.7 EXTERNALLY INITIATED STARTS

An External Start is process where by a source external
to the system may transfer a doubleword of status informa­
tion to a task and cause the task to be placed in the ready
or running state. The mechanization for external starts
is identical to that for I/O starts except that the External
Start Array is substituted for the I/O Start Array, and an
External Status Word is formed in place of an I/O Status
Word.

6.8 PROCESSOR CONTROL OPERATIONS

Individual central processors are controlled by means
of a communications buffer in their PSA entries, and
an interprocessor signalling facility. Every processor
has the capability of signaling each of the other processors
in order to notify them that there is a message in their

6-10

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

6.8 (Cont.)

communications buffer.

When a processor (the command processor) wishes to cause
another processor (the object processor) to perform some
action it locks the PrioritY' Structure, stores a command
word in the PSA entrY' of the object processor and signals
the object processor. The command processor does not
attempt to reset the Priority' Structure Lock.

When the object processor recognizes that it'has been
signalled (see Section 6.5) it examines its PSA entry
and performs whatever action is required. The object
processor is responsible for resetting the Priority
Structure Lock.

The encoding of the command words is shown in Figure 5-7.
The action taken in response to the various command
words ~s as follows:

STORE CURRENT TASK AND DISPATCH: The TSB of the task
being run bY' the object processor (if anY') is restored
to memory and the processor e~ecutes a Dispatch operation.

STORE CURRENT TASK AND ENTER WAIT STATE: The TSB of
the task being run bY' the object processor (if anY') is
restored to memorY' and the processor does not load a
new task. The current prioritY' field of it's PSA entrY'
is set ot ones and it continues to test for Processor
Control signals (see Section 6.5).

STORE CURRENT TASK AND LOAD NEW TASK: The TSB of the
task being run by the object processor (if any) is
restored to memory and the processor loads a new task
from the address specified in the command 'word.

6-11
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

6.8 (Cant.)

CHANGE IDENTITY: The object processor assumes a new
identity. The exact ~echanism depenqs on the individual
processor implementations.

STORE CURRENT TASK AND DISPATCH SKJPFIN~'CURRENT TASK:
The TSB of the task being run by the object processor
(if any) is restored to memory and the processor
performs a Dispatch operation. During the course of
this operation the task which was restored to memory
is skipped over. That is it will not be run even if
it is the highest priority task in the ready state.

This facility is made available to the programmer via
the PROCESSOR CONTROL instruction.

6-12

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

SECTION VII
TRAPPING

7.1 INTRODUCTION

A trap is a control transfer initiated by a hardware de­
tected exception condition. Traps are internal to the
task in which they occur.

7.2 TRAPPING INFORMATION STRUCTURE

The parts of the TSB used for trapping are:

a Trap Index: This doubleword must contain a procedure
index. When a trap occurs the contents of this
location are exchanged with the contents of the up­
dated current procedure index.

b. Trap Registers: Three general purpose register images
the contents of which are exchanged with the contents
of GPR's ~, 1, and 2 when a trap occurs.

c. Trap ID (see Figure 7-1): A doubleword which, after
a trap, identifies the cause of the trap.

u ;-· ~-·'~-/,~-:--,-I-..,...-,-/l-_I;;-~-___ s,-_~-~-.~-_;;;~. ..J
o

FIGURE 7-1. TRAP ID FORMAT

d. Trap Mask: An eight bit status field which allows
each of the types of traps to be individually masked.
This field is a part of the procedure Index.

7-1

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY _ SENSITIVE

7.3 TRAP CAUSES

There are eight types of traps:

a. Instruction Exception: This class includes all error
conditions which are recognizable from examination of
the instruction alone. These include illegal opcodes
and instruction format~.

b. Operand Selection Exception: This class includes all
error conditions recognized' during the operand ex­
traction process and during Autofetch/Autostore.

c. Illegal Operand Exception: This class includes all
traps generated when a ope+and is recognized as being
illegal, given the instruction 'and the state of the
machine.

d. Machine Check: This occurs whin a' h?rdware failure
is detected.

e. Arithmetic Exception: This class includes all traps
generated during the actual manipulation of the data.

f. Timer: This trap is genrated when the task timer is
decremented through zero.

g. Program Controlled Type I: This trap is generated
when a Type I Trap Effector is used as an operand, or
during operand selection.

h. Program Controlled Typ~ II: This trap is generated
when a Type II Trap E~fector'is used either as an
operand or during operand selection.

These types of traps are mutually excl~siye so that only
one type can occur at a time. When a trap occurs the type
is used to set bits 0-7 of the Trap ID.

7-2

HONEYWELL PROPRI~TARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

7.3 (Cont.)

Within each of these types there may be a number of
different specific causes. These will set some or all
of bits 8-63 of the Trap ID. The conditions which may
cause traps are discussed along with the instruotions or
functions where they occur. These are also shown in
Table 7-1.

7-3

HONEYWELL PROPRIETARY - SENSITIVE

TRAP TYPE CAUSES

Instruction 1) Illegal Opcode
Exception

::r:
0 z
t%j

: 1) Excess Extent Operand
Selection during selection

~
t%j
t"'

Exception and substring
operations

t"'

'U
2) Qualification

:;0
0
'U
:;0 -..J
H J 3) Extraction
t:rJ ..p:..
J-j

~
4) Alterability

~

5) Autostore
{Jl

~
c onve-rs ion

{f.)
H 6) Autofetch
t-3

~
conversion

t:rJ 7) Excess
indirection

8) Full/Emty LIFO/
FIFO Array

9) Privilidge
violation

10) I/O

#See footnote, page 7-6.

TABLE 7-1
TRAP CONDITIONS

SETTING OF
BITS 0-7
OF TRAP ID

00

01

(Continued)

SETTING OF
BITS 8-15
OF TRAP ID

00

00

01

02

03

04

05

06

07

08

09

SETTING OF BIT~ 16-63
OF THE TRAP ID "
(Zero If Unspecified)

Unspecified

Address of Array structor

Address of modifier
structor

Address of nonalterable
structor

Address of structor
causing trap

Address of structor
causing trap

Address of last structor
used fDr indirection

Address of Array structor

Unspecified

Unspecified

::r:
0 z
l::tj

~
l::tj
t"'
t"'

"'0
::0
0
"'0 -J ::0
H I

l::tj \Jl

.-3

~
t-<!

til

~
til
H
.-3

~
l::tj

Table 7 -1 (Cant)

TRAP TYPE CAUSES

11) Non Binary
collate or
translation
Table not present

Illegal 1) Incompatible
Operand Operand types
Error

Machine 1) Hardware error
Check

Arithmetic 1) Overflow
Exception

2) Exponent over
or underflow

3) Significance loss

4) Negative result
generated for an
unsigned field

5) Zero

Timer 1) Timer decremented
through zero

#See footnote, page 7-6.
*See footnote, page 7-6.

SETTING OF SETTING OF SETTING OF BIT~ 16-63
BITS 0-7 BITS 8-15 OF THE TRAP ID
OF TRAP ID OF TRAP ID (Zero If Unspecified)

OA

02 00 Unspecified

03 * Implementation dependent

04 00 Address of result structor
or register

01 Address of result structor
or register

02 Address of result structor
or register

03 Address of result structor
or retister

04 Address of zero operand or
the structor describing it

05 00 Unspecified

(Continued)

Table 7-1 (Cont.)

TRAP TYPE CAUSES SETTING OF SETTING OF SETTING OF BIT* 16-63
BITS 0-7 BITS 8-15 OF THE TRAP ID
OF TRAP ID OF TRAP ID (Zero If Unspecified)

Program 1) Access of Type I 06 00 Address of trap effector
Controlled tr~p effector
Type I

::r:
0 z
t1j Program 2) Access of Type II 07 00 Address of trap effector
~
t1j
t"f

Controlled trap effector
Type II

t"f

to
!:O
0
to

*Depends on machine implementation
:::0 -J
H I
l:tj 0\

~
#Where an address is supplied it will be supplied as shown in Figure 7-1.

to<

(J)

~
('Jl
H
.-3

~
t1j

7 . 3 (Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

..... ~ ____ ~--.--_____ r' =9 "" WI" 7't vC; 1"M:

(0 ~ ""A(f-~i)
Z>a(J~-= j.rl}~,(~

FIGURE 7-1. LAYOUT OF TRAP ID

(I ~ .MEAl o~r ~tfj,f
),

'1 () ~ ~~<i-Isr~~ ~/),e$5~

Figure 7-1 shows the layout of the Trap ID. All unused
bits are set to zero.

7.4 TRAP MECHANIZATION

When a trap condition is recognized the location counter
in the current procedure index is set to point to the in­
struction causing the trap. The cause of the trap is
stored in the Trap ID field of the TSB. The appropriate
trap mask bit is tested to see if the trap is allowed.
If the trap is masked the location counter is updated, the
instruction terminates, and processing continues. If the
trap is allowed to trap registers are swapped with GPR's
¢, 1, and 2, the current procedure index is swapped with
the trap index, and the instruction terminates.

NOTE
The numbers appearing in brackets after
the mention of a trap are a hexadeoimal
representation of the setting of bits
0-15 of the trap ID after the trap occurs.

7-7

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

8.1 SYSTEM CLOCK

SECTION VIIl
TIMING FACILITIES

The system clock measures actual time of day. The
clock is a 52 bit binary integer which is accessed
by the Read Clock and Set Clock instructions (see
Section 6. and 6.).

The system Clock is incremented at bit position 35
every millisecond.

8.2 SYSTEM TIMER

The system timer facility consists of two 16 bit
registers: The value register (VR) and the clock
register (CR). The clock register is incremented
every millisecond.

The clock register is continuously compared with the
value register. Whenever the contents fo the CR
are found to be greater than or equal to the contents
of VR the clock register is reset to zero and an
external start directed to location zero of the
external start array occurs.

8.3 TASK TIMER

Each task has a task timer which measures the amount
of time the task is in the running state. The task
timer is in doubleword 18 of the TSB. It is 32 bits
long and has a resolution of one microsecond. Its
precision may, however, be less on some systems. The
task timer is treated as a twos complement number which
is decremented at the interval required by its precision,
while the task is in the running state. It is not
decremented if the processor is stalled waiting for
a memory access and it is not decremented during any

8-1

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

8.3 (Cont.)

time the processor spends performing task control
operations.

When the timer is decremented trhough ~ero a trap (0500)
results. The trap occurs after the end of the current
instruction, and before the beginning of the next
instruction. If a timer trap is masked it is held pending
until the mask bit is reset. During the time the trap
is pending the timer continues to be decrem~nted. This
is the only trap which may be];lelG pend,ing.

8-2

HONEYWELL PROPRIETARY - SENSITIVE

9.1

HONEYWELL PROPRIETARY - SENSITIVE

SECTION IX
INPUT/OUTPUT FACILITIES

INPUT/OUTPUT OPERATIONS

Input/Output (I/O) operations involve the use of certain

system facilities or resources. This set of resources,

which is referred to as the Input/Output or Peripheral Sub­

system, is defined as those system resources whose purpose

is to initiate, monitor, sustain or terminate data transfers,

or to execute control operations in a peripheral device.

Conceptually, the I/O subsystem can be viewed as a differ­

ent area of funtionality. This is illustrated in Figure

9-1.

FIGURE 9-1.

JAlPur/
tJarl'ur

SU8SjsrElf)

I/O FACILITIES

This doep not imply, however, that in certain implementa­

tions.or configurations the central processor and I/O sub­

systems cannot share common resource, e.g., control logic,

control memory, etc. For the purposes of definitions, and

only from a functional point of view, we will consider the

I/O sybsystem as a separate entity. It will be capable of

executing I/O operations without intervention from ~he cen­

tral processor task that originated them.

9-1
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPIETARY - SENSITIVE

A peripheral device is a single addressable,data source or

data sink. It may be a unit produ~ing physical media, such

as a disk or tape drive or an electrQnic imedia such as a

communications channel.

The I/O operations, as defined by, the I/O commands, are

classified in the following cat~garies~

a. Data Transfer Commands:

These commands involve the transfer of data to/from

peripheral devices, and from/to memory.

b. Control Commands:

These commands involve the transfer to the device of

control information only, e.g., setting a parameter or

condition in a peripheral device, rewinding a tape,

seeking a sylinder on a disk drive, etc.

c. Inquire Commands:

These commands are used to retrieve p~rtinent status

information from the Reripheral 'subsystem.

The I/O commands can be grouped into an arFay defining a

series of I/O operations to be performed by the peripheral

subsystem. The execution of nhe array is triggered by the

central processor issuing qn I/O instruction.

It is important to note the difference between an I/O oper­

ation and an I/O instruction. An, I/O ope~ation is the min­

imum command for the peripheral SUbsystem. The I/O instruc­

tion, which is a central processor native mode instruction,

can indicate the execution of a whole array of I/O opera­

tions. This difference is presented in Figure 9-2 ..

I/O operations are executed in sequence by the peripheral

subsystem, until the completion of the array,

Since some of the I/O commands in the array may specify data

transfer operations, and since some resources in the periph­

eral subsystem have a limited transfer rate capacity, the

central processor will prote~t against the issuing of 110

9-2
HONEYWELL PROPRIETARY - SENSITIVE

9.2

HONEYWELL PROPRIETARY - SENSITIVE

FIGURE 9-2. I/O INSTRUCTIONS AND OPERATIONS

instructions which can potentially create an " over run"

condition in those resources.

Also, since many arrays con be simultaneously under execu­

tion (the maximum number determined by the number of levels

of simultaneity of the peripheral subsystem) the central

processor will protect the issuing of I/O instructions

whose requirements exceed the number of levels of simulta­

neity available.

The peripheral subsystem will execute the array of I/O

commands, (or sequence of I/O operations) without direct

intervention of the task that originated it.

Upon completion of the array, (or during its execution if

programmed to do so in the I/O commands), the Peripheral

Subsystem will signal the Central Processor(s) to indicate

this fact, as described in Paragraph 9.6.

INPUT/OUTPUT COMMAND STRUCTORS

The Input/Output Command Structor contains information di­

recting a device to carry out a single operation. The struc­

tor is meaningful only to the Peripheral Subsystem. When

several I/O command structors are grouped together, they

form an I/O command array which in itself is a program ex­

ecutable by the Peripheral subsystem.
9-3

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY ~ SENS~~~VE

The format of an I/O command structor is as shown in Figure

9-3.

rif.G-

i 11111111: LOCATIIN
"~"_ .. L .. __ ~_:..l. _____ "". .

i
I

I .t.F'-'1S--TI(
.,,"-__ 1___ _ ... ____ "

¢ J,/ 7,. ~J~

FIGURE 9-3. I/O COMMAND STRUCTOR FORMAT

The eight-bit DEVICE, COMMAND CODE (DCC) field will define

the particular I/O operation. Up to 255 DCC's can be speci­

fied for each type of peripheral device. One DCC (All zeros)

is reserved for,a No-Operation code. The particular bit

configuration for the Device Command Code can be found in

the corresponding Peripheral Devices/Processors specifica­

tions.

The Device Command Codes (and consequently the I/O command

structors) are classified in the following categories:

· Data Transfer Commands.

· Control Commands.

· Inquiring Commands.

The Data Transfer Commands will initia'te transfer of data

to/from peripheral devices, and from/to memory. The Control

Commands will initiate a control oper9tion such as rewinding

a tape, seeking a cylinder on a disk drive, ~tc. The data

to be transfered (if any) will be cont~ol information only.

The Inquire Commands retrieves status intormation.

The 24-bit LOCATION and the 16-bit LENGTH fields, will de­

fine a main memory area or buffer. If the DCC indicate$ a

Data Transfer command the buffer will contain (or will be

the destination of) the data. It the DCC implies a Control

Operation command, the buffer will incluae all the addition­

al control information, such as the cylinder address to

9-4
HONEYWELL PROPRIETARY - SENSITIVE

9.2.1

HONEYWELL PROPRIETARY - SENSlrr'IVE

perform a seek, etc. If the DCC indicates an Inquire Com­

mand, the status information will be stored in the buffer.

The LENGTH field specifies the number of bytes to be trans­

fered. The maximum length for a single command is 65,535

bytes.

The LOCATION field is a byte address, pointing to the first

byte to be transfered. Since data transfers always start

in the high-order byte of a word, the lower order two bits

should be zeros. There is no similar restriction in the

length of the transfer.

An exception to the above mentioned restriction in the lo­

cation field is when the DCC indicates a Read Backward op­

eration. If this is the case, the location field is not re­

stricted to have its two lower order bits as zeros. I.e.,

the data transfer can start in any byte position in the word.

The B-bit TRANSFER VARIANT contains information to be used

by the Peripheral subsystem in maintaining the peripheral

operation and in sequencing through the I/O command struc­

tors in the array. The Transfer Variant is formatted as

shown in Figure 9-4. The functions to be performed are ex­

plained with the individual bit configuration.

The signals to the Central Processor(s) caused by a residue

storage or programmable signal will be explained in Para­

graph 9.6.

The branching capabilities as described in Figure 9-4, are

not complete and they will be further descussed in next

paragraph.,

The I/O Command Array

The I/O command structors can be grouped in an array, which

is executed by the Input/Output subsystem.

Upon satisfactory completion of an individual command, the

Input/Output subsystem will issue the next one in sequence

9-5
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

Transfer Variant

012 3 456 7

Residue bit: it will ~ndicate that
the residual count (the difference
between the lengtp of the record and
the buffer) should be saved. An I/O
interrupt wil~ occur at the end of
this ,command if this di;Eference is
other than ~ero. The next command
will be executed normally. See
Paragraph 9.6 'for further details.

Programmable Signal bit: if a one,
a signa 1 to, the CP wi 11 be gener­
ated, on completion of the execu­
tion of the I/O command. The next
I/O command will proceed normally .

. ________________ ~. Branch bi~; if a one, it will spec-

or

ify that on sensing the correspond­
ing 'bit of the status at termina­
tion (sent at the completion of the
command) as a one, it should not
execute the next command in se­
quence, but rather branch forward
or backward, a ,number of double
word I/O command structors, as spec­
ified in bits 0 to 4. The complete
branding operation is described i~
Paragraph 9.2.1.

If the branch bit is a one:

· It will provide a branching
argument to be used in the
br~nching op~ration. The argu­
ment is cod~d as a two's com­
plement number (R~nge: -15 to
+16) indicating the number of
I/O Commands to be skipped for-

--------. If

ward or backward.

the branch bit is a zero:

· Bits 1, 2, 3 and 4 will indicate
spe~ial flags (not yet defined).

· Bit 0: It will indicate (if a
one), that the I/O command is'
the last in the array.

FIGURE 9-4. TRANSFER VARIANT FORMAT

9-6
HONEYWELL PROP~IETARY - SENSITIVE

9.3

HONEYWELL PROPRIETARY - SENSITIVE

until co~ple~ion of the array, the last I/O command in the

array being indicated by a ONE in Bit 0 of the Transfer

Variant.

Normally, an I/O command will specify a peripheral operation

such as reading or writing a record of date. In addition,

and using bits 0 to 5 of the Transfer Vairant, the I/O com­

mand is provided with a conditional branching mechanism.

This branching process works as follows;

Upon completion of an I/O Command, if the Branch bit (bit 5)

of the Transfer Vairant is a ONE, the corresponding bit in

the status send at the completion of the command is sensed,

and if a 1, the branching argument of the Transfer Vairant

is extracted (bits 0-4) and its value added to the argument

send as a second byte of status. (This later argument is
an 8-bit two's complement number.) The result of the addi­
tion referents the number of I/O commands to be skipped [
forward (if the resulting number is positive) or backward in
in the array. The extent field is checked to protect for
the issuing of commands outside the boundaries of the I/O ,
Command Array.

At the completion of the array, a signal is generated to a

pertiment task, as described in Paragraph 9.6. Abnormal

situation such as errors or illegal commands will cause the

immediate termination (abnormal termination) of the array

and a signal generated.

INPUT/OUTPUT INSTRUCTIONS

The I/O instruction repertoire consists of the following

instructions:

a. Initiate Device Operation (IDO)

b. Halt Device Operation (HOO)

The IDO instruction has two operands associated with it.

The B operand will always identify a logical device, and

the A operand which will point to an array of I/O Commands

HONEYWELL PROP~ARY - SENSITIVE

9.3.1

HONEYWELL'PROPRIETARY - SENSITIVE

to be executed bY,the specified device. Both operands

will be used in the assembling of an I/O operand, which

will d~scribe to the Peripheral Subsystem, which device to

use, and where the array of I/O commands is located.

The HDO instruction has only one operand, the B operand,

which identifies a logical device. It will also assemble

an I/O operand to be used by the peripheral subsystem. CliO

operands are described in the following subsections.)

Protection and Allocation Tables

In order to execute a Peripheral operation, three basic re­

sources are needed: i3 peripheral deVice, a level of simul­

taneity of the I/O subsystem and transfer rate available in

all those shared resourced which will transfer either con­

trol information or data.

Each one of those resources is checked by tne Cont~al Pro­

cessor before issuing an I/O instruction to the Peripheral

Subsystem. The availability of the device and its logical

assignment is checked in the Device Specificat~on Table.

The level of simultaneity in the Simultaneity Table and the

transfer rate in the corresponding entries in the Traffic

Registers. In order to avoid simUltaneous accesses to the

table from more than one process, there is a common, lock in

the system base, which should be "tested and setted" when

accessing the table to allocate or deallocate resources.

a. Device Specification Table: This table is located in

main storage, its starting location is contained in the

System Base.

There is an entry per device ana each entry is 2-word

long. Its format is shown in Figure 9-5.

The first byte contains flags which inqicate a series

of device status bits and actions to be performed during

extraction of the order that reference that physical

device. Its format is shown in Figure 9-6.

9-8
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

FIGURE 9-5. DEVICE SPECIFICATION TABLE ENTRY FORMAT

The Device Status Table also includes a 24-bit ADDRESS

OF COMMAND ARRAY field. This field will indicate the

initial address of the array under execution, if the

device is currently executing a data transfer operation.

The Table also includes a 16-bit current device TRANS­

FER RATE ASSIGNMENT, and the 16-bit LOGICAL STATUS

field which includes the logical assignment of the

peripheral device, as determined by the software.

All entries in this table are maintained by software

with the exception of the busy device flag and the ad­

ress of the Command array, which are dynamically main­

tained by the hardware, upon successful initiation of

an IDO order.

The detailed use of the Device Specification Table will

be further clarified in describing the extraction of the

IDO order in Paragraph 9.3.2.1.

b. Simultaneity Table: This table is located in main stor­

age with the starting location contained in the System

Base.

There is an entry per each resource which can poten­

tially have multiple levels of simultaneity. Each entry

is one byte wide and it is formatted as shown in Figure

9-7.

The entry contains initially a binary number equal to

127 minus the levels of simultaneity of the resource.

It is originally set up by the software and it is

9-9

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

F1ag~ byte

I 0 11 I 2 i 3 I 4 I 5 1 6 1 7 J
1------------unconditiona1 Trap: Any reference

to this physica.l device will cause
a trap.

~------------~ Compare Logical Mask; If a 1, it
will indicate that the Logical Mask
fi~ld in the Device Identifier
Sturctor, and the L0gical Status
field in the Device Specification
Table, should be compared for equal.

,----------------~. If a 1, and the logical comparison
was not successful, the order will
be trapped~ If a ~, and the logical
comparison was not succe9sful, the
order will be rejected.

If a 1, it will indicate that no
level o:e Simultaneity check will
be performed for IDO instructions
specifing a single control command.
(See Paragraph 9.3.2.1.2.)

~----------------------~ If a 1, it will indicate that the
device is capable of executing al­
ternate arrays IDO's. (See Para­
graph 9.3.2.1.3.)

Device Busv Status: Indicates (if
1) that the device is currently ex­
ecuting an array of I/O commands.

If a 1, and the Device is busy, the
order will be trapped. If a ~, and
the devi~e is busy, the order will
be rejected.

L ______________ --____________ • Reject due to Device Malfunction:
If this bit is a 1, it will indicate
that there is a malfunction in the
device and the order should be re­
jected. ' (It must be noted that if
a trap because of maffunction is
desired, bit 7 can be set to 1.)

FIGURE 9-6. FLAGS IN DEVICE SPECIFICATION TABLE

9-10

HONEYWELL PROPRIETARY - SENSIT,IVE

HONEYWELL PROPRIETARY - SENSITIVE

('.O;J/"'A//NS I'l 1V(),IwA.(Jt££ £~V;:J4- r~~ /"'1 ,H/N~S, r.lr4f£ J..,,·~vI!I..S

Or .s (IV: (,.II. r~ IV!!' I Ty or- rN'i:· /' ... ~,'HI /l. (;. C' r"" .. w~ T/1I4 /'/0' ,,#t.ll~A!

1)1 ': S/A1"'Lr.t:l~~ try (h~' ;r/T'~ ~~$~ t,,~ ct!! C. i..I~/(I!';4,; r '"'/ ¢~t.>

FIGURE 9-7. SIMULTANEITY TABLE FORMAT

dynamically maintained by the CP when issuing or ter­

minating peripheral instructions.

If in attempting to initiate an IDO instruction, the in­

dexing of the entry forces bit zero to be a ONE, it will

indicate that the resource is busy, i.e., does not have

any further level of simultaneity available.

The table is used during extractions of IDa orders.

c. Traffic Registers: There is one traffic register. per

resource in which overrun can occur and one traffic re­

gister for the total system. The traffic registers are

located in main storage starting in the location speci­

fied in the System Base.

Each entry is a word long, and its format is shown in

Figure 9-8.

, -- ~ --- ... _- -

C 1./ I(I(E~"" I 1'II..f-)t 1.Nt LI At

iifAA/~~~~Fl~~~~
Ir" ."

~-... ,- ~ -_.--..-"""""

FIGURE 9-8. TRAFFIC REGISlER FORMAT

9-11

HONEYWELL PROPRIETARY - SENSITIVE

9.-3.2

HONEYWELL PROPRIETARY - SENSITIVE

The two low order bytes contain the maximum allowable trans­

fer rate in the resource, as set up by the software. Upon

initiation of an IDO order, the hardware will add the trans­

fer rate specified in the Device Specification Table to the

two high order bytes, and then compa+e the result with the

maximum, in order to check for potential overruns.

The transfer rates are represented as a l6-bit binary in­

tegers, in which the least significant bit corresponds to a

frequency of 64 transfers/record. This im~lies that the

maximum representable transfer rate is 4,194,304 transfer/

sec.

Central Processor Input/Output Instructions

There are two Input/Output instructions: Initiate Device

Operation (IDO) and Halt Device Operation (HDO).

9.3.2.1 The INITIATE DEVICE OPERATION Instruction

The formats of the IDO instruction are shown in Figure 9-9.

~ 7 r III~
i Il>o .s

s

" FIGURE 9-9. IDO INSTRUCTION FORMATS

(See Section III for details on Central Processor instruction

fOlTmats.)

The B operand will be a Device Identifier Structor. Its

format is shown in Figure 9~lO.

9-12

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE 1-16-70

,t " 10" LO(iIC,.L ,AfAS/(

FIGURE 9-10. DEVICE IDENTIFIER STRUCTOR FORMAT

Starting from the right, the l6-bit LOGICAL MASK field will

be used during extraction of the IDa order, and it will be

compared for equal with a l6-bit Logical Status field in

the Device Specification Table. The IDa orders will then

be restricted to access the device, only if its logical

status is the same as the Device Identifier Structor Logical

Mask.

The a-bit Function Mask field defines restrictions in the use

of the device, as specified in the peripheral device specifi­

cations (e.g., no seek allowed, no control operations, etc.)

The eight-bit DEVICE field specifies the actual device ad­

dress to be used.

The l3-bit DATA PATH field describes any required routing

information.

Upon extraction of the Device Specifier Structor, (or B

operand), the protection and allocation of the peripheral

resources will be effected, using the corresponding table

entries.

Information defining which resources to protect or allocate

is included in the A operand, which can specify different

types of command arrays, each with different protection re­

quirements.

There are three types of A operand, which will define three

kinds of IDa instructions as follows:

A Operand = Implicit length. tagged double word struc­

tor: IDO's initiating a Data Transfer Array. (DTA).

9-13

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

A Operand = Type Hex D Control Structor: IDa is initi­

ating a Single Control Command. (SCC).

• A Operand = Type Hex C Control Structor: IDa is initi­

ating an Alternate Array. (ALT).

Each type will be separately described including the extrac­

tion of the IDO instruction in each case.

a. Data Transfer Array: The A operand consist of an inplicit

length, ,tagged double word structor, whose format is as

shown in Figure 9-11.

() 71'

FIGURE 9-11. IMPLICIT LENGTH STRUCTOR FORMAT

The 24-bit LOCATION field will point to an array of I/O

command s'tructors or "c hain" of I/O commands, and the extent

of the array is limited to 256 commands (the high-order

eight bits of the extent field must be zeros). The position

field is not used.

The I/O command structor array is the actual list of the I/O

operations or "1/0 Program". An individual I/O Command struc­

tor is formatted as shown in Figure 9-3.

The complete set of facilities or resources needed to perform

a Data Transfer operation will be checked and allocated dur­

ing the extraction of the lDO instruction with this A oper­

and, and they will remain busy during the execution of the a

array. Those facilities are: a peripheral device, a level

of simultaneity of the I/O subsystem and transfer rate.

Control commands can be included in the array, but it should

be noted that resources such as transfer rate, will be tied

up during the execution of these commands.

9-14

HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

The extraction path for this type of A operand will be

as follows: (The complete Central Processor extraction

of a Data Transfer Array IDO order is shown in Figure

9-12).

As mentioned, the central processor extracts the Device

Identifier Structor, and the entry in the Device Spec­

ification table is selected. The first byte of the

entry is extracted and the actions indicated by the

Flags are performed. If no trapping or reject-

ion occurs, the transfer rate is extracted and the

overrun protection is effected by using the Traffic

Registers.

If the Traffic Register indicate a potential overrun

condition, the order is rejected; if not, the level of

simultaneity is checked and allocated,

If the simultaneity table indicates that all levels of

simultaneity of the resource are busy, the order will

be rejected (by setting the condition code register

with the corresponding information and extracting the

next order) •

If all the preceding checks are satisfied, the I/O

operand is assembled. The I/O operand is used by the

peripheral subsystem in initiating the execution of the

array. I/O operands are formatted as described in

Paragraph 9-4. The location field is also stored in

the Device Specification Table and the busy status bit

in the flags field is set to one.

The execution of the IDO instruction terminates at

this point, and the next central processor instruction

in sequence is extracted.

9-15
HONEYWELL PROPRIETARY - SENSITIVE

8 o,l'£'/tAN/) A ~~AN.D
DE"IC~ r~nFI£,(S"Aucro~ 44,1fMY "~IC.#II« .sT~vc.?'b,e

,
" \.

\.

t
r
I
t

- I
I
I

t

\
\

\ AE5Eltr~"

') ,
J

t T,(/tNS~E~ RJ(i./(!AL.
A4rE' STArtJ$

---, -

~u;rsi&?' L ~z:t~l
L-__ ========~~I

FIGURE 9-12. EXTRACTION OF AN IDO INSTRUCTION

HONEYWELL PROPRIETARY - SENSITIVE

The condition code register contents (In the Procedure

Index), after the execution of an IDO order, is for­

matted as shown in Figure 9-13.

o 1 2 3 4 5 6 7

I I
'--

I
1
I

I I I I I
I Device Malfunction (or device non­

existant or not attached as indi­
cated by DST) •

Facility busy (Device, transfer
rate, etc.) as indicated by DST.

Reserved.

Reserved.

Logical protection (the Logical
Mask did not compre with the Device
Logical Status, as required in the
DST) •

Reserved.

Order Satisfactorily Initiated.

FIGURE 9-13. CONDITION CODE REGISTER FORMAT

b. Single Control Command: The IDO instruction will spec­

ify the execution of a single control command if the

A operand is a type Hex D structor, formatted as shown

in Figure 9-14.

~OO •••••••• "ool

FIGURE 9-14. SINGLE CONTROL COMMAND SPECIFIER STRUCTOR

9-17
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

The 24-bit LOCATION field points to a single I/O com­

mand, which must specify a Cpntrol Operation. The

extent field must be all zero, indicating an lIarray" of

a single element. The position field is not used •.

The extraction path is similar to the case in which the

A operand was a Data Transfer array structor, with the

exception that the simultaneity table check will not be

made, if so specified in bit 4 of the Flags field in the

Device Specification Table.

This bit, if a 1, indicates that. the corresponding per­

ipheral device is attached to ·facilities which can

execute control commands, even in those cases in which

all levels of simultaneity are· busy.

An I/O operand will be generated for the I/O subsystem.

A different I/O operand is used for this kino of opera­

tion because it will allow an early release of resources

(transfer rate, level of simultaneity) before the actual

completion of the I/O operation. All I/O operands are

described in Paragraph 9~4.

After assembling the I/O operand ~nd signalling the

I/O subsystem, the execution of the IDO instruction

terminates and the next central processor instruction

in sequence is extracted.

The ~ondition code contents in the Procedure Index,

after execution of the IDO or~:lei, is similar to the

previous case and it is shown in Figure 9-13.

c. Alternate Array: The A operand consist of a type Hex

C structor, which is formatted as shown in Figure 9-15.<

1111 II 00 ~D ell rltlll

FIGURE 9-15. ALTERNATE ARRAY SPECIFIER STRUCTOR

9-18
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY - SENSITIVE

The 24-bit LOCATION field points to an array of I/O

commands similar in all respects to the Data Transfer

Command array.

The difference is that an IDO with this type of A oper­

and will be issued to a busy peripheral device. The

device will stop execution of the previouq array (even

in those cases in which it is tranfering data), it will

proceed to execute the alternate array up to its com­

pletion, then resume execution of the previous array,

without any loss of data or control information.

Not all the devices will be able to execute the alter­

nate array, because it is required that the facilities

to which the device is attached, be prepared to do so.

Bit 3 in flags field in the Device Specification Table

will indicate (if a 1), that the device is capable of

executing an alternate array. This bit will be checked

during the extraction of an IDO order with this type of

A operand.

The extraction path is similar to the case in which the

A operand specifies a Data Transfer Array, with the ex­

ecution of action to take after the bu~y test on the

device. If the device is busy, no transfer rate will

be allocated (The I/O subsystem will stop execution of

previous array, which used the same amount of transfer

rate). If the device is not busy, the order will be

automatically converted as if the A operand specified

a Data Transfer Array.

I/O operands will be generated for the I/O subsystem.

(All formats of I/O Operands are presented in Paragraph

9-4).

The execution of the IDO instruction terminates at this

point, and the next central processor instruction in

sequence is extracted.

9-19
HONEYWELL PROPRIETARY - SENSITIVE

HONEYWELL PROPRIETARY ~ SENSITIVE

The Condition Code in the Procedure Index, after ex­

ecution of the IDO order, is similar tp the previous

case, (as shown in Figure 9-13), with the exception

that the device busy bit can be set to one at the same

time that indicating an order satisfactorily initiated.

9.3.2.2 The Halt Device Operation Instruction

The formats of the HOO instruction are shown in Figure 9-16.

I /(1)0

FIGURE 9-16. HOO INSTRUC~ION FORMATS

(See Section III for details in. Central Processor instruc­

tion formats).

The A operand is not used in an HDO order, and the contents

of the register in the R syllable is not affected by its

execution.

The B operand must be a Device Specifier Structor, as in

the 100 instruction.

The HDO order will cause an abnormal t·ermination to occur

in the peripheral device specified in the B operand.

No access to the Device Specification Table will Qe per­

formed. (The corresponding facilities are released on

signal from the peripheral device.)

After the I/O operand is formatted, the execution of the

HDO instruction terminates, and the next instruction in

sequence is extracted.

9-20
HONEYWELL PROPRIETARY - SE~SITIVE

HONEYWELL PROPRIETARY - SENSITIVE
1-16-70

9.4 INPUT/OUTPUT OPERANDS

000

oot

The Input/Operands are the result of the extraction of an

I/O order, and they convey to the I/O subsystem the nec­

essary information to execute the peripheral order. The

formats of I/O operand and their corresponding codes are

shown in Figure 9-17.

a. I/O Operand indicating execution of a Data Transfer

Array:

DATA PATH /)~"IC~
j:.uK'ltiN

£oC.A rltJA/ ExreNr inltst
,:I

b. I/O Operand indicating execution g a Single Control

Command:

PArJ9 ,*rH ~Erlc.r RlIIC/itIAI 1. 0 ~A .,. ION .;EXTENT"
!J~k..

() 3

~/O

c. I/O Operand indicating execution of an Alternate Array:

j),;tJ rlJ I'lIJrN /Jt J',cr !=u tvchiAl ~o eAT/aN .E~7Ghr
IfJlfs'k

d. I/O Operand indicating execution of a Halt Device

Operation:

FIGURE 9-17. INPUT/OUTPUT OPERAND FORMATS

9-21
HONEYWELL PROPRIETARY - SENSITIVE

63

I

HONEYWELL PROPRIETARY - SENSITIVE

The LOCATION field points to an I/O command or array of

commands.

The 4 low order bytes and the code of an I/O operand are

assembled with information from the A operand of a Central

Processor peripheral instruction. The high order 4 bytes

contains information specified in the B operand of the

same instruction.

9.5 SUMMARY OF EXTRACTION AND FORMATS

Table 9-1. contains a summary of all I/O formats, as well

as the allocation features.

A
Operand

B
Operand

Resulting I/O
Operand

Device Busy
Check

Transfer Rate
Allocation

Simultaneity
Allocation

TABLE 9-1
VALID FORMATS RESULT OPERANDS AND

RESOURCE ALLOCATION IN I/O INSTRUCTIONS

IDO Order IDO Order IDO Order
{Data Trans- {Single Con- (Alternate
fer Array) trol Command) Array)

Implicit length Type Hex D Con- Type Hex C
Double Word trol Structor Control
Structor Structor

Device Speci- Device Speci- Device
fier Structor fier Structor Specifier

Structor

Code a Code I Code 2
(Device
busy)
Code a
(Device
not busy)

Yes Yes Yes, but
not re-
jection

Yes Yes No

Yes Conditional Yes

9-22
HONEYWELL PROPRIETARY - SENSITIVE

HDO
Order

-

Device
Specifier
Structor

Code 3

No

No

No

HONEYWELL PROPRIETARY - SENSITIVE

9.6 INPUT/OUTPUT TERMINATIONS

9.6.1

The sequencing of I/O commands in the array will proceed

until the last one in the array or II cha in II is executed.

The last command is defined to be the command in which the

end bit in its tranfer variant is a one.

After execution of this command is completed, the I/O sub­

system will send a normal termination signal, which will be

directed by the Central Processor to a preassigned task.

There are other reasons for signalling the Central Proces­

sor, and they will be described in Paragraph 9.6.2.

The I/O Initiated Starts

The effect of any signal from the I/O subsystem is to start

a prespecified task. The task to be started is selected on

the basis of which device originate~ the signal and on the

various types of signal available to the device and the

I/O subsystem.

This hardware steering mechanism is implemented with the

use of the I/O Start Array (See Section II). This array

contains a potential entry representing a specific device,

a specific type of signal (termination, resid~e storage,

attention etc.) and a third level of indexing qualifying

the type of start. Each I/O start will cause transfer of

the I/O Status Word (See Paragraph 9.6.2). It contains

the device address and signal code (indicating type of

start) as well as the qualifier.

When the signal code of the I/O Status word indicates a

termination condition, the resources (transfer rate, level

of simultaneity, .device) will be deallocated from the cor­

responding tables.

The execution of I/O initiated starts will be discussed in

Paragraph 9.6.3.

9-23
HONEYWELL PROPRIETARY - SENSlTIVE

9.6.2

HONEYWELL PROPRIETARY - -SENSIT~VE

The I/O Status Word

There are five main reasons for generating an I/O start

(of a CP task) :

a. Normal Termination

The termination of an I/O op~ration will cause an I/O

interrupt. A normal termination for a data trqnsfer

operation is defined to occur, at that point in time in

which the data and status information for the last I/O

command in the array or chain are available.

The normal termination of a control operation can in­

dicate one of two things: '1), The device is ready to

execute a new order. 2) Certain facilities can be used

to initiate another I/O operation to a different device.

(e.g., An I/O operatiorl, indicating a seek cylinder in

a disk drive will be able to release tr~nsfer rate and

the level of simultaneity very early, leaving in a

busy status only the disk drive).

In the later case, the termination of the seek, or

device not busy signal will be indicated with an at­

tention signal.

b. Abnormal Termination

Meaning that the I/O operation could not be completed,

or it was completed with an error.

c. Programmable Signal

During execution of an I/O command array, an I/O start

is generated if so specified in t~e'transfer variant,

after execution of any operation in the chain.

d. Residue Storage

The t~ansfer variant can specify that the residual

count, or the difference between the length field in

9-24
HONEYWELL PROPREITARY - SENSITIVE

9.6.2
(Cont.)

e.

HONEYWELL PROPRIETARY - SENSITIVE

the order and the length of the physical record, be

saved, if different from zero. A signal will be gen­

erated to effect this.

Attention Signals

An attention signal is defined to be all those signals

coming from a device not presently associated with a

level of simultaneity or an I/O command array.

Each type of I/O Status Word will have an assigned code,

specifying the type of signals. The IOSW's are formatted

as shown in Figure 9-18.

----~--~.-----

FIGURE q-l8e I/O STATUS WORD FORMATS

9-25
HONEYWELL PROPRIETARY - SENSITIVE

i
i
i

'-'

9.6.3

HONEYWELL PROPRIETARY - SENSITIVE
11-26-69

Bits 0-7, shown as reserved in Figure 10-18, includes de­

allocation information, and it will represent which type

of IDO order initiated the I/O command array.

The 4-bit QUALIFIER field will allow the peripheral device

to selectively start one of up to 16 different task per

each condition. (e.g., several types of attention signals).

The 8-bit DATA PATH field includes part of the routine in­

formation used in the 13-bit Data Path field associated

with the I/O instruction. It is to be used to specify

which resources to deallocate.

The 8-bit ARRAY SEQUENCE field, indicates the position in

the array of the I/O command which caused the signal.

The 24-bit STATUS field will include pertinent status in­

formation (not yet defined).

The 16-bit RESIDUE field, will include the residual count

or the difference between the length of the buffer and the

length of the physical record. If the physical record was

longer than the main memory buffer, it will include all

zeros.

The I/O status word is stored in a queue pointed by an

entry in the system base, and then moved to the location

specified in the I/O start array.

Execution of I/O Initiated Starts

The central processor servicing the interrupt will fetch

the IOSW, and sense if the cause of the interrupt is an I/O

command array termination.

If the IOSW indicates a termination, normal or abnormal, of

an array, the I/O subsystem will proceed to deallocate

the resources used in the execution of the array, as des­

cribed in Paragraph 9.6.4.

9-26
HONEYWELL PROPRIETARY - SENSITIVE

9.6.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

The I/O start array entry in the System Base will indicate

in which location the IOSW should be stored.

The Central Processor will sequence through the I/O start

array in the following way, depending on the str~ctors

stored in the corresponding entries in the array.

The first entry can indicate one of three conditions:

a. Ignore all I/O starts (null entry).

b. Start a particular task.

c. Index with device number.

If the last condition is found, the device number in the

IOSW is used to extract a new entry which can specify:

a. Ignore I/O starts to specified device (null entry).

b. Start a particular task.

c. Store the IOSW in a particular queue and then start

a particular task.

d. Index with signal code.

If the last condition occurs, the signal code in the IOSW

is used to extract a new entry which will specify:

a. Ignore I/O ptarts specifying a particular condition

(null entry)

b. Start a particular task.

c. Store the IOSW in a particular queue and then start a

particular task.

d. Index with qualifier code.

If the last condition occurs, the qualifier code is used to

extract a new entry, which will again specify a null entry,

point to a task,-or point to a queue and a task.

9-27
HONEYWELL PROPRIETARY - SENSITIVE

9.6.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

The I/O Start will ca~se in most cases the change ofa task

status from BLOCKED to READY, anq if the ~ask is of higher

priority than the task presently running, it will ,be

swapped and its status cbangeq to RUNNING.

If 1;he task was already in the rupn.ing sta,t,e, a flag will

be set in the task status block.

A complete description of the start operation appears in

Section 7 (Task Multiplexing) •

• 6.4 Termination Conditions

T~rminations can be classified in the following ways:

a. According to the checking, results in:

1. Normal Termination

2. Abnormal Termination

b. According with the nature of the last or single comm9,nd:

1. Termination of data transfer.

2. Termination of Control ,operation.

c. According with the original CP I/O instruction.

d.

1. Order originated in a Data Transfer Array IDO.

2. Order originated in a Single Control Comma.nd IDO.

3. Order originated in an Al te+na'te Array IDO.

According t6 which facilities should be released:

1. Termination of transfer rate usage, level of simul­

taneity, but device still busy.

2. Termination of device.

3. Simultaneous termination of all facilities.

Those termination conditions can occur in many different

combinations. (e.g., Normal termip.ation of a control opera~

tion of an Alternate Array in which qevice is still busy;

abnormal termination of Control Operation initiated by a

Single Control Command IDO, in which all facilities simul­

taneously terminated, etc.).

9-28
HONEYWELL PROPRIETARY - SENSITIV~

9.6.3
(Cont.)

HONEYWELL PROPRIETARY - SENSITIVE

The releasing of facilities, during execution of the I/O

start, takes in account all these different conqitions.

All possible combinations are presented in Table 9-2.

The entries in that table marked as CONDITIO~AL refers to

the fact that during initiation of an IDO order pointing

to a Single Control Command, the level of simultaneity

mayor may not have been allocated (depending in bit 4 in

the Device Specification Table), The deallocation mechan­

ism should do the inverse operation.

Entries marked as NOT APPLICABLE refers to the fact that

IDO executing Alternate Array were directed to a busy

device. Consequently, termination of the array should not

release the device in any case. If an abnormal situation,

occurs, such as a recoverqble error, the device should

abnormally terminate ~ arrays, the alternate and the

original, send.ing two I/O starts. The second one will in­

dicate release of the device.

9-29
HONEYWELL PROPRIETARY - SENSITIVE

TABLE 9-2
SUMMARY OF TERMINATION CONDITIONS

.
Operations initiated with Operations initiated with Operations initiated with
IDO-Data Transfer Array IDO-Single Control Channel IDO-Alternate Array

Transfer Level of Device Transfer Level of Device Transfer Level of Device
Rate -Simul- Deallo- Rate Simul- Deallo- Rate Simul- Deallo-

Deallo- taneity cation Deallo- taneity cation Deallo- taneity cation
cation Deallo- cation Deallo- cation Deallo-

cation cation cation

a z
t%J
~

~;
r

d
::tJ
0
ftJ

\0 ::tJ
H 1
tzJ w

~
0

~

.1

CIl

~
CIl
H
I?
~

Level of I I
Simultaneity I I

~ Yes Yes No Yes Condi- No Not Applicable, ·0 End-Device tional H still busy t
E-f I
~

~~ Level of
Simultaneity

or:q End-Device Yes Yes Yes Yes Condi- Yes No Yes No ~8 End , tional ,

Level of I
I

Simuitaneity I

~ Yes Yes No Yes Condi- No Not Applicable'
0 End-Device tional I
H still busy

,
HE-f I I

~~ Level of
o~ Simultaneity Ye-s Yes Yes Yes Condi- Yes No Yes No ~P=l End-Device tional
~E-I End

t%J
• !2i Device End Nu Ne -Yes No No' Yes Not Applicable

I

0
h I I E-fH

~g I I
80
E-fH

I I <1(1)
'1 I

ADVANCED COMPUTER SYSTEM
DOCUMENT CHANGE NOTICE

DOC. NO. FTL-003 REV. DRAFT 2

TITLE FUNCTIONAL SPECIFICATION FOR LEVEL 2 COMPUTATIONAL

PROCESSES

PREPARED By'~R~.~Ke~y~s ________ __ CHANGE NOTICE NO. ___ 4 ___ _

E. McFaden DATE 2/13/70

Insert attached pages A-l through A-3 into the subject

document after Section IX.

REF: 54A

A.l SIGN CODES

HONEYWELL PROPRIETARY

APPENDIX A
DECIMAL STRING ENCODINGS

The rightmost four-bit field of a signed packed decimal

string and the zone portion of the rightmost byte of a signed

zoned decimal string contain a sign code. This code specifies

the sign of the value and is associated with one of four

classes. The code that is generated for a result (destina­

tion) string is determined by the sign of the result value

together with the class of the sign code that it replaces.

Table A-l specifies the interpretation of the sign code.

CODE SIGN

0000 +

0001 +

0010 -

0011 +

0100 +

0101 +

0110 +

0111 +

1000 +

1001 +

1010 +

TABLE A-l
INTERPRETATION OF SIGN CODE

CLASS

o·

0 (preferred S-200 encoding)

0 (preferred S-200, 1400 encoding)

0 (preferred 1400 encoding)

1*

1*

1*

1*

1*

1*

2, (preferred S360 ASCII encoding)

*If any sign code in class 1 is used,an illegal operand
trap (0201) will be generated or masked following instruc­
tion execution.

(Continued)

A-l
HONEYWELL PROPRIETARY

HONEYWELL PROPRIETARY

Table A-I (Cant.)

CODE SIGN CLASS

1011 - 2. (preferred S360 ASCII encoding)

1100 + 3 (preferred S360 EBCDIC encoding)

1101 - 3 (preferred S360 EBCDIC encoding)

1110 + 3

1111 + 3

Table A-2 specifies the sign code that is generated for a

given sign and class:

TABLE A-2
SIGN CODE FOR GIVEN SIGN AND CLASS

SIGN CLASS CODE

+ 0 0001

- 0 0010

+ 1 0100

- 1 0100

+ 2 1010

- 2 1011

+ 3 1100

- 3 1101

Facilities for sign decoding/encoding must be capable of
alteration to accept future sign code conventions.

A.2 DIGIT CODES

Each four-bit digit field of packed and zoned decimal strings
contains an encoding for a decimal digit according to Table

A-3.

A-2
HONEYWELL PROPRIETARY

HONEYWELL PROPRIETARY

TABLE A-3
INTERPRETATION OF DIGIT CODE

SOURCE RESULT
OPERAND INTERPRETATION OPERAND
CODE CODE

0000 a 0000

0001 1 0001

0010 2 0010

0011 3 0011

0100 4 0100

0101 5 0101

0110 6 0110

0111 7 0111

1000 8 1000

1001 9 1001

1010* a 0000

1011* a 0000

1100* a 0000

1101* a 0000

1110* a 0000

1111* a 0000

*Use of these digit codes in a decimal instruction
operand will cause an illegal operand trap (0201)
to be generated or masked, following instruction
execution.

A-3
HONEYWELL PROPRIETARY

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-001
	1-002
	2-01_Format_Representations
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	3-01_Selection_Primitives
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-01_Instruction_Extraction
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01_Instructions
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43.00
	5-43.01
	5-43.02
	5-43.03
	5-43.04
	5-43.05
	5-43.06
	5-43.07
	5-43.08
	5-43.09
	5-43.10
	5-43.11
	5-43.12
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	5-79
	5-80
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	8-01
	8-02
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	A-00
	A-01
	A-02
	A-03
	A-04

