
HONEYWELL SERIES 200
Models 200/1200/2200

PROGRAMMERS' REFERENCE MANUAL

Printed in U.S.A.
WP·8324

Co pyrigh t 1965
Honeywell Inc .

Electronic Data Processing Division
W el les ley Hill s, Massachusetts 02 18 1

113.0005.0000.00.00
10965

HONEYWELL SERIES 200
Models 200/1200/2200

PROGRAMMERS' REFERENCE MANUAL

FIRST EDITION
First Printing September, 1965

Honeywell
ELECTRONIC DATA PROCESSING

PRICE $4.50

Questions and comments regarding this manual should be addressed to:

Honeywell Electronic Data Processing
Information Services
60 Walnut Street
Wellesley Hills, Massachusetts 02181

The purpose of this text is to provide a detailed

reference source containing:

1. a functional description of the Honeywell
Series 200 Models 200, 1200, and 2200
and their components.

2. a definition of the Series 200 Assembly
System (Easycoder).

3. a detailed explanation of machine opera­
tion codes.

The only prerequisite for a thorough understanding of the

information presented in this manual is a familiarity with

basic data processing terminology. No previous knowledge

of the Series 200 is assumed.

The equipment characteristics reported herein re­

main subject to change in order to allow the introduction

of design improvements.

The following publications are hereby superseded:

Honeywell 200 Programmers' Reference Manual (DSI-214),
HoneyweU 2200 Programmers' Reference Manual (DSI-304),
Easycoder 8K Assembly Language (DSI-409), and
Easycoder 12K Assembly Language (DSI-313).

ii

PREFACE

Section 1

Section 2

Section 3

TABLE OF
CONTENTS

Series 200 Components•.............•.......•
Central Processor •....•..•....•.••......•.......•......

Standard Processing Mode•.•..•..•.•..•.•.
Interrupt Processing Mode •.........•.•.....•.•.....•
Processing Power•.•.•.....•..•....•.•.....•

Peripheral Equipment•..•..•••.........•.....•...••
'Peripheral Control••..•.•......•..............•
Punched Card Equipment••••••...........•..••.•
High-Speed Printers ...•••...•.•..•.•••••...........•
Magnetic Tape Units .•••......•.•......•...•........
Mass Me.mory File ...•..•.....•.•..•.•.•..•.••..••••
Random Access Drum File •....•..•....•....••...••.•
Paper Tape Equipment••.....•.•.....•.•.....•
Data Communication Equipment .•..••...•.•...••.•..•
Peripheral Data Transfer Operation .•...........•.•.•

Input/ Output Trunk •....••... ~•....•.•...•.•
Read/Write Channel ..•...•.•.............•..•••.

Optional Features •.....•.•...•.........................• /
Advanced Programming•.......•....•••.........
Program Interrupt .••.•.....•.......•.•.......•..•.•
Edit Instruction .•.•.•...•....•............•.•..•.••
Additional Input/ Output Trunks and Read/ Write

Channels ..•........••...........................•
Scientific Unit •.....•...•.................•..•......
Storage Protect ••.....•.••......•..•..........•....•

The Central Processor •.••••..••.•..•.•.•••.........•.•....•
Main Memory •....•.•....•.......•.•.......•.....•.•...•
Control Memory ••.••..•..••....•.........••..••.•.....•

Address Registers
Read/Write Counters •....................•..•.•••• ;.

Arithmetic Unit ••.•••...•.................•......•.....•
Control Unit ••...•..•...•••.•..••.•••..•....•.....•.••••
Input/ Output Traffic Control •........................•.•.

Memory Cycle Distribution ...•.•.........•.....•...•
Auxiliary Read/Write Channels•.......•....•

Data Format•......................••.........•..
Variable Field Length ..•.•.......•...••....••.•..•..•..•

Page

1-1
1-1
1-3
1-3
1-4
1-6
1-6
1-7
1-7
1-8
1-9
1-9
1-9
1-10
1-11
1-13
1-13
1-15
1-15
1-16
1-16

1-17
1-17
1-17

2-1
2-1
2-4
2-6
2-7
2-7
2-8
2-8
2-9
2-10

3-1
3-1

Instruction Format. • • • 3-2
Operation Code. • . • • 3-2
A and B Addresses. . . . • . • • • . • . . •. • • 3-2
Variant Character. • • • •. • • • • • • • 3-3

Organization of Data in Main Memory. • . • • 3-4

iii

Section 3 (cont)

Section 4

Section 5

TABLE OF CONTENTS (cont)

Page

Fields. • • • • 3-4
Items. 3- 5
Records •.•.......•................................ 3-6
Summary. • • . . . • 3-6

Magnetic Tape Data Format. • . . • • • • . 3-7
Punched Card Format. • • . . • 3-8

Addressing•.•......•......•••...........•....••.•
Basic Concepts ••....•............•...............•.•...
Registers Used in Addressing ••.•.....•...•..............

Sequence Register (SR) •....•..•.•..•......•.........
Change Sequence Register (CSR) ••........•..•.......•
External Interrupt Register (EIR) ••........•......•...
Internal Interrupt Register (IIR) •....•.•..•..•..•....•
A-Address Register (AAR)•....•......•.•
B-Address Register (BAR)•...••••....•.•...
Summary•..•.........•...•...•.....•....•.

Addressing Modes •••......•........ "•..•
Two-Character Addressing Mode••
Three-Character Addressing Mode •.............•....•
Four-Character Addressing Mode .•............ -'

Address Modification•........................
Three-Character Address ..•...•.....•..............

Indirect Addressing•.....................•
Indexed Addressing•..................•

Four-Character Addressing Mode••............•
Indirect Addressing•.......•.•...•
Indexed Addressing•.•.......•...•••

Explicit Addressing, Implicit Addressing, and Chaining .•...

Easycoder Programming •...................................
Introduction •....................•...•.•.••............•
Easycoder Symbolic Language •..•.....•....••..........••

Easycoder Assembly Program •••••••••••••••••••••••••••.
Coding Form ..•.................•..............•.••....

Card Number (Card Columns 1- 5) ••.•.••••••••••.••••
Type (Card Column 6) ••••••.•••.•••••••••.•••••.••••
Mark (Card Column 7) ••••••••••••••••••••••••••.•.••
Location (Card Columns 8-14)
Operation Code (Card Columns 15-20)•..•..•.•...
Operands (Card Columns 21-62)•...•.•...•
Additional Coding Rules•.............•.•...••.

Address Codes •...........................•............
Absolute •.....•.•...•..........................•..•
Symbolic •..
Self Reference
Relative•.......•.......................••.•.
Blank .. .

4-1
4-1
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-5
4-5
4-6
4-8
4-8
4-9
4-9
4-9
4-12
4-12
4-13
4-14

5-1
5-1
5-2
5-3
5-4
5-4
5-5
5- 5
5-6
5-7
5-8
5-9
5-9
5-9
5-9
5-10
5-10
5-11

Literals ..• 5- 12

iv

Section 5 (cont)

Section 6

Section 7

TABLE OF CONTENTS (cont)

Page

Decimal Literals. • • • 5-12
Binary Literals •...••..•........•.....•......•......
Octal Literals ...•.....•.......•..................•.
Alphanumeric Literals •.••....•.................•..•
Area Defining Literals •....•.•....•..•.•...•••...•..
Address Literals ••.......••.................•....•.

Variant Character •.....••...•............••.•.•••...•.
Input/ Output Control Characters •......••..•....••.•..•.

Address Modification Codes •........•.........••...•....•.
Indexed•..•.................•....•....•......•.••
Indirect .•....•.......•.....•..................•......

Data Formatting Statements ••.......•....•.....•....•....•..
Introduction•...................................•.
Define Constant with Word Mark - DCW•....•.......•.

Numeric Constants •.........•.••...•...........••.•••.
Decimal Constants•....•....•.....•....•.•....
Binary Constants•.............................•
Octal Constants•....

Alphanumeric Constants•...............•••••
Blank Constants•....••

Define Constant - DC •.•...... 0 ••••••••••••••••••• ' •••••••

Reserve Area - RESV •...................•....•....•..•.
Define Symbolic Address - DSA •..•..........•.•..•....•.
Define Area - DA•..•.......•...............•.......

Assembly Control Statements •........•....•.••.••.•.••.•••••
Introduction•........••
Program Header - PROG •.....•......•...•...••.•.••.•••

Easycoder A .••.......•........••...•.....•...•.....••
Easycoder B•..•.•..•....•...•.....•.....••.•....•
Easycoder C •..•.••••.••.•.••..•.•..•.....••.••••..•••

Segment Header - SEG •.•...•••.••...••.....••..••••.•••
Easycoder C •..•••..•••.•.•..•.••...•..••...••••..•.••

Execute - EX••....•....••.•....•.•.....••••.••.••.
Easycoder A •..••...•...••..••••...•....•.•.••••....•.
Easycoder B •..•.•.......•....••....•.....•....•......
Easycoder C •.......•...••..•.•........•.....•..•..••.

Origin - ORG ...••.••.... , .•.. , ..•.. ,•.....•.••
Easycoder A •.........•..••..............•.........•••
Easycoder B •••.•..•••..••....•.......................
Easycoder C •........•.•..•.....•......•.•.•....•...•.

Modular Origin - MORG •........ '" ., .•........ , ..•..•••
Easycoder A, B, and C•.....•..........•.•..•..•.

Literal Origin - LITORG•..............•.....•....•.
Easycoder B •.•.•..•........•.........•...........•...
Easycoder C •.•..•.•.....•...........................•

Set Address Mode - ADMODE•....•....••...••...
Easycoder A and B•...•....•..•.•...•....••.....

v

5-13
5-13
5-14
5-14
5-15
5-15
5-16
5-16
5-16
5-18

6-1
6-1
6-2
6-2
6-2
6-3
6-3
6-4
6-4
6-5
6-5
6-6
6-6

7-1
7 -1
7-2
7-2
7-3
7-3
7-3
7-4
7-4
7-4
7-5
7-5
7-6
7-6
7-7
7-7
7-7
7-7
7-8
7-8
7-9
7-9
7-9

Section 7 (cant)

Section 8

TABLE OF CONTENTS (cant)

Easycoder C•..•.•.......•...•.•.•......
Equals - EQU •............•..•..................•.•...

Easycoder A and B•...................•••••.•.••
Easycoder C •.••.••.•..•.•..•.......•....•..•••..•••.

Control Equals - CEQU •....•..••.............•.....•..•
Easycoder A and B•.....•••..............•.•..•
Easycoder C•................•.•...••••

MeITlory DUITlp - HSM •....•.........................•.•
Easycoder A ..•............•.......................••

Skip - SKIP•.....................•..•
Easycoder C •.••............•....•.......•.•.•.......

Suffix - SFX ..•....•...••.................•.••........•
Easycoder C •.........•.•...............•.....•.....•
Repeat - REP•...•................•.••.•.•
Easycoder C•..•...•

Generate ~ GEN •...............................•.....•
Easycoder C •.......................•..........•.....

Clear - CLEAR•..........•...........•.
Easycoder A•.
Easycoder B •..•.....................................
Easycoder C••

End - END ...•..
Easycoder A .. .
Easycoder B .. .
Easycoder C•...........................•

Page

7-10
7-10
7-10
7-11
7-11
7-11
7-12
7-12
7-12
7-13
7-13
7-13
7-14
7-14
7-14
7-14
7-15
7-15
7-16
7-16
7-17
7-17
7-17
7-18
7-19

Instructions. • • 8- 1
Introduction.. ••.. 8-1
ArithITletic Operations. • 8-6

Binary Addition. • 8-6
Binary Subtraction•.•. 8-6
DeciITlal Addition. 8-9

True Add. 8- 9
COITlpleITlent Add. 8-9

DeciITlal Subtraction. 8- 10
Indicator s ..•
Multiplication
Division ...•.

Add - A ..•
Subtract - S .. .
Binary Add - BA•
Binary Subtract - BS
Zero and Add - ZA •....................................
Zero and Subtract - ZS · .•
Multiply - M •..•
Divide - D
Logic ..•...
Extract - EXT .. .

vi

8-11
8-11
8-13
8-16
8-18
8-20
8-21
8-23
8-24
8-26
8-29
8-33
8-34

Section 8 (cont)

Appendix A

Appendix B

Appendix C

Appendix D

TABLE OF CONTENTS (cont)

Page

Half Add - HA•.•..••.. 8-35
Substitute - SST•....•. 8-37
COITlpare - C •......•...........•....•...•.............
Branch - B•....................•.........•....•••
Branch on Condition Test - BCT•.......•..••...
Branch on Character Condition - BCC•..•
Branch if Character Equal - BCE•.........•........
Branch on Bit Equal - BBE •.................•.•.........
Control•............•...........•...............
Set Word Mark - SW•..
Set IteITl Mark - SI .•............•......................
Clear Word Mark - CW ...•.......•.................••••
Clear IteITl Mark - CI•.•
Halt - H ..••.
No Operation - NOP .,•...
Move Character s to Word Mark - MCW•..........•.•.
Load Characters to A-Field Word Mark - LCA
Store Control Registers - SCR•....•.......•.........
Load Control Registers - LCR•
Change Addressing Mode - CAM•..•......•......
Change Sequencing Mode - CSM•
Extended Move - EXM•.
Move and Translate - MAT
Move IteITl and Translate - MIT •.......................•.
Load Index/ Barricade Indicator - LIB•.
Store Index/ Barricade Indicator _ SIB••.
Interrupt Control
Store Variant and Indicator s - SVI•.••
Restore Variant and Indicators - RVI
Monitor Call - MC .•...................................
ResuITle NorITlal Mode - RNM
Editing ...••
Move Characters and Edit - MCE
Input/ Output ...•
Peripheral Data Transfer - PDT •............•.........•.
Peripheral Data Transfer - PDT
Peripheral Control and Branch - PCB •...................
Peripheral Control and Branch - PCB ...•......•..•..•...

Octal Notation ..•
Octal-DeciITlal Conversion Procedure•

Miscellaneous Tables•

Instruction SUITlITlary•....................•....

Interrupt Processing•....................•.......•....
External Interrupt••
Internal Interrupt•......•
Interrupt PrograITlITling

vii

8-38
8-40
8-41
8-45
8-49
8-51
8-53
8-54
8-55
8-56
8-58
8-59
8-61
8-62
8-63
8-65
8-67
8-69
8-72
8-74
8-77
8-80
8-84
8-87
8-89
8-90
8-93
8-95
8-97
8-101
8-102
8-107
8-108
8-115
8-117
8-131

A-I
A-3

B-1

C-l

D-l
D-l
D-2
D-3

Appendix E

Appendix F

TABLE OF CONTENTS (cont)

Storage Protect Feature•.•................•
Internal Interrupt •..•.•.............................••..
Violations of Storage Protection ••.............••...•.....
Proceed Indicator

Scientific Unit•...•............................••

Page

E-l
E-l
E-2
E-3

F-l
Data Format. •• F-l
Floating- Point Register s • . • • . F-l

Floating-Point Indicators.. . • • . • . • • • •• • • . • • • •• •• • • •• F-2
Automatic Formatting In Arithmetic Operations........ ..•. F-2
Symbology. .•.•..•. .•....•. •. F-2
Timing Notes. F-3

viii

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1- 5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.
Figure 1- 10.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.

LIST OF
ILLUSTRATIONS

Page

Type 1201 Control Panel. • . .. 1-2
Type 220-1 Console •......................................•..... 1-3
Type 220-2 Console •.............•........................•...• 1- 3
Main Memory Size .•.......•.......•...........................
Main Memory Speed ..•............................•....•.....•.
Peripheral Simultaneity•....•.•.........................•
Customer Inquiry Handling via Typical Communications Network •..•
Basic Input/ Output Data Path ••.•......•........................•
Data Path During Card Read Operation .•........................•
Data Path Components of Series 200 Processors •..•..........•...
Logical Division of Series 200 Central Processor .•..............•.
Main Memory Functions .. .
Main Memory Core Plane•...................•..•.....•.•...
One Memory Position ..•..
Representation of Characters in Magnetic Core Storage•.•.•..
Typical Control Register Function
Data Flow Between Main Memory and Arithmetic Unit•......•
Control Unit Activities•....•............•...........•
Input/ Output Traffic Control Activitie s•.•.......•...
Data Transfer Intervals During One Peripheral Operation••.
Symbolic Representation of Input/Output Traffic Control•••.
Conversion of Symbolic Tags to Absolute Memory Addresses •..•...
Series 200 Instruction Formats •........................•..•....•
Symbolic Representation of Series 200 Instructions•..•.....•.
Consecutive Storage Locations in Main Memory•.....
Data Field Format in Main Memory•...•••
Two Item Formats in Main Memory•...........•.
Record Format in Main Memory•.....
Summary of Internal Data Formats••
Character Representation on Magnetic Tape
Data Format on Magnetic Tape•....
Punched Card Codes•..•..............
Typical Add Instruction•
Extraction of Data Fields in Typical Add Instruction
Extraction of Three-Character Indirect Address•.
Extraction of Indexed Address in Three-Character Mode •..........
Extraction of Indirect and Indexed Four-Character Addresses .•....•
Series 200 Instruction Format 1. •.•..•.•..•..•.....••..••..•••.••
Series 200 Instruction Format 2
Series 200 Instruction Format 3•...
Relationship of Source, Assembly, and Object Programs •...•..•.••
Two-Character Address Assembly•...
Three-Character Address Assembly•.
Easycoder Coding Form•...................................

ix

1-5
1- 5
1-5
1-12
1- 13
1-14
1-14
2-1
2-2
2-2
2-3
2-3
2-4
2-7
2-8
2-9
2-9
2-11
3-2
3-3
3-4
3-4
3-5
3-5
3-6
3-6
3-7
3-8
3-9
4-1
4-2
4-10
4-12
4-15
4-15
4-16
4-17
5-2
5-3
5-3
5-4

Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 8-1.
Figure 8-2.
Figure 8- 3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure D-l.
Figure D-2.

LIST OF ILLUSTRATIONS (cont)

Page

Assembly of Indexed Address in Three-Character Addressing Mode.. 5-17
Assembly of Indexed Address in Four-Character Addressing Mode .•• 5-18
Assembly of Indirect Address in Three-Character Addressing Mode.. 5-18
Assembly of Indirect Address in Four-Character Addressing Mode •• 5-19
True Add Examples. • . •. 8-9
Complement Add Examples•.•.......•....•..••...•• 8-10
A and B Fields in Multiply Operation. • . . • • . •• 8-12
Factor Locations in Divide Operation. • •. 8-14
Changing Addres sing Modes via CAM Instruction 8-71
MAT Operation•..•.................•.... 8-79
MIT Operation ...•....••...................•..•.•..•..•....•.•. 8-84
Sample Coding for External Interrupt Routine•...••• D-3
Sample Coding for Internal Interrupt Routine •.....•............... D-4

x

Table 1-1.
Table 1-2.
Table 1- 3.
Table 1-4.
Table 1- 5.
Table 1-6.
Table 1-7.
Table 1-8.
Table 1-9.
Table 2-1.
Table 2-2.
Table 2-3.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 5-1.
Table 5-2.
Table 6-1.
Table 7-1.
Table 8-1.
Table 8-2.
Table 8-3.
Table 8-4.
Table 8-5.
Table 8-6.
Table 8-7.
Table 8-8.
Table 8-9.
Table 8-10.
Table 8-11.
Table 8-12.
Table 8-13.

"f Table 8-14.
Table 8-15.
Table 8-16.
Table 8-17.
Table 8-18.
Table 8-19.
Table 8-20.
Table 8-21.
Table 8-22.
Table 8-23.

f

LIST OF
TABLES

Series 200 Punched Card Equipment .•.........•.............•.••.
Series 200 High-Speed Printers•................... " .••.•
Series 200 Magnetic Tape Units ...•......................•....•..
Series 200 Mass Memory File Units•.............•.......•..•
Series 200 Magnetic Drum File Units ..•..............••.•..•..•.•
Series 200 Paper Tape Equipment •..•.•...............•.•........
Series 200 Data Communication Equipment•.•.••..
Series 200 Optional Features •.......•.•.......•.......•.....•.•.
Model 200 Advanced Programming Feature •...............•....••
Size of Control Memory Registers •...................•..........
Control Memory Registers•.••...
Summary of Central Processor Characteristics•..•...
Number of Index Registers Available to Series 200 Processors •.••..
Index Register Addresses in Three-Character Addressing Mode
Index Register Addresses in Four-Character Addressing Mode•
Active Address Bits in Series 200 Processors•.
Set I Punctuation Indicator s•............•...•...
Set II Punctuation Indicators (Easycoder Only) •....................
Data Formatting Statements
Assembly Control Statements •........................•..........
Symbology Used in Series 200 Instruction Descriptions•.
Series 200 Add and Subtract Operations••.
Binary Addition Table •.............•...........................
Alge braic Signs in Decimal Addition .••.........................••
Decimal Arithmetic Sign Conventions ..•...............•..•.•...•.
Multiply Sign Conventions•.••
Divide Sign Conventions•...
SENSE Switch Conditions for BCT Instruction ••......•.......•...•
Indicator Test Conditions for BCT Instruction•...••......•...
Basic Test Conditions for BCC Instruction•..••••.....•...•..
BCC Test Conditions with Advanced Programming Feature ••••....•
Control Register Contents Stored by SCR Instruction •....•..••••••.
Control Registers Stored by SCR Instruction•.........•...•
Control Register Contents Loaded by LCR Instruction ...•..•......•
Modes Specified by Variant Character in CAM Instruction .•........
Extended Move Conditions•.•.....•........•.....•.••..
Size of Information Units in MIT Operation ••...•.....•.••......•••
Leftmost Boundaries of Protected Memory•.•..•••
Information Stored by SVI Instruction .•..........................•
Information Restored by R VI Instruction .•....•..•......••..•.•.•.
Special Characters in MCE Instruction•...........•.....•••
Description of PDT II 0 Control Characters C 1 and C2 .•....•.••.••
Summary of PDT IIO Control Characters•....••

xi

Page

1-7
1-8
1-8
1-9
1-9
1-10
1- 10
1- 15
1-16
2-5
2-5
2-12
4-10
4-11
4-13
4-14
5-5
5-6
6-1
7-2
8-2
8-6
8-6
8-9
8-11
8-12
8-15
8-42
8-43
8-46
8-47
8-65
8-66
8-67
8-69
8-74
8-80
8-85
8-90
8-94
8-103
8-109
8-112

Table 8-24.
Table 8-25.
Table 8-26.
Table 8-27.
Table 8-28.

Table 8-29.
Table 8-30.
Table 8-31.

Table A-I.
Table A-2.
Table B-l.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table C-1.
Table F-1.

LIST OF TABLES (cont)

Page

C3 Coding for Type 209 Paper Tape Reader. • • •• 8- 114
C3 Coding for Type 210 Paper Tape Punch. • •• 8-114
C3 Coding for Types 206 and 222 Printers. • • •• 8-114
C3 Coding for Type 270 Random Access Drum •..........•••...... 8-115
Summary of PDT II a Control Characters for Type 286 Multi-

Channel Communication Control. •. 8-116
Type 286 Line Control Functions•.•.......•.........•..•.•. 8-117
Summary of PCB I/O Control Characters .•..•.......••........•. 8-119
Summary of PCB 1/ a Control Character s for Type 286 Multi-

Channel Communication Control. • • • • . • . • . .• 8-132
Binary Octal Equivalents. • • . • . . • •• A- 1
Decimal Octal Conversion Table •...........••.•.......•......... A-2
Control Register Designations. • • B-1
Extended Move (EXM) Conditions. • . . • . • • • •• B-2
Branch on Condition Test (BCT) SENSE Switch Conditions .•....•... B-3
Branch on Condition Test (BCT) Indicator Conditions. • •• B-4
Branch on Character Condition (BCC) Conditions. • • . • . .. B- 5
Series 200 Character Codes. • . • • . . •• B-7
Binary, Octal, and Decimal Equivalents•................• B-8
Powers of 2 . • . .. B-8
Instruction Summary. •• C-l
Summary of Scientific Instructions •............................. F _ 3

xii

SERIES 200
COMPONENTS

Honeywell's Series 200 Data Processing System is a set of modularly designed, compatible

models, three of which - the Models 200, 1200, and 2200 - are the subject of this manual.

Each model consists of two basic elements: a central processor, and an array of peripheral

devices connected to that processor. The peripheral equipment in the system can be attached to

j any processor, and the number of connectable devices is limited only by the number of trunks

available with anyone processor.

The initial member of Series 200 was the Model 200. The capabilities of the Model 200

processor have twice been extended since its introduction. Thus, five central processors are

described herein: the three processors of Model 200 (Types 201, 201-1, and 201-2); the Type

1201; and the Type 2201. The processing power of anyone of these types can be increased at

any time by the addition of peripheral devices and/or optional hardware features. This section

describes: (l) the two basic elements of a Series 200 model (processor and peripheral devices);

(2) the manner in which these elements communicate with one another; and (3) the expansion of

processing power that is possible through the addition of optional hardware features to a processor.

--~-

CENTRAL PROCESSOR

The central processor is the computing and

control center of a Series 200 model; instruc­

tions processed within the central processor

control the operations of the entire computer.

A Series 200 processor is functionally divided

into three units: storage, control, and arithme-- - -
tic. The storage unit provides magnetic core

storage for both the program instructions and

the data to be processed according to these in­

structions; it is also used to contain the resultant

1 -1

SECTION 1. SERIES 200 COMPONENTS

data. The control unit directs the operation of the entire computer by sel:..cting, intere.:.eting,

and controlling the execution of all program instructions. It controls not only the flow of infor­

mation within the central processor but also the flow of data between the central processor and

all peripheral equipment. The arithmetic unit performs such operations as addition, subtraction,

multiplication, division, and comparison, as directed by the control unit.

Included as a part of the central processor is a control panel (see Figure 1-1) which pro­

vides for easy communication between an operator and the computer. By using various control

switches, the operator can start and stop the machine and can load and interrogate memory lo­

cations. The control panel also includes from four to eight SENSE switches which may be used

in conjunction with programmed instructions to stop processing or to select predetermined pro­

gram paths. The use of these switches increases the flexibility of a program, allowing it to be

used in several different applications.

SYSfEM

D'[~~~'~T~
HONEYWELL 1200

r----,
I I
IEXTERNALI
, I
L ___ -l

Figure 1 -1. Type 1201 Control Panel

IPARlTyTFAN-l
I I I
, I I

~?-2~~_~8_J

Another communication medium between the operator and the central processor is the

Type 220 console, of which three versions are available. The Type 220-1 console (Figure 1-2)

contains a typewriter which may be used as a peripheral device, operating under program control,

or as a logging typewriter by which the operator can make essential notes about the program in

progress. The central processor control panel remains situated on the processor cabinetry and

is used for the functions described above.

In the Type 220-2 and Type 220-3 consoles (Figure 1-3), most of the control panel functions,

including that of direct access to the processor, are performed by means of the console type­

writer. In addition, the typewriter can perform the peripheral and logging functions described

for the Type 220-1. The central processor control panel is replaced by a smaller control panel

containing only the main power switches, the SENSE switches, and certain check condition

1-2

CENTRAL PROCESSOR

indicators which are located in the bottom row of the control panel shown in Figure 1-1. The

Type 220-3 control panel contains additional indicators used with the Storage Protect Feature

(see page] - 17) and the additional SENSE switches used with the larger Series 200 processors.

Figure 1-2. Type 220-1 Console Figure 1-3. Type 220-2 Console

STANDARD PROCESSING MODE

The central processor performs arithmetic and logical operations as directed by the in­

structions of an internally stored program. These instructions are read into memory from an

input medium such as punched cards, magnetic tape, or punched paper tape. Control circuitry

within the processor then selects, interprets, and executes these instructions. Normally, the

instructions are executed sequentially. Branch instructions are provided, however, which make

it possible to skip over a group of instructions or otherwise change the sequence of the program.

INTERRUPT PROCESSING MODE

Sequential instruction execution is changed temporarily when the processor is interrupted.

Anyone of four sources (see below) can "demand" access to the central processor by generating

an interrupt signal; this signal turns on a central processor interrupt indicator. An automatic

hardware response is made to this condition: information concerning the current status of the

processor is stored, and a branch is made to a stored routine which identifies and services the

demand. Thus, programmed tests need not be made to detect the presence of an interrupt con­

dition - the entire process of detecting and responding to an interruption is automatic. When

the stored service routine has been executed, control is returned to the main program at the

point where the interruption occurred.

1-3

SECTION 1. SERIES 200 COMPONENTS

The four sources of processor interruption are:

1. Peripheral Control - The control connected to any Series 200 peripheral
device can generate an interrupt signal under program. control (peripheral
controls are described on page 1-6). For instance, a data com.m.unication
control which services one or a num.ber of com.m.unication lines and de­
vices m.ay generate a real tim.e dem.and on central processor tim.e to handle
acustom.er inquiry from. a rem.ote term.inal. The current operations of the
processor are tem.porarily interrupted so that the inquiry m.ay be serviced.
A routine to read the inquiry and to answer the question from. a stored
custom.er file is autom.atically executed, and a response is sent back to
the term.inal.

2. Operator's Control Panel or Console - The operator can interrupt the
central processor by pressing the INTERRUPT button on the control panel
or console".-l The source of such "on-site" interruptions is m.ade available
to the program. by the execution of a single instruction at the beginning of
the interrupt service routine.

3. Program. Instruction - One instruction in the Series 200 repertoire, the
Monitor Call instruction, is used to generate an interrupt condition. 1
For program.m.ing convenience, the activation (or "calling") of the m.onitor
program. can be accom.plished by m.eans of this instruction.

4. Storage Protect Violation - The above-m.entioned sources cause an ex­
ternal interrupt condition. When a processor contains the Storage Protect
Feature (Types 1201 and 2201 only), an internal interrupt condition, caused
by certain "violations" to storage protection, can also occur. Internal
interruptions are of lower priority than external interruptions, so that a
processor executing an external interrupt service routine cannot be
interrupted by an internal interruption until the routine is com.pleted. The
nature of storage protect violations is described in Appendix E.

PROCESSING POWER

The power of any processor within Series 200 can be defined as the sum. of its m.ain

m.em.ory size, its internal speed, its degree of peripheral sim.uItaneity, and the num.ber of

optional features which m.ay be added to it.

Main m.em.ory size within the Models 200/1200/2200 ranges from. a m.inim.um. of 2,048

character locations (Types 201 and 201-1) to 262,144 locations (Type 2201). Figure 1-4 shows

the m.odular m.ain m.em.ory structures of the five processor types.

The internal speed of a processor is m.easured in term.s of a m.em.ory cycle (i. e., the tim.e

required to read and restore the contents of a single character location). These speeds range

from. two m.icroseconds to one m.icrosecond for the five processors (see Figure 1-5).

1
The Types 201 and 201-1 processors cannot be interrupted by sources 2. and 3. above.

1-4

CENTRAL PROCESSOR

Peripheral simultaneity is a key feature of Series 200 processors. Among the processors

described in this manual, from three (Model 200 processors) to eight (Type 2201 processor)

simultaneous input / output operations can be performed concurrently with internal computing (see

Figure 1 -6).

A number of optional features can be included in the Series 200 processors to provide

complete flexibility in specializing anyone processor to a user's particular application. Since

some of these features refer to the peripheral capabilities of a processor, they are summarized

at the conclusion of this section.

201 201-1 201-2 1201 2201

262

II BASIC

0 OPTIONAL

131

65 65

32

16 16

Figure 1-4. Main Memory Size

2201

1201

201-2

201-1

201

2201

1201

201-2

201-1

201

2us

2us

2us

Figure 1-5. Main Memory Speed

8

II BASIC

o OPTIONAL

Figure 1-6. Peripheral Simultaneity

1-5

SEC TION 1. SERIES 200 COMPONENTS

PERIPHERAL EQUIPMENT

The array of peripheral devices available

with Series 200 processors includes over 40

units: punched card equipment, high-speed

printers, magnetic tape units, paper tape equip­

ment, magnetic tape strip mass memory units,

random access drum units, and various data

communication equipment. Also included are

computer-to-computer adapters, an interval

timer, a time of day clock, MICR reader/sorter

controls, and peripheral switching units which provide extremely flexible Series 200 configu­

rations.

Information is transferred between anyone of these devices and the central processor by

means of a single stored-program instruction - the Peripheral Data Transfer instruction de­

scribed in Section 8. By coding various control characters in this instruction, the programmer

specifies the direction of data transfer (into or out of the processor), the specific device involved

in the transfer, the data path over which information is to be transferred, and any other infor­

mation necessary to define the input/output operation (e. g., the number of lines to be spaced

during printer operations). The actual communication with the central processor is not made by

the particular peripheral device but by the peripheral control connected to that device.

PERIPHERAL CONTROL

A peripheral control regulates the transfer of data between a processor and a peripheral

device. The control compensates for the difference in the data transfer rates of the processor

and the peripheral devic~ by temporarily storing each character of transmitted information until

either the processor or the device is ready to receive the character. The control also converts

each character into the code used by the intended recipient (e. g., the card reader control con­

verts a character from Hollerith code to the internal six-bit code of the central processor). As

each character is transferred to the control, it is also checked for accuracy by the control. One

particularly significant feature of the peripheral control is that it operates independently of the

central processor and requires access to the main memory only when information transfers are

performed. In particular, all of the previously mentioned activities of the control - temporarily

storing, converting, and checking the information - do not involve the central processor in any

way. When each character of information is transferred, one main memory cycle is allocated

for the transfer.

1-6

PERIPHERAL EQUIPMENT

Some peripheral devices require one peripheral control per device (e. g., a card reader).

Other devices can be connected in multiple fashion to a single peripheral control (e. g., up to

eight 1 /2-inch magnetic tape units can be directed by a single control). The number of Series

200 devices connectable to a peripheral control is shown in the following tables.

PUNCHED CARD EQUIPMENT

Series 200 includes a wide variety of peripheral devices not only of different kinds but also

on several performance levels for the same kind. For instance, six different punched card units

are offered: a card reader, three card punches, and two reader/punches. Table 1-1 lists the

card devices available within Series 200. Note that a card device requires either one or two

"I/O trunks, " depending on the number of functions the device performs. The Significance of the

I/O trunk is explained on page 1 - 1 3.

Table 1-1. Series 200 Punched Card Equipment

Device
No. Devices No. I/O Trunks
Per Contro1 Required by

Type Function Data Transfer Rate Control

223 Card Reader 800 cards /minute 1 1

214-1 Card Punch 100-400 cards /minute 1 1

224-1 Card Punch 50-270 cards/minute 1 1

224-2 Card Punch 90-360 cards/minute 1 1

214-2 Card Reader /Punch Read: 400 cards /minute 1 2
Punch: 100-400 cards/minute

227 Card Reader /Punch Read: 800 cards /minute 1 2
Punch: 250 cards /minute

HIGH-SPEED PRINTERS

Five types of printers (see Table 1-2) produce printed reports, listings, etc., at speeds

which vary from 450 to 1,300 lines per minute. Processed information is printed from any pro­

grammer-assigned area in memory. A single program instruction - the Move Characters and

Edit instruction - allows the programmer to punctuate the output data, suppress zeros, and in­

sert identifying symbols in the data prior to printing.

1-7

SECTION 1. SERIES 200 COMPONENTS

Table 1-2. Series 200 High-Speed Printers

.,
"

... ":;' No • Pri.n.terS No. ;(/O;T~j'"
, , Per- Control Req,uire,<f by .

Type Data. 'I'ran$fer<Rate c:ollirol

222-1 (96 print positions) 650-1,300 lines/minute 1 1

222-2 (108 print positions) 650-1,300 lines/minute 1 1

222-3 (120 or 132 print positions) 650-1,300 lines/minute 1 1

222-4 (120 or 132 print positions) 950-1,266 lines/minute 1 1

222-5 (120 print positions) 450 lines/minute 1 1

MAGNETIC TAPE UNITS

Magnetic tape is a compact and highly versatile medium for the storage of programs and

data files. Two complete families of industry-acclaimed tape units are available with Series 200

processors (see Table 1-3): 1/2-inch tape units (10 types) transfer data at speeds ranging from

7,200 to 83,300 characters per second; three types of 3/4-inch tape units read/write from

32,000 to 88,800 characters per second.

Table 1-3. Series 200 Magnetic Tape Units

204B-l 7,200/20,000 characters/second 1-8 2
204B-2

204B-3 16,000/44,400 characters/second 1-8 2
204B-4

204B-5 24,000/66,700 characters/second 1-8 2

204B-6 30,000/83,300 characters/second 1-8 2

204B-7 7,200/20,000/28,800 characters/ 1-8 2
second

204B-8 16,000/44,400/64,000 characters/ 1-8 2
second

204B-ll 13,300 characters/second 1-4 2
204B-12

3 l\4a.gnetic '. Tape

204A-l 32,000 characters/second 1-4 2

204A-2 64, 000 characters / second 1-4 2

204A-3 88,800 characters/second 1-4 2

1-8

PERIPHERAL EQUIPMENT

MASS MEMORY FILE

Honeywell's reputation for reliable magnetic tape control is inherited by the new member

of Series 200, the Mass Memory File. Three types of transports, varying in access time and

capacity, use magnetic tape strips to store programs and data files and thereby complement the

main memory storage capacities of the central processor (see Table 1-4). A single control can

provide access to over two billion characters of stored information. Data transfer rate is

100,000 characters per second, and average access times are as low as 95 milliseconds.

Table 1-4. Series 200 Mass Memory File Units

Device
No. Devices No. I/o Trunks
Per Control Required by

Type Function Data Transfer Rate Control

251 Magnetic Tape Strip Transport 100, 000 characters / second 1 -8 2
(15 million characters)

252 Magnetic Tape Strip Transport 100,000 characters/second 1-8 2
(60 million characters)

253 Magnetic Tape Strip Transport 100, 000 characters / second 1 -8 2
(300 million characters)

RANDOM ACCESS DRUM FILE

The Series 200 drum file features a control unit which can direct from one to eight mag­

netic drums, each capable of storing over two million characters of information (see Table 1-5).

Thus, a single drum file subsystem can have a total capacity of over 20 million characters. Any

record stored on the drum can be accessed in 27.5 milliseconds (average) and can be transferred

at the rate of 102,000 characters per second.

Table 1-5. Series 200 Magnetic Drum File Units

Device No. Devices No. I/O Trunks
Per Control Required by

Type Function Data Transfer Rate Control

270-1 Magnetic Drum (2.6 102,000 characters / second 1-8 2
through million characters)
270-8

PAPER TAPE EQUIPMENT

Paper tape is an ideal medium for recording data which originates at locations distant

from a central Series 200 installation and, as such, becomes particularly significant in data

communication networks. A variety of standard commercial codes may be used with this rela­

tively inexpensive medium. Two paper tape devices are offered in Series 200 (see Table 1-6).

1-9

SECTION 1. SERIES 200 COMPONENTS

Table 1-6. Series 200 Paper Tape Equip:ment

Device
No. Devices No. I/O Trunks
Per Control Required by

Type Function Data Transfer Rate Control

209 Paper Tape Reader 600 characters/second 1 1

210 Paper Tape Punch 120 characters / second 1 1

DAT A COMMUNICATION EQUIPMENT

The i:m:mediate and auto:matic response to an external interrupt source by the Series 200

processor was described previously (page 1-3). A co:m:mon source of external interruption is

the co:m:munication control, of which two different types are available in Series 200. These

controls allow the Series 200 processor to co:m:municate with distant locations (e. g., branch

offices, warehouses, etc.) by receiving and trans:mitting data over toll and leased lines. Both

single-channel and :multi-channel data co:m:munication controls are offered; these controls adapt

the:mselves to a broad selection of lines, speeds, and ter:minal devices. One such ter:minal

device is Honeywell's Data Station (see Table 1-7).

Table 1-7. Series 200 Data Co:m:munication Equip:ment

Device
No. Devices No. I/O Trunk!
Per Control Required by

Type Function Data Transfer Rate Control

Co:m:munication Controls

281 Single -Channel Control Up to 5, 100 characters / second 1 line 2

286 Multi-Channel Control Up to 300 characters / second/ 1-63 lines 2
line

Remote Terminal Device

288-1 Data Station Central 120 characters / second n/a n/a
Control

288-2 Data Station Central 120 character s / second n/a n/a
Control & Keyboard

289-2 Data Station Page 10 characters/second n/a n/a
Printer & Keyboard

289-3 Data Station Page 40 character s / second n/a n/a
Printer & Keyboard

289-4 Data Station Paper Tape 120 character s / second n/a n/a
Reader

289-5 Data Station Paper Tape 120 characters/ second n/a n/a
Punch

289-6A Data Station Paper Tape 50 characters / second n/a n/a
Reader /Punch

1-10

PERIPHERAL EQU1PMENT

Table 1-7 (cont). Series 200 Data Corn.rrlUnication Equiprn.ent

Device
No. Devices No. I/O Trunks
Per Control Required by

Type Function Data Transfer Rate Control

Remote Terrn.inal Device

289-6B Data Station Paper Tape 50 characters / second n/a n/a
Reader

289-7 Data Station Card 120 character s / second n/a n/a
Reader

289-8 Data Station Optical 50 characters / second n/a n/a
Bar Code Reader

A major requirement of many communication networks (e. g., inquiry handling or message

switching applications) is fast access to a stored file. Files may sometime·s be stored in main

memory, but for large files main memory storage is economically unfeasible. File storage

units (i. e., the Mass Memory File, magnetic tape units, or drum file units) provide the answer

to such mass storage applications.

A typical data communication network is shown in Figure 1-7. The pertinent components

of this system are: (I) a Type 201-2 processor; (2) a Type 251 Mass Memory File transport;

(3) a Type 281 communication control; (4) two DATA-PHONE data sets 1 ; and (5) a Honeywell

Data Station, the remote terminal device. Two particular devices connected to the Data Station

are used in this example: a keyboard by which the inquiry is transmitted to the central proc­

essor, and a page printer which prints the answer to the inquiry in readable form.

PERIPHERAL DATA TRANSFER OPERATION

One of the major features of Series 200 is the degree of peripheral sirn.ultaneity that can

be achieved by the various processors. The Model 200 processors (Types 201, 201-1, and

201-2) and the Type 1201 processor can perform up to four peripheral operations simultaneously;

the Type 2201 processor performs as many as eight simultaneous peripheral operations. While

all these operations are being executed, the central processor continues its internal processing.

The ability to perform simultaneous peripheral operations derives from an internal unit of the

central processor, the input/output traffic control, which guarantees a peripheral control access

to main memory when data is to be transferred. The manner in which the traffic control does

1 A data set is required to convert the data signals used by the communication control to signals
acceptable for transmission over communication lines.

1-11

SECTION 1. SERIES ioo COMPONENTS

rrr

TYPE 288-2
DATA STATION
CENTRAL CONTROL

DATA-PHONE
DATASET

DATA-PHONE
DATASET

TYPE 281
COMMUNI­
CATION
CONTROL

TYPE 201- 2 PROCESSOR

o o)IIKo 0 o 0 o 0

lit--- I I ~ II III---

,
TYPE 250
MASS
MEMORY
FILE
CONTROL

,
TYPE 251
MASS MEMORY FILE
TRANSPORT

c;;;;;!:

1. Customer inquiry is typed on keyboard in
form of a coded message.

2. Message signals are converted to a form
acceptable for transmission line.

3. Message is transmitted over transmission
line.

4. Message signals are reconverted.

5. Control generates interrupt signal and trans­
fers incoming message to pre-assigned
memory location as directed by interrupt
service routine.

6. Stored interrupt service routine interprets
message and issues instructions to read and
update the customer's record in a file stored
in Type 251 Mass Memory File transport.

7. Type 250 control directs the execution of the
instructions is sued by the stored interrupt
program.

8. Customer's record is read and updated ac­
cording to instructions. Record is read into
pre-assigned location in interrupt routine
(in central processor memory), from which
the answer to the inquiry is sent back to the
Data Station. (Answer to inquiry is printed
by page printer.)

Figure 1-7. Customer Inquiry Handling via Typical Communications Network

1-12

this is explained in Section 2. The data path used by the traffic control to transfer data is· de­

scribed below; Figure 1-8 illustrates the basic elements which form this data path.

CENTRAL PROCESSOR

MAIN
I/O
TRAFFIC -I-

MEMORY CONTROL

, --.... v,.--
PERIPHERAL
INTERFACE

,

.<Ill

~ I/O
TRUNK

..... PERIPHERAL ,. CONTROL

Figure 1-8. Basic Input/Output Data Path

Input/Output Trunk

PERIPHERAl. - DEVICE

An input/output trunk permanently connects a peripheral control (and its associated device)

to the peripheral interface. The trunk transfers data either to or from the central processor

and is therefore either an input or an output trunk, depending on the type of device it connects to

the peripheral interface. For example, the I/O trunk connecting the card reader and its associ­

ated control is an input trunk, while the I/O trunk connecting the printer and its control is an

output trunk. A peripheral control which performs both input and output functions (e. g., a mag­

netic tape control) requires two I/O trunks: one for input operations, and one for output operations.

The maximum number of peripheral controls that can be connected to a Series 200 processor

is determined by the number of 110 trunks associated with that processor. For example, the

Type 2201 can contain up to 32 I/O trunks, which means that as many as 32 peripheral controls

can be attached to the processor at one time (see Figure 1-10).

Read/Write Channel

Notice that the data path shown in Figure 1-8 is incomplete: there is no connection across

the peripheral interface. This final link in the data path, known as a "read/write channel, " is

inserted when the instruction is executed. Unlike an I/O trunk, which is permanently connected

to a peripheral control, the read/write channel is assigned by the programmer to specialize the

data path between a peripheral control and the processor.

1-13

SECTION 1. SERIES 200 COMPONENTS

When the programmer codes a Peripheral Data Transfer instruction, he specifies among

other things the peripheral control that is to send or receive the data (and therefore the I/O

trunk connected to that control) and the read/write channel over which the data transfer is to take

place. When the instruction is executed, the specified read/write channel is automatically in­

serted in the peripheral interface. For example, Figure 1-9 shows the data path formed during

the execution of a Peripheral Data Transfer instruction in which the programmer specifies that

the card reader control is to transfer data over read/write channel 2 (RWC2). The specified

channel remains in the interface only for the duration of the card read operation. When the data

transfer terminates, RWC2 is automatically removed from the interface and is available for

reassignment by another instruction.

CENTRAL PROCESSOR

I -'\ ..0lIl I I/O CARD K CARD I MAIN TRAFFIC r-- RWC2 READER
MEMORY CONTROL -I ~ INPUT I CONTROL READER

TRUNK

Figure 1-9. Data Path During Card Read Operation

Read/write channels are the key to the achievable simultaneity in a Series 200 model: the

number of read/write channels associated with a particular processor indicates the number of

peripheral operations that can be performed simultaneously by that processor (see Figure 1-10).

READ/WRITE CHANNELS INPUT/OUTPUT TRUNKS
MODEL (NUMBER OF SIMUL TAN EOUS (NUMBER OF PERIPHERAL

OPERATIONS POSSIBLE) CONTROLS POSSIBLE}

2201 4 18 16 132

1201 4 16

201-2 3 14 8 116

201-1 3 14 8 116

201 3 14 8 116

BASIC OPTIONAL I I

Figure 1-10. Data Path Components of Series 200 Processors

1-14

OPTIONAL FEATURES

OPTIONAL FEATURES

Table 1-8 lists the various features that can be added to the Series 200 processors de­

scribed in this manual. This table illustrates the realistic design principle of Series 200: a

Serie s 200 model can be specialized to meet the individual user I s application; the application

is not compromised to meet the design of the model.

Certain features optional with some processors are standard with other larger types.

This is also part of the realistic approach to system development. Particularly significant is

the fact that specialization of a Series 200 model can occur at any time (not just at installation

time) to meet any increased workload or applications shift that might occur.

A summary description of the optional features is given below.

Table 1- 8. Series 200 Optional Features

FEATURE 201 201-1

010 ADV ANCED PROGRAMMING n/a n/a OPT

011 ADV ANCED PROGRAMMING OPT

012 PROGRAM INTERRUPT OPT

013 EDIT INSTRUCTION OPT

015 8 ADDITIONAL I/O TRUNKS OPT OPT OPT

016 AUXILIARY READ/WRITE CHANNEL OPT OPT OPT

100 SCIENTIFIC UNIT n/a n/a nla OPT OPT

1115 16 ADDITIONAL I/O TRUNKS & 4 ADDITIONAL RWC' nla nla nla nla OPT

1114 STORAGE PROTECT nla nla nla OPT nla

1117 STORAGE PROTECT nla nla nla nla OPT

_ STANDARD IOPT I OPTIONAL

ADV ANCED PROGRAMMING

Two Advanced Programming Features increase the basic instruction repertoire of the

Model 200 processors. Feature 011 is available with the Types 201 and 201-1 processors, and

feature 010 can be added to the Type 201-2 processor. Each feature includes the following

capabilities (see Table 1-9);

1. Additional program instructions.

2. The ability to modify instruction addresses via indexed or indirect ad­
dressing (described in Section 4).

3, A "read reverse" capability with magnetic tape units.

1- 15

SECTION 1. SERIES 200 COMPONENTS

Table 1-9. Model 200 Advanced Programming Feature

FEATURE 010 (Type 201-2)

Program Instructions

1. Zero and Add
2. Zero and Subtract
3. Branch if Character Equal
4. Change Seq\.lencing Mode
5. Extended Move
6. Move and Translate
7. Branch on Character Condition (expanded

version)
8. Branch on Bit Equa1 2

Address Modification

1. Indexed addre s sing via 6 or 15 index
registers 3

2. Indirect addressing

Read Reverse

FEATURE 011 (Types 201 and 201-1)

Program Instructions

1. Zero and Add
2. Zero and Subtract
3. Branch if Character E,qual
4. Change Sequencing Mode
5. Change Addressing Model
6. Extended Move
7. Move and Translate
8. Branch on Character Condition (ex­

panded ver sion)
9. Load Control Registers 2

Addre s s Modification

1. Indexed addre s sing via 6 or 15 index
registers

2. Indirect addressing

Read Reverse

Any Model 200 processor can read 1 /2-inch magnetic tapes in a reverse direction and transfer
the information to the main memory in the normal (forward) direction.

1
The Change Addressing Mode instruction is available in Type 201 or 201-1 processors which
include either the Advanced Programming Feature or a main memory capacity greater than
4,096 characters. It is included in the standard instruction repertoire of the Type 201-2
processor.

2The Branch on Bit Equal instruction is optionally available only with the Type 201-2 processor.

3

The Load Control Registers instruction, optional with the Types 201 and 201-1 processors, is
included in the standard instruction repertoire of the Type 201-2 processor.

The Types 201-1 and 201-2 processors with the Advanced Programming Feature contain 6 in-
dex registers in the three-character addressing mode and 15 index registers in the four-char­
acter mode. The Type 201 processor with the Advanced Programming Feature contains six
index registers, regardless of addressing mode.

PROGRAM INTERRUPT

This feature, whose basic functions are described on page 1-3, is an optional feature for

the Type 201 processor and is standard for all other processors described herein. A detailed

description of program interruption, including conditions which must be present for an interrupt

to occur, processor activities which are automatically performed when the interrupt takes place,

and the programming of interrupt service routines, is given in Appendix D.

EDIT INSTRUCTION

A comprehensive instruction - Move Characters and Edit - is optionally available with

the Model 200 processors and is a standard feature with the Types 1201 and 2201 processors.

1-16

OPTIONAL FEATURES

Processed information is edited before being converted to an output medium (e. g., a printed

document) by the suppression of unwanted characters and symbols and the insertion of identi­

fying symbols such as the dollar sign, decimal point, and asterisk. The Move Characters and

Edit instruction is described on page 8-102.

ADDITIONAL INPUT/OUTPUT TRUNKS AND READ/WRITE CHANNELS

Any information transferred between the central processor and a periphe'ral device is

transmitted over a "data path" formed by a read/write channel and an input/output trunk. (The

significance of these two elements is described on page 1-13.) The degree of peripheral simul­

taneity achievable by a processor and the number of peripheral devices connectable to that

processor depends on the number of read/write channels and input/output trunks available,

respectively. Three optional features allow a user to increase his processor's peripheral

flexibility by adding the following elements:

1. Feature 015 - Eight additional input / output trunks for a Model 200
processor.

2. Feature 016 - One additional (auxiliary) read/write channel for a Model

3. Feature 1115

SCIENTIFIC UNIT

200 proce s sor.

Four additional read /write channels and 16 additional
input/output trunks for the Type 2201 processor.
The input/output trunks of Feature 1115 can be used
only in conjunction with the read/write channels of
this feature.

The scientific unit, which is physically contained in a separate unit of Series 200 cabinetry,

adds 14 scientifically oriented instructions to the Series 200 repertoire. Available with the

Types 1201 and 2201 processors, it is summarized in Appendix F and described in detail in the

Honeywell Information Bulletin entitled Scientific Unit for Model 1200 and 2200 (Feature 1100).

STORAGE PROTECT

Two Storage Protect Features, identical in nature, are offered to the Type 1201 and 2201

processors as Features 1114 and 1117, respectively. These features allow a programmer­

specified portion of the main memory (and the contents thereof) to be shielded from accidental

alteration by programs running concurrently in the memory. Any attempt to violate the pro­

tection of this area results in an "internal" processor interruption. The program or programs

running in the protected memory area have 15 additional index regIsters at their disposal; these

registers can also be used by programs in the unprotected (or "open") memory area if desired.

The Storage Protect Feature is described in Appendix E.

1-17

THE CENTRAL
PROCESSOR

A Se:dies 200 central processor is logically divided into five basic units (see Figure 2-1):

a main memory, a control memory, an arithmetic unit, a control unit, and an input/output

traffic control.

MAIN MEMORY CONTROL MEMORY I/O
TRAFFIC
CONTROL

UNIT e
ARITHMETIC UNIT

Figure 2-1. Logical Division of Series 200 Central Processor

MAIN MEMORY

The main memory contains from 2, 048 to 262, 144 character locations of magnetic core

storage which are used to store program instructions and data during a program run (see

Figure 2-2).

Nine planes of cores (see Figure 2- 3) are placed on top of one another to form a memory

"stack"; nine cores aligned vertically form a character position in memory. Every character

position is identified by a unique numeric addre ss. This means that an instruction can de signate

the exact storage locations that contain the data needed for a particular ope ration.

2-1

SECTION 2. THE CENTRAL PROCESSOR

MAIN MEMORY t~~~1 I/O
TRAFFIC
CONTROL

[)<"SToRE ~)< PROG~~M?<& e'~eUT DEVICE')<5.l
~~D!2R DAT~~ - '-./ .. N)(

I
ARtTttMETlC ~IT

I

Figure 2-2. Main Memory Functions

Figure 2-3. A Main Memory Core Plane

Figure 2-4 shows one character position of memory with the name of each core shown to the

right. Each core can be individually magnetized to represent either a one or a zero, depending

upon its polarity. Moving from bottom to top in Figure 2-4, the first six cores are used for data

storage, the seventh and eighth cores are used to define the limits of storage areas (these two

cores are frequently referred to as "punctuation" bits), and the ninth core is used for parity

checking.

Figure 2-5 shows how typical numeric, alphabetic, and special characters are stored in the

main memory. Shaded circles represent cores containing I-bits. Bits 1, 2, 4, and 8 in each

2-2

MAIN MEMORY

character position can be combined to represent the decimal values zero through nine. This

four- bit representation of decimal numbers is known as binary coded decimal (BCD). Alphabetic

and special characters are represented by a combination of numeric (l, 2, 4, and 8) and the A

and B cores. The A and B cores correspond to card zone punches: the A bit represents a 12-

punch, the B bit represents an II-punch, a combination of the A and B bits represent a a-punch.

A listing of the main memory formats for all valid Series 200 characters appears in Appendix B.

CORE FUNCTION

@ PARITY BIT (P)

@ ITEM MARK BIT (1M) }
PUNCTUATION BITS

@ WORD MARK BIT (WM)

@ B BIT}
ZONE BITS

@ ABIT

@ 8 BIT

@ 4 BIT

@ 2 BIT

0 I BIT

Figure 2-4. One Memory Position

CHARACTER

(I 4 9 B M • (F

P 0 0 0 0 0 0 0 0
B 1M 0 0 0 0 0 0 0 0 I
T WM 0 0 0 0 0 0 0 0
C

0 0 0 0 0 0 0 0 0 B
N
F 0 0 0 0 0 0 0 0 I A
G
U 8 0 0 0 0 0 0 0 0 R
A

0 0 0 0 0 0 0 0 T 4
I
0 2 0 0 0 0 0 0 0 0 N

I 0 0 0 0 0 0 0 0
Figure 2-5. Representation of Characters

in Magnetic Core Storage

The word-mark bit (WM) is used to define storage fields in the memory. Information is

rarely stored in the memory as single, independent characters; instead, adjacent character

positions are usually grouped to form storage fields. As described in Section 3, the word-mark

bit is instrumental in defining the size of such fields.

Consecutive storage fields are frequently grouped together to form a unit of information

called an item. As its name implies, the item-mark bit (1M) is used to define the size of an item

in the main memory (see Section 3).

A unit of information that is to be trans.ferred between the main memory and a peripheral

device is called a record. A record can be of any length, from one character up to virtually the

maximum number of characters in the memory. Both the word-mark and item-luark bits are

used in defining the size of a record (see Section 3).

The parity bit (P) is used in conjunction with an automatic error-detection technique known

as parity checking. Every character must be represented in the central processor by an odd

2-3

SECTION 2. THE CENTRAL PROCESSOR

number of one-bits. Whenever a character is moved from one location to another it is automati-

cally checked to determine if an odd number of bits has been moved. In Figure 2-5, the charac­

ters 0, 9, B, M, and (are represented by an even number of information bits. Circuitry within

the central processor automatically adds a one in the parity bit positions of these characters to

provide the required odd bit count.

CONTROL MEMORY

The control memory is a magnetic core storage unit consisting of up to 37 individually

addressable control registers. 1 (The number of registers actually available depends on the

system configuration.) Normally, control registers contain the addresses of instructions and of

the data being processed during a program run. One such register, called the A-address

register, is illustrated in Figure 2-6. In this example, the A-address register contains an

address (206) designating a main memory location, which in turn contains a unit of information

(the decimal digit 7) to be added in the arithmetic unit.

ADDRESS

CONTENT
LOCATION

S OF
206

..

... -

MAIN MEMORY

--
206---

7

REGISTER CONTENTS OF

~ A-ADDRESS REGISTER

CONTROL MEMORY I/O

·~~Er
TRAFFIC
CONTROL

I- -. 206 ::

UNIT e
I

ARITHMETIC: UNIT

I
Figure 2-6. Typical Control Register Function

When the Scientific Unit (Feature 1100) is included in a Series 200 processor, each control

register is three characters (18 bits) in length. When the Scientific Unit is not present, each

control register is only as large as it need be to contain the largest (or "highest") main memory

address in a user's processor. (The binary addressing technique used by Series 200processors

is described in Section 4.) Thus, a processor whose main memory capacity is 8, 192 characters

lWhen the Series 200 model is equipped with the Scientific Unit (see Appendix F), 12 control
memory locations form four floating-point accumulators; these registers should only be ad­
dressed by the scientific instructions included in that feature.

2-4

I
i

CONTROL MEMORY

contains control memory registers which are each 13 bits long (13 bits allow 8, 192 addresses),

while the control registers of a processor containing 131,072 characters of main memory storage

are each 17 bits long (see Table 2-1).

Table 2-1. Size of Control Memory Registers

MAlNMEMORY 4,096 8, 192 16, 384 32,768 65,536 131,072 262, 144
CAPACITY
(Characters)

SIZE OF 12 13 14 15 16 17 18
COl'tTRO.t.
MIlMORY

;MGlSTER (Bits)

Control registers can be addressed either by programmed instruction or from the oper­

ator's control panel or console. For instance, an instruction can change the course of a pro­

gr,am by manipulating the contents of the control register that governs program sequence; the

operator can interrogate a control register to determine the exact location at which the program

has halted, etc. When a register is addressed by programmed instruction, it is specified by

means of a variant character in the instruction. A register is addressed from the control panel

or console by using the register's octal address. The functional name of each register and the

variant character which specifies the register are listed in Table 2-2.

Table 2-2. Control Memory Registers

MNEMONIC VARIANT
DESIGNATION FUNCTION CHARACTER

REGISTERS STANDARD IN ALL PROCESSORS

1. AAR A-Address Register 67

2. BAR B-Address Register 70

3. SR Sequence Register 77

4. CLCI Read/Write Channel 1 - Current Location Counter 01

5. CLC2 Read/Write Channel 2 - Current Location Counter 02

6. CLC3 Read/Write Channel 3 - Current Location Counter 03

7. SLCI Read/Write Channell - Starting Location Counter 11

8. SLC2 Read/Write Channel 2 - Starting Location Counter 12

9. SLC3 Read/Write Channel 3 - Starting Location Counter 13

10. WRI Work Register 1 75

11. WR2 Work Register 21 74

12. WR3 Work Register 3 60

FEATURE 010 or 011

13. CSR Change Sequence Register 64

2-5

SECTION 2. THE CENTRAL PROCESSOR

Table 2-2 (cont). Control Memory Registers

MNEMONIC VARIANT
DE SIGNA TION FUNCTION CHARACTER

FEATURE 012

14. EIR External Interrupt Register 66

FEATURE 016

15. CLCl' Read/Write Channel 1 ' - Current Location Counter 05

16. SLCl' Read/Write Channel 1 ' - Starting Location Counter 15

FEATURE 1115

17. CLC4 Read/Write Channel 4 - Current Location Counter 21

18. CLC5 Read/Write Channel 5 - Current Location Counter 22

19. CLC6 Read/Write Channel 6 - Current Location Counter 23

20. CLC4' Read/Write Channel 4'- Current Location Counter 25

21. SLC4 Read/Write Channel 4 - Starting Location Counter 31

22. SLC5 Read/Write Channel 5 - Starting Location Counter 32

23. SLC6 Read/Write Channel 6 - Starting Location Counter 33

24. SLC4' Read/Write Channel 4'- Starting Location Counter 35

FEATURE 1100

25. 41
26. ACO Floating-Point Accumulator 0 42
27. 43

28. 45
29. ACI Floating-Point Accumulator 1 46
30. 47

31. 51
32. AC2 Floating-Point Accumulator 2 52
33. 53

34. 55
35. AC3 Floating-Point Accumulator 3 56
36. 57

FEATURE 1114 OR 1117

37. IIR Internal Interrupt Register 76

INot accessible to the program.

ADDRESS REGISTERS

The A- and B-address registers, the two sequence registers, and the interrupt registers

are used to address main memory during the loading and execution of instructiGnS. A detailed

description of these registers is presented in Section 4, "Addressing."

2-6

ARITHMETIC UNIT

READ/WRITE COUNTERS

Data is transferred between the main memory and a peripheral device via a read/write

channel (described in Section 1). Associated with a read/write channel are two location counters:

a starting location counter and a current location counter. When a peripheral transfer is to be

performed, the address atwhich the transfer is to begin is stored in both counters. Then, as

each successive character is transferred, the contents of the current location counter are in­

cremented by one so that when the transfer is completed, the address of the character position

immediately following the last character transferred is stored in the current location counter.

The availability of the starting and current addresses associated with an input/output area

greatly simplifies the manipulation of variable-length records.

ARITHME TIC UNIT

Arithmetic and logical operations are performed by a configuration of components commonly

referred to as the arithmetic unit. Basically, this unit is composed of an adder, capable of per­

forming both binary and decimal arithmetic, and two operand storage registers, 1 each capable of

storing a single six-bit character. In general terms, an arithmetic or logic operation is per­

formed as follows (see Figure 2-7):

1. An instruction in the stored program specifies the type of operation tobe per­
formed and the main memory storage locations of the data to be operated upon.

2. The operands are transferred to the operand storage registers a character
at a time, beginning with the rightmost character in each operand.

3. Each pair of characters that enters the storage registers is combined by
the adder and the result is stored in the main memory as specified by the
stored program instruction. If a carry is generated, it is stored in the
adder and combined with th~ next higher-order pair of characters.

MAIN MEMORY

...
I I

~ } OPERAND
STORAGE t>2022l REGISTERS

U I/O
TRAFFIC
CONTROL

UNIT e
ARI THMETIC UNIT

.A7VV m
m} ADDER

Figure 2-7. Data Flow Between Main Memory and Arithmetic Unit

IThe contents of these registers are not accessible to the programlner.

2-7

SECTION 2. THE CENTRAL PROCESSOR

CONTROL UNIT

The control unit is the hub of central processor activitie s (see Figure 2-8). Its major

function is to select, interpret, and execute all of the instructions in the stored program. In

carrying out these instructions, the control unit coordinates the various activities of receiving

data from input devices, transferring data within the central processor, and transferringproc­

essed data to the output units. The main memory addresses used by the control unit in perform­

ing these tasks are stored in the registers of the control memory.

MAIN MEMORY CONTROL MEMORY I/O
TRAFFIC
CONTROL

I

~~
, UNIT h

-~ ~
ARITHMETIC UNIT

Figure 2 - 8. Control Unit Activitie s

INPUT /OUTPUT TRAFFIC CONTROL

The input/output traffic control is, as its name implies, the control unit which regulates

the flow (or "traffic ") of data transferred during input/ output activitie s. It works in conjunction

with the central processor control unit to allocate central processor time to input/output oper­

ations and to identify the peripheral controls which are to use that time to transfer data (see

Figure 2-9).

The I/O traffic control enables from three (Model 200 minimum) to ~ight (Model 2200

maximum) simultaneous input/output operations to occur concurrently with the internal compu­

tations of the processor. This simultaneity is achieved by the traffic control's allocation of

consecutive memory cycles to either peripheral controls or the central processor.

2-8

1
1

I
I r
T ,
r

I
-A ,

,
I

INPUT /OUTPUT TRAFFIC CONTROL

MAIN MEMORY r::J I/O
INPUT DEVICE

TRAFFIC (>xx 5<St CONTROL

['IIIJ rg OUTPUT DEVICE

;/ '--
I

ARITHM£TtC UNIT

I

Figure 2-9. Input/Output Traffic Control Activities

MEMORY CYCLE DISTRIBUTION

When peripheral operations are in progress, a variety of mechanical activities may be

taking place - paper advancing in a printer, a tape reel backspacing, a magnetic tape strip being

selected, etc. During peripheral operations, only a fraction of actual central processor time

is required to transfer information to and from the main memory; most of the time is taken up

by the peripheral mechanical activities. The periods in which the central processor is actually

interrupted for data transfer are spaced over the duration of the peripheral operation (see

Figure 2-10).

- TIME REQUIRED TO COMPLETE PERIPHERAL OPERATION --

h

CENTRAL PROCESSOR TIME REQUIRED FOR DATA TRANSFER

Figure 2-10. Data Transfer Intervals During One Peripheral Operation

When a peripheral operation is in progress but is not using main memory (the gray areas

in Figure 2-10), another peripheral control may gain access to the main memory. This second

memory access can in turn give way to a third access by another control before the original

operation requires access to the memory aga.in, etc. In other words, peripheral operations can

2-9

SECTION 2. THE CENTRAL PROCESSOR

occur simultaneously with one another. The periods of time in which peripheral controls do not

require main memory access to transfer data are given to the central processor for its internal

activitie s. It is the function of the I/O traffic control to dire ct the sharing of main memory

cycles by the various peripheral devices and the central processor.

The rate at which each peripheral control transfers data over a programrner-assigned

read/write channel depends on the mechanical characteristics of the device connected to the

control. 1 Thus, the transfer intervals shown in Figure 2-10 are spaced according to the device

being used. For instance, the transfer rate for the mass memory file is considerably faster than

that for the card punch; therefore, the mass memory file will require access to the main memory

more frequently than the card punch. The I/O traffic control monitors the requests for access

to the main memory and insures that all requests are honored within the prescribed time interval

for each unit. The manner in which this is done is illustrated in Figure 2-11. Essentially,

the traffic control decides how each memory cycle should be used - by a read/write channel or

by the central processor - as described below.

The traffic control offers consecutive memory cycles to read/write channels, one memory

cycle per channel. 1£ there is a demand on a particular channel when the cycle is offered, the

channel is granted access to the main memory for one cycle. 1£ the channel does not require

the memory cycle (i. e., if there is no information to be transferred through the channel at that

time), the memory cycle is given to the central processor for internal data processing.

Each basic read/write channel associated with a processor is granted a memory cycle

access to the memory every six microseconds. Thus, the Model 200 processors grant a two­

microsecond access to each one of the three basic read/write channels every six microseconds;

the Type 2201 processor gives a one-microsecond memory access to each one of six basic

channels every six microseconds. The Type 1201 processor also offers a memory cycle (1. 5

microseconds) to each of the three basic channels every six microseconds but in a slightly

different manner. There are four 1. 5-microsecond memory cycles in every six-microsecond

interval. Thus, RWC1, RWC2, and RWC3 are each granted a 1. 5-microsecond access to the

memory, and 1. 5 microseconds is still available before the next six-microsecond interval

begins. This "residual" memory cycle is always given to the Type 1201 processor for internal

computation.

AUXILIARY READ/WRITE CHANNELS

RWC1' and RWC4' are called auxiliary read/write channels because of the manner in which

they are granted acce s s to the main memory by the input/output traffic control. R WC 1 and

IRead/write channels are described in Section 1.

2-10

I

f ,

IF DEMAND ON RWCI',
SERVICE RWCI ' .
OTHERWISE,
SERVICE CENTRAL
PROCESSOR.

IF DEMAND ON RWC6
SERVICE RWC6. '
OTHERWISE,
SERVICE CENTRAL
PROCESSOR.

IF DEMAND ON RWCI,
SERVICE RWCI.
OTHERWISE,
SERVICE CENTRAL
PROCESSOR.

NOTE: AI AND A4 SWITCH
EVERY SIX MICROSECONDS
UNLESS INHIBITED BY
PROGRAMMED INSTRUCTION.

IF DEMAND ON RWC3,
SERVICE RWC3.
OTHERWISE,
SERVICE CENTRAL
PROCESSOR.

2200 CYCLE

INPUT /OUTPUT TRAFFIC CONTROL

IF DEMAND ON RWC4,
SERVICE RWC4.
OTHERWISE,
SERVICE CENTRAL
PROCESSOR.

IF DEMAND ON RWC4'.
SERVICE RWC4'.
OTHERWISE,

..-~~ SERVICE CETRAl
PROCESSOR.

IF DEMAND ON RWC2,
SERVICE RWC2.
OTHERWISE,
SERVICE CENTRAL
PROCESSOR.

NOTE: GRAY AREAS
INDICATE OPERATIONS
PERFORMED ONLY BY THE
TYPE 2201 PROCESSOR.

IF DEMAND ON RWC5,
SERVICE RWC5.
OTHERWISE,
SERVICE CENTRAL
PROCESSOR.

* THIS INTERVAL COMPRISES TWO MEMORY CYCLES IN THE TYPE 1201 PROCESSOR',
THE FIRST CYCLE IS GIVEN TO RWC3 (AS SHOWN), THE SECOND CYCLE IS GIVEN
TO THE PROCESSOR.

Figure 2-11. Symbolic Representation of Input/Output Traffic Control

2-11

SECTION 2. THE CENTRAL PROCESSOR

RWC1' are connected to an alternator; RWC4 and RWC4' are also connected to an alternator.

Every six microseconds, either or both alternators (depending on the number of channels asso­

ciated with a processor) switch to allow one of the attached read/write channels access to the

main memory. By providing alternate access between RWC's 1 and l' and between RWC's 4 and

4', each auxiliary RWC can gain access to the main memory once every 12 microseconds.

It should be noted that program control of the alternators is required because the data

transfer characteristics of certain peripheral devices require that main memory be accessed at

intervals less than 12 microseconds. This means that when such devices are linked to the main

memory via RWC1 and/or RWC4, the action of the appropriate alternator must be inhibited.

Under no conditions should such devices be assigned to transmit data over RWC1' or RWC4'. As

discussed in Section 8, input/output instructions can be specified to inhibit the action of the

alternator(s), thereby guaranteeing RWC1 and/or RWC4 access to the main memory every six

microseconds by denying memory access to the corresponding RWC(s).

Table 2-3. Summary of Central Processor Characteristics

PROCESSOR 201 201-1 201-2 - 1201 2201

MAlNMEMORY

PROCESSING UNIT Six-bit character. Groups of consecutive characters form instruc-
tions and data fields. Fields are defined by word mark punctuation
(see Section 3).

INSTRUCTION FORMAT Variable. Typical configuration: op code, two addresses, and
variant character.

ADDRESSING MODES Two-, three-, and four-character addressing. Three - and four-
character addresses can specify indexed and indirect addressing.

MEMORY CAPACITY 2,048- 2,048- 4,096- 16,384- 16,384-
(Characters) 32,768 65,536 65,536 131,072 262,144

MEMORY CYCLE 2 2 2 1.5 1
(Microseconds)

INDEX REGISTERS 0-6 0-15 0-15 15-30 15-30

CONTROL MEMOil Y

MEMORY CAPACITY 12-16 13-16 13-16 16-29 16-37
(Control Registers)

MEMORY CYCLE 0.50 microseconds

'.,:;' "
AlUTHMETIC UNIT '"

OPERATIONS Decimal arithmetic, binary arithmetic, logical operations.

TYPICAL 5-Digit
OPERATING Decimal

48fLS 48 fLS 48fJs 36f.Ls 24f.Ls
SPEEDS (3- Add
Character (A+B-B)
address 5-Digit
mode) Compare 38f.Ls 38f.Ls 38f.Ls 30f.Ls 21 fLs

(A:B)

2-12

I
I

I
I
i
i
I

I
I
I
I
i
I
r ,

I
f ,
~

f
1

f
1
i
j

INPUT /OUTPUT TRAFFIC CONTROL

Table 2-3 (cont). Summary of Central Processor Characteristics

READ/WRITE
CHANNELS

INPUT /OUTPUT
TRUNKS

SIMULTANEOUS
OPERATIONS
POSSIBLE

Sequential selection, interpretation,
program instructions.

. INPl',l'T IOUTPUT TRAFFIC CON1'llOL

3-4 3-4 3-4 4

8-16 8-16 8-16 16

3-4 3-4 3-4 4

2-13

4-8

16-32

4-8

f

DATA FORMAT

VARIABLE FIELD LENGTH

Information is stored in the main memory in groups of characters, which are called fields.

A field is, by definition, any group of characters that is treated as a unit. Series 200 models

permit fields of any length, from one character up to the maximum number of characters in the

memory. This means that an instruction or data field occupies only that number of core storage

locations actually needed.

The use of variable-length fields requires that there be a method of indicating the actual

length of instruction fields and data fields. This requirement is fulfilled by the word-mark bit

mentioned in Section 2. The word--rnark bit performs the following functions:

1. It terminates the retrieval of an instruction.

2. It terminates the execution of an instruction.

3. It defines the size of a data field.

Throughout this manual, the presence of a word mark will be indicated by a circle around

the character with which it is associated. The following points should be noted regarding the

use of word marks:

1. Word marks can be set and cleared by programmed instructions.

2. Word marks are set by the same routine that loads a program and data into
the main memory. Usually, word-mark assignments will remain unchanged
throughout the execution of a program.

3. An instruction is terminated by a word mark in the storage position immediately
following its last (rightmost) character.

4. A data field is terminated by a word mark associated with its high-order
(leftmo st) character.

3-1

SECTION 3. DATA FORMAT

INSTRUCTION FORMAT

An instruction'is a coded statement which orders the computer to perform a fundamental

operation. A set of instructions suitably combined to perform a specific task is called a program

or routine.

As will be shown in Section 5, the task of coding the instructions in a program is greatly

simplified by the Easycoder symbolic programming system. The Easycoder Assembly Program

converts the symbolic coding written by the programmer into a machine language which is ac­

ceptable to the internal logic of the machine.

OPERATION CODE

Basic to all instructions is an operation code, usually referred to as an op code, that de­

fines the fundamental operation to be performed. The programmer specifies an op code by using

a predefined mnemonic configuration; e. g., BA is the op code that specifies a binary add opera­

tion, MCW is the op code that specifies a move characters to word mark operation. The Easy­

coder Assembly Program automatically converts a mnemonic op code into a single -character,

machine-language op code and sets the word-nlark bit in the character position in which it is

stored.

A AND B ADDRESSES

Most instructions also have two address portions, designated as the A address and the

B address. The address portions indicate the starting locations of the operand fields in the

main memory. Using the Easycoder language, the programmer can specify memory locations by

means of symbolic addresses or "tags" (see Section 5).

The Easycoder Assembly Program automatically assigns absolute memory addresses toe!

the symbolic addresses appearing in a program (see Figure 3-1). Thus, the programmer can

manipulate operands without regard to their actual storage locations in memory.

SYMBOLIC AOOR.
(TAG)

ABSOLUTE MEMORY
ADDRESS

Figure 3-1. Conversion of Symbolic Tags to Absolute Memory Addresses

3-2

r

INSTR UCTION FORMAT

Because of the m.odular design of Series 200 m.odels, the program.m.er has the facility to

specify whether a two-, three-, or four-character absolute address will be assigned to each

syrn.bolic address used in the program.. In any case, the absolute addresses assigned by the

assem.bly program. are interpreted as pure binary num.bers (see Section 4).

VARIANT CHARACTER

The variant character is used to m.odify the op code of an instruction. For exam.ple, the

op code of a Branch on Condition Test instruction (BCT) specifies the fundam.ental operation -

branch if a tested condition is m.et. The condition or restriction which m.ust be m.et before the

branch can occur is specified by the variant character. A table of valid variant characters is

presented in Appendix B.

Figure 3 -2 shows the six basic form.ats in which m.achine -language instructions m.ay appear.

Since the m.axim.um. num.ber of characters in an instruction depends upon whether two-, three-,

or four-character addressing is being used, shaded boxes in the illustration indicate the form.at

of an instruction without specifying the num.ber of characters in each part. These form.ats are

representative of all instructions except those associated with input/output operations. The for­

m.at of an input/output instruction (shown in Section 8 under the heading "Input/Output Instruc­

tions") is a m.odification of form.at 3 shown below. Specifically, the variant characters of the

instruction are replaced by a field of one or m.ore control characters which define the input/output

operation in term.s of data path, direction of data flow, control unit designation, etc.

2

3

4

5

6

Figure 3-2. Series 200 Instruction Form.ats

For the sake of direct com.parison, Figure 3-3 illustrates each of the form.ats defined in

Figure 3-2 as a syrn.bolic entry on the program.m.er's coding form..

3-3

SECTION 3. DATA FORMAT

EASYCODER
CODING FORM

PROB LEM PROGRAMMER DATE PAGE OF

CARD H LOCATION
OPERATION OPERANDS NUMBER CODE

1 2 3 4 5 6 7 • 1415 2021 6263 80

I BeE p, LABEL .0.(" FORMAT 1

I

I I IA !ITE:.M '-OTAL FORMAT 2
I I
: i geT IgZRO .~~ FORMAT 3
I I
: I ~w Wo~1(FORMAT 4

I I

I I 1c,A.tr\ 6<l! FORMAT 5
10 I i
" i i ~ FORMAT 6
12 I i
13 I I
14 I I
15 I ! -

Figure 3-3. Sy:mbolic Representation of Series 200 Instructions

ORGANIZATION OF DATA IN MAIN MEMORY

Data :may be stored in the :main :me:mory in any of the following variable -length for:mats:

• FIELD

• ITEM

• RECORD

FIELDS

Consider the eight consecutive storage locations shown in Figure 3-4. To indicate to the

:machine that these eight characters are to be treated as a field, their left and right boundaries

:must be defined. The left boundary is defined by setting a word :mark in position 990. The right

boundary is defined by specifying storage address 997 in the instruction that will :manipulate the

field. The eight-character group shown in Figure 3-5 is properly defined as a field.

STORAGE ADDRESS

CONTENTS

Figure 3-4. Consecutive Storage Locations in Main Me:mory

3-4

ORGANIZATION OF DATA IN MAIN MEMORY

PROBLEM

CARD H
NUMBER t ~

12::3 4 5 6 , 8

I

ITEMS

LOCATION
OPERATION

CODE

1415 2021

IA ~-;¢7Z. .'1Q7

T

STORAGE ADDRESS

CONTENTS

EASYCODER
CODING FORM

PROGRAMMER DATE

OPERANDS
6263

ADDRESS PORTION OF INSTRUC

DATA FIELD -----~

Figure 3-5. Data Field Format in Main Memory

PAGE OF

80

An item consists of one or more consecutive storage locations whose boundaries can be

defined in either of two ways:

1. The leftmost character position can be defined in the instruction that will operate
on the item and the rightmost character position defined by an item mark; or

2. The rightmost character position can be defined in the instruction that will oper­
ate on the item and the leftmost character position defined by an item mark.

NOTE: An item mark is illustrated in this manual by underlining the character with
which it is associated. Fields within an item are defined by word marks.

Two items, each containing three data fields, are shown in Figure 3 -6.

STORAGE ADDRESS

CONTENTS

ADDRESS PORTION
OF INSTR UCTION

ITEM
~~~--~----L-~-L--~L---~---LI-=~L----L--~~~~~MARK 

~~ DATA FIELD----i~ 

STORAGE ADDRESS 

ADDRESS PORTION 
OF INSTRUCTION 

CONTENTS 0 

ITEM MARK DATA I DATA I DATAj 

FIELD~FIELD-+FIELD I 
14------------- ITEM ~. 

Figure 3-6. Two Item Formats in Main Memory 

3-5 



SECTION 3. DATA FORMAT 

RECORDS 

A record is any unit of information that is to be transferred between the main memory and 

a peripheral device. I A record can be of any length, from one character up to the maximum 

number of characters in the memory. It can contain any number of items and fields. The right­

most limit of a record is defined by a record mark in the character position following the last 

character in the record (see Figure 3-7). 

NOTE: A record mark is illustrated by combining the word-mark and item-mark 
symbols. The address of the leftmost character in a record is specified 
in the instruction that operates on the record. 

STORAGE ADDRESS 

CONTENTS 
-----.-. 

ADDRESS PORTION OF INSTRUCTION 
t 

245 246 Z47 248 249 

4 5 2 7 0 

250 251 252 

0 8 (1) 

1011.1----------- RECORD -------~~ + 
RECORD 
MARK 

Figure 3-7. Record Format in Main Memory 

SUMMARY 

The foregoing data formats are summarized in Figure 3-8. 

BOUNDARY DEFINITION 
INSTRUCTION 

DATA FOIU4AT ~USED~TO SET·· 
LEFTMOST CHARACTER RIGHTMOST CHARACTER MAR:K:(See .... 

Secti()Jl<~}' 

FIELD Word Mark ® Address portion of in- SetWordMark 
struction 

Address portion of in- Item mark X -
ITEM 

struction 
Set Item Mark 

Item Mark - X Address portion of in--
struction 

RECORD Addre s s portion of in- Record mark ® BOTH Set 
Word Mark 

struction -- and Set Item 
(in character position Mark 
following last character 
of record)l 

Figure 3-8. Summary of Internal Data Formats 

1 A record can also be moved internally (i. e., from one main memory area to another) by means 
of the Extended Move instruction (see Section 8). In this case, the character containing the 
record mark is considered as part of the record. 

3-6 



1 
I 

1 

t 
'1 

I 
) 
J 
; 

/ 

1 
J 

MAGNETIC TAPE DATA FORMAT 

MAGNETIC TAPE DATA FORMAT 

In many applications, a major input and output medium for a Series ZOO model is magnetic 

tape. The standard Series ZOO magnetic tape system uses liZ-inch tape as the recording medi­

um. A tape system using 3/4-inch tape is also available. 

Information is stored on liZ-inch magnetic tape in variable -length group of characters 

called records. The tape is divided lengthwise into seven recording channels. A line of bit posi­

tions across the tape, one position for each channel, is called a frame. The seven bits in a 

frame correspond to the six information bits and one parity bit found in a character position in 

the main memory. Notice that no channels are provided for the storage of punctuation bits on 

tape. Unlike main memory records, which are delimited by record-mark punctuation, tape rec­

ords are separated from each other by a band of blank tape, which is called an interrecord 

gap. The representation of a memory character position on magnetic tape is shown in Figure 3-9. 

MAIN 
MEMORY 
CHARACTER 
POSITION 

Figure 3-9. 

1/2" 
MAGNETIC 

TAPE 

INTERRECORD GAP 

FRAME 

Characte r Repre sentation on Magnetic Tape 

.. 
Characters recorded on magnetic tape are transferred from the main memory without 

parity bits. At tLe time of recording, the magnetic tape control generates parity bits as 

required. The programmer may specify either odd or even-parity recording: in the odd-parity 

mode the bit count in each frame is odd; in the even-parity mode the bit count is even. 

In addition to parity bits, which are used for frame checking, the magnetic tape control 

also generates a longitudinal check frame which is used for channel checking purposes. A check 

frame is automatically appended at the end of each record stored on tape. 

Recall that a record stored in memory is delimited by a record mark in the character 

position following the last character in the record. When a record is transferred to tape, the 

3-7 



SECTION 3. DATA FORMAT 

contents of the character position containing the record mark are not included as part of the re­

cord. On the other hand, if a record mark is sensed in memory when information is being read 

in from tape, the record mark will terminate the record and the character position containing 

the record mark will receive a character from the tape. Although data transfer from the tape 

is terminated by the record mark, tape motion continues until an interrecord gap is sensed. 

No punctuation marks are altered in any way as a result of tape read/write operations. 

LONG I TUDINAL 
CHECK FRAME INTERRECORD 

GAP 

J 

VARIABLE- LENGTH 
RECORDS 

FRAME 

Figure 3-10. Data Format on Magnetic Tape 

PUNCHED CARD FORMAT 

Punched cards provide a convenient means of entering data into the machine. The cards 

used for this purpose are either standard 12-row, 80-column cards or 51-column cards. Each 

card column may contain a decimal digit, an alphabetic character, or a special symbol such as 

a slash or an asterisk (see Figure 3-11). 

ZONE 
PUNCHES 

NUMERIC 
PUNCHES 

0123456789 ABCDEFGHI JKLMNOPQR STUVWXYZ 

111111111 

111111111 III 
000 0 0 0 0.0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11111111 0 0 0 0 0 0 0 0 0 0 0 0 0 III 0 0 0 0 0 0 0 0 0 0 
113456 11 9101\1lIl141~li!llil~2C:O'222Jl'2S262J1S29:mJI311J)41J.lS1J:l8]940414:41444546414'4oJOlll1SJ>45S56SJS8596061626l~4~~666:r..;691n11 12 13 J4751611 181980 

1111111 I 111 I 1111 I 111111 I I 1111 I I 1111111 111 I 11111 11111 I 111 111111 I 1111111 I 11 111 1111 

22222222221222222222222222212222222221222222221222/22222222222222222222222222222 

33333333333133333333333333331333333333133333333133333333333333133133131333333333 

4 4 4 4 44 4 4 4 ~ 4 414 4 4 4 4 4 4 4 4 44 4 4 4 4 414 4 4 4 4 44 , 414 4 4 4 4 4 4 414 4 4 4 4 4 4 4 4 4 4 4 4 414 414 41414 4 4 4 4 4 4 4 

5555555555555155555555555555551555555555155555555155 5 55555555555555555 , ~ 5 5 5 5 5555 

6666666666666616666 tti 6 6 6 6 6 6 6 6 6 616 6 6 6,6666166666666166666,66666666666666666666666 

1111117777777771777777 j 7 7 7 1 7 7 1 7 717 7 7 J 7 I 7 7 717 777 1777 177 17777 I 7 7 7 7 7 7 11 7 7 7 7 7 77777 17 

a a a a a a a a a a a a a a a al a a a a a a a 8 a a a a 8 a a al a a 8 8 a a a a 81a 8 8 a 8 8 a 81a a 8 a a a 8 S allall811118 8 8 8 8 8 8 8 

80 COLUMN 9999999999999999 91 ~ 9 9 9 9999999999991999999999199999999199999999999999999999 9 9 9 9 q 9 SCALE -----I .. 12 1 4 5 ~ J a 9 'U 1112111'1~lb')1~19~Ol'21lJl'i5162J28293JJ112Jll.(1',JEJ'JH),40(14)\1~4'4li414g49JOSI5"\J>4~S6SJSIIS9&06152&.J"'65"6J686910'1.'21l!'JSJ611)'1980 

Figure 3 - 11. Punched Card Code s 

3-8 



, 
J. 

i 

PUNCHED CARD FORMAT 

Numeric information is represented using the card punch positions labeled zero through 

nine. Alphabetic information is represented by a combination of numeric punches and zone 

punches. There are three zone punch positions: the 12 zone at the top edge of the card, the 11 

zone just below the l2-zone position, and the zero zone labeled as row zero on the card. The 11 

and 12 zones are not labeled because the top edge of the card is reserved for printed headings. 

In addition to Hollerith code, cards may be punched or read in the direct transcription 

mode as an optional feature. Each punch position on the card is individually significant in this 

mode, a punch representing a one bit and the absence of a punch representing a zero bit. 

The data formats of the media most commonly associated with peripheral devices (viz., 

magnetic tape and punched cards) have been described. However, other media (e. g., paper tape, 

magnetic tape strips, etc.) also contain unique data formats which are converted to central 

processor format by their respective peripheral controls. These formats are described in the 

individual Serie s 200 publications which define such device s. 

/' 

3-9 





I 
f 

I 
-". 
~ 

1 

L 

ADDRESSING 

BASIC CONCEPTS 

The main memory storage locations that contain the instructions and data of a program are 

identified to the machine by their particular main memory addresses. Every character storage 

location in the main memory is directly addressable. 

An instruction is stored in a field of from one to 12 characters, depending on the format of 

the instruction and the mode of address assembly (two-, three-, or four-character). Figure 4-1 

illustrates how a typical Add instruction appears when stored in the main memory. (Recall that 

a character enclosed in a circle indicates that a word mark is associated with it. ) 

An instruction is addressed by specifying the op code (leftmost) location of the instruction. 

For instance, the address of the Add instruction in Figure 4-1 is storage location 524. The 

machine reads an instruction from left to right until it senses a word mark. For example, the 

extraction of the Add instruction (Figure 4-1) is stopped by the word mark associated with the 

op code of the next instruction in sequence. 

STORAGE ADDRESS 524 525 I 526 I 527 528 I 529 I 530 531 

./ 

® CONTENTS----. ® 1776 1492 

I 
O~ A ADD

4
RESS ,B ADDt.ESS OP CODE OF 

CODE NEXT INSTR. 

MACHINE READS INSTRUCTION 
1---- FROM LEFT TO RIGHT -----1~ 

Figure 4-1. Typical Add Instruction 

4-1 



SEC TION 4. ADDRESSING 

/ 
As mentioned in Section 3, a dita field is defined in the following manner: the leftmost 

location in the field is indicated by a word mark; the rightmost location is specified in the A or 

B address of an instruction. The machine reads a data field from right to left until it senses the 

word mark associated with the leftmost character in the field. For example, the A and B ad­

dresses in the instruction shown in Figure 4-1 could specify the data fields shown in Figure 4_2. 1 

ICg;E I A ADDRESS B ADDRESS 

INSTRUCTION 

ADDRE 

DATA 4 ® 7 2 0 4 Q) 

A FIELD 

ADDRESS 

DATA @ 3 7 7 7 3 9 6 @ 

I .. 
B FIELD 

MACHINE READS DATA FIELD 
FROM RIGHT TO LEFT 

Figure 4-2. Extraction of Data Fields in Typical Add Instruction 

An item is addressed by specifying either its leftmost or its rightmost character location 

in an address portion of an instruction (a variant character in the instruction specifies which 

character is being addressed). If the address of the leftmost character is specified, the ma­

chine reads the item from left to right; if the address of the rightmost character is specified, 

the machine reads the item from right to left. In either case, the operation terminates when an 

item mark is sensed. 

A record is addressed by specifying its leftmost character location in an address portion 

of an instruction. The machine reads a record from left to right until it senses a record mark. 

Note that the contents of the character position containing a record mark are not considered as 

part of the record. 

1 
NOTE: All examples and illustrations in this section are presented in decimal notation. A table 

of decimal and octal equivalents appears in Appendix A. 

4-2 



j 

REGISTERS USED IN ADDRESSING 

The direction in which the m.achine reads any of the above-m.entioned groups is com.patible 

with the m.anner in which the contents of the group are m.anipulated. For instance, a field is 

read from. right to left becuase arithm.etic operations com.bine fields character by character, 

starting with the low-order or "units" position in each field. Sim.ilarly, an instruction is read 

from. left to right because the m.achine m.ust interpret the op code before it can m.anipulate the 

operand(s). 

REGISTERS USED IN ADDRESSING 

The processing of a stored-program. instruction consists of two phases: the retrieval (or 

"extraction") of the instruction from. m.ain m.em.ory storage, and the execution of the instruction. 

Six control m.em.ory registers are used to address the m.ain m.em.ory during instruction proc­

essing. Four registers - SR, CSR, EIR, and IIR - are related to the sequential selection of 

instructions in a program.; the other two registers - AAR and BAR - control the transfer of 

inform.ation from. one storage location to another by containing the address portions of an in-

struction. 

SEQUENCE REGISTER (SR) 11 
SR contains the address of the next sequential instruction character to be extracted from. 

the m.em.ory during a program. run. The contents of SR are increm.ented by one as each instruc­

tion character is extracted, so that SR contains the address of the next instruction1s op code 

when one instruction has been com.pletely extracted. 

CHANGE SEQUENCE REGISTER (CSR) 

The address of an op code can be stored in CSR. 1 A Change Sequencing Mode instructior. 

(see page 8- 72) will interchange the contents of SR and CSR and thereby cause the program. to 

branch to th\ instruction whose op code address was stored in CSR. At this point in the program. 

CSR will contain the address of the op code following the Change Sequencing Mode instruction. 

In order to return to this op code (i. e., to the initial sequence of instructions), another Change 

Sequencing Mode instruction can be issued. 

EXTERNAL INTERRUPT REGISTER (EIR) 

EIR, like CSR, can be used to store the address of an op code (see footnote below. This 

address and the contents of SR will be interchanged autom.atically when an external interrupt 

signal is received. (Recall that an external interrupt signal can be generated by a peripheral 

1 A Load Control ReKisters instruction can be used to store the desired op code address (see 

page 8-67). 

4-3 



SECTION 4. ADDRESSING 

control, by the control panel or console, or by the Monitor Call instruction. In order to re­

turn to the normal sequence of instructions that was interrupted, a Resume Normal mode in-

struction (see page 8-97) can be issued. 

INTERNAL INTERRUPT REGISTER (IIR) 

The address of anop code can also be storedinIIR.l When the Type 1201 or 2201 processor is 

equipped with the Storage Protect Feature, certain operations are considered as "violations" of 

storage protection (e. g., the attempt to transfer data from a peripheral control to the protected 

memory area). An internal interrupt signal is generated when such a violation occurs, and the 

contents of IIR and SR are automatically interchanged. The Resume Normal Mode instruction is 

used to return to the interrupted program. 

A-ADDRESS REGISTER (AAR) 14-
AAR normally contains the A-address portion of an instruction (i. e., the storage address 

of the rightmost character in the A-operand field). This address is loaded into AAR during the 

extraction phase of processing. In the execution of instructions whose operands are fields, the 

contents of AAR are decremented by one as each character in the A field is manipulated. The 

contents of AAR are incremented by one as each character in a record or leftmost-addressed 

item is executed. 

B-ADDRESS REGISTER (BAR) 10 
Normally the B-address portion of an instruction is loaded into BAR during the extraction 

phase. During the execution of most instructions, the contents of BAR are decremented by one 

as each character in the B field is executed. If the B operand is a record or a leftmost-ad­

dressed item, the contents of BAR are incremented by one as each character is executed. 

SUMMARY 

The foregoing information can be summarized as four easily remembered rules: 

1. An instruction is read from left to right. As each character in the instruc­
tion is read, the contents of the sequence register are incremented by one. 

2. A field is read from right to left. As each character in a field is read, 
the contents of the corresponding address register are decremented by one. 

3. A record is read from left to right. 2 As each character in a record is read, 
the contents of the corresponding current location counter are incremented 
by one. 

1 A Load Control Registers instruction can be used to store the desired op code address (see 
page 8- 67). 

2 
A record also can be moved internally from right to left by means of the Extended Move in-
struction (see Section 8). 

4-4 



.if.-

j 

.. 

4. 

ADDRESSING MODES 

An item can be read either from left to right or from right to left. As 
each character in an item is read, the contents of the corresponding ad­
dress register are incremented by one if reading from left to right, or 
decremented by one if reading from right to left. 

Recall that a control memory register is only as large as it need be to contain the largest 

main memory address in a user's processor (see Table 2-1), so that the size of the user's 

control registers ranges from 12 to 18 bits in length. The programmer should keep this fact in 

mind while reading the following description of addressing modes. 

ADDRESSING MODES 

As stated at the beginning of this section, an instruction is stored in a field of from 1 to 12 

characters, depending on the instruction's format and the programmed addressing mode. The 

op code is stored as a single, six-bit character. Variant characters or I/O control characters, 

if any, are each stored as single characters. The number of character locations in which each 

address portion is stored depends on the addressing mode selected by the programmer. This 

selection is made by means of a Change Addressing Mode instruction (see page 8-69), by which 

the programmer specifies the two-, three-, or four-character addressing mode. A significant 

feature of the Series 200 addressing technique is that the entire memory is directly addressable. 

TWO-CHARACTER ADDRESSING MODE 

An operand address written in the two-character addressing mode is stored in two con­

secutive character locations in memory. The stored address (a continuous 12-bit binary num­

ber) represents the address of a main memory location in the range 0 - 4,09510 . 

\ 

Two-Character Address -------------------i~ .. 1 X X/XiX IX xix X!x:x X xl 
, , 

12-Bit Address 

During the extraction phase of instruction processing, the two-character address is placed 

in the rightmost 12-bit positions of the address register (AAR or BAR). Any bits in the register 

to the left of the two-character address .are called "bank bits." Previous values in the bank bit 

positions of the register are not disturbed during instruction extraction. 1 

I The entire contents of an address register (bank bits + two-character address bits) are affected 
during the extraction of an instruction whose extraction path "duplicates A" (described on page 
4-16). Extraction of all other two-character addresses affects only the rightmost 12 bits. 

4-5 



SECTION 4. ADDRESSING 

Two-Character Address------------------I.~IX X X X X XiX X X X X Xl 
(12 Bits) .-

Address Register-------------~. [~X-~-~-X-~IX X X X X XiX X X X X Xl 
(12-18Bits) , 

Bank Bits 
(not disturbed 

during 
extraction) 

When the instruction is executed, the entire contents of the address register are inter­

preted as the operand address. Previous values in the bank bit positions, not disturbed during 

the extraction phase, are used to form the address of the operand during the execution phase. 

Thus, the bank bit values are a base address to which the 12-bit address is added to forlU the 

actual operand address. If the bank bit values are all zeros, the 12-bit address is the actual 

operand address. 

For example, a two-character A address specifying location 4,000 10 is extracted and 

placed in AAR. The second bank bit in AAR (bit position 14) contains a residual value of "1", 

forlUing a base address of 8,19210 . When the instruction is executed, the entire contents of 

AAR (8,192 10 + 4, 000 10 ) specify the address of the A operand - location 12,19210 . 

As the contents of the address register are incremented or decremented during "internal" 

execution, bank bits are not disturbed. 1 If the 12-bit address in the rightmost positions of the 

register becomes 'zero, a borrow from the first bank bit does not occur. Thus, the portion of 

memory which is addressable by a two-character address is the 4,096 -character "bank" speci-

fied by the base address. 

Indexed and indirect addressing (see below) cannot be performed in the two-character ad­

dre s sing mode. 

THREE-CHARACTER ADDRESSING MODE 

An operand address written in the three-character addressing mode is stored in three 

consecutive character locations of the memory. The rightmost 15 bits of the stored address 

represent the address of a main memory location in the range 0 - 32,76710 . The leftlUost three 

1 "Internal execution" is defined as the incrementing or decrelUenting of address register con­
tents during memory cycles allocated to the central processor. When peripheral transfer oper­
ations are performed, using memory cycles allocated to read/write channels, incrementing and 
decrementing of address register contents affect all bits of the register. Thus, addressing 
during peripheral transfer operations is continuous throughout the memory. 

4-6 



ADDRESSING MODES 

bits, referred to as the "address modifier, " specify whether the address is direct, indirect, or 

indexed (see "Address Modification, " page 4- 8 ). 

3-Bit 
Address 
Modifier 

IS-Bit Address 

During the extraction phase, the IS-bit address is placed in the rightmost bit positions of 

the operand address register. Any bits in the register to the left of these bit positions are called 

"sector bits." Previous values in the sector bit positions of the register are not disturbed during 

instruction extraction. 1 

Three-Character Address----------..~ 1I.lIx~xlxxx X X XJXX X XX Xl 
(1S Address Bits) .. 
Address Register 
(IS-18 Bits) 

---------~~ ~_=_~=X!~tx'xlx:x XXX Xj<K:X xxxx,1 --.-.. 
Sector Bits 

(not disturbed 
during 

extraction) 

When the instruction is executed, the entire contents of the address register are interpre­

ted as the operand address. Previous values in the sector bit positions, not disturbed during the 

extraction phase, are used to form the address of the operand during the execution phase. Thus, 

the sector bit values are a base address to which the IS-bit address is added to form the actual 

operand address. If the sector bit values are all zeros, the IS-bit address is the operand address. 

For example, a three-character A address specifying location 12,000
10 

is extracted and 

placed in AAR. The first sector bit in AAR (bit position 16) contains the value" 1", forming a 

base address of 32,768
10

• When the instruction is executed, the entire contents of AAR 

(32,76810 + 12,00010) specify the address of the A operand - location 44,76810• 

As the contents of the address registers are incremented or decremented during "internal" 

execution, sector bits are not disturbed. If the IS-bit address in the rightmost locations of the 

address register becpmes zero, a borrow from the first sector bit does not occur. Thus, the 

1 The entire contents of an address register (sector bits + IS-bit address) are affected during the 
extraction of an instruction whose extraction path "duplicates A" (described on page 4-16). Ex­
traction of all other three-character addresses affects only the rightmost IS bits in the register. 

4-7 



SEC TION 4. ADDRESSING 

portion of memory which is addressable by a three-character address is the 32, 76S-character 

"sector" specified by the base address. 

Addressing is continuous throughout the entire memory when a peripheral transfer oper­

ation is performed, as in the two-character mode. 

FOUR-CHARACTER ADDRESSING MODE 

An operand address written in the four-character addressing mode is stored in four con­

secutive character locations. The rightmost IS bits represent a main memory address in the 

range a - 262,14410• 1 The leftmost five bits - the "address modifier" - specify whether the 

address is direct, indirect, or indexed (see "Address Modification," below). 

5-Bit 
Address 
Modifier 

IS-Bit Address 

The IS-bit address is placed in the address register during the extraction phase. Thus, 

the entire contents of the address register are affected during the extraction of a four-character 

address. 

Four-Character Address -----t~ 
(1S Address Bits) 

Address Register----------------------t~ 
(Up to IS Bits) 

The entire contents of the register are interpreted as the operand address when the instruc­

tion is executed. As the contents of the operand address registers (AAR and BAR) are incre­

mented or decremented during execution, all bits in the register are affected. Thus, addressing 

is continuous throughout the entire range of available memory (up to 262,144 locations) in the 

four-character addressing mode. 

ADDRESS MODIFICATION 

Indirect and in~exed addressing can be used to modify three- or four-character addresses 

in any Series 200 processor containing the Advanced Programming Feature (Feature 010 or all). 

1 
The nineteenth bit of a four-character address is reserved for possible memory expansion. 
This bit is always zero in Series 200 processors with a main memory capacity of 262,144 
characters or less. 

4-S 



ADDRESS MODIFICATION 

These addressing forms are represented by the configuration of the "address modifier" as 

described below and are interpreted by the processor during the extraction phase. 

THREE-CHARACTER ADDRESS 

The address modifier of a three-character address (i. e., the leftmost three bits of the 

stored address) specifies whether the address is direct (000), indirect (111), or indexed (001 

through 110). 

Indirect Addressing 

In previous examples and illustrations in this section, an address portion of an instruction 

always specifies the address of a data field in the main memory. This manner of addressing an 

operand is commonly referred to as direct, or "first-level, "addressing. In some instances, 

instead of specifying the location of a data field directly, it is more useful to be able to specify 

the storage location of another address, which in turn specifies the location of the desired data 

field. This manner of locating an operand is referred to as indirect, or "second-level, " 

addressing. 

A three-character indirect address is specified by an address modifier of all one bits and 

refers to the leftmost storage location of another main memory address. The referenced address 

can itself be direct, indirect, or indexed as specified by its address modifier. Thus, an indirect 

address can specify another indirect address, and so on through any number of levels, or it can 

specify an indexed address. The method of coding an indirect address is illustrated in Section 5. 

Figure 4-3 shows the extraction of an Add instruction in which indirect addressing is 

specified in the A address and direct addressing is specified in the B address. Note that the A 

address (indirect) references the leftmost location of another main memory address. This ad­

dress, in turn, specifies the location of the rightmost character in the A field. Note further 

that if the address modifier of location 1027 were not "000", the remainder of the stored address 

would be interpreted as an indexed or indirect address. 

Indexed Addre s sing 

A Series 200 processor can contain up to 30 index registers, depending on the type of proc­

essor and the optional features included in that processor. Table 4-1 summarizes the manner 

in which a processor acquires index registers. 

Indexing operations in the three-character addressing mode use index registers 1 through 

6. These registers are located in the first 25 locations (locations 0 through 24) of the 32,768-

character sector in which the instruction is stored (see Table 4_2).1 

I These registers are always located in the first 25 locations (locations 0-24) of memory in a 
Type 201 or 201-1 processor. 

4-9 



SECTION 4. ADDRESSING 

A ADDRESS B ADDRESS I 

Type 

201 

201-1 

201-2 

1201 

2201 

INSTRUC 

indicates 
indirect 
address 

CONTENTS 

Figure 4-3. Extraction of Three-Character Indirect Address 

Table 4-1. Number of Index Registers Available to Series 200 Processors 

Basic Features Minimum 
Processor Advanced Storage Protect 

Programming (Feature 1114 
(Feature or 1117) 

010 or OIl) 

0 6 n/a 0 

0 15 n/a 0 

0 15 n/a 0 

15 n/a1 15 15 

15 n/a1 15 15 

1 Advanced Programming is a standard feature on the Type 1201 and 2201 processors. 

4-10 

Maximum 

6 

15 

15 

30 

30 



1---:: 

ADDRESS MODIFICATION 

Table 4-2. Index Register Addresses in Three-Character Addressing Mode 

Fe: '~ail.ter 1'7;", ..... 1 :: Addre •• Modifier Storage Field Address 

1 001 2 - 4 (+n) 4 (+n) 

2 010 6 - 8 (+n) 8 (+n) 

3 011 10 - 12 (+n) 12 (+n) 

4 100 14 - 16 (+n) 16 (+n) 

5 101 18 - 20 (+n) 20 (+n) 

6 110 22 - 24 (+n) 24 (+n) 

n = first location of the 32,768-character sector in which the instruction is 
stored. 

When indexed addressing is performed in the three-character mode, the rightmost 15-bit 

contents of an index register are automatically added to the 15-bit address field in an instruction. 

Three variables must be defined in any indexing operation: (1) the index register to be used, (2) 

the address to be modified, and (3) the factor (referred to as an augment) to be added to the ad­

dress. The index register to be used is specified in the address modifier of an address field. 

The address to be modified can be stored in the same address field or it can be stored in the 

designated index register. If the address to be modified is stored in an address field, the aug­

ment is stored in the designated index register and vice versa. 

The modification of an address occurs in its respective address register. For instance 

if the B-address portion of an instruction is indexed, the indexing is performed in BAR. This 

means that neither the original instruction stored in the main memory nor the contents of the 

index register is altered in any way. 

Normal programming, such as a load or a move operation, can be used to store a value 

in an index register. Similarly, the contents of an index register can be changed by using an 

instruction such as Binary Add or Binary Subtract. Note that since the index registers are lo­

cated in the main memory, they can be used as normal storage locations when they are not 

being used for indexing operations. 

Figure 4-4 illustrates how the Add instruction on page 4-10 would be extracted if indexed 

addressing were specified in the A-address portion of the instruction. The method of coding an 

indexed address is illustrated in Section 5. 

4-11 



SECTION 4. ADDRESSING 

INSTRUCTION 

indicates 
index 

re ster 3 

INDEX REGISTER 3 

CONTENT::;~IX:XXI 

address type 
indicator is 

i 

A ADDRESS 

indicates 
direct 

address 

ADDRESS--~~~nr3m~f3i~n 

CONTENTS-~'" 

B ADDRESS I 

ADDRESS-~~ __ ~ __ ~_~+-_-+ __ ~_~ 

CONTENTS---t~ 

========~======= 

Figure 4-4. Extraction of Indexed Address in Three-Character Mode 

FOUR-CHARACTER ADDRESSING MODE 

The address modifier in a four-character address consists of the leftmost five bits of the 

address (see page 4-8). The configuration of these bits specifies whether the address is direct 

(00000), indirect (10000), or indexed (00001 through 11111, skipping over 10000). 

Indirect Addressing 

Indirect addressing in the four-character addressing mode is performed similarly to that in 

the three-character mode, except that: 

1. a five-bit address modifier whose configuration is 10000 specifies indirect 
addressing; and 

2. a four-character address is extracted. 

The method of coding a four-character indirect address in Easycoder assembly language is 

identical to that used for a three-character indirect address (see Section 5). 

4-12 



I ~­
! 

1. 
'. 

ADDRESS MODIFICATION 

Indexed Addre s sing 

Four-character indexed addresses to be modified by index registers 1 through 15 are 

specified by an address modifier whose configuration is 00001 through 01111, respectively. Index 

registers 16 through 30, when present, 1 are specified by the configurations 10001 through 11111 

(see Table 4-3). 

Table 4-3. Index Register Addresses in Four-Character Addressing Mode 

Index Re gister Address Modifier Storage Field Address 

1 00001 2-4 4 
, 2 00010 6-8 8 

3 00011 10-12 12 
4 00100 14-16 16 
5 00101 18-20 20 

6 00110 22-24 24 

7 00111 26-28 28 
8 01000 30-32 32 

9 01001 34-36 36 

10 01010 38-40 40 

11 01011 42-44 44 
12 01100 46-48 48 
13 01101 50-52 52 
14 01110 54-56 56 

15 01111 58-60 60 

16 10001 
17 10010 
18 10011 
19 10100 
20 10101 Same as above, only 
21 10110 relative to the 4, 096-
22 10111 
23 11000 character memory bank 
24 11001 

de signated by the Load 
25 11010 
26 11011 Index/Barricade Register 
27 11100 instruction (see page 8-84). 
28 11101 
29 11110 
30 11111 

Index registers 1 through 15 are located in the first 61 locations of the main memory (lo­

cations 0 - 6010), each register occupying three storage locations. The situation of these reg­

isters is independent of the location of the instruction whose address (es) is indexed. Index reg-

i ster s 16 through 30 are located in the fir st 61 locations of the "protected" memory area in the Type 

1201 or 2201 proces sor. (Recall that the main memory of the Type 1201 or 2201 can be logically divided 

lIndex registers 16 through 30 are the registers included in the Storage Protect Feature. 

4-13 



SECTION 4. ADDRESSING 

at any 4,096 -character bank into an "open" area and a "protected" area. The specific bank at 

which the division takes place is specified by the Load Index/Barricade Register instruction 

described in Section 8. ) 

When indexed addressing is performed in the four-character mode, the contents of the 

specified index register are added to the address field of the instruction. However, only the 

number of active address bits of the index register and the address field are combined (i. e., 

only the number of bits which are required to address the entire memory of the userls proc­

essor). The number of active address bits corresponds to the size of a control memory reg­

ister (see Table 4-4). 

Table 4-4. Active Address Bits in Series 200 Processors 

Main. Memory 32,768 65,536 131,072 262,144 
Capacity (Chars.) 

Number of Active 15 16 17 18 
Address Bits 

If the main memory capacity of a userl s system lies somewhere between any two figures 

in the top row of Table 4-4, the larger number of active address bits is used. For instance, if a 

processor contains 49,152 characters, there are 16 active address bits in an index register (and 

in a control register). 

The extraction of a Subtract instruction written in the four-character addressing mode is 

shown in Figure 4-5. Indirect addressing is specified in the A address, and indexed addressing 

(via index register 13) is specified in the B address. 

EXPLICIT ADDRESSING, IMPLICIT ADDRESSING, AND CHAINING 

Consider the three instruction formats illustrated below. 

OP CODE A ADDRESS B ADDRESS 

FORMAT I. ~~~==i~~[==== FORMAT 2. __ 

FORMAT 3. _ 

Format 1 corresponds to the instructions used in the preceding illustrations. The signifi­

cant feature of this format is that the addresses of both the A and the B data fields are explicitly 

4-14 



i , 

EXPLICIT ADDRESSING, IMPLICIT ADDRESSING, AND CHAINING 

specified in the instruction. For this reason the data fields are said to be "explicitly addressed." 

In general, whenever the programmer writes the address of a data field on his coding sheet, he 

is explicitly addressing that data field (see Figure 4-6). 

A ADDRESS B ADDRESS 

INSTRUCTION 

indicates 
indirect 
address 

CONTENTS-..... 

indicates 
direct 

address 

ADDRESS 

CONTENTS 

ADDRESS 

CONTENTS 

55055 

150 B-ADDRESS 
REGISTER 

ADDRESS-..... 
~~~-+------+------; 

CONTENTS

Figure 4-5. Extraction of Indirect and Indexed Four-Character Addresses

EXPLICIT ADDRESS

1 1
OPCODE A ADDRESS B ADDRESS ., - -The addresses of both data fields are explicitly specified in

the instruction.

Figure 4-6. Series 200 Instruction Format 1

4-15

FORMAT I

SECTION 4. ADDRESSING

Format 2 has two possible interpretations (see Figure 4-7):

1. Ten Series 200 instructions coded in format 2 cause the A address to be
loaded into both AAR and BAR. 1 Thus, although the B-address portion of
the instruction is omitted, the B field is explicitly addressed by the A­
address portion. The extraction path of these instructions is said to
"duplicate A" (see Appendix C), since the contents of AAR are duplicated
in BAR.

2. The A address of 18 instructions is loaded into AAR only, leaving BAR
undisturbed. An omitted B address in any of these instructions implies
that the previous contents of BAR will be used as the address of the B
field. For this reason the B field is said to be "implicitly addressed, "
and the extraction path of these instructions "preserves B" (see Appendix C).

EXPLICIT ADDRESS

DP CDDE •
1

A ADDRESS B ADDRESS __ r---,
--~ __ -.J

In ten instructions, the address of both data fields is explicitly
specified in the instruction.

IMPLICIT ADDRESS

EXPLICIT AODRESS

OPCODE •
1

A ADDRESS -
I

B ADDRESS J prtlviOll5 Contllnts
r- -"""/I0fBAR
L __ -1

In 18 instructions, the previous content s of BAR are
implied as the address of the B field. The address
of the A field is explicitly specified in the instruction.

Figure 4-7. Series 200 Instruction Format 2

FORMAT 20.

FDRMAT 2/J.

In format 3, both data fields are implicitly. addressed. The previous contents of AAR are

used as the address of the A field, and the previous contents of BAR are used as the address of

the B field (see Figure 4-8).

Implicit aodressing is extremely useful in situations where it is desired to perform a

series of operations on data fields that are in consecutive storage locations. The use of implicit

1 The entire contents of AAR are loaded into BAR during extraction, so that all bit positions in
BAR are identical to those in AAR.

4-16

I
I.
I
I

EXPLICIT ADDRESSING, IMPLICIT ADDRESSING, AND CHAINING

addressing reduces both the time required to perform the operations and the number of memory

locations required to store the instructions.

IMPLICIT ADDRESS

OPCODE •
I

A ADDRESS
r---, L __ ..J

t
prtlllious conftlnts
of AAR

l
B ADDRESS
r---,
L __J

t
prtlllious conftlnts
of BAR

The addresses of both data fields are implied in
the instruction.

Figure 4-8. Series 200 Instruction Format 3

FORMAT 3

As an example, assurnethatthree 10-character fields stored in sequence are to be added

to three other sequential fields. First, examine how this operation would be performed using

explicit addressing. Upon completion of the first instruction, AAR contains 890 and BAR con­

tains 690.

o o o
900

890

880

700

690

680

These are the same values that appear in the A- and B-address portions of the second instruc­

tion. Similarly, upon completion of the second instruction, AAR and BAR contain 880 and 680

- the A and B addresses of the third instruction. Since in each case AAR and BAR contain the

addresses used in the next instruction, it is unnecessary to write these addresses in the instruc-

tion. In other words, this operation could be performed using implicit addressing in the second

and third instructions.

,

0 900 700

e
0

4-17

SECTION 4. ADDRESSING

Connecting instructions together so that the contents of AAR, BAR, and the variant reg­

ister (see below) at the conclusion of one instruction satisfy the requirements of the next instruc­

tion is called "chaining." Using explicit addressing in the three-character addressing mode, 21

storage locations are required to store the instructions above and the operation takes 117 micro­

seconds to complete on a Type 2201 processor. If the instructions were "chained, " nine storage

locations would be used and 105 microseconds would be required to complete the operation.

Instructions which require a variant character can also be chained by using the previous

contents of the variant register. (The variant register is a single-character, internal register

into which the variant character of an instruction is loaded during extraction.) The extent of

chaining variant characters (i. e., the number of acceptable instruction formats in which the

previous contents of the variant register can be used) varies with the processor being used.

In the Types 201-2, 1201, and 2201 processors, variant characters can be chained by an

instruction coded in any format (i. e., format 1, 2, or 3 shown on page 4-14). The previous

contents of the variant register are not disturbed by the processing of an instruction which does

not contain a variant character.

In the Types 201 and 201-1 processors, the previous contents of the variant register are

destroyed by the processing of an instruction which contains an address portion. Thus, the only

instructions which can chain variant characters in these processors are those instructions coded

without address portions (i. e., format 3 on page 4-14).

Chaining is not limited to sequential operations having the same op code. The only con­

dition that must be met is that an instruction must leave the contents of AAR, BAR, and, if

required, the variant register such that they satisfy the addressing requirements of the next

instruction in sequence.

To enable the programmer to chain instructions wherever possible, the description of each

instruction (see Section 8) includes a table showing the contents of the address registers after the

instruction has been executed. Also, Appendix C denotes whether each instruction in the machine

complement can or cannot be chained.

,

4-18

INTRODUCTION

The preparation of Series 200 programs is greatly simplified by Easycoder a concise,

easy-to-use programming system. Specifically, Easycoder relieves the programmer of many

time-consuming duties associated with writing a program in actual machine language. It makes

it unnecessary, for example, to maintain a careful record of the storage address assigned to each

instruction. In addition, it allows the programmer to employ meaningful symbolic tags (e. g.,

TAX, FICA, and TOTAL) to specify data, rather than using absolute memory addresses. In

situations where a stored program must be relocated or modified, Easycoder can be used to

perform the required alterations automatically.

The Easycoder system consists of two basic elements: the Easycoder symbolic language

and the Easycoder Assembly Program. The Easycoder language is used to write the symbolic

program (the source program), while the Assembly Program translates the source program into

the actual machine-language program (the object program).

To prepare a program in Easycoder language, the programmer uses an Easycoder Coding

Form (see Figure 5-4) and enters each symbolic instruction or definition on a separate line. As

a general rule, the instructions are written in the order in which they are to be executed. After

the symbolic program has been written, each line of symbolic coding is punched into a separate

source program card. These cards are the input data which will. be processed by the Easycoder

Assembly Program.

The Assembly Program accepts the source program cards and automatically produces a

corresponding machine-language object program. It converts mnemonic operation codes into ,
machine-language codes, assigns absolute storage addresses to instructions and symbolic oper-

and references, and completely assembles the final program, storing it on punched cards or

magnetic tape. A secondary output of the Assembly Program is a complete printed summary of

the symbolic source program and the corresponding machine-language entries.

5-1

SECTION 5. EASYCODER PROGRAMMING

If the programmer finds it necessary to alter the object program after it has been as­

sembled, he can isolate the affected aroeas in the source program, enter the required changes,

and then use the Assembly Program to reassemble a corrected version of the object program.

Figure 5-1 illustrates the relationship of the source program, the Assembly Program, and the

object program.

SOURCE PROGRAM

EASYCODER
CODING FORM

SYMBOLIC CODING
PUNCHED INTO CARDS

ASSEMBLY PROGRAM

(TRANSLATES SYM­
BOLIC LANGUAGE INTO
MACHINE LANGUAGE) •

OBJECT PROGRAM

MACHINE-LANGUAGE PROGRAM
STORED ON CARDS OR TAPE

("",,----,,/ , OR Q
PROGRAM
LISTING

~

Figure 5-1. Relationship of Source, Assembly, and Object Programs

EASYCODER SYMBOLIC LANGUAGE

The symbolic language is composed of a set of mnemonic operation codes and a set of rules

for defining memory areas, addressing operands, and entering constants. The mnemonic opera­

tion codes are predefined abbreviations for machine-language operation codes and, in general,

provide an easily remembered description of each instruction. For example, SI is the Easycoder

mnemonic for the Set Item Mark instruction, and BCC is the mnemonic for the Branch on Charac-

ter Condition instruction. The s~t of rules includes special mnemonics for defining work areas

in the main memory and for defining programmer-specified constants.

The statements used in writing an Easycoder program can be clas sified into three groups:

1. Data formatting statements make it possible to reserve areas
constants without regard to their actual locations in memory.
ting statements are completely described in Section 6.

and store
Data format-

2. Assembly control statements are used by the programmer to control the as­
sembly of his program. A complete description of assembly control state­
ments can be founa in Section 7.

3. Data processing statements are the actual machine instructions to be exe­
cuted in the object program. Section 8 contains a description of the data
processing statements employed by the Models 200, 1200, and 2200.

5-2

EASYCODER ASSEMBLY PROGRAM

EASYCODER ASSEMBLY PROGRAM

The Easycoder AsseITlbly PrograITl translates the sYrrlbolic source prograITl (written on the

Easycoder Coding ForITl and subsequently punched into a source prograITl card deck) into ITlachine­

language entries, placing the resultant object prograITl on either punched cards or ITlagnetic tape.

In addition to the object prograITl output, the AsseITlbly PrograITl also produces a printed listing con­

taining the sy=bolic source prograITl and the corresponding obj ect prograITl entrie s. (See Figures 5 - 2

and 5-3.)

SYMBOLIC
PROGRAM
INSTRUCTION

OPERATION

15 CODE 20 ~ I

A AMT, TOTAL

- -

ASSE:MBLY
PROGRAM

OPERANDS

/\~
OBJE:CT
PROGRAM
INSTRUCTION

CHARACTE:R -1 .. _3_1_6 __ t ___ 2 __ I.! __ 3 ___ ~--4---I.--5---I
OP COOE: A

4 AO~RE::S 0 2 ~ ADDR;SS 2
(Assembly Progrom
automatically sets word
mark in this location)

(Octal Representation of 800) (Octal Representation of 1250)

Figure 5-2. Two-Character Address AsseITlbly

OPERATION
SYM80LlC
PROGRAM
INSTRUCTION

~
~

15

A

CODE 20 21
OPERANDS (

AMT, TOTAL+X4

ASSEM8LY
PROGRAM

-- -

. ·~Il·).;i ~ ~ ".:' .. ~

~~~EJ~M 3 6 O! 0 I 4 i 4 0 
CHARACTER -, I I 2 ! :5 I 4 I 
INSTRUCTION .. 

OP COfJE , A ADDRESS 

(Assembly Program "INDICATES 
automatically sets DIRECT 

I~~~~i:;'°r* In this A OORESS 

" 8 ADDRESS 
INDICATES 
INDE:X 
REGISTER 4 

Figure 5-3. Three-Character Address AsseITlbly 

5-3 



SECTION 5. EASYCODER PROGRAMMING 

Figure 5-2 illustrates how the Assembly Program assembles an object program instruc­

tion using two-character address assembly. Assume that the tag AMT is assigned to memory 

location 800 and that the tag TOTAL is assigned to memory location 1250. Figure 5-3 shows 

how the Assembly Program assembles an object program instruction using three-character ad­

dress assembly. Assume that the tags are assigned the same values as in Figure 5-2. 

CODING FORM 

Programs are written on the Easycoder Coding Form (Figure 5-4). This form is composed 

of fixed-format fields for coding such entries as card number, location, and operation code, and 

a variable-format field for operand addresses and comments. The numbers associated with each 

subdivision, or field, on the coding form indicate the card columns into which the characters 

written by the programmer as to be punched. 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER OATE PAGE OF 

OPERANDS CARO t 
NUMBER ~ 

1234567a 

I I 

I I 

" ~ ! 

I I 

Figure 5-4. Easycoder Coding Form 

CARD NUMBER (Card Columns 1-5) 

This five-character field is divided into three parts: the first two characters are used for 

page numbering, the next two for line numbering, and the last character for insertions. The page 

entry provides the proper sequencing of coding forms. The line number entry is used for the , 
sequential numbering of instructions on each coding form. The single-character insertion entry 

permits one or more lines of coding to be inserted between existing lines. For example, to 

insert a line of coding between lines 16 and 17 of page 8, the following coding could be used. 

5-4 



CODING FORM 

CARD NUMBER T 
Y 

PfGE
2 

I 3LIN~ II~S 
P 
E 

~ 8 II sl f 
~ 8 I I S!5 

0 8 I I I 7 I \ 

TYPE (Card Column 6) 

The programmer can enter lines of descriptive information, called remarks lines, anywhere 

in the source program. Such a line, containing only descriptive data within columns 8 through 80, 

is identified by an asterisk in column 6. Information inserted in this manner appears in the pro­

gram listing but does not appear as an entry in the object program. 

EASYCODER 
CODING FORM 

PROBLEM PROG RAMMER TE DA PAGE OF 

CARD II~ LOCATION 
OPERATION OPERANDS 

NUMBER CODE 

I 2: 3 4 5 6 7 8 1415 2021 62 63 80 

I ~ SPECI F'J c'ONTR(:L C. ON~ TANt'5 

MARK (Card Column 7) 

This field, used in conjunction with data formatting operations (described in Section 6), 

serves to set up required punctuation. Two sets of punctuation indicators are available: set I 

may be employed with all Easycoder Assembly Systems; set II, however, may only be used with 

the Easycoder C Assembly System. I Both punctuation sets are described below. 

Set I, consisting of a blank, an L, and an R, establishes the position of the item mark when 

defining an item (see Table 5-1). Word marking for this first set depends upon the class of in.­

struction, as determined by the contents of the op code field. 

NOTE: When an L is used and the leftmost (high-order) character is auto­
matically word marked, a record mark will result. 

Table 5-1. Set I Punctuation Indicators 

Column 
R.esultant Item. Mark Setting 

7 
COntents Leftmost (High-order) Character R.ightmost (Low .. or4.erl.aii_~iU . 

l:J. l:J. l:J. 

L Item Mark l:J. 

R l:J. Item Mark 

Set II, designed for use with the Easycoder C Assembly System, can be employed in situa­

tions which warrant unusual punctuation requirements. With this set (listed in Table 5-2), any 

one punctuation indicator controls the complete punctuation setting for the particular instruction , 
or constant. However, there is no implicit word mark setting as in the first set. In other words, 

this second set of punctuation is not dependent upon the class of instructions. 

I 
See Section 7 for definitions of the various Easycoder Assembly Systems. 

5-5 



SECTION 5. EASYCODER PROGRAMMING 

Table 5-2. Set II Punctuation Indicators 
(Easycoder COnly) 

Resultant Punctuation Setting 
Column 

7 
Contents Leftmost (High-order) Character Rightmost (Low-order) Character 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

M 

N 

P 

S 

T 

Word Mark 

Item Mark 

Record Mark 

Item Mark 

Item Mark 

Item Mark 

Word Mark 

Word Mark 

Word Mark 

Record Mark 

Record Mark 

Record Mark 

LOCATION (Card Columns 8-14) 

Word Mark 

Item Mark 

Record Mark 

Item Mark 

Word Mark 

Record Mark 

Item Mark 

Word Mark 

Record Mark 

Word Mark 

Item Mark 

Record Mark 

The location field can contain a symbolic tag or an absolute memory address, or it can be 

left blank. Symbolic tags provide meaningful symbolic references for storage locations, con­

stants, and instructions that are referenced elsewhere in the program. All symbolic tags written 

in the location field are assigned absolute addresses during assembly. When an entry is assigned 

a symbolic tag, the contents of the entry can then be referred to by that tag. This means that the 

programmer can refer to data via a symbolic tag and need not be concerned with its actual main 

memory address. 

A symbolic tag is composed of from one to six characters which can be alphabetic (A to Z) 

or numeric (0 to 9); the first character of the tag must be alphabetic. Location field entries are 

normally left-justified; that is, the first character is written in column 8. If a symbolic tag is 

assigned to an instruction, the address assigned to the tag by the Assembly Program will be the , 
address of the operation code (the leftmost character in the instruction). If a tag is assigned to 

a constant or a reserved area, the address assigned to the tag will be that of the rightmost 

character in the field. (These address assignment conventions can be reversed by leaving column 

5-6 



CODING FORM 

8 blank and entering the first character of the tag in column 9. In this case, a tag assigned to an 

instruction will refer to the rightmost character of the instruction, and a tag assigned to a con­

stant or reserved area will refer to the leftmost character in the field. ) 

The programmer may also write an absolute memory address (expressed as a decimal 

number) in the location field. This address will be assigned to the operation code of an instruc­

tion, or to the rightmost character of a constant or a reserved area. (If the address is written 

starting in column 9, the address assignment conventions are reversed as described above. ) 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE R AGE OF 

CARD tl~ LOCATION 
OPERATION 

OPERANDS NUMBER Ie ~ CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 BO 

I 8EG 1"1 IMew FI C A .• TAX 
I I a BEGIN, 
i I DATE Dew ~¢(.,I~, 5/6 st&l 

The first instruction shown above moves the contents of the field tagged FICA to the field 

tagged TAX. This instruction can be referred to in the operands field of another symbolic pro­

gram entry via the tag BEGIN. For instance, the second instruction causes the program to 

branch to theMCW instruction by referring to it via its symbolic tag (BEGIN). In other words, 

the address of the operation code of the MCW instruction is inserted in an object program instruc­

tion wherever the tag BEGIN appears as an operand in a symbolic program entry. The third in­

struction defines an alphanumeric constant which can be referred to in the operand field of an­

other symbolic program entry via the tag DATE. In this case, the tag refers to the address of 

the rightmost character in the constant. 

OPERATION CODE (Card Columns 15-20) 

This six-character field can contain a mnemonic operation code for a machine instruction, 

an assembly program directive, or a data formatting code (see entries below). These entries 

must be left-justified. Machine-language operation codes (in octal notation) may be u-sed instead 

of mnemonic codes. .These octal codes are written in columns 19 and 20 of the operation code 

field, and columns 15 to 18 are left blank. 

, 
OPERATION 

CODE 

5-7 



SECTION 5. EASYCODER PROGRAMMING 

OPERANDS (Card Columns 21-62) 

The operands field is a variable-format field which can contain a series of entries separated 

by commas and terminated by the first blank following any character other than a comma or a 

blank. Column 62 also terminates the operands field. Any punches appearing in columns 63-80 

of any line other than a remarks line (see page 5- 5) are ignored and do not even appear in the 

object program listing. 1 

In general, the operands field contains such entries as the addresses (either symbolic or 

absolute) of the data to be operated upon by a command in the operation code field, literals, ad­

dress constants, or input/ output information. As explained in the following paragraphs, relative, 

indexed, and indirect addressing can be used in conjunction with absolute or symbolic addresses. 

The first sample instruction causes the contents of the field whose rightmost character is 

stored in memory location 50 to be added algebraically to the contents of the field designated by 

the tag TOTAL. 

The second instruction tests the indicator specified by variant character 3 and branches to 

the address tagged EQUAL if the indicator is on. 

EASYCODER 
CODING FORM 

B E PRO L M PROGRAMMER DATE PAGE OF 

CARD tl~ LOCATION 
OPERATION OPERANDS NUMBER n CODE 

I 2 3 4 5 • 7 • 1415 2021 .. 63 00 

1 I A 5(1 TOTAL. 
I I 

i 2i e.CT EQUAL 42 
1 1 
: 3: ZA rO~TA\. .. .T.M.p.+,xa 
1 1 
: 41 Mew TOTAL-7+lC6 GROSS 
i 1 
1 51 A AItIT.(SU:M-t,) 

The third line of coding above shows an instruction in which the B address is indexed. The 

instruction causes the contents of field tagged TOTAL to be placed in the field designated by the 

tag TMP as modified by the contents of index register 3. 

IThe Easycoder C Assembly Program (see Section 7) interprets punches in columns 63-80 as 
comments and prints these comments in the program listing. 

5-8 



ADDRESS CODES 

The fourth line of coding shows relative addressing and indexing being performed on the A 

address. The instruction causes the address seven before that tagged TOTAL to be modified by 

the contents of index register 6. The resultant address specifies a field whose contents are then 

placed in the field tagged GROSS. Assuming that TOTAL corresponds to memory location 540 and 

index register 6 contains a value of 80, the resultant A address of this instruction would be 613. 

The last line of coding above illustrates an instruction with indirect addressing on the B 

address. The contents of the field tagged AMT are added algebraically to the contents of the 

field whose address is stored in the field tagged SUM-2. 

ADDITIONAL CODING RULES 

1. Comments and remarks can appear on any line following the last entry on that 
line and separated from it by a blank space. These notes will be printed on 
the program listing but will not be assembled as object program entries. As 
mentioned previously, any line of coding containing only comments must be 
designated by an asterisk (*) in column 6. 

2. Any number of blank spaces may be used between the comma which terminates 
the A operand and the first character of the B operand. Similarly, any number 
of spaces may be used between the comma that terminates the B operand and a 
variant character. 

ADDRESS CODES 

Several types of address codes are valid in the operands field of an Easycoder statement. 

These codes are defined and illustrated below. 

ABSOLUTE 

The actual address of a character position in the main memory can be represented as a 

decimal number; leading zeros can be omitted. The sample instruction causes the contents of 

the field whose rightmost character location is 32 to be moved to the field whose rightmost 

character location is 4000. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD +I~ lOCATION 
OPERATION OPERANDS NUMBER CODE 

I 2 3 4 5 • 7 • 1415 2021 6263 

I : Mew 3.2 4.I,G.'. 

SYMBOLIC , 

eo 

A symbolic address, or tag, can be used in the operands field only if it appears in the lo­

cation field elsewhere in the symbolic program. In effect, a tag must be defined (by writing it 

in the location field of a symbolic entry) in order for it to be used as an operand address. 

5-9 



SECTION 5. EASYCODER PROGRAMMING 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ll~ LOCATION 
OPERATION OPERANDS 

NUMBER CODE 

I 2 :3 4 5 6 7 8 1415 2021 6263 

I ITOTAL ~ FI C",.\ TOT.AX. 

The instruction shown above can be referred to elsewhere in the program via its tag 

(TOTAL). It should be noted, however, that this instruction is a valid statement only if the 

symbolic addresses FICA and TOTAX have been defined in the location field elsewhere in the 

source program. 

SELF REFERENCE 

80 

It is sometimes convenient for an instruction to refer to itself. A self reference is indicated 

by an asterisk in the operands field of a source program instruction. The Assembly Program 

automatically replaces the asterisk with the address of the leftmost character of the instruction 

in which it appears. Address modification and relative addressing can be performed on asterisk 

operands. 

EASYCODER 
CODING FORM 

PROB E L M PROGR ME AM R DATE PAGE OF 

CARD H LOCATION 
OPERATION OPERANDS NUMBER t ~ CODE 

I 2 :3 4 5 6 7 8 1415 2021 6263 80 

I MeW If++ WORK 
I 

I 

I I ~cw I*H.WOR.K 
I I 
i i 

In the first sample entry above, the notation ':'+4 addresses the rightmost character of the 

instruction in which it appears (assuming that two-character address assembly has been speci­

fied). Since the function of this instruction is to move the field specified by the A address to that 

specified by the B address, the instruction itself will be moved to the field tagged WORK. 

In the sec ond entry, the notation * +9 refer s to the rightmost character of the instruction 

stored immediately to the right of the MCW instruction (assuming that two-character address 

assembly has been specified). The instruction following the MCW instruction will be moved to 

the field tagged WORK when the MCW instruction is executed. , 

RELATIVE 

Relative addressing, or address arithmetic as it is frequently called, can be used with all 

5-10 



ADDRESS CODES 

absolute addresses, symbolic addresses, and the self-reference symbol (*) (these three types of 

address codes are referred to as addressing "elements"). By using relative addressing, the 

programmer can refer to a source program entry that is stored a specified number of locations 

away from a particular address. A relative address is specified by appending one or more ad­

dress modifiers, each consisting of a sign and an addressing element, to another addressing ele­

ment. The address modifier designates a memory location relative to the location specified by 

the basic addressing element. For example, the instruction below causes the contents of the field 

100 characters beyond the field tagged INT to be added algebraically to the contents of the field 

10 characters before the sum of the addresses defined by the tags AMTPD and ERROR. 

EASYCODER 
CODING FORM 

PROBLEM PRO AMM GR ER DATE PAGE OF 

CARD lili lOCATION 
OPERATION OPERANDS NUMBER CODE 

I 2 3 4 5 • 7 • 1415 2021 6263 eo 

I I ~, INT+U.OS .• A.M.TPD+ERROR-1 0 

The number of symbolic tags required to write a program can be greatly reduced by the 

use of relative addressing. The programmer decides how many and which fields in a program 

to tag and which to reference by relative addressing. 

A certain amount of caution is required in the use of relative addressing. First of all, 

relative addresses are not automatically corrected as a result of subsequent insertions or dele­

tions in the source program. The programmer must remember to adjust manually the address 

modifiers affected by such changes. Secondly, if relative addressing is used to refer to an 

operand address in another instruction, care must be taken to ir.sure that the address is refer­

enced by its rightmost character. For example, the A address of the instruction shown below 

could be referred to elsewhere in the program as INST+2, INST+3, or INST+4, depending on 

whether two-, three-, or four-character address assembly were specified. 

EASYCODER 
CODING FORM 

PROB LE M PROGRAMMER DATE PAGE 

CARD OPERATION 

NUMBER iii lOCATION CODE OPERANDS 

I 2 3 4 5 • 7 • 1415 2021 6263 

I : INS:! 1A. SuaT TOTA.L.. 

BLANK 

There are two conditions for which a blank operand field is valid: 

1. The instruction tioes not require an operand (e. g. , the Halt and No Operation 
instructions). 

2. The operands are implicitly addressed: the A operand is specified by the 
contents of the A-address register (AAR); the B operand is specified by the 
contents of the B-address register (BAR). 

5-11 

OF 

eo 



SECTION 5. EASYCODER PROGRAMMING 

If either or both operand addresses are to be supplied by other instructions (as illustrated 

below in the description of address literals), the affected operands should be represented by 

zeros; they should not be left blank. 

LITERALS1 

The purpose of a literal is to allow the programmer to write in the operands field of a 

symbolic program statement the actual data (as opposed to the address of the field containing 

the data) to be operated on by an instruction. All literals, except binary literals, can be coded 

with a maximum length of 40 characters. A binary literal can be coded with a maximum length 

of six characters. 

The Assembly Program automatically assigns a storage field for each literal and inserts 

its address (i. e. , the address of its rightmost character) in the operands field of the instruction 

in which it appears. In effect, for every literal appearing in the source program, the Assembly 

Program generates a constant containing the value of the literal, with a word mark in the left­

most character position. 

NOTE: If the constant generated from a literal occupies from one to five storage 
locations, it is assigned a storage address only once in the program, 
regardless of the number of times the literal appears in the source pro­
gram. A constant that exceeds five characters is assigned a storage ad­
dress each time the corresponding literal appears in the source program. 
The latter condition can be avoided by using a DCW statement (see page 
6- 2) whenever a long literal is to be used more than once in the source 
program. 

Decimal Literals 

Decimal literals are specified by writing a plus or minus sign followed by the value of the 

literal. When the literal is assigned to a storage field, the Assembly Program places the sign 

in the zone bits of the units position of the resulting constant. Unsigned decimal values can be 

coded as alphanumeric literals. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD n LOCATION 
OPERATION OPERANDS 

NUMBER CODE 

I 2 :3 4 5- • 7 • 1415 2021 6263 

I : s ItZ4-,ACCUM 

The statement above illustrates the use of a decimal literal. The instruction causes the , 
value 24 to be subtracted from the contents of the field tagged ACCUM. 

1Available only with Easycoder Band C. 

5-12 

eo 



ADDRESS CODES 

Binary Literals 

A binary literal is represented as a decimal entry in the operands field of a symbolic in­

struction. The Assembly Program automatically converts the decimal entry into a binary value 

and stores it (right-justified) in the storage field. The programmer must specify the number 

of six-bit characters (not to exceed six) used to store this value. 

A binary literal is coded by writing a # sign, followed by a number from 1 to 6 which 

specifies how many six-bit characters should be used to store the resulting binary value, 

followed by the letter B, followed by the decimal representation of the desired binary literal. 

NOTE: If the decimal representation of the binary literal is preceded by a minus 
sign, the Assembly Program will store the binary literal in twos-comple­
ment form. 

The first instruction below causes the binary equivalent of 50 (expressed as a continuous 

12- bit binary value) to be added to the contents of the field tagged BEGIN+2. The second in­

struction has been included to illustrate how a binary literal can be used in address modification. 

In effect, the first instruction modifies the A address of the second instruction by a value of +50. 

The third instruction causes the binary equivalent of 2688 (expressed as an 18- bit binary value) 

to be moved to the field tagged IND7. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD t ! LOCATION 
OPERATION OPERANDS NUMBER I~ CODE 

1 2 3 4 5 6 7 • [415 2021 62 .3 80 

I I : faA $1'285', BEG' N+.2. 
I I BEGIN !Mew ITEMA~ TOTAL. 
i I 
I I !Mew ... ~ A. !) IUUI IN,[)7 
: I 

Octal Literals 

Octal literals are coded in octal notation (see Appendix A). The programmer must specify 

the number of six-bit characters (not to exceed 20) required to store an octal literal. 

NOTE: Since every octal digit can be represented as three bits, each six- bit 
character used to store an octal literal contains two octal digits. For 
example, an octal literal composed of eight octal digits can be stored 
in a four-character field. 

An octal literal is codE!d in the same format as a binary literal except that the letter Bused 

in the binary literal is replaced by the letter C. The constant stored by the Assembly Program 

is always left-justified in the storage field. 

5-13 



SECTION 5. EASYCODER PROGRAMMING 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ~I~ LOCATION 1 __ OPERATIO N OPERANDS NUMBER CODE 

I 2 3 4 5 
• 7 • 

1415 2021 62 .3 eo 

I I ~A tF,3,C7.7,7,7. ,MASK 

The A operand in the above statement is a four-digit octal literal. The Assembly Program 

will store it left-justified in a three-character field, as 777700. 

Alphanumeric Literals 

An alphanumeric literal can contain blanks, decimal, alphabetic, and special characters 

(excluding the @ symbol). It is specified by writing the (Iil symbol before and after the value of 

the literal. If the Ol symbol is required within a literal, a DCW statement (see page 6- 2) should 

be used. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER H CODE 

I 2 3 4 5 
• 7 • 

1415 2021 62 .3 eo 
I : New I~A,CCQ,UMTS ,?AYAB,LE:.8l,1 O.l6,s,(i, PR\NT 

The statement above illustrates the use of an alphanumeric literal. The instruction causes 

the information contained within the ~ symbols to be moved to the field tagged PRINT. 

Area Defining Literals 

An area defining literal may be used to define and reserve a working area in memory with­

out using a separate data formatting instruction. The address which defines the area is written 

as a symbolic tag. The size of the area to which the literal address refers is specified as a 

decimal value following the literal address and separated from it by a # symbol. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD n LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 3 4 5 
• 7 • 

1415 2021 6263 eo 
I : Mew WAGE .• TE.MP:tt:5. 
I 

I 

In the instruction above, the entry TEMP#5 causes the Assembly Program to reserve a 

blank five-character area with a word mark set in the leftmost character position. The address 

of the rightmost character in this area is assigned to the tag TEMP. Therefore, TEMP can be , 
used as a symbolic address elsewhere in the source program, because both the tag and size of 

the area to which it refers are defined. The sample instruction causes the contents of the field 

tagged WAGE to be moved to the field tagged TEMP. 

5-14 



ADDRESS CODES 

Address Literals 

An address literal enables the programmer to specify a symbolic address in the operands 

field of an instruction such that the Assembly Program will use the address as an operand. A 

symbolic address can be used as an address literal only if it is defined elsewhere in the symbolic 

program. The tag used as an address literal must be preceded by a plus or a minus sign. 

An address literal (+AMT) is used in the first sample entry below. Assume that AMT has 

been defined elsewhere in the program and has been assigned an absolute address of 800. The 

absolute address of AMT, as opposed to the contents of the field tagged AMT, replaces the ad­

dress literal. The first instruction below causes the value 800 (the absolute address assigned 

to AMT) to be moved to an address two greater than the location tagged MODIF. The second 

entry shows how an operand address can be supplied by another instruction. Specifically, the 

absolute address assigned to the tag AMT is supplied as the A address of the instruction tagged 

MODIF. This instruction causes the contents of the field tagged AMT (i. e. , the field whose 

rightmost character is stored in location 800) to be added algebraically to the contents of the 

field tagged TOTAL. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER OATE PAGE OF 

CARD + LOCATION 
OPERATION 

NUMBER ~ ~ CODE OPERANDS 

123456 7 8 1415 2021 6263 80 

I I MeW +AMT .MOCI F +2 
I 

I MOD.I~ l6. ~ TCrT-.AL 

VARIANT CHARACTER 

A variant character can be expressed as one alphanumeric character, as two octal digits, 

or as a symbolic tag. 1 It is written following the operand entries and separated from the last 

entry by a comma. Octal representation of valid variant characters are listed in Appendix B. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER OATE PAGE OF 

CARD I~I~ LOCATION 
OPERATION OPERANDS NUMBER COOE 

I 2 3 4 5 • 7 8 1415 2021 6263 

I : IBn PFLOW . .5.0. 
I 

I !i!.CC NEG .. S,UM .ri6 I I I 

1 A symbolic tag, composed of at least two characters, may be used to represent (I) a variant 
character, or (2) a group'of input/output control characters. The number of I/O control 
characters that may be represented varies from one to six (using either the Easycoder A or 
B Assembly System) or from one to four (using the Easycoder C Assembly System). The 
symbolic tag must be defined before it is used in the input/ output instruction; the Control 
Equals statement (CEQU) is generally used for this purpose (see page 7 -11). 

5-15 

80 



SECTION 5. EASYCODER PROGRAMMING 

The first instruction above tests an indicator specified by the variant character. If the 

indicator is on, the instruction causes the program to branch to the address tagged OFLOW. 

As might be expected, the octal digits 50 represent the overflow indicator. The second instruc­

tion causes the single character at the location tagged SUM to be examined for a particular bit 

configuration as specified by the variant. In this case the variant 06 specifies that the charac­

ter should be examined for a negative sign. If the desired bit configuration is present, the pro­

gram branches to the address tagged NEG. 

INPUT/OUTPUT CONTROL CHARACTERS 

Input/ output control characters can be used only in conjunction with input/ output instruc­

tions (see Secti'on 8). One or more of these characters may be written following the A-address 

entry in an input/ output instruction, each preceded by a comma. Input/ output control characters 

may be coded as single aplhanumeric characters, as pairs of octal digits, or as symbolic tags. 1 

ADDRESS MODIFICATION CODES 

In a system equipped with the Advanced Programming Instructions (Feature 010 or 011), 

two address modification codes are valid in the operands field of a source program statement: 

indexed and indirect. These codes allow the modification of operand addresses without altering 

the instructions in which the addresses appear. This is in direct contrast to the permanent 

alteration of an instruction that results from using a binary arithmetic instruction to modify 

either or both operand addresses. 

INDEXED 

Indexed addressing is performed by appending to the address being modified a code to 

indicate which of the index registers is to be used. The code consists of a plus sign followed 

by an X and the decimal number of the desired index register (see Tables 4-2 and 4-3, pages 

4-11 and 4-13, respectively). 

If an index register is to be specified in the operands field of an instruction for other than 

indexing purposes, it is referred to by its absolute address rather than its symbolic address. 

For instance, absolute address 24 is used instead of the corresponding symbolic address X6. 

1 A symbolic tag, composed of at least two characters, may be used to represent (I) a variant 
character, or (2) a group'of input/ output control characters. The number of I/O control 
characters that may be represented varies from one to six (using either the Easycoder A or 
B Assembly System) or from one to four (using the Easycoder C Assembly System). The 
symbolic tag must be defined before it is used in the input/ output instruction; the Control 
Equals statement (CEQU) is generally used for this purpose (see page 7-11). 

5-16 



ADDRESS MODIFICATION CODES 

However, the programmer may use the symbolic address if he equates it to the absolute address 

using an EQU statement (see page 7-16). 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD 
~ lOCATION 

OPERATION OPERANDS NUMBER CODE 

123456 7 • 1415 2021 6263 80 

I : ~ IDATA+.X6 .• Pn.S 
I I 

I i ~ iSTORE 12 
I I 
: ! Mew 1rl-.t5.+X,1 BUF,F+X3. 

The first instruction above causes the contents of the field designated by the tag DATA as 

modified by the contents of index register 6 to be compared to the contents of the field tagged 

POS. The second instruction causes the contents of the field tagged STORE to be added (in 

binary) to the contents of index register 12. The use of the symbolic designation X12 i:rnplies 

that an EbU state:rnent was used to equate it to the absolute address of index register 12. The 

third instruction illustrates how an indexed address can be coded to generate an effective ad­

dress which is less than the value stored in the specified index register. The zero is used be­

cause an operand address cannot be introduced with a plus or a minus sign. Thus, the effective 

A address of the MCW instruction will be a value six less than that stored in index register one 

(i. e., if index register one contains 126, the effective A address is 120). 

Three- or four-character address assembly must be specified (see ADMODE, page 7- 9 

whenever indexed addressing is to be performed. When the Asse:rnbly Program translates an 

indexed address into a machine-language entry (see Figures 5-5 and 5-6), the translated index 

register designator is automatically inserted into the address modifier bits of the asse:rnbled -

address. 

121 OPERANDS \ 

SUB,~tJ;1 
ASSEMBLY 
PROGRAM 

INDEX 
REGISTER 
DESIGNATOR 

15-BIT REPRESENTATION 
OF ADDRESS ASSIGNED 
TO THE TAG AMNT 

-'-
Ell jxxxxxxxxxxxxxxxi 
'-..,. , 

BADDRESS OF 
ASSEMBLED INSTRUCTION 

Figure 5- 5. Asse:rnbly of Indexed Address in Three-Character Addressing Mode 

5-17 



SECTION 5. EASYCODER PROGRAMMING 

ALWAYS ZERO(SEE PAGE 4-8) 
INDEX r 18- BIT REPRESEN,.T,O 
REGISTER OF ADDRESS ASSIGNED 
DESIGNATOR TO THE TAG AMNT 

~ OPERANDS \ t 
"\ 

I 
ASSEMBLY J.lO II 00 :O~XXXXX X X xxxxxx xxxxxi PROGRAM 

\ , 

N 

v 

B ADDRESS OF 
ASSEMBLED INSTRUCTION 

Figure 5-6. Assembly of Indexed Address in Four-Character Addressing Mode 

INDIRECT 

An indirect address is specified by enclosing the address (either symbolic or absolute) in 

parentheses. For example, in the sample instruction below, the parentheses around the tag 

DATA indicate to the Assembly Program that DATA refers to the leftmost character of a field 

containing another address. This second address may be a direct, an indexed, or another in-

direct address. 

EASYCODER 
CODING FORM 

PROBLEM PROG RAMMER DATE PAGE OF 

CARD ~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

123456 1 • 1415 2021 6263 

I : Mew 1(l>ATA ), .WORK 

If it is direct or indexed, it specifies the rightmost character of a data field. If it is indirect, 

it specifies the leftmost character of a field containing another address. 

00 

Three- or four-character address assembly must be specified whenever indirect addressing 

is to be used. When the Assembly Program translates an indirect address into a machine­

language entry (see Figures 5-7 and 5-8), an octal value of 7 (three-character mode) or 20 (four­

character mode) is automatically inserted into the address modifier bits of the assembled address. 

I OPERANDS\ 

:AGE.~ ___ \ __ I ASSEMBLY 
PROGRAM 

..... ----' 

INDICATES

1J 
IS-BIT REPRESENTATION 

INDIRECT OF ADDRESS ASSIGNED 
ADDRESS TO THE TAG TEMP 

, 
III f I jxxxxxxxxxxxxxxxj 

B ADDRESS OF 
ASSEMBLED INSTRUCTION 

Figure 5-7. Assembly of Indirect Address in Three-Character Addressing Mode 

5-18 



I OPERANDS\ 

:GE·~····.t···.1 ASSEMBLY 
PROGRAM 

ADDRESS MODIFICATION CODES 

INDICATES 
INDIRECT 
ADDRESS 

-L 

ALWAYS ZERO (SEE PAGE 4-8) 

rI8-BIT REPRESENTATION 
OF ADDRESS ASSIGNED 
TO THE TAG TEMP 

, 

B ADDRESS OF 
ASSEMBLED INSTRUCTION 

Figure 5-8. Assembly of Indirect Address in Four-Character Addressing Mode 

5-19 



\ 



INTRODUCTION 

DATA 
FORMATTING 
STATEMENTS 

A value or quantity which ITlUst remain fixed or which must be used repeatedly in a program 

is called a constant. A work area is an area in memory which is reserved for input data, cu-

mulative processing, or output data. By employing data formatting statements, constants can 

be stored and work areas can be reserved without regard to their actual locations in memory. 

For instance, the programmer can use a data formatting statement to reserve an 80-character 

card input area and assign it a symbolic address such as CARDIN, without knowing the actual 

address of the field. Similarly, a data formatting statement makes it possible to store a con­

stant, such as 2000, and to refer to it by a symbolic tag, such as CON3, without regard to the 

address at which the constant is stored. Table 6-1 lists the five data formatting statements used 

with Easycoder symbolic language. 

Table 6 -1. Data Formatting Statement s 

Mnemonic 
.. 

Operation Code Function 

DCW Define Constant with Word Mark 

DC Define Constant without Word Mark 

RESV Reserve Area 

DSA Define Symbol Address 

DA Define Area * 

*NOTE: The Define Area statement may be employed only 
with the Easycoder Band C Assembly Systems 
(see page 7-1). 

Although data formatting statements are coded in the same format as most symbolic ma­

chine instructions (data processing statements), they are not treated as instructions by the As­

sembly Program. Instead they are treated as definitions which cause the Assembly Program to 

6 -1 



SECTION 6. DATA FORMATTING STATEMENTS 

perform certain activities but which are not executed during a program run. Since data format­

ting statements are not executed during a program run, they should not be written in the body 

of the symbolic program. 

Define Constant with Word Mark - DCW 

By use of the DCW statement, a constant can be automatically stored in a field reserved 

by the Assembly Program. In storing the constant, the Assembly Program automatically sets 

a word mark in the leftmost character position of the storage field. Item marking may be 

specified as in Table 5-1 (page 5-5). An L in column 7 thus results in a record mark with a 

DCW statement. 

NOTE: If the Easycoder C Assembly System is being used and if unusual high­
and low-order punctuation is required, the programmer may use a set 
II punctuation indicator as shown in Table 5 - 2 (page 5 - 6). 

The constant can be assigned a tag. If the tag is left-justified in the location field, it is 

assigned to the address of the rightmost character of the constant. If the tag is indented one 

column, it is assigned to the address of the leftmost character of the constant. 

NUMERIC CONSTANTS 

Numeric constants may take anyone of three forms: binary, octal, or decimal. Octal 

and decimal constants can be coded with a maximum length of 40 characters, while the coding 

associated with a binary constant is limited to a maximum of six characters. 

Decimal Constants 

Signed decimal constants are specified by writing a plus or a minus sign in column 71 
followed by the value of the constant. When the constant is assigned to a storage field, the As­

sembly Program places the sign in the zone bits of the rightmost character of the constant. 1 

Unsigned decimal constants are written in the operands field beginning at column 21. 

I 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE GE 

CARD H LOCATION ! OPERATION OPERANDS NUMBER n COOl; 

! 2 3 4 5 6 7 • 1415 2021 6263 

I DEC IQCW +22 
I 

I IHAL Inew 45 

The first statement above shows the decimal value of +22 defined as a decimal constant. , 

80 

The second statement defines the unsigned decimal value 45 as a constant which can be referred 

to via the tag HAL. 

1 See the description of sign codes beginning on page 8-9. 

6-2 



DEFINE CONSTANT WITH WORD MARK - DCW 

Binary Constants 

A binary constant is actually written as a decimal entry which is then automatically con­

verted to a binary value by the Assembly Program. The binary value is stored (right-justified) 

in the constant field. 

To code a binary constant the programmer writes the following: (1) a # sign (in column 

21); (2) a number from 1 to 6 which designates the number of six-bit characters needed to store 

the resulting binary value; (3) the letter B; (4) the decimal representation of the desired binary 

constant. Note that if the decimal representation of the binary constant is preceded by a minus 

sign, the Assembly Program stores the binary constant in twos-complement form. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PA GE OF 

CARD H LOCATION 
OPERATION 

OPERANDS NUMBER t ~ COOE 

t 2 3 4 5 6 7 , 1415 2021 6263 

I CON3 Dew ~2B50, 
I 

I 

The statement above shows the binary equivalent of 50 defined as a binary constant to be 

stored in two consecutive character locations. 

Octal Constants 

Octal constants are coded in octal notation (see Appendix A). To code an octal constant 

80 

the programmer writes the following: (l) a # sign (in column 21); (2) a number (not to exceed 20) 

which specifies the number of six-bit characters required to store the octal constant;l (3) the 

letter C; (4) the constant value. Note that the value stored by the Assembly Program"ls always 

left - justified in the storage field. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD !I~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 :3 4 5 6 7 , 1415 2021 6263 80 

I : P.CT7 DeW i'T2C7777 

In the statement above, the octal value of 7777 is shown defined as an octal constant to be 

stored in two consecutive character locations. 

1 Recall that an octal digit can be represented as three bits; thus each six-bit character used to 
store an octal constant contains two octal digits. For example, an octal constant composed of 
six octal digits can be stored in a three -character field. 

6-3 



SECTION 6. DATA FORMATTING STATEMENTS 

ALPHANUMERIC CONSTANTS 

AlphanuITleric constants ITlay be coded in one of three ways: 

1. Constants (including special sYITlbols and blanks) ITlay be written with the 
constant value enclosed in @ sYITlbols (see the first entry below). 

2. If the @ sYITlbol is required in the constant, this constant is enclosed in 
any unused cha.racter other than blank, +, -, #, or the digits 0 through 9 
(see the second entry below). 

3. A nUITlber sign (#) is followed by a nUITlber froITl 1 through 40 which speci­
fies the nUITlber of alphanuITleric characters contained in the constant; 
this nUITlber is, in turn, followed by the letter A and the alphanuITleric 
constant (see the third entry below). 1 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE 

CARD 1~li LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 8 14 IS 2021 6263 

I : COST DeW @,$2 , 28. 6~@ 
I I 

i i IRA~E Qew ~@Sl )(,DOLLARS/HR,% 
I I 

j : DATE Dew ~4A19b5 , 

BLANK CONSTANTS 

PAGE OF 

eo 

The DCW stateITlent ITlay be used to reserve a field of blanks with a word ITlark in the left­

ITlost character position of the field. The prograITlITler writes a # sYITlbol (in coluITln 21) followed 

by a deciITlal value (froITl 1 to 40) which indicates the nUITlber of blank storage positions desired. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

I 2 3 4 5 6 7 8 1415 2021 6263 80 

I : BL"'NK Inew ~2' 
I 

The DCW stateITlent above defines a 21-character blank field. The address assigned to this' 

field by the AsseITlbly PrograITl will be inserted in an object prograITl instruction whenever the 

tag BLANK appears in another sy=bolic prograITl entry. 

1 This third ITlethod of coding alphanuITleric constants is applicable only when using the Easycoder 
C AsseITlbly SysteITl (see page 7-1). 

6-4 



DEFINE CaNST ANT - DC; RESERVE AREA - RES V 

Define Constant - DC 

The DC staterrlent is functionally the sarrle as the DCW staterrlent, the only exception being 

the absence of autorrlatic word rrlarking. This staterrlent rrlay thus be used in place of the DCW 

staterrlent if a constant is to be stored without a word rrlark in its leftrrlost character position. 

Theprograrrlrrler, however, rrlay still specify iterrl rrlarking as shown in Table 5-1 (page 5-5). 

NOTE: If the Easycoder C Asserrlbly Systerrl is being used and if unusual high­
and low-order punctuation is required, the prograrrlrrler rrlay use a set 
II punctuation indicator as shown in Table 5-2 (page 5-6). 

Reserve Area - RESV 

Use of the RESV staterrlent enables the prograrrlrrler to reserve an area of rrlerrlory. Un­

like the DC and DCW staterrlents (which cause data to be loaded into an area reserved by the 

Asserrlbly Prograrrl), the RESV staterrlent does not alter the contents of the area defined when 

used with the Easycoder A or B Asserrlbly Systerrl. Rather, it sirrlply sets aside a storage area 

to which the prograrrlrrler can refer by a sYrrlbolic tag. If it is desired to clear the reserved 

area to zeros in either of the above systerrls, the CLEAR staterrlent rrlust be errlployed (see 

page 7-15). Thenurrlber of characters in the reserved area rrlust be specified in the operands 

field of the RESV staterrlent. A previously defined tag rrlay be written in the location field. 

When used with the Easycoder C Asserrlbly Systerrl, the RESV staterrlent can not only 

reserve a specified area but can also load that area with a particular character. The character 

to be loaded into each location of the reserved area is coded in colurrln 20 irrlrrlediately following 

a COrrlrrla and the rrlnerrlonic code. If the rrlnerrlonic RESV is followed only by a COrrlrrla, the 

reserved area is cleared to blanks. 

NOTE: There is no autorrlatic word rrlarking for the reserved area. However, 
a punctuation indicator frorrl set I rrlay be placed in colurrln 7 (see page 
5- 5). In addition, if the Easycoder C Asserrlbly Systerrl is being used 
and if unusual high- and low-order punctuation is required, the pro­
grarrlrrle r rrla y use a set II punctuation indicator as shown in Table 5 - 2 
(page 5- 6). 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE 

CARD fe LOCATION 
OPERATION OPERANDS NUMBER Ie ~ CODE 

I 2 3 4 5 • 7 • 1415 2021 62 .3 

I STORE IRE.SV 130 
I 

I r:ARD IRESV.r}) 8rJ) 
, , 

PAGE OF 

so 

The first staterrlent above reserves 30 consecutive character positions that can be addressed 

via the tag STORE. Note that by referring to the reserved area via a sYrrlbolic tag, the 

6-5 



SECTION 6. DATA FORMATTING STATEMENTS 

prograITlITler need not know its actual location in ITleITlory. The second RESV stateITlent, as­

seITlbled by Easycoder C, reserves 80 consecutive locations and clears the reserved area 

to zeros. 

Define SYITlbol Address - DSA 

The DSA stateITlent can be used to store one or two addresses, or two addresses and a 

variant character, as a constant. Any valid address can be stored as a constant; the length of 

each address is deterITlined by the current addressing ITlode (each address will be two, three, 

or four characters long). 

An iteITl ITlark ITlay be specified as shown in punctuation set I, page 5-5. In addition, the 

DSA stateITlent autoITlatically places a word ITlark in the leftITlost character position of the con­

stant (thus an Lin coluITln 7 results in a record ITlark in this position). 

NOTE: If the Easycoder C AsseITlbly SysteITl is being used and if unusual high­
and low-order punctuation is required, the prograITlITler ITlay use a set 
II punctuation indicator as shown in Table 5-2 (page 5-6). 

EASYCODER 
CODING FORM 

PROB EM L PROGRAMMER DATE 

CARD a LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 :3 4 5 6 7 8 1415 2021 6263 

I : "'OD.E IOSA lTE.M-5 
I 

I 
I I STAR Dp1l. ~RG *,.A 
I I 

PAGE OF 

eo 

The first stateITlent above perITlits the address of the field five characters before the field 

tagged ITEM to be referred to in the prograITl by the tag CODE. 

The second stateITlent allows the stored constant consisting of the address assigned to ARG, 

the address assigned to the self-reference indicator *, and the variant character A (i. e., octal 

21) to be referred to by the tag STAR. 

Define Area - DA1 

A specified area within the ITlain ITleITlo:ty can be defined and reserved by using the DA 

stateITlent. In addition to defining an area, the DA stateITlent can also define fields and subfields 

within the reserved area.' This stateITlent can also define two or ITlore contiguous areas if these 

1 The Define Area stateITlent ITlay be eITlployed only with the Easycoder B or C AsseITlbly SysteITl. 

6-6 



DEFINE AREA - DA 

areas are identical in forrnat. In other words, the prograITIITIer uses a DA stateITIent to provide 

the AsseITIbly PrograITI with the following basic inforITIation: 

1. The nUITIber (N) and size (S) of the reserved area(s). 

2. The index register (XITI) to be associated with each reference to a field or 
subfield within the reserved area(s) (optional). 

3. The character R which will place a record ITIark one position to the right 
of the rightITIost reserved area (optional). 

A DA stateITIent consists of a heading line which defines an area(s), plus one or ITIore sub­

sequent lines of coding which defines the fields and subfields within the area(s). The heading 

line can contain a sYITIbolic tag in the location field. If this tag begins in coluITIn 8, it refers to 

the rightITIost location of the entire area, exclusive of the record ITIark (if present); if the tag 

starts in coluITIn 9, it refers to the leftITIost location of the entire area. 

The operands field in the heading line has the following forITIat: 

21 

nxs,Xm,R 
-- -

If a single 80-character area is to be defined, the value of the nxs is lx80. If four identical 80-

character areas are to be defined, the value of nxs is 4x80. 

The DA stateITIent can be indexed by writing an index register designator (froITI Xl through 

XlS)1 following the area definition. All references to the fields and subfields defined in the DA 
/ 

ctateITIent will be autoITIatically indexed by the specified index register, but references to the 

tag assigned to the entire area will not be indexed. For exaITIple, the stateITIent on the next page 

indicates that all references to the fields and subfields in the 113-character area tagged BUFFER 

will be indexed by the index register X2; references to the tag BUFFER, however, will not be 

indexed. 

Note that the area definition nxs does not include an allowance for the character position 

containing the record ITIark, although this position (if any) is also reserved. For exaITIple 4x80 

will cause 320 character positions to be reserved. If a record ITIark is placed one position to 

the right of the last area, a total of 321 character positions is reserved. 

lIndex registers 1 through 6 are used with Easycoder B, while index registers 1 through 15 can 
be used with Easycoder C. 

6-7 



SECTION 6. DATA FORMATTING STATEMENTS 

The index register applied to a field or subfield can be changed from that specified in the 

DA statement by designating a different register in the operands field of an instruction which 

references the field or subfield. The effect of indexing on a field or subfield can be cancelled by 

writing XO as the index register designator in the references in which indexing is not wanted. 

As stated above, the heading line may be followed by one or more lines of coding which 

define fields and subfields within the reserved area(s). As many of these lines as necessary 

may be used, and these fields and subfields may be defined in any order desired. Positions 

within each reserved area are numbered sequentially from left to right, starting with one. The 

coding lines which define fields and subfields must have blank op code fields; each such line 

may contain a symbolic tag in the location field, if desired. 

Fields and subfields are specified as follows: 

Fields: The lowest and highest positions of the field are written in that order 
in the operands field, separated by a comma. (If a one -character 
field is desired, its position number must be written twice in the 
operands field, separated by a comma.) A word mark is automati­
cally placed in the leftmost position of the field in memory. Item 
marks may be specified as shown in Table 5-1 (page 5-5). 

Subfields: For a subfield, only the rightmost position is specified. Word 
marks are not set; however, item marks may be specified as 
shown in Table 5-1 (page 5-5). 

NOTE: The list of punctuation indicators specified in set II (page 5-6) may not 
be used with DA statements. 

The Assembly Program does not normally clear the defined area. However, the program­

mer has the option of clearing the area to a specified character by placing a comma and the 

desired character after the mnemonic code DA in the op code field. The presence of only a 

comma after the op code implies that the area will be cleared to blanks. When the defined area 

is cleared, all punctuation is also cleared befo're setting the "field" punctuation. 

The sample coding below illustrates what a DA statement might look like. 

EASYCODER 
CODING FORM 

PROBLEM PROG RAMMER DATE Po\GE OF 

CARD t LOCATION 
OPERATION OPERANDS NUMBER H CODE 

I 2 3 4 5 6 7 • 1415 2021 62 .3 80 

I (1) 11 BUFFER IDA I4.X28 X2R 
102 I NAto\E 1 z.et,. 
103i 1 DA'E. 123 28 
10~ 1 lA..GE 1~1 22 
~5: : IVEAR 128 
1061 1 MONTH ~6 

: 1 . I 

6-8 



DEFINE AREA - DA 

The heading line specifies the following inforITlation: 

1. Four consecutive, identical areas, each 28 characters long, will be 
reserved. 

2. The tags NAME, DATE, AGE, YEAR, and MONTH, when referred to 
in sYITlbolic instructions, will be indexed by index register two. 

3. A record ITlark will be set in the rightITlost character position of the 
entire 113-character reserved area. 

4. The entire 113 -character area can be referred to via the tag BUFFER. 
(This tag refers to the leftITlost position of the area because it is in­
dented. It is not autoITlatically indexed by index register two. ) 

Lines two, three, and four define fields. Word ITlarks will be set in positions 1, 21, and 23 in 

each of the four identical areas. Lines five and six define subfields: position 28 indicates the 

year within the date, while position 26 indicates the ITlonth within the date. 

6-9 





INTRODUCTION 

ASSEMBLY 
CONTROL 
STATEMENTS 

Asse:mbly control state:ments provide progra:m:mer control over the asse:mbly of the source 

progra:m. These state:ments rese:mble data for:matting state:ments in that they are treated as 

definitions. They control such functions as the addressing :mode to be used in asse:mbling speci­

fied instructions, the assign:ment of absolute locations to sy:mbolic tags, etc. Used only during 

the asse:mbly process, asse:mbly control state:ments are never executed as instructions in the 

object progra:m. The precise function of each asse:mbly control state:ment depends upon the as­

se:mbly syste:m e:mployed. 

A nu:mber of asse:mbly syste:ms are available to the Series 200 user. 

include: 

These syste:ms 

EASYCODER A: Part of the SERIES 200 /BASIC PROGRAMMING SYSTEM. 
Easycoder A operates in a syste:m having a :mini:mu:m :main 
:me:mory size of 4, 096 characters. (Additional :me:mory, 
however, :may be used to advantage. ) 

NOTE: A counterpart of Easycoder A - Easycoder A (P) 
- is available for use in a paper tape environ­
:ment. The n;lain :me:mory require:ments are 
identical to those of Easycoder A. 

EASYCODER B: Also part of the SERIES 200/BASIC PROGRAMMING 
SYSTEM. Easycoder B operates in a syste:m having a 
:mini:mu:m :main :me:mory size of 8,192 characters. (Addi­
tional :me:mory :may be used to advantage, however.) 

EASYCODER C: Part of the SERIES 200/0PERATING SYSTEM - MOD 1. 
Easycoder C operates in a syste:m having a :mini:mu:m of 
12,288 characters of :main :me:mory. (Additional :me:mory, 
however, :may be used to advantage. ) 

A su:m:mary of the asse:mbly control state:ments available with the Easycoder A, B, and C , 
Asse:mbly Syste:ms, together with the page where each state:ment is defined, :may be found in 

Table 7 -1. In addition, the heading of each state:ment in this section includes a table which indi­

cates (by shading) the -asse:mbly syste:ms that :may use that particular state:ment. 

7-1 

, , , 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

Table 7-1. Assembly Control Statements 

Easycoder A Easycoder B Easycoder C 

Assembly Control Page Assembly Control Page Assembly Control Page 
Statements Ref. Statement s Ref. Statement s Ref. 

Program Header 7-3 Program Header 7-3 Program Header 7-3 

Segment Header 7-3 

Execute 7-4 Execute 7-5 Execute 7-5 

Origin 7-6 Origin 7-7 Origin 7-7 

Modular Origin 7-7 Modular Origin 7-7 Modular Origin 7-7 

Literal Origin 7-8 Literal Origin 7-9 

Admode 7-9 Admode 7-9 Admode 7-10 

Equals 7-10 Equals 7-10 Equals 7-11 

Control Equals 7-11 Control Equals 7-11 Control Equals 7-12 

Memory Dump 7-12 

Skip 7-13 

Suffix 7-13 

Repeat 7-14 

Generate 7-14 

Clear 7-15 Clear 7-16 Clear 7-17 

End 7-17 End 7-18 End 7-19 

Program Header 

PROG 

The program header must be the first entry in a symbolic program. This statement is 

coded as follows for the various assembly systems. 

EASYCODER A 

The letters PROG must be written in the op code field, and the operands field must contain 

a name which identifies the program. (This name will appear in the program listing.) Optionally, 

an "S" can be placed in column 6; this action specifies that a check is to be made on the card 

number sequence of the input deck. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD tl~ LOCATION 
OPERATION 

OPERANDS NUMBER Ie ~ CODE 

I 2 3 4 5 6 1 • 1415 2021 62 6. ao 
I S PROG SERIes 
I , 

7-2 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

In the saznple above, SERIES is specified as the prograzn nazne, while the letter S in 

coluznn 6 designates that a sequence check is desired. 

EASYCODER B 

The letters PROG znust be written in the op code field, and the operands field znust contain 

a nazne which identifies the prograzn. (This nazne will appear in the prograzn listing.) Optionally, 

an "S" can be placed in coluznn 6; this action specifies that a check is to be znade on the card 

nuznber sequence of the input deck. 

In addition, the desired object prograzn forznat is specified by the entries in coluznns 61 

and 62. Blanks in these two coluznns specify that the znachine-Ianguage output is to appear in 

the condensed-card self-loading forznat. Placing the letters BR in these coluznns specifies that 

the znachine -language prograzn is to appear on punched cards in BR T forznat. (See Easycoder 

8K Operating Procedures, DSI-406.) 

PROB 

NOTE: When BRT forznat is specified, a segznent nuznber of 01 is generated by the 
Asseznbly Prograzn for the first segznent (zneznory load) following the pro­
grazn header. If Execute stateznents (see page 7-4) appear in the syznbolic 
prograzn, subsequent segznent naznes are generated by increznenting the 
previous segznent nuznber by one. 

EASYCODER 
CODING FORM 

LEM PROGRAMMER DATE PAGE OF 

CARD ~ LOCATION I OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2 :3 4 5 6 7 • 1415 2021 62 63 

I IPoROG SERIES BR 
I I I 

so 

The stateznent above designates SERIES as the prograzn nazne and specifies that a sequence 

check is to be perforzned. As coluznns 61 and 62 contain the letters BR, the output will appear 

on punched cards in BR T forznat. 

EASYCODER C 

As used in the Easycoder C Asseznbly Systezn, the prograznheader provides prograzn 

identification; in addition, however, this stateznent serves as the all-iznportant "action director" 

stateznent. For this reason, the prograznzner should refer to the Honeywell publication Easycoder 

Asseznbly C Operating Procedures (DSI-315A) for a detailed description. 

Segznent Header 

SEG 

Prograzns written for Easycoder C asseznbly znay be divided into two or znore segznents, 

7-3 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

each of which is loaded into memory and executed as a unit. It is the function of the SEG state­

ment to define the beginning of each segment (memory load). Use of the SEG statement is op­

tional, however. If used, a SEG statement must follow the program header and each Execute 

statement. If it is desired to omit this statement, it must be omitted from the entire program; 

in this case the assembly program generates segment identifications (starting with 01). 

EASYCODER C 

The letters SEG must be placed in the op code field, while the operands field must contain 

a two-character segment identification. This segment identification becomes appended to the 

program name to form a unique search code. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD tl! LOCATION 
OPERATION 

OPERANDS NUMBER I~ ~ CODE 

I 2 3 4 5 • 7 • 1415 2021 6263 

I : I~EG AA 
I 

In the example above, AA could represent the first segment of a program, in which case 

this entry would follow the program header. 

Execute 

EX 

The end of a memory load is indicated by an EX statement. When the coding inserted by 

00 

the assembly program for the EX statement is encountered during the loading process, a branch 

to the location specified in the operands field results. This operation enables portions of the 

program to be executed before the entire program has been loaded. The coding to be executed 

must appear prior to the EX statement. 

EASYCODER A 

The letters EX must be written in the op code field; the operands field contains a direct 

address, either absolute or symbolic. (If an EX statement is written with a blank operands 

field, the machine will halt when it encounters the corresponding coding during the loading 

operation. ) 

To resume the loading operation, the last instruction in the portion of the program executed 

must be a Branch instruction which provides re-entry to the load routine. In addition, the first 

instruction of the executed routine should be an SCR (Store Control Registers) instruction which 

stores the contents of the B-address register in the A address of the return Branch instruction. 

7-4 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD Iii LOCATION I OPERATION OPERANDS NUMBER CODE 

1 2 3 4 5 6 7 • 1415 2021 6263 eo 

I lEX SEC3 
I I 

The sample statement above illustrates an EX statement with a symbolic address in the 

operands field. When the corresponding coding is encountered during the loading operation, pro­

gram loading is temporarily halted and the portion of the program beginning at the location tagged 

SEG3 is executed. 

EASYCODER B 

The letters EX must be written in the op code field; the operands field contains a direct 

address, either absolute or symbolic. (If an EX statement is written with a blank operands field, 

the machine will halt when it encounters the corresponding coding during the loading operation. ) 

To resume the loading operation, the last instruction in the portion of the program executed 

must be a Branch instruction which provides re-entry to the load routine. In addition, the first 

instruction of the executed routine should be an SCR (Store Control Registers) instruction which 

stores the contents of the B-address register in the A addres s of the return Branch instruction. 

Besides causing a branch to the programmer's coding, use of the EX statement causes any 

literals used in the memory load to be loaded and the literal table to be cleared. If a LITORG 

statement (see below) does not precede the EX statement, literals are allocated immediately 

following the in-line coding for the memory load. 

NOTE: Following an EX statement, a new segment number is generated as explained 
above in the description of the program header. 

See the sample statement given above for Easycoder A. 

EASYCODER C 

The letters EX must be written in the op code field; the operands field must contain a 

direct address, either absolute or symbolic. When used with this assembly system, the EX 

statement enables a program to be loaded and executed one segment at a time. Each segment 

except the last must end with this statement. 

Note that it is the responsibility of the programmer to provide re-entry to the load routine. 

The methods of returning to the applicable loader are described in the pertinent Honeywell 

7-5 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

publication (e. g.,-the PLUS - Card Loader-Monitor bulletin, DSI-349, or the PLUS - Tape 

Loader-Monitor bulletin, DSI-327). 

See the saInple stateInent given above for Easycoder A. 

Origin 

ORG 

The ORG stateInent is used to Inodify the norInal IneInory allocation process of asseInbly. 

This stateInent can be inserted anywhere in the source prograIn to indicate to the AsseInbly Pro­

graIn that all subsequent coding (instructions, constants, work areas, etc.) should be assigned 

sequential IneInory locations starting with the location whose address is specified in the operands 

field. 

A prograIn is norInally allocated IneInory space beginning at location 0. If it is desired to 

assign IneInory space starting at SOIne location other than location 0, an ORG stateInent Inust be 

inserted into the prograIn iInInediately following the pro graIn header. 

EASYCODER A 

The letters ORG are written in the op code field, and an address (either absolute or sYIn­

bolic) is written in the operands field. (If the address is sYInbolic, the tag Inust appear in the 

location field of a previous source pro graIn entry.) The address specified in the operands field 

is assigned the tag (if any) in the location field; if this tag appears, it Inust not be indented. 

EASYCODER 
CODING FORM 

PROBLEM PROGRA MMER OATE PAGE OF 

CARD tl! LOCATION 
OPERATION 

OPERANDS / 
NUMBER Ie ~ CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 

I QRG 7S(J) 
I 

I 

i I QRG OR TAG. 
I I 

The first stateInent above indicates to the AsseInbly Pro graIn that all subsequent entries 

should be assigned sequential addresses beginning with location 750. The second stateInent 

directs the AsseInbly PrograIn to assign to all subsequent entries sequential addresses begin­

ning with the address thai is assigned to the tag ORTAG. (OR TAG Inust appear in the location 

field of a previous source prograIn entry. ) 

7-6 

so 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

EASY CODER B 

The letters ORG are written in the op code field, and an address (either absolute or sy:m­

bolic) is written in the operands field. (If the address is sy:mbolic, the tag :must appear in the 

location field of a previous source progra:m entry.) The address specified in the operands field 

is assigned the tag (if any) in the location field; if this tag appears, it :must not be indented. 

NOTE: When the BRT punched-card for:mat is specified, an ORG state:ment :must 
be included i:m:mediately following the FROG state:ment with an address of 
1, 000 (deci:mal) or above. 

See the sa:mple state:ments given above for Easycoder A. 

EASYCODER C 

The letters ORG are written in the op code field, and an address (either absolute or sy:m­

bolic) is written in the operands field. - If the address is sy:mbolic, the tag :must appear in the 

location field of another - not necessarily previous - source progra:m entry. - The address 

specified in the operands field is assigned the tag (if any) in the location field; if this tag ap­

pears, it :must not be indented. 

NOTE: Care :must be taken so that the address in the operands field is a deci:mal 
nu:mber of 1, 000 or above if Card Loader -Monitor B is used to load the 
object progra:m. If Tape Loader-Monitor C or Dru:m Bootstrap-Loader C 
is used, this deci:mal nu:mber :must be 1,340 or above. 

See the sa:mple state:ments given above for Easycoder A. 

Modular Origin 

MORG 

The :modular origin state:ment is si:milar to the ORG state:ment described above. The 

MORG state:ment indicates to the Asse:mbly Frogra:m that all subsequent entries should be as­

signed sequential addresses starting with the next available location whose address is a :multiple 

of the nu:mber written in the operands field of the MORG state:ment. The entry in the operands 

field :must represent a power of two (e. g., 2, 4, 8, 16, 32, ..•.•• 4, 096, etc.). 

EASYCODER A, B, and C 

The letters MORG fire written in the op code field, and a nu:mber (a power of two) is placed 

in the operands field. 

7-7 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ~I~ lOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 eo 
I : MORG 32 
I 

I 

The statement above indicates to the assembly program that all subsequent entries should 

be assigned sequential addresses beginning with the next available location whose address is a 

multiple of 32. 

Literal Origin 

LITORG 

The literal origin statement is similar to the ORG and MORG statements described above. 

The LITORG statement specifies to the Assembly Program that all previously used literals should 

be assigned sequential memory locations starting with the location specified in the operands field. 

In the absence of a LITORG statement, all of the generated coding associated with a memory load 

is allocated immediately following the in-line coding. 

Care must be taken to ensure that literals can be referenced by the instructions which use 

them; e. g., a literal stored in one 4K bank may not be addressed in the two-character mode 

from another bank. 

EASYCODER B 

The op code field must contain the letters LITORG, while the operands field contains an 

address (either absolute or symbolic); this address is assigned the tag, if any, in the location 

field. If a symbolic tag is used, it must have appeared in the location field of a previous entry. 

Like the EX statement, the LITORG statement causes the literal table to be cleared. Also, lo­

cations below 1, 000 (decimal) must not be used when BR T punched-card output is speCified in the 

PROG statement. 

EASYCODER 
CODING FORM 

PROBl EM PRCGRAMMER DATE PAGE OF 

CARD n lOCATION I OPERATION OPERANDS NUMBER t ~ CODE 

I 2 3 4 5 6 7 • 1415 .10 21 6263 80 

I 
~ LIT IL I TORG 1550 

I 
J I 

I 

In the LITORG statement above, the Assembly Program is directed to assign sequential 

7-8 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

addresses - starting with location 1550 - to all previously encountered literals. This instruc­

tion is also tagged LIT. (Note that the tag begins in column 8; it must not be indented. 

EASYCODER C 

The op code field must contain the letters LITORG, while the operands field contains an 

address (either absolute or symbolic); this address is assigned the tag, if any, in the location 

field. If a symbolic tag is used, it must have appeared in the location field of a previous entry. 

Like the EX statement, the LITORG statement causes the literal table to be cleared. Also, lo­

cations below 1,340 (decimal) must not be used. 

See the sample statement given above for Easycoder B. 

Set Address Mode 

ADMODE 

This statement specifies the addressing mode into which all subsequent instructions are to 

be assembled (i. e., two-, three-, or four-character). (All machine instructions, as well as the 

DSA data formatting statement, are affected by the address mode.) The mode of address as­

sembly specified in this statement remains in effect until another ADMODE statement, specifying 

a different mode of assembly, is encountered. 

Because the ADW0DE statement concerns itself only with the source program, it should be 

used in conjunction with the CAM (Change Addressing Mode) instruction (see page 8- 69). The 

CAM instruction specifies the addressing mode in which the machine is directed to interpret the 

address portions of all subsequent object program instructions. 

EASYCODER A and B 

The letters ADMODE are placed in the op code field. The operands field contains either 

a 2 or a 3 to denote whether all subsequent instructions are to be assembled in the two-character 

or the three-character addressing mode. If an ADMODE statement is not included at the begin­

ning of the source program, assembly begins in the two -character addressing mode. (It should 

be a general rule, however, to include an ADMODE statement at the outset of every program. ) 

EASYCODER 
.CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ~ LOCATION OP~~~T~ON, OPERANDS NUMBER R 
K 

I 2 3 4 5 6 7 8 1415 2021 6263 80 

I : AOMODE. 2. 
I 

I 
I I ADMODE3 
I I 

7-9 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

The Assembly Program, upon encountering the first statement above, will assemble the 

address portions of all subsequent instructions as two-character addresses. The second state-

ment, if encountered later in the same source program, will cause the Assembly Program to 

change to three-character address assembly. 

EASYCODER C 

The letters ADMODE are placed in the op code field. The operands field contains a 2, 3, 

or 4 to denote whether all subsequent instructions are to be assembled in the two-, three-, or 

four-character addressing mode. If an ADMODE statement is not included at the beginning of 

the source program, three-character addressing is assumed by assembly. (It should be a 

general rule, however, to include an ADMODE statement at the outset of every program. ) 

See the sample statements given for Easycoder A and B. 

Equals 

EQU 

The EQU statement assigns the symbolic tag written in the location field to the address 

(absolute or symbolic) written in the operands field. This statement thus makes it possible to 

use different symbolic tags in different parts of the source program to refer to the same memory 

location. 

EASYCODER A and B 

The location field contains a symbolic tag, while the op code field contains the letters EQU. 

The operands field contains the address to which the symbolic tag in the location field is to be 

assigned. (Each symbolic tag written in the operands field must appear in the location field of 

a previous source program entry. ) 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAG OF E 

CARD m LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 

I I : Til lE IEQU NAME 
I I 

i I ~U.A.N :.,QU ~MT-.20 
I I 

The first EQU statement above causes the Assembly Program to assign the tag TITLE 

the same location assigned the tag NAME. Thus, the programmer can use either of these two 

7-10 

80 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

tags to refer to the contents of this location. The second statement employs relative addressing. 

The Assembly Program will assign the tag QUAN to the location specified by address arithmetic 

as AMT-20. 

EASYCODER C 

The location field contains a symbolic tag, while the op code field contains the letters EQU. 

The operands field contains the address to which the symbolic tag is to be assigned. (A symbolic 

tag written in the operands field must appear in the location field of another - not necessarily 

previous - source program entry). 

See the sample statement given above for Easycoder A and B. 

Control Equals 

CEQU 

The CEQU statement assigns the symbolic tag written in the location field to the octal value 

written in the operands field. It is frequently used to assign a tag (containing a minimum of two 

characters) to a variant character or to a group of input/output control characters. 

The octal value written in the operands field (although coded as an octal constant) is still 

treated as an assembly definition. Consequently, it does not appear as an object program entry. 

EASY CODER A and B 

The location field contains a symbolic tag, while the op code field contains the letters 

CEQU. The operands field contains the octal value; this entry is coded as an octal constant and 

may contain up to 12 octal digits. The symbolic tag in the location field is assigned to this entry. 

NOTE: A description of octal constants may be ~ound under the heading "Define 
Constant with Word Mark - DCW" (see page 6-2). 

EASYCODER 
CODING FORM 

PROBLEM G PRO RAMMER DATE 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 8 1415 2021 6263 

I : OFlOW If'EQU "*, C50, 
I 

I tacT SUBZ OF LOIN 
I I , 

PAGE OF 

BO 

The sample coding above illustrates how a symbolic tag can be used in place of a variant 

character. The CEQU statement directs the Assembly Program to equate the tag OFLOW to the 

7 -11 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

octal value 50. The second line of coding contains a branch instruction which specifies that a 

program should branch to the location tagged SUB2 if the condition specified by the variant 

character tagged OFLOW is present. 

EASYCODER C 

The location field contains a symbolic tag, while the op code field contains the letters 

CEQU. The operands field contains the octal value; this entry is coded as an octal constant 

and may contain up to eight octal digits. The symbolic tag in the location field is assigned to 

this entry. 

NOTE: A description of octal constants may be found under the heading "Define 
Constant with Word Mark - DCW" (see page 6-2). 

See the sample statement given above for Easycoder A and B. 

Memory Dump 

HSM 

The HSM statement may be used with Easycoder A to produce a punched card deck con­

taining the Memory Dump routine. This card deck can be loaded into memory to obtain a printed 

listing of the contents of any portion of main memory. This statement must be coded immediately 

preceding the CLEAR and END statements in the source program (see below). 

EASYCODER A 

If the punched card deck (containing the Memory Dump routine) is to be loaded into a spe­

cific memory area, the start of this area can be specified by a tag in the location field of the 

HSM statement. A blank location field causes the Memory Dump routine to be loaded into the 

area following the location assigned to the last character in the object program. The letters 

HSM must be written in the op code field. The operands field contains the addresses of the first 

(low) and last (high) locations in the memory area whose contents are to be listed by the Memory 

Dump routine. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD fl~ LOCATION I OPERATION OPERANDS NUMBER t ~ CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 so 

I I IHSM STAR, 5TOP+3 
I I 

The HSM statement above specifies that the area whose contents are to be listed begins 

at the location tagged STAR T and ends three locations beyond the location tagged STOP. As the 

7-12 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

location field is blank, the Memory Dump routine will be stored in the area following the location 

assigned to the last character in the object program. 

~ 
~ 

The Assembly Program normally single-spaces an assembly listing and skips to the head 

of the next form when a page becomes filled. The SKIP statement enables the programmer to 

control the vertical spacing of the assembly listing by causing as many as 15 lines to be skipped. 

EASYCODER C 

The letters SKIP are placed in the op code field. The operands field contains either a 

number from 1 to 15 (to indicate the total number of lines to be skipped) or the letter H (which 

causes the printer to skip to the head of the next form). 

NOTE; The Assembly Program automatically skips to the head of the form for 
each new segment. 

EASYCODER 
CODING FORM 

PROBLEM PROGR AMME R DATE 

CARD t LOCATION 
OPERATION OPERANDS NUMBER ~ CODE 

I 2 3 4 5 6 1 • 1415 2021 6263 

I L I~I<.\P 9 

PAGE OF 

so 

In the sample coding above, the Assembly Program is directed to skip 9 lines on the program 

listing. 

Suffix 

SFX 

The SFX statement directs the Assembly Program to append the single-character suffix in 

the operands field to each tag of five characters or less contained in the following coding. This 

technique enables the programmer to assign unique tags for each segment of a program and thus 

guard against double definition of a tag between di stinct segments of a program. When inter A 

segment referencing within a program is required, six-character tags may be assigned. 

This operation continues until the occurrence of another SFX statement with a blank 

operands field, or until the END statement is encountered. 

7-13 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

EASYCODER C 

The letters SFX are placed in the op code field. A single-character suffix is written in 

the operands field. 

EASYCODER 
CODING FORM 

PROB LEM PROGRAMMER OATE PAGE OF 

CARD B LOCATION 
OPERATION OPERANDS NUMBER COOE 

I 2 3 4 5 6 7 • 1415 2021 6263 

I ISEX E 
I 

I TO:TAL ~ F\ CA+TO:TAX,-20 
I I 
I I 

80 

In the above example, the Assembly Program interprets the Add instruction following the 

SFX statement as: TOTALE A FICAE+TOTAXE-20. 

Repeat 

REP 

This statement, used with the constant-defining statements DC and DCW, directs the 

Assembly Program to repeat the following statement the number of times specified in the 

operands field. The number of times a statement is repeated includes the original statement and 

may not exceed 63. The Assembly Program repeats the statement without variation. 

EASYCODER C 

The letters REP are written in the op code field. The operands field designates the number 

of times the following statement is to be repeated (including the original statement). 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER OATE PAGE OF 

CARD U LOCATION 
OPERATION 

OPERANDS 4 

NUMBER t ~ COOE 

I 2 3 4 5 6 7 • 1415 2021 6263 80 

I 1 iRE.P ~ 
I 

I 0(1;5.6 iQCW ~ZCb 
I I 
I I 

In the sample statement above, REP is employed to define six identical constants of octal 

value 6000. 

Generate 

GEN 

7-14 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

This statement directs the Assembly Program to generate the instruction which follows a 

specified number of times, incrementing or decrementing the operands of the instruction as 

specified by the operands field of the GEN statement. The GEN statement can apply to machine 

instructions with formats containing a single address, both addresses, a single address and one 

variant character, or both addresses and one variant character (only one variant character is 

allowed). 

EASYCODER C 

The letters GEN are written in the op code field. The operands field contains the parameter 

specifying the number of times the statement (which follows) is to be generated, including the 

original statement. This number is followed by a modifier for each operand in the model state­

ment. These modifiers specify the increment (from 0 to +63) or decrement (from -63 to 0) to be 

applied to each of the operands each time the statement is generated. There must be a modifier 

for each operand in the model statement (including the variant character, if any), and the 

modifiers must appear in the same order as the operands. If no modification is desired, 0 is 

entered as the modifier. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARO ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 

I : G~N 1.~,+4 +60, 
I 

I swc, aCE $E.L, • .TAelE 6 
I I 
I I TA~LE ~E.SV 6fJJ. 

1 

In the example above, the GEN statement generates a series of 10 instructions that will 

branch to a location SEL, SEL+4, SEL+8, ••••••• or SEL+36, provided that an 8 is present 

80 

in the first character of the corresponding item in a table containing 10 six-character items. 

The tag SWC is assigned to the leftmost character of the first generated instruction. The GEN 

statement itself must not be tagged. 

NOTE: The second BCE instruction generated by the example is BCE/SEL+4, 
TABLE+6,8; the third instruction generated is BCE/SEL+8, TABLE+12,8; 
and so on. The tenth instruction generated is BCE/SEL+36, TABLE+54,8. 

Clear 

CLEAR 

The CLEAR statement enables the programmer to specify an area of memory which is to 

be cleared of punctuation before the object program is loaded. The memory area is also 

7-15 

I r 
t 
I 

I 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

cleared to zeros or to a given character. It is not necessary to clear areas which will be used 

to store the object program. 

EASYCODER A 

The op code field contains the letters CLEAR, while the operands field contains the ad­

dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to be 

cleared. If a corrlIna is written immediately following the second address, the character written 

in the column after the comma is loaded into all locations in the cleared area. If two addresses 

are written in the operands field and are not followed by a comma and a character, the specified 

area is cleared to zeros. 

A number of CLEAR statements may be written in sequence, immediately preceding the 

END statement, provided that the total number of HSM, CLEAR, and END statements does not 

exceed 10. 

NOTE: The 80-character loading area specified in the END statement must 
never be cleared. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER t ~ CODE 

I 2 :3 4 5 6 7 • 1415 2021 6263 

I : rU:AR (,A.M T E.AM T 
I 

I 
i I ~.L£A.R 33.4 .. 3.1.9 J 
I I 

PAGE OF 

80 

The first CLEAR statement above specifies that the area beginning at the location tagged 

CAMT and ending at the location tagged EAMT is to be cleared to zeros. The second CLEAR 

statement clears the area beginning at location 3·34 and ending at 379 to 46 JI s. 

EASYCODER B 

The op code field contains the letters CLEAR, while the operands field contains the ad­

dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to be 

cleared. If a comma is written immediately following the second address, the character written 

in the column after the comma is loaded into all locations in the cleared area. If two addresses 

are written in the operands field and are not followed by a comma and a character, the specified 

area is cleared to zeros. 

A maximum of nine CLEAR statements may be included in a program. In addition, no 

coding may appear between the last symbolic CLEAR statement and the END statement. 

7-16 



I , 
I 
1 
r 
t 

[ 

SECTION 7. ASSEMBLY CONTROL STATEMENTS 

NOTE: The loading area specified in the END statement must never be cleared. 

See the sample statements given above for Easycoder A. 

EASYCODER C 

The op code field contains the letters CLEAR, while the operands field contains the ad­

dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to be 

cleared. If a comma is written immediately following the second address, the character written 

in the column after the comma is loaded into all locations in the cleared area. If two addresses 

are written in the operands field and are not followed by a comma and a character, the specified 

area is cleared to zeros. As many CLEAR statements as necessary can be included in a pro-

gram. 

NOTE: The programmer must exercise caution in the physical placement of the 
CLEAR statement, as the clearing is performed by the Loader at the 
time the CLEAR statement is encountered. 

See the sample statements given above for Easycoder A. 

fEndl 
~ 

The last source program instruction must be the END statement, which indicates to the 

Assembly Program that the end of the source program has been reached. 

EASY CODER A 

The location field may contain an address (either absolute or symbolic) which specifies the 

initial location in an 80-character loading area. If the location field is left blank, the Assembly 

Program automatically reserves an 80-character loading area following the location assigned 

to the last character in the object program. 

The op code field contains the letters END. If it is desired to execute the object program 

immediately after loading, the operands field must contain the address (either absolute or 

symbolic) at which the object program is to begin. If the operands field is blank, the machine 

halts after the load operation has been completed. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD U LOCATION I OPERATION OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 8 1415 2021 6263 80 

I : lEND OBJECT , 

7-17 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

The END statement above specifies that the object program (beginning at the address 

tagged OBJECT) is to be executed immediately after loading. Since the location field is blank, 

the Assembly Program will reserve an 80-character loading area following the location assigned 

to the last character in the object program. 

EASYCODER B 

The method of coding this statement depends on which output format has been specified in 

the program header statement. 

1. Output in self-loading format: The location field :>nay contain an address 
(either absolute or symbolic) which specifies the initial location in an 80-
character loading area. If the location field is left blank, the as sembly 
program automatically assigns an 80-character loading area following 
the location assigned to the last character in the object program. 

The op code field contains the letters END, while the operands field 
contains the address (either absolute or symbolic) to which the Loader 
branches when loading has been completed. If the operands field is blank, 
the machine halts after the load operation has been completed. 

NOTES: a. The programmer should ensure that the loading 
area doe s not span two 4K memory banks. 

b. During the loading process, the object program 
must not use the loading area. However, the 
area may be used following program loading. 

c. When literals are used, the programmer must 
specify a loading area that does not coincide 
with the memory area occupied by literals. 

2. Output in BR T format: The op code field contains the letters END, while 
the operands field contains the address (either absolute or symbolic) to 
which the Loader branches when loading has been completed. If the 
operands field is blank, the machine halts after the load operation has been 
completed. When BR T format is specified, all other fields of the END in­
struction are ignored by the Assembly Program. 

NOTE: The loading area is automatically assigned by the Loader. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER OAT E 

CARD n LOCATION 
OPERATION OPERANDS NUMBER n CODE 

I 2 :3 4 5 6 7 • 1415 2021 6263 

I MAL ct-lD OBJEC.T 
I 

I 
i I E;NO OBJEC,,T 
I I 

PAGE 0 F 

The first example above illustrates the coding which may be used for self-loading format , 
output; the coding for BR T -format output is shown in the second example. 

7-18 

80 



SECTION 7. ASSEMBLY CONTROL STATEMENTS 

EASYCODER C 

The op code field contains the letters END. An address ITlUst appear in the operands field; 

the Loader will branch to that addre ss {which should be the starting location of the last segment 

of the program}. 

NOTE: The loading area is automatically assigned by the Loader. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD il~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 , 14 \5 2021 6263 '0 
I }.IO STARTL 
I 

The sample END statement above indicates to the Assembly Program that the end of the 

source program has been reached. This statement is replaced by coding which specifies to the 

Loader that the last {or only} segment begins at symbolic address STARTL. 

7-19 





INSTRUCTIONS 

INTRODUCTION 

A Series 200 computer operates under the direction of instructions in the stored program. 

For descriptive purposes, these instructions are classified into six functional categories: (1) 

Arithmetic; (2) Logic; (3) Control; (4) Interrupt Control; (5) Editing; and (6) Input/Output. 

All instructions are described in the following standard format: 

Title: 

Format: 

Function: 

The title describes the instruction. It appears in the lefthand 
margin of a page, along with the mnemonic ,operation code used 
in the Easycoder symbolic programming language. 

If an instruction is included in an optional feature, that feature 
number accompanies the title. 

This is a tabular representation of the formats which may be 
used when coding the instruction. 

The function of the instruction is described in terms of the 
format in which it is coded. 

Word Marks: The effect of word marks with regard to data fields is specified. 

Timing: The formulas to be used in calculating the timing of the instruc­
tion (in memory cycles) are presented. These formulas are 

Address 
Registers 
after 
Operation: 

Notes: 

Examples: 

for instructions using direct addressing. If address modification 
is to be used, the formulas should be modified as follows: 

1. Indirect Addressing - Add one memory cycle for 
each character extracted as a result of indirect 
addre s sing. 

2. Indexed Addressing - Add three memory cycles 
for each indexed address. 

The contents of the address registers are indicated for each of 
the instruction 1 s formats. 

This is additional information pertaining to the operation. 

Practical applications of the instruction in its various formats 
are described and illustrated as symbolic program entries. 

8-1 



SECTION VIII. INSTRUCTIONS 

Table 8-1 lists the abbreviations and sYITlbols used in the description of the instructions. 

Those sYITlbols used only with specific instructions are preceded by the title of the instruction 

to which they pertain. 

Table 8-1. SYITlbology Used in Series 200 Instruction Descriptions 

SYMBOL MEANING 

A A address of the instruction 

B B address of the instruction 

N· 1 NUITlber of characters in the instruction 

Na NUITlber of characters in the A field 

Nb NUITlber of characters in the B field 

Nw NUITlber of characters in the A or B field, whichever is sITlaller 

NXT Address of next sequential instruction 

JI Address of next instruction if a branch occurs 

A The previous setting of the A-address register (AAR) 
p 

B The previous setting of the B-address register (BAR) 
p 

Multiply 

Zta NUITlber of trailing zeros !i. e. , consecutive low-order zeros) in the 
A field 

NITlr NUITlber of digits in the ITlultiplier 

Z ITlr NUITlber of zeros in the ITlultiplier 

s SUITl of all ITlultiplier digits 

SUM The SUITl of the upwards-rounded values of all ITlultiplier digits 
divided by 2 (see note) 

Divide 

Zla NUITlber of leading zeros in the A field 

Z o if Zla""f); 1 if Zla f 0 

Zld NUITlber of leading zeros in the dividend 

Ndd NUITlber of digits in the dividend 

N NUITlber of digits in the quotient (=Ndd-Zla-Na+Zla+l) q 
Move and Translate 

Nct NUITlber of characters translated 

Move Item and Translate 

Nut NUITlber of inforITlation units translated 

CSRp Previous contents of the change sequence register (CSR) 

NAu Number of six-bit character locations occupied by each A-iteITl 
inforITlation unit (l or 2) 

NBu NUITlber of six-bit character locations occupied by each B -iteITl 
inforITlation unit (l or 2) 

8-2 



INTRODUCTION 

Table 8-1 (cont). Sy=.bology Used in Series 200 Instruction Descriptions 

SYMBOL MEANING 

Move Characters and Edit 

Z Number of characters scanned during zero suppression 

$ Number of characters scanned during dollar sign insertion 

Store Variant and Indicators 

Ns Number of characters stored 

N· Number of character locations bypassed to reach the next 
J 

sequential op code 

Restore Variant and Indicators 

N r Number of characters referenced 

Input/Output Instructions 

N c Number of control characters in the instruction 

Ncn Number of control characters following control character 3 (C3) 

NOTE: The value of SUM is derived in the following manner: 

1. Divide each multiplier digit by 2. 

2. Round off each result to the nearest (upwards) whole digit. 

3. Add together the results arrived at in 2. for each multiplier digit. 

4. The resultant sum = SUM. 

8-3 





ARITHMETIC ....• 1 

-ADD 

-SUBTRACT 

-BINARY ADD 

-BINARY SUBTRACT 

- ZERO AND ADD 

- ZERO AND SUBTRACT 

-MULTIPLY 

-DIVIDE 

8-5 



SECTION 8. INSTRUCTIONS 

ARITHMETIC OPERATIONS 

Series 200 add operations (binary addition, decirnal addition} treat the A operand as the 

augend and the B operand as the addend. The subtract operations (binary subtraction, decirnal 

subtraction) treat the A operand as the subtrahend and the B operand as the rninuend. The 

result of each operation is stored in the B field. These e1ernents are surnrnarized in Table 8-2, 

where a character enclosed in parentheses indicates the contents of that field. 

Table 8-2. Series 200 Add and Subtract Operations 

( B ) "'\\N\1.0~"\) ( B ) A1>\>~~~ 

+ (A) A\l «~l4D - (A) S\l.~1~1.\ (:~\) 

( B ) ( B ) 

BINARY ADDITION 

The Binary Add instruction combines the corresponding bits of the augend and addend and 

produces a binary sum which is stored in the B field. This process can be most readily analyzed 

on a column-by-column basis. For any column in the addition, three variables are significant 

to the sum: the augend digit, the addend digit, and the carry from the next lower-order column. 

For any column, the result is fully expressed by a sum digit (lor O) and either a carry or no 

carry to the next higher-order column. Table 8-3 lists all the possible cOlubinations of these 

variable s. 

Table 8-3. Binary Addition Table 

o o o o 1 1 1 1 

o 1 o o 1 1 o 
o 1 o 1 o 1 o 
o o 1 1 1 o o 
o o o o 1 1 1 

BINARY SUBTRACTION 

The Binary Subtract instruction performs, in effect, twos-complement arithmetic. 1 When 

this instruction is executed, each six-bit character of the subtrahend is converted to its ones 
2 

complement and added to the corresponding character in the minuend, adding from right to left. 

1 , 
The twos complement of a binary number is formed by subtracting the number from a field of 
all one bits and adding one to the low-order digit of the difference. 

2 
The ones complement of a binary number is formed by subtracting the number from a field of 
all one bits. 

8-6 



ARITHMETIC 

In the first addition (the addition of the low-order characters of the subtrahend and the minuend) 

a simulated carry is added to the result. All subsequent characters are added with or without a 

carry, depending upon the result of the previous addition. 

The word mark associated with the B field terminates the operation. If the length of the A 

field equals that of the B field, the binary subtraction process continues until the high-order B­

field character has been combined with the high-order A-field character. If the length of the A 

field exceeds that of the B field, the effect is as if there were a word mark in the A-field loca­

tion corresponding to the high-order B-field location (i. e., the process still terminates at the 

B-field word mark). If the length of the A field is less than that of the B field, zeros are insert­

ed where the A field terminates until the last B-field character is processed. Each zero is con­

verted to its ones complement as above and then added to the corresponding B-field character. 

In the following example, locations 294 and 2~5 contain the value 73 10 in l2-bit binary form, 

while locations 299 and 300 contain the binary equivalent of 8710 , 

Note: Locations 294 and 299 contain word marks; the length of the A field therefore 
equals that of the B field in thi s example. 

EASYCODER 
CODING FORM 

DATE PAGE 
PROBLEM 

PROGRAMMER 

CARD H LOCATION 
I OPERATION OPERANDS 

NUMBER n CODE 
6263 

I 2 "3 4 5 6 7 • 1415 2021 

I I ISs 2q5 3¢¢ I I I I 

0101 1 CONTENTS.... 000001 001001 001101 011011 011110 000001 
-\ (binary) L. ______ -J ________ ~ ________ ~ ______ ~ ________ ~ ______ ~~~~~~ 

OF 

.0 

The six-bit character in location 295 is converted to its ones complement and added to the 

six-bit character in location 300 (see illustration below). Prior to this operation, a simulated 

carry is generated in the adder (see page 2-7). The result of the first addition is the binary 

equivalent of 14
10 

plus a carry. This carry remains in the adder and is added to the sum of the 

contents of locations 294 and 299, resulting in a binary zero plus another carry. This final carry 

remains in the adder and the operation terminates. An ovel'flow condition does not exist since 

the carry remaining at the end of the operation is suppressed; consequently the next memory lo­

cation (location 298) is not disturbed. The result of the entire Binary Subtract instruction is 

therefore 14
10

, the true difference between 87 and 73. 

Table 8-3, indicates how the bits in each column of the ones -complement subtrahend and 

the minuend are combined. 

8-7 



SECTION 8. INSTRUCTIONS 

73)0 

LOCATION ~lIiI~~liilliiliiiiillllllllllllllllllllllll§lI~~~~iiillliiil 
CONT ENT S ~ .... _0_0_0_0_0_l.....1_0_0_1,..0_0_1.....L_0_0_l_l_0_l.....1_0_1_1_0_1_1....1._0_1_1_1_1_0....l._0_0_0_0_0_1 ...... _0_1"T0_l_1_1..,.. 

converted to 
one s complement 

ADDER 
Simulated Carry 
in Adder 

RESULT 001110--------------------~ 

(plus a carry) 

First Addition 

78 0 

000001 001001 001101 011011 011110 000001 

converted to 
ones complement 

ADDER Previous 
Carry 

RESULT 000000 -------------' 

(plus a carry which 
is suppressed) 

Second Addition 

The result of the operation (14
10

) is stored in the B field as shown below. 

73 0 14 

000001 001001 001101 011011 011110 000000 

8-8 

001110 

001110 



f 
f 
I 

I 

I 
! 
I 

I 
1 
I 

I 
J 
I 

1 

ARITHMETIC 

DECIMAL ADDITION 

The Add instruction performs either a true add or a complement add, depending upon the 

algebraic signs of the operands. The sign of an operand is determined by the combination of 

zone bits in the units position of that field. The four possible zone bit configurations and the 

signs they represent are shown in Table 8-4. 

SIGN 

+ 
True Add 

Table 8-4. Algebraic Signs lD Decimal Addition 

ZONE BITS 
B;..Bit A .. Bit 

o 
1 

o 

o 
1 

1 

SIGN ZONE BIts ......... . ..... . 
~-~~-~--------~--~.~~~--~--~ B··- BitA·,Bit .. ...•...•..•.. . .. 

1 o 

A true add is performed if the signs of the A and B fields are alike. The result of the 

audition is stored in the B field with the same zone bit configuration that was originally in the B 

field (see Figure 8-1). Zone bits in all B-field locations (except for the units position) are set to 

zeros. A-field zone bits (except for the units position) are ignored. 

Complement Add 

A OPERAND 

+244 

A OPERAND 

(+A) + (+B) :: +R 

(-A) + (-B) -R 

B OPERAND 
+170 

~ +244 
+414 :: RESULT 

B OPERAND 
-444 

-077 ~I_· ~~~~~ ______ ~ ______ ~~ -077 
-521 :: RESULT 

Figure 8-1. True Add Examples 

If the operand signs are not alike, the instruction performs a complement add: the A 

operand is converted to its tens complement 1 and added to the B operand. The machine automa­

tically initiates a test fo determine whether a carry was generated by the high-order addition. 

1 The tens complement of a decimal number is formed by subtracting the number from all nines 
and adding one to the low-order digit of the difference. 

8-9 



SECTION 8. INSTRUCTIONS 

The presence of a carry indicates that the result in the B field is a true answer, and the opera­

tion is terminated with the normalized sign of the B field as the sign of the result (see Figure 

8_2).1 B-fieldzonebits (except for the units position) are set to zeros. 

The absence of a carry indicates that the A operand was algebraically larger than the B 

operand and that the result is stored in its tens-complement form. A recomplement cycle is 

performed automatically to convert the result to its true form. The sign of the result is changed 

during this recomplement cycle. Figure 8-2 illustrates complement add operations with without 

recomplementation. 

(+A) + (-B) -R 
A OPERAND B OPERAND 

convert to -0090 
+0078 ",1=· =""""' .... ··~··'""·:'·~.<=·.,.·:.' ..... I tens complement ""\""'.,,,,. =="'""'-"""'''"''"'''-'-> 9922 

A OPERAND 

carry indicates true sum ~ 
(recomplementing is 
unnecessary) 

(+A) + (-B) = +R 

1 -0012 = RESULT .... 
sign of B operand 

B OPERAND 

convert to -0090 
+0178 ""I/=\,",':·=","",~~",-,I tens complement ["",0=/=:'",,,· =. '"""-"""""'"'"'-==. "", ... ~ 9822 

DECIMAL SUBTRACTION 

no carry indicates sum is stored 
in its tens -complement form; 
recomplementing is necessary 

~ 0 -9912 

••••••••••• 

~
.' .. 

Fi gure 8 - 2. Complement Add Example s 

recomplement 
and change sign 

V 
+0088 = TRUE RESULT 

The Subtract instruction is analogous to the Add instruction with the exception that before 

the ope rands are combined, the sign of the A ope rand is changed. Thus, if the initial sign of the 

A operand is equal to that of the B operand, the operands are combined by a complement add. If, 

on the other hand, the initial sign of the A operand is not equal to that of the B operand, the 

operands are combined by a true add. 

A summary of decimal arithmetic operations is presented in Table 8-5. 

INormalizedsigns are expressed by the following zone bit configurations: plus 01, minus = 10. 

8-10 



f 

i 
F 

ARITHMETIC 

Table 3-5. Decimal Arithmetic Sign Conventions 

+ True + (Bit configuration of B) 

+ Complement 

ADD 

+ Complement 

Normalized sign of greater 
value (- = 10, + = 01) 

+ + 
SUBTRACT 

+ 

INDICATORS 

True 

True 

Complement 

CompleITIent 

True 

Normalized sign of the 
greater value (- = 10, + 

+ (Bit configuration of B) 

01) 

Two indicators are set at the completion of every decimal add and subtract operation: the 

overflow indicator and the zero balance indicator. If a carry is generated beyond the limit of the 

B field, the overflow indicator is turned on; if such a carry is not generated, the indicator is 

1 unchanged. The zero balance indicator signifies either a zero or a non-zero sum. When a 

deciITIal operation produces a result equal to zero (regardless of sign), the zero balance indi­

cator is turned on; when the result of the operation doesnotequalzero, the indicator is turned off. 

These indicators are also set by decimal multiply and divide operations. The overflow 

indicator is turned on when a Decimal Divide instruction is performed in which the divisor is 

equal to zero. The zero balance indicator is turned on if the product of a deciITIal multiply 

operation is equal to zero. 

The settings of these indicators can be tested by a Branch on Condition Test instruction 

(see page 8- 41). This instruction automatically resets the overflow indicator; the zero balance 

indicator is not affected by the branch instruction used to test it but is reset only by the next 

decimal arithmetic instruction. 

MULTIPLICATION 

1 

The Multiply instruction causes the Signed decimal integer in the A field (the multiplicand) , 

Only a "true add" operation can turn the overflow indicator on (see Table 8-5). 

8-11 



SECTION 8. INSTRUCTIONS 

to be multiplied by the signed decimal integer (the multiplier) which is stored in the leftmost lo­

cations of the B field. The signed product is stored right-justified, in the B field. 

The B field must be large enough to insure an adequate number of locations for the develop­

ment and storage of the product. Its length is therefore defined as the number of locations in 

the multiplier, plus the number of locations in the multiplicand, plus one (see Figure 8-3). 

OPERATION: 

aaaa 
X bbb 

LOCATION ... 

CONTENTS ... 

r FIELD----, 

A ADDRESp I 
• 

, 

A-3 A-2 A-I A 

0 a a a 

. 
MULTIPLICAND 

(4 locations) 

rn FIELD (4+3+1 

B-7 B-6 B-5 

® b b 

MULTIPLIER 
(3 locations) 

B-4 

8 10cations)---1 

B ADDRES:s1 
; 

B-3 B-2 B-1 B 

Figure 8-3. A and B Fields in Multiply Operation 

Word marks are required in the leftmost locations of the multiplicand and the multiplier. 

All other locations in the B field must not contain word marks. As shown in Figure 8-3, the 

rightmost location of the multiplier is defined as B - Na - 1, where B is the B address and Na 

is the number of locations in the A field. 

The zone bits in the units positions of the multiplier and the multiplicand indicate the signs 

of the operands. The signs of these factors indicate the sign of the product according to the 

algebraic sign conventions shown in Table 8-6. The sign of the product is expressed in its 

normalized form (minus = 10, plus = 01). 

Table 8-6. Multiply Sign Conventions 

Sign of Multiplicand + - + -

Sign of Multiplier + - - + 
Sign of Product + + - -

8-12 

-~ 



ARITHMETIC 

Consider the following Decimal Multiply instruction. 

PROBLEM 

12345678 

OPERATION 
COOE 

1415 2021 

EASYCODER 
CODING FORM 

PROGRAMMER 

OPERANDS 

DATE PAGE OF 

6263 so 

Location 500 is the rightmost location of a four-character field. Location 700 is the right­

most location of an eight-character field. Location 695 (i. e., 700 - 4 - 1) is the rightmost loca­

tion of the multiplier. 

A ADDRESS 
~ 

LOCA TION --_~ 497 ·4984;9?1_&?Q 
CONTENTS .. CD 3 2 6 
~ 

MULTIPLICAND 

693 

@ 
694 695 

3 + 
5 
~ 

MULTIPLIER 

696 

B ADDRESS 
~ 

The data in the A field is ITlUltiplied by the data in the field whose rightmost location is 

695, and the product is stored, right-justified, in the B field. All B-field zone bits are cleared 

to zeros (except in the units position, which contains the sign of the product). At the end of the 

operation, the multiplier is no longer present in the leftmost positions of the B field, since all 

B-field locations to the left of the most significant digit of the product are set to zeros. Thus, 

the multiplier should be preserved in another storage field if it is to be used more than once. 

The result of the multiply operation is shown below. 

A FIELD IS 
NOT DISTURBED 

LOCA TION ----.. • 497 .498 499 

CONTENTS-.. CD 3 2 

DIVISION 

5lJO 

6 

PRODUCT IS STORED IN B FIELD, RIGHT­
JUSTIFIED. ALL INSIGNIFICANT HIGH­
ORDER CHARACTERS ARE SET TO ZEROS 

693 694 695 696 69769$699\ <¥6~ 
@ 2777210 

------------------~-----------------PRODUCT 

The Divide instruction causes the signed decimal integer in the A field (the divisor) to be 

divided into the signed decimal integer whose leftmost location is the B address of the instruc­

tion (the dividend). The quotient is developed and stored in the leftmost locations of the B field, 

8 -13 



SECTION 8. INSTRUCTIONS 

and the remainder is stored in the rightmost locations of the B field. 1 To insure an adequate 

number of storage locations for the development of the quotient, the length of the B field is 

determined by adding 1 to the sum of the number of character locations in the divisor and 

dividend (see Figure 8-4). 

OPERATION: 

xx)yyyy 

BEFORE EXEC UTION 

V FIELD~ r B FIELD (3+4+l~8 location')l 

A ADDRES,S B ADDRESS 

1 
LOCATION .. A-2 A-I A B-4 B-3 B-2 B-1 B B+l B+2 B+3 

CONTENTS .... @ x x 0 0 0 0 y y y y 
, 

v 

DIVISOR DIVIDEND 
(3 locations) (4 locations) 

AFTER EXEC UTION 

B- N a tNd- 2 

B-Na+Ndd 

~- BtNdd"i 

LOCATION-- A-2 A-I A B-4 B-3 B-2 B-1 B B+l B+2 B+3 

CONTENTS ..... ® x x q q q q 0 r r r 
, , , . 

QUOTIENT REMAINDER 

Figure 8-4. Factor Locations in Divide Operation 

The leftmost location of the dividend is defined by the B address of the Divide instruction. 

The rightmost location (i. e., the units position) is the first character location to the right of the 

B address to have one of its zone bits not equal to zero. As shown in Figure 8-4, all B -field 

locations to the left of the dividend must contain zeros prior to the divide operation. 

A word mark is required in the leftmost location of the divisor. The dividend mayor may 

not contain a word mark. 

1 
Note that the B "field" in a divide operation does not define the B operand but is a group of 
storage locations within which the B operand (the dividend) is contained. 

8-14 



r , 

r 
r 
! 

ARITHMETIC 

The signs of the operands are indicated by the zone bits in the units positions of the divisor 

and dividend. Algebraic sign control is used to determine the sign of the quotient (see Table 

8-7). The sign of the quotient is expressed in ltS normalized forITl (minus = 10, plus = 01). The 

sign of the remainder is always the same as that of the dividend (in value if not in bit configu­

ration); its form is normalized if the sign of the dividend is normalized. 

Table 8-7. Divide Sign Conventions 

Sign of Divisor + + - -

Sign of Dividend + - + -

Sign of Remainder + - + -

Sign of Quotient + - - + 

Since the presence of a signed digit in the dividend specifies its rightmost location, the 

units position of the dividend must contain a normalized sign and the zone bits of all other 

dividend characters must be zero. 

When div i si on is completed, signed decimal quotient is stored in the leftrnost locations of 

N lS the 
a 

the B field; the units position of the quotient is in location B - Na + Ndd - 2, where 

number of locations in the A field and Nd is the number of locations in the dividend. The signed 

decimal remainder appears in locations B+Ndd-l, B+N
dd

-2, etc. through location B-Na +N
dd

. 

The character location separating the quotient and the remainder is cleared to zero (see Figure 8-4). 

In the following example, the divisor is a two-character field whose nghtmost location is 

location 450 and the dividend is a four-character integer whose leftmost location is location 950. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE G F PA E_O_ 

CARD H LOCATION 
OPERATION 

OPERANDS NUMBER P R CODE 
E K 

I 2 3 4 5 6 7 8 1415 2021 6263 

I 
I :Dt 45~,g,5~~ I I ,~~ 

I 
I j I I ~ __ -h. "'-_L_.I- ~ _""--.....L....._L~~-'-'~ I 

I I I 
~_L_-'. '.J_"-,--~_..J............-,---,-............J. 

The contents (+23) of the A field are divided into the contents of the field (+7347) whose 

leftmost location is 950. The rightmost boundary of the dividend is determined by the first , 
character location (location 953) to the right of location B whose zone bits are non-zero. This 

units position of the dividend therefore contains the sign of the dividend. 

8-15 

80 



SECTION 8. INSTRUCTIONS 

r FIELD, 

IA ADDR~S I 
jl49 ... 450 

o + 
3 

DIVISOR = 
2 CHARACTER 
LOCATIONS 

B FIELD = 1+2+4 = 7 1 r CHARACTER LOCATIONS 

B ADDRESS ... 
9*t' ~ .•.••• 949 •• /9$~ i<9$¥i9SZ .\9~~ 
0007347 

~ 

DIVIDEND = 4 
CHARACTER LOCATIONS 

The quotient (+319) is stored in the leftmost character locations of the B field. The units 

position of the quotient (location 950) is equal to B-Na +N
dd

-2, or 950-2+4-2. The remainder 

is stoTed in the rightmost locations of the B field; its leftmost location (location 952) is equal to 

B-Na+N, or 950-2+4; its rightmost location (location 953) is equal to B+N-1, or 950+4-1. The 

result of the operation is shown below. 

A-ADDRESS 

~ 

QUOTIENT 
~ 

REMAINDER 

A ADD 

FORMAT 
OP CODE A ADDRESS B ADDRESS 

a. - -
b. -
c. -FUNCTION 

Format a: The signed decimal data in the A field is added algebraically to the signed decimal 
data in the B field. The result is stored in the B field. 

Format b: The signed decimal data in the A field is added to itself. The result is stored in the 
A field. 

Format c: The signed decimal data specified by the contents of the A-address register (AAR) is , 
added algebraically to the signed decimal data specified by the contents of the B-ad­
dress register (BAR). The result is stored in the B field. 

8-16 



ARITHMETIC 

WORD MARKS 

Format a: The B operand must have a defining word mark. It is this word mark that terminates 
the operation. The A operand must have a word mark only if it is shorter than the B 
operand. In this case, transmission of data from the A operand stops after the A­
operand word mark is sensed. If the A field is longer than the B field, the high­
order characters of the A field that exceed the field length defined by the B-operand 
word mark are not processed. 

Format b: The A operand must have a defining word mark. 

Format c: The B operand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand. 

TIMING 

Format a: T = Ni+2+Nw+2Nb memory cycles if ~ recomplement cycle is required. 

T = N i +2+Nw +4Nb memory cycles if a recomplement cycle is required. 

Format b: T = Ni+2+3Na memory cycles. 

Format c: T 3+Nw +2Nb memory cycles if no recomplement cycle is required. 

T = 3+Nw +4Nb memory cycles if a recomplement cycle is required. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nb 

Format b: NXT A-Na A-Na 

Format c: NXT Ap-Nw Bb-Nb 

NOTES 

1. The algebraic sign control for the add operation is shown below. 

A-FIELD SIGN + - + -
B-FIELD SIGN + - - + 
TYPE OF ADD True True Comp Comp 

Normalized sign of A or B 
SIGN OF RESULT Sign of B field field, whichever is greater 

(- = 1O, + = 01) 

2. All zone bits in the result field are set to zeros except for the units position 
(i. e., the sig 1 of the result). 

3. This instructior !:",ats both operands as signed decimal data. It will pro­
duce ambiguous l'esults if used to manipulate non-decimal data. Particularly, 
if the four numeric bit of any character have a binary numeric value of 12 
or more (octa\ 14, 15, 16, and 17), the character is treated as if it were 
a zero. The two remaining cases (octal 12 and 13) are unspecified. 

4. The overflow and zero balance indicators are set by an add operation. 

8-17 



SECTION 8. INSTRUCTIONS 

EXAMPLE 

Add Bond Deductions to Total Deductions. 

Description 

Bond Deductions 

Total Deductions 

EASYCODER 
CODING FORM 

Tag 

BDED 

TDED 

PROBLEM PR OGRAMMER 

CARD H LOCATION 
I OPERATION OPERANDS NUMBER n CODE 

I 2 3 4 5 6 7 , 1415 2021 

I IA g~Eb "TDED 

S SUBTRACT 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - I 

b. -
c. -

FUNCTION 

DATE PAGE OF 

6263 

FOrIYlat a: The signed deciIT1al data in the A field is subtracted algebraically froIT1 the signed 
deciIT1al data in the B field. The result is stored in the B field. 

ForIT1at b: The signed deciIT1al data in the A field is subtracted froIT1 itself. The result is 
stored in the A field. If the A-field sign is IT1inus, the result is a IT1inus zero. If 
the A-field sign is plus, the result is a plus zero (with norIT1alized sign). 

ForIT1at c: The signed deciIT1al data specified by the contents of the A-address register (AAR) 
is subtracted algebraically froIT1 the signed deciIT1al data specified by the contents 
of the B-address register (BAR). The result is stored in the B field. 

WORD MARKS 

ForIT1at a: The B operand IT1ust have a defining word IT1ark. The A operand IT1ust have a word 
IT1ark only if it is shorter than the B operand. In this case, transIT1ission of data 
froIT1 the A operand stops after the A-operand word IT1ark is sensed. If the A field 
is longer than the B field, the high-order characters of the A field that exceed the 
field length defined by the B-operand word IT1ark are not processed. , 

ForIT1at b: The A operand IT1ust have a defining word IT1ark. 

ForIT1at c: The B operand IT1ust have a defining word IT1ark. The A operand IT1ust have a word 
IT1ark only if it is shorter than the B operand. 

8-18 

80 



ARITHMETIC 

TIMING 

Format a: T = Ni +2+Nw +2Nb memory cycles if no recomplement cycle is required. 

T = Ni +2+Nw +4Nb memory cycles if a recomplement cycle is required. 

Format b: T = Ni +2+3Na memory cycles. 

Format c: T = 3+Nw +2Nb memory cycles if ~ recomplement cycle is required. 

T = 3+Nw+4Nb memory cycles if a recomplement cycle is required. 

ADDRESS REGISTERS AFTER OPERATION 

Format a: 

FormatO b: 

Format c: 

NOTES 

1. 

2. 

3. 

SR AAR BAR 

NXT A-Nw B-Nb 

NXT A-Na A-Na 

NXT Ap-Nw B -Nb p 

Algebraic sign control for the subtract operation is summarized below. 

A-FIELD SIGN + -- + -
B-FIELD SIGN + -- - + 
TYPE OF ADD Comp Comp True True 

Normalized sign of Sign of B field 

SIGN OF RESULT 
A or B field, which-
ever is greater 
(-=10,+=01) 

All zone bits in the result field are set to zeros except for the units position 
(i. e., the sign of the result). 

This instruction treats both operands as signed decimal data. It will pro­
duce ambiguous results if used to manipulate non-decimal data. Partic-
ularly, if the four numeric bits of any character have a binary numeric 
value of 12 or more (octal 14, 15, 16, and 17), the character is treated 
as if it were a zero. The two remaining case s (octal 12 and 13) are 
unspecified. 

4. The overflow and zero balance indicators are set by a subtract operation. 

EXAMPLE 

Subtract the contents of the five-character fields starting at location 940, 945, 950, 
and 955 from the contents of the eight-character fields starting at locations 648, 
656, 664, and 672. 

~PR~O:BL~E~M~~======~======~==========================~ffi:O=G:RA:M:M~ER~===========~D:M~E-== _________ ~GE __ OF __ 
CARD ~ I~ OPERATION NUMBER ~ ~ LOCATION CODE OPERANDS 

! 2 3 4 5 6 7 8 1415 2021 6263 , I BO 

r----tI~LI--j-++~'_'_~-"--lcoS'__'_~~t_'9'-=5"-'5'-+co6LC7""f~--"--'-.~.~~-~~~--'-, ~~_~~~,_~o--'_,~~.I. " .. -~_~L~~_-"--,-,~~~~,--'--i 
r----t'~ll--j-++~'-'-~-"--lFS'--'-~~~t__~~'--"-~~'--"-~~.~-~~'--'-~~~~~'--'-.~~- ~~~~_L L_j-~"--'-~' ~, _~~~~~ 
1---+-IY-+-+~'-'-~----II"'S'--'-~~f-'-~~'--'-~~,--"-~----I'--'-~--.!~-~~-'-~~'--'-~~_l~_~_'_L.'+~.L...~~~~~~~'-"-1 
I--c--+-~++-+-O~L.-~_+"S~~~""""'~-"--'---'~~-'--'-~~~'~'--'-~~_~~~~"-"-.'_-I-->._~~~~'__'_~~'__'_~-"--l 

8-19 



SECTION 8. INSTRUCTIONS 

BA I BINARY ADD 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

c. - -
b. - I • 
c. -

FUNCTION 

Format a: The data in the A field is added in binary fashion, character by character, to the 
data in the B field. The result is stored in the B field. 

Format b: The data in the A field is added character by character, to itself. The result is 
stored in the A field. 

Format c: The data specified by the contents of the A-address register (AAR) is added char­
acter by character, to the data specified by the contents of the B -addres s register 
(BAR). The result is stored in the B field. 

WORD MARKS 

Format a: The B operand must have a defining word mark. It is this word mark that termi­
nates the operation. The A operand must have a word mark only if it is shorter 
than the B operand. In this case the transmission of data from the A field stops 
after the A-operand word mark is sensed. If the A field is longer than the B field, 
the high-order characters of the A field that exceed the field length defined by the 
B-operand word mark are not processed. 

Format b: The A operand must have a defining word mark. 

Format c: The B operand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand. 

TIMING 

Format a: T = Ni+1+Nw +2Nb memory cycles. l 

Format b: T = Ni+l+3Na memory cycles. 1 

Format c: T = 2+Nw +2Nb memory cycles. l 

1 Add one memory cycle to each of these times if the instruction is being executed in a Type 2201 
processor. 

8-20 



ARITHMETIC 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nb 

Format b: NXT A-Na A-Na 

Format c: NXT Ap-Nw B -Nb 
P 

NOTES 

1. The overflow and zero balance indicators are not set by a binary add 
operation. 

2. Format b of the BA instruction has the effect of doubling the value stored 
in the A field; i. e., it shifts the contents of the A field one bit position 
to the left. 

EXAMPLE 

Modify the B address of the instruction tagged B7 by the value stored in the location 
tagged TEN (assuming the use of the two-character addressing mode). 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD H LOCATION I OPERATION OPERANDS NUMBER ~ ~ CODE 

) 2 3 4 5 6 7 , 1415 2021 6263 BO 

I I lEA 87 ... 4 TF=N 

BS BINARY SUBTRACT 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. -
b -
c. -

FUNCTION 

Format a: Each six-bit character in the A field is converted to its ones complement and added, 
in binary fashion, character by character, to the data in the B field (see page 8-6). 
A simulated'carry is added with the characters in the units position. The result 
is stored in the B field. 

Format b: Each six-bit character in the A field is converted to its ones complement and added 
character by character, to itself. A simulated carry is added with the characters 

8-21 



SECTION 8. INSTRUCTIONS 

in the units position. In effect, this forrnat of the binary subtract instruction re­
places the contents of the A field with zeros. 

Format c: Each six-bit character specified by the contents of the A-address register (AAR) 
is converted to its ones complement and added, character by character, to the data 
specified by the contents of the B-address register (BAR). A simulated carry is 
added with the characters in the units position. The result is stored in the B field. 

WORD MARKS 

Format a: The word mark associated with the B operand terminates the operation. The A 
operand must have a word mark only if it is shorter than the B operand. In this 
case, transmission of data from the A field stops after the A operand word mark 
is sensed. If the A operand is longer than the B operand, the characters of the A 
operand that exceed the field length defined by the B operand word mark are not 
processed. 

Format b: The A operand must have a defining word mark. 

Format c: The B operand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand. 

TIMING 

Format a: T = N i +l+Nw +2Nb memory cycles. 1 

Format b: T = N i +l+3Na memory cycles. 1 

Format c: T = 2+Nw +2Nb memory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nb 

Format b: NXT A-N A-N a a 

Format c: NXT A -N B -N 
p b p w 

NOTES 

1. The overflow and zero balance indicators are not set by a binary subtract 
operation. 

2. Formats a and c can produce negative results. A negative result is stored 
in the B field in its twos-complement form. In this case, the absolute 
numerical value of the result can be obtained by recomplementing the result 
stored in the B field. 

EXAMPLE 

Zero the fiel~ starting at location TOTAL. 

1 
Add one memory cycle to each of these times if the instruction is being executed in a Type 
2201 processor. 

8-22 



EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE 

CARD H LOCATION 
OPERATION 

OPERANDS NUMBER n eOOE 

I 2 3 4 5 6 7 8 

I ! 
1415 2021 6263 

~S TOTAL 

NOTE: Information bits as well as zone bits are cleared to zero by 
this operation. 

ZA I ZERO AND ADD II FEATURES 010 &. 011 1 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

ARITHMETIC 

PAGE OF 

80 

Format a: The data in the A field is transferred, character by character, right to left, to the 
B field. Zone bits in the B field are set to zero in all positions except the units 
position. The sign of the result field is based on the sign of the A field (see note). 
If the high-order character of the A field is transferred before the operation 
terminates, the remaining B-field characters are cleared to zeros. 

Format b: The data in the A field is converted to an all-numeric format; i. e., the zone bits 
of all positions in the field except the units position are set to zero. The result 
remains in the A field. The sign of the A field is not changed by the operation (see 
note 1). 

Format c: The data specified by the contents of the A-address register (AAR) is transferred 
to the field specified by the contents of the B-address register (BAR). Zone bits 
in the B field are set to zero in all positions except the units position. The sign 
of the result field is based on the sign of the sign of the A field (see note 1). If 
the high-order character of the A field is transferred before the operation termi­
nates, the remaining B-field characters are cleared to zeros. 

WORD MARKS 

Format a: The B operand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand. In this case, transfer of data from 
the A operand stops after the A-operand word mark is sensed. If the A field is 
longer thaIltthe B field, the high-order characters of the A field that exceed the 
field length defined by the B-operand word mark are not processed. 

Format b: The A operand must have a defining word mark. 

8-23 



SECTION 8. INSTRUCTIONS 

Format c: The B operand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand. 

TIMING 

Formats a, b, and c: 

T == Ni +l+Nw +Nb memory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-N B-Nb w 

Format b: NXT A-Na A-N a 

Format c: NXT A -N P w Bp-Nb 

NOTES 

1. A plus sign in the units position of the result field is always expressed in 
its normalized form (01). 

2. B -field punctuation is not changed by this operation. 

EXAMPLE 

Transfer the contents of the field tagged ORATE to the field tagged NRATE, setting 
all zone bits in NRATE (except in the units position) to zeros. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER OAT E PAGE OF 

CARD ~I~I LOCATION 
OPERATION OPERANDS 

NUMBER CODE 
6263 80 

I 2 3 4 5 6 7 8 1415 2021 

I : IZ! OR.ATE )JRA:r:E 

ZS ZERO AND SUBTRACTI I FEATURES 010 & 0111 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

1 
Add one memory cycle to this formula if the instruction is being executed in a Type 2201 
processor. 

8-24 



ARlTHMETIC 

FUNCTION 

ForITlat a: The data in the A field is transferred to the B field with the opposite sign. Zone 
bits in the B field are set to zeros in all positions except the units position. If the 
high-order character of the A field is transferred before the operation terITlinates, 
the reITlaining B-field characters are cleared to zeros. 

ForITlat b: The data in the A field is converted to an all-nuITleric forITlat; i. e., the zone bits 
of all positions in the field except the units position are set to zero. The result re­
ITlains in the A field with its sign reversed. 

ForITlat c: The data specified by the contents of the A-address register (AAR) is transferred 
with the opposite sign to the field specified by the contents of the B -address register 
(BAR). Zone bits in the B field are set to zero in all positions except the units 
position. If the high-order character of the A field is transferred before the oper­
ation terITlinates, the reITlaining B-field characters are cleared to zeros. 

WORD MARKS 

ForITlat a: The B operand ITlust have a defining word ITlark. The A operand ITlust have a word 
ITlark only if it is shorter than the B operand. In this case, transfer of data froITl 
the A operand stops after the A-operand word ITlark is sensed. If the A field is 
longer than the B field, the high-order characters of the A field that exceed the 
field length defined by the B-operand word ITlark are not processed. 

ForITlat b: The A operand ITlust have a defining word ITlark. 

ForITlat c: The B operand ITlust have a defining word ITlark. The A operand ITlust have a word 
ITlark only if it is shorter than the B operand. 

TIMING 

ForITlats a, b, and c: 

T = N i +1+Nw +Nb ITleITlory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

ForITlat a: 

ForITlat b: 

ForITlat c: 

NOTES 

1. 

2. 

SR AAR BAR 

NXT A-N B-Nb w 

NXT A-Na A-Na 

NXT Ap-Nw Bp-Nb 

A plus sign in the units position of the result field is always expressed in its 
norITlalized forITl (01). 

B -field punctuation is not changed by thi s ope ration. 

1 
Add one ITleITlory cycle to this forITlula if the instruction is being executed in a Type 2201 
processor. 

8-25 



SECTION 8. INSTRUCTIONS 

EXAMPLE 

Change the sign of the data in the field tagged PROFIT. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ~l~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 eo 

I : ZS PROFIT 

M I MULTIPLY I 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

Format a: The signed decimal integer in the A field is multiplied by the signed decimal integer 
in the leftmost locations of the B field. The product is stored, right - justified, in 
the B field. 

Format b: The signed decimal integer in the A field is multiplied by the signed decimal integer 
in the leftmost locations of the field specified by the contents of the B -address reg­
ister (BAR). The product is stored, right-justified, in the B field. 

Format c: The signed decimal integer in the field specified by the contents of the A-address 
register (AAR) is multiplied by the signed decimal integer in the leftmost locations 
of the field specified by the contents of BAR. The product is stored, right - justified, 
in the B field. 

WORD MARKS 

Formats a, b, and c: 

Word marks are required in the high-order locations of both the A and B fields. 
All other B-field locations must not contain word marks. 

TIMING 

Formats a, b, and c: 

Types 201-1,201-2, and 1201 processors: 

8-26 



ARITHMETIC 

TYPE 2201 PROCESSOR: 

Representative times for the Types 201-1, 201-2, 1201, and 2201 processors are 
given in note 7. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Na B-Nb 

Format b: NXT A-Na Bp-Nb 

Format c: NXT Ap-Na Bp-Nb 

NOTES 

1. The A address of a Decimal Multiply instruction specifies the units position 
of the multiplicand. The B addre s s specifie s a location which is Na + 1 lo­
cations to the right of the multiplier, since the B field must contain the 
multiplier plus enough additional locations (to the right of the multiplier) to 
provide for the development of the product. Thus, the total number of 
character locations in the B field must be one greater than the sum of the 
number of characters in the multiplicand and the multiplier. For example, 
in a multiplication operation involving a 3-character multiplier and a 5-
character multiplicand, 9 positions (5+3+1) must be provided in the B field. 

2. Algebraic sign control for the multiply operation is shown below. The sign 
of the product is expressed in its normalized form (-=10, +=01). 

Sign of Multiplicand + - + -
Sign of Multiplier + - - + 

Sign of Product + + - -

3. The product is stored (right - justified) in the entire B field, with the unused 
high-order positions of the B field cleared to zeros. As a result of the 
operation, the multiplier (initially stored in the B field) is destroyed. 
Therefore, if the multiplier is to be used more than once, it should be 
preserved in another storage field. 

4. The zero balance indicator is turned ON if the product of the multiply oper­
ation is equal to zero; otherwise, the indicator is turned OFF by the operation. 

5. This instruction treats both operands as signed decimal data. It will pro­
duce ambiguous results if used to manipulate non-decimal data. Particularly, 
if the four numeric bits of a character have a binary numeric value of 12 or 
more (octal 14, 15, 16, or 17), the character is treated as if it were a 
zero. The two remaining cases (octal 12 and 13) are unspecified. 

6. This instr~ction is a standard feature on all processors but the Type 201, 
on which it is not available. 

7. Listed below are representative multiply time s (in microseconds) for the 
Type 201-1, 201-2, 1201, and 2201 processors. It is assumed that the 

8-27 



SECTION 8. INSTRUCTIONS 

EXAMPLE 

PROB E L M 

CARD il~ NUMBER 

I 2 3 4 5 6 7 8 

I 

three-character addressing m.ode is used and that each m.ultiplier digit 
has the m.edian value of 4.5. 

TYPE 201-1 AND 201~2 MULTIPLY TIMES (MICROSECONDS) 

NO. OF CHARACTERS IN MULTIPLICAND 

1 2 3 4 5 

NUMBER OF 1 51 68 85 102 119 

CHARACTERS 2 74 104 134 164 194 

IN 3 97 140 183 226 269 

, MULTIPLIER 4 120 176 232 288 344 

5 143 212 281 350 419 

TYPE 120 I MUL TIPL Y TIMES (MICROSECONDS) 

NO. OF CHARACTERS IN MULTIPLICAND 

1 2 3 4 5 

NUMBER OF 1 39.8 52.5 65.3 78 90.8 

OSARACTERS 2 57 79.5 102 124.5 147 

'IN' 3 74.3 106.5 138.8 171 203.3 

,MUl:/lIPLIER 4 91. 5 133. 5 175.5 217.5 259.5 ... 
5 108.8 160.5 212.3 264 315.8 

; 
TYPE 4201 MU.LTIPLYTIMES (MICROSECONDS) 

, . .'. 

NO. OF CHARACTER.S.Il'i:(MULTIPLICAND 

1 2 3 4 5 

NUMBER OF 1 28 36 44 52 60 

CHARACTERS 2 39 53 67 81 95 

IN 3 50 70 90 110 130 

MULTIPLIER 4 61 87 113 139 165 

5 72 104 136 168 200 

Multiply the five-character field tagged CAND by the three-character field whose 
rightm.ost character location is six (5+1) less than the location tagged PROD. 
Store the result, right - justified, in PROD. 

EASYCODER 
CODING FORM 

PROGRAMMER DATE PAGE OF 

LOCATION 
OPERATION 

OPERANDS CODE 

1415 2021 6263 

1M "'AND Pk'QD 

8-28 

80 



I 
I 

ARITHMETIC 

D DIVIDE 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. -
b -
c. -

FUNCTION 

Format a: The signed decimal integer in the field whose leftmost location is B is divided by 
the signed decimal integer in the A field. The quotient is stored in the leftmost 
locations of the B field; the remainder is stored in the rightmost locations of the B 
field (see page 8-13). 

Format b: The signed decimal integer in the field whose leftmost location is specified by the 
contents of the B -address register (BAR) is divided by the signed decimal integer 
in the A field. The quotient is stored in the leftmost locations of the B field; the 
remainder is stored in the rightmost locations of the B field (see page 8-13). 

Format c: The signed decimal integer in the field whose leftmost location is specified by the 
contents of the B-address register (BAR) is divided by the signed decimal integer 
in the field specified by the contents of the A-address register (AAR). The quotient 
is stored in the leftmost locations of the B field; the remainder is stored in the 
rightmost locations of the B field (see page 8- 13). 

WORD MARKS 

Formats a, b, and c: 

TIMING 

The A operand (the divisor) must contain a word mark. The B field may contain 
a word mark. 

Formats a, b, and c: 

TYPES 201-1, 201-2, AND 1201 PROCESSORS: 

T = Ni +4+2Na memory cycles if divisor = O. 

T = Ni +17. 5+4. 5Na +15. 5Z 1a+12. 5Ndd+15Na(Ndd-Na+Z1a) memory cycles if 

(Na-Z1a)(Ndd) and divisor#O. 

T = N i +7+4Na memory cycles if (Na-Z1a) >(Ndd). 

TYPE 2201 PROCESSOR: 

T = Ni+7+:lNa memory cycles if divisor = O. 

T = Ni+9+2Z+5Na+3Z1d+Nq(l5Na-2Z1a+18. 25) memory cycles if 

(Na-Z1a)S (Ndd-Z1d) and divisor#O. 

8-29 



SECTION 8. INSTRUCTIONS 

T Ni +9+2Na +2Ndd memory cycles if Na>Ndd and (Na -Z 1a» (Ndd-Zld). 

T Ni+l0+Na+3Ndd memory cycles if Na~ Ndd and (Na-Z1a»(Ndd-Zld). 

Representative divide times for the Type 201-1, 201-2, 1201, and 2201 processors 
are given in note 10. 

ADDRESS REGISTERS AFTER OPERATION (WHEN DIVISOR IS NOT EQUAL TO ZERO) 

NOTES 

When the divisor is equal to zero, the contents of the address registers are un­
specified (see note 1). 

1. If the divisor is equal to plus or minus zero, the overflow indicator is turned 
ON, division is not performed, and no memory locations are changed. 

2. The length of the B field is determined by adding 1 to the sum of the number 
of character locations in the divisor and the dividend (B -field length = 1 + 
length of divisor + length of dividend). 

3. The A field (divisor) can be signed or unsigned; if it is unsigned, the divisor 
is assumed to be positive. 

4. The dividend must contain a normalized sign (- = 10, + = 01) in the units 
position. The sign bits of all other characters in the dividend must be zeros. 
The proper signing of the dividend is therefore insured if the dividend is 
moved into the B field by a Zero and Add instruction (see page 8-23). 

5. All high-order locations of the B field which are not occupied by the dividend 
must contain zeros when division begins. These zeros can be automatically 
inserted if the Zero and Add instruction is used to move the dividend into 
the B field as mentioned above. 

6. The sign of the quotient follows algebraic sign rules as shown below. The 
sign of the remainder is the original sign of the dividend. 

Sign of divisor + + - -

Sign of dividend + - + -

Sign of remainder + - + -

Sign of quotient + - - + 

7. This instruction treats both operands as signed decimal data. It will pro­
duce ambiguous results if used to manipulate non-decimal data. Particularly, 
if the four numeric bits of a character have a binary numeric value of 12 
or more (octak 14, 15, 16, or 17), the character is treated as if it were a 
ze ro. The two remaining case s (octal 12 and 13) are unspecified. 

8. This instruction is a standard feature on all processors but the Type 201, 
on which it is not available. 

8-30 



ARITHMETIC 

9. Listed below are representative divide tiITles (in ITlicroseconds) for the 
Type 201-1, 201-2, 1201, and 2201 processors. It is assuITled that the 
processor is in the three-character addressing ITlode in all cases. 

.... 

EXAMPLE 

TYPE 201 DIVIDE TIMES (MICROSECONDS) 

NUMBER OF CHARACTERS IN DIVIDEND 

1 2 3 4 5 

NUMBER OF 1 83 138 193 248 303 

CHARACTERS 2 44 117 202 287 372 

IN 3 52 52 151 266 381 

DIVISOR 4 60 60 60 185 330 

5 68 68 68 68 219 

TYPE 1201 DIVIDE TIMES (MICROSECONDS) 

NUMBER OF CHARACTERS IN DIVIDEND 

1 2 3 4 5 

NUMBER OF 1 62 103.5 145 186 227 

.. CHAltACTERS 2 34.5 88 151. 5 215 279 

IN 3 40.5 40.5 94 199.5 286 

DIVISOR 4 46.5 46.5 52.5 139 247.5 

5 52.5 52. 5 52.5 52.5 164 

2 3 4 5 

NUMBER OF 54 88 121 154 187 

CHARACTERS 2 22 74 123 170 219 

IN·; 3 24 26 94 158 221 
,-. ..' 

»xvtSOJt··· 4 26 28 30 114 193 

5 28 30 32 34 134 

Divide the four-character integer whose leftITlost location is location 1000 by the 
three-character field whose rightITlost location is location 500. Store the quotient 
in the 1eftITlost locations of the field at 1000, and store the reITlainder in the right­
ITlost locations of this field. 

Na (nuITlber of characters in divisor) = 3 

Ndd (nuITlber r>f characters in dividend) = 4 

B (B address) = 1000 

Units position of quotient (B-Na +Ndd -2) = 1000-3+4-2 = location 999 

Units position of reITlainder (B+Ndd -1) = 1000+4-1 = location 1003 

8-31 





LOGIC 

-EXTRACT 

-HALF ADD 

-SUBSTITUTE 

-COMPARE 

-BRANCH 

_ BRANCH ON CONDITION TEST 

_ BRANCH ON CHARACTER CONDITION 

-BRANCH IF CHARACTER EQUAL 

- BRANCH ON BIT EQUAL 

8-33 



SECTION 8. INSTRUCTIONS 

EXTRACT 
(Logical Product) 

FORMAT 

OP CODE 

o. -
b. -
c. -

FUNCTION 

A A8DRESS - 8 ADDRESS 

ForTI1at a; The data in the A field is cOTI1bined bit-by-bit with the data in the B field, according 
to the following rules. The result is stored in the B field. 

BIT IN BIT IN BIT IN 
A FIELD B FIELD REStJLT FIELD 

1 1 1 

1 0 0 

0 1 0 

0 0 0 

ForTI1at b: The data in the A field is cOTI1bined bit-by-bit with the data specified by the con­
tents of the B -address register (BAR), according to the rules stated above. The 
result is stored in the B field. 

ForTI1at c: The data specified by the contents of the A-address register (AAR) is cOTI1bined 
bit-by-bit with the data specified by the contents of BAR, according to the rules 
stated above. The result is stored in the B field. 

WORD MARKS 

ForTI1ats a, b, and c: 

A word TI1ark is required for the shorter of the two operands. The operation 
terTI1inates when this word TI1ark is sensed. 

TIMING 

ForTI1ats a, b, and c: 

T = N.+l+3N TI1eTI1ory cycles. 1 
1 W 

1 
Add one TI1eTI1ory cycle to this forTI1ula if the Extract instruction is being executed in a Type 
2201 processor. 

8-34 



LOGIC 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

ForTIlat a: NXT A-Nw B-Nw 

ForTIlat b: NXT A-Nw B -N p w 

ForTIlat c: NXT A -N B -N 
p w p w 

EXAMPLE 

ReTIlove all zone bits in the field tagged BASE by cOTIlbining the contents of BASE 
with the contents of the field tagged CON. Each character in CON TIlust have the 
following forTIlat: 

Bit position 
Contents 

BA8421 
001111 

EASYCODER 
PROBLEM 

CARD 
NUMBER 

I 2 3 4 5 

I : 

HA 

~I~ LOCATION 
OPERATION 

CODE 

6 7 • 1415 

EXT 

HALF ADD 
(Exclusive Or) 

FORMAT 

OP CODE 

o. -
b. -
c. -

FUNCTION 

CODING FORM 

PROGRAMMER 

OPERANDS 
2021 

ICON. BASE 

A ADDRESS 8 ADDRESS -

DATE PAGE OF 

6263 

ForTIlat a: The data in the A field is cOTIlbined bit-by-bit with the data in the B field, accord­
ing to the following rules. The result is stored in the B field. 

.BIT IN BIT IN BIT IN 
·A FJ:JSLD B l1"l:tCLJ) . REStJ'LT FIELD 

1 1 0 

, 1 0 1 

0 1 1 

0 0 0 

c. 

8-35 

so 



SECTION 8. INSTRUCTIONS 

ForITlat b: The data in the A field is cOITlbined bit-by-bit with the data specified by the con­
tents of the B -address register (BAR), according to the rules stated above. The 
re sult is stored in the B field. 

ForITlat c: The data specified by the contents of the A-address register (AAR) is cOITlbined 
bit-by-bit with the data specified by the contents of BAR, according to the rules 
stated above. The result is stored in the B field. 

WORD MARKS 

ForITlats a, b, and c: 

TIMING 

A word ITlark is required for the shorter of the two operands. The operation 
terITlinates when this word ITlark is sensed. 

ForITlats a, b, and c: 

T = Ni+1+3N ITleITlory cycles. 1 
w 

ADDRESS REGISTERS AFTER OPERATION 

ForITlat a: 

ForITlat b: 

F o·rITlat c: 

EXAMPLE 

PRO BLEM 

CARD ~I~ NUMBER 
I 2 3 4 5 6 7 8 

I 

SR AAR BAR 

NXT A-Nw B-Nw 

NXT A-N B -N w p w 

NXT A -N 
P w 

B -N P w 

Clear all the data bits in the field tagged SEVEN to zeros by cOITlbining the con­
tents of SEVEN with the contents of the field tagged TOO. Do not change the zone 
bits in SEVEN. (The data contents of SEVEN and TOO are identical. ) 

EASYCODER 
CODING FORM 

PROGRAMMER DATE PAGE OF 

LOCATION 
OPERATION 

OPERANDS CODE 

1415 2021 62 63 

HA TOO S.EVEN 

1 Add one ITleITlory cycle to this forITlula if the Half Add instruction is being executed in a Type 
2201 processor. 

8-36 

80 



LOGIC 

SST I SUBSTITUTE I 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b. -
c. - -
d. -

FUNCTION 

Format a: The single character specified by the A address is compared bit-by-bit with the 
variant character and is moved to the location specified by the B address, accord­
ing to the following rule s: 

1. The A-character bit is transferred to the B address if the corresponding 
variant bit = 1. 

2. The B-character bit is preserved if the corresponding variant bit = O. 

Format b: The single character specified by the A address is compared bit-by-bit with the 
variant character specified in a previous instruction and is moved to the lo­
cation specified by the B address, according to the rules stated above. 

Format c: The single character specified by the A address is compared bit-by-bit with the 
variant character specified in a previous instruction and is moved to the location 
specified by the contents of the B-address register (BAR), according to the rules 
stated above. 

Format d: The single character specified by the contents of the A-address register (AAR) 
is compared bit-by-bit with the variant character specified in a previous instruc­
tion and is moved to the location specified by the contents of BAR, according to 
the rule s stated above. 

WORD MARKS 

Formats a, b, c, and d: 

Word marks are not required in either field. 

TIMING 

Formats a, b, c, and d: 

T = Ni +4 memory cycles. 1 

1 Add one memory cycle to this formula if the Substitute instruction is being executed in a 
Type 2201 processor. 

8-37 



SECTION 8. INSTRUCTIONS 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-I B-1 

Format b: NXT A-I B-1 

Format c: NXT A-I B -1 
P 

Format d: NXT A -1 
P 

B -1 
P 

NOTE 

This instruction can be coded only in formats a. and d. when programming for 
the Type 201 or 201-1 processor. 

EXAMPLES 

1. Move the zone bits from the location tagged STET to the location tagged 
STET +20. A variant character of octal 60 provides the required variant 
bit configuration (i. e., 110 000). 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2 :3 4 5 6 7 • 1415 2021 6263 

I : SSt f-ITE'T STET+2,¢ ,gJ, 

2. Move the numeric portion of the character at location 256 to location 656. 
A variant of octal 17 provides the required variant bit configuration 
(Le., 001111). 

EASYCODER 
CODING FORM 

PAGE OF 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2 :3 4 5 6 7 • 1415 2021 6263 

I i ~<;T 25, '5'=0, 17 

C COMPARE 

FORMAT 
OP CODE A ADDRESS B ADDRESS 

o. - -
b, -
c, - 8-38 

80 

80 



LOGIC 

FUNCTION 

Format a: The data in the B field is compared bit-by-bit to the data in the A field. The com­
parison turns on indicators that can be interrogated by sU9sequent Branch instruc­
tions. The indicators are reset by the next Compare instruction. 

Format b: The data specified by the contents of the B-address register (BAR) is compared 
bit-by-bit with the data in the A field. This operation turns on indicators which 
can be tested by subsequent Branch instructions. The indicators are reset by the 
next Compare instruction. 

Format c: The data specified by the contents of BAR is compared bit-by-bit to the data in 
the field specified by the contents of the A-address register (AAR). The com­
parison turns on indicators that can be interrogated by subsequent Branch instruc­
tions. The indicators are reset by the next Compare instruction. 

WORD MARKS 

Formats a, b, and c: 

TIMING 

The word mark associated with the B operand terminates the operation. The A 
operand must have a word mark only if it is shorter than the B operand. In this 
case, transmission of data from the A field stops after the A-operand word mark 
is sensed, and the remaining characters of the B operand are compared to zeros. 
If the A operand is longer than the B operand, the characters of the A operand that 
exceed the field length defined by the B-operand word mark are not processed. 

Formats a, b, and c: 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nb 

Format b: NXT A-N B p-Nb w 

Format c: NXT A -N P w Bp-Nb 

NOTES 

1. All characters that can appear in storage can be compared. The ascending 
order of characters is listed in Appendix B. 

2. Both fields must have exactly the same bit configurations to be equal. For 
example, plus zero is not equal to minus zero. 

3. Comparison results and associated branch conditions are listed on page 8-40. 

1 Add two memory cycles to this formula if the instruction is executed in a Type 2201 processor. 

8-39 



SECTION 8. INSTRUCTIONS 

COMPARISON RESULT . ~B.ANCFfOOND!TIOir ~; 

... :: .. ' .' ' 

B<A Low Com.pare 

B=A Equal Com.pare 

B~A Low or Equal Compare 

B>A High Com.pare 

Bf.A Unequal Com.pare 

B~A High or Equal Com.pare 

EXAMPLE 

Com.pare Item. Number to 4000. If Item. Num.ber equals 4000, continue the program. 
in sequence; otherwise, branch to location NITEM. 

Description 

Item. Number 

4000 

PR OB EM L 

Tag 

ITEM 

CON4 

EASYCODER 
CODING FORM 

PROGRAMMER DATE PAGE OF 

CARD ~I~ LOCATION I OPERATION OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 8 1415 2021 6263 

I : Ie co 1\\4 ITEM 
I 

I IBCT NlTEM" 45 

B BRANCH 

FORMAT 

FUNCTION 

OP CODE A ADDRESS B ADDRESS VARIANT - -
The Branch instruction causes the program to branch to the location specified 
by the A address and to store the contents of the sequence register (SR) in the B­
address register (BAR). It is used to interrupt norm.al program. sequence and 
to continue the program. at any desired point, without testing for specific con­
ditions. Thus, this instruction is frequently referred to as an "unconditional 
branch." 

WORD MARKS 

Word m.arks are not affected by this instruction. 

TIMING 

T = Ni +2 m.emory cycles. 1 

80 

1 Add one m.em.ory cycle to this form.ula if the Branch instruction is being executed in a Type 2201 
processor. 

8-40 



LOGIC 

ADDRESS REGISTERS AFTER OPERATION 

NOTE 

EXAMPLE 

PROBLEM 

SR AAR BAR 

JI (A) A NXT 

The address bits of the A address are placed in AAR during the extraction of this 
instruction. When the instruction is executed, thF! entire contents of AAR specify 
the address to which the program branches. Also, the entire contents of SR are 
stored in BAR during the execution phase. 

Select the next instruction from the location tagged S UB6. 

EASYCODER 
CODING FORM 

PROGRAMMER DATE PAGE OF 

CARD H LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2 3 4 5 6 7 8 1415 2021 6263 

I I B SUB6 I I I I I 

BeT I BRANCH ON CONDITION TEST 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

O. - - -
b. -

FUNCTION 

Format a: The variant character specifies a condition indicator or a SENSE switch to be 
tested. If the condition being tested is present, the program branches to the lo­
cation specified by the A address and the contents of the sequence register (SR) 
are stored in the B-address register (BAR). If the condition specified by the 
variant character is not present, the program continues in sequence. Tables 8-8 
and 8-9 list the valid variant characters and the conditions they test. 

Format b: If the condition specified by the previous variant character is present, the pro­
gram branches to the location specified by the contents of the A-address register 
(AAR) and the contents of SR are stored in BAR. If the condition being tested is 
not present, 'the program continues in sequence. Tables 8-8 and 8-9 list the valid 
variant characters and the conditions they test. 

8-41 

8O 



SECTION 8. INSTRUCTIONS 

Table 8-8. SENSE Switch Test Conditions for BCT Instruction 

, ' .. , 

,"~fti~! Variant Character ' ,'. S:tancb. On i' . ' 
~.' 

" (~ 

(Octal) .. .... 
00 Unconditional 

01 SENSE Switch 1 On 

02 SENSE Switch 2 On 

03 SENSE Switches 1 and 2 On --
04 SENSE Switch 3 On 

05 SENSE Switche s 1 and 3 On --
06 SENSE Switches 2 and 3 On --
07 SENSE Switches 1, 2, and 3 On --
10 SENSE Switch 4 On 

11 SENSE Switches 1 and 4 On --
12 SENSE Switches 2 and 4 On --
13 SENSE Switches 1, 2, and 4 On --
14 SENSE Switche s 3 and 4 On --
15 SENSE Switches 1, 3, and 4 On --
16 SENSE Switches 2, 3, and 4 On --
17 SENSE Switches 1, 2, 3, and 4 On --
20 U nc ondi ti onal 

21 SENSE Switch 5 On 

22 SENSE Switch 6 On 

23 SENSE Switches 5 and 6 On --
24 SENSE Switch 7 On 

25 SENSE Switche s 5 and 7 On --
26 SENSE Switche s 6 and 7 On --
27 SENSE Switches 5, 6, and 7 On --
30 SENSE Switch 8 On 

31 SENSE Switche s 5 and 8 On --
32 SENSE Switche s 6 and 8 On --
33 SENSE Switche s 5, 6, and 8 On --
34 SENSE Switche s 7 and 8 On --
35 SENSE Switche s 5, 7, and 8 On --, 
36 SENSE Switche s 6, 7, and 8 On --
137 SENSE Switches 5, 6, 7, and 8 On --

NOTE: When testing for a multiple SENSE switch condition, a branch occurs only 
if all of the specified conditions are met. -

8-42 



Table 8-9. Indicator Test Conditions for BCT Instruction 

41 B<A (Low Compare) 

42 B=A (Equal Compare) 

43 B~ A (Low or Equal Compare) 

44 B >A (High Compare) 

45 B:/:A (Unequal Compare) 

46 B~A (High or Equal Compare) 

47 Unconditional 

50 Overflow 

51 Overflow or B< A 

52 Overflow or B=A 

53 Overflow or B~ A 

54 Overflow or B>A 

55 Overflow or B:/:A 

56 Overflow or B~ A 

57 Unconditional 

60 Zero Balance 

61 Zero Balance or B<A 

62 Zero Balance or B=A 

63 Zero Balance or B~A 

64 Zero Balance or B>A 

65 Zero Balance or B:/:A 

66 Zero Balance or B~A 

67 Unconditional 

70 Overflow or Zero Balance 

71 Overflow or Zero Balance or B< A 

72 Overflow or Zero Balance or B=A 

73 Overflow or Zero Balance or B~A 

74 Overflow or Zero Balance or B >A 

75 Overflow or Zero Balance or B:/:A 

76 Overflow or Zero Balance or B~A 

77 Unconditional 

NOTE: When testing for a multiple indicator condition, a branch occurs if any ~ 
of the specified conditions is met. 

8-43 

LOGIC 



SECTION 8. INSTRUCTIONS 

WORD MARKS 

Formats a and b: 

Word marks are not affected by this instruction. 

TIMING 

Formats a and b: 

T = Ni +2 memory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: JI (A) A NXT BRANCH 
NXT A Bp NO BRANCH 

Format b: JI (Ap) A NXT BRANCH 
NXT A P 

P Bp NO BRANCH 

NOTES 

1 

1. If the overflow indicator is tested and an overflow condition exists, the 
indicator is automatically reset as a result of being tested. In all other 
cases, the indicator tested is not reset as a result of the test. 

2. The comparison indicators are: 

a. set by the Compare instruction; 

b. stored (and cleared) by the Store Variant and Indicators 
instruction; 

c. restored by the Restore Variant and Indicators instruction; 

d. restored by the Resume Normal Mode instruction; and 

e. stored when an external interrupt occurs. 

3. The address bits of the A address (if any) are placed in AAR during the ex­
traction of this instruction. If the instruction causes a branch (i. e., if the 
condition being tested is present), the entire contents of AAR specify the 
address to which the program branches when the instruction is executed. 
Also, the entire contents of SR are stored in BAR during the execution 
phase of the instruction. 

4. Consider the variant character in its six-bit form V6V5V4V3V2V1' The 
following chart may be used to determine the variant character to be used 
in a BCT instruction. 

Add two memory cycles to this formula if the instruction is executed in a Type 2201 processor. 

8-44 



LOGIC 

~ .. 'Y6· V5 V4 V3 Vz ~I· •... ; i ~ 

00 = Test SENSE SENSE SENSE SENSE SENSE 
Switches 1 Switch 4 Switch 3 Switch 2 Switch 1 
through 4 

01 = Test SENSE SENSE SENSE SENSE SENSE 
Switches 5 Switch 8 Switch 7 Switch 6 Switch 5 
through 8 

1 = Test 
Zero Zero Overflow High Equal Low 
Balance, Balance Compare Compare Compare 
Overflow, 
or Compare 

5. SENSE switches 5 through 8 are included as a standard feature with the Type 
2201 processor and are not available with the Model 200 or 1200 processors. 

6. This instruction can be coded only in format a. when programming for the 
Type 201 or 201-1 processor. 

EXAMPLE 

Subtract CREDIT from TOTAL and test for a zero balance. If this condition exists 
branch to BZRO; otherwise continue the program in sequence. 

EASYCODER 
COOING FORM 

PRO BLEM PROGR M A MER DATE PAGE OF 

CARD H LOCATION 
OPERATION 

OPERANDS NUMBER H CODE 

I 2 :3 4 5 6 7 8 1415 2021 6263 eo 
I S eRE Dl T TOTAL 

I Ian ~ZRO 60 

I Bee I BRANCH ON CHARACTER CONDITION I 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

Q. - - -
b. -
c. - -
d. -

FUNCTION 

Format a: The single character specified by the B address is examined for the condition 
specified by the variant character. If the condition is present, the program branches 

8-45 



SECTION 8. INSTRUCTIONS 

to the location specified by the A address, and the contents of the sequence reg­
ister (SR) are stored in the B-address register (BAR). If the condition is not 
present, the program continues in sequence. The valid variant characters and the 
condition each represents are listed in Tables 8-10 and 8-11. 

Format b: The single character specified by the B address is examined for the condition 
specified by the variant character of a previous instruction. If the condition is 
present, the program branches to the location specified by the A address, and the 
contents of SR are stored in BAR. If the condition is not present, the program 
continues in sequence. The valid variant characters and the condition each rep­

resents are listed in Tables 8-10 and 8-11. 

Format c: The single character specified by the contents of BAR is examined for a condition 
specified by the variant character of a previous instruction. If the condition is 
present, the program branches to the location specified by the A address, and the 
contents of SR are stored in BAR. If the condition is not present, the program 
continues in sequence. The valid variant character s and the condition each re­
presents are listed in Tables 8-10 and 8-11. 

Format d: The single character specified by the contents of BAR is examined for a condition 
specified by the variant character of a previous instruction. If the condition is 
present, the program branches to the location specified by the contents of the A­
address register (AAR), and the contents of SR are stored in BAR. If the condition 
is not present, the program continues in sequence. The valid variant characters 
and the condition each represents are listed in Tables 8-10 and 8-11. 

Table 8-10. Basic Test Conditions for BCC Instruction 

Variant Character 
(Octal) 

00 

02 

06 

10 

12 

16 

20 

22 

26 

30 

32 

36 

Unconditional 

The B bit of the character at B is 1. 

The character at B contains a negative sign (the 
B and A bits are 10). 

The character at B contains either a word mark 
or a record mark (the word-mark bit is 1). 

The B bit is 1 and the word-mark bit is 1. 

The character at B contains a negative sign and 
the word-mark bit is 1. 

The character at B contains either an item mark 
or a record mark (the item-mark bit is 1). 

The B bit is 1 and the item-mark bit is 1. 

The character at B contains a negative sign and 
the item-mark bit is 1. 

The character at B contains a record mark (the 
word-mark and item-mark bits are 11). 

The character at B contains a record mark and 
the B bit is 1. 

The character at B contains a record mark and a 
negative sign. 

8-46 



LOGIC 

Series 200 processors which are equipped with Feature 010 or all (see Figure 1-5) 
can interpret any bit configuration of the variant character, ranging from octal 00 
to octal 77. The valid variant characters which can be interpreted with this option 
are shown in Table 8 -11 and expanded in Appendix B. 

Table 8-11. BCC Test Conditions with Advanced Programming Feature 

XO No condition. 

Xl The A bit of the character at B is 1. 

X2 The B bit of the character at B is 1. 

X3 The B and A bits of the character at Bare 11. 

X4 The B and A bits of the character at Bare 00. 

X5 The character at B contains a positive sign (the 
B and A bits are 01). 

X6 The character at B contains a negative sign (the 
B and A bits are 10). 

X7 The B and A bits of the character at Bare 11 
(same as X3 above). 

OX 

IX 

2X 

3X 

4X 

5X 

6X 

7X 

No condition. 

The word-mark bit of the character at B is 1 
(either a word mark or a record mark is present). 

The item-mark bit of the character at B is 1 
(either an item mark or a record mark is present). 

The character at B contains a record mark. 

The character at B contains no punctuation mark. 

The character at B contains a word mark. 

The character at B contains an item mark. 

The character at B contains a word mark. (This 
is a special case; see note). 

NOTE: An X represents any octal digit. 

If both octal digits specify "no condition" (i. e., 00), the branch 
occurs unconditionally. 

If only one digit is 0, the branch occurs if the condition specified 
by the other digit is met. However, if the rightmost digit is 0 and 
and the leftmost digit is 7, the branch is an unconditional branch. 

If both octal digits specify ·conditions, the branch occurs if both 
conditions are met. However, if the leftmost digit is 7, the branch 
oCCfurs if either the condition specified by the rightmost digit is 
met or the character at B contains a word mark. 

8-47 



SECTION 8. INSTRUCTIONS 

WORD MARKS 

Formats a, b, c, and d: 

Word marks are not affected by this instruction. 

TIMING 

Formats a, b, c, and d: 

T = Ni+4 memory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format b: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format c: JI (A) A NXT BRANCH 
NXT A B -1 

P 
NO BRANCH 

Format d: JI (Ap) Ap NXT BRANCH 
NXT Ap B -1 NO BRANCH 

P 

NOTES 

1. If the octal configuration of the variant character is 00, or 70, the branch 
is unconditional. 

2. The address bits of the A address (if any) are placed in AAR during the 
extraction of the BCC instruction. If the instruction causes a branch (i. e., 
if the condition being tested is present), the entire contents of AAR specify 
the address to which the program branches when the instruction is executed. 
Also, the entire contents of SR are placed in BAR during the execution phase. 

3. This instruction can be coded only in formats a. and d. When program­
ming for the Types 201 or 201-1 processor. 

EXAMPLE 

1 

PROBLEM 

If the location tagged END contains a negative sign, branch to the location tagged 
NFIELD. Otherwise, continue the program in sequence. 

EASYCODER 
CODING FORM 

PROGRAMMER DATE PAGE OF 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 8 1415 2021 6263 

I Bee NFlELD END 06 

Add one memory cycle to this formula if the instruction is being executed in a Type 2201 
processor. 

8-48 

80 



LOGIC 

BeE I BRANCH IF CHARACTER EQUAL II FEATURES 010 & 011 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

a. - -
b. -
c. - -
d. -

FUNCTION 

Format a: The single character specified by the B address is compared to the variant charac­
ter. If the bit configurations of the two characters are equal, the program branches 
to the location specified by the A address, and the contents of the sequence register 
(SR) are stored in tbe B-address register (BAR). If the bit configurations are 
unequal, the program continues in sequence. 

Format b: The single character specified by the B address is compared to the variant charac­
ter specified in a previous instruction. If the bit configurations of the two charac­
ters are equal, the program branches to the location specified by the A address, 
and the contents of SR are stored in BAR. If the bit configurations are unequal, 
the program continues in sequence. 

Format c: The single character specified by the contents of BAR is compared to the variant 
character specified in a previous instruction. If the bit configurations of the two 
characters are equal, the program branches to the location specified by the A ad­
dress, and the contents of SR are stored in BAR. If the bit configurations are 
unequal, the program continues in sequence. 

Format d: The single character specified by the contents of BAR is compared to the variant 
character specified in a previous instruction. If the bit configurations of the two 
characters are equal, the program branches to the location specified by the con­
tents of the A-address register (AAR), and the contents of SR are stored in BAR. 
If the bit configurations are unequal, the program continue s in sequence. 

WORD MARKS 

Formats a, b, c, and d: 

A word mark in the location tested has no effect on the instruction. 

TIMING 

Formats a, b, c, and d: 

T = N i +4 meinory cycles. 1 

1 
Add one memory cycle to this formula if the instruction is being executed in a Type 2201 
processor. 

8-49 



SECTION 8. INSTRUCTIONS 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format b: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format c: JI (A) A NXT BRANCH 
NXT A B -1 

P 
NO BRANCH 

Format d: JI (Ap) Ap NXT BRANCH 
NXT Ap Bp-1 NO BRANCH 

NOTES 

1. This instruction can be coded only in formats a. and d. when programming 
for the Type 201 or 201-1 processor. 

2. The address bits of the A address (if any) are placed in AAR during the ex­
traction of the BCE instruction. If the instruction causes a branch (i. e. , 
if the condition being tested is present), the entire contents of AAR specify 
the addres s to which the program branches when the instruction is executed. 
Also, the entire contents of SR are placed in BAR during the execution phase. 

EXAMPLES 

1. Determine if the character stored in the location tagged LABEL+3 is equal 
to 6. If so, branch to the location tagged P6; otherwise continue the pro­
gram in sequence. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE 

CARD B LOCATION 
OPERATION OPERANDS NUMBER n CODE 

I 2 3 4 5 6 7 8 1415 2021 6263 

I I~CE P6 \.ASEL+3 6 

2. Determine if any character position in the seven-character field tagged 
PART contains the letter Q. If so, branch to the location tagged RETRO; 
otherwise continue the program in sequence. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE 

CARD m LOCATION 
OPERATION 

OPERANDS NUMBER t ~ CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 

I : BCE IRE1Ra PARTQ 
I I BC£ 
i 1 BeE , 
I I laCE 
i : laCE 
I I lacE 
I I Ie-CE 

8-50 

PAGE OF 

PAGE OF 

80 

80 



LOGIC 

BBE I BRANCH ON BIT EQUAL I FEATURE 010 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b. -
c. - -
d. -

FUNCTION 

Format a: The single character specified by the B address is combined bit-by-bit with the 
variant character, according to the rules shown below. If the result (the logical 
product) is not equal to zero, the program branches to the location specified by 
the A address, and the contents of the sequence register (SR) are stored in the B­
address register (BAR). If the result is equal to zero, the program continues in 
sequence. 

o 
o 
o o 

~.Bi*:it£' ;::};:!itlflfjij 
JteflfU:1t ,. Fle.ld. :; (Ii; F 

o 
o 
o 

Format b: The single character specified by the B address is combined bit-by-bit with the 
variant character specified in a previous instruction, according to the rules shown 
above. If the result is not equal to zero, the program branches to the location 
specified by the A address, and the contents of SR are stored in BAR. If the result 
is equal to zero, the program continues in sequence. 

Format c: The single character specified by the contents of BAR is combined bit-by-bit with 
the variant character specified in a previous instruction, according to the rule s 
shown above. If the result is not equal to zero, the program branches to the lo­
cation specified by the A address, and the contents of SR are stored in BAR. If 
the result is equal to zero, the program continues in sequence. 

Format d: The single character specified by the contents of BAR is combined bit-by-bit with 
the variant character specified in a previous instruction, according to the rules 
shown above. If the result is not equal to zero, the program branches to the lo­
cation specified by the contents of the A-address register (AAR), and the contents 
of SRI are stored in BAR. If the result is equal to zero, the program continues in 
sequence. 

8-51 



SECTION 8. INSTRUCTIONS 

WORD MARKS 

Formats a, b, c, and d: 

Word marks are not tested by this instruction and have no effect on the operation. 

TIMING 

Formats a, b, c, and d: 

T = Ni +4 memory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format b: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format c: JI (A) A NXT BRANCH 
NXT A Bp-I NO BRANCH 

Format d: JI (Ap) Ap NXT BRANCH 
NXT Ap Bp-I NO BRANCH 

NOTES 

1. The logical product formed by this instruction is tested but is not stored. 
Main memory locations are not disturbed by this operation. 

2. The address bits of the A address (if present) are placed in AAR during 
the extraction of the instruction. If the instruction causes a branch (i. e. , 
if the logical product does not equal zero), the entire contents of AAR 
specify the address to which the program branches when the instruction is 
executed. Also, the entire contents of SR are placed in BAR during the 
execution phase. 

EXAMPLE 

Branch to the location tagged BBIT if the character at the location tagged MAR 
contains a "I" in the B-bit position. Otherwise, continue the program in sequence. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD tl~ LOCATION 
OPERATION OPERANDS NUMBER f ~ CODE 

I 2 3 4 5 6 7 8 1415 2021 6263 

I I~BE 1)\1; IT .tI\AR 4//J 

1 Add one memory cycle to this formula if the instruction is being executed in a Type 2201 
processor. 

8-52 

80 



CONTROL 

-SET WORD MARK 

- SET ITEM MARK 

-CLEAR WORD MARK 

-CLEAR ITEM MARK 

-HALT 

- NO OPERA TION 

- MOVE CHARACTERS TO WORD MARK 

- LOAD CHARACTERS TO A- FIELD WORD MARK 

-STORE CONTROL REGISTERS 

- LOAD CONTROL REGISTERS 

- CHANGE ADDRESSING MODE 

- CHANGE SEQUENCING MODE 

- EXTENDED MOVE 

-MOVE AND TRANSLATE 

_MOVE ITEM AND TRANSLATE 

- LOAD INDEX/BARRICADE INDICATOR 

-STORE INDEX/BARRICADE INDICATOR 

8-53 



SECTION 8. INSTRUCTIONS 

SW SET WORD MARK 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

Format a: A word mark is set at the location specified by each address. The data and item­
mark bits at each location are undisturbed. 

Format b: A word mark is set at the location specified by the A address. The data and item­
mark bits at this location are undisturbed. 

Format c: Word marks are set at the locations specified by the contents of the A- and B-ad­
dress registers (AAR and BAR). The data and item-mark bits at each location 
are undisturbed. 

WORD MARKS 

Formats a, b, and c: 

Word marks are set as described above. 

TIMING 

Formats a, b, and c: 

T = Nit3 memory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-I B-1 ------------------------------
Format b: NXT A-I A-I ------------------------------
Format c: NXT A -1 

P 
B -1 

P 

1Add one memory cycle to this formula if the instruction is being executed in a Type 2201 proc­
essor. Subtract one memory cycle from this formula if the instruction is being executed in a 
Type 1201 processor in format a. 

8-54 



CONTROL 

NOTE 

EXAMPLE 

PROBLEM 

CARD 1~li NUMBER 
I z 3 4 5 6 7 8 

I 

The extraction of this instruction when coded in format a. automatically terminates 
when the last character of the B address is loaded into BAR. Therefore, a word 
mark is not required in the location following the B address. 

Set a word mark in location 435. 

EASYCODER 
CODING FORM 

PROG RAMMER OAT E PAGE OF 

LOCATION 
OPERATION OPERANDS CODE 

1415 zo 21 62 63 

SW 435. 

51 SET ITEM MARK 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

Format a: An item mark is set at the location specified by each address. The data and 
word-mark bits at each location are undisturbed. 

BO 

Format b: An item mark is set at the location specified by the A address. The data and word­
mark bits at this location are undisturbed. 

Format c: Item marks are set at the locations specified by the contents of the A- and B-ad­
dress registers (AAR and BAR). The data and word-mark bits at each location 
are undisturbed. 

WORD MARKS 

Formats a, b, and c: 

Word marks are not affected by this instruction. 

8-55 



SECTION 8. INSTRUCTIONS 

TIMING 

Formats a, b, and c: 

T = Ni+3 memory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-I B-1 

Format b: NXT A-I A-I 

Format c: NXT Ap-l B -1 
P 

NOTE 

The extraction of this instruction when coded in format a. automatically terminates 
when the last character of the B address is loaded into BAR. Therefore, a word 
mark is not required in the location following the B address. 

EXAMPLE 

Set item marks in the locations tagged ENT and ENT+80 

EASYCODER 
CODING FORM 

PROBLEM PROG RAMMER TE OA PAGE OF 

CARD ~I~ LOCATION 1 OPERATION OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 eo 

I : [s,T ENT EtJT+a~ 
I 

CW CLEAR WORD MARK 

FORMAT 

1 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

Add one memory cycle to this formula if the instruction is being executed in a Type 2201 proc-
essor. Subtract one memory cycle from this formula if the instruction is being executed in a 
Type 1201 processor in format a. 

8-56 



CONTROL 

FUNCTION 

Format a: The locations specified by the A and B addresses are cleared of word marks. The 
data and item-mark bits at these locations are undisturbed. 

Format b: The word mark at the location specified by the A address is cleared. The data and 
item-mark bits at this location are undisturbed. 

Format c: Word marks are cleared at the locations specified by the contents of the A- and 
B-address registers (AAR and BAR). The data and item-mark bits at these lo­
cations are undisturbed. 

WORD MARKS 

Formats a, b, and c: 

Word marks are cleared as defined above. 

TIMING 

Formats a, b, and c: 

T = Ni+3 memory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-I B-1 

Format b: NXT A-I A-I 
------------------------------

Format c: NXT 

EXAMPLE 

A -1 
P 

B -1 
P 

Clear the word marks at locations 400 and 435. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER 

CARD H LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 • 1415 2021 

I lew ,,"~iS .4.35 

DATE PAGE OF 

6263 

1 Add one memory cycle to this formula if the instruction is being executed in a Type 2201 
processor. 

8-57 

80 



SECTION 8. INSTRUCTIONS 

CI CLEAR ITEM MARK 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

For:mat a: Ite:m :marks are cleared fro:m the locations specified in the A and B addresses. 
The data and word-:mark bits at these locations are undisturbed. 

For:mat b: The ite:m :mark at the location specified by the A address is cleared. The data 
and word-:mark bits at this location are undisturbed. 

For:mat c: Ite:m :marks are cleared at the locations specified by the contents of the A- and 
B -address registers (AAR and BAR). The data and word-:mark bits at these lo­
cations are undisturbed. 

WORD MARKS 

For:mats a, b, and c: 

Word :marks are not affected by this instruction. 

TIMING 

For:mats a, b, and c: 

T = Ni+3 :me:mory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

For:mat a: NXT A-I B-1 
------------------------~----

For:mat b: NXT A-I A-I ------------------------------
For:mat c: NXT 

EXAMPLE 

A -1 
P 

B -1 
P 

Clear the itep :mark in location REC. 

1 Add one :me:mory cycle to this for:mula if the instruction is being executed in a Type 2201 
processor. 

8-58 



EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD B LOCATION 
OPERATION 

OPERANDS NUMBER COOE 

I 2 3 4 5 6 7 • 1415 2021 6263 

I I :r REC 
I 

H HALT 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. -
b. -
c. - • -
d. - - -

FUNCTION 

Form.at a: This instruction causes the m.achine to stop. Pressing the RUN button causes the 
program. to resum.e with the next instruction in sequence. 

Form.at b: The contents of the sequence register (SR) are stored in the B-address register 
(BAR); the A address of the instruction is transferred to SR; then the m.achine 
stops. Pressing the RUN button causes the program. to resum.e with the instruc­
tion specified in the A address. This form.at is usually referred to as a "halt 
and branch" instruction. 

Form.at c: This instruction causes the m.achine to stop. Pressing the RUN button causes the 
program. to resum.e with the next instruction in sequence. The address portions 
can be used to indicate control inform.ation such as a halt identification num.ber 
(see note 2). 

Form.at d: This instruction causes the m.achine to stop. Pressing the RUN button causes the 
program. to resum.e with the next instruction in sequence. The address portions 
and the variant character can be used to indicate control inform.ation such as halt 
identification num.ber (see note 2). 

WORD MARKS 

Form.ats a, b, c, and d: 

Word m.arks are not affected by this instruction. 

TIMING 

Form.ats a, b, c, and d: 

8-59 

SO 



SECTION 8. INSTRUCTIONS 

T = Ni+2 memory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT Ap B 
P 

Format b: JI (A) A NXT 

Format c: NXT A B 

Format d: NXT A B 

NOTES 

1. If a Halt instruction (in any format) is executed during a peripheral 
transfer, the transfer continues until it is completed. 

2. Formats c. and d. are useful when a program contains a number of 
halts. By assigning a number or symbol in the A and B addresses to 
each halt, the programmer can later identify a particular halt by dis­
playing the contents of AAR and/or BAR. Although the contents of the 
variant register cannot be displayed through the console or control 
panel, format d. can be used to store a variant character which can sub­
sequently be used by the program. 

3. The Halt op code is a "privileged" op code that has special significance 
when the Type 1201 or 2201 central processor is equipped with the Storage 
Feature (see Appendix E). 

4. This instruction can be coded only in formats a., b., and c. when pro­
gramming for the Type 201 or 201-1 processor. 

EXAMPLES 

1. Stop the machine and specify that when the RUN button is pressed, the 
next instruction will be selected from the location tagged RES. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER 

CARD U LOCATION 
OPERATION OPERANDS NUMBER n CODE 

I 2. ~ 4 5 • 1 8 1415 2021 

I : IH IRE.S 

2. Identify the halt at the end of a job as follows: 

PROB LEM 

CARD ~I~ LOCATION NUMBER 

I 2. '3 4 5 • 1 8 

I 

A address =9 
B address =9 

OP~~A~ON , 

1415 2021 

IH 19.() 

EASYCODER 
CODING FORM 

PROGRAMMER 

OPERANDS 

TE DA 

6263 

DATE 

6263 

PAGE 

PAGE 

1 
Add two memory cycles to this formula if the instruction is being executed in a Type 2201 
processor. 

8-60 

OF 

80 

OF 

80 



CONTROL 

NOP NO OPERATION 

FORMAT 

FUNCTION 

OP CODE A ADDRESS 8 ADDRESS -
This instruction performs no operation. This op code can be substituted for the 
op code of any instruction to make that instruction ineffective. 

WORD MARKS 

TIMING 

Program operation resumes at the next op code identified by a word mark. 

T 1 3 memory cycles. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

NXT 

NOTES 

1. This instruction is commonly used in program modification to cause the 
machine to skip over specific instructions. 

2. Information appearing in an address portion of an instruction for which 

EXAMPLE 

the NOP instruction is substituted is not loaded into the associated operand 
address register. 

Reserve one storage location for an operation code such as Branch (B). When the 
op code B is inserted, the NOP instruction will be modified to branch to location 
SWX. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ~ LOCATION I OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2: 3 4 5 6 7 • 1415 2021 6263 

I : INOP. swx 
eo 

1 
Add one memory cycle to this formula if the instruction is being executed in a Type 2201 proc-
essor. Subtract one cycle from the formula if the instruction is executed in a Type 1201 
processor. 

8-61 



SECTION 8. INSTRUCTIONS 

MOVE CHARACTERS TO 
WORD MARK 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - • 
b. -
c. -

FUNCTION 

ForITlat a: The data and iteITl-ITlark bits in the A field are ITloved to the B field. 

ForITlat b: The data and iteITl-ITlark bits in the A field are ITloved to the field specified by the 
contents of the B-address register (BAR). 

ForITlat c: The data and iteITl-ITlark bits in the field specified by the contents of the A-address 
register (AAR) are ITloved to the field specified by the contents of BAR. 

WORD MARKS 

ForITlats a, b, and c: 

TIMING 

A word ITlark is required in the shorter of the two fields. The operation terITlinates 
when this word ITlark is sensed. 

ForITlats a, b, and c: 

T = Ni +1+2Nw ITleITlory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

ForITlat a: 

ForITlat b: 

ForITlat c: 

NOTE 

SR AAR BAR 

NXT A-Nw B-Nw 

NXT A-Nw Bp-Nw 

NXT Ap-Nw Bp-Nw 

HeITl ITlarks initially stored in B-field locations will be cleared if the corresponding 
A-field char~cters do not include iteITl ITlarks. 

1 Add one ITleITlory cycle to this forITlula if the instruction is being executed in a Type 2201 
processor. 

8-62 



CONTROL 

EXAMPLE 

Move the following A fields and store theITI i.n sequential B fields as shown. 

Description 

Unit NUITIber 

Rack NUITIber 

Part NUITIber 

Pin NUITIber 

PROB LEM 

CARD +I~ LOCATION 
OPERATION 

NUMBER Ie ~ CODE 

I 2 3 4 5 6 7 • 1415 2021 

I Mew 118.7 . B.2.S. 
I I New IIBfA 
i i IMC.W 11.6.B 
I I IMew 1155 
i [ 

LOAD CHARACTERS TO 
A-FIELD WORD MARK 

FORMAT 

OP CODE A ADDRESS 

o. - -
b. -
c. -

FUNCTION 

A field 

150-155 

160-168 

173-180 

185-187 

EASYCODER 
CODING FORM 

PROGRAMMER 

OPERANDS 

B ADDRESS 

B field 

800-805 

806-814 

815-822 

823-825 

DATE 

62 63 

ForITIat a: The data and punctuation bits in the A field are transferred to the B field. 

PAGE OF 

ForITIat b: The data and punctuation bits in the A field are transferred to the field specified by 
the contents of the B-address register (BAR). 

ForITIat c: The data and punctuation bits in the field specified by the contents of the A-address 
register (AAR) are transferred to the field specified by the contents of BAR. 

WORD MARKS 

ForITIats a, b, and c: 

The A operand ITIust have a defining word ITIark. The operation terITIinates when 
this word ITIark is transferred to the B field. 

8-63 

80 



SECTION 8. INSTRUCTIONS 

TIMING 

ForITlats a, b, and c: 

T = Ni+l+2Na ITleITlory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

ForITlat a: NXT A-Na B-Na 

ForITlat b: NXT A-Na Bp-Na 

ForITlat c: NXT Ap-Na Bp-Na 

NOTES 

1. This instruction (in any forITlat) is the only instruction that always ITloves 
both a field and its defining punctuation ITlark. 

2. A record ITlark appearing in the A field terITlinates the operation. 

3. All punctuation (word ITlarks, iteITl ITlarks, and record ITlarks) initially 
stored in B-field locations will be cleared if the corresponding A-field 
characters do not include identical punctuation. 

4. The B address ITlust never fall within the A field. The A address ITlay fall 
within the B field, however, if desired. 

EXAMPLE 

Move both the data bits and the defining word ITlark of the field tagged TWX to the 
field tagged RATE. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ~Ii LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 

I CA TWX .I2AT!= 
I 

I 

1 
Add one ITleITlory cycle to this forITlula if the instruction is executed in a Type 2201 processor. 

8-64 

eo 



CONTROL 

I SCR I STORE CONTROL REGISTERS I 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

a. - - -
b. -
c. -

FUNCTION 

Format a: The contents of the control memory register specified by the variant character 

" 
,,,.~,,:,, 

i, ,~ 

".," 

are stored in the field whose units position is defined by the A address of this 
instruction. The method of storing these contents depends on the addressing mode 
being used, as shown in Table 8-12. 

Table 8-12. Control Register Contents Stored by SCR Instruction 

. ' . .. 
':::A;mount o£Oontt't.>'lRe.gi ste1'Stol'ed :};A.ddl'Elssing Mode .C • .... . ..... 

Two-Character Low-order two characters (12 bits). 

Three-Character Low-ord.er 15 bits; the high-order three 
bits of the field specified by the A address 
are cleared to zeros. 

Four-Character The entire 18 bits (three characters) of 
the control register. 

NOTE: All bit positions not required to address the largest memory 
address in a user's system are set to zeros in the A field. 

The valid variant characters and the control register each character represents 
are li sted in Table 8 -13. 

Format b: The contents of the control memory register specified by the variant character in 
a previous instruction are stored in the field whose units position is defined by 
the A address of this instruction. The number of bits stored depends on the ad­
dressing mode being used, as shown in Table 8-12. The valid variant characters 
and the control register each character represents are listed in Table 8-13. 

Format c: The contents of the control memory register specified by the variant character in 
a previous instruction are stored in the field whose units position is defined by 
the contents of the A-address register (AAR). The number of bits stored depends 
on the addressing mode being used, as shown in Table 8-12. The valid variant 
characters and the control register each character represents are listed in 
Table 8 -13. f 

8-65 



SECTION 8. INSTRUCTIONS 

Table 8-13. Control Registers Stored by SCR Instruction 

Variant Character Control Register Variant Character Control Register 
(Octal) (Octal) 

01 CLC1 21 CLC4 
02 CLC2 22 CLC5 
03 CLC3 23 CLC6 
05 CLC1' 25 CLC4' 

11 SLC1 31 SLC4 
12 SLC2 32 SLC5 
13 SLC3 33 SLC6 
15 SLC1' 35 SLC4' 

64 CSR 70 BAR 
66 EIR 76 IIR 
67 (see note 2) AAR 77 SR 

WORD MARKS 

Formats a, b, and c: 

A-operand punctuation neither affects nor is affected by this instruction. 

TIMING 

Formats a, b, and c: 

1 T = Nit5 memory cycles. 

ADDRESS REGISTERS AFTER OPERATION 

Formats a, b, and c: 

SR AAR BAR 

NXT 

NOTES 

1. If AAR is specified by the variant character (octal 67), the previous address 
in AAR (not the A address retrieved from this instruction) is stored in the 
location specified by the A address. 

2. The control memory register actually designated by the variant character 
678 is a work register (not AAR), During the extraction of an SCR or LCR 
instruction (see below), AAR is used to reference the main memory. 
Prior to this, the previous contents of AAR are stored in the work reg­
ister; at the end of the instruction, the contents of the work register are 
restored in AAR. 

3, This instruction can be coded only in format a. when programming for the 
f 

Type 201 or 201-1 processor. 

1 Add two memory cycles to this formula if the instruction is executed in a Type 2201 processor. 

8-66 



CONTROL 

EXAMPLE 

Store the contents of BAR in the A address of the Branch instruction tagged EXIT. 
(The processor is assumed to be in the three-character addressing mode. ) 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ CODE 

123456 7 • 1415 2021 6263 

I j 
I I SUB 5C~ E~\T4-,:;1¢ 
i I 1 
I I ) 

i ! 
I I I 
I I EX!:T !B (11 

I LCR I LOAD CONTROL REGISTERS I IFEATURE 0111 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

c. - - -
b. -
C. -

FUNCTION 

80 

Format a: The contents of the field specified by the A address are loaded into the control 
register specified by the variant character. The contents of the A field is another 
main memory address. The method of loading this address into the specified 
control register depends on the addressing mode being used, as shown in Table 8-14. 

Table 8-14. Control Register Contents Loaded by LCR Instruction 

Two-Character 

Thre e - Characte r 

Four-Character 

Two-character (l2-bit) address is loaded 
into the low-order two character locations 
of the register. All other bits in the reg­
ister (if any) are not disturbed (i. e., the 
bank bits are protected). 

IS-bit address is loaded into the low-order 
IS-bit locations of the register. All other 
bits in the register (if any) are not dis­
turbed (i. e., the sector bits are protected). 

IS-bit address is loaded into the register. 

8-67 



SECTION 8. INSTRUCTIONS 

Variant characters and their associated control registers are the saITle as those 
specified for the Store Control Registers instruction (see Table 8-13). 

ForITlat b: The contents of the field specified by the A address are loaded into the control 
register specified by the variant character in a previous instruction. The ITlethod 
of loading the contents of this field (another ITlain ITleITlory address) depends on the 
addressing ITlode being used, as shown in Table 8-14. Variant characters and 
their associated control registers are the saITle as those specified for the Store 
Control Registers instruction. 

ForITlat c: The ITlain ITleITlory address specified by the contents of the A-address register 
(AAR) is loaded into the control register specified in a previous instruction. The 
ITlethod of loading this address into the specified register depends on the addressing 
ITlode being used, as shown in Table 8-14. Variant characters and their associated 
control registers are the saITle as those specified for the Store Control Registers 
instruction. 

WORD MARKS 

ForITlats a, b, and c: 

A-operand punctuation neither affects or is affected by this instruction. 

TIMING 

ForITlats a, b, and c: 

T = Ni+5 ITleITlory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

ForITlats a, b, and c: 

SR AAR BAR 

NXT A Bp VARIANT = 678 

NXT Ap A VARIANT = 708 

A Ap Bp VARIANT = 778 

NXT Ap Bp ALL OTHERS 

NOTES 

1 

1. If SR is specified by the variant character (778)' the next instruction is 
selected froITl the location specified by the A address of the Load Control 
Registers instruction. In all other cases, the prograITl continues in sequence. 

2. This instruction can be coded only in forITlat a. when prograITlITling for 
the Type 201 or 201-1 processor. 

Add two ITleITlory cycles to this forITlula if the instruction is being executed in a Type 2201 
processor. 

8-68 



CONTROL 

3. The LCR op code is a "privileged" op code which has special significance 
when used with a Type 1201 or 2201 processor equipped with the Storage 
Protect Feature (see Appendix 2. ) 

EXAMPLE 

Load the address stored in the location tagged SUB1 into the change sequence 
register (CSR). 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE 
CARD fl~ LOCATION 

OPERATION 
NUMBER ~ ~ CODE OPERANDS 

I 2 3 4 :5 6 1 8 14 IS 2021 6263 

I LCR. ISUBl.64. 

I CAM I CHANGE ADDRESSING MODEl IFEATURE 0111 

FORMAT 
OP CODE A ADDRESS B ADDRESS VARIANT 

a. - -
b. -

FUNCTION 

OF 

80 

Format a: The Change Addressing Mode instruction is used to specify the following conditions, 
as designated by the variant character: 

1. The addressing mode (two-, three-, or four-character) in which the 
processor is to interpret the address portions of all subsequent 
instructions (see note 1). 

2. The processing mode (standard mode or "trap" mode) in which all 
subsequent instructions are to be processed. (See note 3 for a 
description of the trap mode. ) 

The variant characters and the mode(s) each character represents are listed in 
Table 8-15. 

Format b: The variant character in a previous instruction specifies the addressing mode and 
processing mode in which all subsequent instructions are to be processed. The 
variant characters and the mode(s) each character represents are listed in Table 8-15. 

Table 8-15. Modes Specified by Variant Character in CAM Instruction 

20 
O~ or 40 
60 
24 
04 or 44 
64 

Two-character, standard mode 
Three-character, standard mode 
Four-character, standard mode 
Two-character, trap mode 
Three-character, trap mode 
Four-character, trap mode 

8-69 



SECTION 8. INSTRUCTIONS 

WORD MARKS 

Formats a and b: 

Word marks are not affected by this instruction. 

TIMING 

Formats a and b: 

T = Ni +2 memory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

Formats a and b: 

SR AAR BAR 

NXT 

NOTES 

1. The CAM instruction is used in conjunction with the ADMODE assembly 
control statement to specify addressing mode. (See page 7- 9 for a 
description of the ADMODE statement.) The ADMODE statement directs 
the Assembly Program to assemble the address portions of all subsequent 
source program instructions as two-, three-, or four-character addresses. 
The CAM instruction directs the processor to interpret the address portions 
of all subsequent object program instructions as two -, three -, or four­
character addresses. Thus, an address assembled in the three-character 
addressing mode (via an ADMODE statement) must be processed during 
a program run as a three-character address for proper execution; the 
processor is placed in the three-character addressing mode during object 
program execution by the CAM instruction. 

2. The ability to change addressing modes within a program makes it possible 
to save both time and memory space and provides greater programming 
flexibility. Extraction and execution time is saved when a smaller ad­
dressing mode is used, due to the elimination of the extra memory cycles 
necessary for a larger address (in characters). Memory space may be 
conserved by storing frequently used subroutines in the two -character ad­
dressing mode (see example 1). 

The larger addresses are necessary to address larger continuous portions 
of memory. For instance, a two-character address can address only 
memory locations within a 4,096 character bank of main memory. A 
three-character address can refer to any location in a 32, 768-character 
sector. A four-character address can directly address any location in the 
entire memory (from location 010 to location 262,14410 ), 

3. When the processor is in the "trap" mode of instruction execution, any in­
struction whose op code contains an item mark (or record mark) is both 
extracted and executed as if it were a Change Sequencing Mode instruction 

ISubtract one memory cycle if the instruction is being executed in a Type 1201 processor. Add 
one cycle if the instruction is executed in a Type 2201 processor. 

8-70 



(see page 8- 72), regardless of the op code that is actually present. 
The A address, B address, and variant character (if any) of the 
instruction are delivered to AAR, BAR, and the variant register, 
respectively. The "trapped" op code is not executed; a Change 
Sequencing Mode instruction (CSM) is executed in its place. The 
CSM instruction causes a branch to the location stored in the change 
sequence register (CSR); this location is the beginning of a routine to 
interpret and execute the instruction whose op code was trapped. 

The trap mode is used effectively by the Liberator conversion pro­
grams (Bridge and Easytran) to replace the seldom used instruc­
tions of competitive systems when converting the programs of these 
systems to Series 200 language. Such instructions are replaced by 
routines when the trapped op code is executed as a CSM op code. 

4. This instruction can be coded only in format a. when programming 
for the Type 201 or 201-1 processor. 

EXAMPLE 

CONTROL 

Figure 8-5 shows the coding which provides entry to and exit from a subroutine to 
be executed in the two-character addressing mode. Both an ADMODE statement 
and a CAM instruction must be coded (in either order) at the beginning and end of 
the subroutine. However, only the CAM instructions are stored in the main 
memory. (Since CAM instructions have no address portions, the manner in which 
they are stored is not affected by an ADMODE statement. ) 

MAIN PROGRAM LOCATION 
OPERATION 

CODE 
( 4-CHARACTER • 1415 2021 
ADDRESSING MODE) r-I; " ", !~ SUB4 , ""'," 

r-f-, 
" ,'~"., ,', " IWIAI N )I, )\)(.XX XXXX 

,\ 

} 
\ 
) 

.I 
\ 
) 
l 

L.- Et ::i,;'j::: '.;; ; SUB4 CAM 2¢ 
IA.OMODE 2 

( 
SUBROUTINE ) 
( 2-CHARACTER 
ADDRESSING MODE) ~ 

IAONIODE 4 
}~ :;:;:w'?1 ':,':,:;,"", CA.t.'I 6.0. 

'--- "," """ "'" ~,:;y< :':" ; :< EXI;r 1& MAIN 

, 

Figure 8-5. Changing Addressing Modes via CAM Instruction 

8-71 



SECTION 8. INSTRUCTIONS 

NOTE: The branch from. the m.ain program. to SUB4 in Figure 8 -5 could have 
been caused by an item.-m.arked op code (if the processor were in the 
trap m.ode) instead of by the Branch instruction. In this case, the 
m.em.ory location tagged SUB4 would be stored in CSR, so that when 
the item.-m.arked op code was encountered, the contents of SR and CSR 
would be interchanged. The program. would autom.atically branch to 
SUB4 in this case. 

CSM I CHANGE SEQUENCING MODEl IFEATURES 010 & 0111 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. -
b. -
c. - - -
d. - - -

FUNCTION 

Form.at a: The contents of the sequence register (SR) and the change sequence register (CSR) 
are interchanged, and the program. branches to the address which was previously 
stored in CSR. 

Form.at b: The contents of SR and CSR are interchanged, and the program. branches to the ad­
dress which was previously stored in CSR. The A address is loaded into the A­
address register (AAR). 

Form.at c: The contents of SR and CSR are interchanged, and the program. branches to the ad­
dress which was previously stored in CSR. The A and B addresses are loaded into 
AAR and BAR, respectively. 

Form.at d: The contents of SR and CSR are interchanged, and the program. branches to the ad­
dress which was previously stored in CSR. The A and B addresses and the variant 
character are loaded into AAR, BAR, and the variant register, respectively. 

WORD MARKS 

Form.ats a, b, c, and d: 

Word m.arks are not affected by thi s instruction. 

TIMING 

Form.ats a, b, c, and dl 

T = Ni +3 m.em.ory cycles. 1 

1 
Subtract one m.em.ory cycle from. thi s form.ula if the instruction is being executed in a Type 120 1 
processor. Add one cycle if the instruction is executed in a Type 2201 processor. 

8-72 



ADDRESS REGISTERS AFTER OPERATION 

SR CSR AAR BAR 

ForITlat a: JI (contents NXT Ap Bp 
of CSR) 

ForITlat b: JI (contents NXT A Bp 
of CSR) 

ForITlat c: JI (contents NXT A B 
of CSR) 

ForITlat d: JI (contents NXT A B 
of CSR) 

NOTES 

1. The Load Control Registers instruction (see page 8-67) can be used to 
specify the contents of CSR. 

2. When the "trap" ITlode of instruction execution is specified by the Change 
Addressing Mode instruction (see page 8-69), any subsequent instruction 
whose op code contains an iteITl ITlark or a record ITlark is retrieved and 
executed as if it were a Change Sequencing Mode instruction. 

3. This instruction can be coded only in forITlats a., b., and c. when pro­
graITlITling for the Type 201 or 201-1 processor. 

EXAMPLE 

CONTROL 

Store the absolute address tagged CHANGE in CSR via a Load Control Registers in­
struction. Later, alter the prograITl sequence by branching to the instruction tagged 
CHANGE. Provide for the ultiITlate return to norITlal prograITlITling sequence by 
storing the contents of SR in CSR. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD H LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 • 1415 2021 62 63 so 

I lCR CHANGE 64 
I 

I ( 

i i \ 
I I ) 
r: 
I I ( 
: I \ 
I I 1 
I I CSM 

'0 I 
, i i 

12 I i 
3 I I ,. I I 
• I I 

8-73 



SECTION 8. INSTRUCTIONS 

EXM IEXTENDED MOVEI IFEATURES 010 & 011 I 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b, -
c, - -
d. -

FUNCTION 

Format a: The contents of the A field are moved to the B field in the manner specified by the 
variant character (see Table 8-16). The programmer specified how the move 
operation is to be performed by selecting the desired conditions from the table 
and encoding the resulting two octal digits as the variant character of the instruc­
tion. 

Format b: The contents of the A field are moved to the B field in the manner specified by the 
variant character of a previous instruction (see Table 8-16). 

Format c: The contents of the A field are moved to the field specified by the contents of the 
B-address register (BAR) in the manner specified by the variant character of a 
previous instruction (see Table 8-16). 

Format d: The contents of the field specified by the contents of the A-address .register (AAR) 
are moved to the field specified by the contents of BAR in the manner specified by 
the variant character of a previous instruction (see Table 8-16). 

Table 8-16. Extended Move Conditions 

c' 
V.,ria;nt Character 

, :,c, " Condition 
~ ") tOctal) 

',' 
" 

Xl Move A-field data bits to corresponding bit posi-
tion in B field. 

X2 Move A-field word-mark bits to corresponding bit 
positions in B field. 

X3 Move A-field data and word-mark bits to corre-
sponding bit positions in B field. 

X4 Move A-field item-mark bits to corresponding 
bit positions in B field. 

X5 , Move A-field data and item-mark bits to corre-
sponding bit positions in B field. 

X6 Move A-field word-mark and item-mark bits to 
corresponding bit positions in B field. 

8-74 



CONTROL 

Table 8-16 (cont). Extended Move Conditions 

, 

Variant Character 
(Octal) 

X7 

ox 

IX 

2X 

3X 

4X 

5X 

6X 

7X 

CO'ndition 

Move A-field data, word-ITlark and iteITl-ITlark 
bits to corresponding bit positions in B field. 

Move one character froITl A to B. The A- and B­
address registers are decreITlented by one. 

Move one character froITl A to B. The A- and B­
address registers are increITlented by one. 

Move characters froITl right to left (A and B ad­
dresses specify rightITlost characters in operand 
fields). TerITlinate the operation when the first 
A-field word ITlark is sensed. 

Move characters froITl left to right (A and B ad­
dresses specify leftITlost characters in operand 
fields). TerITlinate the operation when the first 
A-field word ITlark is sensed. 

Move characters frOITl right to left. TerITlinate 
the operation when the first A-field iteITl ITlark 
is sensed. 

Move characters froITl left to right. TerITlinate 
the operation when the first A-field iteITl ITlark 
is sensed. 

Move characters froITl right to left. TerITlinate 
the operation when the first A-field record ITlark 
is sensed. 

Move characters froITl left to right. TerITlinate 
the operation when the first A-field record ITlark 
is sensed. 

PUNCTUATION MARKS 

ForITlats a, b, c, and d: 

TIMING 

The A field ITlust have a defining punctuation ITlark, except when the variant char­
acter specifies a one-character transfer. 

ForITlats a, b, c, and d: 

T = Ni+l+2Na ITleITlory cycles. 1 

1 Add one ITleITlory cycle to this forITlula if the instruction is being executed in a Type 2201 
processor. 

8-75 



SECTION 8. INSTRUCTIONS 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Na B-Na VARIANT (0, 2, 4, or 6)X 
NXT A+Na B+Na VARIANT (1, 3, 5, or 7)X 

Format b: NXT A-Na B-Na VARIANT (0, 2, 4, or 6)X 
NXT A+Na B+Na VARIANT = (1, 3, 5, or 7)X 

Format c: NXT A-Na Bp-Na VARIANT = (0, 2, 4, or 6)X 
NXT A+Na Bp+Na VARIANT = (1 , 3, 5, or 7)X 

Format d: NXT Ap-Na Bp-Na VARIANT = (0, 2, 4, or 6)X 
NXT Ap+Na Bp+Na VARIANT (1, 3, 5, or 7)X 

NOTES 

1. This instruction can be coded only in formats a. and d. when program-
ming for the Type 201 or 201-1 processor. 

2. Here is an example of a typical variant bit configuration: V = 110011. 
This configuration, encoded in octal notation as 63, specifies that A-field 
data and word-mark bits are to be moved to the B field from right to left 
until the first record mark is sensed in the A field. 

3. Consider the variant character in its six-bit form, V 6 V 5 V 4 V 3 V 2 VI' If 
VI = 0, A-operand data bits are not transferred and data bits in the B 
field remain unchanged. 

4. If V2 = 0, A-operand word-mark bits are not transferred and B-operand 
word-mark bits remain unchanged. 

5. If V3 = 0, A-operand item-mark bits are not transferred and B-operand 
item-marks remain unchanged. 

6. The character containing the terminating punctuation is moved in the same 
manner as the rest of the field. 

EXAMPLES 

1. Move the data bits of the single character in the location 26 beyond that tagged 
TEMP to the location tagged WORK. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE 

CARD H LOCATION I OPERATION OPERANDS 
NUMBER f: ~ CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 

I IE)("M ItEMP+26 WORK "Gf 
T 

2. Move only the data bits in the field tagged RESV to the field tagged WORK. 
Move the data from right to left, and terminate the operation when the 
first item matrk in the A field is sensed. 

8-76 

PAGE OF 

80 



CONTROL 

EASYCODER 
CODING FORM 

PROBLEM PROGR AMMER DATE PAGE OF 

CARD H LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 8 1415 2021 6263 eo 
I 1 E,xM RESV . W.o'RX .• +\ 
I I 

I MAT I MOVE AND TRANSLATEI IFEATURES O~O & 0111 

FORMAT 

FUNCTION 

OP CODE A ADDRESS B ADDRESS VARIANT I VARIANT 2 - - - -
The MAT instruction translates characters froITl one six-bit configuration to another 
by ITleans of a stored "translation table." The instruction can be used to translate 
any nUITlber of consecutive characters in the ITleITlory. 

The A address specifies the location of the rightITlost character to be translated. 
The B address specifies the location into which the translated equivalent of the 
rightITlo st A-field character will be ITloved. 

The operation norITlally terITlinates when an A-field word ITlark is sensed. The 
operation is also terITlinated if a character is transferred froITl a word-ITlarked lo­
cation within the translation table. 

The address within the translation table which contains the translated equivalent of 
an A-field character is forITled by cOITlbining the A-field character with the two 
variant characters. The ITlethod of cOITlbining these three characters depends on 
the addressing ITlode being used, as described below. 

The leftITlost, or base, address of the translation table is forITled by cOITlbining 
variants 1, 2, and a zero character as shown below. If the processor is in the two­
or three-character addressing ITlode, the leftITlost three bits of variant 1 are 
ignored and the corresponding bit positions (i. e., the sector bits) in the base ad­
dress (bits 16, 17, and 18) are taken froITl the contents of the A-address register 
(AAR). If the processor is in the four-character addressing ITlode (see next page), 
the entire six-bit contents of variant 1 forITl the leftITlost 3ix bits of the base address. 

Two- or Three-Character Addressing Mode 

VARIANT 1 VARIANT 2 

= BASE ADDRESS OF TABLE 

8-77 



SECTION 8. INSTRUCTIONS 

Four-Character Addressing Mode 

VARIANT 1 VARIANT 2 

I X X X X X X I I X X X X xxi 

.... 1 X_X_-_X_X_._X_X_ ........... I_x_x_!_x_x_x-->-Io_o_o_o_o ---,0 I = BASE ADDRESS OF TABLE 

A character in the A field is translated when it is appended to the variant characters 
(in place of the zero character) to forrn a cOITlplete, 18-bit address. This COITl­
plete address contains the translated equivalent of the appended A-field character 
character (see below). 

A -FIELD CHAR. 

Ixxx xxxi 

3-CHAR. ADDRESS 

CONTENTS 

Note that because of the positions of variant I and variant 2 in the total three­
character address, the base address of the table will always be a ITlultiple of 64. 
This is cOITlpatible with translation requireITlents since each A-field character 
can have any of 64 bit configurations (see note 6). 

It is a siITlple task to store the desired equivalent values in a translation table. 
For instance, aSSUITle that a character set which is to be translated into Honeywell 
code represents the letter A by the bit configuration 110001. Since this bit con­
figuration represents a binary value of 49, the desired Honeywell equivalent (i. e. , 
010001) should be stored 49 locations beyond the base address of the translation 
table. 

WORD MARKS 

TIMING 

The A field ITlust have a defining word ITlark. It is this word ITlark that norITlally 
stops the operation. The operation will also be terITlinated if a character is trans­
ferred froITl a word-ITlarked location within the translation table. 

T = Ni+3Na ITleITlory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

NXT 

1 
Add four ITleITlory cycles to this forITlula if the instruction is being executed in a Type 2201 
processor. 

8-78 



CONTROL 

NOTES 

1. This instruction cannot be chained. 

2. The contents of the variant register following a move and translate oper­
ation are unspecified. Therefore, an instruction requiring a variant 
character must not be chained after an MAT instruction. 

3. Item-mark bits as well as data bits are transferred from the trans­
lation table to the B field. 

4. Word marks initially stored in the B field remain unchanged. They 
do not affect the execution of this instruction. 

5. The programmer can use a symbolic tag in place of the variant characters 
of this instruction by previously equating the variant characters to the 
tag via a CEQU assembly control statement (see page 7-11). 

6. The base address of the translation table must always be a multiple of 
64. The Easycoder Assembly Program automatically stores the table 
in this manner when directed by a MORG assembly control statement 
(see page 7 -7 ) containing an operand of 64. 

EXAMPLE 

PROBLEM 

CARD 
NUMBER 

I 2 3 4 5 

I I 

U 
• 7 8 

Figure 8-6 shows how A-field data is moved to the B field via a translation table. 

Translate the contents of the field tagged EXCODE using the stored translation table 
whose base address is 25610 (=400). Store the translated equivalent in the field 

tagged EQUIV. 

A Address: EXCODE (absolute value location 630) 

B Address: EQUIV 

Variant 1: 

Variant 2: 

LOCATION 
OPERATION 

COOE 

1415 

IMAT 

00 = 

04 = 

2021 

IEXCODE 

(absolute value location 900) 

base address of table (location 256 

EASYCODER 
CODING FORM 

PROGRAMMER 

OPERANDS 

EQUI V 0(2\, (214 

WORD MARK • ADDRESS 
STOPS OPERATION J..=,~+-==:...r-.::':':~=~"::'::~~=-4 

• A FIELD 

DATE PAGE OF 

6263 80 

BASE ADDRESS -,... ..... .,... ..... "T"" ...... .,.. ..... ""T" ...... ..,.. .... 
(0004008 ) '------, 

Figure 8-6. MAT Operation 

8-79 

l/ I VeT • TABLE ADDRESS 
t--':.....:::.-+-"--=-; 

B c .ENTRY 



SECTION 8. INSTRUCTIONS 

MIT I MOVE ITEM AND TRANSLATEI 

FORMAT 

FUNCTION 

OP CODE A ADDRESS B ADDRESS VARIANT I VARIANT 2 VARIANT 3 - - - - -
The Move Item and Translate instruction is used to translate any information unit 
(up to 12-bit code) to another information unit of up to 12 bits (e. g., to Series 200 
six-bit character code) by the use of a stored translation table. Any number of 
consecutive information units stored in the memory can be translated. 

The A address is the leftmost address of the item to be translated. The B address 
is the leftmost address of the item into which the translated equivalent of the A 
item will be moved. The MIT instruction translates the data contents in the A 
item and moves the translated results, left to right, to the B item. 

The operation normally terminates when an item mark is sensed in the A item. 
The operation will also be terminated if a word-marked character is encountered 
in the translated table. 

An information unit up to six bits in length is stored in one six-bit character lo­
cation in the memory. Any information unit greater than six bits (7 through 12 
bits) is stored in two successive six-bit character locations. _ Thus, an information 
unit consisting of up to six bits is considered as a six-bit character, and a unit of 
from 7 to 12 bits is considered as a "12-bit character." 

The sizes of the information units involved in the operation are specified by variant 
3, as shown in Table 8-17. 

Table 8-17. Size of Information Units in MIT Operation 

00 

01 

02 

03 

OPERATION 
"! 

Translate each six-bit character in the A 
item. Move the translated equivalent to a 
six-bit character location in the B item. 

Translate each 12-bit character in the A 
item. Move the translated equivalent to 
a six-bit character location in the B item. 

Translate each six-bit character in the A 
item. Move the translated equivalent to 
two character locations (12 bits) in the 
B item. 

Translate each 12-bit character in the A 
item. Move the translated equivalent to 
two character locations (12 bits) in the 
B item. 

8-80 



CONTROL 

The desired equivalent of an A-item information unit is taken from the stored 
translation table and moved to the B item. Thus, if the desired equivalent is a six­
bit character, each table entry occupies one six-bit character location in the table. 
If the desired equivalent is a 12-bit character, each table entry occupies two con­
secutive six-bit character locations in the table. Consequently, variant 3 implicitly 
specifies the size of each table entry when it explicitly specifies the size of the B­
item information unit. 

The leftmost, or base, address of the translation table is formed by combining 
variants 1, 2, and a zero character as shown below. If the processor is in the 
two- or three-character addressing mode, the leftmost three bits of variant 1 are 
ignored and the corresponding bit positions (i. e., the sector bits) in the base ad­
dress of the table are taken from the contents of the A-address register (AAR). If 
the processor is in the four-character addressing mode, the entire six-bit contents 
of variant 1 form the leftmost six bits of the base address. 

Two- or Three-Character Addressing Mode 

BITS 
16-18 
OF AAR 

V 

VARIANT 1 VARIANT 2 

Ixxxllxxxxxxi 

II 
Ix X xix X xix X X X X xlo 000 0 01= BASE (LEFTMOST) ADDRESS OF TABLE 

Four-Character Addressing Mode 

VARIANT 1 VARIANT 2 

Ix X X X X xt Ix X X X X X 1 

I I 
Ix X X X X xix X X X X xlo 0 0 0 0 01= BASE (LEFTMOST) ADDRESS OF TABLE 

The address within the translation table which contains the translated equivalent 
of an A-item character (6- or 12-bit) is formed by superimposing the A-item char­
acter over the base address of the table. The method of superposition depends on 
the size of each table entry (whether 6 or 12 bits), as described below. 1 

If each table entry is a six-bit character (variant 3 = 00 or 01), the 6- or 12-bit A­
item character is superimposed over the rightmost bit positions of the base address. 
The illustration below shows a 12-bit A-item character being superimposed over 
the base address, where A = an A-item bit and X = a base address bit. 

ISuperposition is performed by placing a 1 bit in every position of the table address in which a 1 
existed in either the A-item character or the base address or both. This is the "logical in­
clusive OR" function. 

8- 81 



SECTION 8. INSTRUCTIONS 

IAA A A A AlA A A A A AI = lZ-BIT A-ITEM CHARACTER 

• • I X X X X X xix X X X X xl 0 0 0 0 0 01 = BASE ADDRESS OF TABLE 

• • I X X X X X XIA A A A A AlA A AAA A I = TABLE ADDRESS WHICH CONTAINS THE 6 -BIT 
EQUIVALENT OF A-ITEM CHARACTER 

If each table entry is a l2-bit character (variant 3 = 02 or 03), the 6- or l2-bit A­
item character is first shifted one bit position to the left, forming a 7 - or 13 -bit 
"character." The rightmost bit position of the character is set to zero. The 
"character" is then superimposed over the base address to form the table address 
of the translated equivalent of the A-item character. The shift operation is used 
to double the referenced table address, since each table entry is stored in two, 
rather than one, six-bit character locations. The resultant address is the ad­
dress of the leftmost of the two successive six-bit character locations in the table. 

The illustration below shows how a 6-bit A-item character is shifted one bit posi­
tion to the left and then superimposed over the translation table's base address to 
form the table address of its equivalent; A = an A-item bit, and X = a base ad­
dress bit. 

A AA A A A = 6-BIT A-ITEM CHARACTER 
SHIFT LEFT ONE BIT. 
POSITION & APPEND 

...... "'""""'"'---'--''--1..-......... ...., 
ZERO A A A A A A 0 = 7-BIT "CHARACTER" 

• Ix X X X X xix X X X X xlo ,0 0 0 001 = BASE ADDRESS OF TABLE 

• Ix X X X X xix X X X X AlA A A A A 0 I = TABLE ADDRESS WHICH CONTAINS THE l2-BIT 
EQUIVALENT OF THE A-ITEM CHARACTER 

PUNCTUATION MARKS 

TIMING 

The A item must contain an item mark. It is this punctuation mark that normally 
stops the operation. If the A-item information units are 12-bit characters, the 
terminating item mark may appear in either of the two six-bit character locations. 

The operation will also be terminated if a character (6- or l2-bit) is encountered 
in a word-marked location in the translation table. In this case, neither the word­
marked character nor any subsequent characters are moved to the B item; instead, 
a sequence change is performed (see note 6). 

1 Add two memory cycles to this formula if the instruction is being executed in a Type 1201 proc­
essor. Add four memory cycles if it is executed in a Type 2201 processor. 

8-82 



CONTROL 

ADDRESS REGISTERS AFTER OPERATION 

SR CSR AAR BAR 
A-ITEM ITEM MARK 

NXT CSRp A+(NAu)(Nut ) B+(NBu ) (NuJ} 
STOPS OPERATION 

JI (contents NXT A+(NAu ) (Nut) B+(NBu ) (Nut)} WORD MARK IN TABLE 
of CSR) STOPS OPERATION 

NOTES 

1. This instruction cannot be chained. 

2. The last six-bit character referenced in the translation table (whether 
word-marked or not) is left in the variant register following the move 
item and translate operation. 

3. Item-mark bits as well as data bits are transferred from the translation 
table to the B item. 

4. Word marks initially stored in the B item remain unchanged. They do 
not affect the execution of this instruction. 

5. The programmer can use a symbolic tag in place of the variant charac­
ters of this instruction by previously equating the variant characters to 
the tag via a CEQU assembly control statement (see page 7-11). 

6. A data control character (e. g., a case-shift character in a teletype code), 
rather than a translated equivalent to be transferred to the B item, can 
be stored in a word-marked location in the table. When this word-marked 
location is sensed, the character in that location is not moved; rather, 
the contents of SR and CSR are interchanged, providing entry to the routine 
whose beginning address was previously stored in CSR. Since the word­
marked character is stored in the variant register (see note 2), that char­
acter can be store.d by a Store Variant and Indicators instruction (see 
page 8- 90) and subsequently tested for identification in the routine. 

7. The base address of the translation table must always be a multiple of 64 
due to the positions of variants 1 and 2 in the total three-character ad­
dress. This is compatible with the translation requirements of six-bit 
characters. However, if information units greater than six bits in length 
are involved in the translation, a larger table may be required. For 
instance, if a character were to be translated into a seven-bit information 
unit and each seven-bit equivalent were unique, a 1 28-character table would 

be required. The MORC assembly control statement (see page 7-7) can be 
used to as sign memory locations to the table starting with the next available 
memory location whose address is a multiple of 64, 128, 256, etc., which­
ever multiple is necessary to allocate the correct number of locations. 

8. This instruction is a standard feature on all processors except the Types 
201 and 201-1, on which it is not available. 

EXAMPLE 

Figure 8-7 shows how eight-bit code is translated to Series 200 six-bit character 
code by means' of a stored translation table. Each eight-bit information unit is 
stored in two consecutive six-bit character locations in the A item tagged EIGHT. 

Translate the data contents of the item tagged EIGHT using the translation table 
whose base address is location 51210 (l0008 )' Store the translated values (six­
bit characters) in the item tagged SIX. 

8-83 



SECTION 8. INSTRUCTIONS 

PROB EM L 

CARD n 
NUMBER ~ ~ 

A Address: EIGHT (absolute value = location 800) 

B Address: SIX (absolute value = location 650) 

Variant 1: 

Variant 2: 

Variant 3: 

LOCATION 
OPERATION 

COOE 

00 = 
the address of table (location 512) 

10 = 

01 

EASYCODER 
CODING FORM 

PROGRAMMER 

OPERANDS 

DATE 

I 2 3 4 5 6 7 • 1415 2021 62 63 

I I 1M IT 

BASE ADDRESS 
(0010008 ) 

El G-I-IT S.lX .,121.0 10, <3'1 

.A ITEM 
~----~----~~----~--~~ 

2 D E F G 

I--='=~~+""""""I-'-"''-I • ADDRESS 
.B ITEM 

~;......L __ "" __ ~~ 

v 

Figure 8 -7. MIT Operation 

~ ITEM MARK STOPS 
OPERATION 

w x .ENTRIES 

LIB I LOAD INDEX/BARRICADE INDICATOR I I FEATURE 1114 &: 1117 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

Q. - -
b. -

8-84 

PAGE OF 

80 



CONTROL 

FUNCTION 

Format a: The single character specified by the A address is loaded into the index/barricade 
register (IBR), specifying the number of a 4,096 -character main memory bank. 
The leftmost location of the specified bank is the leftmost location of the protected 
memory area. (The rightmost location of the protected area is the rightmost lo­
cation of memory.) The protected memory area is defined by the single -character 
contents of the A address as shown in Table 8-18. 

Format b: The single character specified by the contents of the A-address register (AAR) is 
loaded into the index/barricade register (IBR), specifying the number of a 4,096-
character memory bank. The leftmost location of the specified bank is the left­
mOpt location of the protected memory area. (The rightmost location of the pro­
tected area is the rightmost location of memory.) The protected memory area is 
defined by the contents of the previous A address as shown in Table 8-18. 

Table 8-18. Leftmost Boundaries of Protected Memory 

Contents of Leftmost Contents of Leftmost 
A Address Boundary of A Address Boundary of 

Octal Decimal Protected Memory Octal Decimal . Pr~~~<!.~~mo~~ 

0 0 0 40 32 131,072 
1 1 4,096 41 33 135,168 
2 2 8,192 42 34 139,264 
3 3 12,288 43 35 143,360 
4 4 16,384 44 36 147,456 
5 5 20,480 45 37 151,552 
6 6 24, 576 46 38 155,648 
7 7 28,672 47 39 159,744 

10 8 32, 768 50 40 163,840 
11 9 36,864 51 41 167,936 
12 10 40,960 52 42 172,032 
13 11 45,056 53 43 176,128 
14 12 49,152 54 44 180,224 
15 13 53, 248 55 45 184,320 
16 14 57,344 56 46 188,416 
17 15 61,440 57 47 192,512 
20 16 65,536 60 48 196,608 
21 17 69,932 61 49 200,704 
22 18 73, 728 62 50 204,800 
23 19 77,824 63 51 208,896 
24 20 81,920 64 52 212,992 
25 21 86,016 65 53 217,088 
26 22 90, 112 66 54 221,184 
27 23 94,208 67 55 225,280 
30 24 98,304 70 56 229,376 
31 25 102,400 71 57 233,472 
32 26 106,496 72 58 237,568 
33 27 110,592 73 59 241,664 
34 28 114,688 74 60 245,760 
35 29 f 118,784 75 61 249,856 
36 30 122, 880 76 62 253,952 
37 31 126,976 77 63 258,048 

8-85 



SECTION 8. INSTRUCTIONS 

WORD MARKS 

Formats a and b: 

Word marks are not affected by this instruction. 

TIMING 

Formats a and b: 

T = Ni+3 memory cycles. 

ADDRESS REGISTERS AFTER OPERATION 

SR 

Format a: NXT 

Format b: NXT 

NOTES 

AAR 

A 

A 
p 

BAR 

B 
P 

1. The 15 additional index registers which are included in the Storage Protect 
Feature are located in the leftmost 60 character locations of the main 
memory bank specified by this instruction. These locations can be used 
as normal storage locations when they are not being used for indexing 
operations. 

2. The LIB op code is a "privileged" op code which has special significance 
when storage protection is in effect with the Type 1201 or 2201 processor 
(see Appendix E. ) 

EXAMPLE 

Assuming that there are 131,072 storage locations in the main memory, set up the 
memory in such a way that the "open" memory area consists of locations 0 through 
65,535 and the protected memory area consists of locations 65,536 through 
131,072. The single octal character" 20" is contained in the location tagged MP2. 

EASYCODER 
CODING FORM 

PROB EM L PROGRAMME R DATE PAGE OF 

CARD ~\! LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 80 

I I \\.,I $ MPz. 
I 

I 

I I 
I 

8-86 



CONTROL 

I S IS I STORE INDEX/BARRICADE INDICATORI I FEATURE 1114 &: 1117 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

O. - -
b. -

FUNCTION 

Format a: The single-character contents of the index/barricade register (IB) are stored in 
the character location specified by the A address. All high-order bit positions 
in A which are not used to specify the contents of the index/barricade indicator 
are cleared to zeros. 

Format b: The single-character contents of the index/barricade register (IB) are stored in 
the character location specified by the contents of the A-address register (AAR). 
All high-order bit positions in A which are not used to specify the contents of the 
index/barricade indicator are cleared to zeros. 

WORD MARKS 

Formats a and b: 

Word marks are not affected by this instruction. 

TIMING 

Formats a and b: 

T = Ni +3 memory cycles. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A 

Format b: NXT 

EXAMPLE 

Store the contents of the index/barricade register in the single character location 
tagged PROT. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD tl~ LOCATION 
OPERATION OPERANDS NUMBER n CODE 

I 2 3 4 5 6 7 • 1415 2021 62 63 

I SIB-' PR.OT 

8-87 

80 





INTERRUPT CONTROL 

• STORE VARIANT AND INDICATORS 

• RESTORE VARIANT AND INDICA TORS 

• MONITOR CALL 

• RESUME NORMAL MODE 

8-89 



SECTION 8. INSTRUCTIONS 

SVI I STORE VARIANT AND INDICATORS I 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT - -
FUNCTION 

The SVI instruction is used to store information regarding the current status of the 
processor when an interrupt condition occurs. The instruction stores the designated 
information in up to six consecutive locations following its own variant character. 

. 

.. 

Each bit in the six-bit variant character (V6V5V4V3V2Vl) represents processor 
control registers or indicators whose contents are to be stored in a single character 
location. The programmer specifies the amount of information to be stored by 
selecting the desired entries from Table 8-19 and encoding the resulting bit con­
figuration as two octal digits. 

Table 8 - 19. Information Stored by SVI Instruction 

VAlttANTCHARACTER INFORMATION STORED 

. .....•.... "V6V 5V'4 V 3"2 Vi . . 
.' . 

XXXXXI The contents of the variant register. 

XXXXIX The settings of the arithmetic, comparison, ad-
dress mode, and item-mark trap mode indicators. 
This information is stored in seven bit positions 
of the character location: the six data bit po si-
tions and the item-mark bit position. 

The arithmetic and comparison indicators are 
cleared when their contents have heen stored. 

X X Xl XX The contents of the auxiliary indicators regis-
ter (AIR). These contents are identical to those 
described for V2' above. 

The auxiliary arithmetic and comparison indi-
cators are cleared when their contents have been 
stored. 

XXIXXX The settings of the indicators as sociated with the 
scientific unit (see Appendix F). These indi-
cators are cleared when their contents have 
been stored. 

XIXXXX The settings of the protect and proceed indi-
cators and (if the processor is in the external 

, interrupt mode) the setting of the internal 
interrupt (II) mode indicator. 1 

8-90 

. ... : 



: 

INTERRUPT CONTROL 

Table 8-19 (cont). Information Stored by SVI Instruction 

VARIANTCHARACTE:R INF'ORMA TION STORED 

V6VSV4V3VZVl 

XIXXXX 
(cont) 

lXXXXX 

The protect and proceed indicators are cleared 
when their contents are stored. 

The settings of the interrupt source indicators. 
The stored settings of these indicators can be 
tested to determine the status of the processor 
as follows: 

1. Whether the processor is in the external 
interrupt mode, the internal interrupt 
mode, or the standard processing mode. 

2. The source of the interruption if the 
processor is in the external interrupt 
mode; any of three sources can be 
determined - a peripheral control, the 
control panel (or console), or the Monitor 
Call instruction (see page 8-95). 

3. Whether an external interrupt (EI) address 
violation 2 has occurred (if the processor 
is in the external interrupt mode). 

4. Whether an op code violation 2 has oc­
curred (if the processor is in the internal 
interrupt mode). 

5. Whether an internal interrupt (II) address 
violation 2 has occurred (if the processor 
is in the internal interrupt mode). 

The indicators referred to in 3 through 5, above, 
as well as the indicator which identifies the 
control panel (or console) as the interrupt 
source are cleared when their contents are stored. 

IThese indicators are included in a Type 1201 or 2201 processor equipped with 
the Storage Protect Feature (see Appendix D). 

2 
EI address violation, op code violation, and II address violation are 
associated with the Storage Protect Feature (see Appendix D). 

WORD MARKS 

Word marks in the locations in which information is stored neither affect nor are 
affected by this operation. Program operation resumes with the first word-marked 
location following the stored information (the riext sequential op code). 

TIMING 

1 
Add one memory cycle to this formula if the instruction is executed in a Type 1201 processor. 
Add two cycles if the instruction is executed in a Type 2201 processor. 

8-91 



SECTION 8. INSTRUCTIONS 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

NXT 

NOTES 

1. Only the nUITlber of characters specified by the variant character are 
stored. They are stored in the order listed in Table 8-19: the contents 
of the variant register (if specified) are stored in the location iITlITledi­
ate1y following the SVI instruction, etc., using only those locations 
actually required to store the requested inforITlation. 

VARIANT BIT STORED CHARACTER LOCATION BITS 

11M BIT B BIT A BIT 8 BIT 4 BIT 2 BIT 1 BIT 

VI 0 Contents of Variant Register 
IteITl-ITlark 

Trap- Addre s s ITlode: Overflow: Zero A B: A - B: 

V 2 
ITlode: 01 =2-character; 1 =yes; Balance: 1 =yes; 1 =yes; 
1 =yes; 00=3-character; O=no. 1 =yes; O=no. O=no. 
O=no. 11 =4-character. -,- O=no. ~:~ -'- ':< -,- -,-

V3 Contents of AIR (identical to inforITlation in V 2' above) 

-'- -'- *~ -,--,- -,- -,-

0 MPO: ~~ DVC: -'- EXO: "-
V4 1 =yes; 1 =yes; 1 =ye s; 0 0 0 

O=no. O=no. O=no. 

0 Protect 0 0 Proceed 0 In external 
indi- indi- interrupt 

V5 
cator: cat~r: ITlode only: 
l=on; l=on; 1 =II indi-
2=off. O=of£. cator on; 

'::: otherwise, 

Processor is in external interrupt ITlode 

0 EI Ad- Monitor Control Periph- 1 II Mode 
dress Call: panel or eral indicator: 
viola- 1 =yes; console inter- 1 =on; 

Vb 1ation: O=no. inter- rupt: O=off. 
1 =yes; rupt: 1 =yes; 
O=no. 1 =yes; O=no. 

-,- ::::< O=no. * ,,-

Processor is not in external interrupt ITlode 

O. 

0 II Ad- Op code 0 0 0 II Mode indi-
dress viola- cator: 
viola- tion: l=on; 
tion: 1 =yes; O=off. , 1 =yes; O=no. 
O=no. 

,!< :::c 

>:< 
= Indicator s that are cleared when their contents are stored. 

8-92 



INTERRUPT CONTROL 

2. Item-mark and data bit positions which are not used to store infor­
mation are cleared to zeros. 

3. The format in which information is stored by the SVI instruction is 
shown in the following table. Indicators which are cleared (i. e., set 
to zero) when their contents are stored are indicated by an asterisk (':'). 

4. Bits corresponding to indicators which are not present in the user's 

processor are stored as zeros. For instance, an SVI instruction 
issued in a processor which does not contain the Storage Protect 
Feature will store zeros in those bit positions which correspond to 
indicators used only with the Storage Protect Feature. 

S. The current status of the arithmetic, comparison, address mode, 
and trap mode indicators are not stored in the auxiliary indicators 
register (AIR) when an internal interrupt occurs. The contents of 
AIR should therefore not be stored by an SVI instruction in the internal 
interrupt mode, for the contents of AIR would be meaningless at the 
time of internal interruption. 

6. The SVI op code is a "privileged" op code that has special significance 
when issued in a Type 1201 or 2201 processor equipped with the Storage 
Protect Feature (see Appendix E). 

7. This instruction is a standard feature on all processors but the Types 
201 and 201-1, on which it is not available. 

8. The method of coding interrupt service routines is described in 
Appendix D, "Interrupt Processing." 

EXAMPLE 

Store the following information in the three successive memory locations which 
immediately follow the variant character of the instruction: 

1. The contents of the variant register; 

2. The contents of the auxiliary indicators register (AIR); and 

3. The settings of the interrupt source indicators. 

The op code of the SVI instruction is tagged STORE, so that the locations of the 
stored information are STOREt2, STOREt3, and STOREt4. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMME R TE DA PAGE 

CARD U LOCATION I OPERATION OPERANDS NUMBER t ~ CODE 

I 2 3 4 5 6 7 8 1415 2021 6263 

I ST~RE [SVI of5 
I 

I [ 

RVI I RESTORE VARIANT AND INDICATORS I 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT - - -
8-93 

OF 

80 



SECTION 8. INSTRUCTIONS 

FUNCTION 

Up to five consecutive characters (previously stored via an SVI instruction) are 
loaded into the processor control registers and/or indicators specified by the 
variant character. Characters are retrieved from left to right, beginning with 
the character specified by the A address. 

The low-order five bits of the variant character specify the registers and/or 
indicators whose contents are to be restored. The programmer specifies the 
amount of information to be restored by selecting the desired entries from Table 
8-20 and encoding the resulting bit configurations as two octal digits. 

Table 8-20. Information Restored by RVI Instruction 

VARIANT CHARACTER INFORMATION RESTORED 

V6VSV4V3VZVl 

OXXXXl The contents of the variant register. 

OXXXIX The settings of the arithmetic, comparison, ad-
dress mode, and item-mark trap mode incH-
cators. This information is stored in the six 
data bits and the item-mark bit of a character 
location. 

OXXIXX The contents of the auxiliary indicators regis-
ter (AIR). This information is identical to that 
described for V 2' above. 

OXIXXX The settings of the indicators associated with 
the scientific unit (see Appendix F). 

01XXXX The settings of the protect and proceed indi-
cators and (if the processor is in the external 
interrupt mode) the setting of the internal in-
terrupt (II) mode indicator. 1 

1 These indicators are included in a Type 1201 or 2201 processor equipped with the Storage Protect 
Feature (see Appendix E). 

WORD MARKS 

Word marks neither affect nor are affected by this instruction. 

TIMING 

T = Ni +2+Nr memory cycles. 1 

1 Subtract one memory cycle from this formula if the instruction is executed in a Type 1201 
processor. Add one cycle if the instruction is executed in a Type 2201 processor. 

8-94 



INTERRUPT CONTROL 

ADDRESS REGISTERS AFTER OPERATION 

SR 

NXT 

NOTES 

AAR 

A 
P 

BAR 

1. Each entry in the righthand column of Table 8-20 is stored in a single 
character location. Only the number of characters corresponding to 
the selected table entries are restored by the RVI instruction. 

2. The R VI op code is a "privileged" op code that has special significance 
when used with a Type 1201 or 2201 processor equipped with the Storage 
Protect Feature (see Appendix E). 

3. All information stored by an SVI instruction should be restored by the 
R VI instruction. 

4. The format in which information is stored by an SVI instruction is 
shown in the table on page 8-92. Note that the information contained 
in the last character location is not restored by the RVI instruction. 

5. This instruction is a standard feature on all processors but the Types 
201 and 201-1, on which it is not available. 

6. The method of coding interrupt service routines is described in Appendix 
D, "Interrupt Processing. " 

EXAMPLE 

Restore the contents of the variant register and auxiliary indicators register (AIR) 
that were previously stored by the SVI instruction example on page 8- 93. 

EASYCODER 
CODING FORM 

PROBLEM PROGR AMMER DATE PAGE o F 

CARD H LOCATION 
OPERATION OPERANDS NUMBER n CODE 

12345 6 7 8 1415 2021 6263 80 

I : I~VI STO~E, + ~ J ¢~ 
I 

I 
I I 
I I 

I 
J 
I I 
I I 

Me I MONITOR CALL I 

FORMAT 

OP CODE A ADDRESS B ADDRESS -
8-95 



SECTION 8. INSTRUCTIONS 

FUNCTION 

The Monitor Call instruction causes the processor to enter the external interrupt 
mode (if the processor is not already in that mode). The following activities are 
automatically performed: 

1. The EI interrupt source indicators are set to show that the Monitor Call 
instruction is the source of interruption, and the processor enters the 
external interrupt mode; 

2. The settings of the arithmetic, comparison, address mode, and item­
ITlark trap mode indicators are stored in the auxiliary indicators reg­
ister (AIR); 

3. The arithmetic indicators are cleared; 

4. The contents of the sequence register (SR) and the external interrupt 
register (EIR) are interchanged, and the program branches to the instruc­
tion whose op code address was previously stored in EIR; 

5. The processor switches to the three-character, non-trap mode. 

WORD MARKS 

Word marks are not affected by this instruction. 

TIMING 

T = Ni +2 memory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR EIR AAR BAR 

JI (con- NXT 
tents 
of EIR) 

NOTES 

1. This instruction must not be issued in the external interrupt mode. 

2. The interrupt source indicators can be stored via an SVI instruction 
(see page 8-90). Their stored contents can then be interrogated by 
programmed instruction to determine the interrupt source. 

EXAMPLE 

1 

Interrupt the central processor and branch to MONITOR, the location of the monitor 
program. The address tagged MONITOR was previously stored in EIR. 

Subtract one memory cycle to thi s formula if. the instruction is executed in a Type 1201 proc-
essor. Add one cycle if the instruction is executed in a Type 2201 processor. 

8-96 



INTERRUPT CONTROL 

EASYCODER 
CODING FORM 

PRO EM BL PROGRAMMER DATE PAGE OF 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 8 1415 2021 6263 

I : SCR MONTC12 to&. 
I 

I ( 

I I I 
I I i 
I I (Me 
I I 

RNM IRESUME NORMAL MODE I 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

Q. - -
b. -
c. -

FUNCTION 

Format a: The RNM instruction causes an exit from the program being executed in the 
interrupt mode (external or internal) to the program which was interrupted. The 
activities performed depend on the type of interrupt mode in which the instruction 
is issued. 

When the RNM instruction is issued in the external interrupt mode: 

1. The EI mode indicators are turned off; 

2. The arithmetic, comparison, address mode, and item-mark trap mode 
indicators are restored to the status specified by the auxiliary indicators 
register (AIR); 

3. The A and B addresses of the RNM instruction are stored in the A- and 
B-address registers (AAR and BAR), respectively; and 

4. The contents of the sequence register (SR) and the external interrupt reg­
ister (EIR) are interchanged, and the program branches to the instruc­
tion whose op code address was initially stored in EIR when the external 
interrupt occurred. 

When the RNM instruction is issued in the internal interrupt mode: 

1. The II mode indicator is turned off; 

2. The A and B addresses of the RNM instruction are stored in AAR and 
BAR, respectively; and 

3. The contents of SR and the internal interrupt register (IIR) are inter­
changed, and the program branches to the instruction whose op code ad­
dress was initially stored in IIR when the internal interrupt occurred. 

8-97 

80 



SECTION 8. INSTRUCTIONS 

Format b: This format operates like format a. except that the B address of the RNM instruc­
tion is not stored in BAR. The previous contents of BAR are not changed. 

Format c: This format operates like format a. except that no instruction addresses are stored. 
The previous contents of AAR and BAR are not affected by this format. 

WORD MARKS 

Formats a, b, and c: 

Word marks are not affected by this instruction. 

TIMING 

Formats a, b, and c: 

T = Ni +3 memory cycles. 1 

ADDRESS REGISTERS AFTER OPERATION 

SR EIR IIR AAR BAR 

Format a: NXT address of op A B RNM ISSUED 
code following n/a IN EXTERNAL 
RNM instruction INTERRUPT 

MODE 

addre s s of op RNM ISSUED 
NXT n/a code following A B IN INTERNAL 

RNM instruction INTERRUPT 
MODE 

Format b: addre s s of op RNM ISSUED 
NXT code following n/a A Bp IN EXTERNAL 

RNM instruction INTERRUPT 
MODE 

addre s s of op RNM ISSUED 
NXT n/a code following A Bp IN INTERNAL 

RNM instruction INTERRUPT 
MODE 

Format c: address of op RNM ISSUED 
NXT code following n/a A B IN EXTERNAL 

RNM instruction 
p p 

INTERRUPT 
MODE 

address of op RNM ISSUED 
NXT n/a code following A B IN INTERNAL 

RNM instruction 
p p 

INTERRUPT 
MODE 

NOTES 

1. The address of the instruction which follows the RNM instruction is 
stored in the appropriate interrupt register (EIR or IIR) when the RNM 
instruction is executed. This register therefore contains the address 
of the first instruction executed in the interrupt routine when the next 

8-98 



INTERRUPT CONTROL 

interrupt of the same type occurs. This instruction should be an SVI 
instruction, which should be the first instruction executed in any 
interrupt service routine. 

2. The method of coding interrupt service routines is described in 
Appendix D, "Interrupt Processing. " 

3. The RNM op code is a "privileged" op code which has special signif­
icance when used with a Type 1201 or 2201 processor equipped with the 
Storage Protect Feature (see Appendix E). 

EXAMPLE 

PROBLEM 

CARD 
NUMBER 

I 2 3 4 5 

I I 
I 

I 
I i 
I I 

: : 
I I 
I I 

I I 

I~I~ 
K 

The simplified coding below shows a convenient method of restoring the starting 
address of the external interrupt routine (EXT2) in EIR when the normal program 
sequence is resumed. 

EASYCODER 
CODING FORM 

PROGR AMMER DATE PAGE OF 

LOCATION 
OPERATION 

OPERANDS CODE 

6 7 • 1415 2021 6263 

R£SlJt-.AE. IRNM 
E~T2 l~vl 45 

( 

I > INTERRuPT '::'ouTlIJE. 

l 
) 

1& IRESUME 

8-99 

80 





EDITING 

• MOVE CHARAC TERS AND EDIT 

8-101 



SECTION 8. INSTRUCTIONS 

I MCE IMOVE CHARACTERS AND EDI~ I FEATURE 0131 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

Format a: The MCE instruction is used to insert identifying symbols and punctuation and to 
suppress unwanted zeros in a data field. The A field of an MCE instruction con­
tains the information to be edited. The B field contains an edit control word which 
provides a framework for the edit operation. When an MCE instruction is executed, 
the data in the A field is moved to the B field where it is punctuated and formatted 
according to the edit control word already stored in that field. 

NOTE: An LCA instruction can be used to load the control word into the field 
where the edited information will eventually go. For instance, if the edited 
information is to be printed, the control word should be loaded into the print 
image area and the address of this area should be used as the B address of the 
MCE instruction. 

Editing is performed according to the following rules: 

RULE 1. Any character in the Series 200 character set can be used in the edit 
control word. Those characters having special meanings are listed in Table 8-21. 
Any other character, if included in the edit control word, remains in the edited 
result in the position where written. 

RULE 2. A word mark in the high-order position of the B field controls the edit 
operation. 

RULE 3. The number of replaceable characters in the edit control word must be 
at least as large as the number of characters in the A field. 

RULE 4. Data is transferred from the A field character by character, from right 
to left. If a zero suppression symbol is not sensed in the edit control word, the 
edit operation terminates when the B-field word mark is sensed. A zero sup-

'pression symbol causes the edited result field to be scanned from left to right. 
During this scan, high-order zeros and commas are automatically replaced by 
blanks (unless an asterisk appears immediately to the left of the zero suppression 
symbol - see rule 5). Zero suppression is tenninated by any of the following: 

a. a decimal digit from 1 through 9, 

b. a decimal point, or 

c. the location that initially contained the zero suppression symbol. 

RULE 5. Ab asterisk immediately to the left of the zero suppression symbol in 
the control word causes high-order zeros and commas to be replaced by asterisks 
instead of blanks in a zero suppression operation. High-order blanks are also 
replaced by asterisks. 

8-102 



EDIT 

RULE 6. A dollar sign immediately to the left of the zero suppression symbol in 
the control word is replaced with an A-field character and causes the edited result 
to be rescanned following the zero suppression operation. During this scan, the 
dollar sign is "floated" to the left of the high-order significant digit in the edited result. 

Table 8-21. Special Characters in MCE Instruction 

b (blank) 

o (zero) 

. (decimal point) 

, (comma) 

C
R

, CR (credit) 

6 (minus) 

NOTE: 6 is printed 
as a minus symbol. 

~, (asterisk) 

$ (dollar sign) 

FUNCTION 

Blanks are replaced with A-field characters such 
that the rightmost character in the A field re­
places the rightmost blank in the edit control word 
and all higher-order A-field characters replace 
successively higher-order blanks. 

This symbol specifies zero suppression. Its lo­
cation in the control word is interpreted as the 
rightmost limit of zero suppression. It is re­
placed with an A-field character . 

The decimal point remains in the edited field in 
the position where written. 

Commas remain in the edited field where written 
unless zero suppression is specified (see rule 4). 
Commas in control word positions to the left of 
the high-order character transferred from the 
A field are replaced by blanks. 

The credit or minus symbol is undisturbed if the 
sign in the units position of the A field is negative. 
If the sign is positive, the credit (or mmus) sym­
bol is blanked out. A credit (or minus) symbol 
transferred from the A field 1S not subject to 
sign control. 

An octal 37 is replaced by a blank in the edited 
field. 

The asterisk remains in the edited field in the posi­
tion where written unless it appears immediately 
to the left of the zero suppression symbol (see 
rule 5). 

The dollar sign remains in the edited field in the 
position where written unless it appears immedi­
ately to the left of the zero suppression symbol 
(see rule 6). 

Format b: The data contents of the A field are edited and stored in the field specified by the 
contents of the B-address register (BAR) according to the rules outlined above. 

Format c: The data field specified by the contents of the A-address register (AAR) are 
edited and stored in the field specified by the contents of BAR according to the 
rule s outlined above. 

8-103 



SECTION 8. INSTRUCTIONS 

WORD MARKS 

Formats a, b, and c: 

Both the A field and the B field must have defining word marks. The A-field word 
mark terminates the transfer of data from the A field. The B field word mark 
terminates the edit operation if no zero suppression symbol is sensed in the edit 
control word or if automatic dollar sign insertion is specified in conjunction with 
zero suppression. The B-field word mark is erased after terminating the edit. 

H zero suppression is specified, a word mark is automatically set in the location 
containing the zero suppression symbol. When this word mark is sensed during 
the reverse scan associated with the zero suppression operation, it is erased 
and, if automatic dollar sign insertion is not called for, the edit operation terminates. 

TIMING 

Formats a, b, and c: 

T = Ni+l+Na+2Nb+2Z+2$ memory cycles. 1 

NOTES 

1. The zone bits in the units position of the A field are cleared to zero when 
moved to the B field. Therefore the value of the character in the units 
position in the A field may change when moved to the B field. For example, 
an F in the units position of the A field will appear as a 6 in the result field. 

2. Floating dollar sign insertion and automatic asteri sk insertion can not be 
performed in the same edit operation. 

EXAMPLES 2 

1 

2 

Data Field (A Field) 

Control Word (B Field) 

Result of Edit 

Example 1. 

Data Field (A Field) 

Control Word (B Field) 

Result of Edit 

Example 2. 

@000099 

® bb, bbO. bb&&O 

.99 

@ 5454986 

@bb&bb&bbb 

254 54 986 

Add one memory cycle to,this formula if the instruction is being executed in a Type 2201 
processor. 

The character (37 8 ) is shown as an ampersand (&) in these examples. However, the ampersand 
is not the only equivalent of 378 as shown in Table B-6. 

8-104 



Data Field (A Field) 

Control Word (B Field) 

Result of Edit 

ExaITlple 3. 

Data Field (A Field) 

Control Word (B Field) 

Result of Edit 

ExaITlple 4. 

Data Field (A Field) 

Control Word (B Field) 

Re sult of Edit 

ExaITlple 5. 

8-105 

@00456 

® b, bbO. bb&CR~' 

$ 4. 50 :;:~ 

@0897445 

@bbb, b$O. bb 

$8,974.45 

@l10450 

@;>' b':'O. bb 

~,,~,:, 104. 50 

EDIT 





INPUTIQUTPtJT~1 

.PERIPHERAL DATA TRANSFER 

• PERIPHERAL CONTROL AND BRANCH 

8-107 



SECTION 8. INSTRUCTIONS 

INPUT/OUTPUT CONTROL OPERATIONS 

Effective control over data transfers between the central processor and peripheral units 

and over the peripheral units theITlselves is ITlaintained by the use of two basic instructions: 

Peripheral Data Transfer (PDT), and Peripheral Control and Branch (PCB). The PDT instruc-

tion is used to initiate data transfer operations and certain other related operations, such as 

backspace ITlagnetic tape and advance the printer forITl. 

The PCB instruction perforITls two distinct functions: (1) it initiates strictly ITlechanical 

operations such as ITlagnetic tape rewinds and card rejections; and (2) it causes a prograITl 

branch to be perforITled contingent upon the setting of peripheral condition indicators. The 

latter facility allows prograITlITled tests for such peripheral conditions as read or write errors, 

busy peripheral devices or control units, and ITlagnetic tape unit at end of tape. 

Detailed prograITlITling and operating inforITlation for Series 200 peripheral devices is 

provided in separate ITlanuals and inforITlation bulletins. The reITlainder of this section is a 

sUITlITlary of the PDT and PCB instructions, based on the assuITlption that the user is faITliliar 

with the contents of the applicable publications. 

PDT instructions are described starting on this page - first for all Series 200 devices 

except the Type 286 Multi-Channel COITlITlunication Control, and secondly for the Type 286. 

PCB instructions for all Series 200 devices except the Type 286 are described starting on page 

8-117; the description of the Type 286 follows on page 8-131. In all applicable cases, the 

coding sUITlITlary for a device is followed by a reference to the specific Honeywell ITlanual or 

inforITlation bulletin where additional inforITlation can be found. 

PDT I PERIPHERAL DATA TRANSFERi For: PUNCHED CARD EQUIPMENT 
PAPER TAPE EQUIPMENT 
PRINTER 

FORMAT 

OP CODE A ADDRESS - -

MAGNETIC TAPE EQUIPMENT 
RANDOM ACCESS DRUM 
MASS MEMORY FILE 
CONSOLE 
ON-LINE ADAPTER 
SINGLE - CHANNEL COMMUNICATION CONTROL 

( I/O CONTROL CHARACTERS) 

CI C2 C3 Cn - r-----., r------, 
I I···j I '- __ ___ J L. ____ .J -

8-108 



FUNCTION 

INPUT / OUTPUT 

The PDT instruction causes data to be transferred between a peripheral device and 
the ITIain ITIeITIory area whose leftITIost location is designated by the A address. Data 
transfer is terITIinated according to the data ITIediuITI eITIployed. Input/output control 
characters specify the data path through which the transfer is to be accoITIplished 
and, when necessary, the ITIethod of inforITIation transfer according to Table 8-22. 

Table 8-22. Description of PDT I/O Control Characters C1 and C2 

Cl READ/WRITE CHANNEL DESIGNATION: This six-bit 
character specifies the read/write channel selected to 
cOITIplete the data path. 

C1 

I XI : ~ X X,-I _x_x_'_' __ 
Read/write channel designation 

Interlock bit 

Interlock Bit: This bit designates whether or not an auxil­
iary read/write channel will be granted access to ITIain 
ITIeITIory by the traffic control. When dealing with RWCI 
and RWCl', an interlock bit of zero designates that 
ITIeITIory cycle allocation is to be shared by both RWCl 
and RWC1'. If the interlock bit is a one, ITIeITIoryaccess 
is not granted to RWCl'. (Model 2200 users ITIay apply 
this saITIe principle to RWC4 and RWC4'. ) 

NOTE: Specific Honeywell ITIanuals and inforITIation bul­
letins define the conditions under which the 
interlock bit should be used. 

Read/Write Channel Designation: These five bits specify 
the read/write channel selected to cOITIplete the data path 
between the ITIain ITIeITIory and the peripheral control. 
The octal designation of control character C1 will thus be 
one of the following configurations, depending upon the 
RWC selected. 

Read/Write Channel 

RWCl (with interlock) 
RWC1 (without interlock) 
RWC2 
RWC3 
RWCl' 

Control Character (octal) 

51 
11 
12 
13 
15 

Model 2200 users ITIay also eITIploy the following configurations. 

Read/ Write Channel 

RWC4 (with interlock) 
RWC4 (without interlock) 
RWC5 
RWC6 
RWC4' 

8-109 

Control Character (octal) 

71 
31 
32 
33 
35 



SECTION 8. INSTRUCTIONS 

Table 8-22 (cont). Description of PDT I/O Control Characters C1 and C2 

C2 PERIPHERAL CONTROL DESIGNATION: Control char­
acter C2 designates the logical address of the peripheral 
control to be used in the data transfer. This address de­
pends upon the I/O trunk to which the peripheral control 
is permanently attached. 

C3 
through 

Cn 

PUNCTUATION MARKS 

Model 200: Eight octal addresses may be employed in a 
Model 200 system containing eight I/O trunks. These ad­
dresses are as follows: 00, 01, 02, 03, 40, 41, 42, and 
43. In a system equipped with an additional set of eight 
I/O trunks, the following eight addresses may be used: 
04, 05, 06, 07, 44, 45, 46, and 47. 

Model 1200: Sixteen octal addresses may be employed in 
a Model 1200 system equipped with 16 I/O trunks. These 
addresses are as follows: 00, 01, 02, 03, 04, 05, 06, 
07, 40, 41, 42, 43, 44, 45, 46, and 47. 

Model 2200: Sixteen octal addresses may be employed in 
a Model 2200 system containing 16 I/O trunks. These ad­
dresses are as follows: 00, 01, 02, 03, 04, 05, 06, 07, 
40, 41, 42, 43, 44, 45, 46, and 47. In a system equipped 
with an additional set of 16 I/O trunks, the following 16 
addresses may be used: 20, 21, 22, 23, 24, 25, 26, 27, 
60, 61, 62, 63, 64, 65, 66, and 67. 

NOTES: 1. Peripheral controls capable of both reading 
and writing (e. g., a magnetic tape control) 
must be assigned two addresses - one for 
reading and one for writing. In this case, 
the high-order bit of C2 must be 1 for input 
and 0 for output; the low-order three bits 
must be the same. 

2. For Model 2200 users, the additional set of 
16 I/O trunks must be used only in con­
junction with RWC4, RWC5, RWC6, and 
RWC4'. 

ADDITIONAL PARAMETERS: The specific use of these 
control characters is dependent upon the type of periph­
eral device addressed. A summary of coding for these 
characters may be found in Table 8-23. 

The execution of this instruction neither affects nor is affected by word marks. 
However, record marks may terminate the data transfer, depending upon the de­
vice used and the operation performed (see the specific Honeywell manuals and 
information bUlletins). 

8-11 0 



, 

INPUT /OUTPUT 

TIMING 

Model 200 Processors: 

T = N.+1 ITleITlory cycles + data transfer tiITle. 
1 

Type 1201 Proce s sor: 

T = (Ni -Nc +1) ITleITlory cycles + (Ncn+3) input/output cycles + 1 processor cycle 
+ data transfer tiITle. 1 

Type 2201 Processor: 

T = (Ni -Nc + 1) ITleITlory cycles + Nc alternate ITleITlory cycles + data transfer tiITle. 

ADDRESS REGISTERS AFTER OPERATION 

SR 

NXT 

NOTES 

AAR 

A 

BAR 

B 
P 

1. If either the read/write channel or the peripheral control (specified by 
C 1 and C2, respectively) is found "busy" during the extraction of a 
PDT instruction, the instruction is re -extracted: the contents of SR are 
set back to the address of the PDT op code, and the extraction process 
begins again. This process, which allows the processor to respond to 
interrupt signals that ITlay occur while the PDT instruction is awaiting 
the availability of a read/write channel or peripheral control, is not 
perforITled in the Types 201 and 201-1 processors; PDT extraction in 
these two processors waits until the busy channel or control is available. 

2. The PDT op code is a "privileged" op code when used in a Type 2201 proc­
essor equipped with the Storage Protect Feature (see Appendix E). 

EXAMPLE 

Read a card into the 80-character iITlage area tagged CREAD. Use RWC2 and 
aSSUITle that the card reader control is assigned to the logical address of octal 41. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 • 1415 2021 6263 

I Ptn: lC~eA.[>. \.2.41 
I I 

eo 

1 The input/output traific control of the Type 1201 processor gives one out of every four ITleITlory 
cycles unconditionally to the processor for internal operations; this cycle is called the "proc­
essor cycle." The three reITlaining cycles, which can be allocated either to the processor or 
to read/write channels, are called "input/output cycles." 

8-111 



SECTION 8. INSTRUCTIONS 

Table 8-23. Summary of PDT I/O Control Characters 

INPUT /OUTPUT OPERATION 

~ READ 

R PUNCH 
D 

CI 
READ/WRITE 

CHANNEL 

xx 

XX 

C2 
CONTROL UNIT 

Xl X 

X2 X 

See: Honeywell Series 200 Equipment Operators' Manual (DSI~294) 

P 
READ 

A XX XIX 

P 
E 
R PUNCH XX X2 X 

T 
A 
P 
E 

See: Models 209/210 Paper Tape Equipment (D51-322) 

P 
PRINT 

R 
XX X2 X 

I 
N 
T 
E 
R 

See: Honeywell Series ZOO EquipITlent Operators' Manual (D51-294) 

M READ FORWARD XX Xl X 
A 
G 
N 

READ REVERSE XX Xl X 
E 

(Feature 010 or 011) 
T 
r 
C WRITE XX X2 X 

T 
A 
P SPACE FORWARD XX Xl X 
E 

BACKSPACE XX Xl X 

I 
ERASE XX . X2 X 

N 
C 
H 

See: Honeywell Series 200 Equipment Operators! Manual (DSI-294) 

M 
A 
G 
N 
E 
T 
I 
C 

T 
A 
P 
E 

N 
C 
H 

READ FORWARD 

READ SUPPRESSING 
CHANNEL 

WRITE 

SKIP WRITE 

BACKSPACE 

XX Xl X 

XX Xl X 

XX X2 X 

XX X2 X 

XX XIX 

See: Honeywell Series 200 Equipment Operators! Manual (051-294) 

R SEARCH AND READ XX Xl X 
A 
N 
D 
0 

READ XX Xl X 
M 

A 
C 

SEARCH AND WRITE XX X2 X 
C 
E 
S 
S 

X2 X 
D 

WRITE XX 

R 
U 
M READ ADDRESS REGISTE XX XIX 

See: Model 270 Random Access DruITl and Control (051-348) 

PDT I/O CONTROL CHARACTER 

C3 
ADDITIONAL 
PARAMETERS 

See Table 
8-24 (page 
8-114) 

See Table 
8-25 (page 
8-114) 

See Table 
8-26 (page 
8-114) 

6 D 
(D=tape drive, 
a _ 7)3 

2 D 
(D=tape drive, 
a _ 7)4 

2 D 
(D=tape drive, 
a _ 7)5 

4 D 
(D=tape drive, 
a - 7) 

a D 
(D=tape drive, 

a - 7) 

a D 
(D:::tape drive, 

a - 7) 

6 D 
(D=tape drive, 
o - 7) 

5 D 
(D=tape drive, 
a - 7) 

6 D 
(D=tape drive, 
a - 7) 

4 D 
(D=tape drive, 
a - 7) 

a D 
(D=tape drive, 
a - 7) 

See Table 
8-27 (page 
8-115) 

See Table 
8-27 (page 
8-115) 

See Table 
8-27 (page 
8-115) 

See Table 
8_27 (page 
8-115) 

See Table 
8-27 (page 

8-115) 

8-112 

C4 
ADDITIONAL 
PARAMETERS 

C a 
(C=channel to 
be suppressed) 

C5 
ADDITIONAL 
PARAMETERS 

,0 T T T, 
9-bit track address num­
bered 0 - 777 (octal) 

,0 T T T / 
9-bit track address nUITl-
be red 0 - 777 (octal) 

C6 
ADDITIONAL 
PARAMETERS 

SS 
Sector addre s s 
numbered 0 -
47 (octal) 

5S 
Sector addre s s 
numbered 0 -
47 (octal) 

none 



INPUT /OUTPUT 

Table 8-23 (cont). Summary of PDT I/O Control Characters 

INPUT/OUTPUT OPERATION 
CI 

EAD/WRITE 
CHANNEL 

LOAD ADDRESS REGISTER XX 

STORE ADDRESS REGISTER XX 

SEARCH AND READ XX 

E SEARCH AND READ NEXT xx 
M 

C2 
CONTROL UNIT 

X2 X 

Xl X 

XIX 

PDT I/O CONTROL CHARACTER 

C3 
ADDITIONAL 
PARAMETERS 

4 X 
(X=unused) 

4 X 
(X:::unused) 

3 D 
(D=clevice 

C4 
ADDITIONAL 
PARAMETERS 

C5 
ADDITIONAL 
PARAMETERS 

C6 
ADDITIONAL 
PARAMETERS 

~ ~ __________________ ~ ____________ +-____ O-______ -1 __ ~a~d~dr~e~s~s~) ____ 1-______________ ~ ____ --------~-------------l 
SEARCH AND WRITE NEX X X Xl X 3 D 

Y (D=device 

o D 
(D=device 
address) 

F ~ __________________ -1 ____________ +-____ '-______ -1 ____ a_d_dr_e_S_'~) ____ 4-______________ ~ ____ ---------r-------------l 
READ INITIAL xx x x 

L 
E 

READ 

FORMAT WRITE INITIAL 

FORMAT WRITE 

xx 

xx 

xx 

XIX 

x" x 

I D 
(D=device 
address) 

o D 
(D=device 
address) 

I D 
(D=device 
address) 

See: Mass Mern.ory File Transports and Control (File No. 112.0005.1400.00. OIl 

C READ (NO CARRIAGE XX Xl X 

0 
RETURN) 

N READ (CARRIAGE RETURN) XX Xl x 

0 
WRITE (NO CARRIAGE XX X2 X 

L 
RETURN) 

E WRITE (CARRIAGE XX X2 x 
RETURN) 

See: Honeywell Series 200 Equipment Operators! Manual (DSI-294) 

ACCEPT the H-800/l800 
L instruction defined in the 

xx 

xx 

x x 

x x 

o 0 

o I 

o 0 

o I 

4 X 
(X=unused) 

o 0 

10 register. 6 
N ~~~~~--------*---------~------------~----------4------------4------------+---------~ 
E ACCEPT the H-800/l800 X X X X 0 4 

instruction defined in the 
A ID register, and cause the 
D H-800/l800 to branch to 
A U+4 or U+5. 6 
P 
T 
E 
R 

DO NOT ACCEPT the 
H-800/1BOO instruction 
defined in the ID register; 
rather, cause the H-800/ 
1800 program to branch 

to U+6 or U+7 (read or 
write error), 6 

SET the device busy 

indicator. 6 

xx 

xx 

See: Model 212 On-Line Adapter (DSI-274) 

x x 

x x 

I U 
(U = any value 
from 0 - 7, 
octal) 

3 X 
(X=unuscd) 

T 2 RECEIVE 
Y 8 

xx 

P I 
E 

C 
C 
C 

TRANSMIT xx 

NOTES: I. The high-order bit must be 1. 
2. The high-order bit must be O. 
3. Odd parity is astumed. If even parity ~s requ~red, the first octal character should be 7. 
4. Odd parity is assumed. If even parity 15 requned, the first octal character should be 3. 
5. Odd parity and short gap are assumed. 
6. This operation issues initiating and concluding device-ready responses. 

8-113 



SECTION 8. INSTRUCTIONS 

Table 8-24. C3 Coding for Type 209 Paper Tape Reader 

Not used One character Sense end Check odd Forward Inc reITlent 
per fraITle of record parity RWC 

o Not used Two charac- Do not Check even Reverse Dec reITlent 
ters per fraITle sense end parity RWC 

of record 

Table 8-25. C3 Coding for Type 210 Paper Tape Punch 

Not used One character Not used COITlpute odd 00 = Do not punch parity 
per fraITle parity 

01 Parity bit in chan-

o Not used Two charac- Not used COITlpute 
nel six 

ters per fraITle even parity 10 = Parity bit in chan-
nel seven 

11 = Parity bit in chan-
nel eight 

Table 8-26. C3 Coding for Types 206 and 222 Printers 

OOnnnn Print, then space the nUITlber of lines 
specified by nnnn (l - 15). 

01nnnn Print, then space to the head of the 
forITl if the end of the forITl is sensed; 
otherwise, space the nUITlber of lines 
specified by nnnn (l - 15). 

11 nnnn Do not print; spac e the nUITlbe r of 
lines specified by nnnn (l - 15). 

100011 Print, then space to the head of the 
forITl. 

101111 Do not print; space to the head of 
the forITl. 

OOnnnn 

Olnnnn 

Ilnnnn 

100xxx 
101xxx 

000 
001 

Type 2:22 

Print, then space the nUITlbe r of line s 
specified by nnnn (0 - 15). 

Print, then space to channel one of 
the forITlat tape (HOF) if channel two 
of the forITlat tape (EOF) is sensed; 
otherwise, space the nUITlber of lines 
specified by nnnn (0 - 15). 

Do not print; space the nUITlber of 
lines specified by nnnn (0 - 15). 

Print, then space to channel xxx. 
Do not print; space to channel xxx. 

Channel 3 
Channel 4 

010 Channel 5 
011 Channel 1 (Head of forITl) 
100 Channel 6 
101 Channel 7 
110 Channel 8 
III Channel (Head of forITl) 

8- 114 



o 

INPUT /OUTPUT 

Table 8-27. C3 Coding for Type 270 RandoITl Access DruITl 

Override 

Do not 
override 

Inc reITlent druITl 
address register 

Do not increITlent 
druITl addre s s 
register 

This is a Read Ad­
dress Register in­
struction 

This is not a Read 
Address Register 
instruction 

DruITl file de signation 
o - 7 (octal) 

PDT I PERIPHERAL DATA TRANSFER I For: MULTI-CHANNEL COMMUNICATION 
CONTROL 

FORMAT 

FUNCTION 

( I/O CONTROL CHARACTERS) 

OP CODE A ADDRESS CI C2 - - - -
This PDT instruction causes data to be transferred between the Multi-Channel COITl­
ITlunication Control and the ITlain ITleITlory area de signated by the A addre s s. Input / 
output c~ntrol character C1 designates the read/write channel through which the 
data will be transferred, while C2 designates the peripheral control address. Both 
CI and C2 are described in Table 8- 22 (see page 8-109). 

PUNCTUATION MARKS 

TIMING 

The execution of this instruction neither affects nor is affected by word ITlarks or 
record ITlarks. 

Model 200 Processors: 

T = Ni+l ITleITlory cycles + data transfer tiITle. 

Type 1201 Processor: 

T = (Ni -Nctl) ITleITlory cycles + (Ncn+3) input/output cycles + 1 processor cycle + 
data transfer tiITle. 1 

1The input/output traffic control of the Type 1201 processor gives one out of every four ITleITlory 
cycles unconditionally to the processor for internal operations; this cycle is called the "proc­
essor cycle." The three reITlaining cycles, which can be allocated either to the processor or 
to read/write channels, are called "input/output cycles." 

8-115 



SECTION 8. INSTRUCTIONS 

Type 2201 Processor: 

T ::: (Ni -Nc+l) memory cycles t Nc alternate memory cycles + data transfer time. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

NXT A 

NOTES 

1. If either the read/write channel or the peripheral control (specified by Cl 
and C2, respectively) is found "busy" during the extraction of a PDT in­
struction, the Instruction is re-extracted: the contents of SRI are set 
back to the address of the PDT op code, and the extraction process begins 
again. This process, which allows the processor to respond to interrupt 
signals that may occur while the PDT instruction is awaiting the availability 
of a read/write channel or peripheral control, is not performed in the 
Types 201 and 201-1 processors; PDT extraction in these two processors 
waits until the busy channel or control is available. 

2. The PDT op code is a "privileged" op code when used in a Type 2201 
processor equipped with the Storage Protect Feature (see Appendix E). 

Table 8-28. Summary of PDT I/O Control Characters for Type 286 Multi-Channel 
Communication Control 

PDT IlOCONTROl,t CHAR •. 

FIRST DATA TRANSMISSION PDT 

RECEIVE DATA PDT 

TRANSMIT DATA PDT 

LINE CONTROL PDT 

LOC 
(specifies "line 0" 
in 286) 

LOC+z 
(specifies line ad­
dress in 286) 

LOC+2 
(specifies line ad­
dress in 286) 

LOC 
(specifies address 
of line to be con­
trolled) 

NOTE: The six-
line control trans­
mission PDT in­
structions are listed 
in Table 8-29, below. 

NOTES: 1. The high-order bit must be 1. 
2. The hi h-order bit must be O. 

8-116 

'G'l 

xx none 

xx XIX none 

xx X2 X none 

XX none 



INPUT /OUTPUT 

Table 8-29. Type 286 Line Control Instructions 

CODEl" 
.; ' .. . , , 

'-., 
'. " . ..: 

(OCTAL)" INSTRUCTION· , "<",. Dl!!SCRI:PTtO~ . / ... '... ....,}< .. ,: .. ' .... , , .... ....... 

10 TransITlit last InforITl the 286 that the last character has 
character been sent froITl the central processor, and 

place the control unit in the receive ITlode 
for that line (after transITlitting last char-
acter). 

60 Receive clear Reset the bits of the logic character in the 
286 ITleITlory. (This instruction should be 
given when power is first turned on. ) 

30 Inhibit 285 (ser- Turn off the interrupt capability of a line 
VIce request) that is requesting service (either input or 

output ). 

50 TransITlit idle Repeat the previously provided character 
character indefinitely, without interrupts. 

40 TransITlit Stop the line froITl repeating character 
and cause an interrupt. 

74 Move Longitudinal Move the LRC character froITl the LRC 
Redundanc y Check register to the data buffer register. 
(LRC) Character 

NOTE: The control code is stored in location LOCtl. (The high-order four bits of this 
location contain the code; the low-order two bits ITlUst be O. ) 

PCB I PERIPHERAL CONTROL AND BRANCH\ For: PUNCHED CARD EQUIPMENT 
PAPER TAPE EQUIPMENT 
PRINTER 

FORMAT 

FUNCTION 

OP CODE A ADDRESS CI - - -

MAGNETIC TAPE EQUIPMENT 
RANDOM ACCESS DRUM 
MASS MEMORY FILE 
CONSOLE 
ON - LINE ADAPT ER 
SINGLE-CHANNEL COMMUNICATION 

CONTROL 

(I/O CONTROL CHARACTERS) 

C2 C3 Cn - - .. 

r----, 
. I I 

L.. ___ .J 

The Peripheral Control and Branch instruction can initiate two types of operations: 
(l) test operations, and (2) control operations. 

8-11 7 



SECTION 8. INSTRUCTIONS 

1. Test operations test the status of the peripheral control to which the 
PCB instruction is issued (e. g., test for a "busy" status, test to 
determine if an error is present, etc.) 

2. Control operations set the peripheral control to perform a specific 
control function(e. g., reject error cards when addressed to card 
controls, rewind the tape when addressed to a magnetic tape control, etc.) 

The A address of a PCB instruction specifies a main memory location to which the 
machine branches if the test cor.ditions specified by C3 through Cn are present. If 
the PCB instruction is initiating a control operation, the A address specifies the 
main memory location to which a branch is made if the peripheral device is unavail­
able. 

C1 designates the read/write channel. The function of this character is the same 
as its function for a PDT instruction; see Table 8-22 (page 8-109). 

C2 designates the peripheral control. The function of this character is the same as 
its function for a PDT instruction; see Table 8- 22 (page 8-109). 

Control characters C3 through Cn designate the control and test operations. The 
specific use of these control characters is dependent upon the type of peripheral 
device addressed. A summary of coding for these characters may be found in 
Table 8- 30 (see page 8- 119). 

PUNCTUATION MARKS 

TIMING 

The execution of this instruction neither affects nor is affected by word marks or 
record marks. 

Model 200 Processors: 

T = Ni+l memory cycles if no branch condition exists. 

T = N i +2 memory cycles if a branch occurs. 

Type 1201 Processor: 

T = (Ni -Nc+l) memory cycles + Nc input/output cycles. 1 

Type 2201 Processor: 

T = (Ni -Nc +l) memory cycles + Nc alternate memory cycles. 

ADDRESS REGISTERS AFTER OPERATION 

SR 

NXT 

JI (A) 

AAR 

A 

A 

BAR 

B 
P 

NXT 

NO BRANCH 

BRANCH 

I The input/output traffic' control of the Type 1201 processor gives one out of every four memory 
cycles unconditionally to the processor for internal operations; this cycle is called the "proc­
essor cycle." The three remaining memory cycles, which can be given either to the processor 
or to read/write channels, are called "input/output cycles. 

8-118 



INPUT /OUTPUT 

NOTES 

1. Control character C1 tests the status of a read/write channel. If an 
RWC status test is not desired, Cl must contain zeros. 

2. The PCB op code is a "privileged" op code when used in a Type 2201 
processor equipped with the Storage Protect Feature (see Appendix E). 

EXAMPLE 

PROBLEM 

CARD 
NUMBER 

I 2 3 4 5 

I 

::r:: 
U 
Z 
0 
p., 
Q 
~ 
..:t: 
u 
.--/ 

I 
'<1' 
.--/ 

N 

!il 
p., 
:>< 
~ 

~ 

In the following example, assume that the logical address of the card reader control 
is octal 41. 

Set the card reader control to read Hollerith code (C3 = 27) and to reject automati­
cally all cards with hole-count errors (C4 = 21). If the device is inoperable, branch 
to the location tagged STOP. (Note that since an RWC is not to be tested, C1 must 
contain zeros. ) 

EASYCODER 
CODING FORM 

PROG RAMMER TE DA PAGE OF 

n LOCATION \ OPERATION 
CODE OPERANDS 

6 7 • 1415 2021 6263 80 

Ipes 5TOP,,~¢ +1 27 21 

Table 8-30. Summary of PCB I/O Control Characters 

Branch to A address if device busy X X X2 X 1 0 

Branch to A address if punch-check error X X X2 X 4 

Branch to A address Punch Hollerith X X X2 X 2 7 
if device unavailable. code4 

If available, set con-
Punch special code X X X2 X 2 6 

trol unit to: 
Punch direct tran- X X X2 X 2 5 
scription code (fea-
ture 064) 

Generate busy sig- XX X2 X 2 3 
nal if punch-check 
error 

Reject cards with XX X2 X 2 1 
punch-check error 

Turn the control allow function OFF X X X2 X 7 0 

Turn the control allow function ON X X X2 X 7 

, 
X2 Turn the control interrupt function OFF X X X 7 4 

Branch to A address if the control interrupt X X X2 X 7 5 
function is ON 

8-119 



SECTION 8. INSTRUCTIONS 

Table 8-30 {cont}. SUITuTlary of PCB I/O Control Characters 

, .' .",',;:; ." ' .' '.' '. .. ,',' .. " .. ", ]?OB'I/O CONTROL CHARACTERS ,. " 'rEST' AND CONTROL Ol?ltltATIONS" 
"r ~' 

' ."... ..~.;<' " ." . .. '.~ . .' ".-'..".. " '<' ' '.<' Cl <::3: ,thl'ougll:Cn, , 
. 

CZ ''':>'':',. " . . .... , 

Branch to A address if device busy X X X3 X 1 0 

Branch to A address if punch-check error X X X3 X 4 1 

Branch to A address if illegal punch X X X3 X 4 2 

Branch to A address Terminate punch-feed X X X3 X 2 7 

::r: if device unavailable. read operations, op-

0 If available, set con- erate in Hollerith mode, 

13 trol unit to: and accept all error 
p... cards4 ~ 
q 

Punch special code X X X3 X 2 6 t:t:: 
~ 

X3 0 Punch direct tran- X X X 2 5 
........ 

scription code {fea-t:t:: 
fil ture 064} q 
~ Generate busy signal X X X3 X 2 4 fil 
t:t:: if illegal punch 
q 

X3 t:t:: Generate busy signal X X X 2 3 
~ if punch-check error 0 
N Reject cards with X X X3 X 2 2 I 

~ illegal punches .--. 
N 

fil Reject cards with X X X3 X 2 1 
p... punch-check error 
:>< 
E-< Operate in punch-feed X X X3 X 2 0 

read mode 

Turn the control allow function OFF X X X3 X 7 0 

Turn the control allow function ON X X X3 X 7 1 , 

Turn the control interrupt function OFF X X X3 X 7 4 

Branch to A address if the control interrupt X X X3 X 7 5 
function is ON 

Branch to A address if device busy X X Xl X 1 0 
t:t:: 
fil Branch to A address if cycle check error X X Xl X 4 1 q 
~ 
fil Branch to A address if illegal punch X X Xl X 4 2 t:t:: 
q 

Xl t:t:: Branch to A address Read Hollerith code X X X 2 7 
~ if device unavailable. and accept all error 0 
«"'> If available, set con- cards4 
N 

trol unit to: N 
Xl 

fil 
, Read special code X X X 2 6 

p... 
Read direct tran- X Xl X 2 5 :>< 

E-< scription code (fea-
ture 044) 

8-120 



INPUT / OUTPUT 

Table 8-30 (cont). Summary of PCB I/O Control Characters 

Branch to A address Reject cards with XX Xl X 2 1 
....... if device unavailable. cycle check error 
1:: If available, set con-0 Reject cards with XX Xl X 2 2 2 trol unit to: 

illegal punches 
p::; 

Generate busy sig- XX Xl X 2 3 f;tl 
~ nal if cycle check 
< 
f;tl error 
p::; 

Xl 2 4 
~ 

Generate busy sig- XX X 
p::; nal if illegal punch 
< 
U 

Xl 
('f) Turn the control allow function OFF X X X 7 0 
N 
N 

Turn the control allow function ON f;tl X X Xl X 7 1 
D.i 
:>< 

Turn the control interrupt function OFF X X Xl X 7 4 f-! 

Branch to A a<Jlrress if the control interrupt X X Xl X 7 S 
function is ON 

See: Honeywell Series 200 Equipment Operators I Manual (DSI-294) 

Branch to A address if device busy X X X2 X 1 0 

Branch to A address if echo-check error X X X2 X 4 1 

Branch to A address Punch Hollerith X X X2 X 2 7 
if device unavailable. code4 

If available, set con-
Punch special code X X X2 X 2 6 

trol unit to: 

:r: Punch direct tran- X X X2 X 2 S 
U scription codeS 
5 (feature 064) 
D.i 

X2 X ~ Generate busy sig- XX 2 3 
p::; nal if echo -check < 
U error 
...... 

Reject cards with XX X2 X 2 1 I 

"'" N echo-check errors 
N 

f;tl 
Turn the control allow function OFF X X X2 X 7 0 D.i 

:>< 
f-! X2 Turn the control allow function ON X X X 7 1 

Turn the control interrupt function OFF X X X2 X 7 4 

, 
X2 Branch to A address if the control interrupt X X X 7 S 

function is ON 

8-121 



SECTION 8. INSTRUCTIONS 

Table 8- 30 (cont). Summary of PCB I/O Control Characters 

"""":, ",~", ,,"":',": " ... ···~.~;l;~tm qONTAO~9:;' qB'!lO CONTROLC~:r:J:U . ' ...... 
i ,:."" .: .. '.;:':\.,;' ... , .' .... ,'::.. .G1 ".: .C2:,,< ,>~):;;t.~Iil.:b~n'" 

Branch to A address if device busy X X X3 X 1 0 

Branch to A address if echo-check or read X X X3 X 4 I 
registration errors 

Branch to A address if illegal punch X X X3 X 4 2 

Branch to A address Terminate punch-feed X X X3 X 2 7 
if devic e unavailable. read operations, op-
If available, set con- erate in Hollerith 

:r: trol unit to: mode, and accept all 
U 

cards4 
S error 

p... Convert to special code X X X3 X 2 6 
Cl 

Operate in direct p:; X X X3 X 2 5 
<t: transcription mode 5 
U 
"- (feature 064) 
p:; 
r:L1 Generate busy signal X X X3 X 2 4 Cl 
<t: if illegal punch 
r:L1 
p:; Generate busy signal X X X3 X 2 3 
Cl if echo-check or read p:; 
<t: registration errors 
U 

X3 N Reject cards with X X X 2 2 
I ille gal punche s ..q< 

N 
N Reject cards with X X X3 X 2 I 
r:L1 echo-check or read p... 
:>-< registration errors 
E--o 

Operate in punch- X X X3 X 2 0 
feed read mode 

Turn the control allow function OFF X X X3 X 7 0 

Turn the control allow function ON X X X3 X 7 I 

Turn the control interrupt function OFF X X X3 X 7 4 

Branch to A address if the control interrupt X X X3 X 7 5 
function is ON 

See: Honeywell Series 200 Equipment Operators I Manual (DSI- 294) 

Branch to A address if device busy X X Xl X I 0 

Cl Branch to A address if hole -count error X X Xl X 4 I p:; 
<t: p:; 
U r:L1 Branch to A address if illegal punch X X Xl X 4 2 
r- Cl 
N <t: N Xl 
r:L1 

r:L1 Branch to A address Terminate punch-feed X X X 2 7 
p... p:; 

if device unavailable. read operations (fea-
:>-< If available, 

, 
ture 062), if applicable, 

E--o 
set con-

trol unit to: operate in Hollerith 
mode, and accept all 
error cards4 

8-122 



INPUT /OUTPUT 

Table 8-30 (cont). Summary of PCB I/O Control Characters 
..•.. ~ 

':}~t~~~.~.~~'·'·· POl:tIIO CONTROL CHARACTERS 

", 01 C2 C3 through Cn 

Branch to A address Read special code , X X Xl X 2 6 
if device unavailable. 

Read direct tran- X X Xl X I 2 5 
If available, set con-

scription code (fea- I 
trol unit to: , 

ture 040) 

Reject cards with X X Xl X 2 1 
hole-count errors 

~ 
Reject cards with X X Xl X 2 2 .., 
illegal punches ~ 

0 
~ Generate busy sig - X X Xl X 2 3 
~ nal if hole -count 
(i1 
Q error 
~ Xl (i1 Generate busy sig- X X X 2 4 
~ nal if ille gal punch 
Q 
~ Place previously X X Xl X 3 1 
~ 
U read card in mid-
r- dIe stacker (fea-
N 

017) N ture 
(i1 

Place p.. previously X X Xl X 3 2 
:>-0 read card in the 
E-< 

read eject stacker 
(feature 017-1) 

Turn the control allow function OFF X X Xl X 7 0 

Turn the control allow function ON X X Xl X 7 I 

Turn the control interrupt function OFF X X Xl X 7 4 

Branch to A address if the control interrupt X X Xl X 7 5 
function is ON 

See: Honeywell Series 200 Equipment Operators i Manual (DSI-294) 

Branch to A address if device busy X X X2 X 1 0 

Branch to A address if hole -count error6 (fea- X X X2 X 4 1 

Q 
ture 061) 

~ 
~ Branch to A address Terminate punch-feed X X X2 X 2 7 
U ::r: 
r- U if device unavailable. read operations (fea-
N Z If available, set con- ture 062), if applicable, N ::> 
(i1 p.. trol unit to: and punch Hollerith 
p.. code4 
:>-0 
E-< , 

Punch special code X X X2 X 2 6 

Punch direct tran- X X X2 X 2 5 
scription code 5 (fea-
ture 060) 

8-123 



SECTION 8. INSTRUCTIONS 

Table 8- 30 (cont). Summary of PCB I/O Control Characters 

r­
N 
N 

Branch to A address 
if device unavailable. 
If available, set con­
trol unit to: 

Reject cards with 
illegal punches (fea­
ture 052) 

Reject cards with 
hole-count errors 5 

(feature 061) 

Punch-feed read 
ope rations 5 (fea­
ture 062) 

Place previously 
punched card in 
middle stacke r 5 

(feature 017) 

Place previously 
punched card in the 
punch eject stacker 
(feature 017-1) 

Turn the control allow function OFF 

Turn the control allow function ON 

Turn the control interrupt function OFF 

Branch to A address if the control interrupt 
function is ON 

xx 

xx 

xx 

xx 

xx 

XX 

XX 

XX 

XX 

See: Honeywell Series 200 Equipment Operators' Manual (DSI-294) 

Branch to A address if device busy 

Branch to A address if parity error 

Branch to.A address 
if device unavailable. 
If available, set con­
trol unit to: 

Rewind the tape (re­
verse direction) 

Runout the tape (for­
ward direction) 

Turn the control allow function OFF 

Turn the control allow function ON 

Turn the control interrupt function OFF 

Branch to A address if the control interrupt 
function is ON 

See: Models 209/210 Paper Tape Equipment (DSI-322) 

8-124 

X X 

XX 

X X 

X X 

X X 

XX 

XX 

XX 

X2 X 

X2 X 

X2 X 

X2 X 

X2 X 

X2 X 

Xl X 

Xl X 

Xl X 

Xl X 

Xl X 

Xl X 

Xl X 

Xl X 

2 2 

2 1 

2 0 

3 1 

3 2 

7 0 

7 

7 4 

7 5 

1 X 
(X=unused) 

4 X 
(X=unused) 

3 0 

3 2 

7 0 

7 

7 4 

7 5 



I 

','v .. 

r::r:: 
ril:r: 
o..u 

~S 
00.. 
-< 
Nril 
rilo.. 
0..-< 
><E-< 
E-< 

See: 

-.Dr::r:: 
~ril 
rilE-< 
0..:5 
><r::r:: 
E-<o.. 

See: 

~ 
ril 
t-< 
Z 
H 

~ 
0.. 
N 
N 
N 

ril 
0.. 
>< 
t-< 

See: 

INPUT /OUTPUT 

Table 8-30 (cont). Surrmlary of PCB I/O Control Characters 

.'. 'I'ES'I' AND CONTROL OPERATION'S 
PCB I/O CONTROL CHARACTERS 

. ," ~ .. -

. '; tl C2 C3 through Cn 
< •• ~. 

Branch to A address if device busy X X X2 X 1 0 

Turn the control allow function OFF X X X2 X 7 0 

Turn the control allow function ON X X X2 X 7 1 

Turn the control interrupt function OFF XX X2 X 7 4 

Branch to A address if the control interrupt XX X2 X 7 5 
function is ON 

Models 209/210 Paper Tape EquipITlent (DSI-322) 

Branch to A address if device busy X X X2 X 1 0 

Branch to A address if print error X X X2 X 4 0 

Honeywell Series 200 EquipITlent Operators' Manual (DSI-294) 

Branch to A address if device busy X X X2 X 1 0 

Branch to A address if print error X X X2 X 4 0 

Branch to A address if forITlatting is X X X2 X 2 0 
cOITlplete 

Branch to A address if end of forITl X X X2 X 0 1 

Branch to A address if channel eight X X X2 X 0 2 

Turn the control allow function OFF X X X2 X 7 0 

Turn the control allow function ON X X X2 X 7 1 

Turn the control interrupt function OFF X X X2 X 7 4 

Branch to A address if the control interrupt X X X2 X 7 5 
function is ON 

Honeywell Series 200 EquipITlent Operators' Manual (DSI-294) 

8-125 

f; 

[ 

I 
I 



SECTION 8. INSTRUCTIONS 

Table 8- 30 (cont). SUITlInaryof PCB I/O Control Characters 

t,. ,.."' ,,;.. ,. ... .•..•. ,," PCS'I10CONTROL CHAR,AC. T.El\S .. 
[:: ,<\".S$'IlAN;DCONl'ROLOPEM'7t;tOl'lS/'>' ". 

F"=' ==::::==r'=" ,,,,, •. ' .""".,,,,' ,., ':::" ""'""'.=",,,, ..... "". ,=" ",,',=.' =' ,===::::"==::::' '''''''.:''''';'=' .• ',="",,' """,,' ",,' ",,',=,==*===' ""C""l=.; ~ C2C3 through' Cn 

::r: 
u 
Z 
H 

N 

--­..... 

Rewind 

Rewind and release 

Branch to A address if read busy 

Branch to A address if write busy 

Branch to A address if read/write error 

Branch to A address if beginning of tape 

Branch to A address if end of tape 

Turn the control allow function OFF 

Turn the control allow function ON 

Turn the control interrupt function OFF 

Branch to A address if the control interrupt 
function is ON 

xx 

X X 

xx 

X X 

XX 

Xx 

XX 

XX 

Xx 

XX 

XX 

See: Honeywell Series 200 EquipITlent Operators l Manual (DSI-294) 

Rewind XX 

Release X X 

Branch to A address if read busy Xx 

Branch to A address if write busy XX 

Branch to A address if read/write error X X 

8-126 

X2 X 

Xl X 

X2 X 

Xl X 

Xl X 

X2 X 

X2 X 

2 D 
(D=tape drive, 

o - 7) 

2 D 
(D=tape drive, 

o - 7) 

o D 
(D=tape drive, 

o - 7) 

o D 
(D=tape drive, 

o - 7) 

4, D 
(D=tape drive, 

o - 7) 

6 D 
(D=tape drive, 

o - 7) 

6 D 
(D=tape drive, 

o - 7) 

7 0 

7 1 

7 4 

7 5 

2 D 
(D=tape drive, 

o - 7) 

2 D 
(D=tape drive, 

o - 7) 

0 D 
(D=tape drive, 

o - 7) 

0 D 
(D=tape drive, 

o - 7) 

4 D 
(D=tape drive, 

o - 7) 



INPUT /OUTPUT 

Table 8 -30 (cont), Sununary of PCB I/O Control Characters 

, 
PCBl/OCONTRol.:CR:ARACT~;:,'f:':3, 

," :q-ESTAND ,CONTR.Ol..QPEItAl'IONS .. : . ".: . ".', . ". - . , . .,." .. ; ~ " "~ :,: -<"" ". 

I 
"" / 

,', 

, Cl Ci "' .. , ·C,,'throu.eh :Cn :, ,. 
Branch to A address if beginning of tape X X Xl X 6 D 

U) 
(D=tape drive, 

E-<-- 0 - 7) 
Hi:: 

x2 

I 
Z 0 Branch to A address if end of tape X X X 6 D 
o~ 
~ 

(D=tape drive, 
p..:r: 0 - 7) 
<0 

X2 E-<Z Branch to A address if "long check" error X X X 5 X 
OH is detected (X=unused) H"<I' 
E-< ....... 

X3 ~M Turn the control allow function OFF X X X 7 0 
Z 

X3 CJ Turn the control allow function ON X X X 7 I < 
::;E Turn the control interrupt function OFF X X X3 X 7 4 

Branch to A address if the control interrupt X X X3 X 7 5 
function is ON 

See: Series 203A/204A Three-Quarter Inch Magnetic Tape Systems (DSI-342) 

Branch to A address if device busy5 Xl X X X 0 X or I X 

::;E (X=unused) 

0::;E Branch to A address if error indicator is on Xl X X X 4 X Cl
O Zp:; (X=unused) 

~Cl Turn the control allow function OFF Xl X X X 7 0 
oU) 
r-U) 

Xl N~ Turn the control allow function ON X X X 7 I 
~O 
p..O Turn the control interrupt function OFF Xl X X X 7 4 
:>-« 

Xl E-< Branch to A address if the control interrupt X X X 7 5 
function is ON 

See: Model 270 Random Access Drum and Control (DSI-348) 

Branch to A address if control busy Xl X X2 X I X 

~ 
(X=unused) 

....:l Branch to A address if device busy Xl X X2 X 0 D H 
~ (D=device 
:>-< address) p::; 

° Branch to A address if general exception Xl X X2 X 5 X ::;E 
~ (X=unused) 
::;E 

Xl X2 U) Branch to A address if device unavailable X X 4 D 
U) 

(D=device < 
::;E address) 

Branch to A address if TLL flag Xl X Xl X 5 X . 
(X=unused) 

8-127 



SECTION 8. INSTRUCTIONS 

Table 8-30 (cont). SUITunary of PCB I/O Control Characters 

Branch to A address 
if specified transport 
is busy. If not busy, 
set control unit to: 

Seek out the strip 
(specified by C5 
and C6) in the 
cartridge (speci­
fied by C4) 

Return the tape strip 
currently on the 
read/write druITl (if 
any) to the cartridge. 

Return the tape strip 
currently on the 
read/write druITl to 
the cartridge. SiITl­
ultaneously, if 
another strip is on 
the waiting platforITl 
(or is in the process 
of being placed on 
the platforITl), that 
strip is also returned 
to the cartrid e. 

Turn the control allow function OFF 

Turn the control allow function ON 

Turn the transport allow function OFF 

Turn the transport allow fanction ON 

Turn the control interrupt function OFF7 

Branch to A address if the control interrupt 
function is ON 

Turn the transport interrupt function OFF 

Branch to A address if the transport interrupt 
function is ON 

Xl X 

Xl X X6 X 

Xl X X6 X 

Xl X X6 X 

Xl X X6 X 

Xl X X6 X 

Xl X X6 X 

Xl X X6 X 

Xl X X6 X 

C3: 2 D 
(D=device 
address) 

C4: 0 0 for 
Types 251 
and 252; 
o 0 to 
o 4 for 
Type 253 

C5 and C6: 0000 
to 0777 

3 D 
(D=device 
address) 

3 D 
(D=device 

address) 

7 0 

7 

7 2 

7 3 

7 4 

7 5 

7 6 

7 7 

See: Mass MeITlory File Transports and Control (File No. 112.0005.1400.00.01) 

'(,::l 
~...:J 
NO 
(,::lU) 
p..,Z 
:>-00 
E-<l) 

Branch to A address if device busy XX 

See: Honeywell Series 200 EquipITlent Operators' Manual (DSI-294) 

8-128 

X2 X 1 0 



Table 8-30 (cont). Summary of PCB I/O Control Characters 

Branch to A address if device busy X X 

N Reset the interrupt function X X , 
olil 
N....:l Branch to A address if the interrupt function X X 
NO 
1ilU) is ON 
~:z; 
~O 
E-lU 

See: Honeywell Series 200 Equipment Operators' Manual (DSI-294) 

Iil 
....:l 
o 
U) 
:z; 
o 
U 

Branch to A address if device busy 

Turn the allow function OFF 

Turn the allow function ON8 

Turn the data termination interrupt 
function OFF 

Branch to A address if data termination 
interrupt function is ON 

Turn the manual interrupt function OFF 9 

Branch to A address if manual interrupt 
function is ON9 

Branch to A address if device busy 

Branch to A address if data transfer is in 
progress 

Branch to A address if error or incom­
plete indicator is set 

Branch to A address if parity error is 
stored 

Branch to A address if incomplete error 
is stored 

Place control character C4 in the ID reg­
ister if data transfer is not in progress 

Branch to A address unconditionally, and 
clear the ID r€!tgister 

8-129 

XX 

XX 

XX 

XX 

XX 

XX 

X X 

Xl X 

Xl X 

Xl X 

X2 X 

X2 X 

X2 X 

X X 

X2 X 

X2 X 

X2 X 

X3 X 

INPUT /OUTPUT 

0 

7 6 

7 7 

1 0 

7 0 

7 1 

7 4 

7 5 

7 6 

7 7 

o X or 1 X 
(X=unused) 

7 X 
(X=unused) 

4 X 

5 X 
(X=unused) 

6 X 
(X=unused) 

C3: 2 X 
(X=unused) 

C4: octal char­
acter to be 
placed in 
ID register 

3 X 
(X=unused) 



SECTION 8. INSTRUCTIONS 

u 
u 
u 
U) 

...... 
00 
N 

Table 8-30 (cont). Summary of PCB I/O Control Characters 

Branch to A address if device bus 

Branch to A address if parity error 

Branch to A address if error other than 
parity error 

Branch to A address if the 281 is in 
transmit mode and requesting data for 
transmission onto line 

Branch to A address if the 281 is in re­
ceive mode and requesting that central 
processor take received data 

Turn the allow function OFF 

Turn the allow function ON 

Turn the inter function OFF 

Branch to A address if allow and interrupt 
functions are ON 

XX X3 X 

XX X3 X 

XX X3 X 

XX X3 X 

XX X3 X 

XX X3 X 

XX X3 X 

XX X3 X 

XX X3 X 

1 0 

4 0 

5 0 

6 0 

6 1 

7 0 

7 1 

7 4 

7 5 

NOTES: 1. The high-order bit must' be 1. 

2. The high-order bit must be O. 

3. The high-order bit is set to 1 for input operations and to 0 for output· 
operations. 

4. This control character should precede all other control characters that 
set the control to perform a certain action. It is the programmer I s 
responsibility to set the control to the desired mode of operation at the 
beginning of the run. 

5. As the drum control does not permit reading from one drum file while 
writing on another, it is considered busy if either a read or a write 
operation is in progress. (The value of the high-order bit in C2 is thus 
immaterial in this case. ) 

6. The high-order bit is ignored. 

7. The interrupt functions of both the control and transport are automatically 
turned on when a "not busy" status is reached by the control or transport, 
respectively. __ 

8. For program interruption in the 201 or 201-1 central processor, the 
processor must contain the Program Interrupt Feature (012). 

9. The manual interrupt function is applicable only in those cases where 
the Type 220-3 is employed with the 201 or 201-1 central processor; C3 
control characters 76 and 77 perform no operations with other central 
processors., In those cases where the 201 or 201-1 is not equipped with the 
Program Interrupt Feature (012), the manual interrupt function can still 
be tested or turned off. Thus although the interrupt button cannot effect 
a manual interrupt, the corresponding function can be tested to set up a 
programmed interrupt. 

8-130 



INPUT /OUTPUT 

PCB I PERIPHERAL CONTROL AND BRANCH I For: MULTI-CHANNEL COMMUNICATION 
CONTROL 

FORMAT 

(I/O CONTROL CHARACTERS) 

OP CODE A ADDRESS CI C2 C3 Cn - - - - _ 
r---~ 

.•. '·1 I L. ___ ..J 

FUNCTION 

The Peripheral Control and Branch instruction can initiate two types of operations: 
(1) test operations, and (2) control operations. 

1. Test operations test the status of the peripheral control to which the PCB 
instruction is issued. 

2. Control operations set the peripheral control to perform a specific 
control function. 

The A address of a PCB instruction specifies a main memory location to which the 
machine branches if the test conditions specified by C3 through Cn are present. If 
the PCB instruction is initiating a control operation, the A address is immaterial 
(although it must still be pre sent in the instruction). 

Cl designates the read/write channel. The function of this character is the same as 
its function for a PDT instruction; see Table 8-22 (page 8-109). 

C2 designates the peripheral control. The function of this character is the same as 
its function for a PDT instruction; see Table 8-22 (page 8-109). 

Control characters C3 through Cn designate the control and test operations. A 
summary of coding for these characters may be found in Table 8-31 (see page 8-132). 

PUNCTUATION MARKS 

The execution of this instruction neither affects nor is affected by word marks or 
record marks. 

TIMING 

Model 200 Processors: 

T = Ni +l memory cycles if no branch condition exists. 

T = Ni +2 memory cycles if a branch occurs. 

Type 1201 Processor: 

T = (Ni-Nc+l) memory cycles + Nc input/output cycles. 1 

Type 2201 Processor: 

T = (Ni -Nc+i) memory cycles + Nc alternate memory cycles. 

1 
The three out of every four memory cycles which can be allocated to either the processor or to 
read/write channels are referred to as "input/output cycles." 

8-131 

I 
II , 

i! 
11 
Ii ., 
Ii 
I' 
II 
Ii 

\1 
;! 



SECTION 8. INSTRUCTIONS 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

NXT A NO BRANCH 

JI (A) A BRANCH 

NOTES 

1. Control character Cl tests the status of a: read/write channel. If an RWC 
status test is not desired, Cl ITlUst contain zeros. 

2. The PCB op code is a "privileged" op code when used in a Type 2201 proc­
essor equipped with the Storage Protect Feature (see Appendix E). 

Table 8- 31. Surmnary of PCB I/O Control Characters for Type 286 
Multi-Channel Communication Control 

Branch to A address if device busy. If 
not busy, set the 286 to stop scanning 
and continue the program in sequence 1 

Turn the allow function OFF 

Turn the allow function ON 

Branch to A address if the interrupt was 
due to the 286 requesting service 

xx x X 

XX XX 

XX XX 

XX XX 

NOTE: 1. The busy test has no significance for the Type 286. 

8-132 

1 0 

7 0 

7 1 

7 5 



APPENDIX 
OCTAL NOTATION 

A 

Octal notation is a convenient shorthand method of writing pure binary numbers. In Series 

200 programming it is used to represent such binary values as main memory addresses, variant 

characters, I/O control characters, and constants. 

If a binary value is divided into groups of three bits, proceeding from right to left, each 

group may be replaced by its octal equivalent as indicated in Table A-I. 

Example 1. 

Table A-I. 

> .... .... . ..... ... . .... 
. 3-BIT:BINAR Y 

. GROUP 

000 

001 

010 

011 

100 

101 

110 

III 

The binary value 

011111000101001110 

when divided into three -bit groups 

011 III 0001"01001110 

has an octal equivalent of 

37051 6 

Binary-Octal Equivalents 

... .. 

A-I 

OCTAL 
EQUIVALENT 

Example 2. 

o 
1 

2 

3 

4 

5 

6 

7 

The binary value 

1010100111010 

when divided into three -bit groups 

1010100 111010 

has an octal equivalent of 

1 2 4 7 2 

i 

J.. 



APPENDIX A. OCTAL NOTATION 

Table A-2. Decimal-Octal Conversion Table 

DECIMAL INCREMENT 
0:: ~ 0 r 
UJ t!l 0 000 008 016 024 032 040 048 056 064 072 080 088 096 104 112 120 128 136 144 152 160 168 176 184 192 0 (") 0 
0 Ci 1 001 009 017 025 033 041 049 057 065 073 081 089 097 105 113 121 129 137 145 153 161 169 177 185 193 1 .... =; 
0:: '2 002 010 018 026 034 042 050 058 066 074 082 090 098 106 114 122 130 138 146 154 162 170 178 186 > 6 0 --' 194 2 r 

~ ..: 3 003 011 019 027 035 043 051 059 067 075 083 091 099 107 115 123 131 139 147 155 163 171 179 187 195 3 '" 0 
~ 4 004 012 020 028 036 044 052 060 068 076 084 092 100 108 116 124 132 140 148 156 164 172 180 188 196 4 0 

0 U 5 005 013 021 029 037 045 053 061 069 077 085 093 101 109 117 125 133 141 149...g;f. 165 173 181 189 197 
C> .., 

--' 0 ¢I =< '" 6 MJ, 014 022 030 038 046 054 062 070 078 086 094 102 110 118 126 134 142 150 '"* :IfCEC[81:-l9()-'i9s 
7 "·06i\ 015 023 031 039 047 055 063 071 079 087 095 103 III 119 127 135 143 151 9 167 175 183 .,~r-n9-

0000 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21 22 23 24 25 26 27 30 0000 
0200 31 32 33 34 35 36 37 40 41 42 "'I:;" 44 45 46 47 50 51 52 53 54 55 56 57 60 61 0200 
0400 62 63 64 65 66 67 70 71 72 73 74 75 76 77 100 101 102 103 10. 105 106 107 110 III 112 0400 
0600 113 114 115 116 117 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137 140 141 142 143 0600 
0800 144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166 167 170 171 172 173 174 0800 

1000 175 176 177 200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217 220 221 222 223 224 225 1000 
1200 226 227 230 231 232 233 234 235 236 237 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 1200 
1400 257 260 261 262 263 264 265 266 2(,7 270 271 272 273 274 275 276 277 300 301 302 303 304 305 306 307 1400 
1600 310 311 312 313 314 315 316 317 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337 340 1600 
1800 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357 360 361 362 363 364 365 366 367 370 371 1800 

2000 372 373 374 375 376 377 400 401 402 403 404 405 406 407 410 411 412 413 414 415 416 417 420 421 422 2000 
2200 423 424 425 426 427 430 431 432 433 434 435 436 437 440 441 442 443 444 445 446 447 450 451 452 453 2200 
2400 454 455 456 457 460 461 462 463 464 465 466 467 470 471 472 473 474 475 476 477 500 501 502 503 504 2400 
2600 505 506 507 510 511 512 513 514 515 516 517 520 521 522 523 524 525 526 527 530 531 532 533 534 535 2600 
2800 536 537 540 541 542 543 544 545 546 547 550 551 552 553 554 555 556 557 560 561 562 563 564 565 566 2800 

3000 567 570 571 572 573 574 575 576 577 600 601 602 603 604 605 606 607 610 611 612 613 614 615 616 617 3000 
3200 620 621 622 623 624 625 626 627 630 631 632 633 634 635 636 637 640 641 642 643 644 645 646 647 650 3200 
3400 651 652 653 654 655 656 657 660 661 662 663 664 665 666 667 670 671 672 673 674 675 676 677 700 701 3400 
3600 702 703 704 705 706 707 710 711 712 713 714 715 716 717 720 721 722 723 724 725 726 727 730 731 732 3600 
3800 733 734 735 736 737 740 741 742 743 744 745 746 747 750 751 752 753 754 755 756 757 760 761 762 763 3800 

4000 764 765 766 767 770 771 772 773 774 775 776 777 1000 1001 IDOl 1003 1004 1005 1006 1007 1010 1011 1012 1013 1014 4000 
4200 1015 1016 1017 1020 1021 1022 1023 1024 1025 1026 1027 1030 1031 1032 1033 1034 1035 1036 1037 1040 1041 1042 1043 1044 1045 42.00 
4400 1046 1047 1050 1051 1052 1053 1054 1055 1056 1057 1060 1061 1062 1063 1064 1065 1066 1067 1070 1071 1072 1073 1074 1075 1076 4400 
4600 1077 1100 1101 1102 1103 1104 1105 1106 1107 1110 1111 1112 IIl3 1114 1115 1116 1117 1120 1121 1122 1123 1124 1125 1126 1127 4600 
4800 1130 1131 1132 1133 1134 1135 1136 1137 1140 1141 1142 1143 1144 1145 1146 1147 1150 1151 1152 1153 1154 1155 11 56 1157 1160 4800 

5000 1161 1162 1163 1164 1165 1166 1167 IUO 1171 1172 1173 1174 1175 1176 1177 1200 1201 1202 1203 1204 1205 1206 1207 1210 1211 5000 
5200 1212 1213 1214 1215 1216 1217 1220 1221 1222 1223 1224 1225 1226 1227 1230 1231 1232 1233 1234 1235 1236 1237 1240 1241 1242 5200 
5400 1243 1244 1245 1246 1247 1250 1251 1252 1253 1254 12S5 1256 1257 1260 1261 1262 1263 1264 1265 1266 1267 1270 1271 1272 1273 5400 
5600 1274 1275 1276 1277 1300 1301 1302 1303 1304 1305 1306 1307 1310 1311 1312 1313 1314 1315 1316 1317 1320 1321 1322 1323 1324 5600 
5800 1325 1326 1327 1330 1331 1332 1333 1334 1335 1336 1337 1340 1341 1342 1343 1344 1345 1346 1347 1350 1351 1352 1353 1354 1355 5800 

6000 1356 1357 1360 1361 1362 1363 1364 1365 1366 1367 1370 1371 1372 1373 1374 1375 1376 1377 1400 1401 1402 1403 1404 1405 1406 6000 
6200 1407 1410 1411 1412 1413 1414 1415 1416 1417 1420 1421 1422 1423 1424 1425 1426 1427 1430 1431 1432 1433 1434 1435 1436 1437 6200 
6400 1440 1441 1442 1443 1444 1445 1446 1447 1450 1451 1452 1453 1454 1455 1456 1457 1460 1461 1462 1463 1464 1465 1466 1467 1470 6400 
6600 1471 1472 1473 1474 1475 1476 1477 1500 1501 1502 1503 1504 1505 1506 1507 1510 1511 1512 1513 1514 1515 1516 1517 1520 1521 6600 

ci 6800 1522 1523 1524 1525 1526 1527 1530 1531 1532 1533 1534 1535 1536 1537 1540 1541 1542 1543 1544 1545 1546 1547 1550 1551 1552 6800 
0 Z 7000 1553 1554 1555 1556 1557 1560 1561 1562 1563 1564 1565 1566. 1567 1570 1571 1572 1573 1574 1575 1576 1577 1600 1601 1602 1603 7000 .., 

UJ 7200 1604 1605 1606 1607 1610 1611 1612 1613 1614 1615 1616 1617 1620 1621 1622 1623 1624 1625 1626 1627 1630 1631 1632 1633 1634 7200 
(") 

(/) 
7400 1635 1636 1637 1640 1641 1642 1643 1644 1645 1646 1647 1650 1651 1652 1653 1654 1655 1656 1657 1660 1661 1662 1663 1664 1665 7400 ~ ..: 

co 7600 1666 1667 1670 1671 1672 1673 1674 1675 1676 1677 1700 1701 1702 1703 1704 1705 1706 1707 17H) 1711 1712 1713 1714 1715 1716 7600 > 
7800 1717 1720 1721 1722 1723 1724 1725 1726 1727 1730 1731 1732 1733 1734 1735 1736 1737 1740 1741 1'742 1743 1744 1745 1746 1747 7800 

r 
--' ..: <Xl 
~ 8000 1750 1751 1752 1753 1754 1755 1756 1757 1760 1761 1762 1763 1764 1765 1766 1767 1770 1771 1772 1773 1774 1775 1776 1777 2000 8000 > - 8200 2001 2002 2003 2004 2005 2006 2007 2010 2011 2012 2013 2014 2015 2016 2017 2020 2021 2022 2023 2024 2025 2026 2027 2030 2031 8200 C/> 
U 

8400 2032 2033 2034 2035 2036 2037 2040 2041 2042 2043 2044 2045 2046 2047 2050 2051 2052 2053 2054 2055 2056 2057 2060 2061 2062 
.., 

UJ 8400 
0 8600 2063 2064 2065 2066 2067 2070 2071 2072 2073 2074 2075 2076 2077 2100 2101 2102 2103 2104 2105 2106 2107 2110 2111 2112 2113 8600 

Z 

8800 211421152116 2117 2120 2121 2122 2123 2124 2125 2126 2127 2130 2131 2132 213321342135 2136 2137 2140 2141 2142 2143 2144 8800 
0 

9000 2145 2146 2147 2150 2151 2152 2153 2154 2155 2156 2157 2160 2161 2162 2163 2164 2165 2166 2167 2170 2171 2172 2173 2174 2175 9000 
9200 2176 2177 2200 2201 2202 2203 2204 2205 2206 2207 2210 2211 2212 2213 2214 2215 2216 2217 2220 2221 2222 2223 2224 2225 2226 9200 
9400 2227 2230 2231 2232 2233 2234 2235 2236 2237 2240 2241 2242 2243 2244 2245 2246 2247 2250 2251 2252 2253 2254 2255 2256 2257 9400 
9600 2260 2261 2262 2263 2264 2265 2266 2267 2270 2271 2272 2273 2274 2275 2276 2277 2300 2301 2302 2303 2304 2305 2306 2307 2310 9600 
9800 2311 2312 2313 2314 2315 2316 2317 2320 2321 2322 2323 2324 2325 2326 2327 2330 2331 2332 2333 2334 2335 2336 2337 2340 2341 9800 

10,000 2342 2343 2344 2345 2346 2347 2350 2351 2352 2353 2354 2355 2356 2357 2360 2361 2362 2363 2364 2365 2366 2367 2370 2371 2372 10,000 
10,200 2373 2374 2375 2376 2377 2400 2401 2402 2403 2404 2405 2406 2407 2410 2411 2412 2413 2414 2415 24162417 2420 2421 2422 2423 10,200 
10,400 2424 2425 2426 2427 2430 2431 2432 2433 2434 2435 2436 2437 2440 2441 2442 2443 2444 2445 2446 2447 2450 2451 2452 2453 2454 10,400 
10.600 2455 2456 2457 2460 2461 2462 2463 2464 2465 2466 2467 2470 2471 2472 2473 2474 2475 2476 2477 2500 2501 2502 2503 2504 2505 10.600 
10,800 2506 2507 2510 2511 2512 2513 2514 2515 2516 2517 2520 2521 2522 2523 2524 2525 2526 2527 2530 2531 2532 2533 2534 2535 2536 10,800 

11. 000 2537 2540 2541 2542 2543 2544 2545 2546 2547 2550 2551 2552 2553 2554 2555 2556 2557 2560 2561 2562 2563 2564 2565 2566 2567 11,000 
11,200 2570 2571 2572 2573 2574 2575 2576 2577 2600 2601 2602 2603 2604 2605 2606 2607 2610 2611 2612 2613 2614 2615 2616 2617 2620 11.200 
11,400 2621 2622 2623 2624 2625 2626 2627 2630 2631 2632 2633 2634 2635 2636 2637 2640 2641 2642 2643 2644 2645 2646 2647 2650 2651 11.400 
11,600 2652 2653 2654 2655 2656 2657 2660 2661 2662 2663 2664 2665 2666 2667 2670 2671 2672 2673 2674 2675 2676 2677 2700 2701 2702 11,600 
11.800 2703 2704 2705 2706 2707 2710 2711 2712 2713 2714 2715 2716 2717 2720 2721 2722 2723 2724 2725 2726 2727 2730 2731 2732 2733 11,800 

12.000 2734 2735 2736 2737 2740 2741 2742 2743 2744 2745 2746 2747 2750 2751 2752 2753 2754 2755 2756 2757 2760 2761 2762 2763 2764 12, 000 
12.200 2765 2766 2767 2770 2771 2772 2773 2774 2775 2776 2777 3000 3001 3002 3003 3004 3005 3006 3007 3010 3011 3012 3013 3014 3015 12,200 
12,400 3016 3017 3020 3021 3022 3023 3024 3025 3026 3027 3030 3031 3032 3033 3034 3035 3036 3037 3040 3041 3042 3043 3044 3045 3046 12.400 
12,600 3047 3050 3051 3052 3053 3054 3055 3056 3057 3060 3061 3062 3063 3064 3065 3066 3067 3070 3071 3072 3073 3074 3075 3076 3077 12,600 
12,800 3100 3101 3102 3103 3104 3105 3106 3107 3110 3111 3112 3113 3114 3115 3116 3117 3120 3121 3122 3123 3124 3125 3126 3127 3130 12,800 

13.000 3131 3132 3133 3134 3135 3136 3137 3140 3141 3142 3143 3144 3145 3146 3147 3150 3151 3152 3153 3154 3155 3156 3157 3160 3161 13,000 
13,200 3162 3163 3164 3165 3166 3167 3170 3171 3172 3173 3174 3175 3176 3177 3200 3201 3202 3203 3204 3205 3206 3207 3210 3211 3212 13,200 
13, 400 3213 3214 3215 3216 3217 3220 3221 3222 3223 3224 3225 3226 3227 3230 3231 3232 3233 3234 3235 3236 3237 3240 3241 3242 3243 13,400 
13,600 3244 3245 3246 3247 3250 3251 3252 3253 3254 3255 3256 3257 3260 3261 3262 3263 3264 3265 3266 3267 3270 3271 3272 3273 3274 13,600 
13,800 3275 3276 3277 3300 3301 3302 3303 3304 3305 3306 3307 3310 3311 3312 3313 3314 3315 3316 3317 3320 3321 3322 3323 3324 3325 13,800 

14.000 3326 3327 3330 3331 3332 3333 3334 3335 3336 3337 3340 3341 3342 3343 3344 3345 3346 3347 3350 3351 3352 3353 3354 3355 3356 14,000 
14,200 3357 3360 3361 3362 3363 3364 3365 3366 3367 3370 3371 3372 3373 3374 3375 3376 3377 3400 3401 3402 3403 3404 3405 3406 3407 14.200 
14.400 3410 3411 3412 3413 3414 3415 3416 3417 3420 3421 3422 3423 3424 3425 3426 3427 3430 3431 3432 3433 3434 3435 3436 3437 3440 14.400 
14.600 3441 3442 3443 3444 3445 3446 3447 3450 3451 3452 3453 3454 3455 3456 3457 3460 3461 3462 3463 3464 3465 3466 3467 3470 3471 14.600 
14,800 3472 3473 3474 3475 3476 3477 3500 3501 3502 3503 3504 3505 3506 3507 3510 3511 3512 3513 3514 3515 3516 3517 3520 3521 3522 14,800 

15,000 3523 3524 3525 3526 3527 3530 3531 3532 3533 3534 3535 3536 3537 3540 3541 3542 3543 3544 3545 3546 3547 3550 3551 3552 3553 15,000 
15.200 3554 3555 3556 3557 3560 30tl 3562 3563 3564 3565 3566 3567 3570 3571 3572 3573 3574 3575 3576 3577 3600 3601 3602 3603 3604 15.200 
15,400 3605 3606 3607 3610 3611 3612 3613 3614 3615 3616 3617 3620 3621 3622 3623 3624 3625 3626 3627 3630 3631 3632 3633 3634 3635 15,400 
15,600 3636 3637 3640 3641 3642 3643 3644 3645 3646 3647 3650 3651 3652 3653 3654 3655 3656 3657 3660 3661 3662 3663 3664 3665 3666 15,600 
15.800 3667 3670 3671 3672 3673 3674 3675 3676 3677 3700 3701 3702 3703 3704 3705 3706 3707 3710 3711 3712 3713 3714 3715 3716 3717 15.800 

16.000 3720 3721 3722 3723 3724 3725 3726 3727 3730 3731 3732 3733 3734 3735 3736 3737 3740 3741 3i12 3743 3744 3745 3746 3747 3750 16,000 
16.200 3751 3752 3753 3754 3755 3756 3757 3760 3761 3762 3763 3764 3765 3766 3767 3770 3771 3772 3773 3774 3775 3776 3777 4UOO 4001 16.200 
16,400 4002 4003 4004 4005 4006 4007 4010 4011 4012 4013 4014 40154016 4017 4020 4021 4022 4023 4024 4025 4026 4027 4030 4031 4032 16,400 

HIGH-ORDER OCTAL DIGITS 

A-2 



APPENDIX A. OCTAL NOTATION 

OCTAL-DECIMAL CONVERSION PROCEDURE 

Consider the decimal number to be converted as a base and an increment. Locate the base 

(the next lower number which is evenly divisible by 200) in the margin of the lower chart and the 

increment in the body of the upper chart. The intersection of the row and column thus defined 

contains the high-order digits of the octal equivalent. The low-order digit appears in the mar­

gins of the upper chart opposite the increment. For example, to convert 7958 to octal, the base 

is 7800 and the increment is 158. Locate 158 in the upper chart and read down this column to 

the 7800 row below. The high-order octal result is 1742. Then read out to the margin of the 

upper chart to obtain the low-order digit of 6. Append (do not add) this digit to 1742 for an octal 

equivalent of 17,426. 

To convert an octal number to decimal, locate the high-order digits in the body of the 

lower chart and the low-order digit in the margin of the upper chart. Then perform the converse 

of the above operation. 

A-3 



APPENDIX 

B MISCELLANEOUS TABLES 

Table B-l. Control Register Designations 

OC TAL ADDRESS 
(Control Panel or VARIANT CHARACTER REGISTER 

Console Addressing) (LCR & SCR Instructions) 

200 1200 & 2200 Mnemonic Function 

01 01 01 CLCI Read/ Write Channell -
Current Location Counter 

02 02 02 CLC2 Read/Write Channel 2 -
Current Location Counter 

03 03 03 CLC3 Read/ Write Channel 3 -
Current Location Counter 

05 05 05 CLCl' Read/ Write Channel I' -
Current Location Counter 

11 11 11 SLCI Read/Write Channel 1 -
Starting Location Counter 

12 12 12 SLC2 Read/Write Channel 2 -
Starting Location Counter 

13 13 13 SLC3 Read/ Write Channel 3 -
Starting Location Counter 

15 15 15 SLCl' Read/ Write Channel I' -
Starting Location Counter 

211 21 CLC4 Read/Write Channel 4 -
Current Location Counter 

221 22 CLC5 Read/ Write Channel 5 -
Current Location Counter 

23 1 23 CLC6 Read/ Write Channel 6 -
Current Location Counter 

25 1 25 CLC4' Read/ Write Channel 4' -
Current Location Counter 

31 1 31 SLC4 Read/ Write Channel 4 -
Starting Location Counter 

32 1 32 SLC5 Read/ Write Channel 5 -
Starting Location Counter 

33 1 33 SLC6 Read/ Write Channel 6 -
Starting Location Counter 

35 1 f 
35 SLC4' Read/Write Channel 4' -

Starting Location Counter 

B-1 



APPENDIX B. MISCELLANEOUS TABLES 

Table B-1 (cont). Control Register Designations 

OCTAL ADDRESS 
(Control Panel or VARIANT CHARACTER REGISTER 

Console Addressing) (LCR & SCR Instructions) 

200 1200 & 1200 Mnemonic Function 

04 64 64 CSR Change Sequence Register 

06 66 66 EIR External Interrupt Register 

14 74 67 AAR A-Address Register 

10 70 70 BAR B-Address Register 

nla 76 76 IIR Internal Interrupt Register 

17 77 77 SR Sequence Register 

nla 41-43 nla ACO Floating-Point Accumulator 0 

nla 45-47 nla ACI Floating-Point Accumulator I 

nla 51-53 nla AC2 Floating-Point Accumulator 2 

nla 55-57 nla AC3 Floating-Point Accumulator 3 

I 
2200 only. 

Table B-2. Extended Move (EXM) Conditions 

VARIANT BIT S 
CONDITIONS V6 V5 V4 V3 V

2 VI 

Type of Move 

1. A-field data bits __ B X X X X X 1 
2. A-field word-mark bits __ B X X X X I X 
3. A-field item-mark bits_B X X X I X X 

Direction of Move 

1. right to left X X 0 X X X 
2. left to right X X I X X X 

Termination of Move 

1. automatic after single-character move 0 0 X X X X 
2. A-field word mark 0 I X X X X 
3. A-field item mark I 0 X X X X 
4. A-field record mark I I X X X X 

B-2 



APPENDIX B. MISCELLANEOUS TABLES 

Table B-3. Branch on Condition Test (BCT) SENSE Switch Conditions 

VARIANT CHARACTER 
(Octal) 

00 

01 

02 

03 

04 

05 

06 

07 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

BRANCH CONDITION 

Unc onditional 

SENSE Switch 1 On 

SENSE Switch 2 On 

SENSE Switches 1 and 2 On 

SENSE Switch 3 On 

SENSE Switches 1 and 3 On 

SENSE Switche s 2 and 3 On 

SENSE Switche s 1, 2, and 3 On 

SENSE Switch 4 On 

SENSE Switche s 1 and 4 On 

SENSE Switches 2 and 4 On 

SENSE Switche s 1, 2, and 4 On 

SENSE Switches 3 and 4 On 

SENSE Switches 1, 3, and 4 On 

SENSE Switches 2, 3, and 4 On 

SENSE Switches 1, 2, 3, and 4 On 

Unconditional 

SENSE Switch 5 On 

SENSE Switch 6 On 

SENSE Switches 5 and 6 On 

SENSE Switch 7 On 

SENSE Switches 5 and 7 On 

SENSE Switches 6 and 7 On 

SENSE Switche s 5, 6, and 7 On 

SENSE Switch 8 On 

SENSE Switche s 5 and 8 On 

SENSE Switches 6 and 8 On 

SENSE Switches 5, 6, and 8 On 

SENSE Switches 7 and 8 On 

SENSE Switches 5, 7, and 8 On 

SENSE Switche s 6, 7, and 8 On 

SENSE Switche s 5, 6, 7, and 8 On 

NOTE: When testing for a multiple SENSE switch condition, a branch 
occurs only if all of the specified conditions are met. 

B-3 



APPENDIX B. MISCELLANEOUS TABLES 

Table B-4. Branch on Condition Test (BCT) Indicator Conditions 

VARIANT CHARACTER 
(Octal) 

41 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

55 

56 

57 

60 

61 

62 

63 

64 

65 

66 

67 

70 

71 

72 

73 

74 

75 

76 

77 

BRANCH CONDITION 

B <A (Low Cmnpare) 

B=A (Equal Compare) 

B~A (Low or Equal Compare) 

B >A (High Compare) 

B/:-A (Unequal Compare) 

B ?A (High or Equal Compare) 

Unc onditi onal 

Overflow 

Overflow or B < A 

Overflow or B=A 

Overflow or B ~ A 

Overflow or B > A 

Overflow or B/:-A 

Overflow or B?A 

Unconditional 

Zero Balance 

Zero Balance or B< A 

Zero Balance or B=A 

Zero Balance or B ~A 

Zero Balance or B >A 

Zero Balance or B/:-A 

Zero Balance or B?A 

Unc onditional 

Overflow or Zero Balance 

Overflow or Zero Balance or B <A 

Overflow or Zero Balance or B=A 

Overflow or Zero Balance or B~A 

Overflow or Zero Balance or B > A 

Overflow or Zero Balance or B/:-A 

Overflow or Zero Balance or B?A 

Unc onditional 

NOTE: Wh~n testing for a multiple indicator condition, a branch 
occurs if any ~ of the specified conditions is met. 

B-4 



APPENDIX B. MISCELLANEOUS TABLES 

Table B- 5. Branch on Character Condition (BCC) Conditions 

VARIANT CHARACTER 
(Octal) 

00 
01* 
02 
03>:< 
04':' 
05'~ 

06 
07'~ 

10 
11'~ 

12 
13'~ 

14~~ 

15>:< 
16 
1 7'~ 

20 
21>:< 
22 
23':< 
24'~ 

25* 
26 
27':< 

30 
31* 
32 
33>:< 
34'~ 

35* 
36 
37* 

41'~ 

42'~ 

43* 
44* 
45"~ 

46* 
47'~ 

50* 
51'~ 

52* 
53*, 
54* 
55>:< 

56* 
57'~ 

BRANCH CONDITION 

Unc onditional 
A bit is 1 
B bit is 1 
B and A bits are 
B and A bits are 
B and A bits are 
B and A bits are 
B and A bits are 

11 
00 
01 (Positive sign) 
10 (Negative sign) 
11 (same as 03) 

Word-mark bit is 1 
Word-mark bit is 1, A bit is 1 
Word-mark bit is 1, B bit is 1 
Word-mark bit is 1, B and A bits are 11 
Word-mark bit is 1, B and A bits are 
Word-mark bit is 1, Positive sign 
Word-mark bit is 1, Negative sign 
Word-mark bit is 1, B and A bits are 

Item-mark bit is 1 
Item-mark bit is 1, A bit is 1 
Item-mark bit is 1, B bit is 1 
Item-mark bit is 1, B and A bits are 
Item-mark bit is 1, B and A bits are 
Item-mark bit is 1, Positive Sign 
Item-mark bit is 1, Negative Sign 
Item-mark bit is 1, B and A bits are 

Record mark 
Record mark, A bit is 1 
Record mark, B bit is 1 
Rec ord mark, B and A bits are 11 
Record mark, B and A bits are 00 
Record mark, Positive sign 
Record mark, Negative sign 
Record mark, B and A bits are 11 

00 

11 

11 
00 

11 

No punctuation (Word mark and Record 
mark bits are 00) 

No punctuation, A bit is 1 
No punctuation, B bit is 1 
No punctuation, B and A bits are 11 
No punctuation, B and A bits are 00 
No punctuation, Positive sign 
No punctuation, Negative sign 
No punctuation, B and A bits are 11 

Word mark 
Word mark, A bit is 1 
Word mark, B bit is 1 
Word mark, B and A bits are 11 
Word mark, B and A bits are 00 
Word mark, Positive sign 
Word mark, Negative sign 
Word mark, B and A bits are 11 

B-5 



i 
I 
I 
~ 

APPENDIX B. MISCELLANEOUS TABLES 

Table B-5 (cont). Branch on Character Condition (BCC) Conditions 

VARIANT CHARAC TER 
(Octal) 

60* 
61* 
62'~ 

63* 
64'~ 

65* 
66* 
67* 

70* 
71'~ 

72* 
73* 
74'~ 

75* 
76'~ 

77* 

BRANCH CONDITION 

Item mark 
Item mark, A bit is 1 
Item mark, B bit is 1 
Item mark, B and A bits are 11 
Item mark, B and A bits are 
Item mark, Positive sign 
Item mark, Negative sign 
Item mark, B and A bits 

Unconditional 
Word mark or A bit is 1 
Word mark ~ B bit is 1 

are 

00 

11 

Word mark 0; B and A bits are 11 
Word mark ~ B and A bits are 00 
Word mark 0; Positive sign 
Word mark 0; Negative sign 
Word mark 0; B and A bits are 11 

*Valid only on systems equipped with the Advanced Programming Feature 
(Feature 010 or 011). 

B-6 



APPENDIX B. MISCELLANEOUS TABLES 

Table B-6. Series 200 Character Codes 

Central High Central High 
Key Card Processor Speed Key Card Processor Speed 
Punch Code Code Octal Printer Punch Code Code Octal Printer 

0 0 000000 00 0 6 or - X, o or X(l) 100000 40 -
1 1 000001 01 1 J X,l 100001 41 J 
2 2 000010 02 2 K X,2 100010 42 K 
3 3 000011 03 3 L X,3 100011 43 L 
4 4 000100 04 4 M X,4 100100 44 M 
5 5 000101 05 5 N X,5 100101 45 N 
6 6 000110 06 6 0 X,6 100110 46 0 
7 7 000111 07 7 P X,7 100 III 47 I P 
8 8 001000 10 8 Q X,8 101000 50 Q 
9 9 001001 11 9 R X,9 101001 51 R 

8,2 001010 12 , 
X, 8, 2 101010 52 # 

# --g,3 001011 13 = $ X, 8, 3 101011 53 $ 
@> 8,4 001100 14 : ~:< X, 8, 4 101100 54 ~:~ 

Space Blank 001101 15 Blank X, 8, 5 101101 55 " 
8,6 001110 16 > (2) X, 8, 6 101110 56 1= (2) 

& 8,7 001111 17 & - or 6 X or x,o(l) 101111 57 ! (2) 

0 or & R,O or R(l) 010000 20 + 8,5':' 110000 60 < (2) 

A R,l 010001 21 A / 0, 1 110001 61 / 
B R,2 010010 22 B S 0,2 110010 62 S 
C R,3 010011 23 C T 0,3 110011 63 T 
D R,4 010100 24 D U 0,4 110100 64 U 
E R,5 010101 25 E V 0,5 110101 65 V 
F R,6 010110 26 F W 0,6 110110 66 W 
G R,7 010111 27 G X 0,7 110111 67 X 
H R,8 011000 30 H Y 0,8 111000 70 Y 
I R,9 011001 31 I Z 0,9 111001 71 Z 

R, 8, 2 011010 32 ; 0,8,2 111010 72 @l 

R, 8, 3 011011 33 , 0,8,3 111011 73 , 
0 R,8,4 011100 34 ) % 0,8,4 111100 74 ( 

R, 8, 5 011101 35 % 0,8,5 111101 75 CR 
R, 8,6 011110 36 • 0,8,6 111110 76 0 (2) 

& 
& R or R, O( 1) 011111 37 ? (2) 0,8,7 111111 77 ¢ (2) or 0 

(l)Special Code. This card code-central processor code equivalency is effective when control 
character 26 is coded in a card read or punch PCB instruction. 

(2)Indicates symbol which will be printed by a printer which has a 63-character drum (Type 222 printers). 

B-7 



APPENDIX B. MISCELLANEOUS TABLES 

Table B-7. Binary, Octal, and Decimal Equivalents Table B-8. Powers of 2 

o 
1 

10 

11 

100 

101 

110 

III 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

10000 

10001 

10010 

10011 

10100 

10101 

10110 

10111 

11000 

11001 

11010 

11011 

11100 

11101 

11110 

11111 

o 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

100000 

100001 

100010 

100011 

100100 

100101 

100110 

100111 

101000 

101001 

101010 

101011 

101100 

101101 

101110 

101111 

110000 

110001 

110010 

110011 

110100 

110101 

110110 

110111 

111000 

111001 

111010 

111011 

111100 

111101 

111110 

111111 

40 

41 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

55 

56 

57 

60 

61 

62 

63 

64 

65 

66 

67 

70 

71 

72 

73 

74 

75 

76 

77 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

B-8 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2 

4 

8 

16 

32 

64 

128 

256 

512 

024 

11 2 048 

12 4 096 

13 8 192 

14 16 384 

15 32 768 

16 65 536 

17 131 072 

18 262 144 

19 

20 

21 

22 

524 288 

048 576 

2 097 152 

4 194 304 

23 8 388 608 

24 16 777 216 



APPENDIX 

c 
Op Code 

Card 
Mnemonic Octal Code 

A 36 R, 8, 6 

37 R or R, 0 3 

BA 34 R, 8, 4 

BS 35 R, 8, 5 

ZA 16 8,6 

ZS 17 8,7 

M 26 R,6 

D 27 R,7 

EXT 31 R,9 

HA 30 R,8 

SST 32 R,8,2 

C 33 R,8,3 

B 65 0,5 

BCT 65 0,5 

BCC 54 X, 8, 4 

BCE 55 X,8,5 

56 X, 8, 6 

SW 22 R.2 

SI 20 R,O or R3 

CW 23 R.3 

CI 21 R,I 

H 45 X.5 

NOP 40 

MCW 14 8,4 

LCA 15 Blank 

SCR 24 R,4 

INSTR UC TION SUMMARY 

Table C-l. Instruction Summary of Appendix C 

Key 

Punch 
Function Tin-ung 

(Memory Cycles) I 
Fonnat 

ARITHMETIC INSTRUCTIONS 

Decimal Add 

I

,Ni+Z+NW+ZNb (no 
recomplement) 4 

Ni+Z+Nw+4Nb 
(recomplement)4 

DeciInal Subtract Ni+Z+Nw+ZNb (~o 
recompleITlent) 

(~:!::ie+~~~t)4 
o Bmary Add 

Zero and Subtract Ni+I+Nw+Nb 

F DeciITlal Multiply See page 8-28. 

G Decimal Divide See page 8-31 . 

a. AJA,B 

b. A/A 

AI 

a. SIA, B 
b. S/A 
c. sl 

a. BA/A, B 
b. BA/A 
c. BA/ 

a. ES/A, B 
b. BS/A 
c.· BS/ 

a. ZA/A, B 
b. ZA!A 
c. ZA! 

a. ZS/A, B 
b. ZS/A 

ZSI 

a. M/A,B 
b. M/A 
c. M! 

a. D/A,B 
b. D/A 
c. 0/ 

LOGIC INSTR UCTIONS 

Extract (Logical N i+I+3N
w 

Product) 

H Half Add 
(Exclusive Or) 

Substitute 

Compare N.+2+N +N 6 
, w b 

Y Branch Ni+2 
(Unconditional) 

Condition Test 

Branch on 
Character 
Condition 

Branch if 
Character Equal 

Branch on Bit 
Equal 

C Clear Word Mark Ni+3 

A Clear IteIn Mark N i +3 

N Halt 

No Operation 

(ii) J>.tove Characters Ni +l+2Nw 
to Word Mark 

Space Load Characters Ni+1+2Na 
to A_Field Word 
Mark 

D Store Control 
Registers 

a. EXT/A, B 
h. EXT!A 

EXT! 

a. HA/A, B 
b. HA/A 
c. HA/ 

a. SST/A, B, V 

b. SST/A, B5 

c. SST/A 
d. SST/ 

a. CIA, B 
b. CIA 

ci 

a. BIA 

a. BCT/A, y7 
h. BCT/ 

a. BCC/A, B, Y 
b. BCC/A, B 
c. BCC/A 
d. Bcci 

a. BCE/A, B, V5 

b. BCE/A, B 
c. BCE/A 
d. BCE/ 

a. BBE/ A, B, V 
b. BBE/A, B 
c. BBE/A 
d. BBE! 

CONTROL INSTR UCT IONS 

a. SW/A, B 
b.SW/A 
c. SW/ 

a. SI/A, B 
b. SI/A 
c. SI/ 

a. CW/A.B 
b. CW/A 
c. CW/ 

a, CI/A, B 
b. CIIA 
c. CII 

a. H/ll 
b. H/A 
c. H/A,B 
d. H/A, B, V 

a. NOP/ 

a. MCW/A, B 
b. MCW/A 
c. MCW 

a. LCA/A, B 
b. LCA/A 
c. LCA/ 

a. SCR/A, V7 
b. SCR/A 
c. SCR/ 

C-l 

Extraction Required Word Terminated Can Instruction Described 

Path 2 Marks By: Be Chained? On Page: 

Duplicates B operand. A B-operand 
A. operand only if word mark. 

smaller than B. 

DUplicates B operand. A B-operand 
A. operand only if word mark. 

smaller than B. 

Duplicates B operand. A B-operand 
A. operand only if word mark. 

smaller than B. 

DuplIcates B operand. A B-operand 
A. operand only If word ITlark. 

smaller than E. 

Duplicates B operand. A B-operand 
A. operand only if word mark. 

smaller than B. 

DuplIcates B operand. A B_operand 
A. operand only if word mark. 

smaller than B. 

Preserves A and Bflelds. Both word 
marks. 

Preserves A operand A_operand 
E. (divisor). word ITlark. 

Preserves Smaller oper- Word mark 
B. and. of smaller 

operand. 

Preserves SITlaller oper- Word ITlark 
B. and. of smaller 

operand. 

Preserves None. Sing1e-
B. character 

operation. 

Preserves B operand. A B-operand. 
B. operand only if word mark. 

SITlaller than B. 

Bypasses None. 
B. 

Bypasses None. 
B. 

Preserves 
B. 

Preserves 
B. 

Preserves 
B. 

None. 

None. 

None. 

Duplicates None. 
A. 

DUplicates None. 
A. 

o/a 

o/a 

Single­
character 
operation. 

Single­
character 
operation. 

Single­
character 
operation. 

ola 

o/a 

DUplicates Word marks n/a 
A. are cleared. 

Duplicates None. 
A. 

Preserves None. 
B. 

Bypasses None. 
A and B. 

Preserves SInaller 
B. operand. 

Preserves A operand. 
B. 

Bypasses None. 
B. 

ola 

o/a 

o/a 

Word mark 
of smaller 
operand. 

A-operand 
word mark. 

o/a 

Yes. 8-16 

Yes. 8-18 

Yes. 8-20 

Yes. 8-21 

Yes. 8-23 

Yes. 8-24 

Yes. 8-26 

Yes. 8-29 

Yes. 8-34 

Yes. 8-3'; 

Yes. 8-37 

Yes. 8-38 

No. 

Yes. 8-41 

Yes. 8-45 

Yes. 9 8-49 

Yes. 8-51 

Yes. 8-54 

Yes. -8-55 

Yes. 8-56 

Yes. 8-58 

No. 8-59 

No. 8-61 

Yes. 8-62 

Yes. 8-63 

Yes. S 8-65 



INSTRUCTION SUMMARY 

Table C- 1 (cant). Instruction Summary of Appendix C 

Op Code 

Card K,y Function Timing Format Extraction Required Word T,,=inat,d Jcan In,t,uction 
Mnemonic Octal Code Punch (Memory Cycles) 1 PathZ Mal"ks By: Be Chained? 

CONTROL INSTRUCTIONS (cont) 

LCR 25 R,5 E Load Control Ni +56 a. LeRIA, y7 Bypasses None. n/a 
Registers b. LCR/A B. 

c. LCR/ 

CAM 42 X,2 K Change Address_ Ni+2Il a. CAM/V 7 Bypasses None. n/a 
iog Mode b. CAM/ A and B. 

CSM 43 X,3 L Change Sequenc- NiHIl a. CSM/ll Preserves None. n/a 
iog Mode b. CSM/A B. 

c. CSM/A, B 
d. CSM/A, B, V 

EXM 10 8 Extended Move Ni+l+ZNa a. EXM!A, B, V5 Preserves See page 8-74. See page 8-74 
b. EXM!A, B B. 
c. EXM!A 

d. EXM! 

MAT 60 8,5 Move and Ni+ 3Na 13 a. MAT/A.B,V1.V Z See page A operand. Word mark 
Translate 8-77. in A operand 

or in table. 

MIT 62 0,2 Move Item and Ni+Na+2{Nut) (NBu) 14 a. MIT/A,B, See page None. A~operand 

Translate VI' V2 , V3 8~80 . item mark or 
word mark in 
table. 

LIB 77 0,8,7 Load Index/ Ni+ 3 a. LIB/A Preserves None. Single~ 

Barricade b. LIB/ B. character 
Register operation. 

SIB 76 0,8,6 Store Index/ Ni +3 a. SIB/ A Preserves None. Single-
Barricade b. SIB/ B. character 
Register operation. 

INTERRUPT CONTROL INSTRUCTIONS 

SVI 46 X,6 0 Store Variant Ni+ 1+N s+Nj(15) a. SVI/V Bypasses None. Word mark 
and Indicators A and B. of next 

instruction. 

RVI 67 0,7 X Restore Ni +2+Nr 4 a. RVI/A, V Restores None. Word mark 
Variant and A and of next 
Indicators bypasses instruction. 

B. 

MC 44 X,4 M Monitor Call Ni +24 a. MCI Bypasses None. Word mark 
A and B. of next 

instruction. 

RNM 41 X,I ReSUIl'le N i+3 16 a. RNM/A,B Preserves None. n/a 
Normal Mode b. RNM/A B. 

c. RNM/ 

EDITING INSTRUCTION 

MCE 74 0,8,4 " Move Ni+l+Na+2Nb+2X+2Y a. MCE/A, B7 Preserves A operand and See page 
Characters b. MCE/A B. B operand 8-104. 
and Edit c. MCE/ (see page 8-104). 

INPUT/OUTPUT INSTRUCTIONS 

PDT 66 0,6 w Peripheral See page 8-111. a. PDT/A, CI,' C n Bypasses None. Recordmark 
Data B. in memory or 
Transfer unit record 

length. 

PCB 64 0,4 U Peripheral See page 8-118. a. PCB/A, CI," C n Bypasses None. n/a 
Control and B. 
Branch 

lExcept where otherwise indicated, add one memory cycle to each of these formulas if the instruction is being executed in a Type 2201 processor. 

2The extraction path of the various instructions is defined as follows: 

Preserves B - The previous contents of BAR are used as the B address when the instruction is coded in the format Op Code/A. 

Duplicates A - The contents of AAR are used as the B address when the instruction is coded in the format Op Code/A. 

Bypasses B - The contents of BAR are not used in any format. 

Bypasses Aand B - The contents of AAR and BAR are not used in any format. 

3The second (alternate) card code is in effect when control character 26 is coded in a Card Read or Punch PCB instruction. 

4Subtract one memory cycle from this formula if the instruction is being executed in a Type 1201 processor. 

5This instruction can be coded only in formats a. and d. when issued in a Type 201 or 201~1 processor. 

6Add two memory cycles to this formula if the instruction is being executed in a Type 2201 processor. 

7This instruction can be coded only in format a. when issued in a Type 201 or 201_~ processor. 

8This instruction cannot be chained in the Type 20 I or 201-1 proce ssor. 

9 This instruction can be chained in the Type 201 or 201-1 processor only if the preceding instruction is also a BCE instruction. 

10Subtrat::t one memory cyde from this formula if the instruction is issued in the Type 1201 processor in the format Op Code/A, B. 

11This instruction can be coded only in formats a., b., and t::. when issued in a Type 20 I or 201·1 prot::essor. 

12Subtract one memory cycle from thi, formula if the instruction is executed in a Type 1201 prot::essor. 

13 Add four memory t::ycles to this formula if the instruction is executed in a Type 2201 processor. 

Yes. 8 

Yes. • 
Yes. 8 

Yes. 8 

No. 

No. 

Yes. 

Yes. 

No. 

No. 

No. 

No. 

No. 

No. 

No. 

Descdbed 
On Page: 

8-67 

8-69 

8-72 

8-74 

8-77 

8~80 

8-84 

8-87 

8-90 

8~93 

8-95 

8-97 

8-102 

8-108 
and 

8-115 

8-117 
and 

8-131. 

l4Add two memory cycles to this formula if the instruction is executed in a Type 1201 prot::essor. Add four cycles to the formula if the instruction is executed in a Type 
2201 prot::essor. 

15Add one memory cycle to this formula if the instrUdion is executed in a Type 1201 processor. Add two t::ycles to the formula if the instruction is exet::uted in a Type 2201 
prot::essor. 

16 Add two memory cycle s to this formula if the instruction is executed in a Type 2201 processor. Subtract one memory cycle from the formula if the instruction is executed 
in a Type 1201 processor. 

C-2 



APPENDIX 

D INTERRUPT PROCESSING 

The execution of main-program instructions by the processor can be interrupted by an 

external interrupt source and, if the proce s sor is a Type 1201 or 2201 with the Storage Protect 

Feature (see Appendix E), by an internal interrupt source. 

EXTERNAL INTERRUPT 

An external interrupt signal can be generated by anyone of three sources: 

1. a peripheral control (including data communication controls); 

2. the operator's control panel or console; or 

3. the Monitor Call instruction (se\,! page 8-95). 

The interrupt signal sets indicators to show the source (whether 1 .• 2., or 3 .• above) 

and the type (external) of interruption. These indicators can be stored and tested by pro­

grammed instruction as described further in this appendix. The processor acts upon the in­

terrupt signal when the following conditions are present: 

1. The processor is in the RUN mode (i. e., the processor is executing, without 
manual intervention, stored-program instructions under control of SR). 

2. The processor is not in the external interrupt mode. 

3. An instruction op code is about to be extracted. 

4. A memory cycle is allocated to the processor. 

It should be noted that condition 3. above does not cause an extensive delay if a Type 

201-2, 1201, or 2201 processor is attempting to extract a Peripheral Data Transfer (PDT) 

instruction and the specified read/write channel or peripheral control is "busy." The attempt 

to issue a PDT instruction to a busy read/write channel or peripheral control does not "stall" 

the central processor. Rather, the instruction is "re-extracted": SR is set back to the 

address of the PDT op code, so that condition 3. recurs immediately after the channel or con­

trol is found busy. 

The interrupt signal is maintained by the source until the processor responds by taking 

the following actions: 

1. The current s~atus of the arithmetic, comparison, address mode, 
and trap mode indicators are stored in the auxiliary indicators 
register (AIR). 

D-1 



APPENDIX D. INTERRUPT PROCESSING 

2. The arithm.etic indicators are cleared. 

3. The processor enters the three-character, non-trap m.ode. 

4. The contents of SR and EIR are interchanged, and the program. branches 
to the instruction whose op code address was previously stored in EIR. 

S. The processor enters the external interrupt m.ode. 

INTERNAL INTERRUPT 

An internal interrupt signal is generated only by a Type 1201 or 2201 processor equipped with 

the Storage Protect Feature and is caused by a "violation" of storage protection. (The nature 

of storage protect violations -- II addre s s violation, op code violation, etc. -- is de scribed 

in Appendix E.) Processor indicators are set by the internal interrupt signal to show the 

~ (e. g., op code violation) and the type (internal) of interruption. These indicators can be 

stored and tested by program.m.ed instruction as described further in this appendix. 

The processor reacts to the internal interrupt signal when the conditions described on 

page D- I are present (i. e., the processor is in the RUN m.ode, is not in the external interrupt 

m.ode, is about to extract an op code, and is presently allocated a m.em.ory cycle) plus one 

additional condition: the processor m.ust not only not be in the external interrupt m.ode but 

also m.ust not be in the internal interrupt m.ode. Thus, the following levels of interrupt 

priority exist in the Type 1201 or 2201 processor: 

1. If the processor is in the non-interrupt (standard) m.ode, norm.al program. 
sequence can be interrupted by either an external or an internal source. 

2. If the processor is in the internal interrupt m.ode, program. sequence 
can be interrupted only by an external interrupt source. 

3. If the processor is in the external interrupt m.ode, program. sequence ~ not 
be interrupted. 1 

The processor responds to an internal interrupt signal as follows: 

1. The processor enters the three-character, non-trap m.ode. 

2. The contents of SR and IIR are interchanged, and the program. branches 
to the instruction whose op code address was previously stored in IIR. 

3. The processor enters the internal interrupt m.ode. 

1Interrupt signals generated by any or all of the three external sources (peripheral control, 
control panel or consoll!, or Monitor Call instruction) m.ay continue to occur while the 
processor is in the external interrupt m.ode. The priority in which the processor responds 
to these sources is determ.ined by the program. (i. e., according to the program.m.er­
established sequence of interrupt source tests). 

D-2 



APPENDIX D. INTERRUPT PROCESSING 

Note that the status of the arithmetic, comparison, address mode, and trap mode indicators 

are not stored in AIR automatically when the processor responds to an internal interrupt 

signal. The storing (and subsequent restoring) of the contents of these indicators is the 

responsibility of the internal interrupt program. 

INTERRUPT PROGRAMMING 

Three of the four interrupt control instructions (pages 8-90 through 8-97) perform 

basic functions in an interrupt routine: 

1. The Store Variant and Indicators instruction (SVI) stores two types of 
information: (a) information which must be preserved for subsequent 
return to the interrupted program (e. g., indicator settings, variant 
register contents, etc.); and (b) information required to identify the 
interrupt source. 

2. The RestoreVariant and Indicators instruction (RVI) restores the pertinent 
information stored by the SVI instruction before returning to the interrupted 
program. 

3. The Resume Normal Mode instruction (RNM) returns the processor to 
the interrupted program. 

The fourth interrupt control instruction - Monitor Call (MC) - causes an external interrup­

tion and is therefore not coded in the interrupt routine itself. Other instructions are required 

in the interrupt routine to store and exercise control over address register contents, as shown 

in Figures D-1 and D-2. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD t I~ LOCATION 
OPERATION OPERANDS 

NUMBER ~ K 
CODE 

I 2 3 4 5 6 7 • 1415 2021 62 ., 

I : AAR CEQU iII=\C67 ~- A\)DRESS RE.GI STER 
I I BA~ CEQU oIt-\C7¢ R-A{)ORESS REG I STE,R 
i i MAX CEQU .,C04 .MAXI MUM ADD .,MOD.E FOR C. P. IS 4 
I I ~lLS rEQU "'C77 AU I M.n I CAT O,R5. 
: ! ALLR CEQU #'I.C37 AU RU:r; INTERRUPT 1J.lJll.cATO~S 
I I ADMODE MAX. SeT MAXI MUM A.P,D.REA,SIhl.Gt M.~ 
I I RES:rOR RVI ENTER,+2 ALLRI2ESTORI::., ALL BUT HIT.. 1)..1.0 • 
I I EXIT RNM rJ.f1J u,n W\:t.~ .AJ\R. :to B,F\R RE.STOREP, 
I I ENTER SVI Al.LS E.tJ.TER AN.n ST,ORE AI..J..~l cAlQR5. 

10 I i IR,ESV o. ~SERV.E. STO.RA.GE. mR. I~~I CAmR~ 
1 i : t,AM MAX. .E.tn.E.R MAX.lMUM. A.DDR~SS ~D£ 

12 I i B,eR EXIT +.4 AREG SA.VE. AAR. 
13 I I .sCR IEXI T + B BREG SF\VE eAR 

" 

I I , 
5 I I 

• I EX1ERt.JM 
7 I I > I MTERRUPT 
• I ( ROUT\ t-l.E:. 
9 : i 
0 I I IB IRESTOR RRA.Nt:H TO RE.'3TQR~D ~IT 

Figure D-l. Sample Coding For External Interrupt Routine 

D-3 

ao 



APPENDIX D. INTERRUPT PROCESSING 

The first exaITlple (see Figure D-l) shows the initial and final coding to be used in an 

external interrupt routine. It is assuITled that the address tagged ENTER was previously stored 

in EIR, so that the presence of an external interrupt signal results in the autoITlatic branch to 

the location tagged ENTER. It is assuITled that the four-character addressing ITlode is the 

ITlaxiITlUITl addressing ITlode of the processor for which this routine is written. 

NOTE: If the interrupt routine is not in the ITlaxiITluITl addressing ITlode prior to 
branching to the location tagged RESTOR, a Change Addressing Mode 
instruction - CAM/MAX - ITlust precede the RVI instruction so that 
the cOITlplete contents of any neces sary control ITleITlory locations ITlay 
be restored. 

Figure D-2 shows the initial and final coding written for an internal interrupt routine. 

It is assuITled that the address tagged START was previously stored in IIR and that the ITlaxiITluITl 

addressing ITlode of the processor is the four-character ITlode. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD ~ ~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 8 1415 2021 6263 80 

I I IA~~ lC'tQU iM'1 C 67, A-ADDRESS ,REGISTE.R 
I 

I BAR CEQU ill I C7(b, ,5-ADD,RE.SS ,RE,G I S TE.,R, 
I I IMA.'l C,EQU f!:1C.~4, ,MA~lMUN AQD,. MQDE £O.,R UL1~ ~ 
I I INDS CEQU IIflC73 AU BU~AI R I tJ P,I c,.t\LO~RS 
i I IMDR CEOU ,",lC33 ALL f)U"I AI R AND \'~T. ,I ND,I C"':tc IRS, 
I I 15AVEA DeW i+*4C TEMPO,RA~Y STOR"C;E. FOR ,AAR 
I I ISAVEB b,ew ~4C TEMPOAAR,'i STO,~"G£ ffiR--,--~ 
I I IADMOD£ MAX , SE,T MA)C"IM.UM. "DDRE.5S,ING MOD~ 
I T RESTOR eR 'sAVEA AAR RESTOR~ AAR 

'0 I I CR BAVEB BAR RE.STORE BAR 
, 

I i IRVI $lART,+2 \ ND,R RESTORE ALL BUT AIR AND INT 1 ~p 

" I i IRNM EX IT 
3 I I SIJ>..RT 5VI INDS, E.N,lER, AI-JD, STORE; A,lL _6U:rA.IR I Nn. 

I I RESV 5 S:TQR.I\G.E fOR ALl B,uT AI R .I NO,. 
5 I I ~NII MAX E\J,:TE.R. NlAKI MUM, }\.QDRESS I ,t..\,G. MODE. 
6 I ~iCR SAVEA, A"'R SAVE AAR 
7 I I ls,CR SAVER BAR St>..,VE. BA.R 
8 1 I '\ 
9 i i 

20 I I I .\~.'ERNAL , i I IN.1'~lI<.RUPT JSQ.Ul \~E. 
2 I I 

3 I I ) 
24 I I Ie RESTOR ~RAt.lCH TO RESTOR. ,'"-NO E,)(IT 

Figure D-2. SaITlple Coding For Internal Interrupt Routine 

The initial and concluding instructions in an internal interrupt routine are siITlilar to those 

in an external interrupt routine, except that the SVI instruction ITlust not store the contents of 
f 

the auxiliary indicators register (AIR). All other pertinent indicators are stored by the SVI 

instruction and are subsequently restored by the RVI instruction at the conclusion of the routine. 

D-4 



APPENDIX D. INTERRUPT PROCESSING 

Another difference between the coding of the two routines is that the RNM instruction 

is coded in the internal interrupt routine in the forITIat RNM/ (i. e., no address portions). 

The stored contents of AAR and BAR are therefore restored by two LCR instructions, issued 

in the ITIaxiITIuITI addressing ITIode of the processor, which iITIITIediately precede the RVI in­

struction. 

D-5 



APPENDIX 

STORAGE PROTECT FEATURE E 
When the Type 1201 or 2201 processor is equipped with the Storage Protect Feature, 

the ITlain ITleITlory can be logically divided into two distinct areas: an "open" area and a "pro­

tected" area. When storage protection is in effect, the contents of the protected area are 

shielded froITl unintentional interference by a prograITl stored in the open ITleITlory area. The 

boundaries of the protected ITleITlory area are specified as follows: 

1. The lower boundary is set by the Load Index/Barricade Register instruction 
(LIB) which specifies the nUITlber of a 4, 096-character ITleITlory bank. This 
nUITlber is loaded into the index/barricade register and is the nUITlber of the 
bank whose leftITlost location is the boundary of the protected area. 

2. The upper boundary of the protected area is the rightITlost location of the 
ITlain ITleITlory. 

Index registers 16 through 30 are contained in the leftITlost 60 locations of the 4,096-

character bank specified in the LIB instruction. Thus, the locations of these registers are 

redefined when the contents of the index/protect register are altered by an LIB instruction. 

The following conditions ITlust be present for storage protection to be in effect: 

1. The protect indicator is on. (The protect indicator can be set by the execution 
of the Restore Variant and Indicators instruction -- see page 8-93.) 

2. The processor is neither in the external interrupt ITlode (see Appendix D) nor 
in the internal interrupt ITlode (see below). 

INTERNAL INTERRUPT 

When storage protection is in effect (i. e., the two conditions specified above are 

present), certain operations are defined as "violations" of that protection. Such violations are 

discussed further in this appendix. The violation causes an indicator to be set which, in turn, 

causes an internal interrupt to occur at the next opportunity. The "next opportunity" ITleans that 

ITlOITlent when all of the following conditions are present: 

1. The processor is in the RUN ITlode (i. e., the processor is executing, 
without ITlanual intervention, stored-prograITl instructions under control 
of SR). 

2. The processor is about to extract an op code. 

3. A ITleITlory cycle is allocated to the processor. 

4. The processor is neither in the external interrupt ITlode nor in the internal 
interrupt ITlode, and no peripheral or control panel interrupt signal is being 
received. 

E-1 



APPENDIX E. STORAGE PROTECT FEATURE 

The activation of the internal interrupt mode is similar, but not identical, to the proc­

essor's actions taken when an external interrupt signal is received (see Appendix D). Three 

basic differences exist between the two interrupt modes. First, a unique control memory 

location -- the internal interrupt register (IIR) -- is used to contain the address of the sub­

routine which services the internal interrupt. (IIR is designated by a variant character of 46
8 

in a Store Control Registers or Load Control Registers instruction - see page 8 -65. ) 

Secondly, the processor is still subject to being interrupted by an external interrupt while it is 

in the internal interrupt mode. 

The third difference between the internal and external interrupt modes is that no processor 

indicators are stored or changed when the internal interrupt mode is entered; the handling of 

processor indicators in the internal interrupt mode is the programmer's responsibility (using 

the Store Variant and Indicators and the Restore Variant and Indicators instructions - see 

pages 8- 90). 

VIOLATIONS OF STORAGE PROTECTION 

The following operations are violations of storage protection: 

1. An attempt to transfer information internally to a main memory location 
contained in the protected memory area (i. e., not a peripheral transfer 
attempt). 

Although information transfers !.s:. the protected memory area cause a 
violation, there is no restriction on the transfer of information from 
the protected area. In particular, the protected index registers (index 
registers 16 through 30) can be used for indexing by programs in either 
the open or protected areas. However, modification of the contents of 
these registers is inhibited and causes a violation. 

When either of the above-mentioned violations occurs, the II address 
violation indicator is set. The instruction which causes the violation 
proceeds normally in all other respects, and the internal interrupt 
occurs only after the completion of such an instruction. 

2. An attempt to extract a Peripheral Data Transfer (PDT) instruction 
whose effective A address references a protected memory location.! 
Once it is determined that the effective A address references a protected 
main memory location, no operation is performed (i. e., the specified 
read/write channel is not tested, and the specified peripheral control is 
not addressed). The II address violation indicator is set, the contents 
of SR are advanced to the next sequential op code, and the instruction 
is terminated without ever having been executed. The internal interrupt 
occurs at the completion of the instruction. 

lA PDT instruction is one of eight instructions whose execution is normally prohibited 
when storage protectioIl( is in effect. However, the proceed indicator can be set to 
permit the execution of this instruction (see page E-3). Thus, for a PDT instruction to 
be extracted (and therefore to reach the stage where the A address of the instruction is 
tested), the proceed indicator must first be set to allow the extraction of the instruction. 

E-2 

I 
I 



APPENDIX E. STORAGE PROTECT FEATURE 

Note that a PDT instruction is checked for a possible violation during the extraction 
of that instruction, while a non-peripheral instruction is checked during its 
execution (as in 1., above). If a PDT instruction passes this test during its 
extraction, it is free to be executed and thereby cause data to be transferred. 
If the record being transferred extends into the protected memory area, a 
violation does not occur. To prevent such a record (i. e., one whose 
effective A address does not reference the protected area, but a portion of 
the record transferred extends into the protected area), record marks should 
be set in both the first and last locations of the protected memory area. 

3. An attempt to transfer information from a main memory location that is 
within the addressing capacity of the memory address register of the user's 
processor, but which is greater than the capacity of the main memory actually 
present in the machine. 1 Such an addressing attempt would normally cause 
the machine to halt due to a parity-check error. However, when storage 
protect is in effect, such an error does not cause a halt, nor i8 data trans­
ferred into the memory with "bad parity." Instead, the II address violation 
indicator is set, and the internal interrupt occurs at the completion of the 
instruction. 

4. An attempt to execute an instruction whose op code is: (a) not defined for 
the Series 200; (b) not recognized by the user's processor; or (c) 
prohibited when storage protection is in effect. Prohibited op codes 
under this condition are the following: 

a. H (Halt) 
b. LCR (Load Control Registers) 
c. PDT (Peripheral Data Transfer) 
d. PCB (Peripheral Control and Branch) 
e. SVI (Store Variant and Indicator s) 
f. RVI (Restore Variant and Indicators) 
g. RNM (Resume Normal Mode) 
h. LIB (Load Index/Barricade Register) 

The detection of any of the above-listed op codes sets the op code violation 
indicator and causes the contents of SR to be set back to the location of 
the op code which was the offender. The operation is terminated, and 
the internal interrupt occurs subject to the other conditions whose presence 
is required for the internal interrupt to occur (see page E-1). 

PROCEED INDICA TOR 

The proceed indicator can be turned on through the execution of the Restore Variant 

and Indicators (RVI) instruction (see page 8-93). When the proceed indicator is on, ~ 

instruction is permitted to be executed in the non-interrupt mode without: (l) op code 

checking; or (2) item mark trapping. In other words, both op code checking and item mark 

IThe memory address register contains as many bits as are necessary to address the 
memory of an individual processor. Thus, a processor whose main memory capacity 
is 32,768 characters contains 15 bits in the memory address register; a memory capacity 
of 65,536 characters requires 16 bits in the register. If a processor has a rnemory capacity 
of, for example, 49,152 characters, the memory address register must still contain 16 
active bits in order to address memory locations above 32,768. In this case, the capacity 
of the main memory actually present in the processor (49,152) is less than the addressing 
capacity of the memory address register (65,536). Thus, a location can be addressed 
which is within the range of the register but which is not actually present in the user's system. 

E-3 



APPENDIX E. STORAGE PROTECT FEATURE 

trapping are overruled by a proceed indicator which is turned on. The proceed indicator is 

turned off by the execution of any instruction in the non-interrupt ITlode. 

The proceed indicator ITlay also be used to enforce the A address checking of a PDT in­

struction issued in the interrupt ITlode (either the external or internal interrupt ITlode). 

Thus, when the following conditions are present: 

1. the processor is in either interrupt ITlode; 

2. the proceed indicator is turned on; 

3. a PDT instruction is extracted; 

the A address of the PDT instruction is checked for violation as described on page E-2. 

If the effective A address references a protected ITleITlory location, the actions described below 

are perforITled. 

I. When the violation occurs in the internal interrupt ITlode: 

a. The II address violation indicator is set. 

b. Further extraction of the instruction is not perforITled, and the contents 
of SR are advanced to the next sequential op code. 

c. An internal interrupt does not occur (since the processor is already 
in the internal interrupt ITlode). Rather, the condition of the II address 
violation indicator ITlay be tested by the prograITl (after the status of 
of the indicator is stored via an SV1 instruction). The execution of 
the SV1 instruction clears the indicator, so that the setting of this 
indicator does not eventually cause an internal interrupt. 

2. When the violation occurs in the external interrupt ITlode: 

a. The E1 addre s s violation indicator is set. 

b. No further extraction is perforITled, and the contents of SR are 
advanced to the next sequential op code. 

c. An internal interrupt does not occur (since the processor is in the 
external interrupt ITlode). Rather, the condition of the E1 address 
violation indicator can be tested after an SV1 instruction is issued 
as described in I. c., above. 

E-4 



APPENDIX 

SCIENTIFIC UNIT FOR MODELS 1200 AND 2200 F 
The scientific unit (Feature 1100) provides a repertoire of 12 floating-point instructions, 

a binary mantis sa shift instruction, and a binary integer multiply instruction for the Type 1201 

or 2201 processor. This appendix is a programmer's working summary of the hardware bulletin 

Scientific Unit for Models 1200 and 2200. Before referring to this appendix, the programmer 

should be familiar with the detailed functional and programming description of Feature 1100 

presented in the information bulletin. 

DATA FORMAT 

The fixed-length floating-point word contains a 36 -bit binary mantissa and 12-bit binary 
±616 

exponent and is capable of expressing numbers in the approximate range ±lO 

CHARACTER A-7 A-6 A-5 A-4 A-3 A-2 A-I A 

DDDDDDDD 
BIT B A 84 2 I B B B B B B B 

'~------------------------------vr----------------------------~/ '~------~v~------~/ 
MANTISSA EXPONENT 

In control memory, a floating-point word may occupy any of the four floating-point ac­

cumulators. The accumulators are addressed as octal digits 0, 1, 2, and 3 in the floating-point 

instructions. Each accumulator comprises three specific 18-bit control memory registers. 

Only the low-order 12 bits of the rightmost register are used to express the exponent. 

19 I I I~I 
BIT 18 18 18 12 

" V 
/ " V 

/ 

MANTISSA EXPONENT 

FLOATING-POINT REGISTERS 

The four addressable floating-point accumulators have the locations in control memory 

shown on page F-2. 

F -1 



APPENDIX F. SCIENTIFIC UNIT FOR MODELS 1200 AND 2200 

Accumulator Control MerrlOry Location (Operator's Control Panel Only) 
Address 

High-Order Mantissa Low-Order Mantissa Exponent 

0 43 42 41 
I 47 46 45 
2 53 52 51 
3 57 56 55 

NOTE: In program instructions, the floating-point accumulators may be ad­
dressed only via the octal digits 0, 1, 2, and 3 in the floating-point 
instructions. The instructions LCR and SCR cannot be used to ad­
dress these accumulators. At the control panel, the operator may 
address these locations with the addresses in the above table. 

A normal zero, i. e., a floating-point word of 48 zeros, is stored in the "pseudo ac­

cumulator" for use as a floating-point operand. The pseudo accumulator, which is addressed 

by octal digit 7, may be used only as the source of a normal zero and not as the destination of 

a floating-point result. 

The low-order result register (LOR) in the scientific unit may contain a low-order sum, 

difference, or product, or may contain the remainder of a division operation. 

FLOATING-POINT INDICATORS 

Exponent 
Overflow: 

Divide 
Check: 

Multiply 
Overflow: 

Activated when a base-2 exponent exceeds +2047. The correct mantissa and an 
exponent which is 4096 less than the correct exponent are delivered. If an ex­
ponent is less than -2048, a normal zero is delivered automatically. 

Activated when a divisor is equal to zero. This indicator causes termination 
of a division operation without accumulator alteration. 

Activated when the product of a Binary Integer Multiply instruction exceeds 24 
bits in length. The low-order 24 bits are delivered. 

AUTOMA TIC FORMATTING IN ARITHMETIC OPERATIONS 

Pre-normal- Mantissa of divisor is normalized (left-shifted) with adjusted exponent. 
ization: 

Equali­
zation: 

Post-nor­
malization: 

SYMBOLOGY 

A: 

B: 

X: 

Mantissa of operand with smaller exponent is right-shifted until exponents are 
equal. 

Mantissa of result is normalized with adjusted exponent. 

A address, of the instruction. 

B address of the instruction. 

Floating-point accumulator addressed in the high-order three bits of an instruc­
tion variant (\lsually the source of an operand). 

F-2 



Y: 

(A): 

(X) or (Y): 

LOR: 

(LOR): 

Ap: 

Bp: 

JI: 

NXT: 

[ J: 
X-: 

-Y: 

SP: 

DP: 

SR: 

Ni: 

APPENDIX F. SCIENTIFIC UNIT FOR MODELS 1200 AND 2200 

Floating-point accumulator addressed in the low-order three bits of an instruction 
variant (usually the destination of a result). 

Floating-point word contained in the main memory field from character A through 
charac ter A -7. 

Floating-point word contained in accumulator X or Y. 

Low-order result register. 

Floating-point word contained in LOR. 

Previous setting of A-address register. 

Previous setting of B-address register. 

Address of next instruction if branch occurs. 

Next sequential instruction. 

Number of bit positions shifted for automatic formatting. 

Number of binary ones in a multiplier. 

Numbe r of shifts. 

"smallest integer greater than" 

In the first variant of an instruction, only the high-order three bits specifying 
accumulator X are significant. 

In the first variant of an instruction, only the low-order three bits specifying 
accumulator Yare significant. 

Single - precision. 

Double -precision. 

Sequence register. 

Number of characters in an instruction. 

TIMING NOTES 

All timings shown are for Model 2200 and are based on the use of direct addressing. 

Three memory cycles should be added for each indexed address and one memory cycle should 

be added for each character extracted as a result of indirect addressing. 

F-3 



ITj 
I 

>J>. 

Table F-l. Summary of Scientific Instructions 

OCTAL REGISTERS 
OP AFTER 

FORMAT CODE FUNCTION OPERATION 

DATA MOVING INSTRUCTIONS .. 
STORE FLOATING ACCUMULATOR 

FMA/A, X-, 00 07 (X) is stored in (A). AAR: A-8 
or (X) is unaltered. BAR: Bp . TAM/A,X-

LOAD FLOATING ACCUMULATOR 

Memory to FMA/A, -Y, 02 07 (A) is loaded into Y. No AAR: A-8 
accumulator or normalization occurs. BAR: Bp 

TMA/A, -Y 

Accumulator to FAA/XY,02 06 (X) is loaded into Y. No AAR: Ap 
accumulator or norrnalization occurs. BAR: Bp 

TAA/XY 

STORE LOW -ORDER RESULT 

Memory to FMA/ A, 00, 07 07 (LOR) is stored in A. No AAR: A-8 
accumulator or normalization occurs. BAR: Bp 

TLM/A 

Accumulator to FAA/ - Y, 07 06 (LOR) is stored in Y. No AAR: Ap 
accumulator or nortnalization occurs. B·\R: Bp 

TLA/ - Y 

LOAD LOW-ORDER RESULT 

Memory to FMA/A, 00, 01 07 (A) is loaded into LOR. No AAR: A-8 
accumulator or normalization occurs. BAR: Bp 

TML/A 

Accumulator to FAA/X-,Ol 06 (X) is loaded into LOR. No AAR: Ap 
accumulator or normalization occurs. BAR: Bp 

TAL/X-
-------- '--------

... "'IIII:..Illi!;J!~~Li,u.illi~,.:sI:i. 

TIMING 1 

Ni + 10 cycles 

Ni + 11 cycles 

8 cycles 

Ni + 9 cycles 

6 cycles 

Ni + 9 cycles 

6 cycles 

:t> 
1) 
1) 
M 
Z 
tJ 
H 

:x: 
ITj 

Ul 
() 
H 

M 
Z 
>-3 
~ 
H 
() 

c::: 
Z 
H 

>-3 
ITj 

o 
::u 
~ 
o 
tJ 
M 
l' 
Ul 
..... 
N 
o 
o 

:t> 
Z 
tJ 
N 
N 
o 
o 



>rj 
I 
\]1 

" .. 'ai', 44 ,",""" "'''''''''W' " ",AW ,hM ij III. #Ii I i ~GMii" 4"" I "",Mil" INUM", I "I'! lij~I"IM#~,iiI, *1i4, ,",,«Nt "4""4 ~ih._ii • ,*,"i"n""""""''''i'iIU.''''~~IH""",,"iI'i"II!",!Ij III , II .. 111111_' "!I.IUU)I." ti¢4 M illIlI~'" ,iiil ttN UU •• UillI,UIIMIUM WU J I~Pilillilli. ilillllll~U IUll~ I U J.WWL"","U..wJln. 

Table F-l (cont). SUIT1IT1ary of Scientific Instructions 

OCTAL REGISTERS 

OP AFTER 

FORMAT CODE FUNCTION OPERATION 

FLOA TING POINT ARITHMETIC INSTRUCTIONS 

FLOATING ADD 

Memory to FMA/A,XY,lO 07 (AI is added to (Xl and the AAR: A-8 

accumulator or sum is stored in Y. BAR: Bp 

AMA/A,XY Indicator: Exponent overflow. LOR: Low-order result 

Formatting: Equalization, of operation. Sign 

post- normalization. bit = O. Exponent = 
high-order exponent 
minus 35. 

Accumulator to FAA/XY, lO 06 (Xl is added to (Yl and the AAR: Ap 

accumulator or sum is stored in Y. BAR: Bp 

AAA/XY Indicator: Exponent overflow. LOR: Low-order result 

Formatting: Equalization, of operation. Sign 

post- normalization. bit = O. Exponent = 
high-order exponent 
minus 35. 

FLOA TING SUBTRACT 

Memory to FMA/A,XY,l1 07 Twos complement of (AI is AAR: A-8 

accumulator or added to (Xl and the result BAR: Bp 

SMA/A,XY is stored in Y. LOR: Low-order result 

Indicator: Exponent overflow. of operation. Sign 

Formatting: Equalization, bit = O. Exponent = 
post- normalization. high-order exponent 

minus 35. 

Accumulator to FAA/XY, l1 06 Twos complement of (Yl is AAR: Ap 

accumulator or added to (Xl and the result BAR: Bp 

SAA/XY is stored in Y. LOR: Low-order result 

Indicator: Exponent overflow. of operation. Sign 

Formatting: Equalization, bit = O. Exponent = 
post-normalization. high-order exponent 

minus 35. 

TIMING 1 

Ni + 13 + [Nnl 4 ] cycles 

11+ [Nn/4] cycles 

Ni + 13 + [ Nnl 4 ] cycles 

11+ [Nn/4 ] cycles 

I 

>-
1:) 
1:) 
M 
:z: 
t:J 
H 

X 
>rj 

(fl 
() 
H 

M 
:z: 
>-l 
H 
>rj 
H 
() 

C 
:z: 
H 

>-l 
>rj 

o 
::u 
~ o 
t:J 
M 
t-' 
(fl 

.... 
tv 
o 
o 

>­:z: 
t:J 
tv 
tv 
o 
o 



I-rj 
I 
0' 

FORMAT 

FLOATING MULTIPLY 

Memory to 
accumulator 

Ac cumula to r to 
accumula tor 

FLOA TING DIVIDE 

Memory to 
accumulator 

Accumulator to 
accumulator 

FMA/ A, XY, 13 
or 

MAM/A,XY 

FAA/XY,13 
or 

MAA/XY 

FMA/A, XY, 12 
or 

DMA/A,XY 

FAA/XY,12 
or 

DAA/XY 

Table F-l (cant). Summary of Scientific Instructions 

OCTAL 
OP 

CODE 

07 

06 

07 

06 

FUNCTION 

(X) is multiplied by (A). The 
high-order product is stored 
in Y; the low-order product 
is stored in LOR. 
Indicator: Exponent overflow. 
Formatting: Post-normalization. 

(X) is multiplied by (Y). The 
high-order product is stored 
in Y; the low-order product 
is stored in LOR. 
Indicator: Exponent overflow. 
Formatting: Post-normalization. 

(A) is divided by (X). The 
quotient is stored in Y; the re­
mainder is stored in LOR. 
Indicato r s: Exponen t over flow, 
divide check. 
F or matting: Pr e - normalization 
(divisor), post-normalization 
quotient). 

(Y) is divided by (X). The 
quotient is stored in Y; the re­
mainder is stored in LOR. 
Indicators: Exponent overflow, 
divide check. 
Formatting: Pre-normalization 
(divisor), post-normalization 
(quotient) 

REGISTERS 
AFTER 

OPERATION 

AAR: A-8 
BAR: Bp 
LOR: Low-order product. 

Sign bit = O. Exponent 
= high-order exponent 
minus 35. 

AAR: Ap 
BAR: Bp 
LOR: Low-order product. 

Sign bit = O. Exponent 
= high-order exponent 
minus 35. 

AAR: A-8 
BAR: Bp 
LOR: Remainder. 

Sign = sign of divi­
dend. Exponent = 
exponent of dividend 
minus 35, and plus 
one if the absolute 
value of the dividend 
mantissa is greater 
than the absolute 
value of the mantissa 
of the normalized 
divisor. 

AAR: Ap 
BAR: Bp 
LOR: Remainder. 

Sign = sign of divi­
dend. Exponent = 
exponent of dividend 
minus 35, and plus 
one if the absolute 

value of the dividend 
mantissa is greater 
than the absolute 
value of the mantissa 
of the normalized 

divisor. 

TIMING l 

Ni + 21 + [N1/2] + [Nn /4] cycles 

19 + [N1/2] + [Nn /4] cycles 

Ni + 40 + [ Nn / 4 ] cycles 

38 + [Nn / 4] cycles 

~ 
'"d 
'"d 
M 
Z 
tJ 
H 

:x: 
I-rj 

\fJ 
n 
H 

M 
Z 
>-l 

~ 
H n 
c:: z 
H 

>-l 
I-rj 
o 
?J 

~ 
o 
tJ 
M 
l' 
\fJ 
.... 
N 
o 
o 

~ 
Z 
tJ 
N 
N 
o 
o 



f:rj 
I 
-.] 

i"i~; • .illliiji 4.ihPiiAiM4i.i IIII!f\ri.iiii~lflII"ii"iii"i1I1!MjIINqiill.iill"l',Hll!ii .1'""'" "1'1li ,1.1 ...,...--.,.,,,,----------..... ""00:' ,-"'r' ..... __ ..,.------_.-""'-------

FORMAT 

... 

DECIMAL TO BINARY 

FMA/A, -Y,03 
or 

DTB/A,-Y 

BINAR Y TO DECIMAL 

FMA/A,X-,06 
or 

BTD/A, X-

Table F-l (cont). Surmnary of Scientific Instructions 

OCTAL REGISTERS 
OP AFTER 

CODE FUNCTION OPERATION 

CONVERSION INSTRUCTIONS 

07 The II-character signed dec- AAR: A-II 
imal integer whose low-order BAR: Bp 
character is A is converted LOR: Low-order result 
to a 36-bit binary integer. of conversion. 
The binary integer is stored Sign bit = 0. Ex-
in the mantissa portion of Y; ponent = high-order 
the exponent of (Yl is set to exponent minus 35. 
+35. One- or two-bitmantissa 
overflow is possible. If 
mantis sa overflow occurs, 
the low-order one or two bits 
are shifted into LOR. Y then 
contains the high-order result 
of conversion, with an exponent 
of 36 or 37. Normalization only 
occurs with overflow. 

07 The mantis sa portion of (Xl is AAR: A-II 
converted from a binary integer BAR: Bp 
to a signed decimal integer. 
The decimal integer is stored in 
the II-character main memory 
field whose low-order character 
is location A. The exponent 
portion of (Xl is ignored and un-
altered. 

"'" 

TIMING I 

Ni + 24 cycles 

Ni + 23 cycles 

~ 
'lJ 
'lJ 
M 
Z 
tJ 
H 

X 
f:rj 

Ul 
(} 
H 

M 
Z 
o-j 
H 
f:rj 
H 
() 

c:: 
~ 
o-j 

f:rj 

~ 
;;:: 
o 
tJ 
M 
t-' 
Ul 
..... 
N 
o 
o 

~ 
Z 
tJ 
N 
N 
o 
o 



frJ 
I 
00 

FORMAT 

F LOA TING TEST AND BRANCH ON 
ACCUMULATOR CONDITION 

FMA/ A, XC, 04 
or 

~FBA/A,XC 

FLOATING TEST AND BRANCH 
ON INDICA TOR 

FMA/ A, aD, 05 
or 

FBI/ A, aD 

Table F-l (cont). 8Ulnmary of Scientific Instructions 

OCTAL REGISTERS 
OF AFTER 

CODE FUNCTION OPERATION 

07 

07 

CONTROL INSTRUCTIONS 

The mantissa portion of (X) 
is tested for the condition 
specified by C, the low­
order octal digit of variant 1. 

C=O no branch 
C=l (X) = a 
C=2 (X) a 
C=3 (X) a 
C=4 (X) a 
C=5 (X) a 
C=6 (X)" a 
C=7 unconditional branch 

If the condition specified by 
C is satisfied, program con­
trol branches to location A. 
NOTE: (X) m~st be normalized. 

The indicators specified by D, 
the low- order octal digit of 
variant l, are tested. If any 
of the indicators is set, con­
trol branches to location A. 

D=O no branch 
D=l Multiply overflow 
D=2 Exponent overflow 
D=3 Exponent or multiply overflow 
D=4 Divide check 
D=5 Divide check or multiply 

overflow 
D=6 Divide check or exponent 

overflow 
D=7 Divide check, exponent 

overflow, or multiply 
overflow. 

NOTE: All indicators tested are reset. 

AAR: A 

BAR: B NO BRANCH 
NXT BRANCH 

SR: NXT NO BRANCH 
JI(A) BRANCH 

AAR: A 

BAR: NXT BRANCH 
Bp NO BRANCH 

SR: NXT NO BRANCH 
JI(A) BRANCH 

TIMING
l 

Ni + 4 cycles 
NO BRANCH 
Ni + 6 cycles 
BRANCH 

Ni + 4 cycles 
BRANCH 
Ni + 2 cycles 
NO BRANCH 

> 
"0 
"0 
t:rI 
Z 
lj 
H 

:>< 

~ 

Ul 
(") 
H 

t:rI 
Z .., 
H 

frJ 
H 
(") 

c:: 
Z 
H .., 
frJ 
o 
~ 

~ 
o 
lj 
t:rI 
t-' 
Ul -N 
o 
o 

> 
Z 
lj 
N 
N 
o 
o 



f7j 
I 
-0 

FORMAT 

BINAR Y MANTISSA SHIFT 

BMS/XM, V 

BINARY INTEGER MULTIPLY 

BIM/A,B 

1 
All timings pertain to Model 2200 only. 

Table F-l (cont). Summary of Scientific Instructions 

OCTAL 
OP 

CODE 

04 

05 

FUNCTION 

If single -precision, the 
mantissa of (X) is shifted 
in the mode specified by M, 
the low-order octal digit 
of the first variant. If 
double-precision, the man­
tissas of (X) and (LOR) are 
shifted. The second vari­
ant V (OSVS63) specifies 
the number of positions by 
which bits are shifted. 

M=O left, SP, rotate (end 
around) 

M=l left, SP, arithmetic 
M=2 left, DP, rotate 
M=3 left, DP, arithmetic 
M=4 right, SP, rotate 
M=5 right, SP, arithmetic 
M=6 right, DP, rotate 
M=7 right, DP, arithmetic 
NOTE: The exponents of (X) 

and (LOR) are set to 
zero. In an arith­
metic shift, the signs 
of the mantissas of (X) 
and (LOR) .are pre­
served. 

REGISTERS 
AFTER 

OPERATION 

AAR: Ap 
BAR: Bp 

BINARY INTEGER ARITHMETIC INSTRUCTION 

The four-character fields in IAAR: A-4 
memory whose low-order charac - BAR: B-4 
ters are A and B are treated as LOR: unspecified 
24-bit binary integers. The in-
tegers are multiplied together; 
the product is stored in the field 

specified by the B address. 
Indicator: Multiply overflow. 

TIMING 1 

9 + [Ns/4] cycles 

Ni + 20 + [ N 1/2] cycles 

> 
"'d 
"'d 
M 
Z 
tJ 
1-1 

:>< 
f7j 

C/l 
() 
1-1 

M 
Z 
>-3 
1-1 
f7j 
1-1 
() 

q 

~ 
>-3 
f7j 
o 
:::0 

~ o 
tJ 
M 
t"' 
C/l -N 
o 
o 

> 
Z 
tJ 
N 
N 
o 
o 





COMPUTER-GENERATED INDEX 

A-A DURESS REGISTER (AAR). 4-4 
A-FIELD WORD MARK 

LOAD CHARACTERS TO A-FIELD WORD MARK -- LCA. 8-63 
AAR 

A-ADDRESS REGISTER (AAR). 4-4 
ABSOLUTE. 5-9 

h MEMORY ADDRESSES. 
CONVERSION OF SYMBOLIC TAGS TO ABSOLUTE MEMORY 

ADURESSlS. 3-2 
ACCESS DRUM 

C3 CODING FOR TYPE 270 RANDOM ACCESS DRUM. 8-115 
.. FILE. 

RANDOM ACCESS DRUM FILE. 1-9 
ACTIVE ADDRESS BITS IN SERIES 200 PROCESSORS. 4-14 
ACTIVITIES 

ADD 

CONT~OL UNIT ACTIVITIES. 2-8 
INPUT/OUTPUT TRAFFIC CONTROL ACTIVITIES. 2-9 

.. -- A. a-If> 
BINARY ADD -- SA. 8-20 
COMPLEMENT ADD. 8-9 

.. EXAMPLES. 
COMPLEMENT ADD EXAMPLES. 8-10 
TRUE ADD EXAMPLES. 8-9 

HALf ADD -- HA. 8-35 
.. INSTRUCTION. 

EXTRACTION OF DATA FIELDS IN TYPICAL ADD 
INSTRUCTION. 4-2 

TYPICAL ADD INSTRUCTION. 4-1 
SERIES 200 ADD AND SUBTRACT OPERATIONS. 8-6 
TRUE ADD. 8-9 
lERO AND ADD -- lA. 8-23 

ADDI TION 
ALGEBRAIC SIGNS IN DECIMAL ADDITION. 8-9 
BINARY AnDITION. 8-6 
DECIMAL ADDIIION. 8-9 

.. TABLE. 
BINARY ADDITION TABLE. 8-6 

ADDITIONAL 
h CODING RULES. 5-9 
.. INPUT/OUTPUT TRUNKS AND READ/WRITE CHANNELS. 1-17 

ADDRESS 
A AND B ADDRESSES. 3-2 

.. ASSEMBLY. 
THREE-CHARACTER ADDRESS ASSEMBLY. 5-3 
TWO-CHARACTER ADDRESS ASSEMBLY. 5-3 

ASSEMBLY Of INDExlD ADDRESS IN FOUR-CHARACTER 
ADDRESSING MODE. 5-18 

ASSEMBLY OF INDEXlD ADDRESS IN THREE-CHARACTER 
ADDRESSING MODE. 5-17 

ASSEMBLY OF INDIRECT ADDRESS IN FOUR-CHARACTER 
ADDRESSING MODE. 5-19 

ASSEMBLY OF INDIRECT ADDRESS IN THREE-CHARACTER 
ADDRESSING MODE. 5-18 

.. BITS. 
ACTIvE ADDRESS BITS IN SERIES 200 PROCESSORS. 

4-14 
.. CODES. 5-9 

CONVERSION OF SYMBOLIc TAGS TO ABSOLUTE MEMORY 
ADDRESSES. 3-2 

DEFINE SYMBOLIC ADDRESS -- DSA. 6-6 
EXTRACTION of INDEXED ADDRESS IN THREE-CHARACTER 

MODE. 4-12 
EXTRACTION OF INDIRECT AND INDEXED FOUR-CHARACTER 

ADDRESSES. 4-15 
EXTRACTION OF THREE-CHARACTER INDIRECT ADDRESS. 4-10 
INDEX REGISTER ADDRESSES IN FOUR-CHARACTER 

ADDRESSING MODE. 4-13 
INDEX REGISTER ADDRESSES IN THREE-CHARACTER 

ADDRESSING MODE. 4-11 
.. LITE~ALS. 5-15 
h MODE. 

SET ADDRESS ~ODE -- ADMODE. 7-9 
" MODIfICATION. 4-8 
.. MODIFICATION CODES. 5-16 
.. REGISTERS. 2-6 

THREE-CHARACTER ADDRESS. 4-9 
ADDRESSING. 4-1 

EXPLICIT ADDRESSING. IMPLICIT ADDRESSING. AND 
CHAINING. 4-14 

INDEXED ADDRESSING. 4-9. 4-13 
INDIRECT ADDRESSING. 4-9. 4-12 

" MODE. 
ADDRESSING MODES. 4-5 
ASSEMBLY OF INDEXED ADDRESS IN FOUR-CHARACTER 

ADDRESSING MODE. 5-18 
ASSEMBLY OF INDEXED ADDRESS IN THREE-CHARACTER 
(CONT. ) 

ADDRESSING (CONT.) 
ADDR,SSING MODE. 5-17 

ASSEMBLY OF INDIRECT ADDRESS IN FOUR-CHARACTER 
ADDRESSING MODE. 5-19 

ASSEMBLY OF INDIRECT ADDRESS IN THREE-CHARACTER 
ADDRESSING MODE. 5-18 

CHANGE ADDRESSING MODE -- CAM. 8-69 
CHANGING ADDRESSING MODES VIA CAM INSTRUCTION. 

8-71 
FOUR-CHARACTER ADDRESSING MODE. 4-8. 4-12 
INDEx REGISTER ADDRESSES IN fOUR-CHARACTER 

AnDRESSING MODE. 4-13 
INDEX REGISTER ADDRESSES IN THREE-CHARACTER 

ADDRESSING MODE. 4-11 
THREE-CHARACTER ADDRESSING MODE. 4-6 
TWO-CHARACTER ADDRESSING MODE. 4-5 

REGISTERS USED IN ADDRESSING. 4-3 
ADMODE 

SET ADDRESS MODE -- ADMODE. 7-9 
ADVANCED PROGRAMMING. 1-15 

" FEATURE. 
BCC TEST CONDITIONS WITH ADVANCED PROGRAMMING 

FEATURE. 8-47 
MODEL 200 ADVANCED PROGRAMMING FEATURE. 1-16 

ALGEBRAIC SIGNS IN DECIMAL ADDITION. 6-9 
ALPHANUMERIC 

AREA 

" CONSTANTS. 6-4 
.. LITERALS. 5-14 

DEFINE AREA -- DA. 6-6 
.. DEFINING LITERALS. 5-14 

RESERVE AREA -- RESV. 6-5 
ARITHMETIC 

.. OPERATIONS •• 8-6 
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS. 

F-2 
.. SIGN CONVENTIONS. 

DECIMAL ARITHMETIC SIGN CONVENTIONS. 8-11 
" UNIT. 2-7 

DATA FLOW BETWEEN MAIN MEMORY AND ARITHMETIC 
UNIT. 2-7 

ASSEMBLY 
.. CONTROL STATEMENTS. 7-1. 7-2 
.. OF INDEXED ADDRESS IN FOUR-CHARACTER ADDRESSING 

MODE. 5-16 
.. OF INDEXED ADDRESS IN IHREE-CHARACTER ADDRESSING 

MODE. 5-17 
.. OF INDIRECT ADDRESS IN FOUR-CHARACTER ADDRESSING 

MODE. 5-19 
.. OF INDIRECT ADDRESS IN THREE-CHARACTER ADDRESSING 

MODE. 5-18 
" PROGRAM. 

EASYCODER ASSEMBLY PROGRAM. 5-3 
RELATIONSHIP OF SOURCE. ASSEMBLY. AND OBJECT 

PROGRAf'S. 5-2 
THREE-CHARACTER ADDRESS ASSEMBLY. 5-3 
TWO-CHARACTER ADDRESS ASSEMBLY. 5-3 

AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS. F-2 
AUXILIARY READ/WRITE CHANNEL. 2-10 
B-ADDRESS REGISTER (BA'I). 4-4 
BA 

BINARY ADD -- BA. 8-20 
BAR 

B-AnDRESS REGISTER (BAR). 4-4 
BASIC 

BBE 

BCC 

BCE 

BCT 

" CONCEPT~. 4-1 
.. INPUT/OUTPUT DATA PATH. 1-13 
.. TEST CONDITIONS FOR BCC INSTRUCTION. 8-46 

BRANCH ON BIT EQUAL-- BB. 8-51 

BRANCH ON CHARACTER CONDITION BCC. 8-45 
BRANCH ON CHARACTER CONDITION (BCC) CONDITIONS. B-5 

.. INSTRUCTION • 
BASIC TEST CONDITIONS FOR BCC INSTRUCTION. 8-46 

.. TEST CONDITIONS WITH ADVANCED PROGRAMMING FEATURE. 
8-47 

BRANCH IF CHARACTER EQUAL -- BCE. 8-49 

BRANCH ON CONDITION TEST -- BCT. 8-41 
BRANCH ON CONDITION TEST (BCT) INDICATOR CONDITIONS. 

B-4 
BRANCH ON CONDITION TEST (BCT) SENSE swITCH 

COND IT IONS. 8-3 
" INSTRUCTION. 

INDICATOR TEST CONDITIONS FOR BeT INSTRUCTION. 
(CONT.) 



COMPUTER-GENERATED INDEX 

BCT (CONT.) 
8-43 

SENSE SWITCH CONDITIONS FOR BCT INSTRUCTION. 
8-42 

BINARY 

BIT 

BITS 

OCTAL. AND DECIMAL EQUIVALENTS. B-7 
n ADD -- BA. 6-20 
" ADDITION. 8-6 
n ADDITION TABLE. 8-b 
• CONSTANTS. b-3 
• LITERALS. 5-13 
• OCTAL EQUIVALENTS. A-I 
• SUBTRACT --BS. 8-21 
• SUBTRACTION. 8-b 

BRANCH ON BIT EQUAL -- BBE 8-51 

ACTIVE ADDRESS BITS IN SERIES 200 PROCESSORS. 4-14 
BLANK. 5-11 
BOUNDARIES 

" CONSTANTS. b-4 
• CONSTANTS. b-4. 8-85 

BRANCH 

BS 

CALL 

CAM 

CARD 

B, 8-40 
" IF CHARACTER EQUAL -- BCE. 8-49 
" ON BIT EQUAL. -- BBE 8-51 
• ON CHARACTER CONDITION -- BCC. 8-45 
• ON CHARACTfR CONDITION (BCC) CONDITIONS. B-5 
" ON CONDITION TEST -- BCT. 8-41 
n ON CONDITION TEST (BCT) INDICATOR CONDITIONS. 6-4 
" ON CONDITION TEST (BCT) SENSE SWITCH CONDITIONS. B-3 

PERIPHERAL CONTROL AND BRANCH -- PCB. 8-117. 8-131 

BINARY SUBTRACT --BS. 8-21 

MONITOR CALL -- MC. 8-95 

CHANGE ADDRESSING MODE -- CAM. 8-b9 
• INSTRUCTION. 

CHANGING ADDRESSING MODES VIA CAM INSTRUCTION. 
8-71 

MODES SPECIFIED By VARIANT CHARACTER IN CAM 
INSTRUCTION. 8-69 

" CODES. 
PUNCHED CARD CODES. 3-9 

" COLUMN. 
MARK (CARD COLUMN 7). 5-5 
TYPE (CARD COLUMN 6). 5-5 

• COLUMNS 1-5. 
CARD NUMBER (CARD COLUMNS 1-5). 5-4 

• COLUMNS 15-2U. 
OPERATIO~ CODE (CARD COLUMNS 15-20). 5-7 

" COLUMNS 21-62. 
OPERANDS (CARD COLUMNS 21-62). 5-8 

• COLUMNS 8-14. 
LOCATION (CARD COLUMNS 8-14). 5-b 

" EQUIPMENT. 
PUNCHED CARD EQUIPMENT. 1-7 
SERIES 200 PUNCHED CARD EQUIPMENT. 1-7 

" FOR~AT. 
PUNCHtD CARD FORMAT. 3-8 

n NUMBER (CARD COLUMNS 1-5). 5-4 
n READ OPERATION. 

DATA PATH DURING CARD READ OPERATION. 1-14 
CENTRAL PROCESSOR. 1-1. 2-1 

CEQU 

" CHARACTERISTICS. 
SUM~ARY OF CENTRAL PROCESSOR CHARACTERISTICS. 

2-12 
LOGICAL DIVISION OF SERIES 200 CENTRAL PROCESSOR. 

2-1 

CONTROL EQUALS -- CEQU. 7-11 
CHAINING 

CHANGE 

EXPLICIT ADDRESSING. IMPLICIT ADDRESSING, AND 
CHAINING. 4-14 

" ADDRESSING MODE -- CAM. 8-b9 
• SEQUENCE REGISTER (CSR). ~-3 
" SEQUENCING MODE -- CSM. 8-72 

CHANGING ADDRESSING MODES VIA CA~ INSTRUCTION. 8-71 
CHANNEL 

ADDITIONAL INPUT/OUTPUT TRUNKS AND READ/WRITE 
CHANNELS. 1-17 

AUXILIARY READ/WRITE CHANNEL, 2-10 
READ/~RITE CHANNEL. 1-13 

CHARACTER 
(CONt.) 

CHARACTER (CONT.) 
" CODES. 

SERIES 200 CHARACTER CODES. B-7 
" CONDITION. 

BRANCH ON CHARACTER CONDITION BCC. 8-45 
BRANCH ON CHARACTfR CONDITION (BCC) CONDITIONS. 

B-5 
• [QUAL. 

BRANCH IF CHARACTER EQUAL -- BCE. 8-49 
INPUT/OUTPUT CONTROL CHARACTERS. 5-16 
LOAD CHARACTERS TO A-FIELD WORD MARK -- LCA. 8-63 
MODES SPECIFIED BY VARIANT CHARACTER IN CAM 

INSTRUCTION. 8-b9 
MOVE CHARACTERS AND EDIT -- MCE. 8-102 
MOVE CHARACTFRS TO WORD MARK -- MCW. 8-b2 
REPRESENTATION OF CHARACTERS IN MAGNETIC CORE 

STORAGE. 2-3 
n REPRESENTATION ON MAGNETIC TAPE. 3-7 

SPECIAL CHARACTERS IN MCE INSTRUCTION. 8-103 
SUMMARY OF PCA 1/0 CONTROL CHARACTERS. 8-119 
SUMMARY OF PCR 1/0 CONTROL CHARACTERS FOR TYPE 28b 

MULTI-CHANNEL. 8-132 
SUMMARY OF PDT 1/0 CONTROL CHARACTERS. 8-112 
SUMMARY OF PDT 1/0 CONTROL CHARACTERS FOR TYPE 286 

MULTI-CHANNEL. 8-11b 
VARIANT CHARACTER. 3-3. 5-15 

CHARACTERISTICS 
SUMMARY OF CENTRAL PROCESSOR CHARACTERISTICS. 2-12 

CHARACTERS Cl 

CI 

DESCRIPTION OF PDT 1/0 CONTROL CHARACTERS Cl AND C2. 
8-109 

CLEAR ITEM MARK -- CI. 8-58 
CLEAR 

CODE 

• -- CLEAR. 7-15 
• ITEM MARK -- CI. 8-58 
• WORD MARK -- CWo 8-56 

ADDRESS CODES. 5-9 
ADDRESS MODIFICATION CODES. 5-16 
OPERATION CODE. 3-2 
OPERATION CODE (CARD COLUMNS 15-20), 5-7 
PUNCHED CARD CODES. 3-9 
SERIES 200 CHARACTER CODfS. 6-7 

CODING 
C3 CODING FOR TyPE 209 PAPER TAPE READER. 8-114 
C3 CODING FOR TyPE 210 PAPfR TAPE PUNCH. 8-114 
C3 COOING FOR TYPE 270 RANDOM ACCESS DRUM. 8-115 
C3 CODING FOR TYPES 70b AND 222 PRINTERS. 8-114 

n FORM. 5-4 
EASY CODER CODING FORM. 5-4 

" RULES. 
ADDITIONAL CODING RULES. 5-9 

SAMPLE CODING FOR EXTERNAL INTERRUPT ROUTINE. 0-3 
SAMPLE CODING FOR INTERNAL INTERRUPT ROUTINE, 0-4 

COLUMN 
MARK (CARD COLUMN 7). 5-5 
TYPE (CARD COLUMN b). 5-5 

COLUMNS 
" 1-5, 

CARD NUMBER (CARD COLUMNS 1-5). 5-4 
• 15-20. 

OPERATION CODE (CARD COLUMNS 15-20). 5-7 
n 21-62. 

OPERANDS (CARD COLUMNS 21-62), 5-8 
• 8-14, 

LOCATION (CARD COLUMNS 8-14). 5-6 
COMMUNICATION 

• CONTROL. 
SUMMARY OF PCB 1/0 CONTROL CHARACTERS FOR TYPE 

286 MULTI-CHANNEL. 8-132 
SUMMARY OF PDT 1/0 CONTROL CHARACTERS FOR TYPE 

286 MULTI-CHANNEL, 8-116 
" EQUIPMENT. 

DATA COM~UNICATION EQUIPMENT. 1-10 
SERIES 200 DATA COMM~NICATION EQUIPMENT. 1-10 

COMMUNICATIONS NETWORK 
CUSTOMER INQUIRY HANDLING VIA TYPICAL COMMUNICATIONS 

NETwORK. 1-12 
COMPARE 

• -- C. 8-38 
COMPLEMENT ADD. 8-9 
COMPONE~TS 

n EXAMPLES. 8-10 
n EXAMPLES. 8-10. 1-14 

SERIES 200 COMPONENTS. 1-1 
CONCEPTS 

(CONT.) 



COMPUTER-GENERATED INUEX 

CONC~PTS (CONT.) 
FASIC CONCEPTS. 4-1 

CONDITICN 
BASIC TlST CUNDITIUNS FOR BCC INSTRUCTION. 8-46 
ACC TEST CONUITIONS WITH ADVANCED PROGRA~MING 

FEATURE. 8-41 
BRANCH ON CHARACTE~ CONDITION -- BCC. 8-45 
BRANCH ON CHARACTER CONDITION (BCC) CONDITIONS. 8-5 
BRANCH ON CONDITION TEST (BCT) INDICATOR CONDITIONS. 

11-4 
BRANCH ON CONDITION TEST (BCT) SENSE SWITCH 

CONDITIONS. B-3 
EXTENDED ~OV~ (EXM) CONDITIONS. B-2 
EXTENDED MOV~ CONDITIONS. ~-14 
INDICATOR TEST CONDITIONS FOR BCT INSTRUCTION. 8-43 
SENSE SWITCH CONDITIONS FOR BCT INSTRUCTION. 8-42 

" TEST. 
BRANCH ON CONDITION TEST -- BCT. 8-41 
BRANCH ON CONDITION TEST (BeT) INDICATOR 

CONDITIONS. B-4 
BRANCH ON CONDITION TEST (BCT) SENSE SWITCH 

CONDITIONS. B-3 
CONSlCUTIVl STORAG~ LOCATIONS IN MAIN MEMO~Y. 3-4 
CONSULE 

TYPE 220-1 CUNSOLE. 1-3 
TYPE 220-2 CONSOLE. 1-3 

CONSTANT 
ftLPHANU~ERIC CONSTANTS. 6-4 
BINARY CONSTANTS. 6-3 
BLANK CONSTANTS. 6-4 
DECIMAL CONSTANTS. 6-2 
nEFINE CONSTANT -- DC. 6-5 
DEfINE CONSTANT WITH wORD MA~K -- DCW. 6-2 
NUMERIC CCNSTANTS. 6-2 
OCTAL CONSTANTS. 6-3 

CONTENT S 
" LCADED. 

CONTROL REGISTER CONTENTS LOADED By LCR 
INSTRUCTION. 8-67 

" STORED. 
CONTROL REGISTER CONTENTS STORED BY SCR 

INSTRUCTION. 8-65 
CONTROL. 8-53 

" ACTIVITIES. 
INPUT/OUTPUT T~AFFIC CONTROL ACTIVITIES. 2-9 

" CHARACTERS. 
INPUT/OUTPUT CONTROL CHARACTERS. 5-16 
SUMMARY OF PCB I/O CONTROL CHARACTERS. 8-119 
SUMMARY UF PCB I/O CONTROL CHARACTERS FOR TYP~ 

286 MULTI-CHANNEL. 8-132 
SUMMARY OF POT I/O CONTROL CHARACTERS. 8-112 
SUMMARY OF POT I/O CONTROL CHARACTERS FOR TYPE 

286 MULTI-CHANNEL. 8-116 
• CHARACTERS Cl. 

DESCRIPTION OF PDT If 0 CONTROL CHARACTERS Cl AND 
C2. 8-109 

" EOUALS -- CEUU. 7-11 
" fUNC1IONS. 

TYPE 286 LINE CONTROL FUNCTIONS. 8-117 
INPUT/OUTPUT TRAFFIC CONTROL. 2-8 
INTERRUPT CONTROL. 8-89 

" MEMORY. 2-4 
" ~E~ORY REGISIERS •• 2-5 

SIZE OF CONTROL MEMORY REGISTERS. 2-5 
" PANEL. 

TYPE 1201 CONTROL PANEL. 1-2 
PERIPHERAL CONTROL. 1-6 
PERIPHERAL CONTROL AND BRANCH -- PCB. 8-111. 8-131 

" REGISTER CONTENTS LOADED BY LCR INSTRUCTION. 8-67 
" REGISTER CONTENTS STORED BY SCR INSTRUCTION. 8-65 
" REGISTER DESIGNATIUNS. B-1 
" REGISTER FUNCTION. 

TYPICAL CONTROL REGISTER fUNCTION. 2-4 
" REGISTERS. 

LOAD CONTROL REGISTERS -- LCR. 8-67 
STORE CONTROL REGISTERS -- SCR. 8-65 

" REGISTERS STORED BY SCR INST~UCTION. 8-66 
" STATEMENTS. 

ASSEMBLY CONTROL STATEMENTS. 7-1. 7-2 
SU~MARY Of PCB I/O CONTROL CHARACTERS FOR TYPE 286 

MULTI-CHANNEL. 8-132 , 
SUM~ARY OF POT I/O CONTROL CHARACTERS FOR TYPE 286 

MULTI-C~ANNEL. 8-116 
SYMBOLIC REPRESENTATION OF INPUT/OUTPUT TRAFFIC 

CONTROL. 2-11 
" UNIT. 2-8 
" UNIT ACTIVITIES. 2-8 

CONVENT IONS (CONT.) 

CONVENTIONS 
DECIMAL ARITHMETIC SIGN CONVENTIONS. 8-11 
DIVIDE SIGN CONvENTIONS. 8-15 
MULTIPLY SIGN CONVENTIONS. 8-12 

CONVERSION 

CORE 

" OF SYMBOLIC TAGS TO ABSOLUTE MEMORY ADDRESSES. 3-2 
" P~UCEDURl. 

OCTAL-DECI~AL CONVERSION PROCEDURE. A-3 
" TAbLE. 

DECIMAL OCTAL CONVERSION TABLE. A-2 

" PLANE. 
MAIN MEMORY CORE PLANE. 2-2 

" STORAGE. 
REPRESENTATION OF CHARACTERS IN MAGNETIC CORE 

STORAGE. 2-3 
COUNTERS 

READ/WRITE COUNTERS. 2-7 
CSM 

CHANGE SEQUENCING MODE -- CS~. 8-72 
CSR 

CHANGE SEQUENCE REGISTER (CSR). 4-3 
CUSTOMER INQUIRY HANDLING VIA TYPICAL COMMUNICATIONS 

NETWORK. 1-12 
CW 

CLEAR WORD MARK -- CWo 8-56 
CYCLE DISTRIBUTION 

Cl 

C2 

MEMORY CYCLE DISTRIBIiTlON. 2-9 

DESCRIPTION OF POT I/O CONTROL CHARACTERS Cl AND C2. 
8-109 

DESCRIPTION OF PDT I/O CONTROL CHARACTERS C1 AND C2. 
8-109 

C3 CODING 

OA 

DATA 

DC 

DCW 

" FON TYPE 209 PAPER TAPE READER. 8-114 
" FOR TYPE 210 PAPER TAPE PUNC~. 8-114 
" FOR TYPE 270 RANDO~ ACCESS DRUM. 8-115 
" FOR TYPES 206 AND 222 PRINTERS. 8-114 

DEFINE AR~A -- DA. 6-6 

" COMMUNICATION EOUIPMENT. 1-10 
SERI~S 200 DATA COMMUNICATION EQUIPMENT. 1-10 

" FIELD fORMAT IN MAIN MEMORY. 3-5 
" FllLDS. 

EXTRACTION OF DATA FIELDS IN TYPICAL ADD 
INSTRUCTION. 4-2 

" FLOW BETWEEN MAIN MEMORY AND ARITHMETIC UNIT. 2-7 
" FORMAT. F-l. 3-1 

DATA FOR~AT ON MAGNETIC TAPE. 3-8 
MAGNETIC TAPE DATA FORMAT. 3-7 
SUMMARY OF INTERNAL DATA FORMATS. 3-6 

" FORMATTING STATEMENTS. 6-1 
ORGANIZATION OF DATA IN MAIN MEMORY. 3-4 

II PATH, 
BASIC INPUT/OUTPUT DATA PATH. 1-13 
DATA PATH DURING CARD READ OPERATION. 1-14 

" PATH COMPONENTS OF SERIES 200 PROCESSORS. 1-14 
" TRANSFER. 

PERIPHERAL DATA TRANSFER -- PDT. 8-108. 8-115 
" TRANSFER INTERVALS DIIRING ONE PERIPHERAL OPERATION. 

2-9 
" TRANSFER OPERATION. 

PFRIPHERAL DATA TRANSFER OPERATION. 1-11 

DEFIN[ CONSTANT -- DC. 6-5 

DEfINE CONSTANT WITH WORQ MARK -- DCW. 6-2 
DECIMAL 

" ADUlT ION •• 8-9 
ALGEBRAIC SIGNS IN DECIMAL ADDITION. 8-9 

" ARITHMETIC SIGN CONVENTIONS. 8-11 
" CONSTANTS. 6-2 
" EQUIVALENTS. 

BINARY. OCTAL. AND DECIMAL EQUIVALENTS. B-7 
" LITERALS. 5-12 
" OCTAL CONVERSION TABLE. A-2 
" SUBTRACTION. 8-10 

DEFINE 
" AREA -- DA. 6-6 
" CONSTANT WITH WORD MARK -- DCW. 6-2 

DEFIN( CONSTANT -- DC. 6-5 
" SYMBOLiC ADDRESS -- OSA. 6-6 

DEFINING LITERALS 
AREA DEFINING LITERALS. 5-14 

DESCR IPTION 
(CONT. ) 



COMPUTER-GENERATED INDEX 

DESCRIPT ION (CONT.) 
• Of PDT liD CONTROL CHARACTERS CI AND C2. 8-109 

SYMBOLOGY USED IN SERIES 200 INSTRUCTION 
DESCRIPTIONS. 8-2 

DESIGNATIONS 
CONTROL REGISTER DESIGNATIONS. B-1 

DISTRIBUTION 
~EMORY CYCLE DISTRIBUTION. 2-9 

DIVIOE 
• -- D. 8-29 
• OPERATION. 

fACTOR LOCATIONS IN DIVIDE OPERATION. 8-14 
• SIGN CONVENTIONS. 8-15 

OIV ISION. 8-13 
DRUM 

DSA 

DUMP 

LOGICAL DIVISION Of SERIES 200 CENTRAL PROCESSOR. 
2-1 

LOGICAL DIVISION OF SERIES 200 CENTRAL PROCESSOR. 
2-1 

• FILE. 
RANDOM ACCoSS DRUM fiLE. 1-9 

• FILE UNITS. 
SERIES 200 MAGNETIC DRUM FILE UNITS. 1-9 

DEFINE SYMBOLIC ADDRESS DSA. 6-6 

MEMORY DUMP -- HSM. 7-12 
EASYCODER 

EDIT 

" A, 

" AS. 

EASYCODE~ A. 7-2. 7-4. 7-6. 7-12. 7-16. 7-17 
EASYCODER A AND B. 7-9. 7-10. 7-11 

EASYCODER A. B. AND C. 7-7 
• ASSEMBLY PROGRAM. 5-3 
• B. 

" C. 
EASYCODER B. 7-3. 7-5. 7-7. 7-8. 7-16. 7-18 

EASYCODER C. 7-3. 7-4. 7-5. 7-7. 7-9. 7-10. 
7-11. 7-12. 7-13. 7-14. 7-15. 7-17. 7-19 

• INSTRUCTION. 1-16 
MOVE CHARACTERS AND EDIT -- MCE. 8-102 

EDITING. 8-101 
EJR 

EXTERNAL INTERRUPT REGISTER (EIR). 4-3 
END 

" -- END. 7-17 
EQU 

EQUALS EQU. 7-10 
EQUAL 

BRANCH IF CHARACTER EQUAL -- BCE. 8-49 
EQUALS 

• -- EQU. 7-10 
CONTROL EQUALS -- CEQU. 7-11 

EQUIPMENT 
DATA COMMUNICATION EQUIPMENT. 1-10 
PAPER TAPE EQUIP~ENT. 1-9 
PERIPHERAL EQUIPMENT. 1-6 
PUNCHED CARD EQUIPMENT. 1-7 
SERIES 200 DATA COMMUNICATION EQUIPMENT. 1-10 
SIRlES 200 PAPER TAPE EQUIPMENT. 1-10 
SERIES 200 PUNCHED CARD EQUIPMENT. 1-7 

EQUIVALENTS 
BINARY OCTAL EQUIVALENTS. A-I 
BINARY. OCTAL. AND DECIMAL EQUIVALENTS. B-7 

EX 
EXECUTE -- EX. 7-4 

EXAf'PLES 
COMPLEMENT ADD EXAMPLES. 8-10 
TRUE ADD EXAMPLES. 8-9 

[XECUTE -- EX. 7-4 
EXM 

EXTENDED MOV~ -- EXM. 8-74 
EXTENDED MOH (EXM) CONDITIONS. B-2 

EXPLICIT ADDRESSING. IMPLI{IT ADDRESSING. AND 
CHAINING. 4-14 

EXT 
EXTRACT -- EXT. 8-34 

EXTENDED MOVE 
" -- EXM. 8-74 
" (EXM) CONDITIONS. B-2 
" CONDITIONS. 8-74 

EXTERNAL INTERRUPT. 0-1 
EXTERNAL INTERRUPT ROUTINE 

" REGISTER (EIR). 4-3 
" REGISTER (EIR). 4-3. 0-3 

EXTRACT -- EXT. 8-34 

EXTRACTION 
• OF DATA FIELDS IN TYPICAL ADD INSTRUCTION. 4-2 
• OF INDEXED ADDRESS IN THREE-CHARACTER MODE. 4-12 
• OF INDIRECT AND INDEXED FOUR-CHARACTER ADDRESSES. 

4-15 
" OF THREE-CHARACTER INDIRECT ADDRESS. 4-10 

FACTOR LOCATIONS IN DIVIDE OPERATION. 8-14 
FEATURE 

BCC TEST CONDITIONS WITH ADVANCED PROGRAMMING 
FEATURE. 8-47 

MODEL 200 ADVANCED PROGRAMf'ING FEATURE. 1-16 
OPTIONAL FEATURES. 1-15 
SERIES 200 OPTIONAL FEATURES. 1-15 
STORAGE PROTECT FEATURE. E-l 

FIELD 
" FORMAT. 

DATA FIELD FORMAT IN MAIN MEMORY. 3-5 
" LENGTH. 

VARIABLE fiELD LENGTH. 3-1 
fiELDS. 3-4 

FILE 

A AND B FIELDS IN MULTIPLY OPERATION. 8-12 
EXTRACTION OF DATA FIELDS IN TYPICAL ADD 

INSTRUCTION. 4-2 

MASS MEMORY fiLE. 1-9 
RANDOM ACCESS DRUM FILE. 1-9 

" UNITS. 
SERIES 200 MAGNETIC DRUM FILE UNITS. 1-9 
SERIES 200 MASS MEMORY FILE UNITS. 1-9 

fLOATING POINT INDICATORS. F-2 
FLOATING-POINT REGISTERS. F-l 
FLOW 

FORM 

DATA FLOW BETWEEN MAIN MEMORY AND ARITHMETIC UNIT. 
2-7 

CODING fORM. 5-4 
EASYCODER CODING FORM. 5-4 

FORMAT 
DATA FIELD FORMAT IN MAIN MEMORY. 3-5 
DATA FORMAT. F-l. 3-1 
DATA FORMAT ON MAGNETIC TAPE. 3-8 
INSTRUCTION fORMAT. 3-2 
MAGNETIC TAPE DATA FORMAT. 3-7 
PUNCHED CARD FORMAT. 3-8 
RECPRD FORMAT IN MAIN MEMORY. 3-6 
SERIES 200 INSTRUCTION FORMAT 1. 4-15 
SERIES 200 INSTRUCTION FORMAT 2. 4-16 
SERIES 200 INSTRUCTION FORMAT 3. 4-17 
SERIES 200 INSTRUCTION FORMATS. 3-3 
SUMMARY OF INTERNAL DATA FORMATS. 3-6 
TWO ITEM FORMATS IN MAIN MEMORY. 3-5 

FORMATTING 
AUTOMATIC fORMATTING IN ARITHMETIC OPERATIONS. F-2 

" STATEMENTS. 
DATA FORMATTING STATEMENTS. 6-1 

FOUR-CHARACTER 
" ADDRESSES. 

EXTRACTION OF INDIRECT AND INDEXED 
fOUR-CHARACTER ADDRESSES. 4-15 

" ADDRESSING MODE. 4-8. 4-12 
ASSEMBLY OF INDEXED ADDRESS IN FOUR-CHARACTER 

ADDRESSING MODE. 5-18 
ASSEMBLY OF INDIRECT ADDRESS IN FOUR-CHARACTER 

ADrRESSING MODE. 5-19 
INDEX REGISTER ADDRESSES IN FOUR-CHARACTER 

ADDRESSING MODE. 4-13 
FUNCTION 

GEN 

MAIN MEMORY FUNCTIONS. 2-2 
TYPE 286 LINE CONTROL fUNCTIONS. 8-117 
TYPICAL CONTROL REGISTER FUNCTION. 2-4 

GENERATE -- GEN. 7-14 
GENERATE -- GEN. 7-14 
HA 

HALF ADD -- HA. 8-35 
HALf ADD HA. 8-35 
HALT 

" -- H. 8-59 
HANDLING 

HEADER 

CUSTOMER INQUIRy HANDLING VIA TYPICAL COMMUNICATIONS 
NETWORK. 1-12 

PROGRAM HEADER -- PROG. 7-2 
SEGMENT HEADFR -- SEG. 7-3 

HIGH-SPEED PRINTERS. 1-7 
HSM 

SERIES 200 HIGH-SPEED PRINTERS. 1-8 
(CONT. ) 

--~ 



j 

I 

1 
~ 
"I 

i 

i 
I 
f 
I 
i 
I 

i 
I 
1 
I 

COMPUTER-GENERATED INDEX 

HSM (CONT.) 
SERIES 200 HIGH-SPEED PRINTERS. 1-8. 7-12 

I/O CONTROL CHARACTERS 

IIR 

" Cl. 
DESCRIPTION OF PDT 1/0 CONTROL CHARACTERS Cl AND 

C2. 8-109 
SUMMARY OF PCB 1/0 CONTROL CHARACTERS. 8-119 
SUMMARY OF PCB 1/0 CONTROL CHARACTERS FOR TYPE 286 

MULTI-CHANNEL. 8-132 
SUMMARY OF PUT 1/0 CONTROL CHARACTERS. 8-112 
SUMMARY OF PDT 1/0 CONTROL CHARACTERS FOR TYPE 286 

MULTI-CHANNEL. 8-116 

INTERNAL INTERRUPT REGISTER (IIR). 4-4 
IMPLICIT ADDRESSING 

INDEX 

EXPLICIT ADDRESSING. IMPLICIT ADDRESSING. AND 
CHAINING. 4-14 

" REGISTER ADDRESSES IN THREE-CHARACTER ADDRESSING 
MODE. 4-11 
INDEX REGISTER ADDRESSES IN FOUR-CHARACTER 

ADURESSING MODE. 4-13 
" REGISTERS. 

NUMBER O~ INDEX REGISTERS AVAILABLE TO SERIES 
200 PROCESSORS. 4-10 

INDEx/BARRICADE INUICATOR 
LOAC INDEX/BARRICADE INDICATOR -- LIB. 8-84 
STORE INDEX/BARRICADE INDICATOR SIB. 8-87 

INDEXED. 5-16 
" ADDRESS. 

ASSEMBLY OF INDEXED ADDRESS IN FOUR-CHARACTER 
ADDRESSING MODE. 5-18 

ASSEMBLY OF INDEXED ADDRESS IN THREE-CHARACTER 
ADDRESSING MODE. 5-17 

EXTRACTION Of INDEXED ADDRESS IN THREE-CHARACTER 
MODE. 4-12 

" ADDRESSING. 4-9. 4-13 
" FOUR-CHARACTER ADDRESSES. 

INDICATOR 

EXTRACTION OF INDIRECT AND INDEXED 
FGuR-CHARACTER ADDRESSES. 4-15. 

" COND IT IONS. 
BRANCH ON CONDITION TEST (BCT) INDICATOR 

CONDITIONS. B-4 
FLOATING POINT INDICATORS. F-2 
INDICATORS. 8-11 
LOAD INDEX/BARRICADE INDICATOR -- LIB. 8-84 
PROCEED INDICATOR. E-3 
SET I PUNCTUATION INDICATORS. 5-5 
SET II PUNCTUATION INDICATORS (EASYCODER ONLY). 5-6 
STORE INDEX/BARRICADE INDICATOR -- SIB. 8-87 

" TEST CONDITIUNS FOR BCT INSTRUCTION. 8-43 
INDICATORS 

RESTORE VARIANT AND INDICATORS -- RVI. 8-93 
STORE VARIANT AND INDICATORS -- SVI. 8-90 

INDIRECT. 5-18 
.. ADDRESS. 

ASSEMBLY OF INDIRECT ADDRESS IN fOUR-CHARACTER 
ADDRESSING MODE. 5-19 

ASSEMBLY OF INDIRECT ADDRESS IN THREE-CHARACTER 
ADDRESSING MODE. 5-18 

EXTRACTIUN OF THREE-CHARACTER INDIRECT ADDRESS. 
4-10 

" ADDRESSING. 4-9. 4-12 
EXTRACTION OF INDIRECT AND INDEXED FOUR-CHARACTER 

ADDRESSES. 4-15 
INFORMATICN 

" RESTORED BY RVI INSTRUCTION. 8-94 
.. STORED BY SVI INSTRUCTION. 8-90 
" UNITS. 

SIZE OF INFORMATION UNITS IN MIT OPERATION. 8-80 
INPUT/OUTPUT. 8-101 

" CUNTROL CHARACTERS. 5-16 
" DATA PATH. 

BASIC INPUT/OUTPUT DATA PATH. 1-13 
.. TRAFFIC CONTROL. 2-8 

SYMBOLIC REPRESENTATION OF INPUT/OUTPUT TRAFFIC 
CONTROL. 2-11 

" TRAFFIC CONTROL ACTIVITIES. 2-9 
" TRUNK. 1-13 

ADDITIONAL INPUT/OUTijUT TRUNKS AND READ/WRITE 
CHANNELS. 1-17 

INQUIRY HANDLING 
CUSTUMER INQUIRY HANDLING VIA TYPICAL COMMUNICATIONS 

NETWORK. 1-12 
INS T RUCTI ON 

BASIC TEST CUNDITIONS FOR BCC INSTRUCTION. 8-46 
(CaNT. ) 

INSTRUCTION (CONT.) 
CHANGING ADDRESSING MODES VIA CAM INSTRUCTION. 8-71 
CONTROL REGISTER CONTENTS LOADED BY LCR INSTRUCTION. 

8-67 
CONTROL REGISTER CONTENTS STORED BY SCR INSTRUCTION. 

8-65 
CONTROL REGISTERS STORED BY SCR INSTRUCTION. 8-66 

" DESCRIPTIONS. 
SYMBOLOGY USED IN SERIES 200 INSTRUCTION 

rESCRIPT IONS. 8-2 
EDIT INSTRUCTION. 1-16 
EXTRACTION OF DATA FIELDS IN TYPICAL ADD 

INSTRUCTION. 4-2 
" FORMAT. 3-2 

SERIES 200 INSTRUCTION FORMAT 1. 4-15 
SERIES 200 INSTRUCTION FORMAT 2. 4-16 
SERIES 200 INSTRUCTION FORMAT 3. 4-17 
SERIES 200 INSTRUCTION FORMATS. 3-3 

INDICATOR TEST CONDITIONS FOR BCT INSTRUCTION. 8-43 
INFORMATION RESTORED BY RVI INSTRUCTION. 8-94 
INFORMATION STORED By SvI INSTRUCTION. 8-90 
INSTRUCTIONS. 8-1 
MODES SPECIFIED BY VARIANT CHARACTER IN CAM 

INSTRUCTION. 8-69 
SENSE SWITCH CONDITIONS FOR BCT INSTRUCTION. 8-42 
SPECIAL CHARACTERS IN Mcr INSTRUCTION. 8-103 

" SUMMARY. C-l 
SUMMARY OF SCIENTIFIC INSTRUCTIONS. F-3 
SYMBOLIC REPRESENTATION OF SERIES 200 INSTRUCTIONS. 

3-4 
TYPICAL ADD INSTRUCTION. 4-1 

INTERNAL 
" DATA FORMATS. 

SUMMARY OF INTERNAL DATA FORMATS. 3-6 
" INTERRUPT. 0-2. E-l 
.. INTERRUPT REGISTER (IIR). 4-4 
" INTERRUPT ROUTINE. 

SAMPLE CODING FOR INTERNAL INTERRUPT ROUTINE. 
0-4 

INTERRUPT 
CONTROL. 8-89 
EXTERNAL INTERRUPT. 0-1 
INTERNAL INTERRUPT. 0-2. E-l 
PROCESSING. 0-1 
PROCESSING MODE. 1-3 
PROGRAM INTERRUPT. 1-16 
PROGRAMMI~G. 0-3 
REGISTER. 

ExT£RNAL INTERRUPT REGISTER (EIR). 4-3 
INTERNAL INTERRUPT REGISTER (I IR). 4-4 

ROUTINE. 
SAMPLE CODING FOR EXTERNAL INTERRUPT ROUTINE. 

0-3 
SAMPLE CODING FOR INTERNAL INTERRUPT ROUTINE. 

Q-4 
INTERVALS 

DATA TRANSFER INTERVALS DURING ONE PERIPHERAL 
OPERATION. 2-9 

INTRODUCTION. 5-1. 6-1. 7-1. 8-1 
ITEM 

" FORMATS. 
TWO ITEM FORMATS IN MAIN MEMORY. 3-5 

ITEMS. 3-5 
" MARK, 

CLEAR ITEM MARK -- CI. 8-58 
SET ITEM MARK -- 51. 8-55 

MOVE ITEM AND TRANSLATE -- MIT. 8-80 
ITEM-MARK TRAPPING. 8-70 
LANGUAGE 

EASYCODER SYMBOLIC LANGUAGE. 5-2 
LCA 

LOAD CHARACTERS TO A-FIELD WORD MARK 
LCR 

" INSTRUCTION. 

LCA. 8-63 

CONTROL REGISTER CONTENTS LOADED BY LCR 
INSTRUCTION. 8-67· 

LOAD CONTROL REGISTERS -- LCR. 8-67 
LEFTMOST BOUNDARIES OF PROTECTED MEMORY. 8-85 
LENGTH 

VARIABLE FIELD LENGTH. 3-1 
LIB 

LOAD INDEX/BARRICADE INDICATOR -- LIB. 8-84 
LINE CONTROL FUNCTIONS 

TYPE 286 LINE CONTROL FUNCTIONS. 8-117 
LITERAL ORIGIN -- LITORG. 7-8 
LITERALS. 5-12 

ADDRESS LITERALS. 5-15 
(CONT. ) 



COMPUTER-GENERATED INDEX 

LIT[RALS (CONT.) 
ALPHANU~ERIC LITERALS. 5-14 
AREA DEFINING LITERALS. 5-14 
RINARY LITERALS. ?-13 
D[CIMAL LITERALS. 5-12 
OCTAL LITERALS. 5-13 

LITORG 

LOAD 
LITERAL ORIGIN -- LITORG. 7-8 

" C~ARACTERS TU A-fIELD WORD MARK -- LCA. 8-63 
" CONTROL REGISTERS -- LCR. 8-67 
" INDEXIBARRICADE INDICATOR -- LIB. 8-84 

LOAD~D 
CCNTROL REGISTER CUNTENTS LOADED BY LCR INSTRUCTION. 

8-67 
LOCATION 

" (CARD COLUMNS 8-14). 5-6 
CONSECUTIVE STORAGE LOCATIONS IN MAIN MEMORY. 3-4 
FACTOR LOCATIONS IN DIVIDE OPERATION. 8-14 

LOGIC. 8-33 
LOGICAL DIVISION O~ SERIES 200 CENTRAL PROCESSOR. 2-1 
MAGNETIC 

" CCRE STCRAGE. 
REPRESENTATION OF CHARACTERS IN MAGNETIC CORE 

STURAGE. 2-3 
" DRU~ FILE UNITS. 

SERIES 2UO MAGNETIC DRUM FILE UNITS. 1-9 
" TAPE. 

CHARACTER REPRESENTATION ON MAGNETIC TAPE. 3-7 
DATA FORMAT ON MAGNETIC TAPE. 3-8 

" TAPE DATA FORMAT. 3-7 
" TAPE UNITS. 1-8 

SERIES 2UO MAGNETIC TAPE UNITS. 1-8 
MAIN ME~ORY. 2-1 

CGNSECUTIVE STORAGE LOCATIONS IN MAIN MEMORY. 3-4 
" CORE PLANE. ~-2 

nATA FlfLD FURMAT IN MAIN MEMORY. 3-5 
nATA FLOW BETWEEN MAIN MEMORY AND ARITHMETIC UNIT. 

2-7 
" FUNCTIONS. 2-2 

ORGANIZATION OF DATA IN MAIN MEMORY. 3-4 
RECCRD fORMAT IN MAIN MEMORY. 3-6 

" SIZE. 1-5 
TWO ITEM FORMATS IN MAIN MEMORY. 3-5 

MAIN MEMORY SPEED. 1-5 
MARK 

" (CARD COLUMN 7). ?-5 
CLEAR ITEM MARK -- CI. 8-58 
CLEAR WORD MARK -- CW. 8-56 
DEFINE CONSTANT WITH WORD MARK -- DCW. 6-2 
LOAD CHARACTERS TO A-FIELD WORD MARK -- LCA. 8-63 
MOVf CHARACTERS TO WORD MARK -- MCW. 8-62 
SET ITEM MARK -- SI. 8-55 
SET WORD MARK -- SW. 8-54 

MASS MEMORY FILE. 1-9 
" UNITS. 

MAT 

MC 

MCE 

MCW 

SERIES 2UO MASS MEMORY FILE UNITS. 1-9 

~OVE AND TRANSLATE -- MAT. 8-77 
" OPERATION. 8-79 

MONITOR CALL -- MC. 8-95 

" INSTRUCTION. 
SPECIAL CHARACTERS IN MCE INSTRUCTION. 8-103 

MOVE CHARACTERS AND EDIT -- MCE. 8-102 

MOVE CHARACTERS TO WURD MARK -- MCW. 8-62 
MEMORY 

ADDRESSES. 
CONVERSIUN OF SYMBOLIC TAGS TO ABSOLUTE MEMORY 

ADDRESSES. 3-2 
CONSECUTIVE ~TORAGE LOCATIONS IN MAIN MEMORY. 3-4 
CONTROL MEMORY. 2-4 
CCRE PLANE. 

MAIN MEMORY CORE PLANE. 2-2 
CYCLE DISTRIBUTION. 2-9 
DATA FIELD FORMAT IN MAIN MEMORY. 3-5 
DATA FLOW BETWEEN MAIN MEMORY AND ARITHMETIC UNIT. 

2-7 
DUMP -- HSM. 7-12 f~ 
fiLE. 

MASS MEMURY FILE. 1-9 
FILE UNITS. 

SERIES 200 MASS MEMORY FILE UNITS. 1-9 
FUNCTIONS. 

MAIN MEMURY FUNCTIONS. 2-2 
(CONT.) 

MEMORY (CONT.) 

MIT 

MODE 

LEFTMOST EOUNDARIES OF PROTECTED MEMORY. 8-85 
MAIN ME~ORY. 2-1 
ORGANIZATION or DATA IN MAIN MEMORY. 3-4 
POSITION. 

ONE MEMORY POSITION. 2-3 
RECORD FORMAT IN MAIN MEMORY. 3-6 
REGISTERS. 

CONTROL MEMORY REGISTERS. 2-5 
SIZE OF CONTROL MEMORY REGISTERS. 2-5 

SIZE. 
MAIN MEMORY SIZE. 1-5 

SPEED. 
MAIN MEMORY SPEED. 1-5 

TWO ITEM FORMATS IN MAIN MEMORY. 3-5 

MOVE ITEM AND TRANSLATE -- MIT. 8-80 
" OPERATION •• 8-84 

SIZE Of INFORMATION UNITS IN MIT OPERATION. 8-80 

ADDRESSING MODES. 4-5 
ASSEMBLY OF INDEXED ADDRESS IN FOUR-CHARACTER 

ADDRESSING MODE. 5-18 
ASSEMBLY OF INDEXED ADDRESS IN THREE-CHARACTER 

ADDRESSING MODE. 5-17 
ASSEMBLY OF INDIRECT ADDRESS IN FOUR-CHARACTER 

ADDRESSING MODf. 5-19 
ASSEMBLY OF INDIRECT ADDRESS IN THREE-CHARACTER 

ADDRESSING MODE. 5-18 
CHANGE ADDRESSING MODE -- CAM. 8-69 
CHANGE SEQUENCING MODE -- CSM. 8-72 
CHANGING ADnRESSrNG MODES VIA CAM INSTRUCTION. 8-71 
EXTRACTION OF INDEXED ADDRESS IN THREE-CHARACTER 

MODE. 4-12 
FOUR-CHARACTER ADDRESSING MODE. 4-8. 4-12 
INDEX REGISTER ADnRESSES IN FOUR-CHARACTER 

ADDRESSING MODE. 4-13 
INDEX REGISTER ADDRESSES IN THREE-CHARACTER 

ADDRESSING HODE. 4-11 
I~TERRUPT PROCESSING MODE. 1-3 
MODES SPECIFIED BY VARIANT CHARACTER IN CAM 

INSTRUCTION. 8-69 
RESUME NORMAL MODE -- RNM. 8-97 
SET ADDRESS MODE -- ADMODE. ·7-9 
STANDARU PROCESSOR MODE. 1-3 
THREE-CHARACTER ADDRESSING MODE. 4-6 
TRAP MODE. 8-70 
TWO-CHARACTER ADDRESSING MODE. 4-5 

MODEL 200 ADVANCED PROGRAMMING FEATURE 
MODEL 200 ADVANCED PROGRAMMING FEATURE. 1-16 

MODIFICATION 
ADDRESS MODIFICATION. 4-8 

" CODES. 
ADDRESS MODIFICATION CODES. 5-16 

MODULAR ORIGIN -- MORG. 7-7 
MONITOR CALL -- MC. 8-95 
MORG 

MOVE 
MODULAR ORIGIN -- MORG. 7-7 

" AND TRANSLATE -- MAT. 8-77 
" CHARACTERS AND EDIT -- MCE. 8-102 

HOVE CHARACTERS TO WORD HARK -- MCW. 8-62 
" CONDITIONS. 

EXTENDED MovE CONDITIONS. 8-74 
EXTENDED MOVE -- EXM. e-74 
EXTENDED MOVE (EXM) CONDITIONS. B-2 

" ITEM AND TRANSLATE -- MIT. 8-80 
MULTI-CHANNEL COMMUNICATION CONTROL 

SUMMARY OF PCB 1/0 CONTROL CHARACTERS FOR TyPE 286 
MULTI-CHA~NEL. 8-132 

SUMMARY OF PDT 1/0 CONTROL CHARACTERS FOR TYPE 286 
MULTI-CHANNEL. 8-116 

MULTIPLICATION. 8-11 
MULTIPLY 

" -- M. 8-26 
" OPERATION. 

A AND B FIELDS IN MULTIPLY OPERATION. 8-12 
" SIGN CONVENTIONS. 8-12 

NETWORK 

NOP 

CUSTOMER INQUIRY HANDLING VIA TYPICAL COMMUNICATIONS 
NETWORK. 1-12 

NO OPERATION -- NOP. 8-61 
NORMAL MODE 

RESUME NORMAL MODE -- RNM. 8-97 
NOTATION 

OCTAL NOTATION. A-I 
NUMBER (CONT.) 



r 

I 
COMPUTER-GENERATED INDEX 

NUMB~R 

CARD NUMBER (CARD COLUMNS 1-5). 5-4 
• Of INDEX REGISTE~S AVAILABLE TO SERIES 200 

PROCESSO~S. 4-10 
NUMERIC CCNSTANTS. 6-2 
OBJECT PRCGRAMS 

RELATIONSHIP Of SOURCE. ASSEMBLY. AND OBJECT 
PROGRAMS. 5-2 

OCTAL 
BINARY. OCTAL. AND DECIMAL EQUIVALENTS. B-7 

" CONSTANTS. 6-3 
" CONVERSION TABLE. 

DECIMAL OCTAL CONVERSION TABLE. A-2 
• EQUIVALENTS. 

BINARY OCTAL EQUIVALENTS. A-I 
• LITERALS. 5-13 
" NOTATION. A-I 

OCTAL-DECIMAL CONVtRSION PROCEDURE. A-3 
OPERANDS (CARD COLUMNS 21-62). 5-8 
OPERATION 

A AND B flELUS IN MULTIPLY OPERATION. 8-12 
ARITH~ETIC OPERATIONS. 8-6 
AUTCMATIC fORMATTING IN ARITHMETIC OPERATIoNS. F-2 

" CODE. 3-2 
OPERATION CODE (CARD COLUMNS 15-20). 5-7 

DATA PATH DURING CARD READ OPERATION. 1-14 
DATA TRANSfER INTERVALS DURIN~ ONE PERIPHERAL 

OPERATION. 2-9 
fACTOR LOCATIONS IN DIVIDE OPERATION. 8-14 
~AT OPERATION. 8-79 
MIT OPERATION. 8-84 
NO CPERATION -- NOP. 8-61 
PERIPHERAL DATA TRANSFER OPERATION. 1-11 
SERItS 200 ADD AND SUBTRACT OPERATIONS. e-6 
SIlE Of INFORMATION UNITS IN MIT OPERATION. 8-80 

OPTIONAL fEATURES. 1-1~ 
ORG 

SERIES 200 OPTIONAL fEATURES. 1-15 
SfRIES 200 OPTIONAL fEATURES. 1-15. 7-6 

ORGANIZATION Of DATA IN MAIN MEMORY. 3-4 
ORIGIN 

• -- CRG. 7-6 
LITERAL ORIGIN 
MODULAR ORIGIN 

LITORG. 7-8 
MORG. 7-7 

PANEL 
TYPE 1201 CONTROL PANEL. 1-2 

PAPER TAPf 
" EQUIP~ENT. 1-9 

SERIES 2UO PAPER TAPE EQUIPMENT. 1-10 
" PUNCH. 

C3 CODING FOR TYPE 210 PAPER TAPE PUNCH. 8-114 
PAPER T~Pf READER 

PATH 

PCB 

PDT 

C3 CODING fOR TYPE 209 PAPER TAPE READER. 8-114 

BASIC INPUT/UUTPUT DATA PATH. 1-13 
" CO~PONENTS. 

DATA PATH COMPONENTS Of SERIES 200 PROCESSORS. 
1-14 

DATA PATH DURING CARD READ OPERATION. 1-14 

• I/O CONTROL CHARACTERS. 
SUM~ARY Of PCB I/O CONTROL CHARACTERS. 8-119 
SUMMARY Of PCB I/O CONTROL CHARACTERS fOR TYPE 

286 MULTI-CHANNEL. 8-132 
PERIPHERAL CUNTROL AND BRANCH -- PCB. 8-117. 8-131 

• I/O CONTROL CHARACTERS. 
SUMMARY OF PDT I/O CONTROL CHARACTERS. 8-112 
SUM~ARY Of PDT I/O CONTROL CHARACTERS fOR TYPE 

286 MULTI-CHANNEL. 8-116 
• I/O CONTROL CHARACTERS Cl. 

DESCRIPTION OF PDT I/O CONTROL CHARACTERS Cl AND 
C2. 8-109 

PEHIPHERAL DATA TRANSfER -- PDT. 8-108. 8-115 
PERIPHERAL 

• CONTROL. 1-6 
PERIPHERAL CONTROL AND BRANCH -- PCB. 6-117. 

8-131 
" DATA TRANSFER -- PDT. 8-108 

PERIPHERAL DATA TRANSfER -- POT. 8-115 
• DATA TRANSfER OPERATION. 1-11 
• EQUIPMENT. 1-6 
• OPERATION. 

DATA TRANSfER INTERVALS DURING ONE PERIPHERAL 
OPERATION. 2-9 

" SIMULTANEITY. 1-~ 
PLANE 

(CONT.) 

PLANE (CONT.) 
MAIN MEMORY CORE PLANE. 2-2 

POINT INDICATORS 
fLOATING POINT INDICATORS. F-2 

POSITION 
ONE MEMuRY POSITION. 2-3 

POWER 
POWERS UF 2. B-7 
PROCESSI~G POwER. 1-4 

PRINTERS 
C3 CODING FOR TYPES 206 AND 222 PRINTERS. 8-114 
HIGH-SPEED PRINTERS. 1-7 
SERIES 200 HIGH-SPEEe PRINTERS. 1-8 

PROClDURl 
OCTAL-DECI~AL CONVERSION PROCEDURE. A-3 

PROCEED INDICATOR. E-3 
PROClSSING 

INTERRUPT PROCESSING. D-l 
.. MODE. 

INTlRRUPT PROCESSING MODE. 1-3 
.. POwER. 1-4 

PROCESSO~ 

PROG 

AC1IVE ADDRESS BITS IN SERIES 200 PROCESSORS. 4-14 
CENTRAL PROCESSOR. 1-1. 2-1 

.. CHARACTERISTICS. 
SUM~ARY OF CENTRAL PROCESSOR CHARACTERISTICS. 

2-12 
DATA PATH COMPONENTS OF SERIES 200 PROCESSORS. 1-14 
LOGICAL DIVISION OF SERIES 200 CENTRAL PROCESSOR. 

2-1 
" MOUE. 

STANDARD PROCESSOR MODE. 1-3 
NUMBER OF INDEX REGISTERS. AVAILABLE TO SERIES 200 

PROCESSORS. 4-10 

PROGRAM HEADER -- PROG. 7-2 
PROGRAM 

EASYCODER ASSEMBLY PROGRA~. 5-3 
.. HEADER -- PROG. 7-2 
.. INTERRUPT. 1-16 

RELATIONSHIP OF SOURCE. ASSEMBLY. AND OBJECT 
PROGRAMS. 5-2 

PROGRAMMING 
ADVANCED PROGRAMMING. 1-15 
lASYCODER PROGRAMMING. 5-1 

.. FEATURE. 
BCC TEST CONDITIONS WITH ADVANCED PROGRAMMING 

fEATURE. 8-47 
MODEL 200 ADVANCED PROGRAMMING fEATURE. 1-16 

INTERRUPT PROGRAMMING. D-3 
PROTECT 

.. FEATURE. 
STORAGE PROTECT FEATURE. E-l 

STORAGE PROTECT. 1-17 
PROTECTED MEMORY 

LEFTMOST BOUNDARIES Of PROTECTED MEMORY. 8-85 
PRonCT ION 

VIOLATIONS Of STORAGE PROTECTION. E-2 
PUNCH 

C3 CODING FOR TyPE 210 PAPER TAPE PUNCH. 8-114 
PUNCHED CARD 

" CODES. 3-9 
" EQUIPMENT. 1-7 

SERIES 200 PUNCHED CARD EQUIPMENT. 1-7 
PUNCHED CARD fORMAT. 3-8 
PUNCTUATION INDICATORS 

SET I PUNCTUATION INDICATORS. 5-5 
SET II PUNCTUATION INDICATORS (EASYCODER ONLY). 5-6 

RANDOM ACCESS DRUM 
C3 COOING FOR TYPE 270 RANDOM ACCESS DRUM. 8-115 

" F I L E. 1-9 
READ OPERATION 

DATA PATH DURING CARD READ OPERATION. 1-14 
READ/WR I TE 

" CHANNEL. 1-13 
AnDITIONAL INPUT/OUTPUT TRUNKS AND READ/WRITE 

CHANNELS. 1-17 
AUXILIARy READ/WRITE CHANNEL. 2-10 

.. COUNTERS. 2-7 
READER 

C3 COOING fOR TyPE 209 PAPER TAPE READER. 8-114 
RECORD FORMAT IN MAIN MEMORY. 3-6 
RECORDS. 3-6 
REFERENC~ 

SELF REFERENCE. 5-10 
REGISTER 

A-ADDRESS REGISTER (AAP). 4-4 
(CONT.) 



COMPUTER-GENERATED INDEX 

REGISTER (CONT.) 
ADDRESS REGISTERS. 2-6 

.. ADDRESSES. 
INDEX REGISTER ADDRESSES IN FOUR-CHARACTER 

ADDRESSING MODE. 4-13 
INDEX REGISTER ADDRESSES IN THREE-CHARACTER 

ADDRESSING MODE. 4-11 
B-ADDRESS REGISTER (BAR). 4-4 
CHANGE SEQUENCE REGISTER (CSR). 4-3 

.. CONTENTS LOADED. 
CONTROL REGISTER CONTENTS LOADED BY LCR 

INSTRUCTION. 8-67 
.. CONTENTS STORED. 

CONTROL REGISTER CONTENTS STORED BY SCR 
INSTRUCTION. 8-65 

CONTROL MEMORY REGISTERS. 2-5 
.. DESIGNATIONS. 

CONTROL REGISTER DESIGNATIONS. B-1 
EXTERNAL INTERRUPT REGISTER (EIR). 4-3 
FLOATING-POINT REGISTERS. F-l 

.. FUNCTION. 
TYPICAL CONTROL REGISTER FUNCTION. 2-4 

INTERNAL INTERRUPT REGISTER (IlR). 4-4 
NUMBER OF INDEX REGISTERS AVAILABLE TO SERIES 200 

PROCESSORS. 4-10 
REGISTERS USlD IN ADDRESSING. 4-3 
SEQUENCE REGISTER (SR). 4-3 
SIZE OF CONTROL MEMORy REGISTERS. 2-5 

REGISTERS 
LOAD CONTROL REGISTERS -- LCR. 8-67 
STORE CONTROL REGISTERS -- SCR. 8-6~ 

.. STORED, 
CONTROL REGISTERS STORED BY SCR INSTRUCTION. 

8-66 
RELATIONSHIP OF SOURCE. ASSEMBLY. AND OBJECT PROGRAMS. 5-2 
RELATIVE. 5-10 
REP 

REPEAT -- REP. 7-14 
REPEAT -- REP. 7-14 
REPRESENTATION 

CHARACTER REPRESENTATION ON MAGNETIC TAPE. 3-7 
.. OF CHARACTERS IN MAGNETIC CORE STORAGE. 2-3 

SYMBOLIC REPRESENTATION OF INPUT/OUTPUT TRAFFIC 
CONTROL, 2-11 

SYMBOLIC REPRESENTATION OF SERIES 200 INSTRUCTIONS. 
3-4 

RESERVE AREA -- RESV, 6-5 
RfSTORf VARIANT AND INDICATORS -- RVI. 8-93 
RESTORED 

INFORMATION RESTORED BY RVI INSTRUCTION. 8-94 
RESUME NORMAL MODE RNM. 8-97 
RESV 

RESERVE AREA -- RESV. 6-5 
RN" 

RESUME NORMAL MODE -- RN". 8-97 
ROUTINE 

SAMPLE CODING FOR EX TERNAL INTERRUPT ROUTINE. 
SAMPLE CODING FOR INTERNAL INTERRUPT ROUTINE. 

RULES 
ADDITIONAL CODING RULES. 5-9 

KVI 
" INSTRUCTION. 

0-3 
0-4 

INFORMATION RESTORED BY RVI INSTRUCTION. 8-94 
RESTORE VARIANT AND INDICATORS -- RVI. 8-93 

SAMPLE COOING 
.. FOR EXTERNAL INTERRUPT ROUTINE. 0-3 
.. FOR INTERNAL INTERRUPT ROUTINE. 0-4 

SCIENTIFIC 

SCR 

SEG 

.. INSTRUCTIONS. 
SUMMARY OF SCIENTIFIC INSTRUCTIONS. F-3 

.. UNIT. F-l. 1-17 

" INSTRUCTION, 
CONTROL REGISTER CONTENTS STORED BY SCR 

INSTRUCTION. 8-65 
CONTROL REGISTERS STORED By SCR INSTRUCTION. 

8-66 
STORE CONTROL REGISTERS -- SCR. 8-65 

SEGMENT HEADER -- SEG. 7-3 
SEGMENT HEADER .- SEG. 7-3 , 
SELF REFERENCE, 5-10 
SENSE SWITCH CONDITIONS 

BRANCH ON CONDITION TEST (BCT) SENSE SWITCH 
CONDITIONS. B-3 

.. FOR BCT INSTRUCTION. 8-42 
SEQUENCE REGISTER 

(CONT. ) 

SEQUENCE REGISTER (CONT.) 
" (SR). 4-3 

CHANGE SEQUENCE REGISTER (CSR). 4-3 
SEQUlNCING MODE 

CHANGE SEQUENCING MODE -- CSM. 8-72 
SERIES 200 

II ADD .. 
SERIlS 200 ADO AND SLBTRACT OPERATIONS. 8-6 

.. CENTRAL PROCESSOR • 
LOGICAL DIVISION OF SERIES 200 CENTRAL 

PROCESSOR. 2-1 
.. CHARACTER COOFS • 

SERIES 200 CHARACTER CODES. B-7 
" COMPONENTS. 

SERIES 200 COMPONENTS, 1-1 
.. DATA COMMUNICATION EQUIPMENT. 

SERIES 200 DATA COMMUNICATION EQUIPMENT. 1-10 
.. HIGH-SPEED PRINTERS. 

SERIES 200 HIGH-SPEED PRINTERS. 1-8 
" INSTRUCTIONS • 

SYMBOLIC REPRESENTATION OF SERIES 200 
INSTRUCTIONS. 3-4 

.. MAGNETIC DRUM fiLE UNITS. 
SERIES 200 MAGNETIC DRUM FILE UNITS. 1-9 

.. MAGNETIC TAPE UNITS. 
SERIES 200 MAGNETiC TAPE UNITS. 1-8 

.. MASS MEMORY FILE UNITS. 
SERIES 200 MASS ~EMORY FILE UNITS. 1-9 

.. OPTIONAL FEATURES. 
SERIES 200 OPTIONAL FEATURES. 1·15 

.. PAPER TAPE EQUIPMENT • 
SERIlS 200 PAPER TAPE EQUIPMENT. 1-10 

.. PROCESSORS. 
ACTIVE ADDRESS BITS IN SERIES 200 PROCESSORS. 

4-14 
DATA PATH COMPONENTS OF SERIES 200 PROCESSORS. 

1-14 
NUMBER OF INDEX REGISTERS AVAILABLE TO SERIES 

200 PROCESSORS. 4-10 
.. PUNCHED CARD EQUIPMENT. 

SERIES 200 PUNCHED CARD EQUIPMENT. 1-7 
SERIES 200 INSTRUCTION 

SET 

SFX 

SI 

SIB 

" DESCRIPTIONS. 
SYMBOLOGY USED IN SERIES 200 INSTRUCTION 

DESCRIPTIONS. 8-2 
" FORMAT. 

SERIES 200 INSTRUCTION FORMAT 1. 4-15 
SERIES 2nD INSTRUCTION FORMAT 2. 4-16 
SERIES 200 INSTRUCTION FORMAT 3. 4-17 
SERIES 200 INSTRUCTION FORMATS. 3-3 

.. ADDRESS MODE -- ADMODE. 7-9 

.. I PUNCTUATION INDICATORS. 5-5 
" II PUNCTUATION INDICATORS (EASYCODER ONLY!. 5-6 
.. ITlM MARK -- SI. 8-55 
.. wnRD MARK -- S~. 8-54 

SUFFIX -- SFX. 7-13 

SET ITEM MARK -- SI. 8-55 

STORE INDEX/BARRICADE INDICATOR -- S18. 8-87 
SIGN CO~VENTIONS 

SIGNS 

DECIMAL ARITHMETIC SIGN CONVENTIONS. 8-11 
DIviDE SIGN CONvENTIONS. 8-15 
MULTIPLY SIGN CONVENTIONS, 8-12 

ALGEBRAIC SIGNS IN DECIMAL ADDITION. 8-9 
SIMUL TANEITY 

PERIPHERAL SIMULTANEITY, 1-5 
SIZE 

MAIN MEMORY SIZE. 1-5 
.. OF CONTROL MEMORY REGISTERS. 2-5 
.. OF INFORMATION uNITS IN MIT OPERATION. 8-80 

SKIP 
SKIP. 7-13 

SOURCE 
RELATIONSHIP OF SOURCE. ASSEMBLY. AND OBJECT 

PROGRAMS. 5-2 
SPECIAL CHARACTERS IN MCE INSTRUCTION. 8-103 
SPEED 

MAIN MEMORY SPEED. 1-5 
SR 

SEUUENCE REGISTER (SR). 4-3 
SST 

SUBSTITUTE -- SST. 8-37 
STANDARD PROCESSOR MODE. 1-3 
STATEMENTS (CONT.) 



COMPUTER-GENERATED INDEX 

STATEMENTS 
ASSEMBLY CONTROL STATEMENTS. 7-1. 7-2 
DATA fORMATTING STATEMENTS. 6-1 

STORAGE 
" LOCATIONS. 

CONSECUTIVE STORAGE LOCATIONS IN MAIN MEMORY. 
3-4 

" PROTECT. 1-17 
" PROTECT fEATURE. E-l 
" PROTECTION. 

VIOLATIONS Of STORAGE PROTECTION. E-2 
REPRESENTATION Of CHARACTERS IN MAGNETIC CORE 

STORAGE. 2-3 
STORE 

" CONTROL REGISTERS -- SCR. 8-65 
" INDEX/BARRICADE INDICATOR -- SIB. 8-87 
" VARIANT AND INDICATORS -- SVI. 8-90 

STORED 
CONTROL REGISTER CONTENTS STORED BY SCR INSTRUCTION. 

8-65 
CONTROL REGISTERS STORED BY SCR INSTRUCTION. 8-66 
INFORMATION STORED BY SVI INSTRUCTION. 8-90 

SUBSTITUTE -- SST, 8-37 
SUBTRACT 

" -- S, 8-18 
BINARY SUBTRACT --BS. 8-21 

" OPERATIONS. 
SERIES 200 ADD AND SUBTRACT OPERATIONS. 8-6 

ZERO AND SUBTRACT --ZS. 8-24 
SUBTRACTION 

BINARY SUBTRACTION. 8-6 
DECIMAL SUBTRACTION, 8-10 

SUffIX -- Sf X, 7-13 
SUMMARY. 3-6, 4-4 

SVI 

SW 

INSTRUCTION SUMMARY. C-l 
" Of CENTRAL PROCESSOR CHARACTERISTICS. 2-12 
" OF INTERNAL DATA FORMATS. 3-6 
" Of PCB I/O CONTROL CHARACTERS. 8-119 
" Of PCB I/O CONTRnL CHARACTERS FOR TYPE 286 

MULTI-CHANNEL. 8-132 
" Of PDT I/O CONTROL CHARACTERS, 8-112 
" Of PUT I/O CONTROL CHARACTERS FOR TYPE 286 

MULTI-CHANNEL. 8-116 
" Of SCIENTifIC INSTRUCTIONS, F-3 

" INSTRUCTION. 
INFORMATION STORED BY SVI INSTRUCTION, 8-90 

STORE VARIANT AND INDICATORS -- SVI. 8-90 

SET WORD MARK -- SW. 8-54 
SWITCH CONDITIONS 

BRANCH ON CONDIT ION TEST (BCT) SENSE SWI TCf! 
CONDITIONS. B-3 

SENSE SWITCH CONDITIONS fOR BCT INSTRUCTION. 8-42 
SYMBOLIC. 5-9 

" ADDRESS, 
DEFINE SYMBOLIC ADDRESS -- DSA, 6-6 

" LANGUAGE. 
EASYCODER SYMBOLIC LANGUAGE. 5-2 

" REPRESENTATION Of INPUT/OUTPUT TRAFfIC CONTROL. 2-11 
SYMBOLIC REPRESENTATION OF SERIES 200 

INSTRUCTIONS. 3-4 
" TAGS, 

CONVERSION Of SYMBOLIC TAGS TO ABSOLUTE MEMORY 
ADDRESSES. 3-2 

SYMBOLOGY, f-2 
TABLE 

TAGS 

TAPE 

" USED IN SERIES 200 INSTRUCTION DESCRIPTIONS. 8-2 
" USED IN SERIES 200 INSTRUCTION DESCRIPTIONS. 8-2, 

6-3 
DECIMAL OCTAL CONVERSION TABLE. A-2 
MISCELLANEOUS TABLES. B-1 

CONVERSION Of SYMBOLIC TAGS TO ABSOLUTE MEMORY 
ADDRESSES, 3-2 

CHARACTER REPRESENTATION ON MAGNETIC TAPE. 3-7 
" DATA FORMAT, 

MAGNETIC TAPE DATA FORMAT. 3-7 
DATA FORMAT ON MAGNETIC TAPE. 3-8 

" EQUIPMENT, ~ 
PAPER TAPE EQUIPMENT, 1!9 
SERIES 200 PAPER TAPE EQUIPMENT. 1-10 

.. PUNCH, 
C3 CODING fOR TYPE 210 PAPER TAPE PUNCH. 8-114 

.. READER, 
C3 CODING fOR TYPE 209 PAPER TAPE READER. B-114 
(CONT. ) 

TAPE (CONTol 
.. UNITS, 

MAGNETIC TAPE UNITS. 1-8 
SERIES 200 MAGNETIC TAPE UNITS, 1-8 

TEST 
BRANCH ON CONDITION TEST -- BCT, 8-41 
BRANCH ON CONDITION TEST (BCT) INDICATOR CONDITIONS. 

B-4 
BRANCH ON CONDITION TEST (BCT) SENSE SWITCH 

CONDITIONS, 8-3 
.. CONDITIONS, 

BASIC TEST CONDITIONS FOR BCC INSTRUCTION, 8-46 
HCC TEST CONDITIONS WITH ADVANCED PROGRAMMING 

FEATURE. 8-47 
INDICATOR TEST CONDITIONS FOR BCT INSTRUCTION. 

8-43 
T fiRE E -CHARAC TER 

ADDRESSING MODE. 4-6 
ASSEMBLY Of INDEXED ADDRESS IN THREE-CHARACTER 

ADDRESSING MODE. 5-17 
ASSEMBLY OF INDIRECT ADDRESS IN THREE-CHARACTER 

ADDRESSING MODE. 5-18 
INDEX REGISTER ADDRESSES IN THREE-CHARACTER 

ADDRESSING MODE, 4-11 
INDIRECT ADDRESS. 

EXTRACTION OF THREE-CHARACTER INDIRECT ADDRESS, 
4-10 

.. MODE. 
EXTRACTION OF INDEXED ADDRESS IN THREE-CHARACTER 

MODE, 4-12 
THREE-CHARACTER ADDRESS. 4-9 
TIMING NOTES. F-3 
TRAFFIC CONTROL 

" ACTIVITIES. 
INPUT/OUTPUT TRAFFIC CONTROL ACTIVITIES. 2-9 

INPUT/OUTPUT TRAFFIC CONTROL. 2-8 
SYMBOLIC REPRESENTATION OF INPUT/OUTPUT TRAFFIC 

CONTROL. 2-11 
TRANSfER 

.. INTERVALS. 
DATA TRANSFER INTERVALS DURING ONE PERIPHERAL 

OPERATION. 2-9 
.. OPERATION. 

PERIPHERAL DATA TRANSFER OPERATION. 1-11 
PERIPHERAL DATA TRANSFER -- PDT. 8-108. 8-115 

TRANSLA TE 
MOVE AND TRANSLATE -- MAT, 8-77 
MOVE ITEM AND TRANSLATE -- MIT, 8-80 

TRAP MODE. 8-70 
TRAPPING 

ITEM-MARK TRAPPING, 8-70 
TRUE ADD. 8-9 
TRUNK 

.. EXAMPLES, 8-9 
" EXAMPLES. 8-9, 1-17 

INPUT/OUTPUT TRUNK. 1-13 
TWO-CHARACTER 

TYPE 

.. ADDRESS ASSEMBLy. 5-3 
" ADDRESSING MODE, 4-5 

" (CARD COLUMN 6). 5-5 
" 1201 CONTROL PANEL, 1-2 
" 209 PAPER TAPE READER. 

C3 CODING FOR TYPE 209 PAPER TAPE READER. 8-114 
" 210 PAPER TAPE PUNCH. 

C3 CODING FOR TYPE 210 PAPER TAPE PUNCH. 8-114 
" 220-1 C8NSOLE. 1-3 
" 220-2 CONSOLE. 1-3 
" 270 RANDOM ACCESS DRUM, 

C3 COOING FOR TYPE 270 RANDOM ACCESS DRUM. 8-115 
" 286 LINE CONTROL fUNCTIONS, 8-117 
" 28b MULTI-CHANNEL COMMUNICATION CONTROL. 

SUMMARY OF PCB I/O CONTROL CHARACTERS fOR TYPE 
286 MULTI-CHANNEL, 8-132 

SUMMARY Of PDT 1/0 CONTROL CHARACTERS FOR TYPE 
286 MULTI-CHANNEL. 8-116 

TYPES 206 
C3 CODING FOR TYPES 206 AND <22 PRINTERS, 8-114 

TYPICAL 

UNIT 

" ADD INSTRUCTION, 4-1 
EXTRACTION OF DATA fIELDS IN TYPICAL ADD 

INSTRUCTION. 4-2 
" COMMUNICATIONS NETWORK, 

CUSTOMER INQUIRY HANDLING VIA TYPICAL 
COMMUNICATIONS NETWORK. 1-12 

" CONTROL REGISTER FUNCTION. 2-4 

(CONT. ) 



COMPUTER-GENERATED INDEX 

UNIT (CONT.) 
• ACTIVITIES. 

CONTROL UNIT ACTIVITIES. 2-8 
ARITHMETIC UNIT. 2-7 
CCNT~OL UNIT. 2-R 
DATA FLOW BETWEEN MAIN MEMORY AND ARITHMETIC UNIT. 

2-7 
MAGNETIC TAPE UNITS. 1-8 
SCIENTIFIC UNIT. F-l. 1-17 
S[RItS 200 MAGNETIC DRUM FILE UNITS. 1-9 
SERIES 200 MAGNETIC TAPE UNITS. 1-8 
SERIES 200 MASS ~EMORY FILE UNITS. 1-9 
SIZE OF INFO~MATION UNITS IN MIT OPERATION. 8-80 

VARIABLE FIELD LENGTH, 3-1 
VARIANT 

• CHARACTER. 3-3. 5-15 
MODES SPECIFIED BY VARIANT CHARACTER IN CAM 

INSTRUCTION. 8-69 
RESTORE VARIANT AND INDICATORS -- RVI. 8-93 
STORE VARIANT AND INDICATORS -- SVI. 8-90 

VIOLATIONS OF STORAGE PROTECTION. E-2 
WORD MARK 

ZA 

lERO 

lS 

CLEAR WORD MARK -- CWo 8-56 
DEFINE CONSTANT WITH WORD MARK -- DCW. 6-2 
LOAD CHARACTtRS TO A-FIELD WORD MARK -- LCA. 8-63 
MOVE CHARACTERS TO WORD MARK -- MCW. 8-62 
SET WORD MARK -- SW. 8-54 

ZERO AND ADD -- lA. 8-23 

• AND ADD -- ZA. 8-23 
" AND SUBTRACT --lS, 8-24 

lERO AND SUBTRACT --lS, 8-24 
1-5 

CARD NUMBER (CARD COLUMNS 1-5). 5-4 
1201 CONTROL PANEL 

TYPE 1201 CONTROL PANEL. 1-2 

OPERATION CODE (CARD COLUMNS 15-20). 5-7 
206 

C3 CODING FOR TYPES 206 AND 222 PRINTERS. 8-114 
209 PAPER TAPE READER 

C3 CODING FOR TyPE 209 PAPER TAPE READER. 8-114 

OPERANDS (CARD COLUMNS 21-62).5-8 
210 PAPER TAPE PUNCH 

C3 COOING FOR TYPE 210 PAPER TAPE PUNCH. 8-114 
220-1 CONSOLE 

TYPE 220-1 CONSOLE. 1-3 
220-2 CONSOLE 

TYPE 220-2 CONSOLE. 1-3 
222 PRINTERS 

C3 CODING FOR TyPES 206 AND 222 PRINTERS. 8-114 
270 RANDOM ACCESS DRUM 

286 

8-14 

C3 CODING FOR TYPE 270 RANDOM ACCESS DRUM. 8-115 

• LINE CONTROL FUNCTIONS. 
TYPE 286 LINE CONTROL FUNCTIONS. 8-117 

• MULTI-CHANNEL COMMUNICATION CONTROL. 
SUMMARY OF PCB 1/0 CONTROL CHARACTERS FOR TYPE 

286 MULTI-CHANNEL. 8-132 
SUMMARY OF PDT 1/0 CONTROL CHARACTERS FOR TYPE 

286 MULTI-CHANNEL. 8-116 

LOCATION (CARD COLUMNS 8-14). 5-6 






