

SERIES 60 (LEVEL 66)

SYSTEM SOFTWARE OVERVIEW

SUBJECT

General Introduction to the System Software for the Honeywell Series 60
Level 66 Information System

SOFTWARE SUPPORTED

Series 60 Level 66

ORDER NUMBER

DE61, Rev. 0 July 1976

Honeywell

PREFACE

This document presents a broad overview of Honeywell Series 60 Level 66
system software: of its capabilities and significant characteristics. It is
intended for readers with data processing experience but with no specific
knowledge of the Honeywell Series 60 Level 66 Information System. Furthermore,
its viewpoint is that of a professional application progranuner using a
high-level language most likely COBOL. Therefore, certain as.pects of the
system that would be of interest mainly to an assembly-language programmer,
computer operator, or technical support specialist are covered only briefly or
not at all.

NOTE: Throughout this overview, the term "end user" means a user of the
application programmer's developments, or of preprogrammed end-user
facilities provided by the system. The unqualified term "user" is
employed here to mean a professional programmer.

This overview is the highest-level document in an evolving set of
introductory documents concerning the Series 60 Level 66 system software. For
information regarding the availability of other manuals in this set, contact
your local Honeywell Information Systems marketing representative.

APPLICABILITY OF THIS DOCUMENT TO THE HONEYWELL SERIES 6000 INFORMATION
SYSTEM: Most of the information in this overview is equally applicable to
Honeywell Series 6000 system software, due to the high degree of software
compatibility between the Series 6000 and Series 60 Level 66 systems. The
software components listed below do not apply to Series 6000 Models
6023/6030/6031/6050/6051/6070:

o COBOL-74 Compiler

o Integrated Data Store/II (I-D-S/II)

o Unified File Access System (UFAS)

o UTL2 Utility Processor

o Management Data Query System (MDQS)

~1976, Honeywell Information Systems Inc. File No.: 1713, 1Pl3

DE61

FUNCTIONAL LISTING OF PUBLICATIONS
for

SERIES 60 (LEVEL 66) and SERIES 6000 SYSTEMS

FUNCTION

Hardware reference:
Series 60 Level 66 System
Series 6000 System
DATANET 355 Processor
DATANET 6600 Processor

Operating system:
Basic Operating System

Job Control Language
Table Definitions
Table Definitions
I/O Via MME GEINOS

System initialization:
System Startup
System Operation
Conununications System

Conununications System
Conununications System
DSS180 Subsystem Startup
Program Recovery

Data management:
File System
Integrated Data Store (I-D-S)
Integrated Data Store (I-D-S)
File Processing
File Input/Output
File Input/Output

I-D-S Data Query System
I-D-S Data Query System
Coexistent I-D-S

Program maintenance:
Object Program
System Editing

Test system:
Online Test Program
Test Descriptions

Error Analysis and Logging

Language processors:
Macro Assembly Language
COBOL-68 Language
COBOL-68 Usage
Standard COBOL-68 Language
Standard COBOL-68 Usage
JOVIAL Language
FORTRAN Language
Macro Assembly Language

Rev. 7607

APPLICABLE REFERENCE MANUAL

TITLE
Series 60 (Level 66)/Series 6000:

Series 60 Level 66 Summary Description
Series 6000 Summary Description
DATANET 355 Systems Manual
DATANET 6600 Systems Manual

General Comprehensive Operating
Supervisor (GCOS)

Control Cards Reference Manual
System Tables
NPS Tables
I/O Programming

System Startup
System Operation Techniques
GRTS/355 and GRTS/6600 Startup

Procedures
NPS Startup
NPS Configuration Examples
DSS180 Startup {Series 6000 only)
Program Recovery/Restart

File Management Supervisor
I-D-S/I Programmer's Guide
I-D-S/I User's Guide
Indexed Sequential Processor
File and Record Control
Unified File Access System (UFAS)

(Series 60 only)
I-D-S Data Query System Installation
I-D-S Data Query System User's Guide
Coexistent I-D-S Overview

Source and Ob:lect Library Edi tor
System Library Editor

Total Online Test System (TOLTS)
Total Online Test System (TOLTS)

Test Pages
Honeywell Error Analysis and Logging

System (HEALS}

Macro Assembler Program (GMAP)
COBOL Reference Manual
COBOL User's Guide
Standard COBOL-68 Reference Mar0al
Standard COBOL-68 User's Guide
.JOVIAL
FORTRAN
DA'l'ANET 355/6600 Macro Assembler

Program

iii

ORDER
NO.

DC64
DA48
BS03
DC88

DD19
DD31
DD14
DE34
DB82

DD33
0050

DDOS
DD51
DE76
DD34
DC98

DD45
DC52
DC53
DD38
DD07
DC89

DD47
0046
DE60

0006
DD30

DD39

DD49

DD44

DD08
DD25
DD26
DE17
DE18
DD23
DD02

DDOl

DE61

FUNCTION

Generators:
Sorting
Merging

Simulators:
DATANET 355/6600 Simulation

Service and utility routines:
Loader
Utility Programs
Utility Programs
Media Conversion
System Accounting
FORTRAN
FNP Loader
Service Routines
Software Debugging

Time Sharing systems:
Operating System
System Programming
System Programming

BASIC Language
FORTRAN Language
Text Editing
dataBASIC Language
dataBASIC Loading

Remote communications:
DATANET 30/305/355/6600 FNP
DATANET 355/6600 FNP
DATANET 355/6600 FNP
DATANET 355/6600 FNP
DATANET 700 RNP

Communication facilities:
COBOL-74 Communications

Transaction processing:
User's Procedures

Handbooks:
System-operator conununication
Error Messages, Abort Codes
NPS Error Messages

Pocket guides:
Control Card Formats
FORTRAN

Rev. 7607

APPLICABLE REFERENCE; MANUAL

TITLE
Series 60 {Level 66)7Ser1es 6000:

Sort/Merge Program
Sort/Merge Program

DATANET 355/6600 Simulator

General Loader
Utility
UTL2 Utility Routine (Series 60 only)
Bulk Media Conversion
Sununary Edit Program
FORTRAN Subroutine Libraries
DATANET 355/6600 Relocatable Loader
Service Routines
Debug and Trace Routines

TSS General Information
TSS Terminal/Batch Interface
TSS Syste~ Progranuner's Reference

Manual
Time Sharing BASIC
FORTRAN
Time Sharing Text Editor
dataBASIC System Language Manual
dataBASIC Load/Unload System

Remote Terminal Supervisor (GRTS)
Network Processing Supervisor (NPS)
NPS Micro-Ops Programming
Application Guidelines for NPS
RNP/FNP Interface

Message Control System Site Manual

Transaction Processing System User's
Guide

System Console Messages
Error Messages and Abort Codes
NPS Error Messages

Control Cards and Abort Codes
FORTRAN Pocket Guide

iv

ORDER
NO.

DD09
DD09

DD32

ODlO
0012
DC91
DDll
DD24
DD20
ODJS
DD42
D043

DD22
DD21

DD17
DD16
0002
DD18
D095
OD96

DD40
0048
OE35
DE77
OB92

OC99

D041

DOlJ
DC97
OE75

DD04
0082

DE61

Section I

Section II

Section III

CONTEN'rS

Introduction. • • • • • • • • •
System Software Categories

Role of System Software • • • •
Role of the Operating System • • • • • •

Resource Management • • • • • •
Service and Control Functions •

Role of Language and Utility Processors.
Language Processors • • • •
Utility Processors. • • • • • • • • •
Sort/Merge Package •••••••••

Role of the Interactive Subexecutives ••

Operating System (GCOS) • • • • • • ••••
The User Interface • • • • • • • • • •

Ease-of-Use Characteristics of GCOS JCL
Ease-of-Use Characteristics of

the TSS Dialog • • • • • • • • • • • • • •
Interfaces to Job-Management Services • •
Interfaces to Program-Execution Services ••••
Interfaces to File Management Services.
Interfaces to Data Base Management
Facilities • • • • • • • • • • • • •

Interfaces to Data Display Facilities • • • • •
Interfaces to Language and Utility
Processors • • • • ~ • • • • • . . • . .

Interfaces to Program Preparation Facilities ••
System· Software Structure. • • • • • • • • • • • •

Job Management Services • • • • •
Batch Job Management • • • • • •

Job Flow. . "' . . • • @; • fl .. • • ..

System Input Media Conversion
Job Scheduling. • • • • • • • •
Activity Allocation • • • • •
Activity Execution (Dispatcher)
Activity Termination

(Termination-Module Group)
Output Media Conv-ersion (SYSOUT) •

Time Sharing Management.
Job~Management Summary • •

File Management Services •••
Data Base Management Services
Communications Management Services .••••••

Local Physical I/O • • • • •
Network Communications • • • • •

System Management. Services. • • • •
System Definition and Installation ••
System Monitoring and Performance
Evaluation •••••••••••••

Dynamic System-Administration Interfaces • •
The Operator Command Interface ••••••
The TSS Master-User Interface • • • •

Online Hardware Test Facilities •••••••

v

Page

1-1
1-1

2-1
2-1
2-2
2-2
2-3
2-4
2-4
2-4
2-5

3-1
3-1
3-1

3-2
3-2
3-4
3-5

3-7
3-8

3-9
3-9
3-11
3-11
3-11
3-11
3-13
3-13
3-13
3-15

3-16
3-17
3-17
3-19
3-19
3-21
3-23
3-24
3-24
3-25
3-26

3-26
3-27
3-27
3-28
3-28

DE61

Section IV

Section V

Figure 3-1

CONTENTS (cont)

System Software Maintenance Facilities •

Language Proces•ors and Utilities •
Languages •••

ALGOL ••
BASIC • • • •
COBOL-68 ••
COBOL-74 ••
FORTRAN •

. .
I

JOVIAL. • • • • • •
Macro Assembler (GM.AP).
PL/I. • • <& '1> • • .. • •

Special Purpose Languages and Simulators.
DATANET-355/6600 Macro Assembler (355MAP)

and Simulator (355SIM). • • • • • • • •
A Programming Language/66 {APL/66) •••
General Purpose Simulator System (GPSS) •

Utilities ••••••••
Bulk Media Conversion
Sort/Merge •••••
UTILITY • • • • •
UTL2 •••••••
Source and Object Library Editor •••
System Library Editor

Interactive Subexecutives • • •••
Management Data Query System (MDQS).

End User Facilities •••••••••
Data Base Administrator Facilities.
MDQS Structure. • • • • • • • • •

Transaction Driven System (TDS). •
Transaction Processing Routines • • • • • •
TDS Orientation and Structure •
TDS Support Programs •••••••
TESTBED Facility. • • • • • • • •

Transaction Processing System (TPS) •
Transaction Processing Executive. • •
Transaction Processing Application Programs • •
Interslave Communication (INTERCOM) Facility ••
TPAP Test Features.

SUJTtinary !P • • • • • o 0 • • • • • • • • • • • • • •

ILLUSTRATION

Phases of Job/Activity Flow • • • • • • • • • • • • •

vi

Page

3-29

4-1
4-1
4-1
4-2
4-2
4-4
4-5
4-6
4-7
4-7
4-8

4-8
4-9
4-9
4-10
4-10
4-11
4-12
4-12
4-13
4-14

5-1
5-1
5-1
5-2
5-2
5-2
5-3

..,.,

5-4
5-5
5-5
5-5
5-6
5-7
5-7
5-8
5-8

3-12

DE61

SECTION .I

INTRODUCTION

A Honeywell Series 60 Level 66 Information System consists of two
distinctly different kinds of "components:" hardware and software. The software
components are the system programs specifically developed by Honeywell to
complement the Level 66 system hardware. (The term "system software" as used
here excludes the application-oriented programs and packages also available from
Honeywell.)

The system software is designed to facilitate efficient and convenient use
of the hardware, and to expand the capabilities of the system as a whole. The
general objectives of the system software are the following:

1. To insulate the user from the detailed, machine-level characteristics
of the system, thereby making it easier to use.

2. To aid the operator and site manager in the overall operation of the
system.

3. To maximize throughput, i.e., to allow the most efficient utilization
of the total system's resources.

These objectives
Section II.

and their implications are discussed further in

This overview does not attempt to teach the use of the software, but rather
describes and explains its major functions, its overall organization, and its
particular terminology.

In addition to providing a general introduction
overview should serve prospective users of the system as
detailed levels of documentation for further study.

d

SYSTEM SOFTWARE CATEGORIES

to the subject, this
a pathway to more

From a user's viewpoint, the system software can be divided roughly into
three categ.ories:

o Operating system (GCOS)

o Language and utility processors

o Interactive subexecutives

1-1 DE61

Although all of the software in these three categories is functionally (or
otherwise) related, an understanding of the operating-system functions and
facilities is prerequisite to the actual use of the other two categories of
software (with few exceptions). Therefore, the central emphasis in this
overview is on operating-system software. Unlike the highly interrelated
components of the operating system, the various processors and interactive
subexecutives can be viewed as independent, self-contained entities, and are so
treated in the reference level documentation.

In addition to system software, Honeywell also makes available several
libraries of general application programs. These programs are designed to
satisfy various processing requirements common to many computer installations,
and often can be tailored to meet a customer's specific needs. A representative
sample of the application programs available is described in the "Series 60
Level 66 Summary Description" docwnent, Order No. DC64. (For information on the
complete range of currently available application programs, contact your local
Honeywell Information System sales representative.)

1-2 DE61

SECTION II

ROLE OF SYSTEM SOFTWARE

This section identifies the functions performed by each category of Level
66 system software (operating system, language and utility processors, and
interactive subexecutives), as they relate to system capabilities.

A note on terminology and categories of software: The acronym GCOS stands
for ~eneral £omprehensive 2Perating ~upervisor, which is the proper name of the
Level 66 operating system. Regarding the software cateqories used in this
overview, it is sometimes hard to get general agreement on what is and what is
not operating-system software in certain areas, primarily because the decision
is viewpoint dependent. That is, it depends upon whether one is looking at the
system from the "inside out" {technically) or from the "outside in"
(functionally). In this document we shall take a user-oriented viewpoint
wherever necessary and make the distinction on functional grounds.

ROLE OF THE OPERATING SYSTEM

The operating system, GCOS, manages the system's resources and provides the
basic service and control functions utilized by all other software and by user
programs. The essential purpose of resource management and the service/control
functions, respectively, is to:

1. Maximize system utilization - Allow a given system's resources to be
shared most efficiently by the largest number of users, and reduce
operator interaction to a minimum.

2. Reduce overall progranuning burden - Provide centralized, machine-level
coding sequences for initiation and control of basic system services
including: I/O operations: file creation and access: dynamic memory
and secondary-storage acquisition and release: program, module, and
overlay-segment loading and intercommunication: exception and error
condition handling; dynamic peripheral allocation and de-allocation;
and abnormal program termination.

2-1 DE61

Hesource Management

The resource-management activities are y automatic, in that they are
performed invisibly on behalf of all other software and user proqrams and, in
general, without any explicit request from the program affected. For example,
both user and system programs are regularly "swapped" in and out of memory
during their execution cycle when conditions warrant or require such action:
usually when a program is temporarily incapable of further processing (e.g.,
awaiting an I/O completion), or when the memory space of a low-urgency program
is preempted by a high-urgency program. Such swapping is transparent to the
program processes affected and, excepting certain system programs, is not
controlled by the programs affected. Swapping is also referred to as
"roll-in/roll-out." (NOTE: This is not a universal capability of all
contemporary, large-scale operating'"""systems:T

Other automatic resource-management functions include:

o Initial peripheral device allocation, and deallocation on program/job
termination.

o Scheduling of programs/jobs on a resource-requirement plus urgency
basis.

o Initial memory and temporary mass-storage space allocation, and its
deallocation on program termination.

o Switching of central-processor control (or "execution time") between
programs in memory.

o Connection, management, and disconnection of communication lines for
time sharing, transaction processing, and remote-batch processing.

o Dynamic error-analysis and retry.

0 Normal or abnormal program/job termination, with
required.

Service And Control Functions

'cleanup' as

The basic system service and control functions provided by the operating
system are utilized primarily by other system software (e.g., compilers), and
secondarily by some user programs coded in assembly language. The
higher-level-language programmer does not explicitly request these functions,
although many of them are invoked indirectly on behalf of such users' programs.
Therefore, as a coding interface, these basic functions performed by the
operating system are inviSibietO"the normal user.

Some of these functions, however, are explicitly but indirectly requested
by the user through his standard interfaces with the operating system: the job
control language {JCL) for batch operations, and the Time Sharing System
commands for online operations. Although the inherent nature of user
operations differs somewhat in each of these usage modes, the user can request
through either interface, for example, the loading and execution of a program;
he can request creation of and access to a permanent file, creation of a
temporary file, saving of a temporary file on a permanent file, and deletion of
a permanent file; and he can request abnormal termination (abort) of a program
process because of excessive execution time or excessive output. He can request
common utility functions, such as automatic media or code conversions, in either
mode.

2-2 DE61

In the batch mode and to a lesser extent under time sharing, he can request
special program-loading options, e.g., for testing developmental progra.ms with
diagnostic aids and selective "dump" conditions, or for running segmented,
overlay programs. (In general, more system-default options are automatically
exercised in the time sharing environmentu for greater user convenience.)

It might be noted here that time sharing operation under Level-66 GCOS has
been engineered for the maximum human convenience of the greatest number of
users (programmers and non-programmers alike), rather than to mirror batch-world
operations as is sometimes the case with other operating systems. For the time
sharing user who needs the maximum degree of flexibility, however, the full
array of batch capabilities are available through the TSS Terminal-Batch
facilities. (Also, recall that the GCOS file system is common to both batch and
online modes, and the GCOS system-standard file formats are compatible in both
modes.)

Centralization of the basic system service and control functions in the
operating system serves a twofold purpose (one of which also relates to the
resource-management function). The provision of generalized, machine-level
coding sequences for physical I/O initiation, for memory and mass-storage space
allotment, for file-system services, etc. with simplified, higher-level
interfaces to these sequences provided for all other levels of software
obviously reduces the amount of detailed coding effort required throughout the
system (both in software and user progranuning).

Centralized initiation of basic system functions on behalf of many programs
allows centralized supervision of the resulting 'state of affairs.' Control of
I/O interrrupts is a good example. Because physical operations are highly
complex and, once initiated, are carried out independently of and asynchronous
to the computational operations in the processor, one or two interruptions of
program execution in the processor will be caused by each I/O operation. (These
interrupts can signal either a normal or abnormal termination of the operation.)

When one multiplies the one or two interrupts per operation by the number
of simultaneous I/O operations possible in a large-scale system (commonly on the
order of 15 to 20), one can readily see that to allow each program to se:r:vice
its own I/O interrupts would quickly result in chaos, at least without an
impossibly burdensome set of programming rules and regulations and interprogram
communication requirements. However, by virtue of initiating all I/O
operations, the operating system, can mor;iitor and service al~ !~sulting I/O
interrupts in an orderly and methodical fashion.

It can be shown that a close analogy also exists with memory, mass storage,
and peripheral management. It is precisely this centralized
supervision-through-control of basic system functions that enables the central
operating software to exercise its overall resource-management functions.

ROLE OF LANGUAGE AND UTILITY PROCESSORS

The role of language and utility processors is specifically to reduce
user-programming effort, by radically reducing the amount and level of coding
detail required to produce programs and to ach.ieve file-maintenance operations,
respectively. An additional role fulfilled certain standardized,
higher-level language P1;0cessors (e. COBOL) is to facilitate program
transferability. That is, they the shifting of e.dsting programs
from one computer environ.."llent to a.nother.

DE61

Obviously, this greatly lessens the reprogranuning effort involved in
changing from one computer line (or one operating system) t<) another. But
another significant benefit is that it also allows the sharing of programs among
users with similar problems or interests, but who use different computer
systems. Thus we have a second degree of reduction of programming effort.

Also included in the language/utility processor category is the Sort/Merge
Package, which performs the conunonly required functions of sorting and merging
input data files.

Language Processors

Language processors translate source statements written in a well defined
version of a given higher-level programming language (e.g., COBOL, FORTRAN,
PL/I) into an object program. In normal practice, beside coding his source
program the only other interaction the user has with the underlying system
sbftware is through the JCL. He uses the JCL to request compilation and/or
execution of his program, to relate file codes defined in his program to
specific types of file media or to specific permanent files, and to request
creation of permanent files as required.

Utility Processors

Utility processors, on the other hand, perform a wide variety of conunon
file-maintenance and file-conversion functions. The specific operations
performed by a given utility processor are determined by "directives," or
control-card statements similar to JCL but understood only by the utility
processor in question. The number and complexity of the directives required
varies in direct proportion to how standard or nonstandard the desired
maintenance or conversion operation is (relative to system~standard file
formats). A few simple directives suffice for the most-often-required utility
operat~ons.

No programming as such is needed to use the capabilities provided by the
utility processors, which are powerful and varied, especially in the area of
file maintenance. Often an operation that would otherwise require the coding of
a nontrivial COBOL program can be accomplished almost automatically by
intelligent use of the proper utility function.

Sort/Merge Package

The Sort/Merge package provides very flexible and highly efficient sorting
and merging of input data files. The specific sort or merge processing
performed for the user is controlled by user-supplied descriptive parameters,
e.g., record size, size and type of sort key, type of key comparison desired.
Relatively few descriptive parameters are required for the average sort or merge
application.

The Sort/Merge package is similar to a utility processor in that it
performs several frequently required data-processing functions. It is unlike
the utilities, however, in that it is not an independent processor controlled by
JCL directives, but is a highly adaptive system program that is invoked within a
user's application program. The sort/merge functions may be invoked, for
example, with a COBOL SORT verb, either in a COBOL program or in a COBOL
subroutine within a program written in some other language.

2-4 DE61

y

\

ROLE OF THE INTERACTIVE SUBEXECUTIVES

The interactive-subexecutive category of software pertains to the areas of
information retrieval, transaction processing, and dynamic data base management.
Specifically, the role of the interactive subexecutives is to aid the user in
implementing applications in the above-mentioned areas, to provide the manifold
support functions required for such applications,, and in some cases to provide
direct, high-level, end-user language facilities. In the area of transaction
processing, for example, the subexecutives allow the programming of
application-specific processes in a conunon, higher level language such as COBOL.
These programs are then readily integrated into the "open ended" user portion of
the subexecutive for automatic invocation and execution as needed.

In the area of data base management (DBM) , the subexecutives combine data
definition (schema) facilities, application definition (subschema) facilities,
and data base content-manager software (i.e., sophisticated access methods which
"know" the structure of the data base), with appropriate communications
management functions for remote access. The most advanced types of DBM
subexecutives also provide a specialized procedural language for the end user
(assumed to be a non-programmer). The intent of the direct end-user facility is
to allow a quick-reaction capability for servicing unplanned and unanticipated
information-processing requirements. In essence, they allow the end user to
devise "on the spot" procedures for data base query and update as required in a
dynamic operational environment.

In each of these areas, the system software underlying the
application-specific programs (or user-defined processes) automatically provides
many critical services, such as:

o Routing of messages between a terminal and an appropriate user-defined
process.

o On-demand initiation and termination of such processes as required.

o Physical manipulation of the data base (i.e., data base content
management) •

o Dynamic storage-space management.

o Selectable levels of journalizing.

o Control of simultaneous-access conflicts, e.g., concurrent attempts to
modify the same information item.

o Protection against minor disturbances of the data base resulting from
random human error or a system error.

o Protection against potentially catastrophic damage to the data base
due to unlikely-but-possible major system failure.

These services are provided in both the transaction-processing and data
base management areas.

2-5 DE61

I ,,

(

SECTION III

OPERATING SYSTEM (GCOS)

This section describes the user's interfaces to Level 66 GCOS services and
facilities, and the major software structures that provide these services.

THE USER INTERFACE

The user's interface with GCOS takes one of two forms, depending upon the
system-usage mode: ·'

o Job Control Language (JCL) statements, for local/remote batch
operations. (The JCL statements are also commonly referred to as
"control cards," since the JCL statement format is based on the
80-column punch-card image.)

o Time Sharing System (TSS) dialog, for time sharing or "online"
operations. (The TSS dialog consists of an interactive question/answer
sequence between a remote-terminal user and the system.)

Due to the inherent differences in the man/machine interaction involved in
batch vs. time sharing usage, the two interfaces seem quite different but, as we
will show, they invoke most of the same basic system services.

Ease-Of-Use Characteristics Of GCOS JCL

GCOS provides a progressive, easily learned job-control language. New
users can employ a limited subset of the full JCL in a very simple,
straightforward fashion. In this elementary form of JCL usage, the system
automatically supplies many default options. Relatively few JCL statements are
required for basic use of the system.

As the user's familiarity with the system grows, he can exercise a wide
variety of explicit options -- taking advantage of the system's flexibility -­
simply by adding either keywords or additional statements to his original
job-control sequences. Furthermore, for the experienced user's greater
convenience and fullest utilization of system features, he can begin to use the
JCL as a semiprocedural language, with features such as conditional
statement-execution (branching), statement nesting (cataloged procedures), and
dynamic modification of parameterized statements. These advanced features also
build upon the same elementary-usage JCL sequences, but the elegance and
sophistication of the user's "programming" capability in GCOS JCL is limited
only by his inventiveness.

DE61

Ease-Of-Use Characteristics Of The TSS Dialog

The various GCOS Time Sharing subsystems are intended to accommodate
secretaries, typists, technicians, accountants, managers, scientists, etc., as
well as professional programmers. Therefore, the TSS command-level dialog is as
simple and natural as possible, and is designed so that a user of only one or
two end-user subsystems, e.g.:

o Text Editor and RUNOFF (A powerful text
entry, editing, and display tool)

o ABACUS (A convenient algebraic "desk calculator")

o BASIC (A direct, easy-to-learn,
mathematical problem-solving language)

o I-D-S Data Query (A very simple means
of data base information retrieval)

need not learn the full extent of the TSS command language. (Much of the TSS
command dialog involves program-preparation aids and file-system related
operations, which are of great interest, however, to the professional
application programrner:-Y-

The overall organization of the time sharing user's interface is such as to
encourage the user's growth and an easy, natural transition from simple to
sophisticated usage of the system, while performing useful work along the way.

Interfaces To Job-Management Services

Job management essentially consists of the following actions performed by
the system:

1. Recognition of a user's batch job or time sharing session (the two are
conceptually identical) as an identifiable entity: that is, as a
valid unit of work or a related set of such units associated with a
given user.

2. Acceptance or rejection of the job (or session) based on verification
of an authorized account number and/or user-ID and password, as
determined by the installation, i.e., by the site-operations manager.

3. Scheduling of the job, based on its resource-requirement profile, and
possibly on a relative priority value or 'urgency level' --
requested by the user (if he is so authorized).

4. Supervision of the interrelationships between the several activities,
or steps, of the job (if multiple activities exist). These
interrelationships include resources already allocated to a previous
activity (e.g., memory, peripherals), normal or abnormal termination
of the previous activity, etc.

5. Collection of system-generated output, i.e., execution reports and
program listings, fr·om the several activities.

6. Proper termination of the job after the successful or abnormal
completion of its activities. This includes internal "cleanup" of
system information concerning the job, and compilation of accounting
information.

3-2 DE61

(
' \

Since job management includes both the initiation and termination of a job
(or session) and its between-activity transitions, it can be seen as the
"umbrella" servm for all of the other services provided by GCOS. In the batch
world, the basic JCL statements -- or control cards -- that explicitly invoke
job-management services are known as job-definition statements:

$
$ u
$

SNUMB
I DENT
USERID
LIMITS
BREAK
ENDJOB

sequence-nwnber, priority
accounting-info,name,locatibn,etc.
user-ID and password J
resource-requirement values

The three statements outside the square brackets are mandatory~ that is,
they must be included as the first two and the last JCL statements,
respectively, of every job deck. The first statement, $ SNUMB (for sequence
number), supplies an arbitrary job identifier used by the system through the
processing of the job, both internally and on listings, execution reports,
operator messages, etc. (This statement is often supplied by the installation
in the form of a prepunched, preprinted punch card, for the user's convenience
and to forestall duplicate sequence numbers). Use of the optional priority
field in this statement is controlled administratively by the installation, or
automatically if the batch job is submitted via time sharing (the TSS CARDIN
subsystem).

The $ IDENT card supplies an account number, as required by the user's
site management. This statement also supplies a free-form name, e.g., "Joe
Jones", and possibly the user's location, output-delivery station code,
telephone nwnber, etc. The first nine characters of the name field are used as
a banner on printed or punched output for the job (i.e., Joe Jones).

The $ ENDJOB card signals the end of a job-control deck. The functions of
the optional JCL statements shown within the square brackets are as follows:

$ USERID - This statement supplies the user's formal identification as it
is known to the file system (e.g., ",J.P.JONES"): it is required
only when the user wishes to create and/or access permanent
files, i.e., files cataloged within the file system. (The
user-ID is identical to the one supplied by an authorized time
sharing user during his TSS log on.)

$ LIMITS - This statement, if used only at the beginning of a job deck,
describes the aggregate resource-requirement profile for the
job. Except for permanent production-job setups, the use of
this statement is required only occasionally, e.g., when an
exceptionally large or long-running program is to be executed.
(The system-default limits are normally adequate for
program-development jobs.) In certain cases, however, it can
optionally be used to effect more efficient job scheduling,
allocation, and execution.

$ BREAK - This statement can be used to separate subsets of a job's
activities into "mini-jobs" such that failure of a preceding
activity will not force a deletion of subsequent activities.
This statement also is seldom needed, due to automatic default
conventions for conditional activity execution, based on types
of activities.

3-3 DE61

In time sharing mode, the "job
is radically simplified, as is both
usage. After the user achieves a

definition" information required of a user
and in this mode of
connection between his terminal and

telephone number) , the system
ID and PASSWORD. The user responds by

user identification and password.

the system (normally
identifies itself and
entering his authorized

This is all that the time sharing user need do to identify the terminul
session that is about to commence. He may, however, follow his user-ID with an
account number to which this session is to be : otherwise the default
account number associated with his user-ID is assumed. At the end of his
session, he gives the command BYE, which causes accumulated accounting charges
to be compiled and reported to him, and terminates the session.

During the session, he can use a "break"
INTERRUPT key, depending on terminal type)
terminate, a process associated with a given

signal (e.g., the ATTN, BREAK, or
to "break off," or abnormally

, an overly long listing or
terminate the session. a program loop, for example, without to

In general, the items described above (the user-ID and password, possibly
an explicit account number, and the "break" signal), comprise the user's
interface with TSS job-management services. During a session, use of the STATUS
command is occasionally in determining various data about the user's
resource usage up to that in the session.

Interfaces To Program-Execution Services

An activitl:'. of a job or terminal session is defined most generally as the
execution of a program, whether that program be a system program, a user
program, or a Time Sharing subsystem. In batch usage, there are various ways of
requesting a program execution, depending upon the nature of the program and, if
a user program, its form. The JCL statements that request program execution are
categorized as activity-defining statements. Typically these include:

$ COBOL
$ CBL74
$ CONVER
$ FORTRAN
$ FILEDIT
$ FILSYS
$ GMAP
$ IDS2

$ PLl
$ UTL2
$ EXECUTE
$ PROGRAM

(COBOL-68 compiler)
(COBOL-74 compiler)

utility processor)
(ANS Fortran compiler)
(Source/Object Library Editor program)
(File Management System processor)
(Macro-as language processor)
(Integrated-Data-Store II Translator, a translator

for data base definition statements)
(PL/I compiler}
(Standard utility processor for file-maintenance functions)
(Request for loading/execution of a user's object program)
(Request for loading/execution of a program in

format)

(This is not a complete list of activity-defining statements in respect to
system-provided programs and processors. See Section IV for a description of
the available language processors, for example.)

3-4 DE61

All of the statements listed above invoke the execution of a system program
except for the last two. The system programs process either the user's
source-language programs or user-defined directive statements recognized by a
given system or utility processor. The last two statements, $ EXECUTE and
$ PROGRAM, request loading and execution of user-prepared programs.

The $ EXECUTE statement invokes the General Loader, a system program, to
load a user's object program (the output of a language processor) for execution.
The program to be loaded may physically precede the $ EXECUTE statement, in the
form of an object-program card deck, or may be obtained from a file identified
in a variety of ways within the scope of the activity (i.e., by one of the
file-defining statements discussed below). A$ OPTION statement must precede
the execute-activity JCL for most higher level language programs, to identify
the language processor that was used for ccmpilation. This statement is also
used to request one or more of the numerous nonstandard loading options
recognized by the loader. The standard-default loading options are satisfactory
for the majority of cases, however.

The $ PROGRAM statement requests the rapid loading of a user or
installation program that is in a special system-loadable format, usually
produced by a System Library Editor (SYSEDIT) process. The
standard-system-loadable format is generally used for production programs or
other programs with a high frequency of use; these programs usually reside on
the system library, on an installation library, or possibly a user's private
library. These programs are loaded by a small, high-speed system loader that
does not perform any of the program-binding or relocating functions of the
General Loader. (These functions are performed during the SYSEDIT processing.)

Interfaces To File Management Services

File management services comprise the creation, accessing, and release of
all types of files: temporary files; user-managed, uncataloged "permanent"
files; and system-managed, cataloged permanent files. (Note that these are not
file media classifications in themselves. By virtue of standardized file
f"ormats, each of these file types can exist on several kinds of recording
media.)

The Jcr, statements that request the various file-management services are
categorized as file-definition statements. This category of the JCL contains
the largest nwnber of statement types, which reflects the power, variety, and
importance of GCOS file management in the overall GCOS context. Nevertheless,
the vast majority of these services are completely transparent to a new user who
is utilizing GCOS in an elementary fashion. For example, standa.rd system-file
defaults are automatically exercised by the system for all activities in which
the user supplies punch-card input and requests punch and/or printer output. In
general, all normal temporary file requirements are automatically satisfied by
the system, while any desired permanent file or tape/disk file must be
requested by the user.

Note that all JCL and TSS interfaces with file-management services concern
file s12ace management and/or periphf.!ral-device handling, although file
management includes basic file-content access services -- or logical access
methods -- as welL (To the higher-level language user the invocation of logical
access-method software, along with physical services, i.e., IOS, is
transparent, since this is done for him by his source-language compiler.)

DE61

The more-commonly used JCL statements in the file-definition category are
as follows:

$ PRMFL
$ FILE
$ TAPE
$ 400PK
$ 451PK
$ SYSOUT
$ REMOTE
$ DA'l'A

All of the JCL statements listed above must specify, as their first
variable-field parameter, a file code. This file code, consisting of two
alphanumeric characters, is central to the overall GCOS file-management
strategy. Essentially it relates a logical file defined within some program
(whether a system or user program), to some real-world physical file space or
perip1'.'9ral device. For example, a user• s COBOL program will assign a
two-character file code to a file ·named in a SELECT sentence and defined in its
Data Division statements. the use of a file-defining statement in his JCL
for the execution of that program (after its compilation), the user associates
that file code with a physical file or device. Thus the file code is the
intermediary symbol used in both the program and "run time" definitions of a
file.

The keyword of the JCL statement implies the general nature of the physical
file being defined, e.g., PRMFL implies a permanent, cataloged file (usually on
system-controlled mass storage), FILE implies a temporary file, TAPE a
magnetic-tape file, 400PK a disk-pack file, etc. The variable field of the
statement (following the file code) supplies further specifics about the actu.al
file or file type desired, and about inter-activity relationships involving that
file (if any).

Among the limited list of file-defining statements given above, $ PRMFL
differs uniquely from the others. The $ PRMFL statement refers to permanent
files, i.e., files known to and cataloged under the GCOS File Management
Supervisor (FMS). As mentioned above, this implies that the permanent file thus
referred to must have previously been created by the user. This file creation
is achieved either by means of a $ FILSYS (File System) activity using a
FCREAT directive or one of its several variants, or alternately by use of the
Time Sharing ACCESS subsystem. It is important to note here that the file
"creation" involved in either of these activities only names the file, describes
some of its attributes, and reserves some initial amount of file space (with no
meaningful content). Therefore, the first meaningful use of that file must be
as an output file., to establish its initial content.

In time sharing mode an even simpler means of creating a permanent file is
also available: the SAVE command. This conunand not only creates a named,
permanent file, but also copies into it the contents of the TSS user's "current
file" (the primary temporary file automatically supplied for a TSS user). That
is to say, the SAVE command literally saves the user's TSS current-file content
in a permanent file named by the user in the SAVE cmnmand. (A complementary
RESAVE command is used to replace the contents of an existing permanent file.)

3-6 DE61

The $ SELECT statement also refers to a permanent file, but is not a true
file-defining statement in that it does not define a logical file. code. It
defines, instead, a point in a JCL statement sequence at which the content of
the referenced permanent file is to be copied during job input processing. Its
intended function is that the $ SELECT statement itself is to be replaced by the
contents of the permanent file during initial job-deck processing. Essentially
it permits the cataloging of JCL segments (i.e., cataloged procedures), though
it may be used for other purposes. Thus it ca,n be seen that the following very
simple JCL sequence:

$
$
$
$

SNUMB
USERID
SELECT
ENDJOB

file-identification

can be used to submit a complete and possibly very complex and volwninous job
for execution. The file referred to would contai~ at least one $ IDENT
statement and any number of activity-defining sequences, includin~ other
$ SELECT statements. (Nesting of $ SELECT statements is possible to aepth of
10 levels.)

GCOS file managem~nt is a very
implications. Rather than attempting
intent here has been to give you an idea
strategy employed and, especially, of its

extensive subject, with wide-ranging
to cover the subject exhaustively, the
of the essentially straightforward

easy-to-use aspect for the novice.

Interfaces To Data Base Management Facilities

Data base management facilities under GCOS come in various forms. They
fall into the following four general categories, however:

1. Batch data base manipulation languages for the data base application
programmer (e.g., I-D-S/I or CO~OL-74).

2. Data definition and application definition languages for the data-base
administrator, provided by I-D-S/II or the Management Data Query
System (MDQS).

3. Sophisticated data base access method software, which "understands"
the structure of the data base. (This software is automatically
invoked by the user's language facility.)

4. Interactive end-user facilities (e.g., MDQS, dataBASIC, I-D-S Data
Query), which are normally invoked through the TSS command language.
Each of these facilities provides a simple procedural or
semiprocedural language for online query and/or updating of a data
base. (A user's 'private' data base in the case of dataBASIC.)

As is implied by categories 1, 2 and 4 above, the user's interfaces with
these data-management facilities consist essentially of the JCL or TSS
program-execution services described earlier. For example, in the batch world
the $ IDS2 statement would be used to invoke the I-D-S/II translator for
processing a set of data base definition statements. The $ CBL74 statement
would be used to invoke the COBOL-74 compiler to process a sou;:ce program for
manipulating an I-D-S/II data base.

In time sharing mode, the MDQ command would be used to invoke the
end-user's interactive language facility associated with MDQS.

3-7 DE61

Interfaces To Data Display Facilities

GCOS data-display facilities are primarily associated with time sharing
usage, and and include the following Time Sharing subsystems:

1. APRINT - A subsystem that prints an ASCII time sharing file on an
ASCII high-speed printer at the central computer site.

2. BPRINT - A subsystem that prints an ASCII time sharing file on a
standard BCD high-speed printer at the central computer site.
(Automatic code conversion is performed, and special~character
graphics are transliterated when possible.)

3. BPUNCH - A subsystem that punches an ASCII time sharing file (e.g., a
JCL "deck" in one of the several convenient formats known to various
TSS subsystems) on a card p~ch at the central computer site.
(Automatic code conversion is performed, and special-character
graphics are transliterated when possible.)

4. LIST - A very powerful and flexible subsystem that prints the
contents of one or more ASCII time sharing files, or any portions
thereof, at the user's terminal device. Many variations of the basic
LIST command are available; their optional functions include:

o File-content concatenation

o File-content merging, by line nwnbers

o Concatenation and/or merging of multiple files

o Line-folding of overlong lines

0 Listing with a date/time heading

o Conditional listing, by line nwnbers

o "Sampling," i.e., listing of every ~th line
of a file.

In all of the variant cases described, the source files are not
themselves modified or otherwise affected.

5. RUNOFF - A sophisticated subsystem that reformats a time sharing text
file (e.g., a letter, a report, or a lengthy document) according to
control commands recognized by RUNOFF that are imbedded or inserted in
the file. (For example, the control command ".SPAC 4" will cause four
blank lines in the reformatted file, in place of the command itself).
Right and left margins can be automatically justified, page length and
width is readily modifiable, automatic tabulation can be performed,
etc. The reformatted file text is either printed at the user's
terminal, or is saved on another file, e.g., for printing on a
higher-speed output device.

The RUNOFF subsystem is normally used on files built and edited via
the Text Editor subsystem.

The user's interface for invoking any of these data-display facilities are
TSS cornrnands that are, in fact, the names of the subsystems listed above (or the
first four characters of the name, i.e., RUNO for RUNOFF).

3-8 DE61

!
\

(

Interfaces '!'o Language and Utility Processors

Many language and utility processors are provided under GCOS. The range of
such processors includes:

0 Highly developed
languages, e.g.,
PL/I.

compilers for all of the popular higher-level
ALGOL, BASIC, COBOL-68, COBOL-74, FORTRAt~, JOVIAL,

o A powerful macro assembler, GMAP, for assembly-language programming.

o A macro assembler and a simulator for programm.i.ng either the DATANET
355 or DATANET 6600 Front-End Network Processors (355MAP and 355SIM).

o A Bulk Media Conversion (BMC) processor, which performs a wide range
of file-media conversions in both standard and nonstandard file
formats.

o A Source and Object Library Edi tor and a System J .. ibrary Edi tor, for
building and maintaining user libraries, production libraries, and
system libraries.

0 Two generalized file-maintenance processors (UTILITY and UTL2)
provide very convenient, flexible, and comprehensive
maintenance/display functions.

which
file

The user's JCL interface for invoking any of the language or utility
processors consists essentially of the program-execution
(activity-defining statements) described earlier. In time
number of the widely-used language compilers can be executed
TSS command language, but all of the processors BASIC can as a
batch activity through the TSS Terminal/Batch (CARDIN

~he full range of language and utility processors is discussed further in
Section v.

Interfaces To Program Preparation F'acilities

"Program preparation facilities" are features of the system that aid the
user in (l) creation and modificatio'1 of source-program text, and (2)
maintenance of program libraries (source or object). Since program-·library
maintenance (item 2) is largely a function of the Source and Object Library
Editor, a utility processor, it is dealt with under the latter heading. We will
concentrate here on item 1, source~program creation and modification aids.

In the batch environment, the creation of text in a
system-readable form (a card deck, or a tape or is generally
performed offline by data-entry personnel, on a keypunch or other form of
key-data device. For convenient program modification program
development and testing, for example the system provides a standard
Update/Alter facility that can be used in any By
use of the $ UPDATE and $ ALTER. JCL statements compilation , the
user can submit individual source stat<~ments or sets of such statements for
automatic incorporation into either a normal or a compressed (COMDK) source
file, prior to its the point in time that the insertion,
replacement, or of source statements is desired, the original source
program usually has gone through at least one and has been placed on
a permanent mass-storage file.)

DE61

In time sharing mode, however, it is assumed that the programmer (or a
coding assistant) will usually "write" his source program directly onto a
permanent file via his terminal device. Therefore TSS provides many ease-of-use
features expressly designed to facilitate program-file building, manipulation,
and display. A standard (or user-chosen) set of tabulation characters can be
employed to allow source-statement entry in a convenient, blank-suppressed form;
these tab characters and their values are recognized throughout the TSS
program-preparation subsystems and facilities.

A majority of the program-preparation convenience features are based on the
concept of line-numbered source files. (The line numbers can be automatically
stripped, moved to a sequence-number field, or left "as is" prior to
source-program processing, depending on the format requirements of the
particular source language.) The line nwnbers can be automatically generated by
the system, in several different forms, at the user's option. Line-numbered
source files allow many convenient file-manipulation features, among which are:

o Concatenation of selected portions (or all) of several source files.

o Merging of several files, or selected portions thereof, based on line
numbers.

o Any combination of the merging and concatenation processing.

o Insertion, replacement, or deletion of source lines (or sets of
lines), by line numbers.

o Easy replication of conunon coding sequences at different points in a
program.

All of these features are complementary to the powerful, generalized
editing capabilities of the TSS Text Editor which allow, for example, the
automatic 'global' replacement of a given parameter value, say "ENTRYAl", by
another value, say "ENTRYBl", wherever it may appear throughout a program (or
optionally, wherever it may appear within a specified context).

The user's interface with each of these facilities (and note that the above
description is not exhaustive) is through the TSS conunand language, which
provides intelligI'OI'e and easily-remembered command mnemonics for the desired
operations. For example, to request a concatenation of two permanent source
files ('old' saved files) onto the user's new current file (a temporary working
file); and then a resequencing of this current file with new line numbers,
starting conventionally with 010 and incrementing by 10, the user would employ
the following two TSS commands:

OLD FILEl1FILE2
RESE (for RESEQUENCE)

This pair of TSS commands would be recognized and
TSS subsystems, e.g., under EDITOR, under BASIC (an
language processor), under FORT (the time sharing
CARDIN (the Terminal/Batch interface).

3-10

executed under any number of
interpretive time sharing

FORTRAN interface), or under

DE61

Many variants of the OLD and RESE commands (foe sake of example) are
available, all of which build upon the most basic fm:'m of the conunand. Thus,
the basic form of the OLD command is

OLD filename

whereas the form

OLD filenamel:filename2

is a simple variant requesting concatenation. As mentioned previously, the TSS
command language is a progressive, easy-to-learn structure of system/user
interaction.

SYSTEM SOFTWARE STRUCTURE

This subsection describes the major software components that provide the
operating-system services discussed above. The component descriptions are
organized by the categories of service which they support.

Job Management Services

BATCH JOB MANAGEMENT

The batch job-management services control the flow of batch jobs through
the system and, as noted previously, are basic to all other system services.
'l'he system components that provide these services are best described tracing
the flow of a single job through the system, and identifying the components in a
dynamic context.

Job Flow

The description of job flow given on the pages following is also
summarized in Figure 3-1. The reader should refer to this figure while reading
the description. All batch jobs entering the system pass through six phases of
job flow. These are

1. System Input Media Conversion

2. Job Scheduling (Scheduler)

3. Activity Allocation (Allocator)

4. Activity Execution (Dispatcher)

5. Activity (or Job) Termination (Termination-Module Group)

6. Output Media Conversion (SYSOUT)

Note that phases 3, 4, and 5 are activity orientE~d, rather than job
oriented phases. Thus these phases are repeated for each activity of the job.

In each phase, special functions are performed which control the logical
flow of the job through the system. The components named in parentheses are the
system-software programs or modules primarily responsible for performing the
functions involved in each phase.

3-11 DE61

w
I

N

i
0\

SYSTEM INPUT
MEDIA

CONVERSION

• Performs gross
control-card
validation

• If valid, sends
job to the
system Scheduler

_,.,
~

SYSTEM
SCHEDULER

• Places job in
a prioritized
scheduling
queue

* Activity oriented phases

~

* ACTIVITY -- ALLOCATION
(ALLOCATOR)

• Selects job from
a scheduling
queue

• Performs detailed
control-card
analysis

• For each activity:

o Allocates needed
peripherals

o Allocates needed
memory

o Enters activity
into the Dis­
patcher's queue

* ACTIVITY _. EXECUTION - (DISPATCHER)

• Initializes
hardware/soft­
ware registers
for program

• Loads program
into memory

• Dispatches
processor
control to
program, on
cyclic basis

• Swaps program
out to mass
storage if
required

Figure 3-1. PHASES OF JOB/ACTIVITY FLOW

/'-,

* ACTIVITY - TERMINATION

• Initiated when
activity ter­
minates (nor­
mally or abnor­
mally)

• Writes account­
ing statistics
for activity on
SYSOUT device

• Looks ahead to
next activity

• Passes control to
Allocation, Execu­
tion, or output
phase depending
on type of next
activity (if any)

..... -
JOB

OUTPUT
(SYSOUT)

• All activi­
ties of the
job have
been proces­
sed

• Output col­
lected for
each activ­
ity is dis­
bursed to a
printer or
punch devic e

/

\

An overview of each phase of job flow follows.

System Input Media Conversion

The job is read into the system in its entirety by the System Input program
and any requested character transliteration is performed. Local batch jobs come
from the online card reader or from maqnetic tape at the central site, while
remote batch and terminal/batch jobs enter the system via the Front-End Network
Processor (FNP). The System Input program validates the control cards
containing

o Job defining information

o Accounting information

o Activity defining information.

If the job fails these tests, diagnostic information is provided, the job
is deleted, and the user must correct his JCL errors and resubmit the job.

If the job passes the tests, the job is submitted to the Scheduler.

Job Scheduling

The Scheduler accepts a job from the input media conversion phase and
places it in one of several queues. The particular queue into which a job is
placed depends upon the resource requirements of the job, and on the specific
scheduling queues that have been defined by the installation. Depending upon
the total load on the system, a user's job can remain under the control of the
Scheduler for a period ranging from seconds to hours. Eventually the job
reaches a position in a queue which indicates it is a candidate for allocation.

Since the number and types of scheduler queues can vary from site to site,
we cannot give details here. In general, however, the fewer and smaller the
resource requirements for a job, the shorter will be the period of time that the
job remains under the control of the system scheduler. (The ~ser who wants to
get into the fastest queues should avoid magnetic tape or private disk usage
altogether, and should request as little memory and processor time as possible.)

Activity Allocation

When a job initially
performed for the total job.
job is deleted.

enters the Allocator, a detailed JCL analysis is
If control card errors are detected, the entire

3-13 DE61

Some common errors detected d·uring this examination include~

0 An activity request for resources not available in the system
configuration. (For example, an activity needs 16. tapes and only 12
are configured, or an activity has r'E!quested lSOK words of mem0ry and
only 12.SK words are available on the. system.)

o Missing or incorrect control card' p.arameters.

If the job passes the control card scan, it is then a valid candidate for
peripheral and memory allocation. From this point on, each separate activity of
the job flows from the Allocator to the execution phase and finally to the
termination phase. This cycle continues until all of the activities of the job
have been processed.

Each activity of a job is processed in the sequence submitted.
current activity of the job, the Allocator:

For the

l. Determines the eligibility of the activity for execution. Normally,
because of the job/activity relationship, an activity is eligible for
execution based on the results of a preceding activity. If a
preceding activity did not complete successfully, all subsequent
activities of the job except compilations will be deleted, unless the
JCL specifically requests otherwise ($BREAK usage).

2. Reserves specific peripheral devices (if any) for all defined files.

3. Informs the operator to mount requested volume on specific peripheral
devices (tape or disk-pack files).

4. Reserves sufficient memory space, based upon JCL parameters (default
or explicit).

During allocation, time delays are often experienced because the peripheral
devices and/or the needed memory are not immediately available. If an activity
proves difficult to allocate, eventually a point is reached where

l. Activities of other user jobs are
allocation until the peripherals
allocated, and/or

not considered for peripheral
for the "blocked" activity canbe

2. Activities of other user jobs currently in execution may be
temporarily removed from memory (swapped out) to make memory available
for this activity.

When all requested peripherals have been allocated, all necessary files
mounted, and sufficient memory has been reserved, the activity is ready for
execution. Based upon control-card information, the allocator has technically
tailored a hardware configuration to meet the specific needs of that activity.
Thus a portion of the total hardware complement has been reserved for the
activity. Control is then passed to the execution phase.

The allocation phase actually consists of two subphases: peripheral
allocation, and memory allocation.

3-14 DE6l

Activity Execution (Dispatcher)

The type of activity requested by the user (a compilation, an object-deck
load and execute, or a standard system program, e.g., FILSYS) is examined and
the appropriate program is loaded into the memory reserved. When processor
control is dispatched to this program, it begins execution. All programs loaded
into memory are represented in a queue contro],.led by the Dispatcher·. Remember
that it is activities of different jobs that are multiprogrammed, not multiple
activities of the same job.)

The Dispatcher manages its eligible-program queue in such a way as to keep
as much df the allocated system resources in effective, concurrent use as
possible, essentially by overlapping processor and peripheral-subsystem usage as
much as possible. During its execution phase, a program can lose and regain
control of the processor many times. The executing program can be interrupted
(i.e., lose execution control) for a variety of reasons, e.g., termination of an
I/O operation for another, inactive program, or: expiration of its current
processor-time quantum (time slice). Alternatively, it can voluntarily
relinquish control, usually to await the completion of a requested I/O
operation. All activities concurrently in the execution phase of job flow,
therefore, "take turns" using the processor and the I/O subsystems.

An activity will remain in the execution phase until any of the following
conditions occur:

1. The program executes a sequence of instructions indicating that the
activity is complete, e.g., a sequence compiled for a STOP RUN
statement in COBOL or a STOP statement in FORTRAN. This condition .is
termed normal termination.

2. The user program violates a usage rule. In this case a termination
routine removes the activity from execution. This condition is termed
abnormal termination. Typical violations include:

a. The user program has requested an I/O operation on a file which
has not been defined by its associated JCL~ therefore the file
has not been allocated to the program and is not available.

b. The user program has attempted to access a memory location
its allocated memory boundaries.

c. The user program has attempted to access a mass storage file
beyond the size defined.

d. The user program has exceeded its maximum allocated processor
time or print-line limits, either for the activity or for the job
as a whole.

3. The Dispatcher removes the program (temporarily) from memory; that is,
the program is "'swapped" to disk to make memory space available for a
higher urgency job. When the swapped progra.m is read back into the
memory, it reenters the execution phase.

3.,.,.15

During the execution of the activity, system output (SYSOUT) for printing
and punching is collected on a mass-storage file for deferred printing and
punching. Typical examples of system output include

0 Source listings produced by a compiler

o Object-program decks produced by a compiler

o Load maps produced by the Loader

o Accounting reports produced by the operating system.

In addition, a user can direct any print/punch file separately defined
within his program to a system-output file via either a $ SYSOUT or $ REMO'l'E
control card. All information directed to SYSOUT is temporarily stored on disk.

Activity Termination (Termination-Module Group)

The execution phase
and abnormal termination
modules known as the
functions:

passes control to the termination phase for both normal
conditions. This phase, handled by a group of GCOS
Termination Group, performs the following clean-up

1. Collects accounting information for the activity on its SYSOUT file.

2. Writes a memory dump, if appropriate, on the SYSOUT file. The user
may request a memory dump for any activity that terminates abnormally.

3. Looks ahead to the next activity (if any) in the job, and proceeds as
follows:

a. If the next activity is the same type as the terminating activity
(for example, back-to-back COBOL or FORTRAN compilations), GCOS
recognizes that the same system resources are required for the
next activity of the job. Therefore, a return to the allocation
phase can be bypassed since the required resources are already
reserved. Control is returned to the execution phase for the
next activity of the job.

b.

c.

If the next activity is a
compilation followed by
file definitions of the
direct, via his JCL, that

different type (for example, a COBOL
an execution), the system examines the

terminating activity. The user can
his files be:

(l) Dismounted or de-accessed (saved for reuse by some
subsequent job) I

(2) Saved for a subsequent activity of the job, or

(3) Released back to the system (to become available to other
users).

The system informs the operator which files are to be dismounted,
releases the designated files and/or devices, releases the
allocated memory, and returns control to the Allocator for the
next activity of the job.

If there are no following activities (i.e., end of job), the
Termination Group performs the same functions as described for
subphase 3.b except that control passes to the output
media-conversion phase.

3-16 DE61

/ ,,
\

Output Media Conversion (SYSOUT)

This is the final phase of job flow. At this point, all of the jobs's
activities have been processed and system output for each activity has been
stored on the SYSOUT mass-storage device. (Thus, output for the entire job is
now ready.) The user has directed GCOS to either print or punch this output
locally, or has specified that the output is to be transmitted to a remote
station and should be held until the remote station requests such transmission.
(Requests for remote transmission require that the remote user call back into
the central system and identify his job number and remote station code).

The output phase for central-site output reads the output images stored on
the SYSOUT device and disperses them to either the printer or to the card punch.
Control information has been automatically appended to these card/print images
which permit the system to recognize the peripheral media (card punch or
printer) and the type of report. Printed system output for an entire job is
generally produced in the following order:

1. A banner page (identifies the output for bursting and distribution
purposes)

2. A complete listing of all control cards comprising the job

3. Accounting reports for each activity of the job

4. Output directed to SYSOUT (for printing) for each activity of the job

5. End-of-output banner page.

Note that the output phase is printing/punching information for all
completed user jobs. Therefore, the printing/punching of your j-0b may ""Ee
delayed depending on the total amount of information from all jobs waiting to be
printed/punched. (That is, you must wait your turn for system printer/punch
output.). If the job is submitted via time sharing, however, the user may
monitor the progress and termination of each activity, and at end-of-job may
scan (selectively inspect) his output at the terminal, prior to or instead of
having it printed.

TIME SHARING JOB MANAGEMENT

The GCOS Time Sharing System (TSS) includes a central software component
called the Time Sharing Executive (TSE). The TSE is a system program that is
invoked (and released) by the operator, i.e., when a scheduled period of time
sharing service is due to commence. The TSS Executive is essentially a
highly-specialized (and dynamically optional) "mini" operating system that
manages time sharing jobs, i.e., user's terminal sessions. (The TSS
job-managmenent functions are kept physically separate from the basic GCOS
software so the system-overhead costs associated with them are not incurred
during periods when time sharing service is not provided, or are not incurred at
all by batch-only installations).

3-17 DB61

When active, the TSE calls upon many of the same GCOS service functions
that are used for batch-job management {e.g., temporary-file space and
peripheral-device allocation module.s), so that software structures are not
duplicated for nonunique functions. The functions performed by the TSE
are the following;

1. Initiation and termination of a user us terminal session.

2. Management of the TSS/user
between any TSS subsystem and

i.e., handling of all messages
user.

3. Recognition of requests for TSS subsystems (system-level TSS commands)
and activation of the required subsystems. (This is analogous to the
batch activity-allocation phase.)

4. Management of TSS memory space, and the dispatching of execution time
among concurrently active subsystems. (This is analogous to the batch
activity-execution phase.)

5. Management of transitions between one TSS subsystem and another for a
given user, i.e., subsystem terminations or interruptions. (This is
analogous to the batch activity-termination phase.)

Of the TSS-specific functions listed above, item (4) may be singled out for
discussion as exemplifying a time sharing specific job-management function. The
management of TSS memory space, i.e., that portion of memory reserved for
allocation to TSS subsystems and administered by the TSE, is characterized by a
great deal of "swapping" of active subsystems (relative to batch programs). The
swapping process itself is the same for both batch and time sharing: it consists
of moving an active but interrupted program and its 'context' from memory to a
mass-storage device, and moving an already swapped-out program back into memory.
The much higher frequency of TSS subsystem swapping (assuming a reasonably high
time sharing load) is due to the inherent nature of interactive I/O: it
consumes a greater amount of time than batch I/O by several orders of magnitude.
This is so not only because the output speed of remote-terminal devices is very
slow (relatively speaking), but because the reaction time of the terminal user
(his input speed) is slower yet by far. Thus, during the period of time
required for one interchange of messages between a TSS subsystem and a user,
several other subsystems can have executed many thousands of instructions and
initiated terminal messages of their own. Therefore, the general rule is that a
TSS subsystem will be automatically swapped out upon initiation of any terminal
I/O. (Again, assuming contention for CPU time among active subsystems.)

The combination of a high swapping rate and the generally smaller size of
TSS-subsystem programs (relative to batch) dictates a different
memory-allocation and time-dispatching strategy for time sharing operations.
Therefore, the TSE incorporates its own optimal TSS-memory allocation and
dispatching functions. (Several other comparable, but less instructive, time
sharing vs. batch differences could also be shown.)

3-18 DE61

JOB-MANAGEMENT SUM.MARY

The preceding descriptions of job-management software structures and
functions are highly simplified and presented from a dynamic, functional
viewpoint. Therefore, from a strictly technical view certain fine points have
been blurred. (For example, batch program loading is actually initiated by an
Allocator module at the end of the activity-allocation , instead of in the
activity-execution phase, but ef_fectivela ibis part of the latter phase.) The
major intent here has been to give the rea er an understanding of the major
functions of the GCOS job-management structures in as uncomplicated a fashion as
possible.

The GCOS file-management services, and the corresponding software
components, can be grouped into three categories:

o File space management

o File access··control/file protection services

o File access methods.

The first two service categories, space management and
access-control/protection, are handled by the File Management (PMS},
which consists of the system program FILSYS and many associated GCOS modules.

The FILSYS program is invoked explicitly the user {via $ ~'ILSYS or the
TSS ACCESS subsystem) when he desires to create or files and
file catalogs within the hierarchically structured GCOS File System. The
symbolically-named file (or user's subcatalog under which a number of such files
can be grouped) thus created can be given many attributes, Qr characteristics,
among which are the following:

o InH:ial and maximum size (files only)

o Random or sequential file mode

o Password

0 Access pennissions: READ, WRITE, QUERY, EXECUTE, PURGE, MODIFY,
either to specifically named users or to all other users.
permission allows another user to modify the cataloged
file.)

o Concurrent access allocation and control

o Incomplete update protection

o File duplication

o File journalizing

o Storage-device type

0 I-D-S file st:n1ct.ure

etc,;
MODIFY

of a

DE61

The modification of files or catalogs through FILSYS mentioned above
pertains to the modification of the attributes described, not of file content.

Various portions of FMS, including FILSYS, are implicitly invoked when the
user requests access to a permanent file, e.g., via a$ PRMFL statement or a
(TSS) OLD command. The functions performed in this case involve verification
of:

o The file's existence

o The user's right to access the file (password and permissions checks)

o The file's current availability, i.e., whether it is 'busy' or not,
whether concurrent access is allowed, etc.

These functions are performed during activity allocation.

When the file is actually in use, that is, during execution of an activity
that affects the file, other portions of FMS are automatically invoked (by IOS)
to perform any special concurrent access control or file-content protection
procedures that were requested for the file upon its creation, e.g., the
duplication or journalizing attributes. The file access-method software (for
other than specially structured data bases) consists of three separate GCOS
subsystems: the Unified File Access System (UFAS), the File and Record Control
Facility, and the Indexed Sequential Processor (ISP.) Each of these subsystems
provide software routines which allow user and system programs to perform I/O
operations in loaical rather than physical terms. (The GET or PUT
next-logical-recor level of operation, for example, as opposed to reading from
or writing to a specific physical space on an I/O device). These routines
effectively translate the symbolic I/O request into the machine-level code
sequences that are recognized and executed by IOS, the Input/Output Supervisor.

The major distinctions between these three collections of access-method
software for the higher-level language user are as follows:

1. Both UFAS and the File and Record Control Facility are explicitly
invoked only in assembly-language (GMAP) programs, thus they are
"invisible" to the user of a higher level language. (The language
compiler causes the appropriate access-method routines to be included
in the object program when the user requests file-level I/O in his
source program.)

2. The Indexed Sequential Processor (ISP) routines can be invoked at an:r
source-language level (e.g., in COBOL or FORTRAN), allowing the
creation and very efficient manipulation of indexed-sequential files,
an optimal data structure for many types of applications.

3. The File and Record Control Facility supports sequential anc
random-access file organizations, and standard Honeywell magnetic-filE
labeling. Thus it provides full file compatibility between the
Honeywell Series 6000 and Series 60 Level 66 systems, for established
Honeywell large-scale computer users. It also provides a Series
2000-to-Series 60 Level 66 magnetic tape interchange capability.

The File and Record Control access methods are utilized by all
higher-level language processors except the COBOL-74 compiler and the
COBOL-68 compiler when used in full ANS mode. {These access methods
are utilized by the COBOL-68 compiler operating in Commercial-Subset
mode.)

3-20 DE61

4. The newer UFAS access methods provide an extensive range of
capabilities, including as a subset the functionality of the File and
Record Control software. A brief summary of UFAS capabili.t:i.es is as
follows:

o Sequential, indexed, relative, and integrated file organizations.

o Sequential, random, and dynamic' acc~ess modes.

o Unified File Format for all m.~ss-storage files.

o ASCII, EBCDIC, and BCD character-set processing, with a.it.her
automatic or user-specified transliteration as required.

o ANS and IBM magnetic-t.ape file formats.

o Honeywell Series 6000 {:t'i.le and Record Control) file-format
compatibility for both w.agnetic: tape and sequential mass·pstorage
files.

o Label processing for ANS, IBMv and ~oneywe11 Series 6000 magnetic
tape files.

o Error checking and error precessing according to the American
National Standard for COBOL-74.

o Honeywell Series 2000 magnetic-tape file interchange.

o ISP 'file coexistence• feature.

The UFAS access methods are utilized by the COBOL-74 compiler and the
I-D-S/II processor.

(Other highly specialized access-method software oriented specifically to
data base management is discussed under the next heading.)

Data Base Mana9.ement Services

A data base, for the purposes ,,:lf this discussion, is defined as a
mass-storage file -- generally quite large ·~~· containing records, fields, and
items of information which have a defined hierarchical or network type
relationship to one another. In other words, a data base is a file th:it is
physically structured in such a way as. to reflect the logical relationships of
its contents, i.e., of the various units of data stored within it. The in.tent
behind such a highly-structun:id file organization is several-fold:

0 To provide an in tegrat.ed, uni fonn collection of information that, to
its end users, models the infm:mat:ion structure of the business they
are e11gag1::1d in; as opposed to a set of separate data files that
o.rder:ed according to the convenience of the computer system and
traditional types of software supporting it.

are
more

o To allow for the updating of many interrelated items of information in
a single file, rather than by a sequence of processes in which each
process updates its · own master file (s) to reflect changes to files
treated by a preceding prr.;cess. (An example of such a traditional
application processing sequ.ence might be a product inventory run,
followed by a produ~tion scheduling run, followed by a
material-stockpoints run, followed by an accounts-receivable and
accounts-payable run¢)

3-21 DE61

o To allow information update and retrieval from geographically
distributed locations, as and when required. (For example, a common
data base might effectively link a factory, several warehouses, many
sales offices, and corporate headquarters.)

Q Finally, to provide a quick-reaction capability for the unplanned,
unanticipated information processing and reporting requirements th.at
have become increasingly common in today's dynamic business
environment.

Obviously, a wide variety of very sophisticated software tools are required
to aid the user in the structuring and initial creation of such data bases, and
in the development of application packages (both batch and interactive) for
manipulation of the data base.

,The basic data base management facilities (i.e., those which underlie tne
Interactive Subexecutive end-user facilities described in Section V) can be
divided into several categories:

l. Translators for data definition and application definition languages
(DDLs and ADLs): these languages allow the user, normally a data base
administrator, to structure the data base (schema definition) and to
structure several or many application-specific, logical subsets of the
data base (subschema definitions). The output of DDL and AOL
translations are utilized by the following categories of software.

2.

3.

Data Base content managers: These are collections of logical I/O
routines, analogous to the access methods described in the preceding
subsections, which translate the data base manipulation requests
(CREATE, RETRIEVE, UPDATE, PRINT, QUERY, etc.) of the user's data
manipulation language. The source-language processor may be the
I-D-S/I Translator (an extension of COBOL-68), COBOL-74 for I-D-S/II,
or MDQS.

Specialized utility processors for initial building or
restructuring of a data base.

logical

4. Highly simplifiea time sharing interfaces, primarily for "browsing• of
the data base by end users.

The software components that provide some of all of the facilities
described above are:

o Integrated Data Store/I (I-D-S/I)

o Integrated Data Store/II (I-D-S/II)

o Management Data QUery System (MDQS)

o I-o-s Data Query (A TSS subsystem for querying an I-D-S/I data base a.
a remote terminal)

0 dataBASIC (A BASIC-like TSS
building and operation of
bases).

subsystem,
private,

3-22

primarily intended for
individually .maintained

the
data

DE61

(
j
__

I-D-S/I and I-D-S/II each incorporate a data base content manager for
handling its own type of integrated (or chained) data base organization. MDQS,
however, utilizes either the I-D--S/I content manager software or one of the
access methods described in the preceding subsection, as appropriate t.o the
organization of the particular data base it is processing (i.e., integrated
indexed sequential, or sequential) . Al though the M.')QS 'package' includes a
number of batch elements {e.g., the DDL and ADL translators and several utility
programs), MDQS itself is primarily an interactive subexecutive supporting an
end-user oriented procedural language for interl:lctive data base manipulation.
Therefore, it will be described further in that aspect in Section V.

Data Query is a TSS subsystem that permits online retrieval of information
from an existing I-D-S/I data base in a simple and convenient fashion.

The TSS dataBASIC subsystem is totally self-contained,
only those data bases built by it or by its utility program.
very efficient multiply-indexed (inverted) file structure,

and manipulates
It operates on a

A significant distinction between I-D-S/I and I-D-S/II (or MDQS) is that in
the former, the data base structuring facilities are not separate from the
data-manipulation language~ i.e. , the DDL function is not a se.parate language
but is incorporated into the COBOL-like host language.

MDQS provides DDL and ADL capability for each of the data base
organizations that it handles, and initial building of the data base is
source-language independent. While I-D·-S/I has a time sharing interface for
easy report generation and onli.ne "browsing," both I-D-B/I and I-D-S/II are
basically batch oriented (though full-capability runs can always be
initiated through time sharing). The newer software couples the
functionality inherent in I-D-S/I with the state-of-the-art features contained
in the CODASYL 1974 proposal"'·· K~y a.roong these features are:

o The data-manipulation language (DMIJ) is an integral part: of COBOL-74.

o The fully implemented schema and subschema description capability
provides a high degree of independence between data structure and DML
programs, and includes data functions.

o A set of advanced mechanisms for privacy and security, data integrity
assurance, recovery/restart, and concurrent access control provide
maximum dynamic protection of the data base.

o A very large data base capabilityg Up to 66 billion records can be
accommodated.

The facilities provided specifically for interactive information processing
are discussed further under "Interactive Subexecutives" in Section V.

Communications Management. Services

The communications management ser11ices can be KJonceptually divided into two
functional areas:

1. Local Physical I/O

2. Network Communications.

DEEil

The latter area can be further divided into two categories:

a. Remote device handling

b. Message switching.

The first category (a) pertains to the transmission, reception, and routing
of massages between the central computer (or "host•) and a terminal device or
satellite processor on its network.

The second category (b) pertains to the routing of messages between
individual terminals on the network.

LOCAL PHYSICAL I/O

Local physical I/O services handle the physical input/output operations
between the processor(s) and the local I/O devices: disk units, magnetic tape
units, card readers, punches, line printers, and system-operator's console(s),
and any other I/O devices that might be configured at the central site. 'l'hese
services are provided by two GCOS subsystems: the Input/Output Supervisor (IOS)
and the Exception Processing Subsystem. The former handles the initiation,
control, and termination of all successful I/O operations (through the hardware
intermediaries of input/output multiplexers and peripheral-subsystem
controllers). The Exception Processing Subsystem provides all exception
processing for I/O operations that terminate unsuccessfully. Exception
processing consists primarily of error analysis, I/O retry in the ca•e of
possibly recoverable errors, and related communications with other portions of
the system. (Notably, communication with the operator and with
statistics-gathering routines.)

Since the normal user has no direct interfaces with this level of software,
it is not discussed further here.

NETWORlC COMMUNICATIONS

Network
subsystems:

communications is
the General Remote
Supervisor (NPS).

is that while each
and remote devices

Processing
subsystems
processor
provides:

performed by either of two major software
Terminal Supervisor (GRTS) or the Network
The primary distinction between these two

supports communications between the central
(e.g., TSS terminals) on the network, NPS also

o Message Switching -- Essentially a facility that allows nodes of th~
network other than the host to intercommunicate (e.g.,
terminal-to-terminal), without routing the message through the host's
central processor.

o Generalized Terminal-Handling Capability -- A facility that allows
individual sites to add to the range of terminals and line disciplines
that are acceptable to NPS. This is done by adding a new "routine"
(composed of NPS Micro-operations, or MOPs) to the open-ended NPS line
handling structure. This process does not involve any reprogramming
of NPS as such, since the NPS software is expressly designed to be
expandable in regard to the types of terminals that can be supported.
(This extension of NPS capabilities would ordinarily be performed by
the site's technical support personnel.)

3-24 DE61

(

J
I
\

Either of these subsystems, GRTS or NPS, is utilized by any of the
following types of software~

o TSS, for routing of messages between the TSE or a TSS subsystem and a
time sharing terminal.

o An interactive subexecutive, e.g., MDQS, TDS, or TPS, also for message
routing.

o A user program that is programmed for, and privileged to perform,
direct program access (DAC) communication between itself and a
remote-terminal device. Such programs can be written in several of
the higher-level languages provided by the Level 66 Information
System, e.g., COBOL-68 or COBOL-74.

The only direct system interface that the normal user has with this level
of software is that in the last-mentioned case, i.e., a direct-a.ccess user
program, the $ DAC statement must be included in the JCL for the program. This
statement performs two functions:

o It defines a specific program file (by file code) as being a remote
terminal device, and

o Provides a unique identifier by means of which the terminal operator
can request connect.ion with the program.

All
provided
program.

other interfaces with the message-handling software (GRTS or NPS) are
automatically, through compilation of the user's source-language

System Management Services

The system
provided for the
The purposes of
in their nominal

management services comprise the
site manager and his operations and
these tools and aids fall into th.e
order of t.uie :

o System-software definition and instal.lath)n

o System monitoring and pe.rformance evaluation

o Dynamic system~admirdstration int(~rfaces

o Online hardware test facilities

o System-software main.t.enance facilities

Since this overview document is
only a cursory description of the
and their functions will be

software tools and aids
staff.

, listed

the soft.ware user,
subsystems/elements

DE61

SYSTEM DEFINITION AND INSTALLATION

The primary software tools for defining a software system, i.e., tailoring
it to a site's specific needs and "installing" it (getting it into an operable
form), are the Startup program and the Patch Editor (PAED) program. The basic
strategy of this process for the Honeywell Level 66 differs significantly from
that for some competitive systems. Th~ process for certain other comparable
systems is referred to as system generation (SYSGEN), a long and complex
procedure involving the selective and conditional assembly and program binding,
or linkihg, of all desired system software from its source-language form.

The software for the Honeywell Level 66 Information System, however, is
supplied in a system-loadable format, i.e., already assembled and linked, in the
form of a "total system tape." (Several reels of magnetic tape are actually
involved.) The total system tape includes all standard system software except
that which is separately priced. The Startup program loads from the total
system tape an operable but not-yet-tailored system, which is then used to
initialize necessary system devices, files, catalogs, and libraries, and to run
the total system tape against a file of patches for "known errors" in the
particular release (or version) of the system being installed, via the Patch
Editor.

From this point on, the definition/installation process consists of
"pruning" the total system tape, i.e., selecting desired software, and
inserting, deleting, or replacing installation-dependent modules as
circumstances require. This latter procedure is directed by a "startup deck"
which is processed by. the. Startup program, effectively reloading the system in a
tailored form. The aim of this process is to achieve an image of the desired
system on the system-disk device, from which it can be reloaded for subsequent
operation.

The Startup program is divided into a number of functionally separate
sections, any combination of which can be utilized to achieve desired
modifications of the system, such as redefining the hardware configuration,
adding an installation-written module (e.g., an accounting routine), or changing
site-determined operational parameters via patch cards. Normal "bootloading• of
the system is also achieved through the loading function of the Startup program.

SYSTEM MONITORING AND PERFORMANCE EVALUATION

The system monitoring and performance-evaluation facilities comprise the
following software subsystems or elements:

o The VIDEO (Visual Information Display for Efficient Operation)
program, which displays system-operating statistics on a large-scree­
video display. This allows operations personnel and interested user
to monitor the system's performance on a minute-by-minute basis.

o HEALS, the Honeywell Error Analysis and Logging Subsystem, which
operates "invisibly" alongside other software and user programs to
intercept and track hardware-detected error conditions; attempt to
retry instructions for recovery from transient processor or memory
faults~ and issue warnings to the operator whenever the error rate of
any hardware component approaches an abnormal point. The intent of
HEALS is twofold: (1) to enhance system availability and integrity,
and (2) to ensure timely online testing and/or maintenance of marginal
system components.

3-26 DE61

o The Statistical Collection File (SCF) and the Summary Edit Program
(GSEP). The SCF is an online repository of operating-statistic
records generated by all major operating-system components. GSEP
periodically compiles and prints a statistical summarizing the
information contained on the current SCF. The reports can be
used to analyze and evalute the effectiveness of past and current
system-operation parameters, and software/hardware configurations. In
effect, the reports constitnte a detailed history of system
performance. The installation can add to or modi the SCP records by
means of a site-supplied module provided for in system.

DYNAMIC SYSTEM-ADMINISTRATION INTERFACES

The system-administration interfaces that allow
operation are twofold:

cantr·ol of system

o The console-operator command interface

o The TSS Master-User interface

The Operator Command Interface

The system operator can exercise a considerable
system operation by use of various console commands.
he can:

of control over
system operation,

o Initiate and terminate the Time Sharing

o Increase or reduce the amount of memory available for time sharing
allocation

0 Initiate and terminate the Transaction Process System

o Initiate and terminate MDQS (for interactive

o Change the system "sieve" criteria, i.e., the
values that, if exceeded, will cause a job to be held for deferred
processing.

a Take marginal or defective system components, e.g., memory modules or
peripheral devices, offline for servicing or maintenance.

0 Logically switch peripheral devices to
that was placed offline.

a "backup" for a device

o Modify certain Scheduler parameters so as to 'tune' system performance
for nontypical system loads.

o Terminate specific jobs, because of abnormal or adverse conditions
affecting system throughput or the in

0 Disconnect and reconnect fie communication lines.

o Rei.ni tiate jobs in 'hc·ld ~ er 'siev~1 i status

While the above list is not exhatrnti'IU~; it does .represent most
system control procedures.

DE61

The TSS Master-User Interface

The Time Sharing System provides for an authorized TSS master user who can
mc;>nitor and control time sharing operations, and can modify the GCOS File System
with respect to authorized users, their privileges and resources. The interface
for these capabilities is. provided by the TSS MASTER subsystem. Legitimate
access to this subsystem is essentially protected by a multiple-password scheme.

During time sharing operation, the authorized MASTER user can:

o Obtain detailed status reports on current TSS activity

o Monitor any other user's terminal session

o Issue "all points bulletins,• or messages to specific users

o Take "snapshots" of, and apply temporary patches to, TSS software

o Alter certain TSS operating parameters

o Communicate with the console operator

o Modify entries in the system-master-catalog (SMC) of the GCOS File
System, e.g., to add or delete users, and to change passwords,
permissions, and resource-usage limits. (The SMC effectively controls
all authorized file-system and time sharing users.)

In summary, the MASTER subsystem facilities, in conjunction with VIDEO and
the system operator's capabilities, offer the system administrator a full range
of cohtrol functions either on-site or at a remote location.

ONLINE HARDWARE TEST FACILITIES

The Total Online Testing System (TOLTS) operates under
concurrently with user programs if desired -- and provides
range of diagnostics that can be controlled from either the
remote terminal. TOLTS is composed of the following modular

GCOS supervision
a very extensive

system console or a
subsystems:

o POLTS - The Peripheral Online Test Subsystem, which can be used in a
special "slack" mode so that peripherals can be checked for
maintenance requirements during normally scheduled production time.

0 MOLTS - The Mainframe Online Test Subsystem.
modules can be allocated to MOLTS so
memory/processor interaction with minimal
operations.

Individual
as to test
interference

main-storage
memory and
with user

o COLTS - The Communications Online Test Subsystem. Tests Front-End
Network Processor (FNP) operations in an online environment (i.e.,
coexistent with either the GRTS or NPS subsystems).

o SOLTS - The System Online Test Subsystem, a combination of POLTS,
MOLTS, and COLTS functionality, but with special emphasis on processor
integrity and the ~business" instruction set.

Note that TOLTS complements the full array of off line Test and Diagnostic
tools available to field engineering personnel for regularly scheduled system
maintenance.

3-28 DE61

\

(
\

SYSTEM SOFTWARE MAINTENANCE FACILITIES

"Software maintenance" means primarily the incorporation of software
changes available from Honeywell between releases of new versions of the system.

For this purpose, the facilities already described for initial system
definition and installation {Startup and the Patch Editor), are utilized, plus:

o The Source and Object Library Editor (FILEDIT)

0 The System Library Editor (SYSEDIT)

FILEDIT and SYSEDIT are used, in conjunction, to either the total
system tape or an existing system library file. two facilities permit
incorporation of program modifications (generated by Honeywell) that cannot be
handled by patches applied via Startup or the Patch Editor. They also permit
inclusion of additional program modules to satisfy a site's need for increased
processing capabilities (e.g., addition of transaction processing software).

The process of system editing is dealt with in detail in the §X_~
Manafement Guide: Software !.!2,stalla~ion ~n~ ~ai~t~~ance document (Order No.
DE62 • It may be noted here, however, t':"fiat the system-editing process avoids
the total reassembly and regeneration of the system (i.e., the SYSGEN process)
that is characteristic of some competitive systems for purposes of system
maintenance.

The functions of FILEDIT and SYSEDIT as
described in Section IV, under "Utilities".
include the building a11d rnaintenancc of a usAr' s
library, and of a site's production-program

relate to the user are
user-related functions

source and program .)

DE61

(

\

I
\

SECTION IV

LANGUAGE PROCESSORS AND UTILITIES

This section describes the salient features of the programming languages
and utilities available for the Honeywell Level 66 Information System. It also
describes any significant characteristics o.f their respective processors.

LANGUAGES

The Level 66 progranuning languages are covered below in alphabetical order.

ALGOL

The Level 66 ALGOL language conforms fully to the ALGOL
standard, but also provides improvements and extensions
including enhanced I/O. · ·

60 international
to that standard,

The ALGOL language is
intended for solution of
hierarchical block structure
is more commonly used by the

a well defined, algorithmic language primarily
problems involving numerical analysis. It has a
which facilitates true structured programm~ng. (It
scientific community than by business users.)

ALGOL programs can be developed and executed in time sharing as well as
local and remote batch environments.

The language extensions include:
\

o EXTENDED REAL typ~ attribute for extended-precision real nwnber
operations

o An extended-integer division operator

o Input/output implemented according.to the Knuth proposal published in
the Communications of~ACMr,, May, 1964.

The improvements and special features of the Level 66 ALGOL implementation
include:

0 A flexible set of input/output
logical and physical record
capabilities

4-1

functions that
processing, and

provide formatting,
character handling

DE61

BASIC

0 I/O procedure statements for logical record handling between
and external devices: statements are provided for transferring
physical record blocks between memory and external devices,
logical record character processing

o STACK tracing routines

memory
data in
and for

o Machine level double-precision, f~oating-point word implementation of
EXTENDED REAL type

0 DEBUG option.

Level 66 BASIC is an interactive language designed and developed expressly
for the time sharing user. It is quite easy to learn and to use, and is
especially useful for (but not limited to) solutions of day-to-day technical
problems by users who are not professional programmers. This version of the
original Dartmouth-designed BASIC language contains many extensions and
improvements which significantly extend its power and range of applicability.

The BASIC processor (a TSS subsystem) is a fast, fully conversational
compiler. The many extensions and improvements incorporated in Level 66 BASIC
include:

0 Both ASCII and binary file I/O

o Extensive character-string handling capabilities

0 The ability to save and re-execute object programs

o Subroutine and function statements.

COBOL-68

The Level 66 Standard COBOL-68 language represents a full (maximwn level)
implementation of the American National Standard for COBOL-68 (XJ.23-1968). The
language also includes extensions for capabilities beyond the requirements of
this standard, and special features that relate to other Level 66 software.
(These are briefly described below.)

The Standard COBOL-68 compiler offers a number of features that are
outstanding by any industry criterion. The fully annotated source listings
provide clear, plain-langnage warning messages and error diagnostics. I
addition, suggestions for potential source-code optimization are produce,
wherever possible. Detailed cross-reference information for data and procedure
names is provided.

4-2 DE61

I

" \

The compiler operates in either of two modes, nonnal ANS or Commercial
Subset, at the user's option. The purpose of the Commercial Subset mode is to
allow compilation of certain older COBOL pro.grams which would be invalid if
compiled according to the standard, either with spect to svntax or to desired
compilation results. Compilation in ANS mode supports not only the standard
language and extensions thereto, but also certain other language elements
defined in earlier CODASYI, specifications that are not contrary to the current
COBOL-68 standards (ANS or COD}\SYL) " In the normal compilation mode, the
compiler utilizes its own logical routines, which are designed for
ANS magnetic-tape file format and labeling

Salient features of the implementation. include the

o Full ANS implementation of the SOR'r verb.

0 The MERGE verb implemented in accordance with the CODASYL
Development, ±2.2.Q. specifications.

Journal of ---
o Full ANS implementation of the Heport Writer

o Single and double-· precision floating , decimal ion, and
single and double-precisi0n binary integer data representations, with
packed-decimal format provided on all I.evel 66 models.

Extended language capab:ili ties and otber
following:

features inc11ide the

0

0

0

0

COPY - ANS COBOL-68 for COPY
66 COBOL-68 allows file
source program containing the COPY. as
file~ Both met.hut.is d.L~ .~IIt}"lf;2G ~t -the

DEBUG The PROCESS statement
paragraph provides a source
programmer to place debu9 statem•.mts
at compile time, to indicate the
generated proi;rram.

from a 1
of

as COPY from
ion.

fih0. I,evel
of the same

the

under the SPECIAL-NAMES
feature. This enables the
COBOI, source and,

levels to be in tJ1e

Level 66 COBOL-68
Processing System
terminal communication is

user nt<::rfaces GCOS Transaction

•rhe programir1ez· ca.n u.1H~

compiler and
compilation process,

the ACCEPT and DISPI,AY statements. Direct
e.lso

s:1ntax
s th~~

upon tht"! incidence

of the
of the

errors.

o Level 66 COBOL-63 excellent facilities for the processing of
common data between The
assignment of all fil<~s to to
assign any or all items in l'>KJRKING-STOPAG.E to ed Common permits
flexibility for refE~.t"encin.9 commm< data with COBOL or other language
subprograms. be separately and
then combined to pro<:;ram.

The COBOI,-68
thereby ensuring maximum
established Honeywell

al1 Level <i.nd Series
and progrrux; i

6000 models,
ity for

DE61

COBOL-74

The Level 66 COBOL-74 compiler and its runtime package is a complete
implementation of the maximum level of the American National Standard XJ.23-1974
for the COBOL-74 language. It also implements extensions beyond the '
capabilities specified in the standard.

The COBOL-74 language has a number of new and powerful features:

o An integrated Communications Facility permitting communication between
program and terminals

o An improved Report Writer

0 Interprogram coll'lllunication,
CALL/CANCEL statements

featuring a LINKAC::E SECTION

o A powerful Debug capability with compile/object time switches

and

o Expanded input/output capabilities: sequential, relative, and indexed
file organizations with sequential, random, or dynamic access modes

o MERGE statement

0 Powerful new verbs - STRING, UNSTRINC::, and INSPECT

o Expanded arithmetic and ACCEPT statements

o SIGN clause

0 Program COLLATING SEQUENCE clause

The Level 66 COBOL-74 compiler and runtime package are highlighted by the
following:

o ASCII native mode

o Byte orientation

o Supports the data manipulation language (DML) for I-D-S/II data bases
(an extension)

o Utilizes the new Unified File Access System (UFAS) logical I/O
routines

o File coexistence/conversion capability for COBOL-68 sequential files,
ISP files, and IBM files with mixed data types (an extension)

o Half-byte/byte aligned packed decimal~ 16, 32, and 36 bit binary
integer

o A CONTROL DIVISION, which provides for modifying program source and
altering compiler defaults (an extension)

o Optimized object code -

o New PERFORM mechanism

o Improved subscript calculation

0 Compile-time calculation of constant values

4-4 DE61

o Extensive in-line code generation

0 Extensive register and co:m:mon management

o Direct generation of object code

o Symbolic literals permit.ting entry of non-printing characters {an
extension)

o Transaction Processing System interface {an extension)

o Block Common (an extension)

o Honeywell Series 2000 magnetic t.ape support (an extension)

FORTRAN

FORTRAN is a very widely used language for mathematical and scientific
problem solving, and has many minor variants. The Level 66 FOR'rRAN language is
essentially an extended version of ,1\NS FOHTRAN IV. It. includes most of the
significant extensions developed by other manufacturers and a number of features
unique to itself. (ANS FORTRAN IV is a proper subset of the language.) Thus,
the Level 66 FORTRAN implementation is among the most comprehensive available in
the industry.

The Level 66 FORTRAN processor is composed of
entities: the compiler; the library of run-time modules
of FORTRAN object programs; and a specialized time
compiler is directly executable in time sharing mode, as well as in the

software
execution

The
local or

remote batch environments. Therefore, compatibil between source programs
developed in one envirorunent and used in another i~ .ansured. since one
is doing the job for all environments. A collection of source programs can be
compiled some through time sharing, some through batch ·- and the object
modules combined for e:xecution in either environment.

Advantages include:

o A comm.on library

o Files in standard format

o Free-form format, with or without line m:mlher.s

0 Multiple compilations within an activity
same for the collection of) •

Features include:

o Memor.y-to-memc.>ry conversion

o List-directed fo:rma.tted 1:/0

o Random .file

o Mixed-mode ari t.h:metic

o Subscripts ca.n be any

f:he options a.re the

o DATA initialization in any type statements

o END= clause in READ statements

0 ENTRY, CHARACTER, PARAMETER and IMPLICIT statements

o T and R format specifiers

o ABNORMAL statement

o PAUSE and STOP with printout

o Quoted character constants

o ERR• clause in READ and WRITE statements

o Switch variables

o Type statements with size-in-bytes notation

o FLO function - a built-in function that provides bit string and field
capabilities

o XOR function - complements the Boolean functions with an •exclusive
OR• capability

o Argument validation for built-in functions

o Null label fields in the arithmetic IF statement.

JOVIAL

The Level 66 JOVIAL compiler is equival-:nt to the JJ version JOVIAL
compiler of the u.s. Air Force, as described in AFM 100-24. The JOVIAL
language allows the programmer to make use of specific characteristics of Level
66 hardware, while imparting all the advantages of a higher level language. It
is intended for application areas that require end-user 'conunand and control'
facilities as well as numerical computation.

JOVIAL programs can be developed and executed in time sharing as well as
local or remote batch environments. Programs developed in one dimension can be
executed in any other. Various data formats are provided, including integer,
floating~point, fixed-point, Boolean status, and literal. Special data formats
include bit-string, byte-string, characteristic, mantissa, table entry, LOC (in
address), and odd (for even/odd tests).

JOVIAL offers many benefits:

o Mathematical subroutines are shared with FORTRAN.

o Hardware registers may be loaded, tested, and stored through the
ASSIGN statement.

o Data files may be maintained using either the BCD or ASCII character
sets.

o Powerful table-handling language permits manipulation of either serial
or parallel table arrangements.

4-6 DE61

Macro Assembler (GMAP)

The Macro Assembler prograin is a
provides the programmer with the convenience of
language or directly in machine-oriented symbolic
functions performed by the assembler are:

language assembler that
in open-ended (macro)

instruct.ions. The principal

o Translation of control and assembly-edit formatting pseudo operations

o Recognition. and translation of addresses that are absolute or relative
to subprogram origin, to common storage, to labeled or block common
storage, and to externally defined symbols

o Production of relocatable or absolute-binary subprograms tha.t can be
combined at load time

o Allowance for progranuner-defined macro instructions at assembly time

0 Provision for accepting compressed symbolic decks plus any desired
compressed deck as alter ca.rds as input, and producing an

output

o Provision for a complete listing of the assembled program, plus a
symbol reference table

o Provision for descriptors and multiword instructions.

Level 66 PL/I is a
system-progra:mxning application"
with at least 131,072 words (524,288

PL/I offers a number of

0 The language
programming
and program

to

. .

scient:ifi(c, and
a Level 66 system

be useful for the widest: range of
the costs of programmer

o PL/I is designed to be relatively machine .indep1:mdent, the

0

0

costs associated with in either machine environment or
computer systems.

The block structure
reduce effort when

The data manipulation
offered with other com~:on

features of the language
of a program.

to those

DE61

The many capabilities of PL/I include the following:

0 PL/I is a block-structl1red language that permits both
and external (global) variables and procedures.
characteristics facilitate the development and
structured programs.

internal (local)
These language

maintenance of

o PL/I has a comprehensive set of· data formats. These include 16
distinct· types of arithmetic data, character string, bit· string,
locator, label, entry, file, and area data. These formats give PL/I
considerable data descriptive power.

o Structure Variables (similar to COBOL hierarchical descriptions) let
the programmer explicitly define data structures in combinations of
PL/I data formats.

o Dynamic allocation for scalar, arrays and structure variables is
provided by automatic, controlled, and based storage.

o PL/I has powerful bit-string and character-string handling
capabilities. Operations and functions are performed on either fixed­
or variable-length strings.

0 Condition testing mechanisms allow the programmer to
flexible program logic with a minimwn number of labels.

construct

o The ON statement permits the programmer to respond to most error
conditions that may arise during program execution.

o Dynamic locator variables and memory utilization characteristics
facilitate the use of list processing techniques.

o Declaration of arrays and data structures with initial values is
permitted.

o Both fixed- and floating-point arithmetic data are supported by •
software. Binary and decimal arithmetic data are similarly supported.

0 Uses the full ASCII character set defined in
Standard X3.4-1968. This offers the user greater
file content and communications. The Level 66 BCD
also be used for some types of data files.

Special Purpose Languages and Simulators

American National
flexibility in data
character set may

DATANET-355/6600 MACRO ASSEMBLER (355MAP) AND SIMULATOR (355SIM)

The 355MAP language processor and the 355SIM simulator are provided for
programming the Front-End Network Processor (FNP) associated with the Level 66
Information System, i.e., the DATANET 6600 or the DATANET 355 FNP. Thus they
are of very limited interest to the average system user. Briefly, 355MAP is a
Level 66 macro-assembler for the FNP machine language. Thus it allows a program
for the FNP to be assembled on the Level 66 system.

4-8 DE61

355SIM is a complementary program that simulates the operation of the FNP
in the Level 66 central processor, for purposes of testing FNP object programs
on the Level 66 (prior to their actual iLqtallation in the FNP).

A PROGRAMMING LANGUAGE/66 (APL/66)

APL/66 can be characterized as a line-at-a-time algorithmic calculator with
many sophisticated operators and a stored-program capability. Originally
developed as a mathematical notation for discussion of the theory of algorithms,
APL was refined as a means for expressing an algorithm to the computer. The
user needs little or no prior acquaintance with digital computers to use it.
After invoking APL, the user types an expression to be evaluated. The APL
interpreter performs the calculations, prints the result, and awaits a new input
line. The result of an expression evaluation can also be assigned to a variable
and remembered from line to line.

In addition, there is a capability for storing input lines by an assigned
name, so that a later mention of the name causes the lines to be recalled and
interpreted as if they had been entered from the terminal at the time. Finally,
there is the ability to save the entire state of an APL session, complete with
all variable values and stored programs, so that the user may continue at a
subsequent APL session.

NOTE: APL/66 is not part of the system software (in the strict sense) but
is available from the Honeywell applications software library.
Since it is more a general-purpose than application-specific
language interpreter, however, it is included in this overview for
the sake of completeness.

GENERAL PURPOSE SIMULATOR SYSTEM (GPSS)

GPSS, one of the most widely used siniulation languages, produces accurate
simulations of real processes. By establishing mathematical models and
furnishing simulation results for subsequent analysis, GPSS provides extremely
fast solutions to a variety of business simulation problems. It reduces the
need for experimenting with costly prototypes or physical installations.

Any physical process that is already in operation, or under consideration,
or envisioned by management - and t.hat can be flowcharted for modeling - can be
converted readily for GPSS simulation by the use of a simple activity block
diagram. A user of GPSS does not need previous experience in programming, as
the rules and practices are tailored to the experience and needs of the
practical planner.

NOTE: GPSS is not part of the system software (in the strict sense) but is
available from the Honeywell applications-software library. Since
it is more a general-purpose than application-specific simulation
language processor, however, it is included in this overview for the
sake of completeness.

DE61

UTILITIES

•utilities• is a generic term for the set of processors and system programs
that provide a wide variety of general-utility functions for the system user
(and for system-management personnel) •

Bulk Media Conversion

Bulk Media Conversion (BMC) is a powerful program that converts data files
from one high-speed or low-speed peripheral device to another. Multiple files
and multiple report codes can be processed, and mixed printer/punch images can
be present on the input device. Character translit~ration for various character
sets can be performed on input or output.

BMC performs media conversion for card readers, :magnetic tape, disk
storage, printers, and card punches. BMC is generally used when the data volume
exceeds that permitted by system media conversion routines such as System Input
and System Output (part of the automatic functions of GCOS) •

BMC has no volume restrictions, however. It processes successive files on
a device but does not unscramble mixed files, as does the System Output program.
BMC can be used as a free-standing program or as a preprocessor and/or
postprocessor of a main program. It can also be used to create multiple copies
of output files.

Bulk Media Conversion offers:

o Choice of standard or nonstandard data fonnats

o Character transliteration (e.g., from various IBM character-code sets)

o Multiple input and output files, sequential and nonsequential

o Ability to spin off BM: activity as a separate job to improve
multiprogramming density

o Printer form control

o Creation of tape from input job stack

o Character substitution (card reader data)

o Restart

o Error recovery

4-10 DE61

Sort/Merge

The Sort/Merge program is a highly efficient tool for sorting and merging
files. The program accepts a wide variety of data and task descriptions and
adjusts itself dynamically to the individual task to provide the most efficient
processing possible. The SORT function also features dynamic adjustment to the
operating environment and maximization of resource usage,. especially during
multiprogramming operations.

Sort/Merge uses mass storage devices, tapesg or combinations of both
depending on the configuration of th~~ system and the desires of the user.

The Sort/Merge program is controlled by a set of macro statements through
the Macro Assembly Program (GMAP), or by the SORT verb through the COBOL
compiler. It requires few descriptive para111eters for the average sort or merge
application. Unless otherwise restricted, it assumes a standard set of
functions and file descriptions. Flexibili..ty of the program is enhanced by
optional parameters in the macro statements or in the SORT statement.

This flexibility is further represented by the characteristics listed
below:

o Record size from 1 to 16,384 bytes (4,096 words or 24,576 characters)

o No restriction on key size

0 BCD, binary, word, double-precision
single-precision floating-point fields

o 'l'hree to 16 collation f.:U.es

o One to 16 input files per execution

floating
as

or

o Sorting of short files in memory without inte:emediate storage files

o Single input merge possible for checking data sequences

o Automatic spill-out to tape as disk areas become full

0 Recognition of key fields in amy within the record

o Automatic key transliteration to commercial collating sequence

o Automatic record seh'!ction/deletion

o Own-code interface

0 Ability to a.llocate free memory at execution time

o Mixed alphabetic and numeric

DE61

UTILITY

UTILITY is a generalized program package within the broad service-program
as~ortrnent provi~e~ for Level 66. UTILITY provides storage-device and file
mai~t~na~ce capabilities, including complete facilities for copying, comparing,
positioning, and dumping of device or file content. For example, it perfonns
the following:

o Processes magnetic tapes and sequential or random disk files as
specified by user-supplied directives.

o Copies, compares, and dumps a number of files or records.

o Positions a storage device - rewind or skip.

o Repeats specified parameters.

o Processes user-coded instructions added to Utility, e.g., to modify
file content, set delimiters, or specify error conditions.

o Processes seven-track or nine-track magnetic tapes.

0 Handles mixed-mode and mixed-dens tapes.

o Processes any size record if given sufficient memory storage.

o Handles both multireel files and multifile reels.

o Handles nonstandard formatted files.

The UTILITY processor is used mainly for operational and debugging
purposes. It is called unconditionally by the $ UTILITY control card, or
conditionally by the $ ABORT control card in the event of an activity abort.

UTILITY processes all file formats, storage media, and data representations
supported by the File And Record Control Facility, and uses that facility for
its I/O operations.

The UTL2
storage-device
above), but it
BCD oriented.

utility processor provides essentially the same kinds of
and file maintenance capabilities as does UTILITY (described

handles a wider variety of file formats and is ASCII rather than

UTL2 is primarily intended for support of sequential, relative, and indexed
files in the Unified File Format (UFF), as produced by the Unified File Access
Syste.m (UFAS). In addition, however, it provides

o Sequential processing of magnetic-tape files in both ANS and IBM file
formats, and

o Sequential processing of standard-format files produced through the
File And Record Control Facility, on both magnetic tape and mass
storage (sequential organization only).

4-12 DE61

Thus UTL2 provides facilities for file transferability as well as full
utility-processing support for UFF files and ANS magnetic tapes.

UTL2 uses the UFAS access methods for its I/O operations.

Source And Object Library Editor

The Source And Object Library Editor (FILEDIT) is specifically designed for
the creation and convenient maintenance of program-library files, in either
source or object form. Such libraries may be created and maintained by an
individual user for himself or his project, or may be set up by the installation
for general operational use.

If corresponding source and object libraries are created, FILEDIT provides
a very convenient, semiautomatic means of updating the same program in each
library simultaneously, in conjunction with the recompilation activity used to
make the object-program changes. Prog-rams on the source libra.ry can be used as
input for recompilations. Programs on an object library can be readily called
for execution by means of the $ EXECUTE ,JCL statement. The proqrams so executed
are loaded by the General ·Loader, and thus are subject to all of the General
Loader facilities and options (program-subroutine linking, relocation, etc.).

An object library can also be used to contain object-form (load time)
subroutines, also for input to the General Loader. Such a subroutine library is
identified to the loader by means of the $ LIBRARY JCL statement. (A
random-library format is more commonly used for this purpose however, e.g., by
compiler runtime packages, in the interest of greater efficiency.)

Both source and object libraries are system-standard format sequential
files, with individual programs thereon delimited according to system-wide
conventions (known to all language processors and to the loader) • The files are
usually assigned to permanent mass storage, but can also be kept on magnetic
tape. An object library is essentially the compiled or assembled counterpart of
its corresponding source library (assuming both exist).

Source library programs may be either in full card-image form or in
compressed deck (COMDK) form, or in a combination of both.

The main advantages offered by Fif..EDIT are as follows:

o Elimination of bulk:y·, hard-to-handle card files by use of magnetic
storage in an efficient, standardized form.

o Maintenance of corresponding source and object library files in one
pass, or independently.

o Provision of storage within the system for source and object programs,
and for subroutinesq that is conveniently assignable as
language-processor input or output:, and as loader input.

FILEDIT also produces a very useful record-of-changes file for each object
library update.

Object library files are sometimes -used as input to the System Library
Editor (described below), e.g~, for creation of a site's fast-loading production
library.

4-13 DE61

System Library Editor

The System Library Editor (SYSEDIT) is provided for two related but
distinctly separate functions:

0 Creation and maintenance of p~ogram libraries in
system-loadable format designed for fast program loading

a special

o Editing of a Total System Tape, as part of the procedures involved in
system-software installation and maintenance.

The latter function (editing of a system-software tape) is generally of
concern only to the technical support personnel responsible for system-software
installation and maintenance. The former function (building of system loadable
libraries) may be utilized by a group of users or by the site-operations staff,
however. SYSEDIT can be used to convert an object library of fully developed
"production" programs into system-loadable form. In this form, the programs can
be loaded by a specialized,, high-speed loader (via the $ PROGRAM statement) ,
rather than by the General Loader. The benefits of this form of program library
is increased loading efficiency for frequently executed programs.

SYSEDIT achieves the system-loadable format essentially by using the
General Loader to form a fully bound memory image of a program on the object
library and then saving this image on the system-loadable file. Thus for
"finished" programs the General Loader need perform its linking and binding
functions (e.g., combining of program segments, resolution of external address
symbols) only once rather than each time a given program is executed. (Also, the
General Loader must be called into memory each time a program is to be loaded by
it, whereas the high-speed system loader is permanently resident.)

Note that not all of the programs on an object library need be selected for
inclusion in the system loadable library.

4-14 DE61

\

SEC'l'ION V

INTERAC'lTIJ"E SUBEXECUTIVES

Three major software package:!:'l can be classified as :r.evel 66 intenictive.
subexecutives:

o 'l'he Management Data Query System (MDC!S}

o The Transaction Driven System {'l'DS)

o The Transaction. Processing System (TPS)

under the control
offers "e~ceclxti",,,re"

Further, each is
that

Each of these is a subexecutive inasmuch as it
of GCOS and utilizes common operating-system services
type services to the application programmer or the
characterized as interactive since it is designed to
involve direct end-··user interactions with the computer
of communications terminal.

system

Depending upon the nature of the terminal
the interaction may be one-way to
system and system to user! • In t:.ne
transaction processing, the end-user interaction
case of an inventory application
speci&lized, automated cash register, for

'\.,. __ ,~
j,,,)'C:',

considered to be data base management. or information
interaction is generally two-way, and. the terminal device is
keyboard/display unit.

the
is a

areas
the
of

End User Facilities

t-md user in MDQS is oriented towards a somewhat
manipulation of the data base is dete:rmine;d devised
updating, and/or query), rather tha.n
very high level,
keyboard/display terminal.
a very elementary, automatic
in a very flexible,

Generalized ffiay also prepared
users; these can user th parameters
momentary processing needs. ·:.::ann~~:l" or
equivalent of fixed-form transactions for end users ~ith
operational flexibil little no
language is

5-1

a
use at a remote

be used in

for a
that

little
of the

time), or

of end
his
the

need for

DE61

An online reference subsystem is provided, as a supplement to regular
documentation.

Data Base Admini s.tra tor F ac i li ties

The choice of data base structure, and the type of access-method or
content-manager software used to manipulate it, is controlled by the data base
administrator. The data base administrator uses the MDQS Data Definition
Language (DDL) and Application Definition Language (ADL) to define the entire
data base, and various application-oriented virtual "views" of the data base,
respectively.

MDQS Structure

MDQS is a hybrid structure that utilizes both time sharing and batch
facilities to achieve a well balanced, powerful, and cost-effective blend of
capabilities. The MDQS interactive-user interface is a TSS subsystem {MDO)i the
POL procedures submitted via this interface automatically generate a batch-world
program that performs the requested data base processing. (The end user is
totally unaware of any implicit batch-world activity, however.)

The net result of this type of structure is that both the interactive
subexecutive and the processing programs are invoked dynamically and neither
requires dedicated memory space.

MDQS is available in two forms: MDQS/II for a query-only (information
retrieval) capability, and MDQS/IV for full update-and-query capabilities. The
MDQS/II language facilities are a proper subset of those provided by MDQS/IV.
(That is, MDQS/II and MDQS/IV are fully upward-compatible.)

TRANSACTION DRIVEN SYSTEM (TDS)

TDS is designed to support the development of high-volume transaction
processing and data base management applications. It is intended for
applications involving the processing of fixed-form transactions entered from
remote terminals, but can also be used for processing batched transactions
entered at the central computer site (or through a remote processor). No
programming knowledge or ability is assumed or required of the end users, i.e.,
the individuals who initiate the input transactions, since no procedural
language is involved at the end-user level.

The form of input transactions to be processed (and of the corresponding
output messages, if any) is determined by user-written Transaction Processin~
Routines, which operate under the control of TDS. Thus, transaction formats ca;
be specifically tailored to the application~ that is, designed to fit naturally
into t.he end user's working environment. The structure of transactions can be
as simple or as complex as desired. Several (or many) different types of input
transactions can be defined for an application. Each transaction type is
identified by a unique keyword. (All transaction messages must begin with such
a keyword.)

5-2 DE61

!_~ansact~on Processin2 Routines

The function of the user-supplied 'l'ransaction Routines ('I'PR.s) is
to determine and direct the processing that must be in response to the
receipt of a. message initiating a transaction. This often involves
the updating and/or retrieval of information in a data base associa.ted with the
application, and may result in the generation of an output l'!M:!SS<:lge for a
destination terminal.

TDS software components provide all of the
required by the TPRs:

.fiui.ctions

0 Message Manager -- Rece1ives, verifies,
input messagest routes transactions to
messages to recipient b"'Jrminal$;
messages, if required.

iter&tf~S
routes output

inp1.1t/output

o Data Base Manager Initiates and monitors the a.:ata bas!:! I/O
opera.tions requested by a 'l'PR; controls concurrent access to thr'" c.lata
base by multiple transactions; "before" and "after"
images of data base fields during data. base : and
journalizes data base "checkpoint" records.

o Transaction Manager -- Initiates and terminates individual TPRsi and
their associated data base access tasks~ coordinates
ex.ecution of related '1.'PRs for multi.phase transactions; and terminates
transactions when all .related been succer11sful

0

completed (includin9 output-message

Recovery and Restart Manager Utilizes
journal files to effect either a
minor error or ma.lfunction or a. r:estarc
serious error. It also maintains data base
incompleted t.r.a.nsactions due to a TDS, TPR, or

With all of the above-mentioned
automatically by 'l'DS, the
purely logical requirements

functions
programmer is free to

a transaction when
related set of TPRs).
relationship of individual TPRs and
design.ed, provide all of the
transaction, or, possibly, for
may process only one
1rPRs may be required in
instance (Therefore, the
many, or many to one.)

The TPRs are coded in an ext.en:sion
language (called TDS/COBOL) includes statements
programs are processed bji' the TDS '!'rans la tor.

.!Utei:n.ati
transaction,

of a
be one to

in the TDS Library, in a 'l'DS·~loadr1ble format
program called the TDS Lihra:dan.

data from
after a
<lt mu.t:'it!!

event of

for him
on the
(or a
to the
if so

type of
• a TPR
c>everal

transaction
one om:..l) to

This
source

a support

DE61

TDS Orientation and Structure

TDS is essentially oriented towards the management of a large data base
associated with either single or multiple applications. TDS is also oriented
towards the use of an I-D-S/I data base organization, but ISP, random, or
sequential file structures can be used as well. TDS is especially suitable for
development of a dedicated, high-throughput •transaction processing system. TDS
exhibits the following performance characteristics:

o Fast interactive response time

o Excellent data base protection features, including comprehensive
journalizing and dynamic rollback/recovery capability.

TDS is a self-contained GCOS subsystem that is somewhat similar to 'l'SS in
that it

o Manages its own dedicated memory space

o Schedules, allocates, and initiates TPRs (as TDS subtasks, not GCOS
jobs)

o Performs common message-handling functions on behalf of the 'l'PR8.

Structurally, TDS is a privileged slave program consisting of the TDS
Executive and several other modules whose functions were described above, i.e.,
the a

o Message Manager

o Transaction Manager

o Data Base Manager

o Recovery and Restart Manager.

The TDS Executive controls and coordinates all phases of TDS operations,
and is functionally subdivided as follows:

o Startup -- Initializes the TDS Executive with run-time parameters at
the beginning of a TDS processing session.

o Dispatcher -- Allocates processor time to various TDS tasks on a
priority basis.

o Interrupt handler -- Supervises transfers of execution control between
TDS tasks, and services I/O-com.pletion interrupts.

5-4 DB6l

TDS Support Programs

In addition to the dynamic TDS software compouents described above, the
total TDS package includes the following system-support programs:

o System Generation (SYSGEN) Program --:' Configures TDS for a specific
application, using information provided by the site's TDS
administrator. This information is supplied in the form of COBOL-like
SYSGEN source statements. One significant category of information
that must be supplied to TDS SYSGEN is a description of the
installation's data base structure (the data base schema).

o TDS/COBOL Translator -- Preprocesses a TPR source program written in
'.rDS/COBOL. The function of the translator is to trans.late
TDS-specific statements based on information supplied. to TDS SYSGEN
concerning the data base structure and TPR operatinq parameters. 'rhe
translator then invokes the appropriate language. processor for full
compilation of the program. (During the TDS SYSGEN process, the
translator is "tailored" for the installation's applications.)

o TDS Librarian -- Creates a,nd maintains a library of Transaction
Processing Routines in a special '!'OS-loadable format. The Librarian
program accepts the user-written TPR.s in compiled (object) form,
converts them to a memory-image form, and places them on the TDS
library file. TDS loads TPRs from this file as required during a
transaction-process session.

TESTBED Facilit~

TDS includes a TESTBED program that allows newly developed TPRs to be
tested and evaluated in a batch-mode environment th.al simulates normal ,,.._,.,
operational conditions. TESTBED facilitates testing of a new TPR against an
existing, operational data base, but without danger of impairing that data base
because of faulty updates. (All data base updates can be automatically captured
on a separate collection file.) Selective trace and dump information can also
be generated for debugging purposes.

TRANSACTION PROCESSING SYSTEM (TPS)

TPS is designed to facilitate development of transaction processing
applications in a multi-use environment. Its operational characteristics as
seen by the end user are basically similar to those of TDS: fixed-form
transactions which can be tailored to the end user's business context, no
end-user procedural language, and identification of transaction type by leading
keyword.

TPS and TDS differ considerably, however, from the application programmer's
viewpoint. TPS is in certain respects more flexible and generalized than TDS,
and it is somewhat simpler to program for. It can readily handle multiple
unrelated applications using differe:nt d.:ita bases,, and is particularly well
suited to the development of low-to-moderate volume applications. Such
applications can be "gotten on the air" under TPS with a minimum of programming
time and effort.

5-5 DE61

On the whole, TPS requires a less demanding data base administration effort
than does TDS for multiple, concurrent applications, but on the other hand does
not offer the same throughput potential for a· very large volume application.

TPS consists essentially of three elem~i:its:

o The Transaction Processing Executive (TPE) -- the controlling element
of TPS

0 Transaction Processing Application Programs (TPAPs)
user-supplied, application-oriented portion of TPS

The

o The GCOS lnterslave Communication Facility (INTERCOM) A passive
element which serves as a channel of communication between the TPE and
the TPAPs.

Each of these elements is described briefly below.

Transaction Processing Executive

The Transaction Processing Executive (TPE) receives transaction input from
the terminals and routes the transactions to the appropriate Transaction
Processing Application Programs (TPAPs) for processing. When the transaction
has been processed, the TPE directs the output back to the terminal or, if the
terminal is not available, holds the output for later transmittal.

The TPE executes as a privileged slave program under GCOS, and is started
and terminated by the system-console operator.

During normal transaction~processing operation, the TPE performs several
functions:

o Checks incoming transaction messages for validity

o Journalizes both input and output data to ensure against loss of a
transaction or its output and to provide a base for TPS restart should
the need arise

o Queues input transactions according to user-established priorities

o Initiates TPAP execution as required

o Monitors TPAP execution to ensure an orderly flow of transactions and
to determine the status of the TPAPs at all times.

The modular design of the Transaction Processing Executive program permits
easy incorporation of the user-supplied parameters (TPAP profiles) required for
system operation.

5-6 DE61

/
1.
\

(

Transaction Processing Application Programs

Under TPS, the application programmer writes a TPAP that defines and
processes a specific type of transaction, or several related types if desired.
The TPAP can be written in any of the general-purpose programming languages
supported GCOS (e.g., COBOL-68, COBOL-74, FORTRAN, GMAP, PL/I). Thus, any file
or data base organization can be utilized, incJuding I~D-S/I, I-D-S/II, and UFAS
organizations, and any appropriate access-method or content-manager software can
be employed to manipulate it.

Normally, one TPAP will contain all of the processing logic and I/O
procedures required to process a qiven tr.:msaction, but several sequentially
executed TPAPs may be utilized if desired. (Sequential execution of multiple
TPAPs can be made conditional, dependent on transaction content and TPAP
processi.ng logic.)

The TPAPs are stored as independent programs in the GCOS file system, to be
spawned (called into execution) by the TPE as needed to process transactions
submitted to the system. Very frequently used TPAPs can be held in memory, to
be enabled as needed to process transactions. Most TPAPs can be swapped in and
out, however, to accommodate a wide variety of incoming transactions. (The
memory residence characteristics of a g.iven TPAP are controlled by parameters in
the TPAP profile. This profile information is supplied by the programmer, for
incorporation into the TPE.)

Each TPAP is invoked by 'rl?S as a. separate GCOS job", consisting of one
execution activity. A wraparound provision in the TPAP-TPE interface permits
the output of one TPAP to be used as input to another TPAP for further
processing. This provision facilitates the sequential TPAP execution mentioned
above.

Interslave Communication (INTERCOM) Faci~:JJ:X.

The GCOS INTERCOM facility provides a simple, standardized means of
intercommunication between the TPE and TPAPs, for both input and output
messages. The INTERCOM facility essentially simulates logical input/output
operations within main storage, for the high-speed transfer of small a.mounts of
data between two independent programs (in this case between the TPE and a TPAP).
That is, INTERCOM provides pseudo files --· a.ctually memory buffers which one
program can "write" to and another can "'read" from by means of a standard
I/O-like interface.

Thus, transaction input from a terminal is sent to a TPAP (by the TPE) via
one INTERCOM file, and transaction output is placed in a second INTERCOM file by
the TPAP for transmission (via t:he TPE) to a te:r:minal. Optionally, output from
a TPAP can be passed to another TPAP through the same INTERCOM mechanism, again
via the TPE.

For TPAPs written in COBOL, the INTERCOM int.erface is implicit and
virtually transparent, since normal COBOJ .. -68 or COBOL-74 syntax is employed,
with only minor extensions where necessary. (For example, in COBOL-68, extended
forms of the ACCEPT and DISPr .. AY statements are used, in conjunction with a
COMMUNICATIONS-DEVICE clause in the SPECIAL-NAMES paragraph,,)

For compiler languages other than COBOL, two stanc~ard interface subroutines
are provided: COMMI for input, and COMMO for output. These subroutines are
invoked, and supplied with required arguments, by the CALL statement that is
common to all Level 66 compilers.

5-7 OE61

Note that TPAPs can process transaction data in either BCD or ASCII, as
appropriate to the programming language and the data base organization utilized.

· The TPE will provide any code transliteration required.

TPAP Test Features

New TPAPs can be checked out during the development
normal incorporation into TPS, through the use of a
especially provided for this purpose. (Several such
included in the TPE.)

cycle, i.e., prior to
•built in• TPAP profile
checkout profiles are

Another feature that can be utilized by a TPAP during its development is
the training/testing mode •switch•, provided by the TPE. This software switch
can be turned on or off by the terminal operator. A TPAP can be coded to
ascertain the state of this switch, so as (e.g.) to bypass or modify its file
update procedures. Thus it can avoid faulty updates when run against an actual
data base. (The switch can also be used by an operational TPAP to enable
tutorial logic when the terminal operator requests •training mode•.)

SUMMARY

The range and variety of the major Level 66 interactive subexecutives is
such that an appropriate tool is available to fit the particular characteristics
of each installation's interactive-processing needs. (Lesser retrieval-only
facilities, such as I-o-s Data Query, are not covered here.)

Each of the major subexecutives has advantages and drawbacks relative to
the others. That is, each offers a particular •mix• of capabilities oriented (
towards a general class of applications. A careful choice of the tool that
8 best fits the job in hand• can forestall most if not all of the undesirable
tradeoffs that have characterized many recent large-scale interactive
applications.

5-8 DB61

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE SERIES 60 (LEVEL 66) ·1
SYSTEM SOFTWARE OVERVIEW J

--·
ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

r\ Your comments will be promptly investigated by appropriate technical per~onnel and action will be taken o· l/ as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME~-~~~~~~·

TITLE ··-----·

COMPANY

ADDRESS

-----··-----------·---·---

I
_____ ._J

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WAL THAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Honeywell Information Systems
In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

19372, 7.5C11 n, Printed in U.S.A. DE61, Rev. 0

