Honeywell

SERIES 6000/600

dataBASIC SYSTEM
LANGUAGE MANUAL

Honeywell

SERIES 6000/600

dataBASIC SYSTEM
LANGUAGE MANUAL

SUBJECT:
The dataBASIC System Language Considerations Including an Introduction to the Language, General
System Characteristics, Statements, Control Commands, Subsystems, Methods of Communicating
with the dataBASIC System, and Summaries of Language Statements and Replacement Expressions.

DATE:
May, 1971

ORDER NUMBER: DAO08
Rev. 0

PREFACE

This manual is a reference guide for using Honeywell's Series 6000/600

dataBASIC language. Section I explains the basic function of the language and lists the
notations used in programs. Section II defines the dataBASIC program in terms of elements
and data structure in files, records, and fields; it is followed Ey Section III which describes
and illustrates each program in one or more typical program constructions. Section IV,
entitled Advanced Data Selection, provides instructions for creatihg generalized procedures
so as to be reusable in other applications. Section V explains the control commands for
disposition of programs; Section VI describes the dataBASIC system in terms of its sub=-
systems; and Section VII outlines procedures for communicating with the system via a
remote Teletype terminal. For quick reference, dataBASIC language statements, along
with expressions and replacements, are summarily tabulated in Appendix A, while
terminal commands and reserved words are alphabetically listed in Appendices B and C.

In Appendix D terminal error messages are tabulated; Appendix E contains guidelines to be
followed when trying for higher programming efficiency and more effective selection of

file loading techniques. Finally, Appendix F contains a block diagram of the Series 6000/
600 dataBASIC file structure.

Within the text of this manual, all references to Series 6000 systems are applicable

to 600 systems unless otherwise stated.

Other Honeywell publications related to the dataBASIC system include the following
titles and document order numbers:

dataBASIC L.oad/Unload System, Order No. DA09

GECOS Time-Sharing System General Information Manual, Document No. CPB-1643

Comprehensive Operating Supervisor, Document No. CPB-1518

Integrated Data Store (I-D-S), Document No. CPB-1565

File and Record Control, Document No. CPB-1003

The dataBASIC system is a coded system designed to extend the power
of Series 6000 in the area of data control. It is supported by compre-
hensive documentation and training; periodic program maintenance and,
where feasible, improvements are furnished for the current version of
the system, provided it is not modified by the user.

@ 1971, Honeywell Information Systems Inc.

#DAO8

TABLE OF CONTENTS

Section I Introduction ...eiiieererneieeeesoronnossscnes

General System Description
dataBASIC System Applications....
The dataBASIC lL.anguage
Document Notationscec00ueue
Reserved Wordsco0vues
Bracesciiiiiiiiiinn
Bracketsviiiiiiiiiin.,
Ellipses ..ciiieeieenenarenenas

Section II General System Characteristics......
The dataBASIC Program

The dataBASIC Statement

line:number it
control:word...........
all other wordsvivvevrvnnns
carriage:return character......
dataBASIC Language Elements.....
Data Structureo..eeeeenene.n.
Data Files.iieeeeervenenaranns
Data Records ...ovvevvennenanns
Data Fields .. .vviviviinenennns
Duplicates ...cvveeenennnnnsens
Special Convention

Section III dataBASIC Language Statements......
Declaration Statements..... cisese
The DATA Statement........

Data Storage and Maintenance...
The FILE Statement

Data Selection Statementsv..
The FOR Statement
Accessing All File Records
The FOR ALL Statement
Accessing Selected Records
The NEXT Statement....... .

Field Selectionc.cvu..
Dictionary Functions.....ee.v..
The FOR FNAME Statement .

The FOR FVALUE Statement

Data Manipulation Statements

.

.. e e
s e e e s
e e o0 8 s

e e 0 0. .
. LR .
e e e .

Data Deletion . vveivieeeensesononnensnns
The DELETE RECORD Statement

iii

oo s v e s e 0.
e s s 0 s
e s e s e e s 0

o s e “ o0 e
. P I I AT
. PR A)
e s s s e 0000 e .
0 e s 00 0 .o
. .. e a0 e
s o . .
e e o e 0 v .
DR S T P)
e s e e 000 0
e e s 0 00 a e
s e e v s
........ .
. I A A)
ee 0 s e e 000 e
........ e

g
)
o
o

et et et b e ek el ped e
[|
WD DNNDN = — -

| I D S R SRR DU D DR R SRR B |
Ol U1 i W DN IV e e b b b bed ped e

o

WWWWWWWWWWWWWW DDy DDDN NN
1

1
o= DWW NN = = = =

w
1
—
— O

3-13
3-13
3-13

#DAO0S8

TABLE OF CONTENTS (cont)

Page

Section III (cont.) Field Deletion et e et ee e .o 3-14
The DELETE Statement ..o tiiei it ecniosantoans 3-14
Data Modification «c..vvvean. cesenaena Ceectrnenerane 3-14
The FIX Statement...... Ceessetersaseneens Cesevnes 3-14
The LET Statement ..c.civeieetiiriitecarionannons 3-15
Assignment EXpressions co.eieeetosctssocrscscnosasans 3-15
Arithmetic Expression.....ccecee... 3-18
Data Storage . voovtitviitiioitrtniotnctertserssasstnees 3-20
The STORE RECORD Statement «cvievieeeienvenness 3-20
The STORE COPY Statement......... ceeen cer e 3-20
Field Storage «vvieiiiorieernrrtonersecsrtsnesasnnens 3-21
The STORE Statement . .cveveeieciecessscisnenesoens 3-21
Input/Output Statements...oeevess. et esaeaan e e 3-21
Terminal Inputieiieniiieeienerennans 3-21
The INPUT Statement « o v vieerieetettenenctesaesonns 3-21
Printing cectere s eseanas Ceeereaeses et e 3-22
The PRINT Statement e [P eaee 3-22
The PRINT RECORD Statement ...vveveevenneenenns 3-23
Print Record Field ..ottt iiniitiiennenrenroenesonosas 3-24
Print Literalc.00eevenn.n Cteetereenan seaenen .o 3-24
Pring Working Storage Fieldiiiieeininennnnens .. 3-25
Special Print Convention «...viiiiiiiitnntrnerrsnonanns 3-25
Print With Edit0iiiieineeesnns cee e et 3-26
Numeric Editing ovveveeeteerieotersroressonsassnooneens 3-26
Alphanumeric Editing.......... Ceteaees Crteec e 3-27
Horizontal Spacing e eeiei i 3-28
Vertical Spacing T T T 3-29
The READ Statement ...v.eeeresiececctnscsncnsans 3-29
Control Statements . oo vttt iierteteraenororsoneasosans 3-31
Program Terminationoeieeriiieitnninresannans 3-31
The END Statement ...vovvevevann. Ce et N 3-31
Conditional Termination of Selection ceesene s 3-31
The EXIT Statement ... civiitieei ittt neennans 3-31
Subroutines .. eveviveieeeriivsnrernaes et 3-32
The GOSUB Statementeeeeeesertooncosneennonns 3-33
The RETURN Statement ... ivieniiiitiiiieeeennns 3-33
Conditional Restoringof a File. .. oei v iiiiiiiinnenn, 3-34
The RETREAT Statement «...eeeeeeeeeeiennnenenn. 3-34
Branching .uv.veveii ittt ineesseinssesananns 3-35
The GOTO Statementceiveeneesens cetessetans 3-35
The IF Statement ceetecensenns e 3-35

iv #DAO08

Section III (cont)

Section IV

Section V

Section VI

Section VII

TABLE OF CONTENTS (cont)

Program Halting
The STOP Statement
Program Documentation Statement
The REM Statement

Advanced Data Selection¢cc.0...

e e s 0 0 s 0 e

D A I I A N

s e 0 e 00 s

Data Selection Using Working Storage Fields

Pivoting...oiviieiiiieneennnnnans
Synthetic Selection of Fields

LR I R R

Control Commands teviseeosseescasesssossosns

Control Commands Versus Statements

Control Command Categories

s e 080000

dataBASIC Commands (Category #1).....

CREATE ... ivinienenranns
DESTROY .cevteeeoennnnenn
ANALYZE .. vieniennenrnnas
VERIFY ...ovveviean..

A I I I A AN

.

c o 00

dataBASIC/ Time=-Sharing Commands (Category #2).......

LIsT..... Cereeees

RESEQUENCE........c0...
AUTOMATIC ..o vv v vn v e

TAPE ... iveveennnn

PURGEcciiiiiiennn,

dataBASIC Subsystems «cuiveeeeeeons
The CREATE Subsystem ...cees0se
The ANALYZE Subsystem
The DESTROY Subsystem
The VERIFY Subsystem

Communicating With the System

Terminal Operation Controls.......
Connecting Terminal to Computer..
Getting On Procedure

Creating a dataBASIC Program...
Entering a Programce0..

R A N

D I R IR

Entering the Program From Paper Tape....

.

. ceeeen .
T AR
Cereecrtaeas
..........
Cretr et ces e
cetaeeens .o
ceeeeeas
ceesaces
ceseseessnn
F N
TR
Ceteser et
creesens PN
s cee e
ceasnce cee e

Page

3-36

W W W
1o
w W w
N -3 o

1 [T I I T R R] [|
BAOBROR R WW W W NN DNNNNNDNNDN - - = WO

| I I B B R | | I B |
Ol W DD DN = et e (U1
w —

~N NN NN NN [exNNe NN N AN NN, BN G S B, DG RO G RO B0 G O RO, G BO NU G G RS L BT L R N A N
]

#DAO8

Section VII(cont)

Appendix A

Appendix B
Appendix C
Appendix D

Appendix E

Appendix F

TABLE OF CONTENTS (cont)

Error Corrections

Running the Program...
Getting Off Procedure .

s o 00

e s 00 0

D I I IR A S A]

R R A I IR

s 888 0000000000000

s e 00 s 0000 0

Automatic Termination From Terminal.....

s e e e e e

e e s e

Summary of dataBASIC Language Statements, Expressions
and Replacements «..viuieeeeeocoosssnessscsasnsnnss

Alphabetic List of Terrninal Commands
Alphabetic List of Reserved Words

Terminal Error Messages and System Malfunction Messages ...
Terminal Error Message Types ..
Compiler Error Messages
Runtime Error Messages .vieeeeersas

D A A A

..

¢ o0 o0

R I I A A I A)

e e e 0

Language Processor Error Messagese000.

System Malfunction Messages ..

Programming Considerations ...
Implementation Guidelines ...

File Creation
Loading Techniques
Retrieval Techniques

s s 00000000

e e e 0 e s s 0

e e e e 0 s 000 e

e s s 0000 s 0

Systerm USage ..eveeeecosssssecocccoonnoss

dataBASIC File Structure.

vi

s 000 0 v e

s e o0 s 000 e

.

.

DR S I I IR R R Y

LR Y

¢« o0 s e 00

e e 0 0

e s e 0 e 00000000

L I I R I I R R R A

e s s 0 e e

e o e a0

¢]
— b

] | I SR B |
Ul O1 W — = =

1
B NN = e

HoEEEEEE U?UUUU aQ @ »

]
—

#D A0S

o
1

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

o O~ O
| I B |

~N OOy O O
| I TR B R |
O 3OVt W

o
! —

Table A-1
Table A-2
Table D-1
Table D-2
Table D=3
Table D-4
Table D=5

Table D=6
Table D-7
Table D-8
Table D-9
Table D-10
Table D=-11
Table D-12

LIST OF ILLUSTRATIONS

CREATE Subsystem Error Messages ...eveveesecoocss

ANALYZE Subsystem Error Messages . ccceieeeresnnesas
Sample Long Form and Short Form Headers4..

Sample '"One Page'" Graph tveeeeeeniviosasnoosonanans
Sample Summary Only ...veiiieeetieisienennsanssans
Sample MaxXimumieerieereesosssosoroncssonssons

DESTROY Subsystem Error Messages and Meanings.....

Output Report Sample of Verification of File DBTEST...

Teletype Model 33 or 35 Special Purpose Keys...... o

dataBASIC File StructuUre «veeeeerossesoceronceocnoses

LIST OF TABLES

dataBASIC Language Statementsivveenenenensanss
dataBASIC Expressions and Replacementsot eeann

Compiler Error Messages - Type 1
Compiler Error Messages - Type 2 ..uieitvennenennnnn
Runtime Error Messages..co v tieruerearens
Language Processor Error Messagescoueveene.n.
System Malfunction Messages During Compilation/
Execution........ e ettt ettt e e
System Malfunction Messages During I-D-S Routines. ...

System Malfunction Messages During .DATAO Accessing
System Malfunction Messages During ,JOUR. Accessing
System Malfunction Messages During RETREAT Attempt
System Malfunction Messages During CREATE Attempt.
System Malfunction Messages During DESTROY Attempt
Systerm Malfunction Messages During ANALYZE Attempt

s e e o0

.......

.......

.......

.......

......

s,

o
aQ

®

o~o~O~O0N O O
| N N S I B |
O O N W

o
]

~J o

] 1
—_ e
B> N O O

o
[}

#DAO8

SECTION 1
INTRODUCTION

GENERAL SYSTEM DESCRIPTION

Honeywell's dataBASIC system provides for data base management and inquiry by
combining data base manipulation capabilities with a BASIC type language. It permits a
file to be constructed, maintained, retrieved, and deleted on a content-addressable basis.
Records of any size, containing from one to hundreds of fields, may be created completely
without record descriptions. The records are, in fact, self-described and processed on
the basis of field names and values which are supplied by the user at the time of record

storage.

dataBASIC SYSTEM APPLICATIONS

The dataBASIC system has many applications, the few listed below are suggestive

of many other potential uses:

Real estate listings, single or multiple, where an inquiry might ask for all houses
of Spanish architecture, having four bedrooms and a pool, and located in the Arcadia

School district.
Personnel files, where an inquiry might involve all single, male programmers

having FORTRAN application experience, and whose last rate change preceded January 1,

1966.

A public service/police file, where a request might involve all 1968 white Chevrolets

registered with Maricopa County and owned by individuals with a previous criminal record.

A medical index of symptoms and diseases to aid in the diagnoses of illnesses.

A library index, which permits access to documents on the bases of subject, author,

title, citations, publisher, and date of publication.

1-1 #DAO08

THE dataBASIC LANGUAGE

In its basic form, the dataBASIC language is a procedural language for record
storage, retrieval, and display; additional programming capabilities, conditional and
unconditional transfers, and subroutine functions complete all the requirements for the
advanced dataBASIC system user. User learning time for the dataBASIC language is
minimized; a small set of control words call upon all the basic functions of the system.,

These words make up the dataBASIC language.

DOCUMENT NOTATIONS

In the documentation of the dataBASIC language, standard English notations are used

with the following restricted meanings.

Reserved words

Reserved words for the dataBASIC language are in the upper case and are under-
lined. A reserved word must be spelled exactly as it appears in a statement definition,
and its use is restricted to the function defined for it. It cannot, for example, be used as

field:name.
Example: COPY

Braces

{ } denote alternatives one of which must be selected

Example

COPY
means that the user may state STORE RECORD or STORE COPY.

STORE {RECORD }

Brackets

l:] denote an option

Examele
NOT

means that the user may elect to use the NOT option at his own discretion.

1-2 #DAO8

Ellipses
. « . denotes optional repetition of the preceding expression, which is delimited by the

immediately preceding set of braces or brackets.

ExamEIe
PRINT value

means the user may substitute one or more values.

1-3 #DAO0S8

SECTION 1I
GENERAL SYSTEM CHARACTERISTICS

THE dataBASIC PROGRAM

A dataBASIC program consists of an ordered set of statements that instruct a
computer to solve a problem. In its simplest form it contains the data (values) to be
worked on, formulae which tell the computer what to do with these numbers, and input/
output statements which tell the computer where to get the data and what to do with the

answers.

THE dataBASIC STATEMENT

A dataBASIC system statement comprises four parts in the following sequence.

line;number

The line:number has one to five digits and serves two purposes: (l) It is used as a
sequence control within the program, specifying the order in which statements are to be
executed; and (2) it uniquely identifies a statement., The line:number cannot contain

imbedded spaces but must be followed by one or more spa,c.és.
control:word
The control:word tells the dataBASIC system what function is to be performed.

(Control words are listed in Appendix A of this manual.)

all other words

All other words are written in accordance with the specifications for each

control:word.

carriage:return character

The carriage:return character denotes the end of a line; the dataBASIC system
responds with a line:feed and prints an asterisk (*) when it is ready to accept the next

line of input. Characters following the 72nd character of a line will not be used.

dataBASIC LANGUAGE ELEMENTS

Elements of the dataBASIC language include both alphanumeric and numeric

literals and the words rfield and wsfield.

2-1 #DAOS8

Alphanumeric leterals contain letters, numbers, punctuation marks, etc., and may
contain all characters (except "@" and data transmission control characters). They are

enclosed within quotation marks. An example of an alphanumeric literal is ""JOE JONES. "

Numeric literals consist only of the numbers 0-9 written without quotation marks,
and may contain an embedded decimal point. In absence of an embedded decimal point,
the numeric literal is considered an integer; in the absence of a sign, the numeric literal

is assumed to be plus. Examples of numeric literals are 1492, 1967, 8.97, 0.0001.

The word rfield denotes user-assigned record fieldinames. The fieldiname may
consist only of the letters A thru Z, the numbers 0 thru 9, and the special character.

An rfield must start with two alphabetic characters.

The word wsfield denotes user-assigned working storage names. The user may
specify one or several working storage fields to be used for temporary storage purposes
within the dataBASIC program. They may be used to store a field name, field value, or
the results of an arithmetic or functional operation. Working storage field names are one
alphabetic character (A-Z) in length and are established by virtue of their use. A working
storage field whose content is to be used as a fieldiname, as opposed to a field:value, is
indicated by an ampersand (&) suffix on the working storage field, e.g., A&. In either
case, reference is to the same wsfield; only the use of its content is being declared to be
different. Whenever the contents of a working storage field is changed by a dataBASIC

program statement, the working storage assumes the size of the new content.

DATA STRUCTURE

Data consists of information which is stored in the file as fields of records and which

will remain there until deleted under user-program-control.

Data Files

All records stored under a specified dataBASIC file:name form a logically separate
structure; they can only be retrieved for maintenance and reporting by programs referred
to by that file:name. A file:name is from one to eight alphanumeric characters in length
and may contain the letters A thru Z, the digits 0-9, and the special characters - and .

There may be no embedded spaces in the file:name.

2-2 #DAO08

Terminals or inquiry stations can access a specific file:name, but only if properly
authorized. One terminal may access several files, but a given program can access only

one file.

A file may contain any number of different record types, that is, records which

contain different fields.

Data Records

The dataBASIC record serves to collect and hold a set of field:names and associated
field:values. These fields describe an entity, or a person, event, place, thing, concept,
or whatever else the user desires., The data concerning this entity is the record, and it

is stored so that it is available for subsequent retrieval and processing.

dataBASIC records have no predefined format or content, They consist merely of
the collection of fields with which they are associated at the moment. It is this flexibility
that allows for multiple record types. Data records themselves have no names and are
known solely in terms ot their content of data fields. Fields may be stored in, or deleted
from, a record at any time, as long as at least one field continues to exist within the

record. When the last field of a record is deleted, the record ceases to exist.

The concept of ""current record' is important because many dataBASIC language
functions are based on the existence of a current record and operate on this record and
its fields. The following two statements are the only statements in the system which can
make a record the current record:

1. The STORE RECORD, a statement which creates a new record and

makes it the current record.

2. The FOR record, a process which selects and makes current (one at
a time) all the records satisfying the selection criteria.

There are only three situations during processing in which there is no current
record. The first is at the beginning of processing when no STORE RECORD or FOR
record statements have been processed to create a current record; the second is after a
DELETE RECORD statement has deleted the current record; the third is after the EXIT
{rom a FOR record selection process, when there was no current record prior to the FOR
record process. An attempt to execute a statement requiring a current record when no
such record exists will result in LINE XXXXX NO CURRENT RECORD being printed at

run time and retreat being performed.

2-3 #DAO08

Data Fields

record field:name

The user of the dataBASIC system may select and establish his own field:names.
A field:name may not exceed twenty-four (24) characters in length. A field:name may be
expressed using rfield or wsfield&. rfield denotes the expression itself to be used as the
field:name. An example would be the fieldiname MAKE in

100 STORE MAKE "DATSUN"

wsfield& denotes that the content of the working storage specified is to be used as
the field:name. The following two statements would achieve the same result as did the
above statement:

090 LET B = "MAKE"

100 STORE B& "DATSUN"

record field:value

The field:value to be stored in a record may be one to twenty-four (24) characters

in length. A field:value may be expressed using rfield, wsfield&, wsfield or literal.

rfield specifies a field:name whose corresponding field:value is to be used as the
value. For example, the rfield MAKE in

100 LET A = MAKE
places the value of the fieldiname MAKE in the wsfield A. If the field:value for the field
name MAKE had been "DATSUN'" wsfield A would have contained "DATSUN'" after the

statement had been executed.

wsfield& indicates that the field:value for a working storage field whose content
specifies a fieldiname is to be used as a value. The following two statements would
achieve the same result as in the above example for rfield:

090 LET B = "MAKE"

100 LET A

I8

B&

2-4 #DAO08

wsfield denotes that the content of the specified wsfield will be used as the value; for
example, the content of B would be used as the value in the statement:

100 STORE MAKE B

Literal denotes that the expression itself will be used as the value, For example,
the literal "DATSUN" is used as the value in the statement:

100 STORE MAKE "DATSUN"

multiple field:values with same field:name

The dataBASIC system permits multiple field:values to be stored for a specified
field:name. There is no limit to the number of field:values associated with a particular

field:name; nor is there any requirement that the field:values be logically consistent.

DuElicates

Any number of duplicate field:names and/or field:values may be contained in a
given record; moreover, a file may contain any number of duplicate records. The

existence or non-existence of duplicate records and/or fields is controlled by the user.

Special Convention

Through the use of unique text:numbers, the user may store, modify, and delete
descriptive information concerning different records. For example,

100 STORE TEXT:001 "TEXT LINE ONE"

110 STORE TEXT:002 "TEXT LINE TWO"
Text:numbers and text:values differ from field:names and field:values in that they cannot

be used as selection criteria and that a line of text may be as long as 60 characters.

2-5 #DAO08

SECTION III
dataBASIC LANGUAGE STATEMENTS

DECLARATION STATEMENTS

THE DATA STATEMENT
The DATA statement enables the user to store within the dataBASIC program data
he would like to use during the execution of his program. The statement itself is never

executed; it only supplies a stream of data for READ statements which ask for data.

The DATA statement can include as many literals as can be contained completely
within one line, but there can be multiple DATA statements. Care should be taken against
having an odd number of quotation marks within one DATA statement. This causes scan

termination of the line.

Notation:
line:number DATA {literal})
Example:

900 DATA "BUICK' "RIVIERA' "AIR-COND" @

Data Stora;ge and Maintenance

THE FILE STATEMENT
Each file has a name which is unique to a user:number. Any number of files may
exist under one user:number. Associated file passwords are asked for at execution time.
A file is created or deleted at the system command level (See Section V, Control Commands),
but declaring the file as being used is accomplished within the program. A program can

access only one file.
Notation:

line;number FILE file:name @

3-1 #DAO0S

Example:

100 FILE CARLOT (€3)
This statement causes the dataBASIC system to request passwords from the user at
the time the program is run. The passwords are established at the time the file is created.

If the user supplies invalid passwords, he is not allowed access to the file.

DATA SELECTION STATEMENTS

THE FOR STATEMENT

The FOR record statement provides a technique for processing, one at a time, all
records which meet a selection criteria, or all the field:values within a record having the
same field:name. Details of record and field selection follow. (A maximum of ten nested

FOR statements is allowed.)

Accessing All File Records

THE FOR ALL STATEMENT

All records in the file may be accessed for processing by use of the FOR ALL
statement. Records are accessed, one at a time; and for each record accessed, the
system executes the statements nested between the FOR ALL and the NEXT statements.
Records are accessed in reversed storage sequence; that is, the newest record is

accessed first.
Notation:

line:number FOR ALL @

line:number NEXT @

Example:

100 FOR ALL @

500 NEXT @

3-2 #DAO0S8

Accessing Selected Records

The dataBASIC system provides the FOR record statement to selectively access
records so that their data fields may be used for subsequent processing. This statement

is based on the content addressability of the dataBASIC data records and data fields.

The FOR record statement initiates the record accessing process and, with the
matching NEXT statement, defines the limits of processing for a selected record. Records
accessed for processing are those records within the file whose field content is consistent
with the relationaliexpression, any number of which may be specified to delimit the records

to be accessed within the file.

THE NEXT STATEMENT

As each record is accessed for processing, it becomes both the current record and
the object of all record and record field operations included within the action statements.
When the NEXT statement is encountered, the record ceases to be the current record, and
another record is selected. After the last record is processed, control is transferred to

the statement following the NEXT statement.
Simple Condition: This version of the FOR record statement allows the selection of records
which contain the specified field:name/field:value pair., A maximum of 25 simple conditions

are allowed within any relational expression.

Notation:

rfield rfield
. wsfield& . wsfield&
line:number FOR [NOT] wsfield relational:ioperator wsfield @
literal literal

line:number NEXT @

3-3 #DAO08

relationalioperator may be any of the following:
= (which means equal to)
> (which means greater than
< (which means less than)
> = or = >(which means greater than or equal to)
= < or < = (which means less than or equal to)

>< or <> (which means not equal to)

Example:

100 FOR MAKE = '""FORD" @

.
.

.

200 NEXT @

All records which contain a field:name/field;value of MAKE/FORD will be selected.
100 FOR NOT MAKE = "FORD" (c3)

200 NEXT @

In this example, all records which do not contain a field:name/field:value of

MAKE/FORD will be selected.

Range Condition: This version of the FOR record statement allows the selection of records

which have a field either within a range or not within a range.

Notation:
rfield rfield rfield
fiel . .
line:number FOR |NOT|(V5ield&\ ppoy ¢ Wsiield&y 14 wstield cr
——— | ———| \literal ———— \ literal _— literal
. wsfield wsfield wsfield

line:number NEXT @

3-4 #DAOS8

Example:

100 FOR YEAR FROM '"1966'" TO ''1968" @

200 NEXT @

Using this example, all records which contained a field:value for the field:name
YEAR that is in the range of 1966 to 1968 will be selected for further processing within

the FOR record statements.

Value Selection: With this version of the FOR record statement it is possible to select

all records which contain a specific field:value regardless of associated field:name.

Notation:
rfield
line:number FOR [NOT] ALL wsfield& @
. literal
wsfield

line:number NEXT @
Example:
100 FOR ALL "RED" (3)
200 NEXT €2)
The above example will cause all records containing a field:value to be presented
to the program. If we use the previous used car lot example, RED might appear in the

field:name COLOR and UPHOLSTERY:COLOR.

Name Selection: With this version of the FOR statement it is possible to select all

records containing a specific field:name regardless of the associated field:values.

3-5 #DAO0S

Notation:

. r _1 7 . . N
line:number FOR LNOTJ wsiield& ALL @
rfield

line:number NEXT @

Examples:

100 FOR COLOR ALL @

200 NEXT @

All records containing a fieldiname COLOR, regardless of the field:value, will be
selected.

100 FOR NOT COLOR ALL @

200 NEXT @

All records not containing a fieldiname COLOR will be selected. This option could
be used to check for records in a file not having a mandatory (as defined by the user)

field.

Compound Record Selection: The dataBASIC system allows a user to specify multiple
conditions as a criteria for record selection. These conditions can be any of the simple:
conditions. In order for a record to be selected, all conditions must be met. Conditions
are entered on a one-per-line basis. The first line contains the FOR action statement,

and all subsequent lines contain the AND statement.

3-6 #DAO08

Notation:
line:number FOR simple:condition

line:number AND simple:condition

®6

.
.

line:number AND simple:condition @

line:number NEXT @

Example:

100 FOR YEAR FROM ''1966" TO 1968 @
110 AND MAKE = ""FORD" @

120 AND NOT BODY = "STATION WAGON" €)
130 AND HORSEPOWER FROM 392 TO 406 ()

200 NEXT @

This statement will cause the dataBASIC system to search the file for records
describing Fords made in model years 1966 thru 1968, but which are not station wagons

and whose horsepower ranges from 392 to 406.

Complex Record Selection: At times it may be desirable to select records based upon
unrelated selection criteria. This flexibility is allowed for by use of the '"OR' action
statement. The OR connects two or more compound:conditions which consist of one or

more simple conditions.

3-7 #DAO0S8

Notation:

line:number FOR compound:condition

OO

1 1 ~T B i
linenumper UK compouna:conailtion

line:number OR compound:condition @

line:number NEXT @

Example:

100 FOR MAKE = "CHEVROLE T" @
110 AND MODEL = "IMPALA" @

120 OR MAKE = "PONTIAGC'" @

130 AND MODEL = "BONNEVILLE" (3

200 NEXT @

In this example all records which described Chevrolet Impalas or Pontiac
Bonnevilles will be selected.
100 FOR MAKE = "DATSUN" (1)
110 OR MAKE = "TOYOTA" (3
120 AND OPTIONS = "AIR-COND" @
130 AND NOT TRANSMISSION = "3-SPEED STICK" @

200 NEXT @

Using this example, all records describing MAKE = "DATSUN'", regardless of any
other field in the record, and all records with MAKE = "TOYOTA" that have air-condition-
ing but do not have a standard 3-speed transmission, will be selected. The criteria
OPTIONS = and NOT TRANSMISSION = do not apply to MAKE = "DATSUN'". I those
criteria should apply, they will have to be repeated for the "DATSUN'" selection.

3-8 #DAO08

100 FOR COLOR = "WHITE" @
110 OR OPTIONS = "AIR-COND" @

200 NEXT €3)

The above example illustrates a set of criteria which may not be mutually exclusive;
that is, a record which is selected by the criteria COLOR = "WHITE" could also be selected
for OPTIONS = "AIR-COND" if a white car with air-conditioning exists on the file. However,

the same record will not be selected more than once within each selection process.

Field Selection

The d&taBASIC system allows the association of an unlimited number of field:values
with a given fieldiname. Process statements use only one occurrence of a field:value
unless each is selected separately. Selection is accomplished using the FOR name state-

ment, It should be noted that a current record must have been previously selected.

Notation:

rfield
line;number FOR stieldg @

line:number NEXT @

This version of the FOR statements does not select a '"current' record. Instead,
it is always subordinate to (and logically within) a FOR record statement, as described
earlier in this section of the language manual. When used it will serially select all the

field:values of a field:name which are part of the current record.

3-9 #DAO08

Example:

~ 100 FOR MAKE = "BUICK"
110 AND OPTIONS = "AIR-COND" @
part 1
[150 FOR OPTIONS @
part 2
200 NEXT @
part 3
300 NEXT @

Part 1 specified the criteria for record selection (a "BUICK'' with "AIR-COND")
and the statements to be processed for the current record prior to Part 2. Part 2
specifies that each field:value for OPTIONS is to be processed. Because all FOR state-
ments must have a NEXT statement, the NEXT statement appears in Part 2 (which refers
to the FOR in Part 2) and the NEXT in Part 3 (which refers to the FOR in Part 1). State-
ments contained in Part 1 and Part 3 will be executed once for each record selected;
whereas statements in Part 2 will be executed once for each value of OPTIONS in the

current record. Parts 1, 2, and 3 all refer to the same current record.

Dictionary Functions

The dataBASIC language provides the ability to access the dictionary (i.e., field:
names and field:values) independent of records. This selection differs from record
selection in that there is ''no current record' resulting from the dictionary selection
functions, Instead, field:names and field:values are made current and are available for

use in record selection criteria, or vice versa.

Selection of field:name

THE FOR FNAME STATEMENT

The FOR FNAME statement allows selection of the field:names within a file.

3-10 #DAO08

Notation :

r N\
ALL
rfield
line:number FOR FNAME relational:operator wsfield& @
wsfield
4 literal P
rfield rfield
FROM stieldg E stie1d§
wsfield wsfield
literal literal
\ J

The ALL option is used to select all field:names within a file. The relational
operator option allows selection of fieldinames based upon their relation to a record
rfield, working storage field, or literal. The valid relational:operators are:

= (which means equal to)
> (which means greater than)

< (which means less than)
>

(which means greater than or equal to)
<= (which means less than or equal to)

> < or < >(which means not equal to)

The FROM option allows selection of field:names within the specified range. The
current field:name is available to the user and is contained in the system working storage

field named FNAME.
Selection of field:value

THE FOR FVALUE STATEMENT

The FOR FVALUE statement allows selection of the field:values which are asso-
ciated with the current field:name. This use requires a field:name having been made
current by the FOR FNAME process. The formats available are the same as those
available to the FOR FNAME statement.

3-11 #DAO08

Notation:

(ALL)
riield
line:number FOR FVALUE relational:operator wsfield& @
wsfield
< literal >
rfield rfield
FROM | wsfield& TO Jwsfield&
wsfield wsfield
literal literal
L J

The ALL option is used to make available all values associated with the current

field:name.

The relational:operator option is used to make available all field:values associated
with the current field:name based upon their relation to a record field, working storage

field, or literal. The valid relational:operators are the same for FVALUES as they are

for FNAME.

The FROM options allow range selection. The current field:value is available to

the user in the system working storage fieldinamed FVALUE.

Example:

This example shows a way to print all the names along with the values associated
with those names, for the entire file.
100 FILE USED CAR ())
110 FOR FNAME ALL ()
120 PRINT "FIELD NAMEB'' FNAME @
130 FOR FVALUE ALL @
140 PRINT "VALUEB" FVALUE @
150 NEXT @
160 PRINT ()
170 NEXT (€2

180 END @

3-12 #DAO08

The above example would produce a report that might look, in part, like the following:
FIELD NAME MAKE

VALUE "FORD"

VALUE "PLYMOUTH"

VALUE "DODGE"

VALUE "TOYOTA"

VALUE "BUICK"
FIELD NAME OPTIONS
VALUE "AIR-COND"

Uses of FNAME and Value: The value-references FNAME and FVALUE can be used only
in the "FOR FNAME'" and "FOR FVALUE'" statements, and in the two statements which

follow:
. _ FNAME
1. LET wsfield = FVALUE
FNAME
2. PRINT FVALUE

DATA MANIPULATION STATEMENTS

Data Deletion

THE DELETE RECORD STATEMENT

The current record of the program will be deleted from the file only when a "DELETE
RECORD" statement is executed., After the deletion is complete there is no current record;
and statements which require the current record as an operand will cause LINE XXXXX

NO CURRENT RECORD to be printed and a retreat to be performed.

Notation:

line:number DELETE RECORD @

Example:

100 DELETE RECORD @

3-13 #DAO08

THE DELETE STATEME.IT

A dataBASIC record field:value is deleted by using the DELE TE name value statement.
This statement operates only on the current record and will delete either (1) the field
specified by field:name and field:value; (2) all the field:values for a specified field:name;

or (3) all fields which contain a specific field:value.

Notation:

rfield [wsfield] ... g @

line:number DELETE < wsfield& literal

ALL wsfield
literal J

N

Note: field:value references are restricted to wsfield and literal for the

DELETE statement.

Example:

200 DELETE ALL "FORD" €3

This statement deletes all field:names and field:values which contain the specific field:
value ”FORD".

200 DELETE MAKE (3

This statement deletes the field:iname '"MAKE' and all field:values for that field:name.
200 DELETE MAKE "PONTIAC" "OLDS" ()

This statement deletes the field MAKE PONTIAC and the field MAKE OLDS.

Data Modification

THE FIX STATEMENT

Modification of field:values for a given field:name of the current record is accom-
plished by using the FIX statement. The FIX statement provides the capability of
modifying all or a specific field:value which is associated with a fieldiname. This is the
only statement which will modify the contents of an existing file. An attempt to modify

field values of a non-existent field:name will result in no action.

3-14 #DAO0S8

Notation:

rfield wsfield wsfield
line:number FIX stieldéz literal = literal @

Note: field:value references are restricted to wsfield and literal for the FIX statement.

Example:

100 FIX COLOR = "RED" @

The above example will delete all but one field:value with fieldiname COLOR from
the current record and will set the one remaining field:value equal to RED.

200 FIX MAKE "VOLKSWAGEN'" = "yW @

The above example will change the field MAKE VOLKSWAGEN in the current record
to MAKE VW, and will not affect other field:values.

THE LET STATEMENT

The general format of this statement is LET wsfield = expression. The LET state-
ment enables the user to temporarily hold or manipulate values in working storage fields
during the execution of his program. There are 26 working storage fields available,
denoted by the letters A through Z. Note that only working storage field names may appear
to the left of the equal sign in this statement. If it is necessary to change the value of a

record field, then the FIX statement must be used.

In general, the content of working storage fields is completely under the user's
control. It is he who must assign initial values, make changes as needed, and make use
of the working storage field values. The exception to this are fields which are used in the
"LET wsfield = SUM/MIN/MAX'" statements. These are initialized to null at the beginning
of the program and when first referenced within a FOR loop. However, if no records are
selected by the FOR loop, the wsfield will contain, after execution of the loop, whatever

it had going into the loop.

Assignment Expressions

Simple assignment: The simplest form of the LET statement is that which sets the value
of a working storage field equal to the value of another field. This is the only form of the

LET statement that can be used with working storage fields containing names.

3-15 #DAO08

(literal
rfield
line:number LET wsfield = wsfield @
- wsfield&

If value is a literal, the literal itself will be moved to the working storage field.
If value is a record field or another working storage field, then the contents of the field

will be moved.

Example:
100 LET A = 100 @
110 LET B = "FORD" @

When the previous statements were executed, the contents of A would have been made
equal to the numeric value 100, and B would have been made equal to the alphanumeric
value "FORD'". A |

100 LET A = COLOR €3

This statement would cause the contents (or field:value) of the fieldiname COLOR
of the current record to be moved to the working storage field A. If the current record
contained more than one field:value for the fieldiname COLOR, A would contain the first

value referenced. All other values of a multi-valued field would have been ignored.

100 LET B .= A (3
The contents of working storage field A would be moved to working storage field B.
Null Assignment: In order to allow a field to be reset to a NULL value, a special form

of the LET statement has been provided. Working storage fields are initially set to null

during compilation.

Notation:
line:number LET wsfield = NULL @
Example:

100 LET A = NULL @

3-16 #DAO08

Minimum/Maximum Assignment: A special form of the LET statement has been designed

to facilitate the determination of the minimum or maximum field:value.

Notation:

') ~ MIN rfield

line:number LET wsfield = {MAX} wsfield& @
wsfield

This assignment statement will reset the specified working storage field value to
null value when first encountered within a repetition of a FOR sequence. The field:value
of the field:name specified is compared with the current value in the working storage field.
If value is an rfield or wsfield&, and there is no fieldiname as specified, then no action is
taken. If the named field has multiple field:values within the record, then all field:values

are compared.

The contents of the working storage field holding the minimum/maximum value is
accessible at any time within the selection/action process. The final value is accessible

at the completion of the process.

Example:

100 LET A = MIN YEAR @

Dictionary Assignment: The following form of the LET statement is provided to assign the
current field:name and/or field:value for the file to working storage. If the statement is
encountered and there is no current fieldiname and/or field:value, then a null value is

assigned.

Notation:
. .)} FNAME
line:number LET wsfield = FVALUE @

Example:

100 LET A = FNAME @

In the above example, the working storage field A includes the current field:name

contained in FNAME after execution of statement 100.

3-17 #DA08

Arithmetic Expression

Formula Assignment: The LET statement also permits arithmetic operations where data
values may be added, subtracted, multiplied divided or exponentiated with the resulting
value stored in the specified working storage field. Only one arithmetic process is allowed

in each LET statement.

Notation:
+
wsfield& - wsfield&
line:number LET wsfield = rfield * rfield @
wsfield / wsfield
literal A literal

Valid arithmetic operators are:
+ add

- subtract

* multiply

/ divide

A raise to the power of

Example:

To calculate interest based on the formula interest = principal x rate x time, these
steps would be necessary:

100 LET A = PRINCIPAL * RATE (1)

110 LET B = A * TIME (3

Working storage location B would then contain the interest.

Summary Assignment: A special form of the LET statement has been designed to facilitate

the accumulating or summing of field:values.

Notation:
rfield
line:number LET wsfield = SUM wsfield& @
wsfield
literal

3-18 #DAO08

If the value is an rfield or wsfield&, and there is no field with the specified field:
name within a selected record, then no action is taken. If there are multiple fields with
the specified field:name within a selected record, each field is added. If wsfield is
specified, the contents of that field is added to the sum field each time the LET statement

is encountered. If a literal is specified, the literal is added to the sum field each time

the LET statement is encountered.

Example:

100 LET A = SUM SALES @

The record field:name SALES will be added to the working storage field named A.
LET A=SUM 1 (3

The above example will cause the working storage field A to be incremented by one (1)

each time the statement is executed.

Functions Assignment: The LET statement allows for use of special arithmetic functions.

These functions include absolute value, integer, random number generation and negate.

Notation:

N
t
n

wsfield
literal
wsfield&
rfield

=
Z
=

line:number LET wsfield =

zlw
H|z
Qlo
®

Example:

100 LET A = ABS NET:PROFIT @

In the above example, the working storage value A is assigned the absolute value of

the field:value whose field:name is NET:PROFIT.
100 LET A = INT COST @

In the above example, the working storage field A is assigned the integer value of

the field:value whose field:name is COST.

3-19 #DAO08

100 LET A = RND 1.5 @

In this example the working storage field A is assigned a system-generated random
number. The value specified (in this case, the literal 1.5) is used as a base for the number
generation.

100 LET A = NEG B @

In this example the working storage field A is assigned the algebraic negative of the

content of working storage field B.

Data Storage

THE STORE RECORD STATEMENT

A record is stored by the recognition and execution of a STORE RECORD statement,
and the storing in that record of one or more data fields by execution of the STORE name
value statement. The execution of the STORE RECORD statement makes the record created
the current record of the program, which may then be accessed to store additional data
fields, or to print, or delete, or perform any other relevant action. If no STORE name
value statements appear after a STORE RECORD, the newly created record is automat-

ically deleted.

Notation:

line:number STORE RECORD @

Example:

100 STORE RECORD @

THE STORE COPY STATEMENT
A copy of the current record is stored by the recognition and execution of a STORE
COPY statement. The execution of the STORE COPY statement makes the record stored

the current record of the program.

Notation:

line:number STORE COPY @

Example:

100 STORE COPY (€2)

3-20 #DAO08

Field Storage

THE STORE STATEMENT

A new field may be added to the current record by execution of a STORE name value
statement. The fields of a dataBASIC record are defined by a field:name and the field:
values associated with that field:name. The first field defined is either the record field:
name (rfield) or a working storage field which contains the record field:name (wsfield&).

All other fields are either the values assigned (literal) or contain the value (wsfield).

Notation:

rfield wsfield
line:number ~ STORE) wsfield& literal (... €3

Note: field:value references are restricted to wsfield and literal for the STORE statement.

Example:
090 STORE RECORD @
100 STORE YEAR 1967 @
110 STORE MAKE "VOLKSWAGEN" @
120 STORE C& "BLUE" @
130 STORE COLOR "WHITE'" "BLUE" @
140 STORE OPTIONS "RADIO" "HEATER" €2

INPUT/OUTPUT STATEMENTS

Terminal Input

THE INPUT STATEMENT

The INPUT Statement enables the user to input variable data without changing the
dataBASIC program. If while a program is executing an INPUT statement is encountered,
the dataBASIC system will type a question mark (?) and wait for the user to type in the
needed data. Any number of fields that can be specified in one line of the dataBASIC
program can be input with one INPUT statement. Data is always INPUT to working storage

field and is entered in the form of literal. Data can be either field:names or field:values.

The INPUT statement is usually used with the PRINT statement, which tells the

user what information is expected by the program.

3-21 #DAO08

Notation:

lineinumber INPUT r\.vsfielr.l} e c 1)
Example:

010 PRINT "ENTER MAKE, MODEL, OPTION" §%)

050 INPUT ABC €))

100 FOR MAKE = A €3)

110 AND MODEL =B @

120 AND OPTIONS = C @

130 PRINT "MODEL REQUESTED AVAILABLE WITH"; €3
140 PRINT "THESE OPTIONS" ()

150 FOR OPTIONS ()

160 PRINT OPTIONS EDIT "BBXXXXXXXXXXXXXXX'" €3
170 NEXT ()

180 NEXT ()

Statement 010 prints instructions to the user and is immediately followed by the
INPUT command. As soon as the system types the ""?'", the user can enter his data,

which would appear as:

2 WBUICK" "RIVIERA' "AIR-COND" @

Output of this example would be the same as for the preceding example. If fewer
fields are entered than were requested, the system will respond with the message

"LINE 050 DATA FORMAT ERROR'", and then request that all data be input again.

Printing

THE PRINT STATEMENT

The PRINT statement may be used for the following five purposes:

1. To display the contents of a specified record field or working storage field
2. To display all fieldinames and field:values of a record

3. To display literals

4. To start at the beginning of a new print line

5. To perform a combination of the above

The operand of the PRINT statement is called a print:expression; a PRINT state-

ment may have one, none, or multiple print:expressions.

3-22 #DAO08

PRINT statements containing only literals and/or working storage references are

record-independent and may be executed anywhere within the program,.

PRINT statements containing print:expressions followed by the word RECORD or by
record field:names operate on field:value within the current record. An attempt to
execute such a record-~dependent PRINT statement when the current record of the program
is undefined will result in the transmission of the message, "LINE XXXXX NO CURRENT

RECORD'" the program is then terminated and a retreat is performed.

Print format control editing may be left entirely to the dataBASIC system or may
be specified by the user-program. The PRINT RECORD always causes printing in the
unedited mode. All other print:expressions may be printed in either the edited or unedited

mode.

When printing in the unedited mode, character strings are followed by two space
characters, except for literals which have no spaces following. Alphanumeric field:

values are printed enclosed in quotation marks.

THE PRINT RECORD STATEMENT

The PRINT RECORD statement causes the system to display all field:names and
field:values of the current record. If the current record is undefined, the message,
"LINE XXXXX NO CURRENT RECORD" is transmitted to the user, the program is
aborted, and a retreat is performed. If the current record has been established, it

is printed according to the following four rules:

1. The first field:name is printed in column 5 of a new print line.
2. Field:names are followed by two blank characters.
3. Multiple field values with the same field:name are separated by a comma

followed by a blank character.

4. Four blank characters separate the last field:value of a fieldiname from
the next field:name. ’

Notation:

line:number PRINT RECORD

Example:

100 PRINT RECORD @

3-23 #DAO08

Output from such a statement might be

MAKE "TOYOTA" MODEL "CORONA"
OPTIONS "AIR-COND'", "AM-FM'", "BUCKET SEATS"
YEAR "1967" COLOR "“BLACK', "WHITE"
TRANSMISSION "STANDARD'" SALES:PRICE
1050. 00

Print Record Field

This form of PRINT statement causes the system to display all the field:values in
the current record which are associated with the specified record field:iname. If no
field:value is present, the system prints the character string, '"NO VALUE'" in lieu of
the field:value. If multiple field:values are present, each is printed, being separated
by a comma and single space. Spacing between the field:value(s) displayed and the
output of prior and successive print expressions is controlled by the rules listed under
""Horizontal Spacing' and '""Vertical Spacing' in this section of the Language Manual.

(See pages 3-28 and 3-29.)

Notation:

‘ rfield
line:number PRINT wsfield& ©
Examples:

100 PRINT OPTIONS (&)

110 PRINT A& (©)

Output of statement 100 above might be:
"AIR-COND", "AM-FM', "BUCKET-SEATS"

If A& contained the field name "OP TIONS', output would look like that of the

preceding statement.

Print Literal

This form of the PRINT statement allows the user to display a literal exactly as
shown in the program. If the literal is alphanumeric (that is, displayed in the user
program within quotation marks), the dataBASIC system prints the exact character string
without quotation marks. Numeric literals are printed exactly as they appear in the PRINT

statement, No space characters are produced by the dataBASIC system following literals.

3-24 #DA08

Notation:
line:number PRINT literal @

Example:
100 PRINT ""THIS IS AN ALPHANUMERIC LITERAL" @
110 PRINT 1.0 @
120 PRINT 1 @

Output of above would be
THIS IS AN ALPHANUMERIC LITERAL
1.0
1

Print Working Storige Field

This form of the PRINT statement causes the system to display the contents of a
working storage field. Working storage fields are those established by a LET, INPUT,
or READ statement. If there is no data currently stored in the specified working storage

field, the system prints the character string, '"NO VALUE", in lieu of the values.

Notation:
line: . PRINT wsfield
ine:number "RLNL wsfield& @
Example:

100 PRINT A @)

110 PRINT A& ©

If A contained the field name OP TIONS, the output would be as follows:
"OPTIONS"
"AIR-COND", "AM-FM"

Special Print Convention

The PRINT statement may also be used to display all or selected text fields
associated with any record. If there are no text fields associated with a record, the

character string ""NO VALUE'" will be printed.

Notation:

. text
line:number PRINT text:number @

R 3-25 #DA08

Example:

100 PRINT TEXT @

Output of Line 100 above would be all the text associated with the current record; and the

output of Line 110 would be the first line of text for the current record.

Print with Edit

The print expressions referring to record field:names or working storage field names
may be printed under user-supplied EDIT format control at the users option. Whenever an
EDIT format is supplied, it completely governs the printed character string. No space
characters are added before or after the edited field. If an rfield to be edited is not found
in the current record, or if a working storage field has null value, space characters will
be printed for the length of the edit format. If it is known that multiple values exist for a
specific field and it is desired to print each value edited, they may be selected by means

of the FOR name statement. An edit format must be enclosed in quotation marks.

Notation:
) rfield
line:number PRINT Ws{ield§ EDIT format:expression @
' — wsfield —_— Fexp
literal
Example:
100 PRINT A EDIT '"+99.9" ()

If A contained the number 7, the output would be:

+07.0

Numeric Editing

The following characters are valid within a format:expression for a numeric field.

B (means insert one space character.)
9 (means replace with one numeric character.)
Z (means replace with one space character if a leading zero,

otherwise replace with one numeric character.)
. (means insert a decimal point.)

, {means insert a comma unless it lies immediately to the right of a space
character, in which case insert a space character.)

3-26 #DAO8S

- (means print a space character if the field being edited is positive, and
a - if negative. This must be the first character of the edit format.)

+ (means print a + if the field being edited is positive, and a - if negative,.
This must be the first character of the edit format.)

The data field is decimal-aligned with the edit format. Truncation or addition of
zero-valued characters is performed as specified by the edit format. I no decimal place
is specified in either the edit format or in the data, the dataBASIC system assumes that

the format or data is an integer for purposes of decimal alignment.

Examples:

DATA EDIT FORMAT RESULT
20 B99.9B 1$20. 0%

2 B99.9B $02. 0%

.02 B99. 9B $00. 0B
120.4 B99.9B 1$20. 4%
2.134 BZZ.ZB ¥B2. 1%

0 BZZ.ZB BBYBYY
null-value BZZ.ZB BYBBYY

.02 BZZ.ZB BYBBBY

.1 BZZ,Z79.9B YBBBYKO0. 18
105 BZZ,Z79.9B B¥BB105. 0%
1157.79 BZZ,ZZ9.9B ¥¥l, 157.78
100000 BZZ,72Z9.9B YYBYBBO. 08

Alphanumeric Editing

The following characters are valid within a format:expression for an alphanumeric
field:
B (means insert one space character)

X (means replace with one alphanumeric character)

The data is left-justified and inserted into the character positions specified by X's.
If there is more data than X format characters, the field is truncated on the right, If
there are more X format characters than data, spare characters replace any excess

X format characters.

3-27 #DAO8

Example:

DATA EDIT FORMAT RESULT
MARCH BXXXB BMARHY

Jp BXXXB BIOBY
MAR191969 BXXXBSSBSSSSB ¥MARY 191819698

Horizontal Spacing

The following rules apply to horizontal spacing.

PRINT RECORD RULES:

The first field of the record will be printed in column 5 of the first line.

The field name will be printed, followed by two space characters,
followed by the field:value(s).

Multiple field:values for one field:name will be printed, being
separated by a comma and a space character.

Four space characters will separate the last (or only) field:value
from the next field:name.

PRINT LITERAL RULES:

1.

Numeric literals will be printed exactly as they are entered in the PRINT
statement.

Alphanumeric literals will be printed exactly as shown within the
quotation marks (the quotation marks will not be printed).

No space characters will be used to separate literals from the field
following, if any.

PRINT UNEDITED rfield, wsfield, or wsfield:

1.

The contents of such fields, if alphanumeric, will be printed enclosed
within quotation marks.

The space characters will be used to separate an unedited field from
the following field.

If an rfield to be printed is not contained within the current record,
the message ""NO VALUE' will be printed.

PRINT EDITED RULES:

1.

2.

No space characters will be used to separate an edited field from the
following field.

If an rfield to be printed is not contained within the current record, or
if a wsfield is null-valued, then space characters will occupy all positions
of the edit format,

3-28 #DAO08

Vertical Spacing

A semicolon (;) is used to continue a print statement (i.e., there will be no carriage
return or line feed), If it terminates with no punctuation or with punctuation other than a

semicolon, a line feed and carriage return will be generated.

A print statement alone (that is one with no print:expression) will cause a carriage

return and line feed to be transmitted. This results in feeding paper to the next line.

If the dataBASIC system finds that the remaining space on the print line is not large
enough to contain the data to be printed, it will insert a carriage return and line feed
before printing that data. This spacing is in addition to, rather than in lieu of, user-

specified vertical spacing.

THE READ STATEMENT

Whenever a READ statement is encountered, the literal values are moved from
the DATA statement to the working storage field(s) specified in the READ statement.
A's many values will be moved as there are wsfield in the READ statement. If there are
multiple READ statements, or if a READ statement is logically executed more than once,
new literal values will be supplied for each statement as long as there are sufficient
literals defined in the DATA statement(s). If there are multiple DATA statements, values
will be taken from the first statement until it is depleted; then from the second, and so on,
until all have been used. If a READ is executed after all the data has been used, the system

will display the message '""LINE XXXXX OUT of DATA", and then stop (no retreat occurs).

Notation:
line:number READ {wsfield} @
Example:

010 READ ABC (3
Now let us suppose that the used car lot sales manager has written a program, to

be used by all his salesmen, that will select all available cars of a specific make, model,

and specific option, and that will print all options available with the car. The sales

3-29 #DAO08

manager has stored this program, and it is available for use by everyone. This program
might appear as:

005 FILE USED:CAR (3

010 READ ABC (3

020 IF NOT A = '""NONE'" THEN 100 @

030 PRINT "ENTER DATA IN LINE 200 THEN RUN" @

040 STOP ()

100 FOR MAKE = A €3

110 AND MODEL =B {3

120 AND OPTIONS = @
130 PRINT "MODEL REQUESTED AVAILABLE WITH THESE"; @
140 PRINT "OPTIONS" @

150 FOR OPTIONS @

160 PRINT OPTIONS EDIT "BBXXXXXXXXXXXXXXX' @
170 NEXT @

180 NEXT (D)

190 STOP @

200 DATA '""NONE'" '"NONE" "NONE'" @

210 END @

Statement 010 reads the data specified in statement 200. If the data has not been
changed, the message "ENTER DATA IN LINE 200 THEN RUN" is printed and the program
stops. Suppose the statement 200 DATA "BUICK" "RIVIERA" "AIR-COND' was entered.
After execution of the read, A will contain BUICK, B will contain RIVIERA, and C will
contain AIR-COND. The FOR statement and the related AND statements then select the
records with the proper make, model and option; and statements 130 and 140 print a
message which serves to indicate the start of a new car. Statements 150 through 170

select and process each option, and statement 180 delimits the record selection process.

Output of this example might appear as follows:

MODEL REQUESTED AVAILABLE WITH THESE OP TIONS
AIR-COND
AM-STEREO-FM
BUCKET-SEATS

Now let us suppose that the DATA statement read:
200 DATA "BUICK" "RIVIERA" (1)

3-30 #DAO08

As soon as the READ in statement 010 tried to read data into working storage
field C, the program would stop with the message "LINE 200 OUT OF DATA' displayed

to the user.

If the data statement was changed to
200 DATA "BUICK" "RIVIERA' "AIR-COND'" "AM-FM" @
and the program was executed, the last literal, "AM-FM'", would be ignored because

no READ statement calls upon it.

CONTROL STATEMENTS

Program Termination

THE END STATEMENT
The END statement is the last statement of the program and defines the end of

program. It has the same effect as a STOP statement.

Notation:
line:number END @

Example:

99999 END @

Conditional Termination of Selection

THE EXIT STATEMENT

The EXIT statement enables the user to discontinue processing anywhere within
a record or field selection statement. The statement immediately following the NEXT
statement, which delimits the record or field selection process, receives control when

the EXIT statement is encountered.

This statement cannot logically be replaced by a GOTO statement because EXIT

also insures proper handling of FOR statement termination.

3-31 #DAO08

Notation:

line:number EXIT @

Example:
100 FOR MAKE = VOLVO @
110 AND OPTIONS = "AIR-COND" ¢3)
120 PRINT RECORD {3)
130 IF OPTIONS = "AM-FM" 3
140 AND YEAR '"1967" THEN 160 @
150 GO TO 170 @
160 EXIT @
170 NEXT @

180 END @

In the above example, printing will continue for all Volvo cars having air condi-
tioners; however, after the printing of a Volvo model later than 1967, printing and

processing will stop.

Subroutines

Within any computer program, as within any plan of action, there are procedures
to be executed at many different points within the main procedure. For example, a
banking system may, during the daily posting, check account nurmbers for validity,
perform standard procedures whenever an overdraft occurs, compute service charges,
and so on. The procedures for validity checking, overdrafts, and service charges may
be executed at various points within the daily posting procedure and, on any given day,
may be executed once, many times, or not at all. Such standardized procedures are
efficiently handled in a computer program through the use of subroutines. Subroutines
are computer procedures that may be called from anywhere within the total procedure;
and, at the end of a subroutine execution, processing is resumed at the statement

immediately following the one that called for the subroutine execution.
It should be noted that a procedure becomes a subroutine only when it is called

through the execution of a GOSUB statement. A subroutine execution is terminated when

a RETURN statement is detected in the sequence of statements being executed.

3-32 #DAO08

THE GOSUB STATEMENT

The GOSUB statement of the dataBASIC language provides for calling and entering
a subroutine. It acts as an unconditional branch or GOTO statement, in that processing
resumes by executing the statement specified by the statement identifier. However, the
dataBASIC system records the line number of the GOSUB statement for future use.
This line number will be used to return to the sequence of statements following the GOSUB
statement when a RETURN statement is detected during subroutine execution. The
listing of wsfields after the line number operand will cause the wsfield content to be

saved, and will make the specified wfields available for use within the subroutine.

Notation:

line:number GOSUB line:number {wsfield . } @

Example:

In the following example, the used car salesman has written a program such that
the selection and output are separate parts of the program, thus making it easy to change
one part,

100 FILE USED:CAR @

110 GOSUB 200 @

130 STOP @

200 FOR MAKE = "VOLKSWAGEN" @

205 IF COLOR = "RED" THEN 220 @

210 GOSUB 300 @

220 NEXT ()

230 RETURN @

300 PRINT SERIAL: NO OPTIONS @

310 RETURN €3)

400 END @

THE RETURN STATEMENT

The RETURN statement marks the end of a procedure when it is executed as a
subroutine, Whenever the dataBASIC system encounters a RETURN statement, it
resumes sequential processing at the line immediately following the GOSUB statement
which called the subroutines. It then restores the original value of wsfields declared
in the GOSUB statement. If the procedure is being executed as a result of sequential
processing rather than a subroutine call, there is no GOSUB statement to return to,
and the RETURN statement is ignored.

3-33 #DAO08

Notation:

line:number RETURN @

Conditional Restorin&of a File

THE RETREAT STATEMENT

The RETREAT statement enables the user to restore a file to its status at the
beginning of a particular run, thus allowing him to enter modifications to his file, to
check modifications against expected results, to assure accuracy, and to RETREAT

should he elect to simulate a particular condition or locate an error in logic.

Notation:

line:number RETREAT @

Example:
100 FILE USED:CAR @
110 FOR MAKE = "VOLKSWAGEN" @
120 OR MAKE = "TOYOTA" @
130 OR MAKE = "DATSUN" @
140 OR MAKE = "VOLVO" @
150 OR MAKE = "OPEL" @
160 STORE SPECIAL "FOREIGN" @
170 PRINT MAKE SPECIAL @
180 NEXT @
190 PRINT "IF RESULTS OK ENTER OK' @
200 INPUT A @
210 IF A = "OK" THEN 900 @
220 RETREAT @

900 END @

When this program was entered, an undetected error was made (line 160 should
be, STORE SPECIAL "FOREIGN'"). However, upon execution, the error becomes
apparent because the field SPECIAL is printed, and no value "FOREIGN' appears.
Therefore, when the message "IF RESULTS OK ENTER OK'" appears, the user enters
a value other than "OK", and the file is restored to its status prior to the start of that

run. The user can then correct his program and re-enter the new field properly.

3-34 #DAO08

Branching

The dataBASIC system provides for database management and inquiry. Its basic
repertoire of statements enables the user to perform all necessary data storage and
maintenance functions as well as all data selection functions necessary for inquiry.

The system processes statements in the order indicated by the statement numbers.
Certain more complex problems, however, cannot be adequately handled by the sequential
statement execution; rather they require decision making capabilities outside the data
selection or storage process. They also require the capability of altering the order in
which the statements are being executed, either conditionally depending on the outcome

of a decision process, or unconditionally.

THE GOTO STATEMENT
This statement allows the user to unconditionally go to another part of his program

and resume execution. The line:number referenced must be found within the user's

program.

Notation:

line:number GOTO line:number @

Example:
100 INPUT A @
110 PRINT A @
120 GOTO 100 @

In this example, line 120 is a GOTO statement which causes the execution of 100

and 110 to be repeated.

THE IF STATEMENT
Conditional branch statements are required whenever it is necessary to change

the sequence of execution of instructions based upon a decision. These statements

take the following format:

Notation:

linemumber 1F relational:expression THEN line:number @

3-35 #DAO08

It includes compound conditions {multiple simple conditions connected by AND's)
and complex conditions (multiple simple and/or compound conditions connected by OR's).
These conditions were previously defined under ""Data Selection Statements’’, page 3-2,

in this section of the Language Manual.

Control is passed to the statement number specified whenever any relational:
expression is found to be true.

100 INPUT A (oD

110 PRINT A (c3)

120 PRINT "DO YOU WISH TO CONTINUE " @

130 INPUT B €x)

140 IF B = "YES" THEN 100 (€9

150 STOP @

In this example, the IF statement is used to test whether or not a user wishes to
continue. If he inputs "YES" then control is transferred to statement 100; otherwise

the next statement is executed.

Program Halting

THE STOP STATEMENT

Whenever the dataBASIC system encounters an END statement, it indicates to the
user that the execution of that user program is complete, and it enables him to either
compose and execute a new program or re-execute the program just completed. This
same function is performed whenever the dataBASIC system encounters the STOP

statement.

Notation:

line:number STOP @

Example:

400 STOP @

3-36 #DAOS

PROGRAM DOCUMENTATION STATEMENT

THE REM STATEMENT

The REM statement allows the user to enter as a part of his program, remarks
about that program or some section of it, For instance, if a program has several
sections, the user may wish to begin each section with one or more lines of REM state-
ments describing what each section does. If a remark exceeds one line, the REM
control word must be repeated on each line. GOSUB, GOTO, and IF statements may

not refer to this line.

Notation:

line:number REM character:string @

Example:

100 REM THIS IS AN EXAMPLE OF A "REM!" STATEMENT. @

3-37 #DAO08

SECTION IV
ADVANCED DATA SELECTION

DATA SELECTION USING WORKING STORAGE FIELDS

In the previously explained LET statement (See Section III), it was mentioned that
working storage fields could contain fieldinames rather than field:values. The dataBASIC
system gives this ability to the user so that he can write procedures which are generalized
so as to be reusable. The dataBASIC system differentiates between working storage fields
to be considered as containing a field:name and those that contain a field:value by looking
for an ampersand (&) as the second character of the working storage fieldiname. There-
fore, the field named A would be treated as if it contained the field:iname of the record
field whose contents are to be addressed. In each case, reference is to the same field but

for a different use.

Example:
100 FILE USED CAR @
110 PRINT "ENTER RECORD OR A FIELD NAME" @
120 INPUT A @
125 IF A ="END:OF:FILE'" THEN 200 @)
130 IF A NOT = "RECORD'' THEN 160 @
140 STORE RECORD ()
150 GOTO 110 @
160 PRINT "ENTER FIELD VALUE" @
170 INPUT B @
180 STORE A& B @
190 GOTO 110 @

200 END @

4-1 #D A08

The following example illustrates the use of wsfield& in selecting records:
100 FILE USED CAR ()

110 PRINT "YOU MAY ENTER UP TO 3 FIELD N
120 PRINT "ENTER FIRST FIELD NAME AND VALUE" @
130 INPUT A B @

140 PRINT "ENTER 2ND NAME AND VALUE OR 0, 0" @
150 INPUT C D ()

160 PRINT "ENTER 3RD NAME AND VALUE OR 0, 0" @
170 INPUTE F @

180 IF NOT C =0 THEN 210 @

190 LET C = NULL @

200 LET D = NULL (3

210 IF NOT E = 0 THEN 240 @

220 LET E = NULL @

230 LET F = NULL @

240 FOR A& =B ()

250 AND C& =D @

F O

270 PRINT RECORD @

280 NEXT @

290 PRINT ""TO REPEAT ENTER REPEAT" @

300 INPUT A (€))

310 IF A = "REPEAT'" THEN 110 @

320 END @

Note that when working storage fields C and E had a value of zero, the NULL value

260 AND E&

was moved to those fields. This is done because the data selection process ignores any

null-valued fields it finds while in the process of determining the records to be selected.

PIVO TING

Pivoting refers to the use of data from a set of selected records as criteria for
choosing another selection path. To exemplify this type logic, assume that part of our
file contains information concerning major automobile accidents that have occurred in the
state, the identification of these being the auto serial numbers. ('"Major' is defined as

causing damage greater than $200 on one car.)

4-2 #D A08

This information, which may or may not relate to any of the cars in our previous
used car lot example, is supplied by the State Highway Patrol. Assume also that the
maintenance of this data is outside our responsibility, and that all data referring to acci-

dent records is denoted by having its field name preceded by "ACC:".

Having this data in our file enables us to select cars by the prospective customer's
criteria and to provide him with some information of accident history without our needing
to directly connect the used car lot records with the accident records. A program using
this technique could look like the following:

100 FILE USED CAR @

110 FOR MAKE = "DODGE" €1

120 AND MODEL = "DART" @

130 AND YEAR = ''1967" @

140 LET A = SERIAL:NO @

150 PRINT RECORD ()

160 FOR ACC:SERIAL:NO = A @

170 PRINT RECORD &@

180 PRINT (3)

190 NEXT @

200 PRINT (3)

210 NEXT €3

220 END @

SYNTHETIC SELECTION OF FIELDS

It is sometimes desirable to select records based on a particular grouping, the
criteria of which include several factors. For instance, our used car salesman may have
a request for an air-conditioned compact car with an AM~-FM radio. Without any synthetic
selection fields, he might have to use:

100 FOR MAKE = "CHEVROLET" @

110 AND MODEL = "CORVAIR" (3)

120 AND OPTIONS = "AIR:COND" ()

130 AND OPTIONS = "AM:FM" {3

140 OR MAKE = "FORD" @

150 AND MODEL = "MUSTANG" (3)

160 AND OPTIONS = "AIR-COND" @3

4-3 #D A0S

170 AND OPTIONS = "AM-FM'" () *
180 OR MAKE = "RAMBLER" @

He would have to repeat the options definition for every type compact car, thus
causing his program to become lengthy and difficult to enter. To avoid this, he may add
to his record definitions the fieldiname SPECIAL. This fieldiname could contain as many
field:values per car as needed to describe synthetic selection criteria. As an example, a
Volkswagen could be classified as a SPECIAL "COMPACT" and a SPECIAL "IMPORT".
Synthetic selection fields can be assigned to a record either as it enters the file or at a

point in time after the file has been created when there is a need for such fields.

4-4 #DAOS

SECTION V
CONTROL COMMANDS

CONTROL COMMANDS VERSUS STATEMENTS

dataBASIC control commands direct the system in the disposition of a dataBASIC
program; for example, they command the system to either execute, list, or save a
program for future use. Commands differ from statements in that they do not form a part
of the program and are effective immediately upon being entered at the terminal, Also,
control commands are not prefixed with line numbers as statements are, and they may be

entered whenever the dataBASIC system is in control.

CONTROL COMMAND CATEGORIES

The control commands available to the dataBASIC system fall into three categories.
In the first category are the commands RUN, CREATE, DESTROY, ANALYZE, and
VERIFY; these are especially relevant to the dataBASIC system. The function performed

by these commands are described under ''dataBASIC Commands (Category #1)."

In the second category are commands used by the dataBASIC system but are of the
standard Time=-Sharing types. These commands are also described but are identified by

an asterisk. See ''dataBASIC Time=-Sharing Commands (Category #2)."

In the third category are standard Time-Sharing commands which are also available
to the dataBASIC system but are not particularly relevant to it. These commands are not

mentioned in this language manual but are described in the GECOS Time=-Sharing System

General Information Manual, Document Number CPB-1643.

dataBASIC Commands (Category #1)

RUN
The RUN command instructs the system to execute program statements in numerical
sequence. The execution of the program is commonly referred to as running the program,

or as a run of a program.

CREATE
The CREATE command is used to allocate and initialize storage space for a

dataBASIC file (not a program file). It requests several parameters from the user in

5-1 #DA08

order to determine file size requirements. All dataBASIC data files must be created
through use of this command within the dataBASIC system. (See Section VI, ''dataBASIC

Subsystems'' for a detailed explanation of this command.)

DESTROY
The DESTROY command is used to release dataBASIC data files only. Program
files should be deleted using the PUR GE or RELEASE command.

ANAIYZE

The ANALYZE command is used to execute the dataBASIC ANALYZE subsystem

described in Section VI of this manual.

VERIFY

The VERIFY command is used to execute the dataBASIC VERIFY subsystem

described in Section VI of this manual.

dataBASIC/ Time-Sharing Commands (Category #2) ‘

*LIST

The LIST command is given when the program is to be printed. This command will
result in a printout of the entire program, along with any additions or changes that may
have been made prior to the use of LIST. If only a portion of the program is desired, the
LIST command can be modified by line numbers indicating the portion desired, as follows:

RLIST xXXX, YYYY

(will result in a printout of the program between line numbers xxxx and yyyy).

FLIS T xxxx

(will result in the printout of statements beginning with statement xxxx through the
end of the program).

*LIST ,yyyy

(will result in a printout of statements from the beginning of the program through
statement yyyy).

*DONE
The user terminates his session with the dataBASIC system by the use of the DONE
command, but he may still retain use of the terminal for selection of another time=-sharing

system or re-selection of the dataBASIC system.

5-2 #DA08

*BYE

This command is given when the user wishes to terminate his session with the com-
puter. He will then receive a summary of the amount of resources used for this session
along with the total resources used by his account to date. His terminal will then be dis-

connected from the system.

*SAVE filetname

This command permits the user to save a program for future use. File:name can
be any combination of alphanumeric, period, and minus sign characters; but it cannot
exceed eight characters. This command is given just prior to discontinuing the immediate

use of the program.

*NEW
This command is given when the user is to continue the use of the dataBASIC system

by building a new program.

*OLD file:name

This command is given if the user is to select another saved program as his current
program. Other forms of the OLD command follow.

*OLD fileiname (xXXXX, yyyy)

The statements numbered xxxx to yyyy, inclusive, of the program saved under the

the name file:name are brought into the user's working storage for processing.

*OQLD file:namel; ﬁle:namez;. .o ﬁle:namelrl

The n named programs are adjoined in the order given, and are brought into
working storage. (The line numbers of the resultant program are not resequenced.)
The contents of the current file can be included in the new file by use of the name '"*'' in
the file name list. If the list is too long for one line, it may be continued on the next line

if a semicolon is the last non-blank character before the carriage return.

*QLD fllezname1 (xxxxl, yyyyl);. v flle:namer1 (xxxxn, yyyyn)

The segments of the named files specified by line numbers xxxx through yyyy are
adjoined in the order given, and they replace the user's current program. (The line
numkters of the resultant program are not resequenced.) If the listis too long for one
line, it can be continued on to the next line if a semicolon is the last non-blank character

before the carrage return.

5-3 #D A0S

For example, the command
*OLD PROGRAMI1 (10, 85);PROGRAM4
*11 B 1 - 1 i 1 1. - 1N a1 - 1 Qo S . 1 T ANTY AR 1 e | 1
Wwill Cdause Lhe statements numiierea 1uv tnrougn oo 01 e lite FRUGKRAIVLL, along wiltn tne
statements of the file PROGRAM4 to be concatenated in that order, to become the (new)

current program.

*RESEQUENCE

This command causes the line numbers of the current program to be resequenced.
Resequencing begins with line number 10 and is incremented by steps of 10. Statement-
number references within the program (such as GOTO, GOSUB, AND IF statements) are
modified correspondingly . Another form of RESEQUENCE is

*RESEQUENCE n, m

The line numbers of the current program are resequenced beginning with line num-
ber n and with increments of m. Either n or m may be omitted; the value 10 will be

assumed in either case.

*AUTOMATIC

This command causes the automatic creation of line numbers, beginning at the point
at which the automatic mode is entered (or re-entered), with line numbers initially
starting at 10 and incremented in steps of 10. These line numbers are generated by the
system; appear in the terminal copy, and are written in the file, just as though the user
had typed them himself. Another form of AUTOMATIC is

*AUTOMATIC n, m

Automatic creation of line numbers begin with line number n and are incremented by

*TAPE
This command implies that statements are to be entered from the paper-tape reader
instead of from the keyboard. See Section VII, "Entering the Program From Paper Tape'"

for detailed instructions.

*PURGE

This command deletes the specified program files from the system.

5-4 #DAO08

SECTION VI
dataBASIC SUBSYSTEMS

The dataBASIC system includes the four subsystems - CREATE, ANALYZE,
DESTROY, and VERIFY.

THE CREATE SUBSYSTEM

Functions

The main functions of the CREATE subsystem are to establish the user's
dataBASIC file and to initialize it for use by I-D~S and the dataBASIC system. A
dataBASIC file is in fact an I-D-S file and as such may be accessed by I-D=-S utility routines
or user-written I-D-S programs. All I-D-S files which are also dataBASIC files may be
processed by dataBASIC programs; however, I-D=-S files which are not also dataBASIC
files cannot be processed by dataBASIC programs. For further details regarding I-D-S

programs, refer to the Honeywell publication entitled Integrated Store (I-D-S), Document

Number CPB-1565.

The user supplies estimated values in response to questions asked by the subsystem.
These numbers are used to estimate the user's space requirements. A file of the com-
puted size is established and initialized on the disk. The catalog name is user-assigned,
but the file name is always set to ".DATAO". A retreat file ".JOUR." is also created to
contain before images of all altered I-D=S pages. The size of the retreat file is deter=-
mined by the equations:

R=D , for D= 5

R= 5%

o

, for D> 5

V—
(=]

Where R is the size in links (i.e., 3840 words)of the retreat file, and D is the size in
links of the data file. The retreat file ".JOUR." is subordinate to the same subcatalog

name assigned by the user to which ,DATAOQ is subordinated.

In addition to the standard I-D=-S page format, the file and control records required

for dataBASIC startup are placed on file.

Input
All input used by CREATE is from the keyboard input device via Time=-Sharing

System derails.

6-1 #DAO08

Proces sing

If the user inputs information that exceeds the hardware or software limits, CREATE
will recycle and repeat all the questions. If it must recycle six times, it will terminate
the user; if a total of one hundred disk errors occur during the run, the subsystem will

be terminated.

Output

The user file is output to the mass storage device having the most available space.
One link of twenty I-D=S pages is written at a time. All the I-D-S pages have one record,
that is the dataBASIC control record which is stored on them. In addition, Page One has

the file record stored on it.

The only other output are the questions asked of the user; these are output to the

keyboard device via Time-Sharing System derails.

Error Handling

If the maximum size allowed for an input parameter (in characters) is exceeded,

the system starts over after the message "ESTIMATE EXCEEDS SYSTEM LIMITATIONS"

has been sent to the user.

If the computed space requirement exceeds the available user capacity, the message
"ALLOCATED FILE SPACE EXCEEDED" is sent to the user, and all inputs are requested

again up to a maximum of six restarts.

If there is an error return from one of the derails, the message '""SYSTEM
MALFUNCTION CQ99'" (where 99 is the error code returned by TSS) is sent to the user,

and all the user inputs are requested again.

If the total I/O errors for the run exceed 100, the message "SYSTEM MALFUNCTION
CQ41'" is sent to the user, the files are purged, and the abnormal termination return to

TSS is executed.

If during the error wrapup, any of the file structure (catalog and/or file) cannot be
purged, the message "ANY FILES CREATED MUST BE PURGED USING ACCESS'" is
printed, and the abnormal termination return to TSS is executed. (ACCESS is explained in

Honeywell publication, GECOS Time-Sharing System General Information Manual, Docu-

ment Number CPB-1643,)

6-2 #D A0S

If the name supplied bty the user is already being used, the message '""NON-UNIQUE
FILE NAME'" is printed, and the program recycles.

If the password supplied by the user has invalid characters, "INVALID CHARACTERS
IN PASSWORD' will be printed, and the user will be asked for the password again.

Error Messages

Error messages and meanings for the CREATE subsystem are tabulated in

Figure 6-1.
Error Message Meaning

System Malfunction CQ41 More than 100 disk errors.

Excessive Errors More than 10 errors have been made in
inputting the answers to the create
questions.

System Malfunction CQ43 Currently unused.

Any files created must be purged Attempt to purge catalog and/or file

using access has resulted in errors. Cannot get rid
of catalog or files created within run.

System Malfunction CQNN NN is error status returned from DRL
FILACT.

Non-Unique File Name User-supplied name is already under the
user master catalog as a sub-catalog
name.

Invalid file name User-supplied name has an invalid
character or a name scan failure.

AFT is full No room in AFT for file name .DATAO

Duplicate file name in AFT .DATAQ is already open and in AFT.

Estimate Exceeds System Limitation User-supplied parameter is too large
and would result in an answer that is
beyond data storage ability.

Figure 6-1. CREATE Subsystem Error Messages

6-3 #DAO8

Error Message Meaning

' Allotted file space exceeded Space required is greater than a
DSU270,

or

no link space is available,

or

requested space exceeds maximum
allowed.

Password Incorrect The TSS has returned an error status in-
dicating missing or invalid password as
a result of attempt to access the file.

Invalid characters in password Characters other than A thru Z, 0 thru
9, '".", or "-" found in password.

Figure 6-1. CREATE Subsystem Error Messages (Cont.)

Programming Notes

Below is a copy of the terminal messages with user-responses underlined. Note
that all numeric responses are terminated by any non-numeric to appear in the character
string. All numeric values must be less than 100, 000 (decimal).

File name? DUMMY
File Password?
L Lk ki ki

File Estimates

General, Specific or Explain? EXPLAIN

To create a file you must provide estimates which will assist in determining the
amount of file space to be allocated. The following describes the estimates you must pro-
vide depending on whether you elect General or Specific. All estimates should be as
accurate as possible to insure maximum utilization of file space and should allow for any

anticipated growth.

General

Records in file = you must provide an estimate of the number of records to be stored
in the file.

Fields per record - you must provide an estimate of the average number of fields
to be stored in a record.

6-4 #DAO8

Specific

Records in file - same as for general.

Fields per record - same as for general,

Unique field names - you must provi

de an estimate of the number of unique field

names to be stored in the file.

Unique field values per field name -

General or specific? GENERAL

Records in file? 100

Fields per record? 10

File initialization complete.

File name? DUMMY

File password?
$88858888888
File estimates

General, specific or explain? SPECIFIC

Records in file? 100

Fields per record? 10

Unique Field Names? 15

Unique field values per field name? 12

File initialization complete.

THE ANALYZE SUBSYSTEM

Functions

you must provide an estimate of the average
number of unique field values per field name to
be stored in the file.

The functions of the ANALYZE subsystem are to analyze a named user's dataBASIC

file to determine the percentage of available spaceused, and to display the information

on the user's terminal in the form of a bar chart followed by a summary.

The user selects the file, the type of information to be presented, and the range of

pages to be checked for percent of loading.

6-5 #D A0S

The execution of the program is dependent on the supolied file name referencing a
valid dataBASIC file. The first page is read in and the file record (line number TWO) is
examined to determine the page number of the last dictionary and the last page number of

the file.

Input_

Input comes from the user and from his named dataBASIC file on the disk. User-
input is supplied to the program from a keyboard input device in response to questions
asked of the user by the program. The disk input read is the first sector of the I-D-S pages

indicated by the user.

Processing
The user is required to supply the dataBASIC file name and the program will con-
tinue to recycle and ask for the name until a valid one is supplied, but all other questions

can be defaulted.

Qutput
Output to the keyboard I/O device is in one of four formats. The two basic formats

are (1) the bar chart with summary and (2) the summary only.

The bar chart has two forms: the standard form with a "' " as the left margin which
is used for a specific graph (i.e. space used, or lines used), and the ''S", '"L'' used with

the maximum graph (i.e., the bar printed shows the maximum use of lines or space).

At the user's option, there are in addition a long form and a short form of the

messages.

Error Handling

Error in accessing the catalog: If the file under the named catalog cannot be accessed,
the message "SYSTEM MALFUNCTION CR00'" is typed out, and the program returns con-

trol to the Time-Sharing System.
Invalid name: If the user-supplied name has a special character other than "-" or ".",

or if it has more than eight characters, the message "INVALID CATALOG NAME" will be

printed, and the program will recycle.

6-6 #D A0S

Invalid line number: If in response to the starting and ending page numbers the user
inputs a page number larger than four digits, the message "LINE NUMBER GREATER
THAN MAXIMUM ALLOWED" will be printed, and the program will again ask the

question.

Disk errors: If there are more than twenty=-five disk read errors, the message "UNABLE
TO READ NAMED FILE' will be printed, and the program will exit back to the primitive
list.

Incorrect page: When each page is read, its number in the header is compared to the
expected (next) page; if they are not equal, "PAGE NUMBER INCORRECT'" is printed and

the program will exit back to the primitive list.

Invalid password: If the password contains a special character other than a decimal or a
dash, the message "INVALID CHARACTERS IN PASSWORD'" is printed, and the user is
again asked for the password.

If the TSS returns an error status of 148, the message "PASSWORD INCORRECT"

is printed and the program recycles.

Error Messages

Error messages and meanings for the ANALYZE subsystem are tabulated in Figure

6-2.
Error Message Meaning

Invalid catalog name Something other than a character 0 thru
2, A thru Z. .(Decimal) or -{minus)
has been included in the name.

Cannot access named catalog The attempt to access the catalog has
resulted in an error status return
from TSS.

Unable to read named file The attempt to read the file (.DATAO)
has resulted in 25 consecutive bad
reads.

Page Number Incorrect When the I-D-S page was read in, it
did not match the expected page num-
ber.

Password Incorrect ’ Error status from TSS indicates
missing or invalid password.

Invalid characters in password Special characters other than '"." or
""-'"" were found in password.

Figure 6-2. ANALYZE Subsystem Error Messages

6-7 #DA08

Programming Notes

Each of the questions asked of the user has a short form and a long form. A response

of Y will result in the printing of the question, explanations, and header in the short form.

Any other response will give the "normal' long form.

Except for FILE NAME and FILE PASSWORD, the short form of each question is
shown beneath each long form question in the examples which follow:

FILE NAME?

Enter the name of the dataBASIC file to be examined. If the name does not exist,
the message "CANNOT ACCESS NAMED CATALOT' will be printed. If the name is too

long or no name is supplied, the question will be repeated.

FILE PASSWORD?

Enter the password for this file; it is the same as that supplied to CREATE.,

"L" LINE LOADING, '"M'" MAXIMUM, "S'" SPACE (Long Form). L,M,S? (Short

Form)

There are three types of file analyses:
1. Line loading analysis; i.e., the percentage lines used on each page. (Enter

"L' to get this type of analysis.)

2. Space loading analysis; i.e., the percentage of space used on each page.
(Enter "'S" to get this type of analysis.)

3, Maximum loading analysis; i.e., the percentages are calculated for each
page by both space and line, and the larger of the two is used for the graph.
If an undefined character or only carriage return, is entered, the ''S'" option
is assumed.

When the ""M' option is selected and the short form has not been selected,
the following explanation is output:

The "]" WILL BE REPLACED BY "S" IF SPACE IS LARGER
"L'" IF LINE PERCENT IS LARGER, UNCHANGED IF EQUAL.

"y" TO ENTER PAGE NUMBERS (Long Form) (See Figure 6=3,)

6-8 #DAO08

RANGE? (Short Form)
If you wish to start and/or stop the analysis at specific page numbers, "X' will

allow you to control these limits.

ENTER START IF OTHER THAN PAGE ONE. (Long Form)
START? (Short Form)
Enter the page number of the first page to be graphed; if it is to start with the first

page, just hit "return''.

ENTER END IF OTHER THAN EOF (Long Form)

END? (Short Form)

Enter the number of the last page to be graphed if the entire file from the "START"
is not checked. By entering the same page number in the start and end, a one line (page)

graph would result. (See Figure 6-4.)

ENTER "Y' TO LIST SUMMARY ONLY (Long Form) (See Figure 6=5.)

SUMMARY ONLY? (Short Form)

To skip the graph (bar graph) and output, only the summary of the analysis enter
"Y', The summary follows all graphs and reflects only the area ''analyzed'. Thus, if a
"range' of 10 to 20 were given and a '""'Summary Only' requested, the summary would

reflect only pages 10 to 20, inclusively.

GRAPH OF PERCENT LOADING OF DATA-BASE BY MAXIMUM (Long Form)
MAXIMUM (Short Form)

Figure 6-3. Sample Long Form and Short Form Headers

1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0
0008]
% FILLED 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
OF PAGES 0001 0000 0000 0000 0000 0000 0000 0000 0000 O0O0OO

Figure 6-4. Sample '"One Page' Graph

6-9 #DAOS8

MAXIMUM

St ste ste sha ste o 0
PRSI

% FILLED 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
OF PAGES 0021 0027 0009 0002 0003 0006 0003 0001 0005 0003

Figure 6-5. Sample "Summary Only"

0059 S....1.

0060 S....1.

0061 S....1.

0062 L..

0063 L..

0064 S....1.

0065 S..

0066 S..

0067 S....1.

0068 S....l....2....3....4....5....6..

0069 S....1. 0002000030004 b0 600007 .8

0070 S....1 2000 300004000050 006000 Tl L 08

0071 S....1 B A S T C S .8

0072 S....1....2....3....4....5....6..

0073 L.

0074 L..
(Note the ""S'" and '"L' marking of left column to show which percent was larger,
space or lines. Also note that the six asterisks (¥¥ik#¥) mark the division of
dictionary area from record area.)

e~

Figure 6-6. Sample "Maximum"

6-10 #D A08

THE DESTROY SUBSYSTEM

Function

The DESTROY subsystem is used to release a dataBASIC file. If the tree structure
of catalog and files is not properly handled, there will be an unanswered and almost un-
recoverable loss of link space. To avoid this, DESTROY was developed to handle the

release of the entire structure.

The user supplies the name of his 'file' which, in the file structure, is actually the
catalog name; a check is made to determine if there is a retreat file and data file under
the catalog. The files that are present are released, starting with the retreat file, followed

followed by the data file, and finally the catalog.

If any file is present and cannot be released, then DESTROY stops to notify the user

and to return control to the system.

If all the files and catalog are released, the word '"SUCCESSFUL" is printed on the

user's keyboard device.

Input
The only input to the program is the dataBASIC file name which is supplied by the

user from the keyboard input device via TSS.

Processing

The user-supplied name is put into the cat/file description as the catalog name, and
the name ",JOUR.'" is put in as the file name. An attempt is made to access the file. If
the file is not present, the program next considers the data file ", DATAQ", If it is

present, it must be successfully released or the program will not continue.
The catalog is then purged last.
Output

The only output consists of the messages to the user at the keyboard device via TSS

derails.

6-11 #DAO8

Error Handling

If the journal is present and cannot be purged, the message "SYSTEM

MALFUNCTION CS30" is printed and the program exists to the system. If the catalog can-

not be purged, the message "SYSTEM MALFUNCTION CS10'" is printed and the program

exits to the system.

If the user-supplied name has special characters other than ".'" or '"=", the message

"INVALID FILE NAME" is printed and the program recycles.

If the password contains special characters other than decimal or dash, the message

"INVALID CHARACTERS IN PASSWORD" is printed and the user is asked for the password.

If TSS returns a status of 148 to the program, a message of "PASSWORD INVALID"

is printed and the program recycles.

Error Messages

Error messages and meanings for the DESTROY subsystem are tabulated in

Figure 6-7.
Error Message Meaning
Invalid File Name Name has character included that is
non=-alpha, non-numeric, and not a
decimal (.) or dash (-).
System Malfunction CS30 Journal is present but cannot be purged
from the file.
System Malfunction CS20 Data file is present and cannot be
purged. Journal has been purged.
System Malfunction CS10 Cannot purge catalog. Journal and
data files have been purged..
Invalid Characters in Password Special characters other than '".'" or
""-'" found in password.
Password Incorrect Error status from TSS indicates
missing or invalid password.
b

Figure 6-7. DESTROY Subsystem Error Messages and Meanings

6-12 #DAO08

THE VERIFY SUBSYSTEM

Functions

The VERIFY subsystem is a Time=-Sharing subsystem which checks a dataBASIC
file by traversing the I-D=-S chains in the file. A count of all records of each record type
is made and compared with the corresponding counter in the file record. All record
counts in the PRIME NAME and PRIME VALUE records are also verified. Whenever the
count differs from that in the file, it replaces the previous count. ENTITY, NAME, and
VALUE records having no OCCURRENCE detail records are deleted. Whenever no
SYNONYM record exists which corresponds to a NAME record (or no INDEX record

corresponding to a Value record), a SYNONYM record is generated.

Input
Input is any dataBASIC file.

Processing
In response to SYSTEM? specify DATABASIC.

For OLD OR NEW, respond NEW.

For *, respond VERIFY,

For FILENAME, give the DATABASIC file name.

For PASSWORD, give the password for the dataBASIC file.

Output

Output consists of a list of (1) record types found in the file, (2) corresponding
record counts as recorded in the file record (noted as "OLD'), and (3) the record counts
generated as this program traverses the various I-D-S chains (noted as "NEW"). When~
ever these counts differ, an "' is printed following the new count, and the new count re=-

places the corresponding count in the file record.

Error Handling

Whenever a Prime Name record, a Prime Value record, or an Entity record has
no occurrences, that record is deleted and the corresponding record count is adjusted.

Any deleted names or values are printed.

Whenever a Prime Name record has no Synonym record, a Synonym record is

generated.

6-13 #DAO8

Whenever a Prime Value record has no Index record, an Index record is generated.

A three-way check of the total number of occurence records is made which includes
(1) total entity occurrences, (2) total name occurrences, and (3) a sum of the value occur-
rence counts in the value records. Whenever two of these disagree, the three totals are

printed.

Error Messages

The following error messages may occur when attempting to access the dataBASIC

file (in each case the file name or password should be given when requested):

k% ERR - NAME TOO LONG"
Aok ERR = PASSWORD TOO LONG!

If an I-D=S error of the type which can be trapped by the program occurs, a message

of the following type is printed:

where AAAAA is the dataBASIC record (or chain) name, BBBBB is either RETRIEVE,
STORE, MODIFY or DELETE, and XXXXX YY is the reference code of the current record.

VERIFICATION OF FILE DBTEST 12/05/69
VALUE COUNT ERROR, PRIME NAME - MAIL:DROP
OLD COUNT 8 NEW COUNT 7
PRIME VALUE DELETED - - X
VALUE COUNT ERROR, PRIME NAME - ASSIGNED

OLD COUNT 11 NEW COUNT 10
2 PRIME NAME RECORDS WITH VALUE COUNT ERRORS
TOTAL COUNT OLD NEW DELETIONS ADDITIONS
ENTITY ' 23 23
PRIME NAME 15 15
SYNONYM 15 15
VALUE 122 122 1
INDEX 122 122 1
OCCURRENCE 179 179

s#%« ERRORS NOTED ABOVE WERE CORRECTED s

END OF DATABASIC FILE VERIFICATION

Figure 6-8. Output Report Sample of Verification of File DBTEST

6-14 #D A0S

SECTION VII
COMMUNICATING WITH THE SYSTEM

TERMINAL OPERATION CONTROLS

This manual assumes that the terminal used is a Teletype Model 33 or 35. With
this terminal, the communication between user and computer is displayed by means of
typed copy on paper. The Teletype keyboard is a standard typewriter keyboard except
that it has special-purpose keys which the user must be familiar with. These keys

with associated functions are indicated in Figure 7-1.

KEY FUNCTION

RETURN Depressing the RETURN key returns the carriage
and transmits the typed line to the system.

The computer ignores the typed line until this
key is depressed.

CTRL plus X When these keys are depressed simultaneously,
the terminal deletes the entire line being typed.

The word DEL is printed and the carriage is
returned. The line is ignored by the computer.

®

=

SHIFT plus P The @symbol is located on the P key and is
generated when depressed with either shift key.

It is used to delete the character or space
immediately preceding the @ If this key is
depressed n times, the n preceding characters
or spaces will be deleted. For example:
ABCWTM@ADE will be treated as ABCDE when
RETURN is depressed.

AB C@@AQCDE will be treated as ACDE when
RETURN is depressed.

BREAK Depressing the BREAK key causes the system to
discontinue printing or computation. One type of
terminal requires that a BRK-RLS (break-release)
button be depressed followin‘g the use of BREAK in
order that operations continue.

Figure 7-1. Teletype Model 33 or 35 Special Purpose Keys

7-1 #DAO08

KEY FUNCTION

BREAK BREAK should not be used unless absolutely
necessary because it causes the file to be restored
to its contents prior to execution if the dataBASIC
program caused the file to be changed.

Figure 7-1. Teletype Model 33 or 35 Special Purpose Keys (continued)

Other operational controls not on the keyboard are necessary to the operation of
the terminal; they include power on-off, connection to a phone line, and selection of
operating mode. The location and operation of these controls differ according to the
type of terminal in use. The user must receive on-site instruction or must study the
instruction manual for his terminal to gain familiarity with these operational controls,
For a complete description of the Teletype unit, refer to the instruction manual

accompanying the unit,

CONNECTING TERMINAL TO COMPUTER

In order to connect with the computer from a terminal, proceed as follows:
1. Turn unit on and obtain a dial tone.
2. Dial one of the numbers at the Time-Sharing Center.
When the connection is made, a high-pitched tone is received; then there will be
no tone at all, and the terminal will print out an indication that the computer is avail-

able and that communication with the computer can be made through the terminal.

GETTING ON PROCEDURE

With the terminal connected to the computer, the system initiates a ''log-on'"
procedure. During this procedure, the terminal will ask for information; to this a
proper response must be made, each response followed by a carriage return (achieved
by depressing the RETURN key). First, the terminal will ask for a user's identification.
(This is a string of characters assigned to uniquely identify the user to the computer for
the purposes of identifying his programs and accounting for the user's charges.)

*

Next, the terminal will ask for a password. The area on which the password is
printed will be scored over by the terminal to make the password illegible. The purpose
of this password is to assure the computer that it is ''talking'' to the legitimate user and
not to someone else using his identification. The password is his protection against

unauthorized use of his user identification.

7-2 #DA08

Next, the terminal will ask the user to select the system he wishes to use (in this
case, the dataBASIC system). If an invalid system name is given, the system will print
the message '""SYSTEM UNKNOWN'" and will repeat the request for a name until a valid
name is given. After a valid response, the terminal will ask if the user is going to work

with an OLD or NEW program, to which the user must reply with either OLD or NEW,

A NEW program is one in which the user will enter all of the program statements
at this session at the terminal. An OLD program, on the other hand, is a program that
has been previously generated at other sessions at the terminal and has been saved for
future use. If the user's response is OLD to the question OLD or NEW, the system
will ask him for the OLD file name. This will be the same name he had previously used

when saving his program with the control command SAVE.

After the terminal prints READY FOR INPUT, and an asterisk on the following
line, the user may begin to enter his new program, add or modify statements in his

old program, or use one of the control commands (e.g., LIST or RUN).

A typical log-on sequence follows:

THIS IS THE T/S SYSTEM ON 09/14/67 AT 9,183
USER ID -- DOE

PASSWORD

$$355585$

SYSTEM? DATABASIC

OLD OR NEW-NEW

READY FOR INPUT

This example illustrates the most elementary use of the OLD/NEW selection

of programs.

CREATING A dataBASIC PROGRAM

The essentials of forming statements or lines and of creating a dataBASIC program
are as follows. Each line contains four parts in the below listed sequence.

1. Line number: Each statement is prefixed by a one to five digit line
number that serves two purposes: (a) It is used as a sequence control
within the program, specifying the order in which statements are to
be executed, and (b) it uniquely identifies a line. It can contain no
imbedded spaces, but must be followed by one or more spaces.

7-3 #DAO0S8

2. Control word: This word tells the dataBASIC system what function it is to
perform. (See Appendix A for list of control words.)

3. All other words: These are written in accordance with the specifications
for each control word.

4. Carriage return character: This character denotes the end of a line. The
dataBASIC system responds to this with a line feed and prints an asterisk
(**) when it is ready to accept the next line of input.

Characters after the 72nd character of a line will not be used.
An example of a statement follows:
I0READ ABCD ()

(The line is identified as statement 10, READ is the control word, and
A B C D are variables.)

A second example is:

40 END @

The line is identified as statement 40, and END is the control word
constituting the statement. The actual entry at the terminal of a
sequence of statements of a dataBASIC program requires knowledge
of control commands, terminal operation, and elementary dataBASIC
statements.

ENTERING A PROGRAM

After the terminal prints READY FOR INPUT, it indicates its availability for
input by printing an asterisk on the next line at the left margin, Thereafter, each
carriage return generates an asterisk at the left margin of each succeeding line, thus
indicating readiness for input. Each statement should begin with a line number (after
the asterisk) containing no more than eight digits and no spaces or non-digit characters.
The RETURN key must be depressed at the completion of each line of input to achieve

a carriage return, causing the transmission of the information to the computer.

The program input for a sirn.ple program following READY FOR INPUT and
subsequent asterisk would appear as follows:

READY FOR INPUT

*10 FOR MAKE = "BUICK" €))

*20 PRINT RECORD ()

*30 NEXT €2

%40 END @
*RUN ()

7-4 #DAOS

The above program would print the records describing BUICK upon the receipt of

the control command RUN.

ENTERING THE PROGRAM FROM PAPER TAPE

If the user is to enter his program from paper tape, he must respond with the

control command TAPE after READY FOR INPUT. The procedure for using paper tape

is as follows:

1

2
3
4

Place paper tape in terminal tape reader.
Select tape-~input operating mode, if required.
Start tape reader.

Input from paper tape will be accepted until one of the following occurs:

a. tape reader is turned off,

b. tape runs out,

c. tape jams in tape reader, or

d. an X OFF character is encountered on the tape.

ERROR CORREC TIONS

If while entering his program the user has made errors which are self-evident,

he can correct his program during typing or before giving the RUN command as follows:

A new statement may be substituted for a statement containing errors
by retyping the statement number and a corrected version of the
statement. The first version of the statement will be ignored in the
running or listing of the program.

A statement may be eliminated from the program by typing its number
and depressing the RETURN key. That statement will then be ignored
during the running or listing of the program.

The current line being typed can be deleted by depressing the CTRL and
X keys simultaneously. That line will then be ignored.

Typing errors if perceived during the typing process may be corrected
by using the @ symbol. The character or space immediately preceding
the @ will thus be deleted. If this key is depressed n times, the n
preceding characters will be deleted.

Additional statements may be inserted into the program by typing them

with line numbers which indicate their places within the program sequence.
For example, if one or more new statements are desired between statements
30 and 40, they could be assigned line numbers from 31 to 39. In the running
or listing of the program, the new statements will be properly sequenced.

7-5 #DAO08

If language errors (statements violating the dataBASIC language format) are made
by the user while entering his program and they are not perceived, error messages of
a diagnostic nature will be

on use of the control command RUN to aid the user

in making corrections. (See Appendix D.)

RUNNING THE PROGRAM

After typing the complete program, the user types the control command RUN
and depresses the RETURN key. If there are no format errors, the computer will
execute the statements, and the terminal will print out the results. If it is obvious to
the user that wrong answers are being given, he can depress the BREAK key, causing
output to cease. However, it is better that he debug his program by limiting the record
selection phase through the use of counts to some small numbers of records. For
example, if the user were interested in finding the total value of all Plymouths with
automatic transmissions in his lot, and he wanted to check his program prior to running
it completely, he might use this sequence of statements:

10 FOR MAKE = "PLYMOUTH"

20 AND TRANSMISSION = "AUTOMATIC"

30 AND B<10

40 LET A = SUM SALES:PRICE

50 LET B = SUM 1

60 PRINT SALES:PRICE

70 NEXT

80 PRINT "TOTALS'" A ' ""NO. CARSB"B
90 END

Using this program, he could check his results by computing the sum of the sales
prices for the first 10 selected cars, and then checking this computation against the
total printed on line 80, When he is satisfied that his results are correct, he could
remove lines 30 and 60 from the program, and run it. If logical errors were made by
the user in constructing his program, the results will be erroneous or may not appear

at all.

Logical errors do not generate error messages, they must be found by analyzing
the program. Upon completion of program execution and its resulting output (if any),
the terminal prints READY which indicates the system's availability for further input.
If the user wishes to modify his program, he may now do so by retyping only those

statements he wishes changed to achieve the desired modification. When the control

7-6 #DAO08

command RUN is again given, a new output will be produced. The modification process
can be repeated as often as wanted by the user. The control command LIST may be used
at any time the user wishes to inspect the current content of his program; it will show

the result of any modification.

If the user wishes to save his program for future use, he must use the control

command SAVE file:name; the system will respond with
DATA SAVED-file:name

where file:name is the name under which the program is saved. If the user wishes to
discontinue working with his present problem but to continue the use of the dataBASIC
system, he may use either the command NEW or OLD. If NEW is typed, the system
will respond with READY and the user can then enter a new program. If OLD is typed,
the system will ask for OLD NAME. When the old program name file:name is supplied,
the system will respond with READY FOR INPUT. Modifications can be made as with
a NEW program, and the program can be listed. Upon the control command RUN, the
old program will be run. (The entry OLD file:name will bypass the request OLD
NAME-.)

NOTE: The old program must be a dataBASIC program which has been
saved at a previous session at the terminal. If the user types
the control command DONE while the dataBASIC system is
requesting input from the terminal, the time-sharing system
will sign him off the dataBASIC system; but it will permit him to
select another system within the confines of the time-sharing
system, and continue his use of the computer.

GETTING OFF PROCEDURE

If the control command BYE is entered while the dataBASIC system is requesting
input from the terminal, it will cause the time-sharing system to 'log-off'' the user
and disconnect the terminal. The time-sharing system will then provide a summary of
the amount of time and resources used for this run, along with the total amount of the

user's resources expended to date.

AUTOMATIC TERMINATION FROM TERMINAL

The user will be automatically terminated from the system for any of the following

reasons:

1. If he responds twice with an invalid user identification, the terminal will
reply after the first invalid use with the message ILLEGAL ID-RETYPE--;
if he responds with an invalid user identification a second time, he will be
terminated,

-7 #DAOS

™

If he responds twice with an invalid password, the terminal will reply after
the first invalid use with the message ILLEGAL PASSWORD--RETYPE--;

if he responds with an invalid password a second time, he will be terminated.
If he depresses the CLR button on the terminal,

If he leaves the terminal in an idle state for more than ten minutes.

If his user's resources are overdrawn by more than 10 percent, the message

YRESOURCES EXHAUSTED. CANNOT ACCEPT YOU'" will be printed by the
terminal before termination takes place.

7-8 #DAO0S

APPENDIX A
SUMMARY OF dataBASIC LANGUAGE STATEMENTS,
EXPRESSIONS AND REPLACEMENTS

Table A-1. dataBASIC Language Statements

[Functional Control
Category Word Statement
DECLARATIONS DATA DATA literal ... literal
FILE FILE filename
DATA SELECTION FOR FOR ALL
FOR name
FOR relational:expression
FOR FNAME dictionary:expression
FOR FVALUE dictionary:expression
NEXT NEXT)

DATA MANIPULATION| DELETE DELETE RECORD
DELETE name

DELETE name value value ... wvalue
DELETE ALL value
FIX FIX name = value
FIX name value = value
LET LET wsfield = assignment:expression
LET wsfield = arithmetic:expression
STORE STORE RECORD
STORE COPY
STORE name value value ... value
INPUT/OUTPUT INPUT INPUT wsfield wsfield ... wsfield
PRINT PRINT RECORD
PRINT print:expression printiexpression
. printiexpression
PRINT print:iexpression print:expression
... printiexpression;
PRINT
READ READ wsfield wsfield ... wsfield

A-1 #DAO08

Table A-1.

dataBASIC Language Statements {(Cont.)

Functional Control
Category Word Statement
CONTROL END E
EXIT EXIT
GOSUB GOSUB line:number
GOSUB line:number wsfield wsfield
wsfield
GOTO GOTO line:number
IF IF relational:expression THEN
line:number
RETREAT | RETREAT
RETURN RETURN
STOP STOP
DOCUMENTATION REM REM character:string
(Note: Value references are
restricted to wsfield and literal
for "STORE", "FIX', and
"DELETE' statements.)

#DAO08

Table A-2. dataBASIC Expression and Replacements

Expression May Be Replaced By

relational:expression compound:cond.
compound:cond. OR compound:cond. ... OR
compound:cond.

compound:condition condition
condition AND condition ... AND condition
condition simple:condition

NOT simple:condition

simple:condition name ALL

ALL value

value relational:operator value
value NULL

value FROM value TO value

name rfield
wsfield &

value literal
wsfield
rfield
wsfield &

relationalioperator (which means equal to)

> (which means greater than)

< (which means less than)

= > (which means greater than or equal to)

< = (which means less than or equal to)

< > (which means not equal to)
dictionary:expression ALL

relational:operator wvalue
FROM value TO value

arithmetic:expression value arithmetic:operator value
1 ABS value
RND value
SUM value
NEG wvalue
INT value

A-3 #D A08

4
a

a

+
T

aBASIC Expression and Replacements {(Cent.

\
/

Expression May Be Replaced By
assignment:expression value
MAX value
MIN value
NULL
FNAME
FVALUE
arithmetic:operator + (which means add)
- (which means subtract)
% (which means multiply)
/ {which means divide)
A (which means raise to a power)

format:expression

alphanumeric:format "

'" numeric:format "
print: expression value
value EDIT format:expression
FNAME-
FVALUE

#DA08

APPENDIX B
ALPHABETIC LIST OF TERMINAL COMMANDS

AUTOMATIC
ANALYZE
BYE
CATALOG
CREATE
DESTROY
DONE

LIST

NEW

OoLD

PURGE
RESEQUENCE
RUN

SAVE
STATUS
TAPE
VERIFY

B-1 #DAO08

ABS
ALL
COPY
EDIT
FNAME
FROM
FVALUE
HIER
INT
LOCK
MAX
MIN
NEG
NOT

APPENDIX C

ALPHABETIC LIST OF RESERVED WORDS

NULL
PAIR
PHO
PRINTER
PUNCH
READER
RECORD
RND
RULE
SUM
TAPE
THEN
TO
UNTIL

#DAO0S8

APPENDIX D
TERMINAL ERROR MESSAGES AND SYSTEM MALFUNC TION MESSAGES

TERMINAL ERROR MESSAGE TYPES

Terminal error messages are printed by the dataBASIC system whenever a
dataBASIC language rule is violated. These messages are printed at the terminal after

the control command RUN is given.

Terminal error messages may be divided into three classes; namely, compiler

error messages, routine error messages, and language processor error messages.

Compiler Error Messages

Compiler error messages may be printed during program compilation and may
prevent execution. They may be subdivided into two groups. The first group references
the statement printed on the line preceding the error message. An example of this group
of error messages is

100A LET A = "XXX"
MISSING OR INVALID LINE NUMBER
The above example indicates that the statement contains a missing or invalid line

number and is repeated in Table D-1 along with other compiler error messages.

D-1 #DAOS8

Table D-1. Compiler Error Messages - Type 1

Message

Explanation

MISSING OR INVALID
LINE NUMBER

INVALID STATEMENT

INVALID OPERATOR

INVALID STATEMENT FORMAT

INVALID EDIT FORMAT

MISSING OR INVALID
FIELD NAME

MISSING OR INVALID FIELD
VALUE

FILE PREVIOUSLY DECLARED

MISSING OR INVALID WORKING
STORAGE REFERENCE

INVALID CHARACTER IN
STATEMENT
MISSING QUOTE MARK

UNPAIRED NEXT STATEMENT

INVALID EXPRESSION

Statement contains a missing or invalid
line number.

Statement is unrecognizable.

Statement contains an invalid arithmetic
or logical operator.

Statement has been specified incorrectly.

Statement contains an invalid edit
format control word.

Statement is either missing a required
field:name or contains an invalid
field:name.

Statement is either missing a required
field:value or contains an invalid
field:value.

A file statement has previously been
encountered. dataBASIC allows reference
to only one file during a run.

Statement is either missing a required
working storage reference or contains an
invalid working storage reference.

Statement contains an invalid dataBASIC
character for which a blank is substituted.

Statement contains an alphanumeric literal
or print format control word with a
missing quote mark.

Statement has no corresponding FOR
statement.

Statement contains an invalid arithmetic
or logical expression.

D-2 #DAO08

Table D-1. Compiler Error Messages - Type 1 (cont.)

Message Explanation
EXPRESSION EXCEEDS COMPILER Statement has caused a compiler limitation
LIMITATION to be exceeded. Compiler limitations are
) A maximum of 10 nested FOR
statements.

(This may cause invalid UNPAIRED
NEXT STATEMENT error messages
to be printed.)

. A maximum of 25 simple conditions
in a relational:expression.

The second group of compiler error messages references the overall structure

of the dataBASIC program. This group is tabulated in Table D-2.

Table D-2. Compiler Error Messages - Type 2

Message Explanation
FILE NOT DECLARED Program does not contain a file statement.
MISSING NEXT STATEMENT Program contains one or more FOR
statements with no corresponding NEXT
statement.
LINE XXXXX UNDEFINED Program references a line numbered
statement which is undefined.

Runtime Error Messages

Runtime error messages may be printed during execution of a dataBASIC program.
Each of these messages contains a reference to the statement being executed when the

error occurred. Action taken after the error occurs is error-dependent.
An example of a runtime error message which indicates that a divide check

occurred during the execution of statement 100 is

LINE 100 DIVIDE CHECK

D-3 #DAO08

Other runtime error messages are listed and explained in Table D-3 below.

Table D-3. Runtime Error Messages

f Message Explanation
LINE XXXXX FILE UN- File is currently being updated by
AVAILABLE another user. Program is terminated

with no retreat.

LINE XXXXX ALLOTTED File space has been filled to
FILE SPACE EXCEEDED capacity. Program is terminated
and retreat performed.

LINE XXXXX INVALID INPUT Terminal input has been incorrectly
specified. Request for input is
repeated.

LINE XXXXX NO CURRENT No current record is available for

RECORD a statement requiring a current

record for execution. Program is
terminated, and if the program
contains a statement which modifies
the file, retreat is performed.

LINE XXXXX INVALID FIELD Field:name specified in wsfield is
VALUE invalid. Program is terminated,
and if the program contained a
statement which modified the file,
retreat is performed,

LINE XXXXX FILE NOT Statement requiring access to the
DECLARED file has been executed prior to
execution of the file declaration
statement. Program is terminated
with no retreat.

LINE XXXXX OUT OF DATA Attempt to read more data than
specified in DATA statements,
Program is terminated with no
retreat.

LINE XXXXX DIVIDE CHECK Divide check occurred during ex-
ecution of statement specified. The
result is set zero and the program
continues.

LINE XXXXX OVERFLOW Arithmetic overflow occurred during
execution of statement specified.
The result is set zero and the program

continues.

D-4 #DAOS

Table D-3. Runtime Error Messages {(cont,)

Message Explanation
LINE XXXXX INVALID Exponentiation error occurred during
EXPONENT execution of statement specified. The
result is set zero and the program
continues.

Language Processor Error Messages_

Language error messages may be printed during compilation or execution of
a dataBASIC program. Each of these messages causes processing to stop. If an
error occurs during execution and the program contains a statement modifying the

file, then retreat will occur.

Table D-4 lists and explains the two language processor error messages printed

by the dataBASIC system:

Table D-4. Language Processor Error Messages

Message Explanation
LINE XXXXX MEMORY The memory allotted to compile and
EXCEEDED execute the dataBASIC program has

been exceeded.

SYSTEM MALFUNC TION XXXXX A system malfunction has occurred
(See also tables D-5 through over which the user has no control.
D-12) This error should be reported to

persons responsible for maintaining
the system.

System malfunction messages may
be classified according to the activity
during which they originate.

SYSTEM MALFUNC TION MESSAGES

System malfunction messages may occur during the many activities of the
dataBASIC system. Tables D-5 through D-12 provide a list of these messages in code

form, along with a definition of each message and its associated activity source.

D-5 #DAO08

Table D-5 lists system malfunction messages which may occur during the

compilation or execution of a program:

Table D-5.

System Malfunction Messages During Compilation/Execution

Message Code

Definition

Activity Source

00004 COMPILER ERROR During management
routines
AAQ1 INVALID ERROR CODE-
COMPILER ERROR
AA02 BAD OFFSET
AAF1 INVALID OP CODE
AAF2 MEMORY FAULT
AAF3 TAB FAULT
BJOl COMPILER ERROK IN During control
SOURCE FILE (POSSIBLE routines
NO SOURCE FILE)
BJO3 COMPILER ERROR -
BLOCK COUNT
BJ02 COMPILER ERROR -
READING INPUT
BMO! COMPILER ERROR - During code generation
INVALID SUBROUTINE routines
NAME
BMO2 COMPILER ERROR -
INVALID OPERATOR
BMO3 COMPILER ERROR -
INVALID LOGIC
OPERATOR
BMO04 COMPILER ERROR -
CODE GENERATION
BMO5 COMPILER ERROR -
CODE GENERA TION
BMO06 COMPILER ERROR -

CODE GENERATION

#DAO0S8

Table D-5. System Malfunction Messages During Compilation/Execution (cont.)

Message Code

Definition

Activity Source

BMO7

BMOS8

BMO9

BMIl1o0

COMPILER ERROR -
CODE GENERATION

COMPILER ERROR -
CODE GENERATION

COMPILER ERROR -
CODE GENERATION

COMPILER ERROR -
CODE GENERATION

During code generation
routines

BKO1

BKO02

BKO03

BK04

BKO05

BKO06

BKO07

BKO08

BKO09

BKIO0

BKI11

BKl12

EXPANSION LEVEL
GREATER THAN 8

EXPANSION ERROR

ERROR IN FOR...

EXPANSION

ERROR IN FOR...

EXPANSION

ERROR IN FOR..

EXPANSION

ERROR IN FOR..

EXPANSION

ERROR IN FOR...

EXPANSION

ERROR IN FOR...

EXPANSION

ERROR IN FOR.

EXPANSION

ERROR IN FOR...

EXPANSION

ERROR IN FOR...

EXPANSION

EXPANSION ERROR

ERROR IN FOR...
OR FIX...EXPANSION

During compiler
expansion routines

#DAO0S

Table D-5. System Malfunction Messages During Compilation/Execution (cont.)

Message Code Definition Activity Source
BKI5 ERROR IN FIX... During compiler
EXPANSION expansion routines
BKl16 ERROR IN FIX...
EXPANSION
BKI17 ERROR IN LET...
EXPANSION
BKI18 ERROR IN LET...
EXPANSION
BKI19 EXPANSION ERROR
BK20 EXPANSION ERROR
BK21 EXPANSION ERROR
BK22 EXPANSION ERROR
BK23 EXPANSION ERROR
BK24 EXPANSION ERROR
BK25 EXPANSION ERROR
BK26 EXPANSION ERROR
BK27 EXPANSION ERROR
BK28 EXPANSION ERROR
BK29 EXPANSION ERROR
BK30 ’ EXPANSION ERROR
BK31 EXPANSION ERROR
BK32 EXPANSION ERROR
BK33 EXPANSION ERROR
BK34 EXPANSION ERROR
BK35 EXPANSION ERROR
BK36 EXPANSION ERROR
BK37 EXPANSION ERROR

D-8 #DAO0S8

Table D-5. System Malfunction Messages During Compilation/Execution (cont.)

Message Code Definition Activity Source
BK38 EXPANSION ERROR During compiler
expansion routines
BK39 EXPANSION ERROR
BK40 EXPANSION ERROR
BK4l1 EXPANSION ERROR
BK50 ERROR IN FIX...
EXPANSION
BK51 ERROR IN FIX...
EXPANSION
BK52 ERROR IN FIX...
EXPANSION
0005 COMPILER SCAN During compiler
ERROR management
0006 COMPILER ERROR -
PREVIOUSLY

DEFINED LINE NO.

0007 COMPILER ERROR -
INVALID ERROR CODE

0008 COMPILER ERROR -
IN LINE NO.

REFERENCE

System malfunction messages are also possible at runtime, being generated

during I-D-S routines. These messages are listed and defined in Table D-6.

D-9 #DAO0S8

Table D-6. System Malfunction Messages During I-D-S Routines

Message Code* Definition

XANN ANN is the I-D-S ERROR CODE
(See CPB-1565.)

DMNN M IS1OR 2, AND NN IS THE I-D-S
ERROR CODE (See CPB-1565.)

*Note: The code NN
can take on four
values not defined as
normal I-D-S error
codes., These values
are defined below and
are generated by the
QTDRL subroutine:

76 CHECKSUM CHARACTER ALERT

71 END OF FILE CONDITION

78 END OF LOGICAL FILE CONDITION
79 UNDEFINED I/O ERROR CONDITION

System Malfunction Messages may also be generated by . SIDSO during a routine
attempt to access the dataBASIC file . DATAO. These messages are tabulated and
defined in Table D-7.

Table D-7. System Malfunction Messages During . DATAO Accessing

Message Code Definition

BBLlB 4002 - I/O0 ERROR - CANNOT PROCEED

BBIF 4006 - LLINK SPACE EXHAUSTED

BBI1G 4007 - DEVICE TYPE UNDEFINED

BBlH 4010 - LINK SPACE EXHAUSTED

BBII 4011 - NON-UNIQUE NAME

BB1J 4012 - SIZE REQUESTED LESS THAN
CURRENT SIZE

BBIK 4013 - REQUESTED SPACE EXCEEDS THAT
ALLOWED

D-10 #DAO8

Table D-7. System Malfunction Messages During . DATAO Accessing (cont.)

Message Code

Definition

BBIM

BBIN

BBI10

BBIP

BBIQ

BBIR

BBI1S

BBIT

BBIV

BBIW

4015

4016

4017

4020

4021

4022

4023

4024

4037

4040

- I-D-S FILE IN ABORT STATUS

- I-D-S FILE IN RECOVERY STATUS

- SEEK ADDRESS CALCULATION ERROR
- FAILURE IN NAME SCAN (IMP.)

- UNDEFINED DEVICE (IMP.)

- DEVICE LINK TABLE CHECKSUM
ERROR

- INCONSISTENT FDW BLOCK COUNT

- INTERNAL LINK TABLE CHECKSUM
ERROR

- DUPLICATE NAME IN AFT

- NO PAT SPACE AVAILABLE
UNDEFINED STATUS CODE
RETURNED

System Malfunction Messages may also be generated by . SIDSO during a routine

attempt to access the Retreat file . JOUR.

Table D-8.

These messages are listed and defined in

Table D-8. System Malfunction Messages During ., JOUR. Accessing

Message Code

Definition

BB2A

BBZ2B

BB2C

BB2D

BBZ2E

4001

4002

4003

4004

4005

- NAME NOT IN SYSTEM MASTER
CATALOG

- I/O ERROR - CANNOT PROCEED
- PERMISSIONS DENIED
- FILE BUSY

- INCORRECT CATALOG/FILE
DESCRIPTION

LLINK SPACE EXHAUSTED

D-11 #DAO08

Table D-8. System Malfunction Messages During . JOUR. Accessing (cont.)

Message Code Definition

BB2G 4007 - DEVICE TYPE UNDEFINED
BB2H 4010 - LINK SPACE EXHAUSTED
BB2I 4011 - NON-UNIQUE NAME

BB2J 4012 - SIZE REQUESTED LESS THAN

CURRENT SIZE

BBZ2K 4013 - REQUESTED SPACE EXCEEDS
THAT ALLOWED

BB2L 4014 - REQUIRED OR INCORRECT
PASSWORD

BB2M 4015 - I-D-S FILE IN ABORT STATUS

BB2N 4016 - I-D-S FILE IN RECOVERY STATUS

BB20O 4017 - SEEK ADDRESS CALCULATION
ERROR

BB2P 4020 - FAILURE IN NAME SCAN
(IMP.)

BB2Q 4021 - UNDEFINED DEVICE (IMP.)

BB2R 4022 - DEVICE LINK TABLE CHECKSUM
ERROR

BB2S 4023 - INCONSISTENT FDW BLOCK COUNT

BB2T 4024 - INTERNAL LINK TABLE CHECKSUM
ERROR

BB2V 4037 - DUPLICATE NAME IN AFT

BB2W 4040 - NO PAT SPACE AVAILABLE

UNDEFINED STATUS CODE RETURNED

Other system malfunction message may occur during an attempt to RETREAT

to restore the integrity of a data file. These messages are listed and defined in

Table D-9.

D-12 #DAO08

Table D-9. System Malfunction Messages During RETREAT Attempt

Message Code Definition
CPO00 UNDEFINED FILSYS STATUS CODE
RETURNED

CPOl 4001 - NAME NOT IN SYSTEM MASTER
CATALOG

CP02 4002 - I/O ERROR - CANNOT PROCEED

CPO03 4003 - PERMISSIONS DENIED

CP04 4004 - FILE BUSY

CPO05 4005 - INCORRECT CATALOG/FILE
DESCRIPTION

CP06 4006 - LLINK SPACE EXHAUSTED

CPO07 4007 - DEVICE TYPE UNDEFINED

CP10 4010 - LINK SPACE EXHAUSTED

CPl11 4011 - UNIQUE NAME

CPl2 4012 - SIZE REQUESTED LESS THAN

CURRENT SIZE

CP13 4013 - REQUESTED SPACE EXCEEDS THAT
ALLOWED

Crl4 4014 - REQUIRED OR INCORRECT
PASSWORD

CPl15 4015 - I-D-S FILE IN ABORT STATUS

CPl6 4016 - I-D-S FILE IN RECOVERY STATUS

CPl7 4017 - SEEK ADDRESS CALCULATION
ERROR

CP20 4020 - FAILURE IN NAME SCAN (IMP.)

CP2l 4021 - UNDEFINED DEVICE (IMP.)

CP22 4022 - DEVICE LINK TABLE CHECKSUM
ERROR

CP23 4023 - INCONSISTENT FDW BLOCK COUNT

CP24 4024 - INTERNAL LINK TABLE CHECKSUM
ERROR

D-13 #DAO08

Table D-9. System Malfunction Messages During RETREAT Attempt (cont.)

Message Code Definition
CP36 4036 - AFT IS FULL
CP37 4037 - DUPLICATE NAME IN AFT
CP40 4040 - NO PAT SPACE AVAILABLE
CP4l I/O CHECKSUM ERROR
CP42 I/0 END-OF-FILE ERROR
CP43 I/0 END-OF-LOGICAL-FILE
ERROR
I1/O UNDEFINED STATUS CODE
RETURNED
—'

System malfunction messages may occur during an attempt to CREATE a

dataBASIC file, These messages are listed and defined in Table D-10.

Table D-10. System Malfunction Messages During CREATE Attempt

Message Code Definition

CQoOl 4001 - NAME NOT IN SYSTEM MASTER
CATALOG

CQO02 4002 - I/O ERROR - CANNOT PROCEED

CQOo03 4003 - PERMISSIONS DENIED

CQo04 4004 - FILE BUSY

CQoO5 4005 - INCORRECT CATALOG/FILE
DESCRIPTION

CQO06 4006 - LLINK SPACE EXHAUSTED

CQO07 4007 - DEVICE TYPE UNDEFINED

CcQl12 4012 - SIZE REQUESTED LESS THAN
CURRENT SIZE

CcQl4 4014 - REQUIRED OR INCORRECT
PASSWORD

CQls 4015 - I-D-S FILE IN ABORT STATUS

D-14 #DAOS8

Table D-10. System Malfunction Messages During CREATE Attempt (cont.)

Message Code Definition

cQleé 4016 - I-D-S FILE IN RECOVERY STATUS

CQl7 4017 - SEEK ADDRESS CALCULATION
ERROR

cQ21 4021 - UNDEFINED DEVICE (IMP.)

cQ22 4022 - DEVICE LINK TABLE CHECKSUM
ERROR

cQ23 4023 - INCONSISTENT FDW BLOCK COUNT

cQ24 4024 - INTERNAL LINK TABLE CHECKSUM
ERROR

CcQ40 4040 - NO PAT SPACE AVAILABLE

CcQ41 MORE THAN 100 DISC I/O ERRORS

System malfunction messages may also occur during an attempt to DESTROY a

dataBASIC file. These messages are listed and defined in Table D-11.

Table D-11. System Malfunction Messages During DESTROY Attempt

Message Code Definition

CS10 Subcatalog is present but cannot be purged.
(Retreat and data files have been purged.)

CS20 Data file is present but cannot be purged.
(Retreat file has been purged.)

CS30 Retreat file is present but cannot be purged.

A System Malfunction Message may occur during an attempt to ANALYZE a
dataBASIC file. This message is entered and defined in Table D-12.

Table D-12. System Malfunction Messages During ANALYZE Attempt

Message Code Definition

CROO Unable to access the file specified.

D-15 #DAO08

Finally there are system malfunction messages which are possible during an
attempt to verify a dataBASIC file. For a listing and definition of these errors, see

Tables D-6 and D-7 of this Appendix.

D-16 #DAO08

APPENDIX E
PROGRAMMING CONSIDERATIONS

IMPLEMENTATION GUIDELINES

This appendix outlines some general considerations and guidelines to be followed
when trying for higher dataBASIC programming efficiency and selecting more effective

file loading techniques.

File Creation

A dataBASIC file consists of a subcatalog, referenced by the '"dataBASIC file name, "
with two dependent random access files, .DATAO and.JOUR. The .DATAO file is the
data file, and the ,JOUR. file is the journal, or recovery, file. These files may be
created by the CREATE subsystem, or they must be created through a direct file system
activity when loading of a dataBASIC file is done with the Loai/Unload system. Any pass-
word supplied to the CREATE subsystem will be assigned at the subcatalog level. The
files .DATAO and .JOUR, are without passwords. The .JOUR. file will contain 'before'
images of all I-D-S pages modified during an update run. In the event of a system mal-~
function prior to completion of an update run, the pages written to the .JOUR. file during

the current run will be restored on the .DATAQ file, thus obliterating all effects of this

run.

To allow a user to quickly calculate the approximate number of links needed for a

proposed dataBASIC file, the following formulae are provided:

L = R(EF+4) + 7N(V +1)
D 900

+
50 *+ (L)
R 10

R = total records to be placed on the file

= average number of fields per record

= total unique field names on the file

= average number of unique values per unique field name

= size of the data file .DATAO (in links)

L _= size of the retreat file .JOUR. (in links) where LR is never smaller than
five links,

E-1 #DAO0S

Normally a terminal user would not process such a large number of updates during
any one run that the 'before' page images would exceed the allotted ,JOUR. file space. In
such an event, the user would be notified of a D177 System Malfunction and the contents
of the file would be restored to their status at the beginning of the akorted run. In order
to circumvent such a possibility, the user may wish to enlarge the size of the ,JOUR. file.
He may accomplish this by purging it, then recreating it through a file system activity
with all attributes, other than the size, identical to those of the purged file. The file can=

not merely be increased in size since the file system does not allow a random file to grow.

Loading Techniques

There are three methods for loading data onto a dataBASIC file. The first method
involves use of the dataBASIC Load/Unload System. It is usually used when most of the
data is to be loaded at file creation time when operation is in the batch world environment.

For a full description of the L.oad/Unload system, see the dataBASIC Load/Unload System

Implementation Guide, Document Number DAO9.

The second method involves use of the Time=-Sharing Media Conversion Program

described in the GECOS Time-Sharing System General Information Manual, Document

Number CPB-1643. Following this procedure, card-image input can be converted to
time-sharing format stored on some pre-defined mass storage device. Using the TSS
Editor, each line could then be converted to a dataBASIC~-compatible DATA statement.
Then these DATA statements could be appended to a dataBASIC program with appropri-
ate READ and STORE statements which when executed would store the converted data as

directed in a time-sharing environment.

The third method (usually used to store small amounts of data) allows for user-
terminal interaction with the dataBASIC program while in execution. This is accomplished
by use of the INPUT statement within the framework of the dataBASIC program, followed
by appropriate READ and STORE statements.

Retrieval Techniques

Because of the nature of a dataBASIC data file, certain record selection techniques
will be more efficient than others. It is an inverted file; that is, unique name:value pairs
occur only once within the entire file in the portion of the file which is designated as the
dictionary range. Whenever a record is stored containing an already used name:value
pair, a pointer field is placed in the record range portion of the file linking the new record

to the already present name:value pair in the dictionary range. It is important to realize

E-2 #DAOS8

that the name:value pair fields can be quickly accessed through a randomization algorithm
used by the dataBASIC system. Once located, these fields point directly to their associated
records stored in the record range. (Note that the dictionary and record ranges are
physically placed at the lower and higher halves of the file respectively.) The records,
however, appear in reverse order from that in which they are stored. Thus, if one

wishes to access the first record stored on the file without first randomizing to some
name:value pair appearing in that record, the dataBASIC system will have to follow a series
of pointers, linking together all records on the file until it finds the one desired-in this

case the last record to be encountered.

The following selection commands are those which will go to the dictionary range of
the file first and will be most efficient:

FOR name =value

FOR NOT name = value

FOR name ALL
where name may be an actual field name or a working storage field suffixed by the

character &, and value may be a literal or a working storage field.

In each of the above cases, an occurrence tally is maintained as the selected name:
value pairs are found in the dictionary range and compared to a number equal to 70
percent of the total number of records on the file. If the occurrence tally is greater than

this number, the record range portion of the file will be examined.

The FOR FNAME and FOR FVALUE commands, by definition, must always go to

the dictionary range.

Examples of selection commands which interrogate the dictionary range include:

1) 100 FOR LAST:NAME = "SMITH"

2) 100 LET A = "SMITH"
110 FOR LAST:NAME

3) 100 FOR LAST:NAME ALL

4) 100 FOR FNAME ALL

5) 100 FOR FNAME < 220

6) 100 FOR FNAME FROM 3 TO 110
7) 100 FOR FVALUE ALL

8) 100 FOR FVALUE > 30

9) 100 FOR FVALUE FROM 50 TO 55

A

E-3 #DAO08

NOTE: The two examples which follow achieve the same results as the above

examples but are considerably faster since they force interrogation of
the dictionary range:

o
~

200 FOR AGE FROM 21 TO 35

300 NEXT

2) .

200 LET A = 21
210 FOR AGE = A

.

300 IF A < 35 THEN 320
310 EXIT

320 LET A = A+l

330 NEXT

SUBSYSTEM USAGE

The CREATE and DESTROY subsystems are to be used whenever a dataBASIC
file is created or released. The ANALYZE and VERIFY subsystems are more special-
ized in that the usual user might never use them. It is important to realize that on large
files the VERIFY subsystem may be very slow in terminal response time since it walks
through all I-D=S chains on the file checking their integrity and tallying all associated

records. When finished, a short summary report will be printed at the terminal.

E-4 #DAOS8

APPENDIX F
dataBASIC FILE STRUCTURE

1-1 P 1 toN P
.IFILR . ICTLR
(100) (001)
AN
CALC . IRARM . IALIM
(after) (first)
1l to M M+l to N P
.1
- ey
\ (120)
-
CALC JINMsM) . INMLM
(after) - INMVM (after) 1l toM
(after) . IETXM
. IEOCM (ted)
T to M c . TLOKR (sorted) sorte
1 to M S (180) \
. ISYNR
(125) . IVALR M+l to N S
(130)
\ . ITXTR
CAL\C\ . (?f’?g) . IVOCM (160)
(FIRST) Ml to N
1toM c °
. TINDR 'I‘I)C(C)I)‘
(140) s
Records Chains
JIFILR - file record +IPARM - pair chain
.IPNMR - prime name record .IALLM - all chain
. ISYNR - synonym name record . INMSM - name synonym chain
.IVALR - value record .INMVM - name value chain
.IINDR - index record .INMLM - name lock chain
.IENTR - entity record .IVIXM - value index chain
.IOCCR - occurrence record .IVOCM - value occurrence chain
. ITXTR - text record .IEOCM - entity occurrence chain
. ICTLR - control record .IETXM - entity text chain
E—
Figure F-1. dataBASIC File Structure

F-1

#DAO8

COMPUTER GENERATED INDEX

ACLEbSlNG ALL FILE RECORDS
CESSING ALL FILE RECORDS. 3=2
ACLESbING SELECTED RECOURDS
ACCESSING SELECTED RECORDS. 3-3
ADVANCED DATA SELECTION
ADVANCED DATA SELECTIONe 4=1
ALPHANUMERIC
ALPHANUMERIC EDITING, 3=-27
ANALYZE
ANALYZE SUBSYSTEM. 6-5
ANALYZE. 5-2
APPLICATIONS
APPLICATIONS. 1-1
ARLTHMETIC
ARITHMETIC EXPRESSIONe. 3-18
ASSIGNMENT
ASSIGNMENT EXPRESSIONSe 3-15
BASIC
DATA BASIC STATEMENT, 2-1
BRACES
BRACES. 1=-2
BRACKETS
BRACKETS. 1=2
BRANCHING
BRANCHING, 3-35
8YE
BYE. 5=3
CARRIAGE
CARRIAGE :RETURN CHARACTER. 2-1
CATEGORIES
CONTROL COMMAND CATEGORIESe 5=1
DATABASIC COMMAND (CATEGORY A1), 5-1
DATABASIC/TIME~-SHARING COMMANDS (CATEGORY #2)e 5=2
COMMAND
DATABASIC COMMAND (CATEGURY #l1). 5-1
DATABASIC/TIME-SHARING COMMANDS (CATEGORY #2), 5-2
COMPILER
COMPILER ERROR MESSAGESe D=1
CONDITIONAL RESTORING OF A FILE
CONDITIUNAL RESTORING OF A FILE. 3-34
CONDITIONAL TERMINATION OF SELECTION
CONDITIONAL TERMINATION OF SELECTION. 3-31
CONNECTING TERMINAL TO COMPUTER
CONNECTING TERMINAL TO COMPUTER, 7=-2
CONTROL
CONTROL ; WORD, 2-1
CONTROL STATEMENTS, 3-31
CONTROL COMMAND
CONTROL COMMAND CATEGORIESe 5=-1
CONTROL COMMANDS VERSUS STATEMENTS, S-1
CONTROL COMMANDSe S-1
CONTROLS
TERMINAL OPERATION CONTROLS. 7-1
CORRECTIONS
ERROR CORRECTIONS, 7-5
CREATE
CREATE SUBSYSTEMe 6-1
CREATE. 5=-1
CREATING A DATABASIC PROGRAM
CREATING A DATABASIC PROGRAM, 7-3

DATA
DATA BASIC STATEMENT, 2-1
DATA DELETION. 3-13
DATA FIELDS. 2-4
DATA FILES. 2-2
DATA MANIPULATION STATEMENTS. 3=-13
DATA MODIFICATION. 3-14
DATA RECORDS. 2-3
DATA SELECTION STATEMENTS, 3=2
DATA STATEMENT, 3=l
DATA STORAGE AND MAINTENANCE. 3=l
DATA STORAGE. 3~20
DATA STRUCTURE. 22
DATA SELECTION
DATA SELECTION USING WORKING STORAGE FIELDS, 4-1
DATABASIC
DATABASIC COMMAND (CATEGORY #1). 5«1
DATABASIC FILE STRUCTUREe F-1
DATABASIC SUBSYSTEMS, 6-1
DATABASIC/TIME=SHARING
DATABASIC/TIME-SHARING COMMANDS (CATEGORY #2). -2
DECLARATION
DECLARATION STATEMENTS. 3~1
DELETE
DELETE STATEMENT. 3-14
DELETE RECORD
DELETE RECORD STATEMENT. 3-13
DELETION
DATA DELETION. 3-13
FIELD DELETIONe 3=14

DESTROY

DESTROY SUBSYSTEM, 6-~11

DESTROY. 5-2
DICTIONARY

DICTIONARY FUNCTIONS, 3-10
DOCUMENT

DOCUMENT NoIATlONS. 1=2
DOCUMENTAT ION

PROGRAM DOCUMENTATION STATEMENT. 3-37
DUPLICATES

DUPLICATESe 2-5
EDITING

ALPHANUMERIC EDITINGe 3-27

NUMERIC EDITINGe 3=-26
ELEMENTS

LANGUAGE ELEMENTS. 2-1
ELLIPSES

ELLIPSESe 1-3
END

END STATEMENT. 3-31
ERROR

ERROR CORRECTIONSe 7=5
ERROR MESSAGE

COMPILER ERROR MESSAGESe D=1

LANGUAGE PROCESSOR ERROR MESSAGESe U=5%

RUNTIME ERRUR MESSAGESe D=3

TERMINAL ERROR MESSAGE TYPES. D=1
EXIT

EXIT STATEMENTe 3-31
EXPRESSION

ARITHMETIC EXPRESSION. 3~-18

ASSIGNMENT EXPRESSIONSe 3-15

LANGUAGE STATEMENTSs EXPRESSIONS AND REPLACEMENTS. A=-1
FIELD

DATA FIELDSe 2-4

DATA SELECTION USING WORKING STORAGE FIELDSe 4=~1

FIELD DELETIONe 314

FIELD SELECTION. 3-9

FIELD STORAGE. 3-21

PRINT RECORD FIELD. 3-24

PRINT WORKING STORAGE FIELDe 3=25
FILE

FILE STATEMENT, 3=-1
FILE CREATION

FILE CREATIONe E=-1
FILE STRUCTURE

DATABASIC FILE STRUCTUREe F~-1
FILES

DATA FILESs 2=2
Fix

FIX STATEMENTs 3=14
FUR ALL

FOR ALL STATEMENT. 3-2
FOR FNAME

FOR FNAME STATEMENT. 3-10
FOR VALUE

FOR VALUE STATEMENT. 3-il
FUNCTIONS

DICTIUNARY FUNCTIONS. 3-10
GETTING OFF

GETTING OFF PROCEDURE. /-7
GETTING ON

GETTING ON, 7-2
GosuB

GOSUB STATEMENT. 3-33
GOTO

GOTO STATEMENT. 3-35
HALTING

PROGRAM HALTINGe 3-36
HORIZONTAL

HORJZONTAL SPACINGe 3-28
IMPLEMENTATION GUIDELINES

IMPLEMENTATION GUIDELINES, E=1
INPUT

INPUT STATEMENT. 3-21

TERMINAL INPUT. 3=-21
INPUT/0UTPUT

INPUT/0UTPUT STATEMENTSe 3-21
LANGUAGE

LANGUAGE ELEMENTSe 2-1

LANGUAGE STATEMENTS. 3-1i

LANGUAGE. 1=2
LANGUAGE PROCESSOR

LANGUAGE PROCESSOR ERROR MESSAGES, D-5
LANGUAGE STATEMENTS

LANGUAGE STATEMENTSs EXPRESSIONS AND REPLACEMENTS. A-1
LET

LET STATEMENT. 3=-15
LINE

LINE:NUMBERe 2~1 N
LIST

LISTe 5-2

COMPUTER GENERATED INDEX

LITERAL

PRINT LITERAL, 3-2¢4
LOADING

LOADING, E=2
MAINTENANCE

DATA STORAGE AND MAINTENANCE. 3=l
MOD I+ ICATION

DATA MODIFICATION, 3al4
NOTATIONS

DOCUMENT NOTATIONS. 1-2
NUMBER

LINE:NUMBER. 2-1
NUMERIC
NUMERIC EDITING. 3=26
oL
OLD. 5=3
OPERATION
TERMINAL OPERATION CONTROLS, 7=l
PAPER TAPE
ENTERING THE PROGRAM FROM PAPER TAPEes 7=5
PIVOTING
PIVOTING. 4=2
PRINT
PRINT LITERAL. 3=24
PRINT RECORD FIELDe 3=24
PRINT STATEMENT. 3-22
PRINT WORKING STORAGE FIELD. 3«25
PRINT RECORD
PRINT RECORD STATEMENT. 3-23
PRINT WITH EDIY
PRINT WITH EDITe 3«26
PRINTING
PRINTING. 3=-22
PROCEDURE
GETTING OFF PROCEDURE, 7-7
PROGRAM
ENTERING A PROGRAM, 7=4
ENTERING THE PROGRAM FROM PAPER TAPEe 7=5
PROGRAM DOCUMENTATION STATEMENT, 3=37
PROGRAM HALTING. 3=36
PROGRAM TERMINATION, 3-31
RUNNING THE PROGRAM, 7-6
PROGRAMMING CONSIDERATIONS
PROGRAMMING CONSIDERATIONS. E=1
PURGE
PURGE. S5=-4
READ
READ STATEMENT. 3=29
RECORD
DATA RECORDS. 2-3
PRINT RECORD FIELD. 3-24
REM
REM STATEMENT, 3-37
REPLACEMENTS
LANGUAGE STATEMENTSs EXPRESSIONS AND REPLACEMENTSe A=l
RESEWUENCE
RESEQUENCE. 5-4

RESERVED

RESERVED WORDS. 1=2 C~-1
RETREAT

RETREAT STATEMENT. 3-34
RETRIEVAL

RETRIEVAL. E-2
RETURN

RETURN STATEMENT. 3-33
RETURN CHARACTER
CARRIAGE :RETURN CHARACTER, 2-1

RUN

RUN. 5-1
RUNNING

RUNNING THE PROGRAM, 7«6
RUNTIME

RUNTIME ERROR MESSAGESe D=3
SAVE

SAVE. 5-3
SELECTION

DATA SELECTION STATEMENIS, 3-2
FIELD SELECTIONs 3-9
SPACING
HORIZONTAL SPACING, 3-28
VERTICAL SPACINGs 3-29
SPECIAL CONVENTION
SPECIAL CONVENTIUN, 2-5
SPECIAL PRINT CONVENTION
SPECIAL PRINT CONVENTION. 3-25
STATEMENT
CONTROL COMMANDS VERSUS STATEMENTS. 5«1
CONTROL STATEMENTS, 3-31
DATA BASIC STATEMENT. 2-1
DATA MANIPULATION STATEMENTS, 3-13
DATA SELECTION STATEMENIS. 3=2

STATEMENT {CONT)
DECLARATION STATEMENTS, 31
DELETE RECORD STATEMENT, 313
DELETE STATEMENT. 3=14
END STATEMENT, 3«31
EXIT STATEMENT. 3-31
FILE STATEMENT, 3=l
FIX STATEMENT, 3=l14
FOR ALL STATEMENT. 3e2
FOR FNAME STATEMENTe 310
FOR STATEMENT. 3=2
FOR VALUE STATEMENT,s 3=~il
GOSUB STATEMENT. 3-33
GOTO STATEMENT. 3-35
IF STATEMENT. 3=35
INPUT STATEMENT. 3-21
INPUT/OUTPUT STATEMENTSe 3-21
LANGUAGE STATEMENTS. 3=~}
LET STATEMENT, 3-15
NEXT STATEMENT, 3-3
PRINT RECORD STATEMENT, 3-23
PRINT STATEMENT. 3-22
PROGRAM DOCUMENTATION STATEMENT. 3-37
READ STATEMENT. 329
REM STATEMENT. 3=37
RETREAT STATEMENT. 3=34
RETURN STATEMENT. 3=33
STOP STATEMENT. 3-36
STORE COPY STATEMENT. 3-20
STORE RECORD STATEMENT, 3=20
STORE STATEMENT. 321
SToP
STOP STATEMENT. 3-36
STORAGE
DATA STORAGE AND MAINTENANCE. 3=-1
DATA STORAGte 3-20
FIELD STORAGE. 3-21
STORE
STORE STATEMENT. 3«21
STORE COPY
STORE COPY STATEMENT. 3-20
STORE RECORD
STORE RECORU STATEMENT, 3-20
STRUCTURE
DATA STRUCTURE. 2-2
SUBROUTINES
SUBROUTINESe 3=32
SUBSYSTEM
ANALYZE SUBSYSTEMe 6=5
CREATE SUBSYSTEMs 6=-1
DATABASIC SUBSYSTEMSe 6=1
DESTROY SUBSYSTEMe 6-11
VERIFY SUBSYSTEMe 6-13
SYNTHETIC SELECTIUN OF FIELDS
SYNTHETIC SELECTION OF FIELDS. 4«3
SYSTEM
SYSTEM USAGEe E-4
SYSTEM MALFUNCTION MESSAGES
SYSTEM MALFUNCTION MESSAGESe D=5
TERMINAL ERROR MESSAGES AND SYSTEM MALFUNCTION MESSAGESe
D=1
TAPE
TAPEe 5=4
TERMINAL
AUTOMATIC TERMINATION FROM TERMINAL. 7=/
TERMINAL ERROR MESSAGE TYPES. D-1
TERMINAL INPUT, 3=-21
TERMINAL OPLRATION CONTROLSe 7=l
TERMINAL COMMANDS
TERMINAL COMMANDS. B-1
TERMINAL ERROR MESSAGES
TERMINAL ERROR MESSAGES AND SYSIEM MALFUNCTION MESSAGESe
D=1
TERMINATION
AUTOMATIC TERMINATION FROM TERMINALe 7~/
PROGRAM TERMINATIONe 3-31
TYPES
TERMINAL ERROR MESSAGE TYPES. D-1
USAGE
SYSTEM USAGLe E-4
VERIFY
VERIFY SUBSYSTEM. 6-13
VERIFY, 5=2
VERTICAL
VERTICAL SPACINGe 3-29
WORD
CONTROL:WORUe 2~1
RESERVED WORDS. 1-2 C-}
WORK ING STORAGE
DATA SELECTION USING WORKING STORAGE FILLDS. 4-1
PRINT WURKING STORAGE FiIELD. 3-25

» CUTALONGLINE 060000600080:

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form*
L |

L SERIES 6000/600 ORDERNO:| DAOS, Rev. 0
‘| dataBASIC SYSTEM —
LANGUAGE MANUAL DATED: | MAY, 1971

ERRORS IN PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

(Please Print)

FROM: NAME DATE
COMPANY
TITLE
ADDRESS

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check here.D

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS

60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: U.S. GROUP PUBLICATIONS, MS 050

Honeywell

aaasaasaasaasnasanasaaaaaasaaa NMITAINNMCILINEGE aaas

The Other Computer Company:
Honeywell

HONEYWELL INFORMATION SYSTEMS

2124
2671
Printed in U.S.A. DAOS8, Rev. 0

