
Honeywell
SERIES 600/6000

INTEGRATED DATA STORE

REFERENCE MANUAL

INTEGRATED DATA STORE
REFERENCE MANUAL

SUBJECT:

Honeywell
SERIES 600/6000

General Description, Data Organization, Source Language, Programming Information, Operational Char­
acteristics, and Capabilities of the Integrated Data Store (1-D-S) System.

SPECIAL INSTRUCTIONS:
This manual, order number BR69, Rev. 0, is a reprint of CPB-1565B, dated January 15, 1971. The new order
number is assigned to be consistent with the overall Honeywell publications numbering system. The contents
of this reprinted manual are the same as for CPB-1565B. Both CPB-1565B and BR69, Rev. 0, completely su­
persede the previous edition (CPB-1565A) and incorporate the information published in Tl B 1565A-1,
1565A-2, and 1565A-3. New features implemented in Series 600 System Development Letter 3.3 are also
included. New information and changes since the last edition are indicated by change bars; deletions are indi­
cated by asterisks.

INCLUDES UPDATING PAGES PUBLISHED AS ADDENDUM A IN AUGUST, 1971, WHICH IN­
CLUDE NEW FEATURES IMPLEMENTED IN SERIES 600 SYSTEM DEVELOPMENT LETTER
4.0 AND SERIES 6000 SYSTEM DEVELOPMENT LETTER B.

DATE:
January, 1971

ORDER NUMBER: BR69 (Formerly CPB-1565)

Rev. 0

Preface

This manual describes the Integrated Data Store (I-D-S) system, which is
an information-oriented method of integrating the operating function of a
business. I-D-S reduces the system and programming cost associated with
implementing some other types of integrated business systems. It uses
direct-access storage as an extension of memory and provides an efficient
data organization technique.

Since I-D-S is used to extend the functions of the COBOL language, the
reader should have a working knowledge of COBOL before using this manual.

The I-D-S program is identified by catalog numbers CD600H5.100 and
CD600H7.000 in the Program Library.

(§) 1968, 1969, 1970, General Electric Company, U.S.A.
@) 1971, Honeywell Information Systems Inc.

Contents

1. INTRODUCTION

2. DATA ORGANIZATION

I-D-S CHAINS . . .
Ivlultiple Chains ...

STRUCTURE REPRESENTATION
SUMMARY OF DATA STRUCTURES

Record Classes .•..
I-D-S RECORDS•

Linking Detail Records of a Chain . .
Selecting I1aster Record of a Chain.
Chain Ordering ..
Prime Chain
Chain Processing.
Chain Tables ...

3. I-D-S PH.OGRAMMING LANGUAGE

IDENTIFICATION DIVISION
ENVIRONMENT DIVISION

Configuration Section, IDS-Special-Names Paragraph.
Input-Output Section, File-Control Paragraph.

DATA DIVISION.
File Description.
Complete I-D-S File Description Entry . .
Record Description.
Complete I-D-S Record Description Entry .
Type.
l<.etrieval Via .
Page-Range.
Place Near.
Interval
Authority
Chain Definition.
Complete Chain Definition Entry .
Baster/Detail
Chain-Order
Linked Prior ..
Randomize
uuvlicates. . .

Page

1

3

4
5
8

12
13
14
15
15
16
17
17
18

23

23
23
25
27
28
28
29
31
33
34
35
38
40
41
42
43
44
45
47
50
51
52

iii

I

Ascending/Descending ..
Select ••...•..••.
Match-Key ...
Synonym • . •
Linked-Master •

PROCEDURE DIVISION •
I-D-S Imperative Statements ..
Close • . •
Debug •
Delete.
Go. • • .
Head •.•
Modify. .
.Move. • .
Open. .
Retrieve.
Return.
Sort.
Store . . • •
I-D-S Conditional Statements.
If. • . • • • •
Perform .
Use • .

4. TRANSLATOR PROCESSING

PAGE EJECT AND COMDK LABELING. .
Page Eject in the Listing .
COMDK Labeling ...•..

$ IDS CONTROL CARD DESCRIPTION .
SAMPLE OUTPUT PRODUCED BY THE I-D-S TRANSLATOR
DECK SETUPS•.....

Translate and Compile . . .•.
Translate, Compile, and Execute .

OBJECT PROGRAM EXECUTION • . .

5. I-D-S DATA FILE STRUCTURE DESCRIPTIONS

iv

DEFINITION STRUCTURE
Conununication Control Block • .
Record Definition Entry
Detail Definition
Master Definition • .
Field Definition.
Control Definition.

SAMPLE OUTPUT.
. QRD - RECORD DEFINITION • .
.QDD - DETAIL DEFINITION
.Q1"1D - HASTER DEFINITION
.QFD - FIELD DEFINITION.
.QCD - CONTROL DEFINITION •....

Page

53
56
57
59
60

61
61
62
63
64
66
67
70
72
73
74
77
79
82
85
86
88
89

91

91
91
91
93
95
97
97
98
99

101

101
10 3
104
107
llO
ll2
ll4
ll6
120
121
12 2
12 3
124

6. OPLHATIONAL CHARACTERISTICS

I-D-S DATA FILE INITIALIZATION
CREATING AN I-D-S DATA FILE

Creating a Permanent I-D-S Data File ..
Creating a Temporary I-D-S Data File.
Nixing Temporary and Permanent Files.

ACCESSING AN I-D-S FILE.
Subfile Allocation.
Subfile Deallocation.

I-D-S JOUlli~AL FILE
I-D-S Journal File Configuration.
Journal Record Format
Closing Journal Files
Journal Override.
Journal File Map.

llliCOVING AN I-D-S DATA FILE.
I-D-S LXBCUTION REPORT .

7. MEMORY llANAGEMENT

ASSIGNMENT OF I-D-S BUFFERS AND WORK AREAS . .
With a $ USE Card
Without a $ USE Card ..

SLAVE I-D-S CONTROL TABLE.
Total Control Entry
Individual File Entries .

I-D-S INVENTORY RECORDS.
Buffer Format
Buffer Strategy for Inventory Buffer ..
Record Description.

I-D-S DATA PAGES . .
Buffer Format . . .
Buffer Strategy for Page Buffers
Page Description

I-D-S DATA RECORDS

8. I-D-S UTILITY PROGRJ"\11S AND SUBROUTINES

PERMAi'>JBNT I-D-S DATA FILE.
rl'EMPORARY I-D-S DATA FILE.
TEMPOHARY Ai\JD PERMANENT I-D-S DATA FILE.
UTILITY Pl~OGRAH AND SUBROUTINE DESCRIPTIONS.

Randomizing Analyzer/Cale Pre-Load Sort Utility
Program (QUTC)

Storage Tape Dump/Print Utility Routine (QUTD) . .
Page Initialize Utility Routine (QUTI).
Journal Tape Dump Utility Program (QUTJ).
Data Hase Load/Print Utility Routine (QUTL)
Journal Record Selector Utility Program (QUTP)

Page

125

125
126
126
129
131
132
132
136
136
137
137
142
143
144
145
147

151

151
151
152
154
155
156
158
158
159
159
161
161
166
16 7
173

177

177
178
178
179

180
187
192
195
199
206

v

I

Lxecution Information Report Program (QUTR)
Selected Record Sort utility Program (QUTS)
File Utility Program (QDTU) .•.•.•.•••.
Directive Processor and Service Subroutine (.QDIR).
Trace and Print Record, Debug, and Utility Subroutine

(.QSTC). . •
Verify and Print Utility Subroutine (.QUTF)

APPLNDIX A. RLSERVED WORDS

APPI:::lWIX B. I-D-S I:::RROR CONDITIONS

APPENDIX C. GE-600 COBOL/I-D-S/FORTRAN COM.NUN IC AT ION
AND OVERLAYING

l\PPI..:NDIX 1J. PRIILl\RY SUBROUTINES

APPENDIX E. SAMPLE DECK SETUPS

APPLNDIX F. HEFERENCE CODE MANIPULA'l'ION

INDLX

vi

Page

210
213
217
232

237
244

249

251

257

297

299

307

309

111 ustrations

Figure Page

1. Chain Association . 3

2. I-D-S Chain . 5

3. Master Record of Two Chains 7

4. I-D-S Shorthand . . 8

5. Purchase Order Data Structure 9

6. Chain Network . . . 11

7. Legal and Illegal I-D-S Data Structures . 12

8. I-D-S Record. . . • . 14

9. Chain Processing .. 18

10. Chain with Dummy Reference Codes •. 19

11. Chain Table After Retrieval of Detail 2 . 19

12. Chain Table Backed Up to Detail 1 . . 20

13. Chain Table for a PRIOR Processable Chain After
Retrieval of Detail 1 20

14. Chain Table after Direct Retrieval of Detail 2 .. 21

15. Chain Table--PRIOR and HEADED . 22

16. I-D-S Compilation and Execution Process . 92

17. I-D-S Definition Structure. 102

18. Format of Corrununication Control Block Entry . 10 3

19. Format of Record Definition Entry . . 105

20. Ha chine Format for Detail Definition Entry. . 107

21. Hachine Format for Haster Definition Entry. . 110

22. Hachine Format for Field Definition Entry 112

23. I•lachine Format for Control Definition Entry 114

vii

Figure Page

24. I-D-S Data File Structure . . 128

25. I-D-S Data File Allocation ... i34

26. I-D-S Data File Deallocation. 136

I 27A.

27B.

Operational Sequence to Re-establish an I-D-S
Data File.

Alternate Operation to Re-establish an I-D-S Data File.

145

146

2 8. Labeled Common .QAREA .. 15 3

29. Slave I-D-S Control Table . 154

30. Inventory Record Buffer . 15 8

31. Inventory Record. 160

32. Data Page Buffer. 163

33. Page Buffer Activity Table •. 166

34. Chain Concept of Buffer Activity. 167

35. Base Page Header Record 16 8

36. Pagette Header Record • . 171

37. Data Record . . 173

I 38-42.

4 3.

Sample Output .

Sample .QSTC Output •.

230

243

viii

1. Introduction

Integrated Data Store (I-D-S) is an information-oriented method of
integrating the operating functions of a business. Its use reduces the
high systems and programming costs associated with implementing some
other types of integrated business systems. As a general-purpose system,
it uses mass random access storage as an extension of memory and
provides an efficient data organization technique. In addition, a simple
but effective language is used to operate the system.

Present procedural languages offer programming convenience in field and
sequential record processing. However, they are inadequate for
processing records in the random environment of mass storage. The I-D-S
language provides a simplified means for record processing in the
environment of mass random access storage.

Language statements such as those for read/write operations produce
serial rather than random actions. Ordinarily, the burden of organizing
data records and designing the logic involved in processing and
maintaining these records is placed upon the programmer. ilany of these
processing and maintenance functions are performed automatically by the
I-D-S software system.

1

2. Data Organization

Data organization refers to the interrecord relationships established
within the I-D-S data-file. The record is the basic unit of data. Record
association is achieved through chains which provide cross-reference
linkages between records. These chains provide the integrating force
which is implied in the name Integrated Data Store.

Record
11176

Next
In

Chain X
147

Record
/1147

Figure 1.

Chain X

Record
11849

Next
In

Chain X
849

Chain Association

Next
In

Chain X
1 6

I-D-S records are stored only once. Conventional approaches to file
organization often require records, or certain fields in the records, to
be repeated in several files. With the ability to integrate records into
any number of chains (as required by the system), the same data fields
are available no matter which of its chains are processed. This
technique has five important advantages:

1. Additional space required for duplicate records is eliminated,
resulting in a reduction in the total storage capacity
required.

3

2. The work of data maintenance is greatly reduced, as there is
only one record to retrieve and modify.

3. The possibility that one copy of a record will not be properly
modified is eliminated. Since there is only one copy, any
incorrect information will be quickly recognized and corrected.

4. All reports drawn from the file will be consistent, since there
is only one set of facts (records).

5. Due to the linking capability, the homogeneity of a file needs
no longer to exist and records of different types may be
intermixed to achieve a better utilization of the storage
capacity.

1-0-S CHAINS

An I-D-S chain is illustrated in Figure 2.

All records in a chain are associated in a closed loop, with the last
detail linked back to the master. Its characteristics are:

Contains one master record and any number of detail
records

Links records together in an endless loop
Associates related records in meaningful sequences

Records are to be defined by the user as to their relationship within a
chain--as master or detail records. These relationships are specified,
when the chaining relationship is described, in the data description.

A chain is a set of records that are linked together to form a logical
relationship between records.

A Haster Record is the head of a set of records that make up a chain.
There must be one and only one Master Record for each chain. Detail
records are the other records that are members of the set or chain.

4

Detail 2

Figure 2. I-D-S Chain

Multiple Chains

Chains exist for two separate but closely related reasons. First, the
source documentation or problem analysis shows that a portion of the
information is often cross-referenced. An example is a personnel record
with a variable number of deductions and work experiences.

This kind of information is easily structured by building a personnel
master record type. Two chain types are created containing the personnel
record as the master record. As many deduction records as necessary are
linked into the deduction chain as details. Work experience for the
employee involved is handled in a like manner. Both chains are now
linked to the same master record, as shown in Figure 3.

5

The second case involves the logical association of several
documents. Helating all the purchase order information for a
vendor to the vendor information is an example. A purchase order

source
given
chain

associates all of the purchase order records with their vendor record.

I-D-S chains have several structural aspects which should be emphasized:

6

All similar chains are grouped by chain type.

A chain type is named with a symbolic name. There will be as many
chains of the chain type as there are master records for that chain
type.

Each chain can have only one master record. Its type is the same
for all chains of the same type.

Any number of detail records may be in a chain. A chain may even
contain more than one type of detail record.

Detail records cannot be stored unless their master record already
exists in the file.

Whenever a master record is deleted, its entire chain is also
removed.

f
WORK

!EXPERIENCE
:/fl

PERSONNEL
RECORD
MASTER

i
DEDUCTION

:/fl

WORK
EXPERIENCE

CHAIN
DEDUCTION

WORK
EXPERIENCE

:/f 2

WORK
EXPERIENCE

:/fan

·~ ~·

DEDUCTION
:/fan

1
DEDUCTION

:/f 2

1

Figure 3. Master Record of Two Chains

CHAIN

The master record of the chain contains a code which references the
first detail in the chain.

A record may be defined to be a member in as many
required. It may be defined as master in one chain
another.

chains as are
and detail in

A record cannot be defined as a detail to itself, directly or
indirectly.

7

As records are stored in tne system, they are automatically linked
into their defined chains.

When a record is deleted, the chains in which it is a detail record
are automatically modified to relink around the deleted record,
which will eventually be physically deleted.

STRUCTURE REPRESENTATION

A special graphic technique called I-D-S shorthand has been developed to
display records and their chaining relationships.

Its use is particularly important in developing an over-all view when
planning a database structure. This technique (see Figure 4) uses a
block shape to designate a record type--employee (record type 1) and
deduction (record type 2)--and an arrow connecting two blocks to
designate a chain type. The arrow points from the master to the detail,
as shown in Figure 4.

/'

~

Deduction #1
(detail)

\..

8

....
~

Employee
(master record)

Deducti~n Chain
_t

Deduction
(detail record)

(Expanded Version)

Employee
(master)

....-

(Deduction)
CHAIN

Deduction #2
(detail)

Figure 4. I-D-S Shorthand

'

Deduction #n
(detail)

~

..,,I

In the foregoing example of I-D-S shorthand, the vertical
block-arrow-block sequence carries the following message:

1. There are a number of records in the system of the master type
(one for each employee).

2. Each of these records is the master of a chain of the specified
type (deduction).

3. There are a number of records of the detail type (deductions 1,
2, 3, 4, etc.) in each such chain.

The purchase order data structure (Figure 5) shows how a
and a particular order record from the example shown in
normally structured in the I-D-S system.

vendor
Figure

VENDOR 34692

~-----------
ORDER 147A

r------------

ITEM 1

ITEM 2

ITEM 3

Vendor
Record

Purchase Order Chain

Purchase
Order
Record

Order Item Chain

Order
Item
Record

Inventory
Item

Record

Inventory on Order Chain

Figure 5. Purchase Order Data Structure

record
6 is

9

The purchase order contains four groups of information.

1. Information about the vendor--such as his name, address, and
vendor code.

2. Information about the order--such as the order number, due
date, mode of transportation, and dollar value.

3. Information about the order itern--such as delivery date,
quantity, unit price, and extended dollar value.

4. Information about the inventory
identification and description.

i tern-- such as its

The data structure in Figure 5 shows all four groups and their
associations with only four blocks and three arrows. To expand
structure, four different record types would be designed to carry
information contained in the four groups:

chain
this
the

10

Vendor record--There would be a vendor record for every vendor with
whom the business is concerned:

1. It would be the master record of a purchase order chain.

2. Thus, the vendor record is only a master.

Purchase order record--There would be an order record for each
order currently stored in the system:

Order
i tern

1. It would be a detail in the purchase order chain.

2. Each order, in turn, would be the master of an order item
chain.

3. Thus, the purchase order record is both a master and a
detail.

i tern record--There would be an order i tern record for each
on each order:

1. It would be a detail in the inventory on order chain.

2. It would be a detail in the order i tern chain.

3. Thus, the order i tern record is a detail in two chains.

Inventory item record--There would be an inventory record for each
inventory item currently stored in the system:

It would be the master record of the inventory on order chain.

One expanded data structure concerning Vendor # 34692 for the above
records is shown in Figure 6.

Vendor
ffo34692 --

Ore er Purchase Order
ffol22A Order tf207A ~ .,

Chain

J l
""

Order
--...

ff147A ~ r--1

~ l
Inventory Item ffol Purchase I tern ffo3 Inventory Order Item CCC Qty. 10 Item Qty. 25 Item BBB

l • Chain
"' •

"--+- Item ff2 ~
Qty. 20

l Inventory
Item ffol On Order I tern ffl --Qty. 15 Chain Qty. 5

J
'---

Ipventory
!-----'

Item AAA

Figure 6. Chain Network

11

SUMMARY OF DATA STRUCTURES

By using I-D-S shorthand, very complex data structures may Le presented
in a condensed and understandable form. Figure 7 shows a quick summary
of data structures which are legal and illegal within I-D-S. A circular
definition (item 6), where the master becomes its own detail, is not
allowed.

1.

4.

12

2. 3.

5. 6.

Illegal
Structure

Figure 7. Legal and Illegal I-D-S Data Structures

Record Classes

I-D-S provides three distinct record classes. The designation of the
data records as to class is the option of the systems designer and is
based on the storage and retrieval requirements of these data records.

I-D-S record processing requires that there be some aspect of every
record which makes it unique, or different from any other record. All
records are unique by virtue of their reference code. Some records are
also unique because they contain one or more data fields--such as a
drawing number, order number, and pay number--where no duplicate vlues
are allowed.

CALCULATED RECORDS. Any set of records within the system can be
classified as a calculated record. Its storage and retrieval are based
upon the contents of one or more data fields. The contents of these
fields are externally specified values--such as employee numbers, part
numbers, or order numbers. The contents of these fields are processed
through a randomizing procedure which determines a page number for an
initial storage location. The record is stored on this page. If space is
not available on the calculated page, the record is stored on the next
successive page with available space. The subsequent retrieval of this
record follows this same basic procedure.

SECONDARY RECORDS. Secondary records are unique by their chain
relationship to a specified type of master record. The item records
associated with a purchase order (master) record are good examples of
secondary order records. These records are stored and retrieved by first
locating the purchase order record and then stepping through the order
item chain to locate the item record by comparison of its item number
field.

PRIMARY RECORDS. Records designated in the data description as primary
are unique only as a result of their reference codes. Generally primary
records are used in place of calculated records where the external
assignment of identification fields, such as part number or order
number, is not required. In these cases, an internally generated number
(the reference code) is assigned and used as the key field for storage
and retrieval.

13

1-D-S RECORDS

The I-D-S record contains a set of aa~a fields which collectively
describe the contents of the record. I-D-S augments these records with
identification and chain fields (or chain pointers) as shown in Figure
8.

Identification
Field

t
Data Fields Chain Fields

Figure 8. I-D-S Record

There is at least a chain field generated for each chain the record
participates in.

The chain fields contain the reference codes of other I-D-S records.
They point from one record to the next, creating a circular association
of records (see Figure 1).

These associations are automatically processed according to the data
descriptions and the procedural commands executed. The arrows in Figure
1 indicate the linking actually carried out through storing the
reference code of one record in the body of the prior record.

A reference code is the relative logical (as opposed to physical)
address of a data record. It consists of a page number and a line
number. The reference code is used by I-D-S to develop and assign a
unique address to each data record as it is stored on the mass storage
device. Once a record is assigned a reference code, it maintains that
reference code until it is physically deleted.

The reference code in its 24-bit binary form is available to the user in
a conununication area called DIRECT-REFERENCE immediately after the
record is stored. For internal use, I-D-S uses a binary number of the
form:

XXXXXXYY

where X is the octal page number and Y is the octal line number.

14

The page number is a sequential number permanently assigned to each page
which defines where in the I-D-S environment the page is stored. It
occupies three character positions and permits 262,143 pages per I-D-S
file. At execution time page numbers are converted to actual mass
storage device addresses by the I-D-S mapping routine.

The line number defines where a record is stored within a page. Line
numbers are not sequential within the page because new records are
always stored at the end of a page. Line numbers of deleted records are
made available for use by new records; the first available line number
(the first line number not in use) is assigned to a new record as it is
stored into a page. The line number occupies one character and permits
63 line numbers per page.

For example, a reference code (as contained in DIRECT-REFERENCE) of
00010029 decimal becomes 00023455 when converted to octal. This then is
page 234 (octal), line 55 (octal).

Linking Detail Records of a Chain

In order to insert a new detail record in a chain, three steps are
required:

1. Physical storage space must be found.

2. The appropriate master and its chain must be selected.

3. The record must be inserted in that chain according to the
chain ordering rules.

Selecting Master Record of a Chain

There are two rules under which the master record is selected for a new
detail record. These are:

1. Select Unique Master--This rule uses the record retrieval
criterion, established in the data definition for the master
record, to retrieve the particular master record indicated by
the data values currently stored in the match control field of
Working-Storage.

2. Select Current Master--This rule uses the
processed, of the master record type, as the master
the new detai 1.

last record
record of

15

Chain Ordering

ALL chains in -c.ne Integrated Data Store system are ordered in one of six
methods selected by the system designer with the CHAIN-ORDER clause in
the I-D-S language.

The CHAIN-ORDER clause must be used in each Master Chain Definition
entry.

The six options of the CHAIN-ORDER clause are:

16

1. Sorted--With this option all of the records of the chain are
maintained in a single sequence regardless of the number of
record types in the chain. With this option the same
sorting-key(s) must be used to sort the various records.

2. Sorted Within Type--Wi th this option the records of the chain
are maintained in sequence within record type, independent of
other types.

NOTE: When either of the sorted options is specified, details
are added to the chain based upon the contents of the
defined sort control fields of the detail records.

3. First--Tbis option causes the detail to be added as the first
detail record in the chain relative to the master record.

4. Last--This option causes the detail to be added as the last
detail record in the chain relative to the master record.

5. Before--This option causes the insertion of the detail record
just before the current record in the chain. This option may be
used only in conjunction with the Current r1aster selection
rule.

6. After--This option causes the insertion of the detail record
just after the current record of the chain. This option may be
used only in conjunction with the Current I1aster selection
rule.

Prime Chain

Access time in present disc-type random access memories varies greatly,
since it depends on the position of the desired record relative to the
record last accessed. The I-D-S organization of records acknowledges
this factor of hardware design and stores new detail records as close as
possible to the master record of the chain. When a detail record is
specified as a detail in several chains, a prime chain may be chosen and
defined by the systems designer preparing the data description.
Selection of a prime chain should be based upon an estimate of the most
active chain. Thereafter, when an I-D-S page is retrieved which contains
the master record of a prime chain, it is highly probable that the
detail records of that chain will also be contained in that page or a
page closely associated with it. The prime chain is the chain used to
retrieve a secondary record by the RETRIEVE command, unless specified
otherwise by the data description.

Chain Processing

I-D-S offers complete flexibility in the retrieval of records within a
chain by providing three methods of chain inter-linking.

Chain NEXT. The definition of a record as a memory of a chain
automatically provides the record with a chain-next field. This is the
manner in which all chains are constructed. Each record contains a
chain-next field which contains the reference code of the next record in
the chain.

Chain PRIOR (optional). I-D-S provides a chain-prior field for all
records in a chain when the chain is specified by the system designer as
prior processable. This field contains the reference code of the prior
record in the chain. This permits the chain to be processed efficiently
in a backward direction, as well as forward (through the automatic NEXT
chain field) •

Chain HASTER (optional). I-D-S provides a chain-master field for all
detail records in a chain when specified in the data description. This
field contains the reference code of the master record of the chain.
Retrieval of the master record is much faster with this ability to
address the master record directly from any detail in the chain.
Processing need not access all the detail records in the process of
seeking the master.

17

These methods are illustrated in Figure 9.

Detail tfl

MASTER

e I
x o e
t r r

Detail tf2

N p

e
x
t

e I
x 0
t r

r
i
0
r

Detail ttn

Figure 9. Chain Processing

Chain Tables

Chain tables are used internally by I-D-S subroutines. A chain table is
built by I-D-S for each chain defined. The programmer can reference
selective information in the chain table, and a knowledge of what they
are and how I-D-S uses them can help in designing efficient chains.

A chain table comprises four entries: MASTER, PRIOR, CURRENT and NEXT.
Refer to "Chain Processing" for a description of these entries. As I-D-S
traverses a chain, the entries are updated with the reference codes of
the data records that are being retrieved.

Figure 10 shows a chain using dummy reference codes.

18

Master Record --/" Ref Code = 101 - "

,,
Detail 1 Chain A Detail 3

Ref Code = 105 Ref Code = 407

j~

'- .. Detail 2 ..,,I - Ref Code = 205

Figure 10. Chain with Dununy Reference Codes

To interpret the dummy reference codes: master record is 101, detail
record 1 is 105, detail record 2 is 205, and detail record 3 is 407.

Assume only the reference code of the master record is known. When I-D-S
is asked to get detail record 2 of chain A, I-D-S retrieves the master
record of chain A and traverses the chain until the detail record 2 is
found. While I-D-S is traversing the chain, it is updating the chain
table. When detail record 2 is found, the chain table appears as shown
in Figure 11.

Master 101

Prior 105

Current 205

Next 407

Figure 11. Chain Table After Retrieval of Detail 2

19

Although the chain is not PRIOR processable and is not LINKED TO MASTER,
detail 1 is directly available with a RETRIEVE PRIOR OF CHAIN A command.
Because of the PRIOR entry in the chain table (in Figure 11) , I-D-S
would not traverse the chain forward through detail 3, master record,
etc., to locate detail 1 but would retrieve it directly at the location
stored at the PRIOR entry in the chain table. However, after detail 1 is
retrieved by "backing up, 11 the record prior to detail 1 is not known.
Therefore, the chain table would now appear as shown in Figure 12.

Master 101

Prior 000

Current 105

Next 205

Figure 12. Chain Table Backed Up to Detail 1

If a RETRIEVE PRIOR OF CHAIN A were executed at this point, I-D-S
have to traverse the chain until it found the PRIOR (in this case,
master) record.

would
the

If the chain had been defined as PRIOR processable, the chain table
would be updated as shown in Figure 13.

20

Master 101

Prior 101

Current 105

Next 205

Figure 13. Chain Table for a PRIOR Processable Chain
after Retrieval of Detail 1

If a chain were not PRIOR processable, I-D-S could back up one record as
though it were PRIOR processable if the prior record in the chain had
been passed.

Assume that the reference code of detail 2 is known and the
neither HEADED nor PRIOR processable. If a RETRIEVE DIRECT is
the chain table is updated as shown in Figure 14.

Master 000 (Unknown)

Prior 000 (Unknown)

Current 205

Next 407

chain is
executed,

Figure 14. Chain Table after Direct Retrieval of Detail 2

Since the chain is neither PRIOR processable nor HEADED (LINKED TO
MASTER) and I-D-S did not pass the PRIOR record or the MASTER record in
getting to the CURRENT record, I-D-S does not know the reference code of
the MASTER or the PRIOR record in this chain. It knows where the NEXT
record is because of the chain-next field in detail record 2.

If the chain has been defined as PRIOR processable and HEADED and I-D-S
had retrieved detail 2 DIRECT, the chain table would appear as shown in
Figure 15.

21

Master 101

Prior 105

Current 205

Next 407

Figure 15. Chain Table--PRIOR and HEADED

In this case, MASTER and PRIOR references were available from the chain
fields in detail record 2.

22

3. 1-D-S Programming Language

The source language of I-D-S is an extension of GE-600 Line COBOL;
therefore, formats and language specifications of COBOL must be adhered I
to when preparing a source program.

IDENTIFICATION DIVISION

The purpose and usage of the Identification Division are identical with
those defined for GE-600 Line COBOL, with no special function for I-D-S.

Fixed paragraph names are used as keys in the division. They identify
the type of information contained in the paragraph. Paragraphs which may
be included in the division are:

IDENTIFICATION DIVISION.
PROGRAM-ID.
AUTHOR.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.
REMARKS.

ENVIRONMENT DIVISION

All portions of the Environment Division are used as defined
Line COBOL, in addition, I-D-S includes the IDS-SPECIAL-NAMES
and the SELECT IDS sentence of the FILE-CONTROL paragraph.

by GE-600
paragraph

The following illustration is an example of the Environment Division
with the use of these two I-D-S functions.

23

24

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. GE-635.

OBJECT-COMPUTER. GE-635.

IDS-SPECIAL-NAMES.
IDS BLOCK •••

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IDS file-name ASSIGN TO file-code-1.

I-0-CONTROL.
APPLY .•.

CONFIGURATION SECTION
IDS-SPECIAL-NAMES

Configuration Section, IDS-Special-Names Paragraph

Function: To indicate to the I-D-S translator which statements are to
be selectively translated. To allow definition of a unique
labeled common area for the generated structure of an I-D-S
program. To allow RECORD, CHAIN and FIELD names to be
included with the generated structure. To indicate to the
COBOL compiler all translator generated sections and code are
to be suppressed from the COBOL source listing.

Format Option 1:

IDS-SPECIAL-NAMES.

PROCESS [ALL
\._LEVEL alpha-1 THRU alpha-2} DEBUG STATEMENTS

Format Option 2:

IDS-SPECIAL-NAMES.

IDS BLOCK integer-1.

Format Option 3:

IDS-SPECIAL-NAMES.

INCLUDE STRUCTURE NAMES.

Format Option 4:

IDS-SPECIAL-NAMES.

APPLY LIST SUPPRESSION

Notes:

1. This paragraph may be omitted when its provisions are not used
in the source-program.

Rev. August 1971

25

I

26

2. The PROCESS DEBUG STATEMENTS option is a compiler directing
clause that allows the programmer to specify that all or
certain selected debugging statements in the source program are
to be processed. Debugging statements can be identified by a
single character (A-I) in column 7 of the coding form. When the
prograrrmer wants all the debugging statements in the source
program processed, he specifies this by writing PROCESS ALL
DEBUG STATEMENTS. When the programmer wants certain debugging
statements processed, he specifies this by writing PROCESS
LEVEL alpha-1 DEBUG STATEMENTS. When this is done, only those
debugging statements with the specified character (alpha-1)
appearing in column 7 are processed.

In addition, the programmer can specify that a range of
debugging statements are to be processed by writing PROCESS
LEVEL alpha-1 THRU alpha-2 DEBUG STATEMENTS. When this is done,
all the debugging statements in the range specified (alpha-1
THRU alpha-2) are processed. Note that when debugging
statements identified by a single character in column 7 appear
in the source program and the PROCESS DEBUG STATEMENTS option
is not included in the source program, those statements with a
character in column 7 are unconditionally bypassed (i.e., not
processed) . The PROCESS ALL DEBUG STATEMENTS option has no
effect on statements that have nothing, a hyphen, or an
asterisk in column 7.

Rev. August 1971

3. In option 2 the value of integer-1 may be 01 through 99.

4. If Option 2 is used, the labeled common area in which the I-D-S I
generated structure is assembled will be identified by a symbol
of the form 11 I(integer-l) 11

• If Option 2 is not used, the
default symbol for this area will be 11 .IDS •• 11

• (Refer to the
GE-600 Line General Loader Reference Manual, CPB-1008, for a
discussion of labeled common.)

5.

Example:

IDS-SPECIAL-NAMES.

IDS BLOCK 66.

This would cause the symbol 11 I66 11 to be used for the
generated structure block.

Option 3 is used to cause the names of RECORDS, CHAINS
FIELDS to be assembled into the definition structure of
I-D-S-STRUCTURE SECTION.

I-D-S

and
the

6. Option 3 will have primary use for programs that use the TRACE
and PRINT RECORD, DEBUG, and Utility Subroutine .QSTC, (Chapter
8) •

7. Option 4 gives the user the ability to suppress printing of all
translator generated coding from the COBOL source listing.

8. The following will be suppressed from the COBOL source listing:

a. All I-D-S generated structure within the Working-Storage
Section.

b. All generated calls to the I-D-S subroutines within the
Procedure Division.

c. The generated Macro calls within the I-D-S Structure
Section.

d. All generated tables and constants.

e. All generated Enter Definitions.

9. The statements in IDS-SPECIAL-NAMES paragraph may be in any
desired order.

Rev. August 1971

26.1

I

Input-Output Section, File-Control Paragraph

INPUT-OUTPUT SECTION
FILE-CONTROL

Function: To assign an I-D-S file name and to specify the logical
device on which it resides.

Format:

FILE-CONTROL.

SELECT IDS file-name ASSIGN TO file-code-1.

Notes:

1. The SELECT IDS entry must be used only once to identify the
I-D-S data file.

2. Other optional clauses of the SELECT entry as specified for
COBOL should not be used with the SELECT IDS sentence.

3. File-code-1 must be a two-character word consisting of two
letters (A, ...• ,Z) or a letter and a digit (0, •••• ,9). Each
file code must be unique with respect to other file codes in
the program.

27

DATA DIVISION

The description of the I=D=S data file is contained in a special section
of the Data Division called the IDS Section. This section must
physically follow the Working-Storage Section, if present, and precede
the Constant Section.

The IDS Section contains a File Description, Record Description, and
Chain Definition as required to describe the complete data file.

The following illustration shows the fixed sections of the Data Division
in the order in which they must appear in the source program. A section
may be omitted if it is not needed.

Data Division.
File Section.
Working-Storage Section.
IDS Section.
Constant Section.
Report Section.

File Description

The File Description entry provides information regarding the physical
characteristics of the I-D-S data file. The entry is used only for
documentation purposes and must appear only once in the I-D-S source
program and must be the first entry in the IDS Section.

The entry consists of a level indicator, a file name, and a series of
clauses which define the physical characteristics of the I-D-S file. The
mnemonic level indicator MD is used to identify the start of the File
Description entry and to distinguish it from the Record, Field and Chain
Descriptions. The format for the complete I-D-S File Description entry
follows.

28

COMPLETE I-D-S FILE
DESCRIPTION ENTRY

Complete 1-D-S File Description Entry

Function: To describe the physical structure of an I-D-S file.

Forinat:

MD file-name [;PAGE CONTAINS integer-! CHARACTERS]

[;FILE CONTAINS integer-2 PAGES] •

Notes:

1. The file-name must
SELECT IDS sentence
Environment Division.

be
of

identical to the
the FILE-CONTROL

one used
paragraph

Other optional phrases of the File Description
specified for COBOL do not apply to the IDS Section
not be used.

in
of

the
the

entry as
and must

2. The PAGE size (integer-!) specified may be any value up to a
maximum of 4096 characters. However, the most efficient use of
the storage capacity of the mass storage device involved should
be considered when establishing the page size.

3. The FILE clause expresses the total physical storage
requirements of the I-D-S file. This value must be equivalent
to or less than the capacity which has been reserved for the
file by the allocation procedure of GECOS. See the GE-600 Line
Comprehensive Operating Su~ervisor (GECOS* III) Reference
Manual, CPB-1518, for a discussion of the allocation of
permanent random disc or drum files. The maximum number of
pages possible within the I-D-S page numbering system is
262,143.

4. Page and file size is for documentation only; it is not used
during execution.

*GECOS, Trademark

29

30

5. Page and file size clauses are not required.

6. The clauses may appear in any order within the entry. The
entry must end 1¥-Vi th a period.

7. Example:

IDS SECTION.
MD DATA-BASE: PAGE CONTAINS 1920 CHARACTERS;

FILE CONTAINS 100000 PAGES.
01 UNIT-MASTER-REC;

TYPE IS 070;
RETRIEVAL VIA MASTR FIELD;

02 MASTR;SIZE 8 NUMERIC.
98 UNIT CHAIN MASTER;

CHAIN-ORDER IS SORTED.

Record Description

Record Description entries are used to:

1. Provide information to I-D-S regarding the external format
of each logical record type as it will exist within a page
on the external storage device.

2. Define internal Working-Storage areas which serve as
communication interfaces between the user's routine and
the I-D-S data file.

3. Provide parameters which control I-D-S processing.
parameters are defined at levels 01 and 98.

These

The external format of an I-D-S record consists of control fields and
data fields. Records are stored as fixed-length records. Each record
contains identification fields, a chain field for each chain association
specified, and as many characters of data as required by the level 02
entries.

The level 02 entries are packed into the records, and records are packed
into pages on a character-oriented basis. Computer word orientation is
never used. When a record is retrieved from the storage device, the data
fields of the record are available to the user only after they are moved
to working storage. Before storing a record, the Working-Storage area
must first have been initialized with the data fields of the record to
be stored.

The I-D-S Translator creates an internal Working-Storage area for each
level 02 entry. The area created may contain subfields which are defined
by lower level entries and may be separately referenced by user COBOL
procedure statements. However, I-D-S operates only on units of data
defined by the level 02 entry. Therefore, any field that is to serve
either as a control field or that is to be modified by I-D-S must be
defined as a level 02 entry.

The Translator produces parameters from the clauses that are defined at
levels 01 and 98. Lower level entries (03-49) may be used to define
subfields of the level 02 entry. Any legal COBOL description clause may
be used as long as it does not contradict the description provided for
the level 02 entry. For a further clarification of the GE-600 Line COBOL
Reference Manual, CPB-1652.

The parameters are described in detail on the following pages.

31

The level 02 data names may not be used for qualification. Qualification
of lower level entries up to level 02 is permissible. If the same data
name occurs as an 02 entry for different record types, the same
Working-Storage area will be shared by ti~e various records involved.

Standard COBOL record description clauses allowed at level 02 are
REDEFINES and FILLER. They do not generate Working-Storage areas.

REDEFINES may be used for redefinition of an area previously defined.
This enables COBOL procedural statements to reference the
Working-Storage area by either of its definitions. The field-oriented
functions of I-D-S (MOVE, MODIFY), however, respond only to the original
definition of the field.

The use of FILLER as a data-name creates space in the external format
only.

Although the PICTURE clause is the significant element of the
description, any of the standard COBOL clauses may be used
following exceptions:

32

OCCURS
RENAMES
Editing clauses
COPY

level 02
with the

COMPLE'I'E I-D-S RECORD
DESCRIPTION ENTRY

Complete 1-D-S Record Description Entry

Function: To specify the parameters which define an I-D-S record.

Format:

01 record-name; TYPE IS integer-1

;RETRIEVAL VIA
{

field-name FIELD}
{~~~n-name-1} CHAIN

[;PAGE-RANGE
jinteger-2 TO integer-3 }]

IS~field-name-1 TO field-name-2

[;PLACE NEAR chain-name-2 CHAIN]

[;INTERVAL IS integer-4 PAGES]

[;AUTHORITY IS integer-s]

Notes:

1. Each of the above clauses is applicable only at record level
01.

2. Record-name must be unique, since qualification by file name is
not meaningful.

3. The clauses may appear in any order within the entry. The
entry must end with a period.

4. All format considerations are as specified for COBOL.

33

Type

Function: To define the Record Type code to be used for reference
purposes for each record type within I-D-S.

Format: TYPE IS integer-1

Notes:

1. This clause is required for each level 01 entry.

2. Integer-1 may be any value from 1 to 999.

34

RETRIEVAL VIA

Retrieval Via

Function: To specify procedures for retrieving and storing a record.

Format:

;RETRIEVAL VIA
{,field-name _(~:~n-name-1} FIEL~~ CHAI;

Notes:

1. This clause is required for each level 01 entry.

2. Records specified for RETRIEVAL VIA field-name FIELD are
referred to as primary records.

Field-name must be defined at level 02 in this record. It must
be specified as:

02 field-name PICTURE 9(8).

The field is not stored in the record;
working storage. The field-name FIELD
retrieval field.

is
it exists

called

If the user wishes to retrieve a primary record
RETRIEVE record-name RECORD statement of the
Division, he must first initialize the field-name
reference code of the record to be retrieved.

only in
the prime

using the
Procedure
with the

When a primary record is stored, its reference code is placed I
into DIRECT-REFERENCE. The user may specify the page where he
wishes a primary record stored by placing its reference code in
the DIRECT-REFERENCE. Zeros may also be stored in
DIRECT-REFERENCE which causes the record to be stored on a page
most convenient to I-D-S.

Placement of primary records can be modified by the PAGE-RANGE,
PLACE NEAR, and INTERVAL clauses.

Rev. August 1971

35

I

36

3. Records specified for RETRIEVAL VIA chain-name-1 CHAIN are
referred to as secondary records and are retrieved by their
association in the named chain. The chain-name-1 CHAIN is the
prime retrieval chain for the record.

When the RETRIEVAL VIA chain-name-1 CHAIN clause is used, the
record must be specified at level 98 as chain-name-1 CHAIN
DETAIL.

When the RETRIEVE record-name RECORD statement of the Procedure
Division is used, the master record of the chain-name-1 CHAIN
is first retrieved. Then the specific detail record is found by
searching the chain.

If the CHAIN-ORDER is FIRST or LAST, then the RETRIEVAL VIA
chain-name CHAIN clause causes the record to be stored on the
page of the master record of the chain named in the clause.
Otherwise, the record is stored in the page of the current
record of the chain named. When a secondary record is stored,
I-D-S places its binary reference code into DIRECT-REFERENCE.
Placement of secondary records can be modified by PAGE-RANGE,
PLACE-NEAR, and INTERVAL clauses.

4. Records specified for RETRIEVAL VIA CALC CHAIN are referred to
as calculated records.

RETRIEVAL VIA CALC CHAIN operates the same as RETRIEVAL VIA
chain-name-1 CHAIN, except that the master record of the chain
is a Page Header record. The CALC CHAIN is called the prime
retrieval chain for the record.

When the RETRIEVAL VIA CALC CHAIN clause is used, the record
must be specified at level 98 as a CALC CHAIN DETAIL.

When the RETRIEVE record-name RECORD statement of the Procedure
Division is used, the Page Header record is first retrieved.
Then the specific detail record is found by searching the CALC
chain. The Page Header record is found by randomizing the
values in the control fields defined in the detail record to be
retrieved. The number resulting from the randomization is
mapped into the effective page range of the detail record to be
retrieved, thereby yielding the page number of the Page Header
record whose CALC chain is to be searched.

Rev. August 1971

The RETRIEVAL VIA CALC CHAIN clause causes the record
stored on the page calculated by randomizing on control
and mapping into the effective page range of the record.

to be
fields

Placement of calculated records may be modified by the
PAGE-RANGE clause. PLACE NEAR and INTERVAL clauses do not apply
to calculated records.

5. These three RETRIEVAL procedures provide a basis for
classification of each record as one of the following:

Primary Retrieved directly via reference code
Secondary - Retrieved via its chain association
Calculated - Randomized to the page containing the chain

which leads to the record.

Subsequent discussions of I-D-S will refer to records using these
terms.

37

PAGE-RANGE

Page-Range

Function: To provide a method for placing various record types within a
designated segment of an I-D-S file.

Format: [PAGE-RANGE IS
Jinteger-2 TO

\:ield-name-1

Notes:

38

1. Integer-2 and integer-3 represent the first and last page
numbers of a series of pages in which records of a particular
type are stored. If integer-2 is greater than integer-3, the
series of pages wraps around the end of the file and terminates
at a lower page number.

For example, if a 900-page file contained record types
and C, each record type could be isolated in a segment
file by specifying a page range of 1 to 300 for A, 301
for B, and 601 to 900 for c.

A,
of
to

B,
the
600

2. The page numbers must fall within the total number of pages
specified for the file.

3. Different types of records may share the same page range.

4. The PAGE-RANGE clause delimits the action of the RETRIEVAL VIA,
PLACE NEAR, and INTERVAL clauses.

5. The PAGE-RANGE clause may be used for calculated records.

6. If PAGE-RANGE is not specified, the range is assumed to be
equal to the page range of the entire file.

7. If the field name option is used, field-name-1 and field-name-2
must be defined in Working-Storage.

Example:

77 field-name-1
77 f ield-name-2

PIC 9(6) COMP-1.
PIC 9(6) COMP-1.

8. The page range values must be placed in field-name-1 and
f ield-name-2 prior to STORE of the record or prior to RETRIEVE
of the record.

9. Example:

IDS SECTION.
MD DATA-BASE; PAGE CONTAINS 1920 CHARACTERS;

FILE CONTAINS 100000 PAGES.
01 UNIT-MASTER-REC;

TYPE IS 070;
RETRIEVAL VIA MASTR FIELD;

02 MASTR PICTURE 9(8).
98 UNIT CHAIN MASTER;

CHAIN-ORDER IS SORTED.

01 UNIT-REC;

01 QUAD4

TYPE IS 010;
RETRIEVAL VIA CALC CHAIN;
PAGE RANGE IS 1 TO 20000.

TYPE IS 004
RETRIEVAL VIA CALC CHAIN
PAGE-RANGE IS RNG-1 TO RNG-2.

39

Place Near

Function: To store a record physically near the master record of a
specified chain.

Format:

~PLACE NEAR chain-name-2 CHAIN]

Notes:

40

1. Chain-name-2 must be a defined chain name. The record
placed must be specified at level 98 as a detail of the
named in the PLACE NEAR clause.

to be
chain

2. The PLACE NEAR clause may only be used with primary and
secondary records.

3. If the CHAIN-ORDER is SORTED, SORTED WITHIN TYPE, FIRST or
LAST, the record is stored on the page of the master record of
the chain named in the PLACE-NEAR clause. Otherwise, the record
is stored in the page of the current record of the chain.

4. If a current record of the type named exists, the INTERVAL
clause supersedes this clause.

5. The PAGE-RANGE clause supersedes this clause when a conflict
occurs.

6. Records stored using this clause are subject to the overflow
rule.

INTERVAL

Interval

Function: To enable uniform distribution of records of a given type
across the I-D-S file.

Format:

[_;INTERVAL IS integer-4 PAGES]

Notes:

1. Integer-4 represents the number of pages which will be skipped
when a record is stored.

2. The INTERVAL clause may only be used with primary and secondary
records.

3. Normally, primary records are stored physically according to a
reference code furnished by the user. Secondary records are
stored physically near the master record of the chain specified
in the RETRIEVAL VIA chain-name-1 CHAIN clause or according to
a PLACE NEAR clause. When INTERVAL is used, the above criteria
apply only to the first record of the stored type. That is, if
I-D-S has not processed a record of this type, the CURRENT
record value is zero and INTERVAL is not in effect. Subsequent
records are stored integer-4 pages away from the current record
of the specified type. The current record is either the last
record of the type stored or the last record of the type
retrieved.

For example, if the last record of type A is stored on page 5
and interval is 3, the next record of type A would be stored on
page 8.

4. The INTERVAL clause is used normally for initial file loading
of primary master records. By specifying an interval, the user
can ensure sufficient space between the master records to store
the detail records in their chains.

5. When INTERVAL reaches the end of the page-range or end of the
file, it reverts either to the beginning of the page-range or
to the beginning of the file.

6. Records stored using this clause are subject to the overflow
rule.

7. Application of INTERVAL by I-D-S
computer runs. If it is to continue
reinitialized by retrieving the
processed in the previous run which
run. Storage may continue from this

is not continuous between
from day to day, it must be
last record of the type
makes it current in this
point.

41

AUTHORITY

Authority

Function: To safeguard data in a record against unauthorized reference
or modification.

Format:

EAUTHORITY IS integer-~

NOTE: Integer-5 may be any value not exceeding 4095(10). The value

42

supplied is used as a lock for data in any record of this type.
When this record is referred to during execution, a key must have
been supplied that matches the lock. The key is supplied by the
OPEN statement which is defined in the Procedure Division.

Chain Definition

A record belongs to at least one, and possibly many chains. A Chain
Definition entry must exist for each chain in which the record is
included. All Chain Definition entries for a given record must
immediately follow the Record Description entries for that record.

The Chain Definition entry consists of a level 98 indicator which names
the chain that a level 01 record is either a detail or master in, a
chain name, and a series of clauses which define the ·characteristics of
the chain. The complete Chain Definition entry skeleton and a detailed
description of the clauses follow.

43

COMPLETE CHAIN
DEFINITION ENTRY

Complete Chain Definition Entry

Function: To name and describe the interrecord relationship between a
master and detail record and to direct the placement of a
record into the I-D-S file.

Format Option 1 (Master) :

98 chain-name-1 CHAIN MASTER

;CHAIN-ORDER IS

{

SORTED WITHIN
SORTED
FIRST
LAST
BEFORE
AFTER

TYPE}

G LINKED TO PRIO~

Format Option 2 (Detail):

98
{

chain-name-2}
CALC

CHAIN DETAIL

GRANDOMIZE ON field-name-1 [RANDOMIZE ••]

~DUPLICATES {~: ~~T 11 L NOT ALLOWED..o

t ~ASCENDING KEY IS field-name-2
DESCENDING

'- {ASCENDING ••• ~l]
L DESCENDING •• f J

[ASCENDING RANGE KEY IS field-name-TI

I; SELECT {UNIQUE } MASTE;i
L CURRENT j

GHATCH-KEY IS field-name-4 [V!ATCH-KEY ••]

lMATCH-KEY IS field-name-5 ~~~ONY field-name-4 [-1ATCH-KEY •• ~

[LINKED to MASTE~

44

MASTER/DETAIL

Master /Detail

Function: To desc~ibe a record as either a detail or master of a chain.

Format Option 1:

98 chain-name-1 CHAIN MASTER

Format Option 2:

98

Notes:

{
chain-name-2}
CALC

CHAIN DETAIL

1. This entry must be a level 98.

2. Option 1 defines a record as the master record of a
structure. One option 1 entry is required for each
structure for which the record is the master. A single
structure can have only one master record but a single
can be the master of more than one chain structure.

chain
chain
chain

record

In the example below UNIT-REC is a master record in the
SUB-UNIT CHAIN, the ASSIGNMENT CHAIN and the COMPLEMENT CHAIN.

3. Option 2 defines a record as a detail record in a chain
structure. One option 2 entry is required for each chain
structure in which the record is a detail. A record may be a
detail in more than one chain structure. A single chain
structure can be made up of any number of detail record types.

In the example below UNIT-REC is a detail record in the CALC
CHAIN and the UNIT CHAIN.

4. The record may be a master in one chain structure and a detail
in another. In this case, both options are required for that
record. A record may not be defined as both MASTER and DETAIL
in the same chain.

In the example below, UNIT-REC is a master record in the
SUB-UNIT CHAIN, the ASSIGNHENT CHAIN and the COMPLEMENT CHAIN.
It is also a detail record in the CALC CHAIN and UNIT CHAIN.

45

46

5. ~r tne RETRIEVAL VIA chain-name-1 CHAIN or RETRIEVAL VIA CALC
CHAIN clause is used in the level 01 Record Description entry,
an option 2 entry must name the appropriate chain structure.

The following statements illustrate this rule:

01 SUB-UNIT REC;
TYPE IS 030;
RETRIEVAL VIA SUB-UNIT CHAIN;
PAGE-RANGE IS 1 TO 20000.

02 SUB-UNIT-CODE; SIZE 4 NUMERIC.
98 SUB-UNIT CHAIN DETAIL;

6. Example:

01 UNIT-REC;
TYPE IS 010;
RETRIEVAL VIA CALC CHAIN;
PAGE RANGE IS 1 TO 20000.

02 UNIT-CODE: SIZE 4 NUMERIC.
03 DIVISION-CODE: SIZE 1 NUMERIC.
03 DEPARTMENT-CODE: SIZE 1 NUMERIC.
03 GROUP-CODE: SIZE 1 NUMERIC.
03 SECTION-CODE: SIZE 1 NUMERIC.

02 REPORTING-UNIT: SIZE 4 NUMERIC.
02 ORG-NAME: SIZE 20 ALPHANUMERIC.
02 TOTAL-BUDGET: SIZE 7 NUMERIC.
98 CALC CHAIN DETAIL;

RANDOMIZE UNIT-CODE.
98 SUB-UNIT CHAIN MASTER;

CHAIN-ORDER IS SORTED.
98 ASSIGNMENT CHAIN MASTER;

CHAIN-ORDER IS FIRST.
98 COMPLEMENT CHAIN BASTER;

CHAIN-ORDER IS SORTED.
98 UNIT CHAIN DETAIL;

SELECT CURRENT MASTER;
ASCENDING KEY IS UNIT-CODE;
DUPLICATES NOT ALLOWED.

CHAIN-ORDER

Chain-Order

Function: To specify the criteria for sequencing detail records within
a chain.

Format:

;CHAIN-ORDER IS SORTED

{

SORTED WITHIN TYPE}

Notes:

FIRST
LAST
BEFORE
AFTER

1. This clause must be used in each Master Chain Definition entry
(option 1).

2. If either SORTED or SORTED WITHIN TYPE is used, detail records
are positioned in the chain according to the value of their
sort control fields.

If SORTED is used, the various records of the chain are
maintained in a single sequence regardless of tl1e number of
record types in the chain. The size and class of sort control
fields of the various records must be identical.

If SORTED WITHIN TYPE is used, records of the chain are
maintained in sequence within a record type, independent of
other types. This does not mean that there is an implied major
sort by record type code. It means only that when a given type
of record is considered, it is in sequence by its own sort key.

An example of a SORTED and SORTED WITHIN TYPE chain follows.

47

48

Sorted Chain

~ .----TY ___ P_E_l __ J

VALUE 56

TYPE 2
VALUE 67

TYPE 1
VALUE 68

1 CHAIN-W,STER r

TYPE 3
VALUE 78

Sorted Within Type Chain

TYPE 1
VALUE 56

TYPE 2
VALUE 67

TYPE 3
VALUE 78

TYPE 4
VALUE 89

~E4
VALUE 101

TYPE 3
VALUE 90

TYPE 4
VALUE 89

TYPE 2
VALUE 79

TYPE 3
VALUE 90

TYPE 4
VALUE 101

TYPE 1
VALUE 68

TYPE 2
VALUE 79

3. The last four forms, FIRST, LAST, BEFORE, and AFTER, of this
clause cause a detail record to be inserted in the chain
relative to some other record in the chain. These options are:

FIRST

LAST

Insert detail record in chain immediately following the
master record.

Insert detail record in chain immediately preceding the
master record.

BEFORE Insert detail record in chain immediately preceding the
current record of chain.

AFTER Insert detail record in chain immediately following the
current record of chain.

The current record of a chain will always be the master record
if SELECT UNIQUE MASTER has been specified.

The selection of the BEFORE and LAST Options causes I-D-S to
create an extra chain field which contains the reference code
of the immediately preceding record of the chain.

BEFORE causes the creation of this field in all record types of
the chain. LAST introduces this field in the master record type
only.

The BEFORE and AFTER forms are compatible only with the SELECT
CURRENT MASTER clause.

If the chain has been defined as LINKED TO PRIOR and the
CHAIN-ORDER IS BEFORE clause is used, the records in the chain
are assigned only one chain field PRIOR; there is no
duplication of chain fields.

4. When a record is defined as a detail of a calculated chain, no
order is maintained because calculated chains have no defined
sequence control.

49

LINKED PRIOR

Linked Prior

Function: To provide an additional chain field in each record of a
chain which contains the reference code of the immediately
preceding record in the chain. This field allows a chain to
be traversed in either direction.

Format:

~LINKED TO PRiofil

Notes:

50

1. This clause is used only in the Master Chain Definition entry
(option 1). It provides a prior chain field in each record of
the chain so that the chain may be traversed in either
direction. This feature is especially serviceable when using
either the RETRIEVE PRIOR or MODIFY verbs. It also enables the
immediate removal of a deleted record which would otherwise
stay linked in this chain until the chain was traversed again.

2. Chain PRIOR fields have two disadvantages. First, the record
size is increased to provide space for th0 additional field.
Second, the linking process is slower because the chain PRIOR
field of the next record must be adjusted when a new record is
inserted.

3. When the CHAIN-ORDER IS BEFORE clause is specified, I-D-S
automatically provides a chain PRIOR field for all record types
defined for that chain.

When the CHAIN-ORDER IS LAST is specified, I-D-S automatically
provides a chain PRIOR field for the master record only.

RANDOMIZE

Randomize

Function: To specify those fields of a calculated record used to
generate the page number for record placement and retrieval.

Format:

ERANDOMIZE ON field-name-1 ERANDOMIZE •• :fJ
Notes:

1. RANDOMIZE must be used for each calculated record.

2. Field-name-1 must be a level 02 field contained in the record
being stored or retrieved.

3. The randomizing routine of I-D-S uses as many fields as are
specified.

4. The word RANDOMIZE must precede each control field specified.

5. The fields designated as RANDOMIZE fields are compared at
record storage time. An attempt to store a record with
identical RANDOMIZE field values will be rejected as an error.

6. This clause may only be used when RETRIEVAL VIA CALC CHAIN is
specified at level 01.

51

DUPLICATES

Duplicates

Function: To specify whether records with identical sort key values may
exist in a chain and, if permitted, what ordering action
should be taken.

Format:

rUPLICATES
{

ARE FIRST ~
ARE LAST
NOT ALLOWED

Notes:

52

1. This clause must be used and only used when the chain has been
defined as a sorted chain by the CHAIN-ORDER clause.

2. When duplicates are allowed, the new detail may be
as the FIRST or LAST of the string of records with
sort key values.

positioned
identical

3. If duplicates are not allowed and an attempt is made to link
records with identical sort key values (STORE or MODIFY), an
error code is placed in the ERROR-REFERENCE communication area
and the duplicate record is rejected.

It is the user's responsibility to examine this communication
area.

4. Duplicates are not allowed in a CALC chain; however, it is not
necessary to write the DUPLICATES NOT ALLOWED clause. Since
CALC chains have no sequence, I-D-S ensures that there are no
duplicates by searching the entire CALC chain before attempting
to store a new CALC record.

ASCENDING/DESCENDING

Ascending/ Descending

Function: To specify those data fields which control the sequence of
detail records in a chain.

Format Option 1:

[{

ASCENDING }
KEY

DESCENDING
IS field-name-2 [{

ASCENDING •. }]n
DES CE ND ING lJ

Format Option 2:

[ASCENDING RANGE KEY IS fie ld-name-3]

Notes:

1. This clause must be used when a chain has been defined as a
SORTED or SORTED WITHIN TYPE chain.

For example: 01 UNIT-MASTER-REC;
TYPE IS 070;
RETRIEVAL VIA MASTR FIELD.

02 MASTR; SIZE 8 NUMERIC.
98 UNIT CHAIN MASTER;

CHAIN-ORDER IS SORTED.

01 UNIT-REC;
TYPE IS 010;
RETRIEVAL VIA CALC CHAIN;
PAGE RANGE IS 1 TO 20000.

02 UNIT-CODE; SIZE 4 NUMERIC.
02 REPORTING-UNIT; SIZE 4 NUMERIC.
02 ORG-NAME; SIZE 20 ALPHANUMERIC.
02 TOTAL-BUDGET; SIZE 7 NUMERIC.
98 UNIT CHAIN DETAIL;

ASCENDING KEY IS UNIT-CODE;
DUPLICATES NOT ALLOWED;
SELECT UNIQUE MASTER;
MATCH-KEY IS MASTR.

2. Field-name-2 must be a level 02 field entry within the record
being defined. In the above example, UNIT-CODE meets this
requirement. However, field-name-2 may not be a level 02 field
entry which has been specified at level 01 as a RETRIEVAL VIA
field-name FIELD. In the above example MASTR cannot be a KEY.

53

54

3. \\Then rr1ultiple sort control keys are required to define a chain
sequence, the various field-names must be presented in sequence
from major control field to minor, thus establishing the sort
level of each field. Each sort control key must be
independently defined as either ASCENDING or DESCENDING.

When ASCENDING is used, the sorted sequence will be from lowest
value of key to highest value.

When DESCENDING is used, the sorted sequence will be from
highest value of key to lowest value.

4. Option 2, ASCENDING RANGE KEY is used when the record is to
serve as a range master. A range master is a detail record in a
sorted chain. In addition, it is the master of a chain which
includes detail records falling within the range of the range
master. The value contained in field-name-3 controls the
ascending sequence of the range masters. It also defines the
upper range limit of details referenced by the range master.

Range masters are used primarily to segment long sorted chains.
The purpose is to reduce access time in reaching the detail
records.

The ASCENDING RANGE KEY clause modifies the search method of
the RETRIEVE record-name RECORD and STORE record-name RECORD
statements by searching the chain until the sort key value of
the retrieved record is equal to or greater than the
working-storage value of the record to be---retr1eved or stored.

If the RANGE option is not specified, the chain is searched
until the sort key value of the retrieved record is equal to
the working-storage value of the record to be retrieved.

A payroll master chain structure of employee detail records is
illustrated below:

Payroll Employee
Master __.. Detail --..,..
Record Record

.Master Chain

By introducing range masters into the structure, the one long
chain could be divided into several smaller ones. The structure
would look like this:

Payroll Payroll Employee
Master _.. Range _.... Detail
Record Master Record

Master Chain Range Chain

The steps used to create this structure include:

1. Define Payroll Master record.

a. Designate it master record of Payroll-Master chain.

b. Designate CHAIN-ORDER as SORTED or SORTED WITHIN
TYPE.

2. Define Payroll Range Master record.

a. Name within it a field RANGE-NO.

b. Designate it as a
Payroll-Master chain.

detail record in

c. Name RANGE-NO field as an ASCENDING RANGE KEY.

the

d. Designate it master record of Payroll-Range chain.

3. Define Employee Detail record.

a. Name within it a field EMPL-NO.

b. Designate it as a detail record in Payroll-Range
chain.

c. Name RANGE-NO as MATCH-KEY for the Payroll-Range
chain.

d. Name EMPL-NO as a sort key or match-key for this
record.

At execute time the user would identify a range master by
placing an employee number into RANGE-NO in working-storage.
I-D-S selects the first range master in sequence whose value in
RANGE-NO is equal to or greater than the value placed in
RANGE-NO in working-storage. Once the range master is found,
the detail record can be stored or retrieved along its chain by
using EMPL-NO as control.

55

Select

Function: To specify the rule for selecting a specific master record
from all master records of a given type when a detail record
is being stored or retrieved by the RETRIEVE record-name
RECORD statement or STORE record-name RECORD statement.

Format:

~SELECT
{

UNIQUE}

CURRENT

Notes:

56

1. One of the two forms of the SELECT clause must be used in each
Chain Description entry which specifies a level 98 chain
detail. The SELECT clause does not apply to a CALC CHAIN DETAIL
because the Page Header record (specified by the output of the
randomizing procedure) is the unique master to be selected.

2. When UNIQUE is specified, the master is selected by matching
the data field values in a master record with those initialized
by the user in working storage. The fields to be initialized
are those specified as MATCH-KEY fields in the level 98 entry.

3. When CURRENT is specified, the master of a cha.in relevant to
current detail record of the named chain is selected. If the
current record of the named chain is already the master, then
it is selected. The responsibility for establishing the current
master of the chain-name is left to the user.

MATCH-KEY

Match-Key

Function: To specify those fields which must be initialized by the user
in working-storage to allow unique identification of the
master record of a chain.

Format:

~TCH-KEY is field-name-4

Notes:

1. This clause applies only to option 2 of the Chain Definition
Entry. It must be used in conjunction with the SELECT UNIQUE
MASTER clause.

2. Only those fields necessary to uniquely select the appropriate
master need be specified. If the master is a detail record in a
higher level chain structure, match-key fields for selection of
its master are named with it, but need not be named with this
record. For example:

Master
Record A

Chain A

Master
Record B

Chain B

Detail
Record c

When Master Record B is defined as a detail in Chain A,
match-key fields are named for Master Record A. When Detail
Record C is defined as a detail in Chain B, match-key fields
are named for Master Record B, not for Master Record A.

57

58

3. The fields named in MATCH-KEY clauses depend upon the RETRIEVAL
clauses specified for each of the higher-level master records
defining the hierarchical structure which includes this record
as a detail.

The following rules should be used in naming the appropriate
master record fields with MATCH-KEY clauses in this record.

If the master record is defined as a primary record by the
RETRIEVAL VIA field-name FIELD clause, the field-name must
be named as a MATCH-KEY field-name for the detail record.

If the master record is defined as a secondary record by the
RETRIEVAL VIA chain-name CHAIN clause, each of the data
fields which control the retrieval of the master record must
be named as MATCH-KEY field names in this detail record.
Thus, it is necessary that the master record be either in a
sorted chain (sort keys) or a calculated chain (randomize
keys) •

If the master record is defined as a calculated record by
the RETRIEVAL VIA CALC CHAIN clause, the RANDOMIZE fields
for that master must be named as MATCH-KEY fields.

4. All applicable MATCH-KEY fields must be initialized in working
storage with the desired values before storing the record or
before retrieving it using the RETRIEVE record-name RECORD
verb. This includes the match-key fields for all higher level
master records involved in the chaining structure even though
the fields were not named with this record.

SYNONYM

Synonym

Function: To specify an alternate name for a field defined as a
MATCH-KEY field.

Format:

[MATCH-KEY IS [field-name-5 {~ONYM}J field-name-~

Notes:

1. The use of the SYNONYM option within the MATCH-KEY clause
defines an alternate name (field-name-5) for the MATCH-KEY
field (field-name-4).

2. The alternate name (field-name-5) must have been previously
defined in the Working-Storage Section in exactly the same
format as the MATCH-KEY field for which it is an alternate.

3. Example:

MASTER RECORD
TYPE X

Control Field=lOO

CHAIN A

DETAIL

MASTER RECORD
TYPE X

Control Field=200

CHAIN B

DETAIL

Detail record type Y is defined in chain structures A and B.
Chains A and B have the same record type (X) as their master
records. Therefore, each of the two different master records of
type X ~ust be uniquely identified when the type Y detail
record is stored.

I-D-S stores the detail record into Chain A with one store
operation. The master record control field is named with a
MATCH-KEY clause when detail Y is defined in both chains. In
addition, for Chain B, an alternate working-storage area is
named using the SYNONYM clause. Before storing the record, the
user must initialize field-name-4 for the master record control
field to 100 and the SYNONYM field-name-5 with 200.

59

LINKED-MASTER

Linked-Master

Function: To provide an extra chain field for each detail record of the
chain which points to the master record of the chain.

Format:

[LINKED TO l'v1ASTERJ

Note:

60

This optional clause can improve the operation of the system by
providing a direct path from each detail to the master of the
chain, thus eliminating the need for processing all of the
intervening detail records serially.

PROCEDURE DIVISION

Execution of I-D-S procedural statements will STORE, RETRIEVE, MOVE TO
WORKING-STORAGE, MODIFY and DELETE records. In addition, these
statements will maintain the structure of the data file created by the
defined chain relationships.

The communication interface between I-D-S procedural statements and
balance of the COBOL Procedure Division is the working-storage
which are established for each level 02 field defined in the
description entries of the I-D-S Section. All COBOL references to
from the I-D-S file are to these working-storage areas.

the
areas
field
data

The procedural statements of I-D-S may appear anywhere in the context of
the COBOL Procedure Division. An I-D-S sentence must be preceded by
ENTER IDS and terminated by a period. The sentence may contain any
number of I-D-S statements. A paragraph name or section name may be
assigned to an I-D-S sentence in a manner consistent with normal COBOL
format.

The following pages describe these various statement and verb formats.

1-D-S Imperative Statements

The imperative statements included in this section are provided as a
part of the I-D-S language to extend the function of the basic STORE and
RETRIEVE verbs. The DELETE, HEAD, MODIFY and MOVE statements apply only
to the RETRIEVE verb; the DEBUG and GO statements may be used with
either verb. OPEN must be used prior """to any other I-D-S statements;
CLOSE is self-explanatory.

When these statements are used, they must occur in the order
they are to be executed. They may be contained within the
beginning with the basic verb and ending with a period, or they
used as separate sentences preceded by ENTER IDS.

in which
sentence

may be

The specific formats of these statements and detailed discussions of the
restrictions and limitations associated with each appear on the
following pages.

61

Close

Function: To transfer all modified I-D-S pages currently residing in
the core buffers to the mass storage unit.

Format OPTION 1:

CLOSE

Format OPTION 2:

CLOSE WITH LOCK

Notes:

62

1. This statement must be executed before any COBOL STOP RUN
statement. No automatic closing takes place.

2. OPTION 2 will insure that the data base cannot be opened again
during the execution of the run unit.

3. See (Chapter 6, Accessing an I-D-S File) for Sample Deck set
up.

Debug

Function: To permit the selective dumping of pages, records, current
data of program chain tables, or records of chain. The output
produced will appear on the system execution report.

Format:

DEBUG CURRENT RECORD ~
BUFFER}

RECORD •••
[{

BUFFER }~~

Notes:

1.

CC BLOC CC BLOC

(Lchain-name-2 CHAI~
and

[TRACE chain-name-3 CHAI~

Chain-name-2 and chain-name-3 must be
defined by level 98 entries in the IDS
Division.

names of
Section of

chains as
the Data

2. The BUFFER option will result in an octal/BCD printout of the
current page of the I-D-S data file.

3.

4.

5.

6.

The RECORD option will result in an octal/BCD printout
logical record last accessed by a successful STORE or
verb.

of the
RETRIEVE

The CCBLOC option will result in a printout of the following
format:

DIRECT REFERENCE Ref. Code in octal Ref. Code in BCD
FIRST REFERENCE Ref. Code in octal Ref. Code in BCD
LAST REFERENCE Ref. Code in octal Ref. Code in BCD
RECORD TYPE Rec. Type in octal Rec. Type in BCD
ERROR REFERENCE Error Code in BCD

The chain-name-2 CHAIN clause will result in an octal/BCD
printout of the reference codes of the named chain as follows:

CHAIN TABLE HEAD Ref. Code in octal Ref. Code in BCD
CHAIN TABLE PRIOR Ref. Code in octal Ref. Code in BCD
CHAIN TABLE CURRENT Ref. Code in octal Ref. Code in BCD
CHAIN TABLE NEXT Ref. Code in octal Ref. Code in BCD

The TRACE chain-name-3 CHAIN clause will result in a
side-by-side octal/BCD printout of all of the records contained
within the specified chain.

63

Delete

Function: To delete the current record of the orooram and
from all chains in which it is a detail to make
unavailable for processing and, optionally,
certain functions when specified detail record
accessed during the deletion process.

remove it
the record
to perform

types are

Format:

;DELETE[CURRENT record-name-I RECORD [JN record-name-2 DETAIL

E~OVE TO WORKING-STORAG~

E;EAD chain-name-1 CHAIN

~ERFORM procedure-name-~

@o TO procedure-name-~] J
[c:::RWISE} ON record-name-3 DETAIL •• J

Notes:

64

1. The record deleted by the DELETE statement is the record last
retrieved (CURRENT) by the RETRIEVE verb.

2. The deletion process deletes a record only when there are no
dependent details in its chains. When details are present, the
system first attempts to delete the dependent detail records.
Since the hierarchical data structure of I-D-S may involve many
levels of detail records, this statement should be used with
care.

3. The execution of a DELETE statement makes the record retrieved
unavailable for any further processing, and an attempt to
reference such a record results in an error condition.

4. The conditional statement ON record-name-2 DETAIL is used only
when it is necessary to interrupt the deletion process when a
dependent detail of the type named by record-name-2 is
encountered. When the statement is used, various imperative
statements immediately following are executed prior to the
actual deletion of the detail record. After the execution of
these statements, the deletion process is continued unless one
of the statements was a GO TO statement. In this case, control
is not returned to the deletion process. When the record
encountered is not the type named by record-name-2 it is
compared with the type named by record-name-3. The reserved
words OTHERWISE or ELSE separate the tests for different record
types that may be encountered. A record encountered which does
not match any of the specified record types is deleted in the
normal manner.

5. As a record is deleted it is not implicitly moved to working
storage.

6. The CURRENT record-name-1 RECORD option causes the record type
of the record named to be compared with the record type in the
current record definition. If they are not equal, an error code
(RlO) is returned to the user and no deletion takes place.

65

Go

Function: To depart from the normal in-line sequence of procedures.

Format:

;GO TO procedure-narne-1

Notes:

66

1. Procedure-narne-1 may be any COBOL or I-D-S procedural paragraph
in the Procedure Division.

2. When this statement is encountered within the
all subsequent statements are bypassed
transferred to the procedure nqmed.

3. GO TO may be used with:

If ERROR ••.

If record-name •••

ON record-name DETAIL ..•

4. GO TO must be used with:

RETRIEVE EACH AT END •.•

I-D-S sentence,
and control is

Head

Function: To retrieve the master record of the chain specified and to
move its data fields to working storage making it available
for processing.

Format:

;HEAD chain-name-1 CHAIN

Notes:

1. The chain-name-1 must be a chain defined by a level 98 entry.

2. If no records of this named chain have been processed, or if
the last record has been deleted, an error condition is noted.

3. A data structure in I-D-S shorthand is shown below.

REC-AD

CHAIN-A2
REC-YR

CHAIN-Y

CHAIN-Al

CHAIN-X CHAIN-A

REC-AA

In this case, assume that REC-AA was the record initially
retrieved by the RETRIEVE verb. At this point, three chains
include REC-AA, therefore, three possible master records may be
referenced by the HEAD statement. Notice, however, that once
HEAD has been used to reference CHAIN-A, the next higher level
CHAIN-Al can be referenced.

67

68

A
"':t • This statement includes an implied move of the record retrieved

to working storage.

5. After execution of this statement, the master records retrieved
are the CURRENT records of their respective types. They become
the CURRENT records in each chain in which they are defined as
details. However, they are not the CURRENT records in chains in
which they are defined as master records. In those chains, the
detail record which leads to the master is the CURRENT record.

6. Note that the function of the statement is very similar to that
of the RETRIEVE MASTER RECORD statement, except for the manner
in which CURRENT of chain is maintained (Note 5).

7. Example:

Assume chains X, Y, A, and Al are not PRIOR processable or
HEADED (linked to MASTER) . The chain tables show REC-AA after
it has been retrieved via chain-X and before execution of the
HEAD CHAIN-A CHAIN statement. Note that there is a chain table
for each chain in which REC-AA is a detail record.

REC-AA
Chain-X

MASTER REC-XR

PRIOR REC-AA-1

CURRENT REC-AA

NEXT REC-AA+l

REC-AA
Chain-Y

MASTER Unknown

PRIOR Unknown

CURRENT REC-AA

NEXT REC-AA+l

REC-AA
Chain-A

MASTER Unknown

PRIOR Unknown

CURRENT REC-AA

NEXT REC-AA+l

After execution of the HEAD CHAIN-A CHAIN statement, the chain
tables appear as shown below. Note that the chain tables for
chains X and Y remain unchanged. The only change to the chain-A
table is that the chain table's MASTER position has been
updated with the reference code of the master record. Thus, if
a RETRIEVE NEXT or PRIOR of chain x, Y, or A is issued, REC-AA
is the CURRENT record from which I-D-S moves to the NEXT or
PRIOR data record of chain X, Y, or A.

REC-AA
Chain-X

MASTER REC-XR

PRIOR REC-AA-1

CURRENT REC-AA

NEXT REC-AA+l

REC-AA
Chain-Y

MASTER Unknown

PRIOR Unknown

CURRENT REC-AA

NEXT REC-AA+l

REC-AA
Chain-A

MASTER REC-AB

PRIOR Unknown

CURRENT REC-AA

NEXT REC-AA+l

After the HEAD CHAIN-A CHAIN statement is executed, the chain
Al table is updated as shown below.

REC-AB
Chain-Al

MASTER Unknown

PRIOR Unknown

CURRENT REC-AB

NEXT REC-AB+l

69

Modify

Function: To modify the contents of all or selected fields
current record and/or to relink any chain which
affected by the modification of a control field.

of the
may be

Format Option 1:

;MODIFY field-name-1 {:field-name-2 •. J
Format Option 2:

;MODIFY CURRENT record-name ~eld-name-1 ~field-name-2 . • J]
Notes Option 1:

70

1. The fields to be modified must be level 02 entries. The
contents of working storage are moved to the equivalent field
of the current record which is in a data page buffer.

2. Field-name-1, field-name-2, may be control fields for the
record. Modifying these fields can result in the record being
logically repositioned within the I-D-S environment. Depending
on the type of control field involved, I-D-S will take the
following actions:

Modifying a sort key field. The record is relinked into its
chain according to the new value of the sort field. The sort
field in the record is then modified.

Modifying a randomize field. The record is relinked into a
new CALC chain according to the new value of the randomize
field. The randomize field in the record is then modified.

3. In relinking a record in a chain, I-D-S uses all the control
fields in working storage defined in the record for that chain.
Therefore, the user must not only initialize the control field
to be modified, but the others as well. Depending upon the
control fields involved, I-D-S will take .the following action:

Modifying a match-key field named to uniquely identify a
master record. The record is relinked to the new master
uniquely identified by the new value in the match-key field.
Since the field is not in the detail record, no actual field
modify occurs.

Modifying field-name-5 of a MATCH-KEY IS field-name-5
SYNONYM field-name-4 clause. The record is relinked to a new
master record along the chain for which the clause was
named. The new master was uniquely identified by the new
value in field-name-5. In this case, field-name-5 may or may
not be a field in the record on disc. If it is, it is
modified. If it is not, no further action is taken.

4. In no case is a record ever physically moved from one page to
another in the I-D-S environment. Therefore, an attempt to
modify the prime retrieval field of a primary record results in
an error condition. Such a modify could result in a record
needing to be moved from one page to another.

5. If the successful execution of the MODIFY statement would
create DUPLICATE records in chains where they are not allowed,
the modification will not be executed and an error occurs.

Notes Option 2:

1. Notes for option 1 also apply to option 2.

2. The record type of the record named is compared with the record
type in the current record definition. If they are not equal,
an Rll error code is returned to the user and no modification
takes place.

3. If the field name option is not specified, all fields in the
record are modified.

71

Move

Function: To move all or selected fields of the current record
last processed) to working storage, or to move the
of a chain table to working storage.

(record
contents

Format Option 1:

;HOVE TO WORKING-STORAGE Eie ld-name-1 G:_ field-name-2 • .J]
Format Option 2:

HOVE chain-narne-1
{

CHAIN TABLE}
MASTER
PRIOR
CURRENT
NEXT

TO fie ld-narne- 3

Notes:

72

1. The implied source of an option 1 MOVE is the current record
(last RETRIEVE or STORE).

2. Option 1 must be used before any reference can be made to the
data in the record.

3. When the statement includes the list of fields identified by
field-name-1, field-narne-2, etc., only those fields are moved
to working storage. Otherwise, all fields are moved.

4. When CHAIN TABLE is used in option 2, the master, prior,
current, and next chain fields of the named chain are moved to
four contiguous subfields specified by field-name-3.
Field-name-3 should be equivalent to the form:

01 fie ld-narne-3
02 Master-chain PICTURE 9 (6) COMP-1
02 Prior-chain PICTURE 9 (6) COMP-1
02 Current-chain PICTURE 9 (6) COMP-1
02 Next-chain PICTURE 9 (6) COMP-1

5. When MASTER, PRIOR, CURRENT, or NEXT is used in option 2, the
specified chain-table entry is moved to field-name-3.
Field-narne-3 should be equivalent to the form:

02 field-name-3 PICTURE 9 (6) COMP-1

Open

Function: To initialize the processing of an I-D-S data file.

Format:

OPEN
J~TRIEVAI:~l
\:UPDATE JJ

G"vITH AUTHORITY-KEY integer-~

Notes:

1. This statement must be executed before any other I-D-S verb is
executed.

2. When the I-D-S file is opened for RETRIEVAL, the STORE, DELETE,
and MODIFY statements of I-D-S are not operative. An attempt to
use these statements under these conditions results in an error
condition during program execution. Logically deleted records
will not be physically deleted. If FOR RETRIEVAL or UPDATE is
not specified, UPDATE is assumed by I-D-S.

3. The AUTHORITY-KEY clause enables access to various record types
which may be protected by a defined AUTHORITY code. (See Data
Division, Record Description.) The value of integer-1 may not
exceed 4095(10).

When this clause is used, each reference to a record of the
I-D-S file involves a match of the AUTHORITY value defined for
the record with the AUTHORITY-KEY supplied. When a valid match
occurs, the I-D-S verb is allowed to function normally.
Otherwise, the function of the verb is aborted and an error
condition is returned to the user's program.

The exact details of the matching process may be modified with
each installation to suit individual requirements.

73

RETRIEVE

Retrieve

Function: To retrieve a record and make it available for processing.

Format Option 1:

[record-narne-1 }

tfURRENT record-name-1
RECORD

RETRIEVE ~NEXT J PRIOR
MASTER

RECORD OF chain-name-2 CHAIN

EACH AT END GO TO procedure-name-1

DIRECT

Format Option 2:

RETRIEVE NEXT RECORD OF CALC CHAIN

Notes:

74

1. Record-name-1 must be the name of the record level 01 entry
defined in the IDS Section of the Data Division.

2. Chain-narne-2 must be the name of a chain defined by a level 98
entry in the IDS Section of the Data Division.

3. Regardless of the option used, this verb causes the record
referenced to be retrieved and made available in the memory
buffer. This action may or may not require that a page be
transmitted from the mass storage device, since the record may
already be in memory. No other action, such as moving the
record to working storage takes place.

The reference code of the record retrieved is accessible in the
communication cell named DIRECT-REFERENCE after the retrieval
process is completed.

4. Of the seven options available with the RETRIEVE verb, two may
be classified as absolute. This means that only one record will
satisfy the retrieval specification when one of the following
options is used.

RETRIEVE record-name-1 RECORD

The record retrieval action is predicated upon the RETRIEVAL
VIA clause defined in the level 01 entry in the IDS Section
of the Data Division. The record retr~eved depends on the
values contained in the control fields of working storage
which uniquely identify the record.

If the record is retrieved VIA
contents of the named field (the
record to be retrieved) are used.

field-name FIELD,
reference code of

the
the

If the record is retrieved VIA CALC CHAIN, the contents of
the RANDOMIZE fields are used.

If the record is retrieved VIA chain-name CHAIN, the
contents of its MATCH-KEY and ASCENDING and DESCENDING sort
key fields are used.

RETRIEVE DIRECT

The record to be retrieved is identified by the reference
code stored in a conununication cell named DIRECT-REFERENCE.
The user is responsible for initializing the communication
cell prior to the execution of this command.

The other five options may be classified as context dependent,
since the actual record retrieved is dependent upon previous
record processing.

RETRIEVE CURRENT record-name-1 RECORD

The record retrieved will be the current record of
record-name-1 specified. If no record of this name has been
processed, or if the last record processed has been deleted,
an error condition is noted.

RETRIEVE ~NEXT }
PRIOR
MASTER

RECORD OF chain-name-2 CHAIN

Record retrieval depends upon the current record of the
chain named. If NEXT or PRIOR is used, the appropriate
record is retrieved regardless of the record type. If MASTER
is specified, the master record of the chain named is
retrieved. If no records of the chain have been processed,
or if the last record has been deleted, such that no records
exist in the chain, an error condition is noted.

75

76

RETRIEVE EACH AT END GO TO procedure-name-1

This option facilitates a reference code ascending sequence
serial search of the I-D-S data file. This statement will
retrieve the first record, in ascending reference code
sequence, that has a reference code value equal to or
greater than the reference code value stored in the
FIRST-REFERENCE communication cell named. However, if the
reference code value of the retrieved record is equal to or
greater than the value stored in the communication cell
named LAST-REFERENCE, control is transferred to
procedure-name-!.

When a record is retrieved, the sum of its reference code
value plus one will be stored in FIRST-REFERENCE, which
initializes it for a subsequent execution of RETRIEVE EACH.

5. An option 2 entry record retrieval depends on the CURRENT
record within the chain specified. If NEXT is used, the
appropriate record is retrieved regardless of the record type.
These record specifiers can be used only if some record has
already been processed which is a member of the CALC chain.

6. If a record cannot be retrieved according to the specifications
of the retrieval statement, an error condition is noted.

7. The record retrieved is recorded as the CURRENT record of its
type and the CURRENT record in each chain in which it is a
master or detail.

8. Example:

The following statements will retrieve the master and detail
records of the calc chain. The master of the calc chain is the
Page Header record.

COMPUTE DIRECT-REFERENCE = page-number * 64.
ENTER IDS.

RETRIEVE DIRECT (master of calc chain)
IF ERROR ..•

RETRIEVE NEXT of CALC chain.
IF RECORD-TYPE = 1000 GO TO end-chain.

Return

Function:

Format:

To relink the selected records of a specific chain
order as returned by the sort. To return the data
the I-D-S record to Working-Storage.

RETURN chain-name-1 CHAIN

Notes:

1.

AT END GO TO procedure-name-1

RETURN can only be used within an OUTPUT PROCEDURE
with a SORT statement for sort-file-1. Any other
RETURN statement will lead to unpredictable results
execution time.

into
fields

the
of

associated
use of a
at object

2. The execution of the RETURN statement causes the next record in
sorted order (according to the keys listed in the SORT
statement) to control the retrieval of the corresponding I-D-S
record in chain-name-1. The I-D-S record is then relinked into
its ordered position in chain-name-1 as though the CHAIN-ORDER
is described as AFTER. The chain will appear as: MASTER, 1st
record from sort, 2nd record from sort, etc.

3. The data fields of the sorted selected I-D-S record will be
moved to the I-D-S working-storage fields. The record returned
from sort will not be available for processing in the record
area associated with sort-file-1.

4. The I-D-S record will be current of program, current of type,
and current of chain-name-1. The record will not be current in
any other chains in which it participates.

77

78

5. Example:

FILE SECTION.
SD ST-FILE.

DATA RECORD IS SORTR.
01 SORTR.

02 PRIOR-REF
02 CUR-REF
02 KEY-1 PIC
02 KEY-2 PIC

SORT-CALL SECTION.

PIC 9 (6) CO.MP-1.
PIC 9 (6) COMP-1.
9999.
999999.

SORT ST-FILE ON ASCENDING KEY KEY-1, KEY-2.
INPUT PROCEDURE IS PHASE-1.
OUTPUT PROCEDURE IS PHASE-2.

ENTER IDS.
RETURN TST-CHAIN CHAIN

AT END GO TO PHASE-2X.

Sort

Function: To sort the selected records of a specific chain into the
specified order.

Format:

{

ASCENDING }
SORT sort-file-1 ON KEY field-name-1

Notes:

DESCENDING

Gfield-narne-2 •• J [ON [ASCENDING }· KEY • ·] L _pESCENDING

~NPUT PROCEDURE IS section-name-1 (IHRU section-name-~ }

L USING file-name-2

GIVING chain-name-1 CHAIN

1 The COBOL SORT is used to accomplish the sort of the selected
I-D-S records.

2. All rules of COBOL SORT must be observed. The I-D-S exceptions
are discussed in the following notes.

3. The sort-file-1 Record Description must be equivalent to the
form:

01 SORT-IDS-REC.

02 Prior-ref PIC 9(6) COMP-1.
02 Current-ref PIC 9(6) COMP-1.
02 Sort-key-1.

The prior-ref field must be the first entry
in the sort record.

The current-ref field must be the second
entry in the sort record.

79

80

4. The INPUT PROCEDURE must:

RETRIEVE the I-D-S records from the specific chain.

MOVE the PRIOR reference or zero to the prior-ref
field.

MOVE the CURRENT reference to the current-ref
field.

MOVE the data fields into the sort KEYS. (Other
data may be placed in the sort record; however,
I-D-S will not make use of the data.)

RELEASE the sort record.

5. The GIVING chain-name-1 CHAIN clause means that all sorted
records in sort-file-1 are used during the relink process to
control the retrieval of the corresponding I-D-S record in
chain-name-1. The I-D-S records are relinked into chain-name-1
as though the CHAIN-ORDER is described as AFTER. The chain will
appear as MASTER, 1st record from sort, 2nd record from sort,
etc.

6. If the prior-ref field is set to zero the execution of the
relink function may be inefficient.

7. The chain may contain multiple record types. If only one type
of record is selected for sorting, the selected sorted records
will appear in order following the master record. The remaining
record types will retain their relative order in the chain
after all of the selected sorted records.

8. The USING file-name-2 option requires file-name-2 to be of the
described format. The records must be equivalent to records
which would result by using the INPUT PROCEDURE option. All
records must be present in the selected chain.

9. At the completion of SORT the last record in the sort sequence
will be current of program, current of type, current of
chain-name-1, and its data fields will be moved to the I-D-S
working-storage fields. It will not be current in any other
chains in which it participates.

10. Example:

FILE SECTION.
SD ST-FILE.

DATA RECORD IS SORTR.
01 SORTR.

02 PRIOR-REF
02 CUR-REF
02 KEY-1 PIC
02 KEY-2 PIC

SORT-CALL SECTION.
ENTER IDS.

PIC 9(6) COMP-1
PIC 9 (6) COMP-1.
9999.
999999.

SORT ST-FILE ON ASCENDING KEY KEY-1, KEY-2
INPUT PROCEDURE IS PHASE-1
GIVING TST-CHAIN CHAIN.

ENTER IDS.
RETRIEVE MSTR.

LOOP A.
ENTER IDS.

RETRIEVE NEXT TST-CHAIN CHAIN.
ENTER IDS.

IF MSTR RECORD GO TO P lLAST.
ENTER IDS.

IF DET-2 RECORD GO TO LOOPA.
ENTER IDS.

MOVE.
MOVE FIELDAl TO KEY-2.
MOVE FIELDBl TO KEY-1.

ENTER IDS.
MOVE TST-CHAIN PRIOR TO PRIOR-REF.

ENTER IDS.
MOVE TST-CHAIN CURRENT TO CUR-REF.

81

Store

Function: To place a record into the I=D=-S data file, to establish any
chd.in fields which have been defined, and to make the record
available for processing.

Format:

STORE record-narne-1 RECORD

Notes:

82

1. Record-narne-1 must be defined as a level 01 entry in the IDS
Section of the Data Division.

2. When this verb is used, the following is assumed:

Working-Storage for this record has been initialized with the
data contents for the record.

Any other control fields required to provide
identification of the master records of the defined
which include record-narne-1 have been initialized in
respective working-storage areas.

unique
chains
their

3. The record is placed into the file as defined by the PLACE
NEAR or RETRIEVAL VIA clauses of the Record Description entry.

4.

5.

6.

The reference code assigned to the record is left
communication cell DIRECT-REFERENCE after the storage
is complete.

in the
process

The record is recorded as the -::::URRENT record of its
the CURRENT record in each chain in which it is a
detail.

type
master

and
or

If the storage process creates a duplicate
to any DUPLICATES NOT ALLOWED clause, or
range master selected cannot be retrieved,
is terminated with all linkages restored
error condition is noted.

record in violation
if the unique or
the storage process
as before and an

7. When a primary record is stored, its reference code is moved
to the working-storage field named by the RETRIEVAL VIA
field-name FIELD clause.

8. Placement of records by I-D-S is influenced by the RETRIEVAL
VIA, PAGE-RANGE, PLACE NEAR, and INTERVAL Clauses. The
following summaries show priority of record storage criteria.
If PAGE-RANGE is specified and the resultant page number falls
outside the page range, the page number is always scaled down
to fall within the page range.

9. Primary records are stored as follows:

a. If INTERVAL is specified and the current page is not zero,
on the page calculated by INTERVAL plus page of current
record of the type.

b. If no~ as a, above, on the page specified in
DIRECT-REFERENCE, if it is not zero.

c. If not as a or b, above, and if PLACE NEAR is specified
and the CHAIN-ORDER is SORTED, SORTED WITHIN TYPE, FIRST,
or LAST, on the page of the master record of the chain
named in the PLACE clause.

d. If not a, b, or c, above, on the page of the current
record of the chain-name.

e. If none of the above, on a page most convenient to I-D-S.

10. Secondary records are stored as follows:

a. If INTERVAL is specified and the current page is not zero,
on the page calculated by INTERVAL plus page of current
record of the type.

b. If not as a, above, and if PLACE NEAR is specified and the
CHAIN-ORDER is SORTED, SORTED WITHIN TYPE, FIRST, or LAST,
on the page of the master record of the chain named in the
PLACE clause.

c. If not as a or b, above, on the page of the current record
of the chain-name.

d. If not as a, b, or c, above, and if the CHAIN-ORDER of the
RETRIEVAL VIA chain is SORTED, SORTED WITHIN TYPE, FIRST
or LAST, on the page of the master record of the chain
named in the RETRIEVAL VIA chain-name CHAIN clause.

e. If none of the above, on the PAGE of the current record of
the RETRIEVAL VIA chain.

83

84

11. Calculated records are stored as follows:

On the page calculated by randomizing the contents of fields
na.~ed in the RANDOMIZE ON field-name clause.

12. Record storage is subject to the following Overflow rule:

If space is not available in the specified page, the record is
placed on the first page in the direction of ascending page
numbers in which there is available space as determined by
search of the inventory records. Pages which do not have
inventory records are bypassed until all pages controlled by
inventory are searched. If space is not found by the inventory
search, then all pages not controlled by inventory are
searched. The boundaries specified by the use of a PAGE-RANGE
clause are observed in this process.

1-D-S Conditional Statements

The conditional statements of I-D-S are logical extension of
STORE and RETRIEVE verbs. Generally, they involve the key
followed by the condition to be tested, followed by the
statements to be performed.

the basic
word IF,

imperative

I-D-S conditional statements are of two general forms; either form may
appear in the string of statements following a basic verb.

The specific formats of these statements and a discussion of their
restrictions and limitations follow.

Following the explanation of the IF-clause formats, PERFORM and USE,
which also are conditional, are discussed.

85

if

Function: To conditionally transfer control to an alternate procedure.

Format Option 1:

;IF record-name-1 RECORD statement-1 [statement-2 •• ·]

O
J?THERWISE}

lELSE
statemen t-3 ~tatement-4. J]

Format Option 2:

[{

OTHERWISE)
;IF ERROR statement-1

ELSE
statement-2 tstatement-3 . .J]

Notes Option 1:

86

1. The IF record-name-1 RECORD clause is specifically designed to
support those retrieval statements where the type of record to
be retrieved is unknown until after the retrieval is complete.
Specifically, the IF record-name clause may only be used in
conjunction with RETRIEVE DIRECT, RETRIEVE EACH, RETRIEVE NEXT
and RETRIEVE PRIOR.

2. Statement-1, 2, 3, 4 may be any one of the following
statements: MOVE TO WORKING-STORAGE, MODIFY, DELETE, HEAD,
PERFORM, or GO TO. In addition, statement-3 may be another IF
record-name clause. This allows multiple test-branch logic
based on record type.

3. The record type field in the record just retrieved is compared
with the record type named by record-name-1. If the record
types are the same, statement-1 and subsequent statement-2's
are executed in sequence and then control is transferred to the
next sentence in the program. A GO TO procedure-name statement
may be used as either statement-1 or statement-2 to cause a
transfer to some alternate sentence in the program.

If the record retrieved is not the type specified, then control
is transferred around statement-1 and subsequent statement-2's
to statement-3, or to the next sentence in the absence of an
OTHERWISE or ELSE phrase.

Notes Option 2:

1. This form may only follow a STORE or RETRIEVE verb or a MODIFY,
DELETE, HEAD, or MOVE imperative statement.

2. Statement-1 may only be a GO TO or a PERFORM imperative.
Statement-2, statement-3, etc., may be any imperative statement
appropriate to the basic verb, or a conditional of form 1, if
appropriate.

3. The IF ERROR clause tests the occurrence of any logical error
as a result of the last I-D-S statement. The specific errors
which may occur are a function of the statement executed. The
user program may determine the type of error by referring to
the ERROR-REFERENCE communication cell.

4. If an error occurs because of hardware, data description, or
improper use of an I-D-S function, the program is brought to an
orderly halt, the file closed and the program aborted and
memory dumped, if requested, with the appropriate error
message.

5. If a data-dependent error is detected by I-D-S, an error
will be stored in ERROR-REFERENCE and control will pass to
IF ERROR STATEMENT.

code
the

6. The execution of a subsequent I-D-S statement will reset the
error code stored in ERROR-REFERENCE.

87

PERFORM

Perform

Function: To depart from the normal in-line sequence of procedures
order to execute a specific procedure and then return to
normal sequence.

in
the

Format:

;PERFORM procedure-name-1 [jHRU procedure-name-~

Notes:

88

1. Procedure-name-1 may be any COBOL procedural paragraph in the
Procedure Division.

2. For other details concerning the PERFORM statement see the
GE-600 Line COBOL Reference Manual, CPB-1652. Only the simple
PERFORM (option 1) is recognized within an I-D-S sentence.

3. PERFORM may be used with:

4.

IF ERROR •••

IF record-name •••

ON record-name DETAIL ..•

If PERFORM is used with ON record-name DETAIL, the
performed may not contain any I-D-S functions.
procedure-name-2 may not be used.

procedure
The THRU

Use

Function: To specify procedures to be executed for
conditions which are in addition to the standard
supplied by I-D-S.

I-D-S error
procedures

Format:

USE procedure-name-1 @HRU procedure-name-D

Notes:

~ITH TRACEJ

ON
{

error-code-1

ANY ABORT

G error-code-2 •• J }

1. The USE clause may appear anywhere within the Procedure
Division.

2. The procedures specified will be executed by COBOL PERFORM.

3. The procedures may not contain I-D-S statements. The activity
will be aborted if any I-D-S statements are executed while the
USE procedures are being performed.

4. The I-D-S error codes used as error-code-1 and error-code-2,
etc., are defined in Appendix B.

5. This clause may be used as many times as necessary to define
appropriate procedures for specified error conditions.

6. Not all error codes need be specified.
may appear in only one USE statement.

Selected error codes

7. The ANY ABORT option may be used only once, and no other option
may be used with it.

8. When a trace is made, a plain language statement defining the
error and, when possible, the records or chains involved
appears on the execution report. (See Appendix B.) All fatal
I-D-S error conditions are traced prior to aborting.

89

90

The trace prints (1) the name of the subroutine ca.Lied, (2) -c.ne
name of the subroutine that called it, and (3) the alter number
from which (1) was called. The trace continues to the point at
which the main program is the calling routine. An example is
shot./Jn be lot."!:

IDS ERROR
RETRIEVE NEXT IN CHAIN NO CURRENT EXISTS !-1T0010-DT0020
TRACE OF ABOVE ERROR FOLLOWS -----
QUIT CALLED BY .QFWD AT ALTER 000149
:QFWD CALLED BY ~QCHN AT ALTER 000131
:QCHN CALLED BY C.LDIN AT ALTER 000054

TRACE END

9. Example:

PROCEDURE DIVISION.
START-PARA.

ENTER IDS.
USE ERROR-PARA-1 ON DOl.

ERROR-PARA-1.
DISPLAY "DUPLICATE RECORD FOUND".

ENTER IDS.
USE ABORT-PARA-1 THRU ABORT-END

ON 15, 31.

ABORT-PARA-1.
DISPLAY "RECOVERY REQUIRED - DELETE REPORTS".

ABORT-END.
CLOSE IN-FILE, OUT-FILE.

4. Translator Processing

The I-D-S Translator is a system program which is called from system
storage by the $ IDS control card.

At the time of allocation for the I-D-S Translator, sufficient resources
(memory and peripheral devices) are allocated to provide for COBOL. When
the Translator has completed its function, it passes control to COBOL
using the GECOS entry point GECALL. Figure 16 is a flow diagram of the
compilation process of an I-D-S program.

PAGE EJECT AND COMDK LABELING

Page Eject in the Listing

The user can indicate that he desires a page eject in the listing by
including a *EJECT card at the appropriate point. A *EJECT (starting in
column 7) is treated as comments by the translator and causes a page
eject in the listing before the printing of the *EJECT card. The *EJECT
is passed to COBOL and causes a subsequent print and page eject in the
COBOL portion of the listing.

COM DK Labeling

The translator uses the contents of columns
card encountered and includes it in columns
created by the translator. Labeling and
specifications of IOEDIT (see GE-600 Line
CPB-1003) •

73-80 of the first source
73-80 of any compressed deck
sequencing conform to the
File and Record Control,

91

92

I-D-S COBOL
Source

Language

COBOL
Library

(Includes I-D-S Subroutines)

I-D-S
Translator

COBOL
Compiler

GMAP

GELO AD

Source
Listing

Listing
and

Exception
Report

Assembly
Listing

Load
Map

---- Indirect Processing

Figure 16. I-D-S Compilation and Execution Process

$ IDS CONTROL CARD DESCRIPTION

The $ IDS control card is used to call the I-D-S Translator. The operand
field is used to specify the system options.

Example:

1 8
I :ms
I

16
I

:options
I

Options available with I-D-S/COBOL are listed below;
are underlined.

standard options

LS TIN

NLSTIN

LSTOU

NLSTOU

NDECK

DECK

COMDK

NCOMDK

DUMP

ND UMP

ON6

COPY

NCOPY

SYMTAB

An I-D-S listing and COBOL input listing will be prepared

No I-D-S listing of input will be prepared. Option is reset
to LSTIN prior to calling COBOL

A listing of assembled object program output will be
prepared by GMAP

No listing of output will be prepared

No binary object program deck will be prepared

A binary object program deck will be prepared as output by
GMAP

A compressed deck of the source program will be prepared
during translation

No compressed deck of the source program will be prepared

Slave core dump will be produced if activity terminates
abnormally

Only a panel dump of program registers will be produced if
activity terminates abnormally

COBOL will generate a REF ON so that GMAP will build a
Symbol Reference Table

A COBOL copy prepass is required (see rule 4)

No COBOL copy prepass is required

GMAP will prepare a listing of the Symbol Reference Table
(if one has been built) even though NLSTOU is also specified

93

Rules:

94

1. The $ IDS control card must precede the source cards of each
program or subprogram to be processed and must precede any
other control card associated with that activity.

2. The options can be listed in any order in the operand field.

3. If no options are specified in the operand field, GECOS uses
the standard options (underlined) .

4. All source decks which use the COPY clause or the RENAMING file
option (see GE-600 Line COBOL, CPB-1652) must use the COPY
option. ~~ ~~~

SAMPLE OUTPUT PRODUCED BY THE 1-D-S TRANSLATOR

PAGE 1

54975 o? 09-26-68

IUS ALH:R N()S,

l0~29t

:SDL ... 12 CHG02
GE600 lNl~G~ATbU STUR~ TRANSLATOR

i.l uoo 1
JOU02
00003 000030
00004
u0005 000050
00006 OOU060
.JQ007 000070
J0008 000080
J0009 oor.io90
00010 000100
00011 000110
JOOl.2 000130
u0013 000150
J0014
JOOl?
J 0 016
C10017
1J001f3
0001~
00020
J0021
J0022
00023
JOD24
.J002?
:; 0 U2b
uOO?l OOiJ.39Q

IDENTIFICATION UlVISlUN •
PROGRAM-IO, 5IDS ,
AUTHOR~ VANUEH8UR ~
D A T E - WR I T n.: f·1 ,

ENVIRONMtNT DIVISION~
CONFlGURATiuN SfCTIUN,
SOURCE-CUMPUTER. G[•b35 1

O~J~CT•COMPUTER, GE·63~i
INPUT-OUTPUT SECTION,
f ILE-CONlROL.

SELtCT JDS TEST•FlL~ ASSIGN TO Tr,
I ·O-CONHWL,
DATA OlVlSlLlN,
FIL~ SE:cTI0\1,
WnRKlNG-STO~AGE s~cr10~ '
77 PAGcR PICTURE: 999999 COMPUTATIONAL~l ,
77 COU~T PJCTUR~ 9(6) CUMPUTATIONAL-1 ,
77 LIMIT-I~ PlCTUMI: 999~99 COMPUTATI0~AL•1 ,
77 CTLR PICTURE 9(6) ,
01 LOCPl::R I

C5 L.IMI f t:R PICTURt 9(6) •
Cc; FILLl::R SIZE:: 74 •
01 GOr~DGO ,
05 TSTIT ~ICTURE: XXXXXX ,
8 8 Li G ~ U i~ V A L U f:: " G 0 11

05 FILLtR SIZt: 74 ,
IDS SECTlor~.

01 CCdl.-OXK •
0 2 U l R E C T - R t F t: R I: 1~ C t S l l F.: I S b lJ S A G t I S C ()MP U T A T 1 CJ N A L - 1
SYNCHH00JZ[LJ RI~Hl,

J2 F iRST-RE~EHFN~I: SlL~ lS 8 USAGE JS cUM~UTATlJNAL~l
S Y ~11 CH k 0 ,.., I Z E [J k I G HT ,
02 LAST-REFl:.:Rl:!lCt:: SILc I:::i 8 USAGI: iS CQMPUTATJO\JAL•1
SYNCH~ONIZED RIGHT.
0 2 I~ I:: C 0 k D - TYPE: S U E: I ~ 4 U S A Gt IS ~ O r1 PU T A T In fH L -1
SY i"' CH R 0 ·-.i I Z EU R Ill HT ,
0 2 fH.: C ... I- I LE S I Z l: I S o Cl ASS l S ALP~ A!~ lJ iv! I: R l C
VALUt: I::.. "COC(;T~",
C2 ~~~O~-REFERENCt:: SlLt: IS 3 CLASS IS ALPHANUM~~lC
s y :~ c H r-rn ;\ I z F 1) R I G h T •

J0028 OQ:J4fJO M'.J
u00?.9 OOU410
J0030 OOU420

H:ST .. FILE
PAG~ CO~TA!~S 1920 CHARACT~R~
FIL~ CO~TAINS 4HC PAGcs.

J0031 G1
U0032
0003.3
J0034 Cl
lJOOJ:>
JOU3b
u 0 (J 3 7

PHlM~·Ek TYPE 55~ kET~l~VAL VIA PRlMb FlbLU ~
22 PkI~E PJCTU~t 99i99999 •
02 A~CLlE~ PICTUH~ 999 •
THt.-MASTF.R

TYPc IS 99:
RETkl~VAL VIA CALC L~~IN

PAGb-RA~GF 121 TU 121

95

00038
00039
J0040
JOU41
uo 0 42
J0043
J0044
J004?
J004b
J0047
JOU4b
JOO 49

00050
'JO 051
tJ0052
J 0 0 5 :5
tJ0054
J0055
J005b
:J 0 057
u0058
J0059
J0060
J0061
J0062
J0063
J0064
J006?
J006b
.J 0 0 6 7
J () 0 6~

JOU69
J0070
JOU71
J0072
J0073
JOU74
J 0 0 7r,
J007b
J007/
J0U7b
_;a o 79
J 0 lJ 80
J0081
J 0 Ll 82
j OlJ.>:d
J00H4
J 0 0 ~'.:>
J 0 lj 86
J0087

96

PAGE 2

lQ.291
tSDL.. ... 12 CHG02

G[6QO l~TEGHATEU STOPt TRANSLATUR

C2
02
98

9P.

9H
01

02
02
98

98

01

tv!ASTl::R-F IEliJ PlCTl.JkE Y99999 ,
MAST~R-DATA Pl~TUH~ X(12) ,
CALC CHAIN DETAIL

~Ar'JLJOMILE Clf"I MASTt:R.FI1:::Lu.
TH~-C~Al~ CHAIN MASTE~ CHAlN-oRnER
IS SUHT~D WITHIN TY~I:::.
PAG~-TA~L~ CHAIN MAST~R CHAlN-ORncq Is SURTtD •
QUAUl
TYPt: IS C'01
R~T~IEVAL VIA CALC CMAlN

QUAOl-~UM PICTUR~ 99~999 ,
UUAU1-FIELD SIZc 24 •
CALC CHAIN DETAIL
RA~UOMILE ON UUAUl•NUM ,
TH~-CHAIN C~AIN UETAlL StL~Cl CURRt~T
ASCt:~DT~G KfY JS LlUAUl•NUM.
CJUAU2
TYPt: IS 802
RETRI~VAL VIA CALC CHAIN

02 QUAU~-NUM PICTUHt: 999999 ,
02 QLJA02-rJELD SIZ~ 24 •
98 CALC C~~IN UETAlL

f·; A ilifJ UM I I i: Or~ (,) :J Au i.? • l\J UM 1

98 THE-CHAI~ CHAIN UtTAlL S~L~Cl CURR~NT
ASCt:NUl\JG KFY IS t.JUAU~·NUM,

01 (;JLJA03

TYPI:: IS ~03
R~T~I~VAL VIA CALC CriAIN

O? LlUAU3-~JM P!CTUR~ 999999 •
02 WUA03-FIELD SlZt 24 •
93 CALC CHAIN DETAIL

RANOOM!lE ON WUAU3-NUM 1

98 TH~·CHAlN CHAI~ DtTAIL S~l~CT CURRtMT
ASC~NUI~G Kf Y rs QUAuJ-NUM,

01 ~rnAu4
TYPI:: IS ~Cl4
RETRl~VAL VIA CALC CHAIN

();:> QUAD4-NUM PICTURt 99999~ ,
C? WUAD4-F1ELD SlZt 24 •
98 CALC CHAIN DETAIL

RANDOMilE ON WUAU4~NUM ,
9R TrH::-CHAli~ ChAJ:,1 l)tl AlL St:Lt::CT ClJRRl::~·r

ASC~NUI~G K~Y IS UUAD4-NUM.
01 PAGf:-lJ:;,T

TYPt: IS ~r;:-

DECK SETUPS

The following deck setups show the most common uses of the I-D-S
Translator: (1) translate and compile; and (2) translate, compile, and
execute.

Translate and Compile

1 8 16

I
$:I DENT
$ 1IDS

I
I
I Source Program
I
I

$ •EN DJ OB
***EOF l

With the above deck setup, the I-D-S Translator is called, and the
source program is translated into a form acceptable to COBOL. COBOL is
called to compile the translated program. Since no options are specified
in the $ IDS card, standard I-D-S/COBOL options are used.

97

Translate, Compile, and Execute

1 8 16

$ Ir DENT I
$ IP ROG RAM l QUTU
$ IDATA I .Q

I
I I Di rec ti ves
I

$ I" file II : Al ,Options
$ IDATA I*

I
I I Directives
I I

$ lrns Options
I
I Source program
I

$ IEx~cuTE Options
$ l11 file" fc,Options

I f c is the same file code

I
specified in the File Code

:DA~A
Section of the user's program

$.Q

I Directives
I

$ IENDJOB
***EOF I

The deck setup above assumes a temporary I-D-S data base where "file"
can reference any mass storage device such as PRMFL, DISC, MASS, etc.

98

OBJECT PROGRAM EXECUTION

The I-D-S object program consists of a modular set of subroutines which
interpretively execute the I-D-S commands, GELOAD loads these
subroutines as a result of the calls generated by the compilation
process.

Because of the interpretive mode of execution,
description of the I-D-S data file, also generated
must be available to these routines.

Example:

the complete data
by the Translator,

Deck setup for execution using an I-D-S permanent data file.

1

$
$
$

$
$
$
$
$
$
$

8

:IDE NT
!USE RID
!OBJECT
I
I
I
I
fDKEND
!EXECUTE
!LIMITS
IPRMFL
:PRMFL

1
PRMFL
1PRMFL
I
I
I

16

IIDSOO,DATABASEMGR,
:IDSFOURYQUAD$DATABASE

I
I
I
I
I
I
I
I
IAl ,R/W' R, IDSFOURYQUAD/QUADOl
IA2,R/W,R,IDSFOURYQUAD/QUAD02
IA3,R/W,R,IDSFOURYQUAD/QUAD03

1A4 ,R/W, R, IDSFOURYQUAD/QUADO 4
I
I
I

99

5. 1-D-S Data File Structure Descriptions

DEFINITION STRUCTURE

The Definition Structure required by I-D-S is a list structure which
reflects the description of the records of the I-D-S data file. It
defines the master/detail relationships between records, chain
claracter6stics, and the physical and control characteristics of every
field of every record type in the I-D-S data file.

The organization of a Definition Structure using the I-D-S shorthand
technique is shown in Figure 17.

101

Field
Definition

Corrnnunication
Control
Block

Record-Type ~

CHAIN

Record
Definition

Detail CHAIN

Detail
Definition

Control
Definition

Control CHAIN

Figure 17. I-D-S Definition Structure

Master
Definition

The Definition Structure is described in the following sections.

102

Communication Control Block

The Conununication Control Block entry must be supplied as the master of
the Record-Type Chain. It serves as the communication area for data
which must be passed between the user's program and the I-D-S
subroutines. The machine format of the entry is shown in Figure 18.

Bits
0 5 11 17 23 29 35

LOC-CCB 0 0 1 MBZ DIRECT-REFERENCE

+l MBZ FIRST-REFERENCE

+2 MBZ LAST- REFERENCE

+3 MBZ Record Type

+4 Record Type Chain Next MBZ J File Code

+5 MBZ ERROR-REFERENCE

+6 MBZ I AUTHORITY MBZ Io PEN Mode

Figure 18. Format of Conununication Control Block Entry

The bit structure of the format shown in Figure 18 serves the following
purposes:

LOC-CCB

0-5

6-11

12-35

LOC-CCB+l

0-11

12-35

Symbolic location of Communication Control Block.

Definition Type--an octal code of 00.

Must be zero.

DIRECT-REFERENCE--a reference code of the record last
processed by any STORE or RETRIEVE.

Must be zero.

FIRST-REFERENCE--reference code of the first record to be
retrieved by the RETRIEVE EACH verb. The value is supplied by
the user's program. After each retrieval, the I-D-S
subroutines modify the value to the next reference code.

103

LOC-CCB+2

0-11

12-35

LOC-CCB+3

0-11

12-35

LOC-CCB+4

0-17

18-23

24-35

LOC-CCB+5

0-17

18-35

LOC-CCB+6

0-5

6-17

18-29

30-35

Hust be zero.

LAST-PEFEPENCE--a value supplied by the user's program. When
this reference code is reached, the RETRIEVE EACH verb will
execute the AT END procedure.

Must be zero.

Record type of the last record processed by any STORE or
RETRIEVE. The value is supplied by an I-D-S subroutine.

Record Type Chain Next--the assigned symbol of the first
Record Definition Structure.

Must be zero.

File Code--the user-supplied,
assigned to the I-D-S data file.

Must be zero.

two-character file code

ERROR-REFERENCE--a BCD code for an error condition
encountered during execution. If there is no error, the value
supplied by I-D-S will be zero.

Must be zero.

AUTHORITY--a value supplied by the user.

Must be zero.

OPEN Mode--a processing mode supplied via the OPEN routine.

Record Definition Entry

A Record Definition entry must be supplied for each data record type in
the I-D-S data file. In addition, one such entry must be supplied for
the Page Header record. The Record Definition entry is the master of the
Master Chain, Detail Chain, and the Field Chain; it is· a detail of the
Record-Type Chain. The format is shown in Figure 19.

104

0 5 8 11 17 29 35

LOC-SYM 0 1 J~mzI Record Type Record Size JMBz Is H R

+l Page Interval Master Chain Next

+2 Field Chain Next Detail Chain Next

+3 Authority I Current Record Reference Code

+4 Record Type Chain Next MBZ

+5 Minimum Page Range Maximum Page Range

Figure 19. Format of Record Definition Entry

The bit structure of the format shown in Figure 19 serves the following
purposes:

LOC-SYM

0-5

6-7

8-17

18-29

30-32

33

34

35

Symbol equivalent to the record name.

Definition Type--an octal code of 01.

Must be zero.

Record Type--a number from 1 to 999 assigned to each
record; 1000(10) is assigned to the Page Header record;
a Pagette Header record, the number is 1003(10).

data
for

Record Size--number of characters in the record including all
control and chain fields.

Must be zero.

~--Storage Classification Indicator

0--Record is stored relative to the
Retrieval Chain for this record.

1--Record is stored relative to the
Storage Chain, which is not the
Chain.

~--Page Range Indicator

chain defined as the

chain defined as the
same as· the Retrieval

0--Absolute Page Range not specified for this record type
(see LOC-SYM+5) •
1--Absolute Page Range is specified (see LOC-SYM+5).

R--Retrieval Classification Indicator

0--Secondary or calculated record
1--Primary record

105

LOC-SYM+l

0-17

18-35

LOC-SYM+2

0-17

18-35

LOC-SYM+3

0-11

12-35

LOC-SYM+4

0-17

18-35

106

Page Interval--Number of pages to be skipped relative to
page in which the last record of this type was stored.
only applies to primary or secondary records.

the
This

Master Chain Next--the assigned symbol of the first
Definition for this record. If this record is not the
of any chain, this is the assigned symbol of the
Definition.

Master
master
Record

Field Chain Next--assigned symbol of the first Field
Definition for this record. If there are no data fields, then
this is the assigned symbol of the Record Definition.

Detail Chain Next--assigned symbol of the first
Definition for this record. If this record is not the
in any chain, then this is the assigned symbol of the
Definition.

Detail
detail
Record

AUTHORITY--A value supplied by the user not to exceed
4095(10) which serves as a lock for the data contained in the
record. Reference to this record during program execution is
allowed only when a matching key is specified by the .QOPEN
calling sequence.

Current Record Reference Code--reference code of
record stored or retrieved of this record type.
supplied by I-D-S during execution.

the last
This is

Record Type Chain Next--assigned symbol of the next Record
Definition of the Definition Structure. Uf this is the last
Record Definition entry, this field contains the symbolic
location of the Communication Control Block.

Must be zero.

LOC-SYM+5

(For P, see LOC-SYM, bit 34.)

If p 1, then:

0-17 Minimum Page Range--the first page number of a range of pages
into which all records of this type are to be stored.

18-35 Maximum Page Range-- the last page number of a range of pages
into which all records of this type are to be stored.

If p 0 and LOC-SYM+5, bits 0-35 = 0 I then:

No Page Range is specified for this record type.

If P = 0 and LOC-SYM+5, bits 0-35 ~ O, then:

0-17

18-35

Hinimum Page Range Pointer--points to a word in which bit
positions 18-35 contain the first page number of a range of
pages into which all records of this type are to be stored.

Maximum Page Range Pointer--points to a word in which bit
positions 18-35 contain the last page number of a range of
pages into which all records of this type are to be stored·.

Detail Definition

A Detail Definition entry must be supplied each time a record is a
detail in some chain. If a record is a detail in three different chains,
three Detail Definition entries must be supplied. The Detail Definition
entry is a detail of the Chain Chain and of the Detail Chain. It is also
the master of the Control Chain. The machine format of this entry is
shown in Figure 20.

bits 0 5 8 11 17 25 29 31 35

Data
LOC-SYM 0 4 ~z Record MBZ Order DUP c u s R

Type

+l Chain Chain Next Control Chain Next

+2 Chain Chain Head Detail Chain Next

+3 Next Position MBZ Detail Chain Head

+4 Prior Position Head Position l MBZ

Figure 20. Machine Format for Detail Definition Entry

107

The areas in the format shown in Figure 20 serve the following purposes:

LOC-SYM Symbol assigned to this entry.

0-5 Definition Type--an octal code of 04.

6-7 Must be zero.

8-17

18-25

26-29

30-31

32

33

34

35

10 8

Data Record Type--same as that specified by the Record
Definition entry for this record.

Must be zero.

Order--a code to represent the chain-order of the various
details of this chain. Note that when several different
record types are defined as details of the same chain, the
chain-order must be the same for all records. The chain-order
for a CALC chain must be 11(8) for after current.

Octal Code

06
04
10
00
01
11

Chain-order

Sorted Within Type
Sorted
First in Chain
Last in Chain
Before Current
After Current

DUP--Duplicate Records Indicator

00--Not allowed
01--Allowed First
11--Allowed Last

C--CALC Chain Detail Indicator

0--Not a CALC Chain
1--CALC Chain

U--Chain Master Indicator

0--The master of this chain is a unique master
retrievable via the MATCH-KEY fields defined
for this chain.

1--The master of this chain is the current
master record of its type.

~--Storage Chain Indicator

0--Record is not stored relative to this chain.
1--Record is stored relative to its logical

position in this chain.

R--Retrieval Chain Indicator

0--Associative retrieval of this record not
possible via this chain.

1--Associative retrieval of this record must be
via this chain.

LOC-SYM+l

0-17

18-35

LOC-SYM+2

0-17

18-35

LOC-SYM+3

0-11

12-17

18-35

LOC-SYM+4

0-11

12-23

24-35

Chain Chain Next--assigned symbol of the next Detail
Definition of this chain if there is more than one detail
record type in the chain. If there is only one Detail
Definition or if this is the last of several, then this is
the assigned symbol of the Master Definition for this chain.

Control Chain Next--assigned symbol of the first Control
Definition for this chain or, if none, the symbol assigned to
this Detail Definition.

Chain Chain Head--assigned symbol of the Master Definition of
this chain.

Detail Chain Next--assigned symbol of the next Detail
Definition for this record if the record is a detail in more
than one chain. If there is only one Detail Definition or if
this is the last of several, then this is the assigned symbol
of the Record Definition for this record.

Next Position--the character position, relative to the first
character of the record, in which the first character of the
chain next pointer is found.

If this is a CALC chain detail, the NEXT chain field must be
the first field following the Record Size Field c::;r- the
record; that is, it must be defined as beginning in character
position 5.

Must be zero.

Detail Chain Head--assigned symbol of the Record Definition
for this record.

Prior Position--the character position, relative to the first
character of the record, in which the first character of the
chain prior pointer is found. If the chain is not prior
processable, this value is zero.

When a detail record
pointer, all records
pointer.

of
of

a given chain
the chain must

contains
contain

a
a

prior
prior

Head Position--the character position, relative to the first
character of the record, in which the first character of the
chain head pointer is found. If the chain is not a headed
chain, this character is zero.

Must be zero.

109

Master Definition

A Master Definition entry must be supplied each time a record is defined
as the master of some chain. The Master Definition is a detail of the
Master Chain and the master of the Chain Chain. The machine format of
this entry is shown in Figure 21.

Bits 0 5 7 11 17 35

LOC-SYM 0 2 MBZ Data Record Master Chain Head
Type

+l Chain Chain Next Master Chain Next

+2 MBZ Reference Code of Chain Master.

+3 Next Position Reference Code of Chain Prior

+4 Prior Position Reference Code of Chain Curren t

+5 MBZ Reference Code of Chain Next

+6 MBZ Reference Code of Key Record

Figure 21. Machine Format for Master Definition Entry

The areas in the format shown in Figure 21 serve the following purposes:

LOC-SY.M

0-5

6-7

8-17

18-35

LOC-SY.M+l

0-17

18-35

llO

Symbol equivalent to chain name.

Definition Type--an octal code of 02

Must be zero.

Data Record Type--same as that specified for the Record
Definition entry for this record.

Master Chain Head--assigned symbol of the Record Definition
entry for this record.

Chain Chain Next--assigned symbol of the first Detail
Definition for this chain. If the chain has no detail records
defined, then this is the symbol of this Master Definition.

Master Chain Next--assigned symbol of the next Master
Definition if this record is the master of more than one
chain. If the record is the master of only one chain or the
master of the last of several chains, then this coding is the
symbol of the Record Definition for this record.

LOC-SYM+2

0-11

12-35

LOC-SYM+3

0-11

12-35

LOC-SYM+4

0-11

12-35

LOC-SYM+5

0-11

12-35

LOC-SYM+6

0-11

12-35

Must be zero.

Reference Code of Chain Master--reference code of the Master
Record of the chain defined by this Master Definition. This
value is supplied by I-D-S during execution.

Next Position--the character position, relative to the first
character of the record, in which the first character of the
chain next pointer is found.

Reference Code of Chain Prior--ref erence code of the
record of the chain defined by this Master Definition.
is supplied by I-D-S during execution.

prior
This

Prior Position--the character position, relative to the first
character of the record, in which the first character of the
chain prior pointer is found. If the master record is not
prior processable, this value is zero.

Reference Code of Chain Current--reference code of the
current record of the chain defined by this Master
Definition. This value is supplied by I-D-S during execution.

Must be zero.

Reference Code of Chain Next--ref erence
record of the chain defined by this Master
is supplied by I-D-S during execution.

Must be zero.

code of the
Definition.

next
This

Reference Code of Key Record--reference code of the record to
which a record will be relinked if there is an error in
modification. This code is supplied by I-D-S during
execution.

111

Field Definition

A Field Definition entry must be supplied for each data field contained
in the record. (Note that Field Definitions are not supplied for the In
addition, if the record is defined as a secondary record, a Field
Definition must be supplied for all MATCH-KEY fields defined. If the
record is defined as a primary record, a Field Definition must be
supplied for the field which is equivalent to the reference code. The
Field Definition entry is a detail in the Field Chain and is the master
of the Modify Chain. The machine format of the entry is shown in Figure
22.

0 5 17 24 33 35

LOC-SYM 1 0 I MBZ c J AF E}Bz I Field Increment

+l Location of Working Field Size MBZ First
Storage Char.

+2 Field Chain Next Modify Chain Next

Figure 22. Machine Format for Field Definition Entry

The areas in the format shown in Figure 22 serve the following purposes:

LOC-SYM

0-5

6-17

18

19-20

112

Symbol assigned to this entry.

Definition Type--an octal code of 10.

Must be zero.

f--Computational Mode Indicator (*)

0--Noncomputational field recorded in BCD.
1--Computational field recorded in binary. (The

implied size is 6 or 12 characters.)

AF--Arithmetic Form (*)

If bit 18=1 then:

00--Single Precision, Fixed Point
01--Single Precision, Floating Point
10--Double Precision, Fixed Point
11--Double Precision, Floating Point,

21

22-23

24-35

LOC-SYM+l

0-17

18-29

30-32

33-35

LOC-SYM+2

0-17

If bit 18=0 then:

00--Alphanumeric
01--Alphabetic
10--Numeric
11--Signed numeric (sign indicated by zone bits of

low-order character of the field).

~--Unique Field Indicator

0--Field is not a unique or control field
1--Field is unique and required for identification

of the record

When this record is a primary record its unique field is, by
definition, the reference code. Since a Field Definition
entry is not supplied for the reference code, a separate
entry must be supplied to define the working-storage location
for the field which is equivalent to the reference code. This
entry must not include the Field Definition specifications
indicated in this section by (*), since the field is not
actually contained in the data record. I-D-S assumes that the
format of this field in working storage is eight characters,
BCD numeric.

Must be zero.

Field Increment (*)--character position of the first
character of a field; increment zero is the first character
of the record.

Location of Working Storage--assigned symbol of the leftmost
word of working storage defined for this field. The symbol is
equivalent to the field name.

Field Size--the number of characters in the field as it
exists in the record or in working storage.

Must be zero.

First Character--position of the first character of the field
within the first word of working storage.

Field Chain Next--assigned symbol of the next Field
Definition of this record, if there is more than one field in
the record. If there is only one field or if this is the last
of several, then this value is the assigned symbol of the
Record Definition for the record.

113

18-35 Modify Chain Next--assigned symbol of the first
Definition for this field or, if the field is not a
field, the symbol of this Field Definition.

Control
control

Control Definition

A Control Definition entry must be supplied each time a field is defined
as a control field of sdme chain. A control field is defined as a sort
field, MATCH-KEY field, or a RANDOMIZE field. The Control Definition
entry is a detail of the Modify Chain and of the Control Chain. The
machine format of this entry is shown in Figure 23.

0 5 14 17 35

LOC-SYM 2 0 l MBZ } l CNTL Control Chain Head

+l Location of MATCH-KEY Control Chain Next
Field Definition

+2 Modify Chain Head Modify Chain Next

Figure 23. Machine Format for Control Definition Entry

The areas in the format shown in Figure 23 serve the following purposes:

LOC-SYM

0-5

6-13

14

15-17

18-35

114

Symbol assigned to this entry.

Definition Type--an octal code of 20

Must be zero.

R--Match Control Indicator

0--Equal match required
1--Match equal or greater (Range Record)

CNTL--Control field type

001--RANDOMIZE control field
010--Sort Control ascending sequence
011--Sort Control descending sequence
100--MATCH-KEY control field

Control Chain Head--assigned symbol of the Detail Definition
of the chain controlled by this Control Definition.

LOC-SYM+l

0-17

18-35

LOC-SYM+2

0-17

18-35

Location of MATCH-KEY Field Definition--assigned symbol of
the MATCH-KEY Field Definition associated with this SYNONYM
Field. If there is no SYNONYM, this symbol is zero.

Control Chain Next--assigned symbol of the next Control
Definition for the chain. If this is the last or only Control
Definition, then the code is the symbol of the Detail
Definition.

When several sort control fields are defined for a given
chain, they must occur in sequence from major sort control to
minor sort control.

Modify Chain Head--assigned symbol of the Field Definition
for this control field.

Modify Chain Next--assigned symbol of the next Control
Definition if this field is a control field in some other
chain. If this is the last or only Control Definition for
this field, then the code is the symbol of the Field
Definition.

A definition structure produced by the I-D-S Translator and a definition
structure as expanded by GMAP appear on the following pages.

115

I-'
I-'
O'I

4~4,7 09 08·C6•69 17,4p GE~OO JNTEGRAT~D STORE TRA~S~ATQR

r P! AL. TE~ ~cs'·-·--- --
ETC CA!,..C

Rt2~J' ,oFo ·a,~.ouoo1,,0024,t95697,PD2434,
ETC R0~4J,,R0,6971

~TC Qu•o!•FlE~D
Rt2434 10FO 01U10U0009100061~C59531RD2433,

-----------ETC -- . -Rtf~4 ~T; RD~ 9 5 31-- --. -·. - ---
ETC QtJAD~.:.NUM

Rt2437 1 0CD 01~1R~24~e.P~l430· 0 n?4J4 1 RD24341
ETC 0

Rt7iJJ IQRD OOi10U0043,o,o,o,oooooo,
ETC R012JJ1R072381RD72J5,nooo,RD4737, . ---- - Er c ·- u o ti o o Li , o o o o o o i Q u Ab 2 .. -- - - .

Rt7,36 ,non 00~110,0,c,1,o,
. - ETC 01RD7iJ6,~D72331~U41421R04097,RD7238,

ETC oo~9iuooo,oooo, ·
cTC TM~-~~AIN

Rt?i36--LQDD oni,11,0,1,o,1,
---- Efc ·· ·1;·Ro1~33, Fio123J. HD4 740, Rue129, RD7237,

tTC OOU51U00010000, .
ETC CA~C . -

Rt7~J5 ,ofn o.u.ouuo1,,og24,~c4353,Ro1234,
ETC R012J'iR04J5J, - .
ETC . Qujo~.:.FIE~O

--R·n-c 34·- .• ~ F' D - a·~ Q , 0-~ u 0 0 ~ , 0 0 0 6 ' t 91 0 2 5 , -R 0 7 23' 3 '
ETC RD72~71R010251
ETC ~uAD~~NUM

AC7c37 ,oco o.~.RU723~1RD72301RD7234,R07234,
. .. ·- - ETC 0
Rt4737 ORD oo~,ouoo4J,o,o,o,oooooo,

------+re --- . RD~F• RD~H21H4739 ,c;o·o-a-;1m4481,
ETC 006oou,oooooo,QuA01

RC4?42 ,aoo o~~.10,0,0,1,c,-
erc U1~D4140,"047371HD4097,R04097,RD4742,
ETC oo~9luooo,oooo,
~TC TH~"C~Al~

--RnT,r-icm> ·· ao~-, u·, o, ;·, 0-; 1,
ETC 41R047J7,R047371HU44841RD81291R047411
ETC oou5;vooo.oooo,
ETC CA~C

~t~7J9 ,orn o,g,ouoo1,,0024,t915371RD4738,
ETC RD~73Y1R015371

-----~lC - .. QlJADi·FTELO -
At473S ,OFD o,o.~~0009,0006,~C80651RD47371

- - ETC R D ~ 7 4 l • R C tl 0 6 5 , - • ·-
~TC QUADi~NUM-

Rt•741 iQCD 01~1RC~?40,R047~g,RD4?38,RD47381
ETC 0

-Rt44lBI -, nR u 9 9 Q i a a o o 3-, ; o ;1 , o 1 o o o ·a o o ,
ETC R078091R044841RD448J,oooo,R00513,
=re ~ou1,;,oool21,r~~~MASTcR

f SDL. .. 2 CHGOO
en
)>

3:
""O
r ,.,,
0
c
-I
""O
c
-I

1--'
1--'
-....]

~_!~~-Lof __ o~_-c~ ... 6-~ 17 t 47J

fPS ALTER ~CSL ______ _

________ R c, ~-~-!---~~ao
-~~~-9_!! __ t CMD

E:TC
~t4 .. 84 1Q_QD

t:TC
i::TC ----- --- ---· --- --------- - i TC

_____ -----~~-~_!__1 QID
ETC
ETC

R [4_'1_82-; cf' D

E:TC -- -e'rc
_________ Rt~-~~--J C9D

ETC
Rt 0'1J _.~RD

E::TC.
ETC

----RtU29 ltfMD
ETC - ---ose
TRA

--UTIOO -ZERO
EE0001 VF"D
L"ftrDl.l1 -ZERO

, Jts, NUL.L

Gc600 l~TtGRATeD STORE TRA~S~ATOR

99Q,RD~097,R0448;,RD0196,00J1,0000,
PACIE•TA6L.t:
99U1RD448l1RD44~11R0506?,0027,oooo,
TMf P.¢MA It..
99g,11,o.1,o,1,
i·ADl~e1.~04i$11~D812fi~~ei29,RD4•85,
00~5;uooo,oooo, -
CAL.C
~1,qu~o~~,0912,Fcol21,RD4482,
A0448a1RDOJ211
MAS TER•C AT A
~;q,ouooo~,0006,rt1oa~;~o44e1,
RD448'1RD1089,
M•iTiR•FI~Co
01~1RC4454,RU446~,R044B2,~044621
I.I
1ouo,uoooi2,o,o,1,oooooo,
~b~1~!~RD0'1~1R9~'1~10000,ccaLoC,
uouoou,000000,xPAGE~HEADXX
10Q0,~00513,RD0'13 1 RD5060,000',0000 1
CAL.C

~o!~~&.-oooooz
26i0,101990
o,~3

-- - -- E "1 TE R C !'.) ~ 0 L ,
ENTER DEFINITIONS 1.

------------------fi)TSOl RC3f37 EQUAL.S

J.!N!w:NO
SYMBOL F~J137 EQUALS I~ITIAL C~ARACTER OF
1. INE•~O ----- -- -,D S S-1 Z E oooua2 cQUALS
L.INE"NO

---- SVMBOLRQH7~ EQUALS
PAGE .. NO

------------- -------- SYMBOL·- F'CU 7;$ EQU-'L.S IN IT l AL C-HARACTER OF'
PAGE•NO ----- - -- --- - ------- -ins -s-1zE
PA<iE•NO

UOOU06 f:QUAL.S

--sYHBOl.. ~C-1217 EQUAL.S
QUA04 .. f IELD .

-SYMBOL. Fe1217 l:QUAL.S IN I TI AL. CHARACTER OF
QUAD~ .. Fl~LO -

-----------------lDS STzE. U0-0Q2,. EQUALS

QUA04 .. f"ltL.0
-------- --SVM-F.l~-R~'rS-H-- EQ (fAL. S

QUA04•Nll~
$VMROL F"C7o7J ~OUALS I~ITIAL CHARACTER OF

JSDL•2 CHGOO

I-'
I-'
co

·~~~~' o9 oe~o6•69 17,4~9 5.IDS

ooac.u ~1J-OTI-f7lf ___ u ~ ~ - --- . _______ ._.Rp~129_ C~N CHN ~~J 1 R04~§~.- _ _c_ON_.~~h-
ZERO RD8129 1 R0448~

---ENt -lrrillf\UVCARll ~IDSUUJ2- -
ooa~17 OOO,OU00417Y oo~

0 0 0' 2 0 0 0 0 0 0 ~-~.!LO _Q_~ ~ . ouu

O~OZ2t
OQOi2t
00022+

____ o c a i 2 ;_. _J_~_g_C!!_~_o Q 0_91_t o o u

000(2'

000~2J

ouo75:;ioo14n~.

004224 0042,1

o+u
OJJ

ROS129 C~N CHN HQ, RD44B1 DE'I' ~-~T,

VF'D 12/0005 1 6/0 1 ~8/RD4461
000, POS NXT, R044S1 DET Cl-IN HD

VFO .. 12/0000 1 12/0000 1 12/0
- ----··--0000 -PRlOR, ~ooo HEAD

oer•tL o~ CA~C CHAIN
'22 RO~~s3 ,a~o o,c,000015,0012,fco~21,Ro44e2,
~23 ~Tg R04~8ltAD032~,
524 ETC MASTERwDA'A

I/ F" Q. __ _ _ .. __ 0 ~I~ 0 , 12 / 0 , ~ I 0 , 1 / 0 1 2 / U , ; 210 0 0 015
0 CAP, 0 U, 0~001~ F'L,D lNCR,

vro 18/R00321,1210012,JIQ,31FC0321
RD0321 ws, ori12 F'LD sz, F'C0321 F'ST c•~.
R04482 1 A0'448~
Rn4482 r~o CHN NXT, R04483

ZERO
MOO CHN l'jxi·

aqo22·~ ·- ·- - -- 5'25 -Ao~~s2 - , Q~O -··-
H4STER~DATA ••••FI~LD.NAME••••

-o -,-o 1 o o o o o 9-, o O' o 6; re 1 o e 9 , Ro 44e1-,
00022~ ~26 cTC RD4481J,1101oa~.

- 000224 . 521 ETC MASTER"'"lEl..J:I
06/\0112/0,3/0,1/0,2/0,~2/000009 o o a_i ~ '4 _ __!coo o o o u o o 1; -o u u v r o

- . 0 . cu·, 0 u, 0~0009 F'L.D lNCR,
000'2'

OOCJi26

000754000600

00417U 0042,7

01u

OH

oon221
ouo227

O'Vll7Z7-7C'IJ1J01U04''2!~ - 'Utr~

oullau--1nrouoo Off42~'

-aainn·-o-H~24 00422•

TTO-UZ3'
01.1023'
0 Q023~-

ooai!2 011750 o 026 o~

--- -- -- --

000i33 000000 0042~n

000i3t4 00423C: U04?~2

OODiU 000000000000
------------------ -------

000&36 000744 ooonun

00~

03"

Q (JIJ

OOJ

o~"

ouu

01u

VF"O 1e1Rotoe9,1210006,JI01Jlvc1oa9
R'Elf089 ws, 000~ F\O sz, F"C1U69 f'St Ct~-

ZERO RD44811 R0448'
R04481 F'~D CHN NXT 1 RD4485 MOD CHN Nxr

'2~ ~OH85 , aco
'29 -- ETC

vrcr ·

MASTE~•'IEl..D **•*F'lEl..D•NAME••••
0,1i~D44S•1RU44841RD448~ 1 R04482,
0

. - 0~/20, 8/0il1013/1 i1~/R0~484

"'3 0
jJl
'32

ZF:~".)

ZERO

0 q, 1 CNTL.1 RD44~4 CON CHN HD,
0,R044cl4
0 L.OC SYN w1 s,, R04484 CON, CHAlN NEXT
~041\S2 1 R0448c
RD44d2 MOD C~ ~EAD1 RD44B2 MOO CHN NXT

RD9'~u- ,1fR1f-- ·1000,000022;0,o,1,ocroooo, · -
ETC R0812~1RD051~1RD051J,oooo,cc0LOC1
ETC 000000,000000.xPAGE•MEAUxx
VFO 0611,2/0,10/~000,12~000022,3/0,
ETC 1/0i110 1 1/1

1goo RECORD TVPE, ouoo22 REC SlZE•
1J s

1
o P, 1 - -~ R, .. -- -- - - -- -- ·- - -· - - -- --

ZERO

ZERO

vro

ZERO

o ti o o o o, Roe 12 Y
000000 PG INTa RD8129
R00513 1 R0051~
RD0513 r~o CHN NXT, R00513
12/0000,2410
aooo lUtHORITV,
ccs1,.oc,o
CC.SL.QC REC TVPE CMN NXT

MST CMN NEXT,

DET CtlN NXT,

I-'
I-'
~

~~(47 O~ 08-C6-~Y 17. t1 '! (J

OC'1,37 Olill.UJ un(Jn1;11 Uuu

n 1• n r- 4 <1

f1" ~i (_ 4 l.J

o~n,40 n~11~~0U4~3~ ow~

G Ci a c 41 0 l 4 U :~ / llfi ~?-?? f' .l ~~

E I\ r 0 c t I\ ~ Fl Y C ~ t> u :;, I ~''~,di J 3
U 0 O ' 4 ~ !" L fl ~· [; Li n U o u n l. U U u
0 0 Q' 4 .3 0 c f i ::, (J u ,, (.; r. (J [l u I) l> li

(l C f'I t 4 4 O CU 1.; r; (if! Colin t.. U U

o o no o
00001
DO Of H
ocne1~

P~;r(~4!:)

fl l; fJ t> ~. i,.

o c r: c.i 1_ 4 l UJrl n l• o l t1

OCG1.;0J UOOGL? L0U
r:itn.ounr.111:1.,r;: ouu
Ol cou ununc3 ouu

fluCL1'~

0 0 0 f 14 0 t f• Id (i V / n l. 'I '.; '·' fJ ~I_,

~I lJ S

LE: kn

? :.S 3 ~T t• l ~ '; , C h ~I
?::$4 i::;TC

:.iJ'
~) :s fJ

VF D

Z.E~O

vro
VFU

\/FD

r:ss

l.1SI:::
TRA

-:;31 L.SY\Jl.10 ZEkO
... , ~ f~ u~ IJ U l1 l VF 0
'?.59 11EL!UUl /.ER1
:; 'i 0 • '11.:S • r~uLL
? 4 j -~ UHf:f~
:i4~ rOU!JD2 TSXl
'.:>4,3 t:llITP

c·_1:Jr'on,coo0oi..'
C ·, C ~.' 0 n p .t. G F R ~" l ri, 0 o 0 IJ On PA r; E R MAX
x 0 i\ GE .. HE An xx ~ * ~ * R 1:: co Ru= :,1 AME~~***
i~a0,Roo51J,HD051~,~D5060,ooo~,ouoo,
c ~. L c
u 1~12 1 2/0,10/lOJO, 181RD0')13
1J00 R~C TYP[% RD0~13 MST CHN HD,
1 .. n5:16ri, RD0~1J
R _.,,, ") 6 rJ c H ~I c 1-1 "' N x T ' R D 0 5 1 3 M s T c H N ~~ XT ,

1?/r1, ?.4/Q
~.'?/"1015124/0
u r' 0 P 0 ~ ~.J EXT ,
1;~1 OJ0,24/0
o~o POS PRl~R

2
;vi !\STE~ C'l F CAL. C C i·i A I \I

., I S •
cno o~,00000~
2~1 ,10/990
r r~ I., ,_i.

v t F r :\: I l r o ,.,, s ,
• C ~-:~FT
G''

0Ull238
OLiU23b

.QRD - RECORD DEFINITION

/c-- D..; ,....,. .. __ 1 a D,....._'l"'n_.,_ ,......r= n----;J n-.r=.; _..; .,_.; """" ti-"'--~., \
\UC:::C .1.."..L';jU.LC::: ..LJ• J • ."U.L.lllO.'- V.L J.'C:::V\..J.LU .LJC:::.L..LJ.J...L\.....L\..IJ.J. LJJ..L\....L:f.e/

Line Item

1 RECORD TYPE

1 RECORD SIZE

1 S - STORAGE CLASSIFICATION INDICATOR

1 P - PAGE RANGE INDICATOR

1 R - RETRIEVAL CLASSIFICATION INDICATOR

1 PAGE INTERVAL

2 MASTER CHAIN NEXT

2 DETAIL CHAIN NEXT

2 FIELD CHAIN NEXT

2 AUTHORITY

2 RECORD TYPE NEXT

3 MINIMUM PAGE RANGE

3 MAXIMUM PAGE RANGE

3 RECORD NAME

FORMAT

CY @ ~ ©
RDxxxx .QRD xxx,xxxxxx,x,x,x,xxxxxx, Line 1

ETC
G) G) CV@@

RDxxxx,RDxxxx,RDxxxx,xxxx,RDxxxx, Line 2

ETC
@ @@

xxxxxx,xxxxxx,x O) Line 3

TRANSLATOR OUTPUT (see preceding Definition Structure sample)

RD7233 .QRD 002,000043,0,0,0,000000,
ETC RD7233,RD7238,RD7235,0000,RD4737
ETC OOOOOO,OOOOOO,QUAD2

120

.QDD - DETAIL DEFINITION

(See Figure 20. Machine Format for Detail Definition Entry.)

Line Item

1 Q)
1 G
1 Q)
1 G
1 G
1 G)
2 G
2 G)
2 Q)
2 @
2 @
2 @
3 @
3 @
3 @
4 I@

FORMAT

RD xx xx

RECORD TYPE

CHAIN ORDER

DUPLICATE RECORD INDICATOR

CALC CHAIN DETAIL INDICATOR

u - CHAIN MASTER INDICATOR

s - STORAGE CHAIN INDICATOR

R - RETRIEVAL CHAIN INDICATOR

DETAIL CHAIN NEXT

DETAIL CHAIN HEAD

CHAIN CHAIN NEXT

CHAIN CHAIN HEAD

CONTROL CHAIN NEXT

NEXT POSITION

PRIOR POSITION

HEAD POSITION

CHAIN NAME SPECIFIED BY 98 LEVEL

CD ~
.QDD xxx,xx,x,x,x,x, Line 1

ETC
G)@ G)@)@@
x,RDxxxx,RDxxxx,RDxxxx,RDxxxx,RDxxxx, Line 2

ETC

ETC

@@@
xxxx,xxxx,xxxx,

(i6)
x'rfo>

Line 3

Line 4

TRANSLATOR OUTPUT (see preceding Definition Structure sample)

RD7238 .QDD
ETC
ETC
ETC

022,10,0,o,1,o
O,RD7236,RD7233,RD4742,RD4097,RD7238,
0039,0000,0000,
THE-CHAIN

121

.QM D - MASTER DEFINITION

Line Item

1 CD
1 0
1 0
1 ©
1 0
1 ©
2 (j)

FORMAT

RD xx xx

(See Figure 2L Machine Format for Master
Definition Entry.)

RECORD TYPE

MASTER CHAIN NEXT

MASTER CHAIN HEAD

CHAIN CHAIN NEXT

NEXT POSITION

PRIOR POSITION

CHAIN NAME SPECIFIED BY 98 LEVEL

.QMD
0 0 0 © 0 © xxx,RDxxxx,RDxxxx,RDxxxx,xxxx,xxxx, Line 1

G)
ETC x(30) Line 2

TRANSLATOR OUTPUT (see preceding Definition Structure sample)

RD7809

122

.QMD
ETC

990,RD4097,RD4481,RD0196,0031,0000,
PAGE-TABLE

.QFD - FIELD DEFINITION

(See Figure 22. Machine Format for Field Definition Entry.)

Line Item

1

1 G)
1 0
1 0
1 ©
1 ©
2 G)
2 @
3 G)

FORMAT

RDxxxx

TRANSLATOR

RD2345

COMPUTATION MODE AND
ARITHMETIC FORM

0 = ALPHANUMERIC BCD FIELD
1 = ALPHABETIC BCD FIELD
2 = NUMERIC BCD FIELD
3 = SIGNED NUMERIC BCD FIELD
4 = SINGLE PRECISION FIXED POINT BINARY FIELD
5 = SINGLE PRECISION FLOATING POINT

BINARY FIELD
6 = DOUBLE PRECISION FIXED POINT BINARY FIELD
7 = DOUBLE PRECISION FLOATING POINT

BINARY FIELD
U - UNIQUE FIELD INDICATOR

FIELD INCREMENT

FIELD SIZE

FIRST CHARACTER

FIELD CHAIN NEXT

MODIFY CHAIN NEXT

LOCATION OF WORKING STORAGE

FIELD NAME

COO) @ © @ ©
.QFD x,x,xxxxxx,xxxx,FCxxxx,RDxxxx, Line 1

0) ®
ETC RDxxxx,RDxxxx, Line 2

ETC xm)

OUTPUT (see preceding Definition Structure sample)

.QFD 0,0,000015,0024,FC5697,RD2434
ETC RD2435,RD5697,
ETC QUAD3-FIELD

123

.QCD - CONTROL DEFINITION

Line Item
1 0
1 0
1 G)

1 ©
1 ®
1 ©
2 (j)

FORMAT

RDxxxx

(See Figure 23. Machine Format for Control
Definition Entry.)

R-MATCH CONTROL INDICATOR

CNTL - CONTROL FIELD TYPE

CONTROL CHAIN HEAD

CONTROL CHAIN NEXT

MODIFY CHAIN HEAD

MODIFY CHAIN NEXT

LOCATION OF MATCH-KEY FIELD DEFINITION

COO)@©®©
.QCD x,x,RDxxxx,RDxxxx,RDxxxx,RDxxxx, Line 1

(j)
ETC RD xx xx Line 2

TRANSLATOR OUTPUT (see preceding Definition Structure sample))

RD24 37

124

.QCD
ETC

O,l,RD2438,RD2436,RD2434,RD2434,
0

6. Operational Characteristics

I-D-S provides the following capabilities:

A controlled, concurrent access to a common I-D-S structured data
file which is created by the File System Activity;

A common journal file for the automatic collection of journal
records from each of multiple I-D-S activities in execution;

An integrated set of utility routines to enable recovery
restart following a condition which requires restoration
data file.

and/or
of the

Concurrent access to a common I-D-S data file is provided through the
concept of subfile definition and allocation. A subfile is defined as a
set of pages that fall within the total I-D-S data file. This range may
be either the complete I-D-S data file or a portion. The File System
Activity ($ FILSYS) procedures allow the creation, modification, and
deletion of subfiles within an I-D-S file.

At execution time, the I-D-S user specifies the subfiles which must be
allocated to his activity. Each subfile requested is given an associated
access mode.

1-0-S DATA FILE INITIALIZATION

Prior to the operation of any I-D-S program, the mass storage device
must have been initialized with a Page Header record as the first record
of each page in the I-D-S data file.

The I-D-S utility program QUTI accomplishes this I-D-S data file
initialization.

125

CREATING AN 1-D-S DATA FILE

An I-D-S data file may be created on one or many mass storage devices
\·li th different hardware characteristics. It can be permanent; temporary;
or a combination of the two. In creating this file, the number and
location of pages must be considered.

The various directives necessary for creating an I-D-S data file are
described below. Only the I-D-S options are included. Refer to the
GE-600 Line GECOS III File System Reference Manual, CPB-1513, for a
detailed description of the GECOS III File System.

Creating a Permanent 1-D-S Data File

A permanent I-D-S data file is created by using the file system
FCREAT/IDS/ directive. The options used with FCREAT/IDS/ are:

BASESIZE/n/

RNG/rl,r2/

PAGESIZE/n/

126

Base size is required; /n/ defines the maximum size of
the complete I-D-S data file; /n/ must be greater than
or equal to 1 and less than or equal to 262143. If
multiple files are created to form the complete I-D-S
data file, the value of /n/ must be identical on all
directives.

The page-range is required to define the pages
contained in the file; rl and r2 are the beginning and
ending page numbers respectively; rl must be less than
or equal to r2; the values of rl and r2 must be
greater than or equal to 1 and less than or equal to
262143. This range may be either the complete I-D-S
data file or a portion.

The page size is optional. If it is omitted, a
of 320-words is assumed. When it is present,/n/
be greater than or equal to 40 and less than or
to 640. This allows a different page size in
subfile within the complete I-D-S data file.

size
must

equal
each

When /n/ is present, the actual page size used will be
adjusted, if necessary, to reflect a multiple of
sector size of the hardware device for this file. (For
a DSU200 Magnetic Disc Subsystem, page size will be 40
x 2n, where n is an integer and l<n<4. For a DSU270 or
a DSU167 or for an MDS200 MagneEi~ Drum Subsystem,
page size will be 64 x n, where n is an integer and
l<n<lO.)

LINESPERPAGE/n/

INVENTORY /n/

Lines per page is optional. If it is omitted or
greater than 63, 63 lines per page is assumed. When
/n/ is present and less than 63, multiple copies of
data pages are created to satisfy all 63 line flags.

Inventory is optional. If it is omitted, a value of
75 is assumed. When /n/ is present it defines the
percentage of page fill, which controls inventory
update; /n/ may contain the word "NO" to allow
exclusion of inventory pages and processing.

A sample deck setup to create a permanent I-D-S data file follows. It
consists of 480 pages in the complete I-D-S data file but it is· created
as four files, each with 120 pages.

1 8 16

$
$
$
$

lsNUMB
1IDENT
IFILSYS
IP RIVI TY

CRMAST

CCREAT
USE RID
CPOS
FCREAT/IDS/

FCREAT/IDS/

FCREAT/IDS/

FCREAT/IDS/

$ END JOB
***EOF

IDSFOURYQUAD/IDSFOURYQUAD,PASSWORD/DATABASE/,
SIZE/100/
IDSFOURYQUAD,PASSWORD/DATABASE/
IDSFOURYQUAD$DATABASE
IDSFOURYQUAD
QUADOl,BASESIZE/480/,RNG/1,120/,
PAGESIZE/160/,LINESPERPAGE/32/,
INVENTORY/25/,SIZE/13/,.MODE/RAND/,
DEVICE/DS3/
QUAD02,BASESIZE/480/,RNG/121,240/,
PAGESIZE/320/,LINESPERPAGE/63/,
INVENTORY/75/,SIZE/ll/,MODE/RAND/,
DEVICE/STl/
QUAD03,BASESIZE/480/,RNG/241,360/,
PAGESIZE/320/,LINESPERPAGE/63/,
INVENTORY/75/,SIZE/ll/,MODE/RAND/,
DEVICE/DS2/
QUAD04,BASESIZE/480/,RNG/361,480/,
PAGESIZE/320/,LINESPERPAGE/63/,
INVENTORY/75/,SIZE/ll/,MODE/RAND/,
DEVICE/DS2/

The above control cards will create an I-D-S data file structure as
shown in Figure 24.

127

I system Master
I Catalog

User's Master
Catalog

Figure 24. I-D-S Data File Structure

The name in the System Master Catalog is the USERID assigned by the
CRMAST directive. This is the name I-D-S will use as the I-D-S data file
name.

To have access to this I-D-S data file, the user must supply a $ USERID
control card in the execution deck setup. The I-D-S journal records will
contain this name, which will be used by the I-D-S utility routine when
restart and recovery is required.

128

Creating a Temporary 1-0-S Data File

A temporary I-D-S data file is created by
directives with the I-D-S execution activity.
contained in the .Q data file.

including IDS Create
.These directives are

The directive format is:

1 8
I
I
1CREATE
I

16
I

lattributes
I

The attributes are separated by commas.

The attribute names may be the complete name or the abbreviation.

FILECODE(FC)/fc/

BASESIZE(BSSZ)/n/

RANGE(RNG)/rl,r2/

PAGESIZE(PGSZ)/n/

File code is used to associate the attributes on
this directive with the file code on the $
"File" card such as:

$ DISC fc,lud,#random links

Base size is required on at least one directive
card submitted for an I-D-S execute. If multiple
directives are submitted, the value of /n/ must
be identical; /n/ defines the maximum size of
the complete I-D-S data file; /n/ must be
greater than or equal to 1 and less than or
equal to 262143.

Page-range is required to define the pages
contained in a file; rl and r2 are the
beginning and ending page numbers respectively;
rl must be less than or equal to r2 and the
value of rl and r2 must be greater than or equal
to 1 and less than or equal to 262143. This
range may be either the complete I-D-S data file
or it may be a portion.

Page size is optional. If it is omitted, a size
of 320 words is assumed. When it is present, /n/
must be greater than or equal to 40 and less
than or equal to 640. This allows a different
page size in each subfile within the complete
I-D-S data file.

129

LINESPERPAGE(LPP)/n/

INVENTORY(INV)/n/

When /n/ is present the actual page size used
will be adjusted, if required, to reflect a
multiple of sector size of the hardware device
for this file. (For a DSU200 Magnetic Disc
Subsystem, page size will be 40 x 2n, where n is
an integer and l<n<4. For a DSU270 or a DSU167
or for an MDS200-Magnetic Drum Subsystem, page
size will be 64 x n, where n is an integer and
1$_n$_ 10.)

Lines per page is optional. If it is omitted or
greater than 63, 63 lines per page is assumed.
When /n/ is present and less than 63, multiple
copies of data pages are created to satisfy all
63 line flags.

Inventory is optional. If it is omitted, a value
of 75 is assumed. When /n/ is present it defines
the percentage of page fill, which controls
inventory update; /n/ may contain the word "NO"
to allow exclusion of inventory pages and
processing.

The deck setup below will create a temporary I-D-S data file to be used
by the I-D-S activity.

130

1 8
I

$ IS NUMB
$ IIDENT
$ I OBJECT

' I
$ IDKEND
$ I EXECUTE
$ ILIMITS
$ IDISC
$ IDISC
$ DISC
$ IDISC
$ IDATA
IDS :CREATE

IDS :CREATE

IDS I CREATE
IDS 1

1
cREATE

$ EN DJ OB
***EOF I

I

16
I
I
I
I
I
I

:DUMP

1Al ,AlS '13R
IA2 ,A2S' llR
IA3 ,A3S 'llR
IA4 ,A4S' llR
l·Q
!FC/Al/,BSSZ/480/,RNG/1,120/,PGSZ/160/,
ILPP/32/ ,INV/25/
IFC/A2/,BSSZ/480/,RNG/121,240/,PGSZ/320/,
LPP/63/ ,INV/75/
IFC/A3/ ,RNG/241,360/
IFC/A4/ ,RNG/361, 480/
I
I
I

Mixing Temporary and Permanent Files

An I-D-S data file is subordinate to the GECOS-III file system. The
I-D-S data file may be created on one or many mass storage devices with
different hardware characteristics. This facility allows selected I-D-S
record types to be given page-ranges, which may then be directed to a
specific hardware device when the file is created. I-D-S utility
routines provide for selective file dump and reload. It is possible that
an application may require that pages residing on one type of hardware
be dumped and then reloaded on another type of hardware.

Two hypothetical cases where the user may want to mix permanent and
temporary files follow:

A user may want to establish a page range for records that are only used
weekly or monthly. For this application, the page range would not be
created as a permanent file. Instead the page range would be created as
a temporary file, the data stored, and the file dumped to tape.

When the records are to be used, the temporary file is established, the
file is reloaded from the dumped tape, and the program is executed using
this file in conjunction with the permanent file. Again, the file is
dumped to tape and saved for the next weekly or monthly run.

Another example of mixed permanent and temporary files is using a
temporary file for the work area of execute activities. In this usage, a
permanent file would not be required for the delete process, since this
temporary area would be purged at the end of the activity.

131

I
I

ACCESSING AN i-D-S FILE

Subfile A!!ocation

Each subfile requested must have been created previously as an I-D-S
data file. A $ PRMFL control card is required for each subfile. Refer to
CPB-1518 for a complete discussion of options used. The I-D-S options
are discussed below:

1

$
$

8
I
lPRMFL
1PRMFL
I

16
I
~c,Permit,Mode,File String
1f c, /LUD, Permit, Mode, Fi le String
I

PERMIT is an option describing the I-D-S usage. Multiple access
may be used. If used, they are separated by slashes (/). The
options are:

WRITE - The user requests the subfile for updating records.

modes
valid

READ - The user requests the subfile for retrieving records.

RECOVERY - The user requests access to an aborted subfile to
reestablish the integrity of the subfile.

Examples:

1

$

$

$

132

8

I
•PRMFL
I

:PRMFL
I
lPRMFL
I

16
I

:Al,READ,R,IDSFOURYQUAD/QUADOl
I

:A2,READ/WRITE,R,IDSFOURYQUAD/QUAD02
I
IA3,RECOVERY/READ/WRITE,R,IDSFOURYQUAD/QUAD03
I

Sample deck set up of LUD Option, used with the "CLOSE WITH LOCK"
statement for dynamic release of I-D-S file.

1 8 16
I I

$ II DENT I
$ lusERID I

I I
I I
I I (First Activity)
:PRMFL

I
$ 1Al/DlS IR/WI RI FILE STRING
$ IPRMFL ~2/D2S,R/W,R,FILE STRING

I I
I I
I I (Last Activity)

$ ~ILE ITF ,DlR, lR
$ I f'ILE ,TG ,D2R I lR

I I

Table A shows the action taken when the LUD option is used.

DISPOSITION PERMANENT FILE TEMPORARY FILE
CODE

File is made unavailable File is made unavailable
R to the run unit. to the run unit.

File space is available to File is available for
the system for allocation. allocation to other jobs.

File is made unavailable File is made unavailable
to the run unit. to the run unit.

s File space is held for File is NOT available for
allocation to other allocation to other jobs.
activities in this job. File is held for

allocation to other
activities in this job.

Table A.

133

An I-D-S activity which includes a request for subfiles is not allocated
until all requested subfiles are allocated. The subfile allocation
criteria are shown in Figure 25.

SUBFILE ALLOCATION ACCESS REQUESTED
CONDITION

READ WRITE RECOVERY

FILE IN ABORT STATE x x x

FILE BUSY WRITE (UPDATE) x x x

FILE BUSY READ (RETRIEVE) x x x

FILE NOT BUSY x x x

ACTION

DENY ALLOCATION x x x

DELETE ALLOCATION REASON CODE 15 15 16 16 16

PERMIT ALLOCATION x x x x

Figure 25. I-D-S Data File Allocation

134

Since a READ access mode does not alter the contents of a subfile,
several I-D-S activities can share a subfile in READ mode. If a subfile
is allocated to an activity in the READ mode, it can also be allocated
to any other I-D-S activity which wishes to use it in the READ mode.
Allocation of the subfile would be denied, however, to any activity
requesting WRITE usage for a subfile which is already allocated for READ
usage.

While there can be concurrent users of a subfile in READ mode, there can
be only one active user for a subfile in the WRITE access mode. All
other allocation requests for the subfile would be denied until the
activity which is doing the UPDATE has terminated.

Subfiles allocated in the WRITE access mode are marked in ABORT status
if the activity aborts. A subfile in ABORT status will be allocated by
requesting RECOVERY access mode in addition to READ and WRITE.

The individual responsible for maintaining the I-D-S
prepare the necessary input for a RECOVERY run. The
which aid in this preparation are discussed later.

The abort indicator is turned off for an aborted
successful RECOVERY run is made on that subfile. It is
for normal allocation.

data file must
utility routines

subfile
then

after a
available

135

Subfile Deallocation

I-D-S data files are deallocated at activity termination. Figure 26
shows the deallocation activity and the action taken.

ACTIVITY TERMINATION FILE BUSY ACCESS MODE
CONDITION READ WRITE RECOVERY

NORMAL x x x
ABNORMAL x x x

ACTION

SET FILE ABORT ON x x

SET FILE NORMAL x x x x

SET FILE ABORT OFF x

Figure 26. I-D-S Data File Deallocation

1-D-S JOURNAL FILE

A journal file is a recording of all I-D-S data file page transactions.
Journal information is collected on the accounting file tape from each
of multiple I-D-S activities in execution, thus providing a single
source file that is used to reestablish a data file to some previously
known status in the event that the file should lose its integrity. A
journal tape is labeled and is a single file. Multiple reel output may
be produced depending on the journalization required.

When an end of reel is reached or an activity with write permission
aborts, a reel swap or unit switch occurs. Two operator inputs permit
the accounting file to be closed for I-D-S purposes:

IDSEJ

IDSER

136

Close the accounting file with an EOF trailer label when
all I-D-S jobs known to the system are complete.

Close the accounting file with an EOR trailer label at
the time of the request.

1-D-S Journal File Configuration

The I-D-S Journal file is configured on the system accounting file tape
at system startup time by adding the I-D-S options to the Startup $
ACCOUNT control card. Refer to the GE-600 Line GECOS III Startup
Software Maintenance Document, CPB-1489.

The I-D-S options are:

IDS

BUFSIZ/n

RETENTION/n

This option indicates that the I-D-S journal records are
to be included on the system accounting file as record
type 13 (8) .

This option sets the size of the collecting buffers for
I-D-S journal records and the accounting records. If
omitted, then /n is assumed to be 320. The value /n must
be set to at least 12 words larger than the maximum page
size that may be placed on the journal file. If a journal
record is encountered which is greater in size than the
collecting buffer, the slave program will be terminated
with a D2 abort code.

This option allows the retention period in days
for label checking/writing to be established
I-D-S journal file.

required
for the

Journal Record Format

Journal records are produced as record type 13(8) on the system Error
and Accounting file which must be configured at system startup time and
must be assigned to magnetic tape. Override options are discussed later.

With the exception of block size, records are written in standard system
format as described in the GE-600 Line File and Record Control Reference
Manual, CPB-1003. The block size is as large---a5 the buffer size defined
on the startup $ ACCOUNT control card.

The various formats for record type 13(8) that can be recorded on the
journal tape appear below followed by definitions of terms common to all
types.

137

Slave Begin Sync, Record Type 03. This record is written at the
beginning of each I-D-S slave activity.

Word

1
2
3
4
5
6

Contents

Record control word for journalizing
Checksum
SNUMB
Start date (MMDDYY)
Start time (HH.TTT)
.Indicators (bi ts 0-11)
Activity number (bits 27-35)
Not used
I-D-S data file name

Subroutine .QOPEN generates this record and stores it in the slave
program prefix as follows. (See also "I-D-S Data Pages" in Chapter 7 for
special conditions that apply when using disc sort.)

138

Location in
Prefix (decimal)

54

55

56

57

58

59

60

61

62

Word Contents

000010 1
000013

(Size) (Type)

Checksum

SNUMB

MMDDYY

HH.TTT

030 l l Activity if

0

~ I-D-S data file name -

Page Image Record, Record Types 05 and 06. There are two types of Page
Image records (BEFORE and AFTER) written to the journal tape. The
indicator word defines the type. A BEFORE page image is written before a
page is modified. An AFTER page image is written after the modification.

Word

1
2
3
4
5
6

7

8 }
9

10-n

Contents

Record control
Checksum

word for journalizing

Job number
(MMDDYY)
(HH.TTT)

Start date
Start time
Indicators
Activity number
Lines per page
Sequence number

(bi ts
(bits
(bits
(bits

I-D-S data file name

Activity page image

0-11)
27-35)
0-17)
18-35)

Slave End Sync, Record Type 04. This record is written when an I-D-S
slave program terminates. The termination code is stored in the record.

Word

1
2
3
4
5
6

Contents

Record control word for journalizing
Checksum
Job number
Start date (MMDDYY)
Start time (HH.TTT)
Indicators (bits 0-11)
Activity number (bits 27-35)
Termination code
I-D-S data file name

139

Journal Record, Record Type 09. This record is written when subroutine
.QSTB is used to gather type B subroutine execution information. (See
QUTR Program writeup in Chapter 8.)

Word

1
2
3
4
5
6

Contents

Record control word for journalizing
Checksum
Job number
Start date (MMDDYY)
Start time (HH.TTT)
Indicators (bits 0-11)
Activity number (bits 27-35)
Alter number of call to subroutine

I-D-S data file name

10 Control word (see following explanation)

11
12

Number of reads \
Number of writesj

for any given
control word
(word 10)

The control word format (word 10) is as follows:

0 5 6 17 18 23 24

Code Type - 1 MBZ Type - 2

where:

140

Code is one of the following function values:

1 - Store record type
2 - Retrieve record type
3 - Retrieve current record type
4 - Retrieve direct
5 - Retrieve each
6 - Retrieve next of chain
7 - Retrieve prior of chain
8 - Retrieve master of chain
9 - Head of chain

10 - Modify record type
11 - Delete record type
12 - Debug

Type - 1 is the record type for the preceding function
or the record type of the master of a chain.

Type - 2 is the record type of a detail of a chain.

35

Definition of Terms

Checksum

Date

Time

Indicators

Record Type

Lines per Page

Termination Code

I-D-S Date
File-Name

The checksum of all words (other than the checksum
word) in the record.

A 6-character field indicating month, day, and year
the record was written. For slave End Sync records,
it is the date the corresponding Slave Begin Sync
record was written.

Time the activity was started expressed in hours,
decimal point, and thousandths of an hour in BCD
format (HH.TTT). For Slave End Sync or Page Image
records, it is the time in the corresponding Slave
Begin Sync record.

A 1-word indicator which defines the record type
and contains the activity number.

A 1-character BCD field that appears in bits 6-11
of the indicator word. The record type indicators
are shown below:

TYPE 3
TYPE 4
TYPE 5
TYPE 6
TYPE 9

Slave Begin Sync
Slave End Sync
Before Page Image
After Page Image
Statistics

(SLVBGN)
(SLVEND)
(BEFORE)
(AFTER)

The lines per page for the Before/After Page Image.

A 2-character code in bi ts 27-35 of the Slave End
Sync record. Termination codes are:

00 Normal activity termination
00 Normal job termination
cc Abnormal termination; cc is a

2-character alphanumeric
abort code.

A 12-character name, left justified. This name is
taken from the $ USE RID card.

141

Job Number

~~cti vi t~1 Nurnber

Sequence Number

Record control word
for journalizing

Closing Journal Files

A 5-character SNUMB for the job, left justified and
followed by an ignore character.

A 9-bit binary job activity number.

A binary sequence number carried in the Page
records. BEFORE records are sequenced by
ascending order stqrting with 1. AFTER records
sequenced in descending order starting with
binary l's in bits 18-35.

Image
1 in

are
all

A control word that contains the number of words in
the record in bits 0-17 and defines it as record
type 13(8), right-justified, in bits 18-35.

The system-configured journal tape collects the journal data as one long
file. From an operational point of view, it is necessary to periodically
"close" one journal file and start another. This closing, followed by an
opportunity to dismount and replace the journal tape, is done
automatically when there is a master mode abort.

The operator may periodically request that a journal file be closed and
another file started. He does this by requesting control and using the
IDSEJ typein. The system response to this input is shown in the
following table.

142

CONDITION

An I-D-S activity is in
execution.

No I-D-S activity is in
execution.

ACTION

IDSEJ DELAY message is typed
out. The I-D-S journal file
will be closed when there is
no I-D-S activity in
execution.

An end-of-file is recorded on
the journal tape and a dismount
message is issued.

Journal Override

Journal records are automatically written to the system-configured Error
and Accounting tape; however, there are two activity override options
available. Option 1 permits the user to request his own tape; option 2
suppresses all journalization.

The control card format for option 1 is:

1

$

8
I
:TAPE
I

16
I
lJX, XlD,,,, IDS-JOURNAL
I

If a tape file JX is assigned for an activity, all journal record
types -- the Slave Begin Sync, Slave End Sync, and all BEFORE and
AFTER records and all statistics records -- are written to this
file.

The control card format for option 2 is:

1 8 16
j I
!EXECUTE IDEBUG
I I

DEBUG in the variable field of the $ EXECUTE control
bit 11 of the Program Switch Word to be set ON which
journal records from being generated.

Examples:

card causes
prevents any

1. The Slave Begin Sync, Slave End Sync, BEFORE and AFTER records
are written to the user-supplied file JX.

1

$
$

$
$
$

8

I ID ENT
lOBJECT

I
I

:DKEND
!EXECUTE
ITAPE
I

16

I
!Options
IJX, XlD, , , , IDS-JOURNAL
I

143

2. No journalization takes place.

l 8 16
I

$
I
IIDENT

$ IQBJECT
I
I I I
lo KE ND

I
$

:DEBUG $:EXECUTE
I I

I I
I

I I

Journal File Map

A map of all Sync records contained on the I-D-S Journal file may be
produced by executing the .QUTJ I-D-S utility routine (1) when a journal
file has been made available after the abnormal termination of an I-D-S
activity or, (2) the operator requests an end-of-file condition.

A sample journal file map follows.

lJ J N L 0 1 0 9 • 2 7 • 6 8 11. 341 ID~ JUU~NAL TAP~ REPO~f

IDS UTILITY RQUTIN~ ~ ,UUTJ - VERSION

144

9
1C
15
38

117
133
138
140
142
143
149
150
151
1"3
1 i;5
156
161
162

SLVBGN
SL VEND
SLVBGN
SLVBGN
SLVENU
SLVEND
SLVBGN
SL VEND
SL.VBGN
SL VEND
SLVBGN
SLVBGN
SL.VEND
SL VEND
SLVBGN
SL.VEND
SLVBGN
SL.VEND

1-CJUTI
1-CJUTI
1-TST03
1-TST3C
1-TST03
1-TST3C
1-QUTDL
1-QUTDL
2-QUTDL
2-QUTOL
1-TST4A
1-TST4B
1-TST4A
1-TST48
1-Tst4C
1-TST4C
1-CJUTU
1-CJlJTO

09·27-68
09-27-68
09-27-68
09-27-68
09-27-6Ci
09-27-68
09-27-68
09-27-ed
09-27-68
09·27-68
09-27-68
09-27-oB
09-27-68
09-27-68
09-27-68
09-27-68
09-27-68
09·27-6d

11.199
11. 199
11,210
11. 211
u.210
11I211
11. 222
11.222
11.227
11.227
11,237
11, 238
11,237
11,238
11,240
11,240
11,247
11.24/

030
040
030
030
040
040
030
040
03J
040
030
030
040
040
030
040
030
04'.)

0
00

0
0

00
00

0
00

0
00

0
0

00
00

0
00

0
00

IDSfJUHYQUAD
IUSFJUHYQUAU
IDSFJURYQUAD
IOSFJURYQUAD
IUSFOURYQUAD
!DSFJURYQUAD
IDSFQURYQUAU
I DSF JURYQUAO
JDSFJURYQUAU
IDSFJURYQUAU
I DSFJURYQUAIJ
IDSFOURYQUAD
I DSF:JURYQUAU
I DSFJURYQUAD
I DSFJURYQUAD
I USFJURYQUAO
IUSfJUkYQUAll
I OSF '.)URYQUAiJ

RECOVERING AN 1-D-S DATA FILE

All I-D-S slave programs interface with GECOS-III through the MME GEIDSE
incorporated in the I-D-S object-time subroutines. The MME enables the
subroutines to record page images on a system configured journal tape.
BEFORE page images are written to the journal tape prior to the
modification of a page; AFTER page images are written to the journal
tape following modification of the page. When recovery of the data file
is desired, the journal tapes containing the required pages are
processed as illustrated in Figure 27A. Figure 27B illustrates an
alternate method.

I-D-S
SLAVE

PROGRAM

DIRECTIVES
(CRITERIA)

DIRECTIVE
{LOAD OPTION)

GECOS-III
OPERATING
SYSTEM

,-----
: M6Btl£E

QUTP

{OPTIONAL)

QUTU

LISTING

LISTING

LISTING

Figure 27A. Operational Sequence to Re-establish an I-D-S Data File I

145

I-D-S
SLAVE

PROGRAM

DIRECTIVES
(LOAD OPTIONS)

I GECOS-III
I OPERATmG

SYSTEM

j!osc-
1 MODULE

QUTL
(OPTIONAL) 1-::=1
------~

Figure 27B. Alternate Operation to Re-establish an I-D-S Data File

146

The individuals responsible for maintaining the data base establish the
selection criteria for obtaining the appropriate pages from the journal
tape. This is done using the information from the Journal Tape Map or
from a complete journal dump created by the QUTJ utility routine. The
QUTP utility routine selects pages from the journal tape. The QUTS
utility routine then sorts the selected page image records and purges
multiple page images having the same page number. The sorted output
consists of the first BEFORE or the last AFTER image for a given page
number as required for the data file reload. The QUTU utility routine
reloads the output to the appropriate portions of the data file.

Since rollback does not reestabLish the data file to a previous
condition, the MME GECHEK and MME GEROLL should not be used by an I-D-S
program.

1-0-S EXECUTION REPORT

I-D-S appends information about the data base to the execution report.
This information includes (1) the attributes of the data base (2) total
input/output performed on the data base, and (3) input/output performed
on the data base as a function of each I-D-S subroutine. Formats of the
three types of information are shown in the following examples and are
explained by the notes corresponding to the circled callouts.

Example 1: Data Base Attributes

(D Files Allocated -- the number of permanent and/or temporary
IDS files allocated to the activity

Range -- the smallest and largest page number present
files

in

0 Basesize -- the value to be used in the randomize routine

0 Buffers -- the number of page buffers present

the

An entry appears under each of the following heads for each file or
subfile:

0 Filecode -- the file code referenced by the program

© Range -- the range for this file or subfile

147

1

G) Pagesize -- the page size for this file or subfile

(8) Pages/Page
'--"

the number of pages per page for the file or
subfile

(V Lines/Page -- the number of lines per page for the file or
subfile

@ Links Aloe -- the number of links allocated to the file or
subfile

Links Nee -- the number of links necessary to contain
pages defined for the file or subfile

the

@ Access Mode -- the mode in which the file or subfile is being
accessed

0

Inventory -- the percentage value at which inventory
updated on the file or subfile

0 0 0
FILES ALLOCATED, RANGE 1 - 100 BASESIZE 100 BUFFERS 29

will be

FILECODE RANGE PAGESIZE PAGES/PAGE LINES/PAGE LINKS ALOC LINKS NEC ACCESS MODE INVENTORY

Al 1- 100 320 1 63 20 9 WRITE 75

0 © 0 0 G) @ @) ® @)

148

Example 2: Total I/O Performed on Data Base

The following are shown for each file or subfile:

@ File Code -- the file code referenced by the program

of Reads -- the total number of reads that
file or subfile

occurred on the

0 # of Writes -- the total number of writes that occurred on the
file or subfile

© Inventory Reads -- the number of inventory reads that occurred
on the file or subfile

@ Inventory Writes -- the number of inventory writes that
occurred on the file or subfile

I-D-S UTILIZATION REPORT

FILE CODE :ff OF READS :/fa OF WRITERS INVENTORY READS INVENTORY WRITES

TF 258 2883 1 1

149

Example 3: I/O Performed on Data Base as a Function of Each I-D-S
Subroutine

This report is produced by the I-D-S close subroutine. Counts are
accumulated for each primary entry subroutine that is, each
subroutine called by the object program. These are known as type A
(.QSTA) subroutine execution statistics. (An additional, more detailed
(type B) report can also be produced as a separate output at the user's
option. For this report the .QSTB subroutine is used to accumulate the
statistics on the journal file, and the QUTR program produces the
report. See the QUTR writeup in Chapter 8 for details.)

The type A report contains the following information:

@ Primary entry subroutine name

0 Total number of times subroutine was called

0 Total number of reads for execution of the subroutine

© Total number of writes for execution of the subroutine

SUBROUTINE STATISTICS

NAME NO. TIMES CALLED NO. READS NO. WRITES

.QSTOR 18 6 10

.QGET 18 0 2

.QCHN 88 0 6

.QMDFY 18 0 24

0 0 0 ©

150

7. Memory Management

ASSIGNMENT OF 1-D-S BUFFERS AND WORK AREAS

The I-D-S subroutines require data page buffer areas and working areas.
The user defines the size of these areas by employing one of the two
following procedures.

With a $ USE Card

A Labeled Common area (.QAREA) may be specified by the GELOAD control
card shown below:

1

$

8
I
1usE I
I

16
I

1.QMAX/l/, .QAREA/n/, .QMIN/l/
I

The $ USE control card must be inserted before the $ EXECUTE card in the
object deck so that GELOAD will encounter it prior to loading the I-D-S
subroutines from the library. Refer to the GE-600 Line General Loader
Reference Manual, CPB-1008.

The value supplied for /n/ must be large enough to contain the working
area plus at least three page buffers. The following formula may be used
to determine the total space required.

(NF*lO) + 10 + ((MP + 21) *NB) + NO +(I + 3)

where NF is the number of files allocated
MP is maximum page size allocated in words

*NB is number of page buffers
I is maximum sector size for files containing

inventory. (For DSU200, I = 40; for all other
mass storage devices I = 64.)

*NO is number of page buffers which overlay .QOPEN.

*The total number of buffers (TB) must be at least three. TB
where NO is determined by the following formula:

NO = 816/(MP+20)

NB+NO,

151

I

I

I

I

When a sort is included as part of an I-D-S activity, a $ USE card must
be used to constrain the work area of one of the systems. If this is not
done, both systems will compete for the area not assigned to other
program segments.

A sample deck setup for an I-D-S sort using disc sort and temporary
I-D-S files follows. With this setup, the sort work area will be the
core storage remaining from the $ LIMITS card after subtracting the user
program size and the I-D-S page buffer size (.QAREA).

1

$
$
$
$
$
$
$
$
IDS
$
***EOF

8

I
II DENT
1usE
loBJECT
IE XE CUTE
!LIMITS
:msc
1DISC
1
DATA

1CREATE
IENDJOB
I

16
I
I
I
1 • QMAX/l/ I. QAREA/50 00 I I • QMIN/l/
,usERPROGRAM
I
110 I 32K
ITF ,DlS I lOR
lsl,XlR,5R
la
!Fc/TF/,BSSZ/100/,RNG/l,100/
I
I

Without a $ USE Card

When the $ USE control card procedure is not used, the .QOPEN I-D-S
subroutine attempts to use the area in memory not assigned to other
program segments. The size of this available area is inserted in word
37(8) of the slave program prefix by GELOAD during the loading process.
As in the procedure above, the available area is divided into a work
area and some number of buffers, depending on the size of the area. A
minimum of three buffers must be established or the slave program will
be terminated. The .QOPEN subroutine modifies the content of word 37(8)
to reflect the usage of this area.

When the file is opened, the size of .QAREA is determined and then used
in the following manner (see Figure 28):

152

1. Slave I-D-S Control Table - this table consists of 10 control
words plus 10 words for each I-D-S subfile (temporary or
rerrnanent) assigned to the activity.

2. Inventory Record Buffer - this area is equal to three words
more than the largest inventory sector allocated.

3. Page Buffer Activity Table - this table contains one word for
each page buffer.

4. Data Page Buffers - these buffers are equal to the page size of I
the largest page allocated plus 20 decimal words.

s. The first inventory buffer exists as defined in Figure 28. The I
other inventory buffers and their headers are generated by
.QOPEN and overlay the code in .QOPEN that may be executed only
once. As many buffers exist as will fit in the overlay area.

Total Control Work Area

First File Entry __ _

:= .:: :::::_;:-_::- -=- -=- -_-=- -=-~
nth File Entry

Header for Inventory Buffer 0

Inventory Buffer

Buffer Activity Tabl§_ _
i...- - - - - - - _::-_-_,::-_ - -- - ----

Header for Buffer n

Data Page Buffer n ---- - ---- -- -- ---

Header for Buffer 0

Data Page Buffer 0

- _ .. --

- -----=--- - - ----

Length of either
.QAREA or an open
area from 37 8

f
Largest page
size plus

Header

Figure 28. Labeled Common .QAREA

153

I

SLAVE 1-D-S CONTROL TABLE

Figure 29 shows a Slave I-D-S Control Table used by the I-D-S
subroutines to honor the attributes of an I-D-S data file. Each subfile
may be different, such as page size and percent of page fill for
inventory. The I-D-S subroutines use a common GEFRC file control block
to do all I-D-S data page and inventory page I/O on the mass storage. To
accomplish this, the file control block control information is kept in
the SICT Table for each unique file. It is then placed into the file
control block when an I/O request for a page is needed. The total length
of the table is dependent on the number of files allocated.

Bits 0 1718

Word 0 Pointer to Current Entry MBZ

1 Maximum Page Size Base Size

2 Lowest Page Number Highest Page Number

3 Maximum Inventory Sector Page Buffer Size

4

5 (~
6 MBZ MBZ

7

8
))

9 MBZ Count of Entries

0 RANGE Rl RANGE R2

1 Inventory Write Counter Page Size

2 Pages/Page No. Lines Per Page

3 RBA of Current Inventory Inventory Percent Fill

4 Inventory Read Counter RBA Current Page

5 Sectors/Page Sector Size

6 Gross Write Counter Gross Read Counter

7 Base RBA of Inventory FILCB+o [18-35 J
8 FILCB-5 [18-35] FILCB-1 [18-35]

9 Access Mode FILCB-4 [24-35]

Figure 29. Slave I-D-S Control Table

154

35

T

~

0
!-I
.i..J
i::
0
0

Q)
~
•r-4

l

The description of the Slave I-D-S Control Table (SICT) follows.

Total Control Entry

Word 0
bits

0-17

18-35

Word 1
bits

0-17

18-35

Word 2
bits

0-17

18-35

Word 3
bits

0-17

18-35

Word 4
through
Word 8

Word 9
bits

0-17

18-35

Pointer to current entry - the address of the SICT table entry
which contains the relative block address of the page number
last requested via the I-D-S mapping subroutine.

Must be zero.

Maximum page size - the value in words of the largest page
size allocated.

Base size - the total number of pages in the I-D-S data file.

Lowest page number - the lowest page number allocated.

Highest page number - the highest page number allocated. Must
be less than or equal to the value in the base size.

Maximum inventory sector - the size in words of the largest
inventory sector allocated.

Page buffer size - the maximum page size plus 20 decimal to
include the page header area.

Must be zero.

Must be zero.

Count of entries - the number of subfiles allocated to form
this I-D-S data file.

155

Individual File Entries

bits
0-17

18-35

Word 1
bits

0-17

18-35

Word 2
bits

0-17

18-35

Word 3
bits

0-17

18-35

Word 4
bits

0-17

18-35

156

RANGE Rl - the lowest page number assigned to the subfile.

RANGE R2 - the highest page number assigned to the subfile. R2
must be greater than or equal to Rl.

Inventory write counter - a counter for the number of times an
inventory record has been written to the file.

Page size - the page size in words defined for the file. The
page size must be greater than or equal to 40 and less than or
equal to 640.

Pages/page No. - the number of pages as developed by dividing
63 by the number of lines per page.

Lines per page - the number of lines that may be used in any
page or pagette.

RBA of current inventory - the Relative Block Address (RBA) of
the current inventory record. Inventory records are physically
stored beginning in the first sector, following the last data
page of the file.

Inventory percent fill - the number of characters that may be
placed in a page of this file before the inventory adjustment
routines are called. If the value is negative (bit 18=1),
there are no inventory records, therefore, there is no
inventory processing.

Inventory read counter - a counter for the number of times an
inventory record has been read from this file.

RBA current page - the Relative Block Address of the last page
number accessed in this subfile.

I

Word 5
bits

0-17

18-35

Word 6
bits

0-17

18-35

Word 7
bits

0-17

18-35

Word 8
bits

0-17

18-35

Word 9
l>its

0-17

18-35

Sectors/Page - the number of sectors within a page.
is calculated by dividing sector size of the mass
device into the page size.

The size
storage

Sector size - the sector size of the hardware device of this
file.

Gross write counter - a counter for the number of times data
pages or inventory records have been written to the file.

Gross read counter - counter for the number of times data
pages or inventory records have been read from the file.

Base RBA of inventory relative block address of the
beginning of inventory for the file.

FILCB+O - contents of the GEFRC file control block.

FILCB-5 (18-35) - contents of the GEFRC file control block.

FILCB-1 (18-35) - contents of the GEFRC file control block.

Access mode - the access permissions requested from the $
PRMFL card for this file or the permissions granted for the $
DISC or the $ MASS control card for this file.

Bits 0
1
2
3

4-17

READ (RETRIEVE)
WRITE (UPDATE)
Not used by I-D-S
RECOVERY
Not used by I-D-S

FILCB-4 (24-35) - file code for the file.

157

1-D-S INVENTORY RECORDS

To minimize mass storage seek and transfer time, a number of inventory
records are maintained in numerous buffers in memory.

Buffer Format

The I-D-S inventory record buffer format is shown in Figure 30.

Bits 0 1112 1718

i Word 0

Inventory
Header
Work Area

'
1

2

3
Inventory
Record Area n
Through

+

Pointer to Next Buffer lBuf fer Number

MBZ Beginning Reference Code

MBZ Ending Reference Code

Beginning Page No. lA~ Record

MBZ Ending Reference Code

Space Available

Figure 30. Inventory Record Buffer

A description of the Inventory Record buffer follows:

INVENTORY RECORD WORD AREA

35

Type l Begin Line No.

Word 0
bits

0-17 Address of the next Inventory buffer header (this list is
circular).

18-35

Word 1
bits

0-11

12-35

158

The number of this buffer (starting at 0).

Hust be zero.

The beginning reference code of the Inventory record in the
buffer.

Bits 12 - 29 Page number
30 - 35 Line number

Word 2
bits

0-11 Must be zero.

12-35 The ending reference code of the Inventory record in the
buffer.

Word 3
through
word n

Bits 12 - 29 Page number
30 - 35 Line number

Inventory record area.

Buffer Strategy for Inventory Buffer

If the inventory is needed for a page and the inventory record is not in
memory, it is read into the inventory buffer defined as empty; and words
1 and 2 of the buffer header are updated.

The next inventory buffer as defined by word 0 of the header
established as the empty buffer. Its contents are written back
data file if the contents have been altered.

Record Description

is
to

then
the

Inventory records are physically stored at the end of the file for the
page-range specified. They are record type 1002(10). The Inventory
record size is equal to the sector size of the device on which it is
stored. Thus the number of pages covered by one Inventory record is
variable; it is equal to 3 x (sector size-2). On a DSU204 one link holds
inventory for 10,944 pages; on a DSU270 or a DSU167 one link holds
inventory for 11,160 pages.

The initial inventory of space available
characters) less the space occupied by
characters) •

will be
the Page

the page size
Header record

(in
(22

159

I

The Inventory record format is shown in Figure 31.

I ~ :::t-\frite Switch

Bits ~0~~~~~~~~~1_1_1_2~~~~~17~1_8~1~9~2_0~~~~~~~-2_9~3_0~~~~-3-.5

Word 0 Beginning Page Number A Record Type Beginning
Line No.

1 MBZ Ending Reference Code

2 Space Available

Figure 31. Inventory Record

The bit configuration for an Inventory record follows:

Word 0
bits

0-17

18

19

20-29

30-35

Word 1
bits

0-11

12-35

160

Beginning page number that is contained in the Inventory
record.

Must-Write switch - an indicator used by I-D-S subroutines to
determine if this record has been modified since retrieval.

Must be zero.

Record type - a value of 1002 (10) assigned to each Inventory
record.

Beginning line number of the beginning page for this Inventory
record.

Must be zero.

Ending Reference Code that is contained in this Inventory
record.

Bi ts 12 - 29
Bits 30 - 35

Page number
Line number

Word 2
bits

0-11

12-23

24-35

Space available in characters for the Reference Code contained
in word O, bits 0-17 and 30-35.

Space available for the next ascending page (this may be a
pagette).

Space available for the next page.

Word 2 is repeated for consecutive pages until bits 24-35 of
word n is the space, in characters, available in the page
defined by the ending reference code (bits 12-35 of word 1).

1-D-S DATA PAGES

To minimize mass storage seek and transfer time, a number of data pages
are maintained in numerous buffers in memory. The number of buffers
depends on the amount of space available in .QAREA after loading the
program.

The greater the number of data pages kept in memory, the greater the
possibility that the one needed next will already be there. To further
improve the possibility of finding the page desired in memory, the I-D-S
subroutines keep track of page utilization (record activity) and hold
the most recently active pages in memory. Pages infrequently accessed
are retired from memory as others are called in. The I-D-S subroutines
note which pages have been modified and only the modified pages are
written back to mass storage.

Buffer Format

The I-D-S page buffer format is shown in Figure 32.

The description of the Data Page Buffer follows.

161

Word 0
bits

0-17

18-35

Word 1
bits

0-11

12-35

Word 2
bits

0-11

12-35

Word 3
bits

0-23

24-35

162

PAGE HEADER WOPJ(AP~A

Pointer to the next buffer. This will be zero in the last
buffer.

Buffer number - the number of the buffer beginning with zero.

Must be zero.

The beginning reference code of the I-D-S data page in the
buffer.

Bits 12 - 29
30 - 35

Must be zero.

Page number
Line number

The ending reference code of the I-D-S data page in the
buffer.

Bits 12 - 29
30 - 35

Must be zero.

Page number
Line number

Character space available in the I-D-S data page when read
from the mass storage device.

Bits 0 56 1112 17181920 2324 2627 2930 35 -------
Word 0 Pointer to Next Buffer l Buffer Number

1 MBZ Beginning Reference Code of I-D-S Data Page

2 MBZ Ending Reference Code of I-D-S Data Page
Page
Header 3
Work

I Character
MBZ Space Available

Area 4 Available Line Flag Indicator

5

6 MBZ

7

8

9 Work Area for GEFRC I/O Control

10

11 Size lAccounting Record Type

12 Checksum

Journal 13 Job Number
Tape
Header 14 Start Date

15 Start Time

16 MBZ l Journal J_
Record TyP,e MBZ l Activity Number

17 Lines/pg. for B/A Page Image l Sequence Number

18
I-D-S Data File Name

19

20 Al Bl Record Type
i......

Page Number
Through

Word n --CALC Chain NEXT ... ~ Space Available ... 1 ~
I-D-S
Data Available Line Number Flags
Page ...] MBZ l ~ I

Figure 32. Data Page Buffer

163

Word 4
bits

0-35

Word 5
through
Word 7

Word 8
through
Word 10

Word 11
bits

0-17

18-35

Word 12
bits

0-35

Word 13
bits

0-35

Word 14
bits

0-35

Word 15
bits

0-35

164

Available line flag indicator of the I-D-S data page when read
from the mass storage device.

0 line flags available
~ 0 line flags not available

Must be zero.

JOURNAL TAPE CONTROL AREA

Work area for GEFRC I/O control contains an I/O control
word, Block Serial number and Record Control word.

Contains the number of words in the record when written to the
journal tape.

Contains the value 13(8) to define the accounting record type.

Checksum - all words (other than the checksum word) in the
record.

Job number - the five character SNUMB for the job, left
justified and followed by an ignore character.

Start date - month, day, year the activity started, in BCD
format (MMDDYY) .

Start time - time the activity
decimal point, and thousandths
(HH.TTT).

started
of an

expressed
hour in

in
BCD

hours,
format

Word 16
bits

0-5

6-11

12-26

27-35

Word 17
bits

0-17

18-35

Word 18
through
Word 19
bits

0-35

Word 20
through
Word n

Must be zero.

A 1-character BCD field that defines the journal record type.

Type 5
Type 6

Before Page Image (BEFORE)
After Page Image (AFTER)

Must be zero.

Activity number - a 9-bit binary job activity number.

Lines per page for the Before/After Page Image.

Sequence number - a binary sequence number. BEFORE records
are incremented by 1, starting with 1. AFTER records are
decremented by 1, starting with -1.

I-D-S Data File Name - a 12-character name left justified.

I-D-S DATA PAGE AREA

The area which contains the I-D-S data page when read from the
mass storage device.

165

I Buffer Strategy for Page Buffers

Each time a page is brought into memory its buffer number is placed at
the head of a buffer table. If a page already in memory is used again,
its buffer number moves to the head of the table. Thus, the most
frequently used pages are at the top of the table and the pages with
little or no recent use are at the bottom of the table. Buffer space is
always available for reading a data page. To make a buffer available,
the page at the bottom of the list is written back to the mass storage
device, provided there has been activity updating that page. This buffer
is called the EMPTY buffer; it is the buffer with lowest activity.

The order of the chain is defined in an Page Buffer Activity Table
(Figure 33) which contains one word for each page buffer in .QAREA. The
activity chain shown in Figure 34 is a closed circular loop of buffer
numbers.

There is always an EMPTY buff er whose NEXT is the buffer of highest
activity.

The PRIOR of the buffer of highest activity is the EMPTY buffer.

The other buffers in the Page Buffer Activity Table have, in the PRIOR
column (bits 0-17), the buffer number of the next higher (more recent)
activity. The NEXT column (bits 18-35) contains the buffer number of the
next lower (less recent) activity.

I For example, if buffer 5 is the EMPTY buffer, then buffer 4 is the most
active buffer.

Buffer
Number 0

166

0

1

2

3

4

5

PRIOR 1718 NEXT

4

3

0

2

5

1

Figure 33. Page Buffer Activity Table

35

2

5

3

1

0

4

Decreasing
Activity

Figure 34. Chain Concept of Buffer Activity

Page Description

There are two types of I-D-S data pages:

Base Page
I-D-S Pagette

The I-D-S data page consists of a fixed size which is assigned when the
I-D-S file is created. It may contain any combination of logical record
types linked into their respective chains. Each type has its own
specific length. Related record types are associated and linked
according to their data content and may be stored within the same page.
Space is fully utilized by packing these records within the page.

Every page begins with a unique Page Header record. This record contains
several control fields used by the I-D-S subroutines, as follows:

1. Reference address of the page (page number).

2. Space available for additional records.

3. I/O control indicating whether the page has been altered since
retrieval.

4. Chain field indicating reference code of the first record of a
chain of calculated records, all of which randomize to this
page.

5. Line numbers available for assignment within the page.

167

Base Page. The format of the Base Page Header record is shown in Figure
35.

~Must-Write Switch
(bit 18)

~Before-Image Switch
(bit 19)

Characters 0 1 2 3 4 5
I I

Word 0 Reference Code IA B
Record I"'"

Page Number I Type ,-
I I

0 1 2 3 4 5

CALC Chain
I Space

1 ~I -NEXT Link I Available ,-
I I

0 1 2 3 4 5

21 Available Line Number Flags ·I
d A Begin First Data Recor rea

i 0 1 2 3 4 5

3 - MBZ --

·~

Bits 22 23 -

Figure 35. Base Page Header Record

168

The bit configuration for the Base Page Header record follows:

Word 0

bits
0-17

18

19

20-29

30-35

Word 1

bits
0-17

18-29

30-35

Word 2

bits
0-35

Reference code page number - a number from 1 through 262,143.
During file initialization, each page requested by the user is
assigned a unique number within this range.

Must-Write switch - an indicator used by I-D-S to determine if
a page has been altered since retrieval.

Before-Image switch - an indicator used by I-D-S
that a page to be modified has been written to
tape prior to the modification.

to indicate
the journal

Record type - a code of 1000(10) assigned to each Page Header
record.

First character of the CALC chain NEXT Link - a pointer to the
first CALC record contained in the chain. If no CALC records
are present, it points to itself. (The Page Header record is
the defined master of the CALC chain.)

CALC Chain NEXT Link

Space available current status of available space for
storing records within a page.

Available line number flags (0-5) - an indicator used by I-D-S
to determine line numbers available for assignment within a
page:

O line number available
1 line number not available

There are 64 line number flags. They are numbered left to
right starting with zero. Line number 0 is always used; it is
line number of the Page Header record. A maximum of 63 data
records can be stored to a page.

Available line number flags (6-41)

169

Word 3

bits
0=21

22-23

24-35
through
word n

Available line nuIDber flags (42-63) ~

Must be zero.

End of Page Header record. The length of the record is 22
characters.

Bits 24-35 of word 3 through bit 35 of word n contain data
records.

Pagette. A pagette is introduced by setting the value of lines per page
to less than 63. By dividing the lines per page into 63, the number of
pages required to hold 63 line flags is developed. The first of these
pages is called the BASE page. It contains a Page Header record (type
1000 decimal) which is the master record of the CALC chain for this page
number. The remaining pages are called PAGETTES. They contain a Pagette
Header record (type 1003 decimal). They are not the master of any chain.

The available line number flags begin in the base page. For example, if
the lines per page equal 21, this would require (63/21=3) pages to hold
the 63 line number flags. Pages will have the line number flags set off
for line numbers not allowed in the page. Thus, a base page will have
line number flags as follows:

1 - 21
22 - 63

Available
Not available

Pagette number 1 will have:

1 - 21
22 - 42
43 - 63

Not available
Available
Not available

Pagette number 2 will have:

170

1 - 42
43 - 63

Not available
Available

The pagette allows users to increase the number of reference codes in
their I-D-S data file. This facility is probably most useful on some
portion of the total file that has been filled by large records.

For example, let record size be equal to the available space in a page
such that one logical record fills a page. This record may be a
dictionary record. When this record is stored the user eliminates 62
available reference codes. Thus, if several records are stored, several
hundred potential reference codes are eliminated.

The user may choose to increase the page size such that several large
records may fit into a single page, but practical limits on page size
must be observed. Thus, the next approach may be to limit the lines per
page, making available all 63 lines (reference codes) for each page.

The Pagette Header record format is shown in Figure 36.

'-Must-Write Switch

I ~Before-Image Switch

Bits __ o __________________ 11_1_2 _________ 1~7_1~81~9~2_0_2_1_22_2_3_2_4 _______ 2~9~30 _________ 3_5....,

1st Character Word 0 Reference Code Page Number A B Record Type
1---~.......,i......_..._ __________ ~------~o~f~P.-ge No.

1
Last 2 Characters
of Page Number

Beginning
Line Number

2 ------Available Line Number Flags

Character Space
Available

3....._ _____________________________________ ...
Begin Data Record Area

MBZ

Figure 36. Pagette Header Record

The bit configuration for the Pagette Header record follows:

Word 0
bits

0-17

18

Reference code pagette number a
262,143. During initialization, each
unique number within this range.

number
pagette

from 1 through
is assigned a

Must-Write switch - an indicator used by the I-D-S subroutines
to determine if a pagette has been modified since retrieval.

171

I

I

19

20-29

30-35

Word 1
bits

0-11

12-17

18-29

30-35

Word 2
bits

0-35

Word 3
bits

0-21

22-23

24-35
through
word n

172

Before~Image switch an indicator used by the I-D-S
subroutines to indicate that a pagette has been written to the
journal tape prior to modification.

Record type - a value of 1003 (10) assigned to each Pagette
Header record.

First character of the pagette number, which forms the
beginning reference code.

Last two characters of the pagette number, which forms the
beginning reference code.

Beginning line number of pagette - first available line number
that may be placed in the pagette.

Space available - characters of available space for storing
records within the pagette.

Available line number flags (O through 5)
by I-D-S to determine which line numbers
assignment within a pagette:

0 line number available
1 line number not available

- an indicator
are available

used
for

There are 64 line number flags. They are numbered left to
right starting with 0. Line number 0 is always used; it is the
number of the Pagette Header record.

Available line number flags (6-41)

Available line number flags (42-63)

Must be zero.

End of Pagette Header record. The length of the record is 22
characters.

Bits 24-35 of word 3 through bit 35 of word n contain data
records.

1-D-S DATA RECORDS

Data records of I-D-S are fixed-format, fixed-length; that is, the
length and format of a specific type of record, such as payroll or
inventory, are fixed by the specifications of the systems designer.
Records of many different types, each with its own length and format,
may be used in the system. To maintain control, each record must have
the same identification fields at the beginning. These fields are (1)
line number portion of the reference code, (2) record type and (3)
record length. The rest of the record consists of data and chain fields
to suit the application requirements.

Records may have any number of data fields, each defined as some number
of decimal, alphabetic or alphanumeric characters. Fields may vary in
size from one character to many characters, as for a drawing or part
number or an employee's name. These fields must be specified by the
systems designer.

The format of the data record is shown in Figure 37.

~ Delete Switch

Bits 0 56 1718 2324 2930 35

Word 0 Line No. D Record Type Record Size

1 CALC Chain NEXT~~~~~--~ Begin Data Fields

- - - -- - - -- - ----

n I Chain Pointer Reference Code

Figure 37. Data Record

173

The bit configuration for a data record follows:

Word O
bits

0-5

6

7-17

18-29

30-35 and
Word 1
bits
0-17

18-35
through
word n

Word n
bits

0-23

174

Line number - a number from 1 to 63. A unique
assign~d to each data record as it is stored in a
number combined with the page number from the
record completes the reference code.

number is
page. This

Page Header

Delete switch - an indicator used by the I-D-S subroutines to
recognize a record that is logically but not physically
deleted. When all chain pointers in a record are equal to
zero, the record will then be physically deleted and its line
number wi ,_l be made available for use in the page.

Record ty~e - a unique number from 1 to 999 used to
different kinds of data records. The numbers 1000 and
are reserved for use by I-D-S.

identify
greater

Record size - the number of characters in the record including
all control fields, data fields and chain pointers. The line
number is character 1 of a record.

CALC chain NEXT - the reference code of the NEXT record in the
CALC chain. If this is the last record in the CALC chain, it
will contain a reference code of the Page Header record which
is the master of this CALC chain. The chain pointer defined as
detail of CALC chains. All other records do not contain this
pointer and the data begins in this area.

Bits 30-35 and
0-11

12-17
Page number
Line number

Beginning of available space for data characters. The data may
be n characters in length.

The Chain pointers begin in the character position immediately
following the last data character.

The chain pointer reference code is 24 bits in length.

Bits o-17
18-23

Page number
Line number

There may not be any chain pointers in the record if it is not a member
of any chain, such as a Primary record; or the only pointer may be the
CALC chain NEXT. The presence of chain pointers is dependent on the
description of the I-D-S record. The type of chain pointer, NEXT, PRIOR,
HEAD, and the chain it is pointer for is described in the definition
structure associated with this record type.

175

8. 1-D-S Utility Programs and Subroutines

The following I-D-S utility programs and utility subroutines are
described in this chapter:

Programs:

Randomizing Analyzer/Cale Pre-Load Sort Utility Program (QUTC)
Storage Tape Dump/Print Routine (QUTD)
Page Initialize Utility Routine (QUTI)
Journal Tape Dump (QUTJ)
Data Base Load/Print Utility Routine (QUTL)
Journal Record Selector (QUTP)
Execution Information Report (QUTR)
Selected Record Sort (QUTS)
File Utility (QUTU)

Subroutines:

I
I

Directive Processor (.QDIR)
Trace and Print Record (.QSTC) I
Verify and Print (.QUTF)

I-D-S execution activities may require that permanent, temporary, or a
mixture of an I-D-S data file be used. The following examples of deck
setups may be applied to all I-D-S utility programs and subroutines and
user execute activities.

PERMANENT 1-D-S DATA FILE

The following deck setup is for a permanent I-D-S data file.

177

I

I

1

$
<::

8
I
II DENT
!USE RID
I
I

$:PRMFL
$ 1PRMFL
$ tPRMFL
$ IPRMFL

I
I

$:ENDJOB
***EOF I

16
I

:rDSOO ,DATABASEMGR, PERM IDS FILE
1IDSFOURYQUAD$DATfa.BASE
I

~l,R/W,R,IDSFOURYQUAD/QUADOl
jA2,R/W,R,IDSFOURYQUAD/QUAD02
l.A3,R/W,R,IDSFOURYQUAD/QUAD03
:A4 IR/WI RI IDSFOURYQUAD/QUADO 4

I
I
I
I

TEMPORARY 1-D-S DATA FILE

The following deck setup is for a temporary I-D-S data file.

1 8
I

$ Im ENT
I
I

$ IMASS
$!DISC
$ 1DRUM
$!HASS
$ IDATA
IDS lcREATE

I
I

IDS :CREATE
IDS 1CREATE
IDS tCREATE
$!DATA

I
I •

$ IENDJOB
***EOF l

16

:IDSOO,DATABASEMGR, TEMP IDS FILE
I
I
IAl,XlS I 13R
IA2 ,X2S I llR
IA3 ,X3S I llR
I ,A4 I X4S I llR
1.Q
IFC/Al/,BASESIZE/480/,RANGE/1,120/,
: PAGESIZE/160/,LINESPERPAGE/32/,

INVENTORY /2 5 /
:FC/A2/,BSSZ/480/,RNG/121,240/,PGSZ/320/
FC/A3/,RNG/241,360/
IFC/A4/,RNG/361,480/,PAGESIZE/64/,LPP/15/
Ir*
I
I

TEMPORARY AND PERMANENT 1-D-S DATA FILE

The following deck setup is for a mixed temporary and permanent I-D-S
data file.

178

The permanent I-D-S data file attributes were supplied when the file was
created; the temporary attributes must agree with the permanent
attributes.

1 8

$ Ir DENT
$ IUSERID

I
I
IPRMFL
1MASS
1DISC
jPRMFL
1DATA

DS !CREATE
DS !CREATE

$!DATA
I •

$ IENDJOB
***EOF I

I

16

IIDSO 0 I DATABASEMGR I MIXED IDS FILE
Ir DSFOURYQUAD $DAT ABASE
I
I

~l,R/W,R,IDSFOURYQUAD/QUADOl
t2,X2S,11R
A3,X3S,11R
~4,R/W,R,IDSFOURYQUAD/QUAD04
l.Q
~C/A2/,BSSZ/480/,RNG/121,240/,PGSZ/320/
rc/A3/,RNG/241,360/
1I*
I
I
I
I

UTILITY PROGRAM AND SUBROUTINE DESCRIPTIONS

Descriptions of the I-D-S utility programs and utility subroutines are
presented on the following pages.

179

I

I

I

Randomizing Analyzer /CALC Pre-Load Sort Utility Program (QUTC)

The QUTC utility program performs two distinct functions depending
the directive option chosen.

1. The ANAL option utilizes the user supplied directive cards to
generate numbers which are randomized to produce base page
numbers and the total number of times each base page number is
returned by the CALC routine. This information is printed on
the Base Page Report. In addition, should the page number occur
more than 63 (maximum lines per page) times, or any smaller
number supplied by the user, this and the page number of the
first page having space available will be indicated on the
Overflow Report.

2. The RAND or RANDA option is used to sort CALC records into base
page sequence prior to loading the data base. The user's input
file must contain only one record type and must be in system
standard format. A minimum of one control field for randomizing
must be specified and a maximum of three control fields may be
specified. These control fields must appear on the directive
card in the order in which randomization is to be performed.

The total number of records randomizing to each
printed on the Base Page Report. In addition, a
maintained which forces all overflow records to
the file. The page which has overflow and the
available is indicated on the Overflow Report.

page is accumulated and
control for overflow is
be sorted to the end of
first page with space

Printing of these two reports may be suppressed by use of the RAND
option.

Directive

General Format:

1

IDS

180

8
I
IOPTION
1ETC I
1ETC
I
I

16

IGENERATE/,OPTION/,
:CONTROL/OPTION/ I
1coNTROL/OPTION/,
I •••
I

ANAL OPTION

This option generates page numbers based on control parameters explained
below.

INPUT:
Directive cards

OUTPUT:
IDS BASE PAGE REPORT
IDS OVERFLOW REPORT

Control for ANAL option on directive card:

RNG/Pl,P2/ Specifies the page range to be analyzed.

MAX/nn .•• n/ Specifies the largest number to be randomized.

INCR/nn ••• n/ Specifies the increment to be added for each

FILL/nn/ Specifies the point at which the

Example:

1

IDS

full.

8
I
I
!OPTION
IETC
I
1ETC

RANDA OPTION

16
I
IGENERATE/ ,ANAL/ I
IRNG/1,100000/ ,MAX/50000/ I
IINCR/2/ ,FILL/32/

page will be

iteration.

considered

This option takes a user's file of CALC records, randomizes on specified
control fields, producing a base page number, sorts the file into page
number sequence with all overflow records sorted to the end of the file
and produces two reports.

INPUT:
USER's CALC file
Directive cards

OUTPUT:
Sorted CALC file
IDS BASE PAGE REPORT
IDS OVERFLOW REPORT

Control for RANDA option on directive card:

RNG/Pl,P2/ Specifies the page range into which records are to be
stored.

181

CF/Cl,Ll/

FILL/nn/

Example:

1

IDS

RAND OPTION

8

Specifies fields to be used for randomizing.

Cl reflects the beginning character of the field relative
to one.

Ll reflects the lengths in characters of the control field.

A minimum of one control field must be specified and a
maximum of three may be given.

Specifies the point at which a page will be considered
full. If this parameter is not supplied 63 records per page
is assumed.

16
I

:OPTION
1ETC
IETC

I

IGENERATE/,RANDA/,RNG/500,1000/,
!CF/2,6/,CF/20,5/,CF/10,2/,
IFILL/63/

This option has the same effect as the RANDA option with the exception
that no reports are produced.

Example:

1

IDS

8

I
!OPTION
IETC

16
I

!GENERATE/ I RAND/ I RNG/10, 200 I I

ICF /8, 10/ ,FILL/8/

Directive Restrictions

182

1. Directives are examined to ensure that columns 1-3 contain IDS,
that columns 8-13 contain OPTION and that the first parameter
in the variable field is GENERATE.

2. All control parameters are required with the exception of FILL.
This is assumed to be 63 when not specified.

Operation

1. Deck Setup for RANDA Option:

1 8 16

:I DENT
I

$ IVTAOO, YOUNGMAN ,K72
I

$;PROGRAM IQUTI Activity 1.
* $ MASS !Al ,DlS, lOR

$ IDATA ,.Q
*** IDS lcREATE 1FC/Al/,BSSZ/lOO/,RNG/l,lOO/

$ IDATA II*
DS jINITIAL Jl, 100

IP ROG RAM
I

$ IQUTC Activity 2.
$ ILIMITS 110,26K,,

** $ IMASS IAl ,AlR, 25L (Work file)
** $ IMASS IBl ,BlR, 25L (Work file)
** $ ITAPE IT 1, T lD' '12 3 4' 'USER-IN (User's input file)
** $ ITAPE 1Cl, ClD,, , , USER-SORTED (User's output file)
** $ IMASS 1sl,SlR,lOR (Sort work file)

* $ ~1ASS 1Dl,DlR,lOR (Work IDS file)
$ ISYSOUT IP 1 (Report file)
$ DATA l·Q

*** IDS le RE ATE
1
FC/Dl/,BSSZ/l00/,RNG/l,100/

$ IDATA I*
*** IDS jOPTION IGENERATE/,RANDA/,RNG/1,30000/,

DS ETC ICF/2,6/,CF/20,5/,CF/10,2/,FILL/63/
$ IENDJOB
***EOF I I

* The required file codes are Al and Dl respectively. The file code
Al on LUD DlS in activity 1 is used as file code Dl on LUD DlR in
activity 2. This file must be mass storage.

** The required file codes are as defined in the example. Tape or mass
storage are acceptable as file types.

*** The BASESIZE and RANGE for the work I-D-S file may be computed in
the following manner using the RANGE from the OPTION directive:

((maximum range - minimum range)+l)/300=BSSZ

((30000 -1)+1)/300=100

The PAGESIZE for this file must be 320 words and the LINES per page
must be 63.

183

2. Deck Setup for P.NAL Option:

1

$

$
* $

$
*** IDS

$
IDS

8
I

II DENT

I PROGRAM
jMASS
!DATA
I CREATE
IDATA
I INITIAL
I

$ I PROGRAM
$!LIMITS

** $ IMASS
** $ IMASS

* $!MASS
** $ MASS

$ lsYSOUT
$ jDATA

** * IDS 1CREATE
$ DATA

16
I
lvTAOO,YOUNGMAN,K72
I

!<duTI
~l,DlS, lOR

Activity 1.

l"Q
1
FC/Al/ ,BSSZ/100/ ,RNG/1,100/
I* I
11' 100

IQUTC Activity 2.

1
10, 26K
f1\l,AlR, 25L
IBl ,BlR, 25L
IS 1, SlR, lOR
jDl ,DlR, lOR
IPl ,.Q
jFC/Dl/,BSSZ/100/,RNG/l,100/
1I*

(Work file)
(Work file)
(Sort work file)
(Work I-D-S file)
(Report file)

** * IDS loPTION
IDS ETC
$ llENDJOB

!GENERATE/ ,ANAL/' RNG/l, 3000 0 I'
IINCR/l/ ,FILL/63/ ,MAX/100000/

***EOF I

* Sarne as for RANDA Option.

** Sarne as for RANDA Option.

*** Sarne as for RANDA Option.

3. Subroutines Called:

184

.QOPEN - opens mass storage device files and builds tables to
describe them •

. QDIR - reads directives .

• QMEX - writes messages on the execution report •

• QSFD - advances subfields of the variable field of directive for
processing •

• QCALC - computes a base page number.

I-'
co
Ul

PL\Gf'." NUMP~~

1
4
7

1 0
13
1 c:,
1g
22
25
(>g
31
34
37
40
4~

46
4g
5?
55
58
61
64
f?
70
73
7 Fi
7g
R?
es
88
q1
94
g7

100

IDS !lASF
NO OF RFC:OPO~ PAGE NUMBER NP,

6 2
4 5
? 8
~ 11
~ 14
6 17
5 20
4 23
4 26
0 29
2 32
~ 35
2 38
Fi 41
4 41+
s 47
5 so
C) 53
7 56
7 59
4 62
7 65

"" 68
5 71
s 74
i::; 77
? 80
4 83
~ 86
R 89
5 92
1 95
6 q8
8

PAGE RFPORT PAGE 001
OF RECORDS DAGF NUMBER NR OF RECO RO<;

2 3 6
4 6 4

1?. 9 5
f, 12 5
5 15 1
3 18 3
6 21 4
5 24 10
3 ?7 6
8 30 3
6 33 4
5 36 12
4 39 1
2 42 5
? 45 4
8 48 12
~ 51 4
4 54 5
7 57 11
5 nO 5
4 63 6
s 66 5
7 69 8
3 72 5
3 75 3

10 78 3
12 81 7

4 84 7
? 87 l+
1 90 4
Fi 93 5
6 96 6
6 gg 3

I-' IOS OVf~FLO~ RFPOPT PAGE rJ01
ro

~ t'.t--1 (l'J MI? FO T 0 qri~rn 0N DAND0''1IZED TO STOPEO ON RA N 0 OM I Z En T C' STORED riN O"I

R q 8 g A g
p. 1 ri 24 ?S 24 25

:lh '; 7 36 -n 3 f, 37
3f ?? 48 49 48 4g
4P, 4q 48 5 (1 57 5; 8
57 c;: q 57 5g 77 7~

77 7R 80 81 80 82

Storage Tape Dump/Print Utility Routine (QUTD)

QUTD dumps to tape and/or prints all or selected portions of the
appropriate storage devices allocated to the I-D-S data file. The
portions of the file to be processed and the output media are specified
by input data cards (directives).

Directives

Directive fields begin in column 16 and are separated by commas. One or
more ETC cards may be used to continue the fields if they run beyond
column 72. Each card to be continued must end with a complete field,
followed by a comma.

There are four directives recognized by QUTD.

1

IDS

8
I

:DUMP
I
I

16

!RNG/P 1, P 2/
lnull
I

The DUMP directive causes pages Pl through P2 to be written on magnetic
tape. If the variable field is null, all pages of the file are written
on magnetic tape. The file code for the magnetic tape is OT. RNG/Pl,P2/
is the only option valid for this directive.

1

IDS

8

I
1PRINT
I
I

16

I
I RN G /P 1 I p 2 I I • • • I I Print option

The PRINT directive causes Pl through P2 to be written in print format
and directed to SYSOUT via file code P*. If RNG is not specified, all
pages of the file are written.

Print Options

NULL

EMPTY

Prints nonempty pages and indicates empty pages.

Prints nonempty pages and the page header for each
empty page rather than indicating a succession of
empty pages only by a first page entry and a last
page entry.

187

TYPES/A,B,C, ••• /

DELETE

1

IDS

Prints only the record types specified
etc. (to a maximum of 10 types).

Produces a file containing reference
and record type of all records deleted
present on the file.

8
I
1DPRINT
1PDUMP
I

16
I
I
1RNG /P 1 Ip 2 I I ••• I
I
I

by A,B,C,

code, size
but still

The DPRINT/PDUMP directive (either form is acceptable) causes pages Pl
through P2 to be written on magnetic tape and to be sent to SYSOUT in
print format, via file code P*. Either directive is a combination of the
DUMP and PRINT directives. A null variable field causes all pages of the
file to be written. All print options listed above are acceptable with
either of these directives.

1

~DS
8

I

~OR
I

16
I
I
1 (not examined)
I

The EOR directive forces an end-of-reel condition on the magnetic tape
file.

PAGE: XXXXX XX ACTIVE PAGE SIZE: XXXX CH.

WD: LN: TYPE: I OCTAL I BCD I xxx xx xx xx OCTAL OCTAL OCTAL

OCTAL OCTAL IOCTAL OCTAL I BCD I
OCTAL OCTAL IOCTAL OCTAL I BCD I

xxx xx xx xx OCTAL OCTAL I OCTAL OCTAL I BCD I
PAGE: xxxxx xx ACTIVE PAGE SIZE xxxx CH. PAGE EMPTY

AND ALL INTERVENING PAGES

PAGE xxxxx xx ACTIVE PAGE SIZE: XXXX CH. PAGE EMPTY

188

Tape Format

The data sent to the output tape file is written as variable length,
logical records using the GEFRC subroutine PUT. The file is in standard
system format with the exception of block size which is 1602 words. The
Page Image record format is:

Word

0

1

2

3

4

5

6

7

8

9-n

Contents

Accounting Record Header. The number of
record is specified in bits 0-17. The
000013, is contained in bits 18-35.

Checksum.

data words in the
record type, octal

SNUMB in bits 0-29. Ignore character (octal 17) in bits 30-35.

Date as MMDDYY.

Start time in hours and thousandths of hours as HH.TTT.

Record type in bits 0-11 as 10. Bits 12-35 are presently
unused and are zero.

This word is presently unused and is zero.

First six characters of user identification.

Second six characters of user identification.

Active page image.

Execution Report

An execution report is produced as part of the user output. It
describes, in chronological order, the functions performed as specified
in the directives. In addition, error conditions are included to advise
the user of exception conditions.

189

Operation

The following deck setups can be used to execute QUTD from the software
library.

1. Example for temporary files.

190

1 8 16
I I

$ 'I DENT I
$:PROGRAM IQUTD
$!LIMITS 10PTIONS
$ IMASS :Al ,XlR, 15R (required file code)
$ ITAPE IOT I X2S I I I I DUMP-FILE (required file code)
$ ITAPE DE,X3S,,,,DELETE-FILE (required file code)
$ IDATA IQ
IDS ICREATE j~C/Al/,BSSZ/480/,RNG/1,120/,LPP/63/
$ IDATA Ir*
IDS :PD UMP :DELETE/
$ fENDJOB I
***EOF I I

a. Pages 1 through 120 will be written to tape (file code OT).

b. All nonempty pages will be printed on P* and all empty pages
will be indicated with a beginning and ending page number.

c. All records logically but not physically deleted from the
will be written to tape (file code DE) and flagged on
printed report.

file
the

2. Example for permanent files.

1

$
$

$
$
$
$

8
I
:I DENT
PROGRAM
:LIMITS
1USERID

16
I
I
1QUTD
I OPTIONS
IIDSFOURYQUAD$DBASE
ITF,R/W,R,IDSFOURYQUAD$DBASE/QUAD01
1TG,R/W,R,IDSFOURYQUAD$DBASE/QUAD02
IQT ,X2S' '',DUMP-FILE

$
DS

1PRMFL
IPRMFL
ITAPE
iDATA
IDUMP
IDPRINT
IENDJOB

II*
IRNG/l, 120/
IEMPTY/,TYPES/100,101,102/
I

I I

This deck setup will result in the following:

a. Pages 1 through 120 (file code TF) will be written to tape
(file code OT).

b. File code TG, in its entirety, will be written to tape.

c. All page headers and all record types 100, 101 and 102 on file
code TG will be printed.

191

Page Initialize Utility Routine (QUTI)

QUTI initializes all or selected portions of the appropriate storage
devices allocated to the I-D-S data file with the page headers and
creates or updates the inventory records. The portions of the file to be
processed are specified by an input data card (directive) • The
attributes of the file are acknowledged during the initialization
process.

Directives

There are two directives recognized by .QUTI.

1 8 16
I I

IDS lrnITIAL IP1,P2
I I

The initial directive causes pages Pl through P2 to be initialized
with their page headers and the inventory records to be created as
required.

1

IDS

8
I

:HEADER
I

16
I
I
1Pl,P2
I

The header directive causes pages Pl through P2 to be initialized
with their page headers and the inventory records to be updated as
required. This requires that the portion of the file must have been
previously initialized by the initial directive. This directive
allows a portion of the file to be purged and the inventory to be
reset.

Directive Restrictions

192

1. The argument P2 must be greater than or equal to the argument
Pl.

2. Directives are examined to ensure that columns 8-13
legal directive code as described. Directives in
written on the execution report followed by
comments.

contain a
error are

appropriate

Execution Report

An execution report is produced as part of the user output. It
describes, in chronological order, the functions performed as specified
in the directives. In addition, error conditions are included to advise
the user of exception conditions.

Operation

1. Deck setup.

The following deck setup will initialize a permanent I-D-S data
file.

1 8 16
: I

$ 1SNUMB IQUTI
$ IIDENT :IDSOO,DATABASEMGR
$ IUSERID 1IDSFOURYQUAD$DATABASE
$!PROGRAM IQUTI
$ IPRMFL IAl, R/W, R, IDSFOURYQUAD/QUADOl
IDS !INITIAL 11, 120
$ IENDJOB I
***EOF I I

The following deck setup can be used to initialize a temporary
I-D-S data file.

1 8 16
I I

$ lsNUMB IQUTI
$ IIDENT IIDSOO,DATABASEMGR,TEMP FILE
$!PROGRAM IQU'I'I
$ t"file" lor Al,XlS,13R (Al is the required file code)
$ 1DATA I .Q
IDS

1
cREATE IFc/Al/ ,Bss z; 480/, RNG/l, 120 /, PGSZ/192/,
I I LPP/32/,INV/25/

$!DATA Ir*
IDS !INITIAL ll, 120
$ IENDJOB I
***EOF I I

2. Subroutines called .

• QDIR - reads directives .

• QMEX - writes messages on the execution report.

193

194

.QM.WD - moves blocks of words from one location in memory to
another •

• QPSP - supplies a tallied I/O list for pages to be read from
the mass storage device(s) .

• QSFD - advances subfields of the variable field of directive
for processing •

. QDIRC - closes the directive file •

• QDIRP - establishes the file code (I*) for directives •

. QOPEN - opens the mass storage device file(s) and builds the
tables that describe them •

. QRTAB - verifies that the requested pages are
builds the tables, by device, for the
ranges •

allocated and
required page

. QSICT - points indirectly to the mass storage device file
descriptions •

• QTABl - contains table of FROM page ranges .

. QTAB2 - contains table of TO page ranges.

.QTAB3 - contains the number of entries, minus one,
:QTAB2. This count is in bits 0-17. Bits
not examined •

in .QTABl/
18-35 are

. QWAIT - insures that all outstanding I/O on the mass storage
device is completed •

• QBCD - converts binary to BCD and replaces leading zeros
with blanks .

• QMCH - moves blocks of characters from one location in
memory to another .

• QINVl - updates inventory •

• QWRIT - performs buffered writing to the mass storage device •

• QPHI - generates the page headers •

• QCLOS - closes the files and generates the I/O statistic
report •

• QMAPl - calculates the relative sector.

Journal Tape Dump Utility Program (QUTJ)

QUTJ dumps selected portions of tapes in the standard
format. This includes tapes created by master mode
journalization, and tapes produced by either QUTU, QUTP,

I-D-S journal
or slave mode
or QUTS.

Directive

One directive is recognized by the QUTJ program.

1 8
i
!SYSTEM
I

16

The SYSTEM directive causes only record types 3 and 4 (SLVBGN and
SLVEND) to be printed on the report. All other record types are
ignored.

Printer Format

The record types recognized by QUTJ are
below.

Record Type Colunm 1 Colunm 2 Column 3 Column 4 Column 5

Slave Begin Logical SLVB:;N AA-sssss Date
Record
Number

Slave End Logical SL VEND AA-SSSSS Date
Record
Number

BEFORE Image Logical BEFORE AA-SS SSS Date
Record
Number

AFTER Image Logical AFTER AA-SS SSS Date
Record
Number

QUTU Image Logical QUTU AA-SSSSS Vate
Record
Number

printed in the format shown

Column 6 Colunm 7 Colunm 8 Column 9 Column 10

Time Record Sequence 12 Charac- Blank
Type Word ter user

ID

Time Record 12 charac- Blank
Type ter user

ID

Time Record Sequence 12 charac- Page
Type Word ter user Number

ID

Time Record Sequence 12 charac- Page
Type Word ter user Number

Time Record Sequence 12 charac- Page
Type Word ter user Number

ID

195

Column Description

Column 2 - Two asterisks appear in this column if the checksum of this
record is in error.

Column 5 - DATE is displayed in the form of MM-DD-YY.

Column 6 - TIME is displayed as HH.TTT, hours and thousandths of hours.

Column 8 - This word is the abort code for SLVEND records. A code of 00
is used for end of activity and end of job.

The SEQUENCE word is zero for all record types except BEFORE
and AFTER. BEFORE page image records are incremented by 1,
starting with 1 in bits 18-35. AFTER page image records are
decremented by 1, starting with -1.

Column 10 - The PAGE NUMBER is the first 18 bits of the first word of
the page image followed by the line number.

196

Execution Report

QUTJ writes the printed output on the execution report via SYSOUT. The
input tape label is the first line of the report.

Operation

The following deck setup can be used to execute QUTJ.

1 8 16
I I

$ lrDENT I
$:PROGRAM :QUTJ
$ ILIMITS

1
options

$:TAPE 1IN ,Options (IN is required file code)
$ 1ENDJOB I
***EOF I I

Sample Output

The following page illustrates the output format produced by QUTJ; the
input tape was a master mode journal tape.

197

QJNL.1 01 10•01 .. 68 11, 092 i iJ;:; .JOURNAL TAPt: REPORT

lDS UTI~ITY ROUTINE .. ,QUTJ • VERSION 080168,

J SL.VBG!'-~ 1-TST03 10 .. 01~•8 ~-, OJO 0 iDSrOURYQUAD .L~ I Uv'
4 BEFORE 1-TsT03 10 .. 01-6E:i 11,037 050 1 JDSF:JURYOUAl.J 22 ()
5 BEF"ORE 1-TST03 10-01-68 111037 050 2 IDSfOURYQUAD 382 0
6 BEFORE 1-TST03 1C•01-68 11, 031 050 3 IDSfCJURYQUAU 20 0
7 6EF"ORE 1-TST03 1C-01-66 111037 O:iO 4 IOSFOURYQUAD 380 0
8 BEFORE 1-rstoJ 10•01-68 11, 037 050 5 IDSF"DURYQUAD 112 0
9 BEFORE 1-TST03 tc .. 01-•8 111037 050 6 IDSfOUHYQUAO 472 0

10 BEF'ORE 1-rsto3 10•01-68 11.037 050 7 IOSFOURYQUAD 55 0
11 BEFO~E 1-TST03 te-01.68 11;037 050 8 IOSFOURYQUAD 415 0
12 BEF'ORE 1-TST03 1c .. 01 .. 68 11,037 050 9 IDSFOURYOUAD 65 ~
13 BEF"O~E 1·TST03 tc•01 ... 68 111037 050 10 IDSFOURYQUAD 425 0
14 BEF"ORE 1-TST03 1(.. 01-68 11,037 050 11 IOSF"OUHYQUAO 33 0
15 BEF"ORE l-TST03 10 .. 01-68 11,037 050 12 IDSF'OURYQUAU 393 0
16 BEFORE 1-TstoJ 10 .. 01 ... 68 11,037 050 13 JDSfOURYQUAU 86 0
17 BEF"O~E 1-TST03 10-01 ... 68 11,037 050 14 IDSFOUHYQUAD 446 0
18 BEF"ORE 1-TST03 10-01 .. 68 11,037 O!:>O 15 !DSfOURYQUAU 115 0
19 SEF'ORE 1-TST03 1C·01-68 11,037 Q!;O 16 IOSFOUHYQIJAD 475 0
20 AF"TER 1-rsto3 10 ... 01 .. 68 11.037 060 262142 IOSFOURVQUAO 22 0
21 BEF"ORE 1-TST03 10-01 ... 68 11;037 050 t? tDSrOURVQUAO 10 0
22 AfTE~ 1-TST03 10-01 .. 68 11, 037 060 ::>621H !OSFOUHYQUAD 382 0
23 BEFORE 1-TST03 10 .. 01-~s 11,037 050 18 IDSF:JURYQUAD 430 ~
24 AfTE~ 1-Tsto3 10•01-68 11,037 060 2621•0 IDSFDURYOUAD 20 0
25 BEFORE 1-TST03 10 .. 01 ... 68 11, 037 050 19 !OSF"OURYQUAO 68 0
26 AF"TER 1-TST03 10 .. 01 .. 68 11,037 060 ~62139 IUSFOURYQUAP 380 0
27 BEF"ORE 1-TST03 10 ... 01 .. 68 111037 o~o 20 IDSFOURYQUAO 428 0
28 UTER 1-TSTOJ 10w01•f.18 11, 037 060 262138 !OSrOURVOUAD 112 0
29 BEFORE 1-TST03 1c .. 01 .. u 111037 050 21 IDSfOURYQUAD 40 0
30 UTER 1-TST03 10 ... 01-68 11,037 060 262137 IDSFOURYQUAO 472 0
31 BEFORE 1-rsto3 10•01-68 111037 o~o 22 lDSFOUHYQUAD •oo 0
32 AfTER 1-TST03 10•01 .. 68 11, 037 060 262136 JDSFOURYQUAD 55 0
33 BEf ORE 1-rsto3 10~01-68 u,o:s7 o5o 23 JOSFOURVQUAD 16 a
34 H'TER 1-rsto3 1C"'01 .. 68 111037 060 2621il5 I OSF' OUJHQUAD 415 0
35 eeroRE 1·Tsto3 10 .. 01-•e 11,037 o5o 2• IOSf"OURYQUAD 376 0
36 AF'TER 1-TST03 1c-01-•e 11e037 060 262134 IDSFOURVQUAD 65 0
37 BEf"ORE 1-Ts!oJ 1~ .. 01-68 11,037 o5o 25 IDSrOURYQUAO 111 g
36 AFTER 1-TST03 1C,..01·68 111037 060 t>62133 IDSFOURYQUAD 425 0
39 BEF"ORE 1-Ts'toJ 10"01-68 11, 037 o5o 26 IDSF'OURYOUAO 471 0
•o AFTER 1-Tsto3 10 .. 01-68 111037 060 262132 IDSfOURYQUAU 33 ·J
41 BEFORE 1-TST03 1':'•01·68 !.11037 o5o l7 IDSfOIJRYQUAD

39!
0

42 AF"TER 1-Tsto3 10 .. 01-68 11, 037 060 262131 IOSF"OURYQUAD 0
43 BEFORE 1-TST03 10 .. 01 .. •a u,g37 o5o 28 lDSFOURYQUAD 361 0
44 AF'TER 1-Tsto3 10-01-66 111 037 060 262130 IDSFOVHYQUAO 86 0
45 BEF'ORE 1-Tsto3 10 .. 01·68 111037 o5o 29 IDSFOURYQUAD 61 0
46 Sl.VBGN 1·TST3C 10•01 .. 68 111038 030 0 IDSFOIJRYQUAD
41 AFTER 1•TST03 10 .. 01·68 111037 060 262129 IOSF"JURYQUAD 446 0
48 QEfORE 1-TST03 1C•01-68 111037 o~o 30 JOSF'OURYQUAD 441 0
49 BEF"ORE 1-TST3C 10-01-68 11t038 oso l JOSF:JURYQUAD 142 0
5Q AF"TER 1-TSTQ3 10 .. 01-68 111037 ooo 262128 IDSFOURYQUAD 115 0
51 BEF"ORE l-Ts!o3 10 .. 01-68 11~037 050 31 !DSFOURYQUAD 22 0
52 BEF"ORE 1•TST3C 10•01·68 11t038 050 2 IDSFOURYQUAD 262 0

198

Data Base Load/Print Utility Routine (QUTL)

QUTL loads and/or prints all or selected I-D-S pages from an input file.
The input file may be:

• Dump File created by QUTD

• Selected File created by QUTS

• System Statistical Collection File or User Journal File (JX)

DIRECTIVES

The QUTL utility is controlled through the following directive:

1

IDS

8
I

:OPTION
ETC
IETC
I
I

16

:Function/Input Descriptor/,
1
Descriptor options/,
!PRINT OPTIONS/
I

Directive fields being in column 16, they are terminated by a slash (/)
and are separated by commas. One or more ETC cards may be used to
continue the fields. A directive card to be continued must end with a
complete field, followed by a comma.

Operation

The operation of the utility varies depending upon the type of input
file. The utility is written in a modular (overlay) manner such that
only the coding needed to accomplish the desired function is engaged.

There are three INPUT DESCRIPTOR options recognized by the utility:

DTAPE
ST APE
JTAPE

The directive options applicable for each type of INPUT DESCRIPTOR and
resulting operation are described as though three unique utilities
actually exist.

The Printer Format and Tape Formats are common to the three modes of
operation.

Rev. August 1971

199

DTAPE

DTAPE - Input Descriptor

The use of DTAPE as the Input Descriptor indicates that the input file
contains data produced by the I-D-S utility QUTD.

DIRECTIVE OPTIONS

FUNCTION

LOAD

PRINT

LPRINT
PLOAD

EOR

RNG/Pl,P2/

PRINT OPTIONS

EMPTY

Causes specified pages to be written on the mass storage
device.

Causes specified pages to be written in print format and
directed to SYSOUT via file code P*.

These options (either form is acceptable) cause the
specified pages to be written on the mass storage device
and to be sent to SYSOUT in print format via file code P*.
Either directive is a combination of the PRINT and LOAD
functions.

Forces a unit switch on the input magnetic tape file.

Specifies the page range to be reloaded and/or printed. If
no range is present the entire range of all subfiles
allocated is assumed. The argument P2 must be greater than
or equal to Pl.

Prints non-empty pages and the page header for each
page rather than indicating a succession of empty
only by a first page entry and last page entry.

empty
pages

TYPES/A,B,C, •• / Prints only the record types specified by A,B,C, ••• (to
a maximum of 10 types).

DELETE

200

Produces a file containing reference code, size and
type of all records logically but not physically
from the file. The required file code is DE.

record
deleted

Rev. August 1971

Directive Examples:

1

IDS

8

I
!OPTION
I

16
I
IDTAPE/,LOAD/
I

This requests reloading of all pages for all files allocated to the
activity.

1 8 16

IIDS !OPTION iDTAPE/,PLOAD/

This requests reloading of all pages for all files allocated to the
activity and printing of all nonempty pages with all empty pages being
indicated with a first page and last page entry.

1

IDS

8
I
I OPTION
1ETC
:ETC
I

16

:DTAPE/ ,PLOAD/ ,EMPTY/ I
~YPES/100,200/,RNG/18500,25000/,
1DELETE/
I

This requests reloading of all pages for the specified range,
of all page headers and any records of the specified types. A
all deleted records will also be produced.

Execution Report

printing
file of

An execution report is produced as a part of the output. It describes in
chronological order, the functions performed as specified in the
directive. In addition, error conditions are included to advise the user
of exception conditions.

The input and output files are double buffered to obtain maximum
throughput. The input file must contain consecutive pages for the files
allocated or the PAGE-RANGE specified on the directive card. If
nonconsecutive pages are encountered during execution, and error comment
is written on the execution report and the program is aborted with a D2
reason code.

Inventory records will be created for the file or PAGE-RANGE re-loaded
if applicable.

The minimum core requirement for this activity is 16K.

Rev. August 1971

201

Operation

The following deck
library.

setup can be used to execute from the software

1. Example for temporary files.

1 8

$:IDENT
$ PROGRAM
$ I LIMITS
$ IMASS
$ ITAPE
$ ITAPE
$ IDATA
IDS I CREATE
$ IDATA
IDS I OPTION
$ IENDJOB

16
I
I (options)
IQUTL
I (options) (minimum l 6K)
IAl I XlR, l 5R
IIN,X2S,,1234,,DUMP-FILE (Required File code)
!DE,X3S,,,,DELETE-FILE (Required File code)
I· Q
1FC/Al/,BSSZ/480/,RNG/l,120/
1I*

1
DTAPE/,PLOAD/,RNG/l,120/,DELETE/

I
I

This deck setup will result in the following:

2.

202

a. Pages 1 through 120 will be written to the mass storage device.

b. All non-empty pages will be printed on P* and all empty pages
will be indicated with a beginning and ending page number.

c. All records logically but not physically deleted from the data
base will be written to tape (file code DE) and flagged on the
printed report.

Example for permanent files:

1 8 16

$ IIDENT : (options)
$ 1PROGRAfl QUTL
$ 1LIMITS 1 (options)
$ 1usERID IIDSFOURYQUAD$DBASE
$ IPRMFL :TF,R/W,R,IDSFOURYQUAD$DBASE/QUAD01
$ IPRMFL 1TG,R/W,R,IDSFOURYQUAD$DBASE/QUAD02
$ 1PRMFL 1TH,R/Q,R,IDSFOURYQUAD$DBASE/QUAD03
$ IPru."iFL !TI,R/Q,R,IDSFOURYQUAD$DBASE/QUAD04
$ ITAPE IIN,X2S,,1234,,DUMP-TAPE (Required File code)
$ IDATA II*
IDS I OPTION IDTAPE/,PLOAD/,EMPTY/,RNG/121,240/

I I

Rev. August 1971

This deck setup will result in the following:

a. Pages 121 through 240 will be written on the mass storage
device.

b. All non-empty pages and page headers for all empty pages will
be printed on P*.

Rev. August 1971

203

ST~zu>E - Input Descriptor

The use of STAPE as the Input Descriptor indicates that the input file
contains data as produced by the I-D-S utility QUTS.

Input File

The input file is standard system formats with the exception of block
size, which is 1602 words. The aata on the file must have been written
as output by the I-D-S utility QUTS; therefore it must consist of either
the first BEFORE or last AFTER for each page supplied as input and only
one image for each page will be present.

DIRECTIVE OPTIONS

FUNCTION

LOAD

PRINT

LPRINT
PLOAD

EOR

DESCRIPTOR OPTIONS

RNG/Pl,P2/

204

Causes specified pages to be written on the mass
storage device.

Causes specified pages to be written in print format
and directed to SYSOUT via file code P*.

These options (either form is acceptable) cause
specified pages to be written on the mass storage
device and to be sent to SYSOUT in print format via
file code P*. Either directive is a combination of
the PRINT and LOAD functions.

Forces a unit switch on the input magnetic tape
file.

Specifies the page range to be reloaded and/or
printed. If no range is present, the entire range of
all subfiles allocated is assumed. The argument P2
must be greater than or equal to Pl.

Rev. August 1971

PRINT OPTIONS

TYPES/A,B,C, ••• / Prints only the record types specifies by A,B,C, •••
(to a maximum of 10 types) •

DELETE

DIRECTIVE EXAMPLES

1 8
I

16

Produces a file containing reference code, size
record type of all records logically but
physically deleted from the file. The required
code is DE.

:OPTION :sTAPE/,LOAD/
I I

and
not

file

This requests reloading of all pages found on the
files allocated.

input tape for all

1 8
I

IDS I OPTION
I

16

lsTAPE/,PLOAD/,RNG/27500,35000/
I

This requests reloading and printing of all pages found for the
specified range.

Execution

An execution report is produced as a part of the output. It describes in
chronological order, the functions performed as specified in the
directive. In addition error messages are included to advise the user of
exception conditions.

Since pages are non-consecutive on this type load and each page must be
processed based on the page number found in the record, the input is
double buffered and the output is accomplished from the input buffer.

Minimum core requirement for this type load is 14K.

Inventory records will be updated for each page reloaded if applicable.

Rev. August 1971

205

Operation

The following deck setup can be used to execute QUTL from the software
library.

1. Example for temporary files.

1 8
I

$:I DENT
$ PROGRAM
$:LIMITS
$ 1MASS
$ 1TAPE
$ 1DATA
IDS 1CREATE
$!DATA
IDS I OPTION
$ 1ENDJOB

I

16
I

: (options)
QUTL
1 (options)
1Al,XlR,15R (required File code)
:IN,X2S,,1234,,DUMP-FILE (Required File code)
.Q

IFC/Al/,BSSZ/480/,RNG/l,120/
Ir*
IS TAPE/, LOAD/
I
I

This causes reloading all pages found on the input tape for all files
allocated.

2. Example for permanent files:

1

$
$
$
$
$
$
$
$
$
$
IDS
$

8
I

jIDENT
I PROGRAM
1LIMITS
!USERID
1PRMFL
IPRMFL
IPRMFL
IPRMFL
ITAPE
IDATA
I OPTION
IENDJOB
I

16
I
I (options)
IQUTL
I (options) (minimum 14K)
IIDSFOURYQUAD$DBASE
TF,R/W,R,IDSFOURYQUAD$DBASE/QUAD01
ITG,R/W,R,IDSFOURYQUAD$DBASE/QUAD02
ITH,R/Q,R,IDSFOURYQUAD$DBASE/QUAD03
ITI,R/W,R,IDSFOURYQUAD$DBASE/QUAD04
lrN,X2S,,1234,,SELECT-FILE
I*

:STAPE/,PLOAD/,RNG/100,200/
I
I

This requests reloading and printing of all pages found for the
specified range.

Rev. August 1971

205.l

JTAPE - Input Descriptor

The use of JTAPE as the Input Descriptor indicates that the input file
contains data of the System Statistical Collection Tape or a User
Journal File (JX

Input File

The input file may be one or more reels of the master mode
Statistical Collection tape or User Journal File. The file must
system standard format with the exception of block size, which is
words.

System
be in

1602

DIRECTIVE OPTIONS

FUNCTION

LOAD

PRINT

LP RI NT
PLOAD

EOR

NORWD

Causes specified pages to be written on the mass
storage device.

Causes specified pages to be written in print format
and directed to SYSOUT via file code P*.

These options (either form is acceptable) cause
specified pages to be written on the mass storage
device and to be sent to SYSOUT in print format via
file code P*. Either directive is a combination of
the PRINT and LOAD functions.

Forces a unit switch on the input magnetic tape
file.

Suppresses rewinding of the input tape at the end of
each directive.

Rev. August 1971

205.2

DESCRIPTOR OPTIONS

RNG/Pl,P2/ Specifies the page range to be loaded and/or printed
If no range is present, the entire range of all
subfiles allocated is assumed. The argument P2 must
be greater than or equal to Pl.

SNUMB/XXXXX/,ACT/Al,A2/ This selects page images for the specified
SNUMB starting with activity Al through
activity A2. If only activity Al is specified,
that is the only activity to be selected. If
no activity is specified, all page images for
the SNUMB are looked at.

FILE/FILENAViE/

PAGE/1,2,3 ••. /

DATE/YYMMDD/

This selects page images associated with the
specified filename. If this option is used, it must
be the only directive to be processed.

This option provides selection of specific pages.
When this option is used, a FILE/FILENAME/ must be
specified. A maximum of 10 pages may be specified on
one directive.

This option, in conjunction with FILENAME or
accomplishes selection of records with a date
to or greater than the one specifed.

SNUMB,
equal

DATE/YYMMDD/,TIME/HHTTT/ This provides selection of records with a date
and time equal to or greater than that
specified.

AFTER
BEFORE

PRINT OPTIONS

TYPES/A,B,C, ... /

DELETE

205.3

Specifies either BEFORE
loaded. If neither option
assumed.

or AFTER images are to be
is specifed, BEFORE is

Prints only the record types specified by A,B,C, ...
(to a maximum of 10 types) .

Produces a file containing reference code, size and
record type of all records logically but not
physically deleted from the file. The required file
code is DE.

Rev. August 1971

DIRECTIVE EXAMPLES

1

IDS

8

I
10PTION
IETC

16

I
1JTAPE/,PLOAD/,SNUMB/12345/,
1ACT/05/

This loads and prints the first BEFORE images found on the journal tape
for SNUMB 12345, activity 5. All nonempty pages and page headers for all
empty pages will be printed on P*.

1

IDS

8
I

:OPTION
IETC

16
I

:JTAPE/,PLOAD/,FILE/IDSFOURYQUAD/,
1DATE/700608/,TIME/13.058/,AFTER/

This loads all AFTER page images found on the
12345, activity 5. All nonempty pages and page
pages will be printed on P*.

journal
headers

1 8
I
:OPTION
1ETC

16
I

IJTAPE/,PLOAD/,FILE/IDSFOURYQUAD/,
1DATE/700608/,TIME/13.058/,AFTER/

tape
for

for
all

SNUMB
empty

This loads all AFTER page images found on the journal tape tape for file
IDSFOURYQUAD with a date and time equal to or greater than the one
specified. All nonempty pages will be printed and all empty pages will
be indicated.

Execution

An execution report is produced as part of the user output. It
describes, in chronological order, the functions performed as specified
in the directives. In addition, error conditions are included to advise
the user of execution conditions.

Considerations

This type load utilizes a tape which will probably contain multiple
before and after images for each page; therefore, when loading before
images a control must be maintained to ensure that only the first before
image of each page is written to the data base. This is accomplished
through utilization of a page-flag 11 bit-buffer 11

•

Rev. August 1971

205.4

In order to allow dynamic construction of the bit-buffer at execution
time, the amount of core required for the bit buffer is based on the
accumulated ranges of all subfiles allocated to the job and the
accumulated ranges specified on the directive cards. It is the user's
responsibility to provide enough core to accommodate this requirement.

The minimum core requirement for this version of QUTL (excluding the
bit-buffer) is 15K. A formula for calculating the bit buffer size per
subfile or range is described below:

(MAX. RANGE - MIN. RANGE +l) *PAGES-PER-PAGE/36
= Number of words of core required per subfile or range

Total core required would be the sum of all subfile or range
computations plus 15K.

EXA!<lPLE

A program aborts leaving two subfiles to be recovered. One subfile has a
page-range of 1 - 10000 while the second subfile contains pages 10001
20000 for a total of 20,000 pages. If no range is specified on the QUTL
directives, enough core (556 words) must be allocated to construct a bit
buffer large enough to map 2000 pages. However, suppose the
determination can be made, based on knowledge of the aborted program,
that only pages 9000 - 12000 were affected, this range may then be
specified on the directive and only enough core (84 words) to map 3000
pages would be required.

Multiple directives may be processed with one execution of QUTL;
however, they will be processed in the order in which they appear in the
job stream. Consider the following example:

1

IDS
IDS

8
I

:OPTION
10PTION
I

16
I
~TAPE/,LOAD/,SNUMB/12345/,ACT/2/
lJTAPE/,LOAD/,SNUMB/23456/,ACT/2,5/
I

All before images for SNUMB/12345/,ACT/2/ will be looked at on the first
pass of the accounting tape. The bit buffer will be checked to ensure
only the first before image of each page is written to the data base.

Rev. August 1971

205.5

The Journal tape will be rewound and the second directive, SNUMB/23456/
activities two through five will be processed. The page flag bits set by
the first directive will be checked while processing the second
directive, so that should each job have changes the same pages in the
data base, only the first before image written by the first directive is
restored. At completion of the QUTL activity, the data base would be
restored to a point prior to any changes made by either job.

The user may suppress rewinding of the accounting tape between
directives by specifying NORWD on the directive cards. This option
should be used when the jobs to be recovered were run in sequence rather
than concurrently.

Operation

The following deck setup can be used to execute QUTL from the software
library:

Example for permanent files:

1

$
$
$
$
$
$
$
$
IDS
IDS
$

8
I

IIDENT
1PROGRAM
:LIMITS
1USERID
1PRMFL
IPRMFL
ITAPE
IDATA
loPTION
loPTION
:EN DJ OB
I

16
I
I (options)
I QUTL
! (options) (minimum 15K + bit buffer)
1IDSFOURYQUAD$DBASE
ITF,R/W,R,IDSFOURYQUAD$DBASE/QUAD01
:TG,RECOVERY/R/W,R,IDSFOURYQUAD$DBASE/QUAD02
IN,X2S,,1234,,JOURNAL-TAPE (Required File Code)
'I*
:JTAPE/,LOAD/,SNUMB/56789/,ACT/Ol,05/,NORWD/
IJTAPE/,LOAD/SNUMB/567890/,ACT/02/
I
I

This deck setup will result in the following:

1. The first before image of each page associated with SNUMB 56789
activity 1 through activity 5 found on the journal tape will be
written to the I-D-S DATA BASE IDSFOURYQUAD.

2.

3.

The NORWD directive prevents rewinding the journal
to processing the next directive.

The first before image of each page associated
567890 activity 2, not reloaded when processing
directive, will be reloaded on file IDSFOURYQUAD.

tape

with
the

prior

SNUMB
first

Rev. August 1971

205.6

Printer Format

The format of pages selected for printer output is shown below:

PAGE: XXXXX XX ACTIVE PAGE SIZE: XXXX CH.

WD: LN: TYPE:
xxx xx xx xx OCTAL OCTAL OCTALj OCTAL I BCD

OCTAL OCTAL OCTAL I OCTAL I BCD

OCTAL OCTAL OCTAL I OCTAL I BCD

xx xx xx xx OCTAL OCTAL OCTAL I OCTAL I BCD

PAGE: XXXXX XX ACTIVE PAGE SIZE: XXXX CH. PAGE EMPTY
AND ALL INTERVENING PAGES

PAGE XXXXX XX ACTIVE PAGE SIZE: XXXX CH. PAGE EMPTY

Input File Format

The data read from the input tape file consists of variable length,
logical records. The file is in standard system format with the
exception of block size which is 1602 words. The record format is:

Word

0

1

2

3

4

Contents

Accounting Record Header. The number of data words in the record
is specified in bits 0-17. The record type, octal 000013, is
contained in bits 18-35.

Checksum.

SNUMB in bits 0-29. Ignore character (octal 17) in bits 30-35.

Date as I1MDDYY.

Start time in hours and thousanths of hours as HH.TTT.

5 Record type in bits 0-11 as 10. Bits 12-35 are presently unused
and are zero.

6 This word is presently unused and is zero.

7 First six characters of user identification.

Rev. August 1971

205.7

8 Second six characters of user identification.

9-n Active page image.

Delete File FORMAT

The optional output file of records logically but not physically deleted
from the data base is in standard system format. The record format is:

Word Contents

0 Reference code. Page number in bits 12 - 29. Line number in bits
30 - 35.

1 Record type.

2 Record size in characters.

Rev. August 1971

205.8

Journal Record Selector Utility Program (QUTP)

QUTP selects records from an I-D-S journal tape according to
user-supplied criteria and writes them on an output tape.

Directives

Two types of control cards are recognized by QUTP: SELECT and ETC. The
first card must be a SELECT; the second is optional.

206

1

~DS
8

I

ls ELECT
I

16
I
1fl,f2,f3
I

where fl must be AA/SSSSS. This field specifies the Activity and
SNUMB of the corresponding Slave Begin record which must be
found to initiate interrogation of this criterion. The
AA/SSSSS format must be one or two digits for the activity
number, slash, and five digits for the SNUMB.

f2 must be AA/SSSSS. This field specifies the
SNUMB (which must be the same SNUMB as in
corresponding Slave End record which must
terminate interrogation of this criterion.

Activity
fl) of

be found

f3 is either B, A, or null. This field specifics the
record to be selected for interrogation. If this
null, B is implied. If ETC cards are present, this
ignored. B stands for Before and A stands for After.

Two SELECT card examples are:

1

DS
DS

8
I

I
,SELECT
I SELECT
I

16

~/53607,1/53607,B
f2/88802,13/88802,A

type
field
field

and
the
to

of
is
is

The ETC card is optional. It is used to specify that only BEFORE or
AFTER records for a given page range are to be selected for output.
The format of this directive is:

1 8 16

I
I

I

I
IETC 1fl/f2/f3 I fl/f2/f3 I ... etc ••.
I I

where fl is B or A meaning BEFORE or AFTER.

f 2 is the lower limit of a page range.

f 3 is the upper limit of a page range.

Several page range specifications may be placed on one ETC card,
but each triplet must be separated from the next one by a comma. A
slash must separate each element of a triplet. If several page
range specifications are placed on one ETC card, the last data
character must be followed by a blank, and the blank must appear
prior to or in column 72. Several ETC cards may follow a SELECT
card as long as the maximum of 8 triplets per SELECT is not
exceeded.

If ETC card(s) follow a SELECT, then field f3 of the SELECT card is
ignored since this option is specific for each page range.

Two ETC card examples are:

1 8 16
I I
:ETC IB/129 /352 ,A/26 243/53 409
IETC :A/1/10 0, A/10 /2 0

Directive Restrictions

A maximum of 50 directives is allowed. Following each SELECT directive,
there may be a maximum of eight page range specifications.

Tape Format

The input data for this program can be one or more reels of master mode
journal tape information. The file must be in standard system format
with the exception of block size, which is 1602 words.

207

Records are written on tne output file in standard
the exception of block size. Two types of records
output tape: BEFORE and AFTER. Their format is:

system format
may appear on

with
the

Word Contents

0

1

2

3

4

5

Accounting Record Header. The number of data words in the
record is specified in bits 0-17. The record type, octal
000013, is contained in bits 18-35.

Checksum.

SNUMB in bits 0-29. Ignore character (octal 17) in bits
30-35.

Date as MMDDYY.

Start time in hours and thousandths of hours as HH.TTT.

Record type in bits 0-11 as 10. Bits 12-35 are presently
unused and are zero.

6 Lines per page for this page image (bits 1-17).

7 First six characters of user identification.

8 Second six characters of user identification.

9-n Active page image.

Execution Report

A detailed execution report is printed by QUTP. The report is divided
into two parts. Part 1 is a listing of the directives and part two is
the summary report.

Operation

1. Deck setup.

208

The following deck setup can be used to execute QUTP.

1

$
$
$
$

$

8 16
I I
IIDENT I
lpROGRAM IQUTP
1LIMITS loptions
ITAPE :IN ,Options (IN is required file
I code for the input tape)
ITAPE ~OT ,Options (OT is required file
I . I . code for the output tape)
I Directives

$ IENDJOB I
***EOF I I

2. QUTP performs three distinct functions to select the specified
records.

PROCESSING DIRECTIVES. The directives are read as data from the
input file I*. Each card is checked for errors in both content
and format. If errors are present, an error comment is written
with the card image on the execution report; and a switch is
set so that a D2 abort occurs when all directives have been
scanned, but before processing of the input tape is initiated.
When scanning is complete and no error has occurred, a sequence
number is assigned to the directive and printed on the
execution report. The criterion is then stored in memory. Since
all criteria are resident in core, the user need not order
them.

RECORD INTERROGATION. As each input record is read
its record type is examined to determine how it
handled.

from tape,
should be

The SLVBGN and SLVEND records are used to initiate and
terminate testing on a criterion. For example, if a criterion
specifies all BEFORE records within a specific SLVBGN-SLVEND,
the criterion is turned on when the matching SLVBGN is
encountered to interrogate BEFORE records and output those that
match. Correspondingly, the matching SLVEND turns off the
criterion. This technique allows inactive criteria to be
quickly recognized and bypassed.

The BEFORE and AFTER records are matched against specific
criteria. If the tests are successful, the records are written.

SUMMARY REPORT. After all criteria are satisfied or an
end-of-file is reached on the input file, a summary report is
produced on the execution report. Specific criteria of each
directive and the number of output records for the directive
are shown.

209

Execution Information Report Program (QUTR)

QUTR selects type B inforrnation records from u.u I-D-S journal
sorts the records, and produces an execution information report.

Input Tape Format

The input file is standard system format except for a maximum block size
of 1602 words.

Operation

1. Subroutine .QSTB.

210

For each SNUMB-activity that engages subroutine ~QSTB, type B
statistics are collected on the I-D-S journal file as a type 09
record. These are the records used as input by QUTR. Thus, to
provide this input, the following loader control card must be
included in the job stack for the activity:

1 8
I

lusE
I

16
I
I
l.QSTB
I

Type B information is
primary entry subroutine
the object program) .

then accumulated
(that is, each

by .QSTB
subroutine

for each
called by

2. Deck Setup.

Notes:

The following deck setup shows the appropriate control cards
for (1) collecting type B statistics on the journal file and
(2) executing QUTR.

@

®

J
Q)

@

G)

@

®
®

(J)

®

1 8 16

$ Ir DENT I

I $ IUSERID
$ lusE l.QSTB
$ loBJECT I I I I

I ' ' $ 1DKEND I
$:EXECUTE I $ 1PRMFL
$!TAPE bx,x1s,,, ,r-D-s JOURNAL

I I
I I
I I

$ IP ROG RAM pUTR
$ SYS OUT

~Lxrn $ 1TAPE
$ ITAPE l,X2R,,99999
$ INT APE 1Sl,T,2
$ IENDJOB
***EOFl

Beginning of activity.

Provides for collecting type B information in type 09
journal records.

Object deck.

User-created journal file.

Other user files (and end of activity).

Beginning of second activity (for producing a type B
statistics report) .

Pl is required output file code.

Al is required input journal tape file code. (Note that
this is the journal file created in first activity.)

(2) Bl is required file code for sort work file (scratch tape).

Q9 Sl is required file code for the first of two collation
tapes needed by GE-600 Line Sort/Berge.

211

Sample Output

A sample output for QUTR is shown on the following page. The circled
callouts are keyed to the following notes:

CD
0
0
©
0
0
0)
Q)

Alter number (from GMAP codes) of the call to the subroutine

Function (similar to I-D-S statement)

Record type

Record type of chain master followed by record type of a detail

Number of times the call was executed

Number of times the subroutine was executed without requiring
I/O

Total number of reads for execution of the subroutine

Total number of writes for execution of the subroutine

ALTER FUNCTION CALLS ZERO I/O READS WRITES

135 STORE RECORD TYPE 990 1 0 1 0

166 RETRIEVE RECORD TYPE 990 1 1 0 0

169 RETRIEVE NEXT OF CHAIN 990 4 21 3 17 18

179 DELETE RECORD TYPE 4 20 2 0 18

184 RETRIEVE NEXT OF CHAIN 990 50 20 19 0 6

215 RETRIEVE DIRECT 19 0 19 19

217 RETRIEVE NEXT OF CHAIN ~ 19 19 0 0

282 STORE RECORD TYPE

~8
5 0 6 4

291 STORE RECORD TYPE 5 0 6 5

300 STORE RECORD TYPE 3 5 1 4 4

309 STORE RECORD TYPE 4 5 0 6 5

410 STORE RECORD TYPE 50 20 20 0 0
\.._...)

0 0 0 0 8 0 0

212

EJ
Selected Record Sort Utility Program (QUTS)

QUTS sorts and merges records selected from an I-D-S journal tape. The
sorted and merged records may be used to reload the user data base when
recovery to a previous file status is desired.

Input Tape Format

The input file is standard system format with the exception of block
size, which is 1602 words. The data on the input file must have been
written as output by the I-D-S Journal Record Selector (QUTP);
therefore, it must consist of BEFORE and AFTER record types only.

Output Tape Format

The output files are standard system format with the exception of
size, which is 1602 words. The data on the output files consists of
first BEFORE or last AFTER record for each page supplied as input.

Execution Report

block
the

QUTS produces an execution report as part of the user output. This
report describes in chronological order the functions performed during
the execution. In addition, error messages are included to advise the
user of exception conditions.

Operation

1. Deck setup.

The following deck setup describes the
cards for executing QUTS using tapes. Disc
used instead of tapes.

1 8
I

$ II DENT
$ I PROGRAM
$ I LIMITS
$ 1TAPE
$ ITAPE
$ lTAPE
$ 1NTAPE
$ 1ENDJOB
***EOF I

16
I
I
I
1QUTS
110 I 24K.
1IN, Options
10T ,Options
lou, Options :s 1, Options, 3
I
I

appropriate
sort may

control
also be

213

I

I
A limit card is required. The minimum is
to run with greater efficiency a limit
suggested.

19K, however for sort
of at least 24K is

IN is the required input file code.

OT is the required file code for the first output file.

OU is the required file code for the second output file. (This
file need not be present if the input to QUTS consists only of
records from a single file; that is, one file name.)

Sl is the required file code for the first of three
tapes required by GE-600 Line Sort/Merge. A minimum
collation tapes is required.

collation
of three

2. QUTS consists of input coding and output coding elements
coupled to the standard GE-600 Line Sort/Merge. The individual
functions performed are described below.

INPUT CODING. The input coding element reads and preprocesses all input
records from the input file:

A sequence number is placed in bits 0-17 of the seventh word of all
BEFORE and AFTER records. For each BEFORE record, the sequence
number is ascending and ranges in value from 1 to 777777(8). For
each AFTER record, the sequence number is descending and ranges in
value from 777777(8) to 1. This sequence number preserves the
chronological order of the input records in cases where start times
may be identical for two different activities.

Each input record is tested to ensure that only record types 05 and
06 comprise the input. Invalid records are dumped in octal format
on the execution report accompanied by an appropriate error
conunent. An indicator is set when invalid records are encountered
so that the program terminates with a D2 code after all input
records are processed.

SORT CODING. The standard GE-600 Line Sort/Merge
input records in the desired order for output.
sorting and their sequence are:

is
The

used to arrange
fields used for

214

Sequence

1st (major key)
2nd
3rd
4th
5th
6th

Field Size

2 words
18 bi ts
10 bi ts
2 characters
1 word
24 bi ts

Field Description

File-name
Page number
Page
Record type
Sequence number
CALC chain next

OUTPUT CODING. Two files are available for output in this coding
element. A control break on file-name results in closing the first
output file and opening the second output file. The specific functions
performed in the output coding element are:

a. The sequence number in bits 0-17 of the sixth word is set to
zero.

b. The page number of the current record is compared to the page
number of the previous record and, if they are the same, the
current record is not written to the output file.

215

QUTT Not Available

QUTT Tape Conversion Utility Program is no longer available.

216

File Utility Program (QUTU)

QUTU performs the following I-D-S utility functions, depending upon the
directives chosen:

• File initialize (!NIT directive): establishes page headers and
initializes inventory.

• File print/graph (PRINT directive): prints requested pages,
record types, and inventory; graphs space and lines used for
requested pages; and prints a record type usage report.

• File movement (WRITE directive): moves requested pages from one
file to another. (This is a DUMP/LOAD facility.)

• File reformat (WRITE directive): changes page size and/or lines
per page of requested pages while performing file movement to a
tape or random file.

Directives

Directive fields begin in column 16 and are separated by commas.
more ETC cards may be used to continue the fields if they run
column 72. Each card to be continued must end with a complete
followed by a comma. A directive card followed by one ETC card is
below.

1

IDS

8
I

:rnrT
IETC

16
I
I
1 FC/XX/ ,RNG/A,B/ ,RNG/C,D/,
I RNG /E ' FI ' RN GIG 'HI ' •••

One or
beyond
field,

shown

Formats for the program input directives are shown below, arranged by
program function. Directive restrictions are listed at the conclusion of
the format explanations.

Function 1: File Initialize (random files only; if file is
tape, directive is ignored)

1 8 16

IDS
I

:rnrT
I

I FC/XX/ ,RNG/A,B/ ,RNG/C,D/, ..•

where FC/XX/ is the file to be initialized. This field must
be present.

For permanent random files: XX is as defined on the $PRMFL
card.

For temporary random files: XX is Al for the first file, A2
for the second, etc.

217

Example

1

$
$
$
$
$
$
$
IDS
IDS

RNG/A,B/ is a page range to be initialized.
If no range field is present, the entire range of the file
is initialized. A must be less than or equal to B, and B
must be less than or equal to 262,144.

RNG/C,D/, if present, is a second page range to be
initialized. A maximum of 8 ranges will be considered on
one directive.

for permanent files:

8 16

SNUMB
IDENT
PROGRAM QUTU
LIMITS 10,24K
USE RID IDSFOURYQUAD$DBASE
PRMFL TF,R/W,R,IDSFOURYQUAD/QUADOl
PRMFL TG,R/W,R,IDSFOURYQUAD/QUAD02
INIT FC/TF/,RNG/l,120/
INIT FC/TG/,RNG/121,240/

Example for temporary files:

1 8 16

$ SNUMB
$ IDENT
$ PROGRAM QUTU
$ LIMITS 10,24K
$:MASS Al ,XlS, llR
$ MASS A2,X2S,22R
$ DATA .Q
IDS CREATE FC/Al/,BSSZ/480/,RNG/1,120/,LPP/63/
IDS CREATE FC/A2/,BSSZ/480/,RNG/121,240/,LPP/32/
$ DATA I*
IDS INIT FC/Al/
IDS INIT FC/A2/

218

Function 2: File Print/Graph

1 8 16
I I

IDS :PRINT IFC/XX/ ,RNG/A,B/ ,RNG/C,D/ I ••• I

I print option

where FC/XX/ is the file to be printed; and
RNG/A,B/ are the ranges of that file to be
RNG/C,D/ printed.

Example

1

$
$
$
$
$
$
$
$
IDS
IDS

Example

1

$
$
$
$
$
$
$
IDS
IDS
$
IDS
IDS

for

for

permanent files:

8 16
I
ISNUMB
IIDENT I
1PROGRAM 1QUTU
1LI.MITS 110 I 24K
1USERID 1IDSFOURYQUAD$DBASE
1PRMFL :TF IR/WI R, IDSFOURYQUAD/QUADOl
1PRMFL ,TG IR/WI R, IDSFOURYQUAD/QUADO 2
1DATA 1I*
I PRINT 1FC/TF I I RNG/l, 10/ I PAGES
I PRINT IFC/TG/, EMPTY

temporary files:

8
I I

ISNUMB 1
1IDENT 1
I I

16

!PROGRAM IQUTU
I LIMITS 110 I 2 4K
IMASS IAl I XlR, llR
I.MASS :A2 I X2R, 22R
IDATA 1.Q
lcREATE IFC/Al/,BSSZ/480/,RNG/1,120/,LPP/63/
1

1

cREATE :Fc/A2/ ,Bssz; 480/, RNG/121, 2 40 /, LPP /32/
DATA 1I*

!PRINT IFC/Al/
IPRINT IFC/A2/,RNG/121,150/,GRAPH

The print options and their resulting actions are as follows (each
option generates a different report code to prevent report "shuffling"
on SYSOUT; only one option is allowed per PRINT directive but a maximum
of 8 PRINT directives is allowed):

NULL

EMPTY

Results in the same action as PAGES (see below).

Prints nonempty pages and prints a line for each
empty page rather than indicating a succession of
empty pages only by a first-page entry and a
last-page entry. An inventory printout is
included.

219

I

GRAPH

GRAPII/N/

INV

PAGES

RECORD

Prints a graph showing, for each page, the
percent of space used and number of lines used in
the page.

Prints a graph showing, for each N pages and/or
pagettes, the average percent of space used and
average number of lines used per page. Note: Use
caution in interpreting averages that include two
different page sizes.

Prints inventory only.

Prints nonempty pages, indicates empty pages, and
prints inventory.

Prints a report of record types usage within each
of the specified ranges.

Because of the large buffer space required, a
record type usage report cannot be generated for
both the input and output file over the same
range. If two reports are requested, the second
request is ignored.

TYPES/A,B,C, .•• / Prints only the record types specified by A,B,C,
etc. (to a maximum of 8 types).

Function 3: File Movement/Reformat

220

1

IDS

8
I

:WRITE
I

16

FC/XX/,RNG/A,B/,RNG/C,D/, ... ,
ONFC/YY/,PAGE/SZ,LPP/

where FC/XX/
HNG/A,B/
RNG/C,D/

is the file to be read; and
are the ranges of that file.

ONFC/YY/ is the file to be written. For temporary
random files, YY must be Al,A2, etc.

PAGE/SZ,LPP/ indicates the reformatting parameters
for a tape output file. (This field is
not used if the output file is random.
Page format on random output files is
defined by the file attributes.)

SZ is page size in words.
LPP is lines per page.

If PAGE is present, both parameters must
be present. If the output file is tape
and the PAGE field is not present, the
output format will be the same as the
input format.

Example for permanent files:

1

$
$
$
$

$
$
$
$
IDS
IDS

$
$
$
$
$
$
IDS
IDS

8 16
I

:sNUMB
1IDENT
IUSERID :IDSFOURYQUAD$DBASE
IPROGRAM QUTU
ILIMITS 110, 24K
IPRMFL :TF,R/W,R,IDSFOURYQUAD/QUADOl
:PRMFL 1TG,R/W,R,IDSFOURYQUAD/QUAD02

1TAPE 1DT ,XlS
1DATA 1I*
1WRITE IFC/TF/,ONFC/DT/
!WRITE lpc/TG/,ONFC/DT/
I I

I I . f .
1And the reloading o the files from

: I the dump tape
1PROGRAM IQUTU
ILIMITS !10, 24K
lpRMFL 1TF,R/W,R,IDSFOURYQUAD/QUADOl
:PRMFL ITG,R/W,R,IDSFOURYQUAD/QUAD02
1TAPE 1DT ,XlD
IDATA 1I*
jWRITE lFC/DT/,ONFC/TF/
IWRITE IFC/DT/ ,ONFC/TG/

221

Example of initialize, execute, dump, and reload for temporary files:

1

$
$
$
$
$
$
$
IDS
IDS
$
IDS
IDS

8 16
I
i

IS NUMB I
IIDENT I
IPROGRAM lQUTU
'LIMITS 110 I 24K
IMAss IA1, x1s, llR
IMASS :A2 I X2S I 2 2R
IDATA l•Q

!
CREATE IFC/Al/ ,BSSZ/480/ ,RNG/1,120/ ,LPP/63/
CREATE IFC/A2/,BSSZ/480/,RNG/121,240/,LPP/32/

IDATA II*
1INIT IFC/Al/
1INIT IFC/A2/

User's Program to be executed with its required
control cards

$
$
$

** $
$

** IDS
$

** IDS

i '
IPROGRAM lauTU
:LIMITS 110,24K
1TAPE IDT I X6S
1MASS Al ,X2S I 22R
IDATA l.Q
ICREATE IFC/Al/,BSSZ/480/,RNG/121,240/,LPP/32/
IDATA Ir*
:WRITE IFC/Al/ ,RNG/121,240/ ,ONFC/DT/

I

And the reloading of that file from the dump tape

$
$

** $
$
$

** IDS
$

** IDS

• I
:PROGRAM IQUTU
1LIMITS :10 I 24K
1MASS 1Al,X2R,22R
!TAPE IDT,X6R
!DATA .Q
I CREATE :FC/Al/ ,BSSZ/4 80/ I RNG/121, 240/ I LPP /32/
IDATA 1I*
IWRITE 1FC/DT/,RNG/121,240/,0NFC/Al/

**NOTE: FC/Al/ is used to reference the file which in the first
activity was created and defined as FC/A2/.

Directive Restrictions

Besides the restrictions included in the discussions of the various
directives, the following apply:

222

1. A maximum of 8 INIT, 8 PRINT, and 8 WRITE directives will be
processed.

2. A maximum of 8 RNG fields will be considered on any one
directive.

3. A maximum of 8 record types will be considered on any one PRINT
directive TYPES field.

4. When a range is defined on a directive, the input file must
contain that entire range with pages in sequence.

5. If no RNG field is present on a PRINT or WRITE directive, any
pages found on the input file that can be written to SYSOUT
(with PRINT) or the output file (with WRITE) will be handled.

6. Only SDL-1 (and later) dump format tapes will be read and
written.

7. 24,000 words of core storage are necessary for program I
execution.

8. Any output tape files must contain ranges which do not require
writing on one tape, then on another and then on the first
again. For example, the following is legal:

Ranges Tapes

1 - 100 } 1
200 - 1000

1001 - llOO } 2
1700 - 1800

The following is illegal:

Ranges Tapes

1 - 100 } 1
200 - 1000

101 - 150 2

9. Since subroutine OPEN is used, all rules defined by OPEN for
overlapping ranges, etc., hold for this utility, if a random
file is involved.

10. Only SDL-2 (and later) sorted journal tapes may be processed.

Printer Format

The printer output formats for the PRINT options are described below and
illustrated in the "Sample Outputs" section. The circled numerals refer
to the corresponding callouts on the sample outputs (Figures 38-41) .

223

PAGES option (see Figure 38):

0
0
0

0
0
©
0
©
©
@
@
@
@
@

PAGE xxxxxx xxxxxx: page number in octal, then decimal.

xx LINES xx USED: total number of lines existing on this page,
number of these used; both in decimal.

SIZE, CHAR; USED xxxx, AVAIL xxxx: number of characters used,
number still available; both in decimal. (Sum of these is size
in number of characters.)

BEGINNING LINE NUMBER xx: beginning line number of page.

CALC CHAIN NEXT xxxxxxxx: contents of the CALC chain NEXT
field (octal).

LN xx xx: line number in octal, then in decimal.

TP xxxx: data record type in decimal.

SZ xxxx: record size in characters (decimal).

W+xxx: number of words from beginning of the page.
Cxx beginning character in the word W+xxx.

xxxxxxxxxx: octal control word, equivalent to ©,(2), and ©·
Contents of line defined in ©,G),@, and @.
Octal data.

BCD data, equivalent to octal data on same printed line.

Sarne information as in ©, G), © ,(V and @ for next line.

Notes:

224

1. If a page is empty, only the following appears:

PAGE xxxxxx xxxxxx PAGE EMPTY

If two or more succeeding pages are empty, the following
appears after the line shown above:

THRU

PAGE xxxxxx xxxxxx PAGE EMPTY

2. Selecting the PAGES option also causes an inventory for the
range (as shown for the INV option) to be printed by SYSOUT.

EMPTY option:

The output for this option is the same as for PAGES (including an
inventory), except that for each empty page - that is, succeeding pages
as well as single ones - the following appears:

PAGE xxxxxx xxxxxx PAGE EMPTY

TYPES option:

The output for this option is the same as for PAGES, except for the
following:

1. No inventory is included.

2. Only the selected record types are printed.

3. If a page contains records but none are of the requested types,
the following appears:

PAGE xxxxxx xxxxxx NO REQUESTED RECORD TYPES

INV option (see Figure 39):

0

PAGE

xxxxxx xxxxxx

LINE

xx xx

#AVAIL

xxx

Page number in octal, then decimal

Line number in octal, then decimal

Percent of space available, shown
in either of two ways:

a. When the space used in the page is less than the percentage
specified in the user's inventory update request, this
condition is indicated by a #AVAIL of xx (where xx is 100#
minus the inventory update request). Thus, this indication
shows only that the inventory update request percentage has
not been exceeded.

b. When the space used in the page is greater than the
percentage specified in the user's inventory update
request, this condition is indicated by a #AVAIL xx (where
xx is the actual percentage of total space that is still
available).

THRU Indicates that, for the pages from the
page and line preceding this word
through the page and line following,
the AVAIL is the same.

225

RECORD option (see Figure 40):

CD RECORD TYPE

xxx

0 SIZE

xxx

0 NUMBER

xx xx

0 NUMBER DELETED

xx xx

G) LOW PAGE

xx xx

© HIGH PAGE

xxxx

(j) RANGE

xxxx - xxxx

I-D-S record type.

Record size in characters. (The size
is flagged by an asterisk if it is
inconsistent.)

Number of occurrences of record
type within specified range.

Number of this record type logically
deleted within the specified range.

Page number of first occurrence of
record type within the specified range.

Page number of last occurrence of
record type within the specified range.

Specified range for report.

GRAPH and GRAPH/N/ options (see Figure 41):

226

CD Page numbers.

® Scale for percent of space used (O - 100).

0 Scale for number of lines used (0 - 63).

@ # character, showing percent of space used.

© # character, showing number of lines used.

© X character, used when # and # values coincide.

Notes:

1. For GRAPH/N/, the numbers of the pages at interval N appear in
the column at 1 . The symbols opposite these numbers represent
averages for the percent of space used and number of lines used
within the interval.

2. Multiple entries for the same page number can occur if GRAPH
(rather than GRAPH/N/) is specified when pagettes are included.

Tape Format

The data sent to the output tape file is written as variable length,
logical records using the GEFRC subroutine PUT. The file is in standard
system format with the exception of block size which is 1602 words. The
Page Image record format is:

Word

0

1

2

3

4

5

6

Contents

Accounting Record Header. The number
record is specified in bits 0-17.
000013, is contained in bits 18-35.

Checksum.

of
The

data words in the
record type, octal

SNUMB in bits 0-29. Ignore character (octal 17) in bits 30-35.

Date as MMDDYY.

Start time in hours and thousandths of hours as HH.TTT.

Record type in bits 0-11 as 10. Bits 12-35 are presently unused
and are zero.

UTL in bits 0-17 to indicate utility tape rather than journal
tape. Bits 18-35 unused.

7 First six characters of user identification.

8 Second six characters of user identification.

9-n Active page image.

Execution Report

An execution report is produced as part of the user output. It includes
open and close reports for any random files used (see examples 1 and 2,
respectively, in Chapter 6, "I-D-S Execution Report") and a list of the
directives used in order of execution. (See Figure 42 in "Sample
Outputs" section for example of directive list.)

227

The report may also include any of the following error messages (all but
no. 9 describe conditions causing a program abort):

228

l. FILE CODE XX RANGE REQUESTED NOT IN FILE

A range has been defined by a directive for a random file (XX)
which is inconsistent with the range defined in the file
attributes.

2. FILE CODE XX CANNOT HANDLE REDUNDANT RANGE

Range had been defined by a directive for this file (XX) with
an intervening range requested by another file (see "Directive
Restrictions," no. 9).

3. - CANNOT HANDLE MORE THAN 8 FILES

Hore than 8 directives of any one type
have been input.

4. PREVIOUS CARD FATAL ERROR

(INIT, PRINT, WRITE)

The preceding card contains an error -- no file code, missing
comma, or missing slash.

S. PREVIOUS CARD TOO MANY RANGES

More than eight ranges are defined on the preceding directive.

6. PREVIOUS CARD TOO MANY RECORD TYPES

More than eight record types are defined on the preceding
directive.

7. FILE CODE XX INPUT IS NOT SEQUENTIAL

The file (XX) does not contain all of the pages defined by a
following range field.

8. FCXX ON FCXX PAGE TOO SMALL

In reformatting, the output page size is not large enough to
contain the lines to be written in the page.

9. FILE CODE XX CHECKSUM ERROR

A checksum error has been found on file XX. This is noted but
the program does not abort. (See also "Directive
Restrictions," no. 7.)

10. FILE CODE XX DATA READ NOT PAGE OR PAGETTE

The file XX does not contain page images. This is the result
of a bad tape or bad random file.

Operation

The following deck setup can be used to execute QUTU.

1

$
$
$
$
$
$
$
$
$

$
***EOF

Sample Outputs

8

I
II DENT

16

I
I
I
IQUTU
110,24000
I
I

IUSERID
1PROGRAM
:LIMITS
1PRMFL
IDISC
IDRUM
IMASS
ITAPE

orlOptions
I

I

I .
1options

I •
I . .
I • }

! Directives

IENDJOB

Figures 38-42 on the following pages show the various sample outputs
mentioned in the "Printer Format" and "Execution Report" sections.

229

IV
w
0

C0 0 0 0 0
,---~--_,,,...__ '\~ r - \ r "' r ---.

PAGE 000003 0000031 32 LINES 32 USED SlZc,CMARJ USEU 1415,AVAlL 505 BEGINNING LINE NUMB!R 1 CALC CMAlN NEXT 00000301

LN 01 01.TP 0001.sz Q203oW• 3,C 4
'--...,---) .._____,, ~~ 0100010313

~

0 0 0 0 8

LN 02 02•TP 0026,SZ 0014,w+ 37,C 3 020ll320016

000003100000 000006061103 020031244325 511462202631
254324202020 202020202020 202020010745 031103060400
45010002nJ02 o3n366noo5o3 2445000•0105 004500014545
212145450005 n:soooooooooo 060527516221 433121622120
202045010607 642020202045 2003Q4076420 202020452045
204520204520 202020000001 254520202020 202020202020
20202n202c20 ?.02020202020 202020202020 204520202020
202020202020 202020204520 202020202020 202020202020
202100000302
00050005Q300 00~303

~

0)

Figure 38. Sample PAGES Option Output

PAGE LINE UVA IL PAGE LINE UVA IL PAGE LINE UVAlL

000001 000001 01 01 0 000001 000001 41 33 >75 THRU 000003 000003 00 00)75
000003 000003 01 01 0 000003 000003 '41 33)15 000004 000004 01 01 0
000004 000004 41 33 >75 TMRU 000007 000007 00 co >75 000007 000007 01 01 0
000010 000008 00 00 0 000010 000008 01 01 >15 THRU 000015 000013 00 00)75
000015 000013 01 01 0 000015 000013 41 33)15 T~RU 000017 00001!5 00 00)15

000017 000015 01 01 a 000017 000015 '41 33)75 000020 000016 01 01 0
000021 000017 41) 32 02 000021 000017 41 33)75 THRU 000025 000021 00 00)75

~ '--...--" '--.,,..../ '-.,,-1'--1

C0 0 @ 80
Figure 39. Sample INV Option Output

OOJ!0000669J20IDLER~S ~I
&LD 17NJ93640
N10~3233W053DN04150N01NN
AANN053ooooo65GRSGLIASA

N167U N 347U N N
N N 001EN

A0032
050530033

N
N

"--~~~----~~~-}

@

~e_ ____ ~SS.:.QJUL TYe..E__. --~ll,_E _____ _N.l,JJiBj__ll__NUMiER _ _D!UfrIL__l,.filLl'.A_IR_ HI GH_J~_ilL_fil_NGE 1 - 50

2 1H 3ZZ ll__ .._____,, \.__-I \.__-I \.__-I \.__-I \..._._--) ' -- -~

8 0 0 0 0 0 0
Figure 40. Sample RECORD Option Output

}e

N
w
f-'

________ Kf't t ~-QL5!=1.AJ:_L\LSED __ =_ ,: __ _
NO. OF LINES USED : #

AN INTER!_E_CI_!O_lll_ O_F %___AND # = X

1 - 2 3
SCALE " :0 (1 0 0

1 2 3 --------·· --
SCALE # s:O

__________ o ____ -----
+ -- - + 1 - - +

4 5
1:i-- - 0
4 5 o -a--

_ 2 ~- ______ + •
3 -. - - -5 -· - •

~- * -~ x ~ ---- -- _____ %_~~~ -
- 8___ # - %

9 - # " %

" -- - ---- +_ __ # --- - - +

_s_c_ALE #. !IL ________ _n_ _____ ____g__ _______ JL_~ __ JL ___ ~~
1 2 3 4 5

6 7 ---- - --- - -----

~ ") ~ 0-------1- --- -~ _________ _liO_} 0
012:5} r 3 1
-~ _ _l_~_ + ---- __ __!_ _______ ____!_ ______ • ___ _

• _________ .. _____ _

+ • + +

Q_t.U___ - - 7
8 9 100

6 _Q__ _J_CilE_I _•O_ _ _ ___ o____ __ __ L __________ a____ __ _ !L__ _a___ __________ _,._ 0 0

41632 01 08-1'-69

DIRECTIVE:
_DIRECTIVE:
DIRECTIVE:

Figure 41. Sample GRAPH Option Output

14,778

PRINT
PRINT
PRINT

FC/T?/, RNG/1, 50/
FC/T2/,RNG/1,5Q/,GRAPH
FC 1T2i~-RNG1i-, 5 o /,REC-ORD

Figure 42. Sample QUTU Execution Report Directive List

Directive Processor and Service Subroutine (.QDIR)

.QDIR is a collection of ten different subroutines designed to provide
common functions for ~-u-~ utility programs and subroutines. Each
different function is defined by its SYMDEF name:

232

.QDIRF

This symbol identifies word -4 of the file control block for the
data file. Bits 24-35 of this word contain the file code for the
data file. If the user wishes to use his own file code, then he
must initialize these bits prior to any call to .QDIR or .QSFD. The
assumed directive file code is I*.

This subroutine opens the file for directives and reads the
directive into memory. Columns 8-13 are left justified and stored
in a cell pointed to by the user in the calling sequence. This
value is also returned to the user in the A-register.

As each directive is read from the data file, columns 1 through 84
(14 words) are moved to a working buffer. The literal words
DIRECTIVE: precede this buffer. After the move is completed, the
.QMEX subroutine is called to print the literal and the card image
on the execution report. A slew to the next line is given with each
line of printing.

In addition, a tally word is initialized to point to column 16 of
the directive for scanning the variable field through calls to the
.QSFD entry point.

ETC cards are also read by this subroutine.

The calling sequence is:

1 8

I
I
lcALL
I

where:
ARGl

ALTl

16
I
I
1. QDIR (ARGl) ALTl
I

The location for the contents of
columns 8-13 of the directive.

The location for an end of file exit.

This entry point is called to scan the variable field of a
directive starting in column 16. Each call to this entry point will
scan a maximum of 12 characters, if a delimiter is not encountered.
The valid delimiters are comma, blank, and slash.

The n characters are returned left justified with trailing blanks
in the AQ-register as well as being returned to the three cells
pointed to by the user in the calling sequence. The delimiter
character is not returned.

The third word pointed to by the calling sequence will contain
three values:

Bits 0-17: The number of characters in the subfield.

Bits 18-23: The delimiter character found.

Bits 24-35: The value required for a right shift of
the AQ-register in order to right justify
the subfield.

It should be noted that if the value in 0-17 is zero, then the
value in bits 24-35 will be 72.

If more than 12 characters are present in the subfield then only
the first 12 characters are returned to the user. The tally word
for the scan is advanced through the next delimiter. The character
count in bits 0-17 of the user's argument will contain the total
number of characters in the subfield.

The calling sequence is:

1 8

I
I

lcALL
I

where:
ARGl

• QDIRC

16
I
I
l.QSFD (ARGl)
I

The address of three consecutive
cells for return information. The
first two cells will contain the
subfield, left justified, with
trailing blanks. The third word will
contain the three values described
above •

This subroutine closes the directive file. If only one file code is
used with .QDIR, the user need not call this subroutine.

233

234

This subroutine converts a number from binary to BCD and
leading zeros with blanks. The number to be converted may
larger than 999,999(10). If the binary number is zero, it
converted to five blanks and a zero.

The calling sequence is:

1 8 16
I

1LDA 'BINARY I I
1CALL 1.QBCD
I I

(value returned in the Q-register)

replaces
not be

will be

This subroutine clears n words to a preset value. The argument list
specifies the number of words to be cleared, the address of the
area to be cleared, and a pointer to the value to be stored in the
area.

The calling sequence is:

1 8
I

lcALL
I

16
I

:. QCLR (15, BUF, = 6HJ6}zSJ6}6}6}6)
I

This subroutine calculates the checksum of a specified number of
words starting at a given location. If the starting location is
given as A, then the word at A+l will be skipped (not added into
the checksum) •

The calculated checksum is returned to the user in the A-register.

The calling sequence is:

1 8

I
I

lcALL
I

where:
ARGl

ARG2

I
I

16

1. QCSM (ARGl I ARG2)
I

The number of words to be
checksummed.

Address of word 0 of data to be
checksummed.

Note: If the number of words to be checksummed is 0, 1, or 2, then
the first word of data is returned to the user as the
checksum.

Rev. August 1971

This subroutine moves n characters
character position Al, to address B,
Bl.

The calling sequence is:

1 8 16
I I

from address A,
starting character

I
I
1CALL

I
1.QMCH (15 ,BUFA, 3 ,BFRB, 0)

I I
Starting character positions must be from 0 through 5.

starting
position

This subroutine is called to write messages on the execution
report. Messages must be less than or equal to 22 words in length.
If a length of zero is given, a line of blanks will be written and
the specified slew code will be appended to the end of the line.
Messages greater than 22 words in length will be truncated to 22
words.

The calling sequence is:

1 8

I I
ICALL
I

where:
ARGl

MSG

SLEW

16
I
I
1.QMEX (ARGl ,MSG ,SLEW)
I

The number of words in the message

The address of the message

The number of lines to be slewed
after printing. (See the GEFRC
routines, IOEDIT and PRINT, for slew
code rules.)

If a fourth argument is present (the value in the argument has no
bearing) in the call, then a 'Top of Page' will be issued prior to
printing the line requested by the caller. After the top of page is
issued, a heading line is printed with the SNUMB, activity number
and date followed by a double space. Then the caller's line is
printed. If the caller wants just a top of page without any
information printed, he should write the call as:

1 8
I

I
ICALL
I

16
I
I

I. QMEX (0 , 0 , SLEW, 0)
I

The zero word count in the above printed call will cause a line of
blanks to be printed with the slew code specified.

235

236

This subroutine moves n words from address A to address B.

The calling sequence is:

1 8
I
1CALL I
I

16
I
:.QMWD (15 ,BUFl ,BUF2)
I

This subroutine is called to journalize a page. The page will be
sent to the user's journal file if it is present. If no user's file
is present, then the page will be journalized to the I-D-S system
journal.

The calling

1

I
where:

sequence is:

8 16
I I

kALL l· QPBK (FCB, PTR)
I

FCB The LOCSYM of the file control block
for the journal file.

PTR The address of a word which points to
the origin of the data to be
journalized. This origin is the
location of the accounting header
word which precedes the page.

The record size for journalization is
obtained from bits 0-17 of the
accounting header word.

It is the user's responsibility to checksum the record and store
the checksum in the record prior to calling .QPBK. The file control
block defined by the user for the journal file must specify only
one buffer.

Trace and Print Record, Debug, and Utility Subroutine (.QSTC)

The .QSTC subroutine generates a trace entry for all calls to I-D-S
primary subroutines (except for .QOPEN and .QCLOSE). In addition, each
time a call is issued to one of the following primary subroutines, .QSTC
prints the current record:

.QSTOR

.QGET

.QGETC

.QGETD

.QGETE

.QCHN

.QHEAD

.QMDFY

.QMOVE

.QDELETE

The trace data and the record to be printed are directed to P* unless
otherwise specified by the user. The user can direct this output to his
own file, if desired.

Trace data and print record entries are generated on P* or a users' file
for all I-D-S record types, for each I-D-S primary subroutine (those
listed above), and for the entire page range of the I-D-S file unless
otherwise specified by the user. The user has the option of selecting:

1. Which primary subroutine(s) should be traced.

2. Which record(s) should be printed.

3. Up to five different page ranges within the I-D-S file.

4. Which record types (up to a maximum of 50) should be traced or
printed.

The .QSTC
Directive.

subroutine is controlled through the following I-D-S

1

IDS

8

10PTION
IETC
!ETC
IETC
I

DEBUG OPTIONS

e PRTREC

e TRACE

16
I
1DEBUG OPTIONS, FILE OPTION,
IDIRECTIVE/OPTION/'
IDIRECTIVE/OPTION/'
I
1 • ••

This Debug Option causes the contents of the current
record to be printed after the completion of an I-D-S
call. Sample output is shown in Figure 43.

This Debug Option causes a trace data line to be
generated each time one of the previously listed I-D-S
primary subroutines is called. Sample output is shown
in Figure 43.

Note: Either PRTREC or TRACE or both PRTREC and TRACE must be
specified.

237

FILE OPTION

• ONFC/xx/ The inclusion of ONFC/xx/ causes the trace data and/or
the output generated as a result of PRTREC to be
directed to the users' file with the file code xx. If
ONFC/xx/ is not included, the output is directed to
P*.

DIRECTIVES

• NULL Provides the full capabilities of the option
specified.

e ALL Provides the full capabilities of the option
specified.

e DO Only the specified options will be performed.

e DONTDO Processing of the specified options is inhibited.

OPTIONS

238

• TYPES/nnn, .•. ,nnn/

Depending on the specified directive, this option allows or
inhibits the tracing and/or printing of specified record types.
A maximum of 50 different record types can be specified.

• VERBS/xxx, ••. ,xxx/

Depending on the specified directive, this option allows or
inhibits the tracing and/or printing of the current record as a
result of a call to an I-D-S function. The al1-owable verbs are:

RETRIEVE
RETRIEVEEACH (or EACH)
RETRIEVENEXT (or NEXT)
RETRIEVECURRENT (or CURRENT)
RETRIEVEDIRECT (or DIRECT)
HEAD
STORE
MODIFY
HOVE
DELETE

e RNG/1B,1E, ••• ,5B,5E/

Depending on the specified directive, this option allows or
inhibits the tracing and/or printing of current I-D-S records
that are within a specified page range. lB •.• SB specify
beginning page numbers; lE ••• SE specify ending page numbers. A
maximum of five different page ranges may be specified.

RESTRICTIONS

• For the same option, specification of a DONTDO directive
overrides the specification of a DO directive.

• Both the DONTDO and the DO directives apply to both the TRACE
and PRTREC functions.

• Imbedded blanks cause the processing of an OPTION card to be
terminated.

EXAMPLES

1 8
i
I OPTION
I

16
I
1TRACE I
I

This causes a trace data line to be generated on P* each time one
of the previously listed I-D-S primary subroutines is called.

1 8
I
!OPTION
I

16
I

I
IPRTREC ,ALL
I

This causes a print record entry on P* for all I-D-S record types
and for each I-D-S primary subroutine (those previously listed) for
the entire range of the I-D-S file.

1

IDS

8

I
tOPTION
IETC
I

16
I

:TRACE,DO/TYPES/001,942/,
IDONTDO/VERBS/MOVE ,STORE/
I

This causes the tracing of only the record types 001 and 942 for
the entire range of the I-D-S file and inhibits tracing of the
I-D-S verbs MOVE and STORE for those record types. The output is
directed to P*.

1

IDS

8
I
:OPTION

I
ETC
ETC
IETC

16
I
ITRACE I PRTREC I ONFC/AB I I

lDO/RNG/001,005,009,010/,
!ALL/TYPES/ ,DO/VERBS/ I
IRETRIEVE,MODIFY,DELETE/

This causes the tracing and printing of all record types referred
to by the verbs RETRIEVE I MODIFY I and DELETE that are within the
page ranges 001 to 005 and 009 to 010. The trace data and print
record are directed to the user's file with the code AB.

239

1

$
DS

8
I

:DATA
IOPTION
IETC
IETC
I

16

'o
~RTREC,DO/TYPES/941/,
jDO/VERBS/RETRIEVE/,
IDO/RNG/016,900/
I

This example causes all record type 941 (name and address record)
to be printed each time a RETRIEVE verb accesses a record type 941
between pages 016 and 900. The output is directed to P*.

DECK SETUPS

The following deck setup may be used to execute on an I-D-S PRMFL.

1 8
I

$ II DENT
$ I USE RID

10BJECT
$ tUSE
$ I EXECUTE
$!PRMFL
$!DATA
IDS !OPTION
$ IEND JOB
***EOF I

16
I
1IDSTST ,PAT
lIDSFOURYQUAD$DATABASE

PROGRAM
j.QSTC
I
IAl,R/W ,R,IDSFOURYQUAD/QUADl
1.Q
IP RT REC, TRACE, ALL
I
I

The following deck setup may be used to execute a program using a
temporary I-D-S file.

Note:

240

1 8 16
I

$ IIDENT :IDSTST ,PAT
:OBJECT ~ROGRAM

$ 1USE J • QSTC
$!EXECUTE
$ jDISC IAl,XlR,9R
$!TAPE IBl, X2D
$ IDATA I .Q
IDS 1CREATE IFC/Al/ ,BSSZ/100/ ,RNG/1,100/
IDS IOPTION !TRACE,ONFC/Bl/,DONTDO/RNG/1,50/
$ IENDJOB I
***EOF I I

To provide the TRACE
control card must be

1 8 16

1$
I

I I
IUSE :.QSTC
I

and PRTREC options the following LOADER
included in the job stack for the activity.

USER ENTRY POINT

A users' entry point has been provided which enables the printing of the
current I-D-S record. This entry is available to the user regardless of
whether PRTREC or TRACE has been specified.

1 8
I

:sYMREF
1CALL
I

16

I
1QSTA4
IQSTA4 (ARG) ;
I

where ARG is a one word working storage location to be used as a
line count.

STANDARD ERROR OPTION

If TRACE is specified by the user and an I-D-S error occurs, an error
message is generated to the output file code specified by the user.
Refer to Figure 43 for example.

SUBROUTINE RESTRICTIONS

1. If the user entry point (QSTA4) is called, all output generated
is directed to P*.

2. If any field within an I-D-S record exceeds 84 characters, only
the first 84 will be printed by the PRTREC module. If a field
is modified, the PRTREC module shows the result of the entire
field.

3. If the modify verb is called to modify a record with more than
100 fields, modify flags appear on the first 100 fields
modified; all others are not flagged.

4. If this subroutine is used with a user program which has not
been compiled using the .QNAMS macro, the field and record name
areas of all output will contain unpredictable data. This
condition will also cause faulty printing in some cases.

To include this macro, the user must include the following code
within the Procedure Division after the first ENTER IDS.
statement.

14
I
I
1ENTER
1.QNAMS
I ENTER
I

22
I
I
1GMAP •
I
!COBOL •

5. If ONFC/XX/ file option is used and the specified file is not
defined as having variable-length records or if file is not
assigned as a printed file, the results are unpredictable.

241

6. If ONFC/XX/ file option is used and the specified file is not
opened before the first I-D-S statement, all output is directed
to P*.

OUTPUT DESCRIPTION

Figure 43 shows typical TRACE and PRTREC output. A description of all
generated data fields follows:

242

CD
0
0
©
©
©
0
0
0
@
@

Complete trace entry

Complete PRTREC entry showing fields names and field content

TRACE heading

GMAP alter number within program where I-D-S call was issued

Current type of I-D-S operation

Current record type

Page and line number of current I-D-S record

PRTREC header shows type of I-D-S operation, record name, and
page and line number of current I-D-S record

Field-name of record

Field contents

Control field
contents are:

this field shows

RDM - Randomize field key
STA - Sorted ascending field key
STD - Sorted descending field key
MAT - Match key or synonym field

field usage, allowable

@ Data Type:

AN - Alphanumeric
A - Alpha
N - Numeric
SN - Signed Numeric
SFX - Single precision, fixed point
SFP - Single precision, floating point
DFX - Double precision, fixed point
DFP - Double precision, floating point

Note: All field contents that are not BCD will be printed in
OCTAL.

I-D-S error entry with error code

An (*) will ~opear by each field name which had its contents
changed by the user calling the I-D-S modify routine

I\.)

.i::.
w

66536 05 09-29-69 21.173

;'(--)rk*.,'t: IDS-TRACE >'< ALTER NO. -

0
STOR DATDET 120/ 2

0
293

DAT REC

0992

0
CTYPE-STOR

MAT CALDAT

9998

RTYPE-

m'<-l<*>'< IDS-TRACE >'< ALTER NO. - 293 CTYPE-STOR RTYPE-

© DATREC MAT CALDAT

I STOR DATDET 120/ 3' 0992 @--9999 "'G
-l<>'<>'dd< IDS-TRACE -l< ALTER NO. - 263 CTYPE-STOR RTYPE-

XXXXX AN IDS ERROR HAS OCCURED, ERROR CODE - D01) ~

DAT REC MAT CALDAT

STOR DATDET 120/ 3 0992 9999 ---
>'rn**>'< IDS-TRACE >'< ALTER NO. - 282 CTYPE-GET RTYPE-

DAT REC RDM Xl

GET DATMAT 120/ 1 0992 0000

BASE2 YYYMON

0001 0001 ---
***** IDS-TRACE * ALTER NO.- 303 CTYPE-CHN RTYPE-

DAT REC MAT CALDAT

CHN DATDET 120/ 2 0992 9999 ---
-l<*>'<** IDS-TRACE >'< ALTER NO. - 319 CTYPE-.MDFY RTYPE-

DAT REC MAT CALDAT

.MDFY DATDET 120/ 2 0992 9998

© 0
993 PG/LN= 1201 2) CD
STA ACTDAT

999999

993 PG/LN-

STA ACTDAT

999999

993 PG/LN-

{,"";)
S±A);?TDAT

999999

992 PG/LN-

X3

120/3

120/ 3

120/ 1

00000006 00005

PERMAX ~
07 SFX

993 PG/LN- 120/ 2

STA ACTDAT

999999

993 PG/LN-

STA ACTDAT

999999

120/ 2

CODDAT

4

~ODDAT} G)

CODD AT

5

WKGWK

FSTMON

0001

CODD AT

5
(,2'

CODDAT y
4

Figure 43. Sample .QSTC Output

yyy

0068

Verify and Print Utility Subroutine (.QUTF)

QUTF verifies the integrity of a page and formats and prints I-D-S data
base information received from QUTU, QUTL or QUTD.

The calling sequences are:

244

1 8
I

:CALL
I

16
I

:.QUTFl (ARGl ,ARG2)
I

This entry point must be called first to initialize .QUTF. ARGl
the name of the file control block to which the dump output
sent. Normally, this is the file control block for SYSOUT, P*.

is
is

ARG2 is the symbolic location of four words that are included in
the title line of the dump output. Normally, it is name and version
of QUTU, which produces the output from QUTD, QUTL, or QUTU.

1 8 16

I
I

:cALL :. QVFY (ARGl ,ARG2 ,ARG3) ARG4
I I

This entry point is called for each page that is to be verified.

ARGl is the location of a word which contains the 24 bit page
reference code, right justified.

ARG2 is the address of the first word of the page to be verified.

ARG3 is the location of a word which specifies whether the page
will be dumped on the printer via SYSOUT. If the word is zero, no
printing will be performed. If the word is nonzero, the page will
be printed. In addition, if this word is nonzero it must be
preceded by and followed by two words of zeroes.

ARG4 is the location of the user's alternate exit which is taken
whenever a page cannot be verified.

The following checks are performed to verify the integrity of a
page:

• The page number supplied by the caller (ARGl) equals the page
number in the input record.

• Every line present in the page has its line flag properly set.

• The sum of record sizes equals the active page size.

• Line flags are not set for lines that are not contained in the
page.

If any one of these tests fails, an appropriate error message is written
on the execution report followed by a snapshot of the page in error. The
registers shown in the panel portion of the snapshot dump display the
following information:

XO The page number supplied by the caller in argument 1.

Xl The current word address within the page where processing was
being performed when the error occurred.

X2 The current character position in the word described by index
register 1.

X3 The usable page size expressed in characters.

X4 The available space expressed in characters.

XS The active page size expressed in characters.

X6 The number of characters in the page which have already been
processed.

X7 The number of the current line being processed.

AR/
QR The current status of the available line flags, left justified.

These flags are taken from working storage and some bits may
not be present for those lines already processed.

As each page is verified, secondary entry points of .QUTF are called to
format and print the page, if required. These entry points are described
below:

1 8
I

I
ICALL
I

16
I

:.QUTF2 (ARG1,ARG2)
I

This entry point is called at the beginning of each page.
information to .QUTF concerning the page number and the
size.

It supplies
active page

ARGl is the location of the page number, in binary, right justified.

ARG2 is the location of the active page size, in binary, right
justified.

245

1 8
I

:cALL

16
I
I

l .QUTF3 (ARGl ,ARG2 ,ARG3)

The third entry point is called to print each line. ARGl is the location
of the word number within the page for this line. The value is binary,
right justified.

ARG2 is the location of a tally word containing the address and starting
character position of the line.

ARG3 is the location of an indicator. If ARG3 is O, the Page Header
(line O) is sent for printing. If ARG3 is ~O and negative, a normal line
is sent for printing.

Printer Format

The format of pages selected for printer output is shown below:

PAGE: xxxxx xx ACTIVE PAGE SIZE: xx xx CH.

WD: LN: TYPE:

xxx xx xx xx OCTAL OCTAL locTAL locTAL I IBcol

OCTAL OCTAL !ocTAL !ocTAL I IBcol

OCTAL OCTAL locTAL !ocTAL I IBcol

xxx xx xxxx OCTAL OCTAL locTAL locTAL I lBcol

Execution Report

The output produced by the .QUTF subroutine is written on the file
provided by the user in his call to .QUTFl. The report code is 25(10).
Output is produced by calling the PRINT and EPRINT subroutines of GEFRC.
The GEFRC subroutine IOEDIT is used for page numbering and format
control.

Operation

QUTF is used by QUTD and QUTL to print data base pages in the desired
format. It is made available to the utility routines from the subroutine
library through the use of the SY!1REF feature of GMAP. QUTF is not
freestanding and cannot be called except through the user's own program.

Sample Output

An I-D-S Selective Tape Dump report using .QUTF is shown on the
following page.

246

l U':iEX 1)3 09•25-68 12. Ll71 10S S~L~CTlvE PAGF UuMP ~~PORT Od01o8 VERSlO~ UF 1 UUlD, PAGE 2

100 34 '50 420062il021 ooooooo6o'Jo3 oco10001112i; K0S0A0000030101ZE
t03 35 5~ 430G62002100 0000000~0700 0100017206 LOSOAQ000670101•6
105 36 5 .: 44 0062on~10000 rco103010001 00017177 MOSOA0001310101ZI
108 37 5C 450 () 020021oooo'Jo Ol0402000100 017227 NOSOA0001420101•U
111 38 5(-'60062 002100000001 n40000010001 7145 00SOA0001400101ZN
114 39 5" ... 470Q6200 210000050101 020001000172 25 PQSOA0001120101~E
1.1 7 40 5C ';)000f!20021 000000000505 000100017215 Q0$0A0000550101•1
1.2u 41 5c 510062002100 000004020500 0100017156 ROSOA0004250101ZJ
122 42 5C 52 00620o2ioooo 000207030001 0001717'5 -oso•ooo2730101za
125 •3 5c 5300 620021000000 030206000100 017232 iQSOA0003260101•4
128 44 5~ 54U062 co21oooaoooJ 050500010001 ?162 •OSOAOOOJ55Q101Zi
131 45 5C ,5006200 210000000403 noooo10001n 31 >0SOA0004J00101•1
134 46 50 560062;J02l 000000040210 1)00100017155 JOSOAOQ04280101Z>
137 47 50 570062002100 000001060000 C110fl01720l 1 0SOA0001600101•1
139 48 5: 60 00620021000CJ oooJo7060001 00017221 •OSOA0003760101•A
142 49 50 b100 620021060006 0'40701000100 017222 /OS0A0004710101•B
145 so 50 620062 00~100000'.lo3 ooa100010001 1133 SOSOA0003610101Z,
148 51 'o 63006200 21oooooco206 020001000172 41 TOSOA0002620101•J
151. 52 5c -:i400620021 0000000?11ot 000100017170 UOSOA0002910101ZY
154 53 sc 650062o'.l21oo 000002030600 OlOOJ171o4 VOSOA0002360101Z4
156 54 sc 66 0062oo2100QO 000301020001 00017225 WOSOA00031i010l•f
i59 55 so b7oo 620021000000 o3o40Jooo100 017237 xoso•oooJ430101•\
162 56 9J 700062 002100000002 110700010001 7106 voso•ooo~970101z6
165 57 5C 71000200 2100000Q0111 100001000171 30 zoso•ooo19ao101z~
16e 58 50 7200620021 000000020201 000100017165 •OSOA0002270101ZV
l71 tj9 50 7301' o 2B 021O0 000000040409 0100017103 10SOA0000~40101Z3

173 60 5c 74 ~06200210000 000204100001 00017113 ~OSOAOOo2•8o101Z#
176 61 50 7500 620021000000 020711000100 017164 •OSOA0002790101ZU
179 62 r;o 70u062 002100060001 ()61100010001 7132 "OSOA0001690101Z&
182 63 50 77000200 210000060103 040001000171 27 IOSOA0001340101ZG

PAliEl 122• 1 A~ilVE PAGE SiiEI 617 CHARACl'Ei-IS

11101 LNI TYPE! ,, 0 1000 000172775000 017200242777 777777777700 ~oocoooo Ol•1Qa1•00Gt1llllOOOOO
3 1 5') ulOO 62Qr:J210oOO~O r10603000100 017176 10SOA0001630101Z"
6 2 '3Q 1320062 002100000001 100400010001 7:?42 20S040001840101•K
9 3 5C 03006200 4'10000000201 C.50001000171 72 30SCA0002150101Z•

12 4 so 0400•20021 oocooooiootJ' 000100017147 40S0Aooo1050101ZP
15 5 5o 050062902100 000002001100 0100017203 5os0Aooo2090101•3
17 6 5o 06 ::06200~10000 000007000001 0001'112~ 6osoAoooo700101zr
2f} 7 5o o7oo b2co21000000 OC111100GlOO 017140 7oSOAOOOQ990101z•
23 8 5G 10U062 co2100000001 r.20000010001 7144 80SOA0001200101ZM
26 ~ 5Q 1100b200 210000000105 010001000171 57 9iSOA0001510101Z'
29 10 5~ 1200&20021 coooooooo4ot r.C01J0017173 [O OA0000410101Z,
32 11 5G 13006200i100 000000010700 GlOOJ1724.3 #OSOA0000170101•~
34 f2 5o 14 co62cio210000 ooooo3o50001 00017137 •oSoAoooo3501012\
37 13 50 1500 020021ooocon nco506000100 017112 1QSOA0000540101zr
~b 14 5C 160062 0021oooooocw 1co700010001 7207 >0S0Aooooe10101~1

N 43 15 5Q 17000200 210000000405 070001000171 31 10SOAOOQ4570101Z1
.i:::. 46 1.6 50 20Q062002J. u00000030CIJ5 000100017124 OSOA0003050101ZD
~

Appendix A. Reserved Words

1-D-S RESERVED WORDS

I-D-S uses all the reserved words specified for COBOL. In addition, it
employs the reserved words listed below. The user must avoid using words
on both these lists for data-names.

ABORT EACH PROCESS
ALLOWED ERROR-REFERENCE RANDO.MIZE
ANY FIELD REC-FILE
AUTHORITY FIRST-REFERENCE RECORD-TYPE
AUTHORITY-KEY HEAD REPLACE
BUFFER IDS RETRIEVAL
CALC IDS-SPECIAL-NAMES RETRIEVE
CCBLOC INTERVAL SORTED
CCBLOXK LAST-REFERENCE STORE
CHAIN LINKED SYN
CHAIN-ORDER MASTER SYNONYM
CURRENT MATCH-KEY TABLE
DEBUG MD TRACE
DELETE MODIFY UNIQUE
DIRECT NEAR UPDATE
DIRECT-REFERENCE PAGE-RANGE VIA
DUPLICATES PRIOR WITHIN

WORKING

1-D-S GENERATED GMAP SYMBOLS

GMAP symbols defined in the location field must not conflict with
reserved system symbols. (See GE-600 Line Programming Reference Ilanual,
CPB-1004.) Symbols in the form LLNNNN, where Lis any letter and N is a
number, must not be defined in the location field of GMAP statements.

249

Appendix B. 1-D-S Error Conditions

Two types of error conditions may occur during I-D-S program execution.
The code, I-D-S source, and description for error conditions of both
types are shown in the following sections.

DATA-DEPENDENT ERR 0 R C 0 ND IT I 0 NS

Testing for data-dependent error conditions must be incorporated in
procedural logic of the user program. Codes for this type of error
stored in the communication cell ERROR-REFERENCE for reference by
user program. The various codes are listed in the following table.
each code is shown the I-D-S source of the error condition and
description as printed by the TRACE option of the USE statement.
description will be printed if the TRACE option is selected. (See
USE description in Chapter 3 for an example of TRACE output.)

The key to abbreviations in the descriptions is shown below:

RT - record type
REF - reference code

MT - master record type
DT - detail record type

the
are
the

With
its

This
the

XXXX - variable inserted by TRACE

Error Code Source

ROl QASC

R02 QASC

R03 QASC

R04 QASC

ROS QGTC

Description from Trace

No current record reference code
record type XXXX

Record retrieved logically
deleted RTXXXX REFXXXXXXXX

Request retrieval of record
RTXXXX got RTXXXX

No record on chain MTXXXX-DTXXXX
or structure error for record
type XXXX

Retrieve current, current equals
zero rec-type XXXX

Rev. August 1971

251

I

I

R06 QGTD Retrieve direct ~~,.:i direct ref er-O.llU.

ence equals zero

R07 QGTD Retrieve direct and record is
logically deleted

ROS QMRA Line number not on specified page
ref code XXXXXXXX

R09 QBIC Page requested is not allocated
QSMT reference code xxxxxxxx

RlO QDLT Illegal delete request of RTXXXX
want RTXXXX

Rll QMDF Illegal modify request of RTXXXX
want RTXXXX

Rl2 QM.NO Working storage for page range
QCAL zero record type XXXX

DOl QTLN Store of unallowed duplicate
record type XXXX

SOl Q.MNO No space available for record
type xx xx

ERROR CONDITIONS CAUSING ABORT

Improper use of I-D-S functions, invalid data file definition, and
unrecoverable hardware malfunctions cause an automatic trace and abort
of the user program. In addition, a memory dump occurs.

Whenever an I-D-S program aborts, the I-D-S data file is first CLOSED,
with the appropriate pages restored to the mass storage device.

If the trace cannot acquire a link on mass storage for an overlay, the
following error comment may occur:

CANNOT TRACE ERROR, INADEQUATE SPACE

The various abort reason codes are listed in the following table. With
each code is shown the I-D-S source of the error condition and its trace
description.

Note that while they are included in this table, codes 65 through 88 are
not associated with an abort condition, but have been added solely to
permit the printing of an appropriate error message while TRACE-ing the
non-fatal errors discussed above. These codes may be encountered in a
memory dump, or among the inner workings of the I-D-S subroutines, but
will otherwise be invisible to the user.

Rev. August 1971

252

The key to abbreviations in the descriptions is shown below:

RT - record type
REF - reference code
CC - conununication

control

Reason Code Source

04 QAUT

05 QSMT

06

07

08

09

10

11

12

13

14

QRLN

QRLN

QRLN

QRLN

QASC

QASC
QDLT
QSTO

QASC

QGTD
QRLN

QHED

MT - master record type
DT - detail record type

XXXX - variable inserted
by TRACE

Description from Trace

Authority key does not match
record type XXXX

No records returned from sort

Read error - check error ref er­
ence in CC block

Record retrieved logically
deleted RTXXXX REFXXXXXXXX

No position prior pointer chain
MTXXXX - DTXXXX

No detail def inions for this
chain MTXXXX

Retrieval via missing for record
type XXXX

Detail in too many chains record
type XXXX or/master of too many
chains record type XXXX

No unique field for primary
record - record type XXXX

No record definition has been
established

Chain next equal zero chain -
MTXXXX-DTXXXX

Rev. August 1971

253

*
I

I

I

I

I

15

16

17

18

I 19

I 20

I 24

25

I 26

I 27

I 29

I 30

31

32

33

34

35

254

QDLT
Q}l.i.DF

QSTO

QMDF
QMOV

QDLT

QFWD

QGDE

QGDE

QSTO

QSTOR

QTYP
QRLN

QDLT

QUDC
QRLN

QMRA

QSBF
QSMT

QBIC
QSMT

QIV3
QIV4
QFWD

QIOS

QSMT
QBIC

Processing mode not up-date

Field of modify/move not in
record type XXXX

No current record of program
on delete

Retrieve next in chain no
current exists MTXXXX-DTXXXX

Invalid control definition
record type XXXX

Control field error, equals
zero for record type XXXX

No unique field on store
for record type XXXX

No storage chain specified
for record type XXXX

Record retrieved not
specified for chain
MTXXXX-DTXXXX

Delete action list is
invalid

No position next pointer chain
MTXXXX-DTXXXX

Record size conflict for record
type XXXX

Attempt to write not update,
reference code XXXXXXXX

Invalid page size for reference
code XXXXXXXX

Page requested is not
allocated reference code
xxxxxxxx

Read/write error

No empty buffer for REND

Rev. August 1971

36 QRDN Attempted update while in READ I
only mode

52 QTLN Record cannot be linked I
chain MTXXXX-DTXXXX

53 QTLN Error trying to retrieve I
prior chain MTXXXX-DTXXXX

54 QTLN Error trying to retrieve I
next chain MTXXXX-DTXXXX

55 QTLN Error trying to retrieve new chain I
MTXXXX-DTXXXX

56 QBIC Page read is not page requested,
reference code XXXXXXXX

57 QDLN Next of chain is equal to zero I
chain MTXXXX-DTXXXX

58 QTLN Attempt to link, next equals
zero chain MTXXXX-DTXXXX

59 QIV3 Inventory read not one I
requested

60 QTLN Next in chain not retrievable I
QRLN chain MTXXXX-DTXXXX

61 QOPE Error in file definition at
open time

65 (See Error Code "ROl")

66 (See Error Code "R02")

67 (See Error Code "R03")

68 (See Error Code "R04")

69 (See Error Code "ROS")

70 (See Error Code "R06")

71 (See Error Code "R07")

72 (See Error Code "ROS")

73 (See Error Code "R09")

74 (See Error Code "RlO")

Rev. August 1971

255

75

76

80

88

129

130

All others

256

QCHN
QDBG
QDLT
QGET
QGTC
QGTD
QGTE
QHED
QMDF
QMOV
QRLN
QSTO

QCHN
QDBG
QDLT
QGET
QGTC
QGTD
QGTE
QHED
QMDF
QMOV
QRLN
QSTO

(See Error Code "Rll")

(See Error Code "Rl2")

(See Error Code "DOl")

(See Error Code "SOl")

File unopened but access requested

Primary subroutine entry during
error processing

Error code undefined

Rev. August 1971

Appendix C. GE-600 COBOL/1-D-S/FORTRAN
Communication and Overlaying

This appendix explains the procedures
overlaying a COBOL program, using the
software and mixing FORTRAN programs
software on a GE-600 system.

OVERLAYING A COBOL PROGRAM

Basis for Overlaying

and techniques to follow when
Integrated Data Store (I-D-S)

with COBOL or the COBOL/I-D-S

Most programs should be segmented and overlayed when they become large.
The memory allocated to a program will vary among sites. That is, some
sites will have a billing formula to compute the cost of a computer run.
If a particular computer run requires, for example, more than 40k of
memory, the user's cost will have a very drastic increase after this
limit has been reached.

In a multiprogramming system, the more memory required for a particular
program decreases the effectiveness of the overall system. So, there is
a justification for increasing the charge for a program when a set
memory limit has been exceeded.

Many programs can be overlayed to reduce their memory requirements.
These programs may have sections that are utilized only once or just a
few times. These sections definitely do not have to reside in memory for
the entire duration of a computer run. Other sections which do not have
direct references to one another can be swapped in and out of memory,
also under user control.

Segmentation

To accomplish overlaying, the program must be divided into subroutines,
subprograms, or segments, whichever term you wish to choose. The term
subprogram is used in this appendix. This program, when divided, will
consist of numerous subprograms, each compiled separately or each
appearing to be an entity or program.

257

Thus, each subprogram will be a separate COBOL compilation, each with an
Identification Division, Environment Division, Data Division, and
Procedure Division. Each program will have a uniqueness to depict that
they are subprograms. These features, irr~edded in the programs, are
various transfers, entry points, exits, and common data storage areas.

Communication Between Subprograms

Once a subprogram exists, the means of communicating
subprograms (and also examining constant or variable
different subprograms) must be accomplished.

with the other
data used in

First, the method of passing constant or variable information between
the subprograms. In COBOL, use the labeled common area method. These
areas are defined in each subprogram that use any of the constant or
variable information. The following example will show how to set up the
labeled common areas so that the different subprograms can examine the
same data.

Subprogram HAIN

000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. MAIN.

000140 ENVIRONMENT DIVISION.

000180 SPECIAL-NAMES.
000190 BLOCK 31 IS ENTRY-REC THRU LAST-REC.

000320 DATA DIVISION.
000330 FILE SECTION.

000500
000510
000520
000530
000540

258

WORKING-STORAGE SECTION.
01 ENTRY-REC.

02 OTHER-LEVELS SIZE IS 48 NUMERIC.
01 LAST-REC.

02 MORE-LEVELS SIZE IS 42 NUMERIC.

Subprogram NEXTPG

000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. NEXTPG.

000120 ENVIRONMENT DIVISION.

000150 SPECIAL-NAMES.
000160 BLOCK 31 IS REC-ENTRY THRU REC-LAST.

000400 DATA DIVISION.
000410 FILE SECTION.

000550
000560
000570
000580
000590

WORKING-STORAGE SECTION.
01 REC-ENTRY.

02 DATA-HERE SIZE IS 48 NUMERIC.
01 REC-LAST.

02 MORE-DATA SIZE IS 42 NUMERIC.

The preceding example shows the entries necessary for communication in
the Environment Division and Data Division of two subprograms. The
labeled common area is the same in both since Block 31 was mentioned,
and the size of the 01 records is consistent.

At load time, one labeled common area called C31 (COBOL always prefixes
the integer with the Character C) will be generated. The total size will
be 90 characters. In subprogram MAIN, references to the common area
(C31) will be by the name OTHER-LEVELS and MORE-LEVELS; whereas in
subprogram NEXTPG, references to this same common area (C31) will be by
the name DATA-HERE and MORE-DATA.

Since subprograms MAIN and NEXTPG are compiled separately, the names can
be the same or different. The important concepts to remember from this
example are that only one labeled common area (C31) will be generated
when subprogram MAIN is loaded, and any subsequent subprogram referring
to the identical area (C31) will have its references adjusted to this
area.

When a COBOL program is divided into subprograms, transferring control
during execution from one subprogram to another is done by using the
CALL statement. If a return to the calling subprogram is desired, then
the EXIT statement is used.

The following example shows the basic method of using the CALL and EXIT
statements.

259

Subprogram SNOOPY

00001 010010 IDENTIFICATION DIVISION.
00002 (""l'?l.Tr'\f"'\T"\'T

.:>J.'lVVr.L o

00149 040010 PROCEDURE DIVISION.

00191 041080
00193 041100

ENTER LINKAGE MODE.
CALL CHKSEG

Transfer is to the PROGRAM-ID whose location is
executable statement in the PROCEDURE DIVISION of
CHKSEG.

Subprogram CHKSEG

00001 010010 IDENTIFICATION DIVISION.
00002 010020 PROGRAM-ID. CHKSEG.

00092 040010 PROCEDURE DIVISION.

00104 043120 200-CALL-CK-END.
00105 043150 EXIT.

the first
subprogram

When EXIT is reached, execution returns to the next statement
after CALL CHKSEG in subprogram SNOOPY.

NOTE: This example consists of excerpts taken from the program included
with this appendix.

Transferring control to entries other than the PROGRAM-ID is
accomplished by defining ENTRY POINTS in the program referred to. By
using the ENTRY POINT statement, a SYMDEF is generated making entry
possible at that particular point from any other subprogram.

260

When ENTRY POINT is written in a subprogram to return to the calling
subprogram, the EXIT statement with the name of this ENTRY POINT is
written.

The following illustrates the proper usage of the ENTRY POINT and EXIT.

$ FORTRAN
COMMON/C20/ITABLE(20)

CALL SNOOPY

CALL ENTABC

$ COBOL

The CALLs above are from a FORTRAN
subprogram. They could have been from
a COBOL subprogram which had ENTER
LINKAGE MODE preceding each CALL.

00001 010010 IDENTIFICATION DIVISION.
00002 010020 PROGRAM-ID. SNOOPY.

00150 040022 PROCEDURE DIVISION.

00240 044014
00241 044015
00242 044016

ENTER LINKAGE MODE.
ENTRY POINT ENTABC.

ENTER COBOL.

00349 045261 309-PROGRAM-EXIT.
00350 045262 EXIT ENTABC.
00351 045263 310-SNOOPY-EXIT.
00352 045280 EXIT PROGRAM.

NOTE: This example consists of excerpts taken from the program included
with this appendix.

261

Overlaying Procedure

Tne prugre:w1 .t.::; now chopped in to many subprograrns; each contains the
necessary statements to refer to other subprograms.

To overlay, a few more statements have to be inserted into the
subprograms. These statements are the CALL's to load specific
subprograms from the H* file. In an overlay job, the overlays are not
retained in memory but are stored on a peripheral to be loaded only when
requested by the user. (See GE-600 Line General Loader, CPB-1008 for a
complete explanation of the general overlaying method.)

There are two subroutines in the subroutine library (L*) to load the
overlays. They are LINK and LLINK. When overlaying a program, the CALL
LLINK loads the overlay and returns control to the statement following
the CALL. The CALL LINK loads the overlay and returns control to the
overlay. It is not possible to return to the statement following the
CALL LINK after executing the overlay. Use the CALL LLINIZ so that you
can retain control in a situation where a main subprogram will control
transfer to an overlay brought into memory.

The following example illustrates the procedure to follow when
overlaying a COBOL program. In the example, the subprogram SNOOPY
resides in memory the duration of the execution, and subprograms CHKSEG,
SAVSEG, and LOASEG are loaded into memory by the CALL LLINK statements
located in SNOOPY.

26 2

$ SNUMB 12345
$ IDENT HA963,ERICKSON
$ COBOL
00001 010010 IDENTIFICATION DIVISION.
00002 010020 PROGRAM-ID. SNOOPY.

00033 020010 DATA DIVISION.

00052 020300 WORKING-STORAGE SECTION.
00054 020310 77 SEG-1 PICTURE x (6)
00055 020320 77 SEG-2 PICTURE X(6)
00056 020330 77 SEG-3 PICTURE x (6)

00149 040010 PROCEDURE DIVISION.

00191 041080 ENTER LINKAGE MODE.

VALUE
VALUE
VALUE

00192 041090 CALL LLINK USING SEG-1
00193 041100 CALL CHKSEG

00199 0 41160 ENTER LINKAGE MODE.
00200 0 41170 CALL LLINK USING SEG-3
00201 041180 CALL LOASEG

00207 042030 ENTER LINKAGE MODE.
00208 042040 CALL LLINK USING SEG-2
00209 042050 CALL SAVSEG

$ LINK LINKAA
$ COBOL
00001 010010 IDENTIFICATION DIVISION.
00002 010020 PROGRAM-ID. CHKSEG.

00092 040010 PROCEDURE DIVISION.

00104 043120 200-CALL-CK-END.
00105 043150 EXIT.

IS "LINKAA".
IS "LINKBB".
IS "LINKCC".

263

$ LINK LINKBB,LINKAA
$ COBOL
00001 010010 IDENTIFICATION DIVISION.
00002 010020 PROGRAM-ID. SAVSEG.

00091 040010 PROCEDURE DIVISION.

00103 043200 200-CALL-SA-END.
00104 043230 EXIT.

$ LINK LINKCC,LINKBB
$ COBOL
00001 010010 IDENTIFICATION DIVISION.
00002 010020 PROGRAM-ID. LOASEG.

00091 040010 PROCEDURE DIVISION.

00103 043160 200-CALL-LO-END.
00104 043190 EXIT.

NOTE: This example consists of excerpts taken from the program included
with this appendix.

USING 1-D-S WITH A COBOL OVERLAYED PROGRAM

Since the I-D-S statements are coded within the COBOL subprograms, there
are certain procedures that must be considered.

A Communications Control Block (CCBLOC) must be established in a labeled
common area. Normally, the CCBLOC is located in the COBOL program and
the remaining structure is located in a labeled common area (.IDS ...).
When a program is divided into suLprograms, each subprogram must be able
to examine the CCBLOC. If it is isolated in the first subprogram loaded,
then the remaining subprograms loaded will not be able to communicate
with the CCBLOC.

26 4

To establish the CCBLOC in a labeled common area, write the following
coding:

00014 010060 ENVIRONMENT DIVISION.

00018 010091 SPECIAL-NAME.
00023 010096 BLOCK nn is CCBLOXK.

(nn is a 1 or 2 digit integer).

This is essentially the most important feature to realize when
overlaying a COBOL/I-D-S program.

Another method to consider is placing the structure in a different
labeled common area other than the .IDS •• area. Since the program is
segmented, it is now possible to execute more than one I-D-S file. In
this situation the first file must be closed before the second can be
opened and executed. In other words, only one file can be in the open
mode. The reason for this is that the page buffers for a file must be
flushed before executing another file.

FORTRAN - INTERFACING WITH COBOL AND 1-D-S

A FORTRAN program can easily communicate with the COBOL/I-D-S
The knowledge that a FORTRAN user needs of COBOL is minimal,
FORTRAN user would like to utilize the I-D-S features, again
coding required and understanding can be minimal.

How to Communicate Between Compilers

Reiterating what was mentioned regarding COBOL segmentation--

software.
and if a
the COBOL

1. Labeled common areas generated by the COBOL compiler are a one
or two integer number always prefixed by the Letter c.

2. Entries into the Procedure Division can be made by referring to
the PROGRAM-ID or ENTRY POINT name.

3. Return to the calling program is via the terminal EXIT
statement of the EXIT name statement.

With these facts about the COBOL compiler, a FORTRAN user can create a
program using these two together.

265

The FORTRAN subprogram contains lal.>eled common areas corresponding to
the COBOL areas. Variables and/or constants stored in these areas should
have the same classification. That is, if a variable has been defined as
floating point in one subprogram, it is defined as floating point in the
other. Illustration of the above statements is depicted in the following
examples with the addition of I-D-S.

$ SNUMB 24788
$ IDENT HA963,ERICKSON
$ OPTION FORTRAN
$ FORTRAN

SUBROUTINE GENO
COMMON/C35/IDATA,FLTNUM,IADD,

CALL MAINPG

CALL SECPRG

END
$ ENTRY GENO
$ USE .QMAX/l/, .QAREA/2000/, .QMIN/l/
$ IDS
000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. MAINPG.

020010 ENVIRONMENT DIVISION.
020020 SPECIAL-NAMES.
020030 BLOCK 20 IS CCBLOXK.
020040 BLOCK 35 IS ENTRY-REC THRU LAST-REC.

IDS SECTION 030100
030101
030102
030103 01
030104
03010 5
030106

MD IDS-PORTION PAGE CONTAINS 1920 CHARACTERS
FILE CONTAINS 1000 PAGES.
ENTRY-REC -----------
02 DATA-HERE SIZE IS 9(6) COMPUTATIONAL-3.
02 MORE-DATA SIZE IS 9(8) COMPUTATIONAL-2.
02 ADD-!-10RE-DATA SIZE IS 9(6) COMPUTATIONAL-3.

030115 01 INNER-RECORDS ------------

030130 01 LAST-REC ------------
02 THATS-ALL SIZE IS 9(7) COMPUTATIONAL-2.

266

040010 PROCEDURE DIVISION.

040200
040201
040202
040203
040204
040205
040206
040207
040208
040209
$
$
$
IDS

$

GO TO MAIN-EXIT.
ENTER LINKAGE MODE.

ENTRY POINT SECPRG.
ENTER IDS.

RETRIEVE
BACK-TO-FORT.

EXIT SECPRG.
MAIN-EXIT.

EXIT.
END PROGRAM.

EXECUTE

ENTRY-REC.

DISC
DATA
CREATE
ETC
ENDJOB

DF,X2R,2R
.Q
FILECODE/DF/,BASESIZE/1000/,RANGE/1,1000/,
PAGESIZE/320/

The contents of the labeled common area, C35, actually contain the I-D-S
working storage area for all 02 levels beginning at record ENTRY-REC
through record LAST-REC. Thus the equivalent values in C35 are the
following:

FORTRAN

IDATA
FLTNUM
IADD

COBOL

DATA-HERE
MORE-DATE
ADD-MORE-DATE

Consideration When Mixing Software

TYPE

Fixed Point Integer
Floating Point
Fixed Point Integer

The 01 levels are always begun at an even memory location. Problems
could occur when trying to pass information between COBOL and FORTRAN in
the labeled common areas. To avoid this, check the labeled common size
generated from the COBOL compiler and adjust the FORTRAN subprogram so
that the correct data will be examined.

FORTRAN programs, at execution time, have file control blocks and
buffers generated by the loader in the unused portion of slave memory.
I-D-S checks word 37 (octal) of the slave prefix area to determine the
size of unused memory and establishes as many page buffers as possible
in this area. So now there is a major conflict of interest. Solution: At
load time, create a labeled common area for the page buffers and other
I-D-S control tables by inserting a $ USE control card. Now the FORTRAN
I/O routines can use unused slave memory without conflict.

26 7

N
O'I
CXl

n 16226 ENTERED '19609 AT e0,024 FROM CO RDR

0001 s SNUMB 86226
0002 I I DENT HA96.51RUDOLPH
0003 s PROGRAM QUTU INITlALlZE TEMPORARY DATA BASE
OOO• I LIMITS 124K CORe REQUIREMENTS Of QUTU
OOOf s DISC Al,XlS,9R TEMPORARY MASS STORAGE FILE
000• s DATA • Q TEMPORARY l~D·S DATA f ILE fOR D!RBCT!VEI
0007 I DAU I• DAlA STORAGE FILE
0009 I OPqON FORTRAN
0009 s USE ,QMAXlll,,QAREA/1,771,,QMtN/i/
0010 I OBJECT f10j661D2057000000000
0012 I OBJECT SDL·2•CHG00 110,598020570SNOOPY00
0014 L lNK LI NKAA
0015 OBJECT SDL•2•CHGOO 114;8o5020570CHKSEGOO
0017 I. INK LINKBB1LINKAA
0019 OBJECT SOL .. 2·CHGOO 110:61102057CSAVSEGOO
0020 I.INK LINKCC.LINK8B
0021 OBJECT SDL-2-CHGOO I10:619020570L0ASEGOO
0023 EXECUTE
002• 1.IMI TS 125K INCREASE STORAGE SIZE
0025 DlSC H•,X2S,8R
0026 DlSC H,X1S,9R TEMPORARY MASS STORAGE FILE
0027 DAU • Q TEMPORARY I·O·S DATA FILE fOR OlRICTlVES
0021 SYSOUT PR ASSIGN PRINTER TO OUTPUT MEDIA CO~VERSlON
0029 DA TA CR TEMPORARY flLE FOR CARD INPUT
0030 ENDJ08

TOTAL CARD COUNT THI~ JOB = 000160

• BEGIN ACTIVITY -01- QUTU 02/06/70 SW•OlOOOOOOOOOO
* NORMAL. TEAHlN•TION AT 00~710 lNDICATO~S 5020

START ~,026 l.1 NES 20 PROC o,o~o! 110 otooo IU 13 MEMORY
STOP • 027 l. l MIT ,000 LIMIT 0 1 0 0 LlMlT cu 13 M•T

L.APSE 0,001 fC 0 TYPE BUSY IP/AT FP/RT lS/#C fl/#E ADDRESS L#/T#

,Q R MASS • 1' 0 0 1 l 0·01 .. 01 902
l• R MASS • ,, 0 0 1 1 0-01 .. 01 902
Al S MASS 701 0 0 9 9R 0-01-01 904

LIST ao LINES

• IEQlN ACTIVITY ·02· GE;LOAO 02106170 SW•OOOOOOOOOODO
• NORMAL TiRMlN•TION AT 046770 INDICATORS 1000

START 0.027 l.INES 543 PRoc 0,0019 l/0 0:003 !U 13 MEMORY
STOP 0.033 l. IM IT 5000 Ll"llT 0,0500 LIM! T cu 13 M•T

L.APSE 0,006 fC 0 TYPE BUSY IF'/AT FP'IRT IS/#C: F!/#E ADDRESS L#/T#

T > 0 MASS 119 0 0 9 9R 0-01 .. 01 904
,Q R MASS • 38 0 0 1 1 0-01 .. 01 903
CR R MASS • '40 0 0 1 1 0·01•01 903
R• R MASS * ~80 0 0 12 12 0-01-01 902
H• D MASS 2694 0 0 8 8R 0.01-01 913
L• R MASS '4731 0 0 25 25R 0-01 .. 01 325

261(
~3

27K
761

N
O"\
\.0

85091 01 02-05-70 14. 810

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

•

COMMON/C20/ITABLE<24)/C21/IC1<1ILO•ISA

CALL SNOOPY

CALL. ENTABC

!ToTcICK•ILO•!SA
PRINT 11, ICK

11 FORMAT<42H NU~BER OF CHECKING ACCOUNT RE~O•DS READ a 1 l6>
PRINT 121 IL.0

12 FORMAT<JOH NUMBER OF LOAN RECORDS READ ::16>
PRINT 13, ISA.

13 FORMAT<40H NUMBER OF SAVING ACCOUNT RECO~DS READ a,!6l
PRINT 15, !TOT

15 FORMAT<31H TOTAL NUMIER OF R6CORDS READ ••16)
STOP
END

2

J

• 7
7

10
10
13
13
16
16
17

23260 WORDS OF MEMORY USED BY THIS COMPILATION

NOTE: This is a FORTRAN program that was compiled illustrating just a
labeled common area (C20) and two CALL statements which reference
COBOL programs.

N
......i
0

85091 01 02-05-70

PREFACE

PROGRAM Bli!EAK
COMMON LENGTH
V COUNT BITS

PRIMARY SYMDEF

..... '
SECONDARY SYMOEF

Bl.OCK

C20
C21

SYMREF

ENTABC
4 .FCNV.
5 • F ElC IT
6 • FF 1 L •
7 .FPRN,

10 SN00"Y

14. 811

132
0
5

ENTRY

ENTRY

LENGTH

30
3

END OF BINARY CARO 00000006
132 lS THE NEXT AVAILABLE LOCATION, GMAP AID 051169

THERE WERE NO WARNING FLAGS IN THE ABOVE ASSEMBLY
•• 18715 WORDS OF MEMORY WERE USED BY GMAP FOR THIS ASSiMWLY.

t\.)

-i
1--'

86222 01 02-05-70 14,799 GE600 INTEGRATED STORE TRANSLATOR ISDL-2 CHGOO

IDS ALTER NOS,

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
000'41
00042
00043
00044
00045
00046
00047
00048
00049
00050

010010
010020
010030
010040
010050
010051
010052
010053
010054
010055
010056
010057
010058
010060
010070
010080
010090
010091
010092
010093•
010094•

010095
010096
010200
010210
010215
010220
010225•
010230
010240
010245
010250
020010
020020
020021
020022
020023
020024
020030
020040
020050
020060
020070
020080
020090
020200
020210
020220
020230

IDENTIFICATION DIVISION,
PROGRAM·!D. SNOOPY,
AUTHOR, GEORGE A RUDOLPH.
DATE•WRITTEN, MAY 1969,
INSTALLATION, G E • PHOENIX;
REMARKS, THIS PROGRAM LOADS DATA FROM TH6 CAQO READER

ONTO A TEMPORARY DISC FILE
DEPENDING ON THE ACCOUNT TYPE RoU;lNES ARE
CALLED TO STORE THE DATA

WHEN ALL Of THE RECORDS HAVE ~E&N
STORED ON THE DATA BASE TMEV •Rt
RETRIEVED AND PRINTED ON A co~T-OL
REPORT.

ENVIRONMENT OlVISION,
CONFIGURATION SECTION,
SOURCE-COMPUTER, GE-635,
OBJECT-COMPUTER. GE•635.
SF'ECIAL·NAMES.

GETIME IS TODAYS-DATE,
DEFINES A LABLED COMMON AREA roR THE IOI nO~MUNlCATlON
CONTROL BLOCK ANO RECORD DEFINATIONS FOR •EGMSNTATION
BLOCK 21 IS NUCK THRU NUSA.
BLOCK 10 IS CCBLOXK,
BLOCK 20 IS ENTRY-REC THRU LOAN-qEc.

lNPuT·OUTPUT SECTION,
f'ILE•CONTRQL,

SELECT PRINT•UNIT ASSIGN TO PR FOR LISTfNn,
SELECT CARD-READER ASSIGN TO CR f'OR CARDS.
ASSIGN IDS FILE NAME AND DEVICE
SELECT IDS TEST•FlLE ASSIGN TO Tf',

l·O-CONTRQL,
APPLY SYSTEM STANDARD ~OR~AT ON ,RINT•UNI?,
APPLY SYSTEM STANDARD roR~AT ON CARD-~EAOPR,

PATA DIVISION.
rtLE SECTION,
FD PRINT-UNIT

LABEL RECORDS ARE STANDARD
DATA RECORD IS PRINT•LINE.

01 PRINT-LINE PICTURE X<l321.
f'D CARD•READE!R

LA86L RECORDS ARE STANDARD
DATA RECORD IS CARD•IN.

01 CARD-IN.
02 ACCT-TYF'E

88 LOAN·ACCT
88 SAVE•ACCT
88 CHECK-ACCT

02 cuST-NO-IN
02 ACCT•NQ-IN
02 CUST·NAME•lN

PICTURE
VALUE "LO"·
VALUE "SA"•
VALUE "C1< 11 ,

PICTURE
PICTURE
PICTURE

xx.

9 (6,.
9 (6,'
X<26).

N
-...J
N

86222 01 02-05-70

IDS AL.TER NOS,

14,799 GE600 INTEGRATED STORE TRANSLATO~

020240 02 AMOU~T-IN
o2o25o 02 FILLER
o2o3oo WORKlNG•STORAQE SECTION,

PICTURE 9c10Jv99.
PICTURE xc31).

020305• CODING TO DFFINE THE LINKAGE FOR SEGMENTA1InN
"LINKA4".
"LINKBB".
"LI Nl<CC".

020310 77 SEG•l PICTURE X(6! VALUE IS
o2o32o 77 SEG-2 PICTURE X(6) VALUE IS
020330 77 SEG-3 PICTURE X(6) VALUE IS

77 NUCK PICTIJRE 9(6! C0Mlil•1.
77 NUL.0 PICTURE 9(6) COMfil-1,
77 NUSA PICTURE 9(6) COMP•l.
01 WORK-LINE.

02 HEAD-ONE.
03 FIL.LER
03 TITLE·l
o3 F'IL.LER

PICTURE X<41l.
PICTURE Xc49J.
PICTURE X<4~).

02 HEAO•TWO REDEr!NES
03 F'lL.LER

HEAD-ONE.

03 MONTH-P
03 DASH·l
03 DAY·P
03 OASH-2
03 YEAR-?
03 FlL.LER

02 HEAD•THREE REDEF'l~ES
03 FIL.LER
03 TI TLE-10
03 FILLER
03 TITLE-20
o3 FIL.LER
03 TITLE-30
o3 FILLER
03 TtTLE-40
03 F'IL.LER

02 OETAll.·LINE REDEFINES
03 FILLER
03 CUST•NO•P
03 FILLER
o3 TVPE·P
03 FILLER

PICTURE
P!CTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

MEAD•Two.

x (62).
Z9.
x.
z9,
x.
99.
x (62).

PICTURE X<24l.
PICTURE X<l'>·
PICTURE X<81,
PICTURE xc15i.
PICTURE Xt81,
PICTURE X<lOl.
PICTURE X<14>.
PICTURE X<61,
PICTURE xc32).

HEAD·T~REE,
PICTURE Xc28).
PICTURE 9161.
PICTURE Xc16l~
PICTURE X<81.
PICTURE X<14).
PICTURE 9c61,
PICTURE xc91.

ISDL.•2 CHGOO

00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00071
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00091
00098
00099
00100

020340
020350
020360
020370
020J80
020390
020400
020410
020420
020430
020440
020450
020460
o2o47o
020480
o2o49o
020500
o2o5to
020520
020530
o2o54o
020550
o2o56o
020570
020580
020590
020600
020610
020620
o2o63o
o2o64o
o2o65o
020660
020670
020680
020690
020700
020710
020720
020730 01

o3 ACCT-NO•P
o3 F'IL.LER
03 A"'OUNT•fil
03 FILLER

PICTURE z,zzz:zzz,zzz,99-,
PICTURE XC2S).

01 OATE·AND·T!ME,
02 MONTH
02 OAY
02 YEA?
02 TIME

USAGE IS
OISPL.AY·FIELD

PICTURE 99.
PICTURE 99,
PICTURE 99,
PICTURE 9C8)

COMPUTATIONAL-lo
PICTURi 9<8),

N
-...]

w

86222 01 02-05-70 14,799 GE600 INTEGRATED STORE TRANSLATOR ISDL•2 CHGOO

IDS ALTER NOS,

00101 030010 105 SECTION,

00102 030020 MD
00103 030030
00104 030040
00105 030050 01
00106 030060
00107 030070
00108 030080
00109 030090
00110 030200
00111 030210
00112 030230
00113 030240
00114 030250 01
00115 030260
00116 030270
00117 030290
0011s o3o3oo
00119 031010
00120 031020
00121 031030
00122 031040
00123 031050
00124 031060
00125 031070
00126 031080
00127 031090
00128 031200
00129 031210 01
00130 031220
00131 031230
OOL32 031250
00133 031260
00134 031270
00135 031280
00136 031290
00137 032010 01

01 CCBLOXK I

02 OIRECT-REfERENCE SIZE IS 8 USAGE IS OOMPUTATlONAL-1
SYNCHRONl!ED RIGHT,
02 FlRST·RErERENCS SIZE IS 8 USAGE IS COMPUTATIONAL•l
SYNCHRONIZED RIGHT.
02 LAST•REfERENCE SIZE IS 8 USAGE IS COMP1tTATlONAL·l
SYNCHRONIZED RIGHT.
02 RECORO-TYPi SIZE IS • USAGE IS COMPUTAflONAL•l
SYNCHRONIZED RIGHT.
02 REC-f1LE SIZE IS 6 CLASS IS ALPHANUMiRTC
VALUE IS "000aT'"·
02 ERROR·RErERENCE S!?E IS 3 CLASS IS ALPWAMUMERIC
SYNCHRONIZED RIGHT,
TEST•FILE
PAGE CONTAINS 1920 CHARACTERS
fILE CONTAINS 100 PAGES;
ENT~Y-REC
TYPE IS 010
RETRIEVAL VIA CALC CHAIN
PAGE-RANGE IS 1 TO 1,
02 ENTRY-FIELD PICTURE 9t6),
98 CALC CHAIN DETAIL

RANDOMIZE ON ENTRV·FIELD,
98 CUST-NO•CMN CHAIN MASTER

CHAIN•OROIR IS SORTED,
CUST•NO•REC
TYPE IS 020
RETRIEVAL VIA cusT-NO•CHN CHAIN.
02 CUST·NO-DSU PICTURE 9161.
02 CUST·NAME·OSU PICTURE X<26>.
98 CUST·NO·CMN CHAIN DETAIL

DUPLICATES NOT ALLOWED
ASCENDING KEY IS CUST•NO·DSU
SELECT CURRENT MASTER,

98 CHECK-CHN CHAIN MASTER
CHAIN•OROER IS FIRST.

98 SAVE-CHN CHAIN MASTER
CHAIN·OROER IS FIRST·

98 LOAN-CHN CHAIN MASTER
CHAIN-ORDER IS FIRST.

CHECK-REC
TYPE IS 021
RETRIEVAL VIA CHECK•CMN CHAIN,
02 CUST-NO•CK PICTURE 9<6),
02 ACCT-NO-CK PICTURE 9(6),
02 AMOUNT-CK PICTURE S9<101V99,
98 C~ECK·CHN CHAIN DETAIL

SELECT r.uRRENT MASTER,
SAVE-REC

N
-....J
.i:::.

86222 01 02-05-70 14,799 GE600 INTEGRATED s:oRE TRANSLATOR

IDS ALTER NOS,

00138
00139
00140
001 41
001 4 ~
00143
00144
00145
0014t
00147
00148
00149
0015c
00151
00152
00153
00154
0015?
00156
00157
00158
00159
00160
00161
00162
00163
00164
0016?
00166
00t61
00168
0016'i
00170
00171
00172
0017J
00174
0 017':>
00176
0017/
00178
00179
00180
00181
00182
00183
00184
0 018'?
00186
00187

032020
032030
032050
032060
o32o7o
032080
032210
032220
032230
032240
032260
032270
032280
032290
032320
040010
040022
040023
040024
040025
040030•
040040
041)050
040055
040057•
040060
040070
040080
040081
040082
040083
0400A4
040090
040100
040110
040120
040130
G4Cl40
040150
040160
040170
040180
040190
040200
04f'210
040220
040230
040240
040250
041010

TYPE IS 022
RETRIEVAL VIA ~AVE-CH~ CHAIN,
02 CUST-NQ-SA PIC~URE 9(6).
o2 ACCT-NO-SA PIC-uRE 9161.
o2 AMOUNT-SA P!C~URE S9c101v99,
98 SAVE-CH~ C~AIN DETAIL

SELECT CUR~ENT MASTER,
01 LOAN-REC

TYPE IS 023
RETRIEVAL VIA LCAN-CH~ CHAIN,
02 CUST-NO-LO PIC~URE 9c61.
02 ACCT-NO-LO PICTURE 9c61,
02 AMOUNT-LO PICTURE S9c~oiv99.
98 LOAN-C~~ C~AIN DETAIL -

SELECT ruRRENT MASTER.
PROCEDURE DIVISION,
010-START.

ACCEPT DATE-AND~TIME >ROM TODAYS-DATE.
OPEN INPUT CAR~-READER

OUTPIJT PRINT-UNIT,
OPEN IDS DATA dASE
ENTER l DS,

OPEN,
MOVE 000001 TO ENTPY->IELC.
CREATE ENTRY RECORU
ENTER IDS•

ST ORE E ~ITRY-REC
IF ERRQP G2 TO 100-R~T-MST-~~TRY-~RR,

ENTER IDS.
DEEluG CURRE\IT buFFF:R

"ECORD
CCFlL.OC.

020-READ-CARDS,
REAU CARD-READER AT E~D GO TO 310-SNOOPY-~X!T.
IF LOAN-ACCT OR SAVE-ACCT OR CHECK-ACCT

GO TO 030-PRQC~SS-CARC.
DISPLAY "!~VALID CARD CODE".
DISPL.AY CAFir-l:\,
GO TO 020-R~AD-CARuS.

030-PRCCEss-CARn.
ENTER I OS,

RETR!EV~ E~TRY-REC RECORD
IF ERROR GO TO 100-RET-MST-F:NTRY-ERR.

040-RE1-CUST-RE~.
ENTt:R IDS.

RETRIEVF NEXT RECORD or CUS7-NO-C~N CwA!N
IF ERROR GC TO 110-RET-MST-~RR ELSE
IF ENTRY-REC RECO~D GO TO Oc0-STORE•~QT-REC
i::LSE MOVE.

IF CUST•NO-JN IS EQtJAL TO CUST- ,Q-DSU

ISDL·2 CHGGO

N
-...]

Ul

86222 01 02-05-70 14. 799 GE600 INTEGRATED STORE TRANSLATOR

IDS ALTER "<OS,

00188
00169
00190
00191
00192
00193
00194
00195
00196
00197
00196
00199
00200
00201
00202
00203
00204
00205
00206
00207
00206
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
002.30
00231
00232
00233
00234
00235
00236
00237

041020
041030
041040
041050
041060

041065•
041070•
041080
041090
041100
041110
041130
041140

040045•
040050•
041160
041170
041180
041190
041210
042010

GO TO 050-STORE•DETAIL.
GO TO 040"RET•CUST-REC,

050-STORE·DETAIL•
IF LOAN•ACCT GO TO 060•STORE-LOAN.
lF SAVE•ACCT GO TO 070-STORE•SAVE,
ADD 1 TO NUCK,
CALL CHECKl~G SEGMENT

CREATES AND STORES CHECK•REC RECORD
ENTER LINKAGE MOOE.

CALL LLINK USING SEG-1
CALL CHKSEG

ENTER COBOL.
GO TO 020-READ•CAROS.

060-STORE•LOAN,
ADD 1 TO NULO·
CALL LOAN SEGMENT

CREATES AND STORES LOAN-REC RECORD
ENTER LINKAGE MOOE.

CALL LLINK USING SEG-3
CALL LOASEG

ENTER COBOL,
GO TO 020-READ•CARDS,

070~STORE•SAVE,
ADO 1 TO NUSA.

042015• CALL SAVING SEGMENT
042020• CREATES ANO STORES SAV-REO RECORD
042030 ENTER LINKAGE MOOE.
042040 CALL LLINK USING SEG-2
042050 CALL SAVSEG
042060 ENTER COBOL.
042080 GO TO 020-READ•CARDS,
042090 080-STORE-MST-REC.
042091• CREATE AND STORE CUSTOMER NUMBER RECORD
042100 MOVE CUST-N0-1~ TO CUST-Na-osu.
042110 MOV6 CUST-NAME•IN TO CUST-NAM&-osu.
042120 ENTER IDS,
042130 STORE CUST•NO·REC
042140 lr ERROR GO TO 150-STORE-cus~-REC-E~R.
042141 ENTSR IDS.
042142 DEBUG CURRENT BUFPER
0421~3 RECORD
042143 ccs~oc.
042150 GO TO 050-STORE•DETAIL.
043010 100-RET-MST~ENTRY-ERR,
043020 DISPLAY "RETRIEVE ERROR"·
043030 DISPLAY "PILE ENTRY RECORD"·
043040 Go TO 300-~RAP•UP,
043050 110-RET-MST·ERR,
043060 DISPLAY "RETRIEVE ERROR".
043070 DISPLAY "CUSTOMER RECORD",

tSDL-2 C~GDO

N
--..I
Q"\

86222 01 02-05-70 14.799 GE600 INTEGRATED STORE TRANSLATOR ISDL•2 CHGOO

IDS ALTER NOS,

00236
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287

043080
043210
043220
043230
043240
043241•
043242•
043243•
043244•

GO TO 040•RET·CUST-REC,
1so~sTORE-CUST-REC•ERR.

DISPLAY "STORE ERROR",
DIS9LAY "CUSTOMER RECORD".
GO TO 020•READ~CARDS.

THIS IS THE ENTRY PRotNT ~oUTINE THAT
IS CALLED av THE roRTRAN PROGRAM

044014 ENTER LINKA~E MODE.
044015 ENTRY POINT ENTABC,
044016 ENTER COBOL.
044020 MOVE SPACES TO WORK•L!NE.
044030 WRITE PRINT-LIN& rROM WORK-LINE
044040 BEFORE ADVANCING TO TOP or PAGE.
044045• SET UP ANO ~RINT REPORT HEADINGS
044050 MOVE "CUSTOMER NUMBERS ANO ACCOUNTS STOREn ON DATA FILE"
044060 TO TITLE•1,
044070 WRITE PRINT-LINE rROM WORK-LINE BEFORE AOvANCING 2 LINiS 1

044080 MOVE SPACES TO WORK•LINE.
044090 MOVE MONTM TO MONTH-P,
044100 MOVE DAY TO OAY•P,
044110 MOVE YEAR TO YEAR•P,
044130 MOVi "·" TO DASM·1· DASH·2·
044140 WRITE PRINT•LIN& rROM WORK-LINE BEFORE ADVANCING 2 LIN&S,
044150 MOVE SPAC8S TO WORK•LINE.
044160 MOVE "CUSTOMER NUMBER" TO TJTLE·lO.
044170 MOVE "TYPE or ACCOUNT" TO TlTLE-20.
044180 MOVE "ACCOUNT NO" TO TITLE-30,
044190 MOVE "AMOUNT" TO TITLE~40,
044200 WRITE PRINT•LINE rROM WORK-LINE BEFORE ADVANCING 2 LINES,
044210 MOVE SPACES TO WORK•LINE.
044220 MOVE 000001 TO iNTRY-rIELD.
044230 ENTER IDS,
044240 RETRIEVF ENTRY-REC RECORD
044250 IF ERROR GO TO 209•RET-ENT-ERR,
044260 201•GET·CUST·CHN,
044270 WRITE PRINT-LINE rRCM WORK-LINE BEfORE ADVANCING 1 LINES,
044275• RETRIEVE AND ~RlNT CUSTOMER NUMBE~ RECo~o·
044280 ENTER IDS,
044290 RETRIEVE NEXT RECORD OF CUST•NO-CHN CwAIN
044300 lF ERROR GO TO 210•RET-CUST-ERR ELSE
044310 1r ENTRY-REC RECORD Go TO 206-CREAT·EAR~R
0~4320 ELSE MOVE.
04~330 MOVE CUST-NO·DSU TO CUST-NO·P,
044340 203-GET·CHECK•REC,
044345• RETRIEVE ANO PRINT DETAIL RECORDS OF CH,Cw·CHN CHAIN
044350 ENTER IDS.
044360 RETRIEVE NEXT RECORD aF CMECK•CHN CMATN
044370 Ir ERROR GO TO 211~RET-CK•ERR ELSE

N
-......)

-......)

86222 01 02-05-70 14,799 GE600 INTEGRATED STORE TRANSLATOR

IDS ALTER NOS,

00288 044380 tr CUST-NO•REC RECORD GO TO 204-GET-S&Vl-REC
00289 044390 ELSE MOVE•
00290 044400 MOVE "CHECKING" TO TYPE•P,
00291 044410 HOVE ACCT-NO-CK TO ACCT•NQ-P,
00292 044420 MOVE AMOUNT-CK TO AMOUNT·P·

ISDL•2 CHGOO

00293 044430 WRITE PRINT-LINE rROM WORK-LINE eeroRE 4DVANCING 1 LINES,
00294 044440 HOVE SPACES TO WORK-LINE.
00295 044450 GO TO 203•GET•CMECK•REC~
00296 044460 204~GET•SAVE-REC,
00297 044465• RETRIEVE AND 'RINT DETAIL RECORDS or SAVE;C~N CHAIN
00298 044470 ENTER IDS.
00299 044480 RETRIEVE NEXT RECORD or SAVE-CHN CH41~
00300 044490 Ir ERROR GO TO 212•RET-SA•iRR ELSi
00301 044500 tr CUST•NO•AEC RECORD GO TO 205-G&T•L~AN•REC
00302 044510 ELSE MOVE,
00303 044520 MOVE "SAVINGS " TO TYPE-P,
00304 044530 HOVE ACCT·NO·SA TO ACCT·NQ-P,
00305 044540 HOVE AHOUNTPS4 TO AMOUNT-P·
00306 044550 WRITE PRINT-LINE rROH WORK-LIN& eEroRE 4DVANCING 1 LINES,
00307 044560 HOVE SPACES TO WORK•LINE·
00308 044570 GO TO 204•GET•SAVE-REC1
00309 044580 205~GET-LOAN-REC,
00310 044585• RET~IEVE AND PRINT DETAIL RECORDS or L04N-CWN CHAIN
00311 044590 ENTER IDS·
00312 044600 RETRIEVE NEXT RECORD or LOAN•CHN CH4I~
00313 044610 1r ERRoq GO TO 213•RET-LO-ERA ELS&
00314 044620 tr CUST-NO•REC RECORD GO TO 201-GET.C~ST-CMN
00315 044630 ELSE MOVE.
00316 044640 HOVE "LOAN " TO TYPE•P,
00317 044660 HOVE ACCT•NO-LO TO ACCT•NQ-P,
00318 044670 HOVE AMOUNT-LO TO AMOUNT-~.
00319 044680 WRlTE PRINT-LINE rROM WORK-LINE BEroRE 4011ANCING 1 LINES,
00320 044690 MOVE SPACES TO WORK•LINE.
00321 044700 GO TO 205•GET-LOAN-REC,
00322 044710 206-CREAT-ERROR,
00323 044720 WRlTE PRINT-LINE rROH WORK-LINE BEFORE
00324 044730 ADVANCING TO TOP O~ PAGE,
00325 044820 ENTER IDS.
00326 044830 DEBUG CURRENT aurrER
00327 044840 RECORD
00328 044850 CCBLOC
00329 044855 TRACE CUST•NO·CHN CHAIN·
00330 044870 GO TO 300-WRAP•UP,
00331 044920 209-RET-ENT•ERR,
00332 044930 DISPLAY "RETRIEVE ERROR",
00333 044940 DISPLAY "rILE ENTRY RECORD"·
00334 044950 GO TO 300-WRAP•UP•
00335 044960 210-RET•CUST·ERR,
00336 044970 DISPLAY "RETRIEVE ERROR",
00337 044980 DISPLAY "CUSTOMER RECORD",

N
-..J
(()

86222 01 02-05-70

IDS ALTER NOS1

14,799 GE600 INTEGRATED STORE TRANSLATOR

OOJ38
00339
003'40
00341
OOJ42
OOJ43
OOJ44
OOJ45
OOJ46
OOJ47
OOJ48
OOJ49
OOJ50
OOJ51
OOJ52
00353
OOJ54
OOJ55
00356
00357
00358
OOJ59

044990
045100
045110
045120
0451JO
045140
045150
045160
045170
045180
045190
045200
045210
045220
045240
045245•
045250
045260
045261
045262
045270
045280

GO TO 201•GET·CUST-CH~.
211-RET-CK-ERR,

DISPLAY "RETRIEVE ERROR",
DISPLAY "CHECK RECORD",
GO TO 20J•GET•CHECK•R!C;

212-RET-SA-ERR,
DISPLAY "RETRIEVE ERROR".
DISPLAY "SAVING RECORD";
GO TO 204•GET·SAVE-REC•

iU3~RET-LO-ERR I
DISPLAY "RETRIEVE ERROR",
DISPLAY "LOAN RECORD",
GO TO 205•GET•LOAN-REC,

JOO .. MRAP•UP·
CL.CSE CARD-READER, PRINT•UNIT,
CLOSE IDS DATA BASE
ENTER I OS,

CLOSE.
J09-PROQRAM•EX!T,

EX IT EN TA BC I

310.,SNOOPY·EXlT.
EXIT PROGRAM,

IDS-STRUCTURE SECTION,
ENTER Gf•WI I

PMC ON
BLOCK I IDS"

RD0641 ,QRD 02J.0000JJ,o,o.o.oooooo.
ETC RD0641,RD0645.RC0643,QOOO,RD6a7~,
ETC 000000,000000+LOAN•REC

RD0645 ,QDD 023,10,0,0,1.1.
ETC 1·RD0641,RD0641,RD4609,R04609 1Rn0645,
ETC 002910000100001
ETC LOAN•CHN

RDD64J ,;re o.o.000011.0006,FC4610·RD0644,
ETC R0064J,RD4610•
ETC ACCT•NO•LO

RD0644 ,lfD J,o.000011,0012,FC62091R00642,
ETC RD0644,RD6209+
ETC AMOUNT-LO

RD0642 ,1ro o.o.ooooo5,0006,Fc1153,R006•1,
ETC RD0642,RD11'3•
ETC CUST•NO•LO

RD6273 ,QRD 022.ooooJJ,o,o.o.uoooao.
ETC R06273,RD62?7~RD6275,0000,RD166~,
ETC 000000.ooooookSAVE-REC

RD6277 ,QDD 022.10,0,0,1,1.
ETC 11R0627J,RD6273,RD5889,R05889,R"6277,
ETC 002910000100001
ETC SAVE•CHN

RD6275 ,1;D o.o.000011.0006,FC77451R06276,

ISDL•2 CMGOO

N
~
l..O

86226 01 02-05-70 14.791 QE600 INTEGRATED STORE TRANSlATOR ISDL .. 2 CHGOO

IDS ALTER NOS,

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039

010010
010020
010030
010040
010050
010051
010052
010053
010060
010070
010080
010090
010091
010092
010095
010096
010200
010210
010220
010230
010240
010250
020010
020020
020030
020040
020050
020060
020070
020080
020090
020200
020210
020220
020230
o2o24o
020250
020300
030010

IDENTIFICATION DIVISION,
PROGRAM-ID. CMKSEQ,
AUTHOR. GEORGE A RUDOLPM.
QATE-~RITTEN, MAY 1969.
INSTALLATION, G·E • PMOENlX~
REMARKS, THIS IS THE CHEC~ING SEGMENT WHICH le CALLEO BY

THE MAIN PROGRAM SNOO'Y TO CREATE ANO STODE
CHECK•REC RECORDS,

ENVIRONMENT DIVISION,
CONFIGU-ATION SECTION,
SOURCE·COMPUTER. GE-6J5,
08J6CT-COMPUTER. GE•635,
Sl'EClAL·NAMES,

GETIME IS TODAYS-DATE,
BLOCK 10 IS CCBLOXK,
BLOCK 20 IS ENTRY-REC THRU LOAN-REC.

INPUT-OUTPUT SECTION,
r1LE•CONTROL,

SELECT CARD-READER ASSIGN TO CR roR CARDS.
SELECT IDS TEST•FJLE ASSIGN TO Tf,

1 .. o .. CONTROL1
APPLY SYSTEM STANDARD ,ORMAT ON CARD-READIR,

DATA DIVISION.
,ILE SECTION, ,0 CARD•READER

LABEL RECORDS ARE STANDARD
DATA RECORD IS CARD•IN1

01 CARD-IN.
02 ACCT-TYPE

88 L.OAN•ACCT
88 SAVE-ACCT
88 CMECK-ACCT

02 cuST-NO-IN
02 ACCT-NO-IN
02 CUST-NAME•IN
02 AMOUNT-IN
02 fil.LER

WORKINij•STORAGE SECTION,
IDS S6CTION,

01 CCBLOXK I

PICTURE
VALUE "LO"·
VALUE "SA"·
VALUE "Cl<",

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

xx.

9 (6,.
9 (6,,
x (26).
9<10)u99.
x (3s,).

02 DIRECT•RErER!NCE SIZE IS 8 USAGE 15 COMPUTlTIONAL•1
SYNCHRONIZED RIGHT.
02 F'IRST-RErERENCE SIZE IS 6 USAGE IS COMDUTATIONAL·l
SYNCHRONIZED RIGHT.
02 LAST•REF'ERENCE SIZl!i IS 8 USAGE IS COMP11TATIONAL-l
SYNCHRONIZED RIGHT.
02 RECORD•TYPE SIZE IS 4 USAGE IS COMPUTAiioNAL•1
SYNCHRONIZEO RIGHT.
02 REC-FILE SIZE IS 6 CLASS IS Al.PHANUMERtC
VALUE IS "0000Tr",

[\.) I
86226 01 02-05-70 14,791 GE600 INTEGRATED STORE TRANSLATOR ISDL•2 CHGOO

cc
0 IDS ALTER NOS,

02 ERROR-RErERENCE SIZE IS 3 CLASS IS ALPWANUMERIC
SYNCHRONIZEn ~IGHT,

00040 030020 MD TEST•F'ILE
00041 030030 PAGE CONTAINS 1920 CHARACTERS
00042 030040 FILE CONTAINS 100 PAGIS,
00043 030050 01 ENUY•REC
00044 030060 TYPE rs 010
00045 030070 RETRIEVAL VIA CALC CHAIN
00046 030080 PAGE•RANG6 IS 1 TO 1.
00047 030090 02 ENTRY .. FIELD PICTURE 9<6),
00048 030200 98 CA~C CHAIN DETAIL
00049 030210 RANDOMIZE ON ENTRY•F'IELD.
00050 030230 98 CUST-NO•CHN CHAIN MASTER
00051 030240 CHAIN•ORDER IS so~TED.
00052 030250 01 CUST•NO•R!C
00053 030260 TYPE IS 020
00054 030270 RETRIEVAL VIA CUST-NO•CHN CHAIN.
00055 030290 02 CUST-NO•DSU PICTURE 9<6),
00056 o3o3oo 02 CUST-NA"4E•DSU PICTURE xc26).
00057 031010 98 CUST·NO·CMN CHAIN DETAIL
00058 031020 DUPLICATES NOT ALLOWED
00059 031030 ASCENDING KEY IS CUST-NO-DSU
00060 031040 SELECT CURRENT MASTER,
00061 031050 98 CHECK•CMN CHAIN MASTER
0006t! 031060 CHAIN·CRDRR IS rIRST.
00063 031070 98 SAVE·CMN CHAIN MASTER
00064 031080 CHAIN-ORDER IS r1~ST·
00065 031090 98 LOAN•C"N CHAIN MASTER
00066 031200 CHAIN-ORDER IS F'l~ST.
00067 031210 01 CHECK-REC
00068 031220 TYPE IS 021
00069 031230 RET~IEVAL VIA CHECK•CHN CHAIN,
00070 031250 02 CUST-NO .. CI< PICTURE 9<6l•
00071 031260 02 ACCT-NO-CK PICTURE 9161,
00072 031270 02 AMOUNT-Ct< PICTURE S9<101V99,
00073 031280 98 CHECK•CMN CHAIN DETAIL
00074 031290 SELECT CURRENT MASTER,
00075 032010 01 SAVE•REC
00076 032020 TYPE IS 022
00077 032030 RET~lEVAL VIA SAVi-CMN CHAIN.
00078 032050 02 CUST-NO·SA PICTURE 9<6)•
00079 032060 02 ACCT-NO·SA PICTURE 9c61.
00080 032070 02 AMOUNT•SA PICTURE S9<101V99,
00081 032080 98 SAVE·CMN CHAIN DETAIL
00082 032210 SELECT CURRENT MASTER.
00083 032220 01 LOAN-REC
00084 032230 TYPE IS 023
00085 032240 RETMIEVAL VIA LOAN•CMN CHAIN,
00086 032260 02 CUST-NO•LO PICTURE 9<61,
00087 032270 02 ACCT·NO•LO PICTURE 9161,

IV
00
I-'

86224 01 02-05-70

IDS AL.TER NOS,

14.836 GE600 INTEGRATED STORE TRANSLATOR

00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104

032280
032290
032320
040010
042000
042020
042030
042040
042050
042060
042070
042080
043170
043180
043190
043200
043230

02 AMOUNT•LO PICTURE S9<10\V99,
98 LOAN·CHN CHAIN DETAIL.

SEL.ECT CURRiNT MAITER,
PROCEDURE DIVISION,
100-SAVE•PARA,

MOVE CUST•NO•lN TO CUST•NO·SA,
MOVE ACCT•NO·IN TO ACCT•NO-SA,
MOVE AMOUNT•IN TO AMOUNT•SA.
ENTiR lOS,

STORE SAV!•REC RECORD
lr ERROR GO TO 140•STORE•SA-ERR,

GO TO 200•CALL.•IA•ENO,
i•a-STORE•SA•ERR,

DIS~L.AY "!TORI iRROR",
DISPL.AY "SAVE RECORDS"•

200-CAL.L•SA~ENO.
Ex IT,

1DS·STRUOTURE SECTtON,
ENTER GMAP ,

PMC ON
SL.OCK ,IDS,,

RD0641 ,QRD 023,000033,o,o,o.oooooo,
ETC RD06411RD0645 1 RD0643iOOOO,RD637~,
ETC OD0000,0000001LOAN•REC

RD064' 1IDD 023,10,0,0,1,1,
ETC 11RD0641,RD0641,RD46091RD4609 1 Rn0649,
ETC OD291D0001000D1
ETC L.OAN•CHN

RD0643 ,QfD o.o,000011.0006,rC46101RD0644,
ETC RD0643,RD4610.
ETC ACCT•NO•L.0

RD0644 .lfD 3,g,000011.0012,rc62091R00642,
ETC RD0644,RD6209,
ETC AMOUNT•L.O

RD0642 ,QfD o.o.ooooo5,0006,rc115J,RD0641,
ETC RD0642,RD11,31
ETC CUST•NO•LO

RD627J ,QRD C2210DOOJ3,01D10100D0001
ETC RD6273,RD6277,R0627,iOOOO,RD166•,
ETC 000000.000000,savE•AIC

RD6277 ,QDD 022,10,0,0,1,1,
ETC 1•RD627J,RD6273,RD5889,RD5889 1 R"6277,
ETC 002910000100001
ETC SAVE•CHN

R06275 ,QrD o.o.000011,0006,fC77451~D6276,
ETC RD6275,RD774,,
ETC ACCT•NO•SA

RD6276 ,QrD a.o,000011.0012,fc31J7,RD6274,
ETC RD6276,RD31S7•
ETC AMOUNT•SA

ISDL.•2 Cl-IGOO

N
00
N

86224 01 02-05-70

IDS ALTER NOS,

14.836 GE600 INTEGRATED STORE TRANSLATOR ISDL,.2 CMGOO

00001 010010
00002 010020
00003 010030
00004 010040
00005 010050
00006 0100!51
00007 010052
00008 010053
00009 010060
00010 010070
00011 010080
00012 010090
00013 010091
00014 010092
00015 010095
00016 010096
00017 010200
00018 010210
00019 010220
00020 010230
00021 010240
00022 010250
00023 020010
00024 020020
00025 020030
00026 020040
00027 020050
00028 020060
00029 020070
00030 020080
00031 020090
00032 020200
00033 020210
00034 020220
00035 020230
00036 020240
00037 020250
00038 020JOO
00039 030010

IDENTIFICATION OIVISION,
PROGRAM•IO. SAVSEG,
AUTHOR, GEORGE A RUDO~PM,
0ATE•WR1TTEN, MAY 1969,
INSTALLATION, G E • PHOENIX,
REMARKS, TMIS IS THE SAVING SEGM~NT WHICH IS CALI.ED BY

TH~ MAIN PROGRAM SNOOlltY TO cReATE AND STOQE
SAVE•REC RECORDS,

ENVIRO~MENT DIVISION,
CONFlGU~ATION SECTION,
SOURCE•COMPUTER, GE•635,
OBJECT•COMPUT&R, GE•635,
SlltECIAl.•NAMES.

GETIME IS TODAYl•DATE,
BLOCK 10 IS CCBl.OXK,
BLOCK 20 IS ENTRY•REC THRU LOAN·R~C.

INPUT-OUTPUT SECTION,
rtLE•CONTROL,

Sil.ECT CARD•READ&R ASSIGN TO CR roR CARDS.
SEL6CT IDS TEST•FILE ASSIGN TO rr.

1-0-CONTROL,
APPLY SYSTEM STANDARD roRMAT ON CARD·READgR,

DATA DIVISION,
rILE SECTION,
re CARIS•READER

LABEL RECORDS ARE STANDARD
DATA RECORD IS CARD•IN,

01 CARD-IN,
02 ACCT .. TYF'E

88 1.0AN•4CCT
88 SAVE•ACCT
88 CMEC1<·ACCT

02 CUST•NO-IN
02 ACCT·NO•IN
02 CUST-NAME•lN
02 AMOUNT-IN
02 FILLER

WORKING·STORAGE sECTION,
IDS SECTION,

01 CCBLOXI< I

PICTURE
VALUE "LO",
VALUE "SA"·
VALUE "Cl(",

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

xx.

9 C6),
9 (61 t

xc2'>~
9clo>v99.
x (3:1.).

02 DIRECT•REr&RENCE SIZE IS 8 USAGE IS COMPUTATIONAL-1
SYNCMRONIZEn RIGHT,
02 rlRST•RErERENCE SIZE IS 8 USAGE IS COMQUTATIONAL-1
SYNCHRONI!ED RIGHT,
oa 1,.AST•REF"ERl!NCE SIZI IS 8 USAGE IS COMP11TATJONAL·1
SYNCMRONI%EO RIGHT,
02 ~ECORD•TYPE SIZE IS 4 USAG& IS COMPUTA?!ONAL•l
SYNCMRONIZEO RIGHT,
02 REC'"F°l~E SIZE IS 6 CLASS IS Al.PHANUMiRtC
VA1.ue is "ooooTr",

86225 01 02-05-70 14.809 GE600 INTEGRATED STO•E TRANSLATOR ISDL•2 CMGOO

IDS ALTER NOS,

02 6RROR-REF'ERENCE SllE IS 3 CLASS IS ALPWANUMERIC
SYNCHRONIZED RIGMT.

00040 030020 MD TEST•F'ILE
00041 030030 PAGE CONTAINS 1920 CMARACTERS
00042 030040 F'ILS CONTAINS 100 PAGIS;
00043 030050 01 EN UY-REC
00044 030060 TYPE IS 010
00045 030070 RETRIEVAL VIA CALC CHAIN
00046 030080 PAGi•RANGI rs 1 TO 1,
00047 030090 02 ENTRY•F' IELD PICTURE 9162,
00048 o3o2oo 98 CALC CHAIN DETAIL
00049 030210 RANDOMllE ON ENTRV•F'ISLD.
00050 030230 98 CUST-NO·CMN CMAlN MASTER
00051 030240 CHAIN•ORDER IS so•TED.
00052 030250 01 CUST•NO•REC
00053 030260 TYPE IS 020
00054 030270 RET,IEVAL VIA CUST-NO•CHN CHAIN,
00055 030290 oa CUST•NO•DSU PICTURE 916t,
00056 o3o3oo 02 CUST•NAME•DSU PICTURE)(126>.
00057 031010 98 CUST•NO•CMN CMAlN DETAIL
00058 031020 DUPLICATES NOT ALLOWED
00059 031030 ASCENDING KEY IS CUST-NO•DSU
00060 031040 SELECT CURRENT MASTER.
00061 031050 98 CMECK•CMN CMAlN MASTER
00062 031060 CHAIN•ORDIR JS r1-sT.
00063 031070 98 SAVE•CMN CHAIN MASTER
00064 031080 CHAIN•ORDiR IS r1•s1.
00065 031090 98 LOAN-CHN CHAIN MASTER
00066 031200 CHAIN•ORDER JS rrRST.
00067 031210 01 CH~CK·REC
00068 031220 TYPEi IS 021
00069 031230 RET~IEVAL VIA CMECK~CMN CHAIN,
00070 031250 02 CUST-NO•CI< PICTURE 916),
00071 031260 02 ACCT-NO•CI< PlCTU•E 916),
00072 031270 02 AMOUNT•CK P!CTU•E S9<10,V99,
00073 031280 98 CHECK•CMN CMA!N D&TAIL
00074 031290 SELECT CURRINT MASTER,
00075 032010 01 SAVli .. REC
00076 032020 TYPE IS 022
00077 032030 RET~IEVAL VIA SAVE-CHN CHAIN,
00078 032050 02 CUST·NO•SA PICTUIU: 916,,
00079 032060 02 ACCT·NO·SA PJCTURE 916),
00080 032010 02 AMOUNT•SA PICTURE S9<10•V99,
00081 032080 98 SAVE•CHN CHAIN DETAIL
00082 032210 SELECT CURRINT MASTER.
00083 032220 01 LOAN•REC
00084 032230 TYPi IS 023
00085 032240 RET•lEVAL VIA LOAN-CM~ CHAIN,
00086 032260 02 CUST·NO•LO PICTURE 916),
00087 032270 02 ACCT·NO•LO PJCTUAE 916),

N
00
w

tv

I
86226 01 02-05-70 14,791 GE600 INTEGRATED STORE TRANSLATOR ISDL•Z Cf.IGOO

(X)

ii::. IDS ALTER NOS,

00088 032280 02 AMOUNT-LO PICTURE S9<101V99,
oooB9 032290 98 LOAN·CMN CHAIN DETAIL
00090 032320 SELECT CURRiNT MASTER,

N
00
Ul

86226 01 02-05-70

IDS ALTER Nos,
00091 080000•EJECT

14,791 GE600 INTEGRATED STORE TRANSLATOR

00092 080010 PROCEDURE DIVISION,
00093 081050 100~CMECK•PARA,
00094 081070 MOVE CUST-NO·IN TO CUST•NO-CK,
00095 081080 MOVE ACCT-NO-IN TO ACCT-NO-CK,
00096 081090 MOVE AMOUNT-IN TO AMOUNT-CK.
00097 081100 ENTER IDS,
00098 081110 STORE CMECK•REC RECORD
00099 081120 IF ERROR GO TO 120-STORE-CK-ERR.
00100 081130 GO TO 200·CALL•CK·END,
00101 083090 120-STORE-CK-ERR,
00102 083100 DISPLAY "STORE ERROR",
00103 083110 DISILAY "C~ECK RECORD"•
00104 083120 2oo~CALL•CK~END·
00105 083150 EXIT,

IOS•STRUCTURE SECTION,
ENTER GMAP I

PMC ON
BLOCK ,101,,

AD0641 ,QRD 02J.000033,o,o.o.oooooo.
ETC R00641oRD06•5,RD0643,0000,RD627~,
ETC OOOOOO,OOOOOD1LOAN·RiC

RD0645 ,QOD 02J.10.o.o.1.1.
ETC 1oRD0641,RD0641,RD46091R04609 1 Rn064,,
ETC 0029,0000,0000.
ETC LOAN•CMN

RD0643 olFD 010•000011o0006,FC46101R00644 1
iTC RD0643,RD4610t
ETC ACCT•NO•LO

R00644 ,QfD 310•D00017,0012,FC62091RD0642 1
ETC RD0644,RD6209,
ETC AMOUNT•LO

R0064~ ,QFD o.o.000005,oOo6,rc11sJ,R00641,
ETC RD0642oRD1153.
ETC CUST•NO•LO

R06273 ,QRD 0221000033101010t0000001
ETC R06273,RD6277.RD6275,00DO,RD166~,
ETC 000000,000000.sAvE·AEC

R06277 1 QOD 022110,0,0,111•
ETC 1oRD6273,RD6273,RD5889,A05889,R~6277,
ETC 0029,oono,oooo.
ETC SAVE•CHN

RD6275 ,QFD o.o.000011.0006,FC77451RD6276,
ETC RD627,,RD7745,
iTC ACCT•NO•SA

RD6276 ,QFD 3,0,000017,0012,FC3137,RD6274 1

ETC RD6276,RD3137,
ETC A~OUNT•SA

~06274 .1~0 o.o.ooooo5,0006,rc102s.Ro6273,
ETC RD6274,RD1025•

ISDL•2 CHGOO

N

°' O"l

86225 01 02-05-70

IDS ALTER NOS,

14,809 GE6oo INTEGRATED STORE TRANSLATOR ISDL•2 CHGOO

00001 010010
00002 010020
00003 010030
00004 010040
00005 010050
00006 010051
00007 010052
00008 010053
00009 010060
00010 010070
00011 010080
00012 010090
00013 010091
00014 010092
00015 010095
00016 010096
00017 010200
00018 010210
00019 010220
00020 010230
00021 010240
00022 010250
00023 020010
00024 020020
00025 020030
00026 020040
00027 020050
00028 020060
00029 020070
00030 020080
00031 020090
00032 020200
00033 020210
00034 020220
00035 020230
00036 o2o24o
00037 020250
00038 020300
00039 030010

IOENTIFICATION DIVISION,
,ROGRAM•lD, LOA!EG,
AUTHOR, GEORGE A RUDOLPH,
PATE•WRITTEN, MAY 1969,
INSTALLATION, G E • PHOENIX~
REMARKS. THIS IS THE LOAN SEGMENT WMICH IS C&LlED BY

THE MAIN PROGRAM SNOOPY TO CREATE ANO STOAE
LOAN•REC RECORDS.

ENVIRONMENT DIVISION.
CONflGUMATlON SECTION.
SOURCE-COMPUTER, GE·635,
OiJBCT-COMPUTER. QE-635,
Sl'ECIAL•NAMES,

GETIME IS TODAYS-DATE,
BLOeK 10 !S CCBLOXKo
8L08K 20 IS ENTRY•REC TMRU LOAN-REC,

lNPUT•OUTPUT SECTION.
'1LE•COtHROL,

SELiCT CAAO-R!AOER ASSIGN TO CR roR CARDS'.
SELECT IDS TEST•f1LE ASSIGN TO Tr.

1-0 ... coNTROL·
APPLY SYSTEM STANDARD roRMAT ON CARD-READ•R.

OHA DIVISION,
flLE SECTION,
re CARD-READ&R

LABEL RECORDS ARE STANDARD
DATA RECORD IS CARO·I~.

01 CAR8•IN1
02 ACCT·TYF'E

88 LOAN-ACCT
88 SAVE•ACCT
88 cMEcK•ACCT

02 CUST-Nc•IN
02 ACCT·NC•IN
02 CUST•NAME•IN
02 AMOUNT•IN
02 fIL.LER

WORKlNG•STORAGE SECTION,
IDS SECTION,

01 CCBLOXK ,

PlCTUlllE
VALUE "LO"•
VALUE "SA"•
VALUE "CK",

PICTURE
PICTURE
PICTURE
PICTUll!E
PICTURE

xx.

9 (6),
9161,
XI 25>.
9(1Q)y99,
x (31).

02 DIRECT•RErERENCE SiZE JS 8 USAGE 19 CCMPUTAT10NAL-1
SYNCMRONIZED RIGHT.
02 flRST•RErERENCE SilE IS 8 USAGE IS COMDUTATIONAL-1
SYNCHRONIZED RIGHT.
02 LAST•RErERl!NCE SIZE IS 8 USAGE IS COMP11TATIONAL.-l
SYNCHRONIZED RIGHT.
02 RECORO•TYPE SIZE I! 4 USAGE IS COMPUTAiIONAL•1
SYNCMRONIZED RIGHT.
02 IEC-flL.E SIZE IS 6 CLASS IS A~,MANUMIRTC
VALUE lS nOOOOTr",

86224 01 02-05-70 14.836 GE600 INTEGRATED STORE TRANSLATOR ISDL•2 CHClOO

IDS ALTER NOS1

02 ERROR•REF'ERENCE SIZE IS ~CLASS IS ALP~ANUMERIC
SYNCHRONIZEO RIGHT.

00040 OJ0020 MO TEiST•F'ILE
00041 OJ0030 PAGE CONTAINS 1920 CHARACTERS
00042 030040 FILE CONTAINS 100 PAG•S,
00043 030050 01 ENTRY•REC
00044 030060 TYPE IS 010
0004!:> 030070 RETRIEVAL VIA CALC CHAIN
00046 030080 PAGE•RANGE IS 1 TO 1,
00047 030090 02 ENTRY•F'lEl.D PICTURE 9c6t,
00048 030200 98 CALC CHAIN DETAIL
00049 030210 RAMDOM(!i ON ENTRY•F'IELD,
00050 030230 98 cusT-NO-CMN CMAIN MASTER
00051 030240 CMAIN•ORDIR IS SORTED.
00052 030250 01 CUST•NO•Rl!C
00053 030260 TYPE IS 020
00054 030270 RETRIEVAL VIA cusT-NO•CMN CHAIN.
00055 030290 02 CUST•NO•DSU PICTURE 9c6t.
00056 o3oJoo 02 CUST•NAMi•DSU PICTURE X<26>.
00057 0J1010 98 CUST·NO•CMN CMAIN DETAIL
00058 031020 DUPLICATES NOT ALLOWED
00059 031030 ASCENDING KEY IS CUST•NO·DSU
00060 031040 $ELECT CURR!NT MASTER.
00061 031050 98 CHECK•CMN CMA!N MASTER
00062 031060 CHAIN-ORDER IS 'I-ST,
00063 031070 98 SAVE•CMN CMAIN MASTER
00064 031080 CHAIN-ORDER II rIRST,
00065 031090 98 LOAN•CMN CHAIN MAITER
00066 031200 CHAIN•ORDER IS rtRST,
00067 031210 01 CMECK•REC
00068 031220 TYPE IS 021
00069 031230 RETRIEVAL VIA CHECK•CMN CHAIN,
00070 OH250 02 CUST·NO•CI< PICTURE 9c61,
00071 o3i26o 02 ACCT•NO•CI< PICTURE 9c61,
00072 031270 02 AHOUNT•C:K PICTURE S9C10,V99,
00073 031280 98 CMECK•CMN CHAIN DITAIL
00074 031290 SELECT CU~R&NT MASTER,
00075 032010 01 SAVE•REC
00076 032020 TYPr= IS 022
00077 032030 RETRIEVAL VIA SAVE•CM~ CHAIN,
00078 032050 02 CUST•NO•SA PICTURE 9161,
00079 032060 02 ACCT·NO•SA PICTURE 9161.
00080 032070 02 AHOUN'•U PICTURE S9<10,V99,
00081 o32oeo 98 SAVE•CHN CHAIN DETAIL
00082 032210 SELECT CURRENT MASTER,
00083 032220 01 LOAN-REC
00084 032230 TYPE IS 023
00085 032240 RETRIEVAL VIA LOAN•CH~ CHAIN,
00086 032260 02 CUST•NO•LO PICTURE 9<6),
00087 032270 02 ACCT·NO•LO PICTURE 9c6),

IV
00
-.....]

N
00
00

86225 01 02-05-70

JDS ALTER NOS,

14,809 GE600 INTEGRATED STORE TRANSLATOR

oooae
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104

032280
032290
032320
040010
041130
041150
041160
041170
041180
041190
041200
041210
043130
043140
043150
04J160
043190

02 AMOUNT-LO PICTURE S9<101V99,
98 LOAN-CHN CHAIN DETAIL

SELECT CURRENT MASTER,
PROCEDURE DIVISION,
100-LOAN-PARA,

MOVe CUST-NO-IN TO CU!T-NO-LO,
MOVE ACCT-NO-IN TO ACCT-NO-LO,
MOVe AMOUNT•IN TO AMOUNT-LO•
ENTER IDS.

STORE LOAN•REC RECORD
IF ERROR GO TO 130•STQRE·LO·ERR.

GO TO 200•CALL•LO•ENO,
130-STOIE·LO•ER~.

DISPLAY "STORE iRROR",
DISPLAY "LOAN RECORD",

200•CALL•LOwEND•
ExlT,

IDS-STRUCTURE SECTJON,
ENT&R GMAP ,

PMC ON
BLOCK ,IDS,,

R00641 .~RO 02J,00003J,o.o.01000000.
ETC RD06411RD0645~R0064J,Q0001R06a?~,
ETC 000000,000000•LOAN-REC

R00645 1GDD 02311010101111•
ETC l1RD06411RDD641rRD46091RD4609,Rn0649.
ETC 002910000100001
ETC LOAN•CHN

R00643 tlfD o.o.000011.0006;FC46101RD0644,
ETC RD0643,RD4610,
ETC ACCT•NO•LO

R00644 .~FD 310•00001710012,FC62091R00642,
ETC RD0644,RD6209•
ETC AMOUNT-LO

ROD642 ,1fo o.o.ooooo5,0006,Fc1153,RD0641,
ETC RDQ6421RD115J•
ETC CUST•NO·L~

AP6273 ,QRD 022,000033,o,o.o~oooooo.
ETC R06273,RD6277.RD6275,00001RD166•,
ETC 000000,000000.sAvE~REC

R06277 1IDD 022,10,0,0,1,1,
ETC l1RC6273,R062731RD58891RD5889 1 Rn6277,
ETC 0029.0000,0000.
ere SAVE•CM~

RD&275 ,QFD o.a.000011.0006,FC7745,RC6276,
ETC R0627,,RD7745.
ETC ACCT•NO•SA

RD6276 ,QfD J,Q,000017,0012,FCJ137,R06274 1

ETC R062?6,RD31J7,
ETC AMOUNT-SA

ISDL•2 CHGOO

86226 02 02-06-70 OD, 021 PAG&i 1

ORIGIN 053069 ENfRY LOCATION ENTRY LOCATION ENTRY LOCATION ENTRY LOCATION ENTRY L.0CA3'.ION

SUBPROGRAMS INCL.WDED IN DECK,

s OPTION F'ORTRAN
s USE ,QMAX/111.QAREA/1577/1,QMIN/1/

056570 020:->70 t 1 t t t • 056!°>70
8L.0CK COMMON C2D 056540 C21 056534

054560 020570 C,LDIN 054572 SNOOPY r4573 C,SNOO ~'6524 ENTABC 0552~2
BL.OCK COMMON I IDS. • 054346 C21 56534 C10 14336 C20 0565 0 PR 093060

CR 0'1614

suaPROGRAMS o&TAINED F'ROM SYSTiM L.IBRARY,

051540 110266 ,SETU, 051545
047322 102969 1fROD. 051024 tF'WRD, 0507,6 , F'PRN, OSQ756 oF'PUN, 0507,2 ·F'CNV• 047647

,H IL· 051061 • F'RTN, 051060 • F'RCD I 011024 ,DBCNV 051073 .eoc~v 0'1U4
047260 110268 ,F'EOF', 047260
047122 073069 I F'SLEW 047122
046526 11oc68 ,F'OPEN 046532 EX IT 0467;$6 .F'EXlT 00736 eF'BAO, 047105 ,F'BF'TB 047106

,F'XQP, 046721 ,f"liTF'B 046,26 ,f"JOV 1 0'6530
045244 102969 f"XEM 046047 ,F'XEM, 045244 ,F'XMC I 0'6032 ANYERR 0461'!3 F'XOPT 046066

F'XDVCK 046127 F'XAL. T 0461'3 F'XDV 0'6440 i:'XF'DV 0464i6 F"XCODE 00046
,F'XSWl 046034 ,F'XSW2 0460U ,F'XSW3 0'6040 ERRl.K 046UJ ,F't..TPR 046~6'

045006 1104!68 • F' 100. 0'5122
044670 110268 L.INK 044700 LL INK 044676 IDl.lNK 044721 I.ENTRY 044671
043440 073069 ,QDBUG 043440 M' I us 0446,,
041412 082869 I QOPEN 0414U , QTA81 043344 , QTAB2 04337' M,,122 043426

BL.OCK COMMON ,QMAX 061776 ,QMIN 056722
041322 0730{19 ,QCHN 041322 H!S,186 041.40'
041254 073069 1QGET 041254 M51U2 04131!5
040614 073069 ,QSTOR 040614 H5,127 041236
040472 073069 ,QMOVE 040472 H5,UO 040607
037436 073069 .CHLNK 037436 ,QTALY 037704 H', 129 0•0461
037420 110266 ,QUCCB 037420 H5, 131 g374;13
037364 110268 ,QSDSW 037364 H!5I126 03742.4
036770 080'169 ,QMNO 036770 H5,U9 0373,5
036410 o73o69 ,QASC 036410 MIS,192 OJ676J
036234 073069 ,QCAl.C 036234 tQCAL1 0363'12 H5,105 036404
035772 073069 , QGDET 035772 M51111 0362lP
035734 110268 ,QSYN 035734 M5,128 035766
035654 110268 ,QUPDC 035654 H5,134 035731
035630 110268 ,QAUTH 035630 H5,1G3 035651
035362 073069 ,QFWO 035362 H5,110 035623
035160 073069 ,QLNKl 035344 ,Ql.NK5 035345 ,QL.SW 0:55353 ,QOLNK 035160 M5,108 035~54
034776 073069 ,QUDCH 034776 H,,U3 035152
034706 110268 ,QRUND 034706 H51125 034770
034614 110268 ,Q!YPX 034614 H51130 034702
034500 073069 ,QADJU 034500 ,QINSlrl 034607 M5, 101 034611

~

00
\.0

N I
86226 02 02~06-70 ou.021

l.O
0 ORIGIN 053069 ENTRY LOCATION ENTRY LOCATlON ENTRY L.OCATlON ENTRY LOCATION ENTRY l.OCATION

OH262 073069 oQMRAC 034262 H5,121 03H73
034222 110268 ,QPACK 034222 H5,123 034257
034010 073069 ,QUIT 034010 ,QUITX 034203 ,QUITY 034067 H5, 132 0342U
03334'4 073069 ,QCLOS 033344 H,,1117 034004
032172 073069 ,Q~IC 032172 ,QF'L.SM 033UO ,QSBEF' 0'3222 1 QSEMT 032676 H5,104 033~36
031760 110268 ,QINV2 031760 H', 160 032164
031672 1104?68 , Qt.AR 031672 ,Ql.OCK 031707 ,QRLS 031733 H5,U2 03175!5
031572 073069 ,QINV1 031572 M5, 159 031666
031266 073069 ,QINV3 031266 M5,161 0315U
031210 073069 .CHNV4 031210 H5,162 031262
031036 073069 ,QMAPl 031036 H5,163 031205
030554 110268 oQRfAB 030554 , QTAB3 030762 H5 1164 011032
030344 073069 ,QIOS 030367 ,QlolRIT 030344 ,QREAD 030353 ,QRDB 030:SU ,QWAIT 03036"

f.15,165 030550
027462 073069 ,QWKA 027511 ,QIRBA 027514 ,QAVAI. 02753t ,QIREF' Q275U ,QINIT 027512

,QIPOS 027513 ,QF'OP 027607 ,QPMl.V 017610 ,QRELV 0276J1 ,QERTB 027613
OUT CB 027631 OUTFD 027620 ,QIDCW 017515 1 FINV 0275 7 .EINV 027540
, I OSF 027472 ,!JRNL 027504 ,QSlCT 027517 1 QACT 027520 ,QMBUF 027!123
,lNVBF 027530 , QlilWA 0275U ,QLCCB 017522 I QVECT 027!JliP ,QCBUF' 0275a4
, QEMTY 027525 ,QDBGS 027521 ,QCOSW 027526 ,QCREC 027512 ,QCUJ:ID 027533
I QCURT 027534 ,QOPSW 02753' ,QNF'N 017536 ,QBARG 027541 ,QICTR 027'42
, QSTST 027544 ,QGAST 0275,0 ,QGCST 017554 I QGDST 027560 , QGEST 027'64
, QCHST 027570 ,QHDST 027574 , QMF'ST 037600 ,QOLST 027604 , QECAC 017612
H5,166 030340

026264 110268 ,QUH 026264 ,QUTF'l ~26264 , QUTF"2 Ol63gJ , QUTF'::S 0264i0 ,QVFY 026'12
, QVFY4 027121 , QVF' y6 27442 ,QIJF'Yl 0 74 1 H,,14' 0274 3

024712 073069 ,QBCD 024712 , QCL.R 024745 ,QCSM 014765 I QOIR 025022 ,QDl~C 025652
,QDlRF 025116 ,QMCH 026047 .QMEX 016103 1 QMWD 0261'3 ,QPBI(026177
,QSF"D 025672 ,QOJR9 0251JO M5,154 016256

024702 073069 ,QSTA 024702 ,QSTA1 024702 • QSTA2 014704 "45,1:57 024706
024440 102'169 ,CNTRY 024530 ,CMXIT 02454:5 ,CMSER Ol4456 ,CMENT 024441 ,CMRET 02447!1

,CMPSH 024456 ,CMPOP 024467 .CMUST 014505 ,Cr-WET 02451,5 ,CMUEX 024!122
, ,F !CB 02467!1

024426 102969 , CUA TE 024434 ,CTALY 024427 .CTMPQ 014430 , CTMP1 0244J2 .c1020 024f34
024340 110268 ,CMSTK 024341 ,CMSTE 024424
023756 073069 ,CGOPN 023760 ,CTEOF' 024247 .CIOER 014311 ,CIOEI 0243JO
023456 110268 , COS WR 023457
023310 110268 ,COSYS 023312
023132 073069 oCICDN 023135 ,CITYP 02J13::S , COCBF' OU266 ,COSIZ 0232'4 .cxxxx 023'36
023050 110268 ,CQBUF 023076 ,Cl.INE 023071 ,ClBUF' 013052
022402 110268 ,CNFXA 022414 , CNF'ICB 022661 ,CNF'X1 Ol2404
022370 110268 ,Ct:D07 022371
022362 110268 ,CED05 022363
022244 110268 ,CERPL 022245
022166 110268 1CESSN 022167
022132 110268 ,CEITL 022134 ,CEGET 022140 , CEPVW 012163
022012 110268 , Ct::RSN 022013 ,CETSS 022127 ,CETSN 022044
021732 110268 ,CETLS 021734 ,CeSTL 021734 ,CERTI. 011735 ,CEDLS 022000 .CEC~R 022001

,CEDEC 022005 ,C6CMA 022006 , CESSW OU 776 1 CNNUM 021736 • CNQU1 021736
,CEQUl 021736 ,CNQU2 021737 ,CEQU2 011737 ,CEZST 0217•0 ,CENOP 021'41

86226 02 02•06•70 ou.021

ORlG!N 053069 ENTRY LOCATlON ENTRY LOCATION ENTRY LOCATION ENTRY LOCATION ENTRY LOCUION

oCESAV 021742 1CEOPS 021777
021726 110268 ,CMEND 021726
021676 102969 .ccccc 021717 X106Q 021720 X1091 011721 x109' 021722 ,CTBiG 021112

BEGIN 021712 iCTCOR 0217U CORECT 0117U , CTCMT 0217',4 XCMNT 021U4
,CTOMP 02171' XO UMP 0217U .CTIOM 011716 X400D 021716 ,CTEND 021677
XX ENO 021714 ,CTf"IN 0216'17 XTMll I 011677 ,CQUIT 021677

021604 110268 ,GWRIT 021604 ,G4WRI 021604 WRITE 011604
021510 110268 ,GREAD 021510 ,GAREA 021510 READ 011510
021426 110268 1GWAlT 021426 1GAWAI 021426 WAIT 031426
021332 110268 ,GSlOT 021332 SETOUT 0213~2
021302 110268 ,GSTlN 021302 SETIN 021302
021026 072569 1GEPRN 021026 EPRINT 021026
020540 110268 1GPRNT 020540 ,GAPRN 020540 PRT004 02057' PRT024 0207l,7 l'RT034 0207H

PRT032 02070 PRTO:S5 0207t2 PRT051 010770 PRT002 020,72 PIRINT 020540
020454 110268 •GIOPG 020454 JOP021 020530 !OP024 010533
020404 073069 1GWTRC 020404 ,G4WTR 020404 WTREC 010404
020270 110268 .GEOIT 020270 1Gi062 0203•3 .GE063 010364 , GEOU 020365 .GE065 020367

,GE066 020370 ,GI067 020371 .G4EDI 010270 ,GE068 020372 .GE069 020373
, GE071 020374 ,GE072 0203?5 EOATE 010376 ET!ME 020:177 IOEDIT 0201270

017562 073069 1GGTBK 017562 GET BK 017562 ·GGET Ql 7564 GET 017564 .GAGTB 017'62
1GAGET 017564

017554 073069 eGOPNR 017554 .GCLSR 017554 .GGETR OS,7554 ,GPUTR 0175,4
017040 073069 ,(iCOPY 017040 COPY 011040 .GPTBI< 017043 PUT BK 0170U ,GPUT OS,700

PUT 017046 ,GACOP 017040 , GAP18 017043 I GAPUT 017046 ,GF'R67 017531
016742 110268 ,GPTSZ 016742 ,GAPTS 016742 PUTSZ 0'6742
016202 073069 ,GOPEN 016202 , GA OPE 016202 OPEN Ol6202
015530 Q73U69 1GCLSE 015530 1GACLS 01'5il0 • GR185 OS.5634 1GRl86 0157i5 ·GR178 015641

CLOSE 01!)530
015512 110268 ,GBNRY 015512
015412 073069 , GRLSE 015412 I G4RLS 01'412 REL SE OU412
01'220 110268 ,GR200 015220
015172 110268 ,GBCD 015172
015114 110268 ,GR225 015114
015042 110268 ,GR250 015042
014550 073069 1GR275 014550
~14400 110268 1GR377 014434 1GR;J85 ~14373 1GR37' ~t4400 ,GRJ7X Ot4'4'3 , GR390 014173
14274 110268 1GR980 01427• 1GR979 14312 •GR99X 4300 1 GR984 0 43:56 oGR985 0 4372

,GR999 014304
014214 110268 ,GR960 014214
013476 110268 ,GINHD 013503 ,GOUTH 013502 .GINTL OS,3501 ,GOUTL 013500 ,GUSWH 013f77

,GOVRL 013504 , GLREA 0135U ,GRCVY OU476
013474 110268 ,GINID 013474
013442 110268 1GR990 013442 1GR9'1 013463 15AUG5 Ot~470

RANGE StzE
Al.LOCATED CORE 000000 THRU 061777 061000
OBJECT PROGRAM

RELOCATABLE: 013440 THRU 061777 04U40

s qNK LI NKAA

N
l..D
I-'

N

'° N

86226 02 02-06-70 00.021

QRlGlN 053069 ENTRY LOCATION ENTRy L.OCA TI ON ENTRY LOCATION

SUBPROGRAMS INCLUDED IN DECK,

••• NON FATAL ERROR • C,LD!N LOADED PREVIOUSLY
013320 020570 CHKSEG 013333 C,CHKS 013427

BLOCK COMMON ,10s •• 054346 C10 0543~6 C20 016540

SUSPROGkAMS OBTAINED FROM SYSTEM LIBRARY,

4LLOCATED CORE
Of:lJECT PROGRAM

kELOCATABLE
•••NON FATAL ERROR• ~!SSING ROUllNE
••• NON FATAL ERROR • MISSING ROUTINE
••• NON FATAL. ERROH o MISSING ROUTl~E

RANGE
000000 THRU 061777

oi33ao THRU 061777
, CF' l CB
LOASEG
SAVSEG

L.INK LINKB81LINKAA

suePROGHAMS INCLUDED IN DECK,

••• NON FATAL ERROR • C,LDlN LOADED PREVIOUSLY
013320 020~70 SAVSEG 013333 C,SAVS 013427

BLOCK COMMON .10s,. 0,4346 c10 054316 C20

SIZE
061000

00460

OU540

SU9PROGRAMS OBTAI~ED FROM SYSTEM LIBRARY,

ALLOCATED CORE
OBJECT PROGRAM

RELOCATABLE::
•••NON FATAL ERROR• MISSING ROUll~E
••• NON FATAL ERROR • MISSING ROUTINE

s LINK

RANGE
000000 THRU 061777

013320 THRU 061777
,CF' I CB
L.04SEG

LlNKCC1L!NKBB

SUBPROGRAMS INCLUDED IN DECK,

••• NON FATAL ERROR • C,LDIN LOADED PREVIOUSLY
013320 020570 LOASEG 013333 C,LOAS 013426

BLOCK COMMON .10s •• 054346 cio 054336 C20

S tZE
061000

046460

0116540

SUBPROGkAMS OBTAINED fROM SVSTEH LIBRARY,

RANGE
ALLOCATED CORE 000000 THRU 061777

SIZE
062000

ENTRY l.OCATION ENTRY LOCATION

CR 0'1644

CR 0'1614

CR 051614

N
l..O
w

86226 02 02-06-70 00,02/

Of< I GIN 053069 ENTRY LOCATION ENTRy LOCATION ENTRY 1.0CA TI ON ENTRY LOCATION ENTRY L.OCAT.ION

OBJECT PROGRAM
RELOCATABLE 013320 THRU 061777 046460

••• NON FATAL ERROR • MISSING ROUTINE ,Ct!CB
S DISC H•,X2S,iR
S DISC Tf,X1S,9R TEMPORARY MASS STORAGE FILE
s DATA ,Q T&MPORARY I-P·S DATA rrLE FOR DIRECTIVES
S SYSOUT PR ASSIGN PRINTER TO OUTPUT MEDIA CONVERS!O~
s DATA CR TEMPORARY fILE roR CARO !~PVT

FCB AND BUffER SPACE

AVAILABLE 000101 THRU 013315
~ILE CTRL BLKS 013166 THRU 013316
MAXIMUM BUFfER SPACE REQUIRED

013215
000131
oouoo

21K, IS THE MINIMUM MEMORY NEEDED TO LOAD THIS ACTIVITY WITH ALL Fl~ES OPEN

EXECUTION P~OGRAM ENTERED AT 056570

THERE WERE 000009 WARNING rLAGS IN THE ABOVI LOAD

N
l.O
.i:::.

CUSTOMER NUMBERS AND ACCOUNTS STORED ON DATA FILE

2-6-70

CUSTOMER NUMBER TYPE OF ACCOUNT ACCOUNT NO

000123 CHECKING 003302
SAVINGS 000022
LOAN 002301

000235 CHECKING 024501

001100 SAVINGS 000501
SAVINGS 002403

004444 LOAN 000302

055555 CHECKING 000904

123456 LOAN 000703

666111 CHECKING 005503

COBOL Program Output

SNUMB = 86226, ACTIVITY # = 02, REPORT CODE= 52, RECORD COUNT

NUMBER OF CHECKING ACCOUNT RECORDS READ = 4
NUMBER OF LOAN RECORDS READ = 3
NUMBER OF SAVING ACCOUNT RECORDS READ = 3
TOTAL NUMBER OF RECORDS READ = 10

FORTRAN Program Output

AMOUNT

.74

.oo
• 10

145.71

.09

.01

.oo

1,987,654.32

10.00

5.83

00004

Appendix D. Primary Subroutines

Primary subroutines are those subroutines which are called
result of an I-D-S verb. The primary subroutine then
subroutines to perform the function. The following is a
I-D-S verbs and the corresponding primary subroutine which
a result of the verb.

I-D-S Verb Primary Subroutines

CLOSE .QCLOS
DELETE .QDLTE
HEAD .QHEAD
MODIFY .QMDFY
MOVE .QMOVE
OPEN .QOPEN
RETRIEVE .QGET
RETRIEVE CURRENT .QGETC
RETRIEVE DIRECT .QGETD
RETRIEVE EACH .QGETE
RETRIEVE MASTER } RETRIEVE NEXT .QCHN
RETRIEVE PRIOR
STORE .QSTOR

directly as a
calls other

list of the
is called as

295

Appendix E. Sample Deck Setups

COMPILE AND EXECUTE PERMFILES

The following Deck Setup will compile and execute
using a permanent I-D-S data file.

an I-D-S program

1

$
$
$

$
$
$
$
$
$
***EOF

8 16

lrDENT 1rDsoo,PERMFILE
:usERID :IDSFOURYQUAD$DATABASE
IDS

:I-D-S SO~RCE DECK OR COMDK
1EXECUTE 1
IPRMFL 1Al,R/W,R,IDSFOURYQUAD$DATABASE/QUAD01
IPRMFL IA2 ,R/W, R, IDSFOURYQUAD$DATABASE/QUAD02
:PRMFL IA3,R/W,R,IDSFOURYQUAD$DATABASE/QUAD03

I
PRMFL IA4,R/W,R,IDSFOURYQUAD$DATABASE/QUAD04
ENDJOB I

I

297

EXECUTE USING TEMPORARY FILES

The following Deck Setup will execute an I-D-S object program using
temporary files. NOTE: The QUTU activity will initialize the database.

1 8 16

$:IDENT :rDSOO, TEMPFILE
$ PROGRAM IQUTU
$!LIMITS 11 24k
$ 1MASS 1Al ,XlS, llR
$ IDISC IA2 ,X2S, 22R
$ IDRUM IA3, X3S, llR
$ DATA I .Q
IDS I CREATE IFC/Al/,BSSZ/480/,RNG/1,120/
IDS 1CREATE IFC/A2/,BSSZ/480/,RNG/121,240/,LPP/32/
IDS 1CREATE lpc/A3/,BSSZ/480/,RNG/241,360/
$!DATA Ir*
IDS 1INIT IFC/Al/
IDS 1

INIT :FC/A2/
IDS 1INIT 1FC/A3/
$ 10BJECT

:OBJECT II-D-S DECK
$ IDKEND

I
$!EXECUTE
$ IMASS :T 1, XlS, llR
$!DISC 1T2 ,X2S, 22R
$!DRUM 1T3 ,X3S, llR
$ 1DATA 'Q
IDS !CREATE :~C/Tl/ ,BSSZ/480/ ,RNG/1,120/
IDS I CREATE 1FC/T2/,BSSZ/480/,RNG/121,240/,LPP/32/
IDS I CREATE IFC/T3/ ,BSSZ/480/ ,RNG/241,360/
$ IENDJOB I

***EOF I I

29 8

COMPILE AND EXECUTE USING PERMANENT AND TEMPORARY FILES

The following Deck Setup will compile and execute an I-D-S program using
permanent and temporary files. NOTE: The QUTU activity will reload the
temporary file from tape.

1 8 16

lIDENT :IDSOO,MIXEDFILES
,usERID IIDSFOURYQUAD$DATABASE
PROGRAM IQUTU

'

!LIMITS I, 2 4k
DISC 1Al,X2S,22R

ITAPE IDT,X6D
IDATA I .Q
!CREATE IFC/Al/ ,BSSZ/480/ ,RNG/121,240/ ,LPP/32/
!DATA II*
1WRITE IFC/DT/,RNG/121,240/,0NFC/Al/
jIDS 1
!I-D-S SOURCE DECK OR COMDK
!EXECUTE I

jPRMFL :Tl ,R/W, R, IDSFOURYQUAD$DATABASE/QUAD01
jDISC T2,X2S,22R
IPRMFL IT3, R/W, R, IDSFOURYQUAD$DATABASE/QUADO 3
IPRMFL 1T4,R/W,R,IDSFOURYQUAD$DATABASE/QUAD04
!DATA I .Q
!CREATE IFC/T2/ ,BSSZ/4 80/, RNG/121, 240/ ,LPP /32/
IENDJOB I

**EOF I I

PRINT A PERMANENT FILE

The following Deck Setup is an example of a QUTU activity which prints a
permanent file.

1

$
$
$
$
$
$
$
IDS
IDS
$
***EOF

8

I
jIDENT
I USE RID
I PROGRAM
I LIMITS
lPill1FL

1
PRMF'L

IDATA
1PRINT
!PRINT
IENDJOB
I

16
I
IIDSOO ,PRINT
IIDSFOURYQUAD$DATABASE
IQUTU
I 1 24k
:TF,R/W,R,IDSFOURYQUAD$DATABASE/QUAD01

I
TG,R/W,R,IDSFOURYQUAD$DATABASE/QUAD02
I*

:FC/TF/,RNG/l,10/,PAGES
IFC/TG/ ,EMPTY
I
I

299

TRACE ENTRY

The following Deck Setup will compile and execute an I-D-S program using
an I-D-S Permanent File and will generate a trace entry for all calls to
the I-D-S primary subroutines.

1

$
$
$

$
$
$
IDS
$
$
$
$
$
***EOF

8 16

:IDENT :IDSOO,TRCEDATA
1
1

usERID 1IDSFOURYQUAD$DATABASE
IDS I

II-D-S SOURCE DECK OR COMDK
lusE l.QSTC
1EXECUTE I
I
1DATA I .Q
10PTION ITRACE
1PRMFL IAl, R/W IR, IDSFOURYQUAD$DATABASE/QUAD01
IPRMFL IA2,R/W,R,IDSFOURYQUAD$DATABASE/QUAD02
IPRMFL IA3,R/W,R,IDSFOURYQUAD$DATABASE/QUAD03
1PRMFL IA4,R/W,R,IDSFOURYQUAD$DATABASE/QUAD04
IENDJOB I
I I

EXECUTE QUTJ

Deck Setup to execute QUTJ from the Software Library.

1

$
$
$
$
$
IDS
$
***EOF

300

8
1
II DENT
:PROGRAM

1LH1ITS
!TAPE
1DATA
1SYSTEM
!EN DJ OB
I

16
I
IIDSOO I JOURNAL
IQUTJ
bPTIONS
lrN, XlD,, 1234, ,JOURNAL-TAPE
Ir*
1
I
I
I

EXECUTE QUTP

Deck Setup to execute QUTP from the Software Library.

1 8 16

II DENT
I

$ IIDSOO ,PICKER
$ IP ROG RAM 1QUTP
$!LIMITS :OPTIONS
$ ITAPE

1IN, XlD,, 12 3 4, , JOURNAL-TAPE
$:TAPE 10T ,X2S
$ DATA 1I*
IDS ls ELECT 11/53607 ,1/53607 ,B
IDS ISELECT 112/88802 I 13/8880 2 ,B
$ IENDJOB I
***EOF I I

EXECUTE QUTS

Deck Setup for executing QUTS from the Software Library.

1 8 16

$ 1IDENT IIDsoo, soRT
$ 1PROGRAM IQUTS
$:LIMITS

I
110 I l 7k

$ 1TAPE 1IN ,X2D
$ 1TAPE 10T / X 3 S / / 9 9 9 9 9
$!TAPE IOU,X4S, ,99999
C: jNTAPE ISl ,XSR, 3 ..,..

$ IENDJOB I
***EOF I I

301

EXECUTE QUTI AND QUTC

Deck Setup for executing QUTI and QUTC from the Software Library.

1 8 16
I 1

$ 1IDENT l IDSOO, CALC
$ I PROGRAM 1QUTI
$ IMASS 1Al I DlS I lOR
$ IDATA 1.Q
IDS !CREATE IFC/Al/,BSSZ/100/,RNG/l,100/
$ tDATA 'I*
IDS 1INITIAL '1,100
$ 1PROGRAM :QUTC
$ 1LIMITS ,10,26k
$ ITAPE 1Al,AlR, I I ,WORK.l
$ ITAPE !Bl,BlR, I I ,WORK.2
$ 1TAPE ITl,TlD, ,1234, ,USER-IN
$ ITAPE ICl,ClD,,,,USER-SORTED
$ IN TAPE IS 1, S lR, 3
$ IMASS IDl I DlR, lOR
$ ISYSOUT IPl
$ IDATA 1.Q

DS le RE ATE IFC/Dl/,BSSZ/100/,RNG/1,100/
$ IDATA II*

DS :OPTION IGENERATE/ I RANDA/ I RNG/l, 300 oo I
$ jENDJOB I
***EOF I I

EXECUTE QUTD

Deck Setup for executing QUTD from the Software Library.

1

$
$
$
$
$
$
$
$
IDS
$
***EOF

302

8
I

:IDENT
I PROGRAM
1LIMITS
IUSERID
:PRMFL
1PRMFL
ITAPE

:DATA

1DUMP
1ENDJOB
I

16

l
1IDSOO I DUMP
IQUTD
!OPTIONS
'IDSFOURYQUAD$DBASE
ITF IR/WI R, IDSFOURYQUAD $DBASE /QUADO 1
ITG IR/WI R, IDSFOURYQUAD$DBASE/QUAD02
QT,X2S,,,,DUMP-FILE
'I*
1
I
I
I

EXECUTE QUTL

Deck Setup for executing QUTL from the Software Library.

1

$
$
$
$
$

***EOF

8

:I DENT
PROGRAM

:LIMITS
1MASS
ITAPE
'TAPE
1DATA
lcREATE
1DATA
I OPTION
IENDJOB
I

16
I

:rDsoo ,LOAD
QUTL
loPTIONS
IAl,XlR,lSR
IIN,X2S, ,1234, ,DUMP-FILE
DE,X3S,,,,DELETE-FILE
'.Q
IFC/Al/ ,BSSZ/480/ ,RNG/1,120/
I*
:PLOAD I I RNG/l, 12 0 I I DELETE/
I
I

COLLECTING TYPE B STATISTICS

Deck Setup for collecting type B statistics on the journal file and
executing QUTR from the Software Library.

1

$
$
$
$
$
$
$

$
$
$
$
$

**EOF

8

I
IIDENT
1USERID
1usE I
10BJECT
IDKEND
lEXECUTE
1PRMFL
ITAPE
1PROGRAM
:sYSOUT

1TAPE
ITAPE
1NTAPE
1ENDJOB
I

16
I
1IDSOO I STATISTICS
Ir DSFOURYQ UAD$ DATABASE
1.QSTB
I
I
I

:Al,R/W,R,IDSFOURYQUAD$DATABASE/QUAD01
1JX I XlS I I I I I-D-S-JOURNAL
IQUTR

~i,XlR,,,,I-D-S-JOURNAL
IB1,X2R, ,99999
IS 1, T, 2

Activity 1 is the execution of an IDS program which provides
collection of type B information on the user-created journal file
tape) •

Activity 2 is the execution of QUTR.

for
(JX

303

Appendix F. Reference Code Manipulation

EXTRACT A PAGE NUMBER

Procedure Division statements similar to the following may be used to
extract a page number from a reference code.

COMPUTE PAGE-NO DIRECT-REFERENCE /64.

EXTRACT A LINE NUMBER

Procedure Division statements similar to the following may be used to
extract a line number from a reference code.

a. Assume PAGE-NO was previously extracted.

COMPUTE LINE-NO = DIRECT-REFERENCE - (PAGE-NO * 64).

b. Assume PAGE-NO was not previously extracted.

COMPUTE LINE-NO = DIRECT-REFERENCE - ((DIRECT-REFERENCE/64) *64)

CREATE A REFERENCE CODE

Procedure Division statements similar to the following may be used to
create a reference code.

a. Assume PAGE-NO has previously been initialized with the desired
page number.

b. Assume LINE-NO has previously been initialized with the desired
line number.

305

COMPUTE DIRECT-REFERENCE (PAGE-NO *64) + LINE-NO.

77 PAGE-NO T"\Tr""' 0 IC\
J::.L\... ;;;J\U/ COMP-1.

77 LINE-NO PIC 9 (2) COMP-1.

IDS SECTION
01 CCBLOXK.
02 DIRECT-REFERENCE PIC 9 (8) COMP-1.

306

Index

01

02

03

3

4

5

6

9

98

level 01 and 98

level 02

Slave Begin Sync Record Type 03

TYPE 3 Slave Begin Sync (SLVBGN)

TYPE 4 Slave End Sync (SLVEND)

TYPE 5 Before Page Image (BEFORE)
Type 5 Before Page Image (BEFORE)

TYPE 6 After Page Image (AFTER)
Type 6 After Page Image (AFTER)

TYPE 9 Statistics

level 01 and 98

ACCESS
concurrent access
READ access mode
WRITE access mode
RECOVERY access mode

ACCESSING
ACCESSING AN I-D-S FILE

31

31

138

141

141

141
165

141
165

141

31

125
135
135
135

132

307

ACTIVITY
File System Activity ($ FILSYS)
Activity Nwnber
Page Buffer Activity Table
Page Buffer Activity Table
activity chain

AFTER
AFTER
TYPE 6 After Page Image (AFTER)
AFTER page images
Type 6 After Page Image (AFTER)

ALL
ALL

ALLOCATION
Subfile Allocation
subfile allocation criteria
I-D-S Data File Allocation

ALLOWED
DUPLICATES NOT ALLOWED clause

ALTER
GMAP alter nwnber

ANALYZER/CALC
Randomizing Analyzer/CALC Pre-Load Sort Utility

AREA
ERROR-REFERENCE communication area
labeled common area
labeled common area (.IDS ...)

AREAS
ASSIGNMENT OF I-D-S BUFFER AND WORK AREAS

ASCENDING
ASCENDING RANGE KEY
ASCENDING

ASCENDING/DESCENDING
Ascending/Descending

ASSIGNMENT
ASSIGNMENT OF I-D-S BUFFER AND WORK AREAS

ATTRIBUTES
attributes of an I-D-S data file

ll.UTHORITY
Authority

AVAILABLE
available line flag

308

125
142
152
166
166

47
141
145
165

238

132
134
134

82

242

180

52
259
264

151

54
75

53

151

154

42

245

BASE
Base Page
Data Base Load/Print Utility Routine (QUTL)

BASIS
Basis For Overlaying

BCD
BCD

BEFORE
BEFORE
CHAIN-ORDER IS BEFORE
TYPE 5 Before Page Image (BEFORE)
BEFORE page images
Type 5 Before Page Image (BEFORE)

BEGIN
Slave Begin Sync Record Type 03
TYPE 3 Slave Begin Sync (SLVBGN)

BETWEEN
conununication Between Subprograms
How to Communicate Between Compilers
pass information between COBOL and FORTRAN

BINARY
binary

BLOCK
Communication Control Block
GEFRC file control block
Communications Control Block (CCBLOC)

BUFFER
ASSIGNMENT OF I-D-S BUFFER AND WORK AREAS
Inventory Record Buffer
Page Buffer Activity Table
Data Page Buffer
Buffer Format
Buffer Strategy for Inventory Buffers
Buffer Format
Data Page Buffer
Buffer Strategy for Page Buffers
EMPTY buffer
Page Buffer Activity Table

BUFFERS
Buffer Strategy for Inventory Buffers
Buffer Strategy for Page Buffers

CALC
CALC chain

16 8
199

257

234

47
49

141
145
165

138
141

258
265
26 7

234

103
154
264

151
152
152
153
158
159
161
163
166
166
166

159
166

70

309

CALCULATED
CALCULATED RECORDS
calculated records
calculated chain
Calculated records

Cl'i.L
CALL statement
CALL LLINK
CALL LINK

CALLING
return to the calling subprogram

CALL'S
CALL's to load specific subprograms

CARD
$ IDS control card
$ IDS CONTROL CARD DESCRIPTION
$ USERID control card
$ PRMFL control card
$ USE control card

CATALOG
System Master Catalog

CCBLOC
Communications Control Block (CCBLOC)

CHAIN
Linking Detail Record of a Chain
Selecting Master Record of a Chain
Chain Ordering
Prime Chain
Chain Processing
Chain NEXT
Chain PRIOR (optional)
Chain MASTER (optional)
Chain Tables
Chain Definition
Chain Definition
Chain Definition Entry
calculated chain
CALC chain
activity chain

CHAINS
I-D-S CHAINS
Multiple Chains

CHAIN-ORDER

310

CHAIN-ORDER
Chain-Order
CHAIN-ORDER IS BEFORE

13
38
49
84

259
262
262

259

262

91
93

128
132
267

128

264

15
15
16
17
17
17
17
17
18
28
43
44
49
70

166

4
5

40
47
49

CHARACTERISTICS
OPERATIONAL CHARACTERISTICS

CHECKSUM
Checksum
checksum
checksum

CLASSES
Record Classes

CLAUSE
COBOL record description clause
PICTURE clause
Editing clause
PAGE-RANGE clause
INTERVAL clause
PAGE-RANGE clause
RETRIEVAL VIA clause
DUPLICATES NOT ALLOWED clause
USE clause

CLOSE
Close

CLOSING
Closing Journal Files

COBOL
COBOL record description clause
COBOL procedural statements
OVERLAYING A COBOL PROGRAM
USING I-D-S WITH A COBOL OVERLAYED PROGRAM
FORTRAN - INTERFACING WITH COBOL AND I-D-S
pass information between COBOL and FORTRAN

CODE
Rll error code
reference code
reference code
Termination Code
directive file code is I*
REFERENCE CODE MANIPULATION

COMDK
PAGE EJECT AND COMDK LABELING
COMDK Labeling

COMMON
labeled common
labeled corrunon area
labeled corrunon area (.IDS •••)

COMMUNICATE
How to Corrununicate Between Compilers

125

141
234
236

13

32
32
32
38
40
40
75
82
89

62

142

32
32

257
264
265
267

71
74
76

141
232
303

91
91

25
259
264

265

311

COIVl...MUNICATION
ERROR-REFERENCE corrununication area
Corrununication Control Block
Corrununication Between Subprograms

COMMUNICATIONS
Corrununications Control Block (CCBLOC)

COMPILE
Translate and Compile
Translate, Compile, and Execute

COMPILERS
How to Corrununicate Between Compilers

COMPLETE
Complete trace entry
Complete PRTREC entry

CONCURRENT
concurrent access

CONDITIONAL
I-D-S Conditional Statements

CONDITIONS
I-D-S ERROR CONDITIONS

CONFIGURATION
Configuration Section
I-D-S Journal File Configuration

CONSIDERATION
Consideration When Mixing Software

CONSTANT
Constant Section

CONTENTS
Field contents

CONTROL

312

$ IDS control card
$ IDS CONTROL CARD DESCRIPTION
Communication Control Block
Control Definition
.QCD - CONTROL DEFINITION
$ USERID control card
$ PRMFL control card
Record control word
Slave I-D-S Control Table
SLAVE I-D-S CONTROL TABLE
GEFRC file control block
Slave I-D-S Control Table
Slave I-D-S Control Table (SICT)

52
103
258

264

97
98

265

242
242

125

85

251

25
137

267

28

242

91
93

103
114
124
128
132
142
152
154
154
154
155

CONTROL (continued)
Total Controi Entry
Control field
transferring control during execution
Communications Control Block (CCBLOC)
$ USE control card

COPY
COPY

CREATING
CREATING AN I-D-S DATA FILE
Creating a Permanent I-D-S Data File
Creating a Temporary I-D-S Data File

CRITERIA
subfile allocation criteria

CRMAST
CRMAST directive

CURRENT
SELECT CURRENT MASTER
CURRENT record
CURRENT record
Current type of I-D-S operation
Current record type
Page and line number of current I-D-S record

DATA
DATA ORGANIZATION
SUMMARY OF DATA STRUCTURES
DATA DIVISION
Data Division
Data Division
I-D-S DATA FILE STRUCTURE DES.CRIPTION
I-D-S DATA FILE INITIALIZATION
CREATING AN I-D-S DATA FILE
Creating a Permanent I-D-S Data File
I-D-S Data File Structure
I-D-S data file name
Creating a Temporary I-D-S Data File
.Q data file
I-D-S data file
I-D-S Data File Allocation
RECOVERING AN I-D-S DATA FILE
Data Page Buffer
attributes of an I-D-S data file
I-D-S DATA PAGES
Data Page Buffer
I-D-S DATA RECORDS
PERMANENT I-D-S DATA FILE
TEMPORARY I-D-S DATA FILE
TEMPORARY AND PERMANENT I-D-S DATA FILE
Data Base Load/Print Utility Routine (QUTL)
Data Type

155
242
259
264
267

32

126
126
129

134

128

49
76
82

242
242
242

3
12
28
74
82

101
125
126
126
128
128
129
129
131
134
145
153
154
161
163
173
177
178
178
199
242

313

DATE
Date

DEALLOCATION
Subfile Deallocation

DEBUG
Debug
DEBUG OPTIONS

DECK
DECK SETUPS
deck setup for an I-D-S sort
SAMPLE DECK SETUPS

DEFINING
defining ENTRY POINTS

DEFINITION
Chain Definition
Chain Definition
Chain Definition Entry
DEFINITION STRUCTURE
Record Definition Entry
Detail Definition
Master Definition
Field Definition
Control Definition
.QRD - RECORD DEFINITION
.QDD - DETAIL DEFINITION
.QMD - MASTER DEFINITION
.QFD - FIELD DEFINITION
.QCD - CONTROL DEFINITION

DELAY
IDSEJ DELAY

DELETE
Delete

DESCENDING
DESCENDING

DESCRIPTION

314

File Description
Record Description
File Description
I-D-S File Description Entry
Record Description
COBOL record description clause
I-D-S Record Description Entry
$ IDS CONTROL CARD DESCRIPTION
I-D-S DATA FILE STRUCTURE DESCRIPTION
Record Description
Page Description

141

136

63
237

97
152
295

260

28
43
44

101
104
107
110
112
114
120
121
122
123
124

142

64

75

28
28
28
29
31
32
33
93

101
159
167

DESCRIPTIONS
UTILITY PROGRAM AND SUBROUTINE DESCRIPTIONS

DETAIL
Linking Detail Record of a Chain
detail records
Detail Definition
.QDD - DETAIL DEFINITION

DIRECT
RETRIEVE DIRECT

DIRECTIVE
CRMAST directive
Directive Processor and Service Subroutine (.QDIR)
directive file code is I*
directive
variable field of a directive
directive
I-D-S Directive

DIRECTIVES
DIRECTIVES

DIRECT-REFERENCE
DIRECT-REFERENCE
DIRECT-REFERENCE

DISC
$ DISC

DIVISION

DO

IDENTIFICATION DIVISION
ENVIRONMENT DIVISION
DATA DIVISION
Procedure Division
PROCEDURE DIVISION
Data Division
Data Division

DO

DONTDO
DONTDO

DUMP
Journal Tape Dump Utility Program (QUTJ)

DUMP/PRINT
Storage Tape Dump/Print Utility Routine (QUTD)

DUPLICATE
DUPLICATE records

179

15
41

107
121

86

128
232
232
232
233
233
237

238

75
82

157

23
23
28
42
61
74
82

238

238

195

187

71

315

DUPLICATES
Duplicates
DUPLICATES NOT ALLOWED clause

DURING
transferring control during execution

EACH
RETRIEVE EACH

EDITING
Editing clause

EJECT
PAGE EJECT AND COMDK LABELING
Page Eject in the Listing

EMPTY
EMPTY buff er

END
TYPE 4 Slave End Sync (SLVEND)

ENTER
ENTER IDS

ENTRIES
Individual File Entries

ENTRY
I-D-S File Description Entry
I-D-S Record Description Entry
Chain Definition Entry
Record Definition Entry
Total Control Entry
USER ENTRY POINT
user entry point (QSTA4)
Complete trace entry
Complete PRTREC entry
I-D-S error entry
defining ENTRY POINTS
ENTRY POINT statement,

ENVIRONMENT
ENVIRONMENT DIVISION

ERROR
Rll error code
I-D-S error
I-D-S error entry
I-D-S ERROR CONDITIONS

ERROR-REFERENCE

316

ERROR-REFERENCE communication area
ERROR-REFERENCE
ERROR-REFERENCE

52
82

259

86

32

91
91

166

141

61

156

29
33
44

10 4
155
241
241
242
242
242
260
260

23

71
241
242
251

52
87

251

ETC
ETC

EXAMPLES
Examples

EXECUTE
Translate, Compile, and Execute

EXECUTION
OBJECT PROGRAM EXECUTION
I-D-S EXECUTION REPORT
Execution Report
Execution Report
execution report
Execution Report
transferring control during execution

EXECUTION INFORMATION
Execution Information Report Program (QUTR)

EXIT
EXIT statement

FIELD
prime retrieval field
sort key field
randomize field
match-key field
Field Definition
.QFD - FIELD DEFINITION
variable field of a directive
Field contents
Control field

FIELD-NAME
Field-name of record

FILE
file name
File Description
File Description
I-D-S File Description Entry
I-D-S DATA FILE STRUCTURE DESCRIPTION
File System Activity ($ FILSYS)
I-D-S DATA FILE INITIALIZATION
CREATING AN I-D-S DATA FILE
Creating a Permanent I-D-S Data File
I-D-S Data File Structure
I-D-S data file name
Creating a Temporary I-D-S Data File
.Q data file
I-D-S data file
ACCESSING AN I-D-S FILE
I-D-S Data File Allocation

206

143

98

99
14 7
196
20 8
235
246
259

210

259

35
70
70
71

112
123
233
242
242

242

27
28
28
29

101
125
125
126
126
128
128
129
129
131
132
134

317

FILE (continued)
I-D-S JOURNAL FILE
I-D-S Journal File Configuration
Journal File Map
RECOVERING AN I-D-S DATA FILE
attributes of an I-D-S data file
GEFRC file control block
Individual File Entries
PERMANENT I-D-S DATA FILE
TEMPORARY I-D-S DATA FILE
TEMPORARY AND PERMANENT I-D-S DATA FILE
File Utility Program (QUTU)
directive file code is I*
journal file
FILE OPTION

FILES
Mixing Temporary and Permanent Files
Closing Journal Files

FILE-CONTROL
File-Control Paragraph
FILE-CONTROL paragraph

FILE-NAME
file-name

FILLER
FILLER

FILSYS
File System Activity ($ FILSYS)

FIRST
FIRST
FIRST

FIRST-REFERENCE
FIRST-REFERENCE

FLAG
line flag
available line flag

FORMAT
Journal Record Format
Buffer Format
Buffer Format
Tape Format
Printer Format

FORTRAN

318

FORTRAN - INTERFACING WITH COBOL AND I-D-S
FORTRAN subprogram
pass information between COBOL and FORTRAN

136
137
144
145
154
154
156
177
178
178
217
232
236
238

131
142

27
29

29

32

125

40
47

76

244
245

137
158
161
207
246

265
266
267

GE CALL
GE CALL

GECHEK
MME GECHEK and MME GEROLL

GEFRC
GEFRC file control block

GEIDSE
MME GEIDSE

GENERATED
I-D-S GENERATED GMAP SYMBOLS

GERO LL
MME GECHEK and MME GEROLL

GMAP
GMAP alter number
I-D-S GENERATED GMAP SYMBOLS

GO
Go

HEAD
Head

HEADER
PRTREC header

HEADING
TRACE heading

IDENTIFICATION
IDENTIFICATION DIVISION

IDS
SELECT IDS
IDS Section
ENTER IDS
IDS Section
IDS Section
$ IDS control card
$ IDS CONTROL CARD DESCRIPTION

IDSEJ
IDSEJ typein
IDSEJ DELAY

IDS-SPECIAL-NAMES
IDS-Special-Names Paragraph

IF
IF

91

147

154

145

249

147

242
249

66

67

242

242

23

27
28
61
74
82
91
93

142
142

25

86

319

IMAGE
TYPE 5 Before Page Image (BEFORE)
TYPE 6 After Page Image (AFTER)
Type 5 Before Paqe Imaqe (BEFORE)
Type 6 After Page Image (AFTER)

IMAGES
BEFORE page images
AFTER page images

IMPERATIVE
I-D-S Imperative Statements

INDICATOR
level indicator MD
Indicator

INDIVIDUAL
Individual File Entries

INFORMATION
pass information between COBOL and FORTRAN

INITIALIZATION
I-D-S DATA FILE INITIALIZATION

INITIALIZE
Page Initialize Utility Routine (QUTI)

INPUT-OUTPUT
Input-Output Section

INTERFACING
FORTRAN - INTERFACING WITH COBOL AND I-D-S

INTERVAL
INTERVAL
INTERVAL clause
Interval
INTERVAL

INVENTORY

I*

inventory records
Inventory Record Buffer
I-D-S INVENTORY RECORDS
Buffer Strategy for Inventory Buffers

directive file code is I*

I-D-S

320

I-D-S CHAINS
I-D-S RECORDS
I-D-S PROGRAMMING LANGUAGE
I-D-S File Description Entry
I-D-S Record Description Entry

141
141
165
165

145
145

61

28
141

156

26 7

125

192

27

265

38
40
41
83

84
152
158
159

232

4
14
23
29
33

I-D-S (continued)

I/O

JOB

I-D-S Imperative Statements
I-D-S Conditional Statements
I-D-S DATA FILE STRUCTURE DESCRIPTION
I-D-S DATA FILE INITIALIZATION
CREATING AN I-D-S DATA FILE
Creating a Permanent I-D-S Data File
I-D-S Data File Structure
I-D-S data file name
Creating a Temporary I-D-S Data File
I-D-S data file
ACCESSING AN I-D-S FILE
I-D-S Data File Allocation
I-D-S JOURNAL FILE
I-D-S Journal File Configuration
RECOVERING AN I-D-S DATA FILE
I-D-S EXECUTION REPORT
ASSIGNMENT OF I-D-S BUFFER AND WORK AREAS
deck setup for an I-D-S sort
Slave I-D-S Control Table
SLAVE I-D-S CONTROL TABLE
attributes of an I-D-S data file
Slave I-D-S Control Table
Slave I-D-S Control Table (SICT)
I-D-S INVENTORY RECORDS
I-D-S DATA PAGES
I-D-S DATA RECORDS
I-D-S UTILITY PROGRAMS AND SUBROUTINES
PERMANENT I-D-S DATA FILE
TEMPORARY I-D-S DATA FILE
TEMPORARY AND PERMANENT I-D-S DATA FILE
I-D-S Directive
I-D-S error
Current type of I-D-S operation
Page and line number of current I-D-S record
I-D-S error entry
I-D-S modify routine
I-D-S RESERVED WORDS
I-D-S GENERATED GMAP SYMBOLS
I-D-S ERROR CONDITIONS
USING I-D-S WITH A COBOL OVERLAYED PROGRAM
FORTRAN - INTERFACING WITH COBOL AND I-D-S

I/O request for a page

Job Number

JOURNAL
I-D-S JOURNAL FILE
I-D-S Journal File Configuration
Journal Record Format
Closing Journal Files

61
85

101
125
126
126
128
128
129
131
132
134
136
137
145
147
151
152
152
154
154
154
155
15 8
161
173
177
177
178
178
237
241
242
242
242
242
249
249
251
264
265

154

142

136
137
137
142

321

JOURNAL (continued)
Journal Override
Journal File Map

KEY

Journal Tape Dump Utility Program (QUTJ)
Journal Record Selector Utility Program (QUTP)
journal file

ASCENDING RANGE KEY
sort key field
sort key

LABELED
labeled common
labeled common area
labeled common area (.IDS •.•)

LABELING
PAGE EJECT AND COMDK LABELING
COMDK Labeling

LANGUAGE
I-D-S PROGRAMMING LANGUAGE

LAST
LAST
LAST

LAST-REFERENCE
LAST-REFERENCE

LEVEL
level indicator MD
level 01 and 98
level 02

LINE
Page and line number of current I-D-S record
line flag
available line flag

LINK
CALL LINK

LINKED
LINKED TO PRIOR
Linked Prior

LINKED-MASTER
Linked-Master

LINKING
Linking Detail Record of a Chain

LISTING
Page Eject in the Listing

322

143
144
195
206
236

54
70
75

25
259
26 4

91
91

23

40
47

76

28
31
31

242
244
245

262

49
50

60

15

91

LLINK
CALL LLINK

LOAD
CALL's to load specific subprograms

LOAD/PRINT
Data Base Load/Print Utility Routine (QUTL)

MACRO
.QNAMS macro

MANAGEMENT
MEMORY MANAGEMENT

MANIPULATION
REFERENCE CODE MANIPULATION

MAP
Journal File Map

MASS
$ MASS

MASTER
Selecting Master Record of a Chain
Chain MASTER (optional)
primary master records
SELECT UNIQUE MASTER
SELECT CURRENT MASTER
master record
range master
master record
Master Definition
.QMD - MASTER DEFINITION
System Master Catalog

MASTER/DETAIL
Master/Detail

MATCH-KEY
Match-Key
match-key field
MATCH-KEY

MD
level indicator MD

MEMORY
MEMORY MANAGEMENT

MESSAGES
messages

262

262

199

241

151

303

144

157

15
17
41
49
49
71
82
83

llO
122
128

45

57
71
75

28

151

235

323

MIXING
Mixing Temporary and Permanent Files
Consideration When Mixing Software

MME GEIDSE
MME GECHEK and MME GEROLL

MODE
READ access mode
WRITE access mode
RECOVERY access mode

MODIFY
MODIFY
Modify
I-D-S modify routine

MOVE
MOVE
Move

MULTIPLE
Multiple Chains

NAJ\'lE
file name
I-D-S data file name

NEAR
PLACE NEAR
Place Near
PLACE NEAR
PLACE NEAR
PLACE NEAR

NEXT

NOT

Chain NEXT
RETRIEVE NEXT

DUPLICATES NOT ALLOWED clause

NULL
NULL

NUMBER
Job Number
Activity Number
Sequence Number
GMAP alter number
Page and line number of current I-D-S record

OBJECT
OBJECT PROGRAM EXECUTION

324

131
267

145
147

135
135
135

32
70

242

32
72

5

27
128

38
40
41
82
83

17
86

82

238

142
142
142
242
242

99

OCCURS
OCCURS

ONFC/XX/
ONFC/xx/

OPEN
OPEN statement
Open

OPERATION
Current type of I-D-S operation

OPERATIONAL
OPERATIONAL CHARACTERISTICS

OPTION
FILE OPTION

OPTIONAL
Chain PRIOR (optional)
Chain MASTER (optional)

OPTIONS
DEBUG OPTIONS
OPTIONS

ORDERING
Chain Ordering

ORGANIZATION
DATA ORGANIZATION

OVERFLOW
Overflow rule

OVERLAYED
USING I-D-S WITH A COBOL OVERLAYED PROGRAM

OVERLAYING
OVERLAYING A COBOL PROGRAM
Basis For Overlaying
Overlaying Procedure

OVERRIDE
Journal Override

PAGE
PAGE EJECT AND COMDK LABELING
Page Eject in the Listing
TYPE 5 Before Page Image (BEFORE)
TYPE 6 After Page Image (AFTER)
BEFORE page images
AFTER page images
Page Buffer Activity Table

32

238

42
73

242

125

238

17
17

237
238

16

3

84

264

257
257
262

143

91
91

141
141
145
145
152

325

PAGE (continued}
Data Page Buffer
I/O request for a page
Data Page Buffer
Type 5 Before Page Image (BEFORE)
Type 6 After Page Image (AFTER)
Buffer Strategy for Page Buffers
Page Buffer Activity Table
Page Description
Bo.se Page
Page Initialize Utility Routine {QUTI)
top of page
Page and line number of current I-D-S record

PAGES
I-D-S DATA PAGES

PAGETTE
Pagette

PAGE-RANGE
Page-Range
PAGE-RANGE clause
PAGE-RANGE clause
page-range
PAGE-RANGE

PARAGRAPH
IDS-Special-Names Paragraph
File-Control Paragraph
FILE-CONTROL paragraph

PASS
pass information between COBOL and FORTRAN

PERFORM
Perform

PERMANENT
Creating a Permanent I-D-S Data File
Mixing Temporary and Permanent Files
PERMANENT I-D-S DATA FILE
TEMPORARY AND PERMANENT I-D-S DATA FILE

PICTURE
PICTURE clause

PLACE
PLACE NEAR
Place Near
PLACE NEAR
PLACE NEAR
PLACE NEAR

POINT

326

USER ENTRY POINT
user entry point (QSTA4)
ENTRY POINT statement,

153
154
163
165
165
166
166
167
168
192
235
242

161

170

38
38
40
41
83

25
27
29

267

88

126
131
177
178

32

38
40
41
82
83

241
241
260

POINTS
defining ENTRY POINTS

PRE-LOAD
Randomizing Analyzer/CALC Pre-Load Sort Utility

PRIMARY
PRIMARY RECORDS
primary and secondary records
primary records
primary master records
primary record
primary record
PRIMARY SUBROUTINES

PRIME
Prime Chain
prime retrieval field

PRINT
Verify and Print Utility Subroutine (.QUTF)

PRINTER
Printer Format

PRIOR
Chain PRIOR (optional)
LINKED TO PRIOR
Linked Prior
RETRIEVE PRIOR

PRMFL
$ PRMFL control card
$ PRMFL

PROCEDURAL
COBOL procedural statements

PROCEDURE
Procedure Division
PROCEDURE DIVISION
Overlaying Procedure

PROCESSING
Chain Processing
TRANSLATOR PROCESSING

PROCESSOR
Directive Processor and Service Subroutine (.QDIR)

PROGRAM
OBJECT PROGRAM EXECUTION
UTILITY PROGRAM AND SUBROUTINE DESCRIPTIONS
Journal Tape Dump Utility Program (QUTJ)
Journal Record Selector Utility Program (QUTP)

260

180

13
40
41
41
71
82

29 3

17
35

244

246

17
49
50
86

132
157

32

42
61

262

17
91

232

99
179
195
206

327

PROGRAM (continued)
Execution Information Report Program (QUTR)
Selected Record Sort Utility Program (QUTS)
File Utility Program (QUTU)
OVEHLAYING A COBOL PROGRAM
USING I-D-S WITH A COBOL OVERLAYED PROGRAM

PROGRAMMING
I-D-S PROGRAMMING LANGUAGE

PROGRAMS
I-D-S UTILITY PROGRAMS AND SUBROUTINES

PRTREC
PRTREC
Complete PRTREC entry
PRTREC header

QSTA4
user entry point (QSTA4)

QUTD
Storage Tape Dump/Print Utility Routine (QUTD)

QUTI
Page Initialize Utility Routine (QUTI)

QUTJ
QUTJ
Journal Tape Dump Utility Program (QUTJ)

QUTL
Data Base Load/Print Utility Routine (QUTL)

QUTP
Journal Record Selector Utility Program (QUTP)

QUTP

QUTR
Execution Information Report Program (QUTR)

QUTS
Selected Record Sort Utility Program (QUTS)

QUTU
QUTU utility routine
File Utility Program (QUTU)

Rll
Rll error code

RANDOMIZE
Randomize
randomize field
RANDOMIZE

328

210
213
217
257
264

23

177

237
242
242

241

187

19 2

147
195

199

206
206

210

213

147
217

71

51
70
75

RANDO.t-IIZING
Randomizing Analyzer/CALC Pre-Load Sort Utility

RANGE
ASCENDING RANGE KEY
range master

READ
READ access node

RECORD
Record Classes
Linking Detail Record of a Chain
Selecting Master Record of a Chain
Record Description
Record Description
COBOL record description clause
I-D-S Record Description Entry
master record
primary record
CURRENT record
cu RRENT re co rd
primary record
master record
master record
Record Definition Entry
.QRD - RECORD DEFINITION
Journal Record Format
Slave Begin Sync Record Type 03
Record Type
Record control word
Inventory Record Buffer
Record Description
Journal Record Selector Utility Program (QUTP)
Selected Record Sort Utility Program (QUTS)
Current record type
Page and line number of current I-D-S record
Field-name of record

RECORDS
CALCULATED RECORDS
SECONDARY RECORDS
PRIMARY RECORDS
I-D-S RECORDS
calculated records
primary and secondary records
secondary records
primary records
primary master records
detail records
DUPLICATE records
Secondary records
Calculated records
inventory records
I-D-S INVENTORY RECORDS
I-D-S DATA RECORDS

180

54
82

135

13
15
15
28
31
32
33
71
71
76
82
82
83
83

104
120
137
138
141
142
152
159
206
213
242
242
242

13
13
13
14
38
40
41
41
41
41
71
83
84
84

158
173

329

RECOVERING
RECOVERING AN I-D-S DATA FILE

RECOVERY
RECOVERY access mode

REDEFINES
REDEFINES

REFERENCE
reference code
reference code
REFERENCE CODE MANIPULATION

RENAMES
RENAMES

REPORT
I-D-S EXECUTION REPORT
Execution Report
Execution Report
Execution Information Report Program (QUTR)
execution report
Execution Report

REPRESENTATION
STRUCTURE REPRESENTATION

REQUEST
I/O request for a page

RESERVED
I-D-S RESERVED WORDS

RETRIEVAL
Retrieval Via
prime retrieval field
RETRIEVAL VIA
RETRIEVAL VIA
RETRIEVAL VIA clause
RETRIEVAL VIA
RETRIEVAL VIA
retrieval statements

RETRIEVE
RETRIEVE
Retrieve
RETRIEVE
RETRIEVE DIRECT
RETRIEVE EACH
RETRIEVE NEXT
RETRIEVE PRIOR

RETURN
Return
RETURN statement
return to the calling subprogram

330

145

135

32

74
76

303

32

147
196
208
210
235
246

8

154

249

35
35
38
41
75
82
83
86

39
74
85
86
86
86
86

77
77

259

RNG/lBlE ••• 5B5E/
RNG/lB,lE, ••• 1 5B,5E/

ROLLBACK
rollback

ROUTINE
QUTU utility routine
Storage Tape Dump/Print Utility Routine (QUTD)
Page Initialize Utility Routine (QUTI)
Data Base Load/Print Utility Routine (QUTL)
I-D-S modify routine

RULE
Overflow rule

SAMPLE
SAMPLE DECK SETUPS

SECONDARY
SECONDARY RECORDS
primary and secondary records
secondary records
Secondary records

SECTION
Configuration Section
Input-Output Section
IDS Section
Working-Storage Section
Constant Section
IDS Section
IDS Section

SEGMENTATION
Segmentation

SELECT
SELECT IDS
SELECT UNIQUE MASTER
SELECT CURRENT MASTER
Select
SELECT

SELECTED
Selected Record Sort Utility Program (QUTS)

SELECTING
Selecting Master Record of a Chain

SELECTOR
Journal Record Selector Utility Program (QUTP)

SEQUENCE
Sequence Number

238

147

147
187
192
199
242

84

295

13
40
41
83

25
27
28
28
28
74
82

257

27
49
49
56

206

213

15

206

142

331

SERVICE
Directive Processor and Service Subroutine (.QDIR)

SETUP
deck setup for an I-D-S ::>ort

SETUPS
DECK SETUPS
SAMPLE DECK SETUPS

SICT
SICT Table
Slave I-D-S Control Table (SICT)
SICT table

SLAVE
Slave Begin Sync Record Type 03
TYPE 3 Slave Begin Sync (SLVBGN)
TYPE 4 Slave End Sync (SLVEND)
Slave I-D-S Control Table
SLAVE I-D-S CONTROL TABLE
Slave I-D-S Control Table
Slave I-D-S Control Table (SICT)

SLVBGN
TYPE 3 Slave Begin Sync (SLVBGN)

SL VEND
TYPE 4 Slave End Sync (SLVEND)

SOFTWARE
Consideration When Mixing Software

SORT
sort key field
sort key
Sort
deck setup for an I-D-S sort
Randomizing Analyzer/CALC Pre-Load Sort Utility
Selected Record Sort Utility Program (QUTS)

SORTED
SORTED
SORTED WITHIN TYPE
SORTED WITHIN TYPE
SORTED

SPECIFIC
CALL's to load specific subprograms

STATEMENT

332

OPEN statement
RETURN statement
CALL s ta temen t
EXIT statement
ENTRY POINT statement,

232

152

97
295

154
155
155

138
141
141
152
154
154
155

141

141

267

70
75
79

152
180
213

40
40
47
47

262

42
77

259
259
260

STATEMENTS
COBOL procedural statements
I-D-S Imperative Statements
I-D-S Conditional Statements
retrieval statements

STATISTICS
TYPE 9 Statistics

STORAGE
Storage Tape Dump/Print Utility Routine (QUTD)

STORE
STORE
Store
STORE

STRATEGY
Buffer Strategy for Inventory Buffers
Buffer Strategy for Page Buffers

STRUCTURE
STRUCTURE REPRESENTATION
I-D-S DATA FILE STRUCTURE DESCRIPTION
DEFINITION STRUCTURE
I-D-S Data File Structure

STRUCTURES
SUMMARY OF DATA STRUCTURES

SUBFILE
subfile
Subfile Allocation
subfile allocation criteria
Subfile Deallocation

SUBPROGRAM
return to the calling subprogram
FORTRAN subprogram

SUBPROGRAMS
Communication Between Subprograms
CALL's to load specific subprograms

SUBROUTINE
UTILITY PROGRAM AND SUBROUTINE DESCRIPTIONS
Subroutine .QSTB
Directive Processor and Service Subroutine (.QDIR)
. QSTC subroutine
Verify and Print Utility Subroutine (.QUTF)

SUBROUTINES
I-D-S UTILITY PROGRAMS AND SUBROUTINES
PRIMARY SUBROUTINES

SUMMARY
SUMMARY OF DATA STRUCTURES

32
61
85
86

141

187

39
82
85

159
166

8
101
101
128

12

125
132
134
136

259
266

258
262

179
210
232
237
244

177
29 3

12

333

SYMBOLS
I-D-S GENERATED GMAP SYMBOLS

SYMDEF
SYMDEF

SYNC
Slave Begin Sync Record Type 03
TYPE 3 Slave Begin Sync (SLVBGN)
TYPE 4 Slave End Sync (SLVEND)

SYNONYM
Synonym

SYSTEM
File System Activity ($ FILSYS)
System Master Catalog

TABLE
Slave I-D-S Control Table
Page Buffer Activity Table
SLAVE I-D-S CONTROL TABLE
SICT Table
Slave I-D-S Control Table
Slave I-D-S Control Table (SICT)
SICT table
Page Buffer Activity Table

TABLES
Chain Tables

TAPE
Storage Tape Dump/Print Utility Routine {QUTD)
Journal Tape Dump Utility Program {QUTJ)
Tape Format

TEMPORARY
Creating a Temporary I-D-S Data File
Mixing Temporary and Permanent Files
TEMPORARY I-D-S DATA FILE
TEMPORARY AND PERMANENT I-D-S DATA FILE

TERMINATION
Termination Code

TIME
Time

TOP
top of page

TOTAL
Total Control Entry

334

249

232

138
141
141

59

125
128

152
152
154
154
154
155
155
166

18

187
19 5
207

129
131
178
178

141

141

235

155

TRACE
TRACE
Complete trace entry
TRACE heading
TRACE

TRANS FERRIN G
transferring control during execution

TRANSLATE
Translate and Compile
Translate, Compile, and Execute

TRANSLATOR
TRANSLATOR PROCESSING

TYPE
Type
SORTED WITHIN TYPE
SORTED WITHIN TYPE
Slave Begin Sync Record Type 03
Record Type
TYPE 3 Slave Begin Sync (SLVBGN)
TYPE 4 Slave End Sync (SLVEND)
TYPE 5 Before Page Image (BEFORE)
TYPE 6 After Page Image (AFTER)
TYPE 9 Statistics
Type 5 Before Page Image (BEFORE)
Type 6 After Page Image (AFTER)
Current type of I-D-S operation
Current record type
Data Type

TYPE IN
IDSEJ typein

TYPES/NNN .•. NNN/
TYPES/nnn, ••• ,nnn/

UNIQUE
SELECT UNIQUE MASTER

USE
Use
USE clause
$ USE control card

USER
USER ENTRY POINT
user entry point (QSTA4)

USE RID
$ USERID control card

USING
USING I-D-S WITH A COBOL OVERLAYED PROGRAM

237
242
242
251

259

97
98

91

34
40
47

138
141
141
141
141
141
141
165
165
242
242
242

142

238

49

89
89

267

241
241

128

264

335

UTILITY
QUTU utility routine
I-D-S UTILITY PROGRAMS AND SUBROUTINES
UTILITY PROGRAM AND SUBROUTINE DESCRIPTIONS
Randomizing Analyzer/CALC Pre-Load Sort Utility
Storage Tape Dump/Print Utility Routine (QUTD)
Page Initialize Utility Routine (QUTI)
Journal Tape Dump Utility Program (QUTJ)
Data Base Load/Print Utility Routine (QUTL)
Journal Record Selector Utility Program (QUTP)
Selected Record Sort Utility Program (QUTS)
File Utility Program (QUTU)
Verify and Print Utility Subroutine (.QUTF)

VARIABLE
variable field of a directive

VERBS/XXX ... XXX/
VERBS/xxx, .•. ,xxx/

VERIFY

VIA

Verify and Print Utility Subroutine (.QUTF)
verify

Retrieval Via
RETRIEVAL VIA
RETRIEVAL VIA
RETRIEVAL VIA clause
RETRIEVAL VIA
RETRIEVAL VIA

WHEN
Consideration When Mixing Software

WITH
USING I-D-S WITH A COBOL OVERLAYED PROGRAM
FORI'RAN - INTERFACING WITH COBOL AND I-D-S

WITHIN
SORTED WITHIN TYPE
SORTED WITHIN TYPE

WORD
Record control word

WORDS
I-D-S RESERVED WORDS

WORK
ASSIGNMENT OF I-D-S BUFFER AND WORK AREAS

WORKING-STORAGE
Working-Storage Section

336

147
177
179
180
187
192
195
199
206
213
217
244

233

238

244
244

35
38
41
75
82
83

26 7

264
265

40
47

142

249

151

28

WRITE

$

WRITE access mode

$ IDS control card
$ IDS CONTROL CARD DESCRIPTION
File System Activity ($ FILSYS)
$ USERID control card
$ PRMFL control card
$ PRMFL
$ DISC
$ MASS
$ USE control card

• IDS •••
labeled corrunon area (.IDS •••)

.Q
.Q data file

.QBCD
.QBCD

.QCD
.QCD - CONTROL DEFINITION

.QCLR
.QCLR

.QCSM
.QCSM

.QDD
.QDD - DETAIL DEFINITION

.QDIR
Directive Processor and Service Subroutine (.QDIR)

.QDIRC
.QDIRC

.QFD
.QFD - FIELD DEFINITION

.QMCH
.QMCH

.QMD
.QMD - MASTER DEFINITION

.QMEX
.QMEX

.QMWD
.QMWD

135

91
93

125
128
132
157
157
157
267

264

129

234

124

234

234

121

232

233

123

235

122

235

236

337

.QNAMS
.QNAMS macro

.QPBK
.QPBK

.QRD
.QRD - RECORD DEFINITION

.QSFD
.QSFD

.QSTB
Subroutine .QSTB

.QSTC
.QSTC subroutine

.QUTF
Verify and Print Utility Subroutine (.QUTF)

.QUTF

• QU'rFl
.QUTFl

.QUTF2
.QUTF2

.QUTF3
.QUTF3

.QVFY
.QVFY

338

241

236

120

233

210

237

244
246

244

245

246

244

HUNt:.YWt:.LL INt-UHMA 1 IUN ::;y::; I t:.M:)

Technical Publications Remarks Form*

TITLE: SERIES 600/6000 INTEGRATED DATA
STORE REFERENCE MANUAL

ERRORS IN PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

(Please Print)

FROM: NAME~~~~~~~~~~~~~~~~~~­

COMPANY~~~~~~~~~~~~~~~~~­

TITLE --------------------­

ADDRESS---------------~--~

ORDER NO: I BR69, REV. 0

DATED: I JANUARY, 1971

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check here. D

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS

60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: U.S. GROUP PUBLICATIONS, MS 050

Honeywell

2628
51071
Printed in U.S.A.

The OtluComputerCompany:

Honeywell

HONEYWELL INFORMATION SYSTEMS

BR69, Rev. 0

