-« Honeywell Bull FORTRAN

SERIES 600/6000

SOFTWARE

BJ67, Rev. 1 Ref.: 19.30.222 A

Honeywell Bull rorman

SERIES 600/6000

SUBJECT :
General Description, Capabilities, Rules and Definitions, User

Interfaces, Statements, Input/Output, and Subroutines of the
Series 600/6000 FORTRAN.

SPECIAL INSTRUCTIONS:
This manual, Order Number BJ67, Revision 1, supersedes BJ67,
Revision 0, dated June 1971, and Addendum 1, dated September
1971, Addendum B, dated December 1971, and Addendum C, dated
July 1972,

Change bars in the margins indicate technical additions and
changes; asterisks indicate deleted material,

SOFTWARE SUPPORTED:

Series 600 Software Release 7.0
Series 6000 Software Release E

DATE :
March 1973
ORDER NUMBER:

BJ67, Rev. 1
Ref: 19.30.222 A

Printed in France

PREFACE

This manual describes the Honeywell Series 6000 FORTRAN compiler, which is
intended as a replacement for Series 600 FORTRAN IV (Batch) and Series 600 Time
Sharing FORTRAN. This compiler is a compatible extension of the current Series
600 compilers and provides an extended software capability for the Series 6000
computers. This reference manual assumes that the reader is familiar with
FORTRAN programming principles and basic concepts. All of the necessary Series
6000 FORTRAN rules and statements are included in this manual.

Fortran is a coded system designed to extend the power of
Series 600/6000 in +the area of program preparation and
maintenance., It is supported by comprehensive documentation
and training; periodic maintenance and, where feasible,
improvements are furnished for the current version of the
system, provided it is not modified by the user.

(:) 1971, 1972, 1973, Honeywell Information Systems Inc. File No.: 1623,1723

BJ67

FUNCTIONAL LISTING OF PUBLICATIONS

FUNCTION

for
SERIES 600 SYSTEM

APPLICABLE REFERENCE MANUAL

TITLE

Hardware reference:
Series 600
DATANET 355

Operating system:
Basic Operating System

Control Card Formats

System initialization:
GCOS Startup
Communications System

Storage Subsystem Startup

Data management:
File System
Integrated Data Store
(I-D-8)
File Processing
Multi-Access I-D-S

File Input/Output
I-D-S Data Query System

I-D~-S Data Query System

Program maintenance:
Object Program
System Editing

Test system:
On-Line Peripheral testing

Total On-Line testing

Language processors:
Macro Assembly Language
COBOL Language
COBOL Usage
ALGOL Language
JOVIAL Language
FORTRAN Language
FORTRAN IV Language
DATANET 355

Generators:
Sorting
Merging

Simulators:
DATANET 355 Simulation

Series 600:

System Manual
DATANET 355 Systems Manual

General Comprehensive Operating
Supervisor (GCOS)
Control Cards Reference Manual

System Operating Technigues

GRTS/355 Startup Procedures
Reference Manual

DSS5180 Disk Storage Subsystem
Startup Praqcedures

File Management Supervisor
Integrated Data Store

Indexed Sequential Processor

Multi-Access I=D-S
Implementation Guide

File and Record Control

I-D=S Data Query System
Installation

I-D-S Data Query System
User's Guide

Source and Object Library Editor
System Library Editor

GCOS On~Line Peripheral Test
System (OPTS~600)

Total On-Line Test System
(TOLTS)

Macro Assembler Program

COBOL Compiler

COBOL User's Guide

ALGOL

JOVIAL

FORTRAN

FORTRAN IV

DATANET 355 Macro=-Assembler
Program

Sort/Merge Program
Sort/Merge Program

DATANET 355 Simulator
Reference Manual

iii

FORMER ORDER

PUB, NO. NO.
371 BM78
1645 BS03
1518 BR43
1688 BS19
DALO DALOQ
1715 BJ70
DALl DAll
DB54 DB54
1565 BR69
DA37 DA37
DABO DABO
1003 BN85
DB57 DB57
DB56 DB56
1723 BJ71
1687 BS18
1573 BR76
DA49 DA49
1004 BN86
le52 BS08
1653 BS09
1657 BS11
1650 BS06
1686 BJ67
1006 BNE8
1660 BB98
1005 BN87
1005 BN87
1663 BW23
BJ67

FUNCTION

APPLICABLE REFERENCE MAN

TITLE

Remote terminal system:
DATANET 30

DATANET 30/305/355

Service and utility routines:
Loader
Utility Programs
Conversion
System Accounting

FORTRAN

Controller Loader
Service Routines
Software Debugging

Time=-sharing systems:
Operating System

System Programming

System Programming

BASIC Language
FORTRAN Language
Text Editing

Transaction processing:
User's Procedures

Handbooks:
Console Messages
Index

Pocket guides:
Time-Sharing Programming
Macro Assembly Language
COBOL Language
Control Card Formats

Software maintenance (SMD):
Table Definitions

Startup program
Input System
Peripheral Allocation

Core Allocation/Rollcall

Fault Processing
Channel Modules
Error Processing
Output System

File System Modules
Utility Programs
Time-Sharing System

Rev, 7303

Series 600:

NPS/30 Programming
Reference Manual
GRTS Programming Reference

General Loader

Utility

Bulk Media Conversion

GCOS Accounting Summary
Edit Programs

FORTRAN Subroutine Libraries
Reference Manual

Relocatable Loader

Service Routines

Trace and Debug Routines

GCOS Time=Sharing System
General Information

GCOS Time-Sharing Terminal/Batch
Interface Facility

GCOS Time-Sharing System
Programmers' Reference
Manual

Time=-Sharing BASIC

Time-Sharing FORTRAN

Time-Sharing Text Editor

Transaction Processing System
User's Guide

Console Typewriter Messages
Comprehensive Index

GCOS Time=Sharing System

GMAP

COBOL

GCOS Control Cards & BAbort Codes

GCOS Introduction & System
Tables SMD

Startup (INIT) SMD

System Input SMD

Dispatcher and Peripheral
Allocation 8MD

Rollcall, Core Allocation and
Operator Interface SMD

Fault Processing SMD

I/0 Supervisor (IOS) SMD

GCOS Exception Processing SMD

Termination and System Output SMD

File System Maintenance SMD

GCOS Utility Routines SMD

Time~-Sharing Executive SMD

iv

UAL
FORMER ORDER
PUB. NO, NO.
1558 BR68
DAT79 DA79
1008 BN90
1422 BQ66
1096 BP30
1651 BSO7
1620 BR95
DAl2 DAl2
DA9S7 DAY97
DB20 DB20
1643 BSO1
1642 BR29
1514 BR39
1510 BR36
1566 BR70
1515 BR40
DAB2 DA82
1477 BRO9
1499 BR28
1661 BS12
1673 BS1l6
1689 BJ68
1691 BJ69
1488 BR17
1489 BR18
1490 BR19
1491 BR20
1492 BRZ21
1493 BR22
1494 BR23
1495 BR24
1496 BR25
1497 BR26
1498 BR27
1501 BR29
BJ67

FUNCTIONAL LISTING OF PUBLICATIONS

FUNCTION

for

SERIES 6000 SYSTEM

APPLICABLE REFERENCE MANUAL

TITLE

Hardware reference:
Series 6000
DATANET 355

Operating system:
Basic Operating System

Control Card Formats

System initialization:
GCOS Startup
Communications System

Storage Subsystem Startup

Data management:
File System
Integrated Data Store
(I~D=8)
File Processing
Multi-Access I=-D-S

File Input/Output
I-D~5 Data Query System

I-D-S Data Query System

Program maintenance:
Object Program
System Editing

Test system:
On~Line Peripheral Testing

Total On-Line Testing

Error Analysis and
Logging

Language processors:
Macro Assembly Language
COBOL Language
COBOL Usage
ALGOL Language
JOVIAL Language
FORTRAN Language
DATANET 355

Generators:
Sorting
Merging

Series 6000

Series 6000 Summary Description
DATANET 355 Systems Manual

General Comprehensive Operating
Supervisor (GCOS)
Control Cards Reference Manual

System Startup and Operation

GRTS/355 Startup Procedures
Reference Manual

DSS5180 Disk Storage Subsystem
Startup Procedures

File Management Supervisor
Integrated Data Store

Indexed Sequential Processor

Multi-Access I~D=-S
Implementation Guide

File and Record Control

I-D~S Data Query System
Installation

I-D-S Data Query System
User's Guide

Source and Object Library Editor
System Library Editor

GCOS On~-Line Peripheral Test
System (OPTS-600)

Total On-Line Test System
(TOLTS)

Honeywell Error Analysis
and Logging System

Macro Assembler Program

COBOL Compiler

COBOL User's Guide

ALGOL

JOVIAL

FORTRAN

DATANET 355 Macro~Assembler
Program

Sort/Merge Program
Sort/Merge Program

FORMER ORDER
PUB. NO. NO,

DA48 DA48
1645 BS03
1518 BR43
16838 BS19
DAO6 DAO6
1715 BJ70
pall DAll
DB54 DB54
1565 BR69
DA37 DA37
DABO DA8O
1003 BN85
DB57 DB57
DB56 DB56
1723 BJ71
1687 BS18
1573 BR76
DA49 DA49
DB50 DB50
1004 BN86
1652 BS08
1653 BS09
1657 BS11
1650 BS06
1686 BJ67
1660 BB98
1005 BN87
1005 BN87
BJ67

FUNCTION

APPLICABLE REFERENCE MANUAL

TITLE

Simulators:
DATANET 355 Simulation

Service and utility routines:
Loader
Utility Programs
Conversion
System Accounting

FORTRAN

Controller Loader
Service Routines
Software Debugging

Time-sharing systems:
Operating System

System Programming

System Programming

BASIC Language
FORTRAN Language
Text Editing

Remote terminal system:
DATANET 30
DATANET 30/305/355

Transaction processing:
User's Procedures

Handbooks:
Console Messages
Index

Pocket guides:
Time-Sharing Programming
Macro Assembly Language
COBOL Language
Control Card Formats

Rev, 7303

Series 6000:

DATANET 355 Simulator
Reference Manual

General Loader

Utility

Bulk Media Conversion

GCOS Accounting Summary
Edit Programs

FORTRAN Subroutine Libraries
Reference Manual

Relocatable Loader

Service Routines

Trace and Debug Routines

GCOS Time=-Sharing System
General Information

GCOS Time~Sharing Terminal/Batch
Interface Facility

GCOS Time~Sharing System

Programmers' Reference
Manual
Time-~Sharing BASIC
FORTRAN

Time-Sharing Text Editor

NPS/30 Programming Reference
GRTS Programming Reference

Transaction Processing System
User's Guide

Console Typewriter Messages
Comprehensive Index

GCOS Time=-Sharing System

GMAP

COBOL

GCOS Control Cards and Abort
Codes

vi

FORMER ORDER
PUB. NO. NO.

1663 BW23
1008 BN90
1422 BQ66
1096 BP30
1651 BS07
1620 BR95
DAl2 DALl2
DA97 DA97
DB20 DB20
1643 BSO1
1642 BR99
1514 BR39
1510 BR36
1686 BJ67
1515 BR40
1558 BR638
DA79 DA79
DAB2 DA82
1477 BROY
1499 BR28
1661 BSl2
1673 BSl6
1689 BJ68
1691 BJ69
BJ67

Section I

Section IT

CONTENTS

Introduction. « o = ¢ o o o o « o o o o o
General. o« « o 2 o o s o o o o s o o o
Capabilities e o o & o o o
Comparison of FORTRAN Compatlbllltles.

Rules and Definitions . « ¢ o o o o o« o =
Character Set. « ¢ o ¢ e o s s o o o =

Special Characters. « « o « o o o o
Source Program Format. « o« o« o o o o o
Source File TYPES « o o o o o o o o
Relationship of Statements to Lines
Format Rules for LinesS. « o« o« o o =
FORM Formatted Lines- .
NFORM Formatted Lines - NLNO e
NFORM Formatted Lines = LNO. . .
Format Rules Common To FORM/NFORM .
Symbol Formation . « o « « o o o o o o
Data TYPES ¢ o o o o o o o o a o o & o
ConstantSe o« « o o o o 2 o o o o o o o
Integer Constants . ¢ o ¢ o o o o =
Octal Constants « o« o o « o o o o o
Real Constants. « « ¢ o o o o o o =
Double Precision Constants.
Complex Constants « o« o o o o o o
Logical Constants . o« « o o o o o o
Character Constants . « « o« « « o &
Variables. . . . e o o o o e o o o o
Variable Type Deflnltlon. o o o e @
Scalar Variable « o o o o o o o » o
External Variable ¢ o« o o o o o o =
Parameter Symbols . o o o o o o o o
Character Variable. « o o« o o o o o
AYXTray o o o o o o o o o o o o o o o
Array Element « o o« o « o o o o s @
SUbSCriptSe o « o s o o o o o o o o
Form of Subscript o o« ¢ o o o o o o
Subscripted Variables « « o o o o o
Array Element Successor Function. .
Array DeclaratOr. « o « o o o o o o
Adjustable Dimensions . « « o o « o
EXpressionS. ¢ o o o o o o o o o o o o
ArithmeticCe o o « o o o o o o o o
Logical ¢ o o o o o o o o s o & o
Relationale « 2« o o o o o o o o o «
TypelessS. o« o o o o o o o o o o o o
Evaluation of Expressions . . « « »
Unary OperatOors « o « o o o o o o o
FORTRAN Statements . « « o = e o & e
Types of FORTRAN Statements c o o e
Arithmetic Statements . . « « « « &
Control StatementS. o« o o o o o o o
Input/Output Statements « o o o o o

vii

o
v
Q
[0]

I I O N |

o

i
= 0 00 00 OY UT UT b o b W W N N

o

MNRNNNDNDNDNDNDNINDNDNDNNDNDNDND NN
| i

e

O

2-12
2-12
2-13
2=13
2=~13
2-13
2-13
2-14
2-14
2-14
2-14
2-14
2-15
2-15
2-16
2-16

=17
2=17
2=-19
2~20
2=22
2-22
2-23
2-23
2~23
2=24
2-24
2=24

BJ67

Section III

Section IV

CONTENTS (cont)

Subprogram Statements . . v . . ¢ v 4 . 6 o
Specification Statements. . o o o o o o o o o
Compiler Control Statement. . o o o o o o o o
Index of Statements . .« ¢ o o o ¢ o o o o o

User Interfaces . . . & 4 & & o o o o o o = o « o @
Batch Mode . © o . v & & & & o ¢ o o o 0 o o a0 e
Bateh Call Card . . . & o o ¢ o o « & o o o
Sample Batch Deck Setup o o o v o & o o o o &
Time Sharing System Operation., . . o o o « o o
Time Sharing System Command Language.
Time Sharing Commands of the YFORTRAN and
FORTRAN Time Sharing Systems o o« o
Log=0On Procedure. . o o o o « o o o o o o o o
Entering Program-Statement Input. . o o o o
Format of Program-Statement Input
Significance of the Control Character. . .
Blanks (or Spacing) Within a Line of
Input ¢ & ¢ ¢ o 4 o o o 8 6 0 e 6 o o
Correcting or Modifying a Program o .
Input Error RecovVery. N o o
The YFORTRAN Time Sharing bystem RUN Fommand
The FORTRAN Time Sharing System RUN Command .
Link Overlays Under Time Sharing.
Specify RUN Command as First Line of Source
File o o 0 o o o o o e o o o o o o o o a0
RUN Examples. o e o e
Batch Activity Spawned bj the YFORTRAN
Time Sharing System RUN Command. . o . . .
Example of a Time Sharing Session
Supplying Direct-Mode Program Input
Emergency Termination of Execution.
Paper Tape Input. « o ¢ & o & ¢ 5 o o o o o
Remote Batch Interface . o o ¢ v ¢ ¢ « o o o o
File System Interface. . o o « o v o o o o o o
Terminal Batch Interface . . v o o o o « o o o o
ASCII/BCD Considerations . v v o o o o o o o o
File FOrMATS « & o o o o o« o o o o o o o o o o o
Global Optimization, + v & ¢« v & & o « « o o o
Compilation Listings and Reports . . . o . o o .
Source Program Listing. . « ¢ o« o o o o & o .
To-From Transfer Table. o « o o 4w o o o o o o
Program Preface SUNMATY . « o & & o o o o o o
Storage Map o o v o s e 6 4 e s 4w o w a e e
Object Program Listing. . o o o o o o o o o
Cross Reference List. o v o o o o o o o o o »
Statistics REPOTE v v o 4w o o v o & o o o o .

FORTRAN StatementsS. . o & v & o o o o o o o o o o
Assignment . ., e & o o s © 5 & 6 o o 8 e o o
Arithmetic ASSlgnment Statement . ¢ o
Logical Assignment Statement. . . o o o o . .
Character Assignment Statement.

Label Assignment Statement., . . o o o o o o .

viid

3-22

3-23
3-24
3-24
3-24
3-24
3-25
3-25
3-26
3-27
3-29
3-30
3-31
3-31

BJ67

CONTENTS (cont)

ABNORMAL &+ & o o o o o o o o o o o o o o o o o &
BACKSPACE. & o o o o o o o o o o o o o o o o o &
BLOCK DATA & & & & o o o o o o o o o o o o o o &
CALL v o
CHARACTER. + o o o o o o o o o o o o o o o o o &
COMMON & & & & o o o o o o o o o o o o o o o o o
COMPLEX. « o o o o o o o o o o o o o o o o o o &
CONTINUE & o o o o o o o o o o o o o o o o o« o &
DATA & o o o o o o o o o o o o o o o o o o 0 o .
DECODE & & + ¢ o o o o o o o o o o o o o« o o o &
DIMENSION. & & o o o o o o o o o o o o o o o o« &
DO & v w o o o 4 e e e e e e e e e e e e e e
DOUBLE PRECISION « & &« o o o o o o « o o o o « =
ENCODE & & o o o o o o o o o o o o o o o o o o &
ENDe o
ENDFILE. & o o o o o o o o o o o o o o o o o o o
ENTRY. & o
EQUIVALENCE. & o o o s o o o o o o o o o o o o &
EXTERNAL & & o o o o « o o o o o o o o o o o o &
FORMAT & v & o o o o o o o o o o o o o o o o o &
FUNCTION & & & o o o o o o o o o o o o o o o o &
GO TOu v 4 v o o o o o o o & o o o o e e e e ..
IF, ARITHMETIC . . & & o o o o o o o o o o o o &«
IF, LOGICAL. « & & & o o o o o o o o o o o o o o
IMPLICIT o v o o o o o o o o o o o o o o o o o 4
INTEGER: « « o o o o o o o o o o o o o o o o o o
LOGICAL: o & & o o o o o o o o o o o o o o o o
NAMELIST &« ¢ o o o o o o o o o o o o o o o o o &
PARAMETER. « & o + o o o o o o o o o o o o o o &
PAUSE. & & o o o « o o o o o o o o o o o o o o &
PRINT. & o o o o o o o o o o o o o o o o o o o &
PUNCH. & & o v o o o o o o o o o o o o o o o o 4
READ & & & o o o o o o o o s o o o o o o o o o &
REAL & v o o ¢ o o o o o o o o o o o o o o o o s
RETURN & & ¢ o o o o o o o o o o o o o o o o o o
REWIND & o o o o o o « o o o o o o o o o o o o »
)
SUBROUTINE . & v v v v v om o ve oo e s
TYPE & & o o o o o o o o o o o o o o o o o o o .
WRITE. & o

Section V Input and Output. « « o o o o o o o @« o o o o & o =
General Description. « « o « o o o o o o o o o
File Designation. « o o e o o o s o = s o
List Spec1f1catlons . o o o e o
List Directed Formatted Input/Output Statement .
Namelist Input/Output Statements. . . « o o &
NAMELIST Inpute o o o o o s o o s o o o o o
NAMELIST Output . . + o « o & & . P .
Data Input Referring to a NAMELIST Statement.
Data Output Referring to a NAMELIST
Statement. e o e o o o o o e e
Formatted Input/Output Statements . e o .
Unformatted Sequential File Input/Output
Statements e o e e
Unformatted Random Flle Input/Output
Statements 4 ¢ 6 6 6 e 6 e 6 s
File Properties . o o o « o o o o o o o « o &

ix

4-7
4-8
4-9
4-10
4-12

b
i

Oy Ut
W = WO

!k{l l{!LﬂU’lU’IU‘IU’!U‘!U‘lU"I
Pl

| el ond [eoliealiec BEN Be B O O e

w o

BJ67

CONTENTS (cont)

File Handling Statements , .
Internal Data Conversion . .
Multiple Record Processing .
Editing Strings with ENCODE,
Conditional Format Selection
Construction of Formats with
Output Device Control. . . .
Format Specifications. . . .
Field Separators.
Repeat &pealflcatlon. . e
Scale Factors
Multiple Record Formats .
Carriage Control.
Data Input Referring to a
Numeric Field Descriptors
Complex Number Fields . .
Alphanumeric Fields . . .
Logical Field Descriptor.

e & 8 s @ e ®

e @ s e o e ©

e e s s © o e

o o e o e ® @

® @ e e s ®

s ® e ® s s

° @ e ® e @

® s e s« 6 o °

® ® 8 © o e @

s e e e e e o

Character Positioning Field Descriptors

X Format Code ., . . . o .
T Format Code . . o « o o

@ e e « o o @

e e @ @ s s @

Variable Format Specifications.,

Section VI Subroutines, Functions, and Subprogram Statements

Naming Subroutines

e e ® o e o e

Arithmetic Statement Functions . . . o . .
Defining Arithmetic Statement Functions

ASF Left of Equals. . . .

® e ® @

®

®

@

Referencing Arithmetic Statembnt Functions.
Arithmetic Statement Function Example . . .

Supplied Intrinsic Functions

° e e e ° °

Argument Checking and Conversion for

Intrinsic Functions. .

® e e ® @ ® w

Automatic Typing of Intrinsic Functions

FID: ¢ o o o o o o o =

@ ® ® e s e @

Typeless Intrinsic Functions.

Function Subprograms . . .

e e o ® e e @

Defining FUNCTION Subprograms o e o o @
Supplied FUNCTION Subprograms e e e e
Referencing FUNCTION Subprograms. e e e
Example of FUNCTION Subprogram.

SUBROUTINE Subprogram. . . .

© e e o a @

Defining SUBROUTINE Subprograms © o o @
Referencing SUBROUTINE Subprograms. . .
SUBROUTINE Subprogram Example
Returns from Function and Subroutine

Subprograms. . .

° ®

Multiple Entry Poxnts Into a Subprogram

Dummy Argument.,

» e & @ e o o

Supplied SUBROUTINE Subproqrams o o o o
DUMP (DUMPA) , PDUMP (PDUMPA).

DUMP, PDUMP. ,
EXIT & o v o o o o o
FCLOSE « v v & o o o .
FLGEOF . v v v & o o
FLGERR . + & ¢ & u o
SLITE: &« v o o o o o
SSWICH © v v v o o o W

°

Page

5-15
5~-15
5-15
5-16
5-17
5-17
5-18
5-19
5-19
5-19
5-19
5-20
5-21
5-21
5«22
5-24
5-24
5-25
5-26
5-26

[

AT OO D
i | I T A |
b i L0 BN

S5 10 N A< AN <) e A<) e a0 e A< NI
[
o e 00O UT TR

U wwwio

H

oY Oy

1
bt
~ U

6-18
6-19
6-22
6-22
6-22
6-22
6-23
6-23
6-23
6~24

BJ67

Appendix
Appendix
Appendix
Appendix

Index .

Figure
Figure
Figure

Figure
Figure
Figure

2
2
2
Figure 3-
4
5
5

CONTENTS

(cont)

Executive Error Monitor.
CHECK

OVERFLOW, DIVIDE

LINK AND

SETBUF
SETFCB
SETLGT
CNSLIO
RANSIZ
FPARAM
CREATE
DETACH
ATTACH
FMEDIA

LLINK

s o

ASCB, ASCBA. .

TRACE.

Character Set .

Diagnostic Error Comments

°

°

e o e

® ® ®

®

°

Introduction to Series 6000

@

FORTRAN

FORMAT GENERATOR and DEBUG Statements

ILLUSTRATIONS

FORTRAN Coding Sheet. .
Arithmetic Expressions +,

°

Compilation Listings and Reports.
Arithmetic Assignment Statement Combinations.
Test Program for NAMELIST Output.
NAMELIST Output of Fixed Point and Real Arrays.

xi

®

°

-, *, and / .
Arithmetic Expressions - Exponent (%%, A

o

® ®

©

)

°

Page

6-24
6-31
6-31
6-32
6-32
6-32
6-33
6-33
6-34
6-35
6~36
6-36
6=-37
6-37
6-37

BJ67

TABLES

(o2}

Table
Table

H
4

Supplied SUBROUTINE Subprograms . « « « o « o o o o
Error Codes and MeaningsSe. . - o o« o o« o « o o s o =

i
i

DO

Page
Table 1-1 Comparison of FORTRAN FeatureS. « « o « o o o o o o 1-3
Table 2-1 Alphabetical Listing of FORTRAN Statements. 2-2
Table 3-1 YFORTRAN and FORTRAN Time Sharing Systems Commands. 3~5
Table 4-1 Rules for Assignment of E to V. ¢ ¢ o ¢ o o o ¢ o o 45
Table 6-1 Supplied Intrinsic Functions. . « « o » = o o « o o 6-7
Table 6-2 Supplied FUNCTION Subprograms . « o o « = = o o o o 6-1
6-3 62
6-4 62

xii BJ67

SECTION I

GENERAL

FORTRAN is an automatic coding language. It closely resembles the ordinary
language of mathematics and provides the facility for expressing any problem
reguiring numerical computation. In particular, problems involving large sets of
equations and containing many variables may be handled easily, FORTRAN is
especially suited for solving scientific and engineering problems, and it is
also suitable for many business applications.

The FORTRAN Language consists of words and symbols arranged into statements. A
set of FORTRAN statements, describing each step in the solution of a problem, is
3 FORTRAN program {a source language program).

o]

T

The Series 6000 FORTRAN ccmpiler is a processor which translates a FORTRAN
program into machine language. Each computing system that has a FORTRAN compiler
translates FORTRAN programs into its own machine language., This processor is
provided as a part of the Series 600/6000 Software System to translate FORTRAN
source language programs to machine language programs in the form acceptable for
execution with the General Comprehensive Operating Supervisor (GCO0S).

4

The FORTRAN language is augmented by a prewritten library of routines which
accompany the system. These routines evaluate the standard arithmetical
functions, provide all input/output for the program, and furnish the wuser with
other services to aid in the problem solution. Special purpose routines may be
written by the user for use as subprograms.

CAPABILITIES

The Series 6000 FORTRAN services both batch and time sharing, wusing the same
compiler modules for both environments, Users have the capability of developing
programs for eventual use in the batch environment with the convenience of the
interactive time sharing environment, and after debug is complete, submitting
them to batch without concern for time sharing/batch language incompatibilities.

This compiler allows users to enter FORTRAN programs in exactly the same form
regardless of the input medium or location, The only difference in the input
stream at the user interface is the mandatory presence of GCOS control cards for
local and remote batch and the required use of command language in the time
sharing environment. Remote accessed use of GCOS, including both time sharing
and remote batch, will contribute significantly to the job load at the Central
Computer Site.

A number of the extensions which were developed by other manufacturers add
significant capabilities to the FORTRAN language. llany of these new features
have been included in the Series 6000 FORTRAN; particularly extensions contained
in the IBM 360 FORTRAN and the UNIVAC FORTRAN V, Some entirely new features, not
available on any other FORTRAN compiler, have also been included.

COMPARISON OF FORTRAN COMPATIBILITIES

Table 1~1 contains the capabilities of the Series 6000 FORTRAN as compared with
the Series 600 Time Sharing FORTRAN, the Series 600 FORTRAN IV (batch), and the
ANSI standard FORTRAN. As indicated, the Series 6000 FORTRAN is +the most
comprehensive.

1. ANSI FORTRAN IV is a subset of Series 6000 FORTRAN,
2. Series 600 FORTRAN IV is a subset of Series 6000 FORTRAN except:

a., FORMAT GENERATOR feature 1is not 1in Series 6000 FORTRAN., (See
Appendix D for a conversion routine.)

b. The DEBUG Statement is not in Series 6000 FORTRAN. (See Appendix D
for a conversion routine.,)

3. Series 600 Time Sharing FORTRAN is not a subset of Series 6000 FORTRAN;

however, Series 6000 FORTRAN contains many of the time sharing FORTRAN
extensions with slightly different syntax and form.

Series 6000 FORTRAN is fully compatible, at the object level, with Series 600
FORTRAN (Batch) .

1-2 BJ6 7

Table 1-1. Comparison of FORTRAN Features
Series 6000 | Series 600 Series 600 ANST
FORTRAN FEATURE FORTRAN FORTRAN IV | Time Sharing FORTRAN
FORTRAN
GENERAL PROPERTIES
Statement Numbers 1 thru 1 thru 1 thru 1 thru
99,999 99,999 99,999 99,999

Embedded Blanks Allowed | Yes Yes Yes Yes
Continuation Cards 19 19 No limit 19
Specification Statement | No Yes Yes No
Must Precede lst

Executable Statement
Arithmetic Yes Yes Yes Yes

Statement Function

Must Precede All

Executable Statements
Arithmetic Statement No Yes Yes Yes

Function must follow

all specification

statements

CHARACTER variables

and constants Yes No No No
IMPLICIT Yes No No No
ENTRY Yes Yes No No
FORMAT GENERATOR No & Yes No No
DEBUG No & Yes No No
Adjustable Dimensions Yes Yes Yes Yes
Array Dimensions 7 7 63 3
Initialize Data in Yes No No No

Type Statement

$ Acceptable within No No No No

a Symbol

a
Refer to Appendix D for a description of a conversion program for these

statements.

BJ67

Table 1=1 (cont). Comparison of FORTRAN Features
Series 6000 | Series 600 Series 600 ANST
FORTRAN FEATURE FORTRAN FORTRAN IV | Time Sharing FORTRAN
FORTRAN

Mixed Mode Expressions Yes No Yes No
Allowed

General Arithmetic Yes No Yes No
Expressions Within

Subscripts
General Arithmetic Yes No Yes No
Expressions in Output

Lists
ALTERNATE RETURNS

Statement number used

as an argument is

preceded by $ $ S No
Switch variable as

alternate return Yes Mo No No
Multiple entry points

to a subprogram Yes Yes No No
Size~in-Bytes

Specification in TYPE

statements Yes No No No
END=Clause

in READ statements Yes No Yes No
ERR=Clause

in I/0 statements Yes No No No
CHAIN Overlays No No Yes No
LINK Overlays Yes Yes No No
Constant Zero Accepted

as the Initial Value

of a DO index No No Yes No
Value (in storage) of No (OPTZ) No Yes o
the DO index is

always updated Yes (NOPTZ)

BJ67

Table 1-1 (cont).

Comparison of FORTRAN Features

Series 6000 | Series 600 Series 600 ANSI
FORTRAN FEATURE FORTRAN FORTRAN IV | Time Sharing FORTRAN
FORTRAN
STATEMENT EXTENSIONS
Namelist without file
reference Yes No Yes No
NAMELIST Yes Yes Yes No
NAMELIST Array 7 3 63 No
Available Dimensions
ENCODE/DECODE Yes No Yes No
FILENAME and ASCII No No Yes No
Variables and
Constants
PARAMETER Pl = Vi, Yes No No No
PZ = Vz, oo e
ABNORMAL Yes No No No
CONSTANTS, VARIABLES
SUBSCRIPTS, EXPRESSTIONS
Complex Numbers Yes Yes No Yes
Double Precision Yes Yes No Yes
Numbers
Logical Constants Yes Yes Yes Yes
Subscript Forms:
V,C,VjC,C*V,C*ViC’ Yes Yes Yes Yes
Any arithmetic
expression as a
subscript Yes No Yes No
Relational Expressions Yes Yes Yes Yes
Variable Length Names 1-8 1-6 Unlimited 1-6
Mixed Mode Expressions Yes Floating pt. Yes No
Allowed forms only.
Data Initialization Yes Yes Yes Yes
Statement
Quoted Literals Yes Yes Yes No

BJ67

Table 1-1 (cont). Comparison of FORIRAN Features
Series 6000 | Series 600 Series 600 ANSI
FORTRAN FEATURE FORTRAN FORTRAN IV | Time Sharing FORTRAN
FORTRAN
Integer Constants:
Number Digits 1-11 1-11 1-11 ——
Magnitude 235-1 235-1 235-1 e
Real Constants:
Number Digits 1-9 1-9 1-9 ———
Magnitude 1038 1038 1038 ———
Subscript Magnitude 218 218 218 -
A**B%**C Prohibited No Yes Yes Yes
CONTROL STATEMENTS
GO TO n Yes Yes Yes Yes
GO TO (nq,n2,e0.,0m)1 Yes Yes Yes Yes
IF (a) ny,np,nj3 Yes Yes Yes Yes
(Arithmetic IF)
IP (a)s (Logical IF) Yes Yes Yes Yes
Assign i to n Yes Yes Yes Yes
GO TO N, (ny,ng,...,nm |Yes Yes Yes Yes
DO n i = my,mp,m3 Yes Yes Yes Yes
CONTINUE Yes Yes Yes Yes
PAUSE, PAUSE n Yes Yes No (Library Yes
Routine)

STOP Yes Yes Yes Yes
STOP n Yes No No Yes
END Yes Yes Yes Yes
INPUT/OUTPUT STATEMENTS
FORMAT (C1,C2s000,Cn/ Yes Yes Yes Yes
c'ys¢'24000,C'n)

BJ67

Table 1-1 (cont). Comparison of FORTRAN Features
Series 6000 | Series 600 Series 600 ANSI
FORTRAN FEATURE FORTRAN FORTRAN IV | Time Sharing FORTRAN
FORTRAN
Formatted Sequential
Character I/0 Statements
PRINT/READ t,list Yes Yes Yes No
PUNCH t,list Yes Yes No No
PRINT/READ, list Yes No Yes No
PUNCH, list Yes No No No
PRINT/READ X Yes Yes Yes No
PUNCH X Yes No No No
READ (f,t) list Yes Yes Yes Yes
WRITE (f,t) list Yes Yes Yes Yes
READ (f,x) Yes Yes Yes No
WRITE (f,x) Yes Yes Yes No
Unformatted Sequential
Binary I/0 Statements
READ (f) list Yes Yes Yes Yes
WRITE (f) list Yes Yes Yes Yes
Unformatted Random
Binary I/0 Statements
READ (f'n) list Yes No Yes No
WRITE (f'n) list Yes No Yes No
Format Property
A-Conversion Yes Yes Yes Yes
R-Conversion Yes No No No
F-Conversion Yes Yes Yes Yes
E-Conversion Yes Yes Yes Yes
G-Conversion Yes Yes Yes Yes
H~Conversion Yes Yes Yes Yes

BJ67

Table 1-1 (cont).

Comparison of FORTRAN Features

Series 6000 | Series 600 Series 600 ANSI
FORTRAN FEATURE FORTRAN FORTRAN IV | Time Sharing FORTRAN
FORTRAN
I-Conversion Yes Yes Yes Yes
X=-Conversion Yes Yes Yes Yes
D-Conversion Yes Yes No Yes
V=Conversion Yes No Yes No
L=Conversion Yes Yes Yes Yes
T-Conversion Yes No No No
O=-Conversion Yes Yes Yes No
For n Slashes at End, n n n n
Input Records Skipped
For n Slashes at End, n=-1 n-1 n-1 n
Blank Records Written
Quoted Literals Yes Yes Yes No
Scale Factors Yes Yes Yes Yes
Field Repetition Yes Yes Yes Yes
Parentheses Levels 2 2 10 2
Carriage Controls:
blank Yes Yes Yes Yes
0 Yes Yes Yes Yes
1 Yes Yes Yes Yes
+ Yes Yes Yes Yes
Format Statements Yes Yes Yes Yes
Read In at Object
Time
File Manipulation
Statements:
ENDFILE a Yes Yes Yes Yes
REWIND a Yes Yes No Yes
BACKSPACE a Yes Yes Yes Yes
OPENFILE a No No Yes No
BEGINFILE a No No Yes No

BJ67

Table 1~1 (cont).

Comparison of FORTRAN Features

Series 6000 | Series 600 Series 600 ANSI
FORTRAN FEATURE FORTRAN FORTRAN 1V | Time Sharing FORTRAN
FORTRAN
CLOSEFILE a NoO No Yes No
SPECIFICATION STATEMENTS
INTEGER a(il),b(iz)o.. Yes Yes Yes Yes
REAL a(iy) ,b(i2)... Yes Yes Yes Yes
DOUBLE PRE€ISION
a(iy), b(ig) .. Yes Yes No Yes
LOGICAL a(il), b(ip).. |Yes Yes Yes Yes
COMPLEX a(iy), b(ip).. |Yes Yes No Yes
CHARACTER a(il),b(iz). Yes No No No
ASCIT a(iyg),b(ip)... No No Yes No
FILENAME a,b... No No Yes No
DIMENSION aq(ky), Yes Yes Yes Yes
az(kz) 7oooa e
COMMON a,b,Cys..,d,e,f |Yes Yes Yes Yes
COMMON a,b,Creaes/X/ Yes Yes (1) Yes
dye,f,000/58/ Gshyane
EQUIVALENCE Yes Yes No Yes
(a,b,c,ees) (dye, f,00.)
NAMELIST Yes Yes Yes No
SUBPROGRAMS
FUNCTION name Yes Yes Yes Yes
(allaZI' oo san)
REAL FUNCTION name Yes Yes (2) Yes
(al,az,. ° o ,an)
INTEGER FUNCTION name Yes Yes (2) Yes
(al,az,.) ,an)
DOUBLE PRECISION Yes Yes (2) Yes
FUNCTION name
(al,az,,..,an)

BJ67

Table 1~1 (cont). Comparison of FORTRAN Features

Series 6000 | Series 600 Series 600 ANSI
FORTRAN FEATURE FORTRAN FORTRAN TV | Time Sharing FORTRAN
FORTRAN
COMPLEX FUNCTION name Yes Yes (2) Yes
(al,az,_.o,an)
LOGICAL FUNCTION name Yes Yes (2) Yes
(ay1,82/000ran)
CHARACTER FUNCTION Yes No No No
name (al,az,...,an)
SUBROUTINE name Yes Yes Yes Yes
(al,az, e e ,an)
CALL name Yes Yes Yes Yes
(agra@gpeeesan)
RETURN Yes Yes Yes Yes
RETURN i Yes . Yes . Yes .No
EXTERNAL X,Y,2,000 Yes Yes Yes Yes
BLOCK DATA Yes Yes No Yes
ENTRY name
(al,az,.o,,an) Yes Yes No No
FORMATS
Format (3) Fixed Free~Field Fixed
Sequence Numbers Yes Yes No Yes
(73=80)
Line Numbers (3) No (4) No
Line Length (5) 80 72 72
Statements per line Multiple 1 Multiple 1
(uses ;) (uses ;)
Comment Lines C or * C or * * c
in Col. 1 in Col. 1

1-10 BJ67

Table 1-1 (cont).

Comparison of FORTRAN Features

&,

Series 6000 | Series 600 Series 600 ANSI
FORTRAN FEATURE FORTRAN FORTRAN IV | Time Sharing FORTRAN
FORTRAN
Continuation (3) (6) & after (6)
Line No.
Character Set (source) |BCD or BCD ASCII -
ASCIT
Source Medium =-Decks Yes Yes No Yes
~Comdks Yes Yes No No
-TS Files| Yes No Yes No
-Alter Yes Yes No No
Note (1): Blank Common is Allowed; Labeled Common is not.
Note (2): Done presently in type statement.
Note (3): Determined by the FORM option (described below)
FORM Specified
1. Cols. 1-5 are reserved for statement numbers.
2., Continuation indicated by a non-blank, non-zero Col.
3. Comments indicated by * or C in Col 1.
4, Cols. 7-72 contain FORTRAN statements.
5. Cols. 73-80 may contain sequence number.
NFORM and LNO Specified
1. Cols. l1-n (ns8) contain a sequence number.
2. Statements begin anywhere between Cols. 1-80 following sequence
number,
3. Continuation indicated by an ampersand as the first non-blank
character in statement.
4, Statement numbers must be separated from sequence number by at
least one blank or by pound sign (#).
5. Comments indicated by an asterisk or C as first character in
statement.
NFORM and NLNO Specified
1. Statements begin anywhere between Cols. 1-72,
2. Continuation indicated by ampersand as first non-blank character of
statement.
3. Comments indicated by * or C as first character.
4., Cols. 73-80 may contain a sequence number.
Note (4): 8 numerics (not referenced in program).
Note (5): 80 characters if card, otherwise unlimited.
Note (6): Non-zero, non-blank character in Col.

BJ6 7

SECTION II

RULES AND DEFINITIONS

CHARACTRE ST

FORTRAN utilizes two character sets - ASCIT and Series 600/6000 BCD, The
character set and byte size of the internal representation of generated object
code is controlled by an option on the $ FORTY or $ FORTRAN card or the YFORTRAN
or FORTRAN RUN command. The byte size will be 6 or 9 bits depending on the
option selected (BCD or ASCII). Appendix A contains the ASCII and BCD character
set with the octal and card representation for each character., The character set
of the source program is self-determining and requires no options.

The FORTRAN character set is a subset of the full 128 ASCII characters and is
used as follows:

1. FORTRAN statements and the verbs or prepositions do not differentiate
between upper and lower case alphabetic characters.

2. No distinction is made between the cases in forming variable, function,
common, etc, names.

3. Upper and lower case letters are recognized as different only in user
character data and literals.

4. Character restrictions may be necessary for certain external routine
procedures. For example, symbols in assembly language subroutines may
be restricted to upper case.

5. Any character in the ASCII character set is valid as literal data.
A program unit is written using the following characters:

A, B, C, D, E, F, G, H, I, J, XK, L, M, N, O, P, Q, R, 5, T, U,
v, W, X, ¥, 3, a, b, ¢, d, e, £, g, h, i, 3, k, 1, m, n, o, p,
4, ¥y, 8, t, u, v, w, X, y, 2z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and

2-1 BJ67

CHARACTER NAME OF CHARACTER

Space
Equals
Plus
Minus
rt Vertical Arrow
or Caret
Asterisk
Ampersand
Slash
Left Parenthesis
Right Parenthesis
Comma
Radix Point
Currency Symbol
or Apostrophe or Acute Accent
Semicolon
Quotation Marks

>
Ot + II'&

e N ~ ~Nl2 %

T e

The order in which the characters are listed does not imply a collating
sequence. All are ASCII characters.

Special Characters

The following special characters are used for FORTRAN syntax punctuation:
Space " $ () + -, / ;=" 1 &%

The space character is not meaningful to the compiler except in
character literals and may be used freely to enhance readability of
pPrograms.

Quotation marks (") and apostrophes (') are used as character literal
delimiters. The apostrophe also precedes the record number in random
file input/output statements.

The currency symbol ($) identifies statement numbers used as

arguments. It also serves as a delimiter of input data for NAMELIST
read.
Parentheses () are used to enclose subexpressions, complex constants,

equivalence groups, format specification, argument lists, subscripts,
and to specify the ranges of implied DO loops.

Plus sign (+) indicates algebraic addition, Printer carriage control,
or a unary operator.

Minus sign (-) indicates algebraic subtraction or a unary operator.

The comma (,) is used as a separator for data symbols and expressions
for parameter lists, equivalence groups, complex constants and format
specifications.

2=2 BJ67

The slash (/) is used to indicate algebraic division, as a delimiter
for data lists, labeled common statements, and as a record terminator
in a format statement.

The semicolon (;) is used as a statement delimiter.
The equality sign (=) indicates the assignment operator in arithmetic
and logical assignment statements, Parameter statements, DO

statements, and implied DO statements in I/0 and data lists.

The asterisk (*) designates a comment line or an alternate return
argument in a subroutine statement. The asterisk is also used as the
multiplication operator, and a double asterisk (**) is one of the
exponentiation operators. The gquantity to the left of +the sign is
raised to the power indicated on the right.

The period (.) is used as a radix point, and serves as a delimiter for
symbolic logical, and relational operators and logical constants.

The up arrow and caret (1 orA) serve as additional exponentiation
operators. They are alternates to the double asterisk (**) and may be
freely used interchangeably.

The ampersand (&) serves as one of the continuation line indicators.

SOURCE PROGRAM FORMAT

Source File Types

Source programs generally originate as either punched cards or typed lines on a
teletypewriter., They may also be the product of (output from) the execution of
some program, or one may be compressed in a compilation activity through use of
the COMDK option. These source programs may be kept in the form of decks, paper
tape, magnetic tape files, or permanent mass storage files. To ' be compiled,
decks and paper tape media programs must be copied to magnetic tape, or mass
storage first., The mass storage file need not be permanent; a normal deck setup
will produce the compiler input file (S*) on a temporary file. The source
program file must be recorded in Standard System Format (see the File and Record
Control manual). The Series 6000 FORTRAN compiler will accept magnetic tape or
mass storage files, in Standard System Format, with any of the following media
codes:

- formatted BCD line images, without slew control for the printer
compressed BCD card images

=~ (uncompressed) BCD card images

- formatted BCD line images, with trailing printer slew control
information

old time sharing ASCII format

- new time sharing ASCII standard system format

WO
i

o Ut
H

2-3 BJ67

Card images are limited to eighty (80) characters, while line images are limited
according to the device on which they were prepared. For simplification,
wherever “"card images"” and "line images” could both be used, this document will
simply use the term "line".

Relationship of Statements to Lines

A source program file is made up of statements and comments. A statement may be
contained on from one to twenty lines. The first is called an initial 1line and
the rest are called continuation lines. A comment is contained on one line, it
is not considered as a statement, and merely provides information for
documentary purposes, Comment lines may be placed freely in the program file,
even between consecutive continuation lines.

Every program unit (subprogram, main program, etc.) must terminate with an end
line. This line contains an END statement and serves to separate individual
program units. Any subsequent units must begin on a new line.

When the first line of a program unit is a comment line, page titles and object
deck labels are extracted from that line as follows:

Characters 2-7 identification label of
the object deck

Characters 8-72 page title for listings

When the first line of a program unit is not a comment line, the deck label will
be the first SYMDEF of the routine; no page title will be used.

Format Rules for Lines

A variety of source line formats are acceptable to Series 6000 FORTRAN, ranging
from the ANSI standard 80 character fixed format to the standard .line formats
used with the time sharing system. Specification of which format has been used
is via two options: FORM/NFORM and LNO/NLNO. These options may appear on the
§ FORTY or $ FORTRAN control card or in the option 1list of the YFORTRAN or
FORTRAN RUN command.,

Source files in ANSI standard format should be run using the FORM option. Time
sharing source files should normally use NFORM+LNO. These are the default
options when jobs originate from batch and time sharing, respectively.

FORM FORMATTED LINES
Lines in FORM format have the following characteristics:
1. Comment lines are recognized by a C or * in character position 1.

2. Continuation lines are recognized by a non-blank, non-zero character in
position 6.

N
4
N

BJ67

Lines containing more than 72 characters (e.g., card images) in FORM format have
the following additional characteristic:

3. Character positions 73-80 may be used for sequence identification
information. This field is not considered part of the statement, it is
provided for programmer convenience.

4. No more than 80 characters will be processed. If more are present, they
are ignored.

The LNO/NLNO option is not applicable to files in FORM format. Only NFORM format
files can have line numbers,

NFORM FORMATTED LINES - NLNO

Lines in NFORM format with no line numbers (NLNO) have the following
characteristics:
1. Comment lines are recognized by a C or * in character position 1.
2. A continuation line is indicated by the ampersand character (&) as the
first non-blank character of the line.

Card images in this format also have the characteristic:

3. Character positions 73-80 may be wused for sequence identification
information.,

NFORM FORMATTED LINES = LNO

Lines in NFORM format with line numbers (LNO) have the following
characteristics:

1. A line number field begins in character 1., The line number field may
contain up to eight characters and may contain leading blanks. The
magnitude of this line number is treated modulo 218 (262144).

2. Line numbers which are less than eight characters long must be
terminated by a non-numeric character.

3. If the character following the line number is a # it is ignored and the
next character is considered to be following the line number,

4, Comment lines are recognized by a C or * as the next character
following the line number.

5. A continuation line is indicated by the ampersand character (&) as the
first non=-blank character following the line number.

Card images in this format do not reserve characters 73-80 for sequence
identification information. The statement text may extend into these positions.

2=5 BJ6 7

Format Rules Common to FORM/NFORM

The above rules show that the format options are used to control the following
functions:

1. Elimination of line numbers and sequence identification fields from the
lines.

2. Separation of comment lines from statement lines.
3, Distinction between initial statement lines and continuation lines,

4., Determination of the position numbers of the first and last characters
of the statement text.

Beyond this the line format is the same. Initial lines may begin with a
statement number. The statement number may begin anywhere on the line but must
be in the range 1< n< 99999. There may be up to 19 continuation lines and the

statement text continues with the first character following the continuation
character.

A statement may be terminated by the semi-colon (;) character on either an
initial or continuation line. The information remaining on the line is processed
as an initial line. The new statement may begin with a statement number and may
be continued. Note that it is not possible to put comments on the same line as
the statement line which ends with a semi=-colon.

Figure 2-1 illustrates the appearance and general properties of a FORTRAN
program written on a coding sheet. This example illustrates the FORM format.

2-6 BJ67

399yg buTpOoD NVHINOJ4

*T-z 2anbtg

1 2 0 o e o s D 2 B O D S D D B D DR 2B DU DR DS a0 n A naaK
T |2 S A N I A SN A N S N N N L A N A N N B N D O B S A N S D N N B e TTrTTT T
T T T LN L A T T LI B A T
T L L L L L T Y T A N N B O A | T Y
T LN T T T A U A B B I T TVY
LN A A | rryrrryryyrrr Ty T Ty T rT T T Ty T T T T Ty Ty orT T T T T T YT T U T T YT T T T T T T T T YT
LI A O LN S S R S L T AN N N O N A L U A O A R N S O SN SN B SN B SR B B T T T
LN S B B {1 T L N T L T N A A T N N O T N N N N O N A O SN N D O N T N T S B N TR TV
Tr T T T] (I S L L L L L T T A S e a1 TS [0 T
LI B] TV T T7TTrTrT qﬁ#a—__—__________..___._q______qa___._dﬂq___._.ﬁqaqquﬁ.g YT
T TT T L T T B ___._______“_q<__q_____q.__~a_1__q__.__q-qmww..._wLN..&.md_\._Q&\.w\..Q.u\ Al
TV vy 7071 LR .______Aﬂ_.qﬂqﬂ _ﬁ_:_\A_W_QE_N-O_T.h_N. .N_Q_v: _m;k_b.@_w_:.-—\v\.“NL‘Nukqmq-_w_N_M_h_%.t_N.Q(w.N..
LINAL A N O N O O O ____u.ﬁqa____._.__ﬁ\vr?ﬁc:wo_.@_%_o:_m_ﬁ%ﬂg@@ P2y
AN A B N A L D L B B A ..ETF\-Q\.\Q._._ _N_\:Q._NS_\W‘_\\S(_\,\.N_ VI WIGHTST TSIGIyTeA T (1= g §u.ﬂ.§m\~ ...w.\.\..m LI B fu
LA I A R B T Ty ___qaa.-ﬁ_____..__-qq__—__q_._ﬁq_____._U_.ﬁ_._‘wﬁ.W-N1_w_\:hu_k__m‘«3 quA-
T T T T 7T ﬂﬂqﬂuq__q_____.q_ﬁ.q.__.____-qq_______d_aqaq__«__._____qﬂ_w_uﬁﬁwﬁ. YT
__,__.._ L L N A N L A —_________q____q__.__ﬁ-__.-__<~4Ju_x_._N_X_._b_._%.._v_m_\\qw.,JC.NC.N.@L TTT
LANLIN T A L L O S L L B B B B R AR VA VIE /Y. EAPR I AT _E__H_ WgT STIT G e gr TG 1557 T
TrTrvrTrTT LS T T B TN B Qdﬁ_wd*q.dwm_\Z_R:._MCC.EQ.QG.L%TGFJ&X_._m.ﬁt-*_._mac__afqt@_x_YF_N_G_w.*.%_\C_n_N.X YT
VAN I A I B A AL L A 0 B B B B B B E= U 7 L .E\.‘@_mi...&-.\.._QF\.-,N_‘N_\..\.N T
TGO Wl T T T T i T T T r v T T T T T T T T T T T T T gt g sl gy wighat gl 17T Glatg s 7 Tx7 T 57 T,
Q_M.Q_Q.\SG_NG TTrT T 7T T7TTrTy ~.____.___1ﬂqﬂ~__-qﬂq_u______qqdﬁ__qd__G_*_Qﬂ*_.X..l_m.ﬁ.%du.n\ﬁ_m..ﬁk T
BEARRER L L L LSANLINE B A B N B BV v A VA A L B SR AV ATV M A T R VT B T A AR s N VA L) VAR FA) T ...b
Wu\EQ-m.. _W;Q_{.\ 7 rryryryrrrorT LA A L A | __aq_____ﬂ____<___ﬁ_qqqaQ#q_mq._T.m_O_me.u_Q_\,_Nd:%_N.:.n:q_ .Q«T.W_N N.. T
| ACAAVAT 5L d L AL EL L N UL A N LN I O B 2 V2 A 2 92 P22 S uﬁ_\qﬂ WAET ST 7T G TSI T TS
._N-N.E_EQ.NG T T T T LERRR LI BB B B B VW YUV P R VIV S VLR - 1 b LI BV P T X7 Wt gt LR RG]

SEDZROTR

0 B 0 0 D 0 D D B S G R G e S U e G B S B G e e B e DBk g

o

NOLLYDISILNEGE

LNIWILYLS NVHLNO4

L._n_. \
Tiemnn
1MIW3ETLS

SINIWWOD -

IDVL

2iva

H3Q00

RIN@Cuid

WdO04 9NIGOD HNVHLH¥OM

lloMASUORS

BJ67

SYMBOL FORMATION

A symbolic name consists of one to eight alphanumeric characters, the first of
which must be alphabetic. Data types may be associated with a symbolic name
either implicitly or explicitly. The implicit associations are determined by the
first character of the symbol; integer if the name begins with the letters
1,J,K,L,M, or N; otherwise real. This default implicit associative rule may be
changed by the use of the IMPLICIT statement. This allows implicit association
for all data types - integer, real, double~ precision, complex, logical, or
character. An explicit declaration of type for some symbol always overrides its
implicit type. Data type is explicitly associated with a symbol when it appears
in one of +the +type statements: INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, or CHARACTER, or when it appears in a FUNCTION statement with a type
prefix (e.g., REAL FUNCTION MPYM(A,B)).

No case distinction is made in forming symbols. The symbol ABC is identical to
the symbols abc and Abc.

A symbolic name representing a function, variable, or array has only one data
type association for each program unit. Once associated with a particular data
type, a specific name implies that type for any usage of that symbolic name that
requires a data type association throughout the program unit in which it 1is
defined.

DATA TYPES

The mathematical and representational properties for each of the data types are
defined below. The value zero is considered neither positive nor negative.

1. An integer datum is always an exact representation of an integer value.
It may assume positive, negative, or zero integral values. Each integer
datum requires one 36 bit word of storage in fixed point format. The
permissible range of values for integer type is -235 to 233-1,

2. A real datum is a processor approximation to the wvalue of a real
number, It may assume positive, negative, or zero values, possibly
fractional. A real datum requires one 36 bit word of storage in
floating point format. The permissible range of values for real type is
approximately +1038 to +10 38 with a precision of eight digits.

3. A double precision datum is a processor approximation to the value of a
real number. It may assume positive, negative, or zero values. A double
precision datum reguires two consecutive 36-bit words of storage in
double precision floating point format. The permissible range of values
for double precision type is approximately +1038 to +10 =38 with a
precision of 18 digits. - -

2—8 BJ67

4. A complex datum is a processor approximation to the value of a complex
number., The representation of the approximation is in the form of an
ordered pair of real data. The first of the pair represents the real
part and the second, the imaginary part. Each part has, accordingly,
the same degree of approximation as for a real datum. A complex datum
requires two consecutive words of storage, each in floating point
format. Each part of a complex datum has the same range of values and
precision as a real datum.

5. A logical datum is a representation of a logical value of true or
false. The source representation of the logical value "true" may be
either .TRUE. or .T., and in DATA statements, the single character "T"
may also be used. For the value "false", L.FALSE. and .F. may be
generally used with "F" being allowable in DATA statements. A logical
datum requires one 36-bit word of storage with the value zero
representing "false", and non=-zero representing "true". Where
input/output is involved, the external representations of "true" and
"false" are the single letters "T" and "F".

6. A character datum is a processor representation of a string of ASCII or
BCD characters. This string may consist of any characters capable of
being represented in the processor. The space character is a valid and
significant character in a character datum. Character strings are
delimited by quotes, apostrophes, or by preceding the string by nH. The
character set (BCD or ASCII) is declared by an option on the § FORTY
or § FORTRAN control card or the YFORTRAN or FORTRAN RUN command.

The term "reference" is used to indicate an identification of a datum dimplying
that the current value of the datum will be made available during the execution
of the statement containing the reference. If the datum is identified but not
necessarily made available, the datum is said to be "named". One case of special
interest in which the datum is named is that of assigning a value to a datum,
thus defining or redefining the datum.

CONSTANTS
There are three general types of constants - character, single word, and double
word. Each of these types is divided as follows: : ,
1. Single Word Constants
a. Integer
b. Octal
c. Real
d. Logical
2. Double Word Constants

a. Double Precision
b. Complex

3. Character Constants

A constant is a value that is known prior to writing a FORTRAN statement and
which does not change during program execution.

2-9 BJ67

Integer Constants

An integer constant consists of 1 to 11 decimal digits with an accuracy of 10
digits. The decimal point of the integer is always omitted; however, it is
always assumed to be immediately to the right of the last digit in the string.
An integer constant may be as large as 2351 (23.4x1010), except when used for
the value of a subscript or as an index of a DO or a DO parameter, in which case
the value of the integer is computed modulo 218,

Example:

-7
152
843517

Octal Constants

An octal constant is written as a non-empty string of up to 12 octal digits
preceded by the letter O and an optional sign. The sign affects only bit 0 of
the resulting literal (complementation does not take place). Octal constants may
be used in preset data lists only (e.g., DATA statement).

Lxample:

@ 777000
@ - 377777777

Real Constants

A real constant is in floating-point mode and is contained in one computer word
(single precision). This constant consists of one of the following:

1. One to nine significant decimal digits written with a decimal point,
but not followed by a decimal exponent.

Bo

significant decimal digits written with or without a
‘ni.owed by a decimal exponent written as the letter E
~d or vnsigned one or two digit integer constant.
point is omitted, it 1is always assumed *to be
~ tne right of the rightmost digit. The exponent value may
U, and the field following the E may not be blank.

2=10 BJ67

Examples:

700)
'y .007)

A real constant has preci@{on to eight digits. The magnitude must be between the
approximate limits of 10738 and 1038, or must be zero.

Double Precision Constants

A double-~precision constant is in £1 contained in two
computer words. This constant consists of one of the following:

l. Ten to eighteen significant decimal digits written with a decimal
point, but not followed by a decimal exponent.

2. Up to 18 significant decimal digits written with or without a decimal
point, followed by a decimal exponent written as the letter D followed
by a signed or unsigned one or two digit integer constant. When the
decimal point is omitted, it is always assumed to be immediately to the
right of the rightmost digit. The exponent value may be explicitly 0,
and the field following the D may not be blank.

Examples:

12.34567891

~13.57D0
.1234D0 ‘
7.0D4 (means 7.0 x 104, 70000.)
7D~-3 (means 7.0 x 10=3, .007)

Double~precision constants have precision to 18 digits. The magnitude of a
double-~precision constant must lie between the approximate limits of 10=38 and
10 38, or must be zero.

Complex Constants

A complex constant consists of an ordered pair of signed or unsigned real
constants separated by a comma and enclosed in parentheses.

Examples:

(10.1, 7.03) is equal to 10,1 + 7.03i
(5.41, 0.0) is equal to 5.41 + 0.0i
(7.0E4, 20.76) is equal to 70000. + 20.761

where i is the square root of -1.

2-11 BJ67

The first real constant represents the real part of the complex number; the
second real constant represents the imaginary part of the complex number. The
parentheses are required regardless of the context in which the complex constant
appears. Each part of the complex constant may be preceded by a plus sign or a
minus sign, or it may be unsigned.

Logical Constants

A logical constant may take either of the two forms:

.TRUE. (or .T.)
LFALSE. (or .F.)

and is represented in the machine as

TRUE#0
FALSE=0

Representation may be T and F respectively in DATA statements or externally when
doing input/output.

Character Constants

Character constants are of two kinds characterized by their representation in
either the ASCII or the BCD character set. The kind is determined by an option
on the § FORTY or $ FORTRAN card or the YFORTRAN or FORTRAN RUN command.
Character constants are formed in one of the following ways:

1. Preceding the character string by nH.
2. Enclosing the string in guotation marks.
3. Enclosing the string in apostrophes.

Character constants can be wused as arguments to external subprograms, as
literals in the DATA statement, as part of a FORMAT statement, as the display
object of the STOP and PAUSE statements, in a character assignment statement, or
in a relational expression.

The maximum length of a character constant is 511 characters.

The interpretation of quoted strings of both types is such that the appearance
of the string delimiter in two consecutive character positions within a string
is considered as a single occurrence of the delimiter as a member of that
string. For example, the representation: "abc""ef" is represented internally as
the literal abc"ef. Alternatively, the other delimiter type can be wused (e.g.,
'abc"ef ') .

2-12 BJ67

VARIABLES

Variable Type Definition

A variable is any quantity that is referred to by name rather than by value. A
variable may take on many values and may be changed during the execution of the
program,

The type of a variable is specified implicitly by its name, or explicitly by use
of a type statement,

1. Default implicit type association enables the declaration of real and
integer variables and function names according to the following rules:

a. If the first character of the name is I,J,K,L,M, or N, (upper or
lower case) it is an integer name.

b. If the first character is any other alphabetic character, it 1is a
real name.

2. The IMPLICIT type statement is used to redefine the implicit typing.
See the IMPLICIT statement description in Section IV of this document.

3. The explicit type statements (described in this document) are used to
assign a type to a variable or function subprogram,

4. Tunction subprogram names may be typed on the FUNCTION statement by use
of the type prefix.

Scalar Variable

The six types of scalar variables are: character, integer, real, logical,
double-precision, and complex. A scalar variable may take on any value its
corresponding constant may assume. A scalar variable occupies the same number of
storage locations as a constant of the same type.

External Variable

An external variable is the name of a subprogram that appears as an actual
argument in the calling sequence to some subprogram, It must appear in an
EXTERNAL statement before its first use in the source program,

Parameter Symbols

A parameter symbol is used when it is desired to compile a program several times
when the only changes from one compilation to the next are to certain constants.
The parameter symbol (described under the PARAMETER statement) is wused under
these circumstances.

BJ67

[
i
fst
(&3]

Character Variable

Character variables may be implicitly typed via the IMPLICIT statement or
explicitly using the CHARACTER statement. The limit is 511 characters.

Arraz

An array is an ordered set of data with from one to seven dimensions. The array
is referenced by a symbolic name. Identification of the entire ordered set is
achieved by the use of the array name.

Array Element

An array element is an item of data in an array. It is identified by immediately
following the array name with a subscript that points to the particular element
of the array. In some instances the array name may be used in unsubscripted
notation to reference the first element of the array.

SubscriEts

A variable may be made to represent any element of an array containing from one
to seven dimensions by appending one to seven subscripts to the variable name.
Subscript expressions are separated by commas. The number of subscript
expressions must correspond with the declared dimensionality except in an
EQUIVALENCE statement. Following evaluation of all of the subscript expressions,
the array element successor function determines the identified element.,

Form of Subscript

A subscript expression may take the form of any legal FORTRAN arithmetic
expression. The result of any such expression is truncated to an integer before
use.

Examples:
IMAS 8*TQUAN 9+J
J9 5*L+7 B**2
K2 H#*M=-3 6%*A=~(1=-SQRT(3.14)) /8
N+3 T+2*K LIST (J)

The value of a subscript expression must be greater than zero and not greater
than the corresponding array dimension., The value of a subscript expression
containing real variables is truncated to an integer after evaluation.

2-14 BJ67

Subscripted Variables

A subscripted variable consists of a variable name, followed by parentheses,
enclosing one to seven subscripts separated by commas.

Examples:

A(I)

K(3)

BETA (8*%J+2,K=2,L)
MAX (K,J,K,L,M,N)

l. During execution, the subscript is evaluated so that the subscripted
variable refers to a specific member of the array.

2. Each variable that appears in subscripted form must have the size of
the array specified. This must be done by DIMENSION, COMMON or type
statements that contains the dimension information. The specification
of dimensionality must precede the first reference to the array.

Array Element Successor Function

The general algorithm to linearize a subscript involving n terms (for an array
of n dimensions) is:

n
S= 3 ((eg-1) . ™ 4
I=1 J=0

where each eris a subscript term and each dJis an array dimension

The term dy is the "zero-th dimension" of the array. It reflects the number of
words of core store required for one element. For example: integer, logical, and
real quantities require one word per element (dg = 1); double-precision and
complex quantities require a word pair (dg = 2); and character variables, which
use the size in bytes notation to provide the number of characters per element
may have a dg value of up to 64 (since they have a maximum of 511 characters).
The formula for reducing size in characters to size in words is .a function of
the BCD/ASCII option. Let n be the number of characters specified, and m be the
number of characters per word (6 for BCD, 4 for ASCII). Then dg is computed as:

dg = (n+m-1)/m

The following are examples using integer and complex quantities:

INTEGER X(3,2,4)
X(2,2,2)= 1

Expanding the algorithm for three dimensions:

S

(ep=1)*dg + (ey=1)*dy*d) + (e3-1)*dy*dy *dp +1

(2=1) *1 + (2=1)*1%3 + (2-1)*1#%3%2 + 1

S

11

S

2-15 BJ67

Looking at the array in storage in ascending order, the
elements are:

X(1,1,1y, X(2,1,1), %(3,1,1), x(1,2,1), x(2,2,1),
Xx(3,2,1), %x(1,1,2), X(2,1,2), X(3,1,2),
X(1,2,2), X(2,2,2), <o, X(3,2,4)

X(2,2,2) is the eleventh word of the array.

COMPLEX X (3,2,4)
X(2,2,2) = (1.0, 0.0)

[

S (2~1) *2 + (2=1) *2*3 + (2=1)*2%3%*2 + 1
5 = 21

In this example, the first word of the word pair for this element is the
twenty=-first word of the array.

Array Declarator

An array declarator specifies an array used in a program unit. The array
declarator indicates the symbolic name, the number of dimensions (one to seven)
and the size of each dimension., The array declarator form may be in a type
statement, dimension statement, or common statement. An array declarator has the
form:

v(i) or v*n(i)

where v is the symbolic array name, n is the size-in-bytes of an element, and i
is the declarator subscript. Declarator subscript (i) is composed of from one
through seveén elements each of which may be an integer constant, a parameter
symbol or an integer variable. Each element is separated by a comma (if more
than one).

The appearance of a declarator subscript in a declarator statement informs the
processor that the declarator name is an array name, The number of subscripts
indicates the dimensicns of the array. The magnitude of the value for the
subscript expressions indicates the maximum value that the subscript name may
attain in any array element reference,

Adjustable Dimensions

The name of an array and the constants that are its dimensions may be passed as
arguments to a subprogram. In this way a subprogram may perform calculations on
arrays whose sizes are not determined wuntil the subprogram is called. The
following rules apply to the use of adjustable dimensions:

l. Variables may be used as dimensions of an array only in the array
declarator of a FUNCTION or SUBROUTINE subprogram, For any such array,
the array name and all the variables used as dimensions must appear as
dummy arguments in at least one FUNCTION, SUBROUTINE, or ENTRY
statement.,

2=-16 BJ67

2. The adjustable dimensions may not be altered within the subprogram.

3. The true dimensions of an actual array must be specified in a
DIMENSION, COMMON, or type statement of some calling program.

4. The calling program passes the specific dimensions to the subprogram.
These specific dimensions are those that appear in +the DIMENSION,
COMMON, or type statement of the calling program. Variable dimension
size may be passed through more than one level of subprogram. The
specific dimensions passed to the subprogram as actual arguments cannot
exceed the true dimensions of the indicated array.

5. Variables used as dimensions must be integers. If the variables are not
implicitly typed by their initial letters, a type statement must
precede the dimension statement in which they are used as adjustable
dimensions.

6. If an adjustable array name or any of its adjustable dimensions appears
in a dummy argument list of a FUNCTION, SUBROUTINE, or ENTRY statement,
that array name and all its adjustable dimensions must appear in the
same dummy argument list,

Example:
DIMENSION K(4,5),J(2,3) SUBROUTINE SETFLG(K,J,I,L,M,N)
. DIMENSION K(I,L),J(M,N)
CALL SETFLG (K,J,4,5,2,3) .
. DO 20 NO = 1,I
. DO 20 MO = 1,L
K(NO,MO) = 0
20 CONTINUE
EXPRESSTONS
Arithmetic

An arithmetic expression consists of certain legal sequences of
subscripted and nonsubscripted variables, and arithmetic function
separated by arithmetic operation symbols, commas, and parentheses,

The following arithmetic operation symbols denote addition,
multiplication, division, and exponentiation, respectively:

+ o=k / k% §or A

constants,
references

subtraction,

BJ67

The rules for constructing arithmetic expressions are:

1. Figures 2~-2 and 2-3 indicate which constants, variables, and functions
may be combined by the arithmetic operators to form arithmetic
expressions. The intersection of a row and column gives the type of the
result of such an expression., Figure 2-2 gives the wvalid combinations
with respect to the arithmetic operators +,-,%*, and /. Figure 2-3 gives
the valid combinaticons with respect to the arithmetic operators *#%, 1
or A.

I R D C T
I I R D C T Legend
R R R D C N C - Complex
D - Double-precision
D D D D Cc N I - Integer
N - Nonvalid
c C C C C N R = Real
T - Typeless
T T N N N T
Figure 2-2. Arithmetic Expressions +, -, *, and /
POWER
I R D C T
I I R D N N
B R R R D N N
A
S D D D D N N
E
c c C C C N
T N N N N N
Figure 2-3, Arithmetic Expressions - Exponent (¥*%,1 or a)

2. Any expression may be enclosed in parentheses,

3. Expressions may be connected by the arithmetic operation symbols to
form other expressions, provided that:

a. No two operators appear in seguence except **, which is a single
operator and denotes exponentiation.

b. No operation symbol is assumed to be present. For example, (X) (Y)
is not wvalid.,

4. The expression A*¥*B**C is evaluated as A%** (B**C),

5. Preceding an expression by a plus or minus sign does not affect the

type of the expression.

2~18 BJ67

6. In the hierarchy of operations, parentheses may be used in arithmetic
expressions to specify the order in which operations are to be
computed., Where parentheses are omitted, the order is understood to be
as follows:

a. Function Reference

b. **, 1t ora Exponentiation
c. * and / Multiplication and Division
d. + and - Addition and Subtraction

This hierarchy is applied first to the expression within the innermost
set of parentheses in the statement; this procedure continues through
the outer parentheses until the entire expression has been evaluated,

7. Operations on the same level (e.g., A*B/C) are evaluated left to right,
Parentheses may be used to reorder this sequence if necessary.

The FORTRAN expression
A*G+Z /Y*% (W+ (A+B) /X**K)
represents the mathematical expression
Z

6 A+ —
W+ (A+B)
XK

Y

Logical

A logical expression consists of certain sequences of logical constants, logical
variables, references to logical functions, and relational expressions separated
by logical operation symbols. A logical expression always results in a true or
false evaluation,

The logical operation symbols (where a and b are logical expressions) are:

Symbol Definition

LNOT . a This has the value .TRUE. only if a is ,FALSE.; it has the value
LFALSE, only if a is .TRUE.

a.AND.b This has the value .TRUE. only if a and b are both .TRUE.; it has
the value .FALSE., if a or b or both are .FALSE.

a.0R.b (INCLUSIVE OR) This has the value .TRUE. if either a or b or both
are ,TRUE.; it has the value .FALSE. only if both a and b are
. FALSE .

The logical operators NOT, AND, and OR must always be preceded and followed by a
period.

2-19 BJ67

Logical expression evaluation proceeds to determine the true/false state of the
simpler subexpressions first, and stops (evaluation) as soon as the true/false
state for the complete expression has been determined. Thus, it is a distinct
possibility that the entire expression may not be evaluated. Since this may be
of significance to some applications, the following example is given:

IF (RAND (X) .GT. 0 .OR. L) GOTO 100

Assuming that RAND is an external function and L. is a logical variable, the
expression is true when either RAND(X) is greater than zero or L is true, The
second alternative is clearly simplier to determine than the first. Further,
since there is no need to evaluate RAND(X) .GT. 0 when L is true, the statement
will be optimized into an equivalent pair of statements:

IF (L) GO TO 100

IF (RAND(X) .GT. 0) GO TO 100
The significance of this is that the function RAND is called only when L is
false, If evaluation of RAND(X) c¢an have side effects, this may be of
consequence. For those applications impacted by this implementation, the
solution would be to make the evaluation of RAND(X) unconditional. For example:

T = RAND(X)

IF(T.GT. 0 .OR. L) GO TO 100

Relational

A relational expression consists of two arithmetic expressions connected by a
relational operator. Relational expressions always result in a true or false
evaluation. Relational expressions are logical operands and can be used in a
logical replacement statement, a logical IF statement, as arguments to
functions/subroutines, a Parameter statement, or an output list.

The six relational operation symbols are:

Symbol Definition
.GT. Greater than
«GE. Greater than or equal to
- LT, Less than
.LE. Less than or equal to
«EQ. Equal to
«NE . Not equal to
Example:

A.GT.B has the value .TRUE, if the quantity A’ Ls greater than the quantity
B, and value .FALSE. otherwise.

2-20 BJ67

The relational operators must always be preceded and followed by a period. The
following are the rules for constructing logical and relational expressions:

l. Pigure 2-4 indicates which constants, variables, functions, and
arithmetic expressions may be combined by the relational operators to
form a relational expression., In Figure 2~4, L indicates a valid
combination and N indicates an invalid combination. The relational
expression will have the value ,TRUE. if the condition expressed by the
relational operator is met; otherwise, the relational expression will
have the value .FALSE,

«GT.,.GE.,.LT.,|] I R D C L S T
LE., . EQ., .NE, Legend
I L L L * N L L C - Complex
D - Double=
R L L L N N N N Precision
I - Integer
D L L L N N N N L - Logical
N - Nonvalid
C * N N * N N N R = Real
S =~ Character
L N N N N N N N T - Typeless
* - ,EQ.,.NE,
S L N N N N L N only
T L N N N N N L

Figure 2-4, Use of Relational Operators

2. The numeric relationships that determine the true or false evaluation
of relational expressions are:

a, For numeric values having unlike signs, the positive value is
considered larger than a negative value, regardless of the
respective magnitude. E.g., +3> =5 and +5> =5,

b, For numeric values having like signs, the magnitude of the values
determines the relationship. E.g., +3> +2 and -8< -4,

3. A logical term may consist of a relational expression, a single logical
constant, a logical variable, or a reference to a logical function. A
logical expression is a series of logical terms or logical expressions
connected by the logical operators .AND.,.OR., and .NOT.

4. The logical operator .NOT. must be followed by a logical or relational
expression, and the logical operators .AND., and .OR. must be preceded
and followed by logical or relational expressions.

5. Any logical expression may be enclosed in parentheses.

2-21 BJ67

6. In the hierarchy of operations, parentheses may be wused in logical,
relational, and arithmetic pressions to specify the order in which
operations are to be computed. Where parentheses are omitted, the order
is understood to be as follows (from innermost operation to outermost
operations) :

a. Function Reference

b. *%,tora Exponentiation

¢. + and = Unary addition and
subtraction

d. * and / Multiplication and
Division

e. + and = Addition and Subtraction

f, .LT.,.LE.,.EQ.,.NE.,.GT.,.CE.

g. .NOT,

h. - AND,

i. .OR.

This hierarchy is applied first to the expression within the innermost
set of parentheses in the statement; this procedure continues through
the outer parentheses until the entire expression has been evaluated.

Typeless

The following functions are considered as typeless:

FLD
AND
OR
XOR
BOOL
COMPL

A typeless result is regarded as a 36-bit string (one computer word). Typeless
entities may be combined with integer, logical or other typeless entities. With
the arithmetic operators the result is typeless; with relational operators the
result is logical; the logical operations may not be used on typeless entities.

Evaluation of Expressions

A part of an expression need be evaluated only if such action is necessary to
establish the value of the expression. The rules for formation of expressions
imply the binding strength of operators. It should be noted that the range of
the subtraction operator is the term that immediately succeeds it.

When two elements are combined by an operator, the order of evaluation of the
elements is undefined because of possible reordering during optimization. If
mathematical use of operators is associative, commutative, or both, full use of
these facts may be made to revise orders of combinations, provided only that
integrity of parenthesized expressions is not violated. The value of an integer
element is the nearest integer whose magnitude does not exceed the magnitude of
the mathematical value represented by that element, The associative and
commutative laws do not apply in the evaluation of integer terms containing
division, hence the evaluation of such terms must effectively proceed from left
to right.

2=-22 BJ67

Any use of an array element name requires the evaluation of its subscript. The
evaluation of functions appearing in an expression may not validly alter the
value of any other element within the expression, assignment statement, or call
statement in which a function reference or subscript appears. No factor may be
evaluated that requires a negative valued primary to be raised to a real or
double precision exponent. No factor may be evaluated that requires raising a
zero valued primary to a zero valued exponent., No element may be evaluated whose
value is not mathematically defined.

The mode of evaluation of arithmetic expressions is determined by the following
order of type dominance:

l. Complex

2., Double Precision
3. Real

4, Typeless

5

« Integer

When two primaries are combined by any of the arithmetic operators except the
exponentiation operator, their respective types are examined according to the
stated order of type dominance. The type of the recessive primary is converted
to that of the dominant primary (if necessary) and the operation is performed.

Unary Operators

The unary operators, negative, positive, and logical not, may immediately
precede a constant or a variable in an expression; however, if the placement
causes the unary negative or positive operator to be adjacent to another
operator, it must be enclosed in parentheses with the constant or variable.

Examples:

A=+1,6

C=D/ (~2) *W
IF(-3.4T4)1,2,3
L1=R2,GT. (=2.)
L2=,NOT.L1

=Bh* (=2)

FORTRAN STATEMENTS

Types of FORTRAN Statements

The basic unit of FORTRAN is the statement., Statements are classified according
to the following uses:

1., Arithmetic statements specifying numerical, character, or logical value
assignment.

2. Control statements Joverning the order of execution in the object
program.,

2-23 BJ67

3. Input/Output statements and input/output formats which describe the
form of the data.

4, Subprogram statements enabling +the programmer to define and wuse
subprograms.

5, Specification statements providing information about variables used in
the program, information about storage allocation and data assigned.

6., Compiler control statements direct the compilation activity.

Arithmetic Statements

assignment statements
arithmetic statement functions

Control Statements

ASSIGN
CONTINUE
Do

GOTO

IF

PAUSE
STOP

Input/Output Statements

BACKSPACE
DECODE
ENCODE
END FILE
FORMAT
PRINT
PUNCH
READ
REWIND
WRITE

Subprogram Statements

BLOCK DATA
CALL

ENTRY
FUNCTION
RETURN
SUBROUTINE

2~24 BJ67

Specification Statements

ABNORMAL
COMMON
DATA
DIMENSION
EQUIVALENCE
EXTERNAL
IMPLICIT
NAMELIST
type
INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER
PARAMETER

Compiler Control Statement

END B

Index of Statements

Table 2-1 contains an alphabetical listing of FORTRAN statements giving an
example with the page number for the statement in Section IV.

2-25 BJ67

Table 2=1,

Alphabetical Listing of FORTRAN Statements

Statement Example Page

arithmetic statement F(X,Y)=(X+1)*Y (I) 4=-2
function

assignment statement A=4*B=SINE (C**2) 4-2
ABNORMAL ABNORMAIL SINE 47
BACKSPACE BACKSPACE 5 4-8
BLOCK DATA BLOCK DATA 4-9
CALL CALL MATMPY (X,5,10,4,%2) 4-10
CHARACTER CHARACTER ARRAY*14(10,10) 4--12
COMMON COMMON X,Y,7% 4-13
COMPLEX COMPLEX T,N1,DL 4-15
CONTINUE CONTINUE 4-16
DATA DATA A,B,C /3.5,2.9,6.0/ 4-17
DECODE DECODE (CHARS,95 01) A,I(3),X 4-20
DIMENSION DIMENSION A(50) 421
DO DO 35 K=10,20,2 4-22
DOUBLE PRECISION DOUBLE PRECISION DENOM,PREF 4-26
ENCODE ENCODE (CHARS(6),9001)A,I(3),X 4-27
END END 4-28
ENDFILE ENDFILE 5 4-29
ENTRY ENTRY INVRT (B,C,D) 4-30
EQUIVALENCE EQUIVALENCE (A,B,C) 4-31
EXTERNAL EXTERNAL SIN,COS,RESULT 4-34

BJ67

Table 2-1 (cont).

Alphabetical Listing of FORTRAN Statements

Statement Example Page
FORMAT 10 FORMAT (E17.2,F20.0) 4-35
FUNCTION FUNCTION CALC (B,C,D) 4-37
GO TO, assigned GO TO sS4, (3,4,7) 440
GO TO, computed GO TO (3,4,7),K 4-41
GO TO, unconditional GO TO 20 4-40
IF,arithmetic IF (A(J,K)~-B)10,4,30 4=-42
IF,logical IF (A.GT.B) GO TO 3 4=-43
IMPLICIT IMPLICIT INTEGER (A-F,X,Y) 4-44
INTEGER INTEGER I,ABC 4=45
LOGICAL LOGICAL Al,K 4-46
NAMELIST NAMELIST/LIST/ R,S,T,U,V 4-47
PARAMETER PARAMETER I=5/2,J=I%3 4-48
PAUSE PAUSE 1234 4~-49
PRINT, list directed PRINT,A 4-51
PRINT , formatted PRINT 20,A 4~51
PRINT ,namelist PRINT LIST 4=~51
PUNCH,list directed PUNCH, A 4~52
PUNCH, formatted PUNCH 20 ,A 4=-52
PUNCH,namelist PUNCH LIST 4-52
READ,list directed READ,A 4-53
READ, formatted READ 20,A 4-53
READ,namelist READ LIST 4-53
READ, formatted file READ (5,20 ,END=90,ERR=95) A 4-53
READ, unformatted file READ(5,END=90 ,ERR=95) A 4-54

BJ67

Table 2-1 (cont).

Alphabetical Listing of FORTRAN Statements

Statement Example Page
READ,random binary file READ(8'I)A 454
READ,namelist file READ(5,LIST) 4~54
REAL REAL J 4-55
RETURN RETURN 4-56
REWIND REWIND 5 4-57
STOP STOP 100 4-58
SUBROUTINE SUBROUTINE ALPHA (B,C,D) 4=-59
type INTEGER A,B,C,D 4-61
WRITE, formatted file WRITE (6,30 ,ERR=S4)A 4-63
WRITE,unformatted file WRITE (6 ,ERR=54) A 463
WRITE ,namelist file WRITE (6 ,LIST) 4-63
WRITE,random binary WRITE(8'I)A 4-63

BJ67

SECTION IIT

USER INTERFACES

Users create programs by entering FORTRAN statements into remote and local
peripheral or terminal devices which are connected to a computer operating under
GCOS. :

The interface between the wuser and the FORTRAN system consists of the
transmission to the user's I/0 device of compilation error messages and run-time
diagnostics. The messages transmitted are sufficient to locate for the user the
line on which the error occurred, and the form of the message is such that the
error is explicitly defined.,

Three modes of operation are available to the user: local batch, remote batch,
and time sharing. The only user differences among the three modes are the I/0
device assignments for the system output and dinput files, the presence of
hecessary user-GCOS communication via control cards or command language, and the
assumed compiler options for the compilation process,

BATCH MODE

In the local batch mode, the system I/0 devices are the card reader card punch
and line printer, The user communicates directly with GCOS for system services
via the GCOS control cards and the usable slave mode instructions. The execution
of user programs submitted via the local batch mode is carried out directly
under GCOS and the user's program exists under GCOS as a separate batch job.
Input processing is performed by System Input and allocation by the GCOS
allocator,

The remote batch mode is exactly equivalent to the local batch mode in
capability. The only difference is the assignment of the system I/0 device to
the remote terminal as remote files (not direct access) rather than to the local
card reader and local printer/punch,

Batch Call Card

The system call card for Series 6000 FORTRAN in batch mode is:

1 8 16 (operand field)
$ FORTY OPTIONS

or
$ FORTRAN OPTIONS

3-1 BJ67

Operand Field:
The Operand Field specifies the system options. The following options are
available with FORTRAN (Standard Batch options are underlined):
LSTIN - A listing of source input will be prepared by the FORTRAN compiler.
NLSTIN - No listing of the source input will be prepared.
LSTOU = A listing of the compiled object program output will be prepared.
NLSTOU - No listing of the compiled obiject program output will be prepared.
DECK - A binary object program deck will be prepared as output.
NDECK -~ No binary object program deck will be prepared.
COMDK - A compressed source deck will be prepared as output.
NCOMDK - No compressed source deck will be prepared as output.

MAP - A storage map of the program labels, variables and constants will be
prepared as output.

NOMAP - No storage map will be prepared.

XREF -~ A cross reference report will be prepared as output. This is the
same as the SYMTAB option in FORTRAN IV. Both are acceptable to Series 6000
FORTRAN, A TO~FROM transfer table will also be generated.

NXREF - No cross reference report will be prepared.

DEBUG ~ A run time debug symbol table (.SYMT.) will Dbe included in the
object program. This is the same as the STAB option in FORTRAN IV. Both are
acceptable to Series 6000 FORTRAN,

NDEBUG =~ No debug symbol table will be prepared.

BCD ~ The object program character set will be standard BCD (see Appendix
A},

3

o

\SCII - The object program character set will be ASCII (see Appendix A).

FORM - The source program is in standard statement format (see Format Rules
for Statements) .

NFORM -~ The source program is "free form".

LNO = The source input records are line numbered beginning in Column 1 and
terminating with the first non-numeric character. This option is only
operable with the NFORM option,

NLNO - The source records are not line numbered.

OPTZ ~ Global optimization procedures will be performed so that the object

program produced is highly efficient. It should be noted that this option
will slow the compilation rate, though not significantly.

3=-2 BJ67

NOPTZ - Global optimization of the object program will not be performed.

DUMP - 5lave core dump will be given if the compilation activity terminates
abnormally.,

NDUMP - Program registers upper SSA, and slave program prefix will be
dumped if the compilation activity terminates abnormally.

NOTE: Independent of the DUMP/NDUMP option, Series 6000 FORTRAN has built in
the capability of producing a symbolic dump of the internal tables in the
event of a compiler abort. The presence of a $ SYSOUT *F control card
will activate this process,

Sample Batch Deck Setup

The following are the required control cards for the compilation and execution
of a batch FORTRAN activity. The § control cards are fully described in the
Control Cards Reference Manual,

1 8 16
$ SNUMB
S IDENT
S OPTION FORTRAN
$ FORTY Options or § FORTRAN Options
. FORTRAN Source Deck(s)
$ EXECUTE Options
$ File Cards
S ENDJOB
kkRFOF

TIME SHARING SYSTEM OPERATION

From a user point of view there are two time sharing versions of the Series 6000
FORTRAN compiler, Each version is invoked by a different call., These versions
and the language call for each are as follows:

Compiler Version Language Call
Batch based time sharing compiler YFORTRAN
Time sharing based compiler FORTRAN

In this document, the batch based time sharing system 1is referred to as the
YFORTRAN Time Sharing System and the time sharing based system is referred to as
the FORTRAN Time Sharing System. The time sharing based Series 6000 FORTRAN
compiler compiles under the time sharing system (rather than being spawmed as in
the case of the batch based time sharing compiler) and differs from the batch
based time sharing compiler in the following areas.

1. Compiles under the GCOS Time Sharing System.

2. Eliminates the need for configuring batch core for YFORTRAN compiles
through DRL TASK.

3-3 BJ67

3. Retains essentially the current RUN syntax with modifications as noted
in this section.

4, Interfaces with a new 4K Time Sharing loader module.

5, Significant overhead reduction in FORTRAN time sharing system,

6. Blank common allocation is common.

7. "CORE=" clause is not required for compiles.

8. Compilers are identical except for the executive phase (YEXC vs YTEX).
The only user differences, other than the ones noted above, are the I/0 device
assignments for the system output and input files, the presence of necessary

user GCOS communication via control cards or command language, and the assumed
compiler options for the compilation process.

Time Sharing System Command Language

The standard means of communication with the Series 600/6000 GCOS Time Sharing
System (TSS) is by way of a teletypewriter used as a remote terminal, Other
compatible devices may also be used, but use of a teletypewriter is assumed in
this manual. The user may choose either the keyboard/printer or paper-tape
teletypewriter unit for input/output, or combine both. In either case, the
information transmitted to and from the system is displayed on the
terminal-printer. Keyboard input will be used for purposes of description;
instructions for the use of paper tape are given under “"Paper Tape Input” in
this section.

The user “"controls" the time sharing system primarily by means of a command
language, a language distinct from any of the specialized programming languages
that are recognized by the individual time sharing compilers/processors (e.g.,
the Time Sharing FORTRAN language). The command language is, for the most part,
the same for users of any component of the time sharing system; i.e., FORTRAN,
BASIC, Text Editor, etc. A few of the commands pertain to only one or another of
the component time sharing systems, but the majority of them are, in form and
meaning, common to all component systems,

The commands relate to the generation, modification, and disposition of program
and data files, and program compilation/execution requests. The complete time

sharing command language is described in Time Sharing General Information
Manual.

Once communication with the system has been established, any gquestion or request
from the system must be answered within ten minutes, except for the initial
requests for user identification (user-ID) and sign-on password, which must be
given within one minute. If these time limits are exceeded, the user's terminal
will be disconnected.

Time Sharing Commands of the YFORTRAN and FORTRAN Time Sharing Systems

The valid time sharing system commands are listed in Table 3-1. These commands
are fully described in the Time Sharing General Information Manual, The RUN
command for the YFORTRAN and TFORTRAN Time Sharing oSystems is more fully
described in tHis manual.

3-4 BJ67

Table 3-1. YFORTRAN and FORTRAN Time Sharing Systems Commands

Applicable

At
Command Build Mode
ABC Yes
ACCESS Yes
ASCASC Yes
ASCBCD Yes
AUTOMATIC & Yes
BCDASC Yes
BPRINT Yes
BPUNCH Yes
BYE Yes
CATALOG Yes
DELETE & Yes
DONE : Yes
EDIT Yes
ERASE & Yes
FDUMP Yes
GET Yes
HELP Yes
HOLD Yes
JABT Yes
JouT . Yes
JSTS Yes
LENGTH Yes
LIB a Yes
LIST Yes
NEW & Yes
NEWUSER Yes
NO PARITY Yes
oLD & Yes
PARITY Yes
PERM a Yes
PRINT & Yes
PURGE @& Yes
RECOVER Yes
#RECOVER) No
RELEASE & Yes
REMOVE Yes
RESAVE @& Yes
RESEQUENCE & Yes
ROLLBACK Yes
#ROLLBACK No
RUN a Yes
SAVE & Yes
SCAN Yes :
SEND Yes
STATUS Yes
SYSTEM & Yes
TAPE @ Yes

@not applicable at subsystem~selection level

BJ67

Log-0On Procedure

The user, to initiate communication with the GCOS Time Sharing System, performs
the following steps:

® Turns on the terminal unit
@ Obtains a dial~-tone
e Dials one of the numbers of his time sharing center

The user will then receive either a high-pitched tone indicating that his
terminal has been connected to the computer or a busy signal. The busy signal
indicates, of course, that no free line is presently available.

Once the user's terminal has been connected to the computer, the time sharing
system begins the log-on procedure by transmitting the following message:

HIS SERIES 6000, SERIES 600 ON(date)AT (time)CHANNEL (nnnn)

where time is given in hours and thousandths of hours (hh.hhh), and nnnn is the
user's line number.

Following this message, the system asks for the user's identification:
USER ID =-=

The user responds, on the same line, with the user-ID that has been assigned to
him by the time sharing installation management. This user-ID uniquely
identifies a particular user already known to the system, for the purposes of
locating his programs and files and accounting for his usage of the time sharing
resources allocated to him., An example request and response might be:

USER ID -~ J.P.JONES

Note: A carriage return must be given following any complete response, command,
or line of information typed by the user.

(The user's response is underlined here for illustration.) After the user
responds with his user-ID, the system asks for the sign-on password that was
assigned to him along with his user-ID, as follows:

PASSWORD
EEBREKEHXIKEK

3-6 BJ67

The user types his password directly on the "strikeover" mask provided below the
request PASSWORD, The password is used by the system as a check on the
legitimacy of the named user. The "strikeover" mask insures that the password,
when typed, cannot be read by another person. (In the event that either the
user—-ID or password is twice given incorrectly, the user's terminal is
immediately disconnected from the system.) At this point, 1if the accumulated
charges for the user's past time sharing usage equals or slightly exceeds 100
per cent of his current resource allocation, he will receive a warning message.
If his accumulated charges exceeds 110 per cent of his current resources, he
receives the message:

RESOQURCES EXHAUSTED -~ CANNOT ACCEPT YOU

and his terminal is immediately disconnected. (The user may also receive the
following information message if his situation warrants it:

n BLOCKS FILE SPACE AVAILABLE
This condition does not affect the log-on procedure.)

Assuming that the user has responded with a legitimate user-ID and password and
has not over extended his rescurces, the time sharing system then asks the user
to select the processing system that he wants to work with; this is called the
system~selection request. In this case, the user would respond with YFORTRAN or
FORTRAN ¢

SYSTEM ? YFORTRAN or FORTRAN

The user is then asked whether he now wants to enter a new program (NEW) or if
he wants to retrieve and work with a previously entered and saved program (OLD);
the request message is:

OLD OR NEW =

If the user wishes to start a new program (i.e., build a new source file), he
responds simply withs:

NEW

If, on the other hand, he wants +to recall an old source-program file, he
responds with:

OLD filename

where filename is the name of the file on which the old program was saved during
a previous session at the terminal (see the SAVE command).

Following either response, the system types the message READY, returns the
carriage, and prints an asterisk in the first character position of the next
line:

READY

3-7 BJ67

An example of a complete log=on procedure, up to the point where the YFORTRAN or
FORTRAN system is ready to accept program input or control commands, might be as
follows:

HIS SERIES 6000, SERIES 600 ON 07/26/68 AT 14,768 CHANNEL 0012

USER ID - J.P,JONES

PASSWORD ' T

EERREEBHIAKE -~ (user's password is typed over the mask)
SYSTEM=YFORTRAN or FORTRAN

OLD OR NEW - NEW ~ (NEW Is shown arbitrarily for illustration)
READY -

* - (the user begins entering input on this line)

Entering Program-Statement Input

After the message:

READY
*

the system is in build-mode (as indicated by the initial asterisk) and is ready
to accept FORTRAN program-statement input or control commands. All lines of
input other than control commands are accumulated on the user's current file.
Normally the current file will be the file that contains the program he wants to
compile and run at this session. If he is building a new file (NEW response to
OLD OR NEW=-=-), his current file will initially be empty. If he has recalled an
old file (OLD filename) the content of the named old file will initially be on
his current file, and any input typed by the user -- excepting control commands
== will be either added to, merged into, or will replace lines in the current
file, depending upon the relative line numbering of the lines in the file and
the new input. (This process is explained under the heading "Correcting or
Modifying a Program," below.,)

Following each line of noncommand-language input and the terminating carriage
response, the system will supply another initial asterisk, indicating that it is
ready to accept more input,

Format of Program=—Statement Input

A line of FORTRAN input =-- as distinct from a control command -- can contain one
of the following:

l. One or more FORTRAN statements,

2. A partial statement.

3. A continuation of a statement left incomplete in the preceding line of
input.

4, A comment,
5. A combination of (3) and (1) or (2), in that order.

6. A combination of (1) and (2).

3-8 BJ67

A line of input must begin with a line-sequence number of from one to eight
numeric characters. The line-sequence number facilitates correction and
modification of +the source program (described below); hereinafter, the
line-sequence number will be referred to simply as the "line number"., (Note that
a line number is distinct from a statement number; a statement number is a part
of the FORTRAN-language statement itself.)

The line number is always terminated with (i.e., immediately followed by) a
single control character which may be a blank, an ampersand, a number sign, an
asterisk, or the letter C. The control character merely serves to indicate what
type information is to follow (new statement, continuation, or comment) and is
not compiled as part of the program.

The semicolon may be used to indicate the end of one complete FORTRAN statement
and the beginning of another on the same line of input. A carriage return must,
of course, be used to terminate a complete line of input.

This line format is suitable for direct processing by the FORTRAN compiler with
the options NFORM and LNO.

The general format of a line of FORTRAN input is then as follows:

nnnnnnnnestatement or continuation ;statement...;statement
or

nnnnnnnnc comment

where: nnn...n is a numeric line number, the magnitude of which is less than
218(262144), and

¢ is a single-character control character which may be a blank,
an ampersand, an asterisk, a number sign, or the letter C, and
must immediately follow the last digit of the line number.

SIGNIFICANCE OF THE CONTROL CHARACTER
The control character identifies the type of information that follows it.

B (blank) ~= if the character position immediately following the
last digit of the line number contains a blank, and
the next nonblank character is not an ampersand, then
the next nonblank character is assumed to begin a new
FORTRAN statement. In this case, the next nonblank
character may begin a FORTRAN statement number (i.e.,
mm...m statement-text).

& (ampersand) -- if an ampersand is the first nonblank character
following the line number, the next nonblank character
is assumed to be a continuation of the previous
statement in the previous line of input. The effect of
"&" is to suppress the previous carriage return as an
end-of-statement indicator.

3-9 BJ67

* (asterisk) or C == if the line number is terminated with an asterisk or
the letter C, the information following is assumed to
be a comment. The comment itself is terminated by a
carriage return.

(pound sign) -~ 1f the user wants a numeric in column 1 of +the card
image and line numbers exist in the source file, a
pound sign (#) character immediately following the
line number will cause the character following it to
go into column 1.

A semicolon within a noncomment line indicates both the end of the preceding
statement and that any significant information (nonblank, noncarriage return)
following it begins a new statement. The new statement may include a FORTRAN
statement number, mm...m.

The format of a statement, as typed in following a blank control character, is:

«o..nnff P...p mm...m FORTRAN-language text

(The statement-format portion is underlined.)

where: P...p are optional blanks, and

mm...m is an optional numeric statement number which must be equal to
or less than 99999

BLANKS (OR SPACING) WITHIN A LINE OF INPUT

Initial, imbedded, or trailing blanks in a line of input have no significance in
its interpretation, excepting only that blanks are illegal within the line
number and that the nonnumeric character (including P) immediately following the
line number is interpreted as a control character. Thus, spacing can be used
quite freely within a line of input in the interest of legibility. (Blanks
within character constants and nH fields -~ i.e., alphanumeric information =--
are meaningful however, and are retained in the object program coding.)

Note that the line/statement format is, except for the relative position of the
control character, completely free-form, or position independent.

To this point the discussion of line format has been oriented to the NFORM form
described earlier in this discussion. This is generally the most convenient form
to use in time sharing. It is not mandatory, however. The source file may be
built using the text editor and be without line numbers. The NLNO option permits
this. Or, the source may be in "fixed" format (without line numbers). The FORM
option may be used to indicate this. The full spectrum of line formats and
source file recording modes is available to the time sharing user.

3-10 BJ67

Correcting or Modifying a Program

Keyboard input is sent to the computer and written onto the user's current file
in units of complete lines. A line of terminal input is terminated by a carriage
return and no part of the line is transmitted to the system until that carriage
return is given. Therefore, corrections or modifications can be done at the
terminal at two distinct levels:

l. Correction of a line-in-progress (i.e., a partial line not vyet
terminated) .

2. Correction or Modification of the program (i.e., the contents of the
user's current source file) by the replacement or deletion of lines
contained therein, or the insertion of new lines.

The correction of a typing error that is detected by the user before the line is
terminated can be done in one of two ways. He may delete one or more characters
from the end of the partial line or he may cancel the incomplete line and start
over. The rules are as follows:

1. Use of the commercial "at" character (@) deletes from the line the
character preceding the @ character; use of n consecutive @ characters
deletes the n preceding characters (including blanks).

Examples:

*ABCDF@E would result in ABCDE being transmitted to the program file.

*ABCPDEF @@@Q@ GHJ would result in ABCGHJ being transmitted. (The
characters to be deleted are underlined for illustration.)

2. Use of the CTRL (control) and X keys, depressed simultaneously, causes
all of the line to be deleted. The characters DEL are printed to
indicate deletion and the carriage is automatically returned. For
example:

*ACDEFG CTRL/X DEL (all characters deleted)
(ready for new input)

Correction or modification of the current source file is done on the basis of
line numbers and proceeds according to the following rules:

1. Replacement. A numbered line will replace any identically numbered line
that was previously typed or contained on the current file (i.e., the
last entered line numbered nnn will be the only line numbered nnn in
the file).

2. Deletion. A "line" consisting of only a line number (i.e., nnn) will
cause the deletion of any identically numbered line that was previously
typed or contained on the current file.

3. Insertion. A line with a line~-number value that falls between the
line-number values of two pre-existing lines will be inserted in the
file between those two lines. If the line number is less than the first
line number it is inserted at the beginning of the file; if greater
than the largest line number, it is inserted at the end of the file.

3~11 BJ67

At any point in the process of entering program—-statement input, the LIST
command may be given, which results in a "clean", up-to-date copy of the current
file being printed. In this way, the results of any previous corrections or
modifications can be verified visually. Following the response (or command) OLD
filename, the LIST command can be used initially to inspect the contents of the
current source file (i.e., the "old" program).

Input Error Recovery

The decimal input/output routine permits the time sharing user (BCD or ASCII) to
correct a string of character$§ input from a teletypewriter when a character is
illegal for the current format conversion. For example: a decimal point is
illegal in an "I"™ field. The current input line is output with a pointer to the
illegal character. The wuser can now input a correction to replace the
corresponding characters previously input. The input/output routine resumes with
the new string. If the user responds with a carriage return, the wusual error
nessage is output.

The YFORTRAN Time Sharing System Run Command

The RUN command has the form:

RUN H -nnn fs = fh; fc(opt) ulib # fe

where: RUN H is the command RUN or RUNH. The latter form is used to
display a heading line on the terminal giving date, time, and
SNUMB .

=nnn nnn is the maximum time in seconds of processor time, that the
program is to be allowed for execution.

fs is the set of file descriptors for source files in the standard
BCD card image format, in compressed card image format (COMDK),
or in time sharing ASCII format and/or descriptors for Dbinary
card image object files. These files serve as inputs to the
compiler and/or loader. Where a BCD or COMDK source file 1is
supplied, fs may also include a descriptor for an alter file in
BCD format. The alter file must begin with a $§ UPDATE card and
must be in alter number sequence. If there are many BCD or COMDK
source files in the list, the alter file will update the first.
Alternatively, +the 1list fs may consist of a single file
descriptor that points to a previously generated system loadable
(H*) file.

A file descriptor consisting of the single character * indicates
the current file (*SRC). The list is optional and, when missing,
indicates that only the current file (*SRC) is to be compiled.

3-12 BJ67

fh

fc

opt

is a single file descriptor of a random file into which the system
loadable file produced by General Loader will be saved if the
compilation is successful. This file will be written if no fatal
errors occur during compilation. If the named file does not exist, a
permanent random file of 36 blocks will be created and added +to the
user's catalog. If the field is missing, the H* file is generated
into a temporary file., The presence of this option is valid only when
the program indicated by the list fs, the FORTRAN library, and the
user library (if any) 1is bindable (nco outstanding SYMREFS). If
General Loader indicates that outstanding SYMREF's exist, an
executable H* file will be created, but any reference to an
unsatisfied SYMREF will cause the program execution to be abnormally
terminated (General Loader inserts a MME GEBORT at references to
unsatisfied SYMREF's. When a MME is encountered during the execution
of a time sharing subsystem, GCOS and the Time Sharing Executive
simulate an illegal operation fault.)

is a single file descriptor of a sequential file into which the
compiler is to place the binary (C*) result of any indicated
compilation(s). One object module is written to this file for each
source program in the file(s) given by fs. If the named file does not
exist, a permanent linked file of 3 blocks will be created and added
to the user's catalog. This file will expand as necessary to hold the
object decks. In this case the field fs plus the libraries need not
indicate a complete program (individual or collections of SUBROUTINES
may be compiled and saved). When this optional field is missing, a C¥
file will not be generated. When present the DECK option is turned on
for the compilation process.

is a list of options. Some of these options affect the compilation
process, and some the loading. The following compiler options are
available for time sharing; they are described under the § FORTY
card; underlined is default.

DEBUG =~ Generate run-time debug symbol table

NDEBUG = No run-time debug symbol table is generated

BCD = Object character set is BCD. If applicable, this option must
be specified whenever General Loader is to be called. This
is required for compile, compile and load, and load
activities; it is not required for execute only runs (run H*

file).

ASCII - Object character set is ASCII

FORM - Source is in "fixed" format

NFORM = Source is in "free" format

LNO - Source is line numbered

NLNO - Source is not line numbered

OPTZ - Optimize the object module

NOPTZ -~ Optimization of the object module will not be done

3-13 BJ6 7

ulib

The remaining options have to do with the loading process. The
underlined option is the default case.

GO -

NOGO -

ULIB -

NOLIB -~

TIME=nnn

CORE=nn

URGC=nn

TEST

REMO

The program will be executed at the completion of
compilation.

The program will not be executed at the completion of the
compilation. If specified, the object program will be saved.
If no object (H*) save file is specified, only the
compilation will be performed (General Loader will not be
called) .

File descriptors exist following the end of the options
field which locate user libraries which are to be searched
for missing routines prior to searching for them in the
system library.

No user libraries are to be used.

The batch compilation and/or General Loader activity time
limits will be set to nnn seconds; where nnn < 180. If not
specified, nnn is set to 60.

The batch compilation actfvity core requirement will be set
to nnK+6K or 24K, whichever is larger. If not specified, nn
is set to 16.

- The urgency for the batch compilation and/or General
Loader activity will be set to nn, where nn < 40. If not
specified, nn is set to 40.

- A test version of the compiler and/or General Loader is to
be used for the batch activity. There must be an accessed
file (in the AFT) of +the name FORTRANY. If these two
conditions are met, then file FORTRANY will be allocated as
file code ** in the batch activity.

- Temporary files created for the batch process will be
removed from the AFT as they are no longer needed. This
option keeps the number of files in the AFT down to a
minimum but causes more time to be spent processing each RUN
command.

NAME=name~- Provides a name for the main link of the saved H* file.

May be used both at time of creation of this file and
subsequently as it is reused. This name is placed in the
SAVE/field of the § OPTION card.

is a sequence of file descriptors pointing to random files containing
user libraries to be searched before the system library.

3-14 BJ67

fe is a set of file descriptors for files which will be required during
execution. Each catalog/file description is separated by a semicolon
(see Time Sharing Command Language and File Usage in the Time Sharing
General Information Manual). The file description may be in any of
the following formats.

1. filename specifying a filename in the form nn where 01 < nn < 44
and nn represents a logical file code referenced by the I/0
statements in the program.

2. filedescr specifying a full description.

a., filename

b. filenameS$password

c. userid/catalogSpassword...

The FORTRAN Time Sharing System RUN Command

This command has the following form:
RUNH - nnn fs = fh; fc (opt) ulib #fe

RUNH - is the command RUN or RUNH. RUNH is used to display a heading line
on the terminal giving date and time,

-nnn - is the maximum time in seconds of processor time the compiled
object program is allowed to execute,

fs - is the set of file descriptions for source files in +the Time
Sharing ASCII format, in the standard BCD format, in COMDK form,
and/or descriptors for binary card image object files. These files
serve as inputs to the compiler and/or time sharing loader. When a
BCD or COMDK source file is supplied, fs may also include a
descriptor for an alter file in BCD format. The $ ALTER file must
begin with a § UPDATE card and must be in alter number sequence. If
there is more than one BCD or COMDK source file in the 1list, the
alter file will update the first. The list fs may also consist of a
single file descriptor that points to a previously generated system
loadable (H¥*) file.

A file descriptor consisting of the single character * indicates
the current file (*SRC). The fs list is optional and, when missing,
indicates that only the current file (*SRC) is to be compiled.

fh - is a single file descriptor of a random file into which the system
loadable file (H*) produced by the time sharing loader is saved
providing the compilation is successful. If the named permanent
file does not exits, a permanent (quick access) random file of 36
llinks is created and added to the users' catalog. If the field 1is
missing, no temporary H* file is created, instead the time sharing
loader creates a complete bound core-image of the object execution
program, "releases" itself via DRL RELMEn, and enters the execution
directly.

If the time sharing loader indicates outstanding SYMREF's exist,
any reference to them during the object execution will cause
abnormal termination via a DRL ABORT.

3-15 BJ67

fc

opt

is a single file descriptor of a sequential file into which the
compiler is to place the binary object (C*) result of any indicated
compilation(s). One object module is written to this file for each
source program in the file(s) given by fs.

If the named file does not exist, a quick access permanent file of
3 llinks is created. This file will expand as necessary up to a
maximum of 20 llinks +to hold the object deck(s). When C* is
specified, a compiler temporary file (*1 scratch) file of 48 llinks
is defined and it's name is placed into the AFT,

is a list of compiler/loader options available in the time sharing
based Series 6000 FORTRAN system. Those options available in the
batched based Series 6000 FORTRAN system but not specified here are
not currently used in the time sharing based Series 6000 FORTRAN
system. They are ignored if specified., Default options are
underlined,

The options are as follows:

BCD

ASCIT
FORM
NFORM
LNO
NLNO
OPTZ

NOPTZ

The internal character set for the object execution is BCD. If
applicable, this option must be specified whenever the time sharing
loader is called. This is required for compile, compile and load,
and load activities; it is not required (or interpreted) for
execute only runs (from H* save file). The user should not load
object deck files compiled under different options; i.e,, one under
BCD and another under ASCII, as execution time results are very
unpredictable.

Internal character set of the object execution is ASCII,

Source is in "fixed" format.

Source is in "free" format.

Source is line numbered.

Source is not line numbered.

Optimizer phase is called,

Optimizer phase is not called.

The following remaining options have to do with the load process.

GO

NOGO

ULIB

NOLIB

The program will be executed at the successful completion of the
compile~load process,

The program will not be executed at the completion of the
compilation. If specified, the object program will be saved. If no
object (H*) save file is specified, only the compilation will be
performed,

File descriptors exist following the end of the options field which
allocate user libraries which are to be searched for missing
routines pricr to searching the system library. Up to nine user
library files may be specified separated by semi-colons.

No user libraries are searched. Specification of user libraries in
this case will cause a RUN diagnostic.

3~16 BJ67

CORE = nn where nn is additional core (mod 1024) to be added to the
standard time sharing loader allocation of 22K. This should be done
if the message "<F> PROGRAM EXCEEDS STORE SIZE" appears. The
compiler will attempt to "second guess" the space requirements for
the load process by accumulating the size of the generated code,
.DATA, region, labeled common and blank common for each subprogram
compiled; then adding a constant (11K for the standard library) to
this to arrive at the size of a load space requirement. If the
message "NOT ENQUGH CORE TO RUN JOB" appears, TSS allocation is too
small to compile/load this program.

ulib = is a list of file descriptors (separated by semi-colon) pointing to
file(s) containing subprograms that have SYMDEF symbols which
satisfy the undefined SYMREF's in the load table. The user library
or libraries are searched in the order in which they are
encountered and before the system subroutine library. The user may
create his own library files using UTILITY, RANLIB, and the Object
File Editor.

The user library file must be a random permanent file when creating
a user library file through the batch procedure.

fe - is a set of file descriptors for files which will be required
during execution., Each catalog/file description is separated by a
semicolon (see Time Sharing Command Language and File Usage in the
Time Sharing General Information Manual). The file description may
be in any of the following formats:

1. filename specifying a filename in the form nn where 0Olsnns44 and nn
represents a logical file code referenced by the I/0 statements in
the program.

2., file descr specifying a full description
a, filename

b. filename $ password
¢. userid/catalog $ password

1. Create a random file to contain the user's library with the ACCESS
subsystem. ACCESS CF,/ULIB1,B/50,50/,R,MODE/R/

2. Deck setup for creation and saving a user library file (through CARDIN
or batch).

1 8 16

$ IDENT

$ USERID UMCS$PASSWD

$ UTILITY

$ LIMIT , 9K

$ FILE AA,F1S, 10L

$ PRMFL Al,R,S,UMC/OBJDECK1

$ PRMFL A2,R,S,UMC/OBJIDECK2

$ PRMFL A3,R,S,UMC/OBJDECK3

$ FUTIL Al,AA,MCOPY/1F,HOLD/AR/
$ FUTIL A2,AA,MCOPY/1F/,HOLD/AA/
$ FUTIL A3,AA,COPY/1F/,REW/AL/

$ FILEDIT NOSOURCE,OBJECT,INITIALIZE
$ FILE R*,J1C, 10L

$ FILE *C,FL1R, 10L"

$ PROGRAM RANLIB

$ PRMFL A4,R/W,R,UMC/ULIB1

$ FILE R*,J1R,10L

$ ENDJOB

3-17 BJ67

Link Overlays Under Time Sharing

The subroutine FTLK may be invoked to create a time sharing loadable-~executable
link/overlay. The following example illustrates the batch activity to build the
link/overlay H* perm-file.

1 8 16
$ IDENT
$ USERID
$ LOWLOAD 36
$ USE LGTLIT, ,TSGF., .FTLK,.FTSU.
$ OPTION FORTRAN, NOGO
$ FORTY NFORM , NLNO
CALL LINK ("X1")
CALL LINK ("X2")
CALL LINK ("X3")
PRINT, YALL DONE ":STOP; END
$ ENTRY ceesee
$ LINK X1
$ FORTY NFORM, NLNO
SUBROUTINE A
PRINT, “LINK X1 EXECUTING" ;RETURN;END
$ ENTRY A '
$ LINK X2, X1
$ FORTY NFORM , NLNO
SUBROUTINE B
PRINT, "LINK X2 EXECUTING" ; RETURN;END
$ ENTRY B
$ LINK X3,X2
$ FORTY NFORM , NLNO
SUBROUTINE C
PRINT, "LINK X3 EXECUTING" ; RETURN;END
$ ENTRY - c
$ EXECUTE
$ PRMFL H*,R/W,R, UMC/HSTAR
$ ENDJOB

The RUN subsystem must be used +to load the main link from the saved H*
perm=file., Use of the time sharing pre-execution initialization .SETU. routine
is required to assure that the ASCII name of the accessed H* perm-file is
retained for use by PTLK. FTLK will pick up this name for use as a parameter to
DRL RESTOR.

COMMON INFORMATION FOR THE FORTRAN AND YFORTRAN TIME SHARING SYSTEMS

The user will, most commonly, apply the alternate name specified in the
following format.

filedescr "altname" where altname = nn; attaching the logical file code nn
to the specified file.

File codes 05, 06, 41, 42, and 43 are implicitly defined for teletypewriter
directed I/0 and need not be mentioned in the RUN command unless 1/0 is to be
directed to a file. Other logical file codes may be teletypewriter directed by
specifying a descriptor of the form "nn"., For example:

RUN#"10"

3-18 BJ67

If a given file descriptor consists of only an unquoted 2-digit logical file
code, a temporary file will be created for the user unless a quick=access
permanent file with the same name already exists., The PERM command can
subsequently be used to make the temporary file permanent. Alternatively, such
temporary files can be made permanent at the time the user logs off, For
example:

RUN PROGRAM#10

If no file exists in the user's catalog with the name 10, a linked temporary
file will be created with that name and I/0 directed to the logical file code 10
will be routed to the temporary file,

The fe list of the RUN command serves two additional functions: creation of a
file control block and association of the logical file code with some specific
file or the teletypewriter. When this association involves a catalog file
descriptor, that file is accessed (or created if so indicated) and added to the
user's available file table (AFT), The file is then said to be allocated to the
process., This is analogous to the allocation by the $ PRMFL and $ FILE control
cards in a batch operation. .

When a file is first referenced by an executing program, a general file "open"
function is invoked. At this time, the file control block comes into play. There
are three possibilities,

1. There is no file control block for the referenced file,
2. The file control block indicates that the teletypewriter is to be used.

3. The file control block indicates that a file is to be used,

If there is no file control block, one is automatically generated indicating
that a file is to be used. When +the file control block indicates that the
teletypewriter is to be wused, the device attachment is completed and 1I/0
proceeds. When the file control block indicates that a file is to be used (cases
1l and 3), the AFT is searched. If a match is found (some allocated file has a
2-digit file code/name equivalent to the file description in the I/0 statement),
attachment is made to that file and I/O proceeds. If no match is found (there
has been no file allocation for the current file designator), a comment is
displayed on the teletypewriter identifying the wundefined file designator as
follows:

FILE XX NOT IN AFT., ACCESS CALLED -

XX is the 2-digit file designator being referenced by the running program. At
this point the ACCESS subsystem is called (as indicated by the above message)
and the following is displayed {by ACCESS):

FUNCTION?

3-19 BJ67

Commands may now be given to ACCESS. When the dialogue is finished, ACCESS will
return to the user's program. The "open" routine will then make a fresh search
of the AFT. If a match is now found (indicating the user accessed some file},
attachment is made to that file and I/0 proceeds. If a match is not found, the
file control block is changed to indicate attachment to the teletypewriter and
I/0 proceeds. For example, consider that PROGRAM contains I/0 statements with a
file designator of 10 and the following dialogue has transpired:

SYSTEM? YFORTRAN or FORTRAN
OLD OR NEW -- OLD PROGRAM
READY

*RUN

FILE 10 NOT IN AFT. ACCESS CALLED

FUNCTION?

If the user responds with a carriage return, the teletypewriter will be used for
file 10. If the user responds:

AF,/MYFILE"10",R,W

The ACCESS subsystem will access the file MYFILE of the wuser's master catalog
under the alternate name 10 with read and write permissions. ACCESS then repeats
the query "FUNCTION?". If the user now responds with a carriage return, I/0 for
file 10 will be directed to MYFILE.

One additional option exists for the purpose of collecting the results of a
compiler abort. If at the time the RUN command is issued there exists a file in
the AFT of name ABRT, that file will be allocated to the compilation activity as
file code *F. In the event of a compiler abort, a core dump and symbolic display
of the internal tables will be written to this file in a form suitable for
printing.

Specify RUN Command as First Line of Source File

A user can include the RUN command as the first line or lines of his source file
subject to the following restrictions:
1. This feature is available on time sharing ASCII files only.

2. The line may be in the current file (*SRC) or a referenced perm-file;
however, it must begin with the first line of the first source file,

3. The first two characters following the 1line number must be *#,
intervening blanks are not permitted.

4. Multiple *# lines may appear in a source file, provided the total
number of characters does not exceed 240 (3 80~character lines).

5. The lines must conform with the RUN syntax continuation as documented
in this manual.

6. The line(s) are treated as comment line(s) by the Series 6000 FORTRAN
compiler,

7, The wuser can override the first-line contained RUN command by
indicating save files, options, or concatenation on his RUN type=in.

3-20 BJ67

The following examples illustrate this capability.

*SYSTEM? YFORTRAN or FORTRAN

OLD OR NEW? NEW

010#RUN *(20,30)=HSTAR (BCD ,NOGO)
*020 PRINT, "HELLO DOLLY..."

*030 _STOP: END

*RUN| INVOKES FIRST LINE SYNTAX |

Run Examples

1.

RUN
The current *SRC FORTRAN source file will be compiled and executed.
RUNH-20 FROO01=HSTAR; CSTARLl (ULIB) ABC; XYZ #

INPUT "01" ; OUTPUT "02"

FORTRAN program file FR001 is to be compiled and executed. The H* will
be saved on file HSTAR and C* on file CSTARl. For the execution, the
random user libraries ABC and XYZ -will be scanned for outstanding
SYMREFs in FR0O01l. Logical file codes 01 and 02 have been used as
alternate names for the quick-access permanent files INPUT and OUTPUT.
A heading line for date, time, and SNUMB will be displayed and the
object program will be limited to 20 seconds of execution time.

RUN #"10"

The current *SRC file will be compiled and executed and I/0 through
logical file code 10 will be directed to/from the teletypewriter,

RUN BCDIOM = ; CSTARZ2 (BCD,NOGO)

FORTRAN file BCDIOM will be compiled and the object deck will be saved
on file CSTAR2. The user intends to execute the object file in the BCD
mode.

RUN HSTAR #02

Execute a previously bound and saved H* file, The quick-access file
"02" is accessed by the RUN subsystem. If no such file exists a
temporary is created.

RUN = HSTAR (TIME=60, CORE=18, URGC=10, ULIB,
COMMON=50) SEARCH

Compile and execute the CURRENT *SRC file, saving the bound H* on
random file HSTAR. Limit the compile time to 60 seconds, increase the
General Loader limits to 18,000 words, and enter the batch compile
activity with an urgency of 10 (default urgency = 40). The random user
library "SEARCH" is searched by the General Loader to satisfy
outstanding SYMREFs prior to searching the standard system library. The
RUN subsystem causes a § LOWLOAD 86 (50 + 36) to be placed on the R¥*
file from the COMMON = option.

3-21 BJ67

7. RUN *; CSTARL; CSTARZ
Compile and execute the current *SRC file and bind it with two
i

&
previcusly saved CF files: C8TARL and CSTAR2Z,

Additional exawmples are given in Section V under File Designation.

Batch Activity Spawned by the YPORTRAN Time Sharing System RUN Command

As an example of the simplest csege, oconslider that some source file is current in
*SRC, and & RUN command is typed with none of the optional fields. A job setup
comparable to the following will be dispatched to the batch system.

T
&

g SNUMB nannT, 40

= USERID

S IDENT

3 LOWLOADL

$ USE COREG, S26/36

3 QPTION NQECE

& OPTION NOGO , NOSREF , NOMAP , SBRVE/OBJECT

$ USE LETLIT, TSGR, , .FTSU, , .FXEMA

8§ PORTY NLETIN, HPORM,ABCII

& LIMITE 2,25

§ FILE 8%, XK1R source file *SRC
$ FILE PEON2S diagnostic report only
et CUTE

$ 2

i FILE s SR bound program

S ENDJOB

The results of compilation and loading are returned on files P* and H*, P* isg
read and scanned for compiler and/or lovader diagnostics. These are displayed on
the teletypewriter and if there have been no fatal errors, the fully bound
program will be lcaded from HY and execution will proceed.

Example of a Time Sharing Session

A comprehensive exampgle of orogram creation, testing, correction and
modification follows, Rep.ies to the user from the system are underlined here;
in actual use, no underlining is done. Explanations are enclosed in parentheses;
they are not part of the printout.

322 BJ67

USER ID = J.P.JONES
R oo
KREHEREHXXKKX
SYSTEM? YFORTRAN or FORTRAN
@LD aR NEW=-NEW
READY
FAUT@X - (enter automatic~line-number mode)
#0010 READ,A,B,C
FOO20 X1=A*B/C
*00 30 K2=p**Q s Bh¥ D
*0040 ANS=X2/X1
*0050 PRINT 10,X1,X2, ASNG@ERANS - (typing error correction)
*¥0060 10 F@RMAT (1X,"X1=",F6,5@2,"X2=",F7,2," "ANS=",
0070 & F6.2)

*¥0080 ST@P

*0090 END

*0100 (end automatic mode by carriage return)
*G0 30 X2=A**24B**2-C - (replacement of line 30)

FSAVE F@PRTOL
DATA SAVED--F@RTO1

*LIST - (display corrected program)
0010 READ,A,B,C

0020 X1=A*B/C

0030 X2=A**Q4B**2-C

0040 ANS=X2/X1

0050 PRINT 10,X1,X2, ANS

0060 10 F@RMAT (1X,"X1l=",F6,2,"X2=",F7,2,"ANS=",
0070& F6.2)

0080 ST@P

0090 END

READY

iRUN (run program)

= 3.2,10.5,2.2 - (type input data)

Xl= 15,27X2= 118,29ANS= 7,75 - (output - correct,
but poor format)

*0060 10 F@RMAT (1X,"Xl=" ,F6,2," X2=",F7,2," ANS=", =
(correct format statement)

*RUN

= 3,2,10.5,2.2

XI= 15.27 X2= 118.29 ANS= 7.75 - (improved output format)
*RESAVE F@RTO1
DATA SAVED--F@RT01 ~ (corrected version of program saved)

*BYE - (finished)
7“*RESQ)'URCES USED § 2.08, USED T¢ DATE § 263.85= 27%
R IME SHARING @QFF AT 15,421 N 10/10/68

Supplying Direct~Mode Program Input

During program execution, keyboard input may need to be supplied to satisfy one
or more READ statements in the program. Each time input is required, the
equal-sign character, "=", will be printed at the terminal. The user begins
typing the input immediately following the equal sign.

3 BJ67

It is also possible to input data from a paper tape. The actual characters
transmitted to the terminal from a READ statement are: carriage vreturn (CR),
line feed (RO), equal sign (=), and sign-on (X-ON). The sign-on character
activates the paper tape reader if the reader is in the ready state. A ready
state i1s achieved by having the paper tape "loaded" and the reader switches set
to "AUTO" or "TD-ON". Paper tapes which are to be used in this way should end
each line with the characters: carriage return (CR), sign off (X=OFF), line feed
(LF), rubout (RO). The sign-off character turns off the reader but leaves it in
a ready state for any subsequent READ's,

Teletypewriter output from the PUNCH statement automatically appends this
control information to the end of each line, facilitating preparation of tapes.
In any event the user must manually begin such tapes with an appropriate leader
of RO characters.

Emergency Termination of Execution

The use of the BREAK key will terminate program execution. The teletypewriter
buffer will be flushed. Control will return to the build-mode after the use of
the break key,

Paper Tape Input

In order to supply build-mode input from paper tape, the user gives the command
TAPE., The system responds with READY. At this point, the user should position
his tape in the reader and start the device. Input is terminated when either the
end-of-tape occurs, the user turns off the reader, an X~OFF character is read by
the paper tape reader, or a jammed tape causes a delay of over one second
between the transmission of characters.

At present a maximum of 80 characters are permitted per line of paper tape
input. Excessive lines will be truncated at 80 characters with the remaining
data placed in the next line. A maximum of two disk links (7680 words) of paper
tape input will be collected during a single input procedure. All data in excess
of two disk links will be lost.

REMOTE BATCH INTERFACE

Refer to the GRTS Programming Reference Manual, for a description of the deck
setup required for submitting a batch job from a remote terminal,

FPILE SYSTEM INTERFACE

The File System provides multiprocessor access to a common data base,

system allocates permanent file space and controls file access for

local and remote batch and time sharing. The file system is fullv des
the GCOS File System Reference Manual,

TERMINAL BATCH INTERFACE

The CARDIN time sharing subsystem allows the user to submit a batch job from a
time sharing terminal. This capability is fully described in the GCOS Time
Sharing Terminal Batch Interface Facility Reference Manual.

ASCII/BCD CONSIDERATIONS

The Series 6000 FORTRAN enables the programmer to choose the character set that
best meets the needs of the application or that is most convenient for the
normal mode of execution.

Specification of BCD or ASCII is possible in both batch and time sharing. 1In
batch, the $ FORTY card provides BCD by default. In +time sharing, the RUN
command provides ASCII by default, The selection is made at compile time and
need not normally be designated for execute-only runs. One exception exists, and
that is when running in time sharing in the BCD mode, where the run consists of
object decks only (no compilations required; not running a saved H*). In this
case the BCD option must be given in the RUN command.

When BCD is elected, internal character data and FORMATS are carried in BCD;
storage is allocated at a rate of six characters per word; and for I1I/0, ENCODE,
PAUSE, etc., library calls are made to the entry names which work with BCD.

Similarily, when ASCII is elected, the object module will have all ASCII
properties. Character data and FORMATs are carried in ASCII; storage is
allocated at a rate of four characters per word; and, for I/0, ENCODE, PAUSE,
etc., library calls are made to the entry names which work with ASCII.

Therefore, one generally cannot mix object modules of contradicting character
sets. Conflicts arise over which routines are to be loaded from the library, how
to index through character arrays, how to analyze FORMAT statements, etc.

BCD or ASCII internal programs execute in either batch or time sharing with
certain automatic convenience functions for dealing with the variety of file and
device types accessible to the program. In terms of specific problems, automatic
file transliteration and/or reformatting on a logical record basis is provided
for the following:
1. Execution of a BCD program under time sharing.
a. Input and output may be directed to the teletypewriter.

b. Input files may be ASCII,
2, Execution of an ASCII program in the batch mode.
a. Input and output may be directed to the reader, printer, punch, or
SYSOUT. Printer output will not have slew interpretation.

b. Input files may be BCD (media 0, 2, or 3) or ASCII.

3. Execution of a BCD program in the batch mode. Input files may be ASCII,

3-25 BJ67

4. Execution of an ASCII program under time sharing. Input files may be
ASCITI or BCD (media 0, 2, or 3).

Use of the word "may" in the lists above implies an optional capability. This
capability capitalizes on the existence of a collection of alternate entry names
in the File and Record Control which are called from FORTRAN library modules.
Specification of this optional capability in batch is under programmer control.
The proper linkage is accomplished when the following control card is presented
to the General Loader:

S USE LGTLIT

In YFORTRAN time sharing, the RUN command will place the $§ USE .GTLIT control
card on the R* file (see Batch Activity Spawned by RUN in Section III).

Files not requiring transliteration and/or reformatting are, of course,
acceptable as input. Output files are always recorded in the media code relative
to the internal character set of the executing program independent of the
batch/time sharing environment. BCD programs will output files with media codes
0, 2, 3 only; ASCII programs will output files with media code 6 only.

FILE FORMATS

All output files generated by Series 6000 _FORTRAN, whether formatted or
unformatted, ASCII or BCD, seguential or randoml, generated in time sharing or
batch, are in Standard System Format (as described in the File and Record
Control Reference Manual).

Files generated in time sharing in the build-mode or by the Text Editor may be
used directly as ASCII input data files for a FORTRAN object program. BCD file
output may be listed (using the SCAN subsystem) at either the user's terminal
teletypewriter or at a high speed line printer (BATCH verb of SCAN),

lRande files may optionally be treated as non-standard format. The file format
consists of fixed length records without record control words and block control
words. See Section V, Unformatted Random File Input/Output Statements.

3~26 BJ67

GLOBAL OPTIMIZATION

Global Optimization gives the wuser some control over the balance between
compilation and object program efficiency. This analysis has been collected into
a single optional compiler phase that is elected by the OPTZ option on the
$ FORTY or $ FORTRAN control card or the FORTRAN or YFORTRAN Time Sharing
Systems RUN command. The analyses performed include:

1. Common Subexpression Analysis - This analysis provides a determination
of multiple occurrences of the same subexpression within a program
block. The goal is to perform a given computation only one time.

2. Expression Compute Point Analysis - This analysis provides a
determination of the optimal place and time for the computation of some
expression in relation to the. loop structure of the program and the
redefinition points of the expression's constituent elements,

3. Induction Variable Expression Analysis - This analysis determines the
optimal computation sequence. Its intent is to reduce expressions to
simple operations upon an index register at the loop boundaries.

4. Loop Collapsing Analysis = This analysis attempts to reduce two or more
nested loops into a single loop.

5. Register Management Analysis - This analysis determines how registers
and temporary storage are to be allocated. Priorities are assigned
according to the number of references to an expression and the loop
level of these references. Candidates for global assignment over one or
more program loops are selected.

6. Induction Variable Materialization Analysis = This analysis determines
the necessity for materializing in core the current value of a DO
index.,

The use of Global Optimization does not always result in a faster running
program; furthermore, there are situations where the object code generated by
Global Optimization will not be an exact functional equivalent of
No-Global-Optimization generated code using the same source., For example:

l. If a program contains multiple references to invariant expressions,
code for the evaluation of that expression will follow. the program
prologue. This placement could result in the unnecessary evaluation of
the expressions, if references were from statements which are
conditionally executed; i.e., the conditions may be such that the
expressions are not to be referenced. For example:

COMMON A,B,C, L1,L2,L3

® 00 00 0w

IF(Ll) 1,2,1

1 Z=A+B

Y=A+B
2 IF(L2) 3,4,3
3 72= (B+C)

Z 3= (B+C)

006000

4 IF(L3) 5,6,5 .

5 Y1l=(A+C) + (A+C)**2
v2= (A+C)

6 CONTINUE

3-27 BJ67

Expressions (A+B), (B+C) and (A+C) have multiple references under
conditional code.

They will be pre-calculated following the prologue. However, if L1, L2,

and L3 were all zero, this evaluation will have been done
unnecessarily.

Another example demonstrates how results can actually be different
(OPTZ vs NOPTZ). Consider the following example where the programmer is
attempting to avoid a divide check fault.

FUNCTION FX(A,B)

oo 086 0@

10 IF(B) 1,2,1

1 FX=A/B+(A/B)**2+ (A/B)**%3
GO TO 3

FX=RA+A¥*¥24A%*% 3

CONTINUE

9860000

w N

5005 ee 00

END

The OPTZ generation will sometimes produce a divide check when (A/B) is
evaluated following the prologue; i.e., whenever B = 0.

This situation can be avoided in either of two ways.
a. The above example could be rewritten as:

FUNCTION FX(A,B)

10 IF(B.NE.O.)FX=A/B+ (A/B)**2+ (A/B) **3
IF(B.EQ.O)FX=A+A%**24A% %3
CONTINUE

© 86 o8 00

END

The optimization phase is "sensitive" to logical if statements.
Expressions which are only referenced within the truth clause of a

logical if statement wil not be removed from such a conditional
setting.

b. The following modification to the original example will eliminate
the side effect.

FUNCTION FX (A,B)

10 IF(B) 1,2,1

1 B=B
FX=A/B+ (A/B) **2+ (A/B) **3
GO TO 3

FX=A+A**24A% %3

CONTINUE

e o8 e 08 0

END

w o

3-28 BJ67

In this case, the assignment statement B=B will, through
redefinition analysis, inhibit removal of the expression (A/B) from
the conditional area. Also, there will be no code generation for
the statement B=B since a local optimization in code generation
recognizes the superfluous nature of the assignment.

2. Another situation results from using certain outdated library "flag"
routines. For example, if a program uses FLGEOF, FLGERR to set an
end-of-file or error flag, expressions involving these flag variables
may appear to the optimizer as invariant over some range of statements
when there actually may be a redefinition due to input/output. For
example:

CALL FLGEOF (UNT,IF)
DO 100 I=1,N

READ (UNT)V ,V

v

IF (IF.EQ.O0)READ (UNT)V ,V
IF(IF.EQ.OREAD (UNT)V ,V
100 CONTINUE

Since the optimizer does not consider each of the READ statements as a
potential redefinition point for the wvariable IF, the expression
(IF.EQ.0) will be removed from the DO 100 I=1,N loop. Thus, in this
case the EOF will never be sensed; however, the use of the END= c¢lause
will avoid this problem. For example,

DO 100 I=1,N

READ (UNT ,END=10)V1,V2

READ (UNT ,END=10)V3,V4
100 READ (UNT, END=10)V5,V6

e 08 00 e

10 PRINT,"END OF FILE ON",UNT

In summary, Global Optimization does not guarantee the generation of faster
running programs, and in some instances undesirable faults can be introduced.
However, analysis of this optimization technique has shown that in general,
significant improvement of object code usually results,

COMPILATION LISTINGS AND REPORTS

The compilation listings and reports produced by the system are controlled by
options on the $ FORTY or $ FORTRAN control card.

3~29 BJ67

The following listings and reports are produced when the indicated options are
specified (default options are underlined).

Option Listing or Report Produced
LSTIN Source Program Listing.
LSTOU Source and Object Program Listing with a Program

Preface Summary.
XREF Cross Reference Report and TO-FROM Transfer Table.
MAP Storage Map and Program Preface Summary.
Any diagnostics pertinent to the program will be included in the LSTIN report if

it is not suppressed. When the NLSTIN option is present, the diagnostics will
appear as a free~standing report.

The Compilation Statistics Report will be produced if any other report is
produced or DECK or COMDK is called for.

Figure 3=-1 contains an @xample program with all reports The following
descriptions explain each report in more detail using Figure 3~ l as a base for
the description.

Source Program Listing

Each line of this report is divided into three fields. The left-most field
contains the line or alter number for each source line. If the source program is
line-numbered (NFORM and LNO options spec1f1ed), the actual line number will be
displayed in this field. If the source program is not line-numbered (FORM or
NFORM and NLNO options specified), this field contains the alter number
(relative sequence number of the line).

The second field contains the text of the source statement and is separated from
the first field by six blank characters.

The third field is separated from the second by six blank characters and
contains optional sequence/identification information (columns 73~80) from the
source line,

Diagnostics are recorded immediately following the source line to which they
apply. Diagnostics which do not apply to a particular source line appear at the
end of the source listing.

Each diagnostic line begins with five asterisks followed by the character W, F,
or T to indicate a warning; a fatal error; and premature termination of
compilation, respectively. A complete description of the diagnostics generated
in the compiler is included in Appendix B.

In Figure 3-1, a warning diagnostic appears after 1line 5. Correct code is
generated and the program runs as expected. To be error free, a specification
statement should be added to the program typing EOF as INTEGER.

3-30 BJ67

To-~From Transfer Table

This table, page 2 of Figure 3-1, lists the transfers that exist in the source
program logic. The report is sorted into descending line number sequence, keying
on the originating line number, and will display up to five transfers on one
report line., The destination line number field may indicate the word EXIT or
RETURN if the transfer statement is a STOP or RETURN statement. For assigned
GOTO statements, where no label list is provided, the label wvariable name is
displayed. In Figure 3-1, page 2, lines 28 and 29 contain transfers. Line 29
includes the statement GOTO 7; statement 7 begins on line 10; the first entry in
the transfer report indicates this path. Line 28 contains a STOP statement; the
second entry in the transfer report indicates this,

Program Preface Summary

The Program Preface summary, page 3 of Figure 3-1, documents the object module
preface (card) information in a format similar to that printed by GMAP,

The Program Break and Common Length are displayed in octal followed by the width
of the V Count Bits as used in instructions with special (type 3) relocation.

The SYMDEFs entry shows the relative offset of the internal location
corresponding to that SYMDEF, in octal.

Next is a list of LABELLED COMMON blocks known or referenced by this module.
Associated with each symbol are two octal fields. The first gives the global
symbol number associated, for this compilation, with the common name. This is
the number that will appear in the V field of any instruction referencing this
labelled common region. The number will appear justified according to the V
field. Thus if labelled common SPACE is global symbol 2, and the V field is five
bits wide, the display will be 020000 (bit zero is the sign bit). If the V field
is six bits wide, the display will be 010000. The second field contains the
size, in octal, of the labelled common region.,

Iwo labelled common regions, .DATA, and ,STAB,, receive special treatment by the
loader. Although they are not actually labelled common names, they are included
in this portion of the Program Preface summary. The first, .DATA., is allocated
space to contain all local data required by the program. This includes arrays
and scalars not appearing in common or as arguments, constants, encoded FORMAT
information, NAMELIST lists, temporary storage for intermediate results,
argument pointers, the error linkage pair (.E.L..), etc. The second, ,STAB., is
generated when the DEBUG option is employed. This block contains a symbol table
for all program variables and statement numbers and may be used for symbolic
debugging.

A list of SYMREFs is also included with their associated global symbol number,
justified as described above, for LABELLED COMMON names.,

Storage MaE

This report, page 4 of Figure 3~1, provides information on the allocation of
storage for identifiable program elements, This report is divided into three
parts: variables and arrays, statement numbers, and constants.

3-31 BJ67

The first part of the report lists all program variables and arrays in
alphabetical order. It contains four fields as follows:

1. The first field contains the global symbol name relative to which the
variable is defined. Local variables and arrays are defined relative to
the origin of the .DATA. space. When a variable or array belongs to
some labelled common block, the name of its common is shown; when it
belongs to blank common, the field is empty. Argument variables and
arrays appear as variables of (DATA.; the indicated location is
reserved for a pointer to the actual argument and is initialized on
entry to the procedure.

2. The two OFFSET fields provide the location relative to the origin of
the indicated global name assigned to this variable or array. For
arrays, this is the starting location; subsequent elements of the array
are allocated higher order locations. The offset is provided in both
octal and decimal for the convenience of the programmer,

3. The MODE field provides the type associated with each identifier.
Switch variables are indicated by an empty field,

The second part of the report lists all referenced statement numbers in
numerical order. The four fields to the right of each entry are the same as
defined above, The ORIGIN fields for FORMAT statement numbers will always Dbe
»DATA. and the MODE field will indicate FORMAT. For executable statement
numbers, the MODE field will always be blank; the ORIGIN field will be either
eight dots (........), if this is a main program, or the first SYMDEF if this is
a subprogram. The OFFSET field is as described above.

The third part of this report lists all numeric and character constants
requiring unique storage. All constants are allocated storage relative to the
.DATA. block. The two OFFSET fields and the MODE field are as described for
variables and arrays. Only the first 17 characters are displayed for character
constants.

Object Program Listing

This report, pages 5-9 of Figure 3-1, gives a full listing of the generated
object program. The original source statement is identified in: the object
listing by "SOURCE LINE xxx" and the source line, The individual inst